diff --git "a/23014/metadata.json" "b/23014/metadata.json" new file mode 100644--- /dev/null +++ "b/23014/metadata.json" @@ -0,0 +1,56067 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "23014", + "quality_score": 0.8831, + "per_segment_quality_scores": [ + { + "start": 37.06, + "end": 38.98, + "probability": 0.5636 + }, + { + "start": 39.26, + "end": 41.76, + "probability": 0.856 + }, + { + "start": 42.22, + "end": 42.94, + "probability": 0.7586 + }, + { + "start": 43.52, + "end": 44.54, + "probability": 0.684 + }, + { + "start": 44.9, + "end": 50.72, + "probability": 0.9829 + }, + { + "start": 51.18, + "end": 55.84, + "probability": 0.949 + }, + { + "start": 56.42, + "end": 58.44, + "probability": 0.6979 + }, + { + "start": 59.0, + "end": 59.2, + "probability": 0.7427 + }, + { + "start": 60.04, + "end": 61.74, + "probability": 0.8075 + }, + { + "start": 62.66, + "end": 62.94, + "probability": 0.7832 + }, + { + "start": 62.98, + "end": 63.6, + "probability": 0.7221 + }, + { + "start": 63.64, + "end": 67.66, + "probability": 0.7469 + }, + { + "start": 67.66, + "end": 71.74, + "probability": 0.9972 + }, + { + "start": 72.12, + "end": 75.2, + "probability": 0.9712 + }, + { + "start": 75.4, + "end": 76.98, + "probability": 0.9005 + }, + { + "start": 77.4, + "end": 82.32, + "probability": 0.9915 + }, + { + "start": 82.88, + "end": 84.04, + "probability": 0.9044 + }, + { + "start": 84.88, + "end": 87.9, + "probability": 0.9792 + }, + { + "start": 88.58, + "end": 89.18, + "probability": 0.4252 + }, + { + "start": 89.88, + "end": 92.5, + "probability": 0.7022 + }, + { + "start": 95.62, + "end": 106.14, + "probability": 0.9883 + }, + { + "start": 106.72, + "end": 110.52, + "probability": 0.9209 + }, + { + "start": 110.84, + "end": 111.06, + "probability": 0.8402 + }, + { + "start": 111.12, + "end": 112.22, + "probability": 0.9516 + }, + { + "start": 112.58, + "end": 114.48, + "probability": 0.851 + }, + { + "start": 115.22, + "end": 119.2, + "probability": 0.8519 + }, + { + "start": 120.32, + "end": 120.32, + "probability": 0.1106 + }, + { + "start": 120.32, + "end": 123.42, + "probability": 0.9837 + }, + { + "start": 124.2, + "end": 128.08, + "probability": 0.9881 + }, + { + "start": 129.08, + "end": 132.62, + "probability": 0.9375 + }, + { + "start": 133.88, + "end": 135.56, + "probability": 0.227 + }, + { + "start": 136.66, + "end": 138.11, + "probability": 0.7595 + }, + { + "start": 139.6, + "end": 141.94, + "probability": 0.9937 + }, + { + "start": 142.9, + "end": 145.38, + "probability": 0.9773 + }, + { + "start": 145.76, + "end": 146.38, + "probability": 0.5709 + }, + { + "start": 146.62, + "end": 147.42, + "probability": 0.8336 + }, + { + "start": 147.86, + "end": 149.04, + "probability": 0.9297 + }, + { + "start": 149.66, + "end": 152.56, + "probability": 0.9978 + }, + { + "start": 153.62, + "end": 154.48, + "probability": 0.7961 + }, + { + "start": 155.36, + "end": 157.02, + "probability": 0.8495 + }, + { + "start": 157.74, + "end": 158.18, + "probability": 0.7123 + }, + { + "start": 158.48, + "end": 159.88, + "probability": 0.8035 + }, + { + "start": 160.66, + "end": 161.48, + "probability": 0.8414 + }, + { + "start": 162.4, + "end": 168.14, + "probability": 0.9361 + }, + { + "start": 168.8, + "end": 172.32, + "probability": 0.6962 + }, + { + "start": 173.68, + "end": 182.24, + "probability": 0.7469 + }, + { + "start": 182.9, + "end": 183.58, + "probability": 0.225 + }, + { + "start": 186.94, + "end": 188.16, + "probability": 0.322 + }, + { + "start": 189.24, + "end": 191.28, + "probability": 0.7639 + }, + { + "start": 192.28, + "end": 194.1, + "probability": 0.9873 + }, + { + "start": 194.36, + "end": 200.32, + "probability": 0.791 + }, + { + "start": 200.8, + "end": 202.56, + "probability": 0.8508 + }, + { + "start": 203.28, + "end": 206.86, + "probability": 0.9646 + }, + { + "start": 207.46, + "end": 209.18, + "probability": 0.9249 + }, + { + "start": 211.12, + "end": 215.8, + "probability": 0.9987 + }, + { + "start": 216.38, + "end": 221.06, + "probability": 0.9944 + }, + { + "start": 222.2, + "end": 222.84, + "probability": 0.5649 + }, + { + "start": 223.82, + "end": 223.92, + "probability": 0.0847 + }, + { + "start": 223.92, + "end": 230.16, + "probability": 0.9802 + }, + { + "start": 230.72, + "end": 237.46, + "probability": 0.985 + }, + { + "start": 238.77, + "end": 244.86, + "probability": 0.9959 + }, + { + "start": 245.64, + "end": 248.42, + "probability": 0.9771 + }, + { + "start": 249.18, + "end": 256.42, + "probability": 0.9976 + }, + { + "start": 256.42, + "end": 261.76, + "probability": 0.9985 + }, + { + "start": 262.82, + "end": 267.22, + "probability": 0.9978 + }, + { + "start": 268.26, + "end": 273.3, + "probability": 0.9722 + }, + { + "start": 273.82, + "end": 279.64, + "probability": 0.995 + }, + { + "start": 280.42, + "end": 281.06, + "probability": 0.7594 + }, + { + "start": 281.5, + "end": 285.32, + "probability": 0.9972 + }, + { + "start": 285.32, + "end": 290.0, + "probability": 0.9959 + }, + { + "start": 290.0, + "end": 294.92, + "probability": 0.9876 + }, + { + "start": 296.06, + "end": 300.96, + "probability": 0.9594 + }, + { + "start": 300.96, + "end": 308.22, + "probability": 0.947 + }, + { + "start": 311.44, + "end": 313.12, + "probability": 0.3335 + }, + { + "start": 314.26, + "end": 319.74, + "probability": 0.7356 + }, + { + "start": 321.1, + "end": 323.7, + "probability": 0.9944 + }, + { + "start": 324.38, + "end": 325.72, + "probability": 0.9495 + }, + { + "start": 326.56, + "end": 329.15, + "probability": 0.7296 + }, + { + "start": 330.28, + "end": 337.02, + "probability": 0.9747 + }, + { + "start": 337.02, + "end": 340.54, + "probability": 0.9773 + }, + { + "start": 341.78, + "end": 346.38, + "probability": 0.9572 + }, + { + "start": 346.46, + "end": 347.76, + "probability": 0.7761 + }, + { + "start": 348.16, + "end": 351.22, + "probability": 0.9814 + }, + { + "start": 352.04, + "end": 353.72, + "probability": 0.9902 + }, + { + "start": 354.08, + "end": 355.4, + "probability": 0.998 + }, + { + "start": 355.96, + "end": 359.02, + "probability": 0.9167 + }, + { + "start": 359.88, + "end": 361.44, + "probability": 0.5679 + }, + { + "start": 361.54, + "end": 363.46, + "probability": 0.9376 + }, + { + "start": 365.4, + "end": 367.68, + "probability": 0.8833 + }, + { + "start": 370.52, + "end": 374.78, + "probability": 0.9528 + }, + { + "start": 375.1, + "end": 377.44, + "probability": 0.9993 + }, + { + "start": 377.88, + "end": 380.22, + "probability": 0.9619 + }, + { + "start": 380.84, + "end": 381.22, + "probability": 0.5934 + }, + { + "start": 381.28, + "end": 382.5, + "probability": 0.9033 + }, + { + "start": 382.6, + "end": 382.86, + "probability": 0.7578 + }, + { + "start": 383.32, + "end": 384.68, + "probability": 0.9824 + }, + { + "start": 384.74, + "end": 388.44, + "probability": 0.8346 + }, + { + "start": 388.58, + "end": 389.94, + "probability": 0.6958 + }, + { + "start": 390.42, + "end": 391.34, + "probability": 0.837 + }, + { + "start": 392.54, + "end": 394.26, + "probability": 0.5513 + }, + { + "start": 395.1, + "end": 395.9, + "probability": 0.6948 + }, + { + "start": 396.06, + "end": 396.6, + "probability": 0.8819 + }, + { + "start": 396.72, + "end": 399.72, + "probability": 0.9189 + }, + { + "start": 399.72, + "end": 404.42, + "probability": 0.9692 + }, + { + "start": 405.28, + "end": 409.28, + "probability": 0.979 + }, + { + "start": 409.86, + "end": 412.26, + "probability": 0.98 + }, + { + "start": 412.7, + "end": 415.22, + "probability": 0.998 + }, + { + "start": 415.6, + "end": 417.2, + "probability": 0.8947 + }, + { + "start": 417.32, + "end": 422.04, + "probability": 0.9797 + }, + { + "start": 422.76, + "end": 422.9, + "probability": 0.874 + }, + { + "start": 423.04, + "end": 423.72, + "probability": 0.714 + }, + { + "start": 424.0, + "end": 426.42, + "probability": 0.9785 + }, + { + "start": 426.58, + "end": 427.12, + "probability": 0.8579 + }, + { + "start": 427.82, + "end": 430.04, + "probability": 0.9644 + }, + { + "start": 430.68, + "end": 431.14, + "probability": 0.5326 + }, + { + "start": 431.18, + "end": 432.2, + "probability": 0.9595 + }, + { + "start": 433.2, + "end": 437.46, + "probability": 0.985 + }, + { + "start": 438.5, + "end": 441.92, + "probability": 0.7183 + }, + { + "start": 442.38, + "end": 445.0, + "probability": 0.8343 + }, + { + "start": 445.06, + "end": 446.53, + "probability": 0.9538 + }, + { + "start": 446.74, + "end": 449.26, + "probability": 0.9162 + }, + { + "start": 449.34, + "end": 450.56, + "probability": 0.9839 + }, + { + "start": 451.42, + "end": 451.88, + "probability": 0.981 + }, + { + "start": 452.02, + "end": 452.72, + "probability": 0.612 + }, + { + "start": 452.92, + "end": 455.52, + "probability": 0.9937 + }, + { + "start": 456.32, + "end": 462.9, + "probability": 0.8197 + }, + { + "start": 463.1, + "end": 464.54, + "probability": 0.9187 + }, + { + "start": 465.16, + "end": 467.84, + "probability": 0.9717 + }, + { + "start": 468.38, + "end": 473.1, + "probability": 0.9934 + }, + { + "start": 473.24, + "end": 475.8, + "probability": 0.9129 + }, + { + "start": 476.56, + "end": 479.12, + "probability": 0.935 + }, + { + "start": 479.32, + "end": 481.4, + "probability": 0.9878 + }, + { + "start": 481.6, + "end": 484.98, + "probability": 0.7698 + }, + { + "start": 485.54, + "end": 487.8, + "probability": 0.991 + }, + { + "start": 487.8, + "end": 493.26, + "probability": 0.9006 + }, + { + "start": 493.28, + "end": 494.08, + "probability": 0.7764 + }, + { + "start": 495.04, + "end": 496.59, + "probability": 0.8081 + }, + { + "start": 497.3, + "end": 498.46, + "probability": 0.9907 + }, + { + "start": 499.8, + "end": 501.82, + "probability": 0.9922 + }, + { + "start": 502.33, + "end": 504.26, + "probability": 0.9985 + }, + { + "start": 504.9, + "end": 507.14, + "probability": 0.998 + }, + { + "start": 508.66, + "end": 511.32, + "probability": 0.5428 + }, + { + "start": 511.86, + "end": 512.96, + "probability": 0.9878 + }, + { + "start": 513.3, + "end": 515.3, + "probability": 0.9886 + }, + { + "start": 516.06, + "end": 516.78, + "probability": 0.4809 + }, + { + "start": 517.16, + "end": 517.8, + "probability": 0.9491 + }, + { + "start": 517.96, + "end": 521.82, + "probability": 0.6959 + }, + { + "start": 521.86, + "end": 522.94, + "probability": 0.9541 + }, + { + "start": 524.24, + "end": 525.2, + "probability": 0.9495 + }, + { + "start": 525.32, + "end": 526.04, + "probability": 0.8592 + }, + { + "start": 526.34, + "end": 529.36, + "probability": 0.8913 + }, + { + "start": 529.52, + "end": 532.38, + "probability": 0.9823 + }, + { + "start": 532.46, + "end": 534.2, + "probability": 0.9211 + }, + { + "start": 534.8, + "end": 536.0, + "probability": 0.7799 + }, + { + "start": 536.64, + "end": 538.1, + "probability": 0.899 + }, + { + "start": 538.66, + "end": 540.94, + "probability": 0.9442 + }, + { + "start": 541.02, + "end": 541.74, + "probability": 0.9559 + }, + { + "start": 541.84, + "end": 543.34, + "probability": 0.6865 + }, + { + "start": 544.38, + "end": 547.7, + "probability": 0.9663 + }, + { + "start": 547.9, + "end": 550.64, + "probability": 0.7579 + }, + { + "start": 551.6, + "end": 553.9, + "probability": 0.9456 + }, + { + "start": 554.58, + "end": 557.68, + "probability": 0.9876 + }, + { + "start": 557.74, + "end": 559.08, + "probability": 0.9713 + }, + { + "start": 559.4, + "end": 560.32, + "probability": 0.9377 + }, + { + "start": 560.56, + "end": 561.72, + "probability": 0.9963 + }, + { + "start": 562.24, + "end": 563.86, + "probability": 0.8977 + }, + { + "start": 564.7, + "end": 566.42, + "probability": 0.9692 + }, + { + "start": 567.26, + "end": 569.12, + "probability": 0.9259 + }, + { + "start": 569.26, + "end": 569.54, + "probability": 0.7792 + }, + { + "start": 569.62, + "end": 572.04, + "probability": 0.7825 + }, + { + "start": 572.58, + "end": 573.26, + "probability": 0.6655 + }, + { + "start": 573.98, + "end": 576.86, + "probability": 0.8749 + }, + { + "start": 578.0, + "end": 581.92, + "probability": 0.992 + }, + { + "start": 583.3, + "end": 586.36, + "probability": 0.9943 + }, + { + "start": 586.76, + "end": 588.76, + "probability": 0.9087 + }, + { + "start": 589.66, + "end": 594.7, + "probability": 0.9595 + }, + { + "start": 597.62, + "end": 597.82, + "probability": 0.0371 + }, + { + "start": 597.82, + "end": 597.82, + "probability": 0.142 + }, + { + "start": 597.82, + "end": 597.82, + "probability": 0.0454 + }, + { + "start": 597.82, + "end": 599.82, + "probability": 0.7702 + }, + { + "start": 600.02, + "end": 603.52, + "probability": 0.4103 + }, + { + "start": 607.0, + "end": 607.32, + "probability": 0.3423 + }, + { + "start": 607.32, + "end": 607.32, + "probability": 0.1309 + }, + { + "start": 607.32, + "end": 607.32, + "probability": 0.0948 + }, + { + "start": 607.32, + "end": 607.32, + "probability": 0.0738 + }, + { + "start": 607.32, + "end": 607.32, + "probability": 0.0511 + }, + { + "start": 607.32, + "end": 608.3, + "probability": 0.4344 + }, + { + "start": 608.94, + "end": 611.52, + "probability": 0.55 + }, + { + "start": 612.02, + "end": 614.1, + "probability": 0.4373 + }, + { + "start": 614.1, + "end": 615.96, + "probability": 0.6056 + }, + { + "start": 616.0, + "end": 616.24, + "probability": 0.2659 + }, + { + "start": 616.24, + "end": 619.18, + "probability": 0.9937 + }, + { + "start": 619.38, + "end": 622.82, + "probability": 0.3245 + }, + { + "start": 623.3, + "end": 624.5, + "probability": 0.8858 + }, + { + "start": 624.7, + "end": 628.12, + "probability": 0.8486 + }, + { + "start": 628.48, + "end": 631.94, + "probability": 0.5859 + }, + { + "start": 631.96, + "end": 632.0, + "probability": 0.424 + }, + { + "start": 632.0, + "end": 632.48, + "probability": 0.2866 + }, + { + "start": 632.53, + "end": 634.42, + "probability": 0.7086 + }, + { + "start": 634.58, + "end": 638.0, + "probability": 0.5182 + }, + { + "start": 638.38, + "end": 639.72, + "probability": 0.7045 + }, + { + "start": 639.84, + "end": 640.8, + "probability": 0.7704 + }, + { + "start": 640.88, + "end": 641.88, + "probability": 0.998 + }, + { + "start": 642.5, + "end": 646.28, + "probability": 0.9961 + }, + { + "start": 646.54, + "end": 648.34, + "probability": 0.7932 + }, + { + "start": 648.46, + "end": 649.58, + "probability": 0.5652 + }, + { + "start": 649.66, + "end": 651.92, + "probability": 0.998 + }, + { + "start": 651.98, + "end": 653.52, + "probability": 0.8907 + }, + { + "start": 653.7, + "end": 655.62, + "probability": 0.5947 + }, + { + "start": 656.6, + "end": 659.34, + "probability": 0.8937 + }, + { + "start": 659.34, + "end": 660.4, + "probability": 0.0617 + }, + { + "start": 661.58, + "end": 662.56, + "probability": 0.0304 + }, + { + "start": 662.56, + "end": 662.58, + "probability": 0.0582 + }, + { + "start": 662.58, + "end": 664.62, + "probability": 0.321 + }, + { + "start": 664.7, + "end": 665.96, + "probability": 0.56 + }, + { + "start": 666.0, + "end": 666.56, + "probability": 0.6309 + }, + { + "start": 666.56, + "end": 666.56, + "probability": 0.2924 + }, + { + "start": 666.56, + "end": 669.56, + "probability": 0.5484 + }, + { + "start": 669.78, + "end": 673.2, + "probability": 0.9091 + }, + { + "start": 673.72, + "end": 674.28, + "probability": 0.4475 + }, + { + "start": 674.28, + "end": 674.28, + "probability": 0.0292 + }, + { + "start": 674.28, + "end": 675.14, + "probability": 0.2498 + }, + { + "start": 675.14, + "end": 675.5, + "probability": 0.3607 + }, + { + "start": 676.98, + "end": 677.3, + "probability": 0.1092 + }, + { + "start": 677.32, + "end": 678.86, + "probability": 0.4657 + }, + { + "start": 679.28, + "end": 680.52, + "probability": 0.6228 + }, + { + "start": 681.38, + "end": 681.86, + "probability": 0.0308 + }, + { + "start": 681.86, + "end": 681.86, + "probability": 0.1746 + }, + { + "start": 681.86, + "end": 685.32, + "probability": 0.4959 + }, + { + "start": 685.32, + "end": 688.04, + "probability": 0.6365 + }, + { + "start": 688.62, + "end": 691.34, + "probability": 0.8877 + }, + { + "start": 691.88, + "end": 693.81, + "probability": 0.9865 + }, + { + "start": 695.02, + "end": 695.88, + "probability": 0.9345 + }, + { + "start": 696.68, + "end": 698.54, + "probability": 0.8043 + }, + { + "start": 699.24, + "end": 700.74, + "probability": 0.9326 + }, + { + "start": 701.06, + "end": 701.84, + "probability": 0.7563 + }, + { + "start": 702.38, + "end": 703.34, + "probability": 0.9559 + }, + { + "start": 703.42, + "end": 706.1, + "probability": 0.9869 + }, + { + "start": 706.24, + "end": 707.36, + "probability": 0.915 + }, + { + "start": 707.64, + "end": 708.98, + "probability": 0.9574 + }, + { + "start": 709.08, + "end": 709.84, + "probability": 0.4975 + }, + { + "start": 709.88, + "end": 710.2, + "probability": 0.623 + }, + { + "start": 710.2, + "end": 710.5, + "probability": 0.6077 + }, + { + "start": 710.78, + "end": 715.28, + "probability": 0.9955 + }, + { + "start": 715.96, + "end": 717.6, + "probability": 0.9795 + }, + { + "start": 718.18, + "end": 720.7, + "probability": 0.8701 + }, + { + "start": 721.86, + "end": 723.0, + "probability": 0.7144 + }, + { + "start": 723.36, + "end": 727.3, + "probability": 0.99 + }, + { + "start": 727.42, + "end": 729.64, + "probability": 0.9486 + }, + { + "start": 729.94, + "end": 730.82, + "probability": 0.2599 + }, + { + "start": 731.2, + "end": 733.72, + "probability": 0.9644 + }, + { + "start": 734.48, + "end": 736.76, + "probability": 0.8761 + }, + { + "start": 737.36, + "end": 738.44, + "probability": 0.7617 + }, + { + "start": 738.86, + "end": 740.72, + "probability": 0.6843 + }, + { + "start": 741.0, + "end": 742.78, + "probability": 0.9938 + }, + { + "start": 743.16, + "end": 744.44, + "probability": 0.4086 + }, + { + "start": 744.54, + "end": 744.9, + "probability": 0.7231 + }, + { + "start": 744.98, + "end": 745.78, + "probability": 0.939 + }, + { + "start": 746.18, + "end": 746.5, + "probability": 0.739 + }, + { + "start": 746.54, + "end": 746.98, + "probability": 0.8156 + }, + { + "start": 747.12, + "end": 749.98, + "probability": 0.9302 + }, + { + "start": 750.42, + "end": 755.14, + "probability": 0.9258 + }, + { + "start": 755.8, + "end": 758.58, + "probability": 0.9165 + }, + { + "start": 759.22, + "end": 762.14, + "probability": 0.9915 + }, + { + "start": 762.14, + "end": 764.69, + "probability": 0.9644 + }, + { + "start": 765.34, + "end": 770.42, + "probability": 0.99 + }, + { + "start": 770.62, + "end": 771.76, + "probability": 0.8541 + }, + { + "start": 772.26, + "end": 773.76, + "probability": 0.9082 + }, + { + "start": 774.81, + "end": 776.92, + "probability": 0.9523 + }, + { + "start": 777.04, + "end": 778.9, + "probability": 0.9946 + }, + { + "start": 779.36, + "end": 782.96, + "probability": 0.9927 + }, + { + "start": 782.96, + "end": 787.32, + "probability": 0.9965 + }, + { + "start": 787.8, + "end": 789.47, + "probability": 0.9956 + }, + { + "start": 790.12, + "end": 792.32, + "probability": 0.9641 + }, + { + "start": 793.04, + "end": 794.06, + "probability": 0.755 + }, + { + "start": 794.22, + "end": 795.22, + "probability": 0.8592 + }, + { + "start": 795.42, + "end": 801.36, + "probability": 0.9871 + }, + { + "start": 802.18, + "end": 805.26, + "probability": 0.7402 + }, + { + "start": 806.0, + "end": 809.16, + "probability": 0.6101 + }, + { + "start": 809.36, + "end": 813.32, + "probability": 0.9805 + }, + { + "start": 813.88, + "end": 817.16, + "probability": 0.8163 + }, + { + "start": 817.16, + "end": 819.71, + "probability": 0.7452 + }, + { + "start": 820.5, + "end": 823.14, + "probability": 0.9724 + }, + { + "start": 823.2, + "end": 827.12, + "probability": 0.6714 + }, + { + "start": 827.26, + "end": 828.26, + "probability": 0.8003 + }, + { + "start": 828.4, + "end": 830.4, + "probability": 0.2955 + }, + { + "start": 830.46, + "end": 835.0, + "probability": 0.9114 + }, + { + "start": 835.8, + "end": 839.74, + "probability": 0.7386 + }, + { + "start": 839.8, + "end": 845.12, + "probability": 0.9955 + }, + { + "start": 845.62, + "end": 846.88, + "probability": 0.8372 + }, + { + "start": 846.96, + "end": 848.24, + "probability": 0.7332 + }, + { + "start": 848.38, + "end": 853.5, + "probability": 0.9647 + }, + { + "start": 854.01, + "end": 860.86, + "probability": 0.9685 + }, + { + "start": 861.04, + "end": 865.58, + "probability": 0.9381 + }, + { + "start": 865.62, + "end": 868.88, + "probability": 0.9771 + }, + { + "start": 869.2, + "end": 869.5, + "probability": 0.815 + }, + { + "start": 869.94, + "end": 872.36, + "probability": 0.9884 + }, + { + "start": 872.44, + "end": 875.34, + "probability": 0.9863 + }, + { + "start": 877.4, + "end": 878.2, + "probability": 0.0634 + }, + { + "start": 878.2, + "end": 878.2, + "probability": 0.0319 + }, + { + "start": 878.2, + "end": 879.42, + "probability": 0.8446 + }, + { + "start": 879.94, + "end": 880.28, + "probability": 0.3113 + }, + { + "start": 880.38, + "end": 881.32, + "probability": 0.8823 + }, + { + "start": 881.52, + "end": 883.98, + "probability": 0.7945 + }, + { + "start": 884.3, + "end": 887.12, + "probability": 0.9478 + }, + { + "start": 887.26, + "end": 887.72, + "probability": 0.8028 + }, + { + "start": 888.44, + "end": 889.38, + "probability": 0.409 + }, + { + "start": 889.44, + "end": 890.06, + "probability": 0.9176 + }, + { + "start": 890.14, + "end": 892.7, + "probability": 0.7588 + }, + { + "start": 893.2, + "end": 896.9, + "probability": 0.8526 + }, + { + "start": 897.58, + "end": 902.86, + "probability": 0.7549 + }, + { + "start": 903.84, + "end": 905.9, + "probability": 0.851 + }, + { + "start": 906.46, + "end": 908.98, + "probability": 0.9082 + }, + { + "start": 909.38, + "end": 913.0, + "probability": 0.9766 + }, + { + "start": 914.3, + "end": 915.9, + "probability": 0.9343 + }, + { + "start": 917.38, + "end": 919.36, + "probability": 0.0395 + }, + { + "start": 920.44, + "end": 923.46, + "probability": 0.0636 + }, + { + "start": 923.46, + "end": 923.46, + "probability": 0.0863 + }, + { + "start": 923.46, + "end": 923.56, + "probability": 0.0025 + }, + { + "start": 924.18, + "end": 926.74, + "probability": 0.7716 + }, + { + "start": 927.14, + "end": 929.36, + "probability": 0.8767 + }, + { + "start": 929.98, + "end": 930.85, + "probability": 0.9668 + }, + { + "start": 931.34, + "end": 932.92, + "probability": 0.9619 + }, + { + "start": 933.86, + "end": 941.48, + "probability": 0.9305 + }, + { + "start": 941.6, + "end": 944.3, + "probability": 0.9946 + }, + { + "start": 944.86, + "end": 949.14, + "probability": 0.9039 + }, + { + "start": 949.36, + "end": 950.04, + "probability": 0.5082 + }, + { + "start": 950.34, + "end": 951.64, + "probability": 0.9544 + }, + { + "start": 952.12, + "end": 953.64, + "probability": 0.9619 + }, + { + "start": 953.86, + "end": 956.8, + "probability": 0.4947 + }, + { + "start": 957.28, + "end": 961.0, + "probability": 0.9136 + }, + { + "start": 961.06, + "end": 963.42, + "probability": 0.9967 + }, + { + "start": 963.86, + "end": 963.86, + "probability": 0.1439 + }, + { + "start": 963.86, + "end": 965.02, + "probability": 0.9613 + }, + { + "start": 965.36, + "end": 967.64, + "probability": 0.9497 + }, + { + "start": 968.2, + "end": 971.94, + "probability": 0.6802 + }, + { + "start": 971.98, + "end": 973.82, + "probability": 0.8179 + }, + { + "start": 974.16, + "end": 978.44, + "probability": 0.9869 + }, + { + "start": 979.06, + "end": 983.7, + "probability": 0.9608 + }, + { + "start": 983.72, + "end": 987.18, + "probability": 0.9901 + }, + { + "start": 987.72, + "end": 988.04, + "probability": 0.7673 + }, + { + "start": 988.12, + "end": 988.74, + "probability": 0.8035 + }, + { + "start": 988.82, + "end": 993.16, + "probability": 0.896 + }, + { + "start": 993.56, + "end": 993.94, + "probability": 0.5015 + }, + { + "start": 994.04, + "end": 994.5, + "probability": 0.7794 + }, + { + "start": 994.6, + "end": 996.44, + "probability": 0.8874 + }, + { + "start": 996.82, + "end": 998.81, + "probability": 0.9568 + }, + { + "start": 999.66, + "end": 1000.88, + "probability": 0.5199 + }, + { + "start": 1001.38, + "end": 1001.88, + "probability": 0.7086 + }, + { + "start": 1002.96, + "end": 1007.0, + "probability": 0.9612 + }, + { + "start": 1007.26, + "end": 1011.18, + "probability": 0.8705 + }, + { + "start": 1011.76, + "end": 1013.92, + "probability": 0.975 + }, + { + "start": 1014.06, + "end": 1016.29, + "probability": 0.9939 + }, + { + "start": 1016.6, + "end": 1018.1, + "probability": 0.4763 + }, + { + "start": 1018.42, + "end": 1018.94, + "probability": 0.5956 + }, + { + "start": 1019.34, + "end": 1021.58, + "probability": 0.2537 + }, + { + "start": 1021.81, + "end": 1025.94, + "probability": 0.5205 + }, + { + "start": 1026.66, + "end": 1029.52, + "probability": 0.9498 + }, + { + "start": 1030.04, + "end": 1031.76, + "probability": 0.8085 + }, + { + "start": 1034.76, + "end": 1036.26, + "probability": 0.6565 + }, + { + "start": 1036.56, + "end": 1036.68, + "probability": 0.3448 + }, + { + "start": 1036.68, + "end": 1040.42, + "probability": 0.9177 + }, + { + "start": 1041.26, + "end": 1044.22, + "probability": 0.9702 + }, + { + "start": 1044.48, + "end": 1046.25, + "probability": 0.9871 + }, + { + "start": 1047.76, + "end": 1049.8, + "probability": 0.9727 + }, + { + "start": 1050.32, + "end": 1052.7, + "probability": 0.8754 + }, + { + "start": 1053.3, + "end": 1056.08, + "probability": 0.9892 + }, + { + "start": 1056.7, + "end": 1060.36, + "probability": 0.8549 + }, + { + "start": 1060.94, + "end": 1066.54, + "probability": 0.989 + }, + { + "start": 1067.76, + "end": 1069.74, + "probability": 0.9871 + }, + { + "start": 1070.36, + "end": 1071.78, + "probability": 0.5474 + }, + { + "start": 1071.88, + "end": 1075.06, + "probability": 0.9501 + }, + { + "start": 1075.56, + "end": 1077.18, + "probability": 0.9918 + }, + { + "start": 1078.06, + "end": 1080.6, + "probability": 0.9683 + }, + { + "start": 1081.12, + "end": 1084.4, + "probability": 0.9945 + }, + { + "start": 1086.22, + "end": 1087.3, + "probability": 0.9919 + }, + { + "start": 1087.44, + "end": 1088.8, + "probability": 0.9311 + }, + { + "start": 1089.44, + "end": 1094.04, + "probability": 0.934 + }, + { + "start": 1095.1, + "end": 1097.62, + "probability": 0.8861 + }, + { + "start": 1098.7, + "end": 1099.04, + "probability": 0.2519 + }, + { + "start": 1100.06, + "end": 1107.58, + "probability": 0.978 + }, + { + "start": 1108.0, + "end": 1110.42, + "probability": 0.8152 + }, + { + "start": 1111.04, + "end": 1112.22, + "probability": 0.8301 + }, + { + "start": 1112.94, + "end": 1113.64, + "probability": 0.6403 + }, + { + "start": 1114.28, + "end": 1117.52, + "probability": 0.744 + }, + { + "start": 1118.3, + "end": 1118.82, + "probability": 0.7798 + }, + { + "start": 1119.08, + "end": 1120.74, + "probability": 0.6351 + }, + { + "start": 1120.84, + "end": 1122.08, + "probability": 0.9987 + }, + { + "start": 1122.42, + "end": 1125.64, + "probability": 0.9634 + }, + { + "start": 1126.18, + "end": 1126.9, + "probability": 0.6074 + }, + { + "start": 1127.5, + "end": 1128.16, + "probability": 0.8391 + }, + { + "start": 1129.0, + "end": 1131.54, + "probability": 0.5186 + }, + { + "start": 1131.76, + "end": 1132.8, + "probability": 0.386 + }, + { + "start": 1132.8, + "end": 1134.52, + "probability": 0.8982 + }, + { + "start": 1134.68, + "end": 1135.56, + "probability": 0.484 + }, + { + "start": 1136.08, + "end": 1138.3, + "probability": 0.7242 + }, + { + "start": 1138.34, + "end": 1140.78, + "probability": 0.8549 + }, + { + "start": 1141.24, + "end": 1143.64, + "probability": 0.806 + }, + { + "start": 1143.78, + "end": 1144.77, + "probability": 0.7508 + }, + { + "start": 1145.18, + "end": 1146.88, + "probability": 0.9667 + }, + { + "start": 1147.44, + "end": 1149.64, + "probability": 0.793 + }, + { + "start": 1149.84, + "end": 1150.8, + "probability": 0.5448 + }, + { + "start": 1150.88, + "end": 1151.28, + "probability": 0.6456 + }, + { + "start": 1151.52, + "end": 1152.06, + "probability": 0.8858 + }, + { + "start": 1152.12, + "end": 1152.24, + "probability": 0.6 + }, + { + "start": 1153.14, + "end": 1155.8, + "probability": 0.9044 + }, + { + "start": 1156.56, + "end": 1158.72, + "probability": 0.7894 + }, + { + "start": 1159.38, + "end": 1160.2, + "probability": 0.4192 + }, + { + "start": 1160.99, + "end": 1167.02, + "probability": 0.9006 + }, + { + "start": 1167.02, + "end": 1171.62, + "probability": 0.9279 + }, + { + "start": 1171.62, + "end": 1178.06, + "probability": 0.8509 + }, + { + "start": 1178.48, + "end": 1178.74, + "probability": 0.5263 + }, + { + "start": 1178.82, + "end": 1179.78, + "probability": 0.5788 + }, + { + "start": 1179.84, + "end": 1185.44, + "probability": 0.8147 + }, + { + "start": 1186.1, + "end": 1189.12, + "probability": 0.934 + }, + { + "start": 1190.1, + "end": 1192.04, + "probability": 0.8663 + }, + { + "start": 1192.76, + "end": 1196.2, + "probability": 0.8323 + }, + { + "start": 1196.2, + "end": 1199.32, + "probability": 0.9681 + }, + { + "start": 1200.06, + "end": 1204.08, + "probability": 0.9567 + }, + { + "start": 1204.84, + "end": 1207.66, + "probability": 0.9987 + }, + { + "start": 1207.66, + "end": 1212.22, + "probability": 0.8275 + }, + { + "start": 1212.96, + "end": 1213.54, + "probability": 0.6411 + }, + { + "start": 1214.0, + "end": 1214.24, + "probability": 0.88 + }, + { + "start": 1214.74, + "end": 1215.74, + "probability": 0.6481 + }, + { + "start": 1215.8, + "end": 1217.2, + "probability": 0.7195 + }, + { + "start": 1217.46, + "end": 1219.82, + "probability": 0.7272 + }, + { + "start": 1220.68, + "end": 1222.48, + "probability": 0.6775 + }, + { + "start": 1223.32, + "end": 1226.4, + "probability": 0.9194 + }, + { + "start": 1226.4, + "end": 1229.18, + "probability": 0.9913 + }, + { + "start": 1229.3, + "end": 1234.8, + "probability": 0.9701 + }, + { + "start": 1235.4, + "end": 1236.79, + "probability": 0.7343 + }, + { + "start": 1237.64, + "end": 1239.4, + "probability": 0.9605 + }, + { + "start": 1239.92, + "end": 1243.0, + "probability": 0.9937 + }, + { + "start": 1243.58, + "end": 1246.26, + "probability": 0.9969 + }, + { + "start": 1246.26, + "end": 1249.24, + "probability": 0.9973 + }, + { + "start": 1250.24, + "end": 1250.96, + "probability": 0.5574 + }, + { + "start": 1251.08, + "end": 1253.7, + "probability": 0.9843 + }, + { + "start": 1254.44, + "end": 1256.4, + "probability": 0.9351 + }, + { + "start": 1257.24, + "end": 1258.34, + "probability": 0.7245 + }, + { + "start": 1258.98, + "end": 1260.2, + "probability": 0.7203 + }, + { + "start": 1261.54, + "end": 1265.14, + "probability": 0.9011 + }, + { + "start": 1266.51, + "end": 1268.54, + "probability": 0.6288 + }, + { + "start": 1269.1, + "end": 1271.14, + "probability": 0.932 + }, + { + "start": 1271.86, + "end": 1272.87, + "probability": 0.9616 + }, + { + "start": 1273.74, + "end": 1274.24, + "probability": 0.7132 + }, + { + "start": 1274.44, + "end": 1277.46, + "probability": 0.8604 + }, + { + "start": 1277.46, + "end": 1281.26, + "probability": 0.9883 + }, + { + "start": 1282.1, + "end": 1283.6, + "probability": 0.9663 + }, + { + "start": 1284.42, + "end": 1286.13, + "probability": 0.9373 + }, + { + "start": 1286.74, + "end": 1290.12, + "probability": 0.9673 + }, + { + "start": 1290.88, + "end": 1294.08, + "probability": 0.759 + }, + { + "start": 1294.08, + "end": 1297.66, + "probability": 0.9609 + }, + { + "start": 1298.18, + "end": 1302.82, + "probability": 0.9954 + }, + { + "start": 1303.72, + "end": 1304.7, + "probability": 0.6906 + }, + { + "start": 1306.0, + "end": 1307.12, + "probability": 0.9136 + }, + { + "start": 1307.58, + "end": 1308.36, + "probability": 0.8289 + }, + { + "start": 1308.92, + "end": 1310.56, + "probability": 0.841 + }, + { + "start": 1311.92, + "end": 1313.88, + "probability": 0.9688 + }, + { + "start": 1314.66, + "end": 1316.08, + "probability": 0.9791 + }, + { + "start": 1316.74, + "end": 1320.42, + "probability": 0.9756 + }, + { + "start": 1320.44, + "end": 1324.52, + "probability": 0.9886 + }, + { + "start": 1325.76, + "end": 1327.54, + "probability": 0.8167 + }, + { + "start": 1328.48, + "end": 1330.94, + "probability": 0.9142 + }, + { + "start": 1331.4, + "end": 1332.86, + "probability": 0.984 + }, + { + "start": 1333.28, + "end": 1334.42, + "probability": 0.7943 + }, + { + "start": 1334.92, + "end": 1335.96, + "probability": 0.9463 + }, + { + "start": 1336.44, + "end": 1337.06, + "probability": 0.5258 + }, + { + "start": 1337.14, + "end": 1338.54, + "probability": 0.9789 + }, + { + "start": 1338.64, + "end": 1340.6, + "probability": 0.8455 + }, + { + "start": 1340.68, + "end": 1340.84, + "probability": 0.4515 + }, + { + "start": 1341.58, + "end": 1342.62, + "probability": 0.9008 + }, + { + "start": 1342.76, + "end": 1344.14, + "probability": 0.9645 + }, + { + "start": 1344.92, + "end": 1347.38, + "probability": 0.9224 + }, + { + "start": 1347.9, + "end": 1349.64, + "probability": 0.7188 + }, + { + "start": 1349.74, + "end": 1351.7, + "probability": 0.9689 + }, + { + "start": 1353.32, + "end": 1355.43, + "probability": 0.9932 + }, + { + "start": 1356.24, + "end": 1357.28, + "probability": 0.8516 + }, + { + "start": 1358.0, + "end": 1360.16, + "probability": 0.9753 + }, + { + "start": 1360.58, + "end": 1362.34, + "probability": 0.8402 + }, + { + "start": 1362.88, + "end": 1363.5, + "probability": 0.9347 + }, + { + "start": 1363.68, + "end": 1365.64, + "probability": 0.9874 + }, + { + "start": 1365.98, + "end": 1368.06, + "probability": 0.6944 + }, + { + "start": 1368.3, + "end": 1368.98, + "probability": 0.5452 + }, + { + "start": 1369.22, + "end": 1371.26, + "probability": 0.9885 + }, + { + "start": 1371.48, + "end": 1374.92, + "probability": 0.671 + }, + { + "start": 1375.52, + "end": 1377.98, + "probability": 0.6313 + }, + { + "start": 1378.54, + "end": 1380.88, + "probability": 0.9214 + }, + { + "start": 1382.12, + "end": 1384.96, + "probability": 0.8907 + }, + { + "start": 1385.08, + "end": 1387.48, + "probability": 0.7741 + }, + { + "start": 1388.08, + "end": 1392.12, + "probability": 0.9834 + }, + { + "start": 1392.82, + "end": 1393.64, + "probability": 0.981 + }, + { + "start": 1393.82, + "end": 1394.88, + "probability": 0.9916 + }, + { + "start": 1398.26, + "end": 1398.72, + "probability": 0.0001 + }, + { + "start": 1402.08, + "end": 1402.18, + "probability": 0.0848 + }, + { + "start": 1402.18, + "end": 1402.18, + "probability": 0.0905 + }, + { + "start": 1402.18, + "end": 1402.18, + "probability": 0.1184 + }, + { + "start": 1402.18, + "end": 1404.46, + "probability": 0.4902 + }, + { + "start": 1405.14, + "end": 1408.78, + "probability": 0.8726 + }, + { + "start": 1410.1, + "end": 1412.46, + "probability": 0.3542 + }, + { + "start": 1412.86, + "end": 1414.29, + "probability": 0.9863 + }, + { + "start": 1415.16, + "end": 1416.52, + "probability": 0.9261 + }, + { + "start": 1417.46, + "end": 1419.8, + "probability": 0.7882 + }, + { + "start": 1420.42, + "end": 1421.74, + "probability": 0.9252 + }, + { + "start": 1421.94, + "end": 1423.38, + "probability": 0.8911 + }, + { + "start": 1424.08, + "end": 1426.02, + "probability": 0.9504 + }, + { + "start": 1426.94, + "end": 1429.58, + "probability": 0.9292 + }, + { + "start": 1430.58, + "end": 1433.62, + "probability": 0.8813 + }, + { + "start": 1434.5, + "end": 1437.4, + "probability": 0.9894 + }, + { + "start": 1438.48, + "end": 1442.12, + "probability": 0.9585 + }, + { + "start": 1442.78, + "end": 1445.47, + "probability": 0.9956 + }, + { + "start": 1445.96, + "end": 1447.36, + "probability": 0.9629 + }, + { + "start": 1448.26, + "end": 1451.1, + "probability": 0.8374 + }, + { + "start": 1451.68, + "end": 1452.78, + "probability": 0.9575 + }, + { + "start": 1453.56, + "end": 1455.88, + "probability": 0.9487 + }, + { + "start": 1456.48, + "end": 1457.44, + "probability": 0.679 + }, + { + "start": 1457.58, + "end": 1458.72, + "probability": 0.5985 + }, + { + "start": 1459.36, + "end": 1461.84, + "probability": 0.4993 + }, + { + "start": 1462.1, + "end": 1462.96, + "probability": 0.8757 + }, + { + "start": 1463.1, + "end": 1466.8, + "probability": 0.9679 + }, + { + "start": 1467.58, + "end": 1468.48, + "probability": 0.7267 + }, + { + "start": 1469.08, + "end": 1470.8, + "probability": 0.9417 + }, + { + "start": 1471.38, + "end": 1473.14, + "probability": 0.9229 + }, + { + "start": 1473.26, + "end": 1476.94, + "probability": 0.9893 + }, + { + "start": 1477.26, + "end": 1477.98, + "probability": 0.8953 + }, + { + "start": 1478.92, + "end": 1482.88, + "probability": 0.2112 + }, + { + "start": 1482.98, + "end": 1482.98, + "probability": 0.033 + }, + { + "start": 1482.98, + "end": 1483.8, + "probability": 0.8043 + }, + { + "start": 1484.15, + "end": 1487.12, + "probability": 0.7385 + }, + { + "start": 1487.92, + "end": 1489.02, + "probability": 0.751 + }, + { + "start": 1489.12, + "end": 1490.0, + "probability": 0.5989 + }, + { + "start": 1490.32, + "end": 1493.18, + "probability": 0.9912 + }, + { + "start": 1494.36, + "end": 1497.46, + "probability": 0.8208 + }, + { + "start": 1498.74, + "end": 1500.7, + "probability": 0.8658 + }, + { + "start": 1501.9, + "end": 1504.2, + "probability": 0.951 + }, + { + "start": 1504.2, + "end": 1506.84, + "probability": 0.8131 + }, + { + "start": 1507.74, + "end": 1510.74, + "probability": 0.6032 + }, + { + "start": 1511.2, + "end": 1511.5, + "probability": 0.9348 + }, + { + "start": 1512.66, + "end": 1514.67, + "probability": 0.9671 + }, + { + "start": 1515.68, + "end": 1518.4, + "probability": 0.7133 + }, + { + "start": 1519.12, + "end": 1521.66, + "probability": 0.9487 + }, + { + "start": 1522.66, + "end": 1523.66, + "probability": 0.9011 + }, + { + "start": 1524.27, + "end": 1525.98, + "probability": 0.7997 + }, + { + "start": 1526.64, + "end": 1529.76, + "probability": 0.7646 + }, + { + "start": 1530.8, + "end": 1538.04, + "probability": 0.8419 + }, + { + "start": 1538.72, + "end": 1539.9, + "probability": 0.6372 + }, + { + "start": 1540.6, + "end": 1542.16, + "probability": 0.9912 + }, + { + "start": 1542.82, + "end": 1547.56, + "probability": 0.996 + }, + { + "start": 1548.82, + "end": 1551.82, + "probability": 0.9796 + }, + { + "start": 1552.26, + "end": 1552.86, + "probability": 0.9993 + }, + { + "start": 1553.74, + "end": 1556.44, + "probability": 0.8839 + }, + { + "start": 1556.98, + "end": 1558.68, + "probability": 0.9225 + }, + { + "start": 1559.18, + "end": 1561.31, + "probability": 0.9434 + }, + { + "start": 1562.22, + "end": 1564.1, + "probability": 0.9962 + }, + { + "start": 1564.92, + "end": 1567.28, + "probability": 0.9371 + }, + { + "start": 1567.84, + "end": 1571.24, + "probability": 0.9505 + }, + { + "start": 1571.88, + "end": 1572.96, + "probability": 0.9816 + }, + { + "start": 1573.66, + "end": 1574.5, + "probability": 0.7312 + }, + { + "start": 1575.16, + "end": 1576.6, + "probability": 0.8289 + }, + { + "start": 1577.18, + "end": 1579.02, + "probability": 0.941 + }, + { + "start": 1580.24, + "end": 1582.92, + "probability": 0.9958 + }, + { + "start": 1583.58, + "end": 1585.92, + "probability": 0.4482 + }, + { + "start": 1586.12, + "end": 1587.4, + "probability": 0.9403 + }, + { + "start": 1588.02, + "end": 1590.1, + "probability": 0.9878 + }, + { + "start": 1590.82, + "end": 1592.24, + "probability": 0.5574 + }, + { + "start": 1592.64, + "end": 1596.08, + "probability": 0.8744 + }, + { + "start": 1596.78, + "end": 1599.26, + "probability": 0.793 + }, + { + "start": 1599.82, + "end": 1600.62, + "probability": 0.8229 + }, + { + "start": 1601.08, + "end": 1603.0, + "probability": 0.9586 + }, + { + "start": 1603.94, + "end": 1605.4, + "probability": 0.569 + }, + { + "start": 1606.06, + "end": 1607.4, + "probability": 0.8701 + }, + { + "start": 1607.96, + "end": 1608.62, + "probability": 0.911 + }, + { + "start": 1609.26, + "end": 1611.84, + "probability": 0.9877 + }, + { + "start": 1612.72, + "end": 1614.06, + "probability": 0.972 + }, + { + "start": 1614.96, + "end": 1617.28, + "probability": 0.9956 + }, + { + "start": 1617.8, + "end": 1624.74, + "probability": 0.9976 + }, + { + "start": 1624.84, + "end": 1625.72, + "probability": 0.9937 + }, + { + "start": 1626.3, + "end": 1629.42, + "probability": 0.6509 + }, + { + "start": 1630.06, + "end": 1633.06, + "probability": 0.9658 + }, + { + "start": 1633.58, + "end": 1634.74, + "probability": 0.6649 + }, + { + "start": 1635.18, + "end": 1637.58, + "probability": 0.9254 + }, + { + "start": 1637.82, + "end": 1639.92, + "probability": 0.5457 + }, + { + "start": 1639.94, + "end": 1641.26, + "probability": 0.894 + }, + { + "start": 1641.82, + "end": 1644.36, + "probability": 0.8925 + }, + { + "start": 1644.74, + "end": 1647.06, + "probability": 0.9248 + }, + { + "start": 1647.96, + "end": 1651.78, + "probability": 0.9813 + }, + { + "start": 1652.6, + "end": 1656.18, + "probability": 0.7542 + }, + { + "start": 1656.84, + "end": 1658.46, + "probability": 0.6758 + }, + { + "start": 1658.46, + "end": 1658.48, + "probability": 0.2914 + }, + { + "start": 1658.48, + "end": 1660.37, + "probability": 0.9177 + }, + { + "start": 1661.0, + "end": 1662.54, + "probability": 0.9082 + }, + { + "start": 1662.62, + "end": 1663.16, + "probability": 0.8063 + }, + { + "start": 1664.36, + "end": 1665.48, + "probability": 0.1513 + }, + { + "start": 1665.48, + "end": 1666.0, + "probability": 0.4277 + }, + { + "start": 1667.46, + "end": 1668.06, + "probability": 0.2534 + }, + { + "start": 1668.74, + "end": 1668.84, + "probability": 0.7009 + }, + { + "start": 1668.84, + "end": 1671.26, + "probability": 0.519 + }, + { + "start": 1671.76, + "end": 1671.8, + "probability": 0.0085 + }, + { + "start": 1671.8, + "end": 1673.08, + "probability": 0.8003 + }, + { + "start": 1673.24, + "end": 1675.44, + "probability": 0.7466 + }, + { + "start": 1676.59, + "end": 1678.82, + "probability": 0.5197 + }, + { + "start": 1678.82, + "end": 1679.18, + "probability": 0.3935 + }, + { + "start": 1679.18, + "end": 1681.64, + "probability": 0.6942 + }, + { + "start": 1681.72, + "end": 1684.62, + "probability": 0.9881 + }, + { + "start": 1684.74, + "end": 1685.8, + "probability": 0.6436 + }, + { + "start": 1686.14, + "end": 1686.78, + "probability": 0.6862 + }, + { + "start": 1686.88, + "end": 1687.22, + "probability": 0.8826 + }, + { + "start": 1688.52, + "end": 1692.4, + "probability": 0.9306 + }, + { + "start": 1692.66, + "end": 1695.64, + "probability": 0.7914 + }, + { + "start": 1695.86, + "end": 1697.12, + "probability": 0.9391 + }, + { + "start": 1697.22, + "end": 1697.32, + "probability": 0.1375 + }, + { + "start": 1697.66, + "end": 1702.5, + "probability": 0.9889 + }, + { + "start": 1702.58, + "end": 1706.56, + "probability": 0.9497 + }, + { + "start": 1706.78, + "end": 1711.06, + "probability": 0.9327 + }, + { + "start": 1711.18, + "end": 1712.82, + "probability": 0.5146 + }, + { + "start": 1712.92, + "end": 1713.48, + "probability": 0.0406 + }, + { + "start": 1713.48, + "end": 1713.72, + "probability": 0.218 + }, + { + "start": 1713.72, + "end": 1716.11, + "probability": 0.6868 + }, + { + "start": 1716.22, + "end": 1719.78, + "probability": 0.9938 + }, + { + "start": 1720.1, + "end": 1720.26, + "probability": 0.1999 + }, + { + "start": 1720.62, + "end": 1721.76, + "probability": 0.9912 + }, + { + "start": 1721.92, + "end": 1724.42, + "probability": 0.519 + }, + { + "start": 1724.52, + "end": 1725.28, + "probability": 0.6996 + }, + { + "start": 1725.3, + "end": 1725.86, + "probability": 0.7563 + }, + { + "start": 1725.96, + "end": 1726.91, + "probability": 0.9158 + }, + { + "start": 1727.46, + "end": 1729.16, + "probability": 0.9925 + }, + { + "start": 1729.56, + "end": 1731.64, + "probability": 0.8356 + }, + { + "start": 1732.04, + "end": 1734.14, + "probability": 0.8304 + }, + { + "start": 1734.4, + "end": 1736.69, + "probability": 0.6395 + }, + { + "start": 1737.0, + "end": 1740.54, + "probability": 0.9627 + }, + { + "start": 1740.92, + "end": 1742.57, + "probability": 0.7036 + }, + { + "start": 1743.46, + "end": 1745.8, + "probability": 0.7996 + }, + { + "start": 1746.16, + "end": 1746.72, + "probability": 0.6465 + }, + { + "start": 1746.9, + "end": 1750.34, + "probability": 0.7765 + }, + { + "start": 1750.7, + "end": 1752.32, + "probability": 0.6166 + }, + { + "start": 1752.58, + "end": 1754.61, + "probability": 0.8342 + }, + { + "start": 1755.6, + "end": 1757.94, + "probability": 0.9863 + }, + { + "start": 1758.34, + "end": 1758.68, + "probability": 0.7161 + }, + { + "start": 1758.76, + "end": 1759.1, + "probability": 0.478 + }, + { + "start": 1759.38, + "end": 1759.38, + "probability": 0.1935 + }, + { + "start": 1759.52, + "end": 1760.94, + "probability": 0.9247 + }, + { + "start": 1761.16, + "end": 1763.74, + "probability": 0.8584 + }, + { + "start": 1763.76, + "end": 1764.3, + "probability": 0.9459 + }, + { + "start": 1765.86, + "end": 1767.08, + "probability": 0.7664 + }, + { + "start": 1768.46, + "end": 1770.8, + "probability": 0.8433 + }, + { + "start": 1771.36, + "end": 1776.38, + "probability": 0.9709 + }, + { + "start": 1777.44, + "end": 1779.08, + "probability": 0.4921 + }, + { + "start": 1779.08, + "end": 1782.58, + "probability": 0.6673 + }, + { + "start": 1783.4, + "end": 1786.92, + "probability": 0.925 + }, + { + "start": 1787.46, + "end": 1788.14, + "probability": 0.5091 + }, + { + "start": 1788.16, + "end": 1790.2, + "probability": 0.797 + }, + { + "start": 1790.52, + "end": 1791.74, + "probability": 0.9612 + }, + { + "start": 1792.63, + "end": 1794.17, + "probability": 0.9985 + }, + { + "start": 1794.28, + "end": 1795.9, + "probability": 0.9949 + }, + { + "start": 1796.68, + "end": 1799.52, + "probability": 0.9709 + }, + { + "start": 1799.68, + "end": 1800.48, + "probability": 0.5034 + }, + { + "start": 1801.18, + "end": 1804.24, + "probability": 0.9767 + }, + { + "start": 1804.38, + "end": 1805.06, + "probability": 0.4973 + }, + { + "start": 1805.22, + "end": 1805.56, + "probability": 0.3933 + }, + { + "start": 1805.58, + "end": 1806.34, + "probability": 0.9116 + }, + { + "start": 1806.42, + "end": 1808.18, + "probability": 0.7616 + }, + { + "start": 1808.56, + "end": 1811.22, + "probability": 0.9479 + }, + { + "start": 1812.1, + "end": 1813.16, + "probability": 0.2018 + }, + { + "start": 1813.16, + "end": 1814.4, + "probability": 0.9658 + }, + { + "start": 1814.44, + "end": 1816.6, + "probability": 0.9941 + }, + { + "start": 1816.8, + "end": 1820.46, + "probability": 0.9937 + }, + { + "start": 1820.56, + "end": 1823.1, + "probability": 0.9951 + }, + { + "start": 1823.22, + "end": 1823.66, + "probability": 0.5714 + }, + { + "start": 1824.26, + "end": 1825.14, + "probability": 0.5118 + }, + { + "start": 1825.24, + "end": 1826.08, + "probability": 0.8843 + }, + { + "start": 1826.66, + "end": 1828.7, + "probability": 0.9125 + }, + { + "start": 1829.38, + "end": 1831.66, + "probability": 0.9688 + }, + { + "start": 1831.82, + "end": 1831.82, + "probability": 0.1259 + }, + { + "start": 1832.62, + "end": 1836.24, + "probability": 0.9954 + }, + { + "start": 1836.34, + "end": 1839.58, + "probability": 0.8945 + }, + { + "start": 1840.1, + "end": 1843.56, + "probability": 0.9846 + }, + { + "start": 1844.04, + "end": 1845.28, + "probability": 0.0564 + }, + { + "start": 1845.56, + "end": 1847.76, + "probability": 0.99 + }, + { + "start": 1849.1, + "end": 1849.96, + "probability": 0.8529 + }, + { + "start": 1850.2, + "end": 1853.18, + "probability": 0.9512 + }, + { + "start": 1853.82, + "end": 1855.6, + "probability": 0.7625 + }, + { + "start": 1855.62, + "end": 1855.96, + "probability": 0.7154 + }, + { + "start": 1855.96, + "end": 1857.4, + "probability": 0.9729 + }, + { + "start": 1857.78, + "end": 1862.68, + "probability": 0.9786 + }, + { + "start": 1863.8, + "end": 1867.04, + "probability": 0.989 + }, + { + "start": 1867.9, + "end": 1870.2, + "probability": 0.933 + }, + { + "start": 1870.48, + "end": 1872.14, + "probability": 0.826 + }, + { + "start": 1872.96, + "end": 1874.24, + "probability": 0.9005 + }, + { + "start": 1874.24, + "end": 1876.5, + "probability": 0.8808 + }, + { + "start": 1877.3, + "end": 1878.98, + "probability": 0.7038 + }, + { + "start": 1881.22, + "end": 1883.02, + "probability": 0.971 + }, + { + "start": 1883.9, + "end": 1886.54, + "probability": 0.9861 + }, + { + "start": 1887.62, + "end": 1891.6, + "probability": 0.9888 + }, + { + "start": 1892.36, + "end": 1893.06, + "probability": 0.9866 + }, + { + "start": 1893.76, + "end": 1895.39, + "probability": 0.8944 + }, + { + "start": 1896.34, + "end": 1896.68, + "probability": 0.5757 + }, + { + "start": 1898.1, + "end": 1900.52, + "probability": 0.9886 + }, + { + "start": 1901.42, + "end": 1903.88, + "probability": 0.9341 + }, + { + "start": 1904.78, + "end": 1905.14, + "probability": 0.8677 + }, + { + "start": 1905.34, + "end": 1907.08, + "probability": 0.9744 + }, + { + "start": 1907.18, + "end": 1909.2, + "probability": 0.9336 + }, + { + "start": 1909.94, + "end": 1914.58, + "probability": 0.7849 + }, + { + "start": 1915.16, + "end": 1917.88, + "probability": 0.9679 + }, + { + "start": 1918.4, + "end": 1918.9, + "probability": 0.534 + }, + { + "start": 1919.04, + "end": 1919.68, + "probability": 0.6742 + }, + { + "start": 1920.06, + "end": 1924.44, + "probability": 0.9843 + }, + { + "start": 1924.92, + "end": 1928.42, + "probability": 0.9893 + }, + { + "start": 1929.22, + "end": 1932.02, + "probability": 0.9842 + }, + { + "start": 1932.98, + "end": 1933.22, + "probability": 0.5201 + }, + { + "start": 1933.94, + "end": 1936.72, + "probability": 0.9896 + }, + { + "start": 1936.76, + "end": 1938.78, + "probability": 0.994 + }, + { + "start": 1939.68, + "end": 1942.34, + "probability": 0.9466 + }, + { + "start": 1942.46, + "end": 1943.77, + "probability": 0.669 + }, + { + "start": 1944.44, + "end": 1945.86, + "probability": 0.8232 + }, + { + "start": 1947.02, + "end": 1951.38, + "probability": 0.9478 + }, + { + "start": 1952.24, + "end": 1957.04, + "probability": 0.9956 + }, + { + "start": 1957.08, + "end": 1958.22, + "probability": 0.4899 + }, + { + "start": 1958.78, + "end": 1960.6, + "probability": 0.9985 + }, + { + "start": 1961.32, + "end": 1964.02, + "probability": 0.9918 + }, + { + "start": 1964.58, + "end": 1965.48, + "probability": 0.8214 + }, + { + "start": 1966.08, + "end": 1969.24, + "probability": 0.9836 + }, + { + "start": 1969.7, + "end": 1971.98, + "probability": 0.7585 + }, + { + "start": 1972.58, + "end": 1974.56, + "probability": 0.956 + }, + { + "start": 1975.16, + "end": 1975.9, + "probability": 0.7792 + }, + { + "start": 1976.88, + "end": 1979.78, + "probability": 0.6441 + }, + { + "start": 1980.26, + "end": 1981.54, + "probability": 0.9784 + }, + { + "start": 1981.96, + "end": 1982.68, + "probability": 0.8786 + }, + { + "start": 1983.52, + "end": 1984.58, + "probability": 0.9448 + }, + { + "start": 1985.12, + "end": 1985.56, + "probability": 0.7654 + }, + { + "start": 1986.08, + "end": 1986.7, + "probability": 0.981 + }, + { + "start": 1987.46, + "end": 1990.96, + "probability": 0.8908 + }, + { + "start": 1991.62, + "end": 1993.68, + "probability": 0.979 + }, + { + "start": 1994.64, + "end": 1996.8, + "probability": 0.9889 + }, + { + "start": 1997.72, + "end": 2003.14, + "probability": 0.9801 + }, + { + "start": 2003.62, + "end": 2005.85, + "probability": 0.9957 + }, + { + "start": 2006.56, + "end": 2011.1, + "probability": 0.993 + }, + { + "start": 2011.26, + "end": 2012.74, + "probability": 0.9988 + }, + { + "start": 2013.32, + "end": 2016.36, + "probability": 0.9874 + }, + { + "start": 2016.76, + "end": 2017.96, + "probability": 0.9779 + }, + { + "start": 2018.74, + "end": 2020.32, + "probability": 0.9779 + }, + { + "start": 2020.9, + "end": 2022.84, + "probability": 0.987 + }, + { + "start": 2023.5, + "end": 2025.3, + "probability": 0.8324 + }, + { + "start": 2025.7, + "end": 2027.28, + "probability": 0.8847 + }, + { + "start": 2027.84, + "end": 2029.42, + "probability": 0.9828 + }, + { + "start": 2029.84, + "end": 2031.23, + "probability": 0.9937 + }, + { + "start": 2032.14, + "end": 2035.18, + "probability": 0.9432 + }, + { + "start": 2035.88, + "end": 2038.66, + "probability": 0.9841 + }, + { + "start": 2039.3, + "end": 2039.6, + "probability": 0.9698 + }, + { + "start": 2040.22, + "end": 2044.18, + "probability": 0.9666 + }, + { + "start": 2044.68, + "end": 2047.18, + "probability": 0.9937 + }, + { + "start": 2047.18, + "end": 2050.78, + "probability": 0.999 + }, + { + "start": 2051.36, + "end": 2053.8, + "probability": 0.9979 + }, + { + "start": 2054.38, + "end": 2057.54, + "probability": 0.9976 + }, + { + "start": 2058.16, + "end": 2059.24, + "probability": 0.6294 + }, + { + "start": 2060.0, + "end": 2060.82, + "probability": 0.7551 + }, + { + "start": 2061.82, + "end": 2062.04, + "probability": 0.3276 + }, + { + "start": 2062.06, + "end": 2062.34, + "probability": 0.7048 + }, + { + "start": 2062.44, + "end": 2064.16, + "probability": 0.9443 + }, + { + "start": 2064.86, + "end": 2071.76, + "probability": 0.9766 + }, + { + "start": 2072.26, + "end": 2075.1, + "probability": 0.9902 + }, + { + "start": 2075.12, + "end": 2077.2, + "probability": 0.8054 + }, + { + "start": 2077.82, + "end": 2082.72, + "probability": 0.8654 + }, + { + "start": 2082.84, + "end": 2083.42, + "probability": 0.6115 + }, + { + "start": 2084.0, + "end": 2085.98, + "probability": 0.9956 + }, + { + "start": 2086.44, + "end": 2088.52, + "probability": 0.9899 + }, + { + "start": 2089.02, + "end": 2094.6, + "probability": 0.8758 + }, + { + "start": 2094.86, + "end": 2100.2, + "probability": 0.9918 + }, + { + "start": 2101.2, + "end": 2103.48, + "probability": 0.9897 + }, + { + "start": 2104.52, + "end": 2106.58, + "probability": 0.8655 + }, + { + "start": 2107.8, + "end": 2109.3, + "probability": 0.6066 + }, + { + "start": 2109.44, + "end": 2110.96, + "probability": 0.9983 + }, + { + "start": 2112.04, + "end": 2116.92, + "probability": 0.9812 + }, + { + "start": 2117.0, + "end": 2117.9, + "probability": 0.8709 + }, + { + "start": 2118.44, + "end": 2124.74, + "probability": 0.9544 + }, + { + "start": 2125.48, + "end": 2129.68, + "probability": 0.8721 + }, + { + "start": 2130.94, + "end": 2131.18, + "probability": 0.7559 + }, + { + "start": 2132.46, + "end": 2134.24, + "probability": 0.654 + }, + { + "start": 2134.44, + "end": 2140.68, + "probability": 0.7505 + }, + { + "start": 2140.93, + "end": 2141.0, + "probability": 0.3805 + }, + { + "start": 2141.0, + "end": 2141.96, + "probability": 0.361 + }, + { + "start": 2142.08, + "end": 2144.32, + "probability": 0.7571 + }, + { + "start": 2144.48, + "end": 2145.88, + "probability": 0.8954 + }, + { + "start": 2146.36, + "end": 2147.56, + "probability": 0.3829 + }, + { + "start": 2147.92, + "end": 2149.5, + "probability": 0.6651 + }, + { + "start": 2150.96, + "end": 2150.96, + "probability": 0.2095 + }, + { + "start": 2150.96, + "end": 2150.96, + "probability": 0.302 + }, + { + "start": 2150.96, + "end": 2157.25, + "probability": 0.7952 + }, + { + "start": 2157.58, + "end": 2158.42, + "probability": 0.7475 + }, + { + "start": 2158.8, + "end": 2162.14, + "probability": 0.7621 + }, + { + "start": 2163.36, + "end": 2166.6, + "probability": 0.9938 + }, + { + "start": 2167.42, + "end": 2168.5, + "probability": 0.9918 + }, + { + "start": 2168.52, + "end": 2172.16, + "probability": 0.9766 + }, + { + "start": 2172.46, + "end": 2173.12, + "probability": 0.6939 + }, + { + "start": 2173.2, + "end": 2177.22, + "probability": 0.7599 + }, + { + "start": 2177.22, + "end": 2178.2, + "probability": 0.7304 + }, + { + "start": 2178.64, + "end": 2179.2, + "probability": 0.7318 + }, + { + "start": 2180.66, + "end": 2182.5, + "probability": 0.9417 + }, + { + "start": 2182.56, + "end": 2183.28, + "probability": 0.823 + }, + { + "start": 2183.56, + "end": 2188.28, + "probability": 0.9676 + }, + { + "start": 2189.84, + "end": 2193.28, + "probability": 0.8707 + }, + { + "start": 2193.98, + "end": 2195.67, + "probability": 0.9028 + }, + { + "start": 2196.46, + "end": 2200.0, + "probability": 0.9478 + }, + { + "start": 2200.1, + "end": 2201.97, + "probability": 0.9759 + }, + { + "start": 2203.4, + "end": 2204.99, + "probability": 0.3714 + }, + { + "start": 2209.27, + "end": 2212.28, + "probability": 0.7129 + }, + { + "start": 2213.4, + "end": 2214.74, + "probability": 0.9971 + }, + { + "start": 2215.08, + "end": 2218.52, + "probability": 0.9821 + }, + { + "start": 2218.78, + "end": 2221.88, + "probability": 0.9482 + }, + { + "start": 2221.98, + "end": 2223.0, + "probability": 0.8433 + }, + { + "start": 2223.56, + "end": 2224.76, + "probability": 0.9347 + }, + { + "start": 2225.76, + "end": 2228.28, + "probability": 0.7594 + }, + { + "start": 2228.88, + "end": 2230.42, + "probability": 0.8995 + }, + { + "start": 2231.3, + "end": 2231.68, + "probability": 0.4468 + }, + { + "start": 2232.54, + "end": 2235.72, + "probability": 0.9995 + }, + { + "start": 2237.54, + "end": 2241.46, + "probability": 0.9881 + }, + { + "start": 2242.04, + "end": 2242.88, + "probability": 0.8428 + }, + { + "start": 2243.44, + "end": 2244.22, + "probability": 0.7767 + }, + { + "start": 2244.64, + "end": 2249.26, + "probability": 0.9897 + }, + { + "start": 2250.52, + "end": 2253.91, + "probability": 0.9989 + }, + { + "start": 2254.7, + "end": 2255.54, + "probability": 0.9397 + }, + { + "start": 2255.64, + "end": 2255.96, + "probability": 0.9028 + }, + { + "start": 2256.04, + "end": 2256.34, + "probability": 0.9653 + }, + { + "start": 2256.5, + "end": 2257.78, + "probability": 0.9754 + }, + { + "start": 2258.76, + "end": 2260.53, + "probability": 0.9912 + }, + { + "start": 2261.42, + "end": 2264.74, + "probability": 0.9897 + }, + { + "start": 2265.5, + "end": 2266.84, + "probability": 0.9871 + }, + { + "start": 2267.02, + "end": 2270.84, + "probability": 0.9639 + }, + { + "start": 2271.56, + "end": 2272.9, + "probability": 0.9911 + }, + { + "start": 2273.44, + "end": 2276.84, + "probability": 0.9951 + }, + { + "start": 2276.88, + "end": 2278.18, + "probability": 0.9383 + }, + { + "start": 2278.9, + "end": 2280.14, + "probability": 0.9854 + }, + { + "start": 2282.12, + "end": 2283.72, + "probability": 0.7733 + }, + { + "start": 2283.96, + "end": 2284.8, + "probability": 0.9673 + }, + { + "start": 2285.12, + "end": 2288.04, + "probability": 0.9496 + }, + { + "start": 2290.96, + "end": 2291.36, + "probability": 0.7395 + }, + { + "start": 2293.02, + "end": 2294.52, + "probability": 0.5506 + }, + { + "start": 2295.42, + "end": 2296.44, + "probability": 0.8245 + }, + { + "start": 2296.62, + "end": 2297.46, + "probability": 0.9082 + }, + { + "start": 2297.48, + "end": 2298.02, + "probability": 0.9284 + }, + { + "start": 2298.18, + "end": 2300.89, + "probability": 0.9833 + }, + { + "start": 2301.84, + "end": 2304.98, + "probability": 0.907 + }, + { + "start": 2304.98, + "end": 2307.48, + "probability": 0.905 + }, + { + "start": 2307.48, + "end": 2310.18, + "probability": 0.9879 + }, + { + "start": 2310.72, + "end": 2313.04, + "probability": 0.8994 + }, + { + "start": 2314.54, + "end": 2316.38, + "probability": 0.9795 + }, + { + "start": 2317.06, + "end": 2317.36, + "probability": 0.5201 + }, + { + "start": 2318.36, + "end": 2319.44, + "probability": 0.9408 + }, + { + "start": 2319.54, + "end": 2322.64, + "probability": 0.8887 + }, + { + "start": 2322.66, + "end": 2323.5, + "probability": 0.7351 + }, + { + "start": 2325.28, + "end": 2329.04, + "probability": 0.9651 + }, + { + "start": 2329.74, + "end": 2332.7, + "probability": 0.996 + }, + { + "start": 2333.62, + "end": 2334.0, + "probability": 0.6154 + }, + { + "start": 2334.18, + "end": 2336.74, + "probability": 0.8061 + }, + { + "start": 2337.06, + "end": 2339.88, + "probability": 0.9261 + }, + { + "start": 2340.86, + "end": 2344.1, + "probability": 0.9312 + }, + { + "start": 2344.2, + "end": 2345.86, + "probability": 0.7175 + }, + { + "start": 2346.6, + "end": 2350.52, + "probability": 0.99 + }, + { + "start": 2351.4, + "end": 2353.62, + "probability": 0.9943 + }, + { + "start": 2354.1, + "end": 2359.01, + "probability": 0.9956 + }, + { + "start": 2364.36, + "end": 2364.56, + "probability": 0.8127 + }, + { + "start": 2367.46, + "end": 2369.24, + "probability": 0.3896 + }, + { + "start": 2369.42, + "end": 2369.94, + "probability": 0.5362 + }, + { + "start": 2370.2, + "end": 2374.34, + "probability": 0.9923 + }, + { + "start": 2374.42, + "end": 2376.36, + "probability": 0.9316 + }, + { + "start": 2376.86, + "end": 2379.58, + "probability": 0.9946 + }, + { + "start": 2379.76, + "end": 2383.14, + "probability": 0.9907 + }, + { + "start": 2383.94, + "end": 2387.9, + "probability": 0.9951 + }, + { + "start": 2387.9, + "end": 2393.24, + "probability": 0.9918 + }, + { + "start": 2393.4, + "end": 2397.62, + "probability": 0.9943 + }, + { + "start": 2399.48, + "end": 2400.58, + "probability": 0.8712 + }, + { + "start": 2401.6, + "end": 2402.32, + "probability": 0.6713 + }, + { + "start": 2402.46, + "end": 2403.26, + "probability": 0.8292 + }, + { + "start": 2403.74, + "end": 2405.56, + "probability": 0.9482 + }, + { + "start": 2405.64, + "end": 2407.48, + "probability": 0.6392 + }, + { + "start": 2407.9, + "end": 2410.24, + "probability": 0.8076 + }, + { + "start": 2410.24, + "end": 2413.42, + "probability": 0.7508 + }, + { + "start": 2413.94, + "end": 2420.82, + "probability": 0.8868 + }, + { + "start": 2420.88, + "end": 2422.34, + "probability": 0.9919 + }, + { + "start": 2424.28, + "end": 2426.18, + "probability": 0.9867 + }, + { + "start": 2426.68, + "end": 2428.96, + "probability": 0.9064 + }, + { + "start": 2429.24, + "end": 2431.66, + "probability": 0.9959 + }, + { + "start": 2431.66, + "end": 2432.38, + "probability": 0.9622 + }, + { + "start": 2432.94, + "end": 2433.82, + "probability": 0.8444 + }, + { + "start": 2435.26, + "end": 2437.1, + "probability": 0.6734 + }, + { + "start": 2437.42, + "end": 2438.01, + "probability": 0.7607 + }, + { + "start": 2438.24, + "end": 2438.5, + "probability": 0.9042 + }, + { + "start": 2438.56, + "end": 2441.26, + "probability": 0.9656 + }, + { + "start": 2441.34, + "end": 2443.92, + "probability": 0.9116 + }, + { + "start": 2444.38, + "end": 2446.64, + "probability": 0.9699 + }, + { + "start": 2446.64, + "end": 2449.52, + "probability": 0.9936 + }, + { + "start": 2450.72, + "end": 2454.34, + "probability": 0.7777 + }, + { + "start": 2454.96, + "end": 2461.34, + "probability": 0.8959 + }, + { + "start": 2461.34, + "end": 2463.94, + "probability": 0.3626 + }, + { + "start": 2463.94, + "end": 2466.02, + "probability": 0.8766 + }, + { + "start": 2466.5, + "end": 2467.1, + "probability": 0.9224 + }, + { + "start": 2467.26, + "end": 2469.98, + "probability": 0.957 + }, + { + "start": 2470.28, + "end": 2471.62, + "probability": 0.6959 + }, + { + "start": 2472.28, + "end": 2472.92, + "probability": 0.752 + }, + { + "start": 2473.08, + "end": 2473.88, + "probability": 0.696 + }, + { + "start": 2473.96, + "end": 2476.28, + "probability": 0.8738 + }, + { + "start": 2476.66, + "end": 2480.68, + "probability": 0.9893 + }, + { + "start": 2482.04, + "end": 2483.7, + "probability": 0.8809 + }, + { + "start": 2483.8, + "end": 2484.96, + "probability": 0.9681 + }, + { + "start": 2486.08, + "end": 2488.08, + "probability": 0.7599 + }, + { + "start": 2488.6, + "end": 2493.38, + "probability": 0.9774 + }, + { + "start": 2494.34, + "end": 2495.84, + "probability": 0.9865 + }, + { + "start": 2496.16, + "end": 2496.56, + "probability": 0.9693 + }, + { + "start": 2496.68, + "end": 2497.22, + "probability": 0.9562 + }, + { + "start": 2497.44, + "end": 2499.58, + "probability": 0.9539 + }, + { + "start": 2501.48, + "end": 2503.82, + "probability": 0.8915 + }, + { + "start": 2503.98, + "end": 2505.94, + "probability": 0.8758 + }, + { + "start": 2506.28, + "end": 2508.0, + "probability": 0.9356 + }, + { + "start": 2508.68, + "end": 2509.22, + "probability": 0.8398 + }, + { + "start": 2509.98, + "end": 2512.38, + "probability": 0.767 + }, + { + "start": 2512.44, + "end": 2513.42, + "probability": 0.8051 + }, + { + "start": 2513.48, + "end": 2517.4, + "probability": 0.9295 + }, + { + "start": 2518.0, + "end": 2522.96, + "probability": 0.9068 + }, + { + "start": 2525.82, + "end": 2528.92, + "probability": 0.9911 + }, + { + "start": 2529.78, + "end": 2535.25, + "probability": 0.9957 + }, + { + "start": 2536.58, + "end": 2538.56, + "probability": 0.9941 + }, + { + "start": 2539.12, + "end": 2541.92, + "probability": 0.8176 + }, + { + "start": 2543.08, + "end": 2544.02, + "probability": 0.9924 + }, + { + "start": 2545.26, + "end": 2548.6, + "probability": 0.6782 + }, + { + "start": 2548.92, + "end": 2550.37, + "probability": 0.9053 + }, + { + "start": 2550.96, + "end": 2554.06, + "probability": 0.9698 + }, + { + "start": 2555.32, + "end": 2558.1, + "probability": 0.9702 + }, + { + "start": 2558.76, + "end": 2560.22, + "probability": 0.996 + }, + { + "start": 2560.34, + "end": 2564.22, + "probability": 0.9818 + }, + { + "start": 2565.42, + "end": 2566.18, + "probability": 0.2812 + }, + { + "start": 2566.34, + "end": 2567.62, + "probability": 0.7024 + }, + { + "start": 2567.66, + "end": 2569.4, + "probability": 0.7334 + }, + { + "start": 2569.54, + "end": 2573.32, + "probability": 0.8105 + }, + { + "start": 2573.48, + "end": 2573.84, + "probability": 0.756 + }, + { + "start": 2575.04, + "end": 2575.24, + "probability": 0.0251 + }, + { + "start": 2575.24, + "end": 2576.11, + "probability": 0.6738 + }, + { + "start": 2576.76, + "end": 2579.28, + "probability": 0.8927 + }, + { + "start": 2580.2, + "end": 2582.04, + "probability": 0.936 + }, + { + "start": 2582.28, + "end": 2584.78, + "probability": 0.4821 + }, + { + "start": 2585.1, + "end": 2585.9, + "probability": 0.9517 + }, + { + "start": 2586.16, + "end": 2587.48, + "probability": 0.7291 + }, + { + "start": 2587.66, + "end": 2588.44, + "probability": 0.6825 + }, + { + "start": 2588.56, + "end": 2588.7, + "probability": 0.9446 + }, + { + "start": 2589.38, + "end": 2592.62, + "probability": 0.9228 + }, + { + "start": 2593.68, + "end": 2598.86, + "probability": 0.9121 + }, + { + "start": 2601.08, + "end": 2602.54, + "probability": 0.8768 + }, + { + "start": 2603.04, + "end": 2603.66, + "probability": 0.7596 + }, + { + "start": 2603.76, + "end": 2604.08, + "probability": 0.7166 + }, + { + "start": 2604.3, + "end": 2604.66, + "probability": 0.8217 + }, + { + "start": 2604.8, + "end": 2609.14, + "probability": 0.9347 + }, + { + "start": 2609.28, + "end": 2611.98, + "probability": 0.8348 + }, + { + "start": 2612.82, + "end": 2613.52, + "probability": 0.7971 + }, + { + "start": 2613.66, + "end": 2616.76, + "probability": 0.9729 + }, + { + "start": 2617.22, + "end": 2618.88, + "probability": 0.8275 + }, + { + "start": 2619.16, + "end": 2621.58, + "probability": 0.7883 + }, + { + "start": 2622.0, + "end": 2623.88, + "probability": 0.9641 + }, + { + "start": 2624.5, + "end": 2627.9, + "probability": 0.9962 + }, + { + "start": 2627.9, + "end": 2632.5, + "probability": 0.9866 + }, + { + "start": 2632.56, + "end": 2637.36, + "probability": 0.8124 + }, + { + "start": 2637.52, + "end": 2639.74, + "probability": 0.9593 + }, + { + "start": 2641.6, + "end": 2644.1, + "probability": 0.7632 + }, + { + "start": 2644.26, + "end": 2645.06, + "probability": 0.6714 + }, + { + "start": 2645.12, + "end": 2650.14, + "probability": 0.9779 + }, + { + "start": 2650.4, + "end": 2652.04, + "probability": 0.702 + }, + { + "start": 2652.76, + "end": 2654.58, + "probability": 0.6521 + }, + { + "start": 2656.56, + "end": 2659.34, + "probability": 0.7132 + }, + { + "start": 2659.54, + "end": 2660.96, + "probability": 0.7314 + }, + { + "start": 2661.04, + "end": 2661.6, + "probability": 0.7993 + }, + { + "start": 2662.94, + "end": 2669.49, + "probability": 0.7859 + }, + { + "start": 2670.32, + "end": 2672.5, + "probability": 0.4306 + }, + { + "start": 2673.04, + "end": 2678.1, + "probability": 0.8839 + }, + { + "start": 2678.16, + "end": 2680.54, + "probability": 0.9106 + }, + { + "start": 2681.34, + "end": 2683.52, + "probability": 0.7769 + }, + { + "start": 2684.1, + "end": 2686.5, + "probability": 0.8579 + }, + { + "start": 2686.88, + "end": 2693.28, + "probability": 0.9063 + }, + { + "start": 2694.06, + "end": 2696.68, + "probability": 0.8038 + }, + { + "start": 2696.8, + "end": 2698.2, + "probability": 0.9473 + }, + { + "start": 2698.56, + "end": 2703.08, + "probability": 0.8631 + }, + { + "start": 2703.12, + "end": 2703.82, + "probability": 0.9415 + }, + { + "start": 2703.94, + "end": 2704.73, + "probability": 0.9701 + }, + { + "start": 2705.46, + "end": 2706.02, + "probability": 0.7339 + }, + { + "start": 2706.72, + "end": 2708.48, + "probability": 0.6436 + }, + { + "start": 2709.18, + "end": 2710.38, + "probability": 0.8446 + }, + { + "start": 2710.42, + "end": 2713.66, + "probability": 0.7922 + }, + { + "start": 2714.04, + "end": 2719.12, + "probability": 0.909 + }, + { + "start": 2720.0, + "end": 2722.58, + "probability": 0.8172 + }, + { + "start": 2723.42, + "end": 2724.82, + "probability": 0.4709 + }, + { + "start": 2725.42, + "end": 2731.64, + "probability": 0.6079 + }, + { + "start": 2732.24, + "end": 2735.36, + "probability": 0.9853 + }, + { + "start": 2735.8, + "end": 2736.22, + "probability": 0.8428 + }, + { + "start": 2736.36, + "end": 2736.86, + "probability": 0.8903 + }, + { + "start": 2736.9, + "end": 2737.52, + "probability": 0.8962 + }, + { + "start": 2737.54, + "end": 2738.2, + "probability": 0.6928 + }, + { + "start": 2738.88, + "end": 2742.24, + "probability": 0.9562 + }, + { + "start": 2742.96, + "end": 2744.7, + "probability": 0.8997 + }, + { + "start": 2745.06, + "end": 2745.56, + "probability": 0.791 + }, + { + "start": 2745.84, + "end": 2750.14, + "probability": 0.8113 + }, + { + "start": 2750.2, + "end": 2751.16, + "probability": 0.959 + }, + { + "start": 2751.32, + "end": 2752.04, + "probability": 0.7121 + }, + { + "start": 2752.3, + "end": 2753.08, + "probability": 0.897 + }, + { + "start": 2753.54, + "end": 2755.82, + "probability": 0.7761 + }, + { + "start": 2756.52, + "end": 2758.64, + "probability": 0.3406 + }, + { + "start": 2759.7, + "end": 2761.16, + "probability": 0.7906 + }, + { + "start": 2762.58, + "end": 2764.26, + "probability": 0.907 + }, + { + "start": 2764.34, + "end": 2765.06, + "probability": 0.5711 + }, + { + "start": 2765.3, + "end": 2767.42, + "probability": 0.9304 + }, + { + "start": 2767.42, + "end": 2768.1, + "probability": 0.8456 + }, + { + "start": 2768.5, + "end": 2772.82, + "probability": 0.9692 + }, + { + "start": 2773.12, + "end": 2775.62, + "probability": 0.8938 + }, + { + "start": 2775.98, + "end": 2780.2, + "probability": 0.9746 + }, + { + "start": 2780.26, + "end": 2781.0, + "probability": 0.8088 + }, + { + "start": 2781.86, + "end": 2785.92, + "probability": 0.9102 + }, + { + "start": 2785.96, + "end": 2786.74, + "probability": 0.8655 + }, + { + "start": 2787.26, + "end": 2790.14, + "probability": 0.952 + }, + { + "start": 2790.62, + "end": 2791.44, + "probability": 0.7529 + }, + { + "start": 2791.76, + "end": 2794.76, + "probability": 0.9944 + }, + { + "start": 2795.28, + "end": 2796.44, + "probability": 0.9902 + }, + { + "start": 2796.7, + "end": 2799.96, + "probability": 0.6272 + }, + { + "start": 2800.58, + "end": 2803.68, + "probability": 0.9329 + }, + { + "start": 2804.26, + "end": 2805.76, + "probability": 0.5574 + }, + { + "start": 2805.94, + "end": 2808.42, + "probability": 0.9706 + }, + { + "start": 2809.02, + "end": 2810.64, + "probability": 0.7488 + }, + { + "start": 2811.14, + "end": 2816.0, + "probability": 0.8592 + }, + { + "start": 2816.38, + "end": 2817.54, + "probability": 0.6917 + }, + { + "start": 2818.04, + "end": 2823.8, + "probability": 0.789 + }, + { + "start": 2823.8, + "end": 2825.04, + "probability": 0.9502 + }, + { + "start": 2826.14, + "end": 2826.66, + "probability": 0.5479 + }, + { + "start": 2826.68, + "end": 2827.62, + "probability": 0.8601 + }, + { + "start": 2827.72, + "end": 2830.46, + "probability": 0.9095 + }, + { + "start": 2830.56, + "end": 2832.18, + "probability": 0.8235 + }, + { + "start": 2832.32, + "end": 2833.9, + "probability": 0.7414 + }, + { + "start": 2834.22, + "end": 2835.04, + "probability": 0.9201 + }, + { + "start": 2835.44, + "end": 2837.53, + "probability": 0.9705 + }, + { + "start": 2838.12, + "end": 2839.47, + "probability": 0.8989 + }, + { + "start": 2839.84, + "end": 2841.96, + "probability": 0.9399 + }, + { + "start": 2842.66, + "end": 2845.58, + "probability": 0.8187 + }, + { + "start": 2845.64, + "end": 2847.04, + "probability": 0.9305 + }, + { + "start": 2847.6, + "end": 2850.44, + "probability": 0.9521 + }, + { + "start": 2851.14, + "end": 2852.08, + "probability": 0.8481 + }, + { + "start": 2852.34, + "end": 2855.3, + "probability": 0.9686 + }, + { + "start": 2855.38, + "end": 2856.66, + "probability": 0.7735 + }, + { + "start": 2856.86, + "end": 2857.85, + "probability": 0.8379 + }, + { + "start": 2858.1, + "end": 2860.1, + "probability": 0.8584 + }, + { + "start": 2860.14, + "end": 2860.81, + "probability": 0.6363 + }, + { + "start": 2861.42, + "end": 2866.06, + "probability": 0.9713 + }, + { + "start": 2866.12, + "end": 2869.26, + "probability": 0.888 + }, + { + "start": 2869.42, + "end": 2872.12, + "probability": 0.5883 + }, + { + "start": 2872.22, + "end": 2874.12, + "probability": 0.8249 + }, + { + "start": 2876.21, + "end": 2878.77, + "probability": 0.9917 + }, + { + "start": 2880.5, + "end": 2884.72, + "probability": 0.8547 + }, + { + "start": 2885.7, + "end": 2888.48, + "probability": 0.7095 + }, + { + "start": 2889.48, + "end": 2892.5, + "probability": 0.8798 + }, + { + "start": 2893.16, + "end": 2894.72, + "probability": 0.8946 + }, + { + "start": 2895.24, + "end": 2895.52, + "probability": 0.3977 + }, + { + "start": 2896.28, + "end": 2901.1, + "probability": 0.9862 + }, + { + "start": 2901.1, + "end": 2905.2, + "probability": 0.8694 + }, + { + "start": 2905.84, + "end": 2906.9, + "probability": 0.7928 + }, + { + "start": 2907.3, + "end": 2909.78, + "probability": 0.9748 + }, + { + "start": 2909.86, + "end": 2911.56, + "probability": 0.8008 + }, + { + "start": 2911.92, + "end": 2912.3, + "probability": 0.511 + }, + { + "start": 2912.36, + "end": 2912.94, + "probability": 0.5997 + }, + { + "start": 2913.28, + "end": 2916.92, + "probability": 0.9824 + }, + { + "start": 2917.06, + "end": 2918.75, + "probability": 0.9707 + }, + { + "start": 2919.52, + "end": 2920.27, + "probability": 0.959 + }, + { + "start": 2920.42, + "end": 2922.68, + "probability": 0.5557 + }, + { + "start": 2923.4, + "end": 2924.08, + "probability": 0.9171 + }, + { + "start": 2924.2, + "end": 2927.87, + "probability": 0.9525 + }, + { + "start": 2928.3, + "end": 2929.18, + "probability": 0.9788 + }, + { + "start": 2929.4, + "end": 2930.38, + "probability": 0.9925 + }, + { + "start": 2931.2, + "end": 2935.32, + "probability": 0.8134 + }, + { + "start": 2935.64, + "end": 2935.84, + "probability": 0.7594 + }, + { + "start": 2936.2, + "end": 2936.54, + "probability": 0.759 + }, + { + "start": 2937.16, + "end": 2939.78, + "probability": 0.8356 + }, + { + "start": 2940.54, + "end": 2941.76, + "probability": 0.7417 + }, + { + "start": 2942.14, + "end": 2945.4, + "probability": 0.9764 + }, + { + "start": 2945.8, + "end": 2946.7, + "probability": 0.6375 + }, + { + "start": 2946.72, + "end": 2948.06, + "probability": 0.6707 + }, + { + "start": 2948.34, + "end": 2949.96, + "probability": 0.4735 + }, + { + "start": 2950.1, + "end": 2951.84, + "probability": 0.2955 + }, + { + "start": 2952.2, + "end": 2952.74, + "probability": 0.6263 + }, + { + "start": 2952.9, + "end": 2955.0, + "probability": 0.9814 + }, + { + "start": 2955.16, + "end": 2956.94, + "probability": 0.7505 + }, + { + "start": 2957.26, + "end": 2957.82, + "probability": 0.6983 + }, + { + "start": 2958.32, + "end": 2962.68, + "probability": 0.9486 + }, + { + "start": 2962.98, + "end": 2963.82, + "probability": 0.2753 + }, + { + "start": 2963.82, + "end": 2963.96, + "probability": 0.8491 + }, + { + "start": 2964.04, + "end": 2964.41, + "probability": 0.5732 + }, + { + "start": 2964.8, + "end": 2965.26, + "probability": 0.7248 + }, + { + "start": 2965.46, + "end": 2965.6, + "probability": 0.2289 + }, + { + "start": 2965.64, + "end": 2966.54, + "probability": 0.3823 + }, + { + "start": 2966.54, + "end": 2966.86, + "probability": 0.4094 + }, + { + "start": 2966.96, + "end": 2967.36, + "probability": 0.8998 + }, + { + "start": 2967.56, + "end": 2970.26, + "probability": 0.9746 + }, + { + "start": 2970.7, + "end": 2971.48, + "probability": 0.9392 + }, + { + "start": 2971.64, + "end": 2974.12, + "probability": 0.9223 + }, + { + "start": 2974.74, + "end": 2975.46, + "probability": 0.9138 + }, + { + "start": 2976.26, + "end": 2979.9, + "probability": 0.7335 + }, + { + "start": 2980.32, + "end": 2980.68, + "probability": 0.6063 + }, + { + "start": 2980.8, + "end": 2981.56, + "probability": 0.6922 + }, + { + "start": 2981.58, + "end": 2982.1, + "probability": 0.8868 + }, + { + "start": 2982.18, + "end": 2983.1, + "probability": 0.8016 + }, + { + "start": 2983.16, + "end": 2988.4, + "probability": 0.8328 + }, + { + "start": 2988.96, + "end": 2990.26, + "probability": 0.9924 + }, + { + "start": 2990.36, + "end": 2991.55, + "probability": 0.7016 + }, + { + "start": 2992.3, + "end": 2993.9, + "probability": 0.5932 + }, + { + "start": 2994.1, + "end": 2994.56, + "probability": 0.9046 + }, + { + "start": 2995.4, + "end": 2996.78, + "probability": 0.7339 + }, + { + "start": 2997.18, + "end": 2997.36, + "probability": 0.088 + }, + { + "start": 2997.4, + "end": 2998.78, + "probability": 0.9396 + }, + { + "start": 3000.18, + "end": 3002.56, + "probability": 0.9 + }, + { + "start": 3003.4, + "end": 3003.84, + "probability": 0.9902 + }, + { + "start": 3004.04, + "end": 3007.16, + "probability": 0.8917 + }, + { + "start": 3007.28, + "end": 3008.48, + "probability": 0.6678 + }, + { + "start": 3008.64, + "end": 3009.74, + "probability": 0.4514 + }, + { + "start": 3009.82, + "end": 3011.44, + "probability": 0.7233 + }, + { + "start": 3011.94, + "end": 3013.7, + "probability": 0.7506 + }, + { + "start": 3013.82, + "end": 3015.98, + "probability": 0.8564 + }, + { + "start": 3016.06, + "end": 3017.24, + "probability": 0.9564 + }, + { + "start": 3017.28, + "end": 3020.92, + "probability": 0.8756 + }, + { + "start": 3021.3, + "end": 3022.26, + "probability": 0.6336 + }, + { + "start": 3022.42, + "end": 3025.84, + "probability": 0.7684 + }, + { + "start": 3025.96, + "end": 3027.02, + "probability": 0.8248 + }, + { + "start": 3027.46, + "end": 3027.84, + "probability": 0.895 + }, + { + "start": 3028.58, + "end": 3033.82, + "probability": 0.9867 + }, + { + "start": 3034.18, + "end": 3037.56, + "probability": 0.9992 + }, + { + "start": 3037.76, + "end": 3042.72, + "probability": 0.7769 + }, + { + "start": 3043.18, + "end": 3044.94, + "probability": 0.9067 + }, + { + "start": 3045.06, + "end": 3045.96, + "probability": 0.3379 + }, + { + "start": 3046.56, + "end": 3048.5, + "probability": 0.9745 + }, + { + "start": 3048.72, + "end": 3052.72, + "probability": 0.661 + }, + { + "start": 3053.1, + "end": 3056.46, + "probability": 0.9255 + }, + { + "start": 3056.46, + "end": 3059.5, + "probability": 0.9946 + }, + { + "start": 3059.72, + "end": 3060.52, + "probability": 0.962 + }, + { + "start": 3060.96, + "end": 3064.38, + "probability": 0.9572 + }, + { + "start": 3064.52, + "end": 3066.34, + "probability": 0.8931 + }, + { + "start": 3066.4, + "end": 3067.1, + "probability": 0.8383 + }, + { + "start": 3067.54, + "end": 3069.96, + "probability": 0.9851 + }, + { + "start": 3070.68, + "end": 3073.72, + "probability": 0.8932 + }, + { + "start": 3074.24, + "end": 3074.42, + "probability": 0.8337 + }, + { + "start": 3074.48, + "end": 3075.04, + "probability": 0.5327 + }, + { + "start": 3076.16, + "end": 3076.28, + "probability": 0.6927 + }, + { + "start": 3084.0, + "end": 3084.16, + "probability": 0.0268 + }, + { + "start": 3084.16, + "end": 3084.16, + "probability": 0.1506 + }, + { + "start": 3084.16, + "end": 3086.58, + "probability": 0.9285 + }, + { + "start": 3087.1, + "end": 3088.22, + "probability": 0.9346 + }, + { + "start": 3089.34, + "end": 3090.12, + "probability": 0.9362 + }, + { + "start": 3090.82, + "end": 3093.42, + "probability": 0.994 + }, + { + "start": 3094.36, + "end": 3095.18, + "probability": 0.6149 + }, + { + "start": 3096.5, + "end": 3098.26, + "probability": 0.9961 + }, + { + "start": 3099.18, + "end": 3102.02, + "probability": 0.9172 + }, + { + "start": 3103.18, + "end": 3110.74, + "probability": 0.9753 + }, + { + "start": 3111.62, + "end": 3113.46, + "probability": 0.9966 + }, + { + "start": 3115.3, + "end": 3117.83, + "probability": 0.9746 + }, + { + "start": 3120.4, + "end": 3120.88, + "probability": 0.8192 + }, + { + "start": 3121.04, + "end": 3122.86, + "probability": 0.9688 + }, + { + "start": 3123.08, + "end": 3124.3, + "probability": 0.9215 + }, + { + "start": 3124.36, + "end": 3130.76, + "probability": 0.9839 + }, + { + "start": 3132.12, + "end": 3134.54, + "probability": 0.9961 + }, + { + "start": 3135.46, + "end": 3135.72, + "probability": 0.4594 + }, + { + "start": 3135.84, + "end": 3139.06, + "probability": 0.8251 + }, + { + "start": 3139.96, + "end": 3142.54, + "probability": 0.8438 + }, + { + "start": 3143.76, + "end": 3145.44, + "probability": 0.8305 + }, + { + "start": 3145.68, + "end": 3146.12, + "probability": 0.0056 + }, + { + "start": 3146.28, + "end": 3151.16, + "probability": 0.9826 + }, + { + "start": 3151.66, + "end": 3154.42, + "probability": 0.9915 + }, + { + "start": 3155.08, + "end": 3155.8, + "probability": 0.7057 + }, + { + "start": 3156.46, + "end": 3158.19, + "probability": 0.9968 + }, + { + "start": 3158.88, + "end": 3161.26, + "probability": 0.8587 + }, + { + "start": 3161.82, + "end": 3163.2, + "probability": 0.7514 + }, + { + "start": 3163.28, + "end": 3165.34, + "probability": 0.9945 + }, + { + "start": 3166.04, + "end": 3167.86, + "probability": 0.7166 + }, + { + "start": 3168.61, + "end": 3169.14, + "probability": 0.1869 + }, + { + "start": 3169.14, + "end": 3176.1, + "probability": 0.9749 + }, + { + "start": 3176.64, + "end": 3179.62, + "probability": 0.8873 + }, + { + "start": 3180.32, + "end": 3183.92, + "probability": 0.6969 + }, + { + "start": 3184.68, + "end": 3190.04, + "probability": 0.7207 + }, + { + "start": 3190.4, + "end": 3191.88, + "probability": 0.9731 + }, + { + "start": 3191.98, + "end": 3198.7, + "probability": 0.9344 + }, + { + "start": 3198.84, + "end": 3203.38, + "probability": 0.9695 + }, + { + "start": 3203.6, + "end": 3204.16, + "probability": 0.9902 + }, + { + "start": 3206.54, + "end": 3209.12, + "probability": 0.6879 + }, + { + "start": 3210.64, + "end": 3212.32, + "probability": 0.9722 + }, + { + "start": 3213.72, + "end": 3216.68, + "probability": 0.627 + }, + { + "start": 3217.24, + "end": 3221.56, + "probability": 0.9867 + }, + { + "start": 3221.68, + "end": 3223.14, + "probability": 0.9895 + }, + { + "start": 3223.2, + "end": 3224.36, + "probability": 0.9201 + }, + { + "start": 3225.04, + "end": 3226.7, + "probability": 0.9979 + }, + { + "start": 3227.52, + "end": 3228.72, + "probability": 0.9614 + }, + { + "start": 3228.96, + "end": 3234.6, + "probability": 0.9075 + }, + { + "start": 3235.54, + "end": 3237.44, + "probability": 0.9386 + }, + { + "start": 3237.64, + "end": 3239.22, + "probability": 0.9984 + }, + { + "start": 3239.38, + "end": 3242.76, + "probability": 0.7084 + }, + { + "start": 3242.9, + "end": 3245.56, + "probability": 0.5059 + }, + { + "start": 3245.56, + "end": 3249.24, + "probability": 0.737 + }, + { + "start": 3250.36, + "end": 3254.94, + "probability": 0.9506 + }, + { + "start": 3255.39, + "end": 3265.08, + "probability": 0.9944 + }, + { + "start": 3265.28, + "end": 3267.34, + "probability": 0.7769 + }, + { + "start": 3267.4, + "end": 3268.32, + "probability": 0.5502 + }, + { + "start": 3268.48, + "end": 3270.1, + "probability": 0.9688 + }, + { + "start": 3270.28, + "end": 3271.2, + "probability": 0.9971 + }, + { + "start": 3272.72, + "end": 3276.36, + "probability": 0.6933 + }, + { + "start": 3276.86, + "end": 3278.04, + "probability": 0.7948 + }, + { + "start": 3278.18, + "end": 3279.28, + "probability": 0.9142 + }, + { + "start": 3279.68, + "end": 3282.86, + "probability": 0.9711 + }, + { + "start": 3284.04, + "end": 3288.2, + "probability": 0.9659 + }, + { + "start": 3288.78, + "end": 3292.02, + "probability": 0.9736 + }, + { + "start": 3292.4, + "end": 3294.06, + "probability": 0.7934 + }, + { + "start": 3295.0, + "end": 3295.88, + "probability": 0.8145 + }, + { + "start": 3298.74, + "end": 3302.26, + "probability": 0.9924 + }, + { + "start": 3303.3, + "end": 3305.56, + "probability": 0.916 + }, + { + "start": 3306.38, + "end": 3308.7, + "probability": 0.9107 + }, + { + "start": 3310.12, + "end": 3310.8, + "probability": 0.5883 + }, + { + "start": 3311.96, + "end": 3317.34, + "probability": 0.9806 + }, + { + "start": 3318.38, + "end": 3322.68, + "probability": 0.9763 + }, + { + "start": 3323.34, + "end": 3325.48, + "probability": 0.9473 + }, + { + "start": 3325.76, + "end": 3326.12, + "probability": 0.9116 + }, + { + "start": 3326.72, + "end": 3327.2, + "probability": 0.6151 + }, + { + "start": 3327.52, + "end": 3328.36, + "probability": 0.8457 + }, + { + "start": 3329.28, + "end": 3330.16, + "probability": 0.8043 + }, + { + "start": 3330.84, + "end": 3333.58, + "probability": 0.9898 + }, + { + "start": 3333.68, + "end": 3338.1, + "probability": 0.7231 + }, + { + "start": 3338.4, + "end": 3339.78, + "probability": 0.9725 + }, + { + "start": 3339.98, + "end": 3342.36, + "probability": 0.9773 + }, + { + "start": 3343.8, + "end": 3347.8, + "probability": 0.9826 + }, + { + "start": 3347.94, + "end": 3349.56, + "probability": 0.9849 + }, + { + "start": 3349.7, + "end": 3349.9, + "probability": 0.6575 + }, + { + "start": 3350.82, + "end": 3353.36, + "probability": 0.9954 + }, + { + "start": 3354.34, + "end": 3358.44, + "probability": 0.9378 + }, + { + "start": 3358.44, + "end": 3362.0, + "probability": 0.9995 + }, + { + "start": 3362.72, + "end": 3363.66, + "probability": 0.8581 + }, + { + "start": 3363.84, + "end": 3366.02, + "probability": 0.989 + }, + { + "start": 3366.14, + "end": 3368.12, + "probability": 0.9647 + }, + { + "start": 3368.9, + "end": 3372.12, + "probability": 0.945 + }, + { + "start": 3374.32, + "end": 3375.1, + "probability": 0.7998 + }, + { + "start": 3375.12, + "end": 3377.1, + "probability": 0.947 + }, + { + "start": 3377.54, + "end": 3381.32, + "probability": 0.9945 + }, + { + "start": 3381.32, + "end": 3386.68, + "probability": 0.9589 + }, + { + "start": 3387.7, + "end": 3391.04, + "probability": 0.739 + }, + { + "start": 3391.58, + "end": 3393.54, + "probability": 0.9876 + }, + { + "start": 3394.88, + "end": 3395.98, + "probability": 0.492 + }, + { + "start": 3397.46, + "end": 3401.08, + "probability": 0.4629 + }, + { + "start": 3401.94, + "end": 3405.96, + "probability": 0.9646 + }, + { + "start": 3406.66, + "end": 3407.94, + "probability": 0.9547 + }, + { + "start": 3408.46, + "end": 3410.93, + "probability": 0.9699 + }, + { + "start": 3411.94, + "end": 3413.22, + "probability": 0.8434 + }, + { + "start": 3413.24, + "end": 3415.06, + "probability": 0.959 + }, + { + "start": 3415.24, + "end": 3419.28, + "probability": 0.7593 + }, + { + "start": 3419.88, + "end": 3424.1, + "probability": 0.9736 + }, + { + "start": 3424.24, + "end": 3425.68, + "probability": 0.983 + }, + { + "start": 3426.3, + "end": 3429.1, + "probability": 0.9321 + }, + { + "start": 3429.8, + "end": 3432.68, + "probability": 0.9913 + }, + { + "start": 3432.94, + "end": 3433.26, + "probability": 0.3336 + }, + { + "start": 3433.26, + "end": 3434.54, + "probability": 0.701 + }, + { + "start": 3435.82, + "end": 3436.5, + "probability": 0.661 + }, + { + "start": 3436.54, + "end": 3439.9, + "probability": 0.565 + }, + { + "start": 3440.0, + "end": 3440.86, + "probability": 0.3849 + }, + { + "start": 3441.04, + "end": 3444.26, + "probability": 0.775 + }, + { + "start": 3444.3, + "end": 3445.18, + "probability": 0.925 + }, + { + "start": 3445.56, + "end": 3446.56, + "probability": 0.4214 + }, + { + "start": 3446.74, + "end": 3448.05, + "probability": 0.6284 + }, + { + "start": 3448.38, + "end": 3452.28, + "probability": 0.6698 + }, + { + "start": 3452.42, + "end": 3453.24, + "probability": 0.8392 + }, + { + "start": 3453.28, + "end": 3454.52, + "probability": 0.8556 + }, + { + "start": 3455.0, + "end": 3456.5, + "probability": 0.8422 + }, + { + "start": 3457.14, + "end": 3458.4, + "probability": 0.7791 + }, + { + "start": 3459.38, + "end": 3463.9, + "probability": 0.8021 + }, + { + "start": 3464.36, + "end": 3464.5, + "probability": 0.132 + }, + { + "start": 3464.72, + "end": 3466.26, + "probability": 0.0882 + }, + { + "start": 3466.42, + "end": 3469.02, + "probability": 0.9564 + }, + { + "start": 3469.58, + "end": 3473.37, + "probability": 0.9622 + }, + { + "start": 3473.94, + "end": 3477.46, + "probability": 0.9883 + }, + { + "start": 3477.62, + "end": 3479.8, + "probability": 0.7602 + }, + { + "start": 3479.96, + "end": 3486.38, + "probability": 0.7792 + }, + { + "start": 3486.92, + "end": 3489.84, + "probability": 0.9106 + }, + { + "start": 3489.84, + "end": 3492.98, + "probability": 0.8543 + }, + { + "start": 3494.08, + "end": 3496.69, + "probability": 0.9819 + }, + { + "start": 3498.12, + "end": 3500.32, + "probability": 0.9052 + }, + { + "start": 3500.86, + "end": 3505.0, + "probability": 0.834 + }, + { + "start": 3505.86, + "end": 3508.44, + "probability": 0.9708 + }, + { + "start": 3508.82, + "end": 3511.32, + "probability": 0.6631 + }, + { + "start": 3511.94, + "end": 3514.82, + "probability": 0.895 + }, + { + "start": 3515.64, + "end": 3517.02, + "probability": 0.6141 + }, + { + "start": 3517.18, + "end": 3518.28, + "probability": 0.8379 + }, + { + "start": 3518.32, + "end": 3519.46, + "probability": 0.6062 + }, + { + "start": 3519.84, + "end": 3520.92, + "probability": 0.6122 + }, + { + "start": 3521.0, + "end": 3525.11, + "probability": 0.5709 + }, + { + "start": 3525.52, + "end": 3526.8, + "probability": 0.763 + }, + { + "start": 3528.26, + "end": 3529.78, + "probability": 0.3361 + }, + { + "start": 3530.84, + "end": 3533.36, + "probability": 0.8384 + }, + { + "start": 3533.84, + "end": 3535.0, + "probability": 0.5712 + }, + { + "start": 3535.26, + "end": 3538.28, + "probability": 0.7222 + }, + { + "start": 3538.96, + "end": 3540.7, + "probability": 0.7067 + }, + { + "start": 3541.36, + "end": 3541.72, + "probability": 0.8977 + }, + { + "start": 3542.46, + "end": 3545.34, + "probability": 0.832 + }, + { + "start": 3545.6, + "end": 3547.94, + "probability": 0.9883 + }, + { + "start": 3547.94, + "end": 3551.42, + "probability": 0.9917 + }, + { + "start": 3552.56, + "end": 3553.02, + "probability": 0.9033 + }, + { + "start": 3553.14, + "end": 3554.08, + "probability": 0.7731 + }, + { + "start": 3554.46, + "end": 3555.28, + "probability": 0.7036 + }, + { + "start": 3555.48, + "end": 3556.22, + "probability": 0.8524 + }, + { + "start": 3556.28, + "end": 3557.44, + "probability": 0.6309 + }, + { + "start": 3557.96, + "end": 3558.44, + "probability": 0.7623 + }, + { + "start": 3558.88, + "end": 3560.56, + "probability": 0.9234 + }, + { + "start": 3560.62, + "end": 3560.7, + "probability": 0.5513 + }, + { + "start": 3560.7, + "end": 3566.0, + "probability": 0.9948 + }, + { + "start": 3566.18, + "end": 3569.46, + "probability": 0.6955 + }, + { + "start": 3570.1, + "end": 3572.44, + "probability": 0.9878 + }, + { + "start": 3573.7, + "end": 3575.74, + "probability": 0.9651 + }, + { + "start": 3576.26, + "end": 3576.94, + "probability": 0.5852 + }, + { + "start": 3576.96, + "end": 3581.16, + "probability": 0.7488 + }, + { + "start": 3581.3, + "end": 3582.25, + "probability": 0.0813 + }, + { + "start": 3582.98, + "end": 3583.64, + "probability": 0.7187 + }, + { + "start": 3584.3, + "end": 3588.1, + "probability": 0.9742 + }, + { + "start": 3589.8, + "end": 3592.46, + "probability": 0.7793 + }, + { + "start": 3592.5, + "end": 3592.5, + "probability": 0.4374 + }, + { + "start": 3592.64, + "end": 3593.18, + "probability": 0.8015 + }, + { + "start": 3593.4, + "end": 3593.88, + "probability": 0.4732 + }, + { + "start": 3593.92, + "end": 3597.04, + "probability": 0.9556 + }, + { + "start": 3597.86, + "end": 3598.74, + "probability": 0.8695 + }, + { + "start": 3599.06, + "end": 3601.4, + "probability": 0.9848 + }, + { + "start": 3602.3, + "end": 3604.46, + "probability": 0.9922 + }, + { + "start": 3605.28, + "end": 3605.76, + "probability": 0.8781 + }, + { + "start": 3605.96, + "end": 3606.36, + "probability": 0.5812 + }, + { + "start": 3606.4, + "end": 3607.58, + "probability": 0.6636 + }, + { + "start": 3608.29, + "end": 3609.72, + "probability": 0.6628 + }, + { + "start": 3610.62, + "end": 3613.74, + "probability": 0.7103 + }, + { + "start": 3614.4, + "end": 3617.28, + "probability": 0.9781 + }, + { + "start": 3617.28, + "end": 3617.48, + "probability": 0.8191 + }, + { + "start": 3617.54, + "end": 3618.9, + "probability": 0.5896 + }, + { + "start": 3619.2, + "end": 3623.8, + "probability": 0.8817 + }, + { + "start": 3628.78, + "end": 3631.54, + "probability": 0.8372 + }, + { + "start": 3633.3, + "end": 3635.16, + "probability": 0.9629 + }, + { + "start": 3635.73, + "end": 3639.56, + "probability": 0.5001 + }, + { + "start": 3639.64, + "end": 3642.08, + "probability": 0.8545 + }, + { + "start": 3642.14, + "end": 3652.28, + "probability": 0.9678 + }, + { + "start": 3653.5, + "end": 3655.92, + "probability": 0.6888 + }, + { + "start": 3657.28, + "end": 3658.86, + "probability": 0.9813 + }, + { + "start": 3660.06, + "end": 3662.48, + "probability": 0.6645 + }, + { + "start": 3663.44, + "end": 3665.34, + "probability": 0.6938 + }, + { + "start": 3665.62, + "end": 3667.76, + "probability": 0.9597 + }, + { + "start": 3667.92, + "end": 3669.06, + "probability": 0.9529 + }, + { + "start": 3669.88, + "end": 3672.14, + "probability": 0.9828 + }, + { + "start": 3672.18, + "end": 3675.9, + "probability": 0.9412 + }, + { + "start": 3678.42, + "end": 3679.6, + "probability": 0.9488 + }, + { + "start": 3680.16, + "end": 3682.72, + "probability": 0.4837 + }, + { + "start": 3682.78, + "end": 3684.0, + "probability": 0.9922 + }, + { + "start": 3684.12, + "end": 3687.04, + "probability": 0.9727 + }, + { + "start": 3687.18, + "end": 3688.5, + "probability": 0.9694 + }, + { + "start": 3689.3, + "end": 3690.7, + "probability": 0.6616 + }, + { + "start": 3691.32, + "end": 3693.28, + "probability": 0.9793 + }, + { + "start": 3693.92, + "end": 3694.24, + "probability": 0.8511 + }, + { + "start": 3694.34, + "end": 3696.74, + "probability": 0.9785 + }, + { + "start": 3696.82, + "end": 3697.32, + "probability": 0.9448 + }, + { + "start": 3697.56, + "end": 3699.81, + "probability": 0.946 + }, + { + "start": 3700.5, + "end": 3701.1, + "probability": 0.9814 + }, + { + "start": 3701.92, + "end": 3703.86, + "probability": 0.3953 + }, + { + "start": 3704.62, + "end": 3707.28, + "probability": 0.9517 + }, + { + "start": 3707.32, + "end": 3709.14, + "probability": 0.8792 + }, + { + "start": 3709.58, + "end": 3712.64, + "probability": 0.7298 + }, + { + "start": 3712.72, + "end": 3715.02, + "probability": 0.9468 + }, + { + "start": 3715.7, + "end": 3718.8, + "probability": 0.9945 + }, + { + "start": 3720.48, + "end": 3723.38, + "probability": 0.9601 + }, + { + "start": 3724.28, + "end": 3724.6, + "probability": 0.7665 + }, + { + "start": 3725.18, + "end": 3725.91, + "probability": 0.6097 + }, + { + "start": 3726.84, + "end": 3728.12, + "probability": 0.9422 + }, + { + "start": 3729.16, + "end": 3731.52, + "probability": 0.6529 + }, + { + "start": 3732.38, + "end": 3735.08, + "probability": 0.9498 + }, + { + "start": 3735.82, + "end": 3737.16, + "probability": 0.969 + }, + { + "start": 3737.56, + "end": 3740.42, + "probability": 0.9754 + }, + { + "start": 3740.42, + "end": 3745.36, + "probability": 0.7839 + }, + { + "start": 3745.62, + "end": 3746.54, + "probability": 0.7616 + }, + { + "start": 3746.62, + "end": 3747.14, + "probability": 0.5745 + }, + { + "start": 3747.22, + "end": 3747.4, + "probability": 0.3359 + }, + { + "start": 3748.06, + "end": 3754.82, + "probability": 0.9878 + }, + { + "start": 3755.0, + "end": 3755.84, + "probability": 0.4774 + }, + { + "start": 3756.42, + "end": 3757.22, + "probability": 0.8352 + }, + { + "start": 3757.62, + "end": 3758.98, + "probability": 0.989 + }, + { + "start": 3759.46, + "end": 3763.18, + "probability": 0.6788 + }, + { + "start": 3763.66, + "end": 3765.16, + "probability": 0.9902 + }, + { + "start": 3765.64, + "end": 3767.08, + "probability": 0.4489 + }, + { + "start": 3767.18, + "end": 3767.6, + "probability": 0.5059 + }, + { + "start": 3767.62, + "end": 3768.34, + "probability": 0.5853 + }, + { + "start": 3768.88, + "end": 3772.98, + "probability": 0.505 + }, + { + "start": 3773.56, + "end": 3774.76, + "probability": 0.5734 + }, + { + "start": 3775.0, + "end": 3776.12, + "probability": 0.8882 + }, + { + "start": 3776.28, + "end": 3780.55, + "probability": 0.9611 + }, + { + "start": 3781.68, + "end": 3781.68, + "probability": 0.1169 + }, + { + "start": 3781.68, + "end": 3781.68, + "probability": 0.2964 + }, + { + "start": 3781.68, + "end": 3782.82, + "probability": 0.6701 + }, + { + "start": 3784.3, + "end": 3784.8, + "probability": 0.7426 + }, + { + "start": 3785.04, + "end": 3785.26, + "probability": 0.7608 + }, + { + "start": 3785.26, + "end": 3786.14, + "probability": 0.4181 + }, + { + "start": 3786.2, + "end": 3786.68, + "probability": 0.2573 + }, + { + "start": 3786.68, + "end": 3787.12, + "probability": 0.6272 + }, + { + "start": 3787.2, + "end": 3788.0, + "probability": 0.9507 + }, + { + "start": 3788.92, + "end": 3790.18, + "probability": 0.977 + }, + { + "start": 3790.72, + "end": 3791.13, + "probability": 0.3118 + }, + { + "start": 3792.02, + "end": 3792.64, + "probability": 0.6544 + }, + { + "start": 3793.8, + "end": 3797.96, + "probability": 0.8047 + }, + { + "start": 3799.24, + "end": 3800.18, + "probability": 0.7598 + }, + { + "start": 3800.54, + "end": 3801.22, + "probability": 0.8831 + }, + { + "start": 3801.36, + "end": 3803.54, + "probability": 0.7464 + }, + { + "start": 3803.8, + "end": 3804.76, + "probability": 0.8208 + }, + { + "start": 3805.86, + "end": 3808.7, + "probability": 0.8328 + }, + { + "start": 3809.22, + "end": 3810.54, + "probability": 0.9708 + }, + { + "start": 3811.66, + "end": 3813.86, + "probability": 0.8995 + }, + { + "start": 3813.92, + "end": 3816.72, + "probability": 0.9912 + }, + { + "start": 3817.4, + "end": 3818.15, + "probability": 0.7039 + }, + { + "start": 3819.44, + "end": 3822.22, + "probability": 0.8776 + }, + { + "start": 3822.88, + "end": 3824.06, + "probability": 0.8746 + }, + { + "start": 3824.56, + "end": 3827.76, + "probability": 0.9801 + }, + { + "start": 3827.84, + "end": 3828.92, + "probability": 0.9008 + }, + { + "start": 3829.12, + "end": 3830.87, + "probability": 0.6893 + }, + { + "start": 3831.98, + "end": 3833.08, + "probability": 0.8379 + }, + { + "start": 3833.18, + "end": 3833.68, + "probability": 0.7872 + }, + { + "start": 3833.8, + "end": 3834.96, + "probability": 0.8062 + }, + { + "start": 3835.28, + "end": 3835.36, + "probability": 0.1114 + }, + { + "start": 3835.36, + "end": 3836.54, + "probability": 0.8363 + }, + { + "start": 3837.34, + "end": 3837.54, + "probability": 0.7761 + }, + { + "start": 3838.28, + "end": 3839.65, + "probability": 0.949 + }, + { + "start": 3840.9, + "end": 3841.08, + "probability": 0.057 + }, + { + "start": 3842.1, + "end": 3842.94, + "probability": 0.9937 + }, + { + "start": 3843.64, + "end": 3848.28, + "probability": 0.9993 + }, + { + "start": 3848.84, + "end": 3849.94, + "probability": 0.9849 + }, + { + "start": 3850.08, + "end": 3854.0, + "probability": 0.9973 + }, + { + "start": 3854.56, + "end": 3854.98, + "probability": 0.6063 + }, + { + "start": 3856.47, + "end": 3857.62, + "probability": 0.6617 + }, + { + "start": 3857.66, + "end": 3859.0, + "probability": 0.9289 + }, + { + "start": 3859.14, + "end": 3860.28, + "probability": 0.7239 + }, + { + "start": 3860.32, + "end": 3862.36, + "probability": 0.9964 + }, + { + "start": 3863.06, + "end": 3863.64, + "probability": 0.995 + }, + { + "start": 3864.16, + "end": 3866.42, + "probability": 0.9945 + }, + { + "start": 3866.74, + "end": 3870.48, + "probability": 0.9153 + }, + { + "start": 3870.92, + "end": 3871.18, + "probability": 0.4577 + }, + { + "start": 3871.36, + "end": 3873.56, + "probability": 0.9591 + }, + { + "start": 3874.84, + "end": 3877.4, + "probability": 0.8154 + }, + { + "start": 3878.5, + "end": 3879.54, + "probability": 0.9527 + }, + { + "start": 3879.7, + "end": 3881.8, + "probability": 0.7616 + }, + { + "start": 3883.08, + "end": 3889.74, + "probability": 0.9812 + }, + { + "start": 3890.46, + "end": 3894.14, + "probability": 0.9842 + }, + { + "start": 3894.3, + "end": 3894.94, + "probability": 0.3832 + }, + { + "start": 3895.08, + "end": 3897.54, + "probability": 0.9508 + }, + { + "start": 3897.7, + "end": 3904.18, + "probability": 0.9928 + }, + { + "start": 3904.34, + "end": 3907.3, + "probability": 0.9976 + }, + { + "start": 3909.52, + "end": 3913.56, + "probability": 0.5654 + }, + { + "start": 3914.34, + "end": 3915.5, + "probability": 0.187 + }, + { + "start": 3915.5, + "end": 3920.14, + "probability": 0.9421 + }, + { + "start": 3921.06, + "end": 3923.86, + "probability": 0.5331 + }, + { + "start": 3924.58, + "end": 3929.4, + "probability": 0.9919 + }, + { + "start": 3930.2, + "end": 3932.96, + "probability": 0.7851 + }, + { + "start": 3933.74, + "end": 3938.78, + "probability": 0.5518 + }, + { + "start": 3939.42, + "end": 3946.14, + "probability": 0.9495 + }, + { + "start": 3946.68, + "end": 3948.64, + "probability": 0.8494 + }, + { + "start": 3949.32, + "end": 3950.9, + "probability": 0.8904 + }, + { + "start": 3951.6, + "end": 3955.72, + "probability": 0.936 + }, + { + "start": 3956.68, + "end": 3960.06, + "probability": 0.9291 + }, + { + "start": 3961.24, + "end": 3964.0, + "probability": 0.9433 + }, + { + "start": 3964.04, + "end": 3964.98, + "probability": 0.4435 + }, + { + "start": 3965.02, + "end": 3967.12, + "probability": 0.9644 + }, + { + "start": 3967.34, + "end": 3968.4, + "probability": 0.9189 + }, + { + "start": 3969.68, + "end": 3971.24, + "probability": 0.7441 + }, + { + "start": 3972.86, + "end": 3973.36, + "probability": 0.6332 + }, + { + "start": 3973.48, + "end": 3975.83, + "probability": 0.9624 + }, + { + "start": 3976.94, + "end": 3978.36, + "probability": 0.9644 + }, + { + "start": 3983.08, + "end": 3988.04, + "probability": 0.9432 + }, + { + "start": 3989.08, + "end": 3989.6, + "probability": 0.7226 + }, + { + "start": 3989.72, + "end": 3991.1, + "probability": 0.6142 + }, + { + "start": 3992.0, + "end": 3996.6, + "probability": 0.7097 + }, + { + "start": 3997.26, + "end": 3999.1, + "probability": 0.8486 + }, + { + "start": 4000.44, + "end": 4003.52, + "probability": 0.8007 + }, + { + "start": 4004.14, + "end": 4006.0, + "probability": 0.6995 + }, + { + "start": 4006.0, + "end": 4008.07, + "probability": 0.847 + }, + { + "start": 4011.02, + "end": 4012.82, + "probability": 0.9956 + }, + { + "start": 4013.16, + "end": 4015.16, + "probability": 0.9703 + }, + { + "start": 4015.64, + "end": 4016.7, + "probability": 0.9082 + }, + { + "start": 4016.76, + "end": 4017.04, + "probability": 0.7706 + }, + { + "start": 4017.04, + "end": 4017.38, + "probability": 0.6796 + }, + { + "start": 4017.54, + "end": 4018.26, + "probability": 0.7679 + }, + { + "start": 4018.38, + "end": 4018.88, + "probability": 0.6885 + }, + { + "start": 4019.04, + "end": 4022.22, + "probability": 0.7441 + }, + { + "start": 4022.64, + "end": 4022.64, + "probability": 0.0646 + }, + { + "start": 4022.64, + "end": 4023.1, + "probability": 0.3482 + }, + { + "start": 4023.14, + "end": 4025.88, + "probability": 0.8909 + }, + { + "start": 4026.48, + "end": 4031.74, + "probability": 0.8479 + }, + { + "start": 4032.26, + "end": 4033.76, + "probability": 0.78 + }, + { + "start": 4034.2, + "end": 4035.62, + "probability": 0.5387 + }, + { + "start": 4036.22, + "end": 4037.3, + "probability": 0.712 + }, + { + "start": 4038.84, + "end": 4043.13, + "probability": 0.7647 + }, + { + "start": 4044.08, + "end": 4047.14, + "probability": 0.4784 + }, + { + "start": 4047.82, + "end": 4048.14, + "probability": 0.3805 + }, + { + "start": 4048.4, + "end": 4052.18, + "probability": 0.8097 + }, + { + "start": 4052.58, + "end": 4057.16, + "probability": 0.9265 + }, + { + "start": 4058.48, + "end": 4060.06, + "probability": 0.9379 + }, + { + "start": 4060.58, + "end": 4061.14, + "probability": 0.8191 + }, + { + "start": 4061.8, + "end": 4064.28, + "probability": 0.9728 + }, + { + "start": 4064.56, + "end": 4064.78, + "probability": 0.7319 + }, + { + "start": 4066.56, + "end": 4068.28, + "probability": 0.5887 + }, + { + "start": 4068.44, + "end": 4072.34, + "probability": 0.8613 + }, + { + "start": 4072.56, + "end": 4075.14, + "probability": 0.9549 + }, + { + "start": 4075.74, + "end": 4076.56, + "probability": 0.6858 + }, + { + "start": 4076.88, + "end": 4081.96, + "probability": 0.3619 + }, + { + "start": 4081.96, + "end": 4082.8, + "probability": 0.5309 + }, + { + "start": 4083.42, + "end": 4087.34, + "probability": 0.7271 + }, + { + "start": 4088.38, + "end": 4089.76, + "probability": 0.9968 + }, + { + "start": 4090.44, + "end": 4091.0, + "probability": 0.9977 + }, + { + "start": 4091.6, + "end": 4097.9, + "probability": 0.9844 + }, + { + "start": 4099.44, + "end": 4102.48, + "probability": 0.9051 + }, + { + "start": 4103.64, + "end": 4108.22, + "probability": 0.9342 + }, + { + "start": 4108.86, + "end": 4109.74, + "probability": 0.9881 + }, + { + "start": 4110.44, + "end": 4115.4, + "probability": 0.7562 + }, + { + "start": 4116.08, + "end": 4118.16, + "probability": 0.944 + }, + { + "start": 4118.5, + "end": 4120.98, + "probability": 0.9387 + }, + { + "start": 4121.94, + "end": 4126.3, + "probability": 0.9495 + }, + { + "start": 4127.12, + "end": 4130.26, + "probability": 0.9058 + }, + { + "start": 4131.06, + "end": 4132.78, + "probability": 0.9878 + }, + { + "start": 4133.52, + "end": 4137.52, + "probability": 0.9821 + }, + { + "start": 4138.08, + "end": 4139.26, + "probability": 0.9468 + }, + { + "start": 4139.8, + "end": 4140.66, + "probability": 0.5749 + }, + { + "start": 4141.92, + "end": 4144.12, + "probability": 0.6509 + }, + { + "start": 4145.1, + "end": 4146.22, + "probability": 0.7741 + }, + { + "start": 4146.62, + "end": 4148.68, + "probability": 0.9882 + }, + { + "start": 4149.14, + "end": 4150.2, + "probability": 0.9619 + }, + { + "start": 4150.6, + "end": 4151.92, + "probability": 0.9867 + }, + { + "start": 4152.9, + "end": 4154.04, + "probability": 0.9835 + }, + { + "start": 4154.78, + "end": 4155.78, + "probability": 0.9534 + }, + { + "start": 4156.62, + "end": 4158.2, + "probability": 0.7185 + }, + { + "start": 4159.55, + "end": 4164.06, + "probability": 0.9683 + }, + { + "start": 4164.8, + "end": 4166.06, + "probability": 0.9912 + }, + { + "start": 4166.88, + "end": 4167.38, + "probability": 0.6336 + }, + { + "start": 4168.24, + "end": 4171.34, + "probability": 0.9673 + }, + { + "start": 4172.0, + "end": 4173.26, + "probability": 0.8182 + }, + { + "start": 4174.24, + "end": 4175.02, + "probability": 0.4813 + }, + { + "start": 4175.68, + "end": 4176.42, + "probability": 0.7846 + }, + { + "start": 4176.98, + "end": 4178.34, + "probability": 0.7835 + }, + { + "start": 4179.24, + "end": 4181.36, + "probability": 0.9587 + }, + { + "start": 4182.62, + "end": 4185.17, + "probability": 0.9117 + }, + { + "start": 4185.68, + "end": 4187.34, + "probability": 0.8225 + }, + { + "start": 4187.92, + "end": 4189.72, + "probability": 0.7607 + }, + { + "start": 4190.32, + "end": 4194.74, + "probability": 0.9872 + }, + { + "start": 4194.86, + "end": 4196.18, + "probability": 0.9697 + }, + { + "start": 4196.46, + "end": 4199.7, + "probability": 0.9941 + }, + { + "start": 4200.96, + "end": 4201.52, + "probability": 0.8058 + }, + { + "start": 4201.88, + "end": 4202.66, + "probability": 0.4911 + }, + { + "start": 4202.84, + "end": 4207.04, + "probability": 0.6067 + }, + { + "start": 4208.64, + "end": 4211.16, + "probability": 0.5443 + }, + { + "start": 4212.36, + "end": 4214.68, + "probability": 0.3657 + }, + { + "start": 4214.7, + "end": 4217.6, + "probability": 0.7632 + }, + { + "start": 4218.08, + "end": 4221.08, + "probability": 0.8815 + }, + { + "start": 4221.08, + "end": 4223.4, + "probability": 0.6852 + }, + { + "start": 4223.86, + "end": 4224.98, + "probability": 0.8689 + }, + { + "start": 4225.14, + "end": 4229.9, + "probability": 0.9174 + }, + { + "start": 4230.46, + "end": 4233.02, + "probability": 0.937 + }, + { + "start": 4233.18, + "end": 4233.58, + "probability": 0.3982 + }, + { + "start": 4234.14, + "end": 4234.88, + "probability": 0.7007 + }, + { + "start": 4236.22, + "end": 4238.6, + "probability": 0.8962 + }, + { + "start": 4239.32, + "end": 4240.34, + "probability": 0.9252 + }, + { + "start": 4241.48, + "end": 4243.22, + "probability": 0.6725 + }, + { + "start": 4244.32, + "end": 4246.74, + "probability": 0.8387 + }, + { + "start": 4247.32, + "end": 4248.18, + "probability": 0.9385 + }, + { + "start": 4248.78, + "end": 4251.02, + "probability": 0.9087 + }, + { + "start": 4252.4, + "end": 4253.92, + "probability": 0.7465 + }, + { + "start": 4253.98, + "end": 4255.56, + "probability": 0.937 + }, + { + "start": 4255.7, + "end": 4258.56, + "probability": 0.9042 + }, + { + "start": 4260.26, + "end": 4263.04, + "probability": 0.9255 + }, + { + "start": 4263.82, + "end": 4265.62, + "probability": 0.9986 + }, + { + "start": 4266.36, + "end": 4268.64, + "probability": 0.9975 + }, + { + "start": 4269.62, + "end": 4272.61, + "probability": 0.9794 + }, + { + "start": 4273.92, + "end": 4277.0, + "probability": 0.9464 + }, + { + "start": 4277.58, + "end": 4280.18, + "probability": 0.8287 + }, + { + "start": 4280.98, + "end": 4281.86, + "probability": 0.6435 + }, + { + "start": 4282.16, + "end": 4282.9, + "probability": 0.4394 + }, + { + "start": 4282.94, + "end": 4284.12, + "probability": 0.498 + }, + { + "start": 4284.18, + "end": 4286.1, + "probability": 0.9641 + }, + { + "start": 4286.7, + "end": 4287.28, + "probability": 0.608 + }, + { + "start": 4287.58, + "end": 4289.24, + "probability": 0.9709 + }, + { + "start": 4290.77, + "end": 4292.74, + "probability": 0.7539 + }, + { + "start": 4293.34, + "end": 4295.22, + "probability": 0.8926 + }, + { + "start": 4295.7, + "end": 4296.86, + "probability": 0.9222 + }, + { + "start": 4297.26, + "end": 4299.58, + "probability": 0.9264 + }, + { + "start": 4300.96, + "end": 4303.34, + "probability": 0.9048 + }, + { + "start": 4303.42, + "end": 4306.32, + "probability": 0.9624 + }, + { + "start": 4306.82, + "end": 4308.02, + "probability": 0.5504 + }, + { + "start": 4308.5, + "end": 4310.54, + "probability": 0.8163 + }, + { + "start": 4311.28, + "end": 4311.94, + "probability": 0.7466 + }, + { + "start": 4311.98, + "end": 4312.82, + "probability": 0.6367 + }, + { + "start": 4312.88, + "end": 4313.48, + "probability": 0.5078 + }, + { + "start": 4313.58, + "end": 4313.74, + "probability": 0.4797 + }, + { + "start": 4313.82, + "end": 4314.34, + "probability": 0.89 + }, + { + "start": 4314.42, + "end": 4316.24, + "probability": 0.6892 + }, + { + "start": 4316.34, + "end": 4318.34, + "probability": 0.347 + }, + { + "start": 4318.36, + "end": 4319.76, + "probability": 0.6459 + }, + { + "start": 4320.08, + "end": 4320.76, + "probability": 0.8861 + }, + { + "start": 4320.86, + "end": 4321.51, + "probability": 0.5054 + }, + { + "start": 4322.0, + "end": 4322.54, + "probability": 0.8443 + }, + { + "start": 4323.1, + "end": 4323.78, + "probability": 0.811 + }, + { + "start": 4324.24, + "end": 4325.5, + "probability": 0.8896 + }, + { + "start": 4327.8, + "end": 4329.74, + "probability": 0.9846 + }, + { + "start": 4329.82, + "end": 4330.22, + "probability": 0.433 + }, + { + "start": 4330.3, + "end": 4331.3, + "probability": 0.8621 + }, + { + "start": 4331.4, + "end": 4332.59, + "probability": 0.9316 + }, + { + "start": 4333.54, + "end": 4336.32, + "probability": 0.7984 + }, + { + "start": 4336.42, + "end": 4338.69, + "probability": 0.9678 + }, + { + "start": 4339.7, + "end": 4342.6, + "probability": 0.7617 + }, + { + "start": 4342.68, + "end": 4343.59, + "probability": 0.6832 + }, + { + "start": 4344.52, + "end": 4345.64, + "probability": 0.6809 + }, + { + "start": 4346.86, + "end": 4348.0, + "probability": 0.8592 + }, + { + "start": 4348.0, + "end": 4349.88, + "probability": 0.6864 + }, + { + "start": 4349.9, + "end": 4349.9, + "probability": 0.3298 + }, + { + "start": 4349.9, + "end": 4351.69, + "probability": 0.8133 + }, + { + "start": 4352.64, + "end": 4353.64, + "probability": 0.4883 + }, + { + "start": 4353.74, + "end": 4353.94, + "probability": 0.4812 + }, + { + "start": 4353.94, + "end": 4355.28, + "probability": 0.9103 + }, + { + "start": 4355.32, + "end": 4357.8, + "probability": 0.688 + }, + { + "start": 4357.96, + "end": 4360.56, + "probability": 0.8806 + }, + { + "start": 4361.52, + "end": 4363.54, + "probability": 0.9427 + }, + { + "start": 4364.28, + "end": 4369.74, + "probability": 0.9893 + }, + { + "start": 4370.36, + "end": 4372.94, + "probability": 0.9751 + }, + { + "start": 4373.02, + "end": 4376.78, + "probability": 0.9311 + }, + { + "start": 4377.68, + "end": 4381.3, + "probability": 0.7059 + }, + { + "start": 4382.04, + "end": 4388.14, + "probability": 0.9907 + }, + { + "start": 4388.58, + "end": 4391.12, + "probability": 0.9709 + }, + { + "start": 4391.16, + "end": 4392.02, + "probability": 0.9001 + }, + { + "start": 4392.96, + "end": 4394.4, + "probability": 0.7275 + }, + { + "start": 4394.62, + "end": 4396.9, + "probability": 0.8551 + }, + { + "start": 4397.2, + "end": 4399.18, + "probability": 0.8535 + }, + { + "start": 4399.48, + "end": 4401.06, + "probability": 0.9823 + }, + { + "start": 4401.38, + "end": 4403.4, + "probability": 0.886 + }, + { + "start": 4403.44, + "end": 4405.72, + "probability": 0.96 + }, + { + "start": 4405.78, + "end": 4406.47, + "probability": 0.9581 + }, + { + "start": 4407.34, + "end": 4409.68, + "probability": 0.8239 + }, + { + "start": 4410.32, + "end": 4412.98, + "probability": 0.9384 + }, + { + "start": 4413.12, + "end": 4413.86, + "probability": 0.4021 + }, + { + "start": 4413.86, + "end": 4414.1, + "probability": 0.663 + }, + { + "start": 4414.3, + "end": 4416.06, + "probability": 0.6392 + }, + { + "start": 4416.18, + "end": 4417.08, + "probability": 0.8071 + }, + { + "start": 4417.72, + "end": 4418.96, + "probability": 0.9825 + }, + { + "start": 4419.42, + "end": 4421.32, + "probability": 0.9876 + }, + { + "start": 4421.48, + "end": 4423.3, + "probability": 0.9043 + }, + { + "start": 4423.78, + "end": 4426.5, + "probability": 0.8293 + }, + { + "start": 4426.68, + "end": 4429.66, + "probability": 0.9253 + }, + { + "start": 4430.18, + "end": 4431.57, + "probability": 0.9189 + }, + { + "start": 4432.14, + "end": 4433.34, + "probability": 0.7622 + }, + { + "start": 4433.6, + "end": 4436.02, + "probability": 0.3416 + }, + { + "start": 4436.14, + "end": 4437.34, + "probability": 0.912 + }, + { + "start": 4437.72, + "end": 4439.74, + "probability": 0.9954 + }, + { + "start": 4439.88, + "end": 4440.54, + "probability": 0.6443 + }, + { + "start": 4440.62, + "end": 4441.68, + "probability": 0.8369 + }, + { + "start": 4442.08, + "end": 4443.46, + "probability": 0.9924 + }, + { + "start": 4443.8, + "end": 4446.14, + "probability": 0.4569 + }, + { + "start": 4446.36, + "end": 4447.52, + "probability": 0.7957 + }, + { + "start": 4448.18, + "end": 4449.02, + "probability": 0.639 + }, + { + "start": 4449.18, + "end": 4450.34, + "probability": 0.8347 + }, + { + "start": 4450.44, + "end": 4451.3, + "probability": 0.9666 + }, + { + "start": 4451.9, + "end": 4454.35, + "probability": 0.8999 + }, + { + "start": 4454.72, + "end": 4457.58, + "probability": 0.1161 + }, + { + "start": 4457.58, + "end": 4459.8, + "probability": 0.5455 + }, + { + "start": 4459.86, + "end": 4460.78, + "probability": 0.8203 + }, + { + "start": 4460.82, + "end": 4461.22, + "probability": 0.5341 + }, + { + "start": 4461.28, + "end": 4462.06, + "probability": 0.7737 + }, + { + "start": 4463.08, + "end": 4464.72, + "probability": 0.795 + }, + { + "start": 4465.46, + "end": 4466.54, + "probability": 0.7136 + }, + { + "start": 4466.84, + "end": 4467.32, + "probability": 0.7588 + }, + { + "start": 4467.48, + "end": 4469.24, + "probability": 0.984 + }, + { + "start": 4470.04, + "end": 4471.06, + "probability": 0.9162 + }, + { + "start": 4472.1, + "end": 4472.66, + "probability": 0.8091 + }, + { + "start": 4472.84, + "end": 4475.68, + "probability": 0.7895 + }, + { + "start": 4476.12, + "end": 4477.04, + "probability": 0.8115 + }, + { + "start": 4477.22, + "end": 4478.08, + "probability": 0.6717 + }, + { + "start": 4478.58, + "end": 4482.38, + "probability": 0.8479 + }, + { + "start": 4482.44, + "end": 4484.4, + "probability": 0.9696 + }, + { + "start": 4484.84, + "end": 4486.04, + "probability": 0.5433 + }, + { + "start": 4486.76, + "end": 4490.4, + "probability": 0.9314 + }, + { + "start": 4491.2, + "end": 4492.74, + "probability": 0.6721 + }, + { + "start": 4492.84, + "end": 4494.16, + "probability": 0.7727 + }, + { + "start": 4494.28, + "end": 4494.7, + "probability": 0.6864 + }, + { + "start": 4494.9, + "end": 4495.77, + "probability": 0.9014 + }, + { + "start": 4497.0, + "end": 4498.4, + "probability": 0.9589 + }, + { + "start": 4498.94, + "end": 4501.58, + "probability": 0.4749 + }, + { + "start": 4501.76, + "end": 4504.16, + "probability": 0.9805 + }, + { + "start": 4504.86, + "end": 4507.1, + "probability": 0.7677 + }, + { + "start": 4507.7, + "end": 4509.77, + "probability": 0.7878 + }, + { + "start": 4509.9, + "end": 4511.76, + "probability": 0.3963 + }, + { + "start": 4512.08, + "end": 4512.2, + "probability": 0.2563 + }, + { + "start": 4512.2, + "end": 4513.58, + "probability": 0.058 + }, + { + "start": 4514.12, + "end": 4514.74, + "probability": 0.6582 + }, + { + "start": 4514.84, + "end": 4515.29, + "probability": 0.6719 + }, + { + "start": 4515.56, + "end": 4515.98, + "probability": 0.4724 + }, + { + "start": 4516.02, + "end": 4517.04, + "probability": 0.4515 + }, + { + "start": 4517.2, + "end": 4517.88, + "probability": 0.5457 + }, + { + "start": 4517.92, + "end": 4521.42, + "probability": 0.8979 + }, + { + "start": 4521.62, + "end": 4522.54, + "probability": 0.6511 + }, + { + "start": 4522.62, + "end": 4523.3, + "probability": 0.8228 + }, + { + "start": 4523.36, + "end": 4523.88, + "probability": 0.6632 + }, + { + "start": 4523.88, + "end": 4524.56, + "probability": 0.4291 + }, + { + "start": 4524.56, + "end": 4525.42, + "probability": 0.8144 + }, + { + "start": 4526.1, + "end": 4526.75, + "probability": 0.8853 + }, + { + "start": 4527.54, + "end": 4529.18, + "probability": 0.9915 + }, + { + "start": 4529.58, + "end": 4531.73, + "probability": 0.8004 + }, + { + "start": 4531.98, + "end": 4532.74, + "probability": 0.7319 + }, + { + "start": 4533.28, + "end": 4534.66, + "probability": 0.5068 + }, + { + "start": 4535.44, + "end": 4536.94, + "probability": 0.8406 + }, + { + "start": 4537.02, + "end": 4539.2, + "probability": 0.9937 + }, + { + "start": 4539.62, + "end": 4541.08, + "probability": 0.8092 + }, + { + "start": 4541.98, + "end": 4544.56, + "probability": 0.9922 + }, + { + "start": 4545.02, + "end": 4545.6, + "probability": 0.7904 + }, + { + "start": 4545.78, + "end": 4547.2, + "probability": 0.8889 + }, + { + "start": 4547.76, + "end": 4550.26, + "probability": 0.7935 + }, + { + "start": 4550.38, + "end": 4556.08, + "probability": 0.9483 + }, + { + "start": 4556.74, + "end": 4557.9, + "probability": 0.8282 + }, + { + "start": 4557.96, + "end": 4558.44, + "probability": 0.6255 + }, + { + "start": 4558.46, + "end": 4560.04, + "probability": 0.5917 + }, + { + "start": 4561.34, + "end": 4562.48, + "probability": 0.8114 + }, + { + "start": 4562.58, + "end": 4563.02, + "probability": 0.6694 + }, + { + "start": 4563.26, + "end": 4563.94, + "probability": 0.9956 + }, + { + "start": 4564.76, + "end": 4565.9, + "probability": 0.9807 + }, + { + "start": 4566.14, + "end": 4568.04, + "probability": 0.6026 + }, + { + "start": 4568.14, + "end": 4568.64, + "probability": 0.6963 + }, + { + "start": 4568.66, + "end": 4569.18, + "probability": 0.8753 + }, + { + "start": 4569.2, + "end": 4569.8, + "probability": 0.6572 + }, + { + "start": 4570.5, + "end": 4571.7, + "probability": 0.8701 + }, + { + "start": 4572.42, + "end": 4573.89, + "probability": 0.859 + }, + { + "start": 4574.6, + "end": 4577.66, + "probability": 0.8779 + }, + { + "start": 4577.78, + "end": 4578.12, + "probability": 0.6599 + }, + { + "start": 4578.18, + "end": 4579.06, + "probability": 0.9904 + }, + { + "start": 4579.48, + "end": 4584.92, + "probability": 0.8936 + }, + { + "start": 4585.48, + "end": 4586.29, + "probability": 0.5365 + }, + { + "start": 4586.62, + "end": 4587.6, + "probability": 0.6629 + }, + { + "start": 4588.08, + "end": 4589.3, + "probability": 0.5922 + }, + { + "start": 4589.34, + "end": 4591.32, + "probability": 0.9541 + }, + { + "start": 4591.9, + "end": 4593.22, + "probability": 0.9788 + }, + { + "start": 4593.8, + "end": 4595.46, + "probability": 0.9646 + }, + { + "start": 4595.48, + "end": 4596.07, + "probability": 0.5246 + }, + { + "start": 4597.3, + "end": 4599.82, + "probability": 0.975 + }, + { + "start": 4600.34, + "end": 4601.86, + "probability": 0.8024 + }, + { + "start": 4602.14, + "end": 4603.22, + "probability": 0.9771 + }, + { + "start": 4603.26, + "end": 4604.42, + "probability": 0.7916 + }, + { + "start": 4605.06, + "end": 4606.88, + "probability": 0.9653 + }, + { + "start": 4607.78, + "end": 4609.2, + "probability": 0.9048 + }, + { + "start": 4609.3, + "end": 4609.88, + "probability": 0.9624 + }, + { + "start": 4610.34, + "end": 4614.1, + "probability": 0.9951 + }, + { + "start": 4614.18, + "end": 4614.56, + "probability": 0.6374 + }, + { + "start": 4614.66, + "end": 4615.64, + "probability": 0.8706 + }, + { + "start": 4616.1, + "end": 4617.4, + "probability": 0.9673 + }, + { + "start": 4617.92, + "end": 4618.86, + "probability": 0.9341 + }, + { + "start": 4620.32, + "end": 4621.54, + "probability": 0.9746 + }, + { + "start": 4621.6, + "end": 4622.13, + "probability": 0.9661 + }, + { + "start": 4622.6, + "end": 4624.46, + "probability": 0.6647 + }, + { + "start": 4624.52, + "end": 4625.72, + "probability": 0.9906 + }, + { + "start": 4625.8, + "end": 4626.29, + "probability": 0.41 + }, + { + "start": 4626.3, + "end": 4627.12, + "probability": 0.7007 + }, + { + "start": 4627.2, + "end": 4629.36, + "probability": 0.8425 + }, + { + "start": 4629.44, + "end": 4630.05, + "probability": 0.9761 + }, + { + "start": 4630.56, + "end": 4632.32, + "probability": 0.943 + }, + { + "start": 4632.84, + "end": 4633.99, + "probability": 0.8895 + }, + { + "start": 4634.42, + "end": 4634.98, + "probability": 0.4732 + }, + { + "start": 4635.28, + "end": 4635.78, + "probability": 0.315 + }, + { + "start": 4635.86, + "end": 4636.49, + "probability": 0.514 + }, + { + "start": 4636.82, + "end": 4641.98, + "probability": 0.952 + }, + { + "start": 4643.14, + "end": 4644.2, + "probability": 0.6881 + }, + { + "start": 4644.82, + "end": 4647.34, + "probability": 0.8884 + }, + { + "start": 4647.42, + "end": 4648.64, + "probability": 0.9583 + }, + { + "start": 4648.66, + "end": 4649.7, + "probability": 0.5294 + }, + { + "start": 4649.74, + "end": 4650.2, + "probability": 0.7908 + }, + { + "start": 4650.46, + "end": 4650.46, + "probability": 0.7398 + }, + { + "start": 4650.58, + "end": 4652.48, + "probability": 0.9943 + }, + { + "start": 4653.36, + "end": 4654.48, + "probability": 0.9108 + }, + { + "start": 4654.68, + "end": 4655.06, + "probability": 0.729 + }, + { + "start": 4655.2, + "end": 4658.62, + "probability": 0.9731 + }, + { + "start": 4659.16, + "end": 4661.28, + "probability": 0.8465 + }, + { + "start": 4661.36, + "end": 4662.8, + "probability": 0.9666 + }, + { + "start": 4663.18, + "end": 4665.38, + "probability": 0.7478 + }, + { + "start": 4665.86, + "end": 4667.34, + "probability": 0.78 + }, + { + "start": 4667.82, + "end": 4669.46, + "probability": 0.695 + }, + { + "start": 4669.68, + "end": 4671.14, + "probability": 0.935 + }, + { + "start": 4672.02, + "end": 4674.06, + "probability": 0.7785 + }, + { + "start": 4674.58, + "end": 4675.39, + "probability": 0.7212 + }, + { + "start": 4676.68, + "end": 4679.3, + "probability": 0.8596 + }, + { + "start": 4680.54, + "end": 4680.96, + "probability": 0.2128 + }, + { + "start": 4681.06, + "end": 4681.78, + "probability": 0.703 + }, + { + "start": 4681.78, + "end": 4689.38, + "probability": 0.9346 + }, + { + "start": 4689.76, + "end": 4692.17, + "probability": 0.9457 + }, + { + "start": 4693.16, + "end": 4693.82, + "probability": 0.7895 + }, + { + "start": 4694.5, + "end": 4695.34, + "probability": 0.9734 + }, + { + "start": 4695.4, + "end": 4696.42, + "probability": 0.9482 + }, + { + "start": 4696.68, + "end": 4700.02, + "probability": 0.9409 + }, + { + "start": 4700.34, + "end": 4702.05, + "probability": 0.6378 + }, + { + "start": 4702.24, + "end": 4702.24, + "probability": 0.3323 + }, + { + "start": 4702.42, + "end": 4702.86, + "probability": 0.749 + }, + { + "start": 4702.94, + "end": 4705.58, + "probability": 0.939 + }, + { + "start": 4705.72, + "end": 4706.58, + "probability": 0.7517 + }, + { + "start": 4706.7, + "end": 4707.32, + "probability": 0.5339 + }, + { + "start": 4707.8, + "end": 4710.08, + "probability": 0.9087 + }, + { + "start": 4710.14, + "end": 4710.41, + "probability": 0.5242 + }, + { + "start": 4710.74, + "end": 4712.78, + "probability": 0.7072 + }, + { + "start": 4714.0, + "end": 4714.3, + "probability": 0.0803 + }, + { + "start": 4714.6, + "end": 4716.28, + "probability": 0.974 + }, + { + "start": 4716.6, + "end": 4717.5, + "probability": 0.7837 + }, + { + "start": 4718.0, + "end": 4720.72, + "probability": 0.9513 + }, + { + "start": 4721.34, + "end": 4722.38, + "probability": 0.9966 + }, + { + "start": 4722.48, + "end": 4722.58, + "probability": 0.7751 + }, + { + "start": 4723.3, + "end": 4726.08, + "probability": 0.9897 + }, + { + "start": 4726.84, + "end": 4727.32, + "probability": 0.8319 + }, + { + "start": 4727.52, + "end": 4728.71, + "probability": 0.9832 + }, + { + "start": 4728.84, + "end": 4729.29, + "probability": 0.9343 + }, + { + "start": 4729.58, + "end": 4729.93, + "probability": 0.7437 + }, + { + "start": 4730.64, + "end": 4732.24, + "probability": 0.9057 + }, + { + "start": 4732.24, + "end": 4733.48, + "probability": 0.9771 + }, + { + "start": 4733.62, + "end": 4734.02, + "probability": 0.6755 + }, + { + "start": 4734.1, + "end": 4734.66, + "probability": 0.9829 + }, + { + "start": 4735.5, + "end": 4735.82, + "probability": 0.0086 + }, + { + "start": 4735.96, + "end": 4737.72, + "probability": 0.9116 + }, + { + "start": 4738.48, + "end": 4740.36, + "probability": 0.92 + }, + { + "start": 4740.42, + "end": 4748.14, + "probability": 0.8306 + }, + { + "start": 4748.69, + "end": 4751.1, + "probability": 0.7035 + }, + { + "start": 4751.18, + "end": 4752.62, + "probability": 0.9624 + }, + { + "start": 4753.24, + "end": 4754.68, + "probability": 0.9871 + }, + { + "start": 4755.28, + "end": 4757.84, + "probability": 0.9912 + }, + { + "start": 4758.36, + "end": 4761.3, + "probability": 0.5535 + }, + { + "start": 4761.66, + "end": 4762.3, + "probability": 0.916 + }, + { + "start": 4762.36, + "end": 4763.5, + "probability": 0.8514 + }, + { + "start": 4764.06, + "end": 4766.4, + "probability": 0.925 + }, + { + "start": 4767.3, + "end": 4768.28, + "probability": 0.7098 + }, + { + "start": 4768.48, + "end": 4769.13, + "probability": 0.6324 + }, + { + "start": 4769.56, + "end": 4770.8, + "probability": 0.9919 + }, + { + "start": 4771.06, + "end": 4771.98, + "probability": 0.995 + }, + { + "start": 4772.76, + "end": 4773.72, + "probability": 0.6224 + }, + { + "start": 4774.16, + "end": 4774.76, + "probability": 0.5061 + }, + { + "start": 4775.04, + "end": 4775.82, + "probability": 0.49 + }, + { + "start": 4777.01, + "end": 4777.94, + "probability": 0.1959 + }, + { + "start": 4777.94, + "end": 4777.94, + "probability": 0.1016 + }, + { + "start": 4777.94, + "end": 4778.64, + "probability": 0.1278 + }, + { + "start": 4779.48, + "end": 4779.76, + "probability": 0.4987 + }, + { + "start": 4780.08, + "end": 4780.54, + "probability": 0.8699 + }, + { + "start": 4780.78, + "end": 4780.9, + "probability": 0.6088 + }, + { + "start": 4781.24, + "end": 4783.8, + "probability": 0.9229 + }, + { + "start": 4784.88, + "end": 4785.92, + "probability": 0.7063 + }, + { + "start": 4786.57, + "end": 4787.26, + "probability": 0.1154 + }, + { + "start": 4787.26, + "end": 4787.6, + "probability": 0.2405 + }, + { + "start": 4788.14, + "end": 4788.2, + "probability": 0.1143 + }, + { + "start": 4788.2, + "end": 4788.5, + "probability": 0.7278 + }, + { + "start": 4788.92, + "end": 4790.7, + "probability": 0.8186 + }, + { + "start": 4790.86, + "end": 4791.54, + "probability": 0.6776 + }, + { + "start": 4791.76, + "end": 4792.48, + "probability": 0.9292 + }, + { + "start": 4792.58, + "end": 4792.94, + "probability": 0.3163 + }, + { + "start": 4793.7, + "end": 4795.28, + "probability": 0.8843 + }, + { + "start": 4795.4, + "end": 4796.58, + "probability": 0.5995 + }, + { + "start": 4796.6, + "end": 4797.06, + "probability": 0.0599 + }, + { + "start": 4797.22, + "end": 4798.22, + "probability": 0.6666 + }, + { + "start": 4798.38, + "end": 4804.72, + "probability": 0.9808 + }, + { + "start": 4804.92, + "end": 4807.04, + "probability": 0.951 + }, + { + "start": 4808.04, + "end": 4809.6, + "probability": 0.7434 + }, + { + "start": 4809.64, + "end": 4813.22, + "probability": 0.7716 + }, + { + "start": 4813.54, + "end": 4816.32, + "probability": 0.9965 + }, + { + "start": 4817.0, + "end": 4819.7, + "probability": 0.8772 + }, + { + "start": 4820.0, + "end": 4820.88, + "probability": 0.999 + }, + { + "start": 4821.62, + "end": 4822.78, + "probability": 0.9805 + }, + { + "start": 4823.2, + "end": 4823.56, + "probability": 0.6848 + }, + { + "start": 4824.14, + "end": 4825.72, + "probability": 0.9666 + }, + { + "start": 4825.92, + "end": 4828.3, + "probability": 0.8368 + }, + { + "start": 4828.98, + "end": 4830.06, + "probability": 0.9708 + }, + { + "start": 4830.12, + "end": 4835.5, + "probability": 0.9729 + }, + { + "start": 4836.02, + "end": 4836.3, + "probability": 0.5263 + }, + { + "start": 4836.7, + "end": 4839.08, + "probability": 0.7362 + }, + { + "start": 4839.54, + "end": 4845.98, + "probability": 0.9146 + }, + { + "start": 4846.08, + "end": 4846.96, + "probability": 0.768 + }, + { + "start": 4847.5, + "end": 4851.08, + "probability": 0.9966 + }, + { + "start": 4851.1, + "end": 4852.34, + "probability": 0.6856 + }, + { + "start": 4852.36, + "end": 4855.26, + "probability": 0.994 + }, + { + "start": 4856.62, + "end": 4858.18, + "probability": 0.9525 + }, + { + "start": 4860.36, + "end": 4861.66, + "probability": 0.3312 + }, + { + "start": 4863.78, + "end": 4863.88, + "probability": 0.5308 + }, + { + "start": 4863.88, + "end": 4863.96, + "probability": 0.6104 + }, + { + "start": 4864.04, + "end": 4870.48, + "probability": 0.9923 + }, + { + "start": 4870.78, + "end": 4870.88, + "probability": 0.6469 + }, + { + "start": 4873.5, + "end": 4874.36, + "probability": 0.9539 + }, + { + "start": 4875.5, + "end": 4877.24, + "probability": 0.6667 + }, + { + "start": 4877.24, + "end": 4879.32, + "probability": 0.6444 + }, + { + "start": 4879.36, + "end": 4879.64, + "probability": 0.8413 + }, + { + "start": 4880.2, + "end": 4880.3, + "probability": 0.4718 + }, + { + "start": 4880.3, + "end": 4882.08, + "probability": 0.1245 + }, + { + "start": 4882.24, + "end": 4887.14, + "probability": 0.8988 + }, + { + "start": 4887.78, + "end": 4890.3, + "probability": 0.666 + }, + { + "start": 4890.38, + "end": 4891.38, + "probability": 0.5688 + }, + { + "start": 4892.99, + "end": 4899.76, + "probability": 0.8893 + }, + { + "start": 4901.36, + "end": 4905.12, + "probability": 0.9361 + }, + { + "start": 4906.48, + "end": 4909.94, + "probability": 0.8596 + }, + { + "start": 4911.6, + "end": 4914.36, + "probability": 0.9869 + }, + { + "start": 4915.54, + "end": 4918.48, + "probability": 0.9576 + }, + { + "start": 4919.5, + "end": 4923.76, + "probability": 0.9342 + }, + { + "start": 4925.22, + "end": 4929.24, + "probability": 0.8646 + }, + { + "start": 4930.18, + "end": 4934.98, + "probability": 0.8908 + }, + { + "start": 4935.66, + "end": 4940.08, + "probability": 0.9628 + }, + { + "start": 4942.42, + "end": 4949.04, + "probability": 0.9919 + }, + { + "start": 4950.28, + "end": 4952.48, + "probability": 0.911 + }, + { + "start": 4953.84, + "end": 4956.5, + "probability": 0.9146 + }, + { + "start": 4957.52, + "end": 4960.44, + "probability": 0.9942 + }, + { + "start": 4961.48, + "end": 4967.06, + "probability": 0.999 + }, + { + "start": 4967.82, + "end": 4969.3, + "probability": 0.8271 + }, + { + "start": 4969.96, + "end": 4972.04, + "probability": 0.8846 + }, + { + "start": 4972.56, + "end": 4975.26, + "probability": 0.9675 + }, + { + "start": 4976.34, + "end": 4980.46, + "probability": 0.9854 + }, + { + "start": 4980.86, + "end": 4982.46, + "probability": 0.8184 + }, + { + "start": 4983.32, + "end": 4985.66, + "probability": 0.9696 + }, + { + "start": 4985.72, + "end": 4988.7, + "probability": 0.9989 + }, + { + "start": 4989.28, + "end": 4990.26, + "probability": 0.5233 + }, + { + "start": 4990.62, + "end": 4991.1, + "probability": 0.3663 + }, + { + "start": 4991.16, + "end": 4992.68, + "probability": 0.6689 + }, + { + "start": 4993.0, + "end": 4997.84, + "probability": 0.8322 + }, + { + "start": 4997.92, + "end": 4999.5, + "probability": 0.8968 + }, + { + "start": 4999.72, + "end": 5000.5, + "probability": 0.8516 + }, + { + "start": 5000.72, + "end": 5001.88, + "probability": 0.9224 + }, + { + "start": 5002.36, + "end": 5005.68, + "probability": 0.9427 + }, + { + "start": 5006.56, + "end": 5008.06, + "probability": 0.9829 + }, + { + "start": 5008.72, + "end": 5009.54, + "probability": 0.9631 + }, + { + "start": 5010.06, + "end": 5012.26, + "probability": 0.9642 + }, + { + "start": 5012.58, + "end": 5013.77, + "probability": 0.9565 + }, + { + "start": 5014.18, + "end": 5017.24, + "probability": 0.9712 + }, + { + "start": 5017.72, + "end": 5019.44, + "probability": 0.9873 + }, + { + "start": 5020.0, + "end": 5021.06, + "probability": 0.8687 + }, + { + "start": 5021.56, + "end": 5025.36, + "probability": 0.8789 + }, + { + "start": 5025.84, + "end": 5029.54, + "probability": 0.9822 + }, + { + "start": 5030.06, + "end": 5031.58, + "probability": 0.8273 + }, + { + "start": 5032.3, + "end": 5033.04, + "probability": 0.9119 + }, + { + "start": 5033.68, + "end": 5038.6, + "probability": 0.95 + }, + { + "start": 5038.92, + "end": 5042.1, + "probability": 0.995 + }, + { + "start": 5042.44, + "end": 5043.34, + "probability": 0.9025 + }, + { + "start": 5043.4, + "end": 5044.52, + "probability": 0.959 + }, + { + "start": 5045.16, + "end": 5048.14, + "probability": 0.8785 + }, + { + "start": 5049.22, + "end": 5051.48, + "probability": 0.9039 + }, + { + "start": 5052.16, + "end": 5053.4, + "probability": 0.8112 + }, + { + "start": 5053.94, + "end": 5059.3, + "probability": 0.953 + }, + { + "start": 5059.7, + "end": 5060.94, + "probability": 0.989 + }, + { + "start": 5062.08, + "end": 5065.66, + "probability": 0.9896 + }, + { + "start": 5066.48, + "end": 5072.92, + "probability": 0.9414 + }, + { + "start": 5073.56, + "end": 5076.46, + "probability": 0.9622 + }, + { + "start": 5076.92, + "end": 5078.12, + "probability": 0.8631 + }, + { + "start": 5078.58, + "end": 5080.38, + "probability": 0.9916 + }, + { + "start": 5080.96, + "end": 5089.16, + "probability": 0.9921 + }, + { + "start": 5089.24, + "end": 5090.36, + "probability": 0.9137 + }, + { + "start": 5091.0, + "end": 5091.46, + "probability": 0.7852 + }, + { + "start": 5092.22, + "end": 5093.92, + "probability": 0.9875 + }, + { + "start": 5095.04, + "end": 5096.46, + "probability": 0.8433 + }, + { + "start": 5097.34, + "end": 5099.1, + "probability": 0.988 + }, + { + "start": 5099.46, + "end": 5102.42, + "probability": 0.9662 + }, + { + "start": 5102.68, + "end": 5105.7, + "probability": 0.6072 + }, + { + "start": 5106.36, + "end": 5106.64, + "probability": 0.4817 + }, + { + "start": 5106.98, + "end": 5108.52, + "probability": 0.6664 + }, + { + "start": 5108.62, + "end": 5108.92, + "probability": 0.8779 + }, + { + "start": 5109.36, + "end": 5110.98, + "probability": 0.7998 + }, + { + "start": 5111.68, + "end": 5113.16, + "probability": 0.9106 + }, + { + "start": 5114.5, + "end": 5115.24, + "probability": 0.4962 + }, + { + "start": 5115.44, + "end": 5117.76, + "probability": 0.9983 + }, + { + "start": 5118.18, + "end": 5119.1, + "probability": 0.8408 + }, + { + "start": 5119.52, + "end": 5121.82, + "probability": 0.9857 + }, + { + "start": 5121.98, + "end": 5124.7, + "probability": 0.9951 + }, + { + "start": 5124.78, + "end": 5126.16, + "probability": 0.8906 + }, + { + "start": 5126.48, + "end": 5129.62, + "probability": 0.9863 + }, + { + "start": 5130.0, + "end": 5130.88, + "probability": 0.9294 + }, + { + "start": 5130.98, + "end": 5131.88, + "probability": 0.7605 + }, + { + "start": 5132.42, + "end": 5135.1, + "probability": 0.9771 + }, + { + "start": 5135.66, + "end": 5140.58, + "probability": 0.9702 + }, + { + "start": 5140.74, + "end": 5141.34, + "probability": 0.9214 + }, + { + "start": 5141.58, + "end": 5143.06, + "probability": 0.97 + }, + { + "start": 5143.1, + "end": 5144.2, + "probability": 0.9719 + }, + { + "start": 5144.72, + "end": 5148.12, + "probability": 0.7703 + }, + { + "start": 5148.44, + "end": 5149.18, + "probability": 0.9358 + }, + { + "start": 5149.68, + "end": 5151.44, + "probability": 0.9505 + }, + { + "start": 5152.16, + "end": 5156.48, + "probability": 0.672 + }, + { + "start": 5157.04, + "end": 5158.46, + "probability": 0.9537 + }, + { + "start": 5160.42, + "end": 5160.68, + "probability": 0.7052 + }, + { + "start": 5160.68, + "end": 5163.18, + "probability": 0.6764 + }, + { + "start": 5163.28, + "end": 5163.28, + "probability": 0.1419 + }, + { + "start": 5163.28, + "end": 5163.28, + "probability": 0.3007 + }, + { + "start": 5163.28, + "end": 5165.62, + "probability": 0.9517 + }, + { + "start": 5166.56, + "end": 5167.17, + "probability": 0.9927 + }, + { + "start": 5168.54, + "end": 5171.18, + "probability": 0.967 + }, + { + "start": 5172.5, + "end": 5175.3, + "probability": 0.9871 + }, + { + "start": 5175.3, + "end": 5178.24, + "probability": 0.7129 + }, + { + "start": 5178.24, + "end": 5181.92, + "probability": 0.8097 + }, + { + "start": 5183.32, + "end": 5185.04, + "probability": 0.7191 + }, + { + "start": 5185.7, + "end": 5190.9, + "probability": 0.9963 + }, + { + "start": 5191.36, + "end": 5195.44, + "probability": 0.9937 + }, + { + "start": 5196.46, + "end": 5201.82, + "probability": 0.7826 + }, + { + "start": 5202.52, + "end": 5202.78, + "probability": 0.4356 + }, + { + "start": 5203.68, + "end": 5206.0, + "probability": 0.9567 + }, + { + "start": 5206.58, + "end": 5209.44, + "probability": 0.881 + }, + { + "start": 5209.84, + "end": 5210.26, + "probability": 0.5609 + }, + { + "start": 5210.38, + "end": 5213.48, + "probability": 0.7241 + }, + { + "start": 5215.48, + "end": 5216.04, + "probability": 0.193 + }, + { + "start": 5216.04, + "end": 5216.5, + "probability": 0.3462 + }, + { + "start": 5216.58, + "end": 5217.7, + "probability": 0.6014 + }, + { + "start": 5217.78, + "end": 5222.66, + "probability": 0.6127 + }, + { + "start": 5222.72, + "end": 5222.94, + "probability": 0.45 + }, + { + "start": 5223.22, + "end": 5226.2, + "probability": 0.832 + }, + { + "start": 5227.58, + "end": 5229.66, + "probability": 0.8278 + }, + { + "start": 5229.9, + "end": 5231.3, + "probability": 0.8031 + }, + { + "start": 5231.42, + "end": 5233.4, + "probability": 0.9502 + }, + { + "start": 5233.98, + "end": 5239.18, + "probability": 0.9554 + }, + { + "start": 5239.34, + "end": 5240.74, + "probability": 0.8994 + }, + { + "start": 5241.73, + "end": 5242.88, + "probability": 0.8185 + }, + { + "start": 5242.98, + "end": 5247.98, + "probability": 0.9665 + }, + { + "start": 5247.98, + "end": 5251.64, + "probability": 0.9834 + }, + { + "start": 5252.18, + "end": 5259.18, + "probability": 0.9774 + }, + { + "start": 5260.32, + "end": 5262.94, + "probability": 0.3223 + }, + { + "start": 5263.06, + "end": 5263.32, + "probability": 0.3551 + }, + { + "start": 5263.5, + "end": 5264.46, + "probability": 0.5398 + }, + { + "start": 5264.64, + "end": 5265.52, + "probability": 0.8506 + }, + { + "start": 5265.54, + "end": 5272.24, + "probability": 0.8693 + }, + { + "start": 5272.3, + "end": 5274.38, + "probability": 0.7037 + }, + { + "start": 5274.54, + "end": 5277.52, + "probability": 0.9857 + }, + { + "start": 5278.44, + "end": 5278.96, + "probability": 0.7326 + }, + { + "start": 5279.52, + "end": 5281.3, + "probability": 0.7084 + }, + { + "start": 5281.84, + "end": 5282.7, + "probability": 0.441 + }, + { + "start": 5282.78, + "end": 5285.1, + "probability": 0.8305 + }, + { + "start": 5285.2, + "end": 5286.68, + "probability": 0.7847 + }, + { + "start": 5287.82, + "end": 5288.44, + "probability": 0.6461 + }, + { + "start": 5288.96, + "end": 5292.04, + "probability": 0.8844 + }, + { + "start": 5292.08, + "end": 5294.8, + "probability": 0.7694 + }, + { + "start": 5294.9, + "end": 5295.42, + "probability": 0.4013 + }, + { + "start": 5296.08, + "end": 5298.74, + "probability": 0.9861 + }, + { + "start": 5299.36, + "end": 5299.96, + "probability": 0.7529 + }, + { + "start": 5300.56, + "end": 5303.26, + "probability": 0.9668 + }, + { + "start": 5303.82, + "end": 5305.25, + "probability": 0.9468 + }, + { + "start": 5305.58, + "end": 5305.9, + "probability": 0.867 + }, + { + "start": 5306.04, + "end": 5307.74, + "probability": 0.9587 + }, + { + "start": 5307.76, + "end": 5309.34, + "probability": 0.9595 + }, + { + "start": 5313.22, + "end": 5314.56, + "probability": 0.6365 + }, + { + "start": 5315.82, + "end": 5316.16, + "probability": 0.5989 + }, + { + "start": 5317.84, + "end": 5320.2, + "probability": 0.8925 + }, + { + "start": 5321.0, + "end": 5321.88, + "probability": 0.9041 + }, + { + "start": 5322.98, + "end": 5326.46, + "probability": 0.9095 + }, + { + "start": 5327.26, + "end": 5327.64, + "probability": 0.3179 + }, + { + "start": 5328.0, + "end": 5329.4, + "probability": 0.6722 + }, + { + "start": 5329.54, + "end": 5330.52, + "probability": 0.6916 + }, + { + "start": 5330.86, + "end": 5332.16, + "probability": 0.9612 + }, + { + "start": 5332.58, + "end": 5336.26, + "probability": 0.6909 + }, + { + "start": 5336.3, + "end": 5337.32, + "probability": 0.5739 + }, + { + "start": 5337.84, + "end": 5344.26, + "probability": 0.8121 + }, + { + "start": 5345.34, + "end": 5345.98, + "probability": 0.8451 + }, + { + "start": 5346.54, + "end": 5350.22, + "probability": 0.8712 + }, + { + "start": 5350.3, + "end": 5350.84, + "probability": 0.0395 + }, + { + "start": 5350.86, + "end": 5352.04, + "probability": 0.6426 + }, + { + "start": 5352.18, + "end": 5354.24, + "probability": 0.9897 + }, + { + "start": 5354.34, + "end": 5355.04, + "probability": 0.9663 + }, + { + "start": 5355.24, + "end": 5355.4, + "probability": 0.0096 + }, + { + "start": 5356.24, + "end": 5358.46, + "probability": 0.9978 + }, + { + "start": 5359.04, + "end": 5363.52, + "probability": 0.9956 + }, + { + "start": 5364.24, + "end": 5365.44, + "probability": 0.9961 + }, + { + "start": 5366.62, + "end": 5369.5, + "probability": 0.9937 + }, + { + "start": 5369.54, + "end": 5371.92, + "probability": 0.9526 + }, + { + "start": 5372.46, + "end": 5374.6, + "probability": 0.9723 + }, + { + "start": 5374.96, + "end": 5375.5, + "probability": 0.8257 + }, + { + "start": 5375.58, + "end": 5378.28, + "probability": 0.9714 + }, + { + "start": 5378.46, + "end": 5380.22, + "probability": 0.9442 + }, + { + "start": 5380.64, + "end": 5382.43, + "probability": 0.9278 + }, + { + "start": 5384.48, + "end": 5389.3, + "probability": 0.9515 + }, + { + "start": 5389.3, + "end": 5390.16, + "probability": 0.8378 + }, + { + "start": 5390.78, + "end": 5394.9, + "probability": 0.8203 + }, + { + "start": 5395.48, + "end": 5398.6, + "probability": 0.8958 + }, + { + "start": 5399.94, + "end": 5400.42, + "probability": 0.928 + }, + { + "start": 5400.96, + "end": 5401.94, + "probability": 0.8687 + }, + { + "start": 5402.12, + "end": 5402.7, + "probability": 0.4655 + }, + { + "start": 5403.18, + "end": 5404.72, + "probability": 0.6807 + }, + { + "start": 5406.15, + "end": 5408.66, + "probability": 0.5013 + }, + { + "start": 5408.8, + "end": 5410.04, + "probability": 0.9147 + }, + { + "start": 5410.18, + "end": 5411.32, + "probability": 0.7071 + }, + { + "start": 5411.32, + "end": 5412.0, + "probability": 0.6976 + }, + { + "start": 5412.1, + "end": 5415.26, + "probability": 0.8539 + }, + { + "start": 5415.74, + "end": 5417.73, + "probability": 0.8251 + }, + { + "start": 5418.26, + "end": 5420.08, + "probability": 0.8691 + }, + { + "start": 5420.2, + "end": 5421.3, + "probability": 0.9262 + }, + { + "start": 5422.0, + "end": 5423.28, + "probability": 0.7213 + }, + { + "start": 5423.32, + "end": 5427.26, + "probability": 0.957 + }, + { + "start": 5427.58, + "end": 5428.62, + "probability": 0.9774 + }, + { + "start": 5428.7, + "end": 5429.29, + "probability": 0.9365 + }, + { + "start": 5430.04, + "end": 5430.9, + "probability": 0.9985 + }, + { + "start": 5431.68, + "end": 5436.1, + "probability": 0.7939 + }, + { + "start": 5436.53, + "end": 5439.4, + "probability": 0.9961 + }, + { + "start": 5441.18, + "end": 5442.3, + "probability": 0.7503 + }, + { + "start": 5444.96, + "end": 5449.42, + "probability": 0.8271 + }, + { + "start": 5450.2, + "end": 5451.84, + "probability": 0.6741 + }, + { + "start": 5452.44, + "end": 5454.27, + "probability": 0.9243 + }, + { + "start": 5455.58, + "end": 5457.1, + "probability": 0.77 + }, + { + "start": 5458.5, + "end": 5463.96, + "probability": 0.988 + }, + { + "start": 5465.12, + "end": 5466.0, + "probability": 0.8441 + }, + { + "start": 5467.22, + "end": 5468.05, + "probability": 0.9907 + }, + { + "start": 5468.92, + "end": 5469.98, + "probability": 0.9878 + }, + { + "start": 5470.04, + "end": 5471.2, + "probability": 0.9059 + }, + { + "start": 5472.04, + "end": 5472.78, + "probability": 0.7913 + }, + { + "start": 5473.28, + "end": 5475.9, + "probability": 0.8903 + }, + { + "start": 5475.98, + "end": 5478.9, + "probability": 0.9834 + }, + { + "start": 5479.36, + "end": 5479.44, + "probability": 0.4859 + }, + { + "start": 5479.58, + "end": 5479.92, + "probability": 0.8296 + }, + { + "start": 5480.02, + "end": 5480.92, + "probability": 0.786 + }, + { + "start": 5481.3, + "end": 5481.8, + "probability": 0.8138 + }, + { + "start": 5481.88, + "end": 5482.42, + "probability": 0.5849 + }, + { + "start": 5482.46, + "end": 5489.5, + "probability": 0.946 + }, + { + "start": 5490.24, + "end": 5491.7, + "probability": 0.9681 + }, + { + "start": 5491.8, + "end": 5493.82, + "probability": 0.8007 + }, + { + "start": 5494.08, + "end": 5495.36, + "probability": 0.9551 + }, + { + "start": 5495.46, + "end": 5495.96, + "probability": 0.8664 + }, + { + "start": 5496.58, + "end": 5497.94, + "probability": 0.7295 + }, + { + "start": 5498.06, + "end": 5498.56, + "probability": 0.8499 + }, + { + "start": 5499.74, + "end": 5500.9, + "probability": 0.7495 + }, + { + "start": 5502.86, + "end": 5506.52, + "probability": 0.9889 + }, + { + "start": 5507.58, + "end": 5510.58, + "probability": 0.9949 + }, + { + "start": 5511.4, + "end": 5513.04, + "probability": 0.9113 + }, + { + "start": 5513.56, + "end": 5514.0, + "probability": 0.8612 + }, + { + "start": 5515.08, + "end": 5517.32, + "probability": 0.9753 + }, + { + "start": 5517.36, + "end": 5517.64, + "probability": 0.4282 + }, + { + "start": 5517.74, + "end": 5520.98, + "probability": 0.973 + }, + { + "start": 5521.48, + "end": 5522.54, + "probability": 0.5234 + }, + { + "start": 5523.82, + "end": 5525.48, + "probability": 0.52 + }, + { + "start": 5525.64, + "end": 5526.4, + "probability": 0.5352 + }, + { + "start": 5528.1, + "end": 5532.76, + "probability": 0.9818 + }, + { + "start": 5533.28, + "end": 5533.88, + "probability": 0.4418 + }, + { + "start": 5534.12, + "end": 5536.08, + "probability": 0.7096 + }, + { + "start": 5536.66, + "end": 5537.5, + "probability": 0.3473 + }, + { + "start": 5538.78, + "end": 5539.38, + "probability": 0.2453 + }, + { + "start": 5539.38, + "end": 5539.38, + "probability": 0.0148 + }, + { + "start": 5539.38, + "end": 5539.98, + "probability": 0.0859 + }, + { + "start": 5540.02, + "end": 5540.96, + "probability": 0.769 + }, + { + "start": 5541.92, + "end": 5543.04, + "probability": 0.9968 + }, + { + "start": 5543.6, + "end": 5544.5, + "probability": 0.6419 + }, + { + "start": 5545.56, + "end": 5549.74, + "probability": 0.6216 + }, + { + "start": 5550.38, + "end": 5551.48, + "probability": 0.9401 + }, + { + "start": 5552.2, + "end": 5553.98, + "probability": 0.9796 + }, + { + "start": 5554.68, + "end": 5556.38, + "probability": 0.7249 + }, + { + "start": 5557.18, + "end": 5560.04, + "probability": 0.8445 + }, + { + "start": 5560.06, + "end": 5560.92, + "probability": 0.5073 + }, + { + "start": 5561.0, + "end": 5562.25, + "probability": 0.9221 + }, + { + "start": 5562.34, + "end": 5563.2, + "probability": 0.8794 + }, + { + "start": 5564.8, + "end": 5568.14, + "probability": 0.9175 + }, + { + "start": 5568.84, + "end": 5569.82, + "probability": 0.905 + }, + { + "start": 5570.58, + "end": 5575.02, + "probability": 0.9634 + }, + { + "start": 5575.16, + "end": 5575.72, + "probability": 0.679 + }, + { + "start": 5576.54, + "end": 5578.94, + "probability": 0.8695 + }, + { + "start": 5579.6, + "end": 5583.26, + "probability": 0.9862 + }, + { + "start": 5583.38, + "end": 5589.48, + "probability": 0.9509 + }, + { + "start": 5590.96, + "end": 5591.2, + "probability": 0.084 + }, + { + "start": 5591.2, + "end": 5591.77, + "probability": 0.4878 + }, + { + "start": 5592.22, + "end": 5592.48, + "probability": 0.5689 + }, + { + "start": 5592.98, + "end": 5595.16, + "probability": 0.7631 + }, + { + "start": 5596.22, + "end": 5602.3, + "probability": 0.9455 + }, + { + "start": 5602.58, + "end": 5603.12, + "probability": 0.537 + }, + { + "start": 5603.3, + "end": 5605.26, + "probability": 0.9688 + }, + { + "start": 5605.92, + "end": 5607.75, + "probability": 0.913 + }, + { + "start": 5608.04, + "end": 5608.7, + "probability": 0.8576 + }, + { + "start": 5608.76, + "end": 5610.16, + "probability": 0.9494 + }, + { + "start": 5610.24, + "end": 5611.2, + "probability": 0.8646 + }, + { + "start": 5611.3, + "end": 5611.44, + "probability": 0.3001 + }, + { + "start": 5611.52, + "end": 5613.22, + "probability": 0.988 + }, + { + "start": 5613.82, + "end": 5617.06, + "probability": 0.8752 + }, + { + "start": 5617.46, + "end": 5618.77, + "probability": 0.9595 + }, + { + "start": 5619.34, + "end": 5619.96, + "probability": 0.4341 + }, + { + "start": 5620.0, + "end": 5620.58, + "probability": 0.8464 + }, + { + "start": 5620.86, + "end": 5624.66, + "probability": 0.9831 + }, + { + "start": 5626.72, + "end": 5628.78, + "probability": 0.7705 + }, + { + "start": 5629.72, + "end": 5634.54, + "probability": 0.9312 + }, + { + "start": 5635.2, + "end": 5636.36, + "probability": 0.9255 + }, + { + "start": 5636.98, + "end": 5641.48, + "probability": 0.9459 + }, + { + "start": 5642.3, + "end": 5644.02, + "probability": 0.9969 + }, + { + "start": 5644.24, + "end": 5644.74, + "probability": 0.9091 + }, + { + "start": 5645.0, + "end": 5645.84, + "probability": 0.9944 + }, + { + "start": 5646.72, + "end": 5650.32, + "probability": 0.9341 + }, + { + "start": 5651.98, + "end": 5654.8, + "probability": 0.9108 + }, + { + "start": 5655.66, + "end": 5656.8, + "probability": 0.9445 + }, + { + "start": 5657.0, + "end": 5657.52, + "probability": 0.7441 + }, + { + "start": 5657.94, + "end": 5660.6, + "probability": 0.998 + }, + { + "start": 5660.76, + "end": 5661.86, + "probability": 0.7895 + }, + { + "start": 5661.92, + "end": 5662.16, + "probability": 0.3456 + }, + { + "start": 5663.04, + "end": 5663.4, + "probability": 0.7574 + }, + { + "start": 5664.24, + "end": 5665.54, + "probability": 0.8222 + }, + { + "start": 5665.58, + "end": 5666.24, + "probability": 0.6861 + }, + { + "start": 5666.44, + "end": 5668.8, + "probability": 0.9958 + }, + { + "start": 5669.58, + "end": 5670.08, + "probability": 0.7946 + }, + { + "start": 5671.22, + "end": 5673.16, + "probability": 0.8962 + }, + { + "start": 5673.78, + "end": 5675.32, + "probability": 0.5644 + }, + { + "start": 5676.0, + "end": 5678.4, + "probability": 0.9883 + }, + { + "start": 5679.25, + "end": 5682.26, + "probability": 0.9984 + }, + { + "start": 5682.26, + "end": 5686.26, + "probability": 0.6756 + }, + { + "start": 5687.16, + "end": 5688.74, + "probability": 0.925 + }, + { + "start": 5689.26, + "end": 5693.75, + "probability": 0.9929 + }, + { + "start": 5695.5, + "end": 5698.44, + "probability": 0.7505 + }, + { + "start": 5699.44, + "end": 5699.74, + "probability": 0.2997 + }, + { + "start": 5700.46, + "end": 5702.22, + "probability": 0.9167 + }, + { + "start": 5703.12, + "end": 5706.06, + "probability": 0.9911 + }, + { + "start": 5706.62, + "end": 5710.98, + "probability": 0.6467 + }, + { + "start": 5711.56, + "end": 5714.18, + "probability": 0.5604 + }, + { + "start": 5714.46, + "end": 5715.3, + "probability": 0.8359 + }, + { + "start": 5715.44, + "end": 5717.6, + "probability": 0.6924 + }, + { + "start": 5718.34, + "end": 5718.56, + "probability": 0.4009 + }, + { + "start": 5718.68, + "end": 5721.24, + "probability": 0.4496 + }, + { + "start": 5721.84, + "end": 5724.26, + "probability": 0.945 + }, + { + "start": 5724.86, + "end": 5728.56, + "probability": 0.9928 + }, + { + "start": 5728.8, + "end": 5729.18, + "probability": 0.9144 + }, + { + "start": 5730.26, + "end": 5733.38, + "probability": 0.7342 + }, + { + "start": 5733.98, + "end": 5736.62, + "probability": 0.9463 + }, + { + "start": 5737.08, + "end": 5740.33, + "probability": 0.9941 + }, + { + "start": 5744.56, + "end": 5745.68, + "probability": 0.8498 + }, + { + "start": 5745.76, + "end": 5751.7, + "probability": 0.9939 + }, + { + "start": 5751.88, + "end": 5753.96, + "probability": 0.986 + }, + { + "start": 5754.04, + "end": 5754.46, + "probability": 0.7518 + }, + { + "start": 5754.56, + "end": 5755.2, + "probability": 0.6759 + }, + { + "start": 5755.74, + "end": 5756.14, + "probability": 0.9036 + }, + { + "start": 5756.24, + "end": 5758.68, + "probability": 0.9771 + }, + { + "start": 5758.76, + "end": 5759.04, + "probability": 0.4163 + }, + { + "start": 5759.68, + "end": 5761.4, + "probability": 0.8325 + }, + { + "start": 5762.09, + "end": 5764.18, + "probability": 0.9319 + }, + { + "start": 5764.18, + "end": 5764.42, + "probability": 0.8732 + }, + { + "start": 5764.82, + "end": 5765.44, + "probability": 0.7461 + }, + { + "start": 5766.7, + "end": 5768.64, + "probability": 0.2734 + }, + { + "start": 5769.22, + "end": 5770.8, + "probability": 0.142 + }, + { + "start": 5771.96, + "end": 5771.96, + "probability": 0.064 + }, + { + "start": 5771.96, + "end": 5772.08, + "probability": 0.5937 + }, + { + "start": 5772.14, + "end": 5772.49, + "probability": 0.4996 + }, + { + "start": 5772.8, + "end": 5775.02, + "probability": 0.55 + }, + { + "start": 5775.02, + "end": 5776.18, + "probability": 0.417 + }, + { + "start": 5777.33, + "end": 5780.56, + "probability": 0.8287 + }, + { + "start": 5782.86, + "end": 5785.44, + "probability": 0.8397 + }, + { + "start": 5785.74, + "end": 5786.98, + "probability": 0.9956 + }, + { + "start": 5787.94, + "end": 5795.54, + "probability": 0.9297 + }, + { + "start": 5796.02, + "end": 5796.66, + "probability": 0.7634 + }, + { + "start": 5796.94, + "end": 5798.34, + "probability": 0.8953 + }, + { + "start": 5798.44, + "end": 5798.72, + "probability": 0.6407 + }, + { + "start": 5800.06, + "end": 5803.0, + "probability": 0.7089 + }, + { + "start": 5803.28, + "end": 5803.32, + "probability": 0.0614 + }, + { + "start": 5803.82, + "end": 5804.78, + "probability": 0.1025 + }, + { + "start": 5804.8, + "end": 5805.84, + "probability": 0.4307 + }, + { + "start": 5806.1, + "end": 5808.14, + "probability": 0.7282 + }, + { + "start": 5808.72, + "end": 5810.52, + "probability": 0.8525 + }, + { + "start": 5811.3, + "end": 5812.02, + "probability": 0.7986 + }, + { + "start": 5812.42, + "end": 5814.54, + "probability": 0.991 + }, + { + "start": 5815.2, + "end": 5816.76, + "probability": 0.9198 + }, + { + "start": 5817.96, + "end": 5818.74, + "probability": 0.7666 + }, + { + "start": 5820.72, + "end": 5823.48, + "probability": 0.7214 + }, + { + "start": 5823.54, + "end": 5826.04, + "probability": 0.7869 + }, + { + "start": 5828.1, + "end": 5830.02, + "probability": 0.9407 + }, + { + "start": 5830.54, + "end": 5831.96, + "probability": 0.916 + }, + { + "start": 5832.48, + "end": 5836.53, + "probability": 0.9609 + }, + { + "start": 5837.12, + "end": 5839.8, + "probability": 0.4461 + }, + { + "start": 5840.18, + "end": 5841.54, + "probability": 0.7358 + }, + { + "start": 5841.64, + "end": 5841.82, + "probability": 0.7336 + }, + { + "start": 5842.38, + "end": 5843.36, + "probability": 0.9698 + }, + { + "start": 5844.2, + "end": 5845.28, + "probability": 0.5881 + }, + { + "start": 5846.86, + "end": 5848.18, + "probability": 0.7444 + }, + { + "start": 5849.92, + "end": 5851.34, + "probability": 0.8046 + }, + { + "start": 5851.9, + "end": 5852.36, + "probability": 0.4953 + }, + { + "start": 5852.82, + "end": 5856.0, + "probability": 0.9406 + }, + { + "start": 5857.6, + "end": 5865.56, + "probability": 0.9767 + }, + { + "start": 5865.68, + "end": 5869.86, + "probability": 0.804 + }, + { + "start": 5870.64, + "end": 5874.38, + "probability": 0.9859 + }, + { + "start": 5875.44, + "end": 5877.6, + "probability": 0.831 + }, + { + "start": 5878.5, + "end": 5879.46, + "probability": 0.9482 + }, + { + "start": 5880.04, + "end": 5882.52, + "probability": 0.9492 + }, + { + "start": 5883.22, + "end": 5886.28, + "probability": 0.7584 + }, + { + "start": 5886.94, + "end": 5890.0, + "probability": 0.5861 + }, + { + "start": 5890.82, + "end": 5892.94, + "probability": 0.9221 + }, + { + "start": 5893.06, + "end": 5896.94, + "probability": 0.9141 + }, + { + "start": 5897.6, + "end": 5902.84, + "probability": 0.9307 + }, + { + "start": 5902.84, + "end": 5907.82, + "probability": 0.9149 + }, + { + "start": 5908.5, + "end": 5912.2, + "probability": 0.885 + }, + { + "start": 5912.2, + "end": 5915.9, + "probability": 0.9916 + }, + { + "start": 5916.86, + "end": 5920.28, + "probability": 0.7385 + }, + { + "start": 5921.08, + "end": 5925.66, + "probability": 0.7951 + }, + { + "start": 5926.22, + "end": 5930.42, + "probability": 0.9528 + }, + { + "start": 5930.72, + "end": 5933.58, + "probability": 0.8783 + }, + { + "start": 5934.1, + "end": 5940.44, + "probability": 0.6682 + }, + { + "start": 5942.32, + "end": 5944.64, + "probability": 0.7785 + }, + { + "start": 5945.4, + "end": 5946.6, + "probability": 0.8179 + }, + { + "start": 5947.04, + "end": 5956.18, + "probability": 0.995 + }, + { + "start": 5956.18, + "end": 5963.44, + "probability": 0.9692 + }, + { + "start": 5964.04, + "end": 5969.68, + "probability": 0.8605 + }, + { + "start": 5970.32, + "end": 5974.5, + "probability": 0.9358 + }, + { + "start": 5975.26, + "end": 5981.32, + "probability": 0.9064 + }, + { + "start": 5981.94, + "end": 5984.68, + "probability": 0.9648 + }, + { + "start": 5985.5, + "end": 5989.76, + "probability": 0.9771 + }, + { + "start": 5990.62, + "end": 5996.2, + "probability": 0.9736 + }, + { + "start": 5997.06, + "end": 6004.4, + "probability": 0.9453 + }, + { + "start": 6005.08, + "end": 6014.74, + "probability": 0.9852 + }, + { + "start": 6015.3, + "end": 6021.24, + "probability": 0.9919 + }, + { + "start": 6021.24, + "end": 6027.08, + "probability": 0.9116 + }, + { + "start": 6027.38, + "end": 6027.98, + "probability": 0.632 + }, + { + "start": 6028.16, + "end": 6031.52, + "probability": 0.7575 + }, + { + "start": 6032.1, + "end": 6037.54, + "probability": 0.939 + }, + { + "start": 6038.04, + "end": 6040.82, + "probability": 0.9631 + }, + { + "start": 6042.1, + "end": 6043.56, + "probability": 0.9974 + }, + { + "start": 6044.44, + "end": 6049.1, + "probability": 0.8291 + }, + { + "start": 6050.42, + "end": 6053.56, + "probability": 0.9333 + }, + { + "start": 6054.24, + "end": 6062.4, + "probability": 0.824 + }, + { + "start": 6062.68, + "end": 6065.04, + "probability": 0.7971 + }, + { + "start": 6066.32, + "end": 6071.08, + "probability": 0.5712 + }, + { + "start": 6071.9, + "end": 6074.76, + "probability": 0.9294 + }, + { + "start": 6075.46, + "end": 6078.92, + "probability": 0.7958 + }, + { + "start": 6079.68, + "end": 6083.16, + "probability": 0.7757 + }, + { + "start": 6083.72, + "end": 6087.18, + "probability": 0.7476 + }, + { + "start": 6087.74, + "end": 6088.02, + "probability": 0.656 + }, + { + "start": 6089.64, + "end": 6090.36, + "probability": 0.7373 + }, + { + "start": 6090.88, + "end": 6091.68, + "probability": 0.7964 + }, + { + "start": 6103.24, + "end": 6104.78, + "probability": 0.7621 + }, + { + "start": 6106.06, + "end": 6107.98, + "probability": 0.7598 + }, + { + "start": 6108.58, + "end": 6109.32, + "probability": 0.7744 + }, + { + "start": 6110.36, + "end": 6112.43, + "probability": 0.9115 + }, + { + "start": 6113.4, + "end": 6119.04, + "probability": 0.9937 + }, + { + "start": 6119.94, + "end": 6123.52, + "probability": 0.9777 + }, + { + "start": 6124.12, + "end": 6126.76, + "probability": 0.9494 + }, + { + "start": 6128.56, + "end": 6129.02, + "probability": 0.3772 + }, + { + "start": 6129.56, + "end": 6132.38, + "probability": 0.9927 + }, + { + "start": 6132.52, + "end": 6137.48, + "probability": 0.9559 + }, + { + "start": 6138.16, + "end": 6141.12, + "probability": 0.9572 + }, + { + "start": 6141.2, + "end": 6142.16, + "probability": 0.6566 + }, + { + "start": 6142.54, + "end": 6145.24, + "probability": 0.9872 + }, + { + "start": 6145.86, + "end": 6148.54, + "probability": 0.9008 + }, + { + "start": 6149.08, + "end": 6150.64, + "probability": 0.7349 + }, + { + "start": 6150.74, + "end": 6152.78, + "probability": 0.8824 + }, + { + "start": 6153.3, + "end": 6153.82, + "probability": 0.8398 + }, + { + "start": 6156.1, + "end": 6157.52, + "probability": 0.9788 + }, + { + "start": 6157.78, + "end": 6160.2, + "probability": 0.8634 + }, + { + "start": 6160.36, + "end": 6162.08, + "probability": 0.9139 + }, + { + "start": 6162.94, + "end": 6166.2, + "probability": 0.8246 + }, + { + "start": 6166.74, + "end": 6171.06, + "probability": 0.8475 + }, + { + "start": 6171.3, + "end": 6171.82, + "probability": 0.7646 + }, + { + "start": 6172.62, + "end": 6174.26, + "probability": 0.5316 + }, + { + "start": 6175.0, + "end": 6177.28, + "probability": 0.9716 + }, + { + "start": 6178.08, + "end": 6182.56, + "probability": 0.9841 + }, + { + "start": 6183.08, + "end": 6183.88, + "probability": 0.646 + }, + { + "start": 6184.36, + "end": 6187.33, + "probability": 0.7748 + }, + { + "start": 6187.54, + "end": 6188.58, + "probability": 0.8757 + }, + { + "start": 6189.22, + "end": 6190.8, + "probability": 0.7848 + }, + { + "start": 6190.88, + "end": 6195.88, + "probability": 0.9709 + }, + { + "start": 6197.3, + "end": 6197.8, + "probability": 0.6122 + }, + { + "start": 6197.94, + "end": 6198.38, + "probability": 0.8256 + }, + { + "start": 6198.9, + "end": 6200.58, + "probability": 0.5043 + }, + { + "start": 6200.9, + "end": 6202.54, + "probability": 0.4851 + }, + { + "start": 6202.6, + "end": 6203.62, + "probability": 0.9281 + }, + { + "start": 6203.76, + "end": 6203.85, + "probability": 0.7743 + }, + { + "start": 6204.12, + "end": 6206.46, + "probability": 0.9789 + }, + { + "start": 6206.58, + "end": 6206.58, + "probability": 0.0283 + }, + { + "start": 6206.58, + "end": 6206.94, + "probability": 0.8009 + }, + { + "start": 6207.4, + "end": 6208.78, + "probability": 0.6386 + }, + { + "start": 6209.3, + "end": 6211.14, + "probability": 0.9427 + }, + { + "start": 6211.76, + "end": 6213.48, + "probability": 0.7546 + }, + { + "start": 6213.58, + "end": 6218.02, + "probability": 0.6661 + }, + { + "start": 6218.1, + "end": 6218.8, + "probability": 0.7935 + }, + { + "start": 6218.88, + "end": 6220.14, + "probability": 0.7853 + }, + { + "start": 6223.42, + "end": 6226.65, + "probability": 0.5408 + }, + { + "start": 6226.66, + "end": 6230.14, + "probability": 0.9857 + }, + { + "start": 6230.16, + "end": 6233.28, + "probability": 0.9614 + }, + { + "start": 6233.74, + "end": 6234.88, + "probability": 0.4877 + }, + { + "start": 6235.04, + "end": 6235.52, + "probability": 0.3183 + }, + { + "start": 6235.52, + "end": 6235.94, + "probability": 0.6544 + }, + { + "start": 6239.18, + "end": 6246.92, + "probability": 0.1288 + }, + { + "start": 6248.84, + "end": 6250.12, + "probability": 0.0356 + }, + { + "start": 6250.56, + "end": 6257.64, + "probability": 0.1945 + }, + { + "start": 6257.7, + "end": 6258.4, + "probability": 0.7501 + }, + { + "start": 6265.94, + "end": 6266.92, + "probability": 0.0501 + }, + { + "start": 6271.0, + "end": 6274.82, + "probability": 0.0461 + }, + { + "start": 6274.82, + "end": 6275.78, + "probability": 0.0251 + }, + { + "start": 6275.78, + "end": 6275.78, + "probability": 0.04 + }, + { + "start": 6275.78, + "end": 6277.3, + "probability": 0.1078 + }, + { + "start": 6277.64, + "end": 6281.54, + "probability": 0.0485 + }, + { + "start": 6282.22, + "end": 6285.34, + "probability": 0.1059 + }, + { + "start": 6285.94, + "end": 6286.08, + "probability": 0.0309 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.0, + "end": 6331.0, + "probability": 0.0 + }, + { + "start": 6331.14, + "end": 6332.12, + "probability": 0.6765 + }, + { + "start": 6332.36, + "end": 6335.04, + "probability": 0.6392 + }, + { + "start": 6335.78, + "end": 6338.2, + "probability": 0.7938 + }, + { + "start": 6339.76, + "end": 6343.82, + "probability": 0.6658 + }, + { + "start": 6344.4, + "end": 6345.5, + "probability": 0.9337 + }, + { + "start": 6345.84, + "end": 6352.06, + "probability": 0.9736 + }, + { + "start": 6352.98, + "end": 6357.62, + "probability": 0.5443 + }, + { + "start": 6358.16, + "end": 6358.74, + "probability": 0.9317 + }, + { + "start": 6359.34, + "end": 6361.28, + "probability": 0.8086 + }, + { + "start": 6362.3, + "end": 6363.34, + "probability": 0.4966 + }, + { + "start": 6365.84, + "end": 6371.22, + "probability": 0.9541 + }, + { + "start": 6371.76, + "end": 6372.52, + "probability": 0.7189 + }, + { + "start": 6372.52, + "end": 6376.0, + "probability": 0.3924 + }, + { + "start": 6376.48, + "end": 6378.56, + "probability": 0.9946 + }, + { + "start": 6379.42, + "end": 6383.18, + "probability": 0.9542 + }, + { + "start": 6383.52, + "end": 6387.7, + "probability": 0.5189 + }, + { + "start": 6388.6, + "end": 6389.3, + "probability": 0.178 + }, + { + "start": 6389.68, + "end": 6391.48, + "probability": 0.7775 + }, + { + "start": 6391.58, + "end": 6392.7, + "probability": 0.6017 + }, + { + "start": 6392.92, + "end": 6394.17, + "probability": 0.9444 + }, + { + "start": 6394.98, + "end": 6395.86, + "probability": 0.7139 + }, + { + "start": 6396.32, + "end": 6397.16, + "probability": 0.7367 + }, + { + "start": 6399.15, + "end": 6414.06, + "probability": 0.9681 + }, + { + "start": 6414.66, + "end": 6421.34, + "probability": 0.9429 + }, + { + "start": 6422.14, + "end": 6426.04, + "probability": 0.7056 + }, + { + "start": 6426.64, + "end": 6427.02, + "probability": 0.8804 + }, + { + "start": 6427.68, + "end": 6430.84, + "probability": 0.8746 + }, + { + "start": 6431.74, + "end": 6436.46, + "probability": 0.864 + }, + { + "start": 6436.94, + "end": 6438.28, + "probability": 0.9863 + }, + { + "start": 6440.82, + "end": 6443.18, + "probability": 0.9415 + }, + { + "start": 6443.56, + "end": 6446.7, + "probability": 0.9869 + }, + { + "start": 6446.9, + "end": 6447.58, + "probability": 0.3538 + }, + { + "start": 6447.58, + "end": 6448.72, + "probability": 0.5578 + }, + { + "start": 6449.12, + "end": 6450.98, + "probability": 0.9483 + }, + { + "start": 6452.0, + "end": 6453.66, + "probability": 0.9897 + }, + { + "start": 6455.04, + "end": 6455.38, + "probability": 0.1412 + }, + { + "start": 6455.56, + "end": 6456.98, + "probability": 0.2863 + }, + { + "start": 6462.9, + "end": 6463.7, + "probability": 0.3641 + }, + { + "start": 6463.7, + "end": 6464.4, + "probability": 0.3568 + }, + { + "start": 6464.58, + "end": 6465.31, + "probability": 0.7476 + }, + { + "start": 6465.42, + "end": 6465.78, + "probability": 0.3194 + }, + { + "start": 6466.08, + "end": 6468.94, + "probability": 0.7915 + }, + { + "start": 6469.04, + "end": 6469.14, + "probability": 0.5637 + }, + { + "start": 6470.36, + "end": 6471.5, + "probability": 0.9156 + }, + { + "start": 6471.96, + "end": 6475.14, + "probability": 0.7987 + }, + { + "start": 6475.58, + "end": 6478.78, + "probability": 0.8994 + }, + { + "start": 6478.96, + "end": 6481.0, + "probability": 0.994 + }, + { + "start": 6481.18, + "end": 6481.96, + "probability": 0.7795 + }, + { + "start": 6482.12, + "end": 6482.62, + "probability": 0.9325 + }, + { + "start": 6482.72, + "end": 6483.68, + "probability": 0.821 + }, + { + "start": 6483.88, + "end": 6490.52, + "probability": 0.9912 + }, + { + "start": 6491.0, + "end": 6493.62, + "probability": 0.9917 + }, + { + "start": 6494.28, + "end": 6496.98, + "probability": 0.9871 + }, + { + "start": 6497.5, + "end": 6499.74, + "probability": 0.8361 + }, + { + "start": 6500.68, + "end": 6503.06, + "probability": 0.8086 + }, + { + "start": 6503.06, + "end": 6507.2, + "probability": 0.9519 + }, + { + "start": 6507.22, + "end": 6507.94, + "probability": 0.8098 + }, + { + "start": 6508.24, + "end": 6509.26, + "probability": 0.7861 + }, + { + "start": 6509.84, + "end": 6512.28, + "probability": 0.575 + }, + { + "start": 6512.92, + "end": 6516.14, + "probability": 0.9858 + }, + { + "start": 6516.96, + "end": 6517.46, + "probability": 0.5361 + }, + { + "start": 6517.56, + "end": 6517.84, + "probability": 0.9332 + }, + { + "start": 6517.86, + "end": 6518.88, + "probability": 0.715 + }, + { + "start": 6519.56, + "end": 6520.48, + "probability": 0.6761 + }, + { + "start": 6521.34, + "end": 6523.9, + "probability": 0.7387 + }, + { + "start": 6523.9, + "end": 6524.2, + "probability": 0.7532 + }, + { + "start": 6524.28, + "end": 6532.02, + "probability": 0.8903 + }, + { + "start": 6532.22, + "end": 6533.38, + "probability": 0.9447 + }, + { + "start": 6534.58, + "end": 6536.34, + "probability": 0.9021 + }, + { + "start": 6536.48, + "end": 6538.56, + "probability": 0.9785 + }, + { + "start": 6538.6, + "end": 6538.74, + "probability": 0.4708 + }, + { + "start": 6538.74, + "end": 6539.16, + "probability": 0.4835 + }, + { + "start": 6539.26, + "end": 6541.6, + "probability": 0.9127 + }, + { + "start": 6541.64, + "end": 6543.42, + "probability": 0.7793 + }, + { + "start": 6544.64, + "end": 6546.2, + "probability": 0.9545 + }, + { + "start": 6548.12, + "end": 6550.24, + "probability": 0.9854 + }, + { + "start": 6551.38, + "end": 6552.5, + "probability": 0.942 + }, + { + "start": 6553.38, + "end": 6555.1, + "probability": 0.952 + }, + { + "start": 6555.22, + "end": 6555.62, + "probability": 0.5848 + }, + { + "start": 6555.78, + "end": 6558.22, + "probability": 0.8411 + }, + { + "start": 6558.32, + "end": 6564.36, + "probability": 0.9684 + }, + { + "start": 6564.44, + "end": 6565.8, + "probability": 0.9243 + }, + { + "start": 6566.08, + "end": 6566.9, + "probability": 0.6671 + }, + { + "start": 6566.96, + "end": 6567.98, + "probability": 0.9451 + }, + { + "start": 6568.56, + "end": 6571.2, + "probability": 0.9747 + }, + { + "start": 6571.52, + "end": 6573.64, + "probability": 0.5796 + }, + { + "start": 6574.08, + "end": 6575.62, + "probability": 0.9822 + }, + { + "start": 6575.7, + "end": 6576.14, + "probability": 0.6854 + }, + { + "start": 6576.22, + "end": 6577.24, + "probability": 0.8254 + }, + { + "start": 6577.9, + "end": 6580.86, + "probability": 0.9879 + }, + { + "start": 6580.96, + "end": 6581.62, + "probability": 0.7625 + }, + { + "start": 6581.76, + "end": 6582.22, + "probability": 0.9367 + }, + { + "start": 6582.32, + "end": 6584.9, + "probability": 0.9788 + }, + { + "start": 6585.78, + "end": 6585.96, + "probability": 0.6923 + }, + { + "start": 6586.64, + "end": 6589.52, + "probability": 0.9745 + }, + { + "start": 6590.1, + "end": 6590.44, + "probability": 0.684 + }, + { + "start": 6590.52, + "end": 6592.26, + "probability": 0.8941 + }, + { + "start": 6592.62, + "end": 6593.0, + "probability": 0.177 + }, + { + "start": 6593.12, + "end": 6599.14, + "probability": 0.8993 + }, + { + "start": 6599.76, + "end": 6601.74, + "probability": 0.8502 + }, + { + "start": 6602.24, + "end": 6605.86, + "probability": 0.8 + }, + { + "start": 6606.48, + "end": 6606.82, + "probability": 0.811 + }, + { + "start": 6606.88, + "end": 6607.93, + "probability": 0.6778 + }, + { + "start": 6608.34, + "end": 6609.35, + "probability": 0.3486 + }, + { + "start": 6609.6, + "end": 6610.6, + "probability": 0.4527 + }, + { + "start": 6610.66, + "end": 6611.14, + "probability": 0.5168 + }, + { + "start": 6611.34, + "end": 6614.7, + "probability": 0.6793 + }, + { + "start": 6614.96, + "end": 6616.1, + "probability": 0.9556 + }, + { + "start": 6616.44, + "end": 6617.12, + "probability": 0.6347 + }, + { + "start": 6617.46, + "end": 6620.92, + "probability": 0.6626 + }, + { + "start": 6622.58, + "end": 6628.34, + "probability": 0.843 + }, + { + "start": 6628.42, + "end": 6628.58, + "probability": 0.4956 + }, + { + "start": 6628.58, + "end": 6629.24, + "probability": 0.7611 + }, + { + "start": 6629.44, + "end": 6631.52, + "probability": 0.9036 + }, + { + "start": 6632.02, + "end": 6636.2, + "probability": 0.9582 + }, + { + "start": 6636.2, + "end": 6636.34, + "probability": 0.0045 + }, + { + "start": 6636.72, + "end": 6637.36, + "probability": 0.7814 + }, + { + "start": 6637.42, + "end": 6641.3, + "probability": 0.9912 + }, + { + "start": 6641.3, + "end": 6646.14, + "probability": 0.9507 + }, + { + "start": 6646.3, + "end": 6648.52, + "probability": 0.951 + }, + { + "start": 6649.18, + "end": 6650.28, + "probability": 0.8304 + }, + { + "start": 6650.62, + "end": 6651.26, + "probability": 0.8759 + }, + { + "start": 6651.66, + "end": 6653.56, + "probability": 0.9951 + }, + { + "start": 6653.56, + "end": 6655.2, + "probability": 0.931 + }, + { + "start": 6655.66, + "end": 6656.08, + "probability": 0.6481 + }, + { + "start": 6656.4, + "end": 6656.4, + "probability": 0.631 + }, + { + "start": 6656.5, + "end": 6659.75, + "probability": 0.7217 + }, + { + "start": 6660.06, + "end": 6661.34, + "probability": 0.6801 + }, + { + "start": 6661.94, + "end": 6663.04, + "probability": 0.9627 + }, + { + "start": 6668.28, + "end": 6670.9, + "probability": 0.7822 + }, + { + "start": 6671.86, + "end": 6672.86, + "probability": 0.9321 + }, + { + "start": 6673.04, + "end": 6673.48, + "probability": 0.6326 + }, + { + "start": 6673.54, + "end": 6676.5, + "probability": 0.7244 + }, + { + "start": 6677.36, + "end": 6679.58, + "probability": 0.8956 + }, + { + "start": 6680.22, + "end": 6682.49, + "probability": 0.6517 + }, + { + "start": 6683.24, + "end": 6685.64, + "probability": 0.9385 + }, + { + "start": 6685.68, + "end": 6690.28, + "probability": 0.9836 + }, + { + "start": 6691.04, + "end": 6692.1, + "probability": 0.9984 + }, + { + "start": 6692.2, + "end": 6694.27, + "probability": 0.9795 + }, + { + "start": 6694.98, + "end": 6695.36, + "probability": 0.4954 + }, + { + "start": 6695.52, + "end": 6700.09, + "probability": 0.9907 + }, + { + "start": 6700.38, + "end": 6704.94, + "probability": 0.9525 + }, + { + "start": 6707.54, + "end": 6708.0, + "probability": 0.025 + }, + { + "start": 6708.0, + "end": 6708.0, + "probability": 0.0083 + }, + { + "start": 6708.0, + "end": 6709.4, + "probability": 0.0479 + }, + { + "start": 6709.4, + "end": 6712.78, + "probability": 0.8144 + }, + { + "start": 6712.78, + "end": 6717.34, + "probability": 0.9562 + }, + { + "start": 6717.66, + "end": 6718.84, + "probability": 0.6165 + }, + { + "start": 6718.88, + "end": 6720.66, + "probability": 0.9806 + }, + { + "start": 6721.2, + "end": 6722.54, + "probability": 0.8531 + }, + { + "start": 6723.14, + "end": 6725.18, + "probability": 0.2293 + }, + { + "start": 6725.2, + "end": 6727.06, + "probability": 0.2059 + }, + { + "start": 6727.06, + "end": 6727.82, + "probability": 0.5941 + }, + { + "start": 6728.04, + "end": 6729.88, + "probability": 0.8714 + }, + { + "start": 6730.08, + "end": 6731.24, + "probability": 0.5261 + }, + { + "start": 6731.6, + "end": 6732.8, + "probability": 0.4951 + }, + { + "start": 6732.8, + "end": 6735.98, + "probability": 0.3413 + }, + { + "start": 6736.82, + "end": 6739.26, + "probability": 0.5782 + }, + { + "start": 6739.36, + "end": 6744.48, + "probability": 0.7261 + }, + { + "start": 6744.48, + "end": 6749.46, + "probability": 0.8578 + }, + { + "start": 6749.58, + "end": 6749.68, + "probability": 0.6429 + }, + { + "start": 6750.18, + "end": 6751.3, + "probability": 0.7791 + }, + { + "start": 6752.02, + "end": 6752.34, + "probability": 0.613 + }, + { + "start": 6752.52, + "end": 6753.26, + "probability": 0.8812 + }, + { + "start": 6753.64, + "end": 6759.44, + "probability": 0.7897 + }, + { + "start": 6760.5, + "end": 6765.16, + "probability": 0.918 + }, + { + "start": 6765.58, + "end": 6766.8, + "probability": 0.6679 + }, + { + "start": 6766.88, + "end": 6769.56, + "probability": 0.9669 + }, + { + "start": 6769.98, + "end": 6770.62, + "probability": 0.9573 + }, + { + "start": 6770.9, + "end": 6773.8, + "probability": 0.7693 + }, + { + "start": 6774.4, + "end": 6775.88, + "probability": 0.9604 + }, + { + "start": 6776.64, + "end": 6778.22, + "probability": 0.998 + }, + { + "start": 6779.68, + "end": 6783.18, + "probability": 0.8918 + }, + { + "start": 6784.64, + "end": 6785.78, + "probability": 0.704 + }, + { + "start": 6785.84, + "end": 6786.66, + "probability": 0.8976 + }, + { + "start": 6787.2, + "end": 6789.7, + "probability": 0.8574 + }, + { + "start": 6791.4, + "end": 6793.38, + "probability": 0.9823 + }, + { + "start": 6795.36, + "end": 6795.78, + "probability": 0.5694 + }, + { + "start": 6795.82, + "end": 6802.46, + "probability": 0.705 + }, + { + "start": 6803.56, + "end": 6806.48, + "probability": 0.9505 + }, + { + "start": 6806.76, + "end": 6811.5, + "probability": 0.0824 + }, + { + "start": 6815.08, + "end": 6815.2, + "probability": 0.0795 + }, + { + "start": 6815.2, + "end": 6816.42, + "probability": 0.7809 + }, + { + "start": 6816.54, + "end": 6817.8, + "probability": 0.8089 + }, + { + "start": 6817.98, + "end": 6818.54, + "probability": 0.5584 + }, + { + "start": 6819.02, + "end": 6819.66, + "probability": 0.0036 + }, + { + "start": 6819.78, + "end": 6820.72, + "probability": 0.4865 + }, + { + "start": 6820.84, + "end": 6821.68, + "probability": 0.9375 + }, + { + "start": 6821.74, + "end": 6822.23, + "probability": 0.7336 + }, + { + "start": 6822.84, + "end": 6823.78, + "probability": 0.6364 + }, + { + "start": 6824.38, + "end": 6827.06, + "probability": 0.8745 + }, + { + "start": 6828.54, + "end": 6830.8, + "probability": 0.9177 + }, + { + "start": 6831.44, + "end": 6833.72, + "probability": 0.9963 + }, + { + "start": 6833.72, + "end": 6836.5, + "probability": 0.9327 + }, + { + "start": 6836.86, + "end": 6837.42, + "probability": 0.9882 + }, + { + "start": 6837.56, + "end": 6838.08, + "probability": 0.9874 + }, + { + "start": 6838.16, + "end": 6838.54, + "probability": 0.8632 + }, + { + "start": 6838.88, + "end": 6839.36, + "probability": 0.7344 + }, + { + "start": 6839.82, + "end": 6840.1, + "probability": 0.9593 + }, + { + "start": 6841.2, + "end": 6843.1, + "probability": 0.9858 + }, + { + "start": 6843.1, + "end": 6846.36, + "probability": 0.9951 + }, + { + "start": 6847.04, + "end": 6851.98, + "probability": 0.984 + }, + { + "start": 6852.6, + "end": 6854.82, + "probability": 0.9427 + }, + { + "start": 6855.06, + "end": 6855.38, + "probability": 0.4268 + }, + { + "start": 6855.48, + "end": 6856.84, + "probability": 0.4935 + }, + { + "start": 6858.32, + "end": 6862.31, + "probability": 0.9937 + }, + { + "start": 6862.66, + "end": 6866.5, + "probability": 0.9992 + }, + { + "start": 6866.94, + "end": 6868.04, + "probability": 0.6285 + }, + { + "start": 6868.58, + "end": 6868.72, + "probability": 0.6423 + }, + { + "start": 6869.48, + "end": 6872.16, + "probability": 0.8761 + }, + { + "start": 6873.06, + "end": 6874.1, + "probability": 0.7024 + }, + { + "start": 6875.06, + "end": 6879.3, + "probability": 0.5155 + }, + { + "start": 6879.68, + "end": 6884.38, + "probability": 0.5919 + }, + { + "start": 6884.76, + "end": 6886.4, + "probability": 0.9608 + }, + { + "start": 6887.04, + "end": 6890.24, + "probability": 0.9708 + }, + { + "start": 6890.32, + "end": 6890.78, + "probability": 0.356 + }, + { + "start": 6891.8, + "end": 6892.06, + "probability": 0.9413 + }, + { + "start": 6892.18, + "end": 6895.84, + "probability": 0.9384 + }, + { + "start": 6896.17, + "end": 6900.86, + "probability": 0.9951 + }, + { + "start": 6902.04, + "end": 6902.64, + "probability": 0.7927 + }, + { + "start": 6903.94, + "end": 6904.64, + "probability": 0.6329 + }, + { + "start": 6904.88, + "end": 6906.32, + "probability": 0.7742 + }, + { + "start": 6906.44, + "end": 6908.3, + "probability": 0.9788 + }, + { + "start": 6908.88, + "end": 6913.0, + "probability": 0.9856 + }, + { + "start": 6913.0, + "end": 6916.92, + "probability": 0.9988 + }, + { + "start": 6917.56, + "end": 6918.1, + "probability": 0.5556 + }, + { + "start": 6918.2, + "end": 6921.24, + "probability": 0.9907 + }, + { + "start": 6921.24, + "end": 6926.04, + "probability": 0.9668 + }, + { + "start": 6926.66, + "end": 6930.16, + "probability": 0.9963 + }, + { + "start": 6930.16, + "end": 6934.38, + "probability": 0.9976 + }, + { + "start": 6935.08, + "end": 6938.74, + "probability": 0.9958 + }, + { + "start": 6938.74, + "end": 6942.32, + "probability": 0.9973 + }, + { + "start": 6942.46, + "end": 6945.12, + "probability": 0.749 + }, + { + "start": 6945.72, + "end": 6949.94, + "probability": 0.9775 + }, + { + "start": 6950.98, + "end": 6953.76, + "probability": 0.8995 + }, + { + "start": 6954.06, + "end": 6955.52, + "probability": 0.8261 + }, + { + "start": 6956.26, + "end": 6960.0, + "probability": 0.9432 + }, + { + "start": 6960.6, + "end": 6961.6, + "probability": 0.5324 + }, + { + "start": 6962.22, + "end": 6963.1, + "probability": 0.9513 + }, + { + "start": 6964.0, + "end": 6965.34, + "probability": 0.6914 + }, + { + "start": 6965.92, + "end": 6966.86, + "probability": 0.8852 + }, + { + "start": 6967.44, + "end": 6971.02, + "probability": 0.9824 + }, + { + "start": 6971.52, + "end": 6973.26, + "probability": 0.998 + }, + { + "start": 6973.8, + "end": 6976.22, + "probability": 0.9845 + }, + { + "start": 6976.84, + "end": 6978.28, + "probability": 0.8955 + }, + { + "start": 6978.6, + "end": 6981.62, + "probability": 0.9931 + }, + { + "start": 6982.66, + "end": 6986.33, + "probability": 0.6445 + }, + { + "start": 6987.22, + "end": 6988.94, + "probability": 0.9121 + }, + { + "start": 6989.5, + "end": 6991.04, + "probability": 0.9438 + }, + { + "start": 6991.96, + "end": 6995.3, + "probability": 0.9648 + }, + { + "start": 6995.82, + "end": 6997.22, + "probability": 0.9371 + }, + { + "start": 6997.66, + "end": 7000.66, + "probability": 0.9917 + }, + { + "start": 7001.36, + "end": 7005.0, + "probability": 0.7769 + }, + { + "start": 7005.98, + "end": 7006.42, + "probability": 0.1363 + }, + { + "start": 7006.48, + "end": 7007.8, + "probability": 0.9226 + }, + { + "start": 7008.84, + "end": 7009.2, + "probability": 0.6834 + }, + { + "start": 7010.16, + "end": 7010.66, + "probability": 0.8645 + }, + { + "start": 7011.12, + "end": 7013.36, + "probability": 0.7946 + }, + { + "start": 7013.8, + "end": 7016.24, + "probability": 0.9771 + }, + { + "start": 7017.26, + "end": 7022.08, + "probability": 0.9812 + }, + { + "start": 7022.62, + "end": 7024.84, + "probability": 0.9982 + }, + { + "start": 7025.64, + "end": 7028.2, + "probability": 0.983 + }, + { + "start": 7028.76, + "end": 7029.88, + "probability": 0.953 + }, + { + "start": 7030.52, + "end": 7035.26, + "probability": 0.936 + }, + { + "start": 7035.26, + "end": 7040.1, + "probability": 0.9711 + }, + { + "start": 7040.22, + "end": 7045.02, + "probability": 0.9526 + }, + { + "start": 7045.38, + "end": 7046.74, + "probability": 0.9594 + }, + { + "start": 7047.84, + "end": 7049.68, + "probability": 0.9249 + }, + { + "start": 7050.52, + "end": 7052.08, + "probability": 0.7744 + }, + { + "start": 7052.34, + "end": 7052.64, + "probability": 0.806 + }, + { + "start": 7053.26, + "end": 7053.76, + "probability": 0.6995 + }, + { + "start": 7053.86, + "end": 7055.28, + "probability": 0.9644 + }, + { + "start": 7055.54, + "end": 7056.77, + "probability": 0.9611 + }, + { + "start": 7058.16, + "end": 7063.22, + "probability": 0.9963 + }, + { + "start": 7063.84, + "end": 7067.64, + "probability": 0.9958 + }, + { + "start": 7068.24, + "end": 7072.4, + "probability": 0.901 + }, + { + "start": 7072.98, + "end": 7077.64, + "probability": 0.998 + }, + { + "start": 7077.88, + "end": 7080.76, + "probability": 0.9983 + }, + { + "start": 7080.88, + "end": 7080.96, + "probability": 0.0398 + }, + { + "start": 7081.1, + "end": 7087.46, + "probability": 0.9836 + }, + { + "start": 7090.15, + "end": 7094.1, + "probability": 0.948 + }, + { + "start": 7094.98, + "end": 7097.52, + "probability": 0.943 + }, + { + "start": 7097.7, + "end": 7097.82, + "probability": 0.2623 + }, + { + "start": 7099.6, + "end": 7100.06, + "probability": 0.0293 + }, + { + "start": 7100.06, + "end": 7100.06, + "probability": 0.3524 + }, + { + "start": 7100.06, + "end": 7100.4, + "probability": 0.6279 + }, + { + "start": 7100.44, + "end": 7105.3, + "probability": 0.9574 + }, + { + "start": 7105.32, + "end": 7109.16, + "probability": 0.9468 + }, + { + "start": 7109.82, + "end": 7110.48, + "probability": 0.9591 + }, + { + "start": 7111.36, + "end": 7118.8, + "probability": 0.9761 + }, + { + "start": 7119.9, + "end": 7120.56, + "probability": 0.8938 + }, + { + "start": 7121.06, + "end": 7121.68, + "probability": 0.7872 + }, + { + "start": 7122.1, + "end": 7122.78, + "probability": 0.4747 + }, + { + "start": 7123.14, + "end": 7125.2, + "probability": 0.5137 + }, + { + "start": 7125.58, + "end": 7127.48, + "probability": 0.9463 + }, + { + "start": 7127.92, + "end": 7131.08, + "probability": 0.9744 + }, + { + "start": 7131.84, + "end": 7132.84, + "probability": 0.5243 + }, + { + "start": 7132.98, + "end": 7137.18, + "probability": 0.8621 + }, + { + "start": 7137.6, + "end": 7138.9, + "probability": 0.9214 + }, + { + "start": 7138.98, + "end": 7140.3, + "probability": 0.886 + }, + { + "start": 7140.82, + "end": 7143.82, + "probability": 0.9831 + }, + { + "start": 7144.12, + "end": 7147.02, + "probability": 0.9605 + }, + { + "start": 7147.42, + "end": 7150.88, + "probability": 0.9927 + }, + { + "start": 7151.44, + "end": 7153.18, + "probability": 0.8398 + }, + { + "start": 7153.5, + "end": 7156.77, + "probability": 0.8312 + }, + { + "start": 7157.4, + "end": 7157.92, + "probability": 0.1483 + }, + { + "start": 7160.54, + "end": 7162.0, + "probability": 0.0571 + }, + { + "start": 7163.2, + "end": 7165.84, + "probability": 0.0365 + }, + { + "start": 7167.92, + "end": 7170.08, + "probability": 0.0523 + }, + { + "start": 7170.64, + "end": 7176.68, + "probability": 0.3025 + }, + { + "start": 7176.92, + "end": 7183.76, + "probability": 0.4095 + }, + { + "start": 7184.12, + "end": 7189.98, + "probability": 0.5132 + }, + { + "start": 7190.74, + "end": 7191.32, + "probability": 0.1003 + }, + { + "start": 7191.32, + "end": 7195.12, + "probability": 0.5114 + }, + { + "start": 7197.32, + "end": 7199.7, + "probability": 0.3055 + }, + { + "start": 7199.8, + "end": 7201.9, + "probability": 0.2446 + }, + { + "start": 7202.04, + "end": 7203.08, + "probability": 0.561 + }, + { + "start": 7203.18, + "end": 7207.94, + "probability": 0.7448 + }, + { + "start": 7209.53, + "end": 7214.44, + "probability": 0.9663 + }, + { + "start": 7214.44, + "end": 7214.98, + "probability": 0.5398 + }, + { + "start": 7215.1, + "end": 7216.8, + "probability": 0.9928 + }, + { + "start": 7217.2, + "end": 7218.14, + "probability": 0.9313 + }, + { + "start": 7218.92, + "end": 7220.56, + "probability": 0.7314 + }, + { + "start": 7220.68, + "end": 7221.66, + "probability": 0.6032 + }, + { + "start": 7223.18, + "end": 7226.18, + "probability": 0.9852 + }, + { + "start": 7227.3, + "end": 7229.42, + "probability": 0.9747 + }, + { + "start": 7230.48, + "end": 7231.3, + "probability": 0.7769 + }, + { + "start": 7232.58, + "end": 7233.36, + "probability": 0.8799 + }, + { + "start": 7234.34, + "end": 7237.9, + "probability": 0.8259 + }, + { + "start": 7238.66, + "end": 7239.74, + "probability": 0.792 + }, + { + "start": 7240.42, + "end": 7241.76, + "probability": 0.9272 + }, + { + "start": 7242.4, + "end": 7245.96, + "probability": 0.921 + }, + { + "start": 7246.56, + "end": 7247.44, + "probability": 0.7393 + }, + { + "start": 7247.78, + "end": 7250.68, + "probability": 0.7795 + }, + { + "start": 7251.32, + "end": 7251.96, + "probability": 0.792 + }, + { + "start": 7252.36, + "end": 7252.93, + "probability": 0.7676 + }, + { + "start": 7253.18, + "end": 7254.32, + "probability": 0.6459 + }, + { + "start": 7255.24, + "end": 7256.78, + "probability": 0.7034 + }, + { + "start": 7257.48, + "end": 7258.94, + "probability": 0.9626 + }, + { + "start": 7259.54, + "end": 7259.98, + "probability": 0.5173 + }, + { + "start": 7260.22, + "end": 7262.9, + "probability": 0.963 + }, + { + "start": 7263.38, + "end": 7264.58, + "probability": 0.9077 + }, + { + "start": 7265.16, + "end": 7267.34, + "probability": 0.8649 + }, + { + "start": 7268.08, + "end": 7269.7, + "probability": 0.7463 + }, + { + "start": 7270.72, + "end": 7275.2, + "probability": 0.9624 + }, + { + "start": 7275.76, + "end": 7276.22, + "probability": 0.0084 + }, + { + "start": 7276.86, + "end": 7278.38, + "probability": 0.6586 + }, + { + "start": 7278.86, + "end": 7279.48, + "probability": 0.8524 + }, + { + "start": 7280.44, + "end": 7282.26, + "probability": 0.846 + }, + { + "start": 7282.44, + "end": 7283.68, + "probability": 0.5645 + }, + { + "start": 7284.42, + "end": 7286.66, + "probability": 0.9388 + }, + { + "start": 7286.66, + "end": 7287.06, + "probability": 0.5476 + }, + { + "start": 7287.14, + "end": 7288.24, + "probability": 0.2165 + }, + { + "start": 7288.54, + "end": 7289.58, + "probability": 0.9468 + }, + { + "start": 7290.36, + "end": 7292.22, + "probability": 0.9292 + }, + { + "start": 7293.32, + "end": 7295.42, + "probability": 0.8679 + }, + { + "start": 7296.28, + "end": 7297.52, + "probability": 0.812 + }, + { + "start": 7298.06, + "end": 7300.74, + "probability": 0.8909 + }, + { + "start": 7302.77, + "end": 7305.36, + "probability": 0.8184 + }, + { + "start": 7305.94, + "end": 7307.24, + "probability": 0.783 + }, + { + "start": 7308.06, + "end": 7310.74, + "probability": 0.5606 + }, + { + "start": 7310.94, + "end": 7313.18, + "probability": 0.9508 + }, + { + "start": 7314.08, + "end": 7317.98, + "probability": 0.8235 + }, + { + "start": 7318.02, + "end": 7318.52, + "probability": 0.8572 + }, + { + "start": 7318.74, + "end": 7319.9, + "probability": 0.9511 + }, + { + "start": 7320.5, + "end": 7321.9, + "probability": 0.9432 + }, + { + "start": 7322.42, + "end": 7323.64, + "probability": 0.8183 + }, + { + "start": 7324.24, + "end": 7327.64, + "probability": 0.9521 + }, + { + "start": 7327.78, + "end": 7328.88, + "probability": 0.8791 + }, + { + "start": 7329.58, + "end": 7331.04, + "probability": 0.8862 + }, + { + "start": 7331.08, + "end": 7332.82, + "probability": 0.9502 + }, + { + "start": 7334.02, + "end": 7334.44, + "probability": 0.9731 + }, + { + "start": 7335.02, + "end": 7335.84, + "probability": 0.9895 + }, + { + "start": 7337.32, + "end": 7340.1, + "probability": 0.9567 + }, + { + "start": 7340.34, + "end": 7340.44, + "probability": 0.134 + }, + { + "start": 7340.96, + "end": 7342.66, + "probability": 0.9702 + }, + { + "start": 7343.12, + "end": 7346.47, + "probability": 0.9758 + }, + { + "start": 7346.64, + "end": 7347.22, + "probability": 0.8029 + }, + { + "start": 7347.32, + "end": 7348.46, + "probability": 0.7444 + }, + { + "start": 7348.64, + "end": 7349.16, + "probability": 0.7441 + }, + { + "start": 7349.4, + "end": 7352.36, + "probability": 0.985 + }, + { + "start": 7352.46, + "end": 7352.9, + "probability": 0.9104 + }, + { + "start": 7353.56, + "end": 7354.64, + "probability": 0.9651 + }, + { + "start": 7354.92, + "end": 7357.42, + "probability": 0.7678 + }, + { + "start": 7357.9, + "end": 7359.22, + "probability": 0.8326 + }, + { + "start": 7359.88, + "end": 7361.68, + "probability": 0.7557 + }, + { + "start": 7362.42, + "end": 7364.6, + "probability": 0.9198 + }, + { + "start": 7365.08, + "end": 7367.16, + "probability": 0.9692 + }, + { + "start": 7367.22, + "end": 7368.12, + "probability": 0.868 + }, + { + "start": 7368.58, + "end": 7371.62, + "probability": 0.9356 + }, + { + "start": 7372.8, + "end": 7373.62, + "probability": 0.8492 + }, + { + "start": 7373.7, + "end": 7376.62, + "probability": 0.7307 + }, + { + "start": 7376.66, + "end": 7377.98, + "probability": 0.8608 + }, + { + "start": 7378.1, + "end": 7378.2, + "probability": 0.6431 + }, + { + "start": 7378.82, + "end": 7379.48, + "probability": 0.5382 + }, + { + "start": 7379.5, + "end": 7379.72, + "probability": 0.147 + }, + { + "start": 7379.86, + "end": 7380.6, + "probability": 0.6596 + }, + { + "start": 7380.8, + "end": 7382.12, + "probability": 0.9072 + }, + { + "start": 7382.6, + "end": 7383.0, + "probability": 0.3991 + }, + { + "start": 7383.0, + "end": 7383.28, + "probability": 0.5407 + }, + { + "start": 7383.72, + "end": 7384.02, + "probability": 0.3488 + }, + { + "start": 7384.02, + "end": 7384.02, + "probability": 0.3385 + }, + { + "start": 7384.02, + "end": 7386.22, + "probability": 0.5068 + }, + { + "start": 7386.22, + "end": 7387.34, + "probability": 0.4695 + }, + { + "start": 7389.4, + "end": 7390.56, + "probability": 0.9244 + }, + { + "start": 7390.88, + "end": 7391.16, + "probability": 0.4484 + }, + { + "start": 7391.24, + "end": 7392.0, + "probability": 0.708 + }, + { + "start": 7392.18, + "end": 7394.1, + "probability": 0.9619 + }, + { + "start": 7394.52, + "end": 7395.06, + "probability": 0.7291 + }, + { + "start": 7395.4, + "end": 7395.72, + "probability": 0.5209 + }, + { + "start": 7395.84, + "end": 7396.76, + "probability": 0.804 + }, + { + "start": 7397.04, + "end": 7397.8, + "probability": 0.8975 + }, + { + "start": 7397.88, + "end": 7398.58, + "probability": 0.8029 + }, + { + "start": 7399.3, + "end": 7399.76, + "probability": 0.6285 + }, + { + "start": 7400.3, + "end": 7403.04, + "probability": 0.9473 + }, + { + "start": 7403.1, + "end": 7403.66, + "probability": 0.7534 + }, + { + "start": 7403.74, + "end": 7405.96, + "probability": 0.5506 + }, + { + "start": 7405.96, + "end": 7406.36, + "probability": 0.5462 + }, + { + "start": 7406.44, + "end": 7407.0, + "probability": 0.7025 + }, + { + "start": 7407.4, + "end": 7409.24, + "probability": 0.8833 + }, + { + "start": 7409.26, + "end": 7411.6, + "probability": 0.6171 + }, + { + "start": 7411.72, + "end": 7412.14, + "probability": 0.7354 + }, + { + "start": 7412.16, + "end": 7412.66, + "probability": 0.8298 + }, + { + "start": 7413.2, + "end": 7413.48, + "probability": 0.7839 + }, + { + "start": 7414.95, + "end": 7418.2, + "probability": 0.9001 + }, + { + "start": 7418.94, + "end": 7419.67, + "probability": 0.8474 + }, + { + "start": 7420.24, + "end": 7421.28, + "probability": 0.61 + }, + { + "start": 7421.38, + "end": 7421.58, + "probability": 0.8849 + }, + { + "start": 7421.7, + "end": 7423.16, + "probability": 0.2898 + }, + { + "start": 7423.54, + "end": 7424.92, + "probability": 0.6688 + }, + { + "start": 7425.12, + "end": 7428.5, + "probability": 0.9018 + }, + { + "start": 7429.06, + "end": 7431.12, + "probability": 0.9772 + }, + { + "start": 7431.22, + "end": 7433.16, + "probability": 0.9188 + }, + { + "start": 7433.68, + "end": 7435.96, + "probability": 0.5445 + }, + { + "start": 7436.04, + "end": 7439.36, + "probability": 0.9299 + }, + { + "start": 7440.02, + "end": 7441.94, + "probability": 0.8083 + }, + { + "start": 7443.17, + "end": 7444.9, + "probability": 0.7309 + }, + { + "start": 7445.02, + "end": 7446.8, + "probability": 0.9818 + }, + { + "start": 7447.92, + "end": 7448.18, + "probability": 0.7017 + }, + { + "start": 7448.24, + "end": 7448.8, + "probability": 0.9636 + }, + { + "start": 7448.92, + "end": 7450.3, + "probability": 0.8206 + }, + { + "start": 7450.72, + "end": 7452.26, + "probability": 0.8525 + }, + { + "start": 7452.9, + "end": 7455.34, + "probability": 0.9642 + }, + { + "start": 7456.02, + "end": 7457.72, + "probability": 0.9584 + }, + { + "start": 7458.2, + "end": 7459.26, + "probability": 0.9015 + }, + { + "start": 7459.6, + "end": 7460.44, + "probability": 0.8219 + }, + { + "start": 7460.78, + "end": 7461.68, + "probability": 0.8475 + }, + { + "start": 7462.0, + "end": 7464.18, + "probability": 0.7668 + }, + { + "start": 7464.26, + "end": 7464.72, + "probability": 0.6508 + }, + { + "start": 7464.76, + "end": 7467.84, + "probability": 0.8803 + }, + { + "start": 7468.62, + "end": 7469.34, + "probability": 0.9869 + }, + { + "start": 7469.48, + "end": 7470.76, + "probability": 0.6765 + }, + { + "start": 7470.8, + "end": 7473.8, + "probability": 0.9959 + }, + { + "start": 7474.3, + "end": 7476.38, + "probability": 0.9973 + }, + { + "start": 7476.38, + "end": 7476.38, + "probability": 0.7197 + }, + { + "start": 7476.38, + "end": 7476.74, + "probability": 0.3593 + }, + { + "start": 7477.2, + "end": 7480.34, + "probability": 0.917 + }, + { + "start": 7480.46, + "end": 7482.12, + "probability": 0.7358 + }, + { + "start": 7482.22, + "end": 7482.42, + "probability": 0.8127 + }, + { + "start": 7483.18, + "end": 7483.74, + "probability": 0.8521 + }, + { + "start": 7483.8, + "end": 7484.52, + "probability": 0.7738 + }, + { + "start": 7485.22, + "end": 7485.88, + "probability": 0.6902 + }, + { + "start": 7487.27, + "end": 7491.94, + "probability": 0.9875 + }, + { + "start": 7492.02, + "end": 7495.0, + "probability": 0.6387 + }, + { + "start": 7495.72, + "end": 7496.14, + "probability": 0.4405 + }, + { + "start": 7496.5, + "end": 7498.82, + "probability": 0.9834 + }, + { + "start": 7499.34, + "end": 7500.69, + "probability": 0.8638 + }, + { + "start": 7500.76, + "end": 7502.28, + "probability": 0.9561 + }, + { + "start": 7502.6, + "end": 7504.22, + "probability": 0.4892 + }, + { + "start": 7505.08, + "end": 7506.74, + "probability": 0.5553 + }, + { + "start": 7507.32, + "end": 7508.3, + "probability": 0.0173 + }, + { + "start": 7509.64, + "end": 7512.68, + "probability": 0.8744 + }, + { + "start": 7512.96, + "end": 7513.88, + "probability": 0.5468 + }, + { + "start": 7517.9, + "end": 7519.22, + "probability": 0.8935 + }, + { + "start": 7520.38, + "end": 7521.48, + "probability": 0.7026 + }, + { + "start": 7521.5, + "end": 7522.42, + "probability": 0.6485 + }, + { + "start": 7522.64, + "end": 7524.94, + "probability": 0.9794 + }, + { + "start": 7525.38, + "end": 7526.28, + "probability": 0.8364 + }, + { + "start": 7526.48, + "end": 7528.66, + "probability": 0.974 + }, + { + "start": 7529.44, + "end": 7531.1, + "probability": 0.9422 + }, + { + "start": 7532.57, + "end": 7534.72, + "probability": 0.9863 + }, + { + "start": 7535.94, + "end": 7537.3, + "probability": 0.9524 + }, + { + "start": 7538.22, + "end": 7538.54, + "probability": 0.3254 + }, + { + "start": 7538.72, + "end": 7540.58, + "probability": 0.5869 + }, + { + "start": 7540.94, + "end": 7541.94, + "probability": 0.9803 + }, + { + "start": 7542.52, + "end": 7544.94, + "probability": 0.7143 + }, + { + "start": 7548.02, + "end": 7549.2, + "probability": 0.9912 + }, + { + "start": 7549.28, + "end": 7549.98, + "probability": 0.5901 + }, + { + "start": 7550.34, + "end": 7551.1, + "probability": 0.0965 + }, + { + "start": 7551.1, + "end": 7551.9, + "probability": 0.8454 + }, + { + "start": 7552.04, + "end": 7553.34, + "probability": 0.8599 + }, + { + "start": 7553.48, + "end": 7554.28, + "probability": 0.9835 + }, + { + "start": 7554.28, + "end": 7555.1, + "probability": 0.869 + }, + { + "start": 7555.6, + "end": 7556.32, + "probability": 0.8001 + }, + { + "start": 7556.42, + "end": 7557.6, + "probability": 0.292 + }, + { + "start": 7557.6, + "end": 7558.72, + "probability": 0.6973 + }, + { + "start": 7559.2, + "end": 7560.88, + "probability": 0.5203 + }, + { + "start": 7561.42, + "end": 7562.9, + "probability": 0.8836 + }, + { + "start": 7563.34, + "end": 7564.24, + "probability": 0.9036 + }, + { + "start": 7564.36, + "end": 7565.22, + "probability": 0.8154 + }, + { + "start": 7565.7, + "end": 7566.08, + "probability": 0.7717 + }, + { + "start": 7566.16, + "end": 7567.99, + "probability": 0.9868 + }, + { + "start": 7568.18, + "end": 7568.74, + "probability": 0.7145 + }, + { + "start": 7568.8, + "end": 7569.4, + "probability": 0.7391 + }, + { + "start": 7570.32, + "end": 7571.78, + "probability": 0.8078 + }, + { + "start": 7572.42, + "end": 7575.42, + "probability": 0.5609 + }, + { + "start": 7575.86, + "end": 7577.43, + "probability": 0.9282 + }, + { + "start": 7577.98, + "end": 7578.08, + "probability": 0.2443 + }, + { + "start": 7578.08, + "end": 7579.12, + "probability": 0.8047 + }, + { + "start": 7579.24, + "end": 7579.92, + "probability": 0.7546 + }, + { + "start": 7580.4, + "end": 7580.88, + "probability": 0.6954 + }, + { + "start": 7581.12, + "end": 7582.16, + "probability": 0.4725 + }, + { + "start": 7582.26, + "end": 7584.64, + "probability": 0.9968 + }, + { + "start": 7585.98, + "end": 7586.84, + "probability": 0.3019 + }, + { + "start": 7586.84, + "end": 7589.04, + "probability": 0.9249 + }, + { + "start": 7589.04, + "end": 7591.14, + "probability": 0.426 + }, + { + "start": 7591.46, + "end": 7593.14, + "probability": 0.9824 + }, + { + "start": 7594.58, + "end": 7596.1, + "probability": 0.2542 + }, + { + "start": 7596.1, + "end": 7598.54, + "probability": 0.8289 + }, + { + "start": 7598.92, + "end": 7600.2, + "probability": 0.9907 + }, + { + "start": 7600.56, + "end": 7601.26, + "probability": 0.6988 + }, + { + "start": 7601.76, + "end": 7603.9, + "probability": 0.9551 + }, + { + "start": 7604.54, + "end": 7607.41, + "probability": 0.9641 + }, + { + "start": 7608.14, + "end": 7609.5, + "probability": 0.941 + }, + { + "start": 7610.04, + "end": 7614.54, + "probability": 0.9557 + }, + { + "start": 7614.9, + "end": 7616.52, + "probability": 0.998 + }, + { + "start": 7616.9, + "end": 7620.5, + "probability": 0.9269 + }, + { + "start": 7620.72, + "end": 7621.16, + "probability": 0.8685 + }, + { + "start": 7621.26, + "end": 7621.58, + "probability": 0.9137 + }, + { + "start": 7621.76, + "end": 7622.02, + "probability": 0.8538 + }, + { + "start": 7622.16, + "end": 7622.48, + "probability": 0.4726 + }, + { + "start": 7623.44, + "end": 7625.28, + "probability": 0.9033 + }, + { + "start": 7626.44, + "end": 7627.9, + "probability": 0.5097 + }, + { + "start": 7628.64, + "end": 7629.72, + "probability": 0.5871 + }, + { + "start": 7630.06, + "end": 7631.0, + "probability": 0.6798 + }, + { + "start": 7631.1, + "end": 7632.46, + "probability": 0.8043 + }, + { + "start": 7632.54, + "end": 7633.62, + "probability": 0.6947 + }, + { + "start": 7633.66, + "end": 7634.27, + "probability": 0.9861 + }, + { + "start": 7634.78, + "end": 7635.0, + "probability": 0.3369 + }, + { + "start": 7635.1, + "end": 7636.66, + "probability": 0.8938 + }, + { + "start": 7637.24, + "end": 7639.78, + "probability": 0.9851 + }, + { + "start": 7640.6, + "end": 7642.5, + "probability": 0.8912 + }, + { + "start": 7642.64, + "end": 7644.94, + "probability": 0.8563 + }, + { + "start": 7645.18, + "end": 7646.24, + "probability": 0.9227 + }, + { + "start": 7647.06, + "end": 7648.08, + "probability": 0.9858 + }, + { + "start": 7648.16, + "end": 7650.36, + "probability": 0.7932 + }, + { + "start": 7650.84, + "end": 7654.72, + "probability": 0.9141 + }, + { + "start": 7654.78, + "end": 7655.08, + "probability": 0.8389 + }, + { + "start": 7655.64, + "end": 7656.36, + "probability": 0.4456 + }, + { + "start": 7657.44, + "end": 7659.23, + "probability": 0.6733 + }, + { + "start": 7660.4, + "end": 7665.0, + "probability": 0.9585 + }, + { + "start": 7665.46, + "end": 7668.92, + "probability": 0.7872 + }, + { + "start": 7669.68, + "end": 7670.56, + "probability": 0.3972 + }, + { + "start": 7671.26, + "end": 7672.8, + "probability": 0.7362 + }, + { + "start": 7672.88, + "end": 7673.64, + "probability": 0.8798 + }, + { + "start": 7673.7, + "end": 7674.44, + "probability": 0.9316 + }, + { + "start": 7674.5, + "end": 7674.98, + "probability": 0.5664 + }, + { + "start": 7675.92, + "end": 7679.48, + "probability": 0.9904 + }, + { + "start": 7680.34, + "end": 7686.14, + "probability": 0.9163 + }, + { + "start": 7686.88, + "end": 7688.52, + "probability": 0.7628 + }, + { + "start": 7688.56, + "end": 7689.88, + "probability": 0.9985 + }, + { + "start": 7690.84, + "end": 7692.16, + "probability": 0.1316 + }, + { + "start": 7693.1, + "end": 7693.7, + "probability": 0.181 + }, + { + "start": 7694.06, + "end": 7694.46, + "probability": 0.7457 + }, + { + "start": 7694.6, + "end": 7695.16, + "probability": 0.9426 + }, + { + "start": 7695.8, + "end": 7699.0, + "probability": 0.9933 + }, + { + "start": 7699.0, + "end": 7702.3, + "probability": 0.9888 + }, + { + "start": 7702.78, + "end": 7703.72, + "probability": 0.8158 + }, + { + "start": 7703.74, + "end": 7705.62, + "probability": 0.6336 + }, + { + "start": 7706.24, + "end": 7708.48, + "probability": 0.8241 + }, + { + "start": 7709.42, + "end": 7712.29, + "probability": 0.8374 + }, + { + "start": 7713.6, + "end": 7713.92, + "probability": 0.9212 + }, + { + "start": 7714.62, + "end": 7714.9, + "probability": 0.4399 + }, + { + "start": 7716.08, + "end": 7717.58, + "probability": 0.9817 + }, + { + "start": 7717.8, + "end": 7719.04, + "probability": 0.9926 + }, + { + "start": 7719.4, + "end": 7720.8, + "probability": 0.9924 + }, + { + "start": 7720.84, + "end": 7721.56, + "probability": 0.8582 + }, + { + "start": 7722.26, + "end": 7723.25, + "probability": 0.9536 + }, + { + "start": 7723.4, + "end": 7725.36, + "probability": 0.9523 + }, + { + "start": 7725.74, + "end": 7726.12, + "probability": 0.4121 + }, + { + "start": 7726.12, + "end": 7727.84, + "probability": 0.6963 + }, + { + "start": 7728.74, + "end": 7730.9, + "probability": 0.8699 + }, + { + "start": 7731.56, + "end": 7732.04, + "probability": 0.6759 + }, + { + "start": 7733.9, + "end": 7735.98, + "probability": 0.0795 + }, + { + "start": 7736.58, + "end": 7737.08, + "probability": 0.7875 + }, + { + "start": 7737.26, + "end": 7737.7, + "probability": 0.4816 + }, + { + "start": 7737.84, + "end": 7742.0, + "probability": 0.9301 + }, + { + "start": 7742.08, + "end": 7746.24, + "probability": 0.9567 + }, + { + "start": 7746.54, + "end": 7747.84, + "probability": 0.8014 + }, + { + "start": 7748.3, + "end": 7754.16, + "probability": 0.9393 + }, + { + "start": 7754.72, + "end": 7756.02, + "probability": 0.9813 + }, + { + "start": 7757.2, + "end": 7758.18, + "probability": 0.4986 + }, + { + "start": 7758.18, + "end": 7759.66, + "probability": 0.7255 + }, + { + "start": 7760.08, + "end": 7760.96, + "probability": 0.8716 + }, + { + "start": 7761.36, + "end": 7762.28, + "probability": 0.8008 + }, + { + "start": 7763.0, + "end": 7763.82, + "probability": 0.8414 + }, + { + "start": 7764.92, + "end": 7765.8, + "probability": 0.9734 + }, + { + "start": 7765.9, + "end": 7766.67, + "probability": 0.9209 + }, + { + "start": 7767.08, + "end": 7769.36, + "probability": 0.9775 + }, + { + "start": 7770.54, + "end": 7770.6, + "probability": 0.0264 + }, + { + "start": 7770.6, + "end": 7777.12, + "probability": 0.5775 + }, + { + "start": 7779.04, + "end": 7779.14, + "probability": 0.0256 + }, + { + "start": 7779.14, + "end": 7779.14, + "probability": 0.3387 + }, + { + "start": 7779.14, + "end": 7779.14, + "probability": 0.1429 + }, + { + "start": 7779.14, + "end": 7779.14, + "probability": 0.2638 + }, + { + "start": 7779.14, + "end": 7780.78, + "probability": 0.2744 + }, + { + "start": 7781.14, + "end": 7781.3, + "probability": 0.2346 + }, + { + "start": 7781.46, + "end": 7782.52, + "probability": 0.8181 + }, + { + "start": 7782.74, + "end": 7787.64, + "probability": 0.8403 + }, + { + "start": 7788.0, + "end": 7789.8, + "probability": 0.9784 + }, + { + "start": 7790.48, + "end": 7792.38, + "probability": 0.9879 + }, + { + "start": 7792.5, + "end": 7792.9, + "probability": 0.4222 + }, + { + "start": 7793.12, + "end": 7793.72, + "probability": 0.8816 + }, + { + "start": 7793.9, + "end": 7794.16, + "probability": 0.6895 + }, + { + "start": 7794.24, + "end": 7795.06, + "probability": 0.9574 + }, + { + "start": 7795.48, + "end": 7796.04, + "probability": 0.883 + }, + { + "start": 7796.18, + "end": 7796.78, + "probability": 0.9607 + }, + { + "start": 7797.18, + "end": 7799.68, + "probability": 0.9517 + }, + { + "start": 7799.9, + "end": 7800.28, + "probability": 0.5615 + }, + { + "start": 7800.28, + "end": 7801.38, + "probability": 0.4814 + }, + { + "start": 7801.5, + "end": 7801.88, + "probability": 0.6443 + }, + { + "start": 7801.94, + "end": 7802.48, + "probability": 0.63 + }, + { + "start": 7802.76, + "end": 7804.12, + "probability": 0.9097 + }, + { + "start": 7804.78, + "end": 7805.98, + "probability": 0.7764 + }, + { + "start": 7812.62, + "end": 7813.47, + "probability": 0.7776 + }, + { + "start": 7813.76, + "end": 7815.04, + "probability": 0.9648 + }, + { + "start": 7817.1, + "end": 7817.66, + "probability": 0.8318 + }, + { + "start": 7818.54, + "end": 7819.58, + "probability": 0.9297 + }, + { + "start": 7821.56, + "end": 7821.94, + "probability": 0.9542 + }, + { + "start": 7824.74, + "end": 7825.96, + "probability": 0.627 + }, + { + "start": 7825.96, + "end": 7827.78, + "probability": 0.7753 + }, + { + "start": 7828.04, + "end": 7830.12, + "probability": 0.7725 + }, + { + "start": 7830.2, + "end": 7833.22, + "probability": 0.6042 + }, + { + "start": 7834.52, + "end": 7838.68, + "probability": 0.822 + }, + { + "start": 7838.92, + "end": 7841.56, + "probability": 0.9332 + }, + { + "start": 7843.4, + "end": 7848.03, + "probability": 0.9556 + }, + { + "start": 7851.08, + "end": 7852.32, + "probability": 0.8041 + }, + { + "start": 7852.84, + "end": 7855.1, + "probability": 0.6103 + }, + { + "start": 7855.52, + "end": 7857.58, + "probability": 0.8303 + }, + { + "start": 7858.58, + "end": 7859.96, + "probability": 0.2094 + }, + { + "start": 7860.06, + "end": 7864.36, + "probability": 0.7608 + }, + { + "start": 7864.36, + "end": 7865.82, + "probability": 0.7821 + }, + { + "start": 7866.42, + "end": 7869.46, + "probability": 0.5471 + }, + { + "start": 7870.1, + "end": 7871.76, + "probability": 0.9106 + }, + { + "start": 7872.36, + "end": 7873.98, + "probability": 0.9627 + }, + { + "start": 7874.48, + "end": 7876.03, + "probability": 0.9625 + }, + { + "start": 7876.46, + "end": 7879.2, + "probability": 0.988 + }, + { + "start": 7880.38, + "end": 7884.42, + "probability": 0.6483 + }, + { + "start": 7885.46, + "end": 7889.21, + "probability": 0.9755 + }, + { + "start": 7889.48, + "end": 7891.44, + "probability": 0.7957 + }, + { + "start": 7891.64, + "end": 7892.56, + "probability": 0.6228 + }, + { + "start": 7892.56, + "end": 7892.8, + "probability": 0.6217 + }, + { + "start": 7893.66, + "end": 7895.78, + "probability": 0.9978 + }, + { + "start": 7895.97, + "end": 7898.49, + "probability": 0.9927 + }, + { + "start": 7899.74, + "end": 7902.05, + "probability": 0.6687 + }, + { + "start": 7903.08, + "end": 7908.7, + "probability": 0.8987 + }, + { + "start": 7909.24, + "end": 7910.3, + "probability": 0.7514 + }, + { + "start": 7911.22, + "end": 7913.2, + "probability": 0.8184 + }, + { + "start": 7913.72, + "end": 7917.38, + "probability": 0.4014 + }, + { + "start": 7917.48, + "end": 7919.33, + "probability": 0.6819 + }, + { + "start": 7919.96, + "end": 7922.06, + "probability": 0.7123 + }, + { + "start": 7922.18, + "end": 7925.06, + "probability": 0.8818 + }, + { + "start": 7925.06, + "end": 7930.36, + "probability": 0.9575 + }, + { + "start": 7930.8, + "end": 7931.56, + "probability": 0.9434 + }, + { + "start": 7932.2, + "end": 7937.72, + "probability": 0.8574 + }, + { + "start": 7938.24, + "end": 7940.2, + "probability": 0.9771 + }, + { + "start": 7941.36, + "end": 7946.88, + "probability": 0.6986 + }, + { + "start": 7947.5, + "end": 7950.08, + "probability": 0.6794 + }, + { + "start": 7950.22, + "end": 7954.12, + "probability": 0.8067 + }, + { + "start": 7954.78, + "end": 7962.54, + "probability": 0.6948 + }, + { + "start": 7962.94, + "end": 7965.74, + "probability": 0.7269 + }, + { + "start": 7966.76, + "end": 7974.62, + "probability": 0.7986 + }, + { + "start": 7975.34, + "end": 7978.22, + "probability": 0.8245 + }, + { + "start": 7978.8, + "end": 7980.86, + "probability": 0.8545 + }, + { + "start": 7980.9, + "end": 7984.82, + "probability": 0.9716 + }, + { + "start": 7986.48, + "end": 7987.1, + "probability": 0.9662 + }, + { + "start": 7989.28, + "end": 7991.2, + "probability": 0.4754 + }, + { + "start": 7991.24, + "end": 7998.02, + "probability": 0.9124 + }, + { + "start": 7998.4, + "end": 7999.88, + "probability": 0.6232 + }, + { + "start": 8000.08, + "end": 8000.24, + "probability": 0.7415 + }, + { + "start": 8002.36, + "end": 8002.84, + "probability": 0.5769 + }, + { + "start": 8003.04, + "end": 8004.3, + "probability": 0.7588 + }, + { + "start": 8004.56, + "end": 8008.36, + "probability": 0.9826 + }, + { + "start": 8008.48, + "end": 8008.96, + "probability": 0.8897 + }, + { + "start": 8009.04, + "end": 8009.82, + "probability": 0.9303 + }, + { + "start": 8010.32, + "end": 8011.72, + "probability": 0.9656 + }, + { + "start": 8012.66, + "end": 8018.5, + "probability": 0.9361 + }, + { + "start": 8018.64, + "end": 8021.6, + "probability": 0.978 + }, + { + "start": 8021.76, + "end": 8022.32, + "probability": 0.6862 + }, + { + "start": 8022.42, + "end": 8022.7, + "probability": 0.6217 + }, + { + "start": 8023.2, + "end": 8025.86, + "probability": 0.9919 + }, + { + "start": 8027.22, + "end": 8029.92, + "probability": 0.154 + }, + { + "start": 8029.92, + "end": 8029.92, + "probability": 0.2814 + }, + { + "start": 8029.92, + "end": 8029.92, + "probability": 0.1259 + }, + { + "start": 8029.92, + "end": 8030.74, + "probability": 0.6057 + }, + { + "start": 8032.6, + "end": 8032.84, + "probability": 0.4338 + }, + { + "start": 8033.34, + "end": 8033.5, + "probability": 0.6746 + }, + { + "start": 8033.66, + "end": 8035.76, + "probability": 0.9766 + }, + { + "start": 8036.22, + "end": 8040.86, + "probability": 0.951 + }, + { + "start": 8041.18, + "end": 8044.06, + "probability": 0.9324 + }, + { + "start": 8044.12, + "end": 8044.72, + "probability": 0.5456 + }, + { + "start": 8045.14, + "end": 8046.76, + "probability": 0.9978 + }, + { + "start": 8047.6, + "end": 8049.0, + "probability": 0.4157 + }, + { + "start": 8049.22, + "end": 8050.5, + "probability": 0.6693 + }, + { + "start": 8050.94, + "end": 8051.52, + "probability": 0.9731 + }, + { + "start": 8051.92, + "end": 8052.36, + "probability": 0.597 + }, + { + "start": 8052.5, + "end": 8054.79, + "probability": 0.875 + }, + { + "start": 8055.16, + "end": 8057.46, + "probability": 0.9014 + }, + { + "start": 8058.0, + "end": 8058.38, + "probability": 0.6011 + }, + { + "start": 8058.5, + "end": 8059.46, + "probability": 0.555 + }, + { + "start": 8060.06, + "end": 8060.96, + "probability": 0.8132 + }, + { + "start": 8061.44, + "end": 8062.06, + "probability": 0.7699 + }, + { + "start": 8063.34, + "end": 8064.5, + "probability": 0.9657 + }, + { + "start": 8064.92, + "end": 8067.22, + "probability": 0.8931 + }, + { + "start": 8067.82, + "end": 8069.4, + "probability": 0.9889 + }, + { + "start": 8070.08, + "end": 8071.1, + "probability": 0.8558 + }, + { + "start": 8072.32, + "end": 8072.6, + "probability": 0.2887 + }, + { + "start": 8072.92, + "end": 8073.42, + "probability": 0.3941 + }, + { + "start": 8073.42, + "end": 8074.0, + "probability": 0.4609 + }, + { + "start": 8074.74, + "end": 8075.54, + "probability": 0.6882 + }, + { + "start": 8077.96, + "end": 8078.24, + "probability": 0.2727 + }, + { + "start": 8080.14, + "end": 8081.06, + "probability": 0.1107 + }, + { + "start": 8088.34, + "end": 8088.74, + "probability": 0.5827 + }, + { + "start": 8088.74, + "end": 8088.74, + "probability": 0.0364 + }, + { + "start": 8088.74, + "end": 8088.74, + "probability": 0.2404 + }, + { + "start": 8088.74, + "end": 8088.74, + "probability": 0.0521 + }, + { + "start": 8088.74, + "end": 8089.82, + "probability": 0.2796 + }, + { + "start": 8089.84, + "end": 8094.16, + "probability": 0.9106 + }, + { + "start": 8094.58, + "end": 8095.54, + "probability": 0.627 + }, + { + "start": 8095.78, + "end": 8100.92, + "probability": 0.9631 + }, + { + "start": 8101.16, + "end": 8105.42, + "probability": 0.802 + }, + { + "start": 8105.62, + "end": 8110.0, + "probability": 0.8606 + }, + { + "start": 8110.68, + "end": 8115.26, + "probability": 0.9902 + }, + { + "start": 8115.88, + "end": 8116.56, + "probability": 0.7442 + }, + { + "start": 8116.56, + "end": 8117.88, + "probability": 0.5602 + }, + { + "start": 8117.94, + "end": 8118.5, + "probability": 0.6311 + }, + { + "start": 8118.84, + "end": 8119.34, + "probability": 0.7158 + }, + { + "start": 8119.4, + "end": 8120.14, + "probability": 0.6584 + }, + { + "start": 8120.94, + "end": 8122.58, + "probability": 0.3179 + }, + { + "start": 8133.94, + "end": 8134.22, + "probability": 0.2603 + }, + { + "start": 8144.22, + "end": 8150.98, + "probability": 0.3288 + }, + { + "start": 8150.98, + "end": 8153.32, + "probability": 0.7129 + }, + { + "start": 8154.24, + "end": 8155.92, + "probability": 0.0274 + }, + { + "start": 8156.28, + "end": 8162.7, + "probability": 0.46 + }, + { + "start": 8163.0, + "end": 8163.36, + "probability": 0.0683 + }, + { + "start": 8163.36, + "end": 8164.46, + "probability": 0.9219 + }, + { + "start": 8166.76, + "end": 8170.24, + "probability": 0.4205 + }, + { + "start": 8170.98, + "end": 8175.24, + "probability": 0.0286 + }, + { + "start": 8180.16, + "end": 8182.48, + "probability": 0.0511 + }, + { + "start": 8183.94, + "end": 8184.7, + "probability": 0.0618 + }, + { + "start": 8188.88, + "end": 8190.41, + "probability": 0.0385 + }, + { + "start": 8191.3, + "end": 8191.92, + "probability": 0.0534 + }, + { + "start": 8192.1, + "end": 8193.7, + "probability": 0.0328 + }, + { + "start": 8194.38, + "end": 8196.6, + "probability": 0.0837 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.0, + "end": 8231.0, + "probability": 0.0 + }, + { + "start": 8231.28, + "end": 8231.42, + "probability": 0.0952 + }, + { + "start": 8231.42, + "end": 8231.42, + "probability": 0.0545 + }, + { + "start": 8231.42, + "end": 8231.42, + "probability": 0.1454 + }, + { + "start": 8231.42, + "end": 8231.42, + "probability": 0.1859 + }, + { + "start": 8231.42, + "end": 8232.3, + "probability": 0.6278 + }, + { + "start": 8232.34, + "end": 8233.2, + "probability": 0.6564 + }, + { + "start": 8233.32, + "end": 8237.94, + "probability": 0.9846 + }, + { + "start": 8238.92, + "end": 8242.4, + "probability": 0.9692 + }, + { + "start": 8254.44, + "end": 8255.54, + "probability": 0.6704 + }, + { + "start": 8256.16, + "end": 8257.76, + "probability": 0.9853 + }, + { + "start": 8258.64, + "end": 8263.04, + "probability": 0.9412 + }, + { + "start": 8263.26, + "end": 8266.28, + "probability": 0.9765 + }, + { + "start": 8267.04, + "end": 8268.07, + "probability": 0.9637 + }, + { + "start": 8268.7, + "end": 8270.68, + "probability": 0.9933 + }, + { + "start": 8270.98, + "end": 8274.42, + "probability": 0.6506 + }, + { + "start": 8275.52, + "end": 8281.18, + "probability": 0.9821 + }, + { + "start": 8281.94, + "end": 8286.76, + "probability": 0.9189 + }, + { + "start": 8287.22, + "end": 8289.12, + "probability": 0.9872 + }, + { + "start": 8289.44, + "end": 8290.58, + "probability": 0.9641 + }, + { + "start": 8291.4, + "end": 8293.06, + "probability": 0.8306 + }, + { + "start": 8293.22, + "end": 8295.14, + "probability": 0.8245 + }, + { + "start": 8295.18, + "end": 8298.0, + "probability": 0.969 + }, + { + "start": 8298.0, + "end": 8299.3, + "probability": 0.6307 + }, + { + "start": 8299.72, + "end": 8301.5, + "probability": 0.746 + }, + { + "start": 8301.52, + "end": 8302.7, + "probability": 0.91 + }, + { + "start": 8302.78, + "end": 8303.24, + "probability": 0.9138 + }, + { + "start": 8303.38, + "end": 8306.76, + "probability": 0.956 + }, + { + "start": 8307.36, + "end": 8312.22, + "probability": 0.9829 + }, + { + "start": 8312.3, + "end": 8313.08, + "probability": 0.4925 + }, + { + "start": 8314.32, + "end": 8314.38, + "probability": 0.1477 + }, + { + "start": 8314.38, + "end": 8316.57, + "probability": 0.6104 + }, + { + "start": 8316.76, + "end": 8317.3, + "probability": 0.434 + }, + { + "start": 8317.96, + "end": 8318.06, + "probability": 0.4221 + }, + { + "start": 8318.9, + "end": 8319.46, + "probability": 0.6763 + }, + { + "start": 8319.52, + "end": 8326.7, + "probability": 0.8779 + }, + { + "start": 8326.7, + "end": 8326.92, + "probability": 0.6212 + }, + { + "start": 8327.22, + "end": 8329.92, + "probability": 0.5448 + }, + { + "start": 8330.02, + "end": 8331.9, + "probability": 0.4924 + }, + { + "start": 8331.9, + "end": 8332.52, + "probability": 0.5955 + }, + { + "start": 8332.7, + "end": 8333.38, + "probability": 0.9187 + }, + { + "start": 8333.92, + "end": 8334.1, + "probability": 0.9789 + }, + { + "start": 8334.2, + "end": 8334.2, + "probability": 0.6372 + }, + { + "start": 8334.24, + "end": 8334.88, + "probability": 0.8197 + }, + { + "start": 8335.16, + "end": 8338.16, + "probability": 0.9938 + }, + { + "start": 8338.4, + "end": 8339.56, + "probability": 0.9819 + }, + { + "start": 8340.48, + "end": 8342.6, + "probability": 0.9737 + }, + { + "start": 8343.68, + "end": 8345.96, + "probability": 0.9337 + }, + { + "start": 8347.5, + "end": 8348.6, + "probability": 0.9535 + }, + { + "start": 8349.3, + "end": 8351.8, + "probability": 0.759 + }, + { + "start": 8351.96, + "end": 8352.42, + "probability": 0.9485 + }, + { + "start": 8352.72, + "end": 8353.36, + "probability": 0.9508 + }, + { + "start": 8354.24, + "end": 8355.5, + "probability": 0.5945 + }, + { + "start": 8356.22, + "end": 8357.48, + "probability": 0.9934 + }, + { + "start": 8358.22, + "end": 8362.66, + "probability": 0.9244 + }, + { + "start": 8363.94, + "end": 8369.18, + "probability": 0.9823 + }, + { + "start": 8369.26, + "end": 8370.88, + "probability": 0.9237 + }, + { + "start": 8371.76, + "end": 8374.66, + "probability": 0.92 + }, + { + "start": 8375.18, + "end": 8378.82, + "probability": 0.9988 + }, + { + "start": 8379.96, + "end": 8385.34, + "probability": 0.9954 + }, + { + "start": 8385.7, + "end": 8386.78, + "probability": 0.9277 + }, + { + "start": 8387.66, + "end": 8391.12, + "probability": 0.9925 + }, + { + "start": 8392.16, + "end": 8398.16, + "probability": 0.9453 + }, + { + "start": 8398.16, + "end": 8402.34, + "probability": 0.9718 + }, + { + "start": 8403.14, + "end": 8403.94, + "probability": 0.7414 + }, + { + "start": 8405.0, + "end": 8407.68, + "probability": 0.9955 + }, + { + "start": 8408.4, + "end": 8409.0, + "probability": 0.907 + }, + { + "start": 8409.74, + "end": 8410.86, + "probability": 0.9773 + }, + { + "start": 8411.7, + "end": 8414.72, + "probability": 0.8926 + }, + { + "start": 8415.38, + "end": 8420.94, + "probability": 0.9945 + }, + { + "start": 8421.06, + "end": 8422.28, + "probability": 0.9596 + }, + { + "start": 8422.66, + "end": 8425.06, + "probability": 0.917 + }, + { + "start": 8425.62, + "end": 8427.16, + "probability": 0.9824 + }, + { + "start": 8427.76, + "end": 8432.3, + "probability": 0.9838 + }, + { + "start": 8432.3, + "end": 8433.02, + "probability": 0.1566 + }, + { + "start": 8433.84, + "end": 8436.22, + "probability": 0.9712 + }, + { + "start": 8436.36, + "end": 8438.6, + "probability": 0.749 + }, + { + "start": 8439.16, + "end": 8440.54, + "probability": 0.9327 + }, + { + "start": 8440.82, + "end": 8443.2, + "probability": 0.8991 + }, + { + "start": 8443.62, + "end": 8445.22, + "probability": 0.9585 + }, + { + "start": 8445.88, + "end": 8448.86, + "probability": 0.7728 + }, + { + "start": 8449.28, + "end": 8451.68, + "probability": 0.9112 + }, + { + "start": 8452.28, + "end": 8452.88, + "probability": 0.7449 + }, + { + "start": 8453.32, + "end": 8458.28, + "probability": 0.9814 + }, + { + "start": 8458.5, + "end": 8459.0, + "probability": 0.9877 + }, + { + "start": 8459.94, + "end": 8461.42, + "probability": 0.9832 + }, + { + "start": 8462.24, + "end": 8463.68, + "probability": 0.9756 + }, + { + "start": 8464.84, + "end": 8467.88, + "probability": 0.9951 + }, + { + "start": 8468.68, + "end": 8470.7, + "probability": 0.9916 + }, + { + "start": 8470.84, + "end": 8472.38, + "probability": 0.999 + }, + { + "start": 8473.2, + "end": 8477.7, + "probability": 0.9831 + }, + { + "start": 8479.0, + "end": 8484.68, + "probability": 0.9458 + }, + { + "start": 8485.3, + "end": 8488.0, + "probability": 0.9956 + }, + { + "start": 8488.78, + "end": 8493.9, + "probability": 0.9526 + }, + { + "start": 8495.5, + "end": 8496.8, + "probability": 0.5425 + }, + { + "start": 8497.0, + "end": 8499.76, + "probability": 0.9888 + }, + { + "start": 8499.8, + "end": 8501.14, + "probability": 0.9111 + }, + { + "start": 8501.54, + "end": 8501.94, + "probability": 0.344 + }, + { + "start": 8502.1, + "end": 8504.34, + "probability": 0.8769 + }, + { + "start": 8505.5, + "end": 8505.72, + "probability": 0.7544 + }, + { + "start": 8506.44, + "end": 8508.12, + "probability": 0.8645 + }, + { + "start": 8508.22, + "end": 8513.3, + "probability": 0.9919 + }, + { + "start": 8513.52, + "end": 8517.42, + "probability": 0.8888 + }, + { + "start": 8517.82, + "end": 8521.78, + "probability": 0.9955 + }, + { + "start": 8521.78, + "end": 8525.2, + "probability": 0.9987 + }, + { + "start": 8525.78, + "end": 8527.27, + "probability": 0.9979 + }, + { + "start": 8527.44, + "end": 8528.2, + "probability": 0.7704 + }, + { + "start": 8528.62, + "end": 8529.06, + "probability": 0.4958 + }, + { + "start": 8529.2, + "end": 8530.84, + "probability": 0.9842 + }, + { + "start": 8530.98, + "end": 8531.92, + "probability": 0.8757 + }, + { + "start": 8532.48, + "end": 8536.92, + "probability": 0.9702 + }, + { + "start": 8536.92, + "end": 8539.46, + "probability": 0.9884 + }, + { + "start": 8540.22, + "end": 8541.12, + "probability": 0.6591 + }, + { + "start": 8541.74, + "end": 8544.66, + "probability": 0.6146 + }, + { + "start": 8545.26, + "end": 8546.96, + "probability": 0.9279 + }, + { + "start": 8548.14, + "end": 8548.82, + "probability": 0.8589 + }, + { + "start": 8548.82, + "end": 8550.88, + "probability": 0.9834 + }, + { + "start": 8551.06, + "end": 8553.62, + "probability": 0.9937 + }, + { + "start": 8553.62, + "end": 8557.16, + "probability": 0.972 + }, + { + "start": 8557.62, + "end": 8558.16, + "probability": 0.9343 + }, + { + "start": 8559.56, + "end": 8560.28, + "probability": 0.8633 + }, + { + "start": 8560.84, + "end": 8562.11, + "probability": 0.9937 + }, + { + "start": 8562.42, + "end": 8563.38, + "probability": 0.8995 + }, + { + "start": 8563.48, + "end": 8564.82, + "probability": 0.9824 + }, + { + "start": 8565.04, + "end": 8567.56, + "probability": 0.9811 + }, + { + "start": 8568.42, + "end": 8573.94, + "probability": 0.9825 + }, + { + "start": 8574.6, + "end": 8575.71, + "probability": 0.7442 + }, + { + "start": 8576.5, + "end": 8578.66, + "probability": 0.9896 + }, + { + "start": 8579.12, + "end": 8579.98, + "probability": 0.9381 + }, + { + "start": 8580.28, + "end": 8584.34, + "probability": 0.9836 + }, + { + "start": 8584.34, + "end": 8588.84, + "probability": 0.9897 + }, + { + "start": 8589.44, + "end": 8590.38, + "probability": 0.9664 + }, + { + "start": 8591.28, + "end": 8593.58, + "probability": 0.8224 + }, + { + "start": 8594.08, + "end": 8594.52, + "probability": 0.5966 + }, + { + "start": 8594.64, + "end": 8595.14, + "probability": 0.8664 + }, + { + "start": 8595.54, + "end": 8596.56, + "probability": 0.9901 + }, + { + "start": 8596.58, + "end": 8598.14, + "probability": 0.9655 + }, + { + "start": 8598.41, + "end": 8600.26, + "probability": 0.6225 + }, + { + "start": 8600.64, + "end": 8601.6, + "probability": 0.9951 + }, + { + "start": 8602.16, + "end": 8606.73, + "probability": 0.9563 + }, + { + "start": 8607.74, + "end": 8608.78, + "probability": 0.9198 + }, + { + "start": 8608.84, + "end": 8610.06, + "probability": 0.9524 + }, + { + "start": 8610.84, + "end": 8612.82, + "probability": 0.6072 + }, + { + "start": 8613.3, + "end": 8615.26, + "probability": 0.9962 + }, + { + "start": 8615.9, + "end": 8617.34, + "probability": 0.8346 + }, + { + "start": 8617.9, + "end": 8619.0, + "probability": 0.9488 + }, + { + "start": 8619.16, + "end": 8620.38, + "probability": 0.9512 + }, + { + "start": 8620.6, + "end": 8624.04, + "probability": 0.9507 + }, + { + "start": 8624.04, + "end": 8626.48, + "probability": 0.7637 + }, + { + "start": 8626.54, + "end": 8627.98, + "probability": 0.54 + }, + { + "start": 8628.5, + "end": 8628.52, + "probability": 0.0699 + }, + { + "start": 8628.52, + "end": 8628.52, + "probability": 0.0066 + }, + { + "start": 8628.52, + "end": 8628.52, + "probability": 0.1915 + }, + { + "start": 8628.52, + "end": 8630.82, + "probability": 0.9547 + }, + { + "start": 8630.92, + "end": 8633.73, + "probability": 0.9476 + }, + { + "start": 8633.88, + "end": 8635.68, + "probability": 0.853 + }, + { + "start": 8636.1, + "end": 8637.28, + "probability": 0.695 + }, + { + "start": 8637.82, + "end": 8640.84, + "probability": 0.7397 + }, + { + "start": 8640.94, + "end": 8642.6, + "probability": 0.4436 + }, + { + "start": 8642.74, + "end": 8643.42, + "probability": 0.7258 + }, + { + "start": 8643.52, + "end": 8645.88, + "probability": 0.9922 + }, + { + "start": 8646.84, + "end": 8648.74, + "probability": 0.8345 + }, + { + "start": 8648.9, + "end": 8650.28, + "probability": 0.9674 + }, + { + "start": 8650.44, + "end": 8651.02, + "probability": 0.4939 + }, + { + "start": 8651.8, + "end": 8654.92, + "probability": 0.8824 + }, + { + "start": 8655.16, + "end": 8656.22, + "probability": 0.9061 + }, + { + "start": 8656.22, + "end": 8656.72, + "probability": 0.7742 + }, + { + "start": 8657.36, + "end": 8662.78, + "probability": 0.9911 + }, + { + "start": 8663.22, + "end": 8664.84, + "probability": 0.9854 + }, + { + "start": 8666.18, + "end": 8669.4, + "probability": 0.762 + }, + { + "start": 8670.12, + "end": 8675.2, + "probability": 0.7656 + }, + { + "start": 8675.88, + "end": 8678.2, + "probability": 0.8946 + }, + { + "start": 8678.44, + "end": 8679.72, + "probability": 0.9755 + }, + { + "start": 8680.18, + "end": 8682.86, + "probability": 0.981 + }, + { + "start": 8683.5, + "end": 8684.64, + "probability": 0.8843 + }, + { + "start": 8685.64, + "end": 8686.96, + "probability": 0.9378 + }, + { + "start": 8687.32, + "end": 8689.58, + "probability": 0.9602 + }, + { + "start": 8689.7, + "end": 8690.88, + "probability": 0.9924 + }, + { + "start": 8690.94, + "end": 8691.36, + "probability": 0.6667 + }, + { + "start": 8691.44, + "end": 8691.86, + "probability": 0.9368 + }, + { + "start": 8691.9, + "end": 8692.7, + "probability": 0.9412 + }, + { + "start": 8692.82, + "end": 8693.46, + "probability": 0.7567 + }, + { + "start": 8693.74, + "end": 8694.1, + "probability": 0.9455 + }, + { + "start": 8695.36, + "end": 8697.8, + "probability": 0.9875 + }, + { + "start": 8698.78, + "end": 8699.34, + "probability": 0.6799 + }, + { + "start": 8699.46, + "end": 8702.86, + "probability": 0.9201 + }, + { + "start": 8703.68, + "end": 8705.44, + "probability": 0.9818 + }, + { + "start": 8706.02, + "end": 8707.46, + "probability": 0.9907 + }, + { + "start": 8707.64, + "end": 8708.44, + "probability": 0.9752 + }, + { + "start": 8708.58, + "end": 8709.64, + "probability": 0.971 + }, + { + "start": 8710.4, + "end": 8712.76, + "probability": 0.8633 + }, + { + "start": 8712.86, + "end": 8715.9, + "probability": 0.9301 + }, + { + "start": 8716.02, + "end": 8716.52, + "probability": 0.9185 + }, + { + "start": 8717.46, + "end": 8718.1, + "probability": 0.976 + }, + { + "start": 8718.18, + "end": 8721.48, + "probability": 0.9948 + }, + { + "start": 8721.67, + "end": 8725.24, + "probability": 0.9967 + }, + { + "start": 8726.4, + "end": 8730.02, + "probability": 0.9984 + }, + { + "start": 8730.28, + "end": 8736.1, + "probability": 0.8905 + }, + { + "start": 8736.56, + "end": 8739.18, + "probability": 0.9443 + }, + { + "start": 8740.06, + "end": 8744.66, + "probability": 0.9883 + }, + { + "start": 8745.68, + "end": 8747.74, + "probability": 0.9979 + }, + { + "start": 8748.42, + "end": 8751.2, + "probability": 0.7825 + }, + { + "start": 8751.88, + "end": 8755.96, + "probability": 0.9722 + }, + { + "start": 8756.58, + "end": 8758.3, + "probability": 0.934 + }, + { + "start": 8758.82, + "end": 8759.8, + "probability": 0.8129 + }, + { + "start": 8760.38, + "end": 8763.32, + "probability": 0.9793 + }, + { + "start": 8763.86, + "end": 8764.94, + "probability": 0.98 + }, + { + "start": 8765.38, + "end": 8767.78, + "probability": 0.9882 + }, + { + "start": 8768.32, + "end": 8770.78, + "probability": 0.954 + }, + { + "start": 8771.28, + "end": 8772.62, + "probability": 0.9824 + }, + { + "start": 8772.94, + "end": 8774.46, + "probability": 0.9695 + }, + { + "start": 8774.68, + "end": 8776.62, + "probability": 0.8774 + }, + { + "start": 8777.38, + "end": 8780.24, + "probability": 0.875 + }, + { + "start": 8781.1, + "end": 8783.94, + "probability": 0.9123 + }, + { + "start": 8784.0, + "end": 8786.9, + "probability": 0.7108 + }, + { + "start": 8787.42, + "end": 8791.66, + "probability": 0.874 + }, + { + "start": 8791.66, + "end": 8796.12, + "probability": 0.9806 + }, + { + "start": 8796.66, + "end": 8799.5, + "probability": 0.8624 + }, + { + "start": 8800.12, + "end": 8801.04, + "probability": 0.8975 + }, + { + "start": 8803.14, + "end": 8806.7, + "probability": 0.0225 + }, + { + "start": 8808.0, + "end": 8809.54, + "probability": 0.9416 + }, + { + "start": 8810.52, + "end": 8811.68, + "probability": 0.9432 + }, + { + "start": 8812.64, + "end": 8815.7, + "probability": 0.961 + }, + { + "start": 8816.36, + "end": 8819.2, + "probability": 0.776 + }, + { + "start": 8819.58, + "end": 8822.64, + "probability": 0.0306 + }, + { + "start": 8822.64, + "end": 8823.7, + "probability": 0.4529 + }, + { + "start": 8824.16, + "end": 8825.88, + "probability": 0.7254 + }, + { + "start": 8831.61, + "end": 8836.76, + "probability": 0.8323 + }, + { + "start": 8838.2, + "end": 8842.26, + "probability": 0.9858 + }, + { + "start": 8842.26, + "end": 8844.56, + "probability": 0.9658 + }, + { + "start": 8845.48, + "end": 8850.14, + "probability": 0.986 + }, + { + "start": 8850.28, + "end": 8851.34, + "probability": 0.8067 + }, + { + "start": 8851.62, + "end": 8852.94, + "probability": 0.9666 + }, + { + "start": 8853.14, + "end": 8853.74, + "probability": 0.8418 + }, + { + "start": 8854.32, + "end": 8859.78, + "probability": 0.9692 + }, + { + "start": 8859.98, + "end": 8860.46, + "probability": 0.7137 + }, + { + "start": 8860.64, + "end": 8861.76, + "probability": 0.9222 + }, + { + "start": 8862.44, + "end": 8865.17, + "probability": 0.7593 + }, + { + "start": 8866.18, + "end": 8868.3, + "probability": 0.9769 + }, + { + "start": 8869.0, + "end": 8870.6, + "probability": 0.516 + }, + { + "start": 8870.76, + "end": 8872.6, + "probability": 0.8459 + }, + { + "start": 8874.26, + "end": 8875.52, + "probability": 0.1658 + }, + { + "start": 8875.78, + "end": 8881.16, + "probability": 0.4182 + }, + { + "start": 8881.2, + "end": 8884.14, + "probability": 0.5027 + }, + { + "start": 8884.5, + "end": 8884.72, + "probability": 0.0059 + }, + { + "start": 8885.82, + "end": 8886.08, + "probability": 0.1016 + }, + { + "start": 8886.08, + "end": 8889.04, + "probability": 0.9814 + }, + { + "start": 8889.66, + "end": 8892.44, + "probability": 0.9644 + }, + { + "start": 8892.48, + "end": 8893.92, + "probability": 0.8317 + }, + { + "start": 8894.12, + "end": 8896.06, + "probability": 0.9763 + }, + { + "start": 8896.38, + "end": 8897.76, + "probability": 0.6103 + }, + { + "start": 8897.86, + "end": 8900.16, + "probability": 0.9946 + }, + { + "start": 8900.5, + "end": 8901.4, + "probability": 0.7766 + }, + { + "start": 8901.56, + "end": 8901.7, + "probability": 0.5186 + }, + { + "start": 8901.7, + "end": 8902.1, + "probability": 0.6156 + }, + { + "start": 8902.22, + "end": 8903.46, + "probability": 0.8119 + }, + { + "start": 8903.5, + "end": 8903.52, + "probability": 0.3004 + }, + { + "start": 8903.54, + "end": 8903.54, + "probability": 0.3948 + }, + { + "start": 8903.54, + "end": 8904.22, + "probability": 0.8726 + }, + { + "start": 8904.5, + "end": 8904.64, + "probability": 0.3542 + }, + { + "start": 8904.72, + "end": 8906.1, + "probability": 0.9123 + }, + { + "start": 8906.34, + "end": 8907.9, + "probability": 0.9179 + }, + { + "start": 8907.96, + "end": 8909.18, + "probability": 0.9393 + }, + { + "start": 8909.72, + "end": 8910.74, + "probability": 0.5389 + }, + { + "start": 8911.08, + "end": 8911.72, + "probability": 0.4964 + }, + { + "start": 8912.38, + "end": 8915.8, + "probability": 0.9866 + }, + { + "start": 8916.02, + "end": 8920.1, + "probability": 0.8918 + }, + { + "start": 8920.16, + "end": 8922.56, + "probability": 0.8879 + }, + { + "start": 8922.76, + "end": 8922.78, + "probability": 0.7362 + }, + { + "start": 8922.78, + "end": 8922.86, + "probability": 0.6947 + }, + { + "start": 8923.0, + "end": 8923.58, + "probability": 0.7469 + }, + { + "start": 8923.76, + "end": 8925.76, + "probability": 0.6092 + }, + { + "start": 8925.94, + "end": 8927.5, + "probability": 0.917 + }, + { + "start": 8927.94, + "end": 8929.24, + "probability": 0.8411 + }, + { + "start": 8929.26, + "end": 8929.92, + "probability": 0.7946 + }, + { + "start": 8929.94, + "end": 8933.02, + "probability": 0.8876 + }, + { + "start": 8933.62, + "end": 8937.1, + "probability": 0.8407 + }, + { + "start": 8937.96, + "end": 8940.04, + "probability": 0.9526 + }, + { + "start": 8940.38, + "end": 8943.12, + "probability": 0.9834 + }, + { + "start": 8944.24, + "end": 8944.9, + "probability": 0.7597 + }, + { + "start": 8945.34, + "end": 8946.1, + "probability": 0.6413 + }, + { + "start": 8946.22, + "end": 8947.18, + "probability": 0.799 + }, + { + "start": 8947.26, + "end": 8949.5, + "probability": 0.9954 + }, + { + "start": 8950.32, + "end": 8954.42, + "probability": 0.9953 + }, + { + "start": 8955.44, + "end": 8956.78, + "probability": 0.6629 + }, + { + "start": 8957.62, + "end": 8960.44, + "probability": 0.9844 + }, + { + "start": 8960.52, + "end": 8964.02, + "probability": 0.9726 + }, + { + "start": 8964.64, + "end": 8967.06, + "probability": 0.9969 + }, + { + "start": 8967.06, + "end": 8970.38, + "probability": 0.8815 + }, + { + "start": 8971.2, + "end": 8972.56, + "probability": 0.6878 + }, + { + "start": 8973.14, + "end": 8976.88, + "probability": 0.9749 + }, + { + "start": 8979.22, + "end": 8983.46, + "probability": 0.9578 + }, + { + "start": 8984.7, + "end": 8989.22, + "probability": 0.9937 + }, + { + "start": 8989.22, + "end": 8993.34, + "probability": 0.9985 + }, + { + "start": 8993.98, + "end": 8996.96, + "probability": 0.9971 + }, + { + "start": 8997.44, + "end": 9001.2, + "probability": 0.9884 + }, + { + "start": 9002.52, + "end": 9003.36, + "probability": 0.6534 + }, + { + "start": 9003.5, + "end": 9004.0, + "probability": 0.865 + }, + { + "start": 9004.06, + "end": 9006.98, + "probability": 0.9969 + }, + { + "start": 9007.62, + "end": 9009.86, + "probability": 0.9927 + }, + { + "start": 9010.44, + "end": 9013.48, + "probability": 0.9961 + }, + { + "start": 9014.22, + "end": 9016.1, + "probability": 0.9202 + }, + { + "start": 9016.82, + "end": 9018.94, + "probability": 0.9727 + }, + { + "start": 9019.98, + "end": 9020.38, + "probability": 0.5206 + }, + { + "start": 9020.46, + "end": 9025.04, + "probability": 0.9989 + }, + { + "start": 9025.64, + "end": 9029.72, + "probability": 0.9248 + }, + { + "start": 9030.3, + "end": 9031.9, + "probability": 0.8148 + }, + { + "start": 9032.88, + "end": 9036.24, + "probability": 0.9099 + }, + { + "start": 9036.52, + "end": 9039.48, + "probability": 0.9392 + }, + { + "start": 9040.32, + "end": 9044.46, + "probability": 0.9015 + }, + { + "start": 9045.18, + "end": 9046.0, + "probability": 0.9721 + }, + { + "start": 9046.86, + "end": 9047.7, + "probability": 0.6634 + }, + { + "start": 9048.48, + "end": 9049.62, + "probability": 0.9754 + }, + { + "start": 9051.1, + "end": 9051.6, + "probability": 0.7613 + }, + { + "start": 9052.66, + "end": 9054.52, + "probability": 0.8937 + }, + { + "start": 9055.08, + "end": 9056.06, + "probability": 0.8001 + }, + { + "start": 9056.78, + "end": 9057.3, + "probability": 0.6339 + }, + { + "start": 9057.34, + "end": 9057.78, + "probability": 0.6437 + }, + { + "start": 9057.92, + "end": 9058.18, + "probability": 0.9655 + }, + { + "start": 9059.6, + "end": 9060.22, + "probability": 0.5314 + }, + { + "start": 9060.22, + "end": 9060.64, + "probability": 0.682 + }, + { + "start": 9060.88, + "end": 9062.14, + "probability": 0.6299 + }, + { + "start": 9063.48, + "end": 9065.7, + "probability": 0.959 + }, + { + "start": 9067.0, + "end": 9068.34, + "probability": 0.0785 + }, + { + "start": 9068.34, + "end": 9070.38, + "probability": 0.7001 + }, + { + "start": 9070.44, + "end": 9071.07, + "probability": 0.938 + }, + { + "start": 9072.14, + "end": 9074.22, + "probability": 0.8092 + }, + { + "start": 9074.32, + "end": 9077.89, + "probability": 0.9761 + }, + { + "start": 9077.94, + "end": 9078.33, + "probability": 0.8599 + }, + { + "start": 9080.04, + "end": 9083.58, + "probability": 0.8389 + }, + { + "start": 9085.4, + "end": 9091.16, + "probability": 0.9989 + }, + { + "start": 9092.28, + "end": 9092.6, + "probability": 0.6272 + }, + { + "start": 9093.22, + "end": 9093.84, + "probability": 0.988 + }, + { + "start": 9094.36, + "end": 9098.12, + "probability": 0.9784 + }, + { + "start": 9098.56, + "end": 9099.54, + "probability": 0.8118 + }, + { + "start": 9099.7, + "end": 9102.28, + "probability": 0.9651 + }, + { + "start": 9103.0, + "end": 9105.18, + "probability": 0.9683 + }, + { + "start": 9105.78, + "end": 9108.68, + "probability": 0.9883 + }, + { + "start": 9110.0, + "end": 9110.24, + "probability": 0.5148 + }, + { + "start": 9110.36, + "end": 9117.58, + "probability": 0.9992 + }, + { + "start": 9118.52, + "end": 9119.13, + "probability": 0.999 + }, + { + "start": 9120.08, + "end": 9125.16, + "probability": 0.9853 + }, + { + "start": 9125.7, + "end": 9128.22, + "probability": 0.9385 + }, + { + "start": 9129.62, + "end": 9133.22, + "probability": 0.9833 + }, + { + "start": 9133.22, + "end": 9136.68, + "probability": 0.917 + }, + { + "start": 9138.04, + "end": 9139.98, + "probability": 0.9978 + }, + { + "start": 9141.14, + "end": 9143.08, + "probability": 0.8723 + }, + { + "start": 9144.52, + "end": 9144.7, + "probability": 0.08 + }, + { + "start": 9144.7, + "end": 9146.54, + "probability": 0.9857 + }, + { + "start": 9147.14, + "end": 9150.86, + "probability": 0.9398 + }, + { + "start": 9151.68, + "end": 9155.76, + "probability": 0.9922 + }, + { + "start": 9157.1, + "end": 9159.9, + "probability": 0.9843 + }, + { + "start": 9160.48, + "end": 9166.08, + "probability": 0.9769 + }, + { + "start": 9166.8, + "end": 9171.36, + "probability": 0.9963 + }, + { + "start": 9172.06, + "end": 9172.82, + "probability": 0.9834 + }, + { + "start": 9173.6, + "end": 9174.58, + "probability": 0.9619 + }, + { + "start": 9175.8, + "end": 9178.44, + "probability": 0.998 + }, + { + "start": 9178.66, + "end": 9180.46, + "probability": 0.9824 + }, + { + "start": 9181.52, + "end": 9183.84, + "probability": 0.9827 + }, + { + "start": 9185.02, + "end": 9187.38, + "probability": 0.9199 + }, + { + "start": 9187.52, + "end": 9188.31, + "probability": 0.6503 + }, + { + "start": 9189.04, + "end": 9191.26, + "probability": 0.9923 + }, + { + "start": 9191.88, + "end": 9194.72, + "probability": 0.9771 + }, + { + "start": 9195.12, + "end": 9196.08, + "probability": 0.7246 + }, + { + "start": 9196.22, + "end": 9196.86, + "probability": 0.8764 + }, + { + "start": 9196.94, + "end": 9199.46, + "probability": 0.9973 + }, + { + "start": 9199.92, + "end": 9202.18, + "probability": 0.999 + }, + { + "start": 9202.18, + "end": 9204.7, + "probability": 0.999 + }, + { + "start": 9205.18, + "end": 9206.68, + "probability": 0.9966 + }, + { + "start": 9207.12, + "end": 9208.06, + "probability": 0.951 + }, + { + "start": 9208.22, + "end": 9210.46, + "probability": 0.9988 + }, + { + "start": 9211.1, + "end": 9213.82, + "probability": 0.998 + }, + { + "start": 9214.06, + "end": 9217.4, + "probability": 0.9777 + }, + { + "start": 9217.72, + "end": 9218.06, + "probability": 0.5825 + }, + { + "start": 9218.56, + "end": 9220.3, + "probability": 0.975 + }, + { + "start": 9220.76, + "end": 9224.96, + "probability": 0.9802 + }, + { + "start": 9225.48, + "end": 9228.94, + "probability": 0.9831 + }, + { + "start": 9229.54, + "end": 9231.64, + "probability": 0.9886 + }, + { + "start": 9232.2, + "end": 9234.4, + "probability": 0.9984 + }, + { + "start": 9234.52, + "end": 9234.96, + "probability": 0.7367 + }, + { + "start": 9235.1, + "end": 9235.32, + "probability": 0.4888 + }, + { + "start": 9235.64, + "end": 9236.08, + "probability": 0.7084 + }, + { + "start": 9236.16, + "end": 9237.86, + "probability": 0.9944 + }, + { + "start": 9238.18, + "end": 9242.06, + "probability": 0.9685 + }, + { + "start": 9242.58, + "end": 9243.34, + "probability": 0.814 + }, + { + "start": 9244.38, + "end": 9245.07, + "probability": 0.9982 + }, + { + "start": 9245.96, + "end": 9246.4, + "probability": 0.75 + }, + { + "start": 9247.74, + "end": 9248.02, + "probability": 0.8467 + }, + { + "start": 9249.88, + "end": 9250.2, + "probability": 0.2488 + }, + { + "start": 9263.76, + "end": 9263.86, + "probability": 0.1323 + }, + { + "start": 9265.26, + "end": 9268.52, + "probability": 0.5496 + }, + { + "start": 9269.06, + "end": 9273.18, + "probability": 0.837 + }, + { + "start": 9274.6, + "end": 9276.62, + "probability": 0.108 + }, + { + "start": 9278.19, + "end": 9280.44, + "probability": 0.0606 + }, + { + "start": 9282.16, + "end": 9282.24, + "probability": 0.0457 + }, + { + "start": 9282.24, + "end": 9283.1, + "probability": 0.026 + }, + { + "start": 9283.8, + "end": 9285.76, + "probability": 0.0342 + }, + { + "start": 9293.0, + "end": 9294.19, + "probability": 0.1064 + }, + { + "start": 9294.4, + "end": 9294.52, + "probability": 0.0325 + }, + { + "start": 9294.52, + "end": 9297.82, + "probability": 0.0091 + }, + { + "start": 9298.94, + "end": 9299.89, + "probability": 0.007 + }, + { + "start": 9300.04, + "end": 9304.36, + "probability": 0.1763 + }, + { + "start": 9304.42, + "end": 9305.34, + "probability": 0.011 + }, + { + "start": 9305.36, + "end": 9306.86, + "probability": 0.0319 + }, + { + "start": 9306.86, + "end": 9306.9, + "probability": 0.1107 + }, + { + "start": 9306.9, + "end": 9307.12, + "probability": 0.0514 + }, + { + "start": 9307.12, + "end": 9307.34, + "probability": 0.0421 + }, + { + "start": 9307.92, + "end": 9307.92, + "probability": 0.0856 + }, + { + "start": 9307.92, + "end": 9308.34, + "probability": 0.1038 + }, + { + "start": 9309.52, + "end": 9312.02, + "probability": 0.3112 + }, + { + "start": 9324.06, + "end": 9325.88, + "probability": 0.0116 + }, + { + "start": 9325.88, + "end": 9326.0, + "probability": 0.0304 + }, + { + "start": 9326.0, + "end": 9326.16, + "probability": 0.1899 + }, + { + "start": 9326.16, + "end": 9326.16, + "probability": 0.1989 + }, + { + "start": 9326.22, + "end": 9326.76, + "probability": 0.0244 + }, + { + "start": 9326.76, + "end": 9326.98, + "probability": 0.0645 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.0, + "end": 9327.0, + "probability": 0.0 + }, + { + "start": 9327.26, + "end": 9328.44, + "probability": 0.1003 + }, + { + "start": 9329.1, + "end": 9330.1, + "probability": 0.773 + }, + { + "start": 9332.56, + "end": 9335.16, + "probability": 0.81 + }, + { + "start": 9336.2, + "end": 9340.16, + "probability": 0.8805 + }, + { + "start": 9340.76, + "end": 9342.22, + "probability": 0.8551 + }, + { + "start": 9343.26, + "end": 9347.52, + "probability": 0.9751 + }, + { + "start": 9348.78, + "end": 9353.7, + "probability": 0.8706 + }, + { + "start": 9354.5, + "end": 9356.84, + "probability": 0.7585 + }, + { + "start": 9357.0, + "end": 9357.98, + "probability": 0.7869 + }, + { + "start": 9358.3, + "end": 9360.47, + "probability": 0.8179 + }, + { + "start": 9361.28, + "end": 9364.52, + "probability": 0.8827 + }, + { + "start": 9365.04, + "end": 9367.08, + "probability": 0.9213 + }, + { + "start": 9368.04, + "end": 9370.04, + "probability": 0.9299 + }, + { + "start": 9370.12, + "end": 9374.2, + "probability": 0.9019 + }, + { + "start": 9374.24, + "end": 9377.6, + "probability": 0.894 + }, + { + "start": 9378.42, + "end": 9379.86, + "probability": 0.8413 + }, + { + "start": 9380.0, + "end": 9382.18, + "probability": 0.8179 + }, + { + "start": 9383.51, + "end": 9386.05, + "probability": 0.9049 + }, + { + "start": 9386.64, + "end": 9387.45, + "probability": 0.9834 + }, + { + "start": 9388.06, + "end": 9392.06, + "probability": 0.9058 + }, + { + "start": 9392.12, + "end": 9394.7, + "probability": 0.9446 + }, + { + "start": 9395.22, + "end": 9396.2, + "probability": 0.6926 + }, + { + "start": 9396.6, + "end": 9406.02, + "probability": 0.8142 + }, + { + "start": 9406.84, + "end": 9408.46, + "probability": 0.0226 + }, + { + "start": 9408.46, + "end": 9409.16, + "probability": 0.4902 + }, + { + "start": 9410.06, + "end": 9412.2, + "probability": 0.8425 + }, + { + "start": 9412.82, + "end": 9412.96, + "probability": 0.7579 + }, + { + "start": 9413.04, + "end": 9415.08, + "probability": 0.5933 + }, + { + "start": 9415.16, + "end": 9415.82, + "probability": 0.2603 + }, + { + "start": 9415.82, + "end": 9416.28, + "probability": 0.8494 + }, + { + "start": 9416.44, + "end": 9417.66, + "probability": 0.9821 + }, + { + "start": 9418.36, + "end": 9420.8, + "probability": 0.9553 + }, + { + "start": 9422.12, + "end": 9425.44, + "probability": 0.5328 + }, + { + "start": 9426.58, + "end": 9427.22, + "probability": 0.5591 + }, + { + "start": 9427.48, + "end": 9428.68, + "probability": 0.8729 + }, + { + "start": 9428.84, + "end": 9430.54, + "probability": 0.8357 + }, + { + "start": 9431.18, + "end": 9433.1, + "probability": 0.9703 + }, + { + "start": 9433.8, + "end": 9435.66, + "probability": 0.9619 + }, + { + "start": 9436.5, + "end": 9438.52, + "probability": 0.9155 + }, + { + "start": 9438.86, + "end": 9441.86, + "probability": 0.8967 + }, + { + "start": 9442.32, + "end": 9442.92, + "probability": 0.4533 + }, + { + "start": 9442.96, + "end": 9443.24, + "probability": 0.7063 + }, + { + "start": 9443.3, + "end": 9444.94, + "probability": 0.9329 + }, + { + "start": 9445.42, + "end": 9446.04, + "probability": 0.7676 + }, + { + "start": 9446.08, + "end": 9447.14, + "probability": 0.9498 + }, + { + "start": 9447.26, + "end": 9450.4, + "probability": 0.9309 + }, + { + "start": 9450.48, + "end": 9451.8, + "probability": 0.6479 + }, + { + "start": 9451.9, + "end": 9452.18, + "probability": 0.8095 + }, + { + "start": 9452.74, + "end": 9458.18, + "probability": 0.9967 + }, + { + "start": 9458.86, + "end": 9462.44, + "probability": 0.9875 + }, + { + "start": 9462.44, + "end": 9464.8, + "probability": 0.737 + }, + { + "start": 9465.3, + "end": 9466.92, + "probability": 0.9937 + }, + { + "start": 9467.06, + "end": 9468.53, + "probability": 0.9968 + }, + { + "start": 9469.02, + "end": 9469.76, + "probability": 0.7094 + }, + { + "start": 9469.84, + "end": 9470.98, + "probability": 0.9497 + }, + { + "start": 9471.22, + "end": 9473.76, + "probability": 0.9233 + }, + { + "start": 9473.88, + "end": 9477.06, + "probability": 0.9984 + }, + { + "start": 9477.06, + "end": 9480.36, + "probability": 0.9803 + }, + { + "start": 9480.8, + "end": 9483.84, + "probability": 0.6972 + }, + { + "start": 9484.36, + "end": 9490.2, + "probability": 0.8901 + }, + { + "start": 9490.8, + "end": 9491.82, + "probability": 0.7912 + }, + { + "start": 9492.46, + "end": 9493.72, + "probability": 0.4937 + }, + { + "start": 9494.04, + "end": 9496.0, + "probability": 0.9591 + }, + { + "start": 9496.64, + "end": 9499.58, + "probability": 0.9033 + }, + { + "start": 9499.66, + "end": 9503.28, + "probability": 0.9949 + }, + { + "start": 9503.28, + "end": 9506.5, + "probability": 0.6797 + }, + { + "start": 9507.24, + "end": 9507.9, + "probability": 0.1124 + }, + { + "start": 9509.44, + "end": 9512.02, + "probability": 0.9447 + }, + { + "start": 9512.54, + "end": 9514.76, + "probability": 0.6992 + }, + { + "start": 9515.14, + "end": 9517.24, + "probability": 0.9805 + }, + { + "start": 9517.3, + "end": 9518.2, + "probability": 0.803 + }, + { + "start": 9518.6, + "end": 9520.04, + "probability": 0.8231 + }, + { + "start": 9520.48, + "end": 9521.76, + "probability": 0.642 + }, + { + "start": 9521.92, + "end": 9522.4, + "probability": 0.4795 + }, + { + "start": 9522.92, + "end": 9525.24, + "probability": 0.3884 + }, + { + "start": 9525.58, + "end": 9527.98, + "probability": 0.7936 + }, + { + "start": 9529.92, + "end": 9530.66, + "probability": 0.0498 + }, + { + "start": 9532.22, + "end": 9532.5, + "probability": 0.0891 + }, + { + "start": 9532.5, + "end": 9532.52, + "probability": 0.0605 + }, + { + "start": 9532.52, + "end": 9533.0, + "probability": 0.0124 + }, + { + "start": 9533.12, + "end": 9534.38, + "probability": 0.7964 + }, + { + "start": 9535.06, + "end": 9536.52, + "probability": 0.7289 + }, + { + "start": 9537.3, + "end": 9541.1, + "probability": 0.6634 + }, + { + "start": 9541.1, + "end": 9544.64, + "probability": 0.9749 + }, + { + "start": 9544.78, + "end": 9546.76, + "probability": 0.8329 + }, + { + "start": 9546.84, + "end": 9548.76, + "probability": 0.8743 + }, + { + "start": 9549.12, + "end": 9550.78, + "probability": 0.9334 + }, + { + "start": 9550.88, + "end": 9551.85, + "probability": 0.9946 + }, + { + "start": 9552.54, + "end": 9556.18, + "probability": 0.958 + }, + { + "start": 9557.06, + "end": 9558.74, + "probability": 0.9882 + }, + { + "start": 9558.92, + "end": 9560.13, + "probability": 0.897 + }, + { + "start": 9561.08, + "end": 9563.05, + "probability": 0.7869 + }, + { + "start": 9563.84, + "end": 9564.48, + "probability": 0.7609 + }, + { + "start": 9565.81, + "end": 9567.56, + "probability": 0.4944 + }, + { + "start": 9567.6, + "end": 9569.3, + "probability": 0.9486 + }, + { + "start": 9569.46, + "end": 9571.54, + "probability": 0.8859 + }, + { + "start": 9572.12, + "end": 9574.26, + "probability": 0.9963 + }, + { + "start": 9574.62, + "end": 9574.98, + "probability": 0.6044 + }, + { + "start": 9575.08, + "end": 9575.72, + "probability": 0.7553 + }, + { + "start": 9576.16, + "end": 9577.76, + "probability": 0.7742 + }, + { + "start": 9577.94, + "end": 9578.08, + "probability": 0.4985 + }, + { + "start": 9578.14, + "end": 9578.77, + "probability": 0.5481 + }, + { + "start": 9579.28, + "end": 9581.44, + "probability": 0.7125 + }, + { + "start": 9581.54, + "end": 9585.5, + "probability": 0.6064 + }, + { + "start": 9585.86, + "end": 9590.1, + "probability": 0.959 + }, + { + "start": 9590.5, + "end": 9591.66, + "probability": 0.8941 + }, + { + "start": 9591.76, + "end": 9592.2, + "probability": 0.8351 + }, + { + "start": 9592.28, + "end": 9593.08, + "probability": 0.7094 + }, + { + "start": 9593.08, + "end": 9593.82, + "probability": 0.7201 + }, + { + "start": 9594.56, + "end": 9597.9, + "probability": 0.8915 + }, + { + "start": 9599.68, + "end": 9602.2, + "probability": 0.3405 + }, + { + "start": 9602.72, + "end": 9603.16, + "probability": 0.3615 + }, + { + "start": 9603.2, + "end": 9606.9, + "probability": 0.9198 + }, + { + "start": 9612.48, + "end": 9614.82, + "probability": 0.7199 + }, + { + "start": 9616.32, + "end": 9620.8, + "probability": 0.9963 + }, + { + "start": 9621.38, + "end": 9622.66, + "probability": 0.9893 + }, + { + "start": 9623.5, + "end": 9625.92, + "probability": 0.4502 + }, + { + "start": 9625.92, + "end": 9629.86, + "probability": 0.9263 + }, + { + "start": 9631.52, + "end": 9632.26, + "probability": 0.5227 + }, + { + "start": 9632.6, + "end": 9638.42, + "probability": 0.9656 + }, + { + "start": 9639.3, + "end": 9643.14, + "probability": 0.9912 + }, + { + "start": 9643.3, + "end": 9644.06, + "probability": 0.7325 + }, + { + "start": 9644.58, + "end": 9648.34, + "probability": 0.9932 + }, + { + "start": 9649.26, + "end": 9652.7, + "probability": 0.9536 + }, + { + "start": 9652.7, + "end": 9657.58, + "probability": 0.9781 + }, + { + "start": 9657.74, + "end": 9662.22, + "probability": 0.9704 + }, + { + "start": 9663.7, + "end": 9665.06, + "probability": 0.7529 + }, + { + "start": 9665.66, + "end": 9669.76, + "probability": 0.9268 + }, + { + "start": 9670.88, + "end": 9676.0, + "probability": 0.9597 + }, + { + "start": 9676.28, + "end": 9676.56, + "probability": 0.7765 + }, + { + "start": 9676.68, + "end": 9680.54, + "probability": 0.9604 + }, + { + "start": 9681.16, + "end": 9685.96, + "probability": 0.9911 + }, + { + "start": 9686.22, + "end": 9690.22, + "probability": 0.8893 + }, + { + "start": 9690.4, + "end": 9692.42, + "probability": 0.909 + }, + { + "start": 9692.6, + "end": 9697.06, + "probability": 0.7434 + }, + { + "start": 9698.24, + "end": 9699.32, + "probability": 0.3693 + }, + { + "start": 9699.32, + "end": 9699.32, + "probability": 0.0645 + }, + { + "start": 9699.32, + "end": 9700.3, + "probability": 0.2862 + }, + { + "start": 9700.42, + "end": 9701.1, + "probability": 0.556 + }, + { + "start": 9701.44, + "end": 9702.26, + "probability": 0.9303 + }, + { + "start": 9702.32, + "end": 9702.42, + "probability": 0.2015 + }, + { + "start": 9702.42, + "end": 9703.16, + "probability": 0.2917 + }, + { + "start": 9704.5, + "end": 9707.74, + "probability": 0.9829 + }, + { + "start": 9707.74, + "end": 9712.02, + "probability": 0.9881 + }, + { + "start": 9712.9, + "end": 9712.9, + "probability": 0.3115 + }, + { + "start": 9714.12, + "end": 9720.34, + "probability": 0.9918 + }, + { + "start": 9721.32, + "end": 9725.26, + "probability": 0.9754 + }, + { + "start": 9726.08, + "end": 9727.42, + "probability": 0.9917 + }, + { + "start": 9728.14, + "end": 9734.72, + "probability": 0.998 + }, + { + "start": 9735.04, + "end": 9738.06, + "probability": 0.9972 + }, + { + "start": 9738.06, + "end": 9740.82, + "probability": 0.9906 + }, + { + "start": 9742.28, + "end": 9744.94, + "probability": 0.3529 + }, + { + "start": 9746.06, + "end": 9746.85, + "probability": 0.6353 + }, + { + "start": 9746.96, + "end": 9748.4, + "probability": 0.976 + }, + { + "start": 9748.48, + "end": 9751.04, + "probability": 0.8787 + }, + { + "start": 9751.46, + "end": 9752.0, + "probability": 0.5374 + }, + { + "start": 9752.14, + "end": 9752.88, + "probability": 0.9701 + }, + { + "start": 9753.22, + "end": 9754.54, + "probability": 0.9937 + }, + { + "start": 9755.66, + "end": 9756.18, + "probability": 0.2671 + }, + { + "start": 9756.46, + "end": 9757.74, + "probability": 0.6634 + }, + { + "start": 9757.94, + "end": 9758.56, + "probability": 0.6658 + }, + { + "start": 9758.56, + "end": 9758.56, + "probability": 0.0453 + }, + { + "start": 9758.56, + "end": 9758.56, + "probability": 0.0255 + }, + { + "start": 9758.56, + "end": 9758.74, + "probability": 0.1481 + }, + { + "start": 9758.84, + "end": 9760.94, + "probability": 0.9796 + }, + { + "start": 9761.38, + "end": 9761.6, + "probability": 0.1471 + }, + { + "start": 9761.66, + "end": 9763.78, + "probability": 0.811 + }, + { + "start": 9764.14, + "end": 9764.76, + "probability": 0.3169 + }, + { + "start": 9764.96, + "end": 9768.38, + "probability": 0.9795 + }, + { + "start": 9768.92, + "end": 9770.48, + "probability": 0.6197 + }, + { + "start": 9770.8, + "end": 9771.8, + "probability": 0.3638 + }, + { + "start": 9772.29, + "end": 9773.3, + "probability": 0.773 + }, + { + "start": 9774.12, + "end": 9778.86, + "probability": 0.9942 + }, + { + "start": 9779.2, + "end": 9780.26, + "probability": 0.6958 + }, + { + "start": 9781.06, + "end": 9781.82, + "probability": 0.8424 + }, + { + "start": 9782.2, + "end": 9782.3, + "probability": 0.0804 + }, + { + "start": 9783.08, + "end": 9784.08, + "probability": 0.5248 + }, + { + "start": 9784.12, + "end": 9788.16, + "probability": 0.4352 + }, + { + "start": 9788.32, + "end": 9790.06, + "probability": 0.6729 + }, + { + "start": 9790.18, + "end": 9790.18, + "probability": 0.6884 + }, + { + "start": 9792.38, + "end": 9792.8, + "probability": 0.2408 + }, + { + "start": 9792.8, + "end": 9793.98, + "probability": 0.5456 + }, + { + "start": 9794.48, + "end": 9795.22, + "probability": 0.8457 + }, + { + "start": 9795.24, + "end": 9796.02, + "probability": 0.8527 + }, + { + "start": 9796.44, + "end": 9796.56, + "probability": 0.2264 + }, + { + "start": 9796.62, + "end": 9799.47, + "probability": 0.9966 + }, + { + "start": 9800.12, + "end": 9802.25, + "probability": 0.9879 + }, + { + "start": 9803.38, + "end": 9806.04, + "probability": 0.8442 + }, + { + "start": 9806.94, + "end": 9810.37, + "probability": 0.9878 + }, + { + "start": 9810.59, + "end": 9816.19, + "probability": 0.7015 + }, + { + "start": 9816.75, + "end": 9820.37, + "probability": 0.9393 + }, + { + "start": 9821.63, + "end": 9822.19, + "probability": 0.3484 + }, + { + "start": 9823.13, + "end": 9823.15, + "probability": 0.5541 + }, + { + "start": 9823.15, + "end": 9823.49, + "probability": 0.308 + }, + { + "start": 9823.69, + "end": 9826.13, + "probability": 0.6918 + }, + { + "start": 9827.18, + "end": 9832.49, + "probability": 0.9059 + }, + { + "start": 9833.35, + "end": 9835.23, + "probability": 0.4816 + }, + { + "start": 9836.05, + "end": 9836.29, + "probability": 0.0796 + }, + { + "start": 9836.29, + "end": 9837.65, + "probability": 0.8472 + }, + { + "start": 9837.75, + "end": 9841.07, + "probability": 0.9449 + }, + { + "start": 9842.57, + "end": 9844.01, + "probability": 0.6187 + }, + { + "start": 9845.07, + "end": 9845.99, + "probability": 0.5187 + }, + { + "start": 9847.29, + "end": 9848.59, + "probability": 0.9909 + }, + { + "start": 9848.71, + "end": 9850.19, + "probability": 0.8776 + }, + { + "start": 9852.47, + "end": 9853.47, + "probability": 0.3233 + }, + { + "start": 9864.17, + "end": 9865.39, + "probability": 0.2341 + }, + { + "start": 9869.83, + "end": 9872.17, + "probability": 0.6506 + }, + { + "start": 9872.27, + "end": 9875.03, + "probability": 0.6097 + }, + { + "start": 9876.14, + "end": 9879.31, + "probability": 0.1512 + }, + { + "start": 9889.51, + "end": 9890.37, + "probability": 0.0346 + }, + { + "start": 9891.01, + "end": 9897.51, + "probability": 0.1505 + }, + { + "start": 9897.51, + "end": 9900.64, + "probability": 0.0144 + }, + { + "start": 9900.91, + "end": 9901.19, + "probability": 0.0089 + }, + { + "start": 9903.68, + "end": 9906.01, + "probability": 0.0357 + }, + { + "start": 9906.01, + "end": 9908.2, + "probability": 0.1636 + }, + { + "start": 9909.59, + "end": 9914.45, + "probability": 0.0691 + }, + { + "start": 9916.51, + "end": 9922.47, + "probability": 0.0304 + }, + { + "start": 9923.51, + "end": 9924.29, + "probability": 0.0463 + }, + { + "start": 9924.93, + "end": 9926.23, + "probability": 0.1661 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.0, + "end": 9936.0, + "probability": 0.0 + }, + { + "start": 9936.37, + "end": 9938.98, + "probability": 0.5951 + }, + { + "start": 9939.78, + "end": 9940.66, + "probability": 0.9105 + }, + { + "start": 9943.36, + "end": 9945.36, + "probability": 0.9725 + }, + { + "start": 9945.42, + "end": 9947.88, + "probability": 0.9983 + }, + { + "start": 9948.44, + "end": 9954.0, + "probability": 0.9902 + }, + { + "start": 9954.22, + "end": 9955.7, + "probability": 0.6633 + }, + { + "start": 9956.32, + "end": 9956.94, + "probability": 0.426 + }, + { + "start": 9957.02, + "end": 9961.42, + "probability": 0.9961 + }, + { + "start": 9961.86, + "end": 9962.52, + "probability": 0.441 + }, + { + "start": 9962.64, + "end": 9967.1, + "probability": 0.9055 + }, + { + "start": 9967.67, + "end": 9969.16, + "probability": 0.8582 + }, + { + "start": 9969.22, + "end": 9969.44, + "probability": 0.8134 + }, + { + "start": 9969.5, + "end": 9969.84, + "probability": 0.8502 + }, + { + "start": 9969.98, + "end": 9973.1, + "probability": 0.848 + }, + { + "start": 9973.32, + "end": 9976.68, + "probability": 0.9902 + }, + { + "start": 9977.78, + "end": 9978.92, + "probability": 0.8589 + }, + { + "start": 9979.1, + "end": 9980.42, + "probability": 0.9778 + }, + { + "start": 9980.48, + "end": 9981.18, + "probability": 0.9541 + }, + { + "start": 9981.26, + "end": 9981.82, + "probability": 0.8217 + }, + { + "start": 9981.96, + "end": 9982.3, + "probability": 0.5304 + }, + { + "start": 9982.7, + "end": 9983.82, + "probability": 0.9033 + }, + { + "start": 9984.64, + "end": 9984.76, + "probability": 0.4013 + }, + { + "start": 9984.9, + "end": 9987.42, + "probability": 0.9926 + }, + { + "start": 9987.74, + "end": 9989.68, + "probability": 0.5404 + }, + { + "start": 9989.98, + "end": 9993.74, + "probability": 0.8536 + }, + { + "start": 9994.32, + "end": 9997.18, + "probability": 0.9799 + }, + { + "start": 9997.34, + "end": 10000.9, + "probability": 0.9829 + }, + { + "start": 10000.9, + "end": 10006.4, + "probability": 0.9736 + }, + { + "start": 10007.1, + "end": 10010.34, + "probability": 0.9446 + }, + { + "start": 10011.6, + "end": 10013.86, + "probability": 0.8533 + }, + { + "start": 10014.32, + "end": 10014.68, + "probability": 0.839 + }, + { + "start": 10014.74, + "end": 10020.0, + "probability": 0.9875 + }, + { + "start": 10020.22, + "end": 10021.58, + "probability": 0.8969 + }, + { + "start": 10021.74, + "end": 10022.64, + "probability": 0.9916 + }, + { + "start": 10022.76, + "end": 10027.2, + "probability": 0.9844 + }, + { + "start": 10027.68, + "end": 10030.3, + "probability": 0.9878 + }, + { + "start": 10030.38, + "end": 10033.62, + "probability": 0.9552 + }, + { + "start": 10033.78, + "end": 10034.08, + "probability": 0.3786 + }, + { + "start": 10034.38, + "end": 10036.42, + "probability": 0.7355 + }, + { + "start": 10036.58, + "end": 10037.12, + "probability": 0.9127 + }, + { + "start": 10037.2, + "end": 10039.38, + "probability": 0.981 + }, + { + "start": 10039.94, + "end": 10044.88, + "probability": 0.97 + }, + { + "start": 10044.88, + "end": 10049.04, + "probability": 0.9735 + }, + { + "start": 10049.32, + "end": 10050.0, + "probability": 0.5448 + }, + { + "start": 10050.08, + "end": 10052.58, + "probability": 0.9775 + }, + { + "start": 10053.24, + "end": 10055.26, + "probability": 0.9722 + }, + { + "start": 10055.34, + "end": 10056.78, + "probability": 0.8697 + }, + { + "start": 10057.18, + "end": 10059.48, + "probability": 0.9521 + }, + { + "start": 10060.58, + "end": 10063.22, + "probability": 0.9633 + }, + { + "start": 10063.6, + "end": 10068.13, + "probability": 0.9953 + }, + { + "start": 10068.46, + "end": 10070.98, + "probability": 0.8572 + }, + { + "start": 10071.46, + "end": 10073.7, + "probability": 0.9966 + }, + { + "start": 10073.7, + "end": 10076.44, + "probability": 0.907 + }, + { + "start": 10076.84, + "end": 10082.8, + "probability": 0.9973 + }, + { + "start": 10083.46, + "end": 10085.46, + "probability": 0.9976 + }, + { + "start": 10085.62, + "end": 10094.98, + "probability": 0.9406 + }, + { + "start": 10095.16, + "end": 10095.98, + "probability": 0.6842 + }, + { + "start": 10096.04, + "end": 10097.04, + "probability": 0.9963 + }, + { + "start": 10097.1, + "end": 10098.28, + "probability": 0.7911 + }, + { + "start": 10099.18, + "end": 10104.2, + "probability": 0.9867 + }, + { + "start": 10104.28, + "end": 10108.49, + "probability": 0.9265 + }, + { + "start": 10109.3, + "end": 10111.42, + "probability": 0.9124 + }, + { + "start": 10111.52, + "end": 10112.74, + "probability": 0.9324 + }, + { + "start": 10113.86, + "end": 10116.1, + "probability": 0.9954 + }, + { + "start": 10116.16, + "end": 10118.86, + "probability": 0.9929 + }, + { + "start": 10118.98, + "end": 10120.6, + "probability": 0.9156 + }, + { + "start": 10121.02, + "end": 10124.34, + "probability": 0.9768 + }, + { + "start": 10124.46, + "end": 10125.46, + "probability": 0.8334 + }, + { + "start": 10125.56, + "end": 10126.74, + "probability": 0.9751 + }, + { + "start": 10127.2, + "end": 10130.32, + "probability": 0.7985 + }, + { + "start": 10130.42, + "end": 10132.48, + "probability": 0.9316 + }, + { + "start": 10132.62, + "end": 10136.34, + "probability": 0.9973 + }, + { + "start": 10136.84, + "end": 10138.52, + "probability": 0.7576 + }, + { + "start": 10138.64, + "end": 10139.22, + "probability": 0.6663 + }, + { + "start": 10139.58, + "end": 10141.16, + "probability": 0.9805 + }, + { + "start": 10141.28, + "end": 10141.62, + "probability": 0.6771 + }, + { + "start": 10141.66, + "end": 10146.98, + "probability": 0.9868 + }, + { + "start": 10147.06, + "end": 10149.52, + "probability": 0.7809 + }, + { + "start": 10149.64, + "end": 10151.46, + "probability": 0.9839 + }, + { + "start": 10151.6, + "end": 10154.24, + "probability": 0.8358 + }, + { + "start": 10154.48, + "end": 10155.82, + "probability": 0.9331 + }, + { + "start": 10157.71, + "end": 10158.68, + "probability": 0.2173 + }, + { + "start": 10158.68, + "end": 10159.6, + "probability": 0.5828 + }, + { + "start": 10159.9, + "end": 10160.98, + "probability": 0.9199 + }, + { + "start": 10161.02, + "end": 10161.55, + "probability": 0.9668 + }, + { + "start": 10162.46, + "end": 10165.04, + "probability": 0.9285 + }, + { + "start": 10165.36, + "end": 10166.92, + "probability": 0.92 + }, + { + "start": 10167.62, + "end": 10169.08, + "probability": 0.7372 + }, + { + "start": 10169.28, + "end": 10172.72, + "probability": 0.7864 + }, + { + "start": 10172.86, + "end": 10173.64, + "probability": 0.6525 + }, + { + "start": 10173.68, + "end": 10176.49, + "probability": 0.8123 + }, + { + "start": 10178.0, + "end": 10178.8, + "probability": 0.825 + }, + { + "start": 10178.84, + "end": 10179.74, + "probability": 0.8975 + }, + { + "start": 10179.84, + "end": 10180.8, + "probability": 0.7449 + }, + { + "start": 10180.88, + "end": 10182.24, + "probability": 0.8272 + }, + { + "start": 10182.28, + "end": 10183.2, + "probability": 0.8269 + }, + { + "start": 10184.78, + "end": 10187.76, + "probability": 0.9382 + }, + { + "start": 10188.28, + "end": 10191.76, + "probability": 0.9729 + }, + { + "start": 10191.94, + "end": 10195.3, + "probability": 0.4744 + }, + { + "start": 10195.32, + "end": 10195.58, + "probability": 0.4906 + }, + { + "start": 10195.68, + "end": 10199.02, + "probability": 0.9888 + }, + { + "start": 10199.16, + "end": 10199.5, + "probability": 0.8151 + }, + { + "start": 10199.54, + "end": 10200.5, + "probability": 0.4886 + }, + { + "start": 10200.58, + "end": 10200.86, + "probability": 0.6398 + }, + { + "start": 10201.5, + "end": 10204.76, + "probability": 0.9307 + }, + { + "start": 10223.34, + "end": 10225.16, + "probability": 0.7997 + }, + { + "start": 10225.86, + "end": 10227.76, + "probability": 0.6707 + }, + { + "start": 10228.54, + "end": 10231.42, + "probability": 0.5507 + }, + { + "start": 10232.16, + "end": 10234.82, + "probability": 0.897 + }, + { + "start": 10234.88, + "end": 10240.74, + "probability": 0.8062 + }, + { + "start": 10242.68, + "end": 10246.82, + "probability": 0.6886 + }, + { + "start": 10247.02, + "end": 10247.62, + "probability": 0.7731 + }, + { + "start": 10248.42, + "end": 10251.36, + "probability": 0.8472 + }, + { + "start": 10252.84, + "end": 10253.14, + "probability": 0.4506 + }, + { + "start": 10253.16, + "end": 10253.48, + "probability": 0.9172 + }, + { + "start": 10253.6, + "end": 10257.28, + "probability": 0.7349 + }, + { + "start": 10257.38, + "end": 10261.98, + "probability": 0.6124 + }, + { + "start": 10262.16, + "end": 10268.2, + "probability": 0.7145 + }, + { + "start": 10271.92, + "end": 10274.22, + "probability": 0.6123 + }, + { + "start": 10274.36, + "end": 10276.32, + "probability": 0.7507 + }, + { + "start": 10277.46, + "end": 10280.86, + "probability": 0.6685 + }, + { + "start": 10281.52, + "end": 10285.22, + "probability": 0.9916 + }, + { + "start": 10285.32, + "end": 10289.82, + "probability": 0.9449 + }, + { + "start": 10290.68, + "end": 10293.8, + "probability": 0.818 + }, + { + "start": 10293.88, + "end": 10294.16, + "probability": 0.8787 + }, + { + "start": 10294.68, + "end": 10297.26, + "probability": 0.9137 + }, + { + "start": 10297.88, + "end": 10300.92, + "probability": 0.7478 + }, + { + "start": 10301.52, + "end": 10303.8, + "probability": 0.7825 + }, + { + "start": 10303.84, + "end": 10306.2, + "probability": 0.7568 + }, + { + "start": 10306.48, + "end": 10307.76, + "probability": 0.8069 + }, + { + "start": 10308.54, + "end": 10311.52, + "probability": 0.7591 + }, + { + "start": 10313.18, + "end": 10314.4, + "probability": 0.8517 + }, + { + "start": 10314.52, + "end": 10315.04, + "probability": 0.7953 + }, + { + "start": 10315.6, + "end": 10318.4, + "probability": 0.8177 + }, + { + "start": 10318.6, + "end": 10319.72, + "probability": 0.9469 + }, + { + "start": 10319.8, + "end": 10320.48, + "probability": 0.5723 + }, + { + "start": 10320.52, + "end": 10321.72, + "probability": 0.9818 + }, + { + "start": 10322.28, + "end": 10324.18, + "probability": 0.9492 + }, + { + "start": 10324.28, + "end": 10324.8, + "probability": 0.9014 + }, + { + "start": 10326.38, + "end": 10327.42, + "probability": 0.7998 + }, + { + "start": 10327.42, + "end": 10327.42, + "probability": 0.3096 + }, + { + "start": 10327.42, + "end": 10328.7, + "probability": 0.6374 + }, + { + "start": 10328.74, + "end": 10329.52, + "probability": 0.9628 + }, + { + "start": 10331.48, + "end": 10334.32, + "probability": 0.0346 + }, + { + "start": 10351.26, + "end": 10351.36, + "probability": 0.0059 + }, + { + "start": 10351.5, + "end": 10351.5, + "probability": 0.0265 + }, + { + "start": 10351.5, + "end": 10351.5, + "probability": 0.0386 + }, + { + "start": 10351.5, + "end": 10351.5, + "probability": 0.1363 + }, + { + "start": 10351.5, + "end": 10351.5, + "probability": 0.0795 + }, + { + "start": 10351.5, + "end": 10356.32, + "probability": 0.5917 + }, + { + "start": 10356.46, + "end": 10358.78, + "probability": 0.7545 + }, + { + "start": 10359.58, + "end": 10360.78, + "probability": 0.9371 + }, + { + "start": 10360.86, + "end": 10361.58, + "probability": 0.689 + }, + { + "start": 10362.18, + "end": 10363.36, + "probability": 0.7842 + }, + { + "start": 10364.0, + "end": 10364.5, + "probability": 0.9148 + }, + { + "start": 10365.46, + "end": 10366.44, + "probability": 0.8044 + }, + { + "start": 10367.22, + "end": 10367.68, + "probability": 0.6512 + }, + { + "start": 10367.74, + "end": 10368.52, + "probability": 0.7073 + }, + { + "start": 10369.28, + "end": 10369.9, + "probability": 0.9479 + }, + { + "start": 10370.4, + "end": 10370.68, + "probability": 0.0626 + }, + { + "start": 10374.98, + "end": 10376.6, + "probability": 0.6672 + }, + { + "start": 10376.88, + "end": 10376.98, + "probability": 0.4761 + }, + { + "start": 10378.12, + "end": 10379.46, + "probability": 0.9825 + }, + { + "start": 10379.98, + "end": 10382.68, + "probability": 0.8888 + }, + { + "start": 10383.16, + "end": 10385.1, + "probability": 0.7037 + }, + { + "start": 10385.1, + "end": 10388.48, + "probability": 0.9865 + }, + { + "start": 10389.44, + "end": 10390.52, + "probability": 0.8514 + }, + { + "start": 10390.58, + "end": 10392.16, + "probability": 0.8714 + }, + { + "start": 10392.26, + "end": 10394.56, + "probability": 0.9752 + }, + { + "start": 10395.04, + "end": 10396.61, + "probability": 0.991 + }, + { + "start": 10397.32, + "end": 10397.98, + "probability": 0.6147 + }, + { + "start": 10398.08, + "end": 10400.18, + "probability": 0.9327 + }, + { + "start": 10400.34, + "end": 10401.98, + "probability": 0.813 + }, + { + "start": 10402.04, + "end": 10405.64, + "probability": 0.986 + }, + { + "start": 10406.24, + "end": 10408.46, + "probability": 0.8123 + }, + { + "start": 10409.3, + "end": 10409.74, + "probability": 0.7992 + }, + { + "start": 10415.88, + "end": 10417.16, + "probability": 0.6052 + }, + { + "start": 10418.26, + "end": 10420.3, + "probability": 0.9716 + }, + { + "start": 10422.4, + "end": 10426.58, + "probability": 0.7977 + }, + { + "start": 10428.0, + "end": 10428.5, + "probability": 0.7516 + }, + { + "start": 10429.12, + "end": 10431.22, + "probability": 0.9421 + }, + { + "start": 10433.12, + "end": 10435.84, + "probability": 0.6206 + }, + { + "start": 10436.02, + "end": 10437.76, + "probability": 0.832 + }, + { + "start": 10437.88, + "end": 10438.38, + "probability": 0.2817 + }, + { + "start": 10438.72, + "end": 10438.9, + "probability": 0.3126 + }, + { + "start": 10438.92, + "end": 10439.7, + "probability": 0.8809 + }, + { + "start": 10439.7, + "end": 10439.72, + "probability": 0.319 + }, + { + "start": 10439.72, + "end": 10440.58, + "probability": 0.6544 + }, + { + "start": 10440.94, + "end": 10441.88, + "probability": 0.4494 + }, + { + "start": 10441.88, + "end": 10442.6, + "probability": 0.6905 + }, + { + "start": 10442.66, + "end": 10442.94, + "probability": 0.4426 + }, + { + "start": 10443.22, + "end": 10443.74, + "probability": 0.9415 + }, + { + "start": 10443.82, + "end": 10443.82, + "probability": 0.5886 + }, + { + "start": 10443.82, + "end": 10443.92, + "probability": 0.7105 + }, + { + "start": 10444.48, + "end": 10444.72, + "probability": 0.7775 + }, + { + "start": 10446.39, + "end": 10450.26, + "probability": 0.9849 + }, + { + "start": 10450.8, + "end": 10452.12, + "probability": 0.9291 + }, + { + "start": 10452.64, + "end": 10462.04, + "probability": 0.963 + }, + { + "start": 10462.4, + "end": 10465.3, + "probability": 0.9935 + }, + { + "start": 10465.3, + "end": 10468.84, + "probability": 0.9972 + }, + { + "start": 10469.1, + "end": 10474.48, + "probability": 0.9965 + }, + { + "start": 10474.88, + "end": 10480.2, + "probability": 0.9865 + }, + { + "start": 10480.22, + "end": 10484.58, + "probability": 0.8833 + }, + { + "start": 10485.58, + "end": 10486.72, + "probability": 0.644 + }, + { + "start": 10486.86, + "end": 10490.04, + "probability": 0.9834 + }, + { + "start": 10490.24, + "end": 10499.22, + "probability": 0.9324 + }, + { + "start": 10499.32, + "end": 10500.46, + "probability": 0.9482 + }, + { + "start": 10501.1, + "end": 10505.28, + "probability": 0.9814 + }, + { + "start": 10505.48, + "end": 10510.1, + "probability": 0.9684 + }, + { + "start": 10510.94, + "end": 10517.9, + "probability": 0.9756 + }, + { + "start": 10517.9, + "end": 10523.9, + "probability": 0.999 + }, + { + "start": 10523.9, + "end": 10527.78, + "probability": 0.7998 + }, + { + "start": 10528.16, + "end": 10534.5, + "probability": 0.9724 + }, + { + "start": 10535.2, + "end": 10538.26, + "probability": 0.9933 + }, + { + "start": 10538.32, + "end": 10541.5, + "probability": 0.9964 + }, + { + "start": 10543.08, + "end": 10550.02, + "probability": 0.9607 + }, + { + "start": 10550.02, + "end": 10554.16, + "probability": 0.9873 + }, + { + "start": 10554.72, + "end": 10555.88, + "probability": 0.2844 + }, + { + "start": 10556.58, + "end": 10560.04, + "probability": 0.8888 + }, + { + "start": 10561.14, + "end": 10561.8, + "probability": 0.914 + }, + { + "start": 10561.88, + "end": 10562.14, + "probability": 0.8748 + }, + { + "start": 10562.14, + "end": 10563.68, + "probability": 0.894 + }, + { + "start": 10563.74, + "end": 10565.2, + "probability": 0.9799 + }, + { + "start": 10578.54, + "end": 10579.36, + "probability": 0.7429 + }, + { + "start": 10579.46, + "end": 10580.48, + "probability": 0.742 + }, + { + "start": 10580.62, + "end": 10581.52, + "probability": 0.9612 + }, + { + "start": 10581.68, + "end": 10583.8, + "probability": 0.9265 + }, + { + "start": 10584.56, + "end": 10586.28, + "probability": 0.7836 + }, + { + "start": 10586.42, + "end": 10587.98, + "probability": 0.92 + }, + { + "start": 10590.82, + "end": 10592.14, + "probability": 0.6603 + }, + { + "start": 10592.14, + "end": 10595.3, + "probability": 0.9954 + }, + { + "start": 10595.72, + "end": 10597.18, + "probability": 0.7399 + }, + { + "start": 10598.06, + "end": 10601.86, + "probability": 0.9838 + }, + { + "start": 10602.72, + "end": 10603.16, + "probability": 0.7405 + }, + { + "start": 10604.0, + "end": 10607.74, + "probability": 0.9883 + }, + { + "start": 10608.5, + "end": 10609.48, + "probability": 0.7244 + }, + { + "start": 10609.56, + "end": 10611.6, + "probability": 0.9922 + }, + { + "start": 10611.68, + "end": 10613.8, + "probability": 0.9524 + }, + { + "start": 10614.1, + "end": 10614.42, + "probability": 0.9472 + }, + { + "start": 10615.14, + "end": 10617.18, + "probability": 0.958 + }, + { + "start": 10618.26, + "end": 10621.86, + "probability": 0.9482 + }, + { + "start": 10622.94, + "end": 10628.25, + "probability": 0.9079 + }, + { + "start": 10629.14, + "end": 10631.28, + "probability": 0.9655 + }, + { + "start": 10633.7, + "end": 10635.2, + "probability": 0.3286 + }, + { + "start": 10636.16, + "end": 10636.6, + "probability": 0.8094 + }, + { + "start": 10637.54, + "end": 10640.4, + "probability": 0.9912 + }, + { + "start": 10640.48, + "end": 10642.48, + "probability": 0.9486 + }, + { + "start": 10642.98, + "end": 10646.0, + "probability": 0.8976 + }, + { + "start": 10646.92, + "end": 10647.16, + "probability": 0.5245 + }, + { + "start": 10647.92, + "end": 10649.4, + "probability": 0.9084 + }, + { + "start": 10649.86, + "end": 10653.32, + "probability": 0.9229 + }, + { + "start": 10653.88, + "end": 10655.76, + "probability": 0.9896 + }, + { + "start": 10655.76, + "end": 10658.76, + "probability": 0.9899 + }, + { + "start": 10659.34, + "end": 10660.88, + "probability": 0.9867 + }, + { + "start": 10661.66, + "end": 10664.32, + "probability": 0.9426 + }, + { + "start": 10664.48, + "end": 10665.36, + "probability": 0.5124 + }, + { + "start": 10665.42, + "end": 10669.16, + "probability": 0.9954 + }, + { + "start": 10669.16, + "end": 10674.14, + "probability": 0.9923 + }, + { + "start": 10674.26, + "end": 10677.62, + "probability": 0.8459 + }, + { + "start": 10678.1, + "end": 10678.84, + "probability": 0.8497 + }, + { + "start": 10679.58, + "end": 10682.7, + "probability": 0.9988 + }, + { + "start": 10682.96, + "end": 10686.45, + "probability": 0.7659 + }, + { + "start": 10687.2, + "end": 10690.94, + "probability": 0.7502 + }, + { + "start": 10691.99, + "end": 10695.14, + "probability": 0.9162 + }, + { + "start": 10697.48, + "end": 10698.06, + "probability": 0.5769 + }, + { + "start": 10698.16, + "end": 10698.34, + "probability": 0.4135 + }, + { + "start": 10703.12, + "end": 10703.16, + "probability": 0.5347 + }, + { + "start": 10703.16, + "end": 10707.41, + "probability": 0.5385 + }, + { + "start": 10707.66, + "end": 10708.26, + "probability": 0.7981 + }, + { + "start": 10708.84, + "end": 10711.02, + "probability": 0.9016 + }, + { + "start": 10711.96, + "end": 10713.6, + "probability": 0.7495 + }, + { + "start": 10713.6, + "end": 10714.58, + "probability": 0.7939 + }, + { + "start": 10715.22, + "end": 10717.5, + "probability": 0.4525 + }, + { + "start": 10717.96, + "end": 10720.84, + "probability": 0.7913 + }, + { + "start": 10721.16, + "end": 10723.84, + "probability": 0.8145 + }, + { + "start": 10723.94, + "end": 10726.12, + "probability": 0.7142 + }, + { + "start": 10726.14, + "end": 10726.54, + "probability": 0.4413 + }, + { + "start": 10726.66, + "end": 10727.2, + "probability": 0.6117 + }, + { + "start": 10727.28, + "end": 10728.2, + "probability": 0.8222 + }, + { + "start": 10728.66, + "end": 10732.32, + "probability": 0.7073 + }, + { + "start": 10742.72, + "end": 10743.06, + "probability": 0.3041 + }, + { + "start": 10752.04, + "end": 10759.76, + "probability": 0.1024 + }, + { + "start": 10759.76, + "end": 10760.68, + "probability": 0.0956 + }, + { + "start": 10761.3, + "end": 10761.52, + "probability": 0.0066 + }, + { + "start": 10761.52, + "end": 10761.52, + "probability": 0.1225 + }, + { + "start": 10761.52, + "end": 10761.58, + "probability": 0.035 + }, + { + "start": 10761.58, + "end": 10762.3, + "probability": 0.1442 + }, + { + "start": 10764.44, + "end": 10764.44, + "probability": 0.2596 + }, + { + "start": 10764.44, + "end": 10765.68, + "probability": 0.2995 + }, + { + "start": 10765.68, + "end": 10766.46, + "probability": 0.3157 + }, + { + "start": 10766.76, + "end": 10770.96, + "probability": 0.0405 + }, + { + "start": 10772.7, + "end": 10774.46, + "probability": 0.1856 + }, + { + "start": 10775.08, + "end": 10778.84, + "probability": 0.0103 + }, + { + "start": 10780.91, + "end": 10783.13, + "probability": 0.0202 + }, + { + "start": 10785.56, + "end": 10792.48, + "probability": 0.3832 + }, + { + "start": 10794.08, + "end": 10794.5, + "probability": 0.1203 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.0, + "end": 10818.0, + "probability": 0.0 + }, + { + "start": 10818.26, + "end": 10818.26, + "probability": 0.0252 + }, + { + "start": 10818.26, + "end": 10818.26, + "probability": 0.0432 + }, + { + "start": 10818.26, + "end": 10818.26, + "probability": 0.0495 + }, + { + "start": 10818.26, + "end": 10821.49, + "probability": 0.3119 + }, + { + "start": 10821.8, + "end": 10825.96, + "probability": 0.8189 + }, + { + "start": 10826.82, + "end": 10828.78, + "probability": 0.9204 + }, + { + "start": 10829.26, + "end": 10834.56, + "probability": 0.939 + }, + { + "start": 10834.78, + "end": 10835.98, + "probability": 0.886 + }, + { + "start": 10836.44, + "end": 10837.46, + "probability": 0.9431 + }, + { + "start": 10838.22, + "end": 10845.26, + "probability": 0.9847 + }, + { + "start": 10845.34, + "end": 10849.3, + "probability": 0.995 + }, + { + "start": 10850.04, + "end": 10853.94, + "probability": 0.9885 + }, + { + "start": 10855.2, + "end": 10858.52, + "probability": 0.9727 + }, + { + "start": 10861.12, + "end": 10861.92, + "probability": 0.7913 + }, + { + "start": 10862.44, + "end": 10863.3, + "probability": 0.9153 + }, + { + "start": 10864.41, + "end": 10868.84, + "probability": 0.7625 + }, + { + "start": 10869.2, + "end": 10870.9, + "probability": 0.7534 + }, + { + "start": 10871.08, + "end": 10875.76, + "probability": 0.9901 + }, + { + "start": 10876.3, + "end": 10879.98, + "probability": 0.9941 + }, + { + "start": 10880.28, + "end": 10881.98, + "probability": 0.4532 + }, + { + "start": 10882.34, + "end": 10884.9, + "probability": 0.8585 + }, + { + "start": 10888.42, + "end": 10888.56, + "probability": 0.9482 + }, + { + "start": 10893.04, + "end": 10895.32, + "probability": 0.6792 + }, + { + "start": 10896.8, + "end": 10898.16, + "probability": 0.6844 + }, + { + "start": 10901.24, + "end": 10901.87, + "probability": 0.8608 + }, + { + "start": 10905.88, + "end": 10908.12, + "probability": 0.9705 + }, + { + "start": 10908.64, + "end": 10912.46, + "probability": 0.9755 + }, + { + "start": 10913.52, + "end": 10914.86, + "probability": 0.9434 + }, + { + "start": 10915.5, + "end": 10918.52, + "probability": 0.795 + }, + { + "start": 10919.78, + "end": 10921.08, + "probability": 0.7326 + }, + { + "start": 10921.8, + "end": 10926.5, + "probability": 0.7974 + }, + { + "start": 10926.92, + "end": 10927.42, + "probability": 0.8472 + }, + { + "start": 10927.52, + "end": 10929.22, + "probability": 0.8428 + }, + { + "start": 10930.56, + "end": 10931.52, + "probability": 0.6047 + }, + { + "start": 10931.6, + "end": 10932.96, + "probability": 0.9029 + }, + { + "start": 10934.78, + "end": 10935.14, + "probability": 0.9715 + }, + { + "start": 10936.66, + "end": 10940.32, + "probability": 0.7999 + }, + { + "start": 10942.0, + "end": 10943.4, + "probability": 0.7392 + }, + { + "start": 10944.22, + "end": 10947.86, + "probability": 0.9018 + }, + { + "start": 10948.66, + "end": 10950.62, + "probability": 0.9932 + }, + { + "start": 10953.14, + "end": 10954.5, + "probability": 0.8922 + }, + { + "start": 10955.86, + "end": 10956.8, + "probability": 0.7195 + }, + { + "start": 10957.4, + "end": 10958.05, + "probability": 0.9482 + }, + { + "start": 10958.76, + "end": 10964.68, + "probability": 0.8167 + }, + { + "start": 10970.28, + "end": 10975.68, + "probability": 0.8988 + }, + { + "start": 10976.72, + "end": 10978.44, + "probability": 0.8987 + }, + { + "start": 10979.46, + "end": 10986.18, + "probability": 0.9839 + }, + { + "start": 10988.02, + "end": 10990.24, + "probability": 0.9211 + }, + { + "start": 10992.12, + "end": 10994.77, + "probability": 0.9189 + }, + { + "start": 10995.64, + "end": 10998.0, + "probability": 0.9797 + }, + { + "start": 10999.12, + "end": 11000.26, + "probability": 0.6359 + }, + { + "start": 11007.32, + "end": 11007.32, + "probability": 0.0517 + }, + { + "start": 11007.32, + "end": 11007.32, + "probability": 0.1434 + }, + { + "start": 11007.32, + "end": 11008.28, + "probability": 0.7509 + }, + { + "start": 11010.08, + "end": 11011.14, + "probability": 0.7343 + }, + { + "start": 11012.94, + "end": 11013.84, + "probability": 0.4787 + }, + { + "start": 11018.92, + "end": 11023.02, + "probability": 0.8423 + }, + { + "start": 11023.52, + "end": 11026.0, + "probability": 0.5616 + }, + { + "start": 11026.16, + "end": 11028.26, + "probability": 0.9658 + }, + { + "start": 11028.52, + "end": 11029.14, + "probability": 0.005 + }, + { + "start": 11031.36, + "end": 11031.73, + "probability": 0.0996 + }, + { + "start": 11033.0, + "end": 11033.38, + "probability": 0.1091 + }, + { + "start": 11033.94, + "end": 11033.94, + "probability": 0.0545 + }, + { + "start": 11033.94, + "end": 11033.94, + "probability": 0.0188 + }, + { + "start": 11033.94, + "end": 11033.94, + "probability": 0.3728 + }, + { + "start": 11033.94, + "end": 11035.7, + "probability": 0.2793 + }, + { + "start": 11035.8, + "end": 11036.22, + "probability": 0.2101 + }, + { + "start": 11036.44, + "end": 11036.48, + "probability": 0.0906 + }, + { + "start": 11036.52, + "end": 11038.16, + "probability": 0.3424 + }, + { + "start": 11038.98, + "end": 11040.16, + "probability": 0.4428 + }, + { + "start": 11040.16, + "end": 11042.24, + "probability": 0.6336 + }, + { + "start": 11042.5, + "end": 11044.28, + "probability": 0.9942 + }, + { + "start": 11044.34, + "end": 11045.95, + "probability": 0.3667 + }, + { + "start": 11046.3, + "end": 11048.92, + "probability": 0.9258 + }, + { + "start": 11049.14, + "end": 11050.81, + "probability": 0.9037 + }, + { + "start": 11051.22, + "end": 11052.58, + "probability": 0.9072 + }, + { + "start": 11052.68, + "end": 11054.96, + "probability": 0.993 + }, + { + "start": 11055.24, + "end": 11059.16, + "probability": 0.9917 + }, + { + "start": 11059.68, + "end": 11060.4, + "probability": 0.8908 + }, + { + "start": 11060.52, + "end": 11061.28, + "probability": 0.7896 + }, + { + "start": 11061.4, + "end": 11065.08, + "probability": 0.7536 + }, + { + "start": 11065.16, + "end": 11067.4, + "probability": 0.988 + }, + { + "start": 11067.84, + "end": 11072.44, + "probability": 0.9508 + }, + { + "start": 11072.8, + "end": 11074.34, + "probability": 0.9645 + }, + { + "start": 11074.4, + "end": 11075.28, + "probability": 0.931 + }, + { + "start": 11075.54, + "end": 11076.04, + "probability": 0.5291 + }, + { + "start": 11076.16, + "end": 11078.5, + "probability": 0.937 + }, + { + "start": 11078.62, + "end": 11080.16, + "probability": 0.2948 + }, + { + "start": 11080.4, + "end": 11082.72, + "probability": 0.7721 + }, + { + "start": 11082.82, + "end": 11083.46, + "probability": 0.1061 + }, + { + "start": 11083.46, + "end": 11086.3, + "probability": 0.9772 + }, + { + "start": 11087.0, + "end": 11089.48, + "probability": 0.9551 + }, + { + "start": 11090.08, + "end": 11093.66, + "probability": 0.9843 + }, + { + "start": 11094.02, + "end": 11094.52, + "probability": 0.3908 + }, + { + "start": 11095.92, + "end": 11098.58, + "probability": 0.2495 + }, + { + "start": 11099.0, + "end": 11102.4, + "probability": 0.4898 + }, + { + "start": 11102.66, + "end": 11104.24, + "probability": 0.2524 + }, + { + "start": 11105.56, + "end": 11105.58, + "probability": 0.1405 + }, + { + "start": 11105.58, + "end": 11105.58, + "probability": 0.4984 + }, + { + "start": 11105.58, + "end": 11107.77, + "probability": 0.6202 + }, + { + "start": 11108.2, + "end": 11109.28, + "probability": 0.9436 + }, + { + "start": 11109.36, + "end": 11115.74, + "probability": 0.7478 + }, + { + "start": 11116.5, + "end": 11116.5, + "probability": 0.0002 + }, + { + "start": 11117.08, + "end": 11117.82, + "probability": 0.4401 + }, + { + "start": 11117.88, + "end": 11120.34, + "probability": 0.8825 + }, + { + "start": 11120.4, + "end": 11123.06, + "probability": 0.9438 + }, + { + "start": 11123.24, + "end": 11126.88, + "probability": 0.9314 + }, + { + "start": 11127.6, + "end": 11131.1, + "probability": 0.5196 + }, + { + "start": 11131.56, + "end": 11134.34, + "probability": 0.8087 + }, + { + "start": 11135.08, + "end": 11141.7, + "probability": 0.9944 + }, + { + "start": 11141.84, + "end": 11142.3, + "probability": 0.4456 + }, + { + "start": 11142.64, + "end": 11142.76, + "probability": 0.2161 + }, + { + "start": 11142.84, + "end": 11144.79, + "probability": 0.9827 + }, + { + "start": 11145.42, + "end": 11150.98, + "probability": 0.8701 + }, + { + "start": 11151.28, + "end": 11152.82, + "probability": 0.7769 + }, + { + "start": 11154.48, + "end": 11154.9, + "probability": 0.9033 + }, + { + "start": 11155.7, + "end": 11157.74, + "probability": 0.7519 + }, + { + "start": 11158.04, + "end": 11158.72, + "probability": 0.9478 + }, + { + "start": 11159.14, + "end": 11161.88, + "probability": 0.8251 + }, + { + "start": 11162.14, + "end": 11164.74, + "probability": 0.8499 + }, + { + "start": 11165.22, + "end": 11170.1, + "probability": 0.9612 + }, + { + "start": 11170.54, + "end": 11176.2, + "probability": 0.9701 + }, + { + "start": 11177.8, + "end": 11178.9, + "probability": 0.9574 + }, + { + "start": 11179.32, + "end": 11181.06, + "probability": 0.6274 + }, + { + "start": 11181.32, + "end": 11183.16, + "probability": 0.9822 + }, + { + "start": 11183.78, + "end": 11184.4, + "probability": 0.6309 + }, + { + "start": 11184.54, + "end": 11184.98, + "probability": 0.8348 + }, + { + "start": 11185.36, + "end": 11188.34, + "probability": 0.9761 + }, + { + "start": 11188.96, + "end": 11191.08, + "probability": 0.3676 + }, + { + "start": 11193.23, + "end": 11195.18, + "probability": 0.0432 + }, + { + "start": 11195.18, + "end": 11195.72, + "probability": 0.4794 + }, + { + "start": 11196.22, + "end": 11197.74, + "probability": 0.8001 + }, + { + "start": 11197.86, + "end": 11199.02, + "probability": 0.4662 + }, + { + "start": 11199.38, + "end": 11201.72, + "probability": 0.5496 + }, + { + "start": 11202.52, + "end": 11204.88, + "probability": 0.654 + }, + { + "start": 11205.52, + "end": 11206.32, + "probability": 0.0565 + }, + { + "start": 11206.42, + "end": 11207.5, + "probability": 0.4746 + }, + { + "start": 11207.66, + "end": 11209.84, + "probability": 0.8594 + }, + { + "start": 11209.92, + "end": 11210.64, + "probability": 0.8895 + }, + { + "start": 11211.1, + "end": 11217.84, + "probability": 0.9589 + }, + { + "start": 11218.42, + "end": 11226.1, + "probability": 0.9438 + }, + { + "start": 11227.36, + "end": 11228.4, + "probability": 0.8736 + }, + { + "start": 11229.36, + "end": 11230.46, + "probability": 0.9246 + }, + { + "start": 11231.2, + "end": 11232.88, + "probability": 0.8742 + }, + { + "start": 11233.72, + "end": 11234.94, + "probability": 0.9639 + }, + { + "start": 11235.56, + "end": 11243.94, + "probability": 0.7598 + }, + { + "start": 11244.52, + "end": 11246.12, + "probability": 0.8271 + }, + { + "start": 11247.6, + "end": 11250.3, + "probability": 0.9155 + }, + { + "start": 11251.0, + "end": 11251.5, + "probability": 0.9532 + }, + { + "start": 11252.02, + "end": 11253.38, + "probability": 0.7443 + }, + { + "start": 11253.92, + "end": 11256.84, + "probability": 0.9509 + }, + { + "start": 11258.12, + "end": 11260.38, + "probability": 0.9971 + }, + { + "start": 11260.38, + "end": 11262.66, + "probability": 0.8529 + }, + { + "start": 11263.26, + "end": 11267.14, + "probability": 0.9489 + }, + { + "start": 11268.1, + "end": 11269.2, + "probability": 0.9867 + }, + { + "start": 11269.78, + "end": 11270.88, + "probability": 0.9541 + }, + { + "start": 11270.94, + "end": 11271.76, + "probability": 0.6614 + }, + { + "start": 11271.84, + "end": 11272.7, + "probability": 0.6801 + }, + { + "start": 11273.66, + "end": 11277.76, + "probability": 0.9465 + }, + { + "start": 11278.79, + "end": 11279.52, + "probability": 0.0655 + }, + { + "start": 11279.52, + "end": 11279.56, + "probability": 0.2747 + }, + { + "start": 11279.56, + "end": 11280.9, + "probability": 0.5147 + }, + { + "start": 11281.14, + "end": 11282.08, + "probability": 0.7846 + }, + { + "start": 11283.8, + "end": 11284.24, + "probability": 0.0542 + }, + { + "start": 11286.96, + "end": 11287.04, + "probability": 0.0201 + }, + { + "start": 11289.66, + "end": 11291.62, + "probability": 0.3498 + }, + { + "start": 11291.8, + "end": 11293.54, + "probability": 0.6117 + }, + { + "start": 11293.62, + "end": 11294.28, + "probability": 0.861 + }, + { + "start": 11295.16, + "end": 11295.26, + "probability": 0.0421 + }, + { + "start": 11295.26, + "end": 11297.82, + "probability": 0.7129 + }, + { + "start": 11297.88, + "end": 11299.72, + "probability": 0.8844 + }, + { + "start": 11299.72, + "end": 11300.94, + "probability": 0.5853 + }, + { + "start": 11301.16, + "end": 11305.88, + "probability": 0.9783 + }, + { + "start": 11307.54, + "end": 11308.7, + "probability": 0.5976 + }, + { + "start": 11309.52, + "end": 11310.62, + "probability": 0.4075 + }, + { + "start": 11311.72, + "end": 11313.42, + "probability": 0.988 + }, + { + "start": 11313.92, + "end": 11317.2, + "probability": 0.9458 + }, + { + "start": 11318.54, + "end": 11321.88, + "probability": 0.9744 + }, + { + "start": 11322.56, + "end": 11325.3, + "probability": 0.9766 + }, + { + "start": 11326.18, + "end": 11330.5, + "probability": 0.9727 + }, + { + "start": 11331.08, + "end": 11332.5, + "probability": 0.7382 + }, + { + "start": 11333.4, + "end": 11335.78, + "probability": 0.9873 + }, + { + "start": 11336.56, + "end": 11338.98, + "probability": 0.9546 + }, + { + "start": 11339.64, + "end": 11342.0, + "probability": 0.998 + }, + { + "start": 11342.68, + "end": 11343.62, + "probability": 0.9091 + }, + { + "start": 11344.2, + "end": 11346.26, + "probability": 0.8581 + }, + { + "start": 11346.4, + "end": 11348.88, + "probability": 0.998 + }, + { + "start": 11349.84, + "end": 11350.98, + "probability": 0.6667 + }, + { + "start": 11351.16, + "end": 11353.06, + "probability": 0.9445 + }, + { + "start": 11353.16, + "end": 11354.16, + "probability": 0.7636 + }, + { + "start": 11354.18, + "end": 11355.46, + "probability": 0.9638 + }, + { + "start": 11355.64, + "end": 11357.6, + "probability": 0.9668 + }, + { + "start": 11357.88, + "end": 11359.72, + "probability": 0.1133 + }, + { + "start": 11359.96, + "end": 11362.66, + "probability": 0.0064 + }, + { + "start": 11362.66, + "end": 11365.58, + "probability": 0.6095 + }, + { + "start": 11367.66, + "end": 11374.24, + "probability": 0.3249 + }, + { + "start": 11374.24, + "end": 11375.08, + "probability": 0.8609 + }, + { + "start": 11378.68, + "end": 11382.08, + "probability": 0.6846 + }, + { + "start": 11383.3, + "end": 11385.58, + "probability": 0.7757 + }, + { + "start": 11386.16, + "end": 11390.1, + "probability": 0.9906 + }, + { + "start": 11390.58, + "end": 11392.38, + "probability": 0.9977 + }, + { + "start": 11393.02, + "end": 11397.86, + "probability": 0.8743 + }, + { + "start": 11398.58, + "end": 11402.42, + "probability": 0.9982 + }, + { + "start": 11403.59, + "end": 11409.18, + "probability": 0.9812 + }, + { + "start": 11410.88, + "end": 11414.14, + "probability": 0.8576 + }, + { + "start": 11414.84, + "end": 11416.12, + "probability": 0.5929 + }, + { + "start": 11416.48, + "end": 11418.74, + "probability": 0.7977 + }, + { + "start": 11418.82, + "end": 11420.54, + "probability": 0.805 + }, + { + "start": 11420.78, + "end": 11421.4, + "probability": 0.3695 + }, + { + "start": 11421.5, + "end": 11422.94, + "probability": 0.3139 + }, + { + "start": 11422.94, + "end": 11423.64, + "probability": 0.0551 + }, + { + "start": 11423.88, + "end": 11425.98, + "probability": 0.7032 + }, + { + "start": 11426.16, + "end": 11427.7, + "probability": 0.4652 + }, + { + "start": 11428.32, + "end": 11430.45, + "probability": 0.2409 + }, + { + "start": 11430.74, + "end": 11431.37, + "probability": 0.1743 + }, + { + "start": 11432.04, + "end": 11432.81, + "probability": 0.0505 + }, + { + "start": 11433.26, + "end": 11434.72, + "probability": 0.5425 + }, + { + "start": 11435.84, + "end": 11439.26, + "probability": 0.7058 + }, + { + "start": 11439.7, + "end": 11442.74, + "probability": 0.0391 + }, + { + "start": 11443.2, + "end": 11443.94, + "probability": 0.6473 + }, + { + "start": 11443.94, + "end": 11443.94, + "probability": 0.1035 + }, + { + "start": 11443.94, + "end": 11443.94, + "probability": 0.1735 + }, + { + "start": 11443.94, + "end": 11446.56, + "probability": 0.7526 + }, + { + "start": 11446.62, + "end": 11447.06, + "probability": 0.7312 + }, + { + "start": 11447.08, + "end": 11447.2, + "probability": 0.7322 + }, + { + "start": 11447.44, + "end": 11448.06, + "probability": 0.8673 + }, + { + "start": 11448.46, + "end": 11448.94, + "probability": 0.8727 + }, + { + "start": 11449.4, + "end": 11450.36, + "probability": 0.9148 + }, + { + "start": 11450.7, + "end": 11451.32, + "probability": 0.6596 + }, + { + "start": 11451.36, + "end": 11451.97, + "probability": 0.6799 + }, + { + "start": 11452.34, + "end": 11453.62, + "probability": 0.8992 + }, + { + "start": 11453.84, + "end": 11455.6, + "probability": 0.9111 + }, + { + "start": 11455.7, + "end": 11457.28, + "probability": 0.7289 + }, + { + "start": 11457.28, + "end": 11460.1, + "probability": 0.9749 + }, + { + "start": 11460.56, + "end": 11463.36, + "probability": 0.8058 + }, + { + "start": 11463.78, + "end": 11465.74, + "probability": 0.9462 + }, + { + "start": 11465.98, + "end": 11467.44, + "probability": 0.9736 + }, + { + "start": 11467.54, + "end": 11468.2, + "probability": 0.5775 + }, + { + "start": 11468.34, + "end": 11470.87, + "probability": 0.8606 + }, + { + "start": 11471.32, + "end": 11472.12, + "probability": 0.9042 + }, + { + "start": 11472.42, + "end": 11473.0, + "probability": 0.71 + }, + { + "start": 11473.12, + "end": 11474.4, + "probability": 0.9799 + }, + { + "start": 11474.5, + "end": 11474.92, + "probability": 0.116 + }, + { + "start": 11475.2, + "end": 11475.4, + "probability": 0.0235 + }, + { + "start": 11475.58, + "end": 11476.22, + "probability": 0.7336 + }, + { + "start": 11476.28, + "end": 11478.96, + "probability": 0.7964 + }, + { + "start": 11479.6, + "end": 11482.04, + "probability": 0.9971 + }, + { + "start": 11482.08, + "end": 11487.88, + "probability": 0.9727 + }, + { + "start": 11488.67, + "end": 11492.02, + "probability": 0.1334 + }, + { + "start": 11492.02, + "end": 11492.22, + "probability": 0.4136 + }, + { + "start": 11492.22, + "end": 11494.38, + "probability": 0.5344 + }, + { + "start": 11494.84, + "end": 11496.1, + "probability": 0.4264 + }, + { + "start": 11498.1, + "end": 11498.3, + "probability": 0.4409 + }, + { + "start": 11498.3, + "end": 11498.3, + "probability": 0.5153 + }, + { + "start": 11498.3, + "end": 11499.04, + "probability": 0.1789 + }, + { + "start": 11499.9, + "end": 11501.88, + "probability": 0.9216 + }, + { + "start": 11504.58, + "end": 11508.82, + "probability": 0.8849 + }, + { + "start": 11509.6, + "end": 11513.06, + "probability": 0.977 + }, + { + "start": 11513.82, + "end": 11515.23, + "probability": 0.9698 + }, + { + "start": 11515.72, + "end": 11517.0, + "probability": 0.4607 + }, + { + "start": 11517.0, + "end": 11518.04, + "probability": 0.6846 + }, + { + "start": 11518.82, + "end": 11520.56, + "probability": 0.7667 + }, + { + "start": 11521.0, + "end": 11523.92, + "probability": 0.9749 + }, + { + "start": 11524.46, + "end": 11526.08, + "probability": 0.9617 + }, + { + "start": 11526.24, + "end": 11528.52, + "probability": 0.6269 + }, + { + "start": 11529.08, + "end": 11531.08, + "probability": 0.7344 + }, + { + "start": 11531.1, + "end": 11532.48, + "probability": 0.8253 + }, + { + "start": 11532.5, + "end": 11533.38, + "probability": 0.4462 + }, + { + "start": 11533.62, + "end": 11534.44, + "probability": 0.9601 + }, + { + "start": 11534.6, + "end": 11534.98, + "probability": 0.8321 + }, + { + "start": 11535.08, + "end": 11538.9, + "probability": 0.9838 + }, + { + "start": 11539.08, + "end": 11541.08, + "probability": 0.5852 + }, + { + "start": 11541.36, + "end": 11543.48, + "probability": 0.8553 + }, + { + "start": 11543.62, + "end": 11546.44, + "probability": 0.9799 + }, + { + "start": 11547.1, + "end": 11550.48, + "probability": 0.7528 + }, + { + "start": 11551.2, + "end": 11553.1, + "probability": 0.737 + }, + { + "start": 11553.9, + "end": 11554.72, + "probability": 0.9289 + }, + { + "start": 11555.56, + "end": 11561.62, + "probability": 0.8856 + }, + { + "start": 11561.62, + "end": 11565.46, + "probability": 0.9966 + }, + { + "start": 11566.1, + "end": 11568.04, + "probability": 0.9765 + }, + { + "start": 11568.52, + "end": 11570.7, + "probability": 0.8921 + }, + { + "start": 11571.24, + "end": 11575.22, + "probability": 0.8029 + }, + { + "start": 11575.64, + "end": 11578.9, + "probability": 0.9772 + }, + { + "start": 11579.6, + "end": 11581.02, + "probability": 0.8716 + }, + { + "start": 11581.86, + "end": 11583.62, + "probability": 0.0393 + }, + { + "start": 11586.78, + "end": 11588.7, + "probability": 0.2467 + }, + { + "start": 11589.18, + "end": 11592.18, + "probability": 0.4859 + }, + { + "start": 11592.3, + "end": 11594.66, + "probability": 0.8244 + }, + { + "start": 11595.24, + "end": 11595.88, + "probability": 0.192 + }, + { + "start": 11595.88, + "end": 11600.17, + "probability": 0.0805 + }, + { + "start": 11600.32, + "end": 11600.96, + "probability": 0.1868 + }, + { + "start": 11603.94, + "end": 11604.72, + "probability": 0.0449 + }, + { + "start": 11604.84, + "end": 11606.4, + "probability": 0.0415 + }, + { + "start": 11606.86, + "end": 11608.17, + "probability": 0.1256 + }, + { + "start": 11608.9, + "end": 11610.9, + "probability": 0.0502 + }, + { + "start": 11612.07, + "end": 11613.53, + "probability": 0.0988 + }, + { + "start": 11640.88, + "end": 11641.48, + "probability": 0.0472 + }, + { + "start": 11641.7, + "end": 11643.94, + "probability": 0.0585 + }, + { + "start": 11643.94, + "end": 11644.16, + "probability": 0.1331 + }, + { + "start": 11644.16, + "end": 11644.28, + "probability": 0.078 + }, + { + "start": 11644.3, + "end": 11644.62, + "probability": 0.2186 + }, + { + "start": 11645.1, + "end": 11648.26, + "probability": 0.1753 + }, + { + "start": 11648.54, + "end": 11649.76, + "probability": 0.0324 + }, + { + "start": 11649.84, + "end": 11650.58, + "probability": 0.0931 + }, + { + "start": 11650.58, + "end": 11652.26, + "probability": 0.3371 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.0, + "end": 11680.0, + "probability": 0.0 + }, + { + "start": 11680.22, + "end": 11680.78, + "probability": 0.035 + }, + { + "start": 11680.78, + "end": 11680.78, + "probability": 0.0897 + }, + { + "start": 11680.78, + "end": 11681.7, + "probability": 0.1981 + }, + { + "start": 11681.78, + "end": 11682.78, + "probability": 0.7425 + }, + { + "start": 11682.94, + "end": 11688.06, + "probability": 0.9707 + }, + { + "start": 11688.48, + "end": 11689.62, + "probability": 0.7192 + }, + { + "start": 11690.42, + "end": 11691.68, + "probability": 0.9556 + }, + { + "start": 11692.32, + "end": 11693.46, + "probability": 0.6454 + }, + { + "start": 11694.46, + "end": 11696.62, + "probability": 0.5111 + }, + { + "start": 11696.78, + "end": 11698.08, + "probability": 0.8156 + }, + { + "start": 11698.4, + "end": 11700.88, + "probability": 0.7147 + }, + { + "start": 11701.24, + "end": 11702.88, + "probability": 0.6921 + }, + { + "start": 11702.88, + "end": 11704.4, + "probability": 0.8077 + }, + { + "start": 11704.5, + "end": 11704.86, + "probability": 0.841 + }, + { + "start": 11705.32, + "end": 11705.9, + "probability": 0.8103 + }, + { + "start": 11706.06, + "end": 11709.64, + "probability": 0.9402 + }, + { + "start": 11709.76, + "end": 11710.06, + "probability": 0.5854 + }, + { + "start": 11710.2, + "end": 11711.28, + "probability": 0.059 + }, + { + "start": 11711.28, + "end": 11711.28, + "probability": 0.3559 + }, + { + "start": 11711.28, + "end": 11713.18, + "probability": 0.5004 + }, + { + "start": 11713.18, + "end": 11715.32, + "probability": 0.6902 + }, + { + "start": 11715.84, + "end": 11717.58, + "probability": 0.9546 + }, + { + "start": 11718.34, + "end": 11721.06, + "probability": 0.9373 + }, + { + "start": 11721.52, + "end": 11722.8, + "probability": 0.1236 + }, + { + "start": 11722.88, + "end": 11724.68, + "probability": 0.4481 + }, + { + "start": 11724.68, + "end": 11726.66, + "probability": 0.3148 + }, + { + "start": 11727.46, + "end": 11729.0, + "probability": 0.9311 + }, + { + "start": 11729.72, + "end": 11730.74, + "probability": 0.9056 + }, + { + "start": 11731.82, + "end": 11734.6, + "probability": 0.7985 + }, + { + "start": 11735.52, + "end": 11736.56, + "probability": 0.529 + }, + { + "start": 11737.48, + "end": 11741.1, + "probability": 0.8192 + }, + { + "start": 11741.74, + "end": 11742.16, + "probability": 0.3447 + }, + { + "start": 11742.28, + "end": 11742.72, + "probability": 0.0038 + }, + { + "start": 11742.72, + "end": 11744.7, + "probability": 0.98 + }, + { + "start": 11744.9, + "end": 11748.18, + "probability": 0.9651 + }, + { + "start": 11748.68, + "end": 11750.19, + "probability": 0.9902 + }, + { + "start": 11750.92, + "end": 11753.96, + "probability": 0.668 + }, + { + "start": 11754.4, + "end": 11756.34, + "probability": 0.8132 + }, + { + "start": 11756.78, + "end": 11759.36, + "probability": 0.968 + }, + { + "start": 11760.06, + "end": 11760.96, + "probability": 0.9712 + }, + { + "start": 11761.26, + "end": 11762.44, + "probability": 0.969 + }, + { + "start": 11762.62, + "end": 11765.28, + "probability": 0.927 + }, + { + "start": 11765.66, + "end": 11767.99, + "probability": 0.4566 + }, + { + "start": 11768.44, + "end": 11771.36, + "probability": 0.6572 + }, + { + "start": 11771.5, + "end": 11771.92, + "probability": 0.0035 + }, + { + "start": 11772.34, + "end": 11774.28, + "probability": 0.6036 + }, + { + "start": 11774.68, + "end": 11776.26, + "probability": 0.9277 + }, + { + "start": 11777.62, + "end": 11779.68, + "probability": 0.9895 + }, + { + "start": 11779.9, + "end": 11781.04, + "probability": 0.9362 + }, + { + "start": 11781.32, + "end": 11782.0, + "probability": 0.8521 + }, + { + "start": 11782.36, + "end": 11783.36, + "probability": 0.817 + }, + { + "start": 11783.7, + "end": 11785.4, + "probability": 0.8385 + }, + { + "start": 11786.2, + "end": 11789.54, + "probability": 0.9256 + }, + { + "start": 11791.71, + "end": 11794.5, + "probability": 0.6986 + }, + { + "start": 11794.54, + "end": 11795.44, + "probability": 0.5381 + }, + { + "start": 11795.82, + "end": 11797.08, + "probability": 0.8027 + }, + { + "start": 11797.93, + "end": 11801.48, + "probability": 0.8541 + }, + { + "start": 11802.36, + "end": 11805.82, + "probability": 0.9433 + }, + { + "start": 11806.22, + "end": 11807.12, + "probability": 0.5472 + }, + { + "start": 11807.84, + "end": 11809.54, + "probability": 0.9416 + }, + { + "start": 11810.02, + "end": 11810.9, + "probability": 0.7736 + }, + { + "start": 11811.46, + "end": 11812.66, + "probability": 0.9091 + }, + { + "start": 11813.38, + "end": 11814.78, + "probability": 0.7226 + }, + { + "start": 11815.32, + "end": 11818.62, + "probability": 0.7238 + }, + { + "start": 11819.42, + "end": 11820.38, + "probability": 0.7992 + }, + { + "start": 11821.38, + "end": 11825.36, + "probability": 0.8051 + }, + { + "start": 11826.18, + "end": 11828.98, + "probability": 0.9838 + }, + { + "start": 11829.1, + "end": 11829.52, + "probability": 0.1766 + }, + { + "start": 11829.8, + "end": 11830.29, + "probability": 0.5543 + }, + { + "start": 11830.44, + "end": 11831.01, + "probability": 0.4834 + }, + { + "start": 11831.4, + "end": 11832.91, + "probability": 0.9712 + }, + { + "start": 11833.42, + "end": 11834.22, + "probability": 0.4895 + }, + { + "start": 11834.48, + "end": 11834.48, + "probability": 0.9285 + }, + { + "start": 11834.58, + "end": 11837.14, + "probability": 0.8632 + }, + { + "start": 11837.94, + "end": 11839.76, + "probability": 0.2399 + }, + { + "start": 11840.36, + "end": 11842.9, + "probability": 0.3096 + }, + { + "start": 11843.32, + "end": 11844.2, + "probability": 0.8038 + }, + { + "start": 11844.44, + "end": 11845.62, + "probability": 0.4878 + }, + { + "start": 11845.62, + "end": 11847.08, + "probability": 0.9731 + }, + { + "start": 11847.08, + "end": 11848.42, + "probability": 0.4877 + }, + { + "start": 11849.0, + "end": 11851.48, + "probability": 0.9119 + }, + { + "start": 11852.72, + "end": 11854.37, + "probability": 0.957 + }, + { + "start": 11855.18, + "end": 11858.1, + "probability": 0.9519 + }, + { + "start": 11858.66, + "end": 11859.54, + "probability": 0.8165 + }, + { + "start": 11860.92, + "end": 11861.8, + "probability": 0.9832 + }, + { + "start": 11862.74, + "end": 11864.64, + "probability": 0.9938 + }, + { + "start": 11865.42, + "end": 11869.02, + "probability": 0.9488 + }, + { + "start": 11870.3, + "end": 11870.52, + "probability": 0.8867 + }, + { + "start": 11871.46, + "end": 11872.4, + "probability": 0.9816 + }, + { + "start": 11872.82, + "end": 11875.6, + "probability": 0.7337 + }, + { + "start": 11875.66, + "end": 11877.1, + "probability": 0.9338 + }, + { + "start": 11877.16, + "end": 11877.5, + "probability": 0.6382 + }, + { + "start": 11877.62, + "end": 11878.38, + "probability": 0.8175 + }, + { + "start": 11879.18, + "end": 11880.68, + "probability": 0.9245 + }, + { + "start": 11881.28, + "end": 11883.42, + "probability": 0.9338 + }, + { + "start": 11883.88, + "end": 11885.82, + "probability": 0.9712 + }, + { + "start": 11886.12, + "end": 11889.66, + "probability": 0.9766 + }, + { + "start": 11890.56, + "end": 11891.08, + "probability": 0.658 + }, + { + "start": 11891.3, + "end": 11892.74, + "probability": 0.6042 + }, + { + "start": 11893.82, + "end": 11898.54, + "probability": 0.5112 + }, + { + "start": 11900.7, + "end": 11901.92, + "probability": 0.5283 + }, + { + "start": 11902.38, + "end": 11903.96, + "probability": 0.7245 + }, + { + "start": 11903.96, + "end": 11905.54, + "probability": 0.1656 + }, + { + "start": 11905.68, + "end": 11907.36, + "probability": 0.3591 + }, + { + "start": 11907.44, + "end": 11908.14, + "probability": 0.8108 + }, + { + "start": 11908.6, + "end": 11909.28, + "probability": 0.1404 + }, + { + "start": 11909.28, + "end": 11909.28, + "probability": 0.115 + }, + { + "start": 11909.28, + "end": 11910.04, + "probability": 0.7098 + }, + { + "start": 11910.1, + "end": 11912.36, + "probability": 0.3608 + }, + { + "start": 11912.4, + "end": 11913.98, + "probability": 0.5385 + }, + { + "start": 11914.04, + "end": 11916.66, + "probability": 0.9757 + }, + { + "start": 11917.48, + "end": 11918.68, + "probability": 0.1872 + }, + { + "start": 11918.76, + "end": 11919.24, + "probability": 0.3214 + }, + { + "start": 11919.52, + "end": 11920.74, + "probability": 0.8582 + }, + { + "start": 11921.14, + "end": 11922.26, + "probability": 0.6854 + }, + { + "start": 11922.26, + "end": 11922.66, + "probability": 0.7604 + }, + { + "start": 11923.1, + "end": 11924.16, + "probability": 0.7443 + }, + { + "start": 11925.32, + "end": 11928.06, + "probability": 0.7397 + }, + { + "start": 11928.38, + "end": 11929.42, + "probability": 0.9128 + }, + { + "start": 11929.48, + "end": 11936.16, + "probability": 0.9873 + }, + { + "start": 11936.66, + "end": 11937.84, + "probability": 0.8537 + }, + { + "start": 11939.52, + "end": 11941.54, + "probability": 0.9391 + }, + { + "start": 11942.6, + "end": 11943.22, + "probability": 0.9456 + }, + { + "start": 11943.7, + "end": 11944.38, + "probability": 0.7972 + }, + { + "start": 11944.68, + "end": 11947.11, + "probability": 0.9219 + }, + { + "start": 11947.86, + "end": 11950.6, + "probability": 0.9951 + }, + { + "start": 11950.94, + "end": 11954.21, + "probability": 0.9983 + }, + { + "start": 11954.58, + "end": 11955.88, + "probability": 0.7024 + }, + { + "start": 11956.42, + "end": 11957.68, + "probability": 0.8862 + }, + { + "start": 11957.78, + "end": 11959.58, + "probability": 0.9409 + }, + { + "start": 11959.82, + "end": 11960.17, + "probability": 0.7437 + }, + { + "start": 11960.84, + "end": 11961.4, + "probability": 0.9604 + }, + { + "start": 11961.84, + "end": 11963.48, + "probability": 0.9784 + }, + { + "start": 11964.02, + "end": 11969.72, + "probability": 0.934 + }, + { + "start": 11970.42, + "end": 11976.04, + "probability": 0.9757 + }, + { + "start": 11977.24, + "end": 11977.56, + "probability": 0.444 + }, + { + "start": 11978.12, + "end": 11980.26, + "probability": 0.6269 + }, + { + "start": 11980.5, + "end": 11981.32, + "probability": 0.744 + }, + { + "start": 11981.52, + "end": 11985.34, + "probability": 0.9838 + }, + { + "start": 11985.48, + "end": 11988.42, + "probability": 0.8062 + }, + { + "start": 11988.62, + "end": 11990.84, + "probability": 0.2183 + }, + { + "start": 11990.94, + "end": 11991.6, + "probability": 0.3036 + }, + { + "start": 11991.68, + "end": 11993.02, + "probability": 0.926 + }, + { + "start": 11993.92, + "end": 11994.52, + "probability": 0.9126 + }, + { + "start": 11997.32, + "end": 12000.02, + "probability": 0.7298 + }, + { + "start": 12005.66, + "end": 12006.98, + "probability": 0.7113 + }, + { + "start": 12008.7, + "end": 12010.3, + "probability": 0.7549 + }, + { + "start": 12015.98, + "end": 12018.12, + "probability": 0.7399 + }, + { + "start": 12019.1, + "end": 12020.12, + "probability": 0.8584 + }, + { + "start": 12021.14, + "end": 12024.14, + "probability": 0.9539 + }, + { + "start": 12025.28, + "end": 12026.54, + "probability": 0.8982 + }, + { + "start": 12028.04, + "end": 12031.44, + "probability": 0.886 + }, + { + "start": 12032.5, + "end": 12033.38, + "probability": 0.9594 + }, + { + "start": 12034.02, + "end": 12034.86, + "probability": 0.9454 + }, + { + "start": 12035.78, + "end": 12039.92, + "probability": 0.8424 + }, + { + "start": 12040.56, + "end": 12042.36, + "probability": 0.6206 + }, + { + "start": 12044.24, + "end": 12045.34, + "probability": 0.6996 + }, + { + "start": 12046.28, + "end": 12047.22, + "probability": 0.8632 + }, + { + "start": 12047.86, + "end": 12049.34, + "probability": 0.8662 + }, + { + "start": 12050.12, + "end": 12051.18, + "probability": 0.9623 + }, + { + "start": 12053.46, + "end": 12056.63, + "probability": 0.9721 + }, + { + "start": 12057.7, + "end": 12059.06, + "probability": 0.9902 + }, + { + "start": 12061.94, + "end": 12067.2, + "probability": 0.9565 + }, + { + "start": 12068.16, + "end": 12068.96, + "probability": 0.8029 + }, + { + "start": 12070.5, + "end": 12072.42, + "probability": 0.633 + }, + { + "start": 12073.28, + "end": 12078.9, + "probability": 0.9519 + }, + { + "start": 12079.86, + "end": 12080.84, + "probability": 0.9774 + }, + { + "start": 12083.38, + "end": 12084.24, + "probability": 0.8104 + }, + { + "start": 12085.4, + "end": 12086.58, + "probability": 0.9012 + }, + { + "start": 12088.08, + "end": 12089.56, + "probability": 0.6676 + }, + { + "start": 12092.54, + "end": 12094.92, + "probability": 0.7832 + }, + { + "start": 12096.24, + "end": 12097.24, + "probability": 0.981 + }, + { + "start": 12097.9, + "end": 12098.76, + "probability": 0.7723 + }, + { + "start": 12099.7, + "end": 12103.78, + "probability": 0.8244 + }, + { + "start": 12104.86, + "end": 12106.48, + "probability": 0.99 + }, + { + "start": 12107.2, + "end": 12110.92, + "probability": 0.8797 + }, + { + "start": 12112.2, + "end": 12113.9, + "probability": 0.8435 + }, + { + "start": 12114.58, + "end": 12115.96, + "probability": 0.892 + }, + { + "start": 12117.04, + "end": 12118.54, + "probability": 0.9727 + }, + { + "start": 12119.46, + "end": 12124.36, + "probability": 0.9357 + }, + { + "start": 12124.36, + "end": 12129.44, + "probability": 0.9967 + }, + { + "start": 12134.06, + "end": 12134.88, + "probability": 0.5918 + }, + { + "start": 12136.96, + "end": 12137.38, + "probability": 0.2051 + }, + { + "start": 12137.74, + "end": 12137.86, + "probability": 0.4412 + }, + { + "start": 12137.86, + "end": 12139.1, + "probability": 0.4322 + }, + { + "start": 12139.74, + "end": 12139.74, + "probability": 0.4115 + }, + { + "start": 12139.74, + "end": 12140.3, + "probability": 0.2788 + }, + { + "start": 12140.38, + "end": 12142.78, + "probability": 0.5778 + }, + { + "start": 12143.2, + "end": 12146.5, + "probability": 0.8748 + }, + { + "start": 12146.68, + "end": 12150.54, + "probability": 0.8936 + }, + { + "start": 12150.96, + "end": 12151.36, + "probability": 0.6188 + }, + { + "start": 12151.46, + "end": 12152.01, + "probability": 0.8804 + }, + { + "start": 12152.38, + "end": 12154.54, + "probability": 0.987 + }, + { + "start": 12154.76, + "end": 12156.14, + "probability": 0.0641 + }, + { + "start": 12156.2, + "end": 12158.34, + "probability": 0.4448 + }, + { + "start": 12158.98, + "end": 12160.54, + "probability": 0.6426 + }, + { + "start": 12162.82, + "end": 12163.66, + "probability": 0.9507 + }, + { + "start": 12164.56, + "end": 12166.9, + "probability": 0.9233 + }, + { + "start": 12167.84, + "end": 12168.68, + "probability": 0.7204 + }, + { + "start": 12170.06, + "end": 12171.36, + "probability": 0.9958 + }, + { + "start": 12172.54, + "end": 12179.16, + "probability": 0.958 + }, + { + "start": 12180.24, + "end": 12187.5, + "probability": 0.9734 + }, + { + "start": 12188.4, + "end": 12190.52, + "probability": 0.8696 + }, + { + "start": 12191.38, + "end": 12192.36, + "probability": 0.7001 + }, + { + "start": 12194.22, + "end": 12197.42, + "probability": 0.8496 + }, + { + "start": 12200.18, + "end": 12201.28, + "probability": 0.817 + }, + { + "start": 12202.64, + "end": 12203.28, + "probability": 0.9255 + }, + { + "start": 12204.44, + "end": 12205.1, + "probability": 0.5459 + }, + { + "start": 12206.02, + "end": 12207.04, + "probability": 0.6654 + }, + { + "start": 12208.36, + "end": 12212.16, + "probability": 0.9699 + }, + { + "start": 12213.36, + "end": 12218.26, + "probability": 0.9302 + }, + { + "start": 12218.98, + "end": 12222.98, + "probability": 0.9714 + }, + { + "start": 12224.72, + "end": 12230.94, + "probability": 0.9062 + }, + { + "start": 12231.8, + "end": 12233.36, + "probability": 0.8545 + }, + { + "start": 12234.44, + "end": 12236.4, + "probability": 0.9456 + }, + { + "start": 12236.92, + "end": 12237.38, + "probability": 0.4489 + }, + { + "start": 12237.7, + "end": 12239.0, + "probability": 0.7917 + }, + { + "start": 12239.8, + "end": 12240.68, + "probability": 0.9763 + }, + { + "start": 12240.68, + "end": 12241.68, + "probability": 0.9448 + }, + { + "start": 12246.32, + "end": 12250.12, + "probability": 0.9513 + }, + { + "start": 12251.22, + "end": 12254.0, + "probability": 0.9449 + }, + { + "start": 12255.32, + "end": 12258.08, + "probability": 0.7389 + }, + { + "start": 12258.94, + "end": 12259.79, + "probability": 0.5889 + }, + { + "start": 12261.48, + "end": 12265.46, + "probability": 0.6245 + }, + { + "start": 12267.64, + "end": 12268.72, + "probability": 0.0755 + }, + { + "start": 12271.08, + "end": 12271.08, + "probability": 0.0391 + }, + { + "start": 12271.08, + "end": 12273.89, + "probability": 0.7952 + }, + { + "start": 12274.64, + "end": 12276.1, + "probability": 0.7134 + }, + { + "start": 12276.86, + "end": 12279.76, + "probability": 0.8568 + }, + { + "start": 12280.64, + "end": 12284.6, + "probability": 0.9572 + }, + { + "start": 12285.38, + "end": 12287.48, + "probability": 0.8583 + }, + { + "start": 12288.16, + "end": 12290.76, + "probability": 0.953 + }, + { + "start": 12291.28, + "end": 12294.02, + "probability": 0.926 + }, + { + "start": 12295.64, + "end": 12296.56, + "probability": 0.9873 + }, + { + "start": 12297.78, + "end": 12302.68, + "probability": 0.9157 + }, + { + "start": 12303.58, + "end": 12306.78, + "probability": 0.9558 + }, + { + "start": 12308.34, + "end": 12308.96, + "probability": 0.7497 + }, + { + "start": 12309.78, + "end": 12312.82, + "probability": 0.6763 + }, + { + "start": 12314.18, + "end": 12316.96, + "probability": 0.8839 + }, + { + "start": 12317.92, + "end": 12319.5, + "probability": 0.9161 + }, + { + "start": 12320.5, + "end": 12322.24, + "probability": 0.9723 + }, + { + "start": 12322.6, + "end": 12324.76, + "probability": 0.9897 + }, + { + "start": 12325.82, + "end": 12329.28, + "probability": 0.9731 + }, + { + "start": 12330.34, + "end": 12334.82, + "probability": 0.9892 + }, + { + "start": 12336.3, + "end": 12337.7, + "probability": 0.7352 + }, + { + "start": 12339.5, + "end": 12341.64, + "probability": 0.9885 + }, + { + "start": 12342.38, + "end": 12343.74, + "probability": 0.9641 + }, + { + "start": 12344.5, + "end": 12347.3, + "probability": 0.8858 + }, + { + "start": 12348.96, + "end": 12349.74, + "probability": 0.7969 + }, + { + "start": 12351.1, + "end": 12353.78, + "probability": 0.96 + }, + { + "start": 12356.22, + "end": 12358.32, + "probability": 0.9266 + }, + { + "start": 12359.46, + "end": 12360.92, + "probability": 0.8924 + }, + { + "start": 12361.64, + "end": 12363.04, + "probability": 0.9966 + }, + { + "start": 12364.46, + "end": 12367.72, + "probability": 0.9801 + }, + { + "start": 12367.84, + "end": 12370.66, + "probability": 0.752 + }, + { + "start": 12371.26, + "end": 12376.5, + "probability": 0.991 + }, + { + "start": 12376.5, + "end": 12381.14, + "probability": 0.9816 + }, + { + "start": 12381.18, + "end": 12382.9, + "probability": 0.0458 + }, + { + "start": 12382.9, + "end": 12384.28, + "probability": 0.8438 + }, + { + "start": 12384.36, + "end": 12386.14, + "probability": 0.7451 + }, + { + "start": 12386.2, + "end": 12386.22, + "probability": 0.7345 + }, + { + "start": 12386.22, + "end": 12388.01, + "probability": 0.7377 + }, + { + "start": 12388.08, + "end": 12389.32, + "probability": 0.8766 + }, + { + "start": 12389.38, + "end": 12390.76, + "probability": 0.5199 + }, + { + "start": 12390.84, + "end": 12391.16, + "probability": 0.2289 + }, + { + "start": 12391.16, + "end": 12391.28, + "probability": 0.381 + }, + { + "start": 12391.52, + "end": 12392.38, + "probability": 0.568 + }, + { + "start": 12392.6, + "end": 12398.86, + "probability": 0.8815 + }, + { + "start": 12398.86, + "end": 12399.56, + "probability": 0.956 + }, + { + "start": 12399.64, + "end": 12400.48, + "probability": 0.4911 + }, + { + "start": 12400.88, + "end": 12401.38, + "probability": 0.05 + }, + { + "start": 12401.8, + "end": 12402.92, + "probability": 0.3774 + }, + { + "start": 12403.32, + "end": 12404.04, + "probability": 0.0519 + }, + { + "start": 12404.08, + "end": 12404.92, + "probability": 0.7759 + }, + { + "start": 12405.1, + "end": 12409.34, + "probability": 0.9899 + }, + { + "start": 12410.24, + "end": 12411.64, + "probability": 0.8572 + }, + { + "start": 12411.64, + "end": 12414.1, + "probability": 0.9731 + }, + { + "start": 12414.26, + "end": 12417.62, + "probability": 0.77 + }, + { + "start": 12417.9, + "end": 12420.78, + "probability": 0.9992 + }, + { + "start": 12427.32, + "end": 12429.16, + "probability": 0.7462 + }, + { + "start": 12430.28, + "end": 12430.94, + "probability": 0.4769 + }, + { + "start": 12432.14, + "end": 12432.78, + "probability": 0.4109 + }, + { + "start": 12433.52, + "end": 12436.12, + "probability": 0.8236 + }, + { + "start": 12436.14, + "end": 12437.04, + "probability": 0.8953 + }, + { + "start": 12437.36, + "end": 12438.6, + "probability": 0.8531 + }, + { + "start": 12439.76, + "end": 12441.16, + "probability": 0.9309 + }, + { + "start": 12442.36, + "end": 12444.68, + "probability": 0.6838 + }, + { + "start": 12446.52, + "end": 12447.38, + "probability": 0.8369 + }, + { + "start": 12448.56, + "end": 12452.72, + "probability": 0.9717 + }, + { + "start": 12453.38, + "end": 12454.4, + "probability": 0.7862 + }, + { + "start": 12455.26, + "end": 12457.66, + "probability": 0.8882 + }, + { + "start": 12458.86, + "end": 12461.38, + "probability": 0.952 + }, + { + "start": 12465.06, + "end": 12467.56, + "probability": 0.9522 + }, + { + "start": 12469.86, + "end": 12473.04, + "probability": 0.8765 + }, + { + "start": 12474.04, + "end": 12477.9, + "probability": 0.7706 + }, + { + "start": 12478.06, + "end": 12478.56, + "probability": 0.7097 + }, + { + "start": 12479.04, + "end": 12480.78, + "probability": 0.8178 + }, + { + "start": 12481.28, + "end": 12483.58, + "probability": 0.8694 + }, + { + "start": 12484.06, + "end": 12488.86, + "probability": 0.891 + }, + { + "start": 12488.96, + "end": 12493.12, + "probability": 0.9939 + }, + { + "start": 12493.56, + "end": 12493.94, + "probability": 0.7179 + }, + { + "start": 12494.08, + "end": 12497.82, + "probability": 0.8643 + }, + { + "start": 12498.86, + "end": 12501.24, + "probability": 0.5965 + }, + { + "start": 12501.56, + "end": 12502.94, + "probability": 0.7825 + }, + { + "start": 12503.24, + "end": 12505.1, + "probability": 0.6909 + }, + { + "start": 12505.42, + "end": 12506.58, + "probability": 0.9804 + }, + { + "start": 12507.02, + "end": 12507.28, + "probability": 0.3841 + }, + { + "start": 12508.26, + "end": 12509.14, + "probability": 0.2816 + }, + { + "start": 12509.88, + "end": 12511.58, + "probability": 0.2147 + }, + { + "start": 12511.66, + "end": 12513.76, + "probability": 0.3892 + }, + { + "start": 12513.84, + "end": 12514.0, + "probability": 0.1831 + }, + { + "start": 12514.04, + "end": 12514.98, + "probability": 0.8655 + }, + { + "start": 12515.14, + "end": 12519.54, + "probability": 0.9696 + }, + { + "start": 12519.72, + "end": 12523.16, + "probability": 0.9666 + }, + { + "start": 12525.3, + "end": 12525.74, + "probability": 0.7418 + }, + { + "start": 12525.78, + "end": 12526.16, + "probability": 0.4327 + }, + { + "start": 12526.26, + "end": 12528.66, + "probability": 0.792 + }, + { + "start": 12528.76, + "end": 12529.7, + "probability": 0.9547 + }, + { + "start": 12529.78, + "end": 12530.36, + "probability": 0.8403 + }, + { + "start": 12530.6, + "end": 12531.58, + "probability": 0.7683 + }, + { + "start": 12531.64, + "end": 12532.8, + "probability": 0.9819 + }, + { + "start": 12532.94, + "end": 12534.02, + "probability": 0.9001 + }, + { + "start": 12534.1, + "end": 12534.84, + "probability": 0.7373 + }, + { + "start": 12535.2, + "end": 12538.14, + "probability": 0.9416 + }, + { + "start": 12538.52, + "end": 12538.98, + "probability": 0.7669 + }, + { + "start": 12539.08, + "end": 12543.48, + "probability": 0.9961 + }, + { + "start": 12543.78, + "end": 12545.28, + "probability": 0.9258 + }, + { + "start": 12545.86, + "end": 12551.82, + "probability": 0.8088 + }, + { + "start": 12552.38, + "end": 12552.6, + "probability": 0.729 + }, + { + "start": 12552.76, + "end": 12553.74, + "probability": 0.8756 + }, + { + "start": 12553.98, + "end": 12554.8, + "probability": 0.8681 + }, + { + "start": 12555.1, + "end": 12557.02, + "probability": 0.9858 + }, + { + "start": 12557.3, + "end": 12558.9, + "probability": 0.7861 + }, + { + "start": 12559.5, + "end": 12562.58, + "probability": 0.9922 + }, + { + "start": 12562.94, + "end": 12564.62, + "probability": 0.8431 + }, + { + "start": 12565.38, + "end": 12567.42, + "probability": 0.2494 + }, + { + "start": 12567.62, + "end": 12571.92, + "probability": 0.6526 + }, + { + "start": 12572.12, + "end": 12573.96, + "probability": 0.6988 + }, + { + "start": 12574.1, + "end": 12576.36, + "probability": 0.9749 + }, + { + "start": 12576.5, + "end": 12576.86, + "probability": 0.3975 + }, + { + "start": 12577.92, + "end": 12580.24, + "probability": 0.7565 + }, + { + "start": 12580.32, + "end": 12581.1, + "probability": 0.809 + }, + { + "start": 12581.18, + "end": 12581.28, + "probability": 0.6338 + }, + { + "start": 12581.34, + "end": 12581.95, + "probability": 0.8936 + }, + { + "start": 12582.28, + "end": 12585.14, + "probability": 0.5774 + }, + { + "start": 12585.14, + "end": 12586.45, + "probability": 0.7852 + }, + { + "start": 12586.8, + "end": 12588.38, + "probability": 0.7766 + }, + { + "start": 12588.48, + "end": 12591.28, + "probability": 0.9419 + }, + { + "start": 12591.56, + "end": 12599.14, + "probability": 0.9581 + }, + { + "start": 12599.44, + "end": 12600.51, + "probability": 0.9343 + }, + { + "start": 12601.66, + "end": 12602.3, + "probability": 0.7831 + }, + { + "start": 12602.76, + "end": 12607.04, + "probability": 0.9825 + }, + { + "start": 12608.32, + "end": 12608.72, + "probability": 0.417 + }, + { + "start": 12608.94, + "end": 12609.16, + "probability": 0.8474 + }, + { + "start": 12609.78, + "end": 12611.38, + "probability": 0.7808 + }, + { + "start": 12612.18, + "end": 12613.06, + "probability": 0.5822 + }, + { + "start": 12613.16, + "end": 12614.34, + "probability": 0.9025 + }, + { + "start": 12614.92, + "end": 12617.28, + "probability": 0.8451 + }, + { + "start": 12617.52, + "end": 12619.66, + "probability": 0.9866 + }, + { + "start": 12620.96, + "end": 12621.03, + "probability": 0.097 + }, + { + "start": 12621.18, + "end": 12625.06, + "probability": 0.9399 + }, + { + "start": 12626.21, + "end": 12629.12, + "probability": 0.8953 + }, + { + "start": 12629.3, + "end": 12629.98, + "probability": 0.5827 + }, + { + "start": 12631.38, + "end": 12632.56, + "probability": 0.6499 + }, + { + "start": 12632.7, + "end": 12633.3, + "probability": 0.7632 + }, + { + "start": 12633.44, + "end": 12634.21, + "probability": 0.4995 + }, + { + "start": 12634.98, + "end": 12636.44, + "probability": 0.9131 + }, + { + "start": 12636.48, + "end": 12637.16, + "probability": 0.9677 + }, + { + "start": 12637.58, + "end": 12639.1, + "probability": 0.9729 + }, + { + "start": 12639.46, + "end": 12640.26, + "probability": 0.1168 + }, + { + "start": 12640.26, + "end": 12641.73, + "probability": 0.8467 + }, + { + "start": 12641.98, + "end": 12643.14, + "probability": 0.8612 + }, + { + "start": 12643.56, + "end": 12646.52, + "probability": 0.9668 + }, + { + "start": 12647.06, + "end": 12647.06, + "probability": 0.0064 + }, + { + "start": 12647.06, + "end": 12648.82, + "probability": 0.7151 + }, + { + "start": 12649.58, + "end": 12650.46, + "probability": 0.8077 + }, + { + "start": 12650.7, + "end": 12654.36, + "probability": 0.9489 + }, + { + "start": 12654.48, + "end": 12655.82, + "probability": 0.8142 + }, + { + "start": 12655.84, + "end": 12656.36, + "probability": 0.9575 + }, + { + "start": 12657.04, + "end": 12659.08, + "probability": 0.7714 + }, + { + "start": 12659.44, + "end": 12661.52, + "probability": 0.984 + }, + { + "start": 12662.42, + "end": 12663.78, + "probability": 0.9961 + }, + { + "start": 12664.58, + "end": 12664.7, + "probability": 0.1881 + }, + { + "start": 12664.7, + "end": 12664.7, + "probability": 0.2344 + }, + { + "start": 12664.7, + "end": 12665.14, + "probability": 0.4614 + }, + { + "start": 12665.36, + "end": 12665.62, + "probability": 0.981 + }, + { + "start": 12666.26, + "end": 12668.46, + "probability": 0.9097 + }, + { + "start": 12668.7, + "end": 12669.68, + "probability": 0.6325 + }, + { + "start": 12669.68, + "end": 12674.04, + "probability": 0.9958 + }, + { + "start": 12674.26, + "end": 12674.73, + "probability": 0.9692 + }, + { + "start": 12675.26, + "end": 12676.02, + "probability": 0.49 + }, + { + "start": 12676.24, + "end": 12676.68, + "probability": 0.5779 + }, + { + "start": 12677.28, + "end": 12677.42, + "probability": 0.538 + }, + { + "start": 12678.18, + "end": 12679.5, + "probability": 0.4825 + }, + { + "start": 12681.22, + "end": 12681.22, + "probability": 0.3728 + }, + { + "start": 12681.22, + "end": 12681.8, + "probability": 0.3737 + }, + { + "start": 12682.14, + "end": 12682.74, + "probability": 0.2258 + }, + { + "start": 12682.96, + "end": 12684.4, + "probability": 0.6566 + }, + { + "start": 12684.42, + "end": 12684.9, + "probability": 0.9109 + }, + { + "start": 12685.34, + "end": 12688.14, + "probability": 0.9949 + }, + { + "start": 12689.48, + "end": 12690.66, + "probability": 0.9288 + }, + { + "start": 12691.5, + "end": 12696.14, + "probability": 0.9959 + }, + { + "start": 12697.26, + "end": 12699.9, + "probability": 0.9417 + }, + { + "start": 12701.44, + "end": 12702.96, + "probability": 0.9652 + }, + { + "start": 12704.0, + "end": 12704.68, + "probability": 0.8002 + }, + { + "start": 12705.82, + "end": 12708.46, + "probability": 0.8276 + }, + { + "start": 12710.18, + "end": 12712.14, + "probability": 0.9901 + }, + { + "start": 12713.96, + "end": 12715.06, + "probability": 0.2558 + }, + { + "start": 12716.04, + "end": 12717.36, + "probability": 0.9143 + }, + { + "start": 12718.32, + "end": 12719.84, + "probability": 0.7522 + }, + { + "start": 12721.42, + "end": 12722.58, + "probability": 0.6741 + }, + { + "start": 12723.86, + "end": 12724.6, + "probability": 0.8034 + }, + { + "start": 12725.38, + "end": 12726.5, + "probability": 0.9888 + }, + { + "start": 12727.2, + "end": 12728.58, + "probability": 0.8579 + }, + { + "start": 12729.22, + "end": 12730.04, + "probability": 0.69 + }, + { + "start": 12731.24, + "end": 12732.76, + "probability": 0.8511 + }, + { + "start": 12733.88, + "end": 12735.88, + "probability": 0.9785 + }, + { + "start": 12737.12, + "end": 12743.9, + "probability": 0.9438 + }, + { + "start": 12744.54, + "end": 12745.74, + "probability": 0.8687 + }, + { + "start": 12746.82, + "end": 12748.22, + "probability": 0.9819 + }, + { + "start": 12750.18, + "end": 12754.08, + "probability": 0.6657 + }, + { + "start": 12754.82, + "end": 12756.08, + "probability": 0.9949 + }, + { + "start": 12758.5, + "end": 12758.9, + "probability": 0.4141 + }, + { + "start": 12760.8, + "end": 12762.3, + "probability": 0.519 + }, + { + "start": 12763.0, + "end": 12763.22, + "probability": 0.0564 + }, + { + "start": 12763.3, + "end": 12763.38, + "probability": 0.1375 + }, + { + "start": 12763.38, + "end": 12763.38, + "probability": 0.3545 + }, + { + "start": 12763.38, + "end": 12763.9, + "probability": 0.6177 + }, + { + "start": 12763.92, + "end": 12764.9, + "probability": 0.9446 + }, + { + "start": 12765.02, + "end": 12765.36, + "probability": 0.783 + }, + { + "start": 12766.04, + "end": 12766.04, + "probability": 0.412 + }, + { + "start": 12766.04, + "end": 12766.71, + "probability": 0.4727 + }, + { + "start": 12767.44, + "end": 12771.32, + "probability": 0.9313 + }, + { + "start": 12771.4, + "end": 12774.22, + "probability": 0.8921 + }, + { + "start": 12774.86, + "end": 12781.28, + "probability": 0.9556 + }, + { + "start": 12781.78, + "end": 12782.64, + "probability": 0.8756 + }, + { + "start": 12782.68, + "end": 12784.38, + "probability": 0.9629 + }, + { + "start": 12784.8, + "end": 12786.48, + "probability": 0.9962 + }, + { + "start": 12786.86, + "end": 12790.52, + "probability": 0.8167 + }, + { + "start": 12790.82, + "end": 12792.3, + "probability": 0.8586 + }, + { + "start": 12792.3, + "end": 12793.9, + "probability": 0.0134 + }, + { + "start": 12794.2, + "end": 12794.5, + "probability": 0.1869 + }, + { + "start": 12794.8, + "end": 12796.76, + "probability": 0.9766 + }, + { + "start": 12797.74, + "end": 12798.22, + "probability": 0.5037 + }, + { + "start": 12798.48, + "end": 12799.48, + "probability": 0.9601 + }, + { + "start": 12800.24, + "end": 12800.8, + "probability": 0.005 + }, + { + "start": 12800.9, + "end": 12801.92, + "probability": 0.444 + }, + { + "start": 12802.42, + "end": 12803.1, + "probability": 0.6864 + }, + { + "start": 12803.1, + "end": 12805.82, + "probability": 0.3126 + }, + { + "start": 12805.94, + "end": 12806.5, + "probability": 0.1691 + }, + { + "start": 12806.62, + "end": 12806.86, + "probability": 0.4802 + }, + { + "start": 12806.86, + "end": 12806.96, + "probability": 0.6236 + }, + { + "start": 12807.42, + "end": 12808.26, + "probability": 0.5512 + }, + { + "start": 12808.44, + "end": 12808.66, + "probability": 0.2646 + }, + { + "start": 12809.84, + "end": 12811.46, + "probability": 0.3543 + }, + { + "start": 12812.28, + "end": 12813.22, + "probability": 0.7078 + }, + { + "start": 12813.9, + "end": 12814.68, + "probability": 0.1041 + }, + { + "start": 12814.84, + "end": 12817.08, + "probability": 0.8619 + }, + { + "start": 12817.7, + "end": 12819.24, + "probability": 0.9445 + }, + { + "start": 12820.02, + "end": 12824.46, + "probability": 0.9754 + }, + { + "start": 12824.68, + "end": 12824.94, + "probability": 0.2741 + }, + { + "start": 12824.94, + "end": 12825.14, + "probability": 0.6796 + }, + { + "start": 12825.48, + "end": 12827.64, + "probability": 0.8752 + }, + { + "start": 12835.58, + "end": 12836.9, + "probability": 0.6874 + }, + { + "start": 12848.48, + "end": 12849.32, + "probability": 0.586 + }, + { + "start": 12849.32, + "end": 12849.82, + "probability": 0.7661 + }, + { + "start": 12849.82, + "end": 12849.94, + "probability": 0.1372 + }, + { + "start": 12849.94, + "end": 12849.94, + "probability": 0.0264 + }, + { + "start": 12857.78, + "end": 12859.66, + "probability": 0.9957 + }, + { + "start": 12859.8, + "end": 12860.22, + "probability": 0.058 + }, + { + "start": 12860.22, + "end": 12860.62, + "probability": 0.4842 + }, + { + "start": 12860.68, + "end": 12861.73, + "probability": 0.748 + }, + { + "start": 12862.16, + "end": 12864.8, + "probability": 0.9723 + }, + { + "start": 12866.38, + "end": 12867.16, + "probability": 0.2535 + }, + { + "start": 12868.18, + "end": 12868.93, + "probability": 0.5025 + }, + { + "start": 12870.38, + "end": 12871.78, + "probability": 0.5088 + }, + { + "start": 12876.14, + "end": 12876.72, + "probability": 0.0712 + }, + { + "start": 12877.2, + "end": 12877.3, + "probability": 0.0686 + }, + { + "start": 12877.32, + "end": 12877.32, + "probability": 0.0758 + }, + { + "start": 12877.32, + "end": 12877.32, + "probability": 0.0294 + }, + { + "start": 12877.32, + "end": 12878.4, + "probability": 0.4937 + }, + { + "start": 12878.56, + "end": 12886.64, + "probability": 0.7342 + }, + { + "start": 12886.92, + "end": 12889.14, + "probability": 0.7168 + }, + { + "start": 12889.66, + "end": 12890.32, + "probability": 0.0329 + }, + { + "start": 12890.86, + "end": 12892.32, + "probability": 0.3494 + }, + { + "start": 12892.62, + "end": 12896.98, + "probability": 0.8555 + }, + { + "start": 12897.86, + "end": 12898.26, + "probability": 0.0126 + }, + { + "start": 12901.0, + "end": 12901.42, + "probability": 0.2033 + }, + { + "start": 12901.42, + "end": 12902.08, + "probability": 0.188 + }, + { + "start": 12902.5, + "end": 12903.42, + "probability": 0.4083 + }, + { + "start": 12903.76, + "end": 12904.7, + "probability": 0.9715 + }, + { + "start": 12905.38, + "end": 12907.24, + "probability": 0.8718 + }, + { + "start": 12907.7, + "end": 12908.98, + "probability": 0.9435 + }, + { + "start": 12911.2, + "end": 12914.24, + "probability": 0.9392 + }, + { + "start": 12914.68, + "end": 12916.26, + "probability": 0.234 + }, + { + "start": 12917.38, + "end": 12917.4, + "probability": 0.2321 + }, + { + "start": 12917.4, + "end": 12918.5, + "probability": 0.9402 + }, + { + "start": 12918.58, + "end": 12920.92, + "probability": 0.9863 + }, + { + "start": 12922.12, + "end": 12923.44, + "probability": 0.8508 + }, + { + "start": 12924.06, + "end": 12924.84, + "probability": 0.5427 + }, + { + "start": 12925.94, + "end": 12928.7, + "probability": 0.7726 + }, + { + "start": 12930.56, + "end": 12933.4, + "probability": 0.5043 + }, + { + "start": 12933.5, + "end": 12933.82, + "probability": 0.3295 + }, + { + "start": 12934.14, + "end": 12934.96, + "probability": 0.4612 + }, + { + "start": 12934.96, + "end": 12936.62, + "probability": 0.9448 + }, + { + "start": 12936.74, + "end": 12937.66, + "probability": 0.9933 + }, + { + "start": 12937.76, + "end": 12941.24, + "probability": 0.9033 + }, + { + "start": 12942.68, + "end": 12943.76, + "probability": 0.7458 + }, + { + "start": 12944.44, + "end": 12946.28, + "probability": 0.6564 + }, + { + "start": 12949.66, + "end": 12950.38, + "probability": 0.655 + }, + { + "start": 12951.46, + "end": 12953.52, + "probability": 0.8836 + }, + { + "start": 12954.92, + "end": 12959.58, + "probability": 0.9211 + }, + { + "start": 12960.9, + "end": 12962.9, + "probability": 0.5727 + }, + { + "start": 12963.04, + "end": 12968.06, + "probability": 0.9801 + }, + { + "start": 12968.06, + "end": 12971.68, + "probability": 0.9722 + }, + { + "start": 12971.98, + "end": 12972.26, + "probability": 0.7162 + }, + { + "start": 12973.38, + "end": 12974.82, + "probability": 0.5488 + }, + { + "start": 12974.86, + "end": 12974.96, + "probability": 0.277 + }, + { + "start": 12974.98, + "end": 12976.0, + "probability": 0.7105 + }, + { + "start": 12976.96, + "end": 12978.54, + "probability": 0.98 + }, + { + "start": 12979.18, + "end": 12983.02, + "probability": 0.5866 + }, + { + "start": 12983.12, + "end": 12984.84, + "probability": 0.9893 + }, + { + "start": 12984.84, + "end": 12985.54, + "probability": 0.4999 + }, + { + "start": 12986.46, + "end": 12988.06, + "probability": 0.6383 + }, + { + "start": 12988.36, + "end": 12989.56, + "probability": 0.9939 + }, + { + "start": 12990.84, + "end": 12992.6, + "probability": 0.7667 + }, + { + "start": 12993.06, + "end": 12994.1, + "probability": 0.9067 + }, + { + "start": 12994.56, + "end": 12997.92, + "probability": 0.9792 + }, + { + "start": 12999.08, + "end": 13003.34, + "probability": 0.9917 + }, + { + "start": 13003.72, + "end": 13004.55, + "probability": 0.9168 + }, + { + "start": 13004.78, + "end": 13007.56, + "probability": 0.9814 + }, + { + "start": 13008.12, + "end": 13010.68, + "probability": 0.8613 + }, + { + "start": 13011.28, + "end": 13017.72, + "probability": 0.8228 + }, + { + "start": 13018.2, + "end": 13019.98, + "probability": 0.9858 + }, + { + "start": 13020.72, + "end": 13022.14, + "probability": 0.9976 + }, + { + "start": 13022.7, + "end": 13024.54, + "probability": 0.9091 + }, + { + "start": 13025.04, + "end": 13026.56, + "probability": 0.999 + }, + { + "start": 13027.18, + "end": 13027.56, + "probability": 0.9209 + }, + { + "start": 13028.08, + "end": 13029.94, + "probability": 0.851 + }, + { + "start": 13030.62, + "end": 13032.06, + "probability": 0.9189 + }, + { + "start": 13032.38, + "end": 13033.28, + "probability": 0.891 + }, + { + "start": 13033.34, + "end": 13036.94, + "probability": 0.9043 + }, + { + "start": 13037.52, + "end": 13040.94, + "probability": 0.8273 + }, + { + "start": 13041.46, + "end": 13043.54, + "probability": 0.6977 + }, + { + "start": 13044.12, + "end": 13047.58, + "probability": 0.9614 + }, + { + "start": 13047.86, + "end": 13049.7, + "probability": 0.765 + }, + { + "start": 13050.06, + "end": 13050.87, + "probability": 0.8306 + }, + { + "start": 13051.4, + "end": 13053.08, + "probability": 0.9511 + }, + { + "start": 13053.44, + "end": 13054.68, + "probability": 0.9847 + }, + { + "start": 13056.1, + "end": 13060.38, + "probability": 0.7452 + }, + { + "start": 13060.96, + "end": 13062.18, + "probability": 0.8166 + }, + { + "start": 13062.92, + "end": 13064.48, + "probability": 0.8367 + }, + { + "start": 13065.08, + "end": 13066.36, + "probability": 0.9846 + }, + { + "start": 13067.8, + "end": 13068.44, + "probability": 0.9194 + }, + { + "start": 13069.32, + "end": 13069.56, + "probability": 0.5839 + }, + { + "start": 13069.94, + "end": 13070.6, + "probability": 0.8054 + }, + { + "start": 13071.02, + "end": 13074.84, + "probability": 0.8824 + }, + { + "start": 13075.48, + "end": 13076.38, + "probability": 0.9761 + }, + { + "start": 13077.22, + "end": 13079.12, + "probability": 0.8376 + }, + { + "start": 13079.72, + "end": 13080.42, + "probability": 0.9345 + }, + { + "start": 13081.28, + "end": 13083.58, + "probability": 0.9944 + }, + { + "start": 13084.42, + "end": 13089.92, + "probability": 0.6898 + }, + { + "start": 13089.92, + "end": 13092.18, + "probability": 0.2246 + }, + { + "start": 13092.32, + "end": 13097.4, + "probability": 0.0776 + }, + { + "start": 13097.5, + "end": 13100.16, + "probability": 0.4709 + }, + { + "start": 13100.82, + "end": 13101.14, + "probability": 0.0486 + }, + { + "start": 13101.66, + "end": 13102.78, + "probability": 0.97 + }, + { + "start": 13102.84, + "end": 13104.88, + "probability": 0.6792 + }, + { + "start": 13105.08, + "end": 13108.2, + "probability": 0.2123 + }, + { + "start": 13108.6, + "end": 13109.42, + "probability": 0.3865 + }, + { + "start": 13109.54, + "end": 13109.58, + "probability": 0.6637 + }, + { + "start": 13109.58, + "end": 13110.5, + "probability": 0.6583 + }, + { + "start": 13110.7, + "end": 13113.94, + "probability": 0.6774 + }, + { + "start": 13114.1, + "end": 13114.72, + "probability": 0.5717 + }, + { + "start": 13114.9, + "end": 13115.4, + "probability": 0.3369 + }, + { + "start": 13115.72, + "end": 13118.84, + "probability": 0.8623 + }, + { + "start": 13118.98, + "end": 13122.04, + "probability": 0.8354 + }, + { + "start": 13122.76, + "end": 13124.26, + "probability": 0.0508 + }, + { + "start": 13124.45, + "end": 13124.94, + "probability": 0.1953 + }, + { + "start": 13125.85, + "end": 13126.98, + "probability": 0.3198 + }, + { + "start": 13127.54, + "end": 13129.46, + "probability": 0.3288 + }, + { + "start": 13131.84, + "end": 13132.84, + "probability": 0.0765 + }, + { + "start": 13133.14, + "end": 13135.08, + "probability": 0.3997 + }, + { + "start": 13135.82, + "end": 13136.1, + "probability": 0.401 + }, + { + "start": 13136.1, + "end": 13136.1, + "probability": 0.5141 + }, + { + "start": 13136.1, + "end": 13136.1, + "probability": 0.6633 + }, + { + "start": 13136.1, + "end": 13139.88, + "probability": 0.8099 + }, + { + "start": 13140.08, + "end": 13140.3, + "probability": 0.6425 + }, + { + "start": 13140.84, + "end": 13142.88, + "probability": 0.9078 + }, + { + "start": 13142.98, + "end": 13144.54, + "probability": 0.408 + }, + { + "start": 13144.58, + "end": 13146.98, + "probability": 0.9478 + }, + { + "start": 13147.1, + "end": 13148.76, + "probability": 0.5029 + }, + { + "start": 13148.88, + "end": 13149.8, + "probability": 0.8579 + }, + { + "start": 13149.92, + "end": 13151.8, + "probability": 0.9741 + }, + { + "start": 13151.9, + "end": 13153.14, + "probability": 0.9524 + }, + { + "start": 13153.7, + "end": 13153.96, + "probability": 0.1107 + }, + { + "start": 13156.34, + "end": 13156.62, + "probability": 0.0328 + }, + { + "start": 13156.62, + "end": 13156.62, + "probability": 0.2143 + }, + { + "start": 13156.62, + "end": 13158.38, + "probability": 0.0507 + }, + { + "start": 13158.98, + "end": 13159.54, + "probability": 0.6017 + }, + { + "start": 13160.42, + "end": 13162.88, + "probability": 0.9016 + }, + { + "start": 13163.36, + "end": 13164.84, + "probability": 0.7711 + }, + { + "start": 13165.0, + "end": 13166.4, + "probability": 0.9771 + }, + { + "start": 13166.96, + "end": 13167.56, + "probability": 0.9678 + }, + { + "start": 13167.9, + "end": 13168.7, + "probability": 0.7474 + }, + { + "start": 13168.78, + "end": 13170.34, + "probability": 0.9932 + }, + { + "start": 13170.58, + "end": 13170.7, + "probability": 0.0955 + }, + { + "start": 13170.7, + "end": 13171.46, + "probability": 0.0154 + }, + { + "start": 13171.48, + "end": 13172.11, + "probability": 0.2195 + }, + { + "start": 13173.8, + "end": 13174.28, + "probability": 0.5563 + }, + { + "start": 13174.28, + "end": 13175.83, + "probability": 0.5004 + }, + { + "start": 13176.84, + "end": 13179.1, + "probability": 0.9961 + }, + { + "start": 13179.78, + "end": 13180.66, + "probability": 0.9591 + }, + { + "start": 13181.18, + "end": 13184.94, + "probability": 0.9874 + }, + { + "start": 13186.72, + "end": 13189.98, + "probability": 0.8384 + }, + { + "start": 13190.54, + "end": 13193.32, + "probability": 0.9963 + }, + { + "start": 13193.46, + "end": 13195.82, + "probability": 0.3748 + }, + { + "start": 13196.24, + "end": 13196.92, + "probability": 0.0316 + }, + { + "start": 13197.04, + "end": 13197.34, + "probability": 0.1179 + }, + { + "start": 13197.34, + "end": 13197.34, + "probability": 0.0297 + }, + { + "start": 13197.34, + "end": 13197.34, + "probability": 0.2393 + }, + { + "start": 13197.34, + "end": 13199.64, + "probability": 0.1727 + }, + { + "start": 13199.94, + "end": 13203.36, + "probability": 0.566 + }, + { + "start": 13203.94, + "end": 13205.18, + "probability": 0.9575 + }, + { + "start": 13206.58, + "end": 13207.1, + "probability": 0.0848 + }, + { + "start": 13209.14, + "end": 13214.08, + "probability": 0.8792 + }, + { + "start": 13215.12, + "end": 13218.34, + "probability": 0.8555 + }, + { + "start": 13219.02, + "end": 13220.68, + "probability": 0.9617 + }, + { + "start": 13221.54, + "end": 13223.42, + "probability": 0.0287 + }, + { + "start": 13223.58, + "end": 13229.74, + "probability": 0.4832 + }, + { + "start": 13231.44, + "end": 13234.02, + "probability": 0.9168 + }, + { + "start": 13234.9, + "end": 13239.54, + "probability": 0.9409 + }, + { + "start": 13239.6, + "end": 13242.24, + "probability": 0.939 + }, + { + "start": 13243.22, + "end": 13245.0, + "probability": 0.7852 + }, + { + "start": 13245.36, + "end": 13247.34, + "probability": 0.8109 + }, + { + "start": 13247.72, + "end": 13249.1, + "probability": 0.662 + }, + { + "start": 13249.24, + "end": 13250.42, + "probability": 0.7975 + }, + { + "start": 13250.88, + "end": 13254.92, + "probability": 0.9332 + }, + { + "start": 13256.14, + "end": 13259.1, + "probability": 0.5214 + }, + { + "start": 13260.24, + "end": 13260.9, + "probability": 0.0318 + }, + { + "start": 13263.0, + "end": 13264.3, + "probability": 0.9495 + }, + { + "start": 13266.84, + "end": 13270.16, + "probability": 0.748 + }, + { + "start": 13271.76, + "end": 13274.76, + "probability": 0.9722 + }, + { + "start": 13274.76, + "end": 13278.52, + "probability": 0.9458 + }, + { + "start": 13279.06, + "end": 13280.1, + "probability": 0.5424 + }, + { + "start": 13280.74, + "end": 13282.62, + "probability": 0.6331 + }, + { + "start": 13283.46, + "end": 13287.2, + "probability": 0.9482 + }, + { + "start": 13287.2, + "end": 13290.02, + "probability": 0.9885 + }, + { + "start": 13291.02, + "end": 13294.4, + "probability": 0.9329 + }, + { + "start": 13294.54, + "end": 13299.26, + "probability": 0.9483 + }, + { + "start": 13299.96, + "end": 13300.2, + "probability": 0.3573 + }, + { + "start": 13300.2, + "end": 13301.2, + "probability": 0.3421 + }, + { + "start": 13301.98, + "end": 13304.34, + "probability": 0.6656 + }, + { + "start": 13305.37, + "end": 13307.82, + "probability": 0.9676 + }, + { + "start": 13311.19, + "end": 13316.54, + "probability": 0.9453 + }, + { + "start": 13317.14, + "end": 13320.6, + "probability": 0.9561 + }, + { + "start": 13321.08, + "end": 13323.9, + "probability": 0.576 + }, + { + "start": 13326.2, + "end": 13328.84, + "probability": 0.5157 + }, + { + "start": 13328.98, + "end": 13331.38, + "probability": 0.9844 + }, + { + "start": 13331.54, + "end": 13332.68, + "probability": 0.7237 + }, + { + "start": 13332.76, + "end": 13336.9, + "probability": 0.3787 + }, + { + "start": 13337.9, + "end": 13340.7, + "probability": 0.8865 + }, + { + "start": 13340.92, + "end": 13343.94, + "probability": 0.7904 + }, + { + "start": 13344.5, + "end": 13345.44, + "probability": 0.5747 + }, + { + "start": 13345.64, + "end": 13346.86, + "probability": 0.9889 + }, + { + "start": 13346.96, + "end": 13351.08, + "probability": 0.9854 + }, + { + "start": 13351.28, + "end": 13351.94, + "probability": 0.5348 + }, + { + "start": 13352.06, + "end": 13355.54, + "probability": 0.9749 + }, + { + "start": 13355.82, + "end": 13359.72, + "probability": 0.908 + }, + { + "start": 13359.76, + "end": 13360.76, + "probability": 0.9147 + }, + { + "start": 13360.82, + "end": 13361.4, + "probability": 0.7086 + }, + { + "start": 13361.64, + "end": 13363.76, + "probability": 0.9216 + }, + { + "start": 13363.82, + "end": 13364.44, + "probability": 0.9371 + }, + { + "start": 13364.8, + "end": 13365.44, + "probability": 0.8123 + }, + { + "start": 13367.98, + "end": 13369.64, + "probability": 0.788 + }, + { + "start": 13370.02, + "end": 13372.44, + "probability": 0.5069 + }, + { + "start": 13373.36, + "end": 13375.8, + "probability": 0.5451 + }, + { + "start": 13376.18, + "end": 13376.26, + "probability": 0.0106 + }, + { + "start": 13376.26, + "end": 13376.26, + "probability": 0.3008 + }, + { + "start": 13376.26, + "end": 13376.26, + "probability": 0.3453 + }, + { + "start": 13376.26, + "end": 13376.26, + "probability": 0.0835 + }, + { + "start": 13376.26, + "end": 13378.6, + "probability": 0.4517 + }, + { + "start": 13390.9, + "end": 13395.46, + "probability": 0.5905 + }, + { + "start": 13395.64, + "end": 13396.46, + "probability": 0.6759 + }, + { + "start": 13396.56, + "end": 13399.54, + "probability": 0.4986 + }, + { + "start": 13404.36, + "end": 13405.36, + "probability": 0.1398 + }, + { + "start": 13405.36, + "end": 13405.52, + "probability": 0.0998 + }, + { + "start": 13407.08, + "end": 13407.98, + "probability": 0.0134 + }, + { + "start": 13408.56, + "end": 13411.08, + "probability": 0.0126 + }, + { + "start": 13411.1, + "end": 13412.22, + "probability": 0.0395 + }, + { + "start": 13418.9, + "end": 13420.74, + "probability": 0.0724 + }, + { + "start": 13424.94, + "end": 13426.34, + "probability": 0.2351 + }, + { + "start": 13441.46, + "end": 13446.22, + "probability": 0.2084 + }, + { + "start": 13453.6, + "end": 13454.02, + "probability": 0.0112 + }, + { + "start": 13475.28, + "end": 13478.04, + "probability": 0.5032 + }, + { + "start": 13478.92, + "end": 13480.1, + "probability": 0.8892 + }, + { + "start": 13480.48, + "end": 13482.32, + "probability": 0.8155 + }, + { + "start": 13489.48, + "end": 13491.46, + "probability": 0.5309 + }, + { + "start": 13491.52, + "end": 13492.4, + "probability": 0.6369 + }, + { + "start": 13492.8, + "end": 13494.2, + "probability": 0.6028 + }, + { + "start": 13495.38, + "end": 13497.0, + "probability": 0.9961 + }, + { + "start": 13497.16, + "end": 13497.78, + "probability": 0.8876 + }, + { + "start": 13497.84, + "end": 13499.22, + "probability": 0.9047 + }, + { + "start": 13500.52, + "end": 13501.58, + "probability": 0.9739 + }, + { + "start": 13509.12, + "end": 13514.04, + "probability": 0.7111 + }, + { + "start": 13517.2, + "end": 13520.24, + "probability": 0.861 + }, + { + "start": 13522.09, + "end": 13524.42, + "probability": 0.8047 + }, + { + "start": 13527.59, + "end": 13531.82, + "probability": 0.3125 + }, + { + "start": 13532.06, + "end": 13533.82, + "probability": 0.9117 + }, + { + "start": 13535.88, + "end": 13537.68, + "probability": 0.0526 + }, + { + "start": 13537.68, + "end": 13540.9, + "probability": 0.7559 + }, + { + "start": 13540.98, + "end": 13542.14, + "probability": 0.9821 + }, + { + "start": 13542.14, + "end": 13542.66, + "probability": 0.0925 + }, + { + "start": 13545.62, + "end": 13546.84, + "probability": 0.6523 + }, + { + "start": 13546.94, + "end": 13547.82, + "probability": 0.9769 + }, + { + "start": 13548.9, + "end": 13549.9, + "probability": 0.9922 + }, + { + "start": 13551.2, + "end": 13553.5, + "probability": 0.3609 + }, + { + "start": 13553.54, + "end": 13553.54, + "probability": 0.2145 + }, + { + "start": 13556.8, + "end": 13557.92, + "probability": 0.1861 + }, + { + "start": 13558.84, + "end": 13559.7, + "probability": 0.1738 + }, + { + "start": 13561.92, + "end": 13565.38, + "probability": 0.0435 + }, + { + "start": 13570.89, + "end": 13571.86, + "probability": 0.127 + }, + { + "start": 13571.86, + "end": 13572.22, + "probability": 0.0644 + }, + { + "start": 13575.44, + "end": 13575.96, + "probability": 0.0153 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.0, + "end": 13964.0, + "probability": 0.0 + }, + { + "start": 13964.12, + "end": 13964.28, + "probability": 0.0971 + }, + { + "start": 13964.28, + "end": 13964.56, + "probability": 0.0308 + }, + { + "start": 13964.6, + "end": 13965.74, + "probability": 0.7382 + }, + { + "start": 13967.12, + "end": 13971.68, + "probability": 0.8676 + }, + { + "start": 13972.1, + "end": 13976.28, + "probability": 0.9852 + }, + { + "start": 13976.84, + "end": 13980.7, + "probability": 0.8607 + }, + { + "start": 13980.7, + "end": 13984.76, + "probability": 0.9624 + }, + { + "start": 13985.3, + "end": 13987.58, + "probability": 0.9425 + }, + { + "start": 13987.66, + "end": 13988.58, + "probability": 0.8649 + }, + { + "start": 13989.18, + "end": 13990.12, + "probability": 0.5187 + }, + { + "start": 13990.56, + "end": 13992.18, + "probability": 0.9548 + }, + { + "start": 13992.62, + "end": 13992.8, + "probability": 0.8236 + }, + { + "start": 13992.86, + "end": 13993.7, + "probability": 0.8529 + }, + { + "start": 13993.76, + "end": 13994.78, + "probability": 0.7964 + }, + { + "start": 13994.92, + "end": 13996.8, + "probability": 0.9922 + }, + { + "start": 13997.14, + "end": 13999.34, + "probability": 0.9777 + }, + { + "start": 13999.76, + "end": 13999.96, + "probability": 0.5128 + }, + { + "start": 14000.06, + "end": 14000.28, + "probability": 0.6602 + }, + { + "start": 14000.76, + "end": 14003.68, + "probability": 0.9566 + }, + { + "start": 14003.78, + "end": 14005.76, + "probability": 0.7521 + }, + { + "start": 14005.76, + "end": 14005.96, + "probability": 0.3492 + }, + { + "start": 14006.43, + "end": 14008.54, + "probability": 0.9668 + }, + { + "start": 14008.54, + "end": 14009.36, + "probability": 0.5154 + }, + { + "start": 14009.38, + "end": 14012.86, + "probability": 0.9441 + }, + { + "start": 14012.92, + "end": 14013.02, + "probability": 0.9536 + }, + { + "start": 14013.34, + "end": 14015.9, + "probability": 0.7992 + }, + { + "start": 14016.46, + "end": 14019.28, + "probability": 0.754 + }, + { + "start": 14020.3, + "end": 14022.14, + "probability": 0.7203 + }, + { + "start": 14022.68, + "end": 14025.6, + "probability": 0.7883 + }, + { + "start": 14026.22, + "end": 14028.92, + "probability": 0.721 + }, + { + "start": 14029.64, + "end": 14030.98, + "probability": 0.9945 + }, + { + "start": 14031.7, + "end": 14032.92, + "probability": 0.7419 + }, + { + "start": 14033.84, + "end": 14035.88, + "probability": 0.9443 + }, + { + "start": 14037.36, + "end": 14038.77, + "probability": 0.7021 + }, + { + "start": 14039.92, + "end": 14042.44, + "probability": 0.9458 + }, + { + "start": 14042.92, + "end": 14043.86, + "probability": 0.862 + }, + { + "start": 14043.9, + "end": 14044.6, + "probability": 0.694 + }, + { + "start": 14044.89, + "end": 14046.58, + "probability": 0.978 + }, + { + "start": 14046.7, + "end": 14047.16, + "probability": 0.5805 + }, + { + "start": 14047.28, + "end": 14049.26, + "probability": 0.435 + }, + { + "start": 14049.34, + "end": 14050.52, + "probability": 0.9583 + }, + { + "start": 14051.08, + "end": 14054.02, + "probability": 0.692 + }, + { + "start": 14054.6, + "end": 14055.72, + "probability": 0.9229 + }, + { + "start": 14055.72, + "end": 14055.76, + "probability": 0.6753 + }, + { + "start": 14055.82, + "end": 14058.34, + "probability": 0.7574 + }, + { + "start": 14058.36, + "end": 14058.76, + "probability": 0.5499 + }, + { + "start": 14059.54, + "end": 14060.3, + "probability": 0.975 + }, + { + "start": 14061.88, + "end": 14061.88, + "probability": 0.2455 + }, + { + "start": 14061.88, + "end": 14061.88, + "probability": 0.0047 + }, + { + "start": 14061.88, + "end": 14061.88, + "probability": 0.3605 + }, + { + "start": 14062.1, + "end": 14062.26, + "probability": 0.2912 + }, + { + "start": 14062.26, + "end": 14062.28, + "probability": 0.2427 + }, + { + "start": 14062.3, + "end": 14063.68, + "probability": 0.9564 + }, + { + "start": 14063.88, + "end": 14064.96, + "probability": 0.9641 + }, + { + "start": 14065.16, + "end": 14067.86, + "probability": 0.8254 + }, + { + "start": 14067.96, + "end": 14068.98, + "probability": 0.4724 + }, + { + "start": 14069.0, + "end": 14069.32, + "probability": 0.0114 + }, + { + "start": 14069.32, + "end": 14070.08, + "probability": 0.3562 + }, + { + "start": 14070.46, + "end": 14072.22, + "probability": 0.188 + }, + { + "start": 14072.32, + "end": 14072.54, + "probability": 0.7603 + }, + { + "start": 14072.76, + "end": 14073.18, + "probability": 0.0934 + }, + { + "start": 14074.24, + "end": 14075.4, + "probability": 0.5674 + }, + { + "start": 14075.4, + "end": 14077.58, + "probability": 0.8418 + }, + { + "start": 14077.74, + "end": 14078.98, + "probability": 0.6073 + }, + { + "start": 14079.16, + "end": 14079.42, + "probability": 0.1422 + }, + { + "start": 14079.62, + "end": 14080.34, + "probability": 0.2907 + }, + { + "start": 14082.24, + "end": 14082.8, + "probability": 0.0814 + }, + { + "start": 14082.86, + "end": 14083.98, + "probability": 0.0708 + }, + { + "start": 14084.3, + "end": 14084.36, + "probability": 0.2575 + }, + { + "start": 14084.4, + "end": 14085.5, + "probability": 0.3366 + }, + { + "start": 14085.54, + "end": 14087.32, + "probability": 0.5426 + }, + { + "start": 14087.46, + "end": 14090.26, + "probability": 0.55 + }, + { + "start": 14090.42, + "end": 14090.86, + "probability": 0.6986 + }, + { + "start": 14091.34, + "end": 14092.0, + "probability": 0.586 + }, + { + "start": 14092.18, + "end": 14094.86, + "probability": 0.7145 + }, + { + "start": 14094.96, + "end": 14095.9, + "probability": 0.5858 + }, + { + "start": 14096.0, + "end": 14097.08, + "probability": 0.9602 + }, + { + "start": 14097.22, + "end": 14099.82, + "probability": 0.9642 + }, + { + "start": 14100.98, + "end": 14101.62, + "probability": 0.9072 + }, + { + "start": 14102.34, + "end": 14104.77, + "probability": 0.9587 + }, + { + "start": 14105.02, + "end": 14106.88, + "probability": 0.9976 + }, + { + "start": 14107.52, + "end": 14108.42, + "probability": 0.1849 + }, + { + "start": 14108.8, + "end": 14110.7, + "probability": 0.8411 + }, + { + "start": 14110.94, + "end": 14112.3, + "probability": 0.7341 + }, + { + "start": 14112.36, + "end": 14112.92, + "probability": 0.7292 + }, + { + "start": 14113.9, + "end": 14114.7, + "probability": 0.5421 + }, + { + "start": 14114.78, + "end": 14116.46, + "probability": 0.9407 + }, + { + "start": 14116.78, + "end": 14120.92, + "probability": 0.916 + }, + { + "start": 14121.46, + "end": 14124.28, + "probability": 0.9604 + }, + { + "start": 14124.74, + "end": 14125.72, + "probability": 0.9547 + }, + { + "start": 14126.0, + "end": 14126.9, + "probability": 0.8743 + }, + { + "start": 14127.28, + "end": 14128.56, + "probability": 0.9847 + }, + { + "start": 14128.68, + "end": 14129.52, + "probability": 0.5134 + }, + { + "start": 14129.64, + "end": 14131.9, + "probability": 0.8428 + }, + { + "start": 14132.72, + "end": 14135.48, + "probability": 0.7426 + }, + { + "start": 14136.1, + "end": 14138.82, + "probability": 0.8001 + }, + { + "start": 14139.76, + "end": 14140.56, + "probability": 0.2671 + }, + { + "start": 14140.56, + "end": 14142.78, + "probability": 0.7227 + }, + { + "start": 14143.48, + "end": 14145.98, + "probability": 0.913 + }, + { + "start": 14146.56, + "end": 14150.45, + "probability": 0.7086 + }, + { + "start": 14151.1, + "end": 14152.28, + "probability": 0.8306 + }, + { + "start": 14153.28, + "end": 14155.22, + "probability": 0.9775 + }, + { + "start": 14156.12, + "end": 14158.1, + "probability": 0.763 + }, + { + "start": 14158.6, + "end": 14159.4, + "probability": 0.9848 + }, + { + "start": 14159.88, + "end": 14160.56, + "probability": 0.987 + }, + { + "start": 14161.0, + "end": 14161.84, + "probability": 0.5111 + }, + { + "start": 14161.88, + "end": 14162.78, + "probability": 0.4925 + }, + { + "start": 14162.96, + "end": 14164.02, + "probability": 0.9839 + }, + { + "start": 14164.36, + "end": 14164.94, + "probability": 0.7332 + }, + { + "start": 14165.3, + "end": 14167.06, + "probability": 0.7851 + }, + { + "start": 14167.46, + "end": 14168.76, + "probability": 0.9568 + }, + { + "start": 14169.4, + "end": 14172.18, + "probability": 0.9868 + }, + { + "start": 14172.72, + "end": 14174.46, + "probability": 0.9126 + }, + { + "start": 14175.06, + "end": 14176.16, + "probability": 0.8843 + }, + { + "start": 14176.5, + "end": 14178.04, + "probability": 0.9048 + }, + { + "start": 14178.76, + "end": 14180.39, + "probability": 0.981 + }, + { + "start": 14181.08, + "end": 14183.24, + "probability": 0.9672 + }, + { + "start": 14183.34, + "end": 14184.28, + "probability": 0.271 + }, + { + "start": 14184.62, + "end": 14185.69, + "probability": 0.9365 + }, + { + "start": 14185.84, + "end": 14186.86, + "probability": 0.9207 + }, + { + "start": 14187.54, + "end": 14190.84, + "probability": 0.8496 + }, + { + "start": 14190.92, + "end": 14192.78, + "probability": 0.852 + }, + { + "start": 14193.32, + "end": 14194.9, + "probability": 0.9735 + }, + { + "start": 14195.36, + "end": 14196.2, + "probability": 0.7839 + }, + { + "start": 14196.62, + "end": 14200.96, + "probability": 0.9955 + }, + { + "start": 14201.84, + "end": 14203.6, + "probability": 0.9985 + }, + { + "start": 14203.7, + "end": 14205.1, + "probability": 0.9951 + }, + { + "start": 14205.46, + "end": 14207.5, + "probability": 0.937 + }, + { + "start": 14208.02, + "end": 14209.48, + "probability": 0.5089 + }, + { + "start": 14210.06, + "end": 14211.97, + "probability": 0.9958 + }, + { + "start": 14212.5, + "end": 14213.82, + "probability": 0.9415 + }, + { + "start": 14213.94, + "end": 14216.66, + "probability": 0.9988 + }, + { + "start": 14217.16, + "end": 14219.78, + "probability": 0.9988 + }, + { + "start": 14220.48, + "end": 14223.78, + "probability": 0.9874 + }, + { + "start": 14224.38, + "end": 14226.62, + "probability": 0.9917 + }, + { + "start": 14227.54, + "end": 14229.94, + "probability": 0.8768 + }, + { + "start": 14229.94, + "end": 14232.38, + "probability": 0.9937 + }, + { + "start": 14232.82, + "end": 14236.24, + "probability": 0.3678 + }, + { + "start": 14236.28, + "end": 14236.8, + "probability": 0.4791 + }, + { + "start": 14237.22, + "end": 14239.82, + "probability": 0.9822 + }, + { + "start": 14240.68, + "end": 14242.34, + "probability": 0.9967 + }, + { + "start": 14243.26, + "end": 14245.36, + "probability": 0.994 + }, + { + "start": 14245.76, + "end": 14246.9, + "probability": 0.9402 + }, + { + "start": 14247.74, + "end": 14249.58, + "probability": 0.6719 + }, + { + "start": 14250.22, + "end": 14253.34, + "probability": 0.9478 + }, + { + "start": 14253.68, + "end": 14255.58, + "probability": 0.6254 + }, + { + "start": 14256.72, + "end": 14257.6, + "probability": 0.2699 + }, + { + "start": 14257.6, + "end": 14257.84, + "probability": 0.3994 + }, + { + "start": 14257.86, + "end": 14258.24, + "probability": 0.4316 + }, + { + "start": 14258.96, + "end": 14260.32, + "probability": 0.794 + }, + { + "start": 14260.7, + "end": 14261.04, + "probability": 0.193 + }, + { + "start": 14261.04, + "end": 14261.04, + "probability": 0.1413 + }, + { + "start": 14261.04, + "end": 14262.58, + "probability": 0.4132 + }, + { + "start": 14262.58, + "end": 14262.58, + "probability": 0.47 + }, + { + "start": 14262.58, + "end": 14265.0, + "probability": 0.9706 + }, + { + "start": 14265.62, + "end": 14266.1, + "probability": 0.9137 + }, + { + "start": 14266.22, + "end": 14268.2, + "probability": 0.9933 + }, + { + "start": 14268.48, + "end": 14269.56, + "probability": 0.9072 + }, + { + "start": 14269.56, + "end": 14270.06, + "probability": 0.9156 + }, + { + "start": 14270.88, + "end": 14273.72, + "probability": 0.9795 + }, + { + "start": 14273.76, + "end": 14274.32, + "probability": 0.7381 + }, + { + "start": 14274.64, + "end": 14275.2, + "probability": 0.8057 + }, + { + "start": 14275.3, + "end": 14276.74, + "probability": 0.9087 + }, + { + "start": 14277.44, + "end": 14279.26, + "probability": 0.913 + }, + { + "start": 14279.82, + "end": 14280.64, + "probability": 0.9008 + }, + { + "start": 14280.72, + "end": 14284.68, + "probability": 0.9922 + }, + { + "start": 14285.18, + "end": 14287.18, + "probability": 0.8923 + }, + { + "start": 14287.3, + "end": 14290.12, + "probability": 0.9408 + }, + { + "start": 14290.9, + "end": 14292.14, + "probability": 0.9989 + }, + { + "start": 14292.64, + "end": 14293.27, + "probability": 0.9524 + }, + { + "start": 14294.0, + "end": 14294.96, + "probability": 0.9661 + }, + { + "start": 14295.78, + "end": 14299.88, + "probability": 0.987 + }, + { + "start": 14300.66, + "end": 14303.12, + "probability": 0.9673 + }, + { + "start": 14303.9, + "end": 14307.04, + "probability": 0.9928 + }, + { + "start": 14307.86, + "end": 14310.91, + "probability": 0.9952 + }, + { + "start": 14311.4, + "end": 14313.44, + "probability": 0.9982 + }, + { + "start": 14314.38, + "end": 14314.98, + "probability": 0.7406 + }, + { + "start": 14315.14, + "end": 14317.74, + "probability": 0.9902 + }, + { + "start": 14317.74, + "end": 14319.72, + "probability": 0.9974 + }, + { + "start": 14320.28, + "end": 14320.28, + "probability": 0.1105 + }, + { + "start": 14320.28, + "end": 14322.84, + "probability": 0.9962 + }, + { + "start": 14323.34, + "end": 14325.28, + "probability": 0.9892 + }, + { + "start": 14325.98, + "end": 14330.76, + "probability": 0.7958 + }, + { + "start": 14331.22, + "end": 14334.22, + "probability": 0.949 + }, + { + "start": 14334.34, + "end": 14335.46, + "probability": 0.9976 + }, + { + "start": 14335.98, + "end": 14339.92, + "probability": 0.9717 + }, + { + "start": 14340.1, + "end": 14341.0, + "probability": 0.8639 + }, + { + "start": 14341.42, + "end": 14346.1, + "probability": 0.9046 + }, + { + "start": 14346.84, + "end": 14348.6, + "probability": 0.8393 + }, + { + "start": 14349.04, + "end": 14351.08, + "probability": 0.9165 + }, + { + "start": 14351.2, + "end": 14352.2, + "probability": 0.7064 + }, + { + "start": 14352.94, + "end": 14355.0, + "probability": 0.9302 + }, + { + "start": 14355.36, + "end": 14356.25, + "probability": 0.9863 + }, + { + "start": 14357.3, + "end": 14357.84, + "probability": 0.0305 + }, + { + "start": 14357.84, + "end": 14360.16, + "probability": 0.9258 + }, + { + "start": 14361.02, + "end": 14363.78, + "probability": 0.8881 + }, + { + "start": 14364.18, + "end": 14367.06, + "probability": 0.9941 + }, + { + "start": 14367.14, + "end": 14368.62, + "probability": 0.9491 + }, + { + "start": 14369.12, + "end": 14370.88, + "probability": 0.9849 + }, + { + "start": 14371.62, + "end": 14373.1, + "probability": 0.1586 + }, + { + "start": 14373.7, + "end": 14376.22, + "probability": 0.9748 + }, + { + "start": 14376.76, + "end": 14379.0, + "probability": 0.8974 + }, + { + "start": 14379.82, + "end": 14382.16, + "probability": 0.9899 + }, + { + "start": 14382.7, + "end": 14385.86, + "probability": 0.9961 + }, + { + "start": 14386.06, + "end": 14389.4, + "probability": 0.9001 + }, + { + "start": 14389.78, + "end": 14390.56, + "probability": 0.7231 + }, + { + "start": 14391.34, + "end": 14394.04, + "probability": 0.8483 + }, + { + "start": 14394.74, + "end": 14400.04, + "probability": 0.9827 + }, + { + "start": 14400.04, + "end": 14400.18, + "probability": 0.6447 + }, + { + "start": 14400.6, + "end": 14402.48, + "probability": 0.9523 + }, + { + "start": 14402.98, + "end": 14405.82, + "probability": 0.9781 + }, + { + "start": 14406.02, + "end": 14406.66, + "probability": 0.902 + }, + { + "start": 14406.7, + "end": 14408.78, + "probability": 0.9779 + }, + { + "start": 14408.78, + "end": 14409.66, + "probability": 0.631 + }, + { + "start": 14410.1, + "end": 14411.28, + "probability": 0.974 + }, + { + "start": 14413.84, + "end": 14415.02, + "probability": 0.0809 + }, + { + "start": 14415.74, + "end": 14416.24, + "probability": 0.0199 + }, + { + "start": 14416.24, + "end": 14417.13, + "probability": 0.3014 + }, + { + "start": 14418.38, + "end": 14420.72, + "probability": 0.9918 + }, + { + "start": 14420.72, + "end": 14420.76, + "probability": 0.6548 + }, + { + "start": 14420.76, + "end": 14420.86, + "probability": 0.4062 + }, + { + "start": 14420.92, + "end": 14421.36, + "probability": 0.8799 + }, + { + "start": 14421.46, + "end": 14423.3, + "probability": 0.9915 + }, + { + "start": 14423.95, + "end": 14425.28, + "probability": 0.9937 + }, + { + "start": 14425.92, + "end": 14426.38, + "probability": 0.3323 + }, + { + "start": 14426.96, + "end": 14427.06, + "probability": 0.6195 + }, + { + "start": 14427.06, + "end": 14430.24, + "probability": 0.7703 + }, + { + "start": 14431.5, + "end": 14435.8, + "probability": 0.9418 + }, + { + "start": 14437.96, + "end": 14442.32, + "probability": 0.9905 + }, + { + "start": 14444.14, + "end": 14445.44, + "probability": 0.2528 + }, + { + "start": 14446.24, + "end": 14447.46, + "probability": 0.9608 + }, + { + "start": 14448.06, + "end": 14449.44, + "probability": 0.9581 + }, + { + "start": 14450.5, + "end": 14452.94, + "probability": 0.9119 + }, + { + "start": 14453.58, + "end": 14454.36, + "probability": 0.9622 + }, + { + "start": 14455.74, + "end": 14457.32, + "probability": 0.9641 + }, + { + "start": 14458.32, + "end": 14460.86, + "probability": 0.98 + }, + { + "start": 14461.42, + "end": 14465.73, + "probability": 0.9915 + }, + { + "start": 14467.06, + "end": 14468.04, + "probability": 0.8519 + }, + { + "start": 14468.72, + "end": 14469.04, + "probability": 0.7042 + }, + { + "start": 14470.18, + "end": 14472.04, + "probability": 0.6 + }, + { + "start": 14472.58, + "end": 14473.06, + "probability": 0.5358 + }, + { + "start": 14474.66, + "end": 14476.92, + "probability": 0.9044 + }, + { + "start": 14477.54, + "end": 14478.2, + "probability": 0.6393 + }, + { + "start": 14479.62, + "end": 14480.31, + "probability": 0.375 + }, + { + "start": 14481.22, + "end": 14483.94, + "probability": 0.9531 + }, + { + "start": 14484.26, + "end": 14484.46, + "probability": 0.4791 + }, + { + "start": 14484.78, + "end": 14485.1, + "probability": 0.8263 + }, + { + "start": 14485.42, + "end": 14487.0, + "probability": 0.7816 + }, + { + "start": 14488.34, + "end": 14490.22, + "probability": 0.8102 + }, + { + "start": 14491.06, + "end": 14492.22, + "probability": 0.9929 + }, + { + "start": 14493.02, + "end": 14493.86, + "probability": 0.9404 + }, + { + "start": 14494.3, + "end": 14495.06, + "probability": 0.9788 + }, + { + "start": 14495.98, + "end": 14496.63, + "probability": 0.976 + }, + { + "start": 14497.52, + "end": 14499.4, + "probability": 0.9438 + }, + { + "start": 14499.72, + "end": 14500.64, + "probability": 0.8172 + }, + { + "start": 14501.18, + "end": 14503.02, + "probability": 0.8944 + }, + { + "start": 14503.68, + "end": 14504.88, + "probability": 0.9436 + }, + { + "start": 14505.52, + "end": 14508.94, + "probability": 0.9775 + }, + { + "start": 14509.38, + "end": 14510.42, + "probability": 0.2453 + }, + { + "start": 14510.94, + "end": 14513.08, + "probability": 0.973 + }, + { + "start": 14513.76, + "end": 14514.72, + "probability": 0.8687 + }, + { + "start": 14515.74, + "end": 14516.86, + "probability": 0.9471 + }, + { + "start": 14517.4, + "end": 14518.04, + "probability": 0.8267 + }, + { + "start": 14519.56, + "end": 14520.47, + "probability": 0.4971 + }, + { + "start": 14521.38, + "end": 14522.92, + "probability": 0.9845 + }, + { + "start": 14523.8, + "end": 14525.78, + "probability": 0.735 + }, + { + "start": 14526.72, + "end": 14527.82, + "probability": 0.9635 + }, + { + "start": 14528.7, + "end": 14529.56, + "probability": 0.7075 + }, + { + "start": 14530.2, + "end": 14530.88, + "probability": 0.5635 + }, + { + "start": 14531.5, + "end": 14533.08, + "probability": 0.9531 + }, + { + "start": 14533.6, + "end": 14534.3, + "probability": 0.4426 + }, + { + "start": 14534.82, + "end": 14538.7, + "probability": 0.9273 + }, + { + "start": 14538.98, + "end": 14539.96, + "probability": 0.9978 + }, + { + "start": 14541.0, + "end": 14541.22, + "probability": 0.0529 + }, + { + "start": 14541.22, + "end": 14541.42, + "probability": 0.4003 + }, + { + "start": 14542.38, + "end": 14542.88, + "probability": 0.7981 + }, + { + "start": 14543.66, + "end": 14544.24, + "probability": 0.6758 + }, + { + "start": 14544.48, + "end": 14546.8, + "probability": 0.9495 + }, + { + "start": 14547.34, + "end": 14547.88, + "probability": 0.8694 + }, + { + "start": 14549.0, + "end": 14550.98, + "probability": 0.6878 + }, + { + "start": 14551.34, + "end": 14552.9, + "probability": 0.8594 + }, + { + "start": 14553.48, + "end": 14554.46, + "probability": 0.4306 + }, + { + "start": 14555.12, + "end": 14556.1, + "probability": 0.4609 + }, + { + "start": 14556.54, + "end": 14558.0, + "probability": 0.8085 + }, + { + "start": 14558.06, + "end": 14558.88, + "probability": 0.9739 + }, + { + "start": 14559.56, + "end": 14562.81, + "probability": 0.9461 + }, + { + "start": 14565.02, + "end": 14566.52, + "probability": 0.9283 + }, + { + "start": 14567.18, + "end": 14571.45, + "probability": 0.7275 + }, + { + "start": 14571.66, + "end": 14572.52, + "probability": 0.3708 + }, + { + "start": 14572.78, + "end": 14573.6, + "probability": 0.8377 + }, + { + "start": 14573.66, + "end": 14575.92, + "probability": 0.7978 + }, + { + "start": 14576.2, + "end": 14576.66, + "probability": 0.7015 + }, + { + "start": 14589.9, + "end": 14593.42, + "probability": 0.9925 + }, + { + "start": 14603.46, + "end": 14605.16, + "probability": 0.0975 + }, + { + "start": 14605.16, + "end": 14605.84, + "probability": 0.0784 + }, + { + "start": 14606.08, + "end": 14607.46, + "probability": 0.073 + }, + { + "start": 14607.82, + "end": 14609.18, + "probability": 0.1363 + }, + { + "start": 14610.18, + "end": 14610.68, + "probability": 0.1363 + }, + { + "start": 14612.97, + "end": 14615.54, + "probability": 0.0183 + }, + { + "start": 14615.78, + "end": 14616.44, + "probability": 0.0156 + }, + { + "start": 14619.76, + "end": 14622.46, + "probability": 0.0817 + }, + { + "start": 14627.44, + "end": 14628.48, + "probability": 0.1585 + }, + { + "start": 14644.82, + "end": 14647.04, + "probability": 0.0002 + }, + { + "start": 14649.38, + "end": 14652.52, + "probability": 0.0964 + }, + { + "start": 14653.24, + "end": 14653.73, + "probability": 0.0696 + }, + { + "start": 14654.66, + "end": 14655.94, + "probability": 0.1388 + }, + { + "start": 14656.14, + "end": 14656.98, + "probability": 0.0826 + }, + { + "start": 14656.98, + "end": 14657.16, + "probability": 0.3268 + }, + { + "start": 14658.43, + "end": 14660.2, + "probability": 0.0225 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.0, + "end": 14664.0, + "probability": 0.0 + }, + { + "start": 14664.72, + "end": 14667.28, + "probability": 0.8959 + }, + { + "start": 14668.02, + "end": 14670.33, + "probability": 0.9272 + }, + { + "start": 14671.22, + "end": 14672.46, + "probability": 0.9792 + }, + { + "start": 14673.42, + "end": 14677.36, + "probability": 0.9027 + }, + { + "start": 14678.24, + "end": 14678.82, + "probability": 0.5656 + }, + { + "start": 14678.96, + "end": 14682.96, + "probability": 0.9002 + }, + { + "start": 14685.04, + "end": 14685.38, + "probability": 0.4541 + }, + { + "start": 14685.58, + "end": 14685.72, + "probability": 0.7556 + }, + { + "start": 14685.74, + "end": 14686.58, + "probability": 0.9626 + }, + { + "start": 14686.7, + "end": 14687.8, + "probability": 0.7557 + }, + { + "start": 14687.86, + "end": 14690.74, + "probability": 0.7157 + }, + { + "start": 14691.12, + "end": 14696.72, + "probability": 0.9851 + }, + { + "start": 14696.84, + "end": 14697.36, + "probability": 0.8233 + }, + { + "start": 14697.46, + "end": 14698.32, + "probability": 0.4187 + }, + { + "start": 14698.32, + "end": 14699.26, + "probability": 0.6675 + }, + { + "start": 14700.62, + "end": 14700.92, + "probability": 0.547 + }, + { + "start": 14700.96, + "end": 14702.0, + "probability": 0.7851 + }, + { + "start": 14702.2, + "end": 14703.1, + "probability": 0.4244 + }, + { + "start": 14703.78, + "end": 14704.38, + "probability": 0.8434 + }, + { + "start": 14705.74, + "end": 14707.76, + "probability": 0.9347 + }, + { + "start": 14720.16, + "end": 14721.92, + "probability": 0.4908 + }, + { + "start": 14723.72, + "end": 14729.48, + "probability": 0.9563 + }, + { + "start": 14731.04, + "end": 14734.94, + "probability": 0.9895 + }, + { + "start": 14736.24, + "end": 14739.46, + "probability": 0.8647 + }, + { + "start": 14741.48, + "end": 14744.0, + "probability": 0.9145 + }, + { + "start": 14745.8, + "end": 14748.7, + "probability": 0.9961 + }, + { + "start": 14749.7, + "end": 14750.9, + "probability": 0.9219 + }, + { + "start": 14752.08, + "end": 14754.4, + "probability": 0.9898 + }, + { + "start": 14754.58, + "end": 14755.34, + "probability": 0.9187 + }, + { + "start": 14755.48, + "end": 14755.84, + "probability": 0.9663 + }, + { + "start": 14758.18, + "end": 14759.58, + "probability": 0.967 + }, + { + "start": 14759.68, + "end": 14761.86, + "probability": 0.9819 + }, + { + "start": 14762.04, + "end": 14762.78, + "probability": 0.6627 + }, + { + "start": 14763.38, + "end": 14764.2, + "probability": 0.8591 + }, + { + "start": 14765.02, + "end": 14766.62, + "probability": 0.9595 + }, + { + "start": 14767.64, + "end": 14768.9, + "probability": 0.9447 + }, + { + "start": 14769.6, + "end": 14772.54, + "probability": 0.9725 + }, + { + "start": 14772.84, + "end": 14773.98, + "probability": 0.7916 + }, + { + "start": 14775.26, + "end": 14776.5, + "probability": 0.052 + }, + { + "start": 14777.28, + "end": 14777.51, + "probability": 0.0292 + }, + { + "start": 14777.66, + "end": 14778.8, + "probability": 0.1105 + }, + { + "start": 14778.8, + "end": 14779.16, + "probability": 0.0571 + }, + { + "start": 14779.78, + "end": 14780.82, + "probability": 0.238 + }, + { + "start": 14781.7, + "end": 14786.6, + "probability": 0.839 + }, + { + "start": 14787.66, + "end": 14790.62, + "probability": 0.9595 + }, + { + "start": 14791.24, + "end": 14792.04, + "probability": 0.958 + }, + { + "start": 14792.64, + "end": 14794.22, + "probability": 0.936 + }, + { + "start": 14794.44, + "end": 14798.94, + "probability": 0.9967 + }, + { + "start": 14799.12, + "end": 14800.0, + "probability": 0.6981 + }, + { + "start": 14800.46, + "end": 14801.22, + "probability": 0.8584 + }, + { + "start": 14802.28, + "end": 14804.28, + "probability": 0.9764 + }, + { + "start": 14806.48, + "end": 14807.78, + "probability": 0.6102 + }, + { + "start": 14808.96, + "end": 14812.7, + "probability": 0.9946 + }, + { + "start": 14813.5, + "end": 14815.96, + "probability": 0.9775 + }, + { + "start": 14816.66, + "end": 14819.18, + "probability": 0.8573 + }, + { + "start": 14820.92, + "end": 14823.9, + "probability": 0.9412 + }, + { + "start": 14825.02, + "end": 14825.74, + "probability": 0.9976 + }, + { + "start": 14826.7, + "end": 14830.68, + "probability": 0.9866 + }, + { + "start": 14831.48, + "end": 14832.52, + "probability": 0.7769 + }, + { + "start": 14832.7, + "end": 14833.78, + "probability": 0.8159 + }, + { + "start": 14834.24, + "end": 14836.3, + "probability": 0.9867 + }, + { + "start": 14837.54, + "end": 14839.8, + "probability": 0.9964 + }, + { + "start": 14840.56, + "end": 14841.74, + "probability": 0.8178 + }, + { + "start": 14842.52, + "end": 14844.9, + "probability": 0.9808 + }, + { + "start": 14846.12, + "end": 14847.66, + "probability": 0.1982 + }, + { + "start": 14848.08, + "end": 14850.3, + "probability": 0.9302 + }, + { + "start": 14851.36, + "end": 14852.64, + "probability": 0.9085 + }, + { + "start": 14854.2, + "end": 14856.02, + "probability": 0.7929 + }, + { + "start": 14856.68, + "end": 14860.82, + "probability": 0.9671 + }, + { + "start": 14861.48, + "end": 14862.32, + "probability": 0.9697 + }, + { + "start": 14863.62, + "end": 14865.82, + "probability": 0.9798 + }, + { + "start": 14866.96, + "end": 14868.92, + "probability": 0.9546 + }, + { + "start": 14869.1, + "end": 14871.6, + "probability": 0.9491 + }, + { + "start": 14872.64, + "end": 14874.26, + "probability": 0.9966 + }, + { + "start": 14875.1, + "end": 14877.06, + "probability": 0.8288 + }, + { + "start": 14878.3, + "end": 14879.0, + "probability": 0.9845 + }, + { + "start": 14879.82, + "end": 14884.0, + "probability": 0.3124 + }, + { + "start": 14884.72, + "end": 14886.84, + "probability": 0.8081 + }, + { + "start": 14887.46, + "end": 14888.46, + "probability": 0.8637 + }, + { + "start": 14888.78, + "end": 14891.16, + "probability": 0.7455 + }, + { + "start": 14891.62, + "end": 14893.24, + "probability": 0.6903 + }, + { + "start": 14894.98, + "end": 14895.76, + "probability": 0.7503 + }, + { + "start": 14897.22, + "end": 14899.22, + "probability": 0.5972 + }, + { + "start": 14900.48, + "end": 14902.9, + "probability": 0.9905 + }, + { + "start": 14903.44, + "end": 14904.66, + "probability": 0.8484 + }, + { + "start": 14905.6, + "end": 14911.98, + "probability": 0.7751 + }, + { + "start": 14914.32, + "end": 14915.36, + "probability": 0.6237 + }, + { + "start": 14916.76, + "end": 14917.46, + "probability": 0.8202 + }, + { + "start": 14918.14, + "end": 14924.64, + "probability": 0.9752 + }, + { + "start": 14924.64, + "end": 14928.26, + "probability": 0.807 + }, + { + "start": 14929.3, + "end": 14931.68, + "probability": 0.5386 + }, + { + "start": 14932.48, + "end": 14935.54, + "probability": 0.7755 + }, + { + "start": 14936.1, + "end": 14937.02, + "probability": 0.9966 + }, + { + "start": 14939.76, + "end": 14942.76, + "probability": 0.8315 + }, + { + "start": 14943.2, + "end": 14944.38, + "probability": 0.6519 + }, + { + "start": 14944.48, + "end": 14945.54, + "probability": 0.6606 + }, + { + "start": 14946.18, + "end": 14949.24, + "probability": 0.9383 + }, + { + "start": 14949.6, + "end": 14952.76, + "probability": 0.9954 + }, + { + "start": 14953.96, + "end": 14955.28, + "probability": 0.9915 + }, + { + "start": 14955.86, + "end": 14957.02, + "probability": 0.9097 + }, + { + "start": 14957.48, + "end": 14960.4, + "probability": 0.8984 + }, + { + "start": 14960.68, + "end": 14966.96, + "probability": 0.8272 + }, + { + "start": 14967.02, + "end": 14967.2, + "probability": 0.4357 + }, + { + "start": 14967.28, + "end": 14968.24, + "probability": 0.6682 + }, + { + "start": 14968.24, + "end": 14969.58, + "probability": 0.649 + }, + { + "start": 14973.14, + "end": 14974.74, + "probability": 0.9736 + }, + { + "start": 14975.57, + "end": 14976.34, + "probability": 0.625 + }, + { + "start": 14977.36, + "end": 14978.08, + "probability": 0.963 + }, + { + "start": 14982.08, + "end": 14983.14, + "probability": 0.6726 + }, + { + "start": 14983.24, + "end": 14984.02, + "probability": 0.6285 + }, + { + "start": 14984.1, + "end": 14985.61, + "probability": 0.7048 + }, + { + "start": 14986.84, + "end": 14988.4, + "probability": 0.9643 + }, + { + "start": 14988.4, + "end": 14990.64, + "probability": 0.4093 + }, + { + "start": 14990.88, + "end": 14993.1, + "probability": 0.1765 + }, + { + "start": 14994.83, + "end": 15000.44, + "probability": 0.7011 + }, + { + "start": 15000.58, + "end": 15002.2, + "probability": 0.5783 + }, + { + "start": 15002.52, + "end": 15004.8, + "probability": 0.9346 + }, + { + "start": 15005.0, + "end": 15005.24, + "probability": 0.6632 + }, + { + "start": 15005.46, + "end": 15005.78, + "probability": 0.3769 + }, + { + "start": 15005.78, + "end": 15006.4, + "probability": 0.7277 + }, + { + "start": 15007.74, + "end": 15009.1, + "probability": 0.6937 + }, + { + "start": 15009.34, + "end": 15009.36, + "probability": 0.6176 + }, + { + "start": 15009.36, + "end": 15009.98, + "probability": 0.8731 + }, + { + "start": 15010.12, + "end": 15012.0, + "probability": 0.7041 + }, + { + "start": 15012.44, + "end": 15014.38, + "probability": 0.9059 + }, + { + "start": 15014.62, + "end": 15015.74, + "probability": 0.7465 + }, + { + "start": 15016.56, + "end": 15020.8, + "probability": 0.9489 + }, + { + "start": 15022.42, + "end": 15025.52, + "probability": 0.9917 + }, + { + "start": 15025.52, + "end": 15027.29, + "probability": 0.9868 + }, + { + "start": 15028.64, + "end": 15031.16, + "probability": 0.7357 + }, + { + "start": 15031.78, + "end": 15035.2, + "probability": 0.9844 + }, + { + "start": 15035.24, + "end": 15037.78, + "probability": 0.9979 + }, + { + "start": 15039.82, + "end": 15043.28, + "probability": 0.9796 + }, + { + "start": 15043.5, + "end": 15046.56, + "probability": 0.9768 + }, + { + "start": 15046.72, + "end": 15051.2, + "probability": 0.9785 + }, + { + "start": 15052.0, + "end": 15052.1, + "probability": 0.284 + }, + { + "start": 15052.14, + "end": 15055.06, + "probability": 0.9871 + }, + { + "start": 15055.18, + "end": 15056.7, + "probability": 0.2839 + }, + { + "start": 15057.08, + "end": 15058.82, + "probability": 0.1365 + }, + { + "start": 15059.42, + "end": 15061.78, + "probability": 0.956 + }, + { + "start": 15062.78, + "end": 15067.0, + "probability": 0.9986 + }, + { + "start": 15067.72, + "end": 15070.7, + "probability": 0.7308 + }, + { + "start": 15071.02, + "end": 15073.84, + "probability": 0.9094 + }, + { + "start": 15074.28, + "end": 15075.52, + "probability": 0.8515 + }, + { + "start": 15075.98, + "end": 15078.96, + "probability": 0.7522 + }, + { + "start": 15080.99, + "end": 15082.78, + "probability": 0.0861 + }, + { + "start": 15082.78, + "end": 15082.96, + "probability": 0.0904 + }, + { + "start": 15082.96, + "end": 15086.84, + "probability": 0.7067 + }, + { + "start": 15087.48, + "end": 15088.08, + "probability": 0.567 + }, + { + "start": 15088.26, + "end": 15091.76, + "probability": 0.9635 + }, + { + "start": 15092.6, + "end": 15094.54, + "probability": 0.9972 + }, + { + "start": 15094.54, + "end": 15097.92, + "probability": 0.9761 + }, + { + "start": 15098.08, + "end": 15100.38, + "probability": 0.7731 + }, + { + "start": 15100.92, + "end": 15103.44, + "probability": 0.9797 + }, + { + "start": 15104.58, + "end": 15105.28, + "probability": 0.6252 + }, + { + "start": 15105.7, + "end": 15106.33, + "probability": 0.6843 + }, + { + "start": 15107.28, + "end": 15107.8, + "probability": 0.7037 + }, + { + "start": 15108.14, + "end": 15108.94, + "probability": 0.803 + }, + { + "start": 15109.34, + "end": 15115.76, + "probability": 0.9779 + }, + { + "start": 15115.98, + "end": 15117.38, + "probability": 0.9517 + }, + { + "start": 15118.4, + "end": 15120.36, + "probability": 0.9933 + }, + { + "start": 15120.62, + "end": 15121.9, + "probability": 0.9311 + }, + { + "start": 15122.28, + "end": 15123.24, + "probability": 0.8822 + }, + { + "start": 15124.08, + "end": 15127.38, + "probability": 0.918 + }, + { + "start": 15127.96, + "end": 15128.98, + "probability": 0.8766 + }, + { + "start": 15129.26, + "end": 15130.02, + "probability": 0.9813 + }, + { + "start": 15131.64, + "end": 15136.74, + "probability": 0.9918 + }, + { + "start": 15137.01, + "end": 15141.4, + "probability": 0.9971 + }, + { + "start": 15142.02, + "end": 15143.66, + "probability": 0.8813 + }, + { + "start": 15144.28, + "end": 15144.7, + "probability": 0.5193 + }, + { + "start": 15145.38, + "end": 15148.5, + "probability": 0.753 + }, + { + "start": 15149.12, + "end": 15154.7, + "probability": 0.9634 + }, + { + "start": 15156.38, + "end": 15156.8, + "probability": 0.8579 + }, + { + "start": 15157.18, + "end": 15164.62, + "probability": 0.9727 + }, + { + "start": 15165.04, + "end": 15167.2, + "probability": 0.8701 + }, + { + "start": 15167.32, + "end": 15169.7, + "probability": 0.9555 + }, + { + "start": 15170.06, + "end": 15171.84, + "probability": 0.9929 + }, + { + "start": 15172.84, + "end": 15174.82, + "probability": 0.9784 + }, + { + "start": 15175.44, + "end": 15178.44, + "probability": 0.9903 + }, + { + "start": 15179.28, + "end": 15183.56, + "probability": 0.986 + }, + { + "start": 15184.52, + "end": 15192.53, + "probability": 0.9517 + }, + { + "start": 15192.78, + "end": 15197.52, + "probability": 0.9424 + }, + { + "start": 15198.3, + "end": 15200.32, + "probability": 0.7506 + }, + { + "start": 15200.8, + "end": 15201.76, + "probability": 0.8639 + }, + { + "start": 15202.78, + "end": 15204.64, + "probability": 0.7809 + }, + { + "start": 15205.8, + "end": 15209.54, + "probability": 0.9784 + }, + { + "start": 15210.18, + "end": 15212.16, + "probability": 0.9785 + }, + { + "start": 15212.68, + "end": 15215.8, + "probability": 0.9567 + }, + { + "start": 15217.04, + "end": 15218.48, + "probability": 0.9988 + }, + { + "start": 15219.86, + "end": 15221.22, + "probability": 0.8536 + }, + { + "start": 15221.32, + "end": 15223.88, + "probability": 0.9126 + }, + { + "start": 15223.88, + "end": 15226.56, + "probability": 0.8877 + }, + { + "start": 15227.0, + "end": 15228.36, + "probability": 0.9749 + }, + { + "start": 15228.96, + "end": 15229.08, + "probability": 0.1735 + }, + { + "start": 15229.12, + "end": 15233.08, + "probability": 0.8588 + }, + { + "start": 15233.16, + "end": 15233.8, + "probability": 0.8108 + }, + { + "start": 15233.88, + "end": 15234.5, + "probability": 0.707 + }, + { + "start": 15235.02, + "end": 15236.08, + "probability": 0.7947 + }, + { + "start": 15236.8, + "end": 15240.56, + "probability": 0.9951 + }, + { + "start": 15241.32, + "end": 15242.96, + "probability": 0.9948 + }, + { + "start": 15244.28, + "end": 15245.2, + "probability": 0.8112 + }, + { + "start": 15246.0, + "end": 15247.56, + "probability": 0.9939 + }, + { + "start": 15248.34, + "end": 15248.46, + "probability": 0.0493 + }, + { + "start": 15248.56, + "end": 15250.28, + "probability": 0.8754 + }, + { + "start": 15250.34, + "end": 15252.28, + "probability": 0.9802 + }, + { + "start": 15252.78, + "end": 15256.74, + "probability": 0.9878 + }, + { + "start": 15257.16, + "end": 15259.88, + "probability": 0.8368 + }, + { + "start": 15260.56, + "end": 15262.46, + "probability": 0.861 + }, + { + "start": 15262.58, + "end": 15264.4, + "probability": 0.7913 + }, + { + "start": 15266.38, + "end": 15267.9, + "probability": 0.7581 + }, + { + "start": 15269.66, + "end": 15271.9, + "probability": 0.9777 + }, + { + "start": 15272.7, + "end": 15274.76, + "probability": 0.6051 + }, + { + "start": 15274.84, + "end": 15275.8, + "probability": 0.792 + }, + { + "start": 15276.32, + "end": 15278.04, + "probability": 0.8985 + }, + { + "start": 15278.74, + "end": 15279.46, + "probability": 0.5648 + }, + { + "start": 15280.84, + "end": 15281.58, + "probability": 0.9369 + }, + { + "start": 15282.1, + "end": 15286.58, + "probability": 0.9706 + }, + { + "start": 15287.28, + "end": 15290.0, + "probability": 0.9745 + }, + { + "start": 15290.16, + "end": 15290.94, + "probability": 0.7246 + }, + { + "start": 15291.64, + "end": 15292.02, + "probability": 0.5318 + }, + { + "start": 15292.42, + "end": 15294.04, + "probability": 0.9423 + }, + { + "start": 15294.58, + "end": 15298.74, + "probability": 0.8395 + }, + { + "start": 15300.9, + "end": 15301.08, + "probability": 0.9578 + }, + { + "start": 15301.3, + "end": 15305.16, + "probability": 0.9932 + }, + { + "start": 15305.28, + "end": 15309.98, + "probability": 0.9611 + }, + { + "start": 15310.6, + "end": 15312.44, + "probability": 0.8934 + }, + { + "start": 15313.38, + "end": 15316.08, + "probability": 0.6397 + }, + { + "start": 15316.76, + "end": 15318.1, + "probability": 0.9429 + }, + { + "start": 15318.9, + "end": 15320.58, + "probability": 0.9753 + }, + { + "start": 15320.74, + "end": 15323.58, + "probability": 0.995 + }, + { + "start": 15324.6, + "end": 15325.76, + "probability": 0.9819 + }, + { + "start": 15326.46, + "end": 15327.0, + "probability": 0.8696 + }, + { + "start": 15327.38, + "end": 15327.7, + "probability": 0.8953 + }, + { + "start": 15328.96, + "end": 15330.32, + "probability": 0.7446 + }, + { + "start": 15330.4, + "end": 15333.08, + "probability": 0.9257 + }, + { + "start": 15333.22, + "end": 15337.24, + "probability": 0.9937 + }, + { + "start": 15337.9, + "end": 15338.8, + "probability": 0.711 + }, + { + "start": 15339.5, + "end": 15340.26, + "probability": 0.9788 + }, + { + "start": 15340.56, + "end": 15341.04, + "probability": 0.9466 + }, + { + "start": 15342.06, + "end": 15342.88, + "probability": 0.8202 + }, + { + "start": 15343.82, + "end": 15345.7, + "probability": 0.8732 + }, + { + "start": 15346.36, + "end": 15349.27, + "probability": 0.9097 + }, + { + "start": 15349.66, + "end": 15350.09, + "probability": 0.8952 + }, + { + "start": 15351.22, + "end": 15356.14, + "probability": 0.9255 + }, + { + "start": 15356.48, + "end": 15358.36, + "probability": 0.9485 + }, + { + "start": 15360.2, + "end": 15364.75, + "probability": 0.9664 + }, + { + "start": 15364.78, + "end": 15365.64, + "probability": 0.9879 + }, + { + "start": 15365.76, + "end": 15366.64, + "probability": 0.9648 + }, + { + "start": 15367.38, + "end": 15368.38, + "probability": 0.4924 + }, + { + "start": 15369.48, + "end": 15373.28, + "probability": 0.9828 + }, + { + "start": 15373.48, + "end": 15374.76, + "probability": 0.9718 + }, + { + "start": 15375.74, + "end": 15377.62, + "probability": 0.9236 + }, + { + "start": 15379.62, + "end": 15380.78, + "probability": 0.8381 + }, + { + "start": 15382.0, + "end": 15382.66, + "probability": 0.5303 + }, + { + "start": 15383.56, + "end": 15388.0, + "probability": 0.8069 + }, + { + "start": 15388.34, + "end": 15390.06, + "probability": 0.9536 + }, + { + "start": 15390.72, + "end": 15393.52, + "probability": 0.9964 + }, + { + "start": 15394.66, + "end": 15396.98, + "probability": 0.8913 + }, + { + "start": 15397.9, + "end": 15401.32, + "probability": 0.8258 + }, + { + "start": 15402.34, + "end": 15402.96, + "probability": 0.3638 + }, + { + "start": 15403.02, + "end": 15408.9, + "probability": 0.9813 + }, + { + "start": 15409.6, + "end": 15410.7, + "probability": 0.7911 + }, + { + "start": 15411.18, + "end": 15414.04, + "probability": 0.9954 + }, + { + "start": 15414.48, + "end": 15416.92, + "probability": 0.824 + }, + { + "start": 15417.08, + "end": 15418.04, + "probability": 0.4141 + }, + { + "start": 15418.26, + "end": 15419.22, + "probability": 0.9543 + }, + { + "start": 15419.8, + "end": 15421.2, + "probability": 0.854 + }, + { + "start": 15422.22, + "end": 15424.9, + "probability": 0.9761 + }, + { + "start": 15425.28, + "end": 15430.2, + "probability": 0.9851 + }, + { + "start": 15430.7, + "end": 15434.5, + "probability": 0.784 + }, + { + "start": 15436.36, + "end": 15439.3, + "probability": 0.89 + }, + { + "start": 15439.46, + "end": 15440.5, + "probability": 0.764 + }, + { + "start": 15440.5, + "end": 15441.9, + "probability": 0.7641 + }, + { + "start": 15442.06, + "end": 15443.86, + "probability": 0.99 + }, + { + "start": 15444.26, + "end": 15446.28, + "probability": 0.9683 + }, + { + "start": 15446.98, + "end": 15447.94, + "probability": 0.5841 + }, + { + "start": 15449.0, + "end": 15452.3, + "probability": 0.9793 + }, + { + "start": 15452.66, + "end": 15453.24, + "probability": 0.8914 + }, + { + "start": 15453.32, + "end": 15453.9, + "probability": 0.9453 + }, + { + "start": 15454.02, + "end": 15457.22, + "probability": 0.935 + }, + { + "start": 15457.44, + "end": 15460.88, + "probability": 0.8054 + }, + { + "start": 15461.18, + "end": 15461.58, + "probability": 0.6681 + }, + { + "start": 15462.74, + "end": 15462.74, + "probability": 0.4721 + }, + { + "start": 15462.74, + "end": 15463.36, + "probability": 0.4366 + }, + { + "start": 15463.56, + "end": 15465.04, + "probability": 0.869 + }, + { + "start": 15465.12, + "end": 15467.32, + "probability": 0.9503 + }, + { + "start": 15468.54, + "end": 15469.36, + "probability": 0.7273 + }, + { + "start": 15469.74, + "end": 15470.62, + "probability": 0.0163 + }, + { + "start": 15470.68, + "end": 15472.54, + "probability": 0.7338 + }, + { + "start": 15472.84, + "end": 15473.88, + "probability": 0.8417 + }, + { + "start": 15473.98, + "end": 15475.86, + "probability": 0.8772 + }, + { + "start": 15476.02, + "end": 15477.86, + "probability": 0.2512 + }, + { + "start": 15478.1, + "end": 15479.38, + "probability": 0.3837 + }, + { + "start": 15479.74, + "end": 15481.3, + "probability": 0.5508 + }, + { + "start": 15481.48, + "end": 15482.86, + "probability": 0.3481 + }, + { + "start": 15483.12, + "end": 15484.36, + "probability": 0.5553 + }, + { + "start": 15484.36, + "end": 15487.81, + "probability": 0.8953 + }, + { + "start": 15488.06, + "end": 15489.94, + "probability": 0.7235 + }, + { + "start": 15490.04, + "end": 15491.66, + "probability": 0.7771 + }, + { + "start": 15491.76, + "end": 15493.1, + "probability": 0.741 + }, + { + "start": 15493.1, + "end": 15494.38, + "probability": 0.834 + }, + { + "start": 15494.38, + "end": 15494.42, + "probability": 0.526 + }, + { + "start": 15494.42, + "end": 15496.36, + "probability": 0.8032 + }, + { + "start": 15496.36, + "end": 15497.34, + "probability": 0.5917 + }, + { + "start": 15498.18, + "end": 15499.16, + "probability": 0.9971 + }, + { + "start": 15499.86, + "end": 15500.65, + "probability": 0.9751 + }, + { + "start": 15501.52, + "end": 15504.68, + "probability": 0.9951 + }, + { + "start": 15504.68, + "end": 15508.29, + "probability": 0.9973 + }, + { + "start": 15508.44, + "end": 15510.18, + "probability": 0.8973 + }, + { + "start": 15510.82, + "end": 15513.5, + "probability": 0.8384 + }, + { + "start": 15513.84, + "end": 15515.61, + "probability": 0.8569 + }, + { + "start": 15516.46, + "end": 15521.02, + "probability": 0.937 + }, + { + "start": 15521.84, + "end": 15526.14, + "probability": 0.993 + }, + { + "start": 15526.14, + "end": 15528.78, + "probability": 0.9478 + }, + { + "start": 15529.58, + "end": 15530.08, + "probability": 0.0125 + }, + { + "start": 15530.42, + "end": 15532.64, + "probability": 0.9011 + }, + { + "start": 15533.26, + "end": 15534.82, + "probability": 0.9829 + }, + { + "start": 15535.32, + "end": 15536.7, + "probability": 0.8904 + }, + { + "start": 15536.78, + "end": 15537.36, + "probability": 0.9622 + }, + { + "start": 15538.06, + "end": 15541.32, + "probability": 0.9922 + }, + { + "start": 15541.9, + "end": 15547.63, + "probability": 0.9192 + }, + { + "start": 15548.54, + "end": 15549.4, + "probability": 0.852 + }, + { + "start": 15549.44, + "end": 15550.08, + "probability": 0.7568 + }, + { + "start": 15550.08, + "end": 15550.56, + "probability": 0.748 + }, + { + "start": 15550.98, + "end": 15551.94, + "probability": 0.905 + }, + { + "start": 15552.8, + "end": 15552.8, + "probability": 0.3529 + }, + { + "start": 15552.8, + "end": 15553.28, + "probability": 0.748 + }, + { + "start": 15554.0, + "end": 15558.2, + "probability": 0.8733 + }, + { + "start": 15558.2, + "end": 15562.24, + "probability": 0.9977 + }, + { + "start": 15562.66, + "end": 15563.28, + "probability": 0.6828 + }, + { + "start": 15563.62, + "end": 15565.26, + "probability": 0.9561 + }, + { + "start": 15565.64, + "end": 15568.26, + "probability": 0.9893 + }, + { + "start": 15568.88, + "end": 15571.56, + "probability": 0.7725 + }, + { + "start": 15571.76, + "end": 15572.42, + "probability": 0.4092 + }, + { + "start": 15572.84, + "end": 15576.52, + "probability": 0.9644 + }, + { + "start": 15577.18, + "end": 15578.86, + "probability": 0.9109 + }, + { + "start": 15579.2, + "end": 15579.94, + "probability": 0.9785 + }, + { + "start": 15580.24, + "end": 15582.96, + "probability": 0.9951 + }, + { + "start": 15583.54, + "end": 15584.1, + "probability": 0.4999 + }, + { + "start": 15584.7, + "end": 15585.44, + "probability": 0.8338 + }, + { + "start": 15585.48, + "end": 15589.84, + "probability": 0.8247 + }, + { + "start": 15590.0, + "end": 15591.5, + "probability": 0.865 + }, + { + "start": 15592.2, + "end": 15593.6, + "probability": 0.7435 + }, + { + "start": 15594.04, + "end": 15595.16, + "probability": 0.9674 + }, + { + "start": 15595.28, + "end": 15597.6, + "probability": 0.7218 + }, + { + "start": 15598.32, + "end": 15601.34, + "probability": 0.07 + }, + { + "start": 15602.32, + "end": 15604.0, + "probability": 0.3795 + }, + { + "start": 15604.58, + "end": 15607.94, + "probability": 0.8743 + }, + { + "start": 15613.56, + "end": 15613.9, + "probability": 0.005 + }, + { + "start": 15613.9, + "end": 15613.9, + "probability": 0.1721 + }, + { + "start": 15613.9, + "end": 15613.9, + "probability": 0.0879 + }, + { + "start": 15613.9, + "end": 15614.08, + "probability": 0.0464 + }, + { + "start": 15614.08, + "end": 15614.28, + "probability": 0.3887 + }, + { + "start": 15614.28, + "end": 15614.78, + "probability": 0.469 + }, + { + "start": 15616.06, + "end": 15621.0, + "probability": 0.8848 + }, + { + "start": 15621.0, + "end": 15624.46, + "probability": 0.9973 + }, + { + "start": 15625.06, + "end": 15625.82, + "probability": 0.4986 + }, + { + "start": 15625.96, + "end": 15626.04, + "probability": 0.6075 + }, + { + "start": 15626.04, + "end": 15629.59, + "probability": 0.7886 + }, + { + "start": 15631.78, + "end": 15632.6, + "probability": 0.9603 + }, + { + "start": 15632.76, + "end": 15633.82, + "probability": 0.9389 + }, + { + "start": 15633.86, + "end": 15634.9, + "probability": 0.8234 + }, + { + "start": 15635.3, + "end": 15637.54, + "probability": 0.7879 + }, + { + "start": 15637.92, + "end": 15639.01, + "probability": 0.9585 + }, + { + "start": 15639.44, + "end": 15640.14, + "probability": 0.7329 + }, + { + "start": 15640.46, + "end": 15641.1, + "probability": 0.7743 + }, + { + "start": 15641.52, + "end": 15644.62, + "probability": 0.9316 + }, + { + "start": 15644.64, + "end": 15645.4, + "probability": 0.7198 + }, + { + "start": 15645.88, + "end": 15646.8, + "probability": 0.8553 + }, + { + "start": 15647.0, + "end": 15647.63, + "probability": 0.8634 + }, + { + "start": 15647.84, + "end": 15651.48, + "probability": 0.9907 + }, + { + "start": 15651.9, + "end": 15652.02, + "probability": 0.3794 + }, + { + "start": 15652.46, + "end": 15653.08, + "probability": 0.8235 + }, + { + "start": 15653.18, + "end": 15653.58, + "probability": 0.2778 + }, + { + "start": 15653.68, + "end": 15654.04, + "probability": 0.6599 + }, + { + "start": 15654.04, + "end": 15654.3, + "probability": 0.7337 + }, + { + "start": 15655.12, + "end": 15655.32, + "probability": 0.9611 + }, + { + "start": 15655.44, + "end": 15656.6, + "probability": 0.7609 + }, + { + "start": 15657.04, + "end": 15658.24, + "probability": 0.8994 + }, + { + "start": 15658.28, + "end": 15660.38, + "probability": 0.8568 + }, + { + "start": 15660.96, + "end": 15665.32, + "probability": 0.9113 + }, + { + "start": 15665.4, + "end": 15666.16, + "probability": 0.778 + }, + { + "start": 15666.74, + "end": 15668.44, + "probability": 0.5664 + }, + { + "start": 15668.56, + "end": 15669.12, + "probability": 0.9496 + }, + { + "start": 15669.7, + "end": 15670.12, + "probability": 0.9746 + }, + { + "start": 15671.2, + "end": 15671.76, + "probability": 0.6297 + }, + { + "start": 15671.86, + "end": 15673.84, + "probability": 0.7341 + }, + { + "start": 15678.3, + "end": 15679.42, + "probability": 0.6114 + }, + { + "start": 15679.62, + "end": 15679.64, + "probability": 0.243 + }, + { + "start": 15679.64, + "end": 15680.18, + "probability": 0.8334 + }, + { + "start": 15680.3, + "end": 15681.5, + "probability": 0.7464 + }, + { + "start": 15682.12, + "end": 15685.06, + "probability": 0.9802 + }, + { + "start": 15685.06, + "end": 15689.1, + "probability": 0.997 + }, + { + "start": 15690.32, + "end": 15691.18, + "probability": 0.9865 + }, + { + "start": 15691.32, + "end": 15693.1, + "probability": 0.9849 + }, + { + "start": 15693.98, + "end": 15695.32, + "probability": 0.6988 + }, + { + "start": 15696.54, + "end": 15699.46, + "probability": 0.9797 + }, + { + "start": 15700.14, + "end": 15700.96, + "probability": 0.8244 + }, + { + "start": 15701.12, + "end": 15704.12, + "probability": 0.958 + }, + { + "start": 15704.2, + "end": 15706.26, + "probability": 0.868 + }, + { + "start": 15707.98, + "end": 15708.56, + "probability": 0.3128 + }, + { + "start": 15709.4, + "end": 15710.58, + "probability": 0.92 + }, + { + "start": 15711.42, + "end": 15713.74, + "probability": 0.9968 + }, + { + "start": 15714.18, + "end": 15719.16, + "probability": 0.9938 + }, + { + "start": 15721.1, + "end": 15725.28, + "probability": 0.9692 + }, + { + "start": 15725.28, + "end": 15728.64, + "probability": 0.9837 + }, + { + "start": 15731.5, + "end": 15733.86, + "probability": 0.8886 + }, + { + "start": 15734.44, + "end": 15737.86, + "probability": 0.9377 + }, + { + "start": 15738.54, + "end": 15741.32, + "probability": 0.9984 + }, + { + "start": 15742.2, + "end": 15745.28, + "probability": 0.9753 + }, + { + "start": 15747.5, + "end": 15750.92, + "probability": 0.979 + }, + { + "start": 15750.92, + "end": 15755.28, + "probability": 0.9775 + }, + { + "start": 15755.4, + "end": 15755.96, + "probability": 0.6988 + }, + { + "start": 15756.56, + "end": 15761.24, + "probability": 0.9668 + }, + { + "start": 15762.54, + "end": 15765.2, + "probability": 0.999 + }, + { + "start": 15765.2, + "end": 15768.46, + "probability": 0.9985 + }, + { + "start": 15769.18, + "end": 15773.96, + "probability": 0.9923 + }, + { + "start": 15773.96, + "end": 15779.34, + "probability": 0.998 + }, + { + "start": 15779.48, + "end": 15782.76, + "probability": 0.9568 + }, + { + "start": 15783.56, + "end": 15786.14, + "probability": 0.9948 + }, + { + "start": 15786.84, + "end": 15789.5, + "probability": 0.9934 + }, + { + "start": 15789.5, + "end": 15793.32, + "probability": 0.9954 + }, + { + "start": 15793.84, + "end": 15798.02, + "probability": 0.9782 + }, + { + "start": 15798.1, + "end": 15798.62, + "probability": 0.8316 + }, + { + "start": 15798.72, + "end": 15798.98, + "probability": 0.7038 + }, + { + "start": 15799.2, + "end": 15800.22, + "probability": 0.992 + }, + { + "start": 15801.34, + "end": 15807.46, + "probability": 0.9039 + }, + { + "start": 15807.9, + "end": 15814.1, + "probability": 0.9917 + }, + { + "start": 15815.2, + "end": 15815.36, + "probability": 0.1451 + }, + { + "start": 15815.36, + "end": 15818.7, + "probability": 0.9269 + }, + { + "start": 15819.06, + "end": 15824.36, + "probability": 0.9644 + }, + { + "start": 15824.72, + "end": 15830.08, + "probability": 0.9961 + }, + { + "start": 15830.14, + "end": 15832.32, + "probability": 0.61 + }, + { + "start": 15832.38, + "end": 15833.89, + "probability": 0.971 + }, + { + "start": 15834.54, + "end": 15834.8, + "probability": 0.9359 + }, + { + "start": 15835.36, + "end": 15836.52, + "probability": 0.8257 + }, + { + "start": 15837.1, + "end": 15837.96, + "probability": 0.9919 + }, + { + "start": 15838.48, + "end": 15839.54, + "probability": 0.9591 + }, + { + "start": 15839.94, + "end": 15840.3, + "probability": 0.8204 + }, + { + "start": 15841.08, + "end": 15841.32, + "probability": 0.3976 + }, + { + "start": 15841.36, + "end": 15842.3, + "probability": 0.8637 + }, + { + "start": 15842.8, + "end": 15843.72, + "probability": 0.562 + }, + { + "start": 15844.26, + "end": 15846.88, + "probability": 0.9539 + }, + { + "start": 15862.74, + "end": 15863.36, + "probability": 0.4845 + }, + { + "start": 15863.4, + "end": 15864.36, + "probability": 0.5817 + }, + { + "start": 15864.52, + "end": 15868.14, + "probability": 0.9846 + }, + { + "start": 15868.58, + "end": 15868.88, + "probability": 0.4288 + }, + { + "start": 15870.96, + "end": 15871.26, + "probability": 0.4882 + }, + { + "start": 15871.26, + "end": 15872.02, + "probability": 0.8519 + }, + { + "start": 15872.04, + "end": 15873.72, + "probability": 0.9417 + }, + { + "start": 15874.28, + "end": 15874.84, + "probability": 0.8663 + }, + { + "start": 15875.12, + "end": 15876.08, + "probability": 0.9349 + }, + { + "start": 15876.26, + "end": 15878.03, + "probability": 0.8333 + }, + { + "start": 15878.84, + "end": 15880.06, + "probability": 0.9657 + }, + { + "start": 15881.54, + "end": 15882.56, + "probability": 0.9956 + }, + { + "start": 15884.18, + "end": 15885.9, + "probability": 0.8892 + }, + { + "start": 15887.0, + "end": 15888.66, + "probability": 0.9941 + }, + { + "start": 15890.06, + "end": 15894.08, + "probability": 0.7681 + }, + { + "start": 15894.44, + "end": 15896.96, + "probability": 0.9263 + }, + { + "start": 15897.72, + "end": 15898.88, + "probability": 0.6562 + }, + { + "start": 15900.88, + "end": 15902.77, + "probability": 0.9445 + }, + { + "start": 15903.68, + "end": 15908.06, + "probability": 0.9914 + }, + { + "start": 15908.3, + "end": 15911.92, + "probability": 0.8652 + }, + { + "start": 15912.8, + "end": 15913.16, + "probability": 0.7463 + }, + { + "start": 15914.4, + "end": 15916.2, + "probability": 0.9868 + }, + { + "start": 15917.8, + "end": 15919.52, + "probability": 0.8478 + }, + { + "start": 15920.36, + "end": 15921.64, + "probability": 0.7609 + }, + { + "start": 15922.48, + "end": 15923.42, + "probability": 0.9894 + }, + { + "start": 15924.38, + "end": 15926.96, + "probability": 0.9207 + }, + { + "start": 15928.6, + "end": 15931.3, + "probability": 0.7722 + }, + { + "start": 15932.44, + "end": 15934.42, + "probability": 0.651 + }, + { + "start": 15934.46, + "end": 15935.38, + "probability": 0.5241 + }, + { + "start": 15936.98, + "end": 15938.16, + "probability": 0.498 + }, + { + "start": 15939.32, + "end": 15943.12, + "probability": 0.99 + }, + { + "start": 15945.64, + "end": 15947.88, + "probability": 0.9924 + }, + { + "start": 15948.9, + "end": 15949.38, + "probability": 0.9149 + }, + { + "start": 15950.8, + "end": 15951.64, + "probability": 0.9274 + }, + { + "start": 15952.88, + "end": 15953.96, + "probability": 0.9126 + }, + { + "start": 15954.96, + "end": 15957.34, + "probability": 0.9849 + }, + { + "start": 15957.46, + "end": 15957.92, + "probability": 0.8807 + }, + { + "start": 15958.3, + "end": 15959.1, + "probability": 0.797 + }, + { + "start": 15960.0, + "end": 15961.26, + "probability": 0.7999 + }, + { + "start": 15961.98, + "end": 15962.6, + "probability": 0.7241 + }, + { + "start": 15963.48, + "end": 15964.26, + "probability": 0.9741 + }, + { + "start": 15964.54, + "end": 15965.5, + "probability": 0.9399 + }, + { + "start": 15966.2, + "end": 15967.4, + "probability": 0.9724 + }, + { + "start": 15967.88, + "end": 15969.68, + "probability": 0.791 + }, + { + "start": 15970.22, + "end": 15971.12, + "probability": 0.9756 + }, + { + "start": 15971.68, + "end": 15973.52, + "probability": 0.7911 + }, + { + "start": 15974.2, + "end": 15975.02, + "probability": 0.7542 + }, + { + "start": 15975.84, + "end": 15976.14, + "probability": 0.897 + }, + { + "start": 15976.68, + "end": 15977.7, + "probability": 0.8589 + }, + { + "start": 15978.62, + "end": 15980.32, + "probability": 0.8408 + }, + { + "start": 15981.1, + "end": 15982.08, + "probability": 0.9188 + }, + { + "start": 15982.5, + "end": 15984.18, + "probability": 0.9946 + }, + { + "start": 15984.28, + "end": 15985.06, + "probability": 0.4656 + }, + { + "start": 15985.96, + "end": 15987.1, + "probability": 0.9955 + }, + { + "start": 15987.94, + "end": 15991.24, + "probability": 0.9805 + }, + { + "start": 15991.38, + "end": 15991.9, + "probability": 0.9157 + }, + { + "start": 15993.34, + "end": 15994.34, + "probability": 0.9776 + }, + { + "start": 15996.2, + "end": 15998.32, + "probability": 0.957 + }, + { + "start": 16000.0, + "end": 16001.66, + "probability": 0.4359 + }, + { + "start": 16003.08, + "end": 16005.6, + "probability": 0.9595 + }, + { + "start": 16006.24, + "end": 16007.24, + "probability": 0.9518 + }, + { + "start": 16008.7, + "end": 16010.64, + "probability": 0.7313 + }, + { + "start": 16012.18, + "end": 16013.06, + "probability": 0.5077 + }, + { + "start": 16013.66, + "end": 16015.53, + "probability": 0.7997 + }, + { + "start": 16017.46, + "end": 16019.66, + "probability": 0.8949 + }, + { + "start": 16020.36, + "end": 16021.8, + "probability": 0.8691 + }, + { + "start": 16024.18, + "end": 16026.84, + "probability": 0.9811 + }, + { + "start": 16029.02, + "end": 16030.24, + "probability": 0.9922 + }, + { + "start": 16032.04, + "end": 16032.12, + "probability": 0.4578 + }, + { + "start": 16032.66, + "end": 16033.38, + "probability": 0.9172 + }, + { + "start": 16035.7, + "end": 16038.76, + "probability": 0.6932 + }, + { + "start": 16039.06, + "end": 16039.56, + "probability": 0.5346 + }, + { + "start": 16039.66, + "end": 16040.44, + "probability": 0.7115 + }, + { + "start": 16041.06, + "end": 16042.36, + "probability": 0.97 + }, + { + "start": 16043.0, + "end": 16044.18, + "probability": 0.996 + }, + { + "start": 16045.22, + "end": 16046.3, + "probability": 0.8563 + }, + { + "start": 16046.76, + "end": 16048.42, + "probability": 0.2272 + }, + { + "start": 16048.94, + "end": 16049.71, + "probability": 0.0213 + }, + { + "start": 16050.02, + "end": 16050.72, + "probability": 0.303 + }, + { + "start": 16050.72, + "end": 16052.3, + "probability": 0.1688 + }, + { + "start": 16052.38, + "end": 16052.49, + "probability": 0.1048 + }, + { + "start": 16052.6, + "end": 16052.6, + "probability": 0.2577 + }, + { + "start": 16052.6, + "end": 16053.28, + "probability": 0.2155 + }, + { + "start": 16053.92, + "end": 16054.9, + "probability": 0.3424 + }, + { + "start": 16055.76, + "end": 16057.16, + "probability": 0.6931 + }, + { + "start": 16057.18, + "end": 16059.26, + "probability": 0.801 + }, + { + "start": 16059.42, + "end": 16059.64, + "probability": 0.4845 + }, + { + "start": 16059.78, + "end": 16060.3, + "probability": 0.3206 + }, + { + "start": 16060.6, + "end": 16063.8, + "probability": 0.9634 + }, + { + "start": 16063.9, + "end": 16065.9, + "probability": 0.3536 + }, + { + "start": 16066.14, + "end": 16070.18, + "probability": 0.7393 + }, + { + "start": 16071.92, + "end": 16073.74, + "probability": 0.8436 + }, + { + "start": 16075.14, + "end": 16075.66, + "probability": 0.9993 + }, + { + "start": 16077.82, + "end": 16078.42, + "probability": 0.8079 + }, + { + "start": 16079.62, + "end": 16081.5, + "probability": 0.8997 + }, + { + "start": 16082.74, + "end": 16084.22, + "probability": 0.6533 + }, + { + "start": 16085.08, + "end": 16085.72, + "probability": 0.7594 + }, + { + "start": 16086.96, + "end": 16088.32, + "probability": 0.9523 + }, + { + "start": 16088.5, + "end": 16089.68, + "probability": 0.9944 + }, + { + "start": 16090.0, + "end": 16090.84, + "probability": 0.7126 + }, + { + "start": 16091.3, + "end": 16092.65, + "probability": 0.445 + }, + { + "start": 16095.85, + "end": 16098.38, + "probability": 0.4464 + }, + { + "start": 16098.7, + "end": 16099.56, + "probability": 0.9965 + }, + { + "start": 16100.28, + "end": 16101.85, + "probability": 0.6747 + }, + { + "start": 16103.02, + "end": 16105.08, + "probability": 0.9425 + }, + { + "start": 16105.58, + "end": 16106.66, + "probability": 0.9281 + }, + { + "start": 16107.74, + "end": 16109.22, + "probability": 0.991 + }, + { + "start": 16109.94, + "end": 16110.62, + "probability": 0.7386 + }, + { + "start": 16112.16, + "end": 16114.56, + "probability": 0.8281 + }, + { + "start": 16114.92, + "end": 16117.64, + "probability": 0.9701 + }, + { + "start": 16118.42, + "end": 16119.7, + "probability": 0.6159 + }, + { + "start": 16120.22, + "end": 16121.24, + "probability": 0.6679 + }, + { + "start": 16122.34, + "end": 16122.66, + "probability": 0.9473 + }, + { + "start": 16123.26, + "end": 16123.82, + "probability": 0.8177 + }, + { + "start": 16124.46, + "end": 16125.92, + "probability": 0.965 + }, + { + "start": 16126.24, + "end": 16127.5, + "probability": 0.9792 + }, + { + "start": 16128.86, + "end": 16130.84, + "probability": 0.952 + }, + { + "start": 16131.76, + "end": 16133.58, + "probability": 0.6925 + }, + { + "start": 16133.6, + "end": 16134.5, + "probability": 0.8846 + }, + { + "start": 16134.66, + "end": 16136.26, + "probability": 0.6705 + }, + { + "start": 16136.26, + "end": 16137.4, + "probability": 0.7646 + }, + { + "start": 16137.76, + "end": 16138.49, + "probability": 0.6298 + }, + { + "start": 16139.02, + "end": 16139.8, + "probability": 0.4992 + }, + { + "start": 16140.12, + "end": 16141.27, + "probability": 0.8583 + }, + { + "start": 16141.8, + "end": 16145.27, + "probability": 0.9919 + }, + { + "start": 16145.94, + "end": 16147.74, + "probability": 0.7794 + }, + { + "start": 16148.1, + "end": 16148.18, + "probability": 0.5352 + }, + { + "start": 16148.36, + "end": 16149.68, + "probability": 0.4019 + }, + { + "start": 16150.12, + "end": 16152.22, + "probability": 0.9634 + }, + { + "start": 16153.1, + "end": 16156.28, + "probability": 0.9951 + }, + { + "start": 16156.9, + "end": 16159.32, + "probability": 0.6669 + }, + { + "start": 16160.84, + "end": 16161.92, + "probability": 0.9863 + }, + { + "start": 16163.58, + "end": 16166.12, + "probability": 0.9991 + }, + { + "start": 16166.12, + "end": 16168.1, + "probability": 0.9753 + }, + { + "start": 16168.68, + "end": 16170.94, + "probability": 0.7094 + }, + { + "start": 16171.88, + "end": 16173.25, + "probability": 0.9126 + }, + { + "start": 16175.58, + "end": 16176.66, + "probability": 0.8828 + }, + { + "start": 16177.26, + "end": 16177.84, + "probability": 0.7427 + }, + { + "start": 16178.66, + "end": 16179.38, + "probability": 0.9752 + }, + { + "start": 16179.94, + "end": 16181.38, + "probability": 0.6088 + }, + { + "start": 16182.34, + "end": 16182.9, + "probability": 0.7448 + }, + { + "start": 16183.2, + "end": 16185.02, + "probability": 0.9846 + }, + { + "start": 16186.2, + "end": 16186.88, + "probability": 0.7455 + }, + { + "start": 16187.9, + "end": 16190.3, + "probability": 0.921 + }, + { + "start": 16191.04, + "end": 16193.4, + "probability": 0.8848 + }, + { + "start": 16194.88, + "end": 16195.96, + "probability": 0.6051 + }, + { + "start": 16196.94, + "end": 16198.62, + "probability": 0.9545 + }, + { + "start": 16199.22, + "end": 16200.18, + "probability": 0.9894 + }, + { + "start": 16201.12, + "end": 16202.02, + "probability": 0.9167 + }, + { + "start": 16202.66, + "end": 16203.27, + "probability": 0.623 + }, + { + "start": 16204.18, + "end": 16206.96, + "probability": 0.8932 + }, + { + "start": 16208.16, + "end": 16209.4, + "probability": 0.7817 + }, + { + "start": 16209.88, + "end": 16210.92, + "probability": 0.7233 + }, + { + "start": 16213.14, + "end": 16215.36, + "probability": 0.9192 + }, + { + "start": 16217.22, + "end": 16218.02, + "probability": 0.2572 + }, + { + "start": 16218.48, + "end": 16219.2, + "probability": 0.8686 + }, + { + "start": 16219.76, + "end": 16221.05, + "probability": 0.8878 + }, + { + "start": 16221.7, + "end": 16223.64, + "probability": 0.9976 + }, + { + "start": 16223.64, + "end": 16225.72, + "probability": 0.998 + }, + { + "start": 16226.86, + "end": 16228.66, + "probability": 0.895 + }, + { + "start": 16229.52, + "end": 16230.22, + "probability": 0.6765 + }, + { + "start": 16230.7, + "end": 16231.82, + "probability": 0.9532 + }, + { + "start": 16232.1, + "end": 16233.24, + "probability": 0.8745 + }, + { + "start": 16234.76, + "end": 16236.26, + "probability": 0.989 + }, + { + "start": 16236.8, + "end": 16239.7, + "probability": 0.7182 + }, + { + "start": 16240.8, + "end": 16243.8, + "probability": 0.9989 + }, + { + "start": 16244.56, + "end": 16245.0, + "probability": 0.5136 + }, + { + "start": 16245.78, + "end": 16247.1, + "probability": 0.9057 + }, + { + "start": 16247.42, + "end": 16249.2, + "probability": 0.5065 + }, + { + "start": 16250.74, + "end": 16251.58, + "probability": 0.9581 + }, + { + "start": 16251.72, + "end": 16253.0, + "probability": 0.9669 + }, + { + "start": 16253.34, + "end": 16253.94, + "probability": 0.9758 + }, + { + "start": 16254.52, + "end": 16255.59, + "probability": 0.9878 + }, + { + "start": 16255.72, + "end": 16256.52, + "probability": 0.9704 + }, + { + "start": 16257.0, + "end": 16261.14, + "probability": 0.9133 + }, + { + "start": 16262.82, + "end": 16263.5, + "probability": 0.7906 + }, + { + "start": 16264.96, + "end": 16265.16, + "probability": 0.9067 + }, + { + "start": 16265.78, + "end": 16266.48, + "probability": 0.9824 + }, + { + "start": 16269.6, + "end": 16271.06, + "probability": 0.6158 + }, + { + "start": 16271.86, + "end": 16272.68, + "probability": 0.3633 + }, + { + "start": 16273.66, + "end": 16274.81, + "probability": 0.5835 + }, + { + "start": 16277.28, + "end": 16277.62, + "probability": 0.6973 + }, + { + "start": 16279.1, + "end": 16280.8, + "probability": 0.5912 + }, + { + "start": 16281.34, + "end": 16282.76, + "probability": 0.9309 + }, + { + "start": 16284.24, + "end": 16284.56, + "probability": 0.6912 + }, + { + "start": 16284.66, + "end": 16285.24, + "probability": 0.8546 + }, + { + "start": 16285.64, + "end": 16286.36, + "probability": 0.6572 + }, + { + "start": 16287.56, + "end": 16288.22, + "probability": 0.9905 + }, + { + "start": 16288.26, + "end": 16288.86, + "probability": 0.9678 + }, + { + "start": 16289.54, + "end": 16290.72, + "probability": 0.9718 + }, + { + "start": 16290.74, + "end": 16292.38, + "probability": 0.7361 + }, + { + "start": 16292.4, + "end": 16293.42, + "probability": 0.9866 + }, + { + "start": 16294.34, + "end": 16295.12, + "probability": 0.7749 + }, + { + "start": 16295.76, + "end": 16296.46, + "probability": 0.9668 + }, + { + "start": 16297.28, + "end": 16297.4, + "probability": 0.1493 + }, + { + "start": 16297.4, + "end": 16298.43, + "probability": 0.9174 + }, + { + "start": 16299.84, + "end": 16302.14, + "probability": 0.2434 + }, + { + "start": 16303.1, + "end": 16303.94, + "probability": 0.759 + }, + { + "start": 16304.94, + "end": 16306.78, + "probability": 0.7095 + }, + { + "start": 16307.26, + "end": 16309.98, + "probability": 0.8525 + }, + { + "start": 16311.18, + "end": 16311.98, + "probability": 0.6909 + }, + { + "start": 16313.88, + "end": 16315.98, + "probability": 0.9908 + }, + { + "start": 16316.1, + "end": 16317.08, + "probability": 0.968 + }, + { + "start": 16318.26, + "end": 16319.7, + "probability": 0.6497 + }, + { + "start": 16320.8, + "end": 16323.0, + "probability": 0.9666 + }, + { + "start": 16329.34, + "end": 16330.08, + "probability": 0.0825 + }, + { + "start": 16331.1, + "end": 16332.1, + "probability": 0.4245 + }, + { + "start": 16332.86, + "end": 16333.38, + "probability": 0.9946 + }, + { + "start": 16334.76, + "end": 16335.78, + "probability": 0.986 + }, + { + "start": 16336.5, + "end": 16337.3, + "probability": 0.8827 + }, + { + "start": 16339.46, + "end": 16339.82, + "probability": 0.8 + }, + { + "start": 16341.04, + "end": 16341.82, + "probability": 0.8071 + }, + { + "start": 16342.86, + "end": 16343.54, + "probability": 0.7403 + }, + { + "start": 16344.32, + "end": 16345.46, + "probability": 0.8632 + }, + { + "start": 16346.26, + "end": 16349.17, + "probability": 0.9075 + }, + { + "start": 16350.18, + "end": 16351.78, + "probability": 0.9311 + }, + { + "start": 16352.2, + "end": 16353.39, + "probability": 0.9886 + }, + { + "start": 16353.88, + "end": 16357.06, + "probability": 0.978 + }, + { + "start": 16359.64, + "end": 16360.66, + "probability": 0.9362 + }, + { + "start": 16361.22, + "end": 16361.86, + "probability": 0.6933 + }, + { + "start": 16362.86, + "end": 16363.74, + "probability": 0.6698 + }, + { + "start": 16364.34, + "end": 16367.02, + "probability": 0.9514 + }, + { + "start": 16367.98, + "end": 16368.72, + "probability": 0.9014 + }, + { + "start": 16369.9, + "end": 16371.68, + "probability": 0.965 + }, + { + "start": 16374.32, + "end": 16375.92, + "probability": 0.6061 + }, + { + "start": 16376.48, + "end": 16378.76, + "probability": 0.522 + }, + { + "start": 16379.18, + "end": 16379.46, + "probability": 0.6532 + }, + { + "start": 16380.74, + "end": 16384.16, + "probability": 0.9681 + }, + { + "start": 16384.28, + "end": 16385.04, + "probability": 0.5417 + }, + { + "start": 16386.12, + "end": 16386.8, + "probability": 0.9867 + }, + { + "start": 16388.9, + "end": 16390.86, + "probability": 0.8225 + }, + { + "start": 16391.34, + "end": 16394.38, + "probability": 0.9927 + }, + { + "start": 16395.64, + "end": 16396.56, + "probability": 0.4713 + }, + { + "start": 16397.0, + "end": 16398.22, + "probability": 0.9725 + }, + { + "start": 16398.34, + "end": 16398.9, + "probability": 0.8364 + }, + { + "start": 16399.2, + "end": 16399.78, + "probability": 0.6505 + }, + { + "start": 16400.14, + "end": 16402.36, + "probability": 0.9778 + }, + { + "start": 16402.8, + "end": 16405.46, + "probability": 0.6867 + }, + { + "start": 16407.3, + "end": 16407.85, + "probability": 0.9852 + }, + { + "start": 16408.58, + "end": 16409.2, + "probability": 0.9639 + }, + { + "start": 16409.96, + "end": 16410.51, + "probability": 0.9579 + }, + { + "start": 16411.5, + "end": 16411.98, + "probability": 0.9208 + }, + { + "start": 16413.7, + "end": 16414.82, + "probability": 0.7344 + }, + { + "start": 16417.14, + "end": 16417.92, + "probability": 0.8931 + }, + { + "start": 16419.26, + "end": 16420.68, + "probability": 0.9082 + }, + { + "start": 16421.56, + "end": 16424.48, + "probability": 0.9648 + }, + { + "start": 16425.06, + "end": 16426.42, + "probability": 0.9976 + }, + { + "start": 16426.8, + "end": 16429.22, + "probability": 0.9756 + }, + { + "start": 16429.22, + "end": 16432.42, + "probability": 0.9727 + }, + { + "start": 16433.1, + "end": 16433.62, + "probability": 0.9805 + }, + { + "start": 16435.12, + "end": 16436.68, + "probability": 0.9441 + }, + { + "start": 16438.02, + "end": 16439.3, + "probability": 0.7301 + }, + { + "start": 16442.28, + "end": 16443.9, + "probability": 0.8307 + }, + { + "start": 16445.22, + "end": 16445.96, + "probability": 0.9734 + }, + { + "start": 16447.3, + "end": 16449.34, + "probability": 0.8575 + }, + { + "start": 16450.25, + "end": 16452.19, + "probability": 0.7349 + }, + { + "start": 16453.2, + "end": 16456.58, + "probability": 0.8042 + }, + { + "start": 16457.04, + "end": 16458.42, + "probability": 0.753 + }, + { + "start": 16459.08, + "end": 16461.48, + "probability": 0.8987 + }, + { + "start": 16462.04, + "end": 16463.49, + "probability": 0.9025 + }, + { + "start": 16464.48, + "end": 16465.68, + "probability": 0.9214 + }, + { + "start": 16467.16, + "end": 16468.2, + "probability": 0.2463 + }, + { + "start": 16468.38, + "end": 16469.32, + "probability": 0.7018 + }, + { + "start": 16469.32, + "end": 16469.6, + "probability": 0.6473 + }, + { + "start": 16469.8, + "end": 16475.86, + "probability": 0.9649 + }, + { + "start": 16476.28, + "end": 16477.28, + "probability": 0.7856 + }, + { + "start": 16477.36, + "end": 16478.08, + "probability": 0.7109 + }, + { + "start": 16479.46, + "end": 16480.27, + "probability": 0.2772 + }, + { + "start": 16481.48, + "end": 16482.46, + "probability": 0.4597 + }, + { + "start": 16482.5, + "end": 16484.14, + "probability": 0.9517 + }, + { + "start": 16484.88, + "end": 16487.84, + "probability": 0.5896 + }, + { + "start": 16487.96, + "end": 16489.94, + "probability": 0.6527 + }, + { + "start": 16490.1, + "end": 16491.84, + "probability": 0.9796 + }, + { + "start": 16492.06, + "end": 16493.54, + "probability": 0.7444 + }, + { + "start": 16494.56, + "end": 16497.0, + "probability": 0.9039 + }, + { + "start": 16501.6, + "end": 16503.54, + "probability": 0.5879 + }, + { + "start": 16504.08, + "end": 16506.34, + "probability": 0.9541 + }, + { + "start": 16507.48, + "end": 16508.5, + "probability": 0.8666 + }, + { + "start": 16508.5, + "end": 16510.08, + "probability": 0.9012 + }, + { + "start": 16510.16, + "end": 16511.48, + "probability": 0.9607 + }, + { + "start": 16514.3, + "end": 16514.3, + "probability": 0.2982 + }, + { + "start": 16514.3, + "end": 16514.3, + "probability": 0.2373 + }, + { + "start": 16514.3, + "end": 16514.54, + "probability": 0.3713 + }, + { + "start": 16515.62, + "end": 16516.24, + "probability": 0.5727 + }, + { + "start": 16516.24, + "end": 16517.52, + "probability": 0.8977 + }, + { + "start": 16517.86, + "end": 16519.5, + "probability": 0.9778 + }, + { + "start": 16520.04, + "end": 16521.22, + "probability": 0.8317 + }, + { + "start": 16521.24, + "end": 16521.86, + "probability": 0.0736 + }, + { + "start": 16522.0, + "end": 16522.72, + "probability": 0.8016 + }, + { + "start": 16522.8, + "end": 16523.8, + "probability": 0.8957 + }, + { + "start": 16523.88, + "end": 16525.36, + "probability": 0.8831 + }, + { + "start": 16526.4, + "end": 16530.34, + "probability": 0.5838 + }, + { + "start": 16530.64, + "end": 16531.38, + "probability": 0.8621 + }, + { + "start": 16531.94, + "end": 16533.54, + "probability": 0.9599 + }, + { + "start": 16534.36, + "end": 16536.0, + "probability": 0.7397 + }, + { + "start": 16536.82, + "end": 16538.62, + "probability": 0.8381 + }, + { + "start": 16540.68, + "end": 16541.62, + "probability": 0.8719 + }, + { + "start": 16542.28, + "end": 16543.7, + "probability": 0.8507 + }, + { + "start": 16544.34, + "end": 16545.52, + "probability": 0.8369 + }, + { + "start": 16546.14, + "end": 16546.88, + "probability": 0.7581 + }, + { + "start": 16547.4, + "end": 16548.2, + "probability": 0.6119 + }, + { + "start": 16548.28, + "end": 16548.52, + "probability": 0.7197 + }, + { + "start": 16548.66, + "end": 16549.73, + "probability": 0.7527 + }, + { + "start": 16551.16, + "end": 16552.06, + "probability": 0.9736 + }, + { + "start": 16553.1, + "end": 16554.2, + "probability": 0.8416 + }, + { + "start": 16555.24, + "end": 16558.56, + "probability": 0.8984 + }, + { + "start": 16559.24, + "end": 16560.52, + "probability": 0.8611 + }, + { + "start": 16561.08, + "end": 16561.8, + "probability": 0.6357 + }, + { + "start": 16561.8, + "end": 16563.29, + "probability": 0.6269 + }, + { + "start": 16563.56, + "end": 16564.78, + "probability": 0.6271 + }, + { + "start": 16564.88, + "end": 16565.66, + "probability": 0.9025 + }, + { + "start": 16566.12, + "end": 16566.7, + "probability": 0.9286 + }, + { + "start": 16566.76, + "end": 16567.2, + "probability": 0.6646 + }, + { + "start": 16567.2, + "end": 16567.54, + "probability": 0.9553 + }, + { + "start": 16567.72, + "end": 16568.11, + "probability": 0.5068 + }, + { + "start": 16568.48, + "end": 16568.92, + "probability": 0.7737 + }, + { + "start": 16569.06, + "end": 16570.18, + "probability": 0.6984 + }, + { + "start": 16570.48, + "end": 16571.98, + "probability": 0.9816 + }, + { + "start": 16572.46, + "end": 16573.2, + "probability": 0.9926 + }, + { + "start": 16573.88, + "end": 16576.2, + "probability": 0.9334 + }, + { + "start": 16576.34, + "end": 16579.6, + "probability": 0.75 + }, + { + "start": 16580.4, + "end": 16583.18, + "probability": 0.9028 + }, + { + "start": 16583.8, + "end": 16585.38, + "probability": 0.9924 + }, + { + "start": 16585.7, + "end": 16586.22, + "probability": 0.8062 + }, + { + "start": 16586.52, + "end": 16589.28, + "probability": 0.9879 + }, + { + "start": 16589.66, + "end": 16593.0, + "probability": 0.9719 + }, + { + "start": 16593.8, + "end": 16594.44, + "probability": 0.9312 + }, + { + "start": 16594.56, + "end": 16595.84, + "probability": 0.8299 + }, + { + "start": 16596.38, + "end": 16597.95, + "probability": 0.9738 + }, + { + "start": 16598.56, + "end": 16600.0, + "probability": 0.8455 + }, + { + "start": 16600.0, + "end": 16601.22, + "probability": 0.9526 + }, + { + "start": 16601.88, + "end": 16602.49, + "probability": 0.9834 + }, + { + "start": 16603.44, + "end": 16604.23, + "probability": 0.9688 + }, + { + "start": 16604.96, + "end": 16606.72, + "probability": 0.8925 + }, + { + "start": 16607.4, + "end": 16609.68, + "probability": 0.7934 + }, + { + "start": 16610.02, + "end": 16614.12, + "probability": 0.7701 + }, + { + "start": 16614.72, + "end": 16615.78, + "probability": 0.9686 + }, + { + "start": 16616.88, + "end": 16618.48, + "probability": 0.6548 + }, + { + "start": 16619.02, + "end": 16622.28, + "probability": 0.8355 + }, + { + "start": 16622.42, + "end": 16623.14, + "probability": 0.7967 + }, + { + "start": 16623.48, + "end": 16625.82, + "probability": 0.8721 + }, + { + "start": 16626.64, + "end": 16627.96, + "probability": 0.9034 + }, + { + "start": 16628.08, + "end": 16628.3, + "probability": 0.4077 + }, + { + "start": 16628.52, + "end": 16630.22, + "probability": 0.661 + }, + { + "start": 16630.83, + "end": 16632.96, + "probability": 0.9683 + }, + { + "start": 16633.48, + "end": 16635.12, + "probability": 0.9431 + }, + { + "start": 16635.96, + "end": 16637.9, + "probability": 0.9915 + }, + { + "start": 16638.3, + "end": 16641.82, + "probability": 0.9885 + }, + { + "start": 16642.92, + "end": 16644.7, + "probability": 0.7904 + }, + { + "start": 16647.22, + "end": 16649.78, + "probability": 0.4995 + }, + { + "start": 16651.16, + "end": 16654.06, + "probability": 0.8452 + }, + { + "start": 16654.76, + "end": 16658.56, + "probability": 0.8654 + }, + { + "start": 16659.34, + "end": 16661.36, + "probability": 0.9015 + }, + { + "start": 16661.46, + "end": 16665.43, + "probability": 0.9185 + }, + { + "start": 16665.82, + "end": 16667.46, + "probability": 0.8359 + }, + { + "start": 16668.16, + "end": 16669.22, + "probability": 0.8333 + }, + { + "start": 16669.84, + "end": 16670.76, + "probability": 0.9655 + }, + { + "start": 16671.12, + "end": 16675.3, + "probability": 0.981 + }, + { + "start": 16675.54, + "end": 16676.04, + "probability": 0.7349 + }, + { + "start": 16677.4, + "end": 16678.02, + "probability": 0.5567 + }, + { + "start": 16678.32, + "end": 16678.95, + "probability": 0.7973 + }, + { + "start": 16679.58, + "end": 16681.6, + "probability": 0.531 + }, + { + "start": 16681.86, + "end": 16683.02, + "probability": 0.7393 + }, + { + "start": 16683.08, + "end": 16684.2, + "probability": 0.6684 + }, + { + "start": 16684.32, + "end": 16685.14, + "probability": 0.8735 + }, + { + "start": 16685.26, + "end": 16686.18, + "probability": 0.8325 + }, + { + "start": 16686.5, + "end": 16689.08, + "probability": 0.989 + }, + { + "start": 16689.76, + "end": 16692.5, + "probability": 0.915 + }, + { + "start": 16692.6, + "end": 16695.96, + "probability": 0.2592 + }, + { + "start": 16696.5, + "end": 16697.2, + "probability": 0.6139 + }, + { + "start": 16697.7, + "end": 16698.68, + "probability": 0.292 + }, + { + "start": 16701.44, + "end": 16701.44, + "probability": 0.0531 + }, + { + "start": 16701.44, + "end": 16701.44, + "probability": 0.0605 + }, + { + "start": 16701.44, + "end": 16701.72, + "probability": 0.034 + }, + { + "start": 16702.9, + "end": 16704.86, + "probability": 0.585 + }, + { + "start": 16704.88, + "end": 16705.5, + "probability": 0.7176 + }, + { + "start": 16708.2, + "end": 16708.66, + "probability": 0.3873 + }, + { + "start": 16708.88, + "end": 16709.2, + "probability": 0.1566 + }, + { + "start": 16709.38, + "end": 16713.1, + "probability": 0.4364 + }, + { + "start": 16713.44, + "end": 16714.38, + "probability": 0.1716 + }, + { + "start": 16714.76, + "end": 16714.94, + "probability": 0.373 + }, + { + "start": 16715.1, + "end": 16715.66, + "probability": 0.5415 + }, + { + "start": 16716.57, + "end": 16720.4, + "probability": 0.9067 + }, + { + "start": 16721.0, + "end": 16722.63, + "probability": 0.8774 + }, + { + "start": 16723.28, + "end": 16725.98, + "probability": 0.8301 + }, + { + "start": 16726.6, + "end": 16727.8, + "probability": 0.7387 + }, + { + "start": 16728.46, + "end": 16729.1, + "probability": 0.9111 + }, + { + "start": 16729.78, + "end": 16732.56, + "probability": 0.9084 + }, + { + "start": 16734.12, + "end": 16735.0, + "probability": 0.7837 + }, + { + "start": 16736.29, + "end": 16740.52, + "probability": 0.8357 + }, + { + "start": 16741.48, + "end": 16742.94, + "probability": 0.9109 + }, + { + "start": 16743.52, + "end": 16745.78, + "probability": 0.8726 + }, + { + "start": 16746.66, + "end": 16748.59, + "probability": 0.994 + }, + { + "start": 16749.04, + "end": 16750.94, + "probability": 0.9707 + }, + { + "start": 16751.76, + "end": 16752.08, + "probability": 0.9022 + }, + { + "start": 16753.02, + "end": 16755.0, + "probability": 0.9411 + }, + { + "start": 16755.66, + "end": 16757.96, + "probability": 0.7675 + }, + { + "start": 16758.62, + "end": 16758.92, + "probability": 0.825 + }, + { + "start": 16759.62, + "end": 16761.62, + "probability": 0.9281 + }, + { + "start": 16762.36, + "end": 16762.92, + "probability": 0.9009 + }, + { + "start": 16763.44, + "end": 16764.42, + "probability": 0.9726 + }, + { + "start": 16766.94, + "end": 16768.06, + "probability": 0.618 + }, + { + "start": 16768.94, + "end": 16770.33, + "probability": 0.7588 + }, + { + "start": 16772.0, + "end": 16772.38, + "probability": 0.4228 + }, + { + "start": 16772.4, + "end": 16772.8, + "probability": 0.8088 + }, + { + "start": 16772.86, + "end": 16774.2, + "probability": 0.8011 + }, + { + "start": 16774.66, + "end": 16775.28, + "probability": 0.9683 + }, + { + "start": 16775.64, + "end": 16777.54, + "probability": 0.8173 + }, + { + "start": 16778.6, + "end": 16779.12, + "probability": 0.9465 + }, + { + "start": 16779.72, + "end": 16780.7, + "probability": 0.5221 + }, + { + "start": 16782.38, + "end": 16783.22, + "probability": 0.7069 + }, + { + "start": 16783.4, + "end": 16784.9, + "probability": 0.9663 + }, + { + "start": 16785.24, + "end": 16786.1, + "probability": 0.9485 + }, + { + "start": 16787.34, + "end": 16788.98, + "probability": 0.8486 + }, + { + "start": 16789.5, + "end": 16790.84, + "probability": 0.8315 + }, + { + "start": 16791.2, + "end": 16791.68, + "probability": 0.4772 + }, + { + "start": 16791.76, + "end": 16792.4, + "probability": 0.9899 + }, + { + "start": 16794.0, + "end": 16795.94, + "probability": 0.7505 + }, + { + "start": 16796.98, + "end": 16797.44, + "probability": 0.7282 + }, + { + "start": 16798.02, + "end": 16799.33, + "probability": 0.9941 + }, + { + "start": 16799.48, + "end": 16800.84, + "probability": 0.4492 + }, + { + "start": 16801.5, + "end": 16803.3, + "probability": 0.9696 + }, + { + "start": 16804.3, + "end": 16805.12, + "probability": 0.7569 + }, + { + "start": 16807.08, + "end": 16808.64, + "probability": 0.9783 + }, + { + "start": 16811.22, + "end": 16812.48, + "probability": 0.7244 + }, + { + "start": 16814.88, + "end": 16815.42, + "probability": 0.5277 + }, + { + "start": 16816.58, + "end": 16817.28, + "probability": 0.9978 + }, + { + "start": 16820.5, + "end": 16823.48, + "probability": 0.7209 + }, + { + "start": 16823.68, + "end": 16825.32, + "probability": 0.8612 + }, + { + "start": 16826.02, + "end": 16827.66, + "probability": 0.9621 + }, + { + "start": 16828.08, + "end": 16829.64, + "probability": 0.8053 + }, + { + "start": 16830.16, + "end": 16830.84, + "probability": 0.8979 + }, + { + "start": 16831.36, + "end": 16832.5, + "probability": 0.6422 + }, + { + "start": 16833.12, + "end": 16836.44, + "probability": 0.9052 + }, + { + "start": 16837.74, + "end": 16838.48, + "probability": 0.9596 + }, + { + "start": 16839.2, + "end": 16839.79, + "probability": 0.9565 + }, + { + "start": 16840.06, + "end": 16840.62, + "probability": 0.6478 + }, + { + "start": 16840.98, + "end": 16842.16, + "probability": 0.792 + }, + { + "start": 16842.56, + "end": 16843.34, + "probability": 0.8265 + }, + { + "start": 16843.68, + "end": 16845.29, + "probability": 0.6558 + }, + { + "start": 16845.86, + "end": 16847.36, + "probability": 0.996 + }, + { + "start": 16849.1, + "end": 16849.1, + "probability": 0.0344 + }, + { + "start": 16849.1, + "end": 16849.92, + "probability": 0.4391 + }, + { + "start": 16850.34, + "end": 16851.76, + "probability": 0.9371 + }, + { + "start": 16851.86, + "end": 16852.22, + "probability": 0.8675 + }, + { + "start": 16852.38, + "end": 16852.64, + "probability": 0.8866 + }, + { + "start": 16853.34, + "end": 16854.66, + "probability": 0.9089 + }, + { + "start": 16854.72, + "end": 16855.4, + "probability": 0.9182 + }, + { + "start": 16855.9, + "end": 16857.24, + "probability": 0.8052 + }, + { + "start": 16858.18, + "end": 16858.9, + "probability": 0.1314 + }, + { + "start": 16859.54, + "end": 16860.4, + "probability": 0.9961 + }, + { + "start": 16861.14, + "end": 16861.64, + "probability": 0.6453 + }, + { + "start": 16862.52, + "end": 16863.04, + "probability": 0.8766 + }, + { + "start": 16863.38, + "end": 16863.9, + "probability": 0.711 + }, + { + "start": 16864.14, + "end": 16864.81, + "probability": 0.6107 + }, + { + "start": 16865.44, + "end": 16865.97, + "probability": 0.4341 + }, + { + "start": 16866.44, + "end": 16868.54, + "probability": 0.7837 + }, + { + "start": 16868.8, + "end": 16870.52, + "probability": 0.7872 + }, + { + "start": 16871.62, + "end": 16871.62, + "probability": 0.0059 + }, + { + "start": 16871.62, + "end": 16871.72, + "probability": 0.245 + }, + { + "start": 16872.38, + "end": 16875.52, + "probability": 0.9917 + }, + { + "start": 16876.08, + "end": 16877.2, + "probability": 0.9865 + }, + { + "start": 16877.78, + "end": 16878.56, + "probability": 0.9386 + }, + { + "start": 16879.3, + "end": 16879.92, + "probability": 0.8162 + }, + { + "start": 16880.0, + "end": 16880.69, + "probability": 0.1281 + }, + { + "start": 16881.18, + "end": 16881.7, + "probability": 0.2264 + }, + { + "start": 16881.7, + "end": 16882.64, + "probability": 0.875 + }, + { + "start": 16884.68, + "end": 16886.26, + "probability": 0.7333 + }, + { + "start": 16886.26, + "end": 16886.36, + "probability": 0.9055 + }, + { + "start": 16886.94, + "end": 16887.06, + "probability": 0.1122 + }, + { + "start": 16887.06, + "end": 16887.72, + "probability": 0.8462 + }, + { + "start": 16887.82, + "end": 16890.7, + "probability": 0.7912 + }, + { + "start": 16891.62, + "end": 16892.22, + "probability": 0.8704 + }, + { + "start": 16892.8, + "end": 16894.52, + "probability": 0.8906 + }, + { + "start": 16895.0, + "end": 16895.92, + "probability": 0.9938 + }, + { + "start": 16897.16, + "end": 16898.18, + "probability": 0.6732 + }, + { + "start": 16899.56, + "end": 16900.66, + "probability": 0.6655 + }, + { + "start": 16901.46, + "end": 16902.82, + "probability": 0.716 + }, + { + "start": 16903.72, + "end": 16907.5, + "probability": 0.722 + }, + { + "start": 16907.88, + "end": 16910.06, + "probability": 0.7196 + }, + { + "start": 16910.58, + "end": 16912.34, + "probability": 0.6962 + }, + { + "start": 16912.42, + "end": 16913.94, + "probability": 0.5079 + }, + { + "start": 16914.4, + "end": 16916.02, + "probability": 0.9056 + }, + { + "start": 16916.74, + "end": 16917.13, + "probability": 0.6836 + }, + { + "start": 16917.68, + "end": 16918.7, + "probability": 0.861 + }, + { + "start": 16918.94, + "end": 16919.73, + "probability": 0.9712 + }, + { + "start": 16920.58, + "end": 16921.42, + "probability": 0.8662 + }, + { + "start": 16922.62, + "end": 16923.24, + "probability": 0.881 + }, + { + "start": 16924.18, + "end": 16924.5, + "probability": 0.53 + }, + { + "start": 16924.6, + "end": 16926.5, + "probability": 0.8352 + }, + { + "start": 16926.52, + "end": 16926.88, + "probability": 0.6783 + }, + { + "start": 16927.22, + "end": 16928.46, + "probability": 0.9961 + }, + { + "start": 16928.94, + "end": 16930.68, + "probability": 0.9223 + }, + { + "start": 16931.2, + "end": 16932.0, + "probability": 0.9619 + }, + { + "start": 16932.34, + "end": 16933.18, + "probability": 0.7981 + }, + { + "start": 16933.18, + "end": 16937.12, + "probability": 0.975 + }, + { + "start": 16937.28, + "end": 16937.66, + "probability": 0.5688 + }, + { + "start": 16937.78, + "end": 16938.13, + "probability": 0.3336 + }, + { + "start": 16938.2, + "end": 16939.3, + "probability": 0.9725 + }, + { + "start": 16939.38, + "end": 16941.18, + "probability": 0.867 + }, + { + "start": 16941.6, + "end": 16944.03, + "probability": 0.857 + }, + { + "start": 16944.84, + "end": 16946.68, + "probability": 0.9928 + }, + { + "start": 16947.36, + "end": 16950.18, + "probability": 0.999 + }, + { + "start": 16950.56, + "end": 16951.74, + "probability": 0.8645 + }, + { + "start": 16951.86, + "end": 16952.78, + "probability": 0.8065 + }, + { + "start": 16952.88, + "end": 16953.3, + "probability": 0.9447 + }, + { + "start": 16953.94, + "end": 16955.68, + "probability": 0.9976 + }, + { + "start": 16956.5, + "end": 16957.02, + "probability": 0.9786 + }, + { + "start": 16957.5, + "end": 16958.08, + "probability": 0.461 + }, + { + "start": 16958.54, + "end": 16959.14, + "probability": 0.769 + }, + { + "start": 16959.2, + "end": 16959.52, + "probability": 0.5458 + }, + { + "start": 16959.9, + "end": 16960.04, + "probability": 0.5449 + }, + { + "start": 16960.9, + "end": 16962.7, + "probability": 0.8462 + }, + { + "start": 16962.84, + "end": 16964.28, + "probability": 0.7591 + }, + { + "start": 16964.84, + "end": 16965.92, + "probability": 0.9081 + }, + { + "start": 16966.24, + "end": 16966.96, + "probability": 0.8271 + }, + { + "start": 16967.28, + "end": 16967.96, + "probability": 0.8729 + }, + { + "start": 16968.38, + "end": 16968.97, + "probability": 0.7435 + }, + { + "start": 16969.14, + "end": 16970.62, + "probability": 0.8803 + }, + { + "start": 16971.12, + "end": 16972.54, + "probability": 0.6966 + }, + { + "start": 16972.9, + "end": 16973.68, + "probability": 0.9037 + }, + { + "start": 16974.8, + "end": 16975.04, + "probability": 0.8017 + }, + { + "start": 16975.76, + "end": 16976.08, + "probability": 0.8885 + }, + { + "start": 16976.58, + "end": 16977.98, + "probability": 0.9893 + }, + { + "start": 16978.66, + "end": 16982.5, + "probability": 0.9973 + }, + { + "start": 16982.52, + "end": 16983.42, + "probability": 0.6216 + }, + { + "start": 16984.12, + "end": 16986.02, + "probability": 0.9464 + }, + { + "start": 16987.32, + "end": 16988.02, + "probability": 0.4927 + }, + { + "start": 16988.02, + "end": 16988.76, + "probability": 0.91 + }, + { + "start": 16988.9, + "end": 16989.98, + "probability": 0.9922 + }, + { + "start": 16990.02, + "end": 16991.12, + "probability": 0.8311 + }, + { + "start": 16991.38, + "end": 16992.48, + "probability": 0.1026 + }, + { + "start": 16993.32, + "end": 16995.66, + "probability": 0.8013 + }, + { + "start": 16996.58, + "end": 16997.5, + "probability": 0.8514 + }, + { + "start": 16997.56, + "end": 16999.32, + "probability": 0.0273 + }, + { + "start": 17000.62, + "end": 17002.4, + "probability": 0.3726 + }, + { + "start": 17003.6, + "end": 17004.02, + "probability": 0.8564 + }, + { + "start": 17005.36, + "end": 17008.56, + "probability": 0.9664 + }, + { + "start": 17009.3, + "end": 17012.2, + "probability": 0.6418 + }, + { + "start": 17012.72, + "end": 17013.3, + "probability": 0.6554 + }, + { + "start": 17014.22, + "end": 17015.6, + "probability": 0.6437 + }, + { + "start": 17015.82, + "end": 17016.12, + "probability": 0.4064 + }, + { + "start": 17016.22, + "end": 17016.84, + "probability": 0.949 + }, + { + "start": 17017.6, + "end": 17018.02, + "probability": 0.7579 + }, + { + "start": 17018.3, + "end": 17019.12, + "probability": 0.9897 + }, + { + "start": 17020.03, + "end": 17021.4, + "probability": 0.889 + }, + { + "start": 17021.52, + "end": 17022.42, + "probability": 0.9587 + }, + { + "start": 17022.84, + "end": 17023.96, + "probability": 0.8705 + }, + { + "start": 17024.72, + "end": 17027.84, + "probability": 0.8398 + }, + { + "start": 17028.66, + "end": 17029.56, + "probability": 0.9058 + }, + { + "start": 17030.48, + "end": 17032.22, + "probability": 0.9922 + }, + { + "start": 17032.96, + "end": 17035.26, + "probability": 0.9073 + }, + { + "start": 17036.66, + "end": 17040.3, + "probability": 0.853 + }, + { + "start": 17040.58, + "end": 17041.18, + "probability": 0.8208 + }, + { + "start": 17042.74, + "end": 17046.62, + "probability": 0.8994 + }, + { + "start": 17047.62, + "end": 17047.94, + "probability": 0.9526 + }, + { + "start": 17048.7, + "end": 17053.02, + "probability": 0.8845 + }, + { + "start": 17053.8, + "end": 17056.32, + "probability": 0.9183 + }, + { + "start": 17056.82, + "end": 17058.24, + "probability": 0.9822 + }, + { + "start": 17058.5, + "end": 17059.48, + "probability": 0.9895 + }, + { + "start": 17059.56, + "end": 17061.18, + "probability": 0.9907 + }, + { + "start": 17062.42, + "end": 17063.74, + "probability": 0.7178 + }, + { + "start": 17064.08, + "end": 17066.04, + "probability": 0.8114 + }, + { + "start": 17066.38, + "end": 17068.14, + "probability": 0.8472 + }, + { + "start": 17069.2, + "end": 17071.78, + "probability": 0.8923 + }, + { + "start": 17071.92, + "end": 17072.32, + "probability": 0.4714 + }, + { + "start": 17072.54, + "end": 17074.28, + "probability": 0.9811 + }, + { + "start": 17074.96, + "end": 17075.22, + "probability": 0.038 + }, + { + "start": 17075.22, + "end": 17075.58, + "probability": 0.6046 + }, + { + "start": 17075.76, + "end": 17076.64, + "probability": 0.0943 + }, + { + "start": 17077.24, + "end": 17078.13, + "probability": 0.7578 + }, + { + "start": 17078.18, + "end": 17079.04, + "probability": 0.5187 + }, + { + "start": 17079.26, + "end": 17081.06, + "probability": 0.9907 + }, + { + "start": 17082.92, + "end": 17083.46, + "probability": 0.0155 + }, + { + "start": 17084.12, + "end": 17085.54, + "probability": 0.7229 + }, + { + "start": 17085.66, + "end": 17086.46, + "probability": 0.9136 + }, + { + "start": 17086.96, + "end": 17088.02, + "probability": 0.9163 + }, + { + "start": 17088.06, + "end": 17090.2, + "probability": 0.9441 + }, + { + "start": 17090.86, + "end": 17094.6, + "probability": 0.7671 + }, + { + "start": 17095.1, + "end": 17095.53, + "probability": 0.9266 + }, + { + "start": 17095.8, + "end": 17096.35, + "probability": 0.811 + }, + { + "start": 17096.9, + "end": 17097.62, + "probability": 0.9478 + }, + { + "start": 17098.2, + "end": 17098.58, + "probability": 0.6436 + }, + { + "start": 17099.45, + "end": 17101.32, + "probability": 0.877 + }, + { + "start": 17101.8, + "end": 17102.52, + "probability": 0.9824 + }, + { + "start": 17103.08, + "end": 17104.18, + "probability": 0.9944 + }, + { + "start": 17104.24, + "end": 17107.02, + "probability": 0.9019 + }, + { + "start": 17107.68, + "end": 17109.94, + "probability": 0.9203 + }, + { + "start": 17110.46, + "end": 17113.04, + "probability": 0.874 + }, + { + "start": 17113.54, + "end": 17115.44, + "probability": 0.9038 + }, + { + "start": 17115.78, + "end": 17116.92, + "probability": 0.9814 + }, + { + "start": 17117.6, + "end": 17119.26, + "probability": 0.9956 + }, + { + "start": 17119.64, + "end": 17120.58, + "probability": 0.8192 + }, + { + "start": 17121.32, + "end": 17122.17, + "probability": 0.9573 + }, + { + "start": 17123.16, + "end": 17124.52, + "probability": 0.8222 + }, + { + "start": 17124.56, + "end": 17126.64, + "probability": 0.9897 + }, + { + "start": 17127.24, + "end": 17129.44, + "probability": 0.98 + }, + { + "start": 17130.06, + "end": 17130.54, + "probability": 0.9245 + }, + { + "start": 17131.06, + "end": 17134.5, + "probability": 0.834 + }, + { + "start": 17135.36, + "end": 17139.88, + "probability": 0.9915 + }, + { + "start": 17140.22, + "end": 17141.02, + "probability": 0.9753 + }, + { + "start": 17141.78, + "end": 17143.44, + "probability": 0.9762 + }, + { + "start": 17143.88, + "end": 17145.14, + "probability": 0.9719 + }, + { + "start": 17145.62, + "end": 17148.16, + "probability": 0.3906 + }, + { + "start": 17148.4, + "end": 17152.42, + "probability": 0.8481 + }, + { + "start": 17153.0, + "end": 17153.82, + "probability": 0.7172 + }, + { + "start": 17154.22, + "end": 17155.42, + "probability": 0.9414 + }, + { + "start": 17156.12, + "end": 17159.78, + "probability": 0.994 + }, + { + "start": 17160.36, + "end": 17164.82, + "probability": 0.8553 + }, + { + "start": 17164.82, + "end": 17167.4, + "probability": 0.9922 + }, + { + "start": 17167.84, + "end": 17169.72, + "probability": 0.979 + }, + { + "start": 17170.62, + "end": 17171.2, + "probability": 0.5943 + }, + { + "start": 17171.7, + "end": 17173.09, + "probability": 0.9961 + }, + { + "start": 17173.94, + "end": 17176.22, + "probability": 0.9573 + }, + { + "start": 17178.76, + "end": 17180.94, + "probability": 0.5195 + }, + { + "start": 17180.94, + "end": 17182.4, + "probability": 0.0594 + }, + { + "start": 17183.14, + "end": 17184.08, + "probability": 0.8812 + }, + { + "start": 17184.58, + "end": 17185.18, + "probability": 0.8536 + }, + { + "start": 17185.86, + "end": 17188.06, + "probability": 0.9801 + }, + { + "start": 17188.6, + "end": 17190.42, + "probability": 0.7516 + }, + { + "start": 17191.16, + "end": 17191.72, + "probability": 0.6955 + }, + { + "start": 17192.38, + "end": 17194.3, + "probability": 0.8978 + }, + { + "start": 17194.68, + "end": 17196.72, + "probability": 0.9973 + }, + { + "start": 17197.6, + "end": 17201.26, + "probability": 0.824 + }, + { + "start": 17201.34, + "end": 17201.83, + "probability": 0.7041 + }, + { + "start": 17202.34, + "end": 17205.12, + "probability": 0.9908 + }, + { + "start": 17206.3, + "end": 17207.28, + "probability": 0.6054 + }, + { + "start": 17207.3, + "end": 17207.72, + "probability": 0.6403 + }, + { + "start": 17208.36, + "end": 17210.66, + "probability": 0.7131 + }, + { + "start": 17210.78, + "end": 17214.24, + "probability": 0.9451 + }, + { + "start": 17215.04, + "end": 17215.94, + "probability": 0.9303 + }, + { + "start": 17216.54, + "end": 17218.01, + "probability": 0.6285 + }, + { + "start": 17219.56, + "end": 17221.14, + "probability": 0.7511 + }, + { + "start": 17222.38, + "end": 17223.08, + "probability": 0.6422 + }, + { + "start": 17224.4, + "end": 17225.16, + "probability": 0.4327 + }, + { + "start": 17226.44, + "end": 17227.7, + "probability": 0.9978 + }, + { + "start": 17228.68, + "end": 17229.68, + "probability": 0.9408 + }, + { + "start": 17231.2, + "end": 17231.76, + "probability": 0.518 + }, + { + "start": 17233.08, + "end": 17234.02, + "probability": 0.8353 + }, + { + "start": 17234.84, + "end": 17239.0, + "probability": 0.9115 + }, + { + "start": 17240.18, + "end": 17241.9, + "probability": 0.7671 + }, + { + "start": 17242.48, + "end": 17245.0, + "probability": 0.5512 + }, + { + "start": 17245.84, + "end": 17246.58, + "probability": 0.7055 + }, + { + "start": 17247.06, + "end": 17247.98, + "probability": 0.6759 + }, + { + "start": 17248.38, + "end": 17251.38, + "probability": 0.8535 + }, + { + "start": 17251.7, + "end": 17252.8, + "probability": 0.9496 + }, + { + "start": 17253.22, + "end": 17254.8, + "probability": 0.7363 + }, + { + "start": 17256.06, + "end": 17256.64, + "probability": 0.6583 + }, + { + "start": 17261.28, + "end": 17262.64, + "probability": 0.9893 + }, + { + "start": 17262.84, + "end": 17264.12, + "probability": 0.8079 + }, + { + "start": 17266.02, + "end": 17267.84, + "probability": 0.8535 + }, + { + "start": 17267.86, + "end": 17268.36, + "probability": 0.7769 + }, + { + "start": 17268.96, + "end": 17269.5, + "probability": 0.7684 + }, + { + "start": 17269.96, + "end": 17270.44, + "probability": 0.8251 + }, + { + "start": 17271.18, + "end": 17271.7, + "probability": 0.3776 + }, + { + "start": 17272.58, + "end": 17273.2, + "probability": 0.9955 + }, + { + "start": 17274.42, + "end": 17275.6, + "probability": 0.6685 + }, + { + "start": 17276.38, + "end": 17279.4, + "probability": 0.7771 + }, + { + "start": 17282.72, + "end": 17288.82, + "probability": 0.9286 + }, + { + "start": 17288.82, + "end": 17290.24, + "probability": 0.9846 + }, + { + "start": 17291.64, + "end": 17294.14, + "probability": 0.9731 + }, + { + "start": 17294.36, + "end": 17295.38, + "probability": 0.6203 + }, + { + "start": 17296.04, + "end": 17299.58, + "probability": 0.7941 + }, + { + "start": 17300.08, + "end": 17301.22, + "probability": 0.9423 + }, + { + "start": 17301.84, + "end": 17303.46, + "probability": 0.9756 + }, + { + "start": 17304.1, + "end": 17306.38, + "probability": 0.9419 + }, + { + "start": 17307.2, + "end": 17310.14, + "probability": 0.9788 + }, + { + "start": 17310.98, + "end": 17312.4, + "probability": 0.9782 + }, + { + "start": 17313.24, + "end": 17314.94, + "probability": 0.8514 + }, + { + "start": 17317.38, + "end": 17319.86, + "probability": 0.9336 + }, + { + "start": 17321.04, + "end": 17325.08, + "probability": 0.9188 + }, + { + "start": 17326.0, + "end": 17326.63, + "probability": 0.965 + }, + { + "start": 17327.04, + "end": 17327.61, + "probability": 0.9238 + }, + { + "start": 17328.18, + "end": 17329.02, + "probability": 0.974 + }, + { + "start": 17329.3, + "end": 17330.82, + "probability": 0.6014 + }, + { + "start": 17331.16, + "end": 17331.42, + "probability": 0.6898 + }, + { + "start": 17331.48, + "end": 17332.2, + "probability": 0.7693 + }, + { + "start": 17332.66, + "end": 17334.04, + "probability": 0.8964 + }, + { + "start": 17335.12, + "end": 17335.74, + "probability": 0.3621 + }, + { + "start": 17337.0, + "end": 17337.96, + "probability": 0.8054 + }, + { + "start": 17340.08, + "end": 17343.34, + "probability": 0.9743 + }, + { + "start": 17343.98, + "end": 17346.06, + "probability": 0.6799 + }, + { + "start": 17348.16, + "end": 17349.04, + "probability": 0.8788 + }, + { + "start": 17350.12, + "end": 17353.08, + "probability": 0.8584 + }, + { + "start": 17353.6, + "end": 17354.68, + "probability": 0.0322 + }, + { + "start": 17354.7, + "end": 17356.0, + "probability": 0.3621 + }, + { + "start": 17356.78, + "end": 17357.44, + "probability": 0.7918 + }, + { + "start": 17357.94, + "end": 17359.32, + "probability": 0.7974 + }, + { + "start": 17359.7, + "end": 17362.52, + "probability": 0.9233 + }, + { + "start": 17362.96, + "end": 17362.96, + "probability": 0.0122 + }, + { + "start": 17363.28, + "end": 17363.46, + "probability": 0.0548 + }, + { + "start": 17365.18, + "end": 17365.48, + "probability": 0.0157 + }, + { + "start": 17365.62, + "end": 17366.1, + "probability": 0.2476 + }, + { + "start": 17366.7, + "end": 17368.16, + "probability": 0.9719 + }, + { + "start": 17368.5, + "end": 17369.05, + "probability": 0.8606 + }, + { + "start": 17369.26, + "end": 17369.66, + "probability": 0.9081 + }, + { + "start": 17370.04, + "end": 17370.78, + "probability": 0.9265 + }, + { + "start": 17371.16, + "end": 17371.46, + "probability": 0.0522 + }, + { + "start": 17371.58, + "end": 17372.18, + "probability": 0.1036 + }, + { + "start": 17372.18, + "end": 17374.12, + "probability": 0.7493 + }, + { + "start": 17375.56, + "end": 17375.84, + "probability": 0.2557 + }, + { + "start": 17378.28, + "end": 17379.7, + "probability": 0.9095 + }, + { + "start": 17380.14, + "end": 17382.78, + "probability": 0.9007 + }, + { + "start": 17383.22, + "end": 17384.2, + "probability": 0.8748 + }, + { + "start": 17384.58, + "end": 17385.66, + "probability": 0.7953 + }, + { + "start": 17386.24, + "end": 17387.26, + "probability": 0.9132 + }, + { + "start": 17387.76, + "end": 17391.02, + "probability": 0.9941 + }, + { + "start": 17391.62, + "end": 17392.58, + "probability": 0.5142 + }, + { + "start": 17392.94, + "end": 17395.28, + "probability": 0.9951 + }, + { + "start": 17395.28, + "end": 17398.42, + "probability": 0.9961 + }, + { + "start": 17398.8, + "end": 17400.7, + "probability": 0.9377 + }, + { + "start": 17401.1, + "end": 17403.14, + "probability": 0.9773 + }, + { + "start": 17403.66, + "end": 17405.4, + "probability": 0.8175 + }, + { + "start": 17405.92, + "end": 17406.28, + "probability": 0.9924 + }, + { + "start": 17406.76, + "end": 17407.22, + "probability": 0.7272 + }, + { + "start": 17407.42, + "end": 17407.42, + "probability": 0.0198 + }, + { + "start": 17407.42, + "end": 17407.42, + "probability": 0.5601 + }, + { + "start": 17407.46, + "end": 17409.43, + "probability": 0.9733 + }, + { + "start": 17412.58, + "end": 17412.58, + "probability": 0.1097 + }, + { + "start": 17413.18, + "end": 17413.18, + "probability": 0.1283 + }, + { + "start": 17413.18, + "end": 17413.76, + "probability": 0.4394 + }, + { + "start": 17413.8, + "end": 17413.9, + "probability": 0.5077 + }, + { + "start": 17414.8, + "end": 17417.8, + "probability": 0.4105 + }, + { + "start": 17417.98, + "end": 17418.86, + "probability": 0.0135 + }, + { + "start": 17418.86, + "end": 17419.24, + "probability": 0.0798 + }, + { + "start": 17419.48, + "end": 17421.07, + "probability": 0.3351 + }, + { + "start": 17421.08, + "end": 17421.56, + "probability": 0.8381 + }, + { + "start": 17421.68, + "end": 17421.96, + "probability": 0.7424 + }, + { + "start": 17422.04, + "end": 17423.64, + "probability": 0.9896 + }, + { + "start": 17423.76, + "end": 17424.68, + "probability": 0.8527 + }, + { + "start": 17424.74, + "end": 17426.11, + "probability": 0.6592 + }, + { + "start": 17426.5, + "end": 17427.36, + "probability": 0.8513 + }, + { + "start": 17427.48, + "end": 17428.68, + "probability": 0.8535 + }, + { + "start": 17428.78, + "end": 17432.32, + "probability": 0.9507 + }, + { + "start": 17432.62, + "end": 17433.46, + "probability": 0.9198 + }, + { + "start": 17433.54, + "end": 17433.96, + "probability": 0.5031 + }, + { + "start": 17434.22, + "end": 17434.9, + "probability": 0.9526 + }, + { + "start": 17435.26, + "end": 17435.88, + "probability": 0.8569 + }, + { + "start": 17436.22, + "end": 17436.86, + "probability": 0.6123 + }, + { + "start": 17436.92, + "end": 17437.12, + "probability": 0.0136 + }, + { + "start": 17437.74, + "end": 17437.84, + "probability": 0.2583 + }, + { + "start": 17437.84, + "end": 17438.72, + "probability": 0.7396 + }, + { + "start": 17439.44, + "end": 17439.64, + "probability": 0.5883 + }, + { + "start": 17439.64, + "end": 17441.82, + "probability": 0.5246 + }, + { + "start": 17442.66, + "end": 17444.32, + "probability": 0.6856 + }, + { + "start": 17444.46, + "end": 17445.16, + "probability": 0.6469 + }, + { + "start": 17445.38, + "end": 17447.18, + "probability": 0.1581 + }, + { + "start": 17447.36, + "end": 17447.94, + "probability": 0.2799 + }, + { + "start": 17448.04, + "end": 17449.52, + "probability": 0.248 + }, + { + "start": 17452.06, + "end": 17452.38, + "probability": 0.0067 + }, + { + "start": 17453.24, + "end": 17454.36, + "probability": 0.0471 + }, + { + "start": 17456.34, + "end": 17457.18, + "probability": 0.0248 + }, + { + "start": 17458.92, + "end": 17460.64, + "probability": 0.7424 + }, + { + "start": 17461.6, + "end": 17466.92, + "probability": 0.9554 + }, + { + "start": 17468.26, + "end": 17472.78, + "probability": 0.9853 + }, + { + "start": 17473.82, + "end": 17476.18, + "probability": 0.9906 + }, + { + "start": 17476.78, + "end": 17478.42, + "probability": 0.9995 + }, + { + "start": 17479.24, + "end": 17480.18, + "probability": 0.999 + }, + { + "start": 17480.8, + "end": 17481.76, + "probability": 0.9225 + }, + { + "start": 17482.62, + "end": 17486.22, + "probability": 0.9473 + }, + { + "start": 17486.76, + "end": 17487.5, + "probability": 0.9285 + }, + { + "start": 17488.04, + "end": 17489.06, + "probability": 0.9568 + }, + { + "start": 17489.72, + "end": 17492.78, + "probability": 0.7058 + }, + { + "start": 17493.26, + "end": 17495.96, + "probability": 0.9574 + }, + { + "start": 17496.46, + "end": 17499.18, + "probability": 0.9871 + }, + { + "start": 17499.7, + "end": 17501.76, + "probability": 0.7192 + }, + { + "start": 17502.82, + "end": 17504.28, + "probability": 0.8328 + }, + { + "start": 17505.22, + "end": 17506.54, + "probability": 0.9932 + }, + { + "start": 17506.78, + "end": 17509.92, + "probability": 0.9871 + }, + { + "start": 17510.08, + "end": 17511.02, + "probability": 0.8594 + }, + { + "start": 17511.42, + "end": 17512.52, + "probability": 0.9966 + }, + { + "start": 17513.06, + "end": 17517.82, + "probability": 0.9963 + }, + { + "start": 17517.82, + "end": 17524.22, + "probability": 0.988 + }, + { + "start": 17524.9, + "end": 17529.44, + "probability": 0.9935 + }, + { + "start": 17530.04, + "end": 17533.89, + "probability": 0.9849 + }, + { + "start": 17534.44, + "end": 17536.96, + "probability": 0.8148 + }, + { + "start": 17537.28, + "end": 17538.08, + "probability": 0.6684 + }, + { + "start": 17538.4, + "end": 17540.44, + "probability": 0.0567 + }, + { + "start": 17541.24, + "end": 17547.36, + "probability": 0.2077 + }, + { + "start": 17547.7, + "end": 17548.5, + "probability": 0.8768 + }, + { + "start": 17548.66, + "end": 17552.12, + "probability": 0.981 + }, + { + "start": 17552.92, + "end": 17553.86, + "probability": 0.2727 + }, + { + "start": 17554.16, + "end": 17557.9, + "probability": 0.9663 + }, + { + "start": 17558.58, + "end": 17560.12, + "probability": 0.8968 + }, + { + "start": 17560.2, + "end": 17562.07, + "probability": 0.9845 + }, + { + "start": 17562.48, + "end": 17563.3, + "probability": 0.9047 + }, + { + "start": 17563.4, + "end": 17565.4, + "probability": 0.9855 + }, + { + "start": 17565.78, + "end": 17566.48, + "probability": 0.6774 + }, + { + "start": 17567.02, + "end": 17570.44, + "probability": 0.8472 + }, + { + "start": 17571.08, + "end": 17574.66, + "probability": 0.9982 + }, + { + "start": 17575.18, + "end": 17578.68, + "probability": 0.9937 + }, + { + "start": 17578.68, + "end": 17579.74, + "probability": 0.9438 + }, + { + "start": 17579.74, + "end": 17580.44, + "probability": 0.9131 + }, + { + "start": 17580.62, + "end": 17581.06, + "probability": 0.6284 + }, + { + "start": 17581.16, + "end": 17582.46, + "probability": 0.6266 + }, + { + "start": 17582.64, + "end": 17583.32, + "probability": 0.8926 + }, + { + "start": 17583.42, + "end": 17584.14, + "probability": 0.8054 + }, + { + "start": 17584.44, + "end": 17585.08, + "probability": 0.8547 + }, + { + "start": 17585.12, + "end": 17585.74, + "probability": 0.8162 + }, + { + "start": 17586.22, + "end": 17588.8, + "probability": 0.8609 + }, + { + "start": 17590.08, + "end": 17591.96, + "probability": 0.926 + }, + { + "start": 17592.36, + "end": 17592.88, + "probability": 0.7091 + }, + { + "start": 17593.66, + "end": 17595.9, + "probability": 0.6236 + }, + { + "start": 17596.7, + "end": 17598.22, + "probability": 0.9686 + }, + { + "start": 17598.5, + "end": 17601.02, + "probability": 0.9412 + }, + { + "start": 17601.68, + "end": 17602.52, + "probability": 0.9408 + }, + { + "start": 17602.56, + "end": 17603.48, + "probability": 0.7103 + }, + { + "start": 17603.56, + "end": 17604.78, + "probability": 0.9758 + }, + { + "start": 17605.3, + "end": 17608.16, + "probability": 0.6435 + }, + { + "start": 17608.32, + "end": 17610.46, + "probability": 0.8918 + }, + { + "start": 17610.92, + "end": 17612.58, + "probability": 0.8523 + }, + { + "start": 17613.0, + "end": 17615.48, + "probability": 0.9199 + }, + { + "start": 17615.88, + "end": 17617.26, + "probability": 0.8305 + }, + { + "start": 17617.94, + "end": 17620.7, + "probability": 0.2797 + }, + { + "start": 17620.7, + "end": 17621.16, + "probability": 0.2886 + }, + { + "start": 17621.46, + "end": 17623.24, + "probability": 0.6734 + }, + { + "start": 17623.68, + "end": 17624.66, + "probability": 0.9745 + }, + { + "start": 17625.18, + "end": 17626.48, + "probability": 0.9333 + }, + { + "start": 17626.64, + "end": 17629.72, + "probability": 0.7276 + }, + { + "start": 17630.06, + "end": 17631.62, + "probability": 0.6706 + }, + { + "start": 17631.7, + "end": 17632.32, + "probability": 0.7024 + }, + { + "start": 17632.36, + "end": 17632.36, + "probability": 0.3634 + }, + { + "start": 17632.36, + "end": 17632.36, + "probability": 0.6942 + }, + { + "start": 17632.54, + "end": 17633.46, + "probability": 0.9201 + }, + { + "start": 17633.68, + "end": 17633.9, + "probability": 0.8491 + }, + { + "start": 17634.36, + "end": 17634.7, + "probability": 0.9056 + }, + { + "start": 17635.88, + "end": 17637.8, + "probability": 0.9375 + }, + { + "start": 17640.02, + "end": 17640.62, + "probability": 0.3916 + }, + { + "start": 17640.62, + "end": 17641.74, + "probability": 0.7059 + }, + { + "start": 17642.32, + "end": 17643.36, + "probability": 0.6189 + }, + { + "start": 17644.18, + "end": 17645.5, + "probability": 0.7876 + }, + { + "start": 17647.5, + "end": 17649.94, + "probability": 0.9689 + }, + { + "start": 17651.04, + "end": 17652.46, + "probability": 0.8646 + }, + { + "start": 17653.46, + "end": 17653.98, + "probability": 0.6524 + }, + { + "start": 17654.6, + "end": 17655.32, + "probability": 0.764 + }, + { + "start": 17657.4, + "end": 17659.06, + "probability": 0.8353 + }, + { + "start": 17660.92, + "end": 17662.42, + "probability": 0.8164 + }, + { + "start": 17662.48, + "end": 17662.86, + "probability": 0.753 + }, + { + "start": 17663.4, + "end": 17664.7, + "probability": 0.4806 + }, + { + "start": 17665.12, + "end": 17665.7, + "probability": 0.648 + }, + { + "start": 17665.84, + "end": 17666.43, + "probability": 0.6743 + }, + { + "start": 17667.04, + "end": 17670.56, + "probability": 0.7904 + }, + { + "start": 17671.92, + "end": 17673.54, + "probability": 0.8756 + }, + { + "start": 17674.18, + "end": 17675.6, + "probability": 0.8984 + }, + { + "start": 17676.3, + "end": 17677.18, + "probability": 0.9659 + }, + { + "start": 17677.42, + "end": 17688.54, + "probability": 0.2108 + }, + { + "start": 17696.16, + "end": 17699.22, + "probability": 0.6651 + }, + { + "start": 17701.28, + "end": 17703.8, + "probability": 0.279 + }, + { + "start": 17704.46, + "end": 17708.3, + "probability": 0.6677 + }, + { + "start": 17710.5, + "end": 17713.9, + "probability": 0.7236 + }, + { + "start": 17714.74, + "end": 17715.42, + "probability": 0.9573 + }, + { + "start": 17716.38, + "end": 17716.94, + "probability": 0.9319 + }, + { + "start": 17737.48, + "end": 17740.24, + "probability": 0.6117 + }, + { + "start": 17740.28, + "end": 17740.7, + "probability": 0.1174 + }, + { + "start": 17743.21, + "end": 17745.44, + "probability": 0.4698 + }, + { + "start": 17745.44, + "end": 17746.96, + "probability": 0.4916 + }, + { + "start": 17747.1, + "end": 17747.68, + "probability": 0.634 + }, + { + "start": 17747.82, + "end": 17748.52, + "probability": 0.8987 + }, + { + "start": 17758.88, + "end": 17759.7, + "probability": 0.7427 + }, + { + "start": 17761.86, + "end": 17763.18, + "probability": 0.646 + }, + { + "start": 17763.74, + "end": 17764.57, + "probability": 0.593 + }, + { + "start": 17765.38, + "end": 17766.38, + "probability": 0.7638 + }, + { + "start": 17767.02, + "end": 17767.66, + "probability": 0.7724 + }, + { + "start": 17769.08, + "end": 17772.28, + "probability": 0.9209 + }, + { + "start": 17773.34, + "end": 17778.38, + "probability": 0.9109 + }, + { + "start": 17778.44, + "end": 17782.1, + "probability": 0.9951 + }, + { + "start": 17782.86, + "end": 17786.28, + "probability": 0.9777 + }, + { + "start": 17787.56, + "end": 17788.02, + "probability": 0.6683 + }, + { + "start": 17788.1, + "end": 17788.5, + "probability": 0.8647 + }, + { + "start": 17788.74, + "end": 17791.58, + "probability": 0.9682 + }, + { + "start": 17792.2, + "end": 17794.0, + "probability": 0.6527 + }, + { + "start": 17794.74, + "end": 17797.6, + "probability": 0.979 + }, + { + "start": 17797.72, + "end": 17800.62, + "probability": 0.9023 + }, + { + "start": 17801.24, + "end": 17801.96, + "probability": 0.9291 + }, + { + "start": 17802.58, + "end": 17804.54, + "probability": 0.79 + }, + { + "start": 17805.26, + "end": 17807.72, + "probability": 0.6034 + }, + { + "start": 17808.16, + "end": 17808.91, + "probability": 0.6882 + }, + { + "start": 17809.08, + "end": 17811.44, + "probability": 0.7569 + }, + { + "start": 17811.62, + "end": 17812.84, + "probability": 0.4835 + }, + { + "start": 17812.94, + "end": 17814.14, + "probability": 0.9944 + }, + { + "start": 17814.68, + "end": 17820.3, + "probability": 0.9872 + }, + { + "start": 17820.46, + "end": 17823.0, + "probability": 0.5269 + }, + { + "start": 17823.76, + "end": 17825.88, + "probability": 0.9915 + }, + { + "start": 17826.52, + "end": 17827.44, + "probability": 0.7018 + }, + { + "start": 17827.84, + "end": 17831.48, + "probability": 0.9701 + }, + { + "start": 17832.58, + "end": 17834.24, + "probability": 0.8941 + }, + { + "start": 17834.3, + "end": 17835.7, + "probability": 0.7134 + }, + { + "start": 17835.92, + "end": 17838.22, + "probability": 0.8894 + }, + { + "start": 17838.44, + "end": 17838.98, + "probability": 0.5952 + }, + { + "start": 17839.68, + "end": 17845.54, + "probability": 0.899 + }, + { + "start": 17845.66, + "end": 17846.18, + "probability": 0.4995 + }, + { + "start": 17846.8, + "end": 17850.56, + "probability": 0.8643 + }, + { + "start": 17850.98, + "end": 17854.0, + "probability": 0.993 + }, + { + "start": 17854.48, + "end": 17855.06, + "probability": 0.8466 + }, + { + "start": 17855.52, + "end": 17857.4, + "probability": 0.8036 + }, + { + "start": 17857.46, + "end": 17858.52, + "probability": 0.8771 + }, + { + "start": 17859.06, + "end": 17860.98, + "probability": 0.715 + }, + { + "start": 17861.52, + "end": 17862.82, + "probability": 0.9131 + }, + { + "start": 17862.9, + "end": 17864.18, + "probability": 0.7244 + }, + { + "start": 17864.26, + "end": 17866.75, + "probability": 0.9818 + }, + { + "start": 17867.04, + "end": 17867.58, + "probability": 0.6838 + }, + { + "start": 17867.7, + "end": 17868.12, + "probability": 0.6621 + }, + { + "start": 17868.58, + "end": 17869.25, + "probability": 0.7016 + }, + { + "start": 17869.44, + "end": 17870.7, + "probability": 0.9231 + }, + { + "start": 17870.78, + "end": 17874.72, + "probability": 0.9766 + }, + { + "start": 17875.72, + "end": 17877.62, + "probability": 0.6978 + }, + { + "start": 17877.96, + "end": 17879.76, + "probability": 0.9007 + }, + { + "start": 17879.94, + "end": 17881.9, + "probability": 0.9292 + }, + { + "start": 17882.2, + "end": 17882.86, + "probability": 0.7722 + }, + { + "start": 17883.36, + "end": 17884.39, + "probability": 0.5059 + }, + { + "start": 17885.4, + "end": 17892.32, + "probability": 0.9685 + }, + { + "start": 17893.06, + "end": 17897.08, + "probability": 0.8291 + }, + { + "start": 17897.6, + "end": 17898.72, + "probability": 0.9802 + }, + { + "start": 17899.24, + "end": 17902.2, + "probability": 0.9873 + }, + { + "start": 17902.88, + "end": 17907.34, + "probability": 0.9056 + }, + { + "start": 17907.34, + "end": 17911.64, + "probability": 0.983 + }, + { + "start": 17912.28, + "end": 17917.58, + "probability": 0.9834 + }, + { + "start": 17918.34, + "end": 17918.66, + "probability": 0.4961 + }, + { + "start": 17919.24, + "end": 17921.06, + "probability": 0.9057 + }, + { + "start": 17921.16, + "end": 17923.86, + "probability": 0.7921 + }, + { + "start": 17924.02, + "end": 17926.34, + "probability": 0.9592 + }, + { + "start": 17926.6, + "end": 17928.36, + "probability": 0.9641 + }, + { + "start": 17929.36, + "end": 17930.52, + "probability": 0.4476 + }, + { + "start": 17930.7, + "end": 17933.62, + "probability": 0.9426 + }, + { + "start": 17933.98, + "end": 17934.8, + "probability": 0.9299 + }, + { + "start": 17935.48, + "end": 17939.46, + "probability": 0.5163 + }, + { + "start": 17940.08, + "end": 17941.42, + "probability": 0.8829 + }, + { + "start": 17942.12, + "end": 17943.44, + "probability": 0.9516 + }, + { + "start": 17944.14, + "end": 17947.24, + "probability": 0.828 + }, + { + "start": 17947.54, + "end": 17948.67, + "probability": 0.9111 + }, + { + "start": 17949.28, + "end": 17950.34, + "probability": 0.9798 + }, + { + "start": 17950.86, + "end": 17952.38, + "probability": 0.9956 + }, + { + "start": 17952.94, + "end": 17954.67, + "probability": 0.4832 + }, + { + "start": 17955.58, + "end": 17957.44, + "probability": 0.7195 + }, + { + "start": 17958.08, + "end": 17959.34, + "probability": 0.0053 + }, + { + "start": 17960.66, + "end": 17961.34, + "probability": 0.4716 + }, + { + "start": 17961.52, + "end": 17962.82, + "probability": 0.9979 + }, + { + "start": 17963.16, + "end": 17964.66, + "probability": 0.9715 + }, + { + "start": 17965.22, + "end": 17967.54, + "probability": 0.8368 + }, + { + "start": 17968.48, + "end": 17971.06, + "probability": 0.9469 + }, + { + "start": 17971.06, + "end": 17974.54, + "probability": 0.9946 + }, + { + "start": 17974.76, + "end": 17975.22, + "probability": 0.8655 + }, + { + "start": 17976.04, + "end": 17978.34, + "probability": 0.6759 + }, + { + "start": 17979.98, + "end": 17981.1, + "probability": 0.9041 + }, + { + "start": 17982.02, + "end": 17985.98, + "probability": 0.7279 + }, + { + "start": 17986.08, + "end": 17986.84, + "probability": 0.8471 + }, + { + "start": 17987.0, + "end": 17987.72, + "probability": 0.8913 + }, + { + "start": 17988.16, + "end": 17994.02, + "probability": 0.967 + }, + { + "start": 17994.52, + "end": 17995.36, + "probability": 0.984 + }, + { + "start": 17995.6, + "end": 17996.08, + "probability": 0.8871 + }, + { + "start": 17996.1, + "end": 17997.98, + "probability": 0.7999 + }, + { + "start": 17998.54, + "end": 18000.28, + "probability": 0.9718 + }, + { + "start": 18000.9, + "end": 18003.88, + "probability": 0.9768 + }, + { + "start": 18004.14, + "end": 18006.34, + "probability": 0.8817 + }, + { + "start": 18006.86, + "end": 18008.48, + "probability": 0.7847 + }, + { + "start": 18009.0, + "end": 18009.22, + "probability": 0.9073 + }, + { + "start": 18010.1, + "end": 18012.04, + "probability": 0.9069 + }, + { + "start": 18012.94, + "end": 18014.04, + "probability": 0.8621 + }, + { + "start": 18015.48, + "end": 18018.68, + "probability": 0.9909 + }, + { + "start": 18019.62, + "end": 18021.02, + "probability": 0.9821 + }, + { + "start": 18021.88, + "end": 18029.06, + "probability": 0.9831 + }, + { + "start": 18030.2, + "end": 18032.32, + "probability": 0.9819 + }, + { + "start": 18033.34, + "end": 18036.82, + "probability": 0.7942 + }, + { + "start": 18037.58, + "end": 18043.36, + "probability": 0.9828 + }, + { + "start": 18043.36, + "end": 18047.62, + "probability": 0.9924 + }, + { + "start": 18048.52, + "end": 18049.18, + "probability": 0.9597 + }, + { + "start": 18049.24, + "end": 18052.78, + "probability": 0.7585 + }, + { + "start": 18053.28, + "end": 18053.9, + "probability": 0.5368 + }, + { + "start": 18054.0, + "end": 18054.14, + "probability": 0.4167 + }, + { + "start": 18055.72, + "end": 18058.96, + "probability": 0.83 + }, + { + "start": 18059.06, + "end": 18066.94, + "probability": 0.9146 + }, + { + "start": 18067.06, + "end": 18068.46, + "probability": 0.957 + }, + { + "start": 18068.62, + "end": 18069.11, + "probability": 0.0591 + }, + { + "start": 18070.16, + "end": 18072.32, + "probability": 0.715 + }, + { + "start": 18072.96, + "end": 18077.54, + "probability": 0.8425 + }, + { + "start": 18078.16, + "end": 18080.12, + "probability": 0.916 + }, + { + "start": 18080.18, + "end": 18081.44, + "probability": 0.5817 + }, + { + "start": 18081.5, + "end": 18083.4, + "probability": 0.6603 + }, + { + "start": 18084.76, + "end": 18087.88, + "probability": 0.7438 + }, + { + "start": 18088.4, + "end": 18089.42, + "probability": 0.9236 + }, + { + "start": 18089.52, + "end": 18092.2, + "probability": 0.7782 + }, + { + "start": 18093.74, + "end": 18096.68, + "probability": 0.9761 + }, + { + "start": 18097.42, + "end": 18098.08, + "probability": 0.9204 + }, + { + "start": 18099.02, + "end": 18100.14, + "probability": 0.8926 + }, + { + "start": 18101.74, + "end": 18102.58, + "probability": 0.614 + }, + { + "start": 18103.54, + "end": 18109.86, + "probability": 0.9788 + }, + { + "start": 18112.2, + "end": 18116.46, + "probability": 0.8702 + }, + { + "start": 18117.04, + "end": 18118.9, + "probability": 0.8692 + }, + { + "start": 18119.52, + "end": 18121.24, + "probability": 0.5021 + }, + { + "start": 18121.28, + "end": 18122.84, + "probability": 0.9044 + }, + { + "start": 18122.9, + "end": 18126.02, + "probability": 0.686 + }, + { + "start": 18126.12, + "end": 18127.74, + "probability": 0.6683 + }, + { + "start": 18127.8, + "end": 18129.9, + "probability": 0.9477 + }, + { + "start": 18130.24, + "end": 18131.4, + "probability": 0.875 + }, + { + "start": 18131.44, + "end": 18132.16, + "probability": 0.6885 + }, + { + "start": 18133.68, + "end": 18135.76, + "probability": 0.8865 + }, + { + "start": 18135.84, + "end": 18139.48, + "probability": 0.7506 + }, + { + "start": 18140.22, + "end": 18144.44, + "probability": 0.9092 + }, + { + "start": 18144.52, + "end": 18144.9, + "probability": 0.8462 + }, + { + "start": 18145.4, + "end": 18152.5, + "probability": 0.9746 + }, + { + "start": 18153.22, + "end": 18155.48, + "probability": 0.8155 + }, + { + "start": 18155.6, + "end": 18158.12, + "probability": 0.9612 + }, + { + "start": 18158.26, + "end": 18160.88, + "probability": 0.9312 + }, + { + "start": 18160.88, + "end": 18163.3, + "probability": 0.3934 + }, + { + "start": 18163.4, + "end": 18166.44, + "probability": 0.8293 + }, + { + "start": 18166.5, + "end": 18170.98, + "probability": 0.999 + }, + { + "start": 18172.26, + "end": 18173.08, + "probability": 0.6991 + }, + { + "start": 18175.33, + "end": 18179.02, + "probability": 0.7814 + }, + { + "start": 18179.28, + "end": 18179.7, + "probability": 0.5692 + }, + { + "start": 18179.8, + "end": 18185.26, + "probability": 0.8679 + }, + { + "start": 18185.36, + "end": 18191.68, + "probability": 0.7857 + }, + { + "start": 18191.72, + "end": 18194.38, + "probability": 0.8261 + }, + { + "start": 18194.56, + "end": 18195.22, + "probability": 0.6639 + }, + { + "start": 18195.62, + "end": 18199.16, + "probability": 0.9549 + }, + { + "start": 18199.8, + "end": 18205.1, + "probability": 0.9331 + }, + { + "start": 18205.6, + "end": 18208.92, + "probability": 0.7215 + }, + { + "start": 18208.98, + "end": 18209.72, + "probability": 0.9564 + }, + { + "start": 18210.44, + "end": 18217.66, + "probability": 0.9751 + }, + { + "start": 18217.88, + "end": 18222.8, + "probability": 0.7878 + }, + { + "start": 18222.86, + "end": 18224.04, + "probability": 0.8555 + }, + { + "start": 18224.12, + "end": 18226.9, + "probability": 0.8396 + }, + { + "start": 18227.18, + "end": 18227.52, + "probability": 0.0018 + }, + { + "start": 18228.67, + "end": 18232.32, + "probability": 0.5438 + }, + { + "start": 18233.52, + "end": 18238.04, + "probability": 0.9955 + }, + { + "start": 18238.64, + "end": 18239.42, + "probability": 0.7359 + }, + { + "start": 18240.02, + "end": 18242.32, + "probability": 0.4299 + }, + { + "start": 18242.32, + "end": 18243.8, + "probability": 0.652 + }, + { + "start": 18244.16, + "end": 18244.76, + "probability": 0.6938 + }, + { + "start": 18246.12, + "end": 18248.38, + "probability": 0.9089 + }, + { + "start": 18249.24, + "end": 18251.35, + "probability": 0.9967 + }, + { + "start": 18252.26, + "end": 18255.92, + "probability": 0.8322 + }, + { + "start": 18256.12, + "end": 18257.12, + "probability": 0.9609 + }, + { + "start": 18259.1, + "end": 18259.8, + "probability": 0.8986 + }, + { + "start": 18260.32, + "end": 18263.64, + "probability": 0.9575 + }, + { + "start": 18264.48, + "end": 18265.34, + "probability": 0.6805 + }, + { + "start": 18265.36, + "end": 18266.78, + "probability": 0.72 + }, + { + "start": 18266.82, + "end": 18268.6, + "probability": 0.8986 + }, + { + "start": 18269.34, + "end": 18270.04, + "probability": 0.7271 + }, + { + "start": 18270.4, + "end": 18273.52, + "probability": 0.899 + }, + { + "start": 18274.2, + "end": 18276.4, + "probability": 0.8701 + }, + { + "start": 18276.9, + "end": 18278.58, + "probability": 0.8626 + }, + { + "start": 18279.5, + "end": 18280.78, + "probability": 0.7802 + }, + { + "start": 18281.14, + "end": 18282.8, + "probability": 0.9919 + }, + { + "start": 18283.44, + "end": 18287.28, + "probability": 0.9922 + }, + { + "start": 18287.96, + "end": 18292.9, + "probability": 0.9684 + }, + { + "start": 18294.82, + "end": 18297.96, + "probability": 0.9969 + }, + { + "start": 18298.08, + "end": 18304.92, + "probability": 0.8914 + }, + { + "start": 18305.54, + "end": 18306.96, + "probability": 0.9886 + }, + { + "start": 18307.52, + "end": 18309.64, + "probability": 0.9323 + }, + { + "start": 18310.02, + "end": 18310.74, + "probability": 0.9026 + }, + { + "start": 18310.84, + "end": 18312.64, + "probability": 0.6771 + }, + { + "start": 18313.56, + "end": 18318.94, + "probability": 0.7493 + }, + { + "start": 18319.62, + "end": 18326.04, + "probability": 0.9984 + }, + { + "start": 18326.04, + "end": 18330.48, + "probability": 0.894 + }, + { + "start": 18331.36, + "end": 18333.98, + "probability": 0.9867 + }, + { + "start": 18333.98, + "end": 18336.28, + "probability": 0.746 + }, + { + "start": 18336.58, + "end": 18337.04, + "probability": 0.4547 + }, + { + "start": 18337.06, + "end": 18337.44, + "probability": 0.4281 + }, + { + "start": 18337.5, + "end": 18338.18, + "probability": 0.6875 + }, + { + "start": 18338.7, + "end": 18341.68, + "probability": 0.9556 + }, + { + "start": 18342.12, + "end": 18342.8, + "probability": 0.4399 + }, + { + "start": 18342.82, + "end": 18344.04, + "probability": 0.9399 + }, + { + "start": 18344.56, + "end": 18345.32, + "probability": 0.8729 + }, + { + "start": 18345.52, + "end": 18346.08, + "probability": 0.7126 + }, + { + "start": 18346.68, + "end": 18349.18, + "probability": 0.9953 + }, + { + "start": 18349.62, + "end": 18351.32, + "probability": 0.8972 + }, + { + "start": 18351.46, + "end": 18353.98, + "probability": 0.7488 + }, + { + "start": 18354.34, + "end": 18358.28, + "probability": 0.4392 + }, + { + "start": 18358.98, + "end": 18361.18, + "probability": 0.9465 + }, + { + "start": 18361.38, + "end": 18363.7, + "probability": 0.9709 + }, + { + "start": 18363.74, + "end": 18367.0, + "probability": 0.895 + }, + { + "start": 18367.0, + "end": 18369.86, + "probability": 0.9967 + }, + { + "start": 18370.24, + "end": 18373.44, + "probability": 0.9441 + }, + { + "start": 18373.82, + "end": 18374.02, + "probability": 0.7169 + }, + { + "start": 18374.6, + "end": 18375.64, + "probability": 0.8958 + }, + { + "start": 18378.68, + "end": 18383.22, + "probability": 0.5334 + }, + { + "start": 18384.42, + "end": 18386.26, + "probability": 0.7085 + }, + { + "start": 18386.28, + "end": 18386.74, + "probability": 0.8929 + }, + { + "start": 18386.74, + "end": 18388.98, + "probability": 0.7159 + }, + { + "start": 18390.38, + "end": 18391.65, + "probability": 0.9723 + }, + { + "start": 18393.22, + "end": 18395.07, + "probability": 0.9858 + }, + { + "start": 18396.0, + "end": 18396.52, + "probability": 0.8024 + }, + { + "start": 18397.54, + "end": 18402.0, + "probability": 0.991 + }, + { + "start": 18402.72, + "end": 18403.78, + "probability": 0.9513 + }, + { + "start": 18405.28, + "end": 18411.14, + "probability": 0.9821 + }, + { + "start": 18411.5, + "end": 18413.28, + "probability": 0.8165 + }, + { + "start": 18414.04, + "end": 18415.12, + "probability": 0.9805 + }, + { + "start": 18418.76, + "end": 18419.54, + "probability": 0.6102 + }, + { + "start": 18420.82, + "end": 18421.28, + "probability": 0.4419 + }, + { + "start": 18421.28, + "end": 18422.68, + "probability": 0.5683 + }, + { + "start": 18423.88, + "end": 18425.88, + "probability": 0.9904 + }, + { + "start": 18426.98, + "end": 18428.89, + "probability": 0.6099 + }, + { + "start": 18429.92, + "end": 18430.96, + "probability": 0.9406 + }, + { + "start": 18432.5, + "end": 18433.86, + "probability": 0.9954 + }, + { + "start": 18433.86, + "end": 18436.46, + "probability": 0.979 + }, + { + "start": 18437.42, + "end": 18437.82, + "probability": 0.7832 + }, + { + "start": 18437.94, + "end": 18438.46, + "probability": 0.7337 + }, + { + "start": 18438.46, + "end": 18443.34, + "probability": 0.8575 + }, + { + "start": 18446.08, + "end": 18446.62, + "probability": 0.5149 + }, + { + "start": 18447.2, + "end": 18449.42, + "probability": 0.9747 + }, + { + "start": 18449.52, + "end": 18449.74, + "probability": 0.4384 + }, + { + "start": 18449.88, + "end": 18455.19, + "probability": 0.978 + }, + { + "start": 18455.44, + "end": 18458.22, + "probability": 0.9569 + }, + { + "start": 18461.04, + "end": 18465.09, + "probability": 0.769 + }, + { + "start": 18465.82, + "end": 18468.02, + "probability": 0.9784 + }, + { + "start": 18469.92, + "end": 18471.16, + "probability": 0.9161 + }, + { + "start": 18471.58, + "end": 18472.28, + "probability": 0.9917 + }, + { + "start": 18472.44, + "end": 18472.98, + "probability": 0.9497 + }, + { + "start": 18473.18, + "end": 18476.46, + "probability": 0.9941 + }, + { + "start": 18477.92, + "end": 18477.94, + "probability": 0.8999 + }, + { + "start": 18478.62, + "end": 18479.66, + "probability": 0.932 + }, + { + "start": 18481.12, + "end": 18482.21, + "probability": 0.9624 + }, + { + "start": 18483.84, + "end": 18486.14, + "probability": 0.945 + }, + { + "start": 18486.86, + "end": 18488.2, + "probability": 0.9795 + }, + { + "start": 18490.3, + "end": 18492.28, + "probability": 0.8743 + }, + { + "start": 18493.56, + "end": 18494.92, + "probability": 0.9434 + }, + { + "start": 18494.92, + "end": 18496.54, + "probability": 0.9541 + }, + { + "start": 18497.72, + "end": 18498.78, + "probability": 0.8232 + }, + { + "start": 18499.5, + "end": 18503.82, + "probability": 0.8752 + }, + { + "start": 18504.72, + "end": 18506.26, + "probability": 0.9941 + }, + { + "start": 18508.28, + "end": 18511.6, + "probability": 0.7114 + }, + { + "start": 18512.62, + "end": 18516.84, + "probability": 0.7922 + }, + { + "start": 18517.76, + "end": 18521.88, + "probability": 0.8175 + }, + { + "start": 18522.0, + "end": 18523.04, + "probability": 0.8999 + }, + { + "start": 18523.12, + "end": 18524.46, + "probability": 0.8774 + }, + { + "start": 18526.48, + "end": 18528.66, + "probability": 0.8521 + }, + { + "start": 18528.82, + "end": 18529.4, + "probability": 0.9413 + }, + { + "start": 18530.06, + "end": 18530.68, + "probability": 0.6206 + }, + { + "start": 18531.6, + "end": 18535.44, + "probability": 0.5139 + }, + { + "start": 18536.16, + "end": 18538.48, + "probability": 0.8979 + }, + { + "start": 18539.98, + "end": 18543.2, + "probability": 0.9521 + }, + { + "start": 18543.68, + "end": 18544.7, + "probability": 0.9946 + }, + { + "start": 18545.3, + "end": 18548.0, + "probability": 0.4172 + }, + { + "start": 18548.56, + "end": 18551.82, + "probability": 0.8996 + }, + { + "start": 18552.34, + "end": 18554.44, + "probability": 0.981 + }, + { + "start": 18555.0, + "end": 18555.34, + "probability": 0.7434 + }, + { + "start": 18556.06, + "end": 18560.5, + "probability": 0.5479 + }, + { + "start": 18560.78, + "end": 18561.22, + "probability": 0.6214 + }, + { + "start": 18561.4, + "end": 18562.13, + "probability": 0.7249 + }, + { + "start": 18563.02, + "end": 18566.72, + "probability": 0.9856 + }, + { + "start": 18567.3, + "end": 18569.24, + "probability": 0.802 + }, + { + "start": 18569.92, + "end": 18571.74, + "probability": 0.905 + }, + { + "start": 18572.36, + "end": 18573.58, + "probability": 0.8617 + }, + { + "start": 18573.66, + "end": 18573.9, + "probability": 0.7201 + }, + { + "start": 18574.4, + "end": 18575.54, + "probability": 0.8807 + }, + { + "start": 18576.52, + "end": 18578.47, + "probability": 0.6963 + }, + { + "start": 18579.09, + "end": 18582.26, + "probability": 0.9197 + }, + { + "start": 18587.3, + "end": 18588.44, + "probability": 0.7128 + }, + { + "start": 18590.14, + "end": 18594.86, + "probability": 0.1741 + }, + { + "start": 18594.86, + "end": 18596.76, + "probability": 0.8756 + }, + { + "start": 18598.53, + "end": 18600.82, + "probability": 0.5643 + }, + { + "start": 18602.42, + "end": 18605.52, + "probability": 0.8173 + }, + { + "start": 18605.6, + "end": 18607.42, + "probability": 0.9944 + }, + { + "start": 18608.46, + "end": 18612.42, + "probability": 0.7983 + }, + { + "start": 18613.5, + "end": 18619.44, + "probability": 0.1531 + }, + { + "start": 18621.54, + "end": 18622.26, + "probability": 0.4231 + }, + { + "start": 18622.42, + "end": 18622.42, + "probability": 0.2068 + }, + { + "start": 18622.42, + "end": 18622.42, + "probability": 0.1587 + }, + { + "start": 18622.42, + "end": 18622.42, + "probability": 0.0158 + }, + { + "start": 18622.42, + "end": 18624.64, + "probability": 0.7941 + }, + { + "start": 18625.52, + "end": 18628.72, + "probability": 0.342 + }, + { + "start": 18629.3, + "end": 18632.46, + "probability": 0.9319 + }, + { + "start": 18634.04, + "end": 18638.28, + "probability": 0.9954 + }, + { + "start": 18638.94, + "end": 18640.68, + "probability": 0.9268 + }, + { + "start": 18641.46, + "end": 18642.7, + "probability": 0.9209 + }, + { + "start": 18643.2, + "end": 18645.82, + "probability": 0.9631 + }, + { + "start": 18645.94, + "end": 18647.44, + "probability": 0.9889 + }, + { + "start": 18647.58, + "end": 18654.2, + "probability": 0.8776 + }, + { + "start": 18654.86, + "end": 18656.0, + "probability": 0.9872 + }, + { + "start": 18656.12, + "end": 18656.56, + "probability": 0.9355 + }, + { + "start": 18656.78, + "end": 18658.2, + "probability": 0.9442 + }, + { + "start": 18658.38, + "end": 18661.4, + "probability": 0.9883 + }, + { + "start": 18661.42, + "end": 18662.78, + "probability": 0.9795 + }, + { + "start": 18663.22, + "end": 18668.68, + "probability": 0.8763 + }, + { + "start": 18669.02, + "end": 18669.32, + "probability": 0.7288 + }, + { + "start": 18669.32, + "end": 18675.6, + "probability": 0.9916 + }, + { + "start": 18675.92, + "end": 18676.32, + "probability": 0.8371 + }, + { + "start": 18677.36, + "end": 18677.98, + "probability": 0.7656 + }, + { + "start": 18679.62, + "end": 18682.62, + "probability": 0.77 + }, + { + "start": 18684.36, + "end": 18684.8, + "probability": 0.9029 + }, + { + "start": 18686.92, + "end": 18688.0, + "probability": 0.5163 + }, + { + "start": 18688.18, + "end": 18689.68, + "probability": 0.7238 + }, + { + "start": 18690.56, + "end": 18691.4, + "probability": 0.2848 + }, + { + "start": 18691.84, + "end": 18691.92, + "probability": 0.3211 + }, + { + "start": 18691.92, + "end": 18692.36, + "probability": 0.9741 + }, + { + "start": 18693.0, + "end": 18693.44, + "probability": 0.5381 + }, + { + "start": 18694.16, + "end": 18696.22, + "probability": 0.9604 + }, + { + "start": 18697.14, + "end": 18697.88, + "probability": 0.9267 + }, + { + "start": 18699.6, + "end": 18700.94, + "probability": 0.8705 + }, + { + "start": 18702.14, + "end": 18702.84, + "probability": 0.886 + }, + { + "start": 18704.56, + "end": 18706.38, + "probability": 0.3382 + }, + { + "start": 18717.68, + "end": 18717.88, + "probability": 0.4888 + }, + { + "start": 18717.88, + "end": 18718.84, + "probability": 0.1105 + }, + { + "start": 18719.48, + "end": 18721.62, + "probability": 0.4594 + }, + { + "start": 18721.96, + "end": 18725.62, + "probability": 0.9851 + }, + { + "start": 18728.0, + "end": 18729.38, + "probability": 0.7037 + }, + { + "start": 18731.72, + "end": 18734.08, + "probability": 0.0312 + }, + { + "start": 18735.2, + "end": 18735.2, + "probability": 0.0001 + }, + { + "start": 18738.18, + "end": 18738.22, + "probability": 0.031 + }, + { + "start": 18738.22, + "end": 18738.22, + "probability": 0.4119 + }, + { + "start": 18738.22, + "end": 18738.22, + "probability": 0.5112 + }, + { + "start": 18738.22, + "end": 18738.22, + "probability": 0.5436 + }, + { + "start": 18738.22, + "end": 18738.22, + "probability": 0.5578 + }, + { + "start": 18738.22, + "end": 18738.22, + "probability": 0.577 + }, + { + "start": 18738.22, + "end": 18738.22, + "probability": 0.6143 + }, + { + "start": 18738.22, + "end": 18738.22, + "probability": 0.1937 + }, + { + "start": 18738.22, + "end": 18738.76, + "probability": 0.1368 + }, + { + "start": 18741.1, + "end": 18742.48, + "probability": 0.5747 + }, + { + "start": 18752.66, + "end": 18752.78, + "probability": 0.2539 + }, + { + "start": 18752.78, + "end": 18755.26, + "probability": 0.604 + }, + { + "start": 18756.66, + "end": 18761.5, + "probability": 0.9662 + }, + { + "start": 18762.1, + "end": 18766.78, + "probability": 0.9944 + }, + { + "start": 18767.24, + "end": 18772.62, + "probability": 0.9927 + }, + { + "start": 18774.4, + "end": 18778.66, + "probability": 0.9952 + }, + { + "start": 18780.18, + "end": 18784.4, + "probability": 0.9962 + }, + { + "start": 18785.3, + "end": 18786.68, + "probability": 0.9512 + }, + { + "start": 18787.9, + "end": 18789.0, + "probability": 0.9646 + }, + { + "start": 18790.72, + "end": 18793.56, + "probability": 0.9949 + }, + { + "start": 18795.06, + "end": 18797.7, + "probability": 0.4997 + }, + { + "start": 18798.6, + "end": 18801.94, + "probability": 0.8408 + }, + { + "start": 18802.52, + "end": 18803.52, + "probability": 0.879 + }, + { + "start": 18804.38, + "end": 18805.26, + "probability": 0.9039 + }, + { + "start": 18805.72, + "end": 18807.56, + "probability": 0.9417 + }, + { + "start": 18807.72, + "end": 18810.16, + "probability": 0.9121 + }, + { + "start": 18811.46, + "end": 18815.3, + "probability": 0.6944 + }, + { + "start": 18815.54, + "end": 18816.32, + "probability": 0.7209 + }, + { + "start": 18816.54, + "end": 18819.54, + "probability": 0.9875 + }, + { + "start": 18823.16, + "end": 18829.14, + "probability": 0.9801 + }, + { + "start": 18831.76, + "end": 18836.3, + "probability": 0.9951 + }, + { + "start": 18837.06, + "end": 18841.24, + "probability": 0.9844 + }, + { + "start": 18842.58, + "end": 18843.02, + "probability": 0.8625 + }, + { + "start": 18844.96, + "end": 18845.48, + "probability": 0.9626 + }, + { + "start": 18846.78, + "end": 18848.78, + "probability": 0.9808 + }, + { + "start": 18848.84, + "end": 18850.68, + "probability": 0.8941 + }, + { + "start": 18851.9, + "end": 18860.86, + "probability": 0.9485 + }, + { + "start": 18862.66, + "end": 18863.92, + "probability": 0.5047 + }, + { + "start": 18864.82, + "end": 18866.64, + "probability": 0.969 + }, + { + "start": 18866.72, + "end": 18867.44, + "probability": 0.7172 + }, + { + "start": 18867.68, + "end": 18869.94, + "probability": 0.6929 + }, + { + "start": 18871.44, + "end": 18873.24, + "probability": 0.7751 + }, + { + "start": 18874.0, + "end": 18876.98, + "probability": 0.9447 + }, + { + "start": 18877.12, + "end": 18879.82, + "probability": 0.9878 + }, + { + "start": 18880.34, + "end": 18884.04, + "probability": 0.9813 + }, + { + "start": 18885.7, + "end": 18885.98, + "probability": 0.8701 + }, + { + "start": 18886.28, + "end": 18887.08, + "probability": 0.6311 + }, + { + "start": 18887.24, + "end": 18892.78, + "probability": 0.9954 + }, + { + "start": 18894.28, + "end": 18897.92, + "probability": 0.989 + }, + { + "start": 18898.9, + "end": 18900.4, + "probability": 0.8723 + }, + { + "start": 18903.2, + "end": 18905.02, + "probability": 0.8287 + }, + { + "start": 18905.8, + "end": 18910.1, + "probability": 0.8796 + }, + { + "start": 18910.28, + "end": 18911.68, + "probability": 0.7894 + }, + { + "start": 18912.64, + "end": 18916.76, + "probability": 0.9929 + }, + { + "start": 18918.28, + "end": 18923.4, + "probability": 0.9636 + }, + { + "start": 18923.56, + "end": 18924.42, + "probability": 0.503 + }, + { + "start": 18925.46, + "end": 18928.64, + "probability": 0.7613 + }, + { + "start": 18929.54, + "end": 18933.02, + "probability": 0.9938 + }, + { + "start": 18933.24, + "end": 18935.86, + "probability": 0.9976 + }, + { + "start": 18936.82, + "end": 18938.8, + "probability": 0.9199 + }, + { + "start": 18939.76, + "end": 18941.96, + "probability": 0.4246 + }, + { + "start": 18944.84, + "end": 18946.3, + "probability": 0.1815 + }, + { + "start": 18946.88, + "end": 18947.61, + "probability": 0.5524 + }, + { + "start": 18948.14, + "end": 18948.6, + "probability": 0.5878 + }, + { + "start": 18949.12, + "end": 18949.76, + "probability": 0.0723 + }, + { + "start": 18949.94, + "end": 18951.14, + "probability": 0.9897 + }, + { + "start": 18952.16, + "end": 18954.3, + "probability": 0.837 + }, + { + "start": 18954.34, + "end": 18954.64, + "probability": 0.9021 + }, + { + "start": 18954.82, + "end": 18955.76, + "probability": 0.9944 + }, + { + "start": 18957.02, + "end": 18959.84, + "probability": 0.864 + }, + { + "start": 18961.3, + "end": 18962.18, + "probability": 0.6924 + }, + { + "start": 18965.48, + "end": 18966.4, + "probability": 0.6817 + }, + { + "start": 18967.22, + "end": 18970.26, + "probability": 0.9995 + }, + { + "start": 18970.34, + "end": 18971.18, + "probability": 0.8096 + }, + { + "start": 18971.98, + "end": 18972.62, + "probability": 0.9078 + }, + { + "start": 18973.48, + "end": 18976.5, + "probability": 0.9722 + }, + { + "start": 18977.6, + "end": 18981.66, + "probability": 0.8479 + }, + { + "start": 18982.56, + "end": 18983.74, + "probability": 0.9941 + }, + { + "start": 18984.02, + "end": 18984.26, + "probability": 0.6906 + }, + { + "start": 18984.7, + "end": 18985.38, + "probability": 0.7529 + }, + { + "start": 18987.52, + "end": 18989.8, + "probability": 0.7963 + }, + { + "start": 18989.92, + "end": 18991.94, + "probability": 0.5069 + }, + { + "start": 18992.0, + "end": 18993.38, + "probability": 0.9835 + }, + { + "start": 18995.38, + "end": 18997.08, + "probability": 0.8604 + }, + { + "start": 18998.84, + "end": 19002.34, + "probability": 0.9351 + }, + { + "start": 19002.34, + "end": 19007.34, + "probability": 0.8315 + }, + { + "start": 19007.6, + "end": 19008.19, + "probability": 0.0099 + }, + { + "start": 19009.0, + "end": 19009.32, + "probability": 0.4444 + }, + { + "start": 19009.34, + "end": 19010.16, + "probability": 0.7749 + }, + { + "start": 19010.42, + "end": 19012.46, + "probability": 0.7568 + }, + { + "start": 19013.8, + "end": 19015.34, + "probability": 0.5007 + }, + { + "start": 19015.72, + "end": 19016.34, + "probability": 0.4615 + }, + { + "start": 19020.98, + "end": 19021.86, + "probability": 0.7363 + }, + { + "start": 19022.62, + "end": 19024.06, + "probability": 0.7224 + }, + { + "start": 19024.68, + "end": 19025.57, + "probability": 0.4741 + }, + { + "start": 19026.2, + "end": 19027.08, + "probability": 0.7297 + }, + { + "start": 19027.16, + "end": 19027.68, + "probability": 0.9352 + }, + { + "start": 19029.12, + "end": 19030.66, + "probability": 0.9428 + }, + { + "start": 19032.7, + "end": 19036.94, + "probability": 0.9497 + }, + { + "start": 19038.06, + "end": 19041.1, + "probability": 0.9412 + }, + { + "start": 19042.16, + "end": 19044.7, + "probability": 0.9971 + }, + { + "start": 19045.84, + "end": 19050.08, + "probability": 0.9985 + }, + { + "start": 19050.32, + "end": 19051.24, + "probability": 0.9492 + }, + { + "start": 19052.04, + "end": 19052.04, + "probability": 0.106 + }, + { + "start": 19052.04, + "end": 19053.46, + "probability": 0.994 + }, + { + "start": 19054.1, + "end": 19054.72, + "probability": 0.3438 + }, + { + "start": 19054.72, + "end": 19056.08, + "probability": 0.7426 + }, + { + "start": 19056.6, + "end": 19059.26, + "probability": 0.8069 + }, + { + "start": 19059.78, + "end": 19060.36, + "probability": 0.7964 + }, + { + "start": 19060.88, + "end": 19062.32, + "probability": 0.582 + }, + { + "start": 19062.54, + "end": 19063.58, + "probability": 0.8649 + }, + { + "start": 19064.4, + "end": 19066.38, + "probability": 0.8209 + }, + { + "start": 19066.7, + "end": 19067.58, + "probability": 0.8241 + }, + { + "start": 19068.3, + "end": 19068.74, + "probability": 0.0193 + }, + { + "start": 19070.72, + "end": 19070.72, + "probability": 0.0158 + }, + { + "start": 19070.72, + "end": 19072.0, + "probability": 0.5335 + }, + { + "start": 19072.06, + "end": 19072.85, + "probability": 0.7453 + }, + { + "start": 19073.96, + "end": 19076.04, + "probability": 0.9919 + }, + { + "start": 19077.02, + "end": 19081.58, + "probability": 0.9953 + }, + { + "start": 19082.64, + "end": 19086.04, + "probability": 0.9983 + }, + { + "start": 19087.14, + "end": 19089.22, + "probability": 0.9967 + }, + { + "start": 19089.58, + "end": 19092.02, + "probability": 0.9819 + }, + { + "start": 19092.52, + "end": 19094.26, + "probability": 0.9671 + }, + { + "start": 19094.36, + "end": 19094.94, + "probability": 0.7779 + }, + { + "start": 19094.96, + "end": 19095.8, + "probability": 0.9023 + }, + { + "start": 19096.82, + "end": 19102.7, + "probability": 0.7579 + }, + { + "start": 19103.54, + "end": 19104.58, + "probability": 0.852 + }, + { + "start": 19105.1, + "end": 19108.82, + "probability": 0.9838 + }, + { + "start": 19109.88, + "end": 19112.19, + "probability": 0.9984 + }, + { + "start": 19112.56, + "end": 19114.65, + "probability": 0.9592 + }, + { + "start": 19115.3, + "end": 19116.52, + "probability": 0.7057 + }, + { + "start": 19117.08, + "end": 19119.42, + "probability": 0.7443 + }, + { + "start": 19119.7, + "end": 19120.7, + "probability": 0.9456 + }, + { + "start": 19120.84, + "end": 19121.42, + "probability": 0.44 + }, + { + "start": 19121.42, + "end": 19123.26, + "probability": 0.5072 + }, + { + "start": 19123.32, + "end": 19125.34, + "probability": 0.8982 + }, + { + "start": 19125.72, + "end": 19128.14, + "probability": 0.7747 + }, + { + "start": 19128.16, + "end": 19128.23, + "probability": 0.0617 + }, + { + "start": 19128.28, + "end": 19130.14, + "probability": 0.8227 + }, + { + "start": 19130.38, + "end": 19131.94, + "probability": 0.6512 + }, + { + "start": 19132.06, + "end": 19133.9, + "probability": 0.9099 + }, + { + "start": 19134.26, + "end": 19136.14, + "probability": 0.821 + }, + { + "start": 19136.36, + "end": 19136.64, + "probability": 0.3719 + }, + { + "start": 19137.66, + "end": 19138.08, + "probability": 0.4167 + }, + { + "start": 19138.08, + "end": 19138.64, + "probability": 0.8424 + }, + { + "start": 19138.7, + "end": 19139.32, + "probability": 0.6897 + }, + { + "start": 19139.46, + "end": 19142.38, + "probability": 0.9668 + }, + { + "start": 19143.16, + "end": 19145.68, + "probability": 0.9721 + }, + { + "start": 19146.3, + "end": 19149.14, + "probability": 0.9409 + }, + { + "start": 19149.78, + "end": 19150.28, + "probability": 0.8171 + }, + { + "start": 19151.3, + "end": 19155.02, + "probability": 0.999 + }, + { + "start": 19155.98, + "end": 19158.54, + "probability": 0.8481 + }, + { + "start": 19159.28, + "end": 19162.68, + "probability": 0.8257 + }, + { + "start": 19163.54, + "end": 19164.61, + "probability": 0.9082 + }, + { + "start": 19165.36, + "end": 19167.82, + "probability": 0.8361 + }, + { + "start": 19168.84, + "end": 19171.04, + "probability": 0.9722 + }, + { + "start": 19171.42, + "end": 19173.42, + "probability": 0.9482 + }, + { + "start": 19173.84, + "end": 19175.38, + "probability": 0.7317 + }, + { + "start": 19175.96, + "end": 19177.5, + "probability": 0.782 + }, + { + "start": 19178.1, + "end": 19184.64, + "probability": 0.9256 + }, + { + "start": 19185.26, + "end": 19188.44, + "probability": 0.9722 + }, + { + "start": 19188.96, + "end": 19190.02, + "probability": 0.8529 + }, + { + "start": 19190.44, + "end": 19191.34, + "probability": 0.9184 + }, + { + "start": 19191.78, + "end": 19192.54, + "probability": 0.8808 + }, + { + "start": 19192.98, + "end": 19193.76, + "probability": 0.8212 + }, + { + "start": 19194.2, + "end": 19195.18, + "probability": 0.9111 + }, + { + "start": 19195.22, + "end": 19195.96, + "probability": 0.2252 + }, + { + "start": 19196.54, + "end": 19197.5, + "probability": 0.979 + }, + { + "start": 19198.06, + "end": 19199.58, + "probability": 0.9649 + }, + { + "start": 19199.64, + "end": 19201.48, + "probability": 0.9939 + }, + { + "start": 19201.92, + "end": 19203.12, + "probability": 0.8095 + }, + { + "start": 19203.88, + "end": 19206.66, + "probability": 0.9314 + }, + { + "start": 19207.06, + "end": 19207.62, + "probability": 0.4918 + }, + { + "start": 19207.92, + "end": 19208.9, + "probability": 0.5974 + }, + { + "start": 19208.98, + "end": 19209.96, + "probability": 0.5662 + }, + { + "start": 19210.02, + "end": 19210.12, + "probability": 0.1195 + }, + { + "start": 19210.2, + "end": 19210.56, + "probability": 0.7539 + }, + { + "start": 19210.72, + "end": 19212.02, + "probability": 0.7379 + }, + { + "start": 19212.18, + "end": 19213.08, + "probability": 0.9011 + }, + { + "start": 19213.08, + "end": 19213.64, + "probability": 0.4012 + }, + { + "start": 19213.84, + "end": 19214.6, + "probability": 0.6195 + }, + { + "start": 19215.08, + "end": 19219.3, + "probability": 0.9758 + }, + { + "start": 19219.52, + "end": 19220.8, + "probability": 0.8813 + }, + { + "start": 19221.06, + "end": 19222.06, + "probability": 0.7836 + }, + { + "start": 19222.22, + "end": 19223.88, + "probability": 0.8879 + }, + { + "start": 19224.74, + "end": 19227.54, + "probability": 0.9701 + }, + { + "start": 19227.92, + "end": 19228.96, + "probability": 0.6094 + }, + { + "start": 19229.32, + "end": 19234.06, + "probability": 0.8977 + }, + { + "start": 19234.22, + "end": 19234.46, + "probability": 0.706 + }, + { + "start": 19234.56, + "end": 19235.7, + "probability": 0.6592 + }, + { + "start": 19235.82, + "end": 19237.0, + "probability": 0.9708 + }, + { + "start": 19237.88, + "end": 19239.18, + "probability": 0.9306 + }, + { + "start": 19239.38, + "end": 19241.04, + "probability": 0.8625 + }, + { + "start": 19241.58, + "end": 19243.04, + "probability": 0.9798 + }, + { + "start": 19243.72, + "end": 19246.8, + "probability": 0.9882 + }, + { + "start": 19246.86, + "end": 19248.3, + "probability": 0.9836 + }, + { + "start": 19248.9, + "end": 19255.02, + "probability": 0.9612 + }, + { + "start": 19255.84, + "end": 19261.9, + "probability": 0.9954 + }, + { + "start": 19262.04, + "end": 19263.21, + "probability": 0.6604 + }, + { + "start": 19263.5, + "end": 19265.4, + "probability": 0.9502 + }, + { + "start": 19266.08, + "end": 19267.7, + "probability": 0.9152 + }, + { + "start": 19268.12, + "end": 19270.64, + "probability": 0.6746 + }, + { + "start": 19271.1, + "end": 19274.06, + "probability": 0.9452 + }, + { + "start": 19274.52, + "end": 19275.96, + "probability": 0.9176 + }, + { + "start": 19276.52, + "end": 19277.12, + "probability": 0.71 + }, + { + "start": 19277.34, + "end": 19278.72, + "probability": 0.6475 + }, + { + "start": 19279.22, + "end": 19280.96, + "probability": 0.9295 + }, + { + "start": 19281.12, + "end": 19283.92, + "probability": 0.9908 + }, + { + "start": 19284.04, + "end": 19286.58, + "probability": 0.9806 + }, + { + "start": 19286.94, + "end": 19287.92, + "probability": 0.8689 + }, + { + "start": 19288.04, + "end": 19288.3, + "probability": 0.6965 + }, + { + "start": 19289.36, + "end": 19289.92, + "probability": 0.5072 + }, + { + "start": 19289.92, + "end": 19291.28, + "probability": 0.9249 + }, + { + "start": 19294.22, + "end": 19296.12, + "probability": 0.4724 + }, + { + "start": 19296.4, + "end": 19299.04, + "probability": 0.743 + }, + { + "start": 19300.24, + "end": 19301.68, + "probability": 0.6095 + }, + { + "start": 19302.43, + "end": 19303.66, + "probability": 0.2187 + }, + { + "start": 19304.14, + "end": 19304.48, + "probability": 0.4927 + }, + { + "start": 19308.66, + "end": 19309.44, + "probability": 0.82 + }, + { + "start": 19311.24, + "end": 19313.44, + "probability": 0.6971 + }, + { + "start": 19315.28, + "end": 19321.28, + "probability": 0.9258 + }, + { + "start": 19322.16, + "end": 19324.02, + "probability": 0.9782 + }, + { + "start": 19324.58, + "end": 19326.16, + "probability": 0.9883 + }, + { + "start": 19327.64, + "end": 19329.52, + "probability": 0.9844 + }, + { + "start": 19329.56, + "end": 19331.12, + "probability": 0.795 + }, + { + "start": 19331.2, + "end": 19332.06, + "probability": 0.8834 + }, + { + "start": 19333.56, + "end": 19336.24, + "probability": 0.916 + }, + { + "start": 19337.68, + "end": 19339.22, + "probability": 0.9878 + }, + { + "start": 19340.58, + "end": 19343.92, + "probability": 0.9935 + }, + { + "start": 19343.92, + "end": 19346.82, + "probability": 0.9812 + }, + { + "start": 19348.34, + "end": 19350.98, + "probability": 0.9836 + }, + { + "start": 19351.98, + "end": 19353.1, + "probability": 0.5062 + }, + { + "start": 19354.18, + "end": 19356.48, + "probability": 0.9673 + }, + { + "start": 19356.72, + "end": 19359.06, + "probability": 0.9874 + }, + { + "start": 19360.6, + "end": 19361.04, + "probability": 0.7301 + }, + { + "start": 19361.06, + "end": 19364.34, + "probability": 0.9562 + }, + { + "start": 19365.3, + "end": 19368.2, + "probability": 0.9707 + }, + { + "start": 19368.34, + "end": 19369.62, + "probability": 0.9468 + }, + { + "start": 19371.18, + "end": 19373.1, + "probability": 0.9978 + }, + { + "start": 19373.74, + "end": 19377.7, + "probability": 0.9767 + }, + { + "start": 19378.96, + "end": 19383.68, + "probability": 0.9741 + }, + { + "start": 19383.8, + "end": 19384.34, + "probability": 0.8779 + }, + { + "start": 19384.6, + "end": 19385.82, + "probability": 0.9746 + }, + { + "start": 19386.72, + "end": 19388.15, + "probability": 0.8912 + }, + { + "start": 19388.8, + "end": 19392.35, + "probability": 0.9463 + }, + { + "start": 19392.68, + "end": 19393.76, + "probability": 0.9882 + }, + { + "start": 19393.86, + "end": 19394.64, + "probability": 0.9335 + }, + { + "start": 19395.28, + "end": 19397.74, + "probability": 0.9668 + }, + { + "start": 19397.98, + "end": 19399.34, + "probability": 0.8967 + }, + { + "start": 19399.52, + "end": 19400.68, + "probability": 0.9872 + }, + { + "start": 19401.66, + "end": 19402.44, + "probability": 0.8918 + }, + { + "start": 19403.18, + "end": 19405.8, + "probability": 0.9673 + }, + { + "start": 19406.32, + "end": 19407.82, + "probability": 0.9822 + }, + { + "start": 19408.48, + "end": 19409.72, + "probability": 0.9822 + }, + { + "start": 19410.24, + "end": 19412.86, + "probability": 0.7041 + }, + { + "start": 19413.48, + "end": 19418.66, + "probability": 0.9673 + }, + { + "start": 19419.1, + "end": 19419.62, + "probability": 0.9224 + }, + { + "start": 19420.4, + "end": 19421.2, + "probability": 0.7558 + }, + { + "start": 19421.44, + "end": 19422.84, + "probability": 0.9219 + }, + { + "start": 19422.9, + "end": 19424.14, + "probability": 0.9961 + }, + { + "start": 19424.26, + "end": 19424.6, + "probability": 0.9229 + }, + { + "start": 19425.18, + "end": 19426.68, + "probability": 0.7636 + }, + { + "start": 19427.26, + "end": 19428.46, + "probability": 0.9697 + }, + { + "start": 19428.54, + "end": 19429.68, + "probability": 0.9804 + }, + { + "start": 19429.72, + "end": 19431.02, + "probability": 0.865 + }, + { + "start": 19431.06, + "end": 19433.5, + "probability": 0.9734 + }, + { + "start": 19434.08, + "end": 19437.08, + "probability": 0.9104 + }, + { + "start": 19437.98, + "end": 19438.2, + "probability": 0.3508 + }, + { + "start": 19438.86, + "end": 19440.32, + "probability": 0.8482 + }, + { + "start": 19440.72, + "end": 19442.48, + "probability": 0.7688 + }, + { + "start": 19442.9, + "end": 19446.46, + "probability": 0.9759 + }, + { + "start": 19446.52, + "end": 19449.76, + "probability": 0.9043 + }, + { + "start": 19449.84, + "end": 19454.26, + "probability": 0.9424 + }, + { + "start": 19454.26, + "end": 19456.34, + "probability": 0.9941 + }, + { + "start": 19456.4, + "end": 19457.76, + "probability": 0.9957 + }, + { + "start": 19458.18, + "end": 19460.12, + "probability": 0.9973 + }, + { + "start": 19460.12, + "end": 19463.1, + "probability": 0.9985 + }, + { + "start": 19463.54, + "end": 19464.7, + "probability": 0.8269 + }, + { + "start": 19465.16, + "end": 19466.5, + "probability": 0.814 + }, + { + "start": 19466.82, + "end": 19467.38, + "probability": 0.9129 + }, + { + "start": 19467.46, + "end": 19471.52, + "probability": 0.9814 + }, + { + "start": 19471.82, + "end": 19473.54, + "probability": 0.9576 + }, + { + "start": 19474.06, + "end": 19478.38, + "probability": 0.9307 + }, + { + "start": 19478.6, + "end": 19479.84, + "probability": 0.8181 + }, + { + "start": 19481.06, + "end": 19483.04, + "probability": 0.8768 + }, + { + "start": 19483.14, + "end": 19483.7, + "probability": 0.9255 + }, + { + "start": 19483.86, + "end": 19484.98, + "probability": 0.6741 + }, + { + "start": 19485.2, + "end": 19486.21, + "probability": 0.9326 + }, + { + "start": 19487.8, + "end": 19488.38, + "probability": 0.4932 + }, + { + "start": 19488.38, + "end": 19488.48, + "probability": 0.4956 + }, + { + "start": 19488.5, + "end": 19489.9, + "probability": 0.9819 + }, + { + "start": 19490.0, + "end": 19492.0, + "probability": 0.984 + }, + { + "start": 19492.08, + "end": 19495.24, + "probability": 0.8607 + }, + { + "start": 19495.36, + "end": 19495.72, + "probability": 0.4736 + }, + { + "start": 19495.82, + "end": 19497.4, + "probability": 0.9242 + }, + { + "start": 19497.52, + "end": 19498.96, + "probability": 0.9885 + }, + { + "start": 19499.58, + "end": 19500.1, + "probability": 0.9627 + }, + { + "start": 19500.16, + "end": 19500.76, + "probability": 0.829 + }, + { + "start": 19501.14, + "end": 19505.18, + "probability": 0.9879 + }, + { + "start": 19505.32, + "end": 19508.42, + "probability": 0.8704 + }, + { + "start": 19508.74, + "end": 19512.66, + "probability": 0.9192 + }, + { + "start": 19513.04, + "end": 19514.12, + "probability": 0.8032 + }, + { + "start": 19514.66, + "end": 19520.72, + "probability": 0.8677 + }, + { + "start": 19521.0, + "end": 19521.68, + "probability": 0.7909 + }, + { + "start": 19522.24, + "end": 19525.0, + "probability": 0.9969 + }, + { + "start": 19525.44, + "end": 19527.06, + "probability": 0.978 + }, + { + "start": 19527.22, + "end": 19529.82, + "probability": 0.9885 + }, + { + "start": 19530.26, + "end": 19531.32, + "probability": 0.9748 + }, + { + "start": 19531.46, + "end": 19532.96, + "probability": 0.8721 + }, + { + "start": 19533.3, + "end": 19536.66, + "probability": 0.9461 + }, + { + "start": 19537.02, + "end": 19537.38, + "probability": 0.4544 + }, + { + "start": 19537.44, + "end": 19538.36, + "probability": 0.6433 + }, + { + "start": 19539.54, + "end": 19541.16, + "probability": 0.7489 + }, + { + "start": 19542.42, + "end": 19544.86, + "probability": 0.9778 + }, + { + "start": 19548.3, + "end": 19550.12, + "probability": 0.9932 + }, + { + "start": 19551.98, + "end": 19555.2, + "probability": 0.9487 + }, + { + "start": 19565.7, + "end": 19567.48, + "probability": 0.7319 + }, + { + "start": 19568.0, + "end": 19570.57, + "probability": 0.9223 + }, + { + "start": 19571.9, + "end": 19576.54, + "probability": 0.9976 + }, + { + "start": 19577.72, + "end": 19580.48, + "probability": 0.7434 + }, + { + "start": 19581.86, + "end": 19582.82, + "probability": 0.5717 + }, + { + "start": 19583.92, + "end": 19586.86, + "probability": 0.3969 + }, + { + "start": 19586.96, + "end": 19588.36, + "probability": 0.9102 + }, + { + "start": 19589.24, + "end": 19590.3, + "probability": 0.8774 + }, + { + "start": 19591.24, + "end": 19592.72, + "probability": 0.9902 + }, + { + "start": 19594.06, + "end": 19595.45, + "probability": 0.8767 + }, + { + "start": 19595.84, + "end": 19597.13, + "probability": 0.9615 + }, + { + "start": 19597.66, + "end": 19598.3, + "probability": 0.3677 + }, + { + "start": 19598.58, + "end": 19599.18, + "probability": 0.6002 + }, + { + "start": 19600.2, + "end": 19601.04, + "probability": 0.9299 + }, + { + "start": 19601.4, + "end": 19606.94, + "probability": 0.98 + }, + { + "start": 19608.3, + "end": 19609.01, + "probability": 0.9863 + }, + { + "start": 19609.74, + "end": 19609.92, + "probability": 0.7419 + }, + { + "start": 19611.54, + "end": 19612.3, + "probability": 0.9561 + }, + { + "start": 19613.1, + "end": 19615.3, + "probability": 0.9578 + }, + { + "start": 19616.26, + "end": 19621.28, + "probability": 0.9683 + }, + { + "start": 19622.24, + "end": 19622.8, + "probability": 0.5831 + }, + { + "start": 19622.98, + "end": 19625.8, + "probability": 0.9899 + }, + { + "start": 19626.76, + "end": 19627.13, + "probability": 0.8237 + }, + { + "start": 19628.16, + "end": 19629.28, + "probability": 0.8436 + }, + { + "start": 19630.12, + "end": 19631.48, + "probability": 0.9951 + }, + { + "start": 19632.32, + "end": 19634.64, + "probability": 0.9583 + }, + { + "start": 19634.76, + "end": 19636.74, + "probability": 0.1625 + }, + { + "start": 19637.06, + "end": 19638.12, + "probability": 0.9602 + }, + { + "start": 19638.74, + "end": 19638.98, + "probability": 0.4815 + }, + { + "start": 19639.22, + "end": 19640.84, + "probability": 0.9971 + }, + { + "start": 19640.88, + "end": 19642.86, + "probability": 0.7603 + }, + { + "start": 19642.86, + "end": 19647.02, + "probability": 0.9888 + }, + { + "start": 19648.1, + "end": 19648.68, + "probability": 0.9922 + }, + { + "start": 19649.9, + "end": 19653.9, + "probability": 0.9883 + }, + { + "start": 19653.98, + "end": 19654.65, + "probability": 0.8241 + }, + { + "start": 19655.72, + "end": 19658.7, + "probability": 0.994 + }, + { + "start": 19659.24, + "end": 19661.02, + "probability": 0.9603 + }, + { + "start": 19661.36, + "end": 19662.9, + "probability": 0.9173 + }, + { + "start": 19663.02, + "end": 19663.72, + "probability": 0.2788 + }, + { + "start": 19664.55, + "end": 19665.46, + "probability": 0.9307 + }, + { + "start": 19666.8, + "end": 19667.56, + "probability": 0.9535 + }, + { + "start": 19668.44, + "end": 19669.2, + "probability": 0.9519 + }, + { + "start": 19669.26, + "end": 19671.52, + "probability": 0.925 + }, + { + "start": 19671.6, + "end": 19677.34, + "probability": 0.8828 + }, + { + "start": 19678.92, + "end": 19680.98, + "probability": 0.9858 + }, + { + "start": 19681.16, + "end": 19684.69, + "probability": 0.8903 + }, + { + "start": 19684.86, + "end": 19685.56, + "probability": 0.5855 + }, + { + "start": 19685.64, + "end": 19688.4, + "probability": 0.7358 + }, + { + "start": 19688.4, + "end": 19690.96, + "probability": 0.9745 + }, + { + "start": 19692.68, + "end": 19695.2, + "probability": 0.7277 + }, + { + "start": 19696.38, + "end": 19698.94, + "probability": 0.6206 + }, + { + "start": 19699.5, + "end": 19701.14, + "probability": 0.6754 + }, + { + "start": 19701.36, + "end": 19702.41, + "probability": 0.9232 + }, + { + "start": 19702.62, + "end": 19703.54, + "probability": 0.8535 + }, + { + "start": 19703.64, + "end": 19707.46, + "probability": 0.9822 + }, + { + "start": 19707.48, + "end": 19708.42, + "probability": 0.9047 + }, + { + "start": 19708.94, + "end": 19711.78, + "probability": 0.9686 + }, + { + "start": 19712.02, + "end": 19712.94, + "probability": 0.7222 + }, + { + "start": 19713.46, + "end": 19716.24, + "probability": 0.9943 + }, + { + "start": 19717.16, + "end": 19718.58, + "probability": 0.78 + }, + { + "start": 19719.02, + "end": 19721.61, + "probability": 0.9041 + }, + { + "start": 19722.52, + "end": 19726.64, + "probability": 0.9917 + }, + { + "start": 19726.64, + "end": 19731.6, + "probability": 0.9927 + }, + { + "start": 19731.92, + "end": 19733.28, + "probability": 0.4107 + }, + { + "start": 19733.56, + "end": 19734.24, + "probability": 0.8599 + }, + { + "start": 19734.32, + "end": 19734.92, + "probability": 0.9478 + }, + { + "start": 19734.98, + "end": 19735.64, + "probability": 0.4328 + }, + { + "start": 19736.82, + "end": 19738.7, + "probability": 0.9479 + }, + { + "start": 19738.72, + "end": 19739.36, + "probability": 0.619 + }, + { + "start": 19739.98, + "end": 19741.1, + "probability": 0.8254 + }, + { + "start": 19741.52, + "end": 19744.86, + "probability": 0.9609 + }, + { + "start": 19744.94, + "end": 19747.94, + "probability": 0.9495 + }, + { + "start": 19748.74, + "end": 19750.42, + "probability": 0.9305 + }, + { + "start": 19750.52, + "end": 19753.64, + "probability": 0.9146 + }, + { + "start": 19754.0, + "end": 19756.58, + "probability": 0.9986 + }, + { + "start": 19756.98, + "end": 19758.48, + "probability": 0.7589 + }, + { + "start": 19758.98, + "end": 19760.2, + "probability": 0.6812 + }, + { + "start": 19760.78, + "end": 19764.02, + "probability": 0.959 + }, + { + "start": 19764.38, + "end": 19765.8, + "probability": 0.8738 + }, + { + "start": 19765.86, + "end": 19766.6, + "probability": 0.7924 + }, + { + "start": 19766.74, + "end": 19767.52, + "probability": 0.8139 + }, + { + "start": 19767.54, + "end": 19768.22, + "probability": 0.8952 + }, + { + "start": 19768.36, + "end": 19769.28, + "probability": 0.7786 + }, + { + "start": 19769.38, + "end": 19772.3, + "probability": 0.912 + }, + { + "start": 19772.8, + "end": 19772.94, + "probability": 0.6117 + }, + { + "start": 19773.06, + "end": 19776.32, + "probability": 0.9915 + }, + { + "start": 19776.32, + "end": 19779.16, + "probability": 0.992 + }, + { + "start": 19779.82, + "end": 19781.18, + "probability": 0.9849 + }, + { + "start": 19781.26, + "end": 19781.62, + "probability": 0.6702 + }, + { + "start": 19781.78, + "end": 19784.48, + "probability": 0.9844 + }, + { + "start": 19785.46, + "end": 19786.72, + "probability": 0.9902 + }, + { + "start": 19786.82, + "end": 19788.98, + "probability": 0.9165 + }, + { + "start": 19788.98, + "end": 19790.77, + "probability": 0.9951 + }, + { + "start": 19791.4, + "end": 19792.02, + "probability": 0.6448 + }, + { + "start": 19792.42, + "end": 19793.1, + "probability": 0.6608 + }, + { + "start": 19793.76, + "end": 19794.4, + "probability": 0.8902 + }, + { + "start": 19794.48, + "end": 19797.0, + "probability": 0.895 + }, + { + "start": 19797.12, + "end": 19798.51, + "probability": 0.9912 + }, + { + "start": 19798.92, + "end": 19805.24, + "probability": 0.9852 + }, + { + "start": 19805.74, + "end": 19808.2, + "probability": 0.9954 + }, + { + "start": 19808.2, + "end": 19811.01, + "probability": 0.961 + }, + { + "start": 19811.08, + "end": 19811.32, + "probability": 0.2393 + }, + { + "start": 19811.32, + "end": 19811.95, + "probability": 0.7306 + }, + { + "start": 19817.18, + "end": 19819.84, + "probability": 0.6958 + }, + { + "start": 19820.92, + "end": 19828.2, + "probability": 0.969 + }, + { + "start": 19828.66, + "end": 19829.5, + "probability": 0.8569 + }, + { + "start": 19831.12, + "end": 19833.06, + "probability": 0.7641 + }, + { + "start": 19835.36, + "end": 19836.32, + "probability": 0.2695 + }, + { + "start": 19851.82, + "end": 19853.5, + "probability": 0.6734 + }, + { + "start": 19854.46, + "end": 19855.84, + "probability": 0.712 + }, + { + "start": 19857.04, + "end": 19860.02, + "probability": 0.8592 + }, + { + "start": 19861.0, + "end": 19863.44, + "probability": 0.9531 + }, + { + "start": 19865.52, + "end": 19870.68, + "probability": 0.8735 + }, + { + "start": 19871.7, + "end": 19873.22, + "probability": 0.943 + }, + { + "start": 19874.18, + "end": 19880.56, + "probability": 0.9886 + }, + { + "start": 19881.92, + "end": 19887.6, + "probability": 0.979 + }, + { + "start": 19888.48, + "end": 19888.96, + "probability": 0.9883 + }, + { + "start": 19889.62, + "end": 19893.46, + "probability": 0.9966 + }, + { + "start": 19894.72, + "end": 19895.2, + "probability": 0.7235 + }, + { + "start": 19895.92, + "end": 19897.88, + "probability": 0.9407 + }, + { + "start": 19898.66, + "end": 19899.46, + "probability": 0.1639 + }, + { + "start": 19900.18, + "end": 19903.32, + "probability": 0.884 + }, + { + "start": 19904.7, + "end": 19905.71, + "probability": 0.905 + }, + { + "start": 19906.58, + "end": 19909.02, + "probability": 0.6546 + }, + { + "start": 19910.16, + "end": 19915.58, + "probability": 0.899 + }, + { + "start": 19916.44, + "end": 19918.5, + "probability": 0.9666 + }, + { + "start": 19919.48, + "end": 19921.18, + "probability": 0.5172 + }, + { + "start": 19923.26, + "end": 19924.96, + "probability": 0.5485 + }, + { + "start": 19925.84, + "end": 19929.89, + "probability": 0.453 + }, + { + "start": 19931.1, + "end": 19937.16, + "probability": 0.8876 + }, + { + "start": 19937.88, + "end": 19939.4, + "probability": 0.704 + }, + { + "start": 19940.0, + "end": 19942.94, + "probability": 0.9893 + }, + { + "start": 19943.58, + "end": 19946.9, + "probability": 0.9877 + }, + { + "start": 19947.72, + "end": 19948.46, + "probability": 0.2522 + }, + { + "start": 19949.42, + "end": 19951.86, + "probability": 0.7503 + }, + { + "start": 19952.94, + "end": 19954.24, + "probability": 0.6138 + }, + { + "start": 19954.88, + "end": 19955.36, + "probability": 0.7794 + }, + { + "start": 19956.08, + "end": 19956.64, + "probability": 0.9647 + }, + { + "start": 19957.16, + "end": 19958.96, + "probability": 0.9827 + }, + { + "start": 19959.44, + "end": 19960.08, + "probability": 0.866 + }, + { + "start": 19960.5, + "end": 19961.44, + "probability": 0.8567 + }, + { + "start": 19961.54, + "end": 19965.84, + "probability": 0.7907 + }, + { + "start": 19965.9, + "end": 19969.03, + "probability": 0.9885 + }, + { + "start": 19969.88, + "end": 19972.6, + "probability": 0.9448 + }, + { + "start": 19973.2, + "end": 19980.66, + "probability": 0.9912 + }, + { + "start": 19980.76, + "end": 19981.53, + "probability": 0.5066 + }, + { + "start": 19982.26, + "end": 19985.68, + "probability": 0.988 + }, + { + "start": 19986.45, + "end": 19991.18, + "probability": 0.9954 + }, + { + "start": 19992.2, + "end": 19993.68, + "probability": 0.995 + }, + { + "start": 19994.3, + "end": 20001.76, + "probability": 0.9933 + }, + { + "start": 20002.56, + "end": 20003.49, + "probability": 0.8936 + }, + { + "start": 20004.24, + "end": 20007.36, + "probability": 0.9731 + }, + { + "start": 20008.06, + "end": 20011.46, + "probability": 0.7802 + }, + { + "start": 20012.04, + "end": 20014.64, + "probability": 0.9842 + }, + { + "start": 20015.58, + "end": 20018.2, + "probability": 0.9236 + }, + { + "start": 20019.12, + "end": 20021.78, + "probability": 0.996 + }, + { + "start": 20022.46, + "end": 20032.32, + "probability": 0.9934 + }, + { + "start": 20032.54, + "end": 20036.56, + "probability": 0.9825 + }, + { + "start": 20037.42, + "end": 20045.54, + "probability": 0.9569 + }, + { + "start": 20046.56, + "end": 20050.32, + "probability": 0.8904 + }, + { + "start": 20051.08, + "end": 20051.88, + "probability": 0.6357 + }, + { + "start": 20052.88, + "end": 20053.6, + "probability": 0.8297 + }, + { + "start": 20054.88, + "end": 20059.7, + "probability": 0.9356 + }, + { + "start": 20060.44, + "end": 20069.46, + "probability": 0.9452 + }, + { + "start": 20070.02, + "end": 20071.02, + "probability": 0.6887 + }, + { + "start": 20071.62, + "end": 20073.08, + "probability": 0.889 + }, + { + "start": 20073.6, + "end": 20074.5, + "probability": 0.8677 + }, + { + "start": 20075.62, + "end": 20077.22, + "probability": 0.7494 + }, + { + "start": 20077.8, + "end": 20080.76, + "probability": 0.6673 + }, + { + "start": 20081.42, + "end": 20085.04, + "probability": 0.9503 + }, + { + "start": 20085.72, + "end": 20088.94, + "probability": 0.826 + }, + { + "start": 20089.28, + "end": 20092.16, + "probability": 0.9551 + }, + { + "start": 20093.0, + "end": 20096.78, + "probability": 0.9241 + }, + { + "start": 20097.48, + "end": 20099.06, + "probability": 0.9762 + }, + { + "start": 20099.4, + "end": 20101.56, + "probability": 0.7969 + }, + { + "start": 20102.7, + "end": 20104.26, + "probability": 0.7983 + }, + { + "start": 20104.86, + "end": 20106.6, + "probability": 0.9642 + }, + { + "start": 20106.76, + "end": 20107.28, + "probability": 0.9832 + }, + { + "start": 20107.54, + "end": 20110.96, + "probability": 0.8396 + }, + { + "start": 20111.12, + "end": 20111.5, + "probability": 0.8969 + }, + { + "start": 20112.24, + "end": 20114.42, + "probability": 0.9565 + }, + { + "start": 20115.08, + "end": 20115.66, + "probability": 0.9951 + }, + { + "start": 20116.26, + "end": 20122.14, + "probability": 0.9981 + }, + { + "start": 20122.3, + "end": 20124.2, + "probability": 0.721 + }, + { + "start": 20124.5, + "end": 20126.94, + "probability": 0.9507 + }, + { + "start": 20127.12, + "end": 20130.54, + "probability": 0.9011 + }, + { + "start": 20132.2, + "end": 20135.62, + "probability": 0.9628 + }, + { + "start": 20138.0, + "end": 20139.54, + "probability": 0.1052 + }, + { + "start": 20140.1, + "end": 20140.1, + "probability": 0.01 + }, + { + "start": 20140.1, + "end": 20140.1, + "probability": 0.0904 + }, + { + "start": 20140.1, + "end": 20141.02, + "probability": 0.1957 + }, + { + "start": 20141.6, + "end": 20141.76, + "probability": 0.6305 + }, + { + "start": 20142.46, + "end": 20142.76, + "probability": 0.1166 + }, + { + "start": 20143.6, + "end": 20144.52, + "probability": 0.6208 + }, + { + "start": 20144.58, + "end": 20145.98, + "probability": 0.9468 + }, + { + "start": 20146.2, + "end": 20149.04, + "probability": 0.2963 + }, + { + "start": 20149.74, + "end": 20152.3, + "probability": 0.7712 + }, + { + "start": 20152.76, + "end": 20153.68, + "probability": 0.3894 + }, + { + "start": 20154.02, + "end": 20154.48, + "probability": 0.0373 + }, + { + "start": 20155.0, + "end": 20156.52, + "probability": 0.9307 + }, + { + "start": 20157.46, + "end": 20161.42, + "probability": 0.9194 + }, + { + "start": 20162.6, + "end": 20163.32, + "probability": 0.9929 + }, + { + "start": 20164.4, + "end": 20165.57, + "probability": 0.9209 + }, + { + "start": 20166.58, + "end": 20170.8, + "probability": 0.8682 + }, + { + "start": 20171.54, + "end": 20173.32, + "probability": 0.6473 + }, + { + "start": 20173.44, + "end": 20178.66, + "probability": 0.9854 + }, + { + "start": 20179.38, + "end": 20183.6, + "probability": 0.9815 + }, + { + "start": 20184.24, + "end": 20189.06, + "probability": 0.7257 + }, + { + "start": 20189.68, + "end": 20192.14, + "probability": 0.975 + }, + { + "start": 20192.6, + "end": 20198.64, + "probability": 0.9909 + }, + { + "start": 20199.9, + "end": 20200.22, + "probability": 0.1989 + }, + { + "start": 20200.22, + "end": 20202.14, + "probability": 0.815 + }, + { + "start": 20202.28, + "end": 20205.34, + "probability": 0.9912 + }, + { + "start": 20206.14, + "end": 20210.24, + "probability": 0.9572 + }, + { + "start": 20212.02, + "end": 20216.02, + "probability": 0.8775 + }, + { + "start": 20216.76, + "end": 20221.5, + "probability": 0.9458 + }, + { + "start": 20222.28, + "end": 20222.4, + "probability": 0.1748 + }, + { + "start": 20222.4, + "end": 20226.56, + "probability": 0.9982 + }, + { + "start": 20226.92, + "end": 20229.44, + "probability": 0.9408 + }, + { + "start": 20229.9, + "end": 20232.24, + "probability": 0.9718 + }, + { + "start": 20232.72, + "end": 20233.86, + "probability": 0.8678 + }, + { + "start": 20234.38, + "end": 20236.48, + "probability": 0.6206 + }, + { + "start": 20237.0, + "end": 20239.14, + "probability": 0.868 + }, + { + "start": 20239.74, + "end": 20243.76, + "probability": 0.9629 + }, + { + "start": 20245.88, + "end": 20252.44, + "probability": 0.9968 + }, + { + "start": 20254.22, + "end": 20255.46, + "probability": 0.8012 + }, + { + "start": 20256.78, + "end": 20259.7, + "probability": 0.8478 + }, + { + "start": 20260.72, + "end": 20261.7, + "probability": 0.8532 + }, + { + "start": 20262.66, + "end": 20263.7, + "probability": 0.9294 + }, + { + "start": 20264.74, + "end": 20270.14, + "probability": 0.7982 + }, + { + "start": 20270.24, + "end": 20270.9, + "probability": 0.8357 + }, + { + "start": 20271.52, + "end": 20274.8, + "probability": 0.96 + }, + { + "start": 20275.74, + "end": 20281.98, + "probability": 0.9954 + }, + { + "start": 20281.98, + "end": 20286.93, + "probability": 0.9985 + }, + { + "start": 20287.74, + "end": 20290.54, + "probability": 0.9906 + }, + { + "start": 20291.76, + "end": 20292.94, + "probability": 0.5874 + }, + { + "start": 20293.66, + "end": 20295.14, + "probability": 0.926 + }, + { + "start": 20295.66, + "end": 20297.78, + "probability": 0.9946 + }, + { + "start": 20298.36, + "end": 20301.3, + "probability": 0.9517 + }, + { + "start": 20302.82, + "end": 20306.48, + "probability": 0.9528 + }, + { + "start": 20306.9, + "end": 20307.42, + "probability": 0.8764 + }, + { + "start": 20307.92, + "end": 20312.2, + "probability": 0.9516 + }, + { + "start": 20312.84, + "end": 20316.42, + "probability": 0.9559 + }, + { + "start": 20317.16, + "end": 20318.44, + "probability": 0.9461 + }, + { + "start": 20319.06, + "end": 20321.34, + "probability": 0.9678 + }, + { + "start": 20321.86, + "end": 20324.54, + "probability": 0.8442 + }, + { + "start": 20325.04, + "end": 20327.26, + "probability": 0.7234 + }, + { + "start": 20328.0, + "end": 20330.9, + "probability": 0.6934 + }, + { + "start": 20331.94, + "end": 20334.4, + "probability": 0.8823 + }, + { + "start": 20335.24, + "end": 20337.44, + "probability": 0.9514 + }, + { + "start": 20337.84, + "end": 20341.59, + "probability": 0.7188 + }, + { + "start": 20342.3, + "end": 20347.52, + "probability": 0.9023 + }, + { + "start": 20348.04, + "end": 20350.22, + "probability": 0.8347 + }, + { + "start": 20350.84, + "end": 20353.2, + "probability": 0.9863 + }, + { + "start": 20353.98, + "end": 20354.88, + "probability": 0.5767 + }, + { + "start": 20355.42, + "end": 20358.18, + "probability": 0.946 + }, + { + "start": 20358.9, + "end": 20361.64, + "probability": 0.9471 + }, + { + "start": 20362.4, + "end": 20363.74, + "probability": 0.9137 + }, + { + "start": 20364.9, + "end": 20367.48, + "probability": 0.8938 + }, + { + "start": 20368.1, + "end": 20370.92, + "probability": 0.0957 + }, + { + "start": 20370.92, + "end": 20372.36, + "probability": 0.7518 + }, + { + "start": 20372.46, + "end": 20374.62, + "probability": 0.8556 + }, + { + "start": 20375.2, + "end": 20375.74, + "probability": 0.8994 + }, + { + "start": 20375.92, + "end": 20380.74, + "probability": 0.9867 + }, + { + "start": 20381.64, + "end": 20383.0, + "probability": 0.8504 + }, + { + "start": 20383.9, + "end": 20385.16, + "probability": 0.9156 + }, + { + "start": 20385.22, + "end": 20397.04, + "probability": 0.9659 + }, + { + "start": 20397.58, + "end": 20399.36, + "probability": 0.8525 + }, + { + "start": 20399.94, + "end": 20401.92, + "probability": 0.7959 + }, + { + "start": 20402.1, + "end": 20405.74, + "probability": 0.8444 + }, + { + "start": 20406.78, + "end": 20410.52, + "probability": 0.9902 + }, + { + "start": 20411.16, + "end": 20414.82, + "probability": 0.9177 + }, + { + "start": 20415.5, + "end": 20420.54, + "probability": 0.9373 + }, + { + "start": 20420.6, + "end": 20423.06, + "probability": 0.9976 + }, + { + "start": 20423.78, + "end": 20427.08, + "probability": 0.9724 + }, + { + "start": 20428.32, + "end": 20430.76, + "probability": 0.896 + }, + { + "start": 20430.98, + "end": 20432.16, + "probability": 0.9643 + }, + { + "start": 20432.34, + "end": 20433.04, + "probability": 0.6868 + }, + { + "start": 20433.2, + "end": 20437.19, + "probability": 0.9138 + }, + { + "start": 20437.54, + "end": 20441.94, + "probability": 0.9974 + }, + { + "start": 20442.48, + "end": 20444.2, + "probability": 0.9634 + }, + { + "start": 20444.84, + "end": 20448.18, + "probability": 0.7802 + }, + { + "start": 20448.74, + "end": 20451.82, + "probability": 0.4666 + }, + { + "start": 20452.32, + "end": 20456.28, + "probability": 0.6558 + }, + { + "start": 20456.32, + "end": 20457.8, + "probability": 0.7586 + }, + { + "start": 20458.8, + "end": 20459.36, + "probability": 0.9549 + }, + { + "start": 20460.5, + "end": 20462.36, + "probability": 0.8837 + }, + { + "start": 20462.96, + "end": 20466.8, + "probability": 0.8279 + }, + { + "start": 20467.82, + "end": 20468.92, + "probability": 0.563 + }, + { + "start": 20469.62, + "end": 20470.32, + "probability": 0.2847 + }, + { + "start": 20471.04, + "end": 20474.24, + "probability": 0.9569 + }, + { + "start": 20475.3, + "end": 20478.66, + "probability": 0.9622 + }, + { + "start": 20479.46, + "end": 20487.98, + "probability": 0.9768 + }, + { + "start": 20488.1, + "end": 20490.4, + "probability": 0.8844 + }, + { + "start": 20491.08, + "end": 20493.72, + "probability": 0.9928 + }, + { + "start": 20494.04, + "end": 20495.14, + "probability": 0.9435 + }, + { + "start": 20495.6, + "end": 20496.14, + "probability": 0.7272 + }, + { + "start": 20496.58, + "end": 20498.22, + "probability": 0.9819 + }, + { + "start": 20499.02, + "end": 20500.08, + "probability": 0.9238 + }, + { + "start": 20500.96, + "end": 20505.7, + "probability": 0.9863 + }, + { + "start": 20506.34, + "end": 20507.74, + "probability": 0.6873 + }, + { + "start": 20507.86, + "end": 20514.18, + "probability": 0.9871 + }, + { + "start": 20514.24, + "end": 20514.88, + "probability": 0.5864 + }, + { + "start": 20515.7, + "end": 20519.98, + "probability": 0.9832 + }, + { + "start": 20519.98, + "end": 20527.42, + "probability": 0.9637 + }, + { + "start": 20527.48, + "end": 20529.74, + "probability": 0.7736 + }, + { + "start": 20530.5, + "end": 20536.34, + "probability": 0.984 + }, + { + "start": 20536.5, + "end": 20537.66, + "probability": 0.7937 + }, + { + "start": 20538.26, + "end": 20539.62, + "probability": 0.6373 + }, + { + "start": 20539.68, + "end": 20539.72, + "probability": 0.148 + }, + { + "start": 20539.72, + "end": 20540.26, + "probability": 0.626 + }, + { + "start": 20540.76, + "end": 20541.7, + "probability": 0.6647 + }, + { + "start": 20541.76, + "end": 20544.8, + "probability": 0.8879 + }, + { + "start": 20545.52, + "end": 20545.88, + "probability": 0.754 + }, + { + "start": 20546.78, + "end": 20547.4, + "probability": 0.5577 + }, + { + "start": 20547.52, + "end": 20549.5, + "probability": 0.391 + }, + { + "start": 20550.6, + "end": 20551.64, + "probability": 0.7361 + }, + { + "start": 20552.1, + "end": 20553.04, + "probability": 0.5135 + }, + { + "start": 20553.09, + "end": 20553.5, + "probability": 0.007 + }, + { + "start": 20554.04, + "end": 20554.9, + "probability": 0.1973 + }, + { + "start": 20555.16, + "end": 20555.66, + "probability": 0.796 + }, + { + "start": 20556.82, + "end": 20558.06, + "probability": 0.557 + }, + { + "start": 20560.04, + "end": 20561.22, + "probability": 0.8475 + }, + { + "start": 20561.48, + "end": 20562.36, + "probability": 0.4778 + }, + { + "start": 20563.8, + "end": 20565.28, + "probability": 0.2459 + }, + { + "start": 20565.84, + "end": 20567.48, + "probability": 0.7139 + }, + { + "start": 20567.58, + "end": 20569.09, + "probability": 0.7152 + }, + { + "start": 20569.72, + "end": 20573.94, + "probability": 0.1881 + }, + { + "start": 20574.2, + "end": 20574.52, + "probability": 0.3137 + }, + { + "start": 20574.6, + "end": 20576.26, + "probability": 0.8281 + }, + { + "start": 20577.26, + "end": 20578.82, + "probability": 0.4563 + }, + { + "start": 20578.98, + "end": 20579.4, + "probability": 0.1226 + }, + { + "start": 20580.28, + "end": 20580.76, + "probability": 0.6127 + }, + { + "start": 20581.02, + "end": 20582.08, + "probability": 0.9951 + }, + { + "start": 20583.52, + "end": 20586.24, + "probability": 0.7354 + }, + { + "start": 20586.38, + "end": 20587.28, + "probability": 0.9785 + }, + { + "start": 20587.56, + "end": 20590.08, + "probability": 0.9585 + }, + { + "start": 20590.3, + "end": 20592.94, + "probability": 0.6718 + }, + { + "start": 20593.06, + "end": 20594.21, + "probability": 0.4537 + }, + { + "start": 20594.94, + "end": 20595.82, + "probability": 0.7834 + }, + { + "start": 20595.86, + "end": 20597.62, + "probability": 0.4223 + }, + { + "start": 20598.2, + "end": 20598.69, + "probability": 0.741 + }, + { + "start": 20599.06, + "end": 20599.5, + "probability": 0.1317 + }, + { + "start": 20599.92, + "end": 20600.7, + "probability": 0.6784 + }, + { + "start": 20602.78, + "end": 20604.3, + "probability": 0.9603 + }, + { + "start": 20610.68, + "end": 20610.94, + "probability": 0.2248 + }, + { + "start": 20622.28, + "end": 20622.44, + "probability": 0.2457 + }, + { + "start": 20622.44, + "end": 20624.96, + "probability": 0.4074 + }, + { + "start": 20625.42, + "end": 20628.5, + "probability": 0.8488 + }, + { + "start": 20631.32, + "end": 20631.9, + "probability": 0.8751 + }, + { + "start": 20632.8, + "end": 20634.78, + "probability": 0.891 + }, + { + "start": 20636.02, + "end": 20637.68, + "probability": 0.6368 + }, + { + "start": 20637.84, + "end": 20638.9, + "probability": 0.3506 + }, + { + "start": 20638.98, + "end": 20640.42, + "probability": 0.551 + }, + { + "start": 20640.56, + "end": 20646.28, + "probability": 0.7551 + }, + { + "start": 20646.66, + "end": 20649.56, + "probability": 0.8562 + }, + { + "start": 20650.64, + "end": 20653.4, + "probability": 0.1877 + }, + { + "start": 20657.08, + "end": 20659.02, + "probability": 0.238 + }, + { + "start": 20659.32, + "end": 20659.64, + "probability": 0.7648 + }, + { + "start": 20660.06, + "end": 20660.3, + "probability": 0.7161 + }, + { + "start": 20661.8, + "end": 20662.16, + "probability": 0.3945 + }, + { + "start": 20662.26, + "end": 20663.58, + "probability": 0.8234 + }, + { + "start": 20667.52, + "end": 20671.38, + "probability": 0.9841 + }, + { + "start": 20673.0, + "end": 20677.14, + "probability": 0.0443 + }, + { + "start": 20691.06, + "end": 20691.06, + "probability": 0.0431 + }, + { + "start": 20691.06, + "end": 20692.63, + "probability": 0.0685 + }, + { + "start": 20704.08, + "end": 20704.28, + "probability": 0.1955 + }, + { + "start": 20704.28, + "end": 20705.58, + "probability": 0.8051 + }, + { + "start": 20706.68, + "end": 20707.76, + "probability": 0.8451 + }, + { + "start": 20708.28, + "end": 20709.38, + "probability": 0.7558 + }, + { + "start": 20710.58, + "end": 20713.44, + "probability": 0.9426 + }, + { + "start": 20714.46, + "end": 20719.06, + "probability": 0.9478 + }, + { + "start": 20720.34, + "end": 20722.76, + "probability": 0.903 + }, + { + "start": 20723.14, + "end": 20735.76, + "probability": 0.9678 + }, + { + "start": 20735.94, + "end": 20736.66, + "probability": 0.7627 + }, + { + "start": 20737.4, + "end": 20738.26, + "probability": 0.5979 + }, + { + "start": 20738.4, + "end": 20738.52, + "probability": 0.1391 + }, + { + "start": 20739.18, + "end": 20744.16, + "probability": 0.9837 + }, + { + "start": 20745.08, + "end": 20751.46, + "probability": 0.9128 + }, + { + "start": 20752.12, + "end": 20757.08, + "probability": 0.9584 + }, + { + "start": 20757.32, + "end": 20759.3, + "probability": 0.9742 + }, + { + "start": 20759.48, + "end": 20760.54, + "probability": 0.8993 + }, + { + "start": 20761.32, + "end": 20763.74, + "probability": 0.981 + }, + { + "start": 20764.74, + "end": 20769.56, + "probability": 0.8711 + }, + { + "start": 20770.58, + "end": 20774.66, + "probability": 0.877 + }, + { + "start": 20774.78, + "end": 20776.64, + "probability": 0.8134 + }, + { + "start": 20777.4, + "end": 20781.86, + "probability": 0.8742 + }, + { + "start": 20783.2, + "end": 20785.66, + "probability": 0.9917 + }, + { + "start": 20787.42, + "end": 20796.38, + "probability": 0.9847 + }, + { + "start": 20796.46, + "end": 20798.22, + "probability": 0.9601 + }, + { + "start": 20799.1, + "end": 20801.36, + "probability": 0.9904 + }, + { + "start": 20802.26, + "end": 20806.4, + "probability": 0.875 + }, + { + "start": 20807.32, + "end": 20815.24, + "probability": 0.9856 + }, + { + "start": 20817.68, + "end": 20821.0, + "probability": 0.6303 + }, + { + "start": 20823.46, + "end": 20830.34, + "probability": 0.8356 + }, + { + "start": 20831.3, + "end": 20835.74, + "probability": 0.869 + }, + { + "start": 20836.28, + "end": 20837.29, + "probability": 0.9971 + }, + { + "start": 20838.78, + "end": 20846.85, + "probability": 0.9673 + }, + { + "start": 20847.98, + "end": 20851.78, + "probability": 0.9924 + }, + { + "start": 20852.56, + "end": 20853.88, + "probability": 0.9767 + }, + { + "start": 20854.64, + "end": 20855.64, + "probability": 0.7166 + }, + { + "start": 20856.16, + "end": 20862.4, + "probability": 0.9447 + }, + { + "start": 20864.26, + "end": 20866.16, + "probability": 0.9974 + }, + { + "start": 20866.24, + "end": 20869.08, + "probability": 0.9883 + }, + { + "start": 20869.82, + "end": 20870.36, + "probability": 0.5787 + }, + { + "start": 20871.36, + "end": 20874.87, + "probability": 0.9399 + }, + { + "start": 20875.96, + "end": 20877.08, + "probability": 0.9564 + }, + { + "start": 20877.18, + "end": 20881.92, + "probability": 0.9817 + }, + { + "start": 20882.58, + "end": 20883.56, + "probability": 0.9626 + }, + { + "start": 20883.88, + "end": 20888.28, + "probability": 0.9946 + }, + { + "start": 20889.92, + "end": 20891.76, + "probability": 0.7895 + }, + { + "start": 20892.44, + "end": 20899.18, + "probability": 0.9739 + }, + { + "start": 20899.48, + "end": 20903.02, + "probability": 0.9807 + }, + { + "start": 20903.72, + "end": 20908.08, + "probability": 0.985 + }, + { + "start": 20908.96, + "end": 20911.52, + "probability": 0.947 + }, + { + "start": 20912.62, + "end": 20916.82, + "probability": 0.9274 + }, + { + "start": 20923.28, + "end": 20925.58, + "probability": 0.9971 + }, + { + "start": 20925.74, + "end": 20927.0, + "probability": 0.687 + }, + { + "start": 20927.06, + "end": 20927.86, + "probability": 0.6214 + }, + { + "start": 20929.48, + "end": 20933.38, + "probability": 0.9844 + }, + { + "start": 20933.54, + "end": 20934.8, + "probability": 0.9578 + }, + { + "start": 20935.76, + "end": 20939.12, + "probability": 0.9776 + }, + { + "start": 20940.93, + "end": 20944.67, + "probability": 0.3534 + }, + { + "start": 20944.86, + "end": 20949.46, + "probability": 0.9815 + }, + { + "start": 20949.84, + "end": 20952.4, + "probability": 0.7293 + }, + { + "start": 20952.66, + "end": 20956.7, + "probability": 0.981 + }, + { + "start": 20956.76, + "end": 20957.78, + "probability": 0.8194 + }, + { + "start": 20958.52, + "end": 20960.68, + "probability": 0.9366 + }, + { + "start": 20961.58, + "end": 20962.54, + "probability": 0.7026 + }, + { + "start": 20963.1, + "end": 20965.02, + "probability": 0.9695 + }, + { + "start": 20965.18, + "end": 20968.3, + "probability": 0.9772 + }, + { + "start": 20968.6, + "end": 20968.88, + "probability": 0.6557 + }, + { + "start": 20968.94, + "end": 20970.3, + "probability": 0.9852 + }, + { + "start": 20971.88, + "end": 20975.76, + "probability": 0.9941 + }, + { + "start": 20976.28, + "end": 20976.94, + "probability": 0.984 + }, + { + "start": 20978.4, + "end": 20985.24, + "probability": 0.9486 + }, + { + "start": 20985.36, + "end": 20986.42, + "probability": 0.4167 + }, + { + "start": 20986.86, + "end": 20988.04, + "probability": 0.7491 + }, + { + "start": 20988.46, + "end": 20990.78, + "probability": 0.9856 + }, + { + "start": 20991.8, + "end": 20995.36, + "probability": 0.9495 + }, + { + "start": 20995.82, + "end": 21002.8, + "probability": 0.985 + }, + { + "start": 21003.26, + "end": 21008.34, + "probability": 0.9429 + }, + { + "start": 21008.8, + "end": 21009.42, + "probability": 0.7254 + }, + { + "start": 21010.26, + "end": 21012.6, + "probability": 0.8643 + }, + { + "start": 21023.82, + "end": 21023.82, + "probability": 0.5429 + }, + { + "start": 21030.76, + "end": 21031.04, + "probability": 0.162 + }, + { + "start": 21031.04, + "end": 21031.9, + "probability": 0.6195 + }, + { + "start": 21032.44, + "end": 21034.04, + "probability": 0.7167 + }, + { + "start": 21035.06, + "end": 21038.08, + "probability": 0.9673 + }, + { + "start": 21038.94, + "end": 21043.12, + "probability": 0.9673 + }, + { + "start": 21044.52, + "end": 21047.98, + "probability": 0.9705 + }, + { + "start": 21048.72, + "end": 21052.46, + "probability": 0.8678 + }, + { + "start": 21053.48, + "end": 21058.06, + "probability": 0.9949 + }, + { + "start": 21058.94, + "end": 21061.91, + "probability": 0.985 + }, + { + "start": 21063.12, + "end": 21064.34, + "probability": 0.9418 + }, + { + "start": 21064.52, + "end": 21067.14, + "probability": 0.99 + }, + { + "start": 21067.16, + "end": 21071.56, + "probability": 0.9922 + }, + { + "start": 21071.56, + "end": 21075.46, + "probability": 0.8957 + }, + { + "start": 21076.7, + "end": 21084.24, + "probability": 0.9221 + }, + { + "start": 21084.36, + "end": 21090.26, + "probability": 0.9045 + }, + { + "start": 21090.38, + "end": 21091.94, + "probability": 0.8411 + }, + { + "start": 21092.78, + "end": 21098.24, + "probability": 0.8612 + }, + { + "start": 21098.64, + "end": 21099.72, + "probability": 0.78 + }, + { + "start": 21099.8, + "end": 21100.28, + "probability": 0.5143 + }, + { + "start": 21100.46, + "end": 21104.78, + "probability": 0.7205 + }, + { + "start": 21105.68, + "end": 21108.26, + "probability": 0.9956 + }, + { + "start": 21109.46, + "end": 21112.06, + "probability": 0.9769 + }, + { + "start": 21112.14, + "end": 21112.92, + "probability": 0.8606 + }, + { + "start": 21113.0, + "end": 21115.4, + "probability": 0.9182 + }, + { + "start": 21115.52, + "end": 21116.08, + "probability": 0.8027 + }, + { + "start": 21117.62, + "end": 21120.68, + "probability": 0.9857 + }, + { + "start": 21120.68, + "end": 21123.8, + "probability": 0.9945 + }, + { + "start": 21123.88, + "end": 21128.84, + "probability": 0.9545 + }, + { + "start": 21128.94, + "end": 21130.56, + "probability": 0.8718 + }, + { + "start": 21131.2, + "end": 21132.96, + "probability": 0.4761 + }, + { + "start": 21133.42, + "end": 21137.0, + "probability": 0.694 + }, + { + "start": 21137.0, + "end": 21140.2, + "probability": 0.8678 + }, + { + "start": 21140.48, + "end": 21141.18, + "probability": 0.329 + }, + { + "start": 21141.26, + "end": 21142.46, + "probability": 0.7209 + }, + { + "start": 21142.48, + "end": 21146.12, + "probability": 0.8617 + }, + { + "start": 21146.62, + "end": 21150.84, + "probability": 0.9595 + }, + { + "start": 21150.88, + "end": 21154.88, + "probability": 0.9844 + }, + { + "start": 21155.7, + "end": 21160.12, + "probability": 0.9004 + }, + { + "start": 21160.72, + "end": 21162.92, + "probability": 0.9498 + }, + { + "start": 21163.06, + "end": 21165.18, + "probability": 0.7906 + }, + { + "start": 21165.84, + "end": 21171.64, + "probability": 0.9783 + }, + { + "start": 21172.34, + "end": 21176.82, + "probability": 0.6518 + }, + { + "start": 21178.08, + "end": 21179.02, + "probability": 0.7773 + }, + { + "start": 21179.12, + "end": 21181.16, + "probability": 0.6797 + }, + { + "start": 21181.2, + "end": 21182.0, + "probability": 0.6878 + }, + { + "start": 21182.58, + "end": 21188.52, + "probability": 0.9951 + }, + { + "start": 21188.64, + "end": 21190.58, + "probability": 0.9533 + }, + { + "start": 21191.66, + "end": 21194.44, + "probability": 0.9476 + }, + { + "start": 21195.46, + "end": 21199.91, + "probability": 0.9692 + }, + { + "start": 21200.76, + "end": 21203.16, + "probability": 0.9951 + }, + { + "start": 21203.56, + "end": 21207.38, + "probability": 0.9933 + }, + { + "start": 21207.9, + "end": 21208.46, + "probability": 0.884 + }, + { + "start": 21208.52, + "end": 21211.02, + "probability": 0.9724 + }, + { + "start": 21211.5, + "end": 21212.66, + "probability": 0.9871 + }, + { + "start": 21213.26, + "end": 21216.1, + "probability": 0.9924 + }, + { + "start": 21216.2, + "end": 21217.44, + "probability": 0.9678 + }, + { + "start": 21217.8, + "end": 21218.78, + "probability": 0.9115 + }, + { + "start": 21219.5, + "end": 21222.86, + "probability": 0.9915 + }, + { + "start": 21222.86, + "end": 21225.38, + "probability": 0.9146 + }, + { + "start": 21225.48, + "end": 21226.08, + "probability": 0.8363 + }, + { + "start": 21226.22, + "end": 21227.0, + "probability": 0.9649 + }, + { + "start": 21227.0, + "end": 21227.98, + "probability": 0.8305 + }, + { + "start": 21228.62, + "end": 21229.9, + "probability": 0.9821 + }, + { + "start": 21229.92, + "end": 21230.98, + "probability": 0.8502 + }, + { + "start": 21231.08, + "end": 21232.56, + "probability": 0.8121 + }, + { + "start": 21233.04, + "end": 21240.6, + "probability": 0.8666 + }, + { + "start": 21240.7, + "end": 21241.2, + "probability": 0.6769 + }, + { + "start": 21241.26, + "end": 21241.74, + "probability": 0.9201 + }, + { + "start": 21242.14, + "end": 21246.16, + "probability": 0.9368 + }, + { + "start": 21246.78, + "end": 21249.66, + "probability": 0.9312 + }, + { + "start": 21249.78, + "end": 21252.94, + "probability": 0.9462 + }, + { + "start": 21253.84, + "end": 21257.62, + "probability": 0.7849 + }, + { + "start": 21258.96, + "end": 21261.36, + "probability": 0.989 + }, + { + "start": 21261.88, + "end": 21262.7, + "probability": 0.5605 + }, + { + "start": 21263.22, + "end": 21265.1, + "probability": 0.9104 + }, + { + "start": 21265.26, + "end": 21266.34, + "probability": 0.7966 + }, + { + "start": 21266.94, + "end": 21270.88, + "probability": 0.824 + }, + { + "start": 21274.1, + "end": 21280.02, + "probability": 0.9933 + }, + { + "start": 21280.6, + "end": 21282.7, + "probability": 0.7343 + }, + { + "start": 21283.04, + "end": 21284.66, + "probability": 0.9598 + }, + { + "start": 21285.34, + "end": 21288.78, + "probability": 0.9716 + }, + { + "start": 21289.7, + "end": 21294.94, + "probability": 0.6945 + }, + { + "start": 21295.42, + "end": 21300.82, + "probability": 0.9663 + }, + { + "start": 21300.88, + "end": 21300.98, + "probability": 0.7265 + }, + { + "start": 21301.98, + "end": 21302.54, + "probability": 0.6629 + }, + { + "start": 21303.46, + "end": 21305.22, + "probability": 0.884 + }, + { + "start": 21328.71, + "end": 21333.56, + "probability": 0.709 + }, + { + "start": 21334.32, + "end": 21335.7, + "probability": 0.6299 + }, + { + "start": 21335.82, + "end": 21336.34, + "probability": 0.9117 + }, + { + "start": 21336.4, + "end": 21342.42, + "probability": 0.9868 + }, + { + "start": 21342.46, + "end": 21343.77, + "probability": 0.9868 + }, + { + "start": 21344.46, + "end": 21346.43, + "probability": 0.9707 + }, + { + "start": 21346.7, + "end": 21350.65, + "probability": 0.8564 + }, + { + "start": 21351.86, + "end": 21359.38, + "probability": 0.9419 + }, + { + "start": 21359.92, + "end": 21361.72, + "probability": 0.9197 + }, + { + "start": 21363.36, + "end": 21366.28, + "probability": 0.9521 + }, + { + "start": 21366.76, + "end": 21367.64, + "probability": 0.5759 + }, + { + "start": 21368.26, + "end": 21370.68, + "probability": 0.9769 + }, + { + "start": 21371.22, + "end": 21371.74, + "probability": 0.9962 + }, + { + "start": 21372.88, + "end": 21378.56, + "probability": 0.8797 + }, + { + "start": 21378.76, + "end": 21381.76, + "probability": 0.9509 + }, + { + "start": 21381.9, + "end": 21382.74, + "probability": 0.7072 + }, + { + "start": 21383.6, + "end": 21384.86, + "probability": 0.9878 + }, + { + "start": 21385.58, + "end": 21387.16, + "probability": 0.8804 + }, + { + "start": 21388.76, + "end": 21392.56, + "probability": 0.9945 + }, + { + "start": 21394.42, + "end": 21394.98, + "probability": 0.4554 + }, + { + "start": 21395.8, + "end": 21397.7, + "probability": 0.7504 + }, + { + "start": 21398.38, + "end": 21399.08, + "probability": 0.7318 + }, + { + "start": 21400.34, + "end": 21403.14, + "probability": 0.9401 + }, + { + "start": 21404.58, + "end": 21406.24, + "probability": 0.9365 + }, + { + "start": 21406.34, + "end": 21407.2, + "probability": 0.9151 + }, + { + "start": 21407.32, + "end": 21408.14, + "probability": 0.9446 + }, + { + "start": 21408.2, + "end": 21409.18, + "probability": 0.9678 + }, + { + "start": 21409.22, + "end": 21410.2, + "probability": 0.9556 + }, + { + "start": 21410.62, + "end": 21411.24, + "probability": 0.4344 + }, + { + "start": 21412.38, + "end": 21417.75, + "probability": 0.9698 + }, + { + "start": 21418.58, + "end": 21421.32, + "probability": 0.9951 + }, + { + "start": 21422.12, + "end": 21425.58, + "probability": 0.999 + }, + { + "start": 21425.66, + "end": 21426.98, + "probability": 0.8643 + }, + { + "start": 21427.52, + "end": 21431.36, + "probability": 0.9702 + }, + { + "start": 21431.52, + "end": 21432.14, + "probability": 0.8803 + }, + { + "start": 21432.6, + "end": 21433.68, + "probability": 0.802 + }, + { + "start": 21433.8, + "end": 21436.58, + "probability": 0.8898 + }, + { + "start": 21437.7, + "end": 21438.22, + "probability": 0.8003 + }, + { + "start": 21438.84, + "end": 21439.84, + "probability": 0.9466 + }, + { + "start": 21440.5, + "end": 21444.56, + "probability": 0.9871 + }, + { + "start": 21444.72, + "end": 21446.68, + "probability": 0.9883 + }, + { + "start": 21447.22, + "end": 21450.26, + "probability": 0.9536 + }, + { + "start": 21450.66, + "end": 21453.12, + "probability": 0.9337 + }, + { + "start": 21455.02, + "end": 21459.93, + "probability": 0.7453 + }, + { + "start": 21460.34, + "end": 21465.58, + "probability": 0.9711 + }, + { + "start": 21465.7, + "end": 21467.52, + "probability": 0.8624 + }, + { + "start": 21468.48, + "end": 21470.76, + "probability": 0.9337 + }, + { + "start": 21471.06, + "end": 21474.32, + "probability": 0.9801 + }, + { + "start": 21477.56, + "end": 21478.38, + "probability": 0.824 + }, + { + "start": 21478.5, + "end": 21479.78, + "probability": 0.9281 + }, + { + "start": 21480.0, + "end": 21483.96, + "probability": 0.9866 + }, + { + "start": 21484.08, + "end": 21487.46, + "probability": 0.929 + }, + { + "start": 21488.1, + "end": 21490.44, + "probability": 0.938 + }, + { + "start": 21491.46, + "end": 21492.28, + "probability": 0.8983 + }, + { + "start": 21493.08, + "end": 21493.86, + "probability": 0.8592 + }, + { + "start": 21493.94, + "end": 21495.4, + "probability": 0.6256 + }, + { + "start": 21495.88, + "end": 21497.96, + "probability": 0.9916 + }, + { + "start": 21498.0, + "end": 21498.84, + "probability": 0.951 + }, + { + "start": 21499.12, + "end": 21501.9, + "probability": 0.9976 + }, + { + "start": 21502.36, + "end": 21504.54, + "probability": 0.9933 + }, + { + "start": 21505.22, + "end": 21505.52, + "probability": 0.8961 + }, + { + "start": 21507.16, + "end": 21510.82, + "probability": 0.9925 + }, + { + "start": 21511.56, + "end": 21512.06, + "probability": 0.852 + }, + { + "start": 21513.06, + "end": 21516.7, + "probability": 0.8053 + }, + { + "start": 21517.98, + "end": 21518.66, + "probability": 0.8333 + }, + { + "start": 21518.94, + "end": 21522.36, + "probability": 0.9113 + }, + { + "start": 21522.48, + "end": 21524.12, + "probability": 0.9489 + }, + { + "start": 21524.58, + "end": 21525.46, + "probability": 0.7595 + }, + { + "start": 21526.16, + "end": 21526.28, + "probability": 0.9639 + }, + { + "start": 21527.46, + "end": 21533.2, + "probability": 0.8448 + }, + { + "start": 21533.92, + "end": 21537.86, + "probability": 0.8656 + }, + { + "start": 21538.5, + "end": 21541.9, + "probability": 0.9082 + }, + { + "start": 21542.92, + "end": 21545.34, + "probability": 0.9805 + }, + { + "start": 21546.02, + "end": 21546.44, + "probability": 0.7401 + }, + { + "start": 21547.2, + "end": 21551.38, + "probability": 0.9931 + }, + { + "start": 21551.82, + "end": 21552.36, + "probability": 0.6278 + }, + { + "start": 21552.52, + "end": 21553.02, + "probability": 0.5726 + }, + { + "start": 21553.1, + "end": 21554.14, + "probability": 0.656 + }, + { + "start": 21554.78, + "end": 21556.34, + "probability": 0.8654 + }, + { + "start": 21556.84, + "end": 21557.73, + "probability": 0.5703 + }, + { + "start": 21558.08, + "end": 21558.4, + "probability": 0.8398 + }, + { + "start": 21559.06, + "end": 21563.68, + "probability": 0.9867 + }, + { + "start": 21564.14, + "end": 21565.92, + "probability": 0.9106 + }, + { + "start": 21566.78, + "end": 21569.86, + "probability": 0.9941 + }, + { + "start": 21570.54, + "end": 21572.28, + "probability": 0.9759 + }, + { + "start": 21572.98, + "end": 21575.78, + "probability": 0.9972 + }, + { + "start": 21575.96, + "end": 21578.88, + "probability": 0.7934 + }, + { + "start": 21579.22, + "end": 21580.76, + "probability": 0.7436 + }, + { + "start": 21581.36, + "end": 21585.6, + "probability": 0.8365 + }, + { + "start": 21586.22, + "end": 21589.34, + "probability": 0.8161 + }, + { + "start": 21590.18, + "end": 21590.98, + "probability": 0.8863 + }, + { + "start": 21591.06, + "end": 21592.18, + "probability": 0.9124 + }, + { + "start": 21592.44, + "end": 21594.28, + "probability": 0.7905 + }, + { + "start": 21595.16, + "end": 21598.78, + "probability": 0.8492 + }, + { + "start": 21598.78, + "end": 21603.12, + "probability": 0.9593 + }, + { + "start": 21603.48, + "end": 21605.7, + "probability": 0.8122 + }, + { + "start": 21606.16, + "end": 21608.48, + "probability": 0.9585 + }, + { + "start": 21608.92, + "end": 21613.42, + "probability": 0.6763 + }, + { + "start": 21613.52, + "end": 21618.02, + "probability": 0.8968 + }, + { + "start": 21618.66, + "end": 21618.8, + "probability": 0.8087 + }, + { + "start": 21620.1, + "end": 21620.52, + "probability": 0.5391 + }, + { + "start": 21620.96, + "end": 21621.02, + "probability": 0.0015 + }, + { + "start": 21621.97, + "end": 21622.04, + "probability": 0.2584 + }, + { + "start": 21623.28, + "end": 21627.02, + "probability": 0.851 + }, + { + "start": 21627.6, + "end": 21629.5, + "probability": 0.7018 + }, + { + "start": 21633.33, + "end": 21639.74, + "probability": 0.3409 + }, + { + "start": 21641.78, + "end": 21644.86, + "probability": 0.5802 + }, + { + "start": 21647.06, + "end": 21649.36, + "probability": 0.6584 + }, + { + "start": 21651.62, + "end": 21655.12, + "probability": 0.6925 + }, + { + "start": 21655.24, + "end": 21659.02, + "probability": 0.3733 + }, + { + "start": 21659.2, + "end": 21661.06, + "probability": 0.2025 + }, + { + "start": 21661.47, + "end": 21664.62, + "probability": 0.3704 + }, + { + "start": 21664.7, + "end": 21666.34, + "probability": 0.2925 + }, + { + "start": 21666.34, + "end": 21666.86, + "probability": 0.0966 + }, + { + "start": 21666.86, + "end": 21667.5, + "probability": 0.3581 + }, + { + "start": 21667.68, + "end": 21672.28, + "probability": 0.0302 + }, + { + "start": 21672.34, + "end": 21676.82, + "probability": 0.5304 + }, + { + "start": 21677.14, + "end": 21678.36, + "probability": 0.8469 + }, + { + "start": 21678.6, + "end": 21679.4, + "probability": 0.1305 + }, + { + "start": 21680.86, + "end": 21685.58, + "probability": 0.1184 + }, + { + "start": 21685.58, + "end": 21690.16, + "probability": 0.1577 + }, + { + "start": 21690.42, + "end": 21693.88, + "probability": 0.2525 + }, + { + "start": 21693.88, + "end": 21695.62, + "probability": 0.2057 + }, + { + "start": 21695.62, + "end": 21697.04, + "probability": 0.5465 + }, + { + "start": 21697.04, + "end": 21698.36, + "probability": 0.6825 + }, + { + "start": 21698.6, + "end": 21700.4, + "probability": 0.5875 + }, + { + "start": 21700.48, + "end": 21700.62, + "probability": 0.0005 + }, + { + "start": 21706.12, + "end": 21706.54, + "probability": 0.0067 + }, + { + "start": 21706.54, + "end": 21707.68, + "probability": 0.105 + }, + { + "start": 21709.14, + "end": 21711.16, + "probability": 0.0535 + }, + { + "start": 21711.18, + "end": 21711.36, + "probability": 0.2728 + }, + { + "start": 21711.36, + "end": 21711.42, + "probability": 0.2605 + }, + { + "start": 21711.42, + "end": 21712.68, + "probability": 0.1985 + }, + { + "start": 21713.26, + "end": 21714.06, + "probability": 0.0542 + }, + { + "start": 21714.06, + "end": 21715.37, + "probability": 0.3046 + }, + { + "start": 21715.94, + "end": 21717.62, + "probability": 0.4548 + }, + { + "start": 21719.02, + "end": 21720.26, + "probability": 0.0217 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21921.0, + "end": 21921.0, + "probability": 0.0 + }, + { + "start": 21950.22, + "end": 21954.04, + "probability": 0.0655 + }, + { + "start": 21954.48, + "end": 21956.8, + "probability": 0.058 + }, + { + "start": 21957.83, + "end": 21959.1, + "probability": 0.0715 + }, + { + "start": 21959.1, + "end": 21959.41, + "probability": 0.0536 + }, + { + "start": 21961.42, + "end": 21965.05, + "probability": 0.0769 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.0, + "end": 22044.0, + "probability": 0.0 + }, + { + "start": 22044.12, + "end": 22044.18, + "probability": 0.6454 + }, + { + "start": 22044.18, + "end": 22044.84, + "probability": 0.4138 + }, + { + "start": 22044.92, + "end": 22047.22, + "probability": 0.6213 + }, + { + "start": 22055.2, + "end": 22060.46, + "probability": 0.737 + }, + { + "start": 22061.6, + "end": 22063.94, + "probability": 0.1553 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.0, + "end": 22185.0, + "probability": 0.0 + }, + { + "start": 22185.28, + "end": 22189.04, + "probability": 0.8568 + }, + { + "start": 22189.44, + "end": 22191.88, + "probability": 0.9917 + }, + { + "start": 22192.0, + "end": 22192.64, + "probability": 0.8893 + }, + { + "start": 22193.22, + "end": 22195.42, + "probability": 0.9485 + }, + { + "start": 22196.0, + "end": 22200.8, + "probability": 0.9829 + }, + { + "start": 22201.36, + "end": 22203.52, + "probability": 0.8976 + }, + { + "start": 22203.9, + "end": 22205.94, + "probability": 0.9866 + }, + { + "start": 22207.7, + "end": 22209.08, + "probability": 0.6707 + }, + { + "start": 22210.64, + "end": 22212.28, + "probability": 0.9299 + }, + { + "start": 22213.34, + "end": 22215.88, + "probability": 0.9312 + }, + { + "start": 22216.02, + "end": 22217.71, + "probability": 0.9976 + }, + { + "start": 22218.52, + "end": 22222.5, + "probability": 0.9821 + }, + { + "start": 22224.06, + "end": 22225.44, + "probability": 0.8787 + }, + { + "start": 22227.02, + "end": 22229.3, + "probability": 0.9469 + }, + { + "start": 22229.46, + "end": 22230.08, + "probability": 0.7711 + }, + { + "start": 22230.12, + "end": 22230.58, + "probability": 0.6841 + }, + { + "start": 22231.84, + "end": 22233.54, + "probability": 0.9803 + }, + { + "start": 22235.48, + "end": 22238.0, + "probability": 0.9442 + }, + { + "start": 22238.08, + "end": 22238.68, + "probability": 0.9476 + }, + { + "start": 22238.82, + "end": 22242.02, + "probability": 0.9507 + }, + { + "start": 22242.88, + "end": 22246.2, + "probability": 0.8083 + }, + { + "start": 22246.2, + "end": 22250.88, + "probability": 0.9948 + }, + { + "start": 22252.8, + "end": 22253.16, + "probability": 0.7244 + }, + { + "start": 22253.52, + "end": 22254.11, + "probability": 0.9279 + }, + { + "start": 22254.54, + "end": 22255.74, + "probability": 0.1514 + }, + { + "start": 22255.84, + "end": 22260.3, + "probability": 0.7437 + }, + { + "start": 22261.0, + "end": 22261.44, + "probability": 0.255 + }, + { + "start": 22261.44, + "end": 22263.38, + "probability": 0.4911 + }, + { + "start": 22263.6, + "end": 22264.16, + "probability": 0.8218 + }, + { + "start": 22264.26, + "end": 22265.04, + "probability": 0.7715 + }, + { + "start": 22265.1, + "end": 22265.94, + "probability": 0.4642 + }, + { + "start": 22266.56, + "end": 22268.52, + "probability": 0.9747 + }, + { + "start": 22268.52, + "end": 22271.08, + "probability": 0.9183 + }, + { + "start": 22271.44, + "end": 22272.98, + "probability": 0.8408 + }, + { + "start": 22273.38, + "end": 22273.98, + "probability": 0.8073 + }, + { + "start": 22274.48, + "end": 22279.08, + "probability": 0.9417 + }, + { + "start": 22279.3, + "end": 22281.92, + "probability": 0.688 + }, + { + "start": 22282.14, + "end": 22286.34, + "probability": 0.9146 + }, + { + "start": 22286.94, + "end": 22288.56, + "probability": 0.9957 + }, + { + "start": 22289.18, + "end": 22291.54, + "probability": 0.8647 + }, + { + "start": 22291.88, + "end": 22293.4, + "probability": 0.7464 + }, + { + "start": 22293.92, + "end": 22294.48, + "probability": 0.7749 + }, + { + "start": 22295.86, + "end": 22298.7, + "probability": 0.9937 + }, + { + "start": 22298.82, + "end": 22301.78, + "probability": 0.9731 + }, + { + "start": 22301.84, + "end": 22302.16, + "probability": 0.9387 + }, + { + "start": 22302.6, + "end": 22306.7, + "probability": 0.995 + }, + { + "start": 22306.84, + "end": 22308.58, + "probability": 0.9805 + }, + { + "start": 22309.04, + "end": 22310.42, + "probability": 0.978 + }, + { + "start": 22311.42, + "end": 22316.62, + "probability": 0.8868 + }, + { + "start": 22318.32, + "end": 22322.06, + "probability": 0.9971 + }, + { + "start": 22322.14, + "end": 22324.96, + "probability": 0.877 + }, + { + "start": 22326.14, + "end": 22331.06, + "probability": 0.585 + }, + { + "start": 22331.62, + "end": 22337.04, + "probability": 0.9686 + }, + { + "start": 22337.6, + "end": 22338.16, + "probability": 0.6343 + }, + { + "start": 22339.36, + "end": 22342.34, + "probability": 0.895 + }, + { + "start": 22343.58, + "end": 22345.62, + "probability": 0.9577 + }, + { + "start": 22345.7, + "end": 22346.68, + "probability": 0.7808 + }, + { + "start": 22346.8, + "end": 22347.04, + "probability": 0.727 + }, + { + "start": 22347.86, + "end": 22351.79, + "probability": 0.9338 + }, + { + "start": 22352.78, + "end": 22356.34, + "probability": 0.9873 + }, + { + "start": 22357.94, + "end": 22360.16, + "probability": 0.7002 + }, + { + "start": 22360.96, + "end": 22361.96, + "probability": 0.8702 + }, + { + "start": 22362.12, + "end": 22362.82, + "probability": 0.8365 + }, + { + "start": 22363.06, + "end": 22366.6, + "probability": 0.993 + }, + { + "start": 22367.2, + "end": 22372.64, + "probability": 0.9926 + }, + { + "start": 22372.66, + "end": 22374.88, + "probability": 0.9694 + }, + { + "start": 22376.18, + "end": 22381.06, + "probability": 0.9463 + }, + { + "start": 22381.3, + "end": 22382.06, + "probability": 0.7486 + }, + { + "start": 22382.6, + "end": 22387.96, + "probability": 0.9723 + }, + { + "start": 22389.08, + "end": 22392.96, + "probability": 0.9224 + }, + { + "start": 22393.02, + "end": 22393.12, + "probability": 0.3741 + }, + { + "start": 22393.58, + "end": 22395.0, + "probability": 0.8073 + }, + { + "start": 22395.16, + "end": 22396.62, + "probability": 0.5628 + }, + { + "start": 22396.66, + "end": 22397.54, + "probability": 0.8957 + }, + { + "start": 22398.52, + "end": 22401.68, + "probability": 0.8658 + }, + { + "start": 22404.14, + "end": 22408.74, + "probability": 0.8517 + }, + { + "start": 22408.88, + "end": 22410.5, + "probability": 0.9592 + }, + { + "start": 22411.74, + "end": 22414.78, + "probability": 0.7857 + }, + { + "start": 22415.14, + "end": 22420.1, + "probability": 0.9482 + }, + { + "start": 22420.1, + "end": 22421.24, + "probability": 0.8333 + }, + { + "start": 22422.72, + "end": 22423.87, + "probability": 0.9993 + }, + { + "start": 22430.36, + "end": 22432.28, + "probability": 0.9993 + }, + { + "start": 22433.48, + "end": 22435.2, + "probability": 0.7758 + }, + { + "start": 22435.34, + "end": 22439.58, + "probability": 0.9964 + }, + { + "start": 22440.24, + "end": 22446.94, + "probability": 0.9904 + }, + { + "start": 22447.66, + "end": 22450.62, + "probability": 0.915 + }, + { + "start": 22450.74, + "end": 22451.12, + "probability": 0.7572 + }, + { + "start": 22451.18, + "end": 22451.64, + "probability": 0.9042 + }, + { + "start": 22451.96, + "end": 22455.57, + "probability": 0.9965 + }, + { + "start": 22456.8, + "end": 22459.94, + "probability": 0.8187 + }, + { + "start": 22461.72, + "end": 22462.64, + "probability": 0.874 + }, + { + "start": 22462.8, + "end": 22464.49, + "probability": 0.9944 + }, + { + "start": 22464.64, + "end": 22467.18, + "probability": 0.961 + }, + { + "start": 22467.86, + "end": 22473.36, + "probability": 0.9906 + }, + { + "start": 22473.78, + "end": 22479.0, + "probability": 0.9911 + }, + { + "start": 22481.62, + "end": 22482.46, + "probability": 0.9993 + }, + { + "start": 22483.38, + "end": 22485.42, + "probability": 0.999 + }, + { + "start": 22486.42, + "end": 22488.36, + "probability": 0.8971 + }, + { + "start": 22489.18, + "end": 22490.16, + "probability": 0.8203 + }, + { + "start": 22491.46, + "end": 22494.08, + "probability": 0.5141 + }, + { + "start": 22495.98, + "end": 22499.12, + "probability": 0.9954 + }, + { + "start": 22499.12, + "end": 22501.56, + "probability": 0.9971 + }, + { + "start": 22502.36, + "end": 22505.72, + "probability": 0.995 + }, + { + "start": 22506.68, + "end": 22508.06, + "probability": 0.905 + }, + { + "start": 22508.86, + "end": 22510.9, + "probability": 0.9363 + }, + { + "start": 22511.14, + "end": 22511.56, + "probability": 0.8648 + }, + { + "start": 22512.38, + "end": 22515.28, + "probability": 0.9964 + }, + { + "start": 22515.28, + "end": 22519.72, + "probability": 0.9454 + }, + { + "start": 22520.8, + "end": 22524.0, + "probability": 0.777 + }, + { + "start": 22524.84, + "end": 22526.82, + "probability": 0.0341 + }, + { + "start": 22526.82, + "end": 22527.28, + "probability": 0.0527 + }, + { + "start": 22527.28, + "end": 22529.31, + "probability": 0.5633 + }, + { + "start": 22529.4, + "end": 22530.74, + "probability": 0.6595 + }, + { + "start": 22532.42, + "end": 22535.88, + "probability": 0.8711 + }, + { + "start": 22537.04, + "end": 22543.62, + "probability": 0.9708 + }, + { + "start": 22543.92, + "end": 22546.58, + "probability": 0.9708 + }, + { + "start": 22550.15, + "end": 22551.9, + "probability": 0.6791 + }, + { + "start": 22552.86, + "end": 22552.96, + "probability": 0.3512 + }, + { + "start": 22554.68, + "end": 22557.58, + "probability": 0.7639 + }, + { + "start": 22557.96, + "end": 22559.19, + "probability": 0.7982 + }, + { + "start": 22560.26, + "end": 22563.77, + "probability": 0.8695 + }, + { + "start": 22565.1, + "end": 22569.14, + "probability": 0.9792 + }, + { + "start": 22572.22, + "end": 22574.84, + "probability": 0.9893 + }, + { + "start": 22576.26, + "end": 22577.03, + "probability": 0.9961 + }, + { + "start": 22578.1, + "end": 22587.56, + "probability": 0.9725 + }, + { + "start": 22587.6, + "end": 22591.04, + "probability": 0.9471 + }, + { + "start": 22591.2, + "end": 22594.5, + "probability": 0.9893 + }, + { + "start": 22596.14, + "end": 22598.32, + "probability": 0.991 + }, + { + "start": 22599.52, + "end": 22601.14, + "probability": 0.7927 + }, + { + "start": 22602.14, + "end": 22604.76, + "probability": 0.9518 + }, + { + "start": 22605.7, + "end": 22608.68, + "probability": 0.9831 + }, + { + "start": 22610.52, + "end": 22612.16, + "probability": 0.993 + }, + { + "start": 22614.04, + "end": 22619.56, + "probability": 0.9651 + }, + { + "start": 22621.32, + "end": 22622.92, + "probability": 0.5943 + }, + { + "start": 22623.6, + "end": 22624.62, + "probability": 0.8011 + }, + { + "start": 22625.76, + "end": 22630.08, + "probability": 0.912 + }, + { + "start": 22630.62, + "end": 22634.2, + "probability": 0.8475 + }, + { + "start": 22635.18, + "end": 22637.16, + "probability": 0.6164 + }, + { + "start": 22637.58, + "end": 22639.38, + "probability": 0.6937 + }, + { + "start": 22640.08, + "end": 22644.38, + "probability": 0.8136 + }, + { + "start": 22645.52, + "end": 22647.58, + "probability": 0.7593 + }, + { + "start": 22648.3, + "end": 22649.96, + "probability": 0.9919 + }, + { + "start": 22650.5, + "end": 22654.88, + "probability": 0.9244 + }, + { + "start": 22655.62, + "end": 22657.0, + "probability": 0.9565 + }, + { + "start": 22658.14, + "end": 22660.42, + "probability": 0.879 + }, + { + "start": 22660.98, + "end": 22661.98, + "probability": 0.9166 + }, + { + "start": 22663.5, + "end": 22667.08, + "probability": 0.9334 + }, + { + "start": 22667.84, + "end": 22671.08, + "probability": 0.8585 + }, + { + "start": 22671.86, + "end": 22675.98, + "probability": 0.9896 + }, + { + "start": 22676.02, + "end": 22676.7, + "probability": 0.8046 + }, + { + "start": 22677.88, + "end": 22678.52, + "probability": 0.7651 + }, + { + "start": 22682.12, + "end": 22684.46, + "probability": 0.9797 + }, + { + "start": 22685.3, + "end": 22689.02, + "probability": 0.9956 + }, + { + "start": 22691.08, + "end": 22694.12, + "probability": 0.8732 + }, + { + "start": 22695.18, + "end": 22699.68, + "probability": 0.9819 + }, + { + "start": 22699.68, + "end": 22704.08, + "probability": 0.8023 + }, + { + "start": 22704.74, + "end": 22707.07, + "probability": 0.9557 + }, + { + "start": 22708.54, + "end": 22710.52, + "probability": 0.9398 + }, + { + "start": 22712.0, + "end": 22715.16, + "probability": 0.856 + }, + { + "start": 22716.06, + "end": 22717.76, + "probability": 0.9923 + }, + { + "start": 22719.8, + "end": 22721.32, + "probability": 0.7571 + }, + { + "start": 22721.58, + "end": 22724.06, + "probability": 0.859 + }, + { + "start": 22724.58, + "end": 22726.98, + "probability": 0.9921 + }, + { + "start": 22727.82, + "end": 22732.54, + "probability": 0.9133 + }, + { + "start": 22734.42, + "end": 22735.38, + "probability": 0.7869 + }, + { + "start": 22735.84, + "end": 22736.71, + "probability": 0.2589 + }, + { + "start": 22737.06, + "end": 22740.12, + "probability": 0.9808 + }, + { + "start": 22740.12, + "end": 22743.08, + "probability": 0.9799 + }, + { + "start": 22744.54, + "end": 22747.12, + "probability": 0.9765 + }, + { + "start": 22747.68, + "end": 22748.62, + "probability": 0.7351 + }, + { + "start": 22749.26, + "end": 22750.84, + "probability": 0.9363 + }, + { + "start": 22750.94, + "end": 22754.76, + "probability": 0.8628 + }, + { + "start": 22754.86, + "end": 22755.76, + "probability": 0.9109 + }, + { + "start": 22756.24, + "end": 22762.24, + "probability": 0.9397 + }, + { + "start": 22762.48, + "end": 22764.08, + "probability": 0.7565 + }, + { + "start": 22765.46, + "end": 22766.86, + "probability": 0.6743 + }, + { + "start": 22767.72, + "end": 22769.3, + "probability": 0.8262 + }, + { + "start": 22769.9, + "end": 22771.5, + "probability": 0.6807 + }, + { + "start": 22772.52, + "end": 22773.8, + "probability": 0.8357 + }, + { + "start": 22774.78, + "end": 22775.8, + "probability": 0.9266 + }, + { + "start": 22776.82, + "end": 22779.88, + "probability": 0.9819 + }, + { + "start": 22781.02, + "end": 22782.06, + "probability": 0.6651 + }, + { + "start": 22783.82, + "end": 22784.5, + "probability": 0.8687 + }, + { + "start": 22786.96, + "end": 22787.8, + "probability": 0.9557 + }, + { + "start": 22789.48, + "end": 22790.12, + "probability": 0.5579 + }, + { + "start": 22792.74, + "end": 22792.94, + "probability": 0.5535 + }, + { + "start": 22794.8, + "end": 22795.16, + "probability": 0.803 + }, + { + "start": 22796.07, + "end": 22797.8, + "probability": 0.4931 + }, + { + "start": 22797.8, + "end": 22798.58, + "probability": 0.8657 + }, + { + "start": 22798.74, + "end": 22801.52, + "probability": 0.6292 + }, + { + "start": 22801.7, + "end": 22804.82, + "probability": 0.993 + }, + { + "start": 22805.78, + "end": 22806.86, + "probability": 0.7353 + }, + { + "start": 22807.04, + "end": 22807.88, + "probability": 0.213 + }, + { + "start": 22808.24, + "end": 22809.45, + "probability": 0.3239 + }, + { + "start": 22809.86, + "end": 22810.66, + "probability": 0.7519 + }, + { + "start": 22810.74, + "end": 22811.18, + "probability": 0.2614 + }, + { + "start": 22811.44, + "end": 22814.46, + "probability": 0.953 + }, + { + "start": 22816.18, + "end": 22817.28, + "probability": 0.9941 + }, + { + "start": 22817.96, + "end": 22820.58, + "probability": 0.8853 + }, + { + "start": 22822.16, + "end": 22825.86, + "probability": 0.7938 + }, + { + "start": 22826.96, + "end": 22829.66, + "probability": 0.8692 + }, + { + "start": 22830.22, + "end": 22831.72, + "probability": 0.9404 + }, + { + "start": 22832.34, + "end": 22835.9, + "probability": 0.834 + }, + { + "start": 22837.28, + "end": 22842.76, + "probability": 0.9753 + }, + { + "start": 22843.08, + "end": 22843.38, + "probability": 0.7613 + }, + { + "start": 22844.26, + "end": 22845.34, + "probability": 0.5801 + }, + { + "start": 22846.32, + "end": 22847.68, + "probability": 0.9424 + }, + { + "start": 22848.7, + "end": 22849.46, + "probability": 0.7713 + }, + { + "start": 22850.46, + "end": 22854.84, + "probability": 0.6858 + }, + { + "start": 22855.52, + "end": 22858.1, + "probability": 0.9744 + }, + { + "start": 22859.8, + "end": 22861.6, + "probability": 0.9976 + }, + { + "start": 22862.14, + "end": 22864.18, + "probability": 0.9668 + }, + { + "start": 22864.6, + "end": 22869.98, + "probability": 0.9927 + }, + { + "start": 22870.38, + "end": 22871.2, + "probability": 0.7707 + }, + { + "start": 22871.58, + "end": 22872.82, + "probability": 0.8786 + }, + { + "start": 22872.88, + "end": 22873.86, + "probability": 0.4913 + }, + { + "start": 22874.4, + "end": 22875.74, + "probability": 0.866 + }, + { + "start": 22875.88, + "end": 22876.32, + "probability": 0.7496 + }, + { + "start": 22877.04, + "end": 22880.48, + "probability": 0.6376 + }, + { + "start": 22881.12, + "end": 22881.12, + "probability": 0.0203 + }, + { + "start": 22881.12, + "end": 22881.12, + "probability": 0.2287 + }, + { + "start": 22881.12, + "end": 22881.12, + "probability": 0.0104 + }, + { + "start": 22881.12, + "end": 22883.42, + "probability": 0.7051 + }, + { + "start": 22883.5, + "end": 22889.04, + "probability": 0.8714 + }, + { + "start": 22889.12, + "end": 22891.32, + "probability": 0.7079 + }, + { + "start": 22891.92, + "end": 22896.12, + "probability": 0.9939 + }, + { + "start": 22896.64, + "end": 22897.16, + "probability": 0.0498 + }, + { + "start": 22897.68, + "end": 22897.78, + "probability": 0.0652 + }, + { + "start": 22897.78, + "end": 22898.96, + "probability": 0.8389 + }, + { + "start": 22899.26, + "end": 22900.45, + "probability": 0.0949 + }, + { + "start": 22901.06, + "end": 22901.06, + "probability": 0.1096 + }, + { + "start": 22901.06, + "end": 22904.88, + "probability": 0.8096 + }, + { + "start": 22904.94, + "end": 22907.12, + "probability": 0.9866 + }, + { + "start": 22907.32, + "end": 22907.82, + "probability": 0.0159 + }, + { + "start": 22907.82, + "end": 22907.98, + "probability": 0.1018 + }, + { + "start": 22908.24, + "end": 22911.72, + "probability": 0.8938 + }, + { + "start": 22911.9, + "end": 22913.75, + "probability": 0.927 + }, + { + "start": 22914.76, + "end": 22919.4, + "probability": 0.9673 + }, + { + "start": 22919.52, + "end": 22920.96, + "probability": 0.96 + }, + { + "start": 22921.08, + "end": 22923.64, + "probability": 0.7675 + }, + { + "start": 22923.72, + "end": 22925.32, + "probability": 0.766 + }, + { + "start": 22925.44, + "end": 22926.1, + "probability": 0.6303 + }, + { + "start": 22926.2, + "end": 22926.6, + "probability": 0.8265 + }, + { + "start": 22928.0, + "end": 22929.28, + "probability": 0.7081 + }, + { + "start": 22929.4, + "end": 22930.54, + "probability": 0.6249 + }, + { + "start": 22930.66, + "end": 22932.32, + "probability": 0.9857 + }, + { + "start": 22932.72, + "end": 22933.56, + "probability": 0.8489 + }, + { + "start": 22934.56, + "end": 22935.74, + "probability": 0.6941 + }, + { + "start": 22936.28, + "end": 22936.44, + "probability": 0.245 + }, + { + "start": 22936.98, + "end": 22938.86, + "probability": 0.229 + }, + { + "start": 22939.22, + "end": 22940.16, + "probability": 0.9242 + }, + { + "start": 22940.3, + "end": 22941.1, + "probability": 0.8039 + }, + { + "start": 22941.2, + "end": 22941.86, + "probability": 0.8544 + }, + { + "start": 22943.04, + "end": 22943.56, + "probability": 0.6612 + }, + { + "start": 22943.7, + "end": 22944.47, + "probability": 0.7946 + }, + { + "start": 22946.72, + "end": 22952.1, + "probability": 0.9614 + }, + { + "start": 22955.76, + "end": 22958.38, + "probability": 0.9372 + }, + { + "start": 22958.72, + "end": 22962.92, + "probability": 0.9718 + }, + { + "start": 22963.14, + "end": 22967.28, + "probability": 0.8439 + }, + { + "start": 22967.9, + "end": 22969.78, + "probability": 0.9966 + }, + { + "start": 22970.2, + "end": 22971.14, + "probability": 0.8183 + }, + { + "start": 22973.48, + "end": 22974.52, + "probability": 0.4575 + }, + { + "start": 22975.84, + "end": 22976.56, + "probability": 0.8999 + }, + { + "start": 22977.98, + "end": 22980.86, + "probability": 0.9242 + }, + { + "start": 22982.18, + "end": 22986.02, + "probability": 0.8346 + }, + { + "start": 22987.06, + "end": 22989.54, + "probability": 0.9743 + }, + { + "start": 22990.28, + "end": 22993.32, + "probability": 0.9846 + }, + { + "start": 22993.68, + "end": 22996.0, + "probability": 0.7067 + }, + { + "start": 22996.82, + "end": 22999.14, + "probability": 0.9324 + }, + { + "start": 22999.8, + "end": 23001.96, + "probability": 0.9875 + }, + { + "start": 23002.54, + "end": 23007.66, + "probability": 0.6962 + }, + { + "start": 23007.92, + "end": 23009.18, + "probability": 0.9976 + }, + { + "start": 23009.82, + "end": 23011.82, + "probability": 0.9871 + }, + { + "start": 23011.9, + "end": 23015.3, + "probability": 0.9047 + }, + { + "start": 23015.82, + "end": 23018.44, + "probability": 0.9484 + }, + { + "start": 23018.66, + "end": 23023.76, + "probability": 0.9598 + }, + { + "start": 23024.46, + "end": 23034.36, + "probability": 0.9541 + }, + { + "start": 23034.92, + "end": 23044.78, + "probability": 0.978 + }, + { + "start": 23045.76, + "end": 23049.22, + "probability": 0.7221 + }, + { + "start": 23049.8, + "end": 23057.52, + "probability": 0.8378 + }, + { + "start": 23058.35, + "end": 23061.72, + "probability": 0.9907 + }, + { + "start": 23061.86, + "end": 23064.7, + "probability": 0.9943 + }, + { + "start": 23064.98, + "end": 23070.24, + "probability": 0.9485 + }, + { + "start": 23070.82, + "end": 23072.82, + "probability": 0.9956 + }, + { + "start": 23073.36, + "end": 23073.94, + "probability": 0.9935 + }, + { + "start": 23074.46, + "end": 23080.28, + "probability": 0.9375 + }, + { + "start": 23081.0, + "end": 23086.18, + "probability": 0.9895 + }, + { + "start": 23086.92, + "end": 23088.9, + "probability": 0.8549 + }, + { + "start": 23089.94, + "end": 23092.28, + "probability": 0.6142 + }, + { + "start": 23092.86, + "end": 23095.6, + "probability": 0.9003 + }, + { + "start": 23096.76, + "end": 23097.32, + "probability": 0.7168 + }, + { + "start": 23098.32, + "end": 23101.18, + "probability": 0.9046 + }, + { + "start": 23101.9, + "end": 23107.82, + "probability": 0.9543 + }, + { + "start": 23108.76, + "end": 23109.76, + "probability": 0.9834 + }, + { + "start": 23111.22, + "end": 23113.32, + "probability": 0.9893 + }, + { + "start": 23114.66, + "end": 23117.7, + "probability": 0.9837 + }, + { + "start": 23118.62, + "end": 23118.64, + "probability": 0.6992 + }, + { + "start": 23119.18, + "end": 23120.22, + "probability": 0.9059 + }, + { + "start": 23121.06, + "end": 23123.86, + "probability": 0.9486 + }, + { + "start": 23124.56, + "end": 23125.86, + "probability": 0.944 + }, + { + "start": 23126.74, + "end": 23127.84, + "probability": 0.8279 + }, + { + "start": 23128.82, + "end": 23132.02, + "probability": 0.9585 + }, + { + "start": 23132.7, + "end": 23134.92, + "probability": 0.9954 + }, + { + "start": 23135.62, + "end": 23140.0, + "probability": 0.9391 + }, + { + "start": 23140.2, + "end": 23141.78, + "probability": 0.966 + }, + { + "start": 23141.94, + "end": 23141.96, + "probability": 0.3779 + }, + { + "start": 23142.48, + "end": 23145.94, + "probability": 0.9973 + }, + { + "start": 23146.84, + "end": 23148.72, + "probability": 0.9788 + }, + { + "start": 23149.14, + "end": 23153.36, + "probability": 0.9044 + }, + { + "start": 23153.94, + "end": 23156.77, + "probability": 0.9538 + }, + { + "start": 23157.64, + "end": 23158.72, + "probability": 0.9857 + }, + { + "start": 23159.34, + "end": 23161.25, + "probability": 0.9578 + }, + { + "start": 23162.46, + "end": 23165.18, + "probability": 0.6759 + }, + { + "start": 23165.98, + "end": 23171.04, + "probability": 0.7883 + }, + { + "start": 23171.76, + "end": 23175.12, + "probability": 0.755 + }, + { + "start": 23175.3, + "end": 23180.1, + "probability": 0.9797 + }, + { + "start": 23181.16, + "end": 23184.12, + "probability": 0.8762 + }, + { + "start": 23184.72, + "end": 23186.0, + "probability": 0.9006 + }, + { + "start": 23186.64, + "end": 23199.92, + "probability": 0.9494 + }, + { + "start": 23200.26, + "end": 23202.44, + "probability": 0.9087 + }, + { + "start": 23202.8, + "end": 23203.58, + "probability": 0.9688 + }, + { + "start": 23203.64, + "end": 23203.94, + "probability": 0.795 + }, + { + "start": 23203.98, + "end": 23204.5, + "probability": 0.8502 + }, + { + "start": 23204.91, + "end": 23210.78, + "probability": 0.9586 + }, + { + "start": 23211.3, + "end": 23215.18, + "probability": 0.9545 + }, + { + "start": 23215.84, + "end": 23220.74, + "probability": 0.9933 + }, + { + "start": 23221.9, + "end": 23222.74, + "probability": 0.7756 + }, + { + "start": 23223.2, + "end": 23226.1, + "probability": 0.8577 + }, + { + "start": 23226.14, + "end": 23228.26, + "probability": 0.9766 + }, + { + "start": 23228.36, + "end": 23229.46, + "probability": 0.7936 + }, + { + "start": 23229.98, + "end": 23232.5, + "probability": 0.766 + }, + { + "start": 23232.56, + "end": 23235.0, + "probability": 0.6665 + }, + { + "start": 23235.74, + "end": 23236.28, + "probability": 0.6631 + }, + { + "start": 23236.86, + "end": 23238.61, + "probability": 0.1304 + }, + { + "start": 23239.34, + "end": 23243.3, + "probability": 0.3362 + }, + { + "start": 23244.5, + "end": 23245.32, + "probability": 0.2879 + }, + { + "start": 23245.84, + "end": 23247.24, + "probability": 0.9111 + }, + { + "start": 23247.8, + "end": 23249.78, + "probability": 0.6273 + }, + { + "start": 23250.84, + "end": 23252.2, + "probability": 0.8381 + }, + { + "start": 23253.26, + "end": 23255.44, + "probability": 0.8152 + }, + { + "start": 23255.96, + "end": 23260.24, + "probability": 0.6845 + }, + { + "start": 23260.58, + "end": 23264.9, + "probability": 0.8218 + }, + { + "start": 23265.32, + "end": 23266.1, + "probability": 0.3161 + }, + { + "start": 23266.3, + "end": 23267.36, + "probability": 0.862 + }, + { + "start": 23267.86, + "end": 23268.4, + "probability": 0.6097 + }, + { + "start": 23268.6, + "end": 23270.7, + "probability": 0.617 + }, + { + "start": 23271.26, + "end": 23274.64, + "probability": 0.7799 + }, + { + "start": 23275.06, + "end": 23275.42, + "probability": 0.272 + }, + { + "start": 23275.78, + "end": 23278.66, + "probability": 0.1414 + }, + { + "start": 23279.16, + "end": 23281.48, + "probability": 0.8115 + }, + { + "start": 23282.52, + "end": 23283.06, + "probability": 0.5635 + }, + { + "start": 23283.8, + "end": 23284.92, + "probability": 0.4104 + }, + { + "start": 23285.04, + "end": 23288.18, + "probability": 0.8369 + }, + { + "start": 23290.58, + "end": 23292.42, + "probability": 0.9673 + }, + { + "start": 23293.14, + "end": 23294.14, + "probability": 0.4774 + }, + { + "start": 23295.06, + "end": 23297.1, + "probability": 0.827 + }, + { + "start": 23298.08, + "end": 23303.52, + "probability": 0.9683 + }, + { + "start": 23303.8, + "end": 23307.8, + "probability": 0.9763 + }, + { + "start": 23308.06, + "end": 23309.81, + "probability": 0.9688 + }, + { + "start": 23310.36, + "end": 23311.2, + "probability": 0.3997 + }, + { + "start": 23312.32, + "end": 23313.28, + "probability": 0.765 + }, + { + "start": 23314.06, + "end": 23316.77, + "probability": 0.8552 + }, + { + "start": 23317.62, + "end": 23319.82, + "probability": 0.9497 + }, + { + "start": 23320.74, + "end": 23326.08, + "probability": 0.9917 + }, + { + "start": 23327.02, + "end": 23327.7, + "probability": 0.482 + }, + { + "start": 23327.9, + "end": 23328.62, + "probability": 0.9516 + }, + { + "start": 23329.12, + "end": 23331.9, + "probability": 0.9823 + }, + { + "start": 23331.98, + "end": 23332.36, + "probability": 0.2646 + }, + { + "start": 23332.54, + "end": 23336.58, + "probability": 0.8652 + }, + { + "start": 23336.86, + "end": 23338.94, + "probability": 0.9426 + }, + { + "start": 23339.54, + "end": 23343.58, + "probability": 0.9686 + }, + { + "start": 23344.14, + "end": 23349.32, + "probability": 0.9937 + }, + { + "start": 23350.04, + "end": 23351.22, + "probability": 0.8173 + }, + { + "start": 23352.66, + "end": 23354.92, + "probability": 0.9734 + }, + { + "start": 23355.82, + "end": 23357.54, + "probability": 0.6669 + }, + { + "start": 23358.26, + "end": 23365.71, + "probability": 0.9769 + }, + { + "start": 23365.92, + "end": 23366.34, + "probability": 0.5456 + }, + { + "start": 23366.54, + "end": 23367.34, + "probability": 0.7154 + }, + { + "start": 23368.1, + "end": 23371.14, + "probability": 0.8402 + }, + { + "start": 23371.44, + "end": 23373.54, + "probability": 0.5438 + }, + { + "start": 23373.54, + "end": 23375.2, + "probability": 0.4751 + }, + { + "start": 23375.4, + "end": 23377.56, + "probability": 0.612 + }, + { + "start": 23378.46, + "end": 23380.72, + "probability": 0.8691 + }, + { + "start": 23381.34, + "end": 23383.88, + "probability": 0.87 + }, + { + "start": 23384.8, + "end": 23387.12, + "probability": 0.9585 + }, + { + "start": 23387.62, + "end": 23387.64, + "probability": 0.0083 + }, + { + "start": 23387.64, + "end": 23391.58, + "probability": 0.8968 + }, + { + "start": 23392.3, + "end": 23396.28, + "probability": 0.8516 + }, + { + "start": 23396.6, + "end": 23402.2, + "probability": 0.6693 + }, + { + "start": 23402.86, + "end": 23405.22, + "probability": 0.8392 + }, + { + "start": 23406.4, + "end": 23408.1, + "probability": 0.9918 + }, + { + "start": 23408.66, + "end": 23409.5, + "probability": 0.7686 + }, + { + "start": 23410.44, + "end": 23411.32, + "probability": 0.9924 + }, + { + "start": 23411.9, + "end": 23414.46, + "probability": 0.9983 + }, + { + "start": 23415.22, + "end": 23417.62, + "probability": 0.9802 + }, + { + "start": 23417.72, + "end": 23423.38, + "probability": 0.8834 + }, + { + "start": 23423.8, + "end": 23429.34, + "probability": 0.9712 + }, + { + "start": 23429.34, + "end": 23432.68, + "probability": 0.9963 + }, + { + "start": 23433.26, + "end": 23439.92, + "probability": 0.9741 + }, + { + "start": 23440.92, + "end": 23444.12, + "probability": 0.854 + }, + { + "start": 23444.12, + "end": 23444.84, + "probability": 0.4746 + }, + { + "start": 23445.58, + "end": 23451.0, + "probability": 0.9952 + }, + { + "start": 23452.28, + "end": 23460.96, + "probability": 0.9982 + }, + { + "start": 23462.08, + "end": 23466.1, + "probability": 0.9975 + }, + { + "start": 23467.32, + "end": 23468.54, + "probability": 0.862 + }, + { + "start": 23469.22, + "end": 23472.62, + "probability": 0.9883 + }, + { + "start": 23473.06, + "end": 23477.06, + "probability": 0.9142 + }, + { + "start": 23477.54, + "end": 23479.2, + "probability": 0.9967 + }, + { + "start": 23479.3, + "end": 23480.9, + "probability": 0.9443 + }, + { + "start": 23481.3, + "end": 23486.28, + "probability": 0.938 + }, + { + "start": 23487.22, + "end": 23491.12, + "probability": 0.9937 + }, + { + "start": 23491.64, + "end": 23494.24, + "probability": 0.9893 + }, + { + "start": 23494.88, + "end": 23496.5, + "probability": 0.8815 + }, + { + "start": 23499.52, + "end": 23502.44, + "probability": 0.6699 + }, + { + "start": 23503.96, + "end": 23506.82, + "probability": 0.9728 + }, + { + "start": 23506.82, + "end": 23510.88, + "probability": 0.9347 + }, + { + "start": 23511.44, + "end": 23513.76, + "probability": 0.8908 + }, + { + "start": 23513.76, + "end": 23517.04, + "probability": 0.8015 + }, + { + "start": 23517.62, + "end": 23517.84, + "probability": 0.2461 + }, + { + "start": 23518.04, + "end": 23521.86, + "probability": 0.9789 + }, + { + "start": 23522.18, + "end": 23524.28, + "probability": 0.9868 + }, + { + "start": 23524.94, + "end": 23530.3, + "probability": 0.9858 + }, + { + "start": 23530.36, + "end": 23531.1, + "probability": 0.7949 + }, + { + "start": 23531.22, + "end": 23531.46, + "probability": 0.7524 + }, + { + "start": 23532.08, + "end": 23536.14, + "probability": 0.9814 + }, + { + "start": 23537.32, + "end": 23542.26, + "probability": 0.9245 + }, + { + "start": 23542.38, + "end": 23545.76, + "probability": 0.9335 + }, + { + "start": 23546.44, + "end": 23550.88, + "probability": 0.9824 + }, + { + "start": 23551.38, + "end": 23556.0, + "probability": 0.7619 + }, + { + "start": 23556.34, + "end": 23556.76, + "probability": 0.8446 + }, + { + "start": 23558.14, + "end": 23559.62, + "probability": 0.6266 + }, + { + "start": 23560.8, + "end": 23561.88, + "probability": 0.8638 + }, + { + "start": 23563.12, + "end": 23566.22, + "probability": 0.9487 + }, + { + "start": 23567.52, + "end": 23572.04, + "probability": 0.995 + }, + { + "start": 23572.06, + "end": 23577.54, + "probability": 0.9761 + }, + { + "start": 23578.22, + "end": 23581.3, + "probability": 0.9941 + }, + { + "start": 23581.72, + "end": 23584.22, + "probability": 0.8531 + }, + { + "start": 23584.72, + "end": 23586.9, + "probability": 0.9774 + }, + { + "start": 23588.32, + "end": 23589.16, + "probability": 0.8385 + }, + { + "start": 23589.6, + "end": 23590.62, + "probability": 0.8578 + }, + { + "start": 23591.1, + "end": 23593.52, + "probability": 0.8453 + }, + { + "start": 23594.02, + "end": 23597.52, + "probability": 0.8985 + }, + { + "start": 23597.52, + "end": 23602.42, + "probability": 0.9821 + }, + { + "start": 23602.62, + "end": 23603.8, + "probability": 0.4786 + }, + { + "start": 23604.24, + "end": 23605.06, + "probability": 0.8534 + }, + { + "start": 23605.46, + "end": 23606.2, + "probability": 0.8921 + }, + { + "start": 23608.5, + "end": 23613.32, + "probability": 0.9854 + }, + { + "start": 23614.12, + "end": 23620.02, + "probability": 0.9858 + }, + { + "start": 23620.04, + "end": 23625.96, + "probability": 0.9983 + }, + { + "start": 23626.58, + "end": 23628.3, + "probability": 0.9922 + }, + { + "start": 23628.78, + "end": 23630.48, + "probability": 0.9434 + }, + { + "start": 23631.44, + "end": 23634.1, + "probability": 0.8718 + }, + { + "start": 23634.62, + "end": 23636.22, + "probability": 0.9918 + }, + { + "start": 23636.76, + "end": 23640.16, + "probability": 0.9799 + }, + { + "start": 23640.72, + "end": 23643.08, + "probability": 0.8764 + }, + { + "start": 23643.5, + "end": 23646.98, + "probability": 0.9707 + }, + { + "start": 23646.98, + "end": 23651.94, + "probability": 0.9337 + }, + { + "start": 23652.66, + "end": 23658.28, + "probability": 0.9866 + }, + { + "start": 23658.4, + "end": 23666.08, + "probability": 0.9954 + }, + { + "start": 23667.2, + "end": 23667.52, + "probability": 0.2924 + }, + { + "start": 23667.74, + "end": 23673.28, + "probability": 0.9238 + }, + { + "start": 23673.82, + "end": 23674.94, + "probability": 0.895 + }, + { + "start": 23675.06, + "end": 23675.46, + "probability": 0.6582 + }, + { + "start": 23675.52, + "end": 23676.74, + "probability": 0.9862 + }, + { + "start": 23677.22, + "end": 23678.98, + "probability": 0.967 + }, + { + "start": 23679.58, + "end": 23682.96, + "probability": 0.7409 + }, + { + "start": 23684.32, + "end": 23686.1, + "probability": 0.9628 + }, + { + "start": 23686.76, + "end": 23686.94, + "probability": 0.3068 + }, + { + "start": 23686.94, + "end": 23687.57, + "probability": 0.9274 + }, + { + "start": 23687.7, + "end": 23690.38, + "probability": 0.7964 + }, + { + "start": 23690.38, + "end": 23694.02, + "probability": 0.9215 + }, + { + "start": 23694.84, + "end": 23700.6, + "probability": 0.7036 + }, + { + "start": 23701.74, + "end": 23706.28, + "probability": 0.9946 + }, + { + "start": 23707.14, + "end": 23708.24, + "probability": 0.8665 + }, + { + "start": 23708.48, + "end": 23711.75, + "probability": 0.9143 + }, + { + "start": 23711.93, + "end": 23715.13, + "probability": 0.9867 + }, + { + "start": 23715.89, + "end": 23717.71, + "probability": 0.9344 + }, + { + "start": 23718.26, + "end": 23722.35, + "probability": 0.7881 + }, + { + "start": 23724.73, + "end": 23726.47, + "probability": 0.7857 + }, + { + "start": 23727.97, + "end": 23731.17, + "probability": 0.9542 + }, + { + "start": 23731.33, + "end": 23734.33, + "probability": 0.8619 + }, + { + "start": 23744.23, + "end": 23745.19, + "probability": 0.3783 + }, + { + "start": 23745.23, + "end": 23746.43, + "probability": 0.4789 + }, + { + "start": 23747.11, + "end": 23750.14, + "probability": 0.0853 + }, + { + "start": 23751.05, + "end": 23754.13, + "probability": 0.0865 + }, + { + "start": 23759.67, + "end": 23761.79, + "probability": 0.1254 + }, + { + "start": 23762.31, + "end": 23764.37, + "probability": 0.0246 + }, + { + "start": 23770.53, + "end": 23770.97, + "probability": 0.168 + }, + { + "start": 23780.07, + "end": 23780.79, + "probability": 0.1599 + }, + { + "start": 23782.35, + "end": 23783.81, + "probability": 0.0669 + }, + { + "start": 23784.81, + "end": 23787.29, + "probability": 0.028 + }, + { + "start": 23787.43, + "end": 23790.93, + "probability": 0.0513 + }, + { + "start": 23791.97, + "end": 23793.21, + "probability": 0.1459 + }, + { + "start": 23798.99, + "end": 23802.31, + "probability": 0.1281 + }, + { + "start": 23805.91, + "end": 23807.43, + "probability": 0.1074 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.0, + "end": 23848.0, + "probability": 0.0 + }, + { + "start": 23848.1, + "end": 23848.4, + "probability": 0.186 + }, + { + "start": 23848.4, + "end": 23848.4, + "probability": 0.0802 + }, + { + "start": 23848.4, + "end": 23848.4, + "probability": 0.0929 + }, + { + "start": 23848.4, + "end": 23848.92, + "probability": 0.1945 + }, + { + "start": 23849.0, + "end": 23854.46, + "probability": 0.516 + }, + { + "start": 23854.72, + "end": 23857.38, + "probability": 0.9548 + }, + { + "start": 23858.86, + "end": 23860.5, + "probability": 0.6554 + }, + { + "start": 23860.5, + "end": 23861.28, + "probability": 0.6819 + }, + { + "start": 23861.42, + "end": 23862.0, + "probability": 0.7175 + }, + { + "start": 23862.28, + "end": 23862.42, + "probability": 0.1139 + }, + { + "start": 23862.56, + "end": 23864.62, + "probability": 0.1803 + }, + { + "start": 23864.82, + "end": 23866.82, + "probability": 0.5696 + }, + { + "start": 23866.96, + "end": 23867.34, + "probability": 0.0417 + }, + { + "start": 23867.34, + "end": 23869.44, + "probability": 0.3632 + }, + { + "start": 23870.04, + "end": 23872.54, + "probability": 0.9583 + }, + { + "start": 23872.78, + "end": 23873.32, + "probability": 0.4769 + }, + { + "start": 23873.36, + "end": 23876.21, + "probability": 0.4575 + }, + { + "start": 23876.64, + "end": 23878.16, + "probability": 0.0461 + }, + { + "start": 23878.82, + "end": 23879.16, + "probability": 0.6974 + }, + { + "start": 23879.84, + "end": 23881.0, + "probability": 0.5509 + }, + { + "start": 23881.18, + "end": 23881.36, + "probability": 0.4703 + }, + { + "start": 23881.46, + "end": 23883.26, + "probability": 0.9775 + }, + { + "start": 23883.26, + "end": 23887.46, + "probability": 0.8364 + }, + { + "start": 23887.46, + "end": 23888.04, + "probability": 0.8503 + }, + { + "start": 23888.04, + "end": 23893.32, + "probability": 0.996 + }, + { + "start": 23894.06, + "end": 23896.04, + "probability": 0.9561 + }, + { + "start": 23896.3, + "end": 23899.94, + "probability": 0.9974 + }, + { + "start": 23900.54, + "end": 23901.22, + "probability": 0.7049 + }, + { + "start": 23901.24, + "end": 23902.5, + "probability": 0.6232 + }, + { + "start": 23903.62, + "end": 23906.1, + "probability": 0.8952 + }, + { + "start": 23906.84, + "end": 23909.88, + "probability": 0.999 + }, + { + "start": 23910.64, + "end": 23911.94, + "probability": 0.9703 + }, + { + "start": 23913.22, + "end": 23915.76, + "probability": 0.9951 + }, + { + "start": 23917.72, + "end": 23924.36, + "probability": 0.9974 + }, + { + "start": 23925.18, + "end": 23926.46, + "probability": 0.9821 + }, + { + "start": 23928.12, + "end": 23932.48, + "probability": 0.9868 + }, + { + "start": 23932.78, + "end": 23936.24, + "probability": 0.9996 + }, + { + "start": 23938.01, + "end": 23941.28, + "probability": 0.9857 + }, + { + "start": 23941.36, + "end": 23943.02, + "probability": 0.9894 + }, + { + "start": 23945.19, + "end": 23950.1, + "probability": 0.8776 + }, + { + "start": 23950.14, + "end": 23951.68, + "probability": 0.9941 + }, + { + "start": 23951.99, + "end": 23954.3, + "probability": 0.9939 + }, + { + "start": 23954.82, + "end": 23956.88, + "probability": 0.9861 + }, + { + "start": 23957.0, + "end": 23959.0, + "probability": 0.9932 + }, + { + "start": 23959.7, + "end": 23965.76, + "probability": 0.9399 + }, + { + "start": 23966.4, + "end": 23969.02, + "probability": 0.9526 + }, + { + "start": 23969.12, + "end": 23972.89, + "probability": 0.9842 + }, + { + "start": 23973.14, + "end": 23974.56, + "probability": 0.8889 + }, + { + "start": 23975.28, + "end": 23977.14, + "probability": 0.8274 + }, + { + "start": 23978.4, + "end": 23981.02, + "probability": 0.0312 + }, + { + "start": 23982.06, + "end": 23983.14, + "probability": 0.1214 + }, + { + "start": 23983.14, + "end": 23983.14, + "probability": 0.1212 + }, + { + "start": 23983.14, + "end": 23983.14, + "probability": 0.4041 + }, + { + "start": 23983.14, + "end": 23983.14, + "probability": 0.0246 + }, + { + "start": 23983.14, + "end": 23984.85, + "probability": 0.1067 + }, + { + "start": 23985.8, + "end": 23986.28, + "probability": 0.7348 + }, + { + "start": 23986.46, + "end": 23988.7, + "probability": 0.9211 + }, + { + "start": 23989.16, + "end": 23989.82, + "probability": 0.8523 + }, + { + "start": 23989.96, + "end": 23990.64, + "probability": 0.9232 + }, + { + "start": 23992.98, + "end": 23995.24, + "probability": 0.9876 + }, + { + "start": 23995.76, + "end": 23998.22, + "probability": 0.5889 + }, + { + "start": 23998.72, + "end": 24002.88, + "probability": 0.9835 + }, + { + "start": 24003.76, + "end": 24004.44, + "probability": 0.767 + }, + { + "start": 24004.92, + "end": 24006.69, + "probability": 0.9172 + }, + { + "start": 24006.94, + "end": 24007.72, + "probability": 0.8925 + }, + { + "start": 24008.06, + "end": 24012.8, + "probability": 0.6505 + }, + { + "start": 24013.32, + "end": 24016.28, + "probability": 0.8165 + }, + { + "start": 24016.8, + "end": 24021.92, + "probability": 0.951 + }, + { + "start": 24022.58, + "end": 24023.44, + "probability": 0.4245 + }, + { + "start": 24024.82, + "end": 24026.18, + "probability": 0.8671 + }, + { + "start": 24028.88, + "end": 24030.46, + "probability": 0.2514 + }, + { + "start": 24030.48, + "end": 24030.48, + "probability": 0.6402 + }, + { + "start": 24030.64, + "end": 24031.04, + "probability": 0.5666 + }, + { + "start": 24031.18, + "end": 24032.96, + "probability": 0.684 + }, + { + "start": 24033.48, + "end": 24037.18, + "probability": 0.9368 + }, + { + "start": 24037.5, + "end": 24038.48, + "probability": 0.4408 + }, + { + "start": 24038.72, + "end": 24041.16, + "probability": 0.7917 + }, + { + "start": 24041.88, + "end": 24047.54, + "probability": 0.9565 + }, + { + "start": 24047.94, + "end": 24051.4, + "probability": 0.9792 + }, + { + "start": 24051.58, + "end": 24057.81, + "probability": 0.9386 + }, + { + "start": 24058.54, + "end": 24063.68, + "probability": 0.8303 + }, + { + "start": 24064.28, + "end": 24068.36, + "probability": 0.8031 + }, + { + "start": 24068.36, + "end": 24074.02, + "probability": 0.8832 + }, + { + "start": 24074.9, + "end": 24076.5, + "probability": 0.7541 + }, + { + "start": 24076.58, + "end": 24078.08, + "probability": 0.6173 + }, + { + "start": 24078.24, + "end": 24084.34, + "probability": 0.9673 + }, + { + "start": 24085.36, + "end": 24087.02, + "probability": 0.7749 + }, + { + "start": 24087.24, + "end": 24090.04, + "probability": 0.901 + }, + { + "start": 24090.16, + "end": 24092.64, + "probability": 0.9387 + }, + { + "start": 24093.24, + "end": 24096.3, + "probability": 0.9893 + }, + { + "start": 24096.48, + "end": 24102.0, + "probability": 0.9965 + }, + { + "start": 24102.62, + "end": 24103.14, + "probability": 0.9966 + }, + { + "start": 24104.1, + "end": 24108.28, + "probability": 0.9144 + }, + { + "start": 24108.94, + "end": 24112.9, + "probability": 0.9854 + }, + { + "start": 24113.48, + "end": 24115.44, + "probability": 0.9667 + }, + { + "start": 24116.68, + "end": 24118.02, + "probability": 0.6707 + }, + { + "start": 24119.02, + "end": 24121.44, + "probability": 0.9827 + }, + { + "start": 24122.2, + "end": 24127.1, + "probability": 0.9101 + }, + { + "start": 24127.56, + "end": 24129.12, + "probability": 0.7319 + }, + { + "start": 24129.64, + "end": 24134.42, + "probability": 0.9653 + }, + { + "start": 24135.22, + "end": 24136.6, + "probability": 0.7577 + }, + { + "start": 24136.7, + "end": 24137.74, + "probability": 0.4979 + }, + { + "start": 24138.12, + "end": 24140.98, + "probability": 0.8718 + }, + { + "start": 24140.98, + "end": 24144.28, + "probability": 0.9958 + }, + { + "start": 24144.66, + "end": 24145.86, + "probability": 0.8771 + }, + { + "start": 24146.18, + "end": 24148.04, + "probability": 0.714 + }, + { + "start": 24148.46, + "end": 24153.12, + "probability": 0.9828 + }, + { + "start": 24153.28, + "end": 24154.32, + "probability": 0.8225 + }, + { + "start": 24154.96, + "end": 24156.34, + "probability": 0.9125 + }, + { + "start": 24157.64, + "end": 24159.24, + "probability": 0.9925 + }, + { + "start": 24160.4, + "end": 24166.1, + "probability": 0.8891 + }, + { + "start": 24166.94, + "end": 24169.0, + "probability": 0.9009 + }, + { + "start": 24169.5, + "end": 24170.82, + "probability": 0.9948 + }, + { + "start": 24171.0, + "end": 24174.26, + "probability": 0.9302 + }, + { + "start": 24174.68, + "end": 24175.68, + "probability": 0.9953 + }, + { + "start": 24176.4, + "end": 24179.98, + "probability": 0.9748 + }, + { + "start": 24180.44, + "end": 24184.44, + "probability": 0.9926 + }, + { + "start": 24185.54, + "end": 24185.68, + "probability": 0.7842 + }, + { + "start": 24185.7, + "end": 24186.16, + "probability": 0.8682 + }, + { + "start": 24186.24, + "end": 24187.18, + "probability": 0.4424 + }, + { + "start": 24187.22, + "end": 24188.02, + "probability": 0.6102 + }, + { + "start": 24188.34, + "end": 24192.38, + "probability": 0.9703 + }, + { + "start": 24192.54, + "end": 24193.04, + "probability": 0.2501 + }, + { + "start": 24193.28, + "end": 24196.18, + "probability": 0.9849 + }, + { + "start": 24196.44, + "end": 24198.66, + "probability": 0.9843 + }, + { + "start": 24199.1, + "end": 24203.18, + "probability": 0.8436 + }, + { + "start": 24203.24, + "end": 24206.68, + "probability": 0.9037 + }, + { + "start": 24207.2, + "end": 24211.15, + "probability": 0.7799 + }, + { + "start": 24211.34, + "end": 24213.07, + "probability": 0.7817 + }, + { + "start": 24213.96, + "end": 24215.48, + "probability": 0.5328 + }, + { + "start": 24215.86, + "end": 24217.76, + "probability": 0.9208 + }, + { + "start": 24218.16, + "end": 24219.01, + "probability": 0.9117 + }, + { + "start": 24219.84, + "end": 24220.94, + "probability": 0.9052 + }, + { + "start": 24221.36, + "end": 24227.16, + "probability": 0.9783 + }, + { + "start": 24228.1, + "end": 24229.48, + "probability": 0.7575 + }, + { + "start": 24229.52, + "end": 24233.24, + "probability": 0.9966 + }, + { + "start": 24233.28, + "end": 24236.56, + "probability": 0.9099 + }, + { + "start": 24236.56, + "end": 24242.26, + "probability": 0.9826 + }, + { + "start": 24242.26, + "end": 24244.54, + "probability": 0.9741 + }, + { + "start": 24244.58, + "end": 24245.1, + "probability": 0.8111 + }, + { + "start": 24245.18, + "end": 24247.42, + "probability": 0.9962 + }, + { + "start": 24247.87, + "end": 24251.22, + "probability": 0.9621 + }, + { + "start": 24251.74, + "end": 24259.3, + "probability": 0.9946 + }, + { + "start": 24259.98, + "end": 24264.98, + "probability": 0.9983 + }, + { + "start": 24265.84, + "end": 24268.51, + "probability": 0.9933 + }, + { + "start": 24268.94, + "end": 24271.58, + "probability": 0.9473 + }, + { + "start": 24272.48, + "end": 24274.5, + "probability": 0.7347 + }, + { + "start": 24274.52, + "end": 24275.14, + "probability": 0.949 + }, + { + "start": 24275.28, + "end": 24277.06, + "probability": 0.7544 + }, + { + "start": 24277.5, + "end": 24278.22, + "probability": 0.6817 + }, + { + "start": 24278.82, + "end": 24283.92, + "probability": 0.8028 + }, + { + "start": 24284.46, + "end": 24287.96, + "probability": 0.9618 + }, + { + "start": 24288.64, + "end": 24290.28, + "probability": 0.8269 + }, + { + "start": 24290.9, + "end": 24291.64, + "probability": 0.5089 + }, + { + "start": 24291.74, + "end": 24297.1, + "probability": 0.9282 + }, + { + "start": 24297.58, + "end": 24299.6, + "probability": 0.9965 + }, + { + "start": 24300.28, + "end": 24308.02, + "probability": 0.988 + }, + { + "start": 24308.16, + "end": 24312.58, + "probability": 0.9961 + }, + { + "start": 24312.58, + "end": 24316.42, + "probability": 0.8174 + }, + { + "start": 24316.98, + "end": 24320.42, + "probability": 0.9751 + }, + { + "start": 24320.7, + "end": 24321.3, + "probability": 0.2957 + }, + { + "start": 24321.3, + "end": 24323.86, + "probability": 0.823 + }, + { + "start": 24323.9, + "end": 24325.16, + "probability": 0.8099 + }, + { + "start": 24325.74, + "end": 24328.3, + "probability": 0.6031 + }, + { + "start": 24328.46, + "end": 24330.44, + "probability": 0.8632 + }, + { + "start": 24331.16, + "end": 24332.96, + "probability": 0.8242 + }, + { + "start": 24333.92, + "end": 24335.08, + "probability": 0.7218 + }, + { + "start": 24336.16, + "end": 24339.26, + "probability": 0.9771 + }, + { + "start": 24340.56, + "end": 24341.49, + "probability": 0.3184 + }, + { + "start": 24342.68, + "end": 24344.09, + "probability": 0.1819 + }, + { + "start": 24350.46, + "end": 24357.16, + "probability": 0.6391 + }, + { + "start": 24358.26, + "end": 24358.78, + "probability": 0.2815 + }, + { + "start": 24359.48, + "end": 24362.1, + "probability": 0.1289 + }, + { + "start": 24362.94, + "end": 24363.18, + "probability": 0.1726 + }, + { + "start": 24364.1, + "end": 24366.44, + "probability": 0.4797 + }, + { + "start": 24366.84, + "end": 24369.92, + "probability": 0.7419 + }, + { + "start": 24370.07, + "end": 24372.97, + "probability": 0.7681 + }, + { + "start": 24375.74, + "end": 24377.54, + "probability": 0.3117 + }, + { + "start": 24377.68, + "end": 24380.76, + "probability": 0.1706 + }, + { + "start": 24380.8, + "end": 24383.4, + "probability": 0.4332 + }, + { + "start": 24383.66, + "end": 24385.14, + "probability": 0.2207 + }, + { + "start": 24385.4, + "end": 24388.36, + "probability": 0.9971 + }, + { + "start": 24388.54, + "end": 24390.78, + "probability": 0.5524 + }, + { + "start": 24392.72, + "end": 24397.04, + "probability": 0.805 + }, + { + "start": 24397.96, + "end": 24398.89, + "probability": 0.8231 + }, + { + "start": 24399.94, + "end": 24401.46, + "probability": 0.7725 + }, + { + "start": 24401.96, + "end": 24403.1, + "probability": 0.4404 + }, + { + "start": 24403.22, + "end": 24403.88, + "probability": 0.8873 + }, + { + "start": 24406.38, + "end": 24408.78, + "probability": 0.6647 + }, + { + "start": 24409.62, + "end": 24412.56, + "probability": 0.873 + }, + { + "start": 24414.98, + "end": 24421.88, + "probability": 0.9568 + }, + { + "start": 24422.04, + "end": 24426.9, + "probability": 0.9851 + }, + { + "start": 24428.48, + "end": 24430.86, + "probability": 0.9958 + }, + { + "start": 24431.44, + "end": 24438.56, + "probability": 0.9904 + }, + { + "start": 24439.22, + "end": 24447.7, + "probability": 0.9254 + }, + { + "start": 24447.7, + "end": 24449.72, + "probability": 0.573 + }, + { + "start": 24449.8, + "end": 24450.54, + "probability": 0.3714 + }, + { + "start": 24451.02, + "end": 24451.62, + "probability": 0.2609 + }, + { + "start": 24451.76, + "end": 24452.54, + "probability": 0.8293 + }, + { + "start": 24453.76, + "end": 24460.48, + "probability": 0.9852 + }, + { + "start": 24460.6, + "end": 24463.22, + "probability": 0.7165 + }, + { + "start": 24463.6, + "end": 24463.72, + "probability": 0.0436 + }, + { + "start": 24463.74, + "end": 24465.06, + "probability": 0.6918 + }, + { + "start": 24465.5, + "end": 24471.14, + "probability": 0.9746 + }, + { + "start": 24471.32, + "end": 24471.78, + "probability": 0.6172 + }, + { + "start": 24472.5, + "end": 24473.78, + "probability": 0.9824 + }, + { + "start": 24474.34, + "end": 24475.65, + "probability": 0.8299 + }, + { + "start": 24476.84, + "end": 24477.98, + "probability": 0.9424 + }, + { + "start": 24478.64, + "end": 24481.52, + "probability": 0.9751 + }, + { + "start": 24481.7, + "end": 24485.88, + "probability": 0.8719 + }, + { + "start": 24486.6, + "end": 24488.64, + "probability": 0.9788 + }, + { + "start": 24489.68, + "end": 24491.2, + "probability": 0.8722 + }, + { + "start": 24491.72, + "end": 24493.6, + "probability": 0.9893 + }, + { + "start": 24493.66, + "end": 24494.76, + "probability": 0.9966 + }, + { + "start": 24495.94, + "end": 24498.32, + "probability": 0.9436 + }, + { + "start": 24498.88, + "end": 24501.22, + "probability": 0.7366 + }, + { + "start": 24501.88, + "end": 24503.58, + "probability": 0.9887 + }, + { + "start": 24503.74, + "end": 24507.26, + "probability": 0.9908 + }, + { + "start": 24507.26, + "end": 24512.14, + "probability": 0.9893 + }, + { + "start": 24512.76, + "end": 24516.1, + "probability": 0.998 + }, + { + "start": 24517.02, + "end": 24521.58, + "probability": 0.9591 + }, + { + "start": 24522.88, + "end": 24526.66, + "probability": 0.765 + }, + { + "start": 24526.66, + "end": 24529.6, + "probability": 0.9946 + }, + { + "start": 24530.56, + "end": 24534.0, + "probability": 0.7438 + }, + { + "start": 24534.52, + "end": 24538.42, + "probability": 0.9094 + }, + { + "start": 24538.48, + "end": 24540.74, + "probability": 0.9891 + }, + { + "start": 24540.74, + "end": 24543.66, + "probability": 0.9979 + }, + { + "start": 24544.16, + "end": 24545.66, + "probability": 0.9766 + }, + { + "start": 24547.34, + "end": 24550.02, + "probability": 0.9816 + }, + { + "start": 24550.4, + "end": 24551.54, + "probability": 0.8803 + }, + { + "start": 24552.12, + "end": 24557.0, + "probability": 0.8874 + }, + { + "start": 24557.22, + "end": 24557.5, + "probability": 0.8097 + }, + { + "start": 24558.08, + "end": 24560.42, + "probability": 0.9956 + }, + { + "start": 24560.5, + "end": 24562.24, + "probability": 0.9001 + }, + { + "start": 24562.4, + "end": 24565.58, + "probability": 0.9775 + }, + { + "start": 24566.34, + "end": 24569.2, + "probability": 0.6888 + }, + { + "start": 24569.94, + "end": 24571.07, + "probability": 0.9726 + }, + { + "start": 24571.34, + "end": 24573.08, + "probability": 0.7188 + }, + { + "start": 24573.58, + "end": 24578.42, + "probability": 0.9729 + }, + { + "start": 24578.84, + "end": 24581.08, + "probability": 0.9536 + }, + { + "start": 24581.1, + "end": 24582.52, + "probability": 0.8071 + }, + { + "start": 24582.54, + "end": 24585.74, + "probability": 0.8384 + }, + { + "start": 24585.86, + "end": 24586.2, + "probability": 0.461 + }, + { + "start": 24587.36, + "end": 24588.38, + "probability": 0.4757 + }, + { + "start": 24588.56, + "end": 24590.6, + "probability": 0.8321 + }, + { + "start": 24590.6, + "end": 24593.08, + "probability": 0.9141 + }, + { + "start": 24593.42, + "end": 24593.86, + "probability": 0.4388 + }, + { + "start": 24594.04, + "end": 24594.56, + "probability": 0.328 + }, + { + "start": 24595.16, + "end": 24595.86, + "probability": 0.8794 + }, + { + "start": 24596.42, + "end": 24599.52, + "probability": 0.7483 + }, + { + "start": 24600.04, + "end": 24601.82, + "probability": 0.5932 + }, + { + "start": 24602.08, + "end": 24604.9, + "probability": 0.9508 + }, + { + "start": 24606.13, + "end": 24608.82, + "probability": 0.9961 + }, + { + "start": 24609.4, + "end": 24611.74, + "probability": 0.79 + }, + { + "start": 24611.84, + "end": 24612.7, + "probability": 0.9812 + }, + { + "start": 24613.14, + "end": 24615.06, + "probability": 0.8475 + }, + { + "start": 24615.54, + "end": 24616.76, + "probability": 0.926 + }, + { + "start": 24617.44, + "end": 24618.16, + "probability": 0.945 + }, + { + "start": 24618.68, + "end": 24619.84, + "probability": 0.6762 + }, + { + "start": 24620.36, + "end": 24621.52, + "probability": 0.6366 + }, + { + "start": 24621.86, + "end": 24622.44, + "probability": 0.6691 + }, + { + "start": 24622.6, + "end": 24623.18, + "probability": 0.9301 + }, + { + "start": 24623.54, + "end": 24625.1, + "probability": 0.961 + }, + { + "start": 24625.44, + "end": 24628.52, + "probability": 0.8808 + }, + { + "start": 24629.52, + "end": 24630.44, + "probability": 0.4625 + }, + { + "start": 24631.02, + "end": 24633.48, + "probability": 0.9531 + }, + { + "start": 24633.98, + "end": 24635.98, + "probability": 0.7977 + }, + { + "start": 24636.64, + "end": 24638.42, + "probability": 0.7428 + }, + { + "start": 24638.42, + "end": 24640.82, + "probability": 0.6495 + }, + { + "start": 24640.9, + "end": 24641.42, + "probability": 0.3295 + }, + { + "start": 24642.14, + "end": 24646.86, + "probability": 0.9662 + }, + { + "start": 24647.16, + "end": 24647.62, + "probability": 0.7551 + }, + { + "start": 24647.8, + "end": 24648.6, + "probability": 0.6521 + }, + { + "start": 24648.7, + "end": 24653.54, + "probability": 0.7676 + }, + { + "start": 24653.78, + "end": 24655.06, + "probability": 0.6952 + }, + { + "start": 24655.62, + "end": 24656.76, + "probability": 0.7967 + }, + { + "start": 24656.9, + "end": 24659.5, + "probability": 0.9136 + }, + { + "start": 24659.6, + "end": 24660.8, + "probability": 0.6793 + }, + { + "start": 24661.4, + "end": 24664.82, + "probability": 0.8217 + }, + { + "start": 24668.2, + "end": 24668.54, + "probability": 0.838 + }, + { + "start": 24669.06, + "end": 24669.92, + "probability": 0.8353 + }, + { + "start": 24670.0, + "end": 24671.14, + "probability": 0.8068 + }, + { + "start": 24671.32, + "end": 24673.6, + "probability": 0.6662 + }, + { + "start": 24673.66, + "end": 24674.74, + "probability": 0.7959 + }, + { + "start": 24675.46, + "end": 24675.88, + "probability": 0.7043 + }, + { + "start": 24675.96, + "end": 24677.16, + "probability": 0.9414 + }, + { + "start": 24677.18, + "end": 24677.38, + "probability": 0.8295 + }, + { + "start": 24677.48, + "end": 24677.78, + "probability": 0.8875 + }, + { + "start": 24677.88, + "end": 24678.9, + "probability": 0.7306 + }, + { + "start": 24678.92, + "end": 24679.85, + "probability": 0.9199 + }, + { + "start": 24680.16, + "end": 24683.36, + "probability": 0.9028 + }, + { + "start": 24683.62, + "end": 24685.2, + "probability": 0.8422 + }, + { + "start": 24686.18, + "end": 24687.54, + "probability": 0.9557 + }, + { + "start": 24687.6, + "end": 24689.14, + "probability": 0.74 + }, + { + "start": 24689.64, + "end": 24690.2, + "probability": 0.215 + }, + { + "start": 24691.86, + "end": 24694.66, + "probability": 0.7502 + }, + { + "start": 24695.26, + "end": 24695.36, + "probability": 0.6766 + }, + { + "start": 24697.5, + "end": 24698.32, + "probability": 0.283 + }, + { + "start": 24698.84, + "end": 24700.12, + "probability": 0.6392 + }, + { + "start": 24701.2, + "end": 24702.38, + "probability": 0.5798 + }, + { + "start": 24702.92, + "end": 24703.98, + "probability": 0.9191 + }, + { + "start": 24704.98, + "end": 24706.98, + "probability": 0.5037 + }, + { + "start": 24708.92, + "end": 24712.88, + "probability": 0.1671 + }, + { + "start": 24719.96, + "end": 24720.22, + "probability": 0.8696 + }, + { + "start": 24721.0, + "end": 24721.12, + "probability": 0.0759 + }, + { + "start": 24721.2, + "end": 24724.93, + "probability": 0.1259 + }, + { + "start": 24725.58, + "end": 24725.58, + "probability": 0.0109 + }, + { + "start": 24727.13, + "end": 24729.32, + "probability": 0.0179 + }, + { + "start": 24729.32, + "end": 24729.38, + "probability": 0.0275 + }, + { + "start": 24729.38, + "end": 24729.38, + "probability": 0.2176 + }, + { + "start": 24729.38, + "end": 24729.38, + "probability": 0.1039 + }, + { + "start": 24729.38, + "end": 24729.38, + "probability": 0.0209 + }, + { + "start": 24729.38, + "end": 24729.38, + "probability": 0.0335 + }, + { + "start": 24729.38, + "end": 24729.78, + "probability": 0.1235 + }, + { + "start": 24730.58, + "end": 24737.1, + "probability": 0.5529 + }, + { + "start": 24737.1, + "end": 24741.82, + "probability": 0.5164 + }, + { + "start": 24742.02, + "end": 24745.32, + "probability": 0.9801 + }, + { + "start": 24745.82, + "end": 24748.1, + "probability": 0.6122 + }, + { + "start": 24748.7, + "end": 24751.48, + "probability": 0.9459 + }, + { + "start": 24752.38, + "end": 24753.28, + "probability": 0.9524 + }, + { + "start": 24753.36, + "end": 24755.72, + "probability": 0.991 + }, + { + "start": 24755.74, + "end": 24758.52, + "probability": 0.971 + }, + { + "start": 24759.0, + "end": 24760.42, + "probability": 0.9753 + }, + { + "start": 24760.92, + "end": 24763.72, + "probability": 0.9802 + }, + { + "start": 24763.72, + "end": 24767.02, + "probability": 0.824 + }, + { + "start": 24767.12, + "end": 24767.26, + "probability": 0.7395 + }, + { + "start": 24767.52, + "end": 24770.1, + "probability": 0.8623 + }, + { + "start": 24770.16, + "end": 24771.82, + "probability": 0.9326 + }, + { + "start": 24771.9, + "end": 24773.94, + "probability": 0.9987 + }, + { + "start": 24774.26, + "end": 24774.46, + "probability": 0.2142 + }, + { + "start": 24774.46, + "end": 24774.98, + "probability": 0.5664 + }, + { + "start": 24775.22, + "end": 24775.58, + "probability": 0.7699 + }, + { + "start": 24775.78, + "end": 24777.12, + "probability": 0.3476 + }, + { + "start": 24777.7, + "end": 24778.5, + "probability": 0.9188 + }, + { + "start": 24778.96, + "end": 24779.62, + "probability": 0.7056 + }, + { + "start": 24780.04, + "end": 24781.09, + "probability": 0.9665 + }, + { + "start": 24781.46, + "end": 24782.12, + "probability": 0.7746 + }, + { + "start": 24782.4, + "end": 24784.22, + "probability": 0.7278 + }, + { + "start": 24784.28, + "end": 24788.48, + "probability": 0.9756 + }, + { + "start": 24789.32, + "end": 24789.9, + "probability": 0.8166 + }, + { + "start": 24790.5, + "end": 24791.32, + "probability": 0.6327 + }, + { + "start": 24791.78, + "end": 24793.28, + "probability": 0.9624 + }, + { + "start": 24793.76, + "end": 24795.6, + "probability": 0.8267 + }, + { + "start": 24795.68, + "end": 24796.1, + "probability": 0.6537 + }, + { + "start": 24796.66, + "end": 24799.8, + "probability": 0.8699 + }, + { + "start": 24800.86, + "end": 24805.3, + "probability": 0.7475 + }, + { + "start": 24805.38, + "end": 24806.5, + "probability": 0.514 + }, + { + "start": 24806.52, + "end": 24806.96, + "probability": 0.7471 + }, + { + "start": 24807.2, + "end": 24808.02, + "probability": 0.6982 + }, + { + "start": 24808.1, + "end": 24809.96, + "probability": 0.5856 + }, + { + "start": 24810.0, + "end": 24813.92, + "probability": 0.8595 + }, + { + "start": 24814.96, + "end": 24817.0, + "probability": 0.9678 + }, + { + "start": 24817.64, + "end": 24820.1, + "probability": 0.9829 + }, + { + "start": 24820.82, + "end": 24821.38, + "probability": 0.9189 + }, + { + "start": 24821.48, + "end": 24822.34, + "probability": 0.6455 + }, + { + "start": 24822.42, + "end": 24824.76, + "probability": 0.9919 + }, + { + "start": 24824.84, + "end": 24825.74, + "probability": 0.6918 + }, + { + "start": 24826.62, + "end": 24828.6, + "probability": 0.7899 + }, + { + "start": 24829.1, + "end": 24830.48, + "probability": 0.9161 + }, + { + "start": 24831.1, + "end": 24831.54, + "probability": 0.6901 + }, + { + "start": 24832.64, + "end": 24834.44, + "probability": 0.9031 + }, + { + "start": 24834.44, + "end": 24837.64, + "probability": 0.9725 + }, + { + "start": 24837.88, + "end": 24838.58, + "probability": 0.8215 + }, + { + "start": 24838.6, + "end": 24840.2, + "probability": 0.8624 + }, + { + "start": 24840.48, + "end": 24840.54, + "probability": 0.4258 + }, + { + "start": 24841.22, + "end": 24841.85, + "probability": 0.5219 + }, + { + "start": 24842.02, + "end": 24843.12, + "probability": 0.8433 + }, + { + "start": 24843.64, + "end": 24844.32, + "probability": 0.8345 + }, + { + "start": 24844.4, + "end": 24844.8, + "probability": 0.3041 + }, + { + "start": 24844.88, + "end": 24845.14, + "probability": 0.5687 + }, + { + "start": 24845.64, + "end": 24846.32, + "probability": 0.7908 + }, + { + "start": 24846.98, + "end": 24847.82, + "probability": 0.968 + }, + { + "start": 24848.0, + "end": 24850.54, + "probability": 0.6512 + }, + { + "start": 24850.96, + "end": 24852.22, + "probability": 0.957 + }, + { + "start": 24852.38, + "end": 24853.54, + "probability": 0.9717 + }, + { + "start": 24853.62, + "end": 24854.2, + "probability": 0.9196 + }, + { + "start": 24854.38, + "end": 24855.08, + "probability": 0.9946 + }, + { + "start": 24855.9, + "end": 24856.94, + "probability": 0.9809 + }, + { + "start": 24857.28, + "end": 24860.0, + "probability": 0.9949 + }, + { + "start": 24860.24, + "end": 24860.76, + "probability": 0.5177 + }, + { + "start": 24861.62, + "end": 24862.55, + "probability": 0.7647 + }, + { + "start": 24863.32, + "end": 24865.0, + "probability": 0.7676 + }, + { + "start": 24865.38, + "end": 24867.12, + "probability": 0.2925 + }, + { + "start": 24868.74, + "end": 24871.72, + "probability": 0.6756 + }, + { + "start": 24872.32, + "end": 24876.48, + "probability": 0.8256 + }, + { + "start": 24877.42, + "end": 24880.04, + "probability": 0.8652 + }, + { + "start": 24880.66, + "end": 24886.0, + "probability": 0.765 + }, + { + "start": 24886.64, + "end": 24888.1, + "probability": 0.355 + }, + { + "start": 24888.58, + "end": 24888.7, + "probability": 0.2684 + }, + { + "start": 24890.15, + "end": 24892.94, + "probability": 0.9541 + }, + { + "start": 24894.3, + "end": 24896.5, + "probability": 0.9351 + }, + { + "start": 24897.44, + "end": 24901.6, + "probability": 0.9534 + }, + { + "start": 24901.74, + "end": 24902.34, + "probability": 0.3985 + }, + { + "start": 24902.74, + "end": 24903.92, + "probability": 0.9072 + }, + { + "start": 24904.14, + "end": 24905.54, + "probability": 0.7826 + }, + { + "start": 24905.62, + "end": 24906.62, + "probability": 0.9147 + }, + { + "start": 24906.96, + "end": 24907.52, + "probability": 0.608 + }, + { + "start": 24907.62, + "end": 24908.68, + "probability": 0.9146 + }, + { + "start": 24908.68, + "end": 24910.78, + "probability": 0.9143 + }, + { + "start": 24912.54, + "end": 24914.7, + "probability": 0.9255 + }, + { + "start": 24915.32, + "end": 24915.84, + "probability": 0.7046 + }, + { + "start": 24915.96, + "end": 24917.21, + "probability": 0.6437 + }, + { + "start": 24917.88, + "end": 24919.06, + "probability": 0.4419 + }, + { + "start": 24919.18, + "end": 24920.5, + "probability": 0.9112 + }, + { + "start": 24921.08, + "end": 24922.1, + "probability": 0.8487 + }, + { + "start": 24922.54, + "end": 24922.84, + "probability": 0.5934 + }, + { + "start": 24922.92, + "end": 24924.78, + "probability": 0.8889 + }, + { + "start": 24925.5, + "end": 24928.74, + "probability": 0.784 + }, + { + "start": 24929.44, + "end": 24932.88, + "probability": 0.8417 + }, + { + "start": 24932.88, + "end": 24936.96, + "probability": 0.8494 + }, + { + "start": 24937.64, + "end": 24938.98, + "probability": 0.9899 + }, + { + "start": 24939.6, + "end": 24941.74, + "probability": 0.6254 + }, + { + "start": 24942.1, + "end": 24944.96, + "probability": 0.9323 + }, + { + "start": 24945.71, + "end": 24948.38, + "probability": 0.7868 + }, + { + "start": 24949.14, + "end": 24951.84, + "probability": 0.9191 + }, + { + "start": 24952.16, + "end": 24952.38, + "probability": 0.7305 + }, + { + "start": 24952.58, + "end": 24953.14, + "probability": 0.6484 + }, + { + "start": 24953.98, + "end": 24956.32, + "probability": 0.9736 + }, + { + "start": 24957.66, + "end": 24961.94, + "probability": 0.6869 + }, + { + "start": 24963.36, + "end": 24966.3, + "probability": 0.9221 + }, + { + "start": 24967.22, + "end": 24968.0, + "probability": 0.4141 + }, + { + "start": 24968.16, + "end": 24970.74, + "probability": 0.7408 + }, + { + "start": 24971.02, + "end": 24971.8, + "probability": 0.3162 + }, + { + "start": 24972.24, + "end": 24973.3, + "probability": 0.3117 + }, + { + "start": 24973.3, + "end": 24974.08, + "probability": 0.4409 + }, + { + "start": 24974.24, + "end": 24976.26, + "probability": 0.6768 + }, + { + "start": 24976.48, + "end": 24977.32, + "probability": 0.9487 + }, + { + "start": 24977.42, + "end": 24978.86, + "probability": 0.9956 + }, + { + "start": 24979.48, + "end": 24981.48, + "probability": 0.815 + }, + { + "start": 24982.66, + "end": 24985.0, + "probability": 0.9019 + }, + { + "start": 24985.76, + "end": 24986.64, + "probability": 0.8853 + }, + { + "start": 24986.68, + "end": 24987.12, + "probability": 0.7212 + }, + { + "start": 24987.38, + "end": 24991.2, + "probability": 0.9895 + }, + { + "start": 24991.84, + "end": 24994.72, + "probability": 0.6644 + }, + { + "start": 24994.76, + "end": 24995.76, + "probability": 0.7524 + }, + { + "start": 24995.84, + "end": 24996.24, + "probability": 0.4289 + }, + { + "start": 24996.4, + "end": 24997.18, + "probability": 0.9621 + }, + { + "start": 24997.8, + "end": 25003.04, + "probability": 0.9714 + }, + { + "start": 25003.16, + "end": 25003.84, + "probability": 0.9771 + }, + { + "start": 25003.98, + "end": 25004.68, + "probability": 0.4926 + }, + { + "start": 25004.84, + "end": 25006.16, + "probability": 0.9854 + }, + { + "start": 25007.9, + "end": 25009.32, + "probability": 0.7835 + }, + { + "start": 25009.98, + "end": 25010.98, + "probability": 0.4873 + }, + { + "start": 25011.8, + "end": 25012.44, + "probability": 0.7925 + }, + { + "start": 25013.34, + "end": 25014.64, + "probability": 0.8764 + }, + { + "start": 25015.38, + "end": 25019.36, + "probability": 0.7391 + }, + { + "start": 25020.46, + "end": 25020.64, + "probability": 0.2331 + }, + { + "start": 25020.96, + "end": 25023.4, + "probability": 0.9979 + }, + { + "start": 25023.4, + "end": 25025.78, + "probability": 0.9868 + }, + { + "start": 25026.2, + "end": 25027.68, + "probability": 0.588 + }, + { + "start": 25027.98, + "end": 25028.76, + "probability": 0.9957 + }, + { + "start": 25029.72, + "end": 25030.84, + "probability": 0.6567 + }, + { + "start": 25030.94, + "end": 25032.65, + "probability": 0.9503 + }, + { + "start": 25033.38, + "end": 25034.08, + "probability": 0.7622 + }, + { + "start": 25036.48, + "end": 25037.48, + "probability": 0.3193 + }, + { + "start": 25037.48, + "end": 25037.86, + "probability": 0.2009 + }, + { + "start": 25038.02, + "end": 25038.53, + "probability": 0.2359 + }, + { + "start": 25038.98, + "end": 25039.52, + "probability": 0.7477 + }, + { + "start": 25039.92, + "end": 25043.66, + "probability": 0.6113 + }, + { + "start": 25044.32, + "end": 25046.2, + "probability": 0.7245 + }, + { + "start": 25047.96, + "end": 25049.57, + "probability": 0.8203 + }, + { + "start": 25051.46, + "end": 25053.72, + "probability": 0.8685 + }, + { + "start": 25053.96, + "end": 25054.78, + "probability": 0.5104 + }, + { + "start": 25055.14, + "end": 25055.88, + "probability": 0.9579 + }, + { + "start": 25056.3, + "end": 25057.34, + "probability": 0.7233 + }, + { + "start": 25057.4, + "end": 25058.92, + "probability": 0.7919 + }, + { + "start": 25059.02, + "end": 25059.86, + "probability": 0.9873 + }, + { + "start": 25059.94, + "end": 25060.92, + "probability": 0.9646 + }, + { + "start": 25061.66, + "end": 25065.38, + "probability": 0.938 + }, + { + "start": 25066.76, + "end": 25067.56, + "probability": 0.3076 + }, + { + "start": 25068.06, + "end": 25071.02, + "probability": 0.8241 + }, + { + "start": 25071.14, + "end": 25072.56, + "probability": 0.8994 + }, + { + "start": 25073.0, + "end": 25073.78, + "probability": 0.9072 + }, + { + "start": 25074.7, + "end": 25075.62, + "probability": 0.4974 + }, + { + "start": 25076.18, + "end": 25078.16, + "probability": 0.7877 + }, + { + "start": 25078.32, + "end": 25079.08, + "probability": 0.9502 + }, + { + "start": 25079.88, + "end": 25080.82, + "probability": 0.7757 + }, + { + "start": 25081.22, + "end": 25081.7, + "probability": 0.4163 + }, + { + "start": 25083.78, + "end": 25085.6, + "probability": 0.3395 + }, + { + "start": 25086.28, + "end": 25088.9, + "probability": 0.9341 + }, + { + "start": 25088.9, + "end": 25091.0, + "probability": 0.9453 + }, + { + "start": 25091.12, + "end": 25092.08, + "probability": 0.8518 + }, + { + "start": 25092.4, + "end": 25093.26, + "probability": 0.6996 + }, + { + "start": 25093.54, + "end": 25094.34, + "probability": 0.3348 + }, + { + "start": 25095.48, + "end": 25101.86, + "probability": 0.9629 + }, + { + "start": 25102.14, + "end": 25103.3, + "probability": 0.5247 + }, + { + "start": 25103.88, + "end": 25104.8, + "probability": 0.5672 + }, + { + "start": 25105.6, + "end": 25109.32, + "probability": 0.8138 + }, + { + "start": 25109.42, + "end": 25110.5, + "probability": 0.9683 + }, + { + "start": 25110.64, + "end": 25114.52, + "probability": 0.9692 + }, + { + "start": 25114.86, + "end": 25115.94, + "probability": 0.9023 + }, + { + "start": 25116.08, + "end": 25118.82, + "probability": 0.9205 + }, + { + "start": 25118.94, + "end": 25120.26, + "probability": 0.9965 + }, + { + "start": 25120.76, + "end": 25123.68, + "probability": 0.9587 + }, + { + "start": 25123.9, + "end": 25124.22, + "probability": 0.6015 + }, + { + "start": 25124.54, + "end": 25125.84, + "probability": 0.522 + }, + { + "start": 25126.22, + "end": 25128.14, + "probability": 0.9205 + }, + { + "start": 25128.18, + "end": 25129.07, + "probability": 0.6791 + }, + { + "start": 25129.5, + "end": 25132.4, + "probability": 0.6339 + }, + { + "start": 25132.56, + "end": 25132.74, + "probability": 0.2408 + }, + { + "start": 25132.76, + "end": 25132.92, + "probability": 0.2061 + }, + { + "start": 25133.5, + "end": 25133.6, + "probability": 0.315 + }, + { + "start": 25133.9, + "end": 25136.2, + "probability": 0.9284 + }, + { + "start": 25136.46, + "end": 25138.64, + "probability": 0.9653 + }, + { + "start": 25139.16, + "end": 25140.32, + "probability": 0.8938 + }, + { + "start": 25142.44, + "end": 25143.94, + "probability": 0.282 + }, + { + "start": 25147.46, + "end": 25150.42, + "probability": 0.9828 + }, + { + "start": 25150.78, + "end": 25154.46, + "probability": 0.9962 + }, + { + "start": 25154.6, + "end": 25159.78, + "probability": 0.9072 + }, + { + "start": 25160.58, + "end": 25166.16, + "probability": 0.8097 + }, + { + "start": 25166.38, + "end": 25166.58, + "probability": 0.0265 + }, + { + "start": 25166.78, + "end": 25167.76, + "probability": 0.2291 + }, + { + "start": 25168.9, + "end": 25170.92, + "probability": 0.8527 + }, + { + "start": 25172.32, + "end": 25173.14, + "probability": 0.8403 + }, + { + "start": 25179.7, + "end": 25181.74, + "probability": 0.9671 + }, + { + "start": 25182.61, + "end": 25186.95, + "probability": 0.9531 + }, + { + "start": 25189.14, + "end": 25195.02, + "probability": 0.9691 + }, + { + "start": 25197.94, + "end": 25198.86, + "probability": 0.3024 + }, + { + "start": 25204.4, + "end": 25204.9, + "probability": 0.7266 + }, + { + "start": 25205.58, + "end": 25207.08, + "probability": 0.9069 + }, + { + "start": 25208.74, + "end": 25211.26, + "probability": 0.6699 + }, + { + "start": 25212.48, + "end": 25215.62, + "probability": 0.7794 + }, + { + "start": 25217.02, + "end": 25221.08, + "probability": 0.9178 + }, + { + "start": 25222.16, + "end": 25223.8, + "probability": 0.8665 + }, + { + "start": 25224.9, + "end": 25226.22, + "probability": 0.7427 + }, + { + "start": 25227.92, + "end": 25228.56, + "probability": 0.144 + }, + { + "start": 25229.54, + "end": 25231.32, + "probability": 0.9669 + }, + { + "start": 25232.52, + "end": 25233.3, + "probability": 0.4841 + }, + { + "start": 25235.92, + "end": 25237.92, + "probability": 0.9408 + }, + { + "start": 25238.52, + "end": 25239.72, + "probability": 0.9067 + }, + { + "start": 25240.36, + "end": 25241.16, + "probability": 0.9363 + }, + { + "start": 25242.66, + "end": 25244.4, + "probability": 0.9844 + }, + { + "start": 25245.24, + "end": 25246.96, + "probability": 0.9521 + }, + { + "start": 25247.82, + "end": 25252.3, + "probability": 0.9202 + }, + { + "start": 25252.3, + "end": 25257.22, + "probability": 0.9979 + }, + { + "start": 25259.08, + "end": 25261.12, + "probability": 0.6902 + }, + { + "start": 25262.2, + "end": 25265.78, + "probability": 0.9938 + }, + { + "start": 25265.78, + "end": 25271.02, + "probability": 0.9916 + }, + { + "start": 25271.86, + "end": 25276.86, + "probability": 0.7921 + }, + { + "start": 25277.64, + "end": 25281.64, + "probability": 0.8086 + }, + { + "start": 25282.62, + "end": 25288.74, + "probability": 0.9196 + }, + { + "start": 25289.52, + "end": 25291.66, + "probability": 0.9331 + }, + { + "start": 25292.44, + "end": 25294.38, + "probability": 0.6719 + }, + { + "start": 25296.14, + "end": 25297.4, + "probability": 0.9101 + }, + { + "start": 25299.18, + "end": 25300.24, + "probability": 0.7162 + }, + { + "start": 25302.06, + "end": 25304.1, + "probability": 0.7503 + }, + { + "start": 25304.68, + "end": 25309.14, + "probability": 0.979 + }, + { + "start": 25310.68, + "end": 25319.12, + "probability": 0.8755 + }, + { + "start": 25320.86, + "end": 25321.38, + "probability": 0.9347 + }, + { + "start": 25322.24, + "end": 25323.16, + "probability": 0.5707 + }, + { + "start": 25324.82, + "end": 25327.84, + "probability": 0.7437 + }, + { + "start": 25328.16, + "end": 25330.32, + "probability": 0.5434 + }, + { + "start": 25331.1, + "end": 25332.56, + "probability": 0.6284 + }, + { + "start": 25333.44, + "end": 25334.84, + "probability": 0.9906 + }, + { + "start": 25336.48, + "end": 25340.0, + "probability": 0.998 + }, + { + "start": 25341.16, + "end": 25345.82, + "probability": 0.9879 + }, + { + "start": 25346.54, + "end": 25352.1, + "probability": 0.9093 + }, + { + "start": 25352.68, + "end": 25353.94, + "probability": 0.9824 + }, + { + "start": 25354.46, + "end": 25356.16, + "probability": 0.9065 + }, + { + "start": 25357.3, + "end": 25359.26, + "probability": 0.7842 + }, + { + "start": 25359.84, + "end": 25361.06, + "probability": 0.786 + }, + { + "start": 25362.36, + "end": 25365.7, + "probability": 0.7936 + }, + { + "start": 25366.26, + "end": 25369.24, + "probability": 0.89 + }, + { + "start": 25370.58, + "end": 25372.56, + "probability": 0.9327 + }, + { + "start": 25373.16, + "end": 25375.18, + "probability": 0.9804 + }, + { + "start": 25375.84, + "end": 25377.14, + "probability": 0.5052 + }, + { + "start": 25377.88, + "end": 25380.34, + "probability": 0.6903 + }, + { + "start": 25380.92, + "end": 25388.1, + "probability": 0.9906 + }, + { + "start": 25390.6, + "end": 25395.1, + "probability": 0.7817 + }, + { + "start": 25395.68, + "end": 25398.3, + "probability": 0.9821 + }, + { + "start": 25399.32, + "end": 25400.26, + "probability": 0.5057 + }, + { + "start": 25401.3, + "end": 25403.82, + "probability": 0.9932 + }, + { + "start": 25403.84, + "end": 25409.24, + "probability": 0.9934 + }, + { + "start": 25409.32, + "end": 25410.52, + "probability": 0.7137 + }, + { + "start": 25411.02, + "end": 25412.36, + "probability": 0.9458 + }, + { + "start": 25412.62, + "end": 25414.99, + "probability": 0.6849 + }, + { + "start": 25415.34, + "end": 25419.34, + "probability": 0.9837 + }, + { + "start": 25419.84, + "end": 25420.68, + "probability": 0.7236 + }, + { + "start": 25421.16, + "end": 25421.86, + "probability": 0.6294 + }, + { + "start": 25422.36, + "end": 25423.22, + "probability": 0.5964 + }, + { + "start": 25423.64, + "end": 25426.6, + "probability": 0.8444 + }, + { + "start": 25427.18, + "end": 25431.44, + "probability": 0.9455 + }, + { + "start": 25432.18, + "end": 25432.66, + "probability": 0.8439 + }, + { + "start": 25433.06, + "end": 25435.73, + "probability": 0.7705 + }, + { + "start": 25435.96, + "end": 25436.7, + "probability": 0.7975 + }, + { + "start": 25438.52, + "end": 25443.48, + "probability": 0.6794 + }, + { + "start": 25443.48, + "end": 25452.04, + "probability": 0.9561 + }, + { + "start": 25452.96, + "end": 25455.17, + "probability": 0.717 + }, + { + "start": 25455.96, + "end": 25457.86, + "probability": 0.7727 + }, + { + "start": 25458.02, + "end": 25459.76, + "probability": 0.319 + }, + { + "start": 25460.34, + "end": 25462.92, + "probability": 0.5632 + }, + { + "start": 25463.48, + "end": 25465.16, + "probability": 0.794 + }, + { + "start": 25466.94, + "end": 25468.54, + "probability": 0.8642 + }, + { + "start": 25468.74, + "end": 25471.1, + "probability": 0.8357 + }, + { + "start": 25471.18, + "end": 25473.35, + "probability": 0.6087 + }, + { + "start": 25490.0, + "end": 25492.32, + "probability": 0.6625 + }, + { + "start": 25492.32, + "end": 25493.56, + "probability": 0.5033 + }, + { + "start": 25493.62, + "end": 25495.02, + "probability": 0.6944 + }, + { + "start": 25495.32, + "end": 25501.3, + "probability": 0.7665 + }, + { + "start": 25501.98, + "end": 25506.02, + "probability": 0.6687 + }, + { + "start": 25507.0, + "end": 25508.29, + "probability": 0.8851 + }, + { + "start": 25509.72, + "end": 25510.76, + "probability": 0.9427 + }, + { + "start": 25511.46, + "end": 25513.24, + "probability": 0.8953 + }, + { + "start": 25514.42, + "end": 25519.76, + "probability": 0.7464 + }, + { + "start": 25521.36, + "end": 25524.88, + "probability": 0.871 + }, + { + "start": 25525.08, + "end": 25527.34, + "probability": 0.9318 + }, + { + "start": 25528.02, + "end": 25529.4, + "probability": 0.998 + }, + { + "start": 25529.5, + "end": 25529.64, + "probability": 0.8235 + }, + { + "start": 25529.74, + "end": 25532.38, + "probability": 0.7341 + }, + { + "start": 25532.52, + "end": 25533.1, + "probability": 0.9734 + }, + { + "start": 25533.38, + "end": 25533.68, + "probability": 0.6785 + }, + { + "start": 25533.72, + "end": 25536.02, + "probability": 0.9377 + }, + { + "start": 25536.18, + "end": 25539.72, + "probability": 0.7025 + }, + { + "start": 25539.98, + "end": 25543.06, + "probability": 0.9018 + }, + { + "start": 25543.7, + "end": 25547.0, + "probability": 0.6362 + }, + { + "start": 25547.32, + "end": 25547.84, + "probability": 0.9125 + }, + { + "start": 25547.94, + "end": 25548.82, + "probability": 0.9691 + }, + { + "start": 25549.68, + "end": 25550.76, + "probability": 0.9394 + }, + { + "start": 25551.58, + "end": 25552.5, + "probability": 0.8634 + }, + { + "start": 25553.32, + "end": 25555.98, + "probability": 0.8864 + }, + { + "start": 25556.5, + "end": 25557.1, + "probability": 0.4926 + }, + { + "start": 25557.92, + "end": 25560.16, + "probability": 0.8462 + }, + { + "start": 25561.0, + "end": 25564.14, + "probability": 0.7275 + }, + { + "start": 25564.78, + "end": 25565.9, + "probability": 0.4211 + }, + { + "start": 25566.38, + "end": 25567.68, + "probability": 0.8589 + }, + { + "start": 25567.8, + "end": 25571.26, + "probability": 0.7125 + }, + { + "start": 25572.0, + "end": 25573.04, + "probability": 0.968 + }, + { + "start": 25574.02, + "end": 25576.06, + "probability": 0.9895 + }, + { + "start": 25576.06, + "end": 25579.56, + "probability": 0.9902 + }, + { + "start": 25580.78, + "end": 25586.3, + "probability": 0.9727 + }, + { + "start": 25586.94, + "end": 25589.42, + "probability": 0.992 + }, + { + "start": 25593.72, + "end": 25595.82, + "probability": 0.585 + }, + { + "start": 25596.58, + "end": 25603.38, + "probability": 0.9876 + }, + { + "start": 25603.94, + "end": 25609.34, + "probability": 0.869 + }, + { + "start": 25609.84, + "end": 25615.2, + "probability": 0.7959 + }, + { + "start": 25615.66, + "end": 25620.32, + "probability": 0.6202 + }, + { + "start": 25620.44, + "end": 25620.98, + "probability": 0.3909 + }, + { + "start": 25621.06, + "end": 25622.34, + "probability": 0.5172 + }, + { + "start": 25622.56, + "end": 25630.38, + "probability": 0.8601 + }, + { + "start": 25630.5, + "end": 25633.06, + "probability": 0.9768 + }, + { + "start": 25633.14, + "end": 25633.64, + "probability": 0.6791 + }, + { + "start": 25633.72, + "end": 25637.12, + "probability": 0.9651 + }, + { + "start": 25637.34, + "end": 25637.34, + "probability": 0.4661 + }, + { + "start": 25637.34, + "end": 25640.86, + "probability": 0.7288 + }, + { + "start": 25641.36, + "end": 25642.12, + "probability": 0.5887 + }, + { + "start": 25642.44, + "end": 25645.42, + "probability": 0.3872 + }, + { + "start": 25645.64, + "end": 25646.13, + "probability": 0.8964 + }, + { + "start": 25646.58, + "end": 25647.56, + "probability": 0.728 + }, + { + "start": 25648.04, + "end": 25650.52, + "probability": 0.6554 + }, + { + "start": 25651.0, + "end": 25651.96, + "probability": 0.5794 + }, + { + "start": 25652.22, + "end": 25656.4, + "probability": 0.7934 + }, + { + "start": 25656.94, + "end": 25657.36, + "probability": 0.8718 + }, + { + "start": 25658.8, + "end": 25660.72, + "probability": 0.4889 + }, + { + "start": 25661.26, + "end": 25666.98, + "probability": 0.9465 + }, + { + "start": 25667.9, + "end": 25672.7, + "probability": 0.9974 + }, + { + "start": 25673.48, + "end": 25677.52, + "probability": 0.7912 + }, + { + "start": 25677.56, + "end": 25678.82, + "probability": 0.8291 + }, + { + "start": 25678.96, + "end": 25682.42, + "probability": 0.8247 + }, + { + "start": 25683.06, + "end": 25684.8, + "probability": 0.9526 + }, + { + "start": 25684.9, + "end": 25687.12, + "probability": 0.9824 + }, + { + "start": 25687.9, + "end": 25692.16, + "probability": 0.9648 + }, + { + "start": 25692.28, + "end": 25694.58, + "probability": 0.9953 + }, + { + "start": 25694.66, + "end": 25695.3, + "probability": 0.7859 + }, + { + "start": 25696.34, + "end": 25699.04, + "probability": 0.9401 + }, + { + "start": 25699.04, + "end": 25701.41, + "probability": 0.99 + }, + { + "start": 25702.04, + "end": 25706.2, + "probability": 0.6902 + }, + { + "start": 25706.84, + "end": 25710.78, + "probability": 0.8221 + }, + { + "start": 25712.54, + "end": 25713.52, + "probability": 0.5783 + }, + { + "start": 25713.96, + "end": 25714.24, + "probability": 0.4856 + }, + { + "start": 25714.24, + "end": 25714.66, + "probability": 0.7999 + }, + { + "start": 25714.8, + "end": 25716.14, + "probability": 0.9149 + }, + { + "start": 25716.72, + "end": 25719.82, + "probability": 0.7712 + }, + { + "start": 25720.08, + "end": 25720.18, + "probability": 0.6185 + }, + { + "start": 25720.18, + "end": 25721.05, + "probability": 0.7096 + }, + { + "start": 25721.5, + "end": 25722.08, + "probability": 0.1996 + }, + { + "start": 25722.32, + "end": 25724.08, + "probability": 0.5523 + }, + { + "start": 25724.84, + "end": 25726.1, + "probability": 0.8066 + }, + { + "start": 25726.74, + "end": 25729.06, + "probability": 0.9966 + }, + { + "start": 25729.1, + "end": 25735.98, + "probability": 0.9959 + }, + { + "start": 25735.98, + "end": 25738.4, + "probability": 0.8737 + }, + { + "start": 25739.28, + "end": 25740.87, + "probability": 0.667 + }, + { + "start": 25740.9, + "end": 25742.64, + "probability": 0.6471 + }, + { + "start": 25742.72, + "end": 25744.43, + "probability": 0.9366 + }, + { + "start": 25745.56, + "end": 25745.98, + "probability": 0.9506 + }, + { + "start": 25747.88, + "end": 25749.18, + "probability": 0.0526 + }, + { + "start": 25751.44, + "end": 25752.56, + "probability": 0.3365 + }, + { + "start": 25753.6, + "end": 25754.62, + "probability": 0.5003 + }, + { + "start": 25755.54, + "end": 25759.66, + "probability": 0.3255 + }, + { + "start": 25760.12, + "end": 25760.24, + "probability": 0.27 + }, + { + "start": 25760.4, + "end": 25760.74, + "probability": 0.1469 + }, + { + "start": 25760.82, + "end": 25761.26, + "probability": 0.3144 + }, + { + "start": 25761.42, + "end": 25764.54, + "probability": 0.5302 + }, + { + "start": 25764.54, + "end": 25767.46, + "probability": 0.6555 + }, + { + "start": 25767.58, + "end": 25768.5, + "probability": 0.6156 + }, + { + "start": 25768.62, + "end": 25770.18, + "probability": 0.8258 + }, + { + "start": 25770.32, + "end": 25772.68, + "probability": 0.9771 + }, + { + "start": 25772.68, + "end": 25774.4, + "probability": 0.7198 + }, + { + "start": 25774.48, + "end": 25776.14, + "probability": 0.9557 + }, + { + "start": 25778.54, + "end": 25780.18, + "probability": 0.4663 + }, + { + "start": 25780.28, + "end": 25780.7, + "probability": 0.6871 + }, + { + "start": 25780.98, + "end": 25781.59, + "probability": 0.5006 + }, + { + "start": 25782.96, + "end": 25784.64, + "probability": 0.9753 + }, + { + "start": 25785.9, + "end": 25786.46, + "probability": 0.6134 + }, + { + "start": 25787.72, + "end": 25791.56, + "probability": 0.7235 + }, + { + "start": 25792.18, + "end": 25792.72, + "probability": 0.6318 + }, + { + "start": 25792.8, + "end": 25793.42, + "probability": 0.5987 + }, + { + "start": 25793.72, + "end": 25794.16, + "probability": 0.5925 + }, + { + "start": 25794.26, + "end": 25795.77, + "probability": 0.8875 + }, + { + "start": 25797.68, + "end": 25797.68, + "probability": 0.0423 + }, + { + "start": 25797.68, + "end": 25798.38, + "probability": 0.4551 + }, + { + "start": 25798.42, + "end": 25799.96, + "probability": 0.7591 + }, + { + "start": 25800.58, + "end": 25801.2, + "probability": 0.67 + }, + { + "start": 25801.44, + "end": 25807.5, + "probability": 0.6136 + }, + { + "start": 25807.62, + "end": 25809.48, + "probability": 0.6031 + }, + { + "start": 25811.2, + "end": 25811.2, + "probability": 0.0905 + }, + { + "start": 25811.2, + "end": 25813.98, + "probability": 0.6648 + }, + { + "start": 25814.86, + "end": 25817.84, + "probability": 0.7552 + }, + { + "start": 25818.24, + "end": 25820.46, + "probability": 0.1813 + }, + { + "start": 25820.52, + "end": 25823.34, + "probability": 0.9118 + }, + { + "start": 25824.04, + "end": 25827.82, + "probability": 0.9733 + }, + { + "start": 25829.58, + "end": 25830.68, + "probability": 0.6093 + }, + { + "start": 25831.44, + "end": 25833.4, + "probability": 0.4448 + }, + { + "start": 25833.76, + "end": 25836.26, + "probability": 0.6294 + }, + { + "start": 25837.06, + "end": 25841.18, + "probability": 0.9621 + }, + { + "start": 25841.78, + "end": 25845.35, + "probability": 0.4769 + }, + { + "start": 25846.16, + "end": 25848.46, + "probability": 0.9825 + }, + { + "start": 25849.42, + "end": 25850.32, + "probability": 0.7095 + }, + { + "start": 25850.36, + "end": 25852.02, + "probability": 0.9849 + }, + { + "start": 25852.14, + "end": 25854.22, + "probability": 0.9857 + }, + { + "start": 25854.8, + "end": 25857.5, + "probability": 0.9958 + }, + { + "start": 25857.92, + "end": 25861.32, + "probability": 0.9724 + }, + { + "start": 25862.54, + "end": 25863.96, + "probability": 0.582 + }, + { + "start": 25864.58, + "end": 25867.88, + "probability": 0.9671 + }, + { + "start": 25867.88, + "end": 25872.18, + "probability": 0.984 + }, + { + "start": 25872.4, + "end": 25873.14, + "probability": 0.6833 + }, + { + "start": 25873.72, + "end": 25875.78, + "probability": 0.9184 + }, + { + "start": 25875.9, + "end": 25876.08, + "probability": 0.4114 + }, + { + "start": 25877.46, + "end": 25878.86, + "probability": 0.6365 + }, + { + "start": 25879.02, + "end": 25880.94, + "probability": 0.9407 + }, + { + "start": 25881.36, + "end": 25886.32, + "probability": 0.9963 + }, + { + "start": 25886.94, + "end": 25889.72, + "probability": 0.8575 + }, + { + "start": 25889.74, + "end": 25890.68, + "probability": 0.8046 + }, + { + "start": 25891.98, + "end": 25893.94, + "probability": 0.9127 + }, + { + "start": 25908.68, + "end": 25910.08, + "probability": 0.1691 + }, + { + "start": 25910.26, + "end": 25911.52, + "probability": 0.0311 + }, + { + "start": 25912.5, + "end": 25912.88, + "probability": 0.1041 + }, + { + "start": 25912.88, + "end": 25919.42, + "probability": 0.0425 + }, + { + "start": 25933.54, + "end": 25935.02, + "probability": 0.1056 + }, + { + "start": 25936.12, + "end": 25936.82, + "probability": 0.1952 + }, + { + "start": 25940.2, + "end": 25940.88, + "probability": 0.1164 + }, + { + "start": 25963.34, + "end": 25964.46, + "probability": 0.0471 + }, + { + "start": 25964.46, + "end": 25964.6, + "probability": 0.236 + }, + { + "start": 25969.44, + "end": 25970.72, + "probability": 0.0651 + }, + { + "start": 25973.04, + "end": 25973.9, + "probability": 0.0558 + }, + { + "start": 25973.9, + "end": 25975.52, + "probability": 0.1452 + }, + { + "start": 25981.88, + "end": 25984.26, + "probability": 0.0473 + }, + { + "start": 25984.26, + "end": 25984.28, + "probability": 0.0152 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.0, + "end": 25986.0, + "probability": 0.0 + }, + { + "start": 25986.62, + "end": 25987.64, + "probability": 0.5188 + }, + { + "start": 25987.84, + "end": 25992.62, + "probability": 0.8808 + }, + { + "start": 25992.84, + "end": 25993.94, + "probability": 0.9031 + }, + { + "start": 25995.04, + "end": 25995.24, + "probability": 0.855 + }, + { + "start": 25995.78, + "end": 25999.86, + "probability": 0.9814 + }, + { + "start": 26001.6, + "end": 26003.5, + "probability": 0.9938 + }, + { + "start": 26004.4, + "end": 26008.28, + "probability": 0.8255 + }, + { + "start": 26010.6, + "end": 26011.76, + "probability": 0.7153 + }, + { + "start": 26013.62, + "end": 26015.74, + "probability": 0.7635 + }, + { + "start": 26017.16, + "end": 26019.32, + "probability": 0.9694 + }, + { + "start": 26021.02, + "end": 26026.9, + "probability": 0.9896 + }, + { + "start": 26028.66, + "end": 26030.66, + "probability": 0.9823 + }, + { + "start": 26033.1, + "end": 26034.24, + "probability": 0.9365 + }, + { + "start": 26035.84, + "end": 26037.96, + "probability": 0.689 + }, + { + "start": 26039.2, + "end": 26039.9, + "probability": 0.5687 + }, + { + "start": 26040.55, + "end": 26045.58, + "probability": 0.8423 + }, + { + "start": 26045.78, + "end": 26049.22, + "probability": 0.8579 + }, + { + "start": 26050.58, + "end": 26053.34, + "probability": 0.9459 + }, + { + "start": 26054.1, + "end": 26055.2, + "probability": 0.9722 + }, + { + "start": 26056.1, + "end": 26059.98, + "probability": 0.7945 + }, + { + "start": 26061.0, + "end": 26063.5, + "probability": 0.988 + }, + { + "start": 26063.54, + "end": 26064.64, + "probability": 0.8691 + }, + { + "start": 26065.04, + "end": 26069.2, + "probability": 0.7418 + }, + { + "start": 26071.86, + "end": 26075.4, + "probability": 0.5827 + }, + { + "start": 26076.2, + "end": 26081.04, + "probability": 0.9376 + }, + { + "start": 26081.62, + "end": 26083.4, + "probability": 0.5357 + }, + { + "start": 26084.88, + "end": 26085.5, + "probability": 0.9391 + }, + { + "start": 26087.67, + "end": 26090.88, + "probability": 0.9086 + }, + { + "start": 26093.16, + "end": 26097.2, + "probability": 0.978 + }, + { + "start": 26098.78, + "end": 26100.94, + "probability": 0.8114 + }, + { + "start": 26102.22, + "end": 26103.32, + "probability": 0.8112 + }, + { + "start": 26104.7, + "end": 26105.9, + "probability": 0.988 + }, + { + "start": 26107.84, + "end": 26110.58, + "probability": 0.9928 + }, + { + "start": 26111.2, + "end": 26111.78, + "probability": 0.9614 + }, + { + "start": 26112.58, + "end": 26112.9, + "probability": 0.8713 + }, + { + "start": 26113.8, + "end": 26116.74, + "probability": 0.8706 + }, + { + "start": 26118.38, + "end": 26122.78, + "probability": 0.9751 + }, + { + "start": 26123.34, + "end": 26124.02, + "probability": 0.9108 + }, + { + "start": 26125.24, + "end": 26128.6, + "probability": 0.9487 + }, + { + "start": 26130.0, + "end": 26132.76, + "probability": 0.9475 + }, + { + "start": 26133.88, + "end": 26134.8, + "probability": 0.6423 + }, + { + "start": 26135.22, + "end": 26136.58, + "probability": 0.9412 + }, + { + "start": 26136.64, + "end": 26139.32, + "probability": 0.5666 + }, + { + "start": 26141.44, + "end": 26142.52, + "probability": 0.794 + }, + { + "start": 26143.4, + "end": 26146.66, + "probability": 0.9353 + }, + { + "start": 26148.36, + "end": 26150.52, + "probability": 0.9775 + }, + { + "start": 26151.44, + "end": 26153.84, + "probability": 0.9971 + }, + { + "start": 26155.2, + "end": 26156.32, + "probability": 0.7771 + }, + { + "start": 26157.08, + "end": 26160.72, + "probability": 0.8491 + }, + { + "start": 26161.5, + "end": 26164.32, + "probability": 0.7768 + }, + { + "start": 26164.32, + "end": 26166.24, + "probability": 0.8117 + }, + { + "start": 26167.7, + "end": 26170.18, + "probability": 0.9607 + }, + { + "start": 26171.54, + "end": 26174.34, + "probability": 0.8024 + }, + { + "start": 26176.12, + "end": 26177.6, + "probability": 0.9383 + }, + { + "start": 26178.28, + "end": 26179.72, + "probability": 0.9299 + }, + { + "start": 26180.5, + "end": 26182.74, + "probability": 0.927 + }, + { + "start": 26184.08, + "end": 26184.98, + "probability": 0.9519 + }, + { + "start": 26185.6, + "end": 26186.0, + "probability": 0.5189 + }, + { + "start": 26186.28, + "end": 26186.84, + "probability": 0.9352 + }, + { + "start": 26187.2, + "end": 26188.67, + "probability": 0.7921 + }, + { + "start": 26189.8, + "end": 26192.64, + "probability": 0.7585 + }, + { + "start": 26202.4, + "end": 26205.62, + "probability": 0.8529 + }, + { + "start": 26205.82, + "end": 26209.24, + "probability": 0.9909 + }, + { + "start": 26209.76, + "end": 26210.69, + "probability": 0.7014 + }, + { + "start": 26211.8, + "end": 26213.66, + "probability": 0.8799 + }, + { + "start": 26215.34, + "end": 26217.02, + "probability": 0.994 + }, + { + "start": 26217.1, + "end": 26218.48, + "probability": 0.9197 + }, + { + "start": 26220.86, + "end": 26222.3, + "probability": 0.5685 + }, + { + "start": 26222.46, + "end": 26223.62, + "probability": 0.475 + }, + { + "start": 26224.76, + "end": 26225.6, + "probability": 0.7925 + }, + { + "start": 26226.5, + "end": 26228.44, + "probability": 0.8779 + }, + { + "start": 26230.52, + "end": 26237.42, + "probability": 0.7664 + }, + { + "start": 26237.94, + "end": 26240.2, + "probability": 0.9746 + }, + { + "start": 26241.3, + "end": 26242.18, + "probability": 0.9041 + }, + { + "start": 26242.3, + "end": 26245.92, + "probability": 0.9865 + }, + { + "start": 26246.46, + "end": 26249.0, + "probability": 0.6785 + }, + { + "start": 26249.78, + "end": 26250.3, + "probability": 0.7563 + }, + { + "start": 26250.58, + "end": 26253.24, + "probability": 0.6305 + }, + { + "start": 26254.4, + "end": 26254.88, + "probability": 0.0105 + }, + { + "start": 26254.9, + "end": 26254.9, + "probability": 0.14 + }, + { + "start": 26254.9, + "end": 26255.12, + "probability": 0.2214 + }, + { + "start": 26255.16, + "end": 26256.24, + "probability": 0.666 + }, + { + "start": 26256.34, + "end": 26257.84, + "probability": 0.9714 + }, + { + "start": 26258.58, + "end": 26259.84, + "probability": 0.7395 + }, + { + "start": 26260.37, + "end": 26263.44, + "probability": 0.979 + }, + { + "start": 26263.44, + "end": 26265.12, + "probability": 0.9233 + }, + { + "start": 26265.46, + "end": 26267.38, + "probability": 0.6777 + }, + { + "start": 26267.42, + "end": 26267.84, + "probability": 0.3668 + }, + { + "start": 26267.94, + "end": 26268.65, + "probability": 0.6636 + }, + { + "start": 26268.98, + "end": 26269.32, + "probability": 0.5172 + }, + { + "start": 26269.78, + "end": 26273.6, + "probability": 0.8931 + }, + { + "start": 26274.52, + "end": 26277.42, + "probability": 0.7584 + }, + { + "start": 26277.88, + "end": 26279.66, + "probability": 0.9595 + }, + { + "start": 26279.74, + "end": 26281.8, + "probability": 0.6761 + }, + { + "start": 26281.98, + "end": 26282.9, + "probability": 0.7708 + }, + { + "start": 26282.9, + "end": 26283.22, + "probability": 0.0898 + }, + { + "start": 26284.57, + "end": 26290.78, + "probability": 0.5586 + }, + { + "start": 26290.92, + "end": 26291.58, + "probability": 0.0591 + }, + { + "start": 26293.16, + "end": 26295.28, + "probability": 0.5433 + }, + { + "start": 26295.34, + "end": 26295.78, + "probability": 0.6254 + }, + { + "start": 26295.98, + "end": 26298.74, + "probability": 0.6163 + }, + { + "start": 26298.84, + "end": 26300.5, + "probability": 0.9277 + }, + { + "start": 26301.44, + "end": 26303.04, + "probability": 0.9917 + }, + { + "start": 26303.98, + "end": 26306.78, + "probability": 0.9907 + }, + { + "start": 26306.9, + "end": 26308.16, + "probability": 0.9839 + }, + { + "start": 26308.24, + "end": 26311.6, + "probability": 0.9951 + }, + { + "start": 26311.6, + "end": 26313.93, + "probability": 0.9982 + }, + { + "start": 26314.14, + "end": 26315.04, + "probability": 0.9953 + }, + { + "start": 26315.16, + "end": 26316.66, + "probability": 0.7007 + }, + { + "start": 26316.82, + "end": 26318.55, + "probability": 0.9826 + }, + { + "start": 26319.18, + "end": 26321.5, + "probability": 0.9194 + }, + { + "start": 26321.6, + "end": 26322.84, + "probability": 0.9958 + }, + { + "start": 26323.44, + "end": 26324.78, + "probability": 0.9704 + }, + { + "start": 26325.68, + "end": 26328.64, + "probability": 0.9754 + }, + { + "start": 26329.2, + "end": 26331.4, + "probability": 0.9651 + }, + { + "start": 26331.88, + "end": 26334.44, + "probability": 0.8738 + }, + { + "start": 26335.32, + "end": 26335.7, + "probability": 0.7952 + }, + { + "start": 26335.78, + "end": 26337.68, + "probability": 0.9056 + }, + { + "start": 26337.84, + "end": 26338.94, + "probability": 0.9927 + }, + { + "start": 26338.98, + "end": 26340.16, + "probability": 0.8528 + }, + { + "start": 26340.96, + "end": 26344.3, + "probability": 0.9878 + }, + { + "start": 26345.24, + "end": 26348.0, + "probability": 0.9889 + }, + { + "start": 26348.74, + "end": 26350.1, + "probability": 0.9992 + }, + { + "start": 26351.38, + "end": 26355.08, + "probability": 0.9982 + }, + { + "start": 26355.18, + "end": 26357.88, + "probability": 0.9536 + }, + { + "start": 26357.88, + "end": 26360.09, + "probability": 0.9988 + }, + { + "start": 26360.42, + "end": 26362.24, + "probability": 0.9849 + }, + { + "start": 26362.38, + "end": 26364.62, + "probability": 0.7544 + }, + { + "start": 26365.26, + "end": 26368.26, + "probability": 0.8167 + }, + { + "start": 26369.34, + "end": 26369.86, + "probability": 0.925 + }, + { + "start": 26370.02, + "end": 26372.68, + "probability": 0.9965 + }, + { + "start": 26373.1, + "end": 26375.36, + "probability": 0.9714 + }, + { + "start": 26375.44, + "end": 26376.08, + "probability": 0.4801 + }, + { + "start": 26376.62, + "end": 26379.32, + "probability": 0.9874 + }, + { + "start": 26379.74, + "end": 26381.38, + "probability": 0.9909 + }, + { + "start": 26381.74, + "end": 26384.1, + "probability": 0.8926 + }, + { + "start": 26384.22, + "end": 26386.82, + "probability": 0.9397 + }, + { + "start": 26386.82, + "end": 26392.7, + "probability": 0.9747 + }, + { + "start": 26393.96, + "end": 26394.58, + "probability": 0.9223 + }, + { + "start": 26395.0, + "end": 26397.52, + "probability": 0.9352 + }, + { + "start": 26397.78, + "end": 26399.09, + "probability": 0.7491 + }, + { + "start": 26399.68, + "end": 26402.5, + "probability": 0.8114 + }, + { + "start": 26402.5, + "end": 26405.06, + "probability": 0.9976 + }, + { + "start": 26405.18, + "end": 26406.54, + "probability": 0.809 + }, + { + "start": 26406.78, + "end": 26407.26, + "probability": 0.6018 + }, + { + "start": 26408.12, + "end": 26408.28, + "probability": 0.4958 + }, + { + "start": 26408.4, + "end": 26410.16, + "probability": 0.8859 + }, + { + "start": 26410.2, + "end": 26412.22, + "probability": 0.8569 + }, + { + "start": 26412.3, + "end": 26414.22, + "probability": 0.376 + }, + { + "start": 26414.32, + "end": 26414.38, + "probability": 0.2667 + }, + { + "start": 26414.38, + "end": 26416.3, + "probability": 0.9136 + }, + { + "start": 26416.84, + "end": 26419.06, + "probability": 0.9703 + }, + { + "start": 26419.6, + "end": 26422.96, + "probability": 0.9428 + }, + { + "start": 26423.06, + "end": 26424.74, + "probability": 0.6516 + }, + { + "start": 26424.84, + "end": 26425.44, + "probability": 0.7131 + }, + { + "start": 26425.44, + "end": 26425.58, + "probability": 0.6006 + }, + { + "start": 26425.66, + "end": 26425.9, + "probability": 0.5896 + }, + { + "start": 26425.92, + "end": 26426.26, + "probability": 0.7763 + }, + { + "start": 26427.28, + "end": 26428.06, + "probability": 0.6948 + }, + { + "start": 26428.12, + "end": 26433.64, + "probability": 0.9762 + }, + { + "start": 26433.74, + "end": 26434.16, + "probability": 0.4599 + }, + { + "start": 26434.2, + "end": 26436.28, + "probability": 0.9623 + }, + { + "start": 26436.6, + "end": 26438.9, + "probability": 0.9622 + }, + { + "start": 26439.46, + "end": 26441.04, + "probability": 0.8779 + }, + { + "start": 26441.16, + "end": 26443.4, + "probability": 0.9061 + }, + { + "start": 26443.5, + "end": 26444.7, + "probability": 0.9601 + }, + { + "start": 26445.72, + "end": 26446.68, + "probability": 0.6321 + }, + { + "start": 26446.84, + "end": 26447.39, + "probability": 0.7271 + }, + { + "start": 26448.14, + "end": 26450.24, + "probability": 0.9897 + }, + { + "start": 26450.28, + "end": 26451.14, + "probability": 0.9021 + }, + { + "start": 26451.94, + "end": 26454.2, + "probability": 0.9114 + }, + { + "start": 26454.74, + "end": 26456.9, + "probability": 0.9529 + }, + { + "start": 26458.16, + "end": 26459.76, + "probability": 0.994 + }, + { + "start": 26460.6, + "end": 26460.98, + "probability": 0.5237 + }, + { + "start": 26461.06, + "end": 26462.46, + "probability": 0.9773 + }, + { + "start": 26463.2, + "end": 26466.42, + "probability": 0.9964 + }, + { + "start": 26466.7, + "end": 26468.02, + "probability": 0.8934 + }, + { + "start": 26468.4, + "end": 26470.56, + "probability": 0.989 + }, + { + "start": 26470.56, + "end": 26474.96, + "probability": 0.9818 + }, + { + "start": 26474.98, + "end": 26474.98, + "probability": 0.5224 + }, + { + "start": 26475.02, + "end": 26475.5, + "probability": 0.692 + }, + { + "start": 26475.72, + "end": 26476.26, + "probability": 0.7007 + }, + { + "start": 26476.38, + "end": 26479.12, + "probability": 0.7257 + }, + { + "start": 26479.14, + "end": 26479.18, + "probability": 0.5366 + }, + { + "start": 26479.18, + "end": 26481.06, + "probability": 0.9932 + }, + { + "start": 26481.18, + "end": 26481.36, + "probability": 0.4856 + }, + { + "start": 26481.54, + "end": 26481.86, + "probability": 0.6328 + }, + { + "start": 26482.36, + "end": 26483.06, + "probability": 0.9946 + }, + { + "start": 26483.12, + "end": 26484.22, + "probability": 0.8497 + }, + { + "start": 26484.28, + "end": 26484.9, + "probability": 0.7726 + }, + { + "start": 26485.5, + "end": 26488.58, + "probability": 0.9631 + }, + { + "start": 26489.85, + "end": 26493.2, + "probability": 0.9171 + }, + { + "start": 26493.98, + "end": 26495.78, + "probability": 0.588 + }, + { + "start": 26496.74, + "end": 26497.96, + "probability": 0.9939 + }, + { + "start": 26498.04, + "end": 26502.46, + "probability": 0.9722 + }, + { + "start": 26502.6, + "end": 26503.6, + "probability": 0.9932 + }, + { + "start": 26504.18, + "end": 26504.38, + "probability": 0.2459 + }, + { + "start": 26504.38, + "end": 26507.18, + "probability": 0.8418 + }, + { + "start": 26508.08, + "end": 26508.8, + "probability": 0.6317 + }, + { + "start": 26509.62, + "end": 26512.84, + "probability": 0.9742 + }, + { + "start": 26512.94, + "end": 26514.84, + "probability": 0.9596 + }, + { + "start": 26514.96, + "end": 26519.48, + "probability": 0.9622 + }, + { + "start": 26519.6, + "end": 26524.74, + "probability": 0.9813 + }, + { + "start": 26525.3, + "end": 26526.28, + "probability": 0.9978 + }, + { + "start": 26526.44, + "end": 26527.15, + "probability": 0.8489 + }, + { + "start": 26527.38, + "end": 26528.36, + "probability": 0.9914 + }, + { + "start": 26528.36, + "end": 26530.18, + "probability": 0.9563 + }, + { + "start": 26530.72, + "end": 26532.2, + "probability": 0.9866 + }, + { + "start": 26532.24, + "end": 26532.98, + "probability": 0.5685 + }, + { + "start": 26533.1, + "end": 26533.44, + "probability": 0.5004 + }, + { + "start": 26533.72, + "end": 26533.94, + "probability": 0.4456 + }, + { + "start": 26534.14, + "end": 26534.86, + "probability": 0.9788 + }, + { + "start": 26535.2, + "end": 26535.68, + "probability": 0.8057 + }, + { + "start": 26535.96, + "end": 26538.15, + "probability": 0.9119 + }, + { + "start": 26538.82, + "end": 26541.36, + "probability": 0.908 + }, + { + "start": 26544.2, + "end": 26549.44, + "probability": 0.9778 + }, + { + "start": 26550.22, + "end": 26552.14, + "probability": 0.999 + }, + { + "start": 26553.58, + "end": 26556.36, + "probability": 0.8352 + }, + { + "start": 26558.98, + "end": 26560.7, + "probability": 0.3747 + }, + { + "start": 26561.9, + "end": 26562.44, + "probability": 0.5699 + }, + { + "start": 26564.14, + "end": 26569.58, + "probability": 0.9086 + }, + { + "start": 26571.18, + "end": 26577.66, + "probability": 0.8733 + }, + { + "start": 26577.76, + "end": 26577.98, + "probability": 0.0951 + }, + { + "start": 26577.98, + "end": 26580.42, + "probability": 0.9369 + }, + { + "start": 26580.58, + "end": 26581.36, + "probability": 0.7699 + }, + { + "start": 26584.34, + "end": 26587.1, + "probability": 0.9949 + }, + { + "start": 26587.12, + "end": 26588.8, + "probability": 0.9235 + }, + { + "start": 26590.02, + "end": 26593.88, + "probability": 0.8953 + }, + { + "start": 26594.8, + "end": 26599.6, + "probability": 0.8888 + }, + { + "start": 26599.7, + "end": 26600.8, + "probability": 0.7503 + }, + { + "start": 26602.06, + "end": 26605.22, + "probability": 0.834 + }, + { + "start": 26605.84, + "end": 26606.96, + "probability": 0.9573 + }, + { + "start": 26607.72, + "end": 26608.88, + "probability": 0.948 + }, + { + "start": 26609.6, + "end": 26610.88, + "probability": 0.9432 + }, + { + "start": 26611.68, + "end": 26616.7, + "probability": 0.875 + }, + { + "start": 26618.76, + "end": 26619.58, + "probability": 0.9423 + }, + { + "start": 26620.66, + "end": 26622.72, + "probability": 0.7116 + }, + { + "start": 26623.26, + "end": 26625.48, + "probability": 0.8824 + }, + { + "start": 26626.54, + "end": 26627.97, + "probability": 0.7346 + }, + { + "start": 26629.66, + "end": 26633.04, + "probability": 0.9518 + }, + { + "start": 26635.38, + "end": 26637.04, + "probability": 0.6554 + }, + { + "start": 26637.1, + "end": 26641.42, + "probability": 0.5736 + }, + { + "start": 26641.42, + "end": 26648.14, + "probability": 0.9409 + }, + { + "start": 26649.3, + "end": 26652.14, + "probability": 0.7925 + }, + { + "start": 26653.44, + "end": 26656.2, + "probability": 0.9326 + }, + { + "start": 26657.22, + "end": 26661.98, + "probability": 0.9824 + }, + { + "start": 26661.98, + "end": 26666.1, + "probability": 0.97 + }, + { + "start": 26668.56, + "end": 26670.0, + "probability": 0.9863 + }, + { + "start": 26670.72, + "end": 26673.99, + "probability": 0.653 + }, + { + "start": 26675.28, + "end": 26679.4, + "probability": 0.7425 + }, + { + "start": 26680.3, + "end": 26682.76, + "probability": 0.8975 + }, + { + "start": 26684.02, + "end": 26685.72, + "probability": 0.9349 + }, + { + "start": 26687.0, + "end": 26689.58, + "probability": 0.9405 + }, + { + "start": 26691.42, + "end": 26691.98, + "probability": 0.4782 + }, + { + "start": 26692.14, + "end": 26694.26, + "probability": 0.8507 + }, + { + "start": 26695.66, + "end": 26698.02, + "probability": 0.2951 + }, + { + "start": 26698.04, + "end": 26698.14, + "probability": 0.1154 + }, + { + "start": 26698.14, + "end": 26698.14, + "probability": 0.46 + }, + { + "start": 26698.14, + "end": 26700.11, + "probability": 0.791 + }, + { + "start": 26701.02, + "end": 26701.22, + "probability": 0.6309 + }, + { + "start": 26701.22, + "end": 26702.68, + "probability": 0.6248 + }, + { + "start": 26702.76, + "end": 26703.2, + "probability": 0.6774 + }, + { + "start": 26703.28, + "end": 26704.22, + "probability": 0.6318 + }, + { + "start": 26704.46, + "end": 26704.92, + "probability": 0.6654 + }, + { + "start": 26705.06, + "end": 26706.58, + "probability": 0.9785 + }, + { + "start": 26707.16, + "end": 26707.16, + "probability": 0.0231 + }, + { + "start": 26707.16, + "end": 26707.92, + "probability": 0.5185 + }, + { + "start": 26709.84, + "end": 26713.46, + "probability": 0.7206 + }, + { + "start": 26714.24, + "end": 26716.76, + "probability": 0.966 + }, + { + "start": 26716.84, + "end": 26717.38, + "probability": 0.476 + }, + { + "start": 26717.42, + "end": 26718.2, + "probability": 0.5926 + }, + { + "start": 26718.66, + "end": 26718.98, + "probability": 0.6036 + }, + { + "start": 26719.4, + "end": 26720.36, + "probability": 0.8882 + }, + { + "start": 26720.36, + "end": 26721.88, + "probability": 0.1629 + }, + { + "start": 26722.84, + "end": 26725.34, + "probability": 0.9134 + }, + { + "start": 26725.92, + "end": 26727.58, + "probability": 0.3463 + }, + { + "start": 26727.92, + "end": 26728.04, + "probability": 0.1024 + }, + { + "start": 26728.4, + "end": 26731.04, + "probability": 0.5015 + }, + { + "start": 26731.04, + "end": 26732.6, + "probability": 0.9877 + }, + { + "start": 26733.54, + "end": 26736.89, + "probability": 0.9489 + }, + { + "start": 26738.16, + "end": 26738.86, + "probability": 0.9403 + }, + { + "start": 26739.1, + "end": 26739.8, + "probability": 0.8434 + }, + { + "start": 26740.54, + "end": 26741.82, + "probability": 0.8129 + }, + { + "start": 26742.26, + "end": 26744.8, + "probability": 0.9563 + }, + { + "start": 26745.0, + "end": 26745.72, + "probability": 0.4341 + }, + { + "start": 26746.04, + "end": 26749.56, + "probability": 0.8235 + }, + { + "start": 26751.18, + "end": 26753.58, + "probability": 0.7629 + }, + { + "start": 26753.9, + "end": 26755.42, + "probability": 0.5583 + }, + { + "start": 26756.12, + "end": 26761.76, + "probability": 0.9884 + }, + { + "start": 26762.46, + "end": 26763.0, + "probability": 0.4926 + }, + { + "start": 26763.06, + "end": 26764.31, + "probability": 0.7677 + }, + { + "start": 26764.6, + "end": 26765.18, + "probability": 0.8255 + }, + { + "start": 26766.36, + "end": 26767.18, + "probability": 0.9115 + }, + { + "start": 26767.5, + "end": 26769.74, + "probability": 0.9526 + }, + { + "start": 26770.12, + "end": 26772.39, + "probability": 0.9888 + }, + { + "start": 26772.98, + "end": 26774.12, + "probability": 0.7349 + }, + { + "start": 26774.92, + "end": 26780.48, + "probability": 0.9668 + }, + { + "start": 26780.96, + "end": 26782.6, + "probability": 0.9895 + }, + { + "start": 26783.12, + "end": 26786.98, + "probability": 0.9655 + }, + { + "start": 26787.1, + "end": 26788.42, + "probability": 0.8579 + }, + { + "start": 26789.14, + "end": 26790.1, + "probability": 0.872 + }, + { + "start": 26791.64, + "end": 26791.84, + "probability": 0.7482 + }, + { + "start": 26791.92, + "end": 26794.07, + "probability": 0.6214 + }, + { + "start": 26794.36, + "end": 26798.12, + "probability": 0.9782 + }, + { + "start": 26798.54, + "end": 26799.28, + "probability": 0.8314 + }, + { + "start": 26799.48, + "end": 26801.54, + "probability": 0.9273 + }, + { + "start": 26802.34, + "end": 26803.0, + "probability": 0.5648 + }, + { + "start": 26803.0, + "end": 26803.3, + "probability": 0.5029 + }, + { + "start": 26804.86, + "end": 26805.12, + "probability": 0.0318 + }, + { + "start": 26805.12, + "end": 26807.94, + "probability": 0.7713 + }, + { + "start": 26809.14, + "end": 26811.66, + "probability": 0.4579 + }, + { + "start": 26811.92, + "end": 26812.4, + "probability": 0.8175 + }, + { + "start": 26812.6, + "end": 26814.04, + "probability": 0.9911 + }, + { + "start": 26814.28, + "end": 26814.6, + "probability": 0.5809 + }, + { + "start": 26814.72, + "end": 26815.34, + "probability": 0.8874 + }, + { + "start": 26815.52, + "end": 26816.62, + "probability": 0.7853 + }, + { + "start": 26816.96, + "end": 26817.4, + "probability": 0.8281 + }, + { + "start": 26818.4, + "end": 26819.92, + "probability": 0.762 + }, + { + "start": 26819.96, + "end": 26823.28, + "probability": 0.6616 + }, + { + "start": 26824.54, + "end": 26828.98, + "probability": 0.959 + }, + { + "start": 26830.08, + "end": 26831.04, + "probability": 0.8541 + }, + { + "start": 26831.78, + "end": 26836.28, + "probability": 0.9833 + }, + { + "start": 26837.08, + "end": 26837.84, + "probability": 0.9505 + }, + { + "start": 26838.92, + "end": 26843.34, + "probability": 0.9975 + }, + { + "start": 26844.06, + "end": 26844.76, + "probability": 0.9867 + }, + { + "start": 26845.48, + "end": 26846.2, + "probability": 0.9619 + }, + { + "start": 26846.86, + "end": 26849.58, + "probability": 0.9236 + }, + { + "start": 26850.24, + "end": 26851.04, + "probability": 0.7423 + }, + { + "start": 26851.58, + "end": 26852.24, + "probability": 0.9673 + }, + { + "start": 26852.4, + "end": 26853.84, + "probability": 0.8994 + }, + { + "start": 26854.24, + "end": 26855.5, + "probability": 0.9933 + }, + { + "start": 26856.0, + "end": 26860.1, + "probability": 0.8213 + }, + { + "start": 26860.24, + "end": 26860.76, + "probability": 0.9214 + }, + { + "start": 26861.68, + "end": 26864.1, + "probability": 0.7368 + }, + { + "start": 26864.12, + "end": 26865.36, + "probability": 0.8883 + }, + { + "start": 26865.62, + "end": 26866.92, + "probability": 0.9353 + }, + { + "start": 26867.04, + "end": 26867.72, + "probability": 0.8818 + }, + { + "start": 26868.04, + "end": 26868.04, + "probability": 0.6664 + }, + { + "start": 26868.12, + "end": 26869.02, + "probability": 0.9868 + }, + { + "start": 26869.4, + "end": 26869.94, + "probability": 0.8272 + }, + { + "start": 26870.0, + "end": 26871.8, + "probability": 0.9191 + }, + { + "start": 26872.24, + "end": 26873.92, + "probability": 0.9798 + }, + { + "start": 26874.26, + "end": 26875.48, + "probability": 0.9789 + }, + { + "start": 26875.92, + "end": 26878.2, + "probability": 0.9355 + }, + { + "start": 26878.96, + "end": 26880.78, + "probability": 0.774 + }, + { + "start": 26881.16, + "end": 26883.1, + "probability": 0.5696 + }, + { + "start": 26883.66, + "end": 26884.0, + "probability": 0.1395 + }, + { + "start": 26884.0, + "end": 26884.0, + "probability": 0.3935 + }, + { + "start": 26884.0, + "end": 26886.14, + "probability": 0.4504 + }, + { + "start": 26887.5, + "end": 26888.6, + "probability": 0.7465 + }, + { + "start": 26888.78, + "end": 26890.36, + "probability": 0.9465 + }, + { + "start": 26891.8, + "end": 26893.82, + "probability": 0.9072 + }, + { + "start": 26894.9, + "end": 26896.68, + "probability": 0.5438 + }, + { + "start": 26896.78, + "end": 26896.78, + "probability": 0.0095 + }, + { + "start": 26896.78, + "end": 26897.18, + "probability": 0.7438 + }, + { + "start": 26897.22, + "end": 26903.74, + "probability": 0.7801 + }, + { + "start": 26907.16, + "end": 26908.74, + "probability": 0.8169 + }, + { + "start": 26908.86, + "end": 26909.82, + "probability": 0.4078 + }, + { + "start": 26911.89, + "end": 26912.48, + "probability": 0.3621 + }, + { + "start": 26912.6, + "end": 26915.52, + "probability": 0.7519 + }, + { + "start": 26916.08, + "end": 26916.84, + "probability": 0.8881 + }, + { + "start": 26917.32, + "end": 26918.06, + "probability": 0.8204 + }, + { + "start": 26918.16, + "end": 26919.26, + "probability": 0.8489 + }, + { + "start": 26919.34, + "end": 26919.54, + "probability": 0.5363 + }, + { + "start": 26919.56, + "end": 26920.36, + "probability": 0.8885 + }, + { + "start": 26920.48, + "end": 26922.5, + "probability": 0.9714 + }, + { + "start": 26923.2, + "end": 26923.78, + "probability": 0.7484 + }, + { + "start": 26923.86, + "end": 26925.62, + "probability": 0.9598 + }, + { + "start": 26925.72, + "end": 26926.94, + "probability": 0.7106 + }, + { + "start": 26927.18, + "end": 26928.1, + "probability": 0.712 + }, + { + "start": 26928.66, + "end": 26932.84, + "probability": 0.9323 + }, + { + "start": 26933.76, + "end": 26934.98, + "probability": 0.9639 + }, + { + "start": 26934.98, + "end": 26938.86, + "probability": 0.9467 + }, + { + "start": 26939.38, + "end": 26940.82, + "probability": 0.9832 + }, + { + "start": 26940.94, + "end": 26947.48, + "probability": 0.9728 + }, + { + "start": 26947.68, + "end": 26949.42, + "probability": 0.9207 + }, + { + "start": 26949.92, + "end": 26950.97, + "probability": 0.957 + }, + { + "start": 26951.28, + "end": 26951.74, + "probability": 0.9362 + }, + { + "start": 26951.84, + "end": 26952.94, + "probability": 0.9506 + }, + { + "start": 26953.76, + "end": 26954.04, + "probability": 0.57 + }, + { + "start": 26954.16, + "end": 26955.16, + "probability": 0.7135 + }, + { + "start": 26955.22, + "end": 26955.98, + "probability": 0.9725 + }, + { + "start": 26956.12, + "end": 26957.98, + "probability": 0.9521 + }, + { + "start": 26958.66, + "end": 26961.02, + "probability": 0.9551 + }, + { + "start": 26961.52, + "end": 26966.26, + "probability": 0.9785 + }, + { + "start": 26966.8, + "end": 26969.56, + "probability": 0.8453 + }, + { + "start": 26970.22, + "end": 26973.07, + "probability": 0.774 + }, + { + "start": 26974.5, + "end": 26977.2, + "probability": 0.7578 + }, + { + "start": 26977.28, + "end": 26981.72, + "probability": 0.9149 + }, + { + "start": 26982.28, + "end": 26983.58, + "probability": 0.994 + }, + { + "start": 26984.48, + "end": 26989.5, + "probability": 0.9915 + }, + { + "start": 26989.6, + "end": 26993.36, + "probability": 0.9897 + }, + { + "start": 26993.5, + "end": 26994.3, + "probability": 0.6243 + }, + { + "start": 26994.56, + "end": 26998.2, + "probability": 0.9806 + }, + { + "start": 26998.64, + "end": 27000.26, + "probability": 0.8929 + }, + { + "start": 27000.7, + "end": 27003.72, + "probability": 0.6637 + }, + { + "start": 27003.8, + "end": 27004.7, + "probability": 0.8545 + }, + { + "start": 27004.76, + "end": 27004.98, + "probability": 0.7307 + }, + { + "start": 27005.0, + "end": 27006.88, + "probability": 0.8483 + }, + { + "start": 27007.3, + "end": 27009.36, + "probability": 0.9484 + }, + { + "start": 27009.7, + "end": 27011.82, + "probability": 0.9446 + }, + { + "start": 27012.34, + "end": 27013.22, + "probability": 0.9701 + }, + { + "start": 27013.38, + "end": 27015.5, + "probability": 0.9897 + }, + { + "start": 27016.34, + "end": 27019.82, + "probability": 0.9672 + }, + { + "start": 27020.38, + "end": 27021.74, + "probability": 0.9292 + }, + { + "start": 27022.34, + "end": 27024.78, + "probability": 0.9871 + }, + { + "start": 27024.78, + "end": 27028.74, + "probability": 0.9915 + }, + { + "start": 27028.78, + "end": 27031.08, + "probability": 0.9988 + }, + { + "start": 27031.7, + "end": 27034.68, + "probability": 0.7398 + }, + { + "start": 27035.18, + "end": 27038.06, + "probability": 0.9916 + }, + { + "start": 27038.06, + "end": 27044.14, + "probability": 0.9917 + }, + { + "start": 27044.86, + "end": 27047.66, + "probability": 0.7621 + }, + { + "start": 27047.86, + "end": 27051.12, + "probability": 0.989 + }, + { + "start": 27051.7, + "end": 27058.84, + "probability": 0.9148 + }, + { + "start": 27059.56, + "end": 27060.92, + "probability": 0.9482 + }, + { + "start": 27061.64, + "end": 27064.08, + "probability": 0.6235 + }, + { + "start": 27064.68, + "end": 27068.16, + "probability": 0.9636 + }, + { + "start": 27068.56, + "end": 27071.14, + "probability": 0.9883 + }, + { + "start": 27071.26, + "end": 27078.08, + "probability": 0.9478 + }, + { + "start": 27078.86, + "end": 27084.08, + "probability": 0.8329 + }, + { + "start": 27084.08, + "end": 27088.72, + "probability": 0.978 + }, + { + "start": 27088.82, + "end": 27092.18, + "probability": 0.9058 + }, + { + "start": 27092.92, + "end": 27096.1, + "probability": 0.9819 + }, + { + "start": 27096.72, + "end": 27099.16, + "probability": 0.7817 + }, + { + "start": 27099.28, + "end": 27099.8, + "probability": 0.7666 + }, + { + "start": 27099.98, + "end": 27102.06, + "probability": 0.8355 + }, + { + "start": 27102.58, + "end": 27104.82, + "probability": 0.82 + }, + { + "start": 27105.3, + "end": 27111.44, + "probability": 0.9255 + }, + { + "start": 27112.16, + "end": 27114.04, + "probability": 0.9391 + }, + { + "start": 27114.6, + "end": 27115.96, + "probability": 0.9896 + }, + { + "start": 27116.4, + "end": 27119.28, + "probability": 0.9941 + }, + { + "start": 27119.28, + "end": 27122.92, + "probability": 0.9992 + }, + { + "start": 27122.98, + "end": 27122.98, + "probability": 0.4474 + }, + { + "start": 27123.12, + "end": 27124.06, + "probability": 0.9818 + }, + { + "start": 27124.22, + "end": 27124.66, + "probability": 0.7001 + }, + { + "start": 27125.5, + "end": 27128.5, + "probability": 0.9384 + }, + { + "start": 27128.68, + "end": 27129.2, + "probability": 0.3913 + }, + { + "start": 27129.34, + "end": 27129.66, + "probability": 0.7206 + }, + { + "start": 27129.74, + "end": 27130.48, + "probability": 0.7771 + }, + { + "start": 27131.18, + "end": 27134.8, + "probability": 0.8665 + }, + { + "start": 27135.24, + "end": 27135.9, + "probability": 0.8374 + }, + { + "start": 27136.08, + "end": 27137.79, + "probability": 0.9851 + }, + { + "start": 27138.02, + "end": 27140.2, + "probability": 0.9799 + }, + { + "start": 27141.06, + "end": 27143.1, + "probability": 0.9958 + }, + { + "start": 27143.64, + "end": 27146.8, + "probability": 0.3322 + }, + { + "start": 27147.12, + "end": 27148.88, + "probability": 0.9175 + }, + { + "start": 27149.54, + "end": 27152.14, + "probability": 0.9963 + }, + { + "start": 27152.26, + "end": 27153.3, + "probability": 0.9147 + }, + { + "start": 27153.76, + "end": 27155.44, + "probability": 0.9756 + }, + { + "start": 27156.02, + "end": 27157.42, + "probability": 0.9941 + }, + { + "start": 27157.48, + "end": 27158.63, + "probability": 0.992 + }, + { + "start": 27158.76, + "end": 27161.16, + "probability": 0.8069 + }, + { + "start": 27161.72, + "end": 27164.04, + "probability": 0.9768 + }, + { + "start": 27164.84, + "end": 27165.74, + "probability": 0.3741 + }, + { + "start": 27166.1, + "end": 27171.2, + "probability": 0.9805 + }, + { + "start": 27171.26, + "end": 27172.82, + "probability": 0.8302 + }, + { + "start": 27172.92, + "end": 27173.3, + "probability": 0.6433 + }, + { + "start": 27173.88, + "end": 27174.3, + "probability": 0.8306 + }, + { + "start": 27174.7, + "end": 27178.96, + "probability": 0.9795 + }, + { + "start": 27179.5, + "end": 27182.16, + "probability": 0.8936 + }, + { + "start": 27182.24, + "end": 27183.42, + "probability": 0.9946 + }, + { + "start": 27183.86, + "end": 27188.52, + "probability": 0.9819 + }, + { + "start": 27188.52, + "end": 27192.14, + "probability": 0.9873 + }, + { + "start": 27192.5, + "end": 27193.69, + "probability": 0.5016 + }, + { + "start": 27194.4, + "end": 27196.24, + "probability": 0.9067 + }, + { + "start": 27196.26, + "end": 27198.14, + "probability": 0.9908 + }, + { + "start": 27198.56, + "end": 27201.36, + "probability": 0.9255 + }, + { + "start": 27201.96, + "end": 27205.94, + "probability": 0.9868 + }, + { + "start": 27205.94, + "end": 27209.92, + "probability": 0.9995 + }, + { + "start": 27210.68, + "end": 27211.86, + "probability": 0.8127 + }, + { + "start": 27212.28, + "end": 27216.4, + "probability": 0.9838 + }, + { + "start": 27217.82, + "end": 27219.5, + "probability": 0.9455 + }, + { + "start": 27219.56, + "end": 27220.32, + "probability": 0.5354 + }, + { + "start": 27220.36, + "end": 27221.79, + "probability": 0.9424 + }, + { + "start": 27222.14, + "end": 27223.2, + "probability": 0.9341 + }, + { + "start": 27223.3, + "end": 27225.64, + "probability": 0.7498 + }, + { + "start": 27225.74, + "end": 27226.5, + "probability": 0.6212 + }, + { + "start": 27226.98, + "end": 27227.93, + "probability": 0.9932 + }, + { + "start": 27228.38, + "end": 27229.62, + "probability": 0.7124 + }, + { + "start": 27229.96, + "end": 27233.28, + "probability": 0.7239 + }, + { + "start": 27233.58, + "end": 27235.4, + "probability": 0.9844 + }, + { + "start": 27235.88, + "end": 27239.42, + "probability": 0.986 + }, + { + "start": 27240.48, + "end": 27244.6, + "probability": 0.8158 + }, + { + "start": 27245.64, + "end": 27246.98, + "probability": 0.6563 + }, + { + "start": 27247.5, + "end": 27251.76, + "probability": 0.7737 + }, + { + "start": 27252.46, + "end": 27254.56, + "probability": 0.8855 + }, + { + "start": 27254.66, + "end": 27255.16, + "probability": 0.3067 + }, + { + "start": 27256.24, + "end": 27257.08, + "probability": 0.6826 + }, + { + "start": 27257.18, + "end": 27261.8, + "probability": 0.963 + }, + { + "start": 27263.14, + "end": 27264.06, + "probability": 0.6557 + }, + { + "start": 27264.2, + "end": 27265.18, + "probability": 0.1386 + }, + { + "start": 27265.8, + "end": 27267.76, + "probability": 0.4687 + }, + { + "start": 27267.8, + "end": 27268.24, + "probability": 0.6147 + }, + { + "start": 27268.84, + "end": 27271.12, + "probability": 0.7256 + }, + { + "start": 27271.18, + "end": 27271.68, + "probability": 0.4975 + }, + { + "start": 27271.86, + "end": 27272.28, + "probability": 0.3603 + }, + { + "start": 27272.36, + "end": 27273.46, + "probability": 0.3965 + }, + { + "start": 27273.46, + "end": 27273.64, + "probability": 0.7927 + }, + { + "start": 27273.8, + "end": 27274.38, + "probability": 0.9421 + }, + { + "start": 27274.58, + "end": 27275.52, + "probability": 0.8849 + }, + { + "start": 27276.74, + "end": 27279.82, + "probability": 0.7604 + }, + { + "start": 27280.6, + "end": 27283.74, + "probability": 0.8797 + }, + { + "start": 27284.66, + "end": 27286.42, + "probability": 0.9871 + }, + { + "start": 27287.16, + "end": 27288.08, + "probability": 0.5499 + }, + { + "start": 27288.72, + "end": 27289.22, + "probability": 0.3877 + }, + { + "start": 27293.6, + "end": 27294.22, + "probability": 0.3728 + }, + { + "start": 27296.8, + "end": 27299.96, + "probability": 0.6652 + }, + { + "start": 27307.08, + "end": 27309.32, + "probability": 0.0983 + }, + { + "start": 27315.68, + "end": 27316.1, + "probability": 0.3437 + }, + { + "start": 27317.06, + "end": 27318.98, + "probability": 0.4613 + }, + { + "start": 27319.7, + "end": 27321.16, + "probability": 0.529 + }, + { + "start": 27322.96, + "end": 27325.08, + "probability": 0.8564 + }, + { + "start": 27325.26, + "end": 27327.54, + "probability": 0.8866 + }, + { + "start": 27329.99, + "end": 27333.5, + "probability": 0.9812 + }, + { + "start": 27335.24, + "end": 27336.68, + "probability": 0.7241 + }, + { + "start": 27337.78, + "end": 27339.86, + "probability": 0.6343 + }, + { + "start": 27339.92, + "end": 27342.16, + "probability": 0.4993 + }, + { + "start": 27343.74, + "end": 27345.32, + "probability": 0.1303 + }, + { + "start": 27345.32, + "end": 27347.3, + "probability": 0.4156 + }, + { + "start": 27348.64, + "end": 27349.38, + "probability": 0.5586 + }, + { + "start": 27349.58, + "end": 27351.48, + "probability": 0.798 + }, + { + "start": 27351.7, + "end": 27353.27, + "probability": 0.5405 + }, + { + "start": 27353.5, + "end": 27354.9, + "probability": 0.6705 + }, + { + "start": 27355.24, + "end": 27355.72, + "probability": 0.4927 + }, + { + "start": 27358.06, + "end": 27359.58, + "probability": 0.5736 + }, + { + "start": 27359.64, + "end": 27361.02, + "probability": 0.6448 + }, + { + "start": 27361.08, + "end": 27362.82, + "probability": 0.4406 + }, + { + "start": 27368.08, + "end": 27369.12, + "probability": 0.6472 + }, + { + "start": 27370.06, + "end": 27371.92, + "probability": 0.5822 + }, + { + "start": 27372.02, + "end": 27373.36, + "probability": 0.0865 + }, + { + "start": 27373.66, + "end": 27374.08, + "probability": 0.4025 + }, + { + "start": 27374.54, + "end": 27375.54, + "probability": 0.96 + }, + { + "start": 27376.66, + "end": 27377.56, + "probability": 0.87 + }, + { + "start": 27378.12, + "end": 27381.18, + "probability": 0.728 + }, + { + "start": 27381.66, + "end": 27382.5, + "probability": 0.9692 + }, + { + "start": 27383.3, + "end": 27384.04, + "probability": 0.9819 + }, + { + "start": 27384.52, + "end": 27386.3, + "probability": 0.7149 + }, + { + "start": 27386.52, + "end": 27387.76, + "probability": 0.9034 + }, + { + "start": 27387.76, + "end": 27390.8, + "probability": 0.5099 + }, + { + "start": 27392.44, + "end": 27393.72, + "probability": 0.2981 + }, + { + "start": 27395.24, + "end": 27395.8, + "probability": 0.979 + }, + { + "start": 27396.68, + "end": 27398.42, + "probability": 0.456 + }, + { + "start": 27400.02, + "end": 27401.3, + "probability": 0.8067 + }, + { + "start": 27401.6, + "end": 27404.2, + "probability": 0.9456 + }, + { + "start": 27404.84, + "end": 27405.0, + "probability": 0.3994 + }, + { + "start": 27405.44, + "end": 27406.0, + "probability": 0.5605 + }, + { + "start": 27406.06, + "end": 27407.96, + "probability": 0.8278 + }, + { + "start": 27410.3, + "end": 27411.94, + "probability": 0.0751 + }, + { + "start": 27412.06, + "end": 27414.98, + "probability": 0.7689 + }, + { + "start": 27415.14, + "end": 27416.84, + "probability": 0.7626 + }, + { + "start": 27417.34, + "end": 27419.4, + "probability": 0.9146 + }, + { + "start": 27420.72, + "end": 27425.42, + "probability": 0.94 + }, + { + "start": 27427.82, + "end": 27428.96, + "probability": 0.7438 + }, + { + "start": 27430.18, + "end": 27430.82, + "probability": 0.6786 + }, + { + "start": 27431.2, + "end": 27432.08, + "probability": 0.6438 + }, + { + "start": 27432.14, + "end": 27433.94, + "probability": 0.9782 + }, + { + "start": 27434.32, + "end": 27436.88, + "probability": 0.8512 + }, + { + "start": 27436.94, + "end": 27438.96, + "probability": 0.1525 + }, + { + "start": 27439.52, + "end": 27439.52, + "probability": 0.0595 + }, + { + "start": 27439.66, + "end": 27441.94, + "probability": 0.5603 + }, + { + "start": 27442.2, + "end": 27443.8, + "probability": 0.3559 + }, + { + "start": 27444.12, + "end": 27446.0, + "probability": 0.6048 + }, + { + "start": 27446.88, + "end": 27449.18, + "probability": 0.3274 + }, + { + "start": 27450.04, + "end": 27452.12, + "probability": 0.6939 + }, + { + "start": 27452.2, + "end": 27453.45, + "probability": 0.9533 + }, + { + "start": 27455.36, + "end": 27455.57, + "probability": 0.1609 + }, + { + "start": 27455.62, + "end": 27455.62, + "probability": 0.0286 + }, + { + "start": 27455.62, + "end": 27456.66, + "probability": 0.0794 + }, + { + "start": 27457.54, + "end": 27460.82, + "probability": 0.6059 + }, + { + "start": 27461.08, + "end": 27461.1, + "probability": 0.2588 + }, + { + "start": 27461.1, + "end": 27467.4, + "probability": 0.6396 + }, + { + "start": 27468.08, + "end": 27468.64, + "probability": 0.8502 + }, + { + "start": 27468.82, + "end": 27468.82, + "probability": 0.5604 + }, + { + "start": 27468.88, + "end": 27469.23, + "probability": 0.5913 + }, + { + "start": 27469.5, + "end": 27472.2, + "probability": 0.7149 + }, + { + "start": 27472.26, + "end": 27474.18, + "probability": 0.9873 + }, + { + "start": 27475.28, + "end": 27477.16, + "probability": 0.953 + }, + { + "start": 27477.62, + "end": 27478.7, + "probability": 0.7979 + }, + { + "start": 27478.9, + "end": 27481.08, + "probability": 0.7293 + }, + { + "start": 27481.22, + "end": 27483.6, + "probability": 0.9072 + }, + { + "start": 27484.12, + "end": 27484.93, + "probability": 0.921 + }, + { + "start": 27486.62, + "end": 27486.8, + "probability": 0.8872 + }, + { + "start": 27487.0, + "end": 27490.28, + "probability": 0.7799 + }, + { + "start": 27490.42, + "end": 27490.66, + "probability": 0.4003 + }, + { + "start": 27491.02, + "end": 27491.32, + "probability": 0.3749 + }, + { + "start": 27493.96, + "end": 27495.66, + "probability": 0.6606 + }, + { + "start": 27495.94, + "end": 27499.04, + "probability": 0.9122 + }, + { + "start": 27499.12, + "end": 27501.5, + "probability": 0.9151 + }, + { + "start": 27502.58, + "end": 27505.36, + "probability": 0.9359 + }, + { + "start": 27505.36, + "end": 27508.26, + "probability": 0.9829 + }, + { + "start": 27509.14, + "end": 27510.44, + "probability": 0.9561 + }, + { + "start": 27511.3, + "end": 27516.68, + "probability": 0.887 + }, + { + "start": 27517.84, + "end": 27520.76, + "probability": 0.8634 + }, + { + "start": 27522.42, + "end": 27524.84, + "probability": 0.8492 + }, + { + "start": 27525.38, + "end": 27527.12, + "probability": 0.9868 + }, + { + "start": 27528.06, + "end": 27530.12, + "probability": 0.954 + }, + { + "start": 27530.2, + "end": 27534.88, + "probability": 0.9958 + }, + { + "start": 27536.54, + "end": 27539.58, + "probability": 0.9551 + }, + { + "start": 27539.58, + "end": 27543.1, + "probability": 0.8973 + }, + { + "start": 27543.8, + "end": 27545.4, + "probability": 0.9587 + }, + { + "start": 27546.82, + "end": 27547.12, + "probability": 0.5779 + }, + { + "start": 27547.2, + "end": 27547.54, + "probability": 0.7321 + }, + { + "start": 27547.6, + "end": 27549.8, + "probability": 0.9656 + }, + { + "start": 27550.0, + "end": 27552.72, + "probability": 0.8582 + }, + { + "start": 27552.88, + "end": 27555.72, + "probability": 0.7284 + }, + { + "start": 27556.24, + "end": 27557.02, + "probability": 0.8345 + }, + { + "start": 27558.72, + "end": 27562.58, + "probability": 0.7735 + }, + { + "start": 27564.24, + "end": 27564.36, + "probability": 0.3235 + }, + { + "start": 27565.12, + "end": 27567.84, + "probability": 0.7369 + }, + { + "start": 27568.72, + "end": 27569.9, + "probability": 0.6966 + }, + { + "start": 27571.7, + "end": 27573.02, + "probability": 0.9425 + }, + { + "start": 27573.12, + "end": 27574.98, + "probability": 0.9685 + }, + { + "start": 27575.16, + "end": 27577.3, + "probability": 0.9478 + }, + { + "start": 27578.16, + "end": 27581.38, + "probability": 0.9775 + }, + { + "start": 27582.16, + "end": 27584.42, + "probability": 0.7269 + }, + { + "start": 27585.16, + "end": 27586.02, + "probability": 0.6903 + }, + { + "start": 27586.98, + "end": 27588.12, + "probability": 0.881 + }, + { + "start": 27588.26, + "end": 27590.32, + "probability": 0.7824 + }, + { + "start": 27590.44, + "end": 27592.66, + "probability": 0.862 + }, + { + "start": 27593.36, + "end": 27595.62, + "probability": 0.9912 + }, + { + "start": 27595.84, + "end": 27598.44, + "probability": 0.9211 + }, + { + "start": 27599.58, + "end": 27603.5, + "probability": 0.6758 + }, + { + "start": 27603.6, + "end": 27604.52, + "probability": 0.271 + }, + { + "start": 27604.68, + "end": 27605.14, + "probability": 0.1276 + }, + { + "start": 27605.14, + "end": 27607.0, + "probability": 0.8691 + }, + { + "start": 27607.16, + "end": 27608.08, + "probability": 0.8522 + }, + { + "start": 27608.12, + "end": 27611.18, + "probability": 0.9917 + }, + { + "start": 27611.32, + "end": 27611.5, + "probability": 0.3823 + }, + { + "start": 27611.68, + "end": 27611.68, + "probability": 0.402 + }, + { + "start": 27611.86, + "end": 27615.0, + "probability": 0.9756 + }, + { + "start": 27615.18, + "end": 27615.66, + "probability": 0.3388 + }, + { + "start": 27615.68, + "end": 27616.02, + "probability": 0.5571 + }, + { + "start": 27616.62, + "end": 27618.24, + "probability": 0.8563 + }, + { + "start": 27618.3, + "end": 27619.3, + "probability": 0.9626 + }, + { + "start": 27619.96, + "end": 27620.36, + "probability": 0.846 + }, + { + "start": 27620.52, + "end": 27621.24, + "probability": 0.7051 + }, + { + "start": 27622.24, + "end": 27624.6, + "probability": 0.9431 + }, + { + "start": 27625.78, + "end": 27628.8, + "probability": 0.9409 + }, + { + "start": 27630.88, + "end": 27633.74, + "probability": 0.9926 + }, + { + "start": 27634.36, + "end": 27637.5, + "probability": 0.7398 + }, + { + "start": 27638.08, + "end": 27638.36, + "probability": 0.6373 + }, + { + "start": 27638.44, + "end": 27639.62, + "probability": 0.6364 + }, + { + "start": 27639.72, + "end": 27640.48, + "probability": 0.5289 + }, + { + "start": 27640.54, + "end": 27642.7, + "probability": 0.7363 + }, + { + "start": 27643.32, + "end": 27645.68, + "probability": 0.5538 + }, + { + "start": 27646.4, + "end": 27647.22, + "probability": 0.6665 + }, + { + "start": 27647.32, + "end": 27647.4, + "probability": 0.5552 + }, + { + "start": 27647.46, + "end": 27647.66, + "probability": 0.9138 + }, + { + "start": 27647.78, + "end": 27649.56, + "probability": 0.9285 + }, + { + "start": 27649.6, + "end": 27650.24, + "probability": 0.9471 + }, + { + "start": 27650.36, + "end": 27652.24, + "probability": 0.9791 + }, + { + "start": 27652.54, + "end": 27652.82, + "probability": 0.3378 + }, + { + "start": 27652.82, + "end": 27653.6, + "probability": 0.4631 + }, + { + "start": 27653.62, + "end": 27653.72, + "probability": 0.3125 + }, + { + "start": 27654.16, + "end": 27654.96, + "probability": 0.4877 + }, + { + "start": 27655.5, + "end": 27656.68, + "probability": 0.808 + }, + { + "start": 27656.68, + "end": 27656.94, + "probability": 0.681 + }, + { + "start": 27657.1, + "end": 27660.44, + "probability": 0.9919 + }, + { + "start": 27660.6, + "end": 27664.68, + "probability": 0.7599 + }, + { + "start": 27664.88, + "end": 27664.88, + "probability": 0.0058 + }, + { + "start": 27664.88, + "end": 27664.88, + "probability": 0.0212 + }, + { + "start": 27664.9, + "end": 27665.06, + "probability": 0.3982 + }, + { + "start": 27665.18, + "end": 27666.18, + "probability": 0.9883 + }, + { + "start": 27666.24, + "end": 27666.94, + "probability": 0.8969 + }, + { + "start": 27667.04, + "end": 27668.44, + "probability": 0.509 + }, + { + "start": 27668.48, + "end": 27670.33, + "probability": 0.2345 + }, + { + "start": 27671.16, + "end": 27671.26, + "probability": 0.0015 + }, + { + "start": 27671.4, + "end": 27673.26, + "probability": 0.8096 + }, + { + "start": 27673.38, + "end": 27674.2, + "probability": 0.6358 + }, + { + "start": 27674.4, + "end": 27675.12, + "probability": 0.7964 + }, + { + "start": 27675.22, + "end": 27675.96, + "probability": 0.5261 + }, + { + "start": 27676.36, + "end": 27676.85, + "probability": 0.8912 + }, + { + "start": 27678.02, + "end": 27679.04, + "probability": 0.7129 + }, + { + "start": 27680.84, + "end": 27681.42, + "probability": 0.5801 + }, + { + "start": 27681.54, + "end": 27684.87, + "probability": 0.6895 + }, + { + "start": 27684.9, + "end": 27687.62, + "probability": 0.7868 + }, + { + "start": 27687.8, + "end": 27690.82, + "probability": 0.7866 + }, + { + "start": 27690.88, + "end": 27691.16, + "probability": 0.2408 + }, + { + "start": 27691.24, + "end": 27693.0, + "probability": 0.9172 + }, + { + "start": 27693.08, + "end": 27693.6, + "probability": 0.6082 + }, + { + "start": 27694.08, + "end": 27695.0, + "probability": 0.8958 + }, + { + "start": 27696.4, + "end": 27698.9, + "probability": 0.8552 + }, + { + "start": 27699.96, + "end": 27702.36, + "probability": 0.8665 + }, + { + "start": 27702.52, + "end": 27703.13, + "probability": 0.5713 + }, + { + "start": 27704.3, + "end": 27706.08, + "probability": 0.9957 + }, + { + "start": 27707.4, + "end": 27708.44, + "probability": 0.4579 + }, + { + "start": 27710.3, + "end": 27716.56, + "probability": 0.9756 + }, + { + "start": 27717.78, + "end": 27719.88, + "probability": 0.777 + }, + { + "start": 27721.58, + "end": 27723.24, + "probability": 0.9391 + }, + { + "start": 27723.66, + "end": 27725.94, + "probability": 0.9888 + }, + { + "start": 27727.64, + "end": 27729.14, + "probability": 0.7565 + }, + { + "start": 27729.9, + "end": 27730.74, + "probability": 0.3564 + }, + { + "start": 27732.38, + "end": 27734.74, + "probability": 0.9152 + }, + { + "start": 27734.74, + "end": 27738.16, + "probability": 0.9556 + }, + { + "start": 27738.94, + "end": 27740.84, + "probability": 0.9849 + }, + { + "start": 27742.52, + "end": 27744.7, + "probability": 0.7861 + }, + { + "start": 27746.0, + "end": 27746.3, + "probability": 0.6431 + }, + { + "start": 27746.4, + "end": 27748.68, + "probability": 0.9585 + }, + { + "start": 27748.68, + "end": 27750.24, + "probability": 0.882 + }, + { + "start": 27750.68, + "end": 27751.58, + "probability": 0.1414 + }, + { + "start": 27752.22, + "end": 27753.8, + "probability": 0.6068 + }, + { + "start": 27754.92, + "end": 27755.74, + "probability": 0.8435 + }, + { + "start": 27756.64, + "end": 27758.5, + "probability": 0.7635 + }, + { + "start": 27758.5, + "end": 27761.34, + "probability": 0.9906 + }, + { + "start": 27762.28, + "end": 27763.48, + "probability": 0.6769 + }, + { + "start": 27764.18, + "end": 27765.96, + "probability": 0.9296 + }, + { + "start": 27768.48, + "end": 27770.28, + "probability": 0.957 + }, + { + "start": 27770.62, + "end": 27771.0, + "probability": 0.7136 + }, + { + "start": 27771.3, + "end": 27771.9, + "probability": 0.9073 + }, + { + "start": 27772.44, + "end": 27772.5, + "probability": 0.0088 + }, + { + "start": 27772.68, + "end": 27775.32, + "probability": 0.9805 + }, + { + "start": 27776.34, + "end": 27776.96, + "probability": 0.7612 + }, + { + "start": 27777.06, + "end": 27781.98, + "probability": 0.9941 + }, + { + "start": 27782.18, + "end": 27782.82, + "probability": 0.2135 + }, + { + "start": 27782.9, + "end": 27784.26, + "probability": 0.8339 + }, + { + "start": 27785.26, + "end": 27788.26, + "probability": 0.9034 + }, + { + "start": 27789.18, + "end": 27790.76, + "probability": 0.979 + }, + { + "start": 27791.42, + "end": 27793.5, + "probability": 0.8152 + }, + { + "start": 27793.92, + "end": 27796.3, + "probability": 0.9061 + }, + { + "start": 27796.46, + "end": 27796.88, + "probability": 0.8154 + }, + { + "start": 27796.96, + "end": 27797.94, + "probability": 0.9177 + }, + { + "start": 27798.06, + "end": 27799.04, + "probability": 0.9254 + }, + { + "start": 27800.78, + "end": 27803.26, + "probability": 0.994 + }, + { + "start": 27803.38, + "end": 27805.66, + "probability": 0.9896 + }, + { + "start": 27806.4, + "end": 27808.64, + "probability": 0.9951 + }, + { + "start": 27809.68, + "end": 27813.5, + "probability": 0.9744 + }, + { + "start": 27813.5, + "end": 27816.94, + "probability": 0.9932 + }, + { + "start": 27818.54, + "end": 27821.14, + "probability": 0.6122 + }, + { + "start": 27821.64, + "end": 27821.94, + "probability": 0.6732 + }, + { + "start": 27822.22, + "end": 27823.44, + "probability": 0.5364 + }, + { + "start": 27823.86, + "end": 27824.92, + "probability": 0.9493 + }, + { + "start": 27825.44, + "end": 27828.02, + "probability": 0.9926 + }, + { + "start": 27828.66, + "end": 27828.92, + "probability": 0.7189 + }, + { + "start": 27830.16, + "end": 27834.84, + "probability": 0.8312 + }, + { + "start": 27834.84, + "end": 27838.68, + "probability": 0.998 + }, + { + "start": 27838.68, + "end": 27842.52, + "probability": 0.998 + }, + { + "start": 27843.2, + "end": 27844.0, + "probability": 0.4776 + }, + { + "start": 27844.23, + "end": 27845.52, + "probability": 0.8728 + }, + { + "start": 27845.52, + "end": 27846.78, + "probability": 0.747 + }, + { + "start": 27846.86, + "end": 27847.6, + "probability": 0.9462 + }, + { + "start": 27848.2, + "end": 27850.12, + "probability": 0.8862 + }, + { + "start": 27851.04, + "end": 27851.74, + "probability": 0.7486 + }, + { + "start": 27852.86, + "end": 27854.06, + "probability": 0.9777 + }, + { + "start": 27855.08, + "end": 27856.02, + "probability": 0.4477 + }, + { + "start": 27856.26, + "end": 27856.88, + "probability": 0.5199 + }, + { + "start": 27856.88, + "end": 27856.92, + "probability": 0.4005 + }, + { + "start": 27856.98, + "end": 27859.18, + "probability": 0.9801 + }, + { + "start": 27860.0, + "end": 27862.16, + "probability": 0.9727 + }, + { + "start": 27862.96, + "end": 27864.78, + "probability": 0.7629 + }, + { + "start": 27866.18, + "end": 27871.08, + "probability": 0.8722 + }, + { + "start": 27872.02, + "end": 27872.72, + "probability": 0.7705 + }, + { + "start": 27873.6, + "end": 27875.3, + "probability": 0.9324 + }, + { + "start": 27876.26, + "end": 27876.26, + "probability": 0.8828 + }, + { + "start": 27878.22, + "end": 27878.67, + "probability": 0.98 + }, + { + "start": 27879.24, + "end": 27881.22, + "probability": 0.9867 + }, + { + "start": 27881.78, + "end": 27885.5, + "probability": 0.9673 + }, + { + "start": 27886.04, + "end": 27887.66, + "probability": 0.3899 + }, + { + "start": 27887.94, + "end": 27888.43, + "probability": 0.4966 + }, + { + "start": 27888.96, + "end": 27891.87, + "probability": 0.6916 + }, + { + "start": 27892.28, + "end": 27893.04, + "probability": 0.3609 + }, + { + "start": 27893.08, + "end": 27897.16, + "probability": 0.9987 + }, + { + "start": 27897.16, + "end": 27900.32, + "probability": 0.9866 + }, + { + "start": 27901.04, + "end": 27903.36, + "probability": 0.96 + }, + { + "start": 27904.26, + "end": 27907.98, + "probability": 0.9771 + }, + { + "start": 27909.3, + "end": 27911.46, + "probability": 0.9911 + }, + { + "start": 27912.4, + "end": 27914.58, + "probability": 0.9678 + }, + { + "start": 27915.06, + "end": 27917.68, + "probability": 0.9342 + }, + { + "start": 27918.18, + "end": 27919.28, + "probability": 0.8049 + }, + { + "start": 27920.6, + "end": 27921.34, + "probability": 0.6718 + }, + { + "start": 27921.62, + "end": 27925.58, + "probability": 0.8734 + }, + { + "start": 27925.86, + "end": 27927.0, + "probability": 0.7514 + }, + { + "start": 27927.5, + "end": 27927.66, + "probability": 0.2219 + }, + { + "start": 27927.86, + "end": 27928.96, + "probability": 0.7555 + }, + { + "start": 27929.42, + "end": 27930.78, + "probability": 0.8365 + }, + { + "start": 27931.16, + "end": 27932.4, + "probability": 0.6637 + }, + { + "start": 27932.78, + "end": 27934.54, + "probability": 0.8951 + }, + { + "start": 27935.08, + "end": 27937.1, + "probability": 0.8961 + }, + { + "start": 27937.58, + "end": 27940.28, + "probability": 0.8123 + }, + { + "start": 27940.48, + "end": 27941.2, + "probability": 0.4431 + }, + { + "start": 27941.42, + "end": 27941.54, + "probability": 0.4998 + }, + { + "start": 27941.74, + "end": 27942.34, + "probability": 0.3866 + }, + { + "start": 27942.66, + "end": 27942.66, + "probability": 0.3035 + }, + { + "start": 27942.68, + "end": 27945.1, + "probability": 0.8808 + }, + { + "start": 27945.88, + "end": 27947.86, + "probability": 0.7253 + }, + { + "start": 27947.98, + "end": 27948.58, + "probability": 0.7923 + }, + { + "start": 27949.62, + "end": 27951.86, + "probability": 0.9572 + }, + { + "start": 27953.26, + "end": 27954.98, + "probability": 0.9807 + }, + { + "start": 27955.1, + "end": 27955.45, + "probability": 0.9236 + }, + { + "start": 27956.44, + "end": 27958.66, + "probability": 0.6313 + }, + { + "start": 27960.18, + "end": 27960.18, + "probability": 0.3047 + }, + { + "start": 27960.18, + "end": 27962.68, + "probability": 0.4681 + }, + { + "start": 27963.62, + "end": 27967.26, + "probability": 0.5983 + }, + { + "start": 27967.26, + "end": 27972.22, + "probability": 0.8785 + }, + { + "start": 27972.9, + "end": 27974.1, + "probability": 0.959 + }, + { + "start": 27974.14, + "end": 27976.44, + "probability": 0.6615 + }, + { + "start": 27977.26, + "end": 27979.44, + "probability": 0.9976 + }, + { + "start": 27981.76, + "end": 27987.0, + "probability": 0.9002 + }, + { + "start": 27987.58, + "end": 27989.27, + "probability": 0.6074 + }, + { + "start": 27990.0, + "end": 27990.98, + "probability": 0.788 + }, + { + "start": 27991.38, + "end": 27992.24, + "probability": 0.8628 + }, + { + "start": 27993.18, + "end": 27994.12, + "probability": 0.3119 + }, + { + "start": 27994.12, + "end": 27995.72, + "probability": 0.961 + }, + { + "start": 27996.42, + "end": 27997.68, + "probability": 0.8082 + }, + { + "start": 27998.18, + "end": 27998.58, + "probability": 0.912 + }, + { + "start": 27998.64, + "end": 27999.24, + "probability": 0.8895 + }, + { + "start": 27999.3, + "end": 28001.9, + "probability": 0.875 + }, + { + "start": 28002.36, + "end": 28003.9, + "probability": 0.8687 + }, + { + "start": 28004.0, + "end": 28004.55, + "probability": 0.6294 + }, + { + "start": 28005.18, + "end": 28009.54, + "probability": 0.9541 + }, + { + "start": 28010.06, + "end": 28011.22, + "probability": 0.8181 + }, + { + "start": 28012.5, + "end": 28014.85, + "probability": 0.9837 + }, + { + "start": 28028.02, + "end": 28028.02, + "probability": 0.2883 + }, + { + "start": 28028.02, + "end": 28028.9, + "probability": 0.4903 + }, + { + "start": 28031.92, + "end": 28032.1, + "probability": 0.2438 + }, + { + "start": 28032.1, + "end": 28035.18, + "probability": 0.5514 + }, + { + "start": 28035.24, + "end": 28035.94, + "probability": 0.8641 + }, + { + "start": 28036.46, + "end": 28037.6, + "probability": 0.641 + }, + { + "start": 28038.04, + "end": 28039.2, + "probability": 0.3971 + }, + { + "start": 28039.34, + "end": 28039.88, + "probability": 0.8465 + }, + { + "start": 28040.26, + "end": 28045.44, + "probability": 0.9683 + }, + { + "start": 28045.84, + "end": 28046.4, + "probability": 0.0712 + }, + { + "start": 28046.78, + "end": 28048.42, + "probability": 0.998 + }, + { + "start": 28050.14, + "end": 28051.06, + "probability": 0.9348 + }, + { + "start": 28051.58, + "end": 28053.62, + "probability": 0.269 + }, + { + "start": 28054.5, + "end": 28054.58, + "probability": 0.0498 + }, + { + "start": 28054.76, + "end": 28055.54, + "probability": 0.0161 + }, + { + "start": 28055.68, + "end": 28056.6, + "probability": 0.9775 + }, + { + "start": 28056.96, + "end": 28064.26, + "probability": 0.9701 + }, + { + "start": 28064.34, + "end": 28064.78, + "probability": 0.328 + }, + { + "start": 28065.69, + "end": 28067.8, + "probability": 0.9206 + }, + { + "start": 28067.84, + "end": 28069.08, + "probability": 0.9143 + }, + { + "start": 28070.96, + "end": 28073.4, + "probability": 0.8097 + }, + { + "start": 28073.98, + "end": 28076.36, + "probability": 0.6491 + }, + { + "start": 28077.06, + "end": 28078.22, + "probability": 0.9537 + }, + { + "start": 28079.2, + "end": 28079.74, + "probability": 0.2078 + }, + { + "start": 28080.12, + "end": 28082.72, + "probability": 0.9988 + }, + { + "start": 28083.7, + "end": 28084.4, + "probability": 0.3901 + }, + { + "start": 28085.66, + "end": 28088.02, + "probability": 0.2329 + }, + { + "start": 28088.74, + "end": 28091.88, + "probability": 0.6961 + }, + { + "start": 28092.2, + "end": 28094.1, + "probability": 0.9878 + }, + { + "start": 28094.22, + "end": 28094.38, + "probability": 0.1095 + }, + { + "start": 28094.88, + "end": 28098.76, + "probability": 0.9179 + }, + { + "start": 28098.86, + "end": 28099.58, + "probability": 0.3625 + }, + { + "start": 28099.74, + "end": 28100.68, + "probability": 0.6031 + }, + { + "start": 28101.26, + "end": 28102.06, + "probability": 0.5439 + }, + { + "start": 28102.28, + "end": 28104.76, + "probability": 0.9139 + }, + { + "start": 28105.54, + "end": 28106.64, + "probability": 0.9858 + }, + { + "start": 28107.02, + "end": 28107.24, + "probability": 0.0155 + }, + { + "start": 28107.44, + "end": 28108.04, + "probability": 0.2706 + }, + { + "start": 28108.2, + "end": 28111.18, + "probability": 0.6872 + }, + { + "start": 28111.46, + "end": 28115.54, + "probability": 0.7994 + }, + { + "start": 28115.54, + "end": 28119.16, + "probability": 0.681 + }, + { + "start": 28119.56, + "end": 28119.62, + "probability": 0.0147 + }, + { + "start": 28119.62, + "end": 28121.82, + "probability": 0.8743 + }, + { + "start": 28122.88, + "end": 28126.86, + "probability": 0.8042 + }, + { + "start": 28127.54, + "end": 28128.46, + "probability": 0.693 + }, + { + "start": 28131.9, + "end": 28132.0, + "probability": 0.8348 + }, + { + "start": 28134.48, + "end": 28135.5, + "probability": 0.6594 + }, + { + "start": 28137.6, + "end": 28138.56, + "probability": 0.9099 + }, + { + "start": 28142.64, + "end": 28143.58, + "probability": 0.9961 + }, + { + "start": 28151.78, + "end": 28151.78, + "probability": 0.0578 + }, + { + "start": 28151.78, + "end": 28155.76, + "probability": 0.7133 + }, + { + "start": 28156.64, + "end": 28158.62, + "probability": 0.6746 + }, + { + "start": 28158.93, + "end": 28162.78, + "probability": 0.9783 + }, + { + "start": 28163.22, + "end": 28164.38, + "probability": 0.9358 + }, + { + "start": 28165.36, + "end": 28167.2, + "probability": 0.9947 + }, + { + "start": 28168.26, + "end": 28176.92, + "probability": 0.8163 + }, + { + "start": 28177.34, + "end": 28178.78, + "probability": 0.6487 + }, + { + "start": 28179.88, + "end": 28181.74, + "probability": 0.9858 + }, + { + "start": 28182.42, + "end": 28188.12, + "probability": 0.9497 + }, + { + "start": 28188.94, + "end": 28189.62, + "probability": 0.9289 + }, + { + "start": 28190.88, + "end": 28192.9, + "probability": 0.7417 + }, + { + "start": 28193.62, + "end": 28195.78, + "probability": 0.9577 + }, + { + "start": 28196.96, + "end": 28198.8, + "probability": 0.9569 + }, + { + "start": 28199.62, + "end": 28200.94, + "probability": 0.9939 + }, + { + "start": 28201.96, + "end": 28203.02, + "probability": 0.8494 + }, + { + "start": 28203.18, + "end": 28205.12, + "probability": 0.9604 + }, + { + "start": 28205.12, + "end": 28206.8, + "probability": 0.9858 + }, + { + "start": 28207.38, + "end": 28210.12, + "probability": 0.9313 + }, + { + "start": 28210.2, + "end": 28210.46, + "probability": 0.7364 + }, + { + "start": 28210.9, + "end": 28211.44, + "probability": 0.6485 + }, + { + "start": 28212.1, + "end": 28214.0, + "probability": 0.665 + }, + { + "start": 28214.22, + "end": 28215.16, + "probability": 0.7248 + }, + { + "start": 28215.5, + "end": 28216.0, + "probability": 0.7975 + }, + { + "start": 28216.0, + "end": 28217.28, + "probability": 0.8973 + }, + { + "start": 28218.48, + "end": 28223.1, + "probability": 0.8114 + }, + { + "start": 28223.98, + "end": 28224.34, + "probability": 0.946 + }, + { + "start": 28225.72, + "end": 28226.92, + "probability": 0.7563 + }, + { + "start": 28227.8, + "end": 28229.36, + "probability": 0.5999 + }, + { + "start": 28230.82, + "end": 28235.1, + "probability": 0.9768 + }, + { + "start": 28236.86, + "end": 28242.6, + "probability": 0.9803 + }, + { + "start": 28242.68, + "end": 28243.58, + "probability": 0.6595 + }, + { + "start": 28244.12, + "end": 28245.3, + "probability": 0.9804 + }, + { + "start": 28245.7, + "end": 28246.78, + "probability": 0.9778 + }, + { + "start": 28247.16, + "end": 28248.04, + "probability": 0.5696 + }, + { + "start": 28248.82, + "end": 28253.48, + "probability": 0.917 + }, + { + "start": 28254.3, + "end": 28257.08, + "probability": 0.9753 + }, + { + "start": 28257.9, + "end": 28259.72, + "probability": 0.983 + }, + { + "start": 28259.82, + "end": 28260.74, + "probability": 0.8837 + }, + { + "start": 28262.08, + "end": 28264.58, + "probability": 0.8955 + }, + { + "start": 28265.6, + "end": 28266.48, + "probability": 0.8908 + }, + { + "start": 28267.54, + "end": 28270.34, + "probability": 0.9966 + }, + { + "start": 28272.22, + "end": 28273.84, + "probability": 0.7942 + }, + { + "start": 28274.1, + "end": 28277.02, + "probability": 0.9058 + }, + { + "start": 28277.1, + "end": 28277.76, + "probability": 0.6461 + }, + { + "start": 28277.8, + "end": 28279.0, + "probability": 0.9865 + }, + { + "start": 28279.2, + "end": 28281.92, + "probability": 0.955 + }, + { + "start": 28282.66, + "end": 28284.46, + "probability": 0.9299 + }, + { + "start": 28285.12, + "end": 28286.8, + "probability": 0.8728 + }, + { + "start": 28288.94, + "end": 28292.84, + "probability": 0.9376 + }, + { + "start": 28292.92, + "end": 28293.42, + "probability": 0.5359 + }, + { + "start": 28293.48, + "end": 28293.76, + "probability": 0.8916 + }, + { + "start": 28293.86, + "end": 28294.44, + "probability": 0.6603 + }, + { + "start": 28295.06, + "end": 28296.5, + "probability": 0.6621 + }, + { + "start": 28297.12, + "end": 28299.64, + "probability": 0.9906 + }, + { + "start": 28301.16, + "end": 28302.94, + "probability": 0.7343 + }, + { + "start": 28303.76, + "end": 28307.42, + "probability": 0.9985 + }, + { + "start": 28308.62, + "end": 28310.06, + "probability": 0.8927 + }, + { + "start": 28311.32, + "end": 28313.48, + "probability": 0.9814 + }, + { + "start": 28314.4, + "end": 28315.78, + "probability": 0.9854 + }, + { + "start": 28316.42, + "end": 28317.84, + "probability": 0.7785 + }, + { + "start": 28318.44, + "end": 28319.84, + "probability": 0.9181 + }, + { + "start": 28320.68, + "end": 28321.42, + "probability": 0.8674 + }, + { + "start": 28323.2, + "end": 28325.7, + "probability": 0.969 + }, + { + "start": 28326.72, + "end": 28329.64, + "probability": 0.8703 + }, + { + "start": 28329.74, + "end": 28331.59, + "probability": 0.9739 + }, + { + "start": 28332.28, + "end": 28334.86, + "probability": 0.9206 + }, + { + "start": 28335.8, + "end": 28336.86, + "probability": 0.7305 + }, + { + "start": 28336.94, + "end": 28340.9, + "probability": 0.9882 + }, + { + "start": 28342.04, + "end": 28343.12, + "probability": 0.8937 + }, + { + "start": 28344.24, + "end": 28347.13, + "probability": 0.9414 + }, + { + "start": 28347.5, + "end": 28352.62, + "probability": 0.8451 + }, + { + "start": 28352.74, + "end": 28353.28, + "probability": 0.6315 + }, + { + "start": 28353.4, + "end": 28354.18, + "probability": 0.7241 + }, + { + "start": 28354.9, + "end": 28357.78, + "probability": 0.6488 + }, + { + "start": 28358.7, + "end": 28361.54, + "probability": 0.9871 + }, + { + "start": 28362.14, + "end": 28367.46, + "probability": 0.9973 + }, + { + "start": 28367.46, + "end": 28372.44, + "probability": 0.9987 + }, + { + "start": 28373.0, + "end": 28373.84, + "probability": 0.5096 + }, + { + "start": 28373.98, + "end": 28374.66, + "probability": 0.6591 + }, + { + "start": 28375.68, + "end": 28379.12, + "probability": 0.8435 + }, + { + "start": 28379.22, + "end": 28379.78, + "probability": 0.9561 + }, + { + "start": 28379.78, + "end": 28382.92, + "probability": 0.8423 + }, + { + "start": 28383.74, + "end": 28385.64, + "probability": 0.6581 + }, + { + "start": 28385.64, + "end": 28387.24, + "probability": 0.9768 + }, + { + "start": 28387.4, + "end": 28388.5, + "probability": 0.4907 + }, + { + "start": 28388.82, + "end": 28389.86, + "probability": 0.8213 + }, + { + "start": 28390.0, + "end": 28391.84, + "probability": 0.9586 + }, + { + "start": 28392.54, + "end": 28393.54, + "probability": 0.7913 + }, + { + "start": 28393.66, + "end": 28394.12, + "probability": 0.9002 + }, + { + "start": 28394.4, + "end": 28400.24, + "probability": 0.7573 + }, + { + "start": 28400.42, + "end": 28401.6, + "probability": 0.738 + }, + { + "start": 28401.68, + "end": 28407.5, + "probability": 0.9905 + }, + { + "start": 28408.0, + "end": 28408.58, + "probability": 0.1884 + }, + { + "start": 28409.04, + "end": 28409.8, + "probability": 0.6025 + }, + { + "start": 28410.2, + "end": 28412.22, + "probability": 0.9924 + }, + { + "start": 28412.34, + "end": 28412.36, + "probability": 0.0126 + }, + { + "start": 28413.18, + "end": 28418.24, + "probability": 0.5841 + }, + { + "start": 28418.84, + "end": 28421.78, + "probability": 0.983 + }, + { + "start": 28422.18, + "end": 28422.54, + "probability": 0.428 + }, + { + "start": 28422.62, + "end": 28423.16, + "probability": 0.7588 + }, + { + "start": 28423.22, + "end": 28425.12, + "probability": 0.9486 + }, + { + "start": 28425.22, + "end": 28429.1, + "probability": 0.9973 + }, + { + "start": 28430.34, + "end": 28433.2, + "probability": 0.8503 + }, + { + "start": 28434.84, + "end": 28436.08, + "probability": 0.9161 + }, + { + "start": 28436.36, + "end": 28438.26, + "probability": 0.8493 + }, + { + "start": 28438.9, + "end": 28440.06, + "probability": 0.8538 + }, + { + "start": 28440.12, + "end": 28440.92, + "probability": 0.8524 + }, + { + "start": 28442.62, + "end": 28444.8, + "probability": 0.9976 + }, + { + "start": 28445.16, + "end": 28446.84, + "probability": 0.3676 + }, + { + "start": 28446.88, + "end": 28449.34, + "probability": 0.8115 + }, + { + "start": 28449.96, + "end": 28450.92, + "probability": 0.8332 + }, + { + "start": 28451.14, + "end": 28455.24, + "probability": 0.9846 + }, + { + "start": 28455.86, + "end": 28458.52, + "probability": 0.8535 + }, + { + "start": 28458.72, + "end": 28459.6, + "probability": 0.7573 + }, + { + "start": 28460.22, + "end": 28461.64, + "probability": 0.9716 + }, + { + "start": 28462.84, + "end": 28464.48, + "probability": 0.9626 + }, + { + "start": 28465.42, + "end": 28467.18, + "probability": 0.9911 + }, + { + "start": 28467.92, + "end": 28471.32, + "probability": 0.9935 + }, + { + "start": 28471.72, + "end": 28473.86, + "probability": 0.7713 + }, + { + "start": 28474.18, + "end": 28477.48, + "probability": 0.9907 + }, + { + "start": 28479.56, + "end": 28481.36, + "probability": 0.9893 + }, + { + "start": 28482.0, + "end": 28483.6, + "probability": 0.4271 + }, + { + "start": 28484.58, + "end": 28486.84, + "probability": 0.9827 + }, + { + "start": 28487.3, + "end": 28487.96, + "probability": 0.9293 + }, + { + "start": 28488.36, + "end": 28489.08, + "probability": 0.8973 + }, + { + "start": 28489.46, + "end": 28494.3, + "probability": 0.9812 + }, + { + "start": 28494.7, + "end": 28497.84, + "probability": 0.9993 + }, + { + "start": 28498.68, + "end": 28501.8, + "probability": 0.7228 + }, + { + "start": 28502.22, + "end": 28505.3, + "probability": 0.9932 + }, + { + "start": 28506.28, + "end": 28509.0, + "probability": 0.9905 + }, + { + "start": 28510.28, + "end": 28513.02, + "probability": 0.9175 + }, + { + "start": 28513.58, + "end": 28516.0, + "probability": 0.8918 + }, + { + "start": 28517.34, + "end": 28518.72, + "probability": 0.9954 + }, + { + "start": 28519.12, + "end": 28520.18, + "probability": 0.7222 + }, + { + "start": 28520.3, + "end": 28522.28, + "probability": 0.9868 + }, + { + "start": 28522.8, + "end": 28523.62, + "probability": 0.7962 + }, + { + "start": 28523.88, + "end": 28527.6, + "probability": 0.8522 + }, + { + "start": 28528.18, + "end": 28529.26, + "probability": 0.8727 + }, + { + "start": 28530.04, + "end": 28531.82, + "probability": 0.9956 + }, + { + "start": 28533.16, + "end": 28536.06, + "probability": 0.9761 + }, + { + "start": 28536.42, + "end": 28537.88, + "probability": 0.8102 + }, + { + "start": 28538.84, + "end": 28541.68, + "probability": 0.8006 + }, + { + "start": 28542.22, + "end": 28543.52, + "probability": 0.9908 + }, + { + "start": 28544.02, + "end": 28545.16, + "probability": 0.9567 + }, + { + "start": 28545.56, + "end": 28548.26, + "probability": 0.7592 + }, + { + "start": 28549.26, + "end": 28552.98, + "probability": 0.9619 + }, + { + "start": 28553.26, + "end": 28557.22, + "probability": 0.5701 + }, + { + "start": 28557.3, + "end": 28559.08, + "probability": 0.7652 + }, + { + "start": 28559.26, + "end": 28559.86, + "probability": 0.7928 + }, + { + "start": 28560.5, + "end": 28562.72, + "probability": 0.7085 + }, + { + "start": 28564.0, + "end": 28564.24, + "probability": 0.0251 + }, + { + "start": 28564.36, + "end": 28565.58, + "probability": 0.8796 + }, + { + "start": 28565.74, + "end": 28567.42, + "probability": 0.647 + }, + { + "start": 28567.56, + "end": 28568.38, + "probability": 0.7069 + }, + { + "start": 28568.74, + "end": 28569.58, + "probability": 0.7203 + }, + { + "start": 28570.78, + "end": 28571.52, + "probability": 0.8718 + }, + { + "start": 28571.66, + "end": 28574.14, + "probability": 0.8563 + }, + { + "start": 28574.88, + "end": 28581.76, + "probability": 0.8229 + }, + { + "start": 28581.86, + "end": 28582.9, + "probability": 0.837 + }, + { + "start": 28583.42, + "end": 28586.7, + "probability": 0.9976 + }, + { + "start": 28587.04, + "end": 28587.76, + "probability": 0.1317 + }, + { + "start": 28590.28, + "end": 28591.22, + "probability": 0.4667 + }, + { + "start": 28591.28, + "end": 28592.86, + "probability": 0.6224 + }, + { + "start": 28593.22, + "end": 28593.58, + "probability": 0.2637 + }, + { + "start": 28593.68, + "end": 28594.63, + "probability": 0.9805 + }, + { + "start": 28595.5, + "end": 28597.42, + "probability": 0.4458 + }, + { + "start": 28597.6, + "end": 28598.32, + "probability": 0.8989 + }, + { + "start": 28598.38, + "end": 28599.62, + "probability": 0.7959 + }, + { + "start": 28600.36, + "end": 28600.92, + "probability": 0.6115 + }, + { + "start": 28600.98, + "end": 28603.52, + "probability": 0.9675 + }, + { + "start": 28603.76, + "end": 28605.73, + "probability": 0.9958 + }, + { + "start": 28606.08, + "end": 28606.44, + "probability": 0.5642 + }, + { + "start": 28607.96, + "end": 28610.24, + "probability": 0.9247 + }, + { + "start": 28610.48, + "end": 28610.88, + "probability": 0.8573 + }, + { + "start": 28610.92, + "end": 28611.87, + "probability": 0.8367 + }, + { + "start": 28612.1, + "end": 28613.58, + "probability": 0.9946 + }, + { + "start": 28614.86, + "end": 28617.24, + "probability": 0.6828 + }, + { + "start": 28617.66, + "end": 28618.66, + "probability": 0.8717 + }, + { + "start": 28619.28, + "end": 28620.94, + "probability": 0.243 + }, + { + "start": 28621.32, + "end": 28621.68, + "probability": 0.6947 + }, + { + "start": 28622.1, + "end": 28623.8, + "probability": 0.9438 + }, + { + "start": 28624.56, + "end": 28625.52, + "probability": 0.9774 + }, + { + "start": 28626.22, + "end": 28628.19, + "probability": 0.9487 + }, + { + "start": 28629.54, + "end": 28630.56, + "probability": 0.731 + }, + { + "start": 28631.12, + "end": 28633.49, + "probability": 0.9976 + }, + { + "start": 28634.14, + "end": 28635.22, + "probability": 0.85 + }, + { + "start": 28635.34, + "end": 28638.94, + "probability": 0.9331 + }, + { + "start": 28638.94, + "end": 28642.44, + "probability": 0.9985 + }, + { + "start": 28642.9, + "end": 28646.4, + "probability": 0.941 + }, + { + "start": 28646.4, + "end": 28646.4, + "probability": 0.7795 + }, + { + "start": 28646.4, + "end": 28646.44, + "probability": 0.87 + }, + { + "start": 28646.44, + "end": 28646.46, + "probability": 0.4014 + }, + { + "start": 28646.46, + "end": 28648.82, + "probability": 0.9825 + }, + { + "start": 28648.98, + "end": 28650.82, + "probability": 0.9033 + }, + { + "start": 28651.4, + "end": 28653.64, + "probability": 0.6473 + }, + { + "start": 28654.22, + "end": 28656.68, + "probability": 0.932 + }, + { + "start": 28657.3, + "end": 28659.98, + "probability": 0.9951 + }, + { + "start": 28660.56, + "end": 28662.2, + "probability": 0.9838 + }, + { + "start": 28662.46, + "end": 28664.24, + "probability": 0.9797 + }, + { + "start": 28664.28, + "end": 28665.56, + "probability": 0.8127 + }, + { + "start": 28665.96, + "end": 28669.42, + "probability": 0.9906 + }, + { + "start": 28669.96, + "end": 28671.44, + "probability": 0.6273 + }, + { + "start": 28671.86, + "end": 28672.84, + "probability": 0.7771 + }, + { + "start": 28673.04, + "end": 28674.1, + "probability": 0.6411 + }, + { + "start": 28674.2, + "end": 28676.96, + "probability": 0.9624 + }, + { + "start": 28677.02, + "end": 28677.62, + "probability": 0.9104 + }, + { + "start": 28677.72, + "end": 28680.76, + "probability": 0.9878 + }, + { + "start": 28681.68, + "end": 28683.32, + "probability": 0.8652 + }, + { + "start": 28683.56, + "end": 28685.52, + "probability": 0.1125 + }, + { + "start": 28685.6, + "end": 28686.88, + "probability": 0.636 + }, + { + "start": 28687.2, + "end": 28689.04, + "probability": 0.9788 + }, + { + "start": 28689.84, + "end": 28689.98, + "probability": 0.562 + }, + { + "start": 28690.02, + "end": 28690.58, + "probability": 0.8756 + }, + { + "start": 28690.86, + "end": 28692.62, + "probability": 0.9356 + }, + { + "start": 28692.66, + "end": 28694.66, + "probability": 0.9831 + }, + { + "start": 28695.6, + "end": 28696.9, + "probability": 0.6965 + }, + { + "start": 28696.98, + "end": 28698.16, + "probability": 0.8704 + }, + { + "start": 28698.62, + "end": 28699.94, + "probability": 0.7046 + }, + { + "start": 28700.04, + "end": 28700.38, + "probability": 0.867 + }, + { + "start": 28701.34, + "end": 28702.12, + "probability": 0.8801 + }, + { + "start": 28702.32, + "end": 28703.94, + "probability": 0.8045 + }, + { + "start": 28705.04, + "end": 28708.92, + "probability": 0.8658 + }, + { + "start": 28711.96, + "end": 28712.12, + "probability": 0.063 + }, + { + "start": 28712.12, + "end": 28714.84, + "probability": 0.8211 + }, + { + "start": 28715.42, + "end": 28716.48, + "probability": 0.5553 + }, + { + "start": 28717.18, + "end": 28718.34, + "probability": 0.7623 + }, + { + "start": 28718.54, + "end": 28720.2, + "probability": 0.9587 + }, + { + "start": 28720.32, + "end": 28720.72, + "probability": 0.6616 + }, + { + "start": 28721.38, + "end": 28725.92, + "probability": 0.9951 + }, + { + "start": 28726.32, + "end": 28729.72, + "probability": 0.9935 + }, + { + "start": 28730.02, + "end": 28731.36, + "probability": 0.9826 + }, + { + "start": 28731.46, + "end": 28734.13, + "probability": 0.9642 + }, + { + "start": 28734.38, + "end": 28736.2, + "probability": 0.8468 + }, + { + "start": 28736.8, + "end": 28737.88, + "probability": 0.9769 + }, + { + "start": 28738.14, + "end": 28738.66, + "probability": 0.8698 + }, + { + "start": 28739.12, + "end": 28742.63, + "probability": 0.9955 + }, + { + "start": 28744.26, + "end": 28748.02, + "probability": 0.9658 + }, + { + "start": 28748.36, + "end": 28749.66, + "probability": 0.9853 + }, + { + "start": 28749.76, + "end": 28751.72, + "probability": 0.9499 + }, + { + "start": 28752.12, + "end": 28753.14, + "probability": 0.8824 + }, + { + "start": 28753.64, + "end": 28754.44, + "probability": 0.4298 + }, + { + "start": 28754.5, + "end": 28754.64, + "probability": 0.8813 + }, + { + "start": 28754.72, + "end": 28755.82, + "probability": 0.9731 + }, + { + "start": 28755.86, + "end": 28756.92, + "probability": 0.9073 + }, + { + "start": 28757.3, + "end": 28757.98, + "probability": 0.8834 + }, + { + "start": 28758.04, + "end": 28758.46, + "probability": 0.5821 + }, + { + "start": 28758.56, + "end": 28758.78, + "probability": 0.9157 + }, + { + "start": 28758.8, + "end": 28760.16, + "probability": 0.9871 + }, + { + "start": 28760.62, + "end": 28763.92, + "probability": 0.9961 + }, + { + "start": 28764.46, + "end": 28765.68, + "probability": 0.987 + }, + { + "start": 28765.8, + "end": 28769.06, + "probability": 0.9985 + }, + { + "start": 28769.26, + "end": 28769.7, + "probability": 0.4644 + }, + { + "start": 28770.28, + "end": 28773.84, + "probability": 0.8939 + }, + { + "start": 28774.06, + "end": 28774.32, + "probability": 0.7913 + }, + { + "start": 28774.7, + "end": 28775.44, + "probability": 0.6717 + }, + { + "start": 28775.54, + "end": 28777.12, + "probability": 0.5604 + }, + { + "start": 28777.2, + "end": 28777.38, + "probability": 0.7815 + }, + { + "start": 28777.4, + "end": 28778.02, + "probability": 0.6748 + }, + { + "start": 28778.26, + "end": 28778.94, + "probability": 0.9811 + }, + { + "start": 28779.02, + "end": 28780.36, + "probability": 0.8234 + }, + { + "start": 28780.56, + "end": 28781.42, + "probability": 0.9223 + }, + { + "start": 28781.98, + "end": 28783.16, + "probability": 0.9377 + }, + { + "start": 28783.26, + "end": 28784.24, + "probability": 0.8448 + }, + { + "start": 28784.28, + "end": 28787.62, + "probability": 0.9183 + }, + { + "start": 28788.02, + "end": 28789.12, + "probability": 0.3654 + }, + { + "start": 28789.32, + "end": 28790.72, + "probability": 0.544 + }, + { + "start": 28790.72, + "end": 28790.92, + "probability": 0.1231 + }, + { + "start": 28790.92, + "end": 28793.35, + "probability": 0.9962 + }, + { + "start": 28794.11, + "end": 28796.3, + "probability": 0.7554 + }, + { + "start": 28796.72, + "end": 28797.88, + "probability": 0.7725 + }, + { + "start": 28798.42, + "end": 28798.62, + "probability": 0.367 + }, + { + "start": 28798.64, + "end": 28800.96, + "probability": 0.6157 + }, + { + "start": 28801.38, + "end": 28803.26, + "probability": 0.9555 + }, + { + "start": 28803.3, + "end": 28805.2, + "probability": 0.7426 + }, + { + "start": 28805.58, + "end": 28809.02, + "probability": 0.9907 + }, + { + "start": 28809.22, + "end": 28810.92, + "probability": 0.8901 + }, + { + "start": 28811.34, + "end": 28811.34, + "probability": 0.1844 + }, + { + "start": 28811.34, + "end": 28814.18, + "probability": 0.963 + }, + { + "start": 28814.4, + "end": 28815.47, + "probability": 0.8599 + }, + { + "start": 28816.06, + "end": 28817.62, + "probability": 0.0481 + }, + { + "start": 28817.86, + "end": 28818.8, + "probability": 0.7935 + }, + { + "start": 28819.08, + "end": 28819.66, + "probability": 0.5393 + }, + { + "start": 28820.44, + "end": 28821.84, + "probability": 0.9518 + }, + { + "start": 28822.0, + "end": 28824.42, + "probability": 0.9318 + }, + { + "start": 28829.5, + "end": 28830.64, + "probability": 0.702 + }, + { + "start": 28837.28, + "end": 28838.54, + "probability": 0.3716 + }, + { + "start": 28839.08, + "end": 28840.02, + "probability": 0.6908 + }, + { + "start": 28840.9, + "end": 28842.4, + "probability": 0.9182 + }, + { + "start": 28842.72, + "end": 28844.66, + "probability": 0.6016 + }, + { + "start": 28845.4, + "end": 28847.32, + "probability": 0.9868 + }, + { + "start": 28849.1, + "end": 28849.96, + "probability": 0.9196 + }, + { + "start": 28851.38, + "end": 28853.42, + "probability": 0.9829 + }, + { + "start": 28853.9, + "end": 28855.5, + "probability": 0.9941 + }, + { + "start": 28857.85, + "end": 28858.58, + "probability": 0.765 + }, + { + "start": 28858.66, + "end": 28860.52, + "probability": 0.979 + }, + { + "start": 28860.72, + "end": 28861.48, + "probability": 0.6782 + }, + { + "start": 28861.9, + "end": 28863.32, + "probability": 0.767 + }, + { + "start": 28863.34, + "end": 28863.5, + "probability": 0.533 + }, + { + "start": 28864.06, + "end": 28865.22, + "probability": 0.4949 + }, + { + "start": 28865.46, + "end": 28865.46, + "probability": 0.2347 + }, + { + "start": 28865.46, + "end": 28865.46, + "probability": 0.1885 + }, + { + "start": 28865.46, + "end": 28865.81, + "probability": 0.4377 + }, + { + "start": 28868.0, + "end": 28871.38, + "probability": 0.1377 + }, + { + "start": 28873.46, + "end": 28874.94, + "probability": 0.156 + }, + { + "start": 28877.52, + "end": 28879.72, + "probability": 0.6137 + }, + { + "start": 28879.72, + "end": 28885.86, + "probability": 0.9894 + }, + { + "start": 28886.58, + "end": 28887.86, + "probability": 0.5707 + }, + { + "start": 28887.98, + "end": 28891.22, + "probability": 0.8839 + }, + { + "start": 28891.22, + "end": 28894.86, + "probability": 0.9845 + }, + { + "start": 28896.1, + "end": 28901.42, + "probability": 0.9944 + }, + { + "start": 28901.42, + "end": 28904.8, + "probability": 0.9199 + }, + { + "start": 28905.56, + "end": 28907.08, + "probability": 0.9387 + }, + { + "start": 28907.22, + "end": 28911.08, + "probability": 0.9178 + }, + { + "start": 28911.96, + "end": 28917.04, + "probability": 0.8725 + }, + { + "start": 28918.82, + "end": 28920.54, + "probability": 0.6604 + }, + { + "start": 28921.32, + "end": 28925.54, + "probability": 0.9568 + }, + { + "start": 28927.64, + "end": 28930.96, + "probability": 0.9872 + }, + { + "start": 28932.36, + "end": 28936.66, + "probability": 0.9977 + }, + { + "start": 28938.54, + "end": 28942.66, + "probability": 0.9866 + }, + { + "start": 28943.6, + "end": 28944.88, + "probability": 0.9977 + }, + { + "start": 28945.4, + "end": 28948.62, + "probability": 0.9391 + }, + { + "start": 28949.26, + "end": 28952.52, + "probability": 0.9301 + }, + { + "start": 28953.74, + "end": 28956.76, + "probability": 0.9062 + }, + { + "start": 28958.08, + "end": 28967.84, + "probability": 0.9578 + }, + { + "start": 28969.3, + "end": 28973.04, + "probability": 0.7504 + }, + { + "start": 28973.14, + "end": 28977.3, + "probability": 0.899 + }, + { + "start": 28977.6, + "end": 28978.32, + "probability": 0.9187 + }, + { + "start": 28979.12, + "end": 28982.38, + "probability": 0.8031 + }, + { + "start": 28983.08, + "end": 28986.08, + "probability": 0.9796 + }, + { + "start": 28986.9, + "end": 28992.02, + "probability": 0.9742 + }, + { + "start": 28992.2, + "end": 28996.22, + "probability": 0.9902 + }, + { + "start": 28996.44, + "end": 28998.42, + "probability": 0.8754 + }, + { + "start": 28999.26, + "end": 29002.3, + "probability": 0.9339 + }, + { + "start": 29002.44, + "end": 29004.6, + "probability": 0.8227 + }, + { + "start": 29005.38, + "end": 29010.84, + "probability": 0.9264 + }, + { + "start": 29011.3, + "end": 29014.88, + "probability": 0.9814 + }, + { + "start": 29015.48, + "end": 29020.74, + "probability": 0.809 + }, + { + "start": 29021.24, + "end": 29022.22, + "probability": 0.8302 + }, + { + "start": 29022.3, + "end": 29022.92, + "probability": 0.919 + }, + { + "start": 29024.16, + "end": 29028.74, + "probability": 0.9915 + }, + { + "start": 29028.84, + "end": 29029.66, + "probability": 0.7786 + }, + { + "start": 29030.26, + "end": 29033.64, + "probability": 0.8908 + }, + { + "start": 29034.74, + "end": 29043.36, + "probability": 0.9181 + }, + { + "start": 29044.28, + "end": 29048.4, + "probability": 0.9932 + }, + { + "start": 29049.18, + "end": 29051.64, + "probability": 0.8181 + }, + { + "start": 29052.5, + "end": 29055.58, + "probability": 0.8955 + }, + { + "start": 29056.46, + "end": 29058.18, + "probability": 0.2084 + }, + { + "start": 29059.64, + "end": 29060.74, + "probability": 0.0198 + }, + { + "start": 29060.74, + "end": 29060.98, + "probability": 0.5716 + }, + { + "start": 29061.1, + "end": 29062.12, + "probability": 0.9498 + }, + { + "start": 29062.2, + "end": 29064.36, + "probability": 0.9867 + }, + { + "start": 29065.44, + "end": 29067.28, + "probability": 0.8087 + }, + { + "start": 29068.0, + "end": 29070.58, + "probability": 0.9863 + }, + { + "start": 29070.58, + "end": 29075.18, + "probability": 0.9727 + }, + { + "start": 29075.4, + "end": 29078.8, + "probability": 0.801 + }, + { + "start": 29079.52, + "end": 29083.98, + "probability": 0.9854 + }, + { + "start": 29084.4, + "end": 29090.5, + "probability": 0.9832 + }, + { + "start": 29091.72, + "end": 29094.28, + "probability": 0.8586 + }, + { + "start": 29094.76, + "end": 29100.04, + "probability": 0.9986 + }, + { + "start": 29100.44, + "end": 29102.31, + "probability": 0.9807 + }, + { + "start": 29103.98, + "end": 29107.04, + "probability": 0.9492 + }, + { + "start": 29107.2, + "end": 29109.15, + "probability": 0.6182 + }, + { + "start": 29109.92, + "end": 29112.1, + "probability": 0.4343 + }, + { + "start": 29112.88, + "end": 29113.6, + "probability": 0.0176 + }, + { + "start": 29113.78, + "end": 29116.86, + "probability": 0.8512 + }, + { + "start": 29117.14, + "end": 29117.2, + "probability": 0.033 + }, + { + "start": 29117.36, + "end": 29119.28, + "probability": 0.7436 + }, + { + "start": 29119.3, + "end": 29119.62, + "probability": 0.3659 + }, + { + "start": 29119.84, + "end": 29121.14, + "probability": 0.5936 + }, + { + "start": 29121.46, + "end": 29125.32, + "probability": 0.5184 + }, + { + "start": 29125.32, + "end": 29126.62, + "probability": 0.4647 + }, + { + "start": 29127.02, + "end": 29127.9, + "probability": 0.5602 + }, + { + "start": 29128.2, + "end": 29128.72, + "probability": 0.7856 + }, + { + "start": 29129.1, + "end": 29130.95, + "probability": 0.7622 + }, + { + "start": 29131.62, + "end": 29131.96, + "probability": 0.7859 + }, + { + "start": 29132.08, + "end": 29133.82, + "probability": 0.6479 + }, + { + "start": 29134.68, + "end": 29135.7, + "probability": 0.3774 + }, + { + "start": 29136.43, + "end": 29137.33, + "probability": 0.0107 + }, + { + "start": 29137.88, + "end": 29138.76, + "probability": 0.0305 + }, + { + "start": 29138.94, + "end": 29140.82, + "probability": 0.8122 + }, + { + "start": 29140.94, + "end": 29141.24, + "probability": 0.257 + }, + { + "start": 29141.64, + "end": 29142.92, + "probability": 0.0608 + }, + { + "start": 29143.68, + "end": 29143.68, + "probability": 0.1108 + }, + { + "start": 29143.68, + "end": 29144.68, + "probability": 0.0321 + }, + { + "start": 29145.04, + "end": 29145.68, + "probability": 0.0206 + }, + { + "start": 29145.96, + "end": 29146.32, + "probability": 0.3345 + }, + { + "start": 29146.46, + "end": 29147.06, + "probability": 0.2975 + }, + { + "start": 29147.14, + "end": 29148.82, + "probability": 0.6765 + }, + { + "start": 29150.52, + "end": 29151.24, + "probability": 0.3743 + }, + { + "start": 29151.48, + "end": 29154.2, + "probability": 0.9831 + }, + { + "start": 29154.28, + "end": 29154.54, + "probability": 0.0118 + }, + { + "start": 29155.52, + "end": 29157.44, + "probability": 0.7303 + }, + { + "start": 29161.96, + "end": 29163.32, + "probability": 0.9271 + }, + { + "start": 29163.9, + "end": 29168.64, + "probability": 0.9719 + }, + { + "start": 29168.64, + "end": 29173.24, + "probability": 0.6198 + }, + { + "start": 29175.5, + "end": 29176.88, + "probability": 0.5186 + }, + { + "start": 29176.94, + "end": 29182.2, + "probability": 0.6239 + }, + { + "start": 29182.84, + "end": 29185.66, + "probability": 0.7869 + }, + { + "start": 29189.61, + "end": 29194.22, + "probability": 0.2759 + }, + { + "start": 29194.38, + "end": 29196.8, + "probability": 0.3862 + }, + { + "start": 29196.92, + "end": 29200.0, + "probability": 0.9626 + }, + { + "start": 29200.92, + "end": 29204.32, + "probability": 0.8205 + }, + { + "start": 29204.32, + "end": 29209.54, + "probability": 0.8928 + }, + { + "start": 29211.88, + "end": 29214.02, + "probability": 0.5074 + }, + { + "start": 29215.24, + "end": 29217.36, + "probability": 0.4677 + }, + { + "start": 29217.42, + "end": 29219.28, + "probability": 0.9124 + }, + { + "start": 29219.96, + "end": 29222.68, + "probability": 0.5349 + }, + { + "start": 29223.0, + "end": 29223.5, + "probability": 0.7709 + }, + { + "start": 29223.72, + "end": 29225.12, + "probability": 0.8402 + }, + { + "start": 29225.18, + "end": 29226.48, + "probability": 0.7264 + }, + { + "start": 29226.54, + "end": 29228.36, + "probability": 0.8561 + }, + { + "start": 29230.0, + "end": 29230.96, + "probability": 0.6238 + }, + { + "start": 29231.14, + "end": 29232.0, + "probability": 0.8142 + }, + { + "start": 29232.18, + "end": 29234.02, + "probability": 0.8465 + }, + { + "start": 29234.64, + "end": 29236.0, + "probability": 0.5004 + }, + { + "start": 29236.22, + "end": 29237.14, + "probability": 0.8684 + }, + { + "start": 29237.62, + "end": 29240.66, + "probability": 0.5093 + }, + { + "start": 29241.32, + "end": 29241.92, + "probability": 0.8572 + }, + { + "start": 29242.26, + "end": 29243.7, + "probability": 0.843 + }, + { + "start": 29244.5, + "end": 29246.28, + "probability": 0.0351 + }, + { + "start": 29246.3, + "end": 29247.94, + "probability": 0.6023 + }, + { + "start": 29248.94, + "end": 29249.88, + "probability": 0.5596 + }, + { + "start": 29251.96, + "end": 29257.52, + "probability": 0.9976 + }, + { + "start": 29257.78, + "end": 29260.46, + "probability": 0.9978 + }, + { + "start": 29260.54, + "end": 29261.96, + "probability": 0.8519 + }, + { + "start": 29262.88, + "end": 29264.08, + "probability": 0.5157 + }, + { + "start": 29264.18, + "end": 29264.93, + "probability": 0.9767 + }, + { + "start": 29265.44, + "end": 29267.22, + "probability": 0.915 + }, + { + "start": 29267.48, + "end": 29269.06, + "probability": 0.9505 + }, + { + "start": 29269.72, + "end": 29273.82, + "probability": 0.9939 + }, + { + "start": 29274.78, + "end": 29277.06, + "probability": 0.8378 + }, + { + "start": 29277.18, + "end": 29278.4, + "probability": 0.8377 + }, + { + "start": 29278.56, + "end": 29280.54, + "probability": 0.9214 + }, + { + "start": 29280.74, + "end": 29282.14, + "probability": 0.9181 + }, + { + "start": 29282.2, + "end": 29283.82, + "probability": 0.9559 + }, + { + "start": 29284.68, + "end": 29285.98, + "probability": 0.974 + }, + { + "start": 29286.46, + "end": 29290.52, + "probability": 0.9985 + }, + { + "start": 29291.08, + "end": 29297.2, + "probability": 0.9614 + }, + { + "start": 29297.34, + "end": 29299.48, + "probability": 0.864 + }, + { + "start": 29299.56, + "end": 29300.68, + "probability": 0.9683 + }, + { + "start": 29301.24, + "end": 29303.5, + "probability": 0.9314 + }, + { + "start": 29304.68, + "end": 29305.6, + "probability": 0.9717 + }, + { + "start": 29306.12, + "end": 29306.3, + "probability": 0.8903 + }, + { + "start": 29306.4, + "end": 29311.36, + "probability": 0.9766 + }, + { + "start": 29311.44, + "end": 29312.5, + "probability": 0.9966 + }, + { + "start": 29312.72, + "end": 29313.12, + "probability": 0.6143 + }, + { + "start": 29313.26, + "end": 29315.12, + "probability": 0.9959 + }, + { + "start": 29315.24, + "end": 29315.59, + "probability": 0.9838 + }, + { + "start": 29316.42, + "end": 29318.74, + "probability": 0.7509 + }, + { + "start": 29319.32, + "end": 29322.26, + "probability": 0.9912 + }, + { + "start": 29323.24, + "end": 29324.1, + "probability": 0.9928 + }, + { + "start": 29324.82, + "end": 29325.56, + "probability": 0.9608 + }, + { + "start": 29326.22, + "end": 29328.12, + "probability": 0.7426 + }, + { + "start": 29328.52, + "end": 29331.18, + "probability": 0.9906 + }, + { + "start": 29331.32, + "end": 29334.02, + "probability": 0.9746 + }, + { + "start": 29334.88, + "end": 29335.82, + "probability": 0.8658 + }, + { + "start": 29336.44, + "end": 29338.8, + "probability": 0.9917 + }, + { + "start": 29339.36, + "end": 29340.46, + "probability": 0.9595 + }, + { + "start": 29341.44, + "end": 29343.28, + "probability": 0.9331 + }, + { + "start": 29343.5, + "end": 29346.02, + "probability": 0.813 + }, + { + "start": 29346.18, + "end": 29348.46, + "probability": 0.9179 + }, + { + "start": 29348.54, + "end": 29349.4, + "probability": 0.6145 + }, + { + "start": 29349.62, + "end": 29350.02, + "probability": 0.9502 + }, + { + "start": 29350.26, + "end": 29351.44, + "probability": 0.9811 + }, + { + "start": 29352.14, + "end": 29353.94, + "probability": 0.9763 + }, + { + "start": 29355.64, + "end": 29356.72, + "probability": 0.9951 + }, + { + "start": 29357.36, + "end": 29358.36, + "probability": 0.6093 + }, + { + "start": 29358.92, + "end": 29360.79, + "probability": 0.9231 + }, + { + "start": 29361.6, + "end": 29362.16, + "probability": 0.9323 + }, + { + "start": 29362.58, + "end": 29364.72, + "probability": 0.9941 + }, + { + "start": 29365.54, + "end": 29366.1, + "probability": 0.9918 + }, + { + "start": 29366.98, + "end": 29367.64, + "probability": 0.5025 + }, + { + "start": 29367.84, + "end": 29370.6, + "probability": 0.7297 + }, + { + "start": 29370.74, + "end": 29372.22, + "probability": 0.9656 + }, + { + "start": 29372.76, + "end": 29373.5, + "probability": 0.8945 + }, + { + "start": 29374.28, + "end": 29375.02, + "probability": 0.9537 + }, + { + "start": 29375.2, + "end": 29375.63, + "probability": 0.9299 + }, + { + "start": 29375.82, + "end": 29376.56, + "probability": 0.6909 + }, + { + "start": 29376.74, + "end": 29379.44, + "probability": 0.9911 + }, + { + "start": 29380.32, + "end": 29382.46, + "probability": 0.9972 + }, + { + "start": 29383.36, + "end": 29384.48, + "probability": 0.8013 + }, + { + "start": 29386.06, + "end": 29389.4, + "probability": 0.6503 + }, + { + "start": 29389.5, + "end": 29391.94, + "probability": 0.9297 + }, + { + "start": 29392.42, + "end": 29393.1, + "probability": 0.6877 + }, + { + "start": 29393.62, + "end": 29394.7, + "probability": 0.9756 + }, + { + "start": 29395.34, + "end": 29398.04, + "probability": 0.5615 + }, + { + "start": 29398.12, + "end": 29398.62, + "probability": 0.1536 + }, + { + "start": 29400.5, + "end": 29405.14, + "probability": 0.8 + }, + { + "start": 29405.48, + "end": 29407.7, + "probability": 0.9001 + }, + { + "start": 29408.4, + "end": 29410.52, + "probability": 0.9521 + }, + { + "start": 29411.32, + "end": 29413.8, + "probability": 0.8895 + }, + { + "start": 29414.38, + "end": 29416.96, + "probability": 0.743 + }, + { + "start": 29417.66, + "end": 29418.84, + "probability": 0.8733 + }, + { + "start": 29419.06, + "end": 29423.74, + "probability": 0.8911 + }, + { + "start": 29424.28, + "end": 29428.12, + "probability": 0.6732 + }, + { + "start": 29428.18, + "end": 29429.72, + "probability": 0.8065 + }, + { + "start": 29429.82, + "end": 29430.56, + "probability": 0.8334 + }, + { + "start": 29431.24, + "end": 29432.36, + "probability": 0.8032 + }, + { + "start": 29433.26, + "end": 29434.38, + "probability": 0.5192 + }, + { + "start": 29434.86, + "end": 29436.88, + "probability": 0.9276 + }, + { + "start": 29437.42, + "end": 29440.28, + "probability": 0.7329 + }, + { + "start": 29440.64, + "end": 29444.94, + "probability": 0.8089 + }, + { + "start": 29445.7, + "end": 29447.06, + "probability": 0.8525 + }, + { + "start": 29447.98, + "end": 29450.22, + "probability": 0.9001 + }, + { + "start": 29450.46, + "end": 29451.56, + "probability": 0.9742 + }, + { + "start": 29451.78, + "end": 29452.38, + "probability": 0.9976 + }, + { + "start": 29452.84, + "end": 29455.68, + "probability": 0.9989 + }, + { + "start": 29456.08, + "end": 29457.72, + "probability": 0.818 + }, + { + "start": 29459.16, + "end": 29459.82, + "probability": 0.7091 + }, + { + "start": 29460.06, + "end": 29462.48, + "probability": 0.7946 + }, + { + "start": 29462.78, + "end": 29464.56, + "probability": 0.9111 + }, + { + "start": 29466.22, + "end": 29466.62, + "probability": 0.3652 + }, + { + "start": 29467.4, + "end": 29468.82, + "probability": 0.9723 + }, + { + "start": 29469.5, + "end": 29473.1, + "probability": 0.8037 + }, + { + "start": 29473.32, + "end": 29474.38, + "probability": 0.6301 + }, + { + "start": 29475.02, + "end": 29477.62, + "probability": 0.9642 + }, + { + "start": 29478.74, + "end": 29482.2, + "probability": 0.9984 + }, + { + "start": 29482.2, + "end": 29486.06, + "probability": 0.998 + }, + { + "start": 29486.2, + "end": 29487.56, + "probability": 0.967 + }, + { + "start": 29488.28, + "end": 29489.4, + "probability": 0.976 + }, + { + "start": 29490.02, + "end": 29492.88, + "probability": 0.97 + }, + { + "start": 29493.28, + "end": 29495.84, + "probability": 0.9839 + }, + { + "start": 29496.24, + "end": 29497.46, + "probability": 0.9954 + }, + { + "start": 29497.74, + "end": 29498.22, + "probability": 0.9979 + }, + { + "start": 29498.88, + "end": 29500.44, + "probability": 0.9583 + }, + { + "start": 29500.56, + "end": 29501.66, + "probability": 0.5163 + }, + { + "start": 29502.08, + "end": 29502.38, + "probability": 0.7537 + }, + { + "start": 29502.58, + "end": 29504.12, + "probability": 0.9219 + }, + { + "start": 29504.56, + "end": 29507.52, + "probability": 0.9949 + }, + { + "start": 29507.6, + "end": 29509.88, + "probability": 0.9407 + }, + { + "start": 29510.06, + "end": 29510.4, + "probability": 0.814 + }, + { + "start": 29510.46, + "end": 29511.06, + "probability": 0.7014 + }, + { + "start": 29511.62, + "end": 29514.02, + "probability": 0.9858 + }, + { + "start": 29514.34, + "end": 29514.82, + "probability": 0.9766 + }, + { + "start": 29515.86, + "end": 29521.22, + "probability": 0.9909 + }, + { + "start": 29521.22, + "end": 29524.32, + "probability": 0.9979 + }, + { + "start": 29524.96, + "end": 29529.1, + "probability": 0.975 + }, + { + "start": 29530.14, + "end": 29531.78, + "probability": 0.8513 + }, + { + "start": 29532.56, + "end": 29532.98, + "probability": 0.6285 + }, + { + "start": 29533.94, + "end": 29535.66, + "probability": 0.8995 + }, + { + "start": 29536.44, + "end": 29537.91, + "probability": 0.574 + }, + { + "start": 29538.76, + "end": 29540.65, + "probability": 0.5141 + }, + { + "start": 29541.42, + "end": 29542.7, + "probability": 0.9744 + }, + { + "start": 29543.5, + "end": 29544.04, + "probability": 0.8573 + }, + { + "start": 29545.04, + "end": 29545.94, + "probability": 0.7542 + }, + { + "start": 29546.38, + "end": 29547.68, + "probability": 0.9455 + }, + { + "start": 29548.18, + "end": 29552.04, + "probability": 0.9889 + }, + { + "start": 29553.18, + "end": 29554.3, + "probability": 0.9623 + }, + { + "start": 29555.5, + "end": 29555.96, + "probability": 0.5149 + }, + { + "start": 29556.96, + "end": 29561.12, + "probability": 0.9127 + }, + { + "start": 29561.72, + "end": 29562.14, + "probability": 0.8433 + }, + { + "start": 29562.76, + "end": 29563.12, + "probability": 0.7475 + }, + { + "start": 29563.82, + "end": 29564.7, + "probability": 0.9902 + }, + { + "start": 29564.96, + "end": 29566.06, + "probability": 0.8547 + }, + { + "start": 29566.5, + "end": 29567.04, + "probability": 0.916 + }, + { + "start": 29567.96, + "end": 29569.04, + "probability": 0.9586 + }, + { + "start": 29569.88, + "end": 29573.0, + "probability": 0.9839 + }, + { + "start": 29574.08, + "end": 29575.5, + "probability": 0.9851 + }, + { + "start": 29575.68, + "end": 29576.52, + "probability": 0.786 + }, + { + "start": 29576.6, + "end": 29580.54, + "probability": 0.9639 + }, + { + "start": 29581.04, + "end": 29583.04, + "probability": 0.6715 + }, + { + "start": 29583.14, + "end": 29583.82, + "probability": 0.8081 + }, + { + "start": 29584.16, + "end": 29585.01, + "probability": 0.9734 + }, + { + "start": 29585.94, + "end": 29588.26, + "probability": 0.9236 + }, + { + "start": 29589.06, + "end": 29590.24, + "probability": 0.8005 + }, + { + "start": 29590.56, + "end": 29595.78, + "probability": 0.821 + }, + { + "start": 29596.5, + "end": 29597.92, + "probability": 0.9756 + }, + { + "start": 29598.06, + "end": 29599.86, + "probability": 0.9562 + }, + { + "start": 29600.3, + "end": 29600.86, + "probability": 0.7072 + }, + { + "start": 29600.9, + "end": 29602.96, + "probability": 0.8993 + }, + { + "start": 29603.1, + "end": 29607.22, + "probability": 0.7646 + }, + { + "start": 29607.36, + "end": 29609.7, + "probability": 0.9243 + }, + { + "start": 29610.08, + "end": 29613.98, + "probability": 0.8091 + }, + { + "start": 29614.48, + "end": 29616.76, + "probability": 0.6555 + }, + { + "start": 29617.08, + "end": 29617.88, + "probability": 0.9226 + }, + { + "start": 29619.78, + "end": 29623.16, + "probability": 0.9902 + }, + { + "start": 29623.34, + "end": 29626.2, + "probability": 0.9866 + }, + { + "start": 29626.28, + "end": 29628.96, + "probability": 0.994 + }, + { + "start": 29629.46, + "end": 29630.52, + "probability": 0.7574 + }, + { + "start": 29631.56, + "end": 29636.2, + "probability": 0.946 + }, + { + "start": 29636.34, + "end": 29636.42, + "probability": 0.5627 + }, + { + "start": 29636.5, + "end": 29637.48, + "probability": 0.8264 + }, + { + "start": 29637.94, + "end": 29638.62, + "probability": 0.9586 + }, + { + "start": 29638.68, + "end": 29640.78, + "probability": 0.9409 + }, + { + "start": 29641.96, + "end": 29642.68, + "probability": 0.9548 + }, + { + "start": 29643.28, + "end": 29644.98, + "probability": 0.9369 + }, + { + "start": 29645.66, + "end": 29649.4, + "probability": 0.9154 + }, + { + "start": 29649.4, + "end": 29652.04, + "probability": 0.979 + }, + { + "start": 29653.18, + "end": 29653.66, + "probability": 0.5504 + }, + { + "start": 29654.56, + "end": 29655.46, + "probability": 0.6923 + }, + { + "start": 29655.5, + "end": 29655.78, + "probability": 0.6911 + }, + { + "start": 29656.0, + "end": 29656.86, + "probability": 0.7655 + }, + { + "start": 29656.94, + "end": 29657.16, + "probability": 0.7348 + }, + { + "start": 29657.42, + "end": 29657.98, + "probability": 0.6981 + }, + { + "start": 29659.1, + "end": 29661.06, + "probability": 0.9688 + }, + { + "start": 29661.42, + "end": 29662.65, + "probability": 0.8872 + }, + { + "start": 29662.82, + "end": 29663.72, + "probability": 0.9519 + }, + { + "start": 29663.84, + "end": 29667.72, + "probability": 0.9883 + }, + { + "start": 29667.92, + "end": 29668.34, + "probability": 0.8856 + }, + { + "start": 29668.64, + "end": 29672.72, + "probability": 0.9512 + }, + { + "start": 29672.82, + "end": 29675.32, + "probability": 0.9849 + }, + { + "start": 29676.36, + "end": 29677.22, + "probability": 0.969 + }, + { + "start": 29678.28, + "end": 29681.5, + "probability": 0.9424 + }, + { + "start": 29681.56, + "end": 29685.66, + "probability": 0.9285 + }, + { + "start": 29686.04, + "end": 29689.3, + "probability": 0.9629 + }, + { + "start": 29689.68, + "end": 29692.42, + "probability": 0.7244 + }, + { + "start": 29692.84, + "end": 29694.34, + "probability": 0.9323 + }, + { + "start": 29694.86, + "end": 29696.74, + "probability": 0.9905 + }, + { + "start": 29697.26, + "end": 29699.9, + "probability": 0.7391 + }, + { + "start": 29700.64, + "end": 29702.28, + "probability": 0.975 + }, + { + "start": 29702.36, + "end": 29703.74, + "probability": 0.8521 + }, + { + "start": 29704.14, + "end": 29704.88, + "probability": 0.9805 + }, + { + "start": 29707.66, + "end": 29710.0, + "probability": 0.9043 + }, + { + "start": 29710.6, + "end": 29715.14, + "probability": 0.9898 + }, + { + "start": 29716.02, + "end": 29717.2, + "probability": 0.9736 + }, + { + "start": 29717.36, + "end": 29719.48, + "probability": 0.9558 + }, + { + "start": 29720.32, + "end": 29722.22, + "probability": 0.9904 + }, + { + "start": 29722.36, + "end": 29725.58, + "probability": 0.9745 + }, + { + "start": 29725.66, + "end": 29726.36, + "probability": 0.559 + }, + { + "start": 29726.78, + "end": 29729.09, + "probability": 0.9925 + }, + { + "start": 29729.5, + "end": 29730.75, + "probability": 0.6324 + }, + { + "start": 29731.58, + "end": 29732.18, + "probability": 0.9562 + }, + { + "start": 29733.08, + "end": 29734.2, + "probability": 0.6116 + }, + { + "start": 29734.42, + "end": 29736.55, + "probability": 0.9307 + }, + { + "start": 29737.16, + "end": 29738.63, + "probability": 0.9076 + }, + { + "start": 29739.3, + "end": 29740.5, + "probability": 0.7672 + }, + { + "start": 29741.56, + "end": 29742.46, + "probability": 0.8811 + }, + { + "start": 29742.98, + "end": 29745.48, + "probability": 0.8731 + }, + { + "start": 29746.64, + "end": 29747.14, + "probability": 0.4939 + }, + { + "start": 29747.72, + "end": 29749.34, + "probability": 0.845 + }, + { + "start": 29750.02, + "end": 29752.9, + "probability": 0.9888 + }, + { + "start": 29752.98, + "end": 29753.68, + "probability": 0.6486 + }, + { + "start": 29753.8, + "end": 29755.46, + "probability": 0.8676 + }, + { + "start": 29756.36, + "end": 29757.2, + "probability": 0.7401 + }, + { + "start": 29757.92, + "end": 29760.4, + "probability": 0.988 + }, + { + "start": 29761.28, + "end": 29762.48, + "probability": 0.7675 + }, + { + "start": 29762.66, + "end": 29763.42, + "probability": 0.6051 + }, + { + "start": 29764.18, + "end": 29766.8, + "probability": 0.8692 + }, + { + "start": 29767.16, + "end": 29768.86, + "probability": 0.9526 + }, + { + "start": 29769.14, + "end": 29769.62, + "probability": 0.8457 + }, + { + "start": 29769.7, + "end": 29770.1, + "probability": 0.8423 + }, + { + "start": 29770.62, + "end": 29772.53, + "probability": 0.8069 + }, + { + "start": 29773.12, + "end": 29773.66, + "probability": 0.6678 + }, + { + "start": 29773.82, + "end": 29778.7, + "probability": 0.9128 + }, + { + "start": 29778.7, + "end": 29784.26, + "probability": 0.9895 + }, + { + "start": 29785.24, + "end": 29785.62, + "probability": 0.793 + }, + { + "start": 29785.74, + "end": 29785.92, + "probability": 0.6784 + }, + { + "start": 29786.06, + "end": 29786.56, + "probability": 0.9956 + }, + { + "start": 29786.68, + "end": 29788.28, + "probability": 0.9586 + }, + { + "start": 29788.38, + "end": 29789.9, + "probability": 0.7753 + }, + { + "start": 29790.42, + "end": 29792.6, + "probability": 0.9814 + }, + { + "start": 29794.92, + "end": 29795.78, + "probability": 0.7536 + }, + { + "start": 29796.52, + "end": 29800.9, + "probability": 0.969 + }, + { + "start": 29801.32, + "end": 29802.06, + "probability": 0.718 + }, + { + "start": 29802.72, + "end": 29805.09, + "probability": 0.8714 + }, + { + "start": 29805.46, + "end": 29807.36, + "probability": 0.9659 + }, + { + "start": 29807.44, + "end": 29809.58, + "probability": 0.9839 + }, + { + "start": 29810.08, + "end": 29811.94, + "probability": 0.9696 + }, + { + "start": 29812.14, + "end": 29812.63, + "probability": 0.9834 + }, + { + "start": 29813.68, + "end": 29815.56, + "probability": 0.9792 + }, + { + "start": 29816.36, + "end": 29821.08, + "probability": 0.9785 + }, + { + "start": 29821.18, + "end": 29821.76, + "probability": 0.7921 + }, + { + "start": 29822.34, + "end": 29823.66, + "probability": 0.9861 + }, + { + "start": 29824.3, + "end": 29825.68, + "probability": 0.9308 + }, + { + "start": 29826.24, + "end": 29828.1, + "probability": 0.725 + }, + { + "start": 29828.14, + "end": 29831.58, + "probability": 0.973 + }, + { + "start": 29832.68, + "end": 29834.12, + "probability": 0.9194 + }, + { + "start": 29834.66, + "end": 29837.02, + "probability": 0.909 + }, + { + "start": 29837.68, + "end": 29841.5, + "probability": 0.7717 + }, + { + "start": 29841.86, + "end": 29842.14, + "probability": 0.6594 + }, + { + "start": 29842.24, + "end": 29843.42, + "probability": 0.8455 + }, + { + "start": 29843.5, + "end": 29845.1, + "probability": 0.504 + }, + { + "start": 29845.26, + "end": 29849.02, + "probability": 0.9637 + }, + { + "start": 29849.26, + "end": 29851.54, + "probability": 0.9962 + }, + { + "start": 29852.08, + "end": 29852.88, + "probability": 0.9862 + }, + { + "start": 29853.22, + "end": 29854.36, + "probability": 0.9468 + }, + { + "start": 29854.84, + "end": 29857.28, + "probability": 0.8477 + }, + { + "start": 29857.38, + "end": 29858.36, + "probability": 0.7768 + }, + { + "start": 29859.3, + "end": 29861.52, + "probability": 0.9036 + }, + { + "start": 29861.62, + "end": 29864.84, + "probability": 0.9665 + }, + { + "start": 29864.94, + "end": 29865.64, + "probability": 0.988 + }, + { + "start": 29866.96, + "end": 29867.34, + "probability": 0.0206 + }, + { + "start": 29867.34, + "end": 29869.72, + "probability": 0.8553 + }, + { + "start": 29870.32, + "end": 29871.74, + "probability": 0.6646 + }, + { + "start": 29872.06, + "end": 29872.58, + "probability": 0.9204 + }, + { + "start": 29872.76, + "end": 29873.19, + "probability": 0.9789 + }, + { + "start": 29873.52, + "end": 29875.72, + "probability": 0.9304 + }, + { + "start": 29875.76, + "end": 29876.32, + "probability": 0.8357 + }, + { + "start": 29876.36, + "end": 29876.78, + "probability": 0.9091 + }, + { + "start": 29877.08, + "end": 29878.14, + "probability": 0.9798 + }, + { + "start": 29878.94, + "end": 29880.06, + "probability": 0.7609 + }, + { + "start": 29880.08, + "end": 29884.72, + "probability": 0.9905 + }, + { + "start": 29885.42, + "end": 29886.66, + "probability": 0.9108 + }, + { + "start": 29887.44, + "end": 29890.82, + "probability": 0.7528 + }, + { + "start": 29891.34, + "end": 29894.5, + "probability": 0.95 + }, + { + "start": 29894.6, + "end": 29895.14, + "probability": 0.3228 + }, + { + "start": 29895.8, + "end": 29897.38, + "probability": 0.9696 + }, + { + "start": 29897.76, + "end": 29898.92, + "probability": 0.5204 + }, + { + "start": 29898.98, + "end": 29899.38, + "probability": 0.9476 + }, + { + "start": 29900.18, + "end": 29901.17, + "probability": 0.8695 + }, + { + "start": 29902.86, + "end": 29903.62, + "probability": 0.7896 + }, + { + "start": 29904.5, + "end": 29905.6, + "probability": 0.9361 + }, + { + "start": 29905.78, + "end": 29906.38, + "probability": 0.8491 + }, + { + "start": 29906.7, + "end": 29907.86, + "probability": 0.8645 + }, + { + "start": 29908.4, + "end": 29914.32, + "probability": 0.9926 + }, + { + "start": 29914.42, + "end": 29915.25, + "probability": 0.7381 + }, + { + "start": 29915.58, + "end": 29916.44, + "probability": 0.7091 + }, + { + "start": 29916.52, + "end": 29920.28, + "probability": 0.9016 + }, + { + "start": 29921.22, + "end": 29921.8, + "probability": 0.9069 + }, + { + "start": 29921.94, + "end": 29922.4, + "probability": 0.4933 + }, + { + "start": 29922.72, + "end": 29924.68, + "probability": 0.7831 + }, + { + "start": 29925.4, + "end": 29926.22, + "probability": 0.276 + }, + { + "start": 29926.22, + "end": 29926.66, + "probability": 0.7075 + }, + { + "start": 29926.78, + "end": 29927.13, + "probability": 0.6904 + }, + { + "start": 29927.58, + "end": 29928.6, + "probability": 0.9575 + }, + { + "start": 29928.6, + "end": 29929.42, + "probability": 0.9328 + }, + { + "start": 29929.74, + "end": 29929.92, + "probability": 0.9596 + }, + { + "start": 29930.52, + "end": 29934.02, + "probability": 0.8792 + }, + { + "start": 29934.14, + "end": 29934.88, + "probability": 0.6327 + }, + { + "start": 29935.4, + "end": 29937.64, + "probability": 0.829 + }, + { + "start": 29938.04, + "end": 29940.54, + "probability": 0.9321 + }, + { + "start": 29940.64, + "end": 29942.08, + "probability": 0.9634 + }, + { + "start": 29942.78, + "end": 29944.68, + "probability": 0.8742 + }, + { + "start": 29944.8, + "end": 29948.61, + "probability": 0.932 + }, + { + "start": 29949.0, + "end": 29949.54, + "probability": 0.9286 + }, + { + "start": 29949.66, + "end": 29949.84, + "probability": 0.1856 + }, + { + "start": 29950.0, + "end": 29950.46, + "probability": 0.6607 + }, + { + "start": 29950.78, + "end": 29951.3, + "probability": 0.9573 + }, + { + "start": 29951.92, + "end": 29952.38, + "probability": 0.5346 + }, + { + "start": 29952.84, + "end": 29953.2, + "probability": 0.6089 + }, + { + "start": 29953.2, + "end": 29954.2, + "probability": 0.8749 + }, + { + "start": 29954.26, + "end": 29956.3, + "probability": 0.9558 + }, + { + "start": 29957.4, + "end": 29960.44, + "probability": 0.9873 + }, + { + "start": 29960.54, + "end": 29962.16, + "probability": 0.9575 + }, + { + "start": 29962.74, + "end": 29966.94, + "probability": 0.8573 + }, + { + "start": 29967.68, + "end": 29968.96, + "probability": 0.9534 + }, + { + "start": 29969.26, + "end": 29973.66, + "probability": 0.9741 + }, + { + "start": 29973.96, + "end": 29975.3, + "probability": 0.708 + }, + { + "start": 29975.84, + "end": 29978.18, + "probability": 0.5373 + }, + { + "start": 29978.98, + "end": 29981.32, + "probability": 0.7715 + }, + { + "start": 29981.46, + "end": 29981.84, + "probability": 0.7962 + }, + { + "start": 29982.42, + "end": 29984.1, + "probability": 0.8486 + }, + { + "start": 29984.3, + "end": 29985.6, + "probability": 0.9405 + }, + { + "start": 29986.06, + "end": 29988.84, + "probability": 0.869 + }, + { + "start": 29989.22, + "end": 29991.29, + "probability": 0.8711 + }, + { + "start": 29991.88, + "end": 29992.54, + "probability": 0.3989 + }, + { + "start": 29992.62, + "end": 29993.56, + "probability": 0.5244 + }, + { + "start": 29993.62, + "end": 29996.76, + "probability": 0.8983 + }, + { + "start": 29997.46, + "end": 29997.6, + "probability": 0.1887 + } + ], + "segments_count": 11210, + "words_count": 53976, + "avg_words_per_segment": 4.815, + "avg_segment_duration": 1.9357, + "avg_words_per_minute": 107.8625, + "plenum_id": "23014", + "duration": 30024.89, + "title": null, + "plenum_date": "2012-05-23" +} \ No newline at end of file