diff --git "a/27125/metadata.json" "b/27125/metadata.json" new file mode 100644--- /dev/null +++ "b/27125/metadata.json" @@ -0,0 +1,34812 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "27125", + "quality_score": 0.9082, + "per_segment_quality_scores": [ + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 423.0, + "end": 423.0, + "probability": 0.0 + }, + { + "start": 424.87, + "end": 425.3, + "probability": 0.0267 + }, + { + "start": 425.96, + "end": 428.58, + "probability": 0.0814 + }, + { + "start": 429.81, + "end": 429.98, + "probability": 0.0451 + }, + { + "start": 436.68, + "end": 437.34, + "probability": 0.2241 + }, + { + "start": 445.36, + "end": 448.78, + "probability": 0.0579 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.0, + "end": 548.0, + "probability": 0.0 + }, + { + "start": 548.3, + "end": 548.58, + "probability": 0.0822 + }, + { + "start": 548.58, + "end": 548.58, + "probability": 0.064 + }, + { + "start": 548.58, + "end": 548.58, + "probability": 0.0375 + }, + { + "start": 548.58, + "end": 550.24, + "probability": 0.3279 + }, + { + "start": 550.34, + "end": 554.82, + "probability": 0.9957 + }, + { + "start": 555.04, + "end": 557.64, + "probability": 0.566 + }, + { + "start": 557.7, + "end": 559.28, + "probability": 0.7603 + }, + { + "start": 559.36, + "end": 559.99, + "probability": 0.1516 + }, + { + "start": 560.24, + "end": 562.04, + "probability": 0.9932 + }, + { + "start": 562.22, + "end": 565.04, + "probability": 0.9989 + }, + { + "start": 565.04, + "end": 568.4, + "probability": 0.9827 + }, + { + "start": 568.66, + "end": 569.38, + "probability": 0.9415 + }, + { + "start": 569.44, + "end": 569.79, + "probability": 0.6013 + }, + { + "start": 570.45, + "end": 573.96, + "probability": 0.9932 + }, + { + "start": 574.06, + "end": 574.18, + "probability": 0.6732 + }, + { + "start": 574.24, + "end": 577.06, + "probability": 0.9694 + }, + { + "start": 577.12, + "end": 578.62, + "probability": 0.9526 + }, + { + "start": 578.62, + "end": 580.14, + "probability": 0.0853 + }, + { + "start": 582.59, + "end": 583.76, + "probability": 0.1851 + }, + { + "start": 583.76, + "end": 586.32, + "probability": 0.0303 + }, + { + "start": 589.16, + "end": 589.4, + "probability": 0.0861 + }, + { + "start": 589.4, + "end": 591.04, + "probability": 0.4981 + }, + { + "start": 591.64, + "end": 592.52, + "probability": 0.8282 + }, + { + "start": 592.8, + "end": 592.8, + "probability": 0.0005 + }, + { + "start": 593.44, + "end": 594.28, + "probability": 0.1625 + }, + { + "start": 594.9, + "end": 596.64, + "probability": 0.9772 + }, + { + "start": 598.24, + "end": 598.54, + "probability": 0.6837 + }, + { + "start": 600.56, + "end": 602.4, + "probability": 0.3917 + }, + { + "start": 603.68, + "end": 607.41, + "probability": 0.6649 + }, + { + "start": 607.9, + "end": 609.08, + "probability": 0.8365 + }, + { + "start": 609.16, + "end": 612.22, + "probability": 0.9965 + }, + { + "start": 612.22, + "end": 615.92, + "probability": 0.9316 + }, + { + "start": 616.68, + "end": 622.52, + "probability": 0.8836 + }, + { + "start": 622.52, + "end": 626.34, + "probability": 0.9707 + }, + { + "start": 627.08, + "end": 629.46, + "probability": 0.9727 + }, + { + "start": 630.0, + "end": 631.36, + "probability": 0.7482 + }, + { + "start": 631.78, + "end": 633.62, + "probability": 0.8535 + }, + { + "start": 633.9, + "end": 636.68, + "probability": 0.9967 + }, + { + "start": 637.9, + "end": 642.8, + "probability": 0.9858 + }, + { + "start": 644.86, + "end": 649.02, + "probability": 0.9016 + }, + { + "start": 649.62, + "end": 653.48, + "probability": 0.9653 + }, + { + "start": 653.9, + "end": 654.56, + "probability": 0.5582 + }, + { + "start": 655.46, + "end": 657.9, + "probability": 0.8667 + }, + { + "start": 658.54, + "end": 660.65, + "probability": 0.9271 + }, + { + "start": 661.92, + "end": 664.58, + "probability": 0.8733 + }, + { + "start": 668.41, + "end": 671.11, + "probability": 0.9553 + }, + { + "start": 671.73, + "end": 674.61, + "probability": 0.9768 + }, + { + "start": 675.23, + "end": 678.47, + "probability": 0.9611 + }, + { + "start": 678.87, + "end": 680.15, + "probability": 0.9142 + }, + { + "start": 680.43, + "end": 681.25, + "probability": 0.6447 + }, + { + "start": 681.63, + "end": 682.75, + "probability": 0.9915 + }, + { + "start": 684.03, + "end": 685.41, + "probability": 0.8706 + }, + { + "start": 685.57, + "end": 688.65, + "probability": 0.9963 + }, + { + "start": 689.27, + "end": 693.33, + "probability": 0.9751 + }, + { + "start": 693.33, + "end": 696.47, + "probability": 0.9888 + }, + { + "start": 698.57, + "end": 704.79, + "probability": 0.9781 + }, + { + "start": 705.19, + "end": 707.07, + "probability": 0.8638 + }, + { + "start": 707.53, + "end": 713.01, + "probability": 0.991 + }, + { + "start": 715.15, + "end": 719.59, + "probability": 0.9965 + }, + { + "start": 720.07, + "end": 721.81, + "probability": 0.9725 + }, + { + "start": 722.33, + "end": 728.65, + "probability": 0.9706 + }, + { + "start": 729.25, + "end": 733.05, + "probability": 0.9377 + }, + { + "start": 735.03, + "end": 735.83, + "probability": 0.9253 + }, + { + "start": 736.73, + "end": 737.99, + "probability": 0.9743 + }, + { + "start": 739.09, + "end": 743.83, + "probability": 0.9453 + }, + { + "start": 744.27, + "end": 748.15, + "probability": 0.954 + }, + { + "start": 749.83, + "end": 753.21, + "probability": 0.9847 + }, + { + "start": 753.21, + "end": 757.21, + "probability": 0.9952 + }, + { + "start": 758.13, + "end": 761.05, + "probability": 0.9293 + }, + { + "start": 761.05, + "end": 764.55, + "probability": 0.9976 + }, + { + "start": 765.57, + "end": 770.79, + "probability": 0.9814 + }, + { + "start": 770.79, + "end": 775.43, + "probability": 0.9727 + }, + { + "start": 775.63, + "end": 780.03, + "probability": 0.7558 + }, + { + "start": 780.87, + "end": 783.09, + "probability": 0.9258 + }, + { + "start": 783.37, + "end": 783.87, + "probability": 0.9286 + }, + { + "start": 784.01, + "end": 787.01, + "probability": 0.9658 + }, + { + "start": 787.49, + "end": 788.81, + "probability": 0.892 + }, + { + "start": 789.05, + "end": 793.31, + "probability": 0.9711 + }, + { + "start": 794.25, + "end": 796.03, + "probability": 0.8635 + }, + { + "start": 796.11, + "end": 797.43, + "probability": 0.864 + }, + { + "start": 797.85, + "end": 800.55, + "probability": 0.9709 + }, + { + "start": 800.71, + "end": 806.55, + "probability": 0.9897 + }, + { + "start": 806.57, + "end": 811.57, + "probability": 0.9669 + }, + { + "start": 814.51, + "end": 818.11, + "probability": 0.8285 + }, + { + "start": 819.47, + "end": 827.29, + "probability": 0.9855 + }, + { + "start": 827.39, + "end": 835.07, + "probability": 0.9927 + }, + { + "start": 835.07, + "end": 842.83, + "probability": 0.9127 + }, + { + "start": 842.91, + "end": 844.33, + "probability": 0.7354 + }, + { + "start": 844.43, + "end": 850.53, + "probability": 0.9734 + }, + { + "start": 851.05, + "end": 852.91, + "probability": 0.9321 + }, + { + "start": 853.07, + "end": 861.95, + "probability": 0.8652 + }, + { + "start": 862.03, + "end": 865.09, + "probability": 0.9651 + }, + { + "start": 865.43, + "end": 868.91, + "probability": 0.9855 + }, + { + "start": 869.03, + "end": 872.57, + "probability": 0.5819 + }, + { + "start": 872.77, + "end": 873.03, + "probability": 0.6049 + }, + { + "start": 873.17, + "end": 873.39, + "probability": 0.395 + }, + { + "start": 873.45, + "end": 878.59, + "probability": 0.9807 + }, + { + "start": 878.71, + "end": 879.21, + "probability": 0.8028 + }, + { + "start": 879.47, + "end": 879.71, + "probability": 0.2675 + }, + { + "start": 879.81, + "end": 881.33, + "probability": 0.6411 + }, + { + "start": 881.33, + "end": 884.19, + "probability": 0.6734 + }, + { + "start": 884.19, + "end": 885.33, + "probability": 0.9769 + }, + { + "start": 886.53, + "end": 889.15, + "probability": 0.9284 + }, + { + "start": 889.17, + "end": 893.15, + "probability": 0.9936 + }, + { + "start": 893.69, + "end": 895.93, + "probability": 0.9579 + }, + { + "start": 897.01, + "end": 898.33, + "probability": 0.9619 + }, + { + "start": 898.51, + "end": 899.05, + "probability": 0.4028 + }, + { + "start": 899.05, + "end": 899.35, + "probability": 0.4456 + }, + { + "start": 899.47, + "end": 901.15, + "probability": 0.6055 + }, + { + "start": 901.61, + "end": 903.27, + "probability": 0.9641 + }, + { + "start": 903.59, + "end": 905.45, + "probability": 0.7939 + }, + { + "start": 907.09, + "end": 909.11, + "probability": 0.7003 + }, + { + "start": 909.67, + "end": 910.25, + "probability": 0.6292 + }, + { + "start": 910.29, + "end": 912.71, + "probability": 0.7066 + }, + { + "start": 913.27, + "end": 918.07, + "probability": 0.9761 + }, + { + "start": 918.07, + "end": 923.51, + "probability": 0.9958 + }, + { + "start": 924.39, + "end": 927.91, + "probability": 0.8457 + }, + { + "start": 927.91, + "end": 931.17, + "probability": 0.9689 + }, + { + "start": 931.61, + "end": 932.97, + "probability": 0.8927 + }, + { + "start": 933.31, + "end": 937.01, + "probability": 0.9954 + }, + { + "start": 937.07, + "end": 938.15, + "probability": 0.9138 + }, + { + "start": 939.15, + "end": 942.39, + "probability": 0.9108 + }, + { + "start": 943.51, + "end": 944.16, + "probability": 0.9283 + }, + { + "start": 945.89, + "end": 947.37, + "probability": 0.8203 + }, + { + "start": 947.63, + "end": 949.05, + "probability": 0.9296 + }, + { + "start": 949.21, + "end": 950.49, + "probability": 0.9857 + }, + { + "start": 950.59, + "end": 951.93, + "probability": 0.9627 + }, + { + "start": 952.03, + "end": 952.75, + "probability": 0.8891 + }, + { + "start": 954.55, + "end": 956.29, + "probability": 0.4826 + }, + { + "start": 956.85, + "end": 958.77, + "probability": 0.9291 + }, + { + "start": 959.73, + "end": 961.55, + "probability": 0.9769 + }, + { + "start": 961.75, + "end": 964.33, + "probability": 0.8633 + }, + { + "start": 964.33, + "end": 966.13, + "probability": 0.7066 + }, + { + "start": 967.15, + "end": 970.21, + "probability": 0.8942 + }, + { + "start": 970.39, + "end": 972.53, + "probability": 0.948 + }, + { + "start": 972.97, + "end": 973.93, + "probability": 0.7314 + }, + { + "start": 973.99, + "end": 974.85, + "probability": 0.9337 + }, + { + "start": 974.87, + "end": 979.53, + "probability": 0.989 + }, + { + "start": 980.45, + "end": 981.35, + "probability": 0.7479 + }, + { + "start": 981.39, + "end": 982.13, + "probability": 0.7545 + }, + { + "start": 982.23, + "end": 984.47, + "probability": 0.9927 + }, + { + "start": 984.55, + "end": 986.57, + "probability": 0.9686 + }, + { + "start": 987.15, + "end": 992.47, + "probability": 0.9557 + }, + { + "start": 992.63, + "end": 995.99, + "probability": 0.9306 + }, + { + "start": 996.09, + "end": 1000.81, + "probability": 0.8366 + }, + { + "start": 1001.41, + "end": 1002.29, + "probability": 0.4368 + }, + { + "start": 1002.41, + "end": 1003.45, + "probability": 0.9832 + }, + { + "start": 1003.53, + "end": 1007.77, + "probability": 0.937 + }, + { + "start": 1008.15, + "end": 1011.16, + "probability": 0.981 + }, + { + "start": 1011.21, + "end": 1016.47, + "probability": 0.9977 + }, + { + "start": 1017.39, + "end": 1021.07, + "probability": 0.9758 + }, + { + "start": 1021.07, + "end": 1024.11, + "probability": 0.9964 + }, + { + "start": 1025.17, + "end": 1026.47, + "probability": 0.7499 + }, + { + "start": 1026.67, + "end": 1028.31, + "probability": 0.2601 + }, + { + "start": 1028.33, + "end": 1033.85, + "probability": 0.8535 + }, + { + "start": 1034.03, + "end": 1036.39, + "probability": 0.965 + }, + { + "start": 1036.57, + "end": 1038.79, + "probability": 0.9707 + }, + { + "start": 1039.29, + "end": 1042.39, + "probability": 0.9497 + }, + { + "start": 1043.11, + "end": 1045.19, + "probability": 0.9941 + }, + { + "start": 1045.75, + "end": 1047.37, + "probability": 0.994 + }, + { + "start": 1047.49, + "end": 1050.47, + "probability": 0.8374 + }, + { + "start": 1050.55, + "end": 1051.03, + "probability": 0.7263 + }, + { + "start": 1051.13, + "end": 1051.71, + "probability": 0.6445 + }, + { + "start": 1051.85, + "end": 1054.19, + "probability": 0.9727 + }, + { + "start": 1054.23, + "end": 1055.79, + "probability": 0.8959 + }, + { + "start": 1055.87, + "end": 1056.91, + "probability": 0.6667 + }, + { + "start": 1056.91, + "end": 1058.39, + "probability": 0.8252 + }, + { + "start": 1058.45, + "end": 1058.97, + "probability": 0.5947 + }, + { + "start": 1059.07, + "end": 1059.93, + "probability": 0.9086 + }, + { + "start": 1060.11, + "end": 1063.01, + "probability": 0.9959 + }, + { + "start": 1063.47, + "end": 1064.81, + "probability": 0.8652 + }, + { + "start": 1065.05, + "end": 1065.81, + "probability": 0.7419 + }, + { + "start": 1065.89, + "end": 1069.17, + "probability": 0.987 + }, + { + "start": 1069.85, + "end": 1074.11, + "probability": 0.4243 + }, + { + "start": 1074.11, + "end": 1074.11, + "probability": 0.0047 + }, + { + "start": 1074.11, + "end": 1074.45, + "probability": 0.4338 + }, + { + "start": 1075.69, + "end": 1077.91, + "probability": 0.3387 + }, + { + "start": 1077.91, + "end": 1078.05, + "probability": 0.0166 + }, + { + "start": 1078.05, + "end": 1078.29, + "probability": 0.6118 + }, + { + "start": 1078.69, + "end": 1081.13, + "probability": 0.9137 + }, + { + "start": 1081.25, + "end": 1083.95, + "probability": 0.7773 + }, + { + "start": 1083.95, + "end": 1087.49, + "probability": 0.9725 + }, + { + "start": 1088.81, + "end": 1088.81, + "probability": 0.1628 + }, + { + "start": 1088.81, + "end": 1088.81, + "probability": 0.064 + }, + { + "start": 1088.99, + "end": 1089.59, + "probability": 0.7206 + }, + { + "start": 1090.23, + "end": 1091.49, + "probability": 0.777 + }, + { + "start": 1091.53, + "end": 1094.75, + "probability": 0.9927 + }, + { + "start": 1095.27, + "end": 1095.51, + "probability": 0.4713 + }, + { + "start": 1095.83, + "end": 1099.21, + "probability": 0.9898 + }, + { + "start": 1100.33, + "end": 1100.59, + "probability": 0.7501 + }, + { + "start": 1100.59, + "end": 1102.47, + "probability": 0.2333 + }, + { + "start": 1103.11, + "end": 1103.37, + "probability": 0.0098 + }, + { + "start": 1104.19, + "end": 1104.61, + "probability": 0.3602 + }, + { + "start": 1104.71, + "end": 1105.73, + "probability": 0.6318 + }, + { + "start": 1105.87, + "end": 1108.19, + "probability": 0.9253 + }, + { + "start": 1109.23, + "end": 1109.75, + "probability": 0.8734 + }, + { + "start": 1109.83, + "end": 1112.36, + "probability": 0.7932 + }, + { + "start": 1112.59, + "end": 1112.91, + "probability": 0.4254 + }, + { + "start": 1112.97, + "end": 1116.97, + "probability": 0.998 + }, + { + "start": 1117.45, + "end": 1119.39, + "probability": 0.9623 + }, + { + "start": 1119.39, + "end": 1120.93, + "probability": 0.9341 + }, + { + "start": 1120.93, + "end": 1122.29, + "probability": 0.7514 + }, + { + "start": 1122.81, + "end": 1124.53, + "probability": 0.9453 + }, + { + "start": 1124.79, + "end": 1126.75, + "probability": 0.9839 + }, + { + "start": 1127.33, + "end": 1129.19, + "probability": 0.9976 + }, + { + "start": 1129.43, + "end": 1129.93, + "probability": 0.7319 + }, + { + "start": 1130.05, + "end": 1132.83, + "probability": 0.9148 + }, + { + "start": 1136.73, + "end": 1140.81, + "probability": 0.7937 + }, + { + "start": 1141.63, + "end": 1143.27, + "probability": 0.9747 + }, + { + "start": 1143.33, + "end": 1149.91, + "probability": 0.9075 + }, + { + "start": 1150.75, + "end": 1151.75, + "probability": 0.3975 + }, + { + "start": 1151.75, + "end": 1152.28, + "probability": 0.7885 + }, + { + "start": 1152.45, + "end": 1152.57, + "probability": 0.7701 + }, + { + "start": 1152.67, + "end": 1156.31, + "probability": 0.8522 + }, + { + "start": 1156.31, + "end": 1156.31, + "probability": 0.4225 + }, + { + "start": 1156.31, + "end": 1157.65, + "probability": 0.7104 + }, + { + "start": 1158.05, + "end": 1160.51, + "probability": 0.8663 + }, + { + "start": 1161.23, + "end": 1161.53, + "probability": 0.8708 + }, + { + "start": 1161.55, + "end": 1162.39, + "probability": 0.8911 + }, + { + "start": 1162.57, + "end": 1165.21, + "probability": 0.9641 + }, + { + "start": 1165.37, + "end": 1165.75, + "probability": 0.6787 + }, + { + "start": 1166.65, + "end": 1167.93, + "probability": 0.8447 + }, + { + "start": 1167.95, + "end": 1169.21, + "probability": 0.0016 + }, + { + "start": 1175.71, + "end": 1179.23, + "probability": 0.9575 + }, + { + "start": 1179.49, + "end": 1184.23, + "probability": 0.81 + }, + { + "start": 1184.61, + "end": 1186.71, + "probability": 0.8901 + }, + { + "start": 1187.13, + "end": 1190.95, + "probability": 0.7039 + }, + { + "start": 1190.95, + "end": 1193.77, + "probability": 0.9946 + }, + { + "start": 1193.91, + "end": 1196.31, + "probability": 0.9189 + }, + { + "start": 1197.05, + "end": 1200.69, + "probability": 0.9502 + }, + { + "start": 1200.79, + "end": 1201.53, + "probability": 0.7527 + }, + { + "start": 1201.75, + "end": 1202.65, + "probability": 0.9614 + }, + { + "start": 1203.39, + "end": 1203.39, + "probability": 0.2838 + }, + { + "start": 1203.43, + "end": 1204.13, + "probability": 0.6179 + }, + { + "start": 1204.29, + "end": 1206.81, + "probability": 0.612 + }, + { + "start": 1206.81, + "end": 1209.17, + "probability": 0.9903 + }, + { + "start": 1210.11, + "end": 1210.11, + "probability": 0.5841 + }, + { + "start": 1210.11, + "end": 1211.01, + "probability": 0.6678 + }, + { + "start": 1211.21, + "end": 1216.11, + "probability": 0.9191 + }, + { + "start": 1217.69, + "end": 1221.77, + "probability": 0.738 + }, + { + "start": 1221.91, + "end": 1227.83, + "probability": 0.9627 + }, + { + "start": 1228.01, + "end": 1230.37, + "probability": 0.9254 + }, + { + "start": 1230.83, + "end": 1231.23, + "probability": 0.326 + }, + { + "start": 1231.29, + "end": 1232.53, + "probability": 0.6689 + }, + { + "start": 1232.61, + "end": 1234.81, + "probability": 0.8289 + }, + { + "start": 1234.87, + "end": 1237.06, + "probability": 0.9824 + }, + { + "start": 1237.45, + "end": 1238.53, + "probability": 0.9387 + }, + { + "start": 1239.13, + "end": 1242.19, + "probability": 0.8596 + }, + { + "start": 1242.53, + "end": 1243.06, + "probability": 0.9355 + }, + { + "start": 1243.77, + "end": 1247.31, + "probability": 0.7403 + }, + { + "start": 1247.63, + "end": 1249.77, + "probability": 0.5199 + }, + { + "start": 1249.85, + "end": 1250.13, + "probability": 0.8267 + }, + { + "start": 1250.15, + "end": 1252.93, + "probability": 0.9778 + }, + { + "start": 1253.09, + "end": 1254.15, + "probability": 0.9763 + }, + { + "start": 1254.29, + "end": 1259.05, + "probability": 0.9868 + }, + { + "start": 1259.05, + "end": 1261.67, + "probability": 0.7287 + }, + { + "start": 1263.01, + "end": 1264.37, + "probability": 0.8316 + }, + { + "start": 1264.37, + "end": 1265.05, + "probability": 0.9791 + }, + { + "start": 1265.23, + "end": 1265.73, + "probability": 0.2056 + }, + { + "start": 1265.75, + "end": 1266.14, + "probability": 0.8468 + }, + { + "start": 1266.91, + "end": 1267.19, + "probability": 0.8456 + }, + { + "start": 1267.39, + "end": 1270.83, + "probability": 0.9595 + }, + { + "start": 1271.13, + "end": 1272.29, + "probability": 0.7621 + }, + { + "start": 1272.49, + "end": 1275.05, + "probability": 0.981 + }, + { + "start": 1275.73, + "end": 1283.51, + "probability": 0.9122 + }, + { + "start": 1283.99, + "end": 1286.93, + "probability": 0.9226 + }, + { + "start": 1286.93, + "end": 1287.53, + "probability": 0.7461 + }, + { + "start": 1287.61, + "end": 1287.99, + "probability": 0.6723 + }, + { + "start": 1288.61, + "end": 1290.47, + "probability": 0.8361 + }, + { + "start": 1290.55, + "end": 1291.83, + "probability": 0.753 + }, + { + "start": 1291.99, + "end": 1294.21, + "probability": 0.8011 + }, + { + "start": 1294.43, + "end": 1294.93, + "probability": 0.4306 + }, + { + "start": 1295.01, + "end": 1295.31, + "probability": 0.6923 + }, + { + "start": 1295.55, + "end": 1297.99, + "probability": 0.9583 + }, + { + "start": 1298.11, + "end": 1298.37, + "probability": 0.8762 + }, + { + "start": 1298.83, + "end": 1299.05, + "probability": 0.3489 + }, + { + "start": 1299.21, + "end": 1299.71, + "probability": 0.6808 + }, + { + "start": 1299.79, + "end": 1299.85, + "probability": 0.3476 + }, + { + "start": 1299.85, + "end": 1302.16, + "probability": 0.9119 + }, + { + "start": 1303.31, + "end": 1306.47, + "probability": 0.9499 + }, + { + "start": 1306.97, + "end": 1308.97, + "probability": 0.9598 + }, + { + "start": 1309.11, + "end": 1310.87, + "probability": 0.8764 + }, + { + "start": 1310.93, + "end": 1311.83, + "probability": 0.8106 + }, + { + "start": 1312.09, + "end": 1312.89, + "probability": 0.4993 + }, + { + "start": 1313.69, + "end": 1314.75, + "probability": 0.9482 + }, + { + "start": 1314.89, + "end": 1318.71, + "probability": 0.922 + }, + { + "start": 1319.01, + "end": 1320.07, + "probability": 0.8882 + }, + { + "start": 1320.87, + "end": 1320.87, + "probability": 0.0033 + }, + { + "start": 1320.87, + "end": 1323.43, + "probability": 0.7256 + }, + { + "start": 1324.71, + "end": 1328.27, + "probability": 0.9657 + }, + { + "start": 1328.37, + "end": 1339.27, + "probability": 0.9867 + }, + { + "start": 1340.23, + "end": 1344.65, + "probability": 0.9877 + }, + { + "start": 1344.91, + "end": 1349.43, + "probability": 0.9852 + }, + { + "start": 1349.87, + "end": 1354.79, + "probability": 0.9316 + }, + { + "start": 1354.97, + "end": 1360.69, + "probability": 0.9761 + }, + { + "start": 1361.05, + "end": 1365.07, + "probability": 0.3178 + }, + { + "start": 1365.13, + "end": 1367.13, + "probability": 0.402 + }, + { + "start": 1368.33, + "end": 1369.83, + "probability": 0.6776 + }, + { + "start": 1370.17, + "end": 1373.69, + "probability": 0.7674 + }, + { + "start": 1373.89, + "end": 1377.73, + "probability": 0.9434 + }, + { + "start": 1378.03, + "end": 1382.33, + "probability": 0.5239 + }, + { + "start": 1382.39, + "end": 1383.03, + "probability": 0.2254 + }, + { + "start": 1383.45, + "end": 1385.99, + "probability": 0.5722 + }, + { + "start": 1386.13, + "end": 1387.61, + "probability": 0.8532 + }, + { + "start": 1388.51, + "end": 1393.99, + "probability": 0.876 + }, + { + "start": 1394.33, + "end": 1398.67, + "probability": 0.9867 + }, + { + "start": 1399.67, + "end": 1402.01, + "probability": 0.5966 + }, + { + "start": 1402.51, + "end": 1403.81, + "probability": 0.8615 + }, + { + "start": 1403.89, + "end": 1404.32, + "probability": 0.9505 + }, + { + "start": 1405.27, + "end": 1405.51, + "probability": 0.311 + }, + { + "start": 1405.59, + "end": 1406.01, + "probability": 0.6515 + }, + { + "start": 1406.43, + "end": 1407.51, + "probability": 0.7738 + }, + { + "start": 1408.21, + "end": 1411.97, + "probability": 0.9689 + }, + { + "start": 1412.59, + "end": 1415.59, + "probability": 0.8206 + }, + { + "start": 1415.99, + "end": 1417.29, + "probability": 0.9007 + }, + { + "start": 1417.39, + "end": 1422.29, + "probability": 0.8606 + }, + { + "start": 1423.69, + "end": 1428.25, + "probability": 0.928 + }, + { + "start": 1428.25, + "end": 1434.57, + "probability": 0.6895 + }, + { + "start": 1436.01, + "end": 1446.09, + "probability": 0.9889 + }, + { + "start": 1447.03, + "end": 1450.17, + "probability": 0.9841 + }, + { + "start": 1450.45, + "end": 1451.51, + "probability": 0.7527 + }, + { + "start": 1451.53, + "end": 1452.41, + "probability": 0.833 + }, + { + "start": 1452.91, + "end": 1459.03, + "probability": 0.9816 + }, + { + "start": 1459.05, + "end": 1462.17, + "probability": 0.9934 + }, + { + "start": 1462.65, + "end": 1467.63, + "probability": 0.8925 + }, + { + "start": 1467.63, + "end": 1476.11, + "probability": 0.9688 + }, + { + "start": 1476.19, + "end": 1477.41, + "probability": 0.98 + }, + { + "start": 1477.53, + "end": 1479.97, + "probability": 0.6727 + }, + { + "start": 1481.01, + "end": 1484.43, + "probability": 0.9951 + }, + { + "start": 1484.67, + "end": 1486.45, + "probability": 0.9993 + }, + { + "start": 1488.17, + "end": 1491.01, + "probability": 0.7238 + }, + { + "start": 1491.55, + "end": 1492.25, + "probability": 0.42 + }, + { + "start": 1493.53, + "end": 1494.03, + "probability": 0.8503 + }, + { + "start": 1494.05, + "end": 1496.03, + "probability": 0.8521 + }, + { + "start": 1496.33, + "end": 1497.79, + "probability": 0.828 + }, + { + "start": 1498.13, + "end": 1499.51, + "probability": 0.8092 + }, + { + "start": 1499.61, + "end": 1502.09, + "probability": 0.8541 + }, + { + "start": 1502.17, + "end": 1503.73, + "probability": 0.9312 + }, + { + "start": 1504.09, + "end": 1505.45, + "probability": 0.9946 + }, + { + "start": 1506.09, + "end": 1512.15, + "probability": 0.9116 + }, + { + "start": 1512.55, + "end": 1515.48, + "probability": 0.9875 + }, + { + "start": 1517.05, + "end": 1518.37, + "probability": 0.367 + }, + { + "start": 1518.63, + "end": 1522.47, + "probability": 0.916 + }, + { + "start": 1522.55, + "end": 1524.03, + "probability": 0.815 + }, + { + "start": 1524.15, + "end": 1525.1, + "probability": 0.9956 + }, + { + "start": 1525.31, + "end": 1526.71, + "probability": 0.9289 + }, + { + "start": 1526.97, + "end": 1527.45, + "probability": 0.2659 + }, + { + "start": 1528.87, + "end": 1531.96, + "probability": 0.6957 + }, + { + "start": 1532.83, + "end": 1536.31, + "probability": 0.6265 + }, + { + "start": 1536.55, + "end": 1540.37, + "probability": 0.8711 + }, + { + "start": 1540.71, + "end": 1542.75, + "probability": 0.9867 + }, + { + "start": 1543.11, + "end": 1544.43, + "probability": 0.4762 + }, + { + "start": 1544.45, + "end": 1544.8, + "probability": 0.5182 + }, + { + "start": 1545.17, + "end": 1546.69, + "probability": 0.7622 + }, + { + "start": 1547.31, + "end": 1549.03, + "probability": 0.9458 + }, + { + "start": 1549.25, + "end": 1550.71, + "probability": 0.9437 + }, + { + "start": 1551.32, + "end": 1554.33, + "probability": 0.9722 + }, + { + "start": 1554.83, + "end": 1555.63, + "probability": 0.5 + }, + { + "start": 1556.01, + "end": 1560.07, + "probability": 0.7974 + }, + { + "start": 1563.15, + "end": 1564.21, + "probability": 0.1545 + }, + { + "start": 1576.97, + "end": 1577.95, + "probability": 0.8022 + }, + { + "start": 1578.99, + "end": 1580.67, + "probability": 0.3771 + }, + { + "start": 1580.67, + "end": 1582.59, + "probability": 0.0797 + }, + { + "start": 1590.71, + "end": 1596.01, + "probability": 0.4811 + }, + { + "start": 1596.01, + "end": 1596.23, + "probability": 0.1594 + }, + { + "start": 1597.41, + "end": 1598.31, + "probability": 0.025 + }, + { + "start": 1598.31, + "end": 1598.33, + "probability": 0.0353 + }, + { + "start": 1598.33, + "end": 1601.95, + "probability": 0.9494 + }, + { + "start": 1602.89, + "end": 1605.79, + "probability": 0.7503 + }, + { + "start": 1606.31, + "end": 1611.33, + "probability": 0.9462 + }, + { + "start": 1612.53, + "end": 1613.41, + "probability": 0.7419 + }, + { + "start": 1614.09, + "end": 1616.61, + "probability": 0.8434 + }, + { + "start": 1617.75, + "end": 1619.43, + "probability": 0.4501 + }, + { + "start": 1619.73, + "end": 1621.79, + "probability": 0.8708 + }, + { + "start": 1621.85, + "end": 1623.05, + "probability": 0.8889 + }, + { + "start": 1623.31, + "end": 1623.51, + "probability": 0.6582 + }, + { + "start": 1624.61, + "end": 1625.19, + "probability": 0.5628 + }, + { + "start": 1625.31, + "end": 1629.21, + "probability": 0.8604 + }, + { + "start": 1629.37, + "end": 1630.49, + "probability": 0.8091 + }, + { + "start": 1630.71, + "end": 1632.63, + "probability": 0.9774 + }, + { + "start": 1634.05, + "end": 1637.35, + "probability": 0.9583 + }, + { + "start": 1639.93, + "end": 1640.34, + "probability": 0.9126 + }, + { + "start": 1642.07, + "end": 1644.45, + "probability": 0.9764 + }, + { + "start": 1644.85, + "end": 1648.61, + "probability": 0.9892 + }, + { + "start": 1649.89, + "end": 1652.23, + "probability": 0.9189 + }, + { + "start": 1652.99, + "end": 1654.85, + "probability": 0.6192 + }, + { + "start": 1655.99, + "end": 1660.69, + "probability": 0.9504 + }, + { + "start": 1661.51, + "end": 1665.55, + "probability": 0.9724 + }, + { + "start": 1665.69, + "end": 1667.11, + "probability": 0.5232 + }, + { + "start": 1667.21, + "end": 1668.93, + "probability": 0.8306 + }, + { + "start": 1670.21, + "end": 1670.65, + "probability": 0.5005 + }, + { + "start": 1671.21, + "end": 1673.95, + "probability": 0.9613 + }, + { + "start": 1674.99, + "end": 1674.99, + "probability": 0.0034 + }, + { + "start": 1678.25, + "end": 1678.46, + "probability": 0.2076 + }, + { + "start": 1678.79, + "end": 1678.99, + "probability": 0.1903 + }, + { + "start": 1681.05, + "end": 1682.15, + "probability": 0.528 + }, + { + "start": 1682.39, + "end": 1684.75, + "probability": 0.0934 + }, + { + "start": 1684.91, + "end": 1686.85, + "probability": 0.175 + }, + { + "start": 1687.39, + "end": 1689.81, + "probability": 0.4822 + }, + { + "start": 1690.77, + "end": 1690.99, + "probability": 0.2758 + }, + { + "start": 1691.43, + "end": 1694.33, + "probability": 0.8941 + }, + { + "start": 1694.59, + "end": 1698.11, + "probability": 0.9672 + }, + { + "start": 1699.05, + "end": 1701.81, + "probability": 0.8273 + }, + { + "start": 1702.69, + "end": 1703.47, + "probability": 0.8415 + }, + { + "start": 1704.21, + "end": 1707.82, + "probability": 0.9808 + }, + { + "start": 1708.89, + "end": 1709.87, + "probability": 0.5676 + }, + { + "start": 1711.61, + "end": 1713.61, + "probability": 0.9307 + }, + { + "start": 1713.61, + "end": 1718.85, + "probability": 0.8627 + }, + { + "start": 1720.03, + "end": 1721.93, + "probability": 0.865 + }, + { + "start": 1722.51, + "end": 1723.66, + "probability": 0.7606 + }, + { + "start": 1724.57, + "end": 1726.65, + "probability": 0.8409 + }, + { + "start": 1726.89, + "end": 1731.79, + "probability": 0.5992 + }, + { + "start": 1732.09, + "end": 1732.75, + "probability": 0.9862 + }, + { + "start": 1734.23, + "end": 1734.79, + "probability": 0.6425 + }, + { + "start": 1736.23, + "end": 1738.31, + "probability": 0.5058 + }, + { + "start": 1738.47, + "end": 1738.95, + "probability": 0.8729 + }, + { + "start": 1739.97, + "end": 1741.61, + "probability": 0.8909 + }, + { + "start": 1741.73, + "end": 1744.01, + "probability": 0.8007 + }, + { + "start": 1744.49, + "end": 1745.35, + "probability": 0.7599 + }, + { + "start": 1746.51, + "end": 1747.25, + "probability": 0.8941 + }, + { + "start": 1747.45, + "end": 1751.39, + "probability": 0.9569 + }, + { + "start": 1752.07, + "end": 1754.83, + "probability": 0.9138 + }, + { + "start": 1754.95, + "end": 1757.23, + "probability": 0.9954 + }, + { + "start": 1757.41, + "end": 1760.01, + "probability": 0.8211 + }, + { + "start": 1760.35, + "end": 1761.46, + "probability": 0.9071 + }, + { + "start": 1763.41, + "end": 1763.93, + "probability": 0.6283 + }, + { + "start": 1764.45, + "end": 1766.29, + "probability": 0.9551 + }, + { + "start": 1766.55, + "end": 1769.85, + "probability": 0.9957 + }, + { + "start": 1770.13, + "end": 1772.17, + "probability": 0.9932 + }, + { + "start": 1772.47, + "end": 1776.37, + "probability": 0.9858 + }, + { + "start": 1776.37, + "end": 1779.63, + "probability": 0.9985 + }, + { + "start": 1780.21, + "end": 1780.67, + "probability": 0.7844 + }, + { + "start": 1781.07, + "end": 1783.65, + "probability": 0.8585 + }, + { + "start": 1783.85, + "end": 1788.71, + "probability": 0.949 + }, + { + "start": 1789.53, + "end": 1791.37, + "probability": 0.9976 + }, + { + "start": 1792.59, + "end": 1794.61, + "probability": 0.8806 + }, + { + "start": 1795.25, + "end": 1797.07, + "probability": 0.843 + }, + { + "start": 1797.75, + "end": 1801.37, + "probability": 0.9541 + }, + { + "start": 1802.59, + "end": 1804.82, + "probability": 0.5373 + }, + { + "start": 1806.53, + "end": 1808.69, + "probability": 0.81 + }, + { + "start": 1809.49, + "end": 1810.79, + "probability": 0.9276 + }, + { + "start": 1811.69, + "end": 1813.01, + "probability": 0.8613 + }, + { + "start": 1815.39, + "end": 1817.73, + "probability": 0.3793 + }, + { + "start": 1817.73, + "end": 1817.73, + "probability": 0.2169 + }, + { + "start": 1817.93, + "end": 1819.55, + "probability": 0.2854 + }, + { + "start": 1819.79, + "end": 1823.99, + "probability": 0.5703 + }, + { + "start": 1824.43, + "end": 1826.83, + "probability": 0.7626 + }, + { + "start": 1827.15, + "end": 1830.55, + "probability": 0.7326 + }, + { + "start": 1830.73, + "end": 1832.51, + "probability": 0.6678 + }, + { + "start": 1832.59, + "end": 1833.57, + "probability": 0.8538 + }, + { + "start": 1833.89, + "end": 1835.33, + "probability": 0.5114 + }, + { + "start": 1835.43, + "end": 1836.73, + "probability": 0.9542 + }, + { + "start": 1838.81, + "end": 1841.07, + "probability": 0.4329 + }, + { + "start": 1841.15, + "end": 1843.35, + "probability": 0.0144 + }, + { + "start": 1843.63, + "end": 1843.83, + "probability": 0.2989 + }, + { + "start": 1843.83, + "end": 1844.96, + "probability": 0.1832 + }, + { + "start": 1846.29, + "end": 1846.89, + "probability": 0.4328 + }, + { + "start": 1846.97, + "end": 1847.43, + "probability": 0.3934 + }, + { + "start": 1847.67, + "end": 1848.93, + "probability": 0.3037 + }, + { + "start": 1848.93, + "end": 1849.81, + "probability": 0.1147 + }, + { + "start": 1850.23, + "end": 1851.57, + "probability": 0.0894 + }, + { + "start": 1852.22, + "end": 1855.79, + "probability": 0.0854 + }, + { + "start": 1857.35, + "end": 1858.69, + "probability": 0.3588 + }, + { + "start": 1858.89, + "end": 1860.09, + "probability": 0.7866 + }, + { + "start": 1860.21, + "end": 1861.53, + "probability": 0.6761 + }, + { + "start": 1861.61, + "end": 1863.11, + "probability": 0.836 + }, + { + "start": 1863.29, + "end": 1864.61, + "probability": 0.9484 + }, + { + "start": 1865.73, + "end": 1868.01, + "probability": 0.6957 + }, + { + "start": 1868.17, + "end": 1869.45, + "probability": 0.8744 + }, + { + "start": 1869.57, + "end": 1870.97, + "probability": 0.9797 + }, + { + "start": 1871.51, + "end": 1874.77, + "probability": 0.9759 + }, + { + "start": 1874.91, + "end": 1877.11, + "probability": 0.9234 + }, + { + "start": 1877.77, + "end": 1881.47, + "probability": 0.9642 + }, + { + "start": 1882.55, + "end": 1883.19, + "probability": 0.2681 + }, + { + "start": 1886.67, + "end": 1889.71, + "probability": 0.7816 + }, + { + "start": 1890.47, + "end": 1893.19, + "probability": 0.8682 + }, + { + "start": 1893.21, + "end": 1893.25, + "probability": 0.2904 + }, + { + "start": 1893.29, + "end": 1896.01, + "probability": 0.4905 + }, + { + "start": 1896.01, + "end": 1897.85, + "probability": 0.6937 + }, + { + "start": 1898.27, + "end": 1899.11, + "probability": 0.848 + }, + { + "start": 1899.11, + "end": 1899.11, + "probability": 0.3138 + }, + { + "start": 1899.11, + "end": 1899.11, + "probability": 0.5339 + }, + { + "start": 1899.11, + "end": 1900.77, + "probability": 0.8389 + }, + { + "start": 1900.91, + "end": 1901.33, + "probability": 0.7054 + }, + { + "start": 1901.37, + "end": 1902.81, + "probability": 0.6605 + }, + { + "start": 1903.25, + "end": 1903.87, + "probability": 0.6726 + }, + { + "start": 1904.03, + "end": 1904.99, + "probability": 0.9422 + }, + { + "start": 1905.09, + "end": 1907.55, + "probability": 0.636 + }, + { + "start": 1907.67, + "end": 1908.15, + "probability": 0.6146 + }, + { + "start": 1909.31, + "end": 1912.01, + "probability": 0.7511 + }, + { + "start": 1912.73, + "end": 1914.99, + "probability": 0.9435 + }, + { + "start": 1915.09, + "end": 1915.61, + "probability": 0.5231 + }, + { + "start": 1915.69, + "end": 1917.08, + "probability": 0.9428 + }, + { + "start": 1917.11, + "end": 1918.91, + "probability": 0.8885 + }, + { + "start": 1919.01, + "end": 1919.13, + "probability": 0.2654 + }, + { + "start": 1919.13, + "end": 1919.51, + "probability": 0.4044 + }, + { + "start": 1919.69, + "end": 1924.99, + "probability": 0.9966 + }, + { + "start": 1925.13, + "end": 1928.49, + "probability": 0.6385 + }, + { + "start": 1928.57, + "end": 1929.15, + "probability": 0.5508 + }, + { + "start": 1929.33, + "end": 1933.57, + "probability": 0.9917 + }, + { + "start": 1933.93, + "end": 1936.59, + "probability": 0.9546 + }, + { + "start": 1936.59, + "end": 1937.99, + "probability": 0.7702 + }, + { + "start": 1938.07, + "end": 1938.53, + "probability": 0.8718 + }, + { + "start": 1938.75, + "end": 1938.91, + "probability": 0.5544 + }, + { + "start": 1938.99, + "end": 1942.27, + "probability": 0.9755 + }, + { + "start": 1942.51, + "end": 1943.59, + "probability": 0.9604 + }, + { + "start": 1943.69, + "end": 1944.67, + "probability": 0.926 + }, + { + "start": 1944.77, + "end": 1945.55, + "probability": 0.9436 + }, + { + "start": 1945.67, + "end": 1950.65, + "probability": 0.8727 + }, + { + "start": 1950.65, + "end": 1953.81, + "probability": 0.8572 + }, + { + "start": 1953.87, + "end": 1955.11, + "probability": 0.519 + }, + { + "start": 1957.81, + "end": 1958.83, + "probability": 0.7188 + }, + { + "start": 1958.91, + "end": 1961.69, + "probability": 0.9685 + }, + { + "start": 1961.73, + "end": 1963.08, + "probability": 0.9582 + }, + { + "start": 1963.15, + "end": 1963.77, + "probability": 0.5165 + }, + { + "start": 1963.79, + "end": 1964.53, + "probability": 0.9314 + }, + { + "start": 1964.53, + "end": 1965.09, + "probability": 0.7689 + }, + { + "start": 1965.25, + "end": 1965.63, + "probability": 0.8723 + }, + { + "start": 1965.67, + "end": 1965.91, + "probability": 0.7504 + }, + { + "start": 1967.49, + "end": 1968.59, + "probability": 0.6774 + }, + { + "start": 1969.43, + "end": 1974.54, + "probability": 0.9624 + }, + { + "start": 1975.09, + "end": 1976.42, + "probability": 0.8416 + }, + { + "start": 1977.23, + "end": 1982.53, + "probability": 0.9379 + }, + { + "start": 1983.09, + "end": 1984.69, + "probability": 0.7976 + }, + { + "start": 1984.83, + "end": 1985.98, + "probability": 0.32 + }, + { + "start": 1986.13, + "end": 1986.25, + "probability": 0.7102 + }, + { + "start": 1986.41, + "end": 1988.35, + "probability": 0.3332 + }, + { + "start": 1988.35, + "end": 1988.81, + "probability": 0.6616 + }, + { + "start": 1988.81, + "end": 1989.11, + "probability": 0.0541 + }, + { + "start": 1989.11, + "end": 1991.23, + "probability": 0.0928 + }, + { + "start": 1991.47, + "end": 1992.79, + "probability": 0.6312 + }, + { + "start": 1993.06, + "end": 1995.03, + "probability": 0.7455 + }, + { + "start": 1995.23, + "end": 1997.05, + "probability": 0.666 + }, + { + "start": 1997.05, + "end": 1998.59, + "probability": 0.5415 + }, + { + "start": 1998.67, + "end": 1998.67, + "probability": 0.3165 + }, + { + "start": 1998.67, + "end": 1999.45, + "probability": 0.8864 + }, + { + "start": 1999.57, + "end": 2003.99, + "probability": 0.9771 + }, + { + "start": 2004.17, + "end": 2004.17, + "probability": 0.4478 + }, + { + "start": 2004.17, + "end": 2004.53, + "probability": 0.479 + }, + { + "start": 2005.07, + "end": 2007.01, + "probability": 0.5268 + }, + { + "start": 2007.35, + "end": 2010.65, + "probability": 0.7126 + }, + { + "start": 2010.65, + "end": 2010.87, + "probability": 0.7294 + }, + { + "start": 2011.51, + "end": 2011.53, + "probability": 0.7692 + }, + { + "start": 2011.61, + "end": 2015.66, + "probability": 0.9902 + }, + { + "start": 2016.13, + "end": 2016.87, + "probability": 0.5885 + }, + { + "start": 2016.97, + "end": 2018.33, + "probability": 0.9386 + }, + { + "start": 2018.69, + "end": 2022.27, + "probability": 0.9632 + }, + { + "start": 2022.27, + "end": 2025.01, + "probability": 0.722 + }, + { + "start": 2025.01, + "end": 2026.07, + "probability": 0.3999 + }, + { + "start": 2026.15, + "end": 2028.91, + "probability": 0.7998 + }, + { + "start": 2029.01, + "end": 2029.65, + "probability": 0.6861 + }, + { + "start": 2032.29, + "end": 2032.67, + "probability": 0.0741 + }, + { + "start": 2032.67, + "end": 2032.69, + "probability": 0.0467 + }, + { + "start": 2032.69, + "end": 2032.71, + "probability": 0.0228 + }, + { + "start": 2032.71, + "end": 2032.77, + "probability": 0.0182 + }, + { + "start": 2032.77, + "end": 2033.71, + "probability": 0.3702 + }, + { + "start": 2033.79, + "end": 2035.01, + "probability": 0.8186 + }, + { + "start": 2035.41, + "end": 2036.79, + "probability": 0.946 + }, + { + "start": 2036.93, + "end": 2038.41, + "probability": 0.7453 + }, + { + "start": 2038.89, + "end": 2040.37, + "probability": 0.8968 + }, + { + "start": 2041.29, + "end": 2043.29, + "probability": 0.5688 + }, + { + "start": 2043.41, + "end": 2043.75, + "probability": 0.8632 + }, + { + "start": 2043.77, + "end": 2044.83, + "probability": 0.6494 + }, + { + "start": 2045.03, + "end": 2045.76, + "probability": 0.6724 + }, + { + "start": 2046.33, + "end": 2048.21, + "probability": 0.7077 + }, + { + "start": 2048.21, + "end": 2049.39, + "probability": 0.8571 + }, + { + "start": 2049.41, + "end": 2050.23, + "probability": 0.2967 + }, + { + "start": 2050.23, + "end": 2050.77, + "probability": 0.8484 + }, + { + "start": 2050.85, + "end": 2051.29, + "probability": 0.3589 + }, + { + "start": 2051.29, + "end": 2052.71, + "probability": 0.3954 + }, + { + "start": 2052.91, + "end": 2053.97, + "probability": 0.7506 + }, + { + "start": 2054.03, + "end": 2056.37, + "probability": 0.8783 + }, + { + "start": 2056.41, + "end": 2057.61, + "probability": 0.7349 + }, + { + "start": 2057.63, + "end": 2060.61, + "probability": 0.5766 + }, + { + "start": 2060.95, + "end": 2061.65, + "probability": 0.827 + }, + { + "start": 2061.75, + "end": 2062.45, + "probability": 0.7739 + }, + { + "start": 2062.45, + "end": 2064.05, + "probability": 0.7261 + }, + { + "start": 2064.05, + "end": 2065.87, + "probability": 0.8558 + }, + { + "start": 2066.05, + "end": 2067.57, + "probability": 0.7076 + }, + { + "start": 2070.33, + "end": 2070.83, + "probability": 0.6064 + }, + { + "start": 2070.83, + "end": 2070.83, + "probability": 0.4765 + }, + { + "start": 2070.83, + "end": 2070.93, + "probability": 0.0939 + }, + { + "start": 2071.29, + "end": 2071.89, + "probability": 0.8438 + }, + { + "start": 2071.99, + "end": 2075.53, + "probability": 0.9506 + }, + { + "start": 2075.91, + "end": 2079.27, + "probability": 0.8492 + }, + { + "start": 2079.33, + "end": 2079.79, + "probability": 0.9976 + }, + { + "start": 2081.49, + "end": 2085.01, + "probability": 0.9322 + }, + { + "start": 2085.43, + "end": 2086.15, + "probability": 0.5248 + }, + { + "start": 2086.69, + "end": 2087.59, + "probability": 0.9666 + }, + { + "start": 2088.33, + "end": 2089.81, + "probability": 0.8516 + }, + { + "start": 2089.81, + "end": 2092.41, + "probability": 0.7929 + }, + { + "start": 2092.75, + "end": 2093.83, + "probability": 0.9985 + }, + { + "start": 2094.03, + "end": 2094.65, + "probability": 0.0477 + }, + { + "start": 2095.15, + "end": 2097.39, + "probability": 0.4872 + }, + { + "start": 2097.59, + "end": 2099.25, + "probability": 0.7599 + }, + { + "start": 2099.25, + "end": 2099.53, + "probability": 0.7037 + }, + { + "start": 2099.65, + "end": 2100.35, + "probability": 0.7384 + }, + { + "start": 2100.47, + "end": 2102.45, + "probability": 0.8926 + }, + { + "start": 2102.49, + "end": 2104.22, + "probability": 0.5589 + }, + { + "start": 2104.69, + "end": 2104.83, + "probability": 0.144 + }, + { + "start": 2105.03, + "end": 2106.15, + "probability": 0.7577 + }, + { + "start": 2106.25, + "end": 2107.25, + "probability": 0.1547 + }, + { + "start": 2107.55, + "end": 2108.75, + "probability": 0.7605 + }, + { + "start": 2108.81, + "end": 2109.69, + "probability": 0.7306 + }, + { + "start": 2110.13, + "end": 2112.49, + "probability": 0.9871 + }, + { + "start": 2113.05, + "end": 2113.75, + "probability": 0.5924 + }, + { + "start": 2114.25, + "end": 2114.62, + "probability": 0.0214 + }, + { + "start": 2115.15, + "end": 2115.53, + "probability": 0.0893 + }, + { + "start": 2115.73, + "end": 2118.39, + "probability": 0.3117 + }, + { + "start": 2118.49, + "end": 2119.23, + "probability": 0.4448 + }, + { + "start": 2119.41, + "end": 2121.49, + "probability": 0.9786 + }, + { + "start": 2122.07, + "end": 2122.65, + "probability": 0.8628 + }, + { + "start": 2123.01, + "end": 2124.01, + "probability": 0.8019 + }, + { + "start": 2124.01, + "end": 2125.15, + "probability": 0.5831 + }, + { + "start": 2125.95, + "end": 2127.47, + "probability": 0.9376 + }, + { + "start": 2127.53, + "end": 2132.13, + "probability": 0.9846 + }, + { + "start": 2132.21, + "end": 2132.99, + "probability": 0.8567 + }, + { + "start": 2133.83, + "end": 2136.47, + "probability": 0.9747 + }, + { + "start": 2137.29, + "end": 2141.27, + "probability": 0.5139 + }, + { + "start": 2141.47, + "end": 2142.45, + "probability": 0.9528 + }, + { + "start": 2142.85, + "end": 2143.71, + "probability": 0.9855 + }, + { + "start": 2143.87, + "end": 2144.91, + "probability": 0.6838 + }, + { + "start": 2145.09, + "end": 2146.03, + "probability": 0.7442 + }, + { + "start": 2146.81, + "end": 2147.41, + "probability": 0.7476 + }, + { + "start": 2147.51, + "end": 2148.93, + "probability": 0.8975 + }, + { + "start": 2149.07, + "end": 2151.69, + "probability": 0.8311 + }, + { + "start": 2152.31, + "end": 2154.79, + "probability": 0.9644 + }, + { + "start": 2154.91, + "end": 2157.47, + "probability": 0.9229 + }, + { + "start": 2157.71, + "end": 2158.23, + "probability": 0.3604 + }, + { + "start": 2158.25, + "end": 2164.25, + "probability": 0.9322 + }, + { + "start": 2164.31, + "end": 2164.69, + "probability": 0.3942 + }, + { + "start": 2164.81, + "end": 2166.67, + "probability": 0.7003 + }, + { + "start": 2166.77, + "end": 2168.84, + "probability": 0.9476 + }, + { + "start": 2169.53, + "end": 2170.35, + "probability": 0.9266 + }, + { + "start": 2170.41, + "end": 2171.95, + "probability": 0.7531 + }, + { + "start": 2172.07, + "end": 2176.13, + "probability": 0.9494 + }, + { + "start": 2176.57, + "end": 2179.45, + "probability": 0.9818 + }, + { + "start": 2179.61, + "end": 2181.91, + "probability": 0.6678 + }, + { + "start": 2182.05, + "end": 2183.29, + "probability": 0.771 + }, + { + "start": 2183.37, + "end": 2185.84, + "probability": 0.8248 + }, + { + "start": 2186.49, + "end": 2187.29, + "probability": 0.9752 + }, + { + "start": 2187.79, + "end": 2188.54, + "probability": 0.8005 + }, + { + "start": 2188.93, + "end": 2189.43, + "probability": 0.8108 + }, + { + "start": 2189.51, + "end": 2192.87, + "probability": 0.6427 + }, + { + "start": 2193.01, + "end": 2194.05, + "probability": 0.0079 + }, + { + "start": 2194.07, + "end": 2195.85, + "probability": 0.0903 + }, + { + "start": 2195.85, + "end": 2197.85, + "probability": 0.7986 + }, + { + "start": 2197.91, + "end": 2198.43, + "probability": 0.7119 + }, + { + "start": 2198.57, + "end": 2198.93, + "probability": 0.3853 + }, + { + "start": 2199.15, + "end": 2200.37, + "probability": 0.3696 + }, + { + "start": 2200.45, + "end": 2201.01, + "probability": 0.6857 + }, + { + "start": 2201.03, + "end": 2201.79, + "probability": 0.8012 + }, + { + "start": 2202.01, + "end": 2203.45, + "probability": 0.5423 + }, + { + "start": 2203.53, + "end": 2204.87, + "probability": 0.8308 + }, + { + "start": 2204.95, + "end": 2206.81, + "probability": 0.8257 + }, + { + "start": 2207.01, + "end": 2209.63, + "probability": 0.9635 + }, + { + "start": 2209.95, + "end": 2210.09, + "probability": 0.3866 + }, + { + "start": 2210.19, + "end": 2210.47, + "probability": 0.8651 + }, + { + "start": 2210.55, + "end": 2212.37, + "probability": 0.9318 + }, + { + "start": 2212.73, + "end": 2213.53, + "probability": 0.8207 + }, + { + "start": 2214.07, + "end": 2216.33, + "probability": 0.9554 + }, + { + "start": 2216.57, + "end": 2218.31, + "probability": 0.7716 + }, + { + "start": 2218.67, + "end": 2219.07, + "probability": 0.5469 + }, + { + "start": 2219.09, + "end": 2219.83, + "probability": 0.7332 + }, + { + "start": 2220.09, + "end": 2222.17, + "probability": 0.9585 + }, + { + "start": 2222.83, + "end": 2224.83, + "probability": 0.9365 + }, + { + "start": 2225.95, + "end": 2228.31, + "probability": 0.9878 + }, + { + "start": 2228.31, + "end": 2230.01, + "probability": 0.8259 + }, + { + "start": 2230.07, + "end": 2231.67, + "probability": 0.6689 + }, + { + "start": 2232.65, + "end": 2233.53, + "probability": 0.5474 + }, + { + "start": 2233.85, + "end": 2234.29, + "probability": 0.6953 + }, + { + "start": 2234.33, + "end": 2235.93, + "probability": 0.5817 + }, + { + "start": 2236.93, + "end": 2239.01, + "probability": 0.9858 + }, + { + "start": 2239.11, + "end": 2240.53, + "probability": 0.8024 + }, + { + "start": 2240.83, + "end": 2243.03, + "probability": 0.9564 + }, + { + "start": 2243.91, + "end": 2244.37, + "probability": 0.3226 + }, + { + "start": 2244.39, + "end": 2246.07, + "probability": 0.6089 + }, + { + "start": 2246.09, + "end": 2246.29, + "probability": 0.7098 + }, + { + "start": 2255.83, + "end": 2257.15, + "probability": 0.5394 + }, + { + "start": 2257.26, + "end": 2258.45, + "probability": 0.5157 + }, + { + "start": 2258.71, + "end": 2263.43, + "probability": 0.836 + }, + { + "start": 2263.91, + "end": 2265.07, + "probability": 0.9076 + }, + { + "start": 2265.41, + "end": 2273.51, + "probability": 0.9556 + }, + { + "start": 2274.75, + "end": 2282.73, + "probability": 0.9429 + }, + { + "start": 2282.73, + "end": 2289.73, + "probability": 0.9924 + }, + { + "start": 2290.47, + "end": 2294.03, + "probability": 0.9933 + }, + { + "start": 2294.11, + "end": 2296.11, + "probability": 0.9039 + }, + { + "start": 2296.55, + "end": 2301.85, + "probability": 0.9985 + }, + { + "start": 2301.85, + "end": 2306.41, + "probability": 0.9994 + }, + { + "start": 2307.83, + "end": 2308.71, + "probability": 0.5084 + }, + { + "start": 2309.83, + "end": 2311.37, + "probability": 0.9574 + }, + { + "start": 2311.45, + "end": 2312.63, + "probability": 0.9169 + }, + { + "start": 2312.83, + "end": 2315.87, + "probability": 0.994 + }, + { + "start": 2316.01, + "end": 2316.91, + "probability": 0.9097 + }, + { + "start": 2317.51, + "end": 2319.31, + "probability": 0.9991 + }, + { + "start": 2319.63, + "end": 2320.62, + "probability": 0.9917 + }, + { + "start": 2321.67, + "end": 2323.63, + "probability": 0.8857 + }, + { + "start": 2324.71, + "end": 2328.73, + "probability": 0.9561 + }, + { + "start": 2328.91, + "end": 2332.57, + "probability": 0.8565 + }, + { + "start": 2333.35, + "end": 2338.07, + "probability": 0.9799 + }, + { + "start": 2338.19, + "end": 2339.11, + "probability": 0.7756 + }, + { + "start": 2339.21, + "end": 2341.23, + "probability": 0.9534 + }, + { + "start": 2342.31, + "end": 2343.85, + "probability": 0.9961 + }, + { + "start": 2344.47, + "end": 2349.53, + "probability": 0.666 + }, + { + "start": 2349.53, + "end": 2353.95, + "probability": 0.9876 + }, + { + "start": 2354.03, + "end": 2354.13, + "probability": 0.1692 + }, + { + "start": 2354.29, + "end": 2359.39, + "probability": 0.9873 + }, + { + "start": 2360.19, + "end": 2361.25, + "probability": 0.8152 + }, + { + "start": 2362.21, + "end": 2363.21, + "probability": 0.9041 + }, + { + "start": 2363.89, + "end": 2364.83, + "probability": 0.976 + }, + { + "start": 2365.35, + "end": 2366.23, + "probability": 0.8753 + }, + { + "start": 2366.85, + "end": 2368.19, + "probability": 0.9287 + }, + { + "start": 2368.35, + "end": 2372.15, + "probability": 0.9916 + }, + { + "start": 2372.63, + "end": 2376.01, + "probability": 0.9399 + }, + { + "start": 2376.25, + "end": 2379.19, + "probability": 0.8888 + }, + { + "start": 2379.51, + "end": 2381.85, + "probability": 0.9158 + }, + { + "start": 2382.79, + "end": 2383.81, + "probability": 0.7491 + }, + { + "start": 2384.49, + "end": 2386.29, + "probability": 0.9564 + }, + { + "start": 2386.73, + "end": 2389.61, + "probability": 0.6786 + }, + { + "start": 2390.07, + "end": 2393.03, + "probability": 0.9697 + }, + { + "start": 2393.47, + "end": 2395.32, + "probability": 0.9868 + }, + { + "start": 2395.85, + "end": 2401.67, + "probability": 0.9722 + }, + { + "start": 2401.79, + "end": 2405.29, + "probability": 0.9852 + }, + { + "start": 2405.33, + "end": 2406.51, + "probability": 0.7552 + }, + { + "start": 2406.53, + "end": 2406.79, + "probability": 0.8521 + }, + { + "start": 2406.87, + "end": 2407.19, + "probability": 0.7935 + }, + { + "start": 2407.33, + "end": 2407.65, + "probability": 0.3261 + }, + { + "start": 2408.91, + "end": 2410.49, + "probability": 0.833 + }, + { + "start": 2411.81, + "end": 2412.91, + "probability": 0.6786 + }, + { + "start": 2414.23, + "end": 2415.81, + "probability": 0.8721 + }, + { + "start": 2416.33, + "end": 2419.09, + "probability": 0.7476 + }, + { + "start": 2419.09, + "end": 2422.27, + "probability": 0.617 + }, + { + "start": 2422.47, + "end": 2424.91, + "probability": 0.997 + }, + { + "start": 2425.25, + "end": 2425.79, + "probability": 0.4393 + }, + { + "start": 2425.89, + "end": 2427.29, + "probability": 0.6008 + }, + { + "start": 2427.75, + "end": 2428.05, + "probability": 0.887 + }, + { + "start": 2428.09, + "end": 2428.29, + "probability": 0.8735 + }, + { + "start": 2448.41, + "end": 2449.11, + "probability": 0.5387 + }, + { + "start": 2450.31, + "end": 2451.83, + "probability": 0.6567 + }, + { + "start": 2452.01, + "end": 2454.97, + "probability": 0.8654 + }, + { + "start": 2456.01, + "end": 2457.73, + "probability": 0.8342 + }, + { + "start": 2458.69, + "end": 2460.75, + "probability": 0.8322 + }, + { + "start": 2461.41, + "end": 2463.01, + "probability": 0.974 + }, + { + "start": 2463.07, + "end": 2465.55, + "probability": 0.9492 + }, + { + "start": 2466.71, + "end": 2471.91, + "probability": 0.9285 + }, + { + "start": 2472.39, + "end": 2473.49, + "probability": 0.5207 + }, + { + "start": 2474.13, + "end": 2477.19, + "probability": 0.907 + }, + { + "start": 2477.27, + "end": 2480.67, + "probability": 0.998 + }, + { + "start": 2480.67, + "end": 2483.17, + "probability": 0.8675 + }, + { + "start": 2483.23, + "end": 2484.29, + "probability": 0.8511 + }, + { + "start": 2485.29, + "end": 2489.65, + "probability": 0.7517 + }, + { + "start": 2489.65, + "end": 2492.35, + "probability": 0.9567 + }, + { + "start": 2493.05, + "end": 2495.93, + "probability": 0.9977 + }, + { + "start": 2496.07, + "end": 2497.61, + "probability": 0.4917 + }, + { + "start": 2497.61, + "end": 2499.59, + "probability": 0.8089 + }, + { + "start": 2499.75, + "end": 2502.79, + "probability": 0.9862 + }, + { + "start": 2503.47, + "end": 2505.11, + "probability": 0.9598 + }, + { + "start": 2505.23, + "end": 2508.25, + "probability": 0.9221 + }, + { + "start": 2508.45, + "end": 2508.93, + "probability": 0.6817 + }, + { + "start": 2509.83, + "end": 2511.37, + "probability": 0.6701 + }, + { + "start": 2511.87, + "end": 2513.79, + "probability": 0.6962 + }, + { + "start": 2513.85, + "end": 2516.27, + "probability": 0.897 + }, + { + "start": 2516.51, + "end": 2520.49, + "probability": 0.8486 + }, + { + "start": 2521.21, + "end": 2522.13, + "probability": 0.6484 + }, + { + "start": 2522.39, + "end": 2525.23, + "probability": 0.9735 + }, + { + "start": 2525.95, + "end": 2528.47, + "probability": 0.9634 + }, + { + "start": 2528.75, + "end": 2530.11, + "probability": 0.6206 + }, + { + "start": 2530.33, + "end": 2532.65, + "probability": 0.7061 + }, + { + "start": 2533.17, + "end": 2533.65, + "probability": 0.8326 + }, + { + "start": 2535.03, + "end": 2535.65, + "probability": 0.7795 + }, + { + "start": 2535.81, + "end": 2536.05, + "probability": 0.6906 + }, + { + "start": 2536.11, + "end": 2539.01, + "probability": 0.9816 + }, + { + "start": 2539.09, + "end": 2542.87, + "probability": 0.9126 + }, + { + "start": 2542.87, + "end": 2544.93, + "probability": 0.7968 + }, + { + "start": 2546.09, + "end": 2549.01, + "probability": 0.9944 + }, + { + "start": 2549.01, + "end": 2551.87, + "probability": 0.9121 + }, + { + "start": 2552.89, + "end": 2556.47, + "probability": 0.9629 + }, + { + "start": 2557.23, + "end": 2559.21, + "probability": 0.9746 + }, + { + "start": 2560.01, + "end": 2563.71, + "probability": 0.9896 + }, + { + "start": 2565.13, + "end": 2566.23, + "probability": 0.6847 + }, + { + "start": 2566.35, + "end": 2569.77, + "probability": 0.8699 + }, + { + "start": 2569.77, + "end": 2573.73, + "probability": 0.8527 + }, + { + "start": 2573.79, + "end": 2581.17, + "probability": 0.8977 + }, + { + "start": 2581.17, + "end": 2585.93, + "probability": 0.9642 + }, + { + "start": 2586.07, + "end": 2587.27, + "probability": 0.7411 + }, + { + "start": 2587.33, + "end": 2589.47, + "probability": 0.9902 + }, + { + "start": 2589.89, + "end": 2591.89, + "probability": 0.9044 + }, + { + "start": 2593.73, + "end": 2597.25, + "probability": 0.9061 + }, + { + "start": 2598.55, + "end": 2601.09, + "probability": 0.2406 + }, + { + "start": 2601.91, + "end": 2603.11, + "probability": 0.9508 + }, + { + "start": 2603.61, + "end": 2606.75, + "probability": 0.9955 + }, + { + "start": 2607.21, + "end": 2610.52, + "probability": 0.915 + }, + { + "start": 2611.09, + "end": 2611.19, + "probability": 0.6509 + }, + { + "start": 2611.27, + "end": 2611.59, + "probability": 0.9067 + }, + { + "start": 2611.61, + "end": 2613.23, + "probability": 0.9897 + }, + { + "start": 2613.23, + "end": 2616.49, + "probability": 0.9948 + }, + { + "start": 2618.15, + "end": 2618.15, + "probability": 0.0036 + }, + { + "start": 2618.17, + "end": 2619.01, + "probability": 0.6947 + }, + { + "start": 2620.01, + "end": 2622.53, + "probability": 0.9943 + }, + { + "start": 2622.53, + "end": 2625.41, + "probability": 0.9828 + }, + { + "start": 2626.07, + "end": 2628.87, + "probability": 0.8521 + }, + { + "start": 2629.97, + "end": 2630.07, + "probability": 0.0077 + }, + { + "start": 2630.31, + "end": 2630.75, + "probability": 0.8082 + }, + { + "start": 2631.81, + "end": 2633.89, + "probability": 0.9948 + }, + { + "start": 2633.89, + "end": 2635.83, + "probability": 0.857 + }, + { + "start": 2637.21, + "end": 2637.49, + "probability": 0.0236 + }, + { + "start": 2637.99, + "end": 2639.27, + "probability": 0.9207 + }, + { + "start": 2639.49, + "end": 2641.19, + "probability": 0.9568 + }, + { + "start": 2641.33, + "end": 2643.23, + "probability": 0.9913 + }, + { + "start": 2643.83, + "end": 2646.47, + "probability": 0.8686 + }, + { + "start": 2648.27, + "end": 2648.27, + "probability": 0.0022 + }, + { + "start": 2648.27, + "end": 2651.37, + "probability": 0.9451 + }, + { + "start": 2651.37, + "end": 2653.97, + "probability": 0.9401 + }, + { + "start": 2654.59, + "end": 2657.71, + "probability": 0.8139 + }, + { + "start": 2657.79, + "end": 2657.93, + "probability": 0.0148 + }, + { + "start": 2659.29, + "end": 2662.25, + "probability": 0.8828 + }, + { + "start": 2662.31, + "end": 2664.33, + "probability": 0.9136 + }, + { + "start": 2664.41, + "end": 2667.15, + "probability": 0.7972 + }, + { + "start": 2668.63, + "end": 2668.75, + "probability": 0.0026 + }, + { + "start": 2668.75, + "end": 2673.77, + "probability": 0.9409 + }, + { + "start": 2673.91, + "end": 2676.73, + "probability": 0.6609 + }, + { + "start": 2676.99, + "end": 2680.63, + "probability": 0.665 + }, + { + "start": 2682.75, + "end": 2687.73, + "probability": 0.9319 + }, + { + "start": 2688.53, + "end": 2689.07, + "probability": 0.3714 + }, + { + "start": 2689.09, + "end": 2690.53, + "probability": 0.4666 + }, + { + "start": 2691.27, + "end": 2692.09, + "probability": 0.4835 + }, + { + "start": 2693.39, + "end": 2693.47, + "probability": 0.0043 + }, + { + "start": 2693.47, + "end": 2695.43, + "probability": 0.6716 + }, + { + "start": 2695.43, + "end": 2697.95, + "probability": 0.938 + }, + { + "start": 2699.11, + "end": 2702.61, + "probability": 0.9165 + }, + { + "start": 2702.91, + "end": 2703.7, + "probability": 0.9666 + }, + { + "start": 2703.99, + "end": 2706.99, + "probability": 0.878 + }, + { + "start": 2707.95, + "end": 2710.93, + "probability": 0.8758 + }, + { + "start": 2711.99, + "end": 2714.81, + "probability": 0.7883 + }, + { + "start": 2715.21, + "end": 2717.11, + "probability": 0.8365 + }, + { + "start": 2717.89, + "end": 2721.73, + "probability": 0.988 + }, + { + "start": 2722.75, + "end": 2725.23, + "probability": 0.7834 + }, + { + "start": 2725.85, + "end": 2726.21, + "probability": 0.8494 + }, + { + "start": 2727.25, + "end": 2728.21, + "probability": 0.429 + }, + { + "start": 2728.29, + "end": 2730.13, + "probability": 0.7292 + }, + { + "start": 2735.55, + "end": 2736.14, + "probability": 0.703 + }, + { + "start": 2736.81, + "end": 2740.49, + "probability": 0.8993 + }, + { + "start": 2740.49, + "end": 2744.97, + "probability": 0.8469 + }, + { + "start": 2745.11, + "end": 2745.43, + "probability": 0.7404 + }, + { + "start": 2745.45, + "end": 2748.49, + "probability": 0.9706 + }, + { + "start": 2749.29, + "end": 2752.15, + "probability": 0.9549 + }, + { + "start": 2752.33, + "end": 2755.75, + "probability": 0.9062 + }, + { + "start": 2756.39, + "end": 2757.42, + "probability": 0.8983 + }, + { + "start": 2758.23, + "end": 2763.19, + "probability": 0.9786 + }, + { + "start": 2763.51, + "end": 2764.67, + "probability": 0.994 + }, + { + "start": 2765.69, + "end": 2766.63, + "probability": 0.9155 + }, + { + "start": 2766.99, + "end": 2767.37, + "probability": 0.9208 + }, + { + "start": 2767.45, + "end": 2770.23, + "probability": 0.9667 + }, + { + "start": 2770.99, + "end": 2771.93, + "probability": 0.1202 + }, + { + "start": 2771.93, + "end": 2773.83, + "probability": 0.2877 + }, + { + "start": 2773.94, + "end": 2774.78, + "probability": 0.793 + }, + { + "start": 2774.97, + "end": 2775.97, + "probability": 0.7341 + }, + { + "start": 2776.59, + "end": 2779.39, + "probability": 0.9329 + }, + { + "start": 2779.39, + "end": 2780.21, + "probability": 0.7006 + }, + { + "start": 2781.72, + "end": 2784.21, + "probability": 0.9109 + }, + { + "start": 2785.74, + "end": 2788.77, + "probability": 0.9828 + }, + { + "start": 2788.95, + "end": 2790.57, + "probability": 0.9634 + }, + { + "start": 2791.15, + "end": 2795.37, + "probability": 0.9653 + }, + { + "start": 2795.37, + "end": 2798.65, + "probability": 0.991 + }, + { + "start": 2798.67, + "end": 2799.35, + "probability": 0.7015 + }, + { + "start": 2799.37, + "end": 2801.17, + "probability": 0.7546 + }, + { + "start": 2801.51, + "end": 2803.35, + "probability": 0.9406 + }, + { + "start": 2804.79, + "end": 2806.75, + "probability": 0.8132 + }, + { + "start": 2806.99, + "end": 2810.33, + "probability": 0.9312 + }, + { + "start": 2810.33, + "end": 2812.75, + "probability": 0.7461 + }, + { + "start": 2813.57, + "end": 2813.71, + "probability": 0.5244 + }, + { + "start": 2813.71, + "end": 2817.99, + "probability": 0.7876 + }, + { + "start": 2819.11, + "end": 2820.45, + "probability": 0.5877 + }, + { + "start": 2820.83, + "end": 2821.27, + "probability": 0.6112 + }, + { + "start": 2821.39, + "end": 2821.97, + "probability": 0.7414 + }, + { + "start": 2822.05, + "end": 2822.51, + "probability": 0.8487 + }, + { + "start": 2822.53, + "end": 2823.19, + "probability": 0.8422 + }, + { + "start": 2823.31, + "end": 2825.65, + "probability": 0.9658 + }, + { + "start": 2825.77, + "end": 2828.97, + "probability": 0.8774 + }, + { + "start": 2828.97, + "end": 2832.13, + "probability": 0.9711 + }, + { + "start": 2832.21, + "end": 2834.51, + "probability": 0.91 + }, + { + "start": 2834.51, + "end": 2837.19, + "probability": 0.8501 + }, + { + "start": 2837.51, + "end": 2840.09, + "probability": 0.9572 + }, + { + "start": 2840.13, + "end": 2840.94, + "probability": 0.9702 + }, + { + "start": 2841.33, + "end": 2843.77, + "probability": 0.9181 + }, + { + "start": 2843.99, + "end": 2844.47, + "probability": 0.5739 + }, + { + "start": 2844.69, + "end": 2846.65, + "probability": 0.4786 + }, + { + "start": 2847.51, + "end": 2849.35, + "probability": 0.6397 + }, + { + "start": 2849.41, + "end": 2851.49, + "probability": 0.8408 + }, + { + "start": 2851.87, + "end": 2852.65, + "probability": 0.6833 + }, + { + "start": 2852.73, + "end": 2858.91, + "probability": 0.947 + }, + { + "start": 2877.07, + "end": 2877.55, + "probability": 0.5114 + }, + { + "start": 2878.15, + "end": 2879.04, + "probability": 0.7079 + }, + { + "start": 2879.97, + "end": 2885.39, + "probability": 0.9484 + }, + { + "start": 2885.39, + "end": 2891.41, + "probability": 0.9742 + }, + { + "start": 2891.55, + "end": 2892.17, + "probability": 0.4458 + }, + { + "start": 2893.11, + "end": 2898.69, + "probability": 0.9648 + }, + { + "start": 2898.69, + "end": 2904.29, + "probability": 0.9848 + }, + { + "start": 2904.79, + "end": 2905.39, + "probability": 0.637 + }, + { + "start": 2906.55, + "end": 2911.99, + "probability": 0.3956 + }, + { + "start": 2912.47, + "end": 2913.27, + "probability": 0.2678 + }, + { + "start": 2913.47, + "end": 2915.07, + "probability": 0.8641 + }, + { + "start": 2917.11, + "end": 2920.11, + "probability": 0.8145 + }, + { + "start": 2922.77, + "end": 2925.67, + "probability": 0.9806 + }, + { + "start": 2926.35, + "end": 2927.77, + "probability": 0.9917 + }, + { + "start": 2928.33, + "end": 2929.77, + "probability": 0.9822 + }, + { + "start": 2930.07, + "end": 2936.89, + "probability": 0.9967 + }, + { + "start": 2938.07, + "end": 2941.27, + "probability": 0.9972 + }, + { + "start": 2942.25, + "end": 2947.27, + "probability": 0.8904 + }, + { + "start": 2948.19, + "end": 2953.57, + "probability": 0.989 + }, + { + "start": 2953.57, + "end": 2958.11, + "probability": 0.999 + }, + { + "start": 2958.71, + "end": 2961.81, + "probability": 0.8516 + }, + { + "start": 2962.39, + "end": 2965.41, + "probability": 0.9062 + }, + { + "start": 2966.01, + "end": 2969.07, + "probability": 0.9774 + }, + { + "start": 2970.03, + "end": 2970.69, + "probability": 0.9502 + }, + { + "start": 2971.13, + "end": 2977.39, + "probability": 0.9097 + }, + { + "start": 2977.54, + "end": 2983.39, + "probability": 0.9937 + }, + { + "start": 2984.91, + "end": 2986.05, + "probability": 0.7804 + }, + { + "start": 2986.43, + "end": 2990.67, + "probability": 0.8798 + }, + { + "start": 2990.83, + "end": 2993.19, + "probability": 0.8762 + }, + { + "start": 2995.37, + "end": 2997.47, + "probability": 0.6732 + }, + { + "start": 2998.49, + "end": 3002.47, + "probability": 0.9868 + }, + { + "start": 3003.31, + "end": 3005.17, + "probability": 0.6854 + }, + { + "start": 3005.29, + "end": 3011.87, + "probability": 0.9583 + }, + { + "start": 3011.87, + "end": 3018.09, + "probability": 0.9894 + }, + { + "start": 3019.29, + "end": 3025.29, + "probability": 0.8795 + }, + { + "start": 3025.29, + "end": 3031.13, + "probability": 0.868 + }, + { + "start": 3031.17, + "end": 3033.13, + "probability": 0.948 + }, + { + "start": 3033.65, + "end": 3038.17, + "probability": 0.981 + }, + { + "start": 3038.17, + "end": 3045.07, + "probability": 0.9968 + }, + { + "start": 3045.87, + "end": 3047.13, + "probability": 0.2705 + }, + { + "start": 3047.37, + "end": 3049.01, + "probability": 0.8973 + }, + { + "start": 3049.41, + "end": 3051.27, + "probability": 0.9151 + }, + { + "start": 3051.71, + "end": 3055.55, + "probability": 0.9959 + }, + { + "start": 3056.25, + "end": 3058.29, + "probability": 0.9868 + }, + { + "start": 3059.47, + "end": 3059.71, + "probability": 0.3256 + }, + { + "start": 3059.73, + "end": 3060.03, + "probability": 0.8459 + }, + { + "start": 3064.93, + "end": 3066.53, + "probability": 0.8489 + }, + { + "start": 3066.61, + "end": 3067.47, + "probability": 0.6197 + }, + { + "start": 3067.55, + "end": 3071.15, + "probability": 0.9939 + }, + { + "start": 3072.03, + "end": 3074.35, + "probability": 0.8941 + }, + { + "start": 3074.39, + "end": 3077.35, + "probability": 0.9814 + }, + { + "start": 3077.71, + "end": 3085.41, + "probability": 0.8525 + }, + { + "start": 3085.75, + "end": 3089.39, + "probability": 0.9879 + }, + { + "start": 3089.93, + "end": 3093.49, + "probability": 0.8638 + }, + { + "start": 3094.21, + "end": 3099.99, + "probability": 0.8735 + }, + { + "start": 3100.41, + "end": 3101.73, + "probability": 0.981 + }, + { + "start": 3101.75, + "end": 3103.87, + "probability": 0.9982 + }, + { + "start": 3104.01, + "end": 3106.95, + "probability": 0.9888 + }, + { + "start": 3106.97, + "end": 3110.65, + "probability": 0.9146 + }, + { + "start": 3110.65, + "end": 3115.05, + "probability": 0.9882 + }, + { + "start": 3115.49, + "end": 3116.53, + "probability": 0.8768 + }, + { + "start": 3116.69, + "end": 3121.13, + "probability": 0.9837 + }, + { + "start": 3121.31, + "end": 3125.95, + "probability": 0.9519 + }, + { + "start": 3126.57, + "end": 3130.83, + "probability": 0.988 + }, + { + "start": 3130.83, + "end": 3135.21, + "probability": 0.9804 + }, + { + "start": 3135.61, + "end": 3139.79, + "probability": 0.9902 + }, + { + "start": 3140.05, + "end": 3144.33, + "probability": 0.9027 + }, + { + "start": 3144.65, + "end": 3148.53, + "probability": 0.7342 + }, + { + "start": 3148.83, + "end": 3149.39, + "probability": 0.5837 + }, + { + "start": 3149.83, + "end": 3155.11, + "probability": 0.9985 + }, + { + "start": 3155.35, + "end": 3158.25, + "probability": 0.9958 + }, + { + "start": 3158.81, + "end": 3163.09, + "probability": 0.9857 + }, + { + "start": 3163.63, + "end": 3165.13, + "probability": 0.686 + }, + { + "start": 3165.21, + "end": 3166.67, + "probability": 0.967 + }, + { + "start": 3167.13, + "end": 3168.89, + "probability": 0.9767 + }, + { + "start": 3169.01, + "end": 3172.35, + "probability": 0.9965 + }, + { + "start": 3172.35, + "end": 3175.69, + "probability": 0.8857 + }, + { + "start": 3177.07, + "end": 3178.83, + "probability": 0.9945 + }, + { + "start": 3179.31, + "end": 3180.03, + "probability": 0.8997 + }, + { + "start": 3180.27, + "end": 3181.55, + "probability": 0.9894 + }, + { + "start": 3181.63, + "end": 3182.63, + "probability": 0.8199 + }, + { + "start": 3183.31, + "end": 3183.67, + "probability": 0.3602 + }, + { + "start": 3183.71, + "end": 3187.05, + "probability": 0.9832 + }, + { + "start": 3187.05, + "end": 3190.41, + "probability": 0.563 + }, + { + "start": 3190.51, + "end": 3194.57, + "probability": 0.9847 + }, + { + "start": 3195.09, + "end": 3195.91, + "probability": 0.674 + }, + { + "start": 3196.51, + "end": 3200.03, + "probability": 0.8677 + }, + { + "start": 3200.03, + "end": 3202.01, + "probability": 0.8087 + }, + { + "start": 3202.59, + "end": 3205.21, + "probability": 0.7755 + }, + { + "start": 3205.73, + "end": 3209.91, + "probability": 0.8463 + }, + { + "start": 3210.37, + "end": 3217.35, + "probability": 0.9152 + }, + { + "start": 3217.47, + "end": 3217.83, + "probability": 0.3012 + }, + { + "start": 3217.83, + "end": 3218.73, + "probability": 0.7548 + }, + { + "start": 3218.73, + "end": 3221.5, + "probability": 0.7569 + }, + { + "start": 3222.49, + "end": 3228.11, + "probability": 0.9928 + }, + { + "start": 3228.11, + "end": 3234.17, + "probability": 0.9933 + }, + { + "start": 3235.33, + "end": 3241.31, + "probability": 0.9929 + }, + { + "start": 3241.91, + "end": 3247.43, + "probability": 0.9978 + }, + { + "start": 3248.13, + "end": 3251.19, + "probability": 0.9764 + }, + { + "start": 3252.45, + "end": 3254.03, + "probability": 0.8862 + }, + { + "start": 3254.45, + "end": 3258.59, + "probability": 0.9901 + }, + { + "start": 3259.43, + "end": 3260.85, + "probability": 0.8826 + }, + { + "start": 3261.69, + "end": 3266.49, + "probability": 0.9369 + }, + { + "start": 3267.71, + "end": 3271.85, + "probability": 0.9808 + }, + { + "start": 3272.79, + "end": 3277.63, + "probability": 0.8491 + }, + { + "start": 3278.61, + "end": 3280.67, + "probability": 0.8578 + }, + { + "start": 3281.45, + "end": 3285.45, + "probability": 0.9604 + }, + { + "start": 3286.23, + "end": 3298.01, + "probability": 0.9708 + }, + { + "start": 3298.95, + "end": 3300.81, + "probability": 0.429 + }, + { + "start": 3300.91, + "end": 3306.47, + "probability": 0.983 + }, + { + "start": 3307.19, + "end": 3313.91, + "probability": 0.9591 + }, + { + "start": 3314.51, + "end": 3316.83, + "probability": 0.9783 + }, + { + "start": 3317.43, + "end": 3323.23, + "probability": 0.9746 + }, + { + "start": 3323.73, + "end": 3324.43, + "probability": 0.6966 + }, + { + "start": 3324.51, + "end": 3325.21, + "probability": 0.4016 + }, + { + "start": 3326.03, + "end": 3332.27, + "probability": 0.9844 + }, + { + "start": 3332.27, + "end": 3335.47, + "probability": 0.9852 + }, + { + "start": 3335.49, + "end": 3335.91, + "probability": 0.3333 + }, + { + "start": 3335.99, + "end": 3336.31, + "probability": 0.8624 + }, + { + "start": 3336.31, + "end": 3338.23, + "probability": 0.8242 + }, + { + "start": 3338.79, + "end": 3347.41, + "probability": 0.292 + }, + { + "start": 3347.57, + "end": 3348.17, + "probability": 0.1877 + }, + { + "start": 3348.17, + "end": 3349.57, + "probability": 0.1915 + }, + { + "start": 3350.07, + "end": 3355.93, + "probability": 0.9915 + }, + { + "start": 3356.95, + "end": 3361.65, + "probability": 0.9959 + }, + { + "start": 3361.83, + "end": 3364.37, + "probability": 0.9038 + }, + { + "start": 3364.39, + "end": 3368.67, + "probability": 0.9714 + }, + { + "start": 3368.95, + "end": 3370.16, + "probability": 0.9854 + }, + { + "start": 3371.43, + "end": 3375.31, + "probability": 0.9649 + }, + { + "start": 3375.31, + "end": 3381.15, + "probability": 0.986 + }, + { + "start": 3381.81, + "end": 3386.93, + "probability": 0.9561 + }, + { + "start": 3387.71, + "end": 3390.85, + "probability": 0.9911 + }, + { + "start": 3390.95, + "end": 3392.77, + "probability": 0.8146 + }, + { + "start": 3393.25, + "end": 3396.03, + "probability": 0.8275 + }, + { + "start": 3396.45, + "end": 3397.9, + "probability": 0.9632 + }, + { + "start": 3398.57, + "end": 3400.07, + "probability": 0.9279 + }, + { + "start": 3400.39, + "end": 3404.49, + "probability": 0.9333 + }, + { + "start": 3404.95, + "end": 3410.25, + "probability": 0.9834 + }, + { + "start": 3410.53, + "end": 3412.75, + "probability": 0.6793 + }, + { + "start": 3412.79, + "end": 3416.83, + "probability": 0.7405 + }, + { + "start": 3417.63, + "end": 3423.77, + "probability": 0.6515 + }, + { + "start": 3423.99, + "end": 3428.17, + "probability": 0.6577 + }, + { + "start": 3429.81, + "end": 3435.33, + "probability": 0.8103 + }, + { + "start": 3435.51, + "end": 3436.9, + "probability": 0.8941 + }, + { + "start": 3437.58, + "end": 3440.39, + "probability": 0.8079 + }, + { + "start": 3440.51, + "end": 3444.09, + "probability": 0.9555 + }, + { + "start": 3447.11, + "end": 3454.67, + "probability": 0.9957 + }, + { + "start": 3455.59, + "end": 3461.01, + "probability": 0.981 + }, + { + "start": 3461.01, + "end": 3464.53, + "probability": 0.9958 + }, + { + "start": 3464.69, + "end": 3468.01, + "probability": 0.8057 + }, + { + "start": 3468.43, + "end": 3474.65, + "probability": 0.9736 + }, + { + "start": 3475.19, + "end": 3477.71, + "probability": 0.8399 + }, + { + "start": 3478.43, + "end": 3479.79, + "probability": 0.9612 + }, + { + "start": 3480.45, + "end": 3485.93, + "probability": 0.9963 + }, + { + "start": 3486.15, + "end": 3486.79, + "probability": 0.9514 + }, + { + "start": 3487.71, + "end": 3490.43, + "probability": 0.9786 + }, + { + "start": 3490.99, + "end": 3492.65, + "probability": 0.9604 + }, + { + "start": 3493.55, + "end": 3495.87, + "probability": 0.8075 + }, + { + "start": 3496.01, + "end": 3499.55, + "probability": 0.9776 + }, + { + "start": 3500.69, + "end": 3501.97, + "probability": 0.7663 + }, + { + "start": 3502.79, + "end": 3504.85, + "probability": 0.8011 + }, + { + "start": 3505.51, + "end": 3515.65, + "probability": 0.9814 + }, + { + "start": 3515.77, + "end": 3517.77, + "probability": 0.7878 + }, + { + "start": 3518.09, + "end": 3520.09, + "probability": 0.9325 + }, + { + "start": 3521.15, + "end": 3522.77, + "probability": 0.6437 + }, + { + "start": 3523.27, + "end": 3527.07, + "probability": 0.6903 + }, + { + "start": 3527.37, + "end": 3529.73, + "probability": 0.8723 + }, + { + "start": 3530.71, + "end": 3533.0, + "probability": 0.9814 + }, + { + "start": 3533.15, + "end": 3538.41, + "probability": 0.9681 + }, + { + "start": 3538.61, + "end": 3540.19, + "probability": 0.9012 + }, + { + "start": 3540.71, + "end": 3544.79, + "probability": 0.9408 + }, + { + "start": 3544.79, + "end": 3548.55, + "probability": 0.7276 + }, + { + "start": 3549.27, + "end": 3552.63, + "probability": 0.9863 + }, + { + "start": 3552.95, + "end": 3555.67, + "probability": 0.998 + }, + { + "start": 3556.03, + "end": 3558.75, + "probability": 0.9022 + }, + { + "start": 3559.17, + "end": 3562.95, + "probability": 0.9957 + }, + { + "start": 3562.95, + "end": 3567.57, + "probability": 0.9878 + }, + { + "start": 3568.05, + "end": 3569.93, + "probability": 0.7296 + }, + { + "start": 3570.05, + "end": 3573.65, + "probability": 0.8993 + }, + { + "start": 3573.73, + "end": 3575.58, + "probability": 0.8795 + }, + { + "start": 3576.33, + "end": 3579.17, + "probability": 0.9137 + }, + { + "start": 3579.57, + "end": 3581.89, + "probability": 0.984 + }, + { + "start": 3582.01, + "end": 3584.73, + "probability": 0.9017 + }, + { + "start": 3584.85, + "end": 3585.75, + "probability": 0.9573 + }, + { + "start": 3585.81, + "end": 3590.45, + "probability": 0.9892 + }, + { + "start": 3590.53, + "end": 3591.39, + "probability": 0.448 + }, + { + "start": 3591.67, + "end": 3591.91, + "probability": 0.7061 + }, + { + "start": 3592.05, + "end": 3592.39, + "probability": 0.7529 + }, + { + "start": 3593.07, + "end": 3593.79, + "probability": 0.6458 + }, + { + "start": 3593.89, + "end": 3595.33, + "probability": 0.9353 + }, + { + "start": 3595.43, + "end": 3598.05, + "probability": 0.9451 + }, + { + "start": 3599.53, + "end": 3603.05, + "probability": 0.9712 + }, + { + "start": 3603.83, + "end": 3604.89, + "probability": 0.979 + }, + { + "start": 3605.49, + "end": 3606.42, + "probability": 0.967 + }, + { + "start": 3607.57, + "end": 3610.99, + "probability": 0.9929 + }, + { + "start": 3611.57, + "end": 3616.23, + "probability": 0.7726 + }, + { + "start": 3616.77, + "end": 3618.36, + "probability": 0.9847 + }, + { + "start": 3619.23, + "end": 3625.05, + "probability": 0.9856 + }, + { + "start": 3627.75, + "end": 3630.57, + "probability": 0.5746 + }, + { + "start": 3635.87, + "end": 3637.67, + "probability": 0.7221 + }, + { + "start": 3638.15, + "end": 3641.39, + "probability": 0.8246 + }, + { + "start": 3641.47, + "end": 3642.99, + "probability": 0.7923 + }, + { + "start": 3643.37, + "end": 3645.75, + "probability": 0.9874 + }, + { + "start": 3646.05, + "end": 3648.67, + "probability": 0.9614 + }, + { + "start": 3648.75, + "end": 3650.93, + "probability": 0.8931 + }, + { + "start": 3651.69, + "end": 3652.49, + "probability": 0.7207 + }, + { + "start": 3654.45, + "end": 3660.17, + "probability": 0.8273 + }, + { + "start": 3662.01, + "end": 3662.79, + "probability": 0.9297 + }, + { + "start": 3665.57, + "end": 3672.73, + "probability": 0.9967 + }, + { + "start": 3674.65, + "end": 3679.25, + "probability": 0.9426 + }, + { + "start": 3679.25, + "end": 3684.51, + "probability": 0.9991 + }, + { + "start": 3684.67, + "end": 3687.03, + "probability": 0.4689 + }, + { + "start": 3687.81, + "end": 3693.07, + "probability": 0.8289 + }, + { + "start": 3693.61, + "end": 3697.37, + "probability": 0.9213 + }, + { + "start": 3697.95, + "end": 3700.41, + "probability": 0.9558 + }, + { + "start": 3701.29, + "end": 3702.37, + "probability": 0.8398 + }, + { + "start": 3702.91, + "end": 3704.31, + "probability": 0.9722 + }, + { + "start": 3706.07, + "end": 3710.09, + "probability": 0.9099 + }, + { + "start": 3711.15, + "end": 3712.07, + "probability": 0.9425 + }, + { + "start": 3712.75, + "end": 3713.85, + "probability": 0.948 + }, + { + "start": 3716.47, + "end": 3719.95, + "probability": 0.8167 + }, + { + "start": 3720.07, + "end": 3722.35, + "probability": 0.9803 + }, + { + "start": 3722.49, + "end": 3723.1, + "probability": 0.9805 + }, + { + "start": 3723.27, + "end": 3726.09, + "probability": 0.9424 + }, + { + "start": 3726.09, + "end": 3728.19, + "probability": 0.9919 + }, + { + "start": 3728.31, + "end": 3728.95, + "probability": 0.7008 + }, + { + "start": 3729.11, + "end": 3730.25, + "probability": 0.9857 + }, + { + "start": 3730.33, + "end": 3731.93, + "probability": 0.7618 + }, + { + "start": 3732.75, + "end": 3734.89, + "probability": 0.3838 + }, + { + "start": 3735.33, + "end": 3736.27, + "probability": 0.6031 + }, + { + "start": 3736.39, + "end": 3736.95, + "probability": 0.8761 + }, + { + "start": 3737.09, + "end": 3737.67, + "probability": 0.744 + }, + { + "start": 3737.73, + "end": 3740.07, + "probability": 0.5973 + }, + { + "start": 3741.17, + "end": 3742.71, + "probability": 0.4995 + }, + { + "start": 3742.95, + "end": 3744.29, + "probability": 0.8613 + }, + { + "start": 3744.75, + "end": 3746.05, + "probability": 0.7992 + }, + { + "start": 3746.77, + "end": 3749.45, + "probability": 0.9372 + }, + { + "start": 3749.53, + "end": 3750.97, + "probability": 0.7484 + }, + { + "start": 3751.95, + "end": 3752.85, + "probability": 0.8809 + }, + { + "start": 3753.31, + "end": 3754.99, + "probability": 0.8726 + }, + { + "start": 3755.03, + "end": 3757.03, + "probability": 0.8529 + }, + { + "start": 3757.15, + "end": 3757.91, + "probability": 0.6458 + }, + { + "start": 3759.47, + "end": 3763.83, + "probability": 0.9787 + }, + { + "start": 3764.41, + "end": 3768.26, + "probability": 0.9775 + }, + { + "start": 3769.19, + "end": 3770.57, + "probability": 0.9872 + }, + { + "start": 3771.21, + "end": 3773.05, + "probability": 0.8901 + }, + { + "start": 3773.91, + "end": 3779.65, + "probability": 0.8556 + }, + { + "start": 3779.65, + "end": 3783.91, + "probability": 0.9926 + }, + { + "start": 3785.41, + "end": 3789.05, + "probability": 0.9678 + }, + { + "start": 3791.31, + "end": 3794.53, + "probability": 0.6665 + }, + { + "start": 3796.27, + "end": 3799.49, + "probability": 0.7139 + }, + { + "start": 3800.53, + "end": 3804.03, + "probability": 0.9967 + }, + { + "start": 3804.99, + "end": 3809.99, + "probability": 0.9657 + }, + { + "start": 3810.95, + "end": 3818.03, + "probability": 0.8252 + }, + { + "start": 3818.29, + "end": 3821.15, + "probability": 0.8162 + }, + { + "start": 3821.19, + "end": 3825.29, + "probability": 0.9709 + }, + { + "start": 3825.51, + "end": 3827.73, + "probability": 0.9963 + }, + { + "start": 3827.89, + "end": 3829.8, + "probability": 0.4716 + }, + { + "start": 3830.43, + "end": 3833.21, + "probability": 0.489 + }, + { + "start": 3833.21, + "end": 3833.83, + "probability": 0.0601 + }, + { + "start": 3834.11, + "end": 3838.95, + "probability": 0.8159 + }, + { + "start": 3839.61, + "end": 3843.81, + "probability": 0.9193 + }, + { + "start": 3844.63, + "end": 3846.21, + "probability": 0.9012 + }, + { + "start": 3847.25, + "end": 3848.79, + "probability": 0.9262 + }, + { + "start": 3849.19, + "end": 3852.49, + "probability": 0.9802 + }, + { + "start": 3853.23, + "end": 3855.79, + "probability": 0.9621 + }, + { + "start": 3855.83, + "end": 3856.87, + "probability": 0.8832 + }, + { + "start": 3857.05, + "end": 3860.75, + "probability": 0.7971 + }, + { + "start": 3860.93, + "end": 3861.87, + "probability": 0.8657 + }, + { + "start": 3862.07, + "end": 3862.85, + "probability": 0.6545 + }, + { + "start": 3863.51, + "end": 3866.33, + "probability": 0.9697 + }, + { + "start": 3866.89, + "end": 3869.61, + "probability": 0.9679 + }, + { + "start": 3870.49, + "end": 3872.6, + "probability": 0.9352 + }, + { + "start": 3873.13, + "end": 3877.83, + "probability": 0.9853 + }, + { + "start": 3878.99, + "end": 3883.21, + "probability": 0.9938 + }, + { + "start": 3884.49, + "end": 3888.23, + "probability": 0.9988 + }, + { + "start": 3888.77, + "end": 3892.73, + "probability": 0.9886 + }, + { + "start": 3895.07, + "end": 3896.25, + "probability": 0.9069 + }, + { + "start": 3898.83, + "end": 3904.65, + "probability": 0.9958 + }, + { + "start": 3906.03, + "end": 3908.35, + "probability": 0.8767 + }, + { + "start": 3909.19, + "end": 3911.37, + "probability": 0.9652 + }, + { + "start": 3912.89, + "end": 3913.43, + "probability": 0.7111 + }, + { + "start": 3913.55, + "end": 3914.05, + "probability": 0.7301 + }, + { + "start": 3914.15, + "end": 3914.87, + "probability": 0.9733 + }, + { + "start": 3915.05, + "end": 3916.13, + "probability": 0.9484 + }, + { + "start": 3916.23, + "end": 3918.41, + "probability": 0.9454 + }, + { + "start": 3919.09, + "end": 3919.81, + "probability": 0.3515 + }, + { + "start": 3920.77, + "end": 3921.41, + "probability": 0.6434 + }, + { + "start": 3921.73, + "end": 3922.89, + "probability": 0.7552 + }, + { + "start": 3923.37, + "end": 3924.45, + "probability": 0.9332 + }, + { + "start": 3924.55, + "end": 3925.93, + "probability": 0.9644 + }, + { + "start": 3927.55, + "end": 3930.45, + "probability": 0.8259 + }, + { + "start": 3930.45, + "end": 3932.93, + "probability": 0.9893 + }, + { + "start": 3933.23, + "end": 3935.97, + "probability": 0.8091 + }, + { + "start": 3936.35, + "end": 3938.67, + "probability": 0.776 + }, + { + "start": 3940.29, + "end": 3942.75, + "probability": 0.8127 + }, + { + "start": 3943.35, + "end": 3948.61, + "probability": 0.9668 + }, + { + "start": 3949.21, + "end": 3952.89, + "probability": 0.8971 + }, + { + "start": 3953.71, + "end": 3954.25, + "probability": 0.9319 + }, + { + "start": 3956.23, + "end": 3956.55, + "probability": 0.5881 + }, + { + "start": 3956.59, + "end": 3958.31, + "probability": 0.885 + }, + { + "start": 3958.41, + "end": 3958.87, + "probability": 0.7352 + }, + { + "start": 3959.05, + "end": 3959.27, + "probability": 0.8595 + }, + { + "start": 3959.35, + "end": 3959.81, + "probability": 0.7273 + }, + { + "start": 3960.19, + "end": 3961.79, + "probability": 0.6636 + }, + { + "start": 3961.89, + "end": 3962.63, + "probability": 0.5472 + }, + { + "start": 3962.73, + "end": 3964.71, + "probability": 0.9431 + }, + { + "start": 3964.75, + "end": 3965.59, + "probability": 0.9644 + }, + { + "start": 3965.73, + "end": 3967.21, + "probability": 0.9539 + }, + { + "start": 3967.71, + "end": 3970.71, + "probability": 0.9653 + }, + { + "start": 3983.57, + "end": 3984.71, + "probability": 0.6245 + }, + { + "start": 3984.71, + "end": 3985.65, + "probability": 0.0225 + }, + { + "start": 3985.65, + "end": 3987.45, + "probability": 0.4318 + }, + { + "start": 3988.13, + "end": 3988.13, + "probability": 0.0613 + }, + { + "start": 3988.13, + "end": 3990.92, + "probability": 0.8919 + }, + { + "start": 3991.93, + "end": 3992.51, + "probability": 0.6869 + }, + { + "start": 3992.67, + "end": 3994.97, + "probability": 0.6466 + }, + { + "start": 3996.61, + "end": 3998.36, + "probability": 0.9015 + }, + { + "start": 3998.59, + "end": 4001.77, + "probability": 0.8924 + }, + { + "start": 4002.75, + "end": 4003.91, + "probability": 0.925 + }, + { + "start": 4003.91, + "end": 4006.31, + "probability": 0.8991 + }, + { + "start": 4006.49, + "end": 4010.93, + "probability": 0.9925 + }, + { + "start": 4011.13, + "end": 4012.47, + "probability": 0.3598 + }, + { + "start": 4013.13, + "end": 4015.77, + "probability": 0.9422 + }, + { + "start": 4015.97, + "end": 4018.52, + "probability": 0.9193 + }, + { + "start": 4018.87, + "end": 4020.23, + "probability": 0.5525 + }, + { + "start": 4021.83, + "end": 4023.69, + "probability": 0.9785 + }, + { + "start": 4024.55, + "end": 4025.85, + "probability": 0.9102 + }, + { + "start": 4025.97, + "end": 4027.41, + "probability": 0.6649 + }, + { + "start": 4027.85, + "end": 4030.77, + "probability": 0.9595 + }, + { + "start": 4030.91, + "end": 4033.83, + "probability": 0.9678 + }, + { + "start": 4034.01, + "end": 4036.39, + "probability": 0.8895 + }, + { + "start": 4036.99, + "end": 4040.8, + "probability": 0.7309 + }, + { + "start": 4042.45, + "end": 4043.37, + "probability": 0.7495 + }, + { + "start": 4043.95, + "end": 4048.41, + "probability": 0.9888 + }, + { + "start": 4048.95, + "end": 4049.83, + "probability": 0.542 + }, + { + "start": 4050.49, + "end": 4053.13, + "probability": 0.9915 + }, + { + "start": 4053.13, + "end": 4056.79, + "probability": 0.9912 + }, + { + "start": 4058.15, + "end": 4059.2, + "probability": 0.8019 + }, + { + "start": 4059.47, + "end": 4061.55, + "probability": 0.9489 + }, + { + "start": 4061.65, + "end": 4065.73, + "probability": 0.8754 + }, + { + "start": 4066.55, + "end": 4068.07, + "probability": 0.911 + }, + { + "start": 4068.37, + "end": 4071.53, + "probability": 0.9011 + }, + { + "start": 4071.61, + "end": 4074.51, + "probability": 0.9762 + }, + { + "start": 4076.41, + "end": 4077.49, + "probability": 0.6211 + }, + { + "start": 4077.87, + "end": 4080.09, + "probability": 0.9434 + }, + { + "start": 4080.21, + "end": 4082.21, + "probability": 0.9666 + }, + { + "start": 4082.63, + "end": 4087.03, + "probability": 0.9879 + }, + { + "start": 4087.13, + "end": 4087.63, + "probability": 0.7718 + }, + { + "start": 4088.97, + "end": 4092.51, + "probability": 0.9843 + }, + { + "start": 4093.47, + "end": 4096.23, + "probability": 0.923 + }, + { + "start": 4096.37, + "end": 4096.87, + "probability": 0.4013 + }, + { + "start": 4097.49, + "end": 4102.03, + "probability": 0.748 + }, + { + "start": 4102.05, + "end": 4102.67, + "probability": 0.5573 + }, + { + "start": 4103.59, + "end": 4104.35, + "probability": 0.8169 + }, + { + "start": 4104.61, + "end": 4107.81, + "probability": 0.9773 + }, + { + "start": 4107.81, + "end": 4112.49, + "probability": 0.9875 + }, + { + "start": 4113.21, + "end": 4114.69, + "probability": 0.9912 + }, + { + "start": 4114.83, + "end": 4120.83, + "probability": 0.8995 + }, + { + "start": 4120.83, + "end": 4126.17, + "probability": 0.6947 + }, + { + "start": 4126.69, + "end": 4128.48, + "probability": 0.8245 + }, + { + "start": 4129.19, + "end": 4131.26, + "probability": 0.9945 + }, + { + "start": 4131.67, + "end": 4134.16, + "probability": 0.988 + }, + { + "start": 4135.49, + "end": 4137.2, + "probability": 0.8889 + }, + { + "start": 4137.71, + "end": 4141.65, + "probability": 0.994 + }, + { + "start": 4142.65, + "end": 4142.95, + "probability": 0.317 + }, + { + "start": 4143.05, + "end": 4144.17, + "probability": 0.8041 + }, + { + "start": 4144.57, + "end": 4149.31, + "probability": 0.9761 + }, + { + "start": 4149.85, + "end": 4150.89, + "probability": 0.8755 + }, + { + "start": 4150.95, + "end": 4152.09, + "probability": 0.6847 + }, + { + "start": 4152.63, + "end": 4155.05, + "probability": 0.8871 + }, + { + "start": 4156.09, + "end": 4158.31, + "probability": 0.9739 + }, + { + "start": 4159.61, + "end": 4163.89, + "probability": 0.9952 + }, + { + "start": 4164.93, + "end": 4167.49, + "probability": 0.6466 + }, + { + "start": 4168.13, + "end": 4170.07, + "probability": 0.9568 + }, + { + "start": 4171.53, + "end": 4172.35, + "probability": 0.91 + }, + { + "start": 4173.15, + "end": 4175.63, + "probability": 0.9739 + }, + { + "start": 4176.61, + "end": 4178.59, + "probability": 0.8687 + }, + { + "start": 4179.79, + "end": 4183.45, + "probability": 0.7974 + }, + { + "start": 4183.91, + "end": 4184.63, + "probability": 0.9747 + }, + { + "start": 4185.69, + "end": 4188.67, + "probability": 0.9572 + }, + { + "start": 4188.79, + "end": 4195.01, + "probability": 0.967 + }, + { + "start": 4195.71, + "end": 4197.77, + "probability": 0.8163 + }, + { + "start": 4198.29, + "end": 4203.31, + "probability": 0.8398 + }, + { + "start": 4203.99, + "end": 4206.87, + "probability": 0.9032 + }, + { + "start": 4207.81, + "end": 4210.13, + "probability": 0.9785 + }, + { + "start": 4210.99, + "end": 4216.03, + "probability": 0.9802 + }, + { + "start": 4216.59, + "end": 4218.21, + "probability": 0.994 + }, + { + "start": 4218.37, + "end": 4220.11, + "probability": 0.9885 + }, + { + "start": 4221.05, + "end": 4224.09, + "probability": 0.959 + }, + { + "start": 4224.25, + "end": 4225.73, + "probability": 0.7719 + }, + { + "start": 4225.97, + "end": 4232.44, + "probability": 0.9845 + }, + { + "start": 4232.77, + "end": 4236.75, + "probability": 0.9969 + }, + { + "start": 4237.83, + "end": 4241.09, + "probability": 0.9929 + }, + { + "start": 4241.81, + "end": 4246.03, + "probability": 0.9317 + }, + { + "start": 4246.61, + "end": 4248.69, + "probability": 0.9916 + }, + { + "start": 4249.39, + "end": 4250.53, + "probability": 0.8651 + }, + { + "start": 4250.81, + "end": 4253.53, + "probability": 0.9238 + }, + { + "start": 4253.89, + "end": 4256.37, + "probability": 0.9813 + }, + { + "start": 4257.19, + "end": 4261.59, + "probability": 0.9321 + }, + { + "start": 4262.31, + "end": 4265.01, + "probability": 0.8963 + }, + { + "start": 4265.07, + "end": 4267.47, + "probability": 0.9556 + }, + { + "start": 4268.27, + "end": 4272.75, + "probability": 0.9519 + }, + { + "start": 4273.71, + "end": 4276.35, + "probability": 0.9922 + }, + { + "start": 4276.87, + "end": 4279.03, + "probability": 0.7798 + }, + { + "start": 4280.31, + "end": 4284.29, + "probability": 0.9893 + }, + { + "start": 4286.29, + "end": 4287.43, + "probability": 0.809 + }, + { + "start": 4288.37, + "end": 4290.35, + "probability": 0.9062 + }, + { + "start": 4290.45, + "end": 4292.0, + "probability": 0.9888 + }, + { + "start": 4292.23, + "end": 4293.01, + "probability": 0.6597 + }, + { + "start": 4293.13, + "end": 4294.55, + "probability": 0.7804 + }, + { + "start": 4294.75, + "end": 4298.57, + "probability": 0.9757 + }, + { + "start": 4299.37, + "end": 4304.15, + "probability": 0.9235 + }, + { + "start": 4304.87, + "end": 4307.57, + "probability": 0.7965 + }, + { + "start": 4308.27, + "end": 4311.53, + "probability": 0.9568 + }, + { + "start": 4312.77, + "end": 4313.95, + "probability": 0.8799 + }, + { + "start": 4315.17, + "end": 4319.19, + "probability": 0.7833 + }, + { + "start": 4319.89, + "end": 4320.95, + "probability": 0.9471 + }, + { + "start": 4321.67, + "end": 4322.25, + "probability": 0.8182 + }, + { + "start": 4324.27, + "end": 4324.69, + "probability": 0.9413 + }, + { + "start": 4326.33, + "end": 4329.01, + "probability": 0.9349 + }, + { + "start": 4329.79, + "end": 4332.43, + "probability": 0.9715 + }, + { + "start": 4333.01, + "end": 4335.47, + "probability": 0.5621 + }, + { + "start": 4336.51, + "end": 4338.41, + "probability": 0.9708 + }, + { + "start": 4339.41, + "end": 4344.21, + "probability": 0.8987 + }, + { + "start": 4345.91, + "end": 4346.41, + "probability": 0.6733 + }, + { + "start": 4346.59, + "end": 4347.89, + "probability": 0.814 + }, + { + "start": 4347.99, + "end": 4348.67, + "probability": 0.9805 + }, + { + "start": 4348.73, + "end": 4349.57, + "probability": 0.6583 + }, + { + "start": 4349.57, + "end": 4351.13, + "probability": 0.6826 + }, + { + "start": 4351.23, + "end": 4354.85, + "probability": 0.9342 + }, + { + "start": 4355.63, + "end": 4356.05, + "probability": 0.3094 + }, + { + "start": 4356.15, + "end": 4358.03, + "probability": 0.9757 + }, + { + "start": 4358.29, + "end": 4360.67, + "probability": 0.8708 + }, + { + "start": 4360.73, + "end": 4362.13, + "probability": 0.9893 + }, + { + "start": 4362.47, + "end": 4363.17, + "probability": 0.7836 + }, + { + "start": 4363.21, + "end": 4367.86, + "probability": 0.9508 + }, + { + "start": 4369.07, + "end": 4370.87, + "probability": 0.9956 + }, + { + "start": 4371.77, + "end": 4375.39, + "probability": 0.9971 + }, + { + "start": 4375.57, + "end": 4378.81, + "probability": 0.9797 + }, + { + "start": 4379.81, + "end": 4382.52, + "probability": 0.9624 + }, + { + "start": 4382.85, + "end": 4383.76, + "probability": 0.9735 + }, + { + "start": 4383.87, + "end": 4384.77, + "probability": 0.8417 + }, + { + "start": 4384.93, + "end": 4385.75, + "probability": 0.9798 + }, + { + "start": 4386.23, + "end": 4387.09, + "probability": 0.9475 + }, + { + "start": 4387.17, + "end": 4388.17, + "probability": 0.9663 + }, + { + "start": 4388.53, + "end": 4389.25, + "probability": 0.5721 + }, + { + "start": 4389.37, + "end": 4390.37, + "probability": 0.9212 + }, + { + "start": 4390.97, + "end": 4392.39, + "probability": 0.9079 + }, + { + "start": 4392.45, + "end": 4394.99, + "probability": 0.9754 + }, + { + "start": 4398.12, + "end": 4398.61, + "probability": 0.0692 + }, + { + "start": 4398.61, + "end": 4404.37, + "probability": 0.916 + }, + { + "start": 4405.27, + "end": 4406.29, + "probability": 0.7376 + }, + { + "start": 4406.81, + "end": 4407.75, + "probability": 0.8019 + }, + { + "start": 4407.87, + "end": 4409.01, + "probability": 0.9265 + }, + { + "start": 4409.15, + "end": 4411.89, + "probability": 0.8835 + }, + { + "start": 4412.33, + "end": 4415.99, + "probability": 0.995 + }, + { + "start": 4416.95, + "end": 4420.19, + "probability": 0.9669 + }, + { + "start": 4420.31, + "end": 4421.65, + "probability": 0.8574 + }, + { + "start": 4422.23, + "end": 4429.61, + "probability": 0.9935 + }, + { + "start": 4429.61, + "end": 4435.43, + "probability": 0.9966 + }, + { + "start": 4436.23, + "end": 4439.45, + "probability": 0.9795 + }, + { + "start": 4440.25, + "end": 4441.01, + "probability": 0.8149 + }, + { + "start": 4441.09, + "end": 4442.67, + "probability": 0.9243 + }, + { + "start": 4442.83, + "end": 4443.29, + "probability": 0.2683 + }, + { + "start": 4443.89, + "end": 4447.77, + "probability": 0.9958 + }, + { + "start": 4448.63, + "end": 4449.71, + "probability": 0.9227 + }, + { + "start": 4450.47, + "end": 4454.0, + "probability": 0.9785 + }, + { + "start": 4456.55, + "end": 4461.37, + "probability": 0.9429 + }, + { + "start": 4463.51, + "end": 4465.15, + "probability": 0.9124 + }, + { + "start": 4465.61, + "end": 4470.91, + "probability": 0.9941 + }, + { + "start": 4471.97, + "end": 4475.57, + "probability": 0.9097 + }, + { + "start": 4476.59, + "end": 4481.39, + "probability": 0.9963 + }, + { + "start": 4482.05, + "end": 4482.95, + "probability": 0.8212 + }, + { + "start": 4483.03, + "end": 4488.09, + "probability": 0.9951 + }, + { + "start": 4489.35, + "end": 4490.25, + "probability": 0.6875 + }, + { + "start": 4490.83, + "end": 4492.55, + "probability": 0.9022 + }, + { + "start": 4492.87, + "end": 4493.87, + "probability": 0.9092 + }, + { + "start": 4494.15, + "end": 4496.09, + "probability": 0.7983 + }, + { + "start": 4496.55, + "end": 4497.59, + "probability": 0.9207 + }, + { + "start": 4497.75, + "end": 4501.93, + "probability": 0.9371 + }, + { + "start": 4502.81, + "end": 4503.49, + "probability": 0.5921 + }, + { + "start": 4503.95, + "end": 4506.71, + "probability": 0.861 + }, + { + "start": 4507.29, + "end": 4510.91, + "probability": 0.9767 + }, + { + "start": 4513.21, + "end": 4516.99, + "probability": 0.965 + }, + { + "start": 4517.13, + "end": 4520.63, + "probability": 0.9811 + }, + { + "start": 4521.81, + "end": 4522.77, + "probability": 0.8646 + }, + { + "start": 4523.65, + "end": 4524.35, + "probability": 0.3754 + }, + { + "start": 4525.17, + "end": 4533.21, + "probability": 0.9349 + }, + { + "start": 4533.65, + "end": 4537.83, + "probability": 0.8558 + }, + { + "start": 4538.87, + "end": 4539.45, + "probability": 0.8735 + }, + { + "start": 4540.97, + "end": 4543.53, + "probability": 0.6514 + }, + { + "start": 4543.71, + "end": 4544.73, + "probability": 0.7216 + }, + { + "start": 4545.57, + "end": 4546.53, + "probability": 0.7844 + }, + { + "start": 4547.13, + "end": 4549.67, + "probability": 0.7139 + }, + { + "start": 4549.75, + "end": 4550.49, + "probability": 0.8185 + }, + { + "start": 4550.63, + "end": 4552.87, + "probability": 0.9216 + }, + { + "start": 4553.15, + "end": 4554.17, + "probability": 0.7071 + }, + { + "start": 4554.39, + "end": 4554.67, + "probability": 0.7315 + }, + { + "start": 4554.75, + "end": 4559.17, + "probability": 0.6679 + }, + { + "start": 4559.33, + "end": 4562.87, + "probability": 0.89 + }, + { + "start": 4563.47, + "end": 4564.43, + "probability": 0.8024 + }, + { + "start": 4565.27, + "end": 4570.83, + "probability": 0.9572 + }, + { + "start": 4572.21, + "end": 4573.97, + "probability": 0.9407 + }, + { + "start": 4575.87, + "end": 4576.55, + "probability": 0.9191 + }, + { + "start": 4577.61, + "end": 4578.99, + "probability": 0.7475 + }, + { + "start": 4580.29, + "end": 4582.77, + "probability": 0.9648 + }, + { + "start": 4582.99, + "end": 4587.35, + "probability": 0.981 + }, + { + "start": 4587.95, + "end": 4590.23, + "probability": 0.9246 + }, + { + "start": 4590.33, + "end": 4595.07, + "probability": 0.9496 + }, + { + "start": 4596.01, + "end": 4601.1, + "probability": 0.9413 + }, + { + "start": 4601.95, + "end": 4604.57, + "probability": 0.993 + }, + { + "start": 4604.57, + "end": 4609.93, + "probability": 0.9949 + }, + { + "start": 4610.53, + "end": 4612.96, + "probability": 0.8529 + }, + { + "start": 4613.81, + "end": 4614.63, + "probability": 0.4975 + }, + { + "start": 4614.69, + "end": 4617.97, + "probability": 0.8656 + }, + { + "start": 4618.83, + "end": 4625.33, + "probability": 0.9827 + }, + { + "start": 4626.61, + "end": 4629.53, + "probability": 0.9879 + }, + { + "start": 4631.07, + "end": 4632.15, + "probability": 0.8271 + }, + { + "start": 4632.33, + "end": 4638.07, + "probability": 0.9914 + }, + { + "start": 4638.19, + "end": 4639.21, + "probability": 0.9366 + }, + { + "start": 4640.17, + "end": 4648.55, + "probability": 0.9843 + }, + { + "start": 4651.23, + "end": 4654.91, + "probability": 0.937 + }, + { + "start": 4665.91, + "end": 4670.39, + "probability": 0.7448 + }, + { + "start": 4670.39, + "end": 4672.63, + "probability": 0.9064 + }, + { + "start": 4673.49, + "end": 4674.72, + "probability": 0.9354 + }, + { + "start": 4674.93, + "end": 4679.65, + "probability": 0.856 + }, + { + "start": 4680.37, + "end": 4683.57, + "probability": 0.9937 + }, + { + "start": 4684.11, + "end": 4685.03, + "probability": 0.9008 + }, + { + "start": 4685.11, + "end": 4685.29, + "probability": 0.5176 + }, + { + "start": 4685.39, + "end": 4687.47, + "probability": 0.97 + }, + { + "start": 4688.39, + "end": 4689.69, + "probability": 0.9484 + }, + { + "start": 4690.47, + "end": 4694.85, + "probability": 0.9404 + }, + { + "start": 4695.85, + "end": 4696.47, + "probability": 0.7139 + }, + { + "start": 4697.09, + "end": 4700.63, + "probability": 0.8278 + }, + { + "start": 4700.73, + "end": 4701.53, + "probability": 0.7618 + }, + { + "start": 4701.63, + "end": 4702.57, + "probability": 0.8449 + }, + { + "start": 4702.99, + "end": 4703.91, + "probability": 0.8796 + }, + { + "start": 4704.09, + "end": 4704.87, + "probability": 0.9069 + }, + { + "start": 4705.63, + "end": 4708.59, + "probability": 0.8323 + }, + { + "start": 4708.59, + "end": 4710.87, + "probability": 0.9794 + }, + { + "start": 4711.23, + "end": 4712.03, + "probability": 0.7345 + }, + { + "start": 4712.19, + "end": 4713.89, + "probability": 0.8582 + }, + { + "start": 4714.77, + "end": 4715.67, + "probability": 0.9554 + }, + { + "start": 4715.73, + "end": 4716.23, + "probability": 0.6556 + }, + { + "start": 4716.69, + "end": 4717.97, + "probability": 0.7889 + }, + { + "start": 4718.07, + "end": 4720.38, + "probability": 0.7925 + }, + { + "start": 4721.59, + "end": 4724.08, + "probability": 0.653 + }, + { + "start": 4724.83, + "end": 4730.73, + "probability": 0.9939 + }, + { + "start": 4731.49, + "end": 4736.53, + "probability": 0.9091 + }, + { + "start": 4736.53, + "end": 4739.43, + "probability": 0.9922 + }, + { + "start": 4740.67, + "end": 4747.87, + "probability": 0.9417 + }, + { + "start": 4750.05, + "end": 4750.85, + "probability": 0.7201 + }, + { + "start": 4750.91, + "end": 4751.91, + "probability": 0.8426 + }, + { + "start": 4752.13, + "end": 4752.89, + "probability": 0.7371 + }, + { + "start": 4752.95, + "end": 4756.13, + "probability": 0.7222 + }, + { + "start": 4756.13, + "end": 4757.23, + "probability": 0.7502 + }, + { + "start": 4757.35, + "end": 4757.49, + "probability": 0.7808 + }, + { + "start": 4757.65, + "end": 4758.23, + "probability": 0.1581 + }, + { + "start": 4758.25, + "end": 4758.99, + "probability": 0.5221 + }, + { + "start": 4759.17, + "end": 4761.17, + "probability": 0.7524 + }, + { + "start": 4761.19, + "end": 4761.35, + "probability": 0.3607 + }, + { + "start": 4761.35, + "end": 4761.35, + "probability": 0.0419 + }, + { + "start": 4761.35, + "end": 4762.47, + "probability": 0.6339 + }, + { + "start": 4762.47, + "end": 4763.15, + "probability": 0.5072 + }, + { + "start": 4763.15, + "end": 4765.92, + "probability": 0.9688 + }, + { + "start": 4766.65, + "end": 4770.07, + "probability": 0.7786 + }, + { + "start": 4770.59, + "end": 4771.67, + "probability": 0.494 + }, + { + "start": 4771.73, + "end": 4772.9, + "probability": 0.9098 + }, + { + "start": 4774.01, + "end": 4776.51, + "probability": 0.9279 + }, + { + "start": 4776.61, + "end": 4780.41, + "probability": 0.9912 + }, + { + "start": 4780.71, + "end": 4781.43, + "probability": 0.7681 + }, + { + "start": 4782.71, + "end": 4785.17, + "probability": 0.8531 + }, + { + "start": 4786.17, + "end": 4788.78, + "probability": 0.996 + }, + { + "start": 4789.49, + "end": 4795.01, + "probability": 0.9861 + }, + { + "start": 4795.21, + "end": 4798.35, + "probability": 0.9708 + }, + { + "start": 4799.93, + "end": 4804.23, + "probability": 0.7912 + }, + { + "start": 4805.99, + "end": 4806.71, + "probability": 0.7802 + }, + { + "start": 4806.87, + "end": 4812.15, + "probability": 0.6919 + }, + { + "start": 4812.29, + "end": 4812.93, + "probability": 0.9714 + }, + { + "start": 4813.53, + "end": 4814.53, + "probability": 0.9782 + }, + { + "start": 4815.53, + "end": 4817.37, + "probability": 0.971 + }, + { + "start": 4817.89, + "end": 4820.06, + "probability": 0.5108 + }, + { + "start": 4820.61, + "end": 4822.91, + "probability": 0.8982 + }, + { + "start": 4823.29, + "end": 4829.01, + "probability": 0.939 + }, + { + "start": 4830.37, + "end": 4831.15, + "probability": 0.7054 + }, + { + "start": 4831.73, + "end": 4835.25, + "probability": 0.8604 + }, + { + "start": 4836.79, + "end": 4839.04, + "probability": 0.9941 + }, + { + "start": 4840.7, + "end": 4847.25, + "probability": 0.8269 + }, + { + "start": 4848.13, + "end": 4851.85, + "probability": 0.996 + }, + { + "start": 4852.01, + "end": 4852.57, + "probability": 0.9481 + }, + { + "start": 4853.87, + "end": 4855.03, + "probability": 0.9763 + }, + { + "start": 4855.43, + "end": 4859.89, + "probability": 0.999 + }, + { + "start": 4862.45, + "end": 4866.46, + "probability": 0.8374 + }, + { + "start": 4866.89, + "end": 4872.91, + "probability": 0.9559 + }, + { + "start": 4872.99, + "end": 4874.67, + "probability": 0.8739 + }, + { + "start": 4874.73, + "end": 4881.95, + "probability": 0.9597 + }, + { + "start": 4882.01, + "end": 4882.83, + "probability": 0.202 + }, + { + "start": 4883.41, + "end": 4887.65, + "probability": 0.9266 + }, + { + "start": 4887.91, + "end": 4892.57, + "probability": 0.7244 + }, + { + "start": 4892.65, + "end": 4893.91, + "probability": 0.7065 + }, + { + "start": 4895.89, + "end": 4899.87, + "probability": 0.9396 + }, + { + "start": 4900.19, + "end": 4904.03, + "probability": 0.8942 + }, + { + "start": 4904.87, + "end": 4910.57, + "probability": 0.9976 + }, + { + "start": 4911.01, + "end": 4915.49, + "probability": 0.9753 + }, + { + "start": 4915.93, + "end": 4918.37, + "probability": 0.9967 + }, + { + "start": 4919.29, + "end": 4923.55, + "probability": 0.9041 + }, + { + "start": 4924.41, + "end": 4927.45, + "probability": 0.8327 + }, + { + "start": 4928.81, + "end": 4931.71, + "probability": 0.7975 + }, + { + "start": 4932.55, + "end": 4937.63, + "probability": 0.9266 + }, + { + "start": 4938.15, + "end": 4941.41, + "probability": 0.8977 + }, + { + "start": 4942.73, + "end": 4945.23, + "probability": 0.8115 + }, + { + "start": 4945.91, + "end": 4949.45, + "probability": 0.9739 + }, + { + "start": 4950.31, + "end": 4953.21, + "probability": 0.818 + }, + { + "start": 4953.65, + "end": 4956.29, + "probability": 0.99 + }, + { + "start": 4956.85, + "end": 4960.67, + "probability": 0.8939 + }, + { + "start": 4961.25, + "end": 4961.97, + "probability": 0.8678 + }, + { + "start": 4962.51, + "end": 4964.41, + "probability": 0.9399 + }, + { + "start": 4964.89, + "end": 4968.86, + "probability": 0.96 + }, + { + "start": 4969.81, + "end": 4970.29, + "probability": 0.9221 + }, + { + "start": 4971.35, + "end": 4971.49, + "probability": 0.4028 + }, + { + "start": 4972.73, + "end": 4973.23, + "probability": 0.8724 + }, + { + "start": 4974.35, + "end": 4977.17, + "probability": 0.9064 + }, + { + "start": 4977.17, + "end": 4982.45, + "probability": 0.8789 + }, + { + "start": 4983.51, + "end": 4986.99, + "probability": 0.6534 + }, + { + "start": 4987.85, + "end": 4990.07, + "probability": 0.8621 + }, + { + "start": 4991.39, + "end": 4997.97, + "probability": 0.9441 + }, + { + "start": 4997.97, + "end": 5003.45, + "probability": 0.9654 + }, + { + "start": 5004.35, + "end": 5008.21, + "probability": 0.8804 + }, + { + "start": 5008.77, + "end": 5014.19, + "probability": 0.1737 + }, + { + "start": 5015.11, + "end": 5018.13, + "probability": 0.9883 + }, + { + "start": 5018.91, + "end": 5021.17, + "probability": 0.9368 + }, + { + "start": 5022.49, + "end": 5025.37, + "probability": 0.9622 + }, + { + "start": 5026.27, + "end": 5027.11, + "probability": 0.8254 + }, + { + "start": 5028.33, + "end": 5031.71, + "probability": 0.9769 + }, + { + "start": 5032.77, + "end": 5033.71, + "probability": 0.943 + }, + { + "start": 5033.77, + "end": 5034.85, + "probability": 0.8935 + }, + { + "start": 5035.21, + "end": 5038.95, + "probability": 0.9968 + }, + { + "start": 5039.91, + "end": 5041.39, + "probability": 0.9218 + }, + { + "start": 5042.29, + "end": 5046.23, + "probability": 0.9409 + }, + { + "start": 5046.81, + "end": 5050.47, + "probability": 0.9653 + }, + { + "start": 5051.01, + "end": 5052.01, + "probability": 0.9595 + }, + { + "start": 5052.21, + "end": 5053.49, + "probability": 0.9109 + }, + { + "start": 5053.83, + "end": 5056.81, + "probability": 0.978 + }, + { + "start": 5057.33, + "end": 5059.23, + "probability": 0.9656 + }, + { + "start": 5060.21, + "end": 5063.57, + "probability": 0.8735 + }, + { + "start": 5064.17, + "end": 5065.33, + "probability": 0.9575 + }, + { + "start": 5065.93, + "end": 5067.07, + "probability": 0.8418 + }, + { + "start": 5068.13, + "end": 5072.55, + "probability": 0.9557 + }, + { + "start": 5074.29, + "end": 5079.17, + "probability": 0.9943 + }, + { + "start": 5080.01, + "end": 5084.55, + "probability": 0.995 + }, + { + "start": 5085.71, + "end": 5090.03, + "probability": 0.9876 + }, + { + "start": 5090.87, + "end": 5096.85, + "probability": 0.9922 + }, + { + "start": 5097.07, + "end": 5098.89, + "probability": 0.8564 + }, + { + "start": 5100.27, + "end": 5102.47, + "probability": 0.8864 + }, + { + "start": 5102.63, + "end": 5104.45, + "probability": 0.9914 + }, + { + "start": 5104.55, + "end": 5105.59, + "probability": 0.5956 + }, + { + "start": 5105.77, + "end": 5107.59, + "probability": 0.8632 + }, + { + "start": 5108.17, + "end": 5112.19, + "probability": 0.9959 + }, + { + "start": 5112.99, + "end": 5115.05, + "probability": 0.9985 + }, + { + "start": 5116.01, + "end": 5122.03, + "probability": 0.9957 + }, + { + "start": 5122.63, + "end": 5123.07, + "probability": 0.9058 + }, + { + "start": 5123.99, + "end": 5124.17, + "probability": 0.4608 + }, + { + "start": 5124.35, + "end": 5125.05, + "probability": 0.7698 + }, + { + "start": 5125.25, + "end": 5133.77, + "probability": 0.9081 + }, + { + "start": 5135.09, + "end": 5140.63, + "probability": 0.9697 + }, + { + "start": 5141.29, + "end": 5145.13, + "probability": 0.9417 + }, + { + "start": 5148.17, + "end": 5148.73, + "probability": 0.7836 + }, + { + "start": 5150.11, + "end": 5151.01, + "probability": 0.9528 + }, + { + "start": 5151.61, + "end": 5153.47, + "probability": 0.9824 + }, + { + "start": 5154.65, + "end": 5158.23, + "probability": 0.7736 + }, + { + "start": 5158.85, + "end": 5160.41, + "probability": 0.779 + }, + { + "start": 5161.27, + "end": 5164.31, + "probability": 0.9731 + }, + { + "start": 5164.31, + "end": 5169.07, + "probability": 0.9709 + }, + { + "start": 5169.17, + "end": 5170.13, + "probability": 0.976 + }, + { + "start": 5170.35, + "end": 5174.23, + "probability": 0.9159 + }, + { + "start": 5174.35, + "end": 5174.63, + "probability": 0.2165 + }, + { + "start": 5174.63, + "end": 5175.23, + "probability": 0.8147 + }, + { + "start": 5175.31, + "end": 5176.69, + "probability": 0.9466 + }, + { + "start": 5176.87, + "end": 5178.19, + "probability": 0.9645 + }, + { + "start": 5178.27, + "end": 5178.61, + "probability": 0.798 + }, + { + "start": 5178.63, + "end": 5181.35, + "probability": 0.9075 + }, + { + "start": 5181.39, + "end": 5183.65, + "probability": 0.9122 + }, + { + "start": 5183.73, + "end": 5186.42, + "probability": 0.6691 + }, + { + "start": 5187.11, + "end": 5187.17, + "probability": 0.3516 + }, + { + "start": 5187.17, + "end": 5189.55, + "probability": 0.9976 + }, + { + "start": 5189.99, + "end": 5193.45, + "probability": 0.9941 + }, + { + "start": 5193.57, + "end": 5193.81, + "probability": 0.2214 + }, + { + "start": 5193.85, + "end": 5197.21, + "probability": 0.902 + }, + { + "start": 5197.61, + "end": 5199.01, + "probability": 0.9654 + }, + { + "start": 5199.01, + "end": 5200.75, + "probability": 0.9528 + }, + { + "start": 5200.83, + "end": 5203.36, + "probability": 0.5835 + }, + { + "start": 5203.49, + "end": 5205.69, + "probability": 0.4899 + }, + { + "start": 5205.69, + "end": 5205.69, + "probability": 0.0226 + }, + { + "start": 5205.69, + "end": 5205.93, + "probability": 0.1157 + }, + { + "start": 5206.31, + "end": 5209.51, + "probability": 0.9781 + }, + { + "start": 5209.91, + "end": 5210.81, + "probability": 0.0157 + }, + { + "start": 5210.81, + "end": 5213.29, + "probability": 0.4193 + }, + { + "start": 5214.31, + "end": 5214.37, + "probability": 0.1069 + }, + { + "start": 5217.09, + "end": 5220.57, + "probability": 0.0278 + }, + { + "start": 5221.79, + "end": 5222.93, + "probability": 0.0832 + }, + { + "start": 5224.07, + "end": 5228.39, + "probability": 0.3566 + }, + { + "start": 5229.13, + "end": 5229.57, + "probability": 0.004 + }, + { + "start": 5230.09, + "end": 5230.33, + "probability": 0.0238 + }, + { + "start": 5230.33, + "end": 5231.65, + "probability": 0.0177 + }, + { + "start": 5232.05, + "end": 5233.77, + "probability": 0.0088 + }, + { + "start": 5234.41, + "end": 5234.41, + "probability": 0.2577 + }, + { + "start": 5235.05, + "end": 5237.95, + "probability": 0.1036 + }, + { + "start": 5238.42, + "end": 5242.07, + "probability": 0.4663 + }, + { + "start": 5242.51, + "end": 5244.33, + "probability": 0.0253 + }, + { + "start": 5244.71, + "end": 5246.49, + "probability": 0.0613 + }, + { + "start": 5246.79, + "end": 5246.81, + "probability": 0.0474 + }, + { + "start": 5246.81, + "end": 5248.11, + "probability": 0.1166 + }, + { + "start": 5251.17, + "end": 5251.87, + "probability": 0.0044 + }, + { + "start": 5257.25, + "end": 5263.57, + "probability": 0.1971 + }, + { + "start": 5272.83, + "end": 5273.39, + "probability": 0.0828 + }, + { + "start": 5281.29, + "end": 5282.23, + "probability": 0.0129 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.0, + "end": 5307.0, + "probability": 0.0 + }, + { + "start": 5307.14, + "end": 5307.2, + "probability": 0.0857 + }, + { + "start": 5307.2, + "end": 5308.48, + "probability": 0.0576 + }, + { + "start": 5309.12, + "end": 5314.34, + "probability": 0.9224 + }, + { + "start": 5314.5, + "end": 5317.24, + "probability": 0.9935 + }, + { + "start": 5317.98, + "end": 5320.66, + "probability": 0.6586 + }, + { + "start": 5320.74, + "end": 5323.4, + "probability": 0.9886 + }, + { + "start": 5323.58, + "end": 5324.54, + "probability": 0.9529 + }, + { + "start": 5325.12, + "end": 5329.44, + "probability": 0.8527 + }, + { + "start": 5329.52, + "end": 5329.88, + "probability": 0.2643 + }, + { + "start": 5330.52, + "end": 5332.56, + "probability": 0.7717 + }, + { + "start": 5332.9, + "end": 5335.61, + "probability": 0.3744 + }, + { + "start": 5336.18, + "end": 5336.64, + "probability": 0.1298 + }, + { + "start": 5336.64, + "end": 5340.94, + "probability": 0.7783 + }, + { + "start": 5341.14, + "end": 5342.04, + "probability": 0.2613 + }, + { + "start": 5342.04, + "end": 5346.0, + "probability": 0.8667 + }, + { + "start": 5346.6, + "end": 5353.44, + "probability": 0.9795 + }, + { + "start": 5354.42, + "end": 5356.32, + "probability": 0.8282 + }, + { + "start": 5357.16, + "end": 5363.84, + "probability": 0.8532 + }, + { + "start": 5365.3, + "end": 5366.8, + "probability": 0.7448 + }, + { + "start": 5367.82, + "end": 5370.12, + "probability": 0.829 + }, + { + "start": 5370.12, + "end": 5372.22, + "probability": 0.7698 + }, + { + "start": 5372.32, + "end": 5375.86, + "probability": 0.9253 + }, + { + "start": 5376.82, + "end": 5377.86, + "probability": 0.9675 + }, + { + "start": 5378.5, + "end": 5381.42, + "probability": 0.9948 + }, + { + "start": 5381.42, + "end": 5384.64, + "probability": 0.8371 + }, + { + "start": 5385.24, + "end": 5387.7, + "probability": 0.9744 + }, + { + "start": 5387.76, + "end": 5388.84, + "probability": 0.951 + }, + { + "start": 5389.46, + "end": 5392.35, + "probability": 0.9609 + }, + { + "start": 5393.62, + "end": 5394.96, + "probability": 0.6842 + }, + { + "start": 5395.0, + "end": 5397.94, + "probability": 0.8922 + }, + { + "start": 5397.94, + "end": 5402.54, + "probability": 0.9673 + }, + { + "start": 5403.0, + "end": 5404.82, + "probability": 0.9838 + }, + { + "start": 5405.92, + "end": 5409.18, + "probability": 0.7826 + }, + { + "start": 5409.18, + "end": 5413.34, + "probability": 0.9971 + }, + { + "start": 5413.46, + "end": 5414.32, + "probability": 0.953 + }, + { + "start": 5415.0, + "end": 5416.06, + "probability": 0.9772 + }, + { + "start": 5416.14, + "end": 5420.74, + "probability": 0.9114 + }, + { + "start": 5421.3, + "end": 5426.68, + "probability": 0.9521 + }, + { + "start": 5428.74, + "end": 5435.48, + "probability": 0.9756 + }, + { + "start": 5436.54, + "end": 5439.8, + "probability": 0.9412 + }, + { + "start": 5440.98, + "end": 5443.38, + "probability": 0.7601 + }, + { + "start": 5444.66, + "end": 5449.06, + "probability": 0.9834 + }, + { + "start": 5449.12, + "end": 5451.18, + "probability": 0.9257 + }, + { + "start": 5451.4, + "end": 5452.82, + "probability": 0.5031 + }, + { + "start": 5452.9, + "end": 5453.52, + "probability": 0.9421 + }, + { + "start": 5453.7, + "end": 5455.32, + "probability": 0.7823 + }, + { + "start": 5455.44, + "end": 5457.63, + "probability": 0.8958 + }, + { + "start": 5457.88, + "end": 5459.64, + "probability": 0.8896 + }, + { + "start": 5459.74, + "end": 5461.08, + "probability": 0.4592 + }, + { + "start": 5461.82, + "end": 5465.54, + "probability": 0.9598 + }, + { + "start": 5465.7, + "end": 5469.84, + "probability": 0.9021 + }, + { + "start": 5470.44, + "end": 5471.68, + "probability": 0.8533 + }, + { + "start": 5471.88, + "end": 5475.28, + "probability": 0.9376 + }, + { + "start": 5475.86, + "end": 5479.08, + "probability": 0.812 + }, + { + "start": 5479.16, + "end": 5482.22, + "probability": 0.991 + }, + { + "start": 5482.22, + "end": 5486.54, + "probability": 0.9741 + }, + { + "start": 5486.54, + "end": 5486.68, + "probability": 0.5017 + }, + { + "start": 5486.68, + "end": 5487.0, + "probability": 0.5843 + }, + { + "start": 5487.06, + "end": 5488.53, + "probability": 0.5399 + }, + { + "start": 5489.52, + "end": 5489.72, + "probability": 0.0019 + }, + { + "start": 5489.72, + "end": 5490.76, + "probability": 0.4281 + }, + { + "start": 5490.88, + "end": 5492.08, + "probability": 0.3852 + }, + { + "start": 5492.08, + "end": 5493.9, + "probability": 0.8903 + }, + { + "start": 5494.22, + "end": 5496.42, + "probability": 0.3118 + }, + { + "start": 5496.42, + "end": 5497.32, + "probability": 0.3238 + }, + { + "start": 5497.32, + "end": 5497.32, + "probability": 0.6943 + }, + { + "start": 5497.44, + "end": 5498.76, + "probability": 0.8889 + }, + { + "start": 5499.04, + "end": 5501.14, + "probability": 0.8472 + }, + { + "start": 5501.26, + "end": 5504.18, + "probability": 0.9961 + }, + { + "start": 5504.4, + "end": 5504.62, + "probability": 0.2858 + }, + { + "start": 5504.62, + "end": 5505.02, + "probability": 0.6984 + }, + { + "start": 5505.16, + "end": 5505.36, + "probability": 0.4314 + }, + { + "start": 5505.82, + "end": 5507.31, + "probability": 0.5488 + }, + { + "start": 5507.54, + "end": 5508.36, + "probability": 0.8932 + }, + { + "start": 5508.66, + "end": 5512.84, + "probability": 0.8149 + }, + { + "start": 5512.92, + "end": 5513.24, + "probability": 0.743 + }, + { + "start": 5513.36, + "end": 5517.34, + "probability": 0.9048 + }, + { + "start": 5517.4, + "end": 5521.54, + "probability": 0.9882 + }, + { + "start": 5522.28, + "end": 5523.24, + "probability": 0.8652 + }, + { + "start": 5523.78, + "end": 5527.86, + "probability": 0.9114 + }, + { + "start": 5528.04, + "end": 5529.72, + "probability": 0.9746 + }, + { + "start": 5529.74, + "end": 5533.46, + "probability": 0.8268 + }, + { + "start": 5533.48, + "end": 5534.67, + "probability": 0.828 + }, + { + "start": 5536.46, + "end": 5540.1, + "probability": 0.382 + }, + { + "start": 5540.1, + "end": 5540.1, + "probability": 0.2881 + }, + { + "start": 5540.1, + "end": 5541.26, + "probability": 0.4663 + }, + { + "start": 5542.28, + "end": 5545.0, + "probability": 0.5089 + }, + { + "start": 5545.82, + "end": 5549.52, + "probability": 0.8491 + }, + { + "start": 5550.2, + "end": 5552.76, + "probability": 0.7862 + }, + { + "start": 5553.58, + "end": 5556.68, + "probability": 0.9956 + }, + { + "start": 5557.8, + "end": 5559.58, + "probability": 0.7323 + }, + { + "start": 5559.96, + "end": 5560.6, + "probability": 0.7484 + }, + { + "start": 5561.1, + "end": 5561.78, + "probability": 0.6431 + }, + { + "start": 5562.1, + "end": 5563.44, + "probability": 0.9818 + }, + { + "start": 5563.6, + "end": 5564.32, + "probability": 0.96 + }, + { + "start": 5564.72, + "end": 5565.72, + "probability": 0.8585 + }, + { + "start": 5566.86, + "end": 5569.66, + "probability": 0.8618 + }, + { + "start": 5571.58, + "end": 5575.1, + "probability": 0.9984 + }, + { + "start": 5575.1, + "end": 5581.02, + "probability": 0.9981 + }, + { + "start": 5581.36, + "end": 5584.84, + "probability": 0.8472 + }, + { + "start": 5585.06, + "end": 5585.42, + "probability": 0.5081 + }, + { + "start": 5585.46, + "end": 5587.14, + "probability": 0.8675 + }, + { + "start": 5587.68, + "end": 5590.26, + "probability": 0.7167 + }, + { + "start": 5590.36, + "end": 5591.46, + "probability": 0.9935 + }, + { + "start": 5592.4, + "end": 5595.76, + "probability": 0.9691 + }, + { + "start": 5596.42, + "end": 5599.09, + "probability": 0.6762 + }, + { + "start": 5600.14, + "end": 5602.08, + "probability": 0.9707 + }, + { + "start": 5602.16, + "end": 5606.8, + "probability": 0.9935 + }, + { + "start": 5607.72, + "end": 5610.4, + "probability": 0.9859 + }, + { + "start": 5610.5, + "end": 5612.02, + "probability": 0.9822 + }, + { + "start": 5612.78, + "end": 5614.64, + "probability": 0.9915 + }, + { + "start": 5614.74, + "end": 5616.22, + "probability": 0.8582 + }, + { + "start": 5616.36, + "end": 5616.7, + "probability": 0.8614 + }, + { + "start": 5616.76, + "end": 5622.44, + "probability": 0.9948 + }, + { + "start": 5623.32, + "end": 5628.44, + "probability": 0.918 + }, + { + "start": 5629.08, + "end": 5633.52, + "probability": 0.9629 + }, + { + "start": 5633.82, + "end": 5636.0, + "probability": 0.9953 + }, + { + "start": 5636.66, + "end": 5639.96, + "probability": 0.9949 + }, + { + "start": 5641.0, + "end": 5643.74, + "probability": 0.9229 + }, + { + "start": 5644.36, + "end": 5646.6, + "probability": 0.9934 + }, + { + "start": 5646.64, + "end": 5648.24, + "probability": 0.8873 + }, + { + "start": 5648.46, + "end": 5652.28, + "probability": 0.9414 + }, + { + "start": 5652.28, + "end": 5656.38, + "probability": 0.8989 + }, + { + "start": 5657.68, + "end": 5663.06, + "probability": 0.9722 + }, + { + "start": 5664.18, + "end": 5667.04, + "probability": 0.98 + }, + { + "start": 5667.94, + "end": 5670.42, + "probability": 0.802 + }, + { + "start": 5671.14, + "end": 5674.3, + "probability": 0.8116 + }, + { + "start": 5674.84, + "end": 5678.58, + "probability": 0.6731 + }, + { + "start": 5679.56, + "end": 5683.3, + "probability": 0.9841 + }, + { + "start": 5683.3, + "end": 5685.96, + "probability": 0.965 + }, + { + "start": 5686.64, + "end": 5690.64, + "probability": 0.9409 + }, + { + "start": 5690.8, + "end": 5691.72, + "probability": 0.4227 + }, + { + "start": 5692.38, + "end": 5693.22, + "probability": 0.7446 + }, + { + "start": 5693.6, + "end": 5694.86, + "probability": 0.5751 + }, + { + "start": 5695.22, + "end": 5697.74, + "probability": 0.8176 + }, + { + "start": 5698.84, + "end": 5700.34, + "probability": 0.414 + }, + { + "start": 5700.38, + "end": 5706.02, + "probability": 0.9753 + }, + { + "start": 5707.65, + "end": 5710.54, + "probability": 0.9955 + }, + { + "start": 5711.44, + "end": 5713.96, + "probability": 0.9052 + }, + { + "start": 5714.82, + "end": 5717.86, + "probability": 0.861 + }, + { + "start": 5718.72, + "end": 5720.44, + "probability": 0.0265 + }, + { + "start": 5720.44, + "end": 5721.32, + "probability": 0.0148 + }, + { + "start": 5721.76, + "end": 5722.56, + "probability": 0.728 + }, + { + "start": 5722.6, + "end": 5723.44, + "probability": 0.6731 + }, + { + "start": 5724.36, + "end": 5727.74, + "probability": 0.6615 + }, + { + "start": 5728.26, + "end": 5729.59, + "probability": 0.8199 + }, + { + "start": 5729.82, + "end": 5732.78, + "probability": 0.9731 + }, + { + "start": 5734.72, + "end": 5739.04, + "probability": 0.7129 + }, + { + "start": 5742.96, + "end": 5744.48, + "probability": 0.6927 + }, + { + "start": 5745.0, + "end": 5749.76, + "probability": 0.7158 + }, + { + "start": 5749.98, + "end": 5752.44, + "probability": 0.9292 + }, + { + "start": 5753.0, + "end": 5755.72, + "probability": 0.9742 + }, + { + "start": 5756.14, + "end": 5758.16, + "probability": 0.6847 + }, + { + "start": 5758.44, + "end": 5760.98, + "probability": 0.9526 + }, + { + "start": 5761.58, + "end": 5763.38, + "probability": 0.6682 + }, + { + "start": 5764.24, + "end": 5765.68, + "probability": 0.9043 + }, + { + "start": 5765.84, + "end": 5767.45, + "probability": 0.7173 + }, + { + "start": 5768.24, + "end": 5772.0, + "probability": 0.985 + }, + { + "start": 5773.44, + "end": 5774.6, + "probability": 0.7335 + }, + { + "start": 5774.74, + "end": 5777.12, + "probability": 0.9948 + }, + { + "start": 5777.84, + "end": 5780.1, + "probability": 0.7748 + }, + { + "start": 5781.26, + "end": 5783.62, + "probability": 0.822 + }, + { + "start": 5784.04, + "end": 5785.7, + "probability": 0.8628 + }, + { + "start": 5785.88, + "end": 5786.94, + "probability": 0.7099 + }, + { + "start": 5787.34, + "end": 5790.56, + "probability": 0.9568 + }, + { + "start": 5791.16, + "end": 5793.6, + "probability": 0.5744 + }, + { + "start": 5794.44, + "end": 5797.88, + "probability": 0.7274 + }, + { + "start": 5798.12, + "end": 5799.1, + "probability": 0.7133 + }, + { + "start": 5799.66, + "end": 5802.21, + "probability": 0.9005 + }, + { + "start": 5803.08, + "end": 5804.64, + "probability": 0.2418 + }, + { + "start": 5808.9, + "end": 5808.9, + "probability": 0.026 + }, + { + "start": 5808.9, + "end": 5809.46, + "probability": 0.0149 + }, + { + "start": 5810.3, + "end": 5811.3, + "probability": 0.2967 + }, + { + "start": 5812.36, + "end": 5814.0, + "probability": 0.6387 + }, + { + "start": 5815.04, + "end": 5816.78, + "probability": 0.7218 + }, + { + "start": 5817.94, + "end": 5822.64, + "probability": 0.9619 + }, + { + "start": 5823.38, + "end": 5824.88, + "probability": 0.4933 + }, + { + "start": 5825.1, + "end": 5829.76, + "probability": 0.9106 + }, + { + "start": 5830.78, + "end": 5833.06, + "probability": 0.9124 + }, + { + "start": 5833.06, + "end": 5833.98, + "probability": 0.8643 + }, + { + "start": 5833.98, + "end": 5835.1, + "probability": 0.9819 + }, + { + "start": 5835.52, + "end": 5836.82, + "probability": 0.6498 + }, + { + "start": 5836.82, + "end": 5838.16, + "probability": 0.7792 + }, + { + "start": 5838.68, + "end": 5843.28, + "probability": 0.9403 + }, + { + "start": 5843.38, + "end": 5847.42, + "probability": 0.9795 + }, + { + "start": 5848.1, + "end": 5848.22, + "probability": 0.7275 + }, + { + "start": 5848.22, + "end": 5848.58, + "probability": 0.4481 + }, + { + "start": 5848.76, + "end": 5852.36, + "probability": 0.9819 + }, + { + "start": 5852.38, + "end": 5855.08, + "probability": 0.9932 + }, + { + "start": 5855.96, + "end": 5858.3, + "probability": 0.802 + }, + { + "start": 5858.34, + "end": 5861.14, + "probability": 0.8619 + }, + { + "start": 5861.2, + "end": 5864.0, + "probability": 0.8782 + }, + { + "start": 5864.28, + "end": 5864.96, + "probability": 0.7196 + }, + { + "start": 5865.02, + "end": 5866.64, + "probability": 0.8949 + }, + { + "start": 5866.94, + "end": 5867.24, + "probability": 0.6385 + }, + { + "start": 5867.32, + "end": 5867.54, + "probability": 0.3633 + }, + { + "start": 5867.6, + "end": 5867.98, + "probability": 0.7248 + }, + { + "start": 5868.2, + "end": 5869.41, + "probability": 0.8087 + }, + { + "start": 5869.72, + "end": 5870.14, + "probability": 0.6196 + }, + { + "start": 5870.18, + "end": 5871.86, + "probability": 0.7955 + }, + { + "start": 5873.64, + "end": 5875.08, + "probability": 0.6046 + }, + { + "start": 5875.88, + "end": 5877.54, + "probability": 0.9482 + }, + { + "start": 5877.66, + "end": 5878.14, + "probability": 0.7611 + }, + { + "start": 5878.54, + "end": 5881.76, + "probability": 0.9962 + }, + { + "start": 5881.76, + "end": 5884.4, + "probability": 0.9897 + }, + { + "start": 5885.82, + "end": 5888.32, + "probability": 0.9948 + }, + { + "start": 5888.32, + "end": 5891.5, + "probability": 0.9925 + }, + { + "start": 5892.72, + "end": 5893.18, + "probability": 0.9829 + }, + { + "start": 5894.04, + "end": 5894.78, + "probability": 0.6993 + }, + { + "start": 5894.86, + "end": 5897.38, + "probability": 0.9978 + }, + { + "start": 5897.94, + "end": 5901.22, + "probability": 0.9347 + }, + { + "start": 5902.4, + "end": 5906.54, + "probability": 0.9923 + }, + { + "start": 5906.54, + "end": 5911.1, + "probability": 0.998 + }, + { + "start": 5911.32, + "end": 5912.02, + "probability": 0.5917 + }, + { + "start": 5912.68, + "end": 5915.6, + "probability": 0.9919 + }, + { + "start": 5915.6, + "end": 5918.36, + "probability": 0.9591 + }, + { + "start": 5919.22, + "end": 5919.48, + "probability": 0.2505 + }, + { + "start": 5920.5, + "end": 5922.5, + "probability": 0.7266 + }, + { + "start": 5923.28, + "end": 5924.84, + "probability": 0.998 + }, + { + "start": 5925.68, + "end": 5927.32, + "probability": 0.9526 + }, + { + "start": 5928.96, + "end": 5929.3, + "probability": 0.9321 + }, + { + "start": 5929.36, + "end": 5930.02, + "probability": 0.9777 + }, + { + "start": 5930.06, + "end": 5932.6, + "probability": 0.9832 + }, + { + "start": 5933.24, + "end": 5935.72, + "probability": 0.9923 + }, + { + "start": 5937.7, + "end": 5938.12, + "probability": 0.9425 + }, + { + "start": 5939.18, + "end": 5941.0, + "probability": 0.9653 + }, + { + "start": 5941.86, + "end": 5944.12, + "probability": 0.8133 + }, + { + "start": 5944.18, + "end": 5950.14, + "probability": 0.9482 + }, + { + "start": 5950.68, + "end": 5951.42, + "probability": 0.999 + }, + { + "start": 5953.4, + "end": 5958.48, + "probability": 0.9822 + }, + { + "start": 5958.48, + "end": 5962.26, + "probability": 0.9994 + }, + { + "start": 5962.3, + "end": 5970.24, + "probability": 0.9966 + }, + { + "start": 5971.2, + "end": 5972.78, + "probability": 0.6805 + }, + { + "start": 5973.5, + "end": 5975.6, + "probability": 0.8986 + }, + { + "start": 5977.08, + "end": 5980.33, + "probability": 0.752 + }, + { + "start": 5981.08, + "end": 5982.54, + "probability": 0.8333 + }, + { + "start": 5983.16, + "end": 5985.4, + "probability": 0.9803 + }, + { + "start": 5986.08, + "end": 5988.4, + "probability": 0.8042 + }, + { + "start": 5988.9, + "end": 5990.56, + "probability": 0.9272 + }, + { + "start": 5991.76, + "end": 5994.38, + "probability": 0.9619 + }, + { + "start": 5995.52, + "end": 6000.34, + "probability": 0.9666 + }, + { + "start": 6000.46, + "end": 6001.36, + "probability": 0.9326 + }, + { + "start": 6002.26, + "end": 6003.7, + "probability": 0.9922 + }, + { + "start": 6003.86, + "end": 6006.08, + "probability": 0.9857 + }, + { + "start": 6006.74, + "end": 6007.32, + "probability": 0.8801 + }, + { + "start": 6007.64, + "end": 6009.72, + "probability": 0.8941 + }, + { + "start": 6009.86, + "end": 6010.54, + "probability": 0.5145 + }, + { + "start": 6011.48, + "end": 6012.44, + "probability": 0.9316 + }, + { + "start": 6013.62, + "end": 6015.02, + "probability": 0.9529 + }, + { + "start": 6015.16, + "end": 6016.2, + "probability": 0.6807 + }, + { + "start": 6016.58, + "end": 6018.26, + "probability": 0.953 + }, + { + "start": 6018.36, + "end": 6018.78, + "probability": 0.3563 + }, + { + "start": 6019.64, + "end": 6022.38, + "probability": 0.8683 + }, + { + "start": 6023.16, + "end": 6023.46, + "probability": 0.8346 + }, + { + "start": 6024.84, + "end": 6025.02, + "probability": 0.4912 + }, + { + "start": 6025.06, + "end": 6026.56, + "probability": 0.7806 + }, + { + "start": 6031.8, + "end": 6032.72, + "probability": 0.7056 + }, + { + "start": 6032.84, + "end": 6033.9, + "probability": 0.9455 + }, + { + "start": 6034.04, + "end": 6038.18, + "probability": 0.9918 + }, + { + "start": 6038.38, + "end": 6040.4, + "probability": 0.9494 + }, + { + "start": 6040.94, + "end": 6046.94, + "probability": 0.8993 + }, + { + "start": 6047.32, + "end": 6051.12, + "probability": 0.8543 + }, + { + "start": 6051.6, + "end": 6053.95, + "probability": 0.9637 + }, + { + "start": 6054.7, + "end": 6061.8, + "probability": 0.9929 + }, + { + "start": 6062.24, + "end": 6066.01, + "probability": 0.9964 + }, + { + "start": 6066.3, + "end": 6066.58, + "probability": 0.8751 + }, + { + "start": 6066.72, + "end": 6067.0, + "probability": 0.7118 + }, + { + "start": 6067.92, + "end": 6070.58, + "probability": 0.895 + }, + { + "start": 6072.94, + "end": 6076.17, + "probability": 0.9906 + }, + { + "start": 6076.34, + "end": 6079.22, + "probability": 0.9867 + }, + { + "start": 6079.76, + "end": 6081.23, + "probability": 0.6309 + }, + { + "start": 6082.16, + "end": 6084.36, + "probability": 0.9564 + }, + { + "start": 6084.4, + "end": 6085.38, + "probability": 0.871 + }, + { + "start": 6085.52, + "end": 6087.32, + "probability": 0.8967 + }, + { + "start": 6087.38, + "end": 6088.4, + "probability": 0.7108 + }, + { + "start": 6088.88, + "end": 6092.66, + "probability": 0.9771 + }, + { + "start": 6094.38, + "end": 6097.56, + "probability": 0.9928 + }, + { + "start": 6098.38, + "end": 6100.3, + "probability": 0.8847 + }, + { + "start": 6100.44, + "end": 6104.46, + "probability": 0.9955 + }, + { + "start": 6104.62, + "end": 6105.72, + "probability": 0.994 + }, + { + "start": 6107.14, + "end": 6110.93, + "probability": 0.8967 + }, + { + "start": 6111.06, + "end": 6114.52, + "probability": 0.9912 + }, + { + "start": 6114.66, + "end": 6115.61, + "probability": 0.9639 + }, + { + "start": 6116.36, + "end": 6118.82, + "probability": 0.9634 + }, + { + "start": 6118.9, + "end": 6120.0, + "probability": 0.9563 + }, + { + "start": 6120.1, + "end": 6121.4, + "probability": 0.9051 + }, + { + "start": 6121.57, + "end": 6123.02, + "probability": 0.8755 + }, + { + "start": 6124.72, + "end": 6126.97, + "probability": 0.9746 + }, + { + "start": 6128.36, + "end": 6131.82, + "probability": 0.997 + }, + { + "start": 6131.98, + "end": 6135.22, + "probability": 0.9375 + }, + { + "start": 6136.1, + "end": 6138.84, + "probability": 0.9982 + }, + { + "start": 6139.14, + "end": 6139.92, + "probability": 0.6008 + }, + { + "start": 6140.92, + "end": 6143.1, + "probability": 0.9865 + }, + { + "start": 6143.1, + "end": 6146.26, + "probability": 0.9811 + }, + { + "start": 6147.14, + "end": 6147.74, + "probability": 0.8445 + }, + { + "start": 6149.0, + "end": 6149.82, + "probability": 0.8547 + }, + { + "start": 6150.04, + "end": 6152.3, + "probability": 0.9548 + }, + { + "start": 6152.44, + "end": 6153.86, + "probability": 0.9951 + }, + { + "start": 6154.66, + "end": 6156.06, + "probability": 0.9888 + }, + { + "start": 6157.1, + "end": 6159.96, + "probability": 0.9866 + }, + { + "start": 6159.96, + "end": 6167.4, + "probability": 0.9896 + }, + { + "start": 6167.62, + "end": 6167.88, + "probability": 0.717 + }, + { + "start": 6168.0, + "end": 6168.88, + "probability": 0.9341 + }, + { + "start": 6169.06, + "end": 6170.18, + "probability": 0.8514 + }, + { + "start": 6171.74, + "end": 6172.82, + "probability": 0.9303 + }, + { + "start": 6172.94, + "end": 6174.09, + "probability": 0.9829 + }, + { + "start": 6174.26, + "end": 6176.4, + "probability": 0.9899 + }, + { + "start": 6177.04, + "end": 6180.54, + "probability": 0.9775 + }, + { + "start": 6181.02, + "end": 6185.14, + "probability": 0.9917 + }, + { + "start": 6185.52, + "end": 6186.64, + "probability": 0.901 + }, + { + "start": 6187.02, + "end": 6190.0, + "probability": 0.9852 + }, + { + "start": 6190.16, + "end": 6191.1, + "probability": 0.8652 + }, + { + "start": 6192.26, + "end": 6194.44, + "probability": 0.915 + }, + { + "start": 6194.54, + "end": 6195.36, + "probability": 0.8804 + }, + { + "start": 6195.42, + "end": 6196.76, + "probability": 0.3004 + }, + { + "start": 6197.42, + "end": 6199.49, + "probability": 0.6929 + }, + { + "start": 6200.1, + "end": 6201.82, + "probability": 0.9778 + }, + { + "start": 6202.44, + "end": 6205.76, + "probability": 0.9554 + }, + { + "start": 6205.98, + "end": 6209.16, + "probability": 0.9062 + }, + { + "start": 6210.08, + "end": 6214.82, + "probability": 0.6556 + }, + { + "start": 6215.0, + "end": 6216.24, + "probability": 0.8786 + }, + { + "start": 6217.5, + "end": 6218.1, + "probability": 0.6494 + }, + { + "start": 6218.62, + "end": 6222.32, + "probability": 0.9704 + }, + { + "start": 6222.46, + "end": 6223.05, + "probability": 0.8743 + }, + { + "start": 6223.56, + "end": 6226.26, + "probability": 0.9909 + }, + { + "start": 6227.12, + "end": 6230.02, + "probability": 0.7467 + }, + { + "start": 6230.54, + "end": 6233.23, + "probability": 0.9765 + }, + { + "start": 6234.36, + "end": 6236.26, + "probability": 0.9702 + }, + { + "start": 6236.72, + "end": 6238.06, + "probability": 0.9826 + }, + { + "start": 6238.1, + "end": 6239.54, + "probability": 0.9158 + }, + { + "start": 6240.86, + "end": 6241.02, + "probability": 0.4487 + }, + { + "start": 6241.02, + "end": 6241.42, + "probability": 0.885 + }, + { + "start": 6241.5, + "end": 6244.49, + "probability": 0.6895 + }, + { + "start": 6244.68, + "end": 6246.98, + "probability": 0.8396 + }, + { + "start": 6249.58, + "end": 6253.66, + "probability": 0.7649 + }, + { + "start": 6253.9, + "end": 6255.9, + "probability": 0.7911 + }, + { + "start": 6256.7, + "end": 6260.62, + "probability": 0.9628 + }, + { + "start": 6261.2, + "end": 6262.56, + "probability": 0.8873 + }, + { + "start": 6263.58, + "end": 6266.58, + "probability": 0.575 + }, + { + "start": 6267.68, + "end": 6270.32, + "probability": 0.9425 + }, + { + "start": 6271.52, + "end": 6272.68, + "probability": 0.8596 + }, + { + "start": 6272.9, + "end": 6276.4, + "probability": 0.9596 + }, + { + "start": 6276.58, + "end": 6279.26, + "probability": 0.9812 + }, + { + "start": 6279.68, + "end": 6281.26, + "probability": 0.8239 + }, + { + "start": 6281.86, + "end": 6285.26, + "probability": 0.5444 + }, + { + "start": 6285.8, + "end": 6288.52, + "probability": 0.7343 + }, + { + "start": 6289.06, + "end": 6289.98, + "probability": 0.9681 + }, + { + "start": 6290.4, + "end": 6294.9, + "probability": 0.9903 + }, + { + "start": 6295.84, + "end": 6296.72, + "probability": 0.957 + }, + { + "start": 6296.86, + "end": 6299.34, + "probability": 0.7573 + }, + { + "start": 6299.44, + "end": 6300.52, + "probability": 0.6893 + }, + { + "start": 6300.94, + "end": 6305.2, + "probability": 0.9137 + }, + { + "start": 6305.96, + "end": 6307.14, + "probability": 0.9229 + }, + { + "start": 6308.04, + "end": 6310.92, + "probability": 0.9765 + }, + { + "start": 6311.98, + "end": 6314.48, + "probability": 0.8111 + }, + { + "start": 6314.56, + "end": 6316.8, + "probability": 0.951 + }, + { + "start": 6316.86, + "end": 6318.71, + "probability": 0.7232 + }, + { + "start": 6320.04, + "end": 6322.24, + "probability": 0.8107 + }, + { + "start": 6322.74, + "end": 6323.14, + "probability": 0.3292 + }, + { + "start": 6323.24, + "end": 6327.18, + "probability": 0.949 + }, + { + "start": 6327.82, + "end": 6329.08, + "probability": 0.8695 + }, + { + "start": 6330.44, + "end": 6331.08, + "probability": 0.47 + }, + { + "start": 6331.24, + "end": 6333.7, + "probability": 0.8372 + }, + { + "start": 6334.14, + "end": 6336.5, + "probability": 0.7102 + }, + { + "start": 6336.76, + "end": 6337.04, + "probability": 0.7753 + }, + { + "start": 6337.94, + "end": 6338.18, + "probability": 0.5155 + }, + { + "start": 6338.26, + "end": 6338.52, + "probability": 0.761 + }, + { + "start": 6338.58, + "end": 6339.84, + "probability": 0.9001 + }, + { + "start": 6339.98, + "end": 6340.26, + "probability": 0.6507 + }, + { + "start": 6340.28, + "end": 6341.6, + "probability": 0.9007 + }, + { + "start": 6341.76, + "end": 6342.56, + "probability": 0.571 + }, + { + "start": 6342.66, + "end": 6343.97, + "probability": 0.9276 + }, + { + "start": 6345.2, + "end": 6346.1, + "probability": 0.5261 + }, + { + "start": 6346.79, + "end": 6351.46, + "probability": 0.9703 + }, + { + "start": 6351.6, + "end": 6352.18, + "probability": 0.5739 + }, + { + "start": 6352.26, + "end": 6354.96, + "probability": 0.9922 + }, + { + "start": 6355.6, + "end": 6359.14, + "probability": 0.9608 + }, + { + "start": 6359.14, + "end": 6363.34, + "probability": 0.9971 + }, + { + "start": 6363.4, + "end": 6365.86, + "probability": 0.8042 + }, + { + "start": 6366.32, + "end": 6369.46, + "probability": 0.908 + }, + { + "start": 6369.52, + "end": 6372.48, + "probability": 0.9945 + }, + { + "start": 6372.96, + "end": 6376.78, + "probability": 0.9911 + }, + { + "start": 6377.5, + "end": 6380.66, + "probability": 0.9206 + }, + { + "start": 6380.76, + "end": 6381.42, + "probability": 0.3846 + }, + { + "start": 6381.52, + "end": 6384.28, + "probability": 0.9232 + }, + { + "start": 6384.28, + "end": 6387.5, + "probability": 0.9974 + }, + { + "start": 6387.86, + "end": 6389.98, + "probability": 0.945 + }, + { + "start": 6390.04, + "end": 6392.82, + "probability": 0.989 + }, + { + "start": 6392.82, + "end": 6395.52, + "probability": 0.9958 + }, + { + "start": 6395.92, + "end": 6396.86, + "probability": 0.8937 + }, + { + "start": 6396.96, + "end": 6399.86, + "probability": 0.8809 + }, + { + "start": 6400.0, + "end": 6400.68, + "probability": 0.554 + }, + { + "start": 6404.36, + "end": 6404.8, + "probability": 0.7445 + }, + { + "start": 6405.48, + "end": 6413.18, + "probability": 0.8657 + }, + { + "start": 6413.92, + "end": 6417.3, + "probability": 0.9836 + }, + { + "start": 6418.78, + "end": 6420.12, + "probability": 0.8953 + }, + { + "start": 6420.65, + "end": 6426.46, + "probability": 0.9912 + }, + { + "start": 6426.46, + "end": 6431.68, + "probability": 0.988 + }, + { + "start": 6433.46, + "end": 6437.12, + "probability": 0.9868 + }, + { + "start": 6437.52, + "end": 6442.52, + "probability": 0.9832 + }, + { + "start": 6442.96, + "end": 6443.42, + "probability": 0.5329 + }, + { + "start": 6443.6, + "end": 6444.64, + "probability": 0.7266 + }, + { + "start": 6445.28, + "end": 6448.26, + "probability": 0.8923 + }, + { + "start": 6449.14, + "end": 6452.34, + "probability": 0.9867 + }, + { + "start": 6452.56, + "end": 6455.3, + "probability": 0.9766 + }, + { + "start": 6456.4, + "end": 6459.2, + "probability": 0.9013 + }, + { + "start": 6460.9, + "end": 6464.94, + "probability": 0.9963 + }, + { + "start": 6464.94, + "end": 6467.16, + "probability": 0.9922 + }, + { + "start": 6467.38, + "end": 6468.4, + "probability": 0.9314 + }, + { + "start": 6469.88, + "end": 6470.92, + "probability": 0.7455 + }, + { + "start": 6471.34, + "end": 6472.02, + "probability": 0.9105 + }, + { + "start": 6472.1, + "end": 6474.52, + "probability": 0.9446 + }, + { + "start": 6475.36, + "end": 6476.64, + "probability": 0.8225 + }, + { + "start": 6476.92, + "end": 6478.92, + "probability": 0.9849 + }, + { + "start": 6478.94, + "end": 6482.08, + "probability": 0.9536 + }, + { + "start": 6482.66, + "end": 6483.82, + "probability": 0.81 + }, + { + "start": 6483.98, + "end": 6488.66, + "probability": 0.9455 + }, + { + "start": 6489.14, + "end": 6489.46, + "probability": 0.837 + }, + { + "start": 6489.52, + "end": 6494.82, + "probability": 0.9921 + }, + { + "start": 6495.58, + "end": 6496.28, + "probability": 0.9898 + }, + { + "start": 6496.68, + "end": 6497.42, + "probability": 0.72 + }, + { + "start": 6498.32, + "end": 6500.12, + "probability": 0.9043 + }, + { + "start": 6500.26, + "end": 6501.0, + "probability": 0.8813 + }, + { + "start": 6501.34, + "end": 6502.4, + "probability": 0.9008 + }, + { + "start": 6503.48, + "end": 6506.24, + "probability": 0.7835 + }, + { + "start": 6508.34, + "end": 6510.24, + "probability": 0.9595 + }, + { + "start": 6511.44, + "end": 6515.26, + "probability": 0.9761 + }, + { + "start": 6515.84, + "end": 6516.74, + "probability": 0.669 + }, + { + "start": 6517.98, + "end": 6521.98, + "probability": 0.9934 + }, + { + "start": 6522.12, + "end": 6529.82, + "probability": 0.9684 + }, + { + "start": 6529.82, + "end": 6533.44, + "probability": 0.9939 + }, + { + "start": 6534.6, + "end": 6535.92, + "probability": 0.8293 + }, + { + "start": 6536.0, + "end": 6538.01, + "probability": 0.9711 + }, + { + "start": 6538.5, + "end": 6540.22, + "probability": 0.9863 + }, + { + "start": 6540.96, + "end": 6543.65, + "probability": 0.8705 + }, + { + "start": 6544.62, + "end": 6546.24, + "probability": 0.9682 + }, + { + "start": 6546.28, + "end": 6548.52, + "probability": 0.9512 + }, + { + "start": 6548.7, + "end": 6550.0, + "probability": 0.9686 + }, + { + "start": 6550.96, + "end": 6552.28, + "probability": 0.9281 + }, + { + "start": 6553.2, + "end": 6556.0, + "probability": 0.8931 + }, + { + "start": 6556.04, + "end": 6559.8, + "probability": 0.7631 + }, + { + "start": 6560.98, + "end": 6562.68, + "probability": 0.9868 + }, + { + "start": 6562.86, + "end": 6563.78, + "probability": 0.917 + }, + { + "start": 6563.86, + "end": 6566.76, + "probability": 0.6927 + }, + { + "start": 6567.54, + "end": 6568.66, + "probability": 0.7972 + }, + { + "start": 6568.8, + "end": 6570.82, + "probability": 0.6101 + }, + { + "start": 6571.5, + "end": 6572.24, + "probability": 0.368 + }, + { + "start": 6573.38, + "end": 6575.3, + "probability": 0.9315 + }, + { + "start": 6576.42, + "end": 6581.08, + "probability": 0.8908 + }, + { + "start": 6581.08, + "end": 6585.58, + "probability": 0.886 + }, + { + "start": 6586.8, + "end": 6588.62, + "probability": 0.9061 + }, + { + "start": 6589.24, + "end": 6589.38, + "probability": 0.1443 + }, + { + "start": 6589.38, + "end": 6590.02, + "probability": 0.9097 + }, + { + "start": 6590.6, + "end": 6592.56, + "probability": 0.8783 + }, + { + "start": 6593.06, + "end": 6601.52, + "probability": 0.9912 + }, + { + "start": 6602.52, + "end": 6605.56, + "probability": 0.9427 + }, + { + "start": 6606.74, + "end": 6610.23, + "probability": 0.9774 + }, + { + "start": 6610.9, + "end": 6611.76, + "probability": 0.834 + }, + { + "start": 6612.2, + "end": 6617.44, + "probability": 0.9945 + }, + { + "start": 6617.74, + "end": 6622.38, + "probability": 0.9697 + }, + { + "start": 6623.42, + "end": 6627.18, + "probability": 0.9419 + }, + { + "start": 6627.28, + "end": 6628.26, + "probability": 0.6364 + }, + { + "start": 6629.16, + "end": 6631.66, + "probability": 0.9801 + }, + { + "start": 6632.78, + "end": 6632.92, + "probability": 0.3338 + }, + { + "start": 6633.04, + "end": 6635.26, + "probability": 0.6434 + }, + { + "start": 6635.68, + "end": 6640.5, + "probability": 0.8909 + }, + { + "start": 6641.14, + "end": 6642.98, + "probability": 0.7385 + }, + { + "start": 6643.64, + "end": 6645.01, + "probability": 0.949 + }, + { + "start": 6645.68, + "end": 6645.9, + "probability": 0.8298 + }, + { + "start": 6647.0, + "end": 6649.38, + "probability": 0.6991 + }, + { + "start": 6650.02, + "end": 6653.54, + "probability": 0.137 + }, + { + "start": 6654.46, + "end": 6657.6, + "probability": 0.5353 + }, + { + "start": 6657.94, + "end": 6658.24, + "probability": 0.0484 + }, + { + "start": 6658.84, + "end": 6662.8, + "probability": 0.586 + }, + { + "start": 6662.92, + "end": 6663.7, + "probability": 0.7079 + }, + { + "start": 6665.84, + "end": 6668.44, + "probability": 0.3858 + }, + { + "start": 6670.38, + "end": 6671.7, + "probability": 0.2508 + }, + { + "start": 6671.7, + "end": 6672.46, + "probability": 0.0661 + }, + { + "start": 6672.92, + "end": 6675.96, + "probability": 0.4779 + }, + { + "start": 6676.12, + "end": 6678.58, + "probability": 0.5477 + }, + { + "start": 6679.62, + "end": 6680.27, + "probability": 0.6227 + }, + { + "start": 6681.22, + "end": 6686.68, + "probability": 0.8872 + }, + { + "start": 6686.68, + "end": 6690.26, + "probability": 0.8292 + }, + { + "start": 6690.34, + "end": 6691.26, + "probability": 0.3473 + }, + { + "start": 6692.0, + "end": 6694.26, + "probability": 0.7493 + }, + { + "start": 6694.46, + "end": 6699.86, + "probability": 0.5099 + }, + { + "start": 6700.34, + "end": 6702.82, + "probability": 0.8359 + }, + { + "start": 6704.0, + "end": 6707.48, + "probability": 0.861 + }, + { + "start": 6708.5, + "end": 6712.4, + "probability": 0.9552 + }, + { + "start": 6712.96, + "end": 6713.66, + "probability": 0.635 + }, + { + "start": 6714.82, + "end": 6718.9, + "probability": 0.9913 + }, + { + "start": 6719.06, + "end": 6720.99, + "probability": 0.2821 + }, + { + "start": 6721.38, + "end": 6723.24, + "probability": 0.4136 + }, + { + "start": 6725.41, + "end": 6727.7, + "probability": 0.7376 + }, + { + "start": 6728.4, + "end": 6728.76, + "probability": 0.3737 + }, + { + "start": 6728.86, + "end": 6729.82, + "probability": 0.799 + }, + { + "start": 6729.94, + "end": 6730.28, + "probability": 0.7778 + }, + { + "start": 6730.3, + "end": 6731.86, + "probability": 0.6192 + }, + { + "start": 6734.78, + "end": 6735.6, + "probability": 0.7687 + }, + { + "start": 6736.0, + "end": 6737.68, + "probability": 0.9407 + }, + { + "start": 6738.2, + "end": 6741.46, + "probability": 0.934 + }, + { + "start": 6741.96, + "end": 6745.52, + "probability": 0.9852 + }, + { + "start": 6745.58, + "end": 6748.56, + "probability": 0.9004 + }, + { + "start": 6749.36, + "end": 6751.4, + "probability": 0.9932 + }, + { + "start": 6752.06, + "end": 6754.98, + "probability": 0.9893 + }, + { + "start": 6754.98, + "end": 6758.42, + "probability": 0.9814 + }, + { + "start": 6759.26, + "end": 6760.28, + "probability": 0.5555 + }, + { + "start": 6760.8, + "end": 6763.36, + "probability": 0.9838 + }, + { + "start": 6763.36, + "end": 6766.52, + "probability": 0.9984 + }, + { + "start": 6767.88, + "end": 6770.88, + "probability": 0.7357 + }, + { + "start": 6771.5, + "end": 6773.62, + "probability": 0.9722 + }, + { + "start": 6773.62, + "end": 6776.22, + "probability": 0.8867 + }, + { + "start": 6776.58, + "end": 6778.34, + "probability": 0.9941 + }, + { + "start": 6778.58, + "end": 6781.74, + "probability": 0.8632 + }, + { + "start": 6781.74, + "end": 6784.88, + "probability": 0.6859 + }, + { + "start": 6784.9, + "end": 6785.52, + "probability": 0.6476 + }, + { + "start": 6785.62, + "end": 6787.16, + "probability": 0.8042 + }, + { + "start": 6787.26, + "end": 6789.7, + "probability": 0.9801 + }, + { + "start": 6789.7, + "end": 6794.12, + "probability": 0.972 + }, + { + "start": 6795.86, + "end": 6796.38, + "probability": 0.4616 + }, + { + "start": 6802.1, + "end": 6803.6, + "probability": 0.7575 + }, + { + "start": 6803.88, + "end": 6804.36, + "probability": 0.5186 + }, + { + "start": 6805.26, + "end": 6807.02, + "probability": 0.8258 + }, + { + "start": 6808.04, + "end": 6809.4, + "probability": 0.9729 + }, + { + "start": 6810.56, + "end": 6811.32, + "probability": 0.924 + }, + { + "start": 6812.36, + "end": 6814.8, + "probability": 0.8901 + }, + { + "start": 6815.84, + "end": 6818.04, + "probability": 0.9543 + }, + { + "start": 6818.14, + "end": 6821.66, + "probability": 0.7499 + }, + { + "start": 6822.99, + "end": 6825.6, + "probability": 0.9352 + }, + { + "start": 6825.68, + "end": 6830.02, + "probability": 0.9836 + }, + { + "start": 6830.34, + "end": 6831.72, + "probability": 0.9057 + }, + { + "start": 6831.96, + "end": 6834.62, + "probability": 0.9274 + }, + { + "start": 6835.44, + "end": 6838.56, + "probability": 0.7719 + }, + { + "start": 6839.82, + "end": 6840.66, + "probability": 0.7145 + }, + { + "start": 6841.26, + "end": 6845.59, + "probability": 0.9904 + }, + { + "start": 6846.66, + "end": 6847.96, + "probability": 0.8801 + }, + { + "start": 6848.08, + "end": 6848.92, + "probability": 0.8784 + }, + { + "start": 6849.02, + "end": 6852.14, + "probability": 0.9793 + }, + { + "start": 6853.96, + "end": 6856.24, + "probability": 0.906 + }, + { + "start": 6857.38, + "end": 6858.97, + "probability": 0.7069 + }, + { + "start": 6861.3, + "end": 6861.56, + "probability": 0.7194 + }, + { + "start": 6861.62, + "end": 6863.5, + "probability": 0.8218 + }, + { + "start": 6863.7, + "end": 6867.12, + "probability": 0.7874 + }, + { + "start": 6867.24, + "end": 6867.48, + "probability": 0.4793 + }, + { + "start": 6867.6, + "end": 6868.14, + "probability": 0.7255 + }, + { + "start": 6868.38, + "end": 6869.42, + "probability": 0.4985 + }, + { + "start": 6870.84, + "end": 6871.44, + "probability": 0.2097 + }, + { + "start": 6871.44, + "end": 6871.6, + "probability": 0.4056 + }, + { + "start": 6872.14, + "end": 6872.69, + "probability": 0.8009 + }, + { + "start": 6874.06, + "end": 6875.54, + "probability": 0.9758 + }, + { + "start": 6876.12, + "end": 6877.58, + "probability": 0.9747 + }, + { + "start": 6878.56, + "end": 6879.16, + "probability": 0.9343 + }, + { + "start": 6881.82, + "end": 6882.0, + "probability": 0.4114 + }, + { + "start": 6882.0, + "end": 6882.0, + "probability": 0.6967 + }, + { + "start": 6882.0, + "end": 6884.32, + "probability": 0.4481 + }, + { + "start": 6884.78, + "end": 6887.26, + "probability": 0.7852 + }, + { + "start": 6888.28, + "end": 6888.66, + "probability": 0.6942 + }, + { + "start": 6888.8, + "end": 6891.9, + "probability": 0.9904 + }, + { + "start": 6893.58, + "end": 6894.2, + "probability": 0.6918 + }, + { + "start": 6894.96, + "end": 6897.8, + "probability": 0.995 + }, + { + "start": 6897.8, + "end": 6901.2, + "probability": 0.753 + }, + { + "start": 6901.28, + "end": 6902.22, + "probability": 0.7008 + }, + { + "start": 6902.98, + "end": 6907.76, + "probability": 0.6823 + }, + { + "start": 6907.96, + "end": 6908.5, + "probability": 0.751 + }, + { + "start": 6908.8, + "end": 6914.08, + "probability": 0.9174 + }, + { + "start": 6914.18, + "end": 6915.22, + "probability": 0.9268 + }, + { + "start": 6915.8, + "end": 6918.76, + "probability": 0.9613 + }, + { + "start": 6920.2, + "end": 6922.08, + "probability": 0.8358 + }, + { + "start": 6922.22, + "end": 6926.5, + "probability": 0.9927 + }, + { + "start": 6926.5, + "end": 6932.26, + "probability": 0.9858 + }, + { + "start": 6933.06, + "end": 6934.52, + "probability": 0.7625 + }, + { + "start": 6935.28, + "end": 6936.42, + "probability": 0.8282 + }, + { + "start": 6937.44, + "end": 6939.62, + "probability": 0.4825 + }, + { + "start": 6940.68, + "end": 6943.37, + "probability": 0.9525 + }, + { + "start": 6944.74, + "end": 6947.08, + "probability": 0.9947 + }, + { + "start": 6947.7, + "end": 6948.68, + "probability": 0.9462 + }, + { + "start": 6949.6, + "end": 6952.68, + "probability": 0.9918 + }, + { + "start": 6953.26, + "end": 6955.12, + "probability": 0.9829 + }, + { + "start": 6956.12, + "end": 6960.26, + "probability": 0.9952 + }, + { + "start": 6961.83, + "end": 6964.86, + "probability": 0.831 + }, + { + "start": 6965.18, + "end": 6967.83, + "probability": 0.8695 + }, + { + "start": 6968.24, + "end": 6969.6, + "probability": 0.9878 + }, + { + "start": 6970.54, + "end": 6973.7, + "probability": 0.9026 + }, + { + "start": 6974.4, + "end": 6978.18, + "probability": 0.9177 + }, + { + "start": 6978.18, + "end": 6982.0, + "probability": 0.9276 + }, + { + "start": 6982.74, + "end": 6983.83, + "probability": 0.989 + }, + { + "start": 6984.12, + "end": 6985.06, + "probability": 0.5049 + }, + { + "start": 6985.2, + "end": 6988.42, + "probability": 0.978 + }, + { + "start": 6988.42, + "end": 6992.12, + "probability": 0.998 + }, + { + "start": 6992.24, + "end": 6993.78, + "probability": 0.9316 + }, + { + "start": 6994.2, + "end": 6995.24, + "probability": 0.9697 + }, + { + "start": 6995.36, + "end": 6996.35, + "probability": 0.9329 + }, + { + "start": 6996.98, + "end": 6997.92, + "probability": 0.0759 + }, + { + "start": 6998.16, + "end": 7000.54, + "probability": 0.5711 + }, + { + "start": 7000.98, + "end": 7002.56, + "probability": 0.932 + }, + { + "start": 7003.6, + "end": 7006.14, + "probability": 0.7083 + }, + { + "start": 7006.94, + "end": 7007.56, + "probability": 0.8911 + }, + { + "start": 7007.68, + "end": 7011.24, + "probability": 0.9139 + }, + { + "start": 7011.72, + "end": 7016.08, + "probability": 0.8877 + }, + { + "start": 7016.22, + "end": 7016.98, + "probability": 0.7437 + }, + { + "start": 7017.86, + "end": 7018.08, + "probability": 0.4864 + }, + { + "start": 7018.18, + "end": 7018.98, + "probability": 0.8313 + }, + { + "start": 7019.28, + "end": 7024.26, + "probability": 0.8335 + }, + { + "start": 7024.44, + "end": 7027.02, + "probability": 0.9766 + }, + { + "start": 7027.48, + "end": 7028.95, + "probability": 0.5407 + }, + { + "start": 7033.82, + "end": 7034.94, + "probability": 0.1862 + }, + { + "start": 7035.14, + "end": 7042.52, + "probability": 0.9084 + }, + { + "start": 7042.6, + "end": 7046.14, + "probability": 0.9656 + }, + { + "start": 7047.04, + "end": 7050.0, + "probability": 0.9963 + }, + { + "start": 7050.8, + "end": 7056.1, + "probability": 0.6622 + }, + { + "start": 7056.1, + "end": 7059.14, + "probability": 0.6638 + }, + { + "start": 7059.14, + "end": 7064.58, + "probability": 0.9356 + }, + { + "start": 7065.08, + "end": 7065.8, + "probability": 0.4354 + }, + { + "start": 7065.98, + "end": 7067.26, + "probability": 0.5116 + }, + { + "start": 7067.32, + "end": 7069.6, + "probability": 0.8594 + }, + { + "start": 7070.78, + "end": 7071.0, + "probability": 0.4647 + }, + { + "start": 7071.06, + "end": 7072.34, + "probability": 0.9753 + }, + { + "start": 7072.42, + "end": 7077.92, + "probability": 0.9813 + }, + { + "start": 7078.48, + "end": 7079.04, + "probability": 0.6667 + }, + { + "start": 7079.16, + "end": 7079.64, + "probability": 0.8714 + }, + { + "start": 7079.76, + "end": 7081.06, + "probability": 0.9586 + }, + { + "start": 7081.4, + "end": 7087.12, + "probability": 0.9868 + }, + { + "start": 7087.12, + "end": 7088.3, + "probability": 0.8656 + }, + { + "start": 7089.02, + "end": 7091.3, + "probability": 0.6894 + }, + { + "start": 7091.86, + "end": 7094.2, + "probability": 0.9471 + }, + { + "start": 7095.0, + "end": 7102.08, + "probability": 0.9183 + }, + { + "start": 7102.68, + "end": 7105.0, + "probability": 0.836 + }, + { + "start": 7105.58, + "end": 7107.48, + "probability": 0.8672 + }, + { + "start": 7108.1, + "end": 7110.16, + "probability": 0.979 + }, + { + "start": 7111.38, + "end": 7111.88, + "probability": 0.6766 + }, + { + "start": 7112.78, + "end": 7113.04, + "probability": 0.3551 + }, + { + "start": 7113.04, + "end": 7114.8, + "probability": 0.7992 + }, + { + "start": 7115.24, + "end": 7116.4, + "probability": 0.699 + }, + { + "start": 7116.5, + "end": 7116.7, + "probability": 0.8992 + }, + { + "start": 7116.78, + "end": 7117.68, + "probability": 0.8816 + }, + { + "start": 7117.88, + "end": 7119.9, + "probability": 0.7632 + }, + { + "start": 7119.96, + "end": 7121.06, + "probability": 0.7317 + }, + { + "start": 7121.36, + "end": 7125.32, + "probability": 0.8851 + }, + { + "start": 7125.4, + "end": 7127.0, + "probability": 0.8485 + }, + { + "start": 7127.14, + "end": 7128.04, + "probability": 0.5699 + }, + { + "start": 7128.12, + "end": 7128.92, + "probability": 0.8664 + }, + { + "start": 7129.62, + "end": 7133.24, + "probability": 0.9833 + }, + { + "start": 7133.28, + "end": 7135.8, + "probability": 0.8357 + }, + { + "start": 7136.82, + "end": 7137.86, + "probability": 0.9136 + }, + { + "start": 7138.0, + "end": 7138.64, + "probability": 0.7575 + }, + { + "start": 7138.74, + "end": 7140.3, + "probability": 0.9966 + }, + { + "start": 7140.58, + "end": 7142.9, + "probability": 0.907 + }, + { + "start": 7143.74, + "end": 7144.96, + "probability": 0.8206 + }, + { + "start": 7148.42, + "end": 7154.38, + "probability": 0.9594 + }, + { + "start": 7154.86, + "end": 7159.48, + "probability": 0.97 + }, + { + "start": 7159.48, + "end": 7163.32, + "probability": 0.9971 + }, + { + "start": 7163.96, + "end": 7167.0, + "probability": 0.9939 + }, + { + "start": 7169.44, + "end": 7171.04, + "probability": 0.7674 + }, + { + "start": 7171.32, + "end": 7172.82, + "probability": 0.6213 + }, + { + "start": 7173.2, + "end": 7175.04, + "probability": 0.6152 + }, + { + "start": 7175.18, + "end": 7182.38, + "probability": 0.9609 + }, + { + "start": 7183.28, + "end": 7183.52, + "probability": 0.6817 + }, + { + "start": 7183.66, + "end": 7184.78, + "probability": 0.8198 + }, + { + "start": 7186.26, + "end": 7187.3, + "probability": 0.9307 + }, + { + "start": 7187.72, + "end": 7188.04, + "probability": 0.5035 + }, + { + "start": 7188.12, + "end": 7188.6, + "probability": 0.6841 + }, + { + "start": 7188.64, + "end": 7190.6, + "probability": 0.9673 + }, + { + "start": 7190.72, + "end": 7192.68, + "probability": 0.9922 + }, + { + "start": 7192.74, + "end": 7194.7, + "probability": 0.8222 + }, + { + "start": 7194.74, + "end": 7195.91, + "probability": 0.6123 + }, + { + "start": 7196.26, + "end": 7197.0, + "probability": 0.504 + }, + { + "start": 7197.06, + "end": 7199.54, + "probability": 0.9717 + }, + { + "start": 7199.54, + "end": 7201.88, + "probability": 0.8777 + }, + { + "start": 7202.72, + "end": 7203.32, + "probability": 0.9031 + }, + { + "start": 7203.46, + "end": 7205.78, + "probability": 0.8838 + }, + { + "start": 7206.84, + "end": 7209.92, + "probability": 0.9787 + }, + { + "start": 7209.92, + "end": 7213.74, + "probability": 0.8645 + }, + { + "start": 7215.18, + "end": 7215.42, + "probability": 0.6043 + }, + { + "start": 7215.74, + "end": 7217.14, + "probability": 0.772 + }, + { + "start": 7225.8, + "end": 7226.7, + "probability": 0.6887 + }, + { + "start": 7227.76, + "end": 7228.42, + "probability": 0.74 + }, + { + "start": 7228.52, + "end": 7231.88, + "probability": 0.9673 + }, + { + "start": 7232.78, + "end": 7233.62, + "probability": 0.9603 + }, + { + "start": 7234.24, + "end": 7236.0, + "probability": 0.9503 + }, + { + "start": 7236.58, + "end": 7237.64, + "probability": 0.8567 + }, + { + "start": 7238.5, + "end": 7240.56, + "probability": 0.9749 + }, + { + "start": 7241.24, + "end": 7242.32, + "probability": 0.9985 + }, + { + "start": 7243.02, + "end": 7245.24, + "probability": 0.974 + }, + { + "start": 7245.24, + "end": 7249.08, + "probability": 0.9376 + }, + { + "start": 7249.08, + "end": 7250.28, + "probability": 0.8389 + }, + { + "start": 7251.98, + "end": 7255.23, + "probability": 0.9082 + }, + { + "start": 7255.26, + "end": 7258.44, + "probability": 0.894 + }, + { + "start": 7259.23, + "end": 7267.06, + "probability": 0.9479 + }, + { + "start": 7268.48, + "end": 7273.9, + "probability": 0.975 + }, + { + "start": 7274.56, + "end": 7276.9, + "probability": 0.7898 + }, + { + "start": 7278.22, + "end": 7283.26, + "probability": 0.9675 + }, + { + "start": 7283.9, + "end": 7284.96, + "probability": 0.39 + }, + { + "start": 7286.26, + "end": 7288.7, + "probability": 0.9626 + }, + { + "start": 7289.26, + "end": 7293.22, + "probability": 0.9765 + }, + { + "start": 7293.6, + "end": 7297.82, + "probability": 0.8307 + }, + { + "start": 7298.1, + "end": 7298.54, + "probability": 0.7309 + }, + { + "start": 7299.16, + "end": 7300.42, + "probability": 0.7657 + }, + { + "start": 7301.86, + "end": 7303.24, + "probability": 0.7874 + }, + { + "start": 7305.84, + "end": 7312.3, + "probability": 0.9742 + }, + { + "start": 7313.0, + "end": 7314.04, + "probability": 0.7412 + }, + { + "start": 7315.58, + "end": 7318.85, + "probability": 0.9938 + }, + { + "start": 7321.1, + "end": 7322.64, + "probability": 0.8309 + }, + { + "start": 7325.34, + "end": 7330.18, + "probability": 0.8148 + }, + { + "start": 7333.54, + "end": 7334.52, + "probability": 0.9474 + }, + { + "start": 7334.66, + "end": 7335.2, + "probability": 0.9836 + }, + { + "start": 7335.96, + "end": 7338.12, + "probability": 0.8831 + }, + { + "start": 7340.1, + "end": 7342.56, + "probability": 0.9197 + }, + { + "start": 7343.94, + "end": 7347.68, + "probability": 0.955 + }, + { + "start": 7348.94, + "end": 7356.3, + "probability": 0.9935 + }, + { + "start": 7356.4, + "end": 7357.24, + "probability": 0.9917 + }, + { + "start": 7357.7, + "end": 7358.44, + "probability": 0.9761 + }, + { + "start": 7358.74, + "end": 7361.34, + "probability": 0.9946 + }, + { + "start": 7362.44, + "end": 7365.64, + "probability": 0.9453 + }, + { + "start": 7366.38, + "end": 7371.76, + "probability": 0.9902 + }, + { + "start": 7371.86, + "end": 7373.04, + "probability": 0.9807 + }, + { + "start": 7374.28, + "end": 7375.3, + "probability": 0.8516 + }, + { + "start": 7376.14, + "end": 7380.82, + "probability": 0.9936 + }, + { + "start": 7381.5, + "end": 7382.4, + "probability": 0.7332 + }, + { + "start": 7382.96, + "end": 7383.86, + "probability": 0.7284 + }, + { + "start": 7385.08, + "end": 7389.6, + "probability": 0.8984 + }, + { + "start": 7390.06, + "end": 7394.92, + "probability": 0.9897 + }, + { + "start": 7395.04, + "end": 7398.7, + "probability": 0.9629 + }, + { + "start": 7399.56, + "end": 7407.56, + "probability": 0.9617 + }, + { + "start": 7407.68, + "end": 7409.94, + "probability": 0.739 + }, + { + "start": 7411.3, + "end": 7413.94, + "probability": 0.9937 + }, + { + "start": 7414.66, + "end": 7415.64, + "probability": 0.9092 + }, + { + "start": 7417.08, + "end": 7417.5, + "probability": 0.8754 + }, + { + "start": 7419.36, + "end": 7422.06, + "probability": 0.6022 + }, + { + "start": 7423.44, + "end": 7430.94, + "probability": 0.9822 + }, + { + "start": 7430.94, + "end": 7435.8, + "probability": 0.9878 + }, + { + "start": 7436.96, + "end": 7438.1, + "probability": 0.3389 + }, + { + "start": 7438.24, + "end": 7443.98, + "probability": 0.9369 + }, + { + "start": 7445.88, + "end": 7448.0, + "probability": 0.259 + }, + { + "start": 7448.0, + "end": 7450.02, + "probability": 0.8732 + }, + { + "start": 7455.26, + "end": 7456.78, + "probability": 0.7651 + }, + { + "start": 7457.74, + "end": 7462.26, + "probability": 0.9175 + }, + { + "start": 7462.26, + "end": 7466.38, + "probability": 0.9962 + }, + { + "start": 7467.04, + "end": 7469.38, + "probability": 0.9971 + }, + { + "start": 7469.38, + "end": 7473.86, + "probability": 0.9843 + }, + { + "start": 7473.88, + "end": 7476.68, + "probability": 0.9838 + }, + { + "start": 7476.68, + "end": 7479.24, + "probability": 0.9781 + }, + { + "start": 7480.48, + "end": 7481.96, + "probability": 0.5832 + }, + { + "start": 7482.64, + "end": 7489.7, + "probability": 0.9837 + }, + { + "start": 7489.84, + "end": 7490.78, + "probability": 0.8456 + }, + { + "start": 7491.74, + "end": 7493.38, + "probability": 0.7612 + }, + { + "start": 7494.12, + "end": 7501.62, + "probability": 0.9932 + }, + { + "start": 7502.16, + "end": 7504.56, + "probability": 0.9561 + }, + { + "start": 7505.52, + "end": 7506.74, + "probability": 0.864 + }, + { + "start": 7506.76, + "end": 7507.86, + "probability": 0.9303 + }, + { + "start": 7507.9, + "end": 7510.72, + "probability": 0.9797 + }, + { + "start": 7512.18, + "end": 7512.32, + "probability": 0.6455 + }, + { + "start": 7512.4, + "end": 7513.3, + "probability": 0.6824 + }, + { + "start": 7514.0, + "end": 7516.04, + "probability": 0.9969 + }, + { + "start": 7517.76, + "end": 7522.94, + "probability": 0.8696 + }, + { + "start": 7524.04, + "end": 7526.17, + "probability": 0.9541 + }, + { + "start": 7527.71, + "end": 7530.8, + "probability": 0.996 + }, + { + "start": 7530.94, + "end": 7531.68, + "probability": 0.8686 + }, + { + "start": 7532.0, + "end": 7533.46, + "probability": 0.5505 + }, + { + "start": 7535.2, + "end": 7538.86, + "probability": 0.9393 + }, + { + "start": 7539.86, + "end": 7540.9, + "probability": 0.9196 + }, + { + "start": 7541.42, + "end": 7542.11, + "probability": 0.0036 + }, + { + "start": 7543.44, + "end": 7546.36, + "probability": 0.9819 + }, + { + "start": 7547.28, + "end": 7551.46, + "probability": 0.8621 + }, + { + "start": 7552.28, + "end": 7556.02, + "probability": 0.951 + }, + { + "start": 7558.62, + "end": 7559.59, + "probability": 0.8333 + }, + { + "start": 7559.86, + "end": 7561.1, + "probability": 0.9569 + }, + { + "start": 7561.16, + "end": 7563.02, + "probability": 0.6613 + }, + { + "start": 7563.06, + "end": 7566.04, + "probability": 0.9919 + }, + { + "start": 7566.18, + "end": 7570.54, + "probability": 0.7861 + }, + { + "start": 7570.66, + "end": 7571.84, + "probability": 0.9081 + }, + { + "start": 7572.6, + "end": 7576.68, + "probability": 0.9575 + }, + { + "start": 7576.7, + "end": 7577.6, + "probability": 0.9482 + }, + { + "start": 7578.98, + "end": 7580.54, + "probability": 0.9333 + }, + { + "start": 7580.66, + "end": 7581.34, + "probability": 0.6733 + }, + { + "start": 7581.36, + "end": 7583.82, + "probability": 0.8258 + }, + { + "start": 7584.0, + "end": 7585.18, + "probability": 0.9819 + }, + { + "start": 7586.42, + "end": 7588.52, + "probability": 0.9038 + }, + { + "start": 7589.48, + "end": 7593.84, + "probability": 0.9637 + }, + { + "start": 7593.98, + "end": 7598.6, + "probability": 0.9359 + }, + { + "start": 7598.66, + "end": 7602.42, + "probability": 0.9673 + }, + { + "start": 7603.42, + "end": 7607.82, + "probability": 0.9854 + }, + { + "start": 7607.92, + "end": 7609.48, + "probability": 0.4862 + }, + { + "start": 7609.66, + "end": 7612.88, + "probability": 0.9707 + }, + { + "start": 7613.56, + "end": 7614.5, + "probability": 0.8005 + }, + { + "start": 7615.26, + "end": 7618.28, + "probability": 0.9456 + }, + { + "start": 7618.54, + "end": 7620.46, + "probability": 0.9951 + }, + { + "start": 7621.52, + "end": 7622.08, + "probability": 0.7146 + }, + { + "start": 7622.22, + "end": 7625.0, + "probability": 0.99 + }, + { + "start": 7625.78, + "end": 7627.84, + "probability": 0.8223 + }, + { + "start": 7628.56, + "end": 7630.94, + "probability": 0.8671 + }, + { + "start": 7631.54, + "end": 7633.58, + "probability": 0.9884 + }, + { + "start": 7634.5, + "end": 7638.55, + "probability": 0.9676 + }, + { + "start": 7639.68, + "end": 7644.5, + "probability": 0.9792 + }, + { + "start": 7644.74, + "end": 7647.35, + "probability": 0.9861 + }, + { + "start": 7647.84, + "end": 7648.44, + "probability": 0.9137 + }, + { + "start": 7649.54, + "end": 7652.14, + "probability": 0.828 + }, + { + "start": 7652.24, + "end": 7661.48, + "probability": 0.7438 + }, + { + "start": 7662.22, + "end": 7664.32, + "probability": 0.6788 + }, + { + "start": 7664.92, + "end": 7666.89, + "probability": 0.9979 + }, + { + "start": 7666.96, + "end": 7670.92, + "probability": 0.9792 + }, + { + "start": 7671.92, + "end": 7675.06, + "probability": 0.9982 + }, + { + "start": 7675.2, + "end": 7677.8, + "probability": 0.9821 + }, + { + "start": 7678.38, + "end": 7679.46, + "probability": 0.8948 + }, + { + "start": 7680.2, + "end": 7681.06, + "probability": 0.8748 + }, + { + "start": 7682.34, + "end": 7684.9, + "probability": 0.9692 + }, + { + "start": 7685.88, + "end": 7687.06, + "probability": 0.8429 + }, + { + "start": 7687.24, + "end": 7687.72, + "probability": 0.9762 + }, + { + "start": 7687.76, + "end": 7688.3, + "probability": 0.9823 + }, + { + "start": 7688.42, + "end": 7689.6, + "probability": 0.6516 + }, + { + "start": 7689.64, + "end": 7692.0, + "probability": 0.9401 + }, + { + "start": 7693.08, + "end": 7693.74, + "probability": 0.8352 + }, + { + "start": 7695.78, + "end": 7697.7, + "probability": 0.4139 + }, + { + "start": 7698.78, + "end": 7701.89, + "probability": 0.8801 + }, + { + "start": 7712.08, + "end": 7714.36, + "probability": 0.7068 + }, + { + "start": 7715.56, + "end": 7717.46, + "probability": 0.9949 + }, + { + "start": 7717.66, + "end": 7721.02, + "probability": 0.9028 + }, + { + "start": 7722.04, + "end": 7725.36, + "probability": 0.986 + }, + { + "start": 7726.02, + "end": 7730.4, + "probability": 0.8884 + }, + { + "start": 7731.12, + "end": 7732.54, + "probability": 0.9496 + }, + { + "start": 7732.58, + "end": 7733.56, + "probability": 0.9493 + }, + { + "start": 7733.82, + "end": 7738.44, + "probability": 0.9865 + }, + { + "start": 7739.1, + "end": 7744.22, + "probability": 0.9668 + }, + { + "start": 7750.3, + "end": 7751.44, + "probability": 0.8213 + }, + { + "start": 7751.94, + "end": 7754.14, + "probability": 0.9902 + }, + { + "start": 7755.06, + "end": 7758.02, + "probability": 0.981 + }, + { + "start": 7760.71, + "end": 7762.22, + "probability": 0.9959 + }, + { + "start": 7762.28, + "end": 7765.64, + "probability": 0.8745 + }, + { + "start": 7767.16, + "end": 7767.44, + "probability": 0.9497 + }, + { + "start": 7767.64, + "end": 7770.92, + "probability": 0.9785 + }, + { + "start": 7771.38, + "end": 7774.18, + "probability": 0.8609 + }, + { + "start": 7774.2, + "end": 7774.8, + "probability": 0.4898 + }, + { + "start": 7774.9, + "end": 7775.38, + "probability": 0.7024 + }, + { + "start": 7776.92, + "end": 7778.35, + "probability": 0.9614 + }, + { + "start": 7778.48, + "end": 7779.5, + "probability": 0.9956 + }, + { + "start": 7780.38, + "end": 7782.82, + "probability": 0.9756 + }, + { + "start": 7782.82, + "end": 7787.06, + "probability": 0.9003 + }, + { + "start": 7787.6, + "end": 7788.14, + "probability": 0.824 + }, + { + "start": 7788.24, + "end": 7791.08, + "probability": 0.9565 + }, + { + "start": 7791.32, + "end": 7793.24, + "probability": 0.9894 + }, + { + "start": 7794.8, + "end": 7796.88, + "probability": 0.075 + }, + { + "start": 7797.46, + "end": 7798.9, + "probability": 0.5454 + }, + { + "start": 7799.12, + "end": 7801.3, + "probability": 0.7357 + }, + { + "start": 7801.44, + "end": 7802.04, + "probability": 0.3421 + }, + { + "start": 7802.58, + "end": 7803.44, + "probability": 0.9016 + }, + { + "start": 7804.76, + "end": 7805.12, + "probability": 0.5631 + }, + { + "start": 7805.2, + "end": 7806.94, + "probability": 0.9631 + }, + { + "start": 7807.06, + "end": 7808.96, + "probability": 0.897 + }, + { + "start": 7808.96, + "end": 7811.5, + "probability": 0.628 + }, + { + "start": 7812.14, + "end": 7813.08, + "probability": 0.9803 + }, + { + "start": 7815.14, + "end": 7816.32, + "probability": 0.9898 + }, + { + "start": 7817.94, + "end": 7818.48, + "probability": 0.8886 + }, + { + "start": 7820.12, + "end": 7823.74, + "probability": 0.9631 + }, + { + "start": 7824.36, + "end": 7825.46, + "probability": 0.8115 + }, + { + "start": 7827.98, + "end": 7831.14, + "probability": 0.7993 + }, + { + "start": 7831.74, + "end": 7833.1, + "probability": 0.9334 + }, + { + "start": 7833.28, + "end": 7833.48, + "probability": 0.45 + }, + { + "start": 7833.6, + "end": 7834.56, + "probability": 0.5626 + }, + { + "start": 7834.92, + "end": 7836.08, + "probability": 0.8853 + }, + { + "start": 7836.12, + "end": 7836.96, + "probability": 0.5381 + }, + { + "start": 7837.84, + "end": 7840.58, + "probability": 0.9809 + }, + { + "start": 7840.58, + "end": 7843.14, + "probability": 0.731 + }, + { + "start": 7844.78, + "end": 7845.08, + "probability": 0.1219 + }, + { + "start": 7845.08, + "end": 7846.26, + "probability": 0.7261 + }, + { + "start": 7847.5, + "end": 7848.94, + "probability": 0.7659 + }, + { + "start": 7849.86, + "end": 7851.98, + "probability": 0.7434 + }, + { + "start": 7853.14, + "end": 7856.89, + "probability": 0.9677 + }, + { + "start": 7858.38, + "end": 7859.78, + "probability": 0.9473 + }, + { + "start": 7859.94, + "end": 7860.06, + "probability": 0.7518 + }, + { + "start": 7860.14, + "end": 7861.38, + "probability": 0.7285 + }, + { + "start": 7861.68, + "end": 7862.8, + "probability": 0.7783 + }, + { + "start": 7864.14, + "end": 7866.19, + "probability": 0.9431 + }, + { + "start": 7868.36, + "end": 7869.0, + "probability": 0.4323 + }, + { + "start": 7869.54, + "end": 7870.44, + "probability": 0.8923 + }, + { + "start": 7870.96, + "end": 7871.9, + "probability": 0.9138 + }, + { + "start": 7872.36, + "end": 7873.3, + "probability": 0.7987 + }, + { + "start": 7873.66, + "end": 7874.3, + "probability": 0.4971 + }, + { + "start": 7874.4, + "end": 7876.84, + "probability": 0.9191 + }, + { + "start": 7878.72, + "end": 7880.96, + "probability": 0.926 + }, + { + "start": 7881.14, + "end": 7882.29, + "probability": 0.9689 + }, + { + "start": 7882.42, + "end": 7885.02, + "probability": 0.522 + }, + { + "start": 7885.12, + "end": 7885.16, + "probability": 0.4737 + }, + { + "start": 7885.36, + "end": 7886.18, + "probability": 0.9357 + }, + { + "start": 7886.66, + "end": 7887.14, + "probability": 0.8063 + }, + { + "start": 7887.3, + "end": 7888.58, + "probability": 0.9265 + }, + { + "start": 7890.12, + "end": 7891.78, + "probability": 0.7095 + }, + { + "start": 7893.34, + "end": 7894.11, + "probability": 0.1526 + }, + { + "start": 7895.26, + "end": 7897.94, + "probability": 0.6267 + }, + { + "start": 7898.24, + "end": 7900.58, + "probability": 0.9099 + }, + { + "start": 7900.64, + "end": 7901.7, + "probability": 0.9893 + }, + { + "start": 7904.19, + "end": 7906.62, + "probability": 0.9143 + }, + { + "start": 7906.62, + "end": 7909.64, + "probability": 0.9878 + }, + { + "start": 7910.56, + "end": 7913.09, + "probability": 0.8245 + }, + { + "start": 7914.0, + "end": 7916.66, + "probability": 0.9792 + }, + { + "start": 7917.82, + "end": 7921.48, + "probability": 0.8599 + }, + { + "start": 7922.82, + "end": 7927.24, + "probability": 0.9807 + }, + { + "start": 7927.32, + "end": 7928.44, + "probability": 0.8742 + }, + { + "start": 7928.56, + "end": 7929.91, + "probability": 0.6519 + }, + { + "start": 7930.8, + "end": 7933.26, + "probability": 0.827 + }, + { + "start": 7933.78, + "end": 7935.4, + "probability": 0.9855 + }, + { + "start": 7936.24, + "end": 7936.76, + "probability": 0.8652 + }, + { + "start": 7938.5, + "end": 7941.74, + "probability": 0.9605 + }, + { + "start": 7942.08, + "end": 7943.24, + "probability": 0.8418 + }, + { + "start": 7945.62, + "end": 7948.52, + "probability": 0.7865 + }, + { + "start": 7948.76, + "end": 7952.02, + "probability": 0.6348 + }, + { + "start": 7952.1, + "end": 7953.28, + "probability": 0.9608 + }, + { + "start": 7954.4, + "end": 7957.08, + "probability": 0.8601 + }, + { + "start": 7957.18, + "end": 7958.99, + "probability": 0.8544 + }, + { + "start": 7959.24, + "end": 7961.46, + "probability": 0.9148 + }, + { + "start": 7962.02, + "end": 7963.28, + "probability": 0.8291 + }, + { + "start": 7963.78, + "end": 7967.76, + "probability": 0.9507 + }, + { + "start": 7968.84, + "end": 7971.12, + "probability": 0.9729 + }, + { + "start": 7971.38, + "end": 7972.16, + "probability": 0.9647 + }, + { + "start": 7972.26, + "end": 7973.2, + "probability": 0.5574 + }, + { + "start": 7973.44, + "end": 7975.66, + "probability": 0.9724 + }, + { + "start": 7975.68, + "end": 7977.24, + "probability": 0.9647 + }, + { + "start": 7977.56, + "end": 7979.29, + "probability": 0.9385 + }, + { + "start": 7979.34, + "end": 7981.24, + "probability": 0.9226 + }, + { + "start": 7982.6, + "end": 7984.78, + "probability": 0.9567 + }, + { + "start": 7985.34, + "end": 7988.24, + "probability": 0.9337 + }, + { + "start": 7989.14, + "end": 7992.0, + "probability": 0.9762 + }, + { + "start": 7992.62, + "end": 7993.58, + "probability": 0.9243 + }, + { + "start": 7993.7, + "end": 7996.38, + "probability": 0.9342 + }, + { + "start": 7997.52, + "end": 7999.11, + "probability": 0.8821 + }, + { + "start": 7999.82, + "end": 8002.3, + "probability": 0.95 + }, + { + "start": 8002.34, + "end": 8003.22, + "probability": 0.9062 + }, + { + "start": 8003.3, + "end": 8003.68, + "probability": 0.7816 + }, + { + "start": 8004.36, + "end": 8006.12, + "probability": 0.255 + }, + { + "start": 8006.18, + "end": 8007.8, + "probability": 0.8005 + }, + { + "start": 8009.6, + "end": 8009.9, + "probability": 0.7176 + }, + { + "start": 8010.02, + "end": 8013.22, + "probability": 0.995 + }, + { + "start": 8013.32, + "end": 8013.74, + "probability": 0.3213 + }, + { + "start": 8013.74, + "end": 8014.28, + "probability": 0.8065 + }, + { + "start": 8014.4, + "end": 8015.52, + "probability": 0.7462 + }, + { + "start": 8015.58, + "end": 8016.77, + "probability": 0.9028 + }, + { + "start": 8017.68, + "end": 8019.1, + "probability": 0.9907 + }, + { + "start": 8019.72, + "end": 8019.8, + "probability": 0.2634 + }, + { + "start": 8022.76, + "end": 8030.5, + "probability": 0.775 + }, + { + "start": 8031.4, + "end": 8033.88, + "probability": 0.9223 + }, + { + "start": 8034.8, + "end": 8037.04, + "probability": 0.9438 + }, + { + "start": 8037.92, + "end": 8039.68, + "probability": 0.8321 + }, + { + "start": 8039.76, + "end": 8042.64, + "probability": 0.9026 + }, + { + "start": 8042.67, + "end": 8045.22, + "probability": 0.7892 + }, + { + "start": 8046.32, + "end": 8046.74, + "probability": 0.3343 + }, + { + "start": 8047.0, + "end": 8049.82, + "probability": 0.8893 + }, + { + "start": 8049.94, + "end": 8051.0, + "probability": 0.6959 + }, + { + "start": 8051.88, + "end": 8053.94, + "probability": 0.8802 + }, + { + "start": 8054.26, + "end": 8059.94, + "probability": 0.7439 + }, + { + "start": 8060.54, + "end": 8061.16, + "probability": 0.3465 + }, + { + "start": 8061.32, + "end": 8062.76, + "probability": 0.8409 + }, + { + "start": 8063.58, + "end": 8064.8, + "probability": 0.6362 + }, + { + "start": 8064.94, + "end": 8066.26, + "probability": 0.9012 + }, + { + "start": 8066.32, + "end": 8067.62, + "probability": 0.9207 + }, + { + "start": 8068.72, + "end": 8072.62, + "probability": 0.9121 + }, + { + "start": 8072.94, + "end": 8080.1, + "probability": 0.9257 + }, + { + "start": 8080.78, + "end": 8081.58, + "probability": 0.8086 + }, + { + "start": 8083.02, + "end": 8085.22, + "probability": 0.8364 + }, + { + "start": 8085.78, + "end": 8089.26, + "probability": 0.8224 + }, + { + "start": 8089.5, + "end": 8092.06, + "probability": 0.9894 + }, + { + "start": 8092.44, + "end": 8099.72, + "probability": 0.9834 + }, + { + "start": 8099.84, + "end": 8101.2, + "probability": 0.8048 + }, + { + "start": 8101.77, + "end": 8106.64, + "probability": 0.9403 + }, + { + "start": 8106.74, + "end": 8108.18, + "probability": 0.5269 + }, + { + "start": 8108.18, + "end": 8110.74, + "probability": 0.3479 + }, + { + "start": 8111.74, + "end": 8112.62, + "probability": 0.6031 + }, + { + "start": 8112.84, + "end": 8116.0, + "probability": 0.6806 + }, + { + "start": 8116.32, + "end": 8117.32, + "probability": 0.8623 + }, + { + "start": 8117.5, + "end": 8119.54, + "probability": 0.781 + }, + { + "start": 8120.3, + "end": 8120.9, + "probability": 0.2292 + }, + { + "start": 8121.1, + "end": 8122.1, + "probability": 0.7725 + }, + { + "start": 8122.66, + "end": 8129.12, + "probability": 0.7775 + }, + { + "start": 8129.52, + "end": 8131.38, + "probability": 0.7551 + }, + { + "start": 8132.36, + "end": 8136.44, + "probability": 0.8112 + }, + { + "start": 8137.88, + "end": 8141.14, + "probability": 0.942 + }, + { + "start": 8141.98, + "end": 8145.22, + "probability": 0.9653 + }, + { + "start": 8145.62, + "end": 8146.24, + "probability": 0.7009 + }, + { + "start": 8146.36, + "end": 8147.26, + "probability": 0.7246 + }, + { + "start": 8147.34, + "end": 8147.96, + "probability": 0.8411 + }, + { + "start": 8148.0, + "end": 8150.85, + "probability": 0.8445 + }, + { + "start": 8151.4, + "end": 8155.62, + "probability": 0.8537 + }, + { + "start": 8155.9, + "end": 8157.22, + "probability": 0.7379 + }, + { + "start": 8157.6, + "end": 8160.74, + "probability": 0.8649 + }, + { + "start": 8161.7, + "end": 8166.18, + "probability": 0.9966 + }, + { + "start": 8166.98, + "end": 8172.76, + "probability": 0.9862 + }, + { + "start": 8173.2, + "end": 8174.04, + "probability": 0.8705 + }, + { + "start": 8174.64, + "end": 8176.98, + "probability": 0.9922 + }, + { + "start": 8177.54, + "end": 8180.18, + "probability": 0.8745 + }, + { + "start": 8180.36, + "end": 8183.28, + "probability": 0.8794 + }, + { + "start": 8183.28, + "end": 8183.96, + "probability": 0.536 + }, + { + "start": 8185.18, + "end": 8187.48, + "probability": 0.3669 + }, + { + "start": 8188.02, + "end": 8193.7, + "probability": 0.916 + }, + { + "start": 8193.82, + "end": 8195.84, + "probability": 0.8636 + }, + { + "start": 8195.94, + "end": 8198.16, + "probability": 0.7791 + }, + { + "start": 8198.34, + "end": 8201.92, + "probability": 0.983 + }, + { + "start": 8202.4, + "end": 8204.82, + "probability": 0.965 + }, + { + "start": 8205.02, + "end": 8207.7, + "probability": 0.7633 + }, + { + "start": 8207.76, + "end": 8209.78, + "probability": 0.6735 + }, + { + "start": 8210.1, + "end": 8212.06, + "probability": 0.8223 + }, + { + "start": 8212.18, + "end": 8215.04, + "probability": 0.9761 + }, + { + "start": 8215.34, + "end": 8216.44, + "probability": 0.9202 + }, + { + "start": 8216.88, + "end": 8219.76, + "probability": 0.967 + }, + { + "start": 8220.06, + "end": 8221.98, + "probability": 0.2729 + }, + { + "start": 8222.48, + "end": 8224.26, + "probability": 0.9852 + }, + { + "start": 8225.06, + "end": 8227.7, + "probability": 0.8828 + }, + { + "start": 8228.08, + "end": 8230.18, + "probability": 0.9126 + }, + { + "start": 8230.18, + "end": 8234.06, + "probability": 0.97 + }, + { + "start": 8235.07, + "end": 8237.32, + "probability": 0.9595 + }, + { + "start": 8239.74, + "end": 8243.28, + "probability": 0.8652 + }, + { + "start": 8244.22, + "end": 8246.54, + "probability": 0.974 + }, + { + "start": 8246.84, + "end": 8247.8, + "probability": 0.8929 + }, + { + "start": 8247.92, + "end": 8248.48, + "probability": 0.433 + }, + { + "start": 8249.18, + "end": 8251.02, + "probability": 0.7331 + }, + { + "start": 8251.66, + "end": 8254.16, + "probability": 0.8863 + }, + { + "start": 8254.84, + "end": 8256.96, + "probability": 0.9192 + }, + { + "start": 8257.6, + "end": 8260.05, + "probability": 0.8644 + }, + { + "start": 8262.52, + "end": 8265.24, + "probability": 0.856 + }, + { + "start": 8265.94, + "end": 8267.52, + "probability": 0.9521 + }, + { + "start": 8268.16, + "end": 8272.96, + "probability": 0.9179 + }, + { + "start": 8273.08, + "end": 8273.68, + "probability": 0.1566 + }, + { + "start": 8273.86, + "end": 8274.8, + "probability": 0.7316 + }, + { + "start": 8275.96, + "end": 8276.72, + "probability": 0.0714 + }, + { + "start": 8276.74, + "end": 8278.08, + "probability": 0.7615 + }, + { + "start": 8282.52, + "end": 8283.4, + "probability": 0.7984 + }, + { + "start": 8283.62, + "end": 8284.46, + "probability": 0.7987 + }, + { + "start": 8284.54, + "end": 8285.16, + "probability": 0.7003 + }, + { + "start": 8285.18, + "end": 8286.16, + "probability": 0.9214 + }, + { + "start": 8287.06, + "end": 8287.76, + "probability": 0.556 + }, + { + "start": 8288.28, + "end": 8289.78, + "probability": 0.9393 + }, + { + "start": 8291.22, + "end": 8292.44, + "probability": 0.8917 + }, + { + "start": 8292.54, + "end": 8295.34, + "probability": 0.7764 + }, + { + "start": 8296.7, + "end": 8297.34, + "probability": 0.4476 + }, + { + "start": 8297.42, + "end": 8298.44, + "probability": 0.7949 + }, + { + "start": 8298.58, + "end": 8303.44, + "probability": 0.91 + }, + { + "start": 8303.5, + "end": 8304.04, + "probability": 0.5768 + }, + { + "start": 8304.44, + "end": 8305.46, + "probability": 0.1312 + }, + { + "start": 8305.9, + "end": 8308.38, + "probability": 0.7769 + }, + { + "start": 8308.38, + "end": 8311.76, + "probability": 0.4725 + }, + { + "start": 8311.9, + "end": 8314.81, + "probability": 0.9255 + }, + { + "start": 8315.62, + "end": 8316.8, + "probability": 0.596 + }, + { + "start": 8316.8, + "end": 8321.9, + "probability": 0.7675 + }, + { + "start": 8322.08, + "end": 8322.2, + "probability": 0.1048 + }, + { + "start": 8322.34, + "end": 8323.2, + "probability": 0.4091 + }, + { + "start": 8323.36, + "end": 8323.58, + "probability": 0.4098 + }, + { + "start": 8323.64, + "end": 8323.64, + "probability": 0.3617 + }, + { + "start": 8323.72, + "end": 8324.04, + "probability": 0.6824 + }, + { + "start": 8324.2, + "end": 8326.4, + "probability": 0.7313 + }, + { + "start": 8326.88, + "end": 8328.16, + "probability": 0.0149 + }, + { + "start": 8332.52, + "end": 8334.52, + "probability": 0.2557 + }, + { + "start": 8334.54, + "end": 8337.26, + "probability": 0.9674 + }, + { + "start": 8337.3, + "end": 8338.22, + "probability": 0.8314 + }, + { + "start": 8338.4, + "end": 8338.78, + "probability": 0.1448 + }, + { + "start": 8338.78, + "end": 8338.78, + "probability": 0.1628 + }, + { + "start": 8339.0, + "end": 8339.42, + "probability": 0.4531 + }, + { + "start": 8339.56, + "end": 8340.34, + "probability": 0.5739 + }, + { + "start": 8340.4, + "end": 8342.0, + "probability": 0.6508 + }, + { + "start": 8342.12, + "end": 8343.14, + "probability": 0.6942 + }, + { + "start": 8343.22, + "end": 8344.22, + "probability": 0.5006 + }, + { + "start": 8345.2, + "end": 8347.12, + "probability": 0.6109 + }, + { + "start": 8348.2, + "end": 8350.46, + "probability": 0.1672 + }, + { + "start": 8351.26, + "end": 8352.64, + "probability": 0.8531 + }, + { + "start": 8352.76, + "end": 8356.16, + "probability": 0.6553 + }, + { + "start": 8356.82, + "end": 8360.68, + "probability": 0.677 + }, + { + "start": 8361.96, + "end": 8362.62, + "probability": 0.4755 + }, + { + "start": 8362.94, + "end": 8363.34, + "probability": 0.0781 + }, + { + "start": 8363.52, + "end": 8365.84, + "probability": 0.9427 + }, + { + "start": 8366.32, + "end": 8367.94, + "probability": 0.9012 + }, + { + "start": 8368.8, + "end": 8375.58, + "probability": 0.902 + }, + { + "start": 8375.64, + "end": 8377.82, + "probability": 0.7073 + }, + { + "start": 8378.12, + "end": 8379.3, + "probability": 0.7547 + }, + { + "start": 8380.32, + "end": 8381.44, + "probability": 0.9148 + }, + { + "start": 8382.54, + "end": 8387.98, + "probability": 0.6938 + }, + { + "start": 8388.42, + "end": 8390.18, + "probability": 0.8765 + }, + { + "start": 8391.36, + "end": 8393.86, + "probability": 0.9818 + }, + { + "start": 8394.06, + "end": 8395.42, + "probability": 0.9822 + }, + { + "start": 8396.02, + "end": 8398.22, + "probability": 0.7688 + }, + { + "start": 8398.22, + "end": 8402.92, + "probability": 0.978 + }, + { + "start": 8403.22, + "end": 8405.07, + "probability": 0.7632 + }, + { + "start": 8405.84, + "end": 8407.24, + "probability": 0.7137 + }, + { + "start": 8408.04, + "end": 8413.38, + "probability": 0.8696 + }, + { + "start": 8413.98, + "end": 8416.07, + "probability": 0.9264 + }, + { + "start": 8416.42, + "end": 8419.84, + "probability": 0.7928 + }, + { + "start": 8420.06, + "end": 8421.1, + "probability": 0.5131 + }, + { + "start": 8422.44, + "end": 8424.14, + "probability": 0.9393 + }, + { + "start": 8425.48, + "end": 8428.3, + "probability": 0.9861 + }, + { + "start": 8428.38, + "end": 8430.92, + "probability": 0.9575 + }, + { + "start": 8431.04, + "end": 8432.22, + "probability": 0.8062 + }, + { + "start": 8432.68, + "end": 8436.84, + "probability": 0.975 + }, + { + "start": 8438.64, + "end": 8439.06, + "probability": 0.3073 + }, + { + "start": 8440.54, + "end": 8447.22, + "probability": 0.9113 + }, + { + "start": 8447.28, + "end": 8448.86, + "probability": 0.7822 + }, + { + "start": 8449.22, + "end": 8449.8, + "probability": 0.4727 + }, + { + "start": 8450.0, + "end": 8451.5, + "probability": 0.8784 + }, + { + "start": 8451.56, + "end": 8452.12, + "probability": 0.8134 + }, + { + "start": 8452.44, + "end": 8454.96, + "probability": 0.9648 + }, + { + "start": 8455.16, + "end": 8460.14, + "probability": 0.9744 + }, + { + "start": 8461.24, + "end": 8461.96, + "probability": 0.9937 + }, + { + "start": 8462.12, + "end": 8463.6, + "probability": 0.8174 + }, + { + "start": 8463.76, + "end": 8466.92, + "probability": 0.941 + }, + { + "start": 8467.37, + "end": 8469.7, + "probability": 0.5223 + }, + { + "start": 8470.38, + "end": 8473.03, + "probability": 0.8975 + }, + { + "start": 8473.48, + "end": 8474.75, + "probability": 0.7279 + }, + { + "start": 8477.15, + "end": 8482.72, + "probability": 0.964 + }, + { + "start": 8483.58, + "end": 8486.94, + "probability": 0.9565 + }, + { + "start": 8487.32, + "end": 8490.24, + "probability": 0.8735 + }, + { + "start": 8490.72, + "end": 8491.78, + "probability": 0.7792 + }, + { + "start": 8492.82, + "end": 8494.54, + "probability": 0.6525 + }, + { + "start": 8494.56, + "end": 8495.84, + "probability": 0.3922 + }, + { + "start": 8496.28, + "end": 8499.82, + "probability": 0.9603 + }, + { + "start": 8500.4, + "end": 8500.68, + "probability": 0.5664 + }, + { + "start": 8500.76, + "end": 8501.28, + "probability": 0.9075 + }, + { + "start": 8501.36, + "end": 8504.05, + "probability": 0.9983 + }, + { + "start": 8506.14, + "end": 8506.9, + "probability": 0.9486 + }, + { + "start": 8507.02, + "end": 8508.76, + "probability": 0.5756 + }, + { + "start": 8509.6, + "end": 8512.1, + "probability": 0.8199 + }, + { + "start": 8512.1, + "end": 8515.85, + "probability": 0.8783 + }, + { + "start": 8516.54, + "end": 8518.73, + "probability": 0.6789 + }, + { + "start": 8520.02, + "end": 8524.92, + "probability": 0.5827 + }, + { + "start": 8529.08, + "end": 8529.08, + "probability": 0.0268 + }, + { + "start": 8529.08, + "end": 8529.36, + "probability": 0.043 + }, + { + "start": 8529.48, + "end": 8529.96, + "probability": 0.4094 + }, + { + "start": 8530.0, + "end": 8530.87, + "probability": 0.7619 + }, + { + "start": 8531.34, + "end": 8533.0, + "probability": 0.0251 + }, + { + "start": 8533.16, + "end": 8540.14, + "probability": 0.2728 + }, + { + "start": 8540.8, + "end": 8540.84, + "probability": 0.0474 + }, + { + "start": 8540.84, + "end": 8541.42, + "probability": 0.0308 + }, + { + "start": 8541.42, + "end": 8543.32, + "probability": 0.274 + }, + { + "start": 8544.2, + "end": 8545.84, + "probability": 0.5093 + }, + { + "start": 8545.96, + "end": 8546.12, + "probability": 0.6659 + }, + { + "start": 8546.16, + "end": 8546.51, + "probability": 0.4875 + }, + { + "start": 8547.24, + "end": 8548.14, + "probability": 0.2316 + }, + { + "start": 8548.14, + "end": 8549.52, + "probability": 0.2897 + }, + { + "start": 8549.52, + "end": 8549.56, + "probability": 0.2808 + }, + { + "start": 8549.56, + "end": 8549.94, + "probability": 0.4564 + }, + { + "start": 8550.24, + "end": 8552.38, + "probability": 0.6774 + }, + { + "start": 8553.38, + "end": 8558.86, + "probability": 0.8363 + }, + { + "start": 8558.94, + "end": 8559.84, + "probability": 0.8657 + }, + { + "start": 8560.88, + "end": 8563.72, + "probability": 0.9954 + }, + { + "start": 8564.62, + "end": 8567.12, + "probability": 0.5563 + }, + { + "start": 8568.24, + "end": 8569.5, + "probability": 0.749 + }, + { + "start": 8569.56, + "end": 8570.26, + "probability": 0.3111 + }, + { + "start": 8570.36, + "end": 8571.45, + "probability": 0.3376 + }, + { + "start": 8571.74, + "end": 8574.92, + "probability": 0.9399 + }, + { + "start": 8575.18, + "end": 8577.44, + "probability": 0.7414 + }, + { + "start": 8577.9, + "end": 8579.77, + "probability": 0.9209 + }, + { + "start": 8580.58, + "end": 8583.0, + "probability": 0.9978 + }, + { + "start": 8583.0, + "end": 8584.88, + "probability": 0.9992 + }, + { + "start": 8585.36, + "end": 8585.92, + "probability": 0.9399 + }, + { + "start": 8585.98, + "end": 8587.42, + "probability": 0.8604 + }, + { + "start": 8587.82, + "end": 8588.57, + "probability": 0.5705 + }, + { + "start": 8590.02, + "end": 8590.82, + "probability": 0.1396 + }, + { + "start": 8590.9, + "end": 8593.23, + "probability": 0.799 + }, + { + "start": 8593.34, + "end": 8595.64, + "probability": 0.3247 + }, + { + "start": 8595.7, + "end": 8596.56, + "probability": 0.7644 + }, + { + "start": 8596.62, + "end": 8599.4, + "probability": 0.8301 + }, + { + "start": 8599.4, + "end": 8599.66, + "probability": 0.1731 + }, + { + "start": 8599.66, + "end": 8601.65, + "probability": 0.7156 + }, + { + "start": 8602.3, + "end": 8604.73, + "probability": 0.8071 + }, + { + "start": 8605.22, + "end": 8608.32, + "probability": 0.9199 + }, + { + "start": 8608.72, + "end": 8611.6, + "probability": 0.8583 + }, + { + "start": 8611.62, + "end": 8611.96, + "probability": 0.4525 + }, + { + "start": 8612.38, + "end": 8612.88, + "probability": 0.8356 + }, + { + "start": 8612.94, + "end": 8615.8, + "probability": 0.9145 + }, + { + "start": 8616.52, + "end": 8618.45, + "probability": 0.3726 + }, + { + "start": 8619.22, + "end": 8620.72, + "probability": 0.7494 + }, + { + "start": 8620.72, + "end": 8621.92, + "probability": 0.5347 + }, + { + "start": 8622.06, + "end": 8622.3, + "probability": 0.6922 + }, + { + "start": 8622.38, + "end": 8623.54, + "probability": 0.5976 + }, + { + "start": 8623.74, + "end": 8624.8, + "probability": 0.998 + }, + { + "start": 8625.56, + "end": 8631.68, + "probability": 0.8815 + }, + { + "start": 8632.76, + "end": 8632.76, + "probability": 0.4265 + }, + { + "start": 8632.76, + "end": 8633.34, + "probability": 0.803 + }, + { + "start": 8633.7, + "end": 8634.72, + "probability": 0.5101 + }, + { + "start": 8634.78, + "end": 8635.08, + "probability": 0.4969 + }, + { + "start": 8635.12, + "end": 8635.7, + "probability": 0.6327 + }, + { + "start": 8635.8, + "end": 8637.26, + "probability": 0.8306 + }, + { + "start": 8637.56, + "end": 8639.28, + "probability": 0.969 + }, + { + "start": 8639.42, + "end": 8640.16, + "probability": 0.5337 + }, + { + "start": 8641.26, + "end": 8641.52, + "probability": 0.6291 + }, + { + "start": 8641.56, + "end": 8642.48, + "probability": 0.6204 + }, + { + "start": 8642.58, + "end": 8643.32, + "probability": 0.7666 + }, + { + "start": 8643.48, + "end": 8644.64, + "probability": 0.7516 + }, + { + "start": 8644.74, + "end": 8645.51, + "probability": 0.8337 + }, + { + "start": 8646.06, + "end": 8648.18, + "probability": 0.9771 + }, + { + "start": 8648.26, + "end": 8649.32, + "probability": 0.9141 + }, + { + "start": 8649.8, + "end": 8651.5, + "probability": 0.9963 + }, + { + "start": 8651.9, + "end": 8653.4, + "probability": 0.4348 + }, + { + "start": 8653.5, + "end": 8654.44, + "probability": 0.7291 + }, + { + "start": 8654.9, + "end": 8658.1, + "probability": 0.9005 + }, + { + "start": 8658.3, + "end": 8659.33, + "probability": 0.9907 + }, + { + "start": 8660.02, + "end": 8664.0, + "probability": 0.9886 + }, + { + "start": 8665.1, + "end": 8669.54, + "probability": 0.9954 + }, + { + "start": 8669.72, + "end": 8674.0, + "probability": 0.996 + }, + { + "start": 8674.54, + "end": 8676.16, + "probability": 0.9359 + }, + { + "start": 8676.68, + "end": 8677.9, + "probability": 0.9796 + }, + { + "start": 8678.26, + "end": 8679.92, + "probability": 0.9895 + }, + { + "start": 8680.94, + "end": 8684.3, + "probability": 0.8704 + }, + { + "start": 8684.38, + "end": 8685.54, + "probability": 0.9568 + }, + { + "start": 8685.7, + "end": 8685.92, + "probability": 0.6816 + }, + { + "start": 8686.04, + "end": 8687.04, + "probability": 0.8363 + }, + { + "start": 8687.18, + "end": 8688.18, + "probability": 0.8265 + }, + { + "start": 8689.2, + "end": 8691.74, + "probability": 0.879 + }, + { + "start": 8692.34, + "end": 8694.06, + "probability": 0.8918 + }, + { + "start": 8694.6, + "end": 8697.22, + "probability": 0.8895 + }, + { + "start": 8697.42, + "end": 8698.62, + "probability": 0.7241 + }, + { + "start": 8698.86, + "end": 8700.1, + "probability": 0.9775 + }, + { + "start": 8700.24, + "end": 8701.52, + "probability": 0.9626 + }, + { + "start": 8701.88, + "end": 8702.44, + "probability": 0.286 + }, + { + "start": 8702.49, + "end": 8704.56, + "probability": 0.6843 + }, + { + "start": 8704.6, + "end": 8704.94, + "probability": 0.3677 + }, + { + "start": 8704.94, + "end": 8709.68, + "probability": 0.7666 + }, + { + "start": 8709.68, + "end": 8710.96, + "probability": 0.7911 + }, + { + "start": 8711.48, + "end": 8712.26, + "probability": 0.547 + }, + { + "start": 8712.34, + "end": 8721.68, + "probability": 0.6825 + }, + { + "start": 8722.18, + "end": 8723.24, + "probability": 0.6065 + }, + { + "start": 8723.5, + "end": 8724.24, + "probability": 0.7146 + }, + { + "start": 8724.24, + "end": 8725.72, + "probability": 0.9401 + }, + { + "start": 8725.8, + "end": 8726.08, + "probability": 0.3792 + }, + { + "start": 8726.32, + "end": 8727.96, + "probability": 0.693 + }, + { + "start": 8728.28, + "end": 8728.92, + "probability": 0.2179 + }, + { + "start": 8728.92, + "end": 8729.04, + "probability": 0.085 + }, + { + "start": 8729.3, + "end": 8730.0, + "probability": 0.9512 + }, + { + "start": 8730.2, + "end": 8735.73, + "probability": 0.9853 + }, + { + "start": 8736.46, + "end": 8736.78, + "probability": 0.0481 + }, + { + "start": 8736.96, + "end": 8737.82, + "probability": 0.6725 + }, + { + "start": 8737.82, + "end": 8739.42, + "probability": 0.6752 + }, + { + "start": 8740.24, + "end": 8742.6, + "probability": 0.9272 + }, + { + "start": 8742.94, + "end": 8743.56, + "probability": 0.7848 + }, + { + "start": 8743.7, + "end": 8747.06, + "probability": 0.9211 + }, + { + "start": 8747.6, + "end": 8750.7, + "probability": 0.8553 + }, + { + "start": 8750.7, + "end": 8754.44, + "probability": 0.7281 + }, + { + "start": 8754.76, + "end": 8755.71, + "probability": 0.9121 + }, + { + "start": 8757.2, + "end": 8758.54, + "probability": 0.7804 + }, + { + "start": 8759.14, + "end": 8761.78, + "probability": 0.9241 + }, + { + "start": 8762.02, + "end": 8763.9, + "probability": 0.9718 + }, + { + "start": 8763.9, + "end": 8766.58, + "probability": 0.9941 + }, + { + "start": 8766.66, + "end": 8768.04, + "probability": 0.6642 + }, + { + "start": 8769.02, + "end": 8769.58, + "probability": 0.636 + }, + { + "start": 8769.7, + "end": 8771.38, + "probability": 0.8484 + }, + { + "start": 8771.52, + "end": 8773.3, + "probability": 0.8691 + }, + { + "start": 8773.64, + "end": 8775.32, + "probability": 0.6931 + }, + { + "start": 8775.42, + "end": 8776.66, + "probability": 0.6161 + }, + { + "start": 8777.62, + "end": 8778.82, + "probability": 0.156 + }, + { + "start": 8778.96, + "end": 8780.11, + "probability": 0.9014 + }, + { + "start": 8780.88, + "end": 8784.74, + "probability": 0.8735 + }, + { + "start": 8784.86, + "end": 8786.82, + "probability": 0.6026 + }, + { + "start": 8786.88, + "end": 8788.1, + "probability": 0.9136 + }, + { + "start": 8788.28, + "end": 8790.47, + "probability": 0.7203 + }, + { + "start": 8790.78, + "end": 8793.04, + "probability": 0.7854 + }, + { + "start": 8793.26, + "end": 8793.26, + "probability": 0.1312 + }, + { + "start": 8793.26, + "end": 8796.72, + "probability": 0.9118 + }, + { + "start": 8796.9, + "end": 8797.92, + "probability": 0.925 + }, + { + "start": 8798.36, + "end": 8799.0, + "probability": 0.0026 + }, + { + "start": 8799.0, + "end": 8800.38, + "probability": 0.4312 + }, + { + "start": 8800.56, + "end": 8802.82, + "probability": 0.5779 + }, + { + "start": 8803.46, + "end": 8803.81, + "probability": 0.1822 + }, + { + "start": 8804.52, + "end": 8808.62, + "probability": 0.5705 + }, + { + "start": 8813.06, + "end": 8814.04, + "probability": 0.158 + }, + { + "start": 8814.3, + "end": 8817.78, + "probability": 0.4168 + }, + { + "start": 8820.0, + "end": 8822.02, + "probability": 0.1714 + }, + { + "start": 8822.22, + "end": 8822.94, + "probability": 0.3371 + }, + { + "start": 8824.36, + "end": 8827.8, + "probability": 0.8986 + }, + { + "start": 8827.8, + "end": 8831.1, + "probability": 0.8763 + }, + { + "start": 8832.56, + "end": 8833.44, + "probability": 0.4915 + }, + { + "start": 8833.48, + "end": 8839.18, + "probability": 0.9355 + }, + { + "start": 8839.18, + "end": 8845.0, + "probability": 0.9654 + }, + { + "start": 8845.1, + "end": 8846.02, + "probability": 0.3491 + }, + { + "start": 8846.06, + "end": 8846.82, + "probability": 0.4944 + }, + { + "start": 8847.52, + "end": 8849.2, + "probability": 0.8743 + }, + { + "start": 8849.92, + "end": 8854.6, + "probability": 0.9893 + }, + { + "start": 8854.6, + "end": 8857.26, + "probability": 0.9881 + }, + { + "start": 8858.34, + "end": 8859.1, + "probability": 0.8703 + }, + { + "start": 8859.22, + "end": 8862.78, + "probability": 0.885 + }, + { + "start": 8862.88, + "end": 8865.56, + "probability": 0.8406 + }, + { + "start": 8865.82, + "end": 8869.96, + "probability": 0.9154 + }, + { + "start": 8870.74, + "end": 8872.4, + "probability": 0.5385 + }, + { + "start": 8872.52, + "end": 8873.3, + "probability": 0.8709 + }, + { + "start": 8873.32, + "end": 8876.1, + "probability": 0.9303 + }, + { + "start": 8876.7, + "end": 8879.7, + "probability": 0.9969 + }, + { + "start": 8880.38, + "end": 8882.32, + "probability": 0.8669 + }, + { + "start": 8885.4, + "end": 8886.0, + "probability": 0.0501 + }, + { + "start": 8886.0, + "end": 8887.82, + "probability": 0.6739 + }, + { + "start": 8887.98, + "end": 8888.16, + "probability": 0.4287 + }, + { + "start": 8888.34, + "end": 8888.98, + "probability": 0.6652 + }, + { + "start": 8889.08, + "end": 8890.81, + "probability": 0.7211 + }, + { + "start": 8891.38, + "end": 8891.7, + "probability": 0.7131 + }, + { + "start": 8892.18, + "end": 8895.3, + "probability": 0.7744 + }, + { + "start": 8898.84, + "end": 8899.84, + "probability": 0.8783 + }, + { + "start": 8900.12, + "end": 8903.84, + "probability": 0.8081 + }, + { + "start": 8903.98, + "end": 8912.0, + "probability": 0.9838 + }, + { + "start": 8912.66, + "end": 8920.24, + "probability": 0.9697 + }, + { + "start": 8920.74, + "end": 8928.86, + "probability": 0.9736 + }, + { + "start": 8929.14, + "end": 8930.9, + "probability": 0.168 + }, + { + "start": 8930.9, + "end": 8932.88, + "probability": 0.4952 + }, + { + "start": 8934.02, + "end": 8941.04, + "probability": 0.97 + }, + { + "start": 8941.28, + "end": 8942.98, + "probability": 0.8142 + }, + { + "start": 8943.08, + "end": 8945.7, + "probability": 0.9321 + }, + { + "start": 8945.74, + "end": 8947.76, + "probability": 0.9891 + }, + { + "start": 8947.86, + "end": 8951.44, + "probability": 0.9573 + }, + { + "start": 8952.42, + "end": 8958.46, + "probability": 0.9198 + }, + { + "start": 8959.28, + "end": 8964.0, + "probability": 0.9932 + }, + { + "start": 8964.0, + "end": 8969.5, + "probability": 0.9933 + }, + { + "start": 8970.04, + "end": 8978.28, + "probability": 0.9596 + }, + { + "start": 8978.62, + "end": 8984.14, + "probability": 0.9945 + }, + { + "start": 8985.0, + "end": 8985.82, + "probability": 0.7014 + }, + { + "start": 8985.92, + "end": 8989.7, + "probability": 0.8952 + }, + { + "start": 8990.08, + "end": 8995.0, + "probability": 0.9783 + }, + { + "start": 8995.14, + "end": 8995.66, + "probability": 0.7443 + }, + { + "start": 8996.66, + "end": 8997.84, + "probability": 0.7275 + }, + { + "start": 8998.24, + "end": 9002.92, + "probability": 0.9936 + }, + { + "start": 9002.92, + "end": 9008.7, + "probability": 0.9886 + }, + { + "start": 9008.92, + "end": 9010.24, + "probability": 0.7928 + }, + { + "start": 9011.28, + "end": 9012.18, + "probability": 0.7025 + }, + { + "start": 9012.22, + "end": 9014.82, + "probability": 0.3058 + }, + { + "start": 9014.86, + "end": 9017.1, + "probability": 0.8622 + }, + { + "start": 9017.3, + "end": 9018.16, + "probability": 0.5069 + }, + { + "start": 9018.28, + "end": 9019.39, + "probability": 0.9497 + }, + { + "start": 9020.6, + "end": 9025.36, + "probability": 0.819 + }, + { + "start": 9026.78, + "end": 9027.2, + "probability": 0.8488 + }, + { + "start": 9027.8, + "end": 9031.36, + "probability": 0.9374 + }, + { + "start": 9031.52, + "end": 9032.08, + "probability": 0.8696 + }, + { + "start": 9033.7, + "end": 9036.44, + "probability": 0.8156 + }, + { + "start": 9036.54, + "end": 9037.16, + "probability": 0.5279 + }, + { + "start": 9037.58, + "end": 9038.26, + "probability": 0.4809 + }, + { + "start": 9038.3, + "end": 9042.56, + "probability": 0.8586 + }, + { + "start": 9042.62, + "end": 9043.32, + "probability": 0.8558 + }, + { + "start": 9043.46, + "end": 9044.1, + "probability": 0.8691 + }, + { + "start": 9044.6, + "end": 9047.3, + "probability": 0.9524 + }, + { + "start": 9048.1, + "end": 9050.52, + "probability": 0.9661 + }, + { + "start": 9050.58, + "end": 9053.36, + "probability": 0.9617 + }, + { + "start": 9054.18, + "end": 9054.62, + "probability": 0.3315 + }, + { + "start": 9054.66, + "end": 9055.32, + "probability": 0.712 + }, + { + "start": 9055.5, + "end": 9058.68, + "probability": 0.9834 + }, + { + "start": 9058.88, + "end": 9059.56, + "probability": 0.7086 + }, + { + "start": 9059.7, + "end": 9060.04, + "probability": 0.8502 + }, + { + "start": 9060.22, + "end": 9061.4, + "probability": 0.8887 + }, + { + "start": 9061.58, + "end": 9063.92, + "probability": 0.9103 + }, + { + "start": 9065.2, + "end": 9067.78, + "probability": 0.9948 + }, + { + "start": 9069.9, + "end": 9071.86, + "probability": 0.7648 + }, + { + "start": 9072.88, + "end": 9074.22, + "probability": 0.9756 + }, + { + "start": 9074.4, + "end": 9075.45, + "probability": 0.8744 + }, + { + "start": 9075.72, + "end": 9076.64, + "probability": 0.7304 + }, + { + "start": 9076.82, + "end": 9078.4, + "probability": 0.96 + }, + { + "start": 9078.74, + "end": 9079.2, + "probability": 0.8899 + }, + { + "start": 9079.78, + "end": 9080.06, + "probability": 0.2293 + }, + { + "start": 9080.9, + "end": 9081.44, + "probability": 0.2313 + }, + { + "start": 9082.83, + "end": 9090.55, + "probability": 0.429 + }, + { + "start": 9091.2, + "end": 9093.86, + "probability": 0.7309 + }, + { + "start": 9094.08, + "end": 9097.3, + "probability": 0.9608 + }, + { + "start": 9097.62, + "end": 9098.0, + "probability": 0.6631 + }, + { + "start": 9098.06, + "end": 9101.32, + "probability": 0.7404 + }, + { + "start": 9102.04, + "end": 9103.42, + "probability": 0.8643 + }, + { + "start": 9103.44, + "end": 9103.92, + "probability": 0.793 + }, + { + "start": 9104.18, + "end": 9106.24, + "probability": 0.7951 + }, + { + "start": 9107.4, + "end": 9109.08, + "probability": 0.9147 + }, + { + "start": 9109.16, + "end": 9109.74, + "probability": 0.7974 + }, + { + "start": 9109.82, + "end": 9112.82, + "probability": 0.4556 + }, + { + "start": 9113.22, + "end": 9116.06, + "probability": 0.6398 + }, + { + "start": 9116.06, + "end": 9121.8, + "probability": 0.7002 + }, + { + "start": 9122.09, + "end": 9122.97, + "probability": 0.6019 + }, + { + "start": 9124.94, + "end": 9127.22, + "probability": 0.941 + }, + { + "start": 9127.28, + "end": 9128.55, + "probability": 0.8717 + }, + { + "start": 9128.94, + "end": 9129.86, + "probability": 0.4482 + }, + { + "start": 9130.04, + "end": 9131.56, + "probability": 0.7773 + }, + { + "start": 9132.3, + "end": 9132.32, + "probability": 0.1268 + }, + { + "start": 9133.18, + "end": 9134.86, + "probability": 0.0393 + }, + { + "start": 9135.38, + "end": 9138.08, + "probability": 0.5067 + }, + { + "start": 9138.92, + "end": 9141.92, + "probability": 0.2534 + }, + { + "start": 9142.3, + "end": 9143.68, + "probability": 0.0657 + }, + { + "start": 9146.88, + "end": 9148.56, + "probability": 0.9956 + }, + { + "start": 9152.68, + "end": 9155.95, + "probability": 0.8075 + }, + { + "start": 9156.14, + "end": 9156.46, + "probability": 0.8204 + }, + { + "start": 9156.48, + "end": 9159.12, + "probability": 0.3499 + }, + { + "start": 9159.66, + "end": 9164.45, + "probability": 0.8161 + }, + { + "start": 9165.58, + "end": 9166.22, + "probability": 0.8098 + }, + { + "start": 9166.4, + "end": 9168.86, + "probability": 0.956 + }, + { + "start": 9169.36, + "end": 9170.86, + "probability": 0.743 + }, + { + "start": 9171.32, + "end": 9172.18, + "probability": 0.1219 + }, + { + "start": 9173.38, + "end": 9175.52, + "probability": 0.9906 + }, + { + "start": 9175.7, + "end": 9177.29, + "probability": 0.8782 + }, + { + "start": 9178.26, + "end": 9178.34, + "probability": 0.6516 + }, + { + "start": 9178.44, + "end": 9180.7, + "probability": 0.9614 + }, + { + "start": 9180.7, + "end": 9182.46, + "probability": 0.8813 + }, + { + "start": 9182.54, + "end": 9183.88, + "probability": 0.765 + }, + { + "start": 9184.0, + "end": 9185.92, + "probability": 0.7382 + }, + { + "start": 9186.52, + "end": 9190.52, + "probability": 0.9504 + }, + { + "start": 9192.06, + "end": 9193.58, + "probability": 0.7817 + }, + { + "start": 9194.16, + "end": 9194.8, + "probability": 0.6658 + }, + { + "start": 9195.1, + "end": 9201.18, + "probability": 0.9677 + }, + { + "start": 9202.24, + "end": 9206.74, + "probability": 0.8376 + }, + { + "start": 9207.28, + "end": 9208.22, + "probability": 0.9824 + }, + { + "start": 9208.36, + "end": 9209.46, + "probability": 0.7366 + }, + { + "start": 9209.56, + "end": 9213.58, + "probability": 0.8907 + }, + { + "start": 9213.74, + "end": 9214.58, + "probability": 0.9762 + }, + { + "start": 9215.08, + "end": 9215.68, + "probability": 0.6721 + }, + { + "start": 9215.68, + "end": 9219.42, + "probability": 0.7151 + }, + { + "start": 9219.6, + "end": 9220.58, + "probability": 0.6982 + }, + { + "start": 9220.8, + "end": 9221.68, + "probability": 0.3445 + }, + { + "start": 9221.82, + "end": 9226.92, + "probability": 0.8406 + }, + { + "start": 9227.48, + "end": 9232.7, + "probability": 0.9746 + }, + { + "start": 9233.18, + "end": 9235.26, + "probability": 0.8003 + }, + { + "start": 9235.74, + "end": 9235.96, + "probability": 0.0145 + }, + { + "start": 9235.96, + "end": 9237.06, + "probability": 0.7539 + }, + { + "start": 9237.58, + "end": 9238.5, + "probability": 0.5029 + }, + { + "start": 9239.06, + "end": 9240.18, + "probability": 0.9768 + }, + { + "start": 9241.26, + "end": 9244.64, + "probability": 0.9477 + }, + { + "start": 9245.28, + "end": 9250.2, + "probability": 0.9922 + }, + { + "start": 9250.4, + "end": 9251.38, + "probability": 0.9741 + }, + { + "start": 9252.12, + "end": 9258.78, + "probability": 0.905 + }, + { + "start": 9259.64, + "end": 9259.84, + "probability": 0.5557 + }, + { + "start": 9260.08, + "end": 9260.86, + "probability": 0.3879 + }, + { + "start": 9260.98, + "end": 9264.2, + "probability": 0.7553 + }, + { + "start": 9265.54, + "end": 9266.94, + "probability": 0.7812 + }, + { + "start": 9267.48, + "end": 9268.16, + "probability": 0.7268 + }, + { + "start": 9268.46, + "end": 9268.74, + "probability": 0.4305 + }, + { + "start": 9268.74, + "end": 9269.46, + "probability": 0.2992 + }, + { + "start": 9269.46, + "end": 9270.32, + "probability": 0.826 + }, + { + "start": 9270.4, + "end": 9271.68, + "probability": 0.8557 + }, + { + "start": 9271.94, + "end": 9273.68, + "probability": 0.973 + }, + { + "start": 9273.74, + "end": 9274.38, + "probability": 0.8783 + }, + { + "start": 9274.46, + "end": 9275.18, + "probability": 0.5633 + }, + { + "start": 9275.62, + "end": 9276.12, + "probability": 0.7904 + }, + { + "start": 9276.18, + "end": 9276.7, + "probability": 0.6506 + }, + { + "start": 9277.36, + "end": 9279.34, + "probability": 0.9416 + }, + { + "start": 9280.02, + "end": 9284.96, + "probability": 0.9733 + }, + { + "start": 9285.18, + "end": 9287.32, + "probability": 0.894 + }, + { + "start": 9287.36, + "end": 9289.94, + "probability": 0.7825 + }, + { + "start": 9290.96, + "end": 9293.62, + "probability": 0.9855 + }, + { + "start": 9293.66, + "end": 9294.36, + "probability": 0.9073 + }, + { + "start": 9294.5, + "end": 9297.16, + "probability": 0.9878 + }, + { + "start": 9298.14, + "end": 9299.64, + "probability": 0.9518 + }, + { + "start": 9300.16, + "end": 9303.22, + "probability": 0.9952 + }, + { + "start": 9303.87, + "end": 9306.48, + "probability": 0.9976 + }, + { + "start": 9306.6, + "end": 9312.66, + "probability": 0.9803 + }, + { + "start": 9313.04, + "end": 9313.88, + "probability": 0.8495 + }, + { + "start": 9315.12, + "end": 9316.68, + "probability": 0.577 + }, + { + "start": 9317.68, + "end": 9318.94, + "probability": 0.9114 + }, + { + "start": 9319.04, + "end": 9320.22, + "probability": 0.4473 + }, + { + "start": 9320.22, + "end": 9322.55, + "probability": 0.9443 + }, + { + "start": 9322.98, + "end": 9323.78, + "probability": 0.8717 + }, + { + "start": 9324.66, + "end": 9326.34, + "probability": 0.9551 + }, + { + "start": 9327.16, + "end": 9327.62, + "probability": 0.8099 + }, + { + "start": 9327.66, + "end": 9328.98, + "probability": 0.9307 + }, + { + "start": 9329.5, + "end": 9332.34, + "probability": 0.9121 + }, + { + "start": 9333.16, + "end": 9334.78, + "probability": 0.9521 + }, + { + "start": 9335.86, + "end": 9342.16, + "probability": 0.9403 + }, + { + "start": 9342.92, + "end": 9344.36, + "probability": 0.8948 + }, + { + "start": 9345.04, + "end": 9346.1, + "probability": 0.7947 + }, + { + "start": 9346.18, + "end": 9350.5, + "probability": 0.9513 + }, + { + "start": 9350.5, + "end": 9356.68, + "probability": 0.9869 + }, + { + "start": 9357.36, + "end": 9363.96, + "probability": 0.9919 + }, + { + "start": 9364.76, + "end": 9367.68, + "probability": 0.8943 + }, + { + "start": 9368.48, + "end": 9370.4, + "probability": 0.9959 + }, + { + "start": 9371.68, + "end": 9375.44, + "probability": 0.5148 + }, + { + "start": 9376.42, + "end": 9377.2, + "probability": 0.7641 + }, + { + "start": 9378.04, + "end": 9384.4, + "probability": 0.8516 + }, + { + "start": 9384.67, + "end": 9389.66, + "probability": 0.9882 + }, + { + "start": 9390.34, + "end": 9394.9, + "probability": 0.951 + }, + { + "start": 9394.9, + "end": 9399.44, + "probability": 0.9747 + }, + { + "start": 9399.66, + "end": 9403.74, + "probability": 0.9728 + }, + { + "start": 9404.16, + "end": 9407.9, + "probability": 0.8904 + }, + { + "start": 9409.22, + "end": 9412.44, + "probability": 0.9899 + }, + { + "start": 9412.54, + "end": 9413.96, + "probability": 0.8581 + }, + { + "start": 9414.68, + "end": 9415.9, + "probability": 0.5334 + }, + { + "start": 9416.04, + "end": 9416.72, + "probability": 0.888 + }, + { + "start": 9416.78, + "end": 9418.04, + "probability": 0.7911 + }, + { + "start": 9418.22, + "end": 9418.8, + "probability": 0.7502 + }, + { + "start": 9419.72, + "end": 9427.54, + "probability": 0.9773 + }, + { + "start": 9427.54, + "end": 9436.06, + "probability": 0.9902 + }, + { + "start": 9437.04, + "end": 9441.7, + "probability": 0.7819 + }, + { + "start": 9442.3, + "end": 9445.52, + "probability": 0.9275 + }, + { + "start": 9446.48, + "end": 9449.72, + "probability": 0.9261 + }, + { + "start": 9450.08, + "end": 9455.38, + "probability": 0.9183 + }, + { + "start": 9455.38, + "end": 9462.48, + "probability": 0.8776 + }, + { + "start": 9463.12, + "end": 9465.78, + "probability": 0.9293 + }, + { + "start": 9466.4, + "end": 9473.5, + "probability": 0.9788 + }, + { + "start": 9474.32, + "end": 9481.46, + "probability": 0.9943 + }, + { + "start": 9481.46, + "end": 9489.04, + "probability": 0.9991 + }, + { + "start": 9489.9, + "end": 9492.88, + "probability": 0.9965 + }, + { + "start": 9492.88, + "end": 9496.62, + "probability": 0.9953 + }, + { + "start": 9497.64, + "end": 9499.74, + "probability": 0.8464 + }, + { + "start": 9500.38, + "end": 9508.76, + "probability": 0.9917 + }, + { + "start": 9509.56, + "end": 9510.88, + "probability": 0.8964 + }, + { + "start": 9511.58, + "end": 9515.24, + "probability": 0.9489 + }, + { + "start": 9516.02, + "end": 9517.0, + "probability": 0.9095 + }, + { + "start": 9517.52, + "end": 9519.18, + "probability": 0.9827 + }, + { + "start": 9519.7, + "end": 9524.68, + "probability": 0.9507 + }, + { + "start": 9525.38, + "end": 9527.72, + "probability": 0.8154 + }, + { + "start": 9528.66, + "end": 9536.54, + "probability": 0.9788 + }, + { + "start": 9537.18, + "end": 9541.86, + "probability": 0.9821 + }, + { + "start": 9541.86, + "end": 9548.62, + "probability": 0.9921 + }, + { + "start": 9549.84, + "end": 9552.66, + "probability": 0.993 + }, + { + "start": 9553.64, + "end": 9556.34, + "probability": 0.9961 + }, + { + "start": 9556.92, + "end": 9561.58, + "probability": 0.9972 + }, + { + "start": 9561.58, + "end": 9565.48, + "probability": 0.9959 + }, + { + "start": 9566.26, + "end": 9568.94, + "probability": 0.9805 + }, + { + "start": 9569.4, + "end": 9576.54, + "probability": 0.9675 + }, + { + "start": 9577.12, + "end": 9582.28, + "probability": 0.9756 + }, + { + "start": 9582.8, + "end": 9588.52, + "probability": 0.8886 + }, + { + "start": 9589.06, + "end": 9596.4, + "probability": 0.9935 + }, + { + "start": 9597.48, + "end": 9604.6, + "probability": 0.9704 + }, + { + "start": 9605.44, + "end": 9611.38, + "probability": 0.9639 + }, + { + "start": 9611.74, + "end": 9612.98, + "probability": 0.7781 + }, + { + "start": 9613.56, + "end": 9620.74, + "probability": 0.9935 + }, + { + "start": 9621.0, + "end": 9622.18, + "probability": 0.7487 + }, + { + "start": 9622.8, + "end": 9625.6, + "probability": 0.6114 + }, + { + "start": 9625.94, + "end": 9627.0, + "probability": 0.8551 + }, + { + "start": 9627.16, + "end": 9627.86, + "probability": 0.9883 + }, + { + "start": 9628.76, + "end": 9633.36, + "probability": 0.8817 + }, + { + "start": 9633.48, + "end": 9635.48, + "probability": 0.7445 + }, + { + "start": 9636.22, + "end": 9637.52, + "probability": 0.7774 + }, + { + "start": 9638.12, + "end": 9641.52, + "probability": 0.9653 + }, + { + "start": 9642.4, + "end": 9644.56, + "probability": 0.9667 + }, + { + "start": 9645.16, + "end": 9649.34, + "probability": 0.9624 + }, + { + "start": 9649.34, + "end": 9652.94, + "probability": 0.9979 + }, + { + "start": 9654.04, + "end": 9660.3, + "probability": 0.685 + }, + { + "start": 9660.88, + "end": 9666.1, + "probability": 0.9946 + }, + { + "start": 9666.66, + "end": 9671.18, + "probability": 0.9607 + }, + { + "start": 9672.14, + "end": 9673.72, + "probability": 0.7214 + }, + { + "start": 9674.7, + "end": 9678.66, + "probability": 0.9582 + }, + { + "start": 9678.88, + "end": 9679.16, + "probability": 0.87 + }, + { + "start": 9680.38, + "end": 9687.16, + "probability": 0.9714 + }, + { + "start": 9687.28, + "end": 9688.2, + "probability": 0.9654 + }, + { + "start": 9711.2, + "end": 9711.2, + "probability": 0.3654 + }, + { + "start": 9711.26, + "end": 9715.82, + "probability": 0.6044 + }, + { + "start": 9715.9, + "end": 9718.98, + "probability": 0.9196 + }, + { + "start": 9721.58, + "end": 9724.58, + "probability": 0.8972 + }, + { + "start": 9725.62, + "end": 9727.0, + "probability": 0.7737 + }, + { + "start": 9728.18, + "end": 9728.42, + "probability": 0.3849 + }, + { + "start": 9728.48, + "end": 9729.28, + "probability": 0.9103 + }, + { + "start": 9729.38, + "end": 9732.52, + "probability": 0.958 + }, + { + "start": 9733.86, + "end": 9734.52, + "probability": 0.7526 + }, + { + "start": 9735.2, + "end": 9737.08, + "probability": 0.8057 + }, + { + "start": 9737.28, + "end": 9742.22, + "probability": 0.9948 + }, + { + "start": 9744.44, + "end": 9747.16, + "probability": 0.9735 + }, + { + "start": 9747.16, + "end": 9751.58, + "probability": 0.999 + }, + { + "start": 9751.84, + "end": 9753.52, + "probability": 0.9971 + }, + { + "start": 9753.56, + "end": 9755.52, + "probability": 0.921 + }, + { + "start": 9756.62, + "end": 9761.2, + "probability": 0.988 + }, + { + "start": 9761.86, + "end": 9766.2, + "probability": 0.7658 + }, + { + "start": 9766.4, + "end": 9767.62, + "probability": 0.9594 + }, + { + "start": 9769.58, + "end": 9775.5, + "probability": 0.9791 + }, + { + "start": 9776.0, + "end": 9777.52, + "probability": 0.9699 + }, + { + "start": 9778.44, + "end": 9780.28, + "probability": 0.8313 + }, + { + "start": 9781.42, + "end": 9786.02, + "probability": 0.9611 + }, + { + "start": 9786.02, + "end": 9793.64, + "probability": 0.9792 + }, + { + "start": 9795.64, + "end": 9799.22, + "probability": 0.9974 + }, + { + "start": 9799.76, + "end": 9805.02, + "probability": 0.9913 + }, + { + "start": 9805.88, + "end": 9807.34, + "probability": 0.5576 + }, + { + "start": 9807.88, + "end": 9813.4, + "probability": 0.9903 + }, + { + "start": 9813.4, + "end": 9817.02, + "probability": 0.9951 + }, + { + "start": 9818.46, + "end": 9821.34, + "probability": 0.9869 + }, + { + "start": 9821.34, + "end": 9825.08, + "probability": 0.9976 + }, + { + "start": 9826.58, + "end": 9827.72, + "probability": 0.9126 + }, + { + "start": 9828.02, + "end": 9829.74, + "probability": 0.9797 + }, + { + "start": 9829.96, + "end": 9831.02, + "probability": 0.63 + }, + { + "start": 9831.18, + "end": 9834.3, + "probability": 0.9238 + }, + { + "start": 9835.45, + "end": 9837.8, + "probability": 0.988 + }, + { + "start": 9837.9, + "end": 9840.42, + "probability": 0.9904 + }, + { + "start": 9842.12, + "end": 9846.06, + "probability": 0.929 + }, + { + "start": 9846.62, + "end": 9847.76, + "probability": 0.9407 + }, + { + "start": 9849.5, + "end": 9850.04, + "probability": 0.8385 + }, + { + "start": 9850.12, + "end": 9850.42, + "probability": 0.4459 + }, + { + "start": 9850.52, + "end": 9853.52, + "probability": 0.9771 + }, + { + "start": 9854.78, + "end": 9859.44, + "probability": 0.64 + }, + { + "start": 9860.8, + "end": 9861.86, + "probability": 0.7418 + }, + { + "start": 9864.12, + "end": 9866.36, + "probability": 0.9561 + }, + { + "start": 9866.4, + "end": 9869.46, + "probability": 0.8674 + }, + { + "start": 9870.75, + "end": 9873.9, + "probability": 0.8953 + }, + { + "start": 9874.7, + "end": 9877.14, + "probability": 0.7468 + }, + { + "start": 9877.74, + "end": 9881.71, + "probability": 0.9447 + }, + { + "start": 9882.28, + "end": 9882.4, + "probability": 0.4869 + }, + { + "start": 9882.54, + "end": 9888.73, + "probability": 0.8269 + }, + { + "start": 9889.14, + "end": 9889.56, + "probability": 0.6898 + }, + { + "start": 9889.68, + "end": 9890.96, + "probability": 0.5618 + }, + { + "start": 9890.96, + "end": 9894.02, + "probability": 0.8986 + }, + { + "start": 9894.08, + "end": 9894.48, + "probability": 0.7461 + }, + { + "start": 9896.19, + "end": 9899.1, + "probability": 0.9514 + }, + { + "start": 9899.16, + "end": 9899.84, + "probability": 0.9297 + }, + { + "start": 9918.38, + "end": 9920.32, + "probability": 0.5449 + }, + { + "start": 9921.92, + "end": 9924.68, + "probability": 0.8087 + }, + { + "start": 9924.78, + "end": 9926.1, + "probability": 0.6554 + }, + { + "start": 9926.14, + "end": 9930.58, + "probability": 0.8706 + }, + { + "start": 9931.14, + "end": 9935.74, + "probability": 0.8745 + }, + { + "start": 9935.78, + "end": 9936.44, + "probability": 0.8013 + }, + { + "start": 9938.78, + "end": 9941.92, + "probability": 0.8917 + }, + { + "start": 9942.82, + "end": 9943.34, + "probability": 0.392 + }, + { + "start": 9943.44, + "end": 9947.16, + "probability": 0.9449 + }, + { + "start": 9947.48, + "end": 9948.92, + "probability": 0.9766 + }, + { + "start": 9950.44, + "end": 9955.48, + "probability": 0.9968 + }, + { + "start": 9955.48, + "end": 9958.02, + "probability": 0.9674 + }, + { + "start": 9958.22, + "end": 9958.66, + "probability": 0.6326 + }, + { + "start": 9958.82, + "end": 9960.86, + "probability": 0.9813 + }, + { + "start": 9961.68, + "end": 9963.42, + "probability": 0.9805 + }, + { + "start": 9963.56, + "end": 9964.7, + "probability": 0.8188 + }, + { + "start": 9964.78, + "end": 9967.52, + "probability": 0.9972 + }, + { + "start": 9967.92, + "end": 9969.8, + "probability": 0.9666 + }, + { + "start": 9971.46, + "end": 9972.0, + "probability": 0.7174 + }, + { + "start": 9972.06, + "end": 9972.68, + "probability": 0.831 + }, + { + "start": 9972.88, + "end": 9974.17, + "probability": 0.897 + }, + { + "start": 9974.26, + "end": 9976.26, + "probability": 0.978 + }, + { + "start": 9976.46, + "end": 9977.67, + "probability": 0.9801 + }, + { + "start": 9978.04, + "end": 9982.04, + "probability": 0.9895 + }, + { + "start": 9982.16, + "end": 9983.22, + "probability": 0.6948 + }, + { + "start": 9983.86, + "end": 9984.82, + "probability": 0.7185 + }, + { + "start": 9984.9, + "end": 9985.74, + "probability": 0.7354 + }, + { + "start": 9985.74, + "end": 9986.86, + "probability": 0.8713 + }, + { + "start": 9986.9, + "end": 9988.18, + "probability": 0.9308 + }, + { + "start": 9988.36, + "end": 9990.56, + "probability": 0.6761 + }, + { + "start": 9991.2, + "end": 9994.73, + "probability": 0.888 + }, + { + "start": 9995.06, + "end": 9999.02, + "probability": 0.9151 + }, + { + "start": 9999.08, + "end": 10001.7, + "probability": 0.992 + }, + { + "start": 10001.8, + "end": 10002.88, + "probability": 0.5697 + }, + { + "start": 10002.92, + "end": 10005.18, + "probability": 0.9847 + }, + { + "start": 10006.4, + "end": 10009.42, + "probability": 0.9586 + }, + { + "start": 10009.58, + "end": 10010.48, + "probability": 0.9154 + }, + { + "start": 10010.74, + "end": 10012.28, + "probability": 0.9417 + }, + { + "start": 10012.74, + "end": 10016.98, + "probability": 0.9719 + }, + { + "start": 10017.62, + "end": 10018.96, + "probability": 0.9653 + }, + { + "start": 10019.28, + "end": 10023.52, + "probability": 0.994 + }, + { + "start": 10023.52, + "end": 10027.6, + "probability": 0.9958 + }, + { + "start": 10027.68, + "end": 10028.58, + "probability": 0.7707 + }, + { + "start": 10028.66, + "end": 10029.8, + "probability": 0.8661 + }, + { + "start": 10030.88, + "end": 10033.2, + "probability": 0.9935 + }, + { + "start": 10033.54, + "end": 10036.98, + "probability": 0.9759 + }, + { + "start": 10037.12, + "end": 10041.34, + "probability": 0.9939 + }, + { + "start": 10041.94, + "end": 10047.2, + "probability": 0.9977 + }, + { + "start": 10047.8, + "end": 10051.18, + "probability": 0.9964 + }, + { + "start": 10051.6, + "end": 10056.86, + "probability": 0.9952 + }, + { + "start": 10057.1, + "end": 10060.34, + "probability": 0.8278 + }, + { + "start": 10060.86, + "end": 10064.28, + "probability": 0.9944 + }, + { + "start": 10064.74, + "end": 10069.24, + "probability": 0.9553 + }, + { + "start": 10069.34, + "end": 10070.52, + "probability": 0.9917 + }, + { + "start": 10070.66, + "end": 10072.8, + "probability": 0.9839 + }, + { + "start": 10072.92, + "end": 10074.2, + "probability": 0.9272 + }, + { + "start": 10074.58, + "end": 10076.62, + "probability": 0.9805 + }, + { + "start": 10077.22, + "end": 10078.44, + "probability": 0.8836 + }, + { + "start": 10078.62, + "end": 10080.96, + "probability": 0.995 + }, + { + "start": 10081.04, + "end": 10082.24, + "probability": 0.9517 + }, + { + "start": 10082.58, + "end": 10087.06, + "probability": 0.9946 + }, + { + "start": 10087.06, + "end": 10091.58, + "probability": 0.9819 + }, + { + "start": 10092.92, + "end": 10096.08, + "probability": 0.9978 + }, + { + "start": 10096.5, + "end": 10100.1, + "probability": 0.9976 + }, + { + "start": 10101.08, + "end": 10103.46, + "probability": 0.9959 + }, + { + "start": 10103.8, + "end": 10106.08, + "probability": 0.9712 + }, + { + "start": 10106.44, + "end": 10110.18, + "probability": 0.9702 + }, + { + "start": 10110.32, + "end": 10110.32, + "probability": 0.0067 + }, + { + "start": 10110.9, + "end": 10114.0, + "probability": 0.9501 + }, + { + "start": 10114.18, + "end": 10118.18, + "probability": 0.9888 + }, + { + "start": 10118.24, + "end": 10124.08, + "probability": 0.8694 + }, + { + "start": 10124.58, + "end": 10126.82, + "probability": 0.9954 + }, + { + "start": 10126.82, + "end": 10129.0, + "probability": 0.9989 + }, + { + "start": 10129.4, + "end": 10133.15, + "probability": 0.9838 + }, + { + "start": 10133.48, + "end": 10134.96, + "probability": 0.5715 + }, + { + "start": 10135.18, + "end": 10138.06, + "probability": 0.9959 + }, + { + "start": 10138.6, + "end": 10140.02, + "probability": 0.8095 + }, + { + "start": 10140.1, + "end": 10140.68, + "probability": 0.7437 + }, + { + "start": 10140.72, + "end": 10141.58, + "probability": 0.6553 + }, + { + "start": 10141.64, + "end": 10145.14, + "probability": 0.8228 + }, + { + "start": 10145.6, + "end": 10153.96, + "probability": 0.9941 + }, + { + "start": 10154.6, + "end": 10158.08, + "probability": 0.9299 + }, + { + "start": 10158.62, + "end": 10163.9, + "probability": 0.9847 + }, + { + "start": 10164.32, + "end": 10166.3, + "probability": 0.8174 + }, + { + "start": 10166.7, + "end": 10170.1, + "probability": 0.9523 + }, + { + "start": 10170.4, + "end": 10173.84, + "probability": 0.9966 + }, + { + "start": 10174.52, + "end": 10178.16, + "probability": 0.9915 + }, + { + "start": 10178.38, + "end": 10178.62, + "probability": 0.7572 + }, + { + "start": 10180.24, + "end": 10181.26, + "probability": 0.7316 + }, + { + "start": 10182.78, + "end": 10185.22, + "probability": 0.9188 + }, + { + "start": 10207.26, + "end": 10211.48, + "probability": 0.7217 + }, + { + "start": 10213.47, + "end": 10215.24, + "probability": 0.8538 + }, + { + "start": 10216.8, + "end": 10219.22, + "probability": 0.9501 + }, + { + "start": 10220.8, + "end": 10230.24, + "probability": 0.9461 + }, + { + "start": 10231.16, + "end": 10231.94, + "probability": 0.6113 + }, + { + "start": 10232.96, + "end": 10236.26, + "probability": 0.8133 + }, + { + "start": 10237.26, + "end": 10244.06, + "probability": 0.953 + }, + { + "start": 10248.42, + "end": 10251.64, + "probability": 0.9883 + }, + { + "start": 10253.56, + "end": 10256.8, + "probability": 0.989 + }, + { + "start": 10258.24, + "end": 10260.68, + "probability": 0.9642 + }, + { + "start": 10263.42, + "end": 10265.48, + "probability": 0.9739 + }, + { + "start": 10266.16, + "end": 10267.5, + "probability": 0.9229 + }, + { + "start": 10267.92, + "end": 10272.54, + "probability": 0.9372 + }, + { + "start": 10273.66, + "end": 10281.4, + "probability": 0.9927 + }, + { + "start": 10282.24, + "end": 10283.26, + "probability": 0.9792 + }, + { + "start": 10285.34, + "end": 10288.58, + "probability": 0.8918 + }, + { + "start": 10289.52, + "end": 10293.1, + "probability": 0.928 + }, + { + "start": 10293.9, + "end": 10295.8, + "probability": 0.9777 + }, + { + "start": 10296.04, + "end": 10298.02, + "probability": 0.9935 + }, + { + "start": 10298.78, + "end": 10305.46, + "probability": 0.972 + }, + { + "start": 10305.66, + "end": 10307.32, + "probability": 0.9102 + }, + { + "start": 10307.48, + "end": 10309.14, + "probability": 0.9774 + }, + { + "start": 10310.56, + "end": 10313.34, + "probability": 0.953 + }, + { + "start": 10313.66, + "end": 10315.6, + "probability": 0.7334 + }, + { + "start": 10318.16, + "end": 10322.46, + "probability": 0.9941 + }, + { + "start": 10322.6, + "end": 10323.66, + "probability": 0.7215 + }, + { + "start": 10325.16, + "end": 10327.52, + "probability": 0.9622 + }, + { + "start": 10328.22, + "end": 10330.12, + "probability": 0.9022 + }, + { + "start": 10331.0, + "end": 10337.56, + "probability": 0.9534 + }, + { + "start": 10338.92, + "end": 10342.62, + "probability": 0.4869 + }, + { + "start": 10343.66, + "end": 10345.26, + "probability": 0.5204 + }, + { + "start": 10345.98, + "end": 10348.3, + "probability": 0.9608 + }, + { + "start": 10349.52, + "end": 10351.22, + "probability": 0.9449 + }, + { + "start": 10352.14, + "end": 10356.26, + "probability": 0.9584 + }, + { + "start": 10358.68, + "end": 10360.64, + "probability": 0.9977 + }, + { + "start": 10362.04, + "end": 10362.74, + "probability": 0.9137 + }, + { + "start": 10363.16, + "end": 10363.78, + "probability": 0.7941 + }, + { + "start": 10363.78, + "end": 10364.48, + "probability": 0.9531 + }, + { + "start": 10364.62, + "end": 10366.54, + "probability": 0.9883 + }, + { + "start": 10367.1, + "end": 10368.7, + "probability": 0.7903 + }, + { + "start": 10368.82, + "end": 10369.72, + "probability": 0.7536 + }, + { + "start": 10369.84, + "end": 10373.26, + "probability": 0.9004 + }, + { + "start": 10373.3, + "end": 10374.72, + "probability": 0.9338 + }, + { + "start": 10375.32, + "end": 10377.78, + "probability": 0.9797 + }, + { + "start": 10380.58, + "end": 10385.02, + "probability": 0.7084 + }, + { + "start": 10385.76, + "end": 10388.98, + "probability": 0.978 + }, + { + "start": 10389.02, + "end": 10390.34, + "probability": 0.9539 + }, + { + "start": 10390.58, + "end": 10391.46, + "probability": 0.8848 + }, + { + "start": 10392.0, + "end": 10395.92, + "probability": 0.9365 + }, + { + "start": 10396.52, + "end": 10397.64, + "probability": 0.9247 + }, + { + "start": 10398.32, + "end": 10400.36, + "probability": 0.9452 + }, + { + "start": 10401.76, + "end": 10405.68, + "probability": 0.9647 + }, + { + "start": 10405.86, + "end": 10406.78, + "probability": 0.7518 + }, + { + "start": 10406.9, + "end": 10407.8, + "probability": 0.4601 + }, + { + "start": 10408.78, + "end": 10410.4, + "probability": 0.8571 + }, + { + "start": 10411.72, + "end": 10418.38, + "probability": 0.9821 + }, + { + "start": 10418.78, + "end": 10420.0, + "probability": 0.7893 + }, + { + "start": 10420.06, + "end": 10421.64, + "probability": 0.9312 + }, + { + "start": 10422.36, + "end": 10426.82, + "probability": 0.9609 + }, + { + "start": 10427.04, + "end": 10427.7, + "probability": 0.8868 + }, + { + "start": 10428.74, + "end": 10429.7, + "probability": 0.4918 + }, + { + "start": 10429.98, + "end": 10433.12, + "probability": 0.8013 + }, + { + "start": 10433.6, + "end": 10437.38, + "probability": 0.9006 + }, + { + "start": 10447.06, + "end": 10448.32, + "probability": 0.7826 + }, + { + "start": 10450.14, + "end": 10450.96, + "probability": 0.7525 + }, + { + "start": 10451.8, + "end": 10455.0, + "probability": 0.9781 + }, + { + "start": 10455.84, + "end": 10456.86, + "probability": 0.5123 + }, + { + "start": 10457.78, + "end": 10460.24, + "probability": 0.8776 + }, + { + "start": 10461.2, + "end": 10465.0, + "probability": 0.9941 + }, + { + "start": 10465.64, + "end": 10466.66, + "probability": 0.9891 + }, + { + "start": 10468.42, + "end": 10469.18, + "probability": 0.7332 + }, + { + "start": 10470.44, + "end": 10471.64, + "probability": 0.5721 + }, + { + "start": 10472.46, + "end": 10473.28, + "probability": 0.7989 + }, + { + "start": 10474.68, + "end": 10475.28, + "probability": 0.776 + }, + { + "start": 10475.34, + "end": 10478.27, + "probability": 0.9778 + }, + { + "start": 10478.86, + "end": 10482.84, + "probability": 0.8302 + }, + { + "start": 10484.04, + "end": 10484.7, + "probability": 0.7482 + }, + { + "start": 10486.44, + "end": 10491.6, + "probability": 0.9548 + }, + { + "start": 10491.68, + "end": 10492.9, + "probability": 0.9697 + }, + { + "start": 10493.12, + "end": 10497.7, + "probability": 0.9668 + }, + { + "start": 10498.16, + "end": 10502.92, + "probability": 0.9607 + }, + { + "start": 10504.38, + "end": 10506.63, + "probability": 0.999 + }, + { + "start": 10508.02, + "end": 10510.02, + "probability": 0.9958 + }, + { + "start": 10511.92, + "end": 10517.6, + "probability": 0.9797 + }, + { + "start": 10518.54, + "end": 10524.18, + "probability": 0.9644 + }, + { + "start": 10525.2, + "end": 10526.56, + "probability": 0.9973 + }, + { + "start": 10526.64, + "end": 10528.93, + "probability": 0.9294 + }, + { + "start": 10530.14, + "end": 10531.11, + "probability": 0.7059 + }, + { + "start": 10531.44, + "end": 10532.32, + "probability": 0.9693 + }, + { + "start": 10532.76, + "end": 10534.51, + "probability": 0.8972 + }, + { + "start": 10536.08, + "end": 10541.22, + "probability": 0.9606 + }, + { + "start": 10542.06, + "end": 10543.12, + "probability": 0.9648 + }, + { + "start": 10544.54, + "end": 10545.45, + "probability": 0.9511 + }, + { + "start": 10546.24, + "end": 10547.18, + "probability": 0.974 + }, + { + "start": 10547.46, + "end": 10548.24, + "probability": 0.8887 + }, + { + "start": 10549.58, + "end": 10554.32, + "probability": 0.9036 + }, + { + "start": 10554.7, + "end": 10555.74, + "probability": 0.8713 + }, + { + "start": 10556.48, + "end": 10561.78, + "probability": 0.9435 + }, + { + "start": 10562.5, + "end": 10563.1, + "probability": 0.7179 + }, + { + "start": 10563.72, + "end": 10565.48, + "probability": 0.7144 + }, + { + "start": 10565.58, + "end": 10566.4, + "probability": 0.4383 + }, + { + "start": 10566.46, + "end": 10567.82, + "probability": 0.8427 + }, + { + "start": 10568.96, + "end": 10572.92, + "probability": 0.828 + }, + { + "start": 10573.88, + "end": 10578.09, + "probability": 0.9835 + }, + { + "start": 10578.22, + "end": 10583.88, + "probability": 0.9958 + }, + { + "start": 10584.48, + "end": 10588.72, + "probability": 0.8559 + }, + { + "start": 10588.88, + "end": 10590.18, + "probability": 0.5605 + }, + { + "start": 10591.94, + "end": 10593.02, + "probability": 0.9727 + }, + { + "start": 10593.1, + "end": 10595.74, + "probability": 0.6573 + }, + { + "start": 10595.74, + "end": 10596.96, + "probability": 0.8538 + }, + { + "start": 10597.6, + "end": 10599.32, + "probability": 0.9045 + }, + { + "start": 10599.34, + "end": 10600.22, + "probability": 0.9829 + }, + { + "start": 10600.28, + "end": 10601.26, + "probability": 0.7645 + }, + { + "start": 10602.98, + "end": 10605.31, + "probability": 0.9004 + }, + { + "start": 10608.58, + "end": 10609.3, + "probability": 0.6534 + }, + { + "start": 10610.52, + "end": 10613.8, + "probability": 0.9662 + }, + { + "start": 10615.32, + "end": 10620.84, + "probability": 0.9873 + }, + { + "start": 10621.94, + "end": 10622.98, + "probability": 0.849 + }, + { + "start": 10623.5, + "end": 10624.85, + "probability": 0.9243 + }, + { + "start": 10625.68, + "end": 10626.04, + "probability": 0.4856 + }, + { + "start": 10626.24, + "end": 10627.68, + "probability": 0.9684 + }, + { + "start": 10628.94, + "end": 10632.32, + "probability": 0.9825 + }, + { + "start": 10633.74, + "end": 10636.5, + "probability": 0.9714 + }, + { + "start": 10636.64, + "end": 10639.54, + "probability": 0.9513 + }, + { + "start": 10639.9, + "end": 10640.1, + "probability": 0.6926 + }, + { + "start": 10641.26, + "end": 10644.3, + "probability": 0.9792 + }, + { + "start": 10644.36, + "end": 10645.79, + "probability": 0.9298 + }, + { + "start": 10646.36, + "end": 10647.32, + "probability": 0.7022 + }, + { + "start": 10647.4, + "end": 10650.18, + "probability": 0.9839 + }, + { + "start": 10652.24, + "end": 10656.92, + "probability": 0.9861 + }, + { + "start": 10657.86, + "end": 10659.54, + "probability": 0.6245 + }, + { + "start": 10659.72, + "end": 10661.64, + "probability": 0.5777 + }, + { + "start": 10661.72, + "end": 10662.78, + "probability": 0.8756 + }, + { + "start": 10663.16, + "end": 10664.14, + "probability": 0.8783 + }, + { + "start": 10664.32, + "end": 10666.46, + "probability": 0.929 + }, + { + "start": 10666.5, + "end": 10669.4, + "probability": 0.9506 + }, + { + "start": 10670.36, + "end": 10675.0, + "probability": 0.9437 + }, + { + "start": 10675.8, + "end": 10679.02, + "probability": 0.99 + }, + { + "start": 10679.26, + "end": 10680.5, + "probability": 0.8381 + }, + { + "start": 10682.24, + "end": 10685.72, + "probability": 0.3498 + }, + { + "start": 10686.62, + "end": 10687.82, + "probability": 0.9702 + }, + { + "start": 10688.42, + "end": 10690.66, + "probability": 0.9355 + }, + { + "start": 10691.58, + "end": 10695.64, + "probability": 0.9741 + }, + { + "start": 10696.5, + "end": 10696.9, + "probability": 0.8044 + }, + { + "start": 10697.44, + "end": 10704.4, + "probability": 0.9927 + }, + { + "start": 10705.66, + "end": 10707.54, + "probability": 0.9533 + }, + { + "start": 10708.62, + "end": 10711.93, + "probability": 0.9835 + }, + { + "start": 10712.6, + "end": 10715.02, + "probability": 0.9877 + }, + { + "start": 10715.76, + "end": 10717.36, + "probability": 0.7526 + }, + { + "start": 10718.04, + "end": 10719.94, + "probability": 0.9545 + }, + { + "start": 10720.7, + "end": 10721.49, + "probability": 0.9128 + }, + { + "start": 10722.0, + "end": 10723.8, + "probability": 0.7703 + }, + { + "start": 10724.48, + "end": 10726.26, + "probability": 0.8748 + }, + { + "start": 10727.48, + "end": 10731.32, + "probability": 0.8877 + }, + { + "start": 10732.4, + "end": 10739.4, + "probability": 0.9932 + }, + { + "start": 10739.4, + "end": 10744.98, + "probability": 0.9954 + }, + { + "start": 10746.4, + "end": 10748.7, + "probability": 0.9922 + }, + { + "start": 10748.9, + "end": 10751.88, + "probability": 0.9963 + }, + { + "start": 10751.92, + "end": 10755.16, + "probability": 0.9868 + }, + { + "start": 10757.32, + "end": 10759.24, + "probability": 0.9447 + }, + { + "start": 10759.32, + "end": 10759.75, + "probability": 0.9342 + }, + { + "start": 10759.94, + "end": 10764.64, + "probability": 0.8381 + }, + { + "start": 10764.74, + "end": 10765.98, + "probability": 0.9016 + }, + { + "start": 10766.4, + "end": 10769.92, + "probability": 0.9962 + }, + { + "start": 10770.66, + "end": 10772.12, + "probability": 0.8607 + }, + { + "start": 10772.8, + "end": 10774.08, + "probability": 0.941 + }, + { + "start": 10774.66, + "end": 10777.25, + "probability": 0.988 + }, + { + "start": 10777.9, + "end": 10778.87, + "probability": 0.9521 + }, + { + "start": 10779.48, + "end": 10779.82, + "probability": 0.8527 + }, + { + "start": 10779.86, + "end": 10780.44, + "probability": 0.8362 + }, + { + "start": 10780.44, + "end": 10782.04, + "probability": 0.8674 + }, + { + "start": 10782.6, + "end": 10783.31, + "probability": 0.9775 + }, + { + "start": 10783.54, + "end": 10784.19, + "probability": 0.6604 + }, + { + "start": 10784.98, + "end": 10787.22, + "probability": 0.9421 + }, + { + "start": 10787.32, + "end": 10788.07, + "probability": 0.937 + }, + { + "start": 10788.28, + "end": 10789.22, + "probability": 0.8801 + }, + { + "start": 10789.8, + "end": 10791.24, + "probability": 0.9536 + }, + { + "start": 10791.88, + "end": 10793.98, + "probability": 0.9459 + }, + { + "start": 10794.42, + "end": 10799.54, + "probability": 0.972 + }, + { + "start": 10800.58, + "end": 10802.02, + "probability": 0.8749 + }, + { + "start": 10802.64, + "end": 10805.36, + "probability": 0.9385 + }, + { + "start": 10806.36, + "end": 10810.04, + "probability": 0.9905 + }, + { + "start": 10810.42, + "end": 10811.56, + "probability": 0.9939 + }, + { + "start": 10811.58, + "end": 10814.2, + "probability": 0.9645 + }, + { + "start": 10814.38, + "end": 10819.2, + "probability": 0.9714 + }, + { + "start": 10819.32, + "end": 10819.9, + "probability": 0.7376 + }, + { + "start": 10820.12, + "end": 10821.06, + "probability": 0.7513 + }, + { + "start": 10822.62, + "end": 10825.22, + "probability": 0.9255 + }, + { + "start": 10825.24, + "end": 10825.9, + "probability": 0.8447 + }, + { + "start": 10850.44, + "end": 10852.76, + "probability": 0.667 + }, + { + "start": 10853.74, + "end": 10854.76, + "probability": 0.4469 + }, + { + "start": 10857.52, + "end": 10858.56, + "probability": 0.795 + }, + { + "start": 10859.46, + "end": 10861.22, + "probability": 0.7461 + }, + { + "start": 10863.68, + "end": 10866.76, + "probability": 0.9482 + }, + { + "start": 10867.48, + "end": 10870.46, + "probability": 0.7555 + }, + { + "start": 10872.04, + "end": 10878.24, + "probability": 0.9928 + }, + { + "start": 10879.12, + "end": 10881.37, + "probability": 0.9594 + }, + { + "start": 10881.5, + "end": 10884.3, + "probability": 0.9677 + }, + { + "start": 10884.74, + "end": 10888.86, + "probability": 0.8442 + }, + { + "start": 10889.58, + "end": 10893.7, + "probability": 0.9207 + }, + { + "start": 10894.48, + "end": 10896.58, + "probability": 0.4999 + }, + { + "start": 10897.2, + "end": 10898.6, + "probability": 0.9645 + }, + { + "start": 10900.44, + "end": 10902.76, + "probability": 0.9421 + }, + { + "start": 10903.54, + "end": 10905.74, + "probability": 0.9494 + }, + { + "start": 10906.66, + "end": 10908.28, + "probability": 0.9679 + }, + { + "start": 10909.96, + "end": 10911.08, + "probability": 0.9131 + }, + { + "start": 10911.38, + "end": 10918.54, + "probability": 0.9801 + }, + { + "start": 10919.74, + "end": 10925.52, + "probability": 0.9961 + }, + { + "start": 10926.12, + "end": 10927.18, + "probability": 0.6445 + }, + { + "start": 10927.82, + "end": 10932.92, + "probability": 0.9165 + }, + { + "start": 10933.68, + "end": 10936.54, + "probability": 0.9656 + }, + { + "start": 10937.46, + "end": 10942.22, + "probability": 0.986 + }, + { + "start": 10942.22, + "end": 10946.12, + "probability": 0.9854 + }, + { + "start": 10947.1, + "end": 10954.42, + "probability": 0.9923 + }, + { + "start": 10955.3, + "end": 10962.04, + "probability": 0.8177 + }, + { + "start": 10962.78, + "end": 10964.88, + "probability": 0.9395 + }, + { + "start": 10964.98, + "end": 10971.12, + "probability": 0.9478 + }, + { + "start": 10971.72, + "end": 10972.46, + "probability": 0.8377 + }, + { + "start": 10973.22, + "end": 10976.66, + "probability": 0.9795 + }, + { + "start": 10977.42, + "end": 10978.5, + "probability": 0.9363 + }, + { + "start": 10978.68, + "end": 10979.42, + "probability": 0.8059 + }, + { + "start": 10979.86, + "end": 10981.74, + "probability": 0.9842 + }, + { + "start": 10982.42, + "end": 10984.36, + "probability": 0.9544 + }, + { + "start": 10985.22, + "end": 10988.26, + "probability": 0.9106 + }, + { + "start": 10988.88, + "end": 10990.66, + "probability": 0.9886 + }, + { + "start": 10991.86, + "end": 10996.9, + "probability": 0.8042 + }, + { + "start": 10997.38, + "end": 11002.92, + "probability": 0.7766 + }, + { + "start": 11003.58, + "end": 11004.84, + "probability": 0.8909 + }, + { + "start": 11005.76, + "end": 11008.22, + "probability": 0.9043 + }, + { + "start": 11008.56, + "end": 11011.42, + "probability": 0.9085 + }, + { + "start": 11011.72, + "end": 11013.18, + "probability": 0.9843 + }, + { + "start": 11014.0, + "end": 11017.26, + "probability": 0.9637 + }, + { + "start": 11017.26, + "end": 11020.0, + "probability": 0.8879 + }, + { + "start": 11020.68, + "end": 11020.8, + "probability": 0.5559 + }, + { + "start": 11022.34, + "end": 11026.1, + "probability": 0.855 + }, + { + "start": 11026.34, + "end": 11027.3, + "probability": 0.7642 + }, + { + "start": 11027.52, + "end": 11028.26, + "probability": 0.9209 + }, + { + "start": 11028.62, + "end": 11030.28, + "probability": 0.8912 + }, + { + "start": 11030.92, + "end": 11034.6, + "probability": 0.8696 + }, + { + "start": 11035.14, + "end": 11037.44, + "probability": 0.9673 + }, + { + "start": 11038.06, + "end": 11042.36, + "probability": 0.9209 + }, + { + "start": 11043.36, + "end": 11046.88, + "probability": 0.9453 + }, + { + "start": 11047.44, + "end": 11049.14, + "probability": 0.9783 + }, + { + "start": 11050.26, + "end": 11055.34, + "probability": 0.9063 + }, + { + "start": 11055.94, + "end": 11058.22, + "probability": 0.8581 + }, + { + "start": 11058.78, + "end": 11062.24, + "probability": 0.8835 + }, + { + "start": 11064.08, + "end": 11065.86, + "probability": 0.9951 + }, + { + "start": 11066.3, + "end": 11067.54, + "probability": 0.8105 + }, + { + "start": 11067.6, + "end": 11069.16, + "probability": 0.9197 + }, + { + "start": 11069.4, + "end": 11073.02, + "probability": 0.9703 + }, + { + "start": 11073.02, + "end": 11077.64, + "probability": 0.9278 + }, + { + "start": 11079.0, + "end": 11080.5, + "probability": 0.9698 + }, + { + "start": 11080.58, + "end": 11082.3, + "probability": 0.9868 + }, + { + "start": 11082.46, + "end": 11087.04, + "probability": 0.7403 + }, + { + "start": 11087.72, + "end": 11092.7, + "probability": 0.6919 + }, + { + "start": 11093.22, + "end": 11096.9, + "probability": 0.8836 + }, + { + "start": 11097.34, + "end": 11100.68, + "probability": 0.7608 + }, + { + "start": 11101.0, + "end": 11102.52, + "probability": 0.9138 + }, + { + "start": 11103.28, + "end": 11103.98, + "probability": 0.8234 + }, + { + "start": 11104.46, + "end": 11107.58, + "probability": 0.9873 + }, + { + "start": 11107.62, + "end": 11109.78, + "probability": 0.6148 + }, + { + "start": 11109.82, + "end": 11110.6, + "probability": 0.5684 + }, + { + "start": 11111.7, + "end": 11115.2, + "probability": 0.8138 + }, + { + "start": 11115.62, + "end": 11116.54, + "probability": 0.9128 + }, + { + "start": 11117.5, + "end": 11121.24, + "probability": 0.9504 + }, + { + "start": 11121.82, + "end": 11123.88, + "probability": 0.9618 + }, + { + "start": 11124.18, + "end": 11126.18, + "probability": 0.9844 + }, + { + "start": 11126.48, + "end": 11129.44, + "probability": 0.9921 + }, + { + "start": 11129.86, + "end": 11132.86, + "probability": 0.9967 + }, + { + "start": 11134.02, + "end": 11137.32, + "probability": 0.717 + }, + { + "start": 11138.38, + "end": 11145.06, + "probability": 0.8164 + }, + { + "start": 11145.5, + "end": 11149.22, + "probability": 0.9852 + }, + { + "start": 11150.1, + "end": 11153.62, + "probability": 0.972 + }, + { + "start": 11154.64, + "end": 11161.3, + "probability": 0.9726 + }, + { + "start": 11161.3, + "end": 11168.18, + "probability": 0.9887 + }, + { + "start": 11169.18, + "end": 11172.84, + "probability": 0.9403 + }, + { + "start": 11172.84, + "end": 11175.66, + "probability": 0.9977 + }, + { + "start": 11175.82, + "end": 11177.56, + "probability": 0.883 + }, + { + "start": 11179.02, + "end": 11183.56, + "probability": 0.982 + }, + { + "start": 11184.86, + "end": 11184.86, + "probability": 0.1226 + }, + { + "start": 11184.86, + "end": 11187.34, + "probability": 0.9058 + }, + { + "start": 11187.54, + "end": 11190.24, + "probability": 0.7039 + }, + { + "start": 11190.96, + "end": 11195.91, + "probability": 0.8997 + }, + { + "start": 11196.86, + "end": 11201.26, + "probability": 0.902 + }, + { + "start": 11201.3, + "end": 11207.16, + "probability": 0.8488 + }, + { + "start": 11208.62, + "end": 11213.1, + "probability": 0.8532 + }, + { + "start": 11213.9, + "end": 11217.44, + "probability": 0.9759 + }, + { + "start": 11218.16, + "end": 11220.16, + "probability": 0.7469 + }, + { + "start": 11221.24, + "end": 11224.86, + "probability": 0.8053 + }, + { + "start": 11225.5, + "end": 11226.9, + "probability": 0.5786 + }, + { + "start": 11228.72, + "end": 11230.38, + "probability": 0.8737 + }, + { + "start": 11231.48, + "end": 11235.88, + "probability": 0.9483 + }, + { + "start": 11236.52, + "end": 11241.78, + "probability": 0.9858 + }, + { + "start": 11242.1, + "end": 11244.92, + "probability": 0.9807 + }, + { + "start": 11245.96, + "end": 11250.64, + "probability": 0.7074 + }, + { + "start": 11251.34, + "end": 11253.78, + "probability": 0.968 + }, + { + "start": 11254.66, + "end": 11255.28, + "probability": 0.557 + }, + { + "start": 11255.8, + "end": 11258.5, + "probability": 0.9866 + }, + { + "start": 11258.98, + "end": 11261.42, + "probability": 0.935 + }, + { + "start": 11262.84, + "end": 11263.02, + "probability": 0.2636 + }, + { + "start": 11263.02, + "end": 11263.86, + "probability": 0.4729 + }, + { + "start": 11265.52, + "end": 11265.92, + "probability": 0.359 + }, + { + "start": 11265.96, + "end": 11271.52, + "probability": 0.9043 + }, + { + "start": 11271.83, + "end": 11276.41, + "probability": 0.9861 + }, + { + "start": 11277.18, + "end": 11281.12, + "probability": 0.9868 + }, + { + "start": 11281.9, + "end": 11282.98, + "probability": 0.9634 + }, + { + "start": 11283.5, + "end": 11288.5, + "probability": 0.9688 + }, + { + "start": 11288.6, + "end": 11290.62, + "probability": 0.9066 + }, + { + "start": 11291.5, + "end": 11295.48, + "probability": 0.9683 + }, + { + "start": 11296.2, + "end": 11298.26, + "probability": 0.5742 + }, + { + "start": 11298.32, + "end": 11299.14, + "probability": 0.9514 + }, + { + "start": 11321.58, + "end": 11324.02, + "probability": 0.7588 + }, + { + "start": 11325.08, + "end": 11328.24, + "probability": 0.895 + }, + { + "start": 11329.26, + "end": 11331.04, + "probability": 0.9721 + }, + { + "start": 11332.8, + "end": 11333.64, + "probability": 0.8633 + }, + { + "start": 11334.16, + "end": 11334.94, + "probability": 0.9909 + }, + { + "start": 11336.28, + "end": 11338.07, + "probability": 0.9207 + }, + { + "start": 11338.2, + "end": 11341.76, + "probability": 0.853 + }, + { + "start": 11342.08, + "end": 11342.78, + "probability": 0.6033 + }, + { + "start": 11343.5, + "end": 11344.08, + "probability": 0.6531 + }, + { + "start": 11344.7, + "end": 11345.52, + "probability": 0.9235 + }, + { + "start": 11346.18, + "end": 11349.41, + "probability": 0.9731 + }, + { + "start": 11350.36, + "end": 11350.78, + "probability": 0.9582 + }, + { + "start": 11351.86, + "end": 11352.86, + "probability": 0.9519 + }, + { + "start": 11354.08, + "end": 11355.28, + "probability": 0.9868 + }, + { + "start": 11356.24, + "end": 11360.1, + "probability": 0.9867 + }, + { + "start": 11360.74, + "end": 11366.42, + "probability": 0.9511 + }, + { + "start": 11367.92, + "end": 11373.42, + "probability": 0.6672 + }, + { + "start": 11373.96, + "end": 11374.46, + "probability": 0.9258 + }, + { + "start": 11375.1, + "end": 11378.72, + "probability": 0.9688 + }, + { + "start": 11379.42, + "end": 11382.88, + "probability": 0.686 + }, + { + "start": 11383.86, + "end": 11390.28, + "probability": 0.8175 + }, + { + "start": 11391.24, + "end": 11391.44, + "probability": 0.7734 + }, + { + "start": 11392.12, + "end": 11397.64, + "probability": 0.9971 + }, + { + "start": 11397.64, + "end": 11402.88, + "probability": 0.9983 + }, + { + "start": 11403.42, + "end": 11406.04, + "probability": 0.806 + }, + { + "start": 11407.02, + "end": 11415.06, + "probability": 0.9858 + }, + { + "start": 11415.72, + "end": 11417.84, + "probability": 0.9624 + }, + { + "start": 11418.72, + "end": 11423.42, + "probability": 0.8844 + }, + { + "start": 11424.28, + "end": 11427.71, + "probability": 0.9907 + }, + { + "start": 11428.58, + "end": 11430.26, + "probability": 0.979 + }, + { + "start": 11431.04, + "end": 11432.86, + "probability": 0.7021 + }, + { + "start": 11434.08, + "end": 11437.6, + "probability": 0.9666 + }, + { + "start": 11438.46, + "end": 11439.68, + "probability": 0.9392 + }, + { + "start": 11440.34, + "end": 11445.26, + "probability": 0.9891 + }, + { + "start": 11445.6, + "end": 11447.6, + "probability": 0.9436 + }, + { + "start": 11451.42, + "end": 11456.64, + "probability": 0.7073 + }, + { + "start": 11457.44, + "end": 11461.42, + "probability": 0.5439 + }, + { + "start": 11461.6, + "end": 11463.16, + "probability": 0.7879 + }, + { + "start": 11463.56, + "end": 11465.94, + "probability": 0.9749 + }, + { + "start": 11466.32, + "end": 11468.92, + "probability": 0.8896 + }, + { + "start": 11470.46, + "end": 11472.96, + "probability": 0.9723 + }, + { + "start": 11473.12, + "end": 11476.16, + "probability": 0.8698 + }, + { + "start": 11476.92, + "end": 11477.5, + "probability": 0.4965 + }, + { + "start": 11478.06, + "end": 11478.9, + "probability": 0.9463 + }, + { + "start": 11480.28, + "end": 11483.72, + "probability": 0.9033 + }, + { + "start": 11484.42, + "end": 11485.52, + "probability": 0.4911 + }, + { + "start": 11486.2, + "end": 11496.16, + "probability": 0.9761 + }, + { + "start": 11496.92, + "end": 11500.44, + "probability": 0.8093 + }, + { + "start": 11501.04, + "end": 11502.0, + "probability": 0.7092 + }, + { + "start": 11502.72, + "end": 11504.3, + "probability": 0.9736 + }, + { + "start": 11504.96, + "end": 11510.42, + "probability": 0.9577 + }, + { + "start": 11511.54, + "end": 11516.2, + "probability": 0.9582 + }, + { + "start": 11516.94, + "end": 11518.18, + "probability": 0.8083 + }, + { + "start": 11518.72, + "end": 11521.42, + "probability": 0.9969 + }, + { + "start": 11522.2, + "end": 11525.38, + "probability": 0.9843 + }, + { + "start": 11525.78, + "end": 11529.66, + "probability": 0.9816 + }, + { + "start": 11530.76, + "end": 11536.84, + "probability": 0.5811 + }, + { + "start": 11536.84, + "end": 11538.1, + "probability": 0.6399 + }, + { + "start": 11538.16, + "end": 11544.16, + "probability": 0.9909 + }, + { + "start": 11544.52, + "end": 11545.36, + "probability": 0.8359 + }, + { + "start": 11546.66, + "end": 11551.32, + "probability": 0.9819 + }, + { + "start": 11552.22, + "end": 11554.76, + "probability": 0.9092 + }, + { + "start": 11555.24, + "end": 11562.58, + "probability": 0.9748 + }, + { + "start": 11564.66, + "end": 11568.16, + "probability": 0.8387 + }, + { + "start": 11568.94, + "end": 11569.24, + "probability": 0.3915 + }, + { + "start": 11569.66, + "end": 11572.26, + "probability": 0.9277 + }, + { + "start": 11572.76, + "end": 11575.44, + "probability": 0.8347 + }, + { + "start": 11576.7, + "end": 11579.6, + "probability": 0.9028 + }, + { + "start": 11580.14, + "end": 11584.44, + "probability": 0.9869 + }, + { + "start": 11585.7, + "end": 11587.1, + "probability": 0.5395 + }, + { + "start": 11587.86, + "end": 11593.64, + "probability": 0.8332 + }, + { + "start": 11594.64, + "end": 11596.56, + "probability": 0.9769 + }, + { + "start": 11597.32, + "end": 11599.12, + "probability": 0.7557 + }, + { + "start": 11599.94, + "end": 11604.06, + "probability": 0.8136 + }, + { + "start": 11604.6, + "end": 11607.64, + "probability": 0.7908 + }, + { + "start": 11608.4, + "end": 11613.46, + "probability": 0.9801 + }, + { + "start": 11613.94, + "end": 11617.7, + "probability": 0.8875 + }, + { + "start": 11618.62, + "end": 11619.56, + "probability": 0.854 + }, + { + "start": 11620.38, + "end": 11625.22, + "probability": 0.8986 + }, + { + "start": 11625.94, + "end": 11628.18, + "probability": 0.8717 + }, + { + "start": 11644.92, + "end": 11647.44, + "probability": 0.457 + }, + { + "start": 11648.22, + "end": 11649.51, + "probability": 0.6411 + }, + { + "start": 11650.54, + "end": 11654.56, + "probability": 0.9391 + }, + { + "start": 11655.68, + "end": 11661.56, + "probability": 0.9462 + }, + { + "start": 11661.56, + "end": 11668.24, + "probability": 0.9775 + }, + { + "start": 11669.2, + "end": 11669.64, + "probability": 0.8594 + }, + { + "start": 11670.72, + "end": 11673.56, + "probability": 0.8973 + }, + { + "start": 11674.32, + "end": 11675.36, + "probability": 0.8995 + }, + { + "start": 11676.14, + "end": 11680.52, + "probability": 0.9803 + }, + { + "start": 11681.8, + "end": 11685.02, + "probability": 0.8924 + }, + { + "start": 11685.52, + "end": 11688.74, + "probability": 0.9796 + }, + { + "start": 11689.04, + "end": 11689.66, + "probability": 0.8294 + }, + { + "start": 11690.06, + "end": 11690.94, + "probability": 0.793 + }, + { + "start": 11691.24, + "end": 11693.16, + "probability": 0.9264 + }, + { + "start": 11693.5, + "end": 11694.78, + "probability": 0.8005 + }, + { + "start": 11695.1, + "end": 11698.74, + "probability": 0.989 + }, + { + "start": 11699.1, + "end": 11701.06, + "probability": 0.8285 + }, + { + "start": 11701.38, + "end": 11702.4, + "probability": 0.7695 + }, + { + "start": 11702.7, + "end": 11705.6, + "probability": 0.913 + }, + { + "start": 11706.84, + "end": 11709.24, + "probability": 0.9465 + }, + { + "start": 11710.82, + "end": 11715.68, + "probability": 0.7972 + }, + { + "start": 11717.84, + "end": 11719.84, + "probability": 0.9849 + }, + { + "start": 11720.36, + "end": 11722.02, + "probability": 0.9535 + }, + { + "start": 11722.64, + "end": 11728.22, + "probability": 0.9978 + }, + { + "start": 11728.6, + "end": 11732.5, + "probability": 0.8931 + }, + { + "start": 11732.5, + "end": 11735.44, + "probability": 0.9609 + }, + { + "start": 11735.72, + "end": 11736.18, + "probability": 0.5743 + }, + { + "start": 11736.22, + "end": 11737.04, + "probability": 0.8938 + }, + { + "start": 11737.16, + "end": 11739.3, + "probability": 0.75 + }, + { + "start": 11739.48, + "end": 11742.16, + "probability": 0.994 + }, + { + "start": 11742.36, + "end": 11747.64, + "probability": 0.9551 + }, + { + "start": 11749.42, + "end": 11750.62, + "probability": 0.6897 + }, + { + "start": 11751.14, + "end": 11753.94, + "probability": 0.8566 + }, + { + "start": 11754.54, + "end": 11760.0, + "probability": 0.9873 + }, + { + "start": 11760.48, + "end": 11762.3, + "probability": 0.6786 + }, + { + "start": 11763.22, + "end": 11764.04, + "probability": 0.9125 + }, + { + "start": 11764.24, + "end": 11765.42, + "probability": 0.98 + }, + { + "start": 11765.6, + "end": 11767.3, + "probability": 0.7421 + }, + { + "start": 11767.52, + "end": 11768.96, + "probability": 0.9756 + }, + { + "start": 11770.78, + "end": 11774.9, + "probability": 0.9932 + }, + { + "start": 11775.44, + "end": 11778.3, + "probability": 0.9695 + }, + { + "start": 11780.08, + "end": 11781.44, + "probability": 0.8248 + }, + { + "start": 11782.6, + "end": 11784.08, + "probability": 0.9811 + }, + { + "start": 11784.16, + "end": 11785.4, + "probability": 0.6844 + }, + { + "start": 11785.58, + "end": 11786.8, + "probability": 0.9026 + }, + { + "start": 11787.64, + "end": 11789.04, + "probability": 0.701 + }, + { + "start": 11789.82, + "end": 11792.82, + "probability": 0.7834 + }, + { + "start": 11793.18, + "end": 11795.52, + "probability": 0.9955 + }, + { + "start": 11796.22, + "end": 11802.02, + "probability": 0.9524 + }, + { + "start": 11803.06, + "end": 11808.34, + "probability": 0.9919 + }, + { + "start": 11808.72, + "end": 11811.7, + "probability": 0.7605 + }, + { + "start": 11811.9, + "end": 11816.3, + "probability": 0.6474 + }, + { + "start": 11816.72, + "end": 11817.94, + "probability": 0.9372 + }, + { + "start": 11818.4, + "end": 11826.24, + "probability": 0.9918 + }, + { + "start": 11827.96, + "end": 11830.34, + "probability": 0.9025 + }, + { + "start": 11830.76, + "end": 11832.04, + "probability": 0.5772 + }, + { + "start": 11832.64, + "end": 11834.6, + "probability": 0.9439 + }, + { + "start": 11835.3, + "end": 11836.34, + "probability": 0.7622 + }, + { + "start": 11836.9, + "end": 11840.32, + "probability": 0.8972 + }, + { + "start": 11840.86, + "end": 11844.52, + "probability": 0.7892 + }, + { + "start": 11845.38, + "end": 11847.9, + "probability": 0.8397 + }, + { + "start": 11848.3, + "end": 11849.08, + "probability": 0.972 + }, + { + "start": 11849.48, + "end": 11850.44, + "probability": 0.9486 + }, + { + "start": 11850.92, + "end": 11851.66, + "probability": 0.9731 + }, + { + "start": 11853.34, + "end": 11858.46, + "probability": 0.9958 + }, + { + "start": 11858.84, + "end": 11859.8, + "probability": 0.3002 + }, + { + "start": 11859.88, + "end": 11860.26, + "probability": 0.4254 + }, + { + "start": 11860.34, + "end": 11863.3, + "probability": 0.951 + }, + { + "start": 11868.36, + "end": 11871.36, + "probability": 0.959 + }, + { + "start": 11872.72, + "end": 11873.72, + "probability": 0.8834 + }, + { + "start": 11874.02, + "end": 11877.28, + "probability": 0.984 + }, + { + "start": 11877.34, + "end": 11880.7, + "probability": 0.9849 + }, + { + "start": 11881.16, + "end": 11884.7, + "probability": 0.9883 + }, + { + "start": 11885.14, + "end": 11886.96, + "probability": 0.9985 + }, + { + "start": 11887.16, + "end": 11887.88, + "probability": 0.5798 + }, + { + "start": 11888.32, + "end": 11889.84, + "probability": 0.926 + }, + { + "start": 11890.06, + "end": 11891.04, + "probability": 0.943 + }, + { + "start": 11891.6, + "end": 11893.86, + "probability": 0.9905 + }, + { + "start": 11894.16, + "end": 11901.28, + "probability": 0.9828 + }, + { + "start": 11902.48, + "end": 11905.92, + "probability": 0.7502 + }, + { + "start": 11906.46, + "end": 11909.14, + "probability": 0.9911 + }, + { + "start": 11909.16, + "end": 11910.8, + "probability": 0.9995 + }, + { + "start": 11911.42, + "end": 11912.48, + "probability": 0.9847 + }, + { + "start": 11912.56, + "end": 11913.4, + "probability": 0.938 + }, + { + "start": 11913.66, + "end": 11916.04, + "probability": 0.9896 + }, + { + "start": 11916.04, + "end": 11919.14, + "probability": 0.8662 + }, + { + "start": 11919.34, + "end": 11921.44, + "probability": 0.9985 + }, + { + "start": 11923.58, + "end": 11926.14, + "probability": 0.9652 + }, + { + "start": 11926.14, + "end": 11929.44, + "probability": 0.804 + }, + { + "start": 11929.82, + "end": 11931.88, + "probability": 0.9666 + }, + { + "start": 11932.58, + "end": 11935.7, + "probability": 0.9448 + }, + { + "start": 11935.7, + "end": 11939.31, + "probability": 0.9072 + }, + { + "start": 11939.9, + "end": 11941.3, + "probability": 0.8653 + }, + { + "start": 11943.52, + "end": 11947.54, + "probability": 0.9839 + }, + { + "start": 11947.68, + "end": 11948.58, + "probability": 0.6508 + }, + { + "start": 11949.7, + "end": 11950.62, + "probability": 0.7695 + }, + { + "start": 11950.76, + "end": 11952.76, + "probability": 0.7745 + }, + { + "start": 11953.2, + "end": 11955.82, + "probability": 0.9473 + }, + { + "start": 11957.04, + "end": 11959.04, + "probability": 0.9746 + }, + { + "start": 11959.48, + "end": 11961.9, + "probability": 0.8767 + }, + { + "start": 11962.32, + "end": 11969.72, + "probability": 0.9697 + }, + { + "start": 11970.28, + "end": 11976.88, + "probability": 0.9807 + }, + { + "start": 11977.32, + "end": 11979.0, + "probability": 0.9977 + }, + { + "start": 11979.0, + "end": 11982.54, + "probability": 0.9195 + }, + { + "start": 11983.38, + "end": 11985.82, + "probability": 0.9904 + }, + { + "start": 11986.08, + "end": 11989.58, + "probability": 0.9863 + }, + { + "start": 11990.4, + "end": 11991.08, + "probability": 0.9279 + }, + { + "start": 11992.24, + "end": 11993.04, + "probability": 0.7788 + }, + { + "start": 11994.28, + "end": 11995.04, + "probability": 0.876 + }, + { + "start": 11996.08, + "end": 11999.72, + "probability": 0.9149 + }, + { + "start": 12000.48, + "end": 12001.38, + "probability": 0.3764 + }, + { + "start": 12002.34, + "end": 12004.44, + "probability": 0.7935 + }, + { + "start": 12028.42, + "end": 12030.52, + "probability": 0.5767 + }, + { + "start": 12030.66, + "end": 12032.24, + "probability": 0.4389 + }, + { + "start": 12032.34, + "end": 12034.14, + "probability": 0.9779 + }, + { + "start": 12034.84, + "end": 12040.04, + "probability": 0.9106 + }, + { + "start": 12040.94, + "end": 12041.75, + "probability": 0.8256 + }, + { + "start": 12042.98, + "end": 12043.94, + "probability": 0.6913 + }, + { + "start": 12044.08, + "end": 12047.74, + "probability": 0.9618 + }, + { + "start": 12048.32, + "end": 12049.0, + "probability": 0.695 + }, + { + "start": 12049.92, + "end": 12050.9, + "probability": 0.7342 + }, + { + "start": 12051.02, + "end": 12054.0, + "probability": 0.9458 + }, + { + "start": 12054.2, + "end": 12056.52, + "probability": 0.8613 + }, + { + "start": 12056.82, + "end": 12060.24, + "probability": 0.9678 + }, + { + "start": 12061.3, + "end": 12065.02, + "probability": 0.9908 + }, + { + "start": 12065.02, + "end": 12071.74, + "probability": 0.9627 + }, + { + "start": 12072.5, + "end": 12072.8, + "probability": 0.7925 + }, + { + "start": 12072.92, + "end": 12075.3, + "probability": 0.8788 + }, + { + "start": 12075.76, + "end": 12078.62, + "probability": 0.9629 + }, + { + "start": 12079.7, + "end": 12081.0, + "probability": 0.8928 + }, + { + "start": 12081.26, + "end": 12086.62, + "probability": 0.9653 + }, + { + "start": 12087.46, + "end": 12090.05, + "probability": 0.867 + }, + { + "start": 12091.04, + "end": 12091.44, + "probability": 0.8344 + }, + { + "start": 12091.62, + "end": 12093.72, + "probability": 0.8742 + }, + { + "start": 12093.96, + "end": 12095.91, + "probability": 0.7486 + }, + { + "start": 12096.98, + "end": 12099.1, + "probability": 0.9963 + }, + { + "start": 12099.52, + "end": 12102.42, + "probability": 0.9908 + }, + { + "start": 12103.1, + "end": 12105.16, + "probability": 0.8522 + }, + { + "start": 12105.76, + "end": 12108.66, + "probability": 0.9364 + }, + { + "start": 12109.1, + "end": 12110.42, + "probability": 0.7214 + }, + { + "start": 12111.2, + "end": 12111.38, + "probability": 0.4668 + }, + { + "start": 12111.64, + "end": 12115.12, + "probability": 0.9733 + }, + { + "start": 12115.52, + "end": 12118.08, + "probability": 0.9521 + }, + { + "start": 12119.08, + "end": 12120.32, + "probability": 0.6892 + }, + { + "start": 12120.46, + "end": 12123.84, + "probability": 0.816 + }, + { + "start": 12124.44, + "end": 12125.26, + "probability": 0.7594 + }, + { + "start": 12125.92, + "end": 12128.28, + "probability": 0.9886 + }, + { + "start": 12128.44, + "end": 12132.26, + "probability": 0.7173 + }, + { + "start": 12133.02, + "end": 12136.62, + "probability": 0.9666 + }, + { + "start": 12137.34, + "end": 12140.34, + "probability": 0.781 + }, + { + "start": 12140.34, + "end": 12145.48, + "probability": 0.9854 + }, + { + "start": 12146.3, + "end": 12149.82, + "probability": 0.947 + }, + { + "start": 12150.42, + "end": 12152.82, + "probability": 0.998 + }, + { + "start": 12154.06, + "end": 12156.86, + "probability": 0.9702 + }, + { + "start": 12156.98, + "end": 12163.42, + "probability": 0.769 + }, + { + "start": 12163.94, + "end": 12167.54, + "probability": 0.8615 + }, + { + "start": 12167.82, + "end": 12171.24, + "probability": 0.9694 + }, + { + "start": 12171.58, + "end": 12173.22, + "probability": 0.9374 + }, + { + "start": 12173.56, + "end": 12176.1, + "probability": 0.911 + }, + { + "start": 12176.14, + "end": 12177.35, + "probability": 0.9409 + }, + { + "start": 12178.02, + "end": 12180.1, + "probability": 0.9961 + }, + { + "start": 12180.64, + "end": 12181.06, + "probability": 0.928 + }, + { + "start": 12181.1, + "end": 12182.12, + "probability": 0.7718 + }, + { + "start": 12182.58, + "end": 12183.9, + "probability": 0.9895 + }, + { + "start": 12184.06, + "end": 12184.78, + "probability": 0.7944 + }, + { + "start": 12185.2, + "end": 12185.96, + "probability": 0.8231 + }, + { + "start": 12186.12, + "end": 12188.86, + "probability": 0.9048 + }, + { + "start": 12189.34, + "end": 12192.68, + "probability": 0.8676 + }, + { + "start": 12193.34, + "end": 12194.64, + "probability": 0.5397 + }, + { + "start": 12207.88, + "end": 12209.68, + "probability": 0.8711 + }, + { + "start": 12209.78, + "end": 12210.38, + "probability": 0.8658 + }, + { + "start": 12210.44, + "end": 12211.82, + "probability": 0.9801 + }, + { + "start": 12226.28, + "end": 12231.66, + "probability": 0.7014 + }, + { + "start": 12232.22, + "end": 12233.58, + "probability": 0.9574 + }, + { + "start": 12234.91, + "end": 12239.86, + "probability": 0.9774 + }, + { + "start": 12242.3, + "end": 12246.54, + "probability": 0.9828 + }, + { + "start": 12248.48, + "end": 12250.58, + "probability": 0.582 + }, + { + "start": 12251.9, + "end": 12253.96, + "probability": 0.7968 + }, + { + "start": 12255.4, + "end": 12256.64, + "probability": 0.7295 + }, + { + "start": 12257.44, + "end": 12259.26, + "probability": 0.9928 + }, + { + "start": 12260.38, + "end": 12262.64, + "probability": 0.6412 + }, + { + "start": 12263.56, + "end": 12264.66, + "probability": 0.4391 + }, + { + "start": 12265.5, + "end": 12266.4, + "probability": 0.4939 + }, + { + "start": 12266.76, + "end": 12270.84, + "probability": 0.8438 + }, + { + "start": 12271.66, + "end": 12275.32, + "probability": 0.7819 + }, + { + "start": 12276.22, + "end": 12284.64, + "probability": 0.9547 + }, + { + "start": 12285.92, + "end": 12287.24, + "probability": 0.6855 + }, + { + "start": 12288.28, + "end": 12291.12, + "probability": 0.6962 + }, + { + "start": 12291.74, + "end": 12294.93, + "probability": 0.9657 + }, + { + "start": 12295.7, + "end": 12300.28, + "probability": 0.7977 + }, + { + "start": 12302.16, + "end": 12304.46, + "probability": 0.791 + }, + { + "start": 12304.9, + "end": 12310.76, + "probability": 0.9956 + }, + { + "start": 12311.86, + "end": 12316.7, + "probability": 0.8354 + }, + { + "start": 12317.24, + "end": 12320.12, + "probability": 0.9862 + }, + { + "start": 12320.38, + "end": 12326.4, + "probability": 0.9906 + }, + { + "start": 12326.92, + "end": 12331.04, + "probability": 0.9905 + }, + { + "start": 12331.36, + "end": 12334.32, + "probability": 0.861 + }, + { + "start": 12334.9, + "end": 12339.08, + "probability": 0.998 + }, + { + "start": 12339.66, + "end": 12342.48, + "probability": 0.9813 + }, + { + "start": 12343.92, + "end": 12346.2, + "probability": 0.9896 + }, + { + "start": 12347.08, + "end": 12349.56, + "probability": 0.9194 + }, + { + "start": 12350.1, + "end": 12352.54, + "probability": 0.8538 + }, + { + "start": 12352.88, + "end": 12356.66, + "probability": 0.9726 + }, + { + "start": 12357.56, + "end": 12361.04, + "probability": 0.7972 + }, + { + "start": 12361.9, + "end": 12364.61, + "probability": 0.988 + }, + { + "start": 12365.18, + "end": 12366.4, + "probability": 0.9043 + }, + { + "start": 12367.0, + "end": 12369.8, + "probability": 0.6907 + }, + { + "start": 12370.6, + "end": 12373.42, + "probability": 0.9847 + }, + { + "start": 12374.56, + "end": 12376.56, + "probability": 0.8761 + }, + { + "start": 12378.0, + "end": 12378.28, + "probability": 0.5935 + }, + { + "start": 12378.42, + "end": 12379.78, + "probability": 0.8005 + }, + { + "start": 12380.18, + "end": 12381.1, + "probability": 0.801 + }, + { + "start": 12381.32, + "end": 12383.38, + "probability": 0.9385 + }, + { + "start": 12384.34, + "end": 12388.52, + "probability": 0.9919 + }, + { + "start": 12389.4, + "end": 12390.44, + "probability": 0.8028 + }, + { + "start": 12390.96, + "end": 12391.74, + "probability": 0.7294 + }, + { + "start": 12392.36, + "end": 12396.22, + "probability": 0.9501 + }, + { + "start": 12397.02, + "end": 12398.78, + "probability": 0.8067 + }, + { + "start": 12400.14, + "end": 12404.02, + "probability": 0.9636 + }, + { + "start": 12404.4, + "end": 12407.24, + "probability": 0.9489 + }, + { + "start": 12407.52, + "end": 12408.24, + "probability": 0.8249 + }, + { + "start": 12408.52, + "end": 12410.64, + "probability": 0.9146 + }, + { + "start": 12411.22, + "end": 12414.04, + "probability": 0.6709 + }, + { + "start": 12415.02, + "end": 12416.58, + "probability": 0.4087 + }, + { + "start": 12418.06, + "end": 12421.18, + "probability": 0.9849 + }, + { + "start": 12422.16, + "end": 12423.18, + "probability": 0.9808 + }, + { + "start": 12423.3, + "end": 12428.46, + "probability": 0.9943 + }, + { + "start": 12429.6, + "end": 12430.8, + "probability": 0.999 + }, + { + "start": 12431.68, + "end": 12432.56, + "probability": 0.9001 + }, + { + "start": 12433.22, + "end": 12438.52, + "probability": 0.996 + }, + { + "start": 12440.24, + "end": 12444.42, + "probability": 0.873 + }, + { + "start": 12444.98, + "end": 12449.56, + "probability": 0.7105 + }, + { + "start": 12450.4, + "end": 12452.68, + "probability": 0.8125 + }, + { + "start": 12452.8, + "end": 12453.28, + "probability": 0.4147 + }, + { + "start": 12453.28, + "end": 12457.7, + "probability": 0.9287 + }, + { + "start": 12458.54, + "end": 12462.54, + "probability": 0.9554 + }, + { + "start": 12463.12, + "end": 12463.96, + "probability": 0.791 + }, + { + "start": 12464.98, + "end": 12465.56, + "probability": 0.3814 + }, + { + "start": 12466.66, + "end": 12470.56, + "probability": 0.8436 + }, + { + "start": 12470.9, + "end": 12471.36, + "probability": 0.8051 + }, + { + "start": 12472.44, + "end": 12473.47, + "probability": 0.6963 + }, + { + "start": 12473.86, + "end": 12478.56, + "probability": 0.9399 + }, + { + "start": 12491.56, + "end": 12493.86, + "probability": 0.8635 + }, + { + "start": 12494.08, + "end": 12495.7, + "probability": 0.7675 + }, + { + "start": 12495.96, + "end": 12497.34, + "probability": 0.8836 + }, + { + "start": 12498.95, + "end": 12504.6, + "probability": 0.9507 + }, + { + "start": 12505.14, + "end": 12506.88, + "probability": 0.7969 + }, + { + "start": 12507.22, + "end": 12510.52, + "probability": 0.5367 + }, + { + "start": 12511.18, + "end": 12511.32, + "probability": 0.6451 + }, + { + "start": 12511.38, + "end": 12516.67, + "probability": 0.9389 + }, + { + "start": 12516.98, + "end": 12521.06, + "probability": 0.8953 + }, + { + "start": 12521.16, + "end": 12526.5, + "probability": 0.9743 + }, + { + "start": 12526.58, + "end": 12527.39, + "probability": 0.8664 + }, + { + "start": 12528.1, + "end": 12528.54, + "probability": 0.7222 + }, + { + "start": 12528.94, + "end": 12529.54, + "probability": 0.7206 + }, + { + "start": 12529.62, + "end": 12534.82, + "probability": 0.9731 + }, + { + "start": 12534.92, + "end": 12540.24, + "probability": 0.9733 + }, + { + "start": 12541.16, + "end": 12544.22, + "probability": 0.8786 + }, + { + "start": 12544.6, + "end": 12547.48, + "probability": 0.9083 + }, + { + "start": 12547.48, + "end": 12550.56, + "probability": 0.851 + }, + { + "start": 12551.44, + "end": 12553.24, + "probability": 0.9985 + }, + { + "start": 12553.82, + "end": 12555.8, + "probability": 0.7856 + }, + { + "start": 12556.28, + "end": 12562.4, + "probability": 0.9628 + }, + { + "start": 12562.56, + "end": 12569.54, + "probability": 0.9812 + }, + { + "start": 12570.34, + "end": 12571.42, + "probability": 0.6677 + }, + { + "start": 12571.52, + "end": 12572.26, + "probability": 0.6853 + }, + { + "start": 12572.6, + "end": 12574.46, + "probability": 0.4425 + }, + { + "start": 12574.66, + "end": 12576.12, + "probability": 0.7141 + }, + { + "start": 12576.12, + "end": 12578.94, + "probability": 0.4825 + }, + { + "start": 12579.36, + "end": 12580.7, + "probability": 0.6335 + }, + { + "start": 12580.88, + "end": 12582.64, + "probability": 0.8428 + }, + { + "start": 12582.84, + "end": 12585.18, + "probability": 0.8745 + }, + { + "start": 12586.38, + "end": 12586.38, + "probability": 0.003 + }, + { + "start": 12587.5, + "end": 12591.8, + "probability": 0.9978 + }, + { + "start": 12591.98, + "end": 12596.76, + "probability": 0.9835 + }, + { + "start": 12596.92, + "end": 12598.74, + "probability": 0.9766 + }, + { + "start": 12598.9, + "end": 12599.46, + "probability": 0.8633 + }, + { + "start": 12599.9, + "end": 12601.34, + "probability": 0.9893 + }, + { + "start": 12601.74, + "end": 12604.28, + "probability": 0.9729 + }, + { + "start": 12604.34, + "end": 12607.45, + "probability": 0.8863 + }, + { + "start": 12608.08, + "end": 12610.12, + "probability": 0.9954 + }, + { + "start": 12610.62, + "end": 12612.6, + "probability": 0.6092 + }, + { + "start": 12612.64, + "end": 12613.24, + "probability": 0.8194 + }, + { + "start": 12613.6, + "end": 12614.22, + "probability": 0.7299 + }, + { + "start": 12614.3, + "end": 12614.76, + "probability": 0.8912 + }, + { + "start": 12614.86, + "end": 12617.68, + "probability": 0.9359 + }, + { + "start": 12617.68, + "end": 12620.82, + "probability": 0.9833 + }, + { + "start": 12621.14, + "end": 12622.86, + "probability": 0.9219 + }, + { + "start": 12623.36, + "end": 12625.87, + "probability": 0.9792 + }, + { + "start": 12626.3, + "end": 12629.34, + "probability": 0.9919 + }, + { + "start": 12630.02, + "end": 12633.08, + "probability": 0.9697 + }, + { + "start": 12633.2, + "end": 12638.4, + "probability": 0.9774 + }, + { + "start": 12638.92, + "end": 12640.58, + "probability": 0.731 + }, + { + "start": 12640.68, + "end": 12642.54, + "probability": 0.9355 + }, + { + "start": 12642.56, + "end": 12644.61, + "probability": 0.9577 + }, + { + "start": 12645.24, + "end": 12648.92, + "probability": 0.9532 + }, + { + "start": 12649.42, + "end": 12654.16, + "probability": 0.9858 + }, + { + "start": 12655.0, + "end": 12657.0, + "probability": 0.5721 + }, + { + "start": 12657.12, + "end": 12662.7, + "probability": 0.8924 + }, + { + "start": 12662.96, + "end": 12665.54, + "probability": 0.9966 + }, + { + "start": 12666.12, + "end": 12670.48, + "probability": 0.9673 + }, + { + "start": 12670.76, + "end": 12674.51, + "probability": 0.9869 + }, + { + "start": 12675.46, + "end": 12678.42, + "probability": 0.9333 + }, + { + "start": 12678.52, + "end": 12681.34, + "probability": 0.7831 + }, + { + "start": 12681.98, + "end": 12683.16, + "probability": 0.991 + }, + { + "start": 12683.28, + "end": 12684.66, + "probability": 0.9915 + }, + { + "start": 12685.06, + "end": 12686.26, + "probability": 0.9342 + }, + { + "start": 12686.62, + "end": 12689.24, + "probability": 0.9155 + }, + { + "start": 12689.62, + "end": 12691.46, + "probability": 0.9827 + }, + { + "start": 12692.06, + "end": 12693.3, + "probability": 0.8838 + }, + { + "start": 12693.9, + "end": 12695.16, + "probability": 0.9497 + }, + { + "start": 12695.22, + "end": 12697.98, + "probability": 0.9812 + }, + { + "start": 12698.24, + "end": 12701.62, + "probability": 0.8618 + }, + { + "start": 12702.1, + "end": 12702.92, + "probability": 0.8198 + }, + { + "start": 12703.48, + "end": 12704.7, + "probability": 0.9878 + }, + { + "start": 12705.14, + "end": 12709.18, + "probability": 0.9928 + }, + { + "start": 12709.18, + "end": 12713.78, + "probability": 0.9935 + }, + { + "start": 12714.22, + "end": 12716.14, + "probability": 0.9944 + }, + { + "start": 12716.76, + "end": 12718.5, + "probability": 0.8584 + }, + { + "start": 12718.9, + "end": 12721.04, + "probability": 0.9961 + }, + { + "start": 12721.4, + "end": 12722.62, + "probability": 0.9637 + }, + { + "start": 12722.7, + "end": 12724.34, + "probability": 0.6904 + }, + { + "start": 12724.68, + "end": 12727.2, + "probability": 0.8258 + }, + { + "start": 12727.74, + "end": 12728.14, + "probability": 0.7644 + }, + { + "start": 12728.66, + "end": 12733.08, + "probability": 0.8626 + }, + { + "start": 12734.22, + "end": 12737.68, + "probability": 0.6938 + }, + { + "start": 12738.58, + "end": 12740.32, + "probability": 0.8743 + }, + { + "start": 12740.86, + "end": 12744.58, + "probability": 0.9868 + }, + { + "start": 12745.86, + "end": 12748.24, + "probability": 0.9835 + }, + { + "start": 12748.88, + "end": 12749.16, + "probability": 0.6594 + }, + { + "start": 12751.2, + "end": 12753.78, + "probability": 0.6691 + }, + { + "start": 12754.34, + "end": 12757.9, + "probability": 0.6681 + }, + { + "start": 12758.54, + "end": 12762.66, + "probability": 0.9788 + }, + { + "start": 12763.62, + "end": 12767.8, + "probability": 0.964 + }, + { + "start": 12768.42, + "end": 12771.32, + "probability": 0.9717 + }, + { + "start": 12773.04, + "end": 12774.28, + "probability": 0.5033 + }, + { + "start": 12774.8, + "end": 12778.02, + "probability": 0.9824 + }, + { + "start": 12778.7, + "end": 12780.84, + "probability": 0.9863 + }, + { + "start": 12781.32, + "end": 12784.88, + "probability": 0.9773 + }, + { + "start": 12788.06, + "end": 12792.98, + "probability": 0.6405 + }, + { + "start": 12793.44, + "end": 12794.38, + "probability": 0.5501 + }, + { + "start": 12794.86, + "end": 12796.66, + "probability": 0.9443 + }, + { + "start": 12797.68, + "end": 12799.28, + "probability": 0.9702 + }, + { + "start": 12799.86, + "end": 12801.1, + "probability": 0.9967 + }, + { + "start": 12802.62, + "end": 12804.54, + "probability": 0.9932 + }, + { + "start": 12805.12, + "end": 12807.7, + "probability": 0.6848 + }, + { + "start": 12808.48, + "end": 12815.18, + "probability": 0.906 + }, + { + "start": 12815.98, + "end": 12819.46, + "probability": 0.9782 + }, + { + "start": 12820.42, + "end": 12825.02, + "probability": 0.9746 + }, + { + "start": 12825.38, + "end": 12827.08, + "probability": 0.8923 + }, + { + "start": 12827.68, + "end": 12832.74, + "probability": 0.9849 + }, + { + "start": 12833.58, + "end": 12836.32, + "probability": 0.9971 + }, + { + "start": 12836.62, + "end": 12841.46, + "probability": 0.8771 + }, + { + "start": 12841.6, + "end": 12841.6, + "probability": 0.3936 + }, + { + "start": 12841.6, + "end": 12842.62, + "probability": 0.7979 + }, + { + "start": 12842.96, + "end": 12845.75, + "probability": 0.8638 + }, + { + "start": 12846.6, + "end": 12850.54, + "probability": 0.9951 + }, + { + "start": 12851.16, + "end": 12855.96, + "probability": 0.9886 + }, + { + "start": 12856.36, + "end": 12860.42, + "probability": 0.9933 + }, + { + "start": 12860.84, + "end": 12865.24, + "probability": 0.9706 + }, + { + "start": 12865.74, + "end": 12867.56, + "probability": 0.9455 + }, + { + "start": 12868.76, + "end": 12871.34, + "probability": 0.9333 + }, + { + "start": 12871.74, + "end": 12872.52, + "probability": 0.9329 + }, + { + "start": 12873.0, + "end": 12873.8, + "probability": 0.9717 + }, + { + "start": 12874.18, + "end": 12875.84, + "probability": 0.9943 + }, + { + "start": 12876.14, + "end": 12876.4, + "probability": 0.6285 + }, + { + "start": 12876.5, + "end": 12877.2, + "probability": 0.9932 + }, + { + "start": 12878.18, + "end": 12879.12, + "probability": 0.9325 + }, + { + "start": 12879.36, + "end": 12880.9, + "probability": 0.9804 + }, + { + "start": 12881.28, + "end": 12885.68, + "probability": 0.7222 + }, + { + "start": 12886.16, + "end": 12887.0, + "probability": 0.6438 + }, + { + "start": 12887.44, + "end": 12888.48, + "probability": 0.8582 + }, + { + "start": 12888.86, + "end": 12890.9, + "probability": 0.9866 + }, + { + "start": 12891.34, + "end": 12892.24, + "probability": 0.0571 + }, + { + "start": 12892.76, + "end": 12894.22, + "probability": 0.6453 + }, + { + "start": 12894.3, + "end": 12895.22, + "probability": 0.9696 + }, + { + "start": 12895.68, + "end": 12898.18, + "probability": 0.9451 + }, + { + "start": 12898.5, + "end": 12903.52, + "probability": 0.8857 + }, + { + "start": 12904.0, + "end": 12907.18, + "probability": 0.9933 + }, + { + "start": 12907.8, + "end": 12909.24, + "probability": 0.6912 + }, + { + "start": 12909.88, + "end": 12910.74, + "probability": 0.6404 + }, + { + "start": 12912.08, + "end": 12914.26, + "probability": 0.9483 + }, + { + "start": 12914.88, + "end": 12919.42, + "probability": 0.9813 + }, + { + "start": 12920.0, + "end": 12923.22, + "probability": 0.9349 + }, + { + "start": 12923.62, + "end": 12926.4, + "probability": 0.9987 + }, + { + "start": 12926.82, + "end": 12932.34, + "probability": 0.992 + }, + { + "start": 12933.04, + "end": 12936.72, + "probability": 0.999 + }, + { + "start": 12937.84, + "end": 12939.74, + "probability": 0.9816 + }, + { + "start": 12940.36, + "end": 12941.68, + "probability": 0.9757 + }, + { + "start": 12942.38, + "end": 12944.54, + "probability": 0.8765 + }, + { + "start": 12945.26, + "end": 12947.54, + "probability": 0.897 + }, + { + "start": 12948.14, + "end": 12951.7, + "probability": 0.9143 + }, + { + "start": 12952.66, + "end": 12955.76, + "probability": 0.9293 + }, + { + "start": 12956.56, + "end": 12960.62, + "probability": 0.8805 + }, + { + "start": 12961.84, + "end": 12967.83, + "probability": 0.9177 + }, + { + "start": 12968.14, + "end": 12972.84, + "probability": 0.9244 + }, + { + "start": 12973.42, + "end": 12978.94, + "probability": 0.9982 + }, + { + "start": 12979.42, + "end": 12984.62, + "probability": 0.994 + }, + { + "start": 12984.62, + "end": 12990.52, + "probability": 0.9977 + }, + { + "start": 12991.28, + "end": 12994.24, + "probability": 0.9421 + }, + { + "start": 12994.8, + "end": 12996.29, + "probability": 0.94 + }, + { + "start": 12997.04, + "end": 13001.2, + "probability": 0.9917 + }, + { + "start": 13001.7, + "end": 13005.86, + "probability": 0.9956 + }, + { + "start": 13006.52, + "end": 13010.36, + "probability": 0.8999 + }, + { + "start": 13010.7, + "end": 13014.76, + "probability": 0.9946 + }, + { + "start": 13015.16, + "end": 13017.6, + "probability": 0.6668 + }, + { + "start": 13018.14, + "end": 13018.42, + "probability": 0.7253 + }, + { + "start": 13019.3, + "end": 13019.94, + "probability": 0.6849 + }, + { + "start": 13021.08, + "end": 13023.92, + "probability": 0.541 + }, + { + "start": 13034.78, + "end": 13036.24, + "probability": 0.4321 + }, + { + "start": 13038.26, + "end": 13039.46, + "probability": 0.7402 + }, + { + "start": 13040.42, + "end": 13041.84, + "probability": 0.8384 + }, + { + "start": 13043.64, + "end": 13049.0, + "probability": 0.975 + }, + { + "start": 13050.26, + "end": 13053.62, + "probability": 0.9904 + }, + { + "start": 13053.87, + "end": 13058.14, + "probability": 0.9839 + }, + { + "start": 13059.14, + "end": 13066.7, + "probability": 0.9854 + }, + { + "start": 13068.1, + "end": 13070.16, + "probability": 0.7834 + }, + { + "start": 13070.96, + "end": 13074.42, + "probability": 0.9719 + }, + { + "start": 13075.7, + "end": 13078.0, + "probability": 0.8697 + }, + { + "start": 13078.42, + "end": 13084.14, + "probability": 0.9941 + }, + { + "start": 13086.4, + "end": 13091.78, + "probability": 0.6588 + }, + { + "start": 13093.06, + "end": 13095.0, + "probability": 0.9351 + }, + { + "start": 13095.74, + "end": 13095.96, + "probability": 0.5436 + }, + { + "start": 13096.08, + "end": 13097.16, + "probability": 0.9443 + }, + { + "start": 13097.28, + "end": 13101.96, + "probability": 0.9795 + }, + { + "start": 13103.26, + "end": 13103.96, + "probability": 0.7851 + }, + { + "start": 13104.16, + "end": 13109.58, + "probability": 0.9022 + }, + { + "start": 13110.66, + "end": 13114.32, + "probability": 0.9941 + }, + { + "start": 13115.88, + "end": 13116.92, + "probability": 0.6872 + }, + { + "start": 13118.73, + "end": 13124.54, + "probability": 0.967 + }, + { + "start": 13125.7, + "end": 13127.74, + "probability": 0.9977 + }, + { + "start": 13129.26, + "end": 13133.57, + "probability": 0.8829 + }, + { + "start": 13134.94, + "end": 13138.4, + "probability": 0.9119 + }, + { + "start": 13139.02, + "end": 13140.46, + "probability": 0.7764 + }, + { + "start": 13140.58, + "end": 13143.46, + "probability": 0.9919 + }, + { + "start": 13144.42, + "end": 13146.84, + "probability": 0.9859 + }, + { + "start": 13146.9, + "end": 13149.32, + "probability": 0.9954 + }, + { + "start": 13149.66, + "end": 13150.76, + "probability": 0.9028 + }, + { + "start": 13151.76, + "end": 13154.12, + "probability": 0.9484 + }, + { + "start": 13154.54, + "end": 13158.44, + "probability": 0.9205 + }, + { + "start": 13159.86, + "end": 13161.96, + "probability": 0.9783 + }, + { + "start": 13164.2, + "end": 13167.06, + "probability": 0.8587 + }, + { + "start": 13168.32, + "end": 13173.2, + "probability": 0.8467 + }, + { + "start": 13174.34, + "end": 13176.62, + "probability": 0.9971 + }, + { + "start": 13176.62, + "end": 13181.12, + "probability": 0.964 + }, + { + "start": 13182.36, + "end": 13186.96, + "probability": 0.9978 + }, + { + "start": 13187.5, + "end": 13193.56, + "probability": 0.9976 + }, + { + "start": 13194.2, + "end": 13198.14, + "probability": 0.8655 + }, + { + "start": 13199.06, + "end": 13201.72, + "probability": 0.9506 + }, + { + "start": 13202.56, + "end": 13206.14, + "probability": 0.9328 + }, + { + "start": 13206.8, + "end": 13212.16, + "probability": 0.9641 + }, + { + "start": 13213.14, + "end": 13216.28, + "probability": 0.9891 + }, + { + "start": 13217.42, + "end": 13219.04, + "probability": 0.905 + }, + { + "start": 13220.38, + "end": 13221.88, + "probability": 0.986 + }, + { + "start": 13222.04, + "end": 13222.8, + "probability": 0.701 + }, + { + "start": 13222.9, + "end": 13226.69, + "probability": 0.9927 + }, + { + "start": 13229.72, + "end": 13231.08, + "probability": 0.822 + }, + { + "start": 13231.74, + "end": 13232.96, + "probability": 0.9249 + }, + { + "start": 13234.0, + "end": 13237.6, + "probability": 0.9007 + }, + { + "start": 13238.72, + "end": 13243.0, + "probability": 0.5288 + }, + { + "start": 13244.18, + "end": 13245.7, + "probability": 0.9641 + }, + { + "start": 13248.16, + "end": 13249.18, + "probability": 0.6011 + }, + { + "start": 13249.44, + "end": 13250.96, + "probability": 0.9653 + }, + { + "start": 13251.68, + "end": 13252.94, + "probability": 0.4959 + }, + { + "start": 13253.0, + "end": 13253.68, + "probability": 0.915 + }, + { + "start": 13276.4, + "end": 13277.28, + "probability": 0.6122 + }, + { + "start": 13278.44, + "end": 13279.64, + "probability": 0.745 + }, + { + "start": 13280.58, + "end": 13281.4, + "probability": 0.5742 + }, + { + "start": 13281.98, + "end": 13287.26, + "probability": 0.9497 + }, + { + "start": 13287.42, + "end": 13289.92, + "probability": 0.9775 + }, + { + "start": 13290.72, + "end": 13292.18, + "probability": 0.8595 + }, + { + "start": 13293.06, + "end": 13295.78, + "probability": 0.981 + }, + { + "start": 13295.88, + "end": 13297.4, + "probability": 0.9937 + }, + { + "start": 13298.42, + "end": 13301.02, + "probability": 0.9954 + }, + { + "start": 13301.02, + "end": 13304.56, + "probability": 0.9867 + }, + { + "start": 13305.76, + "end": 13306.88, + "probability": 0.7561 + }, + { + "start": 13307.82, + "end": 13310.08, + "probability": 0.8934 + }, + { + "start": 13310.64, + "end": 13313.32, + "probability": 0.9935 + }, + { + "start": 13314.74, + "end": 13319.7, + "probability": 0.9925 + }, + { + "start": 13320.72, + "end": 13322.62, + "probability": 0.9865 + }, + { + "start": 13323.66, + "end": 13328.54, + "probability": 0.9969 + }, + { + "start": 13329.34, + "end": 13331.89, + "probability": 0.9832 + }, + { + "start": 13332.44, + "end": 13333.48, + "probability": 0.9787 + }, + { + "start": 13333.56, + "end": 13334.28, + "probability": 0.9358 + }, + { + "start": 13334.58, + "end": 13335.24, + "probability": 0.9792 + }, + { + "start": 13335.52, + "end": 13336.1, + "probability": 0.995 + }, + { + "start": 13336.14, + "end": 13339.3, + "probability": 0.8693 + }, + { + "start": 13341.94, + "end": 13345.22, + "probability": 0.9614 + }, + { + "start": 13346.1, + "end": 13350.68, + "probability": 0.9913 + }, + { + "start": 13351.62, + "end": 13356.2, + "probability": 0.9797 + }, + { + "start": 13356.96, + "end": 13357.7, + "probability": 0.8961 + }, + { + "start": 13358.26, + "end": 13358.98, + "probability": 0.9766 + }, + { + "start": 13359.6, + "end": 13360.98, + "probability": 0.8868 + }, + { + "start": 13361.16, + "end": 13367.1, + "probability": 0.9945 + }, + { + "start": 13368.18, + "end": 13370.52, + "probability": 0.9593 + }, + { + "start": 13371.16, + "end": 13376.1, + "probability": 0.9958 + }, + { + "start": 13376.92, + "end": 13381.62, + "probability": 0.5577 + }, + { + "start": 13381.98, + "end": 13383.24, + "probability": 0.9912 + }, + { + "start": 13384.18, + "end": 13385.36, + "probability": 0.665 + }, + { + "start": 13387.16, + "end": 13391.13, + "probability": 0.9733 + }, + { + "start": 13393.12, + "end": 13397.38, + "probability": 0.9895 + }, + { + "start": 13398.14, + "end": 13399.34, + "probability": 0.9919 + }, + { + "start": 13400.76, + "end": 13404.46, + "probability": 0.969 + }, + { + "start": 13404.66, + "end": 13405.74, + "probability": 0.9825 + }, + { + "start": 13406.76, + "end": 13410.12, + "probability": 0.8942 + }, + { + "start": 13412.38, + "end": 13419.62, + "probability": 0.9732 + }, + { + "start": 13420.42, + "end": 13421.7, + "probability": 0.8892 + }, + { + "start": 13422.96, + "end": 13424.34, + "probability": 0.9422 + }, + { + "start": 13425.36, + "end": 13428.54, + "probability": 0.9073 + }, + { + "start": 13429.32, + "end": 13433.72, + "probability": 0.9019 + }, + { + "start": 13434.3, + "end": 13435.34, + "probability": 0.554 + }, + { + "start": 13436.54, + "end": 13438.84, + "probability": 0.6315 + }, + { + "start": 13439.78, + "end": 13445.7, + "probability": 0.9208 + }, + { + "start": 13445.76, + "end": 13447.78, + "probability": 0.7523 + }, + { + "start": 13449.02, + "end": 13451.66, + "probability": 0.9897 + }, + { + "start": 13451.66, + "end": 13455.94, + "probability": 0.8169 + }, + { + "start": 13457.8, + "end": 13462.0, + "probability": 0.9221 + }, + { + "start": 13462.1, + "end": 13464.0, + "probability": 0.8275 + }, + { + "start": 13464.6, + "end": 13465.68, + "probability": 0.8505 + }, + { + "start": 13466.1, + "end": 13467.48, + "probability": 0.9645 + }, + { + "start": 13467.82, + "end": 13470.1, + "probability": 0.8833 + }, + { + "start": 13470.3, + "end": 13472.52, + "probability": 0.7007 + }, + { + "start": 13472.72, + "end": 13474.4, + "probability": 0.6681 + }, + { + "start": 13475.54, + "end": 13481.88, + "probability": 0.8525 + }, + { + "start": 13482.88, + "end": 13488.02, + "probability": 0.9597 + }, + { + "start": 13489.48, + "end": 13491.16, + "probability": 0.9961 + }, + { + "start": 13492.34, + "end": 13496.1, + "probability": 0.8623 + }, + { + "start": 13496.88, + "end": 13499.54, + "probability": 0.9889 + }, + { + "start": 13500.16, + "end": 13501.7, + "probability": 0.9829 + }, + { + "start": 13502.72, + "end": 13505.42, + "probability": 0.974 + }, + { + "start": 13506.08, + "end": 13509.0, + "probability": 0.9281 + }, + { + "start": 13509.94, + "end": 13511.96, + "probability": 0.95 + }, + { + "start": 13513.2, + "end": 13517.2, + "probability": 0.933 + }, + { + "start": 13518.02, + "end": 13518.95, + "probability": 0.9027 + }, + { + "start": 13520.14, + "end": 13526.2, + "probability": 0.9912 + }, + { + "start": 13526.2, + "end": 13533.74, + "probability": 0.9979 + }, + { + "start": 13534.88, + "end": 13535.82, + "probability": 0.7072 + }, + { + "start": 13536.6, + "end": 13540.06, + "probability": 0.9976 + }, + { + "start": 13540.18, + "end": 13543.66, + "probability": 0.9967 + }, + { + "start": 13543.84, + "end": 13548.34, + "probability": 0.7186 + }, + { + "start": 13549.18, + "end": 13551.94, + "probability": 0.9837 + }, + { + "start": 13552.5, + "end": 13555.5, + "probability": 0.814 + }, + { + "start": 13556.74, + "end": 13558.76, + "probability": 0.9852 + }, + { + "start": 13559.2, + "end": 13560.86, + "probability": 0.9941 + }, + { + "start": 13561.58, + "end": 13562.5, + "probability": 0.9252 + }, + { + "start": 13562.58, + "end": 13564.04, + "probability": 0.8235 + }, + { + "start": 13564.46, + "end": 13565.88, + "probability": 0.9809 + }, + { + "start": 13566.44, + "end": 13568.86, + "probability": 0.9816 + }, + { + "start": 13569.9, + "end": 13573.68, + "probability": 0.8855 + }, + { + "start": 13574.88, + "end": 13576.78, + "probability": 0.9358 + }, + { + "start": 13577.6, + "end": 13579.42, + "probability": 0.9556 + }, + { + "start": 13580.64, + "end": 13582.0, + "probability": 0.8597 + }, + { + "start": 13582.72, + "end": 13586.78, + "probability": 0.9502 + }, + { + "start": 13588.78, + "end": 13591.32, + "probability": 0.9385 + }, + { + "start": 13591.92, + "end": 13595.86, + "probability": 0.9866 + }, + { + "start": 13596.28, + "end": 13596.7, + "probability": 0.8113 + }, + { + "start": 13597.4, + "end": 13598.64, + "probability": 0.7551 + }, + { + "start": 13598.68, + "end": 13600.2, + "probability": 0.9775 + }, + { + "start": 13600.76, + "end": 13602.14, + "probability": 0.8874 + }, + { + "start": 13623.26, + "end": 13623.54, + "probability": 0.2863 + }, + { + "start": 13623.54, + "end": 13626.34, + "probability": 0.6021 + }, + { + "start": 13627.58, + "end": 13633.82, + "probability": 0.9822 + }, + { + "start": 13634.4, + "end": 13639.38, + "probability": 0.9917 + }, + { + "start": 13639.5, + "end": 13646.14, + "probability": 0.9109 + }, + { + "start": 13648.04, + "end": 13650.26, + "probability": 0.9751 + }, + { + "start": 13650.48, + "end": 13652.54, + "probability": 0.7873 + }, + { + "start": 13652.6, + "end": 13652.98, + "probability": 0.5657 + }, + { + "start": 13653.04, + "end": 13657.18, + "probability": 0.3956 + }, + { + "start": 13657.86, + "end": 13657.86, + "probability": 0.0587 + }, + { + "start": 13657.86, + "end": 13661.92, + "probability": 0.0833 + }, + { + "start": 13662.26, + "end": 13663.58, + "probability": 0.7116 + }, + { + "start": 13663.78, + "end": 13663.94, + "probability": 0.7201 + }, + { + "start": 13664.0, + "end": 13666.34, + "probability": 0.821 + }, + { + "start": 13666.34, + "end": 13667.86, + "probability": 0.5548 + }, + { + "start": 13668.02, + "end": 13670.2, + "probability": 0.6889 + }, + { + "start": 13670.36, + "end": 13672.5, + "probability": 0.9953 + }, + { + "start": 13672.66, + "end": 13673.56, + "probability": 0.9613 + }, + { + "start": 13674.72, + "end": 13680.56, + "probability": 0.9688 + }, + { + "start": 13681.04, + "end": 13682.08, + "probability": 0.9827 + }, + { + "start": 13682.2, + "end": 13683.56, + "probability": 0.9945 + }, + { + "start": 13683.68, + "end": 13684.46, + "probability": 0.8793 + }, + { + "start": 13684.62, + "end": 13685.72, + "probability": 0.9252 + }, + { + "start": 13686.5, + "end": 13689.56, + "probability": 0.9847 + }, + { + "start": 13690.38, + "end": 13691.8, + "probability": 0.9132 + }, + { + "start": 13691.88, + "end": 13692.66, + "probability": 0.963 + }, + { + "start": 13693.12, + "end": 13697.74, + "probability": 0.9902 + }, + { + "start": 13699.38, + "end": 13700.9, + "probability": 0.7428 + }, + { + "start": 13701.54, + "end": 13702.16, + "probability": 0.2369 + }, + { + "start": 13702.26, + "end": 13705.54, + "probability": 0.9448 + }, + { + "start": 13705.56, + "end": 13707.14, + "probability": 0.323 + }, + { + "start": 13707.44, + "end": 13708.52, + "probability": 0.953 + }, + { + "start": 13708.68, + "end": 13710.41, + "probability": 0.8167 + }, + { + "start": 13711.66, + "end": 13714.22, + "probability": 0.6015 + }, + { + "start": 13714.22, + "end": 13717.1, + "probability": 0.7651 + }, + { + "start": 13717.76, + "end": 13718.66, + "probability": 0.7482 + }, + { + "start": 13719.22, + "end": 13720.24, + "probability": 0.9167 + }, + { + "start": 13720.34, + "end": 13720.8, + "probability": 0.6925 + }, + { + "start": 13720.86, + "end": 13721.89, + "probability": 0.9868 + }, + { + "start": 13721.98, + "end": 13723.4, + "probability": 0.9849 + }, + { + "start": 13723.6, + "end": 13724.72, + "probability": 0.6931 + }, + { + "start": 13724.78, + "end": 13725.84, + "probability": 0.8137 + }, + { + "start": 13725.88, + "end": 13728.92, + "probability": 0.5121 + }, + { + "start": 13728.98, + "end": 13729.5, + "probability": 0.2791 + }, + { + "start": 13730.0, + "end": 13732.46, + "probability": 0.9445 + }, + { + "start": 13732.54, + "end": 13735.98, + "probability": 0.9518 + }, + { + "start": 13736.04, + "end": 13736.96, + "probability": 0.9324 + }, + { + "start": 13737.72, + "end": 13738.9, + "probability": 0.624 + }, + { + "start": 13739.18, + "end": 13740.22, + "probability": 0.9066 + }, + { + "start": 13740.3, + "end": 13741.96, + "probability": 0.9685 + }, + { + "start": 13742.42, + "end": 13745.52, + "probability": 0.9877 + }, + { + "start": 13745.58, + "end": 13746.44, + "probability": 0.9017 + }, + { + "start": 13747.0, + "end": 13749.22, + "probability": 0.8204 + }, + { + "start": 13749.28, + "end": 13749.66, + "probability": 0.6219 + }, + { + "start": 13749.66, + "end": 13750.56, + "probability": 0.8266 + }, + { + "start": 13751.1, + "end": 13751.9, + "probability": 0.594 + }, + { + "start": 13752.08, + "end": 13753.42, + "probability": 0.9402 + }, + { + "start": 13753.98, + "end": 13755.64, + "probability": 0.2879 + }, + { + "start": 13755.74, + "end": 13756.32, + "probability": 0.8407 + }, + { + "start": 13756.44, + "end": 13757.14, + "probability": 0.9502 + }, + { + "start": 13757.36, + "end": 13759.48, + "probability": 0.866 + }, + { + "start": 13759.86, + "end": 13761.93, + "probability": 0.9849 + }, + { + "start": 13762.64, + "end": 13763.64, + "probability": 0.4701 + }, + { + "start": 13764.52, + "end": 13767.62, + "probability": 0.8569 + }, + { + "start": 13768.14, + "end": 13768.26, + "probability": 0.1208 + }, + { + "start": 13768.34, + "end": 13770.98, + "probability": 0.8818 + }, + { + "start": 13772.6, + "end": 13772.97, + "probability": 0.7353 + }, + { + "start": 13773.2, + "end": 13775.66, + "probability": 0.9299 + }, + { + "start": 13776.38, + "end": 13776.54, + "probability": 0.0007 + }, + { + "start": 13776.76, + "end": 13782.18, + "probability": 0.9948 + }, + { + "start": 13782.24, + "end": 13784.88, + "probability": 0.8667 + }, + { + "start": 13785.44, + "end": 13788.76, + "probability": 0.9214 + }, + { + "start": 13789.54, + "end": 13790.22, + "probability": 0.7979 + }, + { + "start": 13791.0, + "end": 13792.62, + "probability": 0.8307 + }, + { + "start": 13793.34, + "end": 13795.56, + "probability": 0.8482 + }, + { + "start": 13795.94, + "end": 13798.62, + "probability": 0.8804 + }, + { + "start": 13798.72, + "end": 13800.8, + "probability": 0.9933 + }, + { + "start": 13800.8, + "end": 13805.06, + "probability": 0.9806 + }, + { + "start": 13805.12, + "end": 13806.86, + "probability": 0.7971 + }, + { + "start": 13807.34, + "end": 13808.62, + "probability": 0.7991 + }, + { + "start": 13808.78, + "end": 13809.7, + "probability": 0.7861 + }, + { + "start": 13810.04, + "end": 13811.81, + "probability": 0.9893 + }, + { + "start": 13812.32, + "end": 13813.58, + "probability": 0.9728 + }, + { + "start": 13813.66, + "end": 13814.34, + "probability": 0.9584 + }, + { + "start": 13814.78, + "end": 13817.0, + "probability": 0.9764 + }, + { + "start": 13817.88, + "end": 13818.86, + "probability": 0.7807 + }, + { + "start": 13819.64, + "end": 13822.22, + "probability": 0.9814 + }, + { + "start": 13822.78, + "end": 13826.0, + "probability": 0.9726 + }, + { + "start": 13826.5, + "end": 13829.24, + "probability": 0.9768 + }, + { + "start": 13830.68, + "end": 13832.64, + "probability": 0.8155 + }, + { + "start": 13832.74, + "end": 13835.26, + "probability": 0.9858 + }, + { + "start": 13835.38, + "end": 13836.44, + "probability": 0.4285 + }, + { + "start": 13836.94, + "end": 13840.14, + "probability": 0.9477 + }, + { + "start": 13840.26, + "end": 13844.82, + "probability": 0.9841 + }, + { + "start": 13845.4, + "end": 13849.6, + "probability": 0.9732 + }, + { + "start": 13850.04, + "end": 13851.3, + "probability": 0.9844 + }, + { + "start": 13851.38, + "end": 13852.02, + "probability": 0.571 + }, + { + "start": 13852.24, + "end": 13853.84, + "probability": 0.9878 + }, + { + "start": 13853.96, + "end": 13855.54, + "probability": 0.9048 + }, + { + "start": 13856.24, + "end": 13857.56, + "probability": 0.9207 + }, + { + "start": 13857.56, + "end": 13858.36, + "probability": 0.9265 + }, + { + "start": 13858.96, + "end": 13860.28, + "probability": 0.9358 + }, + { + "start": 13860.8, + "end": 13864.18, + "probability": 0.8519 + }, + { + "start": 13864.52, + "end": 13868.76, + "probability": 0.9257 + }, + { + "start": 13869.42, + "end": 13870.84, + "probability": 0.7346 + }, + { + "start": 13871.04, + "end": 13873.6, + "probability": 0.8843 + }, + { + "start": 13874.24, + "end": 13875.9, + "probability": 0.9866 + }, + { + "start": 13876.28, + "end": 13877.36, + "probability": 0.3262 + }, + { + "start": 13877.58, + "end": 13878.92, + "probability": 0.9159 + }, + { + "start": 13879.26, + "end": 13880.74, + "probability": 0.9102 + }, + { + "start": 13881.26, + "end": 13882.98, + "probability": 0.3423 + }, + { + "start": 13883.16, + "end": 13884.32, + "probability": 0.8196 + }, + { + "start": 13884.66, + "end": 13885.86, + "probability": 0.9824 + }, + { + "start": 13888.0, + "end": 13891.56, + "probability": 0.7654 + }, + { + "start": 13891.64, + "end": 13893.32, + "probability": 0.8718 + }, + { + "start": 13893.66, + "end": 13894.86, + "probability": 0.8202 + }, + { + "start": 13894.96, + "end": 13895.46, + "probability": 0.4412 + }, + { + "start": 13895.76, + "end": 13898.72, + "probability": 0.9684 + }, + { + "start": 13898.92, + "end": 13899.46, + "probability": 0.1799 + }, + { + "start": 13899.58, + "end": 13900.12, + "probability": 0.7605 + }, + { + "start": 13900.18, + "end": 13901.54, + "probability": 0.7214 + }, + { + "start": 13901.8, + "end": 13902.56, + "probability": 0.4292 + }, + { + "start": 13902.82, + "end": 13908.96, + "probability": 0.8704 + }, + { + "start": 13909.24, + "end": 13909.64, + "probability": 0.8173 + }, + { + "start": 13910.32, + "end": 13911.74, + "probability": 0.792 + }, + { + "start": 13911.88, + "end": 13913.48, + "probability": 0.9159 + }, + { + "start": 13913.6, + "end": 13914.08, + "probability": 0.3749 + }, + { + "start": 13914.4, + "end": 13915.48, + "probability": 0.884 + }, + { + "start": 13915.6, + "end": 13916.0, + "probability": 0.7463 + }, + { + "start": 13916.02, + "end": 13917.68, + "probability": 0.9296 + }, + { + "start": 13918.5, + "end": 13918.64, + "probability": 0.3234 + }, + { + "start": 13920.26, + "end": 13920.76, + "probability": 0.0368 + }, + { + "start": 13922.94, + "end": 13926.24, + "probability": 0.2482 + }, + { + "start": 13926.24, + "end": 13931.8, + "probability": 0.9053 + }, + { + "start": 13931.92, + "end": 13933.52, + "probability": 0.6568 + }, + { + "start": 13933.62, + "end": 13936.72, + "probability": 0.9452 + }, + { + "start": 13938.04, + "end": 13939.2, + "probability": 0.6584 + }, + { + "start": 13939.22, + "end": 13941.86, + "probability": 0.9624 + }, + { + "start": 13942.0, + "end": 13942.72, + "probability": 0.7975 + }, + { + "start": 13942.86, + "end": 13943.8, + "probability": 0.7697 + }, + { + "start": 13943.92, + "end": 13944.98, + "probability": 0.6407 + }, + { + "start": 13945.22, + "end": 13949.3, + "probability": 0.7964 + }, + { + "start": 13949.3, + "end": 13953.24, + "probability": 0.9841 + }, + { + "start": 13954.72, + "end": 13958.98, + "probability": 0.9111 + }, + { + "start": 13959.28, + "end": 13960.12, + "probability": 0.7996 + }, + { + "start": 13960.26, + "end": 13962.08, + "probability": 0.4636 + }, + { + "start": 13962.28, + "end": 13969.5, + "probability": 0.9824 + }, + { + "start": 13970.64, + "end": 13971.2, + "probability": 0.9496 + }, + { + "start": 13971.88, + "end": 13973.42, + "probability": 0.721 + }, + { + "start": 13973.96, + "end": 13975.16, + "probability": 0.9113 + }, + { + "start": 13975.28, + "end": 13978.94, + "probability": 0.9535 + }, + { + "start": 13979.82, + "end": 13984.56, + "probability": 0.8796 + }, + { + "start": 13985.16, + "end": 13986.64, + "probability": 0.6812 + }, + { + "start": 13987.42, + "end": 13991.06, + "probability": 0.8774 + }, + { + "start": 13992.54, + "end": 13994.74, + "probability": 0.9585 + }, + { + "start": 13995.48, + "end": 13998.1, + "probability": 0.9263 + }, + { + "start": 13999.54, + "end": 13999.7, + "probability": 0.3021 + }, + { + "start": 14003.84, + "end": 14003.84, + "probability": 0.1709 + }, + { + "start": 14003.84, + "end": 14003.84, + "probability": 0.0078 + }, + { + "start": 14003.84, + "end": 14004.22, + "probability": 0.0317 + }, + { + "start": 14005.34, + "end": 14006.74, + "probability": 0.7276 + }, + { + "start": 14006.84, + "end": 14010.6, + "probability": 0.9624 + }, + { + "start": 14010.7, + "end": 14011.86, + "probability": 0.945 + }, + { + "start": 14013.04, + "end": 14013.86, + "probability": 0.1274 + }, + { + "start": 14013.86, + "end": 14014.98, + "probability": 0.437 + }, + { + "start": 14015.3, + "end": 14016.32, + "probability": 0.327 + }, + { + "start": 14017.1, + "end": 14019.92, + "probability": 0.4203 + }, + { + "start": 14020.86, + "end": 14021.62, + "probability": 0.6962 + }, + { + "start": 14022.16, + "end": 14023.5, + "probability": 0.5699 + }, + { + "start": 14023.58, + "end": 14024.78, + "probability": 0.9229 + }, + { + "start": 14024.86, + "end": 14028.48, + "probability": 0.8499 + }, + { + "start": 14028.62, + "end": 14033.62, + "probability": 0.881 + }, + { + "start": 14034.2, + "end": 14036.48, + "probability": 0.7278 + }, + { + "start": 14036.76, + "end": 14041.2, + "probability": 0.986 + }, + { + "start": 14041.8, + "end": 14047.14, + "probability": 0.9793 + }, + { + "start": 14047.7, + "end": 14050.34, + "probability": 0.7686 + }, + { + "start": 14051.04, + "end": 14051.66, + "probability": 0.6679 + }, + { + "start": 14051.86, + "end": 14052.24, + "probability": 0.7072 + }, + { + "start": 14052.38, + "end": 14054.88, + "probability": 0.9927 + }, + { + "start": 14054.92, + "end": 14055.78, + "probability": 0.9213 + }, + { + "start": 14055.88, + "end": 14060.06, + "probability": 0.931 + }, + { + "start": 14061.36, + "end": 14061.94, + "probability": 0.7201 + }, + { + "start": 14062.02, + "end": 14064.46, + "probability": 0.9858 + }, + { + "start": 14064.46, + "end": 14067.94, + "probability": 0.9624 + }, + { + "start": 14068.18, + "end": 14069.1, + "probability": 0.9396 + }, + { + "start": 14069.18, + "end": 14072.92, + "probability": 0.9974 + }, + { + "start": 14073.28, + "end": 14075.25, + "probability": 0.9741 + }, + { + "start": 14076.5, + "end": 14082.92, + "probability": 0.9626 + }, + { + "start": 14082.92, + "end": 14085.06, + "probability": 0.5442 + }, + { + "start": 14085.18, + "end": 14086.54, + "probability": 0.812 + }, + { + "start": 14086.72, + "end": 14089.34, + "probability": 0.9093 + }, + { + "start": 14089.74, + "end": 14093.0, + "probability": 0.9628 + }, + { + "start": 14093.48, + "end": 14097.86, + "probability": 0.9937 + }, + { + "start": 14098.56, + "end": 14099.34, + "probability": 0.8552 + }, + { + "start": 14099.76, + "end": 14100.74, + "probability": 0.9157 + }, + { + "start": 14100.88, + "end": 14105.82, + "probability": 0.8766 + }, + { + "start": 14105.92, + "end": 14107.0, + "probability": 0.2536 + }, + { + "start": 14107.12, + "end": 14108.78, + "probability": 0.9569 + }, + { + "start": 14110.02, + "end": 14110.14, + "probability": 0.418 + }, + { + "start": 14111.12, + "end": 14112.36, + "probability": 0.9383 + }, + { + "start": 14112.42, + "end": 14113.7, + "probability": 0.9382 + }, + { + "start": 14114.86, + "end": 14115.76, + "probability": 0.5086 + }, + { + "start": 14115.78, + "end": 14116.82, + "probability": 0.9422 + }, + { + "start": 14116.86, + "end": 14117.36, + "probability": 0.8884 + }, + { + "start": 14117.38, + "end": 14119.7, + "probability": 0.992 + }, + { + "start": 14134.26, + "end": 14135.1, + "probability": 0.6094 + }, + { + "start": 14135.18, + "end": 14135.32, + "probability": 0.0568 + }, + { + "start": 14135.34, + "end": 14135.7, + "probability": 0.8383 + }, + { + "start": 14135.86, + "end": 14139.08, + "probability": 0.9383 + }, + { + "start": 14139.14, + "end": 14140.12, + "probability": 0.9004 + }, + { + "start": 14140.68, + "end": 14145.14, + "probability": 0.7839 + }, + { + "start": 14145.72, + "end": 14146.9, + "probability": 0.9484 + }, + { + "start": 14149.28, + "end": 14149.68, + "probability": 0.133 + }, + { + "start": 14149.68, + "end": 14151.82, + "probability": 0.9435 + }, + { + "start": 14151.82, + "end": 14156.02, + "probability": 0.983 + }, + { + "start": 14156.54, + "end": 14158.0, + "probability": 0.9686 + }, + { + "start": 14158.4, + "end": 14160.74, + "probability": 0.995 + }, + { + "start": 14160.74, + "end": 14164.18, + "probability": 0.9725 + }, + { + "start": 14164.72, + "end": 14165.28, + "probability": 0.5364 + }, + { + "start": 14165.36, + "end": 14167.64, + "probability": 0.9015 + }, + { + "start": 14167.64, + "end": 14170.94, + "probability": 0.9919 + }, + { + "start": 14171.42, + "end": 14174.54, + "probability": 0.9177 + }, + { + "start": 14174.54, + "end": 14177.76, + "probability": 0.9954 + }, + { + "start": 14178.26, + "end": 14181.56, + "probability": 0.9967 + }, + { + "start": 14181.56, + "end": 14184.98, + "probability": 0.9346 + }, + { + "start": 14185.46, + "end": 14190.5, + "probability": 0.9961 + }, + { + "start": 14190.94, + "end": 14195.32, + "probability": 0.979 + }, + { + "start": 14195.32, + "end": 14200.4, + "probability": 0.9793 + }, + { + "start": 14201.38, + "end": 14205.56, + "probability": 0.8527 + }, + { + "start": 14206.04, + "end": 14209.99, + "probability": 0.9678 + }, + { + "start": 14210.48, + "end": 14211.16, + "probability": 0.9189 + }, + { + "start": 14211.24, + "end": 14213.86, + "probability": 0.9798 + }, + { + "start": 14213.86, + "end": 14218.22, + "probability": 0.7106 + }, + { + "start": 14218.66, + "end": 14222.78, + "probability": 0.9796 + }, + { + "start": 14223.0, + "end": 14227.56, + "probability": 0.9755 + }, + { + "start": 14227.56, + "end": 14233.32, + "probability": 0.8609 + }, + { + "start": 14233.94, + "end": 14237.64, + "probability": 0.8516 + }, + { + "start": 14237.64, + "end": 14242.19, + "probability": 0.987 + }, + { + "start": 14242.46, + "end": 14243.42, + "probability": 0.8348 + }, + { + "start": 14244.06, + "end": 14249.08, + "probability": 0.9702 + }, + { + "start": 14250.26, + "end": 14251.3, + "probability": 0.8522 + }, + { + "start": 14251.46, + "end": 14256.28, + "probability": 0.9928 + }, + { + "start": 14256.82, + "end": 14261.66, + "probability": 0.9587 + }, + { + "start": 14261.98, + "end": 14265.6, + "probability": 0.8948 + }, + { + "start": 14265.6, + "end": 14268.52, + "probability": 0.9667 + }, + { + "start": 14269.12, + "end": 14273.08, + "probability": 0.9664 + }, + { + "start": 14273.42, + "end": 14276.54, + "probability": 0.9877 + }, + { + "start": 14276.54, + "end": 14278.64, + "probability": 0.9888 + }, + { + "start": 14278.7, + "end": 14282.68, + "probability": 0.8154 + }, + { + "start": 14283.12, + "end": 14286.66, + "probability": 0.9543 + }, + { + "start": 14286.66, + "end": 14290.04, + "probability": 0.9899 + }, + { + "start": 14290.62, + "end": 14294.58, + "probability": 0.9749 + }, + { + "start": 14295.6, + "end": 14296.08, + "probability": 0.8683 + }, + { + "start": 14296.16, + "end": 14298.84, + "probability": 0.8145 + }, + { + "start": 14298.84, + "end": 14303.04, + "probability": 0.9764 + }, + { + "start": 14303.48, + "end": 14304.4, + "probability": 0.7255 + }, + { + "start": 14304.48, + "end": 14308.24, + "probability": 0.9715 + }, + { + "start": 14308.86, + "end": 14310.66, + "probability": 0.8278 + }, + { + "start": 14310.76, + "end": 14311.4, + "probability": 0.9495 + }, + { + "start": 14311.58, + "end": 14316.66, + "probability": 0.9135 + }, + { + "start": 14317.52, + "end": 14321.14, + "probability": 0.97 + }, + { + "start": 14321.14, + "end": 14324.66, + "probability": 0.9932 + }, + { + "start": 14325.8, + "end": 14329.26, + "probability": 0.8652 + }, + { + "start": 14329.8, + "end": 14332.86, + "probability": 0.9823 + }, + { + "start": 14333.28, + "end": 14335.0, + "probability": 0.4603 + }, + { + "start": 14335.34, + "end": 14337.54, + "probability": 0.9845 + }, + { + "start": 14338.24, + "end": 14339.02, + "probability": 0.9554 + }, + { + "start": 14339.56, + "end": 14341.0, + "probability": 0.9824 + }, + { + "start": 14341.1, + "end": 14343.08, + "probability": 0.9257 + }, + { + "start": 14343.66, + "end": 14348.9, + "probability": 0.9932 + }, + { + "start": 14349.3, + "end": 14351.98, + "probability": 0.8964 + }, + { + "start": 14353.32, + "end": 14353.62, + "probability": 0.6951 + }, + { + "start": 14354.92, + "end": 14356.12, + "probability": 0.6508 + }, + { + "start": 14356.18, + "end": 14357.24, + "probability": 0.9221 + }, + { + "start": 14370.96, + "end": 14372.96, + "probability": 0.6641 + }, + { + "start": 14374.38, + "end": 14376.16, + "probability": 0.9725 + }, + { + "start": 14376.36, + "end": 14377.54, + "probability": 0.8631 + }, + { + "start": 14378.0, + "end": 14378.86, + "probability": 0.981 + }, + { + "start": 14380.94, + "end": 14387.42, + "probability": 0.8734 + }, + { + "start": 14387.58, + "end": 14388.0, + "probability": 0.8775 + }, + { + "start": 14389.18, + "end": 14394.94, + "probability": 0.9873 + }, + { + "start": 14395.58, + "end": 14398.92, + "probability": 0.8551 + }, + { + "start": 14400.0, + "end": 14403.92, + "probability": 0.9975 + }, + { + "start": 14404.82, + "end": 14410.46, + "probability": 0.9804 + }, + { + "start": 14411.62, + "end": 14412.08, + "probability": 0.7521 + }, + { + "start": 14412.66, + "end": 14414.62, + "probability": 0.8831 + }, + { + "start": 14415.26, + "end": 14418.58, + "probability": 0.9338 + }, + { + "start": 14418.82, + "end": 14422.28, + "probability": 0.9962 + }, + { + "start": 14423.04, + "end": 14423.96, + "probability": 0.6944 + }, + { + "start": 14424.02, + "end": 14424.58, + "probability": 0.8859 + }, + { + "start": 14424.94, + "end": 14428.0, + "probability": 0.9238 + }, + { + "start": 14429.08, + "end": 14434.96, + "probability": 0.9905 + }, + { + "start": 14435.78, + "end": 14435.88, + "probability": 0.9102 + }, + { + "start": 14436.26, + "end": 14437.18, + "probability": 0.5048 + }, + { + "start": 14437.54, + "end": 14438.08, + "probability": 0.8853 + }, + { + "start": 14438.08, + "end": 14439.46, + "probability": 0.9399 + }, + { + "start": 14439.66, + "end": 14440.22, + "probability": 0.5582 + }, + { + "start": 14440.28, + "end": 14440.94, + "probability": 0.9631 + }, + { + "start": 14441.36, + "end": 14442.3, + "probability": 0.9758 + }, + { + "start": 14443.4, + "end": 14447.54, + "probability": 0.7396 + }, + { + "start": 14447.54, + "end": 14450.8, + "probability": 0.798 + }, + { + "start": 14451.5, + "end": 14455.88, + "probability": 0.7375 + }, + { + "start": 14456.44, + "end": 14462.26, + "probability": 0.9581 + }, + { + "start": 14463.12, + "end": 14466.08, + "probability": 0.9009 + }, + { + "start": 14466.74, + "end": 14471.74, + "probability": 0.8466 + }, + { + "start": 14472.94, + "end": 14477.54, + "probability": 0.8438 + }, + { + "start": 14478.4, + "end": 14482.62, + "probability": 0.9927 + }, + { + "start": 14483.54, + "end": 14484.89, + "probability": 0.9932 + }, + { + "start": 14486.08, + "end": 14487.47, + "probability": 0.9869 + }, + { + "start": 14488.82, + "end": 14493.24, + "probability": 0.9968 + }, + { + "start": 14493.68, + "end": 14494.66, + "probability": 0.8388 + }, + { + "start": 14494.94, + "end": 14495.66, + "probability": 0.951 + }, + { + "start": 14496.22, + "end": 14497.58, + "probability": 0.7784 + }, + { + "start": 14498.18, + "end": 14501.07, + "probability": 0.8653 + }, + { + "start": 14502.32, + "end": 14502.98, + "probability": 0.3413 + }, + { + "start": 14503.0, + "end": 14506.78, + "probability": 0.911 + }, + { + "start": 14506.78, + "end": 14510.66, + "probability": 0.9663 + }, + { + "start": 14511.98, + "end": 14513.77, + "probability": 0.8865 + }, + { + "start": 14514.64, + "end": 14516.68, + "probability": 0.9482 + }, + { + "start": 14517.3, + "end": 14520.02, + "probability": 0.9622 + }, + { + "start": 14520.8, + "end": 14525.08, + "probability": 0.9756 + }, + { + "start": 14525.88, + "end": 14527.68, + "probability": 0.9832 + }, + { + "start": 14528.54, + "end": 14531.98, + "probability": 0.9407 + }, + { + "start": 14531.98, + "end": 14537.7, + "probability": 0.9596 + }, + { + "start": 14538.14, + "end": 14541.2, + "probability": 0.7545 + }, + { + "start": 14541.88, + "end": 14543.78, + "probability": 0.7299 + }, + { + "start": 14544.78, + "end": 14546.98, + "probability": 0.7881 + }, + { + "start": 14548.06, + "end": 14551.02, + "probability": 0.8739 + }, + { + "start": 14552.06, + "end": 14556.78, + "probability": 0.9812 + }, + { + "start": 14558.02, + "end": 14558.3, + "probability": 0.3262 + }, + { + "start": 14558.86, + "end": 14564.86, + "probability": 0.9808 + }, + { + "start": 14565.34, + "end": 14568.5, + "probability": 0.9009 + }, + { + "start": 14569.18, + "end": 14571.7, + "probability": 0.9858 + }, + { + "start": 14572.32, + "end": 14574.56, + "probability": 0.8975 + }, + { + "start": 14575.32, + "end": 14576.26, + "probability": 0.518 + }, + { + "start": 14576.38, + "end": 14579.24, + "probability": 0.8119 + }, + { + "start": 14579.48, + "end": 14582.7, + "probability": 0.9189 + }, + { + "start": 14583.7, + "end": 14584.24, + "probability": 0.8114 + }, + { + "start": 14585.1, + "end": 14588.92, + "probability": 0.9519 + }, + { + "start": 14589.8, + "end": 14592.32, + "probability": 0.7438 + }, + { + "start": 14592.88, + "end": 14598.06, + "probability": 0.9814 + }, + { + "start": 14598.2, + "end": 14599.32, + "probability": 0.7885 + }, + { + "start": 14599.74, + "end": 14601.78, + "probability": 0.986 + }, + { + "start": 14602.66, + "end": 14606.92, + "probability": 0.963 + }, + { + "start": 14607.2, + "end": 14610.84, + "probability": 0.7798 + }, + { + "start": 14611.34, + "end": 14612.26, + "probability": 0.8173 + }, + { + "start": 14613.14, + "end": 14613.7, + "probability": 0.7999 + }, + { + "start": 14614.02, + "end": 14616.64, + "probability": 0.6474 + }, + { + "start": 14618.64, + "end": 14622.58, + "probability": 0.6754 + }, + { + "start": 14623.06, + "end": 14624.68, + "probability": 0.4644 + }, + { + "start": 14624.68, + "end": 14625.18, + "probability": 0.2595 + }, + { + "start": 14625.74, + "end": 14627.16, + "probability": 0.9497 + }, + { + "start": 14627.5, + "end": 14629.62, + "probability": 0.8438 + }, + { + "start": 14630.06, + "end": 14631.3, + "probability": 0.991 + }, + { + "start": 14632.22, + "end": 14632.74, + "probability": 0.8214 + }, + { + "start": 14632.78, + "end": 14635.48, + "probability": 0.9677 + }, + { + "start": 14635.96, + "end": 14637.8, + "probability": 0.5549 + }, + { + "start": 14652.18, + "end": 14655.72, + "probability": 0.7839 + }, + { + "start": 14656.62, + "end": 14658.62, + "probability": 0.9072 + }, + { + "start": 14659.22, + "end": 14662.2, + "probability": 0.9618 + }, + { + "start": 14662.96, + "end": 14664.3, + "probability": 0.9645 + }, + { + "start": 14665.02, + "end": 14666.78, + "probability": 0.9414 + }, + { + "start": 14667.5, + "end": 14669.86, + "probability": 0.9984 + }, + { + "start": 14670.48, + "end": 14670.6, + "probability": 0.5458 + }, + { + "start": 14670.74, + "end": 14674.72, + "probability": 0.9972 + }, + { + "start": 14675.52, + "end": 14677.06, + "probability": 0.6616 + }, + { + "start": 14677.68, + "end": 14681.0, + "probability": 0.9906 + }, + { + "start": 14681.54, + "end": 14683.56, + "probability": 0.7373 + }, + { + "start": 14684.4, + "end": 14687.96, + "probability": 0.9986 + }, + { + "start": 14687.96, + "end": 14691.18, + "probability": 0.9932 + }, + { + "start": 14691.84, + "end": 14695.88, + "probability": 0.9973 + }, + { + "start": 14696.28, + "end": 14698.94, + "probability": 0.5707 + }, + { + "start": 14698.94, + "end": 14700.47, + "probability": 0.7515 + }, + { + "start": 14701.34, + "end": 14703.44, + "probability": 0.9658 + }, + { + "start": 14703.88, + "end": 14705.96, + "probability": 0.9092 + }, + { + "start": 14706.7, + "end": 14707.6, + "probability": 0.8204 + }, + { + "start": 14708.18, + "end": 14709.38, + "probability": 0.5755 + }, + { + "start": 14710.4, + "end": 14711.66, + "probability": 0.8993 + }, + { + "start": 14712.22, + "end": 14712.48, + "probability": 0.854 + }, + { + "start": 14712.54, + "end": 14713.0, + "probability": 0.9961 + }, + { + "start": 14713.4, + "end": 14715.2, + "probability": 0.9573 + }, + { + "start": 14715.74, + "end": 14717.6, + "probability": 0.9745 + }, + { + "start": 14717.74, + "end": 14718.18, + "probability": 0.9285 + }, + { + "start": 14718.22, + "end": 14718.88, + "probability": 0.8756 + }, + { + "start": 14719.34, + "end": 14719.9, + "probability": 0.8103 + }, + { + "start": 14720.6, + "end": 14722.1, + "probability": 0.9924 + }, + { + "start": 14722.72, + "end": 14726.52, + "probability": 0.9349 + }, + { + "start": 14727.04, + "end": 14731.14, + "probability": 0.9915 + }, + { + "start": 14731.64, + "end": 14735.66, + "probability": 0.9119 + }, + { + "start": 14735.66, + "end": 14739.04, + "probability": 0.9824 + }, + { + "start": 14739.6, + "end": 14740.41, + "probability": 0.8928 + }, + { + "start": 14741.2, + "end": 14742.3, + "probability": 0.9791 + }, + { + "start": 14743.42, + "end": 14746.58, + "probability": 0.9904 + }, + { + "start": 14747.48, + "end": 14750.04, + "probability": 0.9443 + }, + { + "start": 14750.62, + "end": 14751.42, + "probability": 0.7216 + }, + { + "start": 14751.96, + "end": 14757.16, + "probability": 0.9854 + }, + { + "start": 14757.6, + "end": 14759.06, + "probability": 0.86 + }, + { + "start": 14759.76, + "end": 14762.44, + "probability": 0.9483 + }, + { + "start": 14763.18, + "end": 14764.6, + "probability": 0.9691 + }, + { + "start": 14765.04, + "end": 14767.74, + "probability": 0.8855 + }, + { + "start": 14768.14, + "end": 14770.92, + "probability": 0.867 + }, + { + "start": 14771.34, + "end": 14773.26, + "probability": 0.3944 + }, + { + "start": 14773.82, + "end": 14776.2, + "probability": 0.9654 + }, + { + "start": 14776.8, + "end": 14779.08, + "probability": 0.5384 + }, + { + "start": 14780.0, + "end": 14780.8, + "probability": 0.9251 + }, + { + "start": 14780.84, + "end": 14781.44, + "probability": 0.7623 + }, + { + "start": 14781.54, + "end": 14784.14, + "probability": 0.9667 + }, + { + "start": 14784.78, + "end": 14788.04, + "probability": 0.9799 + }, + { + "start": 14788.64, + "end": 14790.42, + "probability": 0.9966 + }, + { + "start": 14790.5, + "end": 14793.34, + "probability": 0.6403 + }, + { + "start": 14793.86, + "end": 14796.04, + "probability": 0.7607 + }, + { + "start": 14796.6, + "end": 14800.54, + "probability": 0.9812 + }, + { + "start": 14800.84, + "end": 14805.08, + "probability": 0.9666 + }, + { + "start": 14805.52, + "end": 14807.42, + "probability": 0.7479 + }, + { + "start": 14808.18, + "end": 14809.4, + "probability": 0.6666 + }, + { + "start": 14810.24, + "end": 14811.16, + "probability": 0.7812 + }, + { + "start": 14811.76, + "end": 14813.9, + "probability": 0.7808 + }, + { + "start": 14814.52, + "end": 14815.18, + "probability": 0.8403 + }, + { + "start": 14815.98, + "end": 14816.92, + "probability": 0.7473 + }, + { + "start": 14817.16, + "end": 14820.84, + "probability": 0.9092 + }, + { + "start": 14821.38, + "end": 14825.36, + "probability": 0.9913 + }, + { + "start": 14826.0, + "end": 14829.08, + "probability": 0.9756 + }, + { + "start": 14829.08, + "end": 14834.3, + "probability": 0.9933 + }, + { + "start": 14834.98, + "end": 14837.88, + "probability": 0.9308 + }, + { + "start": 14838.26, + "end": 14839.0, + "probability": 0.8232 + }, + { + "start": 14839.44, + "end": 14844.04, + "probability": 0.974 + }, + { + "start": 14844.74, + "end": 14845.24, + "probability": 0.5234 + }, + { + "start": 14845.26, + "end": 14845.9, + "probability": 0.4351 + }, + { + "start": 14845.9, + "end": 14847.7, + "probability": 0.7732 + }, + { + "start": 14848.16, + "end": 14849.82, + "probability": 0.7748 + }, + { + "start": 14850.38, + "end": 14856.04, + "probability": 0.887 + }, + { + "start": 14858.58, + "end": 14859.38, + "probability": 0.291 + }, + { + "start": 14860.08, + "end": 14860.28, + "probability": 0.2071 + }, + { + "start": 14860.48, + "end": 14860.48, + "probability": 0.0589 + }, + { + "start": 14860.48, + "end": 14861.1, + "probability": 0.3623 + }, + { + "start": 14861.92, + "end": 14863.04, + "probability": 0.9028 + }, + { + "start": 14863.26, + "end": 14867.34, + "probability": 0.5406 + }, + { + "start": 14867.48, + "end": 14868.16, + "probability": 0.6553 + }, + { + "start": 14868.22, + "end": 14871.68, + "probability": 0.7938 + }, + { + "start": 14871.78, + "end": 14873.42, + "probability": 0.8532 + }, + { + "start": 14873.76, + "end": 14874.0, + "probability": 0.2494 + }, + { + "start": 14874.0, + "end": 14874.38, + "probability": 0.7451 + }, + { + "start": 14874.58, + "end": 14875.82, + "probability": 0.8706 + }, + { + "start": 14875.86, + "end": 14879.76, + "probability": 0.8609 + }, + { + "start": 14881.1, + "end": 14885.18, + "probability": 0.0067 + }, + { + "start": 14887.42, + "end": 14887.58, + "probability": 0.132 + }, + { + "start": 14887.58, + "end": 14887.58, + "probability": 0.0169 + }, + { + "start": 14887.58, + "end": 14888.48, + "probability": 0.493 + }, + { + "start": 14888.9, + "end": 14890.02, + "probability": 0.8527 + }, + { + "start": 14890.16, + "end": 14892.56, + "probability": 0.7697 + }, + { + "start": 14893.58, + "end": 14898.45, + "probability": 0.9551 + }, + { + "start": 14899.96, + "end": 14905.18, + "probability": 0.7491 + }, + { + "start": 14906.36, + "end": 14907.48, + "probability": 0.8004 + }, + { + "start": 14908.08, + "end": 14908.86, + "probability": 0.8558 + }, + { + "start": 14909.74, + "end": 14910.9, + "probability": 0.848 + }, + { + "start": 14911.86, + "end": 14914.14, + "probability": 0.6493 + }, + { + "start": 14915.28, + "end": 14916.92, + "probability": 0.7632 + }, + { + "start": 14917.92, + "end": 14923.6, + "probability": 0.6982 + }, + { + "start": 14924.44, + "end": 14926.5, + "probability": 0.5553 + }, + { + "start": 14928.0, + "end": 14933.8, + "probability": 0.8531 + }, + { + "start": 14933.84, + "end": 14935.38, + "probability": 0.8048 + }, + { + "start": 14936.08, + "end": 14937.92, + "probability": 0.7042 + }, + { + "start": 14938.04, + "end": 14946.14, + "probability": 0.8342 + }, + { + "start": 14947.32, + "end": 14951.7, + "probability": 0.7784 + }, + { + "start": 14951.88, + "end": 14952.72, + "probability": 0.6526 + }, + { + "start": 14954.06, + "end": 14956.98, + "probability": 0.9713 + }, + { + "start": 14957.56, + "end": 14960.35, + "probability": 0.9623 + }, + { + "start": 14961.18, + "end": 14962.9, + "probability": 0.7873 + }, + { + "start": 14963.4, + "end": 14963.58, + "probability": 0.9529 + }, + { + "start": 14963.58, + "end": 14967.92, + "probability": 0.9883 + }, + { + "start": 14968.3, + "end": 14970.7, + "probability": 0.7458 + }, + { + "start": 14971.24, + "end": 14974.9, + "probability": 0.689 + }, + { + "start": 14975.64, + "end": 14979.57, + "probability": 0.7474 + }, + { + "start": 14980.5, + "end": 14986.42, + "probability": 0.9473 + }, + { + "start": 14987.04, + "end": 14992.28, + "probability": 0.9733 + }, + { + "start": 14994.42, + "end": 14998.09, + "probability": 0.9922 + }, + { + "start": 14999.3, + "end": 15002.16, + "probability": 0.7728 + }, + { + "start": 15003.29, + "end": 15010.96, + "probability": 0.9707 + }, + { + "start": 15011.44, + "end": 15014.6, + "probability": 0.9106 + }, + { + "start": 15017.0, + "end": 15020.66, + "probability": 0.9552 + }, + { + "start": 15020.7, + "end": 15026.34, + "probability": 0.9219 + }, + { + "start": 15027.6, + "end": 15032.14, + "probability": 0.9785 + }, + { + "start": 15033.47, + "end": 15039.3, + "probability": 0.9743 + }, + { + "start": 15039.38, + "end": 15040.38, + "probability": 0.5765 + }, + { + "start": 15041.84, + "end": 15046.22, + "probability": 0.9917 + }, + { + "start": 15047.66, + "end": 15049.0, + "probability": 0.9985 + }, + { + "start": 15050.56, + "end": 15052.92, + "probability": 0.7546 + }, + { + "start": 15053.88, + "end": 15054.58, + "probability": 0.8371 + }, + { + "start": 15055.56, + "end": 15057.11, + "probability": 0.8079 + }, + { + "start": 15058.68, + "end": 15063.42, + "probability": 0.9673 + }, + { + "start": 15064.78, + "end": 15065.34, + "probability": 0.7568 + }, + { + "start": 15065.6, + "end": 15075.4, + "probability": 0.7931 + }, + { + "start": 15075.4, + "end": 15082.28, + "probability": 0.7711 + }, + { + "start": 15083.02, + "end": 15088.88, + "probability": 0.9792 + }, + { + "start": 15089.04, + "end": 15089.81, + "probability": 0.7353 + }, + { + "start": 15091.02, + "end": 15095.34, + "probability": 0.969 + }, + { + "start": 15095.66, + "end": 15097.06, + "probability": 0.7582 + }, + { + "start": 15097.86, + "end": 15102.34, + "probability": 0.8187 + }, + { + "start": 15103.38, + "end": 15105.1, + "probability": 0.5198 + }, + { + "start": 15107.68, + "end": 15108.92, + "probability": 0.4017 + }, + { + "start": 15109.54, + "end": 15109.98, + "probability": 0.8752 + }, + { + "start": 15110.32, + "end": 15111.64, + "probability": 0.6898 + }, + { + "start": 15111.72, + "end": 15115.66, + "probability": 0.8557 + }, + { + "start": 15116.2, + "end": 15118.65, + "probability": 0.9739 + }, + { + "start": 15119.74, + "end": 15122.26, + "probability": 0.9756 + }, + { + "start": 15123.32, + "end": 15124.98, + "probability": 0.6754 + }, + { + "start": 15125.34, + "end": 15127.12, + "probability": 0.729 + }, + { + "start": 15127.16, + "end": 15134.14, + "probability": 0.9577 + }, + { + "start": 15134.78, + "end": 15136.52, + "probability": 0.9937 + }, + { + "start": 15137.4, + "end": 15138.22, + "probability": 0.7985 + }, + { + "start": 15139.4, + "end": 15140.37, + "probability": 0.981 + }, + { + "start": 15141.2, + "end": 15143.34, + "probability": 0.9662 + }, + { + "start": 15144.44, + "end": 15145.48, + "probability": 0.957 + }, + { + "start": 15145.6, + "end": 15147.92, + "probability": 0.9224 + }, + { + "start": 15148.0, + "end": 15149.76, + "probability": 0.9976 + }, + { + "start": 15150.44, + "end": 15152.62, + "probability": 0.9971 + }, + { + "start": 15153.16, + "end": 15155.67, + "probability": 0.7449 + }, + { + "start": 15156.24, + "end": 15156.9, + "probability": 0.8101 + }, + { + "start": 15157.02, + "end": 15158.72, + "probability": 0.9339 + }, + { + "start": 15159.4, + "end": 15161.6, + "probability": 0.9058 + }, + { + "start": 15162.3, + "end": 15163.86, + "probability": 0.4998 + }, + { + "start": 15164.76, + "end": 15165.32, + "probability": 0.4861 + }, + { + "start": 15167.9, + "end": 15168.88, + "probability": 0.3645 + }, + { + "start": 15168.88, + "end": 15169.3, + "probability": 0.4475 + }, + { + "start": 15169.4, + "end": 15177.12, + "probability": 0.9135 + }, + { + "start": 15178.88, + "end": 15184.3, + "probability": 0.9883 + }, + { + "start": 15184.3, + "end": 15189.84, + "probability": 0.8972 + }, + { + "start": 15190.64, + "end": 15193.46, + "probability": 0.9566 + }, + { + "start": 15194.02, + "end": 15199.54, + "probability": 0.9949 + }, + { + "start": 15200.16, + "end": 15202.66, + "probability": 0.7247 + }, + { + "start": 15203.18, + "end": 15207.34, + "probability": 0.9292 + }, + { + "start": 15208.44, + "end": 15212.68, + "probability": 0.9901 + }, + { + "start": 15213.26, + "end": 15216.82, + "probability": 0.5516 + }, + { + "start": 15217.82, + "end": 15220.16, + "probability": 0.9784 + }, + { + "start": 15220.7, + "end": 15224.32, + "probability": 0.8011 + }, + { + "start": 15224.72, + "end": 15228.96, + "probability": 0.9782 + }, + { + "start": 15229.06, + "end": 15230.72, + "probability": 0.9181 + }, + { + "start": 15231.54, + "end": 15232.68, + "probability": 0.5408 + }, + { + "start": 15232.76, + "end": 15233.22, + "probability": 0.5235 + }, + { + "start": 15233.72, + "end": 15235.02, + "probability": 0.7091 + }, + { + "start": 15235.42, + "end": 15239.54, + "probability": 0.9149 + }, + { + "start": 15240.34, + "end": 15241.44, + "probability": 0.7646 + }, + { + "start": 15241.62, + "end": 15244.78, + "probability": 0.515 + }, + { + "start": 15246.7, + "end": 15248.02, + "probability": 0.8887 + }, + { + "start": 15252.5, + "end": 15252.8, + "probability": 0.0733 + }, + { + "start": 15253.08, + "end": 15254.68, + "probability": 0.5759 + }, + { + "start": 15254.78, + "end": 15259.86, + "probability": 0.8959 + }, + { + "start": 15260.28, + "end": 15261.46, + "probability": 0.8086 + }, + { + "start": 15261.59, + "end": 15263.82, + "probability": 0.5765 + }, + { + "start": 15263.82, + "end": 15268.8, + "probability": 0.9233 + }, + { + "start": 15270.9, + "end": 15273.92, + "probability": 0.827 + }, + { + "start": 15274.94, + "end": 15277.35, + "probability": 0.9946 + }, + { + "start": 15278.1, + "end": 15279.22, + "probability": 0.7772 + }, + { + "start": 15280.2, + "end": 15280.84, + "probability": 0.9413 + }, + { + "start": 15281.04, + "end": 15283.72, + "probability": 0.9558 + }, + { + "start": 15283.92, + "end": 15284.54, + "probability": 0.4211 + }, + { + "start": 15284.64, + "end": 15286.32, + "probability": 0.4629 + }, + { + "start": 15288.04, + "end": 15288.3, + "probability": 0.1057 + }, + { + "start": 15288.34, + "end": 15288.88, + "probability": 0.9232 + }, + { + "start": 15289.14, + "end": 15291.32, + "probability": 0.8104 + }, + { + "start": 15292.16, + "end": 15293.08, + "probability": 0.9116 + }, + { + "start": 15293.26, + "end": 15293.9, + "probability": 0.7443 + }, + { + "start": 15294.3, + "end": 15298.48, + "probability": 0.6618 + }, + { + "start": 15298.72, + "end": 15305.32, + "probability": 0.8994 + }, + { + "start": 15306.74, + "end": 15311.24, + "probability": 0.9924 + }, + { + "start": 15311.36, + "end": 15312.5, + "probability": 0.9307 + }, + { + "start": 15313.24, + "end": 15315.24, + "probability": 0.9735 + }, + { + "start": 15315.94, + "end": 15318.56, + "probability": 0.8439 + }, + { + "start": 15319.3, + "end": 15320.38, + "probability": 0.6541 + }, + { + "start": 15321.19, + "end": 15326.5, + "probability": 0.8722 + }, + { + "start": 15326.58, + "end": 15327.54, + "probability": 0.754 + }, + { + "start": 15327.62, + "end": 15329.47, + "probability": 0.7484 + }, + { + "start": 15330.14, + "end": 15331.96, + "probability": 0.7895 + }, + { + "start": 15332.26, + "end": 15332.54, + "probability": 0.3001 + }, + { + "start": 15335.7, + "end": 15335.88, + "probability": 0.0161 + }, + { + "start": 15335.88, + "end": 15336.08, + "probability": 0.1003 + }, + { + "start": 15336.08, + "end": 15336.22, + "probability": 0.0432 + }, + { + "start": 15336.22, + "end": 15340.37, + "probability": 0.9038 + }, + { + "start": 15340.56, + "end": 15342.94, + "probability": 0.9854 + }, + { + "start": 15342.94, + "end": 15346.04, + "probability": 0.9368 + }, + { + "start": 15347.44, + "end": 15348.04, + "probability": 0.5078 + }, + { + "start": 15348.18, + "end": 15349.3, + "probability": 0.7247 + }, + { + "start": 15349.38, + "end": 15350.58, + "probability": 0.8506 + }, + { + "start": 15351.42, + "end": 15355.52, + "probability": 0.9142 + }, + { + "start": 15355.52, + "end": 15360.56, + "probability": 0.9038 + }, + { + "start": 15361.42, + "end": 15364.96, + "probability": 0.7958 + }, + { + "start": 15365.78, + "end": 15371.42, + "probability": 0.9057 + }, + { + "start": 15371.98, + "end": 15375.96, + "probability": 0.9925 + }, + { + "start": 15375.96, + "end": 15379.68, + "probability": 0.9963 + }, + { + "start": 15380.52, + "end": 15384.76, + "probability": 0.9953 + }, + { + "start": 15384.76, + "end": 15389.04, + "probability": 0.9959 + }, + { + "start": 15390.0, + "end": 15391.64, + "probability": 0.748 + }, + { + "start": 15391.72, + "end": 15396.84, + "probability": 0.9279 + }, + { + "start": 15397.2, + "end": 15401.66, + "probability": 0.9599 + }, + { + "start": 15402.66, + "end": 15404.34, + "probability": 0.4697 + }, + { + "start": 15404.94, + "end": 15408.5, + "probability": 0.7221 + }, + { + "start": 15409.3, + "end": 15413.48, + "probability": 0.949 + }, + { + "start": 15414.2, + "end": 15415.75, + "probability": 0.8731 + }, + { + "start": 15416.04, + "end": 15419.5, + "probability": 0.9757 + }, + { + "start": 15419.96, + "end": 15425.66, + "probability": 0.9276 + }, + { + "start": 15426.4, + "end": 15430.6, + "probability": 0.9654 + }, + { + "start": 15431.0, + "end": 15433.94, + "probability": 0.7582 + }, + { + "start": 15434.38, + "end": 15434.9, + "probability": 0.741 + }, + { + "start": 15434.92, + "end": 15437.56, + "probability": 0.7527 + }, + { + "start": 15437.74, + "end": 15439.51, + "probability": 0.9751 + }, + { + "start": 15439.88, + "end": 15442.6, + "probability": 0.949 + }, + { + "start": 15443.02, + "end": 15444.28, + "probability": 0.8323 + }, + { + "start": 15444.68, + "end": 15445.48, + "probability": 0.7758 + }, + { + "start": 15445.54, + "end": 15446.18, + "probability": 0.4841 + }, + { + "start": 15446.22, + "end": 15446.84, + "probability": 0.623 + }, + { + "start": 15446.84, + "end": 15448.16, + "probability": 0.628 + }, + { + "start": 15448.92, + "end": 15449.98, + "probability": 0.9673 + }, + { + "start": 15450.06, + "end": 15450.68, + "probability": 0.8042 + }, + { + "start": 15450.8, + "end": 15451.96, + "probability": 0.7685 + }, + { + "start": 15452.74, + "end": 15456.62, + "probability": 0.7918 + }, + { + "start": 15457.58, + "end": 15457.64, + "probability": 0.2395 + }, + { + "start": 15457.64, + "end": 15463.24, + "probability": 0.9157 + }, + { + "start": 15463.24, + "end": 15466.56, + "probability": 0.975 + }, + { + "start": 15467.02, + "end": 15467.54, + "probability": 0.4695 + }, + { + "start": 15468.06, + "end": 15470.98, + "probability": 0.786 + }, + { + "start": 15471.18, + "end": 15471.36, + "probability": 0.7006 + }, + { + "start": 15471.44, + "end": 15472.08, + "probability": 0.8968 + }, + { + "start": 15472.18, + "end": 15473.52, + "probability": 0.8534 + }, + { + "start": 15473.62, + "end": 15475.66, + "probability": 0.755 + }, + { + "start": 15476.3, + "end": 15483.42, + "probability": 0.8867 + }, + { + "start": 15483.78, + "end": 15484.72, + "probability": 0.3856 + }, + { + "start": 15497.98, + "end": 15498.28, + "probability": 0.3185 + }, + { + "start": 15498.28, + "end": 15501.78, + "probability": 0.6374 + }, + { + "start": 15502.54, + "end": 15503.64, + "probability": 0.8708 + }, + { + "start": 15504.7, + "end": 15504.98, + "probability": 0.7336 + }, + { + "start": 15506.74, + "end": 15508.02, + "probability": 0.741 + }, + { + "start": 15508.1, + "end": 15510.86, + "probability": 0.8067 + }, + { + "start": 15511.7, + "end": 15512.68, + "probability": 0.9777 + }, + { + "start": 15512.78, + "end": 15515.24, + "probability": 0.9113 + }, + { + "start": 15515.24, + "end": 15518.1, + "probability": 0.687 + }, + { + "start": 15520.09, + "end": 15524.36, + "probability": 0.7423 + }, + { + "start": 15524.9, + "end": 15526.38, + "probability": 0.5077 + }, + { + "start": 15527.16, + "end": 15531.36, + "probability": 0.8379 + }, + { + "start": 15531.92, + "end": 15533.68, + "probability": 0.6973 + }, + { + "start": 15534.56, + "end": 15536.02, + "probability": 0.5917 + }, + { + "start": 15536.8, + "end": 15538.32, + "probability": 0.8691 + }, + { + "start": 15539.74, + "end": 15545.38, + "probability": 0.3251 + }, + { + "start": 15545.64, + "end": 15548.76, + "probability": 0.4663 + }, + { + "start": 15549.3, + "end": 15554.84, + "probability": 0.8929 + }, + { + "start": 15554.94, + "end": 15557.28, + "probability": 0.8066 + }, + { + "start": 15559.16, + "end": 15564.12, + "probability": 0.9607 + }, + { + "start": 15564.12, + "end": 15567.52, + "probability": 0.9965 + }, + { + "start": 15567.68, + "end": 15568.82, + "probability": 0.6376 + }, + { + "start": 15569.34, + "end": 15573.62, + "probability": 0.7587 + }, + { + "start": 15574.08, + "end": 15575.78, + "probability": 0.6339 + }, + { + "start": 15575.86, + "end": 15579.14, + "probability": 0.9661 + }, + { + "start": 15580.06, + "end": 15582.44, + "probability": 0.8371 + }, + { + "start": 15582.8, + "end": 15583.84, + "probability": 0.9 + }, + { + "start": 15584.26, + "end": 15586.66, + "probability": 0.9271 + }, + { + "start": 15587.64, + "end": 15588.84, + "probability": 0.324 + }, + { + "start": 15589.62, + "end": 15592.82, + "probability": 0.9626 + }, + { + "start": 15593.7, + "end": 15596.64, + "probability": 0.6747 + }, + { + "start": 15597.22, + "end": 15599.04, + "probability": 0.9033 + }, + { + "start": 15599.08, + "end": 15602.58, + "probability": 0.9175 + }, + { + "start": 15603.01, + "end": 15606.34, + "probability": 0.7 + }, + { + "start": 15607.56, + "end": 15607.94, + "probability": 0.2915 + }, + { + "start": 15608.48, + "end": 15610.62, + "probability": 0.9893 + }, + { + "start": 15610.72, + "end": 15611.44, + "probability": 0.8031 + }, + { + "start": 15611.44, + "end": 15613.98, + "probability": 0.99 + }, + { + "start": 15614.56, + "end": 15618.08, + "probability": 0.8347 + }, + { + "start": 15618.96, + "end": 15619.5, + "probability": 0.8349 + }, + { + "start": 15620.66, + "end": 15622.08, + "probability": 0.7184 + }, + { + "start": 15622.3, + "end": 15626.66, + "probability": 0.962 + }, + { + "start": 15626.82, + "end": 15627.28, + "probability": 0.5754 + }, + { + "start": 15627.86, + "end": 15629.28, + "probability": 0.9929 + }, + { + "start": 15629.96, + "end": 15632.5, + "probability": 0.9836 + }, + { + "start": 15632.68, + "end": 15633.84, + "probability": 0.762 + }, + { + "start": 15633.94, + "end": 15637.96, + "probability": 0.9824 + }, + { + "start": 15638.22, + "end": 15639.52, + "probability": 0.9058 + }, + { + "start": 15640.88, + "end": 15643.0, + "probability": 0.928 + }, + { + "start": 15643.52, + "end": 15644.87, + "probability": 0.994 + }, + { + "start": 15645.1, + "end": 15649.78, + "probability": 0.9827 + }, + { + "start": 15650.34, + "end": 15652.04, + "probability": 0.849 + }, + { + "start": 15652.62, + "end": 15658.06, + "probability": 0.987 + }, + { + "start": 15658.64, + "end": 15662.8, + "probability": 0.9393 + }, + { + "start": 15662.9, + "end": 15663.94, + "probability": 0.6832 + }, + { + "start": 15664.34, + "end": 15665.06, + "probability": 0.5886 + }, + { + "start": 15665.22, + "end": 15666.34, + "probability": 0.8465 + }, + { + "start": 15667.16, + "end": 15669.14, + "probability": 0.9916 + }, + { + "start": 15669.34, + "end": 15671.02, + "probability": 0.8334 + }, + { + "start": 15671.7, + "end": 15672.92, + "probability": 0.7668 + }, + { + "start": 15672.98, + "end": 15673.94, + "probability": 0.9968 + }, + { + "start": 15674.4, + "end": 15676.2, + "probability": 0.8112 + }, + { + "start": 15676.56, + "end": 15680.02, + "probability": 0.6735 + }, + { + "start": 15680.44, + "end": 15682.62, + "probability": 0.9694 + }, + { + "start": 15682.66, + "end": 15684.2, + "probability": 0.7307 + }, + { + "start": 15685.12, + "end": 15685.84, + "probability": 0.7561 + }, + { + "start": 15686.24, + "end": 15688.42, + "probability": 0.6471 + }, + { + "start": 15689.98, + "end": 15690.76, + "probability": 0.7499 + }, + { + "start": 15691.02, + "end": 15691.76, + "probability": 0.6075 + }, + { + "start": 15691.88, + "end": 15692.5, + "probability": 0.856 + }, + { + "start": 15692.82, + "end": 15693.54, + "probability": 0.7054 + }, + { + "start": 15693.86, + "end": 15694.78, + "probability": 0.8533 + }, + { + "start": 15694.9, + "end": 15696.04, + "probability": 0.8854 + }, + { + "start": 15696.18, + "end": 15697.02, + "probability": 0.7452 + }, + { + "start": 15697.18, + "end": 15698.12, + "probability": 0.9301 + }, + { + "start": 15698.32, + "end": 15699.8, + "probability": 0.8987 + }, + { + "start": 15699.96, + "end": 15703.1, + "probability": 0.7392 + }, + { + "start": 15703.89, + "end": 15706.86, + "probability": 0.8309 + }, + { + "start": 15706.94, + "end": 15707.72, + "probability": 0.68 + }, + { + "start": 15707.86, + "end": 15708.72, + "probability": 0.7839 + }, + { + "start": 15708.98, + "end": 15710.88, + "probability": 0.8112 + }, + { + "start": 15711.36, + "end": 15712.2, + "probability": 0.8921 + }, + { + "start": 15712.32, + "end": 15712.78, + "probability": 0.8105 + }, + { + "start": 15714.04, + "end": 15716.14, + "probability": 0.9071 + }, + { + "start": 15716.92, + "end": 15718.18, + "probability": 0.5183 + }, + { + "start": 15719.02, + "end": 15719.14, + "probability": 0.3124 + }, + { + "start": 15719.16, + "end": 15720.54, + "probability": 0.8325 + }, + { + "start": 15720.74, + "end": 15725.46, + "probability": 0.9067 + }, + { + "start": 15727.52, + "end": 15728.84, + "probability": 0.9517 + }, + { + "start": 15729.46, + "end": 15730.94, + "probability": 0.5938 + }, + { + "start": 15731.1, + "end": 15732.58, + "probability": 0.9902 + }, + { + "start": 15733.2, + "end": 15736.16, + "probability": 0.938 + }, + { + "start": 15736.26, + "end": 15736.72, + "probability": 0.8427 + }, + { + "start": 15736.76, + "end": 15737.28, + "probability": 0.6362 + }, + { + "start": 15738.3, + "end": 15740.24, + "probability": 0.9806 + }, + { + "start": 15740.26, + "end": 15743.0, + "probability": 0.8683 + }, + { + "start": 15743.5, + "end": 15745.04, + "probability": 0.8541 + }, + { + "start": 15745.04, + "end": 15749.82, + "probability": 0.8566 + }, + { + "start": 15750.4, + "end": 15752.3, + "probability": 0.9942 + }, + { + "start": 15753.48, + "end": 15754.92, + "probability": 0.813 + }, + { + "start": 15755.06, + "end": 15755.68, + "probability": 0.3159 + }, + { + "start": 15755.82, + "end": 15756.24, + "probability": 0.8359 + }, + { + "start": 15757.0, + "end": 15757.5, + "probability": 0.5036 + }, + { + "start": 15758.06, + "end": 15763.1, + "probability": 0.9966 + }, + { + "start": 15764.32, + "end": 15764.8, + "probability": 0.5801 + }, + { + "start": 15765.86, + "end": 15766.91, + "probability": 0.7269 + }, + { + "start": 15767.5, + "end": 15769.84, + "probability": 0.843 + }, + { + "start": 15769.88, + "end": 15772.2, + "probability": 0.8975 + }, + { + "start": 15772.9, + "end": 15776.86, + "probability": 0.9949 + }, + { + "start": 15777.58, + "end": 15782.86, + "probability": 0.9689 + }, + { + "start": 15782.98, + "end": 15784.9, + "probability": 0.9035 + }, + { + "start": 15784.9, + "end": 15785.66, + "probability": 0.5591 + }, + { + "start": 15785.68, + "end": 15789.06, + "probability": 0.7283 + }, + { + "start": 15789.14, + "end": 15789.78, + "probability": 0.8072 + }, + { + "start": 15789.92, + "end": 15792.2, + "probability": 0.5013 + }, + { + "start": 15793.14, + "end": 15795.64, + "probability": 0.9144 + }, + { + "start": 15797.34, + "end": 15797.78, + "probability": 0.892 + }, + { + "start": 15797.88, + "end": 15799.4, + "probability": 0.981 + }, + { + "start": 15799.78, + "end": 15801.76, + "probability": 0.9342 + }, + { + "start": 15801.8, + "end": 15802.64, + "probability": 0.7128 + }, + { + "start": 15802.68, + "end": 15804.36, + "probability": 0.6883 + }, + { + "start": 15805.06, + "end": 15810.98, + "probability": 0.9878 + }, + { + "start": 15811.14, + "end": 15813.44, + "probability": 0.9214 + }, + { + "start": 15813.56, + "end": 15815.64, + "probability": 0.9962 + }, + { + "start": 15815.94, + "end": 15818.7, + "probability": 0.9765 + }, + { + "start": 15818.8, + "end": 15820.02, + "probability": 0.8301 + }, + { + "start": 15820.46, + "end": 15821.68, + "probability": 0.9315 + }, + { + "start": 15822.42, + "end": 15823.52, + "probability": 0.7947 + }, + { + "start": 15823.6, + "end": 15825.12, + "probability": 0.9767 + }, + { + "start": 15826.36, + "end": 15829.12, + "probability": 0.9017 + }, + { + "start": 15829.12, + "end": 15831.3, + "probability": 0.7656 + }, + { + "start": 15831.66, + "end": 15833.25, + "probability": 0.8244 + }, + { + "start": 15833.58, + "end": 15834.92, + "probability": 0.9618 + }, + { + "start": 15835.3, + "end": 15838.06, + "probability": 0.908 + }, + { + "start": 15838.22, + "end": 15840.0, + "probability": 0.9556 + }, + { + "start": 15840.0, + "end": 15843.22, + "probability": 0.9731 + }, + { + "start": 15843.36, + "end": 15845.12, + "probability": 0.8421 + }, + { + "start": 15845.18, + "end": 15845.98, + "probability": 0.9041 + }, + { + "start": 15847.66, + "end": 15848.96, + "probability": 0.5411 + }, + { + "start": 15849.04, + "end": 15851.88, + "probability": 0.9921 + }, + { + "start": 15853.04, + "end": 15853.92, + "probability": 0.9561 + }, + { + "start": 15853.94, + "end": 15854.46, + "probability": 0.8622 + }, + { + "start": 15854.56, + "end": 15855.32, + "probability": 0.8141 + }, + { + "start": 15855.44, + "end": 15856.07, + "probability": 0.9128 + }, + { + "start": 15856.1, + "end": 15856.94, + "probability": 0.9201 + }, + { + "start": 15857.24, + "end": 15860.32, + "probability": 0.7099 + }, + { + "start": 15860.58, + "end": 15861.3, + "probability": 0.8991 + }, + { + "start": 15861.48, + "end": 15865.8, + "probability": 0.9778 + }, + { + "start": 15866.0, + "end": 15866.38, + "probability": 0.8392 + }, + { + "start": 15866.5, + "end": 15867.8, + "probability": 0.9844 + }, + { + "start": 15867.84, + "end": 15869.28, + "probability": 0.9652 + }, + { + "start": 15869.36, + "end": 15870.64, + "probability": 0.9531 + }, + { + "start": 15870.68, + "end": 15874.08, + "probability": 0.9151 + }, + { + "start": 15874.6, + "end": 15878.6, + "probability": 0.9908 + }, + { + "start": 15878.64, + "end": 15879.06, + "probability": 0.8812 + }, + { + "start": 15879.84, + "end": 15881.54, + "probability": 0.5216 + }, + { + "start": 15882.12, + "end": 15884.38, + "probability": 0.9596 + }, + { + "start": 15884.46, + "end": 15886.12, + "probability": 0.9469 + }, + { + "start": 15886.28, + "end": 15888.0, + "probability": 0.9834 + }, + { + "start": 15888.5, + "end": 15894.12, + "probability": 0.9835 + }, + { + "start": 15894.52, + "end": 15897.18, + "probability": 0.9647 + }, + { + "start": 15897.86, + "end": 15898.4, + "probability": 0.7734 + }, + { + "start": 15904.06, + "end": 15904.68, + "probability": 0.6653 + }, + { + "start": 15905.08, + "end": 15905.08, + "probability": 0.3919 + }, + { + "start": 15905.08, + "end": 15906.38, + "probability": 0.6834 + }, + { + "start": 15906.66, + "end": 15909.64, + "probability": 0.8815 + }, + { + "start": 15912.78, + "end": 15914.54, + "probability": 0.8227 + }, + { + "start": 15915.24, + "end": 15915.81, + "probability": 0.5526 + }, + { + "start": 15916.16, + "end": 15916.72, + "probability": 0.6523 + }, + { + "start": 15916.98, + "end": 15919.66, + "probability": 0.9857 + }, + { + "start": 15920.22, + "end": 15922.34, + "probability": 0.8524 + }, + { + "start": 15924.14, + "end": 15925.12, + "probability": 0.9727 + }, + { + "start": 15925.36, + "end": 15927.22, + "probability": 0.9624 + }, + { + "start": 15927.3, + "end": 15928.98, + "probability": 0.915 + }, + { + "start": 15929.06, + "end": 15929.94, + "probability": 0.7288 + }, + { + "start": 15930.08, + "end": 15931.16, + "probability": 0.8755 + }, + { + "start": 15931.62, + "end": 15936.86, + "probability": 0.9437 + }, + { + "start": 15937.0, + "end": 15942.26, + "probability": 0.924 + }, + { + "start": 15944.52, + "end": 15944.74, + "probability": 0.8936 + }, + { + "start": 15944.78, + "end": 15945.64, + "probability": 0.8208 + }, + { + "start": 15945.82, + "end": 15947.72, + "probability": 0.8857 + }, + { + "start": 15947.78, + "end": 15949.3, + "probability": 0.8398 + }, + { + "start": 15949.76, + "end": 15952.11, + "probability": 0.9883 + }, + { + "start": 15952.72, + "end": 15953.34, + "probability": 0.9193 + }, + { + "start": 15953.38, + "end": 15953.82, + "probability": 0.9605 + }, + { + "start": 15955.8, + "end": 15957.8, + "probability": 0.9478 + }, + { + "start": 15958.76, + "end": 15962.04, + "probability": 0.9754 + }, + { + "start": 15962.2, + "end": 15963.42, + "probability": 0.9849 + }, + { + "start": 15963.5, + "end": 15968.68, + "probability": 0.8408 + }, + { + "start": 15970.06, + "end": 15973.42, + "probability": 0.9197 + }, + { + "start": 15973.46, + "end": 15977.32, + "probability": 0.9733 + }, + { + "start": 15978.88, + "end": 15980.44, + "probability": 0.793 + }, + { + "start": 15981.36, + "end": 15985.02, + "probability": 0.8021 + }, + { + "start": 15985.42, + "end": 15986.66, + "probability": 0.9628 + }, + { + "start": 15989.6, + "end": 15991.72, + "probability": 0.9299 + }, + { + "start": 15992.94, + "end": 15993.68, + "probability": 0.8422 + }, + { + "start": 15994.12, + "end": 15995.32, + "probability": 0.8911 + }, + { + "start": 15995.54, + "end": 15996.52, + "probability": 0.8767 + }, + { + "start": 15996.66, + "end": 15999.16, + "probability": 0.9937 + }, + { + "start": 16001.46, + "end": 16002.34, + "probability": 0.3735 + }, + { + "start": 16002.44, + "end": 16002.82, + "probability": 0.4541 + }, + { + "start": 16003.26, + "end": 16005.23, + "probability": 0.7713 + }, + { + "start": 16007.28, + "end": 16008.9, + "probability": 0.3985 + }, + { + "start": 16008.96, + "end": 16009.26, + "probability": 0.7621 + }, + { + "start": 16009.3, + "end": 16011.42, + "probability": 0.9434 + }, + { + "start": 16011.56, + "end": 16013.04, + "probability": 0.9134 + }, + { + "start": 16013.36, + "end": 16014.18, + "probability": 0.8763 + }, + { + "start": 16015.96, + "end": 16017.34, + "probability": 0.8408 + }, + { + "start": 16017.52, + "end": 16019.06, + "probability": 0.9083 + }, + { + "start": 16019.54, + "end": 16020.08, + "probability": 0.6777 + }, + { + "start": 16020.22, + "end": 16020.97, + "probability": 0.8654 + }, + { + "start": 16021.1, + "end": 16022.36, + "probability": 0.7903 + }, + { + "start": 16022.66, + "end": 16024.88, + "probability": 0.8682 + }, + { + "start": 16024.98, + "end": 16025.88, + "probability": 0.8955 + }, + { + "start": 16026.46, + "end": 16030.24, + "probability": 0.978 + }, + { + "start": 16031.02, + "end": 16033.98, + "probability": 0.9873 + }, + { + "start": 16034.82, + "end": 16036.66, + "probability": 0.9237 + }, + { + "start": 16036.86, + "end": 16039.72, + "probability": 0.9813 + }, + { + "start": 16039.88, + "end": 16040.34, + "probability": 0.3347 + }, + { + "start": 16040.44, + "end": 16042.06, + "probability": 0.9062 + }, + { + "start": 16044.11, + "end": 16047.14, + "probability": 0.9932 + }, + { + "start": 16047.32, + "end": 16050.92, + "probability": 0.9927 + }, + { + "start": 16051.18, + "end": 16054.12, + "probability": 0.9961 + }, + { + "start": 16054.84, + "end": 16055.78, + "probability": 0.6877 + }, + { + "start": 16055.92, + "end": 16056.8, + "probability": 0.7802 + }, + { + "start": 16056.9, + "end": 16059.7, + "probability": 0.9968 + }, + { + "start": 16060.62, + "end": 16060.86, + "probability": 0.3499 + }, + { + "start": 16060.86, + "end": 16062.54, + "probability": 0.8521 + }, + { + "start": 16062.8, + "end": 16065.12, + "probability": 0.7203 + }, + { + "start": 16065.14, + "end": 16066.28, + "probability": 0.7024 + }, + { + "start": 16066.32, + "end": 16067.28, + "probability": 0.7857 + }, + { + "start": 16067.34, + "end": 16068.4, + "probability": 0.9362 + }, + { + "start": 16068.52, + "end": 16070.1, + "probability": 0.872 + }, + { + "start": 16070.26, + "end": 16071.42, + "probability": 0.9017 + }, + { + "start": 16071.5, + "end": 16073.17, + "probability": 0.9037 + }, + { + "start": 16073.58, + "end": 16077.44, + "probability": 0.874 + }, + { + "start": 16078.08, + "end": 16079.36, + "probability": 0.7574 + }, + { + "start": 16079.54, + "end": 16080.6, + "probability": 0.9613 + }, + { + "start": 16080.68, + "end": 16082.33, + "probability": 0.8599 + }, + { + "start": 16082.7, + "end": 16084.52, + "probability": 0.9706 + }, + { + "start": 16084.92, + "end": 16086.0, + "probability": 0.8007 + }, + { + "start": 16086.1, + "end": 16087.54, + "probability": 0.9304 + }, + { + "start": 16088.0, + "end": 16090.34, + "probability": 0.949 + }, + { + "start": 16090.44, + "end": 16095.32, + "probability": 0.8739 + }, + { + "start": 16095.76, + "end": 16097.48, + "probability": 0.9447 + }, + { + "start": 16098.4, + "end": 16099.28, + "probability": 0.828 + }, + { + "start": 16099.32, + "end": 16100.38, + "probability": 0.9711 + }, + { + "start": 16100.52, + "end": 16101.12, + "probability": 0.6863 + }, + { + "start": 16101.18, + "end": 16103.4, + "probability": 0.8751 + }, + { + "start": 16103.58, + "end": 16104.1, + "probability": 0.832 + }, + { + "start": 16104.86, + "end": 16106.26, + "probability": 0.9685 + }, + { + "start": 16107.1, + "end": 16109.58, + "probability": 0.9902 + }, + { + "start": 16109.58, + "end": 16113.38, + "probability": 0.9847 + }, + { + "start": 16114.18, + "end": 16116.22, + "probability": 0.7464 + }, + { + "start": 16116.26, + "end": 16116.9, + "probability": 0.6158 + }, + { + "start": 16116.96, + "end": 16120.08, + "probability": 0.8441 + }, + { + "start": 16120.94, + "end": 16121.77, + "probability": 0.9322 + }, + { + "start": 16121.9, + "end": 16121.98, + "probability": 0.6716 + }, + { + "start": 16122.1, + "end": 16123.5, + "probability": 0.9521 + }, + { + "start": 16123.66, + "end": 16124.76, + "probability": 0.8792 + }, + { + "start": 16125.04, + "end": 16126.7, + "probability": 0.8971 + }, + { + "start": 16126.78, + "end": 16127.82, + "probability": 0.7322 + }, + { + "start": 16127.9, + "end": 16129.44, + "probability": 0.9622 + }, + { + "start": 16129.64, + "end": 16130.78, + "probability": 0.8811 + }, + { + "start": 16131.4, + "end": 16132.82, + "probability": 0.915 + }, + { + "start": 16133.34, + "end": 16136.12, + "probability": 0.9631 + }, + { + "start": 16137.76, + "end": 16139.86, + "probability": 0.8952 + }, + { + "start": 16140.0, + "end": 16142.74, + "probability": 0.9932 + }, + { + "start": 16145.14, + "end": 16148.14, + "probability": 0.9976 + }, + { + "start": 16148.98, + "end": 16150.99, + "probability": 0.8736 + }, + { + "start": 16151.96, + "end": 16153.68, + "probability": 0.6687 + }, + { + "start": 16154.44, + "end": 16157.24, + "probability": 0.9779 + }, + { + "start": 16158.15, + "end": 16161.02, + "probability": 0.9297 + }, + { + "start": 16161.06, + "end": 16163.24, + "probability": 0.99 + }, + { + "start": 16163.78, + "end": 16165.58, + "probability": 0.9866 + }, + { + "start": 16165.64, + "end": 16166.74, + "probability": 0.9483 + }, + { + "start": 16167.04, + "end": 16169.32, + "probability": 0.9443 + }, + { + "start": 16169.32, + "end": 16172.44, + "probability": 0.9992 + }, + { + "start": 16173.5, + "end": 16174.66, + "probability": 0.5288 + }, + { + "start": 16175.5, + "end": 16178.48, + "probability": 0.9946 + }, + { + "start": 16178.66, + "end": 16183.48, + "probability": 0.9696 + }, + { + "start": 16184.78, + "end": 16185.86, + "probability": 0.7954 + }, + { + "start": 16186.04, + "end": 16186.9, + "probability": 0.7947 + }, + { + "start": 16187.14, + "end": 16188.52, + "probability": 0.7066 + }, + { + "start": 16188.9, + "end": 16189.46, + "probability": 0.9193 + }, + { + "start": 16189.5, + "end": 16192.08, + "probability": 0.8401 + }, + { + "start": 16194.24, + "end": 16195.12, + "probability": 0.9337 + }, + { + "start": 16195.18, + "end": 16196.84, + "probability": 0.4593 + }, + { + "start": 16197.0, + "end": 16198.22, + "probability": 0.9335 + }, + { + "start": 16199.22, + "end": 16201.8, + "probability": 0.9141 + }, + { + "start": 16202.0, + "end": 16203.4, + "probability": 0.877 + }, + { + "start": 16203.78, + "end": 16205.08, + "probability": 0.6369 + }, + { + "start": 16206.08, + "end": 16208.26, + "probability": 0.9612 + }, + { + "start": 16208.4, + "end": 16213.86, + "probability": 0.8963 + }, + { + "start": 16213.94, + "end": 16218.62, + "probability": 0.8864 + }, + { + "start": 16219.3, + "end": 16222.28, + "probability": 0.8883 + }, + { + "start": 16223.4, + "end": 16227.12, + "probability": 0.9899 + }, + { + "start": 16227.36, + "end": 16229.76, + "probability": 0.9917 + }, + { + "start": 16229.9, + "end": 16230.58, + "probability": 0.9458 + }, + { + "start": 16230.92, + "end": 16233.28, + "probability": 0.7745 + }, + { + "start": 16233.42, + "end": 16236.2, + "probability": 0.9676 + }, + { + "start": 16237.76, + "end": 16240.4, + "probability": 0.8456 + }, + { + "start": 16240.64, + "end": 16241.74, + "probability": 0.7348 + }, + { + "start": 16241.96, + "end": 16243.84, + "probability": 0.6624 + }, + { + "start": 16243.96, + "end": 16244.98, + "probability": 0.8738 + }, + { + "start": 16245.3, + "end": 16246.4, + "probability": 0.7891 + }, + { + "start": 16246.86, + "end": 16247.4, + "probability": 0.7316 + }, + { + "start": 16247.52, + "end": 16249.22, + "probability": 0.7975 + }, + { + "start": 16249.34, + "end": 16253.96, + "probability": 0.8112 + }, + { + "start": 16254.88, + "end": 16258.64, + "probability": 0.8509 + }, + { + "start": 16258.98, + "end": 16259.8, + "probability": 0.8466 + }, + { + "start": 16259.92, + "end": 16261.78, + "probability": 0.9972 + }, + { + "start": 16261.8, + "end": 16263.5, + "probability": 0.814 + }, + { + "start": 16264.2, + "end": 16265.22, + "probability": 0.9359 + }, + { + "start": 16265.34, + "end": 16267.82, + "probability": 0.76 + }, + { + "start": 16268.76, + "end": 16272.1, + "probability": 0.8741 + }, + { + "start": 16273.36, + "end": 16275.84, + "probability": 0.7591 + }, + { + "start": 16275.94, + "end": 16277.12, + "probability": 0.7188 + }, + { + "start": 16277.16, + "end": 16278.18, + "probability": 0.6968 + }, + { + "start": 16280.72, + "end": 16282.94, + "probability": 0.6819 + }, + { + "start": 16283.14, + "end": 16284.12, + "probability": 0.5953 + }, + { + "start": 16284.14, + "end": 16287.4, + "probability": 0.9976 + }, + { + "start": 16287.46, + "end": 16288.52, + "probability": 0.9129 + }, + { + "start": 16288.64, + "end": 16290.92, + "probability": 0.682 + }, + { + "start": 16291.7, + "end": 16295.58, + "probability": 0.9639 + }, + { + "start": 16295.66, + "end": 16297.71, + "probability": 0.8759 + }, + { + "start": 16297.76, + "end": 16298.54, + "probability": 0.8777 + }, + { + "start": 16298.66, + "end": 16300.87, + "probability": 0.924 + }, + { + "start": 16301.36, + "end": 16303.16, + "probability": 0.9186 + }, + { + "start": 16303.98, + "end": 16306.68, + "probability": 0.9126 + }, + { + "start": 16309.14, + "end": 16310.72, + "probability": 0.5786 + }, + { + "start": 16311.44, + "end": 16316.66, + "probability": 0.9605 + }, + { + "start": 16316.78, + "end": 16318.36, + "probability": 0.9863 + }, + { + "start": 16318.78, + "end": 16319.78, + "probability": 0.7875 + }, + { + "start": 16319.94, + "end": 16322.38, + "probability": 0.7628 + }, + { + "start": 16322.52, + "end": 16323.2, + "probability": 0.751 + }, + { + "start": 16323.34, + "end": 16324.68, + "probability": 0.7631 + }, + { + "start": 16327.43, + "end": 16329.93, + "probability": 0.0839 + }, + { + "start": 16331.0, + "end": 16332.02, + "probability": 0.0219 + }, + { + "start": 16332.16, + "end": 16334.56, + "probability": 0.4855 + }, + { + "start": 16334.62, + "end": 16338.18, + "probability": 0.865 + }, + { + "start": 16338.28, + "end": 16339.91, + "probability": 0.717 + }, + { + "start": 16340.12, + "end": 16344.96, + "probability": 0.9871 + }, + { + "start": 16344.96, + "end": 16348.8, + "probability": 0.9944 + }, + { + "start": 16349.17, + "end": 16351.57, + "probability": 0.9756 + }, + { + "start": 16352.3, + "end": 16354.8, + "probability": 0.5898 + }, + { + "start": 16354.9, + "end": 16358.0, + "probability": 0.8656 + }, + { + "start": 16358.44, + "end": 16358.94, + "probability": 0.6692 + }, + { + "start": 16359.04, + "end": 16360.74, + "probability": 0.9836 + }, + { + "start": 16360.8, + "end": 16366.25, + "probability": 0.9521 + }, + { + "start": 16366.32, + "end": 16371.1, + "probability": 0.9125 + }, + { + "start": 16371.32, + "end": 16373.82, + "probability": 0.8179 + }, + { + "start": 16374.0, + "end": 16377.46, + "probability": 0.6909 + }, + { + "start": 16378.78, + "end": 16383.0, + "probability": 0.9773 + }, + { + "start": 16383.24, + "end": 16386.48, + "probability": 0.864 + }, + { + "start": 16387.06, + "end": 16390.22, + "probability": 0.8112 + }, + { + "start": 16390.6, + "end": 16394.16, + "probability": 0.7759 + }, + { + "start": 16394.32, + "end": 16396.78, + "probability": 0.7281 + }, + { + "start": 16398.14, + "end": 16402.74, + "probability": 0.8921 + }, + { + "start": 16403.18, + "end": 16406.74, + "probability": 0.7387 + }, + { + "start": 16407.08, + "end": 16408.46, + "probability": 0.8934 + }, + { + "start": 16408.54, + "end": 16412.72, + "probability": 0.9609 + }, + { + "start": 16413.16, + "end": 16414.28, + "probability": 0.8311 + }, + { + "start": 16414.68, + "end": 16416.08, + "probability": 0.9629 + }, + { + "start": 16416.14, + "end": 16417.04, + "probability": 0.8592 + }, + { + "start": 16417.22, + "end": 16417.72, + "probability": 0.8244 + }, + { + "start": 16417.8, + "end": 16422.84, + "probability": 0.6673 + }, + { + "start": 16422.9, + "end": 16423.82, + "probability": 0.8981 + }, + { + "start": 16423.9, + "end": 16425.48, + "probability": 0.8696 + }, + { + "start": 16425.86, + "end": 16427.82, + "probability": 0.9433 + }, + { + "start": 16428.3, + "end": 16430.8, + "probability": 0.9272 + }, + { + "start": 16431.26, + "end": 16433.74, + "probability": 0.6289 + }, + { + "start": 16434.65, + "end": 16438.68, + "probability": 0.9904 + }, + { + "start": 16439.52, + "end": 16440.12, + "probability": 0.7865 + }, + { + "start": 16440.92, + "end": 16441.3, + "probability": 0.8926 + }, + { + "start": 16441.38, + "end": 16442.96, + "probability": 0.9888 + }, + { + "start": 16443.1, + "end": 16445.06, + "probability": 0.9832 + }, + { + "start": 16445.22, + "end": 16450.64, + "probability": 0.8772 + }, + { + "start": 16450.86, + "end": 16451.86, + "probability": 0.7665 + }, + { + "start": 16451.92, + "end": 16453.4, + "probability": 0.7493 + }, + { + "start": 16453.98, + "end": 16458.3, + "probability": 0.9939 + }, + { + "start": 16458.68, + "end": 16461.44, + "probability": 0.9836 + }, + { + "start": 16461.5, + "end": 16466.54, + "probability": 0.9907 + }, + { + "start": 16466.64, + "end": 16467.92, + "probability": 0.8358 + }, + { + "start": 16468.5, + "end": 16470.24, + "probability": 0.8738 + }, + { + "start": 16470.36, + "end": 16472.2, + "probability": 0.9814 + }, + { + "start": 16472.96, + "end": 16474.72, + "probability": 0.9482 + }, + { + "start": 16474.9, + "end": 16477.0, + "probability": 0.8914 + }, + { + "start": 16477.84, + "end": 16481.2, + "probability": 0.959 + }, + { + "start": 16481.22, + "end": 16483.12, + "probability": 0.5249 + }, + { + "start": 16483.42, + "end": 16487.76, + "probability": 0.8831 + }, + { + "start": 16488.74, + "end": 16489.08, + "probability": 0.5692 + }, + { + "start": 16489.2, + "end": 16489.86, + "probability": 0.9739 + }, + { + "start": 16490.0, + "end": 16490.68, + "probability": 0.7155 + }, + { + "start": 16490.78, + "end": 16494.98, + "probability": 0.9665 + }, + { + "start": 16495.06, + "end": 16495.98, + "probability": 0.6216 + }, + { + "start": 16496.18, + "end": 16497.7, + "probability": 0.8411 + }, + { + "start": 16498.02, + "end": 16501.18, + "probability": 0.9269 + }, + { + "start": 16501.46, + "end": 16502.68, + "probability": 0.7942 + }, + { + "start": 16502.96, + "end": 16506.82, + "probability": 0.8277 + }, + { + "start": 16507.29, + "end": 16510.02, + "probability": 0.8011 + }, + { + "start": 16510.68, + "end": 16514.16, + "probability": 0.6245 + }, + { + "start": 16514.24, + "end": 16514.54, + "probability": 0.8752 + }, + { + "start": 16515.0, + "end": 16515.5, + "probability": 0.8008 + }, + { + "start": 16515.9, + "end": 16517.34, + "probability": 0.8179 + }, + { + "start": 16517.74, + "end": 16518.94, + "probability": 0.7331 + }, + { + "start": 16519.82, + "end": 16520.5, + "probability": 0.6277 + }, + { + "start": 16520.58, + "end": 16520.8, + "probability": 0.7616 + }, + { + "start": 16520.92, + "end": 16522.54, + "probability": 0.9771 + }, + { + "start": 16522.62, + "end": 16524.74, + "probability": 0.6853 + }, + { + "start": 16525.04, + "end": 16529.32, + "probability": 0.9381 + }, + { + "start": 16529.72, + "end": 16530.64, + "probability": 0.7207 + }, + { + "start": 16530.84, + "end": 16533.32, + "probability": 0.6756 + }, + { + "start": 16533.54, + "end": 16533.54, + "probability": 0.6841 + }, + { + "start": 16533.54, + "end": 16535.8, + "probability": 0.6119 + }, + { + "start": 16535.92, + "end": 16540.08, + "probability": 0.9843 + }, + { + "start": 16540.08, + "end": 16544.3, + "probability": 0.9952 + }, + { + "start": 16548.43, + "end": 16549.86, + "probability": 0.9676 + }, + { + "start": 16549.92, + "end": 16551.92, + "probability": 0.7301 + }, + { + "start": 16552.42, + "end": 16555.34, + "probability": 0.9971 + }, + { + "start": 16555.58, + "end": 16557.18, + "probability": 0.8438 + }, + { + "start": 16557.3, + "end": 16559.26, + "probability": 0.9106 + }, + { + "start": 16559.86, + "end": 16560.18, + "probability": 0.3014 + }, + { + "start": 16560.26, + "end": 16560.82, + "probability": 0.5096 + }, + { + "start": 16560.88, + "end": 16562.94, + "probability": 0.9307 + }, + { + "start": 16563.02, + "end": 16563.34, + "probability": 0.7912 + }, + { + "start": 16563.38, + "end": 16563.82, + "probability": 0.5999 + }, + { + "start": 16563.84, + "end": 16563.95, + "probability": 0.3898 + }, + { + "start": 16564.72, + "end": 16565.88, + "probability": 0.5908 + }, + { + "start": 16566.24, + "end": 16569.5, + "probability": 0.7156 + }, + { + "start": 16571.56, + "end": 16573.5, + "probability": 0.6679 + }, + { + "start": 16573.82, + "end": 16574.64, + "probability": 0.7832 + }, + { + "start": 16574.74, + "end": 16578.34, + "probability": 0.8216 + }, + { + "start": 16578.68, + "end": 16584.84, + "probability": 0.9073 + }, + { + "start": 16585.0, + "end": 16585.48, + "probability": 0.8891 + }, + { + "start": 16585.56, + "end": 16587.02, + "probability": 0.8329 + }, + { + "start": 16587.6, + "end": 16588.98, + "probability": 0.9869 + }, + { + "start": 16590.66, + "end": 16591.64, + "probability": 0.8176 + }, + { + "start": 16592.4, + "end": 16598.26, + "probability": 0.9946 + }, + { + "start": 16598.26, + "end": 16602.28, + "probability": 0.9504 + }, + { + "start": 16602.84, + "end": 16606.74, + "probability": 0.9913 + }, + { + "start": 16606.74, + "end": 16610.3, + "probability": 0.9945 + }, + { + "start": 16610.92, + "end": 16612.5, + "probability": 0.8579 + }, + { + "start": 16612.66, + "end": 16616.12, + "probability": 0.8105 + }, + { + "start": 16616.32, + "end": 16621.04, + "probability": 0.9932 + }, + { + "start": 16621.04, + "end": 16626.16, + "probability": 0.9976 + }, + { + "start": 16627.18, + "end": 16629.96, + "probability": 0.7271 + }, + { + "start": 16631.06, + "end": 16632.86, + "probability": 0.7753 + }, + { + "start": 16633.02, + "end": 16636.44, + "probability": 0.9408 + }, + { + "start": 16636.76, + "end": 16642.84, + "probability": 0.9478 + }, + { + "start": 16642.98, + "end": 16644.86, + "probability": 0.6759 + }, + { + "start": 16646.76, + "end": 16653.7, + "probability": 0.9946 + }, + { + "start": 16653.86, + "end": 16656.44, + "probability": 0.8072 + }, + { + "start": 16656.7, + "end": 16657.28, + "probability": 0.7936 + }, + { + "start": 16657.5, + "end": 16659.26, + "probability": 0.7237 + }, + { + "start": 16659.5, + "end": 16660.28, + "probability": 0.6332 + }, + { + "start": 16660.6, + "end": 16662.22, + "probability": 0.9784 + }, + { + "start": 16662.9, + "end": 16669.0, + "probability": 0.9453 + }, + { + "start": 16669.08, + "end": 16670.3, + "probability": 0.6454 + }, + { + "start": 16670.6, + "end": 16675.4, + "probability": 0.889 + }, + { + "start": 16675.84, + "end": 16681.78, + "probability": 0.9788 + }, + { + "start": 16681.9, + "end": 16683.08, + "probability": 0.7437 + }, + { + "start": 16683.24, + "end": 16687.0, + "probability": 0.787 + }, + { + "start": 16688.02, + "end": 16693.68, + "probability": 0.942 + }, + { + "start": 16693.72, + "end": 16694.32, + "probability": 0.8929 + }, + { + "start": 16694.36, + "end": 16695.2, + "probability": 0.8967 + }, + { + "start": 16695.26, + "end": 16696.7, + "probability": 0.9591 + }, + { + "start": 16696.98, + "end": 16700.48, + "probability": 0.9966 + }, + { + "start": 16701.64, + "end": 16702.7, + "probability": 0.76 + }, + { + "start": 16702.94, + "end": 16704.02, + "probability": 0.9132 + }, + { + "start": 16704.12, + "end": 16706.5, + "probability": 0.9811 + }, + { + "start": 16706.66, + "end": 16708.44, + "probability": 0.9955 + }, + { + "start": 16708.56, + "end": 16709.92, + "probability": 0.8244 + }, + { + "start": 16709.96, + "end": 16711.14, + "probability": 0.9343 + }, + { + "start": 16711.46, + "end": 16714.44, + "probability": 0.9847 + }, + { + "start": 16714.9, + "end": 16720.22, + "probability": 0.9094 + }, + { + "start": 16720.8, + "end": 16724.16, + "probability": 0.993 + }, + { + "start": 16724.16, + "end": 16725.5, + "probability": 0.6538 + }, + { + "start": 16726.44, + "end": 16733.28, + "probability": 0.825 + }, + { + "start": 16733.28, + "end": 16740.04, + "probability": 0.9854 + }, + { + "start": 16740.04, + "end": 16744.28, + "probability": 0.9931 + }, + { + "start": 16744.8, + "end": 16746.82, + "probability": 0.7349 + }, + { + "start": 16747.02, + "end": 16750.96, + "probability": 0.7147 + }, + { + "start": 16751.06, + "end": 16754.84, + "probability": 0.6607 + }, + { + "start": 16755.56, + "end": 16758.78, + "probability": 0.9983 + }, + { + "start": 16761.14, + "end": 16765.06, + "probability": 0.7427 + }, + { + "start": 16765.48, + "end": 16766.58, + "probability": 0.949 + }, + { + "start": 16766.68, + "end": 16768.46, + "probability": 0.9893 + }, + { + "start": 16768.84, + "end": 16770.12, + "probability": 0.9919 + }, + { + "start": 16770.72, + "end": 16771.92, + "probability": 0.9451 + }, + { + "start": 16772.18, + "end": 16775.62, + "probability": 0.9954 + }, + { + "start": 16775.94, + "end": 16778.54, + "probability": 0.9961 + }, + { + "start": 16778.54, + "end": 16782.94, + "probability": 0.996 + }, + { + "start": 16782.94, + "end": 16784.56, + "probability": 0.98 + }, + { + "start": 16785.44, + "end": 16785.64, + "probability": 0.5447 + }, + { + "start": 16785.89, + "end": 16787.56, + "probability": 0.9902 + }, + { + "start": 16787.62, + "end": 16789.26, + "probability": 0.9542 + }, + { + "start": 16789.36, + "end": 16791.84, + "probability": 0.9844 + }, + { + "start": 16792.8, + "end": 16793.97, + "probability": 0.9976 + }, + { + "start": 16794.46, + "end": 16796.9, + "probability": 0.7646 + }, + { + "start": 16797.16, + "end": 16797.8, + "probability": 0.4875 + }, + { + "start": 16797.92, + "end": 16798.5, + "probability": 0.7488 + }, + { + "start": 16799.18, + "end": 16802.26, + "probability": 0.9438 + }, + { + "start": 16802.26, + "end": 16805.32, + "probability": 0.9974 + }, + { + "start": 16806.2, + "end": 16808.4, + "probability": 0.9917 + }, + { + "start": 16809.08, + "end": 16809.52, + "probability": 0.684 + }, + { + "start": 16809.6, + "end": 16811.88, + "probability": 0.9668 + }, + { + "start": 16811.88, + "end": 16814.86, + "probability": 0.9905 + }, + { + "start": 16814.86, + "end": 16819.62, + "probability": 0.9977 + }, + { + "start": 16819.96, + "end": 16822.02, + "probability": 0.9627 + }, + { + "start": 16822.36, + "end": 16826.3, + "probability": 0.9961 + }, + { + "start": 16826.5, + "end": 16830.32, + "probability": 0.9956 + }, + { + "start": 16830.76, + "end": 16834.94, + "probability": 0.9646 + }, + { + "start": 16835.0, + "end": 16837.62, + "probability": 0.9557 + }, + { + "start": 16837.82, + "end": 16842.54, + "probability": 0.97 + }, + { + "start": 16843.06, + "end": 16845.91, + "probability": 0.9858 + }, + { + "start": 16846.48, + "end": 16851.16, + "probability": 0.9854 + }, + { + "start": 16851.16, + "end": 16854.16, + "probability": 0.9816 + }, + { + "start": 16854.34, + "end": 16857.82, + "probability": 0.9815 + }, + { + "start": 16858.08, + "end": 16861.18, + "probability": 0.825 + }, + { + "start": 16861.42, + "end": 16864.2, + "probability": 0.9971 + }, + { + "start": 16864.38, + "end": 16866.52, + "probability": 0.9333 + }, + { + "start": 16866.74, + "end": 16869.68, + "probability": 0.9624 + }, + { + "start": 16869.76, + "end": 16870.52, + "probability": 0.936 + }, + { + "start": 16870.98, + "end": 16876.44, + "probability": 0.9929 + }, + { + "start": 16877.06, + "end": 16877.68, + "probability": 0.9528 + }, + { + "start": 16881.9, + "end": 16886.08, + "probability": 0.9894 + }, + { + "start": 16886.7, + "end": 16888.26, + "probability": 0.9995 + }, + { + "start": 16888.66, + "end": 16893.56, + "probability": 0.9721 + }, + { + "start": 16893.92, + "end": 16898.02, + "probability": 0.9854 + }, + { + "start": 16898.2, + "end": 16898.76, + "probability": 0.8534 + }, + { + "start": 16898.88, + "end": 16900.44, + "probability": 0.9363 + }, + { + "start": 16900.5, + "end": 16901.85, + "probability": 0.9849 + }, + { + "start": 16902.32, + "end": 16905.92, + "probability": 0.6055 + }, + { + "start": 16906.08, + "end": 16908.48, + "probability": 0.9661 + }, + { + "start": 16908.8, + "end": 16912.2, + "probability": 0.8865 + }, + { + "start": 16912.32, + "end": 16912.9, + "probability": 0.5325 + }, + { + "start": 16912.9, + "end": 16913.28, + "probability": 0.5136 + }, + { + "start": 16913.4, + "end": 16914.8, + "probability": 0.6752 + }, + { + "start": 16915.12, + "end": 16918.58, + "probability": 0.9847 + }, + { + "start": 16918.84, + "end": 16920.74, + "probability": 0.9911 + }, + { + "start": 16921.14, + "end": 16925.2, + "probability": 0.7526 + }, + { + "start": 16925.46, + "end": 16926.72, + "probability": 0.8714 + }, + { + "start": 16927.3, + "end": 16929.88, + "probability": 0.8805 + }, + { + "start": 16930.12, + "end": 16930.46, + "probability": 0.5635 + }, + { + "start": 16930.54, + "end": 16932.1, + "probability": 0.8645 + }, + { + "start": 16932.12, + "end": 16933.46, + "probability": 0.6565 + }, + { + "start": 16933.58, + "end": 16933.98, + "probability": 0.9421 + }, + { + "start": 16935.56, + "end": 16940.02, + "probability": 0.9972 + }, + { + "start": 16940.14, + "end": 16941.68, + "probability": 0.8083 + }, + { + "start": 16941.76, + "end": 16947.48, + "probability": 0.9837 + }, + { + "start": 16947.6, + "end": 16948.9, + "probability": 0.918 + }, + { + "start": 16949.04, + "end": 16952.64, + "probability": 0.9902 + }, + { + "start": 16952.76, + "end": 16955.4, + "probability": 0.9264 + }, + { + "start": 16955.51, + "end": 16960.22, + "probability": 0.9944 + }, + { + "start": 16960.26, + "end": 16960.74, + "probability": 0.8208 + }, + { + "start": 16960.82, + "end": 16961.56, + "probability": 0.9773 + }, + { + "start": 16961.62, + "end": 16967.98, + "probability": 0.9846 + }, + { + "start": 16968.1, + "end": 16969.04, + "probability": 0.8735 + }, + { + "start": 16969.68, + "end": 16971.24, + "probability": 0.9946 + }, + { + "start": 16971.52, + "end": 16973.54, + "probability": 0.7787 + }, + { + "start": 16973.66, + "end": 16976.38, + "probability": 0.9913 + }, + { + "start": 16976.48, + "end": 16979.62, + "probability": 0.8226 + }, + { + "start": 16980.0, + "end": 16982.23, + "probability": 0.9805 + }, + { + "start": 16982.8, + "end": 16983.52, + "probability": 0.9413 + }, + { + "start": 16984.12, + "end": 16988.35, + "probability": 0.9902 + }, + { + "start": 16988.66, + "end": 16992.42, + "probability": 0.998 + }, + { + "start": 16992.8, + "end": 16994.56, + "probability": 0.9851 + }, + { + "start": 16994.64, + "end": 16998.76, + "probability": 0.9844 + }, + { + "start": 17000.16, + "end": 17003.06, + "probability": 0.8696 + }, + { + "start": 17003.78, + "end": 17008.3, + "probability": 0.9734 + }, + { + "start": 17008.46, + "end": 17010.54, + "probability": 0.9333 + }, + { + "start": 17010.72, + "end": 17010.96, + "probability": 0.4996 + }, + { + "start": 17011.04, + "end": 17011.36, + "probability": 0.7772 + }, + { + "start": 17011.48, + "end": 17012.4, + "probability": 0.9827 + }, + { + "start": 17012.48, + "end": 17013.92, + "probability": 0.7905 + }, + { + "start": 17014.48, + "end": 17016.68, + "probability": 0.942 + }, + { + "start": 17016.9, + "end": 17023.06, + "probability": 0.8159 + }, + { + "start": 17023.28, + "end": 17025.18, + "probability": 0.9773 + }, + { + "start": 17025.32, + "end": 17026.8, + "probability": 0.9648 + }, + { + "start": 17027.44, + "end": 17029.48, + "probability": 0.9742 + }, + { + "start": 17029.9, + "end": 17031.16, + "probability": 0.8191 + }, + { + "start": 17031.26, + "end": 17032.56, + "probability": 0.9541 + }, + { + "start": 17033.02, + "end": 17035.24, + "probability": 0.9863 + }, + { + "start": 17035.3, + "end": 17036.26, + "probability": 0.8088 + }, + { + "start": 17037.16, + "end": 17044.09, + "probability": 0.9393 + }, + { + "start": 17044.22, + "end": 17049.71, + "probability": 0.8807 + }, + { + "start": 17050.04, + "end": 17054.54, + "probability": 0.999 + }, + { + "start": 17054.54, + "end": 17058.68, + "probability": 0.9893 + }, + { + "start": 17058.86, + "end": 17060.16, + "probability": 0.6961 + }, + { + "start": 17060.28, + "end": 17061.44, + "probability": 0.727 + }, + { + "start": 17061.82, + "end": 17063.47, + "probability": 0.9612 + }, + { + "start": 17063.58, + "end": 17067.4, + "probability": 0.8106 + }, + { + "start": 17067.62, + "end": 17069.46, + "probability": 0.9924 + }, + { + "start": 17070.0, + "end": 17073.6, + "probability": 0.9541 + }, + { + "start": 17074.12, + "end": 17075.56, + "probability": 0.7241 + }, + { + "start": 17075.6, + "end": 17076.54, + "probability": 0.8209 + }, + { + "start": 17076.56, + "end": 17077.04, + "probability": 0.731 + }, + { + "start": 17077.12, + "end": 17079.1, + "probability": 0.9717 + }, + { + "start": 17079.64, + "end": 17081.06, + "probability": 0.8984 + }, + { + "start": 17081.12, + "end": 17081.58, + "probability": 0.9016 + }, + { + "start": 17081.7, + "end": 17087.58, + "probability": 0.9928 + }, + { + "start": 17087.64, + "end": 17088.54, + "probability": 0.9611 + }, + { + "start": 17090.4, + "end": 17092.4, + "probability": 0.8595 + }, + { + "start": 17093.0, + "end": 17094.76, + "probability": 0.9928 + }, + { + "start": 17094.94, + "end": 17101.74, + "probability": 0.5918 + }, + { + "start": 17101.78, + "end": 17104.22, + "probability": 0.9912 + }, + { + "start": 17104.88, + "end": 17110.02, + "probability": 0.9471 + }, + { + "start": 17110.26, + "end": 17111.46, + "probability": 0.7346 + }, + { + "start": 17112.33, + "end": 17114.72, + "probability": 0.9989 + }, + { + "start": 17115.18, + "end": 17117.56, + "probability": 0.8546 + }, + { + "start": 17118.12, + "end": 17120.2, + "probability": 0.9805 + }, + { + "start": 17120.44, + "end": 17125.08, + "probability": 0.9375 + }, + { + "start": 17125.42, + "end": 17130.68, + "probability": 0.9921 + }, + { + "start": 17130.86, + "end": 17132.04, + "probability": 0.6298 + }, + { + "start": 17132.48, + "end": 17132.82, + "probability": 0.2215 + }, + { + "start": 17132.92, + "end": 17134.46, + "probability": 0.8621 + }, + { + "start": 17134.52, + "end": 17135.08, + "probability": 0.7619 + }, + { + "start": 17135.56, + "end": 17137.22, + "probability": 0.9759 + }, + { + "start": 17137.6, + "end": 17140.07, + "probability": 0.8899 + }, + { + "start": 17142.48, + "end": 17142.98, + "probability": 0.6366 + }, + { + "start": 17143.34, + "end": 17144.14, + "probability": 0.8617 + }, + { + "start": 17144.24, + "end": 17145.88, + "probability": 0.8724 + }, + { + "start": 17146.18, + "end": 17146.82, + "probability": 0.2105 + }, + { + "start": 17146.98, + "end": 17150.02, + "probability": 0.7098 + }, + { + "start": 17150.77, + "end": 17155.88, + "probability": 0.9925 + }, + { + "start": 17155.88, + "end": 17159.66, + "probability": 0.9966 + }, + { + "start": 17159.84, + "end": 17162.42, + "probability": 0.9907 + }, + { + "start": 17162.54, + "end": 17166.04, + "probability": 0.9866 + }, + { + "start": 17166.4, + "end": 17168.74, + "probability": 0.8506 + }, + { + "start": 17169.04, + "end": 17171.64, + "probability": 0.9174 + }, + { + "start": 17172.48, + "end": 17176.84, + "probability": 0.9463 + }, + { + "start": 17177.78, + "end": 17181.64, + "probability": 0.9883 + }, + { + "start": 17181.88, + "end": 17182.42, + "probability": 0.3741 + }, + { + "start": 17182.54, + "end": 17183.69, + "probability": 0.6406 + }, + { + "start": 17184.02, + "end": 17184.76, + "probability": 0.8549 + }, + { + "start": 17184.92, + "end": 17185.7, + "probability": 0.8738 + }, + { + "start": 17186.06, + "end": 17187.2, + "probability": 0.6738 + }, + { + "start": 17187.28, + "end": 17190.38, + "probability": 0.915 + }, + { + "start": 17190.5, + "end": 17191.06, + "probability": 0.9165 + }, + { + "start": 17191.12, + "end": 17192.5, + "probability": 0.8676 + }, + { + "start": 17192.7, + "end": 17194.66, + "probability": 0.9972 + }, + { + "start": 17194.88, + "end": 17197.18, + "probability": 0.8915 + }, + { + "start": 17197.44, + "end": 17197.74, + "probability": 0.3976 + }, + { + "start": 17197.78, + "end": 17199.46, + "probability": 0.9901 + }, + { + "start": 17199.62, + "end": 17200.52, + "probability": 0.8035 + }, + { + "start": 17200.6, + "end": 17201.24, + "probability": 0.9549 + }, + { + "start": 17201.32, + "end": 17205.02, + "probability": 0.9753 + }, + { + "start": 17205.98, + "end": 17208.58, + "probability": 0.6533 + }, + { + "start": 17209.2, + "end": 17214.72, + "probability": 0.92 + }, + { + "start": 17215.24, + "end": 17220.8, + "probability": 0.953 + }, + { + "start": 17220.8, + "end": 17223.98, + "probability": 0.9908 + }, + { + "start": 17224.44, + "end": 17225.52, + "probability": 0.6681 + }, + { + "start": 17226.04, + "end": 17230.19, + "probability": 0.9796 + }, + { + "start": 17230.8, + "end": 17231.38, + "probability": 0.7807 + }, + { + "start": 17231.48, + "end": 17232.22, + "probability": 0.7346 + }, + { + "start": 17232.38, + "end": 17233.18, + "probability": 0.3627 + }, + { + "start": 17233.54, + "end": 17234.38, + "probability": 0.9371 + }, + { + "start": 17234.42, + "end": 17234.56, + "probability": 0.3748 + }, + { + "start": 17234.66, + "end": 17235.04, + "probability": 0.5198 + }, + { + "start": 17235.18, + "end": 17236.16, + "probability": 0.8958 + }, + { + "start": 17236.82, + "end": 17237.5, + "probability": 0.6986 + }, + { + "start": 17237.88, + "end": 17241.38, + "probability": 0.9983 + }, + { + "start": 17241.48, + "end": 17244.58, + "probability": 0.9869 + }, + { + "start": 17245.12, + "end": 17250.82, + "probability": 0.9953 + }, + { + "start": 17251.2, + "end": 17253.02, + "probability": 0.2786 + }, + { + "start": 17253.22, + "end": 17254.44, + "probability": 0.9556 + }, + { + "start": 17254.48, + "end": 17255.36, + "probability": 0.8129 + }, + { + "start": 17255.6, + "end": 17258.1, + "probability": 0.962 + }, + { + "start": 17258.22, + "end": 17262.46, + "probability": 0.892 + }, + { + "start": 17262.54, + "end": 17265.06, + "probability": 0.8132 + }, + { + "start": 17265.46, + "end": 17268.38, + "probability": 0.9577 + }, + { + "start": 17268.88, + "end": 17271.2, + "probability": 0.9543 + }, + { + "start": 17271.46, + "end": 17275.6, + "probability": 0.9263 + }, + { + "start": 17275.68, + "end": 17280.14, + "probability": 0.9938 + }, + { + "start": 17280.14, + "end": 17285.48, + "probability": 0.9968 + }, + { + "start": 17285.68, + "end": 17287.04, + "probability": 0.8729 + }, + { + "start": 17287.22, + "end": 17290.08, + "probability": 0.9895 + }, + { + "start": 17290.28, + "end": 17292.94, + "probability": 0.9947 + }, + { + "start": 17293.16, + "end": 17297.22, + "probability": 0.9822 + }, + { + "start": 17303.5, + "end": 17306.74, + "probability": 0.8295 + }, + { + "start": 17307.06, + "end": 17310.12, + "probability": 0.8185 + }, + { + "start": 17310.22, + "end": 17314.42, + "probability": 0.953 + }, + { + "start": 17315.72, + "end": 17319.14, + "probability": 0.7799 + }, + { + "start": 17319.54, + "end": 17322.72, + "probability": 0.9512 + }, + { + "start": 17322.84, + "end": 17324.56, + "probability": 0.9255 + }, + { + "start": 17324.66, + "end": 17326.24, + "probability": 0.9282 + }, + { + "start": 17326.86, + "end": 17330.38, + "probability": 0.9922 + }, + { + "start": 17330.48, + "end": 17331.52, + "probability": 0.6122 + }, + { + "start": 17332.02, + "end": 17332.86, + "probability": 0.8956 + }, + { + "start": 17333.64, + "end": 17336.44, + "probability": 0.9633 + }, + { + "start": 17336.66, + "end": 17340.0, + "probability": 0.651 + }, + { + "start": 17342.14, + "end": 17344.94, + "probability": 0.9932 + }, + { + "start": 17345.0, + "end": 17345.98, + "probability": 0.988 + }, + { + "start": 17347.14, + "end": 17349.32, + "probability": 0.8898 + }, + { + "start": 17350.31, + "end": 17354.42, + "probability": 0.9839 + }, + { + "start": 17354.82, + "end": 17356.04, + "probability": 0.906 + }, + { + "start": 17357.08, + "end": 17358.4, + "probability": 0.989 + }, + { + "start": 17358.96, + "end": 17363.64, + "probability": 0.9978 + }, + { + "start": 17363.7, + "end": 17364.34, + "probability": 0.9301 + }, + { + "start": 17364.96, + "end": 17366.12, + "probability": 0.9627 + }, + { + "start": 17366.74, + "end": 17371.4, + "probability": 0.8925 + }, + { + "start": 17372.64, + "end": 17375.22, + "probability": 0.9524 + }, + { + "start": 17376.22, + "end": 17376.9, + "probability": 0.7364 + }, + { + "start": 17377.0, + "end": 17377.68, + "probability": 0.897 + }, + { + "start": 17377.86, + "end": 17380.24, + "probability": 0.9492 + }, + { + "start": 17380.34, + "end": 17382.88, + "probability": 0.9834 + }, + { + "start": 17383.36, + "end": 17385.22, + "probability": 0.9934 + }, + { + "start": 17385.42, + "end": 17391.58, + "probability": 0.7869 + }, + { + "start": 17391.86, + "end": 17393.22, + "probability": 0.9946 + }, + { + "start": 17393.42, + "end": 17394.24, + "probability": 0.4979 + }, + { + "start": 17394.3, + "end": 17399.06, + "probability": 0.9778 + }, + { + "start": 17399.6, + "end": 17401.8, + "probability": 0.9977 + }, + { + "start": 17401.88, + "end": 17403.7, + "probability": 0.9712 + }, + { + "start": 17404.48, + "end": 17407.56, + "probability": 0.9874 + }, + { + "start": 17408.54, + "end": 17409.5, + "probability": 0.8984 + }, + { + "start": 17409.62, + "end": 17412.56, + "probability": 0.9485 + }, + { + "start": 17412.72, + "end": 17414.72, + "probability": 0.9485 + }, + { + "start": 17415.0, + "end": 17418.92, + "probability": 0.9617 + }, + { + "start": 17419.08, + "end": 17419.08, + "probability": 0.9658 + }, + { + "start": 17419.6, + "end": 17420.52, + "probability": 0.7402 + }, + { + "start": 17420.7, + "end": 17420.78, + "probability": 0.4362 + }, + { + "start": 17420.78, + "end": 17421.36, + "probability": 0.6626 + }, + { + "start": 17421.36, + "end": 17422.6, + "probability": 0.9629 + }, + { + "start": 17422.84, + "end": 17424.42, + "probability": 0.9819 + }, + { + "start": 17424.46, + "end": 17424.9, + "probability": 0.907 + }, + { + "start": 17424.9, + "end": 17427.54, + "probability": 0.9903 + }, + { + "start": 17429.29, + "end": 17433.7, + "probability": 0.8162 + }, + { + "start": 17433.8, + "end": 17435.5, + "probability": 0.9888 + }, + { + "start": 17435.84, + "end": 17439.02, + "probability": 0.9957 + }, + { + "start": 17439.44, + "end": 17443.16, + "probability": 0.9914 + }, + { + "start": 17443.92, + "end": 17444.42, + "probability": 0.8413 + }, + { + "start": 17447.08, + "end": 17449.4, + "probability": 0.9948 + }, + { + "start": 17449.46, + "end": 17453.58, + "probability": 0.9707 + }, + { + "start": 17453.9, + "end": 17456.94, + "probability": 0.9961 + }, + { + "start": 17457.06, + "end": 17457.94, + "probability": 0.8651 + }, + { + "start": 17458.32, + "end": 17459.28, + "probability": 0.6745 + }, + { + "start": 17459.3, + "end": 17460.68, + "probability": 0.8518 + }, + { + "start": 17460.9, + "end": 17462.2, + "probability": 0.7077 + }, + { + "start": 17462.32, + "end": 17468.56, + "probability": 0.9794 + }, + { + "start": 17469.26, + "end": 17472.12, + "probability": 0.9955 + }, + { + "start": 17472.9, + "end": 17478.18, + "probability": 0.9949 + }, + { + "start": 17478.8, + "end": 17484.0, + "probability": 0.9984 + }, + { + "start": 17484.64, + "end": 17485.26, + "probability": 0.9341 + }, + { + "start": 17485.48, + "end": 17488.74, + "probability": 0.9901 + }, + { + "start": 17488.82, + "end": 17491.0, + "probability": 0.9362 + }, + { + "start": 17491.84, + "end": 17498.28, + "probability": 0.9521 + }, + { + "start": 17498.96, + "end": 17499.86, + "probability": 0.8837 + }, + { + "start": 17500.62, + "end": 17502.22, + "probability": 0.927 + }, + { + "start": 17502.82, + "end": 17504.18, + "probability": 0.7173 + }, + { + "start": 17504.84, + "end": 17506.3, + "probability": 0.9333 + }, + { + "start": 17507.2, + "end": 17509.83, + "probability": 0.9546 + }, + { + "start": 17510.78, + "end": 17511.72, + "probability": 0.8438 + }, + { + "start": 17512.98, + "end": 17515.68, + "probability": 0.855 + }, + { + "start": 17517.04, + "end": 17519.06, + "probability": 0.9858 + }, + { + "start": 17519.22, + "end": 17520.54, + "probability": 0.9189 + }, + { + "start": 17520.82, + "end": 17521.88, + "probability": 0.9606 + }, + { + "start": 17521.92, + "end": 17523.3, + "probability": 0.905 + }, + { + "start": 17523.56, + "end": 17524.88, + "probability": 0.8826 + }, + { + "start": 17525.32, + "end": 17526.04, + "probability": 0.4331 + }, + { + "start": 17526.28, + "end": 17528.52, + "probability": 0.7573 + }, + { + "start": 17529.88, + "end": 17533.6, + "probability": 0.754 + }, + { + "start": 17533.74, + "end": 17535.75, + "probability": 0.9278 + }, + { + "start": 17535.88, + "end": 17539.12, + "probability": 0.9964 + }, + { + "start": 17539.38, + "end": 17540.16, + "probability": 0.6608 + }, + { + "start": 17540.22, + "end": 17540.96, + "probability": 0.7015 + }, + { + "start": 17541.04, + "end": 17542.2, + "probability": 0.9147 + }, + { + "start": 17542.3, + "end": 17543.2, + "probability": 0.9605 + }, + { + "start": 17543.8, + "end": 17546.56, + "probability": 0.8132 + }, + { + "start": 17546.76, + "end": 17547.3, + "probability": 0.4659 + }, + { + "start": 17547.34, + "end": 17550.52, + "probability": 0.9673 + }, + { + "start": 17550.62, + "end": 17554.1, + "probability": 0.9932 + }, + { + "start": 17555.12, + "end": 17556.5, + "probability": 0.3708 + }, + { + "start": 17556.66, + "end": 17558.82, + "probability": 0.9051 + }, + { + "start": 17559.16, + "end": 17563.08, + "probability": 0.9246 + }, + { + "start": 17563.2, + "end": 17567.88, + "probability": 0.9796 + }, + { + "start": 17568.4, + "end": 17570.4, + "probability": 0.9491 + }, + { + "start": 17570.84, + "end": 17574.42, + "probability": 0.7922 + }, + { + "start": 17574.5, + "end": 17578.66, + "probability": 0.9622 + }, + { + "start": 17578.66, + "end": 17583.18, + "probability": 0.9887 + }, + { + "start": 17586.92, + "end": 17592.84, + "probability": 0.9925 + }, + { + "start": 17593.42, + "end": 17595.22, + "probability": 0.7041 + }, + { + "start": 17595.3, + "end": 17599.28, + "probability": 0.9908 + }, + { + "start": 17599.52, + "end": 17601.56, + "probability": 0.801 + }, + { + "start": 17601.9, + "end": 17602.26, + "probability": 0.6069 + }, + { + "start": 17602.32, + "end": 17603.78, + "probability": 0.9039 + }, + { + "start": 17604.12, + "end": 17607.4, + "probability": 0.7327 + }, + { + "start": 17608.08, + "end": 17613.06, + "probability": 0.9419 + }, + { + "start": 17613.74, + "end": 17615.78, + "probability": 0.9433 + }, + { + "start": 17616.18, + "end": 17620.48, + "probability": 0.9198 + }, + { + "start": 17621.24, + "end": 17624.14, + "probability": 0.9121 + }, + { + "start": 17625.16, + "end": 17626.47, + "probability": 0.9927 + }, + { + "start": 17626.6, + "end": 17630.16, + "probability": 0.9434 + }, + { + "start": 17630.3, + "end": 17630.4, + "probability": 0.8317 + }, + { + "start": 17630.86, + "end": 17631.42, + "probability": 0.639 + }, + { + "start": 17631.44, + "end": 17631.9, + "probability": 0.6634 + }, + { + "start": 17632.02, + "end": 17633.28, + "probability": 0.9612 + }, + { + "start": 17634.0, + "end": 17634.98, + "probability": 0.9566 + }, + { + "start": 17635.18, + "end": 17635.56, + "probability": 0.4602 + }, + { + "start": 17635.58, + "end": 17638.1, + "probability": 0.9614 + }, + { + "start": 17638.46, + "end": 17639.14, + "probability": 0.8037 + }, + { + "start": 17639.38, + "end": 17640.02, + "probability": 0.9521 + }, + { + "start": 17640.06, + "end": 17641.45, + "probability": 0.8662 + }, + { + "start": 17642.78, + "end": 17645.28, + "probability": 0.8372 + }, + { + "start": 17645.44, + "end": 17647.01, + "probability": 0.8475 + }, + { + "start": 17647.52, + "end": 17650.94, + "probability": 0.9894 + }, + { + "start": 17651.42, + "end": 17652.46, + "probability": 0.7332 + }, + { + "start": 17653.02, + "end": 17655.46, + "probability": 0.8072 + }, + { + "start": 17655.52, + "end": 17656.72, + "probability": 0.9902 + }, + { + "start": 17656.72, + "end": 17657.94, + "probability": 0.9909 + }, + { + "start": 17657.96, + "end": 17659.24, + "probability": 0.9966 + }, + { + "start": 17659.54, + "end": 17661.32, + "probability": 0.999 + }, + { + "start": 17661.4, + "end": 17662.4, + "probability": 0.8422 + }, + { + "start": 17662.74, + "end": 17663.8, + "probability": 0.8059 + }, + { + "start": 17664.26, + "end": 17668.48, + "probability": 0.9323 + }, + { + "start": 17668.7, + "end": 17670.24, + "probability": 0.958 + }, + { + "start": 17670.36, + "end": 17670.82, + "probability": 0.9242 + }, + { + "start": 17670.88, + "end": 17672.64, + "probability": 0.8739 + }, + { + "start": 17673.0, + "end": 17678.86, + "probability": 0.9859 + }, + { + "start": 17680.36, + "end": 17683.5, + "probability": 0.8349 + }, + { + "start": 17684.44, + "end": 17689.92, + "probability": 0.7854 + }, + { + "start": 17690.14, + "end": 17691.14, + "probability": 0.9633 + }, + { + "start": 17692.16, + "end": 17696.0, + "probability": 0.9735 + }, + { + "start": 17696.86, + "end": 17698.06, + "probability": 0.8647 + }, + { + "start": 17698.08, + "end": 17700.54, + "probability": 0.947 + }, + { + "start": 17700.94, + "end": 17701.84, + "probability": 0.7556 + }, + { + "start": 17702.04, + "end": 17703.4, + "probability": 0.8951 + }, + { + "start": 17703.4, + "end": 17705.28, + "probability": 0.9769 + }, + { + "start": 17706.02, + "end": 17707.18, + "probability": 0.8936 + }, + { + "start": 17707.36, + "end": 17709.48, + "probability": 0.9846 + }, + { + "start": 17709.58, + "end": 17711.08, + "probability": 0.9668 + }, + { + "start": 17711.38, + "end": 17716.66, + "probability": 0.996 + }, + { + "start": 17717.16, + "end": 17718.54, + "probability": 0.999 + }, + { + "start": 17718.68, + "end": 17719.24, + "probability": 0.6167 + }, + { + "start": 17719.34, + "end": 17719.96, + "probability": 0.8449 + }, + { + "start": 17720.3, + "end": 17723.6, + "probability": 0.9961 + }, + { + "start": 17723.86, + "end": 17724.18, + "probability": 0.4171 + }, + { + "start": 17724.28, + "end": 17725.22, + "probability": 0.9828 + }, + { + "start": 17725.32, + "end": 17726.24, + "probability": 0.9069 + }, + { + "start": 17726.34, + "end": 17729.06, + "probability": 0.9704 + }, + { + "start": 17729.2, + "end": 17730.8, + "probability": 0.9751 + }, + { + "start": 17734.38, + "end": 17738.18, + "probability": 0.9191 + }, + { + "start": 17738.46, + "end": 17739.8, + "probability": 0.9766 + }, + { + "start": 17741.34, + "end": 17742.9, + "probability": 0.9958 + }, + { + "start": 17742.96, + "end": 17743.44, + "probability": 0.6827 + }, + { + "start": 17744.08, + "end": 17745.8, + "probability": 0.9254 + }, + { + "start": 17746.28, + "end": 17749.59, + "probability": 0.9911 + }, + { + "start": 17751.11, + "end": 17753.72, + "probability": 0.9917 + }, + { + "start": 17754.2, + "end": 17755.1, + "probability": 0.8755 + }, + { + "start": 17755.14, + "end": 17755.82, + "probability": 0.9561 + }, + { + "start": 17756.1, + "end": 17760.78, + "probability": 0.8049 + }, + { + "start": 17761.5, + "end": 17765.24, + "probability": 0.9736 + }, + { + "start": 17765.78, + "end": 17768.06, + "probability": 0.9917 + }, + { + "start": 17768.58, + "end": 17771.2, + "probability": 0.874 + }, + { + "start": 17771.22, + "end": 17772.56, + "probability": 0.7916 + }, + { + "start": 17773.02, + "end": 17774.06, + "probability": 0.6632 + }, + { + "start": 17774.26, + "end": 17774.8, + "probability": 0.8747 + }, + { + "start": 17775.26, + "end": 17776.34, + "probability": 0.6084 + }, + { + "start": 17776.98, + "end": 17778.06, + "probability": 0.9752 + }, + { + "start": 17778.14, + "end": 17783.08, + "probability": 0.971 + }, + { + "start": 17783.84, + "end": 17784.26, + "probability": 0.7909 + }, + { + "start": 17784.5, + "end": 17786.24, + "probability": 0.9821 + }, + { + "start": 17786.32, + "end": 17787.76, + "probability": 0.9631 + }, + { + "start": 17787.82, + "end": 17788.96, + "probability": 0.9224 + }, + { + "start": 17789.58, + "end": 17793.42, + "probability": 0.9545 + }, + { + "start": 17793.42, + "end": 17799.32, + "probability": 0.9868 + }, + { + "start": 17799.44, + "end": 17805.32, + "probability": 0.9761 + }, + { + "start": 17805.42, + "end": 17806.42, + "probability": 0.5507 + }, + { + "start": 17806.56, + "end": 17807.3, + "probability": 0.7864 + }, + { + "start": 17807.68, + "end": 17810.77, + "probability": 0.9988 + }, + { + "start": 17811.82, + "end": 17814.64, + "probability": 0.995 + }, + { + "start": 17815.12, + "end": 17817.82, + "probability": 0.9938 + }, + { + "start": 17817.86, + "end": 17818.68, + "probability": 0.9884 + }, + { + "start": 17818.84, + "end": 17822.8, + "probability": 0.8795 + }, + { + "start": 17823.0, + "end": 17824.56, + "probability": 0.7084 + }, + { + "start": 17825.16, + "end": 17827.42, + "probability": 0.9499 + }, + { + "start": 17827.9, + "end": 17831.12, + "probability": 0.9743 + }, + { + "start": 17832.1, + "end": 17835.15, + "probability": 0.9965 + }, + { + "start": 17835.46, + "end": 17837.46, + "probability": 0.9971 + }, + { + "start": 17838.96, + "end": 17839.46, + "probability": 0.8708 + }, + { + "start": 17839.52, + "end": 17845.52, + "probability": 0.9873 + }, + { + "start": 17847.3, + "end": 17847.9, + "probability": 0.8429 + }, + { + "start": 17848.38, + "end": 17852.26, + "probability": 0.9551 + }, + { + "start": 17852.56, + "end": 17853.16, + "probability": 0.7188 + }, + { + "start": 17853.26, + "end": 17855.66, + "probability": 0.881 + }, + { + "start": 17856.24, + "end": 17858.32, + "probability": 0.823 + }, + { + "start": 17862.46, + "end": 17865.0, + "probability": 0.9955 + }, + { + "start": 17867.0, + "end": 17870.28, + "probability": 0.689 + }, + { + "start": 17871.8, + "end": 17873.0, + "probability": 0.7194 + }, + { + "start": 17873.18, + "end": 17874.1, + "probability": 0.5906 + }, + { + "start": 17874.12, + "end": 17876.6, + "probability": 0.7214 + }, + { + "start": 17877.28, + "end": 17878.1, + "probability": 0.5251 + }, + { + "start": 17878.14, + "end": 17881.58, + "probability": 0.9934 + }, + { + "start": 17882.02, + "end": 17886.42, + "probability": 0.9896 + }, + { + "start": 17886.88, + "end": 17890.2, + "probability": 0.9544 + }, + { + "start": 17890.58, + "end": 17892.68, + "probability": 0.9382 + }, + { + "start": 17893.08, + "end": 17896.8, + "probability": 0.8327 + }, + { + "start": 17897.0, + "end": 17900.34, + "probability": 0.9421 + }, + { + "start": 17900.82, + "end": 17902.97, + "probability": 0.9946 + }, + { + "start": 17903.44, + "end": 17904.0, + "probability": 0.9616 + }, + { + "start": 17904.08, + "end": 17906.16, + "probability": 0.9953 + }, + { + "start": 17906.32, + "end": 17908.12, + "probability": 0.9884 + }, + { + "start": 17908.18, + "end": 17909.1, + "probability": 0.745 + }, + { + "start": 17909.58, + "end": 17913.66, + "probability": 0.9959 + }, + { + "start": 17913.78, + "end": 17914.8, + "probability": 0.748 + }, + { + "start": 17915.56, + "end": 17918.48, + "probability": 0.9872 + }, + { + "start": 17918.74, + "end": 17919.82, + "probability": 0.9166 + }, + { + "start": 17919.86, + "end": 17922.32, + "probability": 0.9617 + }, + { + "start": 17922.6, + "end": 17923.4, + "probability": 0.9091 + }, + { + "start": 17923.96, + "end": 17925.04, + "probability": 0.7095 + }, + { + "start": 17925.12, + "end": 17926.78, + "probability": 0.9806 + }, + { + "start": 17927.12, + "end": 17929.86, + "probability": 0.9897 + }, + { + "start": 17930.18, + "end": 17931.7, + "probability": 0.6871 + }, + { + "start": 17931.8, + "end": 17932.86, + "probability": 0.818 + }, + { + "start": 17933.02, + "end": 17936.0, + "probability": 0.9739 + }, + { + "start": 17936.08, + "end": 17936.56, + "probability": 0.8382 + }, + { + "start": 17936.84, + "end": 17939.82, + "probability": 0.8151 + }, + { + "start": 17939.86, + "end": 17942.3, + "probability": 0.938 + }, + { + "start": 17942.44, + "end": 17943.44, + "probability": 0.7275 + }, + { + "start": 17943.44, + "end": 17945.2, + "probability": 0.8961 + }, + { + "start": 17945.62, + "end": 17949.64, + "probability": 0.9922 + }, + { + "start": 17949.64, + "end": 17952.48, + "probability": 0.9893 + }, + { + "start": 17952.64, + "end": 17955.26, + "probability": 0.9711 + }, + { + "start": 17955.9, + "end": 17959.98, + "probability": 0.9702 + }, + { + "start": 17960.44, + "end": 17964.76, + "probability": 0.9976 + }, + { + "start": 17964.76, + "end": 17969.92, + "probability": 0.9968 + }, + { + "start": 17971.06, + "end": 17974.34, + "probability": 0.9678 + }, + { + "start": 17974.98, + "end": 17976.22, + "probability": 0.9698 + }, + { + "start": 17976.48, + "end": 17976.83, + "probability": 0.8767 + }, + { + "start": 17977.26, + "end": 17980.78, + "probability": 0.8192 + }, + { + "start": 17980.96, + "end": 17982.6, + "probability": 0.7929 + }, + { + "start": 17983.14, + "end": 17984.54, + "probability": 0.6684 + }, + { + "start": 17984.7, + "end": 17986.12, + "probability": 0.8806 + }, + { + "start": 17986.12, + "end": 17988.86, + "probability": 0.8376 + }, + { + "start": 17989.74, + "end": 17990.3, + "probability": 0.7339 + }, + { + "start": 17990.48, + "end": 17992.66, + "probability": 0.9949 + }, + { + "start": 17992.76, + "end": 17995.78, + "probability": 0.9786 + }, + { + "start": 17996.2, + "end": 17997.44, + "probability": 0.8996 + }, + { + "start": 17997.8, + "end": 18000.84, + "probability": 0.5208 + }, + { + "start": 18000.88, + "end": 18003.4, + "probability": 0.9459 + }, + { + "start": 18003.82, + "end": 18006.92, + "probability": 0.8937 + }, + { + "start": 18006.92, + "end": 18009.92, + "probability": 0.9983 + }, + { + "start": 18010.06, + "end": 18011.14, + "probability": 0.7838 + }, + { + "start": 18011.66, + "end": 18016.82, + "probability": 0.9927 + }, + { + "start": 18017.62, + "end": 18017.62, + "probability": 0.8877 + }, + { + "start": 18022.84, + "end": 18025.78, + "probability": 0.9322 + }, + { + "start": 18025.8, + "end": 18026.36, + "probability": 0.7419 + }, + { + "start": 18026.54, + "end": 18027.88, + "probability": 0.9968 + }, + { + "start": 18028.32, + "end": 18033.12, + "probability": 0.9231 + }, + { + "start": 18033.16, + "end": 18033.92, + "probability": 0.9758 + }, + { + "start": 18034.34, + "end": 18036.21, + "probability": 0.9893 + }, + { + "start": 18037.46, + "end": 18042.08, + "probability": 0.9893 + }, + { + "start": 18042.08, + "end": 18046.16, + "probability": 0.9228 + }, + { + "start": 18047.56, + "end": 18054.18, + "probability": 0.9888 + }, + { + "start": 18054.74, + "end": 18055.98, + "probability": 0.9795 + }, + { + "start": 18056.08, + "end": 18057.08, + "probability": 0.6043 + }, + { + "start": 18057.18, + "end": 18059.06, + "probability": 0.8071 + }, + { + "start": 18059.68, + "end": 18061.6, + "probability": 0.8325 + }, + { + "start": 18061.68, + "end": 18064.9, + "probability": 0.8798 + }, + { + "start": 18065.02, + "end": 18067.68, + "probability": 0.9741 + }, + { + "start": 18067.96, + "end": 18069.18, + "probability": 0.9848 + }, + { + "start": 18069.24, + "end": 18070.32, + "probability": 0.7119 + }, + { + "start": 18070.7, + "end": 18072.78, + "probability": 0.8867 + }, + { + "start": 18073.18, + "end": 18076.82, + "probability": 0.9954 + }, + { + "start": 18077.46, + "end": 18080.26, + "probability": 0.7491 + }, + { + "start": 18081.32, + "end": 18082.22, + "probability": 0.9771 + }, + { + "start": 18082.98, + "end": 18085.34, + "probability": 0.5971 + }, + { + "start": 18086.08, + "end": 18087.92, + "probability": 0.7325 + }, + { + "start": 18088.3, + "end": 18091.58, + "probability": 0.1094 + }, + { + "start": 18091.58, + "end": 18092.52, + "probability": 0.8273 + }, + { + "start": 18093.12, + "end": 18095.28, + "probability": 0.9325 + }, + { + "start": 18095.96, + "end": 18096.78, + "probability": 0.2261 + }, + { + "start": 18096.8, + "end": 18099.1, + "probability": 0.8006 + }, + { + "start": 18099.72, + "end": 18103.82, + "probability": 0.6791 + }, + { + "start": 18104.76, + "end": 18106.82, + "probability": 0.856 + }, + { + "start": 18107.28, + "end": 18109.88, + "probability": 0.6343 + }, + { + "start": 18111.14, + "end": 18113.02, + "probability": 0.9412 + }, + { + "start": 18113.16, + "end": 18114.34, + "probability": 0.9127 + }, + { + "start": 18114.72, + "end": 18116.28, + "probability": 0.8029 + }, + { + "start": 18116.32, + "end": 18118.06, + "probability": 0.9542 + }, + { + "start": 18118.12, + "end": 18119.42, + "probability": 0.8473 + }, + { + "start": 18119.74, + "end": 18121.28, + "probability": 0.8523 + }, + { + "start": 18121.96, + "end": 18124.78, + "probability": 0.9673 + }, + { + "start": 18124.88, + "end": 18126.12, + "probability": 0.8354 + }, + { + "start": 18126.24, + "end": 18133.24, + "probability": 0.8762 + }, + { + "start": 18133.32, + "end": 18133.7, + "probability": 0.463 + }, + { + "start": 18133.92, + "end": 18135.18, + "probability": 0.9326 + }, + { + "start": 18135.3, + "end": 18137.54, + "probability": 0.9857 + }, + { + "start": 18138.8, + "end": 18142.12, + "probability": 0.7261 + }, + { + "start": 18142.22, + "end": 18145.62, + "probability": 0.6567 + }, + { + "start": 18145.7, + "end": 18148.36, + "probability": 0.8209 + }, + { + "start": 18148.42, + "end": 18149.88, + "probability": 0.8936 + }, + { + "start": 18149.92, + "end": 18152.46, + "probability": 0.9704 + }, + { + "start": 18152.76, + "end": 18153.18, + "probability": 0.8196 + }, + { + "start": 18153.22, + "end": 18154.96, + "probability": 0.6703 + }, + { + "start": 18155.16, + "end": 18160.46, + "probability": 0.604 + }, + { + "start": 18160.46, + "end": 18164.86, + "probability": 0.5466 + }, + { + "start": 18167.12, + "end": 18168.26, + "probability": 0.9643 + }, + { + "start": 18168.36, + "end": 18171.06, + "probability": 0.8911 + }, + { + "start": 18171.66, + "end": 18174.76, + "probability": 0.9903 + }, + { + "start": 18175.22, + "end": 18176.54, + "probability": 0.9482 + }, + { + "start": 18176.78, + "end": 18177.62, + "probability": 0.7179 + }, + { + "start": 18177.94, + "end": 18179.38, + "probability": 0.9793 + }, + { + "start": 18179.84, + "end": 18180.76, + "probability": 0.6893 + }, + { + "start": 18181.28, + "end": 18184.84, + "probability": 0.9728 + }, + { + "start": 18184.84, + "end": 18188.92, + "probability": 0.9963 + }, + { + "start": 18190.65, + "end": 18193.56, + "probability": 0.2691 + }, + { + "start": 18193.56, + "end": 18198.6, + "probability": 0.896 + }, + { + "start": 18199.72, + "end": 18202.1, + "probability": 0.8314 + }, + { + "start": 18202.74, + "end": 18203.78, + "probability": 0.5723 + }, + { + "start": 18203.84, + "end": 18204.96, + "probability": 0.7931 + }, + { + "start": 18205.14, + "end": 18206.22, + "probability": 0.778 + }, + { + "start": 18206.62, + "end": 18208.88, + "probability": 0.7558 + }, + { + "start": 18209.57, + "end": 18211.12, + "probability": 0.9895 + }, + { + "start": 18211.22, + "end": 18212.38, + "probability": 0.9978 + }, + { + "start": 18213.16, + "end": 18213.66, + "probability": 0.6541 + }, + { + "start": 18213.96, + "end": 18216.52, + "probability": 0.9851 + }, + { + "start": 18216.56, + "end": 18218.26, + "probability": 0.8394 + }, + { + "start": 18218.92, + "end": 18221.6, + "probability": 0.9056 + }, + { + "start": 18222.16, + "end": 18224.15, + "probability": 0.868 + }, + { + "start": 18224.48, + "end": 18227.54, + "probability": 0.9995 + }, + { + "start": 18228.18, + "end": 18233.94, + "probability": 0.9919 + }, + { + "start": 18234.16, + "end": 18235.48, + "probability": 0.7777 + }, + { + "start": 18235.58, + "end": 18237.46, + "probability": 0.977 + }, + { + "start": 18237.52, + "end": 18240.1, + "probability": 0.9937 + }, + { + "start": 18241.92, + "end": 18243.84, + "probability": 0.6975 + }, + { + "start": 18243.86, + "end": 18247.74, + "probability": 0.999 + }, + { + "start": 18247.74, + "end": 18250.34, + "probability": 0.9995 + }, + { + "start": 18250.98, + "end": 18251.8, + "probability": 0.9814 + }, + { + "start": 18251.98, + "end": 18253.71, + "probability": 0.9917 + }, + { + "start": 18254.34, + "end": 18259.14, + "probability": 0.9854 + }, + { + "start": 18259.3, + "end": 18260.14, + "probability": 0.8984 + }, + { + "start": 18260.22, + "end": 18263.16, + "probability": 0.9019 + }, + { + "start": 18263.44, + "end": 18268.82, + "probability": 0.9814 + }, + { + "start": 18268.96, + "end": 18272.38, + "probability": 0.9949 + }, + { + "start": 18272.38, + "end": 18277.2, + "probability": 0.9612 + }, + { + "start": 18283.79, + "end": 18290.74, + "probability": 0.9775 + }, + { + "start": 18290.74, + "end": 18293.77, + "probability": 0.9323 + }, + { + "start": 18294.32, + "end": 18296.42, + "probability": 0.7873 + }, + { + "start": 18298.28, + "end": 18299.06, + "probability": 0.54 + }, + { + "start": 18299.6, + "end": 18301.28, + "probability": 0.7904 + }, + { + "start": 18301.8, + "end": 18303.28, + "probability": 0.5731 + }, + { + "start": 18304.84, + "end": 18311.68, + "probability": 0.9917 + }, + { + "start": 18312.04, + "end": 18312.52, + "probability": 0.5636 + }, + { + "start": 18312.64, + "end": 18317.06, + "probability": 0.9141 + }, + { + "start": 18317.98, + "end": 18321.16, + "probability": 0.9922 + }, + { + "start": 18321.4, + "end": 18324.0, + "probability": 0.9917 + }, + { + "start": 18325.0, + "end": 18328.9, + "probability": 0.9951 + }, + { + "start": 18328.9, + "end": 18332.26, + "probability": 0.9954 + }, + { + "start": 18332.38, + "end": 18335.76, + "probability": 0.9844 + }, + { + "start": 18336.54, + "end": 18340.74, + "probability": 0.8697 + }, + { + "start": 18341.08, + "end": 18342.54, + "probability": 0.8184 + }, + { + "start": 18342.76, + "end": 18344.19, + "probability": 0.9832 + }, + { + "start": 18344.98, + "end": 18346.78, + "probability": 0.9263 + }, + { + "start": 18346.96, + "end": 18351.96, + "probability": 0.9165 + }, + { + "start": 18352.36, + "end": 18353.46, + "probability": 0.6488 + }, + { + "start": 18353.46, + "end": 18355.46, + "probability": 0.9436 + }, + { + "start": 18357.22, + "end": 18361.58, + "probability": 0.9795 + }, + { + "start": 18361.58, + "end": 18365.58, + "probability": 0.9984 + }, + { + "start": 18366.34, + "end": 18370.16, + "probability": 0.9985 + }, + { + "start": 18370.66, + "end": 18373.1, + "probability": 0.9715 + }, + { + "start": 18373.32, + "end": 18377.4, + "probability": 0.8279 + }, + { + "start": 18377.93, + "end": 18381.86, + "probability": 0.9917 + }, + { + "start": 18382.34, + "end": 18384.08, + "probability": 0.8023 + }, + { + "start": 18384.76, + "end": 18385.88, + "probability": 0.9658 + }, + { + "start": 18386.22, + "end": 18388.24, + "probability": 0.983 + }, + { + "start": 18388.36, + "end": 18393.32, + "probability": 0.9173 + }, + { + "start": 18393.4, + "end": 18398.46, + "probability": 0.8013 + }, + { + "start": 18398.64, + "end": 18400.42, + "probability": 0.8326 + }, + { + "start": 18400.58, + "end": 18403.16, + "probability": 0.7537 + }, + { + "start": 18404.6, + "end": 18408.86, + "probability": 0.6988 + }, + { + "start": 18409.06, + "end": 18414.4, + "probability": 0.9979 + }, + { + "start": 18414.58, + "end": 18415.9, + "probability": 0.6216 + }, + { + "start": 18416.41, + "end": 18419.56, + "probability": 0.885 + }, + { + "start": 18419.64, + "end": 18421.24, + "probability": 0.8857 + }, + { + "start": 18423.38, + "end": 18425.82, + "probability": 0.9501 + }, + { + "start": 18425.96, + "end": 18427.94, + "probability": 0.9634 + }, + { + "start": 18428.0, + "end": 18436.28, + "probability": 0.9709 + }, + { + "start": 18436.32, + "end": 18436.86, + "probability": 0.2364 + }, + { + "start": 18436.88, + "end": 18439.22, + "probability": 0.8586 + }, + { + "start": 18440.6, + "end": 18441.96, + "probability": 0.7394 + }, + { + "start": 18442.08, + "end": 18444.66, + "probability": 0.9868 + }, + { + "start": 18445.16, + "end": 18447.04, + "probability": 0.9949 + }, + { + "start": 18448.18, + "end": 18451.38, + "probability": 0.6198 + }, + { + "start": 18451.46, + "end": 18453.58, + "probability": 0.9 + }, + { + "start": 18454.32, + "end": 18455.64, + "probability": 0.8849 + }, + { + "start": 18456.78, + "end": 18464.38, + "probability": 0.9648 + }, + { + "start": 18464.72, + "end": 18466.72, + "probability": 0.9601 + }, + { + "start": 18467.14, + "end": 18468.96, + "probability": 0.96 + }, + { + "start": 18472.08, + "end": 18478.36, + "probability": 0.9923 + }, + { + "start": 18479.08, + "end": 18481.76, + "probability": 0.929 + }, + { + "start": 18482.3, + "end": 18487.76, + "probability": 0.9945 + }, + { + "start": 18487.88, + "end": 18488.54, + "probability": 0.4729 + }, + { + "start": 18489.02, + "end": 18493.3, + "probability": 0.8555 + }, + { + "start": 18493.34, + "end": 18493.98, + "probability": 0.9028 + }, + { + "start": 18494.28, + "end": 18495.16, + "probability": 0.3713 + }, + { + "start": 18495.3, + "end": 18495.8, + "probability": 0.8383 + }, + { + "start": 18495.92, + "end": 18497.8, + "probability": 0.9561 + }, + { + "start": 18497.84, + "end": 18500.41, + "probability": 0.9945 + }, + { + "start": 18501.42, + "end": 18502.9, + "probability": 0.6086 + }, + { + "start": 18503.14, + "end": 18505.04, + "probability": 0.9469 + }, + { + "start": 18505.28, + "end": 18507.44, + "probability": 0.6688 + }, + { + "start": 18508.02, + "end": 18509.5, + "probability": 0.5449 + }, + { + "start": 18510.52, + "end": 18516.7, + "probability": 0.933 + }, + { + "start": 18517.36, + "end": 18518.06, + "probability": 0.8602 + }, + { + "start": 18518.2, + "end": 18518.9, + "probability": 0.6925 + }, + { + "start": 18519.04, + "end": 18523.0, + "probability": 0.9912 + }, + { + "start": 18525.05, + "end": 18528.54, + "probability": 0.8698 + }, + { + "start": 18528.74, + "end": 18533.46, + "probability": 0.8317 + }, + { + "start": 18533.56, + "end": 18537.28, + "probability": 0.79 + }, + { + "start": 18537.3, + "end": 18538.42, + "probability": 0.8782 + }, + { + "start": 18538.5, + "end": 18540.62, + "probability": 0.9385 + }, + { + "start": 18540.72, + "end": 18542.07, + "probability": 0.9458 + }, + { + "start": 18542.36, + "end": 18542.7, + "probability": 0.72 + }, + { + "start": 18544.44, + "end": 18547.46, + "probability": 0.9388 + }, + { + "start": 18547.56, + "end": 18549.4, + "probability": 0.9919 + }, + { + "start": 18549.52, + "end": 18551.48, + "probability": 0.7678 + }, + { + "start": 18552.22, + "end": 18553.1, + "probability": 0.5574 + }, + { + "start": 18553.2, + "end": 18553.84, + "probability": 0.6145 + }, + { + "start": 18553.98, + "end": 18555.9, + "probability": 0.8848 + }, + { + "start": 18556.12, + "end": 18557.68, + "probability": 0.8081 + }, + { + "start": 18558.32, + "end": 18562.16, + "probability": 0.9939 + }, + { + "start": 18562.33, + "end": 18566.44, + "probability": 0.9951 + }, + { + "start": 18566.64, + "end": 18572.94, + "probability": 0.9901 + }, + { + "start": 18573.02, + "end": 18573.82, + "probability": 0.8811 + }, + { + "start": 18574.18, + "end": 18576.42, + "probability": 0.9412 + }, + { + "start": 18576.54, + "end": 18577.18, + "probability": 0.8518 + }, + { + "start": 18577.58, + "end": 18581.12, + "probability": 0.9746 + }, + { + "start": 18581.3, + "end": 18585.34, + "probability": 0.9202 + }, + { + "start": 18586.48, + "end": 18587.78, + "probability": 0.7165 + }, + { + "start": 18587.88, + "end": 18591.34, + "probability": 0.3925 + }, + { + "start": 18591.56, + "end": 18591.58, + "probability": 0.2559 + }, + { + "start": 18591.58, + "end": 18594.42, + "probability": 0.5649 + }, + { + "start": 18595.48, + "end": 18597.22, + "probability": 0.9834 + }, + { + "start": 18598.88, + "end": 18600.92, + "probability": 0.132 + }, + { + "start": 18601.5, + "end": 18601.88, + "probability": 0.5369 + }, + { + "start": 18601.94, + "end": 18603.96, + "probability": 0.7626 + }, + { + "start": 18604.32, + "end": 18605.12, + "probability": 0.7466 + }, + { + "start": 18605.18, + "end": 18605.36, + "probability": 0.4359 + }, + { + "start": 18605.56, + "end": 18606.54, + "probability": 0.7704 + }, + { + "start": 18606.6, + "end": 18606.86, + "probability": 0.4908 + }, + { + "start": 18607.0, + "end": 18607.48, + "probability": 0.7357 + }, + { + "start": 18610.23, + "end": 18611.26, + "probability": 0.4124 + }, + { + "start": 18611.26, + "end": 18611.26, + "probability": 0.2099 + }, + { + "start": 18611.26, + "end": 18611.84, + "probability": 0.3723 + }, + { + "start": 18613.7, + "end": 18615.18, + "probability": 0.8848 + }, + { + "start": 18615.58, + "end": 18615.96, + "probability": 0.5205 + }, + { + "start": 18615.98, + "end": 18616.26, + "probability": 0.7499 + }, + { + "start": 18616.42, + "end": 18620.14, + "probability": 0.9104 + }, + { + "start": 18620.74, + "end": 18621.53, + "probability": 0.9756 + }, + { + "start": 18623.08, + "end": 18625.22, + "probability": 0.6601 + }, + { + "start": 18625.26, + "end": 18626.14, + "probability": 0.8956 + }, + { + "start": 18626.2, + "end": 18627.36, + "probability": 0.963 + }, + { + "start": 18628.1, + "end": 18632.4, + "probability": 0.9648 + }, + { + "start": 18632.5, + "end": 18633.1, + "probability": 0.9197 + }, + { + "start": 18633.44, + "end": 18633.8, + "probability": 0.6792 + }, + { + "start": 18633.9, + "end": 18634.2, + "probability": 0.8478 + }, + { + "start": 18634.36, + "end": 18634.74, + "probability": 0.3882 + }, + { + "start": 18635.1, + "end": 18635.4, + "probability": 0.5133 + }, + { + "start": 18635.84, + "end": 18636.56, + "probability": 0.9846 + }, + { + "start": 18636.66, + "end": 18638.56, + "probability": 0.9978 + }, + { + "start": 18638.56, + "end": 18640.34, + "probability": 0.9861 + }, + { + "start": 18640.66, + "end": 18643.8, + "probability": 0.9934 + }, + { + "start": 18643.98, + "end": 18644.56, + "probability": 0.4696 + }, + { + "start": 18644.6, + "end": 18644.92, + "probability": 0.6805 + }, + { + "start": 18645.06, + "end": 18645.96, + "probability": 0.9065 + }, + { + "start": 18646.4, + "end": 18650.7, + "probability": 0.9749 + }, + { + "start": 18650.7, + "end": 18653.36, + "probability": 0.8884 + }, + { + "start": 18653.48, + "end": 18654.64, + "probability": 0.9208 + }, + { + "start": 18655.4, + "end": 18656.62, + "probability": 0.6595 + }, + { + "start": 18656.82, + "end": 18657.48, + "probability": 0.525 + }, + { + "start": 18657.52, + "end": 18661.48, + "probability": 0.9223 + }, + { + "start": 18661.72, + "end": 18661.8, + "probability": 0.4213 + }, + { + "start": 18661.88, + "end": 18662.24, + "probability": 0.7529 + }, + { + "start": 18664.74, + "end": 18664.96, + "probability": 0.3278 + }, + { + "start": 18664.96, + "end": 18666.34, + "probability": 0.3136 + }, + { + "start": 18666.34, + "end": 18666.88, + "probability": 0.4818 + }, + { + "start": 18666.88, + "end": 18668.18, + "probability": 0.5818 + }, + { + "start": 18668.31, + "end": 18673.28, + "probability": 0.1445 + }, + { + "start": 18673.6, + "end": 18678.34, + "probability": 0.3174 + }, + { + "start": 18679.52, + "end": 18681.48, + "probability": 0.8947 + }, + { + "start": 18681.56, + "end": 18682.14, + "probability": 0.2625 + }, + { + "start": 18682.44, + "end": 18683.56, + "probability": 0.7292 + }, + { + "start": 18683.92, + "end": 18684.92, + "probability": 0.6882 + }, + { + "start": 18685.02, + "end": 18686.1, + "probability": 0.9006 + }, + { + "start": 18686.26, + "end": 18688.15, + "probability": 0.3421 + }, + { + "start": 18688.82, + "end": 18688.82, + "probability": 0.1865 + }, + { + "start": 18688.84, + "end": 18691.02, + "probability": 0.7604 + }, + { + "start": 18691.12, + "end": 18691.9, + "probability": 0.9599 + }, + { + "start": 18692.18, + "end": 18697.18, + "probability": 0.7009 + }, + { + "start": 18697.38, + "end": 18698.0, + "probability": 0.118 + }, + { + "start": 18698.12, + "end": 18698.12, + "probability": 0.2563 + }, + { + "start": 18698.12, + "end": 18698.34, + "probability": 0.4513 + }, + { + "start": 18698.76, + "end": 18698.76, + "probability": 0.2569 + }, + { + "start": 18698.78, + "end": 18699.06, + "probability": 0.6632 + }, + { + "start": 18699.08, + "end": 18699.52, + "probability": 0.6412 + }, + { + "start": 18699.62, + "end": 18700.56, + "probability": 0.8792 + }, + { + "start": 18700.64, + "end": 18703.69, + "probability": 0.8234 + }, + { + "start": 18704.98, + "end": 18707.0, + "probability": 0.9382 + }, + { + "start": 18707.24, + "end": 18707.74, + "probability": 0.8946 + }, + { + "start": 18707.8, + "end": 18708.52, + "probability": 0.9161 + }, + { + "start": 18708.82, + "end": 18710.44, + "probability": 0.7054 + }, + { + "start": 18710.5, + "end": 18711.48, + "probability": 0.6104 + }, + { + "start": 18711.52, + "end": 18712.42, + "probability": 0.9483 + }, + { + "start": 18712.5, + "end": 18714.52, + "probability": 0.9656 + }, + { + "start": 18714.62, + "end": 18718.6, + "probability": 0.9846 + }, + { + "start": 18719.56, + "end": 18720.42, + "probability": 0.8432 + }, + { + "start": 18720.42, + "end": 18721.52, + "probability": 0.8001 + }, + { + "start": 18721.84, + "end": 18724.98, + "probability": 0.9851 + }, + { + "start": 18725.42, + "end": 18728.0, + "probability": 0.9415 + }, + { + "start": 18728.06, + "end": 18729.54, + "probability": 0.8167 + }, + { + "start": 18729.94, + "end": 18732.92, + "probability": 0.9784 + }, + { + "start": 18733.74, + "end": 18738.18, + "probability": 0.9811 + }, + { + "start": 18738.32, + "end": 18739.26, + "probability": 0.8701 + }, + { + "start": 18740.18, + "end": 18743.62, + "probability": 0.9228 + }, + { + "start": 18744.06, + "end": 18747.36, + "probability": 0.9878 + }, + { + "start": 18747.48, + "end": 18747.98, + "probability": 0.8619 + }, + { + "start": 18748.38, + "end": 18748.76, + "probability": 0.8376 + }, + { + "start": 18748.86, + "end": 18749.56, + "probability": 0.947 + }, + { + "start": 18749.64, + "end": 18750.33, + "probability": 0.7402 + }, + { + "start": 18750.62, + "end": 18751.04, + "probability": 0.8611 + }, + { + "start": 18752.26, + "end": 18754.72, + "probability": 0.981 + }, + { + "start": 18754.8, + "end": 18755.32, + "probability": 0.598 + }, + { + "start": 18755.46, + "end": 18758.28, + "probability": 0.988 + }, + { + "start": 18758.66, + "end": 18761.18, + "probability": 0.9946 + }, + { + "start": 18761.84, + "end": 18764.2, + "probability": 0.9777 + }, + { + "start": 18764.64, + "end": 18768.2, + "probability": 0.9434 + }, + { + "start": 18768.76, + "end": 18771.76, + "probability": 0.9963 + }, + { + "start": 18772.3, + "end": 18774.86, + "probability": 0.5417 + }, + { + "start": 18775.04, + "end": 18779.92, + "probability": 0.9943 + }, + { + "start": 18780.08, + "end": 18782.16, + "probability": 0.9858 + }, + { + "start": 18782.8, + "end": 18783.68, + "probability": 0.6341 + }, + { + "start": 18784.38, + "end": 18786.8, + "probability": 0.9588 + }, + { + "start": 18787.66, + "end": 18788.76, + "probability": 0.7161 + }, + { + "start": 18789.5, + "end": 18792.48, + "probability": 0.9778 + }, + { + "start": 18792.88, + "end": 18794.3, + "probability": 0.8067 + }, + { + "start": 18794.56, + "end": 18795.12, + "probability": 0.7994 + }, + { + "start": 18795.32, + "end": 18798.02, + "probability": 0.8001 + }, + { + "start": 18798.14, + "end": 18798.82, + "probability": 0.3388 + }, + { + "start": 18798.84, + "end": 18799.6, + "probability": 0.8517 + }, + { + "start": 18799.68, + "end": 18800.14, + "probability": 0.816 + }, + { + "start": 18800.18, + "end": 18802.04, + "probability": 0.932 + }, + { + "start": 18802.58, + "end": 18805.22, + "probability": 0.7593 + }, + { + "start": 18805.78, + "end": 18807.02, + "probability": 0.9262 + }, + { + "start": 18807.78, + "end": 18809.22, + "probability": 0.9805 + }, + { + "start": 18809.46, + "end": 18810.92, + "probability": 0.9774 + }, + { + "start": 18811.02, + "end": 18812.5, + "probability": 0.9223 + }, + { + "start": 18812.66, + "end": 18814.08, + "probability": 0.8646 + }, + { + "start": 18814.3, + "end": 18815.54, + "probability": 0.9984 + }, + { + "start": 18816.14, + "end": 18816.66, + "probability": 0.878 + }, + { + "start": 18816.86, + "end": 18817.9, + "probability": 0.7393 + }, + { + "start": 18818.28, + "end": 18822.0, + "probability": 0.9556 + }, + { + "start": 18822.06, + "end": 18822.74, + "probability": 0.802 + }, + { + "start": 18823.24, + "end": 18825.2, + "probability": 0.957 + }, + { + "start": 18825.54, + "end": 18826.9, + "probability": 0.9784 + }, + { + "start": 18827.28, + "end": 18830.12, + "probability": 0.9966 + }, + { + "start": 18830.48, + "end": 18832.68, + "probability": 0.9604 + }, + { + "start": 18832.74, + "end": 18834.7, + "probability": 0.8638 + }, + { + "start": 18834.88, + "end": 18835.68, + "probability": 0.976 + }, + { + "start": 18835.82, + "end": 18841.17, + "probability": 0.9751 + }, + { + "start": 18841.6, + "end": 18843.14, + "probability": 0.7469 + }, + { + "start": 18843.2, + "end": 18843.96, + "probability": 0.7454 + }, + { + "start": 18844.02, + "end": 18845.36, + "probability": 0.9033 + }, + { + "start": 18845.4, + "end": 18849.14, + "probability": 0.8416 + }, + { + "start": 18849.46, + "end": 18851.4, + "probability": 0.9728 + }, + { + "start": 18851.52, + "end": 18852.52, + "probability": 0.9207 + }, + { + "start": 18852.68, + "end": 18853.48, + "probability": 0.8611 + }, + { + "start": 18853.68, + "end": 18853.98, + "probability": 0.9001 + }, + { + "start": 18854.06, + "end": 18855.49, + "probability": 0.9748 + }, + { + "start": 18855.7, + "end": 18856.78, + "probability": 0.7946 + }, + { + "start": 18856.84, + "end": 18857.5, + "probability": 0.5342 + }, + { + "start": 18857.64, + "end": 18859.44, + "probability": 0.9432 + }, + { + "start": 18859.84, + "end": 18863.26, + "probability": 0.9909 + }, + { + "start": 18863.26, + "end": 18865.82, + "probability": 0.9902 + }, + { + "start": 18865.96, + "end": 18867.2, + "probability": 0.9773 + }, + { + "start": 18868.16, + "end": 18868.76, + "probability": 0.7768 + }, + { + "start": 18869.18, + "end": 18870.74, + "probability": 0.8868 + }, + { + "start": 18871.2, + "end": 18872.16, + "probability": 0.9229 + }, + { + "start": 18872.24, + "end": 18876.44, + "probability": 0.765 + }, + { + "start": 18876.62, + "end": 18880.06, + "probability": 0.9419 + }, + { + "start": 18880.12, + "end": 18880.7, + "probability": 0.9562 + }, + { + "start": 18880.8, + "end": 18881.18, + "probability": 0.3284 + }, + { + "start": 18881.52, + "end": 18882.34, + "probability": 0.8186 + }, + { + "start": 18882.48, + "end": 18886.44, + "probability": 0.9566 + }, + { + "start": 18886.92, + "end": 18888.16, + "probability": 0.9857 + }, + { + "start": 18888.58, + "end": 18889.8, + "probability": 0.9875 + }, + { + "start": 18889.9, + "end": 18890.84, + "probability": 0.9575 + }, + { + "start": 18890.96, + "end": 18892.02, + "probability": 0.797 + }, + { + "start": 18892.56, + "end": 18895.07, + "probability": 0.8801 + }, + { + "start": 18896.18, + "end": 18898.42, + "probability": 0.9819 + }, + { + "start": 18898.72, + "end": 18901.6, + "probability": 0.9799 + }, + { + "start": 18901.98, + "end": 18902.56, + "probability": 0.8201 + }, + { + "start": 18902.72, + "end": 18903.26, + "probability": 0.6749 + }, + { + "start": 18903.36, + "end": 18903.8, + "probability": 0.5164 + }, + { + "start": 18903.88, + "end": 18905.7, + "probability": 0.9463 + }, + { + "start": 18905.7, + "end": 18907.11, + "probability": 0.9854 + }, + { + "start": 18907.58, + "end": 18910.38, + "probability": 0.9784 + }, + { + "start": 18913.08, + "end": 18913.78, + "probability": 0.659 + }, + { + "start": 18914.04, + "end": 18914.94, + "probability": 0.8062 + }, + { + "start": 18915.06, + "end": 18916.28, + "probability": 0.9631 + }, + { + "start": 18916.3, + "end": 18917.34, + "probability": 0.9143 + }, + { + "start": 18917.42, + "end": 18918.55, + "probability": 0.9744 + }, + { + "start": 18919.02, + "end": 18924.0, + "probability": 0.9248 + }, + { + "start": 18924.06, + "end": 18925.16, + "probability": 0.8655 + }, + { + "start": 18925.16, + "end": 18926.22, + "probability": 0.936 + }, + { + "start": 18926.28, + "end": 18928.58, + "probability": 0.9792 + }, + { + "start": 18929.34, + "end": 18931.2, + "probability": 0.9886 + }, + { + "start": 18931.32, + "end": 18935.12, + "probability": 0.9319 + }, + { + "start": 18935.3, + "end": 18935.97, + "probability": 0.9252 + }, + { + "start": 18936.34, + "end": 18937.46, + "probability": 0.9658 + }, + { + "start": 18937.6, + "end": 18939.4, + "probability": 0.9897 + }, + { + "start": 18939.74, + "end": 18943.98, + "probability": 0.9546 + }, + { + "start": 18944.65, + "end": 18948.62, + "probability": 0.9854 + }, + { + "start": 18948.78, + "end": 18949.66, + "probability": 0.8043 + }, + { + "start": 18950.02, + "end": 18950.16, + "probability": 0.4544 + }, + { + "start": 18950.16, + "end": 18952.49, + "probability": 0.8897 + }, + { + "start": 18952.58, + "end": 18954.78, + "probability": 0.2906 + }, + { + "start": 18954.78, + "end": 18956.48, + "probability": 0.6567 + }, + { + "start": 18956.76, + "end": 18957.89, + "probability": 0.9484 + }, + { + "start": 18959.06, + "end": 18959.22, + "probability": 0.3188 + }, + { + "start": 18959.42, + "end": 18959.54, + "probability": 0.3995 + }, + { + "start": 18959.94, + "end": 18961.58, + "probability": 0.3081 + }, + { + "start": 18962.52, + "end": 18964.48, + "probability": 0.4199 + }, + { + "start": 18964.54, + "end": 18965.02, + "probability": 0.0862 + }, + { + "start": 18965.02, + "end": 18965.68, + "probability": 0.7037 + }, + { + "start": 18965.68, + "end": 18968.86, + "probability": 0.7357 + }, + { + "start": 18969.26, + "end": 18971.48, + "probability": 0.8463 + }, + { + "start": 18971.56, + "end": 18972.84, + "probability": 0.8436 + }, + { + "start": 18973.36, + "end": 18977.9, + "probability": 0.9831 + }, + { + "start": 18978.3, + "end": 18979.88, + "probability": 0.7874 + }, + { + "start": 18980.0, + "end": 18980.64, + "probability": 0.7433 + }, + { + "start": 18980.68, + "end": 18982.84, + "probability": 0.795 + }, + { + "start": 18984.5, + "end": 18985.26, + "probability": 0.8887 + }, + { + "start": 18985.48, + "end": 18986.08, + "probability": 0.9013 + }, + { + "start": 18986.22, + "end": 18987.16, + "probability": 0.9307 + }, + { + "start": 18987.28, + "end": 18987.32, + "probability": 0.4688 + }, + { + "start": 18987.44, + "end": 18988.24, + "probability": 0.9851 + }, + { + "start": 18988.26, + "end": 18989.06, + "probability": 0.9842 + }, + { + "start": 18989.16, + "end": 18992.64, + "probability": 0.9856 + }, + { + "start": 18992.84, + "end": 18993.42, + "probability": 0.9814 + }, + { + "start": 18993.5, + "end": 18994.32, + "probability": 0.9802 + }, + { + "start": 18994.44, + "end": 18995.18, + "probability": 0.7389 + }, + { + "start": 18995.44, + "end": 18997.18, + "probability": 0.9932 + }, + { + "start": 18997.56, + "end": 19000.16, + "probability": 0.9534 + }, + { + "start": 19000.38, + "end": 19003.54, + "probability": 0.994 + }, + { + "start": 19003.68, + "end": 19005.1, + "probability": 0.9377 + }, + { + "start": 19005.12, + "end": 19005.88, + "probability": 0.8423 + }, + { + "start": 19006.0, + "end": 19007.08, + "probability": 0.955 + }, + { + "start": 19007.26, + "end": 19007.96, + "probability": 0.8325 + }, + { + "start": 19008.16, + "end": 19009.82, + "probability": 0.7764 + }, + { + "start": 19010.24, + "end": 19014.44, + "probability": 0.9531 + }, + { + "start": 19014.56, + "end": 19014.84, + "probability": 0.4032 + }, + { + "start": 19015.82, + "end": 19016.96, + "probability": 0.6482 + }, + { + "start": 19016.96, + "end": 19016.96, + "probability": 0.4845 + }, + { + "start": 19017.28, + "end": 19018.3, + "probability": 0.9603 + }, + { + "start": 19019.86, + "end": 19021.8, + "probability": 0.9886 + }, + { + "start": 19021.9, + "end": 19023.0, + "probability": 0.7314 + }, + { + "start": 19024.68, + "end": 19025.02, + "probability": 0.6273 + }, + { + "start": 19025.64, + "end": 19025.92, + "probability": 0.5726 + }, + { + "start": 19026.36, + "end": 19026.94, + "probability": 0.6532 + }, + { + "start": 19027.42, + "end": 19028.12, + "probability": 0.646 + }, + { + "start": 19028.7, + "end": 19029.14, + "probability": 0.7707 + }, + { + "start": 19029.84, + "end": 19030.94, + "probability": 0.3822 + }, + { + "start": 19031.02, + "end": 19031.85, + "probability": 0.9552 + }, + { + "start": 19032.22, + "end": 19032.96, + "probability": 0.9602 + }, + { + "start": 19032.98, + "end": 19035.0, + "probability": 0.9421 + }, + { + "start": 19035.3, + "end": 19035.9, + "probability": 0.8071 + }, + { + "start": 19036.3, + "end": 19037.6, + "probability": 0.7997 + }, + { + "start": 19037.62, + "end": 19040.62, + "probability": 0.7622 + }, + { + "start": 19041.16, + "end": 19045.02, + "probability": 0.9793 + }, + { + "start": 19046.14, + "end": 19048.82, + "probability": 0.9709 + }, + { + "start": 19049.38, + "end": 19051.58, + "probability": 0.6831 + }, + { + "start": 19052.74, + "end": 19053.4, + "probability": 0.6867 + }, + { + "start": 19054.0, + "end": 19056.4, + "probability": 0.9956 + }, + { + "start": 19056.4, + "end": 19058.68, + "probability": 0.979 + }, + { + "start": 19058.84, + "end": 19059.5, + "probability": 0.8154 + }, + { + "start": 19060.02, + "end": 19063.23, + "probability": 0.9189 + }, + { + "start": 19064.16, + "end": 19064.58, + "probability": 0.8123 + }, + { + "start": 19064.84, + "end": 19065.84, + "probability": 0.8322 + }, + { + "start": 19065.9, + "end": 19066.14, + "probability": 0.8328 + }, + { + "start": 19066.16, + "end": 19071.08, + "probability": 0.9905 + }, + { + "start": 19071.08, + "end": 19072.0, + "probability": 0.8255 + }, + { + "start": 19072.34, + "end": 19075.2, + "probability": 0.9844 + }, + { + "start": 19075.52, + "end": 19078.16, + "probability": 0.9901 + }, + { + "start": 19079.12, + "end": 19082.6, + "probability": 0.983 + }, + { + "start": 19083.22, + "end": 19087.9, + "probability": 0.9995 + }, + { + "start": 19087.92, + "end": 19091.14, + "probability": 0.9649 + }, + { + "start": 19091.7, + "end": 19096.7, + "probability": 0.9983 + }, + { + "start": 19097.34, + "end": 19099.54, + "probability": 0.9783 + }, + { + "start": 19100.66, + "end": 19101.08, + "probability": 0.3556 + }, + { + "start": 19101.14, + "end": 19101.88, + "probability": 0.9364 + }, + { + "start": 19102.08, + "end": 19104.52, + "probability": 0.5336 + }, + { + "start": 19104.52, + "end": 19109.8, + "probability": 0.9897 + }, + { + "start": 19109.9, + "end": 19111.24, + "probability": 0.7735 + }, + { + "start": 19112.02, + "end": 19116.34, + "probability": 0.9783 + }, + { + "start": 19118.08, + "end": 19119.36, + "probability": 0.9156 + }, + { + "start": 19119.72, + "end": 19124.26, + "probability": 0.9827 + }, + { + "start": 19124.34, + "end": 19125.78, + "probability": 0.9985 + }, + { + "start": 19125.82, + "end": 19128.0, + "probability": 0.9401 + }, + { + "start": 19128.54, + "end": 19135.68, + "probability": 0.9963 + }, + { + "start": 19135.9, + "end": 19138.22, + "probability": 0.9934 + }, + { + "start": 19138.62, + "end": 19142.44, + "probability": 0.9934 + }, + { + "start": 19142.82, + "end": 19143.88, + "probability": 0.9531 + }, + { + "start": 19143.96, + "end": 19144.18, + "probability": 0.7502 + }, + { + "start": 19145.06, + "end": 19145.42, + "probability": 0.749 + }, + { + "start": 19145.42, + "end": 19145.76, + "probability": 0.6453 + }, + { + "start": 19145.96, + "end": 19146.76, + "probability": 0.7939 + }, + { + "start": 19146.8, + "end": 19147.8, + "probability": 0.9011 + }, + { + "start": 19147.92, + "end": 19149.7, + "probability": 0.9904 + }, + { + "start": 19149.84, + "end": 19151.02, + "probability": 0.7338 + }, + { + "start": 19151.52, + "end": 19152.4, + "probability": 0.8589 + }, + { + "start": 19152.76, + "end": 19153.64, + "probability": 0.6939 + }, + { + "start": 19153.82, + "end": 19157.52, + "probability": 0.9134 + }, + { + "start": 19158.04, + "end": 19160.61, + "probability": 0.9819 + }, + { + "start": 19161.16, + "end": 19161.68, + "probability": 0.4573 + }, + { + "start": 19161.92, + "end": 19161.98, + "probability": 0.4111 + }, + { + "start": 19162.08, + "end": 19166.36, + "probability": 0.9944 + }, + { + "start": 19166.56, + "end": 19171.7, + "probability": 0.7407 + }, + { + "start": 19172.02, + "end": 19175.6, + "probability": 0.9312 + }, + { + "start": 19175.6, + "end": 19178.98, + "probability": 0.998 + }, + { + "start": 19179.46, + "end": 19181.3, + "probability": 0.9248 + }, + { + "start": 19181.3, + "end": 19181.44, + "probability": 0.706 + }, + { + "start": 19182.02, + "end": 19186.4, + "probability": 0.799 + }, + { + "start": 19187.28, + "end": 19190.92, + "probability": 0.851 + }, + { + "start": 19191.88, + "end": 19192.36, + "probability": 0.267 + }, + { + "start": 19192.42, + "end": 19194.08, + "probability": 0.8949 + }, + { + "start": 19194.44, + "end": 19197.08, + "probability": 0.899 + }, + { + "start": 19197.3, + "end": 19199.16, + "probability": 0.8845 + }, + { + "start": 19199.24, + "end": 19199.66, + "probability": 0.6108 + }, + { + "start": 19199.7, + "end": 19200.38, + "probability": 0.8862 + }, + { + "start": 19200.44, + "end": 19202.7, + "probability": 0.9907 + }, + { + "start": 19203.18, + "end": 19205.16, + "probability": 0.8934 + }, + { + "start": 19205.74, + "end": 19207.06, + "probability": 0.8993 + }, + { + "start": 19207.56, + "end": 19207.98, + "probability": 0.8469 + }, + { + "start": 19208.06, + "end": 19208.44, + "probability": 0.9321 + }, + { + "start": 19208.6, + "end": 19209.82, + "probability": 0.6985 + }, + { + "start": 19210.32, + "end": 19213.06, + "probability": 0.93 + }, + { + "start": 19213.06, + "end": 19215.8, + "probability": 0.9852 + }, + { + "start": 19216.24, + "end": 19220.68, + "probability": 0.9149 + }, + { + "start": 19220.72, + "end": 19221.32, + "probability": 0.9037 + }, + { + "start": 19221.42, + "end": 19222.12, + "probability": 0.8656 + }, + { + "start": 19222.22, + "end": 19222.9, + "probability": 0.538 + }, + { + "start": 19223.0, + "end": 19223.44, + "probability": 0.8337 + }, + { + "start": 19223.56, + "end": 19226.64, + "probability": 0.9259 + }, + { + "start": 19226.72, + "end": 19228.41, + "probability": 0.508 + }, + { + "start": 19229.88, + "end": 19232.62, + "probability": 0.9634 + }, + { + "start": 19233.12, + "end": 19235.62, + "probability": 0.9241 + }, + { + "start": 19235.78, + "end": 19236.06, + "probability": 0.4852 + }, + { + "start": 19236.36, + "end": 19239.4, + "probability": 0.8447 + }, + { + "start": 19240.12, + "end": 19242.32, + "probability": 0.7749 + }, + { + "start": 19242.68, + "end": 19243.16, + "probability": 0.9081 + }, + { + "start": 19243.24, + "end": 19245.06, + "probability": 0.7934 + }, + { + "start": 19245.08, + "end": 19248.7, + "probability": 0.9912 + }, + { + "start": 19248.92, + "end": 19250.58, + "probability": 0.8937 + }, + { + "start": 19250.7, + "end": 19251.1, + "probability": 0.5543 + }, + { + "start": 19251.48, + "end": 19252.38, + "probability": 0.795 + }, + { + "start": 19252.7, + "end": 19257.34, + "probability": 0.7892 + }, + { + "start": 19258.24, + "end": 19260.59, + "probability": 0.9515 + }, + { + "start": 19261.6, + "end": 19264.16, + "probability": 0.9537 + }, + { + "start": 19264.66, + "end": 19266.5, + "probability": 0.985 + }, + { + "start": 19267.78, + "end": 19268.71, + "probability": 0.9823 + }, + { + "start": 19270.32, + "end": 19274.89, + "probability": 0.9571 + }, + { + "start": 19275.4, + "end": 19276.68, + "probability": 0.5744 + }, + { + "start": 19277.1, + "end": 19279.98, + "probability": 0.9836 + }, + { + "start": 19280.3, + "end": 19282.1, + "probability": 0.9918 + }, + { + "start": 19282.7, + "end": 19283.36, + "probability": 0.8755 + }, + { + "start": 19283.98, + "end": 19288.74, + "probability": 0.9845 + }, + { + "start": 19289.02, + "end": 19292.44, + "probability": 0.9854 + }, + { + "start": 19293.28, + "end": 19294.72, + "probability": 0.8901 + }, + { + "start": 19294.86, + "end": 19297.84, + "probability": 0.6308 + }, + { + "start": 19298.62, + "end": 19299.76, + "probability": 0.1308 + }, + { + "start": 19300.1, + "end": 19302.36, + "probability": 0.4443 + }, + { + "start": 19302.42, + "end": 19302.92, + "probability": 0.8158 + }, + { + "start": 19303.26, + "end": 19304.02, + "probability": 0.7884 + }, + { + "start": 19304.16, + "end": 19305.28, + "probability": 0.755 + }, + { + "start": 19305.34, + "end": 19306.3, + "probability": 0.7947 + }, + { + "start": 19306.44, + "end": 19307.46, + "probability": 0.9874 + }, + { + "start": 19307.56, + "end": 19308.0, + "probability": 0.4 + }, + { + "start": 19308.22, + "end": 19311.14, + "probability": 0.9875 + }, + { + "start": 19311.28, + "end": 19316.94, + "probability": 0.7105 + }, + { + "start": 19317.02, + "end": 19317.8, + "probability": 0.5611 + }, + { + "start": 19318.12, + "end": 19320.0, + "probability": 0.7456 + }, + { + "start": 19320.56, + "end": 19325.28, + "probability": 0.9844 + }, + { + "start": 19326.02, + "end": 19328.67, + "probability": 0.9993 + }, + { + "start": 19329.06, + "end": 19329.96, + "probability": 0.9119 + }, + { + "start": 19330.2, + "end": 19332.82, + "probability": 0.9956 + }, + { + "start": 19333.74, + "end": 19336.08, + "probability": 0.9951 + }, + { + "start": 19337.86, + "end": 19338.49, + "probability": 0.503 + }, + { + "start": 19339.32, + "end": 19343.08, + "probability": 0.7104 + }, + { + "start": 19343.32, + "end": 19344.52, + "probability": 0.4376 + }, + { + "start": 19345.06, + "end": 19348.24, + "probability": 0.9712 + }, + { + "start": 19348.68, + "end": 19353.18, + "probability": 0.9899 + }, + { + "start": 19353.44, + "end": 19358.54, + "probability": 0.9672 + }, + { + "start": 19358.66, + "end": 19359.22, + "probability": 0.9466 + }, + { + "start": 19360.34, + "end": 19366.0, + "probability": 0.7135 + }, + { + "start": 19366.18, + "end": 19368.92, + "probability": 0.9969 + }, + { + "start": 19369.3, + "end": 19369.96, + "probability": 0.5077 + }, + { + "start": 19370.04, + "end": 19370.44, + "probability": 0.9238 + }, + { + "start": 19370.6, + "end": 19376.7, + "probability": 0.9826 + }, + { + "start": 19377.12, + "end": 19377.86, + "probability": 0.9355 + }, + { + "start": 19378.08, + "end": 19380.98, + "probability": 0.8325 + }, + { + "start": 19381.68, + "end": 19382.6, + "probability": 0.8456 + }, + { + "start": 19382.76, + "end": 19385.06, + "probability": 0.4449 + }, + { + "start": 19385.4, + "end": 19390.18, + "probability": 0.7515 + }, + { + "start": 19390.74, + "end": 19393.52, + "probability": 0.9113 + }, + { + "start": 19393.52, + "end": 19398.04, + "probability": 0.9736 + }, + { + "start": 19398.12, + "end": 19402.78, + "probability": 0.9591 + }, + { + "start": 19402.94, + "end": 19403.98, + "probability": 0.8406 + }, + { + "start": 19404.16, + "end": 19408.1, + "probability": 0.365 + }, + { + "start": 19408.72, + "end": 19410.16, + "probability": 0.5328 + }, + { + "start": 19410.24, + "end": 19415.38, + "probability": 0.9727 + }, + { + "start": 19416.08, + "end": 19418.18, + "probability": 0.7437 + }, + { + "start": 19418.76, + "end": 19422.56, + "probability": 0.8516 + }, + { + "start": 19422.84, + "end": 19423.57, + "probability": 0.9297 + }, + { + "start": 19423.98, + "end": 19425.6, + "probability": 0.9592 + }, + { + "start": 19426.04, + "end": 19427.0, + "probability": 0.8994 + }, + { + "start": 19427.12, + "end": 19432.62, + "probability": 0.9416 + }, + { + "start": 19432.62, + "end": 19434.96, + "probability": 0.9954 + }, + { + "start": 19435.42, + "end": 19438.38, + "probability": 0.957 + }, + { + "start": 19440.0, + "end": 19440.62, + "probability": 0.4389 + }, + { + "start": 19440.74, + "end": 19442.04, + "probability": 0.8669 + }, + { + "start": 19442.14, + "end": 19443.82, + "probability": 0.9258 + }, + { + "start": 19443.86, + "end": 19446.68, + "probability": 0.9862 + }, + { + "start": 19446.8, + "end": 19447.3, + "probability": 0.171 + }, + { + "start": 19447.74, + "end": 19448.08, + "probability": 0.3729 + }, + { + "start": 19448.08, + "end": 19448.74, + "probability": 0.7936 + }, + { + "start": 19455.68, + "end": 19459.82, + "probability": 0.7733 + }, + { + "start": 19461.02, + "end": 19466.44, + "probability": 0.8897 + }, + { + "start": 19467.02, + "end": 19469.12, + "probability": 0.8237 + }, + { + "start": 19469.2, + "end": 19469.66, + "probability": 0.9207 + }, + { + "start": 19470.16, + "end": 19472.38, + "probability": 0.9651 + }, + { + "start": 19472.92, + "end": 19474.64, + "probability": 0.9944 + }, + { + "start": 19475.24, + "end": 19475.81, + "probability": 0.8423 + }, + { + "start": 19476.1, + "end": 19476.84, + "probability": 0.5122 + }, + { + "start": 19476.9, + "end": 19479.26, + "probability": 0.5117 + }, + { + "start": 19479.32, + "end": 19481.27, + "probability": 0.995 + }, + { + "start": 19481.68, + "end": 19484.4, + "probability": 0.9802 + }, + { + "start": 19484.52, + "end": 19486.44, + "probability": 0.9409 + }, + { + "start": 19486.46, + "end": 19488.58, + "probability": 0.8248 + }, + { + "start": 19488.72, + "end": 19489.3, + "probability": 0.2358 + }, + { + "start": 19489.46, + "end": 19489.98, + "probability": 0.3954 + }, + { + "start": 19490.48, + "end": 19491.36, + "probability": 0.9642 + }, + { + "start": 19491.82, + "end": 19493.6, + "probability": 0.9495 + }, + { + "start": 19493.7, + "end": 19494.18, + "probability": 0.8168 + }, + { + "start": 19494.26, + "end": 19498.04, + "probability": 0.9865 + }, + { + "start": 19498.12, + "end": 19500.29, + "probability": 0.9873 + }, + { + "start": 19501.3, + "end": 19505.44, + "probability": 0.991 + }, + { + "start": 19505.46, + "end": 19508.3, + "probability": 0.8356 + }, + { + "start": 19508.36, + "end": 19510.78, + "probability": 0.5478 + }, + { + "start": 19510.92, + "end": 19511.52, + "probability": 0.2364 + }, + { + "start": 19511.56, + "end": 19514.32, + "probability": 0.9364 + }, + { + "start": 19514.5, + "end": 19518.8, + "probability": 0.8399 + }, + { + "start": 19519.14, + "end": 19520.8, + "probability": 0.9966 + }, + { + "start": 19521.04, + "end": 19524.08, + "probability": 0.989 + }, + { + "start": 19524.14, + "end": 19524.84, + "probability": 0.9161 + }, + { + "start": 19524.94, + "end": 19527.42, + "probability": 0.9782 + }, + { + "start": 19527.84, + "end": 19529.04, + "probability": 0.6535 + }, + { + "start": 19529.64, + "end": 19531.04, + "probability": 0.6653 + }, + { + "start": 19532.04, + "end": 19533.02, + "probability": 0.8715 + }, + { + "start": 19533.16, + "end": 19537.5, + "probability": 0.9817 + }, + { + "start": 19537.58, + "end": 19538.66, + "probability": 0.7918 + }, + { + "start": 19538.7, + "end": 19541.2, + "probability": 0.8534 + }, + { + "start": 19541.5, + "end": 19541.96, + "probability": 0.2641 + }, + { + "start": 19542.06, + "end": 19542.88, + "probability": 0.6221 + }, + { + "start": 19543.04, + "end": 19543.64, + "probability": 0.9453 + }, + { + "start": 19543.78, + "end": 19548.22, + "probability": 0.9875 + }, + { + "start": 19548.22, + "end": 19551.22, + "probability": 0.8872 + }, + { + "start": 19551.32, + "end": 19556.0, + "probability": 0.9907 + }, + { + "start": 19556.06, + "end": 19556.52, + "probability": 0.6256 + }, + { + "start": 19556.72, + "end": 19557.22, + "probability": 0.6993 + }, + { + "start": 19557.62, + "end": 19559.5, + "probability": 0.5689 + }, + { + "start": 19559.56, + "end": 19560.92, + "probability": 0.7498 + }, + { + "start": 19561.24, + "end": 19563.41, + "probability": 0.7401 + }, + { + "start": 19563.98, + "end": 19565.92, + "probability": 0.9954 + }, + { + "start": 19566.04, + "end": 19569.58, + "probability": 0.9575 + }, + { + "start": 19571.22, + "end": 19571.22, + "probability": 0.7168 + }, + { + "start": 19575.96, + "end": 19579.56, + "probability": 0.9734 + }, + { + "start": 19580.04, + "end": 19580.5, + "probability": 0.7881 + }, + { + "start": 19580.58, + "end": 19581.8, + "probability": 0.7317 + }, + { + "start": 19581.88, + "end": 19585.92, + "probability": 0.8737 + }, + { + "start": 19586.26, + "end": 19588.98, + "probability": 0.9697 + }, + { + "start": 19589.3, + "end": 19590.48, + "probability": 0.8638 + }, + { + "start": 19590.7, + "end": 19592.84, + "probability": 0.7306 + }, + { + "start": 19593.34, + "end": 19595.48, + "probability": 0.3698 + }, + { + "start": 19595.56, + "end": 19596.36, + "probability": 0.6312 + }, + { + "start": 19596.56, + "end": 19600.04, + "probability": 0.6824 + }, + { + "start": 19600.38, + "end": 19600.84, + "probability": 0.5841 + }, + { + "start": 19601.42, + "end": 19604.84, + "probability": 0.9872 + }, + { + "start": 19605.02, + "end": 19610.4, + "probability": 0.9548 + }, + { + "start": 19610.86, + "end": 19615.76, + "probability": 0.6993 + }, + { + "start": 19616.88, + "end": 19622.94, + "probability": 0.9911 + }, + { + "start": 19623.32, + "end": 19623.94, + "probability": 0.8594 + }, + { + "start": 19624.04, + "end": 19625.76, + "probability": 0.8895 + }, + { + "start": 19626.2, + "end": 19629.7, + "probability": 0.9785 + }, + { + "start": 19630.38, + "end": 19632.34, + "probability": 0.9164 + }, + { + "start": 19632.54, + "end": 19636.18, + "probability": 0.7748 + }, + { + "start": 19636.18, + "end": 19639.34, + "probability": 0.9763 + }, + { + "start": 19639.44, + "end": 19643.22, + "probability": 0.6737 + }, + { + "start": 19644.06, + "end": 19644.58, + "probability": 0.8984 + }, + { + "start": 19645.14, + "end": 19647.96, + "probability": 0.8716 + }, + { + "start": 19648.72, + "end": 19650.02, + "probability": 0.922 + }, + { + "start": 19650.12, + "end": 19650.54, + "probability": 0.6997 + }, + { + "start": 19650.58, + "end": 19654.64, + "probability": 0.9219 + }, + { + "start": 19655.06, + "end": 19658.8, + "probability": 0.8426 + }, + { + "start": 19659.08, + "end": 19660.36, + "probability": 0.9165 + }, + { + "start": 19661.42, + "end": 19664.08, + "probability": 0.6714 + }, + { + "start": 19664.1, + "end": 19664.84, + "probability": 0.816 + }, + { + "start": 19664.94, + "end": 19666.58, + "probability": 0.8213 + }, + { + "start": 19667.16, + "end": 19669.76, + "probability": 0.7519 + }, + { + "start": 19669.84, + "end": 19671.31, + "probability": 0.7961 + }, + { + "start": 19671.82, + "end": 19674.02, + "probability": 0.8813 + }, + { + "start": 19674.22, + "end": 19675.01, + "probability": 0.8606 + }, + { + "start": 19675.46, + "end": 19679.14, + "probability": 0.9827 + }, + { + "start": 19679.18, + "end": 19680.34, + "probability": 0.4788 + }, + { + "start": 19680.48, + "end": 19682.98, + "probability": 0.9961 + }, + { + "start": 19683.02, + "end": 19683.6, + "probability": 0.9158 + }, + { + "start": 19683.76, + "end": 19688.26, + "probability": 0.984 + }, + { + "start": 19689.0, + "end": 19690.5, + "probability": 0.9602 + }, + { + "start": 19691.78, + "end": 19695.59, + "probability": 0.8427 + }, + { + "start": 19695.96, + "end": 19696.68, + "probability": 0.8503 + }, + { + "start": 19696.82, + "end": 19700.16, + "probability": 0.9917 + }, + { + "start": 19700.48, + "end": 19701.62, + "probability": 0.8369 + }, + { + "start": 19701.78, + "end": 19703.94, + "probability": 0.9816 + }, + { + "start": 19704.04, + "end": 19704.34, + "probability": 0.6682 + }, + { + "start": 19704.38, + "end": 19705.02, + "probability": 0.9195 + }, + { + "start": 19705.06, + "end": 19705.52, + "probability": 0.9021 + }, + { + "start": 19706.34, + "end": 19711.08, + "probability": 0.7358 + }, + { + "start": 19711.34, + "end": 19711.52, + "probability": 0.583 + }, + { + "start": 19711.56, + "end": 19713.5, + "probability": 0.9987 + }, + { + "start": 19713.68, + "end": 19716.02, + "probability": 0.936 + }, + { + "start": 19716.14, + "end": 19720.68, + "probability": 0.8975 + }, + { + "start": 19720.96, + "end": 19722.16, + "probability": 0.9419 + }, + { + "start": 19722.24, + "end": 19724.04, + "probability": 0.7547 + }, + { + "start": 19724.27, + "end": 19727.56, + "probability": 0.9211 + }, + { + "start": 19727.56, + "end": 19728.98, + "probability": 0.861 + }, + { + "start": 19729.04, + "end": 19730.53, + "probability": 0.9534 + }, + { + "start": 19730.98, + "end": 19734.66, + "probability": 0.9872 + }, + { + "start": 19734.66, + "end": 19737.23, + "probability": 0.9561 + }, + { + "start": 19738.22, + "end": 19740.2, + "probability": 0.9971 + }, + { + "start": 19741.6, + "end": 19741.92, + "probability": 0.6395 + }, + { + "start": 19742.94, + "end": 19744.78, + "probability": 0.8791 + }, + { + "start": 19744.82, + "end": 19745.3, + "probability": 0.2589 + }, + { + "start": 19746.01, + "end": 19750.98, + "probability": 0.7215 + }, + { + "start": 19751.44, + "end": 19752.52, + "probability": 0.2591 + }, + { + "start": 19756.72, + "end": 19757.26, + "probability": 0.6654 + }, + { + "start": 19757.42, + "end": 19763.02, + "probability": 0.7201 + }, + { + "start": 19764.28, + "end": 19769.54, + "probability": 0.9922 + }, + { + "start": 19770.46, + "end": 19770.88, + "probability": 0.0048 + }, + { + "start": 19772.26, + "end": 19772.62, + "probability": 0.6087 + }, + { + "start": 19772.64, + "end": 19776.34, + "probability": 0.9902 + }, + { + "start": 19776.42, + "end": 19778.1, + "probability": 0.965 + }, + { + "start": 19779.08, + "end": 19779.54, + "probability": 0.5022 + }, + { + "start": 19780.46, + "end": 19785.18, + "probability": 0.9556 + }, + { + "start": 19785.18, + "end": 19785.38, + "probability": 0.0877 + }, + { + "start": 19786.6, + "end": 19789.26, + "probability": 0.8921 + }, + { + "start": 19790.48, + "end": 19791.96, + "probability": 0.963 + }, + { + "start": 19792.14, + "end": 19795.22, + "probability": 0.5642 + }, + { + "start": 19796.12, + "end": 19797.42, + "probability": 0.9353 + }, + { + "start": 19797.58, + "end": 19799.86, + "probability": 0.9691 + }, + { + "start": 19800.36, + "end": 19803.08, + "probability": 0.9831 + }, + { + "start": 19803.08, + "end": 19807.78, + "probability": 0.9858 + }, + { + "start": 19808.58, + "end": 19808.7, + "probability": 0.7655 + }, + { + "start": 19808.94, + "end": 19811.84, + "probability": 0.9386 + }, + { + "start": 19811.84, + "end": 19814.88, + "probability": 0.8748 + }, + { + "start": 19815.2, + "end": 19816.68, + "probability": 0.9501 + }, + { + "start": 19817.04, + "end": 19818.14, + "probability": 0.7779 + }, + { + "start": 19818.34, + "end": 19820.04, + "probability": 0.8741 + }, + { + "start": 19820.96, + "end": 19825.81, + "probability": 0.9971 + }, + { + "start": 19825.96, + "end": 19828.6, + "probability": 0.3403 + }, + { + "start": 19828.62, + "end": 19829.3, + "probability": 0.8144 + }, + { + "start": 19829.4, + "end": 19830.11, + "probability": 0.9519 + }, + { + "start": 19830.54, + "end": 19833.36, + "probability": 0.985 + }, + { + "start": 19835.42, + "end": 19837.58, + "probability": 0.8077 + }, + { + "start": 19838.1, + "end": 19840.52, + "probability": 0.8965 + }, + { + "start": 19840.82, + "end": 19842.04, + "probability": 0.8556 + }, + { + "start": 19842.72, + "end": 19845.36, + "probability": 0.9097 + }, + { + "start": 19845.68, + "end": 19847.52, + "probability": 0.8896 + }, + { + "start": 19848.02, + "end": 19849.86, + "probability": 0.4186 + }, + { + "start": 19850.06, + "end": 19851.34, + "probability": 0.9495 + }, + { + "start": 19851.38, + "end": 19852.24, + "probability": 0.8332 + }, + { + "start": 19853.4, + "end": 19855.65, + "probability": 0.9858 + }, + { + "start": 19856.5, + "end": 19857.86, + "probability": 0.8922 + }, + { + "start": 19858.6, + "end": 19861.46, + "probability": 0.6254 + }, + { + "start": 19862.26, + "end": 19863.98, + "probability": 0.8922 + }, + { + "start": 19865.26, + "end": 19868.38, + "probability": 0.9906 + }, + { + "start": 19868.48, + "end": 19870.04, + "probability": 0.9958 + }, + { + "start": 19870.86, + "end": 19871.66, + "probability": 0.672 + }, + { + "start": 19872.22, + "end": 19872.5, + "probability": 0.714 + }, + { + "start": 19872.68, + "end": 19878.18, + "probability": 0.835 + }, + { + "start": 19878.34, + "end": 19880.36, + "probability": 0.9432 + }, + { + "start": 19881.32, + "end": 19882.4, + "probability": 0.9865 + }, + { + "start": 19882.8, + "end": 19883.5, + "probability": 0.8827 + }, + { + "start": 19884.93, + "end": 19886.78, + "probability": 0.9202 + }, + { + "start": 19887.94, + "end": 19892.18, + "probability": 0.9927 + }, + { + "start": 19892.18, + "end": 19895.68, + "probability": 0.8622 + }, + { + "start": 19896.26, + "end": 19900.76, + "probability": 0.8732 + }, + { + "start": 19900.76, + "end": 19904.52, + "probability": 0.9474 + }, + { + "start": 19905.24, + "end": 19906.82, + "probability": 0.9213 + }, + { + "start": 19907.44, + "end": 19910.76, + "probability": 0.9908 + }, + { + "start": 19911.94, + "end": 19916.84, + "probability": 0.8937 + }, + { + "start": 19917.06, + "end": 19917.2, + "probability": 0.5851 + }, + { + "start": 19918.8, + "end": 19919.22, + "probability": 0.5583 + }, + { + "start": 19919.28, + "end": 19920.78, + "probability": 0.6226 + }, + { + "start": 19921.18, + "end": 19921.38, + "probability": 0.5251 + }, + { + "start": 19921.4, + "end": 19922.04, + "probability": 0.468 + }, + { + "start": 19922.18, + "end": 19923.82, + "probability": 0.9816 + }, + { + "start": 19923.9, + "end": 19926.18, + "probability": 0.9701 + }, + { + "start": 19926.18, + "end": 19927.3, + "probability": 0.5648 + }, + { + "start": 19927.32, + "end": 19928.34, + "probability": 0.5897 + }, + { + "start": 19928.84, + "end": 19929.62, + "probability": 0.6769 + }, + { + "start": 19929.72, + "end": 19930.64, + "probability": 0.3904 + }, + { + "start": 19930.82, + "end": 19932.82, + "probability": 0.7732 + }, + { + "start": 19932.92, + "end": 19933.95, + "probability": 0.9258 + }, + { + "start": 19934.27, + "end": 19935.95, + "probability": 0.9972 + }, + { + "start": 19937.34, + "end": 19939.24, + "probability": 0.7037 + }, + { + "start": 19939.44, + "end": 19940.12, + "probability": 0.4552 + }, + { + "start": 19940.22, + "end": 19941.1, + "probability": 0.8394 + }, + { + "start": 19941.26, + "end": 19945.5, + "probability": 0.9785 + }, + { + "start": 19945.78, + "end": 19949.7, + "probability": 0.8586 + }, + { + "start": 19949.88, + "end": 19950.7, + "probability": 0.8916 + }, + { + "start": 19951.21, + "end": 19953.6, + "probability": 0.9621 + }, + { + "start": 19953.8, + "end": 19957.4, + "probability": 0.8921 + }, + { + "start": 19958.04, + "end": 19960.7, + "probability": 0.8235 + }, + { + "start": 19960.82, + "end": 19962.44, + "probability": 0.9097 + }, + { + "start": 19962.66, + "end": 19963.88, + "probability": 0.9347 + }, + { + "start": 19963.96, + "end": 19964.36, + "probability": 0.9573 + }, + { + "start": 19964.4, + "end": 19966.24, + "probability": 0.9863 + }, + { + "start": 19966.78, + "end": 19969.6, + "probability": 0.9778 + }, + { + "start": 19969.64, + "end": 19970.26, + "probability": 0.6919 + }, + { + "start": 19970.32, + "end": 19974.92, + "probability": 0.8586 + }, + { + "start": 19975.76, + "end": 19977.02, + "probability": 0.7863 + }, + { + "start": 19977.06, + "end": 19979.34, + "probability": 0.9662 + }, + { + "start": 19979.58, + "end": 19984.7, + "probability": 0.9678 + }, + { + "start": 19984.7, + "end": 19988.58, + "probability": 0.9333 + }, + { + "start": 19988.58, + "end": 19992.26, + "probability": 0.9828 + }, + { + "start": 19992.48, + "end": 19994.42, + "probability": 0.7991 + }, + { + "start": 19994.5, + "end": 19997.32, + "probability": 0.6718 + }, + { + "start": 19997.84, + "end": 19999.92, + "probability": 0.9139 + }, + { + "start": 20000.08, + "end": 20003.38, + "probability": 0.7815 + }, + { + "start": 20003.46, + "end": 20004.25, + "probability": 0.9897 + }, + { + "start": 20004.94, + "end": 20008.43, + "probability": 0.938 + }, + { + "start": 20009.58, + "end": 20009.68, + "probability": 0.2888 + }, + { + "start": 20011.16, + "end": 20011.98, + "probability": 0.8089 + }, + { + "start": 20012.89, + "end": 20013.1, + "probability": 0.2573 + }, + { + "start": 20013.1, + "end": 20013.45, + "probability": 0.6398 + }, + { + "start": 20013.86, + "end": 20014.04, + "probability": 0.4806 + }, + { + "start": 20014.18, + "end": 20014.88, + "probability": 0.5884 + }, + { + "start": 20015.02, + "end": 20018.06, + "probability": 0.9662 + }, + { + "start": 20018.14, + "end": 20021.82, + "probability": 0.9931 + }, + { + "start": 20021.82, + "end": 20025.76, + "probability": 0.8748 + }, + { + "start": 20026.18, + "end": 20028.0, + "probability": 0.9817 + }, + { + "start": 20028.5, + "end": 20029.56, + "probability": 0.9468 + }, + { + "start": 20029.8, + "end": 20030.36, + "probability": 0.9319 + }, + { + "start": 20030.66, + "end": 20033.38, + "probability": 0.9917 + }, + { + "start": 20033.38, + "end": 20036.22, + "probability": 0.9914 + }, + { + "start": 20036.26, + "end": 20039.28, + "probability": 0.9619 + }, + { + "start": 20039.42, + "end": 20043.11, + "probability": 0.7353 + }, + { + "start": 20043.8, + "end": 20046.02, + "probability": 0.6669 + }, + { + "start": 20046.6, + "end": 20049.76, + "probability": 0.9741 + }, + { + "start": 20049.92, + "end": 20051.92, + "probability": 0.996 + }, + { + "start": 20052.42, + "end": 20052.92, + "probability": 0.5304 + }, + { + "start": 20052.94, + "end": 20054.02, + "probability": 0.8932 + }, + { + "start": 20054.08, + "end": 20055.58, + "probability": 0.7893 + }, + { + "start": 20055.62, + "end": 20059.78, + "probability": 0.9918 + }, + { + "start": 20060.34, + "end": 20062.42, + "probability": 0.9976 + }, + { + "start": 20062.62, + "end": 20065.7, + "probability": 0.8033 + }, + { + "start": 20065.86, + "end": 20066.78, + "probability": 0.927 + }, + { + "start": 20066.86, + "end": 20068.04, + "probability": 0.9515 + }, + { + "start": 20068.16, + "end": 20069.32, + "probability": 0.3323 + }, + { + "start": 20069.6, + "end": 20070.3, + "probability": 0.628 + }, + { + "start": 20070.38, + "end": 20072.5, + "probability": 0.9611 + }, + { + "start": 20072.96, + "end": 20073.96, + "probability": 0.9855 + }, + { + "start": 20075.52, + "end": 20079.76, + "probability": 0.8985 + }, + { + "start": 20080.0, + "end": 20083.2, + "probability": 0.9966 + }, + { + "start": 20084.4, + "end": 20086.24, + "probability": 0.9447 + }, + { + "start": 20086.8, + "end": 20088.2, + "probability": 0.9872 + }, + { + "start": 20088.66, + "end": 20091.38, + "probability": 0.9648 + }, + { + "start": 20092.0, + "end": 20093.82, + "probability": 0.8179 + }, + { + "start": 20095.02, + "end": 20097.66, + "probability": 0.9928 + }, + { + "start": 20097.66, + "end": 20100.44, + "probability": 0.9913 + }, + { + "start": 20100.68, + "end": 20103.52, + "probability": 0.6842 + }, + { + "start": 20103.94, + "end": 20105.38, + "probability": 0.8187 + }, + { + "start": 20105.38, + "end": 20105.78, + "probability": 0.4641 + }, + { + "start": 20105.8, + "end": 20109.26, + "probability": 0.8078 + }, + { + "start": 20109.62, + "end": 20112.46, + "probability": 0.8086 + }, + { + "start": 20112.52, + "end": 20114.76, + "probability": 0.9968 + }, + { + "start": 20115.1, + "end": 20117.38, + "probability": 0.876 + }, + { + "start": 20117.42, + "end": 20118.4, + "probability": 0.9426 + }, + { + "start": 20118.68, + "end": 20120.92, + "probability": 0.9097 + }, + { + "start": 20121.12, + "end": 20126.58, + "probability": 0.8965 + }, + { + "start": 20126.62, + "end": 20127.62, + "probability": 0.689 + }, + { + "start": 20128.46, + "end": 20130.9, + "probability": 0.8745 + }, + { + "start": 20130.98, + "end": 20134.64, + "probability": 0.8564 + }, + { + "start": 20134.76, + "end": 20135.56, + "probability": 0.6554 + }, + { + "start": 20135.9, + "end": 20138.65, + "probability": 0.9766 + }, + { + "start": 20139.84, + "end": 20141.94, + "probability": 0.9883 + }, + { + "start": 20142.26, + "end": 20143.83, + "probability": 0.896 + }, + { + "start": 20144.7, + "end": 20146.54, + "probability": 0.5584 + }, + { + "start": 20147.46, + "end": 20150.36, + "probability": 0.9759 + }, + { + "start": 20151.0, + "end": 20154.92, + "probability": 0.9861 + }, + { + "start": 20155.02, + "end": 20156.36, + "probability": 0.9677 + }, + { + "start": 20156.66, + "end": 20160.04, + "probability": 0.9843 + }, + { + "start": 20160.22, + "end": 20166.36, + "probability": 0.9768 + }, + { + "start": 20167.62, + "end": 20169.82, + "probability": 0.9974 + }, + { + "start": 20169.92, + "end": 20171.34, + "probability": 0.95 + }, + { + "start": 20171.62, + "end": 20175.04, + "probability": 0.9912 + }, + { + "start": 20175.12, + "end": 20175.92, + "probability": 0.5337 + }, + { + "start": 20175.92, + "end": 20176.46, + "probability": 0.9342 + }, + { + "start": 20176.5, + "end": 20177.06, + "probability": 0.8988 + }, + { + "start": 20177.12, + "end": 20181.8, + "probability": 0.9764 + }, + { + "start": 20182.3, + "end": 20183.26, + "probability": 0.3724 + }, + { + "start": 20183.54, + "end": 20185.22, + "probability": 0.9839 + }, + { + "start": 20185.3, + "end": 20187.4, + "probability": 0.6106 + }, + { + "start": 20187.68, + "end": 20190.04, + "probability": 0.5538 + }, + { + "start": 20190.32, + "end": 20193.8, + "probability": 0.9242 + }, + { + "start": 20195.48, + "end": 20196.12, + "probability": 0.3298 + } + ], + "segments_count": 6959, + "words_count": 36432, + "avg_words_per_segment": 5.2352, + "avg_segment_duration": 2.2415, + "avg_words_per_minute": 108.0446, + "plenum_id": "27125", + "duration": 20231.64, + "title": null, + "plenum_date": "2013-03-06" +} \ No newline at end of file