diff --git "a/101860/metadata.json" "b/101860/metadata.json" new file mode 100644--- /dev/null +++ "b/101860/metadata.json" @@ -0,0 +1,22952 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "101860", + "quality_score": 0.9497, + "per_segment_quality_scores": [ + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.0, + "end": 122.0, + "probability": 0.0 + }, + { + "start": 122.36, + "end": 124.72, + "probability": 0.8415 + }, + { + "start": 126.28, + "end": 127.2, + "probability": 0.9609 + }, + { + "start": 127.62, + "end": 129.48, + "probability": 0.8594 + }, + { + "start": 129.86, + "end": 130.2, + "probability": 0.5901 + }, + { + "start": 130.28, + "end": 130.9, + "probability": 0.7644 + }, + { + "start": 131.04, + "end": 134.8, + "probability": 0.9874 + }, + { + "start": 135.44, + "end": 137.74, + "probability": 0.9832 + }, + { + "start": 138.08, + "end": 138.96, + "probability": 0.4784 + }, + { + "start": 140.4, + "end": 142.36, + "probability": 0.7928 + }, + { + "start": 143.0, + "end": 147.9, + "probability": 0.5196 + }, + { + "start": 148.28, + "end": 152.54, + "probability": 0.9749 + }, + { + "start": 153.04, + "end": 156.58, + "probability": 0.8259 + }, + { + "start": 156.62, + "end": 161.22, + "probability": 0.8618 + }, + { + "start": 161.6, + "end": 163.7, + "probability": 0.6617 + }, + { + "start": 164.22, + "end": 169.68, + "probability": 0.6618 + }, + { + "start": 169.88, + "end": 171.6, + "probability": 0.9762 + }, + { + "start": 171.66, + "end": 176.02, + "probability": 0.9915 + }, + { + "start": 176.18, + "end": 180.42, + "probability": 0.984 + }, + { + "start": 180.56, + "end": 182.64, + "probability": 0.8391 + }, + { + "start": 182.72, + "end": 182.98, + "probability": 0.8813 + }, + { + "start": 183.98, + "end": 184.34, + "probability": 0.4601 + }, + { + "start": 184.5, + "end": 185.02, + "probability": 0.6307 + }, + { + "start": 185.4, + "end": 187.42, + "probability": 0.8385 + }, + { + "start": 200.68, + "end": 202.84, + "probability": 0.6807 + }, + { + "start": 203.6, + "end": 205.42, + "probability": 0.9349 + }, + { + "start": 207.38, + "end": 209.48, + "probability": 0.6813 + }, + { + "start": 210.22, + "end": 213.22, + "probability": 0.8676 + }, + { + "start": 213.78, + "end": 214.74, + "probability": 0.8361 + }, + { + "start": 214.84, + "end": 219.09, + "probability": 0.9799 + }, + { + "start": 219.64, + "end": 219.82, + "probability": 0.2132 + }, + { + "start": 220.86, + "end": 222.12, + "probability": 0.0532 + }, + { + "start": 222.42, + "end": 225.64, + "probability": 0.4578 + }, + { + "start": 225.98, + "end": 229.64, + "probability": 0.6649 + }, + { + "start": 229.88, + "end": 231.76, + "probability": 0.8717 + }, + { + "start": 232.0, + "end": 235.12, + "probability": 0.6631 + }, + { + "start": 235.7, + "end": 239.14, + "probability": 0.981 + }, + { + "start": 239.5, + "end": 241.2, + "probability": 0.9684 + }, + { + "start": 241.62, + "end": 243.14, + "probability": 0.943 + }, + { + "start": 243.34, + "end": 244.94, + "probability": 0.8397 + }, + { + "start": 245.62, + "end": 250.68, + "probability": 0.9977 + }, + { + "start": 251.16, + "end": 254.26, + "probability": 0.9746 + }, + { + "start": 254.34, + "end": 254.98, + "probability": 0.9481 + }, + { + "start": 255.12, + "end": 255.98, + "probability": 0.6806 + }, + { + "start": 256.34, + "end": 258.42, + "probability": 0.9902 + }, + { + "start": 258.82, + "end": 261.3, + "probability": 0.9438 + }, + { + "start": 261.94, + "end": 268.54, + "probability": 0.9696 + }, + { + "start": 269.06, + "end": 271.46, + "probability": 0.9041 + }, + { + "start": 272.1, + "end": 277.06, + "probability": 0.9924 + }, + { + "start": 277.58, + "end": 280.62, + "probability": 0.9938 + }, + { + "start": 281.3, + "end": 282.06, + "probability": 0.6669 + }, + { + "start": 282.62, + "end": 283.1, + "probability": 0.7588 + }, + { + "start": 284.02, + "end": 286.02, + "probability": 0.9902 + }, + { + "start": 286.54, + "end": 288.58, + "probability": 0.9539 + }, + { + "start": 289.12, + "end": 291.28, + "probability": 0.9721 + }, + { + "start": 291.62, + "end": 296.38, + "probability": 0.9241 + }, + { + "start": 296.72, + "end": 299.34, + "probability": 0.8169 + }, + { + "start": 299.88, + "end": 302.54, + "probability": 0.7287 + }, + { + "start": 303.5, + "end": 305.76, + "probability": 0.8904 + }, + { + "start": 306.1, + "end": 307.83, + "probability": 0.9941 + }, + { + "start": 308.76, + "end": 309.34, + "probability": 0.765 + }, + { + "start": 309.44, + "end": 311.14, + "probability": 0.9844 + }, + { + "start": 311.84, + "end": 315.12, + "probability": 0.8831 + }, + { + "start": 315.58, + "end": 317.06, + "probability": 0.6299 + }, + { + "start": 317.72, + "end": 320.08, + "probability": 0.9933 + }, + { + "start": 320.16, + "end": 320.64, + "probability": 0.89 + }, + { + "start": 320.94, + "end": 321.64, + "probability": 0.7646 + }, + { + "start": 321.76, + "end": 324.08, + "probability": 0.8386 + }, + { + "start": 324.44, + "end": 326.18, + "probability": 0.9701 + }, + { + "start": 330.14, + "end": 331.48, + "probability": 0.9332 + }, + { + "start": 331.98, + "end": 332.86, + "probability": 0.8774 + }, + { + "start": 333.68, + "end": 334.9, + "probability": 0.9417 + }, + { + "start": 354.34, + "end": 354.94, + "probability": 0.3998 + }, + { + "start": 357.66, + "end": 360.98, + "probability": 0.602 + }, + { + "start": 361.92, + "end": 366.48, + "probability": 0.9937 + }, + { + "start": 367.32, + "end": 370.58, + "probability": 0.9985 + }, + { + "start": 371.22, + "end": 375.16, + "probability": 0.9954 + }, + { + "start": 376.1, + "end": 379.34, + "probability": 0.9118 + }, + { + "start": 379.84, + "end": 381.68, + "probability": 0.959 + }, + { + "start": 382.38, + "end": 384.61, + "probability": 0.9973 + }, + { + "start": 385.3, + "end": 386.18, + "probability": 0.9214 + }, + { + "start": 386.38, + "end": 391.56, + "probability": 0.9931 + }, + { + "start": 392.18, + "end": 395.8, + "probability": 0.9033 + }, + { + "start": 396.7, + "end": 399.48, + "probability": 0.9597 + }, + { + "start": 400.22, + "end": 402.06, + "probability": 0.928 + }, + { + "start": 402.78, + "end": 404.54, + "probability": 0.9783 + }, + { + "start": 405.26, + "end": 408.5, + "probability": 0.9916 + }, + { + "start": 408.5, + "end": 411.38, + "probability": 0.7718 + }, + { + "start": 412.0, + "end": 414.06, + "probability": 0.9229 + }, + { + "start": 415.32, + "end": 417.67, + "probability": 0.9817 + }, + { + "start": 417.7, + "end": 421.32, + "probability": 0.9692 + }, + { + "start": 421.86, + "end": 424.74, + "probability": 0.9992 + }, + { + "start": 424.74, + "end": 428.18, + "probability": 0.8517 + }, + { + "start": 428.88, + "end": 431.78, + "probability": 0.9787 + }, + { + "start": 431.78, + "end": 435.94, + "probability": 0.9956 + }, + { + "start": 436.54, + "end": 439.3, + "probability": 0.9895 + }, + { + "start": 439.8, + "end": 444.0, + "probability": 0.9973 + }, + { + "start": 444.58, + "end": 447.5, + "probability": 0.9861 + }, + { + "start": 447.92, + "end": 448.42, + "probability": 0.9865 + }, + { + "start": 448.84, + "end": 450.3, + "probability": 0.9805 + }, + { + "start": 450.92, + "end": 452.42, + "probability": 0.9595 + }, + { + "start": 453.04, + "end": 453.8, + "probability": 0.9348 + }, + { + "start": 454.6, + "end": 454.88, + "probability": 0.4347 + }, + { + "start": 455.2, + "end": 457.14, + "probability": 0.8556 + }, + { + "start": 457.26, + "end": 458.76, + "probability": 0.9552 + }, + { + "start": 467.9, + "end": 469.24, + "probability": 0.7153 + }, + { + "start": 469.62, + "end": 470.74, + "probability": 0.7006 + }, + { + "start": 471.3, + "end": 473.08, + "probability": 0.9458 + }, + { + "start": 473.58, + "end": 475.8, + "probability": 0.7128 + }, + { + "start": 476.36, + "end": 479.26, + "probability": 0.9826 + }, + { + "start": 479.34, + "end": 481.46, + "probability": 0.9832 + }, + { + "start": 481.94, + "end": 486.9, + "probability": 0.9928 + }, + { + "start": 487.62, + "end": 491.18, + "probability": 0.9634 + }, + { + "start": 491.68, + "end": 492.58, + "probability": 0.4999 + }, + { + "start": 493.02, + "end": 496.46, + "probability": 0.99 + }, + { + "start": 497.02, + "end": 502.36, + "probability": 0.9977 + }, + { + "start": 502.4, + "end": 508.88, + "probability": 0.9985 + }, + { + "start": 509.48, + "end": 512.76, + "probability": 0.9054 + }, + { + "start": 513.28, + "end": 514.12, + "probability": 0.5912 + }, + { + "start": 514.16, + "end": 517.94, + "probability": 0.9941 + }, + { + "start": 517.94, + "end": 521.08, + "probability": 0.9824 + }, + { + "start": 521.54, + "end": 524.66, + "probability": 0.8335 + }, + { + "start": 526.58, + "end": 528.68, + "probability": 0.6792 + }, + { + "start": 529.08, + "end": 533.36, + "probability": 0.9768 + }, + { + "start": 533.98, + "end": 535.06, + "probability": 0.8993 + }, + { + "start": 535.82, + "end": 539.26, + "probability": 0.982 + }, + { + "start": 539.78, + "end": 544.2, + "probability": 0.8712 + }, + { + "start": 544.52, + "end": 547.58, + "probability": 0.984 + }, + { + "start": 548.08, + "end": 549.98, + "probability": 0.9867 + }, + { + "start": 550.48, + "end": 554.24, + "probability": 0.9856 + }, + { + "start": 554.94, + "end": 556.54, + "probability": 0.5062 + }, + { + "start": 556.68, + "end": 561.1, + "probability": 0.9906 + }, + { + "start": 561.48, + "end": 562.48, + "probability": 0.9712 + }, + { + "start": 562.76, + "end": 563.92, + "probability": 0.7315 + }, + { + "start": 566.12, + "end": 566.84, + "probability": 0.833 + }, + { + "start": 568.22, + "end": 569.5, + "probability": 0.9707 + }, + { + "start": 570.26, + "end": 570.92, + "probability": 0.7524 + }, + { + "start": 580.0, + "end": 581.9, + "probability": 0.626 + }, + { + "start": 583.6, + "end": 587.04, + "probability": 0.8724 + }, + { + "start": 587.2, + "end": 587.86, + "probability": 0.4801 + }, + { + "start": 588.24, + "end": 589.84, + "probability": 0.9979 + }, + { + "start": 591.0, + "end": 595.22, + "probability": 0.8236 + }, + { + "start": 595.53, + "end": 597.78, + "probability": 0.951 + }, + { + "start": 597.9, + "end": 601.74, + "probability": 0.9537 + }, + { + "start": 603.16, + "end": 604.14, + "probability": 0.57 + }, + { + "start": 604.32, + "end": 605.92, + "probability": 0.416 + }, + { + "start": 605.98, + "end": 606.8, + "probability": 0.9578 + }, + { + "start": 606.94, + "end": 607.94, + "probability": 0.7082 + }, + { + "start": 608.26, + "end": 610.32, + "probability": 0.4615 + }, + { + "start": 610.86, + "end": 612.24, + "probability": 0.8691 + }, + { + "start": 613.34, + "end": 614.86, + "probability": 0.9871 + }, + { + "start": 614.98, + "end": 618.02, + "probability": 0.9536 + }, + { + "start": 618.1, + "end": 618.78, + "probability": 0.6658 + }, + { + "start": 619.26, + "end": 621.88, + "probability": 0.9238 + }, + { + "start": 621.94, + "end": 623.7, + "probability": 0.9883 + }, + { + "start": 624.32, + "end": 627.66, + "probability": 0.967 + }, + { + "start": 627.94, + "end": 629.7, + "probability": 0.7122 + }, + { + "start": 629.78, + "end": 631.56, + "probability": 0.6963 + }, + { + "start": 632.36, + "end": 632.38, + "probability": 0.3147 + }, + { + "start": 632.9, + "end": 633.6, + "probability": 0.6859 + }, + { + "start": 633.76, + "end": 635.22, + "probability": 0.9883 + }, + { + "start": 635.6, + "end": 636.08, + "probability": 0.7669 + }, + { + "start": 636.18, + "end": 636.46, + "probability": 0.8547 + }, + { + "start": 636.64, + "end": 638.62, + "probability": 0.6934 + }, + { + "start": 639.42, + "end": 640.5, + "probability": 0.9515 + }, + { + "start": 641.54, + "end": 644.12, + "probability": 0.972 + }, + { + "start": 644.28, + "end": 645.05, + "probability": 0.7838 + }, + { + "start": 645.36, + "end": 647.26, + "probability": 0.7763 + }, + { + "start": 647.4, + "end": 648.38, + "probability": 0.4183 + }, + { + "start": 648.58, + "end": 649.76, + "probability": 0.7358 + }, + { + "start": 650.68, + "end": 652.3, + "probability": 0.9805 + }, + { + "start": 652.82, + "end": 654.34, + "probability": 0.7559 + }, + { + "start": 654.84, + "end": 656.66, + "probability": 0.932 + }, + { + "start": 657.34, + "end": 660.08, + "probability": 0.9869 + }, + { + "start": 660.52, + "end": 661.38, + "probability": 0.9873 + }, + { + "start": 661.66, + "end": 663.48, + "probability": 0.8778 + }, + { + "start": 664.5, + "end": 667.96, + "probability": 0.9788 + }, + { + "start": 668.8, + "end": 671.18, + "probability": 0.7532 + }, + { + "start": 671.26, + "end": 673.68, + "probability": 0.9709 + }, + { + "start": 674.2, + "end": 676.66, + "probability": 0.9291 + }, + { + "start": 676.82, + "end": 677.62, + "probability": 0.9176 + }, + { + "start": 677.76, + "end": 678.18, + "probability": 0.7278 + }, + { + "start": 678.94, + "end": 680.98, + "probability": 0.7792 + }, + { + "start": 681.9, + "end": 688.14, + "probability": 0.9582 + }, + { + "start": 688.82, + "end": 689.64, + "probability": 0.8513 + }, + { + "start": 690.36, + "end": 693.64, + "probability": 0.9799 + }, + { + "start": 695.1, + "end": 695.42, + "probability": 0.6015 + }, + { + "start": 697.66, + "end": 699.54, + "probability": 0.7991 + }, + { + "start": 704.34, + "end": 706.34, + "probability": 0.7677 + }, + { + "start": 707.47, + "end": 709.22, + "probability": 0.9442 + }, + { + "start": 709.72, + "end": 711.02, + "probability": 0.9784 + }, + { + "start": 711.62, + "end": 712.78, + "probability": 0.991 + }, + { + "start": 714.36, + "end": 717.96, + "probability": 0.8459 + }, + { + "start": 718.02, + "end": 719.0, + "probability": 0.9963 + }, + { + "start": 719.62, + "end": 720.68, + "probability": 0.2521 + }, + { + "start": 720.84, + "end": 722.72, + "probability": 0.9917 + }, + { + "start": 723.5, + "end": 724.2, + "probability": 0.781 + }, + { + "start": 724.92, + "end": 725.92, + "probability": 0.9344 + }, + { + "start": 727.1, + "end": 729.9, + "probability": 0.978 + }, + { + "start": 730.12, + "end": 732.74, + "probability": 0.9561 + }, + { + "start": 734.28, + "end": 737.2, + "probability": 0.5232 + }, + { + "start": 737.76, + "end": 738.98, + "probability": 0.7085 + }, + { + "start": 739.7, + "end": 740.24, + "probability": 0.1141 + }, + { + "start": 740.24, + "end": 743.12, + "probability": 0.932 + }, + { + "start": 743.44, + "end": 747.78, + "probability": 0.9744 + }, + { + "start": 748.64, + "end": 749.8, + "probability": 0.5928 + }, + { + "start": 749.84, + "end": 750.9, + "probability": 0.7651 + }, + { + "start": 751.12, + "end": 753.28, + "probability": 0.7295 + }, + { + "start": 753.36, + "end": 754.42, + "probability": 0.9123 + }, + { + "start": 755.14, + "end": 755.9, + "probability": 0.9243 + }, + { + "start": 756.4, + "end": 760.98, + "probability": 0.97 + }, + { + "start": 761.86, + "end": 763.11, + "probability": 0.718 + }, + { + "start": 764.0, + "end": 765.56, + "probability": 0.94 + }, + { + "start": 765.7, + "end": 768.52, + "probability": 0.9884 + }, + { + "start": 768.6, + "end": 769.32, + "probability": 0.9823 + }, + { + "start": 769.38, + "end": 769.98, + "probability": 0.9925 + }, + { + "start": 770.04, + "end": 770.64, + "probability": 0.8466 + }, + { + "start": 771.24, + "end": 772.52, + "probability": 0.9899 + }, + { + "start": 773.04, + "end": 773.96, + "probability": 0.7467 + }, + { + "start": 774.32, + "end": 778.7, + "probability": 0.9277 + }, + { + "start": 778.78, + "end": 780.02, + "probability": 0.8994 + }, + { + "start": 780.82, + "end": 782.34, + "probability": 0.6887 + }, + { + "start": 782.88, + "end": 784.32, + "probability": 0.799 + }, + { + "start": 784.48, + "end": 787.6, + "probability": 0.9776 + }, + { + "start": 787.94, + "end": 789.92, + "probability": 0.9944 + }, + { + "start": 790.6, + "end": 790.88, + "probability": 0.6215 + }, + { + "start": 791.78, + "end": 792.36, + "probability": 0.5476 + }, + { + "start": 792.4, + "end": 794.72, + "probability": 0.8754 + }, + { + "start": 797.38, + "end": 800.36, + "probability": 0.9139 + }, + { + "start": 802.66, + "end": 805.2, + "probability": 0.0931 + }, + { + "start": 807.06, + "end": 807.84, + "probability": 0.1504 + }, + { + "start": 809.24, + "end": 809.24, + "probability": 0.0057 + }, + { + "start": 809.24, + "end": 809.24, + "probability": 0.1003 + }, + { + "start": 809.24, + "end": 809.24, + "probability": 0.0335 + }, + { + "start": 809.24, + "end": 809.24, + "probability": 0.1255 + }, + { + "start": 809.24, + "end": 812.12, + "probability": 0.4156 + }, + { + "start": 812.26, + "end": 815.6, + "probability": 0.4633 + }, + { + "start": 816.82, + "end": 816.82, + "probability": 0.0541 + }, + { + "start": 816.82, + "end": 817.18, + "probability": 0.7683 + }, + { + "start": 817.36, + "end": 820.26, + "probability": 0.3326 + }, + { + "start": 821.0, + "end": 823.78, + "probability": 0.1586 + }, + { + "start": 823.84, + "end": 824.48, + "probability": 0.5138 + }, + { + "start": 824.62, + "end": 826.56, + "probability": 0.4568 + }, + { + "start": 826.66, + "end": 829.76, + "probability": 0.8972 + }, + { + "start": 830.64, + "end": 831.8, + "probability": 0.9438 + }, + { + "start": 831.92, + "end": 833.0, + "probability": 0.8987 + }, + { + "start": 833.34, + "end": 833.86, + "probability": 0.7479 + }, + { + "start": 833.86, + "end": 834.52, + "probability": 0.943 + }, + { + "start": 834.58, + "end": 838.72, + "probability": 0.9724 + }, + { + "start": 839.62, + "end": 840.12, + "probability": 0.8044 + }, + { + "start": 840.18, + "end": 841.3, + "probability": 0.6917 + }, + { + "start": 841.36, + "end": 844.54, + "probability": 0.9356 + }, + { + "start": 844.8, + "end": 846.18, + "probability": 0.708 + }, + { + "start": 846.76, + "end": 848.62, + "probability": 0.9753 + }, + { + "start": 849.42, + "end": 849.8, + "probability": 0.3989 + }, + { + "start": 849.92, + "end": 851.16, + "probability": 0.6642 + }, + { + "start": 851.5, + "end": 855.94, + "probability": 0.9157 + }, + { + "start": 856.88, + "end": 857.6, + "probability": 0.9438 + }, + { + "start": 857.76, + "end": 859.06, + "probability": 0.6408 + }, + { + "start": 859.5, + "end": 860.81, + "probability": 0.8133 + }, + { + "start": 861.1, + "end": 862.0, + "probability": 0.7263 + }, + { + "start": 862.1, + "end": 862.92, + "probability": 0.6727 + }, + { + "start": 863.42, + "end": 866.64, + "probability": 0.9849 + }, + { + "start": 867.1, + "end": 868.06, + "probability": 0.9712 + }, + { + "start": 868.86, + "end": 869.4, + "probability": 0.7979 + }, + { + "start": 869.4, + "end": 872.19, + "probability": 0.9112 + }, + { + "start": 872.8, + "end": 874.36, + "probability": 0.98 + }, + { + "start": 875.14, + "end": 875.64, + "probability": 0.5391 + }, + { + "start": 875.76, + "end": 876.56, + "probability": 0.5178 + }, + { + "start": 877.04, + "end": 878.14, + "probability": 0.7397 + }, + { + "start": 878.24, + "end": 878.94, + "probability": 0.9209 + }, + { + "start": 879.76, + "end": 881.08, + "probability": 0.8338 + }, + { + "start": 881.28, + "end": 882.58, + "probability": 0.9754 + }, + { + "start": 883.44, + "end": 883.8, + "probability": 0.9591 + }, + { + "start": 884.22, + "end": 885.48, + "probability": 0.9947 + }, + { + "start": 885.82, + "end": 886.9, + "probability": 0.9874 + }, + { + "start": 886.92, + "end": 887.69, + "probability": 0.9932 + }, + { + "start": 888.04, + "end": 890.42, + "probability": 0.7914 + }, + { + "start": 891.24, + "end": 893.68, + "probability": 0.9857 + }, + { + "start": 894.3, + "end": 894.66, + "probability": 0.7514 + }, + { + "start": 899.26, + "end": 902.62, + "probability": 0.7778 + }, + { + "start": 903.22, + "end": 904.54, + "probability": 0.9137 + }, + { + "start": 906.78, + "end": 907.6, + "probability": 0.7776 + }, + { + "start": 907.98, + "end": 908.68, + "probability": 0.9025 + }, + { + "start": 909.16, + "end": 909.72, + "probability": 0.6631 + }, + { + "start": 913.01, + "end": 917.18, + "probability": 0.726 + }, + { + "start": 917.86, + "end": 922.94, + "probability": 0.6794 + }, + { + "start": 923.7, + "end": 925.44, + "probability": 0.5428 + }, + { + "start": 927.08, + "end": 928.18, + "probability": 0.064 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.3889 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.4129 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.1659 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.4343 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.4547 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.191 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.5511 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.4889 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.0937 + }, + { + "start": 957.82, + "end": 957.82, + "probability": 0.1057 + }, + { + "start": 957.82, + "end": 961.22, + "probability": 0.5244 + }, + { + "start": 962.38, + "end": 962.96, + "probability": 0.201 + }, + { + "start": 963.02, + "end": 964.55, + "probability": 0.9641 + }, + { + "start": 965.46, + "end": 967.82, + "probability": 0.9937 + }, + { + "start": 968.42, + "end": 969.02, + "probability": 0.8232 + }, + { + "start": 969.74, + "end": 973.56, + "probability": 0.8685 + }, + { + "start": 973.84, + "end": 975.62, + "probability": 0.828 + }, + { + "start": 976.36, + "end": 979.08, + "probability": 0.9827 + }, + { + "start": 979.32, + "end": 983.7, + "probability": 0.7809 + }, + { + "start": 983.72, + "end": 989.22, + "probability": 0.9566 + }, + { + "start": 990.33, + "end": 994.94, + "probability": 0.9407 + }, + { + "start": 995.74, + "end": 1001.1, + "probability": 0.9591 + }, + { + "start": 1001.98, + "end": 1003.12, + "probability": 0.6978 + }, + { + "start": 1003.36, + "end": 1004.88, + "probability": 0.8637 + }, + { + "start": 1005.03, + "end": 1005.96, + "probability": 0.8782 + }, + { + "start": 1006.16, + "end": 1011.06, + "probability": 0.8203 + }, + { + "start": 1011.6, + "end": 1012.16, + "probability": 0.5798 + }, + { + "start": 1012.42, + "end": 1015.74, + "probability": 0.7017 + }, + { + "start": 1015.96, + "end": 1018.44, + "probability": 0.7078 + }, + { + "start": 1019.18, + "end": 1020.72, + "probability": 0.6614 + }, + { + "start": 1021.28, + "end": 1024.32, + "probability": 0.8812 + }, + { + "start": 1024.86, + "end": 1027.42, + "probability": 0.774 + }, + { + "start": 1028.46, + "end": 1033.84, + "probability": 0.0989 + }, + { + "start": 1033.84, + "end": 1036.48, + "probability": 0.9639 + }, + { + "start": 1036.94, + "end": 1041.78, + "probability": 0.9911 + }, + { + "start": 1041.9, + "end": 1045.82, + "probability": 0.9271 + }, + { + "start": 1047.14, + "end": 1054.62, + "probability": 0.9956 + }, + { + "start": 1054.86, + "end": 1055.34, + "probability": 0.3754 + }, + { + "start": 1055.5, + "end": 1060.78, + "probability": 0.9243 + }, + { + "start": 1061.28, + "end": 1065.72, + "probability": 0.9697 + }, + { + "start": 1065.72, + "end": 1071.1, + "probability": 0.9821 + }, + { + "start": 1072.1, + "end": 1072.76, + "probability": 0.5976 + }, + { + "start": 1072.82, + "end": 1077.64, + "probability": 0.9596 + }, + { + "start": 1077.82, + "end": 1079.56, + "probability": 0.9603 + }, + { + "start": 1080.1, + "end": 1082.24, + "probability": 0.9868 + }, + { + "start": 1082.42, + "end": 1086.08, + "probability": 0.9416 + }, + { + "start": 1086.68, + "end": 1090.5, + "probability": 0.4742 + }, + { + "start": 1090.5, + "end": 1096.26, + "probability": 0.7201 + }, + { + "start": 1096.38, + "end": 1098.96, + "probability": 0.9085 + }, + { + "start": 1099.66, + "end": 1105.6, + "probability": 0.9817 + }, + { + "start": 1105.98, + "end": 1110.5, + "probability": 0.8228 + }, + { + "start": 1111.5, + "end": 1117.72, + "probability": 0.9602 + }, + { + "start": 1117.9, + "end": 1121.72, + "probability": 0.8797 + }, + { + "start": 1124.26, + "end": 1129.48, + "probability": 0.8682 + }, + { + "start": 1131.24, + "end": 1137.62, + "probability": 0.9972 + }, + { + "start": 1138.24, + "end": 1139.92, + "probability": 0.8593 + }, + { + "start": 1140.2, + "end": 1141.08, + "probability": 0.5627 + }, + { + "start": 1141.56, + "end": 1147.82, + "probability": 0.9777 + }, + { + "start": 1148.68, + "end": 1150.14, + "probability": 0.9074 + }, + { + "start": 1150.58, + "end": 1157.38, + "probability": 0.9521 + }, + { + "start": 1157.66, + "end": 1164.06, + "probability": 0.9059 + }, + { + "start": 1164.52, + "end": 1169.32, + "probability": 0.9895 + }, + { + "start": 1170.18, + "end": 1174.0, + "probability": 0.7511 + }, + { + "start": 1174.7, + "end": 1176.46, + "probability": 0.6435 + }, + { + "start": 1176.72, + "end": 1179.12, + "probability": 0.9747 + }, + { + "start": 1179.92, + "end": 1187.9, + "probability": 0.9592 + }, + { + "start": 1188.48, + "end": 1192.2, + "probability": 0.7486 + }, + { + "start": 1192.82, + "end": 1197.6, + "probability": 0.8965 + }, + { + "start": 1198.08, + "end": 1202.2, + "probability": 0.9387 + }, + { + "start": 1202.72, + "end": 1206.14, + "probability": 0.7683 + }, + { + "start": 1206.3, + "end": 1207.32, + "probability": 0.6213 + }, + { + "start": 1208.02, + "end": 1210.6, + "probability": 0.967 + }, + { + "start": 1210.74, + "end": 1216.44, + "probability": 0.8888 + }, + { + "start": 1216.88, + "end": 1218.66, + "probability": 0.9806 + }, + { + "start": 1219.64, + "end": 1226.62, + "probability": 0.9765 + }, + { + "start": 1227.1, + "end": 1229.09, + "probability": 0.5436 + }, + { + "start": 1231.5, + "end": 1236.12, + "probability": 0.94 + }, + { + "start": 1236.24, + "end": 1241.36, + "probability": 0.9701 + }, + { + "start": 1241.94, + "end": 1243.3, + "probability": 0.8856 + }, + { + "start": 1243.7, + "end": 1249.54, + "probability": 0.9919 + }, + { + "start": 1249.7, + "end": 1253.28, + "probability": 0.9758 + }, + { + "start": 1253.84, + "end": 1261.86, + "probability": 0.9856 + }, + { + "start": 1262.48, + "end": 1262.48, + "probability": 0.0698 + }, + { + "start": 1262.48, + "end": 1267.4, + "probability": 0.8182 + }, + { + "start": 1267.68, + "end": 1271.44, + "probability": 0.9878 + }, + { + "start": 1271.8, + "end": 1274.34, + "probability": 0.9967 + }, + { + "start": 1274.86, + "end": 1279.48, + "probability": 0.875 + }, + { + "start": 1280.0, + "end": 1283.12, + "probability": 0.965 + }, + { + "start": 1283.3, + "end": 1283.74, + "probability": 0.746 + }, + { + "start": 1284.36, + "end": 1284.98, + "probability": 0.7748 + }, + { + "start": 1285.18, + "end": 1286.42, + "probability": 0.9617 + }, + { + "start": 1286.6, + "end": 1287.7, + "probability": 0.8708 + }, + { + "start": 1289.34, + "end": 1290.18, + "probability": 0.796 + }, + { + "start": 1291.08, + "end": 1299.64, + "probability": 0.6975 + }, + { + "start": 1299.68, + "end": 1300.2, + "probability": 0.6401 + }, + { + "start": 1300.42, + "end": 1301.34, + "probability": 0.9277 + }, + { + "start": 1301.72, + "end": 1303.5, + "probability": 0.9072 + }, + { + "start": 1304.22, + "end": 1306.86, + "probability": 0.9724 + }, + { + "start": 1307.4, + "end": 1309.62, + "probability": 0.934 + }, + { + "start": 1310.14, + "end": 1311.3, + "probability": 0.9736 + }, + { + "start": 1312.26, + "end": 1312.82, + "probability": 0.0855 + }, + { + "start": 1314.7, + "end": 1316.0, + "probability": 0.6502 + }, + { + "start": 1316.68, + "end": 1317.72, + "probability": 0.7354 + }, + { + "start": 1318.3, + "end": 1319.76, + "probability": 0.8242 + }, + { + "start": 1320.22, + "end": 1321.86, + "probability": 0.076 + }, + { + "start": 1322.42, + "end": 1322.78, + "probability": 0.2677 + }, + { + "start": 1337.0, + "end": 1337.1, + "probability": 0.2804 + }, + { + "start": 1339.0, + "end": 1341.78, + "probability": 0.529 + }, + { + "start": 1343.46, + "end": 1344.0, + "probability": 0.559 + }, + { + "start": 1344.56, + "end": 1345.22, + "probability": 0.9951 + }, + { + "start": 1345.78, + "end": 1346.64, + "probability": 0.7727 + }, + { + "start": 1347.94, + "end": 1348.58, + "probability": 0.8569 + }, + { + "start": 1349.76, + "end": 1351.72, + "probability": 0.7662 + }, + { + "start": 1352.24, + "end": 1355.1, + "probability": 0.8248 + }, + { + "start": 1355.1, + "end": 1356.5, + "probability": 0.9369 + }, + { + "start": 1357.98, + "end": 1361.5, + "probability": 0.499 + }, + { + "start": 1361.68, + "end": 1364.75, + "probability": 0.9313 + }, + { + "start": 1365.7, + "end": 1366.92, + "probability": 0.9932 + }, + { + "start": 1367.64, + "end": 1369.92, + "probability": 0.8893 + }, + { + "start": 1370.12, + "end": 1371.62, + "probability": 0.7421 + }, + { + "start": 1371.92, + "end": 1373.14, + "probability": 0.8428 + }, + { + "start": 1373.62, + "end": 1376.22, + "probability": 0.738 + }, + { + "start": 1376.56, + "end": 1379.22, + "probability": 0.9849 + }, + { + "start": 1379.8, + "end": 1380.42, + "probability": 0.5239 + }, + { + "start": 1380.44, + "end": 1381.04, + "probability": 0.9272 + }, + { + "start": 1381.56, + "end": 1382.32, + "probability": 0.9517 + }, + { + "start": 1382.6, + "end": 1383.32, + "probability": 0.8622 + }, + { + "start": 1383.74, + "end": 1384.26, + "probability": 0.7586 + }, + { + "start": 1384.7, + "end": 1385.48, + "probability": 0.5077 + }, + { + "start": 1386.76, + "end": 1387.0, + "probability": 0.4907 + }, + { + "start": 1387.0, + "end": 1390.62, + "probability": 0.9819 + }, + { + "start": 1390.62, + "end": 1396.48, + "probability": 0.878 + }, + { + "start": 1396.7, + "end": 1398.2, + "probability": 0.9591 + }, + { + "start": 1398.32, + "end": 1399.32, + "probability": 0.662 + }, + { + "start": 1400.1, + "end": 1402.98, + "probability": 0.8663 + }, + { + "start": 1403.76, + "end": 1404.88, + "probability": 0.9264 + }, + { + "start": 1405.04, + "end": 1407.22, + "probability": 0.8008 + }, + { + "start": 1407.96, + "end": 1413.54, + "probability": 0.7875 + }, + { + "start": 1414.08, + "end": 1416.04, + "probability": 0.5251 + }, + { + "start": 1416.32, + "end": 1418.34, + "probability": 0.9773 + }, + { + "start": 1419.32, + "end": 1425.9, + "probability": 0.9922 + }, + { + "start": 1426.74, + "end": 1427.76, + "probability": 0.8193 + }, + { + "start": 1430.64, + "end": 1432.44, + "probability": 0.7701 + }, + { + "start": 1433.88, + "end": 1434.7, + "probability": 0.8872 + }, + { + "start": 1435.5, + "end": 1439.46, + "probability": 0.9752 + }, + { + "start": 1439.58, + "end": 1440.48, + "probability": 0.5856 + }, + { + "start": 1440.5, + "end": 1441.63, + "probability": 0.9571 + }, + { + "start": 1442.38, + "end": 1444.74, + "probability": 0.8096 + }, + { + "start": 1445.96, + "end": 1447.04, + "probability": 0.5425 + }, + { + "start": 1447.54, + "end": 1452.36, + "probability": 0.9101 + }, + { + "start": 1453.0, + "end": 1455.02, + "probability": 0.9326 + }, + { + "start": 1455.08, + "end": 1458.23, + "probability": 0.7996 + }, + { + "start": 1459.58, + "end": 1462.86, + "probability": 0.974 + }, + { + "start": 1464.48, + "end": 1465.28, + "probability": 0.9674 + }, + { + "start": 1465.72, + "end": 1466.94, + "probability": 0.8881 + }, + { + "start": 1467.02, + "end": 1468.78, + "probability": 0.8127 + }, + { + "start": 1469.0, + "end": 1470.1, + "probability": 0.9765 + }, + { + "start": 1471.06, + "end": 1473.08, + "probability": 0.9167 + }, + { + "start": 1473.38, + "end": 1474.86, + "probability": 0.9911 + }, + { + "start": 1475.16, + "end": 1476.98, + "probability": 0.9942 + }, + { + "start": 1477.56, + "end": 1478.38, + "probability": 0.963 + }, + { + "start": 1478.44, + "end": 1479.08, + "probability": 0.9709 + }, + { + "start": 1479.18, + "end": 1479.74, + "probability": 0.9296 + }, + { + "start": 1480.1, + "end": 1481.0, + "probability": 0.999 + }, + { + "start": 1481.72, + "end": 1482.34, + "probability": 0.9924 + }, + { + "start": 1484.04, + "end": 1484.36, + "probability": 0.818 + }, + { + "start": 1485.06, + "end": 1485.26, + "probability": 0.5844 + }, + { + "start": 1486.22, + "end": 1487.51, + "probability": 0.7348 + }, + { + "start": 1488.16, + "end": 1488.82, + "probability": 0.9552 + }, + { + "start": 1489.26, + "end": 1489.94, + "probability": 0.9713 + }, + { + "start": 1490.16, + "end": 1491.08, + "probability": 0.9629 + }, + { + "start": 1491.2, + "end": 1491.54, + "probability": 0.7672 + }, + { + "start": 1491.76, + "end": 1492.04, + "probability": 0.6705 + }, + { + "start": 1492.18, + "end": 1492.56, + "probability": 0.4647 + }, + { + "start": 1492.9, + "end": 1493.84, + "probability": 0.9901 + }, + { + "start": 1494.32, + "end": 1496.2, + "probability": 0.685 + }, + { + "start": 1496.44, + "end": 1497.9, + "probability": 0.9897 + }, + { + "start": 1500.39, + "end": 1502.41, + "probability": 0.6517 + }, + { + "start": 1502.84, + "end": 1503.74, + "probability": 0.6685 + }, + { + "start": 1504.64, + "end": 1506.64, + "probability": 0.8584 + }, + { + "start": 1506.74, + "end": 1507.32, + "probability": 0.8686 + }, + { + "start": 1507.38, + "end": 1508.86, + "probability": 0.9468 + }, + { + "start": 1510.46, + "end": 1510.64, + "probability": 0.2853 + }, + { + "start": 1510.72, + "end": 1512.02, + "probability": 0.9904 + }, + { + "start": 1512.14, + "end": 1516.75, + "probability": 0.7621 + }, + { + "start": 1517.94, + "end": 1519.5, + "probability": 0.9937 + }, + { + "start": 1519.72, + "end": 1521.04, + "probability": 0.7699 + }, + { + "start": 1521.42, + "end": 1522.84, + "probability": 0.8599 + }, + { + "start": 1524.36, + "end": 1525.54, + "probability": 0.9331 + }, + { + "start": 1526.32, + "end": 1527.18, + "probability": 0.9345 + }, + { + "start": 1528.3, + "end": 1529.32, + "probability": 0.4284 + }, + { + "start": 1529.84, + "end": 1532.42, + "probability": 0.9808 + }, + { + "start": 1532.54, + "end": 1533.36, + "probability": 0.9009 + }, + { + "start": 1533.78, + "end": 1534.9, + "probability": 0.9983 + }, + { + "start": 1535.68, + "end": 1536.44, + "probability": 0.4662 + }, + { + "start": 1536.52, + "end": 1537.02, + "probability": 0.4837 + }, + { + "start": 1537.1, + "end": 1538.4, + "probability": 0.8552 + }, + { + "start": 1539.02, + "end": 1541.9, + "probability": 0.7624 + }, + { + "start": 1543.16, + "end": 1547.3, + "probability": 0.9409 + }, + { + "start": 1548.18, + "end": 1551.9, + "probability": 0.9716 + }, + { + "start": 1553.02, + "end": 1553.36, + "probability": 0.8975 + }, + { + "start": 1554.4, + "end": 1556.4, + "probability": 0.8451 + }, + { + "start": 1556.5, + "end": 1557.85, + "probability": 0.8831 + }, + { + "start": 1559.28, + "end": 1563.52, + "probability": 0.8687 + }, + { + "start": 1564.68, + "end": 1570.3, + "probability": 0.9693 + }, + { + "start": 1572.06, + "end": 1574.18, + "probability": 0.9231 + }, + { + "start": 1574.76, + "end": 1578.18, + "probability": 0.9372 + }, + { + "start": 1579.1, + "end": 1580.76, + "probability": 0.9661 + }, + { + "start": 1581.28, + "end": 1582.36, + "probability": 0.9937 + }, + { + "start": 1583.76, + "end": 1586.34, + "probability": 0.8101 + }, + { + "start": 1586.78, + "end": 1589.96, + "probability": 0.9651 + }, + { + "start": 1590.06, + "end": 1591.16, + "probability": 0.9362 + }, + { + "start": 1592.02, + "end": 1593.68, + "probability": 0.7315 + }, + { + "start": 1593.76, + "end": 1594.6, + "probability": 0.9391 + }, + { + "start": 1595.84, + "end": 1597.68, + "probability": 0.9316 + }, + { + "start": 1597.84, + "end": 1600.26, + "probability": 0.9897 + }, + { + "start": 1601.36, + "end": 1603.66, + "probability": 0.9678 + }, + { + "start": 1604.48, + "end": 1605.84, + "probability": 0.8821 + }, + { + "start": 1607.16, + "end": 1608.1, + "probability": 0.4741 + }, + { + "start": 1608.2, + "end": 1613.26, + "probability": 0.9756 + }, + { + "start": 1613.48, + "end": 1614.26, + "probability": 0.5499 + }, + { + "start": 1615.62, + "end": 1620.02, + "probability": 0.9972 + }, + { + "start": 1621.18, + "end": 1624.52, + "probability": 0.9548 + }, + { + "start": 1625.46, + "end": 1626.32, + "probability": 0.7805 + }, + { + "start": 1626.4, + "end": 1626.98, + "probability": 0.949 + }, + { + "start": 1627.04, + "end": 1630.74, + "probability": 0.9847 + }, + { + "start": 1631.82, + "end": 1632.54, + "probability": 0.6814 + }, + { + "start": 1633.16, + "end": 1634.04, + "probability": 0.9263 + }, + { + "start": 1634.42, + "end": 1636.52, + "probability": 0.9815 + }, + { + "start": 1636.66, + "end": 1637.12, + "probability": 0.7513 + }, + { + "start": 1637.46, + "end": 1638.58, + "probability": 0.9811 + }, + { + "start": 1638.68, + "end": 1639.54, + "probability": 0.9507 + }, + { + "start": 1640.46, + "end": 1641.62, + "probability": 0.7392 + }, + { + "start": 1641.76, + "end": 1641.94, + "probability": 0.4436 + }, + { + "start": 1642.1, + "end": 1642.52, + "probability": 0.4575 + }, + { + "start": 1642.52, + "end": 1643.82, + "probability": 0.9204 + }, + { + "start": 1644.38, + "end": 1646.0, + "probability": 0.9784 + }, + { + "start": 1647.62, + "end": 1648.12, + "probability": 0.8856 + }, + { + "start": 1649.08, + "end": 1651.74, + "probability": 0.9893 + }, + { + "start": 1651.98, + "end": 1652.82, + "probability": 0.8564 + }, + { + "start": 1654.03, + "end": 1655.36, + "probability": 0.972 + }, + { + "start": 1656.06, + "end": 1657.0, + "probability": 0.8294 + }, + { + "start": 1658.04, + "end": 1661.5, + "probability": 0.9717 + }, + { + "start": 1661.98, + "end": 1663.08, + "probability": 0.9017 + }, + { + "start": 1663.22, + "end": 1664.14, + "probability": 0.9767 + }, + { + "start": 1664.76, + "end": 1665.44, + "probability": 0.8415 + }, + { + "start": 1665.74, + "end": 1668.14, + "probability": 0.991 + }, + { + "start": 1669.18, + "end": 1673.36, + "probability": 0.984 + }, + { + "start": 1673.36, + "end": 1677.14, + "probability": 0.9956 + }, + { + "start": 1677.7, + "end": 1678.72, + "probability": 0.9773 + }, + { + "start": 1679.4, + "end": 1681.0, + "probability": 0.949 + }, + { + "start": 1681.28, + "end": 1683.42, + "probability": 0.812 + }, + { + "start": 1683.8, + "end": 1685.74, + "probability": 0.5595 + }, + { + "start": 1685.9, + "end": 1686.1, + "probability": 0.7918 + }, + { + "start": 1687.32, + "end": 1688.26, + "probability": 0.642 + }, + { + "start": 1691.34, + "end": 1695.08, + "probability": 0.9265 + }, + { + "start": 1703.06, + "end": 1703.22, + "probability": 0.618 + }, + { + "start": 1703.22, + "end": 1704.06, + "probability": 0.5267 + }, + { + "start": 1704.12, + "end": 1706.82, + "probability": 0.9068 + }, + { + "start": 1707.06, + "end": 1708.2, + "probability": 0.9421 + }, + { + "start": 1708.8, + "end": 1712.1, + "probability": 0.987 + }, + { + "start": 1712.28, + "end": 1712.5, + "probability": 0.8392 + }, + { + "start": 1721.3, + "end": 1721.3, + "probability": 0.2707 + }, + { + "start": 1721.3, + "end": 1721.54, + "probability": 0.0901 + }, + { + "start": 1721.64, + "end": 1721.71, + "probability": 0.0629 + }, + { + "start": 1722.32, + "end": 1722.44, + "probability": 0.0715 + }, + { + "start": 1722.44, + "end": 1722.44, + "probability": 0.0719 + }, + { + "start": 1722.44, + "end": 1722.44, + "probability": 0.0533 + }, + { + "start": 1722.44, + "end": 1722.62, + "probability": 0.0124 + }, + { + "start": 1722.62, + "end": 1722.62, + "probability": 0.0285 + }, + { + "start": 1742.26, + "end": 1742.78, + "probability": 0.2404 + }, + { + "start": 1743.6, + "end": 1745.76, + "probability": 0.3831 + }, + { + "start": 1746.76, + "end": 1750.12, + "probability": 0.6547 + }, + { + "start": 1750.9, + "end": 1751.37, + "probability": 0.5327 + }, + { + "start": 1753.12, + "end": 1753.58, + "probability": 0.541 + }, + { + "start": 1753.66, + "end": 1755.01, + "probability": 0.9902 + }, + { + "start": 1755.48, + "end": 1761.58, + "probability": 0.9708 + }, + { + "start": 1761.66, + "end": 1763.98, + "probability": 0.6353 + }, + { + "start": 1765.12, + "end": 1766.79, + "probability": 0.9917 + }, + { + "start": 1768.74, + "end": 1770.28, + "probability": 0.8278 + }, + { + "start": 1770.36, + "end": 1775.44, + "probability": 0.855 + }, + { + "start": 1775.54, + "end": 1780.06, + "probability": 0.9726 + }, + { + "start": 1780.08, + "end": 1782.68, + "probability": 0.8298 + }, + { + "start": 1783.44, + "end": 1788.16, + "probability": 0.9902 + }, + { + "start": 1789.1, + "end": 1794.18, + "probability": 0.7065 + }, + { + "start": 1794.26, + "end": 1797.42, + "probability": 0.9104 + }, + { + "start": 1798.1, + "end": 1799.2, + "probability": 0.3873 + }, + { + "start": 1799.58, + "end": 1802.4, + "probability": 0.8214 + }, + { + "start": 1802.99, + "end": 1805.44, + "probability": 0.5477 + }, + { + "start": 1805.68, + "end": 1806.66, + "probability": 0.8174 + }, + { + "start": 1809.54, + "end": 1812.18, + "probability": 0.6849 + }, + { + "start": 1812.76, + "end": 1815.92, + "probability": 0.9025 + }, + { + "start": 1815.94, + "end": 1816.4, + "probability": 0.9042 + }, + { + "start": 1817.48, + "end": 1821.38, + "probability": 0.7613 + }, + { + "start": 1821.4, + "end": 1822.42, + "probability": 0.8635 + }, + { + "start": 1823.02, + "end": 1827.74, + "probability": 0.8195 + }, + { + "start": 1828.8, + "end": 1829.5, + "probability": 0.9105 + }, + { + "start": 1829.96, + "end": 1831.48, + "probability": 0.8518 + }, + { + "start": 1831.56, + "end": 1833.42, + "probability": 0.9885 + }, + { + "start": 1835.52, + "end": 1837.38, + "probability": 0.8812 + }, + { + "start": 1837.66, + "end": 1838.73, + "probability": 0.9265 + }, + { + "start": 1839.28, + "end": 1839.66, + "probability": 0.6843 + }, + { + "start": 1840.02, + "end": 1840.56, + "probability": 0.8218 + }, + { + "start": 1840.62, + "end": 1842.24, + "probability": 0.6867 + }, + { + "start": 1842.36, + "end": 1845.14, + "probability": 0.9717 + }, + { + "start": 1845.14, + "end": 1847.36, + "probability": 0.8254 + }, + { + "start": 1848.28, + "end": 1853.4, + "probability": 0.9817 + }, + { + "start": 1854.38, + "end": 1856.02, + "probability": 0.9867 + }, + { + "start": 1856.24, + "end": 1857.62, + "probability": 0.6611 + }, + { + "start": 1857.88, + "end": 1859.48, + "probability": 0.9118 + }, + { + "start": 1860.18, + "end": 1861.86, + "probability": 0.9858 + }, + { + "start": 1862.96, + "end": 1867.32, + "probability": 0.9723 + }, + { + "start": 1868.1, + "end": 1869.26, + "probability": 0.5362 + }, + { + "start": 1869.66, + "end": 1871.12, + "probability": 0.8914 + }, + { + "start": 1871.3, + "end": 1873.76, + "probability": 0.9919 + }, + { + "start": 1874.5, + "end": 1877.33, + "probability": 0.9381 + }, + { + "start": 1877.62, + "end": 1878.22, + "probability": 0.9652 + }, + { + "start": 1878.54, + "end": 1879.08, + "probability": 0.9785 + }, + { + "start": 1879.5, + "end": 1880.02, + "probability": 0.9857 + }, + { + "start": 1880.38, + "end": 1880.92, + "probability": 0.7295 + }, + { + "start": 1881.88, + "end": 1882.88, + "probability": 0.98 + }, + { + "start": 1884.42, + "end": 1886.75, + "probability": 0.8553 + }, + { + "start": 1887.7, + "end": 1888.76, + "probability": 0.6164 + }, + { + "start": 1888.78, + "end": 1890.64, + "probability": 0.9781 + }, + { + "start": 1892.04, + "end": 1895.84, + "probability": 0.9633 + }, + { + "start": 1896.22, + "end": 1898.56, + "probability": 0.9773 + }, + { + "start": 1899.94, + "end": 1901.46, + "probability": 0.73 + }, + { + "start": 1903.54, + "end": 1906.4, + "probability": 0.9431 + }, + { + "start": 1906.58, + "end": 1908.16, + "probability": 0.087 + }, + { + "start": 1909.42, + "end": 1912.21, + "probability": 0.9248 + }, + { + "start": 1913.64, + "end": 1916.1, + "probability": 0.9874 + }, + { + "start": 1916.9, + "end": 1917.82, + "probability": 0.9926 + }, + { + "start": 1920.84, + "end": 1921.66, + "probability": 0.1569 + }, + { + "start": 1922.68, + "end": 1923.14, + "probability": 0.3824 + }, + { + "start": 1924.2, + "end": 1925.5, + "probability": 0.9768 + }, + { + "start": 1925.76, + "end": 1927.3, + "probability": 0.9653 + }, + { + "start": 1929.16, + "end": 1932.9, + "probability": 0.826 + }, + { + "start": 1933.38, + "end": 1934.34, + "probability": 0.9783 + }, + { + "start": 1934.46, + "end": 1935.46, + "probability": 0.5108 + }, + { + "start": 1935.66, + "end": 1935.98, + "probability": 0.5931 + }, + { + "start": 1936.4, + "end": 1938.06, + "probability": 0.9079 + }, + { + "start": 1939.14, + "end": 1939.88, + "probability": 0.7045 + }, + { + "start": 1940.48, + "end": 1941.28, + "probability": 0.6011 + }, + { + "start": 1942.18, + "end": 1944.72, + "probability": 0.9482 + }, + { + "start": 1945.48, + "end": 1947.32, + "probability": 0.9862 + }, + { + "start": 1948.46, + "end": 1949.98, + "probability": 0.8591 + }, + { + "start": 1950.6, + "end": 1953.5, + "probability": 0.9784 + }, + { + "start": 1954.48, + "end": 1957.14, + "probability": 0.8036 + }, + { + "start": 1957.52, + "end": 1958.84, + "probability": 0.9687 + }, + { + "start": 1959.92, + "end": 1960.78, + "probability": 0.7524 + }, + { + "start": 1960.84, + "end": 1965.9, + "probability": 0.9647 + }, + { + "start": 1966.74, + "end": 1970.46, + "probability": 0.9375 + }, + { + "start": 1971.0, + "end": 1972.06, + "probability": 0.9618 + }, + { + "start": 1972.42, + "end": 1973.78, + "probability": 0.9178 + }, + { + "start": 1973.98, + "end": 1974.68, + "probability": 0.654 + }, + { + "start": 1975.1, + "end": 1976.54, + "probability": 0.7255 + }, + { + "start": 1977.32, + "end": 1982.74, + "probability": 0.7809 + }, + { + "start": 1983.28, + "end": 1986.78, + "probability": 0.9438 + }, + { + "start": 1986.84, + "end": 1990.08, + "probability": 0.9514 + }, + { + "start": 1991.2, + "end": 1994.18, + "probability": 0.96 + }, + { + "start": 1994.94, + "end": 1997.54, + "probability": 0.939 + }, + { + "start": 1997.9, + "end": 1999.46, + "probability": 0.9037 + }, + { + "start": 1999.84, + "end": 2000.6, + "probability": 0.6072 + }, + { + "start": 2000.72, + "end": 2001.14, + "probability": 0.9026 + }, + { + "start": 2002.08, + "end": 2006.72, + "probability": 0.9297 + }, + { + "start": 2006.74, + "end": 2008.68, + "probability": 0.4036 + }, + { + "start": 2009.56, + "end": 2013.66, + "probability": 0.901 + }, + { + "start": 2013.9, + "end": 2015.94, + "probability": 0.7368 + }, + { + "start": 2016.1, + "end": 2017.4, + "probability": 0.6668 + }, + { + "start": 2017.48, + "end": 2017.72, + "probability": 0.5375 + }, + { + "start": 2017.72, + "end": 2018.82, + "probability": 0.9685 + }, + { + "start": 2019.16, + "end": 2021.72, + "probability": 0.9902 + }, + { + "start": 2021.84, + "end": 2022.0, + "probability": 0.0017 + }, + { + "start": 2024.5, + "end": 2028.9, + "probability": 0.9725 + }, + { + "start": 2029.08, + "end": 2031.52, + "probability": 0.6509 + }, + { + "start": 2033.81, + "end": 2036.3, + "probability": 0.9817 + }, + { + "start": 2037.76, + "end": 2042.68, + "probability": 0.9946 + }, + { + "start": 2043.56, + "end": 2044.72, + "probability": 0.9985 + }, + { + "start": 2044.9, + "end": 2046.34, + "probability": 0.9979 + }, + { + "start": 2046.48, + "end": 2047.4, + "probability": 0.9873 + }, + { + "start": 2047.5, + "end": 2050.04, + "probability": 0.8273 + }, + { + "start": 2050.28, + "end": 2052.32, + "probability": 0.9477 + }, + { + "start": 2052.8, + "end": 2055.4, + "probability": 0.9596 + }, + { + "start": 2055.94, + "end": 2059.2, + "probability": 0.9868 + }, + { + "start": 2060.1, + "end": 2062.08, + "probability": 0.713 + }, + { + "start": 2062.64, + "end": 2065.06, + "probability": 0.8988 + }, + { + "start": 2065.78, + "end": 2069.52, + "probability": 0.9824 + }, + { + "start": 2069.92, + "end": 2072.12, + "probability": 0.9929 + }, + { + "start": 2072.16, + "end": 2075.3, + "probability": 0.948 + }, + { + "start": 2076.18, + "end": 2077.04, + "probability": 0.9506 + }, + { + "start": 2078.38, + "end": 2080.06, + "probability": 0.8719 + }, + { + "start": 2080.14, + "end": 2081.18, + "probability": 0.6156 + }, + { + "start": 2081.8, + "end": 2085.98, + "probability": 0.7543 + }, + { + "start": 2086.04, + "end": 2087.22, + "probability": 0.7834 + }, + { + "start": 2088.89, + "end": 2090.04, + "probability": 0.2909 + }, + { + "start": 2090.76, + "end": 2094.36, + "probability": 0.9536 + }, + { + "start": 2094.44, + "end": 2098.0, + "probability": 0.9729 + }, + { + "start": 2098.34, + "end": 2099.58, + "probability": 0.9343 + }, + { + "start": 2099.96, + "end": 2102.28, + "probability": 0.9908 + }, + { + "start": 2102.46, + "end": 2107.22, + "probability": 0.9302 + }, + { + "start": 2107.72, + "end": 2108.52, + "probability": 0.7435 + }, + { + "start": 2108.88, + "end": 2109.9, + "probability": 0.7158 + }, + { + "start": 2110.28, + "end": 2113.12, + "probability": 0.8372 + }, + { + "start": 2113.18, + "end": 2114.26, + "probability": 0.6608 + }, + { + "start": 2115.42, + "end": 2116.67, + "probability": 0.5075 + }, + { + "start": 2118.58, + "end": 2118.6, + "probability": 0.1085 + }, + { + "start": 2118.6, + "end": 2119.38, + "probability": 0.4273 + }, + { + "start": 2119.38, + "end": 2121.98, + "probability": 0.6047 + }, + { + "start": 2121.98, + "end": 2122.8, + "probability": 0.2047 + }, + { + "start": 2123.26, + "end": 2128.04, + "probability": 0.6841 + }, + { + "start": 2128.04, + "end": 2128.67, + "probability": 0.897 + }, + { + "start": 2130.37, + "end": 2132.62, + "probability": 0.7526 + }, + { + "start": 2133.14, + "end": 2136.2, + "probability": 0.9788 + }, + { + "start": 2136.62, + "end": 2138.46, + "probability": 0.98 + }, + { + "start": 2139.02, + "end": 2141.76, + "probability": 0.9506 + }, + { + "start": 2142.54, + "end": 2144.0, + "probability": 0.9679 + }, + { + "start": 2144.84, + "end": 2148.48, + "probability": 0.9976 + }, + { + "start": 2148.86, + "end": 2149.86, + "probability": 0.8715 + }, + { + "start": 2149.96, + "end": 2151.32, + "probability": 0.8233 + }, + { + "start": 2151.7, + "end": 2152.92, + "probability": 0.8025 + }, + { + "start": 2153.0, + "end": 2156.5, + "probability": 0.9802 + }, + { + "start": 2156.88, + "end": 2157.72, + "probability": 0.8316 + }, + { + "start": 2157.9, + "end": 2159.18, + "probability": 0.7936 + }, + { + "start": 2159.56, + "end": 2162.4, + "probability": 0.9975 + }, + { + "start": 2162.84, + "end": 2167.44, + "probability": 0.9899 + }, + { + "start": 2168.54, + "end": 2169.32, + "probability": 0.9822 + }, + { + "start": 2169.87, + "end": 2173.62, + "probability": 0.9978 + }, + { + "start": 2174.08, + "end": 2177.08, + "probability": 0.9948 + }, + { + "start": 2177.46, + "end": 2178.22, + "probability": 0.7121 + }, + { + "start": 2178.78, + "end": 2179.9, + "probability": 0.8739 + }, + { + "start": 2179.98, + "end": 2182.0, + "probability": 0.98 + }, + { + "start": 2182.34, + "end": 2183.26, + "probability": 0.9263 + }, + { + "start": 2183.74, + "end": 2184.38, + "probability": 0.8613 + }, + { + "start": 2184.48, + "end": 2187.92, + "probability": 0.9911 + }, + { + "start": 2188.62, + "end": 2192.12, + "probability": 0.9703 + }, + { + "start": 2192.28, + "end": 2192.72, + "probability": 0.7818 + }, + { + "start": 2193.86, + "end": 2194.56, + "probability": 0.7428 + }, + { + "start": 2195.22, + "end": 2196.96, + "probability": 0.9695 + }, + { + "start": 2216.14, + "end": 2217.38, + "probability": 0.6449 + }, + { + "start": 2217.94, + "end": 2219.66, + "probability": 0.7552 + }, + { + "start": 2220.96, + "end": 2224.16, + "probability": 0.9828 + }, + { + "start": 2225.08, + "end": 2228.88, + "probability": 0.981 + }, + { + "start": 2229.58, + "end": 2231.76, + "probability": 0.9925 + }, + { + "start": 2232.28, + "end": 2234.64, + "probability": 0.9548 + }, + { + "start": 2235.7, + "end": 2239.72, + "probability": 0.9852 + }, + { + "start": 2240.4, + "end": 2244.54, + "probability": 0.8523 + }, + { + "start": 2245.78, + "end": 2246.9, + "probability": 0.468 + }, + { + "start": 2247.4, + "end": 2250.32, + "probability": 0.9984 + }, + { + "start": 2251.4, + "end": 2252.3, + "probability": 0.9883 + }, + { + "start": 2252.4, + "end": 2253.72, + "probability": 0.5721 + }, + { + "start": 2254.22, + "end": 2256.54, + "probability": 0.8203 + }, + { + "start": 2257.1, + "end": 2260.0, + "probability": 0.8758 + }, + { + "start": 2260.14, + "end": 2260.82, + "probability": 0.8744 + }, + { + "start": 2261.26, + "end": 2265.04, + "probability": 0.9761 + }, + { + "start": 2265.68, + "end": 2268.64, + "probability": 0.9504 + }, + { + "start": 2269.88, + "end": 2272.68, + "probability": 0.8088 + }, + { + "start": 2273.32, + "end": 2275.16, + "probability": 0.9048 + }, + { + "start": 2275.92, + "end": 2278.8, + "probability": 0.9771 + }, + { + "start": 2279.16, + "end": 2280.9, + "probability": 0.9854 + }, + { + "start": 2281.76, + "end": 2284.96, + "probability": 0.9314 + }, + { + "start": 2285.96, + "end": 2287.2, + "probability": 0.4806 + }, + { + "start": 2287.32, + "end": 2287.32, + "probability": 0.6993 + }, + { + "start": 2287.32, + "end": 2289.2, + "probability": 0.915 + }, + { + "start": 2289.88, + "end": 2290.54, + "probability": 0.6293 + }, + { + "start": 2291.6, + "end": 2293.74, + "probability": 0.983 + }, + { + "start": 2294.42, + "end": 2295.36, + "probability": 0.9944 + }, + { + "start": 2295.4, + "end": 2296.94, + "probability": 0.7724 + }, + { + "start": 2297.18, + "end": 2298.36, + "probability": 0.8042 + }, + { + "start": 2299.08, + "end": 2301.42, + "probability": 0.9672 + }, + { + "start": 2302.38, + "end": 2307.6, + "probability": 0.9526 + }, + { + "start": 2308.78, + "end": 2309.32, + "probability": 0.5265 + }, + { + "start": 2309.92, + "end": 2312.88, + "probability": 0.9723 + }, + { + "start": 2313.4, + "end": 2315.7, + "probability": 0.9241 + }, + { + "start": 2316.66, + "end": 2317.22, + "probability": 0.7123 + }, + { + "start": 2317.78, + "end": 2319.54, + "probability": 0.9933 + }, + { + "start": 2320.48, + "end": 2322.28, + "probability": 0.9966 + }, + { + "start": 2322.42, + "end": 2327.48, + "probability": 0.9545 + }, + { + "start": 2327.92, + "end": 2329.32, + "probability": 0.6468 + }, + { + "start": 2330.08, + "end": 2330.82, + "probability": 0.9179 + }, + { + "start": 2331.66, + "end": 2332.7, + "probability": 0.7419 + }, + { + "start": 2332.94, + "end": 2335.12, + "probability": 0.861 + }, + { + "start": 2335.6, + "end": 2337.98, + "probability": 0.9934 + }, + { + "start": 2339.54, + "end": 2342.12, + "probability": 0.9519 + }, + { + "start": 2342.56, + "end": 2345.56, + "probability": 0.9736 + }, + { + "start": 2346.54, + "end": 2350.74, + "probability": 0.9663 + }, + { + "start": 2351.72, + "end": 2355.52, + "probability": 0.9855 + }, + { + "start": 2357.02, + "end": 2358.82, + "probability": 0.981 + }, + { + "start": 2359.18, + "end": 2359.9, + "probability": 0.636 + }, + { + "start": 2359.98, + "end": 2362.88, + "probability": 0.9875 + }, + { + "start": 2364.02, + "end": 2367.06, + "probability": 0.9871 + }, + { + "start": 2368.34, + "end": 2374.44, + "probability": 0.9875 + }, + { + "start": 2374.84, + "end": 2376.02, + "probability": 0.8385 + }, + { + "start": 2376.48, + "end": 2378.16, + "probability": 0.9824 + }, + { + "start": 2379.18, + "end": 2379.7, + "probability": 0.6579 + }, + { + "start": 2380.36, + "end": 2383.58, + "probability": 0.6909 + }, + { + "start": 2384.8, + "end": 2388.24, + "probability": 0.7031 + }, + { + "start": 2388.58, + "end": 2391.78, + "probability": 0.834 + }, + { + "start": 2392.08, + "end": 2393.74, + "probability": 0.9845 + }, + { + "start": 2394.78, + "end": 2397.48, + "probability": 0.9863 + }, + { + "start": 2398.5, + "end": 2399.56, + "probability": 0.5067 + }, + { + "start": 2400.32, + "end": 2403.18, + "probability": 0.978 + }, + { + "start": 2405.04, + "end": 2407.94, + "probability": 0.908 + }, + { + "start": 2408.64, + "end": 2411.86, + "probability": 0.7579 + }, + { + "start": 2412.58, + "end": 2414.28, + "probability": 0.9599 + }, + { + "start": 2415.3, + "end": 2417.72, + "probability": 0.9565 + }, + { + "start": 2418.34, + "end": 2422.58, + "probability": 0.8325 + }, + { + "start": 2423.18, + "end": 2429.52, + "probability": 0.8879 + }, + { + "start": 2430.54, + "end": 2433.02, + "probability": 0.9279 + }, + { + "start": 2434.64, + "end": 2436.4, + "probability": 0.957 + }, + { + "start": 2437.24, + "end": 2439.78, + "probability": 0.8385 + }, + { + "start": 2440.74, + "end": 2441.64, + "probability": 0.6983 + }, + { + "start": 2442.7, + "end": 2443.02, + "probability": 0.5232 + }, + { + "start": 2443.18, + "end": 2446.18, + "probability": 0.9404 + }, + { + "start": 2446.88, + "end": 2449.76, + "probability": 0.8599 + }, + { + "start": 2450.58, + "end": 2451.62, + "probability": 0.8346 + }, + { + "start": 2452.64, + "end": 2456.98, + "probability": 0.9567 + }, + { + "start": 2457.04, + "end": 2458.4, + "probability": 0.6849 + }, + { + "start": 2458.4, + "end": 2461.31, + "probability": 0.9565 + }, + { + "start": 2461.54, + "end": 2462.8, + "probability": 0.9705 + }, + { + "start": 2462.86, + "end": 2466.18, + "probability": 0.7325 + }, + { + "start": 2466.24, + "end": 2469.3, + "probability": 0.9471 + }, + { + "start": 2469.86, + "end": 2472.06, + "probability": 0.9456 + }, + { + "start": 2472.2, + "end": 2472.9, + "probability": 0.7439 + }, + { + "start": 2473.82, + "end": 2474.3, + "probability": 0.5851 + }, + { + "start": 2474.32, + "end": 2475.42, + "probability": 0.8679 + }, + { + "start": 2475.52, + "end": 2478.02, + "probability": 0.9535 + }, + { + "start": 2478.02, + "end": 2481.1, + "probability": 0.8984 + }, + { + "start": 2481.68, + "end": 2486.4, + "probability": 0.9719 + }, + { + "start": 2486.92, + "end": 2490.8, + "probability": 0.9869 + }, + { + "start": 2491.18, + "end": 2491.48, + "probability": 0.8107 + }, + { + "start": 2492.18, + "end": 2492.94, + "probability": 0.6231 + }, + { + "start": 2494.5, + "end": 2496.94, + "probability": 0.7922 + }, + { + "start": 2497.06, + "end": 2497.22, + "probability": 0.0692 + }, + { + "start": 2497.22, + "end": 2497.96, + "probability": 0.2855 + }, + { + "start": 2498.18, + "end": 2499.34, + "probability": 0.4794 + }, + { + "start": 2499.5, + "end": 2503.32, + "probability": 0.7232 + }, + { + "start": 2503.46, + "end": 2505.08, + "probability": 0.6631 + }, + { + "start": 2505.56, + "end": 2506.08, + "probability": 0.5366 + }, + { + "start": 2507.28, + "end": 2509.9, + "probability": 0.5528 + }, + { + "start": 2510.02, + "end": 2510.44, + "probability": 0.6022 + }, + { + "start": 2510.7, + "end": 2511.0, + "probability": 0.3325 + }, + { + "start": 2511.32, + "end": 2514.0, + "probability": 0.8543 + }, + { + "start": 2514.9, + "end": 2519.7, + "probability": 0.6399 + }, + { + "start": 2547.8, + "end": 2548.77, + "probability": 0.9386 + }, + { + "start": 2549.24, + "end": 2550.66, + "probability": 0.9813 + }, + { + "start": 2550.94, + "end": 2551.6, + "probability": 0.6593 + }, + { + "start": 2553.22, + "end": 2555.9, + "probability": 0.9808 + }, + { + "start": 2557.68, + "end": 2560.28, + "probability": 0.9987 + }, + { + "start": 2561.12, + "end": 2563.24, + "probability": 0.9902 + }, + { + "start": 2564.78, + "end": 2568.98, + "probability": 0.9954 + }, + { + "start": 2569.48, + "end": 2571.28, + "probability": 0.9807 + }, + { + "start": 2571.92, + "end": 2575.72, + "probability": 0.9295 + }, + { + "start": 2576.54, + "end": 2578.12, + "probability": 0.9446 + }, + { + "start": 2579.94, + "end": 2581.94, + "probability": 0.998 + }, + { + "start": 2582.96, + "end": 2584.46, + "probability": 0.9869 + }, + { + "start": 2585.08, + "end": 2587.58, + "probability": 0.9986 + }, + { + "start": 2587.66, + "end": 2588.84, + "probability": 0.7751 + }, + { + "start": 2590.0, + "end": 2590.69, + "probability": 0.9057 + }, + { + "start": 2591.54, + "end": 2594.34, + "probability": 0.9775 + }, + { + "start": 2596.1, + "end": 2600.46, + "probability": 0.9624 + }, + { + "start": 2601.66, + "end": 2602.32, + "probability": 0.714 + }, + { + "start": 2603.96, + "end": 2604.88, + "probability": 0.0445 + }, + { + "start": 2605.82, + "end": 2608.08, + "probability": 0.7598 + }, + { + "start": 2608.82, + "end": 2609.04, + "probability": 0.6838 + }, + { + "start": 2610.02, + "end": 2612.14, + "probability": 0.7876 + }, + { + "start": 2612.84, + "end": 2613.96, + "probability": 0.9163 + }, + { + "start": 2614.46, + "end": 2615.9, + "probability": 0.9724 + }, + { + "start": 2619.42, + "end": 2623.08, + "probability": 0.5004 + }, + { + "start": 2624.18, + "end": 2625.43, + "probability": 0.8204 + }, + { + "start": 2626.26, + "end": 2627.1, + "probability": 0.8697 + }, + { + "start": 2627.64, + "end": 2630.14, + "probability": 0.9698 + }, + { + "start": 2631.14, + "end": 2633.4, + "probability": 0.892 + }, + { + "start": 2635.1, + "end": 2636.1, + "probability": 0.6576 + }, + { + "start": 2636.86, + "end": 2637.78, + "probability": 0.766 + }, + { + "start": 2639.08, + "end": 2640.14, + "probability": 0.9609 + }, + { + "start": 2640.58, + "end": 2643.74, + "probability": 0.9717 + }, + { + "start": 2644.68, + "end": 2647.3, + "probability": 0.9961 + }, + { + "start": 2648.84, + "end": 2650.14, + "probability": 0.8011 + }, + { + "start": 2650.9, + "end": 2651.8, + "probability": 0.8295 + }, + { + "start": 2653.41, + "end": 2655.26, + "probability": 0.7861 + }, + { + "start": 2659.86, + "end": 2660.38, + "probability": 0.5142 + }, + { + "start": 2660.38, + "end": 2660.38, + "probability": 0.1324 + }, + { + "start": 2660.38, + "end": 2660.38, + "probability": 0.7894 + }, + { + "start": 2660.38, + "end": 2660.38, + "probability": 0.0678 + }, + { + "start": 2660.8, + "end": 2663.92, + "probability": 0.9194 + }, + { + "start": 2665.14, + "end": 2667.86, + "probability": 0.9814 + }, + { + "start": 2668.12, + "end": 2670.28, + "probability": 0.9678 + }, + { + "start": 2670.48, + "end": 2671.42, + "probability": 0.9744 + }, + { + "start": 2672.72, + "end": 2674.62, + "probability": 0.6944 + }, + { + "start": 2675.46, + "end": 2677.66, + "probability": 0.8528 + }, + { + "start": 2678.36, + "end": 2680.72, + "probability": 0.9585 + }, + { + "start": 2681.26, + "end": 2683.26, + "probability": 0.9891 + }, + { + "start": 2685.4, + "end": 2687.42, + "probability": 0.9585 + }, + { + "start": 2688.04, + "end": 2688.68, + "probability": 0.2128 + }, + { + "start": 2689.74, + "end": 2692.26, + "probability": 0.9762 + }, + { + "start": 2693.72, + "end": 2694.18, + "probability": 0.66 + }, + { + "start": 2695.04, + "end": 2695.28, + "probability": 0.794 + }, + { + "start": 2696.14, + "end": 2697.61, + "probability": 0.5411 + }, + { + "start": 2699.18, + "end": 2699.61, + "probability": 0.5444 + }, + { + "start": 2699.94, + "end": 2702.38, + "probability": 0.9876 + }, + { + "start": 2702.92, + "end": 2705.08, + "probability": 0.98 + }, + { + "start": 2706.56, + "end": 2706.98, + "probability": 0.7429 + }, + { + "start": 2707.54, + "end": 2711.06, + "probability": 0.895 + }, + { + "start": 2711.7, + "end": 2713.54, + "probability": 0.9344 + }, + { + "start": 2714.24, + "end": 2715.4, + "probability": 0.9504 + }, + { + "start": 2716.66, + "end": 2720.54, + "probability": 0.5616 + }, + { + "start": 2721.54, + "end": 2724.68, + "probability": 0.8604 + }, + { + "start": 2726.04, + "end": 2730.28, + "probability": 0.8634 + }, + { + "start": 2731.3, + "end": 2733.34, + "probability": 0.9731 + }, + { + "start": 2733.8, + "end": 2736.02, + "probability": 0.9881 + }, + { + "start": 2737.66, + "end": 2742.52, + "probability": 0.8872 + }, + { + "start": 2743.06, + "end": 2748.04, + "probability": 0.9912 + }, + { + "start": 2748.76, + "end": 2752.04, + "probability": 0.9912 + }, + { + "start": 2752.74, + "end": 2756.2, + "probability": 0.5846 + }, + { + "start": 2756.34, + "end": 2757.12, + "probability": 0.7373 + }, + { + "start": 2757.52, + "end": 2758.02, + "probability": 0.7679 + }, + { + "start": 2758.74, + "end": 2760.5, + "probability": 0.6649 + }, + { + "start": 2761.2, + "end": 2762.78, + "probability": 0.9807 + }, + { + "start": 2763.88, + "end": 2766.48, + "probability": 0.7976 + }, + { + "start": 2767.62, + "end": 2770.96, + "probability": 0.9745 + }, + { + "start": 2772.96, + "end": 2777.78, + "probability": 0.7931 + }, + { + "start": 2778.36, + "end": 2780.46, + "probability": 0.9734 + }, + { + "start": 2781.88, + "end": 2782.62, + "probability": 0.6715 + }, + { + "start": 2783.46, + "end": 2784.3, + "probability": 0.7698 + }, + { + "start": 2784.8, + "end": 2787.38, + "probability": 0.9942 + }, + { + "start": 2787.88, + "end": 2789.1, + "probability": 0.8557 + }, + { + "start": 2790.58, + "end": 2793.38, + "probability": 0.7395 + }, + { + "start": 2794.68, + "end": 2795.4, + "probability": 0.9524 + }, + { + "start": 2796.02, + "end": 2797.82, + "probability": 0.4082 + }, + { + "start": 2798.4, + "end": 2801.44, + "probability": 0.9951 + }, + { + "start": 2802.56, + "end": 2803.62, + "probability": 0.926 + }, + { + "start": 2805.08, + "end": 2806.76, + "probability": 0.7999 + }, + { + "start": 2807.7, + "end": 2809.79, + "probability": 0.948 + }, + { + "start": 2810.58, + "end": 2812.72, + "probability": 0.8145 + }, + { + "start": 2814.48, + "end": 2816.34, + "probability": 0.7937 + }, + { + "start": 2817.06, + "end": 2819.08, + "probability": 0.6894 + }, + { + "start": 2819.82, + "end": 2823.18, + "probability": 0.9325 + }, + { + "start": 2823.9, + "end": 2825.64, + "probability": 0.9472 + }, + { + "start": 2826.22, + "end": 2829.3, + "probability": 0.7388 + }, + { + "start": 2831.16, + "end": 2832.08, + "probability": 0.4562 + }, + { + "start": 2832.2, + "end": 2833.2, + "probability": 0.6493 + }, + { + "start": 2833.2, + "end": 2838.92, + "probability": 0.9806 + }, + { + "start": 2839.86, + "end": 2840.56, + "probability": 0.6077 + }, + { + "start": 2841.1, + "end": 2841.4, + "probability": 0.653 + }, + { + "start": 2842.0, + "end": 2845.69, + "probability": 0.9146 + }, + { + "start": 2847.38, + "end": 2850.84, + "probability": 0.9807 + }, + { + "start": 2852.74, + "end": 2853.06, + "probability": 0.5908 + }, + { + "start": 2854.32, + "end": 2855.34, + "probability": 0.8933 + }, + { + "start": 2856.08, + "end": 2857.38, + "probability": 0.9888 + }, + { + "start": 2857.96, + "end": 2858.76, + "probability": 0.8654 + }, + { + "start": 2860.56, + "end": 2863.9, + "probability": 0.9878 + }, + { + "start": 2864.82, + "end": 2866.66, + "probability": 0.9927 + }, + { + "start": 2866.84, + "end": 2869.94, + "probability": 0.8662 + }, + { + "start": 2870.74, + "end": 2871.74, + "probability": 0.9946 + }, + { + "start": 2872.94, + "end": 2874.12, + "probability": 0.9047 + }, + { + "start": 2875.7, + "end": 2878.02, + "probability": 0.9412 + }, + { + "start": 2878.4, + "end": 2880.26, + "probability": 0.9941 + }, + { + "start": 2880.94, + "end": 2883.28, + "probability": 0.9856 + }, + { + "start": 2884.12, + "end": 2885.6, + "probability": 0.9872 + }, + { + "start": 2886.14, + "end": 2886.46, + "probability": 0.9469 + }, + { + "start": 2887.74, + "end": 2888.56, + "probability": 0.9456 + }, + { + "start": 2890.12, + "end": 2891.76, + "probability": 0.8696 + }, + { + "start": 2892.16, + "end": 2894.17, + "probability": 0.9589 + }, + { + "start": 2894.98, + "end": 2897.76, + "probability": 0.9739 + }, + { + "start": 2898.28, + "end": 2901.38, + "probability": 0.9919 + }, + { + "start": 2901.82, + "end": 2902.84, + "probability": 0.886 + }, + { + "start": 2903.34, + "end": 2904.34, + "probability": 0.9683 + }, + { + "start": 2905.26, + "end": 2905.9, + "probability": 0.2517 + }, + { + "start": 2906.08, + "end": 2906.44, + "probability": 0.72 + }, + { + "start": 2906.48, + "end": 2906.94, + "probability": 0.8289 + }, + { + "start": 2907.14, + "end": 2908.75, + "probability": 0.9919 + }, + { + "start": 2908.92, + "end": 2910.34, + "probability": 0.8424 + }, + { + "start": 2910.5, + "end": 2911.58, + "probability": 0.4918 + }, + { + "start": 2911.66, + "end": 2913.24, + "probability": 0.8239 + }, + { + "start": 2913.66, + "end": 2915.74, + "probability": 0.1022 + }, + { + "start": 2915.92, + "end": 2916.0, + "probability": 0.0424 + }, + { + "start": 2916.0, + "end": 2916.6, + "probability": 0.2589 + }, + { + "start": 2916.7, + "end": 2920.0, + "probability": 0.7795 + }, + { + "start": 2920.1, + "end": 2920.58, + "probability": 0.0021 + }, + { + "start": 2920.7, + "end": 2922.32, + "probability": 0.9575 + }, + { + "start": 2922.5, + "end": 2924.06, + "probability": 0.0292 + }, + { + "start": 2924.16, + "end": 2925.72, + "probability": 0.0184 + }, + { + "start": 2926.26, + "end": 2926.26, + "probability": 0.3014 + }, + { + "start": 2926.26, + "end": 2926.72, + "probability": 0.5001 + }, + { + "start": 2926.84, + "end": 2928.54, + "probability": 0.7264 + }, + { + "start": 2928.86, + "end": 2931.56, + "probability": 0.5911 + }, + { + "start": 2932.62, + "end": 2933.2, + "probability": 0.7637 + }, + { + "start": 2933.48, + "end": 2933.88, + "probability": 0.769 + }, + { + "start": 2934.76, + "end": 2939.02, + "probability": 0.9086 + }, + { + "start": 2939.72, + "end": 2941.72, + "probability": 0.9992 + }, + { + "start": 2942.3, + "end": 2945.3, + "probability": 0.9935 + }, + { + "start": 2946.12, + "end": 2949.38, + "probability": 0.9974 + }, + { + "start": 2950.88, + "end": 2953.82, + "probability": 0.9689 + }, + { + "start": 2954.04, + "end": 2955.42, + "probability": 0.999 + }, + { + "start": 2955.62, + "end": 2956.76, + "probability": 0.9961 + }, + { + "start": 2957.62, + "end": 2960.58, + "probability": 0.9951 + }, + { + "start": 2960.84, + "end": 2963.08, + "probability": 0.9108 + }, + { + "start": 2963.62, + "end": 2965.5, + "probability": 0.9857 + }, + { + "start": 2966.02, + "end": 2967.22, + "probability": 0.9276 + }, + { + "start": 2967.56, + "end": 2969.4, + "probability": 0.9172 + }, + { + "start": 2970.12, + "end": 2973.68, + "probability": 0.9932 + }, + { + "start": 2974.32, + "end": 2977.66, + "probability": 0.9852 + }, + { + "start": 2978.3, + "end": 2984.44, + "probability": 0.9889 + }, + { + "start": 2985.06, + "end": 2987.58, + "probability": 0.9923 + }, + { + "start": 2987.58, + "end": 2990.29, + "probability": 0.9939 + }, + { + "start": 2991.68, + "end": 2995.36, + "probability": 0.9749 + }, + { + "start": 2995.48, + "end": 2996.26, + "probability": 0.9557 + }, + { + "start": 2998.2, + "end": 3000.74, + "probability": 0.9878 + }, + { + "start": 3000.98, + "end": 3002.98, + "probability": 0.9675 + }, + { + "start": 3003.5, + "end": 3006.06, + "probability": 0.9981 + }, + { + "start": 3006.58, + "end": 3008.04, + "probability": 0.693 + }, + { + "start": 3008.36, + "end": 3010.7, + "probability": 0.9507 + }, + { + "start": 3011.16, + "end": 3013.34, + "probability": 0.9158 + }, + { + "start": 3014.22, + "end": 3015.24, + "probability": 0.707 + }, + { + "start": 3015.9, + "end": 3017.1, + "probability": 0.8543 + }, + { + "start": 3017.64, + "end": 3021.12, + "probability": 0.9956 + }, + { + "start": 3021.94, + "end": 3025.04, + "probability": 0.9603 + }, + { + "start": 3025.1, + "end": 3026.88, + "probability": 0.9362 + }, + { + "start": 3027.96, + "end": 3031.22, + "probability": 0.9462 + }, + { + "start": 3031.68, + "end": 3035.34, + "probability": 0.9717 + }, + { + "start": 3035.92, + "end": 3037.0, + "probability": 0.9972 + }, + { + "start": 3037.74, + "end": 3038.94, + "probability": 0.6661 + }, + { + "start": 3039.44, + "end": 3044.1, + "probability": 0.9982 + }, + { + "start": 3044.1, + "end": 3046.72, + "probability": 0.8236 + }, + { + "start": 3047.12, + "end": 3048.9, + "probability": 0.7848 + }, + { + "start": 3049.2, + "end": 3049.72, + "probability": 0.9072 + }, + { + "start": 3049.88, + "end": 3051.26, + "probability": 0.647 + }, + { + "start": 3051.54, + "end": 3054.5, + "probability": 0.9602 + }, + { + "start": 3055.06, + "end": 3055.86, + "probability": 0.9088 + }, + { + "start": 3056.4, + "end": 3057.68, + "probability": 0.9929 + }, + { + "start": 3058.66, + "end": 3060.79, + "probability": 0.9812 + }, + { + "start": 3061.62, + "end": 3064.58, + "probability": 0.9989 + }, + { + "start": 3065.22, + "end": 3067.0, + "probability": 0.998 + }, + { + "start": 3067.36, + "end": 3067.96, + "probability": 0.9647 + }, + { + "start": 3068.2, + "end": 3069.6, + "probability": 0.9731 + }, + { + "start": 3069.98, + "end": 3071.3, + "probability": 0.7597 + }, + { + "start": 3071.86, + "end": 3076.2, + "probability": 0.9958 + }, + { + "start": 3076.78, + "end": 3077.38, + "probability": 0.7946 + }, + { + "start": 3077.94, + "end": 3078.66, + "probability": 0.9818 + }, + { + "start": 3079.68, + "end": 3081.98, + "probability": 0.8656 + }, + { + "start": 3082.7, + "end": 3083.48, + "probability": 0.7508 + }, + { + "start": 3085.04, + "end": 3087.3, + "probability": 0.7757 + }, + { + "start": 3088.1, + "end": 3092.62, + "probability": 0.9946 + }, + { + "start": 3092.88, + "end": 3099.88, + "probability": 0.9775 + }, + { + "start": 3099.88, + "end": 3106.08, + "probability": 0.9756 + }, + { + "start": 3107.1, + "end": 3108.74, + "probability": 0.9879 + }, + { + "start": 3109.44, + "end": 3114.08, + "probability": 0.9921 + }, + { + "start": 3114.08, + "end": 3119.58, + "probability": 0.9904 + }, + { + "start": 3119.58, + "end": 3124.62, + "probability": 0.9366 + }, + { + "start": 3127.48, + "end": 3128.8, + "probability": 0.1746 + }, + { + "start": 3129.14, + "end": 3129.46, + "probability": 0.9146 + }, + { + "start": 3131.64, + "end": 3132.06, + "probability": 0.307 + }, + { + "start": 3132.36, + "end": 3133.02, + "probability": 0.8038 + }, + { + "start": 3133.42, + "end": 3137.14, + "probability": 0.8826 + }, + { + "start": 3137.86, + "end": 3139.04, + "probability": 0.9614 + }, + { + "start": 3139.14, + "end": 3141.88, + "probability": 0.8882 + }, + { + "start": 3141.92, + "end": 3142.88, + "probability": 0.8778 + }, + { + "start": 3143.5, + "end": 3145.0, + "probability": 0.9723 + }, + { + "start": 3145.54, + "end": 3149.34, + "probability": 0.9573 + }, + { + "start": 3150.14, + "end": 3154.56, + "probability": 0.9797 + }, + { + "start": 3155.24, + "end": 3158.42, + "probability": 0.9927 + }, + { + "start": 3159.28, + "end": 3159.36, + "probability": 0.2819 + }, + { + "start": 3159.36, + "end": 3159.36, + "probability": 0.1413 + }, + { + "start": 3159.36, + "end": 3159.96, + "probability": 0.6882 + }, + { + "start": 3160.3, + "end": 3161.04, + "probability": 0.4956 + }, + { + "start": 3161.2, + "end": 3163.36, + "probability": 0.7267 + }, + { + "start": 3165.76, + "end": 3167.3, + "probability": 0.8947 + }, + { + "start": 3173.6, + "end": 3174.62, + "probability": 0.6615 + }, + { + "start": 3177.62, + "end": 3179.04, + "probability": 0.9041 + }, + { + "start": 3179.84, + "end": 3180.7, + "probability": 0.6637 + }, + { + "start": 3182.12, + "end": 3186.94, + "probability": 0.9926 + }, + { + "start": 3188.02, + "end": 3190.18, + "probability": 0.9962 + }, + { + "start": 3191.54, + "end": 3194.92, + "probability": 0.8487 + }, + { + "start": 3195.6, + "end": 3195.68, + "probability": 0.0319 + }, + { + "start": 3195.68, + "end": 3198.82, + "probability": 0.9575 + }, + { + "start": 3200.06, + "end": 3201.42, + "probability": 0.9961 + }, + { + "start": 3202.6, + "end": 3205.76, + "probability": 0.9944 + }, + { + "start": 3207.34, + "end": 3208.48, + "probability": 0.7642 + }, + { + "start": 3208.9, + "end": 3209.7, + "probability": 0.9033 + }, + { + "start": 3210.12, + "end": 3212.1, + "probability": 0.9866 + }, + { + "start": 3212.46, + "end": 3214.42, + "probability": 0.9874 + }, + { + "start": 3215.0, + "end": 3220.78, + "probability": 0.9461 + }, + { + "start": 3221.34, + "end": 3226.22, + "probability": 0.9649 + }, + { + "start": 3227.06, + "end": 3230.12, + "probability": 0.9966 + }, + { + "start": 3230.4, + "end": 3234.06, + "probability": 0.9997 + }, + { + "start": 3234.74, + "end": 3235.68, + "probability": 0.9976 + }, + { + "start": 3236.22, + "end": 3240.16, + "probability": 0.9908 + }, + { + "start": 3240.98, + "end": 3245.14, + "probability": 0.9741 + }, + { + "start": 3246.1, + "end": 3246.28, + "probability": 0.4212 + }, + { + "start": 3246.56, + "end": 3246.86, + "probability": 0.6362 + }, + { + "start": 3247.16, + "end": 3247.32, + "probability": 0.1409 + }, + { + "start": 3247.68, + "end": 3247.84, + "probability": 0.2441 + }, + { + "start": 3248.28, + "end": 3248.68, + "probability": 0.7403 + }, + { + "start": 3249.48, + "end": 3252.26, + "probability": 0.9173 + }, + { + "start": 3253.1, + "end": 3256.82, + "probability": 0.9987 + }, + { + "start": 3256.84, + "end": 3262.12, + "probability": 0.9289 + }, + { + "start": 3262.7, + "end": 3265.36, + "probability": 0.9811 + }, + { + "start": 3265.96, + "end": 3268.46, + "probability": 0.9272 + }, + { + "start": 3269.12, + "end": 3271.94, + "probability": 0.9902 + }, + { + "start": 3272.22, + "end": 3274.92, + "probability": 0.9982 + }, + { + "start": 3275.74, + "end": 3279.8, + "probability": 0.9897 + }, + { + "start": 3280.54, + "end": 3281.49, + "probability": 0.686 + }, + { + "start": 3282.92, + "end": 3286.62, + "probability": 0.8322 + }, + { + "start": 3286.82, + "end": 3290.02, + "probability": 0.9207 + }, + { + "start": 3291.32, + "end": 3295.16, + "probability": 0.9802 + }, + { + "start": 3296.0, + "end": 3300.17, + "probability": 0.9863 + }, + { + "start": 3301.0, + "end": 3302.96, + "probability": 0.9988 + }, + { + "start": 3303.66, + "end": 3306.34, + "probability": 0.9941 + }, + { + "start": 3307.22, + "end": 3308.8, + "probability": 0.9962 + }, + { + "start": 3309.46, + "end": 3312.24, + "probability": 0.9943 + }, + { + "start": 3313.52, + "end": 3316.5, + "probability": 0.9375 + }, + { + "start": 3317.74, + "end": 3318.46, + "probability": 0.3604 + }, + { + "start": 3319.04, + "end": 3322.54, + "probability": 0.9467 + }, + { + "start": 3324.72, + "end": 3329.36, + "probability": 0.674 + }, + { + "start": 3330.0, + "end": 3332.66, + "probability": 0.9515 + }, + { + "start": 3333.32, + "end": 3335.74, + "probability": 0.9799 + }, + { + "start": 3336.12, + "end": 3338.1, + "probability": 0.9305 + }, + { + "start": 3338.86, + "end": 3342.48, + "probability": 0.7891 + }, + { + "start": 3343.16, + "end": 3346.88, + "probability": 0.986 + }, + { + "start": 3347.78, + "end": 3351.16, + "probability": 0.9912 + }, + { + "start": 3351.28, + "end": 3352.93, + "probability": 0.8502 + }, + { + "start": 3354.3, + "end": 3357.12, + "probability": 0.954 + }, + { + "start": 3358.24, + "end": 3361.18, + "probability": 0.9976 + }, + { + "start": 3361.72, + "end": 3363.9, + "probability": 0.9954 + }, + { + "start": 3365.16, + "end": 3371.08, + "probability": 0.9954 + }, + { + "start": 3371.68, + "end": 3374.26, + "probability": 0.7585 + }, + { + "start": 3374.96, + "end": 3376.06, + "probability": 0.724 + }, + { + "start": 3376.26, + "end": 3376.86, + "probability": 0.7806 + }, + { + "start": 3377.0, + "end": 3379.88, + "probability": 0.9662 + }, + { + "start": 3380.28, + "end": 3382.46, + "probability": 0.7874 + }, + { + "start": 3383.22, + "end": 3384.52, + "probability": 0.8509 + }, + { + "start": 3384.74, + "end": 3389.98, + "probability": 0.9747 + }, + { + "start": 3391.3, + "end": 3395.1, + "probability": 0.9122 + }, + { + "start": 3396.36, + "end": 3397.45, + "probability": 0.9831 + }, + { + "start": 3399.25, + "end": 3401.02, + "probability": 0.6644 + }, + { + "start": 3401.86, + "end": 3403.28, + "probability": 0.9956 + }, + { + "start": 3404.64, + "end": 3406.55, + "probability": 0.9753 + }, + { + "start": 3407.84, + "end": 3408.41, + "probability": 0.9897 + }, + { + "start": 3409.82, + "end": 3412.5, + "probability": 0.9203 + }, + { + "start": 3413.24, + "end": 3414.98, + "probability": 0.9827 + }, + { + "start": 3415.96, + "end": 3416.42, + "probability": 0.9385 + }, + { + "start": 3417.34, + "end": 3422.4, + "probability": 0.7544 + }, + { + "start": 3423.24, + "end": 3428.26, + "probability": 0.7169 + }, + { + "start": 3428.32, + "end": 3430.58, + "probability": 0.8525 + }, + { + "start": 3431.37, + "end": 3439.12, + "probability": 0.9812 + }, + { + "start": 3440.02, + "end": 3446.06, + "probability": 0.946 + }, + { + "start": 3446.7, + "end": 3447.0, + "probability": 0.438 + }, + { + "start": 3447.46, + "end": 3453.34, + "probability": 0.977 + }, + { + "start": 3454.54, + "end": 3458.0, + "probability": 0.9899 + }, + { + "start": 3458.0, + "end": 3460.14, + "probability": 0.9963 + }, + { + "start": 3460.88, + "end": 3461.56, + "probability": 0.7647 + }, + { + "start": 3462.36, + "end": 3466.42, + "probability": 0.9508 + }, + { + "start": 3467.2, + "end": 3469.16, + "probability": 0.8416 + }, + { + "start": 3470.08, + "end": 3472.36, + "probability": 0.9467 + }, + { + "start": 3472.68, + "end": 3473.46, + "probability": 0.824 + }, + { + "start": 3473.96, + "end": 3475.98, + "probability": 0.9342 + }, + { + "start": 3476.32, + "end": 3481.06, + "probability": 0.9878 + }, + { + "start": 3481.14, + "end": 3485.0, + "probability": 0.9989 + }, + { + "start": 3485.6, + "end": 3485.86, + "probability": 0.7274 + }, + { + "start": 3486.52, + "end": 3487.02, + "probability": 0.6883 + }, + { + "start": 3487.02, + "end": 3488.68, + "probability": 0.8625 + }, + { + "start": 3489.96, + "end": 3491.42, + "probability": 0.9297 + }, + { + "start": 3526.04, + "end": 3529.02, + "probability": 0.5893 + }, + { + "start": 3529.86, + "end": 3535.98, + "probability": 0.7643 + }, + { + "start": 3536.82, + "end": 3540.76, + "probability": 0.9595 + }, + { + "start": 3541.36, + "end": 3543.08, + "probability": 0.9967 + }, + { + "start": 3543.92, + "end": 3546.88, + "probability": 0.7296 + }, + { + "start": 3547.14, + "end": 3549.62, + "probability": 0.5117 + }, + { + "start": 3549.88, + "end": 3551.12, + "probability": 0.9864 + }, + { + "start": 3551.3, + "end": 3552.46, + "probability": 0.9183 + }, + { + "start": 3553.38, + "end": 3556.96, + "probability": 0.9434 + }, + { + "start": 3557.86, + "end": 3560.96, + "probability": 0.9725 + }, + { + "start": 3561.58, + "end": 3563.88, + "probability": 0.8427 + }, + { + "start": 3564.5, + "end": 3566.86, + "probability": 0.8268 + }, + { + "start": 3567.66, + "end": 3569.68, + "probability": 0.7057 + }, + { + "start": 3570.6, + "end": 3573.52, + "probability": 0.9878 + }, + { + "start": 3573.76, + "end": 3577.98, + "probability": 0.9585 + }, + { + "start": 3578.64, + "end": 3580.8, + "probability": 0.99 + }, + { + "start": 3581.62, + "end": 3584.02, + "probability": 0.9956 + }, + { + "start": 3584.1, + "end": 3587.5, + "probability": 0.6713 + }, + { + "start": 3587.76, + "end": 3589.68, + "probability": 0.8267 + }, + { + "start": 3589.78, + "end": 3593.4, + "probability": 0.988 + }, + { + "start": 3593.6, + "end": 3594.58, + "probability": 0.8561 + }, + { + "start": 3594.66, + "end": 3596.82, + "probability": 0.8373 + }, + { + "start": 3597.62, + "end": 3602.08, + "probability": 0.9763 + }, + { + "start": 3602.2, + "end": 3603.34, + "probability": 0.8497 + }, + { + "start": 3603.74, + "end": 3605.46, + "probability": 0.813 + }, + { + "start": 3606.08, + "end": 3613.28, + "probability": 0.9627 + }, + { + "start": 3613.76, + "end": 3616.22, + "probability": 0.9937 + }, + { + "start": 3616.22, + "end": 3619.46, + "probability": 0.999 + }, + { + "start": 3619.6, + "end": 3620.16, + "probability": 0.6388 + }, + { + "start": 3620.46, + "end": 3621.84, + "probability": 0.8642 + }, + { + "start": 3622.42, + "end": 3623.48, + "probability": 0.917 + }, + { + "start": 3623.72, + "end": 3626.92, + "probability": 0.979 + }, + { + "start": 3627.08, + "end": 3628.2, + "probability": 0.8474 + }, + { + "start": 3628.2, + "end": 3631.04, + "probability": 0.9771 + }, + { + "start": 3631.26, + "end": 3632.88, + "probability": 0.9722 + }, + { + "start": 3634.04, + "end": 3636.5, + "probability": 0.9517 + }, + { + "start": 3637.16, + "end": 3641.38, + "probability": 0.725 + }, + { + "start": 3642.02, + "end": 3646.02, + "probability": 0.8938 + }, + { + "start": 3646.38, + "end": 3648.34, + "probability": 0.526 + }, + { + "start": 3649.0, + "end": 3650.5, + "probability": 0.5008 + }, + { + "start": 3650.68, + "end": 3652.0, + "probability": 0.7675 + }, + { + "start": 3652.08, + "end": 3653.28, + "probability": 0.7407 + }, + { + "start": 3653.68, + "end": 3655.86, + "probability": 0.6669 + }, + { + "start": 3656.54, + "end": 3662.34, + "probability": 0.7624 + }, + { + "start": 3662.78, + "end": 3664.64, + "probability": 0.9932 + }, + { + "start": 3665.6, + "end": 3668.98, + "probability": 0.9836 + }, + { + "start": 3669.5, + "end": 3669.87, + "probability": 0.075 + }, + { + "start": 3671.12, + "end": 3674.58, + "probability": 0.9004 + }, + { + "start": 3675.24, + "end": 3678.18, + "probability": 0.9792 + }, + { + "start": 3679.08, + "end": 3679.76, + "probability": 0.9353 + }, + { + "start": 3680.58, + "end": 3681.1, + "probability": 0.9556 + }, + { + "start": 3682.46, + "end": 3686.64, + "probability": 0.9977 + }, + { + "start": 3687.48, + "end": 3692.7, + "probability": 0.9985 + }, + { + "start": 3693.12, + "end": 3696.1, + "probability": 0.9917 + }, + { + "start": 3696.38, + "end": 3698.12, + "probability": 0.9971 + }, + { + "start": 3698.66, + "end": 3700.1, + "probability": 0.9532 + }, + { + "start": 3700.84, + "end": 3703.94, + "probability": 0.8679 + }, + { + "start": 3704.48, + "end": 3710.04, + "probability": 0.9756 + }, + { + "start": 3710.48, + "end": 3713.49, + "probability": 0.9883 + }, + { + "start": 3713.86, + "end": 3717.86, + "probability": 0.9976 + }, + { + "start": 3718.46, + "end": 3719.94, + "probability": 0.7135 + }, + { + "start": 3720.0, + "end": 3723.7, + "probability": 0.9883 + }, + { + "start": 3724.22, + "end": 3726.96, + "probability": 0.9961 + }, + { + "start": 3726.96, + "end": 3729.74, + "probability": 0.9985 + }, + { + "start": 3730.08, + "end": 3733.96, + "probability": 0.9939 + }, + { + "start": 3733.96, + "end": 3738.14, + "probability": 0.8858 + }, + { + "start": 3738.66, + "end": 3740.94, + "probability": 0.9905 + }, + { + "start": 3741.24, + "end": 3744.0, + "probability": 0.9983 + }, + { + "start": 3744.0, + "end": 3747.76, + "probability": 0.6914 + }, + { + "start": 3748.5, + "end": 3750.94, + "probability": 0.9628 + }, + { + "start": 3751.08, + "end": 3751.88, + "probability": 0.7232 + }, + { + "start": 3752.32, + "end": 3757.78, + "probability": 0.9854 + }, + { + "start": 3758.16, + "end": 3759.43, + "probability": 0.9971 + }, + { + "start": 3760.64, + "end": 3761.1, + "probability": 0.7845 + }, + { + "start": 3761.7, + "end": 3762.86, + "probability": 0.7128 + }, + { + "start": 3764.12, + "end": 3767.34, + "probability": 0.989 + }, + { + "start": 3769.95, + "end": 3770.32, + "probability": 0.0321 + }, + { + "start": 3770.32, + "end": 3771.2, + "probability": 0.6475 + }, + { + "start": 3771.76, + "end": 3772.92, + "probability": 0.6665 + }, + { + "start": 3774.22, + "end": 3776.3, + "probability": 0.9713 + }, + { + "start": 3777.44, + "end": 3783.66, + "probability": 0.8438 + }, + { + "start": 3783.74, + "end": 3784.46, + "probability": 0.7035 + }, + { + "start": 3785.1, + "end": 3788.82, + "probability": 0.6894 + }, + { + "start": 3789.56, + "end": 3790.52, + "probability": 0.6722 + }, + { + "start": 3790.56, + "end": 3791.32, + "probability": 0.6984 + }, + { + "start": 3791.8, + "end": 3792.7, + "probability": 0.8628 + }, + { + "start": 3793.1, + "end": 3798.6, + "probability": 0.9727 + }, + { + "start": 3799.1, + "end": 3800.94, + "probability": 0.8704 + }, + { + "start": 3801.4, + "end": 3802.9, + "probability": 0.8842 + }, + { + "start": 3803.48, + "end": 3804.98, + "probability": 0.9933 + }, + { + "start": 3805.12, + "end": 3807.3, + "probability": 0.9961 + }, + { + "start": 3807.44, + "end": 3808.3, + "probability": 0.8802 + }, + { + "start": 3808.38, + "end": 3809.2, + "probability": 0.9785 + }, + { + "start": 3809.7, + "end": 3810.84, + "probability": 0.8907 + }, + { + "start": 3811.38, + "end": 3815.08, + "probability": 0.9569 + }, + { + "start": 3815.87, + "end": 3819.2, + "probability": 0.9775 + }, + { + "start": 3819.28, + "end": 3819.6, + "probability": 0.8478 + }, + { + "start": 3819.64, + "end": 3821.08, + "probability": 0.9841 + }, + { + "start": 3821.74, + "end": 3822.42, + "probability": 0.9839 + }, + { + "start": 3823.2, + "end": 3825.16, + "probability": 0.9316 + }, + { + "start": 3825.34, + "end": 3826.12, + "probability": 0.9935 + }, + { + "start": 3826.22, + "end": 3830.18, + "probability": 0.9501 + }, + { + "start": 3830.76, + "end": 3833.72, + "probability": 0.999 + }, + { + "start": 3834.48, + "end": 3839.22, + "probability": 0.9839 + }, + { + "start": 3839.74, + "end": 3842.9, + "probability": 0.9668 + }, + { + "start": 3843.5, + "end": 3847.68, + "probability": 0.833 + }, + { + "start": 3848.26, + "end": 3850.28, + "probability": 0.8074 + }, + { + "start": 3851.06, + "end": 3855.24, + "probability": 0.9028 + }, + { + "start": 3855.94, + "end": 3856.76, + "probability": 0.4856 + }, + { + "start": 3856.98, + "end": 3862.0, + "probability": 0.974 + }, + { + "start": 3862.0, + "end": 3866.46, + "probability": 0.9775 + }, + { + "start": 3866.78, + "end": 3867.2, + "probability": 0.8422 + }, + { + "start": 3869.28, + "end": 3870.02, + "probability": 0.7109 + }, + { + "start": 3870.5, + "end": 3871.62, + "probability": 0.965 + }, + { + "start": 3872.76, + "end": 3873.6, + "probability": 0.4992 + }, + { + "start": 3874.16, + "end": 3875.62, + "probability": 0.7072 + }, + { + "start": 3875.94, + "end": 3876.34, + "probability": 0.7943 + }, + { + "start": 3892.48, + "end": 3894.7, + "probability": 0.7074 + }, + { + "start": 3895.86, + "end": 3901.08, + "probability": 0.9421 + }, + { + "start": 3902.24, + "end": 3902.94, + "probability": 0.8861 + }, + { + "start": 3903.58, + "end": 3905.26, + "probability": 0.9835 + }, + { + "start": 3905.9, + "end": 3909.18, + "probability": 0.9814 + }, + { + "start": 3910.16, + "end": 3911.72, + "probability": 0.8871 + }, + { + "start": 3912.72, + "end": 3915.44, + "probability": 0.985 + }, + { + "start": 3916.1, + "end": 3917.6, + "probability": 0.9914 + }, + { + "start": 3918.52, + "end": 3919.76, + "probability": 0.977 + }, + { + "start": 3920.76, + "end": 3921.02, + "probability": 0.9571 + }, + { + "start": 3921.64, + "end": 3923.78, + "probability": 0.998 + }, + { + "start": 3924.6, + "end": 3925.48, + "probability": 0.7785 + }, + { + "start": 3926.34, + "end": 3926.7, + "probability": 0.7929 + }, + { + "start": 3928.48, + "end": 3931.06, + "probability": 0.8226 + }, + { + "start": 3931.56, + "end": 3933.22, + "probability": 0.9849 + }, + { + "start": 3933.9, + "end": 3934.04, + "probability": 0.458 + }, + { + "start": 3934.94, + "end": 3938.82, + "probability": 0.9902 + }, + { + "start": 3939.64, + "end": 3942.88, + "probability": 0.8866 + }, + { + "start": 3943.56, + "end": 3945.64, + "probability": 0.9407 + }, + { + "start": 3946.24, + "end": 3947.52, + "probability": 0.9386 + }, + { + "start": 3948.12, + "end": 3949.34, + "probability": 0.9191 + }, + { + "start": 3950.58, + "end": 3953.78, + "probability": 0.9808 + }, + { + "start": 3954.7, + "end": 3956.36, + "probability": 0.9476 + }, + { + "start": 3957.44, + "end": 3961.53, + "probability": 0.96 + }, + { + "start": 3961.94, + "end": 3962.4, + "probability": 0.8775 + }, + { + "start": 3962.58, + "end": 3963.02, + "probability": 0.9351 + }, + { + "start": 3964.56, + "end": 3966.5, + "probability": 0.9785 + }, + { + "start": 3967.04, + "end": 3969.4, + "probability": 0.9312 + }, + { + "start": 3969.94, + "end": 3970.84, + "probability": 0.8007 + }, + { + "start": 3972.3, + "end": 3976.52, + "probability": 0.9539 + }, + { + "start": 3977.48, + "end": 3977.98, + "probability": 0.812 + }, + { + "start": 3978.5, + "end": 3978.8, + "probability": 0.7719 + }, + { + "start": 3979.9, + "end": 3980.44, + "probability": 0.7281 + }, + { + "start": 3981.94, + "end": 3983.65, + "probability": 0.5825 + }, + { + "start": 3984.76, + "end": 3985.06, + "probability": 0.9194 + }, + { + "start": 3985.6, + "end": 3986.12, + "probability": 0.815 + }, + { + "start": 3987.0, + "end": 3988.97, + "probability": 0.8028 + }, + { + "start": 3989.8, + "end": 3992.6, + "probability": 0.7353 + }, + { + "start": 3994.06, + "end": 3996.24, + "probability": 0.9307 + }, + { + "start": 3997.36, + "end": 3998.92, + "probability": 0.9767 + }, + { + "start": 3999.7, + "end": 4000.72, + "probability": 0.8856 + }, + { + "start": 4001.42, + "end": 4002.26, + "probability": 0.9878 + }, + { + "start": 4003.06, + "end": 4004.0, + "probability": 0.9604 + }, + { + "start": 4004.78, + "end": 4006.12, + "probability": 0.9894 + }, + { + "start": 4006.84, + "end": 4007.76, + "probability": 0.958 + }, + { + "start": 4008.62, + "end": 4010.02, + "probability": 0.9884 + }, + { + "start": 4011.04, + "end": 4012.04, + "probability": 0.9767 + }, + { + "start": 4012.56, + "end": 4013.18, + "probability": 0.9005 + }, + { + "start": 4013.98, + "end": 4015.76, + "probability": 0.907 + }, + { + "start": 4016.48, + "end": 4022.38, + "probability": 0.8469 + }, + { + "start": 4023.38, + "end": 4025.44, + "probability": 0.9656 + }, + { + "start": 4025.54, + "end": 4027.54, + "probability": 0.9171 + }, + { + "start": 4028.08, + "end": 4030.74, + "probability": 0.8685 + }, + { + "start": 4031.44, + "end": 4033.26, + "probability": 0.9777 + }, + { + "start": 4033.26, + "end": 4033.98, + "probability": 0.9316 + }, + { + "start": 4034.14, + "end": 4035.48, + "probability": 0.8749 + }, + { + "start": 4036.0, + "end": 4036.58, + "probability": 0.9805 + }, + { + "start": 4037.54, + "end": 4037.88, + "probability": 0.731 + }, + { + "start": 4038.4, + "end": 4038.96, + "probability": 0.9553 + }, + { + "start": 4039.44, + "end": 4040.04, + "probability": 0.9036 + }, + { + "start": 4040.4, + "end": 4041.22, + "probability": 0.7877 + }, + { + "start": 4041.34, + "end": 4042.22, + "probability": 0.9838 + }, + { + "start": 4042.28, + "end": 4043.06, + "probability": 0.6427 + }, + { + "start": 4043.56, + "end": 4044.94, + "probability": 0.8253 + }, + { + "start": 4045.2, + "end": 4048.08, + "probability": 0.9255 + }, + { + "start": 4048.78, + "end": 4049.24, + "probability": 0.9312 + }, + { + "start": 4050.48, + "end": 4051.88, + "probability": 0.9718 + }, + { + "start": 4052.36, + "end": 4054.34, + "probability": 0.9973 + }, + { + "start": 4055.04, + "end": 4056.52, + "probability": 0.7285 + }, + { + "start": 4058.24, + "end": 4063.42, + "probability": 0.9868 + }, + { + "start": 4063.76, + "end": 4067.5, + "probability": 0.9576 + }, + { + "start": 4068.66, + "end": 4069.0, + "probability": 0.5745 + }, + { + "start": 4071.54, + "end": 4075.44, + "probability": 0.9971 + }, + { + "start": 4076.1, + "end": 4076.48, + "probability": 0.9871 + }, + { + "start": 4077.22, + "end": 4078.42, + "probability": 0.9951 + }, + { + "start": 4078.52, + "end": 4080.48, + "probability": 0.9594 + }, + { + "start": 4081.16, + "end": 4082.44, + "probability": 0.9526 + }, + { + "start": 4083.52, + "end": 4087.26, + "probability": 0.9951 + }, + { + "start": 4087.58, + "end": 4088.54, + "probability": 0.9731 + }, + { + "start": 4088.62, + "end": 4089.74, + "probability": 0.9246 + }, + { + "start": 4090.82, + "end": 4091.96, + "probability": 0.9324 + }, + { + "start": 4092.52, + "end": 4092.84, + "probability": 0.9573 + }, + { + "start": 4093.64, + "end": 4095.08, + "probability": 0.9911 + }, + { + "start": 4095.48, + "end": 4099.32, + "probability": 0.9639 + }, + { + "start": 4100.46, + "end": 4101.06, + "probability": 0.5463 + }, + { + "start": 4101.62, + "end": 4102.6, + "probability": 0.9945 + }, + { + "start": 4102.6, + "end": 4105.76, + "probability": 0.7992 + }, + { + "start": 4106.16, + "end": 4107.02, + "probability": 0.9302 + }, + { + "start": 4107.42, + "end": 4109.28, + "probability": 0.7976 + }, + { + "start": 4110.22, + "end": 4111.14, + "probability": 0.7645 + }, + { + "start": 4111.2, + "end": 4113.52, + "probability": 0.9941 + }, + { + "start": 4113.7, + "end": 4114.36, + "probability": 0.8099 + }, + { + "start": 4114.92, + "end": 4116.9, + "probability": 0.8381 + }, + { + "start": 4117.56, + "end": 4120.72, + "probability": 0.9645 + }, + { + "start": 4122.1, + "end": 4124.16, + "probability": 0.8818 + }, + { + "start": 4124.26, + "end": 4125.1, + "probability": 0.9302 + }, + { + "start": 4125.66, + "end": 4126.55, + "probability": 0.9206 + }, + { + "start": 4127.6, + "end": 4129.68, + "probability": 0.9299 + }, + { + "start": 4131.02, + "end": 4131.92, + "probability": 0.9864 + }, + { + "start": 4132.02, + "end": 4132.76, + "probability": 0.9241 + }, + { + "start": 4133.14, + "end": 4134.04, + "probability": 0.9886 + }, + { + "start": 4134.14, + "end": 4138.22, + "probability": 0.9307 + }, + { + "start": 4139.14, + "end": 4140.08, + "probability": 0.9556 + }, + { + "start": 4140.2, + "end": 4141.36, + "probability": 0.9927 + }, + { + "start": 4142.16, + "end": 4142.26, + "probability": 0.7795 + }, + { + "start": 4142.38, + "end": 4144.02, + "probability": 0.9209 + }, + { + "start": 4144.12, + "end": 4144.68, + "probability": 0.9257 + }, + { + "start": 4144.74, + "end": 4144.9, + "probability": 0.641 + }, + { + "start": 4144.96, + "end": 4146.0, + "probability": 0.9778 + }, + { + "start": 4146.98, + "end": 4148.48, + "probability": 0.9498 + }, + { + "start": 4149.16, + "end": 4154.77, + "probability": 0.9655 + }, + { + "start": 4156.7, + "end": 4157.36, + "probability": 0.9211 + }, + { + "start": 4158.1, + "end": 4158.66, + "probability": 0.8119 + }, + { + "start": 4158.78, + "end": 4159.75, + "probability": 0.6074 + }, + { + "start": 4160.26, + "end": 4163.96, + "probability": 0.9867 + }, + { + "start": 4164.94, + "end": 4166.36, + "probability": 0.9934 + }, + { + "start": 4167.02, + "end": 4167.66, + "probability": 0.9448 + }, + { + "start": 4167.92, + "end": 4168.45, + "probability": 0.9824 + }, + { + "start": 4168.82, + "end": 4171.24, + "probability": 0.9937 + }, + { + "start": 4172.46, + "end": 4172.56, + "probability": 0.3833 + }, + { + "start": 4173.48, + "end": 4174.08, + "probability": 0.989 + }, + { + "start": 4174.14, + "end": 4174.96, + "probability": 0.6165 + }, + { + "start": 4175.04, + "end": 4178.82, + "probability": 0.9746 + }, + { + "start": 4178.94, + "end": 4179.51, + "probability": 0.7448 + }, + { + "start": 4180.28, + "end": 4185.06, + "probability": 0.9387 + }, + { + "start": 4186.2, + "end": 4187.92, + "probability": 0.9814 + }, + { + "start": 4188.64, + "end": 4189.64, + "probability": 0.7856 + }, + { + "start": 4190.44, + "end": 4191.9, + "probability": 0.8999 + }, + { + "start": 4192.82, + "end": 4193.64, + "probability": 0.8604 + }, + { + "start": 4194.46, + "end": 4194.94, + "probability": 0.8466 + }, + { + "start": 4196.54, + "end": 4197.14, + "probability": 0.4982 + }, + { + "start": 4197.8, + "end": 4201.62, + "probability": 0.9554 + }, + { + "start": 4202.38, + "end": 4205.86, + "probability": 0.9875 + }, + { + "start": 4206.6, + "end": 4208.24, + "probability": 0.9435 + }, + { + "start": 4209.04, + "end": 4209.56, + "probability": 0.8007 + }, + { + "start": 4210.98, + "end": 4211.82, + "probability": 0.9191 + }, + { + "start": 4212.38, + "end": 4214.86, + "probability": 0.5752 + }, + { + "start": 4215.5, + "end": 4216.62, + "probability": 0.8572 + }, + { + "start": 4217.12, + "end": 4217.62, + "probability": 0.8666 + }, + { + "start": 4218.6, + "end": 4219.62, + "probability": 0.9553 + }, + { + "start": 4219.9, + "end": 4220.62, + "probability": 0.9426 + }, + { + "start": 4220.72, + "end": 4221.54, + "probability": 0.9395 + }, + { + "start": 4222.14, + "end": 4225.38, + "probability": 0.8325 + }, + { + "start": 4225.8, + "end": 4226.46, + "probability": 0.8981 + }, + { + "start": 4226.48, + "end": 4227.42, + "probability": 0.9062 + }, + { + "start": 4227.48, + "end": 4228.02, + "probability": 0.7506 + }, + { + "start": 4228.42, + "end": 4229.94, + "probability": 0.9248 + }, + { + "start": 4230.26, + "end": 4231.24, + "probability": 0.9502 + }, + { + "start": 4231.66, + "end": 4232.62, + "probability": 0.8811 + }, + { + "start": 4233.1, + "end": 4233.76, + "probability": 0.8691 + }, + { + "start": 4234.4, + "end": 4235.18, + "probability": 0.9832 + }, + { + "start": 4235.92, + "end": 4239.3, + "probability": 0.9961 + }, + { + "start": 4240.7, + "end": 4241.84, + "probability": 0.6863 + }, + { + "start": 4241.96, + "end": 4243.2, + "probability": 0.5782 + }, + { + "start": 4243.26, + "end": 4247.25, + "probability": 0.8325 + }, + { + "start": 4247.48, + "end": 4248.4, + "probability": 0.9844 + }, + { + "start": 4248.98, + "end": 4251.16, + "probability": 0.7612 + }, + { + "start": 4252.44, + "end": 4254.46, + "probability": 0.8691 + }, + { + "start": 4254.9, + "end": 4257.72, + "probability": 0.9924 + }, + { + "start": 4257.8, + "end": 4261.84, + "probability": 0.9577 + }, + { + "start": 4262.2, + "end": 4264.76, + "probability": 0.949 + }, + { + "start": 4264.94, + "end": 4265.66, + "probability": 0.9594 + }, + { + "start": 4266.02, + "end": 4267.12, + "probability": 0.9987 + }, + { + "start": 4267.18, + "end": 4267.68, + "probability": 0.4793 + }, + { + "start": 4267.7, + "end": 4270.82, + "probability": 0.9272 + }, + { + "start": 4271.02, + "end": 4271.46, + "probability": 0.6807 + }, + { + "start": 4271.6, + "end": 4272.66, + "probability": 0.8886 + }, + { + "start": 4273.46, + "end": 4277.66, + "probability": 0.9795 + }, + { + "start": 4278.14, + "end": 4280.12, + "probability": 0.7228 + }, + { + "start": 4280.62, + "end": 4284.96, + "probability": 0.8645 + }, + { + "start": 4285.28, + "end": 4285.78, + "probability": 0.9473 + }, + { + "start": 4286.34, + "end": 4287.26, + "probability": 0.5454 + }, + { + "start": 4287.96, + "end": 4291.1, + "probability": 0.9955 + }, + { + "start": 4291.58, + "end": 4293.24, + "probability": 0.9717 + }, + { + "start": 4293.8, + "end": 4294.92, + "probability": 0.5674 + }, + { + "start": 4295.04, + "end": 4296.04, + "probability": 0.9926 + }, + { + "start": 4296.58, + "end": 4299.3, + "probability": 0.9927 + }, + { + "start": 4299.82, + "end": 4300.56, + "probability": 0.8687 + }, + { + "start": 4301.0, + "end": 4304.14, + "probability": 0.8192 + }, + { + "start": 4304.4, + "end": 4307.04, + "probability": 0.9962 + }, + { + "start": 4307.8, + "end": 4308.68, + "probability": 0.7398 + }, + { + "start": 4308.96, + "end": 4309.8, + "probability": 0.9445 + }, + { + "start": 4310.12, + "end": 4314.54, + "probability": 0.9792 + }, + { + "start": 4314.98, + "end": 4315.2, + "probability": 0.8702 + }, + { + "start": 4316.32, + "end": 4317.38, + "probability": 0.5269 + }, + { + "start": 4317.48, + "end": 4320.98, + "probability": 0.8262 + }, + { + "start": 4321.38, + "end": 4324.4, + "probability": 0.8856 + }, + { + "start": 4325.18, + "end": 4330.1, + "probability": 0.9673 + }, + { + "start": 4330.92, + "end": 4333.12, + "probability": 0.7095 + }, + { + "start": 4334.12, + "end": 4334.42, + "probability": 0.8143 + }, + { + "start": 4337.12, + "end": 4338.96, + "probability": 0.9055 + }, + { + "start": 4362.56, + "end": 4364.4, + "probability": 0.6421 + }, + { + "start": 4365.96, + "end": 4369.68, + "probability": 0.9854 + }, + { + "start": 4369.7, + "end": 4370.38, + "probability": 0.6865 + }, + { + "start": 4370.86, + "end": 4373.66, + "probability": 0.9836 + }, + { + "start": 4375.0, + "end": 4378.54, + "probability": 0.8464 + }, + { + "start": 4379.68, + "end": 4382.88, + "probability": 0.4438 + }, + { + "start": 4383.1, + "end": 4385.32, + "probability": 0.9453 + }, + { + "start": 4385.74, + "end": 4389.48, + "probability": 0.9917 + }, + { + "start": 4390.22, + "end": 4392.38, + "probability": 0.687 + }, + { + "start": 4393.8, + "end": 4395.76, + "probability": 0.8165 + }, + { + "start": 4396.24, + "end": 4397.22, + "probability": 0.9047 + }, + { + "start": 4397.34, + "end": 4402.5, + "probability": 0.9967 + }, + { + "start": 4403.68, + "end": 4406.42, + "probability": 0.9896 + }, + { + "start": 4407.56, + "end": 4407.94, + "probability": 0.5276 + }, + { + "start": 4408.02, + "end": 4408.86, + "probability": 0.9203 + }, + { + "start": 4408.94, + "end": 4410.36, + "probability": 0.9734 + }, + { + "start": 4410.58, + "end": 4411.04, + "probability": 0.9384 + }, + { + "start": 4411.22, + "end": 4411.58, + "probability": 0.9468 + }, + { + "start": 4411.66, + "end": 4412.16, + "probability": 0.9246 + }, + { + "start": 4412.3, + "end": 4413.68, + "probability": 0.9768 + }, + { + "start": 4413.78, + "end": 4414.92, + "probability": 0.7379 + }, + { + "start": 4415.84, + "end": 4416.84, + "probability": 0.83 + }, + { + "start": 4419.04, + "end": 4422.02, + "probability": 0.0528 + }, + { + "start": 4422.14, + "end": 4422.74, + "probability": 0.0506 + }, + { + "start": 4422.74, + "end": 4423.24, + "probability": 0.1651 + }, + { + "start": 4423.72, + "end": 4423.76, + "probability": 0.0311 + }, + { + "start": 4424.38, + "end": 4426.02, + "probability": 0.2145 + }, + { + "start": 4428.48, + "end": 4432.48, + "probability": 0.2267 + }, + { + "start": 4434.2, + "end": 4436.56, + "probability": 0.8592 + }, + { + "start": 4438.82, + "end": 4443.04, + "probability": 0.751 + }, + { + "start": 4443.98, + "end": 4446.1, + "probability": 0.9323 + }, + { + "start": 4447.04, + "end": 4448.42, + "probability": 0.9551 + }, + { + "start": 4449.82, + "end": 4453.92, + "probability": 0.7629 + }, + { + "start": 4456.54, + "end": 4457.54, + "probability": 0.8185 + }, + { + "start": 4458.04, + "end": 4458.84, + "probability": 0.85 + }, + { + "start": 4458.9, + "end": 4461.12, + "probability": 0.9932 + }, + { + "start": 4462.6, + "end": 4465.02, + "probability": 0.8384 + }, + { + "start": 4465.6, + "end": 4468.42, + "probability": 0.8601 + }, + { + "start": 4469.92, + "end": 4473.42, + "probability": 0.8584 + }, + { + "start": 4474.42, + "end": 4477.14, + "probability": 0.9565 + }, + { + "start": 4478.4, + "end": 4480.52, + "probability": 0.2676 + }, + { + "start": 4482.02, + "end": 4483.86, + "probability": 0.7955 + }, + { + "start": 4484.68, + "end": 4489.14, + "probability": 0.9141 + }, + { + "start": 4489.22, + "end": 4489.84, + "probability": 0.9336 + }, + { + "start": 4489.9, + "end": 4490.54, + "probability": 0.873 + }, + { + "start": 4490.6, + "end": 4491.48, + "probability": 0.9905 + }, + { + "start": 4492.96, + "end": 4493.9, + "probability": 0.9528 + }, + { + "start": 4495.22, + "end": 4499.64, + "probability": 0.9867 + }, + { + "start": 4501.84, + "end": 4506.62, + "probability": 0.8834 + }, + { + "start": 4507.76, + "end": 4509.32, + "probability": 0.9909 + }, + { + "start": 4513.26, + "end": 4515.01, + "probability": 0.8174 + }, + { + "start": 4516.2, + "end": 4517.48, + "probability": 0.9954 + }, + { + "start": 4517.54, + "end": 4519.09, + "probability": 0.9875 + }, + { + "start": 4519.28, + "end": 4519.7, + "probability": 0.5677 + }, + { + "start": 4520.52, + "end": 4520.52, + "probability": 0.0058 + }, + { + "start": 4521.68, + "end": 4524.66, + "probability": 0.6322 + }, + { + "start": 4525.5, + "end": 4527.48, + "probability": 0.9825 + }, + { + "start": 4529.14, + "end": 4531.88, + "probability": 0.9526 + }, + { + "start": 4533.56, + "end": 4536.38, + "probability": 0.9878 + }, + { + "start": 4537.5, + "end": 4539.98, + "probability": 0.9256 + }, + { + "start": 4541.42, + "end": 4542.28, + "probability": 0.718 + }, + { + "start": 4543.64, + "end": 4545.0, + "probability": 0.9994 + }, + { + "start": 4545.9, + "end": 4549.38, + "probability": 0.9829 + }, + { + "start": 4550.02, + "end": 4550.79, + "probability": 0.9802 + }, + { + "start": 4551.98, + "end": 4552.6, + "probability": 0.905 + }, + { + "start": 4553.06, + "end": 4554.7, + "probability": 0.9971 + }, + { + "start": 4555.92, + "end": 4556.5, + "probability": 0.9912 + }, + { + "start": 4558.34, + "end": 4560.16, + "probability": 0.9435 + }, + { + "start": 4560.28, + "end": 4564.38, + "probability": 0.9172 + }, + { + "start": 4565.84, + "end": 4566.34, + "probability": 0.7739 + }, + { + "start": 4569.18, + "end": 4569.68, + "probability": 0.9495 + }, + { + "start": 4570.98, + "end": 4571.56, + "probability": 0.9575 + }, + { + "start": 4572.26, + "end": 4572.88, + "probability": 0.8696 + }, + { + "start": 4573.94, + "end": 4575.84, + "probability": 0.9663 + }, + { + "start": 4576.72, + "end": 4579.54, + "probability": 0.9548 + }, + { + "start": 4580.5, + "end": 4581.72, + "probability": 0.755 + }, + { + "start": 4583.22, + "end": 4584.8, + "probability": 0.9394 + }, + { + "start": 4586.04, + "end": 4588.24, + "probability": 0.8594 + }, + { + "start": 4590.06, + "end": 4591.74, + "probability": 0.8165 + }, + { + "start": 4593.34, + "end": 4599.06, + "probability": 0.9634 + }, + { + "start": 4599.06, + "end": 4605.32, + "probability": 0.9566 + }, + { + "start": 4606.46, + "end": 4607.28, + "probability": 0.6199 + }, + { + "start": 4608.78, + "end": 4609.34, + "probability": 0.7633 + }, + { + "start": 4610.6, + "end": 4611.52, + "probability": 0.9572 + }, + { + "start": 4612.36, + "end": 4613.58, + "probability": 0.9932 + }, + { + "start": 4614.24, + "end": 4615.86, + "probability": 0.9409 + }, + { + "start": 4617.18, + "end": 4618.82, + "probability": 0.9902 + }, + { + "start": 4619.76, + "end": 4620.86, + "probability": 0.9993 + }, + { + "start": 4621.6, + "end": 4622.86, + "probability": 0.9794 + }, + { + "start": 4624.28, + "end": 4625.42, + "probability": 0.7493 + }, + { + "start": 4626.78, + "end": 4627.92, + "probability": 0.8684 + }, + { + "start": 4628.58, + "end": 4631.1, + "probability": 0.9978 + }, + { + "start": 4632.1, + "end": 4633.88, + "probability": 0.9808 + }, + { + "start": 4634.9, + "end": 4636.26, + "probability": 0.9984 + }, + { + "start": 4637.18, + "end": 4639.42, + "probability": 0.9321 + }, + { + "start": 4639.46, + "end": 4643.2, + "probability": 0.9961 + }, + { + "start": 4644.22, + "end": 4647.2, + "probability": 0.9902 + }, + { + "start": 4648.66, + "end": 4655.08, + "probability": 0.9946 + }, + { + "start": 4655.76, + "end": 4656.76, + "probability": 0.9897 + }, + { + "start": 4657.58, + "end": 4660.0, + "probability": 0.9982 + }, + { + "start": 4660.54, + "end": 4661.3, + "probability": 0.9242 + }, + { + "start": 4661.82, + "end": 4662.96, + "probability": 0.9951 + }, + { + "start": 4665.2, + "end": 4665.42, + "probability": 0.752 + }, + { + "start": 4666.2, + "end": 4666.8, + "probability": 0.6478 + }, + { + "start": 4667.14, + "end": 4668.58, + "probability": 0.6107 + }, + { + "start": 4668.64, + "end": 4669.41, + "probability": 0.5695 + }, + { + "start": 4669.86, + "end": 4672.66, + "probability": 0.9182 + }, + { + "start": 4672.74, + "end": 4673.76, + "probability": 0.9885 + }, + { + "start": 4678.44, + "end": 4681.66, + "probability": 0.7626 + }, + { + "start": 4683.3, + "end": 4683.48, + "probability": 0.6181 + }, + { + "start": 4684.02, + "end": 4684.78, + "probability": 0.848 + }, + { + "start": 4685.54, + "end": 4686.06, + "probability": 0.8238 + }, + { + "start": 4712.52, + "end": 4713.05, + "probability": 0.6569 + }, + { + "start": 4713.32, + "end": 4713.42, + "probability": 0.4291 + }, + { + "start": 4713.86, + "end": 4714.62, + "probability": 0.9182 + }, + { + "start": 4715.66, + "end": 4717.72, + "probability": 0.9663 + }, + { + "start": 4718.24, + "end": 4718.78, + "probability": 0.9955 + }, + { + "start": 4720.34, + "end": 4720.48, + "probability": 0.8523 + }, + { + "start": 4727.6, + "end": 4727.7, + "probability": 0.4986 + }, + { + "start": 4728.3, + "end": 4728.84, + "probability": 0.481 + }, + { + "start": 4729.76, + "end": 4732.08, + "probability": 0.7043 + }, + { + "start": 4732.9, + "end": 4735.2, + "probability": 0.9117 + }, + { + "start": 4735.8, + "end": 4735.9, + "probability": 0.4915 + }, + { + "start": 4736.58, + "end": 4740.52, + "probability": 0.9648 + }, + { + "start": 4741.52, + "end": 4741.74, + "probability": 0.5929 + }, + { + "start": 4742.3, + "end": 4745.04, + "probability": 0.9982 + }, + { + "start": 4745.68, + "end": 4747.1, + "probability": 0.9743 + }, + { + "start": 4747.82, + "end": 4748.56, + "probability": 0.8716 + }, + { + "start": 4749.58, + "end": 4752.1, + "probability": 0.9489 + }, + { + "start": 4753.26, + "end": 4754.86, + "probability": 0.9305 + }, + { + "start": 4755.66, + "end": 4757.58, + "probability": 0.9771 + }, + { + "start": 4757.66, + "end": 4762.12, + "probability": 0.932 + }, + { + "start": 4763.88, + "end": 4764.26, + "probability": 0.8695 + }, + { + "start": 4765.84, + "end": 4768.82, + "probability": 0.9818 + }, + { + "start": 4769.56, + "end": 4770.88, + "probability": 0.9387 + }, + { + "start": 4771.72, + "end": 4772.26, + "probability": 0.6067 + }, + { + "start": 4773.14, + "end": 4775.29, + "probability": 0.9873 + }, + { + "start": 4775.76, + "end": 4778.08, + "probability": 0.9969 + }, + { + "start": 4778.42, + "end": 4779.16, + "probability": 0.9233 + }, + { + "start": 4780.66, + "end": 4782.06, + "probability": 0.72 + }, + { + "start": 4782.62, + "end": 4783.32, + "probability": 0.8993 + }, + { + "start": 4784.5, + "end": 4784.84, + "probability": 0.8706 + }, + { + "start": 4784.92, + "end": 4785.42, + "probability": 0.7885 + }, + { + "start": 4785.56, + "end": 4786.44, + "probability": 0.9736 + }, + { + "start": 4786.6, + "end": 4788.04, + "probability": 0.9835 + }, + { + "start": 4788.82, + "end": 4790.3, + "probability": 0.9484 + }, + { + "start": 4791.06, + "end": 4792.16, + "probability": 0.9966 + }, + { + "start": 4792.74, + "end": 4795.13, + "probability": 0.9943 + }, + { + "start": 4796.02, + "end": 4796.72, + "probability": 0.7402 + }, + { + "start": 4797.6, + "end": 4800.44, + "probability": 0.8935 + }, + { + "start": 4801.12, + "end": 4803.0, + "probability": 0.9867 + }, + { + "start": 4804.1, + "end": 4805.82, + "probability": 0.9788 + }, + { + "start": 4807.08, + "end": 4808.96, + "probability": 0.9636 + }, + { + "start": 4810.04, + "end": 4811.64, + "probability": 0.9944 + }, + { + "start": 4812.64, + "end": 4814.76, + "probability": 0.9209 + }, + { + "start": 4815.48, + "end": 4815.8, + "probability": 0.5184 + }, + { + "start": 4815.94, + "end": 4821.16, + "probability": 0.9944 + }, + { + "start": 4822.2, + "end": 4822.8, + "probability": 0.6907 + }, + { + "start": 4823.2, + "end": 4823.34, + "probability": 0.6732 + }, + { + "start": 4823.46, + "end": 4823.82, + "probability": 0.9275 + }, + { + "start": 4823.86, + "end": 4826.22, + "probability": 0.962 + }, + { + "start": 4826.98, + "end": 4833.9, + "probability": 0.9845 + }, + { + "start": 4834.94, + "end": 4837.68, + "probability": 0.9988 + }, + { + "start": 4839.34, + "end": 4840.14, + "probability": 0.6364 + }, + { + "start": 4841.12, + "end": 4842.54, + "probability": 0.9982 + }, + { + "start": 4843.26, + "end": 4847.12, + "probability": 0.9694 + }, + { + "start": 4848.02, + "end": 4848.68, + "probability": 0.8163 + }, + { + "start": 4849.46, + "end": 4851.22, + "probability": 0.8266 + }, + { + "start": 4852.08, + "end": 4853.6, + "probability": 0.9731 + }, + { + "start": 4856.44, + "end": 4861.98, + "probability": 0.9776 + }, + { + "start": 4862.72, + "end": 4867.62, + "probability": 0.744 + }, + { + "start": 4869.2, + "end": 4871.6, + "probability": 0.8992 + }, + { + "start": 4872.18, + "end": 4877.6, + "probability": 0.979 + }, + { + "start": 4878.14, + "end": 4879.68, + "probability": 0.9831 + }, + { + "start": 4880.22, + "end": 4884.9, + "probability": 0.9436 + }, + { + "start": 4886.42, + "end": 4886.52, + "probability": 0.4339 + }, + { + "start": 4887.22, + "end": 4889.8, + "probability": 0.8855 + }, + { + "start": 4889.8, + "end": 4892.82, + "probability": 0.9956 + }, + { + "start": 4893.56, + "end": 4894.72, + "probability": 0.9649 + }, + { + "start": 4895.32, + "end": 4899.04, + "probability": 0.9345 + }, + { + "start": 4900.4, + "end": 4903.2, + "probability": 0.9986 + }, + { + "start": 4903.4, + "end": 4903.6, + "probability": 0.7228 + }, + { + "start": 4903.68, + "end": 4904.22, + "probability": 0.7608 + }, + { + "start": 4904.62, + "end": 4910.38, + "probability": 0.9979 + }, + { + "start": 4911.02, + "end": 4914.5, + "probability": 0.9582 + }, + { + "start": 4915.62, + "end": 4918.24, + "probability": 0.8313 + }, + { + "start": 4919.0, + "end": 4919.58, + "probability": 0.8917 + }, + { + "start": 4920.36, + "end": 4923.28, + "probability": 0.9941 + }, + { + "start": 4923.86, + "end": 4925.28, + "probability": 0.8339 + }, + { + "start": 4925.92, + "end": 4927.38, + "probability": 0.9854 + }, + { + "start": 4927.9, + "end": 4928.74, + "probability": 0.8975 + }, + { + "start": 4929.96, + "end": 4932.86, + "probability": 0.9897 + }, + { + "start": 4933.94, + "end": 4934.94, + "probability": 0.7773 + }, + { + "start": 4935.38, + "end": 4939.94, + "probability": 0.9663 + }, + { + "start": 4940.88, + "end": 4941.98, + "probability": 0.5183 + }, + { + "start": 4942.16, + "end": 4942.78, + "probability": 0.4814 + }, + { + "start": 4942.84, + "end": 4945.42, + "probability": 0.971 + }, + { + "start": 4946.22, + "end": 4948.46, + "probability": 0.9214 + }, + { + "start": 4949.0, + "end": 4951.42, + "probability": 0.9928 + }, + { + "start": 4951.76, + "end": 4955.22, + "probability": 0.7037 + }, + { + "start": 4955.28, + "end": 4957.2, + "probability": 0.6444 + }, + { + "start": 4958.22, + "end": 4960.72, + "probability": 0.838 + }, + { + "start": 4961.34, + "end": 4962.32, + "probability": 0.8489 + }, + { + "start": 4962.58, + "end": 4964.64, + "probability": 0.9772 + }, + { + "start": 4965.4, + "end": 4969.06, + "probability": 0.9953 + }, + { + "start": 4970.76, + "end": 4973.48, + "probability": 0.9955 + }, + { + "start": 4974.16, + "end": 4975.8, + "probability": 0.9681 + }, + { + "start": 4976.72, + "end": 4980.92, + "probability": 0.9611 + }, + { + "start": 4981.12, + "end": 4981.74, + "probability": 0.9202 + }, + { + "start": 4982.78, + "end": 4985.26, + "probability": 0.9467 + }, + { + "start": 4985.76, + "end": 4987.84, + "probability": 0.5549 + }, + { + "start": 4988.8, + "end": 4991.42, + "probability": 0.9833 + }, + { + "start": 4992.32, + "end": 4993.82, + "probability": 0.7676 + }, + { + "start": 4994.16, + "end": 4995.18, + "probability": 0.9071 + }, + { + "start": 4995.66, + "end": 4997.48, + "probability": 0.9506 + }, + { + "start": 4998.06, + "end": 4999.5, + "probability": 0.8837 + }, + { + "start": 5000.22, + "end": 5001.66, + "probability": 0.9514 + }, + { + "start": 5002.46, + "end": 5003.64, + "probability": 0.8509 + }, + { + "start": 5004.3, + "end": 5006.8, + "probability": 0.9895 + }, + { + "start": 5007.06, + "end": 5010.3, + "probability": 0.9797 + }, + { + "start": 5010.4, + "end": 5011.8, + "probability": 0.9917 + }, + { + "start": 5012.06, + "end": 5013.5, + "probability": 0.8281 + }, + { + "start": 5014.32, + "end": 5017.32, + "probability": 0.9199 + }, + { + "start": 5018.82, + "end": 5020.94, + "probability": 0.9612 + }, + { + "start": 5021.82, + "end": 5023.66, + "probability": 0.9851 + }, + { + "start": 5024.84, + "end": 5026.22, + "probability": 0.9808 + }, + { + "start": 5026.32, + "end": 5026.86, + "probability": 0.9494 + }, + { + "start": 5026.98, + "end": 5027.56, + "probability": 0.9791 + }, + { + "start": 5028.04, + "end": 5029.0, + "probability": 0.7559 + }, + { + "start": 5029.62, + "end": 5031.62, + "probability": 0.8818 + }, + { + "start": 5033.12, + "end": 5034.8, + "probability": 0.9424 + }, + { + "start": 5035.48, + "end": 5037.5, + "probability": 0.8986 + }, + { + "start": 5038.02, + "end": 5038.54, + "probability": 0.988 + }, + { + "start": 5041.46, + "end": 5042.78, + "probability": 0.9807 + }, + { + "start": 5043.64, + "end": 5048.42, + "probability": 0.987 + }, + { + "start": 5050.02, + "end": 5051.96, + "probability": 0.9983 + }, + { + "start": 5052.7, + "end": 5053.37, + "probability": 0.9828 + }, + { + "start": 5054.02, + "end": 5056.78, + "probability": 0.9729 + }, + { + "start": 5057.48, + "end": 5057.82, + "probability": 0.7755 + }, + { + "start": 5058.82, + "end": 5061.58, + "probability": 0.8475 + }, + { + "start": 5062.08, + "end": 5064.3, + "probability": 0.9955 + }, + { + "start": 5065.8, + "end": 5066.28, + "probability": 0.6154 + }, + { + "start": 5081.1, + "end": 5082.82, + "probability": 0.7455 + }, + { + "start": 5084.94, + "end": 5088.44, + "probability": 0.9974 + }, + { + "start": 5089.42, + "end": 5092.83, + "probability": 0.9765 + }, + { + "start": 5093.5, + "end": 5094.64, + "probability": 0.8768 + }, + { + "start": 5095.22, + "end": 5095.94, + "probability": 0.8163 + }, + { + "start": 5097.16, + "end": 5101.46, + "probability": 0.9844 + }, + { + "start": 5102.1, + "end": 5103.24, + "probability": 0.9559 + }, + { + "start": 5104.36, + "end": 5105.12, + "probability": 0.7518 + }, + { + "start": 5107.26, + "end": 5110.62, + "probability": 0.9888 + }, + { + "start": 5111.56, + "end": 5116.0, + "probability": 0.9951 + }, + { + "start": 5118.02, + "end": 5119.74, + "probability": 0.8579 + }, + { + "start": 5120.36, + "end": 5122.98, + "probability": 0.9988 + }, + { + "start": 5123.9, + "end": 5126.94, + "probability": 0.9447 + }, + { + "start": 5127.7, + "end": 5129.42, + "probability": 0.9544 + }, + { + "start": 5135.44, + "end": 5137.96, + "probability": 0.6348 + }, + { + "start": 5138.52, + "end": 5141.14, + "probability": 0.9844 + }, + { + "start": 5142.06, + "end": 5143.78, + "probability": 0.9022 + }, + { + "start": 5144.48, + "end": 5145.24, + "probability": 0.3417 + }, + { + "start": 5146.4, + "end": 5148.94, + "probability": 0.6642 + }, + { + "start": 5149.74, + "end": 5149.78, + "probability": 0.0332 + }, + { + "start": 5149.78, + "end": 5154.04, + "probability": 0.9285 + }, + { + "start": 5154.14, + "end": 5156.6, + "probability": 0.9665 + }, + { + "start": 5158.88, + "end": 5162.62, + "probability": 0.9059 + }, + { + "start": 5163.66, + "end": 5166.76, + "probability": 0.968 + }, + { + "start": 5168.0, + "end": 5168.76, + "probability": 0.9158 + }, + { + "start": 5169.56, + "end": 5172.96, + "probability": 0.9883 + }, + { + "start": 5172.96, + "end": 5177.34, + "probability": 0.9404 + }, + { + "start": 5178.54, + "end": 5181.64, + "probability": 0.6909 + }, + { + "start": 5182.22, + "end": 5185.34, + "probability": 0.9208 + }, + { + "start": 5187.16, + "end": 5189.74, + "probability": 0.9094 + }, + { + "start": 5190.4, + "end": 5193.56, + "probability": 0.9914 + }, + { + "start": 5193.6, + "end": 5197.12, + "probability": 0.9915 + }, + { + "start": 5197.86, + "end": 5202.6, + "probability": 0.9814 + }, + { + "start": 5203.42, + "end": 5207.96, + "probability": 0.8412 + }, + { + "start": 5209.28, + "end": 5215.24, + "probability": 0.9977 + }, + { + "start": 5215.24, + "end": 5221.4, + "probability": 0.9525 + }, + { + "start": 5222.5, + "end": 5225.7, + "probability": 0.8659 + }, + { + "start": 5226.28, + "end": 5231.8, + "probability": 0.9993 + }, + { + "start": 5231.8, + "end": 5240.08, + "probability": 0.9941 + }, + { + "start": 5242.26, + "end": 5244.0, + "probability": 0.6992 + }, + { + "start": 5244.12, + "end": 5244.78, + "probability": 0.588 + }, + { + "start": 5245.0, + "end": 5248.24, + "probability": 0.9797 + }, + { + "start": 5248.7, + "end": 5251.94, + "probability": 0.9443 + }, + { + "start": 5252.3, + "end": 5254.0, + "probability": 0.8225 + }, + { + "start": 5255.22, + "end": 5258.48, + "probability": 0.9571 + }, + { + "start": 5258.96, + "end": 5260.78, + "probability": 0.9721 + }, + { + "start": 5261.68, + "end": 5262.88, + "probability": 0.8364 + }, + { + "start": 5263.58, + "end": 5266.92, + "probability": 0.9336 + }, + { + "start": 5269.0, + "end": 5273.8, + "probability": 0.9929 + }, + { + "start": 5274.84, + "end": 5277.98, + "probability": 0.8314 + }, + { + "start": 5278.92, + "end": 5281.5, + "probability": 0.9795 + }, + { + "start": 5282.14, + "end": 5285.96, + "probability": 0.9669 + }, + { + "start": 5287.1, + "end": 5290.66, + "probability": 0.9637 + }, + { + "start": 5291.1, + "end": 5294.26, + "probability": 0.9875 + }, + { + "start": 5295.24, + "end": 5301.48, + "probability": 0.9816 + }, + { + "start": 5302.48, + "end": 5305.38, + "probability": 0.9875 + }, + { + "start": 5307.54, + "end": 5310.3, + "probability": 0.8511 + }, + { + "start": 5310.94, + "end": 5314.92, + "probability": 0.9954 + }, + { + "start": 5315.8, + "end": 5316.38, + "probability": 0.8572 + }, + { + "start": 5316.46, + "end": 5317.28, + "probability": 0.8137 + }, + { + "start": 5317.92, + "end": 5320.84, + "probability": 0.9231 + }, + { + "start": 5321.34, + "end": 5321.88, + "probability": 0.5586 + }, + { + "start": 5323.3, + "end": 5326.96, + "probability": 0.8948 + }, + { + "start": 5327.12, + "end": 5328.76, + "probability": 0.8433 + }, + { + "start": 5331.1, + "end": 5333.62, + "probability": 0.9234 + }, + { + "start": 5334.38, + "end": 5336.28, + "probability": 0.9404 + }, + { + "start": 5336.8, + "end": 5338.16, + "probability": 0.8414 + }, + { + "start": 5338.74, + "end": 5345.0, + "probability": 0.99 + }, + { + "start": 5345.82, + "end": 5346.48, + "probability": 0.4239 + }, + { + "start": 5346.54, + "end": 5347.66, + "probability": 0.9361 + }, + { + "start": 5347.94, + "end": 5349.58, + "probability": 0.9507 + }, + { + "start": 5350.52, + "end": 5353.42, + "probability": 0.9851 + }, + { + "start": 5354.0, + "end": 5355.82, + "probability": 0.9795 + }, + { + "start": 5357.62, + "end": 5360.24, + "probability": 0.847 + }, + { + "start": 5360.82, + "end": 5362.1, + "probability": 0.897 + }, + { + "start": 5363.22, + "end": 5364.68, + "probability": 0.8757 + }, + { + "start": 5365.52, + "end": 5369.34, + "probability": 0.9857 + }, + { + "start": 5370.24, + "end": 5373.06, + "probability": 0.822 + }, + { + "start": 5373.38, + "end": 5375.0, + "probability": 0.9551 + }, + { + "start": 5375.62, + "end": 5377.02, + "probability": 0.8563 + }, + { + "start": 5378.24, + "end": 5380.22, + "probability": 0.9097 + }, + { + "start": 5380.98, + "end": 5383.2, + "probability": 0.9565 + }, + { + "start": 5383.84, + "end": 5385.4, + "probability": 0.9578 + }, + { + "start": 5386.58, + "end": 5387.58, + "probability": 0.9496 + }, + { + "start": 5388.2, + "end": 5392.24, + "probability": 0.7487 + }, + { + "start": 5392.24, + "end": 5396.36, + "probability": 0.9961 + }, + { + "start": 5397.28, + "end": 5399.72, + "probability": 0.7698 + }, + { + "start": 5400.18, + "end": 5403.62, + "probability": 0.9893 + }, + { + "start": 5405.24, + "end": 5409.64, + "probability": 0.9941 + }, + { + "start": 5410.42, + "end": 5410.96, + "probability": 0.9929 + }, + { + "start": 5411.96, + "end": 5415.46, + "probability": 0.9979 + }, + { + "start": 5415.46, + "end": 5419.84, + "probability": 0.9869 + }, + { + "start": 5421.16, + "end": 5424.04, + "probability": 0.9857 + }, + { + "start": 5424.6, + "end": 5428.34, + "probability": 0.9935 + }, + { + "start": 5429.66, + "end": 5432.98, + "probability": 0.9952 + }, + { + "start": 5434.04, + "end": 5436.88, + "probability": 0.9956 + }, + { + "start": 5437.26, + "end": 5441.14, + "probability": 0.9696 + }, + { + "start": 5442.84, + "end": 5445.74, + "probability": 0.9859 + }, + { + "start": 5446.28, + "end": 5448.42, + "probability": 0.9731 + }, + { + "start": 5449.08, + "end": 5452.44, + "probability": 0.9847 + }, + { + "start": 5452.96, + "end": 5454.02, + "probability": 0.9683 + }, + { + "start": 5455.56, + "end": 5460.38, + "probability": 0.9053 + }, + { + "start": 5462.22, + "end": 5466.5, + "probability": 0.9944 + }, + { + "start": 5467.08, + "end": 5471.62, + "probability": 0.9967 + }, + { + "start": 5472.56, + "end": 5473.02, + "probability": 0.5744 + }, + { + "start": 5474.48, + "end": 5478.72, + "probability": 0.9836 + }, + { + "start": 5479.8, + "end": 5483.8, + "probability": 0.9914 + }, + { + "start": 5484.8, + "end": 5489.32, + "probability": 0.9976 + }, + { + "start": 5490.4, + "end": 5493.48, + "probability": 0.9824 + }, + { + "start": 5493.94, + "end": 5499.34, + "probability": 0.9899 + }, + { + "start": 5501.82, + "end": 5504.52, + "probability": 0.9939 + }, + { + "start": 5504.52, + "end": 5507.14, + "probability": 0.9906 + }, + { + "start": 5508.7, + "end": 5510.7, + "probability": 0.7427 + }, + { + "start": 5511.42, + "end": 5512.34, + "probability": 0.9734 + }, + { + "start": 5512.96, + "end": 5514.3, + "probability": 0.9615 + }, + { + "start": 5514.82, + "end": 5516.78, + "probability": 0.9821 + }, + { + "start": 5516.86, + "end": 5517.36, + "probability": 0.9116 + }, + { + "start": 5517.38, + "end": 5518.24, + "probability": 0.9051 + }, + { + "start": 5518.34, + "end": 5520.54, + "probability": 0.9916 + }, + { + "start": 5521.2, + "end": 5521.98, + "probability": 0.967 + }, + { + "start": 5522.92, + "end": 5523.72, + "probability": 0.7122 + }, + { + "start": 5524.76, + "end": 5525.3, + "probability": 0.4209 + }, + { + "start": 5525.68, + "end": 5529.54, + "probability": 0.9976 + }, + { + "start": 5530.22, + "end": 5533.8, + "probability": 0.9899 + }, + { + "start": 5534.76, + "end": 5535.5, + "probability": 0.5307 + }, + { + "start": 5536.04, + "end": 5537.26, + "probability": 0.8611 + }, + { + "start": 5538.06, + "end": 5541.74, + "probability": 0.9929 + }, + { + "start": 5542.76, + "end": 5544.52, + "probability": 0.947 + }, + { + "start": 5545.0, + "end": 5549.44, + "probability": 0.9728 + }, + { + "start": 5550.24, + "end": 5552.26, + "probability": 0.9845 + }, + { + "start": 5553.18, + "end": 5554.82, + "probability": 0.9972 + }, + { + "start": 5555.46, + "end": 5557.26, + "probability": 0.9778 + }, + { + "start": 5557.8, + "end": 5559.5, + "probability": 0.5392 + }, + { + "start": 5560.1, + "end": 5562.98, + "probability": 0.9784 + }, + { + "start": 5563.58, + "end": 5566.5, + "probability": 0.998 + }, + { + "start": 5567.02, + "end": 5570.42, + "probability": 0.9923 + }, + { + "start": 5571.24, + "end": 5574.02, + "probability": 0.9803 + }, + { + "start": 5574.82, + "end": 5577.74, + "probability": 0.9844 + }, + { + "start": 5578.92, + "end": 5582.64, + "probability": 0.9634 + }, + { + "start": 5583.0, + "end": 5584.3, + "probability": 0.9622 + }, + { + "start": 5584.86, + "end": 5587.2, + "probability": 0.9991 + }, + { + "start": 5587.82, + "end": 5590.4, + "probability": 0.9874 + }, + { + "start": 5591.2, + "end": 5593.22, + "probability": 0.8688 + }, + { + "start": 5593.8, + "end": 5598.28, + "probability": 0.981 + }, + { + "start": 5600.28, + "end": 5601.28, + "probability": 0.8587 + }, + { + "start": 5601.56, + "end": 5604.8, + "probability": 0.9773 + }, + { + "start": 5604.82, + "end": 5605.26, + "probability": 0.5735 + }, + { + "start": 5605.28, + "end": 5606.46, + "probability": 0.929 + }, + { + "start": 5606.64, + "end": 5607.84, + "probability": 0.9424 + }, + { + "start": 5608.28, + "end": 5609.1, + "probability": 0.8292 + }, + { + "start": 5609.82, + "end": 5613.14, + "probability": 0.9885 + }, + { + "start": 5613.14, + "end": 5617.36, + "probability": 0.9918 + }, + { + "start": 5617.96, + "end": 5621.48, + "probability": 0.9825 + }, + { + "start": 5622.08, + "end": 5625.74, + "probability": 0.8121 + }, + { + "start": 5626.3, + "end": 5627.42, + "probability": 0.6345 + }, + { + "start": 5628.7, + "end": 5635.55, + "probability": 0.8642 + }, + { + "start": 5636.16, + "end": 5638.08, + "probability": 0.9595 + }, + { + "start": 5638.5, + "end": 5640.64, + "probability": 0.9613 + }, + { + "start": 5641.16, + "end": 5644.7, + "probability": 0.9796 + }, + { + "start": 5646.54, + "end": 5648.22, + "probability": 0.5045 + }, + { + "start": 5648.44, + "end": 5649.88, + "probability": 0.9593 + }, + { + "start": 5649.98, + "end": 5652.92, + "probability": 0.9901 + }, + { + "start": 5653.98, + "end": 5654.6, + "probability": 0.5672 + }, + { + "start": 5655.2, + "end": 5659.26, + "probability": 0.9624 + }, + { + "start": 5659.8, + "end": 5665.28, + "probability": 0.9997 + }, + { + "start": 5665.9, + "end": 5668.18, + "probability": 0.9942 + }, + { + "start": 5669.66, + "end": 5672.8, + "probability": 0.9969 + }, + { + "start": 5672.8, + "end": 5675.58, + "probability": 0.9792 + }, + { + "start": 5676.06, + "end": 5676.54, + "probability": 0.4594 + }, + { + "start": 5676.58, + "end": 5680.64, + "probability": 0.9788 + }, + { + "start": 5680.92, + "end": 5682.7, + "probability": 0.6596 + }, + { + "start": 5683.46, + "end": 5684.68, + "probability": 0.9971 + }, + { + "start": 5685.3, + "end": 5688.06, + "probability": 0.9653 + }, + { + "start": 5688.06, + "end": 5692.18, + "probability": 0.6567 + }, + { + "start": 5692.86, + "end": 5695.84, + "probability": 0.9658 + }, + { + "start": 5696.44, + "end": 5697.92, + "probability": 0.5887 + }, + { + "start": 5698.4, + "end": 5701.8, + "probability": 0.9754 + }, + { + "start": 5702.92, + "end": 5707.86, + "probability": 0.9798 + }, + { + "start": 5708.7, + "end": 5710.62, + "probability": 0.998 + }, + { + "start": 5713.07, + "end": 5716.34, + "probability": 0.7565 + }, + { + "start": 5717.36, + "end": 5720.1, + "probability": 0.9988 + }, + { + "start": 5720.24, + "end": 5723.84, + "probability": 0.9877 + }, + { + "start": 5724.82, + "end": 5730.0, + "probability": 0.9874 + }, + { + "start": 5730.82, + "end": 5733.68, + "probability": 0.9863 + }, + { + "start": 5734.18, + "end": 5740.9, + "probability": 0.8538 + }, + { + "start": 5741.64, + "end": 5744.76, + "probability": 0.998 + }, + { + "start": 5744.76, + "end": 5748.62, + "probability": 0.9852 + }, + { + "start": 5750.26, + "end": 5754.28, + "probability": 0.9857 + }, + { + "start": 5755.08, + "end": 5755.96, + "probability": 0.7493 + }, + { + "start": 5756.62, + "end": 5757.46, + "probability": 0.7444 + }, + { + "start": 5757.98, + "end": 5758.76, + "probability": 0.7486 + }, + { + "start": 5759.5, + "end": 5760.18, + "probability": 0.9172 + }, + { + "start": 5760.76, + "end": 5761.26, + "probability": 0.7494 + }, + { + "start": 5763.6, + "end": 5764.1, + "probability": 0.8395 + }, + { + "start": 5764.72, + "end": 5765.78, + "probability": 0.821 + }, + { + "start": 5766.6, + "end": 5771.34, + "probability": 0.9767 + }, + { + "start": 5773.16, + "end": 5775.54, + "probability": 0.9974 + }, + { + "start": 5776.2, + "end": 5777.0, + "probability": 0.9336 + }, + { + "start": 5778.06, + "end": 5778.26, + "probability": 0.5474 + }, + { + "start": 5779.02, + "end": 5779.22, + "probability": 0.1049 + }, + { + "start": 5779.22, + "end": 5781.1, + "probability": 0.5191 + }, + { + "start": 5781.56, + "end": 5781.88, + "probability": 0.8214 + }, + { + "start": 5783.2, + "end": 5785.14, + "probability": 0.8845 + }, + { + "start": 5785.66, + "end": 5786.72, + "probability": 0.5491 + }, + { + "start": 5787.3, + "end": 5788.84, + "probability": 0.8984 + }, + { + "start": 5789.5, + "end": 5794.1, + "probability": 0.6146 + }, + { + "start": 5794.56, + "end": 5796.26, + "probability": 0.3174 + }, + { + "start": 5796.8, + "end": 5798.1, + "probability": 0.9717 + }, + { + "start": 5798.5, + "end": 5798.7, + "probability": 0.7653 + }, + { + "start": 5799.36, + "end": 5799.94, + "probability": 0.781 + }, + { + "start": 5800.52, + "end": 5801.95, + "probability": 0.9973 + }, + { + "start": 5802.22, + "end": 5804.42, + "probability": 0.9548 + }, + { + "start": 5805.56, + "end": 5805.66, + "probability": 0.0039 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.0622 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.2371 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.1735 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.3583 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.3825 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.2662 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.4264 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.2789 + }, + { + "start": 5807.64, + "end": 5807.64, + "probability": 0.0613 + }, + { + "start": 5807.64, + "end": 5809.6, + "probability": 0.5855 + }, + { + "start": 5810.42, + "end": 5817.2, + "probability": 0.9785 + }, + { + "start": 5817.76, + "end": 5818.32, + "probability": 0.2905 + }, + { + "start": 5820.22, + "end": 5825.14, + "probability": 0.8989 + }, + { + "start": 5825.72, + "end": 5827.34, + "probability": 0.9713 + }, + { + "start": 5828.68, + "end": 5831.6, + "probability": 0.9186 + }, + { + "start": 5832.52, + "end": 5834.74, + "probability": 0.9751 + }, + { + "start": 5835.75, + "end": 5838.36, + "probability": 0.9927 + }, + { + "start": 5839.32, + "end": 5841.01, + "probability": 0.963 + }, + { + "start": 5842.12, + "end": 5845.54, + "probability": 0.6256 + }, + { + "start": 5846.38, + "end": 5851.76, + "probability": 0.9837 + }, + { + "start": 5852.65, + "end": 5854.88, + "probability": 0.8159 + }, + { + "start": 5855.68, + "end": 5862.76, + "probability": 0.9393 + }, + { + "start": 5863.24, + "end": 5865.18, + "probability": 0.9994 + }, + { + "start": 5865.84, + "end": 5867.26, + "probability": 0.9164 + }, + { + "start": 5869.04, + "end": 5869.68, + "probability": 0.9701 + }, + { + "start": 5870.52, + "end": 5872.26, + "probability": 0.9569 + }, + { + "start": 5873.39, + "end": 5874.46, + "probability": 0.6782 + }, + { + "start": 5875.02, + "end": 5875.96, + "probability": 0.9563 + }, + { + "start": 5883.66, + "end": 5889.04, + "probability": 0.9333 + }, + { + "start": 5889.68, + "end": 5891.33, + "probability": 0.5746 + }, + { + "start": 5892.6, + "end": 5897.7, + "probability": 0.9572 + }, + { + "start": 5897.92, + "end": 5899.24, + "probability": 0.5889 + }, + { + "start": 5905.64, + "end": 5907.55, + "probability": 0.974 + }, + { + "start": 5908.16, + "end": 5908.86, + "probability": 0.6309 + }, + { + "start": 5909.56, + "end": 5910.86, + "probability": 0.9882 + }, + { + "start": 5911.7, + "end": 5912.16, + "probability": 0.0279 + }, + { + "start": 5919.16, + "end": 5919.16, + "probability": 0.0284 + }, + { + "start": 5919.16, + "end": 5919.18, + "probability": 0.1211 + }, + { + "start": 5919.18, + "end": 5919.18, + "probability": 0.0412 + }, + { + "start": 5919.18, + "end": 5919.22, + "probability": 0.2677 + }, + { + "start": 5919.24, + "end": 5919.24, + "probability": 0.0027 + }, + { + "start": 5930.46, + "end": 5931.66, + "probability": 0.4195 + }, + { + "start": 5932.1, + "end": 5933.68, + "probability": 0.7329 + }, + { + "start": 5934.18, + "end": 5936.38, + "probability": 0.8146 + }, + { + "start": 5937.58, + "end": 5938.5, + "probability": 0.4991 + }, + { + "start": 5939.72, + "end": 5941.98, + "probability": 0.8507 + }, + { + "start": 5942.96, + "end": 5945.4, + "probability": 0.9121 + }, + { + "start": 5945.4, + "end": 5947.36, + "probability": 0.9202 + }, + { + "start": 5948.66, + "end": 5951.28, + "probability": 0.998 + }, + { + "start": 5951.68, + "end": 5955.16, + "probability": 0.99 + }, + { + "start": 5956.46, + "end": 5959.96, + "probability": 0.9969 + }, + { + "start": 5959.96, + "end": 5963.6, + "probability": 0.9841 + }, + { + "start": 5964.26, + "end": 5967.1, + "probability": 0.9992 + }, + { + "start": 5967.68, + "end": 5969.66, + "probability": 0.9992 + }, + { + "start": 5971.82, + "end": 5976.6, + "probability": 0.9574 + }, + { + "start": 5977.98, + "end": 5979.82, + "probability": 0.6622 + }, + { + "start": 5980.48, + "end": 5982.84, + "probability": 0.9865 + }, + { + "start": 5983.36, + "end": 5985.32, + "probability": 0.7472 + }, + { + "start": 5986.18, + "end": 5988.88, + "probability": 0.9094 + }, + { + "start": 5989.5, + "end": 5992.4, + "probability": 0.9783 + }, + { + "start": 5992.4, + "end": 5994.74, + "probability": 0.9784 + }, + { + "start": 6001.62, + "end": 6003.4, + "probability": 0.945 + }, + { + "start": 6004.18, + "end": 6006.0, + "probability": 0.9814 + }, + { + "start": 6006.76, + "end": 6009.6, + "probability": 0.9758 + }, + { + "start": 6010.06, + "end": 6016.3, + "probability": 0.9561 + }, + { + "start": 6017.54, + "end": 6021.46, + "probability": 0.9859 + }, + { + "start": 6021.88, + "end": 6025.22, + "probability": 0.9751 + }, + { + "start": 6027.4, + "end": 6030.48, + "probability": 0.8657 + }, + { + "start": 6030.48, + "end": 6034.28, + "probability": 0.944 + }, + { + "start": 6035.58, + "end": 6037.78, + "probability": 0.9558 + }, + { + "start": 6040.22, + "end": 6041.94, + "probability": 0.8525 + }, + { + "start": 6042.74, + "end": 6044.7, + "probability": 0.9513 + }, + { + "start": 6045.48, + "end": 6048.7, + "probability": 0.9985 + }, + { + "start": 6049.78, + "end": 6051.9, + "probability": 0.9527 + }, + { + "start": 6052.18, + "end": 6054.32, + "probability": 0.518 + }, + { + "start": 6055.58, + "end": 6056.98, + "probability": 0.7889 + }, + { + "start": 6057.96, + "end": 6058.78, + "probability": 0.7449 + }, + { + "start": 6059.3, + "end": 6063.08, + "probability": 0.9753 + }, + { + "start": 6064.74, + "end": 6066.66, + "probability": 0.7147 + }, + { + "start": 6067.68, + "end": 6069.68, + "probability": 0.935 + }, + { + "start": 6070.34, + "end": 6074.52, + "probability": 0.9595 + }, + { + "start": 6075.12, + "end": 6076.18, + "probability": 0.7782 + }, + { + "start": 6076.84, + "end": 6077.56, + "probability": 0.9919 + }, + { + "start": 6078.4, + "end": 6079.42, + "probability": 0.895 + }, + { + "start": 6080.06, + "end": 6081.68, + "probability": 0.9943 + }, + { + "start": 6083.5, + "end": 6084.38, + "probability": 0.652 + }, + { + "start": 6084.94, + "end": 6085.78, + "probability": 0.9604 + }, + { + "start": 6086.34, + "end": 6087.68, + "probability": 0.958 + }, + { + "start": 6088.26, + "end": 6089.28, + "probability": 0.7594 + }, + { + "start": 6090.18, + "end": 6091.3, + "probability": 0.9266 + }, + { + "start": 6092.66, + "end": 6093.6, + "probability": 0.998 + }, + { + "start": 6098.14, + "end": 6103.22, + "probability": 0.9939 + }, + { + "start": 6103.96, + "end": 6108.56, + "probability": 0.9859 + }, + { + "start": 6109.26, + "end": 6115.08, + "probability": 0.9974 + }, + { + "start": 6116.64, + "end": 6118.11, + "probability": 0.8349 + }, + { + "start": 6119.64, + "end": 6124.88, + "probability": 0.9978 + }, + { + "start": 6125.78, + "end": 6127.36, + "probability": 0.9877 + }, + { + "start": 6128.66, + "end": 6129.5, + "probability": 0.9003 + }, + { + "start": 6130.28, + "end": 6134.6, + "probability": 0.9965 + }, + { + "start": 6135.62, + "end": 6139.8, + "probability": 0.9924 + }, + { + "start": 6140.46, + "end": 6141.52, + "probability": 0.8482 + }, + { + "start": 6142.06, + "end": 6144.86, + "probability": 0.8438 + }, + { + "start": 6145.68, + "end": 6148.86, + "probability": 0.9968 + }, + { + "start": 6149.88, + "end": 6153.2, + "probability": 0.991 + }, + { + "start": 6153.84, + "end": 6154.82, + "probability": 0.9618 + }, + { + "start": 6156.16, + "end": 6159.94, + "probability": 0.9572 + }, + { + "start": 6161.32, + "end": 6166.9, + "probability": 0.9776 + }, + { + "start": 6168.6, + "end": 6171.84, + "probability": 0.7538 + }, + { + "start": 6172.46, + "end": 6172.74, + "probability": 0.7524 + }, + { + "start": 6173.4, + "end": 6173.84, + "probability": 0.7792 + }, + { + "start": 6174.06, + "end": 6179.1, + "probability": 0.9651 + }, + { + "start": 6180.48, + "end": 6181.62, + "probability": 0.9483 + }, + { + "start": 6182.06, + "end": 6185.56, + "probability": 0.9129 + }, + { + "start": 6186.16, + "end": 6187.98, + "probability": 0.9854 + }, + { + "start": 6189.48, + "end": 6194.66, + "probability": 0.9984 + }, + { + "start": 6195.32, + "end": 6199.92, + "probability": 0.9099 + }, + { + "start": 6200.44, + "end": 6204.22, + "probability": 0.9808 + }, + { + "start": 6204.82, + "end": 6207.64, + "probability": 0.4611 + }, + { + "start": 6207.88, + "end": 6208.26, + "probability": 0.764 + }, + { + "start": 6210.5, + "end": 6211.06, + "probability": 0.7233 + }, + { + "start": 6212.06, + "end": 6213.96, + "probability": 0.6706 + }, + { + "start": 6215.12, + "end": 6216.72, + "probability": 0.5236 + }, + { + "start": 6218.34, + "end": 6221.6, + "probability": 0.7817 + }, + { + "start": 6222.14, + "end": 6223.4, + "probability": 0.7692 + }, + { + "start": 6223.9, + "end": 6224.5, + "probability": 0.6459 + }, + { + "start": 6228.4, + "end": 6230.84, + "probability": 0.8308 + }, + { + "start": 6232.4, + "end": 6234.6, + "probability": 0.0186 + }, + { + "start": 6254.4, + "end": 6255.08, + "probability": 0.087 + }, + { + "start": 6259.26, + "end": 6261.18, + "probability": 0.7402 + }, + { + "start": 6261.56, + "end": 6264.0, + "probability": 0.7312 + }, + { + "start": 6264.74, + "end": 6265.0, + "probability": 0.8746 + }, + { + "start": 6265.58, + "end": 6266.64, + "probability": 0.8282 + }, + { + "start": 6268.8, + "end": 6269.54, + "probability": 0.787 + }, + { + "start": 6270.1, + "end": 6272.58, + "probability": 0.6422 + }, + { + "start": 6275.7, + "end": 6281.6, + "probability": 0.867 + }, + { + "start": 6283.64, + "end": 6284.52, + "probability": 0.694 + }, + { + "start": 6286.88, + "end": 6288.4, + "probability": 0.8179 + }, + { + "start": 6289.58, + "end": 6290.0, + "probability": 0.9494 + }, + { + "start": 6291.6, + "end": 6293.4, + "probability": 0.9893 + }, + { + "start": 6294.72, + "end": 6295.64, + "probability": 0.8511 + }, + { + "start": 6297.74, + "end": 6298.94, + "probability": 0.9844 + }, + { + "start": 6300.4, + "end": 6301.2, + "probability": 0.9338 + }, + { + "start": 6302.56, + "end": 6307.44, + "probability": 0.9932 + }, + { + "start": 6308.4, + "end": 6313.4, + "probability": 0.9434 + }, + { + "start": 6315.32, + "end": 6317.14, + "probability": 0.9951 + }, + { + "start": 6318.2, + "end": 6319.33, + "probability": 0.9011 + }, + { + "start": 6321.14, + "end": 6323.36, + "probability": 0.9783 + }, + { + "start": 6324.42, + "end": 6326.36, + "probability": 0.9961 + }, + { + "start": 6327.38, + "end": 6328.74, + "probability": 0.9868 + }, + { + "start": 6329.74, + "end": 6330.92, + "probability": 0.9199 + }, + { + "start": 6332.6, + "end": 6337.34, + "probability": 0.999 + }, + { + "start": 6338.76, + "end": 6339.5, + "probability": 0.6891 + }, + { + "start": 6340.1, + "end": 6341.04, + "probability": 0.9614 + }, + { + "start": 6341.92, + "end": 6343.96, + "probability": 0.9993 + }, + { + "start": 6344.86, + "end": 6347.0, + "probability": 0.9976 + }, + { + "start": 6349.82, + "end": 6350.52, + "probability": 0.8186 + }, + { + "start": 6350.7, + "end": 6353.1, + "probability": 0.9785 + }, + { + "start": 6354.86, + "end": 6356.77, + "probability": 0.9868 + }, + { + "start": 6357.94, + "end": 6358.74, + "probability": 0.8493 + }, + { + "start": 6360.2, + "end": 6361.28, + "probability": 0.7559 + }, + { + "start": 6363.0, + "end": 6363.88, + "probability": 0.8815 + }, + { + "start": 6366.68, + "end": 6366.68, + "probability": 0.9141 + }, + { + "start": 6370.62, + "end": 6371.24, + "probability": 0.9935 + }, + { + "start": 6373.08, + "end": 6374.3, + "probability": 0.5519 + }, + { + "start": 6375.22, + "end": 6376.74, + "probability": 0.9978 + }, + { + "start": 6379.24, + "end": 6380.2, + "probability": 0.7434 + }, + { + "start": 6381.6, + "end": 6384.74, + "probability": 0.9942 + }, + { + "start": 6386.54, + "end": 6391.34, + "probability": 0.9905 + }, + { + "start": 6395.18, + "end": 6396.92, + "probability": 0.9547 + }, + { + "start": 6398.84, + "end": 6402.72, + "probability": 0.9858 + }, + { + "start": 6405.26, + "end": 6406.44, + "probability": 0.5136 + }, + { + "start": 6407.62, + "end": 6410.46, + "probability": 0.9935 + }, + { + "start": 6412.26, + "end": 6416.16, + "probability": 0.9968 + }, + { + "start": 6416.96, + "end": 6417.9, + "probability": 0.8607 + }, + { + "start": 6418.6, + "end": 6421.82, + "probability": 0.9886 + }, + { + "start": 6423.94, + "end": 6424.88, + "probability": 0.9916 + }, + { + "start": 6425.82, + "end": 6428.18, + "probability": 0.9987 + }, + { + "start": 6431.4, + "end": 6433.34, + "probability": 0.9995 + }, + { + "start": 6434.44, + "end": 6437.76, + "probability": 0.993 + }, + { + "start": 6444.32, + "end": 6448.02, + "probability": 0.9636 + }, + { + "start": 6449.16, + "end": 6452.06, + "probability": 0.986 + }, + { + "start": 6453.52, + "end": 6455.3, + "probability": 0.967 + }, + { + "start": 6458.23, + "end": 6465.12, + "probability": 0.9973 + }, + { + "start": 6466.88, + "end": 6469.98, + "probability": 0.9993 + }, + { + "start": 6471.54, + "end": 6474.2, + "probability": 0.8995 + }, + { + "start": 6476.04, + "end": 6479.1, + "probability": 0.8972 + }, + { + "start": 6480.78, + "end": 6481.32, + "probability": 0.4973 + }, + { + "start": 6483.46, + "end": 6486.68, + "probability": 0.7476 + }, + { + "start": 6487.34, + "end": 6492.16, + "probability": 0.9784 + }, + { + "start": 6493.26, + "end": 6498.58, + "probability": 0.9683 + }, + { + "start": 6499.64, + "end": 6500.52, + "probability": 0.7913 + }, + { + "start": 6502.22, + "end": 6509.16, + "probability": 0.8102 + }, + { + "start": 6510.0, + "end": 6512.62, + "probability": 0.8594 + }, + { + "start": 6514.16, + "end": 6519.26, + "probability": 0.9736 + }, + { + "start": 6520.22, + "end": 6521.52, + "probability": 0.9494 + }, + { + "start": 6522.06, + "end": 6525.32, + "probability": 0.9712 + }, + { + "start": 6525.38, + "end": 6527.06, + "probability": 0.6816 + }, + { + "start": 6528.14, + "end": 6531.16, + "probability": 0.994 + }, + { + "start": 6531.9, + "end": 6533.84, + "probability": 0.5506 + }, + { + "start": 6535.28, + "end": 6537.38, + "probability": 0.9978 + }, + { + "start": 6538.34, + "end": 6542.78, + "probability": 0.726 + }, + { + "start": 6543.76, + "end": 6544.62, + "probability": 0.9492 + }, + { + "start": 6545.48, + "end": 6546.2, + "probability": 0.7607 + }, + { + "start": 6547.6, + "end": 6549.08, + "probability": 0.9907 + }, + { + "start": 6549.3, + "end": 6552.24, + "probability": 0.9295 + }, + { + "start": 6552.34, + "end": 6553.62, + "probability": 0.6646 + }, + { + "start": 6554.14, + "end": 6555.5, + "probability": 0.863 + }, + { + "start": 6556.42, + "end": 6558.78, + "probability": 0.7142 + }, + { + "start": 6559.21, + "end": 6560.79, + "probability": 0.5506 + }, + { + "start": 6561.12, + "end": 6562.32, + "probability": 0.6006 + }, + { + "start": 6563.38, + "end": 6568.47, + "probability": 0.6614 + }, + { + "start": 6569.62, + "end": 6571.64, + "probability": 0.0915 + }, + { + "start": 6571.64, + "end": 6572.54, + "probability": 0.9155 + }, + { + "start": 6573.6, + "end": 6574.84, + "probability": 0.7747 + }, + { + "start": 6575.74, + "end": 6578.16, + "probability": 0.8767 + }, + { + "start": 6578.72, + "end": 6582.2, + "probability": 0.8147 + }, + { + "start": 6583.8, + "end": 6588.44, + "probability": 0.7144 + }, + { + "start": 6589.92, + "end": 6593.78, + "probability": 0.9779 + }, + { + "start": 6594.46, + "end": 6599.84, + "probability": 0.8034 + }, + { + "start": 6600.78, + "end": 6603.88, + "probability": 0.9975 + }, + { + "start": 6605.06, + "end": 6606.59, + "probability": 0.9748 + }, + { + "start": 6606.88, + "end": 6609.88, + "probability": 0.7643 + }, + { + "start": 6610.54, + "end": 6612.72, + "probability": 0.8966 + }, + { + "start": 6613.52, + "end": 6616.32, + "probability": 0.9969 + }, + { + "start": 6616.84, + "end": 6617.4, + "probability": 0.9382 + }, + { + "start": 6618.62, + "end": 6620.66, + "probability": 0.9773 + }, + { + "start": 6620.82, + "end": 6621.6, + "probability": 0.969 + }, + { + "start": 6621.66, + "end": 6623.3, + "probability": 0.6972 + }, + { + "start": 6623.92, + "end": 6624.92, + "probability": 0.8478 + }, + { + "start": 6625.44, + "end": 6626.36, + "probability": 0.8657 + }, + { + "start": 6627.8, + "end": 6629.79, + "probability": 0.9286 + }, + { + "start": 6630.06, + "end": 6630.81, + "probability": 0.9619 + }, + { + "start": 6631.12, + "end": 6633.02, + "probability": 0.8731 + }, + { + "start": 6633.64, + "end": 6634.44, + "probability": 0.6901 + }, + { + "start": 6635.02, + "end": 6638.68, + "probability": 0.7392 + }, + { + "start": 6639.34, + "end": 6640.04, + "probability": 0.9723 + }, + { + "start": 6640.56, + "end": 6641.34, + "probability": 0.9946 + }, + { + "start": 6641.82, + "end": 6642.66, + "probability": 0.8011 + }, + { + "start": 6643.68, + "end": 6647.92, + "probability": 0.984 + }, + { + "start": 6648.58, + "end": 6650.44, + "probability": 0.8022 + }, + { + "start": 6650.5, + "end": 6654.73, + "probability": 0.979 + }, + { + "start": 6654.9, + "end": 6659.72, + "probability": 0.9725 + }, + { + "start": 6659.9, + "end": 6661.5, + "probability": 0.8296 + }, + { + "start": 6661.9, + "end": 6664.74, + "probability": 0.745 + }, + { + "start": 6665.56, + "end": 6666.26, + "probability": 0.721 + }, + { + "start": 6667.52, + "end": 6667.84, + "probability": 0.5176 + }, + { + "start": 6667.84, + "end": 6667.84, + "probability": 0.0146 + }, + { + "start": 6667.84, + "end": 6669.04, + "probability": 0.2745 + }, + { + "start": 6669.16, + "end": 6669.96, + "probability": 0.8448 + }, + { + "start": 6670.06, + "end": 6671.0, + "probability": 0.8927 + }, + { + "start": 6671.2, + "end": 6671.56, + "probability": 0.856 + }, + { + "start": 6672.0, + "end": 6672.74, + "probability": 0.7117 + }, + { + "start": 6673.7, + "end": 6674.5, + "probability": 0.2794 + }, + { + "start": 6676.91, + "end": 6677.78, + "probability": 0.0608 + }, + { + "start": 6677.78, + "end": 6677.78, + "probability": 0.5193 + }, + { + "start": 6677.78, + "end": 6678.34, + "probability": 0.7417 + }, + { + "start": 6678.34, + "end": 6678.34, + "probability": 0.0565 + }, + { + "start": 6678.34, + "end": 6679.12, + "probability": 0.9587 + }, + { + "start": 6679.26, + "end": 6679.84, + "probability": 0.0222 + }, + { + "start": 6680.02, + "end": 6680.46, + "probability": 0.4365 + }, + { + "start": 6680.54, + "end": 6681.48, + "probability": 0.9952 + }, + { + "start": 6682.02, + "end": 6684.68, + "probability": 0.9858 + }, + { + "start": 6684.8, + "end": 6685.32, + "probability": 0.4736 + }, + { + "start": 6685.5, + "end": 6686.8, + "probability": 0.9817 + }, + { + "start": 6686.92, + "end": 6688.42, + "probability": 0.916 + }, + { + "start": 6688.46, + "end": 6689.25, + "probability": 0.5205 + }, + { + "start": 6690.04, + "end": 6690.56, + "probability": 0.5515 + }, + { + "start": 6691.28, + "end": 6692.64, + "probability": 0.9845 + }, + { + "start": 6693.2, + "end": 6694.72, + "probability": 0.7163 + }, + { + "start": 6695.4, + "end": 6696.98, + "probability": 0.9888 + }, + { + "start": 6697.44, + "end": 6697.92, + "probability": 0.4835 + }, + { + "start": 6698.32, + "end": 6699.66, + "probability": 0.7807 + }, + { + "start": 6699.8, + "end": 6702.66, + "probability": 0.9615 + }, + { + "start": 6704.32, + "end": 6706.54, + "probability": 0.7158 + }, + { + "start": 6706.96, + "end": 6708.48, + "probability": 0.8199 + }, + { + "start": 6708.78, + "end": 6711.02, + "probability": 0.772 + }, + { + "start": 6711.12, + "end": 6714.12, + "probability": 0.6641 + }, + { + "start": 6714.38, + "end": 6716.4, + "probability": 0.1236 + }, + { + "start": 6726.34, + "end": 6727.52, + "probability": 0.1614 + }, + { + "start": 6727.52, + "end": 6727.88, + "probability": 0.0465 + }, + { + "start": 6727.88, + "end": 6727.88, + "probability": 0.0329 + }, + { + "start": 6727.88, + "end": 6730.13, + "probability": 0.6113 + }, + { + "start": 6735.66, + "end": 6737.2, + "probability": 0.5888 + }, + { + "start": 6737.52, + "end": 6738.26, + "probability": 0.541 + }, + { + "start": 6738.4, + "end": 6739.66, + "probability": 0.9734 + }, + { + "start": 6740.1, + "end": 6742.63, + "probability": 0.9945 + }, + { + "start": 6743.22, + "end": 6746.2, + "probability": 0.9949 + }, + { + "start": 6746.84, + "end": 6752.72, + "probability": 0.9561 + }, + { + "start": 6753.2, + "end": 6758.1, + "probability": 0.9991 + }, + { + "start": 6758.82, + "end": 6761.26, + "probability": 0.7289 + }, + { + "start": 6762.0, + "end": 6765.44, + "probability": 0.998 + }, + { + "start": 6766.04, + "end": 6769.52, + "probability": 0.9983 + }, + { + "start": 6770.46, + "end": 6772.5, + "probability": 0.9993 + }, + { + "start": 6773.06, + "end": 6773.58, + "probability": 0.8681 + }, + { + "start": 6774.86, + "end": 6776.46, + "probability": 0.9926 + }, + { + "start": 6777.64, + "end": 6780.15, + "probability": 0.9932 + }, + { + "start": 6780.98, + "end": 6782.14, + "probability": 0.9756 + }, + { + "start": 6782.32, + "end": 6787.14, + "probability": 0.9928 + }, + { + "start": 6787.9, + "end": 6789.98, + "probability": 0.9888 + }, + { + "start": 6790.8, + "end": 6791.48, + "probability": 0.7608 + }, + { + "start": 6791.6, + "end": 6793.65, + "probability": 0.868 + }, + { + "start": 6793.78, + "end": 6796.2, + "probability": 0.945 + }, + { + "start": 6796.96, + "end": 6797.94, + "probability": 0.9357 + }, + { + "start": 6798.6, + "end": 6801.82, + "probability": 0.9812 + }, + { + "start": 6802.66, + "end": 6805.22, + "probability": 0.8145 + }, + { + "start": 6805.86, + "end": 6807.16, + "probability": 0.9486 + }, + { + "start": 6808.02, + "end": 6811.36, + "probability": 0.9987 + }, + { + "start": 6812.84, + "end": 6815.22, + "probability": 0.7179 + }, + { + "start": 6816.12, + "end": 6818.44, + "probability": 0.9625 + }, + { + "start": 6819.1, + "end": 6820.6, + "probability": 0.8824 + }, + { + "start": 6821.16, + "end": 6822.08, + "probability": 0.958 + }, + { + "start": 6822.88, + "end": 6825.08, + "probability": 0.9932 + }, + { + "start": 6825.84, + "end": 6826.18, + "probability": 0.9312 + }, + { + "start": 6827.28, + "end": 6829.2, + "probability": 0.9953 + }, + { + "start": 6830.58, + "end": 6831.32, + "probability": 0.9924 + }, + { + "start": 6832.54, + "end": 6833.36, + "probability": 0.9628 + }, + { + "start": 6834.08, + "end": 6836.8, + "probability": 0.8837 + }, + { + "start": 6836.9, + "end": 6838.78, + "probability": 0.9966 + }, + { + "start": 6840.92, + "end": 6843.88, + "probability": 0.9612 + }, + { + "start": 6844.72, + "end": 6845.64, + "probability": 0.8307 + }, + { + "start": 6845.9, + "end": 6849.64, + "probability": 0.9954 + }, + { + "start": 6850.8, + "end": 6852.6, + "probability": 0.9849 + }, + { + "start": 6852.78, + "end": 6857.8, + "probability": 0.9979 + }, + { + "start": 6858.48, + "end": 6859.78, + "probability": 0.9952 + }, + { + "start": 6861.04, + "end": 6863.88, + "probability": 0.9207 + }, + { + "start": 6864.12, + "end": 6866.28, + "probability": 0.9982 + }, + { + "start": 6866.8, + "end": 6868.2, + "probability": 0.6174 + }, + { + "start": 6869.7, + "end": 6870.34, + "probability": 0.9753 + }, + { + "start": 6871.12, + "end": 6871.94, + "probability": 0.9527 + }, + { + "start": 6873.02, + "end": 6877.0, + "probability": 0.9745 + }, + { + "start": 6877.22, + "end": 6878.9, + "probability": 0.9521 + }, + { + "start": 6879.62, + "end": 6884.28, + "probability": 0.9884 + }, + { + "start": 6884.98, + "end": 6886.86, + "probability": 0.6855 + }, + { + "start": 6887.76, + "end": 6890.7, + "probability": 0.9944 + }, + { + "start": 6891.46, + "end": 6893.44, + "probability": 0.9229 + }, + { + "start": 6893.94, + "end": 6898.0, + "probability": 0.9964 + }, + { + "start": 6898.82, + "end": 6903.66, + "probability": 0.93 + }, + { + "start": 6903.66, + "end": 6908.76, + "probability": 0.9996 + }, + { + "start": 6909.7, + "end": 6911.54, + "probability": 0.9934 + }, + { + "start": 6912.42, + "end": 6914.6, + "probability": 0.9966 + }, + { + "start": 6915.34, + "end": 6916.38, + "probability": 0.9937 + }, + { + "start": 6918.34, + "end": 6919.26, + "probability": 0.897 + }, + { + "start": 6919.68, + "end": 6924.24, + "probability": 0.9933 + }, + { + "start": 6924.88, + "end": 6931.34, + "probability": 0.9968 + }, + { + "start": 6932.04, + "end": 6936.26, + "probability": 0.998 + }, + { + "start": 6937.0, + "end": 6942.82, + "probability": 0.999 + }, + { + "start": 6943.56, + "end": 6946.52, + "probability": 0.7645 + }, + { + "start": 6946.66, + "end": 6948.42, + "probability": 0.9285 + }, + { + "start": 6949.04, + "end": 6950.08, + "probability": 0.9165 + }, + { + "start": 6950.68, + "end": 6954.78, + "probability": 0.9897 + }, + { + "start": 6954.88, + "end": 6956.6, + "probability": 0.9764 + }, + { + "start": 6957.4, + "end": 6961.62, + "probability": 0.9798 + }, + { + "start": 6962.22, + "end": 6965.38, + "probability": 0.9729 + }, + { + "start": 6965.4, + "end": 6967.7, + "probability": 0.8299 + }, + { + "start": 6968.26, + "end": 6974.02, + "probability": 0.9899 + }, + { + "start": 6974.16, + "end": 6974.58, + "probability": 0.445 + }, + { + "start": 6974.68, + "end": 6975.72, + "probability": 0.7354 + }, + { + "start": 6976.3, + "end": 6978.86, + "probability": 0.9684 + }, + { + "start": 6979.56, + "end": 6983.32, + "probability": 0.9003 + }, + { + "start": 6984.0, + "end": 6984.6, + "probability": 0.9211 + }, + { + "start": 6985.34, + "end": 6989.8, + "probability": 0.9858 + }, + { + "start": 6989.8, + "end": 6993.18, + "probability": 0.9956 + }, + { + "start": 6993.84, + "end": 6995.8, + "probability": 0.8904 + }, + { + "start": 6996.58, + "end": 6999.84, + "probability": 0.9888 + }, + { + "start": 7000.36, + "end": 7001.02, + "probability": 0.8546 + }, + { + "start": 7001.54, + "end": 7006.46, + "probability": 0.9992 + }, + { + "start": 7007.24, + "end": 7008.88, + "probability": 0.9594 + }, + { + "start": 7009.74, + "end": 7011.94, + "probability": 0.9945 + }, + { + "start": 7012.62, + "end": 7013.52, + "probability": 0.8779 + }, + { + "start": 7014.64, + "end": 7016.2, + "probability": 0.9829 + }, + { + "start": 7017.3, + "end": 7018.12, + "probability": 0.9704 + }, + { + "start": 7018.74, + "end": 7022.12, + "probability": 0.807 + }, + { + "start": 7022.69, + "end": 7023.2, + "probability": 0.7991 + }, + { + "start": 7024.84, + "end": 7026.46, + "probability": 0.9939 + }, + { + "start": 7026.66, + "end": 7027.14, + "probability": 0.9634 + }, + { + "start": 7028.0, + "end": 7030.38, + "probability": 0.7418 + }, + { + "start": 7030.62, + "end": 7031.8, + "probability": 0.8889 + }, + { + "start": 7032.5, + "end": 7033.8, + "probability": 0.9357 + }, + { + "start": 7034.24, + "end": 7035.52, + "probability": 0.806 + }, + { + "start": 7035.72, + "end": 7037.64, + "probability": 0.9359 + }, + { + "start": 7064.5, + "end": 7065.0, + "probability": 0.3796 + }, + { + "start": 7065.0, + "end": 7066.57, + "probability": 0.7303 + }, + { + "start": 7066.82, + "end": 7067.3, + "probability": 0.6918 + }, + { + "start": 7075.52, + "end": 7077.82, + "probability": 0.8122 + }, + { + "start": 7080.46, + "end": 7081.75, + "probability": 0.8152 + }, + { + "start": 7081.96, + "end": 7084.42, + "probability": 0.959 + }, + { + "start": 7085.74, + "end": 7092.84, + "probability": 0.995 + }, + { + "start": 7093.04, + "end": 7095.94, + "probability": 0.7185 + }, + { + "start": 7096.48, + "end": 7098.94, + "probability": 0.9974 + }, + { + "start": 7100.16, + "end": 7102.72, + "probability": 0.8704 + }, + { + "start": 7104.7, + "end": 7106.52, + "probability": 0.995 + }, + { + "start": 7107.04, + "end": 7107.6, + "probability": 0.7661 + }, + { + "start": 7108.08, + "end": 7108.6, + "probability": 0.854 + }, + { + "start": 7109.22, + "end": 7110.81, + "probability": 0.9922 + }, + { + "start": 7111.56, + "end": 7112.8, + "probability": 0.7104 + }, + { + "start": 7115.7, + "end": 7119.5, + "probability": 0.9844 + }, + { + "start": 7120.84, + "end": 7125.12, + "probability": 0.9893 + }, + { + "start": 7126.28, + "end": 7130.82, + "probability": 0.988 + }, + { + "start": 7131.82, + "end": 7132.86, + "probability": 0.8748 + }, + { + "start": 7133.32, + "end": 7137.9, + "probability": 0.9766 + }, + { + "start": 7139.08, + "end": 7143.66, + "probability": 0.9878 + }, + { + "start": 7143.7, + "end": 7145.74, + "probability": 0.9985 + }, + { + "start": 7146.06, + "end": 7146.69, + "probability": 0.9876 + }, + { + "start": 7147.66, + "end": 7151.96, + "probability": 0.9976 + }, + { + "start": 7153.04, + "end": 7157.96, + "probability": 0.9641 + }, + { + "start": 7157.96, + "end": 7159.92, + "probability": 0.7994 + }, + { + "start": 7160.54, + "end": 7163.1, + "probability": 0.996 + }, + { + "start": 7163.7, + "end": 7164.2, + "probability": 0.9739 + }, + { + "start": 7165.6, + "end": 7168.04, + "probability": 0.9379 + }, + { + "start": 7168.34, + "end": 7172.86, + "probability": 0.9712 + }, + { + "start": 7173.6, + "end": 7175.82, + "probability": 0.9963 + }, + { + "start": 7176.6, + "end": 7181.08, + "probability": 0.9822 + }, + { + "start": 7181.7, + "end": 7182.76, + "probability": 0.9055 + }, + { + "start": 7182.84, + "end": 7185.31, + "probability": 0.9977 + }, + { + "start": 7185.8, + "end": 7192.0, + "probability": 0.9963 + }, + { + "start": 7196.52, + "end": 7197.12, + "probability": 0.7323 + }, + { + "start": 7197.26, + "end": 7203.2, + "probability": 0.9956 + }, + { + "start": 7203.34, + "end": 7203.44, + "probability": 0.4965 + }, + { + "start": 7203.44, + "end": 7204.6, + "probability": 0.9951 + }, + { + "start": 7205.14, + "end": 7207.46, + "probability": 0.8883 + }, + { + "start": 7208.02, + "end": 7211.18, + "probability": 0.9629 + }, + { + "start": 7211.88, + "end": 7214.7, + "probability": 0.9888 + }, + { + "start": 7215.72, + "end": 7216.42, + "probability": 0.772 + }, + { + "start": 7216.92, + "end": 7218.1, + "probability": 0.9718 + }, + { + "start": 7219.72, + "end": 7221.86, + "probability": 0.9988 + }, + { + "start": 7221.96, + "end": 7223.76, + "probability": 0.8975 + }, + { + "start": 7224.22, + "end": 7226.02, + "probability": 0.9974 + }, + { + "start": 7226.78, + "end": 7230.16, + "probability": 0.9674 + }, + { + "start": 7231.12, + "end": 7234.44, + "probability": 0.9938 + }, + { + "start": 7235.34, + "end": 7236.28, + "probability": 0.9439 + }, + { + "start": 7236.52, + "end": 7238.66, + "probability": 0.8648 + }, + { + "start": 7238.66, + "end": 7241.46, + "probability": 0.9963 + }, + { + "start": 7241.5, + "end": 7241.74, + "probability": 0.3928 + }, + { + "start": 7243.04, + "end": 7244.64, + "probability": 0.9445 + }, + { + "start": 7245.5, + "end": 7247.46, + "probability": 0.9608 + }, + { + "start": 7247.92, + "end": 7251.16, + "probability": 0.998 + }, + { + "start": 7252.4, + "end": 7256.74, + "probability": 0.991 + }, + { + "start": 7257.34, + "end": 7258.13, + "probability": 0.9459 + }, + { + "start": 7258.56, + "end": 7259.2, + "probability": 0.9801 + }, + { + "start": 7259.52, + "end": 7260.52, + "probability": 0.9961 + }, + { + "start": 7261.3, + "end": 7262.98, + "probability": 0.7972 + }, + { + "start": 7263.12, + "end": 7264.5, + "probability": 0.984 + }, + { + "start": 7265.06, + "end": 7269.82, + "probability": 0.9626 + }, + { + "start": 7272.68, + "end": 7274.6, + "probability": 0.8575 + }, + { + "start": 7275.48, + "end": 7278.18, + "probability": 0.9746 + }, + { + "start": 7278.26, + "end": 7282.88, + "probability": 0.9749 + }, + { + "start": 7284.28, + "end": 7287.24, + "probability": 0.9974 + }, + { + "start": 7287.4, + "end": 7288.86, + "probability": 0.8479 + }, + { + "start": 7289.4, + "end": 7291.4, + "probability": 0.9902 + }, + { + "start": 7291.86, + "end": 7295.52, + "probability": 0.994 + }, + { + "start": 7295.52, + "end": 7298.0, + "probability": 0.9939 + }, + { + "start": 7298.02, + "end": 7301.54, + "probability": 0.9983 + }, + { + "start": 7302.26, + "end": 7306.41, + "probability": 0.9953 + }, + { + "start": 7307.89, + "end": 7312.68, + "probability": 0.6815 + }, + { + "start": 7313.42, + "end": 7313.64, + "probability": 0.6275 + }, + { + "start": 7315.62, + "end": 7316.42, + "probability": 0.8607 + }, + { + "start": 7316.98, + "end": 7320.99, + "probability": 0.9932 + }, + { + "start": 7322.08, + "end": 7323.82, + "probability": 0.6763 + }, + { + "start": 7324.8, + "end": 7327.7, + "probability": 0.9991 + }, + { + "start": 7328.22, + "end": 7331.66, + "probability": 0.9263 + }, + { + "start": 7332.94, + "end": 7333.68, + "probability": 0.5486 + }, + { + "start": 7334.26, + "end": 7335.98, + "probability": 0.568 + }, + { + "start": 7337.06, + "end": 7337.36, + "probability": 0.6841 + }, + { + "start": 7337.36, + "end": 7339.54, + "probability": 0.9985 + }, + { + "start": 7339.66, + "end": 7342.44, + "probability": 0.9267 + }, + { + "start": 7342.56, + "end": 7343.82, + "probability": 0.9321 + }, + { + "start": 7344.56, + "end": 7345.4, + "probability": 0.685 + }, + { + "start": 7346.8, + "end": 7347.32, + "probability": 0.2192 + }, + { + "start": 7347.5, + "end": 7348.48, + "probability": 0.9915 + }, + { + "start": 7349.02, + "end": 7349.98, + "probability": 0.9671 + }, + { + "start": 7351.24, + "end": 7354.34, + "probability": 0.6538 + }, + { + "start": 7354.5, + "end": 7355.52, + "probability": 0.6134 + }, + { + "start": 7356.08, + "end": 7357.32, + "probability": 0.9692 + }, + { + "start": 7358.08, + "end": 7360.48, + "probability": 0.9766 + }, + { + "start": 7361.52, + "end": 7362.58, + "probability": 0.8647 + }, + { + "start": 7363.32, + "end": 7367.82, + "probability": 0.9915 + }, + { + "start": 7370.54, + "end": 7373.0, + "probability": 0.8552 + }, + { + "start": 7373.0, + "end": 7374.54, + "probability": 0.376 + }, + { + "start": 7374.7, + "end": 7377.62, + "probability": 0.3466 + }, + { + "start": 7377.72, + "end": 7378.08, + "probability": 0.744 + }, + { + "start": 7379.26, + "end": 7380.66, + "probability": 0.0728 + }, + { + "start": 7389.66, + "end": 7390.06, + "probability": 0.6024 + }, + { + "start": 7390.48, + "end": 7390.48, + "probability": 0.1524 + }, + { + "start": 7390.48, + "end": 7390.48, + "probability": 0.0352 + }, + { + "start": 7390.48, + "end": 7390.48, + "probability": 0.1876 + }, + { + "start": 7390.48, + "end": 7390.48, + "probability": 0.0325 + }, + { + "start": 7390.48, + "end": 7392.72, + "probability": 0.3669 + }, + { + "start": 7394.14, + "end": 7397.52, + "probability": 0.99 + }, + { + "start": 7398.46, + "end": 7398.86, + "probability": 0.8071 + }, + { + "start": 7400.08, + "end": 7402.46, + "probability": 0.7382 + }, + { + "start": 7402.86, + "end": 7403.98, + "probability": 0.8394 + }, + { + "start": 7404.66, + "end": 7406.93, + "probability": 0.9888 + }, + { + "start": 7407.36, + "end": 7408.14, + "probability": 0.9409 + }, + { + "start": 7408.64, + "end": 7410.81, + "probability": 0.8689 + }, + { + "start": 7411.14, + "end": 7413.68, + "probability": 0.9758 + }, + { + "start": 7414.9, + "end": 7419.08, + "probability": 0.9103 + }, + { + "start": 7419.64, + "end": 7421.58, + "probability": 0.9604 + }, + { + "start": 7422.56, + "end": 7423.4, + "probability": 0.9106 + }, + { + "start": 7423.6, + "end": 7427.22, + "probability": 0.984 + }, + { + "start": 7428.14, + "end": 7430.04, + "probability": 0.9051 + }, + { + "start": 7430.9, + "end": 7435.16, + "probability": 0.9991 + }, + { + "start": 7435.9, + "end": 7438.96, + "probability": 0.9841 + }, + { + "start": 7438.96, + "end": 7442.54, + "probability": 0.9987 + }, + { + "start": 7442.6, + "end": 7445.3, + "probability": 0.9973 + }, + { + "start": 7445.72, + "end": 7445.96, + "probability": 0.7385 + }, + { + "start": 7447.02, + "end": 7449.62, + "probability": 0.7398 + }, + { + "start": 7450.04, + "end": 7452.1, + "probability": 0.9259 + }, + { + "start": 7452.8, + "end": 7454.0, + "probability": 0.6741 + }, + { + "start": 7454.92, + "end": 7455.26, + "probability": 0.4655 + }, + { + "start": 7456.16, + "end": 7457.5, + "probability": 0.8883 + }, + { + "start": 7457.84, + "end": 7458.96, + "probability": 0.6974 + }, + { + "start": 7472.3, + "end": 7472.88, + "probability": 0.7153 + }, + { + "start": 7473.2, + "end": 7474.7, + "probability": 0.6808 + }, + { + "start": 7474.92, + "end": 7476.74, + "probability": 0.9078 + }, + { + "start": 7477.02, + "end": 7477.56, + "probability": 0.9292 + }, + { + "start": 7477.74, + "end": 7479.02, + "probability": 0.8672 + }, + { + "start": 7479.8, + "end": 7480.8, + "probability": 0.894 + }, + { + "start": 7481.14, + "end": 7481.34, + "probability": 0.5298 + }, + { + "start": 7482.42, + "end": 7483.02, + "probability": 0.9274 + }, + { + "start": 7483.72, + "end": 7485.9, + "probability": 0.7309 + }, + { + "start": 7486.9, + "end": 7488.14, + "probability": 0.6927 + }, + { + "start": 7489.62, + "end": 7492.38, + "probability": 0.9536 + }, + { + "start": 7492.6, + "end": 7493.42, + "probability": 0.8872 + }, + { + "start": 7493.6, + "end": 7495.32, + "probability": 0.9956 + }, + { + "start": 7495.5, + "end": 7496.52, + "probability": 0.887 + }, + { + "start": 7497.82, + "end": 7502.1, + "probability": 0.9932 + }, + { + "start": 7502.22, + "end": 7503.84, + "probability": 0.9114 + }, + { + "start": 7504.68, + "end": 7508.8, + "probability": 0.9856 + }, + { + "start": 7510.18, + "end": 7515.58, + "probability": 0.9972 + }, + { + "start": 7516.88, + "end": 7518.86, + "probability": 0.98 + }, + { + "start": 7520.26, + "end": 7524.56, + "probability": 0.9984 + }, + { + "start": 7524.56, + "end": 7529.14, + "probability": 0.923 + }, + { + "start": 7529.72, + "end": 7533.12, + "probability": 0.9983 + }, + { + "start": 7533.7, + "end": 7537.2, + "probability": 0.9932 + }, + { + "start": 7538.74, + "end": 7539.14, + "probability": 0.8334 + }, + { + "start": 7540.36, + "end": 7542.74, + "probability": 0.9979 + }, + { + "start": 7543.26, + "end": 7544.62, + "probability": 0.9991 + }, + { + "start": 7545.42, + "end": 7547.22, + "probability": 0.999 + }, + { + "start": 7548.68, + "end": 7550.58, + "probability": 0.8233 + }, + { + "start": 7551.74, + "end": 7552.96, + "probability": 0.9431 + }, + { + "start": 7553.68, + "end": 7556.6, + "probability": 0.9668 + }, + { + "start": 7557.26, + "end": 7560.3, + "probability": 0.8985 + }, + { + "start": 7561.64, + "end": 7562.78, + "probability": 0.999 + }, + { + "start": 7563.32, + "end": 7564.12, + "probability": 0.8544 + }, + { + "start": 7565.36, + "end": 7567.7, + "probability": 0.9484 + }, + { + "start": 7568.46, + "end": 7568.78, + "probability": 0.4487 + }, + { + "start": 7569.42, + "end": 7570.2, + "probability": 0.828 + }, + { + "start": 7570.94, + "end": 7571.68, + "probability": 0.9233 + }, + { + "start": 7573.94, + "end": 7576.14, + "probability": 0.9277 + }, + { + "start": 7576.82, + "end": 7577.48, + "probability": 0.9884 + }, + { + "start": 7578.74, + "end": 7585.04, + "probability": 0.9132 + }, + { + "start": 7585.72, + "end": 7585.93, + "probability": 0.9888 + }, + { + "start": 7587.28, + "end": 7588.64, + "probability": 0.9876 + }, + { + "start": 7589.56, + "end": 7592.62, + "probability": 0.9506 + }, + { + "start": 7593.3, + "end": 7599.2, + "probability": 0.9991 + }, + { + "start": 7600.22, + "end": 7602.72, + "probability": 0.9959 + }, + { + "start": 7603.86, + "end": 7604.2, + "probability": 0.6362 + }, + { + "start": 7605.0, + "end": 7606.89, + "probability": 0.9778 + }, + { + "start": 7609.16, + "end": 7610.9, + "probability": 0.9982 + }, + { + "start": 7611.66, + "end": 7612.42, + "probability": 0.8206 + }, + { + "start": 7613.14, + "end": 7617.98, + "probability": 0.9943 + }, + { + "start": 7618.54, + "end": 7620.22, + "probability": 0.9312 + }, + { + "start": 7620.74, + "end": 7622.14, + "probability": 0.4952 + }, + { + "start": 7623.02, + "end": 7625.08, + "probability": 0.9431 + }, + { + "start": 7625.5, + "end": 7627.68, + "probability": 0.6492 + }, + { + "start": 7629.48, + "end": 7634.88, + "probability": 0.9917 + }, + { + "start": 7636.3, + "end": 7637.54, + "probability": 0.9834 + }, + { + "start": 7638.16, + "end": 7639.7, + "probability": 0.9905 + }, + { + "start": 7641.2, + "end": 7645.46, + "probability": 0.797 + }, + { + "start": 7645.46, + "end": 7648.86, + "probability": 0.9912 + }, + { + "start": 7649.72, + "end": 7652.96, + "probability": 0.9629 + }, + { + "start": 7653.72, + "end": 7657.62, + "probability": 0.9991 + }, + { + "start": 7658.24, + "end": 7659.16, + "probability": 0.9709 + }, + { + "start": 7660.1, + "end": 7662.22, + "probability": 0.9412 + }, + { + "start": 7663.2, + "end": 7666.58, + "probability": 0.9826 + }, + { + "start": 7667.28, + "end": 7671.06, + "probability": 0.9888 + }, + { + "start": 7671.64, + "end": 7677.94, + "probability": 0.968 + }, + { + "start": 7679.22, + "end": 7679.44, + "probability": 0.5147 + }, + { + "start": 7680.12, + "end": 7681.36, + "probability": 0.9974 + }, + { + "start": 7681.88, + "end": 7686.06, + "probability": 0.9907 + }, + { + "start": 7686.98, + "end": 7688.64, + "probability": 0.878 + }, + { + "start": 7689.28, + "end": 7693.68, + "probability": 0.9929 + }, + { + "start": 7694.34, + "end": 7695.68, + "probability": 0.8364 + }, + { + "start": 7697.2, + "end": 7698.12, + "probability": 0.7519 + }, + { + "start": 7698.96, + "end": 7701.48, + "probability": 0.7493 + }, + { + "start": 7702.16, + "end": 7703.48, + "probability": 0.9635 + }, + { + "start": 7704.32, + "end": 7711.08, + "probability": 0.9969 + }, + { + "start": 7712.22, + "end": 7713.73, + "probability": 0.6856 + }, + { + "start": 7715.2, + "end": 7717.64, + "probability": 0.7932 + }, + { + "start": 7718.38, + "end": 7720.16, + "probability": 0.9674 + }, + { + "start": 7720.7, + "end": 7725.24, + "probability": 0.989 + }, + { + "start": 7725.8, + "end": 7729.66, + "probability": 0.9932 + }, + { + "start": 7730.5, + "end": 7730.84, + "probability": 0.7697 + }, + { + "start": 7731.54, + "end": 7732.9, + "probability": 0.8236 + }, + { + "start": 7735.68, + "end": 7735.74, + "probability": 0.109 + }, + { + "start": 7735.74, + "end": 7738.56, + "probability": 0.8909 + }, + { + "start": 7739.26, + "end": 7740.68, + "probability": 0.8188 + }, + { + "start": 7761.54, + "end": 7764.76, + "probability": 0.5331 + }, + { + "start": 7765.36, + "end": 7766.32, + "probability": 0.4917 + }, + { + "start": 7766.62, + "end": 7770.34, + "probability": 0.5902 + }, + { + "start": 7770.42, + "end": 7771.04, + "probability": 0.6891 + }, + { + "start": 7771.12, + "end": 7771.12, + "probability": 0.3845 + }, + { + "start": 7771.12, + "end": 7773.93, + "probability": 0.9429 + }, + { + "start": 7776.01, + "end": 7778.8, + "probability": 0.5369 + }, + { + "start": 7780.62, + "end": 7783.82, + "probability": 0.7888 + }, + { + "start": 7785.34, + "end": 7786.52, + "probability": 0.9484 + }, + { + "start": 7787.62, + "end": 7791.64, + "probability": 0.7698 + }, + { + "start": 7793.7, + "end": 7798.92, + "probability": 0.9973 + }, + { + "start": 7800.0, + "end": 7800.52, + "probability": 0.5262 + }, + { + "start": 7801.3, + "end": 7803.48, + "probability": 0.9926 + }, + { + "start": 7803.58, + "end": 7805.2, + "probability": 0.8625 + }, + { + "start": 7806.4, + "end": 7806.9, + "probability": 0.2793 + }, + { + "start": 7807.2, + "end": 7812.5, + "probability": 0.7546 + }, + { + "start": 7813.44, + "end": 7815.43, + "probability": 0.7146 + }, + { + "start": 7816.36, + "end": 7818.36, + "probability": 0.9785 + }, + { + "start": 7819.02, + "end": 7819.9, + "probability": 0.9463 + }, + { + "start": 7821.48, + "end": 7823.12, + "probability": 0.6813 + }, + { + "start": 7824.34, + "end": 7825.32, + "probability": 0.8177 + }, + { + "start": 7825.34, + "end": 7826.47, + "probability": 0.458 + }, + { + "start": 7827.38, + "end": 7832.58, + "probability": 0.7263 + }, + { + "start": 7834.1, + "end": 7838.28, + "probability": 0.7882 + }, + { + "start": 7838.88, + "end": 7842.22, + "probability": 0.9827 + }, + { + "start": 7844.28, + "end": 7847.06, + "probability": 0.9705 + }, + { + "start": 7848.4, + "end": 7849.94, + "probability": 0.8315 + }, + { + "start": 7850.12, + "end": 7851.72, + "probability": 0.9264 + }, + { + "start": 7853.88, + "end": 7854.7, + "probability": 0.8879 + }, + { + "start": 7856.34, + "end": 7862.88, + "probability": 0.6009 + }, + { + "start": 7863.05, + "end": 7864.33, + "probability": 0.9766 + }, + { + "start": 7865.73, + "end": 7867.09, + "probability": 0.8232 + }, + { + "start": 7870.41, + "end": 7871.13, + "probability": 0.613 + }, + { + "start": 7872.44, + "end": 7873.4, + "probability": 0.9771 + }, + { + "start": 7876.91, + "end": 7881.37, + "probability": 0.7944 + }, + { + "start": 7883.9, + "end": 7886.81, + "probability": 0.3626 + }, + { + "start": 7891.95, + "end": 7895.99, + "probability": 0.9492 + }, + { + "start": 7897.01, + "end": 7898.29, + "probability": 0.9521 + }, + { + "start": 7901.85, + "end": 7904.01, + "probability": 0.7698 + }, + { + "start": 7904.01, + "end": 7907.59, + "probability": 0.8219 + }, + { + "start": 7908.17, + "end": 7910.01, + "probability": 0.8525 + }, + { + "start": 7910.85, + "end": 7915.35, + "probability": 0.9957 + }, + { + "start": 7916.03, + "end": 7917.07, + "probability": 0.9253 + }, + { + "start": 7918.51, + "end": 7922.37, + "probability": 0.9978 + }, + { + "start": 7923.03, + "end": 7924.21, + "probability": 0.9982 + }, + { + "start": 7926.43, + "end": 7928.31, + "probability": 0.8499 + }, + { + "start": 7928.95, + "end": 7930.11, + "probability": 0.9712 + }, + { + "start": 7930.35, + "end": 7934.31, + "probability": 0.8755 + }, + { + "start": 7934.63, + "end": 7936.29, + "probability": 0.9543 + }, + { + "start": 7937.23, + "end": 7938.13, + "probability": 0.9871 + }, + { + "start": 7939.09, + "end": 7940.25, + "probability": 0.7463 + }, + { + "start": 7941.81, + "end": 7943.89, + "probability": 0.9116 + }, + { + "start": 7944.41, + "end": 7945.99, + "probability": 0.9318 + }, + { + "start": 7947.23, + "end": 7948.25, + "probability": 0.867 + }, + { + "start": 7949.13, + "end": 7949.85, + "probability": 0.9834 + }, + { + "start": 7950.81, + "end": 7951.99, + "probability": 0.6418 + }, + { + "start": 7952.19, + "end": 7952.89, + "probability": 0.6831 + }, + { + "start": 7953.11, + "end": 7957.45, + "probability": 0.9523 + }, + { + "start": 7957.57, + "end": 7958.29, + "probability": 0.8679 + }, + { + "start": 7959.73, + "end": 7961.77, + "probability": 0.7485 + }, + { + "start": 7963.31, + "end": 7965.75, + "probability": 0.789 + }, + { + "start": 7966.53, + "end": 7968.57, + "probability": 0.9741 + }, + { + "start": 7969.07, + "end": 7969.99, + "probability": 0.6837 + }, + { + "start": 7970.09, + "end": 7971.01, + "probability": 0.6219 + }, + { + "start": 7971.07, + "end": 7972.09, + "probability": 0.502 + }, + { + "start": 7972.19, + "end": 7976.31, + "probability": 0.9484 + }, + { + "start": 7976.43, + "end": 7977.97, + "probability": 0.8777 + }, + { + "start": 7978.09, + "end": 7979.17, + "probability": 0.7822 + }, + { + "start": 7982.39, + "end": 7985.77, + "probability": 0.6147 + }, + { + "start": 7986.81, + "end": 7993.37, + "probability": 0.6548 + }, + { + "start": 7995.35, + "end": 7996.69, + "probability": 0.9662 + }, + { + "start": 7996.93, + "end": 7997.87, + "probability": 0.7394 + }, + { + "start": 7998.13, + "end": 8000.19, + "probability": 0.9907 + }, + { + "start": 8000.45, + "end": 8003.35, + "probability": 0.9501 + }, + { + "start": 8004.33, + "end": 8006.17, + "probability": 0.7061 + }, + { + "start": 8006.69, + "end": 8009.87, + "probability": 0.7489 + }, + { + "start": 8010.51, + "end": 8012.35, + "probability": 0.9714 + }, + { + "start": 8013.23, + "end": 8014.25, + "probability": 0.6734 + }, + { + "start": 8014.95, + "end": 8016.23, + "probability": 0.9497 + }, + { + "start": 8020.18, + "end": 8021.42, + "probability": 0.8067 + }, + { + "start": 8021.78, + "end": 8023.8, + "probability": 0.9198 + }, + { + "start": 8023.92, + "end": 8027.04, + "probability": 0.9968 + }, + { + "start": 8027.3, + "end": 8029.12, + "probability": 0.7474 + }, + { + "start": 8029.74, + "end": 8030.14, + "probability": 0.5082 + }, + { + "start": 8030.76, + "end": 8034.96, + "probability": 0.8369 + }, + { + "start": 8035.72, + "end": 8037.48, + "probability": 0.8957 + }, + { + "start": 8037.79, + "end": 8040.34, + "probability": 0.9883 + }, + { + "start": 8041.8, + "end": 8041.8, + "probability": 0.6523 + }, + { + "start": 8042.44, + "end": 8046.06, + "probability": 0.9861 + }, + { + "start": 8047.15, + "end": 8051.24, + "probability": 0.6662 + }, + { + "start": 8052.28, + "end": 8054.92, + "probability": 0.871 + }, + { + "start": 8056.38, + "end": 8060.66, + "probability": 0.6962 + }, + { + "start": 8063.14, + "end": 8066.32, + "probability": 0.6677 + }, + { + "start": 8066.44, + "end": 8070.32, + "probability": 0.997 + }, + { + "start": 8071.72, + "end": 8073.32, + "probability": 0.9679 + }, + { + "start": 8073.6, + "end": 8074.23, + "probability": 0.4425 + }, + { + "start": 8075.14, + "end": 8076.72, + "probability": 0.8566 + }, + { + "start": 8076.9, + "end": 8083.78, + "probability": 0.8176 + }, + { + "start": 8084.38, + "end": 8085.02, + "probability": 0.5957 + }, + { + "start": 8085.1, + "end": 8085.66, + "probability": 0.9575 + }, + { + "start": 8085.66, + "end": 8086.9, + "probability": 0.9448 + }, + { + "start": 8086.94, + "end": 8088.4, + "probability": 0.7012 + }, + { + "start": 8088.94, + "end": 8089.26, + "probability": 0.7889 + }, + { + "start": 8090.16, + "end": 8092.7, + "probability": 0.9048 + }, + { + "start": 8092.94, + "end": 8095.12, + "probability": 0.9951 + }, + { + "start": 8095.62, + "end": 8099.04, + "probability": 0.9556 + }, + { + "start": 8099.66, + "end": 8101.24, + "probability": 0.743 + }, + { + "start": 8102.18, + "end": 8103.32, + "probability": 0.7915 + }, + { + "start": 8103.98, + "end": 8106.9, + "probability": 0.9688 + }, + { + "start": 8107.44, + "end": 8107.98, + "probability": 0.4984 + }, + { + "start": 8108.58, + "end": 8109.5, + "probability": 0.7945 + }, + { + "start": 8109.86, + "end": 8111.84, + "probability": 0.9862 + }, + { + "start": 8112.78, + "end": 8114.64, + "probability": 0.971 + }, + { + "start": 8116.32, + "end": 8117.26, + "probability": 0.5203 + }, + { + "start": 8132.58, + "end": 8138.68, + "probability": 0.5411 + }, + { + "start": 8139.84, + "end": 8142.08, + "probability": 0.8061 + }, + { + "start": 8142.68, + "end": 8143.54, + "probability": 0.6205 + }, + { + "start": 8144.54, + "end": 8149.9, + "probability": 0.9927 + }, + { + "start": 8150.98, + "end": 8153.26, + "probability": 0.7616 + }, + { + "start": 8154.08, + "end": 8155.88, + "probability": 0.933 + }, + { + "start": 8161.9, + "end": 8164.84, + "probability": 0.4409 + }, + { + "start": 8165.58, + "end": 8166.3, + "probability": 0.6965 + }, + { + "start": 8167.52, + "end": 8167.84, + "probability": 0.5522 + }, + { + "start": 8168.28, + "end": 8175.1, + "probability": 0.9101 + }, + { + "start": 8175.76, + "end": 8176.76, + "probability": 0.7419 + }, + { + "start": 8177.7, + "end": 8179.38, + "probability": 0.7144 + }, + { + "start": 8180.26, + "end": 8182.1, + "probability": 0.9977 + }, + { + "start": 8183.34, + "end": 8187.64, + "probability": 0.9898 + }, + { + "start": 8188.38, + "end": 8191.1, + "probability": 0.9971 + }, + { + "start": 8193.06, + "end": 8196.64, + "probability": 0.957 + }, + { + "start": 8197.36, + "end": 8198.64, + "probability": 0.9057 + }, + { + "start": 8199.3, + "end": 8200.86, + "probability": 0.9785 + }, + { + "start": 8201.44, + "end": 8207.06, + "probability": 0.998 + }, + { + "start": 8208.08, + "end": 8210.84, + "probability": 0.782 + }, + { + "start": 8211.98, + "end": 8212.74, + "probability": 0.5796 + }, + { + "start": 8213.18, + "end": 8219.7, + "probability": 0.9668 + }, + { + "start": 8220.48, + "end": 8220.92, + "probability": 0.6138 + }, + { + "start": 8222.06, + "end": 8227.34, + "probability": 0.9331 + }, + { + "start": 8227.34, + "end": 8231.02, + "probability": 0.9969 + }, + { + "start": 8231.56, + "end": 8232.44, + "probability": 0.5802 + }, + { + "start": 8233.34, + "end": 8237.06, + "probability": 0.8965 + }, + { + "start": 8237.9, + "end": 8244.2, + "probability": 0.9932 + }, + { + "start": 8245.32, + "end": 8248.94, + "probability": 0.9443 + }, + { + "start": 8250.46, + "end": 8251.98, + "probability": 0.8949 + }, + { + "start": 8252.8, + "end": 8256.18, + "probability": 0.936 + }, + { + "start": 8256.7, + "end": 8257.18, + "probability": 0.822 + }, + { + "start": 8258.52, + "end": 8261.34, + "probability": 0.8247 + }, + { + "start": 8261.34, + "end": 8264.68, + "probability": 0.9966 + }, + { + "start": 8266.16, + "end": 8266.64, + "probability": 0.8173 + }, + { + "start": 8267.46, + "end": 8269.74, + "probability": 0.7878 + }, + { + "start": 8270.34, + "end": 8272.88, + "probability": 0.9386 + }, + { + "start": 8274.86, + "end": 8281.3, + "probability": 0.7984 + }, + { + "start": 8282.52, + "end": 8286.68, + "probability": 0.8507 + }, + { + "start": 8286.8, + "end": 8288.96, + "probability": 0.9924 + }, + { + "start": 8289.48, + "end": 8290.16, + "probability": 0.7576 + }, + { + "start": 8291.1, + "end": 8291.84, + "probability": 0.663 + }, + { + "start": 8292.98, + "end": 8293.78, + "probability": 0.9119 + }, + { + "start": 8294.74, + "end": 8295.9, + "probability": 0.6981 + }, + { + "start": 8296.5, + "end": 8297.44, + "probability": 0.888 + }, + { + "start": 8298.74, + "end": 8300.18, + "probability": 0.9558 + }, + { + "start": 8300.82, + "end": 8305.44, + "probability": 0.999 + }, + { + "start": 8306.34, + "end": 8307.38, + "probability": 0.9475 + }, + { + "start": 8307.9, + "end": 8309.44, + "probability": 0.8821 + }, + { + "start": 8310.2, + "end": 8312.62, + "probability": 0.6178 + }, + { + "start": 8313.26, + "end": 8314.32, + "probability": 0.5668 + }, + { + "start": 8315.14, + "end": 8318.84, + "probability": 0.9656 + }, + { + "start": 8319.42, + "end": 8319.88, + "probability": 0.6059 + }, + { + "start": 8322.26, + "end": 8328.12, + "probability": 0.9285 + }, + { + "start": 8328.48, + "end": 8331.06, + "probability": 0.7021 + }, + { + "start": 8331.42, + "end": 8332.18, + "probability": 0.6296 + }, + { + "start": 8332.52, + "end": 8334.32, + "probability": 0.9982 + }, + { + "start": 8334.84, + "end": 8336.22, + "probability": 0.9551 + }, + { + "start": 8336.9, + "end": 8337.76, + "probability": 0.6116 + }, + { + "start": 8338.52, + "end": 8340.8, + "probability": 0.9853 + }, + { + "start": 8341.62, + "end": 8344.2, + "probability": 0.936 + }, + { + "start": 8344.58, + "end": 8345.0, + "probability": 0.9512 + }, + { + "start": 8345.72, + "end": 8346.96, + "probability": 0.8803 + }, + { + "start": 8347.2, + "end": 8351.12, + "probability": 0.9958 + }, + { + "start": 8351.62, + "end": 8353.46, + "probability": 0.6505 + }, + { + "start": 8354.3, + "end": 8357.34, + "probability": 0.8329 + }, + { + "start": 8357.34, + "end": 8358.16, + "probability": 0.9126 + }, + { + "start": 8358.18, + "end": 8360.48, + "probability": 0.8838 + }, + { + "start": 8360.6, + "end": 8361.64, + "probability": 0.9702 + }, + { + "start": 8362.0, + "end": 8362.92, + "probability": 0.9956 + }, + { + "start": 8363.3, + "end": 8363.58, + "probability": 0.9432 + }, + { + "start": 8364.06, + "end": 8364.4, + "probability": 0.6975 + }, + { + "start": 8364.74, + "end": 8365.94, + "probability": 0.9759 + }, + { + "start": 8366.98, + "end": 8371.04, + "probability": 0.9708 + }, + { + "start": 8372.06, + "end": 8374.54, + "probability": 0.9139 + }, + { + "start": 8375.02, + "end": 8375.36, + "probability": 0.6645 + }, + { + "start": 8377.0, + "end": 8378.34, + "probability": 0.977 + }, + { + "start": 8378.66, + "end": 8378.86, + "probability": 0.8522 + }, + { + "start": 8379.24, + "end": 8380.7, + "probability": 0.9316 + }, + { + "start": 8381.12, + "end": 8382.12, + "probability": 0.7819 + }, + { + "start": 8383.14, + "end": 8384.53, + "probability": 0.9875 + }, + { + "start": 8386.06, + "end": 8386.48, + "probability": 0.787 + }, + { + "start": 8387.38, + "end": 8388.2, + "probability": 0.9209 + }, + { + "start": 8388.96, + "end": 8390.08, + "probability": 0.9902 + }, + { + "start": 8390.84, + "end": 8391.96, + "probability": 0.9828 + }, + { + "start": 8392.1, + "end": 8393.38, + "probability": 0.882 + }, + { + "start": 8395.32, + "end": 8395.85, + "probability": 0.822 + }, + { + "start": 8396.56, + "end": 8400.4, + "probability": 0.904 + }, + { + "start": 8400.4, + "end": 8402.54, + "probability": 0.9927 + }, + { + "start": 8403.16, + "end": 8403.72, + "probability": 0.6031 + }, + { + "start": 8403.86, + "end": 8405.12, + "probability": 0.8342 + }, + { + "start": 8405.5, + "end": 8405.8, + "probability": 0.3487 + }, + { + "start": 8405.9, + "end": 8409.96, + "probability": 0.9948 + }, + { + "start": 8410.72, + "end": 8411.46, + "probability": 0.7564 + }, + { + "start": 8412.06, + "end": 8413.0, + "probability": 0.4444 + }, + { + "start": 8413.64, + "end": 8414.5, + "probability": 0.7737 + }, + { + "start": 8415.26, + "end": 8416.48, + "probability": 0.9681 + }, + { + "start": 8416.94, + "end": 8417.8, + "probability": 0.8029 + }, + { + "start": 8418.14, + "end": 8418.98, + "probability": 0.9271 + }, + { + "start": 8419.3, + "end": 8420.88, + "probability": 0.985 + }, + { + "start": 8421.34, + "end": 8425.16, + "probability": 0.9912 + }, + { + "start": 8425.7, + "end": 8427.9, + "probability": 0.9489 + }, + { + "start": 8428.46, + "end": 8429.72, + "probability": 0.8225 + }, + { + "start": 8429.8, + "end": 8431.8, + "probability": 0.6741 + }, + { + "start": 8432.12, + "end": 8432.54, + "probability": 0.9133 + }, + { + "start": 8433.18, + "end": 8434.24, + "probability": 0.7372 + }, + { + "start": 8434.36, + "end": 8436.46, + "probability": 0.9035 + }, + { + "start": 8437.12, + "end": 8438.86, + "probability": 0.7219 + }, + { + "start": 8439.38, + "end": 8439.94, + "probability": 0.4262 + }, + { + "start": 8439.96, + "end": 8440.56, + "probability": 0.5851 + }, + { + "start": 8457.12, + "end": 8457.62, + "probability": 0.3258 + }, + { + "start": 8458.76, + "end": 8459.9, + "probability": 0.0725 + }, + { + "start": 8462.1, + "end": 8463.58, + "probability": 0.1505 + }, + { + "start": 8475.42, + "end": 8476.44, + "probability": 0.5753 + }, + { + "start": 8477.18, + "end": 8478.86, + "probability": 0.9717 + }, + { + "start": 8480.76, + "end": 8485.16, + "probability": 0.9255 + }, + { + "start": 8486.32, + "end": 8489.8, + "probability": 0.9937 + }, + { + "start": 8489.8, + "end": 8493.32, + "probability": 0.9895 + }, + { + "start": 8493.74, + "end": 8494.78, + "probability": 0.9117 + }, + { + "start": 8495.76, + "end": 8502.12, + "probability": 0.9636 + }, + { + "start": 8502.92, + "end": 8503.36, + "probability": 0.515 + }, + { + "start": 8503.96, + "end": 8505.26, + "probability": 0.97 + }, + { + "start": 8505.84, + "end": 8511.84, + "probability": 0.9971 + }, + { + "start": 8512.42, + "end": 8513.62, + "probability": 0.9491 + }, + { + "start": 8514.4, + "end": 8519.16, + "probability": 0.9962 + }, + { + "start": 8519.88, + "end": 8521.82, + "probability": 0.981 + }, + { + "start": 8522.68, + "end": 8525.14, + "probability": 0.7155 + }, + { + "start": 8525.94, + "end": 8528.14, + "probability": 0.9637 + }, + { + "start": 8528.78, + "end": 8532.26, + "probability": 0.9606 + }, + { + "start": 8533.42, + "end": 8539.14, + "probability": 0.9873 + }, + { + "start": 8540.2, + "end": 8543.0, + "probability": 0.8723 + }, + { + "start": 8544.16, + "end": 8547.96, + "probability": 0.969 + }, + { + "start": 8548.98, + "end": 8551.86, + "probability": 0.98 + }, + { + "start": 8552.58, + "end": 8554.14, + "probability": 0.9577 + }, + { + "start": 8555.14, + "end": 8560.52, + "probability": 0.9884 + }, + { + "start": 8561.28, + "end": 8563.66, + "probability": 0.9808 + }, + { + "start": 8564.46, + "end": 8566.26, + "probability": 0.9971 + }, + { + "start": 8566.8, + "end": 8568.26, + "probability": 0.8453 + }, + { + "start": 8568.96, + "end": 8571.44, + "probability": 0.9281 + }, + { + "start": 8572.24, + "end": 8574.56, + "probability": 0.9958 + }, + { + "start": 8575.72, + "end": 8577.72, + "probability": 0.946 + }, + { + "start": 8577.94, + "end": 8582.52, + "probability": 0.9951 + }, + { + "start": 8582.7, + "end": 8583.7, + "probability": 0.7254 + }, + { + "start": 8584.84, + "end": 8587.56, + "probability": 0.9645 + }, + { + "start": 8588.14, + "end": 8593.02, + "probability": 0.9137 + }, + { + "start": 8594.5, + "end": 8597.84, + "probability": 0.8365 + }, + { + "start": 8597.84, + "end": 8602.26, + "probability": 0.9263 + }, + { + "start": 8603.18, + "end": 8605.02, + "probability": 0.9425 + }, + { + "start": 8605.76, + "end": 8607.74, + "probability": 0.9502 + }, + { + "start": 8608.48, + "end": 8611.76, + "probability": 0.9251 + }, + { + "start": 8612.94, + "end": 8617.86, + "probability": 0.9961 + }, + { + "start": 8618.42, + "end": 8624.9, + "probability": 0.9771 + }, + { + "start": 8625.68, + "end": 8629.16, + "probability": 0.9982 + }, + { + "start": 8629.58, + "end": 8634.3, + "probability": 0.9965 + }, + { + "start": 8634.92, + "end": 8636.64, + "probability": 0.9161 + }, + { + "start": 8637.78, + "end": 8641.02, + "probability": 0.9462 + }, + { + "start": 8641.22, + "end": 8644.6, + "probability": 0.9733 + }, + { + "start": 8645.58, + "end": 8649.42, + "probability": 0.9985 + }, + { + "start": 8650.04, + "end": 8655.42, + "probability": 0.985 + }, + { + "start": 8656.08, + "end": 8658.38, + "probability": 0.9215 + }, + { + "start": 8659.3, + "end": 8663.08, + "probability": 0.9564 + }, + { + "start": 8663.74, + "end": 8668.24, + "probability": 0.9595 + }, + { + "start": 8668.24, + "end": 8672.6, + "probability": 0.8803 + }, + { + "start": 8673.28, + "end": 8675.82, + "probability": 0.9585 + }, + { + "start": 8676.7, + "end": 8683.06, + "probability": 0.9774 + }, + { + "start": 8683.6, + "end": 8686.56, + "probability": 0.9966 + }, + { + "start": 8686.82, + "end": 8691.3, + "probability": 0.9988 + }, + { + "start": 8692.32, + "end": 8694.72, + "probability": 0.9986 + }, + { + "start": 8695.24, + "end": 8697.42, + "probability": 0.9979 + }, + { + "start": 8698.46, + "end": 8702.68, + "probability": 0.9807 + }, + { + "start": 8702.68, + "end": 8707.92, + "probability": 0.9898 + }, + { + "start": 8708.68, + "end": 8712.42, + "probability": 0.9979 + }, + { + "start": 8713.0, + "end": 8715.12, + "probability": 0.9819 + }, + { + "start": 8715.66, + "end": 8717.42, + "probability": 0.9859 + }, + { + "start": 8718.52, + "end": 8720.64, + "probability": 0.6304 + }, + { + "start": 8720.66, + "end": 8725.22, + "probability": 0.9825 + }, + { + "start": 8725.22, + "end": 8728.4, + "probability": 0.9899 + }, + { + "start": 8728.92, + "end": 8732.68, + "probability": 0.9733 + }, + { + "start": 8732.76, + "end": 8736.04, + "probability": 0.7991 + }, + { + "start": 8736.72, + "end": 8738.42, + "probability": 0.864 + }, + { + "start": 8739.3, + "end": 8740.56, + "probability": 0.8885 + }, + { + "start": 8742.14, + "end": 8743.28, + "probability": 0.9449 + }, + { + "start": 8743.96, + "end": 8749.06, + "probability": 0.9636 + }, + { + "start": 8749.84, + "end": 8752.3, + "probability": 0.9702 + }, + { + "start": 8753.1, + "end": 8758.84, + "probability": 0.9451 + }, + { + "start": 8759.76, + "end": 8761.66, + "probability": 0.9862 + }, + { + "start": 8762.18, + "end": 8764.24, + "probability": 0.9821 + }, + { + "start": 8765.14, + "end": 8769.76, + "probability": 0.9889 + }, + { + "start": 8770.8, + "end": 8775.0, + "probability": 0.9794 + }, + { + "start": 8775.46, + "end": 8779.98, + "probability": 0.9829 + }, + { + "start": 8780.18, + "end": 8781.24, + "probability": 0.7645 + }, + { + "start": 8782.26, + "end": 8784.1, + "probability": 0.9433 + }, + { + "start": 8784.98, + "end": 8790.5, + "probability": 0.998 + }, + { + "start": 8791.12, + "end": 8794.68, + "probability": 0.8677 + }, + { + "start": 8794.82, + "end": 8797.04, + "probability": 0.9856 + }, + { + "start": 8797.76, + "end": 8801.92, + "probability": 0.9321 + }, + { + "start": 8802.6, + "end": 8804.01, + "probability": 0.8709 + }, + { + "start": 8804.68, + "end": 8809.56, + "probability": 0.937 + }, + { + "start": 8810.28, + "end": 8812.72, + "probability": 0.9958 + }, + { + "start": 8813.68, + "end": 8814.74, + "probability": 0.9619 + }, + { + "start": 8815.22, + "end": 8819.06, + "probability": 0.7731 + }, + { + "start": 8819.74, + "end": 8821.9, + "probability": 0.6741 + }, + { + "start": 8822.72, + "end": 8824.02, + "probability": 0.8997 + }, + { + "start": 8824.78, + "end": 8830.0, + "probability": 0.9801 + }, + { + "start": 8830.8, + "end": 8833.54, + "probability": 0.9907 + }, + { + "start": 8835.14, + "end": 8838.04, + "probability": 0.9927 + }, + { + "start": 8838.92, + "end": 8841.74, + "probability": 0.9984 + }, + { + "start": 8842.57, + "end": 8845.08, + "probability": 0.9228 + }, + { + "start": 8845.22, + "end": 8845.92, + "probability": 0.7227 + }, + { + "start": 8846.1, + "end": 8848.12, + "probability": 0.5733 + }, + { + "start": 8848.74, + "end": 8849.58, + "probability": 0.9761 + }, + { + "start": 8850.14, + "end": 8851.06, + "probability": 0.2624 + }, + { + "start": 8852.0, + "end": 8852.6, + "probability": 0.4533 + }, + { + "start": 8853.0, + "end": 8854.58, + "probability": 0.3405 + }, + { + "start": 8855.16, + "end": 8857.04, + "probability": 0.4474 + }, + { + "start": 8860.28, + "end": 8862.86, + "probability": 0.1478 + }, + { + "start": 8884.82, + "end": 8888.3, + "probability": 0.9193 + }, + { + "start": 8888.64, + "end": 8891.06, + "probability": 0.9185 + }, + { + "start": 8891.38, + "end": 8892.62, + "probability": 0.4417 + }, + { + "start": 8892.72, + "end": 8893.68, + "probability": 0.8994 + }, + { + "start": 8895.9, + "end": 8897.96, + "probability": 0.7332 + }, + { + "start": 8898.68, + "end": 8903.68, + "probability": 0.9106 + }, + { + "start": 8905.1, + "end": 8908.46, + "probability": 0.8679 + }, + { + "start": 8910.46, + "end": 8911.7, + "probability": 0.5254 + }, + { + "start": 8912.04, + "end": 8913.58, + "probability": 0.9531 + }, + { + "start": 8914.04, + "end": 8916.54, + "probability": 0.6459 + }, + { + "start": 8916.72, + "end": 8918.54, + "probability": 0.9731 + }, + { + "start": 8919.5, + "end": 8920.22, + "probability": 0.9057 + }, + { + "start": 8920.8, + "end": 8921.46, + "probability": 0.973 + }, + { + "start": 8923.16, + "end": 8924.18, + "probability": 0.9889 + }, + { + "start": 8924.54, + "end": 8926.7, + "probability": 0.9668 + }, + { + "start": 8927.54, + "end": 8928.86, + "probability": 0.8413 + }, + { + "start": 8930.48, + "end": 8937.56, + "probability": 0.9962 + }, + { + "start": 8937.56, + "end": 8944.1, + "probability": 0.8097 + }, + { + "start": 8944.42, + "end": 8947.18, + "probability": 0.819 + }, + { + "start": 8948.32, + "end": 8948.78, + "probability": 0.9692 + }, + { + "start": 8952.18, + "end": 8956.26, + "probability": 0.9659 + }, + { + "start": 8957.4, + "end": 8958.38, + "probability": 0.9532 + }, + { + "start": 8959.58, + "end": 8963.44, + "probability": 0.9202 + }, + { + "start": 8964.52, + "end": 8968.4, + "probability": 0.9932 + }, + { + "start": 8969.36, + "end": 8969.9, + "probability": 0.9433 + }, + { + "start": 8971.24, + "end": 8972.84, + "probability": 0.9545 + }, + { + "start": 8972.9, + "end": 8976.49, + "probability": 0.9816 + }, + { + "start": 8977.66, + "end": 8983.82, + "probability": 0.9292 + }, + { + "start": 8985.56, + "end": 8987.62, + "probability": 0.9833 + }, + { + "start": 8988.44, + "end": 8995.6, + "probability": 0.9946 + }, + { + "start": 8996.6, + "end": 9000.2, + "probability": 0.9057 + }, + { + "start": 9001.94, + "end": 9005.78, + "probability": 0.9335 + }, + { + "start": 9006.02, + "end": 9008.44, + "probability": 0.9961 + }, + { + "start": 9009.94, + "end": 9011.9, + "probability": 0.9023 + }, + { + "start": 9012.04, + "end": 9014.1, + "probability": 0.9902 + }, + { + "start": 9014.42, + "end": 9019.92, + "probability": 0.9624 + }, + { + "start": 9021.26, + "end": 9026.58, + "probability": 0.9894 + }, + { + "start": 9027.94, + "end": 9032.26, + "probability": 0.7553 + }, + { + "start": 9033.14, + "end": 9035.68, + "probability": 0.9585 + }, + { + "start": 9036.84, + "end": 9038.08, + "probability": 0.8011 + }, + { + "start": 9038.2, + "end": 9038.64, + "probability": 0.9309 + }, + { + "start": 9039.34, + "end": 9041.4, + "probability": 0.9912 + }, + { + "start": 9041.9, + "end": 9043.64, + "probability": 0.816 + }, + { + "start": 9045.18, + "end": 9051.56, + "probability": 0.6299 + }, + { + "start": 9053.02, + "end": 9055.76, + "probability": 0.9854 + }, + { + "start": 9055.92, + "end": 9058.9, + "probability": 0.9367 + }, + { + "start": 9059.18, + "end": 9063.0, + "probability": 0.968 + }, + { + "start": 9063.06, + "end": 9065.1, + "probability": 0.6652 + }, + { + "start": 9065.18, + "end": 9066.24, + "probability": 0.8997 + }, + { + "start": 9066.9, + "end": 9069.04, + "probability": 0.9758 + }, + { + "start": 9069.54, + "end": 9073.74, + "probability": 0.9535 + }, + { + "start": 9073.74, + "end": 9076.88, + "probability": 0.9915 + }, + { + "start": 9077.12, + "end": 9086.76, + "probability": 0.989 + }, + { + "start": 9087.82, + "end": 9088.84, + "probability": 0.9707 + }, + { + "start": 9090.0, + "end": 9092.44, + "probability": 0.7792 + }, + { + "start": 9092.44, + "end": 9092.56, + "probability": 0.287 + }, + { + "start": 9092.72, + "end": 9093.94, + "probability": 0.9323 + }, + { + "start": 9094.08, + "end": 9095.66, + "probability": 0.8271 + }, + { + "start": 9097.36, + "end": 9100.42, + "probability": 0.8514 + }, + { + "start": 9101.1, + "end": 9104.96, + "probability": 0.9872 + }, + { + "start": 9104.96, + "end": 9110.86, + "probability": 0.9715 + }, + { + "start": 9113.4, + "end": 9116.36, + "probability": 0.9697 + }, + { + "start": 9116.36, + "end": 9119.82, + "probability": 0.9983 + }, + { + "start": 9120.02, + "end": 9124.44, + "probability": 0.9814 + }, + { + "start": 9124.44, + "end": 9129.5, + "probability": 0.9854 + }, + { + "start": 9129.6, + "end": 9134.52, + "probability": 0.9462 + }, + { + "start": 9135.74, + "end": 9137.54, + "probability": 0.5225 + }, + { + "start": 9137.64, + "end": 9143.76, + "probability": 0.6635 + }, + { + "start": 9144.28, + "end": 9146.5, + "probability": 0.9449 + }, + { + "start": 9147.2, + "end": 9151.66, + "probability": 0.9298 + }, + { + "start": 9152.92, + "end": 9153.66, + "probability": 0.2937 + }, + { + "start": 9153.8, + "end": 9160.3, + "probability": 0.9717 + }, + { + "start": 9160.44, + "end": 9161.3, + "probability": 0.7489 + }, + { + "start": 9161.8, + "end": 9163.58, + "probability": 0.9535 + }, + { + "start": 9164.12, + "end": 9166.36, + "probability": 0.9514 + }, + { + "start": 9167.12, + "end": 9171.22, + "probability": 0.978 + }, + { + "start": 9171.4, + "end": 9173.5, + "probability": 0.6562 + }, + { + "start": 9174.02, + "end": 9174.42, + "probability": 0.9282 + }, + { + "start": 9174.96, + "end": 9179.4, + "probability": 0.9983 + }, + { + "start": 9181.04, + "end": 9183.0, + "probability": 0.8905 + }, + { + "start": 9183.92, + "end": 9190.36, + "probability": 0.7117 + }, + { + "start": 9190.5, + "end": 9191.86, + "probability": 0.7576 + }, + { + "start": 9192.54, + "end": 9197.52, + "probability": 0.9893 + }, + { + "start": 9198.52, + "end": 9201.82, + "probability": 0.998 + }, + { + "start": 9203.18, + "end": 9204.18, + "probability": 0.8949 + }, + { + "start": 9204.7, + "end": 9205.38, + "probability": 0.8252 + }, + { + "start": 9206.4, + "end": 9207.34, + "probability": 0.5534 + }, + { + "start": 9207.72, + "end": 9208.96, + "probability": 0.9331 + }, + { + "start": 9209.1, + "end": 9211.52, + "probability": 0.9459 + }, + { + "start": 9212.24, + "end": 9216.72, + "probability": 0.9722 + }, + { + "start": 9217.58, + "end": 9221.4, + "probability": 0.9637 + }, + { + "start": 9221.4, + "end": 9225.24, + "probability": 0.8119 + }, + { + "start": 9225.53, + "end": 9229.18, + "probability": 0.8667 + }, + { + "start": 9229.48, + "end": 9229.72, + "probability": 0.7289 + }, + { + "start": 9230.14, + "end": 9232.52, + "probability": 0.5752 + }, + { + "start": 9232.9, + "end": 9235.58, + "probability": 0.9301 + }, + { + "start": 9236.72, + "end": 9237.2, + "probability": 0.6255 + }, + { + "start": 9273.7, + "end": 9275.0, + "probability": 0.0263 + }, + { + "start": 9275.0, + "end": 9277.66, + "probability": 0.5625 + }, + { + "start": 9278.46, + "end": 9284.62, + "probability": 0.9216 + }, + { + "start": 9286.68, + "end": 9290.44, + "probability": 0.9869 + }, + { + "start": 9290.98, + "end": 9292.03, + "probability": 0.999 + }, + { + "start": 9292.62, + "end": 9295.26, + "probability": 0.8813 + }, + { + "start": 9296.04, + "end": 9300.46, + "probability": 0.9792 + }, + { + "start": 9302.1, + "end": 9305.0, + "probability": 0.9857 + }, + { + "start": 9305.62, + "end": 9309.48, + "probability": 0.9963 + }, + { + "start": 9309.48, + "end": 9313.66, + "probability": 0.8755 + }, + { + "start": 9314.6, + "end": 9318.7, + "probability": 0.9935 + }, + { + "start": 9318.72, + "end": 9323.98, + "probability": 0.999 + }, + { + "start": 9325.38, + "end": 9327.38, + "probability": 0.9985 + }, + { + "start": 9327.96, + "end": 9329.6, + "probability": 0.9774 + }, + { + "start": 9330.56, + "end": 9332.84, + "probability": 0.9873 + }, + { + "start": 9333.64, + "end": 9334.92, + "probability": 0.96 + }, + { + "start": 9335.98, + "end": 9338.74, + "probability": 0.9961 + }, + { + "start": 9338.74, + "end": 9341.14, + "probability": 0.999 + }, + { + "start": 9341.8, + "end": 9346.22, + "probability": 0.9994 + }, + { + "start": 9348.34, + "end": 9351.8, + "probability": 0.9691 + }, + { + "start": 9352.5, + "end": 9356.4, + "probability": 0.9946 + }, + { + "start": 9356.96, + "end": 9359.0, + "probability": 0.9849 + }, + { + "start": 9359.86, + "end": 9360.54, + "probability": 0.4118 + }, + { + "start": 9362.6, + "end": 9366.38, + "probability": 0.9609 + }, + { + "start": 9366.84, + "end": 9368.66, + "probability": 0.9975 + }, + { + "start": 9369.26, + "end": 9371.62, + "probability": 0.7885 + }, + { + "start": 9372.98, + "end": 9377.18, + "probability": 0.9744 + }, + { + "start": 9377.62, + "end": 9379.74, + "probability": 0.9722 + }, + { + "start": 9380.54, + "end": 9384.84, + "probability": 0.9985 + }, + { + "start": 9387.12, + "end": 9388.1, + "probability": 0.5795 + }, + { + "start": 9388.88, + "end": 9392.7, + "probability": 0.9683 + }, + { + "start": 9393.54, + "end": 9394.12, + "probability": 0.6143 + }, + { + "start": 9394.36, + "end": 9395.56, + "probability": 0.7926 + }, + { + "start": 9395.58, + "end": 9401.48, + "probability": 0.9933 + }, + { + "start": 9403.02, + "end": 9407.72, + "probability": 0.9886 + }, + { + "start": 9408.6, + "end": 9411.26, + "probability": 0.9986 + }, + { + "start": 9411.26, + "end": 9413.5, + "probability": 0.9228 + }, + { + "start": 9414.14, + "end": 9415.88, + "probability": 0.9631 + }, + { + "start": 9417.1, + "end": 9423.46, + "probability": 0.9725 + }, + { + "start": 9423.46, + "end": 9426.8, + "probability": 0.9954 + }, + { + "start": 9427.32, + "end": 9432.1, + "probability": 0.9959 + }, + { + "start": 9432.72, + "end": 9437.18, + "probability": 0.9066 + }, + { + "start": 9438.02, + "end": 9439.68, + "probability": 0.8825 + }, + { + "start": 9440.12, + "end": 9442.94, + "probability": 0.9941 + }, + { + "start": 9443.48, + "end": 9444.4, + "probability": 0.883 + }, + { + "start": 9444.88, + "end": 9450.22, + "probability": 0.957 + }, + { + "start": 9450.84, + "end": 9454.88, + "probability": 0.9956 + }, + { + "start": 9456.56, + "end": 9460.96, + "probability": 0.9871 + }, + { + "start": 9461.74, + "end": 9464.26, + "probability": 0.9415 + }, + { + "start": 9466.22, + "end": 9468.5, + "probability": 0.9832 + }, + { + "start": 9468.98, + "end": 9471.56, + "probability": 0.9973 + }, + { + "start": 9473.24, + "end": 9478.36, + "probability": 0.998 + }, + { + "start": 9479.08, + "end": 9483.54, + "probability": 0.9993 + }, + { + "start": 9484.04, + "end": 9487.0, + "probability": 0.9866 + }, + { + "start": 9487.64, + "end": 9491.36, + "probability": 0.9987 + }, + { + "start": 9492.1, + "end": 9494.68, + "probability": 0.8252 + }, + { + "start": 9495.96, + "end": 9500.3, + "probability": 0.9854 + }, + { + "start": 9500.96, + "end": 9503.72, + "probability": 0.8729 + }, + { + "start": 9504.24, + "end": 9508.44, + "probability": 0.9984 + }, + { + "start": 9509.3, + "end": 9512.68, + "probability": 0.9874 + }, + { + "start": 9512.68, + "end": 9515.34, + "probability": 0.9996 + }, + { + "start": 9515.94, + "end": 9520.02, + "probability": 0.996 + }, + { + "start": 9521.2, + "end": 9524.2, + "probability": 0.9987 + }, + { + "start": 9524.8, + "end": 9526.68, + "probability": 0.9856 + }, + { + "start": 9528.18, + "end": 9532.08, + "probability": 0.9924 + }, + { + "start": 9532.08, + "end": 9536.74, + "probability": 0.8878 + }, + { + "start": 9537.32, + "end": 9542.18, + "probability": 0.9941 + }, + { + "start": 9543.36, + "end": 9545.28, + "probability": 0.9458 + }, + { + "start": 9545.82, + "end": 9551.42, + "probability": 0.9917 + }, + { + "start": 9551.42, + "end": 9556.74, + "probability": 0.9995 + }, + { + "start": 9557.34, + "end": 9561.78, + "probability": 0.9531 + }, + { + "start": 9562.0, + "end": 9562.7, + "probability": 0.8144 + }, + { + "start": 9564.0, + "end": 9567.74, + "probability": 0.9902 + }, + { + "start": 9568.46, + "end": 9569.0, + "probability": 0.8789 + }, + { + "start": 9570.22, + "end": 9573.06, + "probability": 0.9988 + }, + { + "start": 9573.68, + "end": 9575.82, + "probability": 0.9854 + }, + { + "start": 9576.34, + "end": 9577.56, + "probability": 0.8269 + }, + { + "start": 9578.14, + "end": 9580.54, + "probability": 0.9706 + }, + { + "start": 9581.88, + "end": 9586.08, + "probability": 0.9906 + }, + { + "start": 9586.6, + "end": 9588.55, + "probability": 0.7242 + }, + { + "start": 9589.34, + "end": 9591.4, + "probability": 0.9057 + }, + { + "start": 9592.14, + "end": 9594.24, + "probability": 0.9646 + }, + { + "start": 9594.78, + "end": 9595.52, + "probability": 0.7352 + }, + { + "start": 9595.72, + "end": 9596.83, + "probability": 0.9793 + }, + { + "start": 9597.34, + "end": 9599.84, + "probability": 0.9956 + }, + { + "start": 9599.84, + "end": 9604.14, + "probability": 0.9975 + }, + { + "start": 9604.66, + "end": 9605.7, + "probability": 0.8668 + }, + { + "start": 9606.6, + "end": 9609.86, + "probability": 0.9971 + }, + { + "start": 9610.72, + "end": 9613.02, + "probability": 0.9985 + }, + { + "start": 9613.02, + "end": 9615.58, + "probability": 0.9966 + }, + { + "start": 9616.08, + "end": 9616.66, + "probability": 0.5442 + }, + { + "start": 9616.76, + "end": 9617.49, + "probability": 0.9272 + }, + { + "start": 9618.32, + "end": 9621.92, + "probability": 0.9707 + }, + { + "start": 9623.2, + "end": 9626.24, + "probability": 0.9882 + }, + { + "start": 9626.92, + "end": 9628.58, + "probability": 0.8616 + }, + { + "start": 9629.62, + "end": 9631.76, + "probability": 0.9896 + }, + { + "start": 9632.34, + "end": 9635.24, + "probability": 0.9317 + }, + { + "start": 9636.6, + "end": 9640.46, + "probability": 0.9955 + }, + { + "start": 9640.46, + "end": 9642.96, + "probability": 0.999 + }, + { + "start": 9643.52, + "end": 9646.0, + "probability": 0.9067 + }, + { + "start": 9646.62, + "end": 9648.16, + "probability": 0.9375 + }, + { + "start": 9649.0, + "end": 9650.8, + "probability": 0.9946 + }, + { + "start": 9651.32, + "end": 9652.04, + "probability": 0.7798 + }, + { + "start": 9652.28, + "end": 9654.76, + "probability": 0.8222 + }, + { + "start": 9654.82, + "end": 9664.9, + "probability": 0.9716 + }, + { + "start": 9668.02, + "end": 9669.23, + "probability": 0.8428 + }, + { + "start": 9669.38, + "end": 9670.16, + "probability": 0.8562 + }, + { + "start": 9670.36, + "end": 9671.78, + "probability": 0.9508 + }, + { + "start": 9671.9, + "end": 9674.1, + "probability": 0.9707 + }, + { + "start": 9674.48, + "end": 9677.76, + "probability": 0.9602 + }, + { + "start": 9677.9, + "end": 9679.07, + "probability": 0.1827 + }, + { + "start": 9681.94, + "end": 9682.38, + "probability": 0.8135 + }, + { + "start": 9683.6, + "end": 9685.82, + "probability": 0.7061 + }, + { + "start": 9686.64, + "end": 9690.02, + "probability": 0.9525 + }, + { + "start": 9691.54, + "end": 9695.66, + "probability": 0.0077 + }, + { + "start": 9698.88, + "end": 9699.06, + "probability": 0.0638 + }, + { + "start": 9699.06, + "end": 9699.06, + "probability": 0.3534 + }, + { + "start": 9699.06, + "end": 9699.06, + "probability": 0.3641 + }, + { + "start": 9699.06, + "end": 9699.06, + "probability": 0.415 + }, + { + "start": 9699.06, + "end": 9699.06, + "probability": 0.4492 + }, + { + "start": 9699.06, + "end": 9699.06, + "probability": 0.4503 + }, + { + "start": 9699.06, + "end": 9699.06, + "probability": 0.4919 + }, + { + "start": 9699.06, + "end": 9699.06, + "probability": 0.197 + }, + { + "start": 9699.06, + "end": 9699.06, + "probability": 0.0502 + }, + { + "start": 9709.68, + "end": 9709.82, + "probability": 0.0196 + }, + { + "start": 9709.82, + "end": 9711.49, + "probability": 0.8075 + }, + { + "start": 9716.2, + "end": 9716.96, + "probability": 0.58 + }, + { + "start": 9717.52, + "end": 9719.3, + "probability": 0.6722 + }, + { + "start": 9722.06, + "end": 9723.18, + "probability": 0.9775 + }, + { + "start": 9723.96, + "end": 9724.84, + "probability": 0.9055 + }, + { + "start": 9726.2, + "end": 9727.6, + "probability": 0.9838 + }, + { + "start": 9728.18, + "end": 9729.16, + "probability": 0.9912 + }, + { + "start": 9730.08, + "end": 9730.76, + "probability": 0.8378 + }, + { + "start": 9731.62, + "end": 9732.6, + "probability": 0.9697 + }, + { + "start": 9734.4, + "end": 9736.82, + "probability": 0.9941 + }, + { + "start": 9737.42, + "end": 9740.7, + "probability": 0.9241 + }, + { + "start": 9741.66, + "end": 9743.06, + "probability": 0.9905 + }, + { + "start": 9744.26, + "end": 9745.5, + "probability": 0.9182 + }, + { + "start": 9746.4, + "end": 9748.1, + "probability": 0.9404 + }, + { + "start": 9750.02, + "end": 9752.96, + "probability": 0.984 + }, + { + "start": 9754.2, + "end": 9756.68, + "probability": 0.9987 + }, + { + "start": 9758.04, + "end": 9760.28, + "probability": 0.9965 + }, + { + "start": 9761.7, + "end": 9767.22, + "probability": 0.9713 + }, + { + "start": 9770.1, + "end": 9771.86, + "probability": 0.9805 + }, + { + "start": 9772.94, + "end": 9773.98, + "probability": 0.9552 + }, + { + "start": 9775.62, + "end": 9776.18, + "probability": 0.4749 + }, + { + "start": 9776.3, + "end": 9778.08, + "probability": 0.9897 + }, + { + "start": 9778.38, + "end": 9779.66, + "probability": 0.9417 + }, + { + "start": 9780.9, + "end": 9782.86, + "probability": 0.8955 + }, + { + "start": 9784.56, + "end": 9788.0, + "probability": 0.9727 + }, + { + "start": 9789.16, + "end": 9791.24, + "probability": 0.883 + }, + { + "start": 9792.04, + "end": 9793.06, + "probability": 0.9642 + }, + { + "start": 9793.14, + "end": 9793.84, + "probability": 0.9741 + }, + { + "start": 9794.3, + "end": 9795.0, + "probability": 0.9617 + }, + { + "start": 9795.1, + "end": 9795.7, + "probability": 0.979 + }, + { + "start": 9795.76, + "end": 9796.56, + "probability": 0.8909 + }, + { + "start": 9797.58, + "end": 9799.06, + "probability": 0.7232 + }, + { + "start": 9800.84, + "end": 9803.2, + "probability": 0.9941 + }, + { + "start": 9805.58, + "end": 9807.96, + "probability": 0.8894 + }, + { + "start": 9809.76, + "end": 9810.82, + "probability": 0.9642 + }, + { + "start": 9810.9, + "end": 9812.48, + "probability": 0.996 + }, + { + "start": 9812.9, + "end": 9813.84, + "probability": 0.9388 + }, + { + "start": 9814.28, + "end": 9815.16, + "probability": 0.6387 + }, + { + "start": 9817.56, + "end": 9820.9, + "probability": 0.9856 + }, + { + "start": 9821.06, + "end": 9821.44, + "probability": 0.5834 + }, + { + "start": 9822.12, + "end": 9824.04, + "probability": 0.8674 + }, + { + "start": 9824.56, + "end": 9825.68, + "probability": 0.9937 + }, + { + "start": 9827.04, + "end": 9828.5, + "probability": 0.9951 + }, + { + "start": 9828.98, + "end": 9831.54, + "probability": 0.9979 + }, + { + "start": 9832.64, + "end": 9834.4, + "probability": 0.9984 + }, + { + "start": 9835.44, + "end": 9837.26, + "probability": 0.7181 + }, + { + "start": 9838.46, + "end": 9840.46, + "probability": 0.7266 + }, + { + "start": 9841.0, + "end": 9842.96, + "probability": 0.9836 + }, + { + "start": 9844.48, + "end": 9848.6, + "probability": 0.9763 + }, + { + "start": 9849.0, + "end": 9851.54, + "probability": 0.9534 + }, + { + "start": 9852.0, + "end": 9853.16, + "probability": 0.5176 + }, + { + "start": 9853.24, + "end": 9854.92, + "probability": 0.9256 + }, + { + "start": 9855.44, + "end": 9856.4, + "probability": 0.9473 + }, + { + "start": 9857.36, + "end": 9860.44, + "probability": 0.8257 + }, + { + "start": 9861.08, + "end": 9863.62, + "probability": 0.9026 + }, + { + "start": 9864.98, + "end": 9866.14, + "probability": 0.9798 + }, + { + "start": 9867.48, + "end": 9868.32, + "probability": 0.6548 + }, + { + "start": 9868.4, + "end": 9869.2, + "probability": 0.8316 + }, + { + "start": 9869.26, + "end": 9869.66, + "probability": 0.4123 + }, + { + "start": 9869.7, + "end": 9870.5, + "probability": 0.9617 + }, + { + "start": 9871.06, + "end": 9873.6, + "probability": 0.9753 + }, + { + "start": 9875.26, + "end": 9876.46, + "probability": 0.8558 + }, + { + "start": 9877.98, + "end": 9880.04, + "probability": 0.9399 + }, + { + "start": 9881.6, + "end": 9883.05, + "probability": 0.8844 + }, + { + "start": 9884.58, + "end": 9887.74, + "probability": 0.9252 + }, + { + "start": 9889.98, + "end": 9891.14, + "probability": 0.6672 + }, + { + "start": 9893.12, + "end": 9896.32, + "probability": 0.9595 + }, + { + "start": 9897.52, + "end": 9901.32, + "probability": 0.9608 + }, + { + "start": 9902.38, + "end": 9905.56, + "probability": 0.9694 + }, + { + "start": 9905.74, + "end": 9906.7, + "probability": 0.5988 + }, + { + "start": 9907.72, + "end": 9910.12, + "probability": 0.8962 + }, + { + "start": 9912.6, + "end": 9917.66, + "probability": 0.8495 + }, + { + "start": 9918.32, + "end": 9920.44, + "probability": 0.981 + }, + { + "start": 9921.02, + "end": 9922.38, + "probability": 0.9744 + }, + { + "start": 9923.0, + "end": 9924.53, + "probability": 0.9961 + }, + { + "start": 9925.0, + "end": 9926.14, + "probability": 0.8676 + }, + { + "start": 9927.32, + "end": 9931.12, + "probability": 0.9896 + }, + { + "start": 9932.4, + "end": 9934.24, + "probability": 0.9575 + }, + { + "start": 9935.88, + "end": 9936.54, + "probability": 0.9259 + }, + { + "start": 9937.26, + "end": 9943.2, + "probability": 0.8254 + }, + { + "start": 9943.9, + "end": 9948.1, + "probability": 0.979 + }, + { + "start": 9949.42, + "end": 9951.83, + "probability": 0.8486 + }, + { + "start": 9953.26, + "end": 9956.82, + "probability": 0.929 + }, + { + "start": 9958.16, + "end": 9961.66, + "probability": 0.6241 + }, + { + "start": 9962.42, + "end": 9963.14, + "probability": 0.939 + }, + { + "start": 9964.24, + "end": 9967.42, + "probability": 0.99 + }, + { + "start": 9967.42, + "end": 9970.26, + "probability": 0.9982 + }, + { + "start": 9972.14, + "end": 9975.08, + "probability": 0.9058 + }, + { + "start": 9977.72, + "end": 9979.42, + "probability": 0.9193 + }, + { + "start": 9981.06, + "end": 9981.42, + "probability": 0.7569 + }, + { + "start": 9982.28, + "end": 9985.98, + "probability": 0.9734 + }, + { + "start": 9986.84, + "end": 9990.48, + "probability": 0.9898 + }, + { + "start": 9991.88, + "end": 9994.06, + "probability": 0.8358 + }, + { + "start": 9995.66, + "end": 9999.6, + "probability": 0.966 + }, + { + "start": 10000.58, + "end": 10001.92, + "probability": 0.9734 + }, + { + "start": 10002.92, + "end": 10006.12, + "probability": 0.8598 + }, + { + "start": 10006.84, + "end": 10008.98, + "probability": 0.9095 + }, + { + "start": 10013.24, + "end": 10016.7, + "probability": 0.9964 + }, + { + "start": 10017.58, + "end": 10018.84, + "probability": 0.8234 + }, + { + "start": 10019.44, + "end": 10025.08, + "probability": 0.9941 + }, + { + "start": 10025.56, + "end": 10026.24, + "probability": 0.9197 + }, + { + "start": 10027.72, + "end": 10030.9, + "probability": 0.9849 + }, + { + "start": 10030.98, + "end": 10034.18, + "probability": 0.9632 + }, + { + "start": 10035.02, + "end": 10036.22, + "probability": 0.9374 + }, + { + "start": 10036.34, + "end": 10039.86, + "probability": 0.9812 + }, + { + "start": 10040.94, + "end": 10043.1, + "probability": 0.9971 + }, + { + "start": 10044.24, + "end": 10045.4, + "probability": 0.9895 + }, + { + "start": 10046.18, + "end": 10048.52, + "probability": 0.9989 + }, + { + "start": 10048.52, + "end": 10052.04, + "probability": 0.9927 + }, + { + "start": 10052.72, + "end": 10053.61, + "probability": 0.9231 + }, + { + "start": 10054.44, + "end": 10059.18, + "probability": 0.9824 + }, + { + "start": 10059.68, + "end": 10061.3, + "probability": 0.9764 + }, + { + "start": 10061.7, + "end": 10063.8, + "probability": 0.9984 + }, + { + "start": 10065.44, + "end": 10069.52, + "probability": 0.999 + }, + { + "start": 10070.3, + "end": 10074.72, + "probability": 0.9923 + }, + { + "start": 10074.72, + "end": 10079.02, + "probability": 0.9967 + }, + { + "start": 10079.76, + "end": 10082.01, + "probability": 0.9971 + }, + { + "start": 10083.22, + "end": 10086.36, + "probability": 0.9805 + }, + { + "start": 10087.2, + "end": 10089.58, + "probability": 0.8833 + }, + { + "start": 10090.22, + "end": 10093.2, + "probability": 0.9893 + }, + { + "start": 10094.0, + "end": 10094.96, + "probability": 0.9246 + }, + { + "start": 10095.46, + "end": 10098.2, + "probability": 0.9649 + }, + { + "start": 10098.36, + "end": 10099.1, + "probability": 0.5017 + }, + { + "start": 10099.12, + "end": 10101.28, + "probability": 0.9806 + }, + { + "start": 10102.36, + "end": 10104.54, + "probability": 0.9419 + }, + { + "start": 10105.38, + "end": 10108.78, + "probability": 0.9893 + }, + { + "start": 10109.44, + "end": 10111.84, + "probability": 0.9819 + }, + { + "start": 10112.96, + "end": 10114.54, + "probability": 0.9929 + }, + { + "start": 10115.06, + "end": 10120.78, + "probability": 0.9968 + }, + { + "start": 10121.3, + "end": 10123.6, + "probability": 0.9566 + }, + { + "start": 10124.16, + "end": 10125.26, + "probability": 0.8593 + }, + { + "start": 10126.16, + "end": 10130.14, + "probability": 0.9991 + }, + { + "start": 10130.14, + "end": 10133.84, + "probability": 0.9987 + }, + { + "start": 10134.46, + "end": 10135.06, + "probability": 0.5817 + }, + { + "start": 10135.48, + "end": 10136.1, + "probability": 0.9117 + }, + { + "start": 10136.32, + "end": 10141.44, + "probability": 0.9949 + }, + { + "start": 10141.8, + "end": 10144.54, + "probability": 0.993 + }, + { + "start": 10144.84, + "end": 10147.42, + "probability": 0.5968 + }, + { + "start": 10147.54, + "end": 10151.44, + "probability": 0.9525 + }, + { + "start": 10152.28, + "end": 10153.74, + "probability": 0.9849 + }, + { + "start": 10153.98, + "end": 10154.32, + "probability": 0.7836 + }, + { + "start": 10154.46, + "end": 10155.14, + "probability": 0.6749 + }, + { + "start": 10178.46, + "end": 10179.82, + "probability": 0.7695 + }, + { + "start": 10180.78, + "end": 10182.58, + "probability": 0.7997 + }, + { + "start": 10182.96, + "end": 10184.33, + "probability": 0.769 + }, + { + "start": 10185.34, + "end": 10189.9, + "probability": 0.7886 + }, + { + "start": 10190.44, + "end": 10193.28, + "probability": 0.7917 + }, + { + "start": 10194.02, + "end": 10201.76, + "probability": 0.6893 + }, + { + "start": 10203.8, + "end": 10205.76, + "probability": 0.916 + }, + { + "start": 10207.84, + "end": 10214.16, + "probability": 0.9896 + }, + { + "start": 10214.74, + "end": 10217.32, + "probability": 0.9783 + }, + { + "start": 10218.12, + "end": 10220.72, + "probability": 0.8622 + }, + { + "start": 10221.86, + "end": 10222.7, + "probability": 0.8311 + }, + { + "start": 10223.58, + "end": 10224.48, + "probability": 0.9779 + }, + { + "start": 10225.02, + "end": 10229.74, + "probability": 0.9927 + }, + { + "start": 10229.74, + "end": 10235.5, + "probability": 0.9766 + }, + { + "start": 10236.08, + "end": 10238.76, + "probability": 0.8434 + }, + { + "start": 10239.52, + "end": 10240.1, + "probability": 0.9856 + }, + { + "start": 10241.66, + "end": 10242.88, + "probability": 0.9254 + }, + { + "start": 10243.04, + "end": 10246.82, + "probability": 0.9832 + }, + { + "start": 10247.02, + "end": 10248.58, + "probability": 0.6909 + }, + { + "start": 10248.84, + "end": 10249.54, + "probability": 0.8809 + }, + { + "start": 10249.74, + "end": 10252.76, + "probability": 0.8252 + }, + { + "start": 10254.06, + "end": 10255.36, + "probability": 0.7712 + }, + { + "start": 10257.6, + "end": 10260.78, + "probability": 0.8903 + }, + { + "start": 10261.42, + "end": 10269.42, + "probability": 0.9562 + }, + { + "start": 10270.06, + "end": 10271.26, + "probability": 0.9932 + }, + { + "start": 10272.2, + "end": 10276.76, + "probability": 0.9003 + }, + { + "start": 10277.14, + "end": 10278.12, + "probability": 0.6863 + }, + { + "start": 10278.54, + "end": 10279.4, + "probability": 0.9131 + }, + { + "start": 10282.39, + "end": 10287.72, + "probability": 0.9399 + }, + { + "start": 10289.04, + "end": 10290.0, + "probability": 0.8404 + }, + { + "start": 10290.84, + "end": 10294.34, + "probability": 0.9598 + }, + { + "start": 10294.66, + "end": 10297.88, + "probability": 0.9856 + }, + { + "start": 10298.2, + "end": 10298.9, + "probability": 0.9083 + }, + { + "start": 10299.08, + "end": 10303.46, + "probability": 0.9964 + }, + { + "start": 10305.56, + "end": 10307.92, + "probability": 0.8913 + }, + { + "start": 10308.6, + "end": 10309.8, + "probability": 0.5698 + }, + { + "start": 10309.92, + "end": 10314.34, + "probability": 0.9945 + }, + { + "start": 10315.72, + "end": 10316.28, + "probability": 0.8708 + }, + { + "start": 10316.86, + "end": 10317.52, + "probability": 0.9681 + }, + { + "start": 10317.7, + "end": 10320.08, + "probability": 0.9595 + }, + { + "start": 10320.32, + "end": 10321.84, + "probability": 0.7435 + }, + { + "start": 10322.06, + "end": 10322.82, + "probability": 0.8537 + }, + { + "start": 10322.88, + "end": 10323.44, + "probability": 0.8514 + }, + { + "start": 10324.58, + "end": 10325.48, + "probability": 0.9634 + }, + { + "start": 10326.64, + "end": 10328.56, + "probability": 0.959 + }, + { + "start": 10329.48, + "end": 10330.2, + "probability": 0.8936 + }, + { + "start": 10331.12, + "end": 10332.74, + "probability": 0.866 + }, + { + "start": 10333.56, + "end": 10334.04, + "probability": 0.6178 + }, + { + "start": 10335.36, + "end": 10336.02, + "probability": 0.9626 + }, + { + "start": 10336.94, + "end": 10337.76, + "probability": 0.8158 + }, + { + "start": 10337.82, + "end": 10341.66, + "probability": 0.9949 + }, + { + "start": 10342.16, + "end": 10343.95, + "probability": 0.9195 + }, + { + "start": 10344.62, + "end": 10347.4, + "probability": 0.9937 + }, + { + "start": 10347.68, + "end": 10349.62, + "probability": 0.9933 + }, + { + "start": 10350.36, + "end": 10353.62, + "probability": 0.9344 + }, + { + "start": 10354.26, + "end": 10357.84, + "probability": 0.9837 + }, + { + "start": 10358.56, + "end": 10361.24, + "probability": 0.9673 + }, + { + "start": 10361.44, + "end": 10362.38, + "probability": 0.9983 + }, + { + "start": 10362.82, + "end": 10364.58, + "probability": 0.7751 + }, + { + "start": 10365.1, + "end": 10366.16, + "probability": 0.8996 + }, + { + "start": 10366.8, + "end": 10370.04, + "probability": 0.9924 + }, + { + "start": 10370.86, + "end": 10374.02, + "probability": 0.967 + }, + { + "start": 10374.64, + "end": 10375.84, + "probability": 0.9305 + }, + { + "start": 10376.98, + "end": 10381.86, + "probability": 0.9651 + }, + { + "start": 10382.04, + "end": 10382.54, + "probability": 0.4571 + }, + { + "start": 10383.36, + "end": 10384.9, + "probability": 0.7948 + }, + { + "start": 10385.56, + "end": 10387.22, + "probability": 0.9745 + }, + { + "start": 10387.6, + "end": 10388.44, + "probability": 0.8154 + }, + { + "start": 10388.74, + "end": 10390.58, + "probability": 0.9957 + }, + { + "start": 10391.14, + "end": 10396.64, + "probability": 0.981 + }, + { + "start": 10397.56, + "end": 10398.44, + "probability": 0.8886 + }, + { + "start": 10399.38, + "end": 10404.0, + "probability": 0.779 + }, + { + "start": 10404.0, + "end": 10407.46, + "probability": 0.9949 + }, + { + "start": 10408.2, + "end": 10410.82, + "probability": 0.7708 + }, + { + "start": 10410.84, + "end": 10411.38, + "probability": 0.7206 + }, + { + "start": 10412.16, + "end": 10413.48, + "probability": 0.7784 + }, + { + "start": 10414.62, + "end": 10417.8, + "probability": 0.9982 + }, + { + "start": 10418.4, + "end": 10421.36, + "probability": 0.9989 + }, + { + "start": 10421.5, + "end": 10424.24, + "probability": 0.9974 + }, + { + "start": 10424.32, + "end": 10424.4, + "probability": 0.5431 + }, + { + "start": 10424.56, + "end": 10426.42, + "probability": 0.7416 + }, + { + "start": 10426.72, + "end": 10432.66, + "probability": 0.8819 + }, + { + "start": 10433.36, + "end": 10436.82, + "probability": 0.9961 + }, + { + "start": 10437.06, + "end": 10438.06, + "probability": 0.4476 + }, + { + "start": 10438.94, + "end": 10440.26, + "probability": 0.9042 + }, + { + "start": 10440.42, + "end": 10446.32, + "probability": 0.9482 + }, + { + "start": 10447.34, + "end": 10450.64, + "probability": 0.9896 + }, + { + "start": 10450.64, + "end": 10454.1, + "probability": 0.9828 + }, + { + "start": 10454.92, + "end": 10456.66, + "probability": 0.9573 + }, + { + "start": 10457.2, + "end": 10460.56, + "probability": 0.9746 + }, + { + "start": 10461.0, + "end": 10462.3, + "probability": 0.6859 + }, + { + "start": 10463.26, + "end": 10465.36, + "probability": 0.8228 + }, + { + "start": 10466.32, + "end": 10470.4, + "probability": 0.9823 + }, + { + "start": 10470.46, + "end": 10473.76, + "probability": 0.9982 + }, + { + "start": 10474.64, + "end": 10478.32, + "probability": 0.9764 + }, + { + "start": 10478.6, + "end": 10480.34, + "probability": 0.9587 + }, + { + "start": 10481.26, + "end": 10486.74, + "probability": 0.9766 + }, + { + "start": 10487.6, + "end": 10491.34, + "probability": 0.9961 + }, + { + "start": 10491.96, + "end": 10494.18, + "probability": 0.9927 + }, + { + "start": 10495.98, + "end": 10499.98, + "probability": 0.999 + }, + { + "start": 10500.14, + "end": 10502.6, + "probability": 0.9925 + }, + { + "start": 10502.92, + "end": 10503.78, + "probability": 0.9414 + }, + { + "start": 10503.94, + "end": 10504.71, + "probability": 0.5154 + }, + { + "start": 10505.14, + "end": 10505.9, + "probability": 0.8341 + }, + { + "start": 10505.98, + "end": 10506.48, + "probability": 0.526 + }, + { + "start": 10507.22, + "end": 10510.6, + "probability": 0.9854 + }, + { + "start": 10512.68, + "end": 10515.04, + "probability": 0.3185 + }, + { + "start": 10516.04, + "end": 10518.8, + "probability": 0.9369 + }, + { + "start": 10519.68, + "end": 10525.72, + "probability": 0.9956 + }, + { + "start": 10525.94, + "end": 10526.14, + "probability": 0.6662 + }, + { + "start": 10527.14, + "end": 10529.84, + "probability": 0.8438 + }, + { + "start": 10530.34, + "end": 10533.86, + "probability": 0.779 + }, + { + "start": 10534.34, + "end": 10539.56, + "probability": 0.9955 + }, + { + "start": 10539.86, + "end": 10540.5, + "probability": 0.6025 + }, + { + "start": 10541.17, + "end": 10543.49, + "probability": 0.5443 + }, + { + "start": 10544.54, + "end": 10545.44, + "probability": 0.8877 + }, + { + "start": 10546.34, + "end": 10550.52, + "probability": 0.9709 + }, + { + "start": 10551.04, + "end": 10558.6, + "probability": 0.9847 + }, + { + "start": 10559.1, + "end": 10559.2, + "probability": 0.643 + }, + { + "start": 10559.22, + "end": 10560.74, + "probability": 0.672 + }, + { + "start": 10560.94, + "end": 10563.24, + "probability": 0.9644 + }, + { + "start": 10563.26, + "end": 10565.54, + "probability": 0.9889 + }, + { + "start": 10567.0, + "end": 10567.22, + "probability": 0.0649 + }, + { + "start": 10567.22, + "end": 10568.24, + "probability": 0.6093 + }, + { + "start": 10568.48, + "end": 10571.99, + "probability": 0.9689 + }, + { + "start": 10573.1, + "end": 10576.28, + "probability": 0.6717 + }, + { + "start": 10576.4, + "end": 10577.25, + "probability": 0.7776 + }, + { + "start": 10584.44, + "end": 10584.44, + "probability": 0.5741 + }, + { + "start": 10584.44, + "end": 10586.62, + "probability": 0.6973 + }, + { + "start": 10586.76, + "end": 10587.08, + "probability": 0.4139 + }, + { + "start": 10597.5, + "end": 10598.61, + "probability": 0.7406 + }, + { + "start": 10599.52, + "end": 10599.62, + "probability": 0.8268 + }, + { + "start": 10601.94, + "end": 10602.34, + "probability": 0.8801 + }, + { + "start": 10604.46, + "end": 10605.58, + "probability": 0.7773 + }, + { + "start": 10608.09, + "end": 10610.74, + "probability": 0.8992 + }, + { + "start": 10611.56, + "end": 10612.46, + "probability": 0.9496 + }, + { + "start": 10613.9, + "end": 10616.42, + "probability": 0.8055 + }, + { + "start": 10618.34, + "end": 10620.66, + "probability": 0.9639 + }, + { + "start": 10621.14, + "end": 10624.94, + "probability": 0.9919 + }, + { + "start": 10626.2, + "end": 10629.54, + "probability": 0.9642 + }, + { + "start": 10630.6, + "end": 10633.2, + "probability": 0.9915 + }, + { + "start": 10633.46, + "end": 10633.9, + "probability": 0.7102 + }, + { + "start": 10634.56, + "end": 10635.5, + "probability": 0.9626 + }, + { + "start": 10636.48, + "end": 10638.0, + "probability": 0.9567 + }, + { + "start": 10638.62, + "end": 10641.76, + "probability": 0.9926 + }, + { + "start": 10642.32, + "end": 10644.3, + "probability": 0.9236 + }, + { + "start": 10644.98, + "end": 10645.4, + "probability": 0.8117 + }, + { + "start": 10646.22, + "end": 10647.5, + "probability": 0.8443 + }, + { + "start": 10648.78, + "end": 10651.62, + "probability": 0.9373 + }, + { + "start": 10652.14, + "end": 10654.0, + "probability": 0.6283 + }, + { + "start": 10655.22, + "end": 10658.94, + "probability": 0.9749 + }, + { + "start": 10659.78, + "end": 10661.14, + "probability": 0.9861 + }, + { + "start": 10661.92, + "end": 10665.96, + "probability": 0.9958 + }, + { + "start": 10666.96, + "end": 10668.24, + "probability": 0.6694 + }, + { + "start": 10668.8, + "end": 10671.44, + "probability": 0.9741 + }, + { + "start": 10672.34, + "end": 10674.74, + "probability": 0.9236 + }, + { + "start": 10675.36, + "end": 10677.42, + "probability": 0.9961 + }, + { + "start": 10678.62, + "end": 10682.94, + "probability": 0.9875 + }, + { + "start": 10683.7, + "end": 10684.32, + "probability": 0.865 + }, + { + "start": 10685.08, + "end": 10685.78, + "probability": 0.9502 + }, + { + "start": 10686.34, + "end": 10687.52, + "probability": 0.9908 + }, + { + "start": 10688.04, + "end": 10692.54, + "probability": 0.99 + }, + { + "start": 10693.76, + "end": 10695.84, + "probability": 0.9495 + }, + { + "start": 10696.66, + "end": 10699.3, + "probability": 0.9391 + }, + { + "start": 10699.9, + "end": 10701.68, + "probability": 0.9844 + }, + { + "start": 10702.34, + "end": 10703.36, + "probability": 0.9459 + }, + { + "start": 10703.88, + "end": 10706.7, + "probability": 0.9396 + }, + { + "start": 10707.56, + "end": 10708.68, + "probability": 0.993 + }, + { + "start": 10710.02, + "end": 10713.9, + "probability": 0.9974 + }, + { + "start": 10714.78, + "end": 10717.38, + "probability": 0.9695 + }, + { + "start": 10718.26, + "end": 10721.0, + "probability": 0.9849 + }, + { + "start": 10721.68, + "end": 10725.4, + "probability": 0.9739 + }, + { + "start": 10726.2, + "end": 10727.78, + "probability": 0.9822 + }, + { + "start": 10728.32, + "end": 10731.6, + "probability": 0.9775 + }, + { + "start": 10731.6, + "end": 10733.02, + "probability": 0.4496 + }, + { + "start": 10733.76, + "end": 10734.18, + "probability": 0.4796 + }, + { + "start": 10736.04, + "end": 10737.44, + "probability": 0.9496 + }, + { + "start": 10738.36, + "end": 10739.05, + "probability": 0.6848 + }, + { + "start": 10742.88, + "end": 10744.1, + "probability": 0.8003 + }, + { + "start": 10744.64, + "end": 10745.42, + "probability": 0.7136 + }, + { + "start": 10755.8, + "end": 10756.02, + "probability": 0.6558 + }, + { + "start": 10756.1, + "end": 10756.38, + "probability": 0.865 + }, + { + "start": 10756.48, + "end": 10759.3, + "probability": 0.9653 + }, + { + "start": 10759.74, + "end": 10760.82, + "probability": 0.9909 + }, + { + "start": 10760.9, + "end": 10761.32, + "probability": 0.7401 + }, + { + "start": 10762.0, + "end": 10764.22, + "probability": 0.7478 + }, + { + "start": 10764.78, + "end": 10765.2, + "probability": 0.3742 + }, + { + "start": 10765.98, + "end": 10767.26, + "probability": 0.6047 + }, + { + "start": 10767.8, + "end": 10769.06, + "probability": 0.5016 + }, + { + "start": 10769.18, + "end": 10771.5, + "probability": 0.9878 + }, + { + "start": 10771.5, + "end": 10774.88, + "probability": 0.9839 + }, + { + "start": 10775.92, + "end": 10777.46, + "probability": 0.9089 + }, + { + "start": 10778.24, + "end": 10781.14, + "probability": 0.9658 + }, + { + "start": 10782.58, + "end": 10784.88, + "probability": 0.8211 + }, + { + "start": 10785.38, + "end": 10787.56, + "probability": 0.9546 + }, + { + "start": 10788.82, + "end": 10793.28, + "probability": 0.8838 + }, + { + "start": 10793.58, + "end": 10794.56, + "probability": 0.9594 + }, + { + "start": 10795.66, + "end": 10797.22, + "probability": 0.9896 + }, + { + "start": 10797.38, + "end": 10798.08, + "probability": 0.6439 + }, + { + "start": 10798.36, + "end": 10798.72, + "probability": 0.5335 + }, + { + "start": 10798.82, + "end": 10799.5, + "probability": 0.7847 + }, + { + "start": 10800.32, + "end": 10802.6, + "probability": 0.7982 + }, + { + "start": 10803.52, + "end": 10805.86, + "probability": 0.9771 + }, + { + "start": 10807.14, + "end": 10807.38, + "probability": 0.7821 + }, + { + "start": 10807.62, + "end": 10808.14, + "probability": 0.824 + }, + { + "start": 10808.2, + "end": 10809.24, + "probability": 0.9067 + }, + { + "start": 10809.7, + "end": 10810.72, + "probability": 0.9838 + }, + { + "start": 10812.12, + "end": 10814.16, + "probability": 0.9941 + }, + { + "start": 10814.58, + "end": 10815.7, + "probability": 0.7859 + }, + { + "start": 10815.96, + "end": 10819.34, + "probability": 0.9941 + }, + { + "start": 10820.0, + "end": 10821.62, + "probability": 0.934 + }, + { + "start": 10822.46, + "end": 10823.68, + "probability": 0.9717 + }, + { + "start": 10824.9, + "end": 10825.96, + "probability": 0.9936 + }, + { + "start": 10827.1, + "end": 10828.04, + "probability": 0.6682 + }, + { + "start": 10828.62, + "end": 10830.0, + "probability": 0.9816 + }, + { + "start": 10830.52, + "end": 10831.56, + "probability": 0.9539 + }, + { + "start": 10833.1, + "end": 10837.42, + "probability": 0.9946 + }, + { + "start": 10838.76, + "end": 10841.34, + "probability": 0.9974 + }, + { + "start": 10841.88, + "end": 10844.96, + "probability": 0.9571 + }, + { + "start": 10845.94, + "end": 10847.0, + "probability": 0.7933 + }, + { + "start": 10847.46, + "end": 10850.56, + "probability": 0.9109 + }, + { + "start": 10851.28, + "end": 10856.0, + "probability": 0.9946 + }, + { + "start": 10856.68, + "end": 10859.4, + "probability": 0.9538 + }, + { + "start": 10860.9, + "end": 10863.88, + "probability": 0.6844 + }, + { + "start": 10864.56, + "end": 10867.32, + "probability": 0.9613 + }, + { + "start": 10867.92, + "end": 10869.54, + "probability": 0.8729 + }, + { + "start": 10870.12, + "end": 10872.2, + "probability": 0.9053 + }, + { + "start": 10872.56, + "end": 10872.96, + "probability": 0.7868 + }, + { + "start": 10873.6, + "end": 10876.88, + "probability": 0.9834 + }, + { + "start": 10877.46, + "end": 10880.41, + "probability": 0.8716 + }, + { + "start": 10881.96, + "end": 10883.04, + "probability": 0.8897 + }, + { + "start": 10884.12, + "end": 10887.22, + "probability": 0.9868 + }, + { + "start": 10888.32, + "end": 10890.44, + "probability": 0.9948 + }, + { + "start": 10891.12, + "end": 10893.57, + "probability": 0.9985 + }, + { + "start": 10894.92, + "end": 10897.66, + "probability": 0.9294 + }, + { + "start": 10898.0, + "end": 10898.72, + "probability": 0.7069 + }, + { + "start": 10899.66, + "end": 10903.92, + "probability": 0.9185 + }, + { + "start": 10904.86, + "end": 10907.58, + "probability": 0.9977 + }, + { + "start": 10909.1, + "end": 10910.82, + "probability": 0.9377 + }, + { + "start": 10911.52, + "end": 10913.24, + "probability": 0.9628 + }, + { + "start": 10913.32, + "end": 10917.38, + "probability": 0.992 + }, + { + "start": 10917.72, + "end": 10919.44, + "probability": 0.9327 + }, + { + "start": 10920.46, + "end": 10921.56, + "probability": 0.8898 + }, + { + "start": 10922.3, + "end": 10923.78, + "probability": 0.9897 + }, + { + "start": 10925.02, + "end": 10926.84, + "probability": 0.9933 + }, + { + "start": 10927.56, + "end": 10928.22, + "probability": 0.5296 + }, + { + "start": 10928.64, + "end": 10929.46, + "probability": 0.7916 + }, + { + "start": 10930.04, + "end": 10932.46, + "probability": 0.9277 + }, + { + "start": 10932.58, + "end": 10934.6, + "probability": 0.9833 + }, + { + "start": 10935.24, + "end": 10939.04, + "probability": 0.9861 + }, + { + "start": 10939.54, + "end": 10941.24, + "probability": 0.991 + }, + { + "start": 10941.72, + "end": 10943.4, + "probability": 0.9233 + }, + { + "start": 10944.26, + "end": 10945.72, + "probability": 0.9971 + }, + { + "start": 10945.78, + "end": 10950.4, + "probability": 0.9912 + }, + { + "start": 10951.04, + "end": 10952.94, + "probability": 0.9807 + }, + { + "start": 10953.8, + "end": 10954.67, + "probability": 0.9912 + }, + { + "start": 10955.26, + "end": 10957.84, + "probability": 0.9661 + }, + { + "start": 10957.84, + "end": 10961.5, + "probability": 0.965 + }, + { + "start": 10961.86, + "end": 10962.32, + "probability": 0.7675 + }, + { + "start": 10964.84, + "end": 10967.74, + "probability": 0.9073 + }, + { + "start": 10967.9, + "end": 10969.8, + "probability": 0.6323 + }, + { + "start": 11011.22, + "end": 11011.22, + "probability": 0.142 + }, + { + "start": 11011.22, + "end": 11013.18, + "probability": 0.7315 + }, + { + "start": 11014.06, + "end": 11019.46, + "probability": 0.9377 + }, + { + "start": 11019.46, + "end": 11022.7, + "probability": 0.959 + }, + { + "start": 11023.36, + "end": 11024.33, + "probability": 0.7032 + }, + { + "start": 11024.5, + "end": 11025.78, + "probability": 0.8699 + }, + { + "start": 11025.86, + "end": 11029.88, + "probability": 0.9901 + }, + { + "start": 11030.48, + "end": 11034.3, + "probability": 0.8979 + }, + { + "start": 11035.24, + "end": 11036.74, + "probability": 0.8269 + }, + { + "start": 11037.53, + "end": 11041.73, + "probability": 0.9651 + }, + { + "start": 11042.32, + "end": 11045.26, + "probability": 0.9832 + }, + { + "start": 11045.34, + "end": 11047.22, + "probability": 0.996 + }, + { + "start": 11047.98, + "end": 11049.04, + "probability": 0.7463 + }, + { + "start": 11049.06, + "end": 11050.06, + "probability": 0.8549 + }, + { + "start": 11050.14, + "end": 11050.74, + "probability": 0.7207 + }, + { + "start": 11051.2, + "end": 11055.56, + "probability": 0.9543 + }, + { + "start": 11055.66, + "end": 11058.12, + "probability": 0.9172 + }, + { + "start": 11058.66, + "end": 11059.22, + "probability": 0.7492 + }, + { + "start": 11059.26, + "end": 11060.68, + "probability": 0.8682 + }, + { + "start": 11060.7, + "end": 11065.46, + "probability": 0.967 + }, + { + "start": 11065.98, + "end": 11066.9, + "probability": 0.882 + }, + { + "start": 11067.58, + "end": 11068.66, + "probability": 0.5019 + }, + { + "start": 11069.22, + "end": 11071.66, + "probability": 0.6802 + }, + { + "start": 11072.3, + "end": 11073.34, + "probability": 0.9153 + }, + { + "start": 11074.06, + "end": 11076.86, + "probability": 0.9606 + }, + { + "start": 11078.34, + "end": 11079.48, + "probability": 0.8888 + }, + { + "start": 11080.18, + "end": 11081.82, + "probability": 0.9705 + }, + { + "start": 11082.56, + "end": 11086.1, + "probability": 0.9617 + }, + { + "start": 11087.32, + "end": 11089.08, + "probability": 0.979 + }, + { + "start": 11089.86, + "end": 11092.2, + "probability": 0.9032 + }, + { + "start": 11092.84, + "end": 11095.52, + "probability": 0.9692 + }, + { + "start": 11096.0, + "end": 11099.76, + "probability": 0.925 + }, + { + "start": 11100.32, + "end": 11101.06, + "probability": 0.4771 + }, + { + "start": 11101.78, + "end": 11104.48, + "probability": 0.9769 + }, + { + "start": 11105.14, + "end": 11106.76, + "probability": 0.6211 + }, + { + "start": 11107.34, + "end": 11109.72, + "probability": 0.9215 + }, + { + "start": 11110.1, + "end": 11111.1, + "probability": 0.9146 + }, + { + "start": 11111.34, + "end": 11111.99, + "probability": 0.8667 + }, + { + "start": 11112.2, + "end": 11113.9, + "probability": 0.965 + }, + { + "start": 11114.2, + "end": 11119.58, + "probability": 0.9774 + }, + { + "start": 11120.5, + "end": 11123.26, + "probability": 0.8348 + }, + { + "start": 11123.82, + "end": 11124.46, + "probability": 0.7591 + }, + { + "start": 11125.2, + "end": 11126.74, + "probability": 0.9955 + }, + { + "start": 11127.28, + "end": 11128.54, + "probability": 0.8501 + }, + { + "start": 11129.28, + "end": 11130.82, + "probability": 0.7568 + }, + { + "start": 11131.34, + "end": 11137.26, + "probability": 0.8441 + }, + { + "start": 11137.84, + "end": 11142.34, + "probability": 0.618 + }, + { + "start": 11142.82, + "end": 11143.42, + "probability": 0.7421 + }, + { + "start": 11143.54, + "end": 11148.34, + "probability": 0.9014 + }, + { + "start": 11148.7, + "end": 11149.28, + "probability": 0.9056 + }, + { + "start": 11149.94, + "end": 11153.98, + "probability": 0.9971 + }, + { + "start": 11154.5, + "end": 11156.38, + "probability": 0.4847 + }, + { + "start": 11156.5, + "end": 11162.28, + "probability": 0.8696 + }, + { + "start": 11162.34, + "end": 11164.12, + "probability": 0.9619 + }, + { + "start": 11164.26, + "end": 11165.06, + "probability": 0.7115 + }, + { + "start": 11166.02, + "end": 11174.64, + "probability": 0.9437 + }, + { + "start": 11175.2, + "end": 11177.58, + "probability": 0.9635 + }, + { + "start": 11178.22, + "end": 11180.16, + "probability": 0.8545 + }, + { + "start": 11180.84, + "end": 11183.22, + "probability": 0.6593 + }, + { + "start": 11183.7, + "end": 11185.88, + "probability": 0.9919 + }, + { + "start": 11186.64, + "end": 11186.86, + "probability": 0.0255 + }, + { + "start": 11186.86, + "end": 11188.26, + "probability": 0.8965 + }, + { + "start": 11188.76, + "end": 11191.14, + "probability": 0.5485 + }, + { + "start": 11191.22, + "end": 11193.21, + "probability": 0.7241 + }, + { + "start": 11194.22, + "end": 11197.04, + "probability": 0.9956 + }, + { + "start": 11197.74, + "end": 11199.2, + "probability": 0.8809 + }, + { + "start": 11199.74, + "end": 11202.18, + "probability": 0.7133 + }, + { + "start": 11203.34, + "end": 11205.62, + "probability": 0.8424 + }, + { + "start": 11206.54, + "end": 11209.08, + "probability": 0.9209 + }, + { + "start": 11209.12, + "end": 11209.8, + "probability": 0.9283 + }, + { + "start": 11209.82, + "end": 11212.82, + "probability": 0.9001 + }, + { + "start": 11213.36, + "end": 11214.82, + "probability": 0.9631 + }, + { + "start": 11215.58, + "end": 11216.98, + "probability": 0.9833 + }, + { + "start": 11217.12, + "end": 11217.9, + "probability": 0.8007 + }, + { + "start": 11218.06, + "end": 11218.94, + "probability": 0.9564 + }, + { + "start": 11219.02, + "end": 11220.48, + "probability": 0.9431 + }, + { + "start": 11221.08, + "end": 11224.5, + "probability": 0.9396 + }, + { + "start": 11224.96, + "end": 11230.24, + "probability": 0.9866 + }, + { + "start": 11230.76, + "end": 11230.98, + "probability": 0.4494 + }, + { + "start": 11230.98, + "end": 11232.86, + "probability": 0.6753 + }, + { + "start": 11233.06, + "end": 11233.5, + "probability": 0.6616 + }, + { + "start": 11233.96, + "end": 11235.68, + "probability": 0.8652 + }, + { + "start": 11236.46, + "end": 11239.12, + "probability": 0.8326 + }, + { + "start": 11239.36, + "end": 11240.12, + "probability": 0.7067 + }, + { + "start": 11240.54, + "end": 11241.54, + "probability": 0.9038 + }, + { + "start": 11241.78, + "end": 11243.8, + "probability": 0.9135 + }, + { + "start": 11244.38, + "end": 11245.85, + "probability": 0.9684 + }, + { + "start": 11247.18, + "end": 11247.7, + "probability": 0.9834 + }, + { + "start": 11248.6, + "end": 11250.7, + "probability": 0.9918 + }, + { + "start": 11251.16, + "end": 11254.12, + "probability": 0.9413 + }, + { + "start": 11254.62, + "end": 11255.18, + "probability": 0.8062 + }, + { + "start": 11255.24, + "end": 11257.2, + "probability": 0.9816 + }, + { + "start": 11257.78, + "end": 11259.66, + "probability": 0.9839 + }, + { + "start": 11260.28, + "end": 11261.04, + "probability": 0.9758 + }, + { + "start": 11261.18, + "end": 11263.62, + "probability": 0.7734 + }, + { + "start": 11263.62, + "end": 11264.48, + "probability": 0.9841 + }, + { + "start": 11264.78, + "end": 11269.16, + "probability": 0.9935 + }, + { + "start": 11269.68, + "end": 11270.6, + "probability": 0.9867 + }, + { + "start": 11271.62, + "end": 11274.3, + "probability": 0.983 + }, + { + "start": 11275.04, + "end": 11276.86, + "probability": 0.9572 + }, + { + "start": 11277.16, + "end": 11278.02, + "probability": 0.9808 + }, + { + "start": 11278.08, + "end": 11279.24, + "probability": 0.9575 + }, + { + "start": 11279.38, + "end": 11280.22, + "probability": 0.7055 + }, + { + "start": 11281.14, + "end": 11283.24, + "probability": 0.8568 + }, + { + "start": 11283.7, + "end": 11287.7, + "probability": 0.9873 + }, + { + "start": 11288.48, + "end": 11290.54, + "probability": 0.9808 + }, + { + "start": 11291.06, + "end": 11292.86, + "probability": 0.582 + }, + { + "start": 11293.52, + "end": 11296.88, + "probability": 0.9779 + }, + { + "start": 11297.42, + "end": 11300.68, + "probability": 0.7194 + }, + { + "start": 11301.72, + "end": 11303.16, + "probability": 0.8748 + }, + { + "start": 11303.36, + "end": 11304.7, + "probability": 0.8454 + }, + { + "start": 11304.96, + "end": 11306.5, + "probability": 0.9731 + }, + { + "start": 11306.8, + "end": 11308.12, + "probability": 0.9272 + }, + { + "start": 11308.58, + "end": 11309.7, + "probability": 0.9858 + }, + { + "start": 11309.76, + "end": 11314.68, + "probability": 0.9991 + }, + { + "start": 11315.66, + "end": 11317.76, + "probability": 0.8715 + }, + { + "start": 11317.92, + "end": 11319.76, + "probability": 0.8882 + }, + { + "start": 11320.18, + "end": 11321.24, + "probability": 0.736 + }, + { + "start": 11321.32, + "end": 11322.1, + "probability": 0.7941 + }, + { + "start": 11322.54, + "end": 11323.42, + "probability": 0.8119 + }, + { + "start": 11323.9, + "end": 11328.16, + "probability": 0.7063 + }, + { + "start": 11328.46, + "end": 11329.58, + "probability": 0.5211 + }, + { + "start": 11330.12, + "end": 11332.3, + "probability": 0.9502 + }, + { + "start": 11332.42, + "end": 11335.96, + "probability": 0.6209 + }, + { + "start": 11336.85, + "end": 11341.16, + "probability": 0.9322 + }, + { + "start": 11341.54, + "end": 11345.5, + "probability": 0.491 + }, + { + "start": 11345.82, + "end": 11350.28, + "probability": 0.9925 + }, + { + "start": 11350.36, + "end": 11350.9, + "probability": 0.8022 + }, + { + "start": 11351.08, + "end": 11352.68, + "probability": 0.9814 + }, + { + "start": 11353.82, + "end": 11354.4, + "probability": 0.6485 + }, + { + "start": 11354.58, + "end": 11355.5, + "probability": 0.5536 + }, + { + "start": 11362.06, + "end": 11362.18, + "probability": 0.4607 + }, + { + "start": 11372.12, + "end": 11374.0, + "probability": 0.8463 + }, + { + "start": 11377.3, + "end": 11378.3, + "probability": 0.6069 + }, + { + "start": 11378.64, + "end": 11379.44, + "probability": 0.7298 + }, + { + "start": 11380.28, + "end": 11381.22, + "probability": 0.895 + }, + { + "start": 11382.0, + "end": 11383.66, + "probability": 0.7798 + }, + { + "start": 11385.48, + "end": 11388.98, + "probability": 0.9464 + }, + { + "start": 11389.9, + "end": 11395.12, + "probability": 0.9837 + }, + { + "start": 11397.28, + "end": 11400.78, + "probability": 0.967 + }, + { + "start": 11406.0, + "end": 11409.94, + "probability": 0.91 + }, + { + "start": 11410.78, + "end": 11415.1, + "probability": 0.9876 + }, + { + "start": 11415.18, + "end": 11419.06, + "probability": 0.9979 + }, + { + "start": 11421.95, + "end": 11424.68, + "probability": 0.9933 + }, + { + "start": 11425.2, + "end": 11429.4, + "probability": 0.9888 + }, + { + "start": 11430.44, + "end": 11431.5, + "probability": 0.8979 + }, + { + "start": 11431.9, + "end": 11433.0, + "probability": 0.9934 + }, + { + "start": 11433.42, + "end": 11438.9, + "probability": 0.9976 + }, + { + "start": 11440.22, + "end": 11441.46, + "probability": 0.8611 + }, + { + "start": 11443.16, + "end": 11444.1, + "probability": 0.819 + }, + { + "start": 11445.0, + "end": 11446.24, + "probability": 0.8031 + }, + { + "start": 11446.72, + "end": 11450.2, + "probability": 0.9689 + }, + { + "start": 11450.76, + "end": 11453.6, + "probability": 0.9658 + }, + { + "start": 11454.94, + "end": 11455.52, + "probability": 0.9899 + }, + { + "start": 11456.04, + "end": 11457.14, + "probability": 0.9601 + }, + { + "start": 11460.66, + "end": 11461.62, + "probability": 0.9141 + }, + { + "start": 11462.5, + "end": 11463.56, + "probability": 0.5898 + }, + { + "start": 11464.58, + "end": 11467.34, + "probability": 0.989 + }, + { + "start": 11468.0, + "end": 11471.84, + "probability": 0.9972 + }, + { + "start": 11471.84, + "end": 11476.46, + "probability": 0.9569 + }, + { + "start": 11477.28, + "end": 11481.3, + "probability": 0.9803 + }, + { + "start": 11481.3, + "end": 11485.24, + "probability": 0.9705 + }, + { + "start": 11488.68, + "end": 11492.98, + "probability": 0.9925 + }, + { + "start": 11493.92, + "end": 11499.32, + "probability": 0.9978 + }, + { + "start": 11501.5, + "end": 11506.64, + "probability": 0.9874 + }, + { + "start": 11508.8, + "end": 11509.68, + "probability": 0.7264 + }, + { + "start": 11510.86, + "end": 11511.28, + "probability": 0.7205 + }, + { + "start": 11513.52, + "end": 11514.36, + "probability": 0.9802 + }, + { + "start": 11514.82, + "end": 11516.08, + "probability": 0.9717 + }, + { + "start": 11516.24, + "end": 11519.96, + "probability": 0.9413 + }, + { + "start": 11519.96, + "end": 11523.2, + "probability": 0.9561 + }, + { + "start": 11526.74, + "end": 11530.56, + "probability": 0.8449 + }, + { + "start": 11530.56, + "end": 11533.5, + "probability": 0.9736 + }, + { + "start": 11534.88, + "end": 11538.54, + "probability": 0.9964 + }, + { + "start": 11539.18, + "end": 11544.52, + "probability": 0.9768 + }, + { + "start": 11544.52, + "end": 11549.82, + "probability": 0.9957 + }, + { + "start": 11550.44, + "end": 11552.2, + "probability": 0.8472 + }, + { + "start": 11554.74, + "end": 11559.28, + "probability": 0.9718 + }, + { + "start": 11559.28, + "end": 11563.6, + "probability": 0.8595 + }, + { + "start": 11564.36, + "end": 11567.34, + "probability": 0.9609 + }, + { + "start": 11567.9, + "end": 11568.84, + "probability": 0.8566 + }, + { + "start": 11569.82, + "end": 11573.4, + "probability": 0.9832 + }, + { + "start": 11574.24, + "end": 11575.08, + "probability": 0.848 + }, + { + "start": 11575.44, + "end": 11578.24, + "probability": 0.7436 + }, + { + "start": 11578.3, + "end": 11579.76, + "probability": 0.9832 + }, + { + "start": 11581.54, + "end": 11585.2, + "probability": 0.9442 + }, + { + "start": 11585.66, + "end": 11588.34, + "probability": 0.9928 + }, + { + "start": 11590.0, + "end": 11594.98, + "probability": 0.9854 + }, + { + "start": 11595.98, + "end": 11596.62, + "probability": 0.6736 + }, + { + "start": 11597.8, + "end": 11602.0, + "probability": 0.9752 + }, + { + "start": 11602.56, + "end": 11605.52, + "probability": 0.9747 + }, + { + "start": 11606.32, + "end": 11609.22, + "probability": 0.7159 + }, + { + "start": 11610.56, + "end": 11613.22, + "probability": 0.731 + }, + { + "start": 11613.96, + "end": 11616.78, + "probability": 0.7411 + }, + { + "start": 11616.88, + "end": 11617.18, + "probability": 0.7007 + }, + { + "start": 11618.12, + "end": 11620.06, + "probability": 0.6042 + }, + { + "start": 11620.12, + "end": 11624.7, + "probability": 0.9796 + }, + { + "start": 11625.2, + "end": 11625.82, + "probability": 0.7644 + }, + { + "start": 11654.5, + "end": 11656.72, + "probability": 0.9261 + }, + { + "start": 11657.6, + "end": 11662.96, + "probability": 0.9933 + }, + { + "start": 11662.96, + "end": 11668.12, + "probability": 0.9439 + }, + { + "start": 11668.48, + "end": 11669.1, + "probability": 0.8022 + }, + { + "start": 11669.68, + "end": 11671.96, + "probability": 0.9867 + }, + { + "start": 11672.94, + "end": 11676.84, + "probability": 0.9762 + }, + { + "start": 11677.5, + "end": 11678.8, + "probability": 0.9202 + }, + { + "start": 11679.36, + "end": 11682.5, + "probability": 0.9868 + }, + { + "start": 11683.06, + "end": 11688.98, + "probability": 0.9816 + }, + { + "start": 11690.8, + "end": 11691.66, + "probability": 0.9907 + }, + { + "start": 11691.86, + "end": 11693.46, + "probability": 0.9958 + }, + { + "start": 11693.64, + "end": 11694.28, + "probability": 0.5953 + }, + { + "start": 11694.92, + "end": 11698.4, + "probability": 0.9824 + }, + { + "start": 11698.96, + "end": 11703.32, + "probability": 0.9854 + }, + { + "start": 11704.42, + "end": 11705.64, + "probability": 0.9834 + }, + { + "start": 11706.28, + "end": 11709.42, + "probability": 0.9819 + }, + { + "start": 11710.54, + "end": 11714.6, + "probability": 0.9683 + }, + { + "start": 11714.7, + "end": 11716.96, + "probability": 0.8428 + }, + { + "start": 11717.42, + "end": 11718.48, + "probability": 0.9883 + }, + { + "start": 11718.86, + "end": 11722.26, + "probability": 0.9263 + }, + { + "start": 11722.84, + "end": 11726.12, + "probability": 0.9927 + }, + { + "start": 11726.78, + "end": 11728.7, + "probability": 0.9388 + }, + { + "start": 11729.26, + "end": 11732.66, + "probability": 0.9714 + }, + { + "start": 11734.18, + "end": 11736.24, + "probability": 0.9928 + }, + { + "start": 11736.78, + "end": 11739.16, + "probability": 0.9585 + }, + { + "start": 11739.76, + "end": 11741.04, + "probability": 0.8291 + }, + { + "start": 11741.7, + "end": 11743.18, + "probability": 0.5229 + }, + { + "start": 11744.16, + "end": 11747.9, + "probability": 0.9954 + }, + { + "start": 11748.46, + "end": 11752.8, + "probability": 0.9967 + }, + { + "start": 11753.48, + "end": 11753.88, + "probability": 0.7344 + }, + { + "start": 11754.66, + "end": 11755.56, + "probability": 0.7832 + }, + { + "start": 11755.64, + "end": 11757.94, + "probability": 0.8488 + }, + { + "start": 11758.06, + "end": 11759.4, + "probability": 0.9832 + }, + { + "start": 11760.14, + "end": 11762.92, + "probability": 0.9842 + }, + { + "start": 11762.92, + "end": 11766.12, + "probability": 0.9956 + }, + { + "start": 11767.2, + "end": 11770.5, + "probability": 0.7471 + }, + { + "start": 11770.56, + "end": 11771.82, + "probability": 0.9181 + }, + { + "start": 11772.2, + "end": 11774.6, + "probability": 0.9926 + }, + { + "start": 11775.04, + "end": 11778.04, + "probability": 0.9457 + }, + { + "start": 11778.54, + "end": 11780.68, + "probability": 0.9764 + }, + { + "start": 11781.32, + "end": 11782.92, + "probability": 0.9788 + }, + { + "start": 11783.5, + "end": 11786.96, + "probability": 0.9822 + }, + { + "start": 11786.96, + "end": 11789.86, + "probability": 0.9539 + }, + { + "start": 11790.32, + "end": 11793.56, + "probability": 0.9984 + }, + { + "start": 11794.54, + "end": 11797.9, + "probability": 0.9961 + }, + { + "start": 11798.2, + "end": 11802.06, + "probability": 0.9937 + }, + { + "start": 11803.22, + "end": 11807.58, + "probability": 0.9873 + }, + { + "start": 11807.58, + "end": 11810.68, + "probability": 0.9927 + }, + { + "start": 11811.06, + "end": 11813.14, + "probability": 0.9927 + }, + { + "start": 11813.56, + "end": 11816.52, + "probability": 0.875 + }, + { + "start": 11817.16, + "end": 11819.84, + "probability": 0.9912 + }, + { + "start": 11820.12, + "end": 11823.24, + "probability": 0.9922 + }, + { + "start": 11823.78, + "end": 11824.32, + "probability": 0.8083 + }, + { + "start": 11825.16, + "end": 11827.44, + "probability": 0.969 + }, + { + "start": 11827.86, + "end": 11829.0, + "probability": 0.7973 + }, + { + "start": 11829.44, + "end": 11832.74, + "probability": 0.9948 + }, + { + "start": 11833.3, + "end": 11834.08, + "probability": 0.8612 + }, + { + "start": 11834.42, + "end": 11840.52, + "probability": 0.9664 + }, + { + "start": 11841.06, + "end": 11844.02, + "probability": 0.9642 + }, + { + "start": 11844.54, + "end": 11845.06, + "probability": 0.5483 + }, + { + "start": 11845.38, + "end": 11846.48, + "probability": 0.9765 + }, + { + "start": 11846.56, + "end": 11849.58, + "probability": 0.943 + }, + { + "start": 11850.06, + "end": 11851.28, + "probability": 0.933 + }, + { + "start": 11852.48, + "end": 11853.8, + "probability": 0.9927 + }, + { + "start": 11854.16, + "end": 11856.14, + "probability": 0.781 + }, + { + "start": 11856.62, + "end": 11858.8, + "probability": 0.965 + }, + { + "start": 11859.18, + "end": 11860.3, + "probability": 0.8562 + }, + { + "start": 11860.66, + "end": 11867.04, + "probability": 0.9684 + }, + { + "start": 11867.8, + "end": 11869.26, + "probability": 0.9927 + }, + { + "start": 11869.3, + "end": 11873.24, + "probability": 0.9993 + }, + { + "start": 11873.7, + "end": 11875.98, + "probability": 0.9977 + }, + { + "start": 11876.78, + "end": 11878.62, + "probability": 0.9826 + }, + { + "start": 11879.22, + "end": 11880.0, + "probability": 0.9719 + }, + { + "start": 11880.12, + "end": 11880.74, + "probability": 0.7907 + }, + { + "start": 11886.1, + "end": 11887.58, + "probability": 0.833 + }, + { + "start": 11888.98, + "end": 11892.5, + "probability": 0.7255 + }, + { + "start": 11894.02, + "end": 11895.28, + "probability": 0.9561 + }, + { + "start": 11896.1, + "end": 11896.98, + "probability": 0.8788 + }, + { + "start": 11898.18, + "end": 11900.0, + "probability": 0.9678 + }, + { + "start": 11900.86, + "end": 11901.78, + "probability": 0.9011 + }, + { + "start": 11902.1, + "end": 11904.7, + "probability": 0.9632 + }, + { + "start": 11905.2, + "end": 11907.68, + "probability": 0.9362 + }, + { + "start": 11908.28, + "end": 11909.88, + "probability": 0.7492 + }, + { + "start": 11910.44, + "end": 11910.94, + "probability": 0.3628 + }, + { + "start": 11912.72, + "end": 11915.1, + "probability": 0.7543 + }, + { + "start": 11915.2, + "end": 11917.66, + "probability": 0.779 + }, + { + "start": 11917.72, + "end": 11918.74, + "probability": 0.781 + }, + { + "start": 11922.48, + "end": 11924.08, + "probability": 0.9248 + }, + { + "start": 11924.6, + "end": 11927.18, + "probability": 0.892 + }, + { + "start": 11928.04, + "end": 11931.58, + "probability": 0.8589 + }, + { + "start": 11932.26, + "end": 11935.36, + "probability": 0.8356 + }, + { + "start": 11936.58, + "end": 11941.56, + "probability": 0.9942 + }, + { + "start": 11941.56, + "end": 11946.68, + "probability": 0.6533 + }, + { + "start": 11947.24, + "end": 11949.1, + "probability": 0.8722 + }, + { + "start": 11949.88, + "end": 11951.78, + "probability": 0.9956 + }, + { + "start": 11952.4, + "end": 11956.6, + "probability": 0.8804 + }, + { + "start": 11957.32, + "end": 11961.14, + "probability": 0.9933 + }, + { + "start": 11961.66, + "end": 11965.26, + "probability": 0.9619 + }, + { + "start": 11965.94, + "end": 11967.72, + "probability": 0.4492 + }, + { + "start": 11967.96, + "end": 11972.12, + "probability": 0.9787 + }, + { + "start": 11972.2, + "end": 11977.06, + "probability": 0.9832 + }, + { + "start": 11977.42, + "end": 11978.94, + "probability": 0.4771 + }, + { + "start": 11979.14, + "end": 11982.82, + "probability": 0.9959 + }, + { + "start": 11983.08, + "end": 11986.84, + "probability": 0.9541 + }, + { + "start": 11987.52, + "end": 11988.56, + "probability": 0.8698 + }, + { + "start": 11989.92, + "end": 11991.38, + "probability": 0.6934 + }, + { + "start": 11991.98, + "end": 11999.78, + "probability": 0.9843 + }, + { + "start": 12000.46, + "end": 12004.42, + "probability": 0.9828 + }, + { + "start": 12005.06, + "end": 12007.68, + "probability": 0.9897 + }, + { + "start": 12008.3, + "end": 12009.02, + "probability": 0.6118 + }, + { + "start": 12009.72, + "end": 12012.54, + "probability": 0.7008 + }, + { + "start": 12013.3, + "end": 12013.68, + "probability": 0.1719 + }, + { + "start": 12014.62, + "end": 12021.14, + "probability": 0.0198 + }, + { + "start": 12022.28, + "end": 12024.26, + "probability": 0.9459 + }, + { + "start": 12026.22, + "end": 12028.64, + "probability": 0.0287 + }, + { + "start": 12046.7, + "end": 12047.8, + "probability": 0.0684 + }, + { + "start": 12047.8, + "end": 12047.8, + "probability": 0.1782 + }, + { + "start": 12047.8, + "end": 12047.8, + "probability": 0.0375 + }, + { + "start": 12047.8, + "end": 12049.19, + "probability": 0.1663 + }, + { + "start": 12049.36, + "end": 12053.34, + "probability": 0.8428 + }, + { + "start": 12054.02, + "end": 12056.1, + "probability": 0.9569 + }, + { + "start": 12056.24, + "end": 12057.7, + "probability": 0.6784 + }, + { + "start": 12057.78, + "end": 12059.38, + "probability": 0.3297 + }, + { + "start": 12059.54, + "end": 12062.38, + "probability": 0.2582 + }, + { + "start": 12062.58, + "end": 12063.6, + "probability": 0.9038 + }, + { + "start": 12063.66, + "end": 12065.74, + "probability": 0.6725 + }, + { + "start": 12065.76, + "end": 12066.66, + "probability": 0.6304 + }, + { + "start": 12068.6, + "end": 12070.44, + "probability": 0.6882 + }, + { + "start": 12071.8, + "end": 12077.2, + "probability": 0.9616 + }, + { + "start": 12078.1, + "end": 12080.14, + "probability": 0.8657 + }, + { + "start": 12081.16, + "end": 12084.94, + "probability": 0.9756 + }, + { + "start": 12085.98, + "end": 12090.0, + "probability": 0.994 + }, + { + "start": 12090.58, + "end": 12091.3, + "probability": 0.9846 + }, + { + "start": 12091.88, + "end": 12092.88, + "probability": 0.8431 + }, + { + "start": 12093.58, + "end": 12096.56, + "probability": 0.929 + }, + { + "start": 12097.22, + "end": 12100.56, + "probability": 0.9976 + }, + { + "start": 12102.66, + "end": 12104.64, + "probability": 0.9723 + }, + { + "start": 12105.38, + "end": 12105.38, + "probability": 0.4058 + }, + { + "start": 12105.48, + "end": 12110.18, + "probability": 0.9928 + }, + { + "start": 12112.1, + "end": 12115.36, + "probability": 0.9774 + }, + { + "start": 12115.36, + "end": 12118.8, + "probability": 0.996 + }, + { + "start": 12121.02, + "end": 12121.32, + "probability": 0.0592 + }, + { + "start": 12122.23, + "end": 12126.12, + "probability": 0.0865 + }, + { + "start": 12127.02, + "end": 12129.26, + "probability": 0.6325 + }, + { + "start": 12135.88, + "end": 12139.6, + "probability": 0.998 + }, + { + "start": 12139.6, + "end": 12143.3, + "probability": 0.9974 + }, + { + "start": 12143.96, + "end": 12146.42, + "probability": 0.9989 + }, + { + "start": 12146.42, + "end": 12150.68, + "probability": 0.9824 + }, + { + "start": 12151.44, + "end": 12153.46, + "probability": 0.9943 + }, + { + "start": 12153.62, + "end": 12156.32, + "probability": 0.9943 + }, + { + "start": 12157.04, + "end": 12159.3, + "probability": 0.9255 + }, + { + "start": 12159.3, + "end": 12161.78, + "probability": 0.992 + }, + { + "start": 12162.44, + "end": 12163.35, + "probability": 0.9989 + }, + { + "start": 12164.3, + "end": 12166.7, + "probability": 0.9967 + }, + { + "start": 12166.98, + "end": 12169.06, + "probability": 0.9963 + }, + { + "start": 12169.8, + "end": 12172.58, + "probability": 0.7996 + }, + { + "start": 12172.58, + "end": 12175.66, + "probability": 0.9961 + }, + { + "start": 12175.72, + "end": 12176.12, + "probability": 0.5999 + }, + { + "start": 12176.24, + "end": 12176.58, + "probability": 0.9063 + }, + { + "start": 12176.68, + "end": 12181.08, + "probability": 0.9826 + }, + { + "start": 12182.92, + "end": 12184.52, + "probability": 0.9766 + }, + { + "start": 12185.0, + "end": 12189.28, + "probability": 0.9514 + }, + { + "start": 12189.36, + "end": 12190.86, + "probability": 0.7091 + }, + { + "start": 12191.7, + "end": 12193.52, + "probability": 0.7888 + }, + { + "start": 12193.56, + "end": 12195.22, + "probability": 0.9258 + }, + { + "start": 12195.98, + "end": 12199.02, + "probability": 0.9922 + }, + { + "start": 12199.64, + "end": 12200.58, + "probability": 0.999 + }, + { + "start": 12201.2, + "end": 12205.08, + "probability": 0.9689 + }, + { + "start": 12206.16, + "end": 12209.78, + "probability": 0.9989 + }, + { + "start": 12209.78, + "end": 12213.68, + "probability": 0.9947 + }, + { + "start": 12214.72, + "end": 12215.82, + "probability": 0.7207 + }, + { + "start": 12216.78, + "end": 12219.76, + "probability": 0.501 + }, + { + "start": 12221.1, + "end": 12226.8, + "probability": 0.9819 + }, + { + "start": 12226.8, + "end": 12234.34, + "probability": 0.978 + }, + { + "start": 12236.53, + "end": 12239.68, + "probability": 0.9989 + }, + { + "start": 12240.3, + "end": 12241.06, + "probability": 0.9392 + }, + { + "start": 12242.22, + "end": 12247.12, + "probability": 0.9684 + }, + { + "start": 12247.12, + "end": 12249.9, + "probability": 0.9521 + }, + { + "start": 12250.5, + "end": 12258.18, + "probability": 0.991 + }, + { + "start": 12258.92, + "end": 12261.38, + "probability": 0.9849 + }, + { + "start": 12262.2, + "end": 12267.32, + "probability": 0.9924 + }, + { + "start": 12269.14, + "end": 12272.22, + "probability": 0.991 + }, + { + "start": 12272.96, + "end": 12275.0, + "probability": 0.9966 + }, + { + "start": 12275.6, + "end": 12278.7, + "probability": 0.9861 + }, + { + "start": 12278.7, + "end": 12282.42, + "probability": 0.754 + }, + { + "start": 12283.98, + "end": 12287.68, + "probability": 0.9892 + }, + { + "start": 12288.96, + "end": 12289.08, + "probability": 0.7301 + }, + { + "start": 12289.52, + "end": 12290.98, + "probability": 0.7324 + }, + { + "start": 12291.54, + "end": 12294.2, + "probability": 0.8096 + }, + { + "start": 12295.98, + "end": 12301.66, + "probability": 0.994 + }, + { + "start": 12301.84, + "end": 12303.42, + "probability": 0.825 + }, + { + "start": 12304.0, + "end": 12309.46, + "probability": 0.9014 + }, + { + "start": 12309.88, + "end": 12311.44, + "probability": 0.897 + }, + { + "start": 12312.7, + "end": 12313.8, + "probability": 0.6768 + }, + { + "start": 12313.94, + "end": 12318.28, + "probability": 0.7416 + }, + { + "start": 12318.48, + "end": 12318.92, + "probability": 0.5435 + }, + { + "start": 12319.64, + "end": 12320.24, + "probability": 0.4212 + }, + { + "start": 12321.86, + "end": 12322.94, + "probability": 0.8661 + }, + { + "start": 12323.5, + "end": 12324.08, + "probability": 0.8527 + }, + { + "start": 12324.68, + "end": 12325.64, + "probability": 0.7363 + }, + { + "start": 12325.86, + "end": 12326.36, + "probability": 0.8569 + }, + { + "start": 12326.62, + "end": 12327.5, + "probability": 0.9167 + }, + { + "start": 12327.76, + "end": 12328.3, + "probability": 0.911 + }, + { + "start": 12328.48, + "end": 12329.48, + "probability": 0.9633 + }, + { + "start": 12330.08, + "end": 12330.52, + "probability": 0.4803 + }, + { + "start": 12330.9, + "end": 12331.8, + "probability": 0.8868 + }, + { + "start": 12353.7, + "end": 12355.64, + "probability": 0.7795 + }, + { + "start": 12355.64, + "end": 12356.62, + "probability": 0.8014 + }, + { + "start": 12357.62, + "end": 12358.44, + "probability": 0.7416 + }, + { + "start": 12360.36, + "end": 12363.56, + "probability": 0.9377 + }, + { + "start": 12363.66, + "end": 12365.28, + "probability": 0.9858 + }, + { + "start": 12366.74, + "end": 12369.66, + "probability": 0.9255 + }, + { + "start": 12369.88, + "end": 12373.34, + "probability": 0.9771 + }, + { + "start": 12373.5, + "end": 12373.82, + "probability": 0.7515 + }, + { + "start": 12374.68, + "end": 12379.64, + "probability": 0.9385 + }, + { + "start": 12380.18, + "end": 12383.7, + "probability": 0.9785 + }, + { + "start": 12384.62, + "end": 12390.08, + "probability": 0.9961 + }, + { + "start": 12390.72, + "end": 12392.71, + "probability": 0.9104 + }, + { + "start": 12393.4, + "end": 12398.16, + "probability": 0.9884 + }, + { + "start": 12399.46, + "end": 12402.3, + "probability": 0.9762 + }, + { + "start": 12403.2, + "end": 12409.02, + "probability": 0.8626 + }, + { + "start": 12410.36, + "end": 12412.96, + "probability": 0.9307 + }, + { + "start": 12413.02, + "end": 12416.02, + "probability": 0.8856 + }, + { + "start": 12416.74, + "end": 12417.34, + "probability": 0.9414 + }, + { + "start": 12419.16, + "end": 12424.12, + "probability": 0.9903 + }, + { + "start": 12425.18, + "end": 12426.1, + "probability": 0.8838 + }, + { + "start": 12426.92, + "end": 12429.0, + "probability": 0.8796 + }, + { + "start": 12429.82, + "end": 12430.64, + "probability": 0.7105 + }, + { + "start": 12430.66, + "end": 12431.5, + "probability": 0.8003 + }, + { + "start": 12431.58, + "end": 12436.58, + "probability": 0.9553 + }, + { + "start": 12437.2, + "end": 12441.3, + "probability": 0.844 + }, + { + "start": 12441.36, + "end": 12442.5, + "probability": 0.8556 + }, + { + "start": 12443.96, + "end": 12448.14, + "probability": 0.7884 + }, + { + "start": 12448.28, + "end": 12449.22, + "probability": 0.9983 + }, + { + "start": 12449.88, + "end": 12453.5, + "probability": 0.9006 + }, + { + "start": 12454.38, + "end": 12455.22, + "probability": 0.7269 + }, + { + "start": 12455.54, + "end": 12459.38, + "probability": 0.8556 + }, + { + "start": 12459.44, + "end": 12459.96, + "probability": 0.2859 + }, + { + "start": 12460.0, + "end": 12461.54, + "probability": 0.6688 + }, + { + "start": 12463.56, + "end": 12465.66, + "probability": 0.9946 + }, + { + "start": 12467.02, + "end": 12468.74, + "probability": 0.9272 + }, + { + "start": 12470.0, + "end": 12470.84, + "probability": 0.5772 + }, + { + "start": 12472.02, + "end": 12475.76, + "probability": 0.9723 + }, + { + "start": 12475.86, + "end": 12479.86, + "probability": 0.6356 + }, + { + "start": 12480.42, + "end": 12482.34, + "probability": 0.7635 + }, + { + "start": 12483.12, + "end": 12483.88, + "probability": 0.9703 + }, + { + "start": 12484.66, + "end": 12485.16, + "probability": 0.9873 + }, + { + "start": 12486.3, + "end": 12487.5, + "probability": 0.9959 + }, + { + "start": 12488.2, + "end": 12490.8, + "probability": 0.7515 + }, + { + "start": 12491.5, + "end": 12494.68, + "probability": 0.9453 + }, + { + "start": 12494.98, + "end": 12495.7, + "probability": 0.6003 + }, + { + "start": 12496.76, + "end": 12497.6, + "probability": 0.9774 + }, + { + "start": 12497.66, + "end": 12499.46, + "probability": 0.9769 + }, + { + "start": 12499.8, + "end": 12500.74, + "probability": 0.9523 + }, + { + "start": 12501.2, + "end": 12502.6, + "probability": 0.9625 + }, + { + "start": 12503.51, + "end": 12507.04, + "probability": 0.9486 + }, + { + "start": 12507.22, + "end": 12507.96, + "probability": 0.6864 + }, + { + "start": 12509.62, + "end": 12510.86, + "probability": 0.7494 + }, + { + "start": 12511.58, + "end": 12512.74, + "probability": 0.9697 + }, + { + "start": 12513.86, + "end": 12515.02, + "probability": 0.9753 + }, + { + "start": 12516.04, + "end": 12517.42, + "probability": 0.6543 + }, + { + "start": 12517.56, + "end": 12519.62, + "probability": 0.8005 + }, + { + "start": 12520.32, + "end": 12521.74, + "probability": 0.661 + }, + { + "start": 12522.04, + "end": 12523.34, + "probability": 0.9186 + }, + { + "start": 12523.7, + "end": 12525.42, + "probability": 0.8382 + }, + { + "start": 12526.1, + "end": 12526.98, + "probability": 0.9937 + }, + { + "start": 12527.64, + "end": 12528.18, + "probability": 0.757 + }, + { + "start": 12528.8, + "end": 12529.44, + "probability": 0.8487 + }, + { + "start": 12530.36, + "end": 12531.88, + "probability": 0.8856 + }, + { + "start": 12532.0, + "end": 12534.8, + "probability": 0.9856 + }, + { + "start": 12536.12, + "end": 12538.5, + "probability": 0.992 + }, + { + "start": 12539.18, + "end": 12540.7, + "probability": 0.9586 + }, + { + "start": 12541.78, + "end": 12542.55, + "probability": 0.8164 + }, + { + "start": 12543.04, + "end": 12546.72, + "probability": 0.9448 + }, + { + "start": 12547.54, + "end": 12551.06, + "probability": 0.9519 + }, + { + "start": 12551.54, + "end": 12552.16, + "probability": 0.8322 + }, + { + "start": 12552.56, + "end": 12553.02, + "probability": 0.7688 + }, + { + "start": 12555.8, + "end": 12557.32, + "probability": 0.6755 + }, + { + "start": 12558.7, + "end": 12560.3, + "probability": 0.7357 + }, + { + "start": 12561.1, + "end": 12561.48, + "probability": 0.6094 + }, + { + "start": 12564.7, + "end": 12566.42, + "probability": 0.5287 + }, + { + "start": 12567.38, + "end": 12568.12, + "probability": 0.7701 + }, + { + "start": 12569.34, + "end": 12570.72, + "probability": 0.9193 + }, + { + "start": 12571.86, + "end": 12575.56, + "probability": 0.8518 + }, + { + "start": 12576.42, + "end": 12577.42, + "probability": 0.5556 + }, + { + "start": 12577.48, + "end": 12578.12, + "probability": 0.5398 + }, + { + "start": 12578.26, + "end": 12579.04, + "probability": 0.8446 + }, + { + "start": 12579.12, + "end": 12579.54, + "probability": 0.7828 + }, + { + "start": 12580.2, + "end": 12581.4, + "probability": 0.9622 + }, + { + "start": 12582.48, + "end": 12584.32, + "probability": 0.6649 + }, + { + "start": 12586.08, + "end": 12587.01, + "probability": 0.9337 + }, + { + "start": 12587.42, + "end": 12587.82, + "probability": 0.4886 + }, + { + "start": 12588.04, + "end": 12588.72, + "probability": 0.5203 + }, + { + "start": 12589.12, + "end": 12589.88, + "probability": 0.8412 + }, + { + "start": 12590.62, + "end": 12592.14, + "probability": 0.7938 + }, + { + "start": 12592.74, + "end": 12594.02, + "probability": 0.9681 + }, + { + "start": 12594.62, + "end": 12595.38, + "probability": 0.9707 + }, + { + "start": 12596.68, + "end": 12600.78, + "probability": 0.9469 + }, + { + "start": 12601.84, + "end": 12602.72, + "probability": 0.3594 + }, + { + "start": 12602.92, + "end": 12603.62, + "probability": 0.5661 + }, + { + "start": 12603.8, + "end": 12604.18, + "probability": 0.3132 + }, + { + "start": 12604.18, + "end": 12604.18, + "probability": 0.581 + }, + { + "start": 12604.18, + "end": 12604.46, + "probability": 0.7119 + }, + { + "start": 12604.74, + "end": 12606.22, + "probability": 0.8786 + }, + { + "start": 12606.24, + "end": 12608.32, + "probability": 0.7372 + }, + { + "start": 12609.9, + "end": 12611.16, + "probability": 0.8329 + }, + { + "start": 12635.54, + "end": 12635.64, + "probability": 0.0182 + }, + { + "start": 12635.64, + "end": 12635.64, + "probability": 0.2359 + }, + { + "start": 12635.64, + "end": 12638.02, + "probability": 0.7504 + }, + { + "start": 12638.85, + "end": 12641.54, + "probability": 0.9873 + }, + { + "start": 12641.54, + "end": 12649.34, + "probability": 0.96 + }, + { + "start": 12649.56, + "end": 12651.76, + "probability": 0.9926 + }, + { + "start": 12652.8, + "end": 12654.44, + "probability": 0.5845 + }, + { + "start": 12654.52, + "end": 12657.92, + "probability": 0.9917 + }, + { + "start": 12657.98, + "end": 12660.68, + "probability": 0.9906 + }, + { + "start": 12661.7, + "end": 12663.1, + "probability": 0.9621 + }, + { + "start": 12663.88, + "end": 12664.22, + "probability": 0.7444 + }, + { + "start": 12664.48, + "end": 12665.34, + "probability": 0.9988 + }, + { + "start": 12667.22, + "end": 12668.44, + "probability": 0.7609 + }, + { + "start": 12668.54, + "end": 12669.55, + "probability": 0.8843 + }, + { + "start": 12670.82, + "end": 12672.34, + "probability": 0.9971 + }, + { + "start": 12672.44, + "end": 12674.58, + "probability": 0.9234 + }, + { + "start": 12675.12, + "end": 12677.36, + "probability": 0.9572 + }, + { + "start": 12677.46, + "end": 12679.3, + "probability": 0.8346 + }, + { + "start": 12680.26, + "end": 12683.92, + "probability": 0.9744 + }, + { + "start": 12684.02, + "end": 12684.94, + "probability": 0.5803 + }, + { + "start": 12685.86, + "end": 12690.38, + "probability": 0.9886 + }, + { + "start": 12690.48, + "end": 12691.42, + "probability": 0.9927 + }, + { + "start": 12692.34, + "end": 12694.52, + "probability": 0.9325 + }, + { + "start": 12695.46, + "end": 12697.58, + "probability": 0.989 + }, + { + "start": 12698.84, + "end": 12702.14, + "probability": 0.3506 + }, + { + "start": 12703.56, + "end": 12707.92, + "probability": 0.9318 + }, + { + "start": 12708.0, + "end": 12709.18, + "probability": 0.9601 + }, + { + "start": 12709.38, + "end": 12709.9, + "probability": 0.6885 + }, + { + "start": 12710.16, + "end": 12710.94, + "probability": 0.7899 + }, + { + "start": 12711.76, + "end": 12713.04, + "probability": 0.6832 + }, + { + "start": 12713.1, + "end": 12715.3, + "probability": 0.7149 + }, + { + "start": 12715.34, + "end": 12715.92, + "probability": 0.7355 + }, + { + "start": 12716.42, + "end": 12717.96, + "probability": 0.9876 + }, + { + "start": 12718.78, + "end": 12720.96, + "probability": 0.8758 + }, + { + "start": 12721.72, + "end": 12725.24, + "probability": 0.65 + }, + { + "start": 12725.9, + "end": 12729.18, + "probability": 0.8792 + }, + { + "start": 12729.3, + "end": 12731.42, + "probability": 0.9858 + }, + { + "start": 12731.42, + "end": 12736.24, + "probability": 0.9683 + }, + { + "start": 12736.66, + "end": 12738.02, + "probability": 0.8007 + }, + { + "start": 12738.66, + "end": 12741.96, + "probability": 0.8867 + }, + { + "start": 12743.16, + "end": 12747.2, + "probability": 0.9711 + }, + { + "start": 12747.68, + "end": 12749.34, + "probability": 0.6352 + }, + { + "start": 12749.64, + "end": 12750.54, + "probability": 0.8055 + }, + { + "start": 12751.76, + "end": 12757.14, + "probability": 0.8823 + }, + { + "start": 12757.72, + "end": 12761.74, + "probability": 0.981 + }, + { + "start": 12762.8, + "end": 12767.54, + "probability": 0.9125 + }, + { + "start": 12768.32, + "end": 12770.26, + "probability": 0.9802 + }, + { + "start": 12770.82, + "end": 12776.7, + "probability": 0.9888 + }, + { + "start": 12777.32, + "end": 12780.58, + "probability": 0.9913 + }, + { + "start": 12780.78, + "end": 12781.76, + "probability": 0.8267 + }, + { + "start": 12782.34, + "end": 12783.74, + "probability": 0.9738 + }, + { + "start": 12784.22, + "end": 12788.6, + "probability": 0.9512 + }, + { + "start": 12789.74, + "end": 12791.14, + "probability": 0.7696 + }, + { + "start": 12791.44, + "end": 12793.36, + "probability": 0.9945 + }, + { + "start": 12793.96, + "end": 12794.88, + "probability": 0.9548 + }, + { + "start": 12795.62, + "end": 12796.0, + "probability": 0.4668 + }, + { + "start": 12797.56, + "end": 12799.0, + "probability": 0.9941 + }, + { + "start": 12799.06, + "end": 12800.52, + "probability": 0.985 + }, + { + "start": 12801.02, + "end": 12803.4, + "probability": 0.9695 + }, + { + "start": 12803.78, + "end": 12807.6, + "probability": 0.9042 + }, + { + "start": 12808.28, + "end": 12810.12, + "probability": 0.953 + }, + { + "start": 12811.0, + "end": 12813.76, + "probability": 0.7739 + }, + { + "start": 12814.58, + "end": 12815.86, + "probability": 0.8842 + }, + { + "start": 12816.88, + "end": 12818.94, + "probability": 0.9204 + }, + { + "start": 12819.12, + "end": 12821.2, + "probability": 0.9933 + }, + { + "start": 12821.76, + "end": 12822.6, + "probability": 0.8997 + }, + { + "start": 12822.66, + "end": 12823.22, + "probability": 0.8229 + }, + { + "start": 12823.34, + "end": 12823.98, + "probability": 0.9632 + }, + { + "start": 12824.02, + "end": 12824.84, + "probability": 0.8308 + }, + { + "start": 12825.3, + "end": 12827.46, + "probability": 0.9697 + }, + { + "start": 12828.18, + "end": 12830.62, + "probability": 0.9978 + }, + { + "start": 12830.62, + "end": 12834.74, + "probability": 0.9531 + }, + { + "start": 12835.32, + "end": 12838.1, + "probability": 0.9952 + }, + { + "start": 12838.68, + "end": 12840.5, + "probability": 0.9952 + }, + { + "start": 12841.54, + "end": 12843.38, + "probability": 0.9767 + }, + { + "start": 12843.7, + "end": 12845.74, + "probability": 0.8818 + }, + { + "start": 12846.14, + "end": 12847.64, + "probability": 0.9822 + }, + { + "start": 12848.04, + "end": 12850.66, + "probability": 0.9146 + }, + { + "start": 12851.26, + "end": 12853.52, + "probability": 0.7284 + }, + { + "start": 12853.72, + "end": 12858.44, + "probability": 0.9838 + }, + { + "start": 12858.52, + "end": 12859.18, + "probability": 0.9586 + }, + { + "start": 12860.08, + "end": 12860.4, + "probability": 0.3266 + }, + { + "start": 12860.4, + "end": 12860.56, + "probability": 0.6173 + }, + { + "start": 12860.92, + "end": 12862.88, + "probability": 0.9019 + }, + { + "start": 12864.12, + "end": 12865.86, + "probability": 0.9408 + }, + { + "start": 12866.56, + "end": 12867.08, + "probability": 0.3051 + }, + { + "start": 12867.4, + "end": 12868.78, + "probability": 0.9514 + }, + { + "start": 12868.9, + "end": 12871.66, + "probability": 0.8639 + }, + { + "start": 12871.8, + "end": 12872.24, + "probability": 0.4317 + }, + { + "start": 12872.24, + "end": 12872.24, + "probability": 0.1517 + }, + { + "start": 12872.24, + "end": 12872.8, + "probability": 0.7757 + }, + { + "start": 12873.4, + "end": 12873.78, + "probability": 0.6537 + }, + { + "start": 12874.26, + "end": 12875.1, + "probability": 0.8585 + }, + { + "start": 12875.28, + "end": 12875.6, + "probability": 0.8 + }, + { + "start": 12875.86, + "end": 12876.72, + "probability": 0.8814 + }, + { + "start": 12877.28, + "end": 12877.72, + "probability": 0.5316 + }, + { + "start": 12877.96, + "end": 12878.92, + "probability": 0.58 + }, + { + "start": 12879.64, + "end": 12881.8, + "probability": 0.5617 + }, + { + "start": 12898.3, + "end": 12899.33, + "probability": 0.7842 + }, + { + "start": 12899.94, + "end": 12901.24, + "probability": 0.7994 + }, + { + "start": 12901.68, + "end": 12902.56, + "probability": 0.8174 + }, + { + "start": 12903.44, + "end": 12905.44, + "probability": 0.9218 + }, + { + "start": 12906.52, + "end": 12907.9, + "probability": 0.7742 + }, + { + "start": 12909.52, + "end": 12915.26, + "probability": 0.9489 + }, + { + "start": 12916.4, + "end": 12919.56, + "probability": 0.9674 + }, + { + "start": 12920.38, + "end": 12923.72, + "probability": 0.9873 + }, + { + "start": 12924.62, + "end": 12929.48, + "probability": 0.9138 + }, + { + "start": 12930.56, + "end": 12933.3, + "probability": 0.715 + }, + { + "start": 12933.94, + "end": 12940.08, + "probability": 0.8615 + }, + { + "start": 12940.54, + "end": 12942.8, + "probability": 0.9741 + }, + { + "start": 12942.92, + "end": 12943.48, + "probability": 0.699 + }, + { + "start": 12944.64, + "end": 12945.96, + "probability": 0.7383 + }, + { + "start": 12946.18, + "end": 12948.12, + "probability": 0.9347 + }, + { + "start": 12948.16, + "end": 12949.33, + "probability": 0.764 + }, + { + "start": 12949.56, + "end": 12951.01, + "probability": 0.8174 + }, + { + "start": 12951.66, + "end": 12952.2, + "probability": 0.8283 + }, + { + "start": 12952.36, + "end": 12954.56, + "probability": 0.9526 + }, + { + "start": 12954.68, + "end": 12955.7, + "probability": 0.8813 + }, + { + "start": 12956.52, + "end": 12957.7, + "probability": 0.9647 + }, + { + "start": 12957.8, + "end": 12962.42, + "probability": 0.9421 + }, + { + "start": 12962.42, + "end": 12968.24, + "probability": 0.9961 + }, + { + "start": 12968.42, + "end": 12971.5, + "probability": 0.8975 + }, + { + "start": 12972.3, + "end": 12973.22, + "probability": 0.8319 + }, + { + "start": 12974.08, + "end": 12976.94, + "probability": 0.9883 + }, + { + "start": 12977.06, + "end": 12979.19, + "probability": 0.9309 + }, + { + "start": 12979.94, + "end": 12981.38, + "probability": 0.9266 + }, + { + "start": 12981.48, + "end": 12983.38, + "probability": 0.9538 + }, + { + "start": 12983.5, + "end": 12984.6, + "probability": 0.9956 + }, + { + "start": 12985.58, + "end": 12987.08, + "probability": 0.9958 + }, + { + "start": 12987.16, + "end": 12989.34, + "probability": 0.9711 + }, + { + "start": 12989.46, + "end": 12991.38, + "probability": 0.9511 + }, + { + "start": 12991.78, + "end": 12993.8, + "probability": 0.9802 + }, + { + "start": 12995.04, + "end": 12996.61, + "probability": 0.9492 + }, + { + "start": 12996.82, + "end": 12999.82, + "probability": 0.9935 + }, + { + "start": 13000.36, + "end": 13003.44, + "probability": 0.9329 + }, + { + "start": 13003.54, + "end": 13007.82, + "probability": 0.9009 + }, + { + "start": 13008.5, + "end": 13013.32, + "probability": 0.9871 + }, + { + "start": 13013.32, + "end": 13017.87, + "probability": 0.9987 + }, + { + "start": 13019.71, + "end": 13023.04, + "probability": 0.9872 + }, + { + "start": 13023.18, + "end": 13024.24, + "probability": 0.8334 + }, + { + "start": 13025.32, + "end": 13026.43, + "probability": 0.9937 + }, + { + "start": 13026.58, + "end": 13029.5, + "probability": 0.987 + }, + { + "start": 13029.96, + "end": 13031.4, + "probability": 0.9963 + }, + { + "start": 13031.4, + "end": 13033.42, + "probability": 0.9917 + }, + { + "start": 13033.96, + "end": 13036.1, + "probability": 0.8515 + }, + { + "start": 13036.1, + "end": 13039.28, + "probability": 0.7415 + }, + { + "start": 13039.52, + "end": 13041.2, + "probability": 0.958 + }, + { + "start": 13041.72, + "end": 13044.95, + "probability": 0.8095 + }, + { + "start": 13045.74, + "end": 13047.58, + "probability": 0.9397 + }, + { + "start": 13047.68, + "end": 13051.34, + "probability": 0.9816 + }, + { + "start": 13051.46, + "end": 13052.4, + "probability": 0.9847 + }, + { + "start": 13052.5, + "end": 13054.0, + "probability": 0.9802 + }, + { + "start": 13054.34, + "end": 13056.0, + "probability": 0.9972 + }, + { + "start": 13056.42, + "end": 13060.06, + "probability": 0.8273 + }, + { + "start": 13060.3, + "end": 13061.24, + "probability": 0.9376 + }, + { + "start": 13061.32, + "end": 13062.24, + "probability": 0.6648 + }, + { + "start": 13062.86, + "end": 13064.96, + "probability": 0.9981 + }, + { + "start": 13065.04, + "end": 13068.82, + "probability": 0.7615 + }, + { + "start": 13068.92, + "end": 13069.56, + "probability": 0.6799 + }, + { + "start": 13069.88, + "end": 13070.32, + "probability": 0.7777 + }, + { + "start": 13070.88, + "end": 13071.52, + "probability": 0.6413 + }, + { + "start": 13071.58, + "end": 13073.1, + "probability": 0.8763 + }, + { + "start": 13073.97, + "end": 13077.4, + "probability": 0.959 + }, + { + "start": 13077.46, + "end": 13079.24, + "probability": 0.9409 + }, + { + "start": 13080.38, + "end": 13083.06, + "probability": 0.993 + }, + { + "start": 13083.12, + "end": 13084.44, + "probability": 0.8171 + }, + { + "start": 13084.56, + "end": 13086.96, + "probability": 0.9956 + }, + { + "start": 13088.24, + "end": 13088.84, + "probability": 0.28 + }, + { + "start": 13088.84, + "end": 13091.26, + "probability": 0.6994 + }, + { + "start": 13091.3, + "end": 13093.56, + "probability": 0.9604 + }, + { + "start": 13094.38, + "end": 13099.12, + "probability": 0.9775 + }, + { + "start": 13099.84, + "end": 13100.72, + "probability": 0.6827 + }, + { + "start": 13101.38, + "end": 13102.4, + "probability": 0.822 + }, + { + "start": 13103.02, + "end": 13106.28, + "probability": 0.9641 + }, + { + "start": 13106.38, + "end": 13106.6, + "probability": 0.8584 + }, + { + "start": 13106.68, + "end": 13110.52, + "probability": 0.936 + }, + { + "start": 13111.47, + "end": 13115.1, + "probability": 0.9993 + }, + { + "start": 13115.34, + "end": 13116.9, + "probability": 0.9974 + }, + { + "start": 13117.34, + "end": 13121.16, + "probability": 0.8888 + }, + { + "start": 13121.58, + "end": 13123.2, + "probability": 0.9941 + }, + { + "start": 13123.86, + "end": 13124.46, + "probability": 0.8966 + }, + { + "start": 13124.5, + "end": 13125.78, + "probability": 0.7803 + }, + { + "start": 13125.94, + "end": 13126.8, + "probability": 0.5463 + }, + { + "start": 13127.12, + "end": 13128.34, + "probability": 0.8038 + }, + { + "start": 13128.78, + "end": 13131.72, + "probability": 0.8335 + }, + { + "start": 13132.14, + "end": 13135.94, + "probability": 0.8326 + }, + { + "start": 13136.38, + "end": 13137.88, + "probability": 0.9106 + }, + { + "start": 13138.02, + "end": 13138.4, + "probability": 0.7287 + }, + { + "start": 13138.42, + "end": 13138.64, + "probability": 0.6578 + }, + { + "start": 13138.7, + "end": 13140.98, + "probability": 0.8071 + }, + { + "start": 13141.5, + "end": 13142.5, + "probability": 0.9215 + }, + { + "start": 13143.48, + "end": 13146.24, + "probability": 0.621 + }, + { + "start": 13146.28, + "end": 13147.26, + "probability": 0.9463 + }, + { + "start": 13147.76, + "end": 13151.86, + "probability": 0.9346 + }, + { + "start": 13151.96, + "end": 13154.04, + "probability": 0.9893 + }, + { + "start": 13154.12, + "end": 13155.18, + "probability": 0.7863 + }, + { + "start": 13155.94, + "end": 13156.62, + "probability": 0.9282 + }, + { + "start": 13156.78, + "end": 13159.6, + "probability": 0.7296 + }, + { + "start": 13159.66, + "end": 13162.22, + "probability": 0.7438 + }, + { + "start": 13162.64, + "end": 13164.12, + "probability": 0.6865 + }, + { + "start": 13164.34, + "end": 13164.62, + "probability": 0.6866 + }, + { + "start": 13164.82, + "end": 13165.82, + "probability": 0.8764 + }, + { + "start": 13165.92, + "end": 13168.28, + "probability": 0.7636 + }, + { + "start": 13168.66, + "end": 13168.66, + "probability": 0.4855 + }, + { + "start": 13168.82, + "end": 13169.53, + "probability": 0.6541 + }, + { + "start": 13170.06, + "end": 13171.56, + "probability": 0.9023 + }, + { + "start": 13171.96, + "end": 13174.34, + "probability": 0.9772 + }, + { + "start": 13174.38, + "end": 13175.3, + "probability": 0.8748 + }, + { + "start": 13175.34, + "end": 13175.86, + "probability": 0.4353 + }, + { + "start": 13175.94, + "end": 13176.34, + "probability": 0.4694 + }, + { + "start": 13176.8, + "end": 13179.8, + "probability": 0.9179 + }, + { + "start": 13180.42, + "end": 13182.48, + "probability": 0.614 + }, + { + "start": 13183.0, + "end": 13184.46, + "probability": 0.8434 + }, + { + "start": 13184.86, + "end": 13186.22, + "probability": 0.9932 + }, + { + "start": 13186.38, + "end": 13187.56, + "probability": 0.965 + }, + { + "start": 13188.14, + "end": 13189.82, + "probability": 0.9435 + }, + { + "start": 13190.02, + "end": 13190.26, + "probability": 0.8433 + }, + { + "start": 13190.36, + "end": 13190.9, + "probability": 0.53 + }, + { + "start": 13196.54, + "end": 13198.38, + "probability": 0.7282 + }, + { + "start": 13198.64, + "end": 13199.44, + "probability": 0.6478 + }, + { + "start": 13200.06, + "end": 13200.48, + "probability": 0.3511 + }, + { + "start": 13200.7, + "end": 13201.72, + "probability": 0.8097 + }, + { + "start": 13201.82, + "end": 13202.38, + "probability": 0.5001 + }, + { + "start": 13202.48, + "end": 13203.28, + "probability": 0.8069 + }, + { + "start": 13203.56, + "end": 13203.96, + "probability": 0.4924 + }, + { + "start": 13204.48, + "end": 13206.51, + "probability": 0.7859 + }, + { + "start": 13216.98, + "end": 13219.26, + "probability": 0.3851 + }, + { + "start": 13220.02, + "end": 13222.18, + "probability": 0.6463 + }, + { + "start": 13222.7, + "end": 13224.18, + "probability": 0.6644 + }, + { + "start": 13224.7, + "end": 13225.56, + "probability": 0.938 + }, + { + "start": 13225.64, + "end": 13226.24, + "probability": 0.8143 + }, + { + "start": 13226.32, + "end": 13227.5, + "probability": 0.9667 + }, + { + "start": 13227.98, + "end": 13228.94, + "probability": 0.6716 + }, + { + "start": 13229.46, + "end": 13230.22, + "probability": 0.6589 + }, + { + "start": 13230.38, + "end": 13231.14, + "probability": 0.3269 + }, + { + "start": 13231.2, + "end": 13231.68, + "probability": 0.0864 + }, + { + "start": 13231.72, + "end": 13231.8, + "probability": 0.3589 + }, + { + "start": 13232.14, + "end": 13232.8, + "probability": 0.1887 + }, + { + "start": 13233.6, + "end": 13233.72, + "probability": 0.0736 + }, + { + "start": 13236.46, + "end": 13237.14, + "probability": 0.0353 + }, + { + "start": 13237.58, + "end": 13239.17, + "probability": 0.1902 + }, + { + "start": 13240.84, + "end": 13240.84, + "probability": 0.1558 + }, + { + "start": 13240.88, + "end": 13241.42, + "probability": 0.3051 + }, + { + "start": 13241.42, + "end": 13241.42, + "probability": 0.148 + }, + { + "start": 13241.42, + "end": 13242.68, + "probability": 0.2388 + }, + { + "start": 13242.78, + "end": 13243.94, + "probability": 0.0928 + }, + { + "start": 13243.94, + "end": 13244.64, + "probability": 0.213 + }, + { + "start": 13245.4, + "end": 13247.36, + "probability": 0.2559 + }, + { + "start": 13248.46, + "end": 13248.84, + "probability": 0.5605 + }, + { + "start": 13265.18, + "end": 13267.02, + "probability": 0.0393 + }, + { + "start": 13269.63, + "end": 13271.14, + "probability": 0.0455 + }, + { + "start": 13272.18, + "end": 13274.22, + "probability": 0.0475 + }, + { + "start": 13274.44, + "end": 13274.7, + "probability": 0.1344 + }, + { + "start": 13275.64, + "end": 13276.91, + "probability": 0.0825 + }, + { + "start": 13277.68, + "end": 13279.06, + "probability": 0.0254 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.0, + "end": 13352.0, + "probability": 0.0 + }, + { + "start": 13352.46, + "end": 13353.28, + "probability": 0.8927 + }, + { + "start": 13353.82, + "end": 13357.76, + "probability": 0.8499 + }, + { + "start": 13357.76, + "end": 13361.76, + "probability": 0.9757 + }, + { + "start": 13362.66, + "end": 13365.18, + "probability": 0.9907 + }, + { + "start": 13365.18, + "end": 13368.04, + "probability": 0.9961 + }, + { + "start": 13368.5, + "end": 13370.12, + "probability": 0.8445 + }, + { + "start": 13370.58, + "end": 13372.18, + "probability": 0.9255 + }, + { + "start": 13373.34, + "end": 13375.94, + "probability": 0.9848 + }, + { + "start": 13376.06, + "end": 13380.2, + "probability": 0.9932 + }, + { + "start": 13380.74, + "end": 13385.18, + "probability": 0.9891 + }, + { + "start": 13386.04, + "end": 13389.42, + "probability": 0.8442 + }, + { + "start": 13390.02, + "end": 13396.94, + "probability": 0.9774 + }, + { + "start": 13398.26, + "end": 13400.48, + "probability": 0.9209 + }, + { + "start": 13400.92, + "end": 13404.36, + "probability": 0.9886 + }, + { + "start": 13405.02, + "end": 13408.54, + "probability": 0.8176 + }, + { + "start": 13409.08, + "end": 13410.86, + "probability": 0.9941 + }, + { + "start": 13411.64, + "end": 13415.86, + "probability": 0.9847 + }, + { + "start": 13416.9, + "end": 13422.3, + "probability": 0.9504 + }, + { + "start": 13423.66, + "end": 13425.9, + "probability": 0.7427 + }, + { + "start": 13427.48, + "end": 13429.84, + "probability": 0.9959 + }, + { + "start": 13430.44, + "end": 13434.8, + "probability": 0.986 + }, + { + "start": 13437.26, + "end": 13440.46, + "probability": 0.7497 + }, + { + "start": 13440.46, + "end": 13443.3, + "probability": 0.9967 + }, + { + "start": 13443.8, + "end": 13448.58, + "probability": 0.9892 + }, + { + "start": 13449.36, + "end": 13452.46, + "probability": 0.9554 + }, + { + "start": 13453.18, + "end": 13454.38, + "probability": 0.8955 + }, + { + "start": 13454.44, + "end": 13455.04, + "probability": 0.7398 + }, + { + "start": 13455.38, + "end": 13457.3, + "probability": 0.6579 + }, + { + "start": 13457.46, + "end": 13463.32, + "probability": 0.9904 + }, + { + "start": 13464.72, + "end": 13469.27, + "probability": 0.8988 + }, + { + "start": 13470.06, + "end": 13470.13, + "probability": 0.4996 + }, + { + "start": 13470.66, + "end": 13474.56, + "probability": 0.9927 + }, + { + "start": 13475.28, + "end": 13476.18, + "probability": 0.8989 + }, + { + "start": 13476.68, + "end": 13478.82, + "probability": 0.9798 + }, + { + "start": 13479.3, + "end": 13483.78, + "probability": 0.9775 + }, + { + "start": 13484.26, + "end": 13484.58, + "probability": 0.7735 + }, + { + "start": 13485.92, + "end": 13491.42, + "probability": 0.9886 + }, + { + "start": 13492.0, + "end": 13493.34, + "probability": 0.7037 + }, + { + "start": 13493.86, + "end": 13495.24, + "probability": 0.9411 + }, + { + "start": 13495.98, + "end": 13502.56, + "probability": 0.9425 + }, + { + "start": 13503.38, + "end": 13506.56, + "probability": 0.9951 + }, + { + "start": 13507.2, + "end": 13508.86, + "probability": 0.9743 + }, + { + "start": 13509.3, + "end": 13513.36, + "probability": 0.9281 + }, + { + "start": 13513.8, + "end": 13517.08, + "probability": 0.9824 + }, + { + "start": 13517.48, + "end": 13521.44, + "probability": 0.9762 + }, + { + "start": 13522.76, + "end": 13523.26, + "probability": 0.376 + }, + { + "start": 13523.7, + "end": 13524.3, + "probability": 0.8789 + }, + { + "start": 13527.24, + "end": 13528.4, + "probability": 0.761 + }, + { + "start": 13528.74, + "end": 13532.6, + "probability": 0.8936 + }, + { + "start": 13532.94, + "end": 13536.1, + "probability": 0.9966 + }, + { + "start": 13536.1, + "end": 13539.3, + "probability": 0.9241 + }, + { + "start": 13539.44, + "end": 13540.88, + "probability": 0.9985 + }, + { + "start": 13542.1, + "end": 13543.84, + "probability": 0.8789 + }, + { + "start": 13544.76, + "end": 13545.62, + "probability": 0.2841 + }, + { + "start": 13546.48, + "end": 13549.62, + "probability": 0.9924 + }, + { + "start": 13550.52, + "end": 13553.98, + "probability": 0.9261 + }, + { + "start": 13555.22, + "end": 13558.76, + "probability": 0.8233 + }, + { + "start": 13558.92, + "end": 13561.24, + "probability": 0.9471 + }, + { + "start": 13561.74, + "end": 13565.78, + "probability": 0.9812 + }, + { + "start": 13565.78, + "end": 13568.36, + "probability": 0.9973 + }, + { + "start": 13569.72, + "end": 13574.98, + "probability": 0.9844 + }, + { + "start": 13575.46, + "end": 13580.4, + "probability": 0.9878 + }, + { + "start": 13581.14, + "end": 13586.08, + "probability": 0.8307 + }, + { + "start": 13586.44, + "end": 13587.1, + "probability": 0.5374 + }, + { + "start": 13587.24, + "end": 13588.53, + "probability": 0.7074 + }, + { + "start": 13589.16, + "end": 13592.64, + "probability": 0.9347 + }, + { + "start": 13593.2, + "end": 13595.88, + "probability": 0.8278 + }, + { + "start": 13596.42, + "end": 13598.8, + "probability": 0.9186 + }, + { + "start": 13598.94, + "end": 13599.2, + "probability": 0.6277 + }, + { + "start": 13599.82, + "end": 13601.04, + "probability": 0.626 + }, + { + "start": 13601.78, + "end": 13605.32, + "probability": 0.9757 + }, + { + "start": 13605.88, + "end": 13606.54, + "probability": 0.7347 + }, + { + "start": 13607.4, + "end": 13608.11, + "probability": 0.9556 + }, + { + "start": 13609.5, + "end": 13610.62, + "probability": 0.9209 + }, + { + "start": 13611.34, + "end": 13611.94, + "probability": 0.9805 + }, + { + "start": 13612.7, + "end": 13619.46, + "probability": 0.9687 + }, + { + "start": 13620.82, + "end": 13624.74, + "probability": 0.9848 + }, + { + "start": 13625.42, + "end": 13626.64, + "probability": 0.9956 + }, + { + "start": 13627.6, + "end": 13632.72, + "probability": 0.9955 + }, + { + "start": 13632.72, + "end": 13639.0, + "probability": 0.9937 + }, + { + "start": 13639.68, + "end": 13642.02, + "probability": 0.9998 + }, + { + "start": 13642.9, + "end": 13643.54, + "probability": 0.9639 + }, + { + "start": 13643.58, + "end": 13646.38, + "probability": 0.957 + }, + { + "start": 13646.92, + "end": 13648.92, + "probability": 0.9492 + }, + { + "start": 13649.52, + "end": 13655.12, + "probability": 0.9814 + }, + { + "start": 13656.08, + "end": 13656.78, + "probability": 0.8738 + }, + { + "start": 13657.32, + "end": 13659.28, + "probability": 0.3603 + }, + { + "start": 13659.4, + "end": 13660.4, + "probability": 0.4227 + }, + { + "start": 13660.44, + "end": 13661.8, + "probability": 0.9165 + }, + { + "start": 13662.16, + "end": 13662.98, + "probability": 0.9774 + }, + { + "start": 13667.02, + "end": 13668.58, + "probability": 0.7702 + }, + { + "start": 13668.66, + "end": 13674.16, + "probability": 0.9819 + }, + { + "start": 13674.28, + "end": 13676.68, + "probability": 0.9841 + }, + { + "start": 13676.74, + "end": 13677.55, + "probability": 0.8748 + }, + { + "start": 13678.76, + "end": 13681.22, + "probability": 0.7498 + }, + { + "start": 13682.5, + "end": 13687.9, + "probability": 0.8977 + }, + { + "start": 13688.04, + "end": 13689.5, + "probability": 0.6737 + }, + { + "start": 13690.52, + "end": 13693.64, + "probability": 0.9863 + }, + { + "start": 13700.29, + "end": 13704.86, + "probability": 0.9131 + }, + { + "start": 13705.48, + "end": 13708.7, + "probability": 0.9126 + }, + { + "start": 13710.28, + "end": 13713.42, + "probability": 0.9751 + }, + { + "start": 13714.32, + "end": 13717.96, + "probability": 0.9429 + }, + { + "start": 13718.92, + "end": 13720.09, + "probability": 0.8408 + }, + { + "start": 13720.78, + "end": 13725.0, + "probability": 0.9653 + }, + { + "start": 13725.94, + "end": 13728.02, + "probability": 0.9623 + }, + { + "start": 13728.26, + "end": 13733.38, + "probability": 0.9814 + }, + { + "start": 13733.38, + "end": 13737.44, + "probability": 0.9986 + }, + { + "start": 13738.18, + "end": 13741.74, + "probability": 0.9886 + }, + { + "start": 13742.5, + "end": 13746.46, + "probability": 0.901 + }, + { + "start": 13747.96, + "end": 13751.4, + "probability": 0.9444 + }, + { + "start": 13752.72, + "end": 13753.04, + "probability": 0.626 + }, + { + "start": 13753.18, + "end": 13757.82, + "probability": 0.7358 + }, + { + "start": 13757.98, + "end": 13758.64, + "probability": 0.699 + }, + { + "start": 13759.62, + "end": 13763.38, + "probability": 0.8934 + }, + { + "start": 13763.38, + "end": 13767.92, + "probability": 0.9583 + }, + { + "start": 13768.48, + "end": 13770.42, + "probability": 0.7255 + }, + { + "start": 13771.22, + "end": 13772.6, + "probability": 0.8787 + }, + { + "start": 13773.42, + "end": 13776.78, + "probability": 0.9962 + }, + { + "start": 13776.78, + "end": 13780.64, + "probability": 0.9892 + }, + { + "start": 13781.06, + "end": 13783.28, + "probability": 0.9601 + }, + { + "start": 13783.42, + "end": 13791.58, + "probability": 0.8978 + }, + { + "start": 13792.32, + "end": 13793.3, + "probability": 0.601 + }, + { + "start": 13796.84, + "end": 13798.56, + "probability": 0.7966 + }, + { + "start": 13799.72, + "end": 13802.72, + "probability": 0.9937 + }, + { + "start": 13802.82, + "end": 13805.24, + "probability": 0.9888 + }, + { + "start": 13806.24, + "end": 13811.44, + "probability": 0.8418 + }, + { + "start": 13811.48, + "end": 13813.32, + "probability": 0.9634 + }, + { + "start": 13814.26, + "end": 13817.62, + "probability": 0.79 + }, + { + "start": 13818.16, + "end": 13819.12, + "probability": 0.7377 + }, + { + "start": 13819.12, + "end": 13822.66, + "probability": 0.526 + }, + { + "start": 13822.9, + "end": 13825.38, + "probability": 0.5205 + }, + { + "start": 13825.96, + "end": 13829.74, + "probability": 0.9246 + }, + { + "start": 13830.46, + "end": 13835.44, + "probability": 0.9793 + }, + { + "start": 13835.44, + "end": 13840.78, + "probability": 0.9374 + }, + { + "start": 13841.38, + "end": 13844.6, + "probability": 0.8452 + }, + { + "start": 13844.74, + "end": 13846.64, + "probability": 0.8944 + }, + { + "start": 13847.36, + "end": 13848.62, + "probability": 0.9671 + }, + { + "start": 13848.78, + "end": 13853.84, + "probability": 0.796 + }, + { + "start": 13854.5, + "end": 13854.94, + "probability": 0.716 + }, + { + "start": 13855.98, + "end": 13856.92, + "probability": 0.8143 + }, + { + "start": 13857.54, + "end": 13859.52, + "probability": 0.7593 + }, + { + "start": 13859.9, + "end": 13861.26, + "probability": 0.9038 + }, + { + "start": 13861.66, + "end": 13863.04, + "probability": 0.5919 + }, + { + "start": 13863.1, + "end": 13863.56, + "probability": 0.446 + }, + { + "start": 13864.24, + "end": 13865.68, + "probability": 0.8958 + }, + { + "start": 13873.6, + "end": 13874.84, + "probability": 0.5978 + }, + { + "start": 13875.54, + "end": 13877.3, + "probability": 0.8381 + }, + { + "start": 13878.04, + "end": 13882.88, + "probability": 0.9288 + }, + { + "start": 13883.4, + "end": 13886.29, + "probability": 0.9868 + }, + { + "start": 13886.62, + "end": 13887.54, + "probability": 0.9304 + }, + { + "start": 13888.52, + "end": 13892.48, + "probability": 0.9898 + }, + { + "start": 13893.74, + "end": 13897.7, + "probability": 0.9561 + }, + { + "start": 13898.32, + "end": 13900.12, + "probability": 0.9134 + }, + { + "start": 13900.84, + "end": 13903.4, + "probability": 0.986 + }, + { + "start": 13904.26, + "end": 13907.8, + "probability": 0.9938 + }, + { + "start": 13908.76, + "end": 13909.06, + "probability": 0.7284 + }, + { + "start": 13909.52, + "end": 13910.54, + "probability": 0.5375 + }, + { + "start": 13910.54, + "end": 13914.74, + "probability": 0.9349 + }, + { + "start": 13914.74, + "end": 13916.82, + "probability": 0.9712 + }, + { + "start": 13917.32, + "end": 13919.14, + "probability": 0.9921 + }, + { + "start": 13919.9, + "end": 13924.48, + "probability": 0.9825 + }, + { + "start": 13925.94, + "end": 13932.2, + "probability": 0.946 + }, + { + "start": 13932.6, + "end": 13935.54, + "probability": 0.9154 + }, + { + "start": 13936.38, + "end": 13937.06, + "probability": 0.7351 + }, + { + "start": 13937.12, + "end": 13940.4, + "probability": 0.9946 + }, + { + "start": 13940.98, + "end": 13941.68, + "probability": 0.9846 + }, + { + "start": 13942.22, + "end": 13943.5, + "probability": 0.8823 + }, + { + "start": 13944.1, + "end": 13948.2, + "probability": 0.9741 + }, + { + "start": 13949.0, + "end": 13953.56, + "probability": 0.771 + }, + { + "start": 13954.56, + "end": 13956.58, + "probability": 0.9525 + }, + { + "start": 13956.68, + "end": 13958.04, + "probability": 0.9718 + }, + { + "start": 13958.84, + "end": 13959.54, + "probability": 0.9906 + }, + { + "start": 13960.14, + "end": 13962.12, + "probability": 0.9546 + }, + { + "start": 13962.66, + "end": 13965.32, + "probability": 0.9518 + }, + { + "start": 13965.6, + "end": 13966.86, + "probability": 0.841 + }, + { + "start": 13967.38, + "end": 13969.5, + "probability": 0.9668 + }, + { + "start": 13972.16, + "end": 13974.48, + "probability": 0.5012 + }, + { + "start": 13974.74, + "end": 13976.82, + "probability": 0.8032 + }, + { + "start": 13976.84, + "end": 13979.34, + "probability": 0.8875 + }, + { + "start": 13980.02, + "end": 13982.08, + "probability": 0.9944 + }, + { + "start": 13982.78, + "end": 13983.06, + "probability": 0.7568 + }, + { + "start": 13983.88, + "end": 13985.02, + "probability": 0.7879 + }, + { + "start": 13985.68, + "end": 13987.44, + "probability": 0.9584 + }, + { + "start": 13988.38, + "end": 13991.06, + "probability": 0.9907 + }, + { + "start": 13991.24, + "end": 13992.45, + "probability": 0.8254 + }, + { + "start": 13993.9, + "end": 13997.26, + "probability": 0.9616 + }, + { + "start": 13999.48, + "end": 14000.96, + "probability": 0.6861 + }, + { + "start": 14001.26, + "end": 14003.28, + "probability": 0.4158 + }, + { + "start": 14003.54, + "end": 14004.62, + "probability": 0.7065 + }, + { + "start": 14005.36, + "end": 14007.74, + "probability": 0.8555 + }, + { + "start": 14008.6, + "end": 14010.3, + "probability": 0.6207 + }, + { + "start": 14011.08, + "end": 14014.38, + "probability": 0.9496 + }, + { + "start": 14014.38, + "end": 14017.8, + "probability": 0.9737 + }, + { + "start": 14018.28, + "end": 14019.8, + "probability": 0.9929 + }, + { + "start": 14019.94, + "end": 14024.3, + "probability": 0.9907 + }, + { + "start": 14024.72, + "end": 14028.12, + "probability": 0.9939 + }, + { + "start": 14028.54, + "end": 14031.86, + "probability": 0.9839 + }, + { + "start": 14032.38, + "end": 14032.62, + "probability": 0.8777 + }, + { + "start": 14033.76, + "end": 14035.8, + "probability": 0.6652 + }, + { + "start": 14035.9, + "end": 14041.72, + "probability": 0.9854 + }, + { + "start": 14042.2, + "end": 14047.44, + "probability": 0.989 + }, + { + "start": 14048.42, + "end": 14051.7, + "probability": 0.827 + }, + { + "start": 14052.76, + "end": 14057.3, + "probability": 0.9878 + }, + { + "start": 14058.38, + "end": 14061.98, + "probability": 0.9863 + }, + { + "start": 14061.98, + "end": 14064.9, + "probability": 0.9983 + }, + { + "start": 14065.62, + "end": 14067.54, + "probability": 0.7363 + }, + { + "start": 14068.22, + "end": 14070.66, + "probability": 0.8166 + }, + { + "start": 14071.3, + "end": 14072.84, + "probability": 0.9942 + }, + { + "start": 14073.52, + "end": 14074.24, + "probability": 0.9864 + }, + { + "start": 14077.6, + "end": 14078.16, + "probability": 0.4922 + }, + { + "start": 14078.22, + "end": 14079.72, + "probability": 0.9437 + }, + { + "start": 14079.82, + "end": 14085.18, + "probability": 0.9934 + }, + { + "start": 14085.74, + "end": 14085.84, + "probability": 0.3462 + }, + { + "start": 14085.92, + "end": 14088.28, + "probability": 0.9717 + }, + { + "start": 14089.4, + "end": 14089.96, + "probability": 0.8158 + }, + { + "start": 14090.04, + "end": 14090.62, + "probability": 0.2542 + }, + { + "start": 14090.94, + "end": 14091.66, + "probability": 0.6807 + }, + { + "start": 14091.66, + "end": 14095.1, + "probability": 0.7417 + }, + { + "start": 14095.98, + "end": 14096.56, + "probability": 0.8849 + }, + { + "start": 14097.98, + "end": 14100.88, + "probability": 0.8703 + }, + { + "start": 14107.8, + "end": 14109.28, + "probability": 0.6776 + }, + { + "start": 14110.32, + "end": 14111.96, + "probability": 0.9027 + }, + { + "start": 14112.04, + "end": 14113.88, + "probability": 0.7433 + }, + { + "start": 14114.04, + "end": 14114.66, + "probability": 0.9982 + }, + { + "start": 14114.8, + "end": 14116.84, + "probability": 0.6341 + }, + { + "start": 14116.9, + "end": 14117.52, + "probability": 0.9107 + }, + { + "start": 14117.58, + "end": 14121.64, + "probability": 0.8885 + }, + { + "start": 14121.8, + "end": 14122.76, + "probability": 0.782 + }, + { + "start": 14123.64, + "end": 14126.92, + "probability": 0.9842 + }, + { + "start": 14127.08, + "end": 14131.84, + "probability": 0.9124 + }, + { + "start": 14132.04, + "end": 14132.94, + "probability": 0.6969 + }, + { + "start": 14133.1, + "end": 14133.98, + "probability": 0.9921 + }, + { + "start": 14135.08, + "end": 14138.8, + "probability": 0.8293 + }, + { + "start": 14138.82, + "end": 14139.71, + "probability": 0.5046 + }, + { + "start": 14141.06, + "end": 14142.48, + "probability": 0.246 + }, + { + "start": 14142.62, + "end": 14143.5, + "probability": 0.8296 + }, + { + "start": 14143.98, + "end": 14144.76, + "probability": 0.7455 + }, + { + "start": 14145.0, + "end": 14145.36, + "probability": 0.6178 + }, + { + "start": 14145.46, + "end": 14145.46, + "probability": 0.6011 + }, + { + "start": 14145.48, + "end": 14145.58, + "probability": 0.0792 + }, + { + "start": 14145.58, + "end": 14145.69, + "probability": 0.4862 + }, + { + "start": 14145.86, + "end": 14146.7, + "probability": 0.5877 + }, + { + "start": 14146.86, + "end": 14147.26, + "probability": 0.5152 + }, + { + "start": 14147.28, + "end": 14147.82, + "probability": 0.7544 + }, + { + "start": 14149.92, + "end": 14150.8, + "probability": 0.2017 + }, + { + "start": 14150.8, + "end": 14150.94, + "probability": 0.0983 + }, + { + "start": 14151.46, + "end": 14152.06, + "probability": 0.1157 + }, + { + "start": 14152.36, + "end": 14152.52, + "probability": 0.5828 + }, + { + "start": 14152.62, + "end": 14153.26, + "probability": 0.3671 + }, + { + "start": 14153.3, + "end": 14154.21, + "probability": 0.8939 + }, + { + "start": 14154.26, + "end": 14156.92, + "probability": 0.7141 + }, + { + "start": 14157.38, + "end": 14158.9, + "probability": 0.8892 + }, + { + "start": 14159.6, + "end": 14162.6, + "probability": 0.6624 + }, + { + "start": 14163.8, + "end": 14168.7, + "probability": 0.9722 + }, + { + "start": 14169.52, + "end": 14173.76, + "probability": 0.9797 + }, + { + "start": 14174.26, + "end": 14177.72, + "probability": 0.896 + }, + { + "start": 14178.3, + "end": 14179.9, + "probability": 0.8683 + }, + { + "start": 14180.52, + "end": 14182.82, + "probability": 0.9617 + }, + { + "start": 14183.36, + "end": 14186.46, + "probability": 0.9523 + }, + { + "start": 14187.1, + "end": 14189.34, + "probability": 0.9478 + }, + { + "start": 14190.24, + "end": 14193.98, + "probability": 0.9181 + }, + { + "start": 14195.32, + "end": 14198.3, + "probability": 0.5419 + }, + { + "start": 14199.32, + "end": 14199.32, + "probability": 0.0252 + }, + { + "start": 14199.32, + "end": 14203.92, + "probability": 0.938 + }, + { + "start": 14204.84, + "end": 14205.56, + "probability": 0.854 + }, + { + "start": 14206.3, + "end": 14207.26, + "probability": 0.7591 + }, + { + "start": 14207.38, + "end": 14209.68, + "probability": 0.9944 + }, + { + "start": 14211.46, + "end": 14212.23, + "probability": 0.798 + }, + { + "start": 14214.02, + "end": 14214.76, + "probability": 0.7617 + }, + { + "start": 14214.84, + "end": 14216.84, + "probability": 0.5102 + }, + { + "start": 14217.08, + "end": 14224.5, + "probability": 0.9344 + }, + { + "start": 14224.56, + "end": 14225.56, + "probability": 0.5889 + }, + { + "start": 14225.62, + "end": 14226.92, + "probability": 0.6817 + }, + { + "start": 14227.64, + "end": 14231.14, + "probability": 0.8062 + }, + { + "start": 14231.72, + "end": 14232.12, + "probability": 0.9641 + }, + { + "start": 14232.82, + "end": 14233.84, + "probability": 0.8863 + }, + { + "start": 14234.38, + "end": 14235.32, + "probability": 0.3872 + }, + { + "start": 14235.94, + "end": 14238.48, + "probability": 0.9742 + }, + { + "start": 14239.0, + "end": 14241.42, + "probability": 0.7646 + }, + { + "start": 14242.92, + "end": 14247.12, + "probability": 0.96 + }, + { + "start": 14247.28, + "end": 14247.6, + "probability": 0.8762 + }, + { + "start": 14247.66, + "end": 14249.18, + "probability": 0.9362 + }, + { + "start": 14249.94, + "end": 14251.32, + "probability": 0.9221 + }, + { + "start": 14251.94, + "end": 14254.62, + "probability": 0.9734 + }, + { + "start": 14255.04, + "end": 14256.5, + "probability": 0.8923 + }, + { + "start": 14256.74, + "end": 14259.5, + "probability": 0.9456 + }, + { + "start": 14259.84, + "end": 14260.82, + "probability": 0.7163 + }, + { + "start": 14261.54, + "end": 14264.66, + "probability": 0.7494 + }, + { + "start": 14265.38, + "end": 14267.02, + "probability": 0.7715 + }, + { + "start": 14267.34, + "end": 14268.4, + "probability": 0.9607 + }, + { + "start": 14268.66, + "end": 14270.66, + "probability": 0.96 + }, + { + "start": 14270.84, + "end": 14277.24, + "probability": 0.891 + }, + { + "start": 14277.36, + "end": 14278.18, + "probability": 0.4763 + }, + { + "start": 14278.32, + "end": 14278.62, + "probability": 0.48 + }, + { + "start": 14278.98, + "end": 14279.18, + "probability": 0.7409 + }, + { + "start": 14279.88, + "end": 14281.38, + "probability": 0.5247 + }, + { + "start": 14281.52, + "end": 14282.69, + "probability": 0.6485 + }, + { + "start": 14283.04, + "end": 14283.98, + "probability": 0.7494 + }, + { + "start": 14285.08, + "end": 14289.62, + "probability": 0.845 + }, + { + "start": 14289.66, + "end": 14292.08, + "probability": 0.9991 + }, + { + "start": 14292.6, + "end": 14295.26, + "probability": 0.9445 + }, + { + "start": 14295.96, + "end": 14296.92, + "probability": 0.7762 + }, + { + "start": 14297.68, + "end": 14299.12, + "probability": 0.6901 + }, + { + "start": 14299.14, + "end": 14299.6, + "probability": 0.5709 + }, + { + "start": 14299.78, + "end": 14300.18, + "probability": 0.5926 + }, + { + "start": 14300.18, + "end": 14303.08, + "probability": 0.9605 + }, + { + "start": 14303.64, + "end": 14306.98, + "probability": 0.8242 + }, + { + "start": 14308.26, + "end": 14309.22, + "probability": 0.9773 + }, + { + "start": 14309.66, + "end": 14310.3, + "probability": 0.0698 + }, + { + "start": 14310.72, + "end": 14314.86, + "probability": 0.5435 + }, + { + "start": 14314.86, + "end": 14319.04, + "probability": 0.8661 + }, + { + "start": 14319.74, + "end": 14322.62, + "probability": 0.9548 + }, + { + "start": 14322.74, + "end": 14322.94, + "probability": 0.0087 + }, + { + "start": 14323.02, + "end": 14325.64, + "probability": 0.4856 + }, + { + "start": 14326.14, + "end": 14330.86, + "probability": 0.9279 + }, + { + "start": 14331.38, + "end": 14335.28, + "probability": 0.7979 + }, + { + "start": 14335.94, + "end": 14337.22, + "probability": 0.7344 + }, + { + "start": 14337.34, + "end": 14338.02, + "probability": 0.6801 + }, + { + "start": 14338.38, + "end": 14339.89, + "probability": 0.3116 + }, + { + "start": 14340.58, + "end": 14342.16, + "probability": 0.6028 + }, + { + "start": 14342.98, + "end": 14348.54, + "probability": 0.7774 + }, + { + "start": 14348.98, + "end": 14349.18, + "probability": 0.9164 + }, + { + "start": 14349.86, + "end": 14349.96, + "probability": 0.2083 + } + ], + "segments_count": 4587, + "words_count": 23452, + "avg_words_per_segment": 5.1127, + "avg_segment_duration": 2.1987, + "avg_words_per_minute": 97.1543, + "plenum_id": "101860", + "duration": 14483.36, + "title": null, + "plenum_date": "2021-11-23" +} \ No newline at end of file