diff --git "a/42189/metadata.json" "b/42189/metadata.json" new file mode 100644--- /dev/null +++ "b/42189/metadata.json" @@ -0,0 +1,55447 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "42189", + "quality_score": 0.9372, + "per_segment_quality_scores": [ + { + "start": 87.1, + "end": 87.9, + "probability": 0.6392 + }, + { + "start": 94.9, + "end": 94.94, + "probability": 0.0407 + }, + { + "start": 94.94, + "end": 95.96, + "probability": 0.2225 + }, + { + "start": 96.56, + "end": 97.72, + "probability": 0.6134 + }, + { + "start": 98.5, + "end": 98.94, + "probability": 0.7536 + }, + { + "start": 99.58, + "end": 100.72, + "probability": 0.8122 + }, + { + "start": 100.82, + "end": 102.3, + "probability": 0.776 + }, + { + "start": 102.78, + "end": 107.58, + "probability": 0.9617 + }, + { + "start": 108.26, + "end": 111.85, + "probability": 0.6792 + }, + { + "start": 112.56, + "end": 114.7, + "probability": 0.6368 + }, + { + "start": 115.24, + "end": 118.85, + "probability": 0.9981 + }, + { + "start": 119.1, + "end": 119.44, + "probability": 0.7747 + }, + { + "start": 120.52, + "end": 120.62, + "probability": 0.5637 + }, + { + "start": 121.26, + "end": 123.88, + "probability": 0.2993 + }, + { + "start": 124.62, + "end": 128.88, + "probability": 0.9799 + }, + { + "start": 129.3, + "end": 130.78, + "probability": 0.6732 + }, + { + "start": 131.38, + "end": 133.48, + "probability": 0.7692 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.0, + "end": 134.0, + "probability": 0.0 + }, + { + "start": 134.8, + "end": 134.98, + "probability": 0.2527 + }, + { + "start": 135.12, + "end": 136.36, + "probability": 0.5912 + }, + { + "start": 136.4, + "end": 140.08, + "probability": 0.6801 + }, + { + "start": 140.54, + "end": 143.28, + "probability": 0.9534 + }, + { + "start": 143.74, + "end": 146.1, + "probability": 0.9974 + }, + { + "start": 147.58, + "end": 149.78, + "probability": 0.9688 + }, + { + "start": 151.1, + "end": 152.84, + "probability": 0.3634 + }, + { + "start": 152.86, + "end": 155.04, + "probability": 0.8723 + }, + { + "start": 155.74, + "end": 157.76, + "probability": 0.8315 + }, + { + "start": 157.92, + "end": 159.88, + "probability": 0.9722 + }, + { + "start": 160.48, + "end": 163.16, + "probability": 0.9558 + }, + { + "start": 163.84, + "end": 168.16, + "probability": 0.983 + }, + { + "start": 168.58, + "end": 169.26, + "probability": 0.7133 + }, + { + "start": 169.94, + "end": 170.78, + "probability": 0.6191 + }, + { + "start": 170.78, + "end": 171.34, + "probability": 0.9483 + }, + { + "start": 171.7, + "end": 172.24, + "probability": 0.8071 + }, + { + "start": 172.86, + "end": 173.02, + "probability": 0.5479 + }, + { + "start": 173.1, + "end": 174.1, + "probability": 0.8279 + }, + { + "start": 174.64, + "end": 176.42, + "probability": 0.9526 + }, + { + "start": 176.6, + "end": 178.62, + "probability": 0.7914 + }, + { + "start": 179.78, + "end": 180.3, + "probability": 0.552 + }, + { + "start": 180.76, + "end": 181.87, + "probability": 0.9506 + }, + { + "start": 182.8, + "end": 186.54, + "probability": 0.8748 + }, + { + "start": 187.28, + "end": 190.78, + "probability": 0.9581 + }, + { + "start": 191.88, + "end": 196.52, + "probability": 0.9455 + }, + { + "start": 197.36, + "end": 199.68, + "probability": 0.5929 + }, + { + "start": 203.1, + "end": 207.24, + "probability": 0.8428 + }, + { + "start": 208.82, + "end": 218.5, + "probability": 0.9297 + }, + { + "start": 220.04, + "end": 221.94, + "probability": 0.8212 + }, + { + "start": 223.38, + "end": 224.44, + "probability": 0.9929 + }, + { + "start": 225.24, + "end": 226.26, + "probability": 0.7307 + }, + { + "start": 227.08, + "end": 230.2, + "probability": 0.8496 + }, + { + "start": 230.98, + "end": 236.78, + "probability": 0.9206 + }, + { + "start": 238.3, + "end": 240.6, + "probability": 0.8498 + }, + { + "start": 242.04, + "end": 245.1, + "probability": 0.9115 + }, + { + "start": 245.8, + "end": 247.82, + "probability": 0.6067 + }, + { + "start": 248.22, + "end": 250.8, + "probability": 0.9365 + }, + { + "start": 251.46, + "end": 255.18, + "probability": 0.9633 + }, + { + "start": 255.94, + "end": 259.7, + "probability": 0.5727 + }, + { + "start": 259.86, + "end": 265.2, + "probability": 0.8328 + }, + { + "start": 266.3, + "end": 267.88, + "probability": 0.8232 + }, + { + "start": 268.08, + "end": 268.18, + "probability": 0.9231 + }, + { + "start": 268.72, + "end": 270.72, + "probability": 0.914 + }, + { + "start": 271.14, + "end": 272.9, + "probability": 0.9684 + }, + { + "start": 281.18, + "end": 282.2, + "probability": 0.6908 + }, + { + "start": 283.32, + "end": 286.44, + "probability": 0.9888 + }, + { + "start": 286.48, + "end": 288.92, + "probability": 0.764 + }, + { + "start": 289.56, + "end": 290.28, + "probability": 0.7494 + }, + { + "start": 291.68, + "end": 294.22, + "probability": 0.9862 + }, + { + "start": 295.16, + "end": 298.48, + "probability": 0.949 + }, + { + "start": 300.02, + "end": 302.92, + "probability": 0.8516 + }, + { + "start": 303.46, + "end": 305.84, + "probability": 0.9946 + }, + { + "start": 306.7, + "end": 307.68, + "probability": 0.8527 + }, + { + "start": 308.22, + "end": 310.66, + "probability": 0.9761 + }, + { + "start": 311.12, + "end": 314.16, + "probability": 0.8144 + }, + { + "start": 314.52, + "end": 315.22, + "probability": 0.9804 + }, + { + "start": 316.14, + "end": 317.22, + "probability": 0.9764 + }, + { + "start": 318.18, + "end": 321.2, + "probability": 0.8662 + }, + { + "start": 321.88, + "end": 323.42, + "probability": 0.8804 + }, + { + "start": 323.98, + "end": 327.52, + "probability": 0.9919 + }, + { + "start": 328.04, + "end": 328.9, + "probability": 0.5618 + }, + { + "start": 329.46, + "end": 330.94, + "probability": 0.8677 + }, + { + "start": 331.7, + "end": 335.6, + "probability": 0.9956 + }, + { + "start": 335.88, + "end": 337.7, + "probability": 0.9444 + }, + { + "start": 338.1, + "end": 338.48, + "probability": 0.6964 + }, + { + "start": 338.54, + "end": 338.74, + "probability": 0.8962 + }, + { + "start": 338.8, + "end": 339.2, + "probability": 0.9121 + }, + { + "start": 339.58, + "end": 343.6, + "probability": 0.91 + }, + { + "start": 344.38, + "end": 346.9, + "probability": 0.9967 + }, + { + "start": 347.52, + "end": 349.78, + "probability": 0.9902 + }, + { + "start": 350.32, + "end": 353.34, + "probability": 0.9824 + }, + { + "start": 353.84, + "end": 356.08, + "probability": 0.9616 + }, + { + "start": 356.52, + "end": 361.31, + "probability": 0.9932 + }, + { + "start": 361.66, + "end": 365.46, + "probability": 0.8304 + }, + { + "start": 365.46, + "end": 365.82, + "probability": 0.7277 + }, + { + "start": 366.04, + "end": 367.74, + "probability": 0.8982 + }, + { + "start": 367.9, + "end": 369.52, + "probability": 0.9275 + }, + { + "start": 369.58, + "end": 370.1, + "probability": 0.5374 + }, + { + "start": 370.2, + "end": 370.5, + "probability": 0.6468 + }, + { + "start": 370.96, + "end": 371.74, + "probability": 0.6195 + }, + { + "start": 372.08, + "end": 373.18, + "probability": 0.6831 + }, + { + "start": 377.04, + "end": 380.6, + "probability": 0.1228 + }, + { + "start": 381.82, + "end": 383.62, + "probability": 0.512 + }, + { + "start": 384.04, + "end": 384.14, + "probability": 0.5734 + }, + { + "start": 384.14, + "end": 385.62, + "probability": 0.9381 + }, + { + "start": 386.42, + "end": 388.46, + "probability": 0.95 + }, + { + "start": 389.94, + "end": 394.2, + "probability": 0.9201 + }, + { + "start": 394.88, + "end": 397.54, + "probability": 0.9355 + }, + { + "start": 397.72, + "end": 400.92, + "probability": 0.8792 + }, + { + "start": 401.0, + "end": 402.94, + "probability": 0.9428 + }, + { + "start": 403.92, + "end": 409.34, + "probability": 0.9949 + }, + { + "start": 410.58, + "end": 414.98, + "probability": 0.9946 + }, + { + "start": 415.68, + "end": 418.08, + "probability": 0.9925 + }, + { + "start": 418.28, + "end": 420.82, + "probability": 0.8168 + }, + { + "start": 420.82, + "end": 424.38, + "probability": 0.9411 + }, + { + "start": 424.9, + "end": 427.72, + "probability": 0.934 + }, + { + "start": 428.28, + "end": 431.56, + "probability": 0.9712 + }, + { + "start": 432.64, + "end": 433.74, + "probability": 0.8858 + }, + { + "start": 434.34, + "end": 435.44, + "probability": 0.8944 + }, + { + "start": 435.56, + "end": 439.38, + "probability": 0.9499 + }, + { + "start": 439.74, + "end": 446.18, + "probability": 0.9928 + }, + { + "start": 446.3, + "end": 449.04, + "probability": 0.8692 + }, + { + "start": 449.12, + "end": 452.08, + "probability": 0.9916 + }, + { + "start": 452.08, + "end": 454.92, + "probability": 0.9974 + }, + { + "start": 455.96, + "end": 458.1, + "probability": 0.972 + }, + { + "start": 458.2, + "end": 461.72, + "probability": 0.9691 + }, + { + "start": 461.72, + "end": 465.48, + "probability": 0.9321 + }, + { + "start": 466.04, + "end": 468.8, + "probability": 0.8802 + }, + { + "start": 470.08, + "end": 471.06, + "probability": 0.6025 + }, + { + "start": 471.88, + "end": 474.32, + "probability": 0.9827 + }, + { + "start": 474.94, + "end": 476.88, + "probability": 0.8154 + }, + { + "start": 477.4, + "end": 482.88, + "probability": 0.9968 + }, + { + "start": 485.28, + "end": 487.54, + "probability": 0.951 + }, + { + "start": 487.62, + "end": 487.82, + "probability": 0.7654 + }, + { + "start": 488.56, + "end": 489.35, + "probability": 0.5637 + }, + { + "start": 489.64, + "end": 491.1, + "probability": 0.7664 + }, + { + "start": 491.56, + "end": 493.74, + "probability": 0.8037 + }, + { + "start": 500.78, + "end": 503.28, + "probability": 0.7576 + }, + { + "start": 504.44, + "end": 507.96, + "probability": 0.9447 + }, + { + "start": 508.06, + "end": 509.32, + "probability": 0.5649 + }, + { + "start": 509.32, + "end": 511.04, + "probability": 0.6251 + }, + { + "start": 511.92, + "end": 516.89, + "probability": 0.9839 + }, + { + "start": 519.42, + "end": 521.82, + "probability": 0.8386 + }, + { + "start": 522.44, + "end": 523.52, + "probability": 0.7613 + }, + { + "start": 524.14, + "end": 528.72, + "probability": 0.993 + }, + { + "start": 528.96, + "end": 530.34, + "probability": 0.4464 + }, + { + "start": 530.76, + "end": 537.68, + "probability": 0.9914 + }, + { + "start": 538.34, + "end": 539.7, + "probability": 0.953 + }, + { + "start": 540.24, + "end": 546.82, + "probability": 0.9961 + }, + { + "start": 547.66, + "end": 549.96, + "probability": 0.8127 + }, + { + "start": 551.4, + "end": 557.08, + "probability": 0.8525 + }, + { + "start": 557.32, + "end": 559.28, + "probability": 0.6899 + }, + { + "start": 560.38, + "end": 561.66, + "probability": 0.9773 + }, + { + "start": 562.7, + "end": 567.08, + "probability": 0.6554 + }, + { + "start": 567.78, + "end": 571.54, + "probability": 0.9965 + }, + { + "start": 571.54, + "end": 575.62, + "probability": 0.9831 + }, + { + "start": 575.74, + "end": 575.94, + "probability": 0.6667 + }, + { + "start": 576.18, + "end": 578.12, + "probability": 0.5393 + }, + { + "start": 578.22, + "end": 579.64, + "probability": 0.7713 + }, + { + "start": 579.74, + "end": 580.24, + "probability": 0.4904 + }, + { + "start": 580.28, + "end": 580.6, + "probability": 0.7339 + }, + { + "start": 580.9, + "end": 581.44, + "probability": 0.5806 + }, + { + "start": 581.56, + "end": 582.9, + "probability": 0.3036 + }, + { + "start": 585.98, + "end": 588.56, + "probability": 0.9894 + }, + { + "start": 590.0, + "end": 591.04, + "probability": 0.677 + }, + { + "start": 591.34, + "end": 594.94, + "probability": 0.8833 + }, + { + "start": 595.22, + "end": 595.84, + "probability": 0.8363 + }, + { + "start": 596.94, + "end": 599.2, + "probability": 0.9669 + }, + { + "start": 600.16, + "end": 602.0, + "probability": 0.6759 + }, + { + "start": 603.68, + "end": 604.54, + "probability": 0.8066 + }, + { + "start": 604.7, + "end": 605.56, + "probability": 0.4602 + }, + { + "start": 605.68, + "end": 607.28, + "probability": 0.9727 + }, + { + "start": 608.16, + "end": 611.04, + "probability": 0.9966 + }, + { + "start": 612.18, + "end": 615.28, + "probability": 0.9224 + }, + { + "start": 616.2, + "end": 617.66, + "probability": 0.9956 + }, + { + "start": 618.78, + "end": 621.2, + "probability": 0.7158 + }, + { + "start": 621.9, + "end": 624.04, + "probability": 0.8823 + }, + { + "start": 625.1, + "end": 627.18, + "probability": 0.8887 + }, + { + "start": 628.06, + "end": 634.96, + "probability": 0.9677 + }, + { + "start": 635.7, + "end": 639.14, + "probability": 0.9911 + }, + { + "start": 639.88, + "end": 641.48, + "probability": 0.9907 + }, + { + "start": 642.04, + "end": 647.14, + "probability": 0.8082 + }, + { + "start": 647.72, + "end": 651.72, + "probability": 0.6149 + }, + { + "start": 652.4, + "end": 653.12, + "probability": 0.6877 + }, + { + "start": 661.74, + "end": 664.36, + "probability": 0.7856 + }, + { + "start": 664.6, + "end": 668.56, + "probability": 0.9968 + }, + { + "start": 669.0, + "end": 672.96, + "probability": 0.9136 + }, + { + "start": 673.62, + "end": 677.16, + "probability": 0.8821 + }, + { + "start": 677.16, + "end": 681.44, + "probability": 0.9852 + }, + { + "start": 682.18, + "end": 686.9, + "probability": 0.6744 + }, + { + "start": 687.42, + "end": 690.62, + "probability": 0.9445 + }, + { + "start": 691.32, + "end": 695.06, + "probability": 0.9605 + }, + { + "start": 695.46, + "end": 698.92, + "probability": 0.9814 + }, + { + "start": 698.92, + "end": 702.24, + "probability": 0.9286 + }, + { + "start": 703.12, + "end": 706.78, + "probability": 0.8983 + }, + { + "start": 707.2, + "end": 710.88, + "probability": 0.9893 + }, + { + "start": 710.88, + "end": 714.28, + "probability": 0.8174 + }, + { + "start": 715.04, + "end": 715.46, + "probability": 0.7495 + }, + { + "start": 715.9, + "end": 718.32, + "probability": 0.6638 + }, + { + "start": 718.98, + "end": 720.94, + "probability": 0.3896 + }, + { + "start": 721.3, + "end": 722.04, + "probability": 0.4953 + }, + { + "start": 722.58, + "end": 724.9, + "probability": 0.9531 + }, + { + "start": 729.62, + "end": 733.12, + "probability": 0.9867 + }, + { + "start": 734.26, + "end": 738.56, + "probability": 0.9976 + }, + { + "start": 739.86, + "end": 743.98, + "probability": 0.9984 + }, + { + "start": 743.98, + "end": 747.52, + "probability": 0.9989 + }, + { + "start": 748.78, + "end": 749.6, + "probability": 0.9042 + }, + { + "start": 750.68, + "end": 751.32, + "probability": 0.844 + }, + { + "start": 752.52, + "end": 755.02, + "probability": 0.9893 + }, + { + "start": 756.22, + "end": 758.64, + "probability": 0.9701 + }, + { + "start": 761.04, + "end": 763.0, + "probability": 0.9859 + }, + { + "start": 763.88, + "end": 765.06, + "probability": 0.7593 + }, + { + "start": 765.64, + "end": 769.06, + "probability": 0.8599 + }, + { + "start": 769.42, + "end": 771.0, + "probability": 0.1469 + }, + { + "start": 771.44, + "end": 771.54, + "probability": 0.8707 + }, + { + "start": 773.34, + "end": 779.82, + "probability": 0.9747 + }, + { + "start": 779.84, + "end": 780.72, + "probability": 0.1476 + }, + { + "start": 780.76, + "end": 782.0, + "probability": 0.8024 + }, + { + "start": 784.64, + "end": 791.7, + "probability": 0.9961 + }, + { + "start": 791.9, + "end": 792.66, + "probability": 0.4648 + }, + { + "start": 792.66, + "end": 793.3, + "probability": 0.1773 + }, + { + "start": 793.3, + "end": 793.96, + "probability": 0.4876 + }, + { + "start": 794.56, + "end": 795.68, + "probability": 0.8545 + }, + { + "start": 795.78, + "end": 796.24, + "probability": 0.6122 + }, + { + "start": 796.28, + "end": 800.18, + "probability": 0.46 + }, + { + "start": 800.32, + "end": 801.88, + "probability": 0.9013 + }, + { + "start": 803.92, + "end": 804.94, + "probability": 0.3004 + }, + { + "start": 805.24, + "end": 806.38, + "probability": 0.6813 + }, + { + "start": 806.6, + "end": 807.62, + "probability": 0.1317 + }, + { + "start": 807.9, + "end": 809.78, + "probability": 0.2937 + }, + { + "start": 809.96, + "end": 815.34, + "probability": 0.9823 + }, + { + "start": 815.5, + "end": 816.22, + "probability": 0.1555 + }, + { + "start": 817.16, + "end": 819.68, + "probability": 0.471 + }, + { + "start": 819.78, + "end": 820.62, + "probability": 0.3882 + }, + { + "start": 820.64, + "end": 823.28, + "probability": 0.8285 + }, + { + "start": 823.34, + "end": 825.1, + "probability": 0.863 + }, + { + "start": 828.06, + "end": 828.92, + "probability": 0.5232 + }, + { + "start": 830.76, + "end": 833.86, + "probability": 0.6116 + }, + { + "start": 834.42, + "end": 837.08, + "probability": 0.6075 + }, + { + "start": 838.28, + "end": 840.38, + "probability": 0.8942 + }, + { + "start": 840.46, + "end": 841.57, + "probability": 0.6764 + }, + { + "start": 842.12, + "end": 844.7, + "probability": 0.7692 + }, + { + "start": 845.64, + "end": 848.5, + "probability": 0.9115 + }, + { + "start": 848.64, + "end": 851.72, + "probability": 0.9943 + }, + { + "start": 853.1, + "end": 857.1, + "probability": 0.8788 + }, + { + "start": 857.86, + "end": 859.42, + "probability": 0.9272 + }, + { + "start": 860.06, + "end": 861.86, + "probability": 0.9309 + }, + { + "start": 862.48, + "end": 863.25, + "probability": 0.9722 + }, + { + "start": 865.84, + "end": 873.1, + "probability": 0.9131 + }, + { + "start": 874.56, + "end": 878.64, + "probability": 0.9967 + }, + { + "start": 878.64, + "end": 882.56, + "probability": 0.7612 + }, + { + "start": 883.08, + "end": 886.78, + "probability": 0.8225 + }, + { + "start": 887.44, + "end": 889.38, + "probability": 0.7551 + }, + { + "start": 890.6, + "end": 890.82, + "probability": 0.3006 + }, + { + "start": 890.98, + "end": 893.88, + "probability": 0.7082 + }, + { + "start": 894.0, + "end": 897.8, + "probability": 0.8486 + }, + { + "start": 898.24, + "end": 902.08, + "probability": 0.8247 + }, + { + "start": 902.08, + "end": 905.58, + "probability": 0.9745 + }, + { + "start": 906.14, + "end": 908.4, + "probability": 0.9365 + }, + { + "start": 908.54, + "end": 910.66, + "probability": 0.9906 + }, + { + "start": 911.04, + "end": 914.36, + "probability": 0.9632 + }, + { + "start": 914.36, + "end": 918.14, + "probability": 0.9889 + }, + { + "start": 918.62, + "end": 918.78, + "probability": 0.6418 + }, + { + "start": 918.9, + "end": 921.26, + "probability": 0.9685 + }, + { + "start": 921.64, + "end": 924.12, + "probability": 0.9966 + }, + { + "start": 924.8, + "end": 926.74, + "probability": 0.901 + }, + { + "start": 927.48, + "end": 929.84, + "probability": 0.856 + }, + { + "start": 930.52, + "end": 933.5, + "probability": 0.9953 + }, + { + "start": 934.18, + "end": 939.2, + "probability": 0.9922 + }, + { + "start": 939.2, + "end": 942.22, + "probability": 0.998 + }, + { + "start": 943.28, + "end": 946.0, + "probability": 0.9668 + }, + { + "start": 946.82, + "end": 951.42, + "probability": 0.9517 + }, + { + "start": 952.22, + "end": 956.29, + "probability": 0.9817 + }, + { + "start": 957.48, + "end": 959.18, + "probability": 0.6836 + }, + { + "start": 959.9, + "end": 961.86, + "probability": 0.8398 + }, + { + "start": 962.78, + "end": 964.66, + "probability": 0.8879 + }, + { + "start": 965.14, + "end": 967.3, + "probability": 0.9645 + }, + { + "start": 967.76, + "end": 971.02, + "probability": 0.9844 + }, + { + "start": 971.56, + "end": 972.48, + "probability": 0.7915 + }, + { + "start": 972.74, + "end": 977.58, + "probability": 0.9946 + }, + { + "start": 977.76, + "end": 980.2, + "probability": 0.6262 + }, + { + "start": 980.26, + "end": 981.46, + "probability": 0.7554 + }, + { + "start": 981.98, + "end": 984.3, + "probability": 0.8973 + }, + { + "start": 984.98, + "end": 987.74, + "probability": 0.9458 + }, + { + "start": 988.52, + "end": 990.32, + "probability": 0.9197 + }, + { + "start": 991.44, + "end": 994.58, + "probability": 0.9087 + }, + { + "start": 995.34, + "end": 996.66, + "probability": 0.8279 + }, + { + "start": 997.24, + "end": 998.72, + "probability": 0.8486 + }, + { + "start": 999.34, + "end": 1001.2, + "probability": 0.6748 + }, + { + "start": 1002.14, + "end": 1006.3, + "probability": 0.8884 + }, + { + "start": 1006.88, + "end": 1011.3, + "probability": 0.9764 + }, + { + "start": 1012.26, + "end": 1016.56, + "probability": 0.778 + }, + { + "start": 1017.32, + "end": 1019.02, + "probability": 0.9517 + }, + { + "start": 1019.52, + "end": 1023.1, + "probability": 0.9746 + }, + { + "start": 1023.86, + "end": 1028.6, + "probability": 0.5589 + }, + { + "start": 1029.1, + "end": 1029.12, + "probability": 0.4627 + }, + { + "start": 1029.16, + "end": 1030.32, + "probability": 0.7389 + }, + { + "start": 1030.66, + "end": 1037.9, + "probability": 0.9932 + }, + { + "start": 1037.96, + "end": 1039.36, + "probability": 0.568 + }, + { + "start": 1040.04, + "end": 1043.9, + "probability": 0.8579 + }, + { + "start": 1044.14, + "end": 1048.32, + "probability": 0.9925 + }, + { + "start": 1048.42, + "end": 1048.96, + "probability": 0.7746 + }, + { + "start": 1049.5, + "end": 1051.08, + "probability": 0.5594 + }, + { + "start": 1051.18, + "end": 1052.84, + "probability": 0.991 + }, + { + "start": 1053.44, + "end": 1055.88, + "probability": 0.8378 + }, + { + "start": 1056.64, + "end": 1058.04, + "probability": 0.7127 + }, + { + "start": 1058.78, + "end": 1061.6, + "probability": 0.8942 + }, + { + "start": 1062.3, + "end": 1062.86, + "probability": 0.7076 + }, + { + "start": 1062.92, + "end": 1064.48, + "probability": 0.9631 + }, + { + "start": 1064.68, + "end": 1067.72, + "probability": 0.9888 + }, + { + "start": 1067.76, + "end": 1068.54, + "probability": 0.6962 + }, + { + "start": 1069.66, + "end": 1069.88, + "probability": 0.51 + }, + { + "start": 1070.0, + "end": 1070.18, + "probability": 0.8478 + }, + { + "start": 1070.26, + "end": 1075.16, + "probability": 0.8977 + }, + { + "start": 1075.66, + "end": 1076.08, + "probability": 0.4971 + }, + { + "start": 1076.12, + "end": 1080.44, + "probability": 0.9816 + }, + { + "start": 1080.94, + "end": 1085.96, + "probability": 0.9066 + }, + { + "start": 1086.52, + "end": 1088.4, + "probability": 0.9138 + }, + { + "start": 1088.86, + "end": 1091.84, + "probability": 0.8101 + }, + { + "start": 1092.2, + "end": 1093.9, + "probability": 0.9552 + }, + { + "start": 1094.08, + "end": 1096.06, + "probability": 0.8022 + }, + { + "start": 1096.52, + "end": 1097.0, + "probability": 0.6336 + }, + { + "start": 1097.08, + "end": 1100.18, + "probability": 0.9908 + }, + { + "start": 1100.3, + "end": 1102.84, + "probability": 0.7488 + }, + { + "start": 1103.5, + "end": 1107.32, + "probability": 0.9211 + }, + { + "start": 1107.96, + "end": 1108.9, + "probability": 0.9206 + }, + { + "start": 1109.7, + "end": 1111.14, + "probability": 0.798 + }, + { + "start": 1111.2, + "end": 1114.96, + "probability": 0.9922 + }, + { + "start": 1114.96, + "end": 1120.08, + "probability": 0.9993 + }, + { + "start": 1120.18, + "end": 1120.42, + "probability": 0.6404 + }, + { + "start": 1120.74, + "end": 1122.74, + "probability": 0.9802 + }, + { + "start": 1122.92, + "end": 1124.72, + "probability": 0.6335 + }, + { + "start": 1125.14, + "end": 1125.4, + "probability": 0.448 + }, + { + "start": 1126.42, + "end": 1127.64, + "probability": 0.7025 + }, + { + "start": 1128.3, + "end": 1129.02, + "probability": 0.7935 + }, + { + "start": 1133.04, + "end": 1134.96, + "probability": 0.4594 + }, + { + "start": 1135.46, + "end": 1137.04, + "probability": 0.5645 + }, + { + "start": 1140.76, + "end": 1142.2, + "probability": 0.6293 + }, + { + "start": 1144.3, + "end": 1148.73, + "probability": 0.9585 + }, + { + "start": 1149.7, + "end": 1150.64, + "probability": 0.6583 + }, + { + "start": 1151.54, + "end": 1154.0, + "probability": 0.9967 + }, + { + "start": 1154.62, + "end": 1158.78, + "probability": 0.9932 + }, + { + "start": 1159.26, + "end": 1159.42, + "probability": 0.1133 + }, + { + "start": 1159.42, + "end": 1160.28, + "probability": 0.2249 + }, + { + "start": 1160.6, + "end": 1167.72, + "probability": 0.9097 + }, + { + "start": 1167.72, + "end": 1175.52, + "probability": 0.8355 + }, + { + "start": 1175.87, + "end": 1182.76, + "probability": 0.9695 + }, + { + "start": 1182.88, + "end": 1186.72, + "probability": 0.7958 + }, + { + "start": 1186.78, + "end": 1188.9, + "probability": 0.8854 + }, + { + "start": 1189.08, + "end": 1194.28, + "probability": 0.999 + }, + { + "start": 1195.2, + "end": 1201.58, + "probability": 0.9961 + }, + { + "start": 1202.28, + "end": 1209.16, + "probability": 0.9861 + }, + { + "start": 1209.9, + "end": 1215.38, + "probability": 0.9911 + }, + { + "start": 1216.06, + "end": 1221.54, + "probability": 0.9974 + }, + { + "start": 1222.44, + "end": 1227.58, + "probability": 0.9974 + }, + { + "start": 1228.32, + "end": 1231.04, + "probability": 0.9984 + }, + { + "start": 1231.74, + "end": 1236.6, + "probability": 0.9883 + }, + { + "start": 1237.2, + "end": 1239.34, + "probability": 0.9932 + }, + { + "start": 1239.92, + "end": 1244.46, + "probability": 0.8854 + }, + { + "start": 1244.46, + "end": 1246.5, + "probability": 0.9963 + }, + { + "start": 1247.22, + "end": 1252.08, + "probability": 0.9935 + }, + { + "start": 1252.56, + "end": 1254.56, + "probability": 0.9841 + }, + { + "start": 1254.96, + "end": 1255.3, + "probability": 0.354 + }, + { + "start": 1255.36, + "end": 1256.36, + "probability": 0.7074 + }, + { + "start": 1256.84, + "end": 1257.16, + "probability": 0.2398 + }, + { + "start": 1257.28, + "end": 1257.96, + "probability": 0.5488 + }, + { + "start": 1258.42, + "end": 1259.94, + "probability": 0.9253 + }, + { + "start": 1260.32, + "end": 1260.8, + "probability": 0.2618 + }, + { + "start": 1260.82, + "end": 1261.58, + "probability": 0.7932 + }, + { + "start": 1261.94, + "end": 1263.06, + "probability": 0.7427 + }, + { + "start": 1263.18, + "end": 1264.18, + "probability": 0.6309 + }, + { + "start": 1264.32, + "end": 1266.14, + "probability": 0.7178 + }, + { + "start": 1266.7, + "end": 1267.02, + "probability": 0.3542 + }, + { + "start": 1267.02, + "end": 1268.92, + "probability": 0.5004 + }, + { + "start": 1269.02, + "end": 1271.0, + "probability": 0.4557 + }, + { + "start": 1271.4, + "end": 1272.24, + "probability": 0.5705 + }, + { + "start": 1272.88, + "end": 1274.36, + "probability": 0.9022 + }, + { + "start": 1275.26, + "end": 1275.58, + "probability": 0.9233 + }, + { + "start": 1275.62, + "end": 1279.56, + "probability": 0.9906 + }, + { + "start": 1280.08, + "end": 1282.1, + "probability": 0.9072 + }, + { + "start": 1282.7, + "end": 1286.16, + "probability": 0.9847 + }, + { + "start": 1286.54, + "end": 1286.9, + "probability": 0.186 + }, + { + "start": 1287.66, + "end": 1288.74, + "probability": 0.482 + }, + { + "start": 1289.44, + "end": 1293.2, + "probability": 0.7325 + }, + { + "start": 1293.78, + "end": 1295.8, + "probability": 0.9819 + }, + { + "start": 1296.56, + "end": 1296.74, + "probability": 0.1149 + }, + { + "start": 1296.74, + "end": 1301.14, + "probability": 0.3017 + }, + { + "start": 1301.84, + "end": 1304.86, + "probability": 0.1595 + }, + { + "start": 1305.42, + "end": 1306.5, + "probability": 0.2549 + }, + { + "start": 1309.76, + "end": 1310.06, + "probability": 0.2497 + }, + { + "start": 1310.06, + "end": 1310.06, + "probability": 0.0227 + }, + { + "start": 1310.06, + "end": 1310.06, + "probability": 0.3694 + }, + { + "start": 1310.06, + "end": 1310.18, + "probability": 0.2784 + }, + { + "start": 1310.28, + "end": 1311.1, + "probability": 0.5663 + }, + { + "start": 1311.2, + "end": 1312.42, + "probability": 0.8896 + }, + { + "start": 1312.52, + "end": 1313.32, + "probability": 0.9546 + }, + { + "start": 1313.34, + "end": 1314.92, + "probability": 0.797 + }, + { + "start": 1315.42, + "end": 1317.86, + "probability": 0.952 + }, + { + "start": 1318.52, + "end": 1320.5, + "probability": 0.6843 + }, + { + "start": 1320.68, + "end": 1321.56, + "probability": 0.6581 + }, + { + "start": 1321.66, + "end": 1322.6, + "probability": 0.679 + }, + { + "start": 1322.66, + "end": 1323.36, + "probability": 0.7846 + }, + { + "start": 1323.74, + "end": 1326.86, + "probability": 0.8255 + }, + { + "start": 1327.02, + "end": 1328.38, + "probability": 0.9111 + }, + { + "start": 1331.18, + "end": 1332.0, + "probability": 0.1251 + }, + { + "start": 1332.0, + "end": 1332.32, + "probability": 0.065 + }, + { + "start": 1332.48, + "end": 1335.02, + "probability": 0.6097 + }, + { + "start": 1335.02, + "end": 1335.72, + "probability": 0.4545 + }, + { + "start": 1335.72, + "end": 1341.6, + "probability": 0.6966 + }, + { + "start": 1342.08, + "end": 1344.06, + "probability": 0.0318 + }, + { + "start": 1344.06, + "end": 1344.06, + "probability": 0.1065 + }, + { + "start": 1344.06, + "end": 1345.36, + "probability": 0.2531 + }, + { + "start": 1345.6, + "end": 1346.56, + "probability": 0.522 + }, + { + "start": 1346.64, + "end": 1348.96, + "probability": 0.8832 + }, + { + "start": 1349.2, + "end": 1350.78, + "probability": 0.6605 + }, + { + "start": 1350.98, + "end": 1352.3, + "probability": 0.3939 + }, + { + "start": 1352.88, + "end": 1353.68, + "probability": 0.7326 + }, + { + "start": 1353.88, + "end": 1356.66, + "probability": 0.9963 + }, + { + "start": 1356.66, + "end": 1361.48, + "probability": 0.6664 + }, + { + "start": 1362.04, + "end": 1364.62, + "probability": 0.9949 + }, + { + "start": 1365.32, + "end": 1367.94, + "probability": 0.7729 + }, + { + "start": 1368.3, + "end": 1371.78, + "probability": 0.9066 + }, + { + "start": 1372.3, + "end": 1374.66, + "probability": 0.9183 + }, + { + "start": 1374.88, + "end": 1377.76, + "probability": 0.9674 + }, + { + "start": 1378.51, + "end": 1379.0, + "probability": 0.6031 + }, + { + "start": 1379.38, + "end": 1383.28, + "probability": 0.9293 + }, + { + "start": 1383.74, + "end": 1387.66, + "probability": 0.9814 + }, + { + "start": 1388.24, + "end": 1391.98, + "probability": 0.9556 + }, + { + "start": 1392.5, + "end": 1396.06, + "probability": 0.988 + }, + { + "start": 1396.06, + "end": 1399.86, + "probability": 0.999 + }, + { + "start": 1400.58, + "end": 1401.74, + "probability": 0.8947 + }, + { + "start": 1402.1, + "end": 1406.32, + "probability": 0.7825 + }, + { + "start": 1406.32, + "end": 1411.44, + "probability": 0.939 + }, + { + "start": 1411.44, + "end": 1413.36, + "probability": 0.722 + }, + { + "start": 1413.78, + "end": 1416.66, + "probability": 0.872 + }, + { + "start": 1416.9, + "end": 1420.0, + "probability": 0.9145 + }, + { + "start": 1420.16, + "end": 1420.16, + "probability": 0.624 + }, + { + "start": 1421.44, + "end": 1423.18, + "probability": 0.8315 + }, + { + "start": 1423.28, + "end": 1424.26, + "probability": 0.8319 + }, + { + "start": 1425.14, + "end": 1426.62, + "probability": 0.7043 + }, + { + "start": 1429.64, + "end": 1430.38, + "probability": 0.01 + }, + { + "start": 1430.9, + "end": 1432.38, + "probability": 0.1451 + }, + { + "start": 1432.38, + "end": 1432.68, + "probability": 0.1222 + }, + { + "start": 1432.68, + "end": 1432.75, + "probability": 0.0171 + }, + { + "start": 1433.82, + "end": 1433.82, + "probability": 0.0328 + }, + { + "start": 1435.1, + "end": 1436.4, + "probability": 0.4311 + }, + { + "start": 1437.18, + "end": 1437.38, + "probability": 0.5126 + }, + { + "start": 1437.38, + "end": 1438.29, + "probability": 0.2946 + }, + { + "start": 1438.7, + "end": 1443.48, + "probability": 0.0212 + }, + { + "start": 1443.48, + "end": 1444.92, + "probability": 0.1721 + }, + { + "start": 1445.08, + "end": 1446.4, + "probability": 0.2778 + }, + { + "start": 1446.82, + "end": 1448.86, + "probability": 0.1245 + }, + { + "start": 1448.86, + "end": 1450.42, + "probability": 0.1555 + }, + { + "start": 1450.56, + "end": 1453.03, + "probability": 0.2504 + }, + { + "start": 1454.08, + "end": 1456.56, + "probability": 0.0371 + }, + { + "start": 1458.5, + "end": 1458.86, + "probability": 0.1932 + }, + { + "start": 1458.86, + "end": 1459.76, + "probability": 0.2032 + }, + { + "start": 1460.38, + "end": 1460.92, + "probability": 0.1157 + }, + { + "start": 1461.46, + "end": 1461.8, + "probability": 0.2022 + }, + { + "start": 1462.53, + "end": 1466.06, + "probability": 0.0666 + }, + { + "start": 1468.76, + "end": 1470.64, + "probability": 0.3488 + }, + { + "start": 1470.78, + "end": 1470.78, + "probability": 0.241 + }, + { + "start": 1470.82, + "end": 1471.38, + "probability": 0.0162 + }, + { + "start": 1473.62, + "end": 1474.14, + "probability": 0.076 + }, + { + "start": 1474.22, + "end": 1475.42, + "probability": 0.0476 + }, + { + "start": 1475.42, + "end": 1475.88, + "probability": 0.097 + }, + { + "start": 1476.4, + "end": 1477.5, + "probability": 0.0159 + }, + { + "start": 1480.48, + "end": 1480.62, + "probability": 0.2659 + }, + { + "start": 1481.72, + "end": 1482.72, + "probability": 0.1166 + }, + { + "start": 1482.72, + "end": 1482.72, + "probability": 0.1954 + }, + { + "start": 1483.54, + "end": 1485.71, + "probability": 0.1386 + }, + { + "start": 1486.84, + "end": 1487.4, + "probability": 0.2961 + }, + { + "start": 1488.12, + "end": 1489.72, + "probability": 0.2949 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1499.0, + "end": 1499.0, + "probability": 0.0 + }, + { + "start": 1500.0, + "end": 1501.34, + "probability": 0.4982 + }, + { + "start": 1501.36, + "end": 1503.42, + "probability": 0.8577 + }, + { + "start": 1503.58, + "end": 1505.52, + "probability": 0.8368 + }, + { + "start": 1505.6, + "end": 1506.88, + "probability": 0.223 + }, + { + "start": 1506.88, + "end": 1507.04, + "probability": 0.3258 + }, + { + "start": 1507.04, + "end": 1507.04, + "probability": 0.1083 + }, + { + "start": 1507.04, + "end": 1508.82, + "probability": 0.6207 + }, + { + "start": 1509.26, + "end": 1509.64, + "probability": 0.0825 + }, + { + "start": 1509.9, + "end": 1509.9, + "probability": 0.1971 + }, + { + "start": 1509.9, + "end": 1513.71, + "probability": 0.3916 + }, + { + "start": 1514.3, + "end": 1516.22, + "probability": 0.5526 + }, + { + "start": 1516.22, + "end": 1517.7, + "probability": 0.4877 + }, + { + "start": 1518.26, + "end": 1518.32, + "probability": 0.2896 + }, + { + "start": 1518.32, + "end": 1521.14, + "probability": 0.1304 + }, + { + "start": 1521.7, + "end": 1524.17, + "probability": 0.1544 + }, + { + "start": 1524.86, + "end": 1527.4, + "probability": 0.4442 + }, + { + "start": 1528.66, + "end": 1530.0, + "probability": 0.4673 + }, + { + "start": 1530.42, + "end": 1530.42, + "probability": 0.1612 + }, + { + "start": 1530.42, + "end": 1533.04, + "probability": 0.8221 + }, + { + "start": 1533.32, + "end": 1535.94, + "probability": 0.498 + }, + { + "start": 1537.52, + "end": 1538.0, + "probability": 0.56 + }, + { + "start": 1538.04, + "end": 1539.26, + "probability": 0.7961 + }, + { + "start": 1539.3, + "end": 1541.62, + "probability": 0.8668 + }, + { + "start": 1541.72, + "end": 1542.46, + "probability": 0.8237 + }, + { + "start": 1542.5, + "end": 1544.0, + "probability": 0.8571 + }, + { + "start": 1544.82, + "end": 1552.22, + "probability": 0.9333 + }, + { + "start": 1553.1, + "end": 1556.32, + "probability": 0.9723 + }, + { + "start": 1556.68, + "end": 1560.98, + "probability": 0.9932 + }, + { + "start": 1561.86, + "end": 1565.22, + "probability": 0.9199 + }, + { + "start": 1565.84, + "end": 1566.79, + "probability": 0.9809 + }, + { + "start": 1567.9, + "end": 1570.64, + "probability": 0.9948 + }, + { + "start": 1571.54, + "end": 1573.84, + "probability": 0.9891 + }, + { + "start": 1574.0, + "end": 1575.58, + "probability": 0.9932 + }, + { + "start": 1576.38, + "end": 1577.18, + "probability": 0.6281 + }, + { + "start": 1577.34, + "end": 1582.58, + "probability": 0.9931 + }, + { + "start": 1582.58, + "end": 1587.34, + "probability": 0.999 + }, + { + "start": 1587.34, + "end": 1593.88, + "probability": 0.9933 + }, + { + "start": 1594.28, + "end": 1599.34, + "probability": 0.9941 + }, + { + "start": 1599.42, + "end": 1601.88, + "probability": 0.9206 + }, + { + "start": 1602.3, + "end": 1606.66, + "probability": 0.9926 + }, + { + "start": 1607.2, + "end": 1608.8, + "probability": 0.9278 + }, + { + "start": 1609.7, + "end": 1613.14, + "probability": 0.888 + }, + { + "start": 1613.62, + "end": 1615.64, + "probability": 0.9976 + }, + { + "start": 1616.06, + "end": 1617.34, + "probability": 0.8633 + }, + { + "start": 1617.68, + "end": 1617.82, + "probability": 0.6016 + }, + { + "start": 1617.82, + "end": 1621.22, + "probability": 0.9976 + }, + { + "start": 1621.7, + "end": 1625.52, + "probability": 0.8855 + }, + { + "start": 1626.2, + "end": 1629.46, + "probability": 0.8926 + }, + { + "start": 1629.72, + "end": 1631.24, + "probability": 0.6183 + }, + { + "start": 1631.32, + "end": 1633.08, + "probability": 0.8903 + }, + { + "start": 1633.08, + "end": 1634.76, + "probability": 0.8409 + }, + { + "start": 1640.94, + "end": 1642.82, + "probability": 0.9795 + }, + { + "start": 1642.84, + "end": 1643.62, + "probability": 0.5683 + }, + { + "start": 1643.64, + "end": 1643.74, + "probability": 0.3633 + }, + { + "start": 1643.88, + "end": 1644.56, + "probability": 0.7648 + }, + { + "start": 1645.32, + "end": 1648.76, + "probability": 0.9912 + }, + { + "start": 1649.56, + "end": 1650.76, + "probability": 0.7923 + }, + { + "start": 1650.76, + "end": 1654.42, + "probability": 0.9957 + }, + { + "start": 1655.26, + "end": 1657.82, + "probability": 0.9972 + }, + { + "start": 1657.88, + "end": 1659.9, + "probability": 0.9993 + }, + { + "start": 1660.86, + "end": 1662.22, + "probability": 0.8956 + }, + { + "start": 1662.34, + "end": 1664.86, + "probability": 0.9961 + }, + { + "start": 1666.12, + "end": 1672.24, + "probability": 0.9576 + }, + { + "start": 1673.28, + "end": 1675.0, + "probability": 0.9887 + }, + { + "start": 1675.12, + "end": 1675.9, + "probability": 0.9481 + }, + { + "start": 1675.94, + "end": 1676.62, + "probability": 0.9001 + }, + { + "start": 1676.74, + "end": 1677.58, + "probability": 0.8892 + }, + { + "start": 1677.64, + "end": 1678.26, + "probability": 0.5137 + }, + { + "start": 1678.74, + "end": 1680.08, + "probability": 0.9893 + }, + { + "start": 1680.16, + "end": 1681.56, + "probability": 0.8563 + }, + { + "start": 1682.32, + "end": 1683.64, + "probability": 0.5925 + }, + { + "start": 1684.24, + "end": 1686.36, + "probability": 0.9937 + }, + { + "start": 1686.8, + "end": 1689.06, + "probability": 0.9995 + }, + { + "start": 1689.68, + "end": 1692.44, + "probability": 0.9907 + }, + { + "start": 1692.56, + "end": 1694.52, + "probability": 0.9929 + }, + { + "start": 1695.18, + "end": 1696.42, + "probability": 0.9719 + }, + { + "start": 1696.48, + "end": 1697.46, + "probability": 0.9576 + }, + { + "start": 1697.92, + "end": 1700.68, + "probability": 0.9899 + }, + { + "start": 1701.12, + "end": 1704.6, + "probability": 0.9772 + }, + { + "start": 1704.72, + "end": 1707.76, + "probability": 0.8623 + }, + { + "start": 1707.76, + "end": 1710.18, + "probability": 0.9897 + }, + { + "start": 1711.34, + "end": 1711.58, + "probability": 0.714 + }, + { + "start": 1711.8, + "end": 1712.79, + "probability": 0.9609 + }, + { + "start": 1713.14, + "end": 1715.74, + "probability": 0.7235 + }, + { + "start": 1716.18, + "end": 1717.1, + "probability": 0.6583 + }, + { + "start": 1717.2, + "end": 1717.4, + "probability": 0.0158 + }, + { + "start": 1717.4, + "end": 1719.16, + "probability": 0.8177 + }, + { + "start": 1719.28, + "end": 1719.98, + "probability": 0.0978 + }, + { + "start": 1719.98, + "end": 1721.64, + "probability": 0.7551 + }, + { + "start": 1722.18, + "end": 1724.7, + "probability": 0.3466 + }, + { + "start": 1725.04, + "end": 1726.16, + "probability": 0.0356 + }, + { + "start": 1728.4, + "end": 1729.56, + "probability": 0.0038 + }, + { + "start": 1729.64, + "end": 1731.84, + "probability": 0.0646 + }, + { + "start": 1732.02, + "end": 1732.46, + "probability": 0.0285 + }, + { + "start": 1733.36, + "end": 1733.36, + "probability": 0.3341 + }, + { + "start": 1733.5, + "end": 1734.18, + "probability": 0.0565 + }, + { + "start": 1734.18, + "end": 1734.3, + "probability": 0.2159 + }, + { + "start": 1734.5, + "end": 1734.8, + "probability": 0.1542 + }, + { + "start": 1735.34, + "end": 1737.0, + "probability": 0.1266 + }, + { + "start": 1737.68, + "end": 1739.66, + "probability": 0.4435 + }, + { + "start": 1739.76, + "end": 1741.86, + "probability": 0.0619 + }, + { + "start": 1742.6, + "end": 1743.31, + "probability": 0.038 + }, + { + "start": 1744.44, + "end": 1745.74, + "probability": 0.0384 + }, + { + "start": 1747.97, + "end": 1749.54, + "probability": 0.967 + }, + { + "start": 1750.08, + "end": 1754.58, + "probability": 0.3788 + }, + { + "start": 1754.74, + "end": 1755.96, + "probability": 0.052 + }, + { + "start": 1763.02, + "end": 1765.28, + "probability": 0.0398 + }, + { + "start": 1765.9, + "end": 1768.27, + "probability": 0.0726 + }, + { + "start": 1770.86, + "end": 1771.44, + "probability": 0.4827 + }, + { + "start": 1772.16, + "end": 1773.54, + "probability": 0.0966 + }, + { + "start": 1773.54, + "end": 1775.94, + "probability": 0.3004 + }, + { + "start": 1778.74, + "end": 1779.89, + "probability": 0.0137 + }, + { + "start": 1780.2, + "end": 1781.14, + "probability": 0.3309 + }, + { + "start": 1781.16, + "end": 1782.88, + "probability": 0.3519 + }, + { + "start": 1788.56, + "end": 1788.66, + "probability": 0.1218 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.0, + "end": 1820.0, + "probability": 0.0 + }, + { + "start": 1820.74, + "end": 1820.9, + "probability": 0.1475 + }, + { + "start": 1820.9, + "end": 1822.18, + "probability": 0.8537 + }, + { + "start": 1822.18, + "end": 1823.32, + "probability": 0.5554 + }, + { + "start": 1826.38, + "end": 1827.18, + "probability": 0.2085 + }, + { + "start": 1829.93, + "end": 1833.98, + "probability": 0.2402 + }, + { + "start": 1838.98, + "end": 1840.02, + "probability": 0.063 + }, + { + "start": 1845.34, + "end": 1848.47, + "probability": 0.3428 + }, + { + "start": 1848.66, + "end": 1849.74, + "probability": 0.437 + }, + { + "start": 1849.74, + "end": 1849.74, + "probability": 0.1445 + }, + { + "start": 1849.86, + "end": 1850.38, + "probability": 0.6508 + }, + { + "start": 1851.02, + "end": 1855.22, + "probability": 0.9609 + }, + { + "start": 1855.32, + "end": 1856.62, + "probability": 0.7646 + }, + { + "start": 1856.72, + "end": 1858.74, + "probability": 0.9756 + }, + { + "start": 1858.8, + "end": 1861.02, + "probability": 0.884 + }, + { + "start": 1861.6, + "end": 1862.04, + "probability": 0.0121 + }, + { + "start": 1862.04, + "end": 1862.04, + "probability": 0.1569 + }, + { + "start": 1862.04, + "end": 1862.34, + "probability": 0.3606 + }, + { + "start": 1862.4, + "end": 1863.34, + "probability": 0.9614 + }, + { + "start": 1864.62, + "end": 1866.96, + "probability": 0.9405 + }, + { + "start": 1867.66, + "end": 1868.87, + "probability": 0.9272 + }, + { + "start": 1869.3, + "end": 1870.5, + "probability": 0.9414 + }, + { + "start": 1870.5, + "end": 1871.18, + "probability": 0.8303 + }, + { + "start": 1871.28, + "end": 1872.62, + "probability": 0.2272 + }, + { + "start": 1872.8, + "end": 1874.8, + "probability": 0.9816 + }, + { + "start": 1875.5, + "end": 1876.64, + "probability": 0.616 + }, + { + "start": 1876.64, + "end": 1877.1, + "probability": 0.9536 + }, + { + "start": 1877.2, + "end": 1880.84, + "probability": 0.9729 + }, + { + "start": 1881.88, + "end": 1885.48, + "probability": 0.9956 + }, + { + "start": 1886.14, + "end": 1887.0, + "probability": 0.9789 + }, + { + "start": 1887.56, + "end": 1888.35, + "probability": 0.6707 + }, + { + "start": 1888.62, + "end": 1890.74, + "probability": 0.4574 + }, + { + "start": 1890.88, + "end": 1892.98, + "probability": 0.3066 + }, + { + "start": 1892.98, + "end": 1893.78, + "probability": 0.8451 + }, + { + "start": 1893.98, + "end": 1899.88, + "probability": 0.6924 + }, + { + "start": 1900.08, + "end": 1903.98, + "probability": 0.9907 + }, + { + "start": 1903.98, + "end": 1909.34, + "probability": 0.9988 + }, + { + "start": 1909.54, + "end": 1910.84, + "probability": 0.5848 + }, + { + "start": 1910.94, + "end": 1912.22, + "probability": 0.8566 + }, + { + "start": 1912.66, + "end": 1914.16, + "probability": 0.9858 + }, + { + "start": 1915.1, + "end": 1915.58, + "probability": 0.9814 + }, + { + "start": 1918.26, + "end": 1921.98, + "probability": 0.9229 + }, + { + "start": 1922.24, + "end": 1925.6, + "probability": 0.9733 + }, + { + "start": 1925.7, + "end": 1925.82, + "probability": 0.0381 + }, + { + "start": 1926.24, + "end": 1927.3, + "probability": 0.9751 + }, + { + "start": 1927.44, + "end": 1928.74, + "probability": 0.8678 + }, + { + "start": 1929.18, + "end": 1931.61, + "probability": 0.9015 + }, + { + "start": 1932.32, + "end": 1933.94, + "probability": 0.8484 + }, + { + "start": 1934.62, + "end": 1937.22, + "probability": 0.9614 + }, + { + "start": 1937.84, + "end": 1939.48, + "probability": 0.9441 + }, + { + "start": 1939.64, + "end": 1941.08, + "probability": 0.7731 + }, + { + "start": 1941.7, + "end": 1943.98, + "probability": 0.9917 + }, + { + "start": 1944.76, + "end": 1945.53, + "probability": 0.7833 + }, + { + "start": 1946.22, + "end": 1947.4, + "probability": 0.4931 + }, + { + "start": 1947.42, + "end": 1948.64, + "probability": 0.8781 + }, + { + "start": 1948.68, + "end": 1950.06, + "probability": 0.998 + }, + { + "start": 1950.06, + "end": 1950.26, + "probability": 0.7402 + }, + { + "start": 1950.62, + "end": 1951.54, + "probability": 0.5442 + }, + { + "start": 1951.8, + "end": 1953.74, + "probability": 0.9351 + }, + { + "start": 1953.86, + "end": 1955.78, + "probability": 0.9744 + }, + { + "start": 1957.0, + "end": 1959.22, + "probability": 0.9493 + }, + { + "start": 1960.16, + "end": 1962.94, + "probability": 0.9984 + }, + { + "start": 1963.82, + "end": 1965.88, + "probability": 0.9882 + }, + { + "start": 1966.52, + "end": 1967.92, + "probability": 0.9863 + }, + { + "start": 1968.82, + "end": 1975.48, + "probability": 0.9911 + }, + { + "start": 1975.74, + "end": 1977.04, + "probability": 0.9792 + }, + { + "start": 1977.32, + "end": 1978.8, + "probability": 0.7581 + }, + { + "start": 1978.96, + "end": 1980.5, + "probability": 0.8543 + }, + { + "start": 1981.16, + "end": 1982.74, + "probability": 0.9422 + }, + { + "start": 1983.2, + "end": 1984.38, + "probability": 0.7816 + }, + { + "start": 1985.38, + "end": 1986.96, + "probability": 0.8993 + }, + { + "start": 1987.18, + "end": 1989.88, + "probability": 0.9978 + }, + { + "start": 1990.4, + "end": 1991.48, + "probability": 0.7783 + }, + { + "start": 1991.62, + "end": 1993.56, + "probability": 0.9717 + }, + { + "start": 1995.32, + "end": 1997.62, + "probability": 0.9881 + }, + { + "start": 1998.0, + "end": 1999.68, + "probability": 0.9378 + }, + { + "start": 2000.2, + "end": 2002.3, + "probability": 0.6559 + }, + { + "start": 2002.9, + "end": 2004.24, + "probability": 0.9528 + }, + { + "start": 2004.84, + "end": 2006.78, + "probability": 0.9896 + }, + { + "start": 2007.42, + "end": 2008.86, + "probability": 0.8663 + }, + { + "start": 2009.34, + "end": 2011.86, + "probability": 0.9678 + }, + { + "start": 2012.42, + "end": 2014.34, + "probability": 0.9631 + }, + { + "start": 2014.6, + "end": 2015.51, + "probability": 0.9771 + }, + { + "start": 2016.14, + "end": 2017.92, + "probability": 0.9751 + }, + { + "start": 2018.26, + "end": 2018.84, + "probability": 0.5679 + }, + { + "start": 2019.44, + "end": 2022.5, + "probability": 0.8914 + }, + { + "start": 2023.2, + "end": 2025.76, + "probability": 0.9131 + }, + { + "start": 2026.12, + "end": 2027.16, + "probability": 0.9941 + }, + { + "start": 2027.38, + "end": 2027.86, + "probability": 0.6384 + }, + { + "start": 2028.84, + "end": 2030.18, + "probability": 0.9321 + }, + { + "start": 2030.78, + "end": 2032.1, + "probability": 0.7117 + }, + { + "start": 2032.38, + "end": 2034.1, + "probability": 0.8989 + }, + { + "start": 2034.3, + "end": 2036.0, + "probability": 0.8513 + }, + { + "start": 2037.08, + "end": 2040.36, + "probability": 0.9894 + }, + { + "start": 2040.36, + "end": 2044.28, + "probability": 0.9782 + }, + { + "start": 2045.18, + "end": 2047.6, + "probability": 0.9946 + }, + { + "start": 2047.78, + "end": 2050.76, + "probability": 0.9137 + }, + { + "start": 2051.12, + "end": 2055.06, + "probability": 0.9937 + }, + { + "start": 2055.06, + "end": 2058.62, + "probability": 0.9956 + }, + { + "start": 2059.08, + "end": 2060.96, + "probability": 0.967 + }, + { + "start": 2061.1, + "end": 2061.38, + "probability": 0.7195 + }, + { + "start": 2061.66, + "end": 2064.18, + "probability": 0.9956 + }, + { + "start": 2064.18, + "end": 2067.32, + "probability": 0.9866 + }, + { + "start": 2067.94, + "end": 2068.64, + "probability": 0.8207 + }, + { + "start": 2068.8, + "end": 2070.92, + "probability": 0.9901 + }, + { + "start": 2071.14, + "end": 2071.84, + "probability": 0.9793 + }, + { + "start": 2071.9, + "end": 2074.3, + "probability": 0.7649 + }, + { + "start": 2074.82, + "end": 2078.0, + "probability": 0.8866 + }, + { + "start": 2078.04, + "end": 2078.88, + "probability": 0.6829 + }, + { + "start": 2079.9, + "end": 2082.26, + "probability": 0.2818 + }, + { + "start": 2082.44, + "end": 2085.66, + "probability": 0.5053 + }, + { + "start": 2085.86, + "end": 2087.68, + "probability": 0.7466 + }, + { + "start": 2087.8, + "end": 2088.8, + "probability": 0.7942 + }, + { + "start": 2089.72, + "end": 2089.86, + "probability": 0.2463 + }, + { + "start": 2089.86, + "end": 2090.72, + "probability": 0.5187 + }, + { + "start": 2090.94, + "end": 2093.34, + "probability": 0.7292 + }, + { + "start": 2097.08, + "end": 2099.12, + "probability": 0.8118 + }, + { + "start": 2100.44, + "end": 2104.8, + "probability": 0.9698 + }, + { + "start": 2106.16, + "end": 2110.68, + "probability": 0.7879 + }, + { + "start": 2111.92, + "end": 2116.56, + "probability": 0.9202 + }, + { + "start": 2116.62, + "end": 2117.28, + "probability": 0.9635 + }, + { + "start": 2117.34, + "end": 2118.1, + "probability": 0.769 + }, + { + "start": 2118.92, + "end": 2121.42, + "probability": 0.7795 + }, + { + "start": 2122.2, + "end": 2123.68, + "probability": 0.9763 + }, + { + "start": 2124.64, + "end": 2125.7, + "probability": 0.7706 + }, + { + "start": 2126.5, + "end": 2127.78, + "probability": 0.9707 + }, + { + "start": 2128.72, + "end": 2129.4, + "probability": 0.8992 + }, + { + "start": 2129.94, + "end": 2130.72, + "probability": 0.5293 + }, + { + "start": 2132.1, + "end": 2135.9, + "probability": 0.9701 + }, + { + "start": 2136.64, + "end": 2142.82, + "probability": 0.7435 + }, + { + "start": 2142.94, + "end": 2144.44, + "probability": 0.8973 + }, + { + "start": 2145.44, + "end": 2146.04, + "probability": 0.5178 + }, + { + "start": 2146.4, + "end": 2151.06, + "probability": 0.9815 + }, + { + "start": 2151.16, + "end": 2152.18, + "probability": 0.7677 + }, + { + "start": 2152.3, + "end": 2153.91, + "probability": 0.9851 + }, + { + "start": 2155.8, + "end": 2163.68, + "probability": 0.9952 + }, + { + "start": 2163.74, + "end": 2163.96, + "probability": 0.6529 + }, + { + "start": 2164.9, + "end": 2171.5, + "probability": 0.9899 + }, + { + "start": 2172.14, + "end": 2177.04, + "probability": 0.866 + }, + { + "start": 2177.97, + "end": 2180.96, + "probability": 0.0274 + }, + { + "start": 2180.96, + "end": 2181.26, + "probability": 0.7924 + }, + { + "start": 2181.26, + "end": 2181.58, + "probability": 0.6309 + }, + { + "start": 2181.62, + "end": 2184.28, + "probability": 0.9817 + }, + { + "start": 2184.4, + "end": 2185.16, + "probability": 0.8091 + }, + { + "start": 2189.8, + "end": 2190.92, + "probability": 0.6855 + }, + { + "start": 2191.62, + "end": 2192.38, + "probability": 0.5781 + }, + { + "start": 2193.42, + "end": 2195.18, + "probability": 0.9832 + }, + { + "start": 2195.3, + "end": 2195.86, + "probability": 0.7273 + }, + { + "start": 2197.08, + "end": 2197.6, + "probability": 0.0681 + }, + { + "start": 2197.6, + "end": 2199.38, + "probability": 0.8677 + }, + { + "start": 2199.46, + "end": 2200.52, + "probability": 0.1994 + }, + { + "start": 2201.1, + "end": 2201.46, + "probability": 0.4125 + }, + { + "start": 2201.94, + "end": 2203.2, + "probability": 0.6921 + }, + { + "start": 2203.44, + "end": 2203.96, + "probability": 0.857 + }, + { + "start": 2204.08, + "end": 2205.8, + "probability": 0.9917 + }, + { + "start": 2206.62, + "end": 2211.84, + "probability": 0.9666 + }, + { + "start": 2211.9, + "end": 2212.7, + "probability": 0.8317 + }, + { + "start": 2213.46, + "end": 2215.72, + "probability": 0.7926 + }, + { + "start": 2215.78, + "end": 2222.84, + "probability": 0.8342 + }, + { + "start": 2222.84, + "end": 2225.44, + "probability": 0.4793 + }, + { + "start": 2225.44, + "end": 2227.26, + "probability": 0.715 + }, + { + "start": 2228.2, + "end": 2233.42, + "probability": 0.9941 + }, + { + "start": 2233.56, + "end": 2238.88, + "probability": 0.3895 + }, + { + "start": 2239.52, + "end": 2244.72, + "probability": 0.9004 + }, + { + "start": 2245.48, + "end": 2247.78, + "probability": 0.9698 + }, + { + "start": 2248.42, + "end": 2249.64, + "probability": 0.7068 + }, + { + "start": 2250.38, + "end": 2250.62, + "probability": 0.832 + }, + { + "start": 2250.78, + "end": 2254.14, + "probability": 0.9619 + }, + { + "start": 2254.7, + "end": 2260.02, + "probability": 0.9615 + }, + { + "start": 2260.66, + "end": 2261.3, + "probability": 0.6714 + }, + { + "start": 2262.44, + "end": 2266.06, + "probability": 0.9572 + }, + { + "start": 2266.62, + "end": 2268.72, + "probability": 0.7942 + }, + { + "start": 2268.74, + "end": 2270.9, + "probability": 0.9982 + }, + { + "start": 2271.46, + "end": 2272.92, + "probability": 0.9971 + }, + { + "start": 2273.48, + "end": 2274.76, + "probability": 0.9972 + }, + { + "start": 2275.0, + "end": 2275.16, + "probability": 0.7632 + }, + { + "start": 2275.54, + "end": 2276.5, + "probability": 0.6365 + }, + { + "start": 2276.64, + "end": 2278.08, + "probability": 0.8825 + }, + { + "start": 2278.3, + "end": 2280.22, + "probability": 0.7152 + }, + { + "start": 2289.32, + "end": 2290.94, + "probability": 0.9388 + }, + { + "start": 2291.14, + "end": 2292.46, + "probability": 0.733 + }, + { + "start": 2292.62, + "end": 2293.76, + "probability": 0.9866 + }, + { + "start": 2293.84, + "end": 2294.42, + "probability": 0.9662 + }, + { + "start": 2294.84, + "end": 2296.79, + "probability": 0.9948 + }, + { + "start": 2297.42, + "end": 2299.7, + "probability": 0.9814 + }, + { + "start": 2300.2, + "end": 2301.22, + "probability": 0.8197 + }, + { + "start": 2301.32, + "end": 2302.14, + "probability": 0.9112 + }, + { + "start": 2302.28, + "end": 2303.82, + "probability": 0.9922 + }, + { + "start": 2304.22, + "end": 2305.98, + "probability": 0.9929 + }, + { + "start": 2306.56, + "end": 2308.84, + "probability": 0.9946 + }, + { + "start": 2309.3, + "end": 2311.8, + "probability": 0.9923 + }, + { + "start": 2312.28, + "end": 2316.1, + "probability": 0.9963 + }, + { + "start": 2316.22, + "end": 2317.6, + "probability": 0.9562 + }, + { + "start": 2318.2, + "end": 2319.7, + "probability": 0.9985 + }, + { + "start": 2320.32, + "end": 2320.32, + "probability": 0.0199 + }, + { + "start": 2320.32, + "end": 2320.32, + "probability": 0.0543 + }, + { + "start": 2320.32, + "end": 2323.6, + "probability": 0.6142 + }, + { + "start": 2323.98, + "end": 2324.1, + "probability": 0.6198 + }, + { + "start": 2324.66, + "end": 2327.38, + "probability": 0.9795 + }, + { + "start": 2327.74, + "end": 2329.32, + "probability": 0.526 + }, + { + "start": 2329.32, + "end": 2329.32, + "probability": 0.1115 + }, + { + "start": 2329.32, + "end": 2331.3, + "probability": 0.9856 + }, + { + "start": 2331.64, + "end": 2332.2, + "probability": 0.788 + }, + { + "start": 2332.38, + "end": 2333.46, + "probability": 0.97 + }, + { + "start": 2333.64, + "end": 2338.56, + "probability": 0.6765 + }, + { + "start": 2338.92, + "end": 2339.78, + "probability": 0.6244 + }, + { + "start": 2340.04, + "end": 2340.12, + "probability": 0.0376 + }, + { + "start": 2340.12, + "end": 2341.77, + "probability": 0.763 + }, + { + "start": 2342.58, + "end": 2343.02, + "probability": 0.0038 + }, + { + "start": 2343.02, + "end": 2344.56, + "probability": 0.4772 + }, + { + "start": 2345.06, + "end": 2346.26, + "probability": 0.8257 + }, + { + "start": 2346.74, + "end": 2348.14, + "probability": 0.8439 + }, + { + "start": 2348.2, + "end": 2350.26, + "probability": 0.8517 + }, + { + "start": 2350.56, + "end": 2354.02, + "probability": 0.9293 + }, + { + "start": 2354.2, + "end": 2354.5, + "probability": 0.1707 + }, + { + "start": 2354.5, + "end": 2354.5, + "probability": 0.0812 + }, + { + "start": 2354.5, + "end": 2355.62, + "probability": 0.2698 + }, + { + "start": 2355.64, + "end": 2359.9, + "probability": 0.9619 + }, + { + "start": 2359.9, + "end": 2360.42, + "probability": 0.5558 + }, + { + "start": 2361.06, + "end": 2364.58, + "probability": 0.8405 + }, + { + "start": 2364.86, + "end": 2368.86, + "probability": 0.8281 + }, + { + "start": 2368.86, + "end": 2370.15, + "probability": 0.253 + }, + { + "start": 2370.66, + "end": 2370.66, + "probability": 0.6319 + }, + { + "start": 2370.72, + "end": 2373.24, + "probability": 0.927 + }, + { + "start": 2373.54, + "end": 2375.68, + "probability": 0.7369 + }, + { + "start": 2375.84, + "end": 2378.08, + "probability": 0.8456 + }, + { + "start": 2378.28, + "end": 2379.42, + "probability": 0.904 + }, + { + "start": 2379.68, + "end": 2382.02, + "probability": 0.819 + }, + { + "start": 2382.36, + "end": 2384.72, + "probability": 0.0612 + }, + { + "start": 2385.88, + "end": 2387.18, + "probability": 0.0363 + }, + { + "start": 2387.8, + "end": 2390.9, + "probability": 0.3941 + }, + { + "start": 2390.9, + "end": 2390.94, + "probability": 0.1191 + }, + { + "start": 2393.94, + "end": 2395.44, + "probability": 0.5092 + }, + { + "start": 2397.22, + "end": 2399.88, + "probability": 0.8831 + }, + { + "start": 2403.36, + "end": 2404.84, + "probability": 0.7376 + }, + { + "start": 2407.54, + "end": 2408.44, + "probability": 0.0361 + }, + { + "start": 2410.31, + "end": 2413.4, + "probability": 0.0855 + }, + { + "start": 2414.38, + "end": 2414.94, + "probability": 0.1911 + }, + { + "start": 2430.44, + "end": 2430.8, + "probability": 0.0096 + }, + { + "start": 2430.82, + "end": 2431.66, + "probability": 0.0186 + }, + { + "start": 2432.22, + "end": 2435.5, + "probability": 0.0686 + }, + { + "start": 2435.54, + "end": 2437.84, + "probability": 0.1644 + }, + { + "start": 2437.96, + "end": 2439.74, + "probability": 0.1196 + }, + { + "start": 2441.05, + "end": 2445.6, + "probability": 0.0335 + }, + { + "start": 2446.34, + "end": 2447.54, + "probability": 0.1942 + }, + { + "start": 2448.1, + "end": 2448.96, + "probability": 0.0791 + }, + { + "start": 2448.98, + "end": 2450.08, + "probability": 0.1654 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.0, + "end": 2473.0, + "probability": 0.0 + }, + { + "start": 2473.34, + "end": 2476.0, + "probability": 0.2783 + }, + { + "start": 2476.72, + "end": 2481.86, + "probability": 0.7704 + }, + { + "start": 2481.92, + "end": 2487.04, + "probability": 0.9601 + }, + { + "start": 2487.06, + "end": 2487.9, + "probability": 0.662 + }, + { + "start": 2487.94, + "end": 2488.4, + "probability": 0.8314 + }, + { + "start": 2488.5, + "end": 2489.86, + "probability": 0.6524 + }, + { + "start": 2490.55, + "end": 2492.74, + "probability": 0.3744 + }, + { + "start": 2492.74, + "end": 2493.48, + "probability": 0.1138 + }, + { + "start": 2495.58, + "end": 2496.18, + "probability": 0.6416 + }, + { + "start": 2496.84, + "end": 2499.32, + "probability": 0.9872 + }, + { + "start": 2499.32, + "end": 2503.92, + "probability": 0.9685 + }, + { + "start": 2504.72, + "end": 2506.02, + "probability": 0.7427 + }, + { + "start": 2506.24, + "end": 2507.62, + "probability": 0.8194 + }, + { + "start": 2507.68, + "end": 2509.28, + "probability": 0.9591 + }, + { + "start": 2510.76, + "end": 2514.12, + "probability": 0.9629 + }, + { + "start": 2514.68, + "end": 2516.02, + "probability": 0.8408 + }, + { + "start": 2516.62, + "end": 2519.98, + "probability": 0.9791 + }, + { + "start": 2520.72, + "end": 2523.36, + "probability": 0.9924 + }, + { + "start": 2524.62, + "end": 2527.52, + "probability": 0.9829 + }, + { + "start": 2528.64, + "end": 2529.74, + "probability": 0.929 + }, + { + "start": 2529.82, + "end": 2530.88, + "probability": 0.9409 + }, + { + "start": 2531.24, + "end": 2533.32, + "probability": 0.9709 + }, + { + "start": 2533.94, + "end": 2539.94, + "probability": 0.8311 + }, + { + "start": 2540.22, + "end": 2543.18, + "probability": 0.9922 + }, + { + "start": 2543.18, + "end": 2547.52, + "probability": 0.85 + }, + { + "start": 2548.04, + "end": 2552.52, + "probability": 0.8867 + }, + { + "start": 2552.66, + "end": 2553.54, + "probability": 0.8153 + }, + { + "start": 2553.92, + "end": 2557.3, + "probability": 0.9973 + }, + { + "start": 2557.3, + "end": 2561.3, + "probability": 0.9746 + }, + { + "start": 2561.68, + "end": 2562.87, + "probability": 0.9825 + }, + { + "start": 2563.46, + "end": 2565.12, + "probability": 0.9883 + }, + { + "start": 2565.2, + "end": 2566.38, + "probability": 0.8007 + }, + { + "start": 2566.4, + "end": 2568.04, + "probability": 0.9663 + }, + { + "start": 2568.7, + "end": 2571.06, + "probability": 0.9842 + }, + { + "start": 2571.62, + "end": 2574.86, + "probability": 0.9313 + }, + { + "start": 2575.12, + "end": 2575.46, + "probability": 0.4597 + }, + { + "start": 2575.8, + "end": 2577.56, + "probability": 0.8284 + }, + { + "start": 2577.9, + "end": 2579.52, + "probability": 0.7042 + }, + { + "start": 2579.72, + "end": 2580.02, + "probability": 0.5084 + }, + { + "start": 2580.56, + "end": 2581.64, + "probability": 0.9625 + }, + { + "start": 2589.46, + "end": 2591.3, + "probability": 0.6053 + }, + { + "start": 2592.2, + "end": 2599.0, + "probability": 0.9331 + }, + { + "start": 2599.98, + "end": 2608.14, + "probability": 0.997 + }, + { + "start": 2608.76, + "end": 2612.24, + "probability": 0.9939 + }, + { + "start": 2612.94, + "end": 2616.94, + "probability": 0.9885 + }, + { + "start": 2617.6, + "end": 2619.76, + "probability": 0.9236 + }, + { + "start": 2620.54, + "end": 2627.32, + "probability": 0.8695 + }, + { + "start": 2628.46, + "end": 2633.98, + "probability": 0.9395 + }, + { + "start": 2634.1, + "end": 2637.19, + "probability": 0.9045 + }, + { + "start": 2637.68, + "end": 2641.44, + "probability": 0.9766 + }, + { + "start": 2641.56, + "end": 2647.4, + "probability": 0.9849 + }, + { + "start": 2647.54, + "end": 2648.44, + "probability": 0.6834 + }, + { + "start": 2649.24, + "end": 2653.54, + "probability": 0.9943 + }, + { + "start": 2653.54, + "end": 2657.96, + "probability": 0.9346 + }, + { + "start": 2658.04, + "end": 2662.94, + "probability": 0.9284 + }, + { + "start": 2663.02, + "end": 2664.18, + "probability": 0.9778 + }, + { + "start": 2664.28, + "end": 2666.76, + "probability": 0.9135 + }, + { + "start": 2666.94, + "end": 2666.94, + "probability": 0.6873 + }, + { + "start": 2667.36, + "end": 2670.32, + "probability": 0.9957 + }, + { + "start": 2670.32, + "end": 2674.24, + "probability": 0.9697 + }, + { + "start": 2674.32, + "end": 2675.32, + "probability": 0.8562 + }, + { + "start": 2675.4, + "end": 2676.28, + "probability": 0.9954 + }, + { + "start": 2676.62, + "end": 2679.0, + "probability": 0.9701 + }, + { + "start": 2679.48, + "end": 2682.2, + "probability": 0.6496 + }, + { + "start": 2682.28, + "end": 2682.66, + "probability": 0.5286 + }, + { + "start": 2682.7, + "end": 2683.86, + "probability": 0.787 + }, + { + "start": 2686.34, + "end": 2688.9, + "probability": 0.5278 + }, + { + "start": 2689.5, + "end": 2692.15, + "probability": 0.8429 + }, + { + "start": 2692.2, + "end": 2695.96, + "probability": 0.9561 + }, + { + "start": 2696.16, + "end": 2699.3, + "probability": 0.991 + }, + { + "start": 2699.4, + "end": 2701.71, + "probability": 0.9356 + }, + { + "start": 2702.2, + "end": 2704.1, + "probability": 0.6294 + }, + { + "start": 2704.1, + "end": 2708.58, + "probability": 0.9237 + }, + { + "start": 2709.14, + "end": 2711.02, + "probability": 0.4258 + }, + { + "start": 2711.6, + "end": 2716.28, + "probability": 0.7957 + }, + { + "start": 2717.18, + "end": 2721.5, + "probability": 0.7344 + }, + { + "start": 2721.5, + "end": 2722.64, + "probability": 0.8734 + }, + { + "start": 2723.02, + "end": 2726.03, + "probability": 0.7118 + }, + { + "start": 2726.4, + "end": 2727.9, + "probability": 0.9808 + }, + { + "start": 2727.94, + "end": 2729.96, + "probability": 0.7944 + }, + { + "start": 2730.04, + "end": 2730.76, + "probability": 0.7576 + }, + { + "start": 2730.78, + "end": 2731.52, + "probability": 0.8601 + }, + { + "start": 2731.92, + "end": 2735.06, + "probability": 0.9775 + }, + { + "start": 2735.16, + "end": 2736.9, + "probability": 0.9711 + }, + { + "start": 2737.56, + "end": 2741.12, + "probability": 0.9515 + }, + { + "start": 2741.48, + "end": 2742.38, + "probability": 0.8557 + }, + { + "start": 2742.42, + "end": 2744.22, + "probability": 0.8552 + }, + { + "start": 2744.7, + "end": 2746.64, + "probability": 0.9312 + }, + { + "start": 2746.64, + "end": 2749.44, + "probability": 0.9763 + }, + { + "start": 2749.51, + "end": 2751.85, + "probability": 0.9595 + }, + { + "start": 2752.32, + "end": 2753.04, + "probability": 0.996 + }, + { + "start": 2753.88, + "end": 2755.06, + "probability": 0.6946 + }, + { + "start": 2755.16, + "end": 2756.58, + "probability": 0.5984 + }, + { + "start": 2757.94, + "end": 2760.76, + "probability": 0.8108 + }, + { + "start": 2761.48, + "end": 2763.04, + "probability": 0.7042 + }, + { + "start": 2763.68, + "end": 2768.64, + "probability": 0.8399 + }, + { + "start": 2769.02, + "end": 2769.86, + "probability": 0.8323 + }, + { + "start": 2770.5, + "end": 2773.54, + "probability": 0.6284 + }, + { + "start": 2774.06, + "end": 2776.68, + "probability": 0.7622 + }, + { + "start": 2776.98, + "end": 2781.38, + "probability": 0.976 + }, + { + "start": 2782.28, + "end": 2784.54, + "probability": 0.7469 + }, + { + "start": 2785.52, + "end": 2786.78, + "probability": 0.8048 + }, + { + "start": 2786.8, + "end": 2788.06, + "probability": 0.8459 + }, + { + "start": 2788.12, + "end": 2790.03, + "probability": 0.7583 + }, + { + "start": 2790.5, + "end": 2796.12, + "probability": 0.9148 + }, + { + "start": 2796.94, + "end": 2797.76, + "probability": 0.9875 + }, + { + "start": 2798.42, + "end": 2799.78, + "probability": 0.9221 + }, + { + "start": 2800.42, + "end": 2804.94, + "probability": 0.9309 + }, + { + "start": 2807.12, + "end": 2811.38, + "probability": 0.9943 + }, + { + "start": 2811.38, + "end": 2816.06, + "probability": 0.9906 + }, + { + "start": 2816.9, + "end": 2817.08, + "probability": 0.695 + }, + { + "start": 2817.84, + "end": 2819.48, + "probability": 0.7487 + }, + { + "start": 2819.9, + "end": 2821.88, + "probability": 0.8925 + }, + { + "start": 2821.92, + "end": 2822.36, + "probability": 0.5663 + }, + { + "start": 2822.5, + "end": 2823.56, + "probability": 0.902 + }, + { + "start": 2830.28, + "end": 2831.3, + "probability": 0.7478 + }, + { + "start": 2831.56, + "end": 2834.3, + "probability": 0.8128 + }, + { + "start": 2834.66, + "end": 2838.08, + "probability": 0.9751 + }, + { + "start": 2839.44, + "end": 2841.5, + "probability": 0.8866 + }, + { + "start": 2841.58, + "end": 2842.3, + "probability": 0.6174 + }, + { + "start": 2842.36, + "end": 2845.64, + "probability": 0.9754 + }, + { + "start": 2846.34, + "end": 2848.52, + "probability": 0.9152 + }, + { + "start": 2848.64, + "end": 2850.38, + "probability": 0.7776 + }, + { + "start": 2850.92, + "end": 2853.98, + "probability": 0.9545 + }, + { + "start": 2854.04, + "end": 2855.48, + "probability": 0.9396 + }, + { + "start": 2855.64, + "end": 2857.6, + "probability": 0.855 + }, + { + "start": 2858.1, + "end": 2858.32, + "probability": 0.7578 + }, + { + "start": 2859.02, + "end": 2863.58, + "probability": 0.9808 + }, + { + "start": 2864.26, + "end": 2869.26, + "probability": 0.7903 + }, + { + "start": 2869.78, + "end": 2872.7, + "probability": 0.9893 + }, + { + "start": 2872.7, + "end": 2877.24, + "probability": 0.9762 + }, + { + "start": 2877.46, + "end": 2878.1, + "probability": 0.786 + }, + { + "start": 2878.4, + "end": 2880.02, + "probability": 0.9749 + }, + { + "start": 2880.5, + "end": 2882.4, + "probability": 0.9694 + }, + { + "start": 2882.54, + "end": 2884.18, + "probability": 0.991 + }, + { + "start": 2884.36, + "end": 2886.98, + "probability": 0.8248 + }, + { + "start": 2887.44, + "end": 2890.82, + "probability": 0.9972 + }, + { + "start": 2891.0, + "end": 2891.28, + "probability": 0.8543 + }, + { + "start": 2891.36, + "end": 2891.84, + "probability": 0.8162 + }, + { + "start": 2892.16, + "end": 2894.2, + "probability": 0.9974 + }, + { + "start": 2894.82, + "end": 2897.6, + "probability": 0.8512 + }, + { + "start": 2897.72, + "end": 2902.42, + "probability": 0.9951 + }, + { + "start": 2902.52, + "end": 2905.38, + "probability": 0.719 + }, + { + "start": 2905.4, + "end": 2908.46, + "probability": 0.9055 + }, + { + "start": 2908.46, + "end": 2912.54, + "probability": 0.9847 + }, + { + "start": 2912.54, + "end": 2912.54, + "probability": 0.6069 + }, + { + "start": 2912.66, + "end": 2915.5, + "probability": 0.9295 + }, + { + "start": 2915.88, + "end": 2917.04, + "probability": 0.8444 + }, + { + "start": 2917.14, + "end": 2919.76, + "probability": 0.9811 + }, + { + "start": 2919.76, + "end": 2919.76, + "probability": 0.5657 + }, + { + "start": 2919.82, + "end": 2924.28, + "probability": 0.9795 + }, + { + "start": 2925.02, + "end": 2928.3, + "probability": 0.9805 + }, + { + "start": 2928.84, + "end": 2928.84, + "probability": 0.5253 + }, + { + "start": 2929.02, + "end": 2934.0, + "probability": 0.9989 + }, + { + "start": 2934.0, + "end": 2938.7, + "probability": 0.9979 + }, + { + "start": 2938.8, + "end": 2940.72, + "probability": 0.7625 + }, + { + "start": 2941.0, + "end": 2944.24, + "probability": 0.6716 + }, + { + "start": 2944.72, + "end": 2945.34, + "probability": 0.5053 + }, + { + "start": 2945.56, + "end": 2946.94, + "probability": 0.9455 + }, + { + "start": 2951.98, + "end": 2952.92, + "probability": 0.5161 + }, + { + "start": 2954.58, + "end": 2960.02, + "probability": 0.9547 + }, + { + "start": 2961.52, + "end": 2962.02, + "probability": 0.3914 + }, + { + "start": 2962.14, + "end": 2963.08, + "probability": 0.9838 + }, + { + "start": 2963.26, + "end": 2964.98, + "probability": 0.9988 + }, + { + "start": 2964.98, + "end": 2969.64, + "probability": 0.8816 + }, + { + "start": 2970.3, + "end": 2973.48, + "probability": 0.9475 + }, + { + "start": 2974.4, + "end": 2976.96, + "probability": 0.9819 + }, + { + "start": 2977.44, + "end": 2981.44, + "probability": 0.9946 + }, + { + "start": 2981.98, + "end": 2982.26, + "probability": 0.5146 + }, + { + "start": 2982.36, + "end": 2985.1, + "probability": 0.8962 + }, + { + "start": 2985.48, + "end": 2989.18, + "probability": 0.9357 + }, + { + "start": 2990.28, + "end": 2993.06, + "probability": 0.9784 + }, + { + "start": 2994.0, + "end": 2994.68, + "probability": 0.9788 + }, + { + "start": 2995.92, + "end": 2998.9, + "probability": 0.9805 + }, + { + "start": 2999.62, + "end": 3001.94, + "probability": 0.9773 + }, + { + "start": 3002.96, + "end": 3004.08, + "probability": 0.9658 + }, + { + "start": 3004.64, + "end": 3007.82, + "probability": 0.9833 + }, + { + "start": 3008.56, + "end": 3011.18, + "probability": 0.9663 + }, + { + "start": 3011.82, + "end": 3015.9, + "probability": 0.9979 + }, + { + "start": 3016.4, + "end": 3017.22, + "probability": 0.98 + }, + { + "start": 3017.64, + "end": 3018.16, + "probability": 0.9368 + }, + { + "start": 3018.88, + "end": 3022.18, + "probability": 0.9934 + }, + { + "start": 3022.86, + "end": 3024.7, + "probability": 0.9868 + }, + { + "start": 3025.22, + "end": 3028.54, + "probability": 0.9835 + }, + { + "start": 3029.18, + "end": 3029.94, + "probability": 0.9613 + }, + { + "start": 3030.22, + "end": 3032.6, + "probability": 0.9854 + }, + { + "start": 3032.72, + "end": 3033.62, + "probability": 0.9453 + }, + { + "start": 3044.56, + "end": 3045.92, + "probability": 0.5273 + }, + { + "start": 3045.92, + "end": 3045.96, + "probability": 0.0151 + }, + { + "start": 3045.96, + "end": 3045.96, + "probability": 0.0192 + }, + { + "start": 3045.96, + "end": 3047.0, + "probability": 0.0442 + }, + { + "start": 3047.56, + "end": 3052.08, + "probability": 0.3603 + }, + { + "start": 3052.1, + "end": 3054.7, + "probability": 0.496 + }, + { + "start": 3055.92, + "end": 3056.28, + "probability": 0.7368 + }, + { + "start": 3056.74, + "end": 3057.14, + "probability": 0.5945 + }, + { + "start": 3057.48, + "end": 3060.32, + "probability": 0.9608 + }, + { + "start": 3061.02, + "end": 3062.22, + "probability": 0.9547 + }, + { + "start": 3062.84, + "end": 3062.88, + "probability": 0.0076 + }, + { + "start": 3063.12, + "end": 3065.46, + "probability": 0.9194 + }, + { + "start": 3065.96, + "end": 3067.84, + "probability": 0.6192 + }, + { + "start": 3072.62, + "end": 3076.06, + "probability": 0.9829 + }, + { + "start": 3076.9, + "end": 3079.04, + "probability": 0.7864 + }, + { + "start": 3079.6, + "end": 3080.84, + "probability": 0.9675 + }, + { + "start": 3081.38, + "end": 3083.0, + "probability": 0.7215 + }, + { + "start": 3083.12, + "end": 3083.68, + "probability": 0.8295 + }, + { + "start": 3083.74, + "end": 3086.75, + "probability": 0.75 + }, + { + "start": 3086.92, + "end": 3088.16, + "probability": 0.8695 + }, + { + "start": 3088.46, + "end": 3089.25, + "probability": 0.6768 + }, + { + "start": 3089.76, + "end": 3091.02, + "probability": 0.9185 + }, + { + "start": 3091.12, + "end": 3092.74, + "probability": 0.9517 + }, + { + "start": 3093.48, + "end": 3096.8, + "probability": 0.9888 + }, + { + "start": 3096.84, + "end": 3100.98, + "probability": 0.9785 + }, + { + "start": 3101.74, + "end": 3106.78, + "probability": 0.9478 + }, + { + "start": 3107.06, + "end": 3109.06, + "probability": 0.8903 + }, + { + "start": 3109.18, + "end": 3111.72, + "probability": 0.9287 + }, + { + "start": 3113.16, + "end": 3117.44, + "probability": 0.9318 + }, + { + "start": 3117.82, + "end": 3120.24, + "probability": 0.9497 + }, + { + "start": 3121.04, + "end": 3123.18, + "probability": 0.9542 + }, + { + "start": 3123.68, + "end": 3127.06, + "probability": 0.8195 + }, + { + "start": 3127.4, + "end": 3131.92, + "probability": 0.9684 + }, + { + "start": 3132.6, + "end": 3136.2, + "probability": 0.9047 + }, + { + "start": 3136.3, + "end": 3137.04, + "probability": 0.8816 + }, + { + "start": 3137.6, + "end": 3138.82, + "probability": 0.9902 + }, + { + "start": 3138.94, + "end": 3141.38, + "probability": 0.9142 + }, + { + "start": 3141.78, + "end": 3142.32, + "probability": 0.6421 + }, + { + "start": 3142.86, + "end": 3144.23, + "probability": 0.7701 + }, + { + "start": 3145.36, + "end": 3148.66, + "probability": 0.998 + }, + { + "start": 3148.66, + "end": 3151.82, + "probability": 0.9836 + }, + { + "start": 3152.28, + "end": 3156.08, + "probability": 0.9986 + }, + { + "start": 3156.36, + "end": 3156.52, + "probability": 0.501 + }, + { + "start": 3156.64, + "end": 3157.98, + "probability": 0.5807 + }, + { + "start": 3158.06, + "end": 3159.32, + "probability": 0.6526 + }, + { + "start": 3159.72, + "end": 3160.02, + "probability": 0.4096 + }, + { + "start": 3160.1, + "end": 3161.98, + "probability": 0.8563 + }, + { + "start": 3164.66, + "end": 3166.78, + "probability": 0.6275 + }, + { + "start": 3168.06, + "end": 3170.7, + "probability": 0.6915 + }, + { + "start": 3171.62, + "end": 3173.04, + "probability": 0.6711 + }, + { + "start": 3173.74, + "end": 3174.06, + "probability": 0.5263 + }, + { + "start": 3174.06, + "end": 3179.52, + "probability": 0.8638 + }, + { + "start": 3179.9, + "end": 3181.58, + "probability": 0.8222 + }, + { + "start": 3182.08, + "end": 3185.56, + "probability": 0.9922 + }, + { + "start": 3186.58, + "end": 3191.8, + "probability": 0.7033 + }, + { + "start": 3191.92, + "end": 3192.34, + "probability": 0.8545 + }, + { + "start": 3193.76, + "end": 3194.78, + "probability": 0.8773 + }, + { + "start": 3196.24, + "end": 3196.42, + "probability": 0.271 + }, + { + "start": 3197.0, + "end": 3197.6, + "probability": 0.1579 + }, + { + "start": 3199.12, + "end": 3200.56, + "probability": 0.463 + }, + { + "start": 3200.68, + "end": 3200.68, + "probability": 0.534 + }, + { + "start": 3200.68, + "end": 3201.4, + "probability": 0.2988 + }, + { + "start": 3201.4, + "end": 3202.64, + "probability": 0.8961 + }, + { + "start": 3202.74, + "end": 3204.56, + "probability": 0.7987 + }, + { + "start": 3204.58, + "end": 3205.56, + "probability": 0.7228 + }, + { + "start": 3205.66, + "end": 3208.44, + "probability": 0.8979 + }, + { + "start": 3208.86, + "end": 3209.7, + "probability": 0.6218 + }, + { + "start": 3210.22, + "end": 3212.48, + "probability": 0.0399 + }, + { + "start": 3213.32, + "end": 3216.48, + "probability": 0.6973 + }, + { + "start": 3222.22, + "end": 3226.92, + "probability": 0.8342 + }, + { + "start": 3228.78, + "end": 3229.94, + "probability": 0.5754 + }, + { + "start": 3231.8, + "end": 3236.76, + "probability": 0.9908 + }, + { + "start": 3237.32, + "end": 3239.24, + "probability": 0.9535 + }, + { + "start": 3241.44, + "end": 3244.22, + "probability": 0.8983 + }, + { + "start": 3244.4, + "end": 3245.68, + "probability": 0.6958 + }, + { + "start": 3246.08, + "end": 3249.88, + "probability": 0.9954 + }, + { + "start": 3249.88, + "end": 3254.28, + "probability": 0.9961 + }, + { + "start": 3255.32, + "end": 3261.36, + "probability": 0.9901 + }, + { + "start": 3262.28, + "end": 3264.42, + "probability": 0.8286 + }, + { + "start": 3265.06, + "end": 3266.92, + "probability": 0.9993 + }, + { + "start": 3267.88, + "end": 3274.58, + "probability": 0.9786 + }, + { + "start": 3275.16, + "end": 3275.68, + "probability": 0.1513 + }, + { + "start": 3276.16, + "end": 3279.58, + "probability": 0.9312 + }, + { + "start": 3279.58, + "end": 3283.36, + "probability": 0.9805 + }, + { + "start": 3284.02, + "end": 3284.8, + "probability": 0.8888 + }, + { + "start": 3285.42, + "end": 3286.04, + "probability": 0.5097 + }, + { + "start": 3289.78, + "end": 3291.54, + "probability": 0.9974 + }, + { + "start": 3292.12, + "end": 3294.34, + "probability": 0.9945 + }, + { + "start": 3294.98, + "end": 3298.28, + "probability": 0.981 + }, + { + "start": 3298.32, + "end": 3302.78, + "probability": 0.9918 + }, + { + "start": 3302.98, + "end": 3305.0, + "probability": 0.7864 + }, + { + "start": 3305.1, + "end": 3306.38, + "probability": 0.3457 + }, + { + "start": 3306.52, + "end": 3308.94, + "probability": 0.6445 + }, + { + "start": 3309.74, + "end": 3311.44, + "probability": 0.7843 + }, + { + "start": 3311.5, + "end": 3311.64, + "probability": 0.1129 + }, + { + "start": 3312.5, + "end": 3315.02, + "probability": 0.0149 + }, + { + "start": 3315.38, + "end": 3319.56, + "probability": 0.1155 + }, + { + "start": 3320.72, + "end": 3323.75, + "probability": 0.7429 + }, + { + "start": 3329.28, + "end": 3329.3, + "probability": 0.0396 + }, + { + "start": 3329.3, + "end": 3329.3, + "probability": 0.3694 + }, + { + "start": 3329.3, + "end": 3333.4, + "probability": 0.7064 + }, + { + "start": 3333.5, + "end": 3333.8, + "probability": 0.8809 + }, + { + "start": 3334.22, + "end": 3338.72, + "probability": 0.6626 + }, + { + "start": 3338.98, + "end": 3340.54, + "probability": 0.2354 + }, + { + "start": 3340.94, + "end": 3342.4, + "probability": 0.7086 + }, + { + "start": 3342.58, + "end": 3343.24, + "probability": 0.2252 + }, + { + "start": 3343.34, + "end": 3343.78, + "probability": 0.472 + }, + { + "start": 3343.88, + "end": 3346.48, + "probability": 0.5553 + }, + { + "start": 3346.66, + "end": 3348.24, + "probability": 0.8631 + }, + { + "start": 3348.96, + "end": 3350.7, + "probability": 0.7085 + }, + { + "start": 3351.56, + "end": 3351.8, + "probability": 0.8633 + }, + { + "start": 3352.44, + "end": 3356.1, + "probability": 0.9904 + }, + { + "start": 3356.68, + "end": 3358.88, + "probability": 0.8882 + }, + { + "start": 3359.12, + "end": 3360.94, + "probability": 0.8223 + }, + { + "start": 3362.54, + "end": 3365.72, + "probability": 0.9928 + }, + { + "start": 3366.52, + "end": 3367.28, + "probability": 0.9674 + }, + { + "start": 3367.82, + "end": 3370.6, + "probability": 0.9956 + }, + { + "start": 3371.3, + "end": 3374.58, + "probability": 0.9932 + }, + { + "start": 3374.58, + "end": 3377.8, + "probability": 0.9978 + }, + { + "start": 3379.1, + "end": 3379.76, + "probability": 0.9227 + }, + { + "start": 3379.86, + "end": 3383.06, + "probability": 0.9827 + }, + { + "start": 3383.64, + "end": 3387.04, + "probability": 0.9753 + }, + { + "start": 3387.5, + "end": 3389.96, + "probability": 0.9969 + }, + { + "start": 3390.46, + "end": 3392.64, + "probability": 0.975 + }, + { + "start": 3393.0, + "end": 3395.62, + "probability": 0.8979 + }, + { + "start": 3396.08, + "end": 3397.52, + "probability": 0.6026 + }, + { + "start": 3397.68, + "end": 3398.78, + "probability": 0.7369 + }, + { + "start": 3399.66, + "end": 3400.38, + "probability": 0.686 + }, + { + "start": 3400.44, + "end": 3401.04, + "probability": 0.9321 + }, + { + "start": 3401.4, + "end": 3407.5, + "probability": 0.9744 + }, + { + "start": 3408.12, + "end": 3408.7, + "probability": 0.9651 + }, + { + "start": 3409.44, + "end": 3410.8, + "probability": 0.9353 + }, + { + "start": 3411.32, + "end": 3416.74, + "probability": 0.9743 + }, + { + "start": 3417.08, + "end": 3418.84, + "probability": 0.9956 + }, + { + "start": 3418.96, + "end": 3423.32, + "probability": 0.9657 + }, + { + "start": 3423.52, + "end": 3428.4, + "probability": 0.9965 + }, + { + "start": 3428.84, + "end": 3432.06, + "probability": 0.9509 + }, + { + "start": 3432.48, + "end": 3433.48, + "probability": 0.5332 + }, + { + "start": 3433.66, + "end": 3437.22, + "probability": 0.9969 + }, + { + "start": 3437.56, + "end": 3442.28, + "probability": 0.9962 + }, + { + "start": 3442.46, + "end": 3442.62, + "probability": 0.327 + }, + { + "start": 3442.88, + "end": 3444.96, + "probability": 0.9265 + }, + { + "start": 3445.2, + "end": 3446.9, + "probability": 0.9037 + }, + { + "start": 3446.98, + "end": 3448.55, + "probability": 0.7542 + }, + { + "start": 3448.9, + "end": 3451.06, + "probability": 0.9904 + }, + { + "start": 3451.2, + "end": 3455.8, + "probability": 0.9958 + }, + { + "start": 3456.2, + "end": 3457.78, + "probability": 0.6451 + }, + { + "start": 3457.86, + "end": 3459.7, + "probability": 0.879 + }, + { + "start": 3459.74, + "end": 3460.32, + "probability": 0.7541 + }, + { + "start": 3460.48, + "end": 3462.24, + "probability": 0.9526 + }, + { + "start": 3463.04, + "end": 3464.82, + "probability": 0.7022 + }, + { + "start": 3466.2, + "end": 3468.5, + "probability": 0.9895 + }, + { + "start": 3469.6, + "end": 3471.41, + "probability": 0.7473 + }, + { + "start": 3473.18, + "end": 3478.5, + "probability": 0.9087 + }, + { + "start": 3479.6, + "end": 3479.96, + "probability": 0.7415 + }, + { + "start": 3481.6, + "end": 3489.52, + "probability": 0.8933 + }, + { + "start": 3490.1, + "end": 3490.4, + "probability": 0.5222 + }, + { + "start": 3491.24, + "end": 3492.54, + "probability": 0.8773 + }, + { + "start": 3493.34, + "end": 3495.12, + "probability": 0.6674 + }, + { + "start": 3495.5, + "end": 3496.82, + "probability": 0.787 + }, + { + "start": 3497.26, + "end": 3498.82, + "probability": 0.7447 + }, + { + "start": 3499.92, + "end": 3503.1, + "probability": 0.913 + }, + { + "start": 3503.62, + "end": 3504.64, + "probability": 0.9203 + }, + { + "start": 3505.04, + "end": 3505.5, + "probability": 0.405 + }, + { + "start": 3505.54, + "end": 3506.32, + "probability": 0.6289 + }, + { + "start": 3508.68, + "end": 3510.6, + "probability": 0.9805 + }, + { + "start": 3511.5, + "end": 3513.72, + "probability": 0.9213 + }, + { + "start": 3514.3, + "end": 3518.54, + "probability": 0.9557 + }, + { + "start": 3519.3, + "end": 3520.3, + "probability": 0.7033 + }, + { + "start": 3521.12, + "end": 3522.42, + "probability": 0.998 + }, + { + "start": 3523.86, + "end": 3524.6, + "probability": 0.9075 + }, + { + "start": 3525.38, + "end": 3527.76, + "probability": 0.9149 + }, + { + "start": 3528.44, + "end": 3530.68, + "probability": 0.8184 + }, + { + "start": 3531.8, + "end": 3533.4, + "probability": 0.9895 + }, + { + "start": 3534.36, + "end": 3539.5, + "probability": 0.7797 + }, + { + "start": 3539.64, + "end": 3540.12, + "probability": 0.8645 + }, + { + "start": 3540.34, + "end": 3540.6, + "probability": 0.734 + }, + { + "start": 3541.24, + "end": 3542.6, + "probability": 0.7288 + }, + { + "start": 3543.22, + "end": 3545.56, + "probability": 0.7303 + }, + { + "start": 3546.56, + "end": 3549.26, + "probability": 0.9421 + }, + { + "start": 3554.28, + "end": 3556.42, + "probability": 0.6866 + }, + { + "start": 3557.38, + "end": 3563.38, + "probability": 0.9901 + }, + { + "start": 3564.58, + "end": 3568.42, + "probability": 0.9425 + }, + { + "start": 3568.92, + "end": 3569.94, + "probability": 0.8301 + }, + { + "start": 3570.68, + "end": 3572.03, + "probability": 0.6151 + }, + { + "start": 3573.78, + "end": 3578.24, + "probability": 0.9499 + }, + { + "start": 3579.04, + "end": 3579.88, + "probability": 0.8276 + }, + { + "start": 3580.38, + "end": 3583.74, + "probability": 0.9693 + }, + { + "start": 3583.74, + "end": 3587.34, + "probability": 0.9399 + }, + { + "start": 3588.02, + "end": 3589.44, + "probability": 0.9642 + }, + { + "start": 3589.62, + "end": 3593.4, + "probability": 0.8512 + }, + { + "start": 3593.88, + "end": 3597.92, + "probability": 0.9902 + }, + { + "start": 3598.6, + "end": 3599.22, + "probability": 0.8396 + }, + { + "start": 3599.32, + "end": 3604.18, + "probability": 0.8331 + }, + { + "start": 3604.3, + "end": 3609.84, + "probability": 0.7154 + }, + { + "start": 3609.94, + "end": 3611.02, + "probability": 0.7571 + }, + { + "start": 3611.32, + "end": 3613.58, + "probability": 0.9117 + }, + { + "start": 3614.0, + "end": 3615.66, + "probability": 0.8871 + }, + { + "start": 3615.8, + "end": 3618.04, + "probability": 0.8816 + }, + { + "start": 3618.44, + "end": 3618.92, + "probability": 0.3564 + }, + { + "start": 3620.06, + "end": 3624.4, + "probability": 0.9944 + }, + { + "start": 3624.4, + "end": 3630.06, + "probability": 0.9928 + }, + { + "start": 3630.44, + "end": 3630.74, + "probability": 0.8796 + }, + { + "start": 3631.38, + "end": 3633.2, + "probability": 0.8379 + }, + { + "start": 3633.3, + "end": 3634.94, + "probability": 0.8524 + }, + { + "start": 3635.44, + "end": 3637.24, + "probability": 0.9521 + }, + { + "start": 3637.56, + "end": 3637.96, + "probability": 0.7654 + }, + { + "start": 3638.62, + "end": 3639.78, + "probability": 0.8736 + }, + { + "start": 3639.88, + "end": 3641.34, + "probability": 0.7592 + }, + { + "start": 3641.82, + "end": 3643.9, + "probability": 0.9655 + }, + { + "start": 3644.12, + "end": 3646.36, + "probability": 0.8988 + }, + { + "start": 3646.94, + "end": 3651.24, + "probability": 0.6086 + }, + { + "start": 3651.74, + "end": 3654.46, + "probability": 0.9914 + }, + { + "start": 3654.84, + "end": 3658.32, + "probability": 0.7144 + }, + { + "start": 3658.32, + "end": 3658.68, + "probability": 0.7224 + }, + { + "start": 3659.84, + "end": 3660.72, + "probability": 0.6574 + }, + { + "start": 3661.28, + "end": 3662.06, + "probability": 0.8225 + }, + { + "start": 3662.74, + "end": 3667.6, + "probability": 0.9863 + }, + { + "start": 3668.06, + "end": 3670.62, + "probability": 0.6708 + }, + { + "start": 3671.52, + "end": 3671.62, + "probability": 0.1315 + }, + { + "start": 3671.62, + "end": 3674.8, + "probability": 0.9082 + }, + { + "start": 3674.8, + "end": 3679.38, + "probability": 0.9886 + }, + { + "start": 3680.26, + "end": 3682.02, + "probability": 0.8592 + }, + { + "start": 3684.75, + "end": 3684.96, + "probability": 0.0507 + }, + { + "start": 3684.96, + "end": 3690.26, + "probability": 0.9815 + }, + { + "start": 3691.4, + "end": 3697.0, + "probability": 0.9883 + }, + { + "start": 3697.66, + "end": 3702.88, + "probability": 0.9481 + }, + { + "start": 3704.08, + "end": 3704.22, + "probability": 0.323 + }, + { + "start": 3704.34, + "end": 3706.46, + "probability": 0.9274 + }, + { + "start": 3706.96, + "end": 3709.16, + "probability": 0.9333 + }, + { + "start": 3711.04, + "end": 3711.6, + "probability": 0.7819 + }, + { + "start": 3712.1, + "end": 3715.3, + "probability": 0.9645 + }, + { + "start": 3715.3, + "end": 3718.26, + "probability": 0.9724 + }, + { + "start": 3719.3, + "end": 3721.94, + "probability": 0.9036 + }, + { + "start": 3722.92, + "end": 3726.92, + "probability": 0.9739 + }, + { + "start": 3727.62, + "end": 3730.04, + "probability": 0.8987 + }, + { + "start": 3730.58, + "end": 3731.08, + "probability": 0.6999 + }, + { + "start": 3731.18, + "end": 3731.76, + "probability": 0.9602 + }, + { + "start": 3732.22, + "end": 3734.96, + "probability": 0.9526 + }, + { + "start": 3736.18, + "end": 3737.62, + "probability": 0.8866 + }, + { + "start": 3738.38, + "end": 3740.6, + "probability": 0.9463 + }, + { + "start": 3743.18, + "end": 3746.96, + "probability": 0.8506 + }, + { + "start": 3747.62, + "end": 3749.12, + "probability": 0.9806 + }, + { + "start": 3750.0, + "end": 3755.32, + "probability": 0.9683 + }, + { + "start": 3756.68, + "end": 3757.6, + "probability": 0.7584 + }, + { + "start": 3758.34, + "end": 3762.6, + "probability": 0.999 + }, + { + "start": 3763.42, + "end": 3765.8, + "probability": 0.6111 + }, + { + "start": 3766.68, + "end": 3768.9, + "probability": 0.9401 + }, + { + "start": 3769.6, + "end": 3774.28, + "probability": 0.9511 + }, + { + "start": 3775.62, + "end": 3780.46, + "probability": 0.9781 + }, + { + "start": 3781.66, + "end": 3782.38, + "probability": 0.8807 + }, + { + "start": 3782.96, + "end": 3787.7, + "probability": 0.9816 + }, + { + "start": 3787.7, + "end": 3792.4, + "probability": 0.9854 + }, + { + "start": 3793.92, + "end": 3794.38, + "probability": 0.6493 + }, + { + "start": 3795.08, + "end": 3796.51, + "probability": 0.8405 + }, + { + "start": 3800.04, + "end": 3804.86, + "probability": 0.9117 + }, + { + "start": 3806.36, + "end": 3807.22, + "probability": 0.8225 + }, + { + "start": 3808.12, + "end": 3809.86, + "probability": 0.9299 + }, + { + "start": 3810.4, + "end": 3812.78, + "probability": 0.9533 + }, + { + "start": 3812.78, + "end": 3816.58, + "probability": 0.9042 + }, + { + "start": 3817.34, + "end": 3822.76, + "probability": 0.9096 + }, + { + "start": 3825.02, + "end": 3828.9, + "probability": 0.7492 + }, + { + "start": 3829.86, + "end": 3832.9, + "probability": 0.9823 + }, + { + "start": 3833.46, + "end": 3834.66, + "probability": 0.9688 + }, + { + "start": 3835.38, + "end": 3838.86, + "probability": 0.6973 + }, + { + "start": 3840.22, + "end": 3843.92, + "probability": 0.9937 + }, + { + "start": 3843.92, + "end": 3847.92, + "probability": 0.9907 + }, + { + "start": 3848.42, + "end": 3849.4, + "probability": 0.7805 + }, + { + "start": 3849.86, + "end": 3852.24, + "probability": 0.9489 + }, + { + "start": 3854.02, + "end": 3858.26, + "probability": 0.9759 + }, + { + "start": 3870.06, + "end": 3872.26, + "probability": 0.7499 + }, + { + "start": 3873.14, + "end": 3878.18, + "probability": 0.9792 + }, + { + "start": 3878.54, + "end": 3879.78, + "probability": 0.9485 + }, + { + "start": 3880.8, + "end": 3882.9, + "probability": 0.9688 + }, + { + "start": 3883.84, + "end": 3885.54, + "probability": 0.991 + }, + { + "start": 3886.14, + "end": 3889.7, + "probability": 0.998 + }, + { + "start": 3890.26, + "end": 3891.88, + "probability": 0.9491 + }, + { + "start": 3892.36, + "end": 3897.88, + "probability": 0.9856 + }, + { + "start": 3897.98, + "end": 3901.08, + "probability": 0.9945 + }, + { + "start": 3901.64, + "end": 3903.5, + "probability": 0.8147 + }, + { + "start": 3903.94, + "end": 3906.22, + "probability": 0.922 + }, + { + "start": 3906.22, + "end": 3909.58, + "probability": 0.9874 + }, + { + "start": 3911.08, + "end": 3912.12, + "probability": 0.6345 + }, + { + "start": 3912.16, + "end": 3917.0, + "probability": 0.936 + }, + { + "start": 3917.0, + "end": 3923.84, + "probability": 0.9302 + }, + { + "start": 3924.38, + "end": 3929.26, + "probability": 0.9775 + }, + { + "start": 3930.4, + "end": 3935.18, + "probability": 0.998 + }, + { + "start": 3935.36, + "end": 3937.82, + "probability": 0.7369 + }, + { + "start": 3938.16, + "end": 3940.76, + "probability": 0.9897 + }, + { + "start": 3941.3, + "end": 3944.1, + "probability": 0.9222 + }, + { + "start": 3944.54, + "end": 3949.66, + "probability": 0.9937 + }, + { + "start": 3950.36, + "end": 3952.2, + "probability": 0.5776 + }, + { + "start": 3953.24, + "end": 3955.5, + "probability": 0.9661 + }, + { + "start": 3955.6, + "end": 3956.64, + "probability": 0.8423 + }, + { + "start": 3956.94, + "end": 3960.22, + "probability": 0.9836 + }, + { + "start": 3960.22, + "end": 3964.1, + "probability": 0.8746 + }, + { + "start": 3965.04, + "end": 3968.98, + "probability": 0.9443 + }, + { + "start": 3969.3, + "end": 3971.22, + "probability": 0.9729 + }, + { + "start": 3971.76, + "end": 3975.28, + "probability": 0.9417 + }, + { + "start": 3975.6, + "end": 3977.86, + "probability": 0.9946 + }, + { + "start": 3978.26, + "end": 3979.32, + "probability": 0.937 + }, + { + "start": 3979.58, + "end": 3981.04, + "probability": 0.8975 + }, + { + "start": 3981.38, + "end": 3985.94, + "probability": 0.9353 + }, + { + "start": 3986.0, + "end": 3987.12, + "probability": 0.8253 + }, + { + "start": 3987.18, + "end": 3988.24, + "probability": 0.9235 + }, + { + "start": 3988.38, + "end": 3988.74, + "probability": 0.738 + }, + { + "start": 3989.3, + "end": 3991.46, + "probability": 0.9263 + }, + { + "start": 3991.64, + "end": 3993.92, + "probability": 0.8485 + }, + { + "start": 3994.02, + "end": 3998.88, + "probability": 0.9631 + }, + { + "start": 3999.26, + "end": 4002.78, + "probability": 0.9931 + }, + { + "start": 4003.76, + "end": 4004.24, + "probability": 0.5653 + }, + { + "start": 4004.32, + "end": 4007.52, + "probability": 0.9364 + }, + { + "start": 4007.52, + "end": 4013.12, + "probability": 0.9744 + }, + { + "start": 4013.86, + "end": 4016.16, + "probability": 0.9899 + }, + { + "start": 4016.78, + "end": 4017.96, + "probability": 0.8722 + }, + { + "start": 4018.06, + "end": 4023.38, + "probability": 0.9802 + }, + { + "start": 4023.8, + "end": 4025.4, + "probability": 0.9122 + }, + { + "start": 4025.52, + "end": 4026.48, + "probability": 0.9061 + }, + { + "start": 4026.6, + "end": 4031.78, + "probability": 0.9907 + }, + { + "start": 4032.44, + "end": 4035.14, + "probability": 0.989 + }, + { + "start": 4035.14, + "end": 4039.16, + "probability": 0.8885 + }, + { + "start": 4039.32, + "end": 4043.12, + "probability": 0.8988 + }, + { + "start": 4043.74, + "end": 4048.18, + "probability": 0.9514 + }, + { + "start": 4048.26, + "end": 4049.8, + "probability": 0.9906 + }, + { + "start": 4049.88, + "end": 4052.38, + "probability": 0.998 + }, + { + "start": 4052.8, + "end": 4055.28, + "probability": 0.9235 + }, + { + "start": 4055.38, + "end": 4061.36, + "probability": 0.946 + }, + { + "start": 4061.64, + "end": 4066.56, + "probability": 0.9819 + }, + { + "start": 4066.56, + "end": 4068.3, + "probability": 0.8974 + }, + { + "start": 4068.44, + "end": 4069.16, + "probability": 0.7472 + }, + { + "start": 4069.22, + "end": 4074.42, + "probability": 0.9823 + }, + { + "start": 4074.54, + "end": 4076.92, + "probability": 0.9096 + }, + { + "start": 4077.2, + "end": 4078.72, + "probability": 0.9344 + }, + { + "start": 4079.64, + "end": 4083.42, + "probability": 0.9821 + }, + { + "start": 4083.84, + "end": 4088.46, + "probability": 0.9803 + }, + { + "start": 4088.62, + "end": 4090.32, + "probability": 0.9122 + }, + { + "start": 4090.64, + "end": 4092.16, + "probability": 0.8816 + }, + { + "start": 4092.24, + "end": 4092.5, + "probability": 0.7743 + }, + { + "start": 4092.64, + "end": 4095.82, + "probability": 0.9421 + }, + { + "start": 4095.82, + "end": 4099.32, + "probability": 0.9945 + }, + { + "start": 4099.7, + "end": 4100.86, + "probability": 0.1413 + }, + { + "start": 4101.18, + "end": 4107.64, + "probability": 0.9696 + }, + { + "start": 4108.26, + "end": 4110.82, + "probability": 0.8182 + }, + { + "start": 4111.82, + "end": 4115.72, + "probability": 0.9567 + }, + { + "start": 4116.2, + "end": 4122.12, + "probability": 0.9981 + }, + { + "start": 4122.64, + "end": 4123.98, + "probability": 0.6599 + }, + { + "start": 4124.16, + "end": 4126.3, + "probability": 0.8928 + }, + { + "start": 4126.8, + "end": 4128.64, + "probability": 0.7576 + }, + { + "start": 4128.7, + "end": 4130.32, + "probability": 0.9319 + }, + { + "start": 4130.82, + "end": 4132.82, + "probability": 0.998 + }, + { + "start": 4132.88, + "end": 4135.86, + "probability": 0.9807 + }, + { + "start": 4135.86, + "end": 4139.76, + "probability": 0.9713 + }, + { + "start": 4140.32, + "end": 4142.72, + "probability": 0.9761 + }, + { + "start": 4143.04, + "end": 4144.3, + "probability": 0.877 + }, + { + "start": 4144.72, + "end": 4146.22, + "probability": 0.9792 + }, + { + "start": 4146.26, + "end": 4147.6, + "probability": 0.6612 + }, + { + "start": 4147.68, + "end": 4152.35, + "probability": 0.9683 + }, + { + "start": 4152.42, + "end": 4157.5, + "probability": 0.9516 + }, + { + "start": 4157.78, + "end": 4158.96, + "probability": 0.7978 + }, + { + "start": 4159.06, + "end": 4160.08, + "probability": 0.8463 + }, + { + "start": 4160.58, + "end": 4163.34, + "probability": 0.949 + }, + { + "start": 4163.96, + "end": 4166.82, + "probability": 0.9768 + }, + { + "start": 4166.94, + "end": 4167.2, + "probability": 0.8702 + }, + { + "start": 4167.26, + "end": 4168.14, + "probability": 0.8886 + }, + { + "start": 4168.24, + "end": 4168.88, + "probability": 0.7261 + }, + { + "start": 4169.0, + "end": 4172.2, + "probability": 0.9451 + }, + { + "start": 4172.64, + "end": 4177.8, + "probability": 0.7397 + }, + { + "start": 4178.16, + "end": 4184.3, + "probability": 0.9951 + }, + { + "start": 4184.76, + "end": 4185.64, + "probability": 0.4928 + }, + { + "start": 4185.7, + "end": 4187.94, + "probability": 0.9434 + }, + { + "start": 4188.1, + "end": 4188.36, + "probability": 0.3344 + }, + { + "start": 4188.38, + "end": 4188.78, + "probability": 0.368 + }, + { + "start": 4188.82, + "end": 4189.78, + "probability": 0.9053 + }, + { + "start": 4189.84, + "end": 4191.74, + "probability": 0.9872 + }, + { + "start": 4192.04, + "end": 4195.08, + "probability": 0.9843 + }, + { + "start": 4195.6, + "end": 4197.0, + "probability": 0.9666 + }, + { + "start": 4197.94, + "end": 4199.04, + "probability": 0.5974 + }, + { + "start": 4199.22, + "end": 4200.35, + "probability": 0.8467 + }, + { + "start": 4200.6, + "end": 4201.41, + "probability": 0.9104 + }, + { + "start": 4202.22, + "end": 4206.24, + "probability": 0.6841 + }, + { + "start": 4206.36, + "end": 4210.16, + "probability": 0.5503 + }, + { + "start": 4210.66, + "end": 4211.38, + "probability": 0.398 + }, + { + "start": 4211.52, + "end": 4217.18, + "probability": 0.7364 + }, + { + "start": 4217.18, + "end": 4221.68, + "probability": 0.8098 + }, + { + "start": 4222.22, + "end": 4224.36, + "probability": 0.925 + }, + { + "start": 4224.9, + "end": 4227.36, + "probability": 0.9028 + }, + { + "start": 4227.8, + "end": 4229.68, + "probability": 0.9419 + }, + { + "start": 4229.74, + "end": 4231.26, + "probability": 0.9918 + }, + { + "start": 4231.7, + "end": 4232.05, + "probability": 0.7173 + }, + { + "start": 4232.54, + "end": 4233.08, + "probability": 0.94 + }, + { + "start": 4233.42, + "end": 4235.12, + "probability": 0.9795 + }, + { + "start": 4235.38, + "end": 4240.9, + "probability": 0.9738 + }, + { + "start": 4241.38, + "end": 4244.32, + "probability": 0.7457 + }, + { + "start": 4244.42, + "end": 4246.54, + "probability": 0.954 + }, + { + "start": 4246.88, + "end": 4249.36, + "probability": 0.9844 + }, + { + "start": 4249.72, + "end": 4252.12, + "probability": 0.9751 + }, + { + "start": 4252.58, + "end": 4253.42, + "probability": 0.9244 + }, + { + "start": 4254.04, + "end": 4258.02, + "probability": 0.9639 + }, + { + "start": 4258.34, + "end": 4260.64, + "probability": 0.8382 + }, + { + "start": 4261.96, + "end": 4264.68, + "probability": 0.8673 + }, + { + "start": 4265.28, + "end": 4268.02, + "probability": 0.9962 + }, + { + "start": 4268.72, + "end": 4269.08, + "probability": 0.7445 + }, + { + "start": 4269.16, + "end": 4269.6, + "probability": 0.8323 + }, + { + "start": 4269.86, + "end": 4272.18, + "probability": 0.9951 + }, + { + "start": 4272.34, + "end": 4273.26, + "probability": 0.5319 + }, + { + "start": 4273.84, + "end": 4276.66, + "probability": 0.9911 + }, + { + "start": 4276.66, + "end": 4279.26, + "probability": 0.9976 + }, + { + "start": 4279.3, + "end": 4280.14, + "probability": 0.8045 + }, + { + "start": 4281.14, + "end": 4284.78, + "probability": 0.8757 + }, + { + "start": 4284.78, + "end": 4289.24, + "probability": 0.9596 + }, + { + "start": 4290.04, + "end": 4294.55, + "probability": 0.8175 + }, + { + "start": 4295.04, + "end": 4295.92, + "probability": 0.7494 + }, + { + "start": 4296.44, + "end": 4297.0, + "probability": 0.7005 + }, + { + "start": 4297.02, + "end": 4301.36, + "probability": 0.8417 + }, + { + "start": 4301.68, + "end": 4304.36, + "probability": 0.9619 + }, + { + "start": 4304.78, + "end": 4307.18, + "probability": 0.9874 + }, + { + "start": 4307.46, + "end": 4309.46, + "probability": 0.9981 + }, + { + "start": 4309.76, + "end": 4314.8, + "probability": 0.9995 + }, + { + "start": 4315.26, + "end": 4315.9, + "probability": 0.8347 + }, + { + "start": 4316.1, + "end": 4317.4, + "probability": 0.7313 + }, + { + "start": 4317.88, + "end": 4319.12, + "probability": 0.9839 + }, + { + "start": 4319.58, + "end": 4322.76, + "probability": 0.8908 + }, + { + "start": 4323.3, + "end": 4326.68, + "probability": 0.9036 + }, + { + "start": 4327.6, + "end": 4329.64, + "probability": 0.9753 + }, + { + "start": 4329.74, + "end": 4330.3, + "probability": 0.7621 + }, + { + "start": 4330.52, + "end": 4332.8, + "probability": 0.5513 + }, + { + "start": 4332.92, + "end": 4335.22, + "probability": 0.8322 + }, + { + "start": 4335.26, + "end": 4337.28, + "probability": 0.9924 + }, + { + "start": 4338.38, + "end": 4339.8, + "probability": 0.6444 + }, + { + "start": 4339.98, + "end": 4345.14, + "probability": 0.8686 + }, + { + "start": 4345.88, + "end": 4347.34, + "probability": 0.9847 + }, + { + "start": 4347.5, + "end": 4349.04, + "probability": 0.8657 + }, + { + "start": 4349.64, + "end": 4351.88, + "probability": 0.9777 + }, + { + "start": 4352.88, + "end": 4354.5, + "probability": 0.9915 + }, + { + "start": 4363.72, + "end": 4364.16, + "probability": 0.4386 + }, + { + "start": 4364.16, + "end": 4365.02, + "probability": 0.876 + }, + { + "start": 4365.64, + "end": 4366.16, + "probability": 0.7677 + }, + { + "start": 4366.2, + "end": 4367.06, + "probability": 0.7511 + }, + { + "start": 4367.16, + "end": 4370.14, + "probability": 0.9326 + }, + { + "start": 4370.3, + "end": 4374.18, + "probability": 0.9971 + }, + { + "start": 4374.94, + "end": 4377.12, + "probability": 0.9976 + }, + { + "start": 4377.8, + "end": 4380.5, + "probability": 0.801 + }, + { + "start": 4381.46, + "end": 4385.88, + "probability": 0.9916 + }, + { + "start": 4386.68, + "end": 4391.1, + "probability": 0.9278 + }, + { + "start": 4391.1, + "end": 4395.26, + "probability": 0.9934 + }, + { + "start": 4396.06, + "end": 4397.82, + "probability": 0.9189 + }, + { + "start": 4398.28, + "end": 4398.38, + "probability": 0.3326 + }, + { + "start": 4398.46, + "end": 4398.82, + "probability": 0.8081 + }, + { + "start": 4398.92, + "end": 4399.78, + "probability": 0.66 + }, + { + "start": 4400.26, + "end": 4402.52, + "probability": 0.9981 + }, + { + "start": 4402.92, + "end": 4405.34, + "probability": 0.7321 + }, + { + "start": 4406.38, + "end": 4409.9, + "probability": 0.9925 + }, + { + "start": 4410.2, + "end": 4412.8, + "probability": 0.7392 + }, + { + "start": 4413.6, + "end": 4415.24, + "probability": 0.9208 + }, + { + "start": 4415.84, + "end": 4416.92, + "probability": 0.9166 + }, + { + "start": 4417.86, + "end": 4418.8, + "probability": 0.9874 + }, + { + "start": 4420.28, + "end": 4422.74, + "probability": 0.9769 + }, + { + "start": 4422.9, + "end": 4423.56, + "probability": 0.9323 + }, + { + "start": 4424.04, + "end": 4426.66, + "probability": 0.9674 + }, + { + "start": 4427.12, + "end": 4428.87, + "probability": 0.998 + }, + { + "start": 4429.36, + "end": 4432.98, + "probability": 0.9838 + }, + { + "start": 4434.02, + "end": 4441.3, + "probability": 0.9936 + }, + { + "start": 4442.04, + "end": 4443.96, + "probability": 0.9876 + }, + { + "start": 4445.06, + "end": 4448.36, + "probability": 0.9746 + }, + { + "start": 4448.94, + "end": 4451.88, + "probability": 0.981 + }, + { + "start": 4452.32, + "end": 4456.68, + "probability": 0.9682 + }, + { + "start": 4456.84, + "end": 4457.54, + "probability": 0.5806 + }, + { + "start": 4457.66, + "end": 4458.66, + "probability": 0.7977 + }, + { + "start": 4459.26, + "end": 4460.71, + "probability": 0.9668 + }, + { + "start": 4461.2, + "end": 4463.0, + "probability": 0.8976 + }, + { + "start": 4463.64, + "end": 4464.32, + "probability": 0.2951 + }, + { + "start": 4464.38, + "end": 4465.34, + "probability": 0.9491 + }, + { + "start": 4465.44, + "end": 4466.98, + "probability": 0.9753 + }, + { + "start": 4467.84, + "end": 4471.24, + "probability": 0.9694 + }, + { + "start": 4471.36, + "end": 4477.2, + "probability": 0.9742 + }, + { + "start": 4478.16, + "end": 4482.58, + "probability": 0.996 + }, + { + "start": 4482.58, + "end": 4484.92, + "probability": 0.822 + }, + { + "start": 4485.7, + "end": 4491.43, + "probability": 0.8343 + }, + { + "start": 4492.8, + "end": 4494.68, + "probability": 0.9706 + }, + { + "start": 4495.86, + "end": 4498.45, + "probability": 0.9965 + }, + { + "start": 4499.6, + "end": 4502.8, + "probability": 0.9449 + }, + { + "start": 4502.8, + "end": 4506.92, + "probability": 0.999 + }, + { + "start": 4507.5, + "end": 4509.98, + "probability": 0.9402 + }, + { + "start": 4510.82, + "end": 4513.24, + "probability": 0.9451 + }, + { + "start": 4516.88, + "end": 4516.94, + "probability": 0.0903 + }, + { + "start": 4516.94, + "end": 4520.12, + "probability": 0.9071 + }, + { + "start": 4521.64, + "end": 4528.18, + "probability": 0.9082 + }, + { + "start": 4528.18, + "end": 4530.58, + "probability": 0.9183 + }, + { + "start": 4531.46, + "end": 4536.56, + "probability": 0.9621 + }, + { + "start": 4536.88, + "end": 4537.64, + "probability": 0.9179 + }, + { + "start": 4537.72, + "end": 4539.6, + "probability": 0.8859 + }, + { + "start": 4540.42, + "end": 4545.28, + "probability": 0.9933 + }, + { + "start": 4545.82, + "end": 4547.76, + "probability": 0.9876 + }, + { + "start": 4549.1, + "end": 4555.14, + "probability": 0.9943 + }, + { + "start": 4555.8, + "end": 4557.94, + "probability": 0.9967 + }, + { + "start": 4558.98, + "end": 4559.94, + "probability": 0.9859 + }, + { + "start": 4560.16, + "end": 4564.62, + "probability": 0.9873 + }, + { + "start": 4565.22, + "end": 4569.5, + "probability": 0.9987 + }, + { + "start": 4569.66, + "end": 4571.4, + "probability": 0.8324 + }, + { + "start": 4572.0, + "end": 4573.02, + "probability": 0.8923 + }, + { + "start": 4573.62, + "end": 4578.98, + "probability": 0.9024 + }, + { + "start": 4580.52, + "end": 4585.36, + "probability": 0.9893 + }, + { + "start": 4585.84, + "end": 4589.85, + "probability": 0.7625 + }, + { + "start": 4591.36, + "end": 4591.92, + "probability": 0.7202 + }, + { + "start": 4593.04, + "end": 4596.56, + "probability": 0.9917 + }, + { + "start": 4597.24, + "end": 4600.74, + "probability": 0.9685 + }, + { + "start": 4600.74, + "end": 4605.08, + "probability": 0.9873 + }, + { + "start": 4605.66, + "end": 4607.66, + "probability": 0.7524 + }, + { + "start": 4608.38, + "end": 4610.12, + "probability": 0.972 + }, + { + "start": 4610.28, + "end": 4610.78, + "probability": 0.9056 + }, + { + "start": 4610.92, + "end": 4611.34, + "probability": 0.9032 + }, + { + "start": 4611.42, + "end": 4612.02, + "probability": 0.8371 + }, + { + "start": 4612.48, + "end": 4613.06, + "probability": 0.8829 + }, + { + "start": 4613.54, + "end": 4614.86, + "probability": 0.8417 + }, + { + "start": 4615.74, + "end": 4618.7, + "probability": 0.9802 + }, + { + "start": 4619.48, + "end": 4623.28, + "probability": 0.9545 + }, + { + "start": 4624.22, + "end": 4628.2, + "probability": 0.9698 + }, + { + "start": 4629.26, + "end": 4631.44, + "probability": 0.9648 + }, + { + "start": 4632.2, + "end": 4635.24, + "probability": 0.9709 + }, + { + "start": 4635.76, + "end": 4636.28, + "probability": 0.551 + }, + { + "start": 4636.92, + "end": 4638.32, + "probability": 0.922 + }, + { + "start": 4638.72, + "end": 4642.42, + "probability": 0.9594 + }, + { + "start": 4643.1, + "end": 4643.98, + "probability": 0.7364 + }, + { + "start": 4644.14, + "end": 4645.46, + "probability": 0.7267 + }, + { + "start": 4645.84, + "end": 4649.02, + "probability": 0.9678 + }, + { + "start": 4649.08, + "end": 4650.52, + "probability": 0.7666 + }, + { + "start": 4650.98, + "end": 4654.5, + "probability": 0.9824 + }, + { + "start": 4655.2, + "end": 4656.56, + "probability": 0.9487 + }, + { + "start": 4656.74, + "end": 4661.2, + "probability": 0.9951 + }, + { + "start": 4662.14, + "end": 4663.6, + "probability": 0.9744 + }, + { + "start": 4664.2, + "end": 4669.28, + "probability": 0.9106 + }, + { + "start": 4669.88, + "end": 4671.1, + "probability": 0.6229 + }, + { + "start": 4671.26, + "end": 4671.58, + "probability": 0.7119 + }, + { + "start": 4672.7, + "end": 4677.94, + "probability": 0.9867 + }, + { + "start": 4678.0, + "end": 4681.98, + "probability": 0.8907 + }, + { + "start": 4682.38, + "end": 4683.58, + "probability": 0.7872 + }, + { + "start": 4683.68, + "end": 4684.24, + "probability": 0.9592 + }, + { + "start": 4684.4, + "end": 4685.36, + "probability": 0.932 + }, + { + "start": 4685.5, + "end": 4686.7, + "probability": 0.6942 + }, + { + "start": 4686.98, + "end": 4690.32, + "probability": 0.8895 + }, + { + "start": 4690.86, + "end": 4691.62, + "probability": 0.9386 + }, + { + "start": 4691.7, + "end": 4692.48, + "probability": 0.7567 + }, + { + "start": 4692.56, + "end": 4695.43, + "probability": 0.9287 + }, + { + "start": 4695.9, + "end": 4701.32, + "probability": 0.9395 + }, + { + "start": 4702.11, + "end": 4705.52, + "probability": 0.9952 + }, + { + "start": 4705.52, + "end": 4708.0, + "probability": 0.9526 + }, + { + "start": 4708.54, + "end": 4709.08, + "probability": 0.8994 + }, + { + "start": 4709.14, + "end": 4709.78, + "probability": 0.7244 + }, + { + "start": 4709.84, + "end": 4711.36, + "probability": 0.9934 + }, + { + "start": 4712.08, + "end": 4714.5, + "probability": 0.6525 + }, + { + "start": 4715.06, + "end": 4717.14, + "probability": 0.9662 + }, + { + "start": 4717.74, + "end": 4719.6, + "probability": 0.9609 + }, + { + "start": 4719.96, + "end": 4721.46, + "probability": 0.9847 + }, + { + "start": 4721.72, + "end": 4723.54, + "probability": 0.9683 + }, + { + "start": 4723.86, + "end": 4725.34, + "probability": 0.9916 + }, + { + "start": 4725.68, + "end": 4727.24, + "probability": 0.8843 + }, + { + "start": 4727.64, + "end": 4728.22, + "probability": 0.7814 + }, + { + "start": 4728.5, + "end": 4728.9, + "probability": 0.7919 + }, + { + "start": 4729.14, + "end": 4731.04, + "probability": 0.6346 + }, + { + "start": 4731.18, + "end": 4732.32, + "probability": 0.9747 + }, + { + "start": 4732.48, + "end": 4732.84, + "probability": 0.8646 + }, + { + "start": 4732.88, + "end": 4733.2, + "probability": 0.6878 + }, + { + "start": 4733.36, + "end": 4734.26, + "probability": 0.495 + }, + { + "start": 4734.38, + "end": 4735.34, + "probability": 0.9513 + }, + { + "start": 4750.24, + "end": 4753.62, + "probability": 0.6178 + }, + { + "start": 4755.34, + "end": 4755.5, + "probability": 0.4123 + }, + { + "start": 4755.64, + "end": 4760.67, + "probability": 0.9051 + }, + { + "start": 4760.74, + "end": 4763.54, + "probability": 0.7241 + }, + { + "start": 4763.7, + "end": 4769.08, + "probability": 0.3515 + }, + { + "start": 4769.24, + "end": 4769.24, + "probability": 0.0477 + }, + { + "start": 4769.24, + "end": 4771.06, + "probability": 0.7708 + }, + { + "start": 4772.22, + "end": 4774.62, + "probability": 0.8979 + }, + { + "start": 4775.28, + "end": 4777.14, + "probability": 0.8438 + }, + { + "start": 4778.32, + "end": 4779.32, + "probability": 0.8435 + }, + { + "start": 4779.78, + "end": 4781.02, + "probability": 0.8878 + }, + { + "start": 4781.16, + "end": 4781.64, + "probability": 0.7237 + }, + { + "start": 4781.78, + "end": 4784.06, + "probability": 0.8398 + }, + { + "start": 4785.54, + "end": 4788.98, + "probability": 0.9686 + }, + { + "start": 4789.08, + "end": 4791.32, + "probability": 0.8862 + }, + { + "start": 4792.8, + "end": 4795.88, + "probability": 0.9936 + }, + { + "start": 4795.88, + "end": 4800.18, + "probability": 0.977 + }, + { + "start": 4800.26, + "end": 4803.34, + "probability": 0.9899 + }, + { + "start": 4804.02, + "end": 4807.14, + "probability": 0.9351 + }, + { + "start": 4807.44, + "end": 4809.02, + "probability": 0.8701 + }, + { + "start": 4809.14, + "end": 4811.76, + "probability": 0.9919 + }, + { + "start": 4813.08, + "end": 4816.52, + "probability": 0.9736 + }, + { + "start": 4816.6, + "end": 4817.96, + "probability": 0.9716 + }, + { + "start": 4818.52, + "end": 4819.98, + "probability": 0.9384 + }, + { + "start": 4820.06, + "end": 4820.6, + "probability": 0.7753 + }, + { + "start": 4820.9, + "end": 4821.34, + "probability": 0.4837 + }, + { + "start": 4822.78, + "end": 4823.8, + "probability": 0.8115 + }, + { + "start": 4823.96, + "end": 4824.42, + "probability": 0.6834 + }, + { + "start": 4824.48, + "end": 4825.62, + "probability": 0.7759 + }, + { + "start": 4825.74, + "end": 4827.88, + "probability": 0.731 + }, + { + "start": 4828.44, + "end": 4829.08, + "probability": 0.7127 + }, + { + "start": 4829.86, + "end": 4830.78, + "probability": 0.6898 + }, + { + "start": 4831.58, + "end": 4837.78, + "probability": 0.9875 + }, + { + "start": 4839.02, + "end": 4844.12, + "probability": 0.9794 + }, + { + "start": 4845.74, + "end": 4849.1, + "probability": 0.7614 + }, + { + "start": 4849.88, + "end": 4855.4, + "probability": 0.9816 + }, + { + "start": 4855.88, + "end": 4860.5, + "probability": 0.9849 + }, + { + "start": 4862.04, + "end": 4865.6, + "probability": 0.9937 + }, + { + "start": 4866.16, + "end": 4869.02, + "probability": 0.967 + }, + { + "start": 4869.84, + "end": 4875.18, + "probability": 0.7664 + }, + { + "start": 4875.88, + "end": 4876.3, + "probability": 0.1892 + }, + { + "start": 4876.98, + "end": 4880.25, + "probability": 0.9248 + }, + { + "start": 4882.14, + "end": 4883.72, + "probability": 0.994 + }, + { + "start": 4883.96, + "end": 4885.82, + "probability": 0.9844 + }, + { + "start": 4885.9, + "end": 4889.62, + "probability": 0.9863 + }, + { + "start": 4889.64, + "end": 4890.42, + "probability": 0.8207 + }, + { + "start": 4891.42, + "end": 4892.92, + "probability": 0.5037 + }, + { + "start": 4893.8, + "end": 4899.54, + "probability": 0.9624 + }, + { + "start": 4900.86, + "end": 4901.87, + "probability": 0.7439 + }, + { + "start": 4903.44, + "end": 4906.16, + "probability": 0.9952 + }, + { + "start": 4906.72, + "end": 4908.5, + "probability": 0.8482 + }, + { + "start": 4908.72, + "end": 4910.59, + "probability": 0.9756 + }, + { + "start": 4911.46, + "end": 4915.92, + "probability": 0.8484 + }, + { + "start": 4916.02, + "end": 4918.12, + "probability": 0.6672 + }, + { + "start": 4922.1, + "end": 4926.82, + "probability": 0.7998 + }, + { + "start": 4926.92, + "end": 4928.6, + "probability": 0.8828 + }, + { + "start": 4929.1, + "end": 4932.28, + "probability": 0.9357 + }, + { + "start": 4932.82, + "end": 4935.28, + "probability": 0.948 + }, + { + "start": 4936.26, + "end": 4936.98, + "probability": 0.8265 + }, + { + "start": 4937.28, + "end": 4939.97, + "probability": 0.6635 + }, + { + "start": 4941.62, + "end": 4942.58, + "probability": 0.5637 + }, + { + "start": 4943.04, + "end": 4944.12, + "probability": 0.7223 + }, + { + "start": 4944.44, + "end": 4944.98, + "probability": 0.8594 + }, + { + "start": 4945.3, + "end": 4949.0, + "probability": 0.8463 + }, + { + "start": 4949.04, + "end": 4951.2, + "probability": 0.9839 + }, + { + "start": 4951.28, + "end": 4952.84, + "probability": 0.8184 + }, + { + "start": 4953.14, + "end": 4955.43, + "probability": 0.8525 + }, + { + "start": 4956.16, + "end": 4956.89, + "probability": 0.9741 + }, + { + "start": 4958.28, + "end": 4960.74, + "probability": 0.9917 + }, + { + "start": 4961.86, + "end": 4963.8, + "probability": 0.7328 + }, + { + "start": 4964.48, + "end": 4968.04, + "probability": 0.9707 + }, + { + "start": 4968.54, + "end": 4970.5, + "probability": 0.7364 + }, + { + "start": 4970.56, + "end": 4972.48, + "probability": 0.9758 + }, + { + "start": 4972.86, + "end": 4973.12, + "probability": 0.5002 + }, + { + "start": 4973.2, + "end": 4974.72, + "probability": 0.9849 + }, + { + "start": 4975.34, + "end": 4976.74, + "probability": 0.9424 + }, + { + "start": 4977.28, + "end": 4977.98, + "probability": 0.6834 + }, + { + "start": 4978.9, + "end": 4979.76, + "probability": 0.9587 + }, + { + "start": 4979.9, + "end": 4980.1, + "probability": 0.7914 + }, + { + "start": 4980.14, + "end": 4981.28, + "probability": 0.9305 + }, + { + "start": 4981.66, + "end": 4985.82, + "probability": 0.9911 + }, + { + "start": 4988.04, + "end": 4994.06, + "probability": 0.9349 + }, + { + "start": 4994.36, + "end": 4994.62, + "probability": 0.4362 + }, + { + "start": 4994.72, + "end": 4995.26, + "probability": 0.8206 + }, + { + "start": 4995.34, + "end": 4995.8, + "probability": 0.7926 + }, + { + "start": 4996.8, + "end": 5001.06, + "probability": 0.7011 + }, + { + "start": 5001.78, + "end": 5002.39, + "probability": 0.7869 + }, + { + "start": 5003.04, + "end": 5003.58, + "probability": 0.7739 + }, + { + "start": 5004.74, + "end": 5008.1, + "probability": 0.9725 + }, + { + "start": 5008.88, + "end": 5011.26, + "probability": 0.9287 + }, + { + "start": 5012.18, + "end": 5012.86, + "probability": 0.9609 + }, + { + "start": 5014.08, + "end": 5015.02, + "probability": 0.8165 + }, + { + "start": 5016.06, + "end": 5017.9, + "probability": 0.8446 + }, + { + "start": 5017.96, + "end": 5019.36, + "probability": 0.6667 + }, + { + "start": 5019.4, + "end": 5020.34, + "probability": 0.7367 + }, + { + "start": 5020.76, + "end": 5021.6, + "probability": 0.9597 + }, + { + "start": 5022.52, + "end": 5024.98, + "probability": 0.9879 + }, + { + "start": 5025.86, + "end": 5027.42, + "probability": 0.9714 + }, + { + "start": 5027.72, + "end": 5029.96, + "probability": 0.9413 + }, + { + "start": 5030.52, + "end": 5031.4, + "probability": 0.7012 + }, + { + "start": 5032.14, + "end": 5035.86, + "probability": 0.9757 + }, + { + "start": 5037.04, + "end": 5037.84, + "probability": 0.7338 + }, + { + "start": 5038.78, + "end": 5043.96, + "probability": 0.9814 + }, + { + "start": 5044.18, + "end": 5047.46, + "probability": 0.99 + }, + { + "start": 5047.74, + "end": 5051.96, + "probability": 0.9943 + }, + { + "start": 5053.08, + "end": 5058.6, + "probability": 0.9954 + }, + { + "start": 5059.0, + "end": 5059.94, + "probability": 0.9958 + }, + { + "start": 5060.6, + "end": 5062.28, + "probability": 0.9186 + }, + { + "start": 5062.42, + "end": 5064.84, + "probability": 0.9971 + }, + { + "start": 5065.76, + "end": 5068.24, + "probability": 0.999 + }, + { + "start": 5068.92, + "end": 5070.54, + "probability": 0.9751 + }, + { + "start": 5070.7, + "end": 5072.32, + "probability": 0.8228 + }, + { + "start": 5072.54, + "end": 5074.92, + "probability": 0.9888 + }, + { + "start": 5075.02, + "end": 5075.46, + "probability": 0.7836 + }, + { + "start": 5076.1, + "end": 5077.04, + "probability": 0.9326 + }, + { + "start": 5077.16, + "end": 5077.64, + "probability": 0.8779 + }, + { + "start": 5077.72, + "end": 5078.9, + "probability": 0.7975 + }, + { + "start": 5079.0, + "end": 5079.94, + "probability": 0.7597 + }, + { + "start": 5080.22, + "end": 5081.3, + "probability": 0.7273 + }, + { + "start": 5081.88, + "end": 5083.58, + "probability": 0.9836 + }, + { + "start": 5083.72, + "end": 5088.1, + "probability": 0.9699 + }, + { + "start": 5088.54, + "end": 5088.74, + "probability": 0.7997 + }, + { + "start": 5089.04, + "end": 5090.78, + "probability": 0.9409 + }, + { + "start": 5090.82, + "end": 5093.58, + "probability": 0.8188 + }, + { + "start": 5093.8, + "end": 5095.6, + "probability": 0.7592 + }, + { + "start": 5105.38, + "end": 5106.96, + "probability": 0.9279 + }, + { + "start": 5109.06, + "end": 5111.94, + "probability": 0.7907 + }, + { + "start": 5113.1, + "end": 5115.58, + "probability": 0.8639 + }, + { + "start": 5116.46, + "end": 5122.6, + "probability": 0.9229 + }, + { + "start": 5123.66, + "end": 5126.34, + "probability": 0.9104 + }, + { + "start": 5126.44, + "end": 5127.6, + "probability": 0.7413 + }, + { + "start": 5128.86, + "end": 5133.06, + "probability": 0.998 + }, + { + "start": 5133.06, + "end": 5137.62, + "probability": 0.9971 + }, + { + "start": 5138.42, + "end": 5140.2, + "probability": 0.9904 + }, + { + "start": 5140.94, + "end": 5141.64, + "probability": 0.4774 + }, + { + "start": 5142.6, + "end": 5148.02, + "probability": 0.9478 + }, + { + "start": 5149.1, + "end": 5150.98, + "probability": 0.987 + }, + { + "start": 5151.84, + "end": 5153.2, + "probability": 0.9494 + }, + { + "start": 5153.68, + "end": 5156.2, + "probability": 0.9839 + }, + { + "start": 5156.38, + "end": 5157.36, + "probability": 0.9241 + }, + { + "start": 5157.86, + "end": 5164.84, + "probability": 0.948 + }, + { + "start": 5165.88, + "end": 5169.38, + "probability": 0.9083 + }, + { + "start": 5170.24, + "end": 5174.0, + "probability": 0.9749 + }, + { + "start": 5174.82, + "end": 5180.92, + "probability": 0.9502 + }, + { + "start": 5180.92, + "end": 5188.14, + "probability": 0.9919 + }, + { + "start": 5188.66, + "end": 5191.12, + "probability": 0.9851 + }, + { + "start": 5192.0, + "end": 5194.44, + "probability": 0.7303 + }, + { + "start": 5195.08, + "end": 5200.94, + "probability": 0.995 + }, + { + "start": 5201.68, + "end": 5204.42, + "probability": 0.9941 + }, + { + "start": 5204.92, + "end": 5209.66, + "probability": 0.9489 + }, + { + "start": 5209.66, + "end": 5214.44, + "probability": 0.9692 + }, + { + "start": 5214.82, + "end": 5215.56, + "probability": 0.4852 + }, + { + "start": 5216.58, + "end": 5221.9, + "probability": 0.9906 + }, + { + "start": 5221.9, + "end": 5228.26, + "probability": 0.9747 + }, + { + "start": 5229.16, + "end": 5232.56, + "probability": 0.8791 + }, + { + "start": 5234.81, + "end": 5237.26, + "probability": 0.7164 + }, + { + "start": 5237.26, + "end": 5242.12, + "probability": 0.7768 + }, + { + "start": 5242.74, + "end": 5248.86, + "probability": 0.9541 + }, + { + "start": 5251.0, + "end": 5252.34, + "probability": 0.8033 + }, + { + "start": 5253.28, + "end": 5260.04, + "probability": 0.9945 + }, + { + "start": 5260.94, + "end": 5263.38, + "probability": 0.7796 + }, + { + "start": 5264.28, + "end": 5265.16, + "probability": 0.9893 + }, + { + "start": 5265.7, + "end": 5269.0, + "probability": 0.9963 + }, + { + "start": 5269.86, + "end": 5273.06, + "probability": 0.9908 + }, + { + "start": 5274.06, + "end": 5276.32, + "probability": 0.7665 + }, + { + "start": 5276.48, + "end": 5277.52, + "probability": 0.6225 + }, + { + "start": 5278.32, + "end": 5279.62, + "probability": 0.9441 + }, + { + "start": 5280.16, + "end": 5282.5, + "probability": 0.7986 + }, + { + "start": 5283.34, + "end": 5289.46, + "probability": 0.9946 + }, + { + "start": 5290.22, + "end": 5297.44, + "probability": 0.9583 + }, + { + "start": 5299.38, + "end": 5306.3, + "probability": 0.9956 + }, + { + "start": 5307.06, + "end": 5309.24, + "probability": 0.6819 + }, + { + "start": 5310.0, + "end": 5314.14, + "probability": 0.9883 + }, + { + "start": 5314.14, + "end": 5317.88, + "probability": 0.998 + }, + { + "start": 5318.54, + "end": 5321.92, + "probability": 0.9889 + }, + { + "start": 5323.1, + "end": 5330.0, + "probability": 0.9277 + }, + { + "start": 5330.56, + "end": 5331.74, + "probability": 0.9997 + }, + { + "start": 5332.58, + "end": 5335.49, + "probability": 0.714 + }, + { + "start": 5336.58, + "end": 5338.04, + "probability": 0.6929 + }, + { + "start": 5338.58, + "end": 5344.88, + "probability": 0.974 + }, + { + "start": 5344.88, + "end": 5352.1, + "probability": 0.9731 + }, + { + "start": 5352.14, + "end": 5352.86, + "probability": 0.7613 + }, + { + "start": 5353.68, + "end": 5355.02, + "probability": 0.9992 + }, + { + "start": 5355.6, + "end": 5358.78, + "probability": 0.9912 + }, + { + "start": 5359.42, + "end": 5363.22, + "probability": 0.995 + }, + { + "start": 5363.84, + "end": 5368.12, + "probability": 0.9608 + }, + { + "start": 5368.7, + "end": 5369.08, + "probability": 0.6511 + }, + { + "start": 5369.18, + "end": 5369.6, + "probability": 0.9181 + }, + { + "start": 5369.82, + "end": 5370.46, + "probability": 0.9774 + }, + { + "start": 5370.94, + "end": 5371.54, + "probability": 0.8739 + }, + { + "start": 5371.7, + "end": 5372.28, + "probability": 0.8972 + }, + { + "start": 5372.62, + "end": 5373.26, + "probability": 0.9711 + }, + { + "start": 5373.64, + "end": 5374.12, + "probability": 0.9919 + }, + { + "start": 5374.24, + "end": 5376.9, + "probability": 0.979 + }, + { + "start": 5377.74, + "end": 5383.92, + "probability": 0.9896 + }, + { + "start": 5384.52, + "end": 5385.88, + "probability": 0.6584 + }, + { + "start": 5386.44, + "end": 5390.38, + "probability": 0.9283 + }, + { + "start": 5390.38, + "end": 5394.4, + "probability": 0.9821 + }, + { + "start": 5395.28, + "end": 5401.06, + "probability": 0.9919 + }, + { + "start": 5401.06, + "end": 5407.18, + "probability": 0.9037 + }, + { + "start": 5407.86, + "end": 5412.68, + "probability": 0.991 + }, + { + "start": 5413.24, + "end": 5415.9, + "probability": 0.8799 + }, + { + "start": 5416.42, + "end": 5419.6, + "probability": 0.942 + }, + { + "start": 5419.92, + "end": 5420.88, + "probability": 0.5489 + }, + { + "start": 5421.28, + "end": 5422.26, + "probability": 0.4636 + }, + { + "start": 5422.44, + "end": 5422.9, + "probability": 0.3849 + }, + { + "start": 5423.12, + "end": 5424.2, + "probability": 0.6898 + }, + { + "start": 5424.7, + "end": 5425.49, + "probability": 0.6484 + }, + { + "start": 5426.18, + "end": 5433.56, + "probability": 0.9177 + }, + { + "start": 5433.92, + "end": 5434.2, + "probability": 0.5676 + }, + { + "start": 5434.28, + "end": 5435.48, + "probability": 0.9714 + }, + { + "start": 5435.6, + "end": 5440.34, + "probability": 0.8961 + }, + { + "start": 5440.9, + "end": 5447.18, + "probability": 0.8654 + }, + { + "start": 5447.92, + "end": 5452.86, + "probability": 0.9462 + }, + { + "start": 5453.6, + "end": 5458.46, + "probability": 0.9955 + }, + { + "start": 5459.16, + "end": 5466.7, + "probability": 0.9763 + }, + { + "start": 5467.52, + "end": 5473.6, + "probability": 0.9139 + }, + { + "start": 5473.72, + "end": 5478.9, + "probability": 0.8681 + }, + { + "start": 5478.96, + "end": 5482.48, + "probability": 0.7084 + }, + { + "start": 5483.54, + "end": 5485.18, + "probability": 0.7395 + }, + { + "start": 5485.88, + "end": 5487.58, + "probability": 0.9522 + }, + { + "start": 5488.16, + "end": 5489.26, + "probability": 0.6697 + }, + { + "start": 5489.96, + "end": 5493.08, + "probability": 0.9161 + }, + { + "start": 5493.74, + "end": 5496.64, + "probability": 0.9735 + }, + { + "start": 5497.24, + "end": 5500.66, + "probability": 0.974 + }, + { + "start": 5501.28, + "end": 5506.3, + "probability": 0.996 + }, + { + "start": 5506.92, + "end": 5509.12, + "probability": 0.9197 + }, + { + "start": 5509.7, + "end": 5514.42, + "probability": 0.9857 + }, + { + "start": 5515.3, + "end": 5517.78, + "probability": 0.9965 + }, + { + "start": 5518.32, + "end": 5521.48, + "probability": 0.9847 + }, + { + "start": 5522.36, + "end": 5524.26, + "probability": 0.5726 + }, + { + "start": 5524.9, + "end": 5532.04, + "probability": 0.9889 + }, + { + "start": 5532.54, + "end": 5533.92, + "probability": 0.912 + }, + { + "start": 5534.28, + "end": 5536.66, + "probability": 0.9954 + }, + { + "start": 5537.4, + "end": 5542.98, + "probability": 0.6973 + }, + { + "start": 5543.6, + "end": 5544.5, + "probability": 0.6873 + }, + { + "start": 5544.92, + "end": 5545.74, + "probability": 0.7272 + }, + { + "start": 5546.98, + "end": 5549.0, + "probability": 0.9519 + }, + { + "start": 5549.42, + "end": 5551.56, + "probability": 0.9808 + }, + { + "start": 5552.34, + "end": 5554.24, + "probability": 0.9154 + }, + { + "start": 5556.5, + "end": 5563.62, + "probability": 0.0569 + }, + { + "start": 5572.68, + "end": 5574.24, + "probability": 0.2925 + }, + { + "start": 5574.96, + "end": 5577.1, + "probability": 0.7369 + }, + { + "start": 5578.32, + "end": 5584.68, + "probability": 0.9764 + }, + { + "start": 5584.68, + "end": 5588.74, + "probability": 0.9865 + }, + { + "start": 5589.52, + "end": 5592.02, + "probability": 0.9235 + }, + { + "start": 5592.52, + "end": 5594.5, + "probability": 0.7755 + }, + { + "start": 5594.98, + "end": 5595.18, + "probability": 0.8142 + }, + { + "start": 5596.56, + "end": 5598.4, + "probability": 0.9207 + }, + { + "start": 5599.16, + "end": 5602.29, + "probability": 0.8147 + }, + { + "start": 5603.54, + "end": 5604.56, + "probability": 0.9872 + }, + { + "start": 5605.68, + "end": 5608.4, + "probability": 0.9846 + }, + { + "start": 5609.7, + "end": 5612.5, + "probability": 0.8769 + }, + { + "start": 5613.36, + "end": 5614.32, + "probability": 0.9932 + }, + { + "start": 5615.94, + "end": 5618.58, + "probability": 0.9956 + }, + { + "start": 5620.36, + "end": 5621.32, + "probability": 0.9652 + }, + { + "start": 5622.52, + "end": 5627.08, + "probability": 0.9925 + }, + { + "start": 5627.7, + "end": 5632.44, + "probability": 0.9945 + }, + { + "start": 5633.22, + "end": 5640.3, + "probability": 0.9648 + }, + { + "start": 5640.82, + "end": 5642.98, + "probability": 0.9747 + }, + { + "start": 5644.32, + "end": 5649.86, + "probability": 0.9845 + }, + { + "start": 5650.74, + "end": 5652.34, + "probability": 0.496 + }, + { + "start": 5652.88, + "end": 5654.42, + "probability": 0.8809 + }, + { + "start": 5654.98, + "end": 5657.1, + "probability": 0.9641 + }, + { + "start": 5657.82, + "end": 5658.68, + "probability": 0.7121 + }, + { + "start": 5659.76, + "end": 5664.7, + "probability": 0.9894 + }, + { + "start": 5665.62, + "end": 5668.42, + "probability": 0.9967 + }, + { + "start": 5669.22, + "end": 5670.24, + "probability": 0.9836 + }, + { + "start": 5670.9, + "end": 5674.02, + "probability": 0.9787 + }, + { + "start": 5674.02, + "end": 5677.42, + "probability": 0.9965 + }, + { + "start": 5678.42, + "end": 5682.34, + "probability": 0.9835 + }, + { + "start": 5683.28, + "end": 5690.0, + "probability": 0.987 + }, + { + "start": 5690.48, + "end": 5695.6, + "probability": 0.9878 + }, + { + "start": 5697.12, + "end": 5698.86, + "probability": 0.8758 + }, + { + "start": 5699.54, + "end": 5700.16, + "probability": 0.982 + }, + { + "start": 5700.76, + "end": 5702.26, + "probability": 0.9778 + }, + { + "start": 5703.12, + "end": 5706.82, + "probability": 0.9789 + }, + { + "start": 5706.82, + "end": 5711.42, + "probability": 0.996 + }, + { + "start": 5711.42, + "end": 5715.84, + "probability": 0.9985 + }, + { + "start": 5716.4, + "end": 5721.56, + "probability": 0.9933 + }, + { + "start": 5721.94, + "end": 5725.26, + "probability": 0.856 + }, + { + "start": 5726.42, + "end": 5730.04, + "probability": 0.9852 + }, + { + "start": 5730.62, + "end": 5733.04, + "probability": 0.8748 + }, + { + "start": 5733.58, + "end": 5734.86, + "probability": 0.8151 + }, + { + "start": 5735.52, + "end": 5738.72, + "probability": 0.9914 + }, + { + "start": 5739.3, + "end": 5742.62, + "probability": 0.8811 + }, + { + "start": 5744.53, + "end": 5745.61, + "probability": 0.1925 + }, + { + "start": 5746.5, + "end": 5750.2, + "probability": 0.9839 + }, + { + "start": 5751.32, + "end": 5752.3, + "probability": 0.5628 + }, + { + "start": 5752.86, + "end": 5753.88, + "probability": 0.7512 + }, + { + "start": 5754.9, + "end": 5758.88, + "probability": 0.9927 + }, + { + "start": 5759.78, + "end": 5760.6, + "probability": 0.9413 + }, + { + "start": 5761.76, + "end": 5764.72, + "probability": 0.8656 + }, + { + "start": 5765.74, + "end": 5768.3, + "probability": 0.977 + }, + { + "start": 5768.82, + "end": 5772.34, + "probability": 0.9311 + }, + { + "start": 5773.16, + "end": 5774.22, + "probability": 0.9535 + }, + { + "start": 5775.12, + "end": 5777.92, + "probability": 0.9989 + }, + { + "start": 5779.06, + "end": 5785.24, + "probability": 0.9888 + }, + { + "start": 5786.6, + "end": 5788.54, + "probability": 0.9749 + }, + { + "start": 5789.22, + "end": 5790.62, + "probability": 0.9427 + }, + { + "start": 5791.34, + "end": 5796.88, + "probability": 0.9577 + }, + { + "start": 5798.36, + "end": 5799.44, + "probability": 0.9576 + }, + { + "start": 5800.08, + "end": 5801.98, + "probability": 0.9717 + }, + { + "start": 5802.58, + "end": 5807.9, + "probability": 0.99 + }, + { + "start": 5808.4, + "end": 5808.66, + "probability": 0.8672 + }, + { + "start": 5810.08, + "end": 5812.28, + "probability": 0.8365 + }, + { + "start": 5812.36, + "end": 5814.64, + "probability": 0.7819 + }, + { + "start": 5817.43, + "end": 5820.58, + "probability": 0.9823 + }, + { + "start": 5835.3, + "end": 5837.0, + "probability": 0.7892 + }, + { + "start": 5839.76, + "end": 5844.38, + "probability": 0.8547 + }, + { + "start": 5845.28, + "end": 5848.26, + "probability": 0.9406 + }, + { + "start": 5848.58, + "end": 5850.6, + "probability": 0.7352 + }, + { + "start": 5851.62, + "end": 5853.06, + "probability": 0.9427 + }, + { + "start": 5854.28, + "end": 5855.92, + "probability": 0.9754 + }, + { + "start": 5856.0, + "end": 5857.68, + "probability": 0.5145 + }, + { + "start": 5857.92, + "end": 5858.72, + "probability": 0.8846 + }, + { + "start": 5858.82, + "end": 5859.94, + "probability": 0.9104 + }, + { + "start": 5859.98, + "end": 5860.36, + "probability": 0.6445 + }, + { + "start": 5860.48, + "end": 5863.8, + "probability": 0.9164 + }, + { + "start": 5863.88, + "end": 5864.54, + "probability": 0.7005 + }, + { + "start": 5864.62, + "end": 5867.34, + "probability": 0.9633 + }, + { + "start": 5868.22, + "end": 5874.18, + "probability": 0.9317 + }, + { + "start": 5874.18, + "end": 5877.1, + "probability": 0.9348 + }, + { + "start": 5877.64, + "end": 5880.4, + "probability": 0.9981 + }, + { + "start": 5880.4, + "end": 5883.64, + "probability": 0.9883 + }, + { + "start": 5884.08, + "end": 5888.92, + "probability": 0.9585 + }, + { + "start": 5889.68, + "end": 5892.88, + "probability": 0.9786 + }, + { + "start": 5892.88, + "end": 5896.4, + "probability": 0.9936 + }, + { + "start": 5897.24, + "end": 5897.8, + "probability": 0.569 + }, + { + "start": 5898.06, + "end": 5902.84, + "probability": 0.8756 + }, + { + "start": 5903.28, + "end": 5906.74, + "probability": 0.979 + }, + { + "start": 5907.46, + "end": 5910.94, + "probability": 0.9771 + }, + { + "start": 5911.58, + "end": 5915.3, + "probability": 0.779 + }, + { + "start": 5915.82, + "end": 5917.66, + "probability": 0.9799 + }, + { + "start": 5918.4, + "end": 5921.5, + "probability": 0.9277 + }, + { + "start": 5923.72, + "end": 5926.14, + "probability": 0.9602 + }, + { + "start": 5926.14, + "end": 5929.3, + "probability": 0.9974 + }, + { + "start": 5929.84, + "end": 5933.14, + "probability": 0.9791 + }, + { + "start": 5934.18, + "end": 5936.48, + "probability": 0.8496 + }, + { + "start": 5937.06, + "end": 5941.26, + "probability": 0.9421 + }, + { + "start": 5941.76, + "end": 5944.4, + "probability": 0.9888 + }, + { + "start": 5945.1, + "end": 5947.92, + "probability": 0.9854 + }, + { + "start": 5948.72, + "end": 5950.98, + "probability": 0.9787 + }, + { + "start": 5950.98, + "end": 5954.48, + "probability": 0.995 + }, + { + "start": 5954.58, + "end": 5955.36, + "probability": 0.7333 + }, + { + "start": 5955.44, + "end": 5958.1, + "probability": 0.9763 + }, + { + "start": 5958.8, + "end": 5959.92, + "probability": 0.782 + }, + { + "start": 5960.2, + "end": 5965.12, + "probability": 0.9797 + }, + { + "start": 5965.64, + "end": 5968.94, + "probability": 0.9227 + }, + { + "start": 5968.94, + "end": 5972.0, + "probability": 0.9856 + }, + { + "start": 5972.7, + "end": 5973.0, + "probability": 0.6871 + }, + { + "start": 5973.1, + "end": 5976.3, + "probability": 0.9819 + }, + { + "start": 5977.04, + "end": 5979.9, + "probability": 0.9938 + }, + { + "start": 5979.9, + "end": 5984.38, + "probability": 0.9931 + }, + { + "start": 5985.04, + "end": 5988.12, + "probability": 0.7562 + }, + { + "start": 5988.66, + "end": 5990.82, + "probability": 0.9973 + }, + { + "start": 5990.82, + "end": 5993.44, + "probability": 0.977 + }, + { + "start": 5994.0, + "end": 5994.9, + "probability": 0.9079 + }, + { + "start": 5994.94, + "end": 6000.08, + "probability": 0.9374 + }, + { + "start": 6000.78, + "end": 6001.46, + "probability": 0.8615 + }, + { + "start": 6001.58, + "end": 6003.46, + "probability": 0.8174 + }, + { + "start": 6003.94, + "end": 6007.88, + "probability": 0.9946 + }, + { + "start": 6008.34, + "end": 6011.48, + "probability": 0.978 + }, + { + "start": 6011.48, + "end": 6016.0, + "probability": 0.9841 + }, + { + "start": 6016.54, + "end": 6018.26, + "probability": 0.9817 + }, + { + "start": 6019.28, + "end": 6024.5, + "probability": 0.9949 + }, + { + "start": 6025.02, + "end": 6031.02, + "probability": 0.9961 + }, + { + "start": 6031.2, + "end": 6035.6, + "probability": 0.7661 + }, + { + "start": 6035.98, + "end": 6038.76, + "probability": 0.9857 + }, + { + "start": 6039.32, + "end": 6043.56, + "probability": 0.9823 + }, + { + "start": 6044.46, + "end": 6045.24, + "probability": 0.848 + }, + { + "start": 6046.28, + "end": 6048.78, + "probability": 0.3056 + }, + { + "start": 6048.96, + "end": 6049.7, + "probability": 0.7195 + }, + { + "start": 6050.54, + "end": 6053.88, + "probability": 0.8425 + }, + { + "start": 6054.56, + "end": 6059.72, + "probability": 0.9356 + }, + { + "start": 6060.56, + "end": 6061.46, + "probability": 0.5805 + }, + { + "start": 6061.58, + "end": 6063.94, + "probability": 0.9513 + }, + { + "start": 6064.44, + "end": 6068.94, + "probability": 0.98 + }, + { + "start": 6068.94, + "end": 6074.16, + "probability": 0.9759 + }, + { + "start": 6074.62, + "end": 6075.22, + "probability": 0.7967 + }, + { + "start": 6075.94, + "end": 6077.04, + "probability": 0.9631 + }, + { + "start": 6078.52, + "end": 6081.04, + "probability": 0.9964 + }, + { + "start": 6081.04, + "end": 6084.0, + "probability": 0.9985 + }, + { + "start": 6084.28, + "end": 6086.9, + "probability": 0.9936 + }, + { + "start": 6087.5, + "end": 6092.92, + "probability": 0.9904 + }, + { + "start": 6093.06, + "end": 6094.76, + "probability": 0.968 + }, + { + "start": 6095.54, + "end": 6096.24, + "probability": 0.6083 + }, + { + "start": 6096.32, + "end": 6100.88, + "probability": 0.9813 + }, + { + "start": 6101.6, + "end": 6105.58, + "probability": 0.9574 + }, + { + "start": 6106.2, + "end": 6108.36, + "probability": 0.9636 + }, + { + "start": 6108.98, + "end": 6110.88, + "probability": 0.9186 + }, + { + "start": 6111.08, + "end": 6113.64, + "probability": 0.4704 + }, + { + "start": 6113.68, + "end": 6120.46, + "probability": 0.7873 + }, + { + "start": 6120.56, + "end": 6125.78, + "probability": 0.9742 + }, + { + "start": 6126.6, + "end": 6128.66, + "probability": 0.8161 + }, + { + "start": 6128.9, + "end": 6129.66, + "probability": 0.796 + }, + { + "start": 6129.74, + "end": 6133.36, + "probability": 0.9712 + }, + { + "start": 6134.5, + "end": 6137.68, + "probability": 0.9893 + }, + { + "start": 6137.68, + "end": 6141.48, + "probability": 0.922 + }, + { + "start": 6142.08, + "end": 6142.46, + "probability": 0.7187 + }, + { + "start": 6143.08, + "end": 6145.56, + "probability": 0.8607 + }, + { + "start": 6145.64, + "end": 6148.16, + "probability": 0.8188 + }, + { + "start": 6148.74, + "end": 6151.66, + "probability": 0.9837 + }, + { + "start": 6152.06, + "end": 6154.6, + "probability": 0.9944 + }, + { + "start": 6154.6, + "end": 6157.8, + "probability": 0.4983 + }, + { + "start": 6158.38, + "end": 6159.54, + "probability": 0.2552 + }, + { + "start": 6159.68, + "end": 6162.42, + "probability": 0.9122 + }, + { + "start": 6163.16, + "end": 6167.56, + "probability": 0.9738 + }, + { + "start": 6167.56, + "end": 6172.44, + "probability": 0.6685 + }, + { + "start": 6172.76, + "end": 6173.46, + "probability": 0.5633 + }, + { + "start": 6173.88, + "end": 6175.78, + "probability": 0.9734 + }, + { + "start": 6175.78, + "end": 6178.6, + "probability": 0.9482 + }, + { + "start": 6178.68, + "end": 6179.5, + "probability": 0.8878 + }, + { + "start": 6179.5, + "end": 6181.96, + "probability": 0.9718 + }, + { + "start": 6182.8, + "end": 6185.74, + "probability": 0.9788 + }, + { + "start": 6185.74, + "end": 6189.04, + "probability": 0.9706 + }, + { + "start": 6189.04, + "end": 6191.52, + "probability": 0.9969 + }, + { + "start": 6192.56, + "end": 6196.32, + "probability": 0.9795 + }, + { + "start": 6196.94, + "end": 6198.76, + "probability": 0.8591 + }, + { + "start": 6198.94, + "end": 6199.87, + "probability": 0.9656 + }, + { + "start": 6199.96, + "end": 6203.49, + "probability": 0.9803 + }, + { + "start": 6203.72, + "end": 6203.82, + "probability": 0.9173 + }, + { + "start": 6204.16, + "end": 6204.46, + "probability": 0.907 + }, + { + "start": 6204.64, + "end": 6205.58, + "probability": 0.8583 + }, + { + "start": 6205.88, + "end": 6207.2, + "probability": 0.9812 + }, + { + "start": 6207.74, + "end": 6210.82, + "probability": 0.9944 + }, + { + "start": 6211.34, + "end": 6214.82, + "probability": 0.9855 + }, + { + "start": 6214.82, + "end": 6218.04, + "probability": 0.8632 + }, + { + "start": 6218.36, + "end": 6219.2, + "probability": 0.5497 + }, + { + "start": 6219.3, + "end": 6220.33, + "probability": 0.9725 + }, + { + "start": 6221.02, + "end": 6224.08, + "probability": 0.9895 + }, + { + "start": 6224.08, + "end": 6227.98, + "probability": 0.9472 + }, + { + "start": 6228.48, + "end": 6231.62, + "probability": 0.9951 + }, + { + "start": 6232.38, + "end": 6236.24, + "probability": 0.9645 + }, + { + "start": 6236.78, + "end": 6239.62, + "probability": 0.9544 + }, + { + "start": 6239.76, + "end": 6243.16, + "probability": 0.9473 + }, + { + "start": 6243.3, + "end": 6244.82, + "probability": 0.9745 + }, + { + "start": 6245.52, + "end": 6246.36, + "probability": 0.8554 + }, + { + "start": 6246.98, + "end": 6247.44, + "probability": 0.652 + }, + { + "start": 6247.6, + "end": 6248.68, + "probability": 0.5731 + }, + { + "start": 6248.98, + "end": 6250.46, + "probability": 0.8408 + }, + { + "start": 6250.7, + "end": 6256.48, + "probability": 0.9838 + }, + { + "start": 6257.0, + "end": 6257.06, + "probability": 0.0373 + }, + { + "start": 6257.06, + "end": 6263.42, + "probability": 0.9974 + }, + { + "start": 6263.42, + "end": 6268.08, + "probability": 0.9989 + }, + { + "start": 6268.84, + "end": 6273.6, + "probability": 0.9973 + }, + { + "start": 6273.6, + "end": 6278.18, + "probability": 0.9821 + }, + { + "start": 6278.44, + "end": 6281.98, + "probability": 0.9818 + }, + { + "start": 6282.7, + "end": 6283.76, + "probability": 0.6636 + }, + { + "start": 6283.82, + "end": 6286.7, + "probability": 0.9566 + }, + { + "start": 6287.16, + "end": 6291.04, + "probability": 0.969 + }, + { + "start": 6291.04, + "end": 6296.82, + "probability": 0.9458 + }, + { + "start": 6296.82, + "end": 6301.62, + "probability": 0.9032 + }, + { + "start": 6302.1, + "end": 6303.64, + "probability": 0.9945 + }, + { + "start": 6304.32, + "end": 6304.67, + "probability": 0.3463 + }, + { + "start": 6305.76, + "end": 6308.7, + "probability": 0.9899 + }, + { + "start": 6309.58, + "end": 6312.6, + "probability": 0.9919 + }, + { + "start": 6312.76, + "end": 6316.22, + "probability": 0.8966 + }, + { + "start": 6316.22, + "end": 6319.16, + "probability": 0.9941 + }, + { + "start": 6319.72, + "end": 6322.98, + "probability": 0.973 + }, + { + "start": 6323.84, + "end": 6324.36, + "probability": 0.5678 + }, + { + "start": 6324.44, + "end": 6325.9, + "probability": 0.7529 + }, + { + "start": 6326.04, + "end": 6329.64, + "probability": 0.9928 + }, + { + "start": 6329.64, + "end": 6331.98, + "probability": 0.9346 + }, + { + "start": 6332.4, + "end": 6334.72, + "probability": 0.9148 + }, + { + "start": 6334.8, + "end": 6337.08, + "probability": 0.9156 + }, + { + "start": 6337.94, + "end": 6339.38, + "probability": 0.7828 + }, + { + "start": 6339.5, + "end": 6342.28, + "probability": 0.7485 + }, + { + "start": 6342.72, + "end": 6346.76, + "probability": 0.9723 + }, + { + "start": 6347.32, + "end": 6351.02, + "probability": 0.9847 + }, + { + "start": 6351.02, + "end": 6355.0, + "probability": 0.9987 + }, + { + "start": 6355.74, + "end": 6356.16, + "probability": 0.6458 + }, + { + "start": 6356.58, + "end": 6362.92, + "probability": 0.9951 + }, + { + "start": 6363.44, + "end": 6367.06, + "probability": 0.9729 + }, + { + "start": 6367.82, + "end": 6371.32, + "probability": 0.9832 + }, + { + "start": 6371.32, + "end": 6374.36, + "probability": 0.991 + }, + { + "start": 6374.92, + "end": 6375.28, + "probability": 0.5391 + }, + { + "start": 6375.66, + "end": 6377.22, + "probability": 0.8978 + }, + { + "start": 6377.64, + "end": 6381.08, + "probability": 0.9812 + }, + { + "start": 6381.48, + "end": 6382.26, + "probability": 0.9874 + }, + { + "start": 6382.6, + "end": 6386.04, + "probability": 0.9863 + }, + { + "start": 6386.44, + "end": 6390.8, + "probability": 0.9772 + }, + { + "start": 6392.2, + "end": 6393.96, + "probability": 0.816 + }, + { + "start": 6394.04, + "end": 6395.68, + "probability": 0.9066 + }, + { + "start": 6395.7, + "end": 6396.06, + "probability": 0.4116 + }, + { + "start": 6396.22, + "end": 6397.58, + "probability": 0.7801 + }, + { + "start": 6399.2, + "end": 6400.56, + "probability": 0.7628 + }, + { + "start": 6417.42, + "end": 6418.22, + "probability": 0.7888 + }, + { + "start": 6418.38, + "end": 6419.72, + "probability": 0.7072 + }, + { + "start": 6420.18, + "end": 6421.58, + "probability": 0.9129 + }, + { + "start": 6422.66, + "end": 6426.2, + "probability": 0.9827 + }, + { + "start": 6426.2, + "end": 6429.48, + "probability": 0.9333 + }, + { + "start": 6430.18, + "end": 6432.02, + "probability": 0.4636 + }, + { + "start": 6432.24, + "end": 6434.34, + "probability": 0.9978 + }, + { + "start": 6435.18, + "end": 6438.32, + "probability": 0.979 + }, + { + "start": 6438.32, + "end": 6442.64, + "probability": 0.9927 + }, + { + "start": 6443.6, + "end": 6450.66, + "probability": 0.9534 + }, + { + "start": 6451.14, + "end": 6454.1, + "probability": 0.5773 + }, + { + "start": 6455.56, + "end": 6458.78, + "probability": 0.982 + }, + { + "start": 6460.3, + "end": 6463.64, + "probability": 0.986 + }, + { + "start": 6464.26, + "end": 6469.96, + "probability": 0.9341 + }, + { + "start": 6470.96, + "end": 6473.86, + "probability": 0.9355 + }, + { + "start": 6474.44, + "end": 6476.58, + "probability": 0.9752 + }, + { + "start": 6477.16, + "end": 6479.42, + "probability": 0.9855 + }, + { + "start": 6480.42, + "end": 6486.3, + "probability": 0.9041 + }, + { + "start": 6486.3, + "end": 6491.12, + "probability": 0.8739 + }, + { + "start": 6491.8, + "end": 6494.58, + "probability": 0.943 + }, + { + "start": 6495.22, + "end": 6498.1, + "probability": 0.9901 + }, + { + "start": 6498.54, + "end": 6501.4, + "probability": 0.8361 + }, + { + "start": 6503.0, + "end": 6503.9, + "probability": 0.6778 + }, + { + "start": 6504.42, + "end": 6507.02, + "probability": 0.9417 + }, + { + "start": 6507.68, + "end": 6509.74, + "probability": 0.9641 + }, + { + "start": 6510.42, + "end": 6514.46, + "probability": 0.9901 + }, + { + "start": 6515.38, + "end": 6520.1, + "probability": 0.917 + }, + { + "start": 6520.1, + "end": 6523.7, + "probability": 0.9976 + }, + { + "start": 6525.18, + "end": 6528.3, + "probability": 0.7821 + }, + { + "start": 6528.82, + "end": 6532.62, + "probability": 0.8653 + }, + { + "start": 6533.12, + "end": 6537.36, + "probability": 0.971 + }, + { + "start": 6538.42, + "end": 6542.74, + "probability": 0.9702 + }, + { + "start": 6542.76, + "end": 6545.72, + "probability": 0.907 + }, + { + "start": 6546.42, + "end": 6547.6, + "probability": 0.9322 + }, + { + "start": 6548.48, + "end": 6552.08, + "probability": 0.9834 + }, + { + "start": 6552.7, + "end": 6554.78, + "probability": 0.898 + }, + { + "start": 6555.3, + "end": 6558.88, + "probability": 0.8535 + }, + { + "start": 6560.22, + "end": 6563.5, + "probability": 0.9082 + }, + { + "start": 6563.5, + "end": 6568.5, + "probability": 0.9141 + }, + { + "start": 6568.9, + "end": 6570.38, + "probability": 0.4794 + }, + { + "start": 6571.1, + "end": 6572.8, + "probability": 0.9983 + }, + { + "start": 6573.9, + "end": 6575.44, + "probability": 0.6415 + }, + { + "start": 6576.34, + "end": 6578.34, + "probability": 0.9715 + }, + { + "start": 6579.14, + "end": 6581.86, + "probability": 0.9825 + }, + { + "start": 6582.6, + "end": 6583.69, + "probability": 0.9971 + }, + { + "start": 6585.12, + "end": 6587.84, + "probability": 0.9762 + }, + { + "start": 6588.72, + "end": 6590.24, + "probability": 0.9875 + }, + { + "start": 6591.28, + "end": 6594.32, + "probability": 0.9955 + }, + { + "start": 6594.32, + "end": 6597.42, + "probability": 0.9988 + }, + { + "start": 6598.18, + "end": 6598.96, + "probability": 0.8409 + }, + { + "start": 6600.24, + "end": 6604.6, + "probability": 0.978 + }, + { + "start": 6605.12, + "end": 6607.0, + "probability": 0.9974 + }, + { + "start": 6607.64, + "end": 6609.98, + "probability": 0.8411 + }, + { + "start": 6610.62, + "end": 6611.32, + "probability": 0.7401 + }, + { + "start": 6611.64, + "end": 6611.72, + "probability": 0.4418 + }, + { + "start": 6611.72, + "end": 6615.34, + "probability": 0.8144 + }, + { + "start": 6616.62, + "end": 6617.7, + "probability": 0.6105 + }, + { + "start": 6618.56, + "end": 6619.16, + "probability": 0.8043 + }, + { + "start": 6619.38, + "end": 6620.9, + "probability": 0.731 + }, + { + "start": 6621.36, + "end": 6623.74, + "probability": 0.8408 + }, + { + "start": 6624.42, + "end": 6628.16, + "probability": 0.9581 + }, + { + "start": 6628.84, + "end": 6632.76, + "probability": 0.9854 + }, + { + "start": 6633.56, + "end": 6634.88, + "probability": 0.9306 + }, + { + "start": 6636.54, + "end": 6642.26, + "probability": 0.8171 + }, + { + "start": 6642.92, + "end": 6646.84, + "probability": 0.9958 + }, + { + "start": 6647.1, + "end": 6647.46, + "probability": 0.4914 + }, + { + "start": 6647.52, + "end": 6647.86, + "probability": 0.9752 + }, + { + "start": 6648.04, + "end": 6648.36, + "probability": 0.9425 + }, + { + "start": 6649.26, + "end": 6652.92, + "probability": 0.9668 + }, + { + "start": 6653.82, + "end": 6658.14, + "probability": 0.9698 + }, + { + "start": 6659.12, + "end": 6660.82, + "probability": 0.6828 + }, + { + "start": 6661.58, + "end": 6662.92, + "probability": 0.7798 + }, + { + "start": 6663.56, + "end": 6666.48, + "probability": 0.9852 + }, + { + "start": 6667.06, + "end": 6667.38, + "probability": 0.8561 + }, + { + "start": 6668.98, + "end": 6671.66, + "probability": 0.9934 + }, + { + "start": 6672.52, + "end": 6674.36, + "probability": 0.9891 + }, + { + "start": 6674.5, + "end": 6678.26, + "probability": 0.9951 + }, + { + "start": 6678.86, + "end": 6681.74, + "probability": 0.8892 + }, + { + "start": 6682.32, + "end": 6684.18, + "probability": 0.9391 + }, + { + "start": 6685.62, + "end": 6687.32, + "probability": 0.7728 + }, + { + "start": 6687.5, + "end": 6692.34, + "probability": 0.8415 + }, + { + "start": 6692.34, + "end": 6694.68, + "probability": 0.9967 + }, + { + "start": 6695.24, + "end": 6695.96, + "probability": 0.8363 + }, + { + "start": 6697.24, + "end": 6702.52, + "probability": 0.8923 + }, + { + "start": 6702.7, + "end": 6705.18, + "probability": 0.9973 + }, + { + "start": 6705.46, + "end": 6705.88, + "probability": 0.7222 + }, + { + "start": 6705.9, + "end": 6706.52, + "probability": 0.9646 + }, + { + "start": 6706.64, + "end": 6709.06, + "probability": 0.9342 + }, + { + "start": 6709.46, + "end": 6711.46, + "probability": 0.973 + }, + { + "start": 6711.54, + "end": 6713.32, + "probability": 0.731 + }, + { + "start": 6713.68, + "end": 6717.68, + "probability": 0.6362 + }, + { + "start": 6717.68, + "end": 6721.1, + "probability": 0.9876 + }, + { + "start": 6721.68, + "end": 6722.1, + "probability": 0.9075 + }, + { + "start": 6722.14, + "end": 6726.36, + "probability": 0.8786 + }, + { + "start": 6728.04, + "end": 6728.53, + "probability": 0.9516 + }, + { + "start": 6728.98, + "end": 6729.67, + "probability": 0.9636 + }, + { + "start": 6730.18, + "end": 6731.36, + "probability": 0.7461 + }, + { + "start": 6731.84, + "end": 6734.24, + "probability": 0.994 + }, + { + "start": 6735.08, + "end": 6736.86, + "probability": 0.9967 + }, + { + "start": 6737.48, + "end": 6739.28, + "probability": 0.887 + }, + { + "start": 6739.46, + "end": 6743.54, + "probability": 0.9736 + }, + { + "start": 6743.54, + "end": 6747.06, + "probability": 0.9959 + }, + { + "start": 6747.5, + "end": 6748.62, + "probability": 0.7319 + }, + { + "start": 6748.78, + "end": 6751.62, + "probability": 0.9671 + }, + { + "start": 6751.7, + "end": 6753.32, + "probability": 0.9912 + }, + { + "start": 6753.52, + "end": 6757.64, + "probability": 0.9915 + }, + { + "start": 6758.04, + "end": 6759.84, + "probability": 0.9966 + }, + { + "start": 6759.84, + "end": 6763.28, + "probability": 0.9948 + }, + { + "start": 6763.42, + "end": 6766.68, + "probability": 0.9822 + }, + { + "start": 6766.76, + "end": 6768.32, + "probability": 0.7681 + }, + { + "start": 6768.92, + "end": 6770.28, + "probability": 0.9697 + }, + { + "start": 6770.46, + "end": 6770.64, + "probability": 0.7274 + }, + { + "start": 6771.66, + "end": 6773.68, + "probability": 0.618 + }, + { + "start": 6774.86, + "end": 6775.96, + "probability": 0.5294 + }, + { + "start": 6776.42, + "end": 6778.02, + "probability": 0.8903 + }, + { + "start": 6783.44, + "end": 6787.08, + "probability": 0.7676 + }, + { + "start": 6787.76, + "end": 6792.76, + "probability": 0.9933 + }, + { + "start": 6792.88, + "end": 6793.7, + "probability": 0.6108 + }, + { + "start": 6793.82, + "end": 6794.8, + "probability": 0.7122 + }, + { + "start": 6795.57, + "end": 6800.96, + "probability": 0.9141 + }, + { + "start": 6801.02, + "end": 6805.76, + "probability": 0.9845 + }, + { + "start": 6805.76, + "end": 6809.24, + "probability": 0.9691 + }, + { + "start": 6809.9, + "end": 6811.9, + "probability": 0.8673 + }, + { + "start": 6812.56, + "end": 6814.9, + "probability": 0.5787 + }, + { + "start": 6814.98, + "end": 6815.58, + "probability": 0.5576 + }, + { + "start": 6815.7, + "end": 6821.32, + "probability": 0.8959 + }, + { + "start": 6821.64, + "end": 6822.62, + "probability": 0.9652 + }, + { + "start": 6823.14, + "end": 6827.38, + "probability": 0.9608 + }, + { + "start": 6827.56, + "end": 6828.96, + "probability": 0.9839 + }, + { + "start": 6829.22, + "end": 6831.5, + "probability": 0.6673 + }, + { + "start": 6833.55, + "end": 6836.14, + "probability": 0.998 + }, + { + "start": 6836.14, + "end": 6841.24, + "probability": 0.7003 + }, + { + "start": 6841.96, + "end": 6843.54, + "probability": 0.5005 + }, + { + "start": 6843.8, + "end": 6846.7, + "probability": 0.9969 + }, + { + "start": 6847.24, + "end": 6850.46, + "probability": 0.8681 + }, + { + "start": 6850.46, + "end": 6852.22, + "probability": 0.9541 + }, + { + "start": 6852.78, + "end": 6857.88, + "probability": 0.9759 + }, + { + "start": 6857.88, + "end": 6861.72, + "probability": 0.9797 + }, + { + "start": 6861.84, + "end": 6864.44, + "probability": 0.981 + }, + { + "start": 6865.42, + "end": 6868.24, + "probability": 0.7501 + }, + { + "start": 6868.68, + "end": 6869.06, + "probability": 0.6373 + }, + { + "start": 6869.1, + "end": 6871.69, + "probability": 0.8805 + }, + { + "start": 6871.78, + "end": 6876.06, + "probability": 0.9886 + }, + { + "start": 6876.98, + "end": 6880.88, + "probability": 0.8601 + }, + { + "start": 6881.7, + "end": 6885.12, + "probability": 0.9845 + }, + { + "start": 6885.16, + "end": 6887.18, + "probability": 0.971 + }, + { + "start": 6887.76, + "end": 6888.48, + "probability": 0.9153 + }, + { + "start": 6888.74, + "end": 6890.4, + "probability": 0.9675 + }, + { + "start": 6890.82, + "end": 6892.96, + "probability": 0.9919 + }, + { + "start": 6893.1, + "end": 6893.94, + "probability": 0.8138 + }, + { + "start": 6894.1, + "end": 6896.82, + "probability": 0.9438 + }, + { + "start": 6897.06, + "end": 6902.54, + "probability": 0.9845 + }, + { + "start": 6902.98, + "end": 6903.38, + "probability": 0.7575 + }, + { + "start": 6904.4, + "end": 6906.06, + "probability": 0.7313 + }, + { + "start": 6906.26, + "end": 6908.02, + "probability": 0.8907 + }, + { + "start": 6909.06, + "end": 6909.06, + "probability": 0.8154 + }, + { + "start": 6910.08, + "end": 6913.8, + "probability": 0.8242 + }, + { + "start": 6913.88, + "end": 6915.24, + "probability": 0.94 + }, + { + "start": 6915.54, + "end": 6917.08, + "probability": 0.9688 + }, + { + "start": 6917.9, + "end": 6918.76, + "probability": 0.0705 + }, + { + "start": 6919.82, + "end": 6921.38, + "probability": 0.623 + }, + { + "start": 6921.38, + "end": 6922.42, + "probability": 0.7088 + }, + { + "start": 6922.48, + "end": 6923.28, + "probability": 0.9455 + }, + { + "start": 6923.38, + "end": 6926.02, + "probability": 0.9399 + }, + { + "start": 6926.66, + "end": 6929.38, + "probability": 0.9317 + }, + { + "start": 6930.8, + "end": 6931.36, + "probability": 0.6123 + }, + { + "start": 6931.76, + "end": 6931.86, + "probability": 0.2767 + }, + { + "start": 6932.3, + "end": 6933.92, + "probability": 0.7468 + }, + { + "start": 6934.7, + "end": 6935.78, + "probability": 0.9199 + }, + { + "start": 6935.82, + "end": 6936.84, + "probability": 0.8848 + }, + { + "start": 6937.26, + "end": 6940.54, + "probability": 0.936 + }, + { + "start": 6941.4, + "end": 6945.82, + "probability": 0.8991 + }, + { + "start": 6946.77, + "end": 6949.76, + "probability": 0.6325 + }, + { + "start": 6949.9, + "end": 6951.1, + "probability": 0.9335 + }, + { + "start": 6952.18, + "end": 6952.86, + "probability": 0.6217 + }, + { + "start": 6954.29, + "end": 6955.78, + "probability": 0.2571 + }, + { + "start": 6968.18, + "end": 6968.18, + "probability": 0.1654 + }, + { + "start": 6968.18, + "end": 6970.48, + "probability": 0.1229 + }, + { + "start": 6970.54, + "end": 6975.26, + "probability": 0.8781 + }, + { + "start": 6975.46, + "end": 6977.02, + "probability": 0.8538 + }, + { + "start": 6977.92, + "end": 6980.96, + "probability": 0.9868 + }, + { + "start": 6981.7, + "end": 6982.36, + "probability": 0.7529 + }, + { + "start": 6982.48, + "end": 6984.7, + "probability": 0.9745 + }, + { + "start": 6984.76, + "end": 6989.44, + "probability": 0.9418 + }, + { + "start": 6990.56, + "end": 6993.46, + "probability": 0.9845 + }, + { + "start": 6994.54, + "end": 6996.02, + "probability": 0.7899 + }, + { + "start": 6998.44, + "end": 6999.38, + "probability": 0.9089 + }, + { + "start": 7000.74, + "end": 7003.45, + "probability": 0.9197 + }, + { + "start": 7004.72, + "end": 7009.2, + "probability": 0.7023 + }, + { + "start": 7009.56, + "end": 7011.02, + "probability": 0.9747 + }, + { + "start": 7011.68, + "end": 7017.34, + "probability": 0.8636 + }, + { + "start": 7018.2, + "end": 7019.14, + "probability": 0.8954 + }, + { + "start": 7019.54, + "end": 7022.74, + "probability": 0.9904 + }, + { + "start": 7024.94, + "end": 7025.66, + "probability": 0.6587 + }, + { + "start": 7025.84, + "end": 7029.26, + "probability": 0.7674 + }, + { + "start": 7030.26, + "end": 7034.9, + "probability": 0.892 + }, + { + "start": 7036.3, + "end": 7039.69, + "probability": 0.7668 + }, + { + "start": 7039.94, + "end": 7042.68, + "probability": 0.8911 + }, + { + "start": 7043.4, + "end": 7043.66, + "probability": 0.6598 + }, + { + "start": 7043.76, + "end": 7046.34, + "probability": 0.9874 + }, + { + "start": 7046.38, + "end": 7048.12, + "probability": 0.9617 + }, + { + "start": 7048.18, + "end": 7051.42, + "probability": 0.9948 + }, + { + "start": 7052.06, + "end": 7053.56, + "probability": 0.8913 + }, + { + "start": 7053.94, + "end": 7054.62, + "probability": 0.8807 + }, + { + "start": 7054.68, + "end": 7055.2, + "probability": 0.8179 + }, + { + "start": 7055.3, + "end": 7062.46, + "probability": 0.2733 + }, + { + "start": 7062.64, + "end": 7065.72, + "probability": 0.7611 + }, + { + "start": 7065.86, + "end": 7068.88, + "probability": 0.4598 + }, + { + "start": 7069.26, + "end": 7074.64, + "probability": 0.778 + }, + { + "start": 7075.36, + "end": 7076.22, + "probability": 0.8469 + }, + { + "start": 7076.42, + "end": 7077.32, + "probability": 0.9628 + }, + { + "start": 7077.46, + "end": 7082.18, + "probability": 0.8742 + }, + { + "start": 7082.38, + "end": 7083.9, + "probability": 0.9592 + }, + { + "start": 7084.86, + "end": 7087.96, + "probability": 0.8885 + }, + { + "start": 7088.84, + "end": 7091.9, + "probability": 0.7238 + }, + { + "start": 7092.02, + "end": 7092.46, + "probability": 0.6411 + }, + { + "start": 7092.56, + "end": 7098.08, + "probability": 0.9267 + }, + { + "start": 7098.08, + "end": 7101.52, + "probability": 0.9934 + }, + { + "start": 7102.16, + "end": 7105.34, + "probability": 0.8009 + }, + { + "start": 7105.9, + "end": 7110.34, + "probability": 0.8953 + }, + { + "start": 7110.88, + "end": 7114.44, + "probability": 0.8816 + }, + { + "start": 7114.44, + "end": 7117.94, + "probability": 0.8817 + }, + { + "start": 7118.54, + "end": 7121.7, + "probability": 0.9664 + }, + { + "start": 7122.54, + "end": 7123.78, + "probability": 0.6377 + }, + { + "start": 7123.98, + "end": 7124.7, + "probability": 0.9369 + }, + { + "start": 7124.8, + "end": 7128.66, + "probability": 0.9198 + }, + { + "start": 7128.66, + "end": 7134.4, + "probability": 0.9983 + }, + { + "start": 7134.52, + "end": 7138.84, + "probability": 0.9469 + }, + { + "start": 7138.84, + "end": 7145.34, + "probability": 0.9861 + }, + { + "start": 7146.4, + "end": 7149.78, + "probability": 0.9924 + }, + { + "start": 7150.36, + "end": 7152.54, + "probability": 0.944 + }, + { + "start": 7153.36, + "end": 7160.06, + "probability": 0.9832 + }, + { + "start": 7160.06, + "end": 7165.32, + "probability": 0.7779 + }, + { + "start": 7165.62, + "end": 7169.62, + "probability": 0.9329 + }, + { + "start": 7169.68, + "end": 7170.24, + "probability": 0.7358 + }, + { + "start": 7171.04, + "end": 7176.86, + "probability": 0.5818 + }, + { + "start": 7177.48, + "end": 7181.54, + "probability": 0.7516 + }, + { + "start": 7181.6, + "end": 7183.7, + "probability": 0.8905 + }, + { + "start": 7184.14, + "end": 7185.5, + "probability": 0.879 + }, + { + "start": 7185.72, + "end": 7188.88, + "probability": 0.8469 + }, + { + "start": 7188.88, + "end": 7193.56, + "probability": 0.9587 + }, + { + "start": 7194.02, + "end": 7198.6, + "probability": 0.954 + }, + { + "start": 7199.16, + "end": 7203.56, + "probability": 0.9952 + }, + { + "start": 7205.66, + "end": 7207.88, + "probability": 0.9876 + }, + { + "start": 7207.88, + "end": 7211.12, + "probability": 0.9873 + }, + { + "start": 7211.9, + "end": 7215.56, + "probability": 0.9963 + }, + { + "start": 7215.56, + "end": 7219.66, + "probability": 0.9901 + }, + { + "start": 7220.26, + "end": 7223.02, + "probability": 0.9837 + }, + { + "start": 7224.18, + "end": 7228.22, + "probability": 0.9982 + }, + { + "start": 7228.22, + "end": 7232.24, + "probability": 0.9878 + }, + { + "start": 7232.92, + "end": 7235.72, + "probability": 0.9969 + }, + { + "start": 7235.96, + "end": 7240.76, + "probability": 0.8913 + }, + { + "start": 7241.28, + "end": 7244.22, + "probability": 0.651 + }, + { + "start": 7245.06, + "end": 7248.22, + "probability": 0.6373 + }, + { + "start": 7248.36, + "end": 7254.27, + "probability": 0.8873 + }, + { + "start": 7254.62, + "end": 7260.45, + "probability": 0.9164 + }, + { + "start": 7261.52, + "end": 7263.64, + "probability": 0.6646 + }, + { + "start": 7263.82, + "end": 7266.22, + "probability": 0.9795 + }, + { + "start": 7266.7, + "end": 7269.88, + "probability": 0.9283 + }, + { + "start": 7270.06, + "end": 7273.96, + "probability": 0.9451 + }, + { + "start": 7274.0, + "end": 7277.76, + "probability": 0.9881 + }, + { + "start": 7277.76, + "end": 7282.06, + "probability": 0.9878 + }, + { + "start": 7282.4, + "end": 7286.78, + "probability": 0.8313 + }, + { + "start": 7286.88, + "end": 7289.44, + "probability": 0.7161 + }, + { + "start": 7290.0, + "end": 7291.04, + "probability": 0.9551 + }, + { + "start": 7291.94, + "end": 7294.32, + "probability": 0.996 + }, + { + "start": 7294.9, + "end": 7296.0, + "probability": 0.5024 + }, + { + "start": 7296.74, + "end": 7297.42, + "probability": 0.6725 + }, + { + "start": 7297.74, + "end": 7299.12, + "probability": 0.9498 + }, + { + "start": 7299.54, + "end": 7302.8, + "probability": 0.9941 + }, + { + "start": 7302.8, + "end": 7306.18, + "probability": 0.9935 + }, + { + "start": 7306.32, + "end": 7308.62, + "probability": 0.8597 + }, + { + "start": 7308.74, + "end": 7309.54, + "probability": 0.659 + }, + { + "start": 7309.92, + "end": 7312.34, + "probability": 0.8893 + }, + { + "start": 7312.5, + "end": 7312.7, + "probability": 0.797 + }, + { + "start": 7312.8, + "end": 7313.52, + "probability": 0.8883 + }, + { + "start": 7313.74, + "end": 7314.4, + "probability": 0.7299 + }, + { + "start": 7314.9, + "end": 7319.52, + "probability": 0.8301 + }, + { + "start": 7319.68, + "end": 7320.06, + "probability": 0.9536 + }, + { + "start": 7320.36, + "end": 7322.92, + "probability": 0.9712 + }, + { + "start": 7323.8, + "end": 7325.02, + "probability": 0.946 + }, + { + "start": 7325.76, + "end": 7329.46, + "probability": 0.8559 + }, + { + "start": 7330.26, + "end": 7331.02, + "probability": 0.9479 + }, + { + "start": 7331.12, + "end": 7332.08, + "probability": 0.9878 + }, + { + "start": 7332.5, + "end": 7334.81, + "probability": 0.9858 + }, + { + "start": 7335.42, + "end": 7339.32, + "probability": 0.8709 + }, + { + "start": 7341.74, + "end": 7348.74, + "probability": 0.8844 + }, + { + "start": 7349.46, + "end": 7351.84, + "probability": 0.9956 + }, + { + "start": 7351.84, + "end": 7355.42, + "probability": 0.9934 + }, + { + "start": 7355.52, + "end": 7360.06, + "probability": 0.9928 + }, + { + "start": 7361.12, + "end": 7361.66, + "probability": 0.8512 + }, + { + "start": 7361.7, + "end": 7364.3, + "probability": 0.9965 + }, + { + "start": 7364.3, + "end": 7370.48, + "probability": 0.6789 + }, + { + "start": 7371.32, + "end": 7373.64, + "probability": 0.1503 + }, + { + "start": 7374.4, + "end": 7379.36, + "probability": 0.9634 + }, + { + "start": 7379.94, + "end": 7380.74, + "probability": 0.7873 + }, + { + "start": 7380.76, + "end": 7383.8, + "probability": 0.5945 + }, + { + "start": 7383.86, + "end": 7384.5, + "probability": 0.0786 + }, + { + "start": 7384.8, + "end": 7386.3, + "probability": 0.7824 + }, + { + "start": 7386.92, + "end": 7390.89, + "probability": 0.9666 + }, + { + "start": 7391.34, + "end": 7394.44, + "probability": 0.9393 + }, + { + "start": 7395.66, + "end": 7397.24, + "probability": 0.9756 + }, + { + "start": 7397.36, + "end": 7401.9, + "probability": 0.9171 + }, + { + "start": 7402.2, + "end": 7405.4, + "probability": 0.9945 + }, + { + "start": 7405.4, + "end": 7410.52, + "probability": 0.9868 + }, + { + "start": 7410.74, + "end": 7411.38, + "probability": 0.9779 + }, + { + "start": 7412.0, + "end": 7413.36, + "probability": 0.7498 + }, + { + "start": 7413.68, + "end": 7419.7, + "probability": 0.8917 + }, + { + "start": 7421.4, + "end": 7424.14, + "probability": 0.535 + }, + { + "start": 7424.3, + "end": 7430.12, + "probability": 0.9784 + }, + { + "start": 7431.64, + "end": 7431.9, + "probability": 0.1634 + }, + { + "start": 7431.9, + "end": 7434.74, + "probability": 0.8921 + }, + { + "start": 7435.26, + "end": 7436.73, + "probability": 0.688 + }, + { + "start": 7438.04, + "end": 7439.94, + "probability": 0.8682 + }, + { + "start": 7440.3, + "end": 7444.84, + "probability": 0.9888 + }, + { + "start": 7445.26, + "end": 7449.5, + "probability": 0.958 + }, + { + "start": 7450.32, + "end": 7451.6, + "probability": 0.8631 + }, + { + "start": 7451.66, + "end": 7457.68, + "probability": 0.9812 + }, + { + "start": 7457.98, + "end": 7460.14, + "probability": 0.9708 + }, + { + "start": 7460.72, + "end": 7464.76, + "probability": 0.6807 + }, + { + "start": 7465.68, + "end": 7466.34, + "probability": 0.7003 + }, + { + "start": 7466.6, + "end": 7468.76, + "probability": 0.9878 + }, + { + "start": 7468.76, + "end": 7472.0, + "probability": 0.7122 + }, + { + "start": 7472.76, + "end": 7473.76, + "probability": 0.6429 + }, + { + "start": 7473.78, + "end": 7475.84, + "probability": 0.9657 + }, + { + "start": 7476.32, + "end": 7478.4, + "probability": 0.5782 + }, + { + "start": 7479.28, + "end": 7482.0, + "probability": 0.955 + }, + { + "start": 7482.2, + "end": 7485.76, + "probability": 0.9684 + }, + { + "start": 7486.48, + "end": 7487.24, + "probability": 0.9599 + }, + { + "start": 7487.74, + "end": 7492.96, + "probability": 0.8335 + }, + { + "start": 7492.96, + "end": 7497.82, + "probability": 0.9785 + }, + { + "start": 7498.24, + "end": 7502.01, + "probability": 0.7866 + }, + { + "start": 7502.64, + "end": 7503.82, + "probability": 0.6785 + }, + { + "start": 7504.3, + "end": 7507.54, + "probability": 0.9948 + }, + { + "start": 7507.54, + "end": 7510.68, + "probability": 0.9938 + }, + { + "start": 7511.32, + "end": 7514.52, + "probability": 0.9878 + }, + { + "start": 7514.66, + "end": 7515.44, + "probability": 0.482 + }, + { + "start": 7515.92, + "end": 7521.12, + "probability": 0.8279 + }, + { + "start": 7521.84, + "end": 7524.5, + "probability": 0.9808 + }, + { + "start": 7524.58, + "end": 7527.76, + "probability": 0.549 + }, + { + "start": 7528.46, + "end": 7533.2, + "probability": 0.9758 + }, + { + "start": 7533.38, + "end": 7538.24, + "probability": 0.8678 + }, + { + "start": 7538.46, + "end": 7540.52, + "probability": 0.9779 + }, + { + "start": 7540.64, + "end": 7543.84, + "probability": 0.6526 + }, + { + "start": 7544.58, + "end": 7545.18, + "probability": 0.5734 + }, + { + "start": 7545.3, + "end": 7546.36, + "probability": 0.686 + }, + { + "start": 7546.48, + "end": 7547.12, + "probability": 0.785 + }, + { + "start": 7547.26, + "end": 7552.5, + "probability": 0.7715 + }, + { + "start": 7552.94, + "end": 7557.28, + "probability": 0.8792 + }, + { + "start": 7557.48, + "end": 7561.4, + "probability": 0.9786 + }, + { + "start": 7561.8, + "end": 7565.12, + "probability": 0.9944 + }, + { + "start": 7565.32, + "end": 7568.6, + "probability": 0.9485 + }, + { + "start": 7570.23, + "end": 7575.54, + "probability": 0.8122 + }, + { + "start": 7575.54, + "end": 7579.18, + "probability": 0.9978 + }, + { + "start": 7580.64, + "end": 7581.18, + "probability": 0.6784 + }, + { + "start": 7581.26, + "end": 7584.42, + "probability": 0.9895 + }, + { + "start": 7584.7, + "end": 7586.18, + "probability": 0.8506 + }, + { + "start": 7586.34, + "end": 7592.68, + "probability": 0.9817 + }, + { + "start": 7592.84, + "end": 7597.34, + "probability": 0.7124 + }, + { + "start": 7597.48, + "end": 7600.96, + "probability": 0.7388 + }, + { + "start": 7601.06, + "end": 7605.06, + "probability": 0.9878 + }, + { + "start": 7605.16, + "end": 7608.64, + "probability": 0.9922 + }, + { + "start": 7608.74, + "end": 7609.79, + "probability": 0.9746 + }, + { + "start": 7610.18, + "end": 7613.68, + "probability": 0.8908 + }, + { + "start": 7614.66, + "end": 7616.18, + "probability": 0.9933 + }, + { + "start": 7616.36, + "end": 7619.54, + "probability": 0.975 + }, + { + "start": 7621.16, + "end": 7622.9, + "probability": 0.8831 + }, + { + "start": 7623.5, + "end": 7625.14, + "probability": 0.9656 + }, + { + "start": 7625.68, + "end": 7627.76, + "probability": 0.9915 + }, + { + "start": 7628.53, + "end": 7631.5, + "probability": 0.9989 + }, + { + "start": 7631.64, + "end": 7634.67, + "probability": 0.9941 + }, + { + "start": 7634.76, + "end": 7639.56, + "probability": 0.9824 + }, + { + "start": 7639.9, + "end": 7642.94, + "probability": 0.8275 + }, + { + "start": 7643.0, + "end": 7645.98, + "probability": 0.8768 + }, + { + "start": 7646.02, + "end": 7648.1, + "probability": 0.7389 + }, + { + "start": 7648.86, + "end": 7652.72, + "probability": 0.8237 + }, + { + "start": 7653.38, + "end": 7658.12, + "probability": 0.855 + }, + { + "start": 7658.84, + "end": 7662.2, + "probability": 0.9637 + }, + { + "start": 7662.2, + "end": 7662.52, + "probability": 0.5179 + }, + { + "start": 7662.52, + "end": 7663.1, + "probability": 0.7299 + }, + { + "start": 7663.18, + "end": 7664.32, + "probability": 0.7603 + }, + { + "start": 7664.72, + "end": 7667.24, + "probability": 0.7712 + }, + { + "start": 7667.72, + "end": 7668.86, + "probability": 0.8741 + }, + { + "start": 7669.38, + "end": 7675.12, + "probability": 0.9882 + }, + { + "start": 7675.24, + "end": 7676.36, + "probability": 0.9615 + }, + { + "start": 7676.98, + "end": 7681.18, + "probability": 0.998 + }, + { + "start": 7681.18, + "end": 7684.26, + "probability": 0.9964 + }, + { + "start": 7684.8, + "end": 7689.94, + "probability": 0.9835 + }, + { + "start": 7690.04, + "end": 7695.42, + "probability": 0.9659 + }, + { + "start": 7695.6, + "end": 7696.76, + "probability": 0.9282 + }, + { + "start": 7697.42, + "end": 7700.4, + "probability": 0.8922 + }, + { + "start": 7700.4, + "end": 7702.72, + "probability": 0.8154 + }, + { + "start": 7703.4, + "end": 7703.92, + "probability": 0.8792 + }, + { + "start": 7704.16, + "end": 7705.22, + "probability": 0.9606 + }, + { + "start": 7705.26, + "end": 7706.32, + "probability": 0.512 + }, + { + "start": 7706.44, + "end": 7706.82, + "probability": 0.4015 + }, + { + "start": 7707.36, + "end": 7708.5, + "probability": 0.2735 + }, + { + "start": 7708.52, + "end": 7710.16, + "probability": 0.8045 + }, + { + "start": 7710.7, + "end": 7711.8, + "probability": 0.8838 + }, + { + "start": 7712.95, + "end": 7716.98, + "probability": 0.9958 + }, + { + "start": 7716.98, + "end": 7721.14, + "probability": 0.7192 + }, + { + "start": 7721.34, + "end": 7722.86, + "probability": 0.8063 + }, + { + "start": 7723.44, + "end": 7726.16, + "probability": 0.9801 + }, + { + "start": 7726.3, + "end": 7729.42, + "probability": 0.8133 + }, + { + "start": 7729.54, + "end": 7736.02, + "probability": 0.9509 + }, + { + "start": 7736.94, + "end": 7737.04, + "probability": 0.1997 + }, + { + "start": 7737.04, + "end": 7740.12, + "probability": 0.9888 + }, + { + "start": 7740.12, + "end": 7744.08, + "probability": 0.9479 + }, + { + "start": 7745.02, + "end": 7745.6, + "probability": 0.9625 + }, + { + "start": 7745.74, + "end": 7751.8, + "probability": 0.8872 + }, + { + "start": 7752.36, + "end": 7754.89, + "probability": 0.8939 + }, + { + "start": 7756.64, + "end": 7758.92, + "probability": 0.5889 + }, + { + "start": 7759.12, + "end": 7764.98, + "probability": 0.9966 + }, + { + "start": 7765.06, + "end": 7767.06, + "probability": 0.9995 + }, + { + "start": 7767.38, + "end": 7771.24, + "probability": 0.9508 + }, + { + "start": 7771.34, + "end": 7772.76, + "probability": 0.8609 + }, + { + "start": 7773.36, + "end": 7778.36, + "probability": 0.8987 + }, + { + "start": 7778.74, + "end": 7779.1, + "probability": 0.8882 + }, + { + "start": 7779.18, + "end": 7782.54, + "probability": 0.8699 + }, + { + "start": 7782.62, + "end": 7786.1, + "probability": 0.7772 + }, + { + "start": 7786.76, + "end": 7793.6, + "probability": 0.7225 + }, + { + "start": 7793.6, + "end": 7798.01, + "probability": 0.9896 + }, + { + "start": 7799.0, + "end": 7799.9, + "probability": 0.9714 + }, + { + "start": 7801.18, + "end": 7802.56, + "probability": 0.7814 + }, + { + "start": 7805.38, + "end": 7806.0, + "probability": 0.2447 + }, + { + "start": 7806.1, + "end": 7808.16, + "probability": 0.9289 + }, + { + "start": 7808.74, + "end": 7811.14, + "probability": 0.9168 + }, + { + "start": 7811.48, + "end": 7815.92, + "probability": 0.9694 + }, + { + "start": 7816.5, + "end": 7820.56, + "probability": 0.8976 + }, + { + "start": 7820.68, + "end": 7821.5, + "probability": 0.8095 + }, + { + "start": 7821.66, + "end": 7825.56, + "probability": 0.9778 + }, + { + "start": 7826.1, + "end": 7827.74, + "probability": 0.6923 + }, + { + "start": 7827.88, + "end": 7828.32, + "probability": 0.8132 + }, + { + "start": 7828.76, + "end": 7834.56, + "probability": 0.7718 + }, + { + "start": 7838.0, + "end": 7842.86, + "probability": 0.9209 + }, + { + "start": 7844.72, + "end": 7847.46, + "probability": 0.7129 + }, + { + "start": 7848.14, + "end": 7852.24, + "probability": 0.6395 + }, + { + "start": 7853.08, + "end": 7856.04, + "probability": 0.9778 + }, + { + "start": 7857.6, + "end": 7858.88, + "probability": 0.871 + }, + { + "start": 7859.28, + "end": 7860.68, + "probability": 0.8473 + }, + { + "start": 7860.84, + "end": 7867.52, + "probability": 0.9362 + }, + { + "start": 7867.52, + "end": 7871.88, + "probability": 0.998 + }, + { + "start": 7872.62, + "end": 7873.7, + "probability": 0.5903 + }, + { + "start": 7873.74, + "end": 7875.92, + "probability": 0.9502 + }, + { + "start": 7876.34, + "end": 7877.68, + "probability": 0.7289 + }, + { + "start": 7877.78, + "end": 7879.36, + "probability": 0.9849 + }, + { + "start": 7879.78, + "end": 7884.0, + "probability": 0.9419 + }, + { + "start": 7884.72, + "end": 7888.74, + "probability": 0.9804 + }, + { + "start": 7889.22, + "end": 7894.98, + "probability": 0.9982 + }, + { + "start": 7895.2, + "end": 7896.02, + "probability": 0.8627 + }, + { + "start": 7896.08, + "end": 7897.98, + "probability": 0.9862 + }, + { + "start": 7898.54, + "end": 7900.74, + "probability": 0.8593 + }, + { + "start": 7901.32, + "end": 7905.42, + "probability": 0.9818 + }, + { + "start": 7905.7, + "end": 7906.68, + "probability": 0.8448 + }, + { + "start": 7906.82, + "end": 7907.72, + "probability": 0.5078 + }, + { + "start": 7907.74, + "end": 7908.98, + "probability": 0.9636 + }, + { + "start": 7909.36, + "end": 7912.42, + "probability": 0.9692 + }, + { + "start": 7912.46, + "end": 7913.1, + "probability": 0.907 + }, + { + "start": 7913.16, + "end": 7914.14, + "probability": 0.8188 + }, + { + "start": 7914.18, + "end": 7917.12, + "probability": 0.9967 + }, + { + "start": 7918.39, + "end": 7919.6, + "probability": 0.1203 + }, + { + "start": 7919.68, + "end": 7921.74, + "probability": 0.8281 + }, + { + "start": 7922.1, + "end": 7924.54, + "probability": 0.9623 + }, + { + "start": 7924.54, + "end": 7927.62, + "probability": 0.9981 + }, + { + "start": 7928.06, + "end": 7929.2, + "probability": 0.3971 + }, + { + "start": 7929.52, + "end": 7931.74, + "probability": 0.5125 + }, + { + "start": 7931.74, + "end": 7931.83, + "probability": 0.2167 + }, + { + "start": 7932.26, + "end": 7933.78, + "probability": 0.6483 + }, + { + "start": 7933.9, + "end": 7935.6, + "probability": 0.9902 + }, + { + "start": 7935.62, + "end": 7936.28, + "probability": 0.2465 + }, + { + "start": 7937.32, + "end": 7937.32, + "probability": 0.163 + }, + { + "start": 7937.32, + "end": 7937.68, + "probability": 0.2852 + }, + { + "start": 7937.76, + "end": 7939.52, + "probability": 0.7733 + }, + { + "start": 7939.8, + "end": 7942.65, + "probability": 0.5299 + }, + { + "start": 7942.68, + "end": 7943.02, + "probability": 0.2049 + }, + { + "start": 7943.02, + "end": 7943.78, + "probability": 0.3178 + }, + { + "start": 7943.8, + "end": 7945.48, + "probability": 0.6594 + }, + { + "start": 7945.7, + "end": 7950.5, + "probability": 0.1213 + }, + { + "start": 7950.52, + "end": 7952.36, + "probability": 0.1273 + }, + { + "start": 7952.92, + "end": 7953.92, + "probability": 0.0046 + }, + { + "start": 7953.92, + "end": 7954.68, + "probability": 0.1106 + }, + { + "start": 7955.08, + "end": 7957.94, + "probability": 0.2086 + }, + { + "start": 7957.94, + "end": 7965.37, + "probability": 0.5773 + }, + { + "start": 7967.08, + "end": 7967.96, + "probability": 0.1168 + }, + { + "start": 7971.32, + "end": 7972.28, + "probability": 0.0121 + }, + { + "start": 7978.34, + "end": 7979.06, + "probability": 0.0444 + }, + { + "start": 7979.26, + "end": 7980.06, + "probability": 0.1917 + }, + { + "start": 7980.98, + "end": 7983.98, + "probability": 0.0574 + }, + { + "start": 7985.18, + "end": 7986.28, + "probability": 0.1803 + }, + { + "start": 7996.0, + "end": 7996.5, + "probability": 0.0701 + }, + { + "start": 8001.78, + "end": 8004.56, + "probability": 0.0909 + }, + { + "start": 8004.56, + "end": 8008.76, + "probability": 0.1188 + }, + { + "start": 8009.5, + "end": 8011.98, + "probability": 0.0637 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.0, + "end": 8012.0, + "probability": 0.0 + }, + { + "start": 8012.48, + "end": 8017.24, + "probability": 0.9864 + }, + { + "start": 8017.4, + "end": 8020.08, + "probability": 0.9902 + }, + { + "start": 8020.52, + "end": 8021.02, + "probability": 0.7277 + }, + { + "start": 8021.26, + "end": 8021.7, + "probability": 0.6886 + }, + { + "start": 8021.8, + "end": 8022.22, + "probability": 0.9349 + }, + { + "start": 8022.26, + "end": 8024.84, + "probability": 0.9626 + }, + { + "start": 8025.56, + "end": 8027.86, + "probability": 0.8552 + }, + { + "start": 8028.12, + "end": 8032.56, + "probability": 0.817 + }, + { + "start": 8033.56, + "end": 8034.64, + "probability": 0.2235 + }, + { + "start": 8034.64, + "end": 8037.2, + "probability": 0.5913 + }, + { + "start": 8037.4, + "end": 8041.06, + "probability": 0.7447 + }, + { + "start": 8041.36, + "end": 8048.22, + "probability": 0.9495 + }, + { + "start": 8048.6, + "end": 8051.04, + "probability": 0.8957 + }, + { + "start": 8051.56, + "end": 8054.28, + "probability": 0.9469 + }, + { + "start": 8054.28, + "end": 8056.78, + "probability": 0.8412 + }, + { + "start": 8058.37, + "end": 8058.44, + "probability": 0.0114 + }, + { + "start": 8058.44, + "end": 8062.96, + "probability": 0.8945 + }, + { + "start": 8063.12, + "end": 8064.26, + "probability": 0.9229 + }, + { + "start": 8064.66, + "end": 8066.16, + "probability": 0.7519 + }, + { + "start": 8066.58, + "end": 8068.92, + "probability": 0.9525 + }, + { + "start": 8069.14, + "end": 8071.5, + "probability": 0.9648 + }, + { + "start": 8071.62, + "end": 8073.32, + "probability": 0.9931 + }, + { + "start": 8074.04, + "end": 8077.48, + "probability": 0.9764 + }, + { + "start": 8077.7, + "end": 8078.6, + "probability": 0.6793 + }, + { + "start": 8078.6, + "end": 8081.64, + "probability": 0.8644 + }, + { + "start": 8081.64, + "end": 8081.98, + "probability": 0.1908 + }, + { + "start": 8082.26, + "end": 8082.4, + "probability": 0.0469 + }, + { + "start": 8082.48, + "end": 8085.08, + "probability": 0.4842 + }, + { + "start": 8085.5, + "end": 8090.68, + "probability": 0.903 + }, + { + "start": 8090.78, + "end": 8095.52, + "probability": 0.8188 + }, + { + "start": 8096.04, + "end": 8096.06, + "probability": 0.093 + }, + { + "start": 8096.06, + "end": 8096.78, + "probability": 0.3044 + }, + { + "start": 8097.06, + "end": 8098.82, + "probability": 0.3303 + }, + { + "start": 8098.94, + "end": 8099.24, + "probability": 0.0953 + }, + { + "start": 8100.84, + "end": 8101.52, + "probability": 0.1946 + }, + { + "start": 8101.52, + "end": 8101.52, + "probability": 0.2526 + }, + { + "start": 8101.56, + "end": 8105.02, + "probability": 0.5265 + }, + { + "start": 8105.34, + "end": 8107.06, + "probability": 0.136 + }, + { + "start": 8107.06, + "end": 8107.9, + "probability": 0.8036 + }, + { + "start": 8108.1, + "end": 8111.4, + "probability": 0.1507 + }, + { + "start": 8111.4, + "end": 8111.64, + "probability": 0.132 + }, + { + "start": 8112.56, + "end": 8113.6, + "probability": 0.0743 + }, + { + "start": 8113.6, + "end": 8116.84, + "probability": 0.112 + }, + { + "start": 8117.28, + "end": 8118.4, + "probability": 0.1826 + }, + { + "start": 8118.4, + "end": 8123.54, + "probability": 0.0342 + }, + { + "start": 8124.0, + "end": 8126.68, + "probability": 0.3052 + }, + { + "start": 8127.38, + "end": 8130.84, + "probability": 0.3773 + }, + { + "start": 8130.84, + "end": 8136.68, + "probability": 0.0337 + }, + { + "start": 8137.66, + "end": 8138.52, + "probability": 0.0173 + }, + { + "start": 8138.52, + "end": 8142.34, + "probability": 0.0807 + }, + { + "start": 8142.34, + "end": 8145.26, + "probability": 0.0322 + }, + { + "start": 8145.26, + "end": 8149.98, + "probability": 0.0933 + }, + { + "start": 8150.0, + "end": 8150.0, + "probability": 0.0 + }, + { + "start": 8150.0, + "end": 8150.0, + "probability": 0.0 + }, + { + "start": 8150.0, + "end": 8150.0, + "probability": 0.0 + }, + { + "start": 8150.0, + "end": 8150.0, + "probability": 0.0 + }, + { + "start": 8150.0, + "end": 8150.0, + "probability": 0.0 + }, + { + "start": 8150.0, + "end": 8150.0, + "probability": 0.0 + }, + { + "start": 8150.0, + "end": 8150.0, + "probability": 0.0 + }, + { + "start": 8150.0, + "end": 8150.0, + "probability": 0.0 + }, + { + "start": 8154.84, + "end": 8156.58, + "probability": 0.1703 + }, + { + "start": 8156.58, + "end": 8158.55, + "probability": 0.0355 + }, + { + "start": 8160.02, + "end": 8162.16, + "probability": 0.0245 + }, + { + "start": 8162.26, + "end": 8165.13, + "probability": 0.069 + }, + { + "start": 8166.4, + "end": 8169.18, + "probability": 0.089 + }, + { + "start": 8170.42, + "end": 8175.6, + "probability": 0.1049 + }, + { + "start": 8175.6, + "end": 8178.48, + "probability": 0.0343 + }, + { + "start": 8179.79, + "end": 8184.04, + "probability": 0.0515 + }, + { + "start": 8184.58, + "end": 8184.92, + "probability": 0.0081 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.0, + "end": 8278.0, + "probability": 0.0 + }, + { + "start": 8278.24, + "end": 8278.58, + "probability": 0.0872 + }, + { + "start": 8278.58, + "end": 8281.04, + "probability": 0.4534 + }, + { + "start": 8281.28, + "end": 8281.48, + "probability": 0.2863 + }, + { + "start": 8282.0, + "end": 8282.52, + "probability": 0.5387 + }, + { + "start": 8282.58, + "end": 8283.56, + "probability": 0.5567 + }, + { + "start": 8283.58, + "end": 8289.44, + "probability": 0.9361 + }, + { + "start": 8290.08, + "end": 8291.74, + "probability": 0.6864 + }, + { + "start": 8291.78, + "end": 8293.0, + "probability": 0.6112 + }, + { + "start": 8293.24, + "end": 8295.34, + "probability": 0.7632 + }, + { + "start": 8295.98, + "end": 8297.32, + "probability": 0.8984 + }, + { + "start": 8297.48, + "end": 8298.56, + "probability": 0.6859 + }, + { + "start": 8298.94, + "end": 8300.68, + "probability": 0.9488 + }, + { + "start": 8300.76, + "end": 8304.72, + "probability": 0.9913 + }, + { + "start": 8305.14, + "end": 8308.12, + "probability": 0.9848 + }, + { + "start": 8308.2, + "end": 8310.88, + "probability": 0.9897 + }, + { + "start": 8310.98, + "end": 8311.66, + "probability": 0.9064 + }, + { + "start": 8312.16, + "end": 8312.82, + "probability": 0.8973 + }, + { + "start": 8312.88, + "end": 8313.3, + "probability": 0.9111 + }, + { + "start": 8313.92, + "end": 8315.26, + "probability": 0.9899 + }, + { + "start": 8316.48, + "end": 8320.32, + "probability": 0.9738 + }, + { + "start": 8320.94, + "end": 8324.26, + "probability": 0.5645 + }, + { + "start": 8324.76, + "end": 8325.4, + "probability": 0.6986 + }, + { + "start": 8325.58, + "end": 8328.7, + "probability": 0.9211 + }, + { + "start": 8328.84, + "end": 8330.0, + "probability": 0.7745 + }, + { + "start": 8330.38, + "end": 8331.66, + "probability": 0.9629 + }, + { + "start": 8331.76, + "end": 8332.12, + "probability": 0.2094 + }, + { + "start": 8332.26, + "end": 8332.8, + "probability": 0.7549 + }, + { + "start": 8332.98, + "end": 8334.42, + "probability": 0.9391 + }, + { + "start": 8334.56, + "end": 8335.62, + "probability": 0.5254 + }, + { + "start": 8336.32, + "end": 8337.2, + "probability": 0.5136 + }, + { + "start": 8337.3, + "end": 8338.4, + "probability": 0.7778 + }, + { + "start": 8338.72, + "end": 8339.34, + "probability": 0.655 + }, + { + "start": 8339.44, + "end": 8341.64, + "probability": 0.9759 + }, + { + "start": 8341.78, + "end": 8343.56, + "probability": 0.9902 + }, + { + "start": 8344.78, + "end": 8346.9, + "probability": 0.9845 + }, + { + "start": 8351.98, + "end": 8355.54, + "probability": 0.6589 + }, + { + "start": 8356.34, + "end": 8359.18, + "probability": 0.9336 + }, + { + "start": 8359.18, + "end": 8362.36, + "probability": 0.9913 + }, + { + "start": 8362.98, + "end": 8365.2, + "probability": 0.9668 + }, + { + "start": 8365.34, + "end": 8367.28, + "probability": 0.9359 + }, + { + "start": 8368.58, + "end": 8373.21, + "probability": 0.8504 + }, + { + "start": 8375.28, + "end": 8380.04, + "probability": 0.7662 + }, + { + "start": 8380.2, + "end": 8386.18, + "probability": 0.8992 + }, + { + "start": 8388.52, + "end": 8389.18, + "probability": 0.036 + }, + { + "start": 8389.18, + "end": 8389.18, + "probability": 0.0144 + }, + { + "start": 8389.18, + "end": 8390.78, + "probability": 0.724 + }, + { + "start": 8390.96, + "end": 8394.18, + "probability": 0.9575 + }, + { + "start": 8394.58, + "end": 8396.46, + "probability": 0.9473 + }, + { + "start": 8397.26, + "end": 8399.32, + "probability": 0.9985 + }, + { + "start": 8399.44, + "end": 8403.66, + "probability": 0.9795 + }, + { + "start": 8403.9, + "end": 8405.56, + "probability": 0.9655 + }, + { + "start": 8405.56, + "end": 8408.16, + "probability": 0.9922 + }, + { + "start": 8408.3, + "end": 8413.8, + "probability": 0.9766 + }, + { + "start": 8414.04, + "end": 8417.18, + "probability": 0.9136 + }, + { + "start": 8417.36, + "end": 8418.42, + "probability": 0.9966 + }, + { + "start": 8419.26, + "end": 8420.62, + "probability": 0.7096 + }, + { + "start": 8420.76, + "end": 8424.88, + "probability": 0.8075 + }, + { + "start": 8425.02, + "end": 8426.18, + "probability": 0.897 + }, + { + "start": 8426.3, + "end": 8429.54, + "probability": 0.9658 + }, + { + "start": 8429.72, + "end": 8430.57, + "probability": 0.6788 + }, + { + "start": 8431.06, + "end": 8432.24, + "probability": 0.8637 + }, + { + "start": 8432.38, + "end": 8434.38, + "probability": 0.9834 + }, + { + "start": 8434.54, + "end": 8435.4, + "probability": 0.6534 + }, + { + "start": 8436.46, + "end": 8437.72, + "probability": 0.8352 + }, + { + "start": 8437.82, + "end": 8439.56, + "probability": 0.9332 + }, + { + "start": 8439.62, + "end": 8443.7, + "probability": 0.8965 + }, + { + "start": 8444.74, + "end": 8449.2, + "probability": 0.9936 + }, + { + "start": 8449.26, + "end": 8450.57, + "probability": 0.9631 + }, + { + "start": 8451.34, + "end": 8454.98, + "probability": 0.9956 + }, + { + "start": 8454.98, + "end": 8458.6, + "probability": 0.9841 + }, + { + "start": 8459.1, + "end": 8460.94, + "probability": 0.9897 + }, + { + "start": 8466.84, + "end": 8468.74, + "probability": 0.7501 + }, + { + "start": 8468.88, + "end": 8469.32, + "probability": 0.7411 + }, + { + "start": 8469.58, + "end": 8470.78, + "probability": 0.8694 + }, + { + "start": 8471.0, + "end": 8473.96, + "probability": 0.9917 + }, + { + "start": 8474.22, + "end": 8475.84, + "probability": 0.9961 + }, + { + "start": 8476.28, + "end": 8481.58, + "probability": 0.9878 + }, + { + "start": 8482.3, + "end": 8485.32, + "probability": 0.9645 + }, + { + "start": 8486.44, + "end": 8495.08, + "probability": 0.9943 + }, + { + "start": 8495.64, + "end": 8498.12, + "probability": 0.7552 + }, + { + "start": 8498.48, + "end": 8500.3, + "probability": 0.9939 + }, + { + "start": 8500.82, + "end": 8503.5, + "probability": 0.8622 + }, + { + "start": 8504.36, + "end": 8506.38, + "probability": 0.8706 + }, + { + "start": 8506.64, + "end": 8509.08, + "probability": 0.9941 + }, + { + "start": 8510.14, + "end": 8510.68, + "probability": 0.7217 + }, + { + "start": 8510.78, + "end": 8515.9, + "probability": 0.8516 + }, + { + "start": 8516.14, + "end": 8519.64, + "probability": 0.9697 + }, + { + "start": 8519.64, + "end": 8523.16, + "probability": 0.9912 + }, + { + "start": 8523.48, + "end": 8528.86, + "probability": 0.9486 + }, + { + "start": 8529.42, + "end": 8530.4, + "probability": 0.5081 + }, + { + "start": 8531.16, + "end": 8538.32, + "probability": 0.9857 + }, + { + "start": 8538.52, + "end": 8539.38, + "probability": 0.9736 + }, + { + "start": 8539.58, + "end": 8540.91, + "probability": 0.9836 + }, + { + "start": 8541.46, + "end": 8542.4, + "probability": 0.5463 + }, + { + "start": 8542.46, + "end": 8543.72, + "probability": 0.847 + }, + { + "start": 8544.08, + "end": 8546.68, + "probability": 0.9484 + }, + { + "start": 8546.74, + "end": 8547.26, + "probability": 0.5678 + }, + { + "start": 8547.64, + "end": 8550.2, + "probability": 0.9653 + }, + { + "start": 8550.24, + "end": 8551.22, + "probability": 0.8846 + }, + { + "start": 8551.42, + "end": 8557.22, + "probability": 0.9678 + }, + { + "start": 8557.6, + "end": 8560.62, + "probability": 0.6831 + }, + { + "start": 8560.8, + "end": 8561.1, + "probability": 0.014 + }, + { + "start": 8561.6, + "end": 8565.46, + "probability": 0.9778 + }, + { + "start": 8565.7, + "end": 8569.94, + "probability": 0.9292 + }, + { + "start": 8570.08, + "end": 8571.01, + "probability": 0.9663 + }, + { + "start": 8571.66, + "end": 8573.44, + "probability": 0.8243 + }, + { + "start": 8573.66, + "end": 8574.76, + "probability": 0.556 + }, + { + "start": 8574.84, + "end": 8577.52, + "probability": 0.8287 + }, + { + "start": 8577.76, + "end": 8579.54, + "probability": 0.6541 + }, + { + "start": 8579.56, + "end": 8582.34, + "probability": 0.8656 + }, + { + "start": 8582.5, + "end": 8582.92, + "probability": 0.9956 + }, + { + "start": 8583.94, + "end": 8584.5, + "probability": 0.8669 + }, + { + "start": 8584.74, + "end": 8585.74, + "probability": 0.6391 + }, + { + "start": 8586.26, + "end": 8587.88, + "probability": 0.4083 + }, + { + "start": 8588.02, + "end": 8588.98, + "probability": 0.3188 + }, + { + "start": 8589.02, + "end": 8590.84, + "probability": 0.7664 + }, + { + "start": 8591.32, + "end": 8592.52, + "probability": 0.3907 + }, + { + "start": 8592.52, + "end": 8592.98, + "probability": 0.0412 + }, + { + "start": 8593.02, + "end": 8594.74, + "probability": 0.5863 + }, + { + "start": 8594.86, + "end": 8594.92, + "probability": 0.0317 + }, + { + "start": 8595.22, + "end": 8596.38, + "probability": 0.2664 + }, + { + "start": 8596.5, + "end": 8599.28, + "probability": 0.5037 + }, + { + "start": 8600.18, + "end": 8601.84, + "probability": 0.8337 + }, + { + "start": 8601.98, + "end": 8606.44, + "probability": 0.998 + }, + { + "start": 8607.0, + "end": 8609.38, + "probability": 0.1039 + }, + { + "start": 8609.38, + "end": 8609.66, + "probability": 0.0188 + }, + { + "start": 8609.72, + "end": 8610.48, + "probability": 0.2943 + }, + { + "start": 8610.8, + "end": 8611.54, + "probability": 0.9517 + }, + { + "start": 8611.68, + "end": 8614.04, + "probability": 0.8013 + }, + { + "start": 8614.38, + "end": 8617.2, + "probability": 0.9744 + }, + { + "start": 8617.66, + "end": 8620.14, + "probability": 0.9977 + }, + { + "start": 8620.14, + "end": 8623.02, + "probability": 0.8966 + }, + { + "start": 8623.12, + "end": 8626.74, + "probability": 0.9248 + }, + { + "start": 8626.92, + "end": 8627.6, + "probability": 0.9147 + }, + { + "start": 8627.8, + "end": 8628.82, + "probability": 0.9517 + }, + { + "start": 8629.16, + "end": 8632.56, + "probability": 0.998 + }, + { + "start": 8632.56, + "end": 8636.06, + "probability": 0.9977 + }, + { + "start": 8637.84, + "end": 8644.04, + "probability": 0.9961 + }, + { + "start": 8644.22, + "end": 8650.98, + "probability": 0.9958 + }, + { + "start": 8651.2, + "end": 8656.26, + "probability": 0.9706 + }, + { + "start": 8656.92, + "end": 8661.52, + "probability": 0.9877 + }, + { + "start": 8662.18, + "end": 8662.94, + "probability": 0.3221 + }, + { + "start": 8663.44, + "end": 8665.02, + "probability": 0.9814 + }, + { + "start": 8665.44, + "end": 8666.74, + "probability": 0.8762 + }, + { + "start": 8667.46, + "end": 8670.74, + "probability": 0.9809 + }, + { + "start": 8671.38, + "end": 8671.78, + "probability": 0.4612 + }, + { + "start": 8672.28, + "end": 8672.82, + "probability": 0.4994 + }, + { + "start": 8672.88, + "end": 8673.04, + "probability": 0.7324 + }, + { + "start": 8673.12, + "end": 8673.56, + "probability": 0.7344 + }, + { + "start": 8673.68, + "end": 8676.72, + "probability": 0.8395 + }, + { + "start": 8676.82, + "end": 8678.8, + "probability": 0.9224 + }, + { + "start": 8678.88, + "end": 8679.72, + "probability": 0.8915 + }, + { + "start": 8679.82, + "end": 8681.7, + "probability": 0.9229 + }, + { + "start": 8681.74, + "end": 8682.62, + "probability": 0.9795 + }, + { + "start": 8683.44, + "end": 8689.16, + "probability": 0.9741 + }, + { + "start": 8689.4, + "end": 8693.1, + "probability": 0.9783 + }, + { + "start": 8693.16, + "end": 8698.58, + "probability": 0.9038 + }, + { + "start": 8698.86, + "end": 8700.6, + "probability": 0.3947 + }, + { + "start": 8700.72, + "end": 8701.32, + "probability": 0.5916 + }, + { + "start": 8701.4, + "end": 8705.8, + "probability": 0.9854 + }, + { + "start": 8707.04, + "end": 8709.46, + "probability": 0.8337 + }, + { + "start": 8709.76, + "end": 8713.56, + "probability": 0.9821 + }, + { + "start": 8713.96, + "end": 8717.54, + "probability": 0.9592 + }, + { + "start": 8718.74, + "end": 8724.84, + "probability": 0.9762 + }, + { + "start": 8724.94, + "end": 8726.18, + "probability": 0.9976 + }, + { + "start": 8726.64, + "end": 8728.78, + "probability": 0.994 + }, + { + "start": 8728.84, + "end": 8735.42, + "probability": 0.9987 + }, + { + "start": 8735.76, + "end": 8737.5, + "probability": 0.759 + }, + { + "start": 8737.78, + "end": 8741.7, + "probability": 0.9318 + }, + { + "start": 8741.7, + "end": 8745.18, + "probability": 0.9923 + }, + { + "start": 8745.68, + "end": 8747.64, + "probability": 0.9869 + }, + { + "start": 8747.76, + "end": 8748.82, + "probability": 0.7514 + }, + { + "start": 8748.86, + "end": 8754.07, + "probability": 0.9951 + }, + { + "start": 8755.62, + "end": 8758.2, + "probability": 0.9212 + }, + { + "start": 8758.74, + "end": 8760.06, + "probability": 0.9829 + }, + { + "start": 8760.92, + "end": 8762.42, + "probability": 0.6235 + }, + { + "start": 8762.7, + "end": 8763.42, + "probability": 0.7584 + }, + { + "start": 8763.96, + "end": 8765.86, + "probability": 0.8175 + }, + { + "start": 8765.9, + "end": 8769.1, + "probability": 0.8189 + }, + { + "start": 8769.38, + "end": 8770.16, + "probability": 0.7332 + }, + { + "start": 8770.58, + "end": 8771.2, + "probability": 0.9108 + }, + { + "start": 8771.56, + "end": 8775.84, + "probability": 0.9355 + }, + { + "start": 8775.84, + "end": 8779.29, + "probability": 0.9827 + }, + { + "start": 8779.84, + "end": 8781.0, + "probability": 0.9745 + }, + { + "start": 8781.4, + "end": 8786.24, + "probability": 0.9704 + }, + { + "start": 8786.24, + "end": 8789.6, + "probability": 0.9912 + }, + { + "start": 8789.64, + "end": 8790.86, + "probability": 0.3451 + }, + { + "start": 8791.2, + "end": 8795.04, + "probability": 0.9834 + }, + { + "start": 8795.38, + "end": 8795.86, + "probability": 0.8557 + }, + { + "start": 8796.34, + "end": 8800.7, + "probability": 0.9932 + }, + { + "start": 8800.7, + "end": 8804.3, + "probability": 0.9504 + }, + { + "start": 8804.86, + "end": 8807.9, + "probability": 0.962 + }, + { + "start": 8808.26, + "end": 8812.34, + "probability": 0.984 + }, + { + "start": 8813.46, + "end": 8816.2, + "probability": 0.8525 + }, + { + "start": 8816.72, + "end": 8821.02, + "probability": 0.8833 + }, + { + "start": 8821.46, + "end": 8822.9, + "probability": 0.8442 + }, + { + "start": 8823.04, + "end": 8824.14, + "probability": 0.8548 + }, + { + "start": 8824.44, + "end": 8829.1, + "probability": 0.9883 + }, + { + "start": 8829.1, + "end": 8833.98, + "probability": 0.9965 + }, + { + "start": 8834.34, + "end": 8835.18, + "probability": 0.8197 + }, + { + "start": 8835.28, + "end": 8836.28, + "probability": 0.9688 + }, + { + "start": 8836.44, + "end": 8837.78, + "probability": 0.9878 + }, + { + "start": 8837.94, + "end": 8839.32, + "probability": 0.9915 + }, + { + "start": 8839.38, + "end": 8841.16, + "probability": 0.8247 + }, + { + "start": 8841.28, + "end": 8844.4, + "probability": 0.9601 + }, + { + "start": 8844.9, + "end": 8845.58, + "probability": 0.9528 + }, + { + "start": 8845.76, + "end": 8845.92, + "probability": 0.53 + }, + { + "start": 8845.98, + "end": 8846.68, + "probability": 0.9537 + }, + { + "start": 8846.78, + "end": 8852.04, + "probability": 0.9888 + }, + { + "start": 8852.66, + "end": 8856.96, + "probability": 0.9961 + }, + { + "start": 8857.56, + "end": 8862.94, + "probability": 0.9956 + }, + { + "start": 8863.4, + "end": 8865.23, + "probability": 0.9848 + }, + { + "start": 8865.36, + "end": 8869.51, + "probability": 0.9492 + }, + { + "start": 8869.96, + "end": 8871.42, + "probability": 0.8545 + }, + { + "start": 8871.78, + "end": 8873.28, + "probability": 0.8909 + }, + { + "start": 8873.72, + "end": 8878.66, + "probability": 0.9897 + }, + { + "start": 8878.66, + "end": 8881.4, + "probability": 0.9912 + }, + { + "start": 8881.5, + "end": 8888.62, + "probability": 0.9718 + }, + { + "start": 8888.7, + "end": 8891.12, + "probability": 0.9944 + }, + { + "start": 8891.92, + "end": 8894.88, + "probability": 0.9907 + }, + { + "start": 8895.04, + "end": 8899.28, + "probability": 0.9869 + }, + { + "start": 8899.34, + "end": 8899.62, + "probability": 0.2979 + }, + { + "start": 8899.7, + "end": 8899.98, + "probability": 0.8369 + }, + { + "start": 8900.3, + "end": 8900.7, + "probability": 0.3759 + }, + { + "start": 8900.74, + "end": 8903.37, + "probability": 0.8991 + }, + { + "start": 8904.4, + "end": 8906.52, + "probability": 0.9829 + }, + { + "start": 8907.06, + "end": 8909.26, + "probability": 0.9883 + }, + { + "start": 8909.6, + "end": 8912.28, + "probability": 0.9395 + }, + { + "start": 8912.78, + "end": 8917.76, + "probability": 0.9595 + }, + { + "start": 8918.38, + "end": 8923.02, + "probability": 0.9957 + }, + { + "start": 8923.14, + "end": 8927.42, + "probability": 0.9739 + }, + { + "start": 8927.86, + "end": 8930.84, + "probability": 0.6448 + }, + { + "start": 8931.28, + "end": 8932.34, + "probability": 0.0553 + }, + { + "start": 8932.34, + "end": 8932.34, + "probability": 0.1091 + }, + { + "start": 8932.46, + "end": 8932.64, + "probability": 0.2498 + }, + { + "start": 8932.78, + "end": 8938.1, + "probability": 0.9138 + }, + { + "start": 8938.68, + "end": 8940.64, + "probability": 0.9685 + }, + { + "start": 8941.18, + "end": 8943.66, + "probability": 0.9838 + }, + { + "start": 8943.74, + "end": 8946.06, + "probability": 0.9795 + }, + { + "start": 8946.62, + "end": 8948.02, + "probability": 0.976 + }, + { + "start": 8948.82, + "end": 8949.96, + "probability": 0.9464 + }, + { + "start": 8949.98, + "end": 8951.58, + "probability": 0.7605 + }, + { + "start": 8951.64, + "end": 8952.27, + "probability": 0.7153 + }, + { + "start": 8952.86, + "end": 8955.02, + "probability": 0.6861 + }, + { + "start": 8955.82, + "end": 8958.48, + "probability": 0.9897 + }, + { + "start": 8958.92, + "end": 8960.74, + "probability": 0.6722 + }, + { + "start": 8960.74, + "end": 8963.4, + "probability": 0.8801 + }, + { + "start": 8965.92, + "end": 8966.54, + "probability": 0.168 + }, + { + "start": 8966.54, + "end": 8966.68, + "probability": 0.0641 + }, + { + "start": 8966.68, + "end": 8968.0, + "probability": 0.6302 + }, + { + "start": 8968.12, + "end": 8969.24, + "probability": 0.6003 + }, + { + "start": 8969.48, + "end": 8970.6, + "probability": 0.4754 + }, + { + "start": 8971.64, + "end": 8972.66, + "probability": 0.676 + }, + { + "start": 8972.72, + "end": 8981.2, + "probability": 0.8173 + }, + { + "start": 8982.02, + "end": 8988.18, + "probability": 0.9315 + }, + { + "start": 8988.66, + "end": 8990.26, + "probability": 0.9556 + }, + { + "start": 8990.26, + "end": 8992.9, + "probability": 0.5524 + }, + { + "start": 8992.9, + "end": 8993.06, + "probability": 0.3566 + }, + { + "start": 8993.8, + "end": 8993.92, + "probability": 0.73 + }, + { + "start": 8995.26, + "end": 8997.42, + "probability": 0.5637 + }, + { + "start": 8999.0, + "end": 9002.1, + "probability": 0.9626 + }, + { + "start": 9002.56, + "end": 9006.36, + "probability": 0.9954 + }, + { + "start": 9007.06, + "end": 9008.26, + "probability": 0.8242 + }, + { + "start": 9008.34, + "end": 9012.02, + "probability": 0.9738 + }, + { + "start": 9012.36, + "end": 9014.34, + "probability": 0.7348 + }, + { + "start": 9015.14, + "end": 9017.82, + "probability": 0.9556 + }, + { + "start": 9018.0, + "end": 9021.74, + "probability": 0.9861 + }, + { + "start": 9022.18, + "end": 9022.4, + "probability": 0.4339 + }, + { + "start": 9022.46, + "end": 9028.52, + "probability": 0.9335 + }, + { + "start": 9029.08, + "end": 9033.52, + "probability": 0.9902 + }, + { + "start": 9033.64, + "end": 9034.62, + "probability": 0.8626 + }, + { + "start": 9035.06, + "end": 9036.91, + "probability": 0.9168 + }, + { + "start": 9037.3, + "end": 9038.4, + "probability": 0.7994 + }, + { + "start": 9038.58, + "end": 9043.94, + "probability": 0.9661 + }, + { + "start": 9044.12, + "end": 9052.0, + "probability": 0.804 + }, + { + "start": 9052.84, + "end": 9055.2, + "probability": 0.57 + }, + { + "start": 9055.3, + "end": 9055.7, + "probability": 0.6118 + }, + { + "start": 9055.86, + "end": 9058.26, + "probability": 0.9661 + }, + { + "start": 9058.32, + "end": 9061.16, + "probability": 0.9395 + }, + { + "start": 9061.34, + "end": 9066.54, + "probability": 0.9622 + }, + { + "start": 9066.62, + "end": 9069.55, + "probability": 0.991 + }, + { + "start": 9069.66, + "end": 9073.42, + "probability": 0.9977 + }, + { + "start": 9073.72, + "end": 9075.44, + "probability": 0.4437 + }, + { + "start": 9076.1, + "end": 9082.4, + "probability": 0.9206 + }, + { + "start": 9082.4, + "end": 9086.66, + "probability": 0.9785 + }, + { + "start": 9087.08, + "end": 9089.82, + "probability": 0.9952 + }, + { + "start": 9090.18, + "end": 9091.37, + "probability": 0.5826 + }, + { + "start": 9091.92, + "end": 9093.96, + "probability": 0.8171 + }, + { + "start": 9094.08, + "end": 9096.38, + "probability": 0.84 + }, + { + "start": 9096.7, + "end": 9097.7, + "probability": 0.5973 + }, + { + "start": 9097.82, + "end": 9101.56, + "probability": 0.927 + }, + { + "start": 9101.56, + "end": 9105.0, + "probability": 0.9922 + }, + { + "start": 9105.14, + "end": 9105.68, + "probability": 0.6117 + }, + { + "start": 9105.9, + "end": 9108.04, + "probability": 0.7585 + }, + { + "start": 9109.12, + "end": 9112.28, + "probability": 0.917 + }, + { + "start": 9113.44, + "end": 9114.02, + "probability": 0.6834 + }, + { + "start": 9114.28, + "end": 9116.58, + "probability": 0.9405 + }, + { + "start": 9117.06, + "end": 9119.6, + "probability": 0.855 + }, + { + "start": 9120.08, + "end": 9122.81, + "probability": 0.5056 + }, + { + "start": 9124.09, + "end": 9125.86, + "probability": 0.4898 + }, + { + "start": 9127.3, + "end": 9129.38, + "probability": 0.8136 + }, + { + "start": 9129.46, + "end": 9130.3, + "probability": 0.8996 + }, + { + "start": 9134.98, + "end": 9136.58, + "probability": 0.4585 + }, + { + "start": 9137.56, + "end": 9137.94, + "probability": 0.5622 + }, + { + "start": 9138.74, + "end": 9141.11, + "probability": 0.9175 + }, + { + "start": 9142.1, + "end": 9143.64, + "probability": 0.566 + }, + { + "start": 9145.18, + "end": 9148.3, + "probability": 0.9655 + }, + { + "start": 9148.3, + "end": 9153.08, + "probability": 0.955 + }, + { + "start": 9154.2, + "end": 9158.02, + "probability": 0.8085 + }, + { + "start": 9158.72, + "end": 9159.94, + "probability": 0.6124 + }, + { + "start": 9162.06, + "end": 9163.36, + "probability": 0.61 + }, + { + "start": 9163.46, + "end": 9164.35, + "probability": 0.9303 + }, + { + "start": 9164.52, + "end": 9165.57, + "probability": 0.9648 + }, + { + "start": 9165.92, + "end": 9167.28, + "probability": 0.9948 + }, + { + "start": 9167.66, + "end": 9169.39, + "probability": 0.9756 + }, + { + "start": 9170.04, + "end": 9171.36, + "probability": 0.9777 + }, + { + "start": 9171.9, + "end": 9172.18, + "probability": 0.8242 + }, + { + "start": 9173.44, + "end": 9176.12, + "probability": 0.9971 + }, + { + "start": 9177.18, + "end": 9179.92, + "probability": 0.9978 + }, + { + "start": 9180.04, + "end": 9182.86, + "probability": 0.9958 + }, + { + "start": 9183.58, + "end": 9186.88, + "probability": 0.9653 + }, + { + "start": 9187.12, + "end": 9188.74, + "probability": 0.8249 + }, + { + "start": 9188.8, + "end": 9189.3, + "probability": 0.7879 + }, + { + "start": 9189.32, + "end": 9189.9, + "probability": 0.5108 + }, + { + "start": 9190.04, + "end": 9190.8, + "probability": 0.7592 + }, + { + "start": 9191.54, + "end": 9192.37, + "probability": 0.8615 + }, + { + "start": 9192.44, + "end": 9195.52, + "probability": 0.9882 + }, + { + "start": 9196.0, + "end": 9197.7, + "probability": 0.948 + }, + { + "start": 9197.88, + "end": 9199.76, + "probability": 0.9217 + }, + { + "start": 9200.28, + "end": 9204.32, + "probability": 0.9171 + }, + { + "start": 9205.14, + "end": 9210.76, + "probability": 0.9595 + }, + { + "start": 9211.56, + "end": 9212.3, + "probability": 0.8023 + }, + { + "start": 9212.32, + "end": 9214.9, + "probability": 0.9578 + }, + { + "start": 9214.98, + "end": 9215.58, + "probability": 0.7892 + }, + { + "start": 9216.38, + "end": 9218.5, + "probability": 0.9941 + }, + { + "start": 9218.94, + "end": 9219.94, + "probability": 0.8605 + }, + { + "start": 9220.02, + "end": 9223.12, + "probability": 0.9885 + }, + { + "start": 9224.34, + "end": 9225.53, + "probability": 0.6364 + }, + { + "start": 9226.0, + "end": 9228.06, + "probability": 0.9976 + }, + { + "start": 9228.68, + "end": 9229.52, + "probability": 0.895 + }, + { + "start": 9229.7, + "end": 9231.06, + "probability": 0.9936 + }, + { + "start": 9231.24, + "end": 9233.62, + "probability": 0.9836 + }, + { + "start": 9234.12, + "end": 9234.66, + "probability": 0.7653 + }, + { + "start": 9234.74, + "end": 9235.28, + "probability": 0.6999 + }, + { + "start": 9235.64, + "end": 9236.56, + "probability": 0.8943 + }, + { + "start": 9236.7, + "end": 9241.56, + "probability": 0.9803 + }, + { + "start": 9241.88, + "end": 9243.24, + "probability": 0.7256 + }, + { + "start": 9244.12, + "end": 9248.04, + "probability": 0.9928 + }, + { + "start": 9248.22, + "end": 9249.38, + "probability": 0.8922 + }, + { + "start": 9249.62, + "end": 9252.3, + "probability": 0.9756 + }, + { + "start": 9252.44, + "end": 9253.5, + "probability": 0.9508 + }, + { + "start": 9253.8, + "end": 9254.5, + "probability": 0.9614 + }, + { + "start": 9257.26, + "end": 9259.28, + "probability": 0.3757 + }, + { + "start": 9259.46, + "end": 9259.96, + "probability": 0.2912 + }, + { + "start": 9259.96, + "end": 9266.86, + "probability": 0.9644 + }, + { + "start": 9266.9, + "end": 9270.38, + "probability": 0.9844 + }, + { + "start": 9270.4, + "end": 9271.9, + "probability": 0.7593 + }, + { + "start": 9272.68, + "end": 9277.9, + "probability": 0.978 + }, + { + "start": 9277.9, + "end": 9278.24, + "probability": 0.7782 + }, + { + "start": 9278.32, + "end": 9280.36, + "probability": 0.9961 + }, + { + "start": 9280.9, + "end": 9284.88, + "probability": 0.981 + }, + { + "start": 9285.42, + "end": 9286.95, + "probability": 0.9663 + }, + { + "start": 9287.58, + "end": 9290.92, + "probability": 0.9971 + }, + { + "start": 9291.54, + "end": 9294.94, + "probability": 0.9712 + }, + { + "start": 9295.52, + "end": 9296.66, + "probability": 0.7721 + }, + { + "start": 9296.84, + "end": 9301.62, + "probability": 0.9974 + }, + { + "start": 9302.2, + "end": 9303.88, + "probability": 0.9932 + }, + { + "start": 9304.5, + "end": 9307.98, + "probability": 0.9971 + }, + { + "start": 9307.98, + "end": 9311.98, + "probability": 0.901 + }, + { + "start": 9312.12, + "end": 9312.58, + "probability": 0.6659 + }, + { + "start": 9312.74, + "end": 9313.16, + "probability": 0.8379 + }, + { + "start": 9313.26, + "end": 9314.86, + "probability": 0.8604 + }, + { + "start": 9316.42, + "end": 9319.62, + "probability": 0.9922 + }, + { + "start": 9319.82, + "end": 9321.04, + "probability": 0.9513 + }, + { + "start": 9321.56, + "end": 9322.2, + "probability": 0.7102 + }, + { + "start": 9322.26, + "end": 9327.8, + "probability": 0.9589 + }, + { + "start": 9328.02, + "end": 9329.62, + "probability": 0.9888 + }, + { + "start": 9329.72, + "end": 9330.16, + "probability": 0.8229 + }, + { + "start": 9331.22, + "end": 9331.92, + "probability": 0.9058 + }, + { + "start": 9332.62, + "end": 9333.36, + "probability": 0.7618 + }, + { + "start": 9333.74, + "end": 9335.96, + "probability": 0.9137 + }, + { + "start": 9337.0, + "end": 9339.22, + "probability": 0.9951 + }, + { + "start": 9340.28, + "end": 9345.18, + "probability": 0.9984 + }, + { + "start": 9345.48, + "end": 9348.62, + "probability": 0.9849 + }, + { + "start": 9349.86, + "end": 9353.06, + "probability": 0.9969 + }, + { + "start": 9353.06, + "end": 9355.62, + "probability": 0.8967 + }, + { + "start": 9355.78, + "end": 9359.3, + "probability": 0.9766 + }, + { + "start": 9359.46, + "end": 9360.92, + "probability": 0.784 + }, + { + "start": 9361.24, + "end": 9366.58, + "probability": 0.9673 + }, + { + "start": 9367.3, + "end": 9369.08, + "probability": 0.9303 + }, + { + "start": 9369.08, + "end": 9372.58, + "probability": 0.9745 + }, + { + "start": 9372.68, + "end": 9374.94, + "probability": 0.9946 + }, + { + "start": 9375.48, + "end": 9376.6, + "probability": 0.8989 + }, + { + "start": 9377.06, + "end": 9380.8, + "probability": 0.9478 + }, + { + "start": 9380.92, + "end": 9381.52, + "probability": 0.7094 + }, + { + "start": 9382.36, + "end": 9386.22, + "probability": 0.9841 + }, + { + "start": 9386.22, + "end": 9390.12, + "probability": 0.9779 + }, + { + "start": 9390.56, + "end": 9393.46, + "probability": 0.9873 + }, + { + "start": 9393.54, + "end": 9395.48, + "probability": 0.9845 + }, + { + "start": 9395.56, + "end": 9399.4, + "probability": 0.9873 + }, + { + "start": 9399.5, + "end": 9400.5, + "probability": 0.8004 + }, + { + "start": 9401.2, + "end": 9404.2, + "probability": 0.5349 + }, + { + "start": 9404.44, + "end": 9405.76, + "probability": 0.4205 + }, + { + "start": 9405.94, + "end": 9408.22, + "probability": 0.9189 + }, + { + "start": 9409.8, + "end": 9411.64, + "probability": 0.3809 + }, + { + "start": 9411.82, + "end": 9412.02, + "probability": 0.0886 + }, + { + "start": 9412.02, + "end": 9412.3, + "probability": 0.0412 + }, + { + "start": 9412.46, + "end": 9415.84, + "probability": 0.1244 + }, + { + "start": 9416.44, + "end": 9416.58, + "probability": 0.0716 + }, + { + "start": 9416.7, + "end": 9417.9, + "probability": 0.1215 + }, + { + "start": 9417.9, + "end": 9418.0, + "probability": 0.1257 + }, + { + "start": 9418.0, + "end": 9418.8, + "probability": 0.1976 + }, + { + "start": 9418.8, + "end": 9420.13, + "probability": 0.2427 + }, + { + "start": 9420.48, + "end": 9420.88, + "probability": 0.0303 + }, + { + "start": 9420.94, + "end": 9422.32, + "probability": 0.1041 + }, + { + "start": 9422.32, + "end": 9422.64, + "probability": 0.1826 + }, + { + "start": 9422.94, + "end": 9424.26, + "probability": 0.3069 + }, + { + "start": 9424.48, + "end": 9425.38, + "probability": 0.7043 + }, + { + "start": 9425.46, + "end": 9427.88, + "probability": 0.8625 + }, + { + "start": 9428.02, + "end": 9431.08, + "probability": 0.9733 + }, + { + "start": 9431.7, + "end": 9434.02, + "probability": 0.965 + }, + { + "start": 9434.12, + "end": 9435.82, + "probability": 0.9955 + }, + { + "start": 9436.52, + "end": 9441.28, + "probability": 0.9914 + }, + { + "start": 9441.8, + "end": 9444.52, + "probability": 0.993 + }, + { + "start": 9444.96, + "end": 9449.34, + "probability": 0.9871 + }, + { + "start": 9449.34, + "end": 9451.66, + "probability": 0.1103 + }, + { + "start": 9451.98, + "end": 9453.12, + "probability": 0.7772 + }, + { + "start": 9453.36, + "end": 9455.06, + "probability": 0.7565 + }, + { + "start": 9455.34, + "end": 9456.3, + "probability": 0.1973 + }, + { + "start": 9456.56, + "end": 9459.86, + "probability": 0.838 + }, + { + "start": 9459.96, + "end": 9460.76, + "probability": 0.6456 + }, + { + "start": 9461.68, + "end": 9464.92, + "probability": 0.9446 + }, + { + "start": 9465.04, + "end": 9465.08, + "probability": 0.0514 + }, + { + "start": 9465.28, + "end": 9470.56, + "probability": 0.9753 + }, + { + "start": 9470.94, + "end": 9471.0, + "probability": 0.0024 + }, + { + "start": 9471.66, + "end": 9472.16, + "probability": 0.0376 + }, + { + "start": 9473.32, + "end": 9477.36, + "probability": 0.9152 + }, + { + "start": 9477.4, + "end": 9478.2, + "probability": 0.6698 + }, + { + "start": 9478.9, + "end": 9480.3, + "probability": 0.3231 + }, + { + "start": 9480.86, + "end": 9482.52, + "probability": 0.7733 + }, + { + "start": 9482.68, + "end": 9483.22, + "probability": 0.2324 + }, + { + "start": 9483.3, + "end": 9485.78, + "probability": 0.6617 + }, + { + "start": 9485.92, + "end": 9486.82, + "probability": 0.7667 + }, + { + "start": 9486.94, + "end": 9488.18, + "probability": 0.8123 + }, + { + "start": 9488.36, + "end": 9489.56, + "probability": 0.5317 + }, + { + "start": 9489.86, + "end": 9490.72, + "probability": 0.9574 + }, + { + "start": 9490.84, + "end": 9492.06, + "probability": 0.7483 + }, + { + "start": 9492.16, + "end": 9494.83, + "probability": 0.6899 + }, + { + "start": 9494.94, + "end": 9496.74, + "probability": 0.6309 + }, + { + "start": 9496.84, + "end": 9498.64, + "probability": 0.7549 + }, + { + "start": 9498.74, + "end": 9499.78, + "probability": 0.0935 + }, + { + "start": 9499.94, + "end": 9501.82, + "probability": 0.2383 + }, + { + "start": 9501.86, + "end": 9503.82, + "probability": 0.7941 + }, + { + "start": 9503.82, + "end": 9507.24, + "probability": 0.7981 + }, + { + "start": 9507.34, + "end": 9510.08, + "probability": 0.9736 + }, + { + "start": 9510.32, + "end": 9513.98, + "probability": 0.8581 + }, + { + "start": 9514.53, + "end": 9514.86, + "probability": 0.2449 + }, + { + "start": 9514.92, + "end": 9518.5, + "probability": 0.8201 + }, + { + "start": 9518.86, + "end": 9519.62, + "probability": 0.3138 + }, + { + "start": 9520.14, + "end": 9520.9, + "probability": 0.2281 + }, + { + "start": 9521.0, + "end": 9521.68, + "probability": 0.0584 + }, + { + "start": 9521.68, + "end": 9522.4, + "probability": 0.0564 + }, + { + "start": 9522.4, + "end": 9523.66, + "probability": 0.1861 + }, + { + "start": 9523.66, + "end": 9523.94, + "probability": 0.0997 + }, + { + "start": 9525.44, + "end": 9527.06, + "probability": 0.5696 + }, + { + "start": 9527.06, + "end": 9527.9, + "probability": 0.7061 + }, + { + "start": 9528.28, + "end": 9529.54, + "probability": 0.9407 + }, + { + "start": 9529.58, + "end": 9530.38, + "probability": 0.8479 + }, + { + "start": 9530.58, + "end": 9531.44, + "probability": 0.6563 + }, + { + "start": 9531.6, + "end": 9533.5, + "probability": 0.9436 + }, + { + "start": 9533.56, + "end": 9534.85, + "probability": 0.5238 + }, + { + "start": 9535.54, + "end": 9537.94, + "probability": 0.6934 + }, + { + "start": 9538.18, + "end": 9539.8, + "probability": 0.9002 + }, + { + "start": 9540.06, + "end": 9541.96, + "probability": 0.98 + }, + { + "start": 9542.04, + "end": 9545.18, + "probability": 0.8744 + }, + { + "start": 9545.48, + "end": 9548.32, + "probability": 0.8093 + }, + { + "start": 9548.32, + "end": 9548.76, + "probability": 0.023 + }, + { + "start": 9549.26, + "end": 9551.38, + "probability": 0.6761 + }, + { + "start": 9551.78, + "end": 9553.9, + "probability": 0.9066 + }, + { + "start": 9554.46, + "end": 9555.42, + "probability": 0.6389 + }, + { + "start": 9555.48, + "end": 9557.48, + "probability": 0.9935 + }, + { + "start": 9557.54, + "end": 9557.8, + "probability": 0.4647 + }, + { + "start": 9557.88, + "end": 9557.92, + "probability": 0.5687 + }, + { + "start": 9558.1, + "end": 9558.42, + "probability": 0.2194 + }, + { + "start": 9558.42, + "end": 9560.72, + "probability": 0.7477 + }, + { + "start": 9560.74, + "end": 9562.9, + "probability": 0.854 + }, + { + "start": 9563.08, + "end": 9565.24, + "probability": 0.8999 + }, + { + "start": 9565.24, + "end": 9568.14, + "probability": 0.9972 + }, + { + "start": 9568.6, + "end": 9572.62, + "probability": 0.9886 + }, + { + "start": 9572.62, + "end": 9576.14, + "probability": 0.901 + }, + { + "start": 9576.54, + "end": 9580.86, + "probability": 0.8939 + }, + { + "start": 9580.88, + "end": 9581.1, + "probability": 0.1299 + }, + { + "start": 9581.18, + "end": 9582.32, + "probability": 0.0363 + }, + { + "start": 9583.92, + "end": 9584.98, + "probability": 0.244 + }, + { + "start": 9584.98, + "end": 9585.3, + "probability": 0.5411 + }, + { + "start": 9585.36, + "end": 9585.88, + "probability": 0.5479 + }, + { + "start": 9586.68, + "end": 9586.78, + "probability": 0.1088 + }, + { + "start": 9586.78, + "end": 9589.7, + "probability": 0.6185 + }, + { + "start": 9589.92, + "end": 9591.7, + "probability": 0.724 + }, + { + "start": 9592.12, + "end": 9594.3, + "probability": 0.9372 + }, + { + "start": 9594.48, + "end": 9597.94, + "probability": 0.9778 + }, + { + "start": 9597.94, + "end": 9600.18, + "probability": 0.8474 + }, + { + "start": 9600.52, + "end": 9601.7, + "probability": 0.6248 + }, + { + "start": 9601.7, + "end": 9604.56, + "probability": 0.8482 + }, + { + "start": 9605.18, + "end": 9606.98, + "probability": 0.9373 + }, + { + "start": 9607.1, + "end": 9607.48, + "probability": 0.8755 + }, + { + "start": 9607.92, + "end": 9607.92, + "probability": 0.0345 + }, + { + "start": 9607.92, + "end": 9610.58, + "probability": 0.9919 + }, + { + "start": 9610.58, + "end": 9613.46, + "probability": 0.8492 + }, + { + "start": 9613.92, + "end": 9616.14, + "probability": 0.9929 + }, + { + "start": 9616.42, + "end": 9616.98, + "probability": 0.5232 + }, + { + "start": 9617.0, + "end": 9618.92, + "probability": 0.8625 + }, + { + "start": 9618.98, + "end": 9619.38, + "probability": 0.9396 + }, + { + "start": 9619.68, + "end": 9620.5, + "probability": 0.5977 + }, + { + "start": 9620.84, + "end": 9624.6, + "probability": 0.9992 + }, + { + "start": 9625.32, + "end": 9627.94, + "probability": 0.4827 + }, + { + "start": 9628.12, + "end": 9629.12, + "probability": 0.5099 + }, + { + "start": 9629.2, + "end": 9629.42, + "probability": 0.1892 + }, + { + "start": 9629.42, + "end": 9630.3, + "probability": 0.9377 + }, + { + "start": 9630.34, + "end": 9632.12, + "probability": 0.9288 + }, + { + "start": 9632.18, + "end": 9634.42, + "probability": 0.9331 + }, + { + "start": 9634.42, + "end": 9640.36, + "probability": 0.9953 + }, + { + "start": 9640.44, + "end": 9644.44, + "probability": 0.9939 + }, + { + "start": 9644.68, + "end": 9646.28, + "probability": 0.9977 + }, + { + "start": 9646.98, + "end": 9648.56, + "probability": 0.7443 + }, + { + "start": 9651.02, + "end": 9653.9, + "probability": 0.3887 + }, + { + "start": 9654.54, + "end": 9654.9, + "probability": 0.4275 + }, + { + "start": 9655.2, + "end": 9656.58, + "probability": 0.9304 + }, + { + "start": 9656.64, + "end": 9656.86, + "probability": 0.2388 + }, + { + "start": 9656.86, + "end": 9659.52, + "probability": 0.7246 + }, + { + "start": 9659.56, + "end": 9659.68, + "probability": 0.0862 + }, + { + "start": 9659.68, + "end": 9659.7, + "probability": 0.217 + }, + { + "start": 9659.7, + "end": 9661.45, + "probability": 0.4957 + }, + { + "start": 9661.68, + "end": 9662.0, + "probability": 0.0641 + }, + { + "start": 9662.0, + "end": 9662.28, + "probability": 0.3136 + }, + { + "start": 9662.99, + "end": 9663.26, + "probability": 0.0454 + }, + { + "start": 9663.26, + "end": 9664.52, + "probability": 0.6697 + }, + { + "start": 9664.9, + "end": 9664.98, + "probability": 0.3401 + }, + { + "start": 9665.14, + "end": 9666.26, + "probability": 0.8354 + }, + { + "start": 9666.36, + "end": 9667.33, + "probability": 0.866 + }, + { + "start": 9667.6, + "end": 9668.56, + "probability": 0.7199 + }, + { + "start": 9669.04, + "end": 9670.84, + "probability": 0.9757 + }, + { + "start": 9671.08, + "end": 9672.62, + "probability": 0.2392 + }, + { + "start": 9672.72, + "end": 9672.74, + "probability": 0.1885 + }, + { + "start": 9672.74, + "end": 9674.86, + "probability": 0.5147 + }, + { + "start": 9674.94, + "end": 9675.94, + "probability": 0.6648 + }, + { + "start": 9676.14, + "end": 9676.28, + "probability": 0.0185 + }, + { + "start": 9676.28, + "end": 9677.5, + "probability": 0.4771 + }, + { + "start": 9677.54, + "end": 9677.66, + "probability": 0.1172 + }, + { + "start": 9677.74, + "end": 9679.06, + "probability": 0.7294 + }, + { + "start": 9679.06, + "end": 9681.3, + "probability": 0.8165 + }, + { + "start": 9681.38, + "end": 9681.78, + "probability": 0.6271 + }, + { + "start": 9681.98, + "end": 9685.34, + "probability": 0.7238 + }, + { + "start": 9685.4, + "end": 9686.72, + "probability": 0.9388 + }, + { + "start": 9686.8, + "end": 9688.4, + "probability": 0.9256 + }, + { + "start": 9688.46, + "end": 9688.6, + "probability": 0.3377 + }, + { + "start": 9688.68, + "end": 9691.5, + "probability": 0.8232 + }, + { + "start": 9691.5, + "end": 9692.02, + "probability": 0.6133 + }, + { + "start": 9692.78, + "end": 9692.78, + "probability": 0.0998 + }, + { + "start": 9692.78, + "end": 9695.98, + "probability": 0.9989 + }, + { + "start": 9696.08, + "end": 9701.42, + "probability": 0.9834 + }, + { + "start": 9701.42, + "end": 9704.68, + "probability": 0.9983 + }, + { + "start": 9705.42, + "end": 9708.84, + "probability": 0.9991 + }, + { + "start": 9709.52, + "end": 9714.72, + "probability": 0.9991 + }, + { + "start": 9715.32, + "end": 9716.52, + "probability": 0.9985 + }, + { + "start": 9717.08, + "end": 9718.82, + "probability": 0.9785 + }, + { + "start": 9719.06, + "end": 9719.64, + "probability": 0.9872 + }, + { + "start": 9720.1, + "end": 9720.66, + "probability": 0.988 + }, + { + "start": 9720.74, + "end": 9721.4, + "probability": 0.9878 + }, + { + "start": 9721.56, + "end": 9722.12, + "probability": 0.2598 + }, + { + "start": 9722.48, + "end": 9723.08, + "probability": 0.529 + }, + { + "start": 9723.24, + "end": 9725.96, + "probability": 0.9959 + }, + { + "start": 9725.96, + "end": 9728.52, + "probability": 0.9417 + }, + { + "start": 9728.76, + "end": 9732.06, + "probability": 0.9952 + }, + { + "start": 9732.48, + "end": 9735.68, + "probability": 0.9604 + }, + { + "start": 9735.74, + "end": 9738.7, + "probability": 0.9964 + }, + { + "start": 9738.9, + "end": 9739.4, + "probability": 0.9728 + }, + { + "start": 9739.6, + "end": 9742.16, + "probability": 0.937 + }, + { + "start": 9742.16, + "end": 9744.48, + "probability": 0.9409 + }, + { + "start": 9744.7, + "end": 9745.72, + "probability": 0.9946 + }, + { + "start": 9745.9, + "end": 9747.44, + "probability": 0.8936 + }, + { + "start": 9747.68, + "end": 9747.7, + "probability": 0.2382 + }, + { + "start": 9747.7, + "end": 9750.24, + "probability": 0.9932 + }, + { + "start": 9750.24, + "end": 9753.14, + "probability": 0.9763 + }, + { + "start": 9753.3, + "end": 9756.64, + "probability": 0.9403 + }, + { + "start": 9756.98, + "end": 9758.8, + "probability": 0.9778 + }, + { + "start": 9758.84, + "end": 9759.84, + "probability": 0.9821 + }, + { + "start": 9759.86, + "end": 9760.16, + "probability": 0.6711 + }, + { + "start": 9760.18, + "end": 9760.18, + "probability": 0.5984 + }, + { + "start": 9760.18, + "end": 9760.82, + "probability": 0.5028 + }, + { + "start": 9760.9, + "end": 9763.02, + "probability": 0.864 + }, + { + "start": 9763.78, + "end": 9764.38, + "probability": 0.602 + }, + { + "start": 9765.02, + "end": 9765.02, + "probability": 0.0658 + }, + { + "start": 9765.02, + "end": 9765.64, + "probability": 0.9508 + }, + { + "start": 9765.7, + "end": 9766.86, + "probability": 0.6866 + }, + { + "start": 9766.96, + "end": 9768.48, + "probability": 0.0451 + }, + { + "start": 9768.48, + "end": 9769.7, + "probability": 0.7322 + }, + { + "start": 9769.76, + "end": 9770.34, + "probability": 0.8121 + }, + { + "start": 9770.4, + "end": 9774.46, + "probability": 0.7998 + }, + { + "start": 9777.2, + "end": 9777.8, + "probability": 0.1184 + }, + { + "start": 9777.8, + "end": 9778.46, + "probability": 0.3355 + }, + { + "start": 9778.62, + "end": 9780.13, + "probability": 0.7493 + }, + { + "start": 9780.74, + "end": 9781.18, + "probability": 0.7941 + }, + { + "start": 9781.22, + "end": 9782.62, + "probability": 0.9649 + }, + { + "start": 9782.88, + "end": 9782.96, + "probability": 0.4005 + }, + { + "start": 9783.06, + "end": 9785.12, + "probability": 0.9531 + }, + { + "start": 9788.42, + "end": 9788.46, + "probability": 0.4206 + }, + { + "start": 9788.7, + "end": 9788.82, + "probability": 0.0581 + }, + { + "start": 9788.82, + "end": 9791.38, + "probability": 0.9719 + }, + { + "start": 9793.05, + "end": 9795.14, + "probability": 0.9941 + }, + { + "start": 9795.16, + "end": 9795.84, + "probability": 0.9631 + }, + { + "start": 9795.92, + "end": 9797.86, + "probability": 0.8391 + }, + { + "start": 9798.2, + "end": 9799.7, + "probability": 0.9697 + }, + { + "start": 9800.4, + "end": 9803.06, + "probability": 0.9622 + }, + { + "start": 9803.54, + "end": 9808.26, + "probability": 0.996 + }, + { + "start": 9808.26, + "end": 9812.84, + "probability": 0.9927 + }, + { + "start": 9812.92, + "end": 9816.36, + "probability": 0.9507 + }, + { + "start": 9816.46, + "end": 9817.82, + "probability": 0.9863 + }, + { + "start": 9817.9, + "end": 9819.54, + "probability": 0.9818 + }, + { + "start": 9819.6, + "end": 9821.0, + "probability": 0.918 + }, + { + "start": 9821.24, + "end": 9823.7, + "probability": 0.7826 + }, + { + "start": 9824.08, + "end": 9827.1, + "probability": 0.9764 + }, + { + "start": 9827.72, + "end": 9831.92, + "probability": 0.9844 + }, + { + "start": 9831.92, + "end": 9835.8, + "probability": 0.9939 + }, + { + "start": 9836.0, + "end": 9838.62, + "probability": 0.9305 + }, + { + "start": 9838.84, + "end": 9841.34, + "probability": 0.9847 + }, + { + "start": 9841.68, + "end": 9846.04, + "probability": 0.9835 + }, + { + "start": 9846.92, + "end": 9849.68, + "probability": 0.978 + }, + { + "start": 9849.74, + "end": 9850.68, + "probability": 0.8694 + }, + { + "start": 9851.26, + "end": 9853.26, + "probability": 0.9807 + }, + { + "start": 9853.44, + "end": 9856.1, + "probability": 0.9945 + }, + { + "start": 9857.04, + "end": 9858.66, + "probability": 0.8977 + }, + { + "start": 9858.72, + "end": 9859.56, + "probability": 0.9453 + }, + { + "start": 9860.06, + "end": 9861.98, + "probability": 0.9857 + }, + { + "start": 9862.08, + "end": 9866.24, + "probability": 0.986 + }, + { + "start": 9867.9, + "end": 9868.28, + "probability": 0.0025 + }, + { + "start": 9868.28, + "end": 9868.96, + "probability": 0.1537 + }, + { + "start": 9869.2, + "end": 9870.14, + "probability": 0.946 + }, + { + "start": 9870.2, + "end": 9872.06, + "probability": 0.9584 + }, + { + "start": 9872.26, + "end": 9872.8, + "probability": 0.8656 + }, + { + "start": 9872.96, + "end": 9875.2, + "probability": 0.9346 + }, + { + "start": 9875.8, + "end": 9878.94, + "probability": 0.8133 + }, + { + "start": 9879.68, + "end": 9881.02, + "probability": 0.4515 + }, + { + "start": 9881.1, + "end": 9882.04, + "probability": 0.875 + }, + { + "start": 9882.66, + "end": 9883.06, + "probability": 0.3953 + }, + { + "start": 9883.64, + "end": 9885.44, + "probability": 0.8123 + }, + { + "start": 9885.58, + "end": 9887.92, + "probability": 0.9552 + }, + { + "start": 9888.28, + "end": 9890.32, + "probability": 0.8179 + }, + { + "start": 9891.3, + "end": 9894.9, + "probability": 0.9223 + }, + { + "start": 9895.08, + "end": 9896.18, + "probability": 0.724 + }, + { + "start": 9897.76, + "end": 9899.68, + "probability": 0.9845 + }, + { + "start": 9901.5, + "end": 9904.38, + "probability": 0.9029 + }, + { + "start": 9907.24, + "end": 9909.82, + "probability": 0.337 + }, + { + "start": 9909.9, + "end": 9910.66, + "probability": 0.4226 + }, + { + "start": 9910.74, + "end": 9914.3, + "probability": 0.9514 + }, + { + "start": 9914.48, + "end": 9915.34, + "probability": 0.9883 + }, + { + "start": 9915.34, + "end": 9915.94, + "probability": 0.4235 + }, + { + "start": 9915.96, + "end": 9916.92, + "probability": 0.4314 + }, + { + "start": 9917.9, + "end": 9918.56, + "probability": 0.4665 + }, + { + "start": 9918.68, + "end": 9919.34, + "probability": 0.608 + }, + { + "start": 9919.38, + "end": 9920.08, + "probability": 0.9233 + }, + { + "start": 9922.58, + "end": 9923.76, + "probability": 0.6953 + }, + { + "start": 9924.18, + "end": 9924.2, + "probability": 0.2746 + }, + { + "start": 9924.2, + "end": 9926.18, + "probability": 0.5535 + }, + { + "start": 9927.52, + "end": 9932.1, + "probability": 0.9954 + }, + { + "start": 9935.26, + "end": 9938.92, + "probability": 0.9942 + }, + { + "start": 9940.2, + "end": 9941.28, + "probability": 0.6526 + }, + { + "start": 9942.64, + "end": 9949.16, + "probability": 0.9858 + }, + { + "start": 9952.02, + "end": 9955.74, + "probability": 0.9569 + }, + { + "start": 9957.04, + "end": 9961.66, + "probability": 0.924 + }, + { + "start": 9963.64, + "end": 9968.72, + "probability": 0.8934 + }, + { + "start": 9968.72, + "end": 9975.68, + "probability": 0.8272 + }, + { + "start": 9977.52, + "end": 9983.86, + "probability": 0.9991 + }, + { + "start": 9986.04, + "end": 9991.52, + "probability": 0.9922 + }, + { + "start": 9992.94, + "end": 9994.76, + "probability": 0.9846 + }, + { + "start": 9996.17, + "end": 10002.26, + "probability": 0.931 + }, + { + "start": 10002.82, + "end": 10009.3, + "probability": 0.9906 + }, + { + "start": 10009.82, + "end": 10011.51, + "probability": 0.9941 + }, + { + "start": 10015.46, + "end": 10018.4, + "probability": 0.9893 + }, + { + "start": 10018.4, + "end": 10022.02, + "probability": 0.9965 + }, + { + "start": 10023.04, + "end": 10024.9, + "probability": 0.6706 + }, + { + "start": 10025.72, + "end": 10028.66, + "probability": 0.9774 + }, + { + "start": 10031.04, + "end": 10035.1, + "probability": 0.8228 + }, + { + "start": 10035.26, + "end": 10039.4, + "probability": 0.924 + }, + { + "start": 10039.64, + "end": 10039.96, + "probability": 0.229 + }, + { + "start": 10040.94, + "end": 10046.22, + "probability": 0.966 + }, + { + "start": 10047.7, + "end": 10048.12, + "probability": 0.8334 + }, + { + "start": 10049.58, + "end": 10052.38, + "probability": 0.9905 + }, + { + "start": 10052.52, + "end": 10055.38, + "probability": 0.9365 + }, + { + "start": 10056.5, + "end": 10058.74, + "probability": 0.6931 + }, + { + "start": 10059.28, + "end": 10065.0, + "probability": 0.9931 + }, + { + "start": 10066.94, + "end": 10067.56, + "probability": 0.8165 + }, + { + "start": 10068.7, + "end": 10075.8, + "probability": 0.8302 + }, + { + "start": 10077.28, + "end": 10085.36, + "probability": 0.9978 + }, + { + "start": 10085.96, + "end": 10089.04, + "probability": 0.971 + }, + { + "start": 10090.58, + "end": 10091.4, + "probability": 0.4588 + }, + { + "start": 10093.32, + "end": 10094.42, + "probability": 0.9786 + }, + { + "start": 10096.48, + "end": 10100.2, + "probability": 0.9051 + }, + { + "start": 10101.02, + "end": 10105.4, + "probability": 0.9559 + }, + { + "start": 10106.98, + "end": 10112.08, + "probability": 0.9869 + }, + { + "start": 10112.72, + "end": 10113.3, + "probability": 0.7229 + }, + { + "start": 10114.2, + "end": 10118.44, + "probability": 0.9188 + }, + { + "start": 10120.14, + "end": 10128.08, + "probability": 0.9847 + }, + { + "start": 10128.94, + "end": 10129.72, + "probability": 0.9032 + }, + { + "start": 10130.48, + "end": 10135.6, + "probability": 0.985 + }, + { + "start": 10136.24, + "end": 10137.44, + "probability": 0.7759 + }, + { + "start": 10138.34, + "end": 10139.9, + "probability": 0.7195 + }, + { + "start": 10140.34, + "end": 10142.64, + "probability": 0.6062 + }, + { + "start": 10143.02, + "end": 10144.82, + "probability": 0.6769 + }, + { + "start": 10146.9, + "end": 10148.16, + "probability": 0.9917 + }, + { + "start": 10149.26, + "end": 10159.24, + "probability": 0.946 + }, + { + "start": 10159.24, + "end": 10167.54, + "probability": 0.9881 + }, + { + "start": 10171.84, + "end": 10174.32, + "probability": 0.9967 + }, + { + "start": 10174.86, + "end": 10181.34, + "probability": 0.9753 + }, + { + "start": 10182.7, + "end": 10184.42, + "probability": 0.8244 + }, + { + "start": 10186.02, + "end": 10189.62, + "probability": 0.9884 + }, + { + "start": 10189.68, + "end": 10191.08, + "probability": 0.9783 + }, + { + "start": 10193.98, + "end": 10196.99, + "probability": 0.9307 + }, + { + "start": 10197.84, + "end": 10199.06, + "probability": 0.9492 + }, + { + "start": 10203.92, + "end": 10208.74, + "probability": 0.9929 + }, + { + "start": 10211.16, + "end": 10211.74, + "probability": 0.5287 + }, + { + "start": 10213.42, + "end": 10217.22, + "probability": 0.9215 + }, + { + "start": 10220.12, + "end": 10224.38, + "probability": 0.9426 + }, + { + "start": 10228.54, + "end": 10229.46, + "probability": 0.7551 + }, + { + "start": 10230.86, + "end": 10233.08, + "probability": 0.9419 + }, + { + "start": 10233.72, + "end": 10236.04, + "probability": 0.8406 + }, + { + "start": 10236.86, + "end": 10238.64, + "probability": 0.9453 + }, + { + "start": 10239.36, + "end": 10240.6, + "probability": 0.7729 + }, + { + "start": 10243.46, + "end": 10252.7, + "probability": 0.9875 + }, + { + "start": 10254.04, + "end": 10254.5, + "probability": 0.4855 + }, + { + "start": 10255.52, + "end": 10259.86, + "probability": 0.9961 + }, + { + "start": 10260.68, + "end": 10261.48, + "probability": 0.9033 + }, + { + "start": 10262.2, + "end": 10263.12, + "probability": 0.5282 + }, + { + "start": 10263.98, + "end": 10264.61, + "probability": 0.8337 + }, + { + "start": 10266.16, + "end": 10270.42, + "probability": 0.9546 + }, + { + "start": 10276.6, + "end": 10278.66, + "probability": 0.9918 + }, + { + "start": 10281.54, + "end": 10283.84, + "probability": 0.9122 + }, + { + "start": 10286.42, + "end": 10290.16, + "probability": 0.9894 + }, + { + "start": 10291.02, + "end": 10291.72, + "probability": 0.8372 + }, + { + "start": 10292.86, + "end": 10295.28, + "probability": 0.9664 + }, + { + "start": 10297.14, + "end": 10305.0, + "probability": 0.9757 + }, + { + "start": 10306.58, + "end": 10309.55, + "probability": 0.9948 + }, + { + "start": 10310.92, + "end": 10317.34, + "probability": 0.9984 + }, + { + "start": 10318.38, + "end": 10320.98, + "probability": 0.9814 + }, + { + "start": 10322.74, + "end": 10324.53, + "probability": 0.8647 + }, + { + "start": 10325.46, + "end": 10327.1, + "probability": 0.9348 + }, + { + "start": 10328.98, + "end": 10335.18, + "probability": 0.7626 + }, + { + "start": 10338.96, + "end": 10340.06, + "probability": 0.5895 + }, + { + "start": 10341.18, + "end": 10346.0, + "probability": 0.9696 + }, + { + "start": 10346.86, + "end": 10347.32, + "probability": 0.8037 + }, + { + "start": 10348.22, + "end": 10351.78, + "probability": 0.836 + }, + { + "start": 10352.54, + "end": 10353.36, + "probability": 0.576 + }, + { + "start": 10354.49, + "end": 10356.76, + "probability": 0.2676 + }, + { + "start": 10358.72, + "end": 10359.8, + "probability": 0.9261 + }, + { + "start": 10362.16, + "end": 10365.58, + "probability": 0.9634 + }, + { + "start": 10366.58, + "end": 10368.27, + "probability": 0.8867 + }, + { + "start": 10369.6, + "end": 10370.68, + "probability": 0.8019 + }, + { + "start": 10371.86, + "end": 10374.96, + "probability": 0.9838 + }, + { + "start": 10375.1, + "end": 10379.24, + "probability": 0.9952 + }, + { + "start": 10380.22, + "end": 10383.9, + "probability": 0.8086 + }, + { + "start": 10384.6, + "end": 10389.86, + "probability": 0.4596 + }, + { + "start": 10390.68, + "end": 10393.1, + "probability": 0.3488 + }, + { + "start": 10393.26, + "end": 10393.82, + "probability": 0.1696 + }, + { + "start": 10393.96, + "end": 10399.84, + "probability": 0.952 + }, + { + "start": 10399.84, + "end": 10403.2, + "probability": 0.9536 + }, + { + "start": 10403.27, + "end": 10403.92, + "probability": 0.3615 + }, + { + "start": 10404.06, + "end": 10407.8, + "probability": 0.7054 + }, + { + "start": 10408.2, + "end": 10410.25, + "probability": 0.8247 + }, + { + "start": 10410.46, + "end": 10411.5, + "probability": 0.9902 + }, + { + "start": 10411.78, + "end": 10412.6, + "probability": 0.3101 + }, + { + "start": 10412.66, + "end": 10414.36, + "probability": 0.729 + }, + { + "start": 10414.48, + "end": 10415.18, + "probability": 0.1672 + }, + { + "start": 10415.34, + "end": 10425.19, + "probability": 0.7986 + }, + { + "start": 10429.74, + "end": 10431.48, + "probability": 0.6777 + }, + { + "start": 10433.56, + "end": 10441.08, + "probability": 0.9822 + }, + { + "start": 10441.44, + "end": 10441.74, + "probability": 0.7737 + }, + { + "start": 10443.44, + "end": 10446.18, + "probability": 0.9274 + }, + { + "start": 10446.86, + "end": 10448.96, + "probability": 0.8416 + }, + { + "start": 10449.66, + "end": 10451.62, + "probability": 0.7866 + }, + { + "start": 10452.04, + "end": 10452.72, + "probability": 0.8061 + }, + { + "start": 10452.8, + "end": 10454.54, + "probability": 0.7472 + }, + { + "start": 10456.16, + "end": 10456.94, + "probability": 0.7344 + }, + { + "start": 10460.22, + "end": 10460.78, + "probability": 0.7026 + }, + { + "start": 10463.18, + "end": 10464.16, + "probability": 0.8801 + }, + { + "start": 10465.42, + "end": 10469.02, + "probability": 0.7932 + }, + { + "start": 10470.18, + "end": 10473.16, + "probability": 0.8828 + }, + { + "start": 10474.58, + "end": 10475.74, + "probability": 0.8568 + }, + { + "start": 10478.74, + "end": 10481.72, + "probability": 0.5719 + }, + { + "start": 10482.16, + "end": 10484.44, + "probability": 0.64 + }, + { + "start": 10488.8, + "end": 10490.08, + "probability": 0.8357 + }, + { + "start": 10493.18, + "end": 10494.72, + "probability": 0.8443 + }, + { + "start": 10496.24, + "end": 10497.24, + "probability": 0.9474 + }, + { + "start": 10500.12, + "end": 10503.0, + "probability": 0.984 + }, + { + "start": 10504.42, + "end": 10506.82, + "probability": 0.8567 + }, + { + "start": 10507.66, + "end": 10508.15, + "probability": 0.917 + }, + { + "start": 10508.84, + "end": 10514.94, + "probability": 0.998 + }, + { + "start": 10516.24, + "end": 10520.1, + "probability": 0.9805 + }, + { + "start": 10520.1, + "end": 10525.22, + "probability": 0.9973 + }, + { + "start": 10526.5, + "end": 10528.22, + "probability": 0.7346 + }, + { + "start": 10529.04, + "end": 10536.28, + "probability": 0.7192 + }, + { + "start": 10537.16, + "end": 10543.98, + "probability": 0.8953 + }, + { + "start": 10545.92, + "end": 10548.88, + "probability": 0.7368 + }, + { + "start": 10551.64, + "end": 10553.5, + "probability": 0.4502 + }, + { + "start": 10556.12, + "end": 10556.55, + "probability": 0.6452 + }, + { + "start": 10557.46, + "end": 10557.95, + "probability": 0.6525 + }, + { + "start": 10558.4, + "end": 10561.74, + "probability": 0.9507 + }, + { + "start": 10561.8, + "end": 10563.04, + "probability": 0.9242 + }, + { + "start": 10563.36, + "end": 10566.2, + "probability": 0.9805 + }, + { + "start": 10566.48, + "end": 10568.1, + "probability": 0.8511 + }, + { + "start": 10568.24, + "end": 10569.08, + "probability": 0.6382 + }, + { + "start": 10569.12, + "end": 10570.68, + "probability": 0.903 + }, + { + "start": 10572.48, + "end": 10573.92, + "probability": 0.8315 + }, + { + "start": 10574.58, + "end": 10576.6, + "probability": 0.6847 + }, + { + "start": 10576.76, + "end": 10578.02, + "probability": 0.6117 + }, + { + "start": 10580.48, + "end": 10581.36, + "probability": 0.5472 + }, + { + "start": 10581.44, + "end": 10587.66, + "probability": 0.9556 + }, + { + "start": 10588.08, + "end": 10588.62, + "probability": 0.8411 + }, + { + "start": 10588.94, + "end": 10590.0, + "probability": 0.818 + }, + { + "start": 10590.06, + "end": 10591.28, + "probability": 0.8866 + }, + { + "start": 10591.6, + "end": 10594.72, + "probability": 0.9722 + }, + { + "start": 10595.5, + "end": 10598.54, + "probability": 0.9521 + }, + { + "start": 10599.7, + "end": 10602.82, + "probability": 0.9716 + }, + { + "start": 10604.04, + "end": 10607.76, + "probability": 0.9765 + }, + { + "start": 10608.36, + "end": 10614.6, + "probability": 0.8906 + }, + { + "start": 10614.72, + "end": 10615.7, + "probability": 0.7503 + }, + { + "start": 10615.84, + "end": 10616.7, + "probability": 0.6981 + }, + { + "start": 10616.78, + "end": 10618.34, + "probability": 0.8944 + }, + { + "start": 10619.48, + "end": 10622.22, + "probability": 0.9331 + }, + { + "start": 10622.66, + "end": 10624.2, + "probability": 0.9344 + }, + { + "start": 10624.28, + "end": 10625.32, + "probability": 0.6881 + }, + { + "start": 10626.84, + "end": 10630.5, + "probability": 0.9697 + }, + { + "start": 10635.8, + "end": 10638.68, + "probability": 0.9879 + }, + { + "start": 10640.44, + "end": 10643.22, + "probability": 0.8521 + }, + { + "start": 10644.16, + "end": 10645.46, + "probability": 0.9797 + }, + { + "start": 10646.22, + "end": 10647.74, + "probability": 0.9932 + }, + { + "start": 10650.26, + "end": 10654.32, + "probability": 0.992 + }, + { + "start": 10654.9, + "end": 10656.5, + "probability": 0.9037 + }, + { + "start": 10659.96, + "end": 10662.12, + "probability": 0.8529 + }, + { + "start": 10663.6, + "end": 10665.52, + "probability": 0.9199 + }, + { + "start": 10666.92, + "end": 10667.7, + "probability": 0.8195 + }, + { + "start": 10670.66, + "end": 10673.24, + "probability": 0.9531 + }, + { + "start": 10674.78, + "end": 10677.38, + "probability": 0.9985 + }, + { + "start": 10678.44, + "end": 10681.11, + "probability": 0.9971 + }, + { + "start": 10682.54, + "end": 10683.85, + "probability": 0.8189 + }, + { + "start": 10685.34, + "end": 10686.64, + "probability": 0.9116 + }, + { + "start": 10687.86, + "end": 10688.64, + "probability": 0.6281 + }, + { + "start": 10690.22, + "end": 10693.54, + "probability": 0.822 + }, + { + "start": 10694.6, + "end": 10696.06, + "probability": 0.7754 + }, + { + "start": 10696.78, + "end": 10699.08, + "probability": 0.9709 + }, + { + "start": 10700.96, + "end": 10701.26, + "probability": 0.9195 + }, + { + "start": 10701.3, + "end": 10702.68, + "probability": 0.9884 + }, + { + "start": 10704.36, + "end": 10705.96, + "probability": 0.725 + }, + { + "start": 10708.78, + "end": 10711.35, + "probability": 0.8838 + }, + { + "start": 10713.64, + "end": 10715.92, + "probability": 0.7513 + }, + { + "start": 10717.78, + "end": 10720.98, + "probability": 0.9611 + }, + { + "start": 10722.66, + "end": 10728.66, + "probability": 0.7944 + }, + { + "start": 10728.86, + "end": 10734.0, + "probability": 0.9737 + }, + { + "start": 10734.76, + "end": 10735.52, + "probability": 0.9529 + }, + { + "start": 10738.18, + "end": 10739.46, + "probability": 0.8623 + }, + { + "start": 10741.78, + "end": 10748.2, + "probability": 0.9915 + }, + { + "start": 10748.82, + "end": 10750.74, + "probability": 0.8847 + }, + { + "start": 10751.22, + "end": 10753.82, + "probability": 0.9576 + }, + { + "start": 10754.22, + "end": 10755.96, + "probability": 0.959 + }, + { + "start": 10756.6, + "end": 10764.28, + "probability": 0.9894 + }, + { + "start": 10764.28, + "end": 10772.94, + "probability": 0.9927 + }, + { + "start": 10773.0, + "end": 10777.5, + "probability": 0.9255 + }, + { + "start": 10780.07, + "end": 10782.44, + "probability": 0.7744 + }, + { + "start": 10784.2, + "end": 10785.22, + "probability": 0.6426 + }, + { + "start": 10786.42, + "end": 10787.38, + "probability": 0.807 + }, + { + "start": 10788.7, + "end": 10789.24, + "probability": 0.4917 + }, + { + "start": 10791.2, + "end": 10794.64, + "probability": 0.9607 + }, + { + "start": 10794.68, + "end": 10795.48, + "probability": 0.8205 + }, + { + "start": 10795.89, + "end": 10797.66, + "probability": 0.9032 + }, + { + "start": 10797.84, + "end": 10798.84, + "probability": 0.9534 + }, + { + "start": 10799.2, + "end": 10799.88, + "probability": 0.6621 + }, + { + "start": 10800.08, + "end": 10801.32, + "probability": 0.9974 + }, + { + "start": 10802.2, + "end": 10805.0, + "probability": 0.7737 + }, + { + "start": 10805.26, + "end": 10806.34, + "probability": 0.8935 + }, + { + "start": 10807.86, + "end": 10812.88, + "probability": 0.9644 + }, + { + "start": 10813.22, + "end": 10815.26, + "probability": 0.9847 + }, + { + "start": 10818.46, + "end": 10821.58, + "probability": 0.8307 + }, + { + "start": 10823.54, + "end": 10825.18, + "probability": 0.9973 + }, + { + "start": 10826.46, + "end": 10830.94, + "probability": 0.8029 + }, + { + "start": 10831.6, + "end": 10832.94, + "probability": 0.994 + }, + { + "start": 10834.16, + "end": 10837.18, + "probability": 0.6589 + }, + { + "start": 10838.96, + "end": 10841.52, + "probability": 0.8333 + }, + { + "start": 10842.62, + "end": 10843.82, + "probability": 0.5268 + }, + { + "start": 10844.12, + "end": 10844.94, + "probability": 0.8313 + }, + { + "start": 10845.04, + "end": 10845.84, + "probability": 0.7979 + }, + { + "start": 10846.24, + "end": 10847.88, + "probability": 0.9336 + }, + { + "start": 10848.14, + "end": 10849.56, + "probability": 0.8219 + }, + { + "start": 10849.64, + "end": 10850.8, + "probability": 0.8423 + }, + { + "start": 10851.24, + "end": 10852.1, + "probability": 0.9587 + }, + { + "start": 10853.84, + "end": 10855.16, + "probability": 0.8726 + }, + { + "start": 10855.72, + "end": 10857.0, + "probability": 0.9429 + }, + { + "start": 10857.78, + "end": 10859.74, + "probability": 0.9995 + }, + { + "start": 10861.02, + "end": 10862.08, + "probability": 0.99 + }, + { + "start": 10862.58, + "end": 10863.64, + "probability": 0.9448 + }, + { + "start": 10863.74, + "end": 10865.14, + "probability": 0.9888 + }, + { + "start": 10865.56, + "end": 10874.66, + "probability": 0.9587 + }, + { + "start": 10876.04, + "end": 10878.34, + "probability": 0.9944 + }, + { + "start": 10878.52, + "end": 10881.9, + "probability": 0.7709 + }, + { + "start": 10882.24, + "end": 10882.72, + "probability": 0.5882 + }, + { + "start": 10886.02, + "end": 10886.74, + "probability": 0.8857 + }, + { + "start": 10889.0, + "end": 10890.58, + "probability": 0.9846 + }, + { + "start": 10890.7, + "end": 10894.72, + "probability": 0.9373 + }, + { + "start": 10896.64, + "end": 10898.44, + "probability": 0.9512 + }, + { + "start": 10898.6, + "end": 10899.33, + "probability": 0.6393 + }, + { + "start": 10900.98, + "end": 10901.86, + "probability": 0.9951 + }, + { + "start": 10903.92, + "end": 10904.56, + "probability": 0.3858 + }, + { + "start": 10905.22, + "end": 10908.24, + "probability": 0.9198 + }, + { + "start": 10908.78, + "end": 10910.86, + "probability": 0.8964 + }, + { + "start": 10911.82, + "end": 10912.78, + "probability": 0.7124 + }, + { + "start": 10912.9, + "end": 10916.0, + "probability": 0.9697 + }, + { + "start": 10916.76, + "end": 10920.06, + "probability": 0.8899 + }, + { + "start": 10920.68, + "end": 10924.1, + "probability": 0.7125 + }, + { + "start": 10924.84, + "end": 10932.94, + "probability": 0.9507 + }, + { + "start": 10933.56, + "end": 10935.64, + "probability": 0.917 + }, + { + "start": 10936.38, + "end": 10939.54, + "probability": 0.788 + }, + { + "start": 10944.66, + "end": 10944.88, + "probability": 0.0096 + }, + { + "start": 10944.88, + "end": 10948.1, + "probability": 0.7535 + }, + { + "start": 10949.52, + "end": 10952.16, + "probability": 0.7719 + }, + { + "start": 10952.84, + "end": 10954.9, + "probability": 0.7658 + }, + { + "start": 10956.94, + "end": 10960.06, + "probability": 0.9392 + }, + { + "start": 10960.8, + "end": 10964.02, + "probability": 0.781 + }, + { + "start": 10964.66, + "end": 10965.4, + "probability": 0.5518 + }, + { + "start": 10965.4, + "end": 10967.0, + "probability": 0.3191 + }, + { + "start": 10967.0, + "end": 10972.08, + "probability": 0.857 + }, + { + "start": 10972.42, + "end": 10976.54, + "probability": 0.8124 + }, + { + "start": 10976.68, + "end": 10979.4, + "probability": 0.9906 + }, + { + "start": 10979.88, + "end": 10984.28, + "probability": 0.7617 + }, + { + "start": 10985.32, + "end": 10987.52, + "probability": 0.9145 + }, + { + "start": 10989.98, + "end": 10990.96, + "probability": 0.3526 + }, + { + "start": 10992.16, + "end": 10994.9, + "probability": 0.6806 + }, + { + "start": 10995.64, + "end": 10997.14, + "probability": 0.9363 + }, + { + "start": 10998.28, + "end": 11007.36, + "probability": 0.9924 + }, + { + "start": 11008.06, + "end": 11010.8, + "probability": 0.6086 + }, + { + "start": 11011.62, + "end": 11013.42, + "probability": 0.9624 + }, + { + "start": 11014.16, + "end": 11017.88, + "probability": 0.9954 + }, + { + "start": 11018.96, + "end": 11023.77, + "probability": 0.9116 + }, + { + "start": 11024.5, + "end": 11026.14, + "probability": 0.9489 + }, + { + "start": 11026.22, + "end": 11029.68, + "probability": 0.9893 + }, + { + "start": 11030.08, + "end": 11032.06, + "probability": 0.9228 + }, + { + "start": 11032.78, + "end": 11035.72, + "probability": 0.9958 + }, + { + "start": 11036.46, + "end": 11038.56, + "probability": 0.5201 + }, + { + "start": 11041.26, + "end": 11044.34, + "probability": 0.9976 + }, + { + "start": 11044.34, + "end": 11048.92, + "probability": 0.961 + }, + { + "start": 11049.08, + "end": 11049.46, + "probability": 0.4145 + }, + { + "start": 11049.7, + "end": 11053.42, + "probability": 0.7469 + }, + { + "start": 11053.52, + "end": 11057.76, + "probability": 0.9979 + }, + { + "start": 11058.2, + "end": 11061.78, + "probability": 0.9186 + }, + { + "start": 11062.1, + "end": 11062.22, + "probability": 0.4953 + }, + { + "start": 11062.22, + "end": 11064.58, + "probability": 0.9448 + }, + { + "start": 11065.14, + "end": 11068.1, + "probability": 0.9962 + }, + { + "start": 11068.1, + "end": 11068.44, + "probability": 0.5215 + }, + { + "start": 11068.5, + "end": 11073.52, + "probability": 0.9869 + }, + { + "start": 11073.84, + "end": 11076.6, + "probability": 0.9985 + }, + { + "start": 11076.66, + "end": 11076.9, + "probability": 0.6294 + }, + { + "start": 11076.92, + "end": 11079.6, + "probability": 0.9764 + }, + { + "start": 11079.68, + "end": 11083.76, + "probability": 0.9202 + }, + { + "start": 11083.86, + "end": 11084.18, + "probability": 0.7606 + }, + { + "start": 11084.26, + "end": 11087.02, + "probability": 0.8941 + }, + { + "start": 11087.1, + "end": 11088.82, + "probability": 0.9481 + }, + { + "start": 11089.36, + "end": 11091.25, + "probability": 0.6844 + }, + { + "start": 11091.86, + "end": 11095.78, + "probability": 0.7518 + }, + { + "start": 11096.46, + "end": 11097.74, + "probability": 0.7482 + }, + { + "start": 11098.34, + "end": 11099.16, + "probability": 0.4464 + }, + { + "start": 11099.28, + "end": 11101.08, + "probability": 0.9461 + }, + { + "start": 11101.08, + "end": 11101.18, + "probability": 0.1647 + }, + { + "start": 11101.34, + "end": 11102.22, + "probability": 0.4686 + }, + { + "start": 11102.64, + "end": 11103.04, + "probability": 0.3943 + }, + { + "start": 11104.44, + "end": 11105.87, + "probability": 0.4998 + }, + { + "start": 11106.3, + "end": 11108.92, + "probability": 0.9099 + }, + { + "start": 11109.58, + "end": 11110.42, + "probability": 0.6026 + }, + { + "start": 11111.4, + "end": 11111.84, + "probability": 0.4665 + }, + { + "start": 11112.5, + "end": 11113.18, + "probability": 0.6964 + }, + { + "start": 11113.42, + "end": 11113.86, + "probability": 0.5747 + }, + { + "start": 11115.18, + "end": 11115.94, + "probability": 0.8657 + }, + { + "start": 11116.9, + "end": 11121.08, + "probability": 0.9896 + }, + { + "start": 11121.82, + "end": 11123.48, + "probability": 0.9729 + }, + { + "start": 11124.42, + "end": 11127.76, + "probability": 0.9474 + }, + { + "start": 11129.76, + "end": 11130.46, + "probability": 0.5953 + }, + { + "start": 11131.52, + "end": 11133.48, + "probability": 0.9717 + }, + { + "start": 11134.3, + "end": 11135.92, + "probability": 0.975 + }, + { + "start": 11136.14, + "end": 11136.8, + "probability": 0.5178 + }, + { + "start": 11137.36, + "end": 11139.6, + "probability": 0.9499 + }, + { + "start": 11140.42, + "end": 11142.62, + "probability": 0.9754 + }, + { + "start": 11143.42, + "end": 11144.04, + "probability": 0.3958 + }, + { + "start": 11144.52, + "end": 11147.32, + "probability": 0.8309 + }, + { + "start": 11149.93, + "end": 11153.3, + "probability": 0.8509 + }, + { + "start": 11153.4, + "end": 11158.92, + "probability": 0.9211 + }, + { + "start": 11159.0, + "end": 11159.0, + "probability": 0.0843 + }, + { + "start": 11159.0, + "end": 11159.24, + "probability": 0.1555 + }, + { + "start": 11159.24, + "end": 11159.34, + "probability": 0.2802 + }, + { + "start": 11159.5, + "end": 11160.52, + "probability": 0.8435 + }, + { + "start": 11160.72, + "end": 11162.32, + "probability": 0.3657 + }, + { + "start": 11162.32, + "end": 11162.42, + "probability": 0.0734 + }, + { + "start": 11162.66, + "end": 11163.02, + "probability": 0.8367 + }, + { + "start": 11163.12, + "end": 11163.36, + "probability": 0.8237 + }, + { + "start": 11163.4, + "end": 11165.98, + "probability": 0.9791 + }, + { + "start": 11166.2, + "end": 11168.04, + "probability": 0.8326 + }, + { + "start": 11168.04, + "end": 11168.5, + "probability": 0.3034 + }, + { + "start": 11168.66, + "end": 11171.82, + "probability": 0.9956 + }, + { + "start": 11172.1, + "end": 11172.18, + "probability": 0.7319 + }, + { + "start": 11172.44, + "end": 11175.34, + "probability": 0.9502 + }, + { + "start": 11175.42, + "end": 11175.76, + "probability": 0.2911 + }, + { + "start": 11175.78, + "end": 11177.86, + "probability": 0.9897 + }, + { + "start": 11178.32, + "end": 11178.42, + "probability": 0.2866 + }, + { + "start": 11178.42, + "end": 11180.48, + "probability": 0.8651 + }, + { + "start": 11180.48, + "end": 11181.6, + "probability": 0.6221 + }, + { + "start": 11181.78, + "end": 11182.9, + "probability": 0.5335 + }, + { + "start": 11183.8, + "end": 11184.28, + "probability": 0.0671 + }, + { + "start": 11184.28, + "end": 11185.64, + "probability": 0.9935 + }, + { + "start": 11185.84, + "end": 11187.1, + "probability": 0.9072 + }, + { + "start": 11187.24, + "end": 11187.36, + "probability": 0.1475 + }, + { + "start": 11187.36, + "end": 11189.24, + "probability": 0.35 + }, + { + "start": 11189.28, + "end": 11190.46, + "probability": 0.3718 + }, + { + "start": 11190.48, + "end": 11190.8, + "probability": 0.2022 + }, + { + "start": 11191.06, + "end": 11193.59, + "probability": 0.5782 + }, + { + "start": 11194.6, + "end": 11194.62, + "probability": 0.109 + }, + { + "start": 11194.62, + "end": 11196.96, + "probability": 0.9056 + }, + { + "start": 11197.14, + "end": 11198.14, + "probability": 0.2265 + }, + { + "start": 11198.24, + "end": 11199.32, + "probability": 0.0329 + }, + { + "start": 11199.5, + "end": 11199.68, + "probability": 0.0062 + }, + { + "start": 11199.68, + "end": 11199.68, + "probability": 0.0409 + }, + { + "start": 11199.68, + "end": 11199.68, + "probability": 0.3381 + }, + { + "start": 11199.68, + "end": 11200.22, + "probability": 0.1612 + }, + { + "start": 11200.22, + "end": 11201.12, + "probability": 0.4567 + }, + { + "start": 11201.16, + "end": 11201.32, + "probability": 0.4552 + }, + { + "start": 11201.32, + "end": 11202.22, + "probability": 0.8253 + }, + { + "start": 11202.26, + "end": 11203.08, + "probability": 0.413 + }, + { + "start": 11203.08, + "end": 11204.06, + "probability": 0.8835 + }, + { + "start": 11204.16, + "end": 11204.78, + "probability": 0.8721 + }, + { + "start": 11205.02, + "end": 11205.92, + "probability": 0.7962 + }, + { + "start": 11206.72, + "end": 11207.56, + "probability": 0.902 + }, + { + "start": 11208.0, + "end": 11210.16, + "probability": 0.9775 + }, + { + "start": 11210.58, + "end": 11211.68, + "probability": 0.9902 + }, + { + "start": 11212.36, + "end": 11214.24, + "probability": 0.8995 + }, + { + "start": 11215.08, + "end": 11218.24, + "probability": 0.9307 + }, + { + "start": 11219.98, + "end": 11223.14, + "probability": 0.9792 + }, + { + "start": 11223.24, + "end": 11223.84, + "probability": 0.8421 + }, + { + "start": 11225.84, + "end": 11227.86, + "probability": 0.9263 + }, + { + "start": 11229.38, + "end": 11229.9, + "probability": 0.8843 + }, + { + "start": 11231.22, + "end": 11233.9, + "probability": 0.9646 + }, + { + "start": 11234.38, + "end": 11236.12, + "probability": 0.9989 + }, + { + "start": 11237.02, + "end": 11240.48, + "probability": 0.8682 + }, + { + "start": 11241.56, + "end": 11243.3, + "probability": 0.9833 + }, + { + "start": 11243.48, + "end": 11244.62, + "probability": 0.4568 + }, + { + "start": 11245.32, + "end": 11246.28, + "probability": 0.9807 + }, + { + "start": 11247.5, + "end": 11248.68, + "probability": 0.961 + }, + { + "start": 11250.02, + "end": 11252.02, + "probability": 0.9967 + }, + { + "start": 11253.32, + "end": 11254.0, + "probability": 0.9082 + }, + { + "start": 11254.64, + "end": 11255.76, + "probability": 0.6257 + }, + { + "start": 11257.2, + "end": 11258.8, + "probability": 0.9601 + }, + { + "start": 11259.74, + "end": 11260.86, + "probability": 0.979 + }, + { + "start": 11261.14, + "end": 11262.56, + "probability": 0.9956 + }, + { + "start": 11262.84, + "end": 11264.56, + "probability": 0.8721 + }, + { + "start": 11264.64, + "end": 11265.36, + "probability": 0.5098 + }, + { + "start": 11265.66, + "end": 11266.54, + "probability": 0.9474 + }, + { + "start": 11266.56, + "end": 11267.28, + "probability": 0.4462 + }, + { + "start": 11267.74, + "end": 11270.04, + "probability": 0.817 + }, + { + "start": 11270.08, + "end": 11271.06, + "probability": 0.991 + }, + { + "start": 11272.52, + "end": 11273.18, + "probability": 0.9067 + }, + { + "start": 11274.36, + "end": 11275.6, + "probability": 0.8368 + }, + { + "start": 11275.78, + "end": 11276.24, + "probability": 0.4707 + }, + { + "start": 11276.24, + "end": 11276.96, + "probability": 0.7446 + }, + { + "start": 11276.98, + "end": 11277.96, + "probability": 0.6882 + }, + { + "start": 11278.26, + "end": 11284.74, + "probability": 0.6784 + }, + { + "start": 11285.88, + "end": 11287.74, + "probability": 0.6333 + }, + { + "start": 11288.26, + "end": 11289.72, + "probability": 0.9487 + }, + { + "start": 11291.5, + "end": 11294.08, + "probability": 0.978 + }, + { + "start": 11294.56, + "end": 11296.66, + "probability": 0.8783 + }, + { + "start": 11297.92, + "end": 11298.78, + "probability": 0.6811 + }, + { + "start": 11299.26, + "end": 11303.52, + "probability": 0.9812 + }, + { + "start": 11303.92, + "end": 11304.74, + "probability": 0.9302 + }, + { + "start": 11305.26, + "end": 11307.84, + "probability": 0.9788 + }, + { + "start": 11308.32, + "end": 11309.14, + "probability": 0.7161 + }, + { + "start": 11310.82, + "end": 11312.82, + "probability": 0.9663 + }, + { + "start": 11314.78, + "end": 11316.36, + "probability": 0.9795 + }, + { + "start": 11317.6, + "end": 11319.04, + "probability": 0.9258 + }, + { + "start": 11320.4, + "end": 11322.75, + "probability": 0.8857 + }, + { + "start": 11324.0, + "end": 11327.58, + "probability": 0.8248 + }, + { + "start": 11329.14, + "end": 11330.32, + "probability": 0.5664 + }, + { + "start": 11332.04, + "end": 11333.32, + "probability": 0.828 + }, + { + "start": 11334.58, + "end": 11340.16, + "probability": 0.5409 + }, + { + "start": 11342.38, + "end": 11346.96, + "probability": 0.8428 + }, + { + "start": 11347.22, + "end": 11348.3, + "probability": 0.9072 + }, + { + "start": 11348.62, + "end": 11352.86, + "probability": 0.8932 + }, + { + "start": 11353.62, + "end": 11356.52, + "probability": 0.8803 + }, + { + "start": 11357.6, + "end": 11358.66, + "probability": 0.9359 + }, + { + "start": 11360.66, + "end": 11366.28, + "probability": 0.916 + }, + { + "start": 11366.86, + "end": 11370.24, + "probability": 0.9865 + }, + { + "start": 11370.8, + "end": 11374.64, + "probability": 0.8691 + }, + { + "start": 11375.32, + "end": 11377.45, + "probability": 0.9885 + }, + { + "start": 11378.58, + "end": 11379.54, + "probability": 0.8755 + }, + { + "start": 11380.2, + "end": 11381.72, + "probability": 0.9834 + }, + { + "start": 11382.04, + "end": 11383.4, + "probability": 0.8668 + }, + { + "start": 11383.66, + "end": 11384.66, + "probability": 0.9092 + }, + { + "start": 11385.72, + "end": 11387.22, + "probability": 0.771 + }, + { + "start": 11387.32, + "end": 11388.6, + "probability": 0.9899 + }, + { + "start": 11389.66, + "end": 11391.6, + "probability": 0.7057 + }, + { + "start": 11393.7, + "end": 11397.76, + "probability": 0.9893 + }, + { + "start": 11398.12, + "end": 11399.94, + "probability": 0.8449 + }, + { + "start": 11400.28, + "end": 11401.9, + "probability": 0.9691 + }, + { + "start": 11403.2, + "end": 11404.64, + "probability": 0.886 + }, + { + "start": 11406.18, + "end": 11408.34, + "probability": 0.6871 + }, + { + "start": 11409.9, + "end": 11414.94, + "probability": 0.8611 + }, + { + "start": 11416.2, + "end": 11420.74, + "probability": 0.913 + }, + { + "start": 11421.52, + "end": 11423.66, + "probability": 0.9943 + }, + { + "start": 11423.86, + "end": 11424.88, + "probability": 0.9993 + }, + { + "start": 11425.72, + "end": 11427.7, + "probability": 0.7022 + }, + { + "start": 11428.42, + "end": 11433.06, + "probability": 0.9375 + }, + { + "start": 11434.4, + "end": 11438.07, + "probability": 0.9888 + }, + { + "start": 11439.46, + "end": 11440.72, + "probability": 0.7037 + }, + { + "start": 11442.74, + "end": 11447.12, + "probability": 0.7875 + }, + { + "start": 11447.6, + "end": 11448.54, + "probability": 0.3849 + }, + { + "start": 11449.6, + "end": 11452.4, + "probability": 0.8055 + }, + { + "start": 11453.66, + "end": 11456.08, + "probability": 0.9532 + }, + { + "start": 11457.94, + "end": 11462.08, + "probability": 0.8757 + }, + { + "start": 11462.44, + "end": 11463.49, + "probability": 0.9272 + }, + { + "start": 11464.8, + "end": 11468.32, + "probability": 0.9909 + }, + { + "start": 11468.96, + "end": 11470.16, + "probability": 0.6328 + }, + { + "start": 11470.56, + "end": 11473.24, + "probability": 0.7424 + }, + { + "start": 11473.7, + "end": 11475.86, + "probability": 0.9663 + }, + { + "start": 11477.24, + "end": 11477.62, + "probability": 0.684 + }, + { + "start": 11478.2, + "end": 11479.68, + "probability": 0.9972 + }, + { + "start": 11480.54, + "end": 11482.47, + "probability": 0.991 + }, + { + "start": 11483.94, + "end": 11486.76, + "probability": 0.9786 + }, + { + "start": 11488.44, + "end": 11493.54, + "probability": 0.9819 + }, + { + "start": 11494.04, + "end": 11501.74, + "probability": 0.9756 + }, + { + "start": 11503.94, + "end": 11507.76, + "probability": 0.995 + }, + { + "start": 11509.18, + "end": 11510.98, + "probability": 0.7815 + }, + { + "start": 11512.16, + "end": 11514.54, + "probability": 0.9601 + }, + { + "start": 11515.12, + "end": 11521.52, + "probability": 0.979 + }, + { + "start": 11523.09, + "end": 11529.16, + "probability": 0.9766 + }, + { + "start": 11529.86, + "end": 11535.4, + "probability": 0.9159 + }, + { + "start": 11536.56, + "end": 11541.06, + "probability": 0.8003 + }, + { + "start": 11542.28, + "end": 11543.3, + "probability": 0.9966 + }, + { + "start": 11544.68, + "end": 11545.8, + "probability": 0.8191 + }, + { + "start": 11546.38, + "end": 11547.0, + "probability": 0.8115 + }, + { + "start": 11547.94, + "end": 11548.78, + "probability": 0.7746 + }, + { + "start": 11549.46, + "end": 11550.72, + "probability": 0.5897 + }, + { + "start": 11554.82, + "end": 11555.64, + "probability": 0.9107 + }, + { + "start": 11557.1, + "end": 11559.24, + "probability": 0.9897 + }, + { + "start": 11560.5, + "end": 11560.9, + "probability": 0.8792 + }, + { + "start": 11563.08, + "end": 11566.96, + "probability": 0.7833 + }, + { + "start": 11568.38, + "end": 11571.2, + "probability": 0.8613 + }, + { + "start": 11572.86, + "end": 11573.64, + "probability": 0.5359 + }, + { + "start": 11574.2, + "end": 11577.9, + "probability": 0.9869 + }, + { + "start": 11584.7, + "end": 11590.48, + "probability": 0.6367 + }, + { + "start": 11592.46, + "end": 11597.48, + "probability": 0.802 + }, + { + "start": 11599.34, + "end": 11600.74, + "probability": 0.9606 + }, + { + "start": 11601.12, + "end": 11603.7, + "probability": 0.9829 + }, + { + "start": 11604.9, + "end": 11606.42, + "probability": 0.8824 + }, + { + "start": 11608.0, + "end": 11610.36, + "probability": 0.9098 + }, + { + "start": 11611.26, + "end": 11613.75, + "probability": 0.604 + }, + { + "start": 11614.98, + "end": 11615.78, + "probability": 0.7184 + }, + { + "start": 11616.48, + "end": 11616.96, + "probability": 0.8701 + }, + { + "start": 11617.54, + "end": 11618.78, + "probability": 0.9712 + }, + { + "start": 11619.64, + "end": 11620.7, + "probability": 0.9984 + }, + { + "start": 11623.44, + "end": 11632.4, + "probability": 0.7198 + }, + { + "start": 11632.46, + "end": 11634.84, + "probability": 0.9837 + }, + { + "start": 11635.86, + "end": 11637.06, + "probability": 0.9987 + }, + { + "start": 11637.4, + "end": 11639.18, + "probability": 0.999 + }, + { + "start": 11640.26, + "end": 11645.62, + "probability": 0.9168 + }, + { + "start": 11646.26, + "end": 11647.52, + "probability": 0.7167 + }, + { + "start": 11648.6, + "end": 11649.56, + "probability": 0.9311 + }, + { + "start": 11651.24, + "end": 11652.98, + "probability": 0.5044 + }, + { + "start": 11653.12, + "end": 11654.54, + "probability": 0.9251 + }, + { + "start": 11655.02, + "end": 11656.02, + "probability": 0.8479 + }, + { + "start": 11657.84, + "end": 11659.44, + "probability": 0.9141 + }, + { + "start": 11660.68, + "end": 11663.66, + "probability": 0.8591 + }, + { + "start": 11664.38, + "end": 11667.14, + "probability": 0.2036 + }, + { + "start": 11668.74, + "end": 11672.4, + "probability": 0.9555 + }, + { + "start": 11674.48, + "end": 11676.14, + "probability": 0.5748 + }, + { + "start": 11677.5, + "end": 11680.0, + "probability": 0.6619 + }, + { + "start": 11680.52, + "end": 11681.22, + "probability": 0.7157 + }, + { + "start": 11681.9, + "end": 11684.06, + "probability": 0.9731 + }, + { + "start": 11684.16, + "end": 11685.24, + "probability": 0.6781 + }, + { + "start": 11685.4, + "end": 11685.62, + "probability": 0.4228 + }, + { + "start": 11685.85, + "end": 11685.92, + "probability": 0.0867 + }, + { + "start": 11685.92, + "end": 11688.74, + "probability": 0.7859 + }, + { + "start": 11688.9, + "end": 11689.76, + "probability": 0.8792 + }, + { + "start": 11690.14, + "end": 11690.4, + "probability": 0.6093 + }, + { + "start": 11690.42, + "end": 11693.26, + "probability": 0.7471 + }, + { + "start": 11693.56, + "end": 11695.24, + "probability": 0.9691 + }, + { + "start": 11695.36, + "end": 11698.88, + "probability": 0.8596 + }, + { + "start": 11698.88, + "end": 11699.34, + "probability": 0.7022 + }, + { + "start": 11699.52, + "end": 11702.02, + "probability": 0.827 + }, + { + "start": 11702.2, + "end": 11702.56, + "probability": 0.5359 + }, + { + "start": 11703.72, + "end": 11706.04, + "probability": 0.9967 + }, + { + "start": 11707.4, + "end": 11708.88, + "probability": 0.9023 + }, + { + "start": 11709.88, + "end": 11710.62, + "probability": 0.9356 + }, + { + "start": 11711.68, + "end": 11713.02, + "probability": 0.9964 + }, + { + "start": 11714.76, + "end": 11715.11, + "probability": 0.6597 + }, + { + "start": 11717.76, + "end": 11720.3, + "probability": 0.8179 + }, + { + "start": 11722.48, + "end": 11726.16, + "probability": 0.9961 + }, + { + "start": 11728.16, + "end": 11728.7, + "probability": 0.9829 + }, + { + "start": 11730.52, + "end": 11734.04, + "probability": 0.9932 + }, + { + "start": 11734.04, + "end": 11738.58, + "probability": 0.7385 + }, + { + "start": 11740.1, + "end": 11742.28, + "probability": 0.9922 + }, + { + "start": 11743.1, + "end": 11743.86, + "probability": 0.9971 + }, + { + "start": 11745.68, + "end": 11746.92, + "probability": 0.6927 + }, + { + "start": 11747.88, + "end": 11749.24, + "probability": 0.8872 + }, + { + "start": 11753.1, + "end": 11754.94, + "probability": 0.9592 + }, + { + "start": 11755.88, + "end": 11757.26, + "probability": 0.9183 + }, + { + "start": 11758.3, + "end": 11764.16, + "probability": 0.9471 + }, + { + "start": 11764.74, + "end": 11765.92, + "probability": 0.9688 + }, + { + "start": 11767.36, + "end": 11768.69, + "probability": 0.9891 + }, + { + "start": 11768.9, + "end": 11770.18, + "probability": 0.7705 + }, + { + "start": 11770.62, + "end": 11771.74, + "probability": 0.8887 + }, + { + "start": 11772.2, + "end": 11773.32, + "probability": 0.7626 + }, + { + "start": 11774.64, + "end": 11776.7, + "probability": 0.9438 + }, + { + "start": 11777.78, + "end": 11781.24, + "probability": 0.5101 + }, + { + "start": 11782.78, + "end": 11783.9, + "probability": 0.999 + }, + { + "start": 11785.4, + "end": 11792.12, + "probability": 0.6398 + }, + { + "start": 11793.06, + "end": 11794.06, + "probability": 0.9971 + }, + { + "start": 11794.8, + "end": 11798.32, + "probability": 0.3546 + }, + { + "start": 11798.66, + "end": 11800.5, + "probability": 0.9706 + }, + { + "start": 11802.36, + "end": 11810.56, + "probability": 0.9084 + }, + { + "start": 11811.68, + "end": 11812.32, + "probability": 0.7217 + }, + { + "start": 11812.86, + "end": 11814.63, + "probability": 0.3939 + }, + { + "start": 11816.8, + "end": 11820.52, + "probability": 0.8431 + }, + { + "start": 11821.42, + "end": 11821.84, + "probability": 0.5728 + }, + { + "start": 11822.78, + "end": 11827.64, + "probability": 0.9076 + }, + { + "start": 11828.1, + "end": 11829.56, + "probability": 0.9868 + }, + { + "start": 11830.22, + "end": 11831.66, + "probability": 0.5458 + }, + { + "start": 11833.62, + "end": 11835.82, + "probability": 0.9663 + }, + { + "start": 11836.7, + "end": 11841.26, + "probability": 0.9829 + }, + { + "start": 11841.26, + "end": 11845.26, + "probability": 0.9423 + }, + { + "start": 11846.26, + "end": 11847.08, + "probability": 0.7826 + }, + { + "start": 11848.06, + "end": 11851.04, + "probability": 0.9905 + }, + { + "start": 11852.18, + "end": 11853.12, + "probability": 0.3656 + }, + { + "start": 11853.18, + "end": 11854.46, + "probability": 0.896 + }, + { + "start": 11854.82, + "end": 11855.32, + "probability": 0.9299 + }, + { + "start": 11856.28, + "end": 11858.38, + "probability": 0.9118 + }, + { + "start": 11858.44, + "end": 11861.04, + "probability": 0.9155 + }, + { + "start": 11863.54, + "end": 11863.64, + "probability": 0.5046 + }, + { + "start": 11865.58, + "end": 11867.92, + "probability": 0.8866 + }, + { + "start": 11869.1, + "end": 11872.48, + "probability": 0.125 + }, + { + "start": 11882.46, + "end": 11886.04, + "probability": 0.761 + }, + { + "start": 11886.16, + "end": 11886.2, + "probability": 0.2966 + }, + { + "start": 11896.84, + "end": 11898.0, + "probability": 0.0159 + }, + { + "start": 11898.0, + "end": 11899.24, + "probability": 0.5441 + }, + { + "start": 11899.5, + "end": 11904.02, + "probability": 0.9912 + }, + { + "start": 11904.68, + "end": 11915.46, + "probability": 0.972 + }, + { + "start": 11915.94, + "end": 11919.38, + "probability": 0.9971 + }, + { + "start": 11919.38, + "end": 11922.64, + "probability": 0.9901 + }, + { + "start": 11923.5, + "end": 11929.34, + "probability": 0.8056 + }, + { + "start": 11929.74, + "end": 11935.44, + "probability": 0.989 + }, + { + "start": 11935.44, + "end": 11939.34, + "probability": 0.9985 + }, + { + "start": 11940.64, + "end": 11944.58, + "probability": 0.8531 + }, + { + "start": 11945.1, + "end": 11950.37, + "probability": 0.9845 + }, + { + "start": 11950.82, + "end": 11952.2, + "probability": 0.958 + }, + { + "start": 11952.32, + "end": 11955.66, + "probability": 0.9955 + }, + { + "start": 11956.04, + "end": 11958.33, + "probability": 0.8319 + }, + { + "start": 11958.96, + "end": 11960.14, + "probability": 0.8944 + }, + { + "start": 11960.26, + "end": 11965.14, + "probability": 0.8021 + }, + { + "start": 11965.82, + "end": 11969.8, + "probability": 0.9795 + }, + { + "start": 11970.0, + "end": 11973.94, + "probability": 0.9215 + }, + { + "start": 11974.56, + "end": 11978.44, + "probability": 0.7047 + }, + { + "start": 11979.52, + "end": 11983.78, + "probability": 0.9961 + }, + { + "start": 11984.0, + "end": 11985.84, + "probability": 0.9973 + }, + { + "start": 11986.26, + "end": 11992.52, + "probability": 0.954 + }, + { + "start": 11992.66, + "end": 11996.42, + "probability": 0.9645 + }, + { + "start": 11997.56, + "end": 11998.92, + "probability": 0.8626 + }, + { + "start": 11999.24, + "end": 12000.54, + "probability": 0.9976 + }, + { + "start": 12000.6, + "end": 12005.18, + "probability": 0.8809 + }, + { + "start": 12005.78, + "end": 12007.68, + "probability": 0.5497 + }, + { + "start": 12007.72, + "end": 12011.42, + "probability": 0.9904 + }, + { + "start": 12011.86, + "end": 12014.04, + "probability": 0.6916 + }, + { + "start": 12014.46, + "end": 12015.02, + "probability": 0.7707 + }, + { + "start": 12015.48, + "end": 12020.28, + "probability": 0.9865 + }, + { + "start": 12020.28, + "end": 12025.12, + "probability": 0.9846 + }, + { + "start": 12026.34, + "end": 12027.92, + "probability": 0.2483 + }, + { + "start": 12028.08, + "end": 12029.44, + "probability": 0.4286 + }, + { + "start": 12030.04, + "end": 12031.4, + "probability": 0.6044 + }, + { + "start": 12031.72, + "end": 12034.42, + "probability": 0.9493 + }, + { + "start": 12034.42, + "end": 12038.1, + "probability": 0.968 + }, + { + "start": 12038.46, + "end": 12042.57, + "probability": 0.9189 + }, + { + "start": 12043.36, + "end": 12044.44, + "probability": 0.6076 + }, + { + "start": 12044.82, + "end": 12047.3, + "probability": 0.6731 + }, + { + "start": 12047.98, + "end": 12048.52, + "probability": 0.7222 + }, + { + "start": 12048.9, + "end": 12049.6, + "probability": 0.9559 + }, + { + "start": 12049.86, + "end": 12051.68, + "probability": 0.9326 + }, + { + "start": 12052.12, + "end": 12055.72, + "probability": 0.9784 + }, + { + "start": 12055.88, + "end": 12057.48, + "probability": 0.9692 + }, + { + "start": 12057.52, + "end": 12061.16, + "probability": 0.8515 + }, + { + "start": 12061.38, + "end": 12062.04, + "probability": 0.1141 + }, + { + "start": 12062.04, + "end": 12063.88, + "probability": 0.0406 + }, + { + "start": 12063.88, + "end": 12065.78, + "probability": 0.7284 + }, + { + "start": 12066.64, + "end": 12069.94, + "probability": 0.9919 + }, + { + "start": 12070.82, + "end": 12076.42, + "probability": 0.8424 + }, + { + "start": 12076.74, + "end": 12078.64, + "probability": 0.9834 + }, + { + "start": 12078.92, + "end": 12079.8, + "probability": 0.71 + }, + { + "start": 12080.44, + "end": 12082.15, + "probability": 0.9859 + }, + { + "start": 12082.48, + "end": 12083.36, + "probability": 0.9774 + }, + { + "start": 12083.86, + "end": 12087.4, + "probability": 0.9959 + }, + { + "start": 12087.56, + "end": 12088.48, + "probability": 0.9959 + }, + { + "start": 12089.1, + "end": 12094.62, + "probability": 0.972 + }, + { + "start": 12094.74, + "end": 12096.39, + "probability": 0.9017 + }, + { + "start": 12096.58, + "end": 12097.74, + "probability": 0.6441 + }, + { + "start": 12098.04, + "end": 12103.22, + "probability": 0.9639 + }, + { + "start": 12103.48, + "end": 12105.8, + "probability": 0.9462 + }, + { + "start": 12106.12, + "end": 12107.4, + "probability": 0.8354 + }, + { + "start": 12107.46, + "end": 12107.82, + "probability": 0.5051 + }, + { + "start": 12107.88, + "end": 12114.16, + "probability": 0.959 + }, + { + "start": 12114.4, + "end": 12116.18, + "probability": 0.9849 + }, + { + "start": 12116.36, + "end": 12117.26, + "probability": 0.9096 + }, + { + "start": 12117.56, + "end": 12118.94, + "probability": 0.7879 + }, + { + "start": 12119.06, + "end": 12120.38, + "probability": 0.9832 + }, + { + "start": 12120.54, + "end": 12121.98, + "probability": 0.8941 + }, + { + "start": 12122.28, + "end": 12122.84, + "probability": 0.5025 + }, + { + "start": 12122.88, + "end": 12124.02, + "probability": 0.7263 + }, + { + "start": 12124.28, + "end": 12125.94, + "probability": 0.7204 + }, + { + "start": 12126.2, + "end": 12127.88, + "probability": 0.9385 + }, + { + "start": 12128.04, + "end": 12129.56, + "probability": 0.8541 + }, + { + "start": 12129.84, + "end": 12130.32, + "probability": 0.8182 + }, + { + "start": 12130.5, + "end": 12130.9, + "probability": 0.2965 + }, + { + "start": 12131.74, + "end": 12134.04, + "probability": 0.9828 + }, + { + "start": 12134.26, + "end": 12137.4, + "probability": 0.9875 + }, + { + "start": 12137.4, + "end": 12140.66, + "probability": 0.9927 + }, + { + "start": 12140.94, + "end": 12142.44, + "probability": 0.9475 + }, + { + "start": 12142.54, + "end": 12146.32, + "probability": 0.9977 + }, + { + "start": 12146.4, + "end": 12148.12, + "probability": 0.8707 + }, + { + "start": 12148.48, + "end": 12153.81, + "probability": 0.9967 + }, + { + "start": 12154.38, + "end": 12159.32, + "probability": 0.9596 + }, + { + "start": 12159.78, + "end": 12161.41, + "probability": 0.9814 + }, + { + "start": 12161.92, + "end": 12164.24, + "probability": 0.9878 + }, + { + "start": 12164.56, + "end": 12168.04, + "probability": 0.9824 + }, + { + "start": 12168.12, + "end": 12169.06, + "probability": 0.9436 + }, + { + "start": 12169.58, + "end": 12170.92, + "probability": 0.9604 + }, + { + "start": 12171.26, + "end": 12172.58, + "probability": 0.9683 + }, + { + "start": 12172.94, + "end": 12176.84, + "probability": 0.9492 + }, + { + "start": 12177.0, + "end": 12177.86, + "probability": 0.5084 + }, + { + "start": 12178.3, + "end": 12179.84, + "probability": 0.8586 + }, + { + "start": 12180.12, + "end": 12187.48, + "probability": 0.8651 + }, + { + "start": 12187.72, + "end": 12188.38, + "probability": 0.8612 + }, + { + "start": 12188.52, + "end": 12194.06, + "probability": 0.9468 + }, + { + "start": 12194.22, + "end": 12200.18, + "probability": 0.8556 + }, + { + "start": 12200.26, + "end": 12202.27, + "probability": 0.6288 + }, + { + "start": 12202.88, + "end": 12207.96, + "probability": 0.9795 + }, + { + "start": 12208.5, + "end": 12210.8, + "probability": 0.8196 + }, + { + "start": 12210.84, + "end": 12213.24, + "probability": 0.9783 + }, + { + "start": 12213.24, + "end": 12217.04, + "probability": 0.9672 + }, + { + "start": 12217.62, + "end": 12222.58, + "probability": 0.9768 + }, + { + "start": 12223.0, + "end": 12226.26, + "probability": 0.7622 + }, + { + "start": 12226.36, + "end": 12229.04, + "probability": 0.9722 + }, + { + "start": 12229.44, + "end": 12232.32, + "probability": 0.9233 + }, + { + "start": 12232.58, + "end": 12236.72, + "probability": 0.9848 + }, + { + "start": 12237.2, + "end": 12238.52, + "probability": 0.8763 + }, + { + "start": 12238.94, + "end": 12240.84, + "probability": 0.9234 + }, + { + "start": 12240.88, + "end": 12243.54, + "probability": 0.9855 + }, + { + "start": 12244.68, + "end": 12247.94, + "probability": 0.6416 + }, + { + "start": 12248.58, + "end": 12252.16, + "probability": 0.99 + }, + { + "start": 12252.4, + "end": 12255.68, + "probability": 0.8215 + }, + { + "start": 12256.06, + "end": 12258.14, + "probability": 0.8257 + }, + { + "start": 12258.48, + "end": 12259.66, + "probability": 0.9642 + }, + { + "start": 12260.18, + "end": 12266.46, + "probability": 0.9153 + }, + { + "start": 12266.6, + "end": 12271.5, + "probability": 0.9921 + }, + { + "start": 12272.32, + "end": 12272.76, + "probability": 0.306 + }, + { + "start": 12273.02, + "end": 12275.84, + "probability": 0.9451 + }, + { + "start": 12276.0, + "end": 12280.26, + "probability": 0.9875 + }, + { + "start": 12280.8, + "end": 12283.68, + "probability": 0.964 + }, + { + "start": 12284.22, + "end": 12288.54, + "probability": 0.9909 + }, + { + "start": 12288.78, + "end": 12290.4, + "probability": 0.941 + }, + { + "start": 12290.48, + "end": 12293.28, + "probability": 0.8276 + }, + { + "start": 12293.28, + "end": 12296.08, + "probability": 0.9873 + }, + { + "start": 12296.56, + "end": 12297.94, + "probability": 0.8928 + }, + { + "start": 12297.96, + "end": 12300.34, + "probability": 0.9822 + }, + { + "start": 12301.14, + "end": 12301.76, + "probability": 0.8789 + }, + { + "start": 12302.34, + "end": 12303.28, + "probability": 0.8341 + }, + { + "start": 12303.66, + "end": 12304.38, + "probability": 0.8805 + }, + { + "start": 12304.46, + "end": 12304.92, + "probability": 0.7738 + }, + { + "start": 12305.06, + "end": 12305.78, + "probability": 0.9622 + }, + { + "start": 12305.82, + "end": 12308.46, + "probability": 0.7886 + }, + { + "start": 12309.56, + "end": 12314.48, + "probability": 0.7729 + }, + { + "start": 12315.36, + "end": 12320.2, + "probability": 0.8969 + }, + { + "start": 12320.28, + "end": 12321.04, + "probability": 0.3438 + }, + { + "start": 12321.36, + "end": 12322.0, + "probability": 0.3321 + }, + { + "start": 12322.5, + "end": 12324.18, + "probability": 0.9445 + }, + { + "start": 12324.7, + "end": 12326.44, + "probability": 0.9283 + }, + { + "start": 12327.44, + "end": 12329.6, + "probability": 0.9951 + }, + { + "start": 12329.66, + "end": 12331.14, + "probability": 0.9274 + }, + { + "start": 12331.6, + "end": 12333.42, + "probability": 0.9965 + }, + { + "start": 12333.52, + "end": 12335.76, + "probability": 0.9873 + }, + { + "start": 12336.18, + "end": 12339.14, + "probability": 0.9771 + }, + { + "start": 12339.66, + "end": 12342.64, + "probability": 0.9954 + }, + { + "start": 12342.76, + "end": 12344.74, + "probability": 0.9737 + }, + { + "start": 12344.88, + "end": 12347.4, + "probability": 0.9899 + }, + { + "start": 12348.04, + "end": 12353.78, + "probability": 0.9994 + }, + { + "start": 12354.2, + "end": 12355.78, + "probability": 0.874 + }, + { + "start": 12355.9, + "end": 12362.14, + "probability": 0.8949 + }, + { + "start": 12363.62, + "end": 12369.74, + "probability": 0.8752 + }, + { + "start": 12369.9, + "end": 12371.96, + "probability": 0.9473 + }, + { + "start": 12372.16, + "end": 12376.92, + "probability": 0.8981 + }, + { + "start": 12377.68, + "end": 12380.96, + "probability": 0.6604 + }, + { + "start": 12381.44, + "end": 12383.9, + "probability": 0.8858 + }, + { + "start": 12384.44, + "end": 12388.59, + "probability": 0.542 + }, + { + "start": 12389.4, + "end": 12391.76, + "probability": 0.7297 + }, + { + "start": 12392.2, + "end": 12395.4, + "probability": 0.741 + }, + { + "start": 12395.54, + "end": 12400.04, + "probability": 0.9067 + }, + { + "start": 12400.48, + "end": 12401.66, + "probability": 0.9196 + }, + { + "start": 12401.94, + "end": 12403.5, + "probability": 0.9049 + }, + { + "start": 12403.62, + "end": 12408.72, + "probability": 0.9893 + }, + { + "start": 12408.94, + "end": 12409.64, + "probability": 0.8541 + }, + { + "start": 12409.92, + "end": 12411.1, + "probability": 0.4123 + }, + { + "start": 12411.54, + "end": 12413.86, + "probability": 0.9951 + }, + { + "start": 12414.28, + "end": 12415.76, + "probability": 0.9873 + }, + { + "start": 12415.86, + "end": 12420.28, + "probability": 0.9518 + }, + { + "start": 12420.58, + "end": 12422.7, + "probability": 0.9171 + }, + { + "start": 12423.14, + "end": 12423.93, + "probability": 0.9327 + }, + { + "start": 12424.48, + "end": 12425.5, + "probability": 0.9527 + }, + { + "start": 12425.88, + "end": 12427.53, + "probability": 0.9814 + }, + { + "start": 12428.24, + "end": 12429.68, + "probability": 0.9209 + }, + { + "start": 12429.8, + "end": 12432.6, + "probability": 0.6061 + }, + { + "start": 12432.62, + "end": 12433.23, + "probability": 0.696 + }, + { + "start": 12433.94, + "end": 12438.34, + "probability": 0.9907 + }, + { + "start": 12438.92, + "end": 12440.6, + "probability": 0.9648 + }, + { + "start": 12440.98, + "end": 12442.54, + "probability": 0.9609 + }, + { + "start": 12443.7, + "end": 12445.02, + "probability": 0.6886 + }, + { + "start": 12445.02, + "end": 12445.58, + "probability": 0.7885 + }, + { + "start": 12445.66, + "end": 12448.12, + "probability": 0.8992 + }, + { + "start": 12448.34, + "end": 12451.09, + "probability": 0.8378 + }, + { + "start": 12452.2, + "end": 12452.2, + "probability": 0.514 + }, + { + "start": 12452.24, + "end": 12452.3, + "probability": 0.6909 + }, + { + "start": 12452.44, + "end": 12453.2, + "probability": 0.9282 + }, + { + "start": 12453.3, + "end": 12454.06, + "probability": 0.8316 + }, + { + "start": 12454.16, + "end": 12455.74, + "probability": 0.9246 + }, + { + "start": 12455.94, + "end": 12456.4, + "probability": 0.5492 + }, + { + "start": 12456.68, + "end": 12457.56, + "probability": 0.2424 + }, + { + "start": 12457.56, + "end": 12458.0, + "probability": 0.225 + }, + { + "start": 12458.0, + "end": 12461.7, + "probability": 0.9897 + }, + { + "start": 12461.98, + "end": 12464.9, + "probability": 0.937 + }, + { + "start": 12465.92, + "end": 12469.0, + "probability": 0.9789 + }, + { + "start": 12469.5, + "end": 12472.38, + "probability": 0.984 + }, + { + "start": 12472.48, + "end": 12472.66, + "probability": 0.6439 + }, + { + "start": 12472.8, + "end": 12475.52, + "probability": 0.7243 + }, + { + "start": 12476.26, + "end": 12478.44, + "probability": 0.9774 + }, + { + "start": 12478.64, + "end": 12479.32, + "probability": 0.3934 + }, + { + "start": 12479.4, + "end": 12481.18, + "probability": 0.8441 + }, + { + "start": 12481.34, + "end": 12485.66, + "probability": 0.4843 + }, + { + "start": 12486.16, + "end": 12487.84, + "probability": 0.9495 + }, + { + "start": 12491.32, + "end": 12492.79, + "probability": 0.6829 + }, + { + "start": 12496.14, + "end": 12500.16, + "probability": 0.8525 + }, + { + "start": 12501.86, + "end": 12510.1, + "probability": 0.9668 + }, + { + "start": 12511.08, + "end": 12513.8, + "probability": 0.9938 + }, + { + "start": 12514.34, + "end": 12514.91, + "probability": 0.9521 + }, + { + "start": 12515.56, + "end": 12519.36, + "probability": 0.9726 + }, + { + "start": 12520.16, + "end": 12522.2, + "probability": 0.9961 + }, + { + "start": 12522.86, + "end": 12523.44, + "probability": 0.893 + }, + { + "start": 12523.56, + "end": 12525.74, + "probability": 0.8737 + }, + { + "start": 12527.08, + "end": 12530.08, + "probability": 0.8662 + }, + { + "start": 12530.14, + "end": 12531.84, + "probability": 0.9955 + }, + { + "start": 12532.28, + "end": 12532.74, + "probability": 0.6187 + }, + { + "start": 12532.86, + "end": 12533.77, + "probability": 0.9221 + }, + { + "start": 12535.14, + "end": 12539.2, + "probability": 0.9091 + }, + { + "start": 12539.88, + "end": 12541.42, + "probability": 0.9836 + }, + { + "start": 12542.28, + "end": 12543.22, + "probability": 0.8028 + }, + { + "start": 12544.58, + "end": 12545.76, + "probability": 0.8541 + }, + { + "start": 12547.3, + "end": 12549.62, + "probability": 0.2629 + }, + { + "start": 12550.22, + "end": 12552.06, + "probability": 0.7421 + }, + { + "start": 12553.4, + "end": 12554.96, + "probability": 0.9896 + }, + { + "start": 12555.08, + "end": 12555.82, + "probability": 0.7269 + }, + { + "start": 12555.86, + "end": 12559.78, + "probability": 0.989 + }, + { + "start": 12560.52, + "end": 12563.04, + "probability": 0.9861 + }, + { + "start": 12563.34, + "end": 12565.12, + "probability": 0.3602 + }, + { + "start": 12565.14, + "end": 12565.68, + "probability": 0.2877 + }, + { + "start": 12565.74, + "end": 12566.1, + "probability": 0.1942 + }, + { + "start": 12566.1, + "end": 12566.98, + "probability": 0.6082 + }, + { + "start": 12567.14, + "end": 12567.4, + "probability": 0.8269 + }, + { + "start": 12567.48, + "end": 12568.9, + "probability": 0.9714 + }, + { + "start": 12569.4, + "end": 12572.56, + "probability": 0.9309 + }, + { + "start": 12572.68, + "end": 12573.92, + "probability": 0.9256 + }, + { + "start": 12573.92, + "end": 12574.85, + "probability": 0.97 + }, + { + "start": 12575.2, + "end": 12577.42, + "probability": 0.9902 + }, + { + "start": 12578.58, + "end": 12580.34, + "probability": 0.9829 + }, + { + "start": 12580.46, + "end": 12580.96, + "probability": 0.02 + }, + { + "start": 12581.14, + "end": 12581.14, + "probability": 0.1218 + }, + { + "start": 12581.18, + "end": 12581.18, + "probability": 0.0438 + }, + { + "start": 12581.18, + "end": 12581.94, + "probability": 0.4503 + }, + { + "start": 12582.1, + "end": 12586.12, + "probability": 0.9252 + }, + { + "start": 12586.3, + "end": 12588.36, + "probability": 0.7245 + }, + { + "start": 12588.9, + "end": 12590.92, + "probability": 0.1375 + }, + { + "start": 12591.16, + "end": 12591.2, + "probability": 0.1429 + }, + { + "start": 12591.2, + "end": 12592.0, + "probability": 0.124 + }, + { + "start": 12593.27, + "end": 12594.9, + "probability": 0.8589 + }, + { + "start": 12595.12, + "end": 12595.9, + "probability": 0.5539 + }, + { + "start": 12596.34, + "end": 12597.88, + "probability": 0.9502 + }, + { + "start": 12597.9, + "end": 12598.06, + "probability": 0.8503 + }, + { + "start": 12598.2, + "end": 12600.44, + "probability": 0.9692 + }, + { + "start": 12601.78, + "end": 12606.38, + "probability": 0.9985 + }, + { + "start": 12607.64, + "end": 12607.7, + "probability": 0.5317 + }, + { + "start": 12607.7, + "end": 12608.6, + "probability": 0.998 + }, + { + "start": 12610.02, + "end": 12612.62, + "probability": 0.9939 + }, + { + "start": 12613.96, + "end": 12616.4, + "probability": 0.9459 + }, + { + "start": 12617.28, + "end": 12619.44, + "probability": 0.8672 + }, + { + "start": 12620.06, + "end": 12623.58, + "probability": 0.9078 + }, + { + "start": 12624.14, + "end": 12625.79, + "probability": 0.9806 + }, + { + "start": 12627.14, + "end": 12630.9, + "probability": 0.996 + }, + { + "start": 12632.38, + "end": 12633.2, + "probability": 0.9548 + }, + { + "start": 12633.32, + "end": 12637.36, + "probability": 0.9805 + }, + { + "start": 12640.78, + "end": 12640.92, + "probability": 0.0211 + }, + { + "start": 12641.12, + "end": 12643.16, + "probability": 0.1427 + }, + { + "start": 12643.54, + "end": 12646.1, + "probability": 0.6318 + }, + { + "start": 12647.7, + "end": 12649.58, + "probability": 0.7486 + }, + { + "start": 12650.5, + "end": 12657.28, + "probability": 0.9666 + }, + { + "start": 12657.42, + "end": 12659.52, + "probability": 0.8819 + }, + { + "start": 12659.62, + "end": 12660.4, + "probability": 0.9178 + }, + { + "start": 12660.46, + "end": 12661.82, + "probability": 0.7009 + }, + { + "start": 12663.12, + "end": 12664.72, + "probability": 0.9625 + }, + { + "start": 12665.82, + "end": 12668.12, + "probability": 0.9768 + }, + { + "start": 12668.3, + "end": 12670.14, + "probability": 0.9931 + }, + { + "start": 12671.3, + "end": 12674.6, + "probability": 0.9779 + }, + { + "start": 12674.6, + "end": 12678.36, + "probability": 0.8162 + }, + { + "start": 12678.48, + "end": 12681.32, + "probability": 0.9404 + }, + { + "start": 12681.54, + "end": 12682.74, + "probability": 0.9622 + }, + { + "start": 12683.5, + "end": 12686.14, + "probability": 0.9876 + }, + { + "start": 12686.18, + "end": 12691.78, + "probability": 0.9705 + }, + { + "start": 12691.78, + "end": 12697.6, + "probability": 0.9644 + }, + { + "start": 12697.86, + "end": 12699.01, + "probability": 0.7295 + }, + { + "start": 12700.22, + "end": 12704.02, + "probability": 0.945 + }, + { + "start": 12704.68, + "end": 12710.96, + "probability": 0.9904 + }, + { + "start": 12711.86, + "end": 12716.68, + "probability": 0.8742 + }, + { + "start": 12717.8, + "end": 12721.82, + "probability": 0.9956 + }, + { + "start": 12722.44, + "end": 12724.05, + "probability": 0.7724 + }, + { + "start": 12725.0, + "end": 12728.46, + "probability": 0.9963 + }, + { + "start": 12731.06, + "end": 12733.4, + "probability": 0.3715 + }, + { + "start": 12735.22, + "end": 12735.68, + "probability": 0.9025 + }, + { + "start": 12735.74, + "end": 12737.46, + "probability": 0.8373 + }, + { + "start": 12737.46, + "end": 12740.4, + "probability": 0.8489 + }, + { + "start": 12742.72, + "end": 12745.73, + "probability": 0.4868 + }, + { + "start": 12748.58, + "end": 12749.46, + "probability": 0.0194 + }, + { + "start": 12749.46, + "end": 12749.46, + "probability": 0.1771 + }, + { + "start": 12749.46, + "end": 12751.48, + "probability": 0.1155 + }, + { + "start": 12752.31, + "end": 12752.38, + "probability": 0.2755 + }, + { + "start": 12752.38, + "end": 12753.46, + "probability": 0.3498 + }, + { + "start": 12753.58, + "end": 12756.68, + "probability": 0.8688 + }, + { + "start": 12756.76, + "end": 12757.84, + "probability": 0.6064 + }, + { + "start": 12759.62, + "end": 12760.1, + "probability": 0.0316 + }, + { + "start": 12771.86, + "end": 12773.24, + "probability": 0.1531 + }, + { + "start": 12773.66, + "end": 12774.78, + "probability": 0.7251 + }, + { + "start": 12775.68, + "end": 12781.42, + "probability": 0.9634 + }, + { + "start": 12781.56, + "end": 12784.52, + "probability": 0.9467 + }, + { + "start": 12785.18, + "end": 12786.02, + "probability": 0.9184 + }, + { + "start": 12787.26, + "end": 12793.5, + "probability": 0.9268 + }, + { + "start": 12795.14, + "end": 12799.56, + "probability": 0.9541 + }, + { + "start": 12800.6, + "end": 12802.12, + "probability": 0.8503 + }, + { + "start": 12804.48, + "end": 12807.0, + "probability": 0.6411 + }, + { + "start": 12808.2, + "end": 12810.62, + "probability": 0.998 + }, + { + "start": 12811.78, + "end": 12815.16, + "probability": 0.9556 + }, + { + "start": 12816.44, + "end": 12820.24, + "probability": 0.941 + }, + { + "start": 12821.24, + "end": 12823.62, + "probability": 0.8338 + }, + { + "start": 12825.26, + "end": 12825.98, + "probability": 0.3696 + }, + { + "start": 12826.76, + "end": 12828.2, + "probability": 0.6985 + }, + { + "start": 12829.34, + "end": 12831.74, + "probability": 0.7222 + }, + { + "start": 12832.72, + "end": 12837.32, + "probability": 0.9214 + }, + { + "start": 12838.46, + "end": 12842.76, + "probability": 0.6695 + }, + { + "start": 12844.84, + "end": 12846.66, + "probability": 0.7794 + }, + { + "start": 12848.54, + "end": 12849.66, + "probability": 0.9939 + }, + { + "start": 12849.76, + "end": 12851.98, + "probability": 0.9235 + }, + { + "start": 12852.86, + "end": 12853.38, + "probability": 0.9865 + }, + { + "start": 12853.96, + "end": 12854.96, + "probability": 0.9893 + }, + { + "start": 12855.24, + "end": 12857.18, + "probability": 0.9789 + }, + { + "start": 12858.0, + "end": 12860.72, + "probability": 0.9983 + }, + { + "start": 12861.92, + "end": 12864.06, + "probability": 0.9971 + }, + { + "start": 12865.98, + "end": 12868.92, + "probability": 0.9988 + }, + { + "start": 12871.76, + "end": 12872.64, + "probability": 0.7541 + }, + { + "start": 12873.98, + "end": 12877.98, + "probability": 0.9932 + }, + { + "start": 12878.74, + "end": 12881.8, + "probability": 0.9917 + }, + { + "start": 12882.74, + "end": 12882.98, + "probability": 0.6888 + }, + { + "start": 12883.06, + "end": 12887.06, + "probability": 0.9936 + }, + { + "start": 12887.82, + "end": 12889.06, + "probability": 0.7332 + }, + { + "start": 12890.36, + "end": 12892.32, + "probability": 0.998 + }, + { + "start": 12892.62, + "end": 12893.74, + "probability": 0.9956 + }, + { + "start": 12894.28, + "end": 12898.76, + "probability": 0.9723 + }, + { + "start": 12899.72, + "end": 12901.24, + "probability": 0.9927 + }, + { + "start": 12902.08, + "end": 12905.71, + "probability": 0.9899 + }, + { + "start": 12906.76, + "end": 12908.1, + "probability": 0.8731 + }, + { + "start": 12908.72, + "end": 12910.5, + "probability": 0.969 + }, + { + "start": 12911.1, + "end": 12914.94, + "probability": 0.8965 + }, + { + "start": 12916.48, + "end": 12918.42, + "probability": 0.9875 + }, + { + "start": 12920.02, + "end": 12923.24, + "probability": 0.9855 + }, + { + "start": 12923.86, + "end": 12925.78, + "probability": 0.998 + }, + { + "start": 12926.98, + "end": 12928.38, + "probability": 0.9973 + }, + { + "start": 12930.82, + "end": 12934.78, + "probability": 0.9945 + }, + { + "start": 12934.94, + "end": 12936.4, + "probability": 0.9492 + }, + { + "start": 12937.2, + "end": 12938.88, + "probability": 0.9988 + }, + { + "start": 12939.8, + "end": 12941.64, + "probability": 0.9983 + }, + { + "start": 12943.02, + "end": 12943.74, + "probability": 0.9917 + }, + { + "start": 12944.62, + "end": 12945.82, + "probability": 0.9291 + }, + { + "start": 12947.48, + "end": 12951.5, + "probability": 0.9976 + }, + { + "start": 12953.16, + "end": 12959.0, + "probability": 0.9531 + }, + { + "start": 12959.5, + "end": 12960.44, + "probability": 0.6889 + }, + { + "start": 12961.96, + "end": 12964.06, + "probability": 0.7212 + }, + { + "start": 12965.56, + "end": 12966.68, + "probability": 0.9724 + }, + { + "start": 12970.42, + "end": 12974.36, + "probability": 0.9801 + }, + { + "start": 12975.68, + "end": 12978.02, + "probability": 0.784 + }, + { + "start": 12979.2, + "end": 12981.36, + "probability": 0.7482 + }, + { + "start": 12982.7, + "end": 12988.06, + "probability": 0.9703 + }, + { + "start": 12988.16, + "end": 12988.52, + "probability": 0.9824 + }, + { + "start": 12989.18, + "end": 12991.84, + "probability": 0.9997 + }, + { + "start": 12992.52, + "end": 12993.76, + "probability": 0.9966 + }, + { + "start": 12994.4, + "end": 12994.9, + "probability": 0.763 + }, + { + "start": 12995.44, + "end": 12997.58, + "probability": 0.9592 + }, + { + "start": 12998.18, + "end": 13000.9, + "probability": 0.9985 + }, + { + "start": 13002.54, + "end": 13003.3, + "probability": 0.9713 + }, + { + "start": 13006.1, + "end": 13007.72, + "probability": 0.9756 + }, + { + "start": 13008.84, + "end": 13009.84, + "probability": 0.9966 + }, + { + "start": 13011.22, + "end": 13013.8, + "probability": 0.9932 + }, + { + "start": 13014.8, + "end": 13015.78, + "probability": 0.9518 + }, + { + "start": 13016.94, + "end": 13017.5, + "probability": 0.8008 + }, + { + "start": 13018.14, + "end": 13019.38, + "probability": 0.9253 + }, + { + "start": 13020.3, + "end": 13021.68, + "probability": 0.9966 + }, + { + "start": 13021.9, + "end": 13023.18, + "probability": 0.9962 + }, + { + "start": 13024.04, + "end": 13025.56, + "probability": 0.9587 + }, + { + "start": 13026.64, + "end": 13027.14, + "probability": 0.8959 + }, + { + "start": 13028.44, + "end": 13030.04, + "probability": 0.8285 + }, + { + "start": 13030.8, + "end": 13034.29, + "probability": 0.9801 + }, + { + "start": 13035.12, + "end": 13040.64, + "probability": 0.9257 + }, + { + "start": 13041.52, + "end": 13046.22, + "probability": 0.9607 + }, + { + "start": 13046.56, + "end": 13047.16, + "probability": 0.1895 + }, + { + "start": 13047.16, + "end": 13048.18, + "probability": 0.504 + }, + { + "start": 13048.76, + "end": 13049.42, + "probability": 0.84 + }, + { + "start": 13049.88, + "end": 13052.94, + "probability": 0.6648 + }, + { + "start": 13053.5, + "end": 13055.46, + "probability": 0.7806 + }, + { + "start": 13056.18, + "end": 13057.74, + "probability": 0.8438 + }, + { + "start": 13058.32, + "end": 13060.54, + "probability": 0.661 + }, + { + "start": 13065.1, + "end": 13068.2, + "probability": 0.789 + }, + { + "start": 13069.3, + "end": 13070.78, + "probability": 0.8167 + }, + { + "start": 13072.42, + "end": 13073.56, + "probability": 0.8608 + }, + { + "start": 13074.76, + "end": 13080.12, + "probability": 0.967 + }, + { + "start": 13080.26, + "end": 13081.88, + "probability": 0.9641 + }, + { + "start": 13082.1, + "end": 13083.18, + "probability": 0.8744 + }, + { + "start": 13085.28, + "end": 13087.12, + "probability": 0.7621 + }, + { + "start": 13087.42, + "end": 13088.48, + "probability": 0.828 + }, + { + "start": 13088.62, + "end": 13090.08, + "probability": 0.508 + }, + { + "start": 13090.22, + "end": 13091.74, + "probability": 0.6714 + }, + { + "start": 13093.02, + "end": 13094.08, + "probability": 0.8909 + }, + { + "start": 13094.62, + "end": 13098.52, + "probability": 0.9624 + }, + { + "start": 13098.62, + "end": 13100.99, + "probability": 0.9785 + }, + { + "start": 13101.56, + "end": 13104.28, + "probability": 0.8824 + }, + { + "start": 13104.48, + "end": 13108.12, + "probability": 0.8434 + }, + { + "start": 13108.18, + "end": 13108.9, + "probability": 0.9365 + }, + { + "start": 13109.14, + "end": 13111.39, + "probability": 0.847 + }, + { + "start": 13113.34, + "end": 13116.5, + "probability": 0.9736 + }, + { + "start": 13116.64, + "end": 13122.54, + "probability": 0.9919 + }, + { + "start": 13123.36, + "end": 13124.18, + "probability": 0.7827 + }, + { + "start": 13124.32, + "end": 13129.86, + "probability": 0.9787 + }, + { + "start": 13130.76, + "end": 13131.9, + "probability": 0.8991 + }, + { + "start": 13133.86, + "end": 13135.72, + "probability": 0.998 + }, + { + "start": 13135.96, + "end": 13142.72, + "probability": 0.9966 + }, + { + "start": 13142.82, + "end": 13143.28, + "probability": 0.8726 + }, + { + "start": 13143.36, + "end": 13143.78, + "probability": 0.8598 + }, + { + "start": 13143.86, + "end": 13144.38, + "probability": 0.9051 + }, + { + "start": 13144.54, + "end": 13146.64, + "probability": 0.6337 + }, + { + "start": 13146.7, + "end": 13148.5, + "probability": 0.5967 + }, + { + "start": 13148.64, + "end": 13149.4, + "probability": 0.6396 + }, + { + "start": 13150.1, + "end": 13150.76, + "probability": 0.9769 + }, + { + "start": 13153.08, + "end": 13158.1, + "probability": 0.9386 + }, + { + "start": 13158.96, + "end": 13159.48, + "probability": 0.9849 + }, + { + "start": 13160.72, + "end": 13163.12, + "probability": 0.8717 + }, + { + "start": 13167.48, + "end": 13171.88, + "probability": 0.9886 + }, + { + "start": 13173.78, + "end": 13178.9, + "probability": 0.9895 + }, + { + "start": 13179.62, + "end": 13185.0, + "probability": 0.951 + }, + { + "start": 13185.84, + "end": 13186.32, + "probability": 0.9949 + }, + { + "start": 13187.04, + "end": 13189.7, + "probability": 0.9913 + }, + { + "start": 13191.08, + "end": 13193.66, + "probability": 0.7589 + }, + { + "start": 13194.4, + "end": 13197.5, + "probability": 0.8851 + }, + { + "start": 13197.58, + "end": 13199.89, + "probability": 0.9839 + }, + { + "start": 13200.58, + "end": 13201.12, + "probability": 0.8278 + }, + { + "start": 13214.92, + "end": 13215.44, + "probability": 0.2863 + }, + { + "start": 13215.44, + "end": 13215.44, + "probability": 0.0503 + }, + { + "start": 13215.44, + "end": 13215.44, + "probability": 0.0208 + }, + { + "start": 13215.44, + "end": 13215.44, + "probability": 0.1497 + }, + { + "start": 13215.44, + "end": 13215.44, + "probability": 0.0567 + }, + { + "start": 13215.44, + "end": 13215.44, + "probability": 0.2517 + }, + { + "start": 13215.44, + "end": 13221.76, + "probability": 0.2407 + }, + { + "start": 13222.86, + "end": 13225.52, + "probability": 0.8268 + }, + { + "start": 13228.46, + "end": 13230.78, + "probability": 0.9948 + }, + { + "start": 13230.78, + "end": 13234.54, + "probability": 0.998 + }, + { + "start": 13235.56, + "end": 13242.7, + "probability": 0.999 + }, + { + "start": 13243.54, + "end": 13246.86, + "probability": 0.9536 + }, + { + "start": 13246.98, + "end": 13247.72, + "probability": 0.6592 + }, + { + "start": 13248.1, + "end": 13249.82, + "probability": 0.9118 + }, + { + "start": 13250.5, + "end": 13253.19, + "probability": 0.8997 + }, + { + "start": 13253.72, + "end": 13254.86, + "probability": 0.9172 + }, + { + "start": 13255.02, + "end": 13256.38, + "probability": 0.9543 + }, + { + "start": 13256.76, + "end": 13260.38, + "probability": 0.991 + }, + { + "start": 13261.5, + "end": 13264.94, + "probability": 0.9921 + }, + { + "start": 13265.94, + "end": 13269.94, + "probability": 0.9974 + }, + { + "start": 13270.48, + "end": 13271.84, + "probability": 0.7977 + }, + { + "start": 13272.62, + "end": 13278.8, + "probability": 0.9946 + }, + { + "start": 13282.92, + "end": 13287.62, + "probability": 0.9973 + }, + { + "start": 13287.72, + "end": 13292.12, + "probability": 0.9978 + }, + { + "start": 13293.62, + "end": 13294.89, + "probability": 0.8372 + }, + { + "start": 13295.42, + "end": 13297.16, + "probability": 0.8937 + }, + { + "start": 13297.36, + "end": 13297.54, + "probability": 0.7762 + }, + { + "start": 13297.6, + "end": 13300.98, + "probability": 0.9982 + }, + { + "start": 13301.84, + "end": 13305.16, + "probability": 0.9979 + }, + { + "start": 13305.94, + "end": 13306.1, + "probability": 0.4294 + }, + { + "start": 13307.32, + "end": 13307.52, + "probability": 0.2446 + }, + { + "start": 13307.56, + "end": 13311.6, + "probability": 0.9647 + }, + { + "start": 13312.18, + "end": 13313.9, + "probability": 0.9351 + }, + { + "start": 13314.02, + "end": 13314.34, + "probability": 0.9557 + }, + { + "start": 13314.42, + "end": 13315.3, + "probability": 0.98 + }, + { + "start": 13315.74, + "end": 13315.96, + "probability": 0.2658 + }, + { + "start": 13316.02, + "end": 13316.46, + "probability": 0.8672 + }, + { + "start": 13316.52, + "end": 13317.44, + "probability": 0.7374 + }, + { + "start": 13317.5, + "end": 13318.14, + "probability": 0.7468 + }, + { + "start": 13318.48, + "end": 13319.86, + "probability": 0.8559 + }, + { + "start": 13319.92, + "end": 13321.04, + "probability": 0.9306 + }, + { + "start": 13321.38, + "end": 13325.96, + "probability": 0.9477 + }, + { + "start": 13328.06, + "end": 13329.6, + "probability": 0.949 + }, + { + "start": 13329.88, + "end": 13331.36, + "probability": 0.883 + }, + { + "start": 13331.44, + "end": 13339.34, + "probability": 0.9956 + }, + { + "start": 13341.3, + "end": 13343.18, + "probability": 0.9873 + }, + { + "start": 13343.52, + "end": 13344.78, + "probability": 0.7244 + }, + { + "start": 13344.94, + "end": 13345.38, + "probability": 0.9858 + }, + { + "start": 13346.56, + "end": 13350.17, + "probability": 0.9987 + }, + { + "start": 13350.94, + "end": 13355.92, + "probability": 0.9926 + }, + { + "start": 13359.04, + "end": 13365.16, + "probability": 0.9641 + }, + { + "start": 13365.84, + "end": 13366.96, + "probability": 0.8463 + }, + { + "start": 13367.46, + "end": 13368.34, + "probability": 0.9993 + }, + { + "start": 13368.86, + "end": 13370.2, + "probability": 0.8337 + }, + { + "start": 13371.2, + "end": 13373.36, + "probability": 0.885 + }, + { + "start": 13373.5, + "end": 13376.02, + "probability": 0.834 + }, + { + "start": 13377.12, + "end": 13379.52, + "probability": 0.9793 + }, + { + "start": 13381.66, + "end": 13382.98, + "probability": 0.6053 + }, + { + "start": 13383.74, + "end": 13385.7, + "probability": 0.7168 + }, + { + "start": 13386.66, + "end": 13387.24, + "probability": 0.638 + }, + { + "start": 13387.36, + "end": 13388.04, + "probability": 0.7188 + }, + { + "start": 13388.26, + "end": 13388.4, + "probability": 0.8772 + }, + { + "start": 13388.48, + "end": 13389.84, + "probability": 0.9951 + }, + { + "start": 13389.84, + "end": 13392.8, + "probability": 0.9622 + }, + { + "start": 13394.58, + "end": 13401.96, + "probability": 0.9898 + }, + { + "start": 13401.98, + "end": 13404.56, + "probability": 0.8755 + }, + { + "start": 13407.46, + "end": 13408.18, + "probability": 0.5716 + }, + { + "start": 13408.64, + "end": 13409.52, + "probability": 0.5323 + }, + { + "start": 13410.82, + "end": 13414.22, + "probability": 0.9173 + }, + { + "start": 13415.28, + "end": 13417.2, + "probability": 0.9896 + }, + { + "start": 13417.26, + "end": 13420.54, + "probability": 0.9778 + }, + { + "start": 13421.5, + "end": 13422.98, + "probability": 0.9861 + }, + { + "start": 13423.96, + "end": 13428.42, + "probability": 0.9791 + }, + { + "start": 13429.64, + "end": 13431.38, + "probability": 0.8115 + }, + { + "start": 13431.44, + "end": 13434.56, + "probability": 0.9735 + }, + { + "start": 13434.56, + "end": 13440.42, + "probability": 0.9977 + }, + { + "start": 13441.98, + "end": 13443.24, + "probability": 0.6758 + }, + { + "start": 13444.58, + "end": 13447.8, + "probability": 0.9922 + }, + { + "start": 13448.46, + "end": 13450.16, + "probability": 0.9245 + }, + { + "start": 13451.4, + "end": 13454.22, + "probability": 0.9824 + }, + { + "start": 13456.5, + "end": 13461.24, + "probability": 0.8126 + }, + { + "start": 13462.14, + "end": 13466.1, + "probability": 0.9974 + }, + { + "start": 13466.1, + "end": 13471.58, + "probability": 0.9888 + }, + { + "start": 13474.3, + "end": 13475.32, + "probability": 0.7622 + }, + { + "start": 13475.42, + "end": 13478.94, + "probability": 0.9948 + }, + { + "start": 13479.06, + "end": 13480.24, + "probability": 0.7038 + }, + { + "start": 13482.38, + "end": 13488.44, + "probability": 0.9961 + }, + { + "start": 13490.06, + "end": 13495.06, + "probability": 0.9962 + }, + { + "start": 13497.46, + "end": 13499.22, + "probability": 0.8699 + }, + { + "start": 13500.02, + "end": 13500.58, + "probability": 0.5861 + }, + { + "start": 13501.18, + "end": 13502.08, + "probability": 0.8663 + }, + { + "start": 13502.64, + "end": 13507.02, + "probability": 0.9478 + }, + { + "start": 13507.02, + "end": 13511.12, + "probability": 0.999 + }, + { + "start": 13511.12, + "end": 13516.18, + "probability": 0.9985 + }, + { + "start": 13517.68, + "end": 13518.64, + "probability": 0.8807 + }, + { + "start": 13519.18, + "end": 13520.42, + "probability": 0.8321 + }, + { + "start": 13520.42, + "end": 13521.2, + "probability": 0.9001 + }, + { + "start": 13521.86, + "end": 13525.46, + "probability": 0.9637 + }, + { + "start": 13527.82, + "end": 13530.88, + "probability": 0.9943 + }, + { + "start": 13531.1, + "end": 13533.06, + "probability": 0.8086 + }, + { + "start": 13533.5, + "end": 13535.64, + "probability": 0.6066 + }, + { + "start": 13536.1, + "end": 13536.6, + "probability": 0.202 + }, + { + "start": 13539.06, + "end": 13544.76, + "probability": 0.9803 + }, + { + "start": 13546.26, + "end": 13548.04, + "probability": 0.7923 + }, + { + "start": 13548.84, + "end": 13551.42, + "probability": 0.9905 + }, + { + "start": 13553.6, + "end": 13558.1, + "probability": 0.968 + }, + { + "start": 13558.86, + "end": 13559.46, + "probability": 0.8298 + }, + { + "start": 13559.58, + "end": 13561.92, + "probability": 0.8077 + }, + { + "start": 13562.62, + "end": 13563.68, + "probability": 0.9893 + }, + { + "start": 13564.66, + "end": 13566.72, + "probability": 0.7043 + }, + { + "start": 13567.36, + "end": 13570.52, + "probability": 0.9839 + }, + { + "start": 13577.54, + "end": 13580.34, + "probability": 0.7555 + }, + { + "start": 13580.86, + "end": 13583.54, + "probability": 0.0189 + }, + { + "start": 13588.92, + "end": 13589.9, + "probability": 0.0524 + }, + { + "start": 13590.1, + "end": 13591.12, + "probability": 0.2666 + }, + { + "start": 13591.88, + "end": 13592.96, + "probability": 0.7302 + }, + { + "start": 13594.06, + "end": 13598.26, + "probability": 0.9873 + }, + { + "start": 13598.94, + "end": 13602.22, + "probability": 0.9727 + }, + { + "start": 13603.76, + "end": 13607.98, + "probability": 0.9752 + }, + { + "start": 13608.8, + "end": 13609.42, + "probability": 0.7256 + }, + { + "start": 13610.78, + "end": 13612.74, + "probability": 0.9482 + }, + { + "start": 13613.22, + "end": 13614.42, + "probability": 0.964 + }, + { + "start": 13615.78, + "end": 13619.46, + "probability": 0.9766 + }, + { + "start": 13619.92, + "end": 13623.68, + "probability": 0.9922 + }, + { + "start": 13625.78, + "end": 13628.92, + "probability": 0.9795 + }, + { + "start": 13630.38, + "end": 13631.24, + "probability": 0.9356 + }, + { + "start": 13631.78, + "end": 13633.0, + "probability": 0.9902 + }, + { + "start": 13633.06, + "end": 13640.8, + "probability": 0.9064 + }, + { + "start": 13641.26, + "end": 13645.12, + "probability": 0.9692 + }, + { + "start": 13646.46, + "end": 13648.58, + "probability": 0.9816 + }, + { + "start": 13649.6, + "end": 13651.94, + "probability": 0.9791 + }, + { + "start": 13652.36, + "end": 13653.42, + "probability": 0.887 + }, + { + "start": 13653.8, + "end": 13654.62, + "probability": 0.7777 + }, + { + "start": 13655.02, + "end": 13656.96, + "probability": 0.743 + }, + { + "start": 13657.5, + "end": 13657.64, + "probability": 0.2588 + }, + { + "start": 13657.78, + "end": 13663.4, + "probability": 0.9242 + }, + { + "start": 13664.62, + "end": 13665.4, + "probability": 0.5117 + }, + { + "start": 13665.48, + "end": 13667.88, + "probability": 0.958 + }, + { + "start": 13669.12, + "end": 13669.58, + "probability": 0.8337 + }, + { + "start": 13670.76, + "end": 13673.66, + "probability": 0.5473 + }, + { + "start": 13674.46, + "end": 13677.66, + "probability": 0.7437 + }, + { + "start": 13678.84, + "end": 13679.12, + "probability": 0.9185 + }, + { + "start": 13682.38, + "end": 13687.54, + "probability": 0.9261 + }, + { + "start": 13688.36, + "end": 13688.92, + "probability": 0.9861 + }, + { + "start": 13689.72, + "end": 13691.28, + "probability": 0.9658 + }, + { + "start": 13691.9, + "end": 13693.36, + "probability": 0.9811 + }, + { + "start": 13693.84, + "end": 13697.16, + "probability": 0.9849 + }, + { + "start": 13697.76, + "end": 13700.66, + "probability": 0.9991 + }, + { + "start": 13701.92, + "end": 13703.82, + "probability": 0.875 + }, + { + "start": 13703.96, + "end": 13705.8, + "probability": 0.9439 + }, + { + "start": 13706.2, + "end": 13708.18, + "probability": 0.9844 + }, + { + "start": 13709.32, + "end": 13715.32, + "probability": 0.9919 + }, + { + "start": 13715.72, + "end": 13716.21, + "probability": 0.9648 + }, + { + "start": 13717.04, + "end": 13717.64, + "probability": 0.602 + }, + { + "start": 13719.12, + "end": 13719.98, + "probability": 0.7533 + }, + { + "start": 13720.4, + "end": 13720.94, + "probability": 0.5686 + }, + { + "start": 13721.5, + "end": 13722.22, + "probability": 0.7509 + }, + { + "start": 13726.67, + "end": 13730.94, + "probability": 0.8817 + }, + { + "start": 13734.2, + "end": 13739.54, + "probability": 0.7845 + }, + { + "start": 13739.6, + "end": 13740.08, + "probability": 0.9734 + }, + { + "start": 13740.46, + "end": 13743.72, + "probability": 0.9251 + }, + { + "start": 13744.62, + "end": 13746.9, + "probability": 0.9064 + }, + { + "start": 13747.32, + "end": 13748.48, + "probability": 0.9971 + }, + { + "start": 13748.76, + "end": 13752.78, + "probability": 0.9829 + }, + { + "start": 13753.28, + "end": 13753.7, + "probability": 0.8238 + }, + { + "start": 13754.58, + "end": 13758.8, + "probability": 0.8501 + }, + { + "start": 13759.42, + "end": 13760.42, + "probability": 0.948 + }, + { + "start": 13763.72, + "end": 13768.48, + "probability": 0.9387 + }, + { + "start": 13769.04, + "end": 13770.86, + "probability": 0.9757 + }, + { + "start": 13771.68, + "end": 13773.88, + "probability": 0.9566 + }, + { + "start": 13774.4, + "end": 13775.5, + "probability": 0.982 + }, + { + "start": 13777.4, + "end": 13778.3, + "probability": 0.7652 + }, + { + "start": 13779.48, + "end": 13780.38, + "probability": 0.8737 + }, + { + "start": 13781.68, + "end": 13783.12, + "probability": 0.9916 + }, + { + "start": 13784.3, + "end": 13786.4, + "probability": 0.9351 + }, + { + "start": 13786.8, + "end": 13787.3, + "probability": 0.964 + }, + { + "start": 13787.92, + "end": 13794.52, + "probability": 0.9956 + }, + { + "start": 13794.58, + "end": 13798.7, + "probability": 0.9985 + }, + { + "start": 13798.76, + "end": 13803.48, + "probability": 0.9893 + }, + { + "start": 13803.8, + "end": 13806.44, + "probability": 0.9962 + }, + { + "start": 13807.46, + "end": 13808.68, + "probability": 0.8987 + }, + { + "start": 13809.78, + "end": 13812.46, + "probability": 0.9935 + }, + { + "start": 13813.64, + "end": 13817.04, + "probability": 0.9949 + }, + { + "start": 13817.62, + "end": 13820.54, + "probability": 0.9836 + }, + { + "start": 13820.64, + "end": 13821.64, + "probability": 0.9267 + }, + { + "start": 13822.96, + "end": 13825.54, + "probability": 0.8679 + }, + { + "start": 13826.12, + "end": 13828.6, + "probability": 0.9878 + }, + { + "start": 13830.1, + "end": 13830.84, + "probability": 0.342 + }, + { + "start": 13833.8, + "end": 13841.28, + "probability": 0.9555 + }, + { + "start": 13841.48, + "end": 13843.04, + "probability": 0.8287 + }, + { + "start": 13843.96, + "end": 13844.54, + "probability": 0.7615 + }, + { + "start": 13844.8, + "end": 13851.18, + "probability": 0.8403 + }, + { + "start": 13851.36, + "end": 13852.0, + "probability": 0.6324 + }, + { + "start": 13853.08, + "end": 13856.66, + "probability": 0.9907 + }, + { + "start": 13857.5, + "end": 13858.6, + "probability": 0.8164 + }, + { + "start": 13859.16, + "end": 13859.42, + "probability": 0.3284 + }, + { + "start": 13859.9, + "end": 13862.64, + "probability": 0.9196 + }, + { + "start": 13862.8, + "end": 13863.68, + "probability": 0.4646 + }, + { + "start": 13864.12, + "end": 13865.16, + "probability": 0.9106 + }, + { + "start": 13865.9, + "end": 13869.62, + "probability": 0.8414 + }, + { + "start": 13871.52, + "end": 13875.14, + "probability": 0.9766 + }, + { + "start": 13875.84, + "end": 13876.08, + "probability": 0.9325 + }, + { + "start": 13876.36, + "end": 13878.52, + "probability": 0.86 + }, + { + "start": 13878.72, + "end": 13879.28, + "probability": 0.8241 + }, + { + "start": 13879.38, + "end": 13880.18, + "probability": 0.5564 + }, + { + "start": 13881.32, + "end": 13883.9, + "probability": 0.5503 + }, + { + "start": 13884.44, + "end": 13885.52, + "probability": 0.7946 + }, + { + "start": 13886.44, + "end": 13887.22, + "probability": 0.9169 + }, + { + "start": 13887.3, + "end": 13887.7, + "probability": 0.4864 + }, + { + "start": 13887.7, + "end": 13889.42, + "probability": 0.8003 + }, + { + "start": 13889.52, + "end": 13892.82, + "probability": 0.8475 + }, + { + "start": 13896.16, + "end": 13899.48, + "probability": 0.7876 + }, + { + "start": 13899.54, + "end": 13901.16, + "probability": 0.9626 + }, + { + "start": 13901.6, + "end": 13904.96, + "probability": 0.9854 + }, + { + "start": 13904.96, + "end": 13907.82, + "probability": 0.9519 + }, + { + "start": 13907.94, + "end": 13908.64, + "probability": 0.8878 + }, + { + "start": 13908.7, + "end": 13909.2, + "probability": 0.5222 + }, + { + "start": 13910.94, + "end": 13912.36, + "probability": 0.9011 + }, + { + "start": 13912.48, + "end": 13912.88, + "probability": 0.634 + }, + { + "start": 13913.2, + "end": 13914.3, + "probability": 0.6619 + }, + { + "start": 13914.9, + "end": 13919.84, + "probability": 0.9565 + }, + { + "start": 13920.04, + "end": 13920.62, + "probability": 0.3542 + }, + { + "start": 13921.92, + "end": 13925.26, + "probability": 0.7417 + }, + { + "start": 13933.08, + "end": 13934.72, + "probability": 0.5697 + }, + { + "start": 13937.18, + "end": 13939.34, + "probability": 0.9749 + }, + { + "start": 13940.56, + "end": 13940.98, + "probability": 0.9753 + }, + { + "start": 13942.56, + "end": 13945.96, + "probability": 0.9894 + }, + { + "start": 13946.9, + "end": 13947.11, + "probability": 0.9224 + }, + { + "start": 13949.26, + "end": 13952.28, + "probability": 0.995 + }, + { + "start": 13953.54, + "end": 13954.12, + "probability": 0.6201 + }, + { + "start": 13955.48, + "end": 13958.24, + "probability": 0.6025 + }, + { + "start": 13959.74, + "end": 13961.24, + "probability": 0.9833 + }, + { + "start": 13964.52, + "end": 13965.54, + "probability": 0.8716 + }, + { + "start": 13966.62, + "end": 13969.08, + "probability": 0.8709 + }, + { + "start": 13969.78, + "end": 13971.34, + "probability": 0.8797 + }, + { + "start": 13973.24, + "end": 13973.96, + "probability": 0.694 + }, + { + "start": 13974.84, + "end": 13978.5, + "probability": 0.9061 + }, + { + "start": 13979.72, + "end": 13983.5, + "probability": 0.9856 + }, + { + "start": 13984.24, + "end": 13986.36, + "probability": 0.9416 + }, + { + "start": 13987.6, + "end": 13989.18, + "probability": 0.9427 + }, + { + "start": 13990.14, + "end": 13991.18, + "probability": 0.665 + }, + { + "start": 13992.34, + "end": 13993.54, + "probability": 0.9917 + }, + { + "start": 13996.92, + "end": 13998.82, + "probability": 0.9629 + }, + { + "start": 13999.18, + "end": 13999.6, + "probability": 0.29 + }, + { + "start": 13999.64, + "end": 14000.44, + "probability": 0.7237 + }, + { + "start": 14001.34, + "end": 14003.06, + "probability": 0.8347 + }, + { + "start": 14005.46, + "end": 14009.2, + "probability": 0.9663 + }, + { + "start": 14009.86, + "end": 14017.74, + "probability": 0.9822 + }, + { + "start": 14021.84, + "end": 14022.68, + "probability": 0.7651 + }, + { + "start": 14025.04, + "end": 14028.9, + "probability": 0.9517 + }, + { + "start": 14030.46, + "end": 14031.06, + "probability": 0.0809 + }, + { + "start": 14031.72, + "end": 14033.5, + "probability": 0.9031 + }, + { + "start": 14035.5, + "end": 14037.0, + "probability": 0.891 + }, + { + "start": 14037.28, + "end": 14038.66, + "probability": 0.9424 + }, + { + "start": 14039.86, + "end": 14046.18, + "probability": 0.8948 + }, + { + "start": 14047.06, + "end": 14047.3, + "probability": 0.587 + }, + { + "start": 14048.0, + "end": 14050.98, + "probability": 0.9927 + }, + { + "start": 14052.84, + "end": 14053.64, + "probability": 0.8015 + }, + { + "start": 14054.78, + "end": 14058.32, + "probability": 0.9792 + }, + { + "start": 14059.96, + "end": 14063.38, + "probability": 0.9654 + }, + { + "start": 14063.8, + "end": 14065.32, + "probability": 0.7301 + }, + { + "start": 14066.42, + "end": 14070.52, + "probability": 0.946 + }, + { + "start": 14071.22, + "end": 14076.94, + "probability": 0.993 + }, + { + "start": 14077.56, + "end": 14079.14, + "probability": 0.8508 + }, + { + "start": 14079.84, + "end": 14081.99, + "probability": 0.889 + }, + { + "start": 14083.72, + "end": 14085.92, + "probability": 0.9727 + }, + { + "start": 14086.48, + "end": 14087.62, + "probability": 0.8702 + }, + { + "start": 14088.84, + "end": 14090.68, + "probability": 0.8989 + }, + { + "start": 14093.22, + "end": 14096.7, + "probability": 0.9805 + }, + { + "start": 14098.12, + "end": 14098.6, + "probability": 0.823 + }, + { + "start": 14099.74, + "end": 14109.0, + "probability": 0.8914 + }, + { + "start": 14109.6, + "end": 14110.0, + "probability": 0.6451 + }, + { + "start": 14110.44, + "end": 14111.18, + "probability": 0.8046 + }, + { + "start": 14111.54, + "end": 14113.96, + "probability": 0.9963 + }, + { + "start": 14114.62, + "end": 14115.0, + "probability": 0.9802 + }, + { + "start": 14116.32, + "end": 14116.72, + "probability": 0.8755 + }, + { + "start": 14117.78, + "end": 14119.7, + "probability": 0.9572 + }, + { + "start": 14120.34, + "end": 14123.7, + "probability": 0.9753 + }, + { + "start": 14125.76, + "end": 14126.3, + "probability": 0.3394 + }, + { + "start": 14127.2, + "end": 14130.5, + "probability": 0.7739 + }, + { + "start": 14131.24, + "end": 14131.92, + "probability": 0.4444 + }, + { + "start": 14134.24, + "end": 14135.16, + "probability": 0.5878 + }, + { + "start": 14135.32, + "end": 14136.22, + "probability": 0.9491 + }, + { + "start": 14136.46, + "end": 14136.88, + "probability": 0.9499 + }, + { + "start": 14137.86, + "end": 14140.52, + "probability": 0.8464 + }, + { + "start": 14141.26, + "end": 14141.26, + "probability": 0.0393 + }, + { + "start": 14141.26, + "end": 14148.34, + "probability": 0.8685 + }, + { + "start": 14148.72, + "end": 14151.29, + "probability": 0.9105 + }, + { + "start": 14153.0, + "end": 14153.3, + "probability": 0.845 + }, + { + "start": 14156.32, + "end": 14156.89, + "probability": 0.452 + }, + { + "start": 14158.42, + "end": 14163.44, + "probability": 0.892 + }, + { + "start": 14164.24, + "end": 14167.12, + "probability": 0.8538 + }, + { + "start": 14167.48, + "end": 14170.62, + "probability": 0.9174 + }, + { + "start": 14170.76, + "end": 14176.02, + "probability": 0.9107 + }, + { + "start": 14183.2, + "end": 14183.68, + "probability": 0.6712 + }, + { + "start": 14184.82, + "end": 14186.84, + "probability": 0.8918 + }, + { + "start": 14188.04, + "end": 14191.8, + "probability": 0.7994 + }, + { + "start": 14192.42, + "end": 14195.52, + "probability": 0.9452 + }, + { + "start": 14195.86, + "end": 14197.25, + "probability": 0.9238 + }, + { + "start": 14197.92, + "end": 14198.88, + "probability": 0.6791 + }, + { + "start": 14200.58, + "end": 14204.38, + "probability": 0.7384 + }, + { + "start": 14205.18, + "end": 14205.98, + "probability": 0.726 + }, + { + "start": 14206.08, + "end": 14210.9, + "probability": 0.8701 + }, + { + "start": 14211.3, + "end": 14212.18, + "probability": 0.5667 + }, + { + "start": 14212.36, + "end": 14212.48, + "probability": 0.3993 + }, + { + "start": 14214.12, + "end": 14216.66, + "probability": 0.6959 + }, + { + "start": 14216.98, + "end": 14217.98, + "probability": 0.9871 + }, + { + "start": 14218.08, + "end": 14219.17, + "probability": 0.8995 + }, + { + "start": 14219.66, + "end": 14221.2, + "probability": 0.8983 + }, + { + "start": 14223.32, + "end": 14224.28, + "probability": 0.6659 + }, + { + "start": 14225.6, + "end": 14228.28, + "probability": 0.5615 + }, + { + "start": 14229.04, + "end": 14234.28, + "probability": 0.9893 + }, + { + "start": 14234.34, + "end": 14237.64, + "probability": 0.9258 + }, + { + "start": 14237.98, + "end": 14238.92, + "probability": 0.6148 + }, + { + "start": 14239.46, + "end": 14243.0, + "probability": 0.7108 + }, + { + "start": 14243.02, + "end": 14247.68, + "probability": 0.99 + }, + { + "start": 14249.42, + "end": 14251.14, + "probability": 0.8545 + }, + { + "start": 14253.76, + "end": 14255.66, + "probability": 0.9695 + }, + { + "start": 14264.72, + "end": 14265.4, + "probability": 0.6492 + }, + { + "start": 14266.8, + "end": 14269.45, + "probability": 0.9816 + }, + { + "start": 14271.4, + "end": 14272.58, + "probability": 0.6741 + }, + { + "start": 14277.1, + "end": 14280.02, + "probability": 0.9949 + }, + { + "start": 14281.02, + "end": 14283.96, + "probability": 0.999 + }, + { + "start": 14285.9, + "end": 14289.44, + "probability": 0.9922 + }, + { + "start": 14291.02, + "end": 14292.3, + "probability": 0.5116 + }, + { + "start": 14294.04, + "end": 14296.36, + "probability": 0.4294 + }, + { + "start": 14297.16, + "end": 14298.42, + "probability": 0.9493 + }, + { + "start": 14299.66, + "end": 14303.54, + "probability": 0.8115 + }, + { + "start": 14305.6, + "end": 14306.56, + "probability": 0.8755 + }, + { + "start": 14307.34, + "end": 14310.1, + "probability": 0.9731 + }, + { + "start": 14310.7, + "end": 14311.78, + "probability": 0.8776 + }, + { + "start": 14313.26, + "end": 14315.26, + "probability": 0.9083 + }, + { + "start": 14316.52, + "end": 14320.96, + "probability": 0.958 + }, + { + "start": 14322.16, + "end": 14322.65, + "probability": 0.5001 + }, + { + "start": 14324.42, + "end": 14327.74, + "probability": 0.9972 + }, + { + "start": 14328.34, + "end": 14329.16, + "probability": 0.9842 + }, + { + "start": 14330.16, + "end": 14332.62, + "probability": 0.8222 + }, + { + "start": 14333.22, + "end": 14334.58, + "probability": 0.9192 + }, + { + "start": 14335.32, + "end": 14336.18, + "probability": 0.9948 + }, + { + "start": 14338.06, + "end": 14339.84, + "probability": 0.6668 + }, + { + "start": 14341.32, + "end": 14344.4, + "probability": 0.9969 + }, + { + "start": 14346.46, + "end": 14349.82, + "probability": 0.8655 + }, + { + "start": 14350.38, + "end": 14351.56, + "probability": 0.7773 + }, + { + "start": 14352.7, + "end": 14356.2, + "probability": 0.959 + }, + { + "start": 14356.2, + "end": 14361.66, + "probability": 0.9573 + }, + { + "start": 14361.76, + "end": 14362.4, + "probability": 0.9175 + }, + { + "start": 14363.0, + "end": 14364.48, + "probability": 0.9966 + }, + { + "start": 14365.16, + "end": 14368.12, + "probability": 0.784 + }, + { + "start": 14369.4, + "end": 14372.12, + "probability": 0.9297 + }, + { + "start": 14372.88, + "end": 14374.26, + "probability": 0.999 + }, + { + "start": 14375.56, + "end": 14376.34, + "probability": 0.7493 + }, + { + "start": 14377.86, + "end": 14380.76, + "probability": 0.9683 + }, + { + "start": 14382.64, + "end": 14383.92, + "probability": 0.9614 + }, + { + "start": 14384.48, + "end": 14389.0, + "probability": 0.9437 + }, + { + "start": 14389.5, + "end": 14391.04, + "probability": 0.9846 + }, + { + "start": 14391.14, + "end": 14391.96, + "probability": 0.9664 + }, + { + "start": 14393.0, + "end": 14396.46, + "probability": 0.9007 + }, + { + "start": 14396.64, + "end": 14397.32, + "probability": 0.9654 + }, + { + "start": 14398.24, + "end": 14400.84, + "probability": 0.9022 + }, + { + "start": 14401.36, + "end": 14402.74, + "probability": 0.6382 + }, + { + "start": 14404.42, + "end": 14405.82, + "probability": 0.7999 + }, + { + "start": 14406.66, + "end": 14409.68, + "probability": 0.9569 + }, + { + "start": 14410.78, + "end": 14413.7, + "probability": 0.9407 + }, + { + "start": 14414.58, + "end": 14415.58, + "probability": 0.9916 + }, + { + "start": 14416.48, + "end": 14420.64, + "probability": 0.9873 + }, + { + "start": 14421.9, + "end": 14422.64, + "probability": 0.7669 + }, + { + "start": 14423.2, + "end": 14424.14, + "probability": 0.9945 + }, + { + "start": 14425.8, + "end": 14426.44, + "probability": 0.7734 + }, + { + "start": 14427.6, + "end": 14428.96, + "probability": 0.9785 + }, + { + "start": 14430.96, + "end": 14431.86, + "probability": 0.9859 + }, + { + "start": 14432.44, + "end": 14435.3, + "probability": 0.8827 + }, + { + "start": 14435.94, + "end": 14436.74, + "probability": 0.8166 + }, + { + "start": 14438.1, + "end": 14441.2, + "probability": 0.9264 + }, + { + "start": 14441.22, + "end": 14443.98, + "probability": 0.8665 + }, + { + "start": 14445.3, + "end": 14447.12, + "probability": 0.86 + }, + { + "start": 14448.0, + "end": 14448.6, + "probability": 0.8762 + }, + { + "start": 14449.28, + "end": 14450.04, + "probability": 0.7812 + }, + { + "start": 14450.82, + "end": 14451.02, + "probability": 0.6017 + }, + { + "start": 14452.4, + "end": 14453.2, + "probability": 0.8929 + }, + { + "start": 14454.66, + "end": 14457.02, + "probability": 0.8876 + }, + { + "start": 14457.58, + "end": 14459.46, + "probability": 0.6818 + }, + { + "start": 14460.12, + "end": 14463.76, + "probability": 0.9707 + }, + { + "start": 14464.0, + "end": 14465.58, + "probability": 0.7179 + }, + { + "start": 14466.18, + "end": 14468.2, + "probability": 0.8696 + }, + { + "start": 14469.74, + "end": 14471.66, + "probability": 0.9596 + }, + { + "start": 14472.22, + "end": 14472.92, + "probability": 0.9779 + }, + { + "start": 14476.1, + "end": 14479.16, + "probability": 0.9797 + }, + { + "start": 14480.12, + "end": 14482.08, + "probability": 0.7921 + }, + { + "start": 14483.22, + "end": 14485.8, + "probability": 0.9987 + }, + { + "start": 14487.14, + "end": 14488.72, + "probability": 0.901 + }, + { + "start": 14489.36, + "end": 14493.06, + "probability": 0.995 + }, + { + "start": 14493.88, + "end": 14495.54, + "probability": 0.6109 + }, + { + "start": 14495.74, + "end": 14497.72, + "probability": 0.7525 + }, + { + "start": 14500.36, + "end": 14502.6, + "probability": 0.9945 + }, + { + "start": 14503.54, + "end": 14506.12, + "probability": 0.9988 + }, + { + "start": 14507.12, + "end": 14511.06, + "probability": 0.9614 + }, + { + "start": 14511.46, + "end": 14515.4, + "probability": 0.9808 + }, + { + "start": 14516.34, + "end": 14517.18, + "probability": 0.6978 + }, + { + "start": 14517.7, + "end": 14519.34, + "probability": 0.9972 + }, + { + "start": 14520.62, + "end": 14521.02, + "probability": 0.8596 + }, + { + "start": 14522.14, + "end": 14522.92, + "probability": 0.9912 + }, + { + "start": 14523.58, + "end": 14524.6, + "probability": 0.9951 + }, + { + "start": 14525.14, + "end": 14528.56, + "probability": 0.9922 + }, + { + "start": 14529.28, + "end": 14530.56, + "probability": 0.9991 + }, + { + "start": 14532.22, + "end": 14534.32, + "probability": 0.9043 + }, + { + "start": 14534.42, + "end": 14534.68, + "probability": 0.7094 + }, + { + "start": 14536.24, + "end": 14537.94, + "probability": 0.9919 + }, + { + "start": 14539.22, + "end": 14544.4, + "probability": 0.9913 + }, + { + "start": 14546.26, + "end": 14546.98, + "probability": 0.8879 + }, + { + "start": 14548.48, + "end": 14552.74, + "probability": 0.9805 + }, + { + "start": 14552.88, + "end": 14553.08, + "probability": 0.53 + }, + { + "start": 14553.14, + "end": 14553.56, + "probability": 0.8842 + }, + { + "start": 14554.98, + "end": 14556.3, + "probability": 0.8932 + }, + { + "start": 14556.36, + "end": 14562.36, + "probability": 0.9771 + }, + { + "start": 14563.44, + "end": 14565.28, + "probability": 0.8765 + }, + { + "start": 14567.02, + "end": 14568.06, + "probability": 0.9712 + }, + { + "start": 14569.52, + "end": 14571.22, + "probability": 0.9755 + }, + { + "start": 14571.48, + "end": 14575.92, + "probability": 0.9601 + }, + { + "start": 14578.64, + "end": 14580.12, + "probability": 0.9623 + }, + { + "start": 14580.56, + "end": 14581.96, + "probability": 0.9703 + }, + { + "start": 14582.8, + "end": 14585.12, + "probability": 0.8457 + }, + { + "start": 14585.82, + "end": 14586.98, + "probability": 0.9949 + }, + { + "start": 14587.7, + "end": 14589.36, + "probability": 0.9709 + }, + { + "start": 14591.24, + "end": 14591.76, + "probability": 0.9775 + }, + { + "start": 14592.52, + "end": 14594.24, + "probability": 0.5476 + }, + { + "start": 14596.26, + "end": 14600.68, + "probability": 0.9968 + }, + { + "start": 14603.28, + "end": 14609.15, + "probability": 0.9642 + }, + { + "start": 14610.6, + "end": 14610.92, + "probability": 0.74 + }, + { + "start": 14611.02, + "end": 14613.54, + "probability": 0.965 + }, + { + "start": 14613.66, + "end": 14614.36, + "probability": 0.8396 + }, + { + "start": 14616.64, + "end": 14619.12, + "probability": 0.9929 + }, + { + "start": 14619.66, + "end": 14620.56, + "probability": 0.9918 + }, + { + "start": 14621.06, + "end": 14624.46, + "probability": 0.9967 + }, + { + "start": 14624.52, + "end": 14626.92, + "probability": 0.9995 + }, + { + "start": 14628.52, + "end": 14629.49, + "probability": 0.9827 + }, + { + "start": 14630.2, + "end": 14632.32, + "probability": 0.9844 + }, + { + "start": 14636.78, + "end": 14637.72, + "probability": 0.6919 + }, + { + "start": 14640.24, + "end": 14641.46, + "probability": 0.9294 + }, + { + "start": 14641.54, + "end": 14644.1, + "probability": 0.958 + }, + { + "start": 14644.6, + "end": 14645.12, + "probability": 0.8458 + }, + { + "start": 14645.48, + "end": 14645.7, + "probability": 0.9289 + }, + { + "start": 14647.46, + "end": 14648.25, + "probability": 0.9666 + }, + { + "start": 14651.34, + "end": 14652.6, + "probability": 0.9783 + }, + { + "start": 14653.66, + "end": 14656.7, + "probability": 0.9862 + }, + { + "start": 14656.76, + "end": 14660.94, + "probability": 0.9834 + }, + { + "start": 14662.16, + "end": 14663.9, + "probability": 0.996 + }, + { + "start": 14664.52, + "end": 14666.98, + "probability": 0.6648 + }, + { + "start": 14667.74, + "end": 14670.34, + "probability": 0.9878 + }, + { + "start": 14672.36, + "end": 14672.78, + "probability": 0.599 + }, + { + "start": 14673.7, + "end": 14674.14, + "probability": 0.942 + }, + { + "start": 14674.66, + "end": 14675.18, + "probability": 0.8481 + }, + { + "start": 14675.3, + "end": 14676.46, + "probability": 0.9883 + }, + { + "start": 14678.16, + "end": 14680.58, + "probability": 0.554 + }, + { + "start": 14682.78, + "end": 14686.44, + "probability": 0.9908 + }, + { + "start": 14686.64, + "end": 14686.86, + "probability": 0.8226 + }, + { + "start": 14689.38, + "end": 14690.06, + "probability": 0.9375 + }, + { + "start": 14690.96, + "end": 14691.32, + "probability": 0.9268 + }, + { + "start": 14693.12, + "end": 14696.76, + "probability": 0.9724 + }, + { + "start": 14697.3, + "end": 14699.28, + "probability": 0.7366 + }, + { + "start": 14699.76, + "end": 14700.25, + "probability": 0.9189 + }, + { + "start": 14700.64, + "end": 14702.56, + "probability": 0.9801 + }, + { + "start": 14704.92, + "end": 14707.5, + "probability": 0.7698 + }, + { + "start": 14709.06, + "end": 14710.22, + "probability": 0.9562 + }, + { + "start": 14711.34, + "end": 14712.58, + "probability": 0.6974 + }, + { + "start": 14713.74, + "end": 14717.7, + "probability": 0.9274 + }, + { + "start": 14717.82, + "end": 14718.58, + "probability": 0.9067 + }, + { + "start": 14718.72, + "end": 14719.64, + "probability": 0.9451 + }, + { + "start": 14719.78, + "end": 14721.12, + "probability": 0.7504 + }, + { + "start": 14722.52, + "end": 14723.24, + "probability": 0.8384 + }, + { + "start": 14726.44, + "end": 14728.8, + "probability": 0.9487 + }, + { + "start": 14729.16, + "end": 14731.42, + "probability": 0.9938 + }, + { + "start": 14732.24, + "end": 14735.32, + "probability": 0.9908 + }, + { + "start": 14736.04, + "end": 14737.8, + "probability": 0.9961 + }, + { + "start": 14739.14, + "end": 14743.1, + "probability": 0.9796 + }, + { + "start": 14743.12, + "end": 14744.96, + "probability": 0.9098 + }, + { + "start": 14746.52, + "end": 14747.38, + "probability": 0.8965 + }, + { + "start": 14748.62, + "end": 14750.36, + "probability": 0.9646 + }, + { + "start": 14750.74, + "end": 14753.68, + "probability": 0.9387 + }, + { + "start": 14754.72, + "end": 14756.54, + "probability": 0.9839 + }, + { + "start": 14758.64, + "end": 14760.98, + "probability": 0.8583 + }, + { + "start": 14761.7, + "end": 14763.28, + "probability": 0.9386 + }, + { + "start": 14764.5, + "end": 14766.0, + "probability": 0.9845 + }, + { + "start": 14768.1, + "end": 14769.62, + "probability": 0.9807 + }, + { + "start": 14770.4, + "end": 14771.68, + "probability": 0.9949 + }, + { + "start": 14772.74, + "end": 14773.46, + "probability": 0.7756 + }, + { + "start": 14774.68, + "end": 14777.67, + "probability": 0.9936 + }, + { + "start": 14780.88, + "end": 14782.94, + "probability": 0.8809 + }, + { + "start": 14783.66, + "end": 14784.48, + "probability": 0.8078 + }, + { + "start": 14786.46, + "end": 14788.36, + "probability": 0.8705 + }, + { + "start": 14790.76, + "end": 14791.2, + "probability": 0.9629 + }, + { + "start": 14793.3, + "end": 14795.6, + "probability": 0.9993 + }, + { + "start": 14796.24, + "end": 14798.54, + "probability": 0.9888 + }, + { + "start": 14799.34, + "end": 14800.2, + "probability": 0.9922 + }, + { + "start": 14800.5, + "end": 14801.76, + "probability": 0.9565 + }, + { + "start": 14802.56, + "end": 14804.67, + "probability": 0.9919 + }, + { + "start": 14805.5, + "end": 14806.76, + "probability": 0.996 + }, + { + "start": 14807.92, + "end": 14809.22, + "probability": 0.9979 + }, + { + "start": 14811.5, + "end": 14814.25, + "probability": 0.9814 + }, + { + "start": 14814.38, + "end": 14814.5, + "probability": 0.4835 + }, + { + "start": 14815.6, + "end": 14816.18, + "probability": 0.7936 + }, + { + "start": 14818.26, + "end": 14820.82, + "probability": 0.9893 + }, + { + "start": 14821.1, + "end": 14824.88, + "probability": 0.9487 + }, + { + "start": 14825.7, + "end": 14826.66, + "probability": 0.956 + }, + { + "start": 14828.56, + "end": 14829.26, + "probability": 0.9741 + }, + { + "start": 14830.7, + "end": 14832.68, + "probability": 0.8364 + }, + { + "start": 14833.56, + "end": 14834.5, + "probability": 0.8918 + }, + { + "start": 14835.3, + "end": 14837.9, + "probability": 0.9958 + }, + { + "start": 14838.12, + "end": 14838.42, + "probability": 0.7213 + }, + { + "start": 14839.24, + "end": 14840.16, + "probability": 0.5316 + }, + { + "start": 14840.28, + "end": 14840.62, + "probability": 0.8789 + }, + { + "start": 14840.68, + "end": 14841.08, + "probability": 0.8176 + }, + { + "start": 14841.28, + "end": 14841.96, + "probability": 0.7105 + }, + { + "start": 14842.66, + "end": 14844.58, + "probability": 0.9235 + }, + { + "start": 14847.94, + "end": 14850.88, + "probability": 0.6744 + }, + { + "start": 14852.66, + "end": 14853.24, + "probability": 0.9415 + }, + { + "start": 14855.54, + "end": 14859.16, + "probability": 0.9818 + }, + { + "start": 14859.84, + "end": 14861.1, + "probability": 0.991 + }, + { + "start": 14861.76, + "end": 14863.72, + "probability": 0.8688 + }, + { + "start": 14865.78, + "end": 14866.06, + "probability": 0.8416 + }, + { + "start": 14866.76, + "end": 14870.42, + "probability": 0.9951 + }, + { + "start": 14871.42, + "end": 14873.2, + "probability": 0.7541 + }, + { + "start": 14875.12, + "end": 14877.34, + "probability": 0.9924 + }, + { + "start": 14878.44, + "end": 14879.36, + "probability": 0.988 + }, + { + "start": 14880.58, + "end": 14882.82, + "probability": 0.9971 + }, + { + "start": 14883.66, + "end": 14886.28, + "probability": 0.7275 + }, + { + "start": 14887.2, + "end": 14887.64, + "probability": 0.9401 + }, + { + "start": 14889.14, + "end": 14892.02, + "probability": 0.9928 + }, + { + "start": 14893.4, + "end": 14897.8, + "probability": 0.9713 + }, + { + "start": 14898.72, + "end": 14899.96, + "probability": 0.9878 + }, + { + "start": 14900.82, + "end": 14908.06, + "probability": 0.9892 + }, + { + "start": 14908.62, + "end": 14910.5, + "probability": 0.6782 + }, + { + "start": 14911.16, + "end": 14912.12, + "probability": 0.9199 + }, + { + "start": 14913.42, + "end": 14914.42, + "probability": 0.7953 + }, + { + "start": 14915.32, + "end": 14918.0, + "probability": 0.964 + }, + { + "start": 14918.7, + "end": 14920.32, + "probability": 0.7062 + }, + { + "start": 14921.28, + "end": 14922.18, + "probability": 0.8646 + }, + { + "start": 14923.46, + "end": 14924.53, + "probability": 0.948 + }, + { + "start": 14925.8, + "end": 14927.48, + "probability": 0.9951 + }, + { + "start": 14927.8, + "end": 14929.32, + "probability": 0.9915 + }, + { + "start": 14930.22, + "end": 14934.2, + "probability": 0.9352 + }, + { + "start": 14934.8, + "end": 14937.32, + "probability": 0.666 + }, + { + "start": 14938.08, + "end": 14938.9, + "probability": 0.8753 + }, + { + "start": 14939.78, + "end": 14944.68, + "probability": 0.9971 + }, + { + "start": 14945.0, + "end": 14945.6, + "probability": 0.6419 + }, + { + "start": 14946.0, + "end": 14947.92, + "probability": 0.772 + }, + { + "start": 14948.24, + "end": 14951.46, + "probability": 0.8143 + }, + { + "start": 14952.44, + "end": 14954.48, + "probability": 0.8257 + }, + { + "start": 14954.62, + "end": 14956.06, + "probability": 0.6454 + }, + { + "start": 14978.04, + "end": 14978.88, + "probability": 0.6802 + }, + { + "start": 14979.82, + "end": 14980.6, + "probability": 0.865 + }, + { + "start": 14982.14, + "end": 14983.06, + "probability": 0.9061 + }, + { + "start": 14985.36, + "end": 14988.64, + "probability": 0.9602 + }, + { + "start": 14991.68, + "end": 14992.92, + "probability": 0.7261 + }, + { + "start": 14993.1, + "end": 14996.12, + "probability": 0.9349 + }, + { + "start": 14996.14, + "end": 14996.68, + "probability": 0.9841 + }, + { + "start": 14997.46, + "end": 14998.58, + "probability": 0.7303 + }, + { + "start": 14999.2, + "end": 15002.08, + "probability": 0.5627 + }, + { + "start": 15002.14, + "end": 15004.28, + "probability": 0.844 + }, + { + "start": 15006.71, + "end": 15008.64, + "probability": 0.6571 + }, + { + "start": 15009.73, + "end": 15015.42, + "probability": 0.9708 + }, + { + "start": 15016.0, + "end": 15018.88, + "probability": 0.6865 + }, + { + "start": 15020.56, + "end": 15024.04, + "probability": 0.9961 + }, + { + "start": 15024.76, + "end": 15026.28, + "probability": 0.978 + }, + { + "start": 15026.44, + "end": 15031.38, + "probability": 0.9941 + }, + { + "start": 15032.26, + "end": 15034.16, + "probability": 0.7551 + }, + { + "start": 15034.18, + "end": 15037.32, + "probability": 0.8946 + }, + { + "start": 15037.48, + "end": 15038.94, + "probability": 0.9712 + }, + { + "start": 15039.6, + "end": 15042.26, + "probability": 0.8862 + }, + { + "start": 15042.32, + "end": 15046.36, + "probability": 0.9399 + }, + { + "start": 15046.74, + "end": 15048.9, + "probability": 0.7625 + }, + { + "start": 15050.48, + "end": 15053.87, + "probability": 0.9881 + }, + { + "start": 15058.44, + "end": 15058.82, + "probability": 0.4441 + }, + { + "start": 15059.72, + "end": 15060.26, + "probability": 0.3822 + }, + { + "start": 15060.28, + "end": 15062.5, + "probability": 0.9024 + }, + { + "start": 15062.54, + "end": 15064.62, + "probability": 0.8958 + }, + { + "start": 15064.7, + "end": 15066.18, + "probability": 0.9834 + }, + { + "start": 15066.3, + "end": 15067.3, + "probability": 0.9167 + }, + { + "start": 15067.68, + "end": 15067.9, + "probability": 0.6259 + }, + { + "start": 15068.38, + "end": 15069.92, + "probability": 0.1614 + }, + { + "start": 15069.92, + "end": 15070.76, + "probability": 0.6738 + }, + { + "start": 15070.9, + "end": 15075.62, + "probability": 0.8163 + }, + { + "start": 15075.8, + "end": 15075.8, + "probability": 0.2513 + }, + { + "start": 15076.7, + "end": 15077.88, + "probability": 0.6771 + }, + { + "start": 15078.08, + "end": 15078.43, + "probability": 0.1493 + }, + { + "start": 15078.7, + "end": 15081.48, + "probability": 0.5315 + }, + { + "start": 15082.0, + "end": 15083.38, + "probability": 0.3721 + }, + { + "start": 15085.74, + "end": 15086.22, + "probability": 0.2482 + }, + { + "start": 15086.22, + "end": 15087.28, + "probability": 0.102 + }, + { + "start": 15087.52, + "end": 15091.22, + "probability": 0.1794 + }, + { + "start": 15091.22, + "end": 15092.08, + "probability": 0.535 + }, + { + "start": 15092.36, + "end": 15094.3, + "probability": 0.5911 + }, + { + "start": 15094.68, + "end": 15098.09, + "probability": 0.9258 + }, + { + "start": 15100.12, + "end": 15100.64, + "probability": 0.7981 + }, + { + "start": 15100.66, + "end": 15101.56, + "probability": 0.7416 + }, + { + "start": 15101.8, + "end": 15102.2, + "probability": 0.887 + }, + { + "start": 15102.32, + "end": 15103.96, + "probability": 0.7157 + }, + { + "start": 15104.44, + "end": 15105.38, + "probability": 0.8675 + }, + { + "start": 15105.5, + "end": 15110.06, + "probability": 0.9076 + }, + { + "start": 15110.72, + "end": 15114.02, + "probability": 0.7898 + }, + { + "start": 15114.22, + "end": 15118.18, + "probability": 0.9758 + }, + { + "start": 15118.34, + "end": 15119.94, + "probability": 0.9854 + }, + { + "start": 15120.6, + "end": 15125.36, + "probability": 0.8806 + }, + { + "start": 15126.02, + "end": 15128.4, + "probability": 0.8991 + }, + { + "start": 15129.1, + "end": 15130.84, + "probability": 0.9921 + }, + { + "start": 15130.94, + "end": 15132.86, + "probability": 0.9515 + }, + { + "start": 15133.8, + "end": 15134.38, + "probability": 0.9854 + }, + { + "start": 15137.54, + "end": 15138.82, + "probability": 0.8332 + }, + { + "start": 15139.08, + "end": 15141.24, + "probability": 0.9714 + }, + { + "start": 15141.56, + "end": 15141.68, + "probability": 0.2729 + }, + { + "start": 15142.2, + "end": 15145.06, + "probability": 0.8845 + }, + { + "start": 15145.78, + "end": 15147.94, + "probability": 0.5447 + }, + { + "start": 15149.16, + "end": 15151.5, + "probability": 0.9817 + }, + { + "start": 15152.52, + "end": 15153.72, + "probability": 0.7834 + }, + { + "start": 15154.52, + "end": 15156.1, + "probability": 0.9721 + }, + { + "start": 15156.14, + "end": 15160.92, + "probability": 0.9922 + }, + { + "start": 15161.1, + "end": 15162.74, + "probability": 0.5919 + }, + { + "start": 15163.68, + "end": 15166.56, + "probability": 0.8845 + }, + { + "start": 15166.72, + "end": 15170.76, + "probability": 0.749 + }, + { + "start": 15171.08, + "end": 15172.24, + "probability": 0.9722 + }, + { + "start": 15172.72, + "end": 15173.48, + "probability": 0.9937 + }, + { + "start": 15173.54, + "end": 15174.64, + "probability": 0.754 + }, + { + "start": 15174.8, + "end": 15176.06, + "probability": 0.9326 + }, + { + "start": 15176.32, + "end": 15176.78, + "probability": 0.8617 + }, + { + "start": 15177.1, + "end": 15177.56, + "probability": 0.767 + }, + { + "start": 15177.6, + "end": 15177.96, + "probability": 0.9541 + }, + { + "start": 15178.12, + "end": 15181.14, + "probability": 0.6503 + }, + { + "start": 15181.26, + "end": 15182.04, + "probability": 0.7326 + }, + { + "start": 15183.26, + "end": 15186.93, + "probability": 0.9201 + }, + { + "start": 15187.58, + "end": 15190.14, + "probability": 0.9621 + }, + { + "start": 15191.58, + "end": 15192.58, + "probability": 0.8016 + }, + { + "start": 15193.46, + "end": 15195.24, + "probability": 0.6643 + }, + { + "start": 15195.56, + "end": 15196.66, + "probability": 0.3751 + }, + { + "start": 15197.54, + "end": 15198.15, + "probability": 0.6956 + }, + { + "start": 15198.44, + "end": 15200.14, + "probability": 0.919 + }, + { + "start": 15200.3, + "end": 15201.13, + "probability": 0.7424 + }, + { + "start": 15201.32, + "end": 15202.9, + "probability": 0.9979 + }, + { + "start": 15203.42, + "end": 15204.78, + "probability": 0.6087 + }, + { + "start": 15206.12, + "end": 15211.3, + "probability": 0.8239 + }, + { + "start": 15212.08, + "end": 15213.6, + "probability": 0.8938 + }, + { + "start": 15213.72, + "end": 15216.34, + "probability": 0.9952 + }, + { + "start": 15216.44, + "end": 15217.24, + "probability": 0.9494 + }, + { + "start": 15218.12, + "end": 15218.82, + "probability": 0.9578 + }, + { + "start": 15221.12, + "end": 15223.48, + "probability": 0.9877 + }, + { + "start": 15223.52, + "end": 15227.96, + "probability": 0.9706 + }, + { + "start": 15228.12, + "end": 15229.56, + "probability": 0.9783 + }, + { + "start": 15229.68, + "end": 15231.9, + "probability": 0.9861 + }, + { + "start": 15232.36, + "end": 15234.32, + "probability": 0.9971 + }, + { + "start": 15235.22, + "end": 15238.52, + "probability": 0.9552 + }, + { + "start": 15242.14, + "end": 15243.64, + "probability": 0.767 + }, + { + "start": 15244.26, + "end": 15244.62, + "probability": 0.623 + }, + { + "start": 15248.56, + "end": 15251.32, + "probability": 0.9802 + }, + { + "start": 15251.44, + "end": 15253.24, + "probability": 0.5097 + }, + { + "start": 15253.46, + "end": 15253.56, + "probability": 0.6487 + }, + { + "start": 15254.16, + "end": 15259.42, + "probability": 0.9741 + }, + { + "start": 15260.82, + "end": 15263.3, + "probability": 0.9867 + }, + { + "start": 15264.34, + "end": 15266.0, + "probability": 0.9946 + }, + { + "start": 15266.5, + "end": 15269.06, + "probability": 0.8733 + }, + { + "start": 15269.22, + "end": 15272.36, + "probability": 0.7972 + }, + { + "start": 15273.5, + "end": 15274.48, + "probability": 0.8879 + }, + { + "start": 15274.98, + "end": 15276.14, + "probability": 0.5149 + }, + { + "start": 15276.4, + "end": 15280.42, + "probability": 0.9199 + }, + { + "start": 15281.26, + "end": 15282.94, + "probability": 0.6875 + }, + { + "start": 15283.5, + "end": 15284.54, + "probability": 0.7903 + }, + { + "start": 15285.48, + "end": 15286.56, + "probability": 0.9624 + }, + { + "start": 15287.64, + "end": 15289.98, + "probability": 0.6836 + }, + { + "start": 15291.56, + "end": 15295.64, + "probability": 0.9819 + }, + { + "start": 15296.08, + "end": 15296.52, + "probability": 0.9206 + }, + { + "start": 15296.82, + "end": 15301.78, + "probability": 0.9745 + }, + { + "start": 15302.24, + "end": 15305.34, + "probability": 0.918 + }, + { + "start": 15305.72, + "end": 15306.94, + "probability": 0.5802 + }, + { + "start": 15307.32, + "end": 15307.56, + "probability": 0.7548 + }, + { + "start": 15307.74, + "end": 15309.26, + "probability": 0.9517 + }, + { + "start": 15309.74, + "end": 15310.5, + "probability": 0.8687 + }, + { + "start": 15310.86, + "end": 15312.78, + "probability": 0.9885 + }, + { + "start": 15313.16, + "end": 15314.78, + "probability": 0.5977 + }, + { + "start": 15314.98, + "end": 15322.22, + "probability": 0.9808 + }, + { + "start": 15322.34, + "end": 15322.56, + "probability": 0.304 + }, + { + "start": 15322.7, + "end": 15323.36, + "probability": 0.8166 + }, + { + "start": 15324.04, + "end": 15326.26, + "probability": 0.9155 + }, + { + "start": 15326.4, + "end": 15329.12, + "probability": 0.9746 + }, + { + "start": 15329.12, + "end": 15332.02, + "probability": 0.9832 + }, + { + "start": 15332.7, + "end": 15333.6, + "probability": 0.3095 + }, + { + "start": 15334.2, + "end": 15337.8, + "probability": 0.8633 + }, + { + "start": 15338.26, + "end": 15341.72, + "probability": 0.8962 + }, + { + "start": 15342.6, + "end": 15343.82, + "probability": 0.9832 + }, + { + "start": 15343.92, + "end": 15348.56, + "probability": 0.9093 + }, + { + "start": 15349.2, + "end": 15349.6, + "probability": 0.5337 + }, + { + "start": 15349.72, + "end": 15352.3, + "probability": 0.8676 + }, + { + "start": 15352.78, + "end": 15355.94, + "probability": 0.9772 + }, + { + "start": 15356.02, + "end": 15357.35, + "probability": 0.5943 + }, + { + "start": 15358.38, + "end": 15359.84, + "probability": 0.8549 + }, + { + "start": 15360.4, + "end": 15362.38, + "probability": 0.9937 + }, + { + "start": 15363.14, + "end": 15367.82, + "probability": 0.7207 + }, + { + "start": 15368.1, + "end": 15372.36, + "probability": 0.7756 + }, + { + "start": 15372.36, + "end": 15376.06, + "probability": 0.9702 + }, + { + "start": 15376.96, + "end": 15380.84, + "probability": 0.8672 + }, + { + "start": 15381.46, + "end": 15386.58, + "probability": 0.9453 + }, + { + "start": 15387.42, + "end": 15389.5, + "probability": 0.9761 + }, + { + "start": 15389.56, + "end": 15390.56, + "probability": 0.9842 + }, + { + "start": 15391.68, + "end": 15392.12, + "probability": 0.8252 + }, + { + "start": 15392.5, + "end": 15394.98, + "probability": 0.7169 + }, + { + "start": 15395.32, + "end": 15400.58, + "probability": 0.9867 + }, + { + "start": 15400.58, + "end": 15406.44, + "probability": 0.88 + }, + { + "start": 15408.24, + "end": 15410.88, + "probability": 0.9404 + }, + { + "start": 15411.6, + "end": 15412.38, + "probability": 0.9314 + }, + { + "start": 15412.82, + "end": 15418.84, + "probability": 0.8798 + }, + { + "start": 15419.52, + "end": 15421.56, + "probability": 0.9541 + }, + { + "start": 15423.04, + "end": 15423.44, + "probability": 0.7119 + }, + { + "start": 15423.6, + "end": 15425.04, + "probability": 0.4463 + }, + { + "start": 15425.24, + "end": 15428.04, + "probability": 0.8806 + }, + { + "start": 15428.1, + "end": 15430.74, + "probability": 0.7388 + }, + { + "start": 15430.74, + "end": 15433.92, + "probability": 0.6115 + }, + { + "start": 15434.58, + "end": 15435.17, + "probability": 0.8628 + }, + { + "start": 15436.26, + "end": 15439.34, + "probability": 0.9478 + }, + { + "start": 15439.4, + "end": 15443.02, + "probability": 0.8585 + }, + { + "start": 15443.38, + "end": 15444.36, + "probability": 0.9573 + }, + { + "start": 15445.06, + "end": 15446.12, + "probability": 0.6821 + }, + { + "start": 15446.76, + "end": 15448.04, + "probability": 0.9373 + }, + { + "start": 15448.3, + "end": 15448.96, + "probability": 0.8677 + }, + { + "start": 15449.4, + "end": 15449.62, + "probability": 0.8729 + }, + { + "start": 15449.72, + "end": 15453.2, + "probability": 0.8345 + }, + { + "start": 15454.0, + "end": 15456.98, + "probability": 0.994 + }, + { + "start": 15458.26, + "end": 15459.38, + "probability": 0.7521 + }, + { + "start": 15459.5, + "end": 15463.2, + "probability": 0.9932 + }, + { + "start": 15463.68, + "end": 15469.47, + "probability": 0.7243 + }, + { + "start": 15471.24, + "end": 15472.5, + "probability": 0.8989 + }, + { + "start": 15473.3, + "end": 15474.98, + "probability": 0.9045 + }, + { + "start": 15475.04, + "end": 15475.4, + "probability": 0.8001 + }, + { + "start": 15476.26, + "end": 15479.98, + "probability": 0.8434 + }, + { + "start": 15480.7, + "end": 15483.18, + "probability": 0.979 + }, + { + "start": 15483.36, + "end": 15484.18, + "probability": 0.7668 + }, + { + "start": 15485.16, + "end": 15488.54, + "probability": 0.9701 + }, + { + "start": 15492.17, + "end": 15496.34, + "probability": 0.8662 + }, + { + "start": 15496.98, + "end": 15498.02, + "probability": 0.6125 + }, + { + "start": 15498.12, + "end": 15501.35, + "probability": 0.753 + }, + { + "start": 15501.98, + "end": 15506.34, + "probability": 0.9815 + }, + { + "start": 15506.34, + "end": 15511.4, + "probability": 0.8825 + }, + { + "start": 15511.74, + "end": 15512.92, + "probability": 0.7474 + }, + { + "start": 15513.46, + "end": 15515.52, + "probability": 0.922 + }, + { + "start": 15515.78, + "end": 15517.32, + "probability": 0.9092 + }, + { + "start": 15517.7, + "end": 15519.52, + "probability": 0.9575 + }, + { + "start": 15520.04, + "end": 15523.73, + "probability": 0.8667 + }, + { + "start": 15524.2, + "end": 15528.06, + "probability": 0.9837 + }, + { + "start": 15528.26, + "end": 15530.02, + "probability": 0.9138 + }, + { + "start": 15530.14, + "end": 15533.12, + "probability": 0.8323 + }, + { + "start": 15533.16, + "end": 15539.64, + "probability": 0.9825 + }, + { + "start": 15539.86, + "end": 15543.34, + "probability": 0.998 + }, + { + "start": 15543.98, + "end": 15545.52, + "probability": 0.6631 + }, + { + "start": 15545.7, + "end": 15549.72, + "probability": 0.9253 + }, + { + "start": 15551.02, + "end": 15554.68, + "probability": 0.9962 + }, + { + "start": 15555.44, + "end": 15559.84, + "probability": 0.7417 + }, + { + "start": 15563.74, + "end": 15566.54, + "probability": 0.8015 + }, + { + "start": 15566.96, + "end": 15568.82, + "probability": 0.9736 + }, + { + "start": 15569.48, + "end": 15571.46, + "probability": 0.9336 + }, + { + "start": 15571.54, + "end": 15574.54, + "probability": 0.9382 + }, + { + "start": 15574.84, + "end": 15581.53, + "probability": 0.9851 + }, + { + "start": 15581.94, + "end": 15587.22, + "probability": 0.9963 + }, + { + "start": 15587.32, + "end": 15589.0, + "probability": 0.88 + }, + { + "start": 15589.54, + "end": 15592.6, + "probability": 0.9943 + }, + { + "start": 15593.14, + "end": 15594.2, + "probability": 0.6387 + }, + { + "start": 15594.26, + "end": 15597.28, + "probability": 0.9903 + }, + { + "start": 15598.02, + "end": 15602.8, + "probability": 0.981 + }, + { + "start": 15602.88, + "end": 15605.6, + "probability": 0.9825 + }, + { + "start": 15605.76, + "end": 15606.96, + "probability": 0.9882 + }, + { + "start": 15607.4, + "end": 15610.88, + "probability": 0.9944 + }, + { + "start": 15611.36, + "end": 15616.16, + "probability": 0.9744 + }, + { + "start": 15616.16, + "end": 15619.36, + "probability": 0.8702 + }, + { + "start": 15619.4, + "end": 15621.12, + "probability": 0.978 + }, + { + "start": 15621.52, + "end": 15622.5, + "probability": 0.7692 + }, + { + "start": 15622.58, + "end": 15626.06, + "probability": 0.9115 + }, + { + "start": 15626.26, + "end": 15630.92, + "probability": 0.9944 + }, + { + "start": 15631.12, + "end": 15634.46, + "probability": 0.9976 + }, + { + "start": 15634.5, + "end": 15637.04, + "probability": 0.7917 + }, + { + "start": 15637.38, + "end": 15637.6, + "probability": 0.5299 + }, + { + "start": 15637.68, + "end": 15641.4, + "probability": 0.9889 + }, + { + "start": 15641.54, + "end": 15644.02, + "probability": 0.9272 + }, + { + "start": 15644.1, + "end": 15649.14, + "probability": 0.9759 + }, + { + "start": 15649.44, + "end": 15653.74, + "probability": 0.9922 + }, + { + "start": 15654.0, + "end": 15656.12, + "probability": 0.9351 + }, + { + "start": 15656.84, + "end": 15660.24, + "probability": 0.986 + }, + { + "start": 15660.24, + "end": 15664.46, + "probability": 0.998 + }, + { + "start": 15665.04, + "end": 15669.7, + "probability": 0.9974 + }, + { + "start": 15670.16, + "end": 15671.34, + "probability": 0.7639 + }, + { + "start": 15671.96, + "end": 15674.88, + "probability": 0.8145 + }, + { + "start": 15675.42, + "end": 15677.24, + "probability": 0.6918 + }, + { + "start": 15677.78, + "end": 15679.72, + "probability": 0.4931 + }, + { + "start": 15679.74, + "end": 15680.26, + "probability": 0.7836 + }, + { + "start": 15680.84, + "end": 15681.88, + "probability": 0.7928 + }, + { + "start": 15682.18, + "end": 15685.3, + "probability": 0.9832 + }, + { + "start": 15685.3, + "end": 15691.0, + "probability": 0.9912 + }, + { + "start": 15691.44, + "end": 15692.4, + "probability": 0.6341 + }, + { + "start": 15692.6, + "end": 15697.56, + "probability": 0.9954 + }, + { + "start": 15697.56, + "end": 15700.6, + "probability": 0.9184 + }, + { + "start": 15701.08, + "end": 15702.34, + "probability": 0.7541 + }, + { + "start": 15703.0, + "end": 15707.16, + "probability": 0.8975 + }, + { + "start": 15707.62, + "end": 15711.04, + "probability": 0.9961 + }, + { + "start": 15711.4, + "end": 15712.72, + "probability": 0.9355 + }, + { + "start": 15712.74, + "end": 15715.44, + "probability": 0.9904 + }, + { + "start": 15715.52, + "end": 15719.76, + "probability": 0.9286 + }, + { + "start": 15720.04, + "end": 15721.42, + "probability": 0.8878 + }, + { + "start": 15721.74, + "end": 15724.14, + "probability": 0.9907 + }, + { + "start": 15724.56, + "end": 15726.96, + "probability": 0.9961 + }, + { + "start": 15726.96, + "end": 15729.34, + "probability": 0.982 + }, + { + "start": 15729.74, + "end": 15730.36, + "probability": 0.9674 + }, + { + "start": 15730.44, + "end": 15731.16, + "probability": 0.9617 + }, + { + "start": 15731.26, + "end": 15732.58, + "probability": 0.9951 + }, + { + "start": 15733.36, + "end": 15734.74, + "probability": 0.9688 + }, + { + "start": 15734.9, + "end": 15736.24, + "probability": 0.9476 + }, + { + "start": 15736.68, + "end": 15737.58, + "probability": 0.9426 + }, + { + "start": 15737.66, + "end": 15740.46, + "probability": 0.9558 + }, + { + "start": 15740.88, + "end": 15741.6, + "probability": 0.7288 + }, + { + "start": 15741.68, + "end": 15745.4, + "probability": 0.9927 + }, + { + "start": 15745.52, + "end": 15750.1, + "probability": 0.9921 + }, + { + "start": 15750.2, + "end": 15751.3, + "probability": 0.8516 + }, + { + "start": 15751.72, + "end": 15753.74, + "probability": 0.9574 + }, + { + "start": 15753.78, + "end": 15758.36, + "probability": 0.8447 + }, + { + "start": 15758.46, + "end": 15758.52, + "probability": 0.0967 + }, + { + "start": 15758.52, + "end": 15758.94, + "probability": 0.4821 + }, + { + "start": 15759.08, + "end": 15760.06, + "probability": 0.7564 + }, + { + "start": 15760.14, + "end": 15761.06, + "probability": 0.8461 + }, + { + "start": 15761.06, + "end": 15764.64, + "probability": 0.9608 + }, + { + "start": 15765.02, + "end": 15767.0, + "probability": 0.924 + }, + { + "start": 15767.44, + "end": 15768.66, + "probability": 0.9351 + }, + { + "start": 15768.76, + "end": 15770.84, + "probability": 0.9021 + }, + { + "start": 15770.94, + "end": 15776.66, + "probability": 0.9674 + }, + { + "start": 15776.8, + "end": 15778.24, + "probability": 0.9889 + }, + { + "start": 15778.68, + "end": 15780.82, + "probability": 0.8346 + }, + { + "start": 15780.96, + "end": 15781.98, + "probability": 0.5439 + }, + { + "start": 15782.54, + "end": 15782.86, + "probability": 0.4568 + }, + { + "start": 15783.12, + "end": 15787.84, + "probability": 0.9764 + }, + { + "start": 15788.58, + "end": 15791.68, + "probability": 0.8735 + }, + { + "start": 15792.08, + "end": 15793.64, + "probability": 0.91 + }, + { + "start": 15794.4, + "end": 15797.8, + "probability": 0.9803 + }, + { + "start": 15797.82, + "end": 15802.3, + "probability": 0.9946 + }, + { + "start": 15802.66, + "end": 15803.9, + "probability": 0.8176 + }, + { + "start": 15803.94, + "end": 15804.8, + "probability": 0.6152 + }, + { + "start": 15804.9, + "end": 15808.28, + "probability": 0.9924 + }, + { + "start": 15808.28, + "end": 15811.9, + "probability": 0.9546 + }, + { + "start": 15812.34, + "end": 15813.08, + "probability": 0.7205 + }, + { + "start": 15813.2, + "end": 15818.14, + "probability": 0.993 + }, + { + "start": 15818.14, + "end": 15822.46, + "probability": 0.9951 + }, + { + "start": 15822.74, + "end": 15826.26, + "probability": 0.9477 + }, + { + "start": 15826.32, + "end": 15827.86, + "probability": 0.9758 + }, + { + "start": 15827.98, + "end": 15829.35, + "probability": 0.7641 + }, + { + "start": 15830.06, + "end": 15831.62, + "probability": 0.523 + }, + { + "start": 15832.14, + "end": 15834.02, + "probability": 0.9751 + }, + { + "start": 15834.2, + "end": 15836.18, + "probability": 0.9956 + }, + { + "start": 15836.62, + "end": 15838.04, + "probability": 0.9819 + }, + { + "start": 15838.18, + "end": 15839.94, + "probability": 0.988 + }, + { + "start": 15840.24, + "end": 15840.66, + "probability": 0.8691 + }, + { + "start": 15840.72, + "end": 15841.08, + "probability": 0.9316 + }, + { + "start": 15841.1, + "end": 15842.42, + "probability": 0.7517 + }, + { + "start": 15842.44, + "end": 15843.68, + "probability": 0.8774 + }, + { + "start": 15844.04, + "end": 15847.26, + "probability": 0.9916 + }, + { + "start": 15847.26, + "end": 15851.66, + "probability": 0.9951 + }, + { + "start": 15852.06, + "end": 15854.72, + "probability": 0.9972 + }, + { + "start": 15855.04, + "end": 15856.66, + "probability": 0.529 + }, + { + "start": 15857.44, + "end": 15861.8, + "probability": 0.8384 + }, + { + "start": 15861.96, + "end": 15863.86, + "probability": 0.8105 + }, + { + "start": 15863.92, + "end": 15864.96, + "probability": 0.999 + }, + { + "start": 15867.83, + "end": 15871.6, + "probability": 0.804 + }, + { + "start": 15871.72, + "end": 15872.82, + "probability": 0.874 + }, + { + "start": 15873.36, + "end": 15878.02, + "probability": 0.9523 + }, + { + "start": 15878.1, + "end": 15879.42, + "probability": 0.9985 + }, + { + "start": 15880.14, + "end": 15885.08, + "probability": 0.9803 + }, + { + "start": 15885.38, + "end": 15888.1, + "probability": 0.7825 + }, + { + "start": 15888.28, + "end": 15894.14, + "probability": 0.931 + }, + { + "start": 15894.34, + "end": 15896.4, + "probability": 0.8671 + }, + { + "start": 15896.86, + "end": 15897.72, + "probability": 0.9477 + }, + { + "start": 15897.82, + "end": 15898.64, + "probability": 0.8832 + }, + { + "start": 15898.78, + "end": 15905.16, + "probability": 0.9976 + }, + { + "start": 15905.16, + "end": 15911.24, + "probability": 0.8349 + }, + { + "start": 15911.54, + "end": 15914.66, + "probability": 0.9268 + }, + { + "start": 15914.78, + "end": 15915.82, + "probability": 0.8084 + }, + { + "start": 15915.92, + "end": 15917.42, + "probability": 0.9214 + }, + { + "start": 15917.72, + "end": 15919.84, + "probability": 0.959 + }, + { + "start": 15920.12, + "end": 15923.52, + "probability": 0.9432 + }, + { + "start": 15923.78, + "end": 15926.52, + "probability": 0.9901 + }, + { + "start": 15926.62, + "end": 15926.94, + "probability": 0.7015 + }, + { + "start": 15928.66, + "end": 15930.58, + "probability": 0.5086 + }, + { + "start": 15931.26, + "end": 15933.64, + "probability": 0.7114 + }, + { + "start": 15933.72, + "end": 15935.34, + "probability": 0.9447 + }, + { + "start": 15956.18, + "end": 15959.44, + "probability": 0.6992 + }, + { + "start": 15961.44, + "end": 15965.09, + "probability": 0.9953 + }, + { + "start": 15966.48, + "end": 15966.7, + "probability": 0.8071 + }, + { + "start": 15966.72, + "end": 15969.42, + "probability": 0.9836 + }, + { + "start": 15970.28, + "end": 15973.42, + "probability": 0.7442 + }, + { + "start": 15974.2, + "end": 15975.92, + "probability": 0.6511 + }, + { + "start": 15976.74, + "end": 15977.76, + "probability": 0.5063 + }, + { + "start": 15978.04, + "end": 15983.42, + "probability": 0.8157 + }, + { + "start": 15983.42, + "end": 15986.56, + "probability": 0.7813 + }, + { + "start": 15987.1, + "end": 15993.36, + "probability": 0.8065 + }, + { + "start": 15994.3, + "end": 15995.84, + "probability": 0.838 + }, + { + "start": 15995.94, + "end": 15998.98, + "probability": 0.9922 + }, + { + "start": 15999.08, + "end": 15999.1, + "probability": 0.5523 + }, + { + "start": 15999.1, + "end": 16000.06, + "probability": 0.7652 + }, + { + "start": 16001.14, + "end": 16003.88, + "probability": 0.8113 + }, + { + "start": 16004.96, + "end": 16006.04, + "probability": 0.9916 + }, + { + "start": 16006.92, + "end": 16009.5, + "probability": 0.9836 + }, + { + "start": 16010.48, + "end": 16012.4, + "probability": 0.9968 + }, + { + "start": 16013.38, + "end": 16013.66, + "probability": 0.2642 + }, + { + "start": 16013.74, + "end": 16013.88, + "probability": 0.7669 + }, + { + "start": 16013.98, + "end": 16014.54, + "probability": 0.9316 + }, + { + "start": 16015.04, + "end": 16020.12, + "probability": 0.9495 + }, + { + "start": 16020.54, + "end": 16023.02, + "probability": 0.9588 + }, + { + "start": 16023.14, + "end": 16024.0, + "probability": 0.8386 + }, + { + "start": 16024.04, + "end": 16024.9, + "probability": 0.8191 + }, + { + "start": 16025.72, + "end": 16026.88, + "probability": 0.8698 + }, + { + "start": 16027.48, + "end": 16028.42, + "probability": 0.806 + }, + { + "start": 16029.22, + "end": 16029.74, + "probability": 0.9095 + }, + { + "start": 16029.94, + "end": 16031.92, + "probability": 0.8103 + }, + { + "start": 16032.64, + "end": 16034.54, + "probability": 0.9791 + }, + { + "start": 16035.0, + "end": 16036.84, + "probability": 0.8048 + }, + { + "start": 16036.96, + "end": 16037.59, + "probability": 0.7583 + }, + { + "start": 16038.32, + "end": 16041.48, + "probability": 0.5824 + }, + { + "start": 16041.58, + "end": 16042.66, + "probability": 0.3536 + }, + { + "start": 16043.12, + "end": 16045.86, + "probability": 0.8511 + }, + { + "start": 16046.22, + "end": 16047.51, + "probability": 0.9532 + }, + { + "start": 16048.18, + "end": 16048.5, + "probability": 0.3375 + }, + { + "start": 16048.62, + "end": 16048.84, + "probability": 0.7623 + }, + { + "start": 16048.84, + "end": 16050.06, + "probability": 0.9683 + }, + { + "start": 16050.62, + "end": 16054.82, + "probability": 0.9937 + }, + { + "start": 16055.6, + "end": 16057.0, + "probability": 0.7513 + }, + { + "start": 16057.48, + "end": 16059.06, + "probability": 0.8199 + }, + { + "start": 16059.46, + "end": 16060.44, + "probability": 0.9681 + }, + { + "start": 16060.74, + "end": 16062.82, + "probability": 0.9852 + }, + { + "start": 16063.24, + "end": 16065.06, + "probability": 0.898 + }, + { + "start": 16065.48, + "end": 16069.68, + "probability": 0.9827 + }, + { + "start": 16069.68, + "end": 16073.6, + "probability": 0.915 + }, + { + "start": 16073.82, + "end": 16075.04, + "probability": 0.8573 + }, + { + "start": 16075.44, + "end": 16078.58, + "probability": 0.9958 + }, + { + "start": 16078.94, + "end": 16081.08, + "probability": 0.9963 + }, + { + "start": 16081.36, + "end": 16084.12, + "probability": 0.9834 + }, + { + "start": 16084.56, + "end": 16091.26, + "probability": 0.9886 + }, + { + "start": 16091.42, + "end": 16093.92, + "probability": 0.9645 + }, + { + "start": 16094.28, + "end": 16097.26, + "probability": 0.9987 + }, + { + "start": 16097.26, + "end": 16100.82, + "probability": 0.998 + }, + { + "start": 16101.36, + "end": 16103.52, + "probability": 0.9973 + }, + { + "start": 16103.98, + "end": 16105.4, + "probability": 0.5146 + }, + { + "start": 16105.5, + "end": 16107.52, + "probability": 0.9935 + }, + { + "start": 16107.92, + "end": 16109.6, + "probability": 0.8527 + }, + { + "start": 16110.0, + "end": 16111.06, + "probability": 0.8994 + }, + { + "start": 16111.18, + "end": 16112.06, + "probability": 0.9298 + }, + { + "start": 16112.24, + "end": 16114.02, + "probability": 0.9639 + }, + { + "start": 16114.16, + "end": 16115.62, + "probability": 0.9786 + }, + { + "start": 16115.86, + "end": 16116.87, + "probability": 0.9762 + }, + { + "start": 16118.76, + "end": 16119.54, + "probability": 0.9255 + }, + { + "start": 16120.1, + "end": 16123.54, + "probability": 0.942 + }, + { + "start": 16124.4, + "end": 16126.42, + "probability": 0.9541 + }, + { + "start": 16127.54, + "end": 16128.26, + "probability": 0.8395 + }, + { + "start": 16128.8, + "end": 16131.64, + "probability": 0.994 + }, + { + "start": 16132.18, + "end": 16133.76, + "probability": 0.8977 + }, + { + "start": 16134.04, + "end": 16135.06, + "probability": 0.9998 + }, + { + "start": 16135.72, + "end": 16137.32, + "probability": 0.9827 + }, + { + "start": 16137.8, + "end": 16138.44, + "probability": 0.8029 + }, + { + "start": 16138.5, + "end": 16138.76, + "probability": 0.8939 + }, + { + "start": 16138.82, + "end": 16139.38, + "probability": 0.8433 + }, + { + "start": 16140.53, + "end": 16143.48, + "probability": 0.9512 + }, + { + "start": 16143.9, + "end": 16144.82, + "probability": 0.9648 + }, + { + "start": 16145.66, + "end": 16148.18, + "probability": 0.7766 + }, + { + "start": 16150.36, + "end": 16154.88, + "probability": 0.9272 + }, + { + "start": 16155.52, + "end": 16156.6, + "probability": 0.8338 + }, + { + "start": 16157.24, + "end": 16160.5, + "probability": 0.9822 + }, + { + "start": 16161.6, + "end": 16165.76, + "probability": 0.9957 + }, + { + "start": 16165.76, + "end": 16168.98, + "probability": 0.9979 + }, + { + "start": 16169.8, + "end": 16173.82, + "probability": 0.9531 + }, + { + "start": 16175.42, + "end": 16178.62, + "probability": 0.9946 + }, + { + "start": 16179.04, + "end": 16181.86, + "probability": 0.8454 + }, + { + "start": 16182.94, + "end": 16186.18, + "probability": 0.9453 + }, + { + "start": 16186.7, + "end": 16190.56, + "probability": 0.9236 + }, + { + "start": 16191.46, + "end": 16194.2, + "probability": 0.9821 + }, + { + "start": 16194.2, + "end": 16197.28, + "probability": 0.9596 + }, + { + "start": 16198.08, + "end": 16199.32, + "probability": 0.7575 + }, + { + "start": 16199.68, + "end": 16200.62, + "probability": 0.7369 + }, + { + "start": 16200.76, + "end": 16202.42, + "probability": 0.9414 + }, + { + "start": 16202.96, + "end": 16205.68, + "probability": 0.9924 + }, + { + "start": 16206.02, + "end": 16208.34, + "probability": 0.9235 + }, + { + "start": 16208.92, + "end": 16214.84, + "probability": 0.948 + }, + { + "start": 16215.28, + "end": 16215.62, + "probability": 0.3545 + }, + { + "start": 16216.34, + "end": 16219.22, + "probability": 0.9189 + }, + { + "start": 16219.84, + "end": 16223.2, + "probability": 0.952 + }, + { + "start": 16224.04, + "end": 16225.36, + "probability": 0.9612 + }, + { + "start": 16226.02, + "end": 16227.5, + "probability": 0.9536 + }, + { + "start": 16228.0, + "end": 16230.84, + "probability": 0.9871 + }, + { + "start": 16231.16, + "end": 16235.34, + "probability": 0.9967 + }, + { + "start": 16235.84, + "end": 16239.08, + "probability": 0.9977 + }, + { + "start": 16239.08, + "end": 16242.86, + "probability": 0.9908 + }, + { + "start": 16243.22, + "end": 16244.64, + "probability": 0.9607 + }, + { + "start": 16245.64, + "end": 16251.64, + "probability": 0.9882 + }, + { + "start": 16251.64, + "end": 16260.38, + "probability": 0.9613 + }, + { + "start": 16261.58, + "end": 16263.6, + "probability": 0.647 + }, + { + "start": 16264.52, + "end": 16264.68, + "probability": 0.7224 + }, + { + "start": 16265.14, + "end": 16267.16, + "probability": 0.822 + }, + { + "start": 16267.66, + "end": 16269.38, + "probability": 0.9729 + }, + { + "start": 16269.74, + "end": 16272.09, + "probability": 0.9958 + }, + { + "start": 16272.9, + "end": 16275.94, + "probability": 0.9949 + }, + { + "start": 16276.44, + "end": 16280.58, + "probability": 0.9877 + }, + { + "start": 16281.52, + "end": 16284.92, + "probability": 0.9551 + }, + { + "start": 16285.64, + "end": 16286.4, + "probability": 0.6726 + }, + { + "start": 16286.44, + "end": 16287.12, + "probability": 0.733 + }, + { + "start": 16287.18, + "end": 16290.56, + "probability": 0.9947 + }, + { + "start": 16291.5, + "end": 16293.4, + "probability": 0.8611 + }, + { + "start": 16293.94, + "end": 16297.0, + "probability": 0.9875 + }, + { + "start": 16297.0, + "end": 16301.52, + "probability": 0.991 + }, + { + "start": 16302.66, + "end": 16303.9, + "probability": 0.898 + }, + { + "start": 16304.52, + "end": 16305.22, + "probability": 0.6504 + }, + { + "start": 16305.38, + "end": 16306.62, + "probability": 0.911 + }, + { + "start": 16306.7, + "end": 16309.34, + "probability": 0.9256 + }, + { + "start": 16309.96, + "end": 16313.8, + "probability": 0.9422 + }, + { + "start": 16314.34, + "end": 16317.7, + "probability": 0.9326 + }, + { + "start": 16318.1, + "end": 16322.0, + "probability": 0.9827 + }, + { + "start": 16322.64, + "end": 16323.28, + "probability": 0.721 + }, + { + "start": 16323.3, + "end": 16323.9, + "probability": 0.9767 + }, + { + "start": 16324.24, + "end": 16325.1, + "probability": 0.9614 + }, + { + "start": 16325.62, + "end": 16326.78, + "probability": 0.9745 + }, + { + "start": 16327.26, + "end": 16328.32, + "probability": 0.8077 + }, + { + "start": 16329.14, + "end": 16329.68, + "probability": 0.6637 + }, + { + "start": 16330.4, + "end": 16334.62, + "probability": 0.9722 + }, + { + "start": 16335.28, + "end": 16338.92, + "probability": 0.9541 + }, + { + "start": 16339.66, + "end": 16342.46, + "probability": 0.9277 + }, + { + "start": 16343.08, + "end": 16343.56, + "probability": 0.5218 + }, + { + "start": 16344.5, + "end": 16351.52, + "probability": 0.8974 + }, + { + "start": 16352.1, + "end": 16355.64, + "probability": 0.8589 + }, + { + "start": 16356.78, + "end": 16357.22, + "probability": 0.6216 + }, + { + "start": 16357.38, + "end": 16361.2, + "probability": 0.9938 + }, + { + "start": 16362.36, + "end": 16365.9, + "probability": 0.9485 + }, + { + "start": 16366.64, + "end": 16369.96, + "probability": 0.9945 + }, + { + "start": 16370.1, + "end": 16371.48, + "probability": 0.4541 + }, + { + "start": 16371.66, + "end": 16373.7, + "probability": 0.7578 + }, + { + "start": 16374.08, + "end": 16378.14, + "probability": 0.9951 + }, + { + "start": 16379.06, + "end": 16383.3, + "probability": 0.9922 + }, + { + "start": 16384.28, + "end": 16388.72, + "probability": 0.9989 + }, + { + "start": 16388.72, + "end": 16393.32, + "probability": 0.9986 + }, + { + "start": 16393.82, + "end": 16398.14, + "probability": 0.9934 + }, + { + "start": 16398.44, + "end": 16402.76, + "probability": 0.8958 + }, + { + "start": 16403.26, + "end": 16404.96, + "probability": 0.9238 + }, + { + "start": 16405.18, + "end": 16408.24, + "probability": 0.9979 + }, + { + "start": 16408.24, + "end": 16412.46, + "probability": 0.9954 + }, + { + "start": 16412.8, + "end": 16413.18, + "probability": 0.5619 + }, + { + "start": 16413.26, + "end": 16417.04, + "probability": 0.9844 + }, + { + "start": 16417.1, + "end": 16417.78, + "probability": 0.9827 + }, + { + "start": 16418.12, + "end": 16419.3, + "probability": 0.9495 + }, + { + "start": 16420.94, + "end": 16422.86, + "probability": 0.9919 + }, + { + "start": 16422.96, + "end": 16423.64, + "probability": 0.759 + }, + { + "start": 16423.68, + "end": 16424.2, + "probability": 0.7794 + }, + { + "start": 16424.2, + "end": 16424.78, + "probability": 0.7188 + }, + { + "start": 16424.94, + "end": 16428.12, + "probability": 0.9623 + }, + { + "start": 16428.46, + "end": 16430.31, + "probability": 0.98 + }, + { + "start": 16431.38, + "end": 16433.36, + "probability": 0.9923 + }, + { + "start": 16433.96, + "end": 16436.32, + "probability": 0.9982 + }, + { + "start": 16437.04, + "end": 16439.32, + "probability": 0.834 + }, + { + "start": 16439.78, + "end": 16441.64, + "probability": 0.7742 + }, + { + "start": 16442.1, + "end": 16447.26, + "probability": 0.9964 + }, + { + "start": 16447.64, + "end": 16450.48, + "probability": 0.9104 + }, + { + "start": 16450.78, + "end": 16452.82, + "probability": 0.3784 + }, + { + "start": 16453.58, + "end": 16453.66, + "probability": 0.7588 + }, + { + "start": 16453.66, + "end": 16455.4, + "probability": 0.7909 + }, + { + "start": 16456.88, + "end": 16459.08, + "probability": 0.6666 + }, + { + "start": 16460.12, + "end": 16461.86, + "probability": 0.9819 + }, + { + "start": 16462.26, + "end": 16463.28, + "probability": 0.858 + }, + { + "start": 16463.72, + "end": 16464.8, + "probability": 0.8628 + }, + { + "start": 16464.9, + "end": 16465.83, + "probability": 0.9128 + }, + { + "start": 16466.16, + "end": 16472.54, + "probability": 0.923 + }, + { + "start": 16473.26, + "end": 16475.2, + "probability": 0.6705 + }, + { + "start": 16475.8, + "end": 16478.92, + "probability": 0.9762 + }, + { + "start": 16479.32, + "end": 16482.12, + "probability": 0.9283 + }, + { + "start": 16483.38, + "end": 16484.8, + "probability": 0.9384 + }, + { + "start": 16485.04, + "end": 16486.28, + "probability": 0.9551 + }, + { + "start": 16486.38, + "end": 16487.68, + "probability": 0.7834 + }, + { + "start": 16487.76, + "end": 16492.94, + "probability": 0.9905 + }, + { + "start": 16493.4, + "end": 16494.86, + "probability": 0.9902 + }, + { + "start": 16495.26, + "end": 16499.4, + "probability": 0.9951 + }, + { + "start": 16500.02, + "end": 16502.66, + "probability": 0.9807 + }, + { + "start": 16502.9, + "end": 16504.12, + "probability": 0.6254 + }, + { + "start": 16504.46, + "end": 16508.58, + "probability": 0.9366 + }, + { + "start": 16508.88, + "end": 16509.48, + "probability": 0.5937 + }, + { + "start": 16509.7, + "end": 16516.1, + "probability": 0.9298 + }, + { + "start": 16516.3, + "end": 16516.56, + "probability": 0.655 + }, + { + "start": 16517.1, + "end": 16519.44, + "probability": 0.7459 + }, + { + "start": 16519.54, + "end": 16522.18, + "probability": 0.8682 + }, + { + "start": 16524.82, + "end": 16526.66, + "probability": 0.8132 + }, + { + "start": 16545.22, + "end": 16546.2, + "probability": 0.6393 + }, + { + "start": 16547.04, + "end": 16548.1, + "probability": 0.6609 + }, + { + "start": 16551.02, + "end": 16552.08, + "probability": 0.5929 + }, + { + "start": 16553.0, + "end": 16554.15, + "probability": 0.9829 + }, + { + "start": 16555.54, + "end": 16560.74, + "probability": 0.8352 + }, + { + "start": 16562.22, + "end": 16570.5, + "probability": 0.9909 + }, + { + "start": 16571.88, + "end": 16574.55, + "probability": 0.9625 + }, + { + "start": 16576.04, + "end": 16578.58, + "probability": 0.9962 + }, + { + "start": 16579.8, + "end": 16580.8, + "probability": 0.8813 + }, + { + "start": 16583.08, + "end": 16585.98, + "probability": 0.9562 + }, + { + "start": 16589.02, + "end": 16591.88, + "probability": 0.9906 + }, + { + "start": 16592.66, + "end": 16597.9, + "probability": 0.7201 + }, + { + "start": 16598.6, + "end": 16599.98, + "probability": 0.9963 + }, + { + "start": 16601.56, + "end": 16603.04, + "probability": 0.9256 + }, + { + "start": 16604.92, + "end": 16608.86, + "probability": 0.9551 + }, + { + "start": 16609.5, + "end": 16611.14, + "probability": 0.846 + }, + { + "start": 16612.26, + "end": 16612.8, + "probability": 0.7518 + }, + { + "start": 16614.82, + "end": 16619.64, + "probability": 0.9824 + }, + { + "start": 16621.76, + "end": 16622.9, + "probability": 0.9424 + }, + { + "start": 16624.36, + "end": 16625.38, + "probability": 0.812 + }, + { + "start": 16627.08, + "end": 16628.06, + "probability": 0.8203 + }, + { + "start": 16629.2, + "end": 16632.64, + "probability": 0.9767 + }, + { + "start": 16632.66, + "end": 16633.74, + "probability": 0.96 + }, + { + "start": 16634.94, + "end": 16637.64, + "probability": 0.978 + }, + { + "start": 16637.64, + "end": 16640.04, + "probability": 0.9578 + }, + { + "start": 16641.6, + "end": 16644.78, + "probability": 0.5904 + }, + { + "start": 16646.36, + "end": 16646.46, + "probability": 0.0401 + }, + { + "start": 16646.46, + "end": 16646.66, + "probability": 0.0923 + }, + { + "start": 16646.66, + "end": 16649.48, + "probability": 0.7174 + }, + { + "start": 16650.26, + "end": 16651.58, + "probability": 0.335 + }, + { + "start": 16654.02, + "end": 16657.14, + "probability": 0.4295 + }, + { + "start": 16657.42, + "end": 16658.45, + "probability": 0.1032 + }, + { + "start": 16659.64, + "end": 16660.64, + "probability": 0.5027 + }, + { + "start": 16660.74, + "end": 16662.04, + "probability": 0.4405 + }, + { + "start": 16662.12, + "end": 16663.42, + "probability": 0.8774 + }, + { + "start": 16664.2, + "end": 16667.84, + "probability": 0.9682 + }, + { + "start": 16668.52, + "end": 16671.18, + "probability": 0.9979 + }, + { + "start": 16672.08, + "end": 16674.4, + "probability": 0.9938 + }, + { + "start": 16676.54, + "end": 16677.06, + "probability": 0.788 + }, + { + "start": 16678.62, + "end": 16679.54, + "probability": 0.5858 + }, + { + "start": 16679.62, + "end": 16684.42, + "probability": 0.9792 + }, + { + "start": 16684.52, + "end": 16685.82, + "probability": 0.5159 + }, + { + "start": 16686.3, + "end": 16687.16, + "probability": 0.9198 + }, + { + "start": 16687.72, + "end": 16690.2, + "probability": 0.8846 + }, + { + "start": 16690.56, + "end": 16694.72, + "probability": 0.7488 + }, + { + "start": 16695.72, + "end": 16699.68, + "probability": 0.9801 + }, + { + "start": 16700.78, + "end": 16701.54, + "probability": 0.9157 + }, + { + "start": 16702.62, + "end": 16704.96, + "probability": 0.9717 + }, + { + "start": 16705.88, + "end": 16709.38, + "probability": 0.9844 + }, + { + "start": 16710.48, + "end": 16710.9, + "probability": 0.6657 + }, + { + "start": 16712.28, + "end": 16713.28, + "probability": 0.9198 + }, + { + "start": 16714.22, + "end": 16717.56, + "probability": 0.9669 + }, + { + "start": 16718.76, + "end": 16720.3, + "probability": 0.8242 + }, + { + "start": 16721.3, + "end": 16727.32, + "probability": 0.9362 + }, + { + "start": 16728.48, + "end": 16731.12, + "probability": 0.7076 + }, + { + "start": 16731.3, + "end": 16731.76, + "probability": 0.4655 + }, + { + "start": 16732.1, + "end": 16736.46, + "probability": 0.9851 + }, + { + "start": 16736.68, + "end": 16737.22, + "probability": 0.4644 + }, + { + "start": 16737.22, + "end": 16738.28, + "probability": 0.0051 + }, + { + "start": 16738.7, + "end": 16739.56, + "probability": 0.7284 + }, + { + "start": 16740.16, + "end": 16743.68, + "probability": 0.9928 + }, + { + "start": 16744.96, + "end": 16746.82, + "probability": 0.8828 + }, + { + "start": 16748.62, + "end": 16752.16, + "probability": 0.856 + }, + { + "start": 16753.78, + "end": 16755.16, + "probability": 0.406 + }, + { + "start": 16756.12, + "end": 16757.12, + "probability": 0.8117 + }, + { + "start": 16757.3, + "end": 16757.7, + "probability": 0.7017 + }, + { + "start": 16758.32, + "end": 16759.18, + "probability": 0.8153 + }, + { + "start": 16760.72, + "end": 16761.34, + "probability": 0.7086 + }, + { + "start": 16761.38, + "end": 16766.16, + "probability": 0.8193 + }, + { + "start": 16766.2, + "end": 16771.02, + "probability": 0.6566 + }, + { + "start": 16772.59, + "end": 16775.88, + "probability": 0.6513 + }, + { + "start": 16776.22, + "end": 16776.92, + "probability": 0.8746 + }, + { + "start": 16776.94, + "end": 16780.16, + "probability": 0.6206 + }, + { + "start": 16780.28, + "end": 16782.76, + "probability": 0.901 + }, + { + "start": 16782.76, + "end": 16783.7, + "probability": 0.8887 + }, + { + "start": 16783.88, + "end": 16784.4, + "probability": 0.9307 + }, + { + "start": 16784.72, + "end": 16787.14, + "probability": 0.8912 + }, + { + "start": 16790.54, + "end": 16792.36, + "probability": 0.8496 + }, + { + "start": 16793.2, + "end": 16794.56, + "probability": 0.9754 + }, + { + "start": 16797.24, + "end": 16800.2, + "probability": 0.7644 + }, + { + "start": 16801.34, + "end": 16802.46, + "probability": 0.9277 + }, + { + "start": 16804.34, + "end": 16806.8, + "probability": 0.7349 + }, + { + "start": 16807.36, + "end": 16809.2, + "probability": 0.9795 + }, + { + "start": 16810.76, + "end": 16812.06, + "probability": 0.9817 + }, + { + "start": 16816.24, + "end": 16818.44, + "probability": 0.8888 + }, + { + "start": 16820.06, + "end": 16822.76, + "probability": 0.9836 + }, + { + "start": 16823.9, + "end": 16824.96, + "probability": 0.7708 + }, + { + "start": 16826.06, + "end": 16834.42, + "probability": 0.7233 + }, + { + "start": 16836.06, + "end": 16837.96, + "probability": 0.7893 + }, + { + "start": 16839.68, + "end": 16841.38, + "probability": 0.9074 + }, + { + "start": 16842.52, + "end": 16846.78, + "probability": 0.9231 + }, + { + "start": 16847.52, + "end": 16848.62, + "probability": 0.9067 + }, + { + "start": 16849.74, + "end": 16851.46, + "probability": 0.7254 + }, + { + "start": 16853.38, + "end": 16856.28, + "probability": 0.9412 + }, + { + "start": 16857.06, + "end": 16860.38, + "probability": 0.7824 + }, + { + "start": 16862.04, + "end": 16865.3, + "probability": 0.9781 + }, + { + "start": 16866.26, + "end": 16871.42, + "probability": 0.6116 + }, + { + "start": 16871.42, + "end": 16875.78, + "probability": 0.9424 + }, + { + "start": 16877.1, + "end": 16879.74, + "probability": 0.892 + }, + { + "start": 16880.46, + "end": 16883.44, + "probability": 0.9723 + }, + { + "start": 16884.6, + "end": 16888.1, + "probability": 0.9031 + }, + { + "start": 16889.6, + "end": 16894.7, + "probability": 0.9884 + }, + { + "start": 16895.68, + "end": 16897.18, + "probability": 0.6366 + }, + { + "start": 16897.94, + "end": 16903.18, + "probability": 0.9361 + }, + { + "start": 16903.9, + "end": 16912.03, + "probability": 0.9874 + }, + { + "start": 16913.7, + "end": 16916.9, + "probability": 0.9419 + }, + { + "start": 16919.4, + "end": 16922.74, + "probability": 0.9323 + }, + { + "start": 16923.64, + "end": 16926.24, + "probability": 0.8842 + }, + { + "start": 16927.12, + "end": 16928.7, + "probability": 0.9954 + }, + { + "start": 16930.18, + "end": 16933.92, + "probability": 0.9596 + }, + { + "start": 16934.86, + "end": 16935.58, + "probability": 0.6995 + }, + { + "start": 16936.4, + "end": 16939.22, + "probability": 0.7958 + }, + { + "start": 16939.96, + "end": 16941.58, + "probability": 0.8369 + }, + { + "start": 16942.36, + "end": 16943.78, + "probability": 0.8768 + }, + { + "start": 16944.54, + "end": 16949.28, + "probability": 0.9942 + }, + { + "start": 16949.44, + "end": 16950.34, + "probability": 0.9175 + }, + { + "start": 16951.38, + "end": 16956.1, + "probability": 0.99 + }, + { + "start": 16957.98, + "end": 16958.86, + "probability": 0.747 + }, + { + "start": 16958.98, + "end": 16959.92, + "probability": 0.8407 + }, + { + "start": 16961.46, + "end": 16965.0, + "probability": 0.9807 + }, + { + "start": 16966.58, + "end": 16970.38, + "probability": 0.9805 + }, + { + "start": 16970.98, + "end": 16972.72, + "probability": 0.9766 + }, + { + "start": 16973.48, + "end": 16975.28, + "probability": 0.8497 + }, + { + "start": 16977.22, + "end": 16979.76, + "probability": 0.9623 + }, + { + "start": 16981.58, + "end": 16981.74, + "probability": 0.145 + }, + { + "start": 16982.12, + "end": 16983.5, + "probability": 0.9503 + }, + { + "start": 16983.56, + "end": 16984.2, + "probability": 0.9491 + }, + { + "start": 16984.52, + "end": 16985.11, + "probability": 0.9699 + }, + { + "start": 16985.5, + "end": 16986.6, + "probability": 0.7922 + }, + { + "start": 16986.92, + "end": 16987.9, + "probability": 0.782 + }, + { + "start": 16988.02, + "end": 16994.1, + "probability": 0.9438 + }, + { + "start": 16994.88, + "end": 16997.64, + "probability": 0.7608 + }, + { + "start": 16998.78, + "end": 16998.94, + "probability": 0.2191 + }, + { + "start": 16999.06, + "end": 17002.07, + "probability": 0.7082 + }, + { + "start": 17002.96, + "end": 17005.22, + "probability": 0.9597 + }, + { + "start": 17008.44, + "end": 17011.28, + "probability": 0.966 + }, + { + "start": 17015.12, + "end": 17019.54, + "probability": 0.7366 + }, + { + "start": 17020.92, + "end": 17022.44, + "probability": 0.9797 + }, + { + "start": 17023.42, + "end": 17030.34, + "probability": 0.8983 + }, + { + "start": 17031.46, + "end": 17034.18, + "probability": 0.6993 + }, + { + "start": 17035.96, + "end": 17037.58, + "probability": 0.9404 + }, + { + "start": 17038.28, + "end": 17040.8, + "probability": 0.8041 + }, + { + "start": 17040.84, + "end": 17041.94, + "probability": 0.9823 + }, + { + "start": 17043.06, + "end": 17047.3, + "probability": 0.7682 + }, + { + "start": 17048.14, + "end": 17050.24, + "probability": 0.9976 + }, + { + "start": 17051.78, + "end": 17052.44, + "probability": 0.7515 + }, + { + "start": 17052.44, + "end": 17052.7, + "probability": 0.4051 + }, + { + "start": 17052.86, + "end": 17054.28, + "probability": 0.9914 + }, + { + "start": 17054.32, + "end": 17055.32, + "probability": 0.5545 + }, + { + "start": 17055.32, + "end": 17057.36, + "probability": 0.908 + }, + { + "start": 17057.36, + "end": 17057.68, + "probability": 0.8335 + }, + { + "start": 17057.76, + "end": 17058.14, + "probability": 0.8396 + }, + { + "start": 17058.22, + "end": 17058.28, + "probability": 0.5138 + }, + { + "start": 17058.36, + "end": 17058.92, + "probability": 0.9689 + }, + { + "start": 17059.08, + "end": 17060.02, + "probability": 0.9257 + }, + { + "start": 17060.14, + "end": 17060.34, + "probability": 0.6566 + }, + { + "start": 17060.34, + "end": 17061.0, + "probability": 0.9382 + }, + { + "start": 17062.5, + "end": 17067.76, + "probability": 0.9412 + }, + { + "start": 17069.16, + "end": 17072.56, + "probability": 0.9668 + }, + { + "start": 17072.94, + "end": 17075.62, + "probability": 0.7267 + }, + { + "start": 17076.4, + "end": 17078.14, + "probability": 0.9915 + }, + { + "start": 17080.9, + "end": 17084.76, + "probability": 0.9971 + }, + { + "start": 17085.52, + "end": 17087.58, + "probability": 0.999 + }, + { + "start": 17087.58, + "end": 17090.8, + "probability": 0.9955 + }, + { + "start": 17090.88, + "end": 17093.36, + "probability": 0.9019 + }, + { + "start": 17094.18, + "end": 17096.02, + "probability": 0.6421 + }, + { + "start": 17096.54, + "end": 17099.08, + "probability": 0.9326 + }, + { + "start": 17099.54, + "end": 17105.08, + "probability": 0.9556 + }, + { + "start": 17105.58, + "end": 17107.8, + "probability": 0.9523 + }, + { + "start": 17107.9, + "end": 17108.36, + "probability": 0.8734 + }, + { + "start": 17108.98, + "end": 17111.74, + "probability": 0.903 + }, + { + "start": 17111.96, + "end": 17115.52, + "probability": 0.526 + }, + { + "start": 17116.76, + "end": 17117.96, + "probability": 0.8879 + }, + { + "start": 17128.22, + "end": 17129.84, + "probability": 0.921 + }, + { + "start": 17137.78, + "end": 17138.74, + "probability": 0.6805 + }, + { + "start": 17139.9, + "end": 17141.48, + "probability": 0.603 + }, + { + "start": 17143.72, + "end": 17148.02, + "probability": 0.9648 + }, + { + "start": 17152.48, + "end": 17156.48, + "probability": 0.7114 + }, + { + "start": 17158.38, + "end": 17159.76, + "probability": 0.9973 + }, + { + "start": 17162.38, + "end": 17166.52, + "probability": 0.9565 + }, + { + "start": 17171.18, + "end": 17175.84, + "probability": 0.9409 + }, + { + "start": 17176.42, + "end": 17177.08, + "probability": 0.7682 + }, + { + "start": 17177.6, + "end": 17179.46, + "probability": 0.7782 + }, + { + "start": 17181.94, + "end": 17186.62, + "probability": 0.795 + }, + { + "start": 17186.78, + "end": 17187.62, + "probability": 0.8939 + }, + { + "start": 17189.0, + "end": 17190.12, + "probability": 0.814 + }, + { + "start": 17194.6, + "end": 17194.96, + "probability": 0.7157 + }, + { + "start": 17196.44, + "end": 17203.22, + "probability": 0.9969 + }, + { + "start": 17204.24, + "end": 17205.62, + "probability": 0.9976 + }, + { + "start": 17209.0, + "end": 17209.68, + "probability": 0.5905 + }, + { + "start": 17210.24, + "end": 17213.01, + "probability": 0.8223 + }, + { + "start": 17215.1, + "end": 17219.9, + "probability": 0.9562 + }, + { + "start": 17219.9, + "end": 17224.46, + "probability": 0.9979 + }, + { + "start": 17226.36, + "end": 17227.46, + "probability": 0.998 + }, + { + "start": 17229.24, + "end": 17230.44, + "probability": 0.7448 + }, + { + "start": 17231.24, + "end": 17232.64, + "probability": 0.8229 + }, + { + "start": 17232.96, + "end": 17234.16, + "probability": 0.8636 + }, + { + "start": 17234.18, + "end": 17235.26, + "probability": 0.9837 + }, + { + "start": 17235.34, + "end": 17236.72, + "probability": 0.9784 + }, + { + "start": 17238.02, + "end": 17240.58, + "probability": 0.9946 + }, + { + "start": 17240.58, + "end": 17243.44, + "probability": 0.9888 + }, + { + "start": 17244.98, + "end": 17248.32, + "probability": 0.9029 + }, + { + "start": 17250.8, + "end": 17252.2, + "probability": 0.8146 + }, + { + "start": 17252.58, + "end": 17254.26, + "probability": 0.9352 + }, + { + "start": 17254.34, + "end": 17255.84, + "probability": 0.9666 + }, + { + "start": 17257.14, + "end": 17258.8, + "probability": 0.9972 + }, + { + "start": 17262.32, + "end": 17263.32, + "probability": 0.676 + }, + { + "start": 17263.38, + "end": 17269.14, + "probability": 0.9816 + }, + { + "start": 17270.06, + "end": 17272.04, + "probability": 0.7796 + }, + { + "start": 17273.16, + "end": 17275.04, + "probability": 0.4589 + }, + { + "start": 17275.62, + "end": 17280.64, + "probability": 0.7497 + }, + { + "start": 17280.64, + "end": 17284.0, + "probability": 0.9975 + }, + { + "start": 17284.02, + "end": 17284.88, + "probability": 0.9752 + }, + { + "start": 17287.32, + "end": 17290.62, + "probability": 0.9961 + }, + { + "start": 17290.62, + "end": 17293.4, + "probability": 0.9966 + }, + { + "start": 17295.84, + "end": 17301.34, + "probability": 0.9923 + }, + { + "start": 17301.34, + "end": 17304.32, + "probability": 0.9977 + }, + { + "start": 17304.5, + "end": 17305.87, + "probability": 0.5845 + }, + { + "start": 17306.18, + "end": 17307.9, + "probability": 0.9364 + }, + { + "start": 17308.72, + "end": 17313.32, + "probability": 0.9552 + }, + { + "start": 17317.34, + "end": 17318.82, + "probability": 0.8423 + }, + { + "start": 17319.5, + "end": 17323.54, + "probability": 0.9946 + }, + { + "start": 17324.36, + "end": 17326.04, + "probability": 0.5279 + }, + { + "start": 17327.52, + "end": 17330.62, + "probability": 0.7553 + }, + { + "start": 17331.18, + "end": 17335.16, + "probability": 0.8464 + }, + { + "start": 17335.9, + "end": 17337.72, + "probability": 0.8864 + }, + { + "start": 17339.56, + "end": 17341.14, + "probability": 0.7359 + }, + { + "start": 17342.78, + "end": 17347.1, + "probability": 0.9949 + }, + { + "start": 17347.16, + "end": 17350.32, + "probability": 0.9976 + }, + { + "start": 17350.32, + "end": 17353.14, + "probability": 0.9967 + }, + { + "start": 17355.32, + "end": 17358.8, + "probability": 0.9897 + }, + { + "start": 17359.8, + "end": 17369.42, + "probability": 0.9815 + }, + { + "start": 17369.7, + "end": 17370.88, + "probability": 0.6567 + }, + { + "start": 17372.94, + "end": 17374.96, + "probability": 0.9849 + }, + { + "start": 17374.96, + "end": 17377.88, + "probability": 0.9841 + }, + { + "start": 17377.96, + "end": 17379.88, + "probability": 0.5119 + }, + { + "start": 17379.96, + "end": 17382.44, + "probability": 0.7047 + }, + { + "start": 17384.9, + "end": 17388.36, + "probability": 0.917 + }, + { + "start": 17389.92, + "end": 17391.42, + "probability": 0.923 + }, + { + "start": 17391.66, + "end": 17396.94, + "probability": 0.9919 + }, + { + "start": 17398.13, + "end": 17399.62, + "probability": 0.8823 + }, + { + "start": 17400.5, + "end": 17401.74, + "probability": 0.9766 + }, + { + "start": 17407.66, + "end": 17408.06, + "probability": 0.5 + }, + { + "start": 17411.64, + "end": 17419.04, + "probability": 0.9722 + }, + { + "start": 17421.14, + "end": 17424.5, + "probability": 0.7966 + }, + { + "start": 17424.68, + "end": 17426.22, + "probability": 0.7817 + }, + { + "start": 17426.3, + "end": 17427.86, + "probability": 0.5916 + }, + { + "start": 17428.86, + "end": 17431.58, + "probability": 0.9692 + }, + { + "start": 17432.66, + "end": 17435.28, + "probability": 0.9538 + }, + { + "start": 17436.36, + "end": 17437.16, + "probability": 0.4823 + }, + { + "start": 17437.56, + "end": 17439.66, + "probability": 0.9004 + }, + { + "start": 17439.76, + "end": 17442.46, + "probability": 0.9701 + }, + { + "start": 17444.48, + "end": 17444.48, + "probability": 0.9185 + }, + { + "start": 17447.7, + "end": 17448.34, + "probability": 0.9822 + }, + { + "start": 17450.12, + "end": 17453.16, + "probability": 0.9441 + }, + { + "start": 17455.74, + "end": 17456.7, + "probability": 0.4474 + }, + { + "start": 17458.8, + "end": 17463.94, + "probability": 0.9941 + }, + { + "start": 17467.22, + "end": 17472.74, + "probability": 0.9933 + }, + { + "start": 17474.44, + "end": 17475.76, + "probability": 0.7506 + }, + { + "start": 17476.92, + "end": 17478.62, + "probability": 0.8594 + }, + { + "start": 17478.72, + "end": 17479.62, + "probability": 0.6292 + }, + { + "start": 17479.68, + "end": 17481.18, + "probability": 0.8811 + }, + { + "start": 17481.24, + "end": 17483.82, + "probability": 0.9214 + }, + { + "start": 17485.48, + "end": 17485.94, + "probability": 0.7715 + }, + { + "start": 17486.86, + "end": 17489.6, + "probability": 0.6986 + }, + { + "start": 17490.22, + "end": 17492.8, + "probability": 0.6664 + }, + { + "start": 17493.66, + "end": 17496.38, + "probability": 0.9954 + }, + { + "start": 17496.38, + "end": 17500.54, + "probability": 0.9747 + }, + { + "start": 17501.24, + "end": 17502.02, + "probability": 0.9921 + }, + { + "start": 17503.46, + "end": 17504.86, + "probability": 0.9788 + }, + { + "start": 17506.88, + "end": 17507.16, + "probability": 0.3367 + }, + { + "start": 17507.36, + "end": 17508.18, + "probability": 0.7172 + }, + { + "start": 17508.28, + "end": 17511.82, + "probability": 0.8509 + }, + { + "start": 17511.98, + "end": 17515.0, + "probability": 0.9645 + }, + { + "start": 17515.06, + "end": 17518.86, + "probability": 0.9792 + }, + { + "start": 17520.53, + "end": 17521.5, + "probability": 0.7908 + }, + { + "start": 17522.72, + "end": 17523.08, + "probability": 0.3247 + }, + { + "start": 17523.1, + "end": 17523.52, + "probability": 0.9831 + }, + { + "start": 17523.6, + "end": 17526.66, + "probability": 0.9222 + }, + { + "start": 17527.32, + "end": 17529.04, + "probability": 0.8152 + }, + { + "start": 17529.16, + "end": 17532.47, + "probability": 0.9922 + }, + { + "start": 17532.94, + "end": 17535.74, + "probability": 0.999 + }, + { + "start": 17536.14, + "end": 17539.66, + "probability": 0.9878 + }, + { + "start": 17539.78, + "end": 17541.08, + "probability": 0.6237 + }, + { + "start": 17542.24, + "end": 17542.94, + "probability": 0.1791 + }, + { + "start": 17545.16, + "end": 17545.94, + "probability": 0.6265 + }, + { + "start": 17547.34, + "end": 17551.28, + "probability": 0.9741 + }, + { + "start": 17552.96, + "end": 17554.12, + "probability": 0.8175 + }, + { + "start": 17554.28, + "end": 17556.52, + "probability": 0.9874 + }, + { + "start": 17556.52, + "end": 17559.3, + "probability": 0.8566 + }, + { + "start": 17560.22, + "end": 17561.6, + "probability": 0.9193 + }, + { + "start": 17561.7, + "end": 17563.12, + "probability": 0.8199 + }, + { + "start": 17563.18, + "end": 17565.76, + "probability": 0.9912 + }, + { + "start": 17566.14, + "end": 17567.86, + "probability": 0.8972 + }, + { + "start": 17567.94, + "end": 17568.5, + "probability": 0.6545 + }, + { + "start": 17569.96, + "end": 17571.46, + "probability": 0.9968 + }, + { + "start": 17573.82, + "end": 17579.26, + "probability": 0.9851 + }, + { + "start": 17580.74, + "end": 17581.74, + "probability": 0.9106 + }, + { + "start": 17584.14, + "end": 17588.12, + "probability": 0.8018 + }, + { + "start": 17588.2, + "end": 17589.7, + "probability": 0.8612 + }, + { + "start": 17591.06, + "end": 17594.84, + "probability": 0.9655 + }, + { + "start": 17594.92, + "end": 17601.57, + "probability": 0.9738 + }, + { + "start": 17603.1, + "end": 17604.24, + "probability": 0.7407 + }, + { + "start": 17605.42, + "end": 17605.9, + "probability": 0.9651 + }, + { + "start": 17606.02, + "end": 17610.9, + "probability": 0.9577 + }, + { + "start": 17611.64, + "end": 17612.48, + "probability": 0.7296 + }, + { + "start": 17613.34, + "end": 17615.48, + "probability": 0.9055 + }, + { + "start": 17616.68, + "end": 17619.1, + "probability": 0.9384 + }, + { + "start": 17620.54, + "end": 17627.72, + "probability": 0.9805 + }, + { + "start": 17627.98, + "end": 17628.84, + "probability": 0.718 + }, + { + "start": 17630.2, + "end": 17635.3, + "probability": 0.9307 + }, + { + "start": 17635.4, + "end": 17636.76, + "probability": 0.6873 + }, + { + "start": 17638.32, + "end": 17642.1, + "probability": 0.9849 + }, + { + "start": 17642.1, + "end": 17645.98, + "probability": 0.9928 + }, + { + "start": 17646.56, + "end": 17651.06, + "probability": 0.9032 + }, + { + "start": 17651.86, + "end": 17651.88, + "probability": 0.4754 + }, + { + "start": 17651.88, + "end": 17652.88, + "probability": 0.5446 + }, + { + "start": 17653.7, + "end": 17658.4, + "probability": 0.991 + }, + { + "start": 17659.08, + "end": 17662.68, + "probability": 0.9424 + }, + { + "start": 17663.06, + "end": 17665.32, + "probability": 0.8818 + }, + { + "start": 17666.24, + "end": 17666.44, + "probability": 0.8114 + }, + { + "start": 17666.9, + "end": 17669.62, + "probability": 0.9666 + }, + { + "start": 17670.08, + "end": 17671.9, + "probability": 0.9692 + }, + { + "start": 17672.4, + "end": 17673.16, + "probability": 0.3898 + }, + { + "start": 17673.22, + "end": 17675.0, + "probability": 0.9924 + }, + { + "start": 17682.08, + "end": 17683.7, + "probability": 0.8497 + }, + { + "start": 17688.86, + "end": 17689.94, + "probability": 0.7352 + }, + { + "start": 17691.1, + "end": 17692.18, + "probability": 0.6794 + }, + { + "start": 17697.52, + "end": 17698.6, + "probability": 0.8253 + }, + { + "start": 17705.6, + "end": 17708.88, + "probability": 0.5779 + }, + { + "start": 17710.96, + "end": 17711.96, + "probability": 0.8936 + }, + { + "start": 17714.96, + "end": 17717.05, + "probability": 0.9854 + }, + { + "start": 17719.52, + "end": 17722.58, + "probability": 0.9932 + }, + { + "start": 17724.16, + "end": 17725.88, + "probability": 0.9543 + }, + { + "start": 17727.54, + "end": 17729.04, + "probability": 0.7704 + }, + { + "start": 17730.86, + "end": 17733.58, + "probability": 0.9744 + }, + { + "start": 17734.48, + "end": 17735.84, + "probability": 0.7184 + }, + { + "start": 17737.68, + "end": 17739.88, + "probability": 0.6328 + }, + { + "start": 17740.6, + "end": 17745.26, + "probability": 0.7222 + }, + { + "start": 17746.36, + "end": 17747.16, + "probability": 0.9189 + }, + { + "start": 17749.01, + "end": 17752.82, + "probability": 0.9653 + }, + { + "start": 17753.46, + "end": 17756.24, + "probability": 0.8206 + }, + { + "start": 17757.66, + "end": 17759.02, + "probability": 0.938 + }, + { + "start": 17759.82, + "end": 17760.58, + "probability": 0.8792 + }, + { + "start": 17761.26, + "end": 17762.26, + "probability": 0.8873 + }, + { + "start": 17762.4, + "end": 17764.5, + "probability": 0.9747 + }, + { + "start": 17770.84, + "end": 17772.0, + "probability": 0.9705 + }, + { + "start": 17775.34, + "end": 17778.45, + "probability": 0.9966 + }, + { + "start": 17782.7, + "end": 17783.06, + "probability": 0.7974 + }, + { + "start": 17784.98, + "end": 17787.08, + "probability": 0.6741 + }, + { + "start": 17790.72, + "end": 17792.1, + "probability": 0.9686 + }, + { + "start": 17792.94, + "end": 17794.3, + "probability": 0.7462 + }, + { + "start": 17795.22, + "end": 17798.92, + "probability": 0.8794 + }, + { + "start": 17802.22, + "end": 17803.54, + "probability": 0.9709 + }, + { + "start": 17805.0, + "end": 17806.76, + "probability": 0.9622 + }, + { + "start": 17806.84, + "end": 17808.98, + "probability": 0.71 + }, + { + "start": 17809.04, + "end": 17810.0, + "probability": 0.7344 + }, + { + "start": 17810.02, + "end": 17810.84, + "probability": 0.584 + }, + { + "start": 17811.4, + "end": 17811.64, + "probability": 0.278 + }, + { + "start": 17811.86, + "end": 17813.24, + "probability": 0.9538 + }, + { + "start": 17813.38, + "end": 17817.08, + "probability": 0.915 + }, + { + "start": 17817.08, + "end": 17820.1, + "probability": 0.9908 + }, + { + "start": 17820.98, + "end": 17823.14, + "probability": 0.9015 + }, + { + "start": 17824.42, + "end": 17826.15, + "probability": 0.8427 + }, + { + "start": 17827.24, + "end": 17829.1, + "probability": 0.9966 + }, + { + "start": 17831.7, + "end": 17832.7, + "probability": 0.9404 + }, + { + "start": 17834.98, + "end": 17835.64, + "probability": 0.7577 + }, + { + "start": 17835.7, + "end": 17836.12, + "probability": 0.9387 + }, + { + "start": 17836.16, + "end": 17840.52, + "probability": 0.9833 + }, + { + "start": 17842.38, + "end": 17847.16, + "probability": 0.994 + }, + { + "start": 17850.24, + "end": 17851.76, + "probability": 0.9868 + }, + { + "start": 17853.08, + "end": 17856.22, + "probability": 0.9781 + }, + { + "start": 17857.8, + "end": 17860.14, + "probability": 0.9451 + }, + { + "start": 17860.82, + "end": 17861.58, + "probability": 0.9704 + }, + { + "start": 17863.32, + "end": 17865.28, + "probability": 0.9543 + }, + { + "start": 17866.08, + "end": 17867.94, + "probability": 0.9793 + }, + { + "start": 17868.74, + "end": 17870.36, + "probability": 0.8386 + }, + { + "start": 17871.68, + "end": 17875.08, + "probability": 0.7598 + }, + { + "start": 17875.98, + "end": 17877.52, + "probability": 0.9851 + }, + { + "start": 17879.12, + "end": 17879.92, + "probability": 0.5636 + }, + { + "start": 17880.82, + "end": 17881.48, + "probability": 0.9041 + }, + { + "start": 17884.94, + "end": 17888.78, + "probability": 0.9365 + }, + { + "start": 17889.94, + "end": 17890.78, + "probability": 0.5263 + }, + { + "start": 17891.76, + "end": 17893.6, + "probability": 0.9912 + }, + { + "start": 17896.38, + "end": 17896.92, + "probability": 0.646 + }, + { + "start": 17899.72, + "end": 17901.52, + "probability": 0.9583 + }, + { + "start": 17903.94, + "end": 17907.84, + "probability": 0.9905 + }, + { + "start": 17910.36, + "end": 17910.94, + "probability": 0.7539 + }, + { + "start": 17911.94, + "end": 17913.58, + "probability": 0.9961 + }, + { + "start": 17914.52, + "end": 17916.2, + "probability": 0.9337 + }, + { + "start": 17918.9, + "end": 17919.56, + "probability": 0.6685 + }, + { + "start": 17922.26, + "end": 17923.2, + "probability": 0.6153 + }, + { + "start": 17925.2, + "end": 17926.2, + "probability": 0.6566 + }, + { + "start": 17928.98, + "end": 17929.68, + "probability": 0.7615 + }, + { + "start": 17932.86, + "end": 17934.88, + "probability": 0.7031 + }, + { + "start": 17936.98, + "end": 17940.2, + "probability": 0.9653 + }, + { + "start": 17941.66, + "end": 17943.0, + "probability": 0.9761 + }, + { + "start": 17944.22, + "end": 17945.4, + "probability": 0.9287 + }, + { + "start": 17946.66, + "end": 17947.8, + "probability": 0.7204 + }, + { + "start": 17949.98, + "end": 17952.6, + "probability": 0.8943 + }, + { + "start": 17954.5, + "end": 17957.7, + "probability": 0.9971 + }, + { + "start": 17959.32, + "end": 17960.68, + "probability": 0.8753 + }, + { + "start": 17961.38, + "end": 17962.1, + "probability": 0.9932 + }, + { + "start": 17964.12, + "end": 17966.06, + "probability": 0.9951 + }, + { + "start": 17967.44, + "end": 17968.58, + "probability": 0.8457 + }, + { + "start": 17970.34, + "end": 17971.8, + "probability": 0.9917 + }, + { + "start": 17974.48, + "end": 17975.48, + "probability": 0.5272 + }, + { + "start": 17975.78, + "end": 17976.6, + "probability": 0.5401 + }, + { + "start": 17976.64, + "end": 17978.7, + "probability": 0.7723 + }, + { + "start": 17978.84, + "end": 17979.12, + "probability": 0.8282 + }, + { + "start": 17979.14, + "end": 17980.28, + "probability": 0.6685 + }, + { + "start": 17980.38, + "end": 17981.92, + "probability": 0.9951 + }, + { + "start": 17982.44, + "end": 17987.92, + "probability": 0.998 + }, + { + "start": 17990.02, + "end": 17992.06, + "probability": 0.6292 + }, + { + "start": 17993.74, + "end": 17998.64, + "probability": 0.9474 + }, + { + "start": 17998.64, + "end": 18004.76, + "probability": 0.988 + }, + { + "start": 18007.2, + "end": 18008.3, + "probability": 0.9951 + }, + { + "start": 18010.88, + "end": 18011.44, + "probability": 0.8144 + }, + { + "start": 18012.94, + "end": 18013.56, + "probability": 0.9597 + }, + { + "start": 18014.78, + "end": 18016.38, + "probability": 0.9949 + }, + { + "start": 18018.22, + "end": 18020.42, + "probability": 0.9815 + }, + { + "start": 18022.28, + "end": 18023.78, + "probability": 0.6971 + }, + { + "start": 18024.4, + "end": 18025.48, + "probability": 0.8804 + }, + { + "start": 18026.52, + "end": 18031.58, + "probability": 0.9897 + }, + { + "start": 18032.88, + "end": 18034.02, + "probability": 0.9355 + }, + { + "start": 18034.82, + "end": 18036.44, + "probability": 0.9346 + }, + { + "start": 18037.94, + "end": 18039.02, + "probability": 0.8735 + }, + { + "start": 18040.66, + "end": 18044.5, + "probability": 0.9443 + }, + { + "start": 18045.82, + "end": 18049.58, + "probability": 0.9614 + }, + { + "start": 18050.6, + "end": 18052.08, + "probability": 0.8715 + }, + { + "start": 18052.84, + "end": 18055.46, + "probability": 0.9739 + }, + { + "start": 18055.9, + "end": 18059.78, + "probability": 0.9551 + }, + { + "start": 18062.72, + "end": 18067.62, + "probability": 0.9409 + }, + { + "start": 18068.62, + "end": 18070.42, + "probability": 0.9039 + }, + { + "start": 18072.72, + "end": 18076.74, + "probability": 0.9925 + }, + { + "start": 18078.94, + "end": 18080.06, + "probability": 0.8249 + }, + { + "start": 18081.08, + "end": 18086.88, + "probability": 0.9937 + }, + { + "start": 18087.8, + "end": 18088.7, + "probability": 0.9276 + }, + { + "start": 18089.22, + "end": 18091.16, + "probability": 0.8191 + }, + { + "start": 18092.98, + "end": 18095.24, + "probability": 0.8458 + }, + { + "start": 18095.26, + "end": 18096.06, + "probability": 0.6907 + }, + { + "start": 18097.82, + "end": 18101.7, + "probability": 0.8054 + }, + { + "start": 18102.7, + "end": 18103.78, + "probability": 0.9581 + }, + { + "start": 18103.84, + "end": 18104.94, + "probability": 0.9116 + }, + { + "start": 18105.74, + "end": 18110.9, + "probability": 0.9554 + }, + { + "start": 18111.78, + "end": 18113.56, + "probability": 0.963 + }, + { + "start": 18114.97, + "end": 18116.68, + "probability": 0.6054 + }, + { + "start": 18117.48, + "end": 18119.24, + "probability": 0.3154 + }, + { + "start": 18120.26, + "end": 18122.86, + "probability": 0.3471 + }, + { + "start": 18122.86, + "end": 18124.34, + "probability": 0.9727 + }, + { + "start": 18124.52, + "end": 18127.42, + "probability": 0.9768 + }, + { + "start": 18129.02, + "end": 18133.54, + "probability": 0.9348 + }, + { + "start": 18134.48, + "end": 18136.9, + "probability": 0.9539 + }, + { + "start": 18137.36, + "end": 18138.29, + "probability": 0.9591 + }, + { + "start": 18138.5, + "end": 18139.9, + "probability": 0.8148 + }, + { + "start": 18140.24, + "end": 18142.76, + "probability": 0.9653 + }, + { + "start": 18143.34, + "end": 18148.32, + "probability": 0.9958 + }, + { + "start": 18148.68, + "end": 18153.66, + "probability": 0.9503 + }, + { + "start": 18154.56, + "end": 18157.72, + "probability": 0.8708 + }, + { + "start": 18158.44, + "end": 18162.38, + "probability": 0.9331 + }, + { + "start": 18163.06, + "end": 18165.82, + "probability": 0.9683 + }, + { + "start": 18166.92, + "end": 18168.42, + "probability": 0.6601 + }, + { + "start": 18169.46, + "end": 18171.02, + "probability": 0.8701 + }, + { + "start": 18172.24, + "end": 18173.26, + "probability": 0.573 + }, + { + "start": 18174.0, + "end": 18175.3, + "probability": 0.8914 + }, + { + "start": 18176.1, + "end": 18179.3, + "probability": 0.5028 + }, + { + "start": 18179.62, + "end": 18181.02, + "probability": 0.9017 + }, + { + "start": 18181.6, + "end": 18187.34, + "probability": 0.9665 + }, + { + "start": 18187.96, + "end": 18189.76, + "probability": 0.9907 + }, + { + "start": 18189.88, + "end": 18191.92, + "probability": 0.9448 + }, + { + "start": 18192.28, + "end": 18192.84, + "probability": 0.4858 + }, + { + "start": 18192.9, + "end": 18194.9, + "probability": 0.9305 + }, + { + "start": 18216.66, + "end": 18217.9, + "probability": 0.5302 + }, + { + "start": 18218.8, + "end": 18219.48, + "probability": 0.6889 + }, + { + "start": 18221.86, + "end": 18222.52, + "probability": 0.8726 + }, + { + "start": 18224.38, + "end": 18226.17, + "probability": 0.9897 + }, + { + "start": 18227.24, + "end": 18228.22, + "probability": 0.6669 + }, + { + "start": 18229.52, + "end": 18230.54, + "probability": 0.9619 + }, + { + "start": 18232.56, + "end": 18233.82, + "probability": 0.9533 + }, + { + "start": 18235.04, + "end": 18235.88, + "probability": 0.9891 + }, + { + "start": 18237.3, + "end": 18239.02, + "probability": 0.993 + }, + { + "start": 18239.96, + "end": 18240.9, + "probability": 0.9917 + }, + { + "start": 18241.78, + "end": 18246.42, + "probability": 0.9537 + }, + { + "start": 18247.4, + "end": 18249.66, + "probability": 0.824 + }, + { + "start": 18252.18, + "end": 18253.36, + "probability": 0.8424 + }, + { + "start": 18254.0, + "end": 18254.8, + "probability": 0.9976 + }, + { + "start": 18255.58, + "end": 18257.2, + "probability": 0.9937 + }, + { + "start": 18258.72, + "end": 18260.4, + "probability": 0.895 + }, + { + "start": 18262.56, + "end": 18265.52, + "probability": 0.7809 + }, + { + "start": 18267.02, + "end": 18267.68, + "probability": 0.7285 + }, + { + "start": 18269.02, + "end": 18270.35, + "probability": 0.9419 + }, + { + "start": 18273.44, + "end": 18274.12, + "probability": 0.9574 + }, + { + "start": 18274.74, + "end": 18275.56, + "probability": 0.426 + }, + { + "start": 18276.56, + "end": 18277.08, + "probability": 0.4321 + }, + { + "start": 18278.02, + "end": 18280.8, + "probability": 0.9453 + }, + { + "start": 18281.88, + "end": 18283.82, + "probability": 0.9875 + }, + { + "start": 18284.76, + "end": 18285.12, + "probability": 0.5559 + }, + { + "start": 18287.18, + "end": 18289.94, + "probability": 0.9795 + }, + { + "start": 18291.14, + "end": 18292.64, + "probability": 0.8988 + }, + { + "start": 18294.28, + "end": 18296.0, + "probability": 0.9761 + }, + { + "start": 18298.06, + "end": 18301.1, + "probability": 0.9938 + }, + { + "start": 18301.62, + "end": 18303.1, + "probability": 0.9734 + }, + { + "start": 18305.04, + "end": 18305.54, + "probability": 0.9668 + }, + { + "start": 18306.58, + "end": 18309.74, + "probability": 0.9917 + }, + { + "start": 18311.36, + "end": 18312.84, + "probability": 0.7825 + }, + { + "start": 18314.1, + "end": 18315.76, + "probability": 0.7212 + }, + { + "start": 18317.26, + "end": 18322.36, + "probability": 0.9658 + }, + { + "start": 18322.48, + "end": 18322.98, + "probability": 0.9258 + }, + { + "start": 18323.44, + "end": 18325.86, + "probability": 0.8988 + }, + { + "start": 18327.06, + "end": 18328.98, + "probability": 0.9834 + }, + { + "start": 18330.2, + "end": 18331.44, + "probability": 0.117 + }, + { + "start": 18333.3, + "end": 18333.66, + "probability": 0.0042 + }, + { + "start": 18333.66, + "end": 18333.66, + "probability": 0.0168 + }, + { + "start": 18333.66, + "end": 18334.94, + "probability": 0.1836 + }, + { + "start": 18336.02, + "end": 18340.4, + "probability": 0.9839 + }, + { + "start": 18341.28, + "end": 18347.67, + "probability": 0.9935 + }, + { + "start": 18350.44, + "end": 18355.36, + "probability": 0.946 + }, + { + "start": 18355.42, + "end": 18356.88, + "probability": 0.857 + }, + { + "start": 18356.98, + "end": 18358.62, + "probability": 0.9834 + }, + { + "start": 18361.16, + "end": 18362.32, + "probability": 0.9712 + }, + { + "start": 18363.6, + "end": 18364.98, + "probability": 0.9904 + }, + { + "start": 18366.72, + "end": 18368.28, + "probability": 0.9928 + }, + { + "start": 18369.92, + "end": 18371.62, + "probability": 0.7901 + }, + { + "start": 18372.8, + "end": 18374.3, + "probability": 0.8772 + }, + { + "start": 18374.88, + "end": 18380.44, + "probability": 0.9641 + }, + { + "start": 18381.18, + "end": 18384.2, + "probability": 0.9956 + }, + { + "start": 18384.2, + "end": 18389.7, + "probability": 0.9609 + }, + { + "start": 18390.4, + "end": 18391.6, + "probability": 0.7583 + }, + { + "start": 18392.46, + "end": 18395.32, + "probability": 0.9768 + }, + { + "start": 18395.98, + "end": 18398.64, + "probability": 0.9917 + }, + { + "start": 18402.36, + "end": 18403.64, + "probability": 0.744 + }, + { + "start": 18405.2, + "end": 18406.62, + "probability": 0.9739 + }, + { + "start": 18407.54, + "end": 18409.76, + "probability": 0.9234 + }, + { + "start": 18410.32, + "end": 18411.42, + "probability": 0.7926 + }, + { + "start": 18412.9, + "end": 18417.0, + "probability": 0.9907 + }, + { + "start": 18417.0, + "end": 18421.02, + "probability": 0.974 + }, + { + "start": 18426.08, + "end": 18426.86, + "probability": 0.6401 + }, + { + "start": 18426.86, + "end": 18426.88, + "probability": 0.6772 + }, + { + "start": 18427.04, + "end": 18427.78, + "probability": 0.6152 + }, + { + "start": 18428.18, + "end": 18430.54, + "probability": 0.8646 + }, + { + "start": 18430.6, + "end": 18431.52, + "probability": 0.7368 + }, + { + "start": 18432.24, + "end": 18435.0, + "probability": 0.9658 + }, + { + "start": 18436.36, + "end": 18438.72, + "probability": 0.7695 + }, + { + "start": 18438.94, + "end": 18440.12, + "probability": 0.7268 + }, + { + "start": 18440.12, + "end": 18441.16, + "probability": 0.8776 + }, + { + "start": 18441.16, + "end": 18443.0, + "probability": 0.9697 + }, + { + "start": 18443.26, + "end": 18444.68, + "probability": 0.9834 + }, + { + "start": 18445.42, + "end": 18448.26, + "probability": 0.9595 + }, + { + "start": 18448.32, + "end": 18450.62, + "probability": 0.7339 + }, + { + "start": 18451.52, + "end": 18452.64, + "probability": 0.3504 + }, + { + "start": 18452.7, + "end": 18453.66, + "probability": 0.8319 + }, + { + "start": 18454.02, + "end": 18456.16, + "probability": 0.1869 + }, + { + "start": 18457.26, + "end": 18460.88, + "probability": 0.1213 + }, + { + "start": 18461.72, + "end": 18464.48, + "probability": 0.143 + }, + { + "start": 18465.0, + "end": 18466.06, + "probability": 0.1061 + }, + { + "start": 18466.64, + "end": 18466.64, + "probability": 0.0407 + }, + { + "start": 18466.64, + "end": 18466.64, + "probability": 0.2571 + }, + { + "start": 18466.64, + "end": 18466.64, + "probability": 0.7201 + }, + { + "start": 18466.64, + "end": 18468.32, + "probability": 0.4387 + }, + { + "start": 18468.36, + "end": 18469.04, + "probability": 0.6139 + }, + { + "start": 18470.5, + "end": 18477.12, + "probability": 0.9863 + }, + { + "start": 18477.72, + "end": 18478.51, + "probability": 0.8996 + }, + { + "start": 18479.24, + "end": 18481.76, + "probability": 0.9944 + }, + { + "start": 18481.84, + "end": 18486.18, + "probability": 0.8552 + }, + { + "start": 18488.36, + "end": 18489.52, + "probability": 0.9883 + }, + { + "start": 18489.7, + "end": 18491.64, + "probability": 0.9971 + }, + { + "start": 18492.14, + "end": 18493.16, + "probability": 0.9657 + }, + { + "start": 18493.42, + "end": 18494.72, + "probability": 0.7253 + }, + { + "start": 18495.1, + "end": 18499.36, + "probability": 0.8202 + }, + { + "start": 18499.7, + "end": 18501.52, + "probability": 0.9751 + }, + { + "start": 18501.68, + "end": 18503.1, + "probability": 0.7375 + }, + { + "start": 18503.2, + "end": 18504.24, + "probability": 0.7574 + }, + { + "start": 18504.62, + "end": 18505.78, + "probability": 0.8527 + }, + { + "start": 18507.02, + "end": 18508.18, + "probability": 0.9839 + }, + { + "start": 18508.44, + "end": 18512.22, + "probability": 0.8885 + }, + { + "start": 18513.42, + "end": 18514.58, + "probability": 0.4152 + }, + { + "start": 18516.5, + "end": 18521.2, + "probability": 0.7754 + }, + { + "start": 18521.32, + "end": 18521.9, + "probability": 0.8415 + }, + { + "start": 18521.98, + "end": 18522.88, + "probability": 0.6202 + }, + { + "start": 18523.34, + "end": 18525.28, + "probability": 0.9927 + }, + { + "start": 18525.74, + "end": 18526.94, + "probability": 0.7635 + }, + { + "start": 18527.56, + "end": 18532.34, + "probability": 0.9838 + }, + { + "start": 18533.04, + "end": 18537.2, + "probability": 0.9946 + }, + { + "start": 18537.7, + "end": 18538.74, + "probability": 0.874 + }, + { + "start": 18539.22, + "end": 18541.41, + "probability": 0.8574 + }, + { + "start": 18541.7, + "end": 18545.96, + "probability": 0.984 + }, + { + "start": 18546.52, + "end": 18549.2, + "probability": 0.8332 + }, + { + "start": 18549.82, + "end": 18551.54, + "probability": 0.5813 + }, + { + "start": 18552.22, + "end": 18553.94, + "probability": 0.994 + }, + { + "start": 18553.94, + "end": 18557.38, + "probability": 0.9891 + }, + { + "start": 18559.42, + "end": 18561.06, + "probability": 0.9565 + }, + { + "start": 18562.36, + "end": 18563.52, + "probability": 0.9857 + }, + { + "start": 18564.72, + "end": 18568.5, + "probability": 0.863 + }, + { + "start": 18569.74, + "end": 18572.14, + "probability": 0.9855 + }, + { + "start": 18572.7, + "end": 18573.96, + "probability": 0.9182 + }, + { + "start": 18574.84, + "end": 18578.78, + "probability": 0.9628 + }, + { + "start": 18578.84, + "end": 18582.5, + "probability": 0.5491 + }, + { + "start": 18584.4, + "end": 18585.48, + "probability": 0.9452 + }, + { + "start": 18587.22, + "end": 18588.08, + "probability": 0.9873 + }, + { + "start": 18589.82, + "end": 18590.54, + "probability": 0.906 + }, + { + "start": 18592.38, + "end": 18593.4, + "probability": 0.9309 + }, + { + "start": 18593.5, + "end": 18594.34, + "probability": 0.4678 + }, + { + "start": 18594.5, + "end": 18597.68, + "probability": 0.7439 + }, + { + "start": 18597.76, + "end": 18597.9, + "probability": 0.2896 + }, + { + "start": 18597.96, + "end": 18598.86, + "probability": 0.7996 + }, + { + "start": 18599.3, + "end": 18603.44, + "probability": 0.9958 + }, + { + "start": 18603.92, + "end": 18604.64, + "probability": 0.8652 + }, + { + "start": 18605.36, + "end": 18606.5, + "probability": 0.9937 + }, + { + "start": 18607.46, + "end": 18608.82, + "probability": 0.9697 + }, + { + "start": 18609.6, + "end": 18610.92, + "probability": 0.9946 + }, + { + "start": 18612.2, + "end": 18614.76, + "probability": 0.9939 + }, + { + "start": 18615.42, + "end": 18618.26, + "probability": 0.9868 + }, + { + "start": 18618.38, + "end": 18619.94, + "probability": 0.9783 + }, + { + "start": 18620.44, + "end": 18623.32, + "probability": 0.8885 + }, + { + "start": 18623.4, + "end": 18627.34, + "probability": 0.8782 + }, + { + "start": 18627.72, + "end": 18632.12, + "probability": 0.9491 + }, + { + "start": 18632.9, + "end": 18636.1, + "probability": 0.9639 + }, + { + "start": 18636.84, + "end": 18638.08, + "probability": 0.9562 + }, + { + "start": 18638.16, + "end": 18644.04, + "probability": 0.9953 + }, + { + "start": 18644.04, + "end": 18650.02, + "probability": 0.9308 + }, + { + "start": 18650.3, + "end": 18651.02, + "probability": 0.8226 + }, + { + "start": 18651.34, + "end": 18652.42, + "probability": 0.7661 + }, + { + "start": 18652.9, + "end": 18654.76, + "probability": 0.9954 + }, + { + "start": 18655.16, + "end": 18657.66, + "probability": 0.9775 + }, + { + "start": 18657.96, + "end": 18659.18, + "probability": 0.8069 + }, + { + "start": 18659.34, + "end": 18662.06, + "probability": 0.9911 + }, + { + "start": 18662.74, + "end": 18663.9, + "probability": 0.8699 + }, + { + "start": 18665.4, + "end": 18666.54, + "probability": 0.7664 + }, + { + "start": 18667.46, + "end": 18670.88, + "probability": 0.99 + }, + { + "start": 18671.44, + "end": 18673.22, + "probability": 0.9966 + }, + { + "start": 18674.12, + "end": 18678.88, + "probability": 0.9935 + }, + { + "start": 18679.36, + "end": 18683.44, + "probability": 0.9978 + }, + { + "start": 18683.54, + "end": 18684.88, + "probability": 0.9585 + }, + { + "start": 18685.64, + "end": 18690.12, + "probability": 0.9776 + }, + { + "start": 18690.54, + "end": 18691.66, + "probability": 0.4353 + }, + { + "start": 18691.7, + "end": 18696.78, + "probability": 0.7882 + }, + { + "start": 18697.28, + "end": 18697.54, + "probability": 0.7315 + }, + { + "start": 18698.46, + "end": 18700.6, + "probability": 0.9773 + }, + { + "start": 18700.66, + "end": 18703.02, + "probability": 0.9658 + }, + { + "start": 18703.98, + "end": 18707.54, + "probability": 0.9053 + }, + { + "start": 18708.54, + "end": 18709.18, + "probability": 0.7488 + }, + { + "start": 18718.48, + "end": 18721.16, + "probability": 0.8388 + }, + { + "start": 18732.48, + "end": 18733.32, + "probability": 0.6248 + }, + { + "start": 18734.76, + "end": 18735.38, + "probability": 0.9927 + }, + { + "start": 18736.82, + "end": 18739.76, + "probability": 0.8764 + }, + { + "start": 18740.92, + "end": 18744.02, + "probability": 0.9056 + }, + { + "start": 18744.94, + "end": 18746.04, + "probability": 0.9937 + }, + { + "start": 18747.34, + "end": 18748.58, + "probability": 0.6767 + }, + { + "start": 18749.92, + "end": 18751.46, + "probability": 0.9274 + }, + { + "start": 18752.96, + "end": 18754.32, + "probability": 0.8399 + }, + { + "start": 18755.02, + "end": 18756.72, + "probability": 0.9922 + }, + { + "start": 18757.28, + "end": 18757.72, + "probability": 0.962 + }, + { + "start": 18758.96, + "end": 18761.78, + "probability": 0.8658 + }, + { + "start": 18762.72, + "end": 18765.42, + "probability": 0.9866 + }, + { + "start": 18766.46, + "end": 18769.54, + "probability": 0.994 + }, + { + "start": 18769.54, + "end": 18772.94, + "probability": 0.9011 + }, + { + "start": 18773.94, + "end": 18777.32, + "probability": 0.7278 + }, + { + "start": 18777.88, + "end": 18779.22, + "probability": 0.9861 + }, + { + "start": 18780.08, + "end": 18781.8, + "probability": 0.8401 + }, + { + "start": 18782.48, + "end": 18783.84, + "probability": 0.9447 + }, + { + "start": 18784.68, + "end": 18787.6, + "probability": 0.9727 + }, + { + "start": 18789.58, + "end": 18796.86, + "probability": 0.7458 + }, + { + "start": 18798.22, + "end": 18799.32, + "probability": 0.814 + }, + { + "start": 18801.16, + "end": 18802.43, + "probability": 0.8739 + }, + { + "start": 18804.06, + "end": 18805.56, + "probability": 0.978 + }, + { + "start": 18806.82, + "end": 18808.6, + "probability": 0.9177 + }, + { + "start": 18808.74, + "end": 18809.58, + "probability": 0.7705 + }, + { + "start": 18809.64, + "end": 18810.52, + "probability": 0.8685 + }, + { + "start": 18811.46, + "end": 18813.44, + "probability": 0.9846 + }, + { + "start": 18814.04, + "end": 18815.58, + "probability": 0.8535 + }, + { + "start": 18817.02, + "end": 18818.21, + "probability": 0.9334 + }, + { + "start": 18819.66, + "end": 18822.16, + "probability": 0.9266 + }, + { + "start": 18822.92, + "end": 18824.98, + "probability": 0.9604 + }, + { + "start": 18826.2, + "end": 18827.32, + "probability": 0.9966 + }, + { + "start": 18827.52, + "end": 18828.5, + "probability": 0.7692 + }, + { + "start": 18828.58, + "end": 18829.88, + "probability": 0.8407 + }, + { + "start": 18831.26, + "end": 18832.24, + "probability": 0.9932 + }, + { + "start": 18832.86, + "end": 18836.18, + "probability": 0.6235 + }, + { + "start": 18836.88, + "end": 18839.49, + "probability": 0.7933 + }, + { + "start": 18841.38, + "end": 18842.76, + "probability": 0.6836 + }, + { + "start": 18842.92, + "end": 18846.38, + "probability": 0.8882 + }, + { + "start": 18846.94, + "end": 18847.4, + "probability": 0.8994 + }, + { + "start": 18848.7, + "end": 18852.07, + "probability": 0.9629 + }, + { + "start": 18852.76, + "end": 18854.88, + "probability": 0.901 + }, + { + "start": 18856.1, + "end": 18858.94, + "probability": 0.6694 + }, + { + "start": 18860.0, + "end": 18862.28, + "probability": 0.9026 + }, + { + "start": 18863.04, + "end": 18863.86, + "probability": 0.4212 + }, + { + "start": 18863.9, + "end": 18864.6, + "probability": 0.96 + }, + { + "start": 18865.1, + "end": 18867.06, + "probability": 0.939 + }, + { + "start": 18867.16, + "end": 18868.86, + "probability": 0.879 + }, + { + "start": 18870.32, + "end": 18871.74, + "probability": 0.8657 + }, + { + "start": 18872.8, + "end": 18873.68, + "probability": 0.7032 + }, + { + "start": 18875.02, + "end": 18876.02, + "probability": 0.9295 + }, + { + "start": 18877.08, + "end": 18878.34, + "probability": 0.9166 + }, + { + "start": 18879.28, + "end": 18881.78, + "probability": 0.9846 + }, + { + "start": 18882.6, + "end": 18884.94, + "probability": 0.9959 + }, + { + "start": 18885.46, + "end": 18888.36, + "probability": 0.9844 + }, + { + "start": 18889.6, + "end": 18890.62, + "probability": 0.8474 + }, + { + "start": 18891.48, + "end": 18893.86, + "probability": 0.9642 + }, + { + "start": 18893.88, + "end": 18894.9, + "probability": 0.5836 + }, + { + "start": 18895.18, + "end": 18896.78, + "probability": 0.9263 + }, + { + "start": 18898.22, + "end": 18901.08, + "probability": 0.8442 + }, + { + "start": 18901.64, + "end": 18905.18, + "probability": 0.8543 + }, + { + "start": 18905.34, + "end": 18909.9, + "probability": 0.9465 + }, + { + "start": 18911.4, + "end": 18912.18, + "probability": 0.5903 + }, + { + "start": 18913.94, + "end": 18916.16, + "probability": 0.9932 + }, + { + "start": 18917.36, + "end": 18919.4, + "probability": 0.8104 + }, + { + "start": 18919.96, + "end": 18922.48, + "probability": 0.5571 + }, + { + "start": 18923.04, + "end": 18924.86, + "probability": 0.9961 + }, + { + "start": 18925.62, + "end": 18927.24, + "probability": 0.9621 + }, + { + "start": 18928.24, + "end": 18931.9, + "probability": 0.9321 + }, + { + "start": 18931.9, + "end": 18935.3, + "probability": 0.9954 + }, + { + "start": 18935.82, + "end": 18937.86, + "probability": 0.9873 + }, + { + "start": 18938.6, + "end": 18942.14, + "probability": 0.5676 + }, + { + "start": 18942.78, + "end": 18944.58, + "probability": 0.9562 + }, + { + "start": 18945.32, + "end": 18947.82, + "probability": 0.9265 + }, + { + "start": 18948.22, + "end": 18951.34, + "probability": 0.9816 + }, + { + "start": 18952.12, + "end": 18953.58, + "probability": 0.7865 + }, + { + "start": 18954.02, + "end": 18954.94, + "probability": 0.8597 + }, + { + "start": 18955.08, + "end": 18959.52, + "probability": 0.8357 + }, + { + "start": 18960.74, + "end": 18965.94, + "probability": 0.9517 + }, + { + "start": 18965.94, + "end": 18969.44, + "probability": 0.9597 + }, + { + "start": 18970.76, + "end": 18972.52, + "probability": 0.6921 + }, + { + "start": 18973.7, + "end": 18974.52, + "probability": 0.7936 + }, + { + "start": 18975.66, + "end": 18977.62, + "probability": 0.9061 + }, + { + "start": 18978.82, + "end": 18981.32, + "probability": 0.9815 + }, + { + "start": 18982.02, + "end": 18984.2, + "probability": 0.9283 + }, + { + "start": 18984.8, + "end": 18986.72, + "probability": 0.8254 + }, + { + "start": 18988.84, + "end": 18989.88, + "probability": 0.4864 + }, + { + "start": 18991.0, + "end": 18991.82, + "probability": 0.8966 + }, + { + "start": 18992.48, + "end": 18994.1, + "probability": 0.9646 + }, + { + "start": 18994.82, + "end": 18996.34, + "probability": 0.816 + }, + { + "start": 18997.96, + "end": 18999.84, + "probability": 0.8814 + }, + { + "start": 19001.8, + "end": 19002.22, + "probability": 0.7534 + }, + { + "start": 19002.92, + "end": 19005.5, + "probability": 0.9774 + }, + { + "start": 19006.02, + "end": 19007.96, + "probability": 0.9917 + }, + { + "start": 19008.74, + "end": 19011.86, + "probability": 0.9954 + }, + { + "start": 19012.86, + "end": 19013.54, + "probability": 0.608 + }, + { + "start": 19014.92, + "end": 19015.96, + "probability": 0.877 + }, + { + "start": 19016.34, + "end": 19017.02, + "probability": 0.5217 + }, + { + "start": 19017.1, + "end": 19020.36, + "probability": 0.7866 + }, + { + "start": 19021.94, + "end": 19022.64, + "probability": 0.8655 + }, + { + "start": 19022.74, + "end": 19026.5, + "probability": 0.5815 + }, + { + "start": 19027.84, + "end": 19029.98, + "probability": 0.9356 + }, + { + "start": 19030.8, + "end": 19032.06, + "probability": 0.9179 + }, + { + "start": 19032.12, + "end": 19034.06, + "probability": 0.5195 + }, + { + "start": 19035.26, + "end": 19037.04, + "probability": 0.6457 + }, + { + "start": 19038.0, + "end": 19039.66, + "probability": 0.9848 + }, + { + "start": 19041.34, + "end": 19042.4, + "probability": 0.6391 + }, + { + "start": 19042.58, + "end": 19045.0, + "probability": 0.9683 + }, + { + "start": 19045.0, + "end": 19049.46, + "probability": 0.9874 + }, + { + "start": 19051.2, + "end": 19053.02, + "probability": 0.6224 + }, + { + "start": 19054.32, + "end": 19056.38, + "probability": 0.8504 + }, + { + "start": 19057.86, + "end": 19060.9, + "probability": 0.9424 + }, + { + "start": 19062.3, + "end": 19066.8, + "probability": 0.9514 + }, + { + "start": 19067.0, + "end": 19067.7, + "probability": 0.8883 + }, + { + "start": 19068.48, + "end": 19069.96, + "probability": 0.9982 + }, + { + "start": 19070.94, + "end": 19073.42, + "probability": 0.9364 + }, + { + "start": 19075.52, + "end": 19076.6, + "probability": 0.6478 + }, + { + "start": 19078.14, + "end": 19079.36, + "probability": 0.9923 + }, + { + "start": 19079.42, + "end": 19080.84, + "probability": 0.7936 + }, + { + "start": 19080.86, + "end": 19081.38, + "probability": 0.7675 + }, + { + "start": 19082.02, + "end": 19086.32, + "probability": 0.9806 + }, + { + "start": 19087.0, + "end": 19090.48, + "probability": 0.8536 + }, + { + "start": 19092.04, + "end": 19094.32, + "probability": 0.8539 + }, + { + "start": 19094.56, + "end": 19095.62, + "probability": 0.7748 + }, + { + "start": 19095.72, + "end": 19096.36, + "probability": 0.4981 + }, + { + "start": 19097.84, + "end": 19100.2, + "probability": 0.757 + }, + { + "start": 19101.22, + "end": 19102.26, + "probability": 0.5692 + }, + { + "start": 19103.18, + "end": 19105.22, + "probability": 0.6165 + }, + { + "start": 19106.56, + "end": 19108.42, + "probability": 0.979 + }, + { + "start": 19110.0, + "end": 19113.8, + "probability": 0.9502 + }, + { + "start": 19114.52, + "end": 19116.38, + "probability": 0.7506 + }, + { + "start": 19118.64, + "end": 19119.55, + "probability": 0.8521 + }, + { + "start": 19120.46, + "end": 19124.04, + "probability": 0.9343 + }, + { + "start": 19124.2, + "end": 19125.36, + "probability": 0.8546 + }, + { + "start": 19125.74, + "end": 19129.68, + "probability": 0.8025 + }, + { + "start": 19130.3, + "end": 19133.66, + "probability": 0.9616 + }, + { + "start": 19134.2, + "end": 19136.74, + "probability": 0.9956 + }, + { + "start": 19138.16, + "end": 19143.16, + "probability": 0.9762 + }, + { + "start": 19143.3, + "end": 19144.24, + "probability": 0.2575 + }, + { + "start": 19144.32, + "end": 19146.82, + "probability": 0.9488 + }, + { + "start": 19146.9, + "end": 19147.36, + "probability": 0.9329 + }, + { + "start": 19147.44, + "end": 19147.72, + "probability": 0.8737 + }, + { + "start": 19147.84, + "end": 19150.98, + "probability": 0.9585 + }, + { + "start": 19152.04, + "end": 19154.36, + "probability": 0.9888 + }, + { + "start": 19156.56, + "end": 19157.24, + "probability": 0.9458 + }, + { + "start": 19158.18, + "end": 19159.2, + "probability": 0.6474 + }, + { + "start": 19159.92, + "end": 19163.16, + "probability": 0.9709 + }, + { + "start": 19164.26, + "end": 19168.06, + "probability": 0.9949 + }, + { + "start": 19168.06, + "end": 19170.9, + "probability": 0.9944 + }, + { + "start": 19172.26, + "end": 19174.2, + "probability": 0.9819 + }, + { + "start": 19174.92, + "end": 19176.18, + "probability": 0.8428 + }, + { + "start": 19177.22, + "end": 19179.74, + "probability": 0.832 + }, + { + "start": 19180.76, + "end": 19182.34, + "probability": 0.9194 + }, + { + "start": 19182.42, + "end": 19183.8, + "probability": 0.9888 + }, + { + "start": 19185.08, + "end": 19187.26, + "probability": 0.9824 + }, + { + "start": 19188.26, + "end": 19190.64, + "probability": 0.9255 + }, + { + "start": 19191.08, + "end": 19191.74, + "probability": 0.6035 + }, + { + "start": 19192.3, + "end": 19194.6, + "probability": 0.9139 + }, + { + "start": 19195.8, + "end": 19196.46, + "probability": 0.5008 + }, + { + "start": 19197.44, + "end": 19202.5, + "probability": 0.9966 + }, + { + "start": 19203.42, + "end": 19205.69, + "probability": 0.641 + }, + { + "start": 19206.36, + "end": 19209.24, + "probability": 0.9895 + }, + { + "start": 19210.12, + "end": 19213.86, + "probability": 0.9947 + }, + { + "start": 19214.42, + "end": 19215.72, + "probability": 0.7528 + }, + { + "start": 19216.8, + "end": 19217.8, + "probability": 0.7294 + }, + { + "start": 19218.72, + "end": 19222.14, + "probability": 0.9982 + }, + { + "start": 19223.04, + "end": 19225.5, + "probability": 0.993 + }, + { + "start": 19227.8, + "end": 19229.86, + "probability": 0.7443 + }, + { + "start": 19231.18, + "end": 19231.7, + "probability": 0.3188 + }, + { + "start": 19232.78, + "end": 19234.42, + "probability": 0.5473 + }, + { + "start": 19234.58, + "end": 19235.72, + "probability": 0.8548 + }, + { + "start": 19239.28, + "end": 19241.82, + "probability": 0.9553 + }, + { + "start": 19242.26, + "end": 19244.88, + "probability": 0.7472 + }, + { + "start": 19245.2, + "end": 19245.8, + "probability": 0.4883 + }, + { + "start": 19245.84, + "end": 19246.74, + "probability": 0.9958 + }, + { + "start": 19248.0, + "end": 19249.28, + "probability": 0.7644 + }, + { + "start": 19250.48, + "end": 19252.82, + "probability": 0.9399 + }, + { + "start": 19253.48, + "end": 19253.83, + "probability": 0.5408 + }, + { + "start": 19254.5, + "end": 19255.34, + "probability": 0.7719 + }, + { + "start": 19256.3, + "end": 19258.56, + "probability": 0.9417 + }, + { + "start": 19259.5, + "end": 19260.06, + "probability": 0.4811 + }, + { + "start": 19261.8, + "end": 19262.78, + "probability": 0.9589 + }, + { + "start": 19263.52, + "end": 19263.52, + "probability": 0.2494 + }, + { + "start": 19264.12, + "end": 19266.86, + "probability": 0.9646 + }, + { + "start": 19267.88, + "end": 19269.06, + "probability": 0.7311 + }, + { + "start": 19269.12, + "end": 19270.3, + "probability": 0.7174 + }, + { + "start": 19271.46, + "end": 19275.2, + "probability": 0.8524 + }, + { + "start": 19276.56, + "end": 19281.04, + "probability": 0.6144 + }, + { + "start": 19282.34, + "end": 19285.88, + "probability": 0.7256 + }, + { + "start": 19286.64, + "end": 19291.4, + "probability": 0.9577 + }, + { + "start": 19292.5, + "end": 19294.74, + "probability": 0.8416 + }, + { + "start": 19295.66, + "end": 19300.38, + "probability": 0.9961 + }, + { + "start": 19301.14, + "end": 19304.5, + "probability": 0.879 + }, + { + "start": 19305.58, + "end": 19309.82, + "probability": 0.9705 + }, + { + "start": 19310.58, + "end": 19315.06, + "probability": 0.9944 + }, + { + "start": 19315.44, + "end": 19317.42, + "probability": 0.9405 + }, + { + "start": 19318.04, + "end": 19318.78, + "probability": 0.503 + }, + { + "start": 19319.76, + "end": 19321.8, + "probability": 0.9078 + }, + { + "start": 19322.54, + "end": 19325.06, + "probability": 0.5323 + }, + { + "start": 19325.56, + "end": 19329.62, + "probability": 0.9403 + }, + { + "start": 19329.92, + "end": 19330.48, + "probability": 0.8319 + }, + { + "start": 19330.7, + "end": 19333.51, + "probability": 0.8823 + }, + { + "start": 19334.82, + "end": 19336.65, + "probability": 0.8074 + }, + { + "start": 19337.62, + "end": 19339.1, + "probability": 0.8857 + }, + { + "start": 19339.84, + "end": 19348.24, + "probability": 0.934 + }, + { + "start": 19348.68, + "end": 19350.92, + "probability": 0.9394 + }, + { + "start": 19351.24, + "end": 19351.9, + "probability": 0.9504 + }, + { + "start": 19352.3, + "end": 19353.2, + "probability": 0.9739 + }, + { + "start": 19353.76, + "end": 19359.88, + "probability": 0.9982 + }, + { + "start": 19361.46, + "end": 19361.68, + "probability": 0.1617 + }, + { + "start": 19361.76, + "end": 19363.1, + "probability": 0.8822 + }, + { + "start": 19363.3, + "end": 19367.48, + "probability": 0.8027 + }, + { + "start": 19368.64, + "end": 19369.16, + "probability": 0.5705 + }, + { + "start": 19369.2, + "end": 19375.78, + "probability": 0.8995 + }, + { + "start": 19376.16, + "end": 19376.78, + "probability": 0.776 + }, + { + "start": 19376.9, + "end": 19379.99, + "probability": 0.8677 + }, + { + "start": 19380.54, + "end": 19384.98, + "probability": 0.8305 + }, + { + "start": 19385.94, + "end": 19387.06, + "probability": 0.5908 + }, + { + "start": 19387.94, + "end": 19388.56, + "probability": 0.9725 + }, + { + "start": 19389.2, + "end": 19392.88, + "probability": 0.9517 + }, + { + "start": 19393.22, + "end": 19396.7, + "probability": 0.9164 + }, + { + "start": 19398.14, + "end": 19399.3, + "probability": 0.9103 + }, + { + "start": 19400.54, + "end": 19403.66, + "probability": 0.9303 + }, + { + "start": 19404.28, + "end": 19412.62, + "probability": 0.9493 + }, + { + "start": 19413.2, + "end": 19417.72, + "probability": 0.9717 + }, + { + "start": 19418.94, + "end": 19423.96, + "probability": 0.996 + }, + { + "start": 19424.1, + "end": 19427.6, + "probability": 0.876 + }, + { + "start": 19428.48, + "end": 19430.36, + "probability": 0.6511 + }, + { + "start": 19431.08, + "end": 19431.34, + "probability": 0.6632 + }, + { + "start": 19431.42, + "end": 19434.04, + "probability": 0.9946 + }, + { + "start": 19434.04, + "end": 19437.46, + "probability": 0.9941 + }, + { + "start": 19437.54, + "end": 19438.08, + "probability": 0.494 + }, + { + "start": 19438.16, + "end": 19442.26, + "probability": 0.9834 + }, + { + "start": 19443.4, + "end": 19444.5, + "probability": 0.8276 + }, + { + "start": 19444.86, + "end": 19445.26, + "probability": 0.5067 + }, + { + "start": 19445.42, + "end": 19449.3, + "probability": 0.9752 + }, + { + "start": 19449.44, + "end": 19449.84, + "probability": 0.8407 + }, + { + "start": 19450.82, + "end": 19455.38, + "probability": 0.8733 + }, + { + "start": 19456.2, + "end": 19457.92, + "probability": 0.8882 + }, + { + "start": 19459.66, + "end": 19462.72, + "probability": 0.5987 + }, + { + "start": 19463.36, + "end": 19464.62, + "probability": 0.6705 + }, + { + "start": 19465.9, + "end": 19469.04, + "probability": 0.8847 + }, + { + "start": 19469.66, + "end": 19470.34, + "probability": 0.9591 + }, + { + "start": 19470.9, + "end": 19471.78, + "probability": 0.7174 + }, + { + "start": 19472.66, + "end": 19473.68, + "probability": 0.7092 + }, + { + "start": 19474.48, + "end": 19477.1, + "probability": 0.9917 + }, + { + "start": 19477.2, + "end": 19482.32, + "probability": 0.9962 + }, + { + "start": 19482.78, + "end": 19485.0, + "probability": 0.9885 + }, + { + "start": 19485.74, + "end": 19487.16, + "probability": 0.9829 + }, + { + "start": 19487.28, + "end": 19488.2, + "probability": 0.9491 + }, + { + "start": 19489.28, + "end": 19490.32, + "probability": 0.984 + }, + { + "start": 19492.42, + "end": 19495.12, + "probability": 0.8836 + }, + { + "start": 19495.9, + "end": 19498.82, + "probability": 0.9633 + }, + { + "start": 19499.94, + "end": 19507.84, + "probability": 0.8297 + }, + { + "start": 19508.3, + "end": 19508.76, + "probability": 0.5309 + }, + { + "start": 19508.86, + "end": 19509.32, + "probability": 0.8428 + }, + { + "start": 19509.68, + "end": 19510.75, + "probability": 0.8228 + }, + { + "start": 19512.88, + "end": 19516.4, + "probability": 0.8644 + }, + { + "start": 19517.2, + "end": 19519.6, + "probability": 0.8209 + }, + { + "start": 19519.76, + "end": 19522.18, + "probability": 0.9387 + }, + { + "start": 19523.56, + "end": 19525.8, + "probability": 0.9276 + }, + { + "start": 19526.72, + "end": 19530.92, + "probability": 0.8944 + }, + { + "start": 19531.98, + "end": 19534.98, + "probability": 0.762 + }, + { + "start": 19535.58, + "end": 19539.04, + "probability": 0.7684 + }, + { + "start": 19539.18, + "end": 19541.0, + "probability": 0.6804 + }, + { + "start": 19541.76, + "end": 19544.4, + "probability": 0.7429 + }, + { + "start": 19545.96, + "end": 19549.22, + "probability": 0.9354 + }, + { + "start": 19550.96, + "end": 19551.82, + "probability": 0.5334 + }, + { + "start": 19551.92, + "end": 19552.84, + "probability": 0.868 + }, + { + "start": 19552.96, + "end": 19555.78, + "probability": 0.9431 + }, + { + "start": 19555.86, + "end": 19556.86, + "probability": 0.8872 + }, + { + "start": 19557.44, + "end": 19560.5, + "probability": 0.9855 + }, + { + "start": 19561.44, + "end": 19562.22, + "probability": 0.9552 + }, + { + "start": 19563.14, + "end": 19567.22, + "probability": 0.7197 + }, + { + "start": 19568.22, + "end": 19573.9, + "probability": 0.9971 + }, + { + "start": 19574.52, + "end": 19578.98, + "probability": 0.9404 + }, + { + "start": 19579.42, + "end": 19580.51, + "probability": 0.9722 + }, + { + "start": 19580.94, + "end": 19581.72, + "probability": 0.7236 + }, + { + "start": 19582.48, + "end": 19585.22, + "probability": 0.6334 + }, + { + "start": 19585.68, + "end": 19586.58, + "probability": 0.77 + }, + { + "start": 19587.2, + "end": 19590.46, + "probability": 0.9015 + }, + { + "start": 19591.3, + "end": 19592.66, + "probability": 0.8199 + }, + { + "start": 19593.2, + "end": 19595.72, + "probability": 0.9854 + }, + { + "start": 19595.96, + "end": 19597.88, + "probability": 0.6685 + }, + { + "start": 19598.24, + "end": 19599.2, + "probability": 0.8814 + }, + { + "start": 19599.54, + "end": 19602.02, + "probability": 0.9253 + }, + { + "start": 19602.7, + "end": 19603.04, + "probability": 0.7191 + }, + { + "start": 19604.24, + "end": 19608.52, + "probability": 0.9948 + }, + { + "start": 19609.74, + "end": 19610.52, + "probability": 0.945 + }, + { + "start": 19610.8, + "end": 19610.84, + "probability": 0.3445 + }, + { + "start": 19610.88, + "end": 19611.34, + "probability": 0.7527 + }, + { + "start": 19611.52, + "end": 19612.8, + "probability": 0.946 + }, + { + "start": 19613.16, + "end": 19615.34, + "probability": 0.9513 + }, + { + "start": 19615.92, + "end": 19617.28, + "probability": 0.9664 + }, + { + "start": 19618.02, + "end": 19623.16, + "probability": 0.9966 + }, + { + "start": 19623.22, + "end": 19624.08, + "probability": 0.9548 + }, + { + "start": 19625.16, + "end": 19631.6, + "probability": 0.9951 + }, + { + "start": 19632.34, + "end": 19633.24, + "probability": 0.9837 + }, + { + "start": 19633.86, + "end": 19635.78, + "probability": 0.965 + }, + { + "start": 19636.48, + "end": 19639.34, + "probability": 0.9983 + }, + { + "start": 19639.92, + "end": 19640.78, + "probability": 0.9637 + }, + { + "start": 19641.44, + "end": 19645.48, + "probability": 0.7005 + }, + { + "start": 19645.84, + "end": 19648.3, + "probability": 0.9913 + }, + { + "start": 19648.96, + "end": 19653.72, + "probability": 0.9843 + }, + { + "start": 19653.72, + "end": 19659.94, + "probability": 0.9329 + }, + { + "start": 19660.62, + "end": 19665.64, + "probability": 0.8234 + }, + { + "start": 19666.48, + "end": 19667.94, + "probability": 0.9785 + }, + { + "start": 19668.9, + "end": 19673.12, + "probability": 0.6828 + }, + { + "start": 19674.2, + "end": 19674.76, + "probability": 0.9329 + }, + { + "start": 19675.84, + "end": 19677.22, + "probability": 0.9746 + }, + { + "start": 19677.28, + "end": 19678.61, + "probability": 0.9598 + }, + { + "start": 19678.88, + "end": 19681.22, + "probability": 0.9805 + }, + { + "start": 19681.72, + "end": 19685.12, + "probability": 0.8947 + }, + { + "start": 19686.76, + "end": 19689.48, + "probability": 0.9868 + }, + { + "start": 19690.02, + "end": 19691.86, + "probability": 0.975 + }, + { + "start": 19692.44, + "end": 19695.7, + "probability": 0.9935 + }, + { + "start": 19696.92, + "end": 19699.2, + "probability": 0.5335 + }, + { + "start": 19699.78, + "end": 19701.68, + "probability": 0.9705 + }, + { + "start": 19702.28, + "end": 19707.28, + "probability": 0.8419 + }, + { + "start": 19707.52, + "end": 19710.24, + "probability": 0.9978 + }, + { + "start": 19710.84, + "end": 19713.2, + "probability": 0.8837 + }, + { + "start": 19713.68, + "end": 19715.34, + "probability": 0.6059 + }, + { + "start": 19715.96, + "end": 19718.64, + "probability": 0.998 + }, + { + "start": 19719.14, + "end": 19723.0, + "probability": 0.988 + }, + { + "start": 19723.3, + "end": 19728.16, + "probability": 0.9888 + }, + { + "start": 19728.3, + "end": 19728.92, + "probability": 0.9204 + }, + { + "start": 19729.56, + "end": 19731.43, + "probability": 0.7785 + }, + { + "start": 19732.14, + "end": 19735.56, + "probability": 0.9709 + }, + { + "start": 19736.08, + "end": 19738.24, + "probability": 0.9515 + }, + { + "start": 19739.22, + "end": 19742.5, + "probability": 0.9882 + }, + { + "start": 19742.82, + "end": 19744.48, + "probability": 0.8267 + }, + { + "start": 19745.5, + "end": 19746.78, + "probability": 0.9899 + }, + { + "start": 19747.48, + "end": 19748.74, + "probability": 0.8515 + }, + { + "start": 19750.3, + "end": 19752.0, + "probability": 0.768 + }, + { + "start": 19752.38, + "end": 19758.62, + "probability": 0.9906 + }, + { + "start": 19759.22, + "end": 19762.76, + "probability": 0.9941 + }, + { + "start": 19763.04, + "end": 19765.68, + "probability": 0.9872 + }, + { + "start": 19765.82, + "end": 19766.26, + "probability": 0.8897 + }, + { + "start": 19766.66, + "end": 19768.92, + "probability": 0.7264 + }, + { + "start": 19769.08, + "end": 19771.34, + "probability": 0.9606 + }, + { + "start": 19773.06, + "end": 19773.98, + "probability": 0.7876 + }, + { + "start": 19775.06, + "end": 19779.78, + "probability": 0.813 + }, + { + "start": 19781.92, + "end": 19782.9, + "probability": 0.0049 + }, + { + "start": 19783.54, + "end": 19784.22, + "probability": 0.9712 + }, + { + "start": 19786.48, + "end": 19789.18, + "probability": 0.8945 + }, + { + "start": 19789.72, + "end": 19790.77, + "probability": 0.7037 + }, + { + "start": 19793.54, + "end": 19796.34, + "probability": 0.7374 + }, + { + "start": 19797.64, + "end": 19806.34, + "probability": 0.9541 + }, + { + "start": 19807.12, + "end": 19812.66, + "probability": 0.9975 + }, + { + "start": 19813.68, + "end": 19814.59, + "probability": 0.9607 + }, + { + "start": 19815.36, + "end": 19816.1, + "probability": 0.8619 + }, + { + "start": 19816.98, + "end": 19821.24, + "probability": 0.9955 + }, + { + "start": 19821.24, + "end": 19826.62, + "probability": 0.999 + }, + { + "start": 19827.86, + "end": 19830.68, + "probability": 0.9954 + }, + { + "start": 19830.98, + "end": 19835.5, + "probability": 0.9957 + }, + { + "start": 19835.88, + "end": 19836.7, + "probability": 0.5897 + }, + { + "start": 19836.92, + "end": 19838.82, + "probability": 0.8545 + }, + { + "start": 19839.2, + "end": 19842.04, + "probability": 0.978 + }, + { + "start": 19843.14, + "end": 19845.46, + "probability": 0.9987 + }, + { + "start": 19845.46, + "end": 19850.48, + "probability": 0.969 + }, + { + "start": 19851.46, + "end": 19852.78, + "probability": 0.8794 + }, + { + "start": 19853.42, + "end": 19855.36, + "probability": 0.9435 + }, + { + "start": 19855.62, + "end": 19856.8, + "probability": 0.6297 + }, + { + "start": 19856.82, + "end": 19862.14, + "probability": 0.8848 + }, + { + "start": 19862.51, + "end": 19866.64, + "probability": 0.9907 + }, + { + "start": 19867.34, + "end": 19872.36, + "probability": 0.9455 + }, + { + "start": 19873.22, + "end": 19881.06, + "probability": 0.8802 + }, + { + "start": 19881.56, + "end": 19885.62, + "probability": 0.9943 + }, + { + "start": 19885.62, + "end": 19888.88, + "probability": 0.9694 + }, + { + "start": 19888.96, + "end": 19890.38, + "probability": 0.9688 + }, + { + "start": 19890.74, + "end": 19894.16, + "probability": 0.9902 + }, + { + "start": 19895.68, + "end": 19899.5, + "probability": 0.9982 + }, + { + "start": 19900.2, + "end": 19908.64, + "probability": 0.988 + }, + { + "start": 19909.56, + "end": 19917.12, + "probability": 0.9675 + }, + { + "start": 19917.12, + "end": 19923.92, + "probability": 0.9997 + }, + { + "start": 19924.26, + "end": 19928.76, + "probability": 0.9939 + }, + { + "start": 19928.76, + "end": 19933.54, + "probability": 0.999 + }, + { + "start": 19934.56, + "end": 19935.4, + "probability": 0.6316 + }, + { + "start": 19936.22, + "end": 19937.52, + "probability": 0.5864 + }, + { + "start": 19937.88, + "end": 19945.0, + "probability": 0.9602 + }, + { + "start": 19945.06, + "end": 19945.9, + "probability": 0.9189 + }, + { + "start": 19946.28, + "end": 19947.66, + "probability": 0.6316 + }, + { + "start": 19948.3, + "end": 19953.31, + "probability": 0.9473 + }, + { + "start": 19954.04, + "end": 19956.3, + "probability": 0.9746 + }, + { + "start": 19956.84, + "end": 19961.44, + "probability": 0.9766 + }, + { + "start": 19961.92, + "end": 19964.88, + "probability": 0.974 + }, + { + "start": 19965.52, + "end": 19971.76, + "probability": 0.7987 + }, + { + "start": 19971.92, + "end": 19973.14, + "probability": 0.8269 + }, + { + "start": 19973.62, + "end": 19975.76, + "probability": 0.9353 + }, + { + "start": 19976.32, + "end": 19980.74, + "probability": 0.9952 + }, + { + "start": 19980.74, + "end": 19985.0, + "probability": 0.927 + }, + { + "start": 19985.32, + "end": 19990.46, + "probability": 0.9922 + }, + { + "start": 19990.86, + "end": 19996.8, + "probability": 0.9929 + }, + { + "start": 19996.92, + "end": 19998.92, + "probability": 0.9622 + }, + { + "start": 19999.3, + "end": 20001.06, + "probability": 0.9788 + }, + { + "start": 20001.72, + "end": 20005.48, + "probability": 0.9813 + }, + { + "start": 20005.9, + "end": 20008.36, + "probability": 0.9103 + }, + { + "start": 20008.84, + "end": 20010.36, + "probability": 0.9365 + }, + { + "start": 20011.04, + "end": 20013.18, + "probability": 0.9414 + }, + { + "start": 20014.76, + "end": 20020.28, + "probability": 0.9915 + }, + { + "start": 20020.42, + "end": 20025.26, + "probability": 0.9627 + }, + { + "start": 20025.56, + "end": 20026.16, + "probability": 0.7717 + }, + { + "start": 20026.74, + "end": 20030.92, + "probability": 0.8686 + }, + { + "start": 20031.52, + "end": 20037.0, + "probability": 0.9733 + }, + { + "start": 20037.32, + "end": 20041.4, + "probability": 0.9961 + }, + { + "start": 20041.64, + "end": 20043.12, + "probability": 0.886 + }, + { + "start": 20043.26, + "end": 20043.6, + "probability": 0.9569 + }, + { + "start": 20044.2, + "end": 20044.4, + "probability": 0.2462 + }, + { + "start": 20044.42, + "end": 20046.0, + "probability": 0.9276 + }, + { + "start": 20046.58, + "end": 20049.58, + "probability": 0.9954 + }, + { + "start": 20050.2, + "end": 20052.06, + "probability": 0.8384 + }, + { + "start": 20052.46, + "end": 20056.0, + "probability": 0.9556 + }, + { + "start": 20056.0, + "end": 20059.54, + "probability": 0.7786 + }, + { + "start": 20059.7, + "end": 20063.38, + "probability": 0.9741 + }, + { + "start": 20063.38, + "end": 20067.76, + "probability": 0.908 + }, + { + "start": 20068.48, + "end": 20075.78, + "probability": 0.9969 + }, + { + "start": 20076.18, + "end": 20080.18, + "probability": 0.9709 + }, + { + "start": 20081.0, + "end": 20085.28, + "probability": 0.9962 + }, + { + "start": 20085.62, + "end": 20087.88, + "probability": 0.995 + }, + { + "start": 20087.88, + "end": 20092.02, + "probability": 0.9911 + }, + { + "start": 20092.82, + "end": 20095.04, + "probability": 0.972 + }, + { + "start": 20095.72, + "end": 20099.92, + "probability": 0.9976 + }, + { + "start": 20099.92, + "end": 20103.76, + "probability": 0.998 + }, + { + "start": 20104.3, + "end": 20105.64, + "probability": 0.6909 + }, + { + "start": 20106.0, + "end": 20106.72, + "probability": 0.9303 + }, + { + "start": 20106.94, + "end": 20107.68, + "probability": 0.9764 + }, + { + "start": 20107.86, + "end": 20108.98, + "probability": 0.9727 + }, + { + "start": 20109.04, + "end": 20110.36, + "probability": 0.9722 + }, + { + "start": 20110.82, + "end": 20117.52, + "probability": 0.9751 + }, + { + "start": 20117.94, + "end": 20125.82, + "probability": 0.9988 + }, + { + "start": 20126.6, + "end": 20127.1, + "probability": 0.8262 + }, + { + "start": 20127.7, + "end": 20136.72, + "probability": 0.9952 + }, + { + "start": 20137.22, + "end": 20144.38, + "probability": 0.9968 + }, + { + "start": 20144.86, + "end": 20145.7, + "probability": 0.7434 + }, + { + "start": 20145.9, + "end": 20146.67, + "probability": 0.9758 + }, + { + "start": 20147.48, + "end": 20148.7, + "probability": 0.971 + }, + { + "start": 20149.12, + "end": 20151.6, + "probability": 0.979 + }, + { + "start": 20152.26, + "end": 20159.38, + "probability": 0.9946 + }, + { + "start": 20160.3, + "end": 20163.78, + "probability": 0.9491 + }, + { + "start": 20164.32, + "end": 20165.24, + "probability": 0.9583 + }, + { + "start": 20165.9, + "end": 20170.88, + "probability": 0.9902 + }, + { + "start": 20171.66, + "end": 20176.9, + "probability": 0.9895 + }, + { + "start": 20177.48, + "end": 20183.98, + "probability": 0.9971 + }, + { + "start": 20183.98, + "end": 20192.3, + "probability": 0.9984 + }, + { + "start": 20192.34, + "end": 20192.84, + "probability": 0.8018 + }, + { + "start": 20193.2, + "end": 20194.66, + "probability": 0.8468 + }, + { + "start": 20195.1, + "end": 20201.94, + "probability": 0.9951 + }, + { + "start": 20202.16, + "end": 20203.1, + "probability": 0.9701 + }, + { + "start": 20203.5, + "end": 20204.76, + "probability": 0.9946 + }, + { + "start": 20205.12, + "end": 20209.0, + "probability": 0.9244 + }, + { + "start": 20209.0, + "end": 20212.82, + "probability": 0.9858 + }, + { + "start": 20213.26, + "end": 20218.04, + "probability": 0.9875 + }, + { + "start": 20218.56, + "end": 20221.26, + "probability": 0.9988 + }, + { + "start": 20221.64, + "end": 20226.02, + "probability": 0.9774 + }, + { + "start": 20226.04, + "end": 20228.82, + "probability": 0.6719 + }, + { + "start": 20229.36, + "end": 20232.94, + "probability": 0.9812 + }, + { + "start": 20233.2, + "end": 20237.02, + "probability": 0.9497 + }, + { + "start": 20237.24, + "end": 20238.92, + "probability": 0.8387 + }, + { + "start": 20239.12, + "end": 20244.56, + "probability": 0.9979 + }, + { + "start": 20244.64, + "end": 20245.34, + "probability": 0.6387 + }, + { + "start": 20245.76, + "end": 20247.04, + "probability": 0.9722 + }, + { + "start": 20247.12, + "end": 20248.14, + "probability": 0.9497 + }, + { + "start": 20248.26, + "end": 20248.92, + "probability": 0.7443 + }, + { + "start": 20249.18, + "end": 20254.44, + "probability": 0.9923 + }, + { + "start": 20254.44, + "end": 20257.76, + "probability": 0.9991 + }, + { + "start": 20258.16, + "end": 20261.3, + "probability": 0.993 + }, + { + "start": 20261.58, + "end": 20267.86, + "probability": 0.9876 + }, + { + "start": 20268.28, + "end": 20269.04, + "probability": 0.6164 + }, + { + "start": 20269.5, + "end": 20269.74, + "probability": 0.8032 + }, + { + "start": 20270.78, + "end": 20272.88, + "probability": 0.646 + }, + { + "start": 20273.0, + "end": 20276.52, + "probability": 0.7329 + }, + { + "start": 20282.98, + "end": 20284.42, + "probability": 0.9504 + }, + { + "start": 20292.02, + "end": 20294.55, + "probability": 0.6301 + }, + { + "start": 20295.64, + "end": 20299.82, + "probability": 0.9632 + }, + { + "start": 20299.82, + "end": 20303.28, + "probability": 0.9918 + }, + { + "start": 20304.26, + "end": 20307.28, + "probability": 0.6732 + }, + { + "start": 20308.34, + "end": 20309.04, + "probability": 0.5226 + }, + { + "start": 20309.56, + "end": 20315.84, + "probability": 0.9644 + }, + { + "start": 20316.44, + "end": 20319.38, + "probability": 0.9857 + }, + { + "start": 20319.42, + "end": 20326.74, + "probability": 0.9912 + }, + { + "start": 20326.74, + "end": 20335.38, + "probability": 0.9988 + }, + { + "start": 20336.46, + "end": 20339.64, + "probability": 0.9964 + }, + { + "start": 20342.52, + "end": 20347.4, + "probability": 0.7248 + }, + { + "start": 20347.4, + "end": 20352.74, + "probability": 0.9814 + }, + { + "start": 20353.22, + "end": 20355.68, + "probability": 0.8195 + }, + { + "start": 20358.42, + "end": 20361.06, + "probability": 0.9984 + }, + { + "start": 20362.68, + "end": 20366.22, + "probability": 0.7579 + }, + { + "start": 20366.9, + "end": 20370.86, + "probability": 0.9888 + }, + { + "start": 20370.86, + "end": 20375.02, + "probability": 0.9946 + }, + { + "start": 20375.24, + "end": 20378.69, + "probability": 0.8475 + }, + { + "start": 20379.66, + "end": 20384.2, + "probability": 0.9949 + }, + { + "start": 20384.2, + "end": 20388.8, + "probability": 0.9946 + }, + { + "start": 20389.22, + "end": 20393.64, + "probability": 0.8115 + }, + { + "start": 20394.32, + "end": 20401.2, + "probability": 0.7307 + }, + { + "start": 20401.2, + "end": 20406.66, + "probability": 0.9088 + }, + { + "start": 20406.98, + "end": 20409.4, + "probability": 0.895 + }, + { + "start": 20410.8, + "end": 20413.26, + "probability": 0.9614 + }, + { + "start": 20413.6, + "end": 20414.76, + "probability": 0.6146 + }, + { + "start": 20414.92, + "end": 20417.38, + "probability": 0.8826 + }, + { + "start": 20417.52, + "end": 20419.92, + "probability": 0.9763 + }, + { + "start": 20420.3, + "end": 20424.58, + "probability": 0.9897 + }, + { + "start": 20426.35, + "end": 20433.28, + "probability": 0.814 + }, + { + "start": 20433.86, + "end": 20438.88, + "probability": 0.9775 + }, + { + "start": 20438.88, + "end": 20445.22, + "probability": 0.9823 + }, + { + "start": 20445.22, + "end": 20450.88, + "probability": 0.9956 + }, + { + "start": 20452.02, + "end": 20452.38, + "probability": 0.3557 + }, + { + "start": 20452.6, + "end": 20456.6, + "probability": 0.6793 + }, + { + "start": 20456.6, + "end": 20460.72, + "probability": 0.8699 + }, + { + "start": 20461.16, + "end": 20466.68, + "probability": 0.938 + }, + { + "start": 20467.72, + "end": 20472.92, + "probability": 0.9839 + }, + { + "start": 20472.92, + "end": 20478.98, + "probability": 0.9889 + }, + { + "start": 20479.9, + "end": 20484.26, + "probability": 0.8318 + }, + { + "start": 20485.32, + "end": 20488.32, + "probability": 0.9938 + }, + { + "start": 20488.72, + "end": 20490.14, + "probability": 0.9904 + }, + { + "start": 20490.26, + "end": 20492.74, + "probability": 0.9728 + }, + { + "start": 20493.4, + "end": 20495.78, + "probability": 0.923 + }, + { + "start": 20496.52, + "end": 20499.04, + "probability": 0.9114 + }, + { + "start": 20501.46, + "end": 20505.72, + "probability": 0.9984 + }, + { + "start": 20506.08, + "end": 20510.68, + "probability": 0.6787 + }, + { + "start": 20512.2, + "end": 20516.08, + "probability": 0.7082 + }, + { + "start": 20517.06, + "end": 20522.3, + "probability": 0.971 + }, + { + "start": 20522.3, + "end": 20528.22, + "probability": 0.9902 + }, + { + "start": 20528.6, + "end": 20529.76, + "probability": 0.6194 + }, + { + "start": 20530.42, + "end": 20535.81, + "probability": 0.9834 + }, + { + "start": 20536.74, + "end": 20539.16, + "probability": 0.8558 + }, + { + "start": 20539.96, + "end": 20541.36, + "probability": 0.7341 + }, + { + "start": 20542.56, + "end": 20549.76, + "probability": 0.9918 + }, + { + "start": 20550.7, + "end": 20556.98, + "probability": 0.9976 + }, + { + "start": 20556.98, + "end": 20562.76, + "probability": 0.9985 + }, + { + "start": 20565.4, + "end": 20569.38, + "probability": 0.9192 + }, + { + "start": 20569.52, + "end": 20571.56, + "probability": 0.8657 + }, + { + "start": 20573.2, + "end": 20576.0, + "probability": 0.998 + }, + { + "start": 20576.0, + "end": 20580.64, + "probability": 0.988 + }, + { + "start": 20581.36, + "end": 20582.64, + "probability": 0.7556 + }, + { + "start": 20582.8, + "end": 20583.08, + "probability": 0.6993 + }, + { + "start": 20584.36, + "end": 20589.08, + "probability": 0.7622 + }, + { + "start": 20589.08, + "end": 20595.0, + "probability": 0.9928 + }, + { + "start": 20595.58, + "end": 20596.48, + "probability": 0.5979 + }, + { + "start": 20597.24, + "end": 20598.6, + "probability": 0.9112 + }, + { + "start": 20599.62, + "end": 20602.42, + "probability": 0.7403 + }, + { + "start": 20604.4, + "end": 20609.54, + "probability": 0.7677 + }, + { + "start": 20610.06, + "end": 20611.44, + "probability": 0.6099 + }, + { + "start": 20612.0, + "end": 20613.4, + "probability": 0.9195 + }, + { + "start": 20614.72, + "end": 20619.3, + "probability": 0.8623 + }, + { + "start": 20619.3, + "end": 20628.4, + "probability": 0.886 + }, + { + "start": 20628.4, + "end": 20634.78, + "probability": 0.9874 + }, + { + "start": 20635.18, + "end": 20640.66, + "probability": 0.9932 + }, + { + "start": 20640.66, + "end": 20646.38, + "probability": 0.9578 + }, + { + "start": 20647.28, + "end": 20653.32, + "probability": 0.8228 + }, + { + "start": 20653.96, + "end": 20657.2, + "probability": 0.9733 + }, + { + "start": 20657.86, + "end": 20662.34, + "probability": 0.9967 + }, + { + "start": 20663.14, + "end": 20667.66, + "probability": 0.9968 + }, + { + "start": 20669.24, + "end": 20671.38, + "probability": 0.5545 + }, + { + "start": 20672.52, + "end": 20678.5, + "probability": 0.825 + }, + { + "start": 20679.62, + "end": 20685.34, + "probability": 0.9909 + }, + { + "start": 20685.54, + "end": 20688.06, + "probability": 0.6305 + }, + { + "start": 20689.3, + "end": 20693.62, + "probability": 0.9087 + }, + { + "start": 20695.56, + "end": 20701.14, + "probability": 0.9879 + }, + { + "start": 20701.14, + "end": 20707.16, + "probability": 0.9777 + }, + { + "start": 20707.68, + "end": 20709.88, + "probability": 0.9762 + }, + { + "start": 20710.96, + "end": 20714.08, + "probability": 0.6501 + }, + { + "start": 20714.6, + "end": 20715.05, + "probability": 0.9892 + }, + { + "start": 20716.14, + "end": 20718.9, + "probability": 0.9001 + }, + { + "start": 20719.64, + "end": 20721.24, + "probability": 0.8844 + }, + { + "start": 20721.52, + "end": 20726.94, + "probability": 0.989 + }, + { + "start": 20727.06, + "end": 20735.68, + "probability": 0.9818 + }, + { + "start": 20738.1, + "end": 20740.32, + "probability": 0.9647 + }, + { + "start": 20740.68, + "end": 20744.9, + "probability": 0.9902 + }, + { + "start": 20745.02, + "end": 20747.18, + "probability": 0.9194 + }, + { + "start": 20747.74, + "end": 20751.4, + "probability": 0.9624 + }, + { + "start": 20751.92, + "end": 20753.0, + "probability": 0.8878 + }, + { + "start": 20754.16, + "end": 20759.96, + "probability": 0.994 + }, + { + "start": 20760.78, + "end": 20770.15, + "probability": 0.9944 + }, + { + "start": 20770.78, + "end": 20771.52, + "probability": 0.7555 + }, + { + "start": 20771.68, + "end": 20772.5, + "probability": 0.9128 + }, + { + "start": 20772.64, + "end": 20773.64, + "probability": 0.926 + }, + { + "start": 20773.8, + "end": 20778.64, + "probability": 0.9983 + }, + { + "start": 20779.32, + "end": 20785.94, + "probability": 0.9897 + }, + { + "start": 20785.94, + "end": 20793.46, + "probability": 0.9973 + }, + { + "start": 20793.46, + "end": 20798.63, + "probability": 0.9805 + }, + { + "start": 20798.94, + "end": 20802.04, + "probability": 0.773 + }, + { + "start": 20802.38, + "end": 20802.62, + "probability": 0.6919 + }, + { + "start": 20803.56, + "end": 20806.86, + "probability": 0.642 + }, + { + "start": 20807.72, + "end": 20810.24, + "probability": 0.9598 + }, + { + "start": 20821.34, + "end": 20821.42, + "probability": 0.7562 + }, + { + "start": 20821.44, + "end": 20822.64, + "probability": 0.5286 + }, + { + "start": 20822.82, + "end": 20823.54, + "probability": 0.8449 + }, + { + "start": 20823.98, + "end": 20825.2, + "probability": 0.6854 + }, + { + "start": 20826.68, + "end": 20828.84, + "probability": 0.8868 + }, + { + "start": 20830.36, + "end": 20831.22, + "probability": 0.882 + }, + { + "start": 20832.3, + "end": 20836.38, + "probability": 0.823 + }, + { + "start": 20837.7, + "end": 20838.42, + "probability": 0.9316 + }, + { + "start": 20839.6, + "end": 20840.78, + "probability": 0.819 + }, + { + "start": 20841.66, + "end": 20842.1, + "probability": 0.8787 + }, + { + "start": 20843.12, + "end": 20843.82, + "probability": 0.8217 + }, + { + "start": 20844.84, + "end": 20848.06, + "probability": 0.9487 + }, + { + "start": 20849.76, + "end": 20850.9, + "probability": 0.8184 + }, + { + "start": 20851.62, + "end": 20853.18, + "probability": 0.8705 + }, + { + "start": 20854.38, + "end": 20855.88, + "probability": 0.999 + }, + { + "start": 20856.66, + "end": 20858.73, + "probability": 0.9969 + }, + { + "start": 20860.84, + "end": 20861.38, + "probability": 0.2691 + }, + { + "start": 20861.38, + "end": 20862.14, + "probability": 0.4406 + }, + { + "start": 20862.3, + "end": 20863.6, + "probability": 0.8722 + }, + { + "start": 20864.66, + "end": 20865.72, + "probability": 0.9199 + }, + { + "start": 20866.7, + "end": 20867.62, + "probability": 0.7577 + }, + { + "start": 20868.8, + "end": 20870.06, + "probability": 0.9954 + }, + { + "start": 20870.94, + "end": 20873.9, + "probability": 0.7986 + }, + { + "start": 20874.9, + "end": 20877.3, + "probability": 0.9989 + }, + { + "start": 20878.04, + "end": 20879.26, + "probability": 0.9981 + }, + { + "start": 20880.4, + "end": 20883.76, + "probability": 0.9987 + }, + { + "start": 20883.76, + "end": 20888.56, + "probability": 0.9991 + }, + { + "start": 20889.9, + "end": 20891.92, + "probability": 0.9303 + }, + { + "start": 20892.48, + "end": 20896.32, + "probability": 0.9567 + }, + { + "start": 20896.56, + "end": 20899.1, + "probability": 0.9559 + }, + { + "start": 20899.86, + "end": 20901.44, + "probability": 0.9818 + }, + { + "start": 20902.96, + "end": 20904.38, + "probability": 0.6182 + }, + { + "start": 20904.96, + "end": 20907.68, + "probability": 0.995 + }, + { + "start": 20908.68, + "end": 20911.64, + "probability": 0.9978 + }, + { + "start": 20911.66, + "end": 20915.94, + "probability": 0.9663 + }, + { + "start": 20916.56, + "end": 20919.14, + "probability": 0.9937 + }, + { + "start": 20919.22, + "end": 20919.66, + "probability": 0.6441 + }, + { + "start": 20920.36, + "end": 20922.5, + "probability": 0.9576 + }, + { + "start": 20923.02, + "end": 20927.88, + "probability": 0.9849 + }, + { + "start": 20928.12, + "end": 20928.7, + "probability": 0.4365 + }, + { + "start": 20929.46, + "end": 20934.48, + "probability": 0.9901 + }, + { + "start": 20934.48, + "end": 20938.6, + "probability": 0.9917 + }, + { + "start": 20939.18, + "end": 20939.94, + "probability": 0.7804 + }, + { + "start": 20940.6, + "end": 20943.28, + "probability": 0.9409 + }, + { + "start": 20943.28, + "end": 20946.96, + "probability": 0.996 + }, + { + "start": 20947.76, + "end": 20948.38, + "probability": 0.7857 + }, + { + "start": 20948.42, + "end": 20949.36, + "probability": 0.7636 + }, + { + "start": 20949.36, + "end": 20951.62, + "probability": 0.8976 + }, + { + "start": 20952.24, + "end": 20956.7, + "probability": 0.9969 + }, + { + "start": 20956.7, + "end": 20960.42, + "probability": 0.9951 + }, + { + "start": 20962.0, + "end": 20964.26, + "probability": 0.9386 + }, + { + "start": 20964.26, + "end": 20966.64, + "probability": 0.9993 + }, + { + "start": 20967.32, + "end": 20969.18, + "probability": 0.4846 + }, + { + "start": 20970.34, + "end": 20976.16, + "probability": 0.9955 + }, + { + "start": 20976.16, + "end": 20983.3, + "probability": 0.9985 + }, + { + "start": 20983.96, + "end": 20984.72, + "probability": 0.6852 + }, + { + "start": 20985.36, + "end": 20986.16, + "probability": 0.614 + }, + { + "start": 20986.32, + "end": 20988.7, + "probability": 0.4829 + }, + { + "start": 20989.18, + "end": 20990.92, + "probability": 0.7561 + }, + { + "start": 20991.6, + "end": 20992.3, + "probability": 0.7348 + }, + { + "start": 20993.06, + "end": 20995.06, + "probability": 0.8882 + }, + { + "start": 20995.66, + "end": 20997.2, + "probability": 0.7333 + }, + { + "start": 20997.78, + "end": 21001.6, + "probability": 0.9446 + }, + { + "start": 21002.2, + "end": 21003.08, + "probability": 0.8991 + }, + { + "start": 21003.74, + "end": 21004.86, + "probability": 0.938 + }, + { + "start": 21005.28, + "end": 21005.58, + "probability": 0.4854 + }, + { + "start": 21005.68, + "end": 21006.26, + "probability": 0.8227 + }, + { + "start": 21006.46, + "end": 21010.96, + "probability": 0.9929 + }, + { + "start": 21010.96, + "end": 21017.5, + "probability": 0.9964 + }, + { + "start": 21018.16, + "end": 21019.56, + "probability": 0.9716 + }, + { + "start": 21019.6, + "end": 21022.24, + "probability": 0.8522 + }, + { + "start": 21023.72, + "end": 21025.56, + "probability": 0.8418 + }, + { + "start": 21025.7, + "end": 21029.86, + "probability": 0.9955 + }, + { + "start": 21029.86, + "end": 21034.42, + "probability": 0.9975 + }, + { + "start": 21034.92, + "end": 21040.12, + "probability": 0.9812 + }, + { + "start": 21040.9, + "end": 21045.2, + "probability": 0.999 + }, + { + "start": 21045.84, + "end": 21050.58, + "probability": 0.9942 + }, + { + "start": 21051.22, + "end": 21053.58, + "probability": 0.9216 + }, + { + "start": 21054.1, + "end": 21056.6, + "probability": 0.8285 + }, + { + "start": 21057.38, + "end": 21058.26, + "probability": 0.7483 + }, + { + "start": 21059.1, + "end": 21063.46, + "probability": 0.9523 + }, + { + "start": 21063.48, + "end": 21067.16, + "probability": 0.9992 + }, + { + "start": 21068.04, + "end": 21074.6, + "probability": 0.8827 + }, + { + "start": 21076.0, + "end": 21082.78, + "probability": 0.9912 + }, + { + "start": 21083.84, + "end": 21091.32, + "probability": 0.8922 + }, + { + "start": 21091.82, + "end": 21096.78, + "probability": 0.9011 + }, + { + "start": 21097.7, + "end": 21099.68, + "probability": 0.8149 + }, + { + "start": 21100.3, + "end": 21104.1, + "probability": 0.9977 + }, + { + "start": 21104.1, + "end": 21108.16, + "probability": 0.9635 + }, + { + "start": 21108.82, + "end": 21109.9, + "probability": 0.9401 + }, + { + "start": 21110.78, + "end": 21114.38, + "probability": 0.9952 + }, + { + "start": 21114.38, + "end": 21118.96, + "probability": 0.9979 + }, + { + "start": 21120.66, + "end": 21125.04, + "probability": 0.9958 + }, + { + "start": 21125.66, + "end": 21127.08, + "probability": 0.9995 + }, + { + "start": 21127.68, + "end": 21128.52, + "probability": 0.6941 + }, + { + "start": 21129.08, + "end": 21130.7, + "probability": 0.9956 + }, + { + "start": 21130.74, + "end": 21131.64, + "probability": 0.9838 + }, + { + "start": 21132.24, + "end": 21135.24, + "probability": 0.9951 + }, + { + "start": 21135.74, + "end": 21136.96, + "probability": 0.7582 + }, + { + "start": 21137.84, + "end": 21141.92, + "probability": 0.9962 + }, + { + "start": 21142.76, + "end": 21145.28, + "probability": 0.9969 + }, + { + "start": 21145.28, + "end": 21148.44, + "probability": 0.9886 + }, + { + "start": 21149.0, + "end": 21149.62, + "probability": 0.6572 + }, + { + "start": 21150.4, + "end": 21155.76, + "probability": 0.7068 + }, + { + "start": 21156.5, + "end": 21156.88, + "probability": 0.7482 + }, + { + "start": 21157.0, + "end": 21163.2, + "probability": 0.9945 + }, + { + "start": 21164.28, + "end": 21167.84, + "probability": 0.9964 + }, + { + "start": 21167.84, + "end": 21172.68, + "probability": 0.9963 + }, + { + "start": 21173.14, + "end": 21176.64, + "probability": 0.9979 + }, + { + "start": 21177.26, + "end": 21182.44, + "probability": 0.9468 + }, + { + "start": 21182.44, + "end": 21186.7, + "probability": 0.9478 + }, + { + "start": 21186.7, + "end": 21190.48, + "probability": 0.9996 + }, + { + "start": 21191.22, + "end": 21193.4, + "probability": 0.9982 + }, + { + "start": 21193.98, + "end": 21198.94, + "probability": 0.9984 + }, + { + "start": 21199.7, + "end": 21204.18, + "probability": 0.9933 + }, + { + "start": 21204.72, + "end": 21208.68, + "probability": 0.8938 + }, + { + "start": 21209.14, + "end": 21213.7, + "probability": 0.9935 + }, + { + "start": 21215.66, + "end": 21218.74, + "probability": 0.4696 + }, + { + "start": 21219.36, + "end": 21220.14, + "probability": 0.6865 + }, + { + "start": 21221.84, + "end": 21223.42, + "probability": 0.998 + }, + { + "start": 21224.24, + "end": 21227.3, + "probability": 0.6975 + }, + { + "start": 21228.28, + "end": 21231.98, + "probability": 0.9789 + }, + { + "start": 21232.76, + "end": 21237.86, + "probability": 0.9775 + }, + { + "start": 21238.32, + "end": 21240.68, + "probability": 0.791 + }, + { + "start": 21241.12, + "end": 21244.78, + "probability": 0.9961 + }, + { + "start": 21245.58, + "end": 21246.46, + "probability": 0.995 + }, + { + "start": 21247.26, + "end": 21249.54, + "probability": 0.9544 + }, + { + "start": 21250.22, + "end": 21251.14, + "probability": 0.9424 + }, + { + "start": 21251.58, + "end": 21252.06, + "probability": 0.8706 + }, + { + "start": 21252.16, + "end": 21253.02, + "probability": 0.9266 + }, + { + "start": 21253.42, + "end": 21255.4, + "probability": 0.8693 + }, + { + "start": 21256.44, + "end": 21258.24, + "probability": 0.7722 + }, + { + "start": 21259.06, + "end": 21262.56, + "probability": 0.9917 + }, + { + "start": 21262.56, + "end": 21266.16, + "probability": 0.9833 + }, + { + "start": 21267.32, + "end": 21268.44, + "probability": 0.3346 + }, + { + "start": 21269.42, + "end": 21270.88, + "probability": 0.9648 + }, + { + "start": 21271.44, + "end": 21273.0, + "probability": 0.9775 + }, + { + "start": 21273.56, + "end": 21277.46, + "probability": 0.9968 + }, + { + "start": 21278.11, + "end": 21278.6, + "probability": 0.5795 + }, + { + "start": 21279.7, + "end": 21281.36, + "probability": 0.9894 + }, + { + "start": 21282.42, + "end": 21286.18, + "probability": 0.8215 + }, + { + "start": 21287.0, + "end": 21287.52, + "probability": 0.7515 + }, + { + "start": 21287.7, + "end": 21288.42, + "probability": 0.1427 + }, + { + "start": 21288.52, + "end": 21290.06, + "probability": 0.3507 + }, + { + "start": 21290.28, + "end": 21294.4, + "probability": 0.6867 + }, + { + "start": 21294.54, + "end": 21296.04, + "probability": 0.9368 + }, + { + "start": 21296.04, + "end": 21296.76, + "probability": 0.2224 + }, + { + "start": 21297.14, + "end": 21298.88, + "probability": 0.4989 + }, + { + "start": 21299.28, + "end": 21299.96, + "probability": 0.3497 + }, + { + "start": 21300.12, + "end": 21301.42, + "probability": 0.9373 + }, + { + "start": 21301.52, + "end": 21304.57, + "probability": 0.9845 + }, + { + "start": 21311.52, + "end": 21313.84, + "probability": 0.2906 + }, + { + "start": 21314.02, + "end": 21315.34, + "probability": 0.6886 + }, + { + "start": 21315.8, + "end": 21316.54, + "probability": 0.8654 + }, + { + "start": 21316.9, + "end": 21319.63, + "probability": 0.8026 + }, + { + "start": 21321.24, + "end": 21322.55, + "probability": 0.6816 + }, + { + "start": 21323.6, + "end": 21323.6, + "probability": 0.1715 + }, + { + "start": 21323.6, + "end": 21323.6, + "probability": 0.038 + }, + { + "start": 21323.6, + "end": 21326.38, + "probability": 0.7335 + }, + { + "start": 21327.5, + "end": 21331.38, + "probability": 0.9136 + }, + { + "start": 21332.58, + "end": 21333.6, + "probability": 0.9768 + }, + { + "start": 21334.32, + "end": 21334.84, + "probability": 0.9644 + }, + { + "start": 21335.76, + "end": 21337.64, + "probability": 0.6935 + }, + { + "start": 21337.96, + "end": 21340.42, + "probability": 0.896 + }, + { + "start": 21340.54, + "end": 21340.8, + "probability": 0.0649 + }, + { + "start": 21341.14, + "end": 21342.68, + "probability": 0.0321 + }, + { + "start": 21343.06, + "end": 21345.42, + "probability": 0.5471 + }, + { + "start": 21346.32, + "end": 21347.66, + "probability": 0.6403 + }, + { + "start": 21347.96, + "end": 21352.48, + "probability": 0.8682 + }, + { + "start": 21353.78, + "end": 21355.94, + "probability": 0.9763 + }, + { + "start": 21357.76, + "end": 21361.47, + "probability": 0.6473 + }, + { + "start": 21362.78, + "end": 21364.22, + "probability": 0.8033 + }, + { + "start": 21364.96, + "end": 21365.8, + "probability": 0.5298 + }, + { + "start": 21367.48, + "end": 21373.46, + "probability": 0.9868 + }, + { + "start": 21374.44, + "end": 21377.2, + "probability": 0.9595 + }, + { + "start": 21379.58, + "end": 21382.86, + "probability": 0.9136 + }, + { + "start": 21384.22, + "end": 21386.06, + "probability": 0.9689 + }, + { + "start": 21387.7, + "end": 21389.88, + "probability": 0.7482 + }, + { + "start": 21390.92, + "end": 21393.26, + "probability": 0.8003 + }, + { + "start": 21394.26, + "end": 21396.18, + "probability": 0.9507 + }, + { + "start": 21397.96, + "end": 21402.74, + "probability": 0.9658 + }, + { + "start": 21404.54, + "end": 21406.5, + "probability": 0.9792 + }, + { + "start": 21408.16, + "end": 21409.34, + "probability": 0.7643 + }, + { + "start": 21410.6, + "end": 21412.26, + "probability": 0.9543 + }, + { + "start": 21414.74, + "end": 21416.07, + "probability": 0.9592 + }, + { + "start": 21417.1, + "end": 21418.0, + "probability": 0.7115 + }, + { + "start": 21419.34, + "end": 21422.72, + "probability": 0.9556 + }, + { + "start": 21424.92, + "end": 21429.66, + "probability": 0.9902 + }, + { + "start": 21431.1, + "end": 21436.92, + "probability": 0.9835 + }, + { + "start": 21437.76, + "end": 21439.02, + "probability": 0.8301 + }, + { + "start": 21439.86, + "end": 21440.3, + "probability": 0.2949 + }, + { + "start": 21442.12, + "end": 21446.24, + "probability": 0.6555 + }, + { + "start": 21447.52, + "end": 21449.64, + "probability": 0.9528 + }, + { + "start": 21450.9, + "end": 21452.86, + "probability": 0.6994 + }, + { + "start": 21452.94, + "end": 21457.66, + "probability": 0.9736 + }, + { + "start": 21458.54, + "end": 21461.22, + "probability": 0.9961 + }, + { + "start": 21462.36, + "end": 21467.76, + "probability": 0.7931 + }, + { + "start": 21468.66, + "end": 21470.38, + "probability": 0.7676 + }, + { + "start": 21472.12, + "end": 21474.26, + "probability": 0.4693 + }, + { + "start": 21474.36, + "end": 21474.8, + "probability": 0.7048 + }, + { + "start": 21474.92, + "end": 21476.4, + "probability": 0.7269 + }, + { + "start": 21476.58, + "end": 21478.6, + "probability": 0.9707 + }, + { + "start": 21480.24, + "end": 21480.96, + "probability": 0.165 + }, + { + "start": 21481.16, + "end": 21481.42, + "probability": 0.8108 + }, + { + "start": 21481.52, + "end": 21483.22, + "probability": 0.9907 + }, + { + "start": 21483.42, + "end": 21484.7, + "probability": 0.8687 + }, + { + "start": 21484.86, + "end": 21485.58, + "probability": 0.2991 + }, + { + "start": 21485.88, + "end": 21487.94, + "probability": 0.4996 + }, + { + "start": 21492.95, + "end": 21498.16, + "probability": 0.9008 + }, + { + "start": 21500.58, + "end": 21505.16, + "probability": 0.9972 + }, + { + "start": 21508.64, + "end": 21514.64, + "probability": 0.9557 + }, + { + "start": 21515.6, + "end": 21516.12, + "probability": 0.737 + }, + { + "start": 21517.08, + "end": 21520.44, + "probability": 0.9861 + }, + { + "start": 21520.44, + "end": 21525.48, + "probability": 0.9747 + }, + { + "start": 21527.08, + "end": 21529.54, + "probability": 0.9877 + }, + { + "start": 21530.36, + "end": 21531.48, + "probability": 0.9787 + }, + { + "start": 21531.56, + "end": 21537.38, + "probability": 0.8317 + }, + { + "start": 21538.02, + "end": 21539.3, + "probability": 0.8597 + }, + { + "start": 21540.38, + "end": 21542.42, + "probability": 0.9688 + }, + { + "start": 21542.82, + "end": 21547.14, + "probability": 0.8156 + }, + { + "start": 21547.92, + "end": 21550.88, + "probability": 0.9147 + }, + { + "start": 21551.72, + "end": 21552.18, + "probability": 0.1256 + }, + { + "start": 21552.6, + "end": 21553.16, + "probability": 0.833 + }, + { + "start": 21553.74, + "end": 21555.4, + "probability": 0.679 + }, + { + "start": 21555.4, + "end": 21556.58, + "probability": 0.6239 + }, + { + "start": 21557.74, + "end": 21559.0, + "probability": 0.8508 + }, + { + "start": 21559.46, + "end": 21560.14, + "probability": 0.5545 + }, + { + "start": 21560.52, + "end": 21560.8, + "probability": 0.5577 + }, + { + "start": 21561.06, + "end": 21562.68, + "probability": 0.6663 + }, + { + "start": 21562.74, + "end": 21564.54, + "probability": 0.3401 + }, + { + "start": 21564.82, + "end": 21571.86, + "probability": 0.9138 + }, + { + "start": 21572.16, + "end": 21576.14, + "probability": 0.998 + }, + { + "start": 21577.82, + "end": 21580.6, + "probability": 0.97 + }, + { + "start": 21582.56, + "end": 21584.48, + "probability": 0.9476 + }, + { + "start": 21585.7, + "end": 21587.02, + "probability": 0.94 + }, + { + "start": 21587.84, + "end": 21590.2, + "probability": 0.8799 + }, + { + "start": 21590.42, + "end": 21592.0, + "probability": 0.9331 + }, + { + "start": 21593.2, + "end": 21594.56, + "probability": 0.8995 + }, + { + "start": 21595.44, + "end": 21596.12, + "probability": 0.9724 + }, + { + "start": 21596.66, + "end": 21598.64, + "probability": 0.8929 + }, + { + "start": 21599.64, + "end": 21600.48, + "probability": 0.9727 + }, + { + "start": 21601.12, + "end": 21602.46, + "probability": 0.9855 + }, + { + "start": 21603.44, + "end": 21605.38, + "probability": 0.6419 + }, + { + "start": 21605.66, + "end": 21607.42, + "probability": 0.8748 + }, + { + "start": 21607.68, + "end": 21611.43, + "probability": 0.9882 + }, + { + "start": 21612.28, + "end": 21615.2, + "probability": 0.8934 + }, + { + "start": 21616.18, + "end": 21616.36, + "probability": 0.4577 + }, + { + "start": 21616.36, + "end": 21617.24, + "probability": 0.8513 + }, + { + "start": 21617.24, + "end": 21618.68, + "probability": 0.8478 + }, + { + "start": 21619.18, + "end": 21621.48, + "probability": 0.7061 + }, + { + "start": 21622.08, + "end": 21624.64, + "probability": 0.9824 + }, + { + "start": 21625.12, + "end": 21628.28, + "probability": 0.9888 + }, + { + "start": 21628.8, + "end": 21630.42, + "probability": 0.621 + }, + { + "start": 21631.68, + "end": 21633.32, + "probability": 0.95 + }, + { + "start": 21633.96, + "end": 21637.78, + "probability": 0.9699 + }, + { + "start": 21638.18, + "end": 21638.74, + "probability": 0.48 + }, + { + "start": 21639.54, + "end": 21642.18, + "probability": 0.7638 + }, + { + "start": 21643.26, + "end": 21644.06, + "probability": 0.7375 + }, + { + "start": 21645.32, + "end": 21646.78, + "probability": 0.9883 + }, + { + "start": 21647.3, + "end": 21648.76, + "probability": 0.6579 + }, + { + "start": 21649.04, + "end": 21651.26, + "probability": 0.9857 + }, + { + "start": 21651.94, + "end": 21658.94, + "probability": 0.9695 + }, + { + "start": 21659.72, + "end": 21664.16, + "probability": 0.9756 + }, + { + "start": 21664.48, + "end": 21668.08, + "probability": 0.9592 + }, + { + "start": 21668.44, + "end": 21668.88, + "probability": 0.6167 + }, + { + "start": 21669.86, + "end": 21671.4, + "probability": 0.8059 + }, + { + "start": 21671.82, + "end": 21674.54, + "probability": 0.7014 + }, + { + "start": 21675.04, + "end": 21677.75, + "probability": 0.936 + }, + { + "start": 21678.06, + "end": 21680.82, + "probability": 0.6558 + }, + { + "start": 21681.12, + "end": 21681.96, + "probability": 0.7423 + }, + { + "start": 21682.18, + "end": 21682.82, + "probability": 0.9868 + }, + { + "start": 21683.48, + "end": 21684.5, + "probability": 0.9922 + }, + { + "start": 21685.88, + "end": 21689.1, + "probability": 0.9072 + }, + { + "start": 21690.02, + "end": 21691.52, + "probability": 0.5392 + }, + { + "start": 21692.16, + "end": 21695.62, + "probability": 0.951 + }, + { + "start": 21696.48, + "end": 21706.96, + "probability": 0.9767 + }, + { + "start": 21708.4, + "end": 21712.96, + "probability": 0.9224 + }, + { + "start": 21714.18, + "end": 21715.62, + "probability": 0.9919 + }, + { + "start": 21716.16, + "end": 21717.52, + "probability": 0.3338 + }, + { + "start": 21719.28, + "end": 21721.76, + "probability": 0.837 + }, + { + "start": 21722.5, + "end": 21727.46, + "probability": 0.9307 + }, + { + "start": 21727.64, + "end": 21728.46, + "probability": 0.5447 + }, + { + "start": 21729.22, + "end": 21734.52, + "probability": 0.959 + }, + { + "start": 21735.38, + "end": 21736.85, + "probability": 0.959 + }, + { + "start": 21738.76, + "end": 21742.74, + "probability": 0.9696 + }, + { + "start": 21744.06, + "end": 21747.62, + "probability": 0.9668 + }, + { + "start": 21749.3, + "end": 21754.0, + "probability": 0.9392 + }, + { + "start": 21755.34, + "end": 21757.34, + "probability": 0.954 + }, + { + "start": 21758.26, + "end": 21760.64, + "probability": 0.7571 + }, + { + "start": 21761.2, + "end": 21765.48, + "probability": 0.7366 + }, + { + "start": 21765.78, + "end": 21767.86, + "probability": 0.7402 + }, + { + "start": 21768.92, + "end": 21772.2, + "probability": 0.9138 + }, + { + "start": 21772.72, + "end": 21774.1, + "probability": 0.7345 + }, + { + "start": 21774.7, + "end": 21775.92, + "probability": 0.768 + }, + { + "start": 21776.4, + "end": 21779.38, + "probability": 0.979 + }, + { + "start": 21779.74, + "end": 21782.9, + "probability": 0.9534 + }, + { + "start": 21783.62, + "end": 21786.18, + "probability": 0.9499 + }, + { + "start": 21786.66, + "end": 21790.32, + "probability": 0.994 + }, + { + "start": 21791.48, + "end": 21795.88, + "probability": 0.7272 + }, + { + "start": 21796.2, + "end": 21798.48, + "probability": 0.8589 + }, + { + "start": 21798.76, + "end": 21805.1, + "probability": 0.9548 + }, + { + "start": 21805.32, + "end": 21807.14, + "probability": 0.9733 + }, + { + "start": 21807.24, + "end": 21807.82, + "probability": 0.7328 + }, + { + "start": 21810.4, + "end": 21812.42, + "probability": 0.8491 + }, + { + "start": 21813.4, + "end": 21816.68, + "probability": 0.9558 + }, + { + "start": 21816.92, + "end": 21818.78, + "probability": 0.4973 + }, + { + "start": 21819.97, + "end": 21821.73, + "probability": 0.407 + }, + { + "start": 21823.4, + "end": 21823.5, + "probability": 0.571 + }, + { + "start": 21824.14, + "end": 21825.62, + "probability": 0.9626 + }, + { + "start": 21825.96, + "end": 21827.61, + "probability": 0.9134 + }, + { + "start": 21827.96, + "end": 21828.44, + "probability": 0.7916 + }, + { + "start": 21828.52, + "end": 21829.6, + "probability": 0.7159 + }, + { + "start": 21829.66, + "end": 21831.4, + "probability": 0.9985 + }, + { + "start": 21831.46, + "end": 21833.02, + "probability": 0.6764 + }, + { + "start": 21833.1, + "end": 21834.6, + "probability": 0.9259 + }, + { + "start": 21835.38, + "end": 21837.92, + "probability": 0.9961 + }, + { + "start": 21838.22, + "end": 21841.52, + "probability": 0.8718 + }, + { + "start": 21841.64, + "end": 21841.82, + "probability": 0.2156 + }, + { + "start": 21841.9, + "end": 21844.88, + "probability": 0.8773 + }, + { + "start": 21845.56, + "end": 21846.94, + "probability": 0.7562 + }, + { + "start": 21847.9, + "end": 21851.58, + "probability": 0.9859 + }, + { + "start": 21851.64, + "end": 21852.02, + "probability": 0.5238 + }, + { + "start": 21852.9, + "end": 21854.05, + "probability": 0.9777 + }, + { + "start": 21856.32, + "end": 21860.0, + "probability": 0.9682 + }, + { + "start": 21860.06, + "end": 21863.02, + "probability": 0.7025 + }, + { + "start": 21863.92, + "end": 21865.67, + "probability": 0.6077 + }, + { + "start": 21865.78, + "end": 21866.26, + "probability": 0.9191 + }, + { + "start": 21866.58, + "end": 21867.5, + "probability": 0.8436 + }, + { + "start": 21867.66, + "end": 21870.8, + "probability": 0.5424 + }, + { + "start": 21871.84, + "end": 21873.16, + "probability": 0.811 + }, + { + "start": 21873.98, + "end": 21875.71, + "probability": 0.9141 + }, + { + "start": 21877.18, + "end": 21879.96, + "probability": 0.9924 + }, + { + "start": 21880.56, + "end": 21882.86, + "probability": 0.9945 + }, + { + "start": 21883.48, + "end": 21888.56, + "probability": 0.9837 + }, + { + "start": 21889.2, + "end": 21893.46, + "probability": 0.9878 + }, + { + "start": 21894.0, + "end": 21896.64, + "probability": 0.7809 + }, + { + "start": 21897.66, + "end": 21900.9, + "probability": 0.9893 + }, + { + "start": 21901.66, + "end": 21903.12, + "probability": 0.6357 + }, + { + "start": 21903.6, + "end": 21905.86, + "probability": 0.9075 + }, + { + "start": 21907.12, + "end": 21910.72, + "probability": 0.9766 + }, + { + "start": 21911.26, + "end": 21914.52, + "probability": 0.9832 + }, + { + "start": 21915.1, + "end": 21920.64, + "probability": 0.991 + }, + { + "start": 21921.24, + "end": 21923.26, + "probability": 0.9398 + }, + { + "start": 21925.74, + "end": 21926.2, + "probability": 0.5431 + }, + { + "start": 21926.24, + "end": 21926.38, + "probability": 0.9302 + }, + { + "start": 21926.42, + "end": 21929.22, + "probability": 0.9817 + }, + { + "start": 21929.42, + "end": 21931.66, + "probability": 0.9921 + }, + { + "start": 21931.66, + "end": 21934.22, + "probability": 0.9903 + }, + { + "start": 21934.82, + "end": 21936.04, + "probability": 0.6267 + }, + { + "start": 21936.12, + "end": 21939.46, + "probability": 0.9731 + }, + { + "start": 21940.4, + "end": 21944.54, + "probability": 0.9749 + }, + { + "start": 21945.14, + "end": 21948.99, + "probability": 0.9873 + }, + { + "start": 21949.92, + "end": 21953.92, + "probability": 0.9954 + }, + { + "start": 21955.44, + "end": 21956.64, + "probability": 0.7791 + }, + { + "start": 21957.4, + "end": 21962.72, + "probability": 0.9537 + }, + { + "start": 21962.72, + "end": 21968.24, + "probability": 0.9938 + }, + { + "start": 21968.88, + "end": 21970.48, + "probability": 0.9993 + }, + { + "start": 21970.54, + "end": 21971.04, + "probability": 0.7289 + }, + { + "start": 21971.48, + "end": 21972.46, + "probability": 0.7693 + }, + { + "start": 21972.54, + "end": 21974.38, + "probability": 0.9761 + }, + { + "start": 21974.76, + "end": 21975.74, + "probability": 0.8082 + }, + { + "start": 21976.3, + "end": 21978.92, + "probability": 0.6969 + }, + { + "start": 21978.96, + "end": 21979.62, + "probability": 0.5421 + }, + { + "start": 21980.06, + "end": 21980.94, + "probability": 0.3084 + }, + { + "start": 21981.66, + "end": 21984.94, + "probability": 0.9904 + }, + { + "start": 21984.96, + "end": 21988.88, + "probability": 0.9772 + }, + { + "start": 21989.1, + "end": 21991.44, + "probability": 0.9832 + }, + { + "start": 21991.88, + "end": 21992.48, + "probability": 0.5395 + }, + { + "start": 21993.86, + "end": 21995.72, + "probability": 0.9988 + }, + { + "start": 21995.78, + "end": 21998.24, + "probability": 0.9957 + }, + { + "start": 21998.8, + "end": 22000.32, + "probability": 0.9392 + }, + { + "start": 22000.46, + "end": 22000.86, + "probability": 0.6517 + }, + { + "start": 22000.88, + "end": 22001.6, + "probability": 0.9271 + }, + { + "start": 22001.74, + "end": 22005.2, + "probability": 0.973 + }, + { + "start": 22005.34, + "end": 22005.52, + "probability": 0.47 + }, + { + "start": 22005.64, + "end": 22007.88, + "probability": 0.9452 + }, + { + "start": 22008.32, + "end": 22010.52, + "probability": 0.9533 + }, + { + "start": 22010.64, + "end": 22011.84, + "probability": 0.9355 + }, + { + "start": 22012.32, + "end": 22014.08, + "probability": 0.8849 + }, + { + "start": 22014.18, + "end": 22014.72, + "probability": 0.9462 + }, + { + "start": 22014.8, + "end": 22018.58, + "probability": 0.9748 + }, + { + "start": 22019.26, + "end": 22023.02, + "probability": 0.9755 + }, + { + "start": 22023.62, + "end": 22025.78, + "probability": 0.8709 + }, + { + "start": 22025.78, + "end": 22029.5, + "probability": 0.98 + }, + { + "start": 22029.84, + "end": 22034.0, + "probability": 0.9909 + }, + { + "start": 22034.2, + "end": 22036.54, + "probability": 0.825 + }, + { + "start": 22037.82, + "end": 22042.46, + "probability": 0.9978 + }, + { + "start": 22043.18, + "end": 22044.8, + "probability": 0.9972 + }, + { + "start": 22045.4, + "end": 22049.12, + "probability": 0.9983 + }, + { + "start": 22049.12, + "end": 22051.72, + "probability": 0.9945 + }, + { + "start": 22052.54, + "end": 22058.72, + "probability": 0.9928 + }, + { + "start": 22059.12, + "end": 22061.62, + "probability": 0.9954 + }, + { + "start": 22062.02, + "end": 22066.9, + "probability": 0.9905 + }, + { + "start": 22067.6, + "end": 22072.18, + "probability": 0.9903 + }, + { + "start": 22073.9, + "end": 22075.18, + "probability": 0.9194 + }, + { + "start": 22075.96, + "end": 22082.8, + "probability": 0.9503 + }, + { + "start": 22084.54, + "end": 22085.66, + "probability": 0.7056 + }, + { + "start": 22088.96, + "end": 22093.18, + "probability": 0.9872 + }, + { + "start": 22093.34, + "end": 22094.58, + "probability": 0.8938 + }, + { + "start": 22096.02, + "end": 22098.0, + "probability": 0.8784 + }, + { + "start": 22098.06, + "end": 22100.82, + "probability": 0.8149 + }, + { + "start": 22101.5, + "end": 22103.8, + "probability": 0.9414 + }, + { + "start": 22104.6, + "end": 22106.23, + "probability": 0.9602 + }, + { + "start": 22107.48, + "end": 22108.96, + "probability": 0.9985 + }, + { + "start": 22110.3, + "end": 22111.24, + "probability": 0.9884 + }, + { + "start": 22111.3, + "end": 22111.52, + "probability": 0.6473 + }, + { + "start": 22111.6, + "end": 22112.0, + "probability": 0.8677 + }, + { + "start": 22112.08, + "end": 22112.56, + "probability": 0.3219 + }, + { + "start": 22112.64, + "end": 22114.3, + "probability": 0.9598 + }, + { + "start": 22114.46, + "end": 22115.16, + "probability": 0.891 + }, + { + "start": 22115.32, + "end": 22115.96, + "probability": 0.9702 + }, + { + "start": 22116.36, + "end": 22117.12, + "probability": 0.8028 + }, + { + "start": 22119.92, + "end": 22122.98, + "probability": 0.9916 + }, + { + "start": 22122.98, + "end": 22128.38, + "probability": 0.9869 + }, + { + "start": 22130.16, + "end": 22132.86, + "probability": 0.9161 + }, + { + "start": 22134.22, + "end": 22135.42, + "probability": 0.9562 + }, + { + "start": 22136.4, + "end": 22138.05, + "probability": 0.9883 + }, + { + "start": 22138.96, + "end": 22143.26, + "probability": 0.9543 + }, + { + "start": 22143.66, + "end": 22145.6, + "probability": 0.9937 + }, + { + "start": 22146.04, + "end": 22148.94, + "probability": 0.9272 + }, + { + "start": 22149.74, + "end": 22152.5, + "probability": 0.91 + }, + { + "start": 22153.14, + "end": 22157.52, + "probability": 0.9954 + }, + { + "start": 22157.6, + "end": 22161.17, + "probability": 0.9985 + }, + { + "start": 22161.68, + "end": 22163.78, + "probability": 0.8383 + }, + { + "start": 22166.0, + "end": 22169.04, + "probability": 0.9458 + }, + { + "start": 22170.08, + "end": 22172.34, + "probability": 0.9995 + }, + { + "start": 22173.42, + "end": 22176.88, + "probability": 0.9802 + }, + { + "start": 22176.88, + "end": 22182.72, + "probability": 0.9442 + }, + { + "start": 22183.28, + "end": 22186.76, + "probability": 0.998 + }, + { + "start": 22187.0, + "end": 22187.6, + "probability": 0.7447 + }, + { + "start": 22189.16, + "end": 22194.14, + "probability": 0.829 + }, + { + "start": 22194.56, + "end": 22196.94, + "probability": 0.9977 + }, + { + "start": 22197.16, + "end": 22199.3, + "probability": 0.5796 + }, + { + "start": 22199.64, + "end": 22203.94, + "probability": 0.5641 + }, + { + "start": 22204.78, + "end": 22205.79, + "probability": 0.7943 + }, + { + "start": 22206.02, + "end": 22207.45, + "probability": 0.863 + }, + { + "start": 22207.96, + "end": 22208.82, + "probability": 0.6452 + }, + { + "start": 22214.86, + "end": 22215.92, + "probability": 0.8172 + }, + { + "start": 22219.0, + "end": 22220.3, + "probability": 0.6736 + }, + { + "start": 22221.36, + "end": 22222.08, + "probability": 0.1437 + }, + { + "start": 22222.98, + "end": 22223.9, + "probability": 0.0015 + }, + { + "start": 22225.98, + "end": 22227.12, + "probability": 0.8738 + }, + { + "start": 22227.24, + "end": 22227.6, + "probability": 0.4003 + }, + { + "start": 22228.9, + "end": 22233.54, + "probability": 0.9902 + }, + { + "start": 22233.72, + "end": 22234.12, + "probability": 0.859 + }, + { + "start": 22235.1, + "end": 22240.6, + "probability": 0.9681 + }, + { + "start": 22241.58, + "end": 22244.06, + "probability": 0.9979 + }, + { + "start": 22244.6, + "end": 22246.9, + "probability": 0.9995 + }, + { + "start": 22247.48, + "end": 22249.24, + "probability": 0.9404 + }, + { + "start": 22249.96, + "end": 22251.16, + "probability": 0.9634 + }, + { + "start": 22252.7, + "end": 22256.14, + "probability": 0.989 + }, + { + "start": 22256.36, + "end": 22259.1, + "probability": 0.7236 + }, + { + "start": 22259.9, + "end": 22262.2, + "probability": 0.9872 + }, + { + "start": 22262.96, + "end": 22267.1, + "probability": 0.9553 + }, + { + "start": 22267.58, + "end": 22270.02, + "probability": 0.755 + }, + { + "start": 22270.64, + "end": 22273.2, + "probability": 0.9854 + }, + { + "start": 22273.3, + "end": 22276.58, + "probability": 0.9948 + }, + { + "start": 22276.96, + "end": 22279.26, + "probability": 0.9586 + }, + { + "start": 22279.9, + "end": 22282.62, + "probability": 0.978 + }, + { + "start": 22283.32, + "end": 22286.02, + "probability": 0.8214 + }, + { + "start": 22286.44, + "end": 22288.98, + "probability": 0.9937 + }, + { + "start": 22289.0, + "end": 22291.46, + "probability": 0.9978 + }, + { + "start": 22292.2, + "end": 22295.42, + "probability": 0.9797 + }, + { + "start": 22295.58, + "end": 22295.68, + "probability": 0.0676 + }, + { + "start": 22296.3, + "end": 22298.08, + "probability": 0.9785 + }, + { + "start": 22298.86, + "end": 22300.12, + "probability": 0.9589 + }, + { + "start": 22300.58, + "end": 22302.78, + "probability": 0.8328 + }, + { + "start": 22303.28, + "end": 22305.7, + "probability": 0.8644 + }, + { + "start": 22307.58, + "end": 22310.9, + "probability": 0.9297 + }, + { + "start": 22311.92, + "end": 22313.04, + "probability": 0.8496 + }, + { + "start": 22313.66, + "end": 22314.38, + "probability": 0.8136 + }, + { + "start": 22315.28, + "end": 22317.24, + "probability": 0.999 + }, + { + "start": 22317.24, + "end": 22319.42, + "probability": 0.9718 + }, + { + "start": 22320.02, + "end": 22323.2, + "probability": 0.9915 + }, + { + "start": 22323.92, + "end": 22326.26, + "probability": 0.999 + }, + { + "start": 22326.74, + "end": 22327.18, + "probability": 0.3914 + }, + { + "start": 22327.58, + "end": 22328.28, + "probability": 0.9946 + }, + { + "start": 22328.98, + "end": 22331.22, + "probability": 0.8208 + }, + { + "start": 22331.38, + "end": 22333.6, + "probability": 0.7819 + }, + { + "start": 22334.24, + "end": 22336.04, + "probability": 0.9936 + }, + { + "start": 22336.66, + "end": 22338.2, + "probability": 0.9204 + }, + { + "start": 22338.8, + "end": 22341.32, + "probability": 0.9517 + }, + { + "start": 22341.88, + "end": 22343.94, + "probability": 0.9888 + }, + { + "start": 22344.26, + "end": 22345.15, + "probability": 0.9663 + }, + { + "start": 22345.76, + "end": 22347.44, + "probability": 0.9746 + }, + { + "start": 22347.82, + "end": 22348.46, + "probability": 0.7128 + }, + { + "start": 22349.22, + "end": 22351.84, + "probability": 0.6483 + }, + { + "start": 22352.52, + "end": 22354.96, + "probability": 0.9275 + }, + { + "start": 22355.38, + "end": 22356.38, + "probability": 0.9963 + }, + { + "start": 22356.54, + "end": 22356.98, + "probability": 0.7186 + }, + { + "start": 22358.14, + "end": 22360.2, + "probability": 0.9696 + }, + { + "start": 22360.44, + "end": 22362.5, + "probability": 0.8428 + }, + { + "start": 22362.7, + "end": 22364.06, + "probability": 0.8612 + }, + { + "start": 22364.32, + "end": 22369.44, + "probability": 0.8405 + }, + { + "start": 22369.96, + "end": 22372.46, + "probability": 0.9673 + }, + { + "start": 22373.38, + "end": 22375.98, + "probability": 0.9976 + }, + { + "start": 22375.98, + "end": 22378.92, + "probability": 0.9919 + }, + { + "start": 22379.1, + "end": 22379.94, + "probability": 0.998 + }, + { + "start": 22380.6, + "end": 22383.2, + "probability": 0.9985 + }, + { + "start": 22383.9, + "end": 22388.04, + "probability": 0.8423 + }, + { + "start": 22388.1, + "end": 22391.64, + "probability": 0.9806 + }, + { + "start": 22391.64, + "end": 22393.92, + "probability": 0.894 + }, + { + "start": 22394.44, + "end": 22398.66, + "probability": 0.9875 + }, + { + "start": 22399.72, + "end": 22401.68, + "probability": 0.9972 + }, + { + "start": 22402.32, + "end": 22403.22, + "probability": 0.4629 + }, + { + "start": 22404.52, + "end": 22405.6, + "probability": 0.9174 + }, + { + "start": 22405.7, + "end": 22410.08, + "probability": 0.9522 + }, + { + "start": 22410.22, + "end": 22411.98, + "probability": 0.9146 + }, + { + "start": 22412.26, + "end": 22413.66, + "probability": 0.9885 + }, + { + "start": 22415.18, + "end": 22417.08, + "probability": 0.7782 + }, + { + "start": 22417.16, + "end": 22419.82, + "probability": 0.9678 + }, + { + "start": 22420.22, + "end": 22420.98, + "probability": 0.8434 + }, + { + "start": 22421.2, + "end": 22421.96, + "probability": 0.9662 + }, + { + "start": 22422.06, + "end": 22423.28, + "probability": 0.8077 + }, + { + "start": 22424.2, + "end": 22429.08, + "probability": 0.9756 + }, + { + "start": 22429.38, + "end": 22430.38, + "probability": 0.9846 + }, + { + "start": 22430.92, + "end": 22432.6, + "probability": 0.9755 + }, + { + "start": 22433.34, + "end": 22435.72, + "probability": 0.8924 + }, + { + "start": 22436.62, + "end": 22437.6, + "probability": 0.8553 + }, + { + "start": 22438.12, + "end": 22442.38, + "probability": 0.9757 + }, + { + "start": 22442.84, + "end": 22443.95, + "probability": 0.9971 + }, + { + "start": 22444.26, + "end": 22445.2, + "probability": 0.7188 + }, + { + "start": 22445.26, + "end": 22446.04, + "probability": 0.9834 + }, + { + "start": 22446.78, + "end": 22447.54, + "probability": 0.8447 + }, + { + "start": 22448.62, + "end": 22449.86, + "probability": 0.7733 + }, + { + "start": 22450.02, + "end": 22450.88, + "probability": 0.811 + }, + { + "start": 22451.32, + "end": 22452.76, + "probability": 0.8309 + }, + { + "start": 22453.08, + "end": 22456.38, + "probability": 0.9916 + }, + { + "start": 22456.5, + "end": 22456.84, + "probability": 0.708 + }, + { + "start": 22457.42, + "end": 22459.54, + "probability": 0.9892 + }, + { + "start": 22460.66, + "end": 22463.3, + "probability": 0.9988 + }, + { + "start": 22463.3, + "end": 22467.3, + "probability": 0.9758 + }, + { + "start": 22467.54, + "end": 22468.14, + "probability": 0.813 + }, + { + "start": 22468.58, + "end": 22472.56, + "probability": 0.9578 + }, + { + "start": 22472.56, + "end": 22477.62, + "probability": 0.9937 + }, + { + "start": 22477.8, + "end": 22478.92, + "probability": 0.5522 + }, + { + "start": 22479.28, + "end": 22479.96, + "probability": 0.9159 + }, + { + "start": 22480.58, + "end": 22482.0, + "probability": 0.984 + }, + { + "start": 22483.42, + "end": 22487.2, + "probability": 0.9961 + }, + { + "start": 22487.96, + "end": 22489.5, + "probability": 0.9531 + }, + { + "start": 22489.7, + "end": 22489.72, + "probability": 0.3599 + }, + { + "start": 22489.88, + "end": 22490.34, + "probability": 0.9476 + }, + { + "start": 22490.44, + "end": 22491.74, + "probability": 0.8193 + }, + { + "start": 22492.92, + "end": 22496.7, + "probability": 0.9246 + }, + { + "start": 22496.7, + "end": 22500.54, + "probability": 0.9934 + }, + { + "start": 22501.38, + "end": 22503.16, + "probability": 0.9775 + }, + { + "start": 22503.42, + "end": 22505.44, + "probability": 0.9856 + }, + { + "start": 22507.46, + "end": 22511.82, + "probability": 0.9625 + }, + { + "start": 22512.74, + "end": 22514.72, + "probability": 0.9951 + }, + { + "start": 22515.32, + "end": 22518.6, + "probability": 0.9882 + }, + { + "start": 22519.9, + "end": 22524.48, + "probability": 0.9823 + }, + { + "start": 22524.58, + "end": 22525.82, + "probability": 0.9983 + }, + { + "start": 22526.94, + "end": 22528.72, + "probability": 0.9911 + }, + { + "start": 22529.84, + "end": 22533.96, + "probability": 0.8483 + }, + { + "start": 22534.96, + "end": 22539.5, + "probability": 0.99 + }, + { + "start": 22540.28, + "end": 22542.32, + "probability": 0.9696 + }, + { + "start": 22543.9, + "end": 22546.32, + "probability": 0.9873 + }, + { + "start": 22546.56, + "end": 22550.14, + "probability": 0.9924 + }, + { + "start": 22551.32, + "end": 22555.02, + "probability": 0.9304 + }, + { + "start": 22555.18, + "end": 22557.86, + "probability": 0.9912 + }, + { + "start": 22558.94, + "end": 22562.7, + "probability": 0.9697 + }, + { + "start": 22563.3, + "end": 22567.14, + "probability": 0.9906 + }, + { + "start": 22569.89, + "end": 22575.04, + "probability": 0.6261 + }, + { + "start": 22575.7, + "end": 22576.12, + "probability": 0.9461 + }, + { + "start": 22577.42, + "end": 22584.08, + "probability": 0.981 + }, + { + "start": 22584.08, + "end": 22589.9, + "probability": 0.9913 + }, + { + "start": 22590.66, + "end": 22591.62, + "probability": 0.8658 + }, + { + "start": 22593.02, + "end": 22596.32, + "probability": 0.8558 + }, + { + "start": 22596.96, + "end": 22599.26, + "probability": 0.8822 + }, + { + "start": 22600.06, + "end": 22603.3, + "probability": 0.9885 + }, + { + "start": 22603.3, + "end": 22606.28, + "probability": 0.9926 + }, + { + "start": 22606.42, + "end": 22607.34, + "probability": 0.8943 + }, + { + "start": 22608.6, + "end": 22610.78, + "probability": 0.6765 + }, + { + "start": 22612.12, + "end": 22612.82, + "probability": 0.9956 + }, + { + "start": 22613.76, + "end": 22618.1, + "probability": 0.9951 + }, + { + "start": 22618.68, + "end": 22623.0, + "probability": 0.9934 + }, + { + "start": 22623.96, + "end": 22626.3, + "probability": 0.9985 + }, + { + "start": 22626.32, + "end": 22630.98, + "probability": 0.9901 + }, + { + "start": 22631.06, + "end": 22632.66, + "probability": 0.7064 + }, + { + "start": 22633.82, + "end": 22635.54, + "probability": 0.9572 + }, + { + "start": 22636.56, + "end": 22637.68, + "probability": 0.8841 + }, + { + "start": 22638.1, + "end": 22639.52, + "probability": 0.7423 + }, + { + "start": 22639.56, + "end": 22640.26, + "probability": 0.7983 + }, + { + "start": 22640.76, + "end": 22641.88, + "probability": 0.9852 + }, + { + "start": 22643.2, + "end": 22648.24, + "probability": 0.9741 + }, + { + "start": 22649.98, + "end": 22654.54, + "probability": 0.9885 + }, + { + "start": 22655.04, + "end": 22656.88, + "probability": 0.7933 + }, + { + "start": 22658.16, + "end": 22659.18, + "probability": 0.5711 + }, + { + "start": 22659.84, + "end": 22666.72, + "probability": 0.983 + }, + { + "start": 22667.26, + "end": 22669.86, + "probability": 0.9818 + }, + { + "start": 22670.8, + "end": 22674.38, + "probability": 0.7195 + }, + { + "start": 22674.96, + "end": 22677.92, + "probability": 0.9849 + }, + { + "start": 22679.4, + "end": 22681.62, + "probability": 0.8737 + }, + { + "start": 22681.88, + "end": 22685.92, + "probability": 0.9713 + }, + { + "start": 22686.0, + "end": 22689.4, + "probability": 0.9751 + }, + { + "start": 22689.86, + "end": 22693.36, + "probability": 0.9784 + }, + { + "start": 22693.74, + "end": 22697.44, + "probability": 0.9944 + }, + { + "start": 22697.44, + "end": 22701.24, + "probability": 0.986 + }, + { + "start": 22701.78, + "end": 22703.44, + "probability": 0.6874 + }, + { + "start": 22704.54, + "end": 22708.38, + "probability": 0.8901 + }, + { + "start": 22709.22, + "end": 22714.2, + "probability": 0.9929 + }, + { + "start": 22714.58, + "end": 22718.18, + "probability": 0.9937 + }, + { + "start": 22718.96, + "end": 22720.1, + "probability": 0.5891 + }, + { + "start": 22720.5, + "end": 22723.44, + "probability": 0.8315 + }, + { + "start": 22723.66, + "end": 22726.26, + "probability": 0.9912 + }, + { + "start": 22726.64, + "end": 22729.34, + "probability": 0.9843 + }, + { + "start": 22729.44, + "end": 22730.72, + "probability": 0.9718 + }, + { + "start": 22731.18, + "end": 22732.36, + "probability": 0.5615 + }, + { + "start": 22732.7, + "end": 22733.8, + "probability": 0.97 + }, + { + "start": 22734.02, + "end": 22735.04, + "probability": 0.9858 + }, + { + "start": 22735.18, + "end": 22736.2, + "probability": 0.9863 + }, + { + "start": 22736.34, + "end": 22737.43, + "probability": 0.9575 + }, + { + "start": 22737.8, + "end": 22738.82, + "probability": 0.9662 + }, + { + "start": 22739.0, + "end": 22739.28, + "probability": 0.7993 + }, + { + "start": 22740.12, + "end": 22742.56, + "probability": 0.7272 + }, + { + "start": 22743.12, + "end": 22744.96, + "probability": 0.8354 + }, + { + "start": 22748.58, + "end": 22749.38, + "probability": 0.9819 + }, + { + "start": 22749.92, + "end": 22750.72, + "probability": 0.7946 + }, + { + "start": 22751.18, + "end": 22751.48, + "probability": 0.7564 + }, + { + "start": 22751.54, + "end": 22756.16, + "probability": 0.2946 + }, + { + "start": 22756.8, + "end": 22759.06, + "probability": 0.3137 + }, + { + "start": 22759.06, + "end": 22763.56, + "probability": 0.5162 + }, + { + "start": 22763.72, + "end": 22765.38, + "probability": 0.2822 + }, + { + "start": 22768.5, + "end": 22771.8, + "probability": 0.9363 + }, + { + "start": 22772.22, + "end": 22774.94, + "probability": 0.689 + }, + { + "start": 22775.08, + "end": 22776.2, + "probability": 0.3011 + }, + { + "start": 22776.92, + "end": 22777.28, + "probability": 0.6127 + }, + { + "start": 22777.34, + "end": 22777.79, + "probability": 0.7979 + }, + { + "start": 22778.04, + "end": 22780.56, + "probability": 0.8495 + }, + { + "start": 22780.6, + "end": 22781.04, + "probability": 0.9082 + }, + { + "start": 22781.66, + "end": 22782.04, + "probability": 0.8323 + }, + { + "start": 22783.96, + "end": 22785.86, + "probability": 0.7677 + }, + { + "start": 22786.82, + "end": 22787.24, + "probability": 0.3242 + }, + { + "start": 22788.22, + "end": 22790.62, + "probability": 0.6621 + }, + { + "start": 22790.78, + "end": 22792.48, + "probability": 0.8586 + }, + { + "start": 22792.64, + "end": 22794.36, + "probability": 0.9578 + }, + { + "start": 22795.06, + "end": 22798.76, + "probability": 0.9601 + }, + { + "start": 22799.54, + "end": 22802.38, + "probability": 0.9879 + }, + { + "start": 22802.52, + "end": 22804.86, + "probability": 0.7975 + }, + { + "start": 22805.56, + "end": 22808.38, + "probability": 0.9965 + }, + { + "start": 22808.56, + "end": 22812.04, + "probability": 0.9856 + }, + { + "start": 22813.06, + "end": 22816.26, + "probability": 0.9679 + }, + { + "start": 22816.36, + "end": 22817.72, + "probability": 0.8721 + }, + { + "start": 22817.9, + "end": 22819.76, + "probability": 0.9876 + }, + { + "start": 22819.9, + "end": 22821.6, + "probability": 0.5716 + }, + { + "start": 22821.78, + "end": 22825.16, + "probability": 0.8719 + }, + { + "start": 22825.64, + "end": 22826.16, + "probability": 0.3124 + }, + { + "start": 22826.26, + "end": 22828.28, + "probability": 0.8679 + }, + { + "start": 22828.6, + "end": 22830.16, + "probability": 0.9388 + }, + { + "start": 22830.5, + "end": 22831.28, + "probability": 0.7062 + }, + { + "start": 22831.38, + "end": 22835.48, + "probability": 0.9817 + }, + { + "start": 22835.74, + "end": 22837.3, + "probability": 0.9368 + }, + { + "start": 22837.76, + "end": 22840.22, + "probability": 0.9741 + }, + { + "start": 22840.3, + "end": 22841.44, + "probability": 0.857 + }, + { + "start": 22841.98, + "end": 22847.14, + "probability": 0.9799 + }, + { + "start": 22847.46, + "end": 22851.56, + "probability": 0.9851 + }, + { + "start": 22852.0, + "end": 22854.58, + "probability": 0.9738 + }, + { + "start": 22854.94, + "end": 22856.34, + "probability": 0.6768 + }, + { + "start": 22856.36, + "end": 22857.64, + "probability": 0.2521 + }, + { + "start": 22857.92, + "end": 22858.04, + "probability": 0.57 + }, + { + "start": 22858.04, + "end": 22858.64, + "probability": 0.5022 + }, + { + "start": 22858.64, + "end": 22858.64, + "probability": 0.6208 + }, + { + "start": 22858.86, + "end": 22861.38, + "probability": 0.6222 + }, + { + "start": 22861.44, + "end": 22861.82, + "probability": 0.4798 + }, + { + "start": 22861.84, + "end": 22861.84, + "probability": 0.1267 + }, + { + "start": 22861.84, + "end": 22864.78, + "probability": 0.5921 + }, + { + "start": 22865.24, + "end": 22865.72, + "probability": 0.8564 + }, + { + "start": 22866.16, + "end": 22867.06, + "probability": 0.7073 + }, + { + "start": 22867.06, + "end": 22867.58, + "probability": 0.1825 + }, + { + "start": 22867.7, + "end": 22870.06, + "probability": 0.8548 + }, + { + "start": 22870.08, + "end": 22872.64, + "probability": 0.1789 + }, + { + "start": 22872.88, + "end": 22874.54, + "probability": 0.3789 + }, + { + "start": 22874.76, + "end": 22875.34, + "probability": 0.0288 + }, + { + "start": 22875.54, + "end": 22876.91, + "probability": 0.4543 + }, + { + "start": 22877.82, + "end": 22880.7, + "probability": 0.764 + }, + { + "start": 22880.72, + "end": 22880.72, + "probability": 0.4564 + }, + { + "start": 22880.72, + "end": 22881.48, + "probability": 0.0883 + }, + { + "start": 22881.72, + "end": 22884.3, + "probability": 0.1619 + }, + { + "start": 22884.3, + "end": 22884.3, + "probability": 0.196 + }, + { + "start": 22884.3, + "end": 22884.3, + "probability": 0.026 + }, + { + "start": 22884.3, + "end": 22884.3, + "probability": 0.357 + }, + { + "start": 22884.3, + "end": 22886.86, + "probability": 0.4683 + }, + { + "start": 22887.02, + "end": 22889.32, + "probability": 0.9624 + }, + { + "start": 22889.32, + "end": 22892.08, + "probability": 0.6988 + }, + { + "start": 22892.2, + "end": 22892.92, + "probability": 0.5275 + }, + { + "start": 22892.96, + "end": 22894.27, + "probability": 0.0388 + }, + { + "start": 22894.8, + "end": 22895.7, + "probability": 0.6177 + }, + { + "start": 22895.7, + "end": 22898.26, + "probability": 0.6675 + }, + { + "start": 22898.68, + "end": 22899.54, + "probability": 0.672 + }, + { + "start": 22899.58, + "end": 22901.22, + "probability": 0.8266 + }, + { + "start": 22902.28, + "end": 22904.76, + "probability": 0.9561 + }, + { + "start": 22904.88, + "end": 22905.6, + "probability": 0.9275 + }, + { + "start": 22905.66, + "end": 22909.04, + "probability": 0.9775 + }, + { + "start": 22909.2, + "end": 22913.6, + "probability": 0.9857 + }, + { + "start": 22915.04, + "end": 22915.22, + "probability": 0.6077 + }, + { + "start": 22915.44, + "end": 22916.26, + "probability": 0.5979 + }, + { + "start": 22916.34, + "end": 22918.64, + "probability": 0.9917 + }, + { + "start": 22918.76, + "end": 22920.28, + "probability": 0.6387 + }, + { + "start": 22920.8, + "end": 22923.85, + "probability": 0.8905 + }, + { + "start": 22925.24, + "end": 22930.62, + "probability": 0.9567 + }, + { + "start": 22930.8, + "end": 22933.66, + "probability": 0.9771 + }, + { + "start": 22933.8, + "end": 22935.26, + "probability": 0.9971 + }, + { + "start": 22935.34, + "end": 22941.16, + "probability": 0.9969 + }, + { + "start": 22941.38, + "end": 22948.08, + "probability": 0.9832 + }, + { + "start": 22948.9, + "end": 22952.76, + "probability": 0.9365 + }, + { + "start": 22953.78, + "end": 22956.86, + "probability": 0.9736 + }, + { + "start": 22957.44, + "end": 22961.24, + "probability": 0.9896 + }, + { + "start": 22961.94, + "end": 22968.6, + "probability": 0.8652 + }, + { + "start": 22969.44, + "end": 22972.9, + "probability": 0.7059 + }, + { + "start": 22973.04, + "end": 22979.92, + "probability": 0.9925 + }, + { + "start": 22980.28, + "end": 22984.5, + "probability": 0.9924 + }, + { + "start": 22985.04, + "end": 22989.38, + "probability": 0.9419 + }, + { + "start": 22989.38, + "end": 22993.24, + "probability": 0.9886 + }, + { + "start": 22994.2, + "end": 22998.02, + "probability": 0.9828 + }, + { + "start": 22998.86, + "end": 23004.58, + "probability": 0.9961 + }, + { + "start": 23005.0, + "end": 23012.24, + "probability": 0.9154 + }, + { + "start": 23012.62, + "end": 23015.65, + "probability": 0.9506 + }, + { + "start": 23016.5, + "end": 23021.56, + "probability": 0.8208 + }, + { + "start": 23022.06, + "end": 23023.46, + "probability": 0.8438 + }, + { + "start": 23024.32, + "end": 23030.0, + "probability": 0.9589 + }, + { + "start": 23030.0, + "end": 23036.32, + "probability": 0.9973 + }, + { + "start": 23036.78, + "end": 23038.06, + "probability": 0.9282 + }, + { + "start": 23038.66, + "end": 23041.28, + "probability": 0.8342 + }, + { + "start": 23042.68, + "end": 23047.86, + "probability": 0.9663 + }, + { + "start": 23047.98, + "end": 23050.14, + "probability": 0.8335 + }, + { + "start": 23050.78, + "end": 23057.68, + "probability": 0.9917 + }, + { + "start": 23058.12, + "end": 23061.54, + "probability": 0.9985 + }, + { + "start": 23061.98, + "end": 23065.06, + "probability": 0.9836 + }, + { + "start": 23065.44, + "end": 23065.82, + "probability": 0.8099 + }, + { + "start": 23065.96, + "end": 23066.56, + "probability": 0.7603 + }, + { + "start": 23066.92, + "end": 23070.58, + "probability": 0.9897 + }, + { + "start": 23071.74, + "end": 23076.62, + "probability": 0.9873 + }, + { + "start": 23077.44, + "end": 23080.54, + "probability": 0.9863 + }, + { + "start": 23080.98, + "end": 23084.06, + "probability": 0.9965 + }, + { + "start": 23084.76, + "end": 23089.7, + "probability": 0.9009 + }, + { + "start": 23090.46, + "end": 23093.14, + "probability": 0.9857 + }, + { + "start": 23093.54, + "end": 23097.42, + "probability": 0.917 + }, + { + "start": 23098.52, + "end": 23098.52, + "probability": 0.4502 + }, + { + "start": 23098.7, + "end": 23099.54, + "probability": 0.7562 + }, + { + "start": 23099.6, + "end": 23106.14, + "probability": 0.9948 + }, + { + "start": 23106.32, + "end": 23107.44, + "probability": 0.9455 + }, + { + "start": 23107.52, + "end": 23108.28, + "probability": 0.8748 + }, + { + "start": 23108.6, + "end": 23112.82, + "probability": 0.962 + }, + { + "start": 23113.44, + "end": 23114.06, + "probability": 0.7304 + }, + { + "start": 23114.12, + "end": 23116.66, + "probability": 0.9241 + }, + { + "start": 23117.02, + "end": 23118.78, + "probability": 0.9562 + }, + { + "start": 23119.14, + "end": 23120.0, + "probability": 0.9798 + }, + { + "start": 23120.34, + "end": 23121.24, + "probability": 0.9883 + }, + { + "start": 23121.5, + "end": 23122.1, + "probability": 0.9128 + }, + { + "start": 23122.98, + "end": 23124.86, + "probability": 0.9857 + }, + { + "start": 23125.8, + "end": 23128.14, + "probability": 0.9406 + }, + { + "start": 23128.24, + "end": 23130.54, + "probability": 0.9507 + }, + { + "start": 23130.58, + "end": 23135.8, + "probability": 0.9919 + }, + { + "start": 23135.9, + "end": 23140.46, + "probability": 0.9974 + }, + { + "start": 23140.96, + "end": 23144.14, + "probability": 0.9937 + }, + { + "start": 23145.12, + "end": 23146.36, + "probability": 0.9934 + }, + { + "start": 23147.06, + "end": 23147.88, + "probability": 0.9972 + }, + { + "start": 23148.48, + "end": 23151.84, + "probability": 0.981 + }, + { + "start": 23152.36, + "end": 23154.0, + "probability": 0.9666 + }, + { + "start": 23155.34, + "end": 23160.7, + "probability": 0.9937 + }, + { + "start": 23160.88, + "end": 23164.04, + "probability": 0.9886 + }, + { + "start": 23164.48, + "end": 23168.32, + "probability": 0.9923 + }, + { + "start": 23168.76, + "end": 23170.58, + "probability": 0.9608 + }, + { + "start": 23171.0, + "end": 23174.98, + "probability": 0.981 + }, + { + "start": 23175.08, + "end": 23175.9, + "probability": 0.9731 + }, + { + "start": 23176.54, + "end": 23178.12, + "probability": 0.6988 + }, + { + "start": 23178.46, + "end": 23182.06, + "probability": 0.9926 + }, + { + "start": 23182.14, + "end": 23182.84, + "probability": 0.8862 + }, + { + "start": 23183.18, + "end": 23184.8, + "probability": 0.9816 + }, + { + "start": 23185.26, + "end": 23187.86, + "probability": 0.6669 + }, + { + "start": 23187.86, + "end": 23191.6, + "probability": 0.9552 + }, + { + "start": 23192.34, + "end": 23192.44, + "probability": 0.8909 + }, + { + "start": 23192.62, + "end": 23194.94, + "probability": 0.992 + }, + { + "start": 23194.94, + "end": 23198.68, + "probability": 0.9926 + }, + { + "start": 23199.12, + "end": 23203.3, + "probability": 0.9932 + }, + { + "start": 23204.5, + "end": 23205.12, + "probability": 0.6306 + }, + { + "start": 23205.28, + "end": 23205.46, + "probability": 0.6715 + }, + { + "start": 23205.56, + "end": 23210.94, + "probability": 0.9937 + }, + { + "start": 23211.26, + "end": 23214.76, + "probability": 0.9245 + }, + { + "start": 23215.24, + "end": 23219.94, + "probability": 0.9907 + }, + { + "start": 23220.54, + "end": 23223.06, + "probability": 0.9492 + }, + { + "start": 23223.94, + "end": 23224.94, + "probability": 0.9172 + }, + { + "start": 23225.94, + "end": 23229.28, + "probability": 0.9899 + }, + { + "start": 23229.68, + "end": 23230.32, + "probability": 0.3588 + }, + { + "start": 23230.8, + "end": 23238.08, + "probability": 0.966 + }, + { + "start": 23238.9, + "end": 23239.42, + "probability": 0.799 + }, + { + "start": 23239.56, + "end": 23241.94, + "probability": 0.9777 + }, + { + "start": 23242.42, + "end": 23247.26, + "probability": 0.9396 + }, + { + "start": 23247.26, + "end": 23252.3, + "probability": 0.9985 + }, + { + "start": 23252.62, + "end": 23255.08, + "probability": 0.9971 + }, + { + "start": 23255.7, + "end": 23260.08, + "probability": 0.96 + }, + { + "start": 23260.38, + "end": 23261.76, + "probability": 0.9713 + }, + { + "start": 23262.04, + "end": 23263.08, + "probability": 0.8959 + }, + { + "start": 23263.22, + "end": 23264.68, + "probability": 0.9913 + }, + { + "start": 23266.0, + "end": 23273.0, + "probability": 0.9884 + }, + { + "start": 23273.66, + "end": 23273.78, + "probability": 0.9966 + }, + { + "start": 23274.42, + "end": 23276.18, + "probability": 0.8116 + }, + { + "start": 23276.62, + "end": 23280.14, + "probability": 0.8992 + }, + { + "start": 23280.14, + "end": 23285.22, + "probability": 0.9939 + }, + { + "start": 23285.92, + "end": 23290.34, + "probability": 0.9742 + }, + { + "start": 23291.04, + "end": 23293.88, + "probability": 0.9684 + }, + { + "start": 23294.26, + "end": 23294.26, + "probability": 0.3022 + }, + { + "start": 23294.3, + "end": 23294.8, + "probability": 0.7964 + }, + { + "start": 23294.82, + "end": 23299.3, + "probability": 0.9844 + }, + { + "start": 23299.72, + "end": 23300.68, + "probability": 0.7041 + }, + { + "start": 23301.28, + "end": 23304.76, + "probability": 0.9927 + }, + { + "start": 23304.82, + "end": 23308.04, + "probability": 0.9984 + }, + { + "start": 23308.36, + "end": 23313.28, + "probability": 0.9702 + }, + { + "start": 23313.58, + "end": 23314.96, + "probability": 0.9937 + }, + { + "start": 23315.08, + "end": 23316.24, + "probability": 0.7512 + }, + { + "start": 23316.42, + "end": 23317.84, + "probability": 0.9168 + }, + { + "start": 23318.22, + "end": 23323.12, + "probability": 0.7559 + }, + { + "start": 23323.4, + "end": 23332.48, + "probability": 0.9792 + }, + { + "start": 23332.82, + "end": 23336.06, + "probability": 0.9761 + }, + { + "start": 23337.1, + "end": 23337.8, + "probability": 0.6152 + }, + { + "start": 23338.16, + "end": 23338.42, + "probability": 0.3313 + }, + { + "start": 23338.9, + "end": 23340.86, + "probability": 0.9269 + }, + { + "start": 23341.24, + "end": 23343.58, + "probability": 0.8512 + }, + { + "start": 23344.88, + "end": 23347.32, + "probability": 0.9583 + }, + { + "start": 23348.02, + "end": 23348.42, + "probability": 0.6519 + }, + { + "start": 23350.26, + "end": 23351.54, + "probability": 0.4049 + }, + { + "start": 23351.54, + "end": 23351.54, + "probability": 0.0767 + }, + { + "start": 23351.54, + "end": 23351.54, + "probability": 0.0229 + }, + { + "start": 23351.54, + "end": 23352.24, + "probability": 0.5359 + }, + { + "start": 23364.9, + "end": 23367.04, + "probability": 0.6333 + }, + { + "start": 23367.14, + "end": 23367.56, + "probability": 0.9446 + }, + { + "start": 23367.72, + "end": 23368.2, + "probability": 0.4374 + }, + { + "start": 23368.22, + "end": 23369.84, + "probability": 0.505 + }, + { + "start": 23371.08, + "end": 23376.68, + "probability": 0.9787 + }, + { + "start": 23377.7, + "end": 23378.48, + "probability": 0.5748 + }, + { + "start": 23378.62, + "end": 23378.9, + "probability": 0.5013 + }, + { + "start": 23379.06, + "end": 23379.76, + "probability": 0.762 + }, + { + "start": 23380.0, + "end": 23381.96, + "probability": 0.9142 + }, + { + "start": 23382.12, + "end": 23383.04, + "probability": 0.9733 + }, + { + "start": 23383.28, + "end": 23383.94, + "probability": 0.8413 + }, + { + "start": 23385.42, + "end": 23388.0, + "probability": 0.9308 + }, + { + "start": 23388.64, + "end": 23390.52, + "probability": 0.8025 + }, + { + "start": 23391.18, + "end": 23394.42, + "probability": 0.9897 + }, + { + "start": 23394.52, + "end": 23396.2, + "probability": 0.8314 + }, + { + "start": 23397.24, + "end": 23398.32, + "probability": 0.8173 + }, + { + "start": 23399.34, + "end": 23402.86, + "probability": 0.8582 + }, + { + "start": 23403.56, + "end": 23405.92, + "probability": 0.9784 + }, + { + "start": 23406.84, + "end": 23411.2, + "probability": 0.743 + }, + { + "start": 23412.2, + "end": 23415.52, + "probability": 0.6616 + }, + { + "start": 23416.2, + "end": 23422.72, + "probability": 0.9498 + }, + { + "start": 23423.98, + "end": 23428.42, + "probability": 0.986 + }, + { + "start": 23429.34, + "end": 23433.24, + "probability": 0.8062 + }, + { + "start": 23434.4, + "end": 23438.62, + "probability": 0.6734 + }, + { + "start": 23442.28, + "end": 23449.22, + "probability": 0.8229 + }, + { + "start": 23449.26, + "end": 23451.1, + "probability": 0.9759 + }, + { + "start": 23451.46, + "end": 23453.48, + "probability": 0.9922 + }, + { + "start": 23453.6, + "end": 23458.5, + "probability": 0.8438 + }, + { + "start": 23458.96, + "end": 23459.68, + "probability": 0.5692 + }, + { + "start": 23460.34, + "end": 23464.46, + "probability": 0.9562 + }, + { + "start": 23465.06, + "end": 23467.88, + "probability": 0.8661 + }, + { + "start": 23469.22, + "end": 23470.5, + "probability": 0.9187 + }, + { + "start": 23471.26, + "end": 23473.6, + "probability": 0.8918 + }, + { + "start": 23474.02, + "end": 23478.6, + "probability": 0.9723 + }, + { + "start": 23480.34, + "end": 23486.78, + "probability": 0.9788 + }, + { + "start": 23486.78, + "end": 23491.14, + "probability": 0.7947 + }, + { + "start": 23492.42, + "end": 23496.0, + "probability": 0.998 + }, + { + "start": 23496.58, + "end": 23500.46, + "probability": 0.7613 + }, + { + "start": 23501.2, + "end": 23507.29, + "probability": 0.9023 + }, + { + "start": 23507.46, + "end": 23507.64, + "probability": 0.5516 + }, + { + "start": 23508.6, + "end": 23510.3, + "probability": 0.9932 + }, + { + "start": 23511.12, + "end": 23514.36, + "probability": 0.5833 + }, + { + "start": 23515.8, + "end": 23519.28, + "probability": 0.8848 + }, + { + "start": 23519.34, + "end": 23521.52, + "probability": 0.9781 + }, + { + "start": 23522.28, + "end": 23523.16, + "probability": 0.5106 + }, + { + "start": 23529.0, + "end": 23530.1, + "probability": 0.8067 + }, + { + "start": 23532.26, + "end": 23538.7, + "probability": 0.9646 + }, + { + "start": 23539.62, + "end": 23539.96, + "probability": 0.4536 + }, + { + "start": 23541.1, + "end": 23542.94, + "probability": 0.998 + }, + { + "start": 23545.08, + "end": 23548.84, + "probability": 0.9803 + }, + { + "start": 23549.24, + "end": 23549.8, + "probability": 0.5235 + }, + { + "start": 23550.28, + "end": 23551.08, + "probability": 0.7709 + }, + { + "start": 23551.14, + "end": 23551.14, + "probability": 0.6807 + }, + { + "start": 23551.42, + "end": 23553.24, + "probability": 0.9165 + }, + { + "start": 23553.64, + "end": 23556.4, + "probability": 0.8402 + }, + { + "start": 23557.0, + "end": 23560.12, + "probability": 0.9802 + }, + { + "start": 23560.78, + "end": 23563.06, + "probability": 0.9953 + }, + { + "start": 23563.76, + "end": 23567.3, + "probability": 0.7791 + }, + { + "start": 23567.3, + "end": 23570.56, + "probability": 0.9752 + }, + { + "start": 23570.94, + "end": 23571.62, + "probability": 0.5815 + }, + { + "start": 23572.36, + "end": 23574.02, + "probability": 0.9622 + }, + { + "start": 23574.54, + "end": 23575.72, + "probability": 0.6659 + }, + { + "start": 23576.52, + "end": 23579.14, + "probability": 0.739 + }, + { + "start": 23580.22, + "end": 23580.66, + "probability": 0.9653 + }, + { + "start": 23581.76, + "end": 23582.44, + "probability": 0.657 + }, + { + "start": 23585.48, + "end": 23588.54, + "probability": 0.5792 + }, + { + "start": 23589.3, + "end": 23590.06, + "probability": 0.2569 + }, + { + "start": 23590.24, + "end": 23593.92, + "probability": 0.9542 + }, + { + "start": 23595.5, + "end": 23599.06, + "probability": 0.9905 + }, + { + "start": 23599.96, + "end": 23601.2, + "probability": 0.6758 + }, + { + "start": 23602.56, + "end": 23603.22, + "probability": 0.4251 + }, + { + "start": 23603.36, + "end": 23605.1, + "probability": 0.7387 + }, + { + "start": 23605.26, + "end": 23607.82, + "probability": 0.9919 + }, + { + "start": 23607.82, + "end": 23612.88, + "probability": 0.9956 + }, + { + "start": 23614.86, + "end": 23615.96, + "probability": 0.8538 + }, + { + "start": 23616.66, + "end": 23619.58, + "probability": 0.9231 + }, + { + "start": 23619.96, + "end": 23622.96, + "probability": 0.9979 + }, + { + "start": 23623.62, + "end": 23626.34, + "probability": 0.7004 + }, + { + "start": 23627.18, + "end": 23629.04, + "probability": 0.9807 + }, + { + "start": 23629.86, + "end": 23630.76, + "probability": 0.8184 + }, + { + "start": 23631.36, + "end": 23634.8, + "probability": 0.5777 + }, + { + "start": 23635.72, + "end": 23636.28, + "probability": 0.1285 + }, + { + "start": 23636.72, + "end": 23637.72, + "probability": 0.6995 + }, + { + "start": 23637.9, + "end": 23643.72, + "probability": 0.8759 + }, + { + "start": 23644.2, + "end": 23647.08, + "probability": 0.9902 + }, + { + "start": 23647.64, + "end": 23651.7, + "probability": 0.9975 + }, + { + "start": 23652.26, + "end": 23654.12, + "probability": 0.9507 + }, + { + "start": 23654.18, + "end": 23659.84, + "probability": 0.9647 + }, + { + "start": 23662.3, + "end": 23664.92, + "probability": 0.7839 + }, + { + "start": 23665.68, + "end": 23667.86, + "probability": 0.9912 + }, + { + "start": 23670.68, + "end": 23671.62, + "probability": 0.4874 + }, + { + "start": 23673.2, + "end": 23678.24, + "probability": 0.9694 + }, + { + "start": 23678.24, + "end": 23682.3, + "probability": 0.9863 + }, + { + "start": 23682.54, + "end": 23683.56, + "probability": 0.7094 + }, + { + "start": 23683.68, + "end": 23686.54, + "probability": 0.9088 + }, + { + "start": 23687.44, + "end": 23693.26, + "probability": 0.7289 + }, + { + "start": 23693.36, + "end": 23696.3, + "probability": 0.8354 + }, + { + "start": 23696.76, + "end": 23700.18, + "probability": 0.9875 + }, + { + "start": 23700.32, + "end": 23701.38, + "probability": 0.8931 + }, + { + "start": 23701.46, + "end": 23703.76, + "probability": 0.9905 + }, + { + "start": 23705.06, + "end": 23706.72, + "probability": 0.9849 + }, + { + "start": 23706.82, + "end": 23710.24, + "probability": 0.9976 + }, + { + "start": 23710.8, + "end": 23716.48, + "probability": 0.9929 + }, + { + "start": 23717.2, + "end": 23718.38, + "probability": 0.8532 + }, + { + "start": 23719.08, + "end": 23722.3, + "probability": 0.9482 + }, + { + "start": 23722.92, + "end": 23724.16, + "probability": 0.9984 + }, + { + "start": 23724.98, + "end": 23728.82, + "probability": 0.9617 + }, + { + "start": 23729.1, + "end": 23729.9, + "probability": 0.9319 + }, + { + "start": 23730.18, + "end": 23730.94, + "probability": 0.9728 + }, + { + "start": 23731.8, + "end": 23733.16, + "probability": 0.8294 + }, + { + "start": 23733.38, + "end": 23739.64, + "probability": 0.9908 + }, + { + "start": 23740.14, + "end": 23741.5, + "probability": 0.7759 + }, + { + "start": 23741.58, + "end": 23742.5, + "probability": 0.606 + }, + { + "start": 23742.7, + "end": 23747.08, + "probability": 0.7857 + }, + { + "start": 23747.34, + "end": 23751.5, + "probability": 0.9715 + }, + { + "start": 23752.04, + "end": 23754.32, + "probability": 0.9885 + }, + { + "start": 23755.3, + "end": 23759.82, + "probability": 0.9824 + }, + { + "start": 23760.7, + "end": 23766.62, + "probability": 0.9604 + }, + { + "start": 23767.72, + "end": 23769.96, + "probability": 0.9579 + }, + { + "start": 23770.84, + "end": 23774.44, + "probability": 0.9941 + }, + { + "start": 23775.04, + "end": 23775.84, + "probability": 0.8701 + }, + { + "start": 23776.36, + "end": 23782.46, + "probability": 0.6576 + }, + { + "start": 23783.98, + "end": 23784.58, + "probability": 0.9406 + }, + { + "start": 23785.14, + "end": 23786.1, + "probability": 0.7196 + }, + { + "start": 23786.7, + "end": 23790.6, + "probability": 0.9824 + }, + { + "start": 23791.16, + "end": 23791.26, + "probability": 0.4119 + }, + { + "start": 23792.12, + "end": 23793.01, + "probability": 0.8351 + }, + { + "start": 23794.92, + "end": 23798.58, + "probability": 0.8103 + }, + { + "start": 23799.38, + "end": 23801.52, + "probability": 0.9276 + }, + { + "start": 23803.22, + "end": 23804.14, + "probability": 0.7734 + }, + { + "start": 23804.24, + "end": 23805.08, + "probability": 0.7854 + }, + { + "start": 23805.46, + "end": 23807.82, + "probability": 0.9894 + }, + { + "start": 23808.42, + "end": 23809.24, + "probability": 0.7825 + }, + { + "start": 23809.4, + "end": 23811.44, + "probability": 0.8862 + }, + { + "start": 23811.58, + "end": 23812.2, + "probability": 0.8901 + }, + { + "start": 23812.32, + "end": 23812.97, + "probability": 0.8901 + }, + { + "start": 23814.5, + "end": 23815.57, + "probability": 0.9688 + }, + { + "start": 23816.5, + "end": 23819.0, + "probability": 0.9551 + }, + { + "start": 23819.2, + "end": 23819.94, + "probability": 0.9377 + }, + { + "start": 23820.34, + "end": 23821.18, + "probability": 0.9159 + }, + { + "start": 23821.3, + "end": 23826.42, + "probability": 0.9065 + }, + { + "start": 23826.86, + "end": 23829.86, + "probability": 0.9987 + }, + { + "start": 23830.46, + "end": 23831.96, + "probability": 0.8965 + }, + { + "start": 23832.2, + "end": 23832.64, + "probability": 0.7998 + }, + { + "start": 23834.52, + "end": 23834.62, + "probability": 0.0676 + }, + { + "start": 23835.2, + "end": 23836.26, + "probability": 0.9873 + }, + { + "start": 23837.06, + "end": 23840.62, + "probability": 0.8507 + }, + { + "start": 23841.98, + "end": 23844.72, + "probability": 0.9598 + }, + { + "start": 23847.02, + "end": 23849.18, + "probability": 0.9783 + }, + { + "start": 23849.56, + "end": 23853.86, + "probability": 0.8965 + }, + { + "start": 23854.32, + "end": 23861.64, + "probability": 0.4565 + }, + { + "start": 23862.2, + "end": 23863.33, + "probability": 0.5628 + }, + { + "start": 23863.8, + "end": 23869.58, + "probability": 0.9424 + }, + { + "start": 23869.86, + "end": 23870.9, + "probability": 0.9182 + }, + { + "start": 23871.0, + "end": 23872.02, + "probability": 0.9696 + }, + { + "start": 23872.4, + "end": 23873.4, + "probability": 0.6711 + }, + { + "start": 23873.8, + "end": 23874.74, + "probability": 0.8829 + }, + { + "start": 23874.86, + "end": 23879.52, + "probability": 0.8102 + }, + { + "start": 23879.72, + "end": 23882.82, + "probability": 0.6445 + }, + { + "start": 23882.9, + "end": 23883.64, + "probability": 0.6083 + }, + { + "start": 23884.5, + "end": 23888.4, + "probability": 0.7653 + }, + { + "start": 23889.26, + "end": 23893.82, + "probability": 0.766 + }, + { + "start": 23893.82, + "end": 23897.96, + "probability": 0.7437 + }, + { + "start": 23898.32, + "end": 23899.54, + "probability": 0.3369 + }, + { + "start": 23900.1, + "end": 23905.26, + "probability": 0.8296 + }, + { + "start": 23905.8, + "end": 23907.74, + "probability": 0.7902 + }, + { + "start": 23907.82, + "end": 23909.64, + "probability": 0.9934 + }, + { + "start": 23909.98, + "end": 23911.06, + "probability": 0.9597 + }, + { + "start": 23911.44, + "end": 23914.2, + "probability": 0.7706 + }, + { + "start": 23915.06, + "end": 23915.16, + "probability": 0.5148 + }, + { + "start": 23917.58, + "end": 23920.52, + "probability": 0.7382 + }, + { + "start": 23921.88, + "end": 23923.24, + "probability": 0.579 + }, + { + "start": 23923.24, + "end": 23923.62, + "probability": 0.6955 + }, + { + "start": 23923.74, + "end": 23924.18, + "probability": 0.7643 + }, + { + "start": 23924.3, + "end": 23925.32, + "probability": 0.5559 + }, + { + "start": 23925.66, + "end": 23929.48, + "probability": 0.9683 + }, + { + "start": 23929.68, + "end": 23931.54, + "probability": 0.4663 + }, + { + "start": 23931.54, + "end": 23935.1, + "probability": 0.9395 + }, + { + "start": 23935.1, + "end": 23935.56, + "probability": 0.4152 + }, + { + "start": 23936.3, + "end": 23937.24, + "probability": 0.9265 + }, + { + "start": 23937.28, + "end": 23937.54, + "probability": 0.4165 + }, + { + "start": 23937.68, + "end": 23938.04, + "probability": 0.391 + }, + { + "start": 23938.4, + "end": 23939.9, + "probability": 0.3816 + }, + { + "start": 23939.98, + "end": 23945.5, + "probability": 0.6328 + }, + { + "start": 23947.3, + "end": 23951.62, + "probability": 0.7515 + }, + { + "start": 23952.46, + "end": 23956.04, + "probability": 0.9818 + }, + { + "start": 23956.58, + "end": 23959.66, + "probability": 0.9648 + }, + { + "start": 23959.84, + "end": 23960.52, + "probability": 0.8455 + }, + { + "start": 23960.62, + "end": 23962.3, + "probability": 0.9856 + }, + { + "start": 23962.72, + "end": 23964.72, + "probability": 0.9993 + }, + { + "start": 23965.38, + "end": 23966.9, + "probability": 0.8737 + }, + { + "start": 23968.22, + "end": 23969.22, + "probability": 0.5886 + }, + { + "start": 23969.32, + "end": 23971.23, + "probability": 0.9927 + }, + { + "start": 23971.88, + "end": 23976.9, + "probability": 0.9958 + }, + { + "start": 23977.02, + "end": 23979.92, + "probability": 0.802 + }, + { + "start": 23980.0, + "end": 23981.43, + "probability": 0.553 + }, + { + "start": 23981.6, + "end": 23982.85, + "probability": 0.9085 + }, + { + "start": 23983.12, + "end": 23983.87, + "probability": 0.7619 + }, + { + "start": 23984.74, + "end": 23985.25, + "probability": 0.7631 + }, + { + "start": 23986.8, + "end": 23987.34, + "probability": 0.7133 + }, + { + "start": 23987.34, + "end": 23987.64, + "probability": 0.4601 + }, + { + "start": 23988.0, + "end": 23988.8, + "probability": 0.9653 + }, + { + "start": 23988.82, + "end": 23990.32, + "probability": 0.8142 + }, + { + "start": 23990.97, + "end": 23993.09, + "probability": 0.8096 + }, + { + "start": 23993.96, + "end": 23996.6, + "probability": 0.9592 + }, + { + "start": 23996.68, + "end": 23998.76, + "probability": 0.9448 + }, + { + "start": 23999.5, + "end": 24000.37, + "probability": 0.8394 + }, + { + "start": 24001.2, + "end": 24003.12, + "probability": 0.9538 + }, + { + "start": 24005.88, + "end": 24006.36, + "probability": 0.8962 + }, + { + "start": 24006.88, + "end": 24008.45, + "probability": 0.821 + }, + { + "start": 24009.2, + "end": 24010.06, + "probability": 0.9958 + }, + { + "start": 24010.84, + "end": 24012.0, + "probability": 0.8783 + }, + { + "start": 24012.64, + "end": 24014.2, + "probability": 0.6224 + }, + { + "start": 24014.28, + "end": 24015.04, + "probability": 0.9895 + }, + { + "start": 24015.1, + "end": 24016.94, + "probability": 0.7255 + }, + { + "start": 24017.76, + "end": 24019.62, + "probability": 0.9051 + }, + { + "start": 24020.28, + "end": 24021.54, + "probability": 0.9566 + }, + { + "start": 24021.8, + "end": 24022.9, + "probability": 0.959 + }, + { + "start": 24023.0, + "end": 24023.86, + "probability": 0.8786 + }, + { + "start": 24024.04, + "end": 24025.46, + "probability": 0.9404 + }, + { + "start": 24026.88, + "end": 24027.51, + "probability": 0.9768 + }, + { + "start": 24028.5, + "end": 24032.12, + "probability": 0.9922 + }, + { + "start": 24033.4, + "end": 24033.85, + "probability": 0.8473 + }, + { + "start": 24034.2, + "end": 24038.28, + "probability": 0.9882 + }, + { + "start": 24038.88, + "end": 24042.78, + "probability": 0.9985 + }, + { + "start": 24042.78, + "end": 24047.48, + "probability": 0.9844 + }, + { + "start": 24048.0, + "end": 24048.44, + "probability": 0.6563 + }, + { + "start": 24049.66, + "end": 24050.5, + "probability": 0.8773 + }, + { + "start": 24050.52, + "end": 24054.2, + "probability": 0.8042 + }, + { + "start": 24056.78, + "end": 24059.75, + "probability": 0.969 + }, + { + "start": 24059.86, + "end": 24064.76, + "probability": 0.7724 + }, + { + "start": 24064.76, + "end": 24065.96, + "probability": 0.964 + }, + { + "start": 24066.0, + "end": 24067.0, + "probability": 0.9508 + }, + { + "start": 24067.84, + "end": 24070.72, + "probability": 0.996 + }, + { + "start": 24071.22, + "end": 24072.22, + "probability": 0.9367 + }, + { + "start": 24072.34, + "end": 24072.8, + "probability": 0.8292 + }, + { + "start": 24072.84, + "end": 24075.02, + "probability": 0.9264 + }, + { + "start": 24075.14, + "end": 24075.5, + "probability": 0.684 + }, + { + "start": 24075.52, + "end": 24075.98, + "probability": 0.6979 + }, + { + "start": 24076.04, + "end": 24076.48, + "probability": 0.9435 + }, + { + "start": 24076.56, + "end": 24077.0, + "probability": 0.9556 + }, + { + "start": 24078.1, + "end": 24078.66, + "probability": 0.5479 + }, + { + "start": 24080.22, + "end": 24081.12, + "probability": 0.8165 + }, + { + "start": 24082.14, + "end": 24086.9, + "probability": 0.9458 + }, + { + "start": 24087.14, + "end": 24089.38, + "probability": 0.9974 + }, + { + "start": 24089.44, + "end": 24090.19, + "probability": 0.9 + }, + { + "start": 24093.12, + "end": 24096.44, + "probability": 0.9945 + }, + { + "start": 24097.22, + "end": 24098.16, + "probability": 0.6228 + }, + { + "start": 24100.46, + "end": 24101.5, + "probability": 0.4875 + }, + { + "start": 24102.3, + "end": 24105.0, + "probability": 0.9651 + }, + { + "start": 24105.08, + "end": 24106.16, + "probability": 0.9419 + }, + { + "start": 24106.18, + "end": 24106.53, + "probability": 0.9171 + }, + { + "start": 24107.0, + "end": 24108.72, + "probability": 0.9902 + }, + { + "start": 24109.2, + "end": 24109.78, + "probability": 0.8389 + }, + { + "start": 24110.56, + "end": 24111.92, + "probability": 0.6364 + }, + { + "start": 24112.08, + "end": 24112.78, + "probability": 0.5723 + }, + { + "start": 24112.84, + "end": 24114.4, + "probability": 0.9889 + }, + { + "start": 24115.06, + "end": 24117.5, + "probability": 0.9209 + }, + { + "start": 24117.9, + "end": 24118.7, + "probability": 0.9424 + }, + { + "start": 24118.76, + "end": 24121.08, + "probability": 0.981 + }, + { + "start": 24121.72, + "end": 24122.52, + "probability": 0.8637 + }, + { + "start": 24122.78, + "end": 24123.7, + "probability": 0.7389 + }, + { + "start": 24124.08, + "end": 24127.76, + "probability": 0.9481 + }, + { + "start": 24128.74, + "end": 24130.74, + "probability": 0.9728 + }, + { + "start": 24131.16, + "end": 24133.06, + "probability": 0.9481 + }, + { + "start": 24133.14, + "end": 24136.18, + "probability": 0.9054 + }, + { + "start": 24138.02, + "end": 24140.27, + "probability": 0.9697 + }, + { + "start": 24140.86, + "end": 24142.36, + "probability": 0.957 + }, + { + "start": 24142.98, + "end": 24143.86, + "probability": 0.9969 + }, + { + "start": 24144.72, + "end": 24146.68, + "probability": 0.7973 + }, + { + "start": 24146.78, + "end": 24147.8, + "probability": 0.9561 + }, + { + "start": 24149.48, + "end": 24152.14, + "probability": 0.9388 + }, + { + "start": 24152.54, + "end": 24153.5, + "probability": 0.981 + }, + { + "start": 24154.16, + "end": 24154.38, + "probability": 0.8854 + }, + { + "start": 24154.4, + "end": 24155.02, + "probability": 0.7178 + }, + { + "start": 24155.1, + "end": 24156.62, + "probability": 0.9914 + }, + { + "start": 24156.96, + "end": 24158.68, + "probability": 0.8976 + }, + { + "start": 24159.5, + "end": 24162.84, + "probability": 0.8247 + }, + { + "start": 24162.96, + "end": 24166.36, + "probability": 0.8618 + }, + { + "start": 24166.44, + "end": 24166.62, + "probability": 0.6285 + }, + { + "start": 24166.7, + "end": 24168.02, + "probability": 0.7675 + }, + { + "start": 24168.68, + "end": 24169.02, + "probability": 0.6715 + }, + { + "start": 24169.02, + "end": 24170.76, + "probability": 0.9946 + }, + { + "start": 24171.22, + "end": 24172.7, + "probability": 0.9829 + }, + { + "start": 24172.76, + "end": 24175.34, + "probability": 0.8915 + }, + { + "start": 24176.28, + "end": 24178.37, + "probability": 0.9955 + }, + { + "start": 24179.58, + "end": 24180.4, + "probability": 0.9611 + }, + { + "start": 24181.94, + "end": 24185.56, + "probability": 0.9475 + }, + { + "start": 24186.08, + "end": 24188.14, + "probability": 0.7963 + }, + { + "start": 24188.18, + "end": 24188.94, + "probability": 0.9525 + }, + { + "start": 24189.0, + "end": 24189.64, + "probability": 0.7341 + }, + { + "start": 24189.76, + "end": 24190.5, + "probability": 0.8242 + }, + { + "start": 24190.96, + "end": 24191.34, + "probability": 0.558 + }, + { + "start": 24191.38, + "end": 24194.98, + "probability": 0.9956 + }, + { + "start": 24195.78, + "end": 24198.28, + "probability": 0.9956 + }, + { + "start": 24198.34, + "end": 24198.68, + "probability": 0.6962 + }, + { + "start": 24198.78, + "end": 24200.9, + "probability": 0.9871 + }, + { + "start": 24201.72, + "end": 24203.04, + "probability": 0.4473 + }, + { + "start": 24205.1, + "end": 24209.04, + "probability": 0.9959 + }, + { + "start": 24209.76, + "end": 24212.56, + "probability": 0.9835 + }, + { + "start": 24213.38, + "end": 24215.54, + "probability": 0.9972 + }, + { + "start": 24216.24, + "end": 24217.02, + "probability": 0.9756 + }, + { + "start": 24219.28, + "end": 24222.66, + "probability": 0.9843 + }, + { + "start": 24222.82, + "end": 24223.52, + "probability": 0.7595 + }, + { + "start": 24223.9, + "end": 24225.5, + "probability": 0.9857 + }, + { + "start": 24226.44, + "end": 24227.02, + "probability": 0.9623 + }, + { + "start": 24227.18, + "end": 24227.96, + "probability": 0.7322 + }, + { + "start": 24228.08, + "end": 24229.0, + "probability": 0.8647 + }, + { + "start": 24229.36, + "end": 24231.26, + "probability": 0.9758 + }, + { + "start": 24231.38, + "end": 24233.44, + "probability": 0.9941 + }, + { + "start": 24233.6, + "end": 24235.14, + "probability": 0.9878 + }, + { + "start": 24235.64, + "end": 24236.88, + "probability": 0.9512 + }, + { + "start": 24238.12, + "end": 24241.8, + "probability": 0.8415 + }, + { + "start": 24242.94, + "end": 24245.7, + "probability": 0.965 + }, + { + "start": 24246.22, + "end": 24247.7, + "probability": 0.8174 + }, + { + "start": 24247.76, + "end": 24251.02, + "probability": 0.9672 + }, + { + "start": 24252.7, + "end": 24256.18, + "probability": 0.9913 + }, + { + "start": 24256.78, + "end": 24262.0, + "probability": 0.9951 + }, + { + "start": 24262.34, + "end": 24267.66, + "probability": 0.8779 + }, + { + "start": 24268.12, + "end": 24268.84, + "probability": 0.949 + }, + { + "start": 24269.34, + "end": 24270.6, + "probability": 0.9541 + }, + { + "start": 24271.12, + "end": 24272.06, + "probability": 0.9398 + }, + { + "start": 24272.26, + "end": 24272.9, + "probability": 0.8282 + }, + { + "start": 24272.96, + "end": 24273.1, + "probability": 0.6251 + }, + { + "start": 24273.26, + "end": 24273.94, + "probability": 0.6538 + }, + { + "start": 24275.36, + "end": 24278.02, + "probability": 0.832 + }, + { + "start": 24278.18, + "end": 24278.92, + "probability": 0.6796 + }, + { + "start": 24278.98, + "end": 24280.84, + "probability": 0.8031 + }, + { + "start": 24280.94, + "end": 24285.69, + "probability": 0.9841 + }, + { + "start": 24285.98, + "end": 24289.96, + "probability": 0.9865 + }, + { + "start": 24290.76, + "end": 24293.62, + "probability": 0.6905 + }, + { + "start": 24294.68, + "end": 24296.14, + "probability": 0.9817 + }, + { + "start": 24296.48, + "end": 24299.46, + "probability": 0.967 + }, + { + "start": 24299.52, + "end": 24300.18, + "probability": 0.8914 + }, + { + "start": 24300.3, + "end": 24300.84, + "probability": 0.8221 + }, + { + "start": 24301.1, + "end": 24305.14, + "probability": 0.9939 + }, + { + "start": 24305.52, + "end": 24306.06, + "probability": 0.9635 + }, + { + "start": 24306.24, + "end": 24307.12, + "probability": 0.9607 + }, + { + "start": 24307.54, + "end": 24310.66, + "probability": 0.9569 + }, + { + "start": 24310.76, + "end": 24316.04, + "probability": 0.9643 + }, + { + "start": 24316.56, + "end": 24317.32, + "probability": 0.7826 + }, + { + "start": 24317.54, + "end": 24318.92, + "probability": 0.885 + }, + { + "start": 24319.18, + "end": 24322.34, + "probability": 0.8818 + }, + { + "start": 24322.88, + "end": 24325.48, + "probability": 0.9854 + }, + { + "start": 24325.58, + "end": 24328.54, + "probability": 0.9732 + }, + { + "start": 24329.36, + "end": 24330.82, + "probability": 0.999 + }, + { + "start": 24330.96, + "end": 24332.62, + "probability": 0.9425 + }, + { + "start": 24332.76, + "end": 24336.39, + "probability": 0.9854 + }, + { + "start": 24338.12, + "end": 24340.02, + "probability": 0.9667 + }, + { + "start": 24341.4, + "end": 24344.6, + "probability": 0.9771 + }, + { + "start": 24345.34, + "end": 24347.08, + "probability": 0.9607 + }, + { + "start": 24348.34, + "end": 24349.61, + "probability": 0.9946 + }, + { + "start": 24352.52, + "end": 24355.48, + "probability": 0.9725 + }, + { + "start": 24355.72, + "end": 24357.8, + "probability": 0.9868 + }, + { + "start": 24358.58, + "end": 24359.38, + "probability": 0.997 + }, + { + "start": 24361.0, + "end": 24363.18, + "probability": 0.9932 + }, + { + "start": 24364.22, + "end": 24367.04, + "probability": 0.874 + }, + { + "start": 24367.98, + "end": 24370.08, + "probability": 0.9336 + }, + { + "start": 24370.42, + "end": 24373.86, + "probability": 0.9922 + }, + { + "start": 24373.86, + "end": 24377.12, + "probability": 0.9873 + }, + { + "start": 24377.36, + "end": 24379.58, + "probability": 0.9515 + }, + { + "start": 24381.2, + "end": 24382.4, + "probability": 0.9987 + }, + { + "start": 24383.56, + "end": 24387.84, + "probability": 0.9973 + }, + { + "start": 24388.16, + "end": 24389.58, + "probability": 0.9943 + }, + { + "start": 24391.74, + "end": 24394.36, + "probability": 0.9904 + }, + { + "start": 24394.68, + "end": 24395.74, + "probability": 0.7983 + }, + { + "start": 24395.8, + "end": 24396.7, + "probability": 0.7462 + }, + { + "start": 24397.38, + "end": 24398.0, + "probability": 0.8811 + }, + { + "start": 24398.42, + "end": 24399.69, + "probability": 0.6626 + }, + { + "start": 24399.82, + "end": 24401.16, + "probability": 0.9751 + }, + { + "start": 24401.74, + "end": 24402.99, + "probability": 0.8711 + }, + { + "start": 24403.34, + "end": 24404.62, + "probability": 0.9573 + }, + { + "start": 24405.06, + "end": 24406.28, + "probability": 0.9831 + }, + { + "start": 24406.86, + "end": 24409.16, + "probability": 0.8427 + }, + { + "start": 24410.32, + "end": 24411.22, + "probability": 0.9153 + }, + { + "start": 24411.28, + "end": 24412.26, + "probability": 0.9506 + }, + { + "start": 24412.9, + "end": 24413.72, + "probability": 0.6312 + }, + { + "start": 24413.9, + "end": 24414.4, + "probability": 0.9507 + }, + { + "start": 24414.46, + "end": 24415.16, + "probability": 0.7454 + }, + { + "start": 24415.96, + "end": 24417.28, + "probability": 0.8662 + }, + { + "start": 24417.88, + "end": 24419.24, + "probability": 0.919 + }, + { + "start": 24419.34, + "end": 24419.96, + "probability": 0.9773 + }, + { + "start": 24420.02, + "end": 24420.38, + "probability": 0.5458 + }, + { + "start": 24421.4, + "end": 24424.84, + "probability": 0.9836 + }, + { + "start": 24425.14, + "end": 24425.84, + "probability": 0.6975 + }, + { + "start": 24426.66, + "end": 24426.66, + "probability": 0.2684 + }, + { + "start": 24426.66, + "end": 24428.84, + "probability": 0.6664 + }, + { + "start": 24429.1, + "end": 24430.34, + "probability": 0.992 + }, + { + "start": 24431.24, + "end": 24433.41, + "probability": 0.8205 + }, + { + "start": 24434.28, + "end": 24436.8, + "probability": 0.979 + }, + { + "start": 24439.06, + "end": 24442.7, + "probability": 0.9462 + }, + { + "start": 24444.16, + "end": 24448.18, + "probability": 0.9842 + }, + { + "start": 24448.82, + "end": 24450.1, + "probability": 0.9719 + }, + { + "start": 24450.58, + "end": 24451.3, + "probability": 0.7108 + }, + { + "start": 24451.6, + "end": 24453.01, + "probability": 0.9897 + }, + { + "start": 24453.42, + "end": 24454.02, + "probability": 0.9461 + }, + { + "start": 24455.08, + "end": 24457.24, + "probability": 0.9517 + }, + { + "start": 24457.82, + "end": 24460.7, + "probability": 0.972 + }, + { + "start": 24461.44, + "end": 24466.82, + "probability": 0.9817 + }, + { + "start": 24467.14, + "end": 24468.88, + "probability": 0.7153 + }, + { + "start": 24469.66, + "end": 24471.34, + "probability": 0.8977 + }, + { + "start": 24471.82, + "end": 24472.88, + "probability": 0.8989 + }, + { + "start": 24473.12, + "end": 24475.02, + "probability": 0.9704 + }, + { + "start": 24475.22, + "end": 24477.88, + "probability": 0.9658 + }, + { + "start": 24478.08, + "end": 24479.4, + "probability": 0.9941 + }, + { + "start": 24479.7, + "end": 24480.16, + "probability": 0.8804 + }, + { + "start": 24480.62, + "end": 24483.24, + "probability": 0.7432 + }, + { + "start": 24483.38, + "end": 24483.68, + "probability": 0.9297 + }, + { + "start": 24484.22, + "end": 24486.52, + "probability": 0.7801 + }, + { + "start": 24487.56, + "end": 24489.9, + "probability": 0.8242 + }, + { + "start": 24492.18, + "end": 24492.54, + "probability": 0.9695 + }, + { + "start": 24494.68, + "end": 24500.16, + "probability": 0.1641 + }, + { + "start": 24500.76, + "end": 24501.18, + "probability": 0.0224 + }, + { + "start": 24510.86, + "end": 24511.18, + "probability": 0.3043 + }, + { + "start": 24517.54, + "end": 24522.06, + "probability": 0.9706 + }, + { + "start": 24522.12, + "end": 24523.62, + "probability": 0.7133 + }, + { + "start": 24524.46, + "end": 24527.96, + "probability": 0.9813 + }, + { + "start": 24528.68, + "end": 24529.26, + "probability": 0.9666 + }, + { + "start": 24529.82, + "end": 24530.22, + "probability": 0.5471 + }, + { + "start": 24530.26, + "end": 24532.12, + "probability": 0.7671 + }, + { + "start": 24533.02, + "end": 24536.46, + "probability": 0.9307 + }, + { + "start": 24537.24, + "end": 24537.68, + "probability": 0.8278 + }, + { + "start": 24537.74, + "end": 24541.62, + "probability": 0.9371 + }, + { + "start": 24542.36, + "end": 24542.58, + "probability": 0.7534 + }, + { + "start": 24542.76, + "end": 24545.7, + "probability": 0.9383 + }, + { + "start": 24546.26, + "end": 24547.98, + "probability": 0.9667 + }, + { + "start": 24548.52, + "end": 24551.0, + "probability": 0.9877 + }, + { + "start": 24551.02, + "end": 24551.76, + "probability": 0.5611 + }, + { + "start": 24551.86, + "end": 24556.0, + "probability": 0.9943 + }, + { + "start": 24556.82, + "end": 24560.56, + "probability": 0.9946 + }, + { + "start": 24561.02, + "end": 24563.54, + "probability": 0.909 + }, + { + "start": 24563.6, + "end": 24564.28, + "probability": 0.9294 + }, + { + "start": 24564.62, + "end": 24567.26, + "probability": 0.9207 + }, + { + "start": 24567.84, + "end": 24569.74, + "probability": 0.9727 + }, + { + "start": 24569.86, + "end": 24570.1, + "probability": 0.414 + }, + { + "start": 24570.38, + "end": 24572.1, + "probability": 0.917 + }, + { + "start": 24573.6, + "end": 24575.58, + "probability": 0.9438 + }, + { + "start": 24577.18, + "end": 24580.32, + "probability": 0.9871 + }, + { + "start": 24581.06, + "end": 24582.9, + "probability": 0.7342 + }, + { + "start": 24583.92, + "end": 24584.85, + "probability": 0.9229 + }, + { + "start": 24585.98, + "end": 24587.32, + "probability": 0.7145 + }, + { + "start": 24587.46, + "end": 24588.78, + "probability": 0.5762 + }, + { + "start": 24589.46, + "end": 24594.22, + "probability": 0.901 + }, + { + "start": 24594.66, + "end": 24595.5, + "probability": 0.5927 + }, + { + "start": 24596.2, + "end": 24596.96, + "probability": 0.9006 + }, + { + "start": 24597.4, + "end": 24598.78, + "probability": 0.9822 + }, + { + "start": 24600.14, + "end": 24602.6, + "probability": 0.999 + }, + { + "start": 24603.34, + "end": 24604.18, + "probability": 0.825 + }, + { + "start": 24604.94, + "end": 24608.02, + "probability": 0.92 + }, + { + "start": 24608.44, + "end": 24608.74, + "probability": 0.7505 + }, + { + "start": 24608.8, + "end": 24612.58, + "probability": 0.9452 + }, + { + "start": 24614.6, + "end": 24617.92, + "probability": 0.9834 + }, + { + "start": 24618.78, + "end": 24621.54, + "probability": 0.9956 + }, + { + "start": 24623.06, + "end": 24623.24, + "probability": 0.5597 + }, + { + "start": 24623.28, + "end": 24627.4, + "probability": 0.9988 + }, + { + "start": 24628.66, + "end": 24631.74, + "probability": 0.9925 + }, + { + "start": 24633.98, + "end": 24636.32, + "probability": 0.9894 + }, + { + "start": 24637.26, + "end": 24638.44, + "probability": 0.7878 + }, + { + "start": 24638.96, + "end": 24641.22, + "probability": 0.1574 + }, + { + "start": 24641.88, + "end": 24642.92, + "probability": 0.7146 + }, + { + "start": 24642.94, + "end": 24644.64, + "probability": 0.9956 + }, + { + "start": 24644.72, + "end": 24645.38, + "probability": 0.9295 + }, + { + "start": 24646.44, + "end": 24647.92, + "probability": 0.8872 + }, + { + "start": 24648.52, + "end": 24650.4, + "probability": 0.4893 + }, + { + "start": 24650.4, + "end": 24650.68, + "probability": 0.9161 + }, + { + "start": 24652.3, + "end": 24656.12, + "probability": 0.5542 + }, + { + "start": 24657.5, + "end": 24658.46, + "probability": 0.9109 + }, + { + "start": 24659.5, + "end": 24666.0, + "probability": 0.9497 + }, + { + "start": 24668.0, + "end": 24673.24, + "probability": 0.988 + }, + { + "start": 24673.24, + "end": 24675.6, + "probability": 0.9734 + }, + { + "start": 24675.92, + "end": 24676.58, + "probability": 0.9822 + }, + { + "start": 24676.62, + "end": 24677.87, + "probability": 0.7466 + }, + { + "start": 24678.24, + "end": 24679.06, + "probability": 0.3977 + }, + { + "start": 24679.92, + "end": 24681.2, + "probability": 0.7436 + }, + { + "start": 24682.76, + "end": 24683.96, + "probability": 0.9004 + }, + { + "start": 24684.66, + "end": 24685.38, + "probability": 0.8724 + }, + { + "start": 24686.5, + "end": 24687.94, + "probability": 0.9683 + }, + { + "start": 24689.72, + "end": 24691.32, + "probability": 0.8771 + }, + { + "start": 24691.4, + "end": 24696.06, + "probability": 0.9874 + }, + { + "start": 24697.44, + "end": 24702.6, + "probability": 0.9941 + }, + { + "start": 24703.8, + "end": 24704.92, + "probability": 0.6165 + }, + { + "start": 24705.04, + "end": 24706.44, + "probability": 0.7615 + }, + { + "start": 24707.32, + "end": 24708.26, + "probability": 0.7104 + }, + { + "start": 24708.34, + "end": 24709.88, + "probability": 0.7104 + }, + { + "start": 24711.38, + "end": 24716.4, + "probability": 0.9826 + }, + { + "start": 24718.53, + "end": 24719.3, + "probability": 0.0047 + }, + { + "start": 24719.3, + "end": 24719.71, + "probability": 0.5311 + }, + { + "start": 24720.74, + "end": 24722.61, + "probability": 0.9951 + }, + { + "start": 24722.76, + "end": 24724.04, + "probability": 0.999 + }, + { + "start": 24725.34, + "end": 24727.62, + "probability": 0.9971 + }, + { + "start": 24729.62, + "end": 24733.52, + "probability": 0.9907 + }, + { + "start": 24735.66, + "end": 24736.48, + "probability": 0.7248 + }, + { + "start": 24736.62, + "end": 24742.06, + "probability": 0.9696 + }, + { + "start": 24744.06, + "end": 24749.9, + "probability": 0.95 + }, + { + "start": 24750.78, + "end": 24753.34, + "probability": 0.9993 + }, + { + "start": 24754.34, + "end": 24754.8, + "probability": 0.9636 + }, + { + "start": 24756.42, + "end": 24761.02, + "probability": 0.9615 + }, + { + "start": 24761.1, + "end": 24762.3, + "probability": 0.6739 + }, + { + "start": 24762.36, + "end": 24768.1, + "probability": 0.8639 + }, + { + "start": 24768.1, + "end": 24770.44, + "probability": 0.9953 + }, + { + "start": 24770.82, + "end": 24771.68, + "probability": 0.8538 + }, + { + "start": 24774.46, + "end": 24774.68, + "probability": 0.9631 + }, + { + "start": 24776.38, + "end": 24777.96, + "probability": 0.9883 + }, + { + "start": 24781.6, + "end": 24787.08, + "probability": 0.9441 + }, + { + "start": 24787.4, + "end": 24788.16, + "probability": 0.8188 + }, + { + "start": 24788.98, + "end": 24789.74, + "probability": 0.6486 + }, + { + "start": 24789.86, + "end": 24791.4, + "probability": 0.9324 + }, + { + "start": 24791.9, + "end": 24794.16, + "probability": 0.9727 + }, + { + "start": 24795.42, + "end": 24796.74, + "probability": 0.9939 + }, + { + "start": 24797.66, + "end": 24799.48, + "probability": 0.9856 + }, + { + "start": 24800.32, + "end": 24802.84, + "probability": 0.9893 + }, + { + "start": 24803.88, + "end": 24807.2, + "probability": 0.993 + }, + { + "start": 24809.38, + "end": 24813.41, + "probability": 0.7245 + }, + { + "start": 24814.2, + "end": 24814.34, + "probability": 0.4596 + }, + { + "start": 24815.5, + "end": 24817.0, + "probability": 0.8997 + }, + { + "start": 24817.96, + "end": 24818.28, + "probability": 0.5477 + }, + { + "start": 24818.64, + "end": 24820.46, + "probability": 0.8811 + }, + { + "start": 24820.52, + "end": 24821.14, + "probability": 0.8522 + }, + { + "start": 24823.2, + "end": 24828.56, + "probability": 0.7854 + }, + { + "start": 24829.8, + "end": 24831.98, + "probability": 0.9886 + }, + { + "start": 24834.36, + "end": 24836.46, + "probability": 0.9098 + }, + { + "start": 24837.42, + "end": 24841.38, + "probability": 0.979 + }, + { + "start": 24841.96, + "end": 24842.96, + "probability": 0.8865 + }, + { + "start": 24844.56, + "end": 24845.76, + "probability": 0.7579 + }, + { + "start": 24847.6, + "end": 24848.8, + "probability": 0.9909 + }, + { + "start": 24851.04, + "end": 24851.68, + "probability": 0.8537 + }, + { + "start": 24853.86, + "end": 24855.74, + "probability": 0.9645 + }, + { + "start": 24857.56, + "end": 24864.24, + "probability": 0.9996 + }, + { + "start": 24865.22, + "end": 24871.36, + "probability": 0.9888 + }, + { + "start": 24872.52, + "end": 24876.36, + "probability": 0.9802 + }, + { + "start": 24878.82, + "end": 24880.58, + "probability": 0.9951 + }, + { + "start": 24882.04, + "end": 24883.46, + "probability": 0.7249 + }, + { + "start": 24884.68, + "end": 24888.42, + "probability": 0.9782 + }, + { + "start": 24890.68, + "end": 24893.52, + "probability": 0.9272 + }, + { + "start": 24894.58, + "end": 24895.34, + "probability": 0.9325 + }, + { + "start": 24896.2, + "end": 24899.6, + "probability": 0.9899 + }, + { + "start": 24900.74, + "end": 24908.72, + "probability": 0.9785 + }, + { + "start": 24910.94, + "end": 24912.84, + "probability": 0.9819 + }, + { + "start": 24913.74, + "end": 24915.13, + "probability": 0.9935 + }, + { + "start": 24915.82, + "end": 24917.14, + "probability": 0.9835 + }, + { + "start": 24919.4, + "end": 24922.86, + "probability": 0.9958 + }, + { + "start": 24924.54, + "end": 24926.32, + "probability": 0.999 + }, + { + "start": 24928.22, + "end": 24930.9, + "probability": 0.999 + }, + { + "start": 24931.94, + "end": 24939.68, + "probability": 0.9877 + }, + { + "start": 24941.2, + "end": 24941.54, + "probability": 0.4752 + }, + { + "start": 24942.3, + "end": 24942.54, + "probability": 0.8472 + }, + { + "start": 24942.66, + "end": 24943.61, + "probability": 0.9336 + }, + { + "start": 24944.13, + "end": 24947.16, + "probability": 0.9985 + }, + { + "start": 24947.74, + "end": 24951.74, + "probability": 0.9963 + }, + { + "start": 24951.74, + "end": 24955.32, + "probability": 0.9986 + }, + { + "start": 24956.02, + "end": 24960.84, + "probability": 0.9889 + }, + { + "start": 24967.38, + "end": 24968.88, + "probability": 0.7364 + }, + { + "start": 24970.28, + "end": 24971.24, + "probability": 0.5106 + }, + { + "start": 24973.46, + "end": 24975.66, + "probability": 0.9846 + }, + { + "start": 24976.22, + "end": 24978.36, + "probability": 0.9946 + }, + { + "start": 24979.64, + "end": 24981.1, + "probability": 0.885 + }, + { + "start": 24981.2, + "end": 24983.1, + "probability": 0.8491 + }, + { + "start": 24983.94, + "end": 24985.5, + "probability": 0.6098 + }, + { + "start": 24986.46, + "end": 24987.68, + "probability": 0.9757 + }, + { + "start": 24988.5, + "end": 24989.08, + "probability": 0.4932 + }, + { + "start": 24989.87, + "end": 24990.66, + "probability": 0.5964 + }, + { + "start": 24992.18, + "end": 24994.9, + "probability": 0.9396 + }, + { + "start": 24996.2, + "end": 24999.24, + "probability": 0.9871 + }, + { + "start": 24999.24, + "end": 25001.54, + "probability": 0.9937 + }, + { + "start": 25002.24, + "end": 25003.46, + "probability": 0.9698 + }, + { + "start": 25004.32, + "end": 25005.2, + "probability": 0.8777 + }, + { + "start": 25005.88, + "end": 25006.78, + "probability": 0.9701 + }, + { + "start": 25007.48, + "end": 25012.18, + "probability": 0.9973 + }, + { + "start": 25012.7, + "end": 25016.18, + "probability": 0.9599 + }, + { + "start": 25016.22, + "end": 25016.52, + "probability": 0.85 + }, + { + "start": 25016.74, + "end": 25019.04, + "probability": 0.9833 + }, + { + "start": 25019.22, + "end": 25021.64, + "probability": 0.7201 + }, + { + "start": 25022.74, + "end": 25025.9, + "probability": 0.9718 + }, + { + "start": 25029.12, + "end": 25031.3, + "probability": 0.9641 + }, + { + "start": 25032.34, + "end": 25033.96, + "probability": 0.8724 + }, + { + "start": 25035.42, + "end": 25036.62, + "probability": 0.7773 + }, + { + "start": 25047.82, + "end": 25052.34, + "probability": 0.89 + }, + { + "start": 25053.56, + "end": 25055.18, + "probability": 0.6851 + }, + { + "start": 25056.2, + "end": 25057.49, + "probability": 0.765 + }, + { + "start": 25058.62, + "end": 25059.34, + "probability": 0.9717 + }, + { + "start": 25060.28, + "end": 25061.5, + "probability": 0.9961 + }, + { + "start": 25063.4, + "end": 25065.28, + "probability": 0.9825 + }, + { + "start": 25066.74, + "end": 25067.92, + "probability": 0.7741 + }, + { + "start": 25068.52, + "end": 25069.11, + "probability": 0.9238 + }, + { + "start": 25070.92, + "end": 25073.5, + "probability": 0.8424 + }, + { + "start": 25074.58, + "end": 25075.68, + "probability": 0.8739 + }, + { + "start": 25076.36, + "end": 25076.84, + "probability": 0.9878 + }, + { + "start": 25077.66, + "end": 25078.96, + "probability": 0.8875 + }, + { + "start": 25080.9, + "end": 25083.84, + "probability": 0.9821 + }, + { + "start": 25084.14, + "end": 25086.72, + "probability": 0.9613 + }, + { + "start": 25087.54, + "end": 25090.5, + "probability": 0.9944 + }, + { + "start": 25091.38, + "end": 25095.54, + "probability": 0.9944 + }, + { + "start": 25096.88, + "end": 25100.1, + "probability": 0.9973 + }, + { + "start": 25102.04, + "end": 25103.72, + "probability": 0.7432 + }, + { + "start": 25104.5, + "end": 25107.38, + "probability": 0.9739 + }, + { + "start": 25108.04, + "end": 25109.68, + "probability": 0.8906 + }, + { + "start": 25110.46, + "end": 25110.9, + "probability": 0.8881 + }, + { + "start": 25111.48, + "end": 25112.66, + "probability": 0.9053 + }, + { + "start": 25114.22, + "end": 25116.5, + "probability": 0.9879 + }, + { + "start": 25117.06, + "end": 25120.24, + "probability": 0.9988 + }, + { + "start": 25121.0, + "end": 25123.66, + "probability": 0.9922 + }, + { + "start": 25124.76, + "end": 25131.7, + "probability": 0.9708 + }, + { + "start": 25133.1, + "end": 25133.54, + "probability": 0.8906 + }, + { + "start": 25134.92, + "end": 25136.88, + "probability": 0.9969 + }, + { + "start": 25137.46, + "end": 25139.9, + "probability": 0.9973 + }, + { + "start": 25140.5, + "end": 25141.98, + "probability": 0.7134 + }, + { + "start": 25143.86, + "end": 25147.26, + "probability": 0.9512 + }, + { + "start": 25148.08, + "end": 25148.85, + "probability": 0.9927 + }, + { + "start": 25151.16, + "end": 25152.34, + "probability": 0.9941 + }, + { + "start": 25153.16, + "end": 25156.5, + "probability": 0.9785 + }, + { + "start": 25157.66, + "end": 25160.0, + "probability": 0.8562 + }, + { + "start": 25160.64, + "end": 25161.8, + "probability": 0.996 + }, + { + "start": 25162.16, + "end": 25166.2, + "probability": 0.9861 + }, + { + "start": 25167.5, + "end": 25169.12, + "probability": 0.9951 + }, + { + "start": 25170.18, + "end": 25172.86, + "probability": 0.8107 + }, + { + "start": 25174.78, + "end": 25179.24, + "probability": 0.9546 + }, + { + "start": 25181.4, + "end": 25184.8, + "probability": 0.938 + }, + { + "start": 25185.44, + "end": 25186.32, + "probability": 0.8038 + }, + { + "start": 25187.0, + "end": 25188.6, + "probability": 0.9979 + }, + { + "start": 25189.12, + "end": 25190.8, + "probability": 0.9433 + }, + { + "start": 25192.3, + "end": 25195.36, + "probability": 0.9565 + }, + { + "start": 25196.06, + "end": 25197.02, + "probability": 0.9346 + }, + { + "start": 25197.58, + "end": 25201.02, + "probability": 0.988 + }, + { + "start": 25201.62, + "end": 25202.2, + "probability": 0.6548 + }, + { + "start": 25202.86, + "end": 25203.3, + "probability": 0.6493 + }, + { + "start": 25204.3, + "end": 25205.08, + "probability": 0.5098 + }, + { + "start": 25205.62, + "end": 25207.52, + "probability": 0.9108 + }, + { + "start": 25208.56, + "end": 25210.34, + "probability": 0.9058 + }, + { + "start": 25210.94, + "end": 25211.94, + "probability": 0.9907 + }, + { + "start": 25213.54, + "end": 25214.92, + "probability": 0.8028 + }, + { + "start": 25215.56, + "end": 25216.06, + "probability": 0.9668 + }, + { + "start": 25217.7, + "end": 25221.58, + "probability": 0.9874 + }, + { + "start": 25223.16, + "end": 25225.9, + "probability": 0.8931 + }, + { + "start": 25227.16, + "end": 25230.18, + "probability": 0.9979 + }, + { + "start": 25231.14, + "end": 25232.54, + "probability": 0.8443 + }, + { + "start": 25233.26, + "end": 25233.9, + "probability": 0.6193 + }, + { + "start": 25234.42, + "end": 25235.14, + "probability": 0.9956 + }, + { + "start": 25236.1, + "end": 25238.96, + "probability": 0.9438 + }, + { + "start": 25239.18, + "end": 25239.4, + "probability": 0.7096 + }, + { + "start": 25240.0, + "end": 25240.3, + "probability": 0.731 + }, + { + "start": 25241.54, + "end": 25241.97, + "probability": 0.9127 + }, + { + "start": 25242.14, + "end": 25242.3, + "probability": 0.0412 + }, + { + "start": 25242.34, + "end": 25242.44, + "probability": 0.8902 + }, + { + "start": 25242.58, + "end": 25242.94, + "probability": 0.9146 + }, + { + "start": 25243.14, + "end": 25244.2, + "probability": 0.5139 + }, + { + "start": 25244.4, + "end": 25245.38, + "probability": 0.6265 + }, + { + "start": 25246.36, + "end": 25247.7, + "probability": 0.9974 + }, + { + "start": 25251.1, + "end": 25252.46, + "probability": 0.8544 + }, + { + "start": 25253.3, + "end": 25254.54, + "probability": 0.9928 + }, + { + "start": 25255.28, + "end": 25259.94, + "probability": 0.9482 + }, + { + "start": 25260.74, + "end": 25264.76, + "probability": 0.9772 + }, + { + "start": 25265.38, + "end": 25267.2, + "probability": 0.8726 + }, + { + "start": 25268.76, + "end": 25270.02, + "probability": 0.9944 + }, + { + "start": 25271.06, + "end": 25271.7, + "probability": 0.7423 + }, + { + "start": 25272.98, + "end": 25274.7, + "probability": 0.8975 + }, + { + "start": 25275.7, + "end": 25276.22, + "probability": 0.9551 + }, + { + "start": 25277.28, + "end": 25279.62, + "probability": 0.9574 + }, + { + "start": 25280.16, + "end": 25281.78, + "probability": 0.9955 + }, + { + "start": 25283.04, + "end": 25286.28, + "probability": 0.7515 + }, + { + "start": 25286.28, + "end": 25288.72, + "probability": 0.9995 + }, + { + "start": 25289.94, + "end": 25290.86, + "probability": 0.99 + }, + { + "start": 25291.0, + "end": 25293.88, + "probability": 0.999 + }, + { + "start": 25294.94, + "end": 25295.84, + "probability": 0.6495 + }, + { + "start": 25296.54, + "end": 25298.6, + "probability": 0.988 + }, + { + "start": 25299.2, + "end": 25301.0, + "probability": 0.9804 + }, + { + "start": 25302.06, + "end": 25302.56, + "probability": 0.9516 + }, + { + "start": 25302.7, + "end": 25306.2, + "probability": 0.9496 + }, + { + "start": 25306.36, + "end": 25307.88, + "probability": 0.6936 + }, + { + "start": 25308.34, + "end": 25309.68, + "probability": 0.8525 + }, + { + "start": 25310.18, + "end": 25313.24, + "probability": 0.9629 + }, + { + "start": 25314.76, + "end": 25317.08, + "probability": 0.8849 + }, + { + "start": 25317.2, + "end": 25320.26, + "probability": 0.9956 + }, + { + "start": 25322.22, + "end": 25324.22, + "probability": 0.8576 + }, + { + "start": 25325.14, + "end": 25328.9, + "probability": 0.9946 + }, + { + "start": 25329.1, + "end": 25330.64, + "probability": 0.8943 + }, + { + "start": 25331.52, + "end": 25336.6, + "probability": 0.972 + }, + { + "start": 25337.54, + "end": 25340.68, + "probability": 0.835 + }, + { + "start": 25341.4, + "end": 25343.0, + "probability": 0.9692 + }, + { + "start": 25343.52, + "end": 25343.86, + "probability": 0.7842 + }, + { + "start": 25344.74, + "end": 25346.96, + "probability": 0.8574 + }, + { + "start": 25347.78, + "end": 25350.82, + "probability": 0.9089 + }, + { + "start": 25351.88, + "end": 25352.32, + "probability": 0.667 + }, + { + "start": 25352.94, + "end": 25353.94, + "probability": 0.6755 + }, + { + "start": 25354.52, + "end": 25356.64, + "probability": 0.6328 + }, + { + "start": 25359.68, + "end": 25362.32, + "probability": 0.2575 + }, + { + "start": 25362.92, + "end": 25363.76, + "probability": 0.7386 + }, + { + "start": 25364.98, + "end": 25367.82, + "probability": 0.7029 + }, + { + "start": 25367.88, + "end": 25369.98, + "probability": 0.381 + }, + { + "start": 25369.98, + "end": 25370.22, + "probability": 0.6969 + }, + { + "start": 25371.02, + "end": 25375.28, + "probability": 0.003 + }, + { + "start": 25375.84, + "end": 25376.28, + "probability": 0.2288 + }, + { + "start": 25378.21, + "end": 25380.38, + "probability": 0.6619 + }, + { + "start": 25382.08, + "end": 25383.14, + "probability": 0.9287 + }, + { + "start": 25384.48, + "end": 25385.38, + "probability": 0.7906 + }, + { + "start": 25386.38, + "end": 25392.12, + "probability": 0.8424 + }, + { + "start": 25393.86, + "end": 25396.18, + "probability": 0.8401 + }, + { + "start": 25397.06, + "end": 25398.36, + "probability": 0.4234 + }, + { + "start": 25399.06, + "end": 25400.94, + "probability": 0.728 + }, + { + "start": 25401.08, + "end": 25401.7, + "probability": 0.8541 + }, + { + "start": 25401.92, + "end": 25407.3, + "probability": 0.8857 + }, + { + "start": 25407.74, + "end": 25408.28, + "probability": 0.0971 + }, + { + "start": 25409.1, + "end": 25410.24, + "probability": 0.381 + }, + { + "start": 25410.4, + "end": 25412.62, + "probability": 0.7473 + }, + { + "start": 25413.46, + "end": 25413.76, + "probability": 0.1118 + }, + { + "start": 25413.8, + "end": 25414.92, + "probability": 0.3884 + }, + { + "start": 25415.36, + "end": 25416.64, + "probability": 0.7778 + }, + { + "start": 25417.44, + "end": 25420.22, + "probability": 0.3245 + }, + { + "start": 25420.6, + "end": 25421.14, + "probability": 0.4017 + }, + { + "start": 25421.82, + "end": 25422.63, + "probability": 0.0154 + }, + { + "start": 25424.2, + "end": 25424.69, + "probability": 0.3767 + }, + { + "start": 25427.1, + "end": 25427.8, + "probability": 0.9215 + }, + { + "start": 25428.26, + "end": 25428.78, + "probability": 0.759 + }, + { + "start": 25428.98, + "end": 25429.52, + "probability": 0.6663 + }, + { + "start": 25430.2, + "end": 25431.66, + "probability": 0.9349 + }, + { + "start": 25432.0, + "end": 25433.2, + "probability": 0.6598 + }, + { + "start": 25433.26, + "end": 25434.38, + "probability": 0.8657 + }, + { + "start": 25434.88, + "end": 25435.45, + "probability": 0.6404 + }, + { + "start": 25436.94, + "end": 25440.16, + "probability": 0.7508 + }, + { + "start": 25440.28, + "end": 25440.48, + "probability": 0.0677 + }, + { + "start": 25440.48, + "end": 25441.72, + "probability": 0.1625 + }, + { + "start": 25442.38, + "end": 25448.78, + "probability": 0.9652 + }, + { + "start": 25448.78, + "end": 25451.76, + "probability": 0.8171 + }, + { + "start": 25452.94, + "end": 25456.48, + "probability": 0.6401 + }, + { + "start": 25457.72, + "end": 25460.34, + "probability": 0.4732 + }, + { + "start": 25460.42, + "end": 25461.08, + "probability": 0.0175 + }, + { + "start": 25462.56, + "end": 25464.76, + "probability": 0.7482 + }, + { + "start": 25465.58, + "end": 25466.06, + "probability": 0.6587 + }, + { + "start": 25466.89, + "end": 25469.74, + "probability": 0.9396 + }, + { + "start": 25471.48, + "end": 25471.8, + "probability": 0.5051 + }, + { + "start": 25472.64, + "end": 25476.48, + "probability": 0.9336 + }, + { + "start": 25477.08, + "end": 25478.94, + "probability": 0.9902 + }, + { + "start": 25479.78, + "end": 25480.86, + "probability": 0.994 + }, + { + "start": 25481.74, + "end": 25485.12, + "probability": 0.9767 + }, + { + "start": 25486.24, + "end": 25487.7, + "probability": 0.7514 + }, + { + "start": 25488.16, + "end": 25489.76, + "probability": 0.6116 + }, + { + "start": 25490.76, + "end": 25493.18, + "probability": 0.9802 + }, + { + "start": 25493.84, + "end": 25494.72, + "probability": 0.9552 + }, + { + "start": 25495.02, + "end": 25501.64, + "probability": 0.9526 + }, + { + "start": 25503.1, + "end": 25506.46, + "probability": 0.8704 + }, + { + "start": 25507.28, + "end": 25508.16, + "probability": 0.8019 + }, + { + "start": 25509.32, + "end": 25511.02, + "probability": 0.783 + }, + { + "start": 25511.44, + "end": 25512.65, + "probability": 0.9318 + }, + { + "start": 25513.1, + "end": 25515.96, + "probability": 0.98 + }, + { + "start": 25516.84, + "end": 25518.46, + "probability": 0.6957 + }, + { + "start": 25519.1, + "end": 25520.56, + "probability": 0.9141 + }, + { + "start": 25521.54, + "end": 25522.52, + "probability": 0.6915 + }, + { + "start": 25523.16, + "end": 25524.44, + "probability": 0.9634 + }, + { + "start": 25525.18, + "end": 25526.56, + "probability": 0.8876 + }, + { + "start": 25527.36, + "end": 25527.98, + "probability": 0.5011 + }, + { + "start": 25529.04, + "end": 25530.0, + "probability": 0.946 + }, + { + "start": 25530.32, + "end": 25536.0, + "probability": 0.9226 + }, + { + "start": 25538.2, + "end": 25542.26, + "probability": 0.8203 + }, + { + "start": 25543.93, + "end": 25547.3, + "probability": 0.8516 + }, + { + "start": 25548.4, + "end": 25550.14, + "probability": 0.839 + }, + { + "start": 25550.94, + "end": 25553.84, + "probability": 0.9971 + }, + { + "start": 25554.78, + "end": 25558.74, + "probability": 0.9828 + }, + { + "start": 25559.82, + "end": 25562.2, + "probability": 0.96 + }, + { + "start": 25562.76, + "end": 25564.38, + "probability": 0.7506 + }, + { + "start": 25565.1, + "end": 25565.92, + "probability": 0.5492 + }, + { + "start": 25566.02, + "end": 25569.22, + "probability": 0.8884 + }, + { + "start": 25569.54, + "end": 25571.06, + "probability": 0.9684 + }, + { + "start": 25571.4, + "end": 25572.54, + "probability": 0.8535 + }, + { + "start": 25573.5, + "end": 25574.22, + "probability": 0.8962 + }, + { + "start": 25574.76, + "end": 25575.88, + "probability": 0.7629 + }, + { + "start": 25576.24, + "end": 25577.42, + "probability": 0.8159 + }, + { + "start": 25578.84, + "end": 25582.64, + "probability": 0.8326 + }, + { + "start": 25583.18, + "end": 25584.96, + "probability": 0.57 + }, + { + "start": 25585.98, + "end": 25589.88, + "probability": 0.8033 + }, + { + "start": 25590.18, + "end": 25595.5, + "probability": 0.8483 + }, + { + "start": 25596.34, + "end": 25596.56, + "probability": 0.3552 + }, + { + "start": 25596.64, + "end": 25597.01, + "probability": 0.8556 + }, + { + "start": 25598.0, + "end": 25599.06, + "probability": 0.9803 + }, + { + "start": 25599.6, + "end": 25601.28, + "probability": 0.5153 + }, + { + "start": 25601.94, + "end": 25604.06, + "probability": 0.7705 + }, + { + "start": 25604.88, + "end": 25606.34, + "probability": 0.7529 + }, + { + "start": 25606.96, + "end": 25608.62, + "probability": 0.8191 + }, + { + "start": 25609.58, + "end": 25611.94, + "probability": 0.8049 + }, + { + "start": 25612.66, + "end": 25613.72, + "probability": 0.7249 + }, + { + "start": 25614.36, + "end": 25614.8, + "probability": 0.7324 + }, + { + "start": 25615.42, + "end": 25617.6, + "probability": 0.9416 + }, + { + "start": 25617.88, + "end": 25618.32, + "probability": 0.6841 + }, + { + "start": 25620.14, + "end": 25620.82, + "probability": 0.8906 + }, + { + "start": 25621.84, + "end": 25622.94, + "probability": 0.7964 + }, + { + "start": 25624.08, + "end": 25625.8, + "probability": 0.4427 + }, + { + "start": 25626.88, + "end": 25628.24, + "probability": 0.9531 + }, + { + "start": 25628.62, + "end": 25629.28, + "probability": 0.8823 + }, + { + "start": 25629.76, + "end": 25630.32, + "probability": 0.8502 + }, + { + "start": 25631.06, + "end": 25632.54, + "probability": 0.9893 + }, + { + "start": 25634.32, + "end": 25635.92, + "probability": 0.7758 + }, + { + "start": 25637.22, + "end": 25638.42, + "probability": 0.9399 + }, + { + "start": 25638.98, + "end": 25640.4, + "probability": 0.9619 + }, + { + "start": 25641.0, + "end": 25643.48, + "probability": 0.9924 + }, + { + "start": 25644.12, + "end": 25648.82, + "probability": 0.9405 + }, + { + "start": 25649.52, + "end": 25651.72, + "probability": 0.969 + }, + { + "start": 25652.54, + "end": 25653.68, + "probability": 0.9307 + }, + { + "start": 25654.34, + "end": 25658.64, + "probability": 0.7341 + }, + { + "start": 25660.14, + "end": 25661.32, + "probability": 0.8566 + }, + { + "start": 25662.16, + "end": 25663.32, + "probability": 0.8512 + }, + { + "start": 25664.06, + "end": 25664.56, + "probability": 0.8506 + }, + { + "start": 25666.74, + "end": 25670.64, + "probability": 0.8201 + }, + { + "start": 25671.96, + "end": 25673.88, + "probability": 0.8184 + }, + { + "start": 25674.8, + "end": 25678.5, + "probability": 0.9762 + }, + { + "start": 25680.0, + "end": 25686.24, + "probability": 0.8431 + }, + { + "start": 25686.94, + "end": 25688.12, + "probability": 0.7442 + }, + { + "start": 25689.0, + "end": 25691.98, + "probability": 0.9915 + }, + { + "start": 25693.1, + "end": 25693.53, + "probability": 0.8882 + }, + { + "start": 25694.06, + "end": 25694.9, + "probability": 0.4364 + }, + { + "start": 25696.94, + "end": 25698.28, + "probability": 0.9685 + }, + { + "start": 25698.86, + "end": 25699.36, + "probability": 0.9196 + }, + { + "start": 25700.32, + "end": 25701.54, + "probability": 0.9951 + }, + { + "start": 25702.8, + "end": 25704.34, + "probability": 0.8336 + }, + { + "start": 25705.14, + "end": 25706.68, + "probability": 0.9938 + }, + { + "start": 25707.06, + "end": 25709.66, + "probability": 0.9692 + }, + { + "start": 25711.68, + "end": 25712.68, + "probability": 0.8421 + }, + { + "start": 25713.9, + "end": 25715.28, + "probability": 0.9487 + }, + { + "start": 25716.62, + "end": 25720.18, + "probability": 0.7736 + }, + { + "start": 25720.3, + "end": 25721.52, + "probability": 0.9595 + }, + { + "start": 25723.04, + "end": 25724.88, + "probability": 0.9865 + }, + { + "start": 25725.54, + "end": 25726.28, + "probability": 0.958 + }, + { + "start": 25726.92, + "end": 25730.74, + "probability": 0.9552 + }, + { + "start": 25730.76, + "end": 25732.36, + "probability": 0.6318 + }, + { + "start": 25732.88, + "end": 25734.8, + "probability": 0.9431 + }, + { + "start": 25734.84, + "end": 25739.1, + "probability": 0.7316 + }, + { + "start": 25739.56, + "end": 25740.5, + "probability": 0.9607 + }, + { + "start": 25740.54, + "end": 25741.1, + "probability": 0.9098 + }, + { + "start": 25741.16, + "end": 25741.94, + "probability": 0.978 + }, + { + "start": 25743.24, + "end": 25745.34, + "probability": 0.9282 + }, + { + "start": 25745.74, + "end": 25746.28, + "probability": 0.4093 + }, + { + "start": 25746.98, + "end": 25749.28, + "probability": 0.881 + }, + { + "start": 25749.28, + "end": 25753.02, + "probability": 0.9377 + }, + { + "start": 25753.62, + "end": 25756.42, + "probability": 0.8996 + }, + { + "start": 25757.6, + "end": 25759.38, + "probability": 0.9924 + }, + { + "start": 25759.94, + "end": 25762.38, + "probability": 0.9724 + }, + { + "start": 25762.64, + "end": 25764.2, + "probability": 0.5778 + }, + { + "start": 25765.08, + "end": 25768.58, + "probability": 0.9925 + }, + { + "start": 25769.44, + "end": 25769.93, + "probability": 0.4327 + }, + { + "start": 25771.74, + "end": 25774.16, + "probability": 0.875 + }, + { + "start": 25774.16, + "end": 25776.28, + "probability": 0.7343 + }, + { + "start": 25777.2, + "end": 25778.78, + "probability": 0.7485 + }, + { + "start": 25778.92, + "end": 25779.64, + "probability": 0.5095 + }, + { + "start": 25779.76, + "end": 25787.11, + "probability": 0.9359 + }, + { + "start": 25787.86, + "end": 25794.9, + "probability": 0.6783 + }, + { + "start": 25795.02, + "end": 25800.32, + "probability": 0.9834 + }, + { + "start": 25800.96, + "end": 25805.48, + "probability": 0.8606 + }, + { + "start": 25805.48, + "end": 25809.64, + "probability": 0.7079 + }, + { + "start": 25810.26, + "end": 25811.3, + "probability": 0.7152 + }, + { + "start": 25812.8, + "end": 25814.54, + "probability": 0.988 + }, + { + "start": 25815.62, + "end": 25820.5, + "probability": 0.7052 + }, + { + "start": 25820.5, + "end": 25823.84, + "probability": 0.7739 + }, + { + "start": 25824.56, + "end": 25827.7, + "probability": 0.8042 + }, + { + "start": 25827.7, + "end": 25834.62, + "probability": 0.9613 + }, + { + "start": 25835.4, + "end": 25839.08, + "probability": 0.7344 + }, + { + "start": 25839.08, + "end": 25841.34, + "probability": 0.9993 + }, + { + "start": 25842.04, + "end": 25843.9, + "probability": 0.6268 + }, + { + "start": 25844.52, + "end": 25847.72, + "probability": 0.9561 + }, + { + "start": 25848.64, + "end": 25849.64, + "probability": 0.9389 + }, + { + "start": 25850.54, + "end": 25853.6, + "probability": 0.9164 + }, + { + "start": 25854.38, + "end": 25856.72, + "probability": 0.9728 + }, + { + "start": 25857.16, + "end": 25860.76, + "probability": 0.8823 + }, + { + "start": 25860.92, + "end": 25864.24, + "probability": 0.9451 + }, + { + "start": 25864.4, + "end": 25864.86, + "probability": 0.7368 + }, + { + "start": 25864.98, + "end": 25865.93, + "probability": 0.9462 + }, + { + "start": 25866.38, + "end": 25867.98, + "probability": 0.9712 + }, + { + "start": 25868.22, + "end": 25868.76, + "probability": 0.8604 + }, + { + "start": 25869.16, + "end": 25869.84, + "probability": 0.7665 + }, + { + "start": 25870.26, + "end": 25871.1, + "probability": 0.9565 + }, + { + "start": 25871.2, + "end": 25873.24, + "probability": 0.8877 + }, + { + "start": 25873.44, + "end": 25876.68, + "probability": 0.7736 + }, + { + "start": 25877.2, + "end": 25878.36, + "probability": 0.9464 + }, + { + "start": 25879.22, + "end": 25882.86, + "probability": 0.9872 + }, + { + "start": 25883.26, + "end": 25883.76, + "probability": 0.9577 + }, + { + "start": 25884.28, + "end": 25887.08, + "probability": 0.5086 + }, + { + "start": 25887.32, + "end": 25887.58, + "probability": 0.8702 + }, + { + "start": 25888.3, + "end": 25889.0, + "probability": 0.5468 + }, + { + "start": 25889.24, + "end": 25892.48, + "probability": 0.9561 + }, + { + "start": 25892.66, + "end": 25893.86, + "probability": 0.5412 + }, + { + "start": 25894.28, + "end": 25894.56, + "probability": 0.1153 + }, + { + "start": 25895.74, + "end": 25899.98, + "probability": 0.9899 + }, + { + "start": 25902.94, + "end": 25905.04, + "probability": 0.9746 + }, + { + "start": 25906.49, + "end": 25909.3, + "probability": 0.3687 + }, + { + "start": 25909.7, + "end": 25912.2, + "probability": 0.8333 + }, + { + "start": 25913.04, + "end": 25913.62, + "probability": 0.9121 + }, + { + "start": 25916.26, + "end": 25917.42, + "probability": 0.7073 + }, + { + "start": 25917.88, + "end": 25919.08, + "probability": 0.8247 + }, + { + "start": 25919.26, + "end": 25920.98, + "probability": 0.8311 + }, + { + "start": 25921.32, + "end": 25926.44, + "probability": 0.9521 + }, + { + "start": 25926.72, + "end": 25927.45, + "probability": 0.9512 + }, + { + "start": 25927.78, + "end": 25929.16, + "probability": 0.604 + }, + { + "start": 25929.46, + "end": 25931.46, + "probability": 0.7801 + }, + { + "start": 25931.68, + "end": 25933.46, + "probability": 0.6775 + }, + { + "start": 25933.7, + "end": 25934.22, + "probability": 0.953 + }, + { + "start": 25934.7, + "end": 25935.58, + "probability": 0.8643 + }, + { + "start": 25935.88, + "end": 25937.56, + "probability": 0.7235 + }, + { + "start": 25938.16, + "end": 25939.22, + "probability": 0.8289 + }, + { + "start": 25940.6, + "end": 25947.08, + "probability": 0.9425 + }, + { + "start": 25947.94, + "end": 25953.14, + "probability": 0.9883 + }, + { + "start": 25953.9, + "end": 25959.58, + "probability": 0.9871 + }, + { + "start": 25959.58, + "end": 25965.24, + "probability": 0.9907 + }, + { + "start": 25966.68, + "end": 25972.78, + "probability": 0.8998 + }, + { + "start": 25973.44, + "end": 25976.52, + "probability": 0.9558 + }, + { + "start": 25977.26, + "end": 25978.0, + "probability": 0.6455 + }, + { + "start": 25980.32, + "end": 25985.8, + "probability": 0.9562 + }, + { + "start": 25986.2, + "end": 25986.9, + "probability": 0.3332 + }, + { + "start": 25987.34, + "end": 25990.34, + "probability": 0.994 + }, + { + "start": 25991.22, + "end": 25994.46, + "probability": 0.8442 + }, + { + "start": 25995.2, + "end": 25998.94, + "probability": 0.9241 + }, + { + "start": 25999.78, + "end": 26003.74, + "probability": 0.9624 + }, + { + "start": 26003.74, + "end": 26007.14, + "probability": 0.9961 + }, + { + "start": 26008.12, + "end": 26010.84, + "probability": 0.964 + }, + { + "start": 26011.84, + "end": 26014.61, + "probability": 0.8516 + }, + { + "start": 26014.96, + "end": 26018.0, + "probability": 0.8445 + }, + { + "start": 26018.82, + "end": 26021.66, + "probability": 0.974 + }, + { + "start": 26022.72, + "end": 26024.44, + "probability": 0.8496 + }, + { + "start": 26024.78, + "end": 26029.1, + "probability": 0.8688 + }, + { + "start": 26029.44, + "end": 26030.22, + "probability": 0.9349 + }, + { + "start": 26030.64, + "end": 26033.3, + "probability": 0.5816 + }, + { + "start": 26033.36, + "end": 26038.24, + "probability": 0.9806 + }, + { + "start": 26038.24, + "end": 26043.46, + "probability": 0.9956 + }, + { + "start": 26043.5, + "end": 26044.36, + "probability": 0.8825 + }, + { + "start": 26044.4, + "end": 26045.2, + "probability": 0.7933 + }, + { + "start": 26047.06, + "end": 26048.86, + "probability": 0.9544 + }, + { + "start": 26050.26, + "end": 26052.28, + "probability": 0.6388 + }, + { + "start": 26052.28, + "end": 26055.6, + "probability": 0.9917 + }, + { + "start": 26056.06, + "end": 26059.3, + "probability": 0.6367 + }, + { + "start": 26059.32, + "end": 26060.18, + "probability": 0.7134 + }, + { + "start": 26060.32, + "end": 26061.54, + "probability": 0.7676 + }, + { + "start": 26061.9, + "end": 26065.22, + "probability": 0.8926 + }, + { + "start": 26066.52, + "end": 26070.3, + "probability": 0.9585 + }, + { + "start": 26070.3, + "end": 26076.18, + "probability": 0.7433 + }, + { + "start": 26076.42, + "end": 26078.66, + "probability": 0.7898 + }, + { + "start": 26079.8, + "end": 26083.58, + "probability": 0.9913 + }, + { + "start": 26084.16, + "end": 26085.46, + "probability": 0.8242 + }, + { + "start": 26085.54, + "end": 26090.5, + "probability": 0.9905 + }, + { + "start": 26090.72, + "end": 26092.53, + "probability": 0.9974 + }, + { + "start": 26093.92, + "end": 26101.02, + "probability": 0.8408 + }, + { + "start": 26101.98, + "end": 26104.42, + "probability": 0.9757 + }, + { + "start": 26104.5, + "end": 26105.34, + "probability": 0.8626 + }, + { + "start": 26105.46, + "end": 26107.18, + "probability": 0.9269 + }, + { + "start": 26108.53, + "end": 26109.7, + "probability": 0.724 + }, + { + "start": 26109.78, + "end": 26111.78, + "probability": 0.9799 + }, + { + "start": 26112.82, + "end": 26115.96, + "probability": 0.8132 + }, + { + "start": 26116.2, + "end": 26121.44, + "probability": 0.9953 + }, + { + "start": 26121.74, + "end": 26124.13, + "probability": 0.7119 + }, + { + "start": 26124.76, + "end": 26128.16, + "probability": 0.8349 + }, + { + "start": 26129.34, + "end": 26131.8, + "probability": 0.972 + }, + { + "start": 26133.04, + "end": 26134.68, + "probability": 0.9375 + }, + { + "start": 26134.68, + "end": 26139.18, + "probability": 0.9948 + }, + { + "start": 26139.5, + "end": 26145.24, + "probability": 0.9958 + }, + { + "start": 26145.24, + "end": 26148.1, + "probability": 0.9524 + }, + { + "start": 26149.3, + "end": 26151.24, + "probability": 0.5628 + }, + { + "start": 26153.26, + "end": 26157.02, + "probability": 0.6739 + }, + { + "start": 26157.3, + "end": 26159.98, + "probability": 0.8379 + }, + { + "start": 26160.04, + "end": 26161.48, + "probability": 0.9939 + }, + { + "start": 26164.19, + "end": 26166.78, + "probability": 0.9937 + }, + { + "start": 26167.16, + "end": 26168.04, + "probability": 0.9521 + }, + { + "start": 26169.22, + "end": 26169.7, + "probability": 0.6949 + }, + { + "start": 26169.72, + "end": 26171.4, + "probability": 0.9625 + }, + { + "start": 26171.52, + "end": 26173.36, + "probability": 0.8793 + }, + { + "start": 26173.92, + "end": 26178.38, + "probability": 0.998 + }, + { + "start": 26178.38, + "end": 26182.04, + "probability": 0.9858 + }, + { + "start": 26182.24, + "end": 26185.74, + "probability": 0.9714 + }, + { + "start": 26186.7, + "end": 26190.52, + "probability": 0.9679 + }, + { + "start": 26190.56, + "end": 26191.08, + "probability": 0.651 + }, + { + "start": 26191.38, + "end": 26194.76, + "probability": 0.9561 + }, + { + "start": 26194.76, + "end": 26195.32, + "probability": 0.8011 + }, + { + "start": 26195.8, + "end": 26198.0, + "probability": 0.9971 + }, + { + "start": 26198.0, + "end": 26200.64, + "probability": 0.9968 + }, + { + "start": 26201.16, + "end": 26201.98, + "probability": 0.8518 + }, + { + "start": 26203.38, + "end": 26205.44, + "probability": 0.9683 + }, + { + "start": 26206.04, + "end": 26210.04, + "probability": 0.9956 + }, + { + "start": 26210.6, + "end": 26212.02, + "probability": 0.7785 + }, + { + "start": 26212.78, + "end": 26215.64, + "probability": 0.944 + }, + { + "start": 26217.08, + "end": 26221.36, + "probability": 0.9922 + }, + { + "start": 26222.04, + "end": 26226.74, + "probability": 0.7882 + }, + { + "start": 26227.8, + "end": 26231.04, + "probability": 0.9456 + }, + { + "start": 26232.34, + "end": 26235.76, + "probability": 0.9939 + }, + { + "start": 26236.24, + "end": 26240.74, + "probability": 0.8104 + }, + { + "start": 26242.54, + "end": 26245.32, + "probability": 0.946 + }, + { + "start": 26246.18, + "end": 26249.7, + "probability": 0.9941 + }, + { + "start": 26249.84, + "end": 26252.4, + "probability": 0.998 + }, + { + "start": 26253.32, + "end": 26254.2, + "probability": 0.7715 + }, + { + "start": 26254.84, + "end": 26257.76, + "probability": 0.9983 + }, + { + "start": 26258.48, + "end": 26261.16, + "probability": 0.9907 + }, + { + "start": 26261.5, + "end": 26262.34, + "probability": 0.9604 + }, + { + "start": 26263.68, + "end": 26265.7, + "probability": 0.9211 + }, + { + "start": 26266.16, + "end": 26269.36, + "probability": 0.9702 + }, + { + "start": 26272.02, + "end": 26272.8, + "probability": 0.7334 + }, + { + "start": 26273.96, + "end": 26278.24, + "probability": 0.9489 + }, + { + "start": 26279.27, + "end": 26284.36, + "probability": 0.9658 + }, + { + "start": 26286.06, + "end": 26289.2, + "probability": 0.9528 + }, + { + "start": 26289.54, + "end": 26291.14, + "probability": 0.9004 + }, + { + "start": 26291.54, + "end": 26293.94, + "probability": 0.9142 + }, + { + "start": 26294.26, + "end": 26294.98, + "probability": 0.9135 + }, + { + "start": 26296.22, + "end": 26301.06, + "probability": 0.9473 + }, + { + "start": 26301.7, + "end": 26303.36, + "probability": 0.9802 + }, + { + "start": 26306.42, + "end": 26311.26, + "probability": 0.9883 + }, + { + "start": 26312.74, + "end": 26313.04, + "probability": 0.1214 + }, + { + "start": 26313.56, + "end": 26317.06, + "probability": 0.932 + }, + { + "start": 26317.98, + "end": 26319.86, + "probability": 0.7591 + }, + { + "start": 26320.8, + "end": 26322.28, + "probability": 0.6635 + }, + { + "start": 26322.36, + "end": 26324.28, + "probability": 0.8247 + }, + { + "start": 26324.7, + "end": 26329.12, + "probability": 0.9182 + }, + { + "start": 26329.36, + "end": 26329.94, + "probability": 0.7486 + }, + { + "start": 26329.96, + "end": 26331.82, + "probability": 0.8134 + }, + { + "start": 26334.1, + "end": 26336.7, + "probability": 0.8411 + }, + { + "start": 26336.7, + "end": 26339.62, + "probability": 0.9817 + }, + { + "start": 26339.78, + "end": 26340.08, + "probability": 0.8356 + }, + { + "start": 26340.26, + "end": 26341.82, + "probability": 0.8961 + }, + { + "start": 26342.16, + "end": 26342.81, + "probability": 0.7925 + }, + { + "start": 26342.94, + "end": 26349.58, + "probability": 0.9005 + }, + { + "start": 26349.72, + "end": 26351.18, + "probability": 0.5057 + }, + { + "start": 26351.22, + "end": 26352.96, + "probability": 0.6959 + }, + { + "start": 26353.68, + "end": 26356.44, + "probability": 0.9547 + }, + { + "start": 26357.48, + "end": 26359.46, + "probability": 0.8895 + }, + { + "start": 26359.72, + "end": 26360.32, + "probability": 0.7291 + }, + { + "start": 26360.66, + "end": 26364.22, + "probability": 0.9959 + }, + { + "start": 26364.38, + "end": 26364.9, + "probability": 0.8258 + }, + { + "start": 26365.64, + "end": 26366.92, + "probability": 0.8573 + }, + { + "start": 26367.08, + "end": 26367.64, + "probability": 0.8696 + }, + { + "start": 26368.1, + "end": 26369.76, + "probability": 0.9932 + }, + { + "start": 26370.74, + "end": 26371.64, + "probability": 0.7134 + }, + { + "start": 26371.7, + "end": 26372.58, + "probability": 0.9932 + }, + { + "start": 26375.92, + "end": 26378.02, + "probability": 0.8823 + }, + { + "start": 26378.8, + "end": 26380.06, + "probability": 0.9215 + }, + { + "start": 26380.16, + "end": 26381.36, + "probability": 0.9035 + }, + { + "start": 26381.42, + "end": 26385.16, + "probability": 0.8821 + }, + { + "start": 26385.5, + "end": 26387.28, + "probability": 0.8449 + }, + { + "start": 26388.32, + "end": 26390.56, + "probability": 0.9849 + }, + { + "start": 26392.36, + "end": 26395.36, + "probability": 0.8311 + }, + { + "start": 26395.8, + "end": 26398.52, + "probability": 0.8836 + }, + { + "start": 26399.5, + "end": 26404.34, + "probability": 0.893 + }, + { + "start": 26405.01, + "end": 26408.62, + "probability": 0.9429 + }, + { + "start": 26408.62, + "end": 26414.1, + "probability": 0.9662 + }, + { + "start": 26414.46, + "end": 26414.5, + "probability": 0.1264 + }, + { + "start": 26414.78, + "end": 26415.46, + "probability": 0.8395 + }, + { + "start": 26415.7, + "end": 26416.56, + "probability": 0.5656 + }, + { + "start": 26416.6, + "end": 26416.72, + "probability": 0.8582 + }, + { + "start": 26416.76, + "end": 26417.2, + "probability": 0.6307 + }, + { + "start": 26418.13, + "end": 26424.56, + "probability": 0.7878 + }, + { + "start": 26425.78, + "end": 26429.36, + "probability": 0.9797 + }, + { + "start": 26429.72, + "end": 26430.74, + "probability": 0.9973 + }, + { + "start": 26430.9, + "end": 26435.82, + "probability": 0.976 + }, + { + "start": 26435.9, + "end": 26439.64, + "probability": 0.9933 + }, + { + "start": 26439.86, + "end": 26440.06, + "probability": 0.6327 + }, + { + "start": 26440.68, + "end": 26442.74, + "probability": 0.9868 + }, + { + "start": 26445.22, + "end": 26447.2, + "probability": 0.9075 + }, + { + "start": 26447.98, + "end": 26450.14, + "probability": 0.9626 + }, + { + "start": 26458.86, + "end": 26459.44, + "probability": 0.4006 + }, + { + "start": 26460.66, + "end": 26461.62, + "probability": 0.6507 + }, + { + "start": 26462.16, + "end": 26462.36, + "probability": 0.5706 + }, + { + "start": 26462.94, + "end": 26464.42, + "probability": 0.9897 + }, + { + "start": 26465.0, + "end": 26466.12, + "probability": 0.8376 + }, + { + "start": 26466.76, + "end": 26471.98, + "probability": 0.7598 + }, + { + "start": 26474.88, + "end": 26475.3, + "probability": 0.8647 + }, + { + "start": 26476.44, + "end": 26480.14, + "probability": 0.9858 + }, + { + "start": 26481.26, + "end": 26483.26, + "probability": 0.5889 + }, + { + "start": 26484.3, + "end": 26486.88, + "probability": 0.9774 + }, + { + "start": 26487.66, + "end": 26488.94, + "probability": 0.9043 + }, + { + "start": 26489.98, + "end": 26491.84, + "probability": 0.9839 + }, + { + "start": 26492.86, + "end": 26494.42, + "probability": 0.9922 + }, + { + "start": 26495.24, + "end": 26501.74, + "probability": 0.9931 + }, + { + "start": 26501.8, + "end": 26506.0, + "probability": 0.9673 + }, + { + "start": 26506.08, + "end": 26510.28, + "probability": 0.8082 + }, + { + "start": 26510.86, + "end": 26511.58, + "probability": 0.602 + }, + { + "start": 26512.38, + "end": 26514.02, + "probability": 0.8527 + }, + { + "start": 26514.18, + "end": 26517.16, + "probability": 0.9797 + }, + { + "start": 26517.98, + "end": 26519.72, + "probability": 0.819 + }, + { + "start": 26520.36, + "end": 26522.94, + "probability": 0.8921 + }, + { + "start": 26523.26, + "end": 26528.96, + "probability": 0.8782 + }, + { + "start": 26528.96, + "end": 26534.28, + "probability": 0.9932 + }, + { + "start": 26534.4, + "end": 26535.14, + "probability": 0.8085 + }, + { + "start": 26536.4, + "end": 26538.78, + "probability": 0.8643 + }, + { + "start": 26539.54, + "end": 26541.06, + "probability": 0.9813 + }, + { + "start": 26541.76, + "end": 26545.26, + "probability": 0.8932 + }, + { + "start": 26546.04, + "end": 26549.34, + "probability": 0.9091 + }, + { + "start": 26550.92, + "end": 26552.36, + "probability": 0.9358 + }, + { + "start": 26553.92, + "end": 26558.26, + "probability": 0.9259 + }, + { + "start": 26558.9, + "end": 26559.38, + "probability": 0.5321 + }, + { + "start": 26559.4, + "end": 26562.08, + "probability": 0.9895 + }, + { + "start": 26562.18, + "end": 26568.2, + "probability": 0.9899 + }, + { + "start": 26569.16, + "end": 26573.16, + "probability": 0.9933 + }, + { + "start": 26573.92, + "end": 26577.94, + "probability": 0.9594 + }, + { + "start": 26578.12, + "end": 26578.6, + "probability": 0.8907 + }, + { + "start": 26578.72, + "end": 26579.38, + "probability": 0.8955 + }, + { + "start": 26579.42, + "end": 26580.1, + "probability": 0.9538 + }, + { + "start": 26580.16, + "end": 26580.88, + "probability": 0.7627 + }, + { + "start": 26581.12, + "end": 26582.14, + "probability": 0.9011 + }, + { + "start": 26582.84, + "end": 26585.96, + "probability": 0.9346 + }, + { + "start": 26586.84, + "end": 26591.9, + "probability": 0.9824 + }, + { + "start": 26592.56, + "end": 26593.5, + "probability": 0.9666 + }, + { + "start": 26594.12, + "end": 26600.54, + "probability": 0.9873 + }, + { + "start": 26601.92, + "end": 26609.14, + "probability": 0.9768 + }, + { + "start": 26609.64, + "end": 26615.54, + "probability": 0.9964 + }, + { + "start": 26616.14, + "end": 26618.06, + "probability": 0.979 + }, + { + "start": 26618.86, + "end": 26625.46, + "probability": 0.994 + }, + { + "start": 26625.58, + "end": 26631.03, + "probability": 0.9436 + }, + { + "start": 26632.1, + "end": 26633.26, + "probability": 0.721 + }, + { + "start": 26634.38, + "end": 26635.78, + "probability": 0.882 + }, + { + "start": 26636.84, + "end": 26637.98, + "probability": 0.6348 + }, + { + "start": 26638.22, + "end": 26641.44, + "probability": 0.951 + }, + { + "start": 26643.5, + "end": 26644.5, + "probability": 0.5165 + }, + { + "start": 26644.5, + "end": 26646.38, + "probability": 0.863 + }, + { + "start": 26646.98, + "end": 26650.3, + "probability": 0.9766 + }, + { + "start": 26652.0, + "end": 26653.32, + "probability": 0.9337 + }, + { + "start": 26654.18, + "end": 26655.64, + "probability": 0.9772 + }, + { + "start": 26656.78, + "end": 26662.32, + "probability": 0.9634 + }, + { + "start": 26663.02, + "end": 26668.4, + "probability": 0.9169 + }, + { + "start": 26668.88, + "end": 26672.22, + "probability": 0.9941 + }, + { + "start": 26672.9, + "end": 26675.6, + "probability": 0.9922 + }, + { + "start": 26676.94, + "end": 26678.32, + "probability": 0.9448 + }, + { + "start": 26678.74, + "end": 26679.14, + "probability": 0.833 + }, + { + "start": 26679.22, + "end": 26680.08, + "probability": 0.7935 + }, + { + "start": 26680.18, + "end": 26684.64, + "probability": 0.9836 + }, + { + "start": 26685.22, + "end": 26685.54, + "probability": 0.9403 + }, + { + "start": 26686.42, + "end": 26686.96, + "probability": 0.964 + }, + { + "start": 26687.94, + "end": 26692.59, + "probability": 0.9928 + }, + { + "start": 26692.64, + "end": 26696.96, + "probability": 0.8777 + }, + { + "start": 26697.76, + "end": 26703.06, + "probability": 0.9524 + }, + { + "start": 26703.48, + "end": 26704.3, + "probability": 0.7377 + }, + { + "start": 26704.32, + "end": 26706.18, + "probability": 0.9241 + }, + { + "start": 26706.72, + "end": 26707.68, + "probability": 0.9185 + }, + { + "start": 26708.84, + "end": 26710.18, + "probability": 0.9956 + }, + { + "start": 26712.0, + "end": 26713.5, + "probability": 0.7106 + }, + { + "start": 26714.12, + "end": 26715.44, + "probability": 0.5346 + }, + { + "start": 26716.76, + "end": 26721.04, + "probability": 0.9375 + }, + { + "start": 26723.32, + "end": 26723.56, + "probability": 0.358 + }, + { + "start": 26724.0, + "end": 26725.02, + "probability": 0.974 + }, + { + "start": 26725.32, + "end": 26730.06, + "probability": 0.9902 + }, + { + "start": 26730.6, + "end": 26732.04, + "probability": 0.3041 + }, + { + "start": 26732.6, + "end": 26735.08, + "probability": 0.9474 + }, + { + "start": 26735.84, + "end": 26738.98, + "probability": 0.9824 + }, + { + "start": 26740.06, + "end": 26744.28, + "probability": 0.9807 + }, + { + "start": 26744.82, + "end": 26747.16, + "probability": 0.9585 + }, + { + "start": 26748.78, + "end": 26753.62, + "probability": 0.9791 + }, + { + "start": 26753.62, + "end": 26757.66, + "probability": 0.9976 + }, + { + "start": 26758.2, + "end": 26759.54, + "probability": 0.905 + }, + { + "start": 26760.6, + "end": 26762.58, + "probability": 0.982 + }, + { + "start": 26763.34, + "end": 26764.66, + "probability": 0.9173 + }, + { + "start": 26766.4, + "end": 26767.94, + "probability": 0.8231 + }, + { + "start": 26769.12, + "end": 26769.72, + "probability": 0.7792 + }, + { + "start": 26770.36, + "end": 26775.06, + "probability": 0.9619 + }, + { + "start": 26775.92, + "end": 26779.56, + "probability": 0.9819 + }, + { + "start": 26780.42, + "end": 26782.62, + "probability": 0.9673 + }, + { + "start": 26783.42, + "end": 26784.4, + "probability": 0.9381 + }, + { + "start": 26785.18, + "end": 26787.86, + "probability": 0.9917 + }, + { + "start": 26789.4, + "end": 26793.24, + "probability": 0.9811 + }, + { + "start": 26794.0, + "end": 26796.92, + "probability": 0.9313 + }, + { + "start": 26797.78, + "end": 26799.06, + "probability": 0.8085 + }, + { + "start": 26799.82, + "end": 26800.7, + "probability": 0.9366 + }, + { + "start": 26801.36, + "end": 26804.46, + "probability": 0.9824 + }, + { + "start": 26805.7, + "end": 26808.82, + "probability": 0.9932 + }, + { + "start": 26809.54, + "end": 26813.2, + "probability": 0.9731 + }, + { + "start": 26813.68, + "end": 26815.32, + "probability": 0.9204 + }, + { + "start": 26816.18, + "end": 26817.88, + "probability": 0.7567 + }, + { + "start": 26818.4, + "end": 26820.16, + "probability": 0.9432 + }, + { + "start": 26821.46, + "end": 26826.14, + "probability": 0.9943 + }, + { + "start": 26826.72, + "end": 26829.86, + "probability": 0.9932 + }, + { + "start": 26830.54, + "end": 26832.18, + "probability": 0.9988 + }, + { + "start": 26833.6, + "end": 26840.78, + "probability": 0.7762 + }, + { + "start": 26840.94, + "end": 26842.32, + "probability": 0.9335 + }, + { + "start": 26843.0, + "end": 26845.58, + "probability": 0.7945 + }, + { + "start": 26846.36, + "end": 26848.36, + "probability": 0.8743 + }, + { + "start": 26849.12, + "end": 26851.81, + "probability": 0.932 + }, + { + "start": 26852.74, + "end": 26854.66, + "probability": 0.7687 + }, + { + "start": 26856.04, + "end": 26857.9, + "probability": 0.9788 + }, + { + "start": 26858.68, + "end": 26860.16, + "probability": 0.9091 + }, + { + "start": 26860.92, + "end": 26863.86, + "probability": 0.9966 + }, + { + "start": 26863.86, + "end": 26866.72, + "probability": 0.9109 + }, + { + "start": 26866.8, + "end": 26867.9, + "probability": 0.9539 + }, + { + "start": 26868.3, + "end": 26871.24, + "probability": 0.9969 + }, + { + "start": 26872.52, + "end": 26874.54, + "probability": 0.9171 + }, + { + "start": 26875.5, + "end": 26877.66, + "probability": 0.9946 + }, + { + "start": 26878.74, + "end": 26880.74, + "probability": 0.8498 + }, + { + "start": 26881.92, + "end": 26887.28, + "probability": 0.7539 + }, + { + "start": 26887.46, + "end": 26887.46, + "probability": 0.4199 + }, + { + "start": 26887.46, + "end": 26889.94, + "probability": 0.9067 + }, + { + "start": 26890.56, + "end": 26891.19, + "probability": 0.9004 + }, + { + "start": 26891.42, + "end": 26891.76, + "probability": 0.68 + }, + { + "start": 26891.88, + "end": 26894.88, + "probability": 0.8746 + }, + { + "start": 26895.86, + "end": 26900.52, + "probability": 0.9787 + }, + { + "start": 26900.88, + "end": 26901.7, + "probability": 0.8611 + }, + { + "start": 26902.28, + "end": 26905.64, + "probability": 0.9727 + }, + { + "start": 26906.38, + "end": 26907.1, + "probability": 0.5985 + }, + { + "start": 26907.7, + "end": 26910.24, + "probability": 0.9076 + }, + { + "start": 26910.44, + "end": 26914.26, + "probability": 0.9839 + }, + { + "start": 26914.88, + "end": 26918.72, + "probability": 0.8257 + }, + { + "start": 26923.72, + "end": 26926.38, + "probability": 0.6224 + }, + { + "start": 26927.76, + "end": 26930.14, + "probability": 0.6952 + }, + { + "start": 26931.02, + "end": 26935.62, + "probability": 0.9764 + }, + { + "start": 26935.7, + "end": 26937.7, + "probability": 0.7636 + }, + { + "start": 26938.78, + "end": 26943.72, + "probability": 0.9447 + }, + { + "start": 26944.26, + "end": 26944.52, + "probability": 0.6952 + }, + { + "start": 26944.66, + "end": 26947.66, + "probability": 0.9745 + }, + { + "start": 26947.82, + "end": 26952.66, + "probability": 0.9966 + }, + { + "start": 26952.84, + "end": 26957.32, + "probability": 0.942 + }, + { + "start": 26958.1, + "end": 26963.12, + "probability": 0.6789 + }, + { + "start": 26963.66, + "end": 26964.5, + "probability": 0.948 + }, + { + "start": 26965.62, + "end": 26967.48, + "probability": 0.8646 + }, + { + "start": 26968.98, + "end": 26970.1, + "probability": 0.7077 + }, + { + "start": 26971.64, + "end": 26972.98, + "probability": 0.9489 + }, + { + "start": 26973.6, + "end": 26975.6, + "probability": 0.3762 + }, + { + "start": 26975.94, + "end": 26978.58, + "probability": 0.9044 + }, + { + "start": 26979.8, + "end": 26990.12, + "probability": 0.9981 + }, + { + "start": 26990.9, + "end": 26993.2, + "probability": 0.5913 + }, + { + "start": 26993.84, + "end": 26998.04, + "probability": 0.926 + }, + { + "start": 26998.76, + "end": 27000.0, + "probability": 0.9571 + }, + { + "start": 27000.72, + "end": 27006.52, + "probability": 0.9927 + }, + { + "start": 27007.06, + "end": 27009.44, + "probability": 0.986 + }, + { + "start": 27010.34, + "end": 27012.2, + "probability": 0.9954 + }, + { + "start": 27012.98, + "end": 27016.06, + "probability": 0.9902 + }, + { + "start": 27016.72, + "end": 27017.26, + "probability": 0.5807 + }, + { + "start": 27018.44, + "end": 27019.52, + "probability": 0.4951 + }, + { + "start": 27019.96, + "end": 27020.78, + "probability": 0.4858 + }, + { + "start": 27021.2, + "end": 27022.14, + "probability": 0.9911 + }, + { + "start": 27022.52, + "end": 27025.8, + "probability": 0.9879 + }, + { + "start": 27026.16, + "end": 27028.65, + "probability": 0.9976 + }, + { + "start": 27029.86, + "end": 27032.2, + "probability": 0.8606 + }, + { + "start": 27032.9, + "end": 27033.44, + "probability": 0.6466 + }, + { + "start": 27033.7, + "end": 27037.14, + "probability": 0.841 + }, + { + "start": 27037.56, + "end": 27038.94, + "probability": 0.8342 + }, + { + "start": 27039.78, + "end": 27043.34, + "probability": 0.8099 + }, + { + "start": 27044.16, + "end": 27049.5, + "probability": 0.7828 + }, + { + "start": 27049.68, + "end": 27051.22, + "probability": 0.8795 + }, + { + "start": 27053.0, + "end": 27053.78, + "probability": 0.5149 + }, + { + "start": 27053.96, + "end": 27054.66, + "probability": 0.8453 + }, + { + "start": 27054.8, + "end": 27057.34, + "probability": 0.3222 + }, + { + "start": 27057.48, + "end": 27059.0, + "probability": 0.9131 + }, + { + "start": 27059.04, + "end": 27059.76, + "probability": 0.815 + }, + { + "start": 27060.06, + "end": 27060.58, + "probability": 0.6538 + }, + { + "start": 27060.76, + "end": 27063.86, + "probability": 0.9279 + }, + { + "start": 27064.98, + "end": 27067.26, + "probability": 0.7894 + }, + { + "start": 27068.44, + "end": 27069.42, + "probability": 0.9741 + }, + { + "start": 27069.54, + "end": 27070.86, + "probability": 0.9953 + }, + { + "start": 27070.9, + "end": 27072.88, + "probability": 0.8558 + }, + { + "start": 27072.98, + "end": 27075.26, + "probability": 0.9812 + }, + { + "start": 27076.3, + "end": 27079.15, + "probability": 0.9381 + }, + { + "start": 27079.5, + "end": 27082.72, + "probability": 0.9982 + }, + { + "start": 27082.78, + "end": 27083.38, + "probability": 0.524 + }, + { + "start": 27085.46, + "end": 27086.08, + "probability": 0.7045 + }, + { + "start": 27086.34, + "end": 27090.0, + "probability": 0.9982 + }, + { + "start": 27091.24, + "end": 27093.12, + "probability": 0.999 + }, + { + "start": 27093.26, + "end": 27094.02, + "probability": 0.7666 + }, + { + "start": 27094.18, + "end": 27095.25, + "probability": 0.9854 + }, + { + "start": 27096.59, + "end": 27099.74, + "probability": 0.9639 + }, + { + "start": 27100.78, + "end": 27101.18, + "probability": 0.5671 + }, + { + "start": 27101.18, + "end": 27102.76, + "probability": 0.8753 + }, + { + "start": 27103.0, + "end": 27104.26, + "probability": 0.9102 + }, + { + "start": 27105.5, + "end": 27112.44, + "probability": 0.9801 + }, + { + "start": 27112.6, + "end": 27113.3, + "probability": 0.5064 + }, + { + "start": 27113.46, + "end": 27115.94, + "probability": 0.9843 + }, + { + "start": 27115.94, + "end": 27117.72, + "probability": 0.8311 + }, + { + "start": 27117.82, + "end": 27121.64, + "probability": 0.908 + }, + { + "start": 27121.78, + "end": 27122.3, + "probability": 0.4553 + }, + { + "start": 27123.78, + "end": 27126.26, + "probability": 0.9978 + }, + { + "start": 27126.26, + "end": 27130.2, + "probability": 0.9849 + }, + { + "start": 27132.02, + "end": 27133.94, + "probability": 0.938 + }, + { + "start": 27134.8, + "end": 27137.94, + "probability": 0.9769 + }, + { + "start": 27138.06, + "end": 27138.6, + "probability": 0.7733 + }, + { + "start": 27138.7, + "end": 27142.46, + "probability": 0.9517 + }, + { + "start": 27142.6, + "end": 27145.2, + "probability": 0.9891 + }, + { + "start": 27145.26, + "end": 27146.26, + "probability": 0.8599 + }, + { + "start": 27146.77, + "end": 27147.68, + "probability": 0.9967 + }, + { + "start": 27148.08, + "end": 27149.14, + "probability": 0.8312 + }, + { + "start": 27150.08, + "end": 27152.74, + "probability": 0.8921 + }, + { + "start": 27153.58, + "end": 27155.04, + "probability": 0.9751 + }, + { + "start": 27155.72, + "end": 27156.42, + "probability": 0.7292 + }, + { + "start": 27157.86, + "end": 27160.76, + "probability": 0.8336 + }, + { + "start": 27160.82, + "end": 27162.68, + "probability": 0.804 + }, + { + "start": 27162.84, + "end": 27166.0, + "probability": 0.9877 + }, + { + "start": 27166.24, + "end": 27169.52, + "probability": 0.886 + }, + { + "start": 27170.0, + "end": 27173.92, + "probability": 0.9311 + }, + { + "start": 27174.06, + "end": 27174.94, + "probability": 0.7695 + }, + { + "start": 27176.56, + "end": 27177.56, + "probability": 0.8925 + }, + { + "start": 27179.38, + "end": 27179.68, + "probability": 0.8116 + }, + { + "start": 27180.36, + "end": 27182.16, + "probability": 0.9739 + }, + { + "start": 27184.24, + "end": 27184.92, + "probability": 0.8859 + }, + { + "start": 27185.06, + "end": 27186.16, + "probability": 0.7932 + }, + { + "start": 27186.64, + "end": 27189.76, + "probability": 0.9277 + }, + { + "start": 27191.52, + "end": 27193.14, + "probability": 0.9117 + }, + { + "start": 27193.32, + "end": 27194.42, + "probability": 0.9516 + }, + { + "start": 27195.92, + "end": 27197.74, + "probability": 0.9905 + }, + { + "start": 27197.82, + "end": 27199.78, + "probability": 0.9976 + }, + { + "start": 27199.84, + "end": 27200.9, + "probability": 0.9128 + }, + { + "start": 27200.96, + "end": 27202.88, + "probability": 0.9963 + }, + { + "start": 27203.94, + "end": 27206.88, + "probability": 0.8569 + }, + { + "start": 27208.04, + "end": 27208.64, + "probability": 0.9035 + }, + { + "start": 27210.62, + "end": 27212.51, + "probability": 0.794 + }, + { + "start": 27214.02, + "end": 27215.34, + "probability": 0.9966 + }, + { + "start": 27215.4, + "end": 27216.06, + "probability": 0.9275 + }, + { + "start": 27216.12, + "end": 27217.16, + "probability": 0.9917 + }, + { + "start": 27218.48, + "end": 27223.82, + "probability": 0.9847 + }, + { + "start": 27225.64, + "end": 27227.5, + "probability": 0.7662 + }, + { + "start": 27228.56, + "end": 27231.1, + "probability": 0.8804 + }, + { + "start": 27232.26, + "end": 27236.98, + "probability": 0.9858 + }, + { + "start": 27237.2, + "end": 27238.54, + "probability": 0.9395 + }, + { + "start": 27239.46, + "end": 27240.48, + "probability": 0.7271 + }, + { + "start": 27242.6, + "end": 27243.06, + "probability": 0.9552 + }, + { + "start": 27244.84, + "end": 27245.76, + "probability": 0.9387 + }, + { + "start": 27245.86, + "end": 27246.72, + "probability": 0.7406 + }, + { + "start": 27247.04, + "end": 27248.14, + "probability": 0.9182 + }, + { + "start": 27248.26, + "end": 27248.68, + "probability": 0.9382 + }, + { + "start": 27248.76, + "end": 27250.58, + "probability": 0.9794 + }, + { + "start": 27251.98, + "end": 27253.5, + "probability": 0.9956 + }, + { + "start": 27253.84, + "end": 27255.8, + "probability": 0.9637 + }, + { + "start": 27255.88, + "end": 27257.26, + "probability": 0.9746 + }, + { + "start": 27257.32, + "end": 27258.06, + "probability": 0.9146 + }, + { + "start": 27258.14, + "end": 27259.3, + "probability": 0.9481 + }, + { + "start": 27259.36, + "end": 27259.94, + "probability": 0.9262 + }, + { + "start": 27260.88, + "end": 27262.22, + "probability": 0.9521 + }, + { + "start": 27262.28, + "end": 27262.58, + "probability": 0.346 + }, + { + "start": 27263.38, + "end": 27265.02, + "probability": 0.952 + }, + { + "start": 27265.12, + "end": 27266.88, + "probability": 0.9929 + }, + { + "start": 27268.46, + "end": 27272.22, + "probability": 0.9862 + }, + { + "start": 27273.08, + "end": 27273.6, + "probability": 0.9629 + }, + { + "start": 27274.42, + "end": 27277.6, + "probability": 0.9861 + }, + { + "start": 27278.44, + "end": 27281.58, + "probability": 0.7997 + }, + { + "start": 27283.24, + "end": 27283.3, + "probability": 0.0161 + }, + { + "start": 27283.3, + "end": 27283.94, + "probability": 0.641 + }, + { + "start": 27284.36, + "end": 27285.76, + "probability": 0.9762 + }, + { + "start": 27286.58, + "end": 27287.36, + "probability": 0.9518 + }, + { + "start": 27287.44, + "end": 27287.72, + "probability": 0.8594 + }, + { + "start": 27287.8, + "end": 27289.74, + "probability": 0.9667 + }, + { + "start": 27290.2, + "end": 27292.18, + "probability": 0.9665 + }, + { + "start": 27292.86, + "end": 27295.26, + "probability": 0.9724 + }, + { + "start": 27295.26, + "end": 27297.2, + "probability": 0.9449 + }, + { + "start": 27297.72, + "end": 27300.48, + "probability": 0.7963 + }, + { + "start": 27300.98, + "end": 27302.27, + "probability": 0.6083 + }, + { + "start": 27302.48, + "end": 27302.9, + "probability": 0.6604 + }, + { + "start": 27303.3, + "end": 27306.08, + "probability": 0.9867 + }, + { + "start": 27307.26, + "end": 27308.8, + "probability": 0.8455 + }, + { + "start": 27310.26, + "end": 27313.66, + "probability": 0.9953 + }, + { + "start": 27315.28, + "end": 27318.86, + "probability": 0.998 + }, + { + "start": 27319.18, + "end": 27321.82, + "probability": 0.998 + }, + { + "start": 27322.51, + "end": 27326.24, + "probability": 0.9585 + }, + { + "start": 27326.82, + "end": 27327.18, + "probability": 0.3946 + }, + { + "start": 27328.7, + "end": 27332.66, + "probability": 0.9845 + }, + { + "start": 27332.78, + "end": 27333.34, + "probability": 0.6632 + }, + { + "start": 27333.4, + "end": 27333.9, + "probability": 0.7526 + }, + { + "start": 27335.24, + "end": 27335.98, + "probability": 0.9745 + }, + { + "start": 27337.12, + "end": 27340.56, + "probability": 0.774 + }, + { + "start": 27341.56, + "end": 27343.62, + "probability": 0.9461 + }, + { + "start": 27344.74, + "end": 27346.98, + "probability": 0.9971 + }, + { + "start": 27347.14, + "end": 27347.56, + "probability": 0.9024 + }, + { + "start": 27348.92, + "end": 27351.08, + "probability": 0.9658 + }, + { + "start": 27351.16, + "end": 27355.14, + "probability": 0.9976 + }, + { + "start": 27355.64, + "end": 27357.24, + "probability": 0.7584 + }, + { + "start": 27358.66, + "end": 27360.98, + "probability": 0.9722 + }, + { + "start": 27361.32, + "end": 27363.49, + "probability": 0.995 + }, + { + "start": 27364.78, + "end": 27366.56, + "probability": 0.8835 + }, + { + "start": 27367.12, + "end": 27368.56, + "probability": 0.8369 + }, + { + "start": 27368.68, + "end": 27370.28, + "probability": 0.9964 + }, + { + "start": 27370.4, + "end": 27372.06, + "probability": 0.9064 + }, + { + "start": 27373.54, + "end": 27379.02, + "probability": 0.9992 + }, + { + "start": 27379.74, + "end": 27381.74, + "probability": 0.871 + }, + { + "start": 27382.42, + "end": 27383.68, + "probability": 0.8761 + }, + { + "start": 27383.72, + "end": 27384.58, + "probability": 0.9046 + }, + { + "start": 27385.36, + "end": 27386.32, + "probability": 0.948 + }, + { + "start": 27388.7, + "end": 27390.12, + "probability": 0.8896 + }, + { + "start": 27391.48, + "end": 27392.26, + "probability": 0.6707 + }, + { + "start": 27392.3, + "end": 27396.04, + "probability": 0.9638 + }, + { + "start": 27397.34, + "end": 27399.44, + "probability": 0.9927 + }, + { + "start": 27400.84, + "end": 27402.18, + "probability": 0.9962 + }, + { + "start": 27402.92, + "end": 27404.26, + "probability": 0.8963 + }, + { + "start": 27405.62, + "end": 27406.34, + "probability": 0.5303 + }, + { + "start": 27407.32, + "end": 27409.02, + "probability": 0.9828 + }, + { + "start": 27409.92, + "end": 27413.48, + "probability": 0.9961 + }, + { + "start": 27414.16, + "end": 27419.66, + "probability": 0.9983 + }, + { + "start": 27420.92, + "end": 27423.34, + "probability": 0.8623 + }, + { + "start": 27424.0, + "end": 27428.88, + "probability": 0.9865 + }, + { + "start": 27429.04, + "end": 27429.42, + "probability": 0.7088 + }, + { + "start": 27430.36, + "end": 27434.08, + "probability": 0.8529 + }, + { + "start": 27434.2, + "end": 27437.7, + "probability": 0.9564 + }, + { + "start": 27438.62, + "end": 27440.48, + "probability": 0.9796 + }, + { + "start": 27440.58, + "end": 27441.2, + "probability": 0.9267 + }, + { + "start": 27441.32, + "end": 27441.8, + "probability": 0.5623 + }, + { + "start": 27441.92, + "end": 27441.96, + "probability": 0.1186 + }, + { + "start": 27442.44, + "end": 27442.78, + "probability": 0.216 + }, + { + "start": 27443.1, + "end": 27444.08, + "probability": 0.7437 + }, + { + "start": 27444.52, + "end": 27448.58, + "probability": 0.8337 + }, + { + "start": 27449.1, + "end": 27451.6, + "probability": 0.9214 + }, + { + "start": 27452.1, + "end": 27459.1, + "probability": 0.9698 + }, + { + "start": 27460.6, + "end": 27460.78, + "probability": 0.1695 + }, + { + "start": 61265.94, + "end": 61267.76, + "probability": 0.0996 + }, + { + "start": 61268.56, + "end": 61273.91, + "probability": 0.0506 + }, + { + "start": 61275.36, + "end": 61277.72, + "probability": 0.4888 + }, + { + "start": 61281.88, + "end": 61283.04, + "probability": 0.1609 + }, + { + "start": 61283.1, + "end": 61283.94, + "probability": 0.011 + }, + { + "start": 61293.76, + "end": 61294.96, + "probability": 0.3103 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.0, + "end": 61396.0, + "probability": 0.0 + }, + { + "start": 61396.73, + "end": 61397.78, + "probability": 0.5225 + }, + { + "start": 61398.88, + "end": 61400.84, + "probability": 0.5885 + }, + { + "start": 61403.46, + "end": 61405.83, + "probability": 0.5527 + }, + { + "start": 61406.08, + "end": 61409.96, + "probability": 0.8625 + }, + { + "start": 61412.46, + "end": 61415.48, + "probability": 0.3242 + }, + { + "start": 61416.0, + "end": 61416.24, + "probability": 0.6424 + }, + { + "start": 61417.84, + "end": 61419.66, + "probability": 0.8438 + }, + { + "start": 61421.44, + "end": 61428.18, + "probability": 0.7747 + }, + { + "start": 61429.0, + "end": 61431.5, + "probability": 0.5085 + }, + { + "start": 61433.78, + "end": 61435.64, + "probability": 0.9909 + }, + { + "start": 61436.24, + "end": 61438.64, + "probability": 0.9031 + }, + { + "start": 61440.38, + "end": 61446.83, + "probability": 0.6951 + }, + { + "start": 61448.52, + "end": 61449.52, + "probability": 0.9802 + }, + { + "start": 61451.9, + "end": 61452.48, + "probability": 0.2283 + }, + { + "start": 61453.88, + "end": 61456.62, + "probability": 0.7939 + }, + { + "start": 61457.28, + "end": 61458.5, + "probability": 0.9225 + }, + { + "start": 61459.56, + "end": 61460.98, + "probability": 0.9224 + }, + { + "start": 61462.5, + "end": 61465.02, + "probability": 0.9813 + }, + { + "start": 61466.02, + "end": 61467.1, + "probability": 0.9113 + }, + { + "start": 61467.84, + "end": 61469.54, + "probability": 0.934 + }, + { + "start": 61469.56, + "end": 61469.56, + "probability": 0.4765 + }, + { + "start": 61469.56, + "end": 61470.52, + "probability": 0.8245 + }, + { + "start": 61470.6, + "end": 61473.64, + "probability": 0.8745 + }, + { + "start": 61473.82, + "end": 61475.78, + "probability": 0.3141 + }, + { + "start": 61476.12, + "end": 61476.67, + "probability": 0.6715 + }, + { + "start": 61477.34, + "end": 61478.74, + "probability": 0.9707 + }, + { + "start": 61478.94, + "end": 61479.24, + "probability": 0.4193 + }, + { + "start": 61479.32, + "end": 61479.9, + "probability": 0.8728 + }, + { + "start": 61480.02, + "end": 61480.74, + "probability": 0.656 + }, + { + "start": 61480.74, + "end": 61481.82, + "probability": 0.8309 + }, + { + "start": 61481.82, + "end": 61482.62, + "probability": 0.855 + }, + { + "start": 61483.61, + "end": 61485.82, + "probability": 0.2399 + }, + { + "start": 61485.82, + "end": 61485.82, + "probability": 0.0678 + }, + { + "start": 61485.82, + "end": 61486.1, + "probability": 0.7396 + }, + { + "start": 61486.52, + "end": 61488.31, + "probability": 0.649 + }, + { + "start": 61489.06, + "end": 61491.02, + "probability": 0.8521 + }, + { + "start": 61491.2, + "end": 61491.76, + "probability": 0.4419 + }, + { + "start": 61492.36, + "end": 61493.88, + "probability": 0.8561 + }, + { + "start": 61494.08, + "end": 61494.44, + "probability": 0.7283 + }, + { + "start": 61494.54, + "end": 61497.94, + "probability": 0.6792 + }, + { + "start": 61499.22, + "end": 61501.64, + "probability": 0.6639 + }, + { + "start": 61502.96, + "end": 61503.9, + "probability": 0.8394 + }, + { + "start": 61504.52, + "end": 61508.62, + "probability": 0.7361 + }, + { + "start": 61509.32, + "end": 61513.02, + "probability": 0.9757 + }, + { + "start": 61514.36, + "end": 61515.88, + "probability": 0.9773 + }, + { + "start": 61517.26, + "end": 61520.22, + "probability": 0.9171 + }, + { + "start": 61521.26, + "end": 61523.2, + "probability": 0.9095 + }, + { + "start": 61523.96, + "end": 61525.0, + "probability": 0.9586 + }, + { + "start": 61525.88, + "end": 61528.22, + "probability": 0.9945 + }, + { + "start": 61529.74, + "end": 61535.98, + "probability": 0.9301 + }, + { + "start": 61536.62, + "end": 61545.5, + "probability": 0.8506 + }, + { + "start": 61546.4, + "end": 61548.88, + "probability": 0.7065 + }, + { + "start": 61549.56, + "end": 61553.62, + "probability": 0.9343 + }, + { + "start": 61554.38, + "end": 61554.96, + "probability": 0.7278 + }, + { + "start": 61554.98, + "end": 61555.62, + "probability": 0.8481 + }, + { + "start": 61555.68, + "end": 61558.42, + "probability": 0.9922 + }, + { + "start": 61559.34, + "end": 61562.82, + "probability": 0.8966 + }, + { + "start": 61563.6, + "end": 61566.68, + "probability": 0.9756 + }, + { + "start": 61566.84, + "end": 61567.14, + "probability": 0.5475 + }, + { + "start": 61567.14, + "end": 61567.76, + "probability": 0.7579 + }, + { + "start": 61567.88, + "end": 61574.62, + "probability": 0.9509 + }, + { + "start": 61576.04, + "end": 61577.34, + "probability": 0.8325 + }, + { + "start": 61578.02, + "end": 61578.96, + "probability": 0.4281 + }, + { + "start": 61579.42, + "end": 61593.94, + "probability": 0.9515 + }, + { + "start": 61595.66, + "end": 61600.1, + "probability": 0.8409 + }, + { + "start": 61601.26, + "end": 61604.18, + "probability": 0.7996 + }, + { + "start": 61605.32, + "end": 61606.4, + "probability": 0.9819 + }, + { + "start": 61606.94, + "end": 61609.5, + "probability": 0.9904 + }, + { + "start": 61610.6, + "end": 61613.9, + "probability": 0.3397 + }, + { + "start": 61614.58, + "end": 61615.14, + "probability": 0.8598 + }, + { + "start": 61615.96, + "end": 61617.36, + "probability": 0.7824 + }, + { + "start": 61617.72, + "end": 61618.24, + "probability": 0.5253 + }, + { + "start": 61620.38, + "end": 61621.0, + "probability": 0.4982 + }, + { + "start": 61621.22, + "end": 61631.08, + "probability": 0.8514 + }, + { + "start": 61632.08, + "end": 61634.56, + "probability": 0.8899 + }, + { + "start": 61635.2, + "end": 61638.86, + "probability": 0.9718 + }, + { + "start": 61639.6, + "end": 61643.62, + "probability": 0.9677 + }, + { + "start": 61644.26, + "end": 61646.98, + "probability": 0.9885 + }, + { + "start": 61647.94, + "end": 61649.06, + "probability": 0.9854 + }, + { + "start": 61650.58, + "end": 61654.54, + "probability": 0.7904 + }, + { + "start": 61656.48, + "end": 61658.62, + "probability": 0.8156 + }, + { + "start": 61660.02, + "end": 61663.34, + "probability": 0.9118 + }, + { + "start": 61664.06, + "end": 61664.9, + "probability": 0.8773 + }, + { + "start": 61665.56, + "end": 61666.86, + "probability": 0.7086 + }, + { + "start": 61667.4, + "end": 61670.52, + "probability": 0.9556 + }, + { + "start": 61671.66, + "end": 61676.68, + "probability": 0.9435 + }, + { + "start": 61678.4, + "end": 61680.06, + "probability": 0.9408 + }, + { + "start": 61681.22, + "end": 61686.36, + "probability": 0.9207 + }, + { + "start": 61687.52, + "end": 61693.94, + "probability": 0.9575 + }, + { + "start": 61696.51, + "end": 61698.96, + "probability": 0.9922 + }, + { + "start": 61699.66, + "end": 61702.06, + "probability": 0.998 + }, + { + "start": 61703.46, + "end": 61704.62, + "probability": 0.9492 + }, + { + "start": 61705.3, + "end": 61705.98, + "probability": 0.8054 + }, + { + "start": 61706.16, + "end": 61706.98, + "probability": 0.9691 + }, + { + "start": 61707.96, + "end": 61711.9, + "probability": 0.9838 + }, + { + "start": 61713.48, + "end": 61717.46, + "probability": 0.7893 + }, + { + "start": 61718.78, + "end": 61722.9, + "probability": 0.7645 + }, + { + "start": 61723.88, + "end": 61727.26, + "probability": 0.9878 + }, + { + "start": 61727.86, + "end": 61728.52, + "probability": 0.9399 + }, + { + "start": 61729.68, + "end": 61730.74, + "probability": 0.8282 + }, + { + "start": 61731.6, + "end": 61732.84, + "probability": 0.9937 + }, + { + "start": 61734.36, + "end": 61736.3, + "probability": 0.6463 + }, + { + "start": 61738.02, + "end": 61739.54, + "probability": 0.9956 + }, + { + "start": 61740.86, + "end": 61742.9, + "probability": 0.9106 + }, + { + "start": 61745.3, + "end": 61749.1, + "probability": 0.941 + }, + { + "start": 61749.22, + "end": 61753.37, + "probability": 0.7207 + }, + { + "start": 61753.82, + "end": 61754.5, + "probability": 0.6286 + }, + { + "start": 61754.8, + "end": 61755.42, + "probability": 0.7966 + }, + { + "start": 61756.88, + "end": 61757.34, + "probability": 0.3397 + }, + { + "start": 61758.36, + "end": 61763.68, + "probability": 0.9917 + }, + { + "start": 61764.9, + "end": 61770.22, + "probability": 0.9739 + }, + { + "start": 61770.5, + "end": 61771.3, + "probability": 0.8295 + }, + { + "start": 61771.44, + "end": 61773.5, + "probability": 0.9609 + }, + { + "start": 61774.46, + "end": 61777.9, + "probability": 0.6807 + }, + { + "start": 61778.82, + "end": 61783.7, + "probability": 0.8249 + }, + { + "start": 61784.82, + "end": 61787.76, + "probability": 0.9381 + }, + { + "start": 61788.6, + "end": 61792.0, + "probability": 0.991 + }, + { + "start": 61792.76, + "end": 61795.28, + "probability": 0.8776 + }, + { + "start": 61796.4, + "end": 61799.16, + "probability": 0.9941 + }, + { + "start": 61801.88, + "end": 61805.86, + "probability": 0.9686 + }, + { + "start": 61806.56, + "end": 61808.92, + "probability": 0.6553 + }, + { + "start": 61809.08, + "end": 61815.02, + "probability": 0.905 + }, + { + "start": 61816.4, + "end": 61820.46, + "probability": 0.9849 + }, + { + "start": 61820.46, + "end": 61824.88, + "probability": 0.9832 + }, + { + "start": 61825.06, + "end": 61825.76, + "probability": 0.4815 + }, + { + "start": 61825.9, + "end": 61827.34, + "probability": 0.9757 + }, + { + "start": 61828.22, + "end": 61834.9, + "probability": 0.9966 + }, + { + "start": 61835.5, + "end": 61839.8, + "probability": 0.9329 + }, + { + "start": 61840.54, + "end": 61843.76, + "probability": 0.9896 + }, + { + "start": 61844.46, + "end": 61848.18, + "probability": 0.8156 + }, + { + "start": 61849.08, + "end": 61850.82, + "probability": 0.8983 + }, + { + "start": 61850.96, + "end": 61855.04, + "probability": 0.8999 + }, + { + "start": 61855.04, + "end": 61859.72, + "probability": 0.9956 + }, + { + "start": 61860.52, + "end": 61861.5, + "probability": 0.9365 + }, + { + "start": 61861.68, + "end": 61862.1, + "probability": 0.6984 + }, + { + "start": 61862.66, + "end": 61864.94, + "probability": 0.8779 + }, + { + "start": 61865.64, + "end": 61868.9, + "probability": 0.7693 + }, + { + "start": 61869.02, + "end": 61869.82, + "probability": 0.4793 + }, + { + "start": 61870.1, + "end": 61872.46, + "probability": 0.9357 + }, + { + "start": 61874.28, + "end": 61876.18, + "probability": 0.9235 + }, + { + "start": 61880.4, + "end": 61883.6, + "probability": 0.7142 + }, + { + "start": 61884.6, + "end": 61884.98, + "probability": 0.7155 + }, + { + "start": 61884.98, + "end": 61888.01, + "probability": 0.7504 + }, + { + "start": 61889.26, + "end": 61893.18, + "probability": 0.7349 + }, + { + "start": 61894.4, + "end": 61901.02, + "probability": 0.8438 + }, + { + "start": 61901.66, + "end": 61903.26, + "probability": 0.9692 + }, + { + "start": 61904.32, + "end": 61909.34, + "probability": 0.9601 + }, + { + "start": 61910.26, + "end": 61910.94, + "probability": 0.8831 + }, + { + "start": 61910.98, + "end": 61913.27, + "probability": 0.9955 + }, + { + "start": 61914.3, + "end": 61917.58, + "probability": 0.9407 + }, + { + "start": 61919.08, + "end": 61924.4, + "probability": 0.9641 + }, + { + "start": 61925.84, + "end": 61926.16, + "probability": 0.8586 + }, + { + "start": 61926.54, + "end": 61926.54, + "probability": 0.7925 + }, + { + "start": 61927.08, + "end": 61929.4, + "probability": 0.9722 + }, + { + "start": 61930.8, + "end": 61933.02, + "probability": 0.8965 + }, + { + "start": 61934.02, + "end": 61938.0, + "probability": 0.9731 + }, + { + "start": 61938.84, + "end": 61942.56, + "probability": 0.991 + }, + { + "start": 61943.66, + "end": 61946.84, + "probability": 0.8682 + }, + { + "start": 61947.52, + "end": 61948.76, + "probability": 0.9625 + }, + { + "start": 61949.7, + "end": 61950.82, + "probability": 0.9815 + }, + { + "start": 61951.86, + "end": 61953.2, + "probability": 0.9879 + }, + { + "start": 61954.14, + "end": 61955.34, + "probability": 0.9846 + }, + { + "start": 61956.98, + "end": 61963.3, + "probability": 0.979 + }, + { + "start": 61964.78, + "end": 61965.81, + "probability": 0.9061 + }, + { + "start": 61966.74, + "end": 61968.78, + "probability": 0.9894 + }, + { + "start": 61970.7, + "end": 61976.68, + "probability": 0.985 + }, + { + "start": 61976.69, + "end": 61983.68, + "probability": 0.9958 + }, + { + "start": 61984.84, + "end": 61987.06, + "probability": 0.9406 + }, + { + "start": 61988.38, + "end": 61989.83, + "probability": 0.9514 + }, + { + "start": 61990.5, + "end": 61994.7, + "probability": 0.9888 + }, + { + "start": 61995.58, + "end": 61997.16, + "probability": 0.9866 + }, + { + "start": 61997.34, + "end": 61998.81, + "probability": 0.8892 + }, + { + "start": 61999.12, + "end": 62000.02, + "probability": 0.7258 + }, + { + "start": 62000.82, + "end": 62006.8, + "probability": 0.9902 + }, + { + "start": 62008.24, + "end": 62009.26, + "probability": 0.8822 + }, + { + "start": 62010.02, + "end": 62011.68, + "probability": 0.9499 + }, + { + "start": 62012.94, + "end": 62015.62, + "probability": 0.9292 + }, + { + "start": 62016.64, + "end": 62019.82, + "probability": 0.8015 + }, + { + "start": 62020.96, + "end": 62023.92, + "probability": 0.9949 + }, + { + "start": 62024.16, + "end": 62027.74, + "probability": 0.9595 + }, + { + "start": 62028.64, + "end": 62029.44, + "probability": 0.895 + }, + { + "start": 62031.46, + "end": 62037.24, + "probability": 0.7951 + }, + { + "start": 62038.82, + "end": 62040.82, + "probability": 0.6928 + }, + { + "start": 62041.7, + "end": 62043.8, + "probability": 0.991 + }, + { + "start": 62045.14, + "end": 62047.58, + "probability": 0.9751 + }, + { + "start": 62048.96, + "end": 62050.84, + "probability": 0.9987 + }, + { + "start": 62051.88, + "end": 62055.14, + "probability": 0.9952 + }, + { + "start": 62056.06, + "end": 62057.24, + "probability": 0.8832 + }, + { + "start": 62057.5, + "end": 62058.07, + "probability": 0.9658 + }, + { + "start": 62061.04, + "end": 62061.74, + "probability": 0.9024 + }, + { + "start": 62062.9, + "end": 62063.5, + "probability": 0.5398 + }, + { + "start": 62063.6, + "end": 62071.04, + "probability": 0.9819 + }, + { + "start": 62072.08, + "end": 62072.92, + "probability": 0.5713 + }, + { + "start": 62072.98, + "end": 62075.32, + "probability": 0.7048 + }, + { + "start": 62076.32, + "end": 62077.69, + "probability": 0.8653 + }, + { + "start": 62078.46, + "end": 62082.88, + "probability": 0.9113 + }, + { + "start": 62083.78, + "end": 62085.34, + "probability": 0.9629 + }, + { + "start": 62085.94, + "end": 62088.88, + "probability": 0.9543 + }, + { + "start": 62089.88, + "end": 62093.1, + "probability": 0.9821 + }, + { + "start": 62094.7, + "end": 62099.04, + "probability": 0.8671 + }, + { + "start": 62099.82, + "end": 62100.26, + "probability": 0.5735 + }, + { + "start": 62100.36, + "end": 62102.16, + "probability": 0.9678 + }, + { + "start": 62103.22, + "end": 62105.26, + "probability": 0.8972 + }, + { + "start": 62106.1, + "end": 62110.14, + "probability": 0.7856 + }, + { + "start": 62110.96, + "end": 62114.54, + "probability": 0.9783 + }, + { + "start": 62115.38, + "end": 62116.6, + "probability": 0.9985 + }, + { + "start": 62116.72, + "end": 62119.35, + "probability": 0.9939 + }, + { + "start": 62119.84, + "end": 62123.56, + "probability": 0.9941 + }, + { + "start": 62125.52, + "end": 62129.52, + "probability": 0.9397 + }, + { + "start": 62129.52, + "end": 62135.8, + "probability": 0.9575 + }, + { + "start": 62136.96, + "end": 62142.64, + "probability": 0.9867 + }, + { + "start": 62143.32, + "end": 62144.56, + "probability": 0.8516 + }, + { + "start": 62145.52, + "end": 62149.26, + "probability": 0.9899 + }, + { + "start": 62149.28, + "end": 62153.9, + "probability": 0.9871 + }, + { + "start": 62154.72, + "end": 62161.42, + "probability": 0.8833 + }, + { + "start": 62161.92, + "end": 62162.48, + "probability": 0.5017 + }, + { + "start": 62163.88, + "end": 62166.76, + "probability": 0.8634 + }, + { + "start": 62167.4, + "end": 62170.03, + "probability": 0.9134 + }, + { + "start": 62170.98, + "end": 62172.9, + "probability": 0.475 + }, + { + "start": 62173.04, + "end": 62175.68, + "probability": 0.907 + }, + { + "start": 62176.34, + "end": 62179.14, + "probability": 0.7972 + }, + { + "start": 62179.64, + "end": 62179.9, + "probability": 0.4411 + }, + { + "start": 62180.08, + "end": 62182.12, + "probability": 0.7075 + }, + { + "start": 62182.24, + "end": 62183.14, + "probability": 0.6497 + }, + { + "start": 62184.0, + "end": 62187.2, + "probability": 0.8364 + }, + { + "start": 62187.26, + "end": 62188.44, + "probability": 0.9836 + }, + { + "start": 62188.62, + "end": 62190.0, + "probability": 0.8691 + }, + { + "start": 62191.24, + "end": 62197.24, + "probability": 0.9921 + }, + { + "start": 62198.16, + "end": 62200.2, + "probability": 0.9767 + }, + { + "start": 62200.88, + "end": 62203.48, + "probability": 0.898 + }, + { + "start": 62204.72, + "end": 62210.26, + "probability": 0.9938 + }, + { + "start": 62210.84, + "end": 62215.72, + "probability": 0.9218 + }, + { + "start": 62216.3, + "end": 62217.44, + "probability": 0.9844 + }, + { + "start": 62218.34, + "end": 62221.24, + "probability": 0.9144 + }, + { + "start": 62221.88, + "end": 62223.86, + "probability": 0.7689 + }, + { + "start": 62224.5, + "end": 62225.66, + "probability": 0.8737 + }, + { + "start": 62226.38, + "end": 62229.42, + "probability": 0.9222 + }, + { + "start": 62229.86, + "end": 62231.3, + "probability": 0.8971 + }, + { + "start": 62231.34, + "end": 62233.28, + "probability": 0.9968 + }, + { + "start": 62233.96, + "end": 62235.1, + "probability": 0.9827 + }, + { + "start": 62236.18, + "end": 62238.08, + "probability": 0.8313 + }, + { + "start": 62241.23, + "end": 62248.08, + "probability": 0.9775 + }, + { + "start": 62249.22, + "end": 62255.98, + "probability": 0.9805 + }, + { + "start": 62256.82, + "end": 62259.22, + "probability": 0.8359 + }, + { + "start": 62260.41, + "end": 62265.08, + "probability": 0.8608 + }, + { + "start": 62265.96, + "end": 62268.45, + "probability": 0.8108 + }, + { + "start": 62269.0, + "end": 62274.06, + "probability": 0.9577 + }, + { + "start": 62274.64, + "end": 62276.62, + "probability": 0.7065 + }, + { + "start": 62277.34, + "end": 62280.6, + "probability": 0.9976 + }, + { + "start": 62282.28, + "end": 62284.52, + "probability": 0.9944 + }, + { + "start": 62285.06, + "end": 62291.7, + "probability": 0.8661 + }, + { + "start": 62292.3, + "end": 62296.24, + "probability": 0.9965 + }, + { + "start": 62297.82, + "end": 62300.72, + "probability": 0.8532 + }, + { + "start": 62301.76, + "end": 62303.72, + "probability": 0.8598 + }, + { + "start": 62303.78, + "end": 62306.48, + "probability": 0.9534 + }, + { + "start": 62306.78, + "end": 62312.52, + "probability": 0.9863 + }, + { + "start": 62313.8, + "end": 62314.54, + "probability": 0.9476 + }, + { + "start": 62315.26, + "end": 62318.4, + "probability": 0.9286 + }, + { + "start": 62319.02, + "end": 62321.14, + "probability": 0.7097 + }, + { + "start": 62322.12, + "end": 62323.72, + "probability": 0.9119 + }, + { + "start": 62323.86, + "end": 62325.71, + "probability": 0.9618 + }, + { + "start": 62326.06, + "end": 62326.78, + "probability": 0.6411 + }, + { + "start": 62326.96, + "end": 62329.2, + "probability": 0.9886 + }, + { + "start": 62331.42, + "end": 62335.38, + "probability": 0.9431 + }, + { + "start": 62336.36, + "end": 62337.28, + "probability": 0.435 + }, + { + "start": 62337.88, + "end": 62344.06, + "probability": 0.9308 + }, + { + "start": 62344.06, + "end": 62346.7, + "probability": 0.9982 + }, + { + "start": 62347.48, + "end": 62349.22, + "probability": 0.9878 + }, + { + "start": 62350.58, + "end": 62351.12, + "probability": 0.8218 + }, + { + "start": 62351.3, + "end": 62356.94, + "probability": 0.9969 + }, + { + "start": 62356.96, + "end": 62362.46, + "probability": 0.9898 + }, + { + "start": 62363.04, + "end": 62364.66, + "probability": 0.6907 + }, + { + "start": 62365.72, + "end": 62367.06, + "probability": 0.7594 + }, + { + "start": 62368.24, + "end": 62368.84, + "probability": 0.0087 + }, + { + "start": 62370.86, + "end": 62372.54, + "probability": 0.4538 + }, + { + "start": 62372.82, + "end": 62373.36, + "probability": 0.3564 + }, + { + "start": 62373.8, + "end": 62376.82, + "probability": 0.6885 + }, + { + "start": 62377.6, + "end": 62383.64, + "probability": 0.9927 + }, + { + "start": 62383.7, + "end": 62384.44, + "probability": 0.8577 + }, + { + "start": 62385.42, + "end": 62389.09, + "probability": 0.9941 + }, + { + "start": 62390.08, + "end": 62390.88, + "probability": 0.9738 + }, + { + "start": 62391.74, + "end": 62393.02, + "probability": 0.9628 + }, + { + "start": 62394.28, + "end": 62396.95, + "probability": 0.9937 + }, + { + "start": 62401.88, + "end": 62408.68, + "probability": 0.9926 + }, + { + "start": 62409.36, + "end": 62411.1, + "probability": 0.8163 + }, + { + "start": 62412.12, + "end": 62414.94, + "probability": 0.999 + }, + { + "start": 62415.5, + "end": 62416.87, + "probability": 0.9958 + }, + { + "start": 62417.76, + "end": 62419.0, + "probability": 0.7341 + }, + { + "start": 62419.48, + "end": 62422.52, + "probability": 0.9778 + }, + { + "start": 62422.98, + "end": 62423.28, + "probability": 0.764 + }, + { + "start": 62424.58, + "end": 62427.54, + "probability": 0.6831 + }, + { + "start": 62428.2, + "end": 62430.96, + "probability": 0.9468 + }, + { + "start": 62431.0, + "end": 62431.86, + "probability": 0.4949 + }, + { + "start": 62432.04, + "end": 62435.06, + "probability": 0.9074 + }, + { + "start": 62441.18, + "end": 62443.38, + "probability": 0.7606 + }, + { + "start": 62449.64, + "end": 62450.58, + "probability": 0.516 + }, + { + "start": 62451.44, + "end": 62452.68, + "probability": 0.8114 + }, + { + "start": 62453.34, + "end": 62454.56, + "probability": 0.9738 + }, + { + "start": 62455.94, + "end": 62457.72, + "probability": 0.9875 + }, + { + "start": 62458.38, + "end": 62463.56, + "probability": 0.9883 + }, + { + "start": 62465.06, + "end": 62469.7, + "probability": 0.9879 + }, + { + "start": 62469.84, + "end": 62473.44, + "probability": 0.8968 + }, + { + "start": 62473.44, + "end": 62476.24, + "probability": 0.956 + }, + { + "start": 62477.07, + "end": 62480.14, + "probability": 0.8124 + }, + { + "start": 62480.14, + "end": 62483.46, + "probability": 0.8851 + }, + { + "start": 62483.9, + "end": 62487.88, + "probability": 0.9844 + }, + { + "start": 62488.14, + "end": 62491.46, + "probability": 0.9043 + }, + { + "start": 62492.46, + "end": 62494.58, + "probability": 0.8632 + }, + { + "start": 62495.34, + "end": 62495.9, + "probability": 0.835 + }, + { + "start": 62496.5, + "end": 62499.5, + "probability": 0.9851 + }, + { + "start": 62500.82, + "end": 62501.92, + "probability": 0.9419 + }, + { + "start": 62502.0, + "end": 62506.34, + "probability": 0.9708 + }, + { + "start": 62506.66, + "end": 62507.76, + "probability": 0.8115 + }, + { + "start": 62508.06, + "end": 62510.28, + "probability": 0.9309 + }, + { + "start": 62510.68, + "end": 62513.44, + "probability": 0.9236 + }, + { + "start": 62513.84, + "end": 62517.52, + "probability": 0.9882 + }, + { + "start": 62518.48, + "end": 62525.28, + "probability": 0.9852 + }, + { + "start": 62526.92, + "end": 62531.48, + "probability": 0.7668 + }, + { + "start": 62532.02, + "end": 62534.84, + "probability": 0.9404 + }, + { + "start": 62535.46, + "end": 62539.46, + "probability": 0.6761 + }, + { + "start": 62539.86, + "end": 62540.78, + "probability": 0.9613 + }, + { + "start": 62541.76, + "end": 62542.34, + "probability": 0.6257 + }, + { + "start": 62542.4, + "end": 62549.96, + "probability": 0.9758 + }, + { + "start": 62550.44, + "end": 62553.42, + "probability": 0.864 + }, + { + "start": 62553.92, + "end": 62559.28, + "probability": 0.9881 + }, + { + "start": 62561.56, + "end": 62565.16, + "probability": 0.9939 + }, + { + "start": 62565.16, + "end": 62568.4, + "probability": 0.9983 + }, + { + "start": 62569.22, + "end": 62571.26, + "probability": 0.9963 + }, + { + "start": 62571.68, + "end": 62573.94, + "probability": 0.9966 + }, + { + "start": 62575.22, + "end": 62576.93, + "probability": 0.7758 + }, + { + "start": 62577.48, + "end": 62578.48, + "probability": 0.934 + }, + { + "start": 62579.32, + "end": 62580.26, + "probability": 0.9264 + }, + { + "start": 62581.16, + "end": 62584.14, + "probability": 0.9872 + }, + { + "start": 62584.58, + "end": 62587.54, + "probability": 0.9901 + }, + { + "start": 62588.58, + "end": 62592.92, + "probability": 0.9622 + }, + { + "start": 62593.46, + "end": 62595.08, + "probability": 0.9899 + }, + { + "start": 62595.5, + "end": 62598.42, + "probability": 0.9268 + }, + { + "start": 62599.56, + "end": 62602.82, + "probability": 0.9863 + }, + { + "start": 62603.34, + "end": 62604.86, + "probability": 0.9779 + }, + { + "start": 62605.96, + "end": 62608.82, + "probability": 0.9908 + }, + { + "start": 62609.94, + "end": 62611.78, + "probability": 0.8765 + }, + { + "start": 62612.18, + "end": 62612.78, + "probability": 0.8916 + }, + { + "start": 62612.88, + "end": 62613.38, + "probability": 0.7186 + }, + { + "start": 62613.58, + "end": 62614.4, + "probability": 0.887 + }, + { + "start": 62615.54, + "end": 62618.52, + "probability": 0.9343 + }, + { + "start": 62618.9, + "end": 62619.66, + "probability": 0.6752 + }, + { + "start": 62619.78, + "end": 62622.18, + "probability": 0.9437 + }, + { + "start": 62623.24, + "end": 62623.98, + "probability": 0.925 + }, + { + "start": 62624.62, + "end": 62628.88, + "probability": 0.9932 + }, + { + "start": 62629.94, + "end": 62634.92, + "probability": 0.9968 + }, + { + "start": 62636.52, + "end": 62638.1, + "probability": 0.9182 + }, + { + "start": 62638.34, + "end": 62639.8, + "probability": 0.9889 + }, + { + "start": 62639.86, + "end": 62641.3, + "probability": 0.9022 + }, + { + "start": 62641.98, + "end": 62644.84, + "probability": 0.9094 + }, + { + "start": 62645.78, + "end": 62647.76, + "probability": 0.9395 + }, + { + "start": 62648.22, + "end": 62650.04, + "probability": 0.9709 + }, + { + "start": 62651.02, + "end": 62655.54, + "probability": 0.8958 + }, + { + "start": 62655.66, + "end": 62655.9, + "probability": 0.7884 + }, + { + "start": 62656.46, + "end": 62657.34, + "probability": 0.991 + }, + { + "start": 62658.22, + "end": 62658.56, + "probability": 0.3052 + }, + { + "start": 62658.82, + "end": 62659.52, + "probability": 0.7016 + }, + { + "start": 62660.16, + "end": 62661.04, + "probability": 0.9736 + }, + { + "start": 62662.4, + "end": 62663.38, + "probability": 0.9579 + }, + { + "start": 62663.52, + "end": 62664.74, + "probability": 0.8096 + }, + { + "start": 62665.12, + "end": 62666.2, + "probability": 0.7566 + }, + { + "start": 62666.6, + "end": 62668.4, + "probability": 0.9971 + }, + { + "start": 62669.04, + "end": 62670.66, + "probability": 0.9928 + }, + { + "start": 62671.22, + "end": 62672.24, + "probability": 0.9922 + }, + { + "start": 62672.96, + "end": 62676.76, + "probability": 0.984 + }, + { + "start": 62678.54, + "end": 62679.58, + "probability": 0.866 + }, + { + "start": 62680.08, + "end": 62683.18, + "probability": 0.9798 + }, + { + "start": 62683.52, + "end": 62684.46, + "probability": 0.952 + }, + { + "start": 62684.96, + "end": 62688.66, + "probability": 0.8671 + }, + { + "start": 62688.9, + "end": 62689.99, + "probability": 0.5738 + }, + { + "start": 62691.22, + "end": 62695.3, + "probability": 0.9946 + }, + { + "start": 62696.5, + "end": 62701.66, + "probability": 0.8235 + }, + { + "start": 62701.76, + "end": 62703.2, + "probability": 0.9546 + }, + { + "start": 62704.18, + "end": 62708.96, + "probability": 0.9741 + }, + { + "start": 62710.46, + "end": 62710.62, + "probability": 0.3539 + }, + { + "start": 62710.7, + "end": 62711.65, + "probability": 0.91 + }, + { + "start": 62711.88, + "end": 62713.92, + "probability": 0.9692 + }, + { + "start": 62714.62, + "end": 62718.02, + "probability": 0.9972 + }, + { + "start": 62718.88, + "end": 62721.18, + "probability": 0.9827 + }, + { + "start": 62723.18, + "end": 62727.1, + "probability": 0.9819 + }, + { + "start": 62728.8, + "end": 62731.34, + "probability": 0.8302 + }, + { + "start": 62731.8, + "end": 62734.98, + "probability": 0.999 + }, + { + "start": 62734.98, + "end": 62737.26, + "probability": 0.999 + }, + { + "start": 62738.36, + "end": 62741.58, + "probability": 0.9615 + }, + { + "start": 62742.1, + "end": 62743.18, + "probability": 0.8174 + }, + { + "start": 62743.66, + "end": 62746.0, + "probability": 0.9932 + }, + { + "start": 62747.14, + "end": 62750.9, + "probability": 0.9946 + }, + { + "start": 62751.82, + "end": 62752.3, + "probability": 0.7616 + }, + { + "start": 62752.8, + "end": 62755.3, + "probability": 0.9902 + }, + { + "start": 62755.3, + "end": 62759.0, + "probability": 0.9993 + }, + { + "start": 62759.3, + "end": 62760.6, + "probability": 0.8995 + }, + { + "start": 62760.98, + "end": 62765.32, + "probability": 0.9817 + }, + { + "start": 62765.5, + "end": 62769.64, + "probability": 0.9974 + }, + { + "start": 62770.9, + "end": 62773.36, + "probability": 0.9547 + }, + { + "start": 62774.04, + "end": 62775.0, + "probability": 0.9467 + }, + { + "start": 62775.7, + "end": 62779.46, + "probability": 0.9995 + }, + { + "start": 62780.56, + "end": 62781.82, + "probability": 0.9886 + }, + { + "start": 62782.4, + "end": 62783.42, + "probability": 0.9792 + }, + { + "start": 62783.74, + "end": 62785.7, + "probability": 0.9887 + }, + { + "start": 62786.06, + "end": 62786.62, + "probability": 0.8795 + }, + { + "start": 62786.78, + "end": 62787.66, + "probability": 0.9847 + }, + { + "start": 62788.2, + "end": 62788.94, + "probability": 0.7739 + }, + { + "start": 62789.28, + "end": 62792.11, + "probability": 0.9884 + }, + { + "start": 62793.04, + "end": 62795.56, + "probability": 0.9614 + }, + { + "start": 62795.68, + "end": 62796.68, + "probability": 0.916 + }, + { + "start": 62798.0, + "end": 62798.88, + "probability": 0.7998 + }, + { + "start": 62799.44, + "end": 62800.24, + "probability": 0.9156 + }, + { + "start": 62801.9, + "end": 62803.9, + "probability": 0.8006 + }, + { + "start": 62804.44, + "end": 62805.46, + "probability": 0.9735 + }, + { + "start": 62806.22, + "end": 62807.82, + "probability": 0.7925 + }, + { + "start": 62808.26, + "end": 62811.58, + "probability": 0.9934 + }, + { + "start": 62811.84, + "end": 62813.5, + "probability": 0.9894 + }, + { + "start": 62814.34, + "end": 62818.24, + "probability": 0.9774 + }, + { + "start": 62819.02, + "end": 62820.0, + "probability": 0.9858 + }, + { + "start": 62820.7, + "end": 62821.44, + "probability": 0.8735 + }, + { + "start": 62821.56, + "end": 62825.3, + "probability": 0.9215 + }, + { + "start": 62825.46, + "end": 62827.16, + "probability": 0.8674 + }, + { + "start": 62827.46, + "end": 62830.17, + "probability": 0.9983 + }, + { + "start": 62830.5, + "end": 62832.64, + "probability": 0.9498 + }, + { + "start": 62833.26, + "end": 62834.6, + "probability": 0.9546 + }, + { + "start": 62834.74, + "end": 62835.9, + "probability": 0.9707 + }, + { + "start": 62836.28, + "end": 62838.16, + "probability": 0.9768 + }, + { + "start": 62838.7, + "end": 62839.04, + "probability": 0.7996 + }, + { + "start": 62840.34, + "end": 62843.26, + "probability": 0.9246 + }, + { + "start": 62843.44, + "end": 62845.68, + "probability": 0.9587 + }, + { + "start": 62845.78, + "end": 62846.48, + "probability": 0.3895 + }, + { + "start": 62846.56, + "end": 62848.62, + "probability": 0.9093 + }, + { + "start": 62851.82, + "end": 62852.0, + "probability": 0.1302 + }, + { + "start": 62852.72, + "end": 62853.42, + "probability": 0.0933 + }, + { + "start": 62853.58, + "end": 62853.58, + "probability": 0.0229 + }, + { + "start": 62853.58, + "end": 62853.92, + "probability": 0.549 + }, + { + "start": 62854.2, + "end": 62854.84, + "probability": 0.5345 + }, + { + "start": 62855.18, + "end": 62857.7, + "probability": 0.8373 + }, + { + "start": 62858.44, + "end": 62859.74, + "probability": 0.7827 + }, + { + "start": 62860.02, + "end": 62861.96, + "probability": 0.8306 + }, + { + "start": 62863.24, + "end": 62865.08, + "probability": 0.8882 + }, + { + "start": 62865.18, + "end": 62868.05, + "probability": 0.8507 + }, + { + "start": 62870.28, + "end": 62871.28, + "probability": 0.8002 + }, + { + "start": 62872.36, + "end": 62874.82, + "probability": 0.9007 + }, + { + "start": 62875.56, + "end": 62876.92, + "probability": 0.9891 + }, + { + "start": 62877.62, + "end": 62878.14, + "probability": 0.8654 + }, + { + "start": 62878.68, + "end": 62887.88, + "probability": 0.8701 + }, + { + "start": 62887.88, + "end": 62887.88, + "probability": 0.3398 + }, + { + "start": 62887.88, + "end": 62887.88, + "probability": 0.1395 + }, + { + "start": 62887.88, + "end": 62889.54, + "probability": 0.728 + }, + { + "start": 62889.62, + "end": 62890.88, + "probability": 0.522 + }, + { + "start": 62891.4, + "end": 62892.23, + "probability": 0.8385 + }, + { + "start": 62893.06, + "end": 62894.24, + "probability": 0.6568 + }, + { + "start": 62894.96, + "end": 62897.3, + "probability": 0.5309 + }, + { + "start": 62898.02, + "end": 62898.5, + "probability": 0.1206 + }, + { + "start": 62898.5, + "end": 62898.56, + "probability": 0.1281 + }, + { + "start": 62898.56, + "end": 62903.67, + "probability": 0.9287 + }, + { + "start": 62905.93, + "end": 62908.16, + "probability": 0.7043 + }, + { + "start": 62908.18, + "end": 62909.5, + "probability": 0.269 + }, + { + "start": 62910.62, + "end": 62912.92, + "probability": 0.0173 + }, + { + "start": 62912.92, + "end": 62914.26, + "probability": 0.6864 + }, + { + "start": 62914.34, + "end": 62914.54, + "probability": 0.4148 + }, + { + "start": 62914.56, + "end": 62918.72, + "probability": 0.8448 + }, + { + "start": 62918.88, + "end": 62926.6, + "probability": 0.986 + }, + { + "start": 62927.86, + "end": 62936.4, + "probability": 0.9601 + }, + { + "start": 62937.44, + "end": 62943.34, + "probability": 0.989 + }, + { + "start": 62944.26, + "end": 62945.6, + "probability": 0.8367 + }, + { + "start": 62946.74, + "end": 62950.94, + "probability": 0.9789 + }, + { + "start": 62951.5, + "end": 62953.06, + "probability": 0.8735 + }, + { + "start": 62954.7, + "end": 62956.86, + "probability": 0.9569 + }, + { + "start": 62958.3, + "end": 62961.24, + "probability": 0.7275 + }, + { + "start": 62962.0, + "end": 62962.78, + "probability": 0.5416 + }, + { + "start": 62963.5, + "end": 62965.46, + "probability": 0.9472 + }, + { + "start": 62966.16, + "end": 62968.5, + "probability": 0.8734 + }, + { + "start": 62969.0, + "end": 62969.76, + "probability": 0.8931 + }, + { + "start": 62969.86, + "end": 62971.14, + "probability": 0.9441 + }, + { + "start": 62972.08, + "end": 62973.9, + "probability": 0.9125 + }, + { + "start": 62974.64, + "end": 62975.71, + "probability": 0.8548 + }, + { + "start": 62975.84, + "end": 62976.74, + "probability": 0.9894 + }, + { + "start": 62977.1, + "end": 62978.58, + "probability": 0.9464 + }, + { + "start": 62978.94, + "end": 62979.88, + "probability": 0.969 + }, + { + "start": 62980.02, + "end": 62981.21, + "probability": 0.7749 + }, + { + "start": 62981.64, + "end": 62982.6, + "probability": 0.9187 + }, + { + "start": 62982.68, + "end": 62983.66, + "probability": 0.895 + }, + { + "start": 62983.8, + "end": 62985.08, + "probability": 0.7784 + }, + { + "start": 62985.86, + "end": 62988.0, + "probability": 0.9289 + }, + { + "start": 62988.6, + "end": 62989.62, + "probability": 0.7179 + }, + { + "start": 62989.68, + "end": 62990.54, + "probability": 0.5088 + }, + { + "start": 62990.86, + "end": 62991.78, + "probability": 0.8948 + }, + { + "start": 62991.84, + "end": 62992.92, + "probability": 0.702 + }, + { + "start": 62993.6, + "end": 62996.0, + "probability": 0.9608 + }, + { + "start": 62997.02, + "end": 62997.46, + "probability": 0.0161 + }, + { + "start": 62998.12, + "end": 62999.28, + "probability": 0.1916 + }, + { + "start": 62999.28, + "end": 63000.24, + "probability": 0.5612 + }, + { + "start": 63000.38, + "end": 63005.36, + "probability": 0.9304 + }, + { + "start": 63005.86, + "end": 63009.74, + "probability": 0.8798 + }, + { + "start": 63010.22, + "end": 63012.83, + "probability": 0.9852 + }, + { + "start": 63013.26, + "end": 63016.3, + "probability": 0.9308 + }, + { + "start": 63017.33, + "end": 63019.66, + "probability": 0.4673 + }, + { + "start": 63019.9, + "end": 63021.98, + "probability": 0.6943 + }, + { + "start": 63022.68, + "end": 63025.32, + "probability": 0.868 + }, + { + "start": 63026.12, + "end": 63027.3, + "probability": 0.733 + }, + { + "start": 63027.46, + "end": 63030.96, + "probability": 0.7312 + }, + { + "start": 63031.2, + "end": 63032.14, + "probability": 0.795 + }, + { + "start": 63032.7, + "end": 63033.46, + "probability": 0.7498 + }, + { + "start": 63033.5, + "end": 63034.7, + "probability": 0.9805 + }, + { + "start": 63035.06, + "end": 63036.6, + "probability": 0.8979 + }, + { + "start": 63037.44, + "end": 63041.2, + "probability": 0.9836 + }, + { + "start": 63041.92, + "end": 63046.7, + "probability": 0.9915 + }, + { + "start": 63046.86, + "end": 63049.25, + "probability": 0.9456 + }, + { + "start": 63050.38, + "end": 63051.34, + "probability": 0.6739 + }, + { + "start": 63051.6, + "end": 63055.75, + "probability": 0.995 + }, + { + "start": 63056.3, + "end": 63058.04, + "probability": 0.9861 + }, + { + "start": 63058.48, + "end": 63059.98, + "probability": 0.9467 + }, + { + "start": 63060.92, + "end": 63064.73, + "probability": 0.5212 + }, + { + "start": 63065.36, + "end": 63066.26, + "probability": 0.754 + }, + { + "start": 63066.68, + "end": 63068.36, + "probability": 0.8611 + }, + { + "start": 63068.4, + "end": 63069.58, + "probability": 0.9057 + }, + { + "start": 63070.04, + "end": 63071.14, + "probability": 0.868 + }, + { + "start": 63071.58, + "end": 63073.64, + "probability": 0.9523 + }, + { + "start": 63073.72, + "end": 63074.92, + "probability": 0.9806 + }, + { + "start": 63075.04, + "end": 63077.83, + "probability": 0.971 + }, + { + "start": 63077.9, + "end": 63078.94, + "probability": 0.8804 + }, + { + "start": 63079.66, + "end": 63081.38, + "probability": 0.853 + }, + { + "start": 63082.06, + "end": 63087.84, + "probability": 0.8605 + }, + { + "start": 63088.6, + "end": 63092.46, + "probability": 0.9707 + }, + { + "start": 63092.88, + "end": 63095.7, + "probability": 0.9402 + }, + { + "start": 63096.26, + "end": 63098.68, + "probability": 0.9847 + }, + { + "start": 63099.24, + "end": 63101.72, + "probability": 0.8823 + }, + { + "start": 63102.44, + "end": 63105.26, + "probability": 0.9951 + }, + { + "start": 63105.58, + "end": 63108.36, + "probability": 0.7479 + }, + { + "start": 63108.68, + "end": 63109.46, + "probability": 0.6086 + }, + { + "start": 63109.92, + "end": 63110.34, + "probability": 0.8558 + }, + { + "start": 63110.36, + "end": 63111.18, + "probability": 0.7272 + }, + { + "start": 63112.44, + "end": 63113.32, + "probability": 0.9763 + }, + { + "start": 63113.42, + "end": 63115.22, + "probability": 0.9917 + }, + { + "start": 63115.72, + "end": 63118.0, + "probability": 0.9872 + }, + { + "start": 63118.82, + "end": 63121.39, + "probability": 0.9837 + }, + { + "start": 63122.22, + "end": 63124.68, + "probability": 0.9699 + }, + { + "start": 63125.3, + "end": 63125.98, + "probability": 0.9093 + }, + { + "start": 63126.1, + "end": 63128.06, + "probability": 0.8867 + }, + { + "start": 63128.54, + "end": 63132.0, + "probability": 0.9793 + }, + { + "start": 63132.1, + "end": 63137.64, + "probability": 0.9412 + }, + { + "start": 63138.64, + "end": 63140.24, + "probability": 0.8976 + }, + { + "start": 63140.54, + "end": 63143.42, + "probability": 0.9738 + }, + { + "start": 63143.46, + "end": 63146.84, + "probability": 0.9948 + }, + { + "start": 63147.6, + "end": 63151.84, + "probability": 0.944 + }, + { + "start": 63151.84, + "end": 63153.3, + "probability": 0.8727 + }, + { + "start": 63153.56, + "end": 63154.74, + "probability": 0.6675 + }, + { + "start": 63155.76, + "end": 63158.76, + "probability": 0.6877 + }, + { + "start": 63159.24, + "end": 63165.22, + "probability": 0.8049 + }, + { + "start": 63165.46, + "end": 63168.74, + "probability": 0.9836 + }, + { + "start": 63169.48, + "end": 63174.1, + "probability": 0.9832 + }, + { + "start": 63175.14, + "end": 63177.16, + "probability": 0.872 + }, + { + "start": 63177.84, + "end": 63178.76, + "probability": 0.5126 + }, + { + "start": 63179.66, + "end": 63180.68, + "probability": 0.5507 + }, + { + "start": 63180.82, + "end": 63181.84, + "probability": 0.8495 + }, + { + "start": 63182.28, + "end": 63187.28, + "probability": 0.7642 + }, + { + "start": 63188.34, + "end": 63190.5, + "probability": 0.9487 + }, + { + "start": 63191.16, + "end": 63192.2, + "probability": 0.9904 + }, + { + "start": 63192.78, + "end": 63194.24, + "probability": 0.9341 + }, + { + "start": 63195.38, + "end": 63196.66, + "probability": 0.6757 + }, + { + "start": 63196.78, + "end": 63199.94, + "probability": 0.979 + }, + { + "start": 63200.42, + "end": 63202.66, + "probability": 0.749 + }, + { + "start": 63203.06, + "end": 63204.42, + "probability": 0.804 + }, + { + "start": 63205.04, + "end": 63209.3, + "probability": 0.7922 + }, + { + "start": 63210.08, + "end": 63212.36, + "probability": 0.9387 + }, + { + "start": 63213.42, + "end": 63213.9, + "probability": 0.8815 + }, + { + "start": 63214.0, + "end": 63217.24, + "probability": 0.936 + }, + { + "start": 63217.82, + "end": 63219.92, + "probability": 0.8846 + }, + { + "start": 63220.84, + "end": 63222.1, + "probability": 0.8911 + }, + { + "start": 63223.5, + "end": 63225.36, + "probability": 0.9812 + }, + { + "start": 63226.5, + "end": 63230.16, + "probability": 0.9851 + }, + { + "start": 63230.94, + "end": 63232.08, + "probability": 0.5731 + }, + { + "start": 63232.18, + "end": 63233.76, + "probability": 0.7327 + }, + { + "start": 63234.38, + "end": 63236.94, + "probability": 0.7721 + }, + { + "start": 63237.54, + "end": 63239.48, + "probability": 0.9269 + }, + { + "start": 63239.58, + "end": 63243.94, + "probability": 0.9616 + }, + { + "start": 63244.92, + "end": 63250.24, + "probability": 0.9718 + }, + { + "start": 63250.96, + "end": 63254.34, + "probability": 0.8771 + }, + { + "start": 63254.9, + "end": 63259.82, + "probability": 0.9487 + }, + { + "start": 63260.38, + "end": 63263.72, + "probability": 0.917 + }, + { + "start": 63264.16, + "end": 63268.88, + "probability": 0.7711 + }, + { + "start": 63268.98, + "end": 63270.56, + "probability": 0.5018 + }, + { + "start": 63272.08, + "end": 63274.68, + "probability": 0.9944 + }, + { + "start": 63275.22, + "end": 63276.36, + "probability": 0.9603 + }, + { + "start": 63277.44, + "end": 63280.22, + "probability": 0.8847 + }, + { + "start": 63280.9, + "end": 63281.54, + "probability": 0.4078 + }, + { + "start": 63282.06, + "end": 63282.68, + "probability": 0.4583 + }, + { + "start": 63284.74, + "end": 63287.16, + "probability": 0.9645 + }, + { + "start": 63287.7, + "end": 63288.46, + "probability": 0.9633 + }, + { + "start": 63289.96, + "end": 63292.6, + "probability": 0.998 + }, + { + "start": 63293.64, + "end": 63296.5, + "probability": 0.973 + }, + { + "start": 63296.78, + "end": 63297.54, + "probability": 0.3779 + }, + { + "start": 63297.66, + "end": 63298.84, + "probability": 0.9798 + }, + { + "start": 63299.32, + "end": 63304.62, + "probability": 0.909 + }, + { + "start": 63305.54, + "end": 63307.86, + "probability": 0.9168 + }, + { + "start": 63308.48, + "end": 63312.38, + "probability": 0.9941 + }, + { + "start": 63312.38, + "end": 63314.94, + "probability": 0.9936 + }, + { + "start": 63315.62, + "end": 63317.46, + "probability": 0.693 + }, + { + "start": 63318.04, + "end": 63319.84, + "probability": 0.686 + }, + { + "start": 63320.92, + "end": 63324.52, + "probability": 0.9854 + }, + { + "start": 63325.84, + "end": 63328.04, + "probability": 0.9825 + }, + { + "start": 63328.12, + "end": 63328.68, + "probability": 0.8046 + }, + { + "start": 63329.06, + "end": 63329.9, + "probability": 0.9349 + }, + { + "start": 63329.94, + "end": 63330.78, + "probability": 0.697 + }, + { + "start": 63330.9, + "end": 63333.7, + "probability": 0.9938 + }, + { + "start": 63333.7, + "end": 63336.52, + "probability": 0.9974 + }, + { + "start": 63337.64, + "end": 63338.36, + "probability": 0.6817 + }, + { + "start": 63338.38, + "end": 63339.6, + "probability": 0.872 + }, + { + "start": 63340.74, + "end": 63343.02, + "probability": 0.7597 + }, + { + "start": 63343.86, + "end": 63346.0, + "probability": 0.8312 + }, + { + "start": 63346.96, + "end": 63349.02, + "probability": 0.6202 + }, + { + "start": 63350.12, + "end": 63355.18, + "probability": 0.9406 + }, + { + "start": 63356.0, + "end": 63356.9, + "probability": 0.6741 + }, + { + "start": 63357.02, + "end": 63357.84, + "probability": 0.9887 + }, + { + "start": 63358.5, + "end": 63363.64, + "probability": 0.8663 + }, + { + "start": 63363.8, + "end": 63364.86, + "probability": 0.9678 + }, + { + "start": 63365.48, + "end": 63368.26, + "probability": 0.938 + }, + { + "start": 63368.8, + "end": 63370.1, + "probability": 0.7379 + }, + { + "start": 63370.76, + "end": 63372.36, + "probability": 0.8948 + }, + { + "start": 63372.48, + "end": 63376.06, + "probability": 0.8753 + }, + { + "start": 63376.58, + "end": 63377.0, + "probability": 0.5029 + }, + { + "start": 63377.06, + "end": 63378.44, + "probability": 0.7427 + }, + { + "start": 63378.5, + "end": 63381.5, + "probability": 0.9261 + }, + { + "start": 63382.04, + "end": 63385.58, + "probability": 0.7023 + }, + { + "start": 63386.3, + "end": 63387.68, + "probability": 0.9427 + }, + { + "start": 63388.02, + "end": 63389.2, + "probability": 0.8871 + }, + { + "start": 63389.66, + "end": 63390.8, + "probability": 0.8717 + }, + { + "start": 63391.9, + "end": 63393.28, + "probability": 0.8605 + }, + { + "start": 63393.52, + "end": 63396.58, + "probability": 0.7172 + }, + { + "start": 63396.88, + "end": 63401.38, + "probability": 0.9676 + }, + { + "start": 63401.8, + "end": 63403.28, + "probability": 0.9771 + }, + { + "start": 63403.9, + "end": 63405.1, + "probability": 0.7509 + }, + { + "start": 63406.06, + "end": 63408.4, + "probability": 0.9536 + }, + { + "start": 63408.94, + "end": 63413.08, + "probability": 0.9813 + }, + { + "start": 63413.66, + "end": 63416.66, + "probability": 0.9675 + }, + { + "start": 63417.32, + "end": 63419.16, + "probability": 0.8379 + }, + { + "start": 63420.32, + "end": 63421.44, + "probability": 0.6865 + }, + { + "start": 63422.52, + "end": 63423.42, + "probability": 0.4596 + }, + { + "start": 63424.42, + "end": 63426.1, + "probability": 0.8996 + }, + { + "start": 63426.68, + "end": 63428.04, + "probability": 0.9148 + }, + { + "start": 63428.2, + "end": 63431.28, + "probability": 0.7784 + }, + { + "start": 63432.24, + "end": 63435.56, + "probability": 0.9863 + }, + { + "start": 63435.86, + "end": 63438.96, + "probability": 0.8558 + }, + { + "start": 63440.1, + "end": 63442.14, + "probability": 0.7725 + }, + { + "start": 63442.76, + "end": 63443.42, + "probability": 0.7934 + }, + { + "start": 63444.82, + "end": 63447.46, + "probability": 0.9902 + }, + { + "start": 63447.66, + "end": 63448.42, + "probability": 0.8621 + }, + { + "start": 63448.8, + "end": 63451.46, + "probability": 0.7874 + }, + { + "start": 63451.64, + "end": 63454.2, + "probability": 0.6377 + }, + { + "start": 63454.58, + "end": 63456.38, + "probability": 0.8918 + }, + { + "start": 63481.6, + "end": 63482.04, + "probability": 0.6523 + }, + { + "start": 63482.16, + "end": 63485.84, + "probability": 0.9878 + }, + { + "start": 63485.98, + "end": 63487.88, + "probability": 0.975 + }, + { + "start": 63489.34, + "end": 63491.38, + "probability": 0.7116 + }, + { + "start": 63492.24, + "end": 63493.99, + "probability": 0.8695 + }, + { + "start": 63494.62, + "end": 63497.18, + "probability": 0.9917 + }, + { + "start": 63498.0, + "end": 63503.82, + "probability": 0.9931 + }, + { + "start": 63504.44, + "end": 63506.38, + "probability": 0.9756 + }, + { + "start": 63506.96, + "end": 63511.72, + "probability": 0.9897 + }, + { + "start": 63512.64, + "end": 63513.84, + "probability": 0.841 + }, + { + "start": 63514.4, + "end": 63518.4, + "probability": 0.9984 + }, + { + "start": 63519.22, + "end": 63523.24, + "probability": 0.9911 + }, + { + "start": 63523.72, + "end": 63526.3, + "probability": 0.9987 + }, + { + "start": 63527.42, + "end": 63527.98, + "probability": 0.7319 + }, + { + "start": 63528.18, + "end": 63528.6, + "probability": 0.7812 + }, + { + "start": 63528.66, + "end": 63529.52, + "probability": 0.7895 + }, + { + "start": 63529.66, + "end": 63532.7, + "probability": 0.9838 + }, + { + "start": 63533.42, + "end": 63536.32, + "probability": 0.9802 + }, + { + "start": 63537.16, + "end": 63538.24, + "probability": 0.8594 + }, + { + "start": 63538.88, + "end": 63543.66, + "probability": 0.9724 + }, + { + "start": 63544.66, + "end": 63545.58, + "probability": 0.9095 + }, + { + "start": 63546.34, + "end": 63549.02, + "probability": 0.9856 + }, + { + "start": 63549.94, + "end": 63556.5, + "probability": 0.9771 + }, + { + "start": 63557.68, + "end": 63559.82, + "probability": 0.9858 + }, + { + "start": 63560.76, + "end": 63564.72, + "probability": 0.9935 + }, + { + "start": 63564.86, + "end": 63565.68, + "probability": 0.786 + }, + { + "start": 63565.76, + "end": 63566.66, + "probability": 0.8182 + }, + { + "start": 63567.62, + "end": 63569.7, + "probability": 0.9544 + }, + { + "start": 63570.02, + "end": 63571.18, + "probability": 0.9635 + }, + { + "start": 63571.52, + "end": 63573.52, + "probability": 0.9938 + }, + { + "start": 63574.78, + "end": 63575.64, + "probability": 0.9838 + }, + { + "start": 63576.88, + "end": 63582.3, + "probability": 0.9948 + }, + { + "start": 63583.14, + "end": 63585.12, + "probability": 0.9981 + }, + { + "start": 63586.18, + "end": 63589.24, + "probability": 0.8935 + }, + { + "start": 63590.78, + "end": 63593.98, + "probability": 0.9126 + }, + { + "start": 63594.84, + "end": 63597.22, + "probability": 0.9961 + }, + { + "start": 63597.28, + "end": 63598.46, + "probability": 0.7463 + }, + { + "start": 63599.38, + "end": 63603.4, + "probability": 0.9951 + }, + { + "start": 63603.82, + "end": 63605.53, + "probability": 0.9435 + }, + { + "start": 63606.74, + "end": 63609.0, + "probability": 0.9972 + }, + { + "start": 63609.88, + "end": 63616.96, + "probability": 0.9946 + }, + { + "start": 63618.3, + "end": 63619.68, + "probability": 0.8993 + }, + { + "start": 63619.92, + "end": 63623.38, + "probability": 0.8994 + }, + { + "start": 63623.76, + "end": 63625.04, + "probability": 0.751 + }, + { + "start": 63626.68, + "end": 63628.01, + "probability": 0.7706 + }, + { + "start": 63630.04, + "end": 63633.5, + "probability": 0.9863 + }, + { + "start": 63634.18, + "end": 63635.8, + "probability": 0.8987 + }, + { + "start": 63636.64, + "end": 63639.52, + "probability": 0.9689 + }, + { + "start": 63640.08, + "end": 63641.34, + "probability": 0.9812 + }, + { + "start": 63642.42, + "end": 63643.94, + "probability": 0.9644 + }, + { + "start": 63644.14, + "end": 63648.16, + "probability": 0.9705 + }, + { + "start": 63649.04, + "end": 63649.94, + "probability": 0.9521 + }, + { + "start": 63650.74, + "end": 63654.86, + "probability": 0.95 + }, + { + "start": 63655.98, + "end": 63656.64, + "probability": 0.0087 + }, + { + "start": 63656.64, + "end": 63657.92, + "probability": 0.3991 + }, + { + "start": 63658.6, + "end": 63661.82, + "probability": 0.8187 + }, + { + "start": 63662.98, + "end": 63664.52, + "probability": 0.8942 + }, + { + "start": 63666.28, + "end": 63670.48, + "probability": 0.9863 + }, + { + "start": 63671.34, + "end": 63672.48, + "probability": 0.9219 + }, + { + "start": 63673.36, + "end": 63675.4, + "probability": 0.8045 + }, + { + "start": 63675.58, + "end": 63679.48, + "probability": 0.9289 + }, + { + "start": 63679.64, + "end": 63680.8, + "probability": 0.9651 + }, + { + "start": 63682.2, + "end": 63683.34, + "probability": 0.8826 + }, + { + "start": 63683.44, + "end": 63688.86, + "probability": 0.9757 + }, + { + "start": 63688.86, + "end": 63694.1, + "probability": 0.9997 + }, + { + "start": 63694.94, + "end": 63697.12, + "probability": 0.998 + }, + { + "start": 63697.54, + "end": 63699.66, + "probability": 0.9989 + }, + { + "start": 63700.14, + "end": 63703.18, + "probability": 0.9993 + }, + { + "start": 63703.92, + "end": 63708.22, + "probability": 0.9932 + }, + { + "start": 63708.22, + "end": 63712.32, + "probability": 0.9985 + }, + { + "start": 63712.9, + "end": 63713.76, + "probability": 0.5464 + }, + { + "start": 63714.32, + "end": 63716.64, + "probability": 0.813 + }, + { + "start": 63717.02, + "end": 63718.08, + "probability": 0.8405 + }, + { + "start": 63718.18, + "end": 63719.68, + "probability": 0.9834 + }, + { + "start": 63720.42, + "end": 63721.76, + "probability": 0.9172 + }, + { + "start": 63722.62, + "end": 63725.16, + "probability": 0.9751 + }, + { + "start": 63726.3, + "end": 63728.94, + "probability": 0.8328 + }, + { + "start": 63729.56, + "end": 63735.06, + "probability": 0.9798 + }, + { + "start": 63735.9, + "end": 63741.56, + "probability": 0.9644 + }, + { + "start": 63741.84, + "end": 63744.16, + "probability": 0.9979 + }, + { + "start": 63744.84, + "end": 63747.14, + "probability": 0.8628 + }, + { + "start": 63747.68, + "end": 63748.7, + "probability": 0.9556 + }, + { + "start": 63749.46, + "end": 63750.42, + "probability": 0.9883 + }, + { + "start": 63752.74, + "end": 63756.28, + "probability": 0.9948 + }, + { + "start": 63757.38, + "end": 63760.1, + "probability": 0.8779 + }, + { + "start": 63760.64, + "end": 63762.46, + "probability": 0.8176 + }, + { + "start": 63763.5, + "end": 63766.34, + "probability": 0.9884 + }, + { + "start": 63767.04, + "end": 63769.64, + "probability": 0.9961 + }, + { + "start": 63771.16, + "end": 63774.58, + "probability": 0.9771 + }, + { + "start": 63774.6, + "end": 63778.12, + "probability": 0.9993 + }, + { + "start": 63778.8, + "end": 63784.64, + "probability": 0.9916 + }, + { + "start": 63785.42, + "end": 63788.45, + "probability": 0.9893 + }, + { + "start": 63788.96, + "end": 63792.3, + "probability": 0.9978 + }, + { + "start": 63792.3, + "end": 63796.52, + "probability": 0.9988 + }, + { + "start": 63797.04, + "end": 63799.56, + "probability": 0.9097 + }, + { + "start": 63800.32, + "end": 63802.86, + "probability": 0.9939 + }, + { + "start": 63803.38, + "end": 63805.42, + "probability": 0.9956 + }, + { + "start": 63806.04, + "end": 63807.96, + "probability": 0.9934 + }, + { + "start": 63807.96, + "end": 63811.1, + "probability": 0.9731 + }, + { + "start": 63811.56, + "end": 63814.58, + "probability": 0.9627 + }, + { + "start": 63815.28, + "end": 63818.46, + "probability": 0.9977 + }, + { + "start": 63819.08, + "end": 63822.78, + "probability": 0.9902 + }, + { + "start": 63824.02, + "end": 63825.24, + "probability": 0.826 + }, + { + "start": 63826.02, + "end": 63827.96, + "probability": 0.9985 + }, + { + "start": 63828.7, + "end": 63830.64, + "probability": 0.9007 + }, + { + "start": 63831.44, + "end": 63833.38, + "probability": 0.7364 + }, + { + "start": 63834.08, + "end": 63834.86, + "probability": 0.5873 + }, + { + "start": 63835.04, + "end": 63835.92, + "probability": 0.9573 + }, + { + "start": 63837.26, + "end": 63840.18, + "probability": 0.9596 + }, + { + "start": 63840.92, + "end": 63844.1, + "probability": 0.9775 + }, + { + "start": 63844.52, + "end": 63847.12, + "probability": 0.9664 + }, + { + "start": 63847.56, + "end": 63851.24, + "probability": 0.96 + }, + { + "start": 63851.62, + "end": 63856.32, + "probability": 0.9963 + }, + { + "start": 63856.72, + "end": 63861.18, + "probability": 0.9967 + }, + { + "start": 63861.78, + "end": 63864.98, + "probability": 0.9444 + }, + { + "start": 63865.36, + "end": 63867.78, + "probability": 0.9707 + }, + { + "start": 63868.5, + "end": 63869.12, + "probability": 0.8561 + }, + { + "start": 63869.52, + "end": 63872.3, + "probability": 0.9731 + }, + { + "start": 63872.66, + "end": 63873.24, + "probability": 0.8093 + }, + { + "start": 63873.8, + "end": 63877.1, + "probability": 0.9376 + }, + { + "start": 63878.04, + "end": 63880.58, + "probability": 0.9932 + }, + { + "start": 63882.14, + "end": 63882.52, + "probability": 0.5723 + }, + { + "start": 63883.22, + "end": 63885.2, + "probability": 0.9877 + }, + { + "start": 63885.96, + "end": 63889.12, + "probability": 0.9949 + }, + { + "start": 63889.62, + "end": 63890.66, + "probability": 0.8713 + }, + { + "start": 63891.1, + "end": 63892.54, + "probability": 0.9898 + }, + { + "start": 63892.86, + "end": 63894.06, + "probability": 0.9611 + }, + { + "start": 63894.98, + "end": 63895.12, + "probability": 0.4721 + }, + { + "start": 63895.78, + "end": 63896.66, + "probability": 0.8919 + }, + { + "start": 63896.96, + "end": 63900.12, + "probability": 0.99 + }, + { + "start": 63900.12, + "end": 63903.78, + "probability": 0.9229 + }, + { + "start": 63904.28, + "end": 63905.74, + "probability": 0.9381 + }, + { + "start": 63906.12, + "end": 63908.02, + "probability": 0.9954 + }, + { + "start": 63908.5, + "end": 63909.7, + "probability": 0.6923 + }, + { + "start": 63909.94, + "end": 63912.52, + "probability": 0.931 + }, + { + "start": 63912.96, + "end": 63919.14, + "probability": 0.8541 + }, + { + "start": 63920.06, + "end": 63924.08, + "probability": 0.9914 + }, + { + "start": 63924.18, + "end": 63924.66, + "probability": 0.2317 + }, + { + "start": 63924.66, + "end": 63928.52, + "probability": 0.9965 + }, + { + "start": 63928.92, + "end": 63931.68, + "probability": 0.9777 + }, + { + "start": 63931.96, + "end": 63933.0, + "probability": 0.9222 + }, + { + "start": 63933.26, + "end": 63934.62, + "probability": 0.9927 + }, + { + "start": 63935.16, + "end": 63937.54, + "probability": 0.6669 + }, + { + "start": 63938.06, + "end": 63939.56, + "probability": 0.9597 + }, + { + "start": 63940.34, + "end": 63942.42, + "probability": 0.8414 + }, + { + "start": 63942.52, + "end": 63943.36, + "probability": 0.6095 + }, + { + "start": 63943.42, + "end": 63944.38, + "probability": 0.6045 + }, + { + "start": 63945.18, + "end": 63946.48, + "probability": 0.9127 + }, + { + "start": 63947.0, + "end": 63951.6, + "probability": 0.9575 + }, + { + "start": 63952.4, + "end": 63956.0, + "probability": 0.9811 + }, + { + "start": 63956.1, + "end": 63958.58, + "probability": 0.983 + }, + { + "start": 63958.74, + "end": 63959.1, + "probability": 0.7927 + }, + { + "start": 63959.78, + "end": 63961.72, + "probability": 0.7249 + }, + { + "start": 63961.88, + "end": 63963.98, + "probability": 0.703 + }, + { + "start": 63964.94, + "end": 63967.78, + "probability": 0.9635 + }, + { + "start": 63967.92, + "end": 63970.72, + "probability": 0.8123 + }, + { + "start": 63972.04, + "end": 63972.78, + "probability": 0.818 + }, + { + "start": 63974.22, + "end": 63974.7, + "probability": 0.8072 + }, + { + "start": 63975.14, + "end": 63978.42, + "probability": 0.6592 + }, + { + "start": 63979.0, + "end": 63979.52, + "probability": 0.7264 + }, + { + "start": 63980.18, + "end": 63981.84, + "probability": 0.9519 + }, + { + "start": 63981.92, + "end": 63982.48, + "probability": 0.7766 + }, + { + "start": 63983.66, + "end": 63984.07, + "probability": 0.8108 + }, + { + "start": 63984.66, + "end": 63985.5, + "probability": 0.4497 + }, + { + "start": 63985.74, + "end": 63987.33, + "probability": 0.9808 + }, + { + "start": 63987.96, + "end": 63988.5, + "probability": 0.8583 + }, + { + "start": 63988.98, + "end": 63993.16, + "probability": 0.6415 + }, + { + "start": 63993.6, + "end": 63993.86, + "probability": 0.5946 + }, + { + "start": 63994.6, + "end": 63996.24, + "probability": 0.6265 + }, + { + "start": 63996.32, + "end": 63996.89, + "probability": 0.7327 + }, + { + "start": 63997.16, + "end": 63997.57, + "probability": 0.7155 + }, + { + "start": 63998.06, + "end": 64000.08, + "probability": 0.5103 + }, + { + "start": 64000.08, + "end": 64000.47, + "probability": 0.1625 + }, + { + "start": 64000.66, + "end": 64000.96, + "probability": 0.6129 + }, + { + "start": 64001.74, + "end": 64002.48, + "probability": 0.7237 + }, + { + "start": 64004.76, + "end": 64012.88, + "probability": 0.9198 + }, + { + "start": 64014.08, + "end": 64015.52, + "probability": 0.9646 + }, + { + "start": 64017.18, + "end": 64018.38, + "probability": 0.6744 + }, + { + "start": 64019.72, + "end": 64019.96, + "probability": 0.4582 + }, + { + "start": 64020.04, + "end": 64023.56, + "probability": 0.9441 + }, + { + "start": 64025.22, + "end": 64029.0, + "probability": 0.9826 + }, + { + "start": 64029.62, + "end": 64033.68, + "probability": 0.9254 + }, + { + "start": 64034.54, + "end": 64036.7, + "probability": 0.9965 + }, + { + "start": 64036.92, + "end": 64040.76, + "probability": 0.9968 + }, + { + "start": 64042.26, + "end": 64043.0, + "probability": 0.8682 + }, + { + "start": 64044.38, + "end": 64046.64, + "probability": 0.9223 + }, + { + "start": 64046.64, + "end": 64050.84, + "probability": 0.8941 + }, + { + "start": 64051.66, + "end": 64054.72, + "probability": 0.98 + }, + { + "start": 64055.72, + "end": 64056.96, + "probability": 0.5267 + }, + { + "start": 64058.68, + "end": 64061.94, + "probability": 0.8671 + }, + { + "start": 64062.8, + "end": 64064.5, + "probability": 0.9823 + }, + { + "start": 64065.36, + "end": 64066.6, + "probability": 0.9474 + }, + { + "start": 64066.64, + "end": 64069.9, + "probability": 0.9886 + }, + { + "start": 64070.02, + "end": 64071.86, + "probability": 0.9857 + }, + { + "start": 64072.46, + "end": 64075.64, + "probability": 0.9866 + }, + { + "start": 64076.56, + "end": 64077.32, + "probability": 0.7891 + }, + { + "start": 64078.56, + "end": 64081.54, + "probability": 0.71 + }, + { + "start": 64082.44, + "end": 64083.0, + "probability": 0.4109 + }, + { + "start": 64084.62, + "end": 64090.16, + "probability": 0.9637 + }, + { + "start": 64091.2, + "end": 64093.88, + "probability": 0.9544 + }, + { + "start": 64094.0, + "end": 64095.94, + "probability": 0.8023 + }, + { + "start": 64097.08, + "end": 64099.28, + "probability": 0.9896 + }, + { + "start": 64099.34, + "end": 64101.48, + "probability": 0.7344 + }, + { + "start": 64102.64, + "end": 64107.32, + "probability": 0.9561 + }, + { + "start": 64107.54, + "end": 64109.4, + "probability": 0.8859 + }, + { + "start": 64110.32, + "end": 64111.26, + "probability": 0.614 + }, + { + "start": 64112.18, + "end": 64113.92, + "probability": 0.8733 + }, + { + "start": 64115.75, + "end": 64120.28, + "probability": 0.7841 + }, + { + "start": 64120.28, + "end": 64125.8, + "probability": 0.9452 + }, + { + "start": 64125.88, + "end": 64131.1, + "probability": 0.9627 + }, + { + "start": 64131.82, + "end": 64133.8, + "probability": 0.7888 + }, + { + "start": 64133.88, + "end": 64135.48, + "probability": 0.9326 + }, + { + "start": 64136.06, + "end": 64139.25, + "probability": 0.9989 + }, + { + "start": 64140.5, + "end": 64145.32, + "probability": 0.9888 + }, + { + "start": 64146.84, + "end": 64148.06, + "probability": 0.7446 + }, + { + "start": 64149.62, + "end": 64153.16, + "probability": 0.7775 + }, + { + "start": 64154.08, + "end": 64155.56, + "probability": 0.8581 + }, + { + "start": 64156.56, + "end": 64158.9, + "probability": 0.9851 + }, + { + "start": 64159.14, + "end": 64160.28, + "probability": 0.8208 + }, + { + "start": 64160.78, + "end": 64163.74, + "probability": 0.9927 + }, + { + "start": 64164.62, + "end": 64166.82, + "probability": 0.7952 + }, + { + "start": 64167.81, + "end": 64169.9, + "probability": 0.8633 + }, + { + "start": 64171.04, + "end": 64172.86, + "probability": 0.9968 + }, + { + "start": 64173.78, + "end": 64175.74, + "probability": 0.9815 + }, + { + "start": 64176.62, + "end": 64179.06, + "probability": 0.9936 + }, + { + "start": 64179.64, + "end": 64182.86, + "probability": 0.9312 + }, + { + "start": 64183.82, + "end": 64186.3, + "probability": 0.8022 + }, + { + "start": 64187.04, + "end": 64189.78, + "probability": 0.8912 + }, + { + "start": 64190.64, + "end": 64191.36, + "probability": 0.7203 + }, + { + "start": 64191.46, + "end": 64196.02, + "probability": 0.8744 + }, + { + "start": 64196.6, + "end": 64199.5, + "probability": 0.9825 + }, + { + "start": 64199.78, + "end": 64200.86, + "probability": 0.8992 + }, + { + "start": 64200.98, + "end": 64202.22, + "probability": 0.8536 + }, + { + "start": 64203.06, + "end": 64204.32, + "probability": 0.999 + }, + { + "start": 64205.72, + "end": 64209.8, + "probability": 0.9819 + }, + { + "start": 64209.94, + "end": 64211.82, + "probability": 0.9745 + }, + { + "start": 64212.62, + "end": 64213.92, + "probability": 0.9881 + }, + { + "start": 64214.4, + "end": 64217.68, + "probability": 0.994 + }, + { + "start": 64217.68, + "end": 64220.24, + "probability": 0.9944 + }, + { + "start": 64220.94, + "end": 64222.04, + "probability": 0.5941 + }, + { + "start": 64223.22, + "end": 64227.32, + "probability": 0.998 + }, + { + "start": 64228.86, + "end": 64229.4, + "probability": 0.797 + }, + { + "start": 64229.5, + "end": 64230.42, + "probability": 0.9292 + }, + { + "start": 64230.92, + "end": 64233.58, + "probability": 0.8603 + }, + { + "start": 64233.98, + "end": 64234.8, + "probability": 0.2851 + }, + { + "start": 64235.8, + "end": 64236.64, + "probability": 0.7696 + }, + { + "start": 64237.62, + "end": 64238.8, + "probability": 0.994 + }, + { + "start": 64239.68, + "end": 64239.82, + "probability": 0.8872 + }, + { + "start": 64240.38, + "end": 64245.38, + "probability": 0.9802 + }, + { + "start": 64246.5, + "end": 64249.24, + "probability": 0.9487 + }, + { + "start": 64250.04, + "end": 64251.54, + "probability": 0.9658 + }, + { + "start": 64252.28, + "end": 64252.88, + "probability": 0.7963 + }, + { + "start": 64253.62, + "end": 64258.54, + "probability": 0.8914 + }, + { + "start": 64259.16, + "end": 64262.34, + "probability": 0.9487 + }, + { + "start": 64262.66, + "end": 64268.24, + "probability": 0.9795 + }, + { + "start": 64268.96, + "end": 64273.7, + "probability": 0.9905 + }, + { + "start": 64274.44, + "end": 64274.54, + "probability": 0.4963 + }, + { + "start": 64275.56, + "end": 64277.02, + "probability": 0.0997 + }, + { + "start": 64277.08, + "end": 64280.68, + "probability": 0.7496 + }, + { + "start": 64280.78, + "end": 64283.78, + "probability": 0.7841 + }, + { + "start": 64284.78, + "end": 64285.54, + "probability": 0.3293 + }, + { + "start": 64285.56, + "end": 64287.8, + "probability": 0.3647 + }, + { + "start": 64287.88, + "end": 64289.21, + "probability": 0.6232 + }, + { + "start": 64289.58, + "end": 64289.92, + "probability": 0.5498 + }, + { + "start": 64289.96, + "end": 64290.82, + "probability": 0.6485 + }, + { + "start": 64290.96, + "end": 64292.96, + "probability": 0.689 + }, + { + "start": 64293.62, + "end": 64296.22, + "probability": 0.4918 + }, + { + "start": 64296.22, + "end": 64299.92, + "probability": 0.6541 + }, + { + "start": 64300.38, + "end": 64303.58, + "probability": 0.9902 + }, + { + "start": 64303.58, + "end": 64304.49, + "probability": 0.5524 + }, + { + "start": 64304.76, + "end": 64305.92, + "probability": 0.0607 + }, + { + "start": 64305.94, + "end": 64310.28, + "probability": 0.9376 + }, + { + "start": 64310.94, + "end": 64311.56, + "probability": 0.6683 + }, + { + "start": 64312.08, + "end": 64313.65, + "probability": 0.9917 + }, + { + "start": 64314.5, + "end": 64316.56, + "probability": 0.9561 + }, + { + "start": 64317.4, + "end": 64318.42, + "probability": 0.9673 + }, + { + "start": 64318.48, + "end": 64321.04, + "probability": 0.5585 + }, + { + "start": 64321.06, + "end": 64322.5, + "probability": 0.9521 + }, + { + "start": 64322.82, + "end": 64323.44, + "probability": 0.7444 + }, + { + "start": 64323.68, + "end": 64324.7, + "probability": 0.6674 + }, + { + "start": 64325.28, + "end": 64326.44, + "probability": 0.8706 + }, + { + "start": 64326.56, + "end": 64327.7, + "probability": 0.8342 + }, + { + "start": 64327.94, + "end": 64328.98, + "probability": 0.7761 + }, + { + "start": 64329.18, + "end": 64330.34, + "probability": 0.7746 + }, + { + "start": 64330.74, + "end": 64333.3, + "probability": 0.8225 + }, + { + "start": 64333.52, + "end": 64333.92, + "probability": 0.5481 + }, + { + "start": 64334.24, + "end": 64336.81, + "probability": 0.8657 + }, + { + "start": 64337.58, + "end": 64343.18, + "probability": 0.9113 + }, + { + "start": 64343.18, + "end": 64348.62, + "probability": 0.8764 + }, + { + "start": 64348.96, + "end": 64351.68, + "probability": 0.7786 + }, + { + "start": 64352.04, + "end": 64353.3, + "probability": 0.507 + }, + { + "start": 64353.64, + "end": 64357.68, + "probability": 0.9792 + }, + { + "start": 64358.28, + "end": 64362.0, + "probability": 0.8951 + }, + { + "start": 64362.0, + "end": 64365.16, + "probability": 0.85 + }, + { + "start": 64366.18, + "end": 64367.32, + "probability": 0.9888 + }, + { + "start": 64368.02, + "end": 64369.72, + "probability": 0.8051 + }, + { + "start": 64370.52, + "end": 64371.76, + "probability": 0.8644 + }, + { + "start": 64372.68, + "end": 64373.92, + "probability": 0.9738 + }, + { + "start": 64375.26, + "end": 64378.58, + "probability": 0.6503 + }, + { + "start": 64379.2, + "end": 64381.43, + "probability": 0.9749 + }, + { + "start": 64382.54, + "end": 64386.48, + "probability": 0.9016 + }, + { + "start": 64387.02, + "end": 64389.44, + "probability": 0.7271 + }, + { + "start": 64389.94, + "end": 64390.5, + "probability": 0.6719 + }, + { + "start": 64390.76, + "end": 64394.9, + "probability": 0.8948 + }, + { + "start": 64395.32, + "end": 64399.46, + "probability": 0.9396 + }, + { + "start": 64400.16, + "end": 64406.52, + "probability": 0.9931 + }, + { + "start": 64407.34, + "end": 64409.88, + "probability": 0.4073 + }, + { + "start": 64410.02, + "end": 64410.08, + "probability": 0.011 + }, + { + "start": 64410.08, + "end": 64410.08, + "probability": 0.1592 + }, + { + "start": 64410.08, + "end": 64415.9, + "probability": 0.8238 + }, + { + "start": 64415.9, + "end": 64421.26, + "probability": 0.989 + }, + { + "start": 64421.64, + "end": 64425.2, + "probability": 0.7768 + }, + { + "start": 64425.94, + "end": 64429.26, + "probability": 0.4248 + }, + { + "start": 64431.0, + "end": 64432.48, + "probability": 0.5504 + }, + { + "start": 64433.02, + "end": 64434.64, + "probability": 0.9746 + }, + { + "start": 64434.64, + "end": 64438.42, + "probability": 0.9047 + }, + { + "start": 64439.0, + "end": 64439.32, + "probability": 0.4139 + }, + { + "start": 64439.64, + "end": 64442.0, + "probability": 0.9481 + }, + { + "start": 64442.5, + "end": 64442.94, + "probability": 0.7518 + }, + { + "start": 64443.06, + "end": 64443.4, + "probability": 0.9601 + }, + { + "start": 64443.52, + "end": 64444.5, + "probability": 0.6433 + }, + { + "start": 64444.5, + "end": 64448.4, + "probability": 0.8556 + }, + { + "start": 64448.96, + "end": 64451.32, + "probability": 0.9043 + }, + { + "start": 64452.02, + "end": 64456.66, + "probability": 0.9758 + }, + { + "start": 64457.22, + "end": 64457.88, + "probability": 0.9304 + }, + { + "start": 64458.44, + "end": 64459.34, + "probability": 0.8937 + }, + { + "start": 64460.14, + "end": 64460.96, + "probability": 0.7826 + }, + { + "start": 64461.34, + "end": 64462.32, + "probability": 0.8553 + }, + { + "start": 64462.96, + "end": 64463.68, + "probability": 0.8738 + }, + { + "start": 64464.28, + "end": 64466.65, + "probability": 0.6811 + }, + { + "start": 64467.44, + "end": 64471.44, + "probability": 0.8058 + }, + { + "start": 64471.44, + "end": 64471.56, + "probability": 0.1563 + }, + { + "start": 64471.56, + "end": 64473.92, + "probability": 0.5823 + }, + { + "start": 64474.12, + "end": 64475.22, + "probability": 0.8364 + }, + { + "start": 64476.04, + "end": 64477.94, + "probability": 0.8216 + }, + { + "start": 64478.62, + "end": 64480.4, + "probability": 0.8782 + }, + { + "start": 64480.48, + "end": 64481.6, + "probability": 0.6873 + }, + { + "start": 64481.74, + "end": 64484.8, + "probability": 0.9492 + }, + { + "start": 64488.0, + "end": 64489.2, + "probability": 0.8852 + }, + { + "start": 64489.94, + "end": 64491.98, + "probability": 0.9686 + }, + { + "start": 64492.36, + "end": 64493.32, + "probability": 0.9845 + }, + { + "start": 64494.14, + "end": 64494.96, + "probability": 0.7673 + }, + { + "start": 64497.2, + "end": 64499.6, + "probability": 0.8321 + }, + { + "start": 64501.56, + "end": 64502.0, + "probability": 0.8403 + }, + { + "start": 64502.08, + "end": 64502.26, + "probability": 0.8811 + }, + { + "start": 64502.3, + "end": 64508.72, + "probability": 0.9472 + }, + { + "start": 64509.64, + "end": 64510.38, + "probability": 0.9404 + }, + { + "start": 64510.46, + "end": 64511.69, + "probability": 0.9458 + }, + { + "start": 64512.12, + "end": 64512.44, + "probability": 0.4641 + }, + { + "start": 64512.5, + "end": 64514.04, + "probability": 0.9679 + }, + { + "start": 64514.48, + "end": 64516.42, + "probability": 0.9811 + }, + { + "start": 64517.06, + "end": 64520.02, + "probability": 0.9647 + }, + { + "start": 64520.6, + "end": 64524.88, + "probability": 0.9902 + }, + { + "start": 64525.1, + "end": 64529.04, + "probability": 0.9989 + }, + { + "start": 64530.12, + "end": 64531.0, + "probability": 0.7965 + }, + { + "start": 64531.08, + "end": 64534.66, + "probability": 0.969 + }, + { + "start": 64535.7, + "end": 64538.02, + "probability": 0.6812 + }, + { + "start": 64538.58, + "end": 64540.12, + "probability": 0.9685 + }, + { + "start": 64540.8, + "end": 64543.68, + "probability": 0.9905 + }, + { + "start": 64544.22, + "end": 64547.34, + "probability": 0.9384 + }, + { + "start": 64548.38, + "end": 64549.88, + "probability": 0.9784 + }, + { + "start": 64550.1, + "end": 64553.16, + "probability": 0.7763 + }, + { + "start": 64554.08, + "end": 64558.58, + "probability": 0.9231 + }, + { + "start": 64559.16, + "end": 64561.72, + "probability": 0.9883 + }, + { + "start": 64562.44, + "end": 64563.79, + "probability": 0.6669 + }, + { + "start": 64564.76, + "end": 64566.8, + "probability": 0.7954 + }, + { + "start": 64566.86, + "end": 64569.96, + "probability": 0.9954 + }, + { + "start": 64570.08, + "end": 64571.68, + "probability": 0.9318 + }, + { + "start": 64572.38, + "end": 64574.94, + "probability": 0.9794 + }, + { + "start": 64575.02, + "end": 64575.92, + "probability": 0.8398 + }, + { + "start": 64576.22, + "end": 64577.1, + "probability": 0.5423 + }, + { + "start": 64577.7, + "end": 64581.94, + "probability": 0.9832 + }, + { + "start": 64584.4, + "end": 64584.78, + "probability": 0.5867 + }, + { + "start": 64585.02, + "end": 64585.56, + "probability": 0.9139 + }, + { + "start": 64585.68, + "end": 64586.52, + "probability": 0.7766 + }, + { + "start": 64586.6, + "end": 64587.04, + "probability": 0.7714 + }, + { + "start": 64587.14, + "end": 64587.76, + "probability": 0.9061 + }, + { + "start": 64587.9, + "end": 64591.98, + "probability": 0.9861 + }, + { + "start": 64591.98, + "end": 64597.19, + "probability": 0.9993 + }, + { + "start": 64597.72, + "end": 64599.16, + "probability": 0.6498 + }, + { + "start": 64599.76, + "end": 64602.52, + "probability": 0.7911 + }, + { + "start": 64602.62, + "end": 64605.28, + "probability": 0.6716 + }, + { + "start": 64605.94, + "end": 64610.14, + "probability": 0.9947 + }, + { + "start": 64610.14, + "end": 64614.64, + "probability": 0.9114 + }, + { + "start": 64615.54, + "end": 64621.48, + "probability": 0.9957 + }, + { + "start": 64622.32, + "end": 64625.9, + "probability": 0.9898 + }, + { + "start": 64626.1, + "end": 64627.28, + "probability": 0.887 + }, + { + "start": 64627.48, + "end": 64628.18, + "probability": 0.4483 + }, + { + "start": 64628.94, + "end": 64632.2, + "probability": 0.6979 + }, + { + "start": 64632.72, + "end": 64636.52, + "probability": 0.9868 + }, + { + "start": 64636.78, + "end": 64641.48, + "probability": 0.9794 + }, + { + "start": 64641.75, + "end": 64646.96, + "probability": 0.8741 + }, + { + "start": 64647.66, + "end": 64648.68, + "probability": 0.8943 + }, + { + "start": 64648.88, + "end": 64649.12, + "probability": 0.6744 + }, + { + "start": 64649.34, + "end": 64652.6, + "probability": 0.9587 + }, + { + "start": 64653.18, + "end": 64656.58, + "probability": 0.9539 + }, + { + "start": 64656.92, + "end": 64660.96, + "probability": 0.9023 + }, + { + "start": 64661.18, + "end": 64661.66, + "probability": 0.4616 + }, + { + "start": 64661.86, + "end": 64665.9, + "probability": 0.9907 + }, + { + "start": 64666.18, + "end": 64668.75, + "probability": 0.8628 + }, + { + "start": 64669.52, + "end": 64672.04, + "probability": 0.9907 + }, + { + "start": 64672.9, + "end": 64674.34, + "probability": 0.9928 + }, + { + "start": 64675.48, + "end": 64676.06, + "probability": 0.3362 + }, + { + "start": 64676.06, + "end": 64678.5, + "probability": 0.7184 + }, + { + "start": 64678.58, + "end": 64680.32, + "probability": 0.9647 + }, + { + "start": 64680.76, + "end": 64682.66, + "probability": 0.7921 + }, + { + "start": 64683.24, + "end": 64688.6, + "probability": 0.9598 + }, + { + "start": 64688.6, + "end": 64693.14, + "probability": 0.9994 + }, + { + "start": 64693.86, + "end": 64694.51, + "probability": 0.8979 + }, + { + "start": 64694.88, + "end": 64697.48, + "probability": 0.9829 + }, + { + "start": 64698.32, + "end": 64700.41, + "probability": 0.8398 + }, + { + "start": 64700.8, + "end": 64706.58, + "probability": 0.9497 + }, + { + "start": 64706.58, + "end": 64710.26, + "probability": 0.98 + }, + { + "start": 64710.36, + "end": 64711.6, + "probability": 0.9232 + }, + { + "start": 64712.5, + "end": 64714.06, + "probability": 0.9977 + }, + { + "start": 64714.2, + "end": 64715.22, + "probability": 0.9939 + }, + { + "start": 64715.56, + "end": 64716.23, + "probability": 0.9966 + }, + { + "start": 64716.76, + "end": 64717.64, + "probability": 0.9939 + }, + { + "start": 64717.86, + "end": 64718.88, + "probability": 0.9754 + }, + { + "start": 64720.66, + "end": 64721.6, + "probability": 0.9644 + }, + { + "start": 64722.78, + "end": 64727.5, + "probability": 0.8744 + }, + { + "start": 64727.82, + "end": 64731.34, + "probability": 0.9562 + }, + { + "start": 64731.4, + "end": 64732.64, + "probability": 0.9564 + }, + { + "start": 64732.7, + "end": 64734.42, + "probability": 0.9868 + }, + { + "start": 64735.2, + "end": 64738.8, + "probability": 0.9479 + }, + { + "start": 64739.36, + "end": 64739.9, + "probability": 0.4062 + }, + { + "start": 64740.02, + "end": 64740.36, + "probability": 0.5226 + }, + { + "start": 64740.56, + "end": 64745.4, + "probability": 0.9756 + }, + { + "start": 64745.52, + "end": 64746.18, + "probability": 0.8844 + }, + { + "start": 64746.42, + "end": 64750.4, + "probability": 0.9648 + }, + { + "start": 64750.52, + "end": 64751.28, + "probability": 0.7198 + }, + { + "start": 64751.48, + "end": 64753.54, + "probability": 0.904 + }, + { + "start": 64753.88, + "end": 64754.18, + "probability": 0.5488 + }, + { + "start": 64755.08, + "end": 64758.16, + "probability": 0.9877 + }, + { + "start": 64758.16, + "end": 64761.32, + "probability": 0.9995 + }, + { + "start": 64761.66, + "end": 64763.14, + "probability": 0.995 + }, + { + "start": 64763.5, + "end": 64764.79, + "probability": 0.5883 + }, + { + "start": 64765.2, + "end": 64766.86, + "probability": 0.7066 + }, + { + "start": 64767.02, + "end": 64769.48, + "probability": 0.9963 + }, + { + "start": 64769.48, + "end": 64772.2, + "probability": 0.9982 + }, + { + "start": 64773.66, + "end": 64774.46, + "probability": 0.5782 + }, + { + "start": 64774.62, + "end": 64775.2, + "probability": 0.9112 + }, + { + "start": 64775.42, + "end": 64777.98, + "probability": 0.9851 + }, + { + "start": 64777.98, + "end": 64780.74, + "probability": 0.9982 + }, + { + "start": 64780.92, + "end": 64782.4, + "probability": 0.9453 + }, + { + "start": 64782.9, + "end": 64786.56, + "probability": 0.9854 + }, + { + "start": 64787.1, + "end": 64790.32, + "probability": 0.9873 + }, + { + "start": 64790.78, + "end": 64791.04, + "probability": 0.2279 + }, + { + "start": 64791.3, + "end": 64791.82, + "probability": 0.6151 + }, + { + "start": 64791.96, + "end": 64794.74, + "probability": 0.9963 + }, + { + "start": 64794.74, + "end": 64797.04, + "probability": 0.9998 + }, + { + "start": 64797.98, + "end": 64804.04, + "probability": 0.873 + }, + { + "start": 64804.6, + "end": 64808.04, + "probability": 0.7738 + }, + { + "start": 64808.08, + "end": 64808.88, + "probability": 0.9824 + }, + { + "start": 64808.96, + "end": 64809.28, + "probability": 0.5496 + }, + { + "start": 64809.52, + "end": 64810.02, + "probability": 0.8483 + }, + { + "start": 64810.08, + "end": 64810.96, + "probability": 0.9745 + }, + { + "start": 64811.16, + "end": 64812.58, + "probability": 0.9694 + }, + { + "start": 64813.48, + "end": 64816.3, + "probability": 0.9962 + }, + { + "start": 64816.54, + "end": 64817.66, + "probability": 0.9224 + }, + { + "start": 64817.72, + "end": 64820.44, + "probability": 0.9817 + }, + { + "start": 64820.96, + "end": 64826.12, + "probability": 0.9897 + }, + { + "start": 64826.22, + "end": 64826.54, + "probability": 0.9297 + }, + { + "start": 64827.3, + "end": 64827.46, + "probability": 0.2797 + }, + { + "start": 64827.46, + "end": 64829.14, + "probability": 0.8769 + }, + { + "start": 64829.6, + "end": 64830.86, + "probability": 0.8859 + }, + { + "start": 64830.98, + "end": 64835.9, + "probability": 0.9869 + }, + { + "start": 64836.08, + "end": 64837.1, + "probability": 0.9073 + }, + { + "start": 64837.52, + "end": 64838.62, + "probability": 0.9294 + }, + { + "start": 64838.96, + "end": 64840.62, + "probability": 0.9239 + }, + { + "start": 64841.06, + "end": 64844.22, + "probability": 0.9826 + }, + { + "start": 64845.34, + "end": 64851.18, + "probability": 0.9243 + }, + { + "start": 64851.34, + "end": 64853.94, + "probability": 0.9862 + }, + { + "start": 64855.26, + "end": 64857.58, + "probability": 0.6833 + }, + { + "start": 64858.54, + "end": 64867.28, + "probability": 0.9955 + }, + { + "start": 64868.3, + "end": 64870.06, + "probability": 0.9995 + }, + { + "start": 64871.24, + "end": 64874.58, + "probability": 0.9965 + }, + { + "start": 64875.18, + "end": 64878.52, + "probability": 0.8092 + }, + { + "start": 64879.08, + "end": 64882.04, + "probability": 0.9473 + }, + { + "start": 64882.68, + "end": 64882.98, + "probability": 0.5283 + }, + { + "start": 64883.1, + "end": 64884.02, + "probability": 0.7117 + }, + { + "start": 64884.5, + "end": 64890.2, + "probability": 0.9926 + }, + { + "start": 64891.44, + "end": 64892.2, + "probability": 0.8962 + }, + { + "start": 64892.94, + "end": 64894.6, + "probability": 0.9663 + }, + { + "start": 64895.16, + "end": 64895.7, + "probability": 0.9461 + }, + { + "start": 64896.02, + "end": 64899.36, + "probability": 0.6918 + }, + { + "start": 64899.5, + "end": 64902.18, + "probability": 0.9402 + }, + { + "start": 64902.8, + "end": 64904.58, + "probability": 0.823 + }, + { + "start": 64905.18, + "end": 64906.48, + "probability": 0.6665 + }, + { + "start": 64906.86, + "end": 64909.22, + "probability": 0.1093 + }, + { + "start": 64914.78, + "end": 64915.6, + "probability": 0.2729 + }, + { + "start": 64916.12, + "end": 64918.47, + "probability": 0.1401 + }, + { + "start": 64919.5, + "end": 64921.02, + "probability": 0.4222 + }, + { + "start": 64921.08, + "end": 64921.34, + "probability": 0.4736 + }, + { + "start": 64928.12, + "end": 64929.72, + "probability": 0.8127 + }, + { + "start": 64931.62, + "end": 64934.32, + "probability": 0.5655 + }, + { + "start": 64936.26, + "end": 64942.8, + "probability": 0.8611 + }, + { + "start": 64943.3, + "end": 64947.22, + "probability": 0.9897 + }, + { + "start": 64948.86, + "end": 64950.22, + "probability": 0.8545 + }, + { + "start": 64951.82, + "end": 64956.0, + "probability": 0.6206 + }, + { + "start": 64956.56, + "end": 64956.98, + "probability": 0.6758 + }, + { + "start": 64959.02, + "end": 64959.84, + "probability": 0.8886 + }, + { + "start": 64961.96, + "end": 64966.58, + "probability": 0.7503 + }, + { + "start": 64966.58, + "end": 64969.74, + "probability": 0.8914 + }, + { + "start": 64971.08, + "end": 64975.44, + "probability": 0.9812 + }, + { + "start": 64977.66, + "end": 64981.04, + "probability": 0.9888 + }, + { + "start": 64981.72, + "end": 64985.48, + "probability": 0.9728 + }, + { + "start": 64987.3, + "end": 64990.86, + "probability": 0.9613 + }, + { + "start": 64992.9, + "end": 64994.38, + "probability": 0.891 + }, + { + "start": 64995.92, + "end": 64997.04, + "probability": 0.7863 + }, + { + "start": 64999.42, + "end": 65002.82, + "probability": 0.9471 + }, + { + "start": 65003.6, + "end": 65004.56, + "probability": 0.7032 + }, + { + "start": 65007.86, + "end": 65011.3, + "probability": 0.9883 + }, + { + "start": 65013.48, + "end": 65015.56, + "probability": 0.7557 + }, + { + "start": 65016.26, + "end": 65018.64, + "probability": 0.8484 + }, + { + "start": 65019.78, + "end": 65022.16, + "probability": 0.9271 + }, + { + "start": 65024.1, + "end": 65026.08, + "probability": 0.7223 + }, + { + "start": 65027.76, + "end": 65033.18, + "probability": 0.9164 + }, + { + "start": 65033.7, + "end": 65034.64, + "probability": 0.8158 + }, + { + "start": 65036.6, + "end": 65037.72, + "probability": 0.6503 + }, + { + "start": 65039.9, + "end": 65043.12, + "probability": 0.9857 + }, + { + "start": 65044.1, + "end": 65044.84, + "probability": 0.9023 + }, + { + "start": 65046.16, + "end": 65049.8, + "probability": 0.9642 + }, + { + "start": 65052.16, + "end": 65057.1, + "probability": 0.9585 + }, + { + "start": 65059.24, + "end": 65061.26, + "probability": 0.9056 + }, + { + "start": 65062.84, + "end": 65065.7, + "probability": 0.9508 + }, + { + "start": 65066.96, + "end": 65070.04, + "probability": 0.989 + }, + { + "start": 65071.48, + "end": 65073.9, + "probability": 0.8215 + }, + { + "start": 65075.96, + "end": 65079.04, + "probability": 0.8472 + }, + { + "start": 65082.2, + "end": 65085.72, + "probability": 0.6594 + }, + { + "start": 65087.64, + "end": 65090.84, + "probability": 0.9907 + }, + { + "start": 65092.44, + "end": 65097.14, + "probability": 0.676 + }, + { + "start": 65098.68, + "end": 65100.32, + "probability": 0.8636 + }, + { + "start": 65102.02, + "end": 65104.56, + "probability": 0.6393 + }, + { + "start": 65106.14, + "end": 65107.94, + "probability": 0.9253 + }, + { + "start": 65110.12, + "end": 65116.04, + "probability": 0.9364 + }, + { + "start": 65116.68, + "end": 65117.88, + "probability": 0.8252 + }, + { + "start": 65119.24, + "end": 65121.24, + "probability": 0.8475 + }, + { + "start": 65122.86, + "end": 65126.18, + "probability": 0.8623 + }, + { + "start": 65128.08, + "end": 65128.64, + "probability": 0.9396 + }, + { + "start": 65129.38, + "end": 65130.5, + "probability": 0.6724 + }, + { + "start": 65133.28, + "end": 65137.12, + "probability": 0.9959 + }, + { + "start": 65138.18, + "end": 65139.34, + "probability": 0.759 + }, + { + "start": 65140.56, + "end": 65141.64, + "probability": 0.8091 + }, + { + "start": 65142.62, + "end": 65143.86, + "probability": 0.7841 + }, + { + "start": 65143.86, + "end": 65146.12, + "probability": 0.9668 + }, + { + "start": 65146.26, + "end": 65148.46, + "probability": 0.7848 + }, + { + "start": 65151.32, + "end": 65152.2, + "probability": 0.6321 + }, + { + "start": 65152.26, + "end": 65156.52, + "probability": 0.9823 + }, + { + "start": 65157.92, + "end": 65162.66, + "probability": 0.9125 + }, + { + "start": 65164.38, + "end": 65165.94, + "probability": 0.5543 + }, + { + "start": 65167.54, + "end": 65168.9, + "probability": 0.7571 + }, + { + "start": 65171.0, + "end": 65172.08, + "probability": 0.6748 + }, + { + "start": 65173.52, + "end": 65173.94, + "probability": 0.8963 + }, + { + "start": 65175.8, + "end": 65179.26, + "probability": 0.9076 + }, + { + "start": 65181.54, + "end": 65183.7, + "probability": 0.7782 + }, + { + "start": 65189.32, + "end": 65192.04, + "probability": 0.8985 + }, + { + "start": 65192.08, + "end": 65192.44, + "probability": 0.0376 + }, + { + "start": 65193.58, + "end": 65194.48, + "probability": 0.6679 + }, + { + "start": 65197.14, + "end": 65200.02, + "probability": 0.9894 + }, + { + "start": 65201.4, + "end": 65203.72, + "probability": 0.8651 + }, + { + "start": 65207.74, + "end": 65210.24, + "probability": 0.6801 + }, + { + "start": 65211.08, + "end": 65211.85, + "probability": 0.9383 + }, + { + "start": 65212.94, + "end": 65215.54, + "probability": 0.5904 + }, + { + "start": 65217.7, + "end": 65218.92, + "probability": 0.9604 + }, + { + "start": 65219.62, + "end": 65220.3, + "probability": 0.5708 + }, + { + "start": 65221.08, + "end": 65221.72, + "probability": 0.653 + }, + { + "start": 65223.42, + "end": 65227.46, + "probability": 0.9877 + }, + { + "start": 65227.48, + "end": 65228.1, + "probability": 0.2669 + }, + { + "start": 65228.2, + "end": 65229.94, + "probability": 0.8515 + }, + { + "start": 65230.9, + "end": 65232.2, + "probability": 0.7699 + }, + { + "start": 65233.94, + "end": 65239.88, + "probability": 0.9396 + }, + { + "start": 65241.4, + "end": 65244.39, + "probability": 0.8794 + }, + { + "start": 65246.5, + "end": 65247.16, + "probability": 0.9911 + }, + { + "start": 65249.12, + "end": 65250.1, + "probability": 0.9625 + }, + { + "start": 65252.31, + "end": 65255.28, + "probability": 0.927 + }, + { + "start": 65257.38, + "end": 65260.74, + "probability": 0.7236 + }, + { + "start": 65262.76, + "end": 65265.54, + "probability": 0.9354 + }, + { + "start": 65266.86, + "end": 65269.2, + "probability": 0.8202 + }, + { + "start": 65270.74, + "end": 65271.26, + "probability": 0.943 + }, + { + "start": 65272.58, + "end": 65273.68, + "probability": 0.9319 + }, + { + "start": 65275.02, + "end": 65277.92, + "probability": 0.9841 + }, + { + "start": 65279.78, + "end": 65282.34, + "probability": 0.6632 + }, + { + "start": 65285.0, + "end": 65290.34, + "probability": 0.9785 + }, + { + "start": 65291.76, + "end": 65292.12, + "probability": 0.4674 + }, + { + "start": 65295.26, + "end": 65295.72, + "probability": 0.3671 + }, + { + "start": 65295.96, + "end": 65298.64, + "probability": 0.6624 + }, + { + "start": 65299.28, + "end": 65300.28, + "probability": 0.7869 + }, + { + "start": 65300.8, + "end": 65301.48, + "probability": 0.8056 + }, + { + "start": 65303.86, + "end": 65308.24, + "probability": 0.9864 + }, + { + "start": 65308.36, + "end": 65311.3, + "probability": 0.8951 + }, + { + "start": 65311.92, + "end": 65314.48, + "probability": 0.9058 + }, + { + "start": 65315.28, + "end": 65319.02, + "probability": 0.9595 + }, + { + "start": 65319.06, + "end": 65319.76, + "probability": 0.554 + }, + { + "start": 65322.28, + "end": 65323.56, + "probability": 0.8427 + }, + { + "start": 65324.66, + "end": 65326.86, + "probability": 0.7043 + }, + { + "start": 65328.26, + "end": 65330.6, + "probability": 0.9889 + }, + { + "start": 65331.74, + "end": 65338.32, + "probability": 0.9358 + }, + { + "start": 65339.7, + "end": 65340.62, + "probability": 0.9629 + }, + { + "start": 65342.04, + "end": 65342.88, + "probability": 0.3931 + }, + { + "start": 65343.66, + "end": 65345.56, + "probability": 0.8855 + }, + { + "start": 65347.84, + "end": 65356.08, + "probability": 0.6682 + }, + { + "start": 65357.44, + "end": 65360.24, + "probability": 0.6319 + }, + { + "start": 65360.76, + "end": 65362.76, + "probability": 0.689 + }, + { + "start": 65363.06, + "end": 65363.72, + "probability": 0.6209 + }, + { + "start": 65365.18, + "end": 65365.74, + "probability": 0.5869 + }, + { + "start": 65368.28, + "end": 65372.4, + "probability": 0.9 + }, + { + "start": 65373.14, + "end": 65375.48, + "probability": 0.7587 + }, + { + "start": 65377.96, + "end": 65378.8, + "probability": 0.6904 + }, + { + "start": 65379.78, + "end": 65384.92, + "probability": 0.9039 + }, + { + "start": 65385.36, + "end": 65387.06, + "probability": 0.7088 + }, + { + "start": 65389.14, + "end": 65389.56, + "probability": 0.6567 + }, + { + "start": 65390.24, + "end": 65391.28, + "probability": 0.7745 + }, + { + "start": 65392.8, + "end": 65396.16, + "probability": 0.7222 + }, + { + "start": 65397.34, + "end": 65399.18, + "probability": 0.7319 + }, + { + "start": 65399.88, + "end": 65404.96, + "probability": 0.8986 + }, + { + "start": 65405.08, + "end": 65410.8, + "probability": 0.9134 + }, + { + "start": 65410.8, + "end": 65413.2, + "probability": 0.8032 + }, + { + "start": 65414.28, + "end": 65417.16, + "probability": 0.8207 + }, + { + "start": 65417.84, + "end": 65420.9, + "probability": 0.9862 + }, + { + "start": 65422.1, + "end": 65423.32, + "probability": 0.8997 + }, + { + "start": 65423.44, + "end": 65423.7, + "probability": 0.788 + }, + { + "start": 65423.76, + "end": 65426.22, + "probability": 0.7906 + }, + { + "start": 65426.68, + "end": 65428.94, + "probability": 0.5894 + }, + { + "start": 65429.2, + "end": 65429.88, + "probability": 0.3785 + }, + { + "start": 65430.08, + "end": 65431.62, + "probability": 0.78 + }, + { + "start": 65443.88, + "end": 65444.5, + "probability": 0.4255 + }, + { + "start": 65444.7, + "end": 65447.48, + "probability": 0.896 + }, + { + "start": 65447.82, + "end": 65450.32, + "probability": 0.8398 + }, + { + "start": 65451.1, + "end": 65453.4, + "probability": 0.9492 + }, + { + "start": 65453.96, + "end": 65456.2, + "probability": 0.9664 + }, + { + "start": 65456.2, + "end": 65458.94, + "probability": 0.9284 + }, + { + "start": 65460.26, + "end": 65460.66, + "probability": 0.6285 + }, + { + "start": 65460.82, + "end": 65463.4, + "probability": 0.991 + }, + { + "start": 65463.74, + "end": 65466.16, + "probability": 0.8271 + }, + { + "start": 65467.8, + "end": 65468.08, + "probability": 0.7603 + }, + { + "start": 65468.92, + "end": 65471.22, + "probability": 0.9282 + }, + { + "start": 65472.48, + "end": 65474.62, + "probability": 0.9114 + }, + { + "start": 65474.86, + "end": 65476.78, + "probability": 0.9164 + }, + { + "start": 65477.52, + "end": 65478.82, + "probability": 0.8563 + }, + { + "start": 65479.04, + "end": 65481.18, + "probability": 0.8818 + }, + { + "start": 65481.76, + "end": 65484.22, + "probability": 0.9925 + }, + { + "start": 65484.9, + "end": 65486.44, + "probability": 0.9543 + }, + { + "start": 65487.5, + "end": 65489.56, + "probability": 0.997 + }, + { + "start": 65489.56, + "end": 65493.04, + "probability": 0.7989 + }, + { + "start": 65493.16, + "end": 65494.64, + "probability": 0.9986 + }, + { + "start": 65494.96, + "end": 65497.38, + "probability": 0.9844 + }, + { + "start": 65498.9, + "end": 65499.6, + "probability": 0.7379 + }, + { + "start": 65500.5, + "end": 65505.46, + "probability": 0.9727 + }, + { + "start": 65506.18, + "end": 65506.42, + "probability": 0.1534 + }, + { + "start": 65507.02, + "end": 65508.28, + "probability": 0.8923 + }, + { + "start": 65509.32, + "end": 65511.94, + "probability": 0.9297 + }, + { + "start": 65512.16, + "end": 65514.26, + "probability": 0.9447 + }, + { + "start": 65514.84, + "end": 65516.08, + "probability": 0.938 + }, + { + "start": 65516.7, + "end": 65520.46, + "probability": 0.9969 + }, + { + "start": 65521.6, + "end": 65522.18, + "probability": 0.8231 + }, + { + "start": 65522.9, + "end": 65525.66, + "probability": 0.9794 + }, + { + "start": 65526.38, + "end": 65527.48, + "probability": 0.7327 + }, + { + "start": 65528.04, + "end": 65529.3, + "probability": 0.9203 + }, + { + "start": 65529.48, + "end": 65534.88, + "probability": 0.7449 + }, + { + "start": 65535.4, + "end": 65538.22, + "probability": 0.9064 + }, + { + "start": 65539.18, + "end": 65540.54, + "probability": 0.9312 + }, + { + "start": 65540.74, + "end": 65541.84, + "probability": 0.9468 + }, + { + "start": 65541.96, + "end": 65542.72, + "probability": 0.6392 + }, + { + "start": 65543.22, + "end": 65546.32, + "probability": 0.9955 + }, + { + "start": 65546.88, + "end": 65548.38, + "probability": 0.8151 + }, + { + "start": 65548.96, + "end": 65551.02, + "probability": 0.9862 + }, + { + "start": 65551.68, + "end": 65553.68, + "probability": 0.9473 + }, + { + "start": 65555.04, + "end": 65557.34, + "probability": 0.8789 + }, + { + "start": 65557.48, + "end": 65559.86, + "probability": 0.8347 + }, + { + "start": 65560.46, + "end": 65561.28, + "probability": 0.6805 + }, + { + "start": 65562.74, + "end": 65563.22, + "probability": 0.762 + }, + { + "start": 65564.44, + "end": 65567.02, + "probability": 0.946 + }, + { + "start": 65567.94, + "end": 65569.1, + "probability": 0.9593 + }, + { + "start": 65569.28, + "end": 65570.0, + "probability": 0.7678 + }, + { + "start": 65570.0, + "end": 65571.7, + "probability": 0.9373 + }, + { + "start": 65572.32, + "end": 65574.82, + "probability": 0.9828 + }, + { + "start": 65575.5, + "end": 65576.24, + "probability": 0.6222 + }, + { + "start": 65576.24, + "end": 65578.18, + "probability": 0.0159 + }, + { + "start": 65578.18, + "end": 65578.88, + "probability": 0.0416 + }, + { + "start": 65580.06, + "end": 65584.94, + "probability": 0.887 + }, + { + "start": 65585.86, + "end": 65588.1, + "probability": 0.993 + }, + { + "start": 65588.94, + "end": 65593.4, + "probability": 0.9988 + }, + { + "start": 65594.08, + "end": 65595.2, + "probability": 0.9764 + }, + { + "start": 65596.18, + "end": 65597.34, + "probability": 0.8849 + }, + { + "start": 65597.86, + "end": 65600.2, + "probability": 0.9232 + }, + { + "start": 65601.12, + "end": 65603.3, + "probability": 0.99 + }, + { + "start": 65604.14, + "end": 65607.86, + "probability": 0.9898 + }, + { + "start": 65608.82, + "end": 65611.54, + "probability": 0.9476 + }, + { + "start": 65612.86, + "end": 65617.3, + "probability": 0.9852 + }, + { + "start": 65617.3, + "end": 65621.32, + "probability": 0.9948 + }, + { + "start": 65621.32, + "end": 65625.44, + "probability": 0.994 + }, + { + "start": 65626.42, + "end": 65630.54, + "probability": 0.9971 + }, + { + "start": 65630.54, + "end": 65634.44, + "probability": 0.8797 + }, + { + "start": 65635.1, + "end": 65636.18, + "probability": 0.7849 + }, + { + "start": 65637.0, + "end": 65639.24, + "probability": 0.9619 + }, + { + "start": 65639.9, + "end": 65640.92, + "probability": 0.9233 + }, + { + "start": 65641.34, + "end": 65645.06, + "probability": 0.8306 + }, + { + "start": 65645.56, + "end": 65646.48, + "probability": 0.7588 + }, + { + "start": 65646.58, + "end": 65649.96, + "probability": 0.7113 + }, + { + "start": 65650.48, + "end": 65653.1, + "probability": 0.9974 + }, + { + "start": 65653.1, + "end": 65656.46, + "probability": 0.9978 + }, + { + "start": 65657.04, + "end": 65658.68, + "probability": 0.3726 + }, + { + "start": 65659.36, + "end": 65660.36, + "probability": 0.9784 + }, + { + "start": 65661.6, + "end": 65663.16, + "probability": 0.6526 + }, + { + "start": 65664.18, + "end": 65668.38, + "probability": 0.9969 + }, + { + "start": 65668.38, + "end": 65671.72, + "probability": 0.9953 + }, + { + "start": 65672.76, + "end": 65675.24, + "probability": 0.9202 + }, + { + "start": 65675.66, + "end": 65678.76, + "probability": 0.9867 + }, + { + "start": 65679.72, + "end": 65683.42, + "probability": 0.9989 + }, + { + "start": 65683.42, + "end": 65685.72, + "probability": 0.9697 + }, + { + "start": 65685.84, + "end": 65686.86, + "probability": 0.715 + }, + { + "start": 65687.96, + "end": 65690.66, + "probability": 0.9891 + }, + { + "start": 65691.14, + "end": 65695.34, + "probability": 0.9455 + }, + { + "start": 65695.9, + "end": 65699.38, + "probability": 0.9773 + }, + { + "start": 65700.24, + "end": 65702.34, + "probability": 0.9794 + }, + { + "start": 65702.96, + "end": 65705.32, + "probability": 0.9986 + }, + { + "start": 65706.1, + "end": 65709.08, + "probability": 0.8984 + }, + { + "start": 65709.12, + "end": 65712.54, + "probability": 0.9636 + }, + { + "start": 65713.24, + "end": 65715.18, + "probability": 0.8792 + }, + { + "start": 65715.98, + "end": 65718.4, + "probability": 0.9484 + }, + { + "start": 65719.32, + "end": 65721.56, + "probability": 0.9868 + }, + { + "start": 65722.18, + "end": 65724.18, + "probability": 0.9565 + }, + { + "start": 65725.26, + "end": 65727.08, + "probability": 0.5712 + }, + { + "start": 65727.8, + "end": 65729.44, + "probability": 0.967 + }, + { + "start": 65729.96, + "end": 65734.58, + "probability": 0.9922 + }, + { + "start": 65735.36, + "end": 65737.78, + "probability": 0.749 + }, + { + "start": 65738.56, + "end": 65739.52, + "probability": 0.9865 + }, + { + "start": 65741.02, + "end": 65742.6, + "probability": 0.9067 + }, + { + "start": 65743.48, + "end": 65744.98, + "probability": 0.9673 + }, + { + "start": 65745.86, + "end": 65747.22, + "probability": 0.8657 + }, + { + "start": 65748.58, + "end": 65751.86, + "probability": 0.8312 + }, + { + "start": 65751.86, + "end": 65755.72, + "probability": 0.9961 + }, + { + "start": 65756.34, + "end": 65758.62, + "probability": 0.9727 + }, + { + "start": 65759.32, + "end": 65760.9, + "probability": 0.9989 + }, + { + "start": 65761.34, + "end": 65763.26, + "probability": 0.9062 + }, + { + "start": 65763.94, + "end": 65765.78, + "probability": 0.8867 + }, + { + "start": 65766.22, + "end": 65768.84, + "probability": 0.9956 + }, + { + "start": 65769.63, + "end": 65772.1, + "probability": 0.8562 + }, + { + "start": 65772.96, + "end": 65778.14, + "probability": 0.9918 + }, + { + "start": 65778.74, + "end": 65781.04, + "probability": 0.9995 + }, + { + "start": 65781.04, + "end": 65784.18, + "probability": 0.9993 + }, + { + "start": 65785.12, + "end": 65786.7, + "probability": 0.6761 + }, + { + "start": 65787.24, + "end": 65788.32, + "probability": 0.9917 + }, + { + "start": 65789.66, + "end": 65793.46, + "probability": 0.9443 + }, + { + "start": 65793.64, + "end": 65794.34, + "probability": 0.8053 + }, + { + "start": 65795.54, + "end": 65798.5, + "probability": 0.9966 + }, + { + "start": 65798.5, + "end": 65802.68, + "probability": 0.9995 + }, + { + "start": 65803.88, + "end": 65806.22, + "probability": 0.9876 + }, + { + "start": 65807.1, + "end": 65807.88, + "probability": 0.9108 + }, + { + "start": 65808.46, + "end": 65810.74, + "probability": 0.9946 + }, + { + "start": 65811.58, + "end": 65812.58, + "probability": 0.9824 + }, + { + "start": 65813.98, + "end": 65816.18, + "probability": 0.6382 + }, + { + "start": 65816.92, + "end": 65819.76, + "probability": 0.9915 + }, + { + "start": 65820.48, + "end": 65825.2, + "probability": 0.989 + }, + { + "start": 65825.44, + "end": 65826.66, + "probability": 0.9796 + }, + { + "start": 65827.5, + "end": 65829.8, + "probability": 0.9771 + }, + { + "start": 65830.62, + "end": 65833.3, + "probability": 0.9194 + }, + { + "start": 65833.88, + "end": 65834.87, + "probability": 0.6007 + }, + { + "start": 65835.66, + "end": 65838.44, + "probability": 0.986 + }, + { + "start": 65839.16, + "end": 65840.24, + "probability": 0.9792 + }, + { + "start": 65840.88, + "end": 65841.52, + "probability": 0.897 + }, + { + "start": 65841.82, + "end": 65845.32, + "probability": 0.8641 + }, + { + "start": 65846.28, + "end": 65847.98, + "probability": 0.7637 + }, + { + "start": 65848.68, + "end": 65849.84, + "probability": 0.8623 + }, + { + "start": 65850.72, + "end": 65853.92, + "probability": 0.981 + }, + { + "start": 65853.92, + "end": 65854.92, + "probability": 0.6102 + }, + { + "start": 65854.94, + "end": 65855.68, + "probability": 0.4966 + }, + { + "start": 65855.68, + "end": 65856.28, + "probability": 0.9382 + }, + { + "start": 65857.08, + "end": 65860.18, + "probability": 0.7412 + }, + { + "start": 65860.3, + "end": 65862.44, + "probability": 0.9895 + }, + { + "start": 65863.2, + "end": 65863.96, + "probability": 0.8039 + }, + { + "start": 65864.08, + "end": 65866.72, + "probability": 0.9976 + }, + { + "start": 65867.14, + "end": 65868.3, + "probability": 0.948 + }, + { + "start": 65869.0, + "end": 65871.32, + "probability": 0.9887 + }, + { + "start": 65871.76, + "end": 65875.42, + "probability": 0.95 + }, + { + "start": 65875.9, + "end": 65878.64, + "probability": 0.9751 + }, + { + "start": 65879.04, + "end": 65880.0, + "probability": 0.8987 + }, + { + "start": 65880.64, + "end": 65881.52, + "probability": 0.9399 + }, + { + "start": 65881.86, + "end": 65882.18, + "probability": 0.8722 + }, + { + "start": 65882.26, + "end": 65884.88, + "probability": 0.8079 + }, + { + "start": 65885.72, + "end": 65888.06, + "probability": 0.813 + }, + { + "start": 65888.54, + "end": 65889.08, + "probability": 0.4307 + }, + { + "start": 65889.22, + "end": 65890.62, + "probability": 0.9528 + }, + { + "start": 65894.76, + "end": 65897.44, + "probability": 0.8543 + }, + { + "start": 65898.74, + "end": 65900.1, + "probability": 0.8393 + }, + { + "start": 65900.92, + "end": 65902.96, + "probability": 0.7198 + }, + { + "start": 65904.1, + "end": 65906.22, + "probability": 0.8684 + }, + { + "start": 65907.84, + "end": 65908.84, + "probability": 0.8227 + }, + { + "start": 65909.92, + "end": 65912.62, + "probability": 0.9956 + }, + { + "start": 65913.2, + "end": 65916.05, + "probability": 0.9888 + }, + { + "start": 65917.16, + "end": 65919.22, + "probability": 0.9074 + }, + { + "start": 65920.54, + "end": 65923.38, + "probability": 0.9841 + }, + { + "start": 65928.04, + "end": 65928.42, + "probability": 0.6439 + }, + { + "start": 65928.46, + "end": 65929.68, + "probability": 0.978 + }, + { + "start": 65929.92, + "end": 65930.46, + "probability": 0.8712 + }, + { + "start": 65930.62, + "end": 65933.06, + "probability": 0.8111 + }, + { + "start": 65935.08, + "end": 65938.48, + "probability": 0.9658 + }, + { + "start": 65940.46, + "end": 65943.4, + "probability": 0.9575 + }, + { + "start": 65944.6, + "end": 65947.7, + "probability": 0.9797 + }, + { + "start": 65948.88, + "end": 65951.58, + "probability": 0.9651 + }, + { + "start": 65952.44, + "end": 65955.1, + "probability": 0.9946 + }, + { + "start": 65958.06, + "end": 65959.08, + "probability": 0.9731 + }, + { + "start": 65960.16, + "end": 65963.34, + "probability": 0.9214 + }, + { + "start": 65964.2, + "end": 65966.56, + "probability": 0.7695 + }, + { + "start": 65967.2, + "end": 65968.88, + "probability": 0.4776 + }, + { + "start": 65968.98, + "end": 65969.36, + "probability": 0.781 + }, + { + "start": 65969.42, + "end": 65972.38, + "probability": 0.982 + }, + { + "start": 65973.14, + "end": 65974.02, + "probability": 0.9368 + }, + { + "start": 65974.68, + "end": 65975.04, + "probability": 0.9023 + }, + { + "start": 65975.1, + "end": 65981.76, + "probability": 0.9913 + }, + { + "start": 65981.86, + "end": 65982.96, + "probability": 0.6446 + }, + { + "start": 65984.4, + "end": 65986.8, + "probability": 0.8957 + }, + { + "start": 65987.74, + "end": 65989.5, + "probability": 0.9966 + }, + { + "start": 65990.4, + "end": 65991.22, + "probability": 0.9261 + }, + { + "start": 65991.78, + "end": 65992.86, + "probability": 0.9081 + }, + { + "start": 65994.0, + "end": 65996.2, + "probability": 0.9146 + }, + { + "start": 65996.56, + "end": 66001.78, + "probability": 0.9556 + }, + { + "start": 66002.02, + "end": 66002.68, + "probability": 0.9248 + }, + { + "start": 66003.72, + "end": 66004.84, + "probability": 0.9886 + }, + { + "start": 66006.98, + "end": 66008.08, + "probability": 0.7523 + }, + { + "start": 66010.34, + "end": 66012.24, + "probability": 0.9978 + }, + { + "start": 66012.88, + "end": 66013.74, + "probability": 0.7985 + }, + { + "start": 66013.76, + "end": 66014.72, + "probability": 0.7616 + }, + { + "start": 66014.78, + "end": 66017.5, + "probability": 0.856 + }, + { + "start": 66018.0, + "end": 66020.02, + "probability": 0.9719 + }, + { + "start": 66020.84, + "end": 66021.52, + "probability": 0.3884 + }, + { + "start": 66022.38, + "end": 66025.0, + "probability": 0.8735 + }, + { + "start": 66028.96, + "end": 66029.58, + "probability": 0.9688 + }, + { + "start": 66030.92, + "end": 66031.48, + "probability": 0.0641 + }, + { + "start": 66031.48, + "end": 66031.48, + "probability": 0.0379 + }, + { + "start": 66031.48, + "end": 66031.48, + "probability": 0.3066 + }, + { + "start": 66031.48, + "end": 66032.74, + "probability": 0.3627 + }, + { + "start": 66032.84, + "end": 66035.64, + "probability": 0.6379 + }, + { + "start": 66036.42, + "end": 66037.14, + "probability": 0.4587 + }, + { + "start": 66038.2, + "end": 66038.88, + "probability": 0.9489 + }, + { + "start": 66038.96, + "end": 66040.14, + "probability": 0.9585 + }, + { + "start": 66040.22, + "end": 66042.0, + "probability": 0.9451 + }, + { + "start": 66042.14, + "end": 66045.02, + "probability": 0.8058 + }, + { + "start": 66045.78, + "end": 66050.68, + "probability": 0.79 + }, + { + "start": 66051.92, + "end": 66052.96, + "probability": 0.803 + }, + { + "start": 66053.5, + "end": 66054.48, + "probability": 0.8833 + }, + { + "start": 66055.16, + "end": 66062.14, + "probability": 0.9833 + }, + { + "start": 66064.4, + "end": 66066.86, + "probability": 0.8013 + }, + { + "start": 66068.88, + "end": 66070.0, + "probability": 0.7033 + }, + { + "start": 66071.74, + "end": 66073.42, + "probability": 0.9697 + }, + { + "start": 66074.06, + "end": 66077.14, + "probability": 0.986 + }, + { + "start": 66079.62, + "end": 66082.74, + "probability": 0.9951 + }, + { + "start": 66084.08, + "end": 66090.18, + "probability": 0.9866 + }, + { + "start": 66090.18, + "end": 66094.4, + "probability": 0.7511 + }, + { + "start": 66096.0, + "end": 66098.72, + "probability": 0.8733 + }, + { + "start": 66100.94, + "end": 66102.56, + "probability": 0.8945 + }, + { + "start": 66104.9, + "end": 66106.72, + "probability": 0.8808 + }, + { + "start": 66109.08, + "end": 66115.64, + "probability": 0.3766 + }, + { + "start": 66115.76, + "end": 66116.71, + "probability": 0.4763 + }, + { + "start": 66117.0, + "end": 66117.3, + "probability": 0.4132 + }, + { + "start": 66117.92, + "end": 66118.6, + "probability": 0.5158 + }, + { + "start": 66119.66, + "end": 66119.96, + "probability": 0.4273 + }, + { + "start": 66119.98, + "end": 66120.18, + "probability": 0.1518 + }, + { + "start": 66120.42, + "end": 66122.42, + "probability": 0.9508 + }, + { + "start": 66123.68, + "end": 66128.74, + "probability": 0.9968 + }, + { + "start": 66129.9, + "end": 66130.72, + "probability": 0.6248 + }, + { + "start": 66132.34, + "end": 66133.46, + "probability": 0.8997 + }, + { + "start": 66133.52, + "end": 66134.72, + "probability": 0.9792 + }, + { + "start": 66135.16, + "end": 66138.78, + "probability": 0.9941 + }, + { + "start": 66139.3, + "end": 66140.44, + "probability": 0.4064 + }, + { + "start": 66140.7, + "end": 66141.22, + "probability": 0.9805 + }, + { + "start": 66142.14, + "end": 66142.92, + "probability": 0.5345 + }, + { + "start": 66143.78, + "end": 66146.4, + "probability": 0.6437 + }, + { + "start": 66147.38, + "end": 66147.68, + "probability": 0.5201 + }, + { + "start": 66147.68, + "end": 66149.06, + "probability": 0.5167 + }, + { + "start": 66149.26, + "end": 66150.22, + "probability": 0.5453 + }, + { + "start": 66150.34, + "end": 66150.64, + "probability": 0.2928 + }, + { + "start": 66150.64, + "end": 66150.82, + "probability": 0.6243 + }, + { + "start": 66150.94, + "end": 66152.32, + "probability": 0.9565 + }, + { + "start": 66152.6, + "end": 66156.12, + "probability": 0.7761 + }, + { + "start": 66156.72, + "end": 66158.58, + "probability": 0.9941 + }, + { + "start": 66159.58, + "end": 66161.04, + "probability": 0.9412 + }, + { + "start": 66162.3, + "end": 66163.42, + "probability": 0.8879 + }, + { + "start": 66164.22, + "end": 66165.2, + "probability": 0.814 + }, + { + "start": 66169.22, + "end": 66170.26, + "probability": 0.7639 + }, + { + "start": 66170.32, + "end": 66171.04, + "probability": 0.9363 + }, + { + "start": 66171.12, + "end": 66176.04, + "probability": 0.9907 + }, + { + "start": 66178.36, + "end": 66179.4, + "probability": 0.9512 + }, + { + "start": 66179.48, + "end": 66180.98, + "probability": 0.9661 + }, + { + "start": 66181.06, + "end": 66182.74, + "probability": 0.8262 + }, + { + "start": 66183.74, + "end": 66187.32, + "probability": 0.98 + }, + { + "start": 66187.5, + "end": 66188.02, + "probability": 0.7378 + }, + { + "start": 66188.26, + "end": 66191.18, + "probability": 0.8135 + }, + { + "start": 66191.48, + "end": 66192.5, + "probability": 0.4215 + }, + { + "start": 66192.76, + "end": 66193.64, + "probability": 0.751 + }, + { + "start": 66195.02, + "end": 66197.94, + "probability": 0.2154 + }, + { + "start": 66197.94, + "end": 66198.4, + "probability": 0.6987 + }, + { + "start": 66198.46, + "end": 66199.18, + "probability": 0.6302 + }, + { + "start": 66199.22, + "end": 66202.6, + "probability": 0.9314 + }, + { + "start": 66202.72, + "end": 66204.52, + "probability": 0.6587 + }, + { + "start": 66204.84, + "end": 66207.92, + "probability": 0.9287 + }, + { + "start": 66210.28, + "end": 66211.38, + "probability": 0.9609 + }, + { + "start": 66213.1, + "end": 66214.58, + "probability": 0.463 + }, + { + "start": 66215.32, + "end": 66219.0, + "probability": 0.9878 + }, + { + "start": 66220.32, + "end": 66225.24, + "probability": 0.9904 + }, + { + "start": 66226.48, + "end": 66226.68, + "probability": 0.0599 + }, + { + "start": 66226.68, + "end": 66231.96, + "probability": 0.9564 + }, + { + "start": 66232.62, + "end": 66233.9, + "probability": 0.7786 + }, + { + "start": 66236.02, + "end": 66240.7, + "probability": 0.9976 + }, + { + "start": 66240.98, + "end": 66242.48, + "probability": 0.8959 + }, + { + "start": 66242.8, + "end": 66244.42, + "probability": 0.93 + }, + { + "start": 66246.22, + "end": 66247.74, + "probability": 0.8484 + }, + { + "start": 66250.4, + "end": 66251.64, + "probability": 0.9155 + }, + { + "start": 66252.2, + "end": 66254.2, + "probability": 0.7738 + }, + { + "start": 66255.36, + "end": 66256.36, + "probability": 0.7438 + }, + { + "start": 66256.74, + "end": 66259.56, + "probability": 0.7065 + }, + { + "start": 66259.66, + "end": 66263.96, + "probability": 0.7709 + }, + { + "start": 66264.7, + "end": 66265.24, + "probability": 0.3123 + }, + { + "start": 66265.5, + "end": 66268.02, + "probability": 0.9493 + }, + { + "start": 66268.26, + "end": 66268.88, + "probability": 0.7803 + }, + { + "start": 66268.94, + "end": 66271.48, + "probability": 0.8643 + }, + { + "start": 66272.06, + "end": 66274.74, + "probability": 0.881 + }, + { + "start": 66275.34, + "end": 66278.22, + "probability": 0.5229 + }, + { + "start": 66278.46, + "end": 66278.58, + "probability": 0.2593 + }, + { + "start": 66278.76, + "end": 66280.1, + "probability": 0.8569 + }, + { + "start": 66280.42, + "end": 66281.32, + "probability": 0.8625 + }, + { + "start": 66282.08, + "end": 66287.74, + "probability": 0.874 + }, + { + "start": 66288.02, + "end": 66289.96, + "probability": 0.1865 + }, + { + "start": 66289.96, + "end": 66291.44, + "probability": 0.8352 + }, + { + "start": 66291.96, + "end": 66292.88, + "probability": 0.7201 + }, + { + "start": 66293.62, + "end": 66296.02, + "probability": 0.7309 + }, + { + "start": 66296.08, + "end": 66297.16, + "probability": 0.6572 + }, + { + "start": 66297.96, + "end": 66300.02, + "probability": 0.9668 + }, + { + "start": 66301.5, + "end": 66303.94, + "probability": 0.8204 + }, + { + "start": 66304.86, + "end": 66306.36, + "probability": 0.9876 + }, + { + "start": 66308.04, + "end": 66309.46, + "probability": 0.5323 + }, + { + "start": 66310.64, + "end": 66311.64, + "probability": 0.5192 + }, + { + "start": 66312.16, + "end": 66313.52, + "probability": 0.2838 + }, + { + "start": 66313.96, + "end": 66319.76, + "probability": 0.9725 + }, + { + "start": 66320.74, + "end": 66323.82, + "probability": 0.9757 + }, + { + "start": 66324.44, + "end": 66325.07, + "probability": 0.9146 + }, + { + "start": 66326.34, + "end": 66328.12, + "probability": 0.9372 + }, + { + "start": 66329.98, + "end": 66330.98, + "probability": 0.9919 + }, + { + "start": 66332.58, + "end": 66335.28, + "probability": 0.8372 + }, + { + "start": 66336.5, + "end": 66337.48, + "probability": 0.9423 + }, + { + "start": 66338.16, + "end": 66339.36, + "probability": 0.9788 + }, + { + "start": 66339.76, + "end": 66340.96, + "probability": 0.9792 + }, + { + "start": 66341.14, + "end": 66342.88, + "probability": 0.9826 + }, + { + "start": 66344.24, + "end": 66345.92, + "probability": 0.8264 + }, + { + "start": 66347.26, + "end": 66355.94, + "probability": 0.9878 + }, + { + "start": 66356.66, + "end": 66357.88, + "probability": 0.7128 + }, + { + "start": 66358.68, + "end": 66362.1, + "probability": 0.98 + }, + { + "start": 66363.16, + "end": 66365.68, + "probability": 0.9482 + }, + { + "start": 66367.02, + "end": 66368.14, + "probability": 0.8244 + }, + { + "start": 66369.54, + "end": 66371.08, + "probability": 0.9951 + }, + { + "start": 66372.12, + "end": 66373.12, + "probability": 0.9289 + }, + { + "start": 66373.82, + "end": 66374.98, + "probability": 0.9726 + }, + { + "start": 66376.88, + "end": 66379.38, + "probability": 0.7506 + }, + { + "start": 66380.6, + "end": 66384.34, + "probability": 0.9905 + }, + { + "start": 66385.56, + "end": 66390.38, + "probability": 0.9419 + }, + { + "start": 66390.58, + "end": 66392.04, + "probability": 0.7446 + }, + { + "start": 66392.76, + "end": 66394.4, + "probability": 0.8573 + }, + { + "start": 66395.44, + "end": 66396.48, + "probability": 0.7568 + }, + { + "start": 66397.6, + "end": 66400.14, + "probability": 0.9268 + }, + { + "start": 66400.7, + "end": 66401.58, + "probability": 0.885 + }, + { + "start": 66402.5, + "end": 66403.5, + "probability": 0.8638 + }, + { + "start": 66403.72, + "end": 66405.1, + "probability": 0.9038 + }, + { + "start": 66407.12, + "end": 66411.59, + "probability": 0.9626 + }, + { + "start": 66412.02, + "end": 66417.6, + "probability": 0.9972 + }, + { + "start": 66418.12, + "end": 66418.46, + "probability": 0.1042 + }, + { + "start": 66418.46, + "end": 66419.92, + "probability": 0.5021 + }, + { + "start": 66419.94, + "end": 66424.86, + "probability": 0.7849 + }, + { + "start": 66426.44, + "end": 66431.14, + "probability": 0.8325 + }, + { + "start": 66432.32, + "end": 66434.0, + "probability": 0.9479 + }, + { + "start": 66434.8, + "end": 66435.94, + "probability": 0.8833 + }, + { + "start": 66436.6, + "end": 66438.42, + "probability": 0.9897 + }, + { + "start": 66439.44, + "end": 66441.78, + "probability": 0.664 + }, + { + "start": 66441.82, + "end": 66443.74, + "probability": 0.9268 + }, + { + "start": 66445.74, + "end": 66447.34, + "probability": 0.9421 + }, + { + "start": 66448.74, + "end": 66451.04, + "probability": 0.8451 + }, + { + "start": 66451.82, + "end": 66454.32, + "probability": 0.9423 + }, + { + "start": 66455.1, + "end": 66457.4, + "probability": 0.8049 + }, + { + "start": 66457.6, + "end": 66458.88, + "probability": 0.9316 + }, + { + "start": 66459.66, + "end": 66463.56, + "probability": 0.9574 + }, + { + "start": 66464.28, + "end": 66467.18, + "probability": 0.9046 + }, + { + "start": 66467.88, + "end": 66468.94, + "probability": 0.7065 + }, + { + "start": 66469.68, + "end": 66471.21, + "probability": 0.7866 + }, + { + "start": 66472.76, + "end": 66476.65, + "probability": 0.9857 + }, + { + "start": 66477.88, + "end": 66479.76, + "probability": 0.9977 + }, + { + "start": 66479.86, + "end": 66484.08, + "probability": 0.984 + }, + { + "start": 66484.88, + "end": 66487.22, + "probability": 0.5588 + }, + { + "start": 66487.94, + "end": 66489.36, + "probability": 0.9242 + }, + { + "start": 66489.9, + "end": 66494.06, + "probability": 0.9878 + }, + { + "start": 66494.84, + "end": 66500.62, + "probability": 0.9954 + }, + { + "start": 66503.58, + "end": 66505.92, + "probability": 0.9475 + }, + { + "start": 66507.52, + "end": 66510.6, + "probability": 0.9751 + }, + { + "start": 66511.52, + "end": 66513.08, + "probability": 0.9927 + }, + { + "start": 66515.66, + "end": 66517.88, + "probability": 0.9873 + }, + { + "start": 66518.5, + "end": 66521.5, + "probability": 0.9645 + }, + { + "start": 66522.28, + "end": 66524.74, + "probability": 0.6308 + }, + { + "start": 66524.9, + "end": 66527.18, + "probability": 0.7127 + }, + { + "start": 66528.2, + "end": 66529.48, + "probability": 0.8023 + }, + { + "start": 66530.16, + "end": 66534.98, + "probability": 0.9223 + }, + { + "start": 66535.42, + "end": 66537.2, + "probability": 0.799 + }, + { + "start": 66537.86, + "end": 66541.08, + "probability": 0.9908 + }, + { + "start": 66543.52, + "end": 66552.22, + "probability": 0.9993 + }, + { + "start": 66552.22, + "end": 66560.24, + "probability": 0.9993 + }, + { + "start": 66560.5, + "end": 66562.24, + "probability": 0.9334 + }, + { + "start": 66563.16, + "end": 66563.44, + "probability": 0.879 + }, + { + "start": 66563.6, + "end": 66564.4, + "probability": 0.7295 + }, + { + "start": 66564.66, + "end": 66565.6, + "probability": 0.4033 + }, + { + "start": 66565.64, + "end": 66567.12, + "probability": 0.998 + }, + { + "start": 66567.8, + "end": 66570.5, + "probability": 0.9584 + }, + { + "start": 66571.34, + "end": 66574.46, + "probability": 0.9964 + }, + { + "start": 66576.32, + "end": 66581.6, + "probability": 0.9685 + }, + { + "start": 66582.2, + "end": 66585.64, + "probability": 0.8356 + }, + { + "start": 66586.38, + "end": 66587.7, + "probability": 0.8939 + }, + { + "start": 66588.32, + "end": 66591.04, + "probability": 0.8257 + }, + { + "start": 66592.54, + "end": 66598.1, + "probability": 0.9889 + }, + { + "start": 66598.1, + "end": 66602.86, + "probability": 0.9565 + }, + { + "start": 66603.06, + "end": 66603.64, + "probability": 0.7817 + }, + { + "start": 66604.1, + "end": 66604.9, + "probability": 0.6811 + }, + { + "start": 66605.22, + "end": 66605.42, + "probability": 0.816 + }, + { + "start": 66605.86, + "end": 66606.72, + "probability": 0.8022 + }, + { + "start": 66607.14, + "end": 66607.7, + "probability": 0.539 + }, + { + "start": 66607.86, + "end": 66610.74, + "probability": 0.8403 + }, + { + "start": 66611.32, + "end": 66614.04, + "probability": 0.5918 + }, + { + "start": 66616.44, + "end": 66622.1, + "probability": 0.9832 + }, + { + "start": 66622.56, + "end": 66625.18, + "probability": 0.9604 + }, + { + "start": 66625.5, + "end": 66628.82, + "probability": 0.8173 + }, + { + "start": 66629.12, + "end": 66631.12, + "probability": 0.9558 + }, + { + "start": 66632.96, + "end": 66633.52, + "probability": 0.9131 + }, + { + "start": 66635.74, + "end": 66637.24, + "probability": 0.7303 + }, + { + "start": 66637.5, + "end": 66640.4, + "probability": 0.993 + }, + { + "start": 66641.54, + "end": 66642.66, + "probability": 0.9898 + }, + { + "start": 66644.0, + "end": 66645.16, + "probability": 0.9385 + }, + { + "start": 66645.42, + "end": 66649.94, + "probability": 0.9945 + }, + { + "start": 66650.78, + "end": 66654.54, + "probability": 0.9766 + }, + { + "start": 66655.1, + "end": 66658.84, + "probability": 0.8901 + }, + { + "start": 66659.72, + "end": 66660.7, + "probability": 0.7659 + }, + { + "start": 66660.74, + "end": 66663.3, + "probability": 0.5218 + }, + { + "start": 66663.66, + "end": 66666.56, + "probability": 0.9841 + }, + { + "start": 66669.35, + "end": 66670.44, + "probability": 0.4938 + }, + { + "start": 66670.9, + "end": 66671.82, + "probability": 0.8757 + }, + { + "start": 66672.5, + "end": 66676.02, + "probability": 0.8139 + }, + { + "start": 66676.7, + "end": 66677.56, + "probability": 0.7615 + }, + { + "start": 66677.94, + "end": 66684.88, + "probability": 0.9891 + }, + { + "start": 66685.62, + "end": 66686.58, + "probability": 0.864 + }, + { + "start": 66686.78, + "end": 66688.7, + "probability": 0.8791 + }, + { + "start": 66688.84, + "end": 66691.44, + "probability": 0.9182 + }, + { + "start": 66691.96, + "end": 66694.64, + "probability": 0.8463 + }, + { + "start": 66697.34, + "end": 66701.34, + "probability": 0.9668 + }, + { + "start": 66701.94, + "end": 66703.28, + "probability": 0.8337 + }, + { + "start": 66703.9, + "end": 66704.54, + "probability": 0.9939 + }, + { + "start": 66705.62, + "end": 66706.9, + "probability": 0.6277 + }, + { + "start": 66707.02, + "end": 66709.22, + "probability": 0.5442 + }, + { + "start": 66710.74, + "end": 66711.22, + "probability": 0.9795 + }, + { + "start": 66711.52, + "end": 66712.64, + "probability": 0.8683 + }, + { + "start": 66712.72, + "end": 66712.74, + "probability": 0.3162 + }, + { + "start": 66712.82, + "end": 66713.42, + "probability": 0.5512 + }, + { + "start": 66713.46, + "end": 66716.26, + "probability": 0.2782 + }, + { + "start": 66716.42, + "end": 66716.48, + "probability": 0.0237 + }, + { + "start": 66716.48, + "end": 66716.48, + "probability": 0.0186 + }, + { + "start": 66716.48, + "end": 66716.48, + "probability": 0.7471 + }, + { + "start": 66716.48, + "end": 66716.48, + "probability": 0.3222 + }, + { + "start": 66716.48, + "end": 66717.14, + "probability": 0.5634 + }, + { + "start": 66718.38, + "end": 66720.87, + "probability": 0.7244 + }, + { + "start": 66721.88, + "end": 66724.3, + "probability": 0.8618 + }, + { + "start": 66724.4, + "end": 66726.09, + "probability": 0.3863 + }, + { + "start": 66727.22, + "end": 66728.72, + "probability": 0.4949 + }, + { + "start": 66728.72, + "end": 66729.7, + "probability": 0.538 + }, + { + "start": 66729.74, + "end": 66730.82, + "probability": 0.5224 + }, + { + "start": 66732.38, + "end": 66733.26, + "probability": 0.4824 + }, + { + "start": 66733.58, + "end": 66733.92, + "probability": 0.577 + }, + { + "start": 66733.94, + "end": 66734.26, + "probability": 0.7052 + }, + { + "start": 66734.36, + "end": 66737.79, + "probability": 0.9907 + }, + { + "start": 66738.78, + "end": 66739.38, + "probability": 0.9624 + }, + { + "start": 66739.92, + "end": 66740.32, + "probability": 0.7022 + }, + { + "start": 66741.92, + "end": 66743.24, + "probability": 0.8882 + }, + { + "start": 66747.12, + "end": 66749.0, + "probability": 0.2682 + }, + { + "start": 66752.1, + "end": 66754.24, + "probability": 0.7918 + }, + { + "start": 66755.6, + "end": 66761.16, + "probability": 0.9382 + }, + { + "start": 66761.22, + "end": 66761.74, + "probability": 0.667 + }, + { + "start": 66762.2, + "end": 66762.74, + "probability": 0.632 + }, + { + "start": 66764.12, + "end": 66764.98, + "probability": 0.7785 + }, + { + "start": 66765.72, + "end": 66766.62, + "probability": 0.7787 + }, + { + "start": 66768.12, + "end": 66773.44, + "probability": 0.9844 + }, + { + "start": 66774.78, + "end": 66777.22, + "probability": 0.9914 + }, + { + "start": 66779.34, + "end": 66781.52, + "probability": 0.901 + }, + { + "start": 66781.56, + "end": 66786.28, + "probability": 0.8063 + }, + { + "start": 66787.58, + "end": 66792.6, + "probability": 0.8536 + }, + { + "start": 66794.86, + "end": 66797.22, + "probability": 0.3195 + }, + { + "start": 66797.3, + "end": 66798.18, + "probability": 0.7381 + }, + { + "start": 66798.18, + "end": 66799.44, + "probability": 0.6517 + }, + { + "start": 66800.64, + "end": 66802.94, + "probability": 0.7891 + }, + { + "start": 66803.76, + "end": 66804.95, + "probability": 0.418 + }, + { + "start": 66805.72, + "end": 66808.66, + "probability": 0.6793 + }, + { + "start": 66808.94, + "end": 66811.92, + "probability": 0.8704 + }, + { + "start": 66812.58, + "end": 66813.24, + "probability": 0.804 + }, + { + "start": 66813.4, + "end": 66814.55, + "probability": 0.9792 + }, + { + "start": 66816.04, + "end": 66817.84, + "probability": 0.6657 + }, + { + "start": 66817.98, + "end": 66820.54, + "probability": 0.7906 + }, + { + "start": 66821.14, + "end": 66821.78, + "probability": 0.4906 + }, + { + "start": 66821.84, + "end": 66822.7, + "probability": 0.8691 + }, + { + "start": 66823.74, + "end": 66825.56, + "probability": 0.7289 + }, + { + "start": 66826.26, + "end": 66829.34, + "probability": 0.9819 + }, + { + "start": 66829.72, + "end": 66830.76, + "probability": 0.9258 + }, + { + "start": 66833.84, + "end": 66836.98, + "probability": 0.6848 + }, + { + "start": 66838.0, + "end": 66839.26, + "probability": 0.9252 + }, + { + "start": 66840.28, + "end": 66843.66, + "probability": 0.9839 + }, + { + "start": 66843.66, + "end": 66848.5, + "probability": 0.9931 + }, + { + "start": 66849.48, + "end": 66853.54, + "probability": 0.3227 + }, + { + "start": 66853.54, + "end": 66853.54, + "probability": 0.0195 + }, + { + "start": 66853.54, + "end": 66857.44, + "probability": 0.9683 + }, + { + "start": 66857.52, + "end": 66858.4, + "probability": 0.6814 + }, + { + "start": 66858.54, + "end": 66860.95, + "probability": 0.5424 + }, + { + "start": 66861.82, + "end": 66865.6, + "probability": 0.9884 + }, + { + "start": 66865.72, + "end": 66866.54, + "probability": 0.6243 + }, + { + "start": 66868.66, + "end": 66872.16, + "probability": 0.965 + }, + { + "start": 66873.9, + "end": 66878.56, + "probability": 0.8027 + }, + { + "start": 66878.8, + "end": 66879.32, + "probability": 0.5814 + }, + { + "start": 66879.44, + "end": 66879.94, + "probability": 0.5273 + }, + { + "start": 66880.4, + "end": 66881.34, + "probability": 0.7783 + }, + { + "start": 66881.46, + "end": 66882.5, + "probability": 0.9692 + }, + { + "start": 66882.56, + "end": 66883.06, + "probability": 0.5584 + }, + { + "start": 66883.66, + "end": 66887.44, + "probability": 0.7672 + }, + { + "start": 66888.66, + "end": 66890.1, + "probability": 0.553 + }, + { + "start": 66890.1, + "end": 66890.14, + "probability": 0.3982 + }, + { + "start": 66890.14, + "end": 66892.32, + "probability": 0.7368 + }, + { + "start": 66892.38, + "end": 66893.8, + "probability": 0.7107 + }, + { + "start": 66893.98, + "end": 66896.04, + "probability": 0.9717 + }, + { + "start": 66896.12, + "end": 66896.7, + "probability": 0.3635 + }, + { + "start": 66899.06, + "end": 66901.42, + "probability": 0.7677 + }, + { + "start": 66901.44, + "end": 66902.12, + "probability": 0.8705 + }, + { + "start": 66904.12, + "end": 66906.02, + "probability": 0.7801 + }, + { + "start": 66906.84, + "end": 66912.6, + "probability": 0.9757 + }, + { + "start": 66914.68, + "end": 66917.26, + "probability": 0.9968 + }, + { + "start": 66918.0, + "end": 66918.54, + "probability": 0.5994 + }, + { + "start": 66918.72, + "end": 66919.82, + "probability": 0.9502 + }, + { + "start": 66920.98, + "end": 66924.56, + "probability": 0.8859 + }, + { + "start": 66925.16, + "end": 66931.9, + "probability": 0.8391 + }, + { + "start": 66934.88, + "end": 66937.1, + "probability": 0.9399 + }, + { + "start": 66937.2, + "end": 66938.28, + "probability": 0.7628 + }, + { + "start": 66940.2, + "end": 66943.08, + "probability": 0.5844 + }, + { + "start": 66943.86, + "end": 66944.6, + "probability": 0.7737 + }, + { + "start": 66945.76, + "end": 66945.78, + "probability": 0.045 + }, + { + "start": 66945.78, + "end": 66945.78, + "probability": 0.1482 + }, + { + "start": 66945.78, + "end": 66947.92, + "probability": 0.936 + }, + { + "start": 66948.8, + "end": 66951.22, + "probability": 0.4537 + }, + { + "start": 66951.26, + "end": 66951.96, + "probability": 0.9952 + }, + { + "start": 66953.98, + "end": 66955.74, + "probability": 0.9185 + }, + { + "start": 66956.74, + "end": 66959.82, + "probability": 0.993 + }, + { + "start": 66960.8, + "end": 66962.26, + "probability": 0.9712 + }, + { + "start": 66962.82, + "end": 66964.32, + "probability": 0.2341 + }, + { + "start": 66966.36, + "end": 66967.7, + "probability": 0.1123 + }, + { + "start": 66970.24, + "end": 66972.38, + "probability": 0.1528 + }, + { + "start": 66973.0, + "end": 66976.02, + "probability": 0.8022 + }, + { + "start": 66979.44, + "end": 66981.9, + "probability": 0.7235 + }, + { + "start": 66982.66, + "end": 66983.61, + "probability": 0.6902 + }, + { + "start": 66984.0, + "end": 66984.26, + "probability": 0.4302 + }, + { + "start": 66984.38, + "end": 66988.72, + "probability": 0.7058 + }, + { + "start": 66988.94, + "end": 66989.9, + "probability": 0.5526 + }, + { + "start": 66994.93, + "end": 67002.44, + "probability": 0.9959 + }, + { + "start": 67004.32, + "end": 67005.26, + "probability": 0.7639 + }, + { + "start": 67005.86, + "end": 67008.02, + "probability": 0.9978 + }, + { + "start": 67008.64, + "end": 67011.78, + "probability": 0.946 + }, + { + "start": 67012.98, + "end": 67014.68, + "probability": 0.9307 + }, + { + "start": 67014.9, + "end": 67020.06, + "probability": 0.9937 + }, + { + "start": 67021.44, + "end": 67022.28, + "probability": 0.9399 + }, + { + "start": 67023.38, + "end": 67024.4, + "probability": 0.9032 + }, + { + "start": 67026.42, + "end": 67028.72, + "probability": 0.9111 + }, + { + "start": 67029.54, + "end": 67031.76, + "probability": 0.9767 + }, + { + "start": 67032.58, + "end": 67033.11, + "probability": 0.96 + }, + { + "start": 67034.04, + "end": 67035.78, + "probability": 0.898 + }, + { + "start": 67036.6, + "end": 67037.52, + "probability": 0.3968 + }, + { + "start": 67038.14, + "end": 67042.16, + "probability": 0.755 + }, + { + "start": 67042.22, + "end": 67042.58, + "probability": 0.8234 + }, + { + "start": 67042.64, + "end": 67043.2, + "probability": 0.8067 + }, + { + "start": 67043.72, + "end": 67044.92, + "probability": 0.9526 + }, + { + "start": 67045.98, + "end": 67048.54, + "probability": 0.9957 + }, + { + "start": 67050.26, + "end": 67052.8, + "probability": 0.9197 + }, + { + "start": 67053.56, + "end": 67056.84, + "probability": 0.9904 + }, + { + "start": 67057.58, + "end": 67058.38, + "probability": 0.7494 + }, + { + "start": 67059.86, + "end": 67061.54, + "probability": 0.8306 + }, + { + "start": 67063.08, + "end": 67064.4, + "probability": 0.9869 + }, + { + "start": 67064.42, + "end": 67065.78, + "probability": 0.9884 + }, + { + "start": 67066.1, + "end": 67067.06, + "probability": 0.788 + }, + { + "start": 67068.14, + "end": 67069.04, + "probability": 0.8196 + }, + { + "start": 67069.5, + "end": 67070.86, + "probability": 0.8827 + }, + { + "start": 67072.5, + "end": 67073.68, + "probability": 0.7395 + }, + { + "start": 67075.44, + "end": 67076.63, + "probability": 0.9878 + }, + { + "start": 67076.84, + "end": 67079.26, + "probability": 0.6922 + }, + { + "start": 67079.76, + "end": 67081.4, + "probability": 0.9285 + }, + { + "start": 67081.48, + "end": 67082.68, + "probability": 0.9219 + }, + { + "start": 67084.8, + "end": 67086.02, + "probability": 0.5501 + }, + { + "start": 67087.94, + "end": 67089.54, + "probability": 0.9335 + }, + { + "start": 67090.6, + "end": 67092.02, + "probability": 0.8914 + }, + { + "start": 67093.04, + "end": 67095.02, + "probability": 0.9795 + }, + { + "start": 67096.46, + "end": 67096.96, + "probability": 0.6644 + }, + { + "start": 67096.96, + "end": 67104.54, + "probability": 0.85 + }, + { + "start": 67104.7, + "end": 67106.64, + "probability": 0.7178 + }, + { + "start": 67107.32, + "end": 67111.04, + "probability": 0.9841 + }, + { + "start": 67111.62, + "end": 67114.26, + "probability": 0.7905 + }, + { + "start": 67114.26, + "end": 67115.36, + "probability": 0.5559 + }, + { + "start": 67115.5, + "end": 67118.0, + "probability": 0.6116 + }, + { + "start": 67118.54, + "end": 67119.54, + "probability": 0.9712 + }, + { + "start": 67119.94, + "end": 67122.72, + "probability": 0.9092 + }, + { + "start": 67123.44, + "end": 67125.56, + "probability": 0.985 + }, + { + "start": 67126.46, + "end": 67128.1, + "probability": 0.7272 + }, + { + "start": 67128.22, + "end": 67128.56, + "probability": 0.6867 + }, + { + "start": 67128.72, + "end": 67129.08, + "probability": 0.6569 + }, + { + "start": 67129.1, + "end": 67129.72, + "probability": 0.3471 + }, + { + "start": 67130.46, + "end": 67135.34, + "probability": 0.96 + }, + { + "start": 67136.38, + "end": 67137.66, + "probability": 0.9241 + }, + { + "start": 67138.3, + "end": 67141.02, + "probability": 0.9948 + }, + { + "start": 67141.92, + "end": 67143.18, + "probability": 0.9497 + }, + { + "start": 67143.8, + "end": 67145.48, + "probability": 0.8197 + }, + { + "start": 67146.22, + "end": 67146.98, + "probability": 0.8623 + }, + { + "start": 67147.28, + "end": 67147.98, + "probability": 0.2315 + }, + { + "start": 67148.42, + "end": 67150.68, + "probability": 0.9362 + }, + { + "start": 67152.14, + "end": 67156.56, + "probability": 0.9219 + }, + { + "start": 67157.1, + "end": 67158.1, + "probability": 0.9106 + }, + { + "start": 67160.22, + "end": 67166.74, + "probability": 0.9724 + }, + { + "start": 67167.4, + "end": 67170.06, + "probability": 0.8889 + }, + { + "start": 67170.06, + "end": 67170.92, + "probability": 0.697 + }, + { + "start": 67171.38, + "end": 67174.36, + "probability": 0.9427 + }, + { + "start": 67174.76, + "end": 67176.22, + "probability": 0.7811 + }, + { + "start": 67176.92, + "end": 67181.0, + "probability": 0.7162 + }, + { + "start": 67181.12, + "end": 67184.78, + "probability": 0.9662 + }, + { + "start": 67185.24, + "end": 67186.4, + "probability": 0.7598 + }, + { + "start": 67187.06, + "end": 67187.94, + "probability": 0.9768 + }, + { + "start": 67188.08, + "end": 67189.18, + "probability": 0.8624 + }, + { + "start": 67189.28, + "end": 67190.0, + "probability": 0.9197 + }, + { + "start": 67190.14, + "end": 67191.26, + "probability": 0.6608 + }, + { + "start": 67192.87, + "end": 67195.2, + "probability": 0.8048 + }, + { + "start": 67195.8, + "end": 67198.22, + "probability": 0.9832 + }, + { + "start": 67198.66, + "end": 67203.0, + "probability": 0.8136 + }, + { + "start": 67203.66, + "end": 67207.02, + "probability": 0.9261 + }, + { + "start": 67208.36, + "end": 67210.22, + "probability": 0.1457 + }, + { + "start": 67212.12, + "end": 67213.24, + "probability": 0.6555 + }, + { + "start": 67214.1, + "end": 67215.24, + "probability": 0.2898 + }, + { + "start": 67215.42, + "end": 67216.7, + "probability": 0.5293 + }, + { + "start": 67216.9, + "end": 67218.82, + "probability": 0.543 + }, + { + "start": 67219.42, + "end": 67220.24, + "probability": 0.5346 + }, + { + "start": 67220.24, + "end": 67222.06, + "probability": 0.4045 + }, + { + "start": 67222.18, + "end": 67226.18, + "probability": 0.295 + }, + { + "start": 67226.36, + "end": 67229.82, + "probability": 0.8937 + }, + { + "start": 67230.38, + "end": 67235.48, + "probability": 0.4543 + }, + { + "start": 67235.62, + "end": 67237.41, + "probability": 0.6318 + }, + { + "start": 67237.7, + "end": 67239.9, + "probability": 0.6376 + }, + { + "start": 67240.24, + "end": 67243.36, + "probability": 0.8193 + }, + { + "start": 67245.16, + "end": 67245.56, + "probability": 0.276 + }, + { + "start": 67248.94, + "end": 67251.92, + "probability": 0.5039 + }, + { + "start": 67252.1, + "end": 67252.61, + "probability": 0.3664 + }, + { + "start": 67253.68, + "end": 67253.76, + "probability": 0.0434 + }, + { + "start": 67253.76, + "end": 67254.98, + "probability": 0.6156 + }, + { + "start": 67255.22, + "end": 67256.18, + "probability": 0.7722 + }, + { + "start": 67256.86, + "end": 67260.8, + "probability": 0.8373 + }, + { + "start": 67261.92, + "end": 67262.66, + "probability": 0.8685 + }, + { + "start": 67263.88, + "end": 67265.18, + "probability": 0.9128 + }, + { + "start": 67266.74, + "end": 67271.66, + "probability": 0.9858 + }, + { + "start": 67271.74, + "end": 67273.12, + "probability": 0.9867 + }, + { + "start": 67273.92, + "end": 67276.62, + "probability": 0.9931 + }, + { + "start": 67277.88, + "end": 67280.79, + "probability": 0.9375 + }, + { + "start": 67281.02, + "end": 67281.32, + "probability": 0.4127 + }, + { + "start": 67282.32, + "end": 67283.74, + "probability": 0.9857 + }, + { + "start": 67285.06, + "end": 67286.51, + "probability": 0.9852 + }, + { + "start": 67286.72, + "end": 67288.82, + "probability": 0.98 + }, + { + "start": 67289.1, + "end": 67290.2, + "probability": 0.9038 + }, + { + "start": 67290.76, + "end": 67291.94, + "probability": 0.9885 + }, + { + "start": 67293.14, + "end": 67296.38, + "probability": 0.9896 + }, + { + "start": 67297.58, + "end": 67300.72, + "probability": 0.9978 + }, + { + "start": 67301.78, + "end": 67305.04, + "probability": 0.9945 + }, + { + "start": 67305.8, + "end": 67308.28, + "probability": 0.9849 + }, + { + "start": 67309.78, + "end": 67311.94, + "probability": 0.9948 + }, + { + "start": 67313.12, + "end": 67316.06, + "probability": 0.9767 + }, + { + "start": 67316.78, + "end": 67318.78, + "probability": 0.9907 + }, + { + "start": 67319.28, + "end": 67321.36, + "probability": 0.9432 + }, + { + "start": 67321.96, + "end": 67323.18, + "probability": 0.8742 + }, + { + "start": 67326.06, + "end": 67327.32, + "probability": 0.514 + }, + { + "start": 67328.82, + "end": 67334.48, + "probability": 0.9966 + }, + { + "start": 67335.84, + "end": 67337.38, + "probability": 0.7148 + }, + { + "start": 67338.94, + "end": 67342.08, + "probability": 0.9896 + }, + { + "start": 67342.94, + "end": 67345.74, + "probability": 0.9952 + }, + { + "start": 67345.9, + "end": 67346.34, + "probability": 0.9336 + }, + { + "start": 67348.14, + "end": 67351.52, + "probability": 0.9842 + }, + { + "start": 67351.64, + "end": 67353.42, + "probability": 0.9966 + }, + { + "start": 67354.56, + "end": 67355.67, + "probability": 0.9808 + }, + { + "start": 67356.6, + "end": 67357.64, + "probability": 0.7808 + }, + { + "start": 67358.66, + "end": 67360.02, + "probability": 0.9976 + }, + { + "start": 67360.54, + "end": 67361.36, + "probability": 0.9026 + }, + { + "start": 67362.12, + "end": 67364.7, + "probability": 0.9785 + }, + { + "start": 67365.08, + "end": 67368.06, + "probability": 0.9861 + }, + { + "start": 67368.1, + "end": 67369.24, + "probability": 0.9451 + }, + { + "start": 67370.48, + "end": 67371.5, + "probability": 0.9868 + }, + { + "start": 67372.86, + "end": 67375.22, + "probability": 0.8589 + }, + { + "start": 67375.36, + "end": 67376.28, + "probability": 0.7729 + }, + { + "start": 67376.66, + "end": 67379.66, + "probability": 0.9925 + }, + { + "start": 67380.72, + "end": 67381.5, + "probability": 0.5645 + }, + { + "start": 67382.62, + "end": 67383.14, + "probability": 0.913 + }, + { + "start": 67383.2, + "end": 67384.2, + "probability": 0.8845 + }, + { + "start": 67384.76, + "end": 67388.74, + "probability": 0.7435 + }, + { + "start": 67391.04, + "end": 67393.0, + "probability": 0.9977 + }, + { + "start": 67394.46, + "end": 67398.7, + "probability": 0.891 + }, + { + "start": 67399.24, + "end": 67404.42, + "probability": 0.9902 + }, + { + "start": 67405.38, + "end": 67407.84, + "probability": 0.999 + }, + { + "start": 67408.98, + "end": 67411.42, + "probability": 0.8931 + }, + { + "start": 67412.08, + "end": 67419.8, + "probability": 0.9928 + }, + { + "start": 67421.42, + "end": 67422.52, + "probability": 0.9886 + }, + { + "start": 67423.42, + "end": 67426.16, + "probability": 0.9861 + }, + { + "start": 67427.68, + "end": 67427.8, + "probability": 0.7911 + }, + { + "start": 67429.28, + "end": 67429.82, + "probability": 0.8353 + }, + { + "start": 67431.1, + "end": 67434.64, + "probability": 0.9756 + }, + { + "start": 67435.72, + "end": 67438.75, + "probability": 0.9966 + }, + { + "start": 67439.86, + "end": 67442.08, + "probability": 0.9581 + }, + { + "start": 67442.14, + "end": 67444.1, + "probability": 0.8796 + }, + { + "start": 67444.2, + "end": 67450.2, + "probability": 0.9919 + }, + { + "start": 67451.6, + "end": 67455.02, + "probability": 0.8596 + }, + { + "start": 67455.16, + "end": 67456.6, + "probability": 0.9272 + }, + { + "start": 67457.26, + "end": 67459.24, + "probability": 0.998 + }, + { + "start": 67459.86, + "end": 67461.94, + "probability": 0.9695 + }, + { + "start": 67462.12, + "end": 67463.2, + "probability": 0.999 + }, + { + "start": 67463.72, + "end": 67467.3, + "probability": 0.9972 + }, + { + "start": 67468.18, + "end": 67469.56, + "probability": 0.9442 + }, + { + "start": 67471.5, + "end": 67474.72, + "probability": 0.9963 + }, + { + "start": 67475.62, + "end": 67480.12, + "probability": 0.9367 + }, + { + "start": 67481.48, + "end": 67483.06, + "probability": 0.9607 + }, + { + "start": 67483.24, + "end": 67484.96, + "probability": 0.9976 + }, + { + "start": 67485.76, + "end": 67486.9, + "probability": 0.7556 + }, + { + "start": 67488.34, + "end": 67490.84, + "probability": 0.9104 + }, + { + "start": 67491.64, + "end": 67494.72, + "probability": 0.8604 + }, + { + "start": 67496.52, + "end": 67499.48, + "probability": 0.9958 + }, + { + "start": 67499.6, + "end": 67501.16, + "probability": 0.9803 + }, + { + "start": 67502.22, + "end": 67502.94, + "probability": 0.5156 + }, + { + "start": 67503.54, + "end": 67504.22, + "probability": 0.9708 + }, + { + "start": 67505.48, + "end": 67508.94, + "probability": 0.9451 + }, + { + "start": 67509.58, + "end": 67512.54, + "probability": 0.9338 + }, + { + "start": 67513.0, + "end": 67513.76, + "probability": 0.6214 + }, + { + "start": 67514.14, + "end": 67519.76, + "probability": 0.9915 + }, + { + "start": 67520.44, + "end": 67523.42, + "probability": 0.9943 + }, + { + "start": 67523.84, + "end": 67524.36, + "probability": 0.7281 + }, + { + "start": 67524.9, + "end": 67527.18, + "probability": 0.4655 + }, + { + "start": 67527.18, + "end": 67528.56, + "probability": 0.4053 + }, + { + "start": 67528.68, + "end": 67534.2, + "probability": 0.9886 + }, + { + "start": 67534.72, + "end": 67536.14, + "probability": 0.9229 + }, + { + "start": 67536.76, + "end": 67538.78, + "probability": 0.9902 + }, + { + "start": 67538.98, + "end": 67540.22, + "probability": 0.7465 + }, + { + "start": 67540.24, + "end": 67541.84, + "probability": 0.9551 + }, + { + "start": 67541.92, + "end": 67542.54, + "probability": 0.7978 + }, + { + "start": 67543.04, + "end": 67543.64, + "probability": 0.8486 + }, + { + "start": 67544.18, + "end": 67545.64, + "probability": 0.7953 + }, + { + "start": 67545.7, + "end": 67547.28, + "probability": 0.7249 + }, + { + "start": 67548.06, + "end": 67549.32, + "probability": 0.4308 + }, + { + "start": 67549.32, + "end": 67550.66, + "probability": 0.2034 + }, + { + "start": 67550.66, + "end": 67551.3, + "probability": 0.8067 + }, + { + "start": 67551.6, + "end": 67552.0, + "probability": 0.4353 + }, + { + "start": 67552.0, + "end": 67553.12, + "probability": 0.96 + }, + { + "start": 67553.12, + "end": 67555.3, + "probability": 0.9792 + }, + { + "start": 67555.59, + "end": 67556.88, + "probability": 0.6434 + }, + { + "start": 67556.96, + "end": 67558.54, + "probability": 0.8164 + }, + { + "start": 67558.7, + "end": 67560.36, + "probability": 0.8554 + }, + { + "start": 67560.36, + "end": 67561.47, + "probability": 0.6126 + }, + { + "start": 67562.06, + "end": 67563.08, + "probability": 0.1899 + }, + { + "start": 67563.1, + "end": 67564.06, + "probability": 0.5572 + }, + { + "start": 67564.16, + "end": 67567.28, + "probability": 0.752 + }, + { + "start": 67567.42, + "end": 67569.24, + "probability": 0.8891 + }, + { + "start": 67570.3, + "end": 67573.04, + "probability": 0.4261 + }, + { + "start": 67573.04, + "end": 67574.68, + "probability": 0.4531 + }, + { + "start": 67574.74, + "end": 67581.29, + "probability": 0.7627 + }, + { + "start": 67581.68, + "end": 67581.98, + "probability": 0.4923 + }, + { + "start": 67582.14, + "end": 67584.02, + "probability": 0.8752 + }, + { + "start": 67584.08, + "end": 67586.32, + "probability": 0.5374 + }, + { + "start": 67587.14, + "end": 67587.56, + "probability": 0.5762 + }, + { + "start": 67587.56, + "end": 67592.66, + "probability": 0.982 + }, + { + "start": 67592.94, + "end": 67594.33, + "probability": 0.9922 + }, + { + "start": 67595.5, + "end": 67597.2, + "probability": 0.8939 + }, + { + "start": 67598.42, + "end": 67602.82, + "probability": 0.7092 + }, + { + "start": 67603.6, + "end": 67605.48, + "probability": 0.9888 + }, + { + "start": 67606.46, + "end": 67609.74, + "probability": 0.7287 + }, + { + "start": 67610.56, + "end": 67616.72, + "probability": 0.917 + }, + { + "start": 67617.86, + "end": 67619.44, + "probability": 0.714 + }, + { + "start": 67620.2, + "end": 67623.32, + "probability": 0.9929 + }, + { + "start": 67624.08, + "end": 67629.14, + "probability": 0.9903 + }, + { + "start": 67629.62, + "end": 67631.02, + "probability": 0.9707 + }, + { + "start": 67632.58, + "end": 67635.94, + "probability": 0.9752 + }, + { + "start": 67636.7, + "end": 67638.04, + "probability": 0.957 + }, + { + "start": 67638.66, + "end": 67642.82, + "probability": 0.9743 + }, + { + "start": 67643.2, + "end": 67645.62, + "probability": 0.8714 + }, + { + "start": 67646.2, + "end": 67651.28, + "probability": 0.993 + }, + { + "start": 67652.16, + "end": 67653.9, + "probability": 0.9205 + }, + { + "start": 67654.8, + "end": 67657.6, + "probability": 0.9501 + }, + { + "start": 67658.24, + "end": 67659.92, + "probability": 0.9658 + }, + { + "start": 67660.56, + "end": 67662.26, + "probability": 0.9509 + }, + { + "start": 67662.84, + "end": 67667.34, + "probability": 0.8297 + }, + { + "start": 67667.98, + "end": 67669.6, + "probability": 0.9241 + }, + { + "start": 67671.64, + "end": 67673.82, + "probability": 0.9794 + }, + { + "start": 67674.62, + "end": 67676.88, + "probability": 0.7537 + }, + { + "start": 67677.68, + "end": 67680.24, + "probability": 0.9811 + }, + { + "start": 67680.74, + "end": 67682.36, + "probability": 0.9922 + }, + { + "start": 67682.88, + "end": 67685.26, + "probability": 0.9932 + }, + { + "start": 67685.82, + "end": 67688.28, + "probability": 0.9976 + }, + { + "start": 67689.22, + "end": 67692.84, + "probability": 0.9453 + }, + { + "start": 67693.58, + "end": 67697.32, + "probability": 0.9863 + }, + { + "start": 67698.08, + "end": 67704.38, + "probability": 0.9985 + }, + { + "start": 67705.1, + "end": 67706.94, + "probability": 0.7829 + }, + { + "start": 67706.98, + "end": 67707.96, + "probability": 0.6612 + }, + { + "start": 67708.08, + "end": 67710.34, + "probability": 0.9711 + }, + { + "start": 67710.98, + "end": 67712.64, + "probability": 0.9819 + }, + { + "start": 67714.68, + "end": 67716.74, + "probability": 0.9484 + }, + { + "start": 67717.32, + "end": 67719.04, + "probability": 0.8297 + }, + { + "start": 67720.28, + "end": 67723.76, + "probability": 0.9263 + }, + { + "start": 67724.68, + "end": 67728.8, + "probability": 0.9845 + }, + { + "start": 67729.78, + "end": 67732.38, + "probability": 0.9614 + }, + { + "start": 67733.34, + "end": 67736.32, + "probability": 0.9946 + }, + { + "start": 67737.26, + "end": 67741.34, + "probability": 0.9568 + }, + { + "start": 67742.18, + "end": 67743.82, + "probability": 0.8918 + }, + { + "start": 67744.52, + "end": 67747.69, + "probability": 0.9722 + }, + { + "start": 67748.94, + "end": 67752.54, + "probability": 0.993 + }, + { + "start": 67752.54, + "end": 67755.82, + "probability": 0.9535 + }, + { + "start": 67756.38, + "end": 67759.24, + "probability": 0.9873 + }, + { + "start": 67760.98, + "end": 67764.4, + "probability": 0.7722 + }, + { + "start": 67765.38, + "end": 67768.54, + "probability": 0.8734 + }, + { + "start": 67769.24, + "end": 67773.7, + "probability": 0.976 + }, + { + "start": 67774.88, + "end": 67777.08, + "probability": 0.9424 + }, + { + "start": 67778.46, + "end": 67782.56, + "probability": 0.9148 + }, + { + "start": 67783.82, + "end": 67787.4, + "probability": 0.998 + }, + { + "start": 67788.26, + "end": 67790.44, + "probability": 0.9695 + }, + { + "start": 67790.96, + "end": 67794.66, + "probability": 0.9278 + }, + { + "start": 67796.18, + "end": 67798.02, + "probability": 0.9602 + }, + { + "start": 67798.82, + "end": 67800.2, + "probability": 0.9082 + }, + { + "start": 67801.16, + "end": 67803.9, + "probability": 0.9866 + }, + { + "start": 67804.42, + "end": 67805.66, + "probability": 0.891 + }, + { + "start": 67806.26, + "end": 67812.44, + "probability": 0.9919 + }, + { + "start": 67812.44, + "end": 67815.16, + "probability": 0.9919 + }, + { + "start": 67815.32, + "end": 67816.24, + "probability": 0.7224 + }, + { + "start": 67817.24, + "end": 67821.42, + "probability": 0.9717 + }, + { + "start": 67822.24, + "end": 67825.86, + "probability": 0.9943 + }, + { + "start": 67826.7, + "end": 67829.38, + "probability": 0.9927 + }, + { + "start": 67829.96, + "end": 67832.14, + "probability": 0.882 + }, + { + "start": 67833.3, + "end": 67838.66, + "probability": 0.9655 + }, + { + "start": 67839.3, + "end": 67841.54, + "probability": 0.9964 + }, + { + "start": 67842.18, + "end": 67843.02, + "probability": 0.5301 + }, + { + "start": 67843.5, + "end": 67845.1, + "probability": 0.9957 + }, + { + "start": 67845.44, + "end": 67850.28, + "probability": 0.9839 + }, + { + "start": 67850.9, + "end": 67852.94, + "probability": 0.9927 + }, + { + "start": 67853.48, + "end": 67855.6, + "probability": 0.9637 + }, + { + "start": 67856.14, + "end": 67858.86, + "probability": 0.9597 + }, + { + "start": 67859.26, + "end": 67863.52, + "probability": 0.9978 + }, + { + "start": 67864.48, + "end": 67868.18, + "probability": 0.9884 + }, + { + "start": 67868.2, + "end": 67871.84, + "probability": 0.8773 + }, + { + "start": 67872.82, + "end": 67874.86, + "probability": 0.9828 + }, + { + "start": 67875.82, + "end": 67877.56, + "probability": 0.948 + }, + { + "start": 67879.86, + "end": 67885.16, + "probability": 0.7937 + }, + { + "start": 67885.32, + "end": 67887.1, + "probability": 0.7488 + }, + { + "start": 67888.02, + "end": 67895.28, + "probability": 0.719 + }, + { + "start": 67896.42, + "end": 67900.68, + "probability": 0.9384 + }, + { + "start": 67902.14, + "end": 67902.74, + "probability": 0.0177 + } + ], + "segments_count": 11086, + "words_count": 56411, + "avg_words_per_segment": 5.0885, + "avg_segment_duration": 2.3091, + "avg_words_per_minute": 49.8121, + "plenum_id": "42189", + "duration": 67948.6, + "title": null, + "plenum_date": "2015-05-12" +} \ No newline at end of file