diff --git "a/45644/metadata.json" "b/45644/metadata.json" new file mode 100644--- /dev/null +++ "b/45644/metadata.json" @@ -0,0 +1,31717 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "45644", + "quality_score": 0.8862, + "per_segment_quality_scores": [ + { + "start": 110.37, + "end": 110.72, + "probability": 0.1517 + }, + { + "start": 111.14, + "end": 111.24, + "probability": 0.1948 + }, + { + "start": 111.24, + "end": 111.92, + "probability": 0.1674 + }, + { + "start": 111.92, + "end": 111.92, + "probability": 0.447 + }, + { + "start": 111.92, + "end": 113.52, + "probability": 0.9614 + }, + { + "start": 113.52, + "end": 117.22, + "probability": 0.4299 + }, + { + "start": 129.0, + "end": 129.0, + "probability": 0.0 + }, + { + "start": 129.14, + "end": 129.48, + "probability": 0.1348 + }, + { + "start": 130.24, + "end": 133.26, + "probability": 0.1971 + }, + { + "start": 135.35, + "end": 135.8, + "probability": 0.1202 + }, + { + "start": 144.91, + "end": 145.33, + "probability": 0.0001 + }, + { + "start": 145.85, + "end": 146.19, + "probability": 0.0002 + }, + { + "start": 147.58, + "end": 154.17, + "probability": 0.1685 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.0, + "end": 249.0, + "probability": 0.0 + }, + { + "start": 249.14, + "end": 249.16, + "probability": 0.3129 + }, + { + "start": 249.16, + "end": 253.16, + "probability": 0.9729 + }, + { + "start": 272.62, + "end": 273.86, + "probability": 0.9384 + }, + { + "start": 275.64, + "end": 278.64, + "probability": 0.7508 + }, + { + "start": 280.44, + "end": 288.44, + "probability": 0.991 + }, + { + "start": 289.08, + "end": 290.98, + "probability": 0.9764 + }, + { + "start": 292.62, + "end": 294.92, + "probability": 0.8174 + }, + { + "start": 295.86, + "end": 297.78, + "probability": 0.9858 + }, + { + "start": 298.48, + "end": 300.6, + "probability": 0.7549 + }, + { + "start": 301.5, + "end": 303.36, + "probability": 0.6253 + }, + { + "start": 304.04, + "end": 307.3, + "probability": 0.7866 + }, + { + "start": 309.34, + "end": 311.42, + "probability": 0.9359 + }, + { + "start": 311.56, + "end": 313.62, + "probability": 0.814 + }, + { + "start": 314.8, + "end": 318.62, + "probability": 0.9444 + }, + { + "start": 320.32, + "end": 321.92, + "probability": 0.9205 + }, + { + "start": 322.18, + "end": 324.26, + "probability": 0.943 + }, + { + "start": 325.1, + "end": 330.44, + "probability": 0.9665 + }, + { + "start": 331.26, + "end": 333.42, + "probability": 0.9994 + }, + { + "start": 334.44, + "end": 338.58, + "probability": 0.8336 + }, + { + "start": 339.74, + "end": 343.88, + "probability": 0.9816 + }, + { + "start": 345.82, + "end": 350.64, + "probability": 0.9609 + }, + { + "start": 351.74, + "end": 353.0, + "probability": 0.5136 + }, + { + "start": 353.14, + "end": 353.7, + "probability": 0.39 + }, + { + "start": 353.86, + "end": 358.88, + "probability": 0.8151 + }, + { + "start": 359.72, + "end": 364.66, + "probability": 0.9331 + }, + { + "start": 365.4, + "end": 366.1, + "probability": 0.973 + }, + { + "start": 367.22, + "end": 369.78, + "probability": 0.9917 + }, + { + "start": 370.86, + "end": 372.18, + "probability": 0.9533 + }, + { + "start": 373.68, + "end": 376.24, + "probability": 0.9844 + }, + { + "start": 376.44, + "end": 380.32, + "probability": 0.9548 + }, + { + "start": 380.6, + "end": 383.86, + "probability": 0.8697 + }, + { + "start": 384.02, + "end": 388.3, + "probability": 0.9805 + }, + { + "start": 389.06, + "end": 392.48, + "probability": 0.9762 + }, + { + "start": 394.24, + "end": 396.72, + "probability": 0.9736 + }, + { + "start": 399.12, + "end": 403.24, + "probability": 0.8663 + }, + { + "start": 404.34, + "end": 405.47, + "probability": 0.9657 + }, + { + "start": 406.16, + "end": 406.7, + "probability": 0.8019 + }, + { + "start": 408.06, + "end": 410.88, + "probability": 0.9937 + }, + { + "start": 412.36, + "end": 415.86, + "probability": 0.913 + }, + { + "start": 416.9, + "end": 421.86, + "probability": 0.9845 + }, + { + "start": 422.68, + "end": 424.28, + "probability": 0.9894 + }, + { + "start": 425.8, + "end": 431.1, + "probability": 0.9828 + }, + { + "start": 432.2, + "end": 433.64, + "probability": 0.9692 + }, + { + "start": 434.4, + "end": 439.04, + "probability": 0.9873 + }, + { + "start": 440.52, + "end": 447.26, + "probability": 0.9966 + }, + { + "start": 447.26, + "end": 454.64, + "probability": 0.9985 + }, + { + "start": 455.52, + "end": 460.1, + "probability": 0.8783 + }, + { + "start": 460.64, + "end": 460.98, + "probability": 0.3643 + }, + { + "start": 462.38, + "end": 463.72, + "probability": 0.8342 + }, + { + "start": 466.02, + "end": 472.24, + "probability": 0.9454 + }, + { + "start": 473.36, + "end": 476.08, + "probability": 0.9797 + }, + { + "start": 477.92, + "end": 478.48, + "probability": 0.624 + }, + { + "start": 479.44, + "end": 482.9, + "probability": 0.948 + }, + { + "start": 483.44, + "end": 484.38, + "probability": 0.6954 + }, + { + "start": 485.2, + "end": 488.96, + "probability": 0.8765 + }, + { + "start": 489.64, + "end": 493.24, + "probability": 0.9843 + }, + { + "start": 494.92, + "end": 497.1, + "probability": 0.9547 + }, + { + "start": 500.18, + "end": 502.76, + "probability": 0.8496 + }, + { + "start": 503.3, + "end": 505.4, + "probability": 0.705 + }, + { + "start": 507.0, + "end": 513.42, + "probability": 0.9943 + }, + { + "start": 514.42, + "end": 518.2, + "probability": 0.9946 + }, + { + "start": 519.0, + "end": 522.32, + "probability": 0.9629 + }, + { + "start": 523.78, + "end": 529.78, + "probability": 0.9645 + }, + { + "start": 530.94, + "end": 531.46, + "probability": 0.693 + }, + { + "start": 533.24, + "end": 538.28, + "probability": 0.7849 + }, + { + "start": 539.58, + "end": 544.32, + "probability": 0.944 + }, + { + "start": 544.4, + "end": 546.06, + "probability": 0.6767 + }, + { + "start": 546.96, + "end": 547.68, + "probability": 0.6057 + }, + { + "start": 548.94, + "end": 550.64, + "probability": 0.6177 + }, + { + "start": 551.64, + "end": 553.02, + "probability": 0.917 + }, + { + "start": 554.34, + "end": 558.06, + "probability": 0.9805 + }, + { + "start": 558.06, + "end": 563.02, + "probability": 0.9849 + }, + { + "start": 564.12, + "end": 564.8, + "probability": 0.4205 + }, + { + "start": 565.62, + "end": 567.26, + "probability": 0.9044 + }, + { + "start": 568.28, + "end": 570.06, + "probability": 0.9652 + }, + { + "start": 571.04, + "end": 577.02, + "probability": 0.9799 + }, + { + "start": 580.02, + "end": 583.38, + "probability": 0.8943 + }, + { + "start": 584.02, + "end": 585.16, + "probability": 0.6954 + }, + { + "start": 586.36, + "end": 591.98, + "probability": 0.9536 + }, + { + "start": 593.02, + "end": 596.8, + "probability": 0.6417 + }, + { + "start": 597.92, + "end": 598.98, + "probability": 0.9933 + }, + { + "start": 599.68, + "end": 600.96, + "probability": 0.8599 + }, + { + "start": 604.94, + "end": 608.48, + "probability": 0.9762 + }, + { + "start": 609.1, + "end": 613.5, + "probability": 0.9888 + }, + { + "start": 614.76, + "end": 620.82, + "probability": 0.9634 + }, + { + "start": 621.64, + "end": 627.12, + "probability": 0.9756 + }, + { + "start": 627.92, + "end": 629.18, + "probability": 0.9875 + }, + { + "start": 631.1, + "end": 636.24, + "probability": 0.997 + }, + { + "start": 637.74, + "end": 643.2, + "probability": 0.9937 + }, + { + "start": 644.2, + "end": 646.2, + "probability": 0.9771 + }, + { + "start": 647.16, + "end": 648.34, + "probability": 0.7864 + }, + { + "start": 649.0, + "end": 650.48, + "probability": 0.814 + }, + { + "start": 651.28, + "end": 654.38, + "probability": 0.9896 + }, + { + "start": 655.04, + "end": 660.58, + "probability": 0.969 + }, + { + "start": 661.26, + "end": 664.24, + "probability": 0.9902 + }, + { + "start": 665.0, + "end": 668.44, + "probability": 0.8935 + }, + { + "start": 669.3, + "end": 671.36, + "probability": 0.965 + }, + { + "start": 674.02, + "end": 676.22, + "probability": 0.8181 + }, + { + "start": 676.9, + "end": 677.26, + "probability": 0.2447 + }, + { + "start": 677.82, + "end": 678.18, + "probability": 0.9631 + }, + { + "start": 678.96, + "end": 679.56, + "probability": 0.8514 + }, + { + "start": 681.42, + "end": 682.82, + "probability": 0.5132 + }, + { + "start": 683.02, + "end": 684.42, + "probability": 0.9663 + }, + { + "start": 684.92, + "end": 685.59, + "probability": 0.8999 + }, + { + "start": 685.8, + "end": 687.72, + "probability": 0.7093 + }, + { + "start": 689.76, + "end": 693.44, + "probability": 0.9844 + }, + { + "start": 694.46, + "end": 698.9, + "probability": 0.384 + }, + { + "start": 700.02, + "end": 703.84, + "probability": 0.9917 + }, + { + "start": 704.38, + "end": 707.3, + "probability": 0.9258 + }, + { + "start": 708.6, + "end": 714.38, + "probability": 0.9583 + }, + { + "start": 715.24, + "end": 716.74, + "probability": 0.8521 + }, + { + "start": 717.46, + "end": 719.22, + "probability": 0.9697 + }, + { + "start": 719.34, + "end": 720.64, + "probability": 0.9509 + }, + { + "start": 721.6, + "end": 724.12, + "probability": 0.9796 + }, + { + "start": 724.8, + "end": 729.22, + "probability": 0.982 + }, + { + "start": 729.94, + "end": 731.6, + "probability": 0.8145 + }, + { + "start": 732.2, + "end": 733.92, + "probability": 0.9872 + }, + { + "start": 734.68, + "end": 736.2, + "probability": 0.8447 + }, + { + "start": 739.2, + "end": 742.64, + "probability": 0.8743 + }, + { + "start": 743.74, + "end": 747.48, + "probability": 0.9924 + }, + { + "start": 747.48, + "end": 752.28, + "probability": 0.9977 + }, + { + "start": 752.86, + "end": 753.4, + "probability": 0.4178 + }, + { + "start": 754.1, + "end": 757.02, + "probability": 0.9141 + }, + { + "start": 757.2, + "end": 759.2, + "probability": 0.9108 + }, + { + "start": 759.94, + "end": 760.7, + "probability": 0.9509 + }, + { + "start": 761.76, + "end": 764.16, + "probability": 0.7339 + }, + { + "start": 764.7, + "end": 766.98, + "probability": 0.7056 + }, + { + "start": 768.02, + "end": 773.1, + "probability": 0.5773 + }, + { + "start": 773.86, + "end": 777.08, + "probability": 0.739 + }, + { + "start": 782.04, + "end": 784.52, + "probability": 0.8729 + }, + { + "start": 785.34, + "end": 790.36, + "probability": 0.9924 + }, + { + "start": 792.34, + "end": 795.22, + "probability": 0.9162 + }, + { + "start": 795.54, + "end": 798.56, + "probability": 0.9038 + }, + { + "start": 799.34, + "end": 808.1, + "probability": 0.9759 + }, + { + "start": 808.1, + "end": 814.94, + "probability": 0.8465 + }, + { + "start": 815.68, + "end": 816.74, + "probability": 0.8545 + }, + { + "start": 816.84, + "end": 817.7, + "probability": 0.9182 + }, + { + "start": 818.18, + "end": 822.08, + "probability": 0.8301 + }, + { + "start": 822.74, + "end": 830.48, + "probability": 0.9817 + }, + { + "start": 830.68, + "end": 831.7, + "probability": 0.726 + }, + { + "start": 832.56, + "end": 836.16, + "probability": 0.9792 + }, + { + "start": 836.16, + "end": 840.12, + "probability": 0.9854 + }, + { + "start": 841.66, + "end": 841.98, + "probability": 0.3159 + }, + { + "start": 842.78, + "end": 846.06, + "probability": 0.9401 + }, + { + "start": 847.26, + "end": 850.74, + "probability": 0.9358 + }, + { + "start": 850.9, + "end": 851.5, + "probability": 0.4076 + }, + { + "start": 851.68, + "end": 852.6, + "probability": 0.8945 + }, + { + "start": 852.96, + "end": 854.16, + "probability": 0.9253 + }, + { + "start": 854.98, + "end": 855.38, + "probability": 0.9883 + }, + { + "start": 856.0, + "end": 860.4, + "probability": 0.8624 + }, + { + "start": 863.48, + "end": 864.6, + "probability": 0.9312 + }, + { + "start": 865.28, + "end": 868.84, + "probability": 0.9974 + }, + { + "start": 869.56, + "end": 873.46, + "probability": 0.9924 + }, + { + "start": 874.22, + "end": 876.22, + "probability": 0.9125 + }, + { + "start": 877.04, + "end": 880.42, + "probability": 0.961 + }, + { + "start": 881.58, + "end": 885.56, + "probability": 0.9974 + }, + { + "start": 887.46, + "end": 888.72, + "probability": 0.9705 + }, + { + "start": 888.76, + "end": 893.58, + "probability": 0.9523 + }, + { + "start": 894.12, + "end": 895.68, + "probability": 0.9719 + }, + { + "start": 896.9, + "end": 900.22, + "probability": 0.7024 + }, + { + "start": 900.8, + "end": 904.02, + "probability": 0.9622 + }, + { + "start": 904.02, + "end": 908.14, + "probability": 0.9748 + }, + { + "start": 924.0, + "end": 925.82, + "probability": 0.7468 + }, + { + "start": 927.54, + "end": 929.31, + "probability": 0.8491 + }, + { + "start": 933.14, + "end": 938.38, + "probability": 0.9873 + }, + { + "start": 939.8, + "end": 940.9, + "probability": 0.9263 + }, + { + "start": 941.28, + "end": 941.56, + "probability": 0.6501 + }, + { + "start": 942.1, + "end": 942.9, + "probability": 0.5716 + }, + { + "start": 943.18, + "end": 946.34, + "probability": 0.998 + }, + { + "start": 946.38, + "end": 950.22, + "probability": 0.9357 + }, + { + "start": 950.34, + "end": 952.82, + "probability": 0.9398 + }, + { + "start": 952.82, + "end": 953.59, + "probability": 0.8623 + }, + { + "start": 953.84, + "end": 960.96, + "probability": 0.9795 + }, + { + "start": 961.14, + "end": 961.6, + "probability": 0.9823 + }, + { + "start": 961.62, + "end": 962.16, + "probability": 0.8182 + }, + { + "start": 963.92, + "end": 969.56, + "probability": 0.9694 + }, + { + "start": 970.88, + "end": 973.26, + "probability": 0.8635 + }, + { + "start": 974.34, + "end": 981.76, + "probability": 0.9209 + }, + { + "start": 981.88, + "end": 985.5, + "probability": 0.9979 + }, + { + "start": 986.46, + "end": 989.72, + "probability": 0.9509 + }, + { + "start": 989.72, + "end": 993.1, + "probability": 0.9757 + }, + { + "start": 993.9, + "end": 997.8, + "probability": 0.9691 + }, + { + "start": 998.36, + "end": 1001.0, + "probability": 0.8024 + }, + { + "start": 1001.52, + "end": 1001.6, + "probability": 0.2618 + }, + { + "start": 1001.6, + "end": 1004.06, + "probability": 0.6813 + }, + { + "start": 1004.24, + "end": 1005.16, + "probability": 0.8699 + }, + { + "start": 1005.24, + "end": 1007.08, + "probability": 0.8416 + }, + { + "start": 1007.16, + "end": 1009.2, + "probability": 0.8132 + }, + { + "start": 1010.22, + "end": 1014.22, + "probability": 0.3079 + }, + { + "start": 1016.58, + "end": 1019.02, + "probability": 0.0499 + }, + { + "start": 1019.04, + "end": 1021.34, + "probability": 0.826 + }, + { + "start": 1024.58, + "end": 1028.72, + "probability": 0.9877 + }, + { + "start": 1028.86, + "end": 1030.14, + "probability": 0.9553 + }, + { + "start": 1030.18, + "end": 1031.0, + "probability": 0.5205 + }, + { + "start": 1031.1, + "end": 1033.08, + "probability": 0.7976 + }, + { + "start": 1033.18, + "end": 1034.5, + "probability": 0.8148 + }, + { + "start": 1034.56, + "end": 1035.58, + "probability": 0.9598 + }, + { + "start": 1036.94, + "end": 1037.74, + "probability": 0.001 + }, + { + "start": 1038.98, + "end": 1039.24, + "probability": 0.2487 + }, + { + "start": 1039.24, + "end": 1040.82, + "probability": 0.7402 + }, + { + "start": 1040.82, + "end": 1043.94, + "probability": 0.996 + }, + { + "start": 1044.32, + "end": 1045.74, + "probability": 0.4368 + }, + { + "start": 1045.86, + "end": 1046.5, + "probability": 0.6422 + }, + { + "start": 1046.68, + "end": 1047.78, + "probability": 0.7712 + }, + { + "start": 1048.02, + "end": 1052.4, + "probability": 0.969 + }, + { + "start": 1052.84, + "end": 1055.58, + "probability": 0.7615 + }, + { + "start": 1055.76, + "end": 1060.16, + "probability": 0.9105 + }, + { + "start": 1061.36, + "end": 1063.58, + "probability": 0.6626 + }, + { + "start": 1067.15, + "end": 1068.8, + "probability": 0.9424 + }, + { + "start": 1068.94, + "end": 1074.52, + "probability": 0.5605 + }, + { + "start": 1074.6, + "end": 1076.16, + "probability": 0.9937 + }, + { + "start": 1076.76, + "end": 1078.72, + "probability": 0.9091 + }, + { + "start": 1079.8, + "end": 1082.06, + "probability": 0.9687 + }, + { + "start": 1083.16, + "end": 1088.04, + "probability": 0.9904 + }, + { + "start": 1089.06, + "end": 1091.62, + "probability": 0.9746 + }, + { + "start": 1092.38, + "end": 1093.22, + "probability": 0.7652 + }, + { + "start": 1093.48, + "end": 1095.17, + "probability": 0.9585 + }, + { + "start": 1096.14, + "end": 1097.26, + "probability": 0.8949 + }, + { + "start": 1097.4, + "end": 1098.32, + "probability": 0.9769 + }, + { + "start": 1098.44, + "end": 1099.36, + "probability": 0.9695 + }, + { + "start": 1099.46, + "end": 1100.26, + "probability": 0.9141 + }, + { + "start": 1101.28, + "end": 1101.76, + "probability": 0.938 + }, + { + "start": 1101.84, + "end": 1102.62, + "probability": 0.7368 + }, + { + "start": 1102.8, + "end": 1107.06, + "probability": 0.9058 + }, + { + "start": 1108.54, + "end": 1110.92, + "probability": 0.9194 + }, + { + "start": 1111.6, + "end": 1112.76, + "probability": 0.8694 + }, + { + "start": 1113.46, + "end": 1115.0, + "probability": 0.9448 + }, + { + "start": 1115.96, + "end": 1117.14, + "probability": 0.9861 + }, + { + "start": 1117.96, + "end": 1122.28, + "probability": 0.881 + }, + { + "start": 1122.96, + "end": 1124.26, + "probability": 0.9979 + }, + { + "start": 1125.48, + "end": 1127.98, + "probability": 0.9973 + }, + { + "start": 1129.18, + "end": 1131.12, + "probability": 0.6075 + }, + { + "start": 1133.12, + "end": 1138.52, + "probability": 0.9581 + }, + { + "start": 1140.28, + "end": 1141.38, + "probability": 0.5026 + }, + { + "start": 1141.48, + "end": 1142.94, + "probability": 0.8636 + }, + { + "start": 1142.96, + "end": 1150.96, + "probability": 0.9643 + }, + { + "start": 1151.4, + "end": 1152.24, + "probability": 0.7692 + }, + { + "start": 1153.22, + "end": 1157.94, + "probability": 0.9124 + }, + { + "start": 1158.82, + "end": 1163.12, + "probability": 0.991 + }, + { + "start": 1164.42, + "end": 1165.68, + "probability": 0.9468 + }, + { + "start": 1167.42, + "end": 1170.26, + "probability": 0.9873 + }, + { + "start": 1170.26, + "end": 1173.78, + "probability": 0.9995 + }, + { + "start": 1174.66, + "end": 1183.5, + "probability": 0.9967 + }, + { + "start": 1183.66, + "end": 1187.76, + "probability": 0.5265 + }, + { + "start": 1188.3, + "end": 1189.23, + "probability": 0.2308 + }, + { + "start": 1189.94, + "end": 1189.94, + "probability": 0.0491 + }, + { + "start": 1189.94, + "end": 1189.94, + "probability": 0.0842 + }, + { + "start": 1189.94, + "end": 1190.28, + "probability": 0.2285 + }, + { + "start": 1190.62, + "end": 1192.68, + "probability": 0.4339 + }, + { + "start": 1195.33, + "end": 1197.96, + "probability": 0.7411 + }, + { + "start": 1198.52, + "end": 1199.45, + "probability": 0.8237 + }, + { + "start": 1200.68, + "end": 1202.28, + "probability": 0.9963 + }, + { + "start": 1203.44, + "end": 1205.46, + "probability": 0.9888 + }, + { + "start": 1206.7, + "end": 1208.28, + "probability": 0.9955 + }, + { + "start": 1208.38, + "end": 1210.48, + "probability": 0.9952 + }, + { + "start": 1210.94, + "end": 1214.7, + "probability": 0.9821 + }, + { + "start": 1215.7, + "end": 1216.76, + "probability": 0.0223 + }, + { + "start": 1216.82, + "end": 1220.99, + "probability": 0.7555 + }, + { + "start": 1223.58, + "end": 1224.67, + "probability": 0.9349 + }, + { + "start": 1224.96, + "end": 1226.84, + "probability": 0.8988 + }, + { + "start": 1226.92, + "end": 1228.28, + "probability": 0.9379 + }, + { + "start": 1228.28, + "end": 1233.16, + "probability": 0.9272 + }, + { + "start": 1233.58, + "end": 1236.46, + "probability": 0.9899 + }, + { + "start": 1236.78, + "end": 1240.74, + "probability": 0.9832 + }, + { + "start": 1242.44, + "end": 1247.42, + "probability": 0.9644 + }, + { + "start": 1248.22, + "end": 1250.44, + "probability": 0.0546 + }, + { + "start": 1250.44, + "end": 1250.44, + "probability": 0.0803 + }, + { + "start": 1250.44, + "end": 1250.44, + "probability": 0.2157 + }, + { + "start": 1250.44, + "end": 1258.06, + "probability": 0.7908 + }, + { + "start": 1258.2, + "end": 1260.76, + "probability": 0.9772 + }, + { + "start": 1260.9, + "end": 1265.4, + "probability": 0.7289 + }, + { + "start": 1265.86, + "end": 1267.06, + "probability": 0.9593 + }, + { + "start": 1267.06, + "end": 1268.4, + "probability": 0.3967 + }, + { + "start": 1269.02, + "end": 1269.16, + "probability": 0.4468 + }, + { + "start": 1269.26, + "end": 1270.44, + "probability": 0.9103 + }, + { + "start": 1270.46, + "end": 1271.99, + "probability": 0.905 + }, + { + "start": 1273.32, + "end": 1277.6, + "probability": 0.9487 + }, + { + "start": 1278.32, + "end": 1281.24, + "probability": 0.9927 + }, + { + "start": 1282.08, + "end": 1284.94, + "probability": 0.9421 + }, + { + "start": 1285.64, + "end": 1287.64, + "probability": 0.8633 + }, + { + "start": 1289.5, + "end": 1293.58, + "probability": 0.9772 + }, + { + "start": 1294.44, + "end": 1296.34, + "probability": 0.9669 + }, + { + "start": 1296.8, + "end": 1296.94, + "probability": 0.5059 + }, + { + "start": 1299.26, + "end": 1299.9, + "probability": 0.0113 + }, + { + "start": 1300.16, + "end": 1302.32, + "probability": 0.3746 + }, + { + "start": 1302.46, + "end": 1303.64, + "probability": 0.528 + }, + { + "start": 1304.22, + "end": 1305.02, + "probability": 0.574 + }, + { + "start": 1305.3, + "end": 1306.88, + "probability": 0.7661 + }, + { + "start": 1307.26, + "end": 1308.55, + "probability": 0.8704 + }, + { + "start": 1310.18, + "end": 1312.58, + "probability": 0.792 + }, + { + "start": 1312.62, + "end": 1313.64, + "probability": 0.9678 + }, + { + "start": 1313.9, + "end": 1317.98, + "probability": 0.2409 + }, + { + "start": 1320.17, + "end": 1322.44, + "probability": 0.2924 + }, + { + "start": 1322.72, + "end": 1324.68, + "probability": 0.9842 + }, + { + "start": 1325.12, + "end": 1327.6, + "probability": 0.8289 + }, + { + "start": 1327.66, + "end": 1328.51, + "probability": 0.9165 + }, + { + "start": 1328.8, + "end": 1332.24, + "probability": 0.9697 + }, + { + "start": 1332.38, + "end": 1333.61, + "probability": 0.9932 + }, + { + "start": 1335.12, + "end": 1336.44, + "probability": 0.589 + }, + { + "start": 1337.18, + "end": 1342.4, + "probability": 0.8163 + }, + { + "start": 1342.98, + "end": 1346.06, + "probability": 0.8219 + }, + { + "start": 1346.58, + "end": 1347.44, + "probability": 0.7531 + }, + { + "start": 1348.56, + "end": 1350.16, + "probability": 0.6104 + }, + { + "start": 1350.92, + "end": 1352.1, + "probability": 0.9219 + }, + { + "start": 1352.62, + "end": 1357.24, + "probability": 0.9952 + }, + { + "start": 1357.24, + "end": 1362.98, + "probability": 0.9927 + }, + { + "start": 1363.52, + "end": 1363.84, + "probability": 0.509 + }, + { + "start": 1364.06, + "end": 1366.8, + "probability": 0.9645 + }, + { + "start": 1367.06, + "end": 1369.52, + "probability": 0.6634 + }, + { + "start": 1369.68, + "end": 1370.7, + "probability": 0.7941 + }, + { + "start": 1370.84, + "end": 1372.06, + "probability": 0.9713 + }, + { + "start": 1372.08, + "end": 1374.52, + "probability": 0.9811 + }, + { + "start": 1375.42, + "end": 1378.24, + "probability": 0.9728 + }, + { + "start": 1378.32, + "end": 1378.98, + "probability": 0.7673 + }, + { + "start": 1379.52, + "end": 1381.98, + "probability": 0.9829 + }, + { + "start": 1382.16, + "end": 1382.26, + "probability": 0.1436 + }, + { + "start": 1382.26, + "end": 1389.2, + "probability": 0.7212 + }, + { + "start": 1389.26, + "end": 1390.68, + "probability": 0.9826 + }, + { + "start": 1390.76, + "end": 1391.64, + "probability": 0.4574 + }, + { + "start": 1391.7, + "end": 1394.24, + "probability": 0.9354 + }, + { + "start": 1394.34, + "end": 1394.76, + "probability": 0.6235 + }, + { + "start": 1394.96, + "end": 1397.48, + "probability": 0.9236 + }, + { + "start": 1397.62, + "end": 1399.16, + "probability": 0.9883 + }, + { + "start": 1399.26, + "end": 1400.68, + "probability": 0.9735 + }, + { + "start": 1401.44, + "end": 1403.56, + "probability": 0.7582 + }, + { + "start": 1403.76, + "end": 1405.36, + "probability": 0.0437 + }, + { + "start": 1405.36, + "end": 1407.86, + "probability": 0.6516 + }, + { + "start": 1408.14, + "end": 1413.18, + "probability": 0.8271 + }, + { + "start": 1414.06, + "end": 1414.64, + "probability": 0.4806 + }, + { + "start": 1415.52, + "end": 1415.78, + "probability": 0.3491 + }, + { + "start": 1416.34, + "end": 1417.4, + "probability": 0.0729 + }, + { + "start": 1417.96, + "end": 1418.66, + "probability": 0.3148 + }, + { + "start": 1419.66, + "end": 1424.62, + "probability": 0.6079 + }, + { + "start": 1424.74, + "end": 1426.48, + "probability": 0.4013 + }, + { + "start": 1427.92, + "end": 1429.2, + "probability": 0.8115 + }, + { + "start": 1429.42, + "end": 1433.27, + "probability": 0.8084 + }, + { + "start": 1434.56, + "end": 1438.12, + "probability": 0.6783 + }, + { + "start": 1438.38, + "end": 1439.4, + "probability": 0.9937 + }, + { + "start": 1439.54, + "end": 1440.16, + "probability": 0.8921 + }, + { + "start": 1440.52, + "end": 1442.56, + "probability": 0.9378 + }, + { + "start": 1443.36, + "end": 1443.7, + "probability": 0.942 + }, + { + "start": 1443.74, + "end": 1448.2, + "probability": 0.7653 + }, + { + "start": 1449.68, + "end": 1451.26, + "probability": 0.9615 + }, + { + "start": 1451.46, + "end": 1454.46, + "probability": 0.6899 + }, + { + "start": 1455.16, + "end": 1458.68, + "probability": 0.9966 + }, + { + "start": 1458.76, + "end": 1459.32, + "probability": 0.981 + }, + { + "start": 1459.38, + "end": 1460.64, + "probability": 0.9108 + }, + { + "start": 1460.86, + "end": 1462.76, + "probability": 0.9946 + }, + { + "start": 1462.82, + "end": 1463.86, + "probability": 0.9385 + }, + { + "start": 1464.34, + "end": 1466.41, + "probability": 0.9385 + }, + { + "start": 1467.28, + "end": 1469.2, + "probability": 0.8939 + }, + { + "start": 1470.2, + "end": 1473.08, + "probability": 0.9528 + }, + { + "start": 1474.42, + "end": 1475.26, + "probability": 0.9482 + }, + { + "start": 1476.02, + "end": 1476.78, + "probability": 0.8744 + }, + { + "start": 1477.32, + "end": 1479.88, + "probability": 0.9634 + }, + { + "start": 1480.72, + "end": 1483.68, + "probability": 0.933 + }, + { + "start": 1484.2, + "end": 1485.76, + "probability": 0.9023 + }, + { + "start": 1486.31, + "end": 1491.39, + "probability": 0.9929 + }, + { + "start": 1493.42, + "end": 1496.26, + "probability": 0.9961 + }, + { + "start": 1496.26, + "end": 1499.1, + "probability": 0.9996 + }, + { + "start": 1500.22, + "end": 1503.28, + "probability": 0.9858 + }, + { + "start": 1503.8, + "end": 1504.02, + "probability": 0.7847 + }, + { + "start": 1505.0, + "end": 1507.04, + "probability": 0.7318 + }, + { + "start": 1507.04, + "end": 1508.84, + "probability": 0.5426 + }, + { + "start": 1508.84, + "end": 1510.12, + "probability": 0.397 + }, + { + "start": 1511.0, + "end": 1512.3, + "probability": 0.7323 + }, + { + "start": 1512.54, + "end": 1512.72, + "probability": 0.7224 + }, + { + "start": 1512.84, + "end": 1517.12, + "probability": 0.978 + }, + { + "start": 1517.18, + "end": 1517.62, + "probability": 0.7476 + }, + { + "start": 1517.66, + "end": 1518.56, + "probability": 0.5783 + }, + { + "start": 1518.64, + "end": 1522.2, + "probability": 0.966 + }, + { + "start": 1523.2, + "end": 1525.42, + "probability": 0.619 + }, + { + "start": 1525.6, + "end": 1529.88, + "probability": 0.9889 + }, + { + "start": 1529.88, + "end": 1536.18, + "probability": 0.7782 + }, + { + "start": 1536.36, + "end": 1540.28, + "probability": 0.9712 + }, + { + "start": 1542.5, + "end": 1546.0, + "probability": 0.9854 + }, + { + "start": 1552.88, + "end": 1554.22, + "probability": 0.6794 + }, + { + "start": 1555.48, + "end": 1557.5, + "probability": 0.7309 + }, + { + "start": 1559.3, + "end": 1565.46, + "probability": 0.9915 + }, + { + "start": 1566.22, + "end": 1567.58, + "probability": 0.9484 + }, + { + "start": 1568.64, + "end": 1569.84, + "probability": 0.9551 + }, + { + "start": 1570.74, + "end": 1574.14, + "probability": 0.978 + }, + { + "start": 1575.38, + "end": 1579.88, + "probability": 0.8851 + }, + { + "start": 1580.52, + "end": 1582.1, + "probability": 0.9847 + }, + { + "start": 1582.98, + "end": 1585.4, + "probability": 0.8817 + }, + { + "start": 1586.4, + "end": 1586.98, + "probability": 0.8577 + }, + { + "start": 1587.08, + "end": 1589.86, + "probability": 0.9963 + }, + { + "start": 1590.56, + "end": 1592.84, + "probability": 0.8701 + }, + { + "start": 1593.72, + "end": 1597.32, + "probability": 0.9249 + }, + { + "start": 1598.52, + "end": 1600.78, + "probability": 0.8306 + }, + { + "start": 1601.88, + "end": 1605.58, + "probability": 0.9032 + }, + { + "start": 1606.58, + "end": 1607.62, + "probability": 0.8549 + }, + { + "start": 1607.72, + "end": 1609.54, + "probability": 0.9971 + }, + { + "start": 1610.38, + "end": 1611.43, + "probability": 0.9937 + }, + { + "start": 1612.28, + "end": 1613.98, + "probability": 0.9638 + }, + { + "start": 1614.4, + "end": 1616.02, + "probability": 0.7288 + }, + { + "start": 1617.32, + "end": 1620.63, + "probability": 0.998 + }, + { + "start": 1622.32, + "end": 1627.38, + "probability": 0.909 + }, + { + "start": 1628.08, + "end": 1629.5, + "probability": 0.9743 + }, + { + "start": 1630.88, + "end": 1636.04, + "probability": 0.9314 + }, + { + "start": 1637.28, + "end": 1639.0, + "probability": 0.8918 + }, + { + "start": 1640.2, + "end": 1640.5, + "probability": 0.9614 + }, + { + "start": 1641.6, + "end": 1644.21, + "probability": 0.7723 + }, + { + "start": 1645.9, + "end": 1648.56, + "probability": 0.6356 + }, + { + "start": 1649.36, + "end": 1651.31, + "probability": 0.9873 + }, + { + "start": 1651.54, + "end": 1655.54, + "probability": 0.9738 + }, + { + "start": 1656.54, + "end": 1658.24, + "probability": 0.6737 + }, + { + "start": 1659.02, + "end": 1663.39, + "probability": 0.7725 + }, + { + "start": 1664.72, + "end": 1667.6, + "probability": 0.8409 + }, + { + "start": 1668.52, + "end": 1672.78, + "probability": 0.9306 + }, + { + "start": 1673.76, + "end": 1677.34, + "probability": 0.8242 + }, + { + "start": 1677.94, + "end": 1679.7, + "probability": 0.858 + }, + { + "start": 1680.54, + "end": 1682.0, + "probability": 0.9285 + }, + { + "start": 1684.42, + "end": 1686.76, + "probability": 0.7267 + }, + { + "start": 1687.04, + "end": 1690.1, + "probability": 0.9944 + }, + { + "start": 1690.2, + "end": 1693.52, + "probability": 0.991 + }, + { + "start": 1694.64, + "end": 1697.86, + "probability": 0.0773 + }, + { + "start": 1698.18, + "end": 1698.55, + "probability": 0.4813 + }, + { + "start": 1699.58, + "end": 1700.8, + "probability": 0.4357 + }, + { + "start": 1701.22, + "end": 1702.66, + "probability": 0.6231 + }, + { + "start": 1702.88, + "end": 1706.02, + "probability": 0.3383 + }, + { + "start": 1709.86, + "end": 1713.16, + "probability": 0.5238 + }, + { + "start": 1713.42, + "end": 1719.02, + "probability": 0.9456 + }, + { + "start": 1720.28, + "end": 1721.34, + "probability": 0.9415 + }, + { + "start": 1721.9, + "end": 1723.78, + "probability": 0.8238 + }, + { + "start": 1724.42, + "end": 1725.76, + "probability": 0.9922 + }, + { + "start": 1726.2, + "end": 1728.18, + "probability": 0.6612 + }, + { + "start": 1728.52, + "end": 1729.36, + "probability": 0.8972 + }, + { + "start": 1729.44, + "end": 1732.62, + "probability": 0.8913 + }, + { + "start": 1733.2, + "end": 1739.0, + "probability": 0.98 + }, + { + "start": 1739.68, + "end": 1742.56, + "probability": 0.9799 + }, + { + "start": 1743.38, + "end": 1746.62, + "probability": 0.7653 + }, + { + "start": 1747.56, + "end": 1751.3, + "probability": 0.8753 + }, + { + "start": 1752.02, + "end": 1752.84, + "probability": 0.7155 + }, + { + "start": 1753.64, + "end": 1755.14, + "probability": 0.869 + }, + { + "start": 1755.22, + "end": 1756.08, + "probability": 0.8293 + }, + { + "start": 1756.88, + "end": 1757.96, + "probability": 0.8945 + }, + { + "start": 1758.72, + "end": 1763.12, + "probability": 0.9795 + }, + { + "start": 1764.14, + "end": 1768.0, + "probability": 0.9556 + }, + { + "start": 1768.78, + "end": 1772.64, + "probability": 0.6812 + }, + { + "start": 1773.2, + "end": 1775.18, + "probability": 0.9611 + }, + { + "start": 1776.02, + "end": 1779.34, + "probability": 0.9566 + }, + { + "start": 1780.02, + "end": 1781.72, + "probability": 0.8026 + }, + { + "start": 1782.32, + "end": 1784.36, + "probability": 0.9327 + }, + { + "start": 1785.72, + "end": 1788.58, + "probability": 0.7166 + }, + { + "start": 1789.48, + "end": 1790.6, + "probability": 0.7981 + }, + { + "start": 1791.3, + "end": 1793.54, + "probability": 0.9684 + }, + { + "start": 1794.48, + "end": 1799.2, + "probability": 0.9648 + }, + { + "start": 1799.58, + "end": 1801.84, + "probability": 0.8926 + }, + { + "start": 1801.9, + "end": 1805.94, + "probability": 0.9303 + }, + { + "start": 1806.36, + "end": 1806.76, + "probability": 0.5364 + }, + { + "start": 1806.82, + "end": 1808.05, + "probability": 0.7354 + }, + { + "start": 1808.84, + "end": 1809.36, + "probability": 0.7313 + }, + { + "start": 1809.46, + "end": 1816.42, + "probability": 0.8181 + }, + { + "start": 1817.78, + "end": 1821.36, + "probability": 0.9189 + }, + { + "start": 1821.86, + "end": 1823.48, + "probability": 0.956 + }, + { + "start": 1823.98, + "end": 1825.08, + "probability": 0.7908 + }, + { + "start": 1826.48, + "end": 1827.49, + "probability": 0.6979 + }, + { + "start": 1828.56, + "end": 1830.18, + "probability": 0.8506 + }, + { + "start": 1831.28, + "end": 1832.4, + "probability": 0.9453 + }, + { + "start": 1833.14, + "end": 1835.54, + "probability": 0.9731 + }, + { + "start": 1835.96, + "end": 1837.58, + "probability": 0.7495 + }, + { + "start": 1838.04, + "end": 1842.21, + "probability": 0.9639 + }, + { + "start": 1842.48, + "end": 1842.9, + "probability": 0.7245 + }, + { + "start": 1843.58, + "end": 1845.14, + "probability": 0.8722 + }, + { + "start": 1846.1, + "end": 1848.66, + "probability": 0.9873 + }, + { + "start": 1849.66, + "end": 1852.4, + "probability": 0.9836 + }, + { + "start": 1852.92, + "end": 1853.38, + "probability": 0.9499 + }, + { + "start": 1853.62, + "end": 1854.52, + "probability": 0.9814 + }, + { + "start": 1854.76, + "end": 1855.48, + "probability": 0.8333 + }, + { + "start": 1855.52, + "end": 1856.18, + "probability": 0.9558 + }, + { + "start": 1856.58, + "end": 1858.02, + "probability": 0.9808 + }, + { + "start": 1859.82, + "end": 1861.8, + "probability": 0.9978 + }, + { + "start": 1862.86, + "end": 1871.44, + "probability": 0.6565 + }, + { + "start": 1872.02, + "end": 1877.38, + "probability": 0.9873 + }, + { + "start": 1878.94, + "end": 1882.34, + "probability": 0.9762 + }, + { + "start": 1883.16, + "end": 1885.86, + "probability": 0.8523 + }, + { + "start": 1886.5, + "end": 1890.94, + "probability": 0.9977 + }, + { + "start": 1890.96, + "end": 1895.8, + "probability": 0.9991 + }, + { + "start": 1896.78, + "end": 1897.84, + "probability": 0.9489 + }, + { + "start": 1898.52, + "end": 1901.24, + "probability": 0.8665 + }, + { + "start": 1901.72, + "end": 1906.04, + "probability": 0.8704 + }, + { + "start": 1906.26, + "end": 1907.08, + "probability": 0.7496 + }, + { + "start": 1907.82, + "end": 1911.2, + "probability": 0.9893 + }, + { + "start": 1911.86, + "end": 1917.14, + "probability": 0.5445 + }, + { + "start": 1917.36, + "end": 1918.48, + "probability": 0.7639 + }, + { + "start": 1918.92, + "end": 1919.71, + "probability": 0.9049 + }, + { + "start": 1920.28, + "end": 1921.72, + "probability": 0.955 + }, + { + "start": 1922.32, + "end": 1924.2, + "probability": 0.9849 + }, + { + "start": 1924.8, + "end": 1926.84, + "probability": 0.782 + }, + { + "start": 1927.42, + "end": 1929.2, + "probability": 0.91 + }, + { + "start": 1929.88, + "end": 1937.02, + "probability": 0.7447 + }, + { + "start": 1937.8, + "end": 1940.08, + "probability": 0.9155 + }, + { + "start": 1941.1, + "end": 1945.62, + "probability": 0.9415 + }, + { + "start": 1947.06, + "end": 1954.62, + "probability": 0.9978 + }, + { + "start": 1954.62, + "end": 1960.0, + "probability": 0.9961 + }, + { + "start": 1961.62, + "end": 1965.92, + "probability": 0.9896 + }, + { + "start": 1966.88, + "end": 1967.7, + "probability": 0.6806 + }, + { + "start": 1967.78, + "end": 1972.68, + "probability": 0.7774 + }, + { + "start": 1972.78, + "end": 1973.68, + "probability": 0.8698 + }, + { + "start": 1974.62, + "end": 1979.42, + "probability": 0.9816 + }, + { + "start": 1980.2, + "end": 1982.52, + "probability": 0.7561 + }, + { + "start": 1983.38, + "end": 1986.76, + "probability": 0.7237 + }, + { + "start": 1987.54, + "end": 1993.4, + "probability": 0.9885 + }, + { + "start": 1994.78, + "end": 1998.9, + "probability": 0.9958 + }, + { + "start": 1999.9, + "end": 2005.18, + "probability": 0.9964 + }, + { + "start": 2006.1, + "end": 2008.62, + "probability": 0.9798 + }, + { + "start": 2010.06, + "end": 2013.64, + "probability": 0.8982 + }, + { + "start": 2014.6, + "end": 2016.36, + "probability": 0.8958 + }, + { + "start": 2017.0, + "end": 2021.54, + "probability": 0.773 + }, + { + "start": 2023.02, + "end": 2024.12, + "probability": 0.4879 + }, + { + "start": 2024.7, + "end": 2026.44, + "probability": 0.7196 + }, + { + "start": 2027.06, + "end": 2027.86, + "probability": 0.9818 + }, + { + "start": 2028.4, + "end": 2030.32, + "probability": 0.9062 + }, + { + "start": 2031.22, + "end": 2035.14, + "probability": 0.6021 + }, + { + "start": 2036.16, + "end": 2040.6, + "probability": 0.9815 + }, + { + "start": 2041.7, + "end": 2044.58, + "probability": 0.9751 + }, + { + "start": 2045.1, + "end": 2045.68, + "probability": 0.4904 + }, + { + "start": 2045.78, + "end": 2046.16, + "probability": 0.5315 + }, + { + "start": 2046.26, + "end": 2048.6, + "probability": 0.7536 + }, + { + "start": 2049.16, + "end": 2050.4, + "probability": 0.8901 + }, + { + "start": 2051.54, + "end": 2054.88, + "probability": 0.9363 + }, + { + "start": 2055.56, + "end": 2059.28, + "probability": 0.9342 + }, + { + "start": 2059.28, + "end": 2062.8, + "probability": 0.9969 + }, + { + "start": 2063.7, + "end": 2064.68, + "probability": 0.7051 + }, + { + "start": 2065.78, + "end": 2069.16, + "probability": 0.9287 + }, + { + "start": 2069.7, + "end": 2072.6, + "probability": 0.9766 + }, + { + "start": 2073.8, + "end": 2077.96, + "probability": 0.9675 + }, + { + "start": 2078.04, + "end": 2079.28, + "probability": 0.6709 + }, + { + "start": 2079.7, + "end": 2083.44, + "probability": 0.9604 + }, + { + "start": 2084.62, + "end": 2088.34, + "probability": 0.9725 + }, + { + "start": 2090.18, + "end": 2092.92, + "probability": 0.9918 + }, + { + "start": 2092.92, + "end": 2096.52, + "probability": 0.989 + }, + { + "start": 2097.16, + "end": 2102.34, + "probability": 0.9447 + }, + { + "start": 2102.44, + "end": 2103.56, + "probability": 0.4909 + }, + { + "start": 2104.18, + "end": 2108.38, + "probability": 0.8617 + }, + { + "start": 2109.1, + "end": 2111.22, + "probability": 0.9326 + }, + { + "start": 2111.82, + "end": 2112.86, + "probability": 0.9069 + }, + { + "start": 2113.54, + "end": 2118.94, + "probability": 0.9942 + }, + { + "start": 2120.22, + "end": 2121.58, + "probability": 0.9626 + }, + { + "start": 2121.92, + "end": 2125.38, + "probability": 0.5815 + }, + { + "start": 2127.04, + "end": 2128.92, + "probability": 0.8231 + }, + { + "start": 2129.06, + "end": 2132.94, + "probability": 0.8989 + }, + { + "start": 2134.24, + "end": 2139.1, + "probability": 0.9524 + }, + { + "start": 2139.68, + "end": 2146.58, + "probability": 0.9748 + }, + { + "start": 2147.24, + "end": 2151.78, + "probability": 0.6586 + }, + { + "start": 2152.38, + "end": 2154.18, + "probability": 0.9428 + }, + { + "start": 2154.74, + "end": 2157.66, + "probability": 0.9902 + }, + { + "start": 2158.72, + "end": 2160.94, + "probability": 0.9609 + }, + { + "start": 2161.42, + "end": 2164.46, + "probability": 0.905 + }, + { + "start": 2165.24, + "end": 2167.22, + "probability": 0.9215 + }, + { + "start": 2168.14, + "end": 2173.48, + "probability": 0.9394 + }, + { + "start": 2174.12, + "end": 2175.92, + "probability": 0.9775 + }, + { + "start": 2176.68, + "end": 2178.0, + "probability": 0.9762 + }, + { + "start": 2178.84, + "end": 2180.9, + "probability": 0.7615 + }, + { + "start": 2181.54, + "end": 2183.12, + "probability": 0.9207 + }, + { + "start": 2184.1, + "end": 2184.64, + "probability": 0.9849 + }, + { + "start": 2185.82, + "end": 2187.8, + "probability": 0.7594 + }, + { + "start": 2188.5, + "end": 2193.74, + "probability": 0.8417 + }, + { + "start": 2194.84, + "end": 2195.4, + "probability": 0.6116 + }, + { + "start": 2195.98, + "end": 2198.12, + "probability": 0.7456 + }, + { + "start": 2198.64, + "end": 2200.98, + "probability": 0.792 + }, + { + "start": 2201.64, + "end": 2204.56, + "probability": 0.9757 + }, + { + "start": 2204.74, + "end": 2207.02, + "probability": 0.9598 + }, + { + "start": 2207.92, + "end": 2208.3, + "probability": 0.7319 + }, + { + "start": 2208.8, + "end": 2212.5, + "probability": 0.9023 + }, + { + "start": 2212.86, + "end": 2214.04, + "probability": 0.9272 + }, + { + "start": 2214.76, + "end": 2220.32, + "probability": 0.9741 + }, + { + "start": 2220.46, + "end": 2220.82, + "probability": 0.9093 + }, + { + "start": 2221.84, + "end": 2225.6, + "probability": 0.9807 + }, + { + "start": 2226.22, + "end": 2228.32, + "probability": 0.831 + }, + { + "start": 2229.0, + "end": 2232.06, + "probability": 0.8807 + }, + { + "start": 2232.5, + "end": 2233.22, + "probability": 0.9649 + }, + { + "start": 2233.44, + "end": 2234.58, + "probability": 0.7409 + }, + { + "start": 2235.28, + "end": 2235.84, + "probability": 0.8508 + }, + { + "start": 2236.56, + "end": 2238.52, + "probability": 0.8961 + }, + { + "start": 2238.72, + "end": 2240.88, + "probability": 0.5595 + }, + { + "start": 2240.96, + "end": 2244.32, + "probability": 0.937 + }, + { + "start": 2258.86, + "end": 2259.38, + "probability": 0.5617 + }, + { + "start": 2261.41, + "end": 2263.48, + "probability": 0.6448 + }, + { + "start": 2264.7, + "end": 2268.7, + "probability": 0.9745 + }, + { + "start": 2268.7, + "end": 2272.64, + "probability": 0.9718 + }, + { + "start": 2274.2, + "end": 2275.43, + "probability": 0.7304 + }, + { + "start": 2276.54, + "end": 2282.08, + "probability": 0.9571 + }, + { + "start": 2283.7, + "end": 2284.22, + "probability": 0.5797 + }, + { + "start": 2284.32, + "end": 2287.68, + "probability": 0.905 + }, + { + "start": 2288.5, + "end": 2291.86, + "probability": 0.8963 + }, + { + "start": 2292.7, + "end": 2296.32, + "probability": 0.9928 + }, + { + "start": 2297.64, + "end": 2299.42, + "probability": 0.9985 + }, + { + "start": 2300.92, + "end": 2305.12, + "probability": 0.9568 + }, + { + "start": 2305.12, + "end": 2311.34, + "probability": 0.9992 + }, + { + "start": 2312.02, + "end": 2313.54, + "probability": 0.5251 + }, + { + "start": 2315.1, + "end": 2317.14, + "probability": 0.8085 + }, + { + "start": 2318.06, + "end": 2321.48, + "probability": 0.7202 + }, + { + "start": 2322.32, + "end": 2323.92, + "probability": 0.9803 + }, + { + "start": 2325.74, + "end": 2329.38, + "probability": 0.9453 + }, + { + "start": 2329.54, + "end": 2330.48, + "probability": 0.502 + }, + { + "start": 2331.08, + "end": 2333.76, + "probability": 0.9538 + }, + { + "start": 2335.68, + "end": 2336.88, + "probability": 0.8696 + }, + { + "start": 2338.78, + "end": 2340.68, + "probability": 0.9571 + }, + { + "start": 2340.96, + "end": 2344.94, + "probability": 0.9866 + }, + { + "start": 2346.2, + "end": 2348.94, + "probability": 0.8838 + }, + { + "start": 2349.62, + "end": 2351.88, + "probability": 0.8018 + }, + { + "start": 2353.34, + "end": 2357.86, + "probability": 0.9567 + }, + { + "start": 2358.32, + "end": 2358.7, + "probability": 0.44 + }, + { + "start": 2359.18, + "end": 2359.74, + "probability": 0.99 + }, + { + "start": 2361.2, + "end": 2362.52, + "probability": 0.9594 + }, + { + "start": 2365.02, + "end": 2370.94, + "probability": 0.9837 + }, + { + "start": 2372.46, + "end": 2374.94, + "probability": 0.9983 + }, + { + "start": 2376.58, + "end": 2381.24, + "probability": 0.9982 + }, + { + "start": 2381.76, + "end": 2386.66, + "probability": 0.9551 + }, + { + "start": 2387.18, + "end": 2391.24, + "probability": 0.8834 + }, + { + "start": 2392.1, + "end": 2397.24, + "probability": 0.984 + }, + { + "start": 2397.5, + "end": 2404.6, + "probability": 0.9893 + }, + { + "start": 2405.94, + "end": 2408.32, + "probability": 0.9977 + }, + { + "start": 2408.32, + "end": 2412.22, + "probability": 0.9928 + }, + { + "start": 2412.84, + "end": 2414.8, + "probability": 0.799 + }, + { + "start": 2415.3, + "end": 2416.14, + "probability": 0.9291 + }, + { + "start": 2416.6, + "end": 2423.58, + "probability": 0.981 + }, + { + "start": 2424.94, + "end": 2428.7, + "probability": 0.6574 + }, + { + "start": 2429.0, + "end": 2430.28, + "probability": 0.9309 + }, + { + "start": 2431.02, + "end": 2433.4, + "probability": 0.9775 + }, + { + "start": 2433.86, + "end": 2435.14, + "probability": 0.844 + }, + { + "start": 2435.22, + "end": 2437.48, + "probability": 0.8947 + }, + { + "start": 2437.8, + "end": 2439.1, + "probability": 0.7262 + }, + { + "start": 2450.17, + "end": 2453.18, + "probability": 0.947 + }, + { + "start": 2454.06, + "end": 2456.5, + "probability": 0.7703 + }, + { + "start": 2458.22, + "end": 2460.14, + "probability": 0.9589 + }, + { + "start": 2460.84, + "end": 2461.14, + "probability": 0.9977 + }, + { + "start": 2464.28, + "end": 2467.3, + "probability": 0.6794 + }, + { + "start": 2468.46, + "end": 2469.2, + "probability": 0.9209 + }, + { + "start": 2470.28, + "end": 2473.16, + "probability": 0.846 + }, + { + "start": 2475.38, + "end": 2476.66, + "probability": 0.8782 + }, + { + "start": 2476.92, + "end": 2479.26, + "probability": 0.8884 + }, + { + "start": 2479.4, + "end": 2480.38, + "probability": 0.8738 + }, + { + "start": 2481.42, + "end": 2484.22, + "probability": 0.7204 + }, + { + "start": 2485.66, + "end": 2490.02, + "probability": 0.7796 + }, + { + "start": 2491.46, + "end": 2491.62, + "probability": 0.7812 + }, + { + "start": 2492.98, + "end": 2493.7, + "probability": 0.925 + }, + { + "start": 2494.86, + "end": 2495.86, + "probability": 0.8833 + }, + { + "start": 2497.48, + "end": 2500.32, + "probability": 0.9079 + }, + { + "start": 2501.84, + "end": 2504.76, + "probability": 0.9132 + }, + { + "start": 2504.96, + "end": 2508.42, + "probability": 0.3898 + }, + { + "start": 2508.42, + "end": 2509.58, + "probability": 0.3381 + }, + { + "start": 2510.24, + "end": 2511.01, + "probability": 0.7599 + }, + { + "start": 2511.22, + "end": 2517.14, + "probability": 0.9775 + }, + { + "start": 2517.74, + "end": 2519.68, + "probability": 0.0259 + }, + { + "start": 2520.28, + "end": 2522.02, + "probability": 0.264 + }, + { + "start": 2522.94, + "end": 2523.08, + "probability": 0.1264 + }, + { + "start": 2523.36, + "end": 2524.72, + "probability": 0.0665 + }, + { + "start": 2524.9, + "end": 2526.12, + "probability": 0.8572 + }, + { + "start": 2526.18, + "end": 2526.96, + "probability": 0.0154 + }, + { + "start": 2526.96, + "end": 2526.96, + "probability": 0.6206 + }, + { + "start": 2527.14, + "end": 2527.86, + "probability": 0.8067 + }, + { + "start": 2528.42, + "end": 2529.08, + "probability": 0.4529 + }, + { + "start": 2530.24, + "end": 2531.08, + "probability": 0.6982 + }, + { + "start": 2531.1, + "end": 2531.72, + "probability": 0.7988 + }, + { + "start": 2532.16, + "end": 2535.14, + "probability": 0.8436 + }, + { + "start": 2535.24, + "end": 2537.36, + "probability": 0.8514 + }, + { + "start": 2537.42, + "end": 2538.28, + "probability": 0.6437 + }, + { + "start": 2538.36, + "end": 2539.04, + "probability": 0.9026 + }, + { + "start": 2539.16, + "end": 2539.82, + "probability": 0.8822 + }, + { + "start": 2540.46, + "end": 2541.58, + "probability": 0.7859 + }, + { + "start": 2542.26, + "end": 2542.76, + "probability": 0.7248 + }, + { + "start": 2543.34, + "end": 2544.46, + "probability": 0.5029 + }, + { + "start": 2544.82, + "end": 2545.44, + "probability": 0.9745 + }, + { + "start": 2546.02, + "end": 2549.76, + "probability": 0.5533 + }, + { + "start": 2550.46, + "end": 2551.58, + "probability": 0.4273 + }, + { + "start": 2551.68, + "end": 2552.66, + "probability": 0.2773 + }, + { + "start": 2552.82, + "end": 2554.64, + "probability": 0.9795 + }, + { + "start": 2554.82, + "end": 2557.08, + "probability": 0.937 + }, + { + "start": 2558.14, + "end": 2560.28, + "probability": 0.5036 + }, + { + "start": 2560.28, + "end": 2560.86, + "probability": 0.1027 + }, + { + "start": 2560.94, + "end": 2562.0, + "probability": 0.1317 + }, + { + "start": 2562.0, + "end": 2562.72, + "probability": 0.1776 + }, + { + "start": 2563.04, + "end": 2563.12, + "probability": 0.3003 + }, + { + "start": 2563.12, + "end": 2564.75, + "probability": 0.7813 + }, + { + "start": 2565.22, + "end": 2566.74, + "probability": 0.7362 + }, + { + "start": 2567.0, + "end": 2568.24, + "probability": 0.8666 + }, + { + "start": 2568.48, + "end": 2570.36, + "probability": 0.9061 + }, + { + "start": 2570.5, + "end": 2571.38, + "probability": 0.772 + }, + { + "start": 2571.5, + "end": 2572.48, + "probability": 0.9714 + }, + { + "start": 2572.78, + "end": 2574.24, + "probability": 0.5873 + }, + { + "start": 2574.42, + "end": 2574.54, + "probability": 0.0839 + }, + { + "start": 2574.54, + "end": 2575.28, + "probability": 0.0149 + }, + { + "start": 2575.62, + "end": 2578.46, + "probability": 0.9749 + }, + { + "start": 2581.08, + "end": 2582.04, + "probability": 0.0391 + }, + { + "start": 2582.04, + "end": 2583.0, + "probability": 0.1626 + }, + { + "start": 2583.2, + "end": 2584.54, + "probability": 0.8369 + }, + { + "start": 2584.7, + "end": 2585.38, + "probability": 0.0432 + }, + { + "start": 2585.54, + "end": 2588.64, + "probability": 0.4355 + }, + { + "start": 2589.22, + "end": 2596.0, + "probability": 0.688 + }, + { + "start": 2596.96, + "end": 2597.82, + "probability": 0.3224 + }, + { + "start": 2598.96, + "end": 2602.88, + "probability": 0.8999 + }, + { + "start": 2603.04, + "end": 2605.02, + "probability": 0.742 + }, + { + "start": 2605.26, + "end": 2606.64, + "probability": 0.4343 + }, + { + "start": 2607.96, + "end": 2610.38, + "probability": 0.6509 + }, + { + "start": 2611.56, + "end": 2613.26, + "probability": 0.7492 + }, + { + "start": 2613.58, + "end": 2617.46, + "probability": 0.813 + }, + { + "start": 2618.5, + "end": 2619.0, + "probability": 0.7025 + }, + { + "start": 2620.12, + "end": 2621.48, + "probability": 0.3491 + }, + { + "start": 2621.8, + "end": 2622.16, + "probability": 0.6134 + }, + { + "start": 2622.24, + "end": 2624.19, + "probability": 0.8996 + }, + { + "start": 2624.8, + "end": 2627.44, + "probability": 0.8955 + }, + { + "start": 2628.04, + "end": 2631.42, + "probability": 0.8034 + }, + { + "start": 2631.78, + "end": 2633.68, + "probability": 0.854 + }, + { + "start": 2634.78, + "end": 2636.98, + "probability": 0.9495 + }, + { + "start": 2637.86, + "end": 2638.77, + "probability": 0.3535 + }, + { + "start": 2639.38, + "end": 2639.38, + "probability": 0.0302 + }, + { + "start": 2640.04, + "end": 2641.48, + "probability": 0.6778 + }, + { + "start": 2641.62, + "end": 2642.32, + "probability": 0.3377 + }, + { + "start": 2642.32, + "end": 2648.8, + "probability": 0.8648 + }, + { + "start": 2649.84, + "end": 2652.36, + "probability": 0.9114 + }, + { + "start": 2653.2, + "end": 2658.72, + "probability": 0.7711 + }, + { + "start": 2659.72, + "end": 2660.38, + "probability": 0.566 + }, + { + "start": 2660.6, + "end": 2661.4, + "probability": 0.826 + }, + { + "start": 2661.52, + "end": 2662.99, + "probability": 0.8262 + }, + { + "start": 2664.52, + "end": 2665.26, + "probability": 0.1322 + }, + { + "start": 2665.78, + "end": 2669.4, + "probability": 0.7432 + }, + { + "start": 2670.24, + "end": 2670.76, + "probability": 0.013 + }, + { + "start": 2670.76, + "end": 2670.76, + "probability": 0.0489 + }, + { + "start": 2670.76, + "end": 2671.16, + "probability": 0.3889 + }, + { + "start": 2671.34, + "end": 2671.38, + "probability": 0.2486 + }, + { + "start": 2671.38, + "end": 2673.02, + "probability": 0.8539 + }, + { + "start": 2673.16, + "end": 2675.5, + "probability": 0.777 + }, + { + "start": 2675.9, + "end": 2677.11, + "probability": 0.8926 + }, + { + "start": 2678.04, + "end": 2684.38, + "probability": 0.2792 + }, + { + "start": 2684.8, + "end": 2691.8, + "probability": 0.2379 + }, + { + "start": 2692.08, + "end": 2693.44, + "probability": 0.103 + }, + { + "start": 2696.98, + "end": 2698.38, + "probability": 0.0279 + }, + { + "start": 2698.44, + "end": 2698.44, + "probability": 0.0814 + }, + { + "start": 2698.44, + "end": 2698.44, + "probability": 0.3238 + }, + { + "start": 2699.24, + "end": 2702.02, + "probability": 0.1186 + }, + { + "start": 2703.12, + "end": 2705.04, + "probability": 0.2904 + }, + { + "start": 2706.16, + "end": 2706.16, + "probability": 0.3604 + }, + { + "start": 2706.16, + "end": 2706.16, + "probability": 0.1107 + }, + { + "start": 2706.16, + "end": 2706.16, + "probability": 0.2185 + }, + { + "start": 2706.16, + "end": 2706.16, + "probability": 0.0984 + }, + { + "start": 2706.16, + "end": 2706.16, + "probability": 0.1045 + }, + { + "start": 2706.16, + "end": 2708.27, + "probability": 0.3274 + }, + { + "start": 2709.48, + "end": 2711.48, + "probability": 0.7541 + }, + { + "start": 2713.56, + "end": 2715.9, + "probability": 0.2091 + }, + { + "start": 2715.9, + "end": 2716.12, + "probability": 0.0902 + }, + { + "start": 2716.82, + "end": 2719.5, + "probability": 0.8367 + }, + { + "start": 2720.16, + "end": 2724.88, + "probability": 0.9535 + }, + { + "start": 2725.68, + "end": 2727.52, + "probability": 0.57 + }, + { + "start": 2728.18, + "end": 2728.18, + "probability": 0.22 + }, + { + "start": 2728.18, + "end": 2728.18, + "probability": 0.1331 + }, + { + "start": 2728.18, + "end": 2728.18, + "probability": 0.1752 + }, + { + "start": 2728.18, + "end": 2734.02, + "probability": 0.3153 + }, + { + "start": 2734.6, + "end": 2735.14, + "probability": 0.521 + }, + { + "start": 2735.14, + "end": 2735.96, + "probability": 0.3537 + }, + { + "start": 2736.08, + "end": 2738.11, + "probability": 0.5741 + }, + { + "start": 2738.58, + "end": 2741.04, + "probability": 0.8218 + }, + { + "start": 2761.2, + "end": 2763.96, + "probability": 0.5365 + }, + { + "start": 2763.96, + "end": 2764.72, + "probability": 0.5518 + }, + { + "start": 2765.56, + "end": 2766.4, + "probability": 0.153 + }, + { + "start": 2768.66, + "end": 2770.12, + "probability": 0.8815 + }, + { + "start": 2771.02, + "end": 2774.32, + "probability": 0.9479 + }, + { + "start": 2775.8, + "end": 2777.9, + "probability": 0.9443 + }, + { + "start": 2778.54, + "end": 2780.9, + "probability": 0.9806 + }, + { + "start": 2784.1, + "end": 2787.98, + "probability": 0.9793 + }, + { + "start": 2788.8, + "end": 2790.0, + "probability": 0.9156 + }, + { + "start": 2790.94, + "end": 2792.2, + "probability": 0.9797 + }, + { + "start": 2792.26, + "end": 2792.86, + "probability": 0.9123 + }, + { + "start": 2793.28, + "end": 2794.44, + "probability": 0.9603 + }, + { + "start": 2794.94, + "end": 2798.28, + "probability": 0.9832 + }, + { + "start": 2799.16, + "end": 2800.43, + "probability": 0.9966 + }, + { + "start": 2801.64, + "end": 2804.4, + "probability": 0.989 + }, + { + "start": 2804.4, + "end": 2808.82, + "probability": 0.983 + }, + { + "start": 2809.86, + "end": 2814.28, + "probability": 0.9648 + }, + { + "start": 2814.4, + "end": 2814.68, + "probability": 0.8297 + }, + { + "start": 2815.62, + "end": 2816.58, + "probability": 0.8732 + }, + { + "start": 2817.14, + "end": 2818.06, + "probability": 0.8906 + }, + { + "start": 2818.64, + "end": 2821.58, + "probability": 0.9827 + }, + { + "start": 2822.14, + "end": 2823.6, + "probability": 0.9935 + }, + { + "start": 2824.56, + "end": 2831.76, + "probability": 0.9678 + }, + { + "start": 2833.56, + "end": 2834.46, + "probability": 0.7446 + }, + { + "start": 2834.76, + "end": 2838.76, + "probability": 0.7247 + }, + { + "start": 2839.88, + "end": 2844.84, + "probability": 0.9971 + }, + { + "start": 2846.06, + "end": 2850.18, + "probability": 0.9715 + }, + { + "start": 2851.0, + "end": 2853.24, + "probability": 0.9843 + }, + { + "start": 2854.4, + "end": 2855.76, + "probability": 0.9683 + }, + { + "start": 2855.88, + "end": 2857.18, + "probability": 0.9912 + }, + { + "start": 2858.04, + "end": 2861.48, + "probability": 0.9716 + }, + { + "start": 2862.06, + "end": 2866.58, + "probability": 0.9769 + }, + { + "start": 2866.68, + "end": 2870.92, + "probability": 0.966 + }, + { + "start": 2870.92, + "end": 2875.58, + "probability": 0.9642 + }, + { + "start": 2876.84, + "end": 2879.16, + "probability": 0.7951 + }, + { + "start": 2881.05, + "end": 2884.5, + "probability": 0.9894 + }, + { + "start": 2885.64, + "end": 2889.4, + "probability": 0.999 + }, + { + "start": 2890.1, + "end": 2893.08, + "probability": 0.9966 + }, + { + "start": 2893.52, + "end": 2895.56, + "probability": 0.9976 + }, + { + "start": 2896.42, + "end": 2897.78, + "probability": 0.7093 + }, + { + "start": 2898.78, + "end": 2900.38, + "probability": 0.8393 + }, + { + "start": 2901.14, + "end": 2903.18, + "probability": 0.9911 + }, + { + "start": 2903.18, + "end": 2905.6, + "probability": 0.972 + }, + { + "start": 2906.66, + "end": 2907.98, + "probability": 0.9835 + }, + { + "start": 2908.92, + "end": 2910.67, + "probability": 0.8859 + }, + { + "start": 2910.92, + "end": 2913.52, + "probability": 0.9965 + }, + { + "start": 2913.68, + "end": 2914.38, + "probability": 0.8917 + }, + { + "start": 2914.52, + "end": 2915.28, + "probability": 0.8356 + }, + { + "start": 2915.6, + "end": 2916.82, + "probability": 0.9971 + }, + { + "start": 2917.36, + "end": 2920.24, + "probability": 0.9957 + }, + { + "start": 2920.24, + "end": 2922.34, + "probability": 0.9993 + }, + { + "start": 2923.34, + "end": 2925.4, + "probability": 0.7892 + }, + { + "start": 2926.04, + "end": 2926.78, + "probability": 0.5625 + }, + { + "start": 2927.48, + "end": 2929.18, + "probability": 0.9913 + }, + { + "start": 2929.88, + "end": 2931.22, + "probability": 0.9346 + }, + { + "start": 2932.28, + "end": 2935.87, + "probability": 0.9627 + }, + { + "start": 2936.22, + "end": 2938.14, + "probability": 0.9857 + }, + { + "start": 2938.86, + "end": 2940.6, + "probability": 0.8977 + }, + { + "start": 2941.92, + "end": 2944.98, + "probability": 0.9536 + }, + { + "start": 2945.64, + "end": 2947.26, + "probability": 0.9907 + }, + { + "start": 2947.26, + "end": 2950.56, + "probability": 0.9956 + }, + { + "start": 2952.08, + "end": 2952.3, + "probability": 0.7148 + }, + { + "start": 2954.06, + "end": 2954.5, + "probability": 0.3951 + }, + { + "start": 2954.58, + "end": 2958.78, + "probability": 0.7294 + }, + { + "start": 2972.58, + "end": 2972.98, + "probability": 0.2632 + }, + { + "start": 2974.76, + "end": 2976.18, + "probability": 0.7282 + }, + { + "start": 2977.22, + "end": 2978.9, + "probability": 0.8081 + }, + { + "start": 2980.04, + "end": 2981.94, + "probability": 0.7746 + }, + { + "start": 2983.16, + "end": 2987.48, + "probability": 0.9751 + }, + { + "start": 2988.02, + "end": 2992.24, + "probability": 0.3886 + }, + { + "start": 2993.98, + "end": 2994.88, + "probability": 0.6047 + }, + { + "start": 2995.72, + "end": 2997.14, + "probability": 0.8535 + }, + { + "start": 2998.86, + "end": 3000.2, + "probability": 0.8739 + }, + { + "start": 3001.0, + "end": 3003.88, + "probability": 0.9902 + }, + { + "start": 3004.54, + "end": 3005.88, + "probability": 0.9565 + }, + { + "start": 3006.76, + "end": 3008.0, + "probability": 0.9114 + }, + { + "start": 3008.34, + "end": 3009.18, + "probability": 0.9817 + }, + { + "start": 3009.56, + "end": 3011.36, + "probability": 0.9932 + }, + { + "start": 3013.54, + "end": 3014.42, + "probability": 0.8703 + }, + { + "start": 3015.1, + "end": 3018.68, + "probability": 0.9902 + }, + { + "start": 3019.88, + "end": 3023.14, + "probability": 0.8869 + }, + { + "start": 3023.76, + "end": 3026.54, + "probability": 0.9941 + }, + { + "start": 3027.12, + "end": 3028.66, + "probability": 0.9897 + }, + { + "start": 3031.3, + "end": 3032.72, + "probability": 0.7467 + }, + { + "start": 3033.22, + "end": 3034.46, + "probability": 0.8735 + }, + { + "start": 3034.88, + "end": 3035.78, + "probability": 0.9547 + }, + { + "start": 3036.58, + "end": 3038.38, + "probability": 0.8765 + }, + { + "start": 3038.8, + "end": 3039.72, + "probability": 0.6989 + }, + { + "start": 3040.12, + "end": 3040.7, + "probability": 0.9805 + }, + { + "start": 3041.08, + "end": 3041.64, + "probability": 0.8799 + }, + { + "start": 3042.88, + "end": 3043.48, + "probability": 0.9168 + }, + { + "start": 3043.54, + "end": 3045.34, + "probability": 0.9932 + }, + { + "start": 3045.82, + "end": 3046.42, + "probability": 0.9584 + }, + { + "start": 3046.56, + "end": 3048.62, + "probability": 0.9663 + }, + { + "start": 3048.76, + "end": 3049.8, + "probability": 0.937 + }, + { + "start": 3050.52, + "end": 3051.88, + "probability": 0.7464 + }, + { + "start": 3052.7, + "end": 3053.68, + "probability": 0.4603 + }, + { + "start": 3054.32, + "end": 3056.5, + "probability": 0.9841 + }, + { + "start": 3056.64, + "end": 3057.8, + "probability": 0.8525 + }, + { + "start": 3057.84, + "end": 3058.4, + "probability": 0.9205 + }, + { + "start": 3059.3, + "end": 3060.04, + "probability": 0.994 + }, + { + "start": 3060.56, + "end": 3061.8, + "probability": 0.9521 + }, + { + "start": 3062.76, + "end": 3064.1, + "probability": 0.9175 + }, + { + "start": 3064.22, + "end": 3065.54, + "probability": 0.946 + }, + { + "start": 3066.16, + "end": 3068.54, + "probability": 0.9313 + }, + { + "start": 3069.0, + "end": 3071.48, + "probability": 0.9199 + }, + { + "start": 3072.02, + "end": 3073.69, + "probability": 0.6185 + }, + { + "start": 3074.76, + "end": 3076.58, + "probability": 0.9832 + }, + { + "start": 3077.1, + "end": 3078.58, + "probability": 0.9695 + }, + { + "start": 3078.74, + "end": 3080.3, + "probability": 0.5932 + }, + { + "start": 3080.8, + "end": 3081.76, + "probability": 0.8633 + }, + { + "start": 3082.34, + "end": 3084.68, + "probability": 0.9778 + }, + { + "start": 3086.06, + "end": 3088.74, + "probability": 0.8503 + }, + { + "start": 3089.64, + "end": 3090.98, + "probability": 0.8025 + }, + { + "start": 3091.06, + "end": 3092.0, + "probability": 0.9653 + }, + { + "start": 3092.26, + "end": 3093.46, + "probability": 0.9067 + }, + { + "start": 3094.26, + "end": 3096.76, + "probability": 0.887 + }, + { + "start": 3097.32, + "end": 3098.32, + "probability": 0.8423 + }, + { + "start": 3099.0, + "end": 3101.5, + "probability": 0.9933 + }, + { + "start": 3102.38, + "end": 3104.56, + "probability": 0.8442 + }, + { + "start": 3104.72, + "end": 3108.82, + "probability": 0.9769 + }, + { + "start": 3109.66, + "end": 3111.76, + "probability": 0.7568 + }, + { + "start": 3112.8, + "end": 3115.48, + "probability": 0.8589 + }, + { + "start": 3116.2, + "end": 3118.19, + "probability": 0.9656 + }, + { + "start": 3119.14, + "end": 3120.36, + "probability": 0.974 + }, + { + "start": 3120.48, + "end": 3121.7, + "probability": 0.5534 + }, + { + "start": 3121.84, + "end": 3122.2, + "probability": 0.7562 + }, + { + "start": 3122.8, + "end": 3125.46, + "probability": 0.902 + }, + { + "start": 3125.54, + "end": 3126.8, + "probability": 0.9659 + }, + { + "start": 3128.84, + "end": 3129.64, + "probability": 0.9862 + }, + { + "start": 3131.3, + "end": 3132.66, + "probability": 0.8286 + }, + { + "start": 3132.68, + "end": 3135.8, + "probability": 0.9911 + }, + { + "start": 3135.88, + "end": 3139.16, + "probability": 0.9902 + }, + { + "start": 3139.16, + "end": 3140.9, + "probability": 0.9951 + }, + { + "start": 3142.0, + "end": 3146.74, + "probability": 0.9928 + }, + { + "start": 3147.96, + "end": 3150.6, + "probability": 0.9277 + }, + { + "start": 3151.22, + "end": 3152.12, + "probability": 0.8654 + }, + { + "start": 3152.86, + "end": 3155.9, + "probability": 0.7712 + }, + { + "start": 3156.1, + "end": 3158.05, + "probability": 0.9692 + }, + { + "start": 3158.8, + "end": 3161.7, + "probability": 0.5956 + }, + { + "start": 3162.26, + "end": 3164.7, + "probability": 0.9451 + }, + { + "start": 3164.76, + "end": 3165.36, + "probability": 0.7683 + }, + { + "start": 3165.84, + "end": 3166.98, + "probability": 0.5825 + }, + { + "start": 3167.8, + "end": 3170.06, + "probability": 0.8762 + }, + { + "start": 3170.86, + "end": 3172.08, + "probability": 0.9651 + }, + { + "start": 3172.62, + "end": 3173.48, + "probability": 0.5407 + }, + { + "start": 3174.16, + "end": 3174.72, + "probability": 0.9629 + }, + { + "start": 3175.32, + "end": 3175.9, + "probability": 0.9826 + }, + { + "start": 3176.82, + "end": 3177.8, + "probability": 0.7496 + }, + { + "start": 3178.58, + "end": 3181.28, + "probability": 0.6143 + }, + { + "start": 3181.46, + "end": 3186.12, + "probability": 0.9555 + }, + { + "start": 3187.08, + "end": 3190.04, + "probability": 0.9714 + }, + { + "start": 3190.32, + "end": 3190.52, + "probability": 0.858 + }, + { + "start": 3192.02, + "end": 3194.92, + "probability": 0.8316 + }, + { + "start": 3195.04, + "end": 3197.76, + "probability": 0.9011 + }, + { + "start": 3199.18, + "end": 3199.96, + "probability": 0.6487 + }, + { + "start": 3202.5, + "end": 3204.24, + "probability": 0.9745 + }, + { + "start": 3205.62, + "end": 3206.72, + "probability": 0.9707 + }, + { + "start": 3208.6, + "end": 3211.18, + "probability": 0.9931 + }, + { + "start": 3213.46, + "end": 3214.56, + "probability": 0.7523 + }, + { + "start": 3216.34, + "end": 3217.92, + "probability": 0.9038 + }, + { + "start": 3225.64, + "end": 3225.98, + "probability": 0.2106 + }, + { + "start": 3225.98, + "end": 3225.98, + "probability": 0.1347 + }, + { + "start": 3238.7, + "end": 3240.14, + "probability": 0.6136 + }, + { + "start": 3241.2, + "end": 3241.92, + "probability": 0.7859 + }, + { + "start": 3242.62, + "end": 3244.78, + "probability": 0.666 + }, + { + "start": 3244.78, + "end": 3247.5, + "probability": 0.5838 + }, + { + "start": 3248.08, + "end": 3249.04, + "probability": 0.3507 + }, + { + "start": 3249.16, + "end": 3250.78, + "probability": 0.8013 + }, + { + "start": 3250.82, + "end": 3251.96, + "probability": 0.7432 + }, + { + "start": 3252.0, + "end": 3252.84, + "probability": 0.5503 + }, + { + "start": 3253.14, + "end": 3255.98, + "probability": 0.9956 + }, + { + "start": 3256.92, + "end": 3258.1, + "probability": 0.9491 + }, + { + "start": 3258.16, + "end": 3260.94, + "probability": 0.978 + }, + { + "start": 3261.22, + "end": 3265.2, + "probability": 0.1057 + }, + { + "start": 3265.32, + "end": 3266.32, + "probability": 0.8293 + }, + { + "start": 3268.42, + "end": 3269.8, + "probability": 0.5014 + }, + { + "start": 3270.0, + "end": 3271.6, + "probability": 0.9072 + }, + { + "start": 3271.8, + "end": 3272.16, + "probability": 0.4479 + }, + { + "start": 3272.24, + "end": 3273.18, + "probability": 0.5714 + }, + { + "start": 3273.24, + "end": 3273.48, + "probability": 0.0478 + }, + { + "start": 3273.78, + "end": 3274.08, + "probability": 0.3428 + }, + { + "start": 3274.26, + "end": 3276.0, + "probability": 0.7444 + }, + { + "start": 3276.22, + "end": 3280.12, + "probability": 0.827 + }, + { + "start": 3280.98, + "end": 3283.84, + "probability": 0.9883 + }, + { + "start": 3284.56, + "end": 3288.16, + "probability": 0.9795 + }, + { + "start": 3290.14, + "end": 3293.76, + "probability": 0.9958 + }, + { + "start": 3295.58, + "end": 3298.63, + "probability": 0.9827 + }, + { + "start": 3299.56, + "end": 3303.28, + "probability": 0.9929 + }, + { + "start": 3304.6, + "end": 3305.44, + "probability": 0.7832 + }, + { + "start": 3305.52, + "end": 3306.46, + "probability": 0.946 + }, + { + "start": 3306.58, + "end": 3307.52, + "probability": 0.9619 + }, + { + "start": 3307.56, + "end": 3314.58, + "probability": 0.9905 + }, + { + "start": 3315.0, + "end": 3318.46, + "probability": 0.9639 + }, + { + "start": 3318.46, + "end": 3322.12, + "probability": 0.9953 + }, + { + "start": 3323.16, + "end": 3326.36, + "probability": 0.9512 + }, + { + "start": 3326.84, + "end": 3329.84, + "probability": 0.8512 + }, + { + "start": 3330.46, + "end": 3332.14, + "probability": 0.7246 + }, + { + "start": 3335.06, + "end": 3338.62, + "probability": 0.4578 + }, + { + "start": 3339.26, + "end": 3342.56, + "probability": 0.7361 + }, + { + "start": 3343.52, + "end": 3347.58, + "probability": 0.8252 + }, + { + "start": 3348.18, + "end": 3353.02, + "probability": 0.9152 + }, + { + "start": 3353.48, + "end": 3355.68, + "probability": 0.7812 + }, + { + "start": 3356.54, + "end": 3359.82, + "probability": 0.7811 + }, + { + "start": 3360.46, + "end": 3361.22, + "probability": 0.8594 + }, + { + "start": 3361.78, + "end": 3365.72, + "probability": 0.9521 + }, + { + "start": 3366.9, + "end": 3368.12, + "probability": 0.995 + }, + { + "start": 3368.78, + "end": 3374.06, + "probability": 0.9503 + }, + { + "start": 3374.68, + "end": 3375.63, + "probability": 0.7274 + }, + { + "start": 3377.08, + "end": 3382.08, + "probability": 0.8037 + }, + { + "start": 3382.88, + "end": 3383.66, + "probability": 0.5073 + }, + { + "start": 3383.78, + "end": 3385.7, + "probability": 0.9867 + }, + { + "start": 3385.76, + "end": 3388.18, + "probability": 0.8867 + }, + { + "start": 3388.2, + "end": 3389.65, + "probability": 0.9841 + }, + { + "start": 3390.08, + "end": 3392.36, + "probability": 0.9736 + }, + { + "start": 3393.04, + "end": 3395.66, + "probability": 0.7165 + }, + { + "start": 3395.9, + "end": 3396.48, + "probability": 0.8409 + }, + { + "start": 3396.68, + "end": 3398.48, + "probability": 0.2021 + }, + { + "start": 3398.66, + "end": 3403.78, + "probability": 0.928 + }, + { + "start": 3404.22, + "end": 3405.64, + "probability": 0.8424 + }, + { + "start": 3406.7, + "end": 3409.76, + "probability": 0.9819 + }, + { + "start": 3410.48, + "end": 3412.94, + "probability": 0.7879 + }, + { + "start": 3413.0, + "end": 3413.86, + "probability": 0.5998 + }, + { + "start": 3413.98, + "end": 3415.18, + "probability": 0.6191 + }, + { + "start": 3415.7, + "end": 3416.91, + "probability": 0.8335 + }, + { + "start": 3417.5, + "end": 3418.62, + "probability": 0.958 + }, + { + "start": 3419.02, + "end": 3419.82, + "probability": 0.9631 + }, + { + "start": 3420.28, + "end": 3421.18, + "probability": 0.9052 + }, + { + "start": 3421.6, + "end": 3422.8, + "probability": 0.7766 + }, + { + "start": 3422.84, + "end": 3423.62, + "probability": 0.182 + }, + { + "start": 3424.12, + "end": 3425.3, + "probability": 0.9457 + }, + { + "start": 3426.3, + "end": 3426.32, + "probability": 0.5336 + }, + { + "start": 3426.32, + "end": 3427.84, + "probability": 0.842 + }, + { + "start": 3427.84, + "end": 3428.32, + "probability": 0.7658 + }, + { + "start": 3428.82, + "end": 3430.48, + "probability": 0.9626 + }, + { + "start": 3430.74, + "end": 3436.64, + "probability": 0.9678 + }, + { + "start": 3437.16, + "end": 3438.98, + "probability": 0.8026 + }, + { + "start": 3439.68, + "end": 3441.24, + "probability": 0.948 + }, + { + "start": 3441.34, + "end": 3442.46, + "probability": 0.3709 + }, + { + "start": 3442.72, + "end": 3444.82, + "probability": 0.7093 + }, + { + "start": 3450.3, + "end": 3452.26, + "probability": 0.4663 + }, + { + "start": 3452.8, + "end": 3454.92, + "probability": 0.045 + }, + { + "start": 3455.0, + "end": 3456.6, + "probability": 0.0508 + }, + { + "start": 3456.84, + "end": 3459.3, + "probability": 0.9176 + }, + { + "start": 3460.28, + "end": 3462.44, + "probability": 0.8122 + }, + { + "start": 3463.36, + "end": 3464.38, + "probability": 0.1351 + }, + { + "start": 3506.44, + "end": 3508.82, + "probability": 0.3962 + }, + { + "start": 3509.8, + "end": 3510.56, + "probability": 0.5764 + }, + { + "start": 3511.84, + "end": 3513.54, + "probability": 0.9856 + }, + { + "start": 3514.9, + "end": 3517.06, + "probability": 0.751 + }, + { + "start": 3520.38, + "end": 3521.5, + "probability": 0.9765 + }, + { + "start": 3522.06, + "end": 3525.7, + "probability": 0.8022 + }, + { + "start": 3526.78, + "end": 3530.54, + "probability": 0.7513 + }, + { + "start": 3531.36, + "end": 3532.82, + "probability": 0.8345 + }, + { + "start": 3533.92, + "end": 3534.62, + "probability": 0.6584 + }, + { + "start": 3535.36, + "end": 3536.08, + "probability": 0.7302 + }, + { + "start": 3536.76, + "end": 3539.02, + "probability": 0.9142 + }, + { + "start": 3539.84, + "end": 3540.84, + "probability": 0.9928 + }, + { + "start": 3541.46, + "end": 3544.46, + "probability": 0.9716 + }, + { + "start": 3546.16, + "end": 3548.62, + "probability": 0.7357 + }, + { + "start": 3549.28, + "end": 3551.38, + "probability": 0.8754 + }, + { + "start": 3552.26, + "end": 3553.82, + "probability": 0.707 + }, + { + "start": 3554.5, + "end": 3556.82, + "probability": 0.915 + }, + { + "start": 3557.46, + "end": 3559.52, + "probability": 0.8648 + }, + { + "start": 3560.66, + "end": 3566.74, + "probability": 0.6756 + }, + { + "start": 3567.2, + "end": 3572.46, + "probability": 0.8205 + }, + { + "start": 3573.16, + "end": 3576.68, + "probability": 0.9916 + }, + { + "start": 3577.0, + "end": 3578.26, + "probability": 0.9014 + }, + { + "start": 3579.16, + "end": 3580.36, + "probability": 0.6061 + }, + { + "start": 3580.4, + "end": 3580.88, + "probability": 0.7694 + }, + { + "start": 3581.06, + "end": 3585.68, + "probability": 0.9922 + }, + { + "start": 3586.28, + "end": 3587.54, + "probability": 0.9889 + }, + { + "start": 3588.42, + "end": 3589.4, + "probability": 0.8779 + }, + { + "start": 3590.9, + "end": 3594.6, + "probability": 0.7407 + }, + { + "start": 3594.6, + "end": 3595.26, + "probability": 0.709 + }, + { + "start": 3595.92, + "end": 3602.04, + "probability": 0.9557 + }, + { + "start": 3602.7, + "end": 3603.58, + "probability": 0.6936 + }, + { + "start": 3604.28, + "end": 3604.8, + "probability": 0.8803 + }, + { + "start": 3605.36, + "end": 3607.06, + "probability": 0.8577 + }, + { + "start": 3608.48, + "end": 3613.86, + "probability": 0.9263 + }, + { + "start": 3614.4, + "end": 3615.84, + "probability": 0.9741 + }, + { + "start": 3616.36, + "end": 3621.06, + "probability": 0.8447 + }, + { + "start": 3622.38, + "end": 3628.42, + "probability": 0.994 + }, + { + "start": 3629.5, + "end": 3634.52, + "probability": 0.9586 + }, + { + "start": 3635.3, + "end": 3641.6, + "probability": 0.9633 + }, + { + "start": 3642.62, + "end": 3647.88, + "probability": 0.9722 + }, + { + "start": 3647.88, + "end": 3651.46, + "probability": 0.8222 + }, + { + "start": 3652.5, + "end": 3658.46, + "probability": 0.9414 + }, + { + "start": 3658.98, + "end": 3665.88, + "probability": 0.974 + }, + { + "start": 3665.94, + "end": 3668.72, + "probability": 0.9948 + }, + { + "start": 3670.17, + "end": 3675.98, + "probability": 0.9505 + }, + { + "start": 3675.98, + "end": 3680.52, + "probability": 0.9873 + }, + { + "start": 3680.9, + "end": 3683.16, + "probability": 0.8965 + }, + { + "start": 3683.82, + "end": 3687.98, + "probability": 0.842 + }, + { + "start": 3689.36, + "end": 3692.72, + "probability": 0.8424 + }, + { + "start": 3693.38, + "end": 3695.28, + "probability": 0.5361 + }, + { + "start": 3697.02, + "end": 3697.58, + "probability": 0.4509 + }, + { + "start": 3697.68, + "end": 3697.92, + "probability": 0.8959 + }, + { + "start": 3698.4, + "end": 3703.04, + "probability": 0.9546 + }, + { + "start": 3703.26, + "end": 3706.8, + "probability": 0.9702 + }, + { + "start": 3708.06, + "end": 3711.48, + "probability": 0.676 + }, + { + "start": 3712.36, + "end": 3717.61, + "probability": 0.9652 + }, + { + "start": 3717.74, + "end": 3725.36, + "probability": 0.941 + }, + { + "start": 3726.26, + "end": 3729.11, + "probability": 0.864 + }, + { + "start": 3729.8, + "end": 3732.74, + "probability": 0.7437 + }, + { + "start": 3733.02, + "end": 3734.63, + "probability": 0.9367 + }, + { + "start": 3734.96, + "end": 3736.18, + "probability": 0.8884 + }, + { + "start": 3736.7, + "end": 3739.78, + "probability": 0.9867 + }, + { + "start": 3740.78, + "end": 3741.46, + "probability": 0.7771 + }, + { + "start": 3741.54, + "end": 3745.56, + "probability": 0.9676 + }, + { + "start": 3746.02, + "end": 3750.04, + "probability": 0.9944 + }, + { + "start": 3750.14, + "end": 3752.1, + "probability": 0.9761 + }, + { + "start": 3752.3, + "end": 3754.46, + "probability": 0.929 + }, + { + "start": 3754.6, + "end": 3755.82, + "probability": 0.9766 + }, + { + "start": 3756.58, + "end": 3758.3, + "probability": 0.9883 + }, + { + "start": 3758.38, + "end": 3758.94, + "probability": 0.9668 + }, + { + "start": 3759.32, + "end": 3759.82, + "probability": 0.9384 + }, + { + "start": 3760.2, + "end": 3760.82, + "probability": 0.9549 + }, + { + "start": 3761.48, + "end": 3766.28, + "probability": 0.9729 + }, + { + "start": 3766.4, + "end": 3767.28, + "probability": 0.2849 + }, + { + "start": 3767.46, + "end": 3770.0, + "probability": 0.9893 + }, + { + "start": 3770.0, + "end": 3772.78, + "probability": 0.9132 + }, + { + "start": 3774.46, + "end": 3775.8, + "probability": 0.9764 + }, + { + "start": 3776.48, + "end": 3781.7, + "probability": 0.9233 + }, + { + "start": 3782.68, + "end": 3783.9, + "probability": 0.9378 + }, + { + "start": 3785.54, + "end": 3789.38, + "probability": 0.9775 + }, + { + "start": 3789.9, + "end": 3792.25, + "probability": 0.7668 + }, + { + "start": 3792.78, + "end": 3795.82, + "probability": 0.8713 + }, + { + "start": 3796.3, + "end": 3798.82, + "probability": 0.9593 + }, + { + "start": 3799.18, + "end": 3800.7, + "probability": 0.6901 + }, + { + "start": 3801.64, + "end": 3803.64, + "probability": 0.8004 + }, + { + "start": 3803.8, + "end": 3805.84, + "probability": 0.9444 + }, + { + "start": 3810.6, + "end": 3812.51, + "probability": 0.0777 + }, + { + "start": 3813.56, + "end": 3815.78, + "probability": 0.5239 + }, + { + "start": 3815.9, + "end": 3817.94, + "probability": 0.1643 + }, + { + "start": 3819.34, + "end": 3819.4, + "probability": 0.0314 + }, + { + "start": 3820.12, + "end": 3820.22, + "probability": 0.2631 + }, + { + "start": 3820.82, + "end": 3821.68, + "probability": 0.0798 + }, + { + "start": 3821.68, + "end": 3823.0, + "probability": 0.4643 + }, + { + "start": 3823.26, + "end": 3824.36, + "probability": 0.4378 + }, + { + "start": 3824.88, + "end": 3825.64, + "probability": 0.6906 + }, + { + "start": 3827.46, + "end": 3830.74, + "probability": 0.2151 + }, + { + "start": 3830.74, + "end": 3833.02, + "probability": 0.3933 + }, + { + "start": 3833.16, + "end": 3835.79, + "probability": 0.6818 + }, + { + "start": 3838.26, + "end": 3839.42, + "probability": 0.6225 + }, + { + "start": 3839.42, + "end": 3839.51, + "probability": 0.2085 + }, + { + "start": 3839.58, + "end": 3839.62, + "probability": 0.2947 + }, + { + "start": 3839.88, + "end": 3843.42, + "probability": 0.6453 + }, + { + "start": 3843.48, + "end": 3844.38, + "probability": 0.1019 + }, + { + "start": 3844.82, + "end": 3846.96, + "probability": 0.7375 + }, + { + "start": 3847.78, + "end": 3849.16, + "probability": 0.7463 + }, + { + "start": 3849.48, + "end": 3849.48, + "probability": 0.2261 + }, + { + "start": 3849.48, + "end": 3850.06, + "probability": 0.0245 + }, + { + "start": 3850.48, + "end": 3852.2, + "probability": 0.6108 + }, + { + "start": 3852.34, + "end": 3853.18, + "probability": 0.4401 + }, + { + "start": 3853.38, + "end": 3853.7, + "probability": 0.0542 + }, + { + "start": 3853.92, + "end": 3856.66, + "probability": 0.7936 + }, + { + "start": 3856.94, + "end": 3858.04, + "probability": 0.5753 + }, + { + "start": 3858.3, + "end": 3859.36, + "probability": 0.1246 + }, + { + "start": 3860.68, + "end": 3862.2, + "probability": 0.0008 + }, + { + "start": 3862.36, + "end": 3864.99, + "probability": 0.4321 + }, + { + "start": 3865.28, + "end": 3865.28, + "probability": 0.8096 + }, + { + "start": 3865.28, + "end": 3867.5, + "probability": 0.4786 + }, + { + "start": 3867.86, + "end": 3871.22, + "probability": 0.4714 + }, + { + "start": 3871.32, + "end": 3874.05, + "probability": 0.4745 + }, + { + "start": 3874.26, + "end": 3875.2, + "probability": 0.3988 + }, + { + "start": 3876.0, + "end": 3879.98, + "probability": 0.7629 + }, + { + "start": 3881.02, + "end": 3882.74, + "probability": 0.8773 + }, + { + "start": 3883.3, + "end": 3884.8, + "probability": 0.9262 + }, + { + "start": 3886.02, + "end": 3886.48, + "probability": 0.955 + }, + { + "start": 3887.5, + "end": 3888.42, + "probability": 0.8872 + }, + { + "start": 3888.74, + "end": 3888.82, + "probability": 0.1591 + }, + { + "start": 3888.92, + "end": 3890.4, + "probability": 0.4139 + }, + { + "start": 3890.58, + "end": 3891.26, + "probability": 0.2701 + }, + { + "start": 3891.32, + "end": 3891.8, + "probability": 0.0135 + }, + { + "start": 3891.98, + "end": 3893.58, + "probability": 0.19 + }, + { + "start": 3893.64, + "end": 3895.06, + "probability": 0.8534 + }, + { + "start": 3895.06, + "end": 3895.91, + "probability": 0.9775 + }, + { + "start": 3896.12, + "end": 3898.38, + "probability": 0.6855 + }, + { + "start": 3898.38, + "end": 3899.38, + "probability": 0.6702 + }, + { + "start": 3899.5, + "end": 3900.56, + "probability": 0.8641 + }, + { + "start": 3900.64, + "end": 3903.9, + "probability": 0.9301 + }, + { + "start": 3906.84, + "end": 3911.98, + "probability": 0.9641 + }, + { + "start": 3911.98, + "end": 3912.21, + "probability": 0.7487 + }, + { + "start": 3912.68, + "end": 3917.28, + "probability": 0.9445 + }, + { + "start": 3917.5, + "end": 3917.8, + "probability": 0.7169 + }, + { + "start": 3918.6, + "end": 3919.06, + "probability": 0.7946 + }, + { + "start": 3920.22, + "end": 3926.34, + "probability": 0.9987 + }, + { + "start": 3927.88, + "end": 3929.22, + "probability": 0.655 + }, + { + "start": 3932.5, + "end": 3935.96, + "probability": 0.9321 + }, + { + "start": 3938.0, + "end": 3939.68, + "probability": 0.8402 + }, + { + "start": 3942.28, + "end": 3943.54, + "probability": 0.8078 + }, + { + "start": 3944.9, + "end": 3946.28, + "probability": 0.8792 + }, + { + "start": 3948.0, + "end": 3949.64, + "probability": 0.7906 + }, + { + "start": 3949.74, + "end": 3955.06, + "probability": 0.9795 + }, + { + "start": 3957.26, + "end": 3959.2, + "probability": 0.6429 + }, + { + "start": 3959.72, + "end": 3964.2, + "probability": 0.9895 + }, + { + "start": 3966.06, + "end": 3967.62, + "probability": 0.9868 + }, + { + "start": 3969.18, + "end": 3970.3, + "probability": 0.9705 + }, + { + "start": 3970.4, + "end": 3974.0, + "probability": 0.9449 + }, + { + "start": 3976.24, + "end": 3977.84, + "probability": 0.9332 + }, + { + "start": 3980.14, + "end": 3982.0, + "probability": 0.9201 + }, + { + "start": 3983.54, + "end": 3984.76, + "probability": 0.9971 + }, + { + "start": 3986.7, + "end": 3990.8, + "probability": 0.9983 + }, + { + "start": 3992.96, + "end": 3994.82, + "probability": 0.9945 + }, + { + "start": 3997.38, + "end": 4001.78, + "probability": 0.9685 + }, + { + "start": 4002.96, + "end": 4003.56, + "probability": 0.493 + }, + { + "start": 4004.88, + "end": 4009.68, + "probability": 0.9302 + }, + { + "start": 4011.52, + "end": 4016.44, + "probability": 0.9905 + }, + { + "start": 4017.58, + "end": 4019.22, + "probability": 0.9967 + }, + { + "start": 4022.34, + "end": 4025.12, + "probability": 0.9385 + }, + { + "start": 4025.52, + "end": 4026.32, + "probability": 0.7173 + }, + { + "start": 4026.42, + "end": 4026.96, + "probability": 0.8997 + }, + { + "start": 4028.34, + "end": 4030.26, + "probability": 0.9359 + }, + { + "start": 4031.46, + "end": 4032.8, + "probability": 0.9766 + }, + { + "start": 4035.08, + "end": 4037.2, + "probability": 0.7137 + }, + { + "start": 4037.76, + "end": 4039.66, + "probability": 0.9966 + }, + { + "start": 4041.08, + "end": 4045.73, + "probability": 0.9656 + }, + { + "start": 4046.1, + "end": 4046.98, + "probability": 0.8063 + }, + { + "start": 4047.1, + "end": 4047.72, + "probability": 0.7759 + }, + { + "start": 4051.54, + "end": 4054.34, + "probability": 0.9121 + }, + { + "start": 4055.9, + "end": 4058.16, + "probability": 0.9698 + }, + { + "start": 4059.3, + "end": 4061.8, + "probability": 0.9988 + }, + { + "start": 4062.96, + "end": 4064.02, + "probability": 0.6718 + }, + { + "start": 4065.06, + "end": 4067.44, + "probability": 0.994 + }, + { + "start": 4069.4, + "end": 4071.29, + "probability": 0.6051 + }, + { + "start": 4072.58, + "end": 4073.94, + "probability": 0.4219 + }, + { + "start": 4075.8, + "end": 4076.34, + "probability": 0.34 + }, + { + "start": 4077.24, + "end": 4078.94, + "probability": 0.9324 + }, + { + "start": 4080.2, + "end": 4082.36, + "probability": 0.8806 + }, + { + "start": 4083.02, + "end": 4084.7, + "probability": 0.846 + }, + { + "start": 4086.76, + "end": 4088.04, + "probability": 0.8842 + }, + { + "start": 4088.86, + "end": 4091.76, + "probability": 0.986 + }, + { + "start": 4092.88, + "end": 4094.18, + "probability": 0.9888 + }, + { + "start": 4096.0, + "end": 4096.48, + "probability": 0.7786 + }, + { + "start": 4098.6, + "end": 4100.16, + "probability": 0.9792 + }, + { + "start": 4100.84, + "end": 4101.42, + "probability": 0.9924 + }, + { + "start": 4103.24, + "end": 4107.62, + "probability": 0.9935 + }, + { + "start": 4108.82, + "end": 4111.86, + "probability": 0.9926 + }, + { + "start": 4112.3, + "end": 4114.92, + "probability": 0.9912 + }, + { + "start": 4115.62, + "end": 4119.5, + "probability": 0.8654 + }, + { + "start": 4121.06, + "end": 4122.14, + "probability": 0.7421 + }, + { + "start": 4123.84, + "end": 4124.86, + "probability": 0.7129 + }, + { + "start": 4125.38, + "end": 4129.42, + "probability": 0.8528 + }, + { + "start": 4129.86, + "end": 4130.66, + "probability": 0.6758 + }, + { + "start": 4131.22, + "end": 4135.78, + "probability": 0.665 + }, + { + "start": 4136.18, + "end": 4137.74, + "probability": 0.8892 + }, + { + "start": 4139.73, + "end": 4141.88, + "probability": 0.8135 + }, + { + "start": 4142.78, + "end": 4146.14, + "probability": 0.6701 + }, + { + "start": 4146.22, + "end": 4146.72, + "probability": 0.8896 + }, + { + "start": 4148.12, + "end": 4149.88, + "probability": 0.8511 + }, + { + "start": 4149.96, + "end": 4150.26, + "probability": 0.594 + }, + { + "start": 4150.26, + "end": 4151.18, + "probability": 0.4968 + }, + { + "start": 4151.34, + "end": 4152.48, + "probability": 0.5027 + }, + { + "start": 4152.6, + "end": 4153.64, + "probability": 0.8029 + }, + { + "start": 4153.78, + "end": 4156.36, + "probability": 0.883 + }, + { + "start": 4156.98, + "end": 4157.52, + "probability": 0.8799 + }, + { + "start": 4158.34, + "end": 4160.39, + "probability": 0.8958 + }, + { + "start": 4161.1, + "end": 4164.12, + "probability": 0.9662 + }, + { + "start": 4165.22, + "end": 4166.42, + "probability": 0.917 + }, + { + "start": 4166.44, + "end": 4167.64, + "probability": 0.9625 + }, + { + "start": 4168.04, + "end": 4170.6, + "probability": 0.9857 + }, + { + "start": 4171.06, + "end": 4172.64, + "probability": 0.9329 + }, + { + "start": 4173.08, + "end": 4177.98, + "probability": 0.8516 + }, + { + "start": 4178.44, + "end": 4182.2, + "probability": 0.9137 + }, + { + "start": 4182.6, + "end": 4184.89, + "probability": 0.6825 + }, + { + "start": 4185.26, + "end": 4186.26, + "probability": 0.9238 + }, + { + "start": 4186.84, + "end": 4187.89, + "probability": 0.9971 + }, + { + "start": 4189.38, + "end": 4189.52, + "probability": 0.9927 + }, + { + "start": 4192.36, + "end": 4193.84, + "probability": 0.3007 + }, + { + "start": 4193.92, + "end": 4195.02, + "probability": 0.906 + }, + { + "start": 4195.38, + "end": 4198.2, + "probability": 0.933 + }, + { + "start": 4198.94, + "end": 4201.2, + "probability": 0.9972 + }, + { + "start": 4204.76, + "end": 4206.02, + "probability": 0.4725 + }, + { + "start": 4206.18, + "end": 4209.34, + "probability": 0.886 + }, + { + "start": 4209.84, + "end": 4215.2, + "probability": 0.9829 + }, + { + "start": 4215.28, + "end": 4218.14, + "probability": 0.5524 + }, + { + "start": 4218.26, + "end": 4220.44, + "probability": 0.6646 + }, + { + "start": 4220.74, + "end": 4223.16, + "probability": 0.8549 + }, + { + "start": 4223.94, + "end": 4224.38, + "probability": 0.0185 + }, + { + "start": 4225.22, + "end": 4225.68, + "probability": 0.505 + }, + { + "start": 4241.08, + "end": 4241.56, + "probability": 0.2138 + }, + { + "start": 4241.56, + "end": 4244.3, + "probability": 0.9226 + }, + { + "start": 4244.88, + "end": 4246.08, + "probability": 0.8637 + }, + { + "start": 4247.14, + "end": 4248.24, + "probability": 0.9347 + }, + { + "start": 4249.22, + "end": 4251.16, + "probability": 0.6822 + }, + { + "start": 4252.24, + "end": 4256.86, + "probability": 0.6198 + }, + { + "start": 4257.16, + "end": 4260.3, + "probability": 0.6128 + }, + { + "start": 4260.38, + "end": 4261.72, + "probability": 0.7801 + }, + { + "start": 4262.25, + "end": 4263.3, + "probability": 0.1443 + }, + { + "start": 4263.38, + "end": 4267.52, + "probability": 0.8449 + }, + { + "start": 4268.46, + "end": 4270.62, + "probability": 0.1316 + }, + { + "start": 4270.92, + "end": 4271.84, + "probability": 0.5123 + }, + { + "start": 4271.9, + "end": 4274.88, + "probability": 0.6108 + }, + { + "start": 4274.98, + "end": 4280.14, + "probability": 0.9639 + }, + { + "start": 4280.38, + "end": 4280.88, + "probability": 0.9449 + }, + { + "start": 4281.04, + "end": 4282.12, + "probability": 0.6542 + }, + { + "start": 4282.24, + "end": 4284.36, + "probability": 0.9279 + }, + { + "start": 4285.34, + "end": 4285.66, + "probability": 0.4247 + }, + { + "start": 4285.74, + "end": 4288.44, + "probability": 0.7478 + }, + { + "start": 4289.68, + "end": 4292.77, + "probability": 0.9671 + }, + { + "start": 4297.02, + "end": 4297.76, + "probability": 0.8435 + }, + { + "start": 4299.06, + "end": 4301.14, + "probability": 0.9667 + }, + { + "start": 4301.22, + "end": 4302.08, + "probability": 0.8587 + }, + { + "start": 4302.2, + "end": 4303.02, + "probability": 0.5601 + }, + { + "start": 4303.14, + "end": 4305.16, + "probability": 0.9275 + }, + { + "start": 4305.94, + "end": 4306.82, + "probability": 0.6489 + }, + { + "start": 4307.0, + "end": 4313.3, + "probability": 0.9914 + }, + { + "start": 4314.94, + "end": 4316.88, + "probability": 0.8111 + }, + { + "start": 4317.66, + "end": 4320.52, + "probability": 0.977 + }, + { + "start": 4321.36, + "end": 4324.8, + "probability": 0.6605 + }, + { + "start": 4325.64, + "end": 4325.64, + "probability": 0.203 + }, + { + "start": 4325.64, + "end": 4332.62, + "probability": 0.917 + }, + { + "start": 4332.62, + "end": 4339.36, + "probability": 0.989 + }, + { + "start": 4339.56, + "end": 4341.92, + "probability": 0.9677 + }, + { + "start": 4342.08, + "end": 4346.02, + "probability": 0.9879 + }, + { + "start": 4346.02, + "end": 4348.5, + "probability": 0.9992 + }, + { + "start": 4349.22, + "end": 4352.68, + "probability": 0.9939 + }, + { + "start": 4352.68, + "end": 4359.42, + "probability": 0.9841 + }, + { + "start": 4359.8, + "end": 4362.08, + "probability": 0.9219 + }, + { + "start": 4362.14, + "end": 4363.32, + "probability": 0.6855 + }, + { + "start": 4363.38, + "end": 4364.1, + "probability": 0.7799 + }, + { + "start": 4364.82, + "end": 4368.58, + "probability": 0.8062 + }, + { + "start": 4369.8, + "end": 4370.56, + "probability": 0.7292 + }, + { + "start": 4371.02, + "end": 4372.06, + "probability": 0.6855 + }, + { + "start": 4372.56, + "end": 4378.22, + "probability": 0.9862 + }, + { + "start": 4379.0, + "end": 4380.88, + "probability": 0.9197 + }, + { + "start": 4380.92, + "end": 4382.4, + "probability": 0.9863 + }, + { + "start": 4382.84, + "end": 4386.04, + "probability": 0.999 + }, + { + "start": 4386.26, + "end": 4388.82, + "probability": 0.9346 + }, + { + "start": 4388.9, + "end": 4391.08, + "probability": 0.9884 + }, + { + "start": 4392.02, + "end": 4392.64, + "probability": 0.3959 + }, + { + "start": 4393.08, + "end": 4397.12, + "probability": 0.9987 + }, + { + "start": 4397.74, + "end": 4400.5, + "probability": 0.9856 + }, + { + "start": 4400.5, + "end": 4403.82, + "probability": 0.9979 + }, + { + "start": 4404.28, + "end": 4408.26, + "probability": 0.9972 + }, + { + "start": 4408.78, + "end": 4410.48, + "probability": 0.9253 + }, + { + "start": 4410.54, + "end": 4413.24, + "probability": 0.9621 + }, + { + "start": 4413.6, + "end": 4414.7, + "probability": 0.9696 + }, + { + "start": 4416.01, + "end": 4418.4, + "probability": 0.4885 + }, + { + "start": 4418.52, + "end": 4419.02, + "probability": 0.853 + }, + { + "start": 4420.91, + "end": 4423.18, + "probability": 0.9849 + }, + { + "start": 4423.64, + "end": 4427.42, + "probability": 0.9202 + }, + { + "start": 4427.7, + "end": 4429.5, + "probability": 0.9744 + }, + { + "start": 4429.86, + "end": 4432.87, + "probability": 0.897 + }, + { + "start": 4433.2, + "end": 4433.8, + "probability": 0.7914 + }, + { + "start": 4434.0, + "end": 4434.9, + "probability": 0.9028 + }, + { + "start": 4435.54, + "end": 4437.44, + "probability": 0.9476 + }, + { + "start": 4437.56, + "end": 4438.26, + "probability": 0.8647 + }, + { + "start": 4438.5, + "end": 4439.34, + "probability": 0.9464 + }, + { + "start": 4439.38, + "end": 4442.72, + "probability": 0.9849 + }, + { + "start": 4442.8, + "end": 4444.98, + "probability": 0.7854 + }, + { + "start": 4446.14, + "end": 4450.8, + "probability": 0.8094 + }, + { + "start": 4450.88, + "end": 4453.1, + "probability": 0.8538 + }, + { + "start": 4453.2, + "end": 4456.14, + "probability": 0.7319 + }, + { + "start": 4456.82, + "end": 4458.56, + "probability": 0.9662 + }, + { + "start": 4458.94, + "end": 4461.27, + "probability": 0.8643 + }, + { + "start": 4462.18, + "end": 4462.7, + "probability": 0.5964 + }, + { + "start": 4463.08, + "end": 4463.7, + "probability": 0.7766 + }, + { + "start": 4464.0, + "end": 4467.04, + "probability": 0.8813 + }, + { + "start": 4467.16, + "end": 4467.93, + "probability": 0.8848 + }, + { + "start": 4468.2, + "end": 4468.98, + "probability": 0.9864 + }, + { + "start": 4469.14, + "end": 4470.94, + "probability": 0.9221 + }, + { + "start": 4470.94, + "end": 4475.96, + "probability": 0.8626 + }, + { + "start": 4476.18, + "end": 4481.04, + "probability": 0.969 + }, + { + "start": 4481.38, + "end": 4487.02, + "probability": 0.9943 + }, + { + "start": 4487.12, + "end": 4488.2, + "probability": 0.8545 + }, + { + "start": 4488.84, + "end": 4492.1, + "probability": 0.8756 + }, + { + "start": 4493.84, + "end": 4497.48, + "probability": 0.9861 + }, + { + "start": 4497.56, + "end": 4498.22, + "probability": 0.7412 + }, + { + "start": 4498.3, + "end": 4499.1, + "probability": 0.7532 + }, + { + "start": 4499.2, + "end": 4500.92, + "probability": 0.798 + }, + { + "start": 4501.84, + "end": 4503.88, + "probability": 0.9001 + }, + { + "start": 4504.46, + "end": 4505.66, + "probability": 0.9746 + }, + { + "start": 4506.2, + "end": 4507.16, + "probability": 0.9473 + }, + { + "start": 4507.7, + "end": 4512.14, + "probability": 0.9832 + }, + { + "start": 4512.14, + "end": 4517.06, + "probability": 0.9539 + }, + { + "start": 4517.16, + "end": 4520.36, + "probability": 0.9736 + }, + { + "start": 4520.74, + "end": 4521.7, + "probability": 0.9773 + }, + { + "start": 4522.26, + "end": 4522.82, + "probability": 0.8825 + }, + { + "start": 4522.88, + "end": 4525.34, + "probability": 0.9871 + }, + { + "start": 4525.42, + "end": 4525.88, + "probability": 0.8843 + }, + { + "start": 4529.54, + "end": 4531.33, + "probability": 0.5264 + }, + { + "start": 4532.2, + "end": 4533.56, + "probability": 0.9782 + }, + { + "start": 4556.96, + "end": 4560.28, + "probability": 0.7177 + }, + { + "start": 4561.4, + "end": 4562.34, + "probability": 0.775 + }, + { + "start": 4563.76, + "end": 4568.52, + "probability": 0.9953 + }, + { + "start": 4568.52, + "end": 4572.9, + "probability": 0.9075 + }, + { + "start": 4573.64, + "end": 4576.28, + "probability": 0.9609 + }, + { + "start": 4576.36, + "end": 4578.18, + "probability": 0.9878 + }, + { + "start": 4578.8, + "end": 4585.2, + "probability": 0.9792 + }, + { + "start": 4585.34, + "end": 4590.26, + "probability": 0.997 + }, + { + "start": 4590.74, + "end": 4592.8, + "probability": 0.9812 + }, + { + "start": 4593.46, + "end": 4596.22, + "probability": 0.9659 + }, + { + "start": 4596.62, + "end": 4597.14, + "probability": 0.8999 + }, + { + "start": 4597.28, + "end": 4598.48, + "probability": 0.5403 + }, + { + "start": 4598.78, + "end": 4599.48, + "probability": 0.675 + }, + { + "start": 4600.7, + "end": 4601.86, + "probability": 0.978 + }, + { + "start": 4602.0, + "end": 4603.44, + "probability": 0.9683 + }, + { + "start": 4603.46, + "end": 4608.76, + "probability": 0.906 + }, + { + "start": 4609.21, + "end": 4613.02, + "probability": 0.9536 + }, + { + "start": 4613.84, + "end": 4615.42, + "probability": 0.7309 + }, + { + "start": 4616.1, + "end": 4618.3, + "probability": 0.9436 + }, + { + "start": 4618.4, + "end": 4619.08, + "probability": 0.7348 + }, + { + "start": 4619.76, + "end": 4620.69, + "probability": 0.991 + }, + { + "start": 4621.72, + "end": 4622.8, + "probability": 0.9722 + }, + { + "start": 4622.8, + "end": 4624.02, + "probability": 0.9956 + }, + { + "start": 4624.78, + "end": 4627.1, + "probability": 0.9962 + }, + { + "start": 4627.98, + "end": 4628.4, + "probability": 0.6319 + }, + { + "start": 4629.24, + "end": 4631.08, + "probability": 0.7613 + }, + { + "start": 4632.14, + "end": 4633.22, + "probability": 0.9811 + }, + { + "start": 4633.92, + "end": 4637.91, + "probability": 0.9956 + }, + { + "start": 4639.12, + "end": 4640.16, + "probability": 0.9075 + }, + { + "start": 4640.84, + "end": 4641.56, + "probability": 0.8595 + }, + { + "start": 4642.86, + "end": 4648.7, + "probability": 0.9777 + }, + { + "start": 4649.38, + "end": 4650.32, + "probability": 0.7581 + }, + { + "start": 4650.98, + "end": 4657.76, + "probability": 0.9725 + }, + { + "start": 4657.84, + "end": 4658.96, + "probability": 0.9776 + }, + { + "start": 4659.38, + "end": 4660.94, + "probability": 0.996 + }, + { + "start": 4661.94, + "end": 4662.54, + "probability": 0.9617 + }, + { + "start": 4662.96, + "end": 4664.04, + "probability": 0.934 + }, + { + "start": 4666.04, + "end": 4667.22, + "probability": 0.8738 + }, + { + "start": 4667.82, + "end": 4670.14, + "probability": 0.4818 + }, + { + "start": 4670.14, + "end": 4672.48, + "probability": 0.8755 + }, + { + "start": 4672.48, + "end": 4675.76, + "probability": 0.9986 + }, + { + "start": 4676.42, + "end": 4678.28, + "probability": 0.6155 + }, + { + "start": 4679.94, + "end": 4683.46, + "probability": 0.6147 + }, + { + "start": 4683.62, + "end": 4685.18, + "probability": 0.9129 + }, + { + "start": 4685.66, + "end": 4687.72, + "probability": 0.7579 + }, + { + "start": 4688.42, + "end": 4689.14, + "probability": 0.5345 + }, + { + "start": 4689.24, + "end": 4693.0, + "probability": 0.981 + }, + { + "start": 4694.04, + "end": 4697.52, + "probability": 0.9825 + }, + { + "start": 4698.6, + "end": 4701.8, + "probability": 0.9827 + }, + { + "start": 4702.28, + "end": 4705.14, + "probability": 0.9689 + }, + { + "start": 4705.88, + "end": 4707.22, + "probability": 0.9178 + }, + { + "start": 4707.86, + "end": 4712.44, + "probability": 0.9688 + }, + { + "start": 4713.22, + "end": 4715.94, + "probability": 0.9803 + }, + { + "start": 4716.78, + "end": 4721.04, + "probability": 0.9994 + }, + { + "start": 4721.04, + "end": 4725.42, + "probability": 0.9954 + }, + { + "start": 4726.34, + "end": 4726.9, + "probability": 0.8538 + }, + { + "start": 4727.48, + "end": 4728.32, + "probability": 0.7855 + }, + { + "start": 4728.94, + "end": 4731.34, + "probability": 0.9676 + }, + { + "start": 4731.38, + "end": 4734.34, + "probability": 0.9968 + }, + { + "start": 4735.9, + "end": 4741.46, + "probability": 0.9996 + }, + { + "start": 4742.1, + "end": 4745.32, + "probability": 0.9929 + }, + { + "start": 4746.56, + "end": 4747.88, + "probability": 0.993 + }, + { + "start": 4748.84, + "end": 4750.34, + "probability": 0.9155 + }, + { + "start": 4751.4, + "end": 4755.04, + "probability": 0.9054 + }, + { + "start": 4755.68, + "end": 4758.06, + "probability": 0.9714 + }, + { + "start": 4758.46, + "end": 4759.7, + "probability": 0.7719 + }, + { + "start": 4760.06, + "end": 4761.22, + "probability": 0.8762 + }, + { + "start": 4761.7, + "end": 4763.48, + "probability": 0.9495 + }, + { + "start": 4764.24, + "end": 4769.5, + "probability": 0.8282 + }, + { + "start": 4769.96, + "end": 4771.21, + "probability": 0.5981 + }, + { + "start": 4771.44, + "end": 4773.38, + "probability": 0.6636 + }, + { + "start": 4774.46, + "end": 4777.72, + "probability": 0.9712 + }, + { + "start": 4778.56, + "end": 4779.4, + "probability": 0.7021 + }, + { + "start": 4779.86, + "end": 4781.36, + "probability": 0.8345 + }, + { + "start": 4781.84, + "end": 4785.69, + "probability": 0.9705 + }, + { + "start": 4786.56, + "end": 4791.14, + "probability": 0.9884 + }, + { + "start": 4791.28, + "end": 4792.94, + "probability": 0.8494 + }, + { + "start": 4793.0, + "end": 4794.92, + "probability": 0.7578 + }, + { + "start": 4795.26, + "end": 4796.32, + "probability": 0.1228 + }, + { + "start": 4797.42, + "end": 4798.82, + "probability": 0.5848 + }, + { + "start": 4798.86, + "end": 4799.56, + "probability": 0.9799 + }, + { + "start": 4799.6, + "end": 4801.4, + "probability": 0.9763 + }, + { + "start": 4802.0, + "end": 4802.9, + "probability": 0.7793 + }, + { + "start": 4803.56, + "end": 4804.98, + "probability": 0.4103 + }, + { + "start": 4807.56, + "end": 4810.66, + "probability": 0.9885 + }, + { + "start": 4811.18, + "end": 4813.44, + "probability": 0.9049 + }, + { + "start": 4813.96, + "end": 4815.6, + "probability": 0.9429 + }, + { + "start": 4816.12, + "end": 4817.86, + "probability": 0.9555 + }, + { + "start": 4818.32, + "end": 4822.92, + "probability": 0.9939 + }, + { + "start": 4823.26, + "end": 4826.08, + "probability": 0.995 + }, + { + "start": 4826.8, + "end": 4828.26, + "probability": 0.9709 + }, + { + "start": 4828.4, + "end": 4832.42, + "probability": 0.9972 + }, + { + "start": 4832.8, + "end": 4833.3, + "probability": 0.8141 + }, + { + "start": 4834.42, + "end": 4836.2, + "probability": 0.986 + }, + { + "start": 4836.38, + "end": 4839.98, + "probability": 0.8693 + }, + { + "start": 4840.58, + "end": 4841.9, + "probability": 0.8777 + }, + { + "start": 4843.56, + "end": 4844.5, + "probability": 0.1775 + }, + { + "start": 4846.02, + "end": 4848.04, + "probability": 0.9319 + }, + { + "start": 4848.1, + "end": 4848.6, + "probability": 0.7884 + }, + { + "start": 4848.76, + "end": 4850.88, + "probability": 0.8208 + }, + { + "start": 4850.92, + "end": 4852.78, + "probability": 0.7054 + }, + { + "start": 4852.8, + "end": 4854.66, + "probability": 0.984 + }, + { + "start": 4857.56, + "end": 4859.02, + "probability": 0.4091 + }, + { + "start": 4866.8, + "end": 4870.52, + "probability": 0.4377 + }, + { + "start": 4873.22, + "end": 4875.8, + "probability": 0.7261 + }, + { + "start": 4877.06, + "end": 4878.78, + "probability": 0.7087 + }, + { + "start": 4882.42, + "end": 4887.57, + "probability": 0.9207 + }, + { + "start": 4889.23, + "end": 4893.42, + "probability": 0.9041 + }, + { + "start": 4895.22, + "end": 4899.64, + "probability": 0.8495 + }, + { + "start": 4899.7, + "end": 4903.86, + "probability": 0.999 + }, + { + "start": 4903.86, + "end": 4906.84, + "probability": 0.9954 + }, + { + "start": 4906.96, + "end": 4909.12, + "probability": 0.9964 + }, + { + "start": 4909.16, + "end": 4911.92, + "probability": 0.961 + }, + { + "start": 4911.94, + "end": 4916.56, + "probability": 0.9174 + }, + { + "start": 4917.82, + "end": 4919.44, + "probability": 0.832 + }, + { + "start": 4919.81, + "end": 4924.02, + "probability": 0.9977 + }, + { + "start": 4924.02, + "end": 4927.06, + "probability": 0.9997 + }, + { + "start": 4928.86, + "end": 4934.9, + "probability": 0.8824 + }, + { + "start": 4935.06, + "end": 4936.26, + "probability": 0.6581 + }, + { + "start": 4937.58, + "end": 4941.36, + "probability": 0.9948 + }, + { + "start": 4941.76, + "end": 4943.64, + "probability": 0.1355 + }, + { + "start": 4943.86, + "end": 4946.22, + "probability": 0.8664 + }, + { + "start": 4946.46, + "end": 4948.25, + "probability": 0.9106 + }, + { + "start": 4949.21, + "end": 4953.88, + "probability": 0.9621 + }, + { + "start": 4954.75, + "end": 4957.74, + "probability": 0.9556 + }, + { + "start": 4958.3, + "end": 4959.56, + "probability": 0.943 + }, + { + "start": 4960.58, + "end": 4966.6, + "probability": 0.8789 + }, + { + "start": 4967.95, + "end": 4971.85, + "probability": 0.9963 + }, + { + "start": 4972.12, + "end": 4975.22, + "probability": 0.9992 + }, + { + "start": 4976.86, + "end": 4978.26, + "probability": 0.998 + }, + { + "start": 4980.64, + "end": 4987.98, + "probability": 0.9989 + }, + { + "start": 4988.62, + "end": 4994.74, + "probability": 0.9966 + }, + { + "start": 4994.84, + "end": 4999.3, + "probability": 0.9939 + }, + { + "start": 5000.34, + "end": 5000.98, + "probability": 0.4891 + }, + { + "start": 5001.86, + "end": 5004.2, + "probability": 0.9891 + }, + { + "start": 5005.08, + "end": 5011.02, + "probability": 0.9805 + }, + { + "start": 5011.96, + "end": 5012.6, + "probability": 0.8087 + }, + { + "start": 5012.68, + "end": 5013.66, + "probability": 0.7993 + }, + { + "start": 5013.74, + "end": 5017.7, + "probability": 0.9687 + }, + { + "start": 5018.68, + "end": 5021.7, + "probability": 0.997 + }, + { + "start": 5022.94, + "end": 5025.1, + "probability": 0.988 + }, + { + "start": 5025.34, + "end": 5029.76, + "probability": 0.9508 + }, + { + "start": 5030.58, + "end": 5031.7, + "probability": 0.9793 + }, + { + "start": 5031.84, + "end": 5032.36, + "probability": 0.9449 + }, + { + "start": 5032.52, + "end": 5038.02, + "probability": 0.9914 + }, + { + "start": 5038.52, + "end": 5038.82, + "probability": 0.6728 + }, + { + "start": 5040.99, + "end": 5045.26, + "probability": 0.7855 + }, + { + "start": 5051.54, + "end": 5056.82, + "probability": 0.9986 + }, + { + "start": 5056.82, + "end": 5061.02, + "probability": 0.8539 + }, + { + "start": 5061.6, + "end": 5063.38, + "probability": 0.9109 + }, + { + "start": 5067.26, + "end": 5071.98, + "probability": 0.6972 + }, + { + "start": 5072.6, + "end": 5073.62, + "probability": 0.7972 + }, + { + "start": 5074.22, + "end": 5075.24, + "probability": 0.6437 + }, + { + "start": 5076.56, + "end": 5077.2, + "probability": 0.9153 + }, + { + "start": 5077.24, + "end": 5077.7, + "probability": 0.8339 + }, + { + "start": 5077.9, + "end": 5078.92, + "probability": 0.7305 + }, + { + "start": 5085.72, + "end": 5090.62, + "probability": 0.1044 + }, + { + "start": 5091.38, + "end": 5093.14, + "probability": 0.1293 + }, + { + "start": 5093.26, + "end": 5097.0, + "probability": 0.6331 + }, + { + "start": 5097.16, + "end": 5099.28, + "probability": 0.9136 + }, + { + "start": 5100.22, + "end": 5100.88, + "probability": 0.0548 + }, + { + "start": 5102.82, + "end": 5105.02, + "probability": 0.2478 + }, + { + "start": 5105.54, + "end": 5108.56, + "probability": 0.9815 + }, + { + "start": 5109.14, + "end": 5111.84, + "probability": 0.5007 + }, + { + "start": 5112.04, + "end": 5114.71, + "probability": 0.8215 + }, + { + "start": 5115.04, + "end": 5116.04, + "probability": 0.1504 + }, + { + "start": 5116.96, + "end": 5122.24, + "probability": 0.7726 + }, + { + "start": 5123.58, + "end": 5128.7, + "probability": 0.9572 + }, + { + "start": 5128.72, + "end": 5130.5, + "probability": 0.9603 + }, + { + "start": 5131.06, + "end": 5132.76, + "probability": 0.9565 + }, + { + "start": 5133.64, + "end": 5137.08, + "probability": 0.9907 + }, + { + "start": 5137.08, + "end": 5139.66, + "probability": 0.97 + }, + { + "start": 5140.22, + "end": 5142.34, + "probability": 0.7603 + }, + { + "start": 5142.44, + "end": 5143.4, + "probability": 0.6938 + }, + { + "start": 5143.48, + "end": 5143.94, + "probability": 0.5666 + }, + { + "start": 5144.02, + "end": 5145.34, + "probability": 0.7328 + }, + { + "start": 5157.48, + "end": 5157.48, + "probability": 0.3597 + }, + { + "start": 5157.48, + "end": 5158.44, + "probability": 0.4577 + }, + { + "start": 5158.46, + "end": 5161.68, + "probability": 0.7111 + }, + { + "start": 5161.8, + "end": 5162.8, + "probability": 0.6563 + }, + { + "start": 5163.06, + "end": 5163.86, + "probability": 0.3774 + }, + { + "start": 5164.18, + "end": 5165.46, + "probability": 0.7648 + }, + { + "start": 5166.1, + "end": 5167.48, + "probability": 0.9891 + }, + { + "start": 5168.48, + "end": 5170.26, + "probability": 0.9119 + }, + { + "start": 5170.66, + "end": 5173.2, + "probability": 0.9526 + }, + { + "start": 5173.58, + "end": 5175.58, + "probability": 0.7895 + }, + { + "start": 5175.8, + "end": 5176.1, + "probability": 0.7243 + }, + { + "start": 5176.2, + "end": 5177.8, + "probability": 0.7155 + }, + { + "start": 5178.0, + "end": 5179.36, + "probability": 0.7302 + }, + { + "start": 5179.54, + "end": 5180.9, + "probability": 0.8224 + }, + { + "start": 5182.36, + "end": 5185.24, + "probability": 0.863 + }, + { + "start": 5189.1, + "end": 5191.14, + "probability": 0.3562 + }, + { + "start": 5191.24, + "end": 5191.76, + "probability": 0.4716 + }, + { + "start": 5191.88, + "end": 5192.42, + "probability": 0.7216 + }, + { + "start": 5192.54, + "end": 5193.0, + "probability": 0.6877 + }, + { + "start": 5193.52, + "end": 5194.7, + "probability": 0.8732 + }, + { + "start": 5195.58, + "end": 5196.43, + "probability": 0.076 + }, + { + "start": 5196.56, + "end": 5196.7, + "probability": 0.0926 + }, + { + "start": 5196.7, + "end": 5201.0, + "probability": 0.8141 + }, + { + "start": 5201.0, + "end": 5204.44, + "probability": 0.9963 + }, + { + "start": 5204.98, + "end": 5206.74, + "probability": 0.9858 + }, + { + "start": 5206.74, + "end": 5208.56, + "probability": 0.9973 + }, + { + "start": 5209.06, + "end": 5212.48, + "probability": 0.6027 + }, + { + "start": 5213.96, + "end": 5214.8, + "probability": 0.8059 + }, + { + "start": 5215.96, + "end": 5220.44, + "probability": 0.9888 + }, + { + "start": 5220.44, + "end": 5227.16, + "probability": 0.9881 + }, + { + "start": 5227.26, + "end": 5232.16, + "probability": 0.9316 + }, + { + "start": 5232.56, + "end": 5237.12, + "probability": 0.9988 + }, + { + "start": 5237.56, + "end": 5242.58, + "probability": 0.9863 + }, + { + "start": 5243.34, + "end": 5246.56, + "probability": 0.7271 + }, + { + "start": 5246.84, + "end": 5247.04, + "probability": 0.7999 + }, + { + "start": 5247.58, + "end": 5248.04, + "probability": 0.3394 + }, + { + "start": 5248.06, + "end": 5250.34, + "probability": 0.8856 + }, + { + "start": 5250.84, + "end": 5254.04, + "probability": 0.9941 + }, + { + "start": 5254.04, + "end": 5257.56, + "probability": 0.9969 + }, + { + "start": 5257.98, + "end": 5259.56, + "probability": 0.6888 + }, + { + "start": 5259.86, + "end": 5261.5, + "probability": 0.9046 + }, + { + "start": 5261.82, + "end": 5262.92, + "probability": 0.9762 + }, + { + "start": 5263.14, + "end": 5265.5, + "probability": 0.9832 + }, + { + "start": 5266.44, + "end": 5269.3, + "probability": 0.9744 + }, + { + "start": 5269.86, + "end": 5270.66, + "probability": 0.8735 + }, + { + "start": 5271.47, + "end": 5273.7, + "probability": 0.2487 + }, + { + "start": 5273.7, + "end": 5275.7, + "probability": 0.5376 + }, + { + "start": 5276.48, + "end": 5279.64, + "probability": 0.9908 + }, + { + "start": 5279.9, + "end": 5280.52, + "probability": 0.4991 + }, + { + "start": 5280.56, + "end": 5282.34, + "probability": 0.9954 + }, + { + "start": 5282.46, + "end": 5284.9, + "probability": 0.9231 + }, + { + "start": 5285.66, + "end": 5287.66, + "probability": 0.9819 + }, + { + "start": 5287.66, + "end": 5291.76, + "probability": 0.822 + }, + { + "start": 5292.62, + "end": 5296.0, + "probability": 0.7695 + }, + { + "start": 5296.06, + "end": 5297.04, + "probability": 0.9668 + }, + { + "start": 5298.26, + "end": 5300.88, + "probability": 0.7587 + }, + { + "start": 5301.44, + "end": 5304.32, + "probability": 0.3322 + }, + { + "start": 5304.32, + "end": 5307.96, + "probability": 0.8248 + }, + { + "start": 5307.96, + "end": 5308.82, + "probability": 0.4514 + }, + { + "start": 5308.92, + "end": 5309.84, + "probability": 0.6498 + }, + { + "start": 5309.96, + "end": 5310.64, + "probability": 0.5794 + }, + { + "start": 5310.88, + "end": 5312.22, + "probability": 0.6919 + }, + { + "start": 5312.38, + "end": 5314.27, + "probability": 0.9717 + }, + { + "start": 5314.58, + "end": 5314.88, + "probability": 0.0896 + }, + { + "start": 5315.02, + "end": 5315.44, + "probability": 0.5079 + }, + { + "start": 5315.6, + "end": 5317.3, + "probability": 0.9941 + }, + { + "start": 5317.3, + "end": 5318.68, + "probability": 0.8619 + }, + { + "start": 5318.76, + "end": 5322.67, + "probability": 0.9805 + }, + { + "start": 5323.22, + "end": 5326.86, + "probability": 0.8895 + }, + { + "start": 5326.94, + "end": 5327.44, + "probability": 0.458 + }, + { + "start": 5327.58, + "end": 5328.66, + "probability": 0.7822 + }, + { + "start": 5329.12, + "end": 5330.3, + "probability": 0.8423 + }, + { + "start": 5331.45, + "end": 5337.28, + "probability": 0.9187 + }, + { + "start": 5337.88, + "end": 5340.36, + "probability": 0.9201 + }, + { + "start": 5341.52, + "end": 5342.9, + "probability": 0.5282 + }, + { + "start": 5343.64, + "end": 5345.58, + "probability": 0.9312 + }, + { + "start": 5345.64, + "end": 5350.52, + "probability": 0.9188 + }, + { + "start": 5350.6, + "end": 5351.24, + "probability": 0.7461 + }, + { + "start": 5359.92, + "end": 5361.96, + "probability": 0.6548 + }, + { + "start": 5362.62, + "end": 5365.28, + "probability": 0.9932 + }, + { + "start": 5366.18, + "end": 5370.68, + "probability": 0.9887 + }, + { + "start": 5370.68, + "end": 5373.62, + "probability": 0.6614 + }, + { + "start": 5373.8, + "end": 5378.82, + "probability": 0.6697 + }, + { + "start": 5379.68, + "end": 5383.72, + "probability": 0.9973 + }, + { + "start": 5384.08, + "end": 5386.02, + "probability": 0.8538 + }, + { + "start": 5386.88, + "end": 5390.42, + "probability": 0.9942 + }, + { + "start": 5390.42, + "end": 5393.74, + "probability": 0.9985 + }, + { + "start": 5394.16, + "end": 5395.64, + "probability": 0.7006 + }, + { + "start": 5396.26, + "end": 5397.1, + "probability": 0.8882 + }, + { + "start": 5397.98, + "end": 5398.54, + "probability": 0.9028 + }, + { + "start": 5399.16, + "end": 5403.92, + "probability": 0.9914 + }, + { + "start": 5404.78, + "end": 5405.44, + "probability": 0.6964 + }, + { + "start": 5405.68, + "end": 5409.82, + "probability": 0.9956 + }, + { + "start": 5410.22, + "end": 5413.3, + "probability": 0.9696 + }, + { + "start": 5413.36, + "end": 5413.76, + "probability": 0.8816 + }, + { + "start": 5414.42, + "end": 5417.44, + "probability": 0.9206 + }, + { + "start": 5418.1, + "end": 5424.54, + "probability": 0.9966 + }, + { + "start": 5425.38, + "end": 5428.54, + "probability": 0.9993 + }, + { + "start": 5428.54, + "end": 5431.68, + "probability": 0.9976 + }, + { + "start": 5431.84, + "end": 5433.26, + "probability": 0.3456 + }, + { + "start": 5434.24, + "end": 5439.74, + "probability": 0.9968 + }, + { + "start": 5440.9, + "end": 5442.82, + "probability": 0.9956 + }, + { + "start": 5443.38, + "end": 5447.9, + "probability": 0.9919 + }, + { + "start": 5448.46, + "end": 5453.84, + "probability": 0.9986 + }, + { + "start": 5454.42, + "end": 5457.86, + "probability": 0.9025 + }, + { + "start": 5458.44, + "end": 5461.92, + "probability": 0.9727 + }, + { + "start": 5462.1, + "end": 5467.25, + "probability": 0.9946 + }, + { + "start": 5467.5, + "end": 5468.68, + "probability": 0.6603 + }, + { + "start": 5469.26, + "end": 5475.42, + "probability": 0.9601 + }, + { + "start": 5475.52, + "end": 5479.61, + "probability": 0.8439 + }, + { + "start": 5482.4, + "end": 5489.24, + "probability": 0.9648 + }, + { + "start": 5489.46, + "end": 5495.34, + "probability": 0.988 + }, + { + "start": 5495.4, + "end": 5500.32, + "probability": 0.9759 + }, + { + "start": 5501.36, + "end": 5505.12, + "probability": 0.9777 + }, + { + "start": 5505.12, + "end": 5509.22, + "probability": 0.9957 + }, + { + "start": 5509.74, + "end": 5515.68, + "probability": 0.9949 + }, + { + "start": 5516.6, + "end": 5522.94, + "probability": 0.9985 + }, + { + "start": 5523.38, + "end": 5531.13, + "probability": 0.9884 + }, + { + "start": 5531.86, + "end": 5537.58, + "probability": 0.9929 + }, + { + "start": 5538.0, + "end": 5542.94, + "probability": 0.9989 + }, + { + "start": 5543.48, + "end": 5545.94, + "probability": 0.9883 + }, + { + "start": 5546.14, + "end": 5547.06, + "probability": 0.975 + }, + { + "start": 5547.32, + "end": 5553.51, + "probability": 0.9492 + }, + { + "start": 5554.44, + "end": 5556.78, + "probability": 0.9988 + }, + { + "start": 5558.08, + "end": 5561.26, + "probability": 0.998 + }, + { + "start": 5561.26, + "end": 5565.0, + "probability": 0.9965 + }, + { + "start": 5565.74, + "end": 5568.12, + "probability": 0.9968 + }, + { + "start": 5568.86, + "end": 5571.97, + "probability": 0.9464 + }, + { + "start": 5572.46, + "end": 5573.04, + "probability": 0.8489 + }, + { + "start": 5573.24, + "end": 5579.87, + "probability": 0.9619 + }, + { + "start": 5580.38, + "end": 5582.68, + "probability": 0.9703 + }, + { + "start": 5582.96, + "end": 5585.38, + "probability": 0.9394 + }, + { + "start": 5586.14, + "end": 5590.0, + "probability": 0.9389 + }, + { + "start": 5590.26, + "end": 5592.02, + "probability": 0.0753 + }, + { + "start": 5592.06, + "end": 5592.8, + "probability": 0.4919 + }, + { + "start": 5592.94, + "end": 5595.5, + "probability": 0.8038 + }, + { + "start": 5595.66, + "end": 5596.54, + "probability": 0.6954 + }, + { + "start": 5596.68, + "end": 5598.7, + "probability": 0.658 + }, + { + "start": 5598.86, + "end": 5601.0, + "probability": 0.8808 + }, + { + "start": 5601.24, + "end": 5603.22, + "probability": 0.8989 + }, + { + "start": 5603.62, + "end": 5603.86, + "probability": 0.2441 + }, + { + "start": 5603.96, + "end": 5604.16, + "probability": 0.2406 + }, + { + "start": 5604.16, + "end": 5604.24, + "probability": 0.1121 + }, + { + "start": 5604.26, + "end": 5606.92, + "probability": 0.9918 + }, + { + "start": 5607.14, + "end": 5610.02, + "probability": 0.9906 + }, + { + "start": 5610.14, + "end": 5611.9, + "probability": 0.9623 + }, + { + "start": 5612.5, + "end": 5612.82, + "probability": 0.8728 + }, + { + "start": 5612.96, + "end": 5618.8, + "probability": 0.9902 + }, + { + "start": 5619.08, + "end": 5620.27, + "probability": 0.9316 + }, + { + "start": 5621.18, + "end": 5622.02, + "probability": 0.2531 + }, + { + "start": 5622.14, + "end": 5626.42, + "probability": 0.9917 + }, + { + "start": 5627.56, + "end": 5631.94, + "probability": 0.9841 + }, + { + "start": 5632.6, + "end": 5634.78, + "probability": 0.9971 + }, + { + "start": 5634.78, + "end": 5636.86, + "probability": 0.9738 + }, + { + "start": 5636.98, + "end": 5640.14, + "probability": 0.9562 + }, + { + "start": 5640.3, + "end": 5641.36, + "probability": 0.7566 + }, + { + "start": 5641.48, + "end": 5641.84, + "probability": 0.8807 + }, + { + "start": 5641.9, + "end": 5645.1, + "probability": 0.9341 + }, + { + "start": 5645.1, + "end": 5648.08, + "probability": 0.9853 + }, + { + "start": 5648.78, + "end": 5649.78, + "probability": 0.68 + }, + { + "start": 5649.82, + "end": 5651.9, + "probability": 0.948 + }, + { + "start": 5653.34, + "end": 5658.12, + "probability": 0.9983 + }, + { + "start": 5658.12, + "end": 5663.26, + "probability": 0.9982 + }, + { + "start": 5663.26, + "end": 5666.9, + "probability": 0.9921 + }, + { + "start": 5667.02, + "end": 5667.42, + "probability": 0.5274 + }, + { + "start": 5667.5, + "end": 5668.76, + "probability": 0.869 + }, + { + "start": 5668.84, + "end": 5673.14, + "probability": 0.9823 + }, + { + "start": 5673.64, + "end": 5676.62, + "probability": 0.9025 + }, + { + "start": 5676.66, + "end": 5679.72, + "probability": 0.994 + }, + { + "start": 5679.72, + "end": 5682.0, + "probability": 0.845 + }, + { + "start": 5682.94, + "end": 5684.6, + "probability": 0.7748 + }, + { + "start": 5685.12, + "end": 5687.38, + "probability": 0.7082 + }, + { + "start": 5687.9, + "end": 5691.96, + "probability": 0.9452 + }, + { + "start": 5692.02, + "end": 5693.72, + "probability": 0.8718 + }, + { + "start": 5694.88, + "end": 5695.3, + "probability": 0.6355 + }, + { + "start": 5695.34, + "end": 5698.94, + "probability": 0.9984 + }, + { + "start": 5699.04, + "end": 5701.66, + "probability": 0.9962 + }, + { + "start": 5701.66, + "end": 5705.32, + "probability": 0.9423 + }, + { + "start": 5706.34, + "end": 5707.18, + "probability": 0.8488 + }, + { + "start": 5707.4, + "end": 5712.4, + "probability": 0.8882 + }, + { + "start": 5713.3, + "end": 5717.43, + "probability": 0.9268 + }, + { + "start": 5718.08, + "end": 5719.86, + "probability": 0.9607 + }, + { + "start": 5720.62, + "end": 5724.6, + "probability": 0.979 + }, + { + "start": 5726.58, + "end": 5727.4, + "probability": 0.8151 + }, + { + "start": 5727.46, + "end": 5731.18, + "probability": 0.9606 + }, + { + "start": 5731.34, + "end": 5734.72, + "probability": 0.9647 + }, + { + "start": 5734.9, + "end": 5737.26, + "probability": 0.9472 + }, + { + "start": 5737.26, + "end": 5741.76, + "probability": 0.9635 + }, + { + "start": 5742.68, + "end": 5743.14, + "probability": 0.5613 + }, + { + "start": 5743.7, + "end": 5744.64, + "probability": 0.5401 + }, + { + "start": 5744.92, + "end": 5748.48, + "probability": 0.9768 + }, + { + "start": 5749.4, + "end": 5752.1, + "probability": 0.6992 + }, + { + "start": 5752.34, + "end": 5753.3, + "probability": 0.7634 + }, + { + "start": 5753.34, + "end": 5754.28, + "probability": 0.6334 + }, + { + "start": 5754.96, + "end": 5764.94, + "probability": 0.9116 + }, + { + "start": 5765.52, + "end": 5769.4, + "probability": 0.991 + }, + { + "start": 5769.94, + "end": 5775.86, + "probability": 0.9955 + }, + { + "start": 5776.0, + "end": 5778.52, + "probability": 0.9922 + }, + { + "start": 5779.94, + "end": 5781.7, + "probability": 0.906 + }, + { + "start": 5782.1, + "end": 5783.68, + "probability": 0.7183 + }, + { + "start": 5784.06, + "end": 5786.48, + "probability": 0.9737 + }, + { + "start": 5787.14, + "end": 5790.88, + "probability": 0.9826 + }, + { + "start": 5790.88, + "end": 5795.72, + "probability": 0.998 + }, + { + "start": 5796.42, + "end": 5798.76, + "probability": 0.7945 + }, + { + "start": 5799.56, + "end": 5803.46, + "probability": 0.8802 + }, + { + "start": 5803.96, + "end": 5809.64, + "probability": 0.9775 + }, + { + "start": 5810.2, + "end": 5811.22, + "probability": 0.9882 + }, + { + "start": 5812.18, + "end": 5813.56, + "probability": 0.7917 + }, + { + "start": 5813.88, + "end": 5821.34, + "probability": 0.9845 + }, + { + "start": 5821.84, + "end": 5822.42, + "probability": 0.4014 + }, + { + "start": 5823.04, + "end": 5825.38, + "probability": 0.9762 + }, + { + "start": 5827.44, + "end": 5829.02, + "probability": 0.8276 + }, + { + "start": 5829.18, + "end": 5829.6, + "probability": 0.9882 + }, + { + "start": 5829.66, + "end": 5836.28, + "probability": 0.9824 + }, + { + "start": 5836.54, + "end": 5837.86, + "probability": 0.8628 + }, + { + "start": 5837.94, + "end": 5840.43, + "probability": 0.9884 + }, + { + "start": 5841.28, + "end": 5847.54, + "probability": 0.9966 + }, + { + "start": 5847.54, + "end": 5853.36, + "probability": 0.9688 + }, + { + "start": 5853.7, + "end": 5855.14, + "probability": 0.7664 + }, + { + "start": 5855.74, + "end": 5857.56, + "probability": 0.9702 + }, + { + "start": 5858.4, + "end": 5862.18, + "probability": 0.9839 + }, + { + "start": 5862.18, + "end": 5865.64, + "probability": 0.9957 + }, + { + "start": 5865.86, + "end": 5868.4, + "probability": 0.9854 + }, + { + "start": 5869.1, + "end": 5872.9, + "probability": 0.9816 + }, + { + "start": 5873.12, + "end": 5873.98, + "probability": 0.9797 + }, + { + "start": 5874.52, + "end": 5877.78, + "probability": 0.9924 + }, + { + "start": 5877.98, + "end": 5881.12, + "probability": 0.9958 + }, + { + "start": 5881.28, + "end": 5883.04, + "probability": 0.9434 + }, + { + "start": 5884.12, + "end": 5886.78, + "probability": 0.9454 + }, + { + "start": 5886.78, + "end": 5890.64, + "probability": 0.8685 + }, + { + "start": 5891.44, + "end": 5896.0, + "probability": 0.9658 + }, + { + "start": 5896.66, + "end": 5898.72, + "probability": 0.9961 + }, + { + "start": 5899.5, + "end": 5905.21, + "probability": 0.9934 + }, + { + "start": 5906.2, + "end": 5908.54, + "probability": 0.6382 + }, + { + "start": 5908.9, + "end": 5912.54, + "probability": 0.9468 + }, + { + "start": 5912.58, + "end": 5918.96, + "probability": 0.9832 + }, + { + "start": 5919.46, + "end": 5922.16, + "probability": 0.9273 + }, + { + "start": 5922.34, + "end": 5924.3, + "probability": 0.8637 + }, + { + "start": 5924.96, + "end": 5930.18, + "probability": 0.9909 + }, + { + "start": 5930.78, + "end": 5935.98, + "probability": 0.9722 + }, + { + "start": 5935.98, + "end": 5940.94, + "probability": 0.9985 + }, + { + "start": 5941.78, + "end": 5945.7, + "probability": 0.6286 + }, + { + "start": 5946.24, + "end": 5949.4, + "probability": 0.9945 + }, + { + "start": 5949.4, + "end": 5953.92, + "probability": 0.9974 + }, + { + "start": 5954.06, + "end": 5955.84, + "probability": 0.8802 + }, + { + "start": 5956.52, + "end": 5959.02, + "probability": 0.991 + }, + { + "start": 5959.64, + "end": 5960.88, + "probability": 0.9214 + }, + { + "start": 5961.0, + "end": 5966.06, + "probability": 0.9961 + }, + { + "start": 5966.06, + "end": 5969.8, + "probability": 0.9952 + }, + { + "start": 5969.82, + "end": 5970.54, + "probability": 0.8458 + }, + { + "start": 5971.18, + "end": 5977.24, + "probability": 0.9966 + }, + { + "start": 5977.72, + "end": 5983.58, + "probability": 0.9761 + }, + { + "start": 5983.58, + "end": 5988.24, + "probability": 0.9973 + }, + { + "start": 5988.96, + "end": 5994.94, + "probability": 0.989 + }, + { + "start": 5995.5, + "end": 6004.52, + "probability": 0.933 + }, + { + "start": 6005.14, + "end": 6007.29, + "probability": 0.5782 + }, + { + "start": 6007.52, + "end": 6008.3, + "probability": 0.8508 + }, + { + "start": 6008.42, + "end": 6012.18, + "probability": 0.9352 + }, + { + "start": 6012.66, + "end": 6015.94, + "probability": 0.8249 + }, + { + "start": 6016.22, + "end": 6017.66, + "probability": 0.6938 + }, + { + "start": 6017.68, + "end": 6017.7, + "probability": 0.2681 + }, + { + "start": 6017.7, + "end": 6018.78, + "probability": 0.6316 + }, + { + "start": 6019.38, + "end": 6023.42, + "probability": 0.9637 + }, + { + "start": 6023.54, + "end": 6023.98, + "probability": 0.9401 + }, + { + "start": 6024.68, + "end": 6027.96, + "probability": 0.8039 + }, + { + "start": 6028.28, + "end": 6029.36, + "probability": 0.6707 + }, + { + "start": 6029.54, + "end": 6031.22, + "probability": 0.7625 + }, + { + "start": 6034.98, + "end": 6037.06, + "probability": 0.8556 + }, + { + "start": 6060.18, + "end": 6060.46, + "probability": 0.6077 + }, + { + "start": 6061.4, + "end": 6063.4, + "probability": 0.7089 + }, + { + "start": 6066.38, + "end": 6069.24, + "probability": 0.9037 + }, + { + "start": 6069.3, + "end": 6071.32, + "probability": 0.9664 + }, + { + "start": 6071.62, + "end": 6075.38, + "probability": 0.9952 + }, + { + "start": 6075.82, + "end": 6078.02, + "probability": 0.6794 + }, + { + "start": 6078.16, + "end": 6081.1, + "probability": 0.9584 + }, + { + "start": 6081.72, + "end": 6085.28, + "probability": 0.9922 + }, + { + "start": 6086.04, + "end": 6088.64, + "probability": 0.7994 + }, + { + "start": 6088.76, + "end": 6090.28, + "probability": 0.7115 + }, + { + "start": 6091.02, + "end": 6096.72, + "probability": 0.9874 + }, + { + "start": 6097.34, + "end": 6101.96, + "probability": 0.9937 + }, + { + "start": 6102.54, + "end": 6104.28, + "probability": 0.8916 + }, + { + "start": 6104.44, + "end": 6110.86, + "probability": 0.9962 + }, + { + "start": 6111.04, + "end": 6112.16, + "probability": 0.6165 + }, + { + "start": 6112.34, + "end": 6115.48, + "probability": 0.729 + }, + { + "start": 6115.62, + "end": 6117.94, + "probability": 0.8154 + }, + { + "start": 6118.98, + "end": 6121.94, + "probability": 0.988 + }, + { + "start": 6121.98, + "end": 6122.5, + "probability": 0.9663 + }, + { + "start": 6122.56, + "end": 6123.92, + "probability": 0.8308 + }, + { + "start": 6124.36, + "end": 6128.44, + "probability": 0.981 + }, + { + "start": 6128.56, + "end": 6129.44, + "probability": 0.6359 + }, + { + "start": 6129.84, + "end": 6130.84, + "probability": 0.812 + }, + { + "start": 6131.04, + "end": 6133.12, + "probability": 0.8535 + }, + { + "start": 6133.54, + "end": 6137.14, + "probability": 0.9822 + }, + { + "start": 6137.14, + "end": 6141.16, + "probability": 0.8913 + }, + { + "start": 6141.48, + "end": 6142.96, + "probability": 0.9595 + }, + { + "start": 6143.34, + "end": 6145.42, + "probability": 0.8664 + }, + { + "start": 6145.64, + "end": 6147.2, + "probability": 0.9476 + }, + { + "start": 6147.48, + "end": 6149.24, + "probability": 0.92 + }, + { + "start": 6149.3, + "end": 6157.0, + "probability": 0.9711 + }, + { + "start": 6157.14, + "end": 6158.6, + "probability": 0.8645 + }, + { + "start": 6158.92, + "end": 6161.95, + "probability": 0.9593 + }, + { + "start": 6162.82, + "end": 6163.93, + "probability": 0.5099 + }, + { + "start": 6165.54, + "end": 6167.56, + "probability": 0.6633 + }, + { + "start": 6168.72, + "end": 6172.4, + "probability": 0.9946 + }, + { + "start": 6172.86, + "end": 6174.78, + "probability": 0.7945 + }, + { + "start": 6175.14, + "end": 6178.7, + "probability": 0.9983 + }, + { + "start": 6179.0, + "end": 6181.78, + "probability": 0.9612 + }, + { + "start": 6181.88, + "end": 6188.34, + "probability": 0.8075 + }, + { + "start": 6188.46, + "end": 6189.28, + "probability": 0.9495 + }, + { + "start": 6189.52, + "end": 6190.32, + "probability": 0.8897 + }, + { + "start": 6191.12, + "end": 6192.36, + "probability": 0.9609 + }, + { + "start": 6193.47, + "end": 6194.94, + "probability": 0.9347 + }, + { + "start": 6195.02, + "end": 6195.82, + "probability": 0.8335 + }, + { + "start": 6195.92, + "end": 6198.64, + "probability": 0.929 + }, + { + "start": 6198.74, + "end": 6199.82, + "probability": 0.892 + }, + { + "start": 6200.56, + "end": 6202.6, + "probability": 0.9489 + }, + { + "start": 6202.76, + "end": 6204.4, + "probability": 0.9699 + }, + { + "start": 6204.62, + "end": 6206.2, + "probability": 0.9702 + }, + { + "start": 6206.78, + "end": 6208.12, + "probability": 0.8955 + }, + { + "start": 6208.2, + "end": 6209.1, + "probability": 0.5522 + }, + { + "start": 6209.26, + "end": 6210.6, + "probability": 0.8607 + }, + { + "start": 6210.84, + "end": 6212.26, + "probability": 0.9591 + }, + { + "start": 6212.38, + "end": 6213.58, + "probability": 0.346 + }, + { + "start": 6213.92, + "end": 6214.88, + "probability": 0.4776 + }, + { + "start": 6215.08, + "end": 6217.54, + "probability": 0.9087 + }, + { + "start": 6218.2, + "end": 6222.74, + "probability": 0.8522 + }, + { + "start": 6223.74, + "end": 6224.16, + "probability": 0.0629 + }, + { + "start": 6224.16, + "end": 6226.48, + "probability": 0.9751 + }, + { + "start": 6226.7, + "end": 6228.56, + "probability": 0.9102 + }, + { + "start": 6228.64, + "end": 6229.34, + "probability": 0.8152 + }, + { + "start": 6229.87, + "end": 6234.04, + "probability": 0.9954 + }, + { + "start": 6234.52, + "end": 6238.04, + "probability": 0.9374 + }, + { + "start": 6238.64, + "end": 6239.36, + "probability": 0.5064 + }, + { + "start": 6239.46, + "end": 6243.22, + "probability": 0.9966 + }, + { + "start": 6243.42, + "end": 6245.18, + "probability": 0.8531 + }, + { + "start": 6245.62, + "end": 6249.23, + "probability": 0.9504 + }, + { + "start": 6249.88, + "end": 6251.5, + "probability": 0.592 + }, + { + "start": 6251.6, + "end": 6252.48, + "probability": 0.9254 + }, + { + "start": 6252.8, + "end": 6255.56, + "probability": 0.9975 + }, + { + "start": 6255.64, + "end": 6257.66, + "probability": 0.9776 + }, + { + "start": 6257.74, + "end": 6258.18, + "probability": 0.6825 + }, + { + "start": 6258.24, + "end": 6258.94, + "probability": 0.9458 + }, + { + "start": 6259.1, + "end": 6263.44, + "probability": 0.9746 + }, + { + "start": 6263.66, + "end": 6265.58, + "probability": 0.9967 + }, + { + "start": 6266.18, + "end": 6268.68, + "probability": 0.9963 + }, + { + "start": 6269.72, + "end": 6269.92, + "probability": 0.0615 + }, + { + "start": 6269.92, + "end": 6271.08, + "probability": 0.0144 + }, + { + "start": 6271.46, + "end": 6274.36, + "probability": 0.6169 + }, + { + "start": 6274.62, + "end": 6275.48, + "probability": 0.8929 + }, + { + "start": 6275.52, + "end": 6277.19, + "probability": 0.9766 + }, + { + "start": 6277.66, + "end": 6281.6, + "probability": 0.387 + }, + { + "start": 6282.48, + "end": 6282.78, + "probability": 0.01 + }, + { + "start": 6282.78, + "end": 6284.18, + "probability": 0.1894 + }, + { + "start": 6284.54, + "end": 6290.34, + "probability": 0.9813 + }, + { + "start": 6290.46, + "end": 6291.64, + "probability": 0.6063 + }, + { + "start": 6291.66, + "end": 6292.22, + "probability": 0.433 + }, + { + "start": 6292.24, + "end": 6294.36, + "probability": 0.6329 + }, + { + "start": 6294.8, + "end": 6294.8, + "probability": 0.0132 + }, + { + "start": 6294.8, + "end": 6297.08, + "probability": 0.9265 + }, + { + "start": 6297.12, + "end": 6298.06, + "probability": 0.8967 + }, + { + "start": 6298.3, + "end": 6301.18, + "probability": 0.98 + }, + { + "start": 6301.46, + "end": 6305.04, + "probability": 0.993 + }, + { + "start": 6305.14, + "end": 6305.44, + "probability": 0.8442 + }, + { + "start": 6305.84, + "end": 6307.72, + "probability": 0.5907 + }, + { + "start": 6307.86, + "end": 6310.2, + "probability": 0.8193 + }, + { + "start": 6311.7, + "end": 6313.98, + "probability": 0.8118 + }, + { + "start": 6315.08, + "end": 6318.0, + "probability": 0.8002 + }, + { + "start": 6332.96, + "end": 6334.24, + "probability": 0.7067 + }, + { + "start": 6334.98, + "end": 6336.14, + "probability": 0.8187 + }, + { + "start": 6336.88, + "end": 6337.52, + "probability": 0.6051 + }, + { + "start": 6339.54, + "end": 6340.56, + "probability": 0.7635 + }, + { + "start": 6341.04, + "end": 6346.52, + "probability": 0.9146 + }, + { + "start": 6350.54, + "end": 6351.4, + "probability": 0.7799 + }, + { + "start": 6352.12, + "end": 6355.12, + "probability": 0.8689 + }, + { + "start": 6356.58, + "end": 6364.18, + "probability": 0.9871 + }, + { + "start": 6364.62, + "end": 6365.22, + "probability": 0.6732 + }, + { + "start": 6365.68, + "end": 6370.5, + "probability": 0.7605 + }, + { + "start": 6372.2, + "end": 6372.34, + "probability": 0.1537 + }, + { + "start": 6372.34, + "end": 6374.88, + "probability": 0.9355 + }, + { + "start": 6375.08, + "end": 6377.74, + "probability": 0.6508 + }, + { + "start": 6377.84, + "end": 6386.64, + "probability": 0.9435 + }, + { + "start": 6387.8, + "end": 6390.7, + "probability": 0.8249 + }, + { + "start": 6391.32, + "end": 6394.54, + "probability": 0.9937 + }, + { + "start": 6395.38, + "end": 6399.6, + "probability": 0.9404 + }, + { + "start": 6400.04, + "end": 6404.9, + "probability": 0.9575 + }, + { + "start": 6405.82, + "end": 6407.32, + "probability": 0.6664 + }, + { + "start": 6407.82, + "end": 6407.82, + "probability": 0.1479 + }, + { + "start": 6407.82, + "end": 6407.82, + "probability": 0.1397 + }, + { + "start": 6407.82, + "end": 6410.16, + "probability": 0.1023 + }, + { + "start": 6410.48, + "end": 6410.48, + "probability": 0.0908 + }, + { + "start": 6410.48, + "end": 6411.7, + "probability": 0.4373 + }, + { + "start": 6411.9, + "end": 6417.1, + "probability": 0.9674 + }, + { + "start": 6417.32, + "end": 6418.24, + "probability": 0.9087 + }, + { + "start": 6418.36, + "end": 6419.32, + "probability": 0.5481 + }, + { + "start": 6419.8, + "end": 6420.86, + "probability": 0.9951 + }, + { + "start": 6423.18, + "end": 6426.82, + "probability": 0.8483 + }, + { + "start": 6427.5, + "end": 6428.44, + "probability": 0.9285 + }, + { + "start": 6428.82, + "end": 6433.24, + "probability": 0.9899 + }, + { + "start": 6433.98, + "end": 6436.84, + "probability": 0.9257 + }, + { + "start": 6437.52, + "end": 6439.78, + "probability": 0.9705 + }, + { + "start": 6440.02, + "end": 6441.1, + "probability": 0.7145 + }, + { + "start": 6441.58, + "end": 6443.74, + "probability": 0.8865 + }, + { + "start": 6444.16, + "end": 6444.66, + "probability": 0.8834 + }, + { + "start": 6444.7, + "end": 6446.16, + "probability": 0.8123 + }, + { + "start": 6446.86, + "end": 6449.12, + "probability": 0.9119 + }, + { + "start": 6449.88, + "end": 6457.24, + "probability": 0.9362 + }, + { + "start": 6457.44, + "end": 6458.5, + "probability": 0.9706 + }, + { + "start": 6458.8, + "end": 6461.64, + "probability": 0.6743 + }, + { + "start": 6462.64, + "end": 6466.58, + "probability": 0.9952 + }, + { + "start": 6467.44, + "end": 6473.26, + "probability": 0.7364 + }, + { + "start": 6473.88, + "end": 6476.96, + "probability": 0.6704 + }, + { + "start": 6477.56, + "end": 6480.4, + "probability": 0.6711 + }, + { + "start": 6483.54, + "end": 6488.72, + "probability": 0.9047 + }, + { + "start": 6488.72, + "end": 6493.14, + "probability": 0.9474 + }, + { + "start": 6493.26, + "end": 6495.96, + "probability": 0.8579 + }, + { + "start": 6496.38, + "end": 6497.32, + "probability": 0.9717 + }, + { + "start": 6497.78, + "end": 6498.92, + "probability": 0.5044 + }, + { + "start": 6499.1, + "end": 6500.36, + "probability": 0.5423 + }, + { + "start": 6500.52, + "end": 6503.52, + "probability": 0.7358 + }, + { + "start": 6503.66, + "end": 6504.8, + "probability": 0.7927 + }, + { + "start": 6505.4, + "end": 6508.94, + "probability": 0.8599 + }, + { + "start": 6509.18, + "end": 6509.96, + "probability": 0.878 + }, + { + "start": 6510.14, + "end": 6510.92, + "probability": 0.8428 + }, + { + "start": 6511.22, + "end": 6513.78, + "probability": 0.9473 + }, + { + "start": 6514.18, + "end": 6514.64, + "probability": 0.4119 + }, + { + "start": 6514.68, + "end": 6516.92, + "probability": 0.8466 + }, + { + "start": 6516.98, + "end": 6519.36, + "probability": 0.8228 + }, + { + "start": 6519.42, + "end": 6519.42, + "probability": 0.4382 + }, + { + "start": 6519.42, + "end": 6520.24, + "probability": 0.5868 + }, + { + "start": 6520.78, + "end": 6521.3, + "probability": 0.8781 + }, + { + "start": 6522.1, + "end": 6523.48, + "probability": 0.9553 + }, + { + "start": 6523.78, + "end": 6524.98, + "probability": 0.792 + }, + { + "start": 6525.34, + "end": 6527.2, + "probability": 0.9462 + }, + { + "start": 6527.64, + "end": 6528.54, + "probability": 0.6762 + }, + { + "start": 6528.62, + "end": 6530.14, + "probability": 0.9059 + }, + { + "start": 6530.62, + "end": 6535.06, + "probability": 0.943 + }, + { + "start": 6535.98, + "end": 6540.24, + "probability": 0.8979 + }, + { + "start": 6543.48, + "end": 6543.48, + "probability": 0.1936 + }, + { + "start": 6545.08, + "end": 6545.08, + "probability": 0.1494 + }, + { + "start": 6545.08, + "end": 6545.08, + "probability": 0.1607 + }, + { + "start": 6545.08, + "end": 6545.08, + "probability": 0.0311 + }, + { + "start": 6545.08, + "end": 6545.08, + "probability": 0.1007 + }, + { + "start": 6545.08, + "end": 6546.66, + "probability": 0.3291 + }, + { + "start": 6547.76, + "end": 6549.24, + "probability": 0.7136 + }, + { + "start": 6549.28, + "end": 6553.26, + "probability": 0.8444 + }, + { + "start": 6554.18, + "end": 6558.25, + "probability": 0.0294 + }, + { + "start": 6560.84, + "end": 6561.34, + "probability": 0.0541 + }, + { + "start": 6561.34, + "end": 6561.34, + "probability": 0.0752 + }, + { + "start": 6561.34, + "end": 6561.34, + "probability": 0.0188 + }, + { + "start": 6561.34, + "end": 6561.36, + "probability": 0.1389 + }, + { + "start": 6561.36, + "end": 6562.92, + "probability": 0.7044 + }, + { + "start": 6563.06, + "end": 6566.48, + "probability": 0.9414 + }, + { + "start": 6567.24, + "end": 6568.91, + "probability": 0.9861 + }, + { + "start": 6569.24, + "end": 6569.24, + "probability": 0.1017 + }, + { + "start": 6569.24, + "end": 6571.0, + "probability": 0.4708 + }, + { + "start": 6571.76, + "end": 6575.22, + "probability": 0.9609 + }, + { + "start": 6591.84, + "end": 6592.5, + "probability": 0.6169 + }, + { + "start": 6592.54, + "end": 6593.4, + "probability": 0.9402 + }, + { + "start": 6593.4, + "end": 6596.2, + "probability": 0.6875 + }, + { + "start": 6598.02, + "end": 6601.12, + "probability": 0.9129 + }, + { + "start": 6601.96, + "end": 6603.32, + "probability": 0.9561 + }, + { + "start": 6603.42, + "end": 6605.9, + "probability": 0.7733 + }, + { + "start": 6606.28, + "end": 6606.56, + "probability": 0.0478 + }, + { + "start": 6606.56, + "end": 6606.56, + "probability": 0.0005 + }, + { + "start": 6608.14, + "end": 6608.52, + "probability": 0.002 + }, + { + "start": 6608.52, + "end": 6608.52, + "probability": 0.0149 + }, + { + "start": 6608.52, + "end": 6611.2, + "probability": 0.4685 + }, + { + "start": 6611.94, + "end": 6614.46, + "probability": 0.9262 + }, + { + "start": 6614.88, + "end": 6623.0, + "probability": 0.9317 + }, + { + "start": 6623.0, + "end": 6627.0, + "probability": 0.9929 + }, + { + "start": 6627.74, + "end": 6629.22, + "probability": 0.9131 + }, + { + "start": 6629.42, + "end": 6633.2, + "probability": 0.8895 + }, + { + "start": 6633.9, + "end": 6635.48, + "probability": 0.9346 + }, + { + "start": 6635.7, + "end": 6636.28, + "probability": 0.818 + }, + { + "start": 6636.42, + "end": 6639.72, + "probability": 0.8457 + }, + { + "start": 6639.88, + "end": 6640.8, + "probability": 0.9121 + }, + { + "start": 6641.92, + "end": 6648.04, + "probability": 0.9869 + }, + { + "start": 6648.26, + "end": 6649.66, + "probability": 0.9736 + }, + { + "start": 6651.02, + "end": 6657.78, + "probability": 0.9622 + }, + { + "start": 6657.88, + "end": 6659.08, + "probability": 0.7945 + }, + { + "start": 6659.52, + "end": 6660.6, + "probability": 0.7253 + }, + { + "start": 6661.18, + "end": 6666.05, + "probability": 0.9912 + }, + { + "start": 6666.96, + "end": 6668.94, + "probability": 0.968 + }, + { + "start": 6669.48, + "end": 6672.16, + "probability": 0.7701 + }, + { + "start": 6672.82, + "end": 6674.3, + "probability": 0.7988 + }, + { + "start": 6674.46, + "end": 6675.52, + "probability": 0.8301 + }, + { + "start": 6675.52, + "end": 6678.9, + "probability": 0.8862 + }, + { + "start": 6679.0, + "end": 6679.8, + "probability": 0.8752 + }, + { + "start": 6680.7, + "end": 6684.04, + "probability": 0.6808 + }, + { + "start": 6685.39, + "end": 6690.68, + "probability": 0.9641 + }, + { + "start": 6691.32, + "end": 6692.88, + "probability": 0.5543 + }, + { + "start": 6693.6, + "end": 6698.64, + "probability": 0.9238 + }, + { + "start": 6700.48, + "end": 6703.14, + "probability": 0.8001 + }, + { + "start": 6703.98, + "end": 6705.0, + "probability": 0.7732 + }, + { + "start": 6705.04, + "end": 6709.56, + "probability": 0.869 + }, + { + "start": 6709.98, + "end": 6710.52, + "probability": 0.8214 + }, + { + "start": 6710.54, + "end": 6713.46, + "probability": 0.9698 + }, + { + "start": 6713.66, + "end": 6714.16, + "probability": 0.3552 + }, + { + "start": 6715.58, + "end": 6722.6, + "probability": 0.9154 + }, + { + "start": 6723.14, + "end": 6727.24, + "probability": 0.9466 + }, + { + "start": 6727.76, + "end": 6731.8, + "probability": 0.9233 + }, + { + "start": 6732.46, + "end": 6739.24, + "probability": 0.9111 + }, + { + "start": 6741.6, + "end": 6744.14, + "probability": 0.8043 + }, + { + "start": 6745.42, + "end": 6747.18, + "probability": 0.9492 + }, + { + "start": 6748.32, + "end": 6751.32, + "probability": 0.9966 + }, + { + "start": 6751.32, + "end": 6754.12, + "probability": 0.9315 + }, + { + "start": 6754.84, + "end": 6756.34, + "probability": 0.5631 + }, + { + "start": 6757.5, + "end": 6760.85, + "probability": 0.8486 + }, + { + "start": 6762.4, + "end": 6763.72, + "probability": 0.6389 + }, + { + "start": 6764.12, + "end": 6766.42, + "probability": 0.211 + }, + { + "start": 6766.44, + "end": 6767.64, + "probability": 0.8627 + }, + { + "start": 6767.72, + "end": 6770.92, + "probability": 0.0892 + }, + { + "start": 6771.02, + "end": 6771.26, + "probability": 0.0494 + }, + { + "start": 6771.26, + "end": 6771.28, + "probability": 0.1496 + }, + { + "start": 6771.28, + "end": 6771.28, + "probability": 0.0404 + }, + { + "start": 6771.28, + "end": 6772.88, + "probability": 0.2404 + }, + { + "start": 6775.7, + "end": 6778.78, + "probability": 0.4464 + }, + { + "start": 6778.84, + "end": 6779.88, + "probability": 0.4573 + }, + { + "start": 6779.96, + "end": 6782.24, + "probability": 0.9771 + }, + { + "start": 6782.47, + "end": 6785.36, + "probability": 0.0135 + }, + { + "start": 6785.36, + "end": 6785.36, + "probability": 0.0936 + }, + { + "start": 6785.36, + "end": 6790.24, + "probability": 0.5139 + }, + { + "start": 6790.76, + "end": 6794.36, + "probability": 0.979 + }, + { + "start": 6794.92, + "end": 6797.18, + "probability": 0.9321 + }, + { + "start": 6797.38, + "end": 6798.16, + "probability": 0.2701 + }, + { + "start": 6798.58, + "end": 6799.86, + "probability": 0.5225 + }, + { + "start": 6800.02, + "end": 6800.08, + "probability": 0.1257 + }, + { + "start": 6800.08, + "end": 6802.68, + "probability": 0.9731 + }, + { + "start": 6803.08, + "end": 6803.89, + "probability": 0.8306 + }, + { + "start": 6804.26, + "end": 6805.42, + "probability": 0.4876 + }, + { + "start": 6805.64, + "end": 6807.84, + "probability": 0.0192 + }, + { + "start": 6807.84, + "end": 6811.36, + "probability": 0.0453 + }, + { + "start": 6813.04, + "end": 6813.84, + "probability": 0.4013 + }, + { + "start": 6813.88, + "end": 6815.72, + "probability": 0.0292 + }, + { + "start": 6816.38, + "end": 6816.38, + "probability": 0.0045 + }, + { + "start": 6816.96, + "end": 6819.9, + "probability": 0.783 + }, + { + "start": 6819.9, + "end": 6822.02, + "probability": 0.9284 + }, + { + "start": 6822.16, + "end": 6823.52, + "probability": 0.5371 + }, + { + "start": 6823.62, + "end": 6826.14, + "probability": 0.9875 + }, + { + "start": 6826.64, + "end": 6827.24, + "probability": 0.031 + }, + { + "start": 6827.84, + "end": 6827.98, + "probability": 0.108 + }, + { + "start": 6829.3, + "end": 6830.12, + "probability": 0.0422 + }, + { + "start": 6837.88, + "end": 6840.88, + "probability": 0.5377 + }, + { + "start": 6840.96, + "end": 6841.54, + "probability": 0.635 + }, + { + "start": 6841.54, + "end": 6842.9, + "probability": 0.5174 + }, + { + "start": 6843.44, + "end": 6845.48, + "probability": 0.6584 + }, + { + "start": 6850.54, + "end": 6856.7, + "probability": 0.7617 + }, + { + "start": 6858.36, + "end": 6862.36, + "probability": 0.9907 + }, + { + "start": 6863.92, + "end": 6866.54, + "probability": 0.8143 + }, + { + "start": 6866.62, + "end": 6868.08, + "probability": 0.8893 + }, + { + "start": 6868.22, + "end": 6873.04, + "probability": 0.9829 + }, + { + "start": 6873.04, + "end": 6878.22, + "probability": 0.9985 + }, + { + "start": 6878.32, + "end": 6879.25, + "probability": 0.9794 + }, + { + "start": 6879.72, + "end": 6880.07, + "probability": 0.0432 + }, + { + "start": 6880.32, + "end": 6880.62, + "probability": 0.4489 + }, + { + "start": 6881.18, + "end": 6884.02, + "probability": 0.8251 + }, + { + "start": 6884.6, + "end": 6884.82, + "probability": 0.0647 + }, + { + "start": 6884.82, + "end": 6889.44, + "probability": 0.9778 + }, + { + "start": 6889.52, + "end": 6891.68, + "probability": 0.9844 + }, + { + "start": 6892.6, + "end": 6894.93, + "probability": 0.9373 + }, + { + "start": 6896.06, + "end": 6898.0, + "probability": 0.9844 + }, + { + "start": 6899.4, + "end": 6903.7, + "probability": 0.9203 + }, + { + "start": 6903.78, + "end": 6905.78, + "probability": 0.5 + }, + { + "start": 6905.78, + "end": 6907.3, + "probability": 0.9668 + }, + { + "start": 6907.96, + "end": 6908.04, + "probability": 0.2887 + }, + { + "start": 6908.04, + "end": 6909.81, + "probability": 0.9182 + }, + { + "start": 6910.38, + "end": 6912.05, + "probability": 0.9375 + }, + { + "start": 6914.06, + "end": 6916.34, + "probability": 0.7233 + }, + { + "start": 6917.2, + "end": 6918.64, + "probability": 0.5579 + }, + { + "start": 6918.92, + "end": 6919.44, + "probability": 0.551 + }, + { + "start": 6919.52, + "end": 6922.9, + "probability": 0.9422 + }, + { + "start": 6923.6, + "end": 6929.02, + "probability": 0.9635 + }, + { + "start": 6929.26, + "end": 6932.16, + "probability": 0.778 + }, + { + "start": 6933.12, + "end": 6936.44, + "probability": 0.9261 + }, + { + "start": 6937.28, + "end": 6938.34, + "probability": 0.998 + }, + { + "start": 6940.02, + "end": 6943.96, + "probability": 0.8325 + }, + { + "start": 6944.18, + "end": 6949.06, + "probability": 0.9841 + }, + { + "start": 6949.52, + "end": 6953.64, + "probability": 0.6341 + }, + { + "start": 6954.48, + "end": 6958.44, + "probability": 0.9932 + }, + { + "start": 6959.22, + "end": 6965.9, + "probability": 0.9805 + }, + { + "start": 6966.02, + "end": 6967.26, + "probability": 0.6079 + }, + { + "start": 6968.16, + "end": 6971.34, + "probability": 0.9873 + }, + { + "start": 6971.46, + "end": 6973.1, + "probability": 0.6835 + }, + { + "start": 6974.26, + "end": 6979.18, + "probability": 0.6487 + }, + { + "start": 6980.14, + "end": 6981.9, + "probability": 0.9021 + }, + { + "start": 6983.44, + "end": 6985.0, + "probability": 0.9863 + }, + { + "start": 6985.82, + "end": 6991.5, + "probability": 0.9692 + }, + { + "start": 6993.77, + "end": 6994.68, + "probability": 0.0382 + }, + { + "start": 6995.88, + "end": 6996.38, + "probability": 0.1295 + }, + { + "start": 6996.38, + "end": 6996.38, + "probability": 0.0278 + }, + { + "start": 6996.38, + "end": 6996.38, + "probability": 0.1044 + }, + { + "start": 6996.38, + "end": 7001.36, + "probability": 0.5812 + }, + { + "start": 7001.38, + "end": 7001.38, + "probability": 0.2594 + }, + { + "start": 7001.38, + "end": 7002.28, + "probability": 0.6029 + }, + { + "start": 7002.46, + "end": 7006.02, + "probability": 0.9626 + }, + { + "start": 7006.02, + "end": 7009.96, + "probability": 0.8143 + }, + { + "start": 7010.14, + "end": 7010.84, + "probability": 0.7823 + }, + { + "start": 7011.5, + "end": 7017.42, + "probability": 0.9415 + }, + { + "start": 7017.92, + "end": 7021.2, + "probability": 0.1464 + }, + { + "start": 7021.62, + "end": 7022.39, + "probability": 0.2025 + }, + { + "start": 7024.76, + "end": 7028.6, + "probability": 0.0584 + }, + { + "start": 7028.66, + "end": 7029.12, + "probability": 0.032 + }, + { + "start": 7029.12, + "end": 7029.2, + "probability": 0.0745 + }, + { + "start": 7029.2, + "end": 7029.46, + "probability": 0.0822 + }, + { + "start": 7029.46, + "end": 7030.48, + "probability": 0.1686 + }, + { + "start": 7030.62, + "end": 7035.36, + "probability": 0.2972 + }, + { + "start": 7035.48, + "end": 7035.48, + "probability": 0.0135 + }, + { + "start": 7035.48, + "end": 7036.3, + "probability": 0.4965 + }, + { + "start": 7036.39, + "end": 7036.98, + "probability": 0.3645 + }, + { + "start": 7037.14, + "end": 7038.82, + "probability": 0.9096 + }, + { + "start": 7038.92, + "end": 7040.02, + "probability": 0.8201 + }, + { + "start": 7040.02, + "end": 7040.99, + "probability": 0.5569 + }, + { + "start": 7041.04, + "end": 7043.0, + "probability": 0.708 + }, + { + "start": 7043.76, + "end": 7044.96, + "probability": 0.472 + }, + { + "start": 7045.02, + "end": 7046.55, + "probability": 0.9558 + }, + { + "start": 7046.9, + "end": 7046.9, + "probability": 0.0119 + }, + { + "start": 7046.9, + "end": 7048.02, + "probability": 0.969 + }, + { + "start": 7048.06, + "end": 7048.06, + "probability": 0.5387 + }, + { + "start": 7048.08, + "end": 7048.6, + "probability": 0.5718 + }, + { + "start": 7048.6, + "end": 7051.76, + "probability": 0.9656 + }, + { + "start": 7051.8, + "end": 7053.09, + "probability": 0.8995 + }, + { + "start": 7053.26, + "end": 7058.7, + "probability": 0.9654 + }, + { + "start": 7058.72, + "end": 7059.08, + "probability": 0.1288 + }, + { + "start": 7059.16, + "end": 7059.52, + "probability": 0.3995 + }, + { + "start": 7059.62, + "end": 7060.18, + "probability": 0.5551 + }, + { + "start": 7060.18, + "end": 7061.48, + "probability": 0.5735 + }, + { + "start": 7061.56, + "end": 7062.2, + "probability": 0.0446 + }, + { + "start": 7062.62, + "end": 7063.96, + "probability": 0.7723 + }, + { + "start": 7064.22, + "end": 7066.68, + "probability": 0.6333 + }, + { + "start": 7066.7, + "end": 7068.66, + "probability": 0.959 + }, + { + "start": 7076.02, + "end": 7077.62, + "probability": 0.352 + }, + { + "start": 7077.72, + "end": 7079.04, + "probability": 0.3368 + }, + { + "start": 7079.04, + "end": 7082.24, + "probability": 0.9604 + }, + { + "start": 7082.34, + "end": 7083.7, + "probability": 0.8739 + }, + { + "start": 7085.0, + "end": 7087.3, + "probability": 0.9927 + }, + { + "start": 7087.98, + "end": 7088.24, + "probability": 0.8196 + }, + { + "start": 7088.86, + "end": 7090.52, + "probability": 0.9945 + }, + { + "start": 7091.56, + "end": 7093.88, + "probability": 0.9984 + }, + { + "start": 7094.5, + "end": 7095.36, + "probability": 0.8724 + }, + { + "start": 7096.6, + "end": 7101.34, + "probability": 0.1099 + }, + { + "start": 7102.32, + "end": 7104.78, + "probability": 0.9883 + }, + { + "start": 7105.12, + "end": 7109.82, + "probability": 0.8157 + }, + { + "start": 7109.82, + "end": 7111.94, + "probability": 0.9966 + }, + { + "start": 7112.52, + "end": 7113.99, + "probability": 0.8934 + }, + { + "start": 7114.22, + "end": 7115.54, + "probability": 0.8813 + }, + { + "start": 7116.08, + "end": 7117.88, + "probability": 0.8704 + }, + { + "start": 7118.56, + "end": 7122.18, + "probability": 0.8528 + }, + { + "start": 7122.9, + "end": 7125.54, + "probability": 0.9379 + }, + { + "start": 7126.02, + "end": 7130.68, + "probability": 0.8725 + }, + { + "start": 7130.94, + "end": 7134.42, + "probability": 0.9658 + }, + { + "start": 7135.34, + "end": 7138.02, + "probability": 0.9948 + }, + { + "start": 7139.08, + "end": 7139.12, + "probability": 0.8423 + }, + { + "start": 7140.52, + "end": 7143.5, + "probability": 0.9857 + }, + { + "start": 7145.34, + "end": 7146.12, + "probability": 0.7355 + }, + { + "start": 7146.86, + "end": 7151.16, + "probability": 0.9954 + }, + { + "start": 7152.4, + "end": 7153.38, + "probability": 0.9882 + }, + { + "start": 7154.22, + "end": 7158.56, + "probability": 0.9969 + }, + { + "start": 7159.46, + "end": 7163.5, + "probability": 0.999 + }, + { + "start": 7165.0, + "end": 7166.88, + "probability": 0.871 + }, + { + "start": 7167.72, + "end": 7169.74, + "probability": 0.9985 + }, + { + "start": 7169.94, + "end": 7170.38, + "probability": 0.9437 + }, + { + "start": 7170.5, + "end": 7171.44, + "probability": 0.9393 + }, + { + "start": 7172.0, + "end": 7174.29, + "probability": 0.9814 + }, + { + "start": 7175.16, + "end": 7176.7, + "probability": 0.9834 + }, + { + "start": 7177.36, + "end": 7179.18, + "probability": 0.7613 + }, + { + "start": 7179.88, + "end": 7182.8, + "probability": 0.9774 + }, + { + "start": 7183.58, + "end": 7186.84, + "probability": 0.9895 + }, + { + "start": 7186.84, + "end": 7189.12, + "probability": 0.9927 + }, + { + "start": 7190.26, + "end": 7190.79, + "probability": 0.611 + }, + { + "start": 7191.14, + "end": 7193.92, + "probability": 0.9919 + }, + { + "start": 7194.68, + "end": 7198.76, + "probability": 0.9985 + }, + { + "start": 7199.66, + "end": 7204.68, + "probability": 0.9077 + }, + { + "start": 7207.7, + "end": 7209.52, + "probability": 0.9888 + }, + { + "start": 7210.42, + "end": 7211.58, + "probability": 0.9941 + }, + { + "start": 7212.3, + "end": 7214.62, + "probability": 0.936 + }, + { + "start": 7215.58, + "end": 7218.38, + "probability": 0.9825 + }, + { + "start": 7219.24, + "end": 7220.74, + "probability": 0.9961 + }, + { + "start": 7225.58, + "end": 7229.0, + "probability": 0.7016 + }, + { + "start": 7229.82, + "end": 7230.76, + "probability": 0.9581 + }, + { + "start": 7231.34, + "end": 7235.56, + "probability": 0.9861 + }, + { + "start": 7235.88, + "end": 7240.34, + "probability": 0.8265 + }, + { + "start": 7241.26, + "end": 7241.68, + "probability": 0.1447 + }, + { + "start": 7242.54, + "end": 7244.72, + "probability": 0.9761 + }, + { + "start": 7245.04, + "end": 7250.84, + "probability": 0.7632 + }, + { + "start": 7250.88, + "end": 7258.24, + "probability": 0.7832 + }, + { + "start": 7258.74, + "end": 7260.14, + "probability": 0.8819 + }, + { + "start": 7260.54, + "end": 7265.8, + "probability": 0.9766 + }, + { + "start": 7265.82, + "end": 7267.48, + "probability": 0.7298 + }, + { + "start": 7268.7, + "end": 7271.1, + "probability": 0.8202 + }, + { + "start": 7271.66, + "end": 7275.0, + "probability": 0.9868 + }, + { + "start": 7275.0, + "end": 7279.6, + "probability": 0.9219 + }, + { + "start": 7280.28, + "end": 7280.98, + "probability": 0.3447 + }, + { + "start": 7281.72, + "end": 7281.92, + "probability": 0.0451 + }, + { + "start": 7281.92, + "end": 7281.92, + "probability": 0.0414 + }, + { + "start": 7281.92, + "end": 7281.92, + "probability": 0.065 + }, + { + "start": 7282.0, + "end": 7284.04, + "probability": 0.8018 + }, + { + "start": 7284.14, + "end": 7288.38, + "probability": 0.9809 + }, + { + "start": 7288.46, + "end": 7289.14, + "probability": 0.8162 + }, + { + "start": 7289.78, + "end": 7291.62, + "probability": 0.8965 + }, + { + "start": 7291.76, + "end": 7294.16, + "probability": 0.5061 + }, + { + "start": 7294.58, + "end": 7296.66, + "probability": 0.3696 + }, + { + "start": 7299.58, + "end": 7302.1, + "probability": 0.3766 + }, + { + "start": 7315.8, + "end": 7317.27, + "probability": 0.615 + }, + { + "start": 7318.88, + "end": 7323.74, + "probability": 0.9938 + }, + { + "start": 7324.98, + "end": 7328.44, + "probability": 0.9472 + }, + { + "start": 7329.16, + "end": 7333.61, + "probability": 0.9272 + }, + { + "start": 7334.28, + "end": 7335.37, + "probability": 0.9141 + }, + { + "start": 7336.28, + "end": 7340.36, + "probability": 0.9943 + }, + { + "start": 7341.4, + "end": 7342.76, + "probability": 0.8636 + }, + { + "start": 7344.32, + "end": 7345.94, + "probability": 0.8186 + }, + { + "start": 7347.02, + "end": 7354.29, + "probability": 0.9527 + }, + { + "start": 7356.8, + "end": 7363.04, + "probability": 0.9902 + }, + { + "start": 7363.1, + "end": 7363.72, + "probability": 0.4764 + }, + { + "start": 7364.76, + "end": 7366.72, + "probability": 0.9194 + }, + { + "start": 7367.96, + "end": 7371.72, + "probability": 0.9973 + }, + { + "start": 7371.86, + "end": 7372.5, + "probability": 0.4542 + }, + { + "start": 7372.56, + "end": 7374.78, + "probability": 0.9758 + }, + { + "start": 7374.82, + "end": 7380.06, + "probability": 0.9817 + }, + { + "start": 7380.7, + "end": 7381.66, + "probability": 0.934 + }, + { + "start": 7381.8, + "end": 7382.76, + "probability": 0.9422 + }, + { + "start": 7382.84, + "end": 7383.26, + "probability": 0.5253 + }, + { + "start": 7383.4, + "end": 7384.53, + "probability": 0.768 + }, + { + "start": 7385.14, + "end": 7387.58, + "probability": 0.8735 + }, + { + "start": 7388.34, + "end": 7389.24, + "probability": 0.687 + }, + { + "start": 7389.32, + "end": 7393.98, + "probability": 0.9941 + }, + { + "start": 7394.82, + "end": 7398.1, + "probability": 0.9971 + }, + { + "start": 7398.84, + "end": 7399.58, + "probability": 0.7937 + }, + { + "start": 7400.28, + "end": 7402.3, + "probability": 0.9907 + }, + { + "start": 7403.18, + "end": 7403.96, + "probability": 0.6744 + }, + { + "start": 7404.2, + "end": 7405.8, + "probability": 0.3733 + }, + { + "start": 7405.86, + "end": 7407.5, + "probability": 0.7813 + }, + { + "start": 7407.54, + "end": 7408.22, + "probability": 0.6282 + }, + { + "start": 7409.1, + "end": 7413.24, + "probability": 0.8911 + }, + { + "start": 7413.3, + "end": 7415.05, + "probability": 0.9941 + }, + { + "start": 7415.16, + "end": 7418.52, + "probability": 0.9937 + }, + { + "start": 7419.18, + "end": 7420.52, + "probability": 0.8623 + }, + { + "start": 7420.64, + "end": 7422.5, + "probability": 0.9119 + }, + { + "start": 7422.96, + "end": 7423.64, + "probability": 0.9343 + }, + { + "start": 7424.04, + "end": 7424.94, + "probability": 0.9368 + }, + { + "start": 7425.94, + "end": 7430.56, + "probability": 0.7391 + }, + { + "start": 7431.44, + "end": 7434.38, + "probability": 0.9525 + }, + { + "start": 7434.88, + "end": 7440.26, + "probability": 0.9757 + }, + { + "start": 7440.44, + "end": 7440.98, + "probability": 0.8299 + }, + { + "start": 7441.04, + "end": 7444.88, + "probability": 0.9711 + }, + { + "start": 7445.46, + "end": 7449.5, + "probability": 0.6665 + }, + { + "start": 7450.98, + "end": 7453.36, + "probability": 0.9132 + }, + { + "start": 7453.48, + "end": 7454.99, + "probability": 0.9854 + }, + { + "start": 7455.14, + "end": 7456.24, + "probability": 0.9893 + }, + { + "start": 7456.4, + "end": 7456.78, + "probability": 0.4961 + }, + { + "start": 7458.08, + "end": 7459.06, + "probability": 0.5679 + }, + { + "start": 7459.14, + "end": 7463.63, + "probability": 0.9108 + }, + { + "start": 7463.94, + "end": 7466.4, + "probability": 0.9805 + }, + { + "start": 7466.56, + "end": 7468.33, + "probability": 0.8552 + }, + { + "start": 7469.26, + "end": 7469.96, + "probability": 0.9746 + }, + { + "start": 7470.04, + "end": 7470.72, + "probability": 0.8872 + }, + { + "start": 7471.02, + "end": 7471.9, + "probability": 0.9001 + }, + { + "start": 7471.98, + "end": 7474.14, + "probability": 0.9197 + }, + { + "start": 7474.38, + "end": 7478.44, + "probability": 0.8313 + }, + { + "start": 7479.1, + "end": 7479.96, + "probability": 0.8523 + }, + { + "start": 7480.04, + "end": 7480.44, + "probability": 0.6744 + }, + { + "start": 7480.48, + "end": 7482.32, + "probability": 0.9554 + }, + { + "start": 7482.72, + "end": 7484.41, + "probability": 0.9499 + }, + { + "start": 7484.62, + "end": 7486.48, + "probability": 0.7115 + }, + { + "start": 7487.1, + "end": 7490.59, + "probability": 0.8131 + }, + { + "start": 7491.16, + "end": 7493.38, + "probability": 0.9189 + }, + { + "start": 7493.94, + "end": 7498.14, + "probability": 0.9814 + }, + { + "start": 7498.14, + "end": 7501.48, + "probability": 0.9836 + }, + { + "start": 7502.12, + "end": 7504.42, + "probability": 0.8921 + }, + { + "start": 7504.82, + "end": 7505.98, + "probability": 0.9553 + }, + { + "start": 7506.14, + "end": 7507.74, + "probability": 0.9262 + }, + { + "start": 7508.2, + "end": 7509.47, + "probability": 0.8693 + }, + { + "start": 7510.04, + "end": 7510.58, + "probability": 0.89 + }, + { + "start": 7510.64, + "end": 7511.74, + "probability": 0.962 + }, + { + "start": 7511.84, + "end": 7513.88, + "probability": 0.7869 + }, + { + "start": 7514.34, + "end": 7516.06, + "probability": 0.4747 + }, + { + "start": 7516.08, + "end": 7517.32, + "probability": 0.7392 + }, + { + "start": 7517.88, + "end": 7520.66, + "probability": 0.9927 + }, + { + "start": 7520.92, + "end": 7522.54, + "probability": 0.9508 + }, + { + "start": 7523.04, + "end": 7524.54, + "probability": 0.7537 + }, + { + "start": 7524.64, + "end": 7525.28, + "probability": 0.8523 + }, + { + "start": 7525.48, + "end": 7525.94, + "probability": 0.7751 + }, + { + "start": 7526.18, + "end": 7526.66, + "probability": 0.2686 + }, + { + "start": 7526.98, + "end": 7527.4, + "probability": 0.7678 + }, + { + "start": 7528.14, + "end": 7530.0, + "probability": 0.9397 + }, + { + "start": 7530.1, + "end": 7530.92, + "probability": 0.8364 + }, + { + "start": 7531.02, + "end": 7535.26, + "probability": 0.8594 + }, + { + "start": 7536.0, + "end": 7539.46, + "probability": 0.9951 + }, + { + "start": 7540.84, + "end": 7541.28, + "probability": 0.0404 + }, + { + "start": 7541.28, + "end": 7541.84, + "probability": 0.0485 + }, + { + "start": 7542.2, + "end": 7543.34, + "probability": 0.8418 + }, + { + "start": 7543.52, + "end": 7544.18, + "probability": 0.7514 + }, + { + "start": 7544.26, + "end": 7545.82, + "probability": 0.9611 + }, + { + "start": 7546.06, + "end": 7546.32, + "probability": 0.8427 + }, + { + "start": 7546.78, + "end": 7549.08, + "probability": 0.6523 + }, + { + "start": 7549.16, + "end": 7550.46, + "probability": 0.755 + }, + { + "start": 7553.98, + "end": 7555.96, + "probability": 0.8599 + }, + { + "start": 7562.8, + "end": 7562.8, + "probability": 0.0186 + }, + { + "start": 7562.8, + "end": 7562.8, + "probability": 0.1187 + }, + { + "start": 7562.8, + "end": 7562.8, + "probability": 0.2042 + }, + { + "start": 7562.8, + "end": 7562.82, + "probability": 0.0591 + }, + { + "start": 7576.56, + "end": 7577.22, + "probability": 0.1939 + }, + { + "start": 7583.28, + "end": 7589.92, + "probability": 0.9899 + }, + { + "start": 7591.22, + "end": 7591.38, + "probability": 0.4368 + }, + { + "start": 7591.44, + "end": 7591.86, + "probability": 0.7592 + }, + { + "start": 7591.96, + "end": 7592.72, + "probability": 0.6884 + }, + { + "start": 7592.78, + "end": 7592.9, + "probability": 0.2327 + }, + { + "start": 7593.0, + "end": 7593.64, + "probability": 0.9272 + }, + { + "start": 7594.06, + "end": 7595.4, + "probability": 0.902 + }, + { + "start": 7595.54, + "end": 7596.58, + "probability": 0.95 + }, + { + "start": 7597.52, + "end": 7599.48, + "probability": 0.7988 + }, + { + "start": 7600.4, + "end": 7603.3, + "probability": 0.9866 + }, + { + "start": 7604.16, + "end": 7606.4, + "probability": 0.788 + }, + { + "start": 7606.48, + "end": 7607.82, + "probability": 0.9369 + }, + { + "start": 7608.28, + "end": 7611.68, + "probability": 0.9702 + }, + { + "start": 7613.41, + "end": 7615.06, + "probability": 0.6503 + }, + { + "start": 7615.1, + "end": 7615.58, + "probability": 0.6381 + }, + { + "start": 7616.36, + "end": 7616.96, + "probability": 0.4621 + }, + { + "start": 7618.06, + "end": 7621.46, + "probability": 0.9447 + }, + { + "start": 7622.74, + "end": 7623.96, + "probability": 0.9081 + }, + { + "start": 7625.02, + "end": 7626.26, + "probability": 0.9775 + }, + { + "start": 7627.5, + "end": 7632.37, + "probability": 0.9713 + }, + { + "start": 7633.8, + "end": 7637.18, + "probability": 0.7812 + }, + { + "start": 7637.84, + "end": 7639.28, + "probability": 0.9575 + }, + { + "start": 7640.26, + "end": 7643.04, + "probability": 0.7611 + }, + { + "start": 7643.82, + "end": 7646.02, + "probability": 0.7277 + }, + { + "start": 7646.58, + "end": 7649.4, + "probability": 0.9824 + }, + { + "start": 7650.36, + "end": 7656.68, + "probability": 0.9439 + }, + { + "start": 7657.22, + "end": 7657.94, + "probability": 0.5027 + }, + { + "start": 7658.86, + "end": 7661.33, + "probability": 0.1811 + }, + { + "start": 7662.24, + "end": 7663.5, + "probability": 0.4117 + }, + { + "start": 7663.78, + "end": 7664.32, + "probability": 0.7074 + }, + { + "start": 7664.42, + "end": 7665.84, + "probability": 0.8195 + }, + { + "start": 7666.34, + "end": 7669.08, + "probability": 0.915 + }, + { + "start": 7669.96, + "end": 7673.58, + "probability": 0.8722 + }, + { + "start": 7674.28, + "end": 7678.4, + "probability": 0.9653 + }, + { + "start": 7678.7, + "end": 7680.86, + "probability": 0.6243 + }, + { + "start": 7682.14, + "end": 7685.02, + "probability": 0.7635 + }, + { + "start": 7686.02, + "end": 7689.82, + "probability": 0.9576 + }, + { + "start": 7690.86, + "end": 7691.52, + "probability": 0.9403 + }, + { + "start": 7693.4, + "end": 7694.18, + "probability": 0.6745 + }, + { + "start": 7694.78, + "end": 7700.48, + "probability": 0.5096 + }, + { + "start": 7700.48, + "end": 7705.6, + "probability": 0.9965 + }, + { + "start": 7705.8, + "end": 7707.82, + "probability": 0.8801 + }, + { + "start": 7708.34, + "end": 7712.16, + "probability": 0.6906 + }, + { + "start": 7713.44, + "end": 7718.92, + "probability": 0.8977 + }, + { + "start": 7719.98, + "end": 7726.96, + "probability": 0.9021 + }, + { + "start": 7727.48, + "end": 7730.7, + "probability": 0.9471 + }, + { + "start": 7730.96, + "end": 7733.74, + "probability": 0.7618 + }, + { + "start": 7733.94, + "end": 7735.46, + "probability": 0.8038 + }, + { + "start": 7735.8, + "end": 7737.64, + "probability": 0.7872 + }, + { + "start": 7738.12, + "end": 7739.02, + "probability": 0.8574 + }, + { + "start": 7739.18, + "end": 7739.74, + "probability": 0.6563 + }, + { + "start": 7740.22, + "end": 7741.12, + "probability": 0.8682 + }, + { + "start": 7744.88, + "end": 7748.62, + "probability": 0.8168 + }, + { + "start": 7749.08, + "end": 7751.03, + "probability": 0.4834 + }, + { + "start": 7751.3, + "end": 7753.24, + "probability": 0.5226 + }, + { + "start": 7753.5, + "end": 7753.98, + "probability": 0.2014 + }, + { + "start": 7753.98, + "end": 7756.9, + "probability": 0.8547 + }, + { + "start": 7757.08, + "end": 7757.64, + "probability": 0.6871 + }, + { + "start": 7757.64, + "end": 7757.9, + "probability": 0.5715 + }, + { + "start": 7758.58, + "end": 7761.22, + "probability": 0.665 + }, + { + "start": 7762.24, + "end": 7766.34, + "probability": 0.6959 + }, + { + "start": 7767.26, + "end": 7768.88, + "probability": 0.3683 + }, + { + "start": 7769.18, + "end": 7770.5, + "probability": 0.8459 + }, + { + "start": 7770.72, + "end": 7773.42, + "probability": 0.9216 + }, + { + "start": 7774.14, + "end": 7775.42, + "probability": 0.9126 + }, + { + "start": 7776.02, + "end": 7776.2, + "probability": 0.2888 + }, + { + "start": 7776.52, + "end": 7778.3, + "probability": 0.72 + }, + { + "start": 7778.64, + "end": 7779.15, + "probability": 0.6765 + }, + { + "start": 7779.88, + "end": 7781.01, + "probability": 0.8237 + }, + { + "start": 7781.04, + "end": 7782.9, + "probability": 0.7403 + }, + { + "start": 7783.26, + "end": 7783.42, + "probability": 0.0148 + }, + { + "start": 7783.42, + "end": 7785.5, + "probability": 0.857 + }, + { + "start": 7785.58, + "end": 7789.66, + "probability": 0.9469 + }, + { + "start": 7789.7, + "end": 7790.06, + "probability": 0.5357 + }, + { + "start": 7790.1, + "end": 7792.64, + "probability": 0.7616 + }, + { + "start": 7792.74, + "end": 7793.04, + "probability": 0.3008 + }, + { + "start": 7793.1, + "end": 7793.92, + "probability": 0.8418 + }, + { + "start": 7794.18, + "end": 7798.46, + "probability": 0.8573 + }, + { + "start": 7799.12, + "end": 7804.34, + "probability": 0.934 + }, + { + "start": 7805.28, + "end": 7806.16, + "probability": 0.5003 + }, + { + "start": 7806.18, + "end": 7807.28, + "probability": 0.7451 + }, + { + "start": 7807.28, + "end": 7811.36, + "probability": 0.6339 + }, + { + "start": 7811.48, + "end": 7816.14, + "probability": 0.8728 + }, + { + "start": 7833.28, + "end": 7835.06, + "probability": 0.4441 + }, + { + "start": 7835.94, + "end": 7836.54, + "probability": 0.521 + }, + { + "start": 7836.54, + "end": 7839.46, + "probability": 0.9771 + }, + { + "start": 7839.52, + "end": 7840.32, + "probability": 0.9367 + }, + { + "start": 7840.92, + "end": 7844.22, + "probability": 0.974 + }, + { + "start": 7845.48, + "end": 7850.84, + "probability": 0.98 + }, + { + "start": 7850.84, + "end": 7855.9, + "probability": 0.9345 + }, + { + "start": 7856.74, + "end": 7857.84, + "probability": 0.9046 + }, + { + "start": 7859.44, + "end": 7860.44, + "probability": 0.6715 + }, + { + "start": 7860.54, + "end": 7861.34, + "probability": 0.7562 + }, + { + "start": 7861.48, + "end": 7862.5, + "probability": 0.8796 + }, + { + "start": 7862.58, + "end": 7864.7, + "probability": 0.9971 + }, + { + "start": 7865.3, + "end": 7869.42, + "probability": 0.9832 + }, + { + "start": 7869.94, + "end": 7874.04, + "probability": 0.7962 + }, + { + "start": 7875.52, + "end": 7876.16, + "probability": 0.7122 + }, + { + "start": 7876.4, + "end": 7880.88, + "probability": 0.9748 + }, + { + "start": 7881.2, + "end": 7883.12, + "probability": 0.9417 + }, + { + "start": 7883.58, + "end": 7887.44, + "probability": 0.9769 + }, + { + "start": 7887.56, + "end": 7894.02, + "probability": 0.9976 + }, + { + "start": 7895.38, + "end": 7898.16, + "probability": 0.9971 + }, + { + "start": 7898.24, + "end": 7900.6, + "probability": 0.999 + }, + { + "start": 7901.4, + "end": 7902.96, + "probability": 0.9933 + }, + { + "start": 7903.14, + "end": 7904.62, + "probability": 0.6854 + }, + { + "start": 7904.66, + "end": 7905.86, + "probability": 0.9223 + }, + { + "start": 7906.28, + "end": 7907.06, + "probability": 0.7176 + }, + { + "start": 7907.84, + "end": 7912.28, + "probability": 0.969 + }, + { + "start": 7912.94, + "end": 7917.26, + "probability": 0.995 + }, + { + "start": 7917.94, + "end": 7918.8, + "probability": 0.3982 + }, + { + "start": 7918.92, + "end": 7922.54, + "probability": 0.8742 + }, + { + "start": 7922.64, + "end": 7924.46, + "probability": 0.931 + }, + { + "start": 7924.54, + "end": 7928.88, + "probability": 0.9495 + }, + { + "start": 7930.44, + "end": 7931.98, + "probability": 0.8843 + }, + { + "start": 7932.06, + "end": 7932.89, + "probability": 0.932 + }, + { + "start": 7933.6, + "end": 7934.48, + "probability": 0.7407 + }, + { + "start": 7935.18, + "end": 7936.04, + "probability": 0.9639 + }, + { + "start": 7936.82, + "end": 7940.16, + "probability": 0.9788 + }, + { + "start": 7940.8, + "end": 7942.0, + "probability": 0.8047 + }, + { + "start": 7942.6, + "end": 7945.38, + "probability": 0.9951 + }, + { + "start": 7945.42, + "end": 7947.78, + "probability": 0.9949 + }, + { + "start": 7948.0, + "end": 7951.34, + "probability": 0.988 + }, + { + "start": 7952.58, + "end": 7954.74, + "probability": 0.9072 + }, + { + "start": 7954.94, + "end": 7956.76, + "probability": 0.9533 + }, + { + "start": 7958.28, + "end": 7960.06, + "probability": 0.6971 + }, + { + "start": 7960.86, + "end": 7962.86, + "probability": 0.993 + }, + { + "start": 7963.76, + "end": 7969.48, + "probability": 0.9951 + }, + { + "start": 7969.48, + "end": 7969.92, + "probability": 0.0313 + }, + { + "start": 7970.86, + "end": 7973.04, + "probability": 0.9861 + }, + { + "start": 7973.58, + "end": 7974.76, + "probability": 0.8996 + }, + { + "start": 7975.5, + "end": 7976.74, + "probability": 0.9378 + }, + { + "start": 7977.18, + "end": 7978.51, + "probability": 0.9922 + }, + { + "start": 7979.26, + "end": 7981.28, + "probability": 0.9255 + }, + { + "start": 7981.96, + "end": 7983.54, + "probability": 0.8067 + }, + { + "start": 7984.06, + "end": 7986.66, + "probability": 0.9041 + }, + { + "start": 7987.22, + "end": 7990.76, + "probability": 0.9955 + }, + { + "start": 7991.26, + "end": 7991.98, + "probability": 0.7408 + }, + { + "start": 7993.52, + "end": 7995.14, + "probability": 0.7869 + }, + { + "start": 7995.76, + "end": 7996.22, + "probability": 0.8678 + }, + { + "start": 7997.88, + "end": 7999.58, + "probability": 0.9971 + }, + { + "start": 8000.14, + "end": 8002.54, + "probability": 0.9224 + }, + { + "start": 8003.22, + "end": 8003.56, + "probability": 0.4574 + }, + { + "start": 8003.62, + "end": 8004.12, + "probability": 0.849 + }, + { + "start": 8004.24, + "end": 8006.26, + "probability": 0.9592 + }, + { + "start": 8006.66, + "end": 8009.56, + "probability": 0.7712 + }, + { + "start": 8010.52, + "end": 8013.74, + "probability": 0.944 + }, + { + "start": 8014.56, + "end": 8017.82, + "probability": 0.9343 + }, + { + "start": 8017.92, + "end": 8019.04, + "probability": 0.8108 + }, + { + "start": 8019.46, + "end": 8020.88, + "probability": 0.8663 + }, + { + "start": 8021.2, + "end": 8021.72, + "probability": 0.1266 + }, + { + "start": 8021.72, + "end": 8023.34, + "probability": 0.9389 + }, + { + "start": 8024.08, + "end": 8024.9, + "probability": 0.8549 + }, + { + "start": 8025.04, + "end": 8025.94, + "probability": 0.9399 + }, + { + "start": 8026.08, + "end": 8027.38, + "probability": 0.9627 + }, + { + "start": 8027.84, + "end": 8029.16, + "probability": 0.9895 + }, + { + "start": 8029.72, + "end": 8030.85, + "probability": 0.9905 + }, + { + "start": 8031.52, + "end": 8033.58, + "probability": 0.8555 + }, + { + "start": 8034.64, + "end": 8037.22, + "probability": 0.8612 + }, + { + "start": 8037.28, + "end": 8039.46, + "probability": 0.9689 + }, + { + "start": 8039.46, + "end": 8041.42, + "probability": 0.9891 + }, + { + "start": 8041.7, + "end": 8043.08, + "probability": 0.9894 + }, + { + "start": 8043.48, + "end": 8045.1, + "probability": 0.9613 + }, + { + "start": 8045.66, + "end": 8046.78, + "probability": 0.9938 + }, + { + "start": 8046.82, + "end": 8047.86, + "probability": 0.6577 + }, + { + "start": 8047.86, + "end": 8049.26, + "probability": 0.9766 + }, + { + "start": 8049.92, + "end": 8051.58, + "probability": 0.8153 + }, + { + "start": 8051.7, + "end": 8053.06, + "probability": 0.88 + }, + { + "start": 8054.7, + "end": 8056.34, + "probability": 0.9575 + }, + { + "start": 8074.72, + "end": 8074.72, + "probability": 0.0162 + }, + { + "start": 8074.72, + "end": 8074.72, + "probability": 0.0062 + }, + { + "start": 8074.72, + "end": 8075.0, + "probability": 0.6292 + }, + { + "start": 8075.08, + "end": 8076.84, + "probability": 0.7911 + }, + { + "start": 8077.38, + "end": 8079.7, + "probability": 0.9252 + }, + { + "start": 8080.42, + "end": 8081.76, + "probability": 0.7129 + }, + { + "start": 8082.28, + "end": 8083.0, + "probability": 0.503 + }, + { + "start": 8083.06, + "end": 8083.58, + "probability": 0.9826 + }, + { + "start": 8084.66, + "end": 8085.22, + "probability": 0.5263 + }, + { + "start": 8085.88, + "end": 8089.46, + "probability": 0.9943 + }, + { + "start": 8090.22, + "end": 8090.86, + "probability": 0.8879 + }, + { + "start": 8091.4, + "end": 8093.48, + "probability": 0.8918 + }, + { + "start": 8093.7, + "end": 8094.68, + "probability": 0.2049 + }, + { + "start": 8095.02, + "end": 8099.06, + "probability": 0.9928 + }, + { + "start": 8099.16, + "end": 8103.6, + "probability": 0.0319 + }, + { + "start": 8104.42, + "end": 8104.77, + "probability": 0.0861 + }, + { + "start": 8104.98, + "end": 8105.66, + "probability": 0.3021 + }, + { + "start": 8105.66, + "end": 8106.92, + "probability": 0.1882 + }, + { + "start": 8106.92, + "end": 8108.06, + "probability": 0.1731 + }, + { + "start": 8108.28, + "end": 8111.43, + "probability": 0.8602 + }, + { + "start": 8112.62, + "end": 8113.46, + "probability": 0.7272 + }, + { + "start": 8114.5, + "end": 8120.0, + "probability": 0.895 + }, + { + "start": 8120.76, + "end": 8122.14, + "probability": 0.361 + }, + { + "start": 8122.18, + "end": 8123.1, + "probability": 0.8306 + }, + { + "start": 8123.2, + "end": 8127.38, + "probability": 0.8629 + }, + { + "start": 8127.74, + "end": 8128.21, + "probability": 0.884 + }, + { + "start": 8128.8, + "end": 8129.57, + "probability": 0.8364 + }, + { + "start": 8130.8, + "end": 8132.68, + "probability": 0.8082 + }, + { + "start": 8134.36, + "end": 8135.74, + "probability": 0.7491 + }, + { + "start": 8136.06, + "end": 8137.3, + "probability": 0.8782 + }, + { + "start": 8137.54, + "end": 8138.72, + "probability": 0.7588 + }, + { + "start": 8138.78, + "end": 8140.44, + "probability": 0.8502 + }, + { + "start": 8140.54, + "end": 8142.1, + "probability": 0.871 + }, + { + "start": 8144.68, + "end": 8147.56, + "probability": 0.8701 + }, + { + "start": 8149.82, + "end": 8156.26, + "probability": 0.9775 + }, + { + "start": 8157.82, + "end": 8158.54, + "probability": 0.9033 + }, + { + "start": 8159.8, + "end": 8163.86, + "probability": 0.896 + }, + { + "start": 8167.64, + "end": 8170.6, + "probability": 0.9912 + }, + { + "start": 8171.64, + "end": 8173.12, + "probability": 0.9902 + }, + { + "start": 8173.9, + "end": 8176.78, + "probability": 0.989 + }, + { + "start": 8177.58, + "end": 8179.66, + "probability": 0.7828 + }, + { + "start": 8180.22, + "end": 8182.3, + "probability": 0.9507 + }, + { + "start": 8183.8, + "end": 8185.92, + "probability": 0.5155 + }, + { + "start": 8189.08, + "end": 8191.84, + "probability": 0.9083 + }, + { + "start": 8195.12, + "end": 8198.16, + "probability": 0.7141 + }, + { + "start": 8200.62, + "end": 8203.42, + "probability": 0.5805 + }, + { + "start": 8205.04, + "end": 8208.56, + "probability": 0.987 + }, + { + "start": 8209.34, + "end": 8209.72, + "probability": 0.569 + }, + { + "start": 8211.82, + "end": 8212.3, + "probability": 0.7907 + }, + { + "start": 8215.56, + "end": 8219.42, + "probability": 0.6257 + }, + { + "start": 8221.0, + "end": 8222.0, + "probability": 0.9314 + }, + { + "start": 8222.42, + "end": 8223.44, + "probability": 0.9272 + }, + { + "start": 8223.5, + "end": 8224.56, + "probability": 0.9334 + }, + { + "start": 8225.26, + "end": 8226.94, + "probability": 0.8639 + }, + { + "start": 8228.04, + "end": 8228.98, + "probability": 0.8084 + }, + { + "start": 8230.32, + "end": 8232.3, + "probability": 0.8739 + }, + { + "start": 8234.6, + "end": 8236.18, + "probability": 0.9537 + }, + { + "start": 8237.72, + "end": 8239.16, + "probability": 0.8345 + }, + { + "start": 8239.84, + "end": 8240.3, + "probability": 0.5864 + }, + { + "start": 8241.16, + "end": 8242.18, + "probability": 0.4844 + }, + { + "start": 8242.32, + "end": 8244.64, + "probability": 0.9591 + }, + { + "start": 8245.7, + "end": 8247.94, + "probability": 0.95 + }, + { + "start": 8250.64, + "end": 8252.68, + "probability": 0.9838 + }, + { + "start": 8254.16, + "end": 8254.85, + "probability": 0.9821 + }, + { + "start": 8255.46, + "end": 8259.04, + "probability": 0.0282 + }, + { + "start": 8260.46, + "end": 8263.2, + "probability": 0.1034 + }, + { + "start": 8263.2, + "end": 8266.44, + "probability": 0.0262 + }, + { + "start": 8266.52, + "end": 8267.26, + "probability": 0.0289 + }, + { + "start": 8267.26, + "end": 8267.26, + "probability": 0.0697 + }, + { + "start": 8267.26, + "end": 8267.26, + "probability": 0.1377 + }, + { + "start": 8267.26, + "end": 8267.58, + "probability": 0.036 + }, + { + "start": 8267.58, + "end": 8274.56, + "probability": 0.1216 + }, + { + "start": 8276.06, + "end": 8276.3, + "probability": 0.0046 + }, + { + "start": 8276.3, + "end": 8276.3, + "probability": 0.2125 + }, + { + "start": 8276.3, + "end": 8276.3, + "probability": 0.1301 + }, + { + "start": 8276.3, + "end": 8276.8, + "probability": 0.4582 + }, + { + "start": 8277.0, + "end": 8278.48, + "probability": 0.7837 + }, + { + "start": 8278.96, + "end": 8280.03, + "probability": 0.8154 + }, + { + "start": 8280.68, + "end": 8283.1, + "probability": 0.9342 + }, + { + "start": 8283.9, + "end": 8283.9, + "probability": 0.2847 + }, + { + "start": 8283.9, + "end": 8286.26, + "probability": 0.8723 + }, + { + "start": 8286.98, + "end": 8288.8, + "probability": 0.4868 + }, + { + "start": 8288.84, + "end": 8292.64, + "probability": 0.9534 + }, + { + "start": 8292.86, + "end": 8293.76, + "probability": 0.9485 + }, + { + "start": 8294.26, + "end": 8298.4, + "probability": 0.9568 + }, + { + "start": 8298.5, + "end": 8299.62, + "probability": 0.9609 + }, + { + "start": 8299.74, + "end": 8300.34, + "probability": 0.9622 + }, + { + "start": 8302.4, + "end": 8304.38, + "probability": 0.9556 + }, + { + "start": 8305.48, + "end": 8307.22, + "probability": 0.8567 + }, + { + "start": 8307.68, + "end": 8309.6, + "probability": 0.4966 + }, + { + "start": 8309.62, + "end": 8310.98, + "probability": 0.7989 + }, + { + "start": 8315.4, + "end": 8316.29, + "probability": 0.505 + }, + { + "start": 8317.92, + "end": 8321.24, + "probability": 0.7781 + }, + { + "start": 8322.02, + "end": 8323.48, + "probability": 0.9586 + }, + { + "start": 8323.56, + "end": 8325.32, + "probability": 0.3736 + }, + { + "start": 8326.2, + "end": 8327.0, + "probability": 0.3387 + }, + { + "start": 8327.52, + "end": 8328.28, + "probability": 0.4447 + }, + { + "start": 8328.28, + "end": 8329.64, + "probability": 0.6604 + }, + { + "start": 8336.64, + "end": 8338.22, + "probability": 0.6422 + }, + { + "start": 8338.76, + "end": 8339.76, + "probability": 0.8313 + }, + { + "start": 8341.28, + "end": 8349.54, + "probability": 0.8415 + }, + { + "start": 8351.62, + "end": 8352.82, + "probability": 0.8438 + }, + { + "start": 8353.92, + "end": 8356.24, + "probability": 0.976 + }, + { + "start": 8357.78, + "end": 8359.1, + "probability": 0.8486 + }, + { + "start": 8360.32, + "end": 8360.42, + "probability": 0.0016 + }, + { + "start": 8362.5, + "end": 8366.62, + "probability": 0.5976 + }, + { + "start": 8368.28, + "end": 8372.26, + "probability": 0.9562 + }, + { + "start": 8374.02, + "end": 8376.8, + "probability": 0.8783 + }, + { + "start": 8377.6, + "end": 8380.98, + "probability": 0.9789 + }, + { + "start": 8381.84, + "end": 8382.0, + "probability": 0.0084 + }, + { + "start": 8382.0, + "end": 8383.86, + "probability": 0.8918 + }, + { + "start": 8383.86, + "end": 8385.54, + "probability": 0.3849 + }, + { + "start": 8386.02, + "end": 8387.5, + "probability": 0.5255 + }, + { + "start": 8388.52, + "end": 8389.22, + "probability": 0.5065 + }, + { + "start": 8391.44, + "end": 8395.58, + "probability": 0.9473 + }, + { + "start": 8396.78, + "end": 8400.24, + "probability": 0.9198 + }, + { + "start": 8401.12, + "end": 8402.26, + "probability": 0.5813 + }, + { + "start": 8402.3, + "end": 8408.14, + "probability": 0.9868 + }, + { + "start": 8410.14, + "end": 8413.8, + "probability": 0.9097 + }, + { + "start": 8415.12, + "end": 8416.98, + "probability": 0.9216 + }, + { + "start": 8420.48, + "end": 8424.2, + "probability": 0.9814 + }, + { + "start": 8427.14, + "end": 8427.77, + "probability": 0.9221 + }, + { + "start": 8430.74, + "end": 8432.86, + "probability": 0.99 + }, + { + "start": 8433.88, + "end": 8435.06, + "probability": 0.8403 + }, + { + "start": 8436.38, + "end": 8437.78, + "probability": 0.9888 + }, + { + "start": 8441.64, + "end": 8443.32, + "probability": 0.9683 + }, + { + "start": 8448.3, + "end": 8451.38, + "probability": 0.9343 + }, + { + "start": 8452.14, + "end": 8455.12, + "probability": 0.7829 + }, + { + "start": 8457.28, + "end": 8459.66, + "probability": 0.4691 + }, + { + "start": 8459.86, + "end": 8461.2, + "probability": 0.4843 + }, + { + "start": 8461.64, + "end": 8462.26, + "probability": 0.7861 + }, + { + "start": 8462.5, + "end": 8462.78, + "probability": 0.6539 + }, + { + "start": 8462.94, + "end": 8463.28, + "probability": 0.3916 + }, + { + "start": 8463.32, + "end": 8464.86, + "probability": 0.6152 + }, + { + "start": 8464.94, + "end": 8466.28, + "probability": 0.632 + }, + { + "start": 8466.56, + "end": 8466.86, + "probability": 0.4052 + }, + { + "start": 8467.52, + "end": 8468.36, + "probability": 0.6801 + }, + { + "start": 8468.36, + "end": 8470.66, + "probability": 0.6579 + }, + { + "start": 8472.46, + "end": 8474.12, + "probability": 0.6533 + }, + { + "start": 8475.3, + "end": 8476.2, + "probability": 0.9691 + }, + { + "start": 8476.2, + "end": 8477.19, + "probability": 0.9459 + }, + { + "start": 8477.9, + "end": 8479.64, + "probability": 0.9568 + }, + { + "start": 8481.72, + "end": 8489.78, + "probability": 0.9564 + }, + { + "start": 8490.84, + "end": 8493.64, + "probability": 0.9958 + }, + { + "start": 8494.04, + "end": 8494.86, + "probability": 0.6958 + }, + { + "start": 8495.04, + "end": 8499.6, + "probability": 0.9734 + }, + { + "start": 8500.12, + "end": 8500.54, + "probability": 0.5341 + }, + { + "start": 8501.3, + "end": 8503.04, + "probability": 0.8662 + }, + { + "start": 8503.46, + "end": 8504.46, + "probability": 0.7665 + }, + { + "start": 8505.28, + "end": 8507.44, + "probability": 0.6389 + }, + { + "start": 8507.8, + "end": 8509.02, + "probability": 0.9567 + }, + { + "start": 8510.46, + "end": 8517.36, + "probability": 0.9218 + }, + { + "start": 8517.36, + "end": 8517.48, + "probability": 0.1231 + }, + { + "start": 8518.22, + "end": 8520.4, + "probability": 0.9763 + }, + { + "start": 8520.74, + "end": 8527.46, + "probability": 0.7264 + }, + { + "start": 8528.26, + "end": 8531.58, + "probability": 0.7779 + }, + { + "start": 8531.66, + "end": 8532.66, + "probability": 0.8619 + }, + { + "start": 8532.74, + "end": 8535.94, + "probability": 0.9832 + }, + { + "start": 8536.38, + "end": 8542.4, + "probability": 0.789 + }, + { + "start": 8542.6, + "end": 8543.04, + "probability": 0.5841 + }, + { + "start": 8544.02, + "end": 8545.74, + "probability": 0.7788 + }, + { + "start": 8545.8, + "end": 8547.24, + "probability": 0.8737 + }, + { + "start": 8551.14, + "end": 8554.1, + "probability": 0.71 + }, + { + "start": 8565.46, + "end": 8568.3, + "probability": 0.685 + }, + { + "start": 8569.54, + "end": 8571.72, + "probability": 0.8536 + }, + { + "start": 8572.74, + "end": 8576.3, + "probability": 0.9358 + }, + { + "start": 8577.12, + "end": 8579.54, + "probability": 0.9438 + }, + { + "start": 8579.68, + "end": 8582.18, + "probability": 0.599 + }, + { + "start": 8582.9, + "end": 8585.64, + "probability": 0.8724 + }, + { + "start": 8585.78, + "end": 8588.38, + "probability": 0.9941 + }, + { + "start": 8589.32, + "end": 8594.54, + "probability": 0.9789 + }, + { + "start": 8595.24, + "end": 8600.14, + "probability": 0.9821 + }, + { + "start": 8600.32, + "end": 8600.95, + "probability": 0.9545 + }, + { + "start": 8601.5, + "end": 8603.52, + "probability": 0.9059 + }, + { + "start": 8603.96, + "end": 8608.4, + "probability": 0.9805 + }, + { + "start": 8608.4, + "end": 8614.32, + "probability": 0.9971 + }, + { + "start": 8615.14, + "end": 8621.32, + "probability": 0.9205 + }, + { + "start": 8621.9, + "end": 8623.02, + "probability": 0.7098 + }, + { + "start": 8623.3, + "end": 8626.66, + "probability": 0.7527 + }, + { + "start": 8626.68, + "end": 8629.72, + "probability": 0.9493 + }, + { + "start": 8630.0, + "end": 8632.74, + "probability": 0.9358 + }, + { + "start": 8632.76, + "end": 8633.28, + "probability": 0.5254 + }, + { + "start": 8634.0, + "end": 8639.04, + "probability": 0.9972 + }, + { + "start": 8639.6, + "end": 8643.06, + "probability": 0.9966 + }, + { + "start": 8643.06, + "end": 8646.68, + "probability": 0.9955 + }, + { + "start": 8646.78, + "end": 8647.6, + "probability": 0.7383 + }, + { + "start": 8648.1, + "end": 8651.46, + "probability": 0.9612 + }, + { + "start": 8652.34, + "end": 8655.58, + "probability": 0.6499 + }, + { + "start": 8655.58, + "end": 8658.7, + "probability": 0.9868 + }, + { + "start": 8658.8, + "end": 8659.8, + "probability": 0.78 + }, + { + "start": 8659.94, + "end": 8660.5, + "probability": 0.8702 + }, + { + "start": 8660.96, + "end": 8662.32, + "probability": 0.7616 + }, + { + "start": 8662.9, + "end": 8667.92, + "probability": 0.995 + }, + { + "start": 8668.24, + "end": 8669.98, + "probability": 0.9737 + }, + { + "start": 8670.18, + "end": 8677.1, + "probability": 0.9966 + }, + { + "start": 8677.18, + "end": 8681.2, + "probability": 0.9951 + }, + { + "start": 8681.92, + "end": 8688.74, + "probability": 0.8955 + }, + { + "start": 8689.12, + "end": 8691.9, + "probability": 0.9472 + }, + { + "start": 8692.24, + "end": 8698.48, + "probability": 0.82 + }, + { + "start": 8699.02, + "end": 8700.32, + "probability": 0.8251 + }, + { + "start": 8701.36, + "end": 8706.28, + "probability": 0.8482 + }, + { + "start": 8707.08, + "end": 8712.06, + "probability": 0.9434 + }, + { + "start": 8712.66, + "end": 8715.12, + "probability": 0.8879 + }, + { + "start": 8715.72, + "end": 8718.48, + "probability": 0.8824 + }, + { + "start": 8718.74, + "end": 8720.6, + "probability": 0.9025 + }, + { + "start": 8720.98, + "end": 8723.24, + "probability": 0.8346 + }, + { + "start": 8723.84, + "end": 8730.22, + "probability": 0.8162 + }, + { + "start": 8730.5, + "end": 8731.55, + "probability": 0.7628 + }, + { + "start": 8732.36, + "end": 8735.46, + "probability": 0.9639 + }, + { + "start": 8736.28, + "end": 8738.86, + "probability": 0.77 + }, + { + "start": 8738.96, + "end": 8742.46, + "probability": 0.9943 + }, + { + "start": 8743.08, + "end": 8743.98, + "probability": 0.8636 + }, + { + "start": 8745.08, + "end": 8747.9, + "probability": 0.932 + }, + { + "start": 8748.32, + "end": 8753.84, + "probability": 0.9965 + }, + { + "start": 8754.24, + "end": 8756.83, + "probability": 0.9961 + }, + { + "start": 8757.24, + "end": 8760.64, + "probability": 0.9932 + }, + { + "start": 8760.96, + "end": 8763.74, + "probability": 0.5861 + }, + { + "start": 8764.06, + "end": 8765.36, + "probability": 0.7554 + }, + { + "start": 8766.06, + "end": 8768.98, + "probability": 0.8063 + }, + { + "start": 8769.04, + "end": 8774.3, + "probability": 0.9434 + }, + { + "start": 8774.5, + "end": 8774.91, + "probability": 0.9688 + }, + { + "start": 8775.24, + "end": 8775.98, + "probability": 0.561 + }, + { + "start": 8776.46, + "end": 8778.34, + "probability": 0.7281 + }, + { + "start": 8778.48, + "end": 8781.34, + "probability": 0.6253 + }, + { + "start": 8781.82, + "end": 8783.0, + "probability": 0.6686 + }, + { + "start": 8783.02, + "end": 8784.56, + "probability": 0.9792 + }, + { + "start": 8796.2, + "end": 8796.98, + "probability": 0.1498 + }, + { + "start": 8797.56, + "end": 8801.32, + "probability": 0.6825 + }, + { + "start": 8802.22, + "end": 8804.22, + "probability": 0.9537 + }, + { + "start": 8804.84, + "end": 8809.0, + "probability": 0.923 + }, + { + "start": 8809.66, + "end": 8815.72, + "probability": 0.9875 + }, + { + "start": 8817.22, + "end": 8823.38, + "probability": 0.9824 + }, + { + "start": 8823.46, + "end": 8824.46, + "probability": 0.9039 + }, + { + "start": 8824.52, + "end": 8825.35, + "probability": 0.9325 + }, + { + "start": 8826.64, + "end": 8828.38, + "probability": 0.8921 + }, + { + "start": 8829.74, + "end": 8832.82, + "probability": 0.9785 + }, + { + "start": 8832.84, + "end": 8835.54, + "probability": 0.9771 + }, + { + "start": 8836.26, + "end": 8839.6, + "probability": 0.941 + }, + { + "start": 8840.28, + "end": 8843.26, + "probability": 0.4514 + }, + { + "start": 8843.54, + "end": 8846.0, + "probability": 0.9806 + }, + { + "start": 8846.74, + "end": 8847.26, + "probability": 0.3069 + }, + { + "start": 8848.6, + "end": 8854.7, + "probability": 0.7496 + }, + { + "start": 8855.38, + "end": 8857.18, + "probability": 0.2277 + }, + { + "start": 8858.2, + "end": 8859.44, + "probability": 0.783 + }, + { + "start": 8861.88, + "end": 8863.2, + "probability": 0.3479 + }, + { + "start": 8863.52, + "end": 8863.9, + "probability": 0.9451 + }, + { + "start": 8864.62, + "end": 8865.62, + "probability": 0.8937 + }, + { + "start": 8865.74, + "end": 8866.65, + "probability": 0.7482 + }, + { + "start": 8867.54, + "end": 8868.58, + "probability": 0.9795 + }, + { + "start": 8868.66, + "end": 8869.7, + "probability": 0.9453 + }, + { + "start": 8870.86, + "end": 8872.36, + "probability": 0.8682 + }, + { + "start": 8872.94, + "end": 8875.14, + "probability": 0.8779 + }, + { + "start": 8875.58, + "end": 8879.1, + "probability": 0.9744 + }, + { + "start": 8880.76, + "end": 8885.3, + "probability": 0.9966 + }, + { + "start": 8885.72, + "end": 8886.74, + "probability": 0.8346 + }, + { + "start": 8887.94, + "end": 8890.06, + "probability": 0.9248 + }, + { + "start": 8890.42, + "end": 8893.96, + "probability": 0.9526 + }, + { + "start": 8894.74, + "end": 8899.64, + "probability": 0.993 + }, + { + "start": 8899.64, + "end": 8904.48, + "probability": 0.9981 + }, + { + "start": 8905.36, + "end": 8906.9, + "probability": 0.9604 + }, + { + "start": 8907.08, + "end": 8908.68, + "probability": 0.797 + }, + { + "start": 8909.82, + "end": 8913.54, + "probability": 0.7959 + }, + { + "start": 8914.42, + "end": 8915.02, + "probability": 0.8554 + }, + { + "start": 8916.06, + "end": 8916.7, + "probability": 0.8815 + }, + { + "start": 8917.46, + "end": 8925.62, + "probability": 0.9727 + }, + { + "start": 8927.92, + "end": 8929.5, + "probability": 0.5138 + }, + { + "start": 8929.62, + "end": 8932.58, + "probability": 0.9613 + }, + { + "start": 8932.92, + "end": 8935.08, + "probability": 0.9719 + }, + { + "start": 8936.4, + "end": 8937.62, + "probability": 0.9246 + }, + { + "start": 8938.72, + "end": 8939.58, + "probability": 0.838 + }, + { + "start": 8939.66, + "end": 8943.46, + "probability": 0.9885 + }, + { + "start": 8943.48, + "end": 8944.72, + "probability": 0.848 + }, + { + "start": 8944.84, + "end": 8947.17, + "probability": 0.941 + }, + { + "start": 8947.76, + "end": 8952.22, + "probability": 0.9631 + }, + { + "start": 8953.46, + "end": 8955.32, + "probability": 0.932 + }, + { + "start": 8956.12, + "end": 8960.66, + "probability": 0.9836 + }, + { + "start": 8961.74, + "end": 8962.46, + "probability": 0.9194 + }, + { + "start": 8963.18, + "end": 8964.14, + "probability": 0.9568 + }, + { + "start": 8964.56, + "end": 8967.7, + "probability": 0.8799 + }, + { + "start": 8967.88, + "end": 8970.32, + "probability": 0.953 + }, + { + "start": 8970.92, + "end": 8976.74, + "probability": 0.9683 + }, + { + "start": 8978.0, + "end": 8979.08, + "probability": 0.9147 + }, + { + "start": 8979.14, + "end": 8980.06, + "probability": 0.9613 + }, + { + "start": 8980.08, + "end": 8981.1, + "probability": 0.9062 + }, + { + "start": 8981.56, + "end": 8982.3, + "probability": 0.652 + }, + { + "start": 8982.52, + "end": 8983.52, + "probability": 0.3145 + }, + { + "start": 8983.52, + "end": 8985.98, + "probability": 0.8255 + }, + { + "start": 8986.9, + "end": 8993.86, + "probability": 0.9625 + }, + { + "start": 8994.76, + "end": 8999.16, + "probability": 0.9782 + }, + { + "start": 8999.16, + "end": 9003.34, + "probability": 0.9946 + }, + { + "start": 9003.46, + "end": 9003.74, + "probability": 0.6988 + }, + { + "start": 9004.56, + "end": 9006.98, + "probability": 0.6846 + }, + { + "start": 9007.0, + "end": 9008.24, + "probability": 0.9706 + }, + { + "start": 9010.5, + "end": 9013.0, + "probability": 0.9565 + }, + { + "start": 9021.14, + "end": 9021.9, + "probability": 0.2699 + }, + { + "start": 9025.64, + "end": 9027.06, + "probability": 0.5894 + }, + { + "start": 9027.22, + "end": 9027.7, + "probability": 0.9812 + }, + { + "start": 9027.76, + "end": 9029.7, + "probability": 0.9897 + }, + { + "start": 9030.72, + "end": 9034.7, + "probability": 0.9604 + }, + { + "start": 9036.36, + "end": 9040.38, + "probability": 0.7442 + }, + { + "start": 9040.8, + "end": 9043.18, + "probability": 0.7551 + }, + { + "start": 9043.36, + "end": 9044.72, + "probability": 0.5695 + }, + { + "start": 9045.42, + "end": 9046.52, + "probability": 0.6995 + }, + { + "start": 9048.34, + "end": 9050.32, + "probability": 0.9517 + }, + { + "start": 9050.88, + "end": 9051.52, + "probability": 0.7947 + }, + { + "start": 9052.78, + "end": 9054.24, + "probability": 0.9583 + }, + { + "start": 9054.96, + "end": 9057.68, + "probability": 0.9612 + }, + { + "start": 9057.78, + "end": 9060.2, + "probability": 0.9871 + }, + { + "start": 9060.48, + "end": 9061.04, + "probability": 0.6492 + }, + { + "start": 9061.28, + "end": 9062.06, + "probability": 0.8827 + }, + { + "start": 9063.46, + "end": 9065.44, + "probability": 0.9646 + }, + { + "start": 9065.54, + "end": 9066.26, + "probability": 0.4384 + }, + { + "start": 9066.9, + "end": 9069.04, + "probability": 0.9402 + }, + { + "start": 9069.36, + "end": 9071.0, + "probability": 0.9976 + }, + { + "start": 9072.34, + "end": 9073.1, + "probability": 0.8209 + }, + { + "start": 9073.72, + "end": 9074.66, + "probability": 0.9714 + }, + { + "start": 9075.44, + "end": 9076.56, + "probability": 0.7944 + }, + { + "start": 9077.96, + "end": 9080.14, + "probability": 0.5008 + }, + { + "start": 9081.5, + "end": 9083.64, + "probability": 0.8585 + }, + { + "start": 9084.32, + "end": 9087.28, + "probability": 0.9106 + }, + { + "start": 9087.44, + "end": 9090.64, + "probability": 0.996 + }, + { + "start": 9090.94, + "end": 9092.16, + "probability": 0.8863 + }, + { + "start": 9092.5, + "end": 9093.76, + "probability": 0.9797 + }, + { + "start": 9094.74, + "end": 9098.31, + "probability": 0.9977 + }, + { + "start": 9098.9, + "end": 9100.54, + "probability": 0.9412 + }, + { + "start": 9101.12, + "end": 9103.2, + "probability": 0.9531 + }, + { + "start": 9103.34, + "end": 9107.92, + "probability": 0.994 + }, + { + "start": 9110.46, + "end": 9111.7, + "probability": 0.9919 + }, + { + "start": 9112.44, + "end": 9113.48, + "probability": 0.8159 + }, + { + "start": 9113.62, + "end": 9115.72, + "probability": 0.693 + }, + { + "start": 9116.12, + "end": 9119.46, + "probability": 0.8398 + }, + { + "start": 9120.88, + "end": 9122.16, + "probability": 0.9283 + }, + { + "start": 9123.38, + "end": 9125.07, + "probability": 0.7046 + }, + { + "start": 9125.9, + "end": 9128.83, + "probability": 0.9838 + }, + { + "start": 9129.56, + "end": 9130.3, + "probability": 0.6872 + }, + { + "start": 9130.74, + "end": 9132.22, + "probability": 0.969 + }, + { + "start": 9133.56, + "end": 9136.16, + "probability": 0.9802 + }, + { + "start": 9136.92, + "end": 9138.28, + "probability": 0.8862 + }, + { + "start": 9138.58, + "end": 9144.46, + "probability": 0.9983 + }, + { + "start": 9145.18, + "end": 9145.68, + "probability": 0.8844 + }, + { + "start": 9146.96, + "end": 9148.36, + "probability": 0.9902 + }, + { + "start": 9149.26, + "end": 9150.32, + "probability": 0.98 + }, + { + "start": 9151.06, + "end": 9152.04, + "probability": 0.8921 + }, + { + "start": 9153.14, + "end": 9155.0, + "probability": 0.3822 + }, + { + "start": 9155.4, + "end": 9158.32, + "probability": 0.8586 + }, + { + "start": 9159.02, + "end": 9160.12, + "probability": 0.7841 + }, + { + "start": 9162.58, + "end": 9163.66, + "probability": 0.9785 + }, + { + "start": 9164.84, + "end": 9165.3, + "probability": 0.9396 + }, + { + "start": 9165.38, + "end": 9169.5, + "probability": 0.9746 + }, + { + "start": 9172.06, + "end": 9175.9, + "probability": 0.9888 + }, + { + "start": 9176.36, + "end": 9179.02, + "probability": 0.9131 + }, + { + "start": 9179.34, + "end": 9182.3, + "probability": 0.973 + }, + { + "start": 9183.36, + "end": 9185.86, + "probability": 0.9888 + }, + { + "start": 9187.48, + "end": 9189.1, + "probability": 0.5392 + }, + { + "start": 9189.54, + "end": 9191.28, + "probability": 0.9092 + }, + { + "start": 9193.56, + "end": 9194.68, + "probability": 0.4983 + }, + { + "start": 9194.68, + "end": 9195.24, + "probability": 0.1298 + }, + { + "start": 9196.26, + "end": 9197.78, + "probability": 0.9935 + }, + { + "start": 9198.46, + "end": 9201.54, + "probability": 0.8579 + }, + { + "start": 9202.48, + "end": 9203.69, + "probability": 0.9956 + }, + { + "start": 9204.0, + "end": 9207.76, + "probability": 0.9658 + }, + { + "start": 9209.2, + "end": 9210.2, + "probability": 0.9448 + }, + { + "start": 9210.28, + "end": 9212.06, + "probability": 0.9788 + }, + { + "start": 9212.08, + "end": 9212.76, + "probability": 0.2288 + }, + { + "start": 9213.1, + "end": 9213.84, + "probability": 0.6564 + }, + { + "start": 9213.98, + "end": 9214.24, + "probability": 0.8855 + }, + { + "start": 9214.34, + "end": 9215.0, + "probability": 0.6988 + }, + { + "start": 9215.22, + "end": 9217.96, + "probability": 0.9224 + }, + { + "start": 9218.74, + "end": 9221.16, + "probability": 0.9945 + }, + { + "start": 9221.46, + "end": 9222.6, + "probability": 0.8875 + }, + { + "start": 9223.82, + "end": 9227.29, + "probability": 0.6593 + }, + { + "start": 9228.36, + "end": 9230.1, + "probability": 0.9658 + }, + { + "start": 9230.34, + "end": 9231.44, + "probability": 0.9614 + }, + { + "start": 9232.06, + "end": 9233.72, + "probability": 0.9593 + }, + { + "start": 9234.64, + "end": 9235.94, + "probability": 0.8613 + }, + { + "start": 9236.94, + "end": 9238.1, + "probability": 0.9595 + }, + { + "start": 9238.74, + "end": 9240.86, + "probability": 0.5549 + }, + { + "start": 9241.24, + "end": 9243.04, + "probability": 0.9897 + }, + { + "start": 9243.18, + "end": 9245.42, + "probability": 0.6698 + }, + { + "start": 9245.44, + "end": 9246.18, + "probability": 0.8422 + }, + { + "start": 9247.1, + "end": 9249.04, + "probability": 0.8765 + }, + { + "start": 9249.58, + "end": 9254.62, + "probability": 0.9089 + }, + { + "start": 9255.62, + "end": 9256.72, + "probability": 0.7414 + }, + { + "start": 9256.86, + "end": 9256.88, + "probability": 0.3887 + }, + { + "start": 9256.88, + "end": 9258.32, + "probability": 0.788 + }, + { + "start": 9259.22, + "end": 9263.04, + "probability": 0.793 + }, + { + "start": 9264.04, + "end": 9264.1, + "probability": 0.3957 + }, + { + "start": 9264.1, + "end": 9264.8, + "probability": 0.8254 + }, + { + "start": 9265.54, + "end": 9266.82, + "probability": 0.8542 + }, + { + "start": 9268.1, + "end": 9271.86, + "probability": 0.9456 + }, + { + "start": 9272.2, + "end": 9272.86, + "probability": 0.964 + }, + { + "start": 9274.0, + "end": 9274.98, + "probability": 0.6384 + }, + { + "start": 9275.5, + "end": 9276.16, + "probability": 0.8883 + }, + { + "start": 9276.96, + "end": 9277.88, + "probability": 0.8037 + }, + { + "start": 9277.96, + "end": 9278.12, + "probability": 0.5497 + }, + { + "start": 9278.16, + "end": 9280.68, + "probability": 0.9785 + }, + { + "start": 9280.9, + "end": 9283.28, + "probability": 0.7027 + }, + { + "start": 9284.46, + "end": 9284.98, + "probability": 0.8964 + }, + { + "start": 9285.08, + "end": 9287.8, + "probability": 0.9485 + }, + { + "start": 9288.08, + "end": 9289.4, + "probability": 0.922 + }, + { + "start": 9289.72, + "end": 9290.74, + "probability": 0.7344 + }, + { + "start": 9291.5, + "end": 9292.32, + "probability": 0.8396 + }, + { + "start": 9292.4, + "end": 9294.4, + "probability": 0.5655 + }, + { + "start": 9294.8, + "end": 9294.8, + "probability": 0.2083 + }, + { + "start": 9294.8, + "end": 9294.8, + "probability": 0.4081 + }, + { + "start": 9294.84, + "end": 9298.22, + "probability": 0.9758 + }, + { + "start": 9298.56, + "end": 9300.2, + "probability": 0.9973 + }, + { + "start": 9300.34, + "end": 9301.7, + "probability": 0.9961 + }, + { + "start": 9301.86, + "end": 9302.02, + "probability": 0.5142 + }, + { + "start": 9302.56, + "end": 9304.44, + "probability": 0.9395 + }, + { + "start": 9304.56, + "end": 9306.5, + "probability": 0.9653 + }, + { + "start": 9307.86, + "end": 9311.32, + "probability": 0.8027 + }, + { + "start": 9320.18, + "end": 9321.84, + "probability": 0.5971 + }, + { + "start": 9322.92, + "end": 9327.08, + "probability": 0.7967 + }, + { + "start": 9327.08, + "end": 9329.84, + "probability": 0.4968 + }, + { + "start": 9330.74, + "end": 9332.68, + "probability": 0.4773 + }, + { + "start": 9332.84, + "end": 9337.82, + "probability": 0.2909 + }, + { + "start": 9338.74, + "end": 9342.24, + "probability": 0.896 + }, + { + "start": 9342.82, + "end": 9343.5, + "probability": 0.8724 + }, + { + "start": 9343.88, + "end": 9346.3, + "probability": 0.8735 + }, + { + "start": 9346.4, + "end": 9347.26, + "probability": 0.9329 + }, + { + "start": 9348.12, + "end": 9353.64, + "probability": 0.9634 + }, + { + "start": 9354.68, + "end": 9355.9, + "probability": 0.8765 + }, + { + "start": 9357.14, + "end": 9358.85, + "probability": 0.7805 + }, + { + "start": 9359.56, + "end": 9364.31, + "probability": 0.7859 + }, + { + "start": 9364.96, + "end": 9366.7, + "probability": 0.7686 + }, + { + "start": 9366.84, + "end": 9367.96, + "probability": 0.5555 + }, + { + "start": 9369.56, + "end": 9371.0, + "probability": 0.6875 + }, + { + "start": 9371.3, + "end": 9373.82, + "probability": 0.8913 + }, + { + "start": 9373.84, + "end": 9377.86, + "probability": 0.9097 + }, + { + "start": 9378.58, + "end": 9380.54, + "probability": 0.7279 + }, + { + "start": 9381.28, + "end": 9383.28, + "probability": 0.7019 + }, + { + "start": 9383.92, + "end": 9386.62, + "probability": 0.9122 + }, + { + "start": 9387.3, + "end": 9388.26, + "probability": 0.8651 + }, + { + "start": 9390.18, + "end": 9391.16, + "probability": 0.9216 + }, + { + "start": 9391.9, + "end": 9398.24, + "probability": 0.801 + }, + { + "start": 9400.66, + "end": 9401.38, + "probability": 0.0592 + }, + { + "start": 9401.38, + "end": 9404.52, + "probability": 0.762 + }, + { + "start": 9404.6, + "end": 9407.12, + "probability": 0.1104 + }, + { + "start": 9407.24, + "end": 9407.76, + "probability": 0.5627 + }, + { + "start": 9408.34, + "end": 9409.08, + "probability": 0.5338 + }, + { + "start": 9410.42, + "end": 9411.94, + "probability": 0.7009 + }, + { + "start": 9413.2, + "end": 9414.7, + "probability": 0.6462 + }, + { + "start": 9415.32, + "end": 9416.65, + "probability": 0.6488 + }, + { + "start": 9417.84, + "end": 9418.88, + "probability": 0.6798 + }, + { + "start": 9419.02, + "end": 9420.1, + "probability": 0.9271 + }, + { + "start": 9420.7, + "end": 9422.07, + "probability": 0.9824 + }, + { + "start": 9422.54, + "end": 9423.8, + "probability": 0.7039 + }, + { + "start": 9423.92, + "end": 9424.24, + "probability": 0.717 + }, + { + "start": 9424.76, + "end": 9425.02, + "probability": 0.8887 + }, + { + "start": 9425.64, + "end": 9427.64, + "probability": 0.9169 + }, + { + "start": 9427.82, + "end": 9430.32, + "probability": 0.8662 + }, + { + "start": 9431.3, + "end": 9433.94, + "probability": 0.7433 + }, + { + "start": 9434.66, + "end": 9436.94, + "probability": 0.6661 + }, + { + "start": 9437.6, + "end": 9438.82, + "probability": 0.9763 + }, + { + "start": 9439.96, + "end": 9442.98, + "probability": 0.8232 + }, + { + "start": 9442.98, + "end": 9444.36, + "probability": 0.8846 + }, + { + "start": 9444.98, + "end": 9445.18, + "probability": 0.5625 + }, + { + "start": 9446.28, + "end": 9448.74, + "probability": 0.8021 + }, + { + "start": 9448.84, + "end": 9450.94, + "probability": 0.8271 + }, + { + "start": 9466.24, + "end": 9469.66, + "probability": 0.8921 + }, + { + "start": 9472.71, + "end": 9473.88, + "probability": 0.8115 + }, + { + "start": 9475.1, + "end": 9476.22, + "probability": 0.9282 + }, + { + "start": 9476.8, + "end": 9486.96, + "probability": 0.9458 + }, + { + "start": 9487.58, + "end": 9492.3, + "probability": 0.9832 + }, + { + "start": 9492.42, + "end": 9498.06, + "probability": 0.9991 + }, + { + "start": 9498.58, + "end": 9499.34, + "probability": 0.8348 + }, + { + "start": 9500.3, + "end": 9508.24, + "probability": 0.9902 + }, + { + "start": 9508.78, + "end": 9517.42, + "probability": 0.9892 + }, + { + "start": 9518.2, + "end": 9519.36, + "probability": 0.9867 + }, + { + "start": 9521.08, + "end": 9522.96, + "probability": 0.8644 + }, + { + "start": 9524.24, + "end": 9528.62, + "probability": 0.8323 + }, + { + "start": 9529.54, + "end": 9535.2, + "probability": 0.948 + }, + { + "start": 9535.28, + "end": 9540.8, + "probability": 0.9966 + }, + { + "start": 9541.54, + "end": 9542.28, + "probability": 0.8445 + }, + { + "start": 9542.46, + "end": 9547.46, + "probability": 0.9857 + }, + { + "start": 9548.22, + "end": 9552.2, + "probability": 0.975 + }, + { + "start": 9552.88, + "end": 9553.78, + "probability": 0.8971 + }, + { + "start": 9554.2, + "end": 9557.46, + "probability": 0.9922 + }, + { + "start": 9557.46, + "end": 9561.08, + "probability": 0.999 + }, + { + "start": 9561.28, + "end": 9563.36, + "probability": 0.9835 + }, + { + "start": 9565.72, + "end": 9567.72, + "probability": 0.7489 + }, + { + "start": 9569.14, + "end": 9571.16, + "probability": 0.7215 + }, + { + "start": 9572.59, + "end": 9576.66, + "probability": 0.8743 + }, + { + "start": 9577.78, + "end": 9581.4, + "probability": 0.989 + }, + { + "start": 9581.92, + "end": 9587.78, + "probability": 0.9683 + }, + { + "start": 9588.32, + "end": 9589.5, + "probability": 0.9739 + }, + { + "start": 9592.08, + "end": 9594.38, + "probability": 0.505 + }, + { + "start": 9595.6, + "end": 9596.9, + "probability": 0.7028 + }, + { + "start": 9597.9, + "end": 9600.6, + "probability": 0.6712 + }, + { + "start": 9601.4, + "end": 9603.46, + "probability": 0.9967 + }, + { + "start": 9603.6, + "end": 9604.34, + "probability": 0.7118 + }, + { + "start": 9604.86, + "end": 9610.84, + "probability": 0.9541 + }, + { + "start": 9611.32, + "end": 9614.02, + "probability": 0.972 + }, + { + "start": 9614.12, + "end": 9615.4, + "probability": 0.9932 + }, + { + "start": 9616.3, + "end": 9619.38, + "probability": 0.9955 + }, + { + "start": 9620.3, + "end": 9622.32, + "probability": 0.722 + }, + { + "start": 9623.18, + "end": 9623.66, + "probability": 0.9766 + }, + { + "start": 9624.6, + "end": 9629.14, + "probability": 0.8729 + }, + { + "start": 9629.4, + "end": 9630.74, + "probability": 0.802 + }, + { + "start": 9631.26, + "end": 9634.78, + "probability": 0.95 + }, + { + "start": 9635.66, + "end": 9637.38, + "probability": 0.7958 + }, + { + "start": 9638.72, + "end": 9641.1, + "probability": 0.9809 + }, + { + "start": 9644.16, + "end": 9648.54, + "probability": 0.948 + }, + { + "start": 9650.54, + "end": 9653.88, + "probability": 0.9938 + }, + { + "start": 9654.8, + "end": 9657.04, + "probability": 0.5826 + }, + { + "start": 9657.06, + "end": 9658.92, + "probability": 0.9684 + }, + { + "start": 9660.2, + "end": 9667.92, + "probability": 0.953 + }, + { + "start": 9669.56, + "end": 9673.06, + "probability": 0.8928 + }, + { + "start": 9674.15, + "end": 9679.36, + "probability": 0.75 + }, + { + "start": 9679.44, + "end": 9679.82, + "probability": 0.5328 + }, + { + "start": 9679.92, + "end": 9683.02, + "probability": 0.9875 + }, + { + "start": 9683.46, + "end": 9685.52, + "probability": 0.9792 + }, + { + "start": 9686.74, + "end": 9689.67, + "probability": 0.7053 + }, + { + "start": 9690.98, + "end": 9692.82, + "probability": 0.9737 + }, + { + "start": 9694.85, + "end": 9697.06, + "probability": 0.9321 + }, + { + "start": 9708.44, + "end": 9709.0, + "probability": 0.1162 + }, + { + "start": 9709.1, + "end": 9709.1, + "probability": 0.0908 + }, + { + "start": 9709.1, + "end": 9709.84, + "probability": 0.7248 + }, + { + "start": 9710.02, + "end": 9713.04, + "probability": 0.8218 + }, + { + "start": 9714.14, + "end": 9715.42, + "probability": 0.6138 + }, + { + "start": 9716.76, + "end": 9719.82, + "probability": 0.9214 + }, + { + "start": 9720.74, + "end": 9721.46, + "probability": 0.8285 + }, + { + "start": 9722.2, + "end": 9722.9, + "probability": 0.9319 + }, + { + "start": 9723.56, + "end": 9725.86, + "probability": 0.8666 + }, + { + "start": 9726.86, + "end": 9728.88, + "probability": 0.9979 + }, + { + "start": 9730.12, + "end": 9733.04, + "probability": 0.999 + }, + { + "start": 9733.18, + "end": 9736.5, + "probability": 0.9043 + }, + { + "start": 9738.79, + "end": 9744.5, + "probability": 0.7049 + }, + { + "start": 9746.82, + "end": 9750.78, + "probability": 0.9985 + }, + { + "start": 9751.42, + "end": 9753.38, + "probability": 0.9935 + }, + { + "start": 9754.0, + "end": 9758.14, + "probability": 0.9938 + }, + { + "start": 9758.54, + "end": 9760.14, + "probability": 0.9888 + }, + { + "start": 9760.3, + "end": 9762.94, + "probability": 0.96 + }, + { + "start": 9763.86, + "end": 9764.78, + "probability": 0.9781 + }, + { + "start": 9764.94, + "end": 9766.19, + "probability": 0.9946 + }, + { + "start": 9767.04, + "end": 9767.6, + "probability": 0.9275 + }, + { + "start": 9767.8, + "end": 9769.44, + "probability": 0.6632 + }, + { + "start": 9769.52, + "end": 9772.53, + "probability": 0.9965 + }, + { + "start": 9773.66, + "end": 9775.96, + "probability": 0.9259 + }, + { + "start": 9776.42, + "end": 9777.52, + "probability": 0.8479 + }, + { + "start": 9777.98, + "end": 9787.18, + "probability": 0.9792 + }, + { + "start": 9787.43, + "end": 9792.02, + "probability": 0.9889 + }, + { + "start": 9792.14, + "end": 9794.5, + "probability": 0.8281 + }, + { + "start": 9794.54, + "end": 9796.7, + "probability": 0.942 + }, + { + "start": 9798.06, + "end": 9799.98, + "probability": 0.978 + }, + { + "start": 9800.06, + "end": 9804.62, + "probability": 0.9665 + }, + { + "start": 9805.08, + "end": 9811.0, + "probability": 0.9531 + }, + { + "start": 9812.2, + "end": 9817.12, + "probability": 0.9453 + }, + { + "start": 9817.38, + "end": 9818.64, + "probability": 0.882 + }, + { + "start": 9818.7, + "end": 9819.72, + "probability": 0.8668 + }, + { + "start": 9821.62, + "end": 9823.42, + "probability": 0.9521 + }, + { + "start": 9823.62, + "end": 9825.22, + "probability": 0.9916 + }, + { + "start": 9825.72, + "end": 9830.58, + "probability": 0.9212 + }, + { + "start": 9831.04, + "end": 9833.68, + "probability": 0.8713 + }, + { + "start": 9833.94, + "end": 9838.02, + "probability": 0.9144 + }, + { + "start": 9839.7, + "end": 9848.06, + "probability": 0.9704 + }, + { + "start": 9848.54, + "end": 9856.7, + "probability": 0.9282 + }, + { + "start": 9856.7, + "end": 9863.06, + "probability": 0.9992 + }, + { + "start": 9865.06, + "end": 9869.52, + "probability": 0.987 + }, + { + "start": 9869.88, + "end": 9871.76, + "probability": 0.9974 + }, + { + "start": 9872.02, + "end": 9875.9, + "probability": 0.9982 + }, + { + "start": 9875.9, + "end": 9880.24, + "probability": 0.9709 + }, + { + "start": 9881.96, + "end": 9882.3, + "probability": 0.2606 + }, + { + "start": 9882.3, + "end": 9885.5, + "probability": 0.9816 + }, + { + "start": 9885.82, + "end": 9888.86, + "probability": 0.8123 + }, + { + "start": 9889.42, + "end": 9892.12, + "probability": 0.9891 + }, + { + "start": 9892.18, + "end": 9898.34, + "probability": 0.9598 + }, + { + "start": 9898.66, + "end": 9902.86, + "probability": 0.9263 + }, + { + "start": 9903.32, + "end": 9903.32, + "probability": 0.2928 + }, + { + "start": 9903.32, + "end": 9906.32, + "probability": 0.9335 + }, + { + "start": 9907.36, + "end": 9911.62, + "probability": 0.9239 + }, + { + "start": 9911.92, + "end": 9913.46, + "probability": 0.5791 + }, + { + "start": 9914.02, + "end": 9915.96, + "probability": 0.9016 + }, + { + "start": 9916.68, + "end": 9919.74, + "probability": 0.7682 + }, + { + "start": 9920.02, + "end": 9922.96, + "probability": 0.9662 + }, + { + "start": 9923.24, + "end": 9927.38, + "probability": 0.9611 + }, + { + "start": 9927.94, + "end": 9930.38, + "probability": 0.9979 + }, + { + "start": 9930.52, + "end": 9930.72, + "probability": 0.7367 + }, + { + "start": 9931.4, + "end": 9933.38, + "probability": 0.9202 + }, + { + "start": 9933.6, + "end": 9934.8, + "probability": 0.9597 + }, + { + "start": 9936.66, + "end": 9939.54, + "probability": 0.9684 + }, + { + "start": 9945.62, + "end": 9946.84, + "probability": 0.5999 + }, + { + "start": 9946.92, + "end": 9948.28, + "probability": 0.8757 + }, + { + "start": 9948.44, + "end": 9949.74, + "probability": 0.661 + }, + { + "start": 9950.24, + "end": 9950.68, + "probability": 0.8123 + }, + { + "start": 9950.8, + "end": 9951.9, + "probability": 0.8273 + }, + { + "start": 9951.96, + "end": 9956.26, + "probability": 0.8353 + }, + { + "start": 9956.86, + "end": 9958.9, + "probability": 0.9952 + }, + { + "start": 9959.68, + "end": 9965.1, + "probability": 0.9868 + }, + { + "start": 9965.86, + "end": 9966.67, + "probability": 0.5439 + }, + { + "start": 9968.12, + "end": 9973.22, + "probability": 0.9874 + }, + { + "start": 9973.38, + "end": 9974.32, + "probability": 0.7487 + }, + { + "start": 9975.04, + "end": 9980.84, + "probability": 0.9135 + }, + { + "start": 9980.84, + "end": 9986.54, + "probability": 0.9972 + }, + { + "start": 9987.16, + "end": 9988.16, + "probability": 0.8663 + }, + { + "start": 9989.62, + "end": 9990.32, + "probability": 0.8592 + }, + { + "start": 9991.06, + "end": 9992.16, + "probability": 0.7433 + }, + { + "start": 9992.94, + "end": 9995.07, + "probability": 0.9948 + }, + { + "start": 9995.84, + "end": 10000.7, + "probability": 0.9625 + }, + { + "start": 10001.34, + "end": 10003.94, + "probability": 0.9785 + }, + { + "start": 10004.58, + "end": 10006.36, + "probability": 0.9788 + }, + { + "start": 10007.06, + "end": 10008.5, + "probability": 0.9801 + }, + { + "start": 10009.3, + "end": 10014.88, + "probability": 0.9887 + }, + { + "start": 10015.04, + "end": 10016.14, + "probability": 0.9422 + }, + { + "start": 10017.14, + "end": 10019.06, + "probability": 0.9659 + }, + { + "start": 10019.46, + "end": 10024.16, + "probability": 0.9925 + }, + { + "start": 10024.4, + "end": 10027.52, + "probability": 0.0775 + }, + { + "start": 10027.94, + "end": 10027.94, + "probability": 0.0866 + }, + { + "start": 10027.94, + "end": 10027.94, + "probability": 0.1968 + }, + { + "start": 10027.94, + "end": 10027.94, + "probability": 0.0544 + }, + { + "start": 10027.94, + "end": 10028.02, + "probability": 0.1559 + }, + { + "start": 10028.12, + "end": 10030.65, + "probability": 0.7138 + }, + { + "start": 10031.34, + "end": 10031.48, + "probability": 0.77 + }, + { + "start": 10032.18, + "end": 10037.14, + "probability": 0.925 + }, + { + "start": 10037.14, + "end": 10042.04, + "probability": 0.9968 + }, + { + "start": 10042.72, + "end": 10044.24, + "probability": 0.9493 + }, + { + "start": 10044.88, + "end": 10046.12, + "probability": 0.9506 + }, + { + "start": 10046.7, + "end": 10047.48, + "probability": 0.9782 + }, + { + "start": 10048.08, + "end": 10051.0, + "probability": 0.9763 + }, + { + "start": 10051.62, + "end": 10052.5, + "probability": 0.926 + }, + { + "start": 10053.32, + "end": 10057.14, + "probability": 0.96 + }, + { + "start": 10057.26, + "end": 10058.34, + "probability": 0.9691 + }, + { + "start": 10058.44, + "end": 10059.12, + "probability": 0.8741 + }, + { + "start": 10059.66, + "end": 10063.96, + "probability": 0.9967 + }, + { + "start": 10064.58, + "end": 10067.52, + "probability": 0.8631 + }, + { + "start": 10068.12, + "end": 10070.94, + "probability": 0.9886 + }, + { + "start": 10071.6, + "end": 10075.68, + "probability": 0.9848 + }, + { + "start": 10076.26, + "end": 10078.42, + "probability": 0.9924 + }, + { + "start": 10078.98, + "end": 10080.28, + "probability": 0.7376 + }, + { + "start": 10081.2, + "end": 10084.32, + "probability": 0.9487 + }, + { + "start": 10084.94, + "end": 10089.2, + "probability": 0.9863 + }, + { + "start": 10089.76, + "end": 10092.08, + "probability": 0.5475 + }, + { + "start": 10092.1, + "end": 10093.89, + "probability": 0.1356 + }, + { + "start": 10094.24, + "end": 10098.84, + "probability": 0.8857 + }, + { + "start": 10098.94, + "end": 10099.52, + "probability": 0.0304 + }, + { + "start": 10099.72, + "end": 10102.8, + "probability": 0.0973 + }, + { + "start": 10104.34, + "end": 10108.28, + "probability": 0.9836 + }, + { + "start": 10109.02, + "end": 10111.17, + "probability": 0.7744 + }, + { + "start": 10113.96, + "end": 10114.12, + "probability": 0.0274 + }, + { + "start": 10114.12, + "end": 10115.54, + "probability": 0.1741 + }, + { + "start": 10116.0, + "end": 10116.44, + "probability": 0.2786 + }, + { + "start": 10117.08, + "end": 10119.94, + "probability": 0.5713 + }, + { + "start": 10120.24, + "end": 10121.48, + "probability": 0.9117 + }, + { + "start": 10122.36, + "end": 10128.38, + "probability": 0.9906 + }, + { + "start": 10128.4, + "end": 10134.04, + "probability": 0.9956 + }, + { + "start": 10134.58, + "end": 10135.8, + "probability": 0.1973 + }, + { + "start": 10135.8, + "end": 10137.2, + "probability": 0.6699 + }, + { + "start": 10137.92, + "end": 10138.62, + "probability": 0.8979 + }, + { + "start": 10139.24, + "end": 10140.09, + "probability": 0.9615 + }, + { + "start": 10141.26, + "end": 10144.72, + "probability": 0.9578 + }, + { + "start": 10145.46, + "end": 10147.8, + "probability": 0.9438 + }, + { + "start": 10147.8, + "end": 10147.8, + "probability": 0.5992 + }, + { + "start": 10147.9, + "end": 10152.4, + "probability": 0.7898 + }, + { + "start": 10152.82, + "end": 10158.28, + "probability": 0.9925 + }, + { + "start": 10158.28, + "end": 10163.16, + "probability": 0.9924 + }, + { + "start": 10163.82, + "end": 10167.0, + "probability": 0.9976 + }, + { + "start": 10167.0, + "end": 10172.52, + "probability": 0.9785 + }, + { + "start": 10172.52, + "end": 10172.98, + "probability": 0.3997 + }, + { + "start": 10173.44, + "end": 10175.4, + "probability": 0.5203 + }, + { + "start": 10175.5, + "end": 10177.08, + "probability": 0.8711 + }, + { + "start": 10177.68, + "end": 10178.98, + "probability": 0.949 + }, + { + "start": 10207.54, + "end": 10209.08, + "probability": 0.4611 + }, + { + "start": 10209.3, + "end": 10210.46, + "probability": 0.6926 + }, + { + "start": 10210.54, + "end": 10212.01, + "probability": 0.9699 + }, + { + "start": 10212.46, + "end": 10213.26, + "probability": 0.8032 + }, + { + "start": 10213.26, + "end": 10213.32, + "probability": 0.0917 + }, + { + "start": 10213.32, + "end": 10213.34, + "probability": 0.0162 + }, + { + "start": 10216.37, + "end": 10218.7, + "probability": 0.9635 + }, + { + "start": 10218.78, + "end": 10219.74, + "probability": 0.8561 + }, + { + "start": 10222.57, + "end": 10224.64, + "probability": 0.8932 + }, + { + "start": 10224.74, + "end": 10224.9, + "probability": 0.7244 + }, + { + "start": 10225.06, + "end": 10229.18, + "probability": 0.9836 + }, + { + "start": 10230.04, + "end": 10231.59, + "probability": 0.9069 + }, + { + "start": 10232.72, + "end": 10233.8, + "probability": 0.4961 + }, + { + "start": 10233.9, + "end": 10236.04, + "probability": 0.5719 + }, + { + "start": 10236.84, + "end": 10237.77, + "probability": 0.7691 + }, + { + "start": 10238.4, + "end": 10239.43, + "probability": 0.957 + }, + { + "start": 10241.02, + "end": 10242.44, + "probability": 0.939 + }, + { + "start": 10242.58, + "end": 10243.94, + "probability": 0.9924 + }, + { + "start": 10244.32, + "end": 10245.76, + "probability": 0.9963 + }, + { + "start": 10246.0, + "end": 10248.92, + "probability": 0.9968 + }, + { + "start": 10249.5, + "end": 10250.88, + "probability": 0.9988 + }, + { + "start": 10251.12, + "end": 10252.18, + "probability": 0.8677 + }, + { + "start": 10252.48, + "end": 10253.64, + "probability": 0.8816 + }, + { + "start": 10254.28, + "end": 10259.08, + "probability": 0.9015 + }, + { + "start": 10259.94, + "end": 10263.04, + "probability": 0.9991 + }, + { + "start": 10264.16, + "end": 10267.68, + "probability": 0.988 + }, + { + "start": 10269.28, + "end": 10271.1, + "probability": 0.8533 + }, + { + "start": 10271.96, + "end": 10272.42, + "probability": 0.8285 + }, + { + "start": 10273.1, + "end": 10278.76, + "probability": 0.9393 + }, + { + "start": 10279.56, + "end": 10284.22, + "probability": 0.9047 + }, + { + "start": 10285.08, + "end": 10285.26, + "probability": 0.6108 + }, + { + "start": 10285.36, + "end": 10286.44, + "probability": 0.5464 + }, + { + "start": 10286.88, + "end": 10287.1, + "probability": 0.7576 + }, + { + "start": 10287.18, + "end": 10288.26, + "probability": 0.9289 + }, + { + "start": 10288.36, + "end": 10288.94, + "probability": 0.5819 + }, + { + "start": 10291.04, + "end": 10293.6, + "probability": 0.9255 + }, + { + "start": 10294.38, + "end": 10299.32, + "probability": 0.9758 + }, + { + "start": 10300.24, + "end": 10301.32, + "probability": 0.8364 + }, + { + "start": 10302.16, + "end": 10305.58, + "probability": 0.8729 + }, + { + "start": 10306.48, + "end": 10306.6, + "probability": 0.7991 + }, + { + "start": 10306.6, + "end": 10308.34, + "probability": 0.9973 + }, + { + "start": 10308.46, + "end": 10308.92, + "probability": 0.6497 + }, + { + "start": 10309.34, + "end": 10310.26, + "probability": 0.8819 + }, + { + "start": 10311.4, + "end": 10312.62, + "probability": 0.8536 + }, + { + "start": 10313.44, + "end": 10315.16, + "probability": 0.6498 + }, + { + "start": 10315.3, + "end": 10317.86, + "probability": 0.9466 + }, + { + "start": 10318.02, + "end": 10321.6, + "probability": 0.9968 + }, + { + "start": 10321.96, + "end": 10323.9, + "probability": 0.9922 + }, + { + "start": 10324.08, + "end": 10326.16, + "probability": 0.783 + }, + { + "start": 10326.16, + "end": 10333.7, + "probability": 0.9819 + }, + { + "start": 10333.78, + "end": 10334.74, + "probability": 0.9639 + }, + { + "start": 10335.46, + "end": 10338.68, + "probability": 0.7087 + }, + { + "start": 10339.18, + "end": 10339.68, + "probability": 0.3761 + }, + { + "start": 10340.32, + "end": 10342.5, + "probability": 0.9979 + }, + { + "start": 10342.96, + "end": 10344.06, + "probability": 0.9357 + }, + { + "start": 10344.26, + "end": 10345.58, + "probability": 0.9775 + }, + { + "start": 10346.06, + "end": 10346.76, + "probability": 0.9194 + }, + { + "start": 10347.52, + "end": 10348.24, + "probability": 0.8914 + }, + { + "start": 10348.44, + "end": 10351.74, + "probability": 0.9187 + }, + { + "start": 10352.54, + "end": 10354.2, + "probability": 0.8567 + }, + { + "start": 10354.5, + "end": 10355.72, + "probability": 0.9539 + }, + { + "start": 10356.0, + "end": 10357.34, + "probability": 0.9429 + }, + { + "start": 10357.4, + "end": 10358.12, + "probability": 0.6816 + }, + { + "start": 10358.66, + "end": 10359.73, + "probability": 0.8896 + }, + { + "start": 10360.26, + "end": 10362.18, + "probability": 0.9961 + }, + { + "start": 10362.36, + "end": 10364.74, + "probability": 0.7767 + }, + { + "start": 10365.02, + "end": 10365.48, + "probability": 0.831 + }, + { + "start": 10365.56, + "end": 10366.2, + "probability": 0.7656 + }, + { + "start": 10367.1, + "end": 10367.84, + "probability": 0.7251 + }, + { + "start": 10369.88, + "end": 10371.98, + "probability": 0.9863 + }, + { + "start": 10373.94, + "end": 10376.04, + "probability": 0.9859 + }, + { + "start": 10376.74, + "end": 10377.23, + "probability": 0.0047 + }, + { + "start": 10377.32, + "end": 10379.5, + "probability": 0.7088 + }, + { + "start": 10379.99, + "end": 10382.76, + "probability": 0.7206 + }, + { + "start": 10382.84, + "end": 10385.9, + "probability": 0.9654 + }, + { + "start": 10386.9, + "end": 10390.08, + "probability": 0.9438 + }, + { + "start": 10391.04, + "end": 10393.48, + "probability": 0.96 + }, + { + "start": 10393.8, + "end": 10395.62, + "probability": 0.9692 + }, + { + "start": 10396.42, + "end": 10397.19, + "probability": 0.9856 + }, + { + "start": 10397.74, + "end": 10400.48, + "probability": 0.9902 + }, + { + "start": 10400.54, + "end": 10401.14, + "probability": 0.6854 + }, + { + "start": 10401.22, + "end": 10402.9, + "probability": 0.9912 + }, + { + "start": 10403.58, + "end": 10404.48, + "probability": 0.8211 + }, + { + "start": 10404.94, + "end": 10406.18, + "probability": 0.9897 + }, + { + "start": 10406.22, + "end": 10408.88, + "probability": 0.8788 + }, + { + "start": 10408.98, + "end": 10410.3, + "probability": 0.8949 + }, + { + "start": 10410.74, + "end": 10411.14, + "probability": 0.834 + }, + { + "start": 10411.8, + "end": 10412.3, + "probability": 0.8342 + }, + { + "start": 10412.48, + "end": 10413.56, + "probability": 0.7506 + }, + { + "start": 10415.1, + "end": 10416.02, + "probability": 0.8877 + }, + { + "start": 10416.48, + "end": 10417.44, + "probability": 0.6618 + }, + { + "start": 10417.56, + "end": 10417.94, + "probability": 0.4066 + }, + { + "start": 10418.22, + "end": 10419.1, + "probability": 0.6244 + }, + { + "start": 10419.18, + "end": 10419.18, + "probability": 0.2109 + }, + { + "start": 10420.46, + "end": 10422.02, + "probability": 0.3626 + }, + { + "start": 10423.22, + "end": 10430.76, + "probability": 0.9304 + }, + { + "start": 10431.58, + "end": 10432.82, + "probability": 0.8755 + }, + { + "start": 10433.48, + "end": 10434.48, + "probability": 0.98 + }, + { + "start": 10434.6, + "end": 10435.6, + "probability": 0.8627 + }, + { + "start": 10436.06, + "end": 10436.96, + "probability": 0.7825 + }, + { + "start": 10436.98, + "end": 10438.22, + "probability": 0.9829 + }, + { + "start": 10438.7, + "end": 10442.82, + "probability": 0.9813 + }, + { + "start": 10442.92, + "end": 10443.58, + "probability": 0.4515 + }, + { + "start": 10444.48, + "end": 10446.24, + "probability": 0.8969 + }, + { + "start": 10446.34, + "end": 10448.98, + "probability": 0.6323 + }, + { + "start": 10449.62, + "end": 10450.74, + "probability": 0.0222 + }, + { + "start": 10451.32, + "end": 10453.7, + "probability": 0.887 + }, + { + "start": 10453.86, + "end": 10456.36, + "probability": 0.7463 + }, + { + "start": 10456.46, + "end": 10457.92, + "probability": 0.8907 + }, + { + "start": 10458.52, + "end": 10459.76, + "probability": 0.6658 + }, + { + "start": 10460.04, + "end": 10463.5, + "probability": 0.9976 + }, + { + "start": 10464.18, + "end": 10465.42, + "probability": 0.5953 + }, + { + "start": 10465.78, + "end": 10467.56, + "probability": 0.8309 + }, + { + "start": 10467.9, + "end": 10469.46, + "probability": 0.7786 + }, + { + "start": 10469.86, + "end": 10470.96, + "probability": 0.7046 + }, + { + "start": 10471.24, + "end": 10472.72, + "probability": 0.9904 + }, + { + "start": 10473.08, + "end": 10478.66, + "probability": 0.9395 + }, + { + "start": 10478.66, + "end": 10481.18, + "probability": 0.928 + }, + { + "start": 10481.4, + "end": 10482.04, + "probability": 0.36 + }, + { + "start": 10482.04, + "end": 10483.32, + "probability": 0.752 + }, + { + "start": 10483.44, + "end": 10486.56, + "probability": 0.8882 + }, + { + "start": 10492.3, + "end": 10493.64, + "probability": 0.0591 + }, + { + "start": 10496.86, + "end": 10498.08, + "probability": 0.2725 + }, + { + "start": 10506.84, + "end": 10507.6, + "probability": 0.068 + }, + { + "start": 10507.6, + "end": 10514.24, + "probability": 0.1369 + }, + { + "start": 10514.28, + "end": 10515.22, + "probability": 0.0444 + }, + { + "start": 10516.38, + "end": 10516.93, + "probability": 0.0338 + }, + { + "start": 10520.94, + "end": 10524.46, + "probability": 0.5784 + }, + { + "start": 10530.77, + "end": 10533.29, + "probability": 0.6273 + }, + { + "start": 10554.42, + "end": 10560.78, + "probability": 0.9132 + }, + { + "start": 10562.56, + "end": 10567.52, + "probability": 0.988 + }, + { + "start": 10568.52, + "end": 10570.12, + "probability": 0.9856 + }, + { + "start": 10570.58, + "end": 10572.92, + "probability": 0.6385 + }, + { + "start": 10573.08, + "end": 10573.54, + "probability": 0.7589 + }, + { + "start": 10573.62, + "end": 10574.26, + "probability": 0.4382 + }, + { + "start": 10575.34, + "end": 10578.62, + "probability": 0.8643 + }, + { + "start": 10579.94, + "end": 10581.34, + "probability": 0.9125 + }, + { + "start": 10582.46, + "end": 10583.53, + "probability": 0.853 + }, + { + "start": 10584.68, + "end": 10588.36, + "probability": 0.9882 + }, + { + "start": 10590.1, + "end": 10592.72, + "probability": 0.7996 + }, + { + "start": 10592.86, + "end": 10596.26, + "probability": 0.9941 + }, + { + "start": 10598.2, + "end": 10601.64, + "probability": 0.7685 + }, + { + "start": 10602.9, + "end": 10605.82, + "probability": 0.7487 + }, + { + "start": 10606.08, + "end": 10611.18, + "probability": 0.9739 + }, + { + "start": 10612.3, + "end": 10615.78, + "probability": 0.9917 + }, + { + "start": 10617.64, + "end": 10621.94, + "probability": 0.9962 + }, + { + "start": 10622.98, + "end": 10625.32, + "probability": 0.6653 + }, + { + "start": 10625.32, + "end": 10629.58, + "probability": 0.9849 + }, + { + "start": 10633.03, + "end": 10636.32, + "probability": 0.7714 + }, + { + "start": 10636.44, + "end": 10642.0, + "probability": 0.9743 + }, + { + "start": 10642.0, + "end": 10646.32, + "probability": 0.999 + }, + { + "start": 10646.42, + "end": 10648.42, + "probability": 0.7576 + }, + { + "start": 10650.38, + "end": 10654.94, + "probability": 0.853 + }, + { + "start": 10654.94, + "end": 10658.64, + "probability": 0.9984 + }, + { + "start": 10658.68, + "end": 10660.48, + "probability": 0.6974 + }, + { + "start": 10661.2, + "end": 10662.23, + "probability": 0.9863 + }, + { + "start": 10662.42, + "end": 10665.46, + "probability": 0.9541 + }, + { + "start": 10665.66, + "end": 10667.9, + "probability": 0.9707 + }, + { + "start": 10669.74, + "end": 10672.6, + "probability": 0.6919 + }, + { + "start": 10672.68, + "end": 10675.28, + "probability": 0.9614 + }, + { + "start": 10675.36, + "end": 10678.1, + "probability": 0.9919 + }, + { + "start": 10678.1, + "end": 10682.94, + "probability": 0.9966 + }, + { + "start": 10684.54, + "end": 10689.7, + "probability": 0.9792 + }, + { + "start": 10689.92, + "end": 10696.62, + "probability": 0.9994 + }, + { + "start": 10697.03, + "end": 10701.42, + "probability": 0.9971 + }, + { + "start": 10701.62, + "end": 10704.8, + "probability": 0.9023 + }, + { + "start": 10706.2, + "end": 10710.2, + "probability": 0.9957 + }, + { + "start": 10710.42, + "end": 10714.3, + "probability": 0.9964 + }, + { + "start": 10715.48, + "end": 10721.3, + "probability": 0.9922 + }, + { + "start": 10722.06, + "end": 10726.08, + "probability": 0.9956 + }, + { + "start": 10727.89, + "end": 10731.94, + "probability": 0.9984 + }, + { + "start": 10731.94, + "end": 10736.52, + "probability": 0.9993 + }, + { + "start": 10737.54, + "end": 10741.94, + "probability": 0.9953 + }, + { + "start": 10742.0, + "end": 10742.78, + "probability": 0.4978 + }, + { + "start": 10742.86, + "end": 10743.94, + "probability": 0.9804 + }, + { + "start": 10744.06, + "end": 10748.51, + "probability": 0.9074 + }, + { + "start": 10748.86, + "end": 10752.78, + "probability": 0.9932 + }, + { + "start": 10752.78, + "end": 10756.56, + "probability": 0.9993 + }, + { + "start": 10756.56, + "end": 10758.86, + "probability": 0.9951 + }, + { + "start": 10759.36, + "end": 10759.58, + "probability": 0.7728 + }, + { + "start": 10760.86, + "end": 10762.32, + "probability": 0.7903 + }, + { + "start": 10762.54, + "end": 10764.44, + "probability": 0.8472 + }, + { + "start": 10765.14, + "end": 10767.64, + "probability": 0.5406 + }, + { + "start": 10768.44, + "end": 10769.78, + "probability": 0.9498 + }, + { + "start": 10776.54, + "end": 10777.72, + "probability": 0.6353 + }, + { + "start": 10778.54, + "end": 10779.48, + "probability": 0.5288 + }, + { + "start": 10779.56, + "end": 10780.7, + "probability": 0.5308 + }, + { + "start": 10805.0, + "end": 10806.7, + "probability": 0.3959 + }, + { + "start": 10806.7, + "end": 10810.08, + "probability": 0.5673 + }, + { + "start": 10811.1, + "end": 10811.92, + "probability": 0.1707 + }, + { + "start": 10811.92, + "end": 10812.36, + "probability": 0.0213 + }, + { + "start": 10812.84, + "end": 10815.42, + "probability": 0.6267 + }, + { + "start": 10815.56, + "end": 10816.42, + "probability": 0.6363 + }, + { + "start": 10822.48, + "end": 10823.86, + "probability": 0.0959 + }, + { + "start": 10824.86, + "end": 10827.24, + "probability": 0.0163 + }, + { + "start": 10830.1, + "end": 10831.22, + "probability": 0.1313 + }, + { + "start": 10831.22, + "end": 10832.6, + "probability": 0.0806 + }, + { + "start": 10832.76, + "end": 10835.8, + "probability": 0.2168 + }, + { + "start": 10838.11, + "end": 10840.14, + "probability": 0.1791 + }, + { + "start": 10840.8, + "end": 10842.4, + "probability": 0.0179 + }, + { + "start": 10842.96, + "end": 10846.13, + "probability": 0.1852 + }, + { + "start": 10846.4, + "end": 10849.2, + "probability": 0.341 + }, + { + "start": 10849.5, + "end": 10854.8, + "probability": 0.1297 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.0, + "end": 10871.0, + "probability": 0.0 + }, + { + "start": 10871.14, + "end": 10872.3, + "probability": 0.2253 + }, + { + "start": 10873.78, + "end": 10874.98, + "probability": 0.2225 + }, + { + "start": 10885.68, + "end": 10887.5, + "probability": 0.6558 + }, + { + "start": 10887.6, + "end": 10887.6, + "probability": 0.4926 + }, + { + "start": 10887.6, + "end": 10887.6, + "probability": 0.6806 + }, + { + "start": 10887.6, + "end": 10890.48, + "probability": 0.6729 + }, + { + "start": 10891.64, + "end": 10897.22, + "probability": 0.8994 + }, + { + "start": 10898.26, + "end": 10898.92, + "probability": 0.7879 + }, + { + "start": 10900.18, + "end": 10903.88, + "probability": 0.9618 + }, + { + "start": 10903.88, + "end": 10909.4, + "probability": 0.9142 + }, + { + "start": 10910.86, + "end": 10911.9, + "probability": 0.6771 + }, + { + "start": 10913.36, + "end": 10920.3, + "probability": 0.9912 + }, + { + "start": 10921.66, + "end": 10923.1, + "probability": 0.7246 + }, + { + "start": 10923.3, + "end": 10926.02, + "probability": 0.4084 + }, + { + "start": 10926.44, + "end": 10927.86, + "probability": 0.4065 + }, + { + "start": 10928.06, + "end": 10932.54, + "probability": 0.736 + }, + { + "start": 10933.42, + "end": 10933.68, + "probability": 0.7937 + }, + { + "start": 10935.08, + "end": 10936.3, + "probability": 0.6773 + }, + { + "start": 10937.62, + "end": 10941.02, + "probability": 0.8726 + }, + { + "start": 10942.3, + "end": 10949.12, + "probability": 0.0556 + }, + { + "start": 10958.42, + "end": 10962.24, + "probability": 0.2137 + }, + { + "start": 10963.28, + "end": 10966.74, + "probability": 0.615 + }, + { + "start": 10967.02, + "end": 10968.66, + "probability": 0.8236 + }, + { + "start": 10984.2, + "end": 10986.9, + "probability": 0.438 + }, + { + "start": 10987.06, + "end": 10987.06, + "probability": 0.4719 + }, + { + "start": 10987.06, + "end": 10988.54, + "probability": 0.6935 + }, + { + "start": 10988.76, + "end": 10989.3, + "probability": 0.8366 + }, + { + "start": 10989.38, + "end": 10990.72, + "probability": 0.9478 + }, + { + "start": 10992.47, + "end": 10997.64, + "probability": 0.9836 + }, + { + "start": 10998.3, + "end": 11001.64, + "probability": 0.9791 + }, + { + "start": 11002.38, + "end": 11003.5, + "probability": 0.782 + }, + { + "start": 11003.68, + "end": 11005.68, + "probability": 0.9425 + }, + { + "start": 11005.84, + "end": 11008.1, + "probability": 0.2767 + }, + { + "start": 11008.36, + "end": 11010.56, + "probability": 0.7327 + }, + { + "start": 11010.68, + "end": 11014.34, + "probability": 0.9205 + }, + { + "start": 11015.36, + "end": 11016.5, + "probability": 0.9712 + }, + { + "start": 11016.64, + "end": 11022.43, + "probability": 0.8828 + }, + { + "start": 11023.32, + "end": 11025.78, + "probability": 0.9814 + }, + { + "start": 11025.78, + "end": 11028.06, + "probability": 0.975 + }, + { + "start": 11028.18, + "end": 11030.54, + "probability": 0.9888 + }, + { + "start": 11031.9, + "end": 11038.14, + "probability": 0.9277 + }, + { + "start": 11038.74, + "end": 11042.42, + "probability": 0.9933 + }, + { + "start": 11042.42, + "end": 11045.64, + "probability": 0.7744 + }, + { + "start": 11045.64, + "end": 11050.06, + "probability": 0.9757 + }, + { + "start": 11050.06, + "end": 11054.02, + "probability": 0.7938 + }, + { + "start": 11054.54, + "end": 11056.2, + "probability": 0.8073 + }, + { + "start": 11056.28, + "end": 11057.72, + "probability": 0.9396 + }, + { + "start": 11058.72, + "end": 11061.76, + "probability": 0.9854 + }, + { + "start": 11061.76, + "end": 11065.74, + "probability": 0.9885 + }, + { + "start": 11066.34, + "end": 11067.26, + "probability": 0.9232 + }, + { + "start": 11067.78, + "end": 11068.2, + "probability": 0.636 + }, + { + "start": 11068.32, + "end": 11070.88, + "probability": 0.949 + }, + { + "start": 11070.96, + "end": 11074.32, + "probability": 0.9847 + }, + { + "start": 11074.32, + "end": 11078.1, + "probability": 0.8294 + }, + { + "start": 11079.64, + "end": 11081.56, + "probability": 0.9471 + }, + { + "start": 11081.56, + "end": 11083.78, + "probability": 0.8086 + }, + { + "start": 11083.82, + "end": 11085.76, + "probability": 0.2942 + }, + { + "start": 11086.28, + "end": 11088.82, + "probability": 0.7531 + }, + { + "start": 11088.82, + "end": 11092.5, + "probability": 0.98 + }, + { + "start": 11092.5, + "end": 11094.64, + "probability": 0.5538 + }, + { + "start": 11094.78, + "end": 11099.12, + "probability": 0.9415 + }, + { + "start": 11099.18, + "end": 11099.68, + "probability": 0.884 + }, + { + "start": 11099.76, + "end": 11100.14, + "probability": 0.7967 + }, + { + "start": 11100.24, + "end": 11102.04, + "probability": 0.9048 + }, + { + "start": 11102.08, + "end": 11102.74, + "probability": 0.971 + }, + { + "start": 11104.54, + "end": 11105.1, + "probability": 0.0023 + }, + { + "start": 11106.44, + "end": 11111.34, + "probability": 0.9744 + }, + { + "start": 11111.54, + "end": 11113.9, + "probability": 0.9394 + }, + { + "start": 11113.94, + "end": 11118.04, + "probability": 0.8795 + }, + { + "start": 11118.56, + "end": 11120.5, + "probability": 0.8206 + }, + { + "start": 11120.76, + "end": 11120.98, + "probability": 0.522 + }, + { + "start": 11121.08, + "end": 11124.42, + "probability": 0.9736 + }, + { + "start": 11124.58, + "end": 11125.51, + "probability": 0.8631 + }, + { + "start": 11125.7, + "end": 11128.8, + "probability": 0.9279 + }, + { + "start": 11129.78, + "end": 11131.52, + "probability": 0.98 + }, + { + "start": 11133.56, + "end": 11133.68, + "probability": 0.0006 + }, + { + "start": 11134.58, + "end": 11137.6, + "probability": 0.9117 + }, + { + "start": 11137.6, + "end": 11141.46, + "probability": 0.9843 + }, + { + "start": 11141.96, + "end": 11142.06, + "probability": 0.0024 + }, + { + "start": 11142.3, + "end": 11145.7, + "probability": 0.96 + }, + { + "start": 11145.7, + "end": 11147.98, + "probability": 0.9146 + }, + { + "start": 11148.0, + "end": 11151.22, + "probability": 0.8089 + }, + { + "start": 11151.34, + "end": 11152.08, + "probability": 0.8318 + }, + { + "start": 11152.66, + "end": 11154.54, + "probability": 0.9686 + }, + { + "start": 11154.54, + "end": 11154.76, + "probability": 0.4524 + }, + { + "start": 11154.78, + "end": 11157.42, + "probability": 0.9242 + }, + { + "start": 11157.58, + "end": 11159.52, + "probability": 0.9919 + }, + { + "start": 11159.74, + "end": 11162.26, + "probability": 0.9602 + }, + { + "start": 11162.28, + "end": 11164.15, + "probability": 0.7133 + }, + { + "start": 11165.48, + "end": 11166.1, + "probability": 0.0243 + }, + { + "start": 11166.1, + "end": 11167.64, + "probability": 0.8461 + }, + { + "start": 11167.72, + "end": 11169.62, + "probability": 0.8922 + }, + { + "start": 11169.64, + "end": 11175.14, + "probability": 0.804 + }, + { + "start": 11176.38, + "end": 11176.44, + "probability": 0.0029 + }, + { + "start": 11176.44, + "end": 11178.86, + "probability": 0.9582 + }, + { + "start": 11178.86, + "end": 11181.6, + "probability": 0.6056 + }, + { + "start": 11181.68, + "end": 11184.86, + "probability": 0.8389 + }, + { + "start": 11185.38, + "end": 11188.08, + "probability": 0.6025 + }, + { + "start": 11189.6, + "end": 11189.78, + "probability": 0.0347 + }, + { + "start": 11189.92, + "end": 11192.34, + "probability": 0.8128 + }, + { + "start": 11192.48, + "end": 11195.42, + "probability": 0.9756 + }, + { + "start": 11196.02, + "end": 11196.16, + "probability": 0.4589 + }, + { + "start": 11196.26, + "end": 11198.76, + "probability": 0.803 + }, + { + "start": 11198.76, + "end": 11202.42, + "probability": 0.6752 + }, + { + "start": 11203.32, + "end": 11204.5, + "probability": 0.0603 + }, + { + "start": 11205.44, + "end": 11209.16, + "probability": 0.8377 + }, + { + "start": 11209.16, + "end": 11212.22, + "probability": 0.9142 + }, + { + "start": 11212.68, + "end": 11213.52, + "probability": 0.79 + }, + { + "start": 11213.74, + "end": 11214.56, + "probability": 0.7826 + }, + { + "start": 11214.74, + "end": 11215.34, + "probability": 0.608 + }, + { + "start": 11215.88, + "end": 11217.84, + "probability": 0.9243 + }, + { + "start": 11217.84, + "end": 11219.96, + "probability": 0.9495 + }, + { + "start": 11220.02, + "end": 11221.9, + "probability": 0.2373 + }, + { + "start": 11222.52, + "end": 11223.7, + "probability": 0.8549 + }, + { + "start": 11223.78, + "end": 11225.74, + "probability": 0.4036 + }, + { + "start": 11225.9, + "end": 11228.94, + "probability": 0.8936 + }, + { + "start": 11229.34, + "end": 11232.54, + "probability": 0.6633 + }, + { + "start": 11232.54, + "end": 11236.08, + "probability": 0.9658 + }, + { + "start": 11236.98, + "end": 11237.2, + "probability": 0.1655 + }, + { + "start": 11238.42, + "end": 11241.96, + "probability": 0.9653 + }, + { + "start": 11242.0, + "end": 11242.64, + "probability": 0.6472 + }, + { + "start": 11242.74, + "end": 11245.7, + "probability": 0.9663 + }, + { + "start": 11245.7, + "end": 11247.98, + "probability": 0.9264 + }, + { + "start": 11248.22, + "end": 11250.4, + "probability": 0.7989 + }, + { + "start": 11250.48, + "end": 11251.26, + "probability": 0.7328 + }, + { + "start": 11251.28, + "end": 11253.19, + "probability": 0.9439 + }, + { + "start": 11253.82, + "end": 11256.98, + "probability": 0.9791 + }, + { + "start": 11257.5, + "end": 11257.66, + "probability": 0.0372 + }, + { + "start": 11257.66, + "end": 11260.86, + "probability": 0.9368 + }, + { + "start": 11260.98, + "end": 11261.56, + "probability": 0.85 + }, + { + "start": 11262.08, + "end": 11266.28, + "probability": 0.9912 + }, + { + "start": 11266.92, + "end": 11267.28, + "probability": 0.2903 + }, + { + "start": 11267.48, + "end": 11270.58, + "probability": 0.9186 + }, + { + "start": 11270.58, + "end": 11275.06, + "probability": 0.9352 + }, + { + "start": 11275.14, + "end": 11278.67, + "probability": 0.9928 + }, + { + "start": 11279.14, + "end": 11279.4, + "probability": 0.4249 + }, + { + "start": 11279.46, + "end": 11281.5, + "probability": 0.9844 + }, + { + "start": 11283.68, + "end": 11286.68, + "probability": 0.6896 + }, + { + "start": 11286.68, + "end": 11288.78, + "probability": 0.5826 + }, + { + "start": 11288.9, + "end": 11289.46, + "probability": 0.6081 + }, + { + "start": 11289.6, + "end": 11292.04, + "probability": 0.9333 + }, + { + "start": 11292.88, + "end": 11294.7, + "probability": 0.5819 + }, + { + "start": 11294.8, + "end": 11297.0, + "probability": 0.8203 + }, + { + "start": 11297.82, + "end": 11301.64, + "probability": 0.439 + }, + { + "start": 11301.92, + "end": 11302.16, + "probability": 0.7019 + }, + { + "start": 11302.96, + "end": 11305.5, + "probability": 0.8663 + }, + { + "start": 11306.24, + "end": 11307.66, + "probability": 0.8174 + }, + { + "start": 11308.9, + "end": 11310.88, + "probability": 0.8857 + }, + { + "start": 11312.1, + "end": 11314.22, + "probability": 0.8171 + }, + { + "start": 11328.96, + "end": 11329.06, + "probability": 0.6924 + }, + { + "start": 11329.58, + "end": 11331.34, + "probability": 0.7799 + }, + { + "start": 11331.92, + "end": 11332.76, + "probability": 0.768 + }, + { + "start": 11332.9, + "end": 11333.88, + "probability": 0.67 + }, + { + "start": 11333.98, + "end": 11333.98, + "probability": 0.6044 + }, + { + "start": 11333.98, + "end": 11336.02, + "probability": 0.9873 + }, + { + "start": 11336.62, + "end": 11342.54, + "probability": 0.8806 + }, + { + "start": 11343.02, + "end": 11347.24, + "probability": 0.9934 + }, + { + "start": 11347.24, + "end": 11351.64, + "probability": 0.9985 + }, + { + "start": 11352.2, + "end": 11353.38, + "probability": 0.8689 + }, + { + "start": 11353.44, + "end": 11354.22, + "probability": 0.8837 + }, + { + "start": 11354.28, + "end": 11355.88, + "probability": 0.9749 + }, + { + "start": 11356.66, + "end": 11358.64, + "probability": 0.9919 + }, + { + "start": 11358.76, + "end": 11362.22, + "probability": 0.8734 + }, + { + "start": 11362.8, + "end": 11363.74, + "probability": 0.957 + }, + { + "start": 11364.54, + "end": 11369.42, + "probability": 0.9871 + }, + { + "start": 11369.56, + "end": 11370.4, + "probability": 0.8527 + }, + { + "start": 11370.9, + "end": 11373.82, + "probability": 0.9873 + }, + { + "start": 11374.44, + "end": 11377.14, + "probability": 0.9409 + }, + { + "start": 11377.7, + "end": 11380.64, + "probability": 0.9661 + }, + { + "start": 11380.74, + "end": 11383.86, + "probability": 0.9971 + }, + { + "start": 11383.86, + "end": 11387.74, + "probability": 0.6343 + }, + { + "start": 11387.84, + "end": 11388.04, + "probability": 0.5759 + }, + { + "start": 11389.16, + "end": 11391.17, + "probability": 0.8607 + }, + { + "start": 11393.24, + "end": 11393.74, + "probability": 0.0208 + }, + { + "start": 11393.74, + "end": 11395.18, + "probability": 0.0272 + }, + { + "start": 11395.18, + "end": 11395.18, + "probability": 0.2836 + }, + { + "start": 11395.18, + "end": 11395.58, + "probability": 0.2678 + }, + { + "start": 11397.26, + "end": 11397.94, + "probability": 0.8436 + }, + { + "start": 11408.92, + "end": 11410.26, + "probability": 0.1145 + }, + { + "start": 11410.6, + "end": 11412.14, + "probability": 0.6698 + }, + { + "start": 11414.08, + "end": 11414.66, + "probability": 0.5127 + }, + { + "start": 11419.7, + "end": 11422.58, + "probability": 0.6842 + }, + { + "start": 11423.9, + "end": 11425.24, + "probability": 0.9605 + }, + { + "start": 11426.6, + "end": 11432.66, + "probability": 0.924 + }, + { + "start": 11432.72, + "end": 11434.56, + "probability": 0.9924 + }, + { + "start": 11434.66, + "end": 11435.22, + "probability": 0.894 + }, + { + "start": 11435.44, + "end": 11437.06, + "probability": 0.44 + }, + { + "start": 11437.06, + "end": 11437.96, + "probability": 0.5993 + }, + { + "start": 11438.82, + "end": 11439.86, + "probability": 0.9963 + }, + { + "start": 11440.48, + "end": 11441.24, + "probability": 0.8196 + }, + { + "start": 11442.32, + "end": 11442.56, + "probability": 0.7589 + }, + { + "start": 11443.32, + "end": 11443.7, + "probability": 0.8974 + }, + { + "start": 11444.24, + "end": 11445.57, + "probability": 0.8795 + }, + { + "start": 11446.38, + "end": 11453.18, + "probability": 0.9373 + }, + { + "start": 11453.24, + "end": 11458.16, + "probability": 0.9434 + }, + { + "start": 11459.5, + "end": 11460.78, + "probability": 0.7409 + }, + { + "start": 11460.88, + "end": 11465.1, + "probability": 0.9855 + }, + { + "start": 11465.36, + "end": 11466.34, + "probability": 0.6813 + }, + { + "start": 11466.4, + "end": 11467.92, + "probability": 0.853 + }, + { + "start": 11468.52, + "end": 11472.78, + "probability": 0.9042 + }, + { + "start": 11473.46, + "end": 11475.56, + "probability": 0.9922 + }, + { + "start": 11476.54, + "end": 11478.24, + "probability": 0.9775 + }, + { + "start": 11479.38, + "end": 11480.94, + "probability": 0.8916 + }, + { + "start": 11481.74, + "end": 11484.0, + "probability": 0.8269 + }, + { + "start": 11484.74, + "end": 11488.83, + "probability": 0.6201 + }, + { + "start": 11489.72, + "end": 11494.28, + "probability": 0.9749 + }, + { + "start": 11495.04, + "end": 11497.08, + "probability": 0.7639 + }, + { + "start": 11497.6, + "end": 11498.28, + "probability": 0.5382 + }, + { + "start": 11500.26, + "end": 11506.46, + "probability": 0.9708 + }, + { + "start": 11506.62, + "end": 11509.94, + "probability": 0.9058 + }, + { + "start": 11510.12, + "end": 11510.98, + "probability": 0.7753 + }, + { + "start": 11513.0, + "end": 11518.86, + "probability": 0.9297 + }, + { + "start": 11519.4, + "end": 11524.3, + "probability": 0.9882 + }, + { + "start": 11524.7, + "end": 11528.26, + "probability": 0.9033 + }, + { + "start": 11529.78, + "end": 11531.82, + "probability": 0.625 + }, + { + "start": 11532.36, + "end": 11534.94, + "probability": 0.7619 + }, + { + "start": 11535.6, + "end": 11537.56, + "probability": 0.9129 + }, + { + "start": 11538.0, + "end": 11541.5, + "probability": 0.7667 + }, + { + "start": 11541.9, + "end": 11546.13, + "probability": 0.9717 + }, + { + "start": 11546.64, + "end": 11549.22, + "probability": 0.9863 + }, + { + "start": 11549.54, + "end": 11552.34, + "probability": 0.8683 + }, + { + "start": 11553.14, + "end": 11554.82, + "probability": 0.9844 + }, + { + "start": 11555.36, + "end": 11558.24, + "probability": 0.8311 + }, + { + "start": 11558.78, + "end": 11560.26, + "probability": 0.8758 + }, + { + "start": 11561.08, + "end": 11568.22, + "probability": 0.9899 + }, + { + "start": 11568.38, + "end": 11570.12, + "probability": 0.8756 + }, + { + "start": 11570.72, + "end": 11572.74, + "probability": 0.8564 + }, + { + "start": 11572.82, + "end": 11574.88, + "probability": 0.8102 + }, + { + "start": 11575.98, + "end": 11579.24, + "probability": 0.9454 + }, + { + "start": 11579.32, + "end": 11580.2, + "probability": 0.6319 + }, + { + "start": 11580.4, + "end": 11583.46, + "probability": 0.9877 + }, + { + "start": 11583.66, + "end": 11584.3, + "probability": 0.1063 + }, + { + "start": 11584.46, + "end": 11585.84, + "probability": 0.7766 + }, + { + "start": 11585.84, + "end": 11587.04, + "probability": 0.9006 + }, + { + "start": 11587.24, + "end": 11588.38, + "probability": 0.7798 + }, + { + "start": 11588.58, + "end": 11589.92, + "probability": 0.7974 + }, + { + "start": 11590.4, + "end": 11590.66, + "probability": 0.2689 + }, + { + "start": 11590.88, + "end": 11593.32, + "probability": 0.9734 + }, + { + "start": 11593.9, + "end": 11597.98, + "probability": 0.9761 + }, + { + "start": 11598.18, + "end": 11600.39, + "probability": 0.8835 + }, + { + "start": 11600.62, + "end": 11602.1, + "probability": 0.6854 + }, + { + "start": 11602.72, + "end": 11605.0, + "probability": 0.9907 + }, + { + "start": 11605.04, + "end": 11611.26, + "probability": 0.9685 + }, + { + "start": 11611.62, + "end": 11615.18, + "probability": 0.9663 + }, + { + "start": 11615.18, + "end": 11618.9, + "probability": 0.9967 + }, + { + "start": 11619.38, + "end": 11620.17, + "probability": 0.9782 + }, + { + "start": 11620.64, + "end": 11621.42, + "probability": 0.744 + }, + { + "start": 11621.96, + "end": 11623.98, + "probability": 0.9666 + }, + { + "start": 11624.18, + "end": 11624.38, + "probability": 0.655 + }, + { + "start": 11624.82, + "end": 11626.82, + "probability": 0.7631 + }, + { + "start": 11626.88, + "end": 11628.22, + "probability": 0.7218 + }, + { + "start": 11629.02, + "end": 11629.66, + "probability": 0.2499 + }, + { + "start": 11629.68, + "end": 11630.8, + "probability": 0.7814 + }, + { + "start": 11631.54, + "end": 11633.24, + "probability": 0.8645 + }, + { + "start": 11646.24, + "end": 11647.44, + "probability": 0.6514 + }, + { + "start": 11648.18, + "end": 11648.96, + "probability": 0.9089 + }, + { + "start": 11649.54, + "end": 11650.24, + "probability": 0.7065 + }, + { + "start": 11650.3, + "end": 11651.42, + "probability": 0.8065 + }, + { + "start": 11651.68, + "end": 11653.53, + "probability": 0.9771 + }, + { + "start": 11653.66, + "end": 11654.44, + "probability": 0.5735 + }, + { + "start": 11655.0, + "end": 11658.46, + "probability": 0.9761 + }, + { + "start": 11658.46, + "end": 11664.86, + "probability": 0.9941 + }, + { + "start": 11665.0, + "end": 11670.74, + "probability": 0.9293 + }, + { + "start": 11670.8, + "end": 11671.7, + "probability": 0.6733 + }, + { + "start": 11672.46, + "end": 11677.08, + "probability": 0.9906 + }, + { + "start": 11679.13, + "end": 11683.84, + "probability": 0.9939 + }, + { + "start": 11684.36, + "end": 11685.38, + "probability": 0.8788 + }, + { + "start": 11685.58, + "end": 11686.24, + "probability": 0.6348 + }, + { + "start": 11686.36, + "end": 11687.72, + "probability": 0.806 + }, + { + "start": 11687.78, + "end": 11688.6, + "probability": 0.73 + }, + { + "start": 11689.46, + "end": 11695.74, + "probability": 0.9758 + }, + { + "start": 11696.7, + "end": 11700.38, + "probability": 0.8699 + }, + { + "start": 11700.56, + "end": 11705.94, + "probability": 0.984 + }, + { + "start": 11706.68, + "end": 11710.4, + "probability": 0.9263 + }, + { + "start": 11710.56, + "end": 11711.26, + "probability": 0.7617 + }, + { + "start": 11711.44, + "end": 11714.68, + "probability": 0.8076 + }, + { + "start": 11715.48, + "end": 11716.92, + "probability": 0.7575 + }, + { + "start": 11717.48, + "end": 11721.84, + "probability": 0.9814 + }, + { + "start": 11722.58, + "end": 11729.38, + "probability": 0.8389 + }, + { + "start": 11730.24, + "end": 11734.16, + "probability": 0.8154 + }, + { + "start": 11734.32, + "end": 11737.52, + "probability": 0.6613 + }, + { + "start": 11737.7, + "end": 11738.64, + "probability": 0.8158 + }, + { + "start": 11739.12, + "end": 11740.9, + "probability": 0.8095 + }, + { + "start": 11741.08, + "end": 11743.1, + "probability": 0.9785 + }, + { + "start": 11743.54, + "end": 11748.08, + "probability": 0.3529 + }, + { + "start": 11748.08, + "end": 11753.46, + "probability": 0.6193 + }, + { + "start": 11753.58, + "end": 11757.22, + "probability": 0.9391 + }, + { + "start": 11758.12, + "end": 11759.58, + "probability": 0.9976 + }, + { + "start": 11759.64, + "end": 11760.8, + "probability": 0.9778 + }, + { + "start": 11761.5, + "end": 11764.74, + "probability": 0.7634 + }, + { + "start": 11766.76, + "end": 11769.95, + "probability": 0.9989 + }, + { + "start": 11771.24, + "end": 11774.38, + "probability": 0.9277 + }, + { + "start": 11774.54, + "end": 11779.78, + "probability": 0.9114 + }, + { + "start": 11779.96, + "end": 11785.08, + "probability": 0.9921 + }, + { + "start": 11786.14, + "end": 11789.7, + "probability": 0.7617 + }, + { + "start": 11790.18, + "end": 11793.06, + "probability": 0.8977 + }, + { + "start": 11795.32, + "end": 11802.86, + "probability": 0.9766 + }, + { + "start": 11803.56, + "end": 11807.14, + "probability": 0.9141 + }, + { + "start": 11807.4, + "end": 11814.5, + "probability": 0.8081 + }, + { + "start": 11814.7, + "end": 11820.86, + "probability": 0.9466 + }, + { + "start": 11822.18, + "end": 11827.26, + "probability": 0.9834 + }, + { + "start": 11828.02, + "end": 11831.68, + "probability": 0.9874 + }, + { + "start": 11831.94, + "end": 11833.64, + "probability": 0.5179 + }, + { + "start": 11833.84, + "end": 11833.84, + "probability": 0.2886 + }, + { + "start": 11833.84, + "end": 11834.86, + "probability": 0.8411 + }, + { + "start": 11835.28, + "end": 11837.02, + "probability": 0.7651 + }, + { + "start": 11837.02, + "end": 11837.06, + "probability": 0.2708 + }, + { + "start": 11837.06, + "end": 11837.6, + "probability": 0.4944 + }, + { + "start": 11837.88, + "end": 11838.74, + "probability": 0.615 + }, + { + "start": 11838.82, + "end": 11845.36, + "probability": 0.9878 + }, + { + "start": 11845.98, + "end": 11849.68, + "probability": 0.6391 + }, + { + "start": 11849.8, + "end": 11853.64, + "probability": 0.8853 + }, + { + "start": 11854.06, + "end": 11855.96, + "probability": 0.7571 + }, + { + "start": 11856.08, + "end": 11859.7, + "probability": 0.7754 + }, + { + "start": 11859.84, + "end": 11863.88, + "probability": 0.974 + }, + { + "start": 11865.2, + "end": 11868.44, + "probability": 0.9554 + }, + { + "start": 11868.76, + "end": 11869.36, + "probability": 0.8444 + }, + { + "start": 11869.58, + "end": 11871.38, + "probability": 0.9398 + }, + { + "start": 11871.42, + "end": 11872.86, + "probability": 0.8938 + }, + { + "start": 11873.52, + "end": 11874.04, + "probability": 0.0138 + }, + { + "start": 11875.86, + "end": 11876.46, + "probability": 0.7959 + }, + { + "start": 11877.1, + "end": 11878.0, + "probability": 0.997 + }, + { + "start": 11878.6, + "end": 11879.5, + "probability": 0.6919 + }, + { + "start": 11880.44, + "end": 11881.16, + "probability": 0.6998 + }, + { + "start": 11881.78, + "end": 11883.24, + "probability": 0.8775 + }, + { + "start": 11884.88, + "end": 11885.62, + "probability": 0.8148 + }, + { + "start": 11886.12, + "end": 11887.64, + "probability": 0.253 + }, + { + "start": 11888.36, + "end": 11888.92, + "probability": 0.9567 + }, + { + "start": 11889.32, + "end": 11889.46, + "probability": 0.317 + }, + { + "start": 11889.7, + "end": 11890.34, + "probability": 0.5914 + }, + { + "start": 11890.4, + "end": 11890.72, + "probability": 0.9212 + }, + { + "start": 11891.08, + "end": 11892.2, + "probability": 0.9407 + }, + { + "start": 11893.32, + "end": 11894.02, + "probability": 0.3403 + }, + { + "start": 11895.84, + "end": 11898.36, + "probability": 0.9928 + }, + { + "start": 11899.4, + "end": 11900.06, + "probability": 0.9379 + }, + { + "start": 11900.96, + "end": 11902.34, + "probability": 0.8466 + }, + { + "start": 11903.68, + "end": 11904.38, + "probability": 0.5862 + }, + { + "start": 11906.98, + "end": 11908.68, + "probability": 0.6973 + }, + { + "start": 11910.18, + "end": 11910.88, + "probability": 0.6234 + }, + { + "start": 11914.9, + "end": 11916.04, + "probability": 0.9804 + }, + { + "start": 11917.14, + "end": 11917.64, + "probability": 0.7909 + }, + { + "start": 11920.0, + "end": 11921.8, + "probability": 0.9316 + }, + { + "start": 11923.8, + "end": 11924.42, + "probability": 0.7354 + }, + { + "start": 11924.64, + "end": 11925.72, + "probability": 0.9531 + }, + { + "start": 11926.86, + "end": 11927.64, + "probability": 0.5957 + }, + { + "start": 11928.78, + "end": 11930.56, + "probability": 0.8887 + }, + { + "start": 11933.92, + "end": 11934.58, + "probability": 0.9175 + }, + { + "start": 11934.66, + "end": 11939.0, + "probability": 0.9927 + }, + { + "start": 11939.0, + "end": 11941.8, + "probability": 0.9048 + }, + { + "start": 11941.9, + "end": 11943.28, + "probability": 0.0602 + }, + { + "start": 11943.46, + "end": 11944.16, + "probability": 0.8388 + }, + { + "start": 11945.18, + "end": 11945.84, + "probability": 0.74 + }, + { + "start": 11946.02, + "end": 11946.54, + "probability": 0.7513 + }, + { + "start": 11946.64, + "end": 11946.98, + "probability": 0.88 + }, + { + "start": 11958.5, + "end": 11958.5, + "probability": 0.0275 + }, + { + "start": 11958.5, + "end": 11958.5, + "probability": 0.061 + }, + { + "start": 11958.5, + "end": 11958.54, + "probability": 0.0313 + }, + { + "start": 11958.54, + "end": 11958.56, + "probability": 0.0904 + }, + { + "start": 11964.7, + "end": 11965.24, + "probability": 0.3725 + }, + { + "start": 11965.24, + "end": 11967.06, + "probability": 0.6809 + }, + { + "start": 11967.14, + "end": 11969.24, + "probability": 0.8782 + }, + { + "start": 11969.3, + "end": 11970.7, + "probability": 0.9063 + }, + { + "start": 11974.92, + "end": 11975.02, + "probability": 0.1118 + }, + { + "start": 11975.02, + "end": 11975.02, + "probability": 0.0214 + }, + { + "start": 11975.02, + "end": 11975.02, + "probability": 0.0144 + }, + { + "start": 11975.02, + "end": 11976.34, + "probability": 0.6693 + }, + { + "start": 11976.76, + "end": 11977.02, + "probability": 0.3478 + }, + { + "start": 11977.62, + "end": 11978.24, + "probability": 0.3639 + }, + { + "start": 11979.12, + "end": 11981.92, + "probability": 0.749 + }, + { + "start": 11982.08, + "end": 11983.36, + "probability": 0.8892 + }, + { + "start": 11983.48, + "end": 11986.02, + "probability": 0.9919 + }, + { + "start": 11986.26, + "end": 11987.64, + "probability": 0.9533 + }, + { + "start": 11988.66, + "end": 11992.85, + "probability": 0.8269 + }, + { + "start": 12005.82, + "end": 12005.96, + "probability": 0.2855 + }, + { + "start": 12005.96, + "end": 12007.1, + "probability": 0.862 + }, + { + "start": 12007.18, + "end": 12009.46, + "probability": 0.447 + }, + { + "start": 12010.02, + "end": 12010.7, + "probability": 0.8155 + }, + { + "start": 12011.42, + "end": 12012.46, + "probability": 0.6347 + }, + { + "start": 12012.86, + "end": 12013.84, + "probability": 0.9561 + }, + { + "start": 12013.88, + "end": 12016.2, + "probability": 0.9664 + }, + { + "start": 12016.26, + "end": 12017.6, + "probability": 0.0651 + }, + { + "start": 12017.8, + "end": 12018.48, + "probability": 0.6777 + }, + { + "start": 12018.88, + "end": 12022.54, + "probability": 0.9943 + }, + { + "start": 12022.86, + "end": 12024.4, + "probability": 0.8553 + }, + { + "start": 12024.8, + "end": 12024.84, + "probability": 0.4441 + }, + { + "start": 12024.84, + "end": 12026.1, + "probability": 0.4854 + }, + { + "start": 12026.36, + "end": 12027.28, + "probability": 0.8375 + }, + { + "start": 12028.04, + "end": 12029.98, + "probability": 0.6381 + }, + { + "start": 12030.08, + "end": 12031.92, + "probability": 0.8036 + }, + { + "start": 12033.04, + "end": 12035.24, + "probability": 0.9961 + }, + { + "start": 12035.42, + "end": 12041.12, + "probability": 0.96 + }, + { + "start": 12041.34, + "end": 12043.84, + "probability": 0.926 + }, + { + "start": 12044.48, + "end": 12045.7, + "probability": 0.9448 + }, + { + "start": 12046.66, + "end": 12049.82, + "probability": 0.9972 + }, + { + "start": 12050.3, + "end": 12051.18, + "probability": 0.9012 + }, + { + "start": 12051.42, + "end": 12053.84, + "probability": 0.9795 + }, + { + "start": 12054.28, + "end": 12056.46, + "probability": 0.9299 + }, + { + "start": 12056.64, + "end": 12061.58, + "probability": 0.9916 + }, + { + "start": 12061.58, + "end": 12064.44, + "probability": 0.9961 + }, + { + "start": 12066.16, + "end": 12066.32, + "probability": 0.3711 + }, + { + "start": 12066.5, + "end": 12070.72, + "probability": 0.9953 + }, + { + "start": 12070.72, + "end": 12074.88, + "probability": 0.8011 + }, + { + "start": 12075.34, + "end": 12078.52, + "probability": 0.9956 + }, + { + "start": 12079.04, + "end": 12080.3, + "probability": 0.563 + }, + { + "start": 12080.7, + "end": 12083.54, + "probability": 0.9948 + }, + { + "start": 12084.34, + "end": 12088.82, + "probability": 0.9826 + }, + { + "start": 12088.9, + "end": 12089.82, + "probability": 0.8354 + }, + { + "start": 12090.34, + "end": 12092.94, + "probability": 0.9669 + }, + { + "start": 12093.4, + "end": 12096.62, + "probability": 0.9275 + }, + { + "start": 12097.1, + "end": 12099.1, + "probability": 0.8672 + }, + { + "start": 12099.56, + "end": 12101.76, + "probability": 0.8738 + }, + { + "start": 12102.04, + "end": 12104.74, + "probability": 0.8324 + }, + { + "start": 12105.04, + "end": 12105.86, + "probability": 0.9714 + }, + { + "start": 12106.08, + "end": 12107.52, + "probability": 0.9855 + }, + { + "start": 12108.02, + "end": 12111.36, + "probability": 0.9634 + }, + { + "start": 12111.38, + "end": 12112.68, + "probability": 0.8724 + }, + { + "start": 12113.06, + "end": 12115.88, + "probability": 0.9761 + }, + { + "start": 12115.92, + "end": 12117.58, + "probability": 0.9222 + }, + { + "start": 12118.74, + "end": 12119.76, + "probability": 0.9241 + }, + { + "start": 12119.9, + "end": 12124.64, + "probability": 0.9271 + }, + { + "start": 12125.3, + "end": 12130.14, + "probability": 0.8851 + }, + { + "start": 12130.28, + "end": 12130.98, + "probability": 0.7773 + }, + { + "start": 12131.0, + "end": 12135.02, + "probability": 0.8964 + }, + { + "start": 12135.06, + "end": 12135.66, + "probability": 0.6829 + }, + { + "start": 12135.7, + "end": 12142.58, + "probability": 0.9409 + }, + { + "start": 12142.7, + "end": 12142.9, + "probability": 0.6422 + }, + { + "start": 12144.48, + "end": 12146.12, + "probability": 0.8034 + }, + { + "start": 12146.7, + "end": 12149.78, + "probability": 0.8422 + }, + { + "start": 12150.9, + "end": 12151.7, + "probability": 0.537 + }, + { + "start": 12151.88, + "end": 12153.0, + "probability": 0.8307 + }, + { + "start": 12166.96, + "end": 12167.18, + "probability": 0.7132 + }, + { + "start": 12170.66, + "end": 12172.18, + "probability": 0.6677 + }, + { + "start": 12173.48, + "end": 12176.46, + "probability": 0.959 + }, + { + "start": 12176.68, + "end": 12178.18, + "probability": 0.8508 + }, + { + "start": 12178.94, + "end": 12181.54, + "probability": 0.9915 + }, + { + "start": 12181.54, + "end": 12185.0, + "probability": 0.9846 + }, + { + "start": 12185.28, + "end": 12187.32, + "probability": 0.9851 + }, + { + "start": 12187.96, + "end": 12189.6, + "probability": 0.9739 + }, + { + "start": 12189.68, + "end": 12192.84, + "probability": 0.9914 + }, + { + "start": 12193.42, + "end": 12194.78, + "probability": 0.7841 + }, + { + "start": 12195.5, + "end": 12199.06, + "probability": 0.886 + }, + { + "start": 12200.32, + "end": 12202.45, + "probability": 0.9458 + }, + { + "start": 12204.76, + "end": 12207.58, + "probability": 0.9828 + }, + { + "start": 12209.1, + "end": 12211.98, + "probability": 0.8252 + }, + { + "start": 12212.62, + "end": 12214.96, + "probability": 0.9802 + }, + { + "start": 12216.1, + "end": 12219.3, + "probability": 0.9694 + }, + { + "start": 12219.44, + "end": 12221.38, + "probability": 0.9364 + }, + { + "start": 12222.24, + "end": 12224.22, + "probability": 0.9833 + }, + { + "start": 12224.78, + "end": 12226.34, + "probability": 0.968 + }, + { + "start": 12227.1, + "end": 12231.24, + "probability": 0.9297 + }, + { + "start": 12231.7, + "end": 12236.7, + "probability": 0.9794 + }, + { + "start": 12237.22, + "end": 12239.48, + "probability": 0.9885 + }, + { + "start": 12239.84, + "end": 12240.24, + "probability": 0.6108 + }, + { + "start": 12241.36, + "end": 12243.7, + "probability": 0.9896 + }, + { + "start": 12243.8, + "end": 12246.27, + "probability": 0.8306 + }, + { + "start": 12250.42, + "end": 12253.05, + "probability": 0.9299 + }, + { + "start": 12255.02, + "end": 12256.26, + "probability": 0.9348 + }, + { + "start": 12257.74, + "end": 12259.86, + "probability": 0.9273 + }, + { + "start": 12259.98, + "end": 12261.0, + "probability": 0.9227 + }, + { + "start": 12261.88, + "end": 12262.54, + "probability": 0.7489 + }, + { + "start": 12263.12, + "end": 12264.22, + "probability": 0.9505 + }, + { + "start": 12265.62, + "end": 12266.12, + "probability": 0.5121 + }, + { + "start": 12267.14, + "end": 12268.62, + "probability": 0.9827 + }, + { + "start": 12268.74, + "end": 12270.4, + "probability": 0.9276 + }, + { + "start": 12272.06, + "end": 12272.7, + "probability": 0.9083 + }, + { + "start": 12273.86, + "end": 12275.14, + "probability": 0.9024 + }, + { + "start": 12276.26, + "end": 12276.78, + "probability": 0.4414 + }, + { + "start": 12278.08, + "end": 12279.54, + "probability": 0.7002 + }, + { + "start": 12279.62, + "end": 12280.24, + "probability": 0.4314 + }, + { + "start": 12280.36, + "end": 12281.94, + "probability": 0.9434 + }, + { + "start": 12282.02, + "end": 12282.5, + "probability": 0.7376 + }, + { + "start": 12282.64, + "end": 12283.7, + "probability": 0.9845 + }, + { + "start": 12285.74, + "end": 12287.2, + "probability": 0.5009 + }, + { + "start": 12287.66, + "end": 12288.97, + "probability": 0.7783 + }, + { + "start": 12289.82, + "end": 12291.54, + "probability": 0.9196 + }, + { + "start": 12292.32, + "end": 12292.46, + "probability": 0.1736 + }, + { + "start": 12293.12, + "end": 12293.24, + "probability": 0.1939 + }, + { + "start": 12293.24, + "end": 12297.14, + "probability": 0.9255 + }, + { + "start": 12297.28, + "end": 12298.6, + "probability": 0.2621 + }, + { + "start": 12299.06, + "end": 12299.92, + "probability": 0.684 + }, + { + "start": 12299.96, + "end": 12300.4, + "probability": 0.7322 + }, + { + "start": 12300.4, + "end": 12300.88, + "probability": 0.7654 + }, + { + "start": 12302.52, + "end": 12304.74, + "probability": 0.9354 + }, + { + "start": 12305.24, + "end": 12308.45, + "probability": 0.1829 + }, + { + "start": 12310.08, + "end": 12310.1, + "probability": 0.1458 + }, + { + "start": 12310.1, + "end": 12310.1, + "probability": 0.552 + }, + { + "start": 12310.1, + "end": 12310.66, + "probability": 0.4663 + }, + { + "start": 12310.84, + "end": 12313.56, + "probability": 0.9784 + }, + { + "start": 12317.22, + "end": 12319.68, + "probability": 0.8373 + }, + { + "start": 12319.8, + "end": 12321.1, + "probability": 0.9297 + }, + { + "start": 12321.14, + "end": 12324.22, + "probability": 0.9877 + }, + { + "start": 12326.5, + "end": 12329.16, + "probability": 0.9313 + }, + { + "start": 12329.16, + "end": 12331.48, + "probability": 0.9631 + }, + { + "start": 12331.6, + "end": 12332.94, + "probability": 0.1388 + }, + { + "start": 12333.08, + "end": 12333.74, + "probability": 0.6386 + }, + { + "start": 12334.22, + "end": 12336.6, + "probability": 0.993 + }, + { + "start": 12337.24, + "end": 12337.94, + "probability": 0.8858 + }, + { + "start": 12342.6, + "end": 12349.22, + "probability": 0.2331 + }, + { + "start": 12350.3, + "end": 12350.46, + "probability": 0.2632 + }, + { + "start": 12366.76, + "end": 12367.4, + "probability": 0.0211 + }, + { + "start": 12368.1, + "end": 12369.46, + "probability": 0.7572 + }, + { + "start": 12370.4, + "end": 12372.36, + "probability": 0.9624 + }, + { + "start": 12372.64, + "end": 12375.68, + "probability": 0.9751 + }, + { + "start": 12376.24, + "end": 12377.56, + "probability": 0.9106 + }, + { + "start": 12378.58, + "end": 12380.28, + "probability": 0.8033 + }, + { + "start": 12380.28, + "end": 12382.2, + "probability": 0.3803 + }, + { + "start": 12382.36, + "end": 12384.3, + "probability": 0.5249 + }, + { + "start": 12384.36, + "end": 12387.61, + "probability": 0.1325 + }, + { + "start": 12388.26, + "end": 12388.5, + "probability": 0.0233 + }, + { + "start": 12388.5, + "end": 12388.68, + "probability": 0.1859 + }, + { + "start": 12388.68, + "end": 12389.16, + "probability": 0.2582 + }, + { + "start": 12389.18, + "end": 12394.24, + "probability": 0.9551 + }, + { + "start": 12396.28, + "end": 12400.0, + "probability": 0.2771 + }, + { + "start": 12400.78, + "end": 12401.3, + "probability": 0.2718 + }, + { + "start": 12401.34, + "end": 12403.16, + "probability": 0.9186 + }, + { + "start": 12403.3, + "end": 12404.56, + "probability": 0.9978 + }, + { + "start": 12405.04, + "end": 12407.98, + "probability": 0.6272 + }, + { + "start": 12408.1, + "end": 12410.68, + "probability": 0.9841 + }, + { + "start": 12410.68, + "end": 12413.2, + "probability": 0.3802 + }, + { + "start": 12413.34, + "end": 12414.6, + "probability": 0.5062 + }, + { + "start": 12414.64, + "end": 12414.9, + "probability": 0.6792 + }, + { + "start": 12415.16, + "end": 12415.16, + "probability": 0.6128 + }, + { + "start": 12415.26, + "end": 12416.28, + "probability": 0.5433 + }, + { + "start": 12416.32, + "end": 12416.54, + "probability": 0.7877 + }, + { + "start": 12416.62, + "end": 12418.68, + "probability": 0.7487 + }, + { + "start": 12418.68, + "end": 12423.84, + "probability": 0.7504 + }, + { + "start": 12423.84, + "end": 12426.52, + "probability": 0.7778 + }, + { + "start": 12427.12, + "end": 12430.28, + "probability": 0.6154 + }, + { + "start": 12430.32, + "end": 12433.4, + "probability": 0.88 + }, + { + "start": 12433.52, + "end": 12435.12, + "probability": 0.3555 + }, + { + "start": 12435.22, + "end": 12435.98, + "probability": 0.6489 + }, + { + "start": 12436.72, + "end": 12437.68, + "probability": 0.667 + }, + { + "start": 12438.88, + "end": 12440.94, + "probability": 0.9014 + }, + { + "start": 12441.1, + "end": 12441.84, + "probability": 0.8722 + }, + { + "start": 12441.92, + "end": 12442.74, + "probability": 0.8365 + }, + { + "start": 12442.78, + "end": 12444.34, + "probability": 0.9797 + }, + { + "start": 12444.4, + "end": 12448.9, + "probability": 0.9059 + }, + { + "start": 12449.84, + "end": 12453.02, + "probability": 0.9086 + }, + { + "start": 12453.48, + "end": 12459.4, + "probability": 0.9559 + }, + { + "start": 12460.1, + "end": 12463.06, + "probability": 0.9872 + }, + { + "start": 12463.06, + "end": 12469.56, + "probability": 0.9937 + }, + { + "start": 12469.92, + "end": 12473.0, + "probability": 0.6463 + }, + { + "start": 12475.25, + "end": 12477.54, + "probability": 0.9412 + }, + { + "start": 12477.64, + "end": 12478.36, + "probability": 0.8308 + }, + { + "start": 12478.5, + "end": 12481.1, + "probability": 0.9907 + }, + { + "start": 12481.1, + "end": 12481.64, + "probability": 0.6053 + }, + { + "start": 12484.3, + "end": 12487.3, + "probability": 0.7805 + }, + { + "start": 12487.74, + "end": 12488.8, + "probability": 0.7481 + }, + { + "start": 12490.0, + "end": 12491.9, + "probability": 0.3937 + }, + { + "start": 12492.04, + "end": 12492.54, + "probability": 0.4649 + }, + { + "start": 12493.38, + "end": 12493.52, + "probability": 0.9258 + }, + { + "start": 12494.28, + "end": 12495.86, + "probability": 0.7024 + }, + { + "start": 12496.32, + "end": 12496.34, + "probability": 0.2459 + }, + { + "start": 12496.62, + "end": 12496.8, + "probability": 0.4111 + }, + { + "start": 12496.92, + "end": 12499.72, + "probability": 0.3391 + }, + { + "start": 12499.82, + "end": 12500.44, + "probability": 0.5206 + }, + { + "start": 12500.54, + "end": 12501.09, + "probability": 0.4894 + }, + { + "start": 12501.32, + "end": 12503.0, + "probability": 0.5633 + }, + { + "start": 12503.02, + "end": 12504.16, + "probability": 0.9745 + }, + { + "start": 12504.26, + "end": 12507.56, + "probability": 0.9596 + }, + { + "start": 12508.44, + "end": 12510.32, + "probability": 0.9764 + }, + { + "start": 12511.28, + "end": 12512.16, + "probability": 0.8107 + }, + { + "start": 12517.66, + "end": 12518.48, + "probability": 0.8324 + }, + { + "start": 12518.66, + "end": 12519.99, + "probability": 0.8634 + }, + { + "start": 12520.24, + "end": 12520.7, + "probability": 0.5912 + }, + { + "start": 12521.46, + "end": 12522.44, + "probability": 0.4306 + }, + { + "start": 12522.44, + "end": 12523.42, + "probability": 0.6798 + }, + { + "start": 12525.14, + "end": 12525.68, + "probability": 0.9164 + }, + { + "start": 12525.94, + "end": 12527.48, + "probability": 0.6568 + }, + { + "start": 12527.58, + "end": 12528.96, + "probability": 0.7888 + }, + { + "start": 12529.0, + "end": 12529.42, + "probability": 0.6163 + }, + { + "start": 12529.42, + "end": 12529.72, + "probability": 0.9355 + }, + { + "start": 12529.82, + "end": 12530.52, + "probability": 0.7379 + }, + { + "start": 12530.94, + "end": 12536.84, + "probability": 0.8542 + }, + { + "start": 12537.76, + "end": 12540.3, + "probability": 0.5541 + }, + { + "start": 12541.36, + "end": 12543.74, + "probability": 0.6513 + }, + { + "start": 12544.78, + "end": 12548.72, + "probability": 0.9168 + }, + { + "start": 12549.54, + "end": 12550.14, + "probability": 0.5701 + }, + { + "start": 12550.34, + "end": 12559.08, + "probability": 0.7688 + }, + { + "start": 12559.72, + "end": 12561.22, + "probability": 0.0684 + }, + { + "start": 12561.28, + "end": 12561.8, + "probability": 0.9489 + }, + { + "start": 12562.16, + "end": 12564.3, + "probability": 0.5011 + }, + { + "start": 12564.38, + "end": 12565.29, + "probability": 0.829 + }, + { + "start": 12565.42, + "end": 12567.48, + "probability": 0.8239 + }, + { + "start": 12568.4, + "end": 12577.94, + "probability": 0.9065 + }, + { + "start": 12579.38, + "end": 12581.78, + "probability": 0.9786 + }, + { + "start": 12582.52, + "end": 12586.22, + "probability": 0.981 + }, + { + "start": 12587.62, + "end": 12592.0, + "probability": 0.8736 + }, + { + "start": 12592.6, + "end": 12594.38, + "probability": 0.9296 + }, + { + "start": 12595.46, + "end": 12600.54, + "probability": 0.9933 + }, + { + "start": 12601.16, + "end": 12604.4, + "probability": 0.8918 + }, + { + "start": 12605.24, + "end": 12608.78, + "probability": 0.7153 + }, + { + "start": 12610.12, + "end": 12617.48, + "probability": 0.9037 + }, + { + "start": 12617.6, + "end": 12619.09, + "probability": 0.9941 + }, + { + "start": 12620.46, + "end": 12620.66, + "probability": 0.7965 + }, + { + "start": 12620.74, + "end": 12622.84, + "probability": 0.6572 + }, + { + "start": 12623.0, + "end": 12623.66, + "probability": 0.2539 + }, + { + "start": 12623.76, + "end": 12624.52, + "probability": 0.6605 + }, + { + "start": 12624.96, + "end": 12628.12, + "probability": 0.9674 + }, + { + "start": 12628.2, + "end": 12631.98, + "probability": 0.7839 + }, + { + "start": 12632.56, + "end": 12635.2, + "probability": 0.9929 + }, + { + "start": 12635.76, + "end": 12639.18, + "probability": 0.9858 + }, + { + "start": 12640.0, + "end": 12641.82, + "probability": 0.9315 + }, + { + "start": 12642.38, + "end": 12647.34, + "probability": 0.9702 + }, + { + "start": 12647.56, + "end": 12648.66, + "probability": 0.6449 + }, + { + "start": 12648.98, + "end": 12651.82, + "probability": 0.8911 + }, + { + "start": 12652.5, + "end": 12658.88, + "probability": 0.9368 + }, + { + "start": 12659.12, + "end": 12662.2, + "probability": 0.9939 + }, + { + "start": 12662.2, + "end": 12665.72, + "probability": 0.9725 + }, + { + "start": 12665.84, + "end": 12667.62, + "probability": 0.5416 + }, + { + "start": 12668.0, + "end": 12668.64, + "probability": 0.9318 + }, + { + "start": 12668.66, + "end": 12669.18, + "probability": 0.7074 + }, + { + "start": 12669.62, + "end": 12672.26, + "probability": 0.9756 + }, + { + "start": 12672.26, + "end": 12675.98, + "probability": 0.975 + }, + { + "start": 12676.96, + "end": 12682.68, + "probability": 0.6842 + }, + { + "start": 12682.84, + "end": 12686.36, + "probability": 0.7893 + }, + { + "start": 12686.88, + "end": 12689.76, + "probability": 0.7254 + }, + { + "start": 12690.4, + "end": 12696.52, + "probability": 0.8354 + }, + { + "start": 12696.9, + "end": 12697.24, + "probability": 0.4912 + }, + { + "start": 12697.26, + "end": 12701.22, + "probability": 0.6804 + }, + { + "start": 12701.32, + "end": 12702.32, + "probability": 0.6996 + }, + { + "start": 12702.66, + "end": 12703.9, + "probability": 0.9785 + }, + { + "start": 12704.4, + "end": 12706.5, + "probability": 0.8721 + }, + { + "start": 12707.04, + "end": 12708.22, + "probability": 0.3942 + }, + { + "start": 12708.52, + "end": 12709.14, + "probability": 0.7184 + }, + { + "start": 12709.24, + "end": 12710.48, + "probability": 0.9934 + }, + { + "start": 12710.62, + "end": 12711.02, + "probability": 0.1126 + }, + { + "start": 12711.1, + "end": 12711.94, + "probability": 0.8821 + }, + { + "start": 12712.32, + "end": 12712.68, + "probability": 0.5112 + }, + { + "start": 12712.98, + "end": 12714.08, + "probability": 0.8809 + }, + { + "start": 12714.12, + "end": 12715.06, + "probability": 0.599 + }, + { + "start": 12716.98, + "end": 12719.62, + "probability": 0.5305 + }, + { + "start": 12719.62, + "end": 12720.36, + "probability": 0.5505 + }, + { + "start": 12720.36, + "end": 12720.58, + "probability": 0.4763 + }, + { + "start": 12720.68, + "end": 12723.26, + "probability": 0.6252 + }, + { + "start": 12723.98, + "end": 12726.27, + "probability": 0.9537 + }, + { + "start": 12727.22, + "end": 12728.48, + "probability": 0.8702 + }, + { + "start": 12729.2, + "end": 12729.98, + "probability": 0.0095 + }, + { + "start": 12731.88, + "end": 12732.7, + "probability": 0.2755 + }, + { + "start": 12733.38, + "end": 12735.24, + "probability": 0.8752 + }, + { + "start": 12735.24, + "end": 12737.56, + "probability": 0.9525 + }, + { + "start": 12738.14, + "end": 12742.86, + "probability": 0.8356 + }, + { + "start": 12742.86, + "end": 12746.4, + "probability": 0.9917 + }, + { + "start": 12746.82, + "end": 12748.32, + "probability": 0.9599 + }, + { + "start": 12748.8, + "end": 12749.78, + "probability": 0.7778 + }, + { + "start": 12750.5, + "end": 12752.8, + "probability": 0.9807 + }, + { + "start": 12752.8, + "end": 12756.06, + "probability": 0.9403 + }, + { + "start": 12756.34, + "end": 12762.58, + "probability": 0.8171 + }, + { + "start": 12763.14, + "end": 12766.04, + "probability": 0.7797 + }, + { + "start": 12768.1, + "end": 12771.14, + "probability": 0.9662 + }, + { + "start": 12771.82, + "end": 12772.2, + "probability": 0.7172 + }, + { + "start": 12772.72, + "end": 12778.16, + "probability": 0.9764 + }, + { + "start": 12778.24, + "end": 12779.1, + "probability": 0.6106 + }, + { + "start": 12779.54, + "end": 12781.56, + "probability": 0.9807 + }, + { + "start": 12782.22, + "end": 12789.18, + "probability": 0.9741 + }, + { + "start": 12789.58, + "end": 12792.18, + "probability": 0.9814 + }, + { + "start": 12792.7, + "end": 12793.98, + "probability": 0.9526 + }, + { + "start": 12794.34, + "end": 12799.04, + "probability": 0.9617 + }, + { + "start": 12799.72, + "end": 12800.8, + "probability": 0.8731 + }, + { + "start": 12800.92, + "end": 12802.0, + "probability": 0.5964 + }, + { + "start": 12802.16, + "end": 12804.52, + "probability": 0.9852 + }, + { + "start": 12805.02, + "end": 12810.7, + "probability": 0.9666 + }, + { + "start": 12811.14, + "end": 12811.52, + "probability": 0.8301 + }, + { + "start": 12812.92, + "end": 12815.5, + "probability": 0.7308 + }, + { + "start": 12817.16, + "end": 12818.38, + "probability": 0.8696 + }, + { + "start": 12819.56, + "end": 12822.3, + "probability": 0.9937 + }, + { + "start": 12822.3, + "end": 12825.72, + "probability": 0.9934 + }, + { + "start": 12826.24, + "end": 12826.7, + "probability": 0.76 + }, + { + "start": 12826.82, + "end": 12829.02, + "probability": 0.5999 + }, + { + "start": 12829.1, + "end": 12829.56, + "probability": 0.8886 + }, + { + "start": 12829.66, + "end": 12830.44, + "probability": 0.8267 + }, + { + "start": 12830.96, + "end": 12832.62, + "probability": 0.8923 + }, + { + "start": 12832.9, + "end": 12838.58, + "probability": 0.8766 + }, + { + "start": 12839.8, + "end": 12841.58, + "probability": 0.9961 + }, + { + "start": 12841.96, + "end": 12844.46, + "probability": 0.9239 + }, + { + "start": 12844.58, + "end": 12845.54, + "probability": 0.7289 + }, + { + "start": 12845.96, + "end": 12847.46, + "probability": 0.9652 + }, + { + "start": 12848.24, + "end": 12852.18, + "probability": 0.9989 + }, + { + "start": 12853.42, + "end": 12856.14, + "probability": 0.7988 + }, + { + "start": 12856.96, + "end": 12860.46, + "probability": 0.6664 + }, + { + "start": 12860.86, + "end": 12863.46, + "probability": 0.9902 + }, + { + "start": 12863.98, + "end": 12866.42, + "probability": 0.9878 + }, + { + "start": 12867.06, + "end": 12869.9, + "probability": 0.957 + }, + { + "start": 12870.34, + "end": 12870.7, + "probability": 0.7051 + }, + { + "start": 12871.92, + "end": 12872.42, + "probability": 0.7816 + }, + { + "start": 12876.88, + "end": 12879.04, + "probability": 0.7278 + }, + { + "start": 12880.84, + "end": 12881.48, + "probability": 0.7085 + }, + { + "start": 12881.56, + "end": 12882.64, + "probability": 0.9696 + }, + { + "start": 12883.82, + "end": 12884.34, + "probability": 0.6624 + }, + { + "start": 12885.7, + "end": 12886.94, + "probability": 0.952 + }, + { + "start": 12887.98, + "end": 12888.52, + "probability": 0.6602 + }, + { + "start": 12889.3, + "end": 12890.36, + "probability": 0.8926 + }, + { + "start": 12898.84, + "end": 12899.4, + "probability": 0.0066 + }, + { + "start": 12899.4, + "end": 12899.98, + "probability": 0.0566 + }, + { + "start": 12900.16, + "end": 12900.92, + "probability": 0.0186 + }, + { + "start": 12902.17, + "end": 12903.48, + "probability": 0.1608 + }, + { + "start": 12903.56, + "end": 12904.72, + "probability": 0.0265 + }, + { + "start": 12905.58, + "end": 12907.35, + "probability": 0.5104 + }, + { + "start": 12911.74, + "end": 12912.5, + "probability": 0.2768 + }, + { + "start": 12913.5, + "end": 12915.18, + "probability": 0.5902 + }, + { + "start": 12915.45, + "end": 12922.36, + "probability": 0.0888 + }, + { + "start": 12922.36, + "end": 12922.68, + "probability": 0.0316 + }, + { + "start": 12923.72, + "end": 12924.38, + "probability": 0.0132 + }, + { + "start": 12925.26, + "end": 12926.78, + "probability": 0.0221 + }, + { + "start": 12927.1, + "end": 12927.1, + "probability": 0.1405 + }, + { + "start": 12927.1, + "end": 12927.92, + "probability": 0.447 + }, + { + "start": 12927.98, + "end": 12928.44, + "probability": 0.3159 + }, + { + "start": 12928.56, + "end": 12931.3, + "probability": 0.7982 + }, + { + "start": 12931.3, + "end": 12934.1, + "probability": 0.975 + }, + { + "start": 12934.22, + "end": 12936.02, + "probability": 0.9568 + }, + { + "start": 12936.66, + "end": 12937.6, + "probability": 0.0021 + }, + { + "start": 12937.6, + "end": 12943.6, + "probability": 0.9766 + }, + { + "start": 12943.64, + "end": 12945.64, + "probability": 0.8218 + }, + { + "start": 12945.64, + "end": 12947.54, + "probability": 0.1531 + }, + { + "start": 12948.8, + "end": 12949.06, + "probability": 0.1408 + }, + { + "start": 12949.06, + "end": 12953.48, + "probability": 0.9644 + }, + { + "start": 12953.48, + "end": 12957.36, + "probability": 0.9985 + }, + { + "start": 12958.7, + "end": 12963.1, + "probability": 0.6505 + }, + { + "start": 12963.1, + "end": 12966.44, + "probability": 0.9748 + }, + { + "start": 12967.0, + "end": 12970.44, + "probability": 0.9766 + }, + { + "start": 12971.28, + "end": 12973.48, + "probability": 0.7343 + }, + { + "start": 12974.02, + "end": 12975.98, + "probability": 0.1743 + }, + { + "start": 12976.24, + "end": 12978.08, + "probability": 0.8223 + }, + { + "start": 12978.18, + "end": 12978.61, + "probability": 0.5034 + }, + { + "start": 12979.6, + "end": 12985.2, + "probability": 0.9888 + }, + { + "start": 12985.86, + "end": 12987.28, + "probability": 0.8191 + }, + { + "start": 12988.5, + "end": 12993.04, + "probability": 0.1677 + }, + { + "start": 12993.88, + "end": 12994.64, + "probability": 0.7852 + }, + { + "start": 12996.1, + "end": 12998.56, + "probability": 0.5838 + }, + { + "start": 12998.66, + "end": 12999.3, + "probability": 0.622 + }, + { + "start": 12999.3, + "end": 13002.52, + "probability": 0.6182 + }, + { + "start": 13002.74, + "end": 13005.18, + "probability": 0.8567 + }, + { + "start": 13005.46, + "end": 13007.24, + "probability": 0.8088 + }, + { + "start": 13007.48, + "end": 13008.66, + "probability": 0.8118 + }, + { + "start": 13008.86, + "end": 13011.16, + "probability": 0.7961 + }, + { + "start": 13011.16, + "end": 13014.57, + "probability": 0.7812 + }, + { + "start": 13015.14, + "end": 13016.52, + "probability": 0.7714 + }, + { + "start": 13016.66, + "end": 13018.02, + "probability": 0.7824 + }, + { + "start": 13018.1, + "end": 13019.18, + "probability": 0.9397 + }, + { + "start": 13019.26, + "end": 13022.74, + "probability": 0.5441 + }, + { + "start": 13023.06, + "end": 13024.42, + "probability": 0.508 + }, + { + "start": 13024.66, + "end": 13024.92, + "probability": 0.5191 + }, + { + "start": 13024.96, + "end": 13025.84, + "probability": 0.8103 + }, + { + "start": 13026.1, + "end": 13030.02, + "probability": 0.8865 + }, + { + "start": 13030.1, + "end": 13034.82, + "probability": 0.9511 + }, + { + "start": 13035.1, + "end": 13037.74, + "probability": 0.9886 + }, + { + "start": 13037.8, + "end": 13038.96, + "probability": 0.8906 + }, + { + "start": 13039.28, + "end": 13040.38, + "probability": 0.8003 + }, + { + "start": 13040.62, + "end": 13042.08, + "probability": 0.9109 + }, + { + "start": 13042.6, + "end": 13046.74, + "probability": 0.9755 + }, + { + "start": 13046.74, + "end": 13051.12, + "probability": 0.9539 + }, + { + "start": 13051.46, + "end": 13053.29, + "probability": 0.8933 + }, + { + "start": 13054.54, + "end": 13056.26, + "probability": 0.831 + }, + { + "start": 13056.32, + "end": 13057.12, + "probability": 0.9374 + }, + { + "start": 13057.16, + "end": 13057.78, + "probability": 0.6088 + }, + { + "start": 13057.92, + "end": 13059.0, + "probability": 0.8645 + }, + { + "start": 13059.1, + "end": 13060.86, + "probability": 0.8266 + }, + { + "start": 13060.94, + "end": 13061.76, + "probability": 0.947 + }, + { + "start": 13061.78, + "end": 13065.72, + "probability": 0.9006 + }, + { + "start": 13066.15, + "end": 13068.76, + "probability": 0.9096 + }, + { + "start": 13069.04, + "end": 13071.48, + "probability": 0.9917 + }, + { + "start": 13071.9, + "end": 13073.62, + "probability": 0.9927 + }, + { + "start": 13074.52, + "end": 13078.38, + "probability": 0.608 + }, + { + "start": 13078.38, + "end": 13081.02, + "probability": 0.0044 + }, + { + "start": 13081.02, + "end": 13081.02, + "probability": 0.0855 + }, + { + "start": 13081.02, + "end": 13081.02, + "probability": 0.0182 + }, + { + "start": 13081.02, + "end": 13081.02, + "probability": 0.0137 + }, + { + "start": 13081.02, + "end": 13083.06, + "probability": 0.2873 + }, + { + "start": 13083.06, + "end": 13086.42, + "probability": 0.8502 + }, + { + "start": 13086.6, + "end": 13088.46, + "probability": 0.3102 + }, + { + "start": 13088.72, + "end": 13090.34, + "probability": 0.7828 + }, + { + "start": 13090.46, + "end": 13091.0, + "probability": 0.3269 + }, + { + "start": 13091.08, + "end": 13095.28, + "probability": 0.9153 + }, + { + "start": 13095.92, + "end": 13097.96, + "probability": 0.8738 + }, + { + "start": 13098.16, + "end": 13102.85, + "probability": 0.6871 + }, + { + "start": 13103.2, + "end": 13105.5, + "probability": 0.8316 + }, + { + "start": 13105.58, + "end": 13107.3, + "probability": 0.8695 + }, + { + "start": 13107.62, + "end": 13109.04, + "probability": 0.8107 + }, + { + "start": 13109.52, + "end": 13110.58, + "probability": 0.6663 + }, + { + "start": 13110.6, + "end": 13112.42, + "probability": 0.0369 + }, + { + "start": 13112.94, + "end": 13113.4, + "probability": 0.0023 + }, + { + "start": 13113.4, + "end": 13113.4, + "probability": 0.1745 + }, + { + "start": 13113.4, + "end": 13113.4, + "probability": 0.32 + }, + { + "start": 13113.4, + "end": 13114.54, + "probability": 0.8384 + }, + { + "start": 13115.04, + "end": 13116.16, + "probability": 0.7382 + }, + { + "start": 13116.4, + "end": 13118.68, + "probability": 0.7559 + }, + { + "start": 13118.78, + "end": 13120.34, + "probability": 0.8475 + }, + { + "start": 13120.82, + "end": 13121.56, + "probability": 0.582 + }, + { + "start": 13121.68, + "end": 13123.98, + "probability": 0.9564 + }, + { + "start": 13124.94, + "end": 13125.74, + "probability": 0.6965 + }, + { + "start": 13125.8, + "end": 13129.42, + "probability": 0.8991 + }, + { + "start": 13129.6, + "end": 13130.34, + "probability": 0.4124 + }, + { + "start": 13130.42, + "end": 13132.9, + "probability": 0.9616 + }, + { + "start": 13133.1, + "end": 13135.02, + "probability": 0.6662 + }, + { + "start": 13135.22, + "end": 13141.64, + "probability": 0.894 + }, + { + "start": 13142.42, + "end": 13146.18, + "probability": 0.9492 + }, + { + "start": 13146.18, + "end": 13151.44, + "probability": 0.9758 + }, + { + "start": 13151.82, + "end": 13152.95, + "probability": 0.6929 + }, + { + "start": 13153.96, + "end": 13155.26, + "probability": 0.579 + }, + { + "start": 13155.38, + "end": 13156.74, + "probability": 0.6713 + }, + { + "start": 13156.82, + "end": 13158.46, + "probability": 0.6969 + }, + { + "start": 13158.52, + "end": 13159.98, + "probability": 0.6299 + }, + { + "start": 13160.24, + "end": 13160.31, + "probability": 0.8496 + }, + { + "start": 13161.74, + "end": 13166.87, + "probability": 0.9847 + }, + { + "start": 13167.37, + "end": 13169.43, + "probability": 0.9956 + }, + { + "start": 13169.8, + "end": 13172.74, + "probability": 0.9812 + }, + { + "start": 13172.96, + "end": 13175.54, + "probability": 0.9868 + }, + { + "start": 13175.54, + "end": 13177.48, + "probability": 0.9791 + }, + { + "start": 13178.66, + "end": 13180.96, + "probability": 0.8994 + }, + { + "start": 13181.08, + "end": 13184.64, + "probability": 0.9606 + }, + { + "start": 13184.74, + "end": 13185.41, + "probability": 0.207 + }, + { + "start": 13185.56, + "end": 13185.64, + "probability": 0.9458 + }, + { + "start": 13185.76, + "end": 13186.72, + "probability": 0.9058 + }, + { + "start": 13187.14, + "end": 13188.54, + "probability": 0.4484 + }, + { + "start": 13189.48, + "end": 13191.5, + "probability": 0.6724 + }, + { + "start": 13191.56, + "end": 13193.04, + "probability": 0.6501 + }, + { + "start": 13193.14, + "end": 13196.66, + "probability": 0.9421 + }, + { + "start": 13196.66, + "end": 13200.72, + "probability": 0.9748 + }, + { + "start": 13200.76, + "end": 13202.17, + "probability": 0.9692 + }, + { + "start": 13202.76, + "end": 13203.96, + "probability": 0.5637 + }, + { + "start": 13204.16, + "end": 13206.52, + "probability": 0.96 + }, + { + "start": 13206.74, + "end": 13211.42, + "probability": 0.9864 + }, + { + "start": 13211.7, + "end": 13213.79, + "probability": 0.9886 + }, + { + "start": 13214.1, + "end": 13215.74, + "probability": 0.9551 + }, + { + "start": 13216.26, + "end": 13216.4, + "probability": 0.6076 + }, + { + "start": 13216.48, + "end": 13217.14, + "probability": 0.8439 + }, + { + "start": 13217.6, + "end": 13218.55, + "probability": 0.9973 + }, + { + "start": 13219.44, + "end": 13220.26, + "probability": 0.8721 + }, + { + "start": 13220.32, + "end": 13220.82, + "probability": 0.5815 + }, + { + "start": 13220.92, + "end": 13221.77, + "probability": 0.594 + }, + { + "start": 13222.04, + "end": 13222.04, + "probability": 0.1455 + }, + { + "start": 13222.04, + "end": 13222.9, + "probability": 0.8333 + }, + { + "start": 13223.16, + "end": 13226.52, + "probability": 0.9907 + }, + { + "start": 13227.58, + "end": 13230.1, + "probability": 0.9897 + }, + { + "start": 13230.16, + "end": 13230.76, + "probability": 0.726 + }, + { + "start": 13230.76, + "end": 13231.36, + "probability": 0.2822 + }, + { + "start": 13231.5, + "end": 13233.0, + "probability": 0.9665 + }, + { + "start": 13233.12, + "end": 13235.82, + "probability": 0.8821 + }, + { + "start": 13235.98, + "end": 13236.26, + "probability": 0.3368 + }, + { + "start": 13236.36, + "end": 13237.86, + "probability": 0.9038 + }, + { + "start": 13238.78, + "end": 13241.94, + "probability": 0.7194 + }, + { + "start": 13241.98, + "end": 13242.7, + "probability": 0.6849 + }, + { + "start": 13242.82, + "end": 13243.92, + "probability": 0.9077 + }, + { + "start": 13244.16, + "end": 13246.18, + "probability": 0.3175 + }, + { + "start": 13248.18, + "end": 13253.06, + "probability": 0.0499 + }, + { + "start": 13253.06, + "end": 13254.3, + "probability": 0.0762 + }, + { + "start": 13254.92, + "end": 13255.16, + "probability": 0.3066 + }, + { + "start": 13256.4, + "end": 13258.82, + "probability": 0.3436 + }, + { + "start": 13258.82, + "end": 13259.7, + "probability": 0.1085 + }, + { + "start": 13262.94, + "end": 13265.22, + "probability": 0.1161 + }, + { + "start": 13265.22, + "end": 13265.68, + "probability": 0.0139 + }, + { + "start": 13265.68, + "end": 13266.62, + "probability": 0.2602 + }, + { + "start": 13266.62, + "end": 13268.89, + "probability": 0.0965 + }, + { + "start": 13270.26, + "end": 13271.78, + "probability": 0.0781 + }, + { + "start": 13271.78, + "end": 13272.4, + "probability": 0.1168 + }, + { + "start": 13272.4, + "end": 13272.44, + "probability": 0.1773 + }, + { + "start": 13272.44, + "end": 13277.5, + "probability": 0.0564 + }, + { + "start": 13277.61, + "end": 13277.96, + "probability": 0.0609 + }, + { + "start": 13278.96, + "end": 13279.8, + "probability": 0.0453 + }, + { + "start": 13280.86, + "end": 13282.9, + "probability": 0.065 + }, + { + "start": 13282.9, + "end": 13283.1, + "probability": 0.025 + }, + { + "start": 13283.1, + "end": 13286.04, + "probability": 0.2359 + }, + { + "start": 13287.44, + "end": 13290.48, + "probability": 0.0238 + }, + { + "start": 13291.42, + "end": 13292.28, + "probability": 0.0708 + }, + { + "start": 13292.28, + "end": 13293.7, + "probability": 0.0167 + }, + { + "start": 13294.66, + "end": 13300.61, + "probability": 0.0246 + }, + { + "start": 13301.5, + "end": 13301.58, + "probability": 0.0056 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.0, + "end": 13312.0, + "probability": 0.0 + }, + { + "start": 13312.24, + "end": 13312.46, + "probability": 0.003 + }, + { + "start": 13312.46, + "end": 13312.46, + "probability": 0.0379 + }, + { + "start": 13312.46, + "end": 13315.2, + "probability": 0.8344 + }, + { + "start": 13315.66, + "end": 13318.62, + "probability": 0.9904 + }, + { + "start": 13318.62, + "end": 13321.82, + "probability": 0.9014 + }, + { + "start": 13321.86, + "end": 13322.86, + "probability": 0.4577 + }, + { + "start": 13323.61, + "end": 13324.32, + "probability": 0.1097 + }, + { + "start": 13324.32, + "end": 13326.94, + "probability": 0.9121 + }, + { + "start": 13326.94, + "end": 13327.16, + "probability": 0.575 + }, + { + "start": 13327.54, + "end": 13329.32, + "probability": 0.5734 + }, + { + "start": 13329.36, + "end": 13330.58, + "probability": 0.8735 + }, + { + "start": 13343.66, + "end": 13346.62, + "probability": 0.9395 + }, + { + "start": 13346.82, + "end": 13347.5, + "probability": 0.5212 + }, + { + "start": 13347.52, + "end": 13348.19, + "probability": 0.9249 + }, + { + "start": 13348.6, + "end": 13349.44, + "probability": 0.853 + }, + { + "start": 13349.52, + "end": 13350.94, + "probability": 0.8923 + }, + { + "start": 13351.98, + "end": 13354.9, + "probability": 0.9008 + }, + { + "start": 13355.92, + "end": 13360.46, + "probability": 0.9181 + }, + { + "start": 13360.46, + "end": 13364.9, + "probability": 0.9976 + }, + { + "start": 13365.48, + "end": 13366.52, + "probability": 0.9022 + }, + { + "start": 13367.0, + "end": 13368.68, + "probability": 0.9346 + }, + { + "start": 13369.16, + "end": 13370.88, + "probability": 0.8781 + }, + { + "start": 13371.38, + "end": 13372.06, + "probability": 0.6131 + }, + { + "start": 13372.26, + "end": 13376.08, + "probability": 0.9498 + }, + { + "start": 13376.62, + "end": 13377.52, + "probability": 0.5968 + }, + { + "start": 13377.68, + "end": 13378.68, + "probability": 0.9304 + }, + { + "start": 13378.72, + "end": 13380.08, + "probability": 0.8037 + }, + { + "start": 13380.14, + "end": 13381.09, + "probability": 0.924 + }, + { + "start": 13381.74, + "end": 13384.96, + "probability": 0.9307 + }, + { + "start": 13385.36, + "end": 13388.04, + "probability": 0.9525 + }, + { + "start": 13388.38, + "end": 13391.1, + "probability": 0.9136 + }, + { + "start": 13391.46, + "end": 13393.66, + "probability": 0.9443 + }, + { + "start": 13394.22, + "end": 13396.46, + "probability": 0.9921 + }, + { + "start": 13396.46, + "end": 13399.58, + "probability": 0.9737 + }, + { + "start": 13399.62, + "end": 13399.86, + "probability": 0.5271 + }, + { + "start": 13400.84, + "end": 13402.58, + "probability": 0.8943 + }, + { + "start": 13402.74, + "end": 13404.0, + "probability": 0.9504 + }, + { + "start": 13405.02, + "end": 13406.98, + "probability": 0.0935 + }, + { + "start": 13407.52, + "end": 13408.82, + "probability": 0.0576 + }, + { + "start": 13413.86, + "end": 13415.14, + "probability": 0.852 + }, + { + "start": 13415.14, + "end": 13415.7, + "probability": 0.9662 + }, + { + "start": 13416.16, + "end": 13419.32, + "probability": 0.1993 + }, + { + "start": 13420.56, + "end": 13423.96, + "probability": 0.9969 + }, + { + "start": 13424.9, + "end": 13426.06, + "probability": 0.9042 + }, + { + "start": 13429.24, + "end": 13435.6, + "probability": 0.994 + }, + { + "start": 13440.14, + "end": 13443.98, + "probability": 0.9975 + }, + { + "start": 13444.94, + "end": 13446.96, + "probability": 0.8926 + }, + { + "start": 13448.78, + "end": 13452.3, + "probability": 0.9614 + }, + { + "start": 13453.06, + "end": 13457.42, + "probability": 0.2778 + }, + { + "start": 13457.42, + "end": 13458.24, + "probability": 0.0831 + }, + { + "start": 13458.34, + "end": 13458.74, + "probability": 0.0679 + }, + { + "start": 13459.56, + "end": 13459.74, + "probability": 0.0091 + }, + { + "start": 13459.74, + "end": 13461.6, + "probability": 0.4404 + }, + { + "start": 13461.8, + "end": 13463.18, + "probability": 0.7628 + }, + { + "start": 13463.34, + "end": 13466.32, + "probability": 0.8985 + }, + { + "start": 13467.02, + "end": 13470.46, + "probability": 0.9764 + }, + { + "start": 13471.08, + "end": 13471.66, + "probability": 0.7185 + }, + { + "start": 13471.9, + "end": 13473.16, + "probability": 0.9368 + }, + { + "start": 13473.2, + "end": 13473.92, + "probability": 0.8438 + }, + { + "start": 13474.8, + "end": 13477.06, + "probability": 0.9867 + }, + { + "start": 13478.08, + "end": 13483.88, + "probability": 0.9673 + }, + { + "start": 13484.18, + "end": 13485.44, + "probability": 0.8851 + }, + { + "start": 13487.2, + "end": 13494.32, + "probability": 0.9617 + }, + { + "start": 13494.58, + "end": 13495.62, + "probability": 0.7031 + }, + { + "start": 13496.02, + "end": 13496.88, + "probability": 0.8236 + }, + { + "start": 13497.08, + "end": 13497.88, + "probability": 0.8823 + }, + { + "start": 13498.08, + "end": 13498.78, + "probability": 0.9775 + }, + { + "start": 13499.26, + "end": 13500.14, + "probability": 0.7586 + }, + { + "start": 13500.14, + "end": 13501.05, + "probability": 0.1828 + }, + { + "start": 13501.08, + "end": 13501.68, + "probability": 0.8878 + }, + { + "start": 13503.62, + "end": 13505.66, + "probability": 0.3499 + }, + { + "start": 13505.66, + "end": 13510.82, + "probability": 0.8449 + }, + { + "start": 13511.82, + "end": 13516.92, + "probability": 0.8105 + }, + { + "start": 13518.78, + "end": 13519.94, + "probability": 0.8806 + }, + { + "start": 13521.04, + "end": 13526.36, + "probability": 0.2801 + }, + { + "start": 13526.36, + "end": 13527.54, + "probability": 0.0901 + }, + { + "start": 13527.54, + "end": 13527.54, + "probability": 0.3053 + }, + { + "start": 13527.54, + "end": 13527.56, + "probability": 0.1251 + }, + { + "start": 13527.56, + "end": 13528.34, + "probability": 0.1092 + }, + { + "start": 13528.78, + "end": 13528.92, + "probability": 0.219 + }, + { + "start": 13528.92, + "end": 13530.27, + "probability": 0.4572 + }, + { + "start": 13530.76, + "end": 13533.96, + "probability": 0.3553 + }, + { + "start": 13533.96, + "end": 13539.6, + "probability": 0.6571 + }, + { + "start": 13540.32, + "end": 13542.1, + "probability": 0.0096 + }, + { + "start": 13542.1, + "end": 13544.74, + "probability": 0.9448 + }, + { + "start": 13546.2, + "end": 13549.02, + "probability": 0.8809 + }, + { + "start": 13549.86, + "end": 13550.98, + "probability": 0.8092 + }, + { + "start": 13551.04, + "end": 13553.02, + "probability": 0.9868 + }, + { + "start": 13554.24, + "end": 13558.3, + "probability": 0.64 + }, + { + "start": 13558.9, + "end": 13561.4, + "probability": 0.953 + }, + { + "start": 13562.04, + "end": 13563.32, + "probability": 0.7792 + }, + { + "start": 13564.02, + "end": 13571.04, + "probability": 0.9888 + }, + { + "start": 13571.04, + "end": 13571.14, + "probability": 0.3125 + }, + { + "start": 13572.12, + "end": 13573.84, + "probability": 0.7367 + }, + { + "start": 13573.88, + "end": 13575.76, + "probability": 0.7304 + }, + { + "start": 13576.28, + "end": 13578.36, + "probability": 0.2839 + }, + { + "start": 13578.58, + "end": 13580.84, + "probability": 0.7822 + }, + { + "start": 13581.68, + "end": 13584.18, + "probability": 0.7745 + }, + { + "start": 13589.24, + "end": 13590.66, + "probability": 0.7264 + }, + { + "start": 13590.76, + "end": 13591.26, + "probability": 0.8658 + }, + { + "start": 13591.34, + "end": 13591.74, + "probability": 0.1776 + }, + { + "start": 13592.04, + "end": 13593.86, + "probability": 0.7734 + }, + { + "start": 13594.06, + "end": 13594.8, + "probability": 0.671 + }, + { + "start": 13594.84, + "end": 13597.42, + "probability": 0.7334 + }, + { + "start": 13597.5, + "end": 13598.72, + "probability": 0.8319 + }, + { + "start": 13600.24, + "end": 13601.74, + "probability": 0.8055 + }, + { + "start": 13601.84, + "end": 13602.06, + "probability": 0.6437 + }, + { + "start": 13602.12, + "end": 13603.66, + "probability": 0.9148 + }, + { + "start": 13603.7, + "end": 13604.66, + "probability": 0.8418 + }, + { + "start": 13604.78, + "end": 13605.96, + "probability": 0.9572 + }, + { + "start": 13606.52, + "end": 13607.98, + "probability": 0.979 + }, + { + "start": 13608.06, + "end": 13609.32, + "probability": 0.9929 + }, + { + "start": 13609.36, + "end": 13610.78, + "probability": 0.9365 + }, + { + "start": 13613.42, + "end": 13614.04, + "probability": 0.8425 + }, + { + "start": 13614.62, + "end": 13615.88, + "probability": 0.9701 + }, + { + "start": 13615.98, + "end": 13617.68, + "probability": 0.575 + }, + { + "start": 13617.68, + "end": 13618.82, + "probability": 0.8446 + }, + { + "start": 13619.16, + "end": 13620.44, + "probability": 0.4258 + }, + { + "start": 13621.58, + "end": 13624.04, + "probability": 0.6423 + }, + { + "start": 13625.44, + "end": 13626.56, + "probability": 0.9485 + }, + { + "start": 13627.66, + "end": 13630.44, + "probability": 0.9305 + }, + { + "start": 13631.16, + "end": 13632.2, + "probability": 0.9639 + }, + { + "start": 13632.28, + "end": 13634.52, + "probability": 0.96 + }, + { + "start": 13634.74, + "end": 13635.2, + "probability": 0.8626 + }, + { + "start": 13635.24, + "end": 13635.76, + "probability": 0.8874 + }, + { + "start": 13636.52, + "end": 13639.16, + "probability": 0.1688 + }, + { + "start": 13640.33, + "end": 13641.02, + "probability": 0.1262 + }, + { + "start": 13641.02, + "end": 13642.38, + "probability": 0.5362 + }, + { + "start": 13642.54, + "end": 13644.2, + "probability": 0.8818 + }, + { + "start": 13644.8, + "end": 13645.12, + "probability": 0.0092 + }, + { + "start": 13646.8, + "end": 13647.74, + "probability": 0.6194 + }, + { + "start": 13649.8, + "end": 13649.8, + "probability": 0.5288 + }, + { + "start": 13649.86, + "end": 13653.52, + "probability": 0.9479 + }, + { + "start": 13653.64, + "end": 13654.6, + "probability": 0.9852 + }, + { + "start": 13654.62, + "end": 13655.58, + "probability": 0.8488 + }, + { + "start": 13655.84, + "end": 13657.28, + "probability": 0.9473 + }, + { + "start": 13658.14, + "end": 13661.6, + "probability": 0.9475 + }, + { + "start": 13662.54, + "end": 13663.72, + "probability": 0.9159 + }, + { + "start": 13663.82, + "end": 13664.52, + "probability": 0.9498 + }, + { + "start": 13664.7, + "end": 13665.44, + "probability": 0.6768 + }, + { + "start": 13665.58, + "end": 13666.32, + "probability": 0.7954 + }, + { + "start": 13667.5, + "end": 13669.1, + "probability": 0.943 + }, + { + "start": 13669.56, + "end": 13672.34, + "probability": 0.9902 + }, + { + "start": 13673.04, + "end": 13678.7, + "probability": 0.9878 + }, + { + "start": 13678.86, + "end": 13679.7, + "probability": 0.7065 + }, + { + "start": 13680.7, + "end": 13682.8, + "probability": 0.978 + }, + { + "start": 13682.84, + "end": 13683.14, + "probability": 0.4589 + }, + { + "start": 13684.66, + "end": 13686.5, + "probability": 0.9922 + }, + { + "start": 13687.26, + "end": 13690.02, + "probability": 0.9343 + }, + { + "start": 13690.84, + "end": 13693.06, + "probability": 0.9911 + }, + { + "start": 13693.68, + "end": 13695.58, + "probability": 0.7949 + }, + { + "start": 13696.12, + "end": 13699.48, + "probability": 0.9731 + }, + { + "start": 13699.54, + "end": 13701.32, + "probability": 0.9715 + }, + { + "start": 13701.44, + "end": 13702.16, + "probability": 0.9387 + }, + { + "start": 13704.02, + "end": 13704.94, + "probability": 0.9272 + }, + { + "start": 13707.54, + "end": 13711.01, + "probability": 0.8809 + }, + { + "start": 13712.22, + "end": 13714.58, + "probability": 0.0037 + }, + { + "start": 13714.58, + "end": 13715.5, + "probability": 0.2867 + }, + { + "start": 13716.32, + "end": 13716.78, + "probability": 0.6287 + }, + { + "start": 13717.56, + "end": 13720.93, + "probability": 0.99 + }, + { + "start": 13721.3, + "end": 13721.94, + "probability": 0.7615 + }, + { + "start": 13722.1, + "end": 13722.88, + "probability": 0.9096 + }, + { + "start": 13723.24, + "end": 13725.3, + "probability": 0.8954 + }, + { + "start": 13725.44, + "end": 13726.94, + "probability": 0.9129 + }, + { + "start": 13728.45, + "end": 13729.44, + "probability": 0.0094 + }, + { + "start": 13729.44, + "end": 13730.91, + "probability": 0.2308 + }, + { + "start": 13731.14, + "end": 13732.96, + "probability": 0.9703 + }, + { + "start": 13732.96, + "end": 13735.52, + "probability": 0.9137 + }, + { + "start": 13735.96, + "end": 13739.32, + "probability": 0.7225 + }, + { + "start": 13739.34, + "end": 13739.78, + "probability": 0.1515 + }, + { + "start": 13740.7, + "end": 13741.66, + "probability": 0.5479 + }, + { + "start": 13742.52, + "end": 13743.78, + "probability": 0.7092 + }, + { + "start": 13744.44, + "end": 13745.14, + "probability": 0.9423 + }, + { + "start": 13745.42, + "end": 13746.68, + "probability": 0.9771 + }, + { + "start": 13746.74, + "end": 13748.26, + "probability": 0.9579 + }, + { + "start": 13748.38, + "end": 13749.64, + "probability": 0.9612 + }, + { + "start": 13750.56, + "end": 13753.56, + "probability": 0.9868 + }, + { + "start": 13755.28, + "end": 13756.34, + "probability": 0.577 + }, + { + "start": 13757.42, + "end": 13760.92, + "probability": 0.8679 + }, + { + "start": 13761.48, + "end": 13763.72, + "probability": 0.8781 + }, + { + "start": 13763.78, + "end": 13765.24, + "probability": 0.9585 + }, + { + "start": 13765.42, + "end": 13766.38, + "probability": 0.458 + }, + { + "start": 13766.62, + "end": 13766.98, + "probability": 0.693 + }, + { + "start": 13767.06, + "end": 13771.16, + "probability": 0.7059 + }, + { + "start": 13771.32, + "end": 13773.0, + "probability": 0.6888 + }, + { + "start": 13774.14, + "end": 13774.96, + "probability": 0.663 + }, + { + "start": 13775.08, + "end": 13775.78, + "probability": 0.8526 + }, + { + "start": 13776.24, + "end": 13780.38, + "probability": 0.8121 + }, + { + "start": 13780.44, + "end": 13780.74, + "probability": 0.6662 + }, + { + "start": 13780.84, + "end": 13781.82, + "probability": 0.7404 + }, + { + "start": 13782.6, + "end": 13786.88, + "probability": 0.9951 + }, + { + "start": 13787.48, + "end": 13789.82, + "probability": 0.8792 + }, + { + "start": 13790.68, + "end": 13796.1, + "probability": 0.9854 + }, + { + "start": 13796.86, + "end": 13799.32, + "probability": 0.9961 + }, + { + "start": 13799.4, + "end": 13800.9, + "probability": 0.9136 + }, + { + "start": 13801.08, + "end": 13802.32, + "probability": 0.6501 + }, + { + "start": 13802.4, + "end": 13803.0, + "probability": 0.4534 + }, + { + "start": 13803.02, + "end": 13803.38, + "probability": 0.051 + }, + { + "start": 13803.38, + "end": 13803.87, + "probability": 0.666 + }, + { + "start": 13803.98, + "end": 13804.06, + "probability": 0.1417 + }, + { + "start": 13804.06, + "end": 13804.8, + "probability": 0.2073 + }, + { + "start": 13804.96, + "end": 13805.14, + "probability": 0.468 + }, + { + "start": 13805.18, + "end": 13807.08, + "probability": 0.9299 + }, + { + "start": 13807.22, + "end": 13807.96, + "probability": 0.8829 + }, + { + "start": 13808.04, + "end": 13808.82, + "probability": 0.5711 + }, + { + "start": 13808.86, + "end": 13810.0, + "probability": 0.6937 + }, + { + "start": 13810.0, + "end": 13810.7, + "probability": 0.3925 + }, + { + "start": 13810.82, + "end": 13811.72, + "probability": 0.4061 + }, + { + "start": 13811.76, + "end": 13812.32, + "probability": 0.9661 + }, + { + "start": 13812.46, + "end": 13814.41, + "probability": 0.5308 + }, + { + "start": 13815.52, + "end": 13818.04, + "probability": 0.0647 + }, + { + "start": 13818.38, + "end": 13819.14, + "probability": 0.3533 + }, + { + "start": 13820.28, + "end": 13821.3, + "probability": 0.8664 + }, + { + "start": 13821.86, + "end": 13822.99, + "probability": 0.6172 + }, + { + "start": 13823.78, + "end": 13824.52, + "probability": 0.8755 + }, + { + "start": 13825.68, + "end": 13826.4, + "probability": 0.8879 + }, + { + "start": 13826.96, + "end": 13827.6, + "probability": 0.9754 + }, + { + "start": 13827.68, + "end": 13828.48, + "probability": 0.7368 + }, + { + "start": 13828.56, + "end": 13829.97, + "probability": 0.9878 + }, + { + "start": 13830.5, + "end": 13831.98, + "probability": 0.9795 + }, + { + "start": 13832.8, + "end": 13834.8, + "probability": 0.9976 + }, + { + "start": 13835.6, + "end": 13838.92, + "probability": 0.9984 + }, + { + "start": 13839.08, + "end": 13839.98, + "probability": 0.995 + }, + { + "start": 13840.96, + "end": 13842.1, + "probability": 0.6285 + }, + { + "start": 13842.72, + "end": 13843.76, + "probability": 0.8685 + }, + { + "start": 13844.16, + "end": 13846.6, + "probability": 0.9754 + }, + { + "start": 13846.78, + "end": 13847.28, + "probability": 0.6237 + }, + { + "start": 13847.48, + "end": 13848.9, + "probability": 0.8297 + }, + { + "start": 13849.22, + "end": 13851.84, + "probability": 0.9255 + }, + { + "start": 13852.3, + "end": 13853.64, + "probability": 0.277 + }, + { + "start": 13853.82, + "end": 13854.86, + "probability": 0.483 + }, + { + "start": 13855.02, + "end": 13855.62, + "probability": 0.6718 + }, + { + "start": 13855.68, + "end": 13856.86, + "probability": 0.9476 + }, + { + "start": 13856.9, + "end": 13857.54, + "probability": 0.6017 + }, + { + "start": 13857.72, + "end": 13859.1, + "probability": 0.9846 + }, + { + "start": 13859.32, + "end": 13861.66, + "probability": 0.4799 + }, + { + "start": 13861.92, + "end": 13865.34, + "probability": 0.9755 + }, + { + "start": 13873.18, + "end": 13874.6, + "probability": 0.5715 + }, + { + "start": 13874.68, + "end": 13875.74, + "probability": 0.8269 + }, + { + "start": 13875.8, + "end": 13875.8, + "probability": 0.6258 + }, + { + "start": 13875.9, + "end": 13876.68, + "probability": 0.5693 + }, + { + "start": 13876.7, + "end": 13878.06, + "probability": 0.8322 + }, + { + "start": 13878.22, + "end": 13882.46, + "probability": 0.7578 + }, + { + "start": 13882.64, + "end": 13883.76, + "probability": 0.6656 + }, + { + "start": 13883.84, + "end": 13884.58, + "probability": 0.8151 + }, + { + "start": 13885.14, + "end": 13886.04, + "probability": 0.9743 + }, + { + "start": 13887.14, + "end": 13892.9, + "probability": 0.9657 + }, + { + "start": 13893.66, + "end": 13899.08, + "probability": 0.854 + }, + { + "start": 13900.02, + "end": 13905.96, + "probability": 0.947 + }, + { + "start": 13906.34, + "end": 13907.38, + "probability": 0.9824 + }, + { + "start": 13908.34, + "end": 13908.4, + "probability": 0.7932 + }, + { + "start": 13908.46, + "end": 13908.7, + "probability": 0.84 + }, + { + "start": 13908.8, + "end": 13913.68, + "probability": 0.9536 + }, + { + "start": 13914.02, + "end": 13922.34, + "probability": 0.9492 + }, + { + "start": 13922.38, + "end": 13923.46, + "probability": 0.7938 + }, + { + "start": 13924.28, + "end": 13928.58, + "probability": 0.7615 + }, + { + "start": 13929.24, + "end": 13932.4, + "probability": 0.8226 + }, + { + "start": 13933.52, + "end": 13937.02, + "probability": 0.8976 + }, + { + "start": 13937.96, + "end": 13940.94, + "probability": 0.7921 + }, + { + "start": 13941.78, + "end": 13943.18, + "probability": 0.9814 + }, + { + "start": 13943.36, + "end": 13947.06, + "probability": 0.9376 + }, + { + "start": 13947.78, + "end": 13953.0, + "probability": 0.7483 + }, + { + "start": 13953.78, + "end": 13956.6, + "probability": 0.8719 + }, + { + "start": 13957.18, + "end": 13959.1, + "probability": 0.9459 + }, + { + "start": 13959.76, + "end": 13963.2, + "probability": 0.9605 + }, + { + "start": 13963.44, + "end": 13969.0, + "probability": 0.991 + }, + { + "start": 13969.7, + "end": 13978.14, + "probability": 0.9967 + }, + { + "start": 13979.02, + "end": 13980.2, + "probability": 0.6656 + }, + { + "start": 13980.38, + "end": 13980.86, + "probability": 0.8319 + }, + { + "start": 13980.94, + "end": 13983.48, + "probability": 0.994 + }, + { + "start": 13984.86, + "end": 13986.54, + "probability": 0.5497 + }, + { + "start": 13987.32, + "end": 13988.48, + "probability": 0.6583 + }, + { + "start": 13989.14, + "end": 13989.88, + "probability": 0.9086 + }, + { + "start": 13990.88, + "end": 13997.18, + "probability": 0.994 + }, + { + "start": 13997.94, + "end": 14001.56, + "probability": 0.8389 + }, + { + "start": 14002.62, + "end": 14005.3, + "probability": 0.9971 + }, + { + "start": 14005.98, + "end": 14007.08, + "probability": 0.5218 + }, + { + "start": 14007.7, + "end": 14009.06, + "probability": 0.9783 + }, + { + "start": 14009.58, + "end": 14015.08, + "probability": 0.9301 + }, + { + "start": 14016.06, + "end": 14020.82, + "probability": 0.8853 + }, + { + "start": 14021.98, + "end": 14022.88, + "probability": 0.6903 + }, + { + "start": 14023.66, + "end": 14026.22, + "probability": 0.454 + }, + { + "start": 14026.44, + "end": 14029.46, + "probability": 0.6469 + }, + { + "start": 14029.46, + "end": 14036.38, + "probability": 0.9735 + }, + { + "start": 14036.48, + "end": 14038.86, + "probability": 0.7734 + }, + { + "start": 14038.96, + "end": 14041.3, + "probability": 0.9682 + }, + { + "start": 14041.74, + "end": 14044.18, + "probability": 0.8809 + }, + { + "start": 14044.66, + "end": 14047.94, + "probability": 0.8202 + }, + { + "start": 14048.32, + "end": 14050.6, + "probability": 0.9845 + }, + { + "start": 14051.0, + "end": 14051.6, + "probability": 0.7416 + }, + { + "start": 14052.94, + "end": 14052.94, + "probability": 0.0775 + }, + { + "start": 14052.94, + "end": 14055.46, + "probability": 0.8097 + }, + { + "start": 14055.46, + "end": 14055.46, + "probability": 0.4916 + }, + { + "start": 14055.46, + "end": 14057.42, + "probability": 0.6961 + }, + { + "start": 14058.68, + "end": 14063.76, + "probability": 0.9863 + }, + { + "start": 14064.28, + "end": 14066.8, + "probability": 0.9946 + }, + { + "start": 14067.8, + "end": 14067.88, + "probability": 0.3402 + }, + { + "start": 14068.14, + "end": 14070.18, + "probability": 0.9677 + }, + { + "start": 14070.26, + "end": 14071.28, + "probability": 0.7016 + }, + { + "start": 14071.38, + "end": 14073.99, + "probability": 0.948 + }, + { + "start": 14075.3, + "end": 14077.82, + "probability": 0.9626 + }, + { + "start": 14080.42, + "end": 14081.84, + "probability": 0.9275 + }, + { + "start": 14082.72, + "end": 14082.82, + "probability": 0.2661 + }, + { + "start": 14087.86, + "end": 14089.24, + "probability": 0.6507 + }, + { + "start": 14089.24, + "end": 14089.6, + "probability": 0.8799 + }, + { + "start": 14090.5, + "end": 14095.36, + "probability": 0.8968 + }, + { + "start": 14096.5, + "end": 14098.2, + "probability": 0.9568 + }, + { + "start": 14099.54, + "end": 14104.92, + "probability": 0.9615 + }, + { + "start": 14105.3, + "end": 14105.9, + "probability": 0.781 + }, + { + "start": 14106.02, + "end": 14106.9, + "probability": 0.9639 + }, + { + "start": 14107.9, + "end": 14112.74, + "probability": 0.6921 + }, + { + "start": 14113.44, + "end": 14114.22, + "probability": 0.511 + }, + { + "start": 14114.52, + "end": 14115.04, + "probability": 0.9062 + }, + { + "start": 14115.14, + "end": 14118.22, + "probability": 0.9456 + }, + { + "start": 14118.72, + "end": 14120.58, + "probability": 0.9894 + }, + { + "start": 14121.06, + "end": 14121.79, + "probability": 0.8906 + }, + { + "start": 14122.38, + "end": 14123.54, + "probability": 0.9939 + }, + { + "start": 14123.66, + "end": 14126.8, + "probability": 0.8399 + }, + { + "start": 14127.2, + "end": 14127.84, + "probability": 0.7447 + }, + { + "start": 14128.36, + "end": 14132.46, + "probability": 0.9901 + }, + { + "start": 14132.98, + "end": 14135.06, + "probability": 0.9733 + }, + { + "start": 14135.82, + "end": 14140.5, + "probability": 0.8892 + }, + { + "start": 14140.5, + "end": 14143.24, + "probability": 0.9043 + }, + { + "start": 14143.42, + "end": 14145.3, + "probability": 0.9717 + }, + { + "start": 14145.72, + "end": 14147.98, + "probability": 0.9829 + }, + { + "start": 14148.4, + "end": 14150.8, + "probability": 0.9622 + }, + { + "start": 14151.32, + "end": 14151.7, + "probability": 0.7445 + }, + { + "start": 14151.72, + "end": 14152.76, + "probability": 0.9418 + }, + { + "start": 14153.08, + "end": 14156.84, + "probability": 0.9879 + }, + { + "start": 14157.36, + "end": 14161.34, + "probability": 0.9961 + }, + { + "start": 14162.2, + "end": 14163.18, + "probability": 0.7651 + }, + { + "start": 14163.56, + "end": 14165.94, + "probability": 0.9765 + }, + { + "start": 14166.06, + "end": 14167.2, + "probability": 0.9435 + }, + { + "start": 14167.32, + "end": 14168.32, + "probability": 0.7118 + }, + { + "start": 14168.4, + "end": 14169.24, + "probability": 0.9485 + }, + { + "start": 14169.28, + "end": 14172.1, + "probability": 0.9067 + }, + { + "start": 14172.2, + "end": 14172.98, + "probability": 0.6841 + }, + { + "start": 14173.08, + "end": 14173.48, + "probability": 0.7984 + }, + { + "start": 14173.62, + "end": 14175.3, + "probability": 0.8572 + }, + { + "start": 14175.7, + "end": 14176.62, + "probability": 0.5871 + }, + { + "start": 14177.4, + "end": 14180.58, + "probability": 0.782 + }, + { + "start": 14180.64, + "end": 14187.04, + "probability": 0.8122 + }, + { + "start": 14187.38, + "end": 14188.44, + "probability": 0.9561 + }, + { + "start": 14188.8, + "end": 14191.82, + "probability": 0.7486 + }, + { + "start": 14192.26, + "end": 14194.6, + "probability": 0.9937 + }, + { + "start": 14194.68, + "end": 14195.28, + "probability": 0.9635 + }, + { + "start": 14195.38, + "end": 14196.58, + "probability": 0.8527 + }, + { + "start": 14196.66, + "end": 14197.02, + "probability": 0.6505 + }, + { + "start": 14197.3, + "end": 14199.06, + "probability": 0.9956 + }, + { + "start": 14199.52, + "end": 14200.86, + "probability": 0.929 + }, + { + "start": 14200.88, + "end": 14202.0, + "probability": 0.9326 + }, + { + "start": 14202.14, + "end": 14204.08, + "probability": 0.9414 + }, + { + "start": 14204.4, + "end": 14205.66, + "probability": 0.9692 + }, + { + "start": 14205.84, + "end": 14206.82, + "probability": 0.972 + }, + { + "start": 14207.08, + "end": 14207.7, + "probability": 0.8567 + }, + { + "start": 14207.88, + "end": 14208.98, + "probability": 0.8907 + }, + { + "start": 14209.56, + "end": 14214.0, + "probability": 0.9487 + }, + { + "start": 14214.06, + "end": 14216.78, + "probability": 0.9784 + }, + { + "start": 14217.94, + "end": 14222.78, + "probability": 0.9297 + }, + { + "start": 14223.04, + "end": 14223.98, + "probability": 0.8118 + }, + { + "start": 14224.04, + "end": 14224.46, + "probability": 0.5211 + }, + { + "start": 14224.56, + "end": 14226.78, + "probability": 0.9277 + }, + { + "start": 14226.84, + "end": 14229.48, + "probability": 0.6919 + }, + { + "start": 14230.18, + "end": 14233.54, + "probability": 0.9973 + }, + { + "start": 14234.66, + "end": 14238.58, + "probability": 0.9949 + }, + { + "start": 14239.5, + "end": 14243.22, + "probability": 0.9688 + }, + { + "start": 14243.58, + "end": 14249.32, + "probability": 0.9966 + }, + { + "start": 14249.8, + "end": 14251.0, + "probability": 0.9036 + }, + { + "start": 14251.62, + "end": 14255.46, + "probability": 0.9908 + }, + { + "start": 14255.84, + "end": 14260.06, + "probability": 0.9658 + }, + { + "start": 14260.06, + "end": 14264.18, + "probability": 0.9909 + }, + { + "start": 14265.34, + "end": 14267.38, + "probability": 0.9435 + }, + { + "start": 14267.72, + "end": 14270.18, + "probability": 0.9928 + }, + { + "start": 14270.32, + "end": 14271.16, + "probability": 0.982 + }, + { + "start": 14271.64, + "end": 14273.47, + "probability": 0.9943 + }, + { + "start": 14274.06, + "end": 14278.58, + "probability": 0.9844 + }, + { + "start": 14279.76, + "end": 14283.58, + "probability": 0.9214 + }, + { + "start": 14284.14, + "end": 14288.24, + "probability": 0.9628 + }, + { + "start": 14288.64, + "end": 14290.82, + "probability": 0.9618 + }, + { + "start": 14291.16, + "end": 14292.3, + "probability": 0.9821 + }, + { + "start": 14292.62, + "end": 14293.64, + "probability": 0.9934 + }, + { + "start": 14293.8, + "end": 14294.6, + "probability": 0.9824 + }, + { + "start": 14294.84, + "end": 14297.3, + "probability": 0.9893 + }, + { + "start": 14297.42, + "end": 14298.62, + "probability": 0.9316 + }, + { + "start": 14298.72, + "end": 14299.14, + "probability": 0.8071 + }, + { + "start": 14299.86, + "end": 14300.6, + "probability": 0.6262 + }, + { + "start": 14300.7, + "end": 14303.82, + "probability": 0.7725 + }, + { + "start": 14303.88, + "end": 14308.5, + "probability": 0.9703 + }, + { + "start": 14308.86, + "end": 14309.34, + "probability": 0.8115 + }, + { + "start": 14309.44, + "end": 14310.84, + "probability": 0.612 + }, + { + "start": 14310.94, + "end": 14311.72, + "probability": 0.8151 + }, + { + "start": 14311.78, + "end": 14312.66, + "probability": 0.9373 + }, + { + "start": 14312.82, + "end": 14317.06, + "probability": 0.887 + }, + { + "start": 14317.54, + "end": 14318.42, + "probability": 0.8762 + }, + { + "start": 14319.68, + "end": 14320.5, + "probability": 0.8533 + }, + { + "start": 14321.34, + "end": 14322.44, + "probability": 0.7839 + }, + { + "start": 14322.76, + "end": 14323.06, + "probability": 0.3418 + }, + { + "start": 14323.14, + "end": 14324.05, + "probability": 0.7487 + }, + { + "start": 14324.24, + "end": 14324.9, + "probability": 0.7396 + }, + { + "start": 14324.96, + "end": 14326.41, + "probability": 0.9852 + }, + { + "start": 14327.04, + "end": 14328.58, + "probability": 0.9847 + }, + { + "start": 14328.58, + "end": 14330.68, + "probability": 0.7219 + }, + { + "start": 14330.68, + "end": 14332.1, + "probability": 0.1274 + }, + { + "start": 14332.18, + "end": 14333.0, + "probability": 0.8194 + }, + { + "start": 14334.12, + "end": 14334.88, + "probability": 0.5727 + }, + { + "start": 14334.96, + "end": 14335.4, + "probability": 0.7175 + }, + { + "start": 14339.7, + "end": 14341.76, + "probability": 0.1126 + }, + { + "start": 14352.14, + "end": 14352.14, + "probability": 0.038 + }, + { + "start": 14352.2, + "end": 14355.14, + "probability": 0.6917 + }, + { + "start": 14355.32, + "end": 14359.0, + "probability": 0.9619 + }, + { + "start": 14359.72, + "end": 14361.28, + "probability": 0.6083 + }, + { + "start": 14362.2, + "end": 14366.96, + "probability": 0.9214 + }, + { + "start": 14366.96, + "end": 14369.5, + "probability": 0.8484 + }, + { + "start": 14369.5, + "end": 14370.0, + "probability": 0.5274 + }, + { + "start": 14370.1, + "end": 14371.68, + "probability": 0.2427 + }, + { + "start": 14372.4, + "end": 14374.81, + "probability": 0.9668 + }, + { + "start": 14375.84, + "end": 14376.62, + "probability": 0.5326 + }, + { + "start": 14376.72, + "end": 14377.02, + "probability": 0.6009 + }, + { + "start": 14377.82, + "end": 14378.16, + "probability": 0.4237 + }, + { + "start": 14386.3, + "end": 14386.3, + "probability": 0.0201 + }, + { + "start": 14386.3, + "end": 14386.3, + "probability": 0.0326 + }, + { + "start": 14386.3, + "end": 14386.3, + "probability": 0.0279 + }, + { + "start": 14386.3, + "end": 14386.3, + "probability": 0.0535 + }, + { + "start": 14386.3, + "end": 14386.32, + "probability": 0.162 + }, + { + "start": 14394.24, + "end": 14396.78, + "probability": 0.7044 + }, + { + "start": 14396.92, + "end": 14399.62, + "probability": 0.9797 + }, + { + "start": 14399.7, + "end": 14401.7, + "probability": 0.9858 + }, + { + "start": 14401.8, + "end": 14403.02, + "probability": 0.995 + }, + { + "start": 14403.84, + "end": 14406.08, + "probability": 0.98 + }, + { + "start": 14406.68, + "end": 14407.88, + "probability": 0.3861 + }, + { + "start": 14408.62, + "end": 14411.6, + "probability": 0.2739 + }, + { + "start": 14411.72, + "end": 14415.82, + "probability": 0.9778 + }, + { + "start": 14416.62, + "end": 14417.64, + "probability": 0.7371 + }, + { + "start": 14423.58, + "end": 14424.04, + "probability": 0.3091 + }, + { + "start": 14424.12, + "end": 14426.42, + "probability": 0.7712 + }, + { + "start": 14430.76, + "end": 14434.92, + "probability": 0.63 + }, + { + "start": 14435.12, + "end": 14436.98, + "probability": 0.0895 + }, + { + "start": 14437.76, + "end": 14440.66, + "probability": 0.9762 + }, + { + "start": 14441.62, + "end": 14444.32, + "probability": 0.9962 + }, + { + "start": 14444.56, + "end": 14446.12, + "probability": 0.1235 + }, + { + "start": 14446.24, + "end": 14449.4, + "probability": 0.8708 + }, + { + "start": 14450.04, + "end": 14452.32, + "probability": 0.8628 + }, + { + "start": 14452.56, + "end": 14454.4, + "probability": 0.9901 + }, + { + "start": 14454.46, + "end": 14455.98, + "probability": 0.9761 + }, + { + "start": 14455.98, + "end": 14459.0, + "probability": 0.878 + }, + { + "start": 14459.58, + "end": 14461.7, + "probability": 0.7651 + }, + { + "start": 14461.7, + "end": 14464.0, + "probability": 0.8388 + }, + { + "start": 14464.1, + "end": 14464.82, + "probability": 0.871 + }, + { + "start": 14465.32, + "end": 14469.72, + "probability": 0.9768 + }, + { + "start": 14469.92, + "end": 14474.74, + "probability": 0.8429 + }, + { + "start": 14474.74, + "end": 14478.62, + "probability": 0.991 + }, + { + "start": 14479.14, + "end": 14482.1, + "probability": 0.9756 + }, + { + "start": 14482.38, + "end": 14485.0, + "probability": 0.7895 + }, + { + "start": 14485.28, + "end": 14488.0, + "probability": 0.9473 + }, + { + "start": 14488.8, + "end": 14490.76, + "probability": 0.8577 + }, + { + "start": 14490.76, + "end": 14493.2, + "probability": 0.8979 + }, + { + "start": 14494.3, + "end": 14497.06, + "probability": 0.9677 + }, + { + "start": 14497.52, + "end": 14500.38, + "probability": 0.9768 + }, + { + "start": 14500.68, + "end": 14503.42, + "probability": 0.9736 + }, + { + "start": 14504.58, + "end": 14507.4, + "probability": 0.9843 + }, + { + "start": 14507.54, + "end": 14508.7, + "probability": 0.9707 + }, + { + "start": 14509.06, + "end": 14511.4, + "probability": 0.8754 + }, + { + "start": 14511.58, + "end": 14513.06, + "probability": 0.0643 + }, + { + "start": 14513.38, + "end": 14516.1, + "probability": 0.9703 + }, + { + "start": 14516.1, + "end": 14520.52, + "probability": 0.8389 + }, + { + "start": 14520.52, + "end": 14526.26, + "probability": 0.918 + }, + { + "start": 14526.96, + "end": 14530.18, + "probability": 0.9771 + }, + { + "start": 14530.18, + "end": 14534.12, + "probability": 0.9937 + }, + { + "start": 14534.52, + "end": 14537.14, + "probability": 0.9585 + }, + { + "start": 14537.14, + "end": 14539.26, + "probability": 0.8908 + }, + { + "start": 14539.38, + "end": 14541.9, + "probability": 0.9888 + }, + { + "start": 14543.06, + "end": 14544.58, + "probability": 0.9515 + }, + { + "start": 14544.76, + "end": 14547.23, + "probability": 0.8208 + }, + { + "start": 14547.32, + "end": 14549.5, + "probability": 0.9261 + }, + { + "start": 14550.18, + "end": 14550.42, + "probability": 0.7793 + }, + { + "start": 14550.96, + "end": 14553.08, + "probability": 0.8987 + }, + { + "start": 14553.76, + "end": 14556.5, + "probability": 0.9278 + }, + { + "start": 14560.83, + "end": 14565.4, + "probability": 0.9426 + }, + { + "start": 14565.44, + "end": 14568.64, + "probability": 0.8445 + }, + { + "start": 14569.08, + "end": 14571.88, + "probability": 0.9303 + }, + { + "start": 14573.18, + "end": 14574.46, + "probability": 0.5172 + }, + { + "start": 14575.42, + "end": 14576.86, + "probability": 0.7802 + }, + { + "start": 14578.42, + "end": 14579.1, + "probability": 0.7485 + }, + { + "start": 14579.68, + "end": 14580.82, + "probability": 0.9655 + }, + { + "start": 14581.78, + "end": 14582.36, + "probability": 0.9632 + }, + { + "start": 14583.0, + "end": 14584.38, + "probability": 0.8692 + }, + { + "start": 14585.86, + "end": 14586.92, + "probability": 0.9829 + }, + { + "start": 14589.18, + "end": 14589.7, + "probability": 0.6314 + }, + { + "start": 14590.32, + "end": 14592.38, + "probability": 0.07 + }, + { + "start": 14594.28, + "end": 14594.38, + "probability": 0.0425 + }, + { + "start": 14595.4, + "end": 14597.48, + "probability": 0.0095 + }, + { + "start": 14601.34, + "end": 14604.96, + "probability": 0.7874 + }, + { + "start": 14605.92, + "end": 14607.32, + "probability": 0.7734 + }, + { + "start": 14607.44, + "end": 14608.06, + "probability": 0.874 + }, + { + "start": 14608.2, + "end": 14609.2, + "probability": 0.6748 + }, + { + "start": 14609.38, + "end": 14610.45, + "probability": 0.4342 + }, + { + "start": 14611.34, + "end": 14614.18, + "probability": 0.9871 + }, + { + "start": 14615.68, + "end": 14619.7, + "probability": 0.9668 + }, + { + "start": 14620.3, + "end": 14621.26, + "probability": 0.853 + }, + { + "start": 14622.24, + "end": 14624.88, + "probability": 0.9953 + }, + { + "start": 14627.56, + "end": 14632.82, + "probability": 0.9801 + }, + { + "start": 14633.48, + "end": 14642.08, + "probability": 0.9175 + }, + { + "start": 14642.14, + "end": 14642.24, + "probability": 0.7575 + }, + { + "start": 14643.66, + "end": 14645.46, + "probability": 0.9644 + }, + { + "start": 14646.84, + "end": 14648.98, + "probability": 0.7947 + }, + { + "start": 14651.24, + "end": 14653.76, + "probability": 0.8575 + }, + { + "start": 14654.6, + "end": 14656.02, + "probability": 0.887 + }, + { + "start": 14656.9, + "end": 14658.76, + "probability": 0.9883 + }, + { + "start": 14660.4, + "end": 14666.4, + "probability": 0.9855 + }, + { + "start": 14667.02, + "end": 14673.72, + "probability": 0.9971 + }, + { + "start": 14674.44, + "end": 14675.24, + "probability": 0.244 + }, + { + "start": 14677.0, + "end": 14679.2, + "probability": 0.8396 + }, + { + "start": 14680.1, + "end": 14685.36, + "probability": 0.917 + }, + { + "start": 14686.54, + "end": 14688.54, + "probability": 0.9758 + }, + { + "start": 14689.16, + "end": 14692.56, + "probability": 0.9613 + }, + { + "start": 14692.98, + "end": 14695.2, + "probability": 0.853 + }, + { + "start": 14695.8, + "end": 14697.52, + "probability": 0.9963 + }, + { + "start": 14698.32, + "end": 14699.64, + "probability": 0.7136 + }, + { + "start": 14700.18, + "end": 14702.06, + "probability": 0.9598 + }, + { + "start": 14702.64, + "end": 14703.99, + "probability": 0.953 + }, + { + "start": 14705.4, + "end": 14707.3, + "probability": 0.9086 + }, + { + "start": 14707.92, + "end": 14709.88, + "probability": 0.9824 + }, + { + "start": 14710.28, + "end": 14716.26, + "probability": 0.978 + }, + { + "start": 14716.26, + "end": 14721.08, + "probability": 0.9705 + }, + { + "start": 14721.9, + "end": 14727.16, + "probability": 0.7798 + }, + { + "start": 14727.68, + "end": 14730.54, + "probability": 0.9849 + }, + { + "start": 14730.96, + "end": 14731.62, + "probability": 0.8413 + }, + { + "start": 14732.64, + "end": 14737.7, + "probability": 0.9937 + }, + { + "start": 14738.82, + "end": 14741.1, + "probability": 0.9937 + }, + { + "start": 14743.38, + "end": 14748.38, + "probability": 0.9859 + }, + { + "start": 14748.96, + "end": 14755.56, + "probability": 0.9949 + }, + { + "start": 14756.06, + "end": 14758.36, + "probability": 0.9765 + }, + { + "start": 14758.52, + "end": 14759.46, + "probability": 0.9092 + }, + { + "start": 14760.3, + "end": 14761.96, + "probability": 0.6491 + }, + { + "start": 14762.4, + "end": 14765.4, + "probability": 0.6836 + }, + { + "start": 14765.8, + "end": 14771.82, + "probability": 0.9807 + }, + { + "start": 14771.96, + "end": 14774.62, + "probability": 0.9554 + }, + { + "start": 14775.18, + "end": 14779.04, + "probability": 0.9873 + }, + { + "start": 14779.38, + "end": 14779.86, + "probability": 0.583 + }, + { + "start": 14780.62, + "end": 14782.68, + "probability": 0.899 + }, + { + "start": 14782.78, + "end": 14785.04, + "probability": 0.8373 + }, + { + "start": 14785.94, + "end": 14787.04, + "probability": 0.8192 + }, + { + "start": 14802.72, + "end": 14803.8, + "probability": 0.668 + }, + { + "start": 14803.8, + "end": 14804.22, + "probability": 0.7904 + }, + { + "start": 14809.88, + "end": 14811.72, + "probability": 0.6447 + }, + { + "start": 14814.32, + "end": 14817.22, + "probability": 0.6966 + }, + { + "start": 14817.42, + "end": 14821.5, + "probability": 0.9901 + }, + { + "start": 14822.08, + "end": 14825.78, + "probability": 0.8608 + }, + { + "start": 14826.06, + "end": 14828.06, + "probability": 0.9961 + }, + { + "start": 14829.24, + "end": 14831.98, + "probability": 0.9372 + }, + { + "start": 14833.08, + "end": 14836.38, + "probability": 0.9927 + }, + { + "start": 14836.52, + "end": 14842.22, + "probability": 0.9879 + }, + { + "start": 14842.94, + "end": 14845.98, + "probability": 0.9408 + }, + { + "start": 14846.02, + "end": 14847.86, + "probability": 0.9836 + }, + { + "start": 14848.64, + "end": 14850.31, + "probability": 0.9814 + }, + { + "start": 14852.92, + "end": 14855.38, + "probability": 0.9871 + }, + { + "start": 14856.12, + "end": 14857.86, + "probability": 0.9396 + }, + { + "start": 14857.94, + "end": 14858.94, + "probability": 0.74 + }, + { + "start": 14858.98, + "end": 14863.3, + "probability": 0.9895 + }, + { + "start": 14863.3, + "end": 14867.08, + "probability": 0.9697 + }, + { + "start": 14867.78, + "end": 14872.44, + "probability": 0.9991 + }, + { + "start": 14872.44, + "end": 14878.68, + "probability": 0.9987 + }, + { + "start": 14879.74, + "end": 14885.32, + "probability": 0.9938 + }, + { + "start": 14886.12, + "end": 14889.96, + "probability": 0.9986 + }, + { + "start": 14890.22, + "end": 14891.76, + "probability": 0.8625 + }, + { + "start": 14891.86, + "end": 14893.08, + "probability": 0.7725 + }, + { + "start": 14893.96, + "end": 14895.81, + "probability": 0.9863 + }, + { + "start": 14896.74, + "end": 14898.18, + "probability": 0.9822 + }, + { + "start": 14898.62, + "end": 14901.44, + "probability": 0.996 + }, + { + "start": 14901.98, + "end": 14906.44, + "probability": 0.8164 + }, + { + "start": 14906.88, + "end": 14908.0, + "probability": 0.8367 + }, + { + "start": 14908.42, + "end": 14910.68, + "probability": 0.7823 + }, + { + "start": 14912.26, + "end": 14914.18, + "probability": 0.8762 + }, + { + "start": 14914.62, + "end": 14915.58, + "probability": 0.9949 + }, + { + "start": 14916.7, + "end": 14917.32, + "probability": 0.7139 + }, + { + "start": 14917.96, + "end": 14919.68, + "probability": 0.9352 + }, + { + "start": 14920.62, + "end": 14921.22, + "probability": 0.6344 + }, + { + "start": 14921.9, + "end": 14923.5, + "probability": 0.8838 + }, + { + "start": 14926.1, + "end": 14927.18, + "probability": 0.9651 + }, + { + "start": 14927.6, + "end": 14929.16, + "probability": 0.3101 + }, + { + "start": 14929.32, + "end": 14930.28, + "probability": 0.2604 + }, + { + "start": 14930.4, + "end": 14932.02, + "probability": 0.6401 + }, + { + "start": 14932.16, + "end": 14932.78, + "probability": 0.2891 + }, + { + "start": 14933.14, + "end": 14935.68, + "probability": 0.3986 + }, + { + "start": 14936.94, + "end": 14939.84, + "probability": 0.8655 + }, + { + "start": 14940.12, + "end": 14940.46, + "probability": 0.5789 + }, + { + "start": 14941.35, + "end": 14945.36, + "probability": 0.5481 + }, + { + "start": 14946.96, + "end": 14946.96, + "probability": 0.6657 + }, + { + "start": 14946.96, + "end": 14948.92, + "probability": 0.5377 + }, + { + "start": 14949.82, + "end": 14949.82, + "probability": 0.0374 + }, + { + "start": 14949.82, + "end": 14951.18, + "probability": 0.5801 + }, + { + "start": 14951.74, + "end": 14953.48, + "probability": 0.6803 + }, + { + "start": 14954.52, + "end": 14958.2, + "probability": 0.344 + }, + { + "start": 14958.44, + "end": 14961.74, + "probability": 0.7744 + }, + { + "start": 14961.94, + "end": 14963.3, + "probability": 0.6123 + }, + { + "start": 14963.6, + "end": 14963.94, + "probability": 0.9474 + }, + { + "start": 14965.5, + "end": 14966.43, + "probability": 0.901 + }, + { + "start": 14966.94, + "end": 14968.36, + "probability": 0.9657 + }, + { + "start": 14968.46, + "end": 14969.1, + "probability": 0.9507 + }, + { + "start": 14969.1, + "end": 14970.84, + "probability": 0.8511 + }, + { + "start": 14970.88, + "end": 14972.78, + "probability": 0.2463 + }, + { + "start": 14974.02, + "end": 14975.12, + "probability": 0.9585 + }, + { + "start": 14975.12, + "end": 14975.48, + "probability": 0.0918 + }, + { + "start": 14975.58, + "end": 14977.72, + "probability": 0.6275 + }, + { + "start": 14978.8, + "end": 14979.48, + "probability": 0.4646 + }, + { + "start": 14979.64, + "end": 14981.42, + "probability": 0.9761 + }, + { + "start": 14981.42, + "end": 14984.04, + "probability": 0.5776 + }, + { + "start": 14984.1, + "end": 14984.88, + "probability": 0.8057 + }, + { + "start": 14985.58, + "end": 14986.56, + "probability": 0.6787 + }, + { + "start": 14986.62, + "end": 14986.72, + "probability": 0.3384 + }, + { + "start": 14987.5, + "end": 14988.36, + "probability": 0.7362 + }, + { + "start": 14988.5, + "end": 14990.7, + "probability": 0.9775 + }, + { + "start": 14991.04, + "end": 14993.18, + "probability": 0.5308 + }, + { + "start": 14993.2, + "end": 14994.16, + "probability": 0.5126 + }, + { + "start": 14994.36, + "end": 14995.22, + "probability": 0.2874 + }, + { + "start": 14995.32, + "end": 14995.88, + "probability": 0.1595 + }, + { + "start": 14996.12, + "end": 14996.14, + "probability": 0.335 + }, + { + "start": 14996.14, + "end": 14997.34, + "probability": 0.9844 + }, + { + "start": 14997.96, + "end": 14999.16, + "probability": 0.3755 + }, + { + "start": 14999.38, + "end": 15000.18, + "probability": 0.5965 + }, + { + "start": 15000.24, + "end": 15001.02, + "probability": 0.5409 + }, + { + "start": 15001.3, + "end": 15002.96, + "probability": 0.631 + }, + { + "start": 15003.6, + "end": 15005.1, + "probability": 0.915 + }, + { + "start": 15006.64, + "end": 15009.06, + "probability": 0.7106 + }, + { + "start": 15012.32, + "end": 15018.42, + "probability": 0.9085 + }, + { + "start": 15018.5, + "end": 15018.98, + "probability": 0.9112 + }, + { + "start": 15019.3, + "end": 15019.78, + "probability": 0.9241 + }, + { + "start": 15019.92, + "end": 15020.52, + "probability": 0.8742 + }, + { + "start": 15021.66, + "end": 15023.38, + "probability": 0.9767 + }, + { + "start": 15024.6, + "end": 15026.54, + "probability": 0.9588 + }, + { + "start": 15027.78, + "end": 15029.46, + "probability": 0.9886 + }, + { + "start": 15031.36, + "end": 15032.2, + "probability": 0.7952 + }, + { + "start": 15034.26, + "end": 15035.54, + "probability": 0.9525 + }, + { + "start": 15036.34, + "end": 15037.98, + "probability": 0.97 + }, + { + "start": 15038.16, + "end": 15038.64, + "probability": 0.64 + }, + { + "start": 15038.72, + "end": 15039.24, + "probability": 0.7197 + }, + { + "start": 15039.3, + "end": 15040.98, + "probability": 0.9847 + }, + { + "start": 15041.6, + "end": 15042.52, + "probability": 0.9723 + }, + { + "start": 15043.64, + "end": 15048.14, + "probability": 0.9912 + }, + { + "start": 15048.28, + "end": 15049.8, + "probability": 0.8511 + }, + { + "start": 15049.98, + "end": 15050.32, + "probability": 0.3248 + }, + { + "start": 15051.12, + "end": 15053.82, + "probability": 0.9019 + }, + { + "start": 15055.48, + "end": 15057.52, + "probability": 0.9946 + }, + { + "start": 15058.88, + "end": 15059.84, + "probability": 0.7426 + }, + { + "start": 15060.54, + "end": 15065.9, + "probability": 0.9907 + }, + { + "start": 15066.92, + "end": 15067.82, + "probability": 0.8922 + }, + { + "start": 15068.52, + "end": 15070.22, + "probability": 0.9927 + }, + { + "start": 15070.76, + "end": 15072.88, + "probability": 0.9231 + }, + { + "start": 15073.5, + "end": 15075.76, + "probability": 0.8536 + }, + { + "start": 15076.36, + "end": 15077.62, + "probability": 0.6795 + }, + { + "start": 15078.78, + "end": 15081.4, + "probability": 0.9504 + }, + { + "start": 15082.74, + "end": 15085.2, + "probability": 0.8553 + }, + { + "start": 15086.2, + "end": 15091.56, + "probability": 0.9761 + }, + { + "start": 15092.74, + "end": 15095.12, + "probability": 0.9723 + }, + { + "start": 15096.32, + "end": 15100.14, + "probability": 0.9763 + }, + { + "start": 15100.26, + "end": 15101.24, + "probability": 0.6179 + }, + { + "start": 15102.2, + "end": 15108.07, + "probability": 0.999 + }, + { + "start": 15109.28, + "end": 15111.98, + "probability": 0.9848 + }, + { + "start": 15112.1, + "end": 15113.1, + "probability": 0.6051 + }, + { + "start": 15113.94, + "end": 15116.88, + "probability": 0.9865 + }, + { + "start": 15117.66, + "end": 15120.72, + "probability": 0.9429 + }, + { + "start": 15120.8, + "end": 15121.94, + "probability": 0.9971 + }, + { + "start": 15122.62, + "end": 15130.92, + "probability": 0.9915 + }, + { + "start": 15131.22, + "end": 15132.7, + "probability": 0.9597 + }, + { + "start": 15133.18, + "end": 15135.54, + "probability": 0.9941 + }, + { + "start": 15135.7, + "end": 15137.05, + "probability": 0.8173 + }, + { + "start": 15137.86, + "end": 15138.66, + "probability": 0.5201 + }, + { + "start": 15140.0, + "end": 15141.86, + "probability": 0.7535 + }, + { + "start": 15142.18, + "end": 15143.32, + "probability": 0.8525 + }, + { + "start": 15143.7, + "end": 15145.03, + "probability": 0.9775 + }, + { + "start": 15145.82, + "end": 15146.86, + "probability": 0.9473 + }, + { + "start": 15147.02, + "end": 15147.58, + "probability": 0.6852 + }, + { + "start": 15148.96, + "end": 15153.24, + "probability": 0.9979 + }, + { + "start": 15155.24, + "end": 15156.12, + "probability": 0.8597 + }, + { + "start": 15156.18, + "end": 15156.88, + "probability": 0.8523 + }, + { + "start": 15157.08, + "end": 15160.03, + "probability": 0.9963 + }, + { + "start": 15161.24, + "end": 15165.48, + "probability": 0.9934 + }, + { + "start": 15166.04, + "end": 15166.84, + "probability": 0.9883 + }, + { + "start": 15167.58, + "end": 15170.02, + "probability": 0.8926 + }, + { + "start": 15171.4, + "end": 15175.56, + "probability": 0.7458 + }, + { + "start": 15176.2, + "end": 15180.1, + "probability": 0.8482 + }, + { + "start": 15181.46, + "end": 15182.84, + "probability": 0.5939 + }, + { + "start": 15183.56, + "end": 15184.72, + "probability": 0.9418 + }, + { + "start": 15185.5, + "end": 15186.34, + "probability": 0.5624 + }, + { + "start": 15186.86, + "end": 15187.52, + "probability": 0.8577 + }, + { + "start": 15188.47, + "end": 15189.5, + "probability": 0.3933 + }, + { + "start": 15189.5, + "end": 15190.08, + "probability": 0.3678 + }, + { + "start": 15190.6, + "end": 15191.3, + "probability": 0.9114 + }, + { + "start": 15191.44, + "end": 15193.88, + "probability": 0.9707 + }, + { + "start": 15194.6, + "end": 15198.97, + "probability": 0.9464 + }, + { + "start": 15199.92, + "end": 15203.94, + "probability": 0.9797 + }, + { + "start": 15204.4, + "end": 15207.38, + "probability": 0.9893 + }, + { + "start": 15207.48, + "end": 15207.94, + "probability": 0.4142 + }, + { + "start": 15208.12, + "end": 15210.14, + "probability": 0.8242 + }, + { + "start": 15210.78, + "end": 15213.42, + "probability": 0.9698 + }, + { + "start": 15213.72, + "end": 15216.56, + "probability": 0.9929 + }, + { + "start": 15217.14, + "end": 15220.0, + "probability": 0.8255 + }, + { + "start": 15220.36, + "end": 15223.16, + "probability": 0.8658 + }, + { + "start": 15223.46, + "end": 15224.51, + "probability": 0.8904 + }, + { + "start": 15224.82, + "end": 15229.24, + "probability": 0.9907 + }, + { + "start": 15229.56, + "end": 15230.62, + "probability": 0.6959 + }, + { + "start": 15231.0, + "end": 15232.8, + "probability": 0.9896 + }, + { + "start": 15233.22, + "end": 15233.66, + "probability": 0.5226 + }, + { + "start": 15233.68, + "end": 15233.98, + "probability": 0.7974 + }, + { + "start": 15234.04, + "end": 15234.44, + "probability": 0.4855 + }, + { + "start": 15234.5, + "end": 15237.36, + "probability": 0.9633 + }, + { + "start": 15238.58, + "end": 15240.52, + "probability": 0.9672 + }, + { + "start": 15240.56, + "end": 15243.38, + "probability": 0.9418 + }, + { + "start": 15243.44, + "end": 15249.9, + "probability": 0.9814 + }, + { + "start": 15249.9, + "end": 15253.46, + "probability": 0.4297 + }, + { + "start": 15253.56, + "end": 15255.14, + "probability": 0.0233 + }, + { + "start": 15255.72, + "end": 15257.08, + "probability": 0.7826 + }, + { + "start": 15257.3, + "end": 15257.84, + "probability": 0.6224 + }, + { + "start": 15257.84, + "end": 15258.18, + "probability": 0.299 + }, + { + "start": 15258.2, + "end": 15259.04, + "probability": 0.5587 + }, + { + "start": 15260.86, + "end": 15267.84, + "probability": 0.0872 + }, + { + "start": 15270.88, + "end": 15273.74, + "probability": 0.053 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.0, + "end": 15354.0, + "probability": 0.0 + }, + { + "start": 15354.3, + "end": 15354.58, + "probability": 0.0571 + }, + { + "start": 15354.58, + "end": 15354.58, + "probability": 0.0268 + }, + { + "start": 15354.58, + "end": 15356.04, + "probability": 0.4516 + }, + { + "start": 15356.12, + "end": 15357.58, + "probability": 0.1409 + }, + { + "start": 15359.08, + "end": 15364.66, + "probability": 0.4262 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.0, + "end": 15505.0, + "probability": 0.0 + }, + { + "start": 15505.74, + "end": 15509.48, + "probability": 0.9896 + }, + { + "start": 15510.08, + "end": 15513.84, + "probability": 0.9993 + }, + { + "start": 15514.64, + "end": 15516.06, + "probability": 0.9988 + }, + { + "start": 15516.66, + "end": 15521.98, + "probability": 0.9932 + }, + { + "start": 15522.62, + "end": 15524.88, + "probability": 0.8123 + }, + { + "start": 15524.94, + "end": 15530.12, + "probability": 0.9304 + }, + { + "start": 15530.86, + "end": 15532.52, + "probability": 0.8282 + }, + { + "start": 15533.0, + "end": 15534.88, + "probability": 0.9159 + }, + { + "start": 15536.34, + "end": 15540.16, + "probability": 0.9953 + }, + { + "start": 15540.16, + "end": 15544.22, + "probability": 0.9996 + }, + { + "start": 15545.24, + "end": 15546.08, + "probability": 0.6704 + }, + { + "start": 15546.28, + "end": 15548.42, + "probability": 0.9614 + }, + { + "start": 15548.46, + "end": 15549.06, + "probability": 0.6977 + }, + { + "start": 15549.16, + "end": 15550.36, + "probability": 0.9737 + }, + { + "start": 15550.78, + "end": 15551.92, + "probability": 0.9758 + }, + { + "start": 15552.22, + "end": 15553.86, + "probability": 0.9653 + }, + { + "start": 15554.06, + "end": 15554.76, + "probability": 0.7473 + }, + { + "start": 15554.94, + "end": 15555.52, + "probability": 0.7753 + }, + { + "start": 15556.34, + "end": 15560.12, + "probability": 0.8732 + }, + { + "start": 15560.26, + "end": 15566.28, + "probability": 0.9684 + }, + { + "start": 15566.82, + "end": 15568.48, + "probability": 0.9913 + }, + { + "start": 15568.94, + "end": 15570.48, + "probability": 0.8852 + }, + { + "start": 15570.98, + "end": 15571.9, + "probability": 0.9475 + }, + { + "start": 15572.28, + "end": 15576.14, + "probability": 0.9804 + }, + { + "start": 15580.48, + "end": 15585.26, + "probability": 0.9966 + }, + { + "start": 15585.34, + "end": 15586.72, + "probability": 0.9854 + }, + { + "start": 15586.82, + "end": 15587.9, + "probability": 0.8638 + }, + { + "start": 15588.5, + "end": 15593.54, + "probability": 0.9956 + }, + { + "start": 15593.76, + "end": 15594.64, + "probability": 0.3586 + }, + { + "start": 15594.7, + "end": 15596.36, + "probability": 0.9675 + }, + { + "start": 15598.6, + "end": 15600.44, + "probability": 0.6745 + }, + { + "start": 15609.88, + "end": 15614.84, + "probability": 0.9278 + }, + { + "start": 15614.92, + "end": 15617.43, + "probability": 0.9842 + }, + { + "start": 15619.06, + "end": 15622.72, + "probability": 0.9971 + }, + { + "start": 15622.72, + "end": 15626.72, + "probability": 0.9595 + }, + { + "start": 15627.38, + "end": 15629.4, + "probability": 0.9176 + }, + { + "start": 15629.88, + "end": 15631.42, + "probability": 0.9423 + }, + { + "start": 15631.76, + "end": 15635.62, + "probability": 0.9963 + }, + { + "start": 15636.54, + "end": 15639.34, + "probability": 0.9734 + }, + { + "start": 15639.9, + "end": 15641.7, + "probability": 0.998 + }, + { + "start": 15642.72, + "end": 15648.72, + "probability": 0.9041 + }, + { + "start": 15649.44, + "end": 15650.78, + "probability": 0.816 + }, + { + "start": 15651.32, + "end": 15654.7, + "probability": 0.7436 + }, + { + "start": 15657.04, + "end": 15657.5, + "probability": 0.8396 + }, + { + "start": 15657.58, + "end": 15658.78, + "probability": 0.9197 + }, + { + "start": 15658.86, + "end": 15660.68, + "probability": 0.8433 + }, + { + "start": 15661.06, + "end": 15666.14, + "probability": 0.9559 + }, + { + "start": 15666.14, + "end": 15672.22, + "probability": 0.9843 + }, + { + "start": 15672.96, + "end": 15678.68, + "probability": 0.9081 + }, + { + "start": 15678.8, + "end": 15681.48, + "probability": 0.944 + }, + { + "start": 15682.54, + "end": 15685.8, + "probability": 0.9917 + }, + { + "start": 15687.44, + "end": 15691.8, + "probability": 0.802 + }, + { + "start": 15696.52, + "end": 15700.26, + "probability": 0.9917 + }, + { + "start": 15700.4, + "end": 15704.34, + "probability": 0.9941 + }, + { + "start": 15704.68, + "end": 15709.2, + "probability": 0.8733 + }, + { + "start": 15709.54, + "end": 15710.74, + "probability": 0.9081 + }, + { + "start": 15711.2, + "end": 15713.52, + "probability": 0.8836 + }, + { + "start": 15714.14, + "end": 15720.16, + "probability": 0.9944 + }, + { + "start": 15720.16, + "end": 15727.0, + "probability": 0.9824 + }, + { + "start": 15728.12, + "end": 15731.26, + "probability": 0.7934 + }, + { + "start": 15732.0, + "end": 15737.14, + "probability": 0.9695 + }, + { + "start": 15737.66, + "end": 15739.24, + "probability": 0.9803 + }, + { + "start": 15739.82, + "end": 15742.52, + "probability": 0.9926 + }, + { + "start": 15742.92, + "end": 15745.89, + "probability": 0.9924 + }, + { + "start": 15746.58, + "end": 15747.78, + "probability": 0.9946 + }, + { + "start": 15747.82, + "end": 15748.8, + "probability": 0.7496 + }, + { + "start": 15748.86, + "end": 15753.34, + "probability": 0.7588 + }, + { + "start": 15753.9, + "end": 15757.54, + "probability": 0.8705 + }, + { + "start": 15758.48, + "end": 15761.08, + "probability": 0.9932 + }, + { + "start": 15762.7, + "end": 15763.18, + "probability": 0.5571 + }, + { + "start": 15763.68, + "end": 15767.9, + "probability": 0.8495 + }, + { + "start": 15768.3, + "end": 15770.24, + "probability": 0.8538 + }, + { + "start": 15770.92, + "end": 15774.5, + "probability": 0.9132 + }, + { + "start": 15774.5, + "end": 15775.24, + "probability": 0.5187 + }, + { + "start": 15775.52, + "end": 15776.64, + "probability": 0.8012 + }, + { + "start": 15777.0, + "end": 15780.6, + "probability": 0.967 + }, + { + "start": 15780.6, + "end": 15784.26, + "probability": 0.9953 + }, + { + "start": 15784.84, + "end": 15786.12, + "probability": 0.9788 + }, + { + "start": 15786.54, + "end": 15787.58, + "probability": 0.9903 + }, + { + "start": 15787.84, + "end": 15788.89, + "probability": 0.8413 + }, + { + "start": 15789.42, + "end": 15794.56, + "probability": 0.998 + }, + { + "start": 15795.06, + "end": 15798.98, + "probability": 0.9672 + }, + { + "start": 15799.38, + "end": 15800.5, + "probability": 0.7808 + }, + { + "start": 15800.98, + "end": 15805.12, + "probability": 0.9953 + }, + { + "start": 15805.64, + "end": 15809.28, + "probability": 0.7661 + }, + { + "start": 15810.14, + "end": 15810.92, + "probability": 0.8849 + }, + { + "start": 15811.08, + "end": 15811.3, + "probability": 0.7228 + }, + { + "start": 15812.9, + "end": 15813.28, + "probability": 0.6494 + }, + { + "start": 15813.38, + "end": 15814.18, + "probability": 0.894 + }, + { + "start": 15814.88, + "end": 15815.78, + "probability": 0.7163 + }, + { + "start": 15815.78, + "end": 15816.08, + "probability": 0.4031 + }, + { + "start": 15816.16, + "end": 15817.44, + "probability": 0.949 + }, + { + "start": 15817.56, + "end": 15820.64, + "probability": 0.9639 + }, + { + "start": 15820.64, + "end": 15822.94, + "probability": 0.748 + }, + { + "start": 15822.94, + "end": 15824.36, + "probability": 0.4778 + }, + { + "start": 15824.52, + "end": 15826.74, + "probability": 0.1861 + }, + { + "start": 15826.86, + "end": 15827.98, + "probability": 0.5004 + }, + { + "start": 15828.12, + "end": 15829.9, + "probability": 0.2741 + }, + { + "start": 15831.3, + "end": 15831.72, + "probability": 0.4014 + }, + { + "start": 15832.08, + "end": 15833.9, + "probability": 0.8918 + }, + { + "start": 15844.02, + "end": 15845.1, + "probability": 0.077 + }, + { + "start": 15849.68, + "end": 15850.6, + "probability": 0.1686 + }, + { + "start": 15850.87, + "end": 15855.16, + "probability": 0.2254 + }, + { + "start": 15855.16, + "end": 15861.4, + "probability": 0.0266 + }, + { + "start": 15861.4, + "end": 15862.72, + "probability": 0.0322 + }, + { + "start": 15862.72, + "end": 15864.14, + "probability": 0.1288 + }, + { + "start": 15864.74, + "end": 15865.92, + "probability": 0.0262 + }, + { + "start": 15868.0, + "end": 15871.4, + "probability": 0.2187 + }, + { + "start": 15886.36, + "end": 15888.76, + "probability": 0.3925 + }, + { + "start": 15890.72, + "end": 15892.58, + "probability": 0.2497 + }, + { + "start": 15892.78, + "end": 15894.78, + "probability": 0.0587 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.0, + "end": 15910.0, + "probability": 0.0 + }, + { + "start": 15910.88, + "end": 15911.7, + "probability": 0.1561 + }, + { + "start": 15911.7, + "end": 15913.84, + "probability": 0.0212 + }, + { + "start": 15913.84, + "end": 15914.62, + "probability": 0.0274 + }, + { + "start": 15915.38, + "end": 15916.08, + "probability": 0.0243 + }, + { + "start": 15916.18, + "end": 15923.58, + "probability": 0.6163 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.0, + "end": 16035.0, + "probability": 0.0 + }, + { + "start": 16035.92, + "end": 16035.94, + "probability": 0.1263 + }, + { + "start": 16035.94, + "end": 16038.86, + "probability": 0.9648 + }, + { + "start": 16038.86, + "end": 16041.81, + "probability": 0.603 + }, + { + "start": 16042.0, + "end": 16042.7, + "probability": 0.8823 + }, + { + "start": 16043.88, + "end": 16048.86, + "probability": 0.99 + }, + { + "start": 16048.86, + "end": 16054.48, + "probability": 0.9988 + }, + { + "start": 16055.66, + "end": 16058.02, + "probability": 0.7683 + }, + { + "start": 16058.92, + "end": 16062.38, + "probability": 0.997 + }, + { + "start": 16062.8, + "end": 16063.62, + "probability": 0.9644 + }, + { + "start": 16064.34, + "end": 16065.04, + "probability": 0.6164 + }, + { + "start": 16065.62, + "end": 16067.8, + "probability": 0.8705 + }, + { + "start": 16068.68, + "end": 16071.32, + "probability": 0.9976 + }, + { + "start": 16071.32, + "end": 16074.84, + "probability": 0.9551 + }, + { + "start": 16075.62, + "end": 16078.32, + "probability": 0.9817 + }, + { + "start": 16078.7, + "end": 16080.28, + "probability": 0.9794 + }, + { + "start": 16080.64, + "end": 16083.2, + "probability": 0.99 + }, + { + "start": 16083.7, + "end": 16086.98, + "probability": 0.9927 + }, + { + "start": 16087.58, + "end": 16090.32, + "probability": 0.9604 + }, + { + "start": 16091.62, + "end": 16093.4, + "probability": 0.9967 + }, + { + "start": 16093.94, + "end": 16094.92, + "probability": 0.9719 + }, + { + "start": 16096.3, + "end": 16098.22, + "probability": 0.7359 + }, + { + "start": 16098.7, + "end": 16101.6, + "probability": 0.571 + }, + { + "start": 16101.68, + "end": 16103.52, + "probability": 0.9635 + }, + { + "start": 16103.98, + "end": 16108.32, + "probability": 0.8845 + }, + { + "start": 16109.76, + "end": 16111.32, + "probability": 0.9576 + }, + { + "start": 16112.06, + "end": 16112.32, + "probability": 0.5445 + }, + { + "start": 16112.38, + "end": 16115.88, + "probability": 0.9765 + }, + { + "start": 16116.66, + "end": 16120.78, + "probability": 0.971 + }, + { + "start": 16122.36, + "end": 16125.46, + "probability": 0.8481 + }, + { + "start": 16125.46, + "end": 16128.3, + "probability": 0.9656 + }, + { + "start": 16129.0, + "end": 16132.36, + "probability": 0.971 + }, + { + "start": 16133.2, + "end": 16136.76, + "probability": 0.9978 + }, + { + "start": 16137.16, + "end": 16138.48, + "probability": 0.7963 + }, + { + "start": 16139.08, + "end": 16142.92, + "probability": 0.9639 + }, + { + "start": 16143.14, + "end": 16150.52, + "probability": 0.9817 + }, + { + "start": 16151.22, + "end": 16157.28, + "probability": 0.9 + }, + { + "start": 16157.96, + "end": 16163.0, + "probability": 0.9486 + }, + { + "start": 16163.0, + "end": 16167.89, + "probability": 0.9917 + }, + { + "start": 16169.34, + "end": 16169.7, + "probability": 0.5991 + }, + { + "start": 16169.8, + "end": 16170.92, + "probability": 0.8958 + }, + { + "start": 16171.02, + "end": 16175.56, + "probability": 0.9476 + }, + { + "start": 16176.48, + "end": 16178.1, + "probability": 0.8771 + }, + { + "start": 16178.36, + "end": 16180.96, + "probability": 0.9932 + }, + { + "start": 16181.52, + "end": 16183.9, + "probability": 0.9925 + }, + { + "start": 16184.69, + "end": 16186.96, + "probability": 0.9832 + }, + { + "start": 16187.94, + "end": 16189.7, + "probability": 0.9761 + }, + { + "start": 16189.82, + "end": 16190.7, + "probability": 0.9088 + }, + { + "start": 16190.9, + "end": 16192.58, + "probability": 0.7636 + }, + { + "start": 16193.24, + "end": 16197.22, + "probability": 0.978 + }, + { + "start": 16197.8, + "end": 16200.22, + "probability": 0.9536 + }, + { + "start": 16200.38, + "end": 16204.14, + "probability": 0.9907 + }, + { + "start": 16204.28, + "end": 16205.78, + "probability": 0.9426 + }, + { + "start": 16206.12, + "end": 16208.34, + "probability": 0.9962 + }, + { + "start": 16209.52, + "end": 16211.74, + "probability": 0.9543 + }, + { + "start": 16211.82, + "end": 16213.88, + "probability": 0.9973 + }, + { + "start": 16214.58, + "end": 16216.92, + "probability": 0.998 + }, + { + "start": 16217.1, + "end": 16220.82, + "probability": 0.8229 + }, + { + "start": 16221.52, + "end": 16227.62, + "probability": 0.9754 + }, + { + "start": 16228.04, + "end": 16231.18, + "probability": 0.9772 + }, + { + "start": 16231.88, + "end": 16232.37, + "probability": 0.9185 + }, + { + "start": 16233.0, + "end": 16233.57, + "probability": 0.9492 + }, + { + "start": 16234.14, + "end": 16236.04, + "probability": 0.9914 + }, + { + "start": 16236.08, + "end": 16237.12, + "probability": 0.9894 + }, + { + "start": 16237.46, + "end": 16238.84, + "probability": 0.9766 + }, + { + "start": 16239.4, + "end": 16243.28, + "probability": 0.9752 + }, + { + "start": 16244.28, + "end": 16246.12, + "probability": 0.6977 + }, + { + "start": 16246.24, + "end": 16247.05, + "probability": 0.9948 + }, + { + "start": 16247.86, + "end": 16249.1, + "probability": 0.8287 + }, + { + "start": 16249.2, + "end": 16251.9, + "probability": 0.8709 + }, + { + "start": 16251.9, + "end": 16255.42, + "probability": 0.9672 + }, + { + "start": 16255.98, + "end": 16258.86, + "probability": 0.3583 + }, + { + "start": 16259.5, + "end": 16260.28, + "probability": 0.7393 + }, + { + "start": 16260.42, + "end": 16261.04, + "probability": 0.5388 + }, + { + "start": 16261.12, + "end": 16261.58, + "probability": 0.6575 + }, + { + "start": 16261.6, + "end": 16261.96, + "probability": 0.6733 + }, + { + "start": 16262.08, + "end": 16263.52, + "probability": 0.781 + }, + { + "start": 16279.12, + "end": 16279.32, + "probability": 0.1914 + }, + { + "start": 16280.3, + "end": 16285.36, + "probability": 0.136 + }, + { + "start": 16289.02, + "end": 16293.38, + "probability": 0.4471 + }, + { + "start": 16293.38, + "end": 16295.17, + "probability": 0.0975 + }, + { + "start": 16301.82, + "end": 16302.46, + "probability": 0.1846 + }, + { + "start": 16303.16, + "end": 16304.74, + "probability": 0.0168 + }, + { + "start": 16305.78, + "end": 16308.3, + "probability": 0.088 + }, + { + "start": 16309.14, + "end": 16310.54, + "probability": 0.0946 + }, + { + "start": 16311.12, + "end": 16312.28, + "probability": 0.2321 + }, + { + "start": 16315.58, + "end": 16320.52, + "probability": 0.0491 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16355.0, + "probability": 0.0 + }, + { + "start": 16355.0, + "end": 16356.58, + "probability": 0.9773 + }, + { + "start": 16357.0, + "end": 16359.6, + "probability": 0.9925 + }, + { + "start": 16359.78, + "end": 16361.72, + "probability": 0.6813 + }, + { + "start": 16362.7, + "end": 16362.7, + "probability": 0.5598 + }, + { + "start": 16362.98, + "end": 16363.92, + "probability": 0.9485 + }, + { + "start": 16363.98, + "end": 16368.54, + "probability": 0.9951 + }, + { + "start": 16369.36, + "end": 16371.2, + "probability": 0.6365 + }, + { + "start": 16372.0, + "end": 16375.6, + "probability": 0.9284 + }, + { + "start": 16375.74, + "end": 16377.7, + "probability": 0.8852 + }, + { + "start": 16378.0, + "end": 16378.78, + "probability": 0.7173 + }, + { + "start": 16378.9, + "end": 16380.32, + "probability": 0.944 + }, + { + "start": 16381.6, + "end": 16382.52, + "probability": 0.9496 + }, + { + "start": 16382.58, + "end": 16387.74, + "probability": 0.9866 + }, + { + "start": 16388.66, + "end": 16397.82, + "probability": 0.9587 + }, + { + "start": 16397.82, + "end": 16401.86, + "probability": 0.9962 + }, + { + "start": 16402.94, + "end": 16403.42, + "probability": 0.5355 + }, + { + "start": 16403.42, + "end": 16407.24, + "probability": 0.9716 + }, + { + "start": 16407.76, + "end": 16409.38, + "probability": 0.9432 + }, + { + "start": 16409.62, + "end": 16410.88, + "probability": 0.9956 + }, + { + "start": 16411.5, + "end": 16414.94, + "probability": 0.9951 + }, + { + "start": 16416.1, + "end": 16419.32, + "probability": 0.9978 + }, + { + "start": 16419.7, + "end": 16426.3, + "probability": 0.9958 + }, + { + "start": 16426.86, + "end": 16430.98, + "probability": 0.976 + }, + { + "start": 16432.0, + "end": 16434.26, + "probability": 0.994 + }, + { + "start": 16434.26, + "end": 16438.2, + "probability": 0.9946 + }, + { + "start": 16438.42, + "end": 16441.68, + "probability": 0.9566 + }, + { + "start": 16443.12, + "end": 16446.18, + "probability": 0.685 + }, + { + "start": 16446.52, + "end": 16449.3, + "probability": 0.9836 + }, + { + "start": 16449.68, + "end": 16451.18, + "probability": 0.9641 + }, + { + "start": 16451.82, + "end": 16455.12, + "probability": 0.9061 + }, + { + "start": 16455.22, + "end": 16458.44, + "probability": 0.9792 + }, + { + "start": 16459.0, + "end": 16459.88, + "probability": 0.3833 + }, + { + "start": 16460.0, + "end": 16460.72, + "probability": 0.5695 + }, + { + "start": 16460.88, + "end": 16461.58, + "probability": 0.911 + }, + { + "start": 16461.98, + "end": 16463.78, + "probability": 0.8927 + }, + { + "start": 16464.46, + "end": 16465.76, + "probability": 0.9814 + }, + { + "start": 16465.88, + "end": 16467.54, + "probability": 0.9708 + }, + { + "start": 16468.46, + "end": 16468.9, + "probability": 0.8748 + }, + { + "start": 16469.54, + "end": 16474.16, + "probability": 0.9969 + }, + { + "start": 16474.16, + "end": 16480.66, + "probability": 0.9535 + }, + { + "start": 16481.0, + "end": 16481.62, + "probability": 0.2473 + }, + { + "start": 16481.64, + "end": 16481.92, + "probability": 0.2299 + }, + { + "start": 16482.0, + "end": 16482.36, + "probability": 0.8301 + }, + { + "start": 16482.48, + "end": 16487.4, + "probability": 0.9915 + }, + { + "start": 16488.06, + "end": 16492.52, + "probability": 0.9907 + }, + { + "start": 16493.41, + "end": 16496.54, + "probability": 0.9777 + }, + { + "start": 16497.62, + "end": 16500.12, + "probability": 0.9982 + }, + { + "start": 16500.9, + "end": 16503.96, + "probability": 0.8719 + }, + { + "start": 16504.96, + "end": 16509.52, + "probability": 0.8818 + }, + { + "start": 16509.9, + "end": 16512.48, + "probability": 0.9952 + }, + { + "start": 16513.88, + "end": 16517.2, + "probability": 0.9908 + }, + { + "start": 16517.2, + "end": 16522.86, + "probability": 0.9894 + }, + { + "start": 16523.94, + "end": 16526.38, + "probability": 0.9609 + }, + { + "start": 16526.64, + "end": 16530.16, + "probability": 0.7221 + }, + { + "start": 16530.36, + "end": 16534.84, + "probability": 0.9941 + }, + { + "start": 16535.02, + "end": 16539.16, + "probability": 0.9846 + }, + { + "start": 16540.53, + "end": 16543.3, + "probability": 0.9978 + }, + { + "start": 16543.32, + "end": 16546.58, + "probability": 0.9502 + }, + { + "start": 16547.22, + "end": 16550.6, + "probability": 0.9974 + }, + { + "start": 16551.52, + "end": 16555.12, + "probability": 0.8395 + }, + { + "start": 16555.76, + "end": 16557.0, + "probability": 0.7788 + }, + { + "start": 16557.04, + "end": 16558.12, + "probability": 0.7411 + }, + { + "start": 16558.16, + "end": 16559.86, + "probability": 0.9756 + }, + { + "start": 16562.6, + "end": 16564.14, + "probability": 0.9338 + }, + { + "start": 16565.48, + "end": 16569.76, + "probability": 0.9937 + }, + { + "start": 16570.8, + "end": 16573.24, + "probability": 0.8208 + }, + { + "start": 16573.32, + "end": 16574.32, + "probability": 0.9347 + }, + { + "start": 16574.42, + "end": 16575.76, + "probability": 0.9319 + }, + { + "start": 16576.3, + "end": 16580.72, + "probability": 0.8414 + }, + { + "start": 16581.8, + "end": 16582.28, + "probability": 0.5101 + }, + { + "start": 16582.48, + "end": 16585.24, + "probability": 0.9583 + }, + { + "start": 16585.34, + "end": 16589.6, + "probability": 0.941 + }, + { + "start": 16590.72, + "end": 16592.3, + "probability": 0.9884 + }, + { + "start": 16592.44, + "end": 16596.75, + "probability": 0.8127 + }, + { + "start": 16597.0, + "end": 16598.04, + "probability": 0.5613 + }, + { + "start": 16599.01, + "end": 16600.48, + "probability": 0.1739 + }, + { + "start": 16600.72, + "end": 16602.38, + "probability": 0.559 + }, + { + "start": 16602.38, + "end": 16602.88, + "probability": 0.2596 + }, + { + "start": 16603.08, + "end": 16603.4, + "probability": 0.0354 + }, + { + "start": 16603.88, + "end": 16604.22, + "probability": 0.36 + }, + { + "start": 16604.96, + "end": 16606.58, + "probability": 0.4879 + }, + { + "start": 16606.58, + "end": 16606.94, + "probability": 0.1329 + }, + { + "start": 16607.04, + "end": 16607.6, + "probability": 0.3 + }, + { + "start": 16607.6, + "end": 16608.1, + "probability": 0.7664 + }, + { + "start": 16608.24, + "end": 16609.2, + "probability": 0.6062 + }, + { + "start": 16609.2, + "end": 16609.2, + "probability": 0.005 + }, + { + "start": 16609.3, + "end": 16610.24, + "probability": 0.0974 + }, + { + "start": 16610.24, + "end": 16611.6, + "probability": 0.8479 + }, + { + "start": 16611.76, + "end": 16612.64, + "probability": 0.717 + }, + { + "start": 16612.74, + "end": 16614.22, + "probability": 0.0941 + }, + { + "start": 16614.46, + "end": 16616.66, + "probability": 0.9515 + }, + { + "start": 16616.76, + "end": 16619.08, + "probability": 0.9878 + }, + { + "start": 16619.08, + "end": 16619.1, + "probability": 0.4583 + }, + { + "start": 16619.1, + "end": 16619.46, + "probability": 0.6898 + }, + { + "start": 16619.46, + "end": 16620.2, + "probability": 0.578 + }, + { + "start": 16620.32, + "end": 16622.38, + "probability": 0.978 + }, + { + "start": 16622.92, + "end": 16626.15, + "probability": 0.941 + }, + { + "start": 16626.32, + "end": 16628.5, + "probability": 0.7379 + }, + { + "start": 16628.78, + "end": 16633.72, + "probability": 0.8061 + }, + { + "start": 16634.24, + "end": 16635.62, + "probability": 0.5391 + }, + { + "start": 16636.42, + "end": 16638.7, + "probability": 0.996 + }, + { + "start": 16639.56, + "end": 16640.89, + "probability": 0.7197 + }, + { + "start": 16641.04, + "end": 16641.74, + "probability": 0.7745 + }, + { + "start": 16641.82, + "end": 16642.96, + "probability": 0.7296 + }, + { + "start": 16643.06, + "end": 16644.32, + "probability": 0.9408 + }, + { + "start": 16645.26, + "end": 16646.72, + "probability": 0.974 + }, + { + "start": 16647.78, + "end": 16649.22, + "probability": 0.9372 + }, + { + "start": 16649.76, + "end": 16654.92, + "probability": 0.978 + }, + { + "start": 16655.0, + "end": 16655.64, + "probability": 0.8395 + }, + { + "start": 16655.68, + "end": 16657.06, + "probability": 0.9876 + }, + { + "start": 16657.54, + "end": 16663.6, + "probability": 0.9984 + }, + { + "start": 16663.6, + "end": 16669.68, + "probability": 0.9996 + }, + { + "start": 16670.42, + "end": 16671.06, + "probability": 0.5954 + }, + { + "start": 16671.74, + "end": 16674.12, + "probability": 0.959 + }, + { + "start": 16674.88, + "end": 16678.04, + "probability": 0.9936 + }, + { + "start": 16678.54, + "end": 16683.32, + "probability": 0.9857 + }, + { + "start": 16683.94, + "end": 16687.86, + "probability": 0.9939 + }, + { + "start": 16688.52, + "end": 16692.08, + "probability": 0.9967 + }, + { + "start": 16692.86, + "end": 16697.02, + "probability": 0.9897 + }, + { + "start": 16697.54, + "end": 16703.7, + "probability": 0.9968 + }, + { + "start": 16703.7, + "end": 16711.16, + "probability": 0.993 + }, + { + "start": 16711.26, + "end": 16712.0, + "probability": 0.7221 + }, + { + "start": 16712.04, + "end": 16715.38, + "probability": 0.9916 + }, + { + "start": 16715.48, + "end": 16718.38, + "probability": 0.3282 + }, + { + "start": 16719.08, + "end": 16720.62, + "probability": 0.5238 + }, + { + "start": 16721.2, + "end": 16722.14, + "probability": 0.7104 + }, + { + "start": 16722.22, + "end": 16724.22, + "probability": 0.8899 + }, + { + "start": 16725.82, + "end": 16727.36, + "probability": 0.9478 + }, + { + "start": 16727.46, + "end": 16730.28, + "probability": 0.9364 + }, + { + "start": 16730.92, + "end": 16734.68, + "probability": 0.9932 + }, + { + "start": 16734.76, + "end": 16736.62, + "probability": 0.2319 + }, + { + "start": 16736.76, + "end": 16737.86, + "probability": 0.2933 + }, + { + "start": 16739.5, + "end": 16740.72, + "probability": 0.9326 + }, + { + "start": 16741.72, + "end": 16742.18, + "probability": 0.5346 + }, + { + "start": 16742.3, + "end": 16742.8, + "probability": 0.6853 + }, + { + "start": 16743.5, + "end": 16744.04, + "probability": 0.6584 + }, + { + "start": 16744.78, + "end": 16745.86, + "probability": 0.7545 + }, + { + "start": 16764.94, + "end": 16766.78, + "probability": 0.7657 + }, + { + "start": 16766.78, + "end": 16769.49, + "probability": 0.1345 + }, + { + "start": 16769.92, + "end": 16771.54, + "probability": 0.0693 + }, + { + "start": 16772.04, + "end": 16772.78, + "probability": 0.0289 + }, + { + "start": 16773.78, + "end": 16774.36, + "probability": 0.0005 + }, + { + "start": 16791.48, + "end": 16792.91, + "probability": 0.6553 + }, + { + "start": 16793.12, + "end": 16794.01, + "probability": 0.0856 + }, + { + "start": 16794.92, + "end": 16795.16, + "probability": 0.2118 + }, + { + "start": 16795.64, + "end": 16797.7, + "probability": 0.4236 + }, + { + "start": 16797.7, + "end": 16801.07, + "probability": 0.0928 + }, + { + "start": 16801.48, + "end": 16804.14, + "probability": 0.1263 + }, + { + "start": 16804.8, + "end": 16805.96, + "probability": 0.0131 + }, + { + "start": 16806.02, + "end": 16806.64, + "probability": 0.4679 + }, + { + "start": 16807.14, + "end": 16807.5, + "probability": 0.6398 + }, + { + "start": 16807.52, + "end": 16807.82, + "probability": 0.5752 + }, + { + "start": 16807.92, + "end": 16809.52, + "probability": 0.5931 + }, + { + "start": 16811.2, + "end": 16812.42, + "probability": 0.021 + }, + { + "start": 16824.86, + "end": 16830.42, + "probability": 0.1268 + }, + { + "start": 16830.42, + "end": 16835.32, + "probability": 0.0168 + }, + { + "start": 16835.32, + "end": 16835.62, + "probability": 0.0206 + }, + { + "start": 16838.0, + "end": 16839.36, + "probability": 0.0498 + }, + { + "start": 16844.28, + "end": 16851.0, + "probability": 0.3056 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.0, + "end": 16851.0, + "probability": 0.0 + }, + { + "start": 16851.24, + "end": 16852.14, + "probability": 0.19 + }, + { + "start": 16855.8, + "end": 16856.54, + "probability": 0.1114 + }, + { + "start": 16856.64, + "end": 16858.22, + "probability": 0.3696 + }, + { + "start": 16858.34, + "end": 16860.12, + "probability": 0.0749 + }, + { + "start": 16861.24, + "end": 16862.94, + "probability": 0.0318 + }, + { + "start": 16863.02, + "end": 16863.98, + "probability": 0.0349 + }, + { + "start": 16863.98, + "end": 16863.98, + "probability": 0.0173 + }, + { + "start": 16863.98, + "end": 16863.98, + "probability": 0.0653 + }, + { + "start": 16863.98, + "end": 16863.98, + "probability": 0.0372 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.0, + "end": 16990.0, + "probability": 0.0 + }, + { + "start": 16990.2, + "end": 16990.32, + "probability": 0.0322 + }, + { + "start": 16990.32, + "end": 16990.32, + "probability": 0.1839 + }, + { + "start": 16990.32, + "end": 16990.32, + "probability": 0.0846 + }, + { + "start": 16990.32, + "end": 16990.38, + "probability": 0.0496 + }, + { + "start": 16990.38, + "end": 16992.28, + "probability": 0.2921 + }, + { + "start": 16993.02, + "end": 16994.0, + "probability": 0.8646 + }, + { + "start": 16994.6, + "end": 16996.94, + "probability": 0.949 + }, + { + "start": 16997.04, + "end": 16998.44, + "probability": 0.7655 + }, + { + "start": 16998.96, + "end": 17000.98, + "probability": 0.8788 + }, + { + "start": 17001.5, + "end": 17008.02, + "probability": 0.9776 + }, + { + "start": 17008.74, + "end": 17009.9, + "probability": 0.626 + }, + { + "start": 17009.96, + "end": 17011.36, + "probability": 0.7552 + }, + { + "start": 17018.34, + "end": 17018.58, + "probability": 0.0631 + }, + { + "start": 17019.04, + "end": 17021.28, + "probability": 0.7988 + }, + { + "start": 17021.38, + "end": 17021.7, + "probability": 0.7908 + }, + { + "start": 17021.84, + "end": 17024.7, + "probability": 0.9863 + }, + { + "start": 17027.4, + "end": 17029.22, + "probability": 0.6476 + }, + { + "start": 17029.82, + "end": 17030.3, + "probability": 0.591 + }, + { + "start": 17030.48, + "end": 17031.88, + "probability": 0.83 + }, + { + "start": 17031.92, + "end": 17035.24, + "probability": 0.9347 + }, + { + "start": 17035.56, + "end": 17038.16, + "probability": 0.9858 + }, + { + "start": 17038.2, + "end": 17038.88, + "probability": 0.9546 + }, + { + "start": 17038.98, + "end": 17039.3, + "probability": 0.6133 + }, + { + "start": 17040.1, + "end": 17043.1, + "probability": 0.8543 + }, + { + "start": 17043.66, + "end": 17046.04, + "probability": 0.9224 + }, + { + "start": 17046.16, + "end": 17047.48, + "probability": 0.9621 + }, + { + "start": 17047.58, + "end": 17048.0, + "probability": 0.6747 + }, + { + "start": 17048.02, + "end": 17050.62, + "probability": 0.8569 + }, + { + "start": 17051.06, + "end": 17053.64, + "probability": 0.9855 + }, + { + "start": 17053.76, + "end": 17054.28, + "probability": 0.7383 + }, + { + "start": 17054.38, + "end": 17058.44, + "probability": 0.9773 + }, + { + "start": 17058.56, + "end": 17059.0, + "probability": 0.9495 + }, + { + "start": 17059.08, + "end": 17059.64, + "probability": 0.7693 + }, + { + "start": 17059.94, + "end": 17061.14, + "probability": 0.7374 + }, + { + "start": 17061.62, + "end": 17062.88, + "probability": 0.8451 + }, + { + "start": 17062.98, + "end": 17065.4, + "probability": 0.9335 + }, + { + "start": 17066.02, + "end": 17067.88, + "probability": 0.9233 + }, + { + "start": 17068.62, + "end": 17071.52, + "probability": 0.987 + }, + { + "start": 17072.04, + "end": 17074.05, + "probability": 0.8738 + }, + { + "start": 17075.0, + "end": 17077.26, + "probability": 0.9701 + }, + { + "start": 17078.22, + "end": 17080.18, + "probability": 0.9814 + }, + { + "start": 17081.88, + "end": 17083.2, + "probability": 0.7285 + }, + { + "start": 17084.36, + "end": 17087.64, + "probability": 0.6085 + }, + { + "start": 17087.78, + "end": 17088.76, + "probability": 0.7846 + }, + { + "start": 17089.1, + "end": 17092.08, + "probability": 0.9808 + }, + { + "start": 17092.74, + "end": 17095.32, + "probability": 0.9902 + }, + { + "start": 17095.42, + "end": 17096.02, + "probability": 0.841 + }, + { + "start": 17096.48, + "end": 17102.94, + "probability": 0.9202 + }, + { + "start": 17103.36, + "end": 17103.54, + "probability": 0.6534 + }, + { + "start": 17103.78, + "end": 17105.18, + "probability": 0.7318 + }, + { + "start": 17105.32, + "end": 17107.36, + "probability": 0.7085 + }, + { + "start": 17107.6, + "end": 17109.5, + "probability": 0.9438 + }, + { + "start": 17109.68, + "end": 17111.04, + "probability": 0.7202 + }, + { + "start": 17113.26, + "end": 17115.86, + "probability": 0.8792 + }, + { + "start": 17115.94, + "end": 17117.08, + "probability": 0.882 + }, + { + "start": 17117.58, + "end": 17119.18, + "probability": 0.5755 + }, + { + "start": 17119.38, + "end": 17119.42, + "probability": 0.5803 + }, + { + "start": 17119.42, + "end": 17120.7, + "probability": 0.5951 + }, + { + "start": 17120.8, + "end": 17125.58, + "probability": 0.9201 + }, + { + "start": 17125.58, + "end": 17132.36, + "probability": 0.991 + }, + { + "start": 17132.38, + "end": 17137.24, + "probability": 0.9403 + }, + { + "start": 17137.78, + "end": 17139.82, + "probability": 0.8677 + }, + { + "start": 17140.42, + "end": 17144.48, + "probability": 0.9661 + }, + { + "start": 17145.1, + "end": 17147.38, + "probability": 0.9557 + }, + { + "start": 17147.92, + "end": 17148.12, + "probability": 0.7597 + }, + { + "start": 17148.7, + "end": 17149.44, + "probability": 0.9337 + }, + { + "start": 17150.7, + "end": 17156.18, + "probability": 0.8816 + }, + { + "start": 17156.34, + "end": 17158.14, + "probability": 0.3824 + }, + { + "start": 17158.22, + "end": 17161.14, + "probability": 0.8551 + }, + { + "start": 17161.82, + "end": 17165.12, + "probability": 0.7945 + }, + { + "start": 17165.12, + "end": 17169.2, + "probability": 0.9808 + }, + { + "start": 17169.84, + "end": 17172.52, + "probability": 0.9934 + }, + { + "start": 17173.68, + "end": 17174.82, + "probability": 0.9097 + }, + { + "start": 17174.92, + "end": 17175.56, + "probability": 0.7105 + }, + { + "start": 17175.8, + "end": 17178.38, + "probability": 0.9083 + }, + { + "start": 17179.38, + "end": 17181.42, + "probability": 0.1317 + }, + { + "start": 17181.92, + "end": 17184.8, + "probability": 0.73 + }, + { + "start": 17184.86, + "end": 17186.8, + "probability": 0.437 + }, + { + "start": 17186.9, + "end": 17188.72, + "probability": 0.9385 + }, + { + "start": 17189.52, + "end": 17190.54, + "probability": 0.7684 + }, + { + "start": 17190.66, + "end": 17194.68, + "probability": 0.9116 + }, + { + "start": 17194.68, + "end": 17199.1, + "probability": 0.9808 + }, + { + "start": 17199.1, + "end": 17205.34, + "probability": 0.8619 + }, + { + "start": 17205.98, + "end": 17208.42, + "probability": 0.8232 + }, + { + "start": 17208.96, + "end": 17213.46, + "probability": 0.9921 + }, + { + "start": 17213.46, + "end": 17218.08, + "probability": 0.9976 + }, + { + "start": 17218.86, + "end": 17224.54, + "probability": 0.9907 + }, + { + "start": 17224.96, + "end": 17228.58, + "probability": 0.9546 + }, + { + "start": 17229.1, + "end": 17229.64, + "probability": 0.8759 + }, + { + "start": 17230.18, + "end": 17233.24, + "probability": 0.9407 + }, + { + "start": 17233.7, + "end": 17235.88, + "probability": 0.7523 + }, + { + "start": 17236.1, + "end": 17241.86, + "probability": 0.9863 + }, + { + "start": 17242.76, + "end": 17243.8, + "probability": 0.6451 + }, + { + "start": 17244.14, + "end": 17245.44, + "probability": 0.7364 + }, + { + "start": 17246.12, + "end": 17247.22, + "probability": 0.8551 + }, + { + "start": 17251.08, + "end": 17251.8, + "probability": 0.4894 + }, + { + "start": 17252.12, + "end": 17254.56, + "probability": 0.8658 + }, + { + "start": 17254.62, + "end": 17259.1, + "probability": 0.932 + }, + { + "start": 17259.28, + "end": 17260.6, + "probability": 0.9354 + }, + { + "start": 17261.44, + "end": 17265.98, + "probability": 0.8506 + }, + { + "start": 17266.04, + "end": 17269.32, + "probability": 0.9861 + }, + { + "start": 17269.32, + "end": 17274.8, + "probability": 0.9167 + }, + { + "start": 17274.9, + "end": 17275.4, + "probability": 0.9529 + }, + { + "start": 17275.54, + "end": 17275.84, + "probability": 0.7642 + }, + { + "start": 17275.9, + "end": 17276.18, + "probability": 0.862 + }, + { + "start": 17276.24, + "end": 17280.58, + "probability": 0.9778 + }, + { + "start": 17280.8, + "end": 17284.42, + "probability": 0.9912 + }, + { + "start": 17284.74, + "end": 17287.08, + "probability": 0.6565 + }, + { + "start": 17287.26, + "end": 17291.88, + "probability": 0.9132 + }, + { + "start": 17293.42, + "end": 17297.62, + "probability": 0.9903 + }, + { + "start": 17297.68, + "end": 17298.34, + "probability": 0.8517 + }, + { + "start": 17298.94, + "end": 17300.92, + "probability": 0.9951 + }, + { + "start": 17300.92, + "end": 17304.2, + "probability": 0.9619 + }, + { + "start": 17304.5, + "end": 17308.63, + "probability": 0.9969 + }, + { + "start": 17308.94, + "end": 17313.28, + "probability": 0.9948 + }, + { + "start": 17314.18, + "end": 17314.76, + "probability": 0.803 + }, + { + "start": 17314.8, + "end": 17318.88, + "probability": 0.696 + }, + { + "start": 17319.28, + "end": 17320.48, + "probability": 0.9814 + }, + { + "start": 17320.62, + "end": 17320.9, + "probability": 0.861 + }, + { + "start": 17320.96, + "end": 17323.08, + "probability": 0.979 + }, + { + "start": 17323.5, + "end": 17328.48, + "probability": 0.9707 + }, + { + "start": 17328.9, + "end": 17329.7, + "probability": 0.9274 + }, + { + "start": 17329.78, + "end": 17330.88, + "probability": 0.9671 + }, + { + "start": 17331.08, + "end": 17333.22, + "probability": 0.974 + }, + { + "start": 17333.76, + "end": 17335.8, + "probability": 0.8164 + }, + { + "start": 17335.88, + "end": 17338.44, + "probability": 0.9415 + }, + { + "start": 17338.56, + "end": 17339.08, + "probability": 0.4463 + }, + { + "start": 17339.14, + "end": 17340.22, + "probability": 0.811 + }, + { + "start": 17340.26, + "end": 17340.5, + "probability": 0.8624 + }, + { + "start": 17340.62, + "end": 17342.72, + "probability": 0.9887 + }, + { + "start": 17342.76, + "end": 17345.54, + "probability": 0.8143 + }, + { + "start": 17345.56, + "end": 17346.0, + "probability": 0.4002 + }, + { + "start": 17346.06, + "end": 17346.34, + "probability": 0.6077 + }, + { + "start": 17347.16, + "end": 17349.68, + "probability": 0.9472 + }, + { + "start": 17350.08, + "end": 17351.27, + "probability": 0.5636 + }, + { + "start": 17351.76, + "end": 17353.22, + "probability": 0.7626 + }, + { + "start": 17353.74, + "end": 17355.3, + "probability": 0.9565 + }, + { + "start": 17355.7, + "end": 17357.32, + "probability": 0.8437 + }, + { + "start": 17357.34, + "end": 17357.88, + "probability": 0.5917 + }, + { + "start": 17358.76, + "end": 17358.96, + "probability": 0.6487 + }, + { + "start": 17359.48, + "end": 17359.88, + "probability": 0.706 + }, + { + "start": 17359.96, + "end": 17360.8, + "probability": 0.9399 + }, + { + "start": 17361.18, + "end": 17362.58, + "probability": 0.9289 + }, + { + "start": 17363.02, + "end": 17365.94, + "probability": 0.9946 + }, + { + "start": 17366.36, + "end": 17368.06, + "probability": 0.9365 + }, + { + "start": 17368.16, + "end": 17368.68, + "probability": 0.8376 + }, + { + "start": 17369.02, + "end": 17369.42, + "probability": 0.7688 + }, + { + "start": 17369.52, + "end": 17370.02, + "probability": 0.4892 + }, + { + "start": 17370.06, + "end": 17371.18, + "probability": 0.5686 + }, + { + "start": 17371.56, + "end": 17371.94, + "probability": 0.6766 + }, + { + "start": 17372.02, + "end": 17373.56, + "probability": 0.9481 + }, + { + "start": 17373.96, + "end": 17376.72, + "probability": 0.9118 + }, + { + "start": 17376.72, + "end": 17382.44, + "probability": 0.8892 + }, + { + "start": 17382.78, + "end": 17388.08, + "probability": 0.9902 + }, + { + "start": 17388.2, + "end": 17389.04, + "probability": 0.8737 + }, + { + "start": 17389.1, + "end": 17389.94, + "probability": 0.6767 + }, + { + "start": 17390.02, + "end": 17391.34, + "probability": 0.7985 + }, + { + "start": 17391.34, + "end": 17393.22, + "probability": 0.8446 + }, + { + "start": 17393.32, + "end": 17394.44, + "probability": 0.967 + }, + { + "start": 17394.66, + "end": 17396.8, + "probability": 0.9838 + }, + { + "start": 17397.1, + "end": 17397.36, + "probability": 0.8447 + }, + { + "start": 17397.78, + "end": 17398.24, + "probability": 0.527 + }, + { + "start": 17398.54, + "end": 17402.44, + "probability": 0.5629 + }, + { + "start": 17402.44, + "end": 17405.12, + "probability": 0.9168 + }, + { + "start": 17406.54, + "end": 17409.16, + "probability": 0.308 + }, + { + "start": 17410.22, + "end": 17411.52, + "probability": 0.6423 + }, + { + "start": 17413.3, + "end": 17415.12, + "probability": 0.8926 + }, + { + "start": 17415.64, + "end": 17417.06, + "probability": 0.9688 + }, + { + "start": 17422.82, + "end": 17425.4, + "probability": 0.5315 + }, + { + "start": 17425.66, + "end": 17428.0, + "probability": 0.1274 + }, + { + "start": 17428.3, + "end": 17429.18, + "probability": 0.3414 + }, + { + "start": 17429.18, + "end": 17434.01, + "probability": 0.5126 + }, + { + "start": 17434.44, + "end": 17434.9, + "probability": 0.266 + }, + { + "start": 17435.14, + "end": 17435.62, + "probability": 0.9509 + }, + { + "start": 17436.18, + "end": 17436.96, + "probability": 0.9426 + }, + { + "start": 17437.78, + "end": 17438.5, + "probability": 0.8832 + }, + { + "start": 17438.6, + "end": 17441.06, + "probability": 0.7193 + }, + { + "start": 17441.14, + "end": 17442.94, + "probability": 0.9564 + }, + { + "start": 17443.72, + "end": 17446.59, + "probability": 0.9601 + }, + { + "start": 17446.76, + "end": 17452.72, + "probability": 0.9758 + }, + { + "start": 17453.16, + "end": 17453.32, + "probability": 0.4492 + }, + { + "start": 17453.56, + "end": 17453.82, + "probability": 0.8718 + }, + { + "start": 17453.9, + "end": 17457.34, + "probability": 0.8465 + }, + { + "start": 17457.34, + "end": 17465.18, + "probability": 0.8759 + }, + { + "start": 17465.96, + "end": 17468.98, + "probability": 0.6911 + }, + { + "start": 17469.46, + "end": 17469.72, + "probability": 0.8473 + }, + { + "start": 17470.8, + "end": 17473.0, + "probability": 0.7461 + }, + { + "start": 17473.88, + "end": 17475.0, + "probability": 0.8739 + }, + { + "start": 17475.78, + "end": 17477.26, + "probability": 0.6112 + }, + { + "start": 17477.32, + "end": 17478.52, + "probability": 0.4925 + }, + { + "start": 17478.98, + "end": 17482.46, + "probability": 0.9368 + }, + { + "start": 17482.92, + "end": 17484.44, + "probability": 0.8714 + }, + { + "start": 17486.7, + "end": 17488.94, + "probability": 0.9288 + }, + { + "start": 17489.64, + "end": 17494.4, + "probability": 0.9961 + }, + { + "start": 17495.18, + "end": 17497.96, + "probability": 0.995 + }, + { + "start": 17497.96, + "end": 17500.94, + "probability": 0.9975 + }, + { + "start": 17501.22, + "end": 17504.22, + "probability": 0.8916 + }, + { + "start": 17504.86, + "end": 17507.88, + "probability": 0.9554 + }, + { + "start": 17507.88, + "end": 17511.36, + "probability": 0.9526 + }, + { + "start": 17511.56, + "end": 17514.9, + "probability": 0.8728 + }, + { + "start": 17515.68, + "end": 17516.38, + "probability": 0.4944 + }, + { + "start": 17516.92, + "end": 17519.68, + "probability": 0.9634 + }, + { + "start": 17520.28, + "end": 17524.1, + "probability": 0.8637 + }, + { + "start": 17524.84, + "end": 17525.98, + "probability": 0.6666 + }, + { + "start": 17526.08, + "end": 17527.88, + "probability": 0.8668 + }, + { + "start": 17528.36, + "end": 17532.18, + "probability": 0.8467 + }, + { + "start": 17532.18, + "end": 17536.02, + "probability": 0.9643 + }, + { + "start": 17536.28, + "end": 17538.4, + "probability": 0.7615 + }, + { + "start": 17538.84, + "end": 17539.44, + "probability": 0.9156 + }, + { + "start": 17539.82, + "end": 17540.82, + "probability": 0.0253 + }, + { + "start": 17540.82, + "end": 17542.44, + "probability": 0.911 + }, + { + "start": 17543.26, + "end": 17546.9, + "probability": 0.8832 + }, + { + "start": 17547.44, + "end": 17547.88, + "probability": 0.5526 + }, + { + "start": 17547.96, + "end": 17549.06, + "probability": 0.8651 + }, + { + "start": 17549.64, + "end": 17552.42, + "probability": 0.8415 + }, + { + "start": 17552.96, + "end": 17553.84, + "probability": 0.6277 + }, + { + "start": 17553.88, + "end": 17555.3, + "probability": 0.7361 + }, + { + "start": 17556.56, + "end": 17558.01, + "probability": 0.5694 + }, + { + "start": 17558.9, + "end": 17560.22, + "probability": 0.5586 + }, + { + "start": 17560.9, + "end": 17561.48, + "probability": 0.8791 + }, + { + "start": 17561.58, + "end": 17564.14, + "probability": 0.8978 + }, + { + "start": 17564.14, + "end": 17566.38, + "probability": 0.9036 + }, + { + "start": 17567.02, + "end": 17569.48, + "probability": 0.7404 + }, + { + "start": 17569.54, + "end": 17571.78, + "probability": 0.9907 + }, + { + "start": 17571.78, + "end": 17575.68, + "probability": 0.6781 + }, + { + "start": 17575.68, + "end": 17577.22, + "probability": 0.5605 + }, + { + "start": 17577.3, + "end": 17582.64, + "probability": 0.9697 + }, + { + "start": 17583.1, + "end": 17583.96, + "probability": 0.7563 + }, + { + "start": 17584.08, + "end": 17584.7, + "probability": 0.9102 + }, + { + "start": 17585.14, + "end": 17587.26, + "probability": 0.6637 + }, + { + "start": 17587.62, + "end": 17589.04, + "probability": 0.671 + }, + { + "start": 17589.62, + "end": 17592.28, + "probability": 0.9932 + }, + { + "start": 17592.28, + "end": 17593.56, + "probability": 0.7945 + }, + { + "start": 17593.62, + "end": 17594.36, + "probability": 0.7995 + }, + { + "start": 17596.34, + "end": 17600.54, + "probability": 0.7586 + }, + { + "start": 17601.7, + "end": 17603.94, + "probability": 0.7496 + }, + { + "start": 17604.04, + "end": 17606.34, + "probability": 0.8001 + }, + { + "start": 17606.34, + "end": 17609.4, + "probability": 0.8238 + }, + { + "start": 17609.54, + "end": 17611.02, + "probability": 0.9785 + }, + { + "start": 17612.2, + "end": 17613.06, + "probability": 0.6 + }, + { + "start": 17614.0, + "end": 17614.68, + "probability": 0.7724 + }, + { + "start": 17615.7, + "end": 17616.76, + "probability": 0.7499 + }, + { + "start": 17620.2, + "end": 17622.46, + "probability": 0.8582 + }, + { + "start": 17622.52, + "end": 17623.72, + "probability": 0.9715 + }, + { + "start": 17625.4, + "end": 17628.3, + "probability": 0.6729 + }, + { + "start": 17628.32, + "end": 17630.56, + "probability": 0.5917 + }, + { + "start": 17630.56, + "end": 17633.52, + "probability": 0.7394 + }, + { + "start": 17633.66, + "end": 17635.34, + "probability": 0.682 + }, + { + "start": 17635.54, + "end": 17637.16, + "probability": 0.9041 + }, + { + "start": 17637.16, + "end": 17638.84, + "probability": 0.8705 + }, + { + "start": 17638.92, + "end": 17640.42, + "probability": 0.9684 + }, + { + "start": 17643.16, + "end": 17646.02, + "probability": 0.8199 + }, + { + "start": 17647.32, + "end": 17652.38, + "probability": 0.9279 + }, + { + "start": 17652.6, + "end": 17655.14, + "probability": 0.9915 + }, + { + "start": 17655.82, + "end": 17656.32, + "probability": 0.8701 + }, + { + "start": 17656.4, + "end": 17658.7, + "probability": 0.8851 + }, + { + "start": 17658.86, + "end": 17659.92, + "probability": 0.85 + }, + { + "start": 17660.38, + "end": 17662.94, + "probability": 0.958 + }, + { + "start": 17662.96, + "end": 17664.58, + "probability": 0.7153 + }, + { + "start": 17665.66, + "end": 17670.66, + "probability": 0.9935 + }, + { + "start": 17673.98, + "end": 17673.98, + "probability": 0.0457 + }, + { + "start": 17673.98, + "end": 17673.98, + "probability": 0.0189 + }, + { + "start": 17673.98, + "end": 17675.08, + "probability": 0.4901 + }, + { + "start": 17675.28, + "end": 17675.28, + "probability": 0.0819 + }, + { + "start": 17675.28, + "end": 17676.3, + "probability": 0.4689 + }, + { + "start": 17676.48, + "end": 17677.92, + "probability": 0.6519 + }, + { + "start": 17678.32, + "end": 17681.68, + "probability": 0.9929 + }, + { + "start": 17681.68, + "end": 17684.3, + "probability": 0.96 + }, + { + "start": 17684.54, + "end": 17686.22, + "probability": 0.5538 + }, + { + "start": 17686.38, + "end": 17688.96, + "probability": 0.2014 + }, + { + "start": 17689.12, + "end": 17693.18, + "probability": 0.8893 + }, + { + "start": 17693.34, + "end": 17698.34, + "probability": 0.8195 + }, + { + "start": 17698.6, + "end": 17703.22, + "probability": 0.9933 + }, + { + "start": 17703.22, + "end": 17706.44, + "probability": 0.9534 + }, + { + "start": 17706.5, + "end": 17706.6, + "probability": 0.0479 + }, + { + "start": 17706.62, + "end": 17708.66, + "probability": 0.6598 + }, + { + "start": 17708.78, + "end": 17710.96, + "probability": 0.9842 + }, + { + "start": 17712.99, + "end": 17715.53, + "probability": 0.6005 + }, + { + "start": 17716.86, + "end": 17717.6, + "probability": 0.6944 + }, + { + "start": 17718.24, + "end": 17718.88, + "probability": 0.8008 + }, + { + "start": 17718.94, + "end": 17719.26, + "probability": 0.8525 + }, + { + "start": 17719.32, + "end": 17720.96, + "probability": 0.9637 + }, + { + "start": 17721.04, + "end": 17724.18, + "probability": 0.8748 + }, + { + "start": 17724.18, + "end": 17728.96, + "probability": 0.9618 + }, + { + "start": 17729.16, + "end": 17730.76, + "probability": 0.7848 + }, + { + "start": 17730.88, + "end": 17733.46, + "probability": 0.936 + }, + { + "start": 17733.46, + "end": 17736.08, + "probability": 0.6853 + }, + { + "start": 17736.88, + "end": 17739.14, + "probability": 0.9415 + }, + { + "start": 17739.72, + "end": 17745.56, + "probability": 0.6873 + }, + { + "start": 17746.08, + "end": 17748.42, + "probability": 0.5911 + }, + { + "start": 17748.42, + "end": 17751.34, + "probability": 0.8635 + }, + { + "start": 17751.5, + "end": 17751.96, + "probability": 0.1116 + }, + { + "start": 17751.96, + "end": 17754.48, + "probability": 0.9832 + }, + { + "start": 17754.96, + "end": 17757.54, + "probability": 0.9709 + }, + { + "start": 17757.64, + "end": 17760.28, + "probability": 0.9586 + }, + { + "start": 17760.28, + "end": 17764.16, + "probability": 0.9881 + }, + { + "start": 17765.42, + "end": 17768.24, + "probability": 0.9926 + }, + { + "start": 17768.26, + "end": 17769.72, + "probability": 0.9981 + }, + { + "start": 17770.28, + "end": 17773.8, + "probability": 0.9728 + }, + { + "start": 17774.54, + "end": 17780.3, + "probability": 0.9471 + }, + { + "start": 17780.8, + "end": 17782.3, + "probability": 0.8924 + }, + { + "start": 17782.44, + "end": 17784.62, + "probability": 0.9871 + }, + { + "start": 17785.84, + "end": 17788.52, + "probability": 0.9813 + }, + { + "start": 17788.64, + "end": 17789.26, + "probability": 0.6918 + }, + { + "start": 17789.88, + "end": 17789.88, + "probability": 0.0035 + }, + { + "start": 17789.88, + "end": 17793.9, + "probability": 0.5819 + }, + { + "start": 17793.9, + "end": 17798.24, + "probability": 0.7142 + }, + { + "start": 17798.24, + "end": 17799.22, + "probability": 0.6553 + }, + { + "start": 17800.56, + "end": 17801.54, + "probability": 0.92 + }, + { + "start": 17801.58, + "end": 17802.54, + "probability": 0.7982 + }, + { + "start": 17802.62, + "end": 17805.14, + "probability": 0.9838 + }, + { + "start": 17805.18, + "end": 17807.58, + "probability": 0.9258 + }, + { + "start": 17807.72, + "end": 17807.72, + "probability": 0.0062 + }, + { + "start": 17807.72, + "end": 17811.56, + "probability": 0.9274 + }, + { + "start": 17812.1, + "end": 17815.76, + "probability": 0.9925 + }, + { + "start": 17816.32, + "end": 17816.42, + "probability": 0.0035 + }, + { + "start": 17816.62, + "end": 17819.32, + "probability": 0.8679 + }, + { + "start": 17819.32, + "end": 17820.59, + "probability": 0.9051 + }, + { + "start": 17821.6, + "end": 17823.07, + "probability": 0.2516 + }, + { + "start": 17825.76, + "end": 17825.76, + "probability": 0.1147 + }, + { + "start": 17825.76, + "end": 17827.58, + "probability": 0.5883 + }, + { + "start": 17827.68, + "end": 17830.78, + "probability": 0.9232 + }, + { + "start": 17831.04, + "end": 17831.04, + "probability": 0.0023 + }, + { + "start": 17831.04, + "end": 17833.64, + "probability": 0.9434 + }, + { + "start": 17835.1, + "end": 17835.1, + "probability": 0.0008 + }, + { + "start": 17835.1, + "end": 17837.02, + "probability": 0.904 + }, + { + "start": 17837.02, + "end": 17840.72, + "probability": 0.8584 + }, + { + "start": 17840.98, + "end": 17841.18, + "probability": 0.03 + }, + { + "start": 17841.2, + "end": 17844.26, + "probability": 0.9701 + }, + { + "start": 17844.72, + "end": 17846.9, + "probability": 0.9888 + }, + { + "start": 17846.9, + "end": 17849.64, + "probability": 0.8296 + }, + { + "start": 17849.76, + "end": 17851.88, + "probability": 0.9082 + }, + { + "start": 17852.26, + "end": 17852.26, + "probability": 0.0121 + }, + { + "start": 17852.26, + "end": 17855.42, + "probability": 0.9545 + }, + { + "start": 17855.42, + "end": 17856.74, + "probability": 0.0004 + }, + { + "start": 17856.74, + "end": 17858.74, + "probability": 0.6395 + }, + { + "start": 17858.74, + "end": 17861.22, + "probability": 0.9968 + }, + { + "start": 17861.36, + "end": 17863.11, + "probability": 0.7379 + }, + { + "start": 17864.9, + "end": 17865.78, + "probability": 0.7919 + }, + { + "start": 17866.04, + "end": 17867.18, + "probability": 0.9423 + }, + { + "start": 17867.26, + "end": 17872.6, + "probability": 0.9038 + }, + { + "start": 17872.72, + "end": 17874.24, + "probability": 0.7036 + }, + { + "start": 17874.96, + "end": 17878.18, + "probability": 0.9696 + }, + { + "start": 17878.85, + "end": 17879.49, + "probability": 0.2872 + }, + { + "start": 17881.66, + "end": 17885.42, + "probability": 0.9224 + }, + { + "start": 17885.52, + "end": 17888.12, + "probability": 0.7878 + }, + { + "start": 17888.2, + "end": 17889.26, + "probability": 0.9304 + }, + { + "start": 17889.3, + "end": 17894.44, + "probability": 0.9279 + }, + { + "start": 17894.62, + "end": 17896.6, + "probability": 0.9858 + }, + { + "start": 17896.82, + "end": 17899.0, + "probability": 0.9964 + }, + { + "start": 17899.52, + "end": 17900.94, + "probability": 0.8184 + }, + { + "start": 17902.44, + "end": 17903.04, + "probability": 0.7108 + }, + { + "start": 17903.58, + "end": 17904.54, + "probability": 0.6821 + }, + { + "start": 17905.32, + "end": 17906.24, + "probability": 0.6855 + }, + { + "start": 17906.72, + "end": 17908.56, + "probability": 0.9863 + }, + { + "start": 17910.69, + "end": 17912.3, + "probability": 0.9907 + }, + { + "start": 17912.7, + "end": 17913.74, + "probability": 0.5231 + }, + { + "start": 17913.76, + "end": 17916.94, + "probability": 0.7884 + }, + { + "start": 17917.02, + "end": 17918.72, + "probability": 0.7302 + }, + { + "start": 17918.78, + "end": 17919.84, + "probability": 0.9012 + }, + { + "start": 17919.96, + "end": 17921.06, + "probability": 0.8687 + }, + { + "start": 17921.46, + "end": 17922.56, + "probability": 0.9263 + }, + { + "start": 17922.96, + "end": 17925.94, + "probability": 0.9924 + }, + { + "start": 17925.94, + "end": 17930.26, + "probability": 0.8957 + }, + { + "start": 17930.84, + "end": 17932.86, + "probability": 0.6736 + }, + { + "start": 17933.14, + "end": 17935.28, + "probability": 0.9906 + }, + { + "start": 17935.28, + "end": 17937.8, + "probability": 0.9703 + }, + { + "start": 17938.2, + "end": 17940.28, + "probability": 0.978 + }, + { + "start": 17940.7, + "end": 17940.9, + "probability": 0.3902 + }, + { + "start": 17940.94, + "end": 17941.06, + "probability": 0.8621 + }, + { + "start": 17941.1, + "end": 17942.51, + "probability": 0.9347 + }, + { + "start": 17942.96, + "end": 17943.9, + "probability": 0.9778 + }, + { + "start": 17943.96, + "end": 17945.3, + "probability": 0.9933 + }, + { + "start": 17945.52, + "end": 17947.24, + "probability": 0.9213 + }, + { + "start": 17947.3, + "end": 17949.84, + "probability": 0.8588 + }, + { + "start": 17950.12, + "end": 17951.76, + "probability": 0.8346 + }, + { + "start": 17952.04, + "end": 17956.14, + "probability": 0.9801 + }, + { + "start": 17956.22, + "end": 17957.22, + "probability": 0.9766 + }, + { + "start": 17957.58, + "end": 17960.42, + "probability": 0.9863 + }, + { + "start": 17961.1, + "end": 17961.52, + "probability": 0.7051 + }, + { + "start": 17961.64, + "end": 17962.62, + "probability": 0.8264 + }, + { + "start": 17962.68, + "end": 17964.32, + "probability": 0.5012 + }, + { + "start": 17964.76, + "end": 17965.34, + "probability": 0.9302 + }, + { + "start": 17965.38, + "end": 17967.56, + "probability": 0.7552 + }, + { + "start": 17967.66, + "end": 17969.34, + "probability": 0.877 + }, + { + "start": 17969.54, + "end": 17970.2, + "probability": 0.9387 + }, + { + "start": 17970.26, + "end": 17971.4, + "probability": 0.9502 + }, + { + "start": 17971.76, + "end": 17972.9, + "probability": 0.4153 + }, + { + "start": 17973.16, + "end": 17975.11, + "probability": 0.8655 + }, + { + "start": 17975.6, + "end": 17976.14, + "probability": 0.7822 + }, + { + "start": 17976.16, + "end": 17978.64, + "probability": 0.5118 + }, + { + "start": 17979.74, + "end": 17981.68, + "probability": 0.4726 + }, + { + "start": 17982.32, + "end": 17986.18, + "probability": 0.9287 + }, + { + "start": 17986.62, + "end": 17988.42, + "probability": 0.9968 + }, + { + "start": 17988.42, + "end": 17990.78, + "probability": 0.9991 + }, + { + "start": 17991.02, + "end": 17992.2, + "probability": 0.9591 + }, + { + "start": 17992.28, + "end": 17993.52, + "probability": 0.8759 + }, + { + "start": 17993.56, + "end": 17996.36, + "probability": 0.7344 + }, + { + "start": 17996.6, + "end": 17998.72, + "probability": 0.9959 + }, + { + "start": 17999.34, + "end": 18001.94, + "probability": 0.9891 + }, + { + "start": 18001.94, + "end": 18005.66, + "probability": 0.9504 + }, + { + "start": 18006.08, + "end": 18008.38, + "probability": 0.949 + }, + { + "start": 18008.8, + "end": 18013.1, + "probability": 0.9972 + }, + { + "start": 18013.32, + "end": 18013.6, + "probability": 0.7006 + }, + { + "start": 18014.4, + "end": 18018.4, + "probability": 0.9862 + }, + { + "start": 18018.56, + "end": 18019.97, + "probability": 0.9964 + }, + { + "start": 18020.34, + "end": 18024.43, + "probability": 0.9987 + }, + { + "start": 18024.54, + "end": 18026.46, + "probability": 0.9645 + }, + { + "start": 18026.54, + "end": 18027.92, + "probability": 0.9927 + }, + { + "start": 18028.06, + "end": 18030.93, + "probability": 0.9521 + }, + { + "start": 18032.1, + "end": 18032.3, + "probability": 0.3259 + }, + { + "start": 18032.46, + "end": 18039.66, + "probability": 0.9675 + }, + { + "start": 18040.3, + "end": 18043.56, + "probability": 0.9971 + }, + { + "start": 18044.18, + "end": 18046.92, + "probability": 0.9829 + }, + { + "start": 18046.98, + "end": 18050.1, + "probability": 0.9976 + }, + { + "start": 18050.24, + "end": 18051.5, + "probability": 0.6816 + }, + { + "start": 18052.22, + "end": 18057.18, + "probability": 0.9338 + }, + { + "start": 18057.18, + "end": 18062.0, + "probability": 0.9697 + }, + { + "start": 18062.4, + "end": 18063.02, + "probability": 0.4997 + }, + { + "start": 18063.16, + "end": 18067.14, + "probability": 0.8504 + }, + { + "start": 18067.14, + "end": 18070.54, + "probability": 0.8831 + }, + { + "start": 18071.22, + "end": 18074.78, + "probability": 0.9331 + }, + { + "start": 18075.96, + "end": 18077.35, + "probability": 0.7522 + }, + { + "start": 18077.46, + "end": 18079.3, + "probability": 0.8804 + }, + { + "start": 18079.48, + "end": 18085.56, + "probability": 0.8475 + }, + { + "start": 18085.72, + "end": 18088.82, + "probability": 0.9829 + }, + { + "start": 18089.0, + "end": 18089.52, + "probability": 0.8368 + }, + { + "start": 18090.08, + "end": 18092.64, + "probability": 0.5354 + }, + { + "start": 18092.76, + "end": 18094.86, + "probability": 0.6906 + }, + { + "start": 18094.86, + "end": 18095.56, + "probability": 0.0633 + }, + { + "start": 18096.1, + "end": 18099.82, + "probability": 0.9751 + }, + { + "start": 18100.02, + "end": 18101.86, + "probability": 0.4957 + }, + { + "start": 18101.98, + "end": 18103.8, + "probability": 0.8215 + }, + { + "start": 18104.3, + "end": 18107.12, + "probability": 0.4776 + }, + { + "start": 18107.14, + "end": 18107.64, + "probability": 0.6753 + }, + { + "start": 18107.66, + "end": 18108.42, + "probability": 0.8079 + }, + { + "start": 18108.44, + "end": 18109.9, + "probability": 0.6391 + }, + { + "start": 18110.86, + "end": 18111.78, + "probability": 0.3907 + }, + { + "start": 18111.94, + "end": 18111.94, + "probability": 0.1796 + }, + { + "start": 18111.94, + "end": 18111.94, + "probability": 0.3326 + }, + { + "start": 18111.94, + "end": 18114.7, + "probability": 0.9731 + }, + { + "start": 18114.82, + "end": 18115.62, + "probability": 0.1136 + }, + { + "start": 18115.62, + "end": 18116.62, + "probability": 0.7007 + }, + { + "start": 18116.66, + "end": 18116.98, + "probability": 0.4334 + }, + { + "start": 18117.84, + "end": 18119.36, + "probability": 0.7295 + }, + { + "start": 18119.62, + "end": 18120.5, + "probability": 0.6027 + }, + { + "start": 18121.1, + "end": 18125.04, + "probability": 0.9954 + }, + { + "start": 18125.04, + "end": 18131.68, + "probability": 0.909 + }, + { + "start": 18132.4, + "end": 18137.88, + "probability": 0.9833 + }, + { + "start": 18138.22, + "end": 18139.74, + "probability": 0.6406 + }, + { + "start": 18140.42, + "end": 18142.04, + "probability": 0.9644 + }, + { + "start": 18142.6, + "end": 18145.94, + "probability": 0.9848 + }, + { + "start": 18146.32, + "end": 18149.06, + "probability": 0.9102 + }, + { + "start": 18149.16, + "end": 18149.64, + "probability": 0.6346 + }, + { + "start": 18150.7, + "end": 18151.84, + "probability": 0.1875 + }, + { + "start": 18151.94, + "end": 18152.94, + "probability": 0.9077 + }, + { + "start": 18153.02, + "end": 18154.06, + "probability": 0.597 + }, + { + "start": 18154.12, + "end": 18159.74, + "probability": 0.8907 + }, + { + "start": 18159.82, + "end": 18161.98, + "probability": 0.7778 + }, + { + "start": 18162.64, + "end": 18164.44, + "probability": 0.5259 + }, + { + "start": 18165.3, + "end": 18166.2, + "probability": 0.6256 + }, + { + "start": 18166.32, + "end": 18167.6, + "probability": 0.7714 + }, + { + "start": 18167.68, + "end": 18168.04, + "probability": 0.4482 + }, + { + "start": 18168.06, + "end": 18172.02, + "probability": 0.8688 + }, + { + "start": 18172.12, + "end": 18174.42, + "probability": 0.8162 + }, + { + "start": 18174.42, + "end": 18177.08, + "probability": 0.9854 + }, + { + "start": 18177.86, + "end": 18180.02, + "probability": 0.2364 + }, + { + "start": 18180.06, + "end": 18183.1, + "probability": 0.9218 + }, + { + "start": 18183.22, + "end": 18183.7, + "probability": 0.7811 + }, + { + "start": 18183.78, + "end": 18186.8, + "probability": 0.9254 + }, + { + "start": 18187.38, + "end": 18190.7, + "probability": 0.7643 + }, + { + "start": 18190.8, + "end": 18193.78, + "probability": 0.9604 + }, + { + "start": 18193.78, + "end": 18198.14, + "probability": 0.9987 + }, + { + "start": 18198.34, + "end": 18202.92, + "probability": 0.4997 + }, + { + "start": 18202.92, + "end": 18205.08, + "probability": 0.976 + }, + { + "start": 18205.24, + "end": 18206.44, + "probability": 0.9545 + }, + { + "start": 18207.14, + "end": 18209.78, + "probability": 0.8768 + }, + { + "start": 18209.92, + "end": 18210.56, + "probability": 0.9054 + }, + { + "start": 18210.64, + "end": 18213.88, + "probability": 0.9525 + }, + { + "start": 18214.2, + "end": 18215.22, + "probability": 0.8462 + }, + { + "start": 18215.24, + "end": 18216.7, + "probability": 0.981 + }, + { + "start": 18218.14, + "end": 18222.38, + "probability": 0.6497 + }, + { + "start": 18222.92, + "end": 18226.78, + "probability": 0.9744 + }, + { + "start": 18228.14, + "end": 18232.1, + "probability": 0.9591 + }, + { + "start": 18232.1, + "end": 18235.23, + "probability": 0.9343 + }, + { + "start": 18236.0, + "end": 18239.34, + "probability": 0.9672 + }, + { + "start": 18240.32, + "end": 18244.6, + "probability": 0.8904 + }, + { + "start": 18244.66, + "end": 18248.34, + "probability": 0.9875 + }, + { + "start": 18249.04, + "end": 18254.18, + "probability": 0.9961 + }, + { + "start": 18255.12, + "end": 18256.14, + "probability": 0.8729 + }, + { + "start": 18256.62, + "end": 18258.26, + "probability": 0.999 + }, + { + "start": 18258.26, + "end": 18261.94, + "probability": 0.9895 + }, + { + "start": 18262.92, + "end": 18264.96, + "probability": 0.8302 + }, + { + "start": 18265.1, + "end": 18267.0, + "probability": 0.9814 + }, + { + "start": 18268.22, + "end": 18272.22, + "probability": 0.9842 + }, + { + "start": 18272.38, + "end": 18275.28, + "probability": 0.995 + }, + { + "start": 18276.18, + "end": 18281.99, + "probability": 0.9506 + }, + { + "start": 18284.48, + "end": 18285.72, + "probability": 0.9365 + }, + { + "start": 18285.98, + "end": 18287.1, + "probability": 0.9574 + }, + { + "start": 18287.42, + "end": 18288.73, + "probability": 0.9793 + }, + { + "start": 18288.94, + "end": 18289.4, + "probability": 0.9544 + }, + { + "start": 18290.86, + "end": 18291.48, + "probability": 0.8268 + }, + { + "start": 18291.72, + "end": 18293.36, + "probability": 0.8587 + }, + { + "start": 18295.68, + "end": 18296.06, + "probability": 0.8134 + }, + { + "start": 18296.14, + "end": 18296.7, + "probability": 0.8662 + }, + { + "start": 18296.76, + "end": 18297.78, + "probability": 0.848 + }, + { + "start": 18297.9, + "end": 18298.6, + "probability": 0.8875 + }, + { + "start": 18298.66, + "end": 18300.08, + "probability": 0.6602 + }, + { + "start": 18300.12, + "end": 18302.38, + "probability": 0.9739 + }, + { + "start": 18302.48, + "end": 18304.74, + "probability": 0.9533 + }, + { + "start": 18304.78, + "end": 18306.96, + "probability": 0.9072 + }, + { + "start": 18307.04, + "end": 18309.06, + "probability": 0.9579 + }, + { + "start": 18309.56, + "end": 18311.04, + "probability": 0.6843 + }, + { + "start": 18311.2, + "end": 18312.08, + "probability": 0.8527 + }, + { + "start": 18312.1, + "end": 18316.82, + "probability": 0.9226 + }, + { + "start": 18317.28, + "end": 18319.26, + "probability": 0.766 + }, + { + "start": 18319.76, + "end": 18320.34, + "probability": 0.9834 + }, + { + "start": 18320.38, + "end": 18321.06, + "probability": 0.8265 + }, + { + "start": 18321.18, + "end": 18323.66, + "probability": 0.7515 + }, + { + "start": 18324.5, + "end": 18327.3, + "probability": 0.8892 + }, + { + "start": 18327.42, + "end": 18329.54, + "probability": 0.9912 + }, + { + "start": 18330.18, + "end": 18331.1, + "probability": 0.7293 + }, + { + "start": 18331.36, + "end": 18335.38, + "probability": 0.9271 + }, + { + "start": 18335.42, + "end": 18336.16, + "probability": 0.9185 + }, + { + "start": 18336.22, + "end": 18338.26, + "probability": 0.7152 + }, + { + "start": 18338.8, + "end": 18339.54, + "probability": 0.5272 + }, + { + "start": 18339.62, + "end": 18339.88, + "probability": 0.6393 + }, + { + "start": 18340.02, + "end": 18341.68, + "probability": 0.9714 + }, + { + "start": 18341.74, + "end": 18342.74, + "probability": 0.3038 + }, + { + "start": 18343.1, + "end": 18344.64, + "probability": 0.8281 + }, + { + "start": 18344.9, + "end": 18345.76, + "probability": 0.4391 + }, + { + "start": 18346.52, + "end": 18347.04, + "probability": 0.0598 + }, + { + "start": 18347.12, + "end": 18347.8, + "probability": 0.8172 + }, + { + "start": 18347.88, + "end": 18351.86, + "probability": 0.7681 + }, + { + "start": 18352.38, + "end": 18355.26, + "probability": 0.7487 + }, + { + "start": 18355.56, + "end": 18358.0, + "probability": 0.897 + }, + { + "start": 18358.8, + "end": 18364.0, + "probability": 0.8865 + }, + { + "start": 18364.34, + "end": 18366.76, + "probability": 0.8272 + }, + { + "start": 18366.86, + "end": 18368.32, + "probability": 0.9917 + }, + { + "start": 18368.46, + "end": 18368.72, + "probability": 0.611 + }, + { + "start": 18368.8, + "end": 18370.26, + "probability": 0.6818 + }, + { + "start": 18370.52, + "end": 18373.26, + "probability": 0.8994 + }, + { + "start": 18373.3, + "end": 18374.86, + "probability": 0.8542 + }, + { + "start": 18374.96, + "end": 18376.8, + "probability": 0.8274 + }, + { + "start": 18377.84, + "end": 18379.02, + "probability": 0.629 + }, + { + "start": 18379.32, + "end": 18381.86, + "probability": 0.9663 + }, + { + "start": 18381.96, + "end": 18382.59, + "probability": 0.7866 + }, + { + "start": 18382.9, + "end": 18383.46, + "probability": 0.9608 + }, + { + "start": 18384.35, + "end": 18387.84, + "probability": 0.9966 + }, + { + "start": 18387.84, + "end": 18391.06, + "probability": 0.9961 + }, + { + "start": 18391.52, + "end": 18394.22, + "probability": 0.998 + }, + { + "start": 18394.86, + "end": 18398.72, + "probability": 0.9073 + }, + { + "start": 18398.76, + "end": 18405.44, + "probability": 0.9572 + }, + { + "start": 18405.56, + "end": 18406.7, + "probability": 0.9153 + }, + { + "start": 18407.66, + "end": 18408.68, + "probability": 0.7552 + }, + { + "start": 18410.0, + "end": 18414.58, + "probability": 0.9761 + }, + { + "start": 18416.82, + "end": 18426.64, + "probability": 0.9992 + }, + { + "start": 18427.34, + "end": 18431.66, + "probability": 0.9987 + }, + { + "start": 18432.3, + "end": 18432.88, + "probability": 0.5362 + }, + { + "start": 18433.24, + "end": 18433.4, + "probability": 0.5306 + }, + { + "start": 18433.48, + "end": 18433.86, + "probability": 0.9595 + }, + { + "start": 18433.96, + "end": 18436.16, + "probability": 0.9109 + }, + { + "start": 18436.62, + "end": 18439.02, + "probability": 0.9878 + }, + { + "start": 18439.74, + "end": 18445.92, + "probability": 0.9903 + }, + { + "start": 18446.1, + "end": 18447.46, + "probability": 0.942 + }, + { + "start": 18448.58, + "end": 18452.58, + "probability": 0.8671 + }, + { + "start": 18453.88, + "end": 18455.66, + "probability": 0.3223 + }, + { + "start": 18455.82, + "end": 18457.3, + "probability": 0.8935 + }, + { + "start": 18457.42, + "end": 18457.77, + "probability": 0.3484 + }, + { + "start": 18458.4, + "end": 18463.02, + "probability": 0.9796 + }, + { + "start": 18463.66, + "end": 18469.1, + "probability": 0.6041 + }, + { + "start": 18469.18, + "end": 18470.84, + "probability": 0.9714 + }, + { + "start": 18471.52, + "end": 18471.52, + "probability": 0.2342 + }, + { + "start": 18471.52, + "end": 18472.56, + "probability": 0.5193 + }, + { + "start": 18472.7, + "end": 18476.98, + "probability": 0.9968 + }, + { + "start": 18476.98, + "end": 18480.62, + "probability": 0.9979 + }, + { + "start": 18481.4, + "end": 18483.66, + "probability": 0.4229 + }, + { + "start": 18483.76, + "end": 18484.6, + "probability": 0.9724 + }, + { + "start": 18484.72, + "end": 18487.92, + "probability": 0.9866 + }, + { + "start": 18487.98, + "end": 18490.48, + "probability": 0.8676 + }, + { + "start": 18491.04, + "end": 18493.56, + "probability": 0.9788 + }, + { + "start": 18494.42, + "end": 18495.16, + "probability": 0.9038 + }, + { + "start": 18495.5, + "end": 18498.28, + "probability": 0.8594 + }, + { + "start": 18498.4, + "end": 18499.74, + "probability": 0.9451 + }, + { + "start": 18499.78, + "end": 18503.82, + "probability": 0.9215 + }, + { + "start": 18503.86, + "end": 18508.52, + "probability": 0.9935 + }, + { + "start": 18511.68, + "end": 18511.8, + "probability": 0.0394 + }, + { + "start": 18511.8, + "end": 18512.38, + "probability": 0.0767 + }, + { + "start": 18512.44, + "end": 18514.98, + "probability": 0.9729 + }, + { + "start": 18515.1, + "end": 18515.84, + "probability": 0.839 + }, + { + "start": 18516.2, + "end": 18516.4, + "probability": 0.743 + }, + { + "start": 18517.3, + "end": 18518.62, + "probability": 0.7979 + }, + { + "start": 18518.66, + "end": 18519.52, + "probability": 0.4187 + }, + { + "start": 18519.62, + "end": 18521.78, + "probability": 0.9637 + }, + { + "start": 18521.84, + "end": 18522.48, + "probability": 0.5762 + }, + { + "start": 18522.5, + "end": 18524.22, + "probability": 0.3282 + }, + { + "start": 18524.68, + "end": 18526.1, + "probability": 0.5571 + }, + { + "start": 18526.36, + "end": 18528.04, + "probability": 0.6713 + }, + { + "start": 18528.36, + "end": 18528.46, + "probability": 0.2297 + } + ], + "segments_count": 6340, + "words_count": 31513, + "avg_words_per_segment": 4.9705, + "avg_segment_duration": 2.1063, + "avg_words_per_minute": 101.9781, + "plenum_id": "45644", + "duration": 18541.04, + "title": null, + "plenum_date": "2015-10-19" +} \ No newline at end of file