diff --git "a/102588/metadata.json" "b/102588/metadata.json" new file mode 100644--- /dev/null +++ "b/102588/metadata.json" @@ -0,0 +1,79477 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "102588", + "quality_score": 0.854, + "per_segment_quality_scores": [ + { + "start": 64.16, + "end": 65.66, + "probability": 0.0545 + }, + { + "start": 65.82, + "end": 67.02, + "probability": 0.3365 + }, + { + "start": 68.4, + "end": 70.62, + "probability": 0.3273 + }, + { + "start": 72.0, + "end": 73.5, + "probability": 0.185 + }, + { + "start": 74.24, + "end": 82.12, + "probability": 0.2199 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 206.0, + "end": 206.0, + "probability": 0.0 + }, + { + "start": 227.54, + "end": 228.98, + "probability": 0.3195 + }, + { + "start": 230.64, + "end": 230.92, + "probability": 0.0607 + }, + { + "start": 233.72, + "end": 234.44, + "probability": 0.0144 + }, + { + "start": 234.98, + "end": 235.56, + "probability": 0.0305 + }, + { + "start": 236.22, + "end": 236.92, + "probability": 0.1703 + }, + { + "start": 238.3, + "end": 240.24, + "probability": 0.0032 + }, + { + "start": 246.16, + "end": 247.42, + "probability": 0.1346 + }, + { + "start": 248.59, + "end": 250.34, + "probability": 0.0687 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.0, + "end": 330.0, + "probability": 0.0 + }, + { + "start": 330.38, + "end": 330.92, + "probability": 0.1167 + }, + { + "start": 330.98, + "end": 333.46, + "probability": 0.7415 + }, + { + "start": 334.64, + "end": 335.26, + "probability": 0.9763 + }, + { + "start": 336.18, + "end": 337.02, + "probability": 0.9962 + }, + { + "start": 337.84, + "end": 338.9, + "probability": 0.9807 + }, + { + "start": 340.23, + "end": 341.6, + "probability": 0.998 + }, + { + "start": 344.0, + "end": 345.04, + "probability": 0.4995 + }, + { + "start": 349.62, + "end": 352.24, + "probability": 0.6088 + }, + { + "start": 352.84, + "end": 354.0, + "probability": 0.6727 + }, + { + "start": 354.44, + "end": 357.32, + "probability": 0.9795 + }, + { + "start": 357.74, + "end": 358.54, + "probability": 0.9133 + }, + { + "start": 359.88, + "end": 363.38, + "probability": 0.9843 + }, + { + "start": 363.48, + "end": 364.45, + "probability": 0.9655 + }, + { + "start": 366.42, + "end": 368.48, + "probability": 0.9495 + }, + { + "start": 369.82, + "end": 372.74, + "probability": 0.9946 + }, + { + "start": 372.92, + "end": 375.5, + "probability": 0.9988 + }, + { + "start": 377.4, + "end": 379.02, + "probability": 0.9651 + }, + { + "start": 380.82, + "end": 383.72, + "probability": 0.7484 + }, + { + "start": 384.98, + "end": 386.18, + "probability": 0.9844 + }, + { + "start": 386.38, + "end": 387.76, + "probability": 0.9131 + }, + { + "start": 387.98, + "end": 389.14, + "probability": 0.9964 + }, + { + "start": 389.26, + "end": 390.28, + "probability": 0.8805 + }, + { + "start": 391.26, + "end": 392.1, + "probability": 0.9848 + }, + { + "start": 394.62, + "end": 395.69, + "probability": 0.993 + }, + { + "start": 396.72, + "end": 397.72, + "probability": 0.9979 + }, + { + "start": 398.78, + "end": 402.46, + "probability": 0.9806 + }, + { + "start": 403.44, + "end": 407.28, + "probability": 0.9949 + }, + { + "start": 409.24, + "end": 409.86, + "probability": 0.6632 + }, + { + "start": 410.44, + "end": 412.92, + "probability": 0.9887 + }, + { + "start": 413.02, + "end": 416.1, + "probability": 0.8562 + }, + { + "start": 416.22, + "end": 417.46, + "probability": 0.8608 + }, + { + "start": 417.76, + "end": 417.98, + "probability": 0.9559 + }, + { + "start": 420.1, + "end": 420.85, + "probability": 0.6886 + }, + { + "start": 422.6, + "end": 423.0, + "probability": 0.7194 + }, + { + "start": 423.74, + "end": 424.63, + "probability": 0.8528 + }, + { + "start": 425.34, + "end": 426.82, + "probability": 0.8744 + }, + { + "start": 427.34, + "end": 428.28, + "probability": 0.7874 + }, + { + "start": 428.8, + "end": 431.92, + "probability": 0.7526 + }, + { + "start": 432.16, + "end": 433.24, + "probability": 0.7013 + }, + { + "start": 434.22, + "end": 435.92, + "probability": 0.9437 + }, + { + "start": 436.8, + "end": 439.04, + "probability": 0.9922 + }, + { + "start": 439.7, + "end": 444.22, + "probability": 0.9839 + }, + { + "start": 444.32, + "end": 445.04, + "probability": 0.9457 + }, + { + "start": 445.98, + "end": 448.26, + "probability": 0.9043 + }, + { + "start": 449.0, + "end": 450.76, + "probability": 0.9658 + }, + { + "start": 452.1, + "end": 455.22, + "probability": 0.9844 + }, + { + "start": 456.68, + "end": 457.84, + "probability": 0.9318 + }, + { + "start": 458.58, + "end": 461.04, + "probability": 0.974 + }, + { + "start": 464.6, + "end": 465.82, + "probability": 0.9628 + }, + { + "start": 468.46, + "end": 469.04, + "probability": 0.7735 + }, + { + "start": 470.0, + "end": 472.84, + "probability": 0.9867 + }, + { + "start": 473.76, + "end": 475.02, + "probability": 0.897 + }, + { + "start": 476.78, + "end": 478.32, + "probability": 0.9121 + }, + { + "start": 479.92, + "end": 480.3, + "probability": 0.9917 + }, + { + "start": 481.2, + "end": 485.82, + "probability": 0.9585 + }, + { + "start": 487.1, + "end": 488.34, + "probability": 0.9649 + }, + { + "start": 489.54, + "end": 490.72, + "probability": 0.9309 + }, + { + "start": 491.52, + "end": 492.38, + "probability": 0.9385 + }, + { + "start": 493.0, + "end": 494.22, + "probability": 0.9922 + }, + { + "start": 495.24, + "end": 498.58, + "probability": 0.9951 + }, + { + "start": 499.22, + "end": 500.3, + "probability": 0.8865 + }, + { + "start": 501.68, + "end": 502.84, + "probability": 0.8803 + }, + { + "start": 503.3, + "end": 503.8, + "probability": 0.7526 + }, + { + "start": 504.96, + "end": 505.36, + "probability": 0.8064 + }, + { + "start": 508.8, + "end": 509.96, + "probability": 0.9968 + }, + { + "start": 511.6, + "end": 514.94, + "probability": 0.9458 + }, + { + "start": 516.12, + "end": 518.58, + "probability": 0.998 + }, + { + "start": 519.42, + "end": 520.98, + "probability": 0.9751 + }, + { + "start": 522.24, + "end": 523.56, + "probability": 0.8768 + }, + { + "start": 524.5, + "end": 525.86, + "probability": 0.8706 + }, + { + "start": 526.96, + "end": 527.48, + "probability": 0.9033 + }, + { + "start": 528.4, + "end": 529.1, + "probability": 0.9565 + }, + { + "start": 530.74, + "end": 533.64, + "probability": 0.9807 + }, + { + "start": 534.64, + "end": 537.64, + "probability": 0.9944 + }, + { + "start": 537.74, + "end": 538.74, + "probability": 0.9691 + }, + { + "start": 539.88, + "end": 540.56, + "probability": 0.9287 + }, + { + "start": 542.02, + "end": 543.04, + "probability": 0.9902 + }, + { + "start": 544.04, + "end": 546.9, + "probability": 0.9566 + }, + { + "start": 548.14, + "end": 550.6, + "probability": 0.9021 + }, + { + "start": 550.62, + "end": 552.96, + "probability": 0.9952 + }, + { + "start": 554.04, + "end": 557.92, + "probability": 0.9886 + }, + { + "start": 561.18, + "end": 563.82, + "probability": 0.9971 + }, + { + "start": 564.04, + "end": 567.96, + "probability": 0.9941 + }, + { + "start": 569.3, + "end": 570.6, + "probability": 0.959 + }, + { + "start": 572.14, + "end": 575.58, + "probability": 0.9914 + }, + { + "start": 575.76, + "end": 576.04, + "probability": 0.5706 + }, + { + "start": 577.32, + "end": 581.3, + "probability": 0.9971 + }, + { + "start": 582.16, + "end": 582.66, + "probability": 0.9552 + }, + { + "start": 583.9, + "end": 585.98, + "probability": 0.8253 + }, + { + "start": 587.78, + "end": 589.54, + "probability": 0.9971 + }, + { + "start": 589.54, + "end": 593.06, + "probability": 0.9987 + }, + { + "start": 593.24, + "end": 594.08, + "probability": 0.8477 + }, + { + "start": 596.4, + "end": 597.8, + "probability": 0.9971 + }, + { + "start": 598.9, + "end": 600.72, + "probability": 0.972 + }, + { + "start": 601.82, + "end": 605.72, + "probability": 0.9979 + }, + { + "start": 606.7, + "end": 607.38, + "probability": 0.5387 + }, + { + "start": 607.6, + "end": 608.84, + "probability": 0.9578 + }, + { + "start": 609.66, + "end": 611.14, + "probability": 0.7975 + }, + { + "start": 611.86, + "end": 612.98, + "probability": 0.7903 + }, + { + "start": 613.52, + "end": 615.2, + "probability": 0.969 + }, + { + "start": 616.9, + "end": 617.46, + "probability": 0.7911 + }, + { + "start": 617.78, + "end": 620.85, + "probability": 0.9264 + }, + { + "start": 622.06, + "end": 623.96, + "probability": 0.988 + }, + { + "start": 625.02, + "end": 627.06, + "probability": 0.9814 + }, + { + "start": 627.84, + "end": 628.78, + "probability": 0.8064 + }, + { + "start": 629.71, + "end": 631.96, + "probability": 0.9269 + }, + { + "start": 633.2, + "end": 633.42, + "probability": 0.6643 + }, + { + "start": 636.04, + "end": 636.78, + "probability": 0.987 + }, + { + "start": 637.34, + "end": 639.24, + "probability": 0.9631 + }, + { + "start": 640.14, + "end": 642.46, + "probability": 0.9982 + }, + { + "start": 644.1, + "end": 644.74, + "probability": 0.6567 + }, + { + "start": 646.52, + "end": 648.74, + "probability": 0.9748 + }, + { + "start": 649.34, + "end": 652.12, + "probability": 0.9822 + }, + { + "start": 652.28, + "end": 652.64, + "probability": 0.9331 + }, + { + "start": 652.9, + "end": 653.42, + "probability": 0.879 + }, + { + "start": 654.32, + "end": 655.54, + "probability": 0.9967 + }, + { + "start": 656.4, + "end": 658.14, + "probability": 0.9352 + }, + { + "start": 658.66, + "end": 659.4, + "probability": 0.8734 + }, + { + "start": 660.3, + "end": 662.97, + "probability": 0.8419 + }, + { + "start": 663.78, + "end": 666.56, + "probability": 0.9595 + }, + { + "start": 667.02, + "end": 672.12, + "probability": 0.9938 + }, + { + "start": 674.86, + "end": 675.98, + "probability": 0.7792 + }, + { + "start": 676.12, + "end": 680.44, + "probability": 0.8091 + }, + { + "start": 680.88, + "end": 681.52, + "probability": 0.9314 + }, + { + "start": 682.74, + "end": 688.61, + "probability": 0.9863 + }, + { + "start": 689.12, + "end": 690.1, + "probability": 0.9548 + }, + { + "start": 690.2, + "end": 694.34, + "probability": 0.8995 + }, + { + "start": 694.54, + "end": 697.74, + "probability": 0.9992 + }, + { + "start": 698.92, + "end": 700.42, + "probability": 0.9299 + }, + { + "start": 701.4, + "end": 702.92, + "probability": 0.998 + }, + { + "start": 704.08, + "end": 706.6, + "probability": 0.8521 + }, + { + "start": 707.64, + "end": 708.98, + "probability": 0.9934 + }, + { + "start": 709.86, + "end": 712.46, + "probability": 0.9352 + }, + { + "start": 712.46, + "end": 715.27, + "probability": 0.9989 + }, + { + "start": 717.5, + "end": 720.91, + "probability": 0.9917 + }, + { + "start": 722.82, + "end": 725.66, + "probability": 0.832 + }, + { + "start": 726.9, + "end": 729.28, + "probability": 0.821 + }, + { + "start": 729.44, + "end": 732.64, + "probability": 0.9886 + }, + { + "start": 733.42, + "end": 734.06, + "probability": 0.8792 + }, + { + "start": 736.42, + "end": 736.74, + "probability": 0.8768 + }, + { + "start": 737.74, + "end": 739.94, + "probability": 0.9986 + }, + { + "start": 740.46, + "end": 741.44, + "probability": 0.4973 + }, + { + "start": 741.56, + "end": 742.2, + "probability": 0.507 + }, + { + "start": 742.32, + "end": 742.94, + "probability": 0.9771 + }, + { + "start": 743.04, + "end": 743.6, + "probability": 0.9834 + }, + { + "start": 743.72, + "end": 745.36, + "probability": 0.9639 + }, + { + "start": 747.66, + "end": 747.88, + "probability": 0.9075 + }, + { + "start": 748.54, + "end": 749.6, + "probability": 0.9009 + }, + { + "start": 750.54, + "end": 752.68, + "probability": 0.9532 + }, + { + "start": 755.56, + "end": 759.16, + "probability": 0.9901 + }, + { + "start": 760.6, + "end": 763.15, + "probability": 0.9761 + }, + { + "start": 765.22, + "end": 769.66, + "probability": 0.9989 + }, + { + "start": 771.36, + "end": 773.12, + "probability": 0.9668 + }, + { + "start": 774.64, + "end": 774.72, + "probability": 0.6202 + }, + { + "start": 774.86, + "end": 775.42, + "probability": 0.9574 + }, + { + "start": 775.52, + "end": 776.1, + "probability": 0.8113 + }, + { + "start": 776.16, + "end": 777.74, + "probability": 0.9944 + }, + { + "start": 778.46, + "end": 780.66, + "probability": 0.8883 + }, + { + "start": 781.6, + "end": 783.4, + "probability": 0.9829 + }, + { + "start": 783.48, + "end": 784.44, + "probability": 0.8582 + }, + { + "start": 784.54, + "end": 786.82, + "probability": 0.9827 + }, + { + "start": 786.94, + "end": 787.96, + "probability": 0.8326 + }, + { + "start": 788.66, + "end": 790.3, + "probability": 0.8853 + }, + { + "start": 792.01, + "end": 794.4, + "probability": 0.8132 + }, + { + "start": 795.8, + "end": 797.94, + "probability": 0.9973 + }, + { + "start": 799.94, + "end": 803.4, + "probability": 0.9468 + }, + { + "start": 804.34, + "end": 804.7, + "probability": 0.9794 + }, + { + "start": 805.74, + "end": 807.36, + "probability": 0.9697 + }, + { + "start": 808.86, + "end": 812.66, + "probability": 0.9849 + }, + { + "start": 812.84, + "end": 818.56, + "probability": 0.9973 + }, + { + "start": 821.22, + "end": 822.22, + "probability": 0.7642 + }, + { + "start": 822.36, + "end": 823.04, + "probability": 0.7691 + }, + { + "start": 823.16, + "end": 824.45, + "probability": 0.8374 + }, + { + "start": 825.86, + "end": 828.32, + "probability": 0.7685 + }, + { + "start": 830.16, + "end": 834.06, + "probability": 0.9733 + }, + { + "start": 835.74, + "end": 837.1, + "probability": 0.9988 + }, + { + "start": 838.2, + "end": 841.52, + "probability": 0.9845 + }, + { + "start": 842.68, + "end": 846.52, + "probability": 0.9986 + }, + { + "start": 847.2, + "end": 849.08, + "probability": 0.9955 + }, + { + "start": 850.6, + "end": 855.22, + "probability": 0.999 + }, + { + "start": 856.94, + "end": 857.5, + "probability": 0.7594 + }, + { + "start": 858.4, + "end": 859.88, + "probability": 0.8171 + }, + { + "start": 860.0, + "end": 863.74, + "probability": 0.9963 + }, + { + "start": 863.96, + "end": 864.98, + "probability": 0.9785 + }, + { + "start": 866.1, + "end": 868.12, + "probability": 0.9126 + }, + { + "start": 869.32, + "end": 870.52, + "probability": 0.8777 + }, + { + "start": 871.24, + "end": 872.2, + "probability": 0.9652 + }, + { + "start": 873.08, + "end": 874.96, + "probability": 0.9852 + }, + { + "start": 876.02, + "end": 879.06, + "probability": 0.9221 + }, + { + "start": 879.3, + "end": 880.78, + "probability": 0.9846 + }, + { + "start": 881.2, + "end": 882.76, + "probability": 0.9953 + }, + { + "start": 883.78, + "end": 885.36, + "probability": 0.9905 + }, + { + "start": 885.72, + "end": 886.66, + "probability": 0.7383 + }, + { + "start": 886.66, + "end": 887.06, + "probability": 0.5337 + }, + { + "start": 887.56, + "end": 889.1, + "probability": 0.9951 + }, + { + "start": 889.24, + "end": 889.74, + "probability": 0.6528 + }, + { + "start": 890.08, + "end": 891.22, + "probability": 0.9661 + }, + { + "start": 891.28, + "end": 893.5, + "probability": 0.9331 + }, + { + "start": 893.64, + "end": 896.24, + "probability": 0.5941 + }, + { + "start": 896.74, + "end": 897.36, + "probability": 0.0182 + }, + { + "start": 898.0, + "end": 898.64, + "probability": 0.7413 + }, + { + "start": 898.8, + "end": 900.04, + "probability": 0.7835 + }, + { + "start": 900.14, + "end": 901.5, + "probability": 0.8745 + }, + { + "start": 901.74, + "end": 903.42, + "probability": 0.7942 + }, + { + "start": 903.56, + "end": 904.92, + "probability": 0.7974 + }, + { + "start": 905.66, + "end": 906.2, + "probability": 0.8525 + }, + { + "start": 906.22, + "end": 908.18, + "probability": 0.8729 + }, + { + "start": 908.44, + "end": 910.34, + "probability": 0.8631 + }, + { + "start": 910.52, + "end": 911.88, + "probability": 0.8058 + }, + { + "start": 912.36, + "end": 914.24, + "probability": 0.4566 + }, + { + "start": 915.37, + "end": 916.88, + "probability": 0.8966 + }, + { + "start": 917.02, + "end": 919.1, + "probability": 0.7282 + }, + { + "start": 919.36, + "end": 922.1, + "probability": 0.6664 + }, + { + "start": 922.18, + "end": 923.82, + "probability": 0.7432 + }, + { + "start": 924.06, + "end": 925.86, + "probability": 0.8633 + }, + { + "start": 925.86, + "end": 926.7, + "probability": 0.5493 + }, + { + "start": 927.26, + "end": 931.98, + "probability": 0.7109 + }, + { + "start": 932.78, + "end": 939.24, + "probability": 0.9494 + }, + { + "start": 939.8, + "end": 943.12, + "probability": 0.9903 + }, + { + "start": 944.32, + "end": 947.06, + "probability": 0.9484 + }, + { + "start": 948.5, + "end": 951.72, + "probability": 0.9907 + }, + { + "start": 951.94, + "end": 957.4, + "probability": 0.9977 + }, + { + "start": 957.7, + "end": 957.92, + "probability": 0.5493 + }, + { + "start": 958.0, + "end": 958.92, + "probability": 0.7944 + }, + { + "start": 960.04, + "end": 962.0, + "probability": 0.994 + }, + { + "start": 962.08, + "end": 963.39, + "probability": 0.9975 + }, + { + "start": 964.94, + "end": 969.66, + "probability": 0.9675 + }, + { + "start": 970.38, + "end": 971.86, + "probability": 0.9724 + }, + { + "start": 973.04, + "end": 975.8, + "probability": 0.9185 + }, + { + "start": 976.46, + "end": 979.16, + "probability": 0.986 + }, + { + "start": 980.36, + "end": 981.82, + "probability": 0.991 + }, + { + "start": 983.98, + "end": 986.22, + "probability": 0.9756 + }, + { + "start": 986.66, + "end": 987.02, + "probability": 0.7695 + }, + { + "start": 987.44, + "end": 987.96, + "probability": 0.6523 + }, + { + "start": 988.78, + "end": 989.72, + "probability": 0.9282 + }, + { + "start": 997.7, + "end": 997.7, + "probability": 0.4932 + }, + { + "start": 997.7, + "end": 997.7, + "probability": 0.1243 + }, + { + "start": 997.7, + "end": 997.7, + "probability": 0.2567 + }, + { + "start": 997.7, + "end": 998.14, + "probability": 0.1313 + }, + { + "start": 1012.38, + "end": 1012.7, + "probability": 0.0815 + }, + { + "start": 1012.7, + "end": 1012.82, + "probability": 0.0725 + }, + { + "start": 1012.82, + "end": 1012.82, + "probability": 0.2214 + }, + { + "start": 1021.26, + "end": 1021.99, + "probability": 0.0855 + }, + { + "start": 1026.08, + "end": 1027.52, + "probability": 0.1025 + }, + { + "start": 1039.48, + "end": 1044.12, + "probability": 0.9957 + }, + { + "start": 1045.0, + "end": 1045.72, + "probability": 0.9448 + }, + { + "start": 1046.84, + "end": 1047.76, + "probability": 0.8995 + }, + { + "start": 1048.12, + "end": 1050.72, + "probability": 0.1195 + }, + { + "start": 1050.72, + "end": 1052.64, + "probability": 0.9799 + }, + { + "start": 1053.34, + "end": 1054.66, + "probability": 0.9945 + }, + { + "start": 1055.2, + "end": 1058.6, + "probability": 0.9995 + }, + { + "start": 1059.22, + "end": 1060.16, + "probability": 0.9902 + }, + { + "start": 1061.12, + "end": 1063.24, + "probability": 0.6362 + }, + { + "start": 1064.24, + "end": 1066.92, + "probability": 0.9616 + }, + { + "start": 1068.18, + "end": 1071.24, + "probability": 0.9949 + }, + { + "start": 1071.9, + "end": 1074.82, + "probability": 0.9646 + }, + { + "start": 1074.82, + "end": 1078.5, + "probability": 0.9952 + }, + { + "start": 1078.98, + "end": 1084.14, + "probability": 0.9711 + }, + { + "start": 1085.04, + "end": 1089.07, + "probability": 0.5479 + }, + { + "start": 1089.72, + "end": 1090.54, + "probability": 0.6118 + }, + { + "start": 1091.1, + "end": 1091.64, + "probability": 0.7898 + }, + { + "start": 1092.46, + "end": 1094.28, + "probability": 0.8294 + }, + { + "start": 1095.14, + "end": 1096.28, + "probability": 0.9933 + }, + { + "start": 1097.04, + "end": 1098.26, + "probability": 0.9231 + }, + { + "start": 1098.88, + "end": 1102.2, + "probability": 0.9966 + }, + { + "start": 1102.7, + "end": 1105.82, + "probability": 0.9758 + }, + { + "start": 1106.1, + "end": 1108.08, + "probability": 0.964 + }, + { + "start": 1108.8, + "end": 1111.06, + "probability": 0.9475 + }, + { + "start": 1111.86, + "end": 1112.74, + "probability": 0.8713 + }, + { + "start": 1114.02, + "end": 1114.62, + "probability": 0.0019 + }, + { + "start": 1115.46, + "end": 1116.46, + "probability": 0.0565 + }, + { + "start": 1116.46, + "end": 1116.48, + "probability": 0.1237 + }, + { + "start": 1116.62, + "end": 1122.44, + "probability": 0.9876 + }, + { + "start": 1123.4, + "end": 1126.42, + "probability": 0.9486 + }, + { + "start": 1126.42, + "end": 1130.0, + "probability": 0.9989 + }, + { + "start": 1130.12, + "end": 1130.89, + "probability": 0.7607 + }, + { + "start": 1131.5, + "end": 1133.4, + "probability": 0.8695 + }, + { + "start": 1133.96, + "end": 1135.9, + "probability": 0.9771 + }, + { + "start": 1136.36, + "end": 1138.74, + "probability": 0.9913 + }, + { + "start": 1139.38, + "end": 1140.0, + "probability": 0.7599 + }, + { + "start": 1141.18, + "end": 1144.16, + "probability": 0.8243 + }, + { + "start": 1146.26, + "end": 1149.0, + "probability": 0.4009 + }, + { + "start": 1150.82, + "end": 1151.94, + "probability": 0.4066 + }, + { + "start": 1152.98, + "end": 1157.92, + "probability": 0.7544 + }, + { + "start": 1158.92, + "end": 1160.32, + "probability": 0.6942 + }, + { + "start": 1182.68, + "end": 1182.72, + "probability": 0.1022 + }, + { + "start": 1182.72, + "end": 1183.96, + "probability": 0.8183 + }, + { + "start": 1187.02, + "end": 1190.3, + "probability": 0.9836 + }, + { + "start": 1201.24, + "end": 1202.86, + "probability": 0.5675 + }, + { + "start": 1206.02, + "end": 1208.74, + "probability": 0.7633 + }, + { + "start": 1209.92, + "end": 1211.04, + "probability": 0.5264 + }, + { + "start": 1211.64, + "end": 1213.29, + "probability": 0.9797 + }, + { + "start": 1214.48, + "end": 1217.72, + "probability": 0.99 + }, + { + "start": 1218.92, + "end": 1222.22, + "probability": 0.7319 + }, + { + "start": 1222.22, + "end": 1225.6, + "probability": 0.5707 + }, + { + "start": 1225.68, + "end": 1226.02, + "probability": 0.647 + }, + { + "start": 1226.28, + "end": 1227.44, + "probability": 0.5629 + }, + { + "start": 1228.18, + "end": 1230.62, + "probability": 0.9362 + }, + { + "start": 1232.44, + "end": 1235.1, + "probability": 0.5864 + }, + { + "start": 1236.22, + "end": 1240.2, + "probability": 0.9888 + }, + { + "start": 1240.9, + "end": 1241.82, + "probability": 0.9985 + }, + { + "start": 1242.52, + "end": 1247.52, + "probability": 0.9328 + }, + { + "start": 1249.12, + "end": 1250.96, + "probability": 0.9021 + }, + { + "start": 1251.08, + "end": 1252.8, + "probability": 0.9137 + }, + { + "start": 1255.62, + "end": 1263.5, + "probability": 0.9281 + }, + { + "start": 1264.66, + "end": 1266.64, + "probability": 0.9972 + }, + { + "start": 1267.46, + "end": 1269.5, + "probability": 0.8184 + }, + { + "start": 1270.74, + "end": 1271.94, + "probability": 0.8712 + }, + { + "start": 1272.9, + "end": 1277.38, + "probability": 0.7814 + }, + { + "start": 1279.86, + "end": 1280.54, + "probability": 0.9502 + }, + { + "start": 1281.76, + "end": 1282.24, + "probability": 0.9619 + }, + { + "start": 1283.3, + "end": 1284.58, + "probability": 0.9621 + }, + { + "start": 1285.0, + "end": 1286.44, + "probability": 0.9966 + }, + { + "start": 1286.56, + "end": 1287.1, + "probability": 0.7235 + }, + { + "start": 1287.76, + "end": 1289.6, + "probability": 0.9816 + }, + { + "start": 1290.98, + "end": 1293.74, + "probability": 0.9448 + }, + { + "start": 1295.0, + "end": 1297.98, + "probability": 0.8423 + }, + { + "start": 1298.82, + "end": 1301.26, + "probability": 0.7346 + }, + { + "start": 1302.32, + "end": 1305.54, + "probability": 0.7579 + }, + { + "start": 1305.78, + "end": 1307.0, + "probability": 0.8974 + }, + { + "start": 1308.32, + "end": 1312.25, + "probability": 0.8827 + }, + { + "start": 1313.18, + "end": 1317.62, + "probability": 0.936 + }, + { + "start": 1318.3, + "end": 1318.84, + "probability": 0.3964 + }, + { + "start": 1319.68, + "end": 1320.32, + "probability": 0.9639 + }, + { + "start": 1321.1, + "end": 1321.84, + "probability": 0.9174 + }, + { + "start": 1322.7, + "end": 1324.46, + "probability": 0.9676 + }, + { + "start": 1325.3, + "end": 1325.72, + "probability": 0.7668 + }, + { + "start": 1326.08, + "end": 1328.84, + "probability": 0.8208 + }, + { + "start": 1328.9, + "end": 1330.92, + "probability": 0.9928 + }, + { + "start": 1331.52, + "end": 1335.02, + "probability": 0.8941 + }, + { + "start": 1335.86, + "end": 1340.22, + "probability": 0.8649 + }, + { + "start": 1340.22, + "end": 1344.3, + "probability": 0.932 + }, + { + "start": 1345.02, + "end": 1347.4, + "probability": 0.9951 + }, + { + "start": 1348.18, + "end": 1349.14, + "probability": 0.9268 + }, + { + "start": 1349.62, + "end": 1350.46, + "probability": 0.6179 + }, + { + "start": 1350.46, + "end": 1352.36, + "probability": 0.9381 + }, + { + "start": 1352.46, + "end": 1354.16, + "probability": 0.5651 + }, + { + "start": 1354.24, + "end": 1354.74, + "probability": 0.8234 + }, + { + "start": 1354.82, + "end": 1355.12, + "probability": 0.5918 + }, + { + "start": 1355.82, + "end": 1356.34, + "probability": 0.5978 + }, + { + "start": 1357.26, + "end": 1360.22, + "probability": 0.9845 + }, + { + "start": 1360.7, + "end": 1361.12, + "probability": 0.8657 + }, + { + "start": 1361.96, + "end": 1365.54, + "probability": 0.9854 + }, + { + "start": 1366.34, + "end": 1370.04, + "probability": 0.9411 + }, + { + "start": 1370.7, + "end": 1374.25, + "probability": 0.9608 + }, + { + "start": 1374.86, + "end": 1379.1, + "probability": 0.9748 + }, + { + "start": 1379.76, + "end": 1380.52, + "probability": 0.8815 + }, + { + "start": 1381.06, + "end": 1383.66, + "probability": 0.8745 + }, + { + "start": 1385.64, + "end": 1386.2, + "probability": 0.5346 + }, + { + "start": 1386.92, + "end": 1388.4, + "probability": 0.9849 + }, + { + "start": 1389.0, + "end": 1390.3, + "probability": 0.5032 + }, + { + "start": 1390.5, + "end": 1391.28, + "probability": 0.9503 + }, + { + "start": 1391.36, + "end": 1394.42, + "probability": 0.9496 + }, + { + "start": 1395.08, + "end": 1397.46, + "probability": 0.7567 + }, + { + "start": 1397.6, + "end": 1399.54, + "probability": 0.8628 + }, + { + "start": 1400.16, + "end": 1401.76, + "probability": 0.9948 + }, + { + "start": 1402.62, + "end": 1402.84, + "probability": 0.6812 + }, + { + "start": 1403.64, + "end": 1405.89, + "probability": 0.99 + }, + { + "start": 1406.44, + "end": 1408.1, + "probability": 0.9853 + }, + { + "start": 1409.06, + "end": 1409.7, + "probability": 0.7943 + }, + { + "start": 1409.9, + "end": 1411.64, + "probability": 0.6048 + }, + { + "start": 1412.28, + "end": 1414.5, + "probability": 0.9313 + }, + { + "start": 1415.96, + "end": 1419.18, + "probability": 0.9946 + }, + { + "start": 1419.18, + "end": 1422.84, + "probability": 0.834 + }, + { + "start": 1423.86, + "end": 1425.44, + "probability": 0.9048 + }, + { + "start": 1426.48, + "end": 1428.25, + "probability": 0.9946 + }, + { + "start": 1428.52, + "end": 1430.74, + "probability": 0.8801 + }, + { + "start": 1432.12, + "end": 1435.04, + "probability": 0.7723 + }, + { + "start": 1436.66, + "end": 1438.48, + "probability": 0.9957 + }, + { + "start": 1439.38, + "end": 1441.62, + "probability": 0.9833 + }, + { + "start": 1441.76, + "end": 1443.62, + "probability": 0.8065 + }, + { + "start": 1443.78, + "end": 1444.84, + "probability": 0.8569 + }, + { + "start": 1445.08, + "end": 1446.64, + "probability": 0.9601 + }, + { + "start": 1447.48, + "end": 1451.7, + "probability": 0.8479 + }, + { + "start": 1451.78, + "end": 1454.06, + "probability": 0.8929 + }, + { + "start": 1454.26, + "end": 1455.22, + "probability": 0.9341 + }, + { + "start": 1456.44, + "end": 1460.72, + "probability": 0.8184 + }, + { + "start": 1461.8, + "end": 1464.22, + "probability": 0.9907 + }, + { + "start": 1464.54, + "end": 1466.84, + "probability": 0.8849 + }, + { + "start": 1467.06, + "end": 1467.96, + "probability": 0.6833 + }, + { + "start": 1469.36, + "end": 1469.58, + "probability": 0.7014 + }, + { + "start": 1470.64, + "end": 1473.1, + "probability": 0.9854 + }, + { + "start": 1473.16, + "end": 1475.08, + "probability": 0.9955 + }, + { + "start": 1478.56, + "end": 1482.18, + "probability": 0.984 + }, + { + "start": 1482.4, + "end": 1482.98, + "probability": 0.4255 + }, + { + "start": 1483.46, + "end": 1484.13, + "probability": 0.9283 + }, + { + "start": 1486.32, + "end": 1487.22, + "probability": 0.6458 + }, + { + "start": 1487.34, + "end": 1489.84, + "probability": 0.9556 + }, + { + "start": 1490.68, + "end": 1491.84, + "probability": 0.6491 + }, + { + "start": 1492.38, + "end": 1493.8, + "probability": 0.9523 + }, + { + "start": 1495.22, + "end": 1499.02, + "probability": 0.9769 + }, + { + "start": 1500.78, + "end": 1502.2, + "probability": 0.6364 + }, + { + "start": 1503.0, + "end": 1504.14, + "probability": 0.9114 + }, + { + "start": 1504.78, + "end": 1506.22, + "probability": 0.6826 + }, + { + "start": 1507.2, + "end": 1508.82, + "probability": 0.9858 + }, + { + "start": 1509.08, + "end": 1511.46, + "probability": 0.9978 + }, + { + "start": 1511.52, + "end": 1513.62, + "probability": 0.992 + }, + { + "start": 1513.62, + "end": 1516.08, + "probability": 0.9736 + }, + { + "start": 1516.48, + "end": 1517.48, + "probability": 0.8351 + }, + { + "start": 1519.24, + "end": 1521.62, + "probability": 0.8746 + }, + { + "start": 1521.88, + "end": 1525.86, + "probability": 0.9665 + }, + { + "start": 1525.86, + "end": 1530.38, + "probability": 0.9734 + }, + { + "start": 1530.98, + "end": 1531.58, + "probability": 0.9328 + }, + { + "start": 1535.16, + "end": 1538.54, + "probability": 0.9797 + }, + { + "start": 1538.66, + "end": 1540.06, + "probability": 0.8574 + }, + { + "start": 1540.64, + "end": 1541.58, + "probability": 0.7919 + }, + { + "start": 1541.78, + "end": 1544.94, + "probability": 0.8787 + }, + { + "start": 1546.12, + "end": 1548.18, + "probability": 0.9974 + }, + { + "start": 1548.32, + "end": 1550.08, + "probability": 0.9937 + }, + { + "start": 1550.8, + "end": 1553.88, + "probability": 0.9917 + }, + { + "start": 1554.74, + "end": 1560.3, + "probability": 0.9499 + }, + { + "start": 1560.39, + "end": 1560.89, + "probability": 0.2126 + }, + { + "start": 1561.32, + "end": 1561.9, + "probability": 0.4967 + }, + { + "start": 1562.28, + "end": 1563.28, + "probability": 0.9934 + }, + { + "start": 1563.42, + "end": 1564.37, + "probability": 0.9526 + }, + { + "start": 1565.82, + "end": 1569.92, + "probability": 0.9509 + }, + { + "start": 1570.54, + "end": 1572.48, + "probability": 0.8983 + }, + { + "start": 1572.48, + "end": 1575.22, + "probability": 0.9909 + }, + { + "start": 1575.96, + "end": 1580.72, + "probability": 0.9861 + }, + { + "start": 1583.4, + "end": 1584.4, + "probability": 0.6376 + }, + { + "start": 1584.66, + "end": 1585.5, + "probability": 0.814 + }, + { + "start": 1585.6, + "end": 1586.32, + "probability": 0.6403 + }, + { + "start": 1586.54, + "end": 1590.66, + "probability": 0.6287 + }, + { + "start": 1591.94, + "end": 1592.38, + "probability": 0.737 + }, + { + "start": 1592.46, + "end": 1593.2, + "probability": 0.8406 + }, + { + "start": 1594.58, + "end": 1598.98, + "probability": 0.9785 + }, + { + "start": 1599.12, + "end": 1600.04, + "probability": 0.9698 + }, + { + "start": 1600.54, + "end": 1602.24, + "probability": 0.9934 + }, + { + "start": 1604.76, + "end": 1607.4, + "probability": 0.8677 + }, + { + "start": 1607.48, + "end": 1608.63, + "probability": 0.9885 + }, + { + "start": 1609.04, + "end": 1609.74, + "probability": 0.9954 + }, + { + "start": 1610.32, + "end": 1613.42, + "probability": 0.9763 + }, + { + "start": 1613.68, + "end": 1617.04, + "probability": 0.8804 + }, + { + "start": 1618.48, + "end": 1619.76, + "probability": 0.703 + }, + { + "start": 1620.48, + "end": 1626.14, + "probability": 0.9884 + }, + { + "start": 1626.76, + "end": 1630.62, + "probability": 0.995 + }, + { + "start": 1630.62, + "end": 1634.66, + "probability": 0.9954 + }, + { + "start": 1635.3, + "end": 1636.42, + "probability": 0.7429 + }, + { + "start": 1637.18, + "end": 1642.66, + "probability": 0.7665 + }, + { + "start": 1643.58, + "end": 1646.64, + "probability": 0.7021 + }, + { + "start": 1648.02, + "end": 1649.17, + "probability": 0.7447 + }, + { + "start": 1650.12, + "end": 1651.52, + "probability": 0.64 + }, + { + "start": 1651.66, + "end": 1653.32, + "probability": 0.855 + }, + { + "start": 1653.46, + "end": 1654.94, + "probability": 0.4881 + }, + { + "start": 1656.22, + "end": 1661.62, + "probability": 0.9531 + }, + { + "start": 1661.7, + "end": 1665.72, + "probability": 0.8424 + }, + { + "start": 1666.46, + "end": 1669.9, + "probability": 0.9525 + }, + { + "start": 1669.9, + "end": 1672.62, + "probability": 0.9944 + }, + { + "start": 1672.62, + "end": 1673.42, + "probability": 0.8177 + }, + { + "start": 1673.94, + "end": 1676.42, + "probability": 0.9858 + }, + { + "start": 1676.56, + "end": 1679.32, + "probability": 0.9976 + }, + { + "start": 1680.74, + "end": 1681.16, + "probability": 0.1949 + }, + { + "start": 1683.0, + "end": 1683.58, + "probability": 0.7629 + }, + { + "start": 1684.16, + "end": 1684.92, + "probability": 0.3977 + }, + { + "start": 1686.47, + "end": 1688.08, + "probability": 0.5595 + }, + { + "start": 1688.18, + "end": 1690.46, + "probability": 0.607 + }, + { + "start": 1691.08, + "end": 1692.08, + "probability": 0.98 + }, + { + "start": 1692.18, + "end": 1694.94, + "probability": 0.9785 + }, + { + "start": 1695.04, + "end": 1695.52, + "probability": 0.7068 + }, + { + "start": 1696.66, + "end": 1698.8, + "probability": 0.902 + }, + { + "start": 1698.8, + "end": 1700.68, + "probability": 0.9875 + }, + { + "start": 1701.24, + "end": 1702.28, + "probability": 0.9538 + }, + { + "start": 1702.4, + "end": 1703.62, + "probability": 0.9258 + }, + { + "start": 1703.66, + "end": 1704.22, + "probability": 0.8833 + }, + { + "start": 1704.3, + "end": 1705.1, + "probability": 0.7272 + }, + { + "start": 1705.54, + "end": 1708.66, + "probability": 0.9332 + }, + { + "start": 1708.8, + "end": 1709.68, + "probability": 0.9929 + }, + { + "start": 1710.28, + "end": 1712.16, + "probability": 0.7896 + }, + { + "start": 1713.52, + "end": 1715.24, + "probability": 0.8809 + }, + { + "start": 1715.74, + "end": 1717.72, + "probability": 0.647 + }, + { + "start": 1717.88, + "end": 1720.54, + "probability": 0.8031 + }, + { + "start": 1720.8, + "end": 1722.1, + "probability": 0.4008 + }, + { + "start": 1722.52, + "end": 1727.74, + "probability": 0.9835 + }, + { + "start": 1728.75, + "end": 1730.5, + "probability": 0.8244 + }, + { + "start": 1731.54, + "end": 1731.92, + "probability": 0.9296 + }, + { + "start": 1732.62, + "end": 1734.34, + "probability": 0.9324 + }, + { + "start": 1734.56, + "end": 1737.9, + "probability": 0.9518 + }, + { + "start": 1738.28, + "end": 1739.56, + "probability": 0.9764 + }, + { + "start": 1740.28, + "end": 1742.48, + "probability": 0.9725 + }, + { + "start": 1745.6, + "end": 1749.22, + "probability": 0.6659 + }, + { + "start": 1749.74, + "end": 1750.1, + "probability": 0.3213 + }, + { + "start": 1750.18, + "end": 1750.54, + "probability": 0.3582 + }, + { + "start": 1750.92, + "end": 1751.58, + "probability": 0.746 + }, + { + "start": 1752.08, + "end": 1752.98, + "probability": 0.955 + }, + { + "start": 1753.34, + "end": 1753.98, + "probability": 0.8511 + }, + { + "start": 1754.4, + "end": 1758.72, + "probability": 0.7636 + }, + { + "start": 1759.16, + "end": 1759.89, + "probability": 0.6283 + }, + { + "start": 1760.04, + "end": 1764.34, + "probability": 0.9465 + }, + { + "start": 1764.98, + "end": 1765.9, + "probability": 0.9953 + }, + { + "start": 1766.1, + "end": 1767.6, + "probability": 0.9478 + }, + { + "start": 1767.86, + "end": 1769.68, + "probability": 0.995 + }, + { + "start": 1770.16, + "end": 1772.61, + "probability": 0.8065 + }, + { + "start": 1773.48, + "end": 1775.64, + "probability": 0.9933 + }, + { + "start": 1776.64, + "end": 1778.16, + "probability": 0.9976 + }, + { + "start": 1778.32, + "end": 1780.3, + "probability": 0.9281 + }, + { + "start": 1781.04, + "end": 1783.08, + "probability": 0.9958 + }, + { + "start": 1784.04, + "end": 1785.9, + "probability": 0.8107 + }, + { + "start": 1786.78, + "end": 1787.68, + "probability": 0.8494 + }, + { + "start": 1788.52, + "end": 1794.3, + "probability": 0.9933 + }, + { + "start": 1794.98, + "end": 1795.72, + "probability": 0.8184 + }, + { + "start": 1796.88, + "end": 1798.45, + "probability": 0.9272 + }, + { + "start": 1799.28, + "end": 1800.42, + "probability": 0.9685 + }, + { + "start": 1800.5, + "end": 1801.94, + "probability": 0.8088 + }, + { + "start": 1802.96, + "end": 1807.98, + "probability": 0.8903 + }, + { + "start": 1808.48, + "end": 1809.7, + "probability": 0.9778 + }, + { + "start": 1809.88, + "end": 1812.6, + "probability": 0.9915 + }, + { + "start": 1813.02, + "end": 1814.04, + "probability": 0.9373 + }, + { + "start": 1814.98, + "end": 1819.12, + "probability": 0.975 + }, + { + "start": 1819.26, + "end": 1820.9, + "probability": 0.806 + }, + { + "start": 1821.44, + "end": 1822.96, + "probability": 0.8151 + }, + { + "start": 1823.32, + "end": 1823.98, + "probability": 0.7884 + }, + { + "start": 1826.74, + "end": 1827.3, + "probability": 0.6862 + }, + { + "start": 1827.48, + "end": 1828.8, + "probability": 0.6947 + }, + { + "start": 1837.2, + "end": 1849.8, + "probability": 0.754 + }, + { + "start": 1850.16, + "end": 1851.06, + "probability": 0.7494 + }, + { + "start": 1851.36, + "end": 1852.86, + "probability": 0.9508 + }, + { + "start": 1853.18, + "end": 1854.12, + "probability": 0.9588 + }, + { + "start": 1854.96, + "end": 1855.82, + "probability": 0.7239 + }, + { + "start": 1857.1, + "end": 1861.12, + "probability": 0.9375 + }, + { + "start": 1861.42, + "end": 1863.56, + "probability": 0.9891 + }, + { + "start": 1864.38, + "end": 1865.0, + "probability": 0.5276 + }, + { + "start": 1865.72, + "end": 1866.48, + "probability": 0.9772 + }, + { + "start": 1868.5, + "end": 1870.61, + "probability": 0.9451 + }, + { + "start": 1870.82, + "end": 1871.3, + "probability": 0.6477 + }, + { + "start": 1871.34, + "end": 1873.8, + "probability": 0.9798 + }, + { + "start": 1874.94, + "end": 1880.88, + "probability": 0.9844 + }, + { + "start": 1881.56, + "end": 1886.9, + "probability": 0.9954 + }, + { + "start": 1888.9, + "end": 1889.9, + "probability": 0.7458 + }, + { + "start": 1891.28, + "end": 1893.92, + "probability": 0.9244 + }, + { + "start": 1895.44, + "end": 1897.54, + "probability": 0.978 + }, + { + "start": 1897.64, + "end": 1900.08, + "probability": 0.867 + }, + { + "start": 1901.74, + "end": 1904.36, + "probability": 0.9759 + }, + { + "start": 1905.2, + "end": 1908.84, + "probability": 0.9914 + }, + { + "start": 1909.4, + "end": 1910.4, + "probability": 0.7631 + }, + { + "start": 1910.56, + "end": 1913.15, + "probability": 0.9611 + }, + { + "start": 1913.94, + "end": 1916.66, + "probability": 0.997 + }, + { + "start": 1917.42, + "end": 1917.5, + "probability": 0.4745 + }, + { + "start": 1917.54, + "end": 1918.0, + "probability": 0.8324 + }, + { + "start": 1918.0, + "end": 1919.68, + "probability": 0.9812 + }, + { + "start": 1919.76, + "end": 1920.73, + "probability": 0.7922 + }, + { + "start": 1922.56, + "end": 1924.84, + "probability": 0.9962 + }, + { + "start": 1926.12, + "end": 1926.9, + "probability": 0.9832 + }, + { + "start": 1927.92, + "end": 1928.88, + "probability": 0.7402 + }, + { + "start": 1929.76, + "end": 1930.5, + "probability": 0.9539 + }, + { + "start": 1931.2, + "end": 1931.96, + "probability": 0.8693 + }, + { + "start": 1932.92, + "end": 1934.0, + "probability": 0.9872 + }, + { + "start": 1934.3, + "end": 1937.58, + "probability": 0.989 + }, + { + "start": 1937.68, + "end": 1939.51, + "probability": 0.9749 + }, + { + "start": 1939.72, + "end": 1940.44, + "probability": 0.9132 + }, + { + "start": 1942.22, + "end": 1946.22, + "probability": 0.9648 + }, + { + "start": 1947.16, + "end": 1949.06, + "probability": 0.6217 + }, + { + "start": 1949.76, + "end": 1952.92, + "probability": 0.6928 + }, + { + "start": 1953.56, + "end": 1954.64, + "probability": 0.6587 + }, + { + "start": 1956.02, + "end": 1958.82, + "probability": 0.9457 + }, + { + "start": 1960.66, + "end": 1962.98, + "probability": 0.9974 + }, + { + "start": 1963.88, + "end": 1965.58, + "probability": 0.9995 + }, + { + "start": 1967.68, + "end": 1970.06, + "probability": 0.7714 + }, + { + "start": 1972.16, + "end": 1976.36, + "probability": 0.9937 + }, + { + "start": 1978.9, + "end": 1979.72, + "probability": 0.85 + }, + { + "start": 1980.22, + "end": 1980.92, + "probability": 0.97 + }, + { + "start": 1981.04, + "end": 1982.62, + "probability": 0.9762 + }, + { + "start": 1982.86, + "end": 1983.96, + "probability": 0.58 + }, + { + "start": 1983.98, + "end": 1984.88, + "probability": 0.9432 + }, + { + "start": 1985.9, + "end": 1987.38, + "probability": 0.9862 + }, + { + "start": 1987.88, + "end": 1988.86, + "probability": 0.8713 + }, + { + "start": 1989.4, + "end": 1990.7, + "probability": 0.897 + }, + { + "start": 1991.56, + "end": 1994.22, + "probability": 0.9868 + }, + { + "start": 1995.3, + "end": 1997.22, + "probability": 0.9626 + }, + { + "start": 1997.72, + "end": 1998.5, + "probability": 0.6489 + }, + { + "start": 1999.1, + "end": 2000.3, + "probability": 0.4143 + }, + { + "start": 2001.24, + "end": 2001.42, + "probability": 0.181 + }, + { + "start": 2001.42, + "end": 2002.64, + "probability": 0.5127 + }, + { + "start": 2003.58, + "end": 2004.78, + "probability": 0.245 + }, + { + "start": 2004.78, + "end": 2006.12, + "probability": 0.9604 + }, + { + "start": 2006.12, + "end": 2007.52, + "probability": 0.9917 + }, + { + "start": 2008.16, + "end": 2009.38, + "probability": 0.6903 + }, + { + "start": 2010.82, + "end": 2013.45, + "probability": 0.9639 + }, + { + "start": 2015.32, + "end": 2015.8, + "probability": 0.9382 + }, + { + "start": 2016.32, + "end": 2018.4, + "probability": 0.871 + }, + { + "start": 2019.5, + "end": 2020.93, + "probability": 0.9976 + }, + { + "start": 2022.86, + "end": 2024.4, + "probability": 0.9988 + }, + { + "start": 2025.2, + "end": 2026.62, + "probability": 0.9864 + }, + { + "start": 2028.5, + "end": 2033.4, + "probability": 0.9049 + }, + { + "start": 2034.62, + "end": 2035.84, + "probability": 0.0407 + }, + { + "start": 2035.84, + "end": 2037.55, + "probability": 0.5837 + }, + { + "start": 2038.08, + "end": 2039.62, + "probability": 0.5701 + }, + { + "start": 2040.28, + "end": 2042.4, + "probability": 0.0041 + }, + { + "start": 2043.04, + "end": 2043.32, + "probability": 0.2213 + }, + { + "start": 2043.32, + "end": 2043.32, + "probability": 0.0564 + }, + { + "start": 2043.32, + "end": 2043.32, + "probability": 0.1541 + }, + { + "start": 2043.32, + "end": 2044.23, + "probability": 0.0939 + }, + { + "start": 2046.02, + "end": 2047.18, + "probability": 0.4116 + }, + { + "start": 2047.18, + "end": 2048.16, + "probability": 0.6098 + }, + { + "start": 2048.3, + "end": 2053.56, + "probability": 0.9609 + }, + { + "start": 2053.56, + "end": 2053.56, + "probability": 0.521 + }, + { + "start": 2053.56, + "end": 2053.58, + "probability": 0.04 + }, + { + "start": 2053.58, + "end": 2055.28, + "probability": 0.5863 + }, + { + "start": 2056.12, + "end": 2056.64, + "probability": 0.7113 + }, + { + "start": 2056.64, + "end": 2058.08, + "probability": 0.9639 + }, + { + "start": 2061.24, + "end": 2061.4, + "probability": 0.3912 + }, + { + "start": 2061.4, + "end": 2061.54, + "probability": 0.0714 + }, + { + "start": 2061.54, + "end": 2062.24, + "probability": 0.7548 + }, + { + "start": 2062.56, + "end": 2063.9, + "probability": 0.4981 + }, + { + "start": 2064.16, + "end": 2065.18, + "probability": 0.6686 + }, + { + "start": 2065.2, + "end": 2066.78, + "probability": 0.9858 + }, + { + "start": 2068.4, + "end": 2069.22, + "probability": 0.4056 + }, + { + "start": 2069.22, + "end": 2070.24, + "probability": 0.3362 + }, + { + "start": 2070.24, + "end": 2071.98, + "probability": 0.2532 + }, + { + "start": 2073.94, + "end": 2075.6, + "probability": 0.3063 + }, + { + "start": 2075.7, + "end": 2075.86, + "probability": 0.5753 + }, + { + "start": 2075.86, + "end": 2076.02, + "probability": 0.6742 + }, + { + "start": 2076.04, + "end": 2077.82, + "probability": 0.74 + }, + { + "start": 2077.84, + "end": 2078.46, + "probability": 0.5348 + }, + { + "start": 2079.96, + "end": 2084.08, + "probability": 0.8718 + }, + { + "start": 2084.24, + "end": 2085.72, + "probability": 0.616 + }, + { + "start": 2086.52, + "end": 2091.52, + "probability": 0.9847 + }, + { + "start": 2092.06, + "end": 2094.8, + "probability": 0.989 + }, + { + "start": 2095.34, + "end": 2096.4, + "probability": 0.0735 + }, + { + "start": 2096.64, + "end": 2096.64, + "probability": 0.1587 + }, + { + "start": 2096.64, + "end": 2099.08, + "probability": 0.7563 + }, + { + "start": 2099.62, + "end": 2100.06, + "probability": 0.8229 + }, + { + "start": 2100.8, + "end": 2103.68, + "probability": 0.8206 + }, + { + "start": 2104.38, + "end": 2104.38, + "probability": 0.4809 + }, + { + "start": 2104.38, + "end": 2104.38, + "probability": 0.6352 + }, + { + "start": 2104.5, + "end": 2105.94, + "probability": 0.3136 + }, + { + "start": 2106.54, + "end": 2107.7, + "probability": 0.9617 + }, + { + "start": 2108.46, + "end": 2109.02, + "probability": 0.0657 + }, + { + "start": 2109.14, + "end": 2109.22, + "probability": 0.1686 + }, + { + "start": 2109.22, + "end": 2109.22, + "probability": 0.285 + }, + { + "start": 2109.22, + "end": 2110.68, + "probability": 0.7338 + }, + { + "start": 2110.8, + "end": 2111.6, + "probability": 0.9283 + }, + { + "start": 2111.78, + "end": 2112.94, + "probability": 0.9949 + }, + { + "start": 2113.56, + "end": 2115.26, + "probability": 0.9547 + }, + { + "start": 2115.44, + "end": 2115.44, + "probability": 0.1707 + }, + { + "start": 2115.44, + "end": 2115.46, + "probability": 0.3433 + }, + { + "start": 2115.46, + "end": 2118.22, + "probability": 0.734 + }, + { + "start": 2118.44, + "end": 2119.76, + "probability": 0.6866 + }, + { + "start": 2120.2, + "end": 2123.2, + "probability": 0.9741 + }, + { + "start": 2124.36, + "end": 2125.55, + "probability": 0.0027 + }, + { + "start": 2125.66, + "end": 2125.8, + "probability": 0.4994 + }, + { + "start": 2125.8, + "end": 2126.14, + "probability": 0.6165 + }, + { + "start": 2126.34, + "end": 2127.94, + "probability": 0.3841 + }, + { + "start": 2128.38, + "end": 2130.98, + "probability": 0.951 + }, + { + "start": 2131.58, + "end": 2134.5, + "probability": 0.9509 + }, + { + "start": 2134.58, + "end": 2138.12, + "probability": 0.7991 + }, + { + "start": 2138.12, + "end": 2138.68, + "probability": 0.0638 + }, + { + "start": 2138.86, + "end": 2140.0, + "probability": 0.5731 + }, + { + "start": 2140.26, + "end": 2141.44, + "probability": 0.6939 + }, + { + "start": 2141.8, + "end": 2142.58, + "probability": 0.0029 + }, + { + "start": 2143.44, + "end": 2146.02, + "probability": 0.8427 + }, + { + "start": 2146.16, + "end": 2149.67, + "probability": 0.1752 + }, + { + "start": 2151.08, + "end": 2152.74, + "probability": 0.0907 + }, + { + "start": 2152.74, + "end": 2152.74, + "probability": 0.1616 + }, + { + "start": 2152.74, + "end": 2152.74, + "probability": 0.0098 + }, + { + "start": 2152.74, + "end": 2154.6, + "probability": 0.5042 + }, + { + "start": 2154.96, + "end": 2155.68, + "probability": 0.3792 + }, + { + "start": 2155.68, + "end": 2156.74, + "probability": 0.1876 + }, + { + "start": 2156.74, + "end": 2158.08, + "probability": 0.749 + }, + { + "start": 2158.14, + "end": 2160.7, + "probability": 0.6614 + }, + { + "start": 2161.94, + "end": 2161.94, + "probability": 0.0264 + }, + { + "start": 2161.94, + "end": 2161.94, + "probability": 0.124 + }, + { + "start": 2161.94, + "end": 2161.94, + "probability": 0.1124 + }, + { + "start": 2161.94, + "end": 2161.94, + "probability": 0.2414 + }, + { + "start": 2161.94, + "end": 2165.04, + "probability": 0.6425 + }, + { + "start": 2166.32, + "end": 2166.66, + "probability": 0.3863 + }, + { + "start": 2167.04, + "end": 2168.18, + "probability": 0.5386 + }, + { + "start": 2169.0, + "end": 2169.22, + "probability": 0.1737 + }, + { + "start": 2169.22, + "end": 2171.0, + "probability": 0.7653 + }, + { + "start": 2171.14, + "end": 2172.66, + "probability": 0.7665 + }, + { + "start": 2172.8, + "end": 2174.32, + "probability": 0.8607 + }, + { + "start": 2174.4, + "end": 2174.9, + "probability": 0.3636 + }, + { + "start": 2174.94, + "end": 2175.04, + "probability": 0.0024 + }, + { + "start": 2175.14, + "end": 2175.18, + "probability": 0.0709 + }, + { + "start": 2175.18, + "end": 2177.5, + "probability": 0.736 + }, + { + "start": 2177.72, + "end": 2180.24, + "probability": 0.9084 + }, + { + "start": 2180.6, + "end": 2180.98, + "probability": 0.001 + }, + { + "start": 2181.02, + "end": 2182.24, + "probability": 0.7986 + }, + { + "start": 2182.28, + "end": 2185.38, + "probability": 0.3307 + }, + { + "start": 2185.38, + "end": 2185.72, + "probability": 0.5927 + }, + { + "start": 2186.82, + "end": 2186.82, + "probability": 0.5802 + }, + { + "start": 2186.82, + "end": 2190.84, + "probability": 0.3702 + }, + { + "start": 2190.88, + "end": 2191.92, + "probability": 0.9178 + }, + { + "start": 2191.92, + "end": 2192.35, + "probability": 0.0734 + }, + { + "start": 2193.1, + "end": 2194.96, + "probability": 0.9878 + }, + { + "start": 2195.58, + "end": 2198.2, + "probability": 0.6534 + }, + { + "start": 2198.38, + "end": 2200.76, + "probability": 0.6255 + }, + { + "start": 2200.8, + "end": 2201.52, + "probability": 0.9265 + }, + { + "start": 2201.58, + "end": 2203.12, + "probability": 0.8746 + }, + { + "start": 2203.3, + "end": 2203.86, + "probability": 0.7646 + }, + { + "start": 2203.88, + "end": 2207.5, + "probability": 0.7344 + }, + { + "start": 2207.5, + "end": 2208.3, + "probability": 0.6086 + }, + { + "start": 2208.78, + "end": 2208.8, + "probability": 0.0953 + }, + { + "start": 2208.8, + "end": 2208.8, + "probability": 0.1092 + }, + { + "start": 2208.8, + "end": 2209.94, + "probability": 0.5412 + }, + { + "start": 2209.94, + "end": 2210.36, + "probability": 0.7609 + }, + { + "start": 2210.84, + "end": 2211.86, + "probability": 0.1181 + }, + { + "start": 2212.16, + "end": 2214.06, + "probability": 0.6199 + }, + { + "start": 2214.22, + "end": 2215.84, + "probability": 0.905 + }, + { + "start": 2216.1, + "end": 2216.4, + "probability": 0.4885 + }, + { + "start": 2217.85, + "end": 2220.14, + "probability": 0.2617 + }, + { + "start": 2220.2, + "end": 2220.38, + "probability": 0.3823 + }, + { + "start": 2220.38, + "end": 2222.46, + "probability": 0.9356 + }, + { + "start": 2223.12, + "end": 2226.06, + "probability": 0.3698 + }, + { + "start": 2226.96, + "end": 2228.14, + "probability": 0.1764 + }, + { + "start": 2228.4, + "end": 2229.26, + "probability": 0.0997 + }, + { + "start": 2229.38, + "end": 2229.64, + "probability": 0.0043 + }, + { + "start": 2229.7, + "end": 2229.72, + "probability": 0.2005 + }, + { + "start": 2229.72, + "end": 2231.62, + "probability": 0.0857 + }, + { + "start": 2231.62, + "end": 2234.64, + "probability": 0.0423 + }, + { + "start": 2234.88, + "end": 2236.14, + "probability": 0.038 + }, + { + "start": 2236.36, + "end": 2237.38, + "probability": 0.8195 + }, + { + "start": 2238.15, + "end": 2239.58, + "probability": 0.6224 + }, + { + "start": 2239.7, + "end": 2240.02, + "probability": 0.1586 + }, + { + "start": 2240.02, + "end": 2240.84, + "probability": 0.0228 + }, + { + "start": 2241.02, + "end": 2243.8, + "probability": 0.0495 + }, + { + "start": 2243.9, + "end": 2244.38, + "probability": 0.4222 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2318.0, + "end": 2318.0, + "probability": 0.0 + }, + { + "start": 2327.48, + "end": 2328.06, + "probability": 0.0574 + }, + { + "start": 2328.42, + "end": 2336.24, + "probability": 0.0769 + }, + { + "start": 2336.5, + "end": 2337.66, + "probability": 0.0362 + }, + { + "start": 2343.32, + "end": 2344.9, + "probability": 0.0291 + }, + { + "start": 2344.9, + "end": 2345.48, + "probability": 0.0842 + }, + { + "start": 2346.72, + "end": 2347.65, + "probability": 0.1401 + }, + { + "start": 2348.3, + "end": 2351.42, + "probability": 0.1107 + }, + { + "start": 2354.47, + "end": 2356.56, + "probability": 0.1457 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.0, + "end": 2441.0, + "probability": 0.0 + }, + { + "start": 2441.08, + "end": 2441.46, + "probability": 0.0903 + }, + { + "start": 2441.46, + "end": 2441.6, + "probability": 0.1606 + }, + { + "start": 2442.36, + "end": 2442.44, + "probability": 0.1502 + }, + { + "start": 2442.44, + "end": 2442.86, + "probability": 0.4778 + }, + { + "start": 2443.24, + "end": 2444.72, + "probability": 0.9111 + }, + { + "start": 2445.5, + "end": 2445.72, + "probability": 0.1476 + }, + { + "start": 2445.72, + "end": 2447.96, + "probability": 0.9392 + }, + { + "start": 2447.96, + "end": 2451.86, + "probability": 0.9028 + }, + { + "start": 2451.86, + "end": 2452.04, + "probability": 0.1519 + }, + { + "start": 2452.7, + "end": 2455.04, + "probability": 0.3054 + }, + { + "start": 2455.06, + "end": 2455.06, + "probability": 0.719 + }, + { + "start": 2455.06, + "end": 2458.76, + "probability": 0.5216 + }, + { + "start": 2459.36, + "end": 2462.23, + "probability": 0.6789 + }, + { + "start": 2463.32, + "end": 2464.22, + "probability": 0.9698 + }, + { + "start": 2465.02, + "end": 2465.92, + "probability": 0.9717 + }, + { + "start": 2466.54, + "end": 2467.44, + "probability": 0.9206 + }, + { + "start": 2467.46, + "end": 2469.4, + "probability": 0.7513 + }, + { + "start": 2469.44, + "end": 2469.88, + "probability": 0.7157 + }, + { + "start": 2469.88, + "end": 2470.5, + "probability": 0.3341 + }, + { + "start": 2470.9, + "end": 2471.0, + "probability": 0.2365 + }, + { + "start": 2471.0, + "end": 2471.4, + "probability": 0.2966 + }, + { + "start": 2471.46, + "end": 2474.8, + "probability": 0.8113 + }, + { + "start": 2474.88, + "end": 2475.5, + "probability": 0.6677 + }, + { + "start": 2475.58, + "end": 2478.88, + "probability": 0.9212 + }, + { + "start": 2479.9, + "end": 2482.76, + "probability": 0.0591 + }, + { + "start": 2482.76, + "end": 2482.76, + "probability": 0.0632 + }, + { + "start": 2482.76, + "end": 2483.36, + "probability": 0.3547 + }, + { + "start": 2483.6, + "end": 2484.58, + "probability": 0.8959 + }, + { + "start": 2484.9, + "end": 2486.49, + "probability": 0.8374 + }, + { + "start": 2486.94, + "end": 2488.94, + "probability": 0.7997 + }, + { + "start": 2489.08, + "end": 2489.12, + "probability": 0.0811 + }, + { + "start": 2489.36, + "end": 2493.38, + "probability": 0.7421 + }, + { + "start": 2493.56, + "end": 2497.86, + "probability": 0.8205 + }, + { + "start": 2498.26, + "end": 2499.81, + "probability": 0.8684 + }, + { + "start": 2500.26, + "end": 2501.77, + "probability": 0.5421 + }, + { + "start": 2502.36, + "end": 2503.12, + "probability": 0.0823 + }, + { + "start": 2503.86, + "end": 2504.06, + "probability": 0.4364 + }, + { + "start": 2504.06, + "end": 2504.42, + "probability": 0.0237 + }, + { + "start": 2504.42, + "end": 2504.62, + "probability": 0.0548 + }, + { + "start": 2504.76, + "end": 2505.25, + "probability": 0.0913 + }, + { + "start": 2507.34, + "end": 2510.7, + "probability": 0.7655 + }, + { + "start": 2511.3, + "end": 2513.96, + "probability": 0.8528 + }, + { + "start": 2514.02, + "end": 2516.46, + "probability": 0.5885 + }, + { + "start": 2516.56, + "end": 2520.14, + "probability": 0.8604 + }, + { + "start": 2520.18, + "end": 2520.92, + "probability": 0.3649 + }, + { + "start": 2520.92, + "end": 2522.64, + "probability": 0.8887 + }, + { + "start": 2522.76, + "end": 2523.94, + "probability": 0.9121 + }, + { + "start": 2523.94, + "end": 2524.32, + "probability": 0.8934 + }, + { + "start": 2524.86, + "end": 2526.64, + "probability": 0.8024 + }, + { + "start": 2527.86, + "end": 2528.98, + "probability": 0.8555 + }, + { + "start": 2529.8, + "end": 2530.04, + "probability": 0.9768 + }, + { + "start": 2530.84, + "end": 2532.08, + "probability": 0.973 + }, + { + "start": 2532.88, + "end": 2535.3, + "probability": 0.9985 + }, + { + "start": 2535.9, + "end": 2537.18, + "probability": 0.6813 + }, + { + "start": 2537.92, + "end": 2538.9, + "probability": 0.8197 + }, + { + "start": 2539.08, + "end": 2541.14, + "probability": 0.7367 + }, + { + "start": 2541.32, + "end": 2541.5, + "probability": 0.5859 + }, + { + "start": 2541.5, + "end": 2544.38, + "probability": 0.9841 + }, + { + "start": 2544.38, + "end": 2546.62, + "probability": 0.9912 + }, + { + "start": 2546.92, + "end": 2547.58, + "probability": 0.2614 + }, + { + "start": 2548.16, + "end": 2549.86, + "probability": 0.7708 + }, + { + "start": 2550.02, + "end": 2551.4, + "probability": 0.9761 + }, + { + "start": 2552.16, + "end": 2555.14, + "probability": 0.9993 + }, + { + "start": 2555.14, + "end": 2557.58, + "probability": 0.8095 + }, + { + "start": 2557.7, + "end": 2558.11, + "probability": 0.5756 + }, + { + "start": 2558.94, + "end": 2562.72, + "probability": 0.9253 + }, + { + "start": 2563.28, + "end": 2565.46, + "probability": 0.9901 + }, + { + "start": 2565.48, + "end": 2566.36, + "probability": 0.982 + }, + { + "start": 2566.44, + "end": 2567.88, + "probability": 0.9277 + }, + { + "start": 2568.62, + "end": 2572.32, + "probability": 0.9954 + }, + { + "start": 2572.92, + "end": 2573.7, + "probability": 0.9153 + }, + { + "start": 2573.86, + "end": 2576.22, + "probability": 0.9841 + }, + { + "start": 2576.66, + "end": 2577.72, + "probability": 0.9771 + }, + { + "start": 2578.14, + "end": 2579.32, + "probability": 0.5668 + }, + { + "start": 2579.8, + "end": 2580.46, + "probability": 0.7136 + }, + { + "start": 2583.58, + "end": 2584.48, + "probability": 0.5373 + }, + { + "start": 2584.48, + "end": 2585.24, + "probability": 0.5598 + }, + { + "start": 2585.92, + "end": 2587.4, + "probability": 0.7259 + }, + { + "start": 2588.08, + "end": 2589.42, + "probability": 0.8359 + }, + { + "start": 2591.02, + "end": 2593.16, + "probability": 0.1523 + }, + { + "start": 2598.1, + "end": 2599.54, + "probability": 0.0344 + }, + { + "start": 2612.52, + "end": 2612.78, + "probability": 0.0534 + }, + { + "start": 2612.78, + "end": 2612.78, + "probability": 0.1629 + }, + { + "start": 2612.78, + "end": 2612.78, + "probability": 0.0127 + }, + { + "start": 2612.78, + "end": 2613.42, + "probability": 0.4321 + }, + { + "start": 2613.5, + "end": 2614.96, + "probability": 0.9214 + }, + { + "start": 2615.04, + "end": 2616.06, + "probability": 0.8173 + }, + { + "start": 2616.14, + "end": 2618.8, + "probability": 0.8364 + }, + { + "start": 2624.7, + "end": 2626.52, + "probability": 0.6131 + }, + { + "start": 2628.18, + "end": 2632.42, + "probability": 0.9947 + }, + { + "start": 2633.76, + "end": 2638.06, + "probability": 0.9929 + }, + { + "start": 2639.32, + "end": 2640.44, + "probability": 0.9761 + }, + { + "start": 2641.92, + "end": 2644.16, + "probability": 0.8643 + }, + { + "start": 2644.98, + "end": 2647.82, + "probability": 0.9252 + }, + { + "start": 2648.4, + "end": 2649.18, + "probability": 0.6712 + }, + { + "start": 2650.24, + "end": 2652.22, + "probability": 0.9551 + }, + { + "start": 2653.74, + "end": 2658.44, + "probability": 0.9058 + }, + { + "start": 2659.06, + "end": 2659.86, + "probability": 0.9967 + }, + { + "start": 2660.7, + "end": 2667.4, + "probability": 0.9467 + }, + { + "start": 2668.26, + "end": 2671.26, + "probability": 0.8174 + }, + { + "start": 2672.4, + "end": 2673.94, + "probability": 0.9083 + }, + { + "start": 2675.04, + "end": 2678.92, + "probability": 0.9766 + }, + { + "start": 2679.74, + "end": 2680.68, + "probability": 0.8132 + }, + { + "start": 2682.42, + "end": 2683.56, + "probability": 0.6495 + }, + { + "start": 2685.96, + "end": 2687.24, + "probability": 0.5606 + }, + { + "start": 2687.98, + "end": 2689.9, + "probability": 0.9137 + }, + { + "start": 2691.4, + "end": 2692.36, + "probability": 0.9119 + }, + { + "start": 2693.2, + "end": 2694.84, + "probability": 0.9734 + }, + { + "start": 2696.4, + "end": 2697.14, + "probability": 0.8213 + }, + { + "start": 2697.96, + "end": 2698.8, + "probability": 0.9081 + }, + { + "start": 2699.32, + "end": 2699.78, + "probability": 0.6912 + }, + { + "start": 2701.37, + "end": 2702.4, + "probability": 0.9388 + }, + { + "start": 2703.24, + "end": 2705.0, + "probability": 0.8713 + }, + { + "start": 2705.7, + "end": 2706.7, + "probability": 0.7574 + }, + { + "start": 2707.22, + "end": 2707.84, + "probability": 0.8896 + }, + { + "start": 2709.28, + "end": 2710.38, + "probability": 0.7475 + }, + { + "start": 2711.24, + "end": 2712.54, + "probability": 0.8799 + }, + { + "start": 2713.16, + "end": 2714.74, + "probability": 0.7621 + }, + { + "start": 2715.68, + "end": 2717.58, + "probability": 0.9404 + }, + { + "start": 2718.52, + "end": 2720.04, + "probability": 0.9979 + }, + { + "start": 2721.0, + "end": 2723.26, + "probability": 0.9044 + }, + { + "start": 2724.18, + "end": 2728.24, + "probability": 0.9918 + }, + { + "start": 2730.1, + "end": 2731.94, + "probability": 0.8128 + }, + { + "start": 2732.56, + "end": 2733.44, + "probability": 0.7757 + }, + { + "start": 2733.96, + "end": 2734.92, + "probability": 0.8654 + }, + { + "start": 2735.8, + "end": 2737.4, + "probability": 0.9729 + }, + { + "start": 2738.46, + "end": 2739.6, + "probability": 0.9638 + }, + { + "start": 2740.2, + "end": 2742.66, + "probability": 0.7098 + }, + { + "start": 2743.8, + "end": 2744.14, + "probability": 0.7817 + }, + { + "start": 2744.66, + "end": 2747.28, + "probability": 0.5017 + }, + { + "start": 2747.28, + "end": 2747.44, + "probability": 0.3121 + }, + { + "start": 2747.98, + "end": 2749.6, + "probability": 0.9377 + }, + { + "start": 2750.66, + "end": 2751.86, + "probability": 0.9725 + }, + { + "start": 2753.54, + "end": 2755.22, + "probability": 0.8992 + }, + { + "start": 2756.72, + "end": 2759.48, + "probability": 0.9772 + }, + { + "start": 2761.38, + "end": 2763.4, + "probability": 0.7963 + }, + { + "start": 2763.98, + "end": 2764.88, + "probability": 0.8848 + }, + { + "start": 2765.56, + "end": 2766.3, + "probability": 0.9492 + }, + { + "start": 2766.86, + "end": 2767.66, + "probability": 0.9763 + }, + { + "start": 2769.28, + "end": 2770.04, + "probability": 0.8407 + }, + { + "start": 2770.82, + "end": 2776.88, + "probability": 0.9949 + }, + { + "start": 2777.64, + "end": 2780.52, + "probability": 0.9948 + }, + { + "start": 2781.12, + "end": 2784.6, + "probability": 0.9941 + }, + { + "start": 2784.72, + "end": 2786.12, + "probability": 0.8297 + }, + { + "start": 2786.96, + "end": 2787.6, + "probability": 0.7878 + }, + { + "start": 2788.44, + "end": 2790.74, + "probability": 0.8588 + }, + { + "start": 2791.28, + "end": 2792.02, + "probability": 0.7478 + }, + { + "start": 2792.78, + "end": 2793.42, + "probability": 0.7697 + }, + { + "start": 2794.26, + "end": 2794.76, + "probability": 0.8271 + }, + { + "start": 2797.14, + "end": 2799.2, + "probability": 0.9917 + }, + { + "start": 2799.4, + "end": 2800.54, + "probability": 0.9074 + }, + { + "start": 2824.12, + "end": 2825.9, + "probability": 0.6406 + }, + { + "start": 2827.42, + "end": 2832.04, + "probability": 0.8664 + }, + { + "start": 2833.38, + "end": 2834.06, + "probability": 0.9709 + }, + { + "start": 2835.64, + "end": 2838.1, + "probability": 0.9802 + }, + { + "start": 2838.96, + "end": 2840.38, + "probability": 0.7227 + }, + { + "start": 2842.34, + "end": 2845.02, + "probability": 0.9272 + }, + { + "start": 2846.5, + "end": 2849.94, + "probability": 0.993 + }, + { + "start": 2850.0, + "end": 2854.64, + "probability": 0.999 + }, + { + "start": 2856.04, + "end": 2860.12, + "probability": 0.9575 + }, + { + "start": 2860.7, + "end": 2864.66, + "probability": 0.9391 + }, + { + "start": 2864.66, + "end": 2868.64, + "probability": 0.8928 + }, + { + "start": 2869.72, + "end": 2870.26, + "probability": 0.8309 + }, + { + "start": 2870.44, + "end": 2871.34, + "probability": 0.9708 + }, + { + "start": 2871.46, + "end": 2871.82, + "probability": 0.9867 + }, + { + "start": 2871.92, + "end": 2872.3, + "probability": 0.9046 + }, + { + "start": 2872.44, + "end": 2872.8, + "probability": 0.9896 + }, + { + "start": 2873.02, + "end": 2873.84, + "probability": 0.6917 + }, + { + "start": 2875.1, + "end": 2878.28, + "probability": 0.9606 + }, + { + "start": 2880.38, + "end": 2881.4, + "probability": 0.948 + }, + { + "start": 2883.02, + "end": 2885.64, + "probability": 0.9983 + }, + { + "start": 2886.74, + "end": 2889.42, + "probability": 0.8998 + }, + { + "start": 2890.46, + "end": 2892.26, + "probability": 0.9888 + }, + { + "start": 2893.78, + "end": 2894.72, + "probability": 0.8682 + }, + { + "start": 2895.32, + "end": 2899.84, + "probability": 0.9932 + }, + { + "start": 2899.84, + "end": 2903.24, + "probability": 0.9987 + }, + { + "start": 2904.36, + "end": 2905.0, + "probability": 0.7755 + }, + { + "start": 2905.4, + "end": 2906.42, + "probability": 0.9966 + }, + { + "start": 2906.68, + "end": 2907.34, + "probability": 0.8677 + }, + { + "start": 2907.54, + "end": 2908.38, + "probability": 0.9541 + }, + { + "start": 2908.88, + "end": 2910.86, + "probability": 0.998 + }, + { + "start": 2911.86, + "end": 2915.02, + "probability": 0.988 + }, + { + "start": 2916.25, + "end": 2919.36, + "probability": 0.9811 + }, + { + "start": 2920.02, + "end": 2923.54, + "probability": 0.9846 + }, + { + "start": 2924.92, + "end": 2927.26, + "probability": 0.9973 + }, + { + "start": 2928.2, + "end": 2929.9, + "probability": 0.9842 + }, + { + "start": 2931.26, + "end": 2931.56, + "probability": 0.5977 + }, + { + "start": 2931.64, + "end": 2935.76, + "probability": 0.9366 + }, + { + "start": 2935.88, + "end": 2936.36, + "probability": 0.6573 + }, + { + "start": 2938.08, + "end": 2941.6, + "probability": 0.9801 + }, + { + "start": 2943.33, + "end": 2945.52, + "probability": 0.6754 + }, + { + "start": 2946.18, + "end": 2948.58, + "probability": 0.8434 + }, + { + "start": 2949.42, + "end": 2952.84, + "probability": 0.9976 + }, + { + "start": 2953.42, + "end": 2954.4, + "probability": 0.7431 + }, + { + "start": 2955.42, + "end": 2956.62, + "probability": 0.5925 + }, + { + "start": 2956.84, + "end": 2959.58, + "probability": 0.8581 + }, + { + "start": 2960.2, + "end": 2961.22, + "probability": 0.9734 + }, + { + "start": 2961.92, + "end": 2964.46, + "probability": 0.9624 + }, + { + "start": 2964.98, + "end": 2966.72, + "probability": 0.7779 + }, + { + "start": 2967.58, + "end": 2967.94, + "probability": 0.7294 + }, + { + "start": 2968.02, + "end": 2969.06, + "probability": 0.938 + }, + { + "start": 2969.54, + "end": 2971.42, + "probability": 0.8914 + }, + { + "start": 2972.06, + "end": 2977.6, + "probability": 0.8747 + }, + { + "start": 2979.64, + "end": 2982.2, + "probability": 0.8411 + }, + { + "start": 2983.3, + "end": 2986.56, + "probability": 0.9891 + }, + { + "start": 2986.58, + "end": 2990.7, + "probability": 0.946 + }, + { + "start": 2990.96, + "end": 2991.68, + "probability": 0.7321 + }, + { + "start": 2991.84, + "end": 2992.94, + "probability": 0.7605 + }, + { + "start": 2995.14, + "end": 2997.14, + "probability": 0.7047 + }, + { + "start": 2997.24, + "end": 2997.76, + "probability": 0.6683 + }, + { + "start": 2998.36, + "end": 2999.78, + "probability": 0.8849 + }, + { + "start": 3000.46, + "end": 3004.64, + "probability": 0.9792 + }, + { + "start": 3005.06, + "end": 3006.24, + "probability": 0.9518 + }, + { + "start": 3006.34, + "end": 3008.82, + "probability": 0.8871 + }, + { + "start": 3009.82, + "end": 3010.34, + "probability": 0.5241 + }, + { + "start": 3011.3, + "end": 3011.62, + "probability": 0.3448 + }, + { + "start": 3011.78, + "end": 3013.2, + "probability": 0.8217 + }, + { + "start": 3017.78, + "end": 3018.38, + "probability": 0.478 + }, + { + "start": 3018.38, + "end": 3019.06, + "probability": 0.0153 + }, + { + "start": 3028.64, + "end": 3029.66, + "probability": 0.2311 + }, + { + "start": 3039.2, + "end": 3039.76, + "probability": 0.0368 + }, + { + "start": 3044.06, + "end": 3045.54, + "probability": 0.752 + }, + { + "start": 3045.54, + "end": 3048.26, + "probability": 0.2889 + }, + { + "start": 3048.26, + "end": 3048.26, + "probability": 0.0189 + }, + { + "start": 3048.26, + "end": 3048.26, + "probability": 0.472 + }, + { + "start": 3048.26, + "end": 3049.12, + "probability": 0.8189 + }, + { + "start": 3049.34, + "end": 3049.62, + "probability": 0.8206 + }, + { + "start": 3054.44, + "end": 3055.62, + "probability": 0.3951 + }, + { + "start": 3056.36, + "end": 3057.92, + "probability": 0.9065 + }, + { + "start": 3061.96, + "end": 3063.28, + "probability": 0.9463 + }, + { + "start": 3067.18, + "end": 3067.76, + "probability": 0.7573 + }, + { + "start": 3068.12, + "end": 3068.36, + "probability": 0.1569 + }, + { + "start": 3068.76, + "end": 3069.3, + "probability": 0.887 + }, + { + "start": 3069.84, + "end": 3070.56, + "probability": 0.6801 + }, + { + "start": 3070.74, + "end": 3072.28, + "probability": 0.7227 + }, + { + "start": 3072.58, + "end": 3073.34, + "probability": 0.1915 + }, + { + "start": 3073.34, + "end": 3075.2, + "probability": 0.7501 + }, + { + "start": 3075.76, + "end": 3076.88, + "probability": 0.8696 + }, + { + "start": 3078.06, + "end": 3080.66, + "probability": 0.7525 + }, + { + "start": 3081.34, + "end": 3083.0, + "probability": 0.9677 + }, + { + "start": 3083.68, + "end": 3086.06, + "probability": 0.9819 + }, + { + "start": 3087.26, + "end": 3087.84, + "probability": 0.8463 + }, + { + "start": 3088.76, + "end": 3089.78, + "probability": 0.7085 + }, + { + "start": 3090.5, + "end": 3093.82, + "probability": 0.9761 + }, + { + "start": 3094.46, + "end": 3096.3, + "probability": 0.9413 + }, + { + "start": 3096.9, + "end": 3097.54, + "probability": 0.6363 + }, + { + "start": 3098.48, + "end": 3101.4, + "probability": 0.8647 + }, + { + "start": 3102.28, + "end": 3103.48, + "probability": 0.7536 + }, + { + "start": 3106.66, + "end": 3110.08, + "probability": 0.8101 + }, + { + "start": 3110.8, + "end": 3112.92, + "probability": 0.7962 + }, + { + "start": 3113.5, + "end": 3118.26, + "probability": 0.772 + }, + { + "start": 3120.72, + "end": 3121.08, + "probability": 0.9461 + }, + { + "start": 3122.46, + "end": 3123.66, + "probability": 0.9805 + }, + { + "start": 3124.66, + "end": 3129.16, + "probability": 0.9566 + }, + { + "start": 3129.16, + "end": 3132.28, + "probability": 0.9325 + }, + { + "start": 3133.94, + "end": 3134.74, + "probability": 0.7119 + }, + { + "start": 3135.56, + "end": 3138.46, + "probability": 0.698 + }, + { + "start": 3139.06, + "end": 3140.98, + "probability": 0.4512 + }, + { + "start": 3141.34, + "end": 3143.24, + "probability": 0.9617 + }, + { + "start": 3143.66, + "end": 3144.34, + "probability": 0.7208 + }, + { + "start": 3144.48, + "end": 3146.4, + "probability": 0.9697 + }, + { + "start": 3147.86, + "end": 3149.34, + "probability": 0.9983 + }, + { + "start": 3151.28, + "end": 3154.36, + "probability": 0.9425 + }, + { + "start": 3155.42, + "end": 3156.4, + "probability": 0.8633 + }, + { + "start": 3157.3, + "end": 3158.84, + "probability": 0.687 + }, + { + "start": 3159.82, + "end": 3160.54, + "probability": 0.8017 + }, + { + "start": 3161.4, + "end": 3164.18, + "probability": 0.8676 + }, + { + "start": 3165.24, + "end": 3166.42, + "probability": 0.8841 + }, + { + "start": 3168.46, + "end": 3170.58, + "probability": 0.7686 + }, + { + "start": 3172.46, + "end": 3173.4, + "probability": 0.9373 + }, + { + "start": 3177.26, + "end": 3177.88, + "probability": 0.6965 + }, + { + "start": 3178.6, + "end": 3181.27, + "probability": 0.5364 + }, + { + "start": 3181.94, + "end": 3183.86, + "probability": 0.8704 + }, + { + "start": 3184.14, + "end": 3184.42, + "probability": 0.9311 + }, + { + "start": 3185.24, + "end": 3189.48, + "probability": 0.9703 + }, + { + "start": 3190.24, + "end": 3191.2, + "probability": 0.7563 + }, + { + "start": 3192.16, + "end": 3194.41, + "probability": 0.7105 + }, + { + "start": 3195.68, + "end": 3198.52, + "probability": 0.974 + }, + { + "start": 3199.5, + "end": 3201.8, + "probability": 0.9519 + }, + { + "start": 3202.12, + "end": 3204.28, + "probability": 0.9363 + }, + { + "start": 3205.84, + "end": 3208.82, + "probability": 0.915 + }, + { + "start": 3209.72, + "end": 3211.4, + "probability": 0.9925 + }, + { + "start": 3211.98, + "end": 3213.1, + "probability": 0.7035 + }, + { + "start": 3214.82, + "end": 3217.98, + "probability": 0.7887 + }, + { + "start": 3218.56, + "end": 3221.86, + "probability": 0.9749 + }, + { + "start": 3222.64, + "end": 3223.88, + "probability": 0.758 + }, + { + "start": 3225.6, + "end": 3230.72, + "probability": 0.9588 + }, + { + "start": 3231.14, + "end": 3232.06, + "probability": 0.7563 + }, + { + "start": 3232.2, + "end": 3235.38, + "probability": 0.9088 + }, + { + "start": 3235.86, + "end": 3238.06, + "probability": 0.777 + }, + { + "start": 3238.44, + "end": 3240.86, + "probability": 0.9894 + }, + { + "start": 3241.94, + "end": 3244.7, + "probability": 0.9351 + }, + { + "start": 3245.5, + "end": 3249.12, + "probability": 0.6329 + }, + { + "start": 3250.98, + "end": 3252.84, + "probability": 0.7806 + }, + { + "start": 3253.0, + "end": 3255.7, + "probability": 0.946 + }, + { + "start": 3255.88, + "end": 3257.39, + "probability": 0.875 + }, + { + "start": 3257.98, + "end": 3258.7, + "probability": 0.4697 + }, + { + "start": 3259.74, + "end": 3261.82, + "probability": 0.9707 + }, + { + "start": 3262.26, + "end": 3262.92, + "probability": 0.431 + }, + { + "start": 3262.98, + "end": 3263.26, + "probability": 0.825 + }, + { + "start": 3265.28, + "end": 3268.86, + "probability": 0.6158 + }, + { + "start": 3269.66, + "end": 3272.12, + "probability": 0.9131 + }, + { + "start": 3273.0, + "end": 3274.76, + "probability": 0.7149 + }, + { + "start": 3275.44, + "end": 3281.92, + "probability": 0.9323 + }, + { + "start": 3284.18, + "end": 3287.82, + "probability": 0.8093 + }, + { + "start": 3288.56, + "end": 3290.08, + "probability": 0.9417 + }, + { + "start": 3290.68, + "end": 3292.12, + "probability": 0.9976 + }, + { + "start": 3292.68, + "end": 3295.66, + "probability": 0.795 + }, + { + "start": 3296.64, + "end": 3299.2, + "probability": 0.7772 + }, + { + "start": 3300.02, + "end": 3301.9, + "probability": 0.6054 + }, + { + "start": 3302.86, + "end": 3303.9, + "probability": 0.8156 + }, + { + "start": 3304.02, + "end": 3308.54, + "probability": 0.8438 + }, + { + "start": 3309.18, + "end": 3312.06, + "probability": 0.7437 + }, + { + "start": 3312.3, + "end": 3313.3, + "probability": 0.3849 + }, + { + "start": 3314.12, + "end": 3315.02, + "probability": 0.3929 + }, + { + "start": 3315.96, + "end": 3317.66, + "probability": 0.7031 + }, + { + "start": 3318.28, + "end": 3319.4, + "probability": 0.5197 + }, + { + "start": 3320.06, + "end": 3321.22, + "probability": 0.6413 + }, + { + "start": 3322.22, + "end": 3322.8, + "probability": 0.8059 + }, + { + "start": 3323.36, + "end": 3324.76, + "probability": 0.9696 + }, + { + "start": 3326.84, + "end": 3327.38, + "probability": 0.9717 + }, + { + "start": 3329.42, + "end": 3330.39, + "probability": 0.8208 + }, + { + "start": 3333.18, + "end": 3334.08, + "probability": 0.2873 + }, + { + "start": 3335.1, + "end": 3336.36, + "probability": 0.5244 + }, + { + "start": 3339.68, + "end": 3339.92, + "probability": 0.7883 + }, + { + "start": 3340.62, + "end": 3341.28, + "probability": 0.6329 + }, + { + "start": 3342.22, + "end": 3343.4, + "probability": 0.8552 + }, + { + "start": 3343.6, + "end": 3344.94, + "probability": 0.717 + }, + { + "start": 3345.16, + "end": 3347.04, + "probability": 0.9719 + }, + { + "start": 3374.34, + "end": 3376.26, + "probability": 0.6379 + }, + { + "start": 3377.64, + "end": 3380.12, + "probability": 0.8097 + }, + { + "start": 3381.92, + "end": 3386.9, + "probability": 0.9735 + }, + { + "start": 3387.6, + "end": 3389.7, + "probability": 0.9389 + }, + { + "start": 3390.3, + "end": 3390.64, + "probability": 0.7628 + }, + { + "start": 3391.78, + "end": 3395.16, + "probability": 0.959 + }, + { + "start": 3396.0, + "end": 3398.62, + "probability": 0.9788 + }, + { + "start": 3399.3, + "end": 3400.54, + "probability": 0.7753 + }, + { + "start": 3401.36, + "end": 3401.92, + "probability": 0.8687 + }, + { + "start": 3402.28, + "end": 3406.36, + "probability": 0.953 + }, + { + "start": 3407.22, + "end": 3410.44, + "probability": 0.843 + }, + { + "start": 3411.44, + "end": 3413.92, + "probability": 0.9791 + }, + { + "start": 3414.46, + "end": 3417.64, + "probability": 0.95 + }, + { + "start": 3418.48, + "end": 3423.26, + "probability": 0.994 + }, + { + "start": 3424.28, + "end": 3426.34, + "probability": 0.9736 + }, + { + "start": 3427.24, + "end": 3427.88, + "probability": 0.8702 + }, + { + "start": 3428.74, + "end": 3432.78, + "probability": 0.9764 + }, + { + "start": 3433.42, + "end": 3436.36, + "probability": 0.9985 + }, + { + "start": 3437.16, + "end": 3440.56, + "probability": 0.9945 + }, + { + "start": 3441.54, + "end": 3441.66, + "probability": 0.9478 + }, + { + "start": 3442.24, + "end": 3442.83, + "probability": 0.9563 + }, + { + "start": 3443.84, + "end": 3445.44, + "probability": 0.9978 + }, + { + "start": 3445.58, + "end": 3448.78, + "probability": 0.9967 + }, + { + "start": 3449.72, + "end": 3451.04, + "probability": 0.7955 + }, + { + "start": 3451.72, + "end": 3452.34, + "probability": 0.7422 + }, + { + "start": 3453.16, + "end": 3454.52, + "probability": 0.9948 + }, + { + "start": 3455.2, + "end": 3456.16, + "probability": 0.923 + }, + { + "start": 3457.1, + "end": 3459.18, + "probability": 0.9844 + }, + { + "start": 3460.12, + "end": 3462.64, + "probability": 0.9921 + }, + { + "start": 3463.1, + "end": 3466.76, + "probability": 0.9172 + }, + { + "start": 3467.68, + "end": 3471.38, + "probability": 0.9995 + }, + { + "start": 3472.08, + "end": 3476.68, + "probability": 0.9967 + }, + { + "start": 3477.9, + "end": 3484.74, + "probability": 0.9897 + }, + { + "start": 3486.32, + "end": 3490.62, + "probability": 0.9926 + }, + { + "start": 3491.3, + "end": 3495.1, + "probability": 0.994 + }, + { + "start": 3495.1, + "end": 3498.2, + "probability": 0.9938 + }, + { + "start": 3499.32, + "end": 3500.1, + "probability": 0.9794 + }, + { + "start": 3501.08, + "end": 3502.06, + "probability": 0.897 + }, + { + "start": 3502.76, + "end": 3503.42, + "probability": 0.932 + }, + { + "start": 3504.1, + "end": 3505.2, + "probability": 0.9487 + }, + { + "start": 3505.84, + "end": 3508.32, + "probability": 0.9905 + }, + { + "start": 3508.32, + "end": 3512.04, + "probability": 0.9972 + }, + { + "start": 3512.74, + "end": 3514.48, + "probability": 0.9056 + }, + { + "start": 3515.02, + "end": 3519.02, + "probability": 0.998 + }, + { + "start": 3519.66, + "end": 3521.36, + "probability": 0.9874 + }, + { + "start": 3522.2, + "end": 3527.62, + "probability": 0.9937 + }, + { + "start": 3527.62, + "end": 3532.4, + "probability": 0.9961 + }, + { + "start": 3533.02, + "end": 3535.44, + "probability": 0.9949 + }, + { + "start": 3536.1, + "end": 3538.8, + "probability": 0.9925 + }, + { + "start": 3539.64, + "end": 3542.8, + "probability": 0.9384 + }, + { + "start": 3543.58, + "end": 3548.82, + "probability": 0.9919 + }, + { + "start": 3549.34, + "end": 3552.48, + "probability": 0.9783 + }, + { + "start": 3553.1, + "end": 3556.98, + "probability": 0.9795 + }, + { + "start": 3557.94, + "end": 3561.6, + "probability": 0.902 + }, + { + "start": 3561.6, + "end": 3562.54, + "probability": 0.8202 + }, + { + "start": 3562.66, + "end": 3562.98, + "probability": 0.7149 + }, + { + "start": 3563.4, + "end": 3564.6, + "probability": 0.6978 + }, + { + "start": 3564.8, + "end": 3565.84, + "probability": 0.5865 + }, + { + "start": 3565.84, + "end": 3567.04, + "probability": 0.8846 + }, + { + "start": 3567.36, + "end": 3567.38, + "probability": 0.3677 + }, + { + "start": 3567.38, + "end": 3571.24, + "probability": 0.9832 + }, + { + "start": 3571.78, + "end": 3574.88, + "probability": 0.9639 + }, + { + "start": 3575.2, + "end": 3576.62, + "probability": 0.7165 + }, + { + "start": 3577.44, + "end": 3580.55, + "probability": 0.9692 + }, + { + "start": 3581.34, + "end": 3583.18, + "probability": 0.9744 + }, + { + "start": 3583.88, + "end": 3584.84, + "probability": 0.9033 + }, + { + "start": 3585.74, + "end": 3586.92, + "probability": 0.9013 + }, + { + "start": 3587.46, + "end": 3588.64, + "probability": 0.7487 + }, + { + "start": 3589.02, + "end": 3591.9, + "probability": 0.9979 + }, + { + "start": 3592.46, + "end": 3594.58, + "probability": 0.9507 + }, + { + "start": 3594.9, + "end": 3595.32, + "probability": 0.5096 + }, + { + "start": 3595.4, + "end": 3596.7, + "probability": 0.9019 + }, + { + "start": 3626.74, + "end": 3628.56, + "probability": 0.6645 + }, + { + "start": 3629.72, + "end": 3631.82, + "probability": 0.8699 + }, + { + "start": 3632.6, + "end": 3633.04, + "probability": 0.8783 + }, + { + "start": 3634.5, + "end": 3636.04, + "probability": 0.8999 + }, + { + "start": 3636.4, + "end": 3640.28, + "probability": 0.9318 + }, + { + "start": 3640.48, + "end": 3642.8, + "probability": 0.9373 + }, + { + "start": 3643.56, + "end": 3643.84, + "probability": 0.7713 + }, + { + "start": 3646.18, + "end": 3647.26, + "probability": 0.8749 + }, + { + "start": 3648.04, + "end": 3650.6, + "probability": 0.9957 + }, + { + "start": 3651.84, + "end": 3654.0, + "probability": 0.9806 + }, + { + "start": 3654.16, + "end": 3654.94, + "probability": 0.5943 + }, + { + "start": 3655.77, + "end": 3660.46, + "probability": 0.9924 + }, + { + "start": 3661.04, + "end": 3665.82, + "probability": 0.9994 + }, + { + "start": 3665.82, + "end": 3670.82, + "probability": 0.9995 + }, + { + "start": 3671.16, + "end": 3671.68, + "probability": 0.754 + }, + { + "start": 3673.14, + "end": 3675.5, + "probability": 0.8654 + }, + { + "start": 3675.74, + "end": 3676.71, + "probability": 0.7582 + }, + { + "start": 3677.88, + "end": 3678.7, + "probability": 0.9231 + }, + { + "start": 3680.26, + "end": 3681.7, + "probability": 0.9992 + }, + { + "start": 3684.78, + "end": 3690.12, + "probability": 0.9973 + }, + { + "start": 3690.12, + "end": 3696.16, + "probability": 0.9985 + }, + { + "start": 3696.84, + "end": 3698.92, + "probability": 0.9922 + }, + { + "start": 3699.44, + "end": 3700.06, + "probability": 0.9408 + }, + { + "start": 3700.92, + "end": 3701.16, + "probability": 0.7027 + }, + { + "start": 3703.0, + "end": 3705.96, + "probability": 0.9402 + }, + { + "start": 3705.96, + "end": 3709.54, + "probability": 0.9994 + }, + { + "start": 3710.12, + "end": 3710.96, + "probability": 0.6895 + }, + { + "start": 3711.72, + "end": 3712.86, + "probability": 0.8765 + }, + { + "start": 3713.56, + "end": 3718.98, + "probability": 0.9946 + }, + { + "start": 3719.56, + "end": 3720.72, + "probability": 0.8927 + }, + { + "start": 3721.56, + "end": 3723.85, + "probability": 0.9674 + }, + { + "start": 3724.84, + "end": 3726.9, + "probability": 0.9797 + }, + { + "start": 3728.18, + "end": 3729.46, + "probability": 0.9644 + }, + { + "start": 3730.48, + "end": 3730.94, + "probability": 0.4522 + }, + { + "start": 3731.72, + "end": 3736.0, + "probability": 0.9886 + }, + { + "start": 3737.16, + "end": 3740.22, + "probability": 0.9566 + }, + { + "start": 3740.92, + "end": 3744.08, + "probability": 0.9943 + }, + { + "start": 3744.94, + "end": 3749.44, + "probability": 0.9893 + }, + { + "start": 3750.26, + "end": 3752.08, + "probability": 0.9849 + }, + { + "start": 3752.86, + "end": 3754.88, + "probability": 0.9975 + }, + { + "start": 3755.48, + "end": 3756.7, + "probability": 0.7754 + }, + { + "start": 3758.44, + "end": 3761.32, + "probability": 0.9344 + }, + { + "start": 3762.12, + "end": 3762.52, + "probability": 0.4965 + }, + { + "start": 3763.76, + "end": 3767.18, + "probability": 0.996 + }, + { + "start": 3767.78, + "end": 3769.28, + "probability": 0.7349 + }, + { + "start": 3770.1, + "end": 3775.36, + "probability": 0.9635 + }, + { + "start": 3775.36, + "end": 3781.12, + "probability": 0.9984 + }, + { + "start": 3781.76, + "end": 3784.12, + "probability": 1.0 + }, + { + "start": 3785.56, + "end": 3788.52, + "probability": 0.7901 + }, + { + "start": 3789.2, + "end": 3792.76, + "probability": 0.9982 + }, + { + "start": 3792.76, + "end": 3796.44, + "probability": 0.9738 + }, + { + "start": 3796.96, + "end": 3799.54, + "probability": 0.9768 + }, + { + "start": 3799.94, + "end": 3800.98, + "probability": 0.774 + }, + { + "start": 3801.0, + "end": 3804.18, + "probability": 0.9261 + }, + { + "start": 3804.32, + "end": 3805.1, + "probability": 0.8811 + }, + { + "start": 3805.58, + "end": 3809.86, + "probability": 0.9968 + }, + { + "start": 3809.86, + "end": 3813.9, + "probability": 0.9832 + }, + { + "start": 3814.21, + "end": 3817.26, + "probability": 0.9568 + }, + { + "start": 3818.04, + "end": 3823.46, + "probability": 0.9879 + }, + { + "start": 3824.54, + "end": 3825.5, + "probability": 0.9506 + }, + { + "start": 3826.7, + "end": 3832.78, + "probability": 0.9429 + }, + { + "start": 3832.78, + "end": 3837.6, + "probability": 0.9976 + }, + { + "start": 3838.6, + "end": 3842.44, + "probability": 0.8486 + }, + { + "start": 3843.42, + "end": 3845.88, + "probability": 0.9955 + }, + { + "start": 3846.32, + "end": 3848.9, + "probability": 0.9925 + }, + { + "start": 3850.06, + "end": 3850.4, + "probability": 0.7551 + }, + { + "start": 3853.02, + "end": 3854.7, + "probability": 0.7487 + }, + { + "start": 3855.94, + "end": 3856.98, + "probability": 0.7563 + }, + { + "start": 3858.36, + "end": 3860.02, + "probability": 0.777 + }, + { + "start": 3876.38, + "end": 3877.86, + "probability": 0.7762 + }, + { + "start": 3879.26, + "end": 3881.3, + "probability": 0.9543 + }, + { + "start": 3883.18, + "end": 3884.88, + "probability": 0.8989 + }, + { + "start": 3885.52, + "end": 3887.3, + "probability": 0.6878 + }, + { + "start": 3888.9, + "end": 3893.78, + "probability": 0.9709 + }, + { + "start": 3894.4, + "end": 3895.98, + "probability": 0.8673 + }, + { + "start": 3897.1, + "end": 3899.98, + "probability": 0.978 + }, + { + "start": 3901.0, + "end": 3902.96, + "probability": 0.9971 + }, + { + "start": 3905.46, + "end": 3908.78, + "probability": 0.9266 + }, + { + "start": 3909.6, + "end": 3912.58, + "probability": 0.9591 + }, + { + "start": 3913.4, + "end": 3913.4, + "probability": 0.2071 + }, + { + "start": 3913.4, + "end": 3913.4, + "probability": 0.297 + }, + { + "start": 3913.4, + "end": 3913.4, + "probability": 0.4581 + }, + { + "start": 3913.4, + "end": 3918.64, + "probability": 0.8409 + }, + { + "start": 3919.12, + "end": 3920.16, + "probability": 0.1048 + }, + { + "start": 3920.24, + "end": 3920.24, + "probability": 0.0658 + }, + { + "start": 3920.42, + "end": 3924.52, + "probability": 0.0427 + }, + { + "start": 3928.04, + "end": 3929.88, + "probability": 0.3191 + }, + { + "start": 3939.66, + "end": 3941.84, + "probability": 0.1647 + }, + { + "start": 3941.84, + "end": 3943.48, + "probability": 0.0806 + }, + { + "start": 3943.86, + "end": 3945.5, + "probability": 0.3032 + }, + { + "start": 3945.62, + "end": 3947.44, + "probability": 0.3936 + }, + { + "start": 3948.02, + "end": 3949.58, + "probability": 0.3301 + }, + { + "start": 3950.82, + "end": 3950.98, + "probability": 0.0786 + }, + { + "start": 3951.12, + "end": 3955.6, + "probability": 0.2339 + }, + { + "start": 3955.68, + "end": 3958.04, + "probability": 0.1442 + }, + { + "start": 3958.04, + "end": 3961.06, + "probability": 0.0313 + }, + { + "start": 3962.16, + "end": 3969.54, + "probability": 0.1345 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.0, + "end": 4005.0, + "probability": 0.0 + }, + { + "start": 4005.46, + "end": 4006.51, + "probability": 0.4374 + }, + { + "start": 4007.0, + "end": 4008.15, + "probability": 0.7218 + }, + { + "start": 4008.2, + "end": 4008.42, + "probability": 0.6846 + }, + { + "start": 4008.62, + "end": 4009.62, + "probability": 0.1596 + }, + { + "start": 4009.88, + "end": 4013.7, + "probability": 0.8704 + }, + { + "start": 4014.2, + "end": 4017.08, + "probability": 0.6931 + }, + { + "start": 4018.88, + "end": 4019.68, + "probability": 0.0698 + }, + { + "start": 4019.68, + "end": 4025.18, + "probability": 0.782 + }, + { + "start": 4025.2, + "end": 4025.3, + "probability": 0.2734 + }, + { + "start": 4025.34, + "end": 4025.34, + "probability": 0.2054 + }, + { + "start": 4025.42, + "end": 4030.14, + "probability": 0.7889 + }, + { + "start": 4032.84, + "end": 4034.22, + "probability": 0.3038 + }, + { + "start": 4034.46, + "end": 4038.8, + "probability": 0.7651 + }, + { + "start": 4039.38, + "end": 4039.56, + "probability": 0.7524 + }, + { + "start": 4040.74, + "end": 4042.4, + "probability": 0.2693 + }, + { + "start": 4043.41, + "end": 4045.32, + "probability": 0.0672 + }, + { + "start": 4046.04, + "end": 4047.64, + "probability": 0.0764 + }, + { + "start": 4047.78, + "end": 4049.06, + "probability": 0.0782 + }, + { + "start": 4049.06, + "end": 4052.94, + "probability": 0.0219 + }, + { + "start": 4052.98, + "end": 4054.5, + "probability": 0.002 + }, + { + "start": 4054.9, + "end": 4055.78, + "probability": 0.1398 + }, + { + "start": 4055.78, + "end": 4060.76, + "probability": 0.408 + }, + { + "start": 4063.6, + "end": 4065.3, + "probability": 0.4368 + }, + { + "start": 4065.3, + "end": 4065.96, + "probability": 0.0092 + }, + { + "start": 4065.96, + "end": 4066.82, + "probability": 0.0558 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.0, + "end": 4127.0, + "probability": 0.0 + }, + { + "start": 4127.16, + "end": 4127.45, + "probability": 0.3441 + }, + { + "start": 4127.54, + "end": 4127.95, + "probability": 0.2476 + }, + { + "start": 4128.22, + "end": 4128.96, + "probability": 0.6691 + }, + { + "start": 4129.14, + "end": 4130.55, + "probability": 0.0503 + }, + { + "start": 4130.6, + "end": 4130.6, + "probability": 0.6769 + }, + { + "start": 4130.6, + "end": 4133.04, + "probability": 0.7827 + }, + { + "start": 4133.32, + "end": 4136.6, + "probability": 0.7457 + }, + { + "start": 4136.6, + "end": 4136.6, + "probability": 0.414 + }, + { + "start": 4136.6, + "end": 4137.88, + "probability": 0.7085 + }, + { + "start": 4138.88, + "end": 4140.84, + "probability": 0.5211 + }, + { + "start": 4140.92, + "end": 4140.92, + "probability": 0.448 + }, + { + "start": 4140.92, + "end": 4140.92, + "probability": 0.4758 + }, + { + "start": 4140.92, + "end": 4142.77, + "probability": 0.4965 + }, + { + "start": 4143.66, + "end": 4148.1, + "probability": 0.3157 + }, + { + "start": 4148.1, + "end": 4148.58, + "probability": 0.0467 + }, + { + "start": 4148.76, + "end": 4148.76, + "probability": 0.1312 + }, + { + "start": 4148.78, + "end": 4154.64, + "probability": 0.8954 + }, + { + "start": 4154.64, + "end": 4156.34, + "probability": 0.0875 + }, + { + "start": 4156.92, + "end": 4163.06, + "probability": 0.9526 + }, + { + "start": 4163.68, + "end": 4165.2, + "probability": 0.4515 + }, + { + "start": 4165.2, + "end": 4166.1, + "probability": 0.0581 + }, + { + "start": 4166.3, + "end": 4166.87, + "probability": 0.1528 + }, + { + "start": 4167.38, + "end": 4168.92, + "probability": 0.2639 + }, + { + "start": 4169.14, + "end": 4171.16, + "probability": 0.1281 + }, + { + "start": 4173.78, + "end": 4176.3, + "probability": 0.0565 + }, + { + "start": 4176.82, + "end": 4179.0, + "probability": 0.0665 + }, + { + "start": 4182.26, + "end": 4184.74, + "probability": 0.4779 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.0, + "end": 4289.0, + "probability": 0.0 + }, + { + "start": 4289.26, + "end": 4290.58, + "probability": 0.1688 + }, + { + "start": 4291.12, + "end": 4291.58, + "probability": 0.366 + }, + { + "start": 4293.16, + "end": 4297.4, + "probability": 0.1148 + }, + { + "start": 4298.5, + "end": 4299.48, + "probability": 0.0725 + }, + { + "start": 4300.0, + "end": 4304.66, + "probability": 0.0159 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.0, + "end": 4410.0, + "probability": 0.0 + }, + { + "start": 4410.48, + "end": 4411.83, + "probability": 0.1515 + }, + { + "start": 4412.6, + "end": 4414.44, + "probability": 0.8323 + }, + { + "start": 4414.6, + "end": 4415.26, + "probability": 0.8353 + }, + { + "start": 4415.54, + "end": 4417.74, + "probability": 0.0357 + }, + { + "start": 4417.74, + "end": 4418.52, + "probability": 0.0852 + }, + { + "start": 4418.78, + "end": 4421.06, + "probability": 0.6034 + }, + { + "start": 4421.44, + "end": 4422.98, + "probability": 0.9806 + }, + { + "start": 4423.42, + "end": 4424.62, + "probability": 0.6725 + }, + { + "start": 4425.02, + "end": 4425.6, + "probability": 0.8115 + }, + { + "start": 4425.62, + "end": 4427.41, + "probability": 0.6862 + }, + { + "start": 4427.52, + "end": 4428.04, + "probability": 0.8405 + }, + { + "start": 4428.2, + "end": 4429.1, + "probability": 0.8076 + }, + { + "start": 4429.1, + "end": 4430.42, + "probability": 0.7134 + }, + { + "start": 4430.72, + "end": 4433.54, + "probability": 0.4992 + }, + { + "start": 4433.54, + "end": 4437.62, + "probability": 0.1209 + }, + { + "start": 4437.84, + "end": 4439.4, + "probability": 0.0439 + }, + { + "start": 4439.4, + "end": 4439.42, + "probability": 0.029 + }, + { + "start": 4439.42, + "end": 4441.18, + "probability": 0.463 + }, + { + "start": 4441.66, + "end": 4444.34, + "probability": 0.1569 + }, + { + "start": 4444.78, + "end": 4446.44, + "probability": 0.1563 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4540.0, + "end": 4540.0, + "probability": 0.0 + }, + { + "start": 4543.0, + "end": 4543.5, + "probability": 0.2431 + }, + { + "start": 4543.5, + "end": 4546.48, + "probability": 0.6976 + }, + { + "start": 4547.3, + "end": 4550.44, + "probability": 0.8247 + }, + { + "start": 4550.7, + "end": 4557.06, + "probability": 0.7522 + }, + { + "start": 4558.2, + "end": 4565.36, + "probability": 0.7945 + }, + { + "start": 4565.36, + "end": 4572.72, + "probability": 0.9844 + }, + { + "start": 4573.4, + "end": 4574.28, + "probability": 0.6354 + }, + { + "start": 4575.76, + "end": 4581.82, + "probability": 0.0073 + }, + { + "start": 4584.08, + "end": 4585.48, + "probability": 0.0355 + }, + { + "start": 4589.74, + "end": 4590.76, + "probability": 0.2831 + }, + { + "start": 4593.64, + "end": 4597.44, + "probability": 0.5971 + }, + { + "start": 4598.24, + "end": 4600.68, + "probability": 0.7742 + }, + { + "start": 4602.08, + "end": 4604.32, + "probability": 0.917 + }, + { + "start": 4604.92, + "end": 4605.36, + "probability": 0.2477 + }, + { + "start": 4605.36, + "end": 4605.36, + "probability": 0.7151 + }, + { + "start": 4605.36, + "end": 4606.58, + "probability": 0.6393 + }, + { + "start": 4624.64, + "end": 4626.5, + "probability": 0.3878 + }, + { + "start": 4627.26, + "end": 4630.02, + "probability": 0.8771 + }, + { + "start": 4630.56, + "end": 4634.06, + "probability": 0.9896 + }, + { + "start": 4634.58, + "end": 4636.04, + "probability": 0.945 + }, + { + "start": 4636.72, + "end": 4638.16, + "probability": 0.676 + }, + { + "start": 4638.88, + "end": 4641.22, + "probability": 0.9206 + }, + { + "start": 4641.82, + "end": 4647.1, + "probability": 0.8722 + }, + { + "start": 4647.2, + "end": 4647.56, + "probability": 0.8044 + }, + { + "start": 4650.6, + "end": 4651.71, + "probability": 0.275 + }, + { + "start": 4653.76, + "end": 4655.5, + "probability": 0.4902 + }, + { + "start": 4655.66, + "end": 4656.52, + "probability": 0.9619 + }, + { + "start": 4656.52, + "end": 4662.48, + "probability": 0.9788 + }, + { + "start": 4662.68, + "end": 4663.58, + "probability": 0.1274 + }, + { + "start": 4663.58, + "end": 4664.04, + "probability": 0.0154 + }, + { + "start": 4664.06, + "end": 4664.08, + "probability": 0.2712 + }, + { + "start": 4664.08, + "end": 4667.18, + "probability": 0.6393 + }, + { + "start": 4668.42, + "end": 4668.88, + "probability": 0.0663 + }, + { + "start": 4668.88, + "end": 4668.88, + "probability": 0.0433 + }, + { + "start": 4668.88, + "end": 4668.88, + "probability": 0.2433 + }, + { + "start": 4668.88, + "end": 4668.88, + "probability": 0.1095 + }, + { + "start": 4668.88, + "end": 4670.92, + "probability": 0.7589 + }, + { + "start": 4670.92, + "end": 4673.54, + "probability": 0.6815 + }, + { + "start": 4673.7, + "end": 4679.2, + "probability": 0.7846 + }, + { + "start": 4679.8, + "end": 4680.48, + "probability": 0.5493 + }, + { + "start": 4680.62, + "end": 4681.5, + "probability": 0.3664 + }, + { + "start": 4681.64, + "end": 4683.86, + "probability": 0.6111 + }, + { + "start": 4684.0, + "end": 4685.54, + "probability": 0.8732 + }, + { + "start": 4685.84, + "end": 4687.78, + "probability": 0.4013 + }, + { + "start": 4689.62, + "end": 4690.44, + "probability": 0.6891 + }, + { + "start": 4690.44, + "end": 4690.48, + "probability": 0.7905 + }, + { + "start": 4690.58, + "end": 4698.24, + "probability": 0.9917 + }, + { + "start": 4698.7, + "end": 4705.74, + "probability": 0.7835 + }, + { + "start": 4705.96, + "end": 4709.52, + "probability": 0.9648 + }, + { + "start": 4710.32, + "end": 4712.88, + "probability": 0.9924 + }, + { + "start": 4713.64, + "end": 4716.12, + "probability": 0.9912 + }, + { + "start": 4717.16, + "end": 4720.74, + "probability": 0.9554 + }, + { + "start": 4720.9, + "end": 4724.8, + "probability": 0.9701 + }, + { + "start": 4725.6, + "end": 4726.22, + "probability": 0.054 + }, + { + "start": 4726.24, + "end": 4727.16, + "probability": 0.3477 + }, + { + "start": 4728.36, + "end": 4732.36, + "probability": 0.4569 + }, + { + "start": 4734.85, + "end": 4738.4, + "probability": 0.4524 + }, + { + "start": 4738.4, + "end": 4738.4, + "probability": 0.0179 + }, + { + "start": 4738.4, + "end": 4739.2, + "probability": 0.4419 + }, + { + "start": 4739.2, + "end": 4739.2, + "probability": 0.0337 + }, + { + "start": 4739.2, + "end": 4740.42, + "probability": 0.2168 + }, + { + "start": 4741.26, + "end": 4741.26, + "probability": 0.2515 + }, + { + "start": 4741.26, + "end": 4741.26, + "probability": 0.6549 + }, + { + "start": 4741.26, + "end": 4746.7, + "probability": 0.9164 + }, + { + "start": 4748.18, + "end": 4749.86, + "probability": 0.8281 + }, + { + "start": 4751.42, + "end": 4753.76, + "probability": 0.8193 + }, + { + "start": 4754.16, + "end": 4754.2, + "probability": 0.1416 + }, + { + "start": 4754.2, + "end": 4754.2, + "probability": 0.1856 + }, + { + "start": 4754.2, + "end": 4759.68, + "probability": 0.548 + }, + { + "start": 4760.14, + "end": 4761.18, + "probability": 0.6833 + }, + { + "start": 4761.7, + "end": 4765.74, + "probability": 0.7482 + }, + { + "start": 4766.3, + "end": 4768.94, + "probability": 0.9604 + }, + { + "start": 4769.9, + "end": 4771.78, + "probability": 0.9854 + }, + { + "start": 4771.96, + "end": 4773.18, + "probability": 0.9756 + }, + { + "start": 4773.34, + "end": 4774.98, + "probability": 0.9072 + }, + { + "start": 4776.1, + "end": 4779.06, + "probability": 0.9824 + }, + { + "start": 4779.44, + "end": 4779.64, + "probability": 0.7119 + }, + { + "start": 4784.6, + "end": 4786.64, + "probability": 0.786 + }, + { + "start": 4786.74, + "end": 4792.78, + "probability": 0.9843 + }, + { + "start": 4793.86, + "end": 4795.88, + "probability": 0.3859 + }, + { + "start": 4797.62, + "end": 4799.12, + "probability": 0.7995 + }, + { + "start": 4799.46, + "end": 4799.88, + "probability": 0.9905 + }, + { + "start": 4808.82, + "end": 4811.02, + "probability": 0.0398 + }, + { + "start": 4811.02, + "end": 4811.04, + "probability": 0.4099 + }, + { + "start": 4811.14, + "end": 4811.74, + "probability": 0.105 + }, + { + "start": 4811.74, + "end": 4811.74, + "probability": 0.053 + }, + { + "start": 4811.74, + "end": 4811.92, + "probability": 0.354 + }, + { + "start": 4812.14, + "end": 4812.14, + "probability": 0.6012 + }, + { + "start": 4818.02, + "end": 4819.06, + "probability": 0.918 + }, + { + "start": 4819.6, + "end": 4821.78, + "probability": 0.5757 + }, + { + "start": 4822.52, + "end": 4826.32, + "probability": 0.8443 + }, + { + "start": 4826.46, + "end": 4826.58, + "probability": 0.5507 + }, + { + "start": 4826.64, + "end": 4831.54, + "probability": 0.9736 + }, + { + "start": 4831.66, + "end": 4834.58, + "probability": 0.5611 + }, + { + "start": 4835.6, + "end": 4837.7, + "probability": 0.1602 + }, + { + "start": 4841.09, + "end": 4844.04, + "probability": 0.3327 + }, + { + "start": 4844.12, + "end": 4845.88, + "probability": 0.7398 + }, + { + "start": 4846.58, + "end": 4848.24, + "probability": 0.5513 + }, + { + "start": 4848.96, + "end": 4850.28, + "probability": 0.6362 + }, + { + "start": 4850.52, + "end": 4852.26, + "probability": 0.793 + }, + { + "start": 4853.12, + "end": 4854.42, + "probability": 0.7721 + }, + { + "start": 4854.48, + "end": 4855.02, + "probability": 0.7462 + }, + { + "start": 4855.22, + "end": 4857.66, + "probability": 0.925 + }, + { + "start": 4857.76, + "end": 4858.24, + "probability": 0.7722 + }, + { + "start": 4858.76, + "end": 4860.76, + "probability": 0.7654 + }, + { + "start": 4861.84, + "end": 4864.54, + "probability": 0.7067 + }, + { + "start": 4865.68, + "end": 4867.02, + "probability": 0.7895 + }, + { + "start": 4867.16, + "end": 4867.58, + "probability": 0.3368 + }, + { + "start": 4868.26, + "end": 4869.52, + "probability": 0.6234 + }, + { + "start": 4870.18, + "end": 4870.64, + "probability": 0.6413 + }, + { + "start": 4870.96, + "end": 4872.08, + "probability": 0.8419 + }, + { + "start": 4873.36, + "end": 4878.84, + "probability": 0.8148 + }, + { + "start": 4879.12, + "end": 4881.34, + "probability": 0.5638 + }, + { + "start": 4882.46, + "end": 4884.6, + "probability": 0.9119 + }, + { + "start": 4885.52, + "end": 4886.06, + "probability": 0.846 + }, + { + "start": 4887.28, + "end": 4889.36, + "probability": 0.898 + }, + { + "start": 4891.64, + "end": 4895.36, + "probability": 0.6178 + }, + { + "start": 4896.28, + "end": 4898.38, + "probability": 0.83 + }, + { + "start": 4899.2, + "end": 4900.54, + "probability": 0.9189 + }, + { + "start": 4901.14, + "end": 4907.06, + "probability": 0.9878 + }, + { + "start": 4907.76, + "end": 4909.94, + "probability": 0.9653 + }, + { + "start": 4910.8, + "end": 4913.0, + "probability": 0.9995 + }, + { + "start": 4913.54, + "end": 4915.54, + "probability": 0.9908 + }, + { + "start": 4916.1, + "end": 4918.92, + "probability": 0.8695 + }, + { + "start": 4919.0, + "end": 4921.96, + "probability": 0.7878 + }, + { + "start": 4923.18, + "end": 4925.54, + "probability": 0.4489 + }, + { + "start": 4925.66, + "end": 4926.3, + "probability": 0.5195 + }, + { + "start": 4926.74, + "end": 4927.54, + "probability": 0.998 + }, + { + "start": 4928.68, + "end": 4929.74, + "probability": 0.2078 + }, + { + "start": 4929.74, + "end": 4930.49, + "probability": 0.5549 + }, + { + "start": 4931.56, + "end": 4933.76, + "probability": 0.2786 + }, + { + "start": 4934.2, + "end": 4936.72, + "probability": 0.8576 + }, + { + "start": 4937.36, + "end": 4942.8, + "probability": 0.9582 + }, + { + "start": 4943.3, + "end": 4944.26, + "probability": 0.9717 + }, + { + "start": 4945.22, + "end": 4947.58, + "probability": 0.9902 + }, + { + "start": 4948.32, + "end": 4950.6, + "probability": 0.9858 + }, + { + "start": 4950.74, + "end": 4952.44, + "probability": 0.7737 + }, + { + "start": 4953.6, + "end": 4954.74, + "probability": 0.9861 + }, + { + "start": 4955.62, + "end": 4958.08, + "probability": 0.938 + }, + { + "start": 4958.56, + "end": 4958.88, + "probability": 0.9206 + }, + { + "start": 4958.9, + "end": 4959.81, + "probability": 0.9917 + }, + { + "start": 4960.96, + "end": 4963.8, + "probability": 0.6051 + }, + { + "start": 4963.86, + "end": 4965.5, + "probability": 0.8643 + }, + { + "start": 4966.52, + "end": 4968.94, + "probability": 0.9745 + }, + { + "start": 4969.4, + "end": 4971.76, + "probability": 0.9732 + }, + { + "start": 4972.78, + "end": 4975.48, + "probability": 0.9815 + }, + { + "start": 4977.06, + "end": 4980.22, + "probability": 0.9652 + }, + { + "start": 4981.04, + "end": 4982.6, + "probability": 0.6006 + }, + { + "start": 4983.66, + "end": 4986.23, + "probability": 0.7998 + }, + { + "start": 4986.92, + "end": 4987.72, + "probability": 0.7895 + }, + { + "start": 4987.72, + "end": 4988.3, + "probability": 0.9587 + }, + { + "start": 4988.46, + "end": 4989.24, + "probability": 0.8405 + }, + { + "start": 4989.36, + "end": 4990.38, + "probability": 0.7708 + }, + { + "start": 4990.82, + "end": 4991.68, + "probability": 0.9828 + }, + { + "start": 4992.84, + "end": 4994.0, + "probability": 0.9489 + }, + { + "start": 4994.56, + "end": 4995.16, + "probability": 0.7039 + }, + { + "start": 4995.48, + "end": 4999.46, + "probability": 0.9516 + }, + { + "start": 5000.24, + "end": 5001.52, + "probability": 0.9858 + }, + { + "start": 5002.26, + "end": 5006.22, + "probability": 0.9858 + }, + { + "start": 5006.7, + "end": 5010.94, + "probability": 0.9197 + }, + { + "start": 5011.5, + "end": 5014.92, + "probability": 0.6616 + }, + { + "start": 5015.52, + "end": 5016.84, + "probability": 0.9709 + }, + { + "start": 5017.84, + "end": 5019.54, + "probability": 0.9664 + }, + { + "start": 5020.16, + "end": 5023.96, + "probability": 0.9175 + }, + { + "start": 5024.48, + "end": 5025.38, + "probability": 0.9751 + }, + { + "start": 5025.9, + "end": 5028.62, + "probability": 0.8794 + }, + { + "start": 5028.68, + "end": 5029.16, + "probability": 0.8522 + }, + { + "start": 5029.6, + "end": 5030.46, + "probability": 0.6616 + }, + { + "start": 5031.86, + "end": 5033.38, + "probability": 0.917 + }, + { + "start": 5034.16, + "end": 5035.34, + "probability": 0.9988 + }, + { + "start": 5035.88, + "end": 5039.46, + "probability": 0.9815 + }, + { + "start": 5039.94, + "end": 5041.54, + "probability": 0.8916 + }, + { + "start": 5041.68, + "end": 5043.32, + "probability": 0.9629 + }, + { + "start": 5043.98, + "end": 5044.96, + "probability": 0.4989 + }, + { + "start": 5044.96, + "end": 5046.58, + "probability": 0.8813 + }, + { + "start": 5047.1, + "end": 5049.8, + "probability": 0.6362 + }, + { + "start": 5049.88, + "end": 5050.36, + "probability": 0.688 + }, + { + "start": 5050.78, + "end": 5051.46, + "probability": 0.6997 + }, + { + "start": 5051.6, + "end": 5052.6, + "probability": 0.7676 + }, + { + "start": 5052.66, + "end": 5053.92, + "probability": 0.7698 + }, + { + "start": 5055.38, + "end": 5056.52, + "probability": 0.7344 + }, + { + "start": 5056.56, + "end": 5057.78, + "probability": 0.9376 + }, + { + "start": 5057.88, + "end": 5059.18, + "probability": 0.7515 + }, + { + "start": 5059.38, + "end": 5063.12, + "probability": 0.9791 + }, + { + "start": 5063.86, + "end": 5064.96, + "probability": 0.9668 + }, + { + "start": 5065.06, + "end": 5066.28, + "probability": 0.2938 + }, + { + "start": 5067.12, + "end": 5068.36, + "probability": 0.9421 + }, + { + "start": 5068.96, + "end": 5072.16, + "probability": 0.9721 + }, + { + "start": 5072.44, + "end": 5077.64, + "probability": 0.9839 + }, + { + "start": 5077.72, + "end": 5079.08, + "probability": 0.6679 + }, + { + "start": 5079.16, + "end": 5080.43, + "probability": 0.9617 + }, + { + "start": 5081.7, + "end": 5084.02, + "probability": 0.9836 + }, + { + "start": 5084.12, + "end": 5084.62, + "probability": 0.7885 + }, + { + "start": 5084.74, + "end": 5089.24, + "probability": 0.9327 + }, + { + "start": 5089.66, + "end": 5090.76, + "probability": 0.6733 + }, + { + "start": 5090.84, + "end": 5091.48, + "probability": 0.8668 + }, + { + "start": 5091.98, + "end": 5094.1, + "probability": 0.7881 + }, + { + "start": 5095.24, + "end": 5097.04, + "probability": 0.9801 + }, + { + "start": 5098.42, + "end": 5101.68, + "probability": 0.9748 + }, + { + "start": 5101.68, + "end": 5104.92, + "probability": 0.9744 + }, + { + "start": 5105.6, + "end": 5110.46, + "probability": 0.9255 + }, + { + "start": 5110.64, + "end": 5111.36, + "probability": 0.5677 + }, + { + "start": 5111.54, + "end": 5111.66, + "probability": 0.1023 + }, + { + "start": 5111.84, + "end": 5112.82, + "probability": 0.7094 + }, + { + "start": 5113.44, + "end": 5114.7, + "probability": 0.8966 + }, + { + "start": 5114.74, + "end": 5117.02, + "probability": 0.9186 + }, + { + "start": 5117.62, + "end": 5119.02, + "probability": 0.9591 + }, + { + "start": 5119.9, + "end": 5121.64, + "probability": 0.7765 + }, + { + "start": 5122.74, + "end": 5127.14, + "probability": 0.9946 + }, + { + "start": 5128.28, + "end": 5129.74, + "probability": 0.7531 + }, + { + "start": 5130.78, + "end": 5133.4, + "probability": 0.9458 + }, + { + "start": 5134.52, + "end": 5138.5, + "probability": 0.7193 + }, + { + "start": 5138.54, + "end": 5139.64, + "probability": 0.969 + }, + { + "start": 5141.24, + "end": 5141.68, + "probability": 0.7684 + }, + { + "start": 5143.66, + "end": 5146.98, + "probability": 0.9951 + }, + { + "start": 5147.54, + "end": 5150.44, + "probability": 0.958 + }, + { + "start": 5150.76, + "end": 5152.34, + "probability": 0.9399 + }, + { + "start": 5153.08, + "end": 5155.18, + "probability": 0.9905 + }, + { + "start": 5155.76, + "end": 5156.66, + "probability": 0.702 + }, + { + "start": 5157.06, + "end": 5159.42, + "probability": 0.6123 + }, + { + "start": 5159.72, + "end": 5161.6, + "probability": 0.7677 + }, + { + "start": 5161.72, + "end": 5162.08, + "probability": 0.4874 + }, + { + "start": 5163.14, + "end": 5163.78, + "probability": 0.9493 + }, + { + "start": 5164.72, + "end": 5165.68, + "probability": 0.8971 + }, + { + "start": 5166.58, + "end": 5167.06, + "probability": 0.7554 + }, + { + "start": 5168.16, + "end": 5169.78, + "probability": 0.9601 + }, + { + "start": 5169.9, + "end": 5170.34, + "probability": 0.8518 + }, + { + "start": 5170.34, + "end": 5170.78, + "probability": 0.9268 + }, + { + "start": 5170.82, + "end": 5172.9, + "probability": 0.9909 + }, + { + "start": 5173.6, + "end": 5174.54, + "probability": 0.6726 + }, + { + "start": 5174.76, + "end": 5179.1, + "probability": 0.9961 + }, + { + "start": 5180.8, + "end": 5182.42, + "probability": 0.8791 + }, + { + "start": 5184.34, + "end": 5187.38, + "probability": 0.9374 + }, + { + "start": 5188.02, + "end": 5190.42, + "probability": 0.9478 + }, + { + "start": 5191.06, + "end": 5194.12, + "probability": 0.9963 + }, + { + "start": 5194.28, + "end": 5197.16, + "probability": 0.6705 + }, + { + "start": 5197.2, + "end": 5197.56, + "probability": 0.6698 + }, + { + "start": 5197.98, + "end": 5198.24, + "probability": 0.8066 + }, + { + "start": 5199.22, + "end": 5200.02, + "probability": 0.7456 + }, + { + "start": 5201.24, + "end": 5204.64, + "probability": 0.3635 + }, + { + "start": 5205.36, + "end": 5207.2, + "probability": 0.6865 + }, + { + "start": 5207.22, + "end": 5210.48, + "probability": 0.7064 + }, + { + "start": 5211.3, + "end": 5212.0, + "probability": 0.824 + }, + { + "start": 5212.78, + "end": 5213.58, + "probability": 0.4656 + }, + { + "start": 5213.76, + "end": 5214.4, + "probability": 0.5418 + }, + { + "start": 5215.22, + "end": 5216.5, + "probability": 0.4816 + }, + { + "start": 5216.88, + "end": 5217.38, + "probability": 0.3446 + }, + { + "start": 5217.4, + "end": 5217.76, + "probability": 0.2801 + }, + { + "start": 5217.84, + "end": 5219.08, + "probability": 0.728 + }, + { + "start": 5219.18, + "end": 5220.9, + "probability": 0.9727 + }, + { + "start": 5221.32, + "end": 5223.44, + "probability": 0.8828 + }, + { + "start": 5224.08, + "end": 5225.54, + "probability": 0.8435 + }, + { + "start": 5226.04, + "end": 5226.44, + "probability": 0.6614 + }, + { + "start": 5226.46, + "end": 5228.38, + "probability": 0.9971 + }, + { + "start": 5228.38, + "end": 5230.9, + "probability": 0.2985 + }, + { + "start": 5230.9, + "end": 5232.26, + "probability": 0.8208 + }, + { + "start": 5232.92, + "end": 5233.32, + "probability": 0.9575 + }, + { + "start": 5233.74, + "end": 5235.16, + "probability": 0.8628 + }, + { + "start": 5235.78, + "end": 5237.88, + "probability": 0.8667 + }, + { + "start": 5238.7, + "end": 5238.92, + "probability": 0.6173 + }, + { + "start": 5239.56, + "end": 5241.8, + "probability": 0.9957 + }, + { + "start": 5242.0, + "end": 5246.0, + "probability": 0.9878 + }, + { + "start": 5246.76, + "end": 5246.86, + "probability": 0.3824 + }, + { + "start": 5246.9, + "end": 5247.72, + "probability": 0.8234 + }, + { + "start": 5248.02, + "end": 5250.62, + "probability": 0.3885 + }, + { + "start": 5251.0, + "end": 5253.04, + "probability": 0.8905 + }, + { + "start": 5253.48, + "end": 5254.72, + "probability": 0.9984 + }, + { + "start": 5255.36, + "end": 5259.24, + "probability": 0.9793 + }, + { + "start": 5259.8, + "end": 5260.9, + "probability": 0.8711 + }, + { + "start": 5284.98, + "end": 5287.32, + "probability": 0.5472 + }, + { + "start": 5288.36, + "end": 5292.32, + "probability": 0.9891 + }, + { + "start": 5292.32, + "end": 5297.24, + "probability": 0.9551 + }, + { + "start": 5298.0, + "end": 5299.0, + "probability": 0.7525 + }, + { + "start": 5300.24, + "end": 5306.72, + "probability": 0.9965 + }, + { + "start": 5307.44, + "end": 5311.24, + "probability": 0.9588 + }, + { + "start": 5311.76, + "end": 5315.28, + "probability": 0.9572 + }, + { + "start": 5316.3, + "end": 5320.46, + "probability": 0.9746 + }, + { + "start": 5321.0, + "end": 5322.94, + "probability": 0.7243 + }, + { + "start": 5323.82, + "end": 5329.16, + "probability": 0.9867 + }, + { + "start": 5329.16, + "end": 5334.9, + "probability": 0.9939 + }, + { + "start": 5334.9, + "end": 5340.26, + "probability": 0.998 + }, + { + "start": 5341.04, + "end": 5348.0, + "probability": 0.9715 + }, + { + "start": 5348.78, + "end": 5353.88, + "probability": 0.9307 + }, + { + "start": 5354.24, + "end": 5358.64, + "probability": 0.9805 + }, + { + "start": 5358.64, + "end": 5363.5, + "probability": 0.9976 + }, + { + "start": 5364.28, + "end": 5366.58, + "probability": 0.9927 + }, + { + "start": 5367.16, + "end": 5373.52, + "probability": 0.9974 + }, + { + "start": 5373.56, + "end": 5378.1, + "probability": 0.999 + }, + { + "start": 5378.96, + "end": 5382.86, + "probability": 0.9795 + }, + { + "start": 5383.4, + "end": 5386.86, + "probability": 0.9944 + }, + { + "start": 5387.38, + "end": 5392.78, + "probability": 0.9832 + }, + { + "start": 5393.52, + "end": 5397.42, + "probability": 0.9949 + }, + { + "start": 5397.96, + "end": 5402.56, + "probability": 0.9981 + }, + { + "start": 5402.56, + "end": 5406.88, + "probability": 0.9772 + }, + { + "start": 5408.04, + "end": 5408.06, + "probability": 0.8091 + }, + { + "start": 5408.7, + "end": 5410.98, + "probability": 0.5795 + }, + { + "start": 5411.0, + "end": 5415.48, + "probability": 0.9735 + }, + { + "start": 5416.2, + "end": 5420.2, + "probability": 0.9705 + }, + { + "start": 5421.32, + "end": 5425.36, + "probability": 0.9482 + }, + { + "start": 5425.96, + "end": 5426.88, + "probability": 0.7457 + }, + { + "start": 5427.04, + "end": 5429.4, + "probability": 0.8542 + }, + { + "start": 5429.5, + "end": 5432.82, + "probability": 0.9366 + }, + { + "start": 5433.32, + "end": 5436.0, + "probability": 0.9869 + }, + { + "start": 5436.54, + "end": 5436.74, + "probability": 0.9938 + }, + { + "start": 5437.46, + "end": 5438.04, + "probability": 0.924 + }, + { + "start": 5439.08, + "end": 5439.8, + "probability": 0.8358 + }, + { + "start": 5439.88, + "end": 5443.5, + "probability": 0.9945 + }, + { + "start": 5443.72, + "end": 5450.44, + "probability": 0.996 + }, + { + "start": 5450.67, + "end": 5457.92, + "probability": 0.9974 + }, + { + "start": 5458.76, + "end": 5464.88, + "probability": 0.9969 + }, + { + "start": 5467.42, + "end": 5470.72, + "probability": 0.9953 + }, + { + "start": 5470.72, + "end": 5473.44, + "probability": 0.9309 + }, + { + "start": 5474.26, + "end": 5480.8, + "probability": 0.9889 + }, + { + "start": 5481.88, + "end": 5488.98, + "probability": 0.9048 + }, + { + "start": 5489.56, + "end": 5492.7, + "probability": 0.9729 + }, + { + "start": 5493.2, + "end": 5497.66, + "probability": 0.9786 + }, + { + "start": 5498.96, + "end": 5505.76, + "probability": 0.981 + }, + { + "start": 5505.82, + "end": 5510.34, + "probability": 0.9736 + }, + { + "start": 5512.4, + "end": 5512.5, + "probability": 0.2824 + }, + { + "start": 5513.44, + "end": 5514.4, + "probability": 0.5396 + }, + { + "start": 5514.82, + "end": 5517.36, + "probability": 0.7091 + }, + { + "start": 5517.4, + "end": 5519.03, + "probability": 0.8091 + }, + { + "start": 5519.4, + "end": 5519.82, + "probability": 0.7803 + }, + { + "start": 5520.6, + "end": 5523.82, + "probability": 0.9882 + }, + { + "start": 5523.86, + "end": 5525.5, + "probability": 0.8944 + }, + { + "start": 5525.86, + "end": 5531.6, + "probability": 0.9281 + }, + { + "start": 5532.24, + "end": 5533.92, + "probability": 0.7855 + }, + { + "start": 5534.46, + "end": 5535.52, + "probability": 0.9075 + }, + { + "start": 5536.28, + "end": 5536.72, + "probability": 0.6663 + }, + { + "start": 5536.82, + "end": 5543.76, + "probability": 0.9924 + }, + { + "start": 5544.34, + "end": 5549.5, + "probability": 0.9912 + }, + { + "start": 5550.34, + "end": 5555.1, + "probability": 0.9972 + }, + { + "start": 5555.74, + "end": 5558.98, + "probability": 0.9972 + }, + { + "start": 5559.54, + "end": 5564.4, + "probability": 0.978 + }, + { + "start": 5564.8, + "end": 5570.24, + "probability": 0.9993 + }, + { + "start": 5571.22, + "end": 5577.1, + "probability": 0.9061 + }, + { + "start": 5577.72, + "end": 5580.12, + "probability": 0.9862 + }, + { + "start": 5580.66, + "end": 5586.16, + "probability": 0.9454 + }, + { + "start": 5587.08, + "end": 5587.08, + "probability": 0.8506 + }, + { + "start": 5587.68, + "end": 5588.74, + "probability": 0.5016 + }, + { + "start": 5588.78, + "end": 5591.14, + "probability": 0.638 + }, + { + "start": 5591.56, + "end": 5594.12, + "probability": 0.9468 + }, + { + "start": 5594.9, + "end": 5596.38, + "probability": 0.9594 + }, + { + "start": 5598.1, + "end": 5599.32, + "probability": 0.9651 + }, + { + "start": 5599.4, + "end": 5600.6, + "probability": 0.8473 + }, + { + "start": 5600.78, + "end": 5603.62, + "probability": 0.9792 + }, + { + "start": 5603.88, + "end": 5606.74, + "probability": 0.9414 + }, + { + "start": 5607.48, + "end": 5609.0, + "probability": 0.8195 + }, + { + "start": 5610.0, + "end": 5613.66, + "probability": 0.9968 + }, + { + "start": 5614.38, + "end": 5615.7, + "probability": 0.7718 + }, + { + "start": 5615.8, + "end": 5617.5, + "probability": 0.8537 + }, + { + "start": 5617.62, + "end": 5619.7, + "probability": 0.9009 + }, + { + "start": 5620.3, + "end": 5621.78, + "probability": 0.6903 + }, + { + "start": 5622.02, + "end": 5626.44, + "probability": 0.8218 + }, + { + "start": 5626.82, + "end": 5630.96, + "probability": 0.933 + }, + { + "start": 5631.14, + "end": 5632.02, + "probability": 0.8092 + }, + { + "start": 5632.44, + "end": 5633.28, + "probability": 0.9885 + }, + { + "start": 5633.94, + "end": 5634.54, + "probability": 0.4106 + }, + { + "start": 5634.74, + "end": 5635.84, + "probability": 0.9863 + }, + { + "start": 5636.24, + "end": 5639.56, + "probability": 0.9932 + }, + { + "start": 5640.3, + "end": 5643.32, + "probability": 0.9485 + }, + { + "start": 5644.65, + "end": 5647.82, + "probability": 0.8049 + }, + { + "start": 5648.92, + "end": 5653.3, + "probability": 0.8289 + }, + { + "start": 5653.96, + "end": 5659.34, + "probability": 0.9717 + }, + { + "start": 5660.12, + "end": 5663.1, + "probability": 0.7298 + }, + { + "start": 5664.82, + "end": 5665.58, + "probability": 0.7787 + }, + { + "start": 5668.94, + "end": 5673.64, + "probability": 0.9974 + }, + { + "start": 5674.54, + "end": 5674.88, + "probability": 0.027 + }, + { + "start": 5675.52, + "end": 5676.72, + "probability": 0.9056 + }, + { + "start": 5677.7, + "end": 5678.52, + "probability": 0.5883 + }, + { + "start": 5698.88, + "end": 5699.06, + "probability": 0.0027 + }, + { + "start": 5699.06, + "end": 5703.1, + "probability": 0.9413 + }, + { + "start": 5704.0, + "end": 5706.34, + "probability": 0.7656 + }, + { + "start": 5706.44, + "end": 5712.18, + "probability": 0.9477 + }, + { + "start": 5714.7, + "end": 5715.52, + "probability": 0.6654 + }, + { + "start": 5719.14, + "end": 5722.48, + "probability": 0.0151 + }, + { + "start": 5722.52, + "end": 5724.28, + "probability": 0.0117 + }, + { + "start": 5725.06, + "end": 5725.34, + "probability": 0.0314 + }, + { + "start": 5726.62, + "end": 5726.72, + "probability": 0.1181 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5826.0, + "end": 5826.0, + "probability": 0.0 + }, + { + "start": 5827.44, + "end": 5828.04, + "probability": 0.1736 + }, + { + "start": 5828.04, + "end": 5828.04, + "probability": 0.0388 + }, + { + "start": 5828.04, + "end": 5828.62, + "probability": 0.3789 + }, + { + "start": 5829.8, + "end": 5833.44, + "probability": 0.5782 + }, + { + "start": 5833.5, + "end": 5837.3, + "probability": 0.863 + }, + { + "start": 5838.1, + "end": 5839.8, + "probability": 0.4398 + }, + { + "start": 5843.54, + "end": 5844.58, + "probability": 0.1276 + }, + { + "start": 5844.58, + "end": 5848.5, + "probability": 0.9534 + }, + { + "start": 5849.11, + "end": 5851.6, + "probability": 0.8626 + }, + { + "start": 5852.1, + "end": 5854.02, + "probability": 0.759 + }, + { + "start": 5854.74, + "end": 5856.44, + "probability": 0.4386 + }, + { + "start": 5859.38, + "end": 5861.6, + "probability": 0.198 + }, + { + "start": 5861.6, + "end": 5864.5, + "probability": 0.6508 + }, + { + "start": 5866.47, + "end": 5869.22, + "probability": 0.9314 + }, + { + "start": 5870.12, + "end": 5873.0, + "probability": 0.5934 + }, + { + "start": 5875.22, + "end": 5876.88, + "probability": 0.2072 + }, + { + "start": 5877.7, + "end": 5879.1, + "probability": 0.7539 + }, + { + "start": 5880.1, + "end": 5886.04, + "probability": 0.9886 + }, + { + "start": 5886.88, + "end": 5887.36, + "probability": 0.7445 + }, + { + "start": 5887.94, + "end": 5890.5, + "probability": 0.9967 + }, + { + "start": 5890.5, + "end": 5892.36, + "probability": 0.9526 + }, + { + "start": 5892.74, + "end": 5895.38, + "probability": 0.3168 + }, + { + "start": 5895.42, + "end": 5897.04, + "probability": 0.2371 + }, + { + "start": 5897.94, + "end": 5901.96, + "probability": 0.9785 + }, + { + "start": 5902.16, + "end": 5903.74, + "probability": 0.8638 + }, + { + "start": 5903.84, + "end": 5906.58, + "probability": 0.7006 + }, + { + "start": 5909.61, + "end": 5912.78, + "probability": 0.6181 + }, + { + "start": 5912.9, + "end": 5913.92, + "probability": 0.9696 + }, + { + "start": 5916.18, + "end": 5916.48, + "probability": 0.6873 + }, + { + "start": 5917.76, + "end": 5918.58, + "probability": 0.7683 + }, + { + "start": 5918.72, + "end": 5919.56, + "probability": 0.9049 + }, + { + "start": 5919.74, + "end": 5922.26, + "probability": 0.9951 + }, + { + "start": 5923.0, + "end": 5924.34, + "probability": 0.7076 + }, + { + "start": 5925.22, + "end": 5929.46, + "probability": 0.9812 + }, + { + "start": 5930.74, + "end": 5932.56, + "probability": 0.4241 + }, + { + "start": 5934.56, + "end": 5936.16, + "probability": 0.2093 + }, + { + "start": 5936.86, + "end": 5939.88, + "probability": 0.9412 + }, + { + "start": 5940.92, + "end": 5942.72, + "probability": 0.9891 + }, + { + "start": 5942.9, + "end": 5947.18, + "probability": 0.9898 + }, + { + "start": 5948.7, + "end": 5949.3, + "probability": 0.6582 + }, + { + "start": 5949.9, + "end": 5950.82, + "probability": 0.2955 + }, + { + "start": 5950.9, + "end": 5951.46, + "probability": 0.9189 + }, + { + "start": 5952.08, + "end": 5952.83, + "probability": 0.8684 + }, + { + "start": 5954.82, + "end": 5955.54, + "probability": 0.7821 + }, + { + "start": 5955.74, + "end": 5956.48, + "probability": 0.6816 + }, + { + "start": 5956.8, + "end": 5957.56, + "probability": 0.7303 + }, + { + "start": 5957.72, + "end": 5959.92, + "probability": 0.8127 + }, + { + "start": 5960.52, + "end": 5962.6, + "probability": 0.6011 + }, + { + "start": 5963.56, + "end": 5965.02, + "probability": 0.5958 + }, + { + "start": 5965.92, + "end": 5968.4, + "probability": 0.9969 + }, + { + "start": 5968.48, + "end": 5969.14, + "probability": 0.8584 + }, + { + "start": 5969.98, + "end": 5972.6, + "probability": 0.7642 + }, + { + "start": 5972.8, + "end": 5973.88, + "probability": 0.9972 + }, + { + "start": 5974.78, + "end": 5976.82, + "probability": 0.9308 + }, + { + "start": 5978.84, + "end": 5978.94, + "probability": 0.0572 + }, + { + "start": 5981.12, + "end": 5983.72, + "probability": 0.8576 + }, + { + "start": 5984.4, + "end": 5987.44, + "probability": 0.74 + }, + { + "start": 5987.58, + "end": 5990.02, + "probability": 0.9202 + }, + { + "start": 5991.2, + "end": 5992.64, + "probability": 0.4272 + }, + { + "start": 5993.3, + "end": 5995.94, + "probability": 0.0684 + }, + { + "start": 5996.52, + "end": 5998.3, + "probability": 0.8825 + }, + { + "start": 5998.58, + "end": 6000.5, + "probability": 0.8184 + }, + { + "start": 6001.16, + "end": 6002.1, + "probability": 0.908 + }, + { + "start": 6002.74, + "end": 6008.48, + "probability": 0.9714 + }, + { + "start": 6009.94, + "end": 6011.44, + "probability": 0.7939 + }, + { + "start": 6012.24, + "end": 6013.56, + "probability": 0.8822 + }, + { + "start": 6013.72, + "end": 6016.44, + "probability": 0.9962 + }, + { + "start": 6017.34, + "end": 6019.2, + "probability": 0.842 + }, + { + "start": 6019.32, + "end": 6020.18, + "probability": 0.5833 + }, + { + "start": 6021.32, + "end": 6023.56, + "probability": 0.6067 + }, + { + "start": 6023.66, + "end": 6024.45, + "probability": 0.4236 + }, + { + "start": 6025.54, + "end": 6028.26, + "probability": 0.5933 + }, + { + "start": 6030.42, + "end": 6033.7, + "probability": 0.6395 + }, + { + "start": 6034.02, + "end": 6037.56, + "probability": 0.9482 + }, + { + "start": 6038.74, + "end": 6039.58, + "probability": 0.5543 + }, + { + "start": 6056.18, + "end": 6062.66, + "probability": 0.0635 + }, + { + "start": 6065.6, + "end": 6067.8, + "probability": 0.0026 + }, + { + "start": 6069.54, + "end": 6070.58, + "probability": 0.0176 + }, + { + "start": 6076.68, + "end": 6080.06, + "probability": 0.0549 + }, + { + "start": 6080.44, + "end": 6082.94, + "probability": 0.0056 + }, + { + "start": 6083.2, + "end": 6083.34, + "probability": 0.0293 + }, + { + "start": 6084.5, + "end": 6085.82, + "probability": 0.0054 + }, + { + "start": 6085.96, + "end": 6087.26, + "probability": 0.4348 + }, + { + "start": 6087.26, + "end": 6087.96, + "probability": 0.1812 + }, + { + "start": 6087.96, + "end": 6089.26, + "probability": 0.0427 + }, + { + "start": 6093.34, + "end": 6094.22, + "probability": 0.2791 + }, + { + "start": 6094.22, + "end": 6094.56, + "probability": 0.1202 + }, + { + "start": 6094.56, + "end": 6096.26, + "probability": 0.4595 + }, + { + "start": 6096.98, + "end": 6096.98, + "probability": 0.0109 + }, + { + "start": 6101.88, + "end": 6103.44, + "probability": 0.2907 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.0, + "end": 6137.0, + "probability": 0.0 + }, + { + "start": 6137.18, + "end": 6137.34, + "probability": 0.0386 + }, + { + "start": 6137.94, + "end": 6139.4, + "probability": 0.6307 + }, + { + "start": 6140.64, + "end": 6144.28, + "probability": 0.735 + }, + { + "start": 6146.14, + "end": 6147.98, + "probability": 0.9778 + }, + { + "start": 6149.38, + "end": 6149.8, + "probability": 0.1888 + }, + { + "start": 6150.44, + "end": 6154.52, + "probability": 0.854 + }, + { + "start": 6156.16, + "end": 6160.08, + "probability": 0.9991 + }, + { + "start": 6160.08, + "end": 6165.2, + "probability": 0.9841 + }, + { + "start": 6165.92, + "end": 6168.58, + "probability": 0.9912 + }, + { + "start": 6169.28, + "end": 6170.58, + "probability": 0.7233 + }, + { + "start": 6171.16, + "end": 6174.38, + "probability": 0.9857 + }, + { + "start": 6175.68, + "end": 6178.12, + "probability": 0.9917 + }, + { + "start": 6178.26, + "end": 6180.7, + "probability": 0.9969 + }, + { + "start": 6181.48, + "end": 6183.26, + "probability": 0.8792 + }, + { + "start": 6184.48, + "end": 6187.24, + "probability": 0.8906 + }, + { + "start": 6188.52, + "end": 6193.36, + "probability": 0.9896 + }, + { + "start": 6196.44, + "end": 6198.16, + "probability": 0.9937 + }, + { + "start": 6198.48, + "end": 6200.44, + "probability": 0.8789 + }, + { + "start": 6202.0, + "end": 6203.86, + "probability": 0.9277 + }, + { + "start": 6204.08, + "end": 6205.12, + "probability": 0.1965 + }, + { + "start": 6205.62, + "end": 6207.2, + "probability": 0.9214 + }, + { + "start": 6207.8, + "end": 6208.46, + "probability": 0.5144 + }, + { + "start": 6210.06, + "end": 6210.46, + "probability": 0.5009 + }, + { + "start": 6212.0, + "end": 6217.66, + "probability": 0.7982 + }, + { + "start": 6219.02, + "end": 6221.92, + "probability": 0.0093 + }, + { + "start": 6223.4, + "end": 6227.72, + "probability": 0.9453 + }, + { + "start": 6227.72, + "end": 6232.01, + "probability": 0.2331 + }, + { + "start": 6233.64, + "end": 6233.66, + "probability": 0.0027 + }, + { + "start": 6233.66, + "end": 6233.66, + "probability": 0.0901 + }, + { + "start": 6233.66, + "end": 6233.66, + "probability": 0.0358 + }, + { + "start": 6233.66, + "end": 6233.98, + "probability": 0.1834 + }, + { + "start": 6233.98, + "end": 6238.38, + "probability": 0.9815 + }, + { + "start": 6239.2, + "end": 6242.58, + "probability": 0.7806 + }, + { + "start": 6243.28, + "end": 6246.44, + "probability": 0.9574 + }, + { + "start": 6246.72, + "end": 6250.3, + "probability": 0.9104 + }, + { + "start": 6250.88, + "end": 6252.42, + "probability": 0.7962 + }, + { + "start": 6252.66, + "end": 6255.16, + "probability": 0.9978 + }, + { + "start": 6256.84, + "end": 6259.0, + "probability": 0.4377 + }, + { + "start": 6259.24, + "end": 6259.38, + "probability": 0.4384 + }, + { + "start": 6260.43, + "end": 6260.71, + "probability": 0.0064 + }, + { + "start": 6261.85, + "end": 6262.1, + "probability": 0.1374 + }, + { + "start": 6262.1, + "end": 6262.38, + "probability": 0.1998 + }, + { + "start": 6262.38, + "end": 6264.04, + "probability": 0.7384 + }, + { + "start": 6264.26, + "end": 6265.17, + "probability": 0.0058 + }, + { + "start": 6269.1, + "end": 6270.34, + "probability": 0.7347 + }, + { + "start": 6270.64, + "end": 6271.92, + "probability": 0.1483 + }, + { + "start": 6272.66, + "end": 6275.0, + "probability": 0.6947 + }, + { + "start": 6281.05, + "end": 6283.52, + "probability": 0.4552 + }, + { + "start": 6283.58, + "end": 6289.96, + "probability": 0.0485 + }, + { + "start": 6290.6, + "end": 6290.6, + "probability": 0.176 + }, + { + "start": 6290.6, + "end": 6290.6, + "probability": 0.0489 + }, + { + "start": 6290.6, + "end": 6290.6, + "probability": 0.0071 + }, + { + "start": 6290.6, + "end": 6293.42, + "probability": 0.2628 + }, + { + "start": 6295.12, + "end": 6296.42, + "probability": 0.151 + }, + { + "start": 6300.02, + "end": 6301.74, + "probability": 0.036 + }, + { + "start": 6304.18, + "end": 6306.6, + "probability": 0.0565 + }, + { + "start": 6306.6, + "end": 6306.74, + "probability": 0.0844 + }, + { + "start": 6306.74, + "end": 6306.8, + "probability": 0.0366 + }, + { + "start": 6306.8, + "end": 6306.8, + "probability": 0.1407 + }, + { + "start": 6306.8, + "end": 6306.8, + "probability": 0.0372 + }, + { + "start": 6306.8, + "end": 6306.84, + "probability": 0.0739 + }, + { + "start": 6306.84, + "end": 6306.84, + "probability": 0.0233 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6307.0, + "end": 6307.0, + "probability": 0.0 + }, + { + "start": 6308.01, + "end": 6315.56, + "probability": 0.995 + }, + { + "start": 6316.52, + "end": 6318.14, + "probability": 0.7688 + }, + { + "start": 6318.6, + "end": 6321.28, + "probability": 0.7859 + }, + { + "start": 6321.98, + "end": 6323.62, + "probability": 0.9744 + }, + { + "start": 6323.86, + "end": 6323.88, + "probability": 0.1218 + }, + { + "start": 6323.88, + "end": 6325.94, + "probability": 0.6267 + }, + { + "start": 6326.36, + "end": 6328.23, + "probability": 0.5199 + }, + { + "start": 6328.96, + "end": 6330.46, + "probability": 0.7701 + }, + { + "start": 6330.52, + "end": 6330.8, + "probability": 0.0504 + }, + { + "start": 6330.9, + "end": 6333.28, + "probability": 0.8857 + }, + { + "start": 6333.66, + "end": 6336.38, + "probability": 0.7914 + }, + { + "start": 6337.4, + "end": 6340.7, + "probability": 0.865 + }, + { + "start": 6343.52, + "end": 6344.66, + "probability": 0.3458 + }, + { + "start": 6346.01, + "end": 6351.8, + "probability": 0.813 + }, + { + "start": 6352.92, + "end": 6354.4, + "probability": 0.7644 + }, + { + "start": 6355.02, + "end": 6356.5, + "probability": 0.9748 + }, + { + "start": 6357.46, + "end": 6358.24, + "probability": 0.8902 + }, + { + "start": 6359.08, + "end": 6360.3, + "probability": 0.9685 + }, + { + "start": 6361.76, + "end": 6363.3, + "probability": 0.6823 + }, + { + "start": 6364.96, + "end": 6367.04, + "probability": 0.6565 + }, + { + "start": 6368.18, + "end": 6370.96, + "probability": 0.8611 + }, + { + "start": 6372.54, + "end": 6375.04, + "probability": 0.863 + }, + { + "start": 6377.38, + "end": 6378.72, + "probability": 0.9293 + }, + { + "start": 6379.84, + "end": 6380.44, + "probability": 0.5003 + }, + { + "start": 6381.32, + "end": 6383.4, + "probability": 0.6952 + }, + { + "start": 6385.62, + "end": 6387.76, + "probability": 0.9378 + }, + { + "start": 6389.3, + "end": 6390.88, + "probability": 0.9708 + }, + { + "start": 6392.18, + "end": 6394.48, + "probability": 0.9819 + }, + { + "start": 6395.38, + "end": 6395.96, + "probability": 0.5222 + }, + { + "start": 6396.98, + "end": 6402.32, + "probability": 0.9227 + }, + { + "start": 6404.0, + "end": 6405.96, + "probability": 0.9192 + }, + { + "start": 6406.7, + "end": 6408.04, + "probability": 0.8994 + }, + { + "start": 6409.2, + "end": 6410.02, + "probability": 0.9147 + }, + { + "start": 6411.93, + "end": 6414.12, + "probability": 0.9255 + }, + { + "start": 6417.66, + "end": 6418.06, + "probability": 0.0391 + }, + { + "start": 6420.68, + "end": 6422.54, + "probability": 0.7209 + }, + { + "start": 6424.18, + "end": 6426.98, + "probability": 0.7736 + }, + { + "start": 6428.24, + "end": 6430.48, + "probability": 0.8573 + }, + { + "start": 6431.62, + "end": 6433.38, + "probability": 0.9954 + }, + { + "start": 6434.5, + "end": 6436.76, + "probability": 0.9935 + }, + { + "start": 6441.66, + "end": 6443.82, + "probability": 0.8463 + }, + { + "start": 6444.42, + "end": 6445.84, + "probability": 0.9726 + }, + { + "start": 6445.88, + "end": 6446.56, + "probability": 0.9223 + }, + { + "start": 6446.98, + "end": 6447.8, + "probability": 0.9718 + }, + { + "start": 6448.12, + "end": 6450.44, + "probability": 0.5554 + }, + { + "start": 6450.82, + "end": 6451.78, + "probability": 0.6118 + }, + { + "start": 6456.76, + "end": 6458.48, + "probability": 0.908 + }, + { + "start": 6462.86, + "end": 6463.75, + "probability": 0.6484 + }, + { + "start": 6464.66, + "end": 6467.42, + "probability": 0.996 + }, + { + "start": 6467.54, + "end": 6469.84, + "probability": 0.82 + }, + { + "start": 6470.52, + "end": 6471.7, + "probability": 0.9682 + }, + { + "start": 6472.06, + "end": 6473.76, + "probability": 0.9984 + }, + { + "start": 6474.26, + "end": 6475.44, + "probability": 0.8326 + }, + { + "start": 6475.86, + "end": 6478.5, + "probability": 0.6659 + }, + { + "start": 6478.84, + "end": 6481.96, + "probability": 0.8526 + }, + { + "start": 6482.58, + "end": 6483.46, + "probability": 0.9291 + }, + { + "start": 6483.8, + "end": 6485.52, + "probability": 0.959 + }, + { + "start": 6485.92, + "end": 6486.62, + "probability": 0.9396 + }, + { + "start": 6487.8, + "end": 6489.04, + "probability": 0.8989 + }, + { + "start": 6489.06, + "end": 6490.47, + "probability": 0.7202 + }, + { + "start": 6490.62, + "end": 6490.94, + "probability": 0.5123 + }, + { + "start": 6491.12, + "end": 6492.94, + "probability": 0.6672 + }, + { + "start": 6493.04, + "end": 6495.82, + "probability": 0.8051 + }, + { + "start": 6495.92, + "end": 6497.94, + "probability": 0.662 + }, + { + "start": 6499.1, + "end": 6500.44, + "probability": 0.8766 + }, + { + "start": 6502.24, + "end": 6506.88, + "probability": 0.8475 + }, + { + "start": 6508.46, + "end": 6508.56, + "probability": 0.649 + }, + { + "start": 6508.56, + "end": 6509.08, + "probability": 0.7311 + }, + { + "start": 6509.14, + "end": 6510.58, + "probability": 0.9313 + }, + { + "start": 6511.44, + "end": 6514.12, + "probability": 0.9604 + }, + { + "start": 6515.28, + "end": 6517.98, + "probability": 0.9788 + }, + { + "start": 6520.24, + "end": 6521.65, + "probability": 0.7783 + }, + { + "start": 6522.34, + "end": 6523.78, + "probability": 0.6613 + }, + { + "start": 6524.76, + "end": 6527.02, + "probability": 0.714 + }, + { + "start": 6528.38, + "end": 6529.1, + "probability": 0.9626 + }, + { + "start": 6530.06, + "end": 6530.52, + "probability": 0.8269 + }, + { + "start": 6542.18, + "end": 6543.49, + "probability": 0.562 + }, + { + "start": 6544.58, + "end": 6547.7, + "probability": 0.8571 + }, + { + "start": 6548.44, + "end": 6549.92, + "probability": 0.9454 + }, + { + "start": 6550.9, + "end": 6554.46, + "probability": 0.8994 + }, + { + "start": 6555.32, + "end": 6558.68, + "probability": 0.9433 + }, + { + "start": 6559.3, + "end": 6559.66, + "probability": 0.4172 + }, + { + "start": 6559.7, + "end": 6561.08, + "probability": 0.8568 + }, + { + "start": 6561.44, + "end": 6562.48, + "probability": 0.8965 + }, + { + "start": 6562.64, + "end": 6567.1, + "probability": 0.9477 + }, + { + "start": 6567.96, + "end": 6570.28, + "probability": 0.9914 + }, + { + "start": 6570.82, + "end": 6575.4, + "probability": 0.9899 + }, + { + "start": 6576.08, + "end": 6578.58, + "probability": 0.7229 + }, + { + "start": 6578.58, + "end": 6581.86, + "probability": 0.9907 + }, + { + "start": 6582.48, + "end": 6583.62, + "probability": 0.8182 + }, + { + "start": 6583.74, + "end": 6587.42, + "probability": 0.7412 + }, + { + "start": 6588.0, + "end": 6588.3, + "probability": 0.6311 + }, + { + "start": 6588.84, + "end": 6590.0, + "probability": 0.9285 + }, + { + "start": 6590.48, + "end": 6591.46, + "probability": 0.4462 + }, + { + "start": 6591.62, + "end": 6596.46, + "probability": 0.8015 + }, + { + "start": 6596.6, + "end": 6597.2, + "probability": 0.6255 + }, + { + "start": 6597.46, + "end": 6598.0, + "probability": 0.6825 + }, + { + "start": 6598.66, + "end": 6598.68, + "probability": 0.3563 + }, + { + "start": 6598.9, + "end": 6600.48, + "probability": 0.7583 + }, + { + "start": 6600.88, + "end": 6605.28, + "probability": 0.9365 + }, + { + "start": 6605.56, + "end": 6609.0, + "probability": 0.8555 + }, + { + "start": 6609.44, + "end": 6610.38, + "probability": 0.7396 + }, + { + "start": 6610.7, + "end": 6613.0, + "probability": 0.7471 + }, + { + "start": 6613.5, + "end": 6614.8, + "probability": 0.9506 + }, + { + "start": 6614.95, + "end": 6616.82, + "probability": 0.3594 + }, + { + "start": 6618.94, + "end": 6619.44, + "probability": 0.1394 + }, + { + "start": 6619.44, + "end": 6620.66, + "probability": 0.833 + }, + { + "start": 6621.59, + "end": 6623.04, + "probability": 0.2448 + }, + { + "start": 6623.42, + "end": 6627.96, + "probability": 0.4497 + }, + { + "start": 6628.32, + "end": 6631.0, + "probability": 0.639 + }, + { + "start": 6634.1, + "end": 6635.42, + "probability": 0.0481 + }, + { + "start": 6635.42, + "end": 6636.56, + "probability": 0.3024 + }, + { + "start": 6636.56, + "end": 6637.82, + "probability": 0.322 + }, + { + "start": 6638.08, + "end": 6638.1, + "probability": 0.0192 + }, + { + "start": 6638.1, + "end": 6639.14, + "probability": 0.2277 + }, + { + "start": 6639.66, + "end": 6640.24, + "probability": 0.6039 + }, + { + "start": 6640.54, + "end": 6641.2, + "probability": 0.3126 + }, + { + "start": 6641.74, + "end": 6644.56, + "probability": 0.489 + }, + { + "start": 6646.26, + "end": 6647.0, + "probability": 0.0294 + }, + { + "start": 6647.0, + "end": 6647.98, + "probability": 0.5189 + }, + { + "start": 6648.24, + "end": 6650.12, + "probability": 0.7878 + }, + { + "start": 6650.18, + "end": 6650.88, + "probability": 0.6336 + }, + { + "start": 6651.12, + "end": 6653.14, + "probability": 0.9822 + }, + { + "start": 6653.7, + "end": 6655.17, + "probability": 0.8743 + }, + { + "start": 6655.9, + "end": 6657.72, + "probability": 0.8981 + }, + { + "start": 6659.03, + "end": 6662.04, + "probability": 0.8781 + }, + { + "start": 6662.12, + "end": 6663.88, + "probability": 0.7426 + }, + { + "start": 6664.08, + "end": 6665.26, + "probability": 0.8103 + }, + { + "start": 6665.44, + "end": 6666.76, + "probability": 0.802 + }, + { + "start": 6666.82, + "end": 6667.88, + "probability": 0.8167 + }, + { + "start": 6668.16, + "end": 6669.34, + "probability": 0.2863 + }, + { + "start": 6669.34, + "end": 6670.88, + "probability": 0.1116 + }, + { + "start": 6670.88, + "end": 6670.88, + "probability": 0.0678 + }, + { + "start": 6670.9, + "end": 6672.88, + "probability": 0.7323 + }, + { + "start": 6673.18, + "end": 6674.24, + "probability": 0.7184 + }, + { + "start": 6674.56, + "end": 6678.26, + "probability": 0.128 + }, + { + "start": 6678.28, + "end": 6678.94, + "probability": 0.1129 + }, + { + "start": 6678.94, + "end": 6680.84, + "probability": 0.4351 + }, + { + "start": 6681.02, + "end": 6683.04, + "probability": 0.7282 + }, + { + "start": 6683.96, + "end": 6686.16, + "probability": 0.5154 + }, + { + "start": 6686.28, + "end": 6687.5, + "probability": 0.9412 + }, + { + "start": 6687.5, + "end": 6690.66, + "probability": 0.9435 + }, + { + "start": 6690.66, + "end": 6691.14, + "probability": 0.3976 + }, + { + "start": 6692.02, + "end": 6692.74, + "probability": 0.0533 + }, + { + "start": 6694.05, + "end": 6694.4, + "probability": 0.0303 + }, + { + "start": 6694.4, + "end": 6697.31, + "probability": 0.5094 + }, + { + "start": 6705.24, + "end": 6706.93, + "probability": 0.7277 + }, + { + "start": 6707.56, + "end": 6710.2, + "probability": 0.986 + }, + { + "start": 6710.2, + "end": 6713.45, + "probability": 0.9806 + }, + { + "start": 6714.8, + "end": 6717.6, + "probability": 0.9233 + }, + { + "start": 6718.14, + "end": 6723.06, + "probability": 0.9705 + }, + { + "start": 6724.1, + "end": 6724.68, + "probability": 0.7578 + }, + { + "start": 6725.12, + "end": 6726.08, + "probability": 0.5049 + }, + { + "start": 6726.24, + "end": 6728.84, + "probability": 0.7108 + }, + { + "start": 6728.84, + "end": 6732.68, + "probability": 0.9854 + }, + { + "start": 6732.68, + "end": 6738.16, + "probability": 0.9898 + }, + { + "start": 6738.74, + "end": 6741.08, + "probability": 0.9007 + }, + { + "start": 6741.68, + "end": 6744.28, + "probability": 0.9922 + }, + { + "start": 6744.76, + "end": 6747.92, + "probability": 0.9963 + }, + { + "start": 6748.44, + "end": 6751.2, + "probability": 0.9897 + }, + { + "start": 6752.02, + "end": 6755.02, + "probability": 0.5894 + }, + { + "start": 6755.76, + "end": 6758.16, + "probability": 0.9382 + }, + { + "start": 6758.64, + "end": 6759.86, + "probability": 0.9835 + }, + { + "start": 6760.36, + "end": 6765.8, + "probability": 0.9888 + }, + { + "start": 6765.8, + "end": 6772.08, + "probability": 0.9735 + }, + { + "start": 6772.96, + "end": 6775.26, + "probability": 0.957 + }, + { + "start": 6776.08, + "end": 6776.66, + "probability": 0.8247 + }, + { + "start": 6777.02, + "end": 6778.24, + "probability": 0.5076 + }, + { + "start": 6778.36, + "end": 6779.9, + "probability": 0.6326 + }, + { + "start": 6781.34, + "end": 6781.82, + "probability": 0.4092 + }, + { + "start": 6782.78, + "end": 6784.86, + "probability": 0.7734 + }, + { + "start": 6787.38, + "end": 6789.28, + "probability": 0.8268 + }, + { + "start": 6789.86, + "end": 6792.62, + "probability": 0.4987 + }, + { + "start": 6792.72, + "end": 6794.86, + "probability": 0.8013 + }, + { + "start": 6795.96, + "end": 6797.52, + "probability": 0.9797 + }, + { + "start": 6799.64, + "end": 6802.16, + "probability": 0.7944 + }, + { + "start": 6802.94, + "end": 6806.14, + "probability": 0.7754 + }, + { + "start": 6807.62, + "end": 6810.42, + "probability": 0.6532 + }, + { + "start": 6812.9, + "end": 6814.74, + "probability": 0.8639 + }, + { + "start": 6817.48, + "end": 6819.02, + "probability": 0.9836 + }, + { + "start": 6820.68, + "end": 6822.02, + "probability": 0.9832 + }, + { + "start": 6823.4, + "end": 6825.14, + "probability": 0.7875 + }, + { + "start": 6826.7, + "end": 6828.06, + "probability": 0.9882 + }, + { + "start": 6829.54, + "end": 6831.7, + "probability": 0.8636 + }, + { + "start": 6834.22, + "end": 6835.94, + "probability": 0.8106 + }, + { + "start": 6839.44, + "end": 6841.28, + "probability": 0.9489 + }, + { + "start": 6843.06, + "end": 6843.54, + "probability": 0.7139 + }, + { + "start": 6845.66, + "end": 6848.78, + "probability": 0.8486 + }, + { + "start": 6850.92, + "end": 6853.72, + "probability": 0.98 + }, + { + "start": 6855.64, + "end": 6857.2, + "probability": 0.8579 + }, + { + "start": 6858.2, + "end": 6859.84, + "probability": 0.9252 + }, + { + "start": 6860.58, + "end": 6863.18, + "probability": 0.9202 + }, + { + "start": 6864.32, + "end": 6866.7, + "probability": 0.8727 + }, + { + "start": 6867.64, + "end": 6869.66, + "probability": 0.9949 + }, + { + "start": 6872.22, + "end": 6874.19, + "probability": 0.8124 + }, + { + "start": 6875.78, + "end": 6878.32, + "probability": 0.9761 + }, + { + "start": 6880.64, + "end": 6883.8, + "probability": 0.7649 + }, + { + "start": 6884.16, + "end": 6886.18, + "probability": 0.4535 + }, + { + "start": 6887.88, + "end": 6889.4, + "probability": 0.0022 + }, + { + "start": 6903.04, + "end": 6904.28, + "probability": 0.6404 + }, + { + "start": 6904.74, + "end": 6906.04, + "probability": 0.9357 + }, + { + "start": 6906.2, + "end": 6907.9, + "probability": 0.8619 + }, + { + "start": 6908.22, + "end": 6908.6, + "probability": 0.644 + }, + { + "start": 6909.3, + "end": 6910.06, + "probability": 0.8018 + }, + { + "start": 6911.6, + "end": 6912.92, + "probability": 0.999 + }, + { + "start": 6914.08, + "end": 6919.06, + "probability": 0.8475 + }, + { + "start": 6919.48, + "end": 6920.12, + "probability": 0.9266 + }, + { + "start": 6920.34, + "end": 6921.96, + "probability": 0.8969 + }, + { + "start": 6921.98, + "end": 6922.36, + "probability": 0.4831 + }, + { + "start": 6923.54, + "end": 6925.68, + "probability": 0.6589 + }, + { + "start": 6926.31, + "end": 6926.86, + "probability": 0.1317 + }, + { + "start": 6926.92, + "end": 6927.08, + "probability": 0.5189 + }, + { + "start": 6927.08, + "end": 6932.72, + "probability": 0.9293 + }, + { + "start": 6932.72, + "end": 6937.44, + "probability": 0.9922 + }, + { + "start": 6938.8, + "end": 6941.3, + "probability": 0.9597 + }, + { + "start": 6941.34, + "end": 6942.32, + "probability": 0.7346 + }, + { + "start": 6943.36, + "end": 6945.48, + "probability": 0.9895 + }, + { + "start": 6946.4, + "end": 6947.84, + "probability": 0.9928 + }, + { + "start": 6948.76, + "end": 6951.26, + "probability": 0.8001 + }, + { + "start": 6951.86, + "end": 6953.26, + "probability": 0.9718 + }, + { + "start": 6953.8, + "end": 6956.42, + "probability": 0.9814 + }, + { + "start": 6957.04, + "end": 6961.08, + "probability": 0.7793 + }, + { + "start": 6961.2, + "end": 6961.7, + "probability": 0.4297 + }, + { + "start": 6961.7, + "end": 6963.8, + "probability": 0.8288 + }, + { + "start": 6965.09, + "end": 6968.46, + "probability": 0.0225 + }, + { + "start": 6969.24, + "end": 6970.12, + "probability": 0.0805 + }, + { + "start": 6970.12, + "end": 6974.22, + "probability": 0.4814 + }, + { + "start": 6974.26, + "end": 6976.2, + "probability": 0.0307 + }, + { + "start": 6976.2, + "end": 6977.58, + "probability": 0.0826 + }, + { + "start": 6977.8, + "end": 6981.88, + "probability": 0.167 + }, + { + "start": 6981.92, + "end": 6983.8, + "probability": 0.4927 + }, + { + "start": 6984.38, + "end": 6984.38, + "probability": 0.0368 + }, + { + "start": 6984.38, + "end": 6985.04, + "probability": 0.0131 + }, + { + "start": 6990.1, + "end": 6991.68, + "probability": 0.0938 + }, + { + "start": 6994.4, + "end": 6994.52, + "probability": 0.0 + }, + { + "start": 6996.43, + "end": 6997.86, + "probability": 0.0311 + }, + { + "start": 7006.44, + "end": 7006.44, + "probability": 0.0364 + }, + { + "start": 7006.44, + "end": 7006.44, + "probability": 0.0262 + }, + { + "start": 7006.44, + "end": 7006.44, + "probability": 0.5817 + }, + { + "start": 7006.44, + "end": 7006.44, + "probability": 0.4641 + }, + { + "start": 7006.44, + "end": 7008.78, + "probability": 0.4863 + }, + { + "start": 7009.58, + "end": 7009.7, + "probability": 0.739 + }, + { + "start": 7010.3, + "end": 7012.96, + "probability": 0.9314 + }, + { + "start": 7013.58, + "end": 7015.38, + "probability": 0.9827 + }, + { + "start": 7016.16, + "end": 7019.46, + "probability": 0.6402 + }, + { + "start": 7019.62, + "end": 7024.4, + "probability": 0.9115 + }, + { + "start": 7024.58, + "end": 7027.1, + "probability": 0.9705 + }, + { + "start": 7034.88, + "end": 7036.88, + "probability": 0.571 + }, + { + "start": 7037.66, + "end": 7039.72, + "probability": 0.3965 + }, + { + "start": 7039.8, + "end": 7040.36, + "probability": 0.9497 + }, + { + "start": 7041.66, + "end": 7043.46, + "probability": 0.0725 + }, + { + "start": 7043.46, + "end": 7046.14, + "probability": 0.9436 + }, + { + "start": 7047.0, + "end": 7049.84, + "probability": 0.9735 + }, + { + "start": 7050.42, + "end": 7050.64, + "probability": 0.6729 + }, + { + "start": 7052.02, + "end": 7052.36, + "probability": 0.058 + }, + { + "start": 7052.56, + "end": 7056.5, + "probability": 0.7738 + }, + { + "start": 7056.74, + "end": 7058.78, + "probability": 0.9421 + }, + { + "start": 7059.84, + "end": 7061.0, + "probability": 0.9089 + }, + { + "start": 7061.38, + "end": 7063.42, + "probability": 0.9876 + }, + { + "start": 7064.62, + "end": 7065.48, + "probability": 0.632 + }, + { + "start": 7066.06, + "end": 7067.58, + "probability": 0.6314 + }, + { + "start": 7068.66, + "end": 7071.52, + "probability": 0.9369 + }, + { + "start": 7072.54, + "end": 7077.44, + "probability": 0.9282 + }, + { + "start": 7078.18, + "end": 7079.76, + "probability": 0.967 + }, + { + "start": 7080.3, + "end": 7082.06, + "probability": 0.9923 + }, + { + "start": 7082.96, + "end": 7083.88, + "probability": 0.3778 + }, + { + "start": 7084.48, + "end": 7086.56, + "probability": 0.6379 + }, + { + "start": 7087.42, + "end": 7088.06, + "probability": 0.9549 + }, + { + "start": 7089.68, + "end": 7095.28, + "probability": 0.7922 + }, + { + "start": 7095.7, + "end": 7096.2, + "probability": 0.7629 + }, + { + "start": 7096.22, + "end": 7096.7, + "probability": 0.7101 + }, + { + "start": 7096.9, + "end": 7099.0, + "probability": 0.9949 + }, + { + "start": 7099.2, + "end": 7099.56, + "probability": 0.9766 + }, + { + "start": 7101.78, + "end": 7104.14, + "probability": 0.1499 + }, + { + "start": 7104.44, + "end": 7107.8, + "probability": 0.5049 + }, + { + "start": 7108.7, + "end": 7112.36, + "probability": 0.958 + }, + { + "start": 7113.24, + "end": 7115.28, + "probability": 0.9366 + }, + { + "start": 7116.3, + "end": 7118.04, + "probability": 0.8405 + }, + { + "start": 7118.62, + "end": 7122.32, + "probability": 0.9775 + }, + { + "start": 7122.86, + "end": 7124.85, + "probability": 0.7299 + }, + { + "start": 7126.52, + "end": 7129.16, + "probability": 0.9953 + }, + { + "start": 7129.94, + "end": 7135.86, + "probability": 0.9084 + }, + { + "start": 7136.44, + "end": 7137.98, + "probability": 0.9653 + }, + { + "start": 7138.58, + "end": 7139.18, + "probability": 0.8549 + }, + { + "start": 7140.34, + "end": 7143.28, + "probability": 0.9385 + }, + { + "start": 7144.3, + "end": 7146.02, + "probability": 0.7237 + }, + { + "start": 7146.12, + "end": 7146.54, + "probability": 0.5789 + }, + { + "start": 7147.68, + "end": 7148.08, + "probability": 0.8442 + }, + { + "start": 7148.7, + "end": 7152.88, + "probability": 0.7886 + }, + { + "start": 7153.62, + "end": 7155.66, + "probability": 0.9651 + }, + { + "start": 7157.62, + "end": 7166.0, + "probability": 0.8831 + }, + { + "start": 7167.02, + "end": 7171.74, + "probability": 0.9655 + }, + { + "start": 7172.38, + "end": 7173.2, + "probability": 0.6162 + }, + { + "start": 7173.84, + "end": 7177.96, + "probability": 0.9713 + }, + { + "start": 7178.52, + "end": 7179.62, + "probability": 0.998 + }, + { + "start": 7180.3, + "end": 7181.14, + "probability": 0.9349 + }, + { + "start": 7182.14, + "end": 7187.1, + "probability": 0.9914 + }, + { + "start": 7187.86, + "end": 7192.06, + "probability": 0.9891 + }, + { + "start": 7193.88, + "end": 7198.02, + "probability": 0.8396 + }, + { + "start": 7198.56, + "end": 7200.44, + "probability": 0.8851 + }, + { + "start": 7201.18, + "end": 7206.04, + "probability": 0.9847 + }, + { + "start": 7206.04, + "end": 7209.7, + "probability": 0.9778 + }, + { + "start": 7211.42, + "end": 7215.02, + "probability": 0.9957 + }, + { + "start": 7215.12, + "end": 7220.02, + "probability": 0.9202 + }, + { + "start": 7220.82, + "end": 7221.34, + "probability": 0.4677 + }, + { + "start": 7222.0, + "end": 7225.36, + "probability": 0.9902 + }, + { + "start": 7226.12, + "end": 7227.38, + "probability": 0.9943 + }, + { + "start": 7228.08, + "end": 7233.35, + "probability": 0.8389 + }, + { + "start": 7234.18, + "end": 7236.72, + "probability": 0.9981 + }, + { + "start": 7237.76, + "end": 7239.77, + "probability": 0.9723 + }, + { + "start": 7240.62, + "end": 7241.42, + "probability": 0.9987 + }, + { + "start": 7242.0, + "end": 7243.48, + "probability": 0.8337 + }, + { + "start": 7245.24, + "end": 7246.96, + "probability": 0.925 + }, + { + "start": 7248.68, + "end": 7249.5, + "probability": 0.8958 + }, + { + "start": 7249.64, + "end": 7250.2, + "probability": 0.869 + }, + { + "start": 7250.9, + "end": 7252.26, + "probability": 0.9932 + }, + { + "start": 7252.58, + "end": 7257.32, + "probability": 0.9402 + }, + { + "start": 7257.32, + "end": 7262.2, + "probability": 0.9938 + }, + { + "start": 7262.76, + "end": 7264.72, + "probability": 0.949 + }, + { + "start": 7265.82, + "end": 7267.86, + "probability": 0.9666 + }, + { + "start": 7267.98, + "end": 7268.4, + "probability": 0.7897 + }, + { + "start": 7268.64, + "end": 7270.52, + "probability": 0.9353 + }, + { + "start": 7271.72, + "end": 7273.48, + "probability": 0.8659 + }, + { + "start": 7274.72, + "end": 7276.9, + "probability": 0.9836 + }, + { + "start": 7280.58, + "end": 7281.5, + "probability": 0.3789 + }, + { + "start": 7282.1, + "end": 7282.64, + "probability": 0.6458 + }, + { + "start": 7283.92, + "end": 7289.94, + "probability": 0.8426 + }, + { + "start": 7292.52, + "end": 7294.7, + "probability": 0.9025 + }, + { + "start": 7295.64, + "end": 7296.62, + "probability": 0.7903 + }, + { + "start": 7297.04, + "end": 7305.6, + "probability": 0.023 + }, + { + "start": 7309.42, + "end": 7309.7, + "probability": 0.0107 + }, + { + "start": 7309.7, + "end": 7309.7, + "probability": 0.0201 + }, + { + "start": 7309.7, + "end": 7309.7, + "probability": 0.0418 + }, + { + "start": 7309.7, + "end": 7311.42, + "probability": 0.4848 + }, + { + "start": 7312.32, + "end": 7313.06, + "probability": 0.3209 + }, + { + "start": 7313.72, + "end": 7313.96, + "probability": 0.6411 + }, + { + "start": 7317.66, + "end": 7320.28, + "probability": 0.3843 + }, + { + "start": 7321.36, + "end": 7322.66, + "probability": 0.6108 + }, + { + "start": 7327.26, + "end": 7329.32, + "probability": 0.6042 + }, + { + "start": 7330.92, + "end": 7333.94, + "probability": 0.056 + }, + { + "start": 7333.94, + "end": 7335.06, + "probability": 0.665 + }, + { + "start": 7335.46, + "end": 7336.5, + "probability": 0.2507 + }, + { + "start": 7337.0, + "end": 7337.1, + "probability": 0.1073 + }, + { + "start": 7337.1, + "end": 7337.36, + "probability": 0.527 + }, + { + "start": 7339.5, + "end": 7341.04, + "probability": 0.949 + }, + { + "start": 7341.84, + "end": 7342.96, + "probability": 0.8146 + }, + { + "start": 7343.54, + "end": 7346.26, + "probability": 0.9654 + }, + { + "start": 7346.26, + "end": 7348.88, + "probability": 0.9969 + }, + { + "start": 7350.6, + "end": 7352.64, + "probability": 0.1309 + }, + { + "start": 7353.7, + "end": 7354.94, + "probability": 0.7541 + }, + { + "start": 7356.14, + "end": 7361.22, + "probability": 0.9133 + }, + { + "start": 7361.84, + "end": 7363.18, + "probability": 0.6836 + }, + { + "start": 7363.76, + "end": 7364.52, + "probability": 0.6425 + }, + { + "start": 7364.7, + "end": 7366.16, + "probability": 0.9905 + }, + { + "start": 7366.86, + "end": 7368.02, + "probability": 0.7461 + }, + { + "start": 7369.38, + "end": 7369.84, + "probability": 0.3744 + }, + { + "start": 7370.36, + "end": 7370.96, + "probability": 0.8317 + }, + { + "start": 7375.34, + "end": 7377.34, + "probability": 0.6952 + }, + { + "start": 7378.76, + "end": 7381.68, + "probability": 0.8689 + }, + { + "start": 7381.8, + "end": 7382.4, + "probability": 0.5928 + }, + { + "start": 7382.52, + "end": 7383.14, + "probability": 0.3463 + }, + { + "start": 7384.4, + "end": 7387.46, + "probability": 0.7788 + }, + { + "start": 7389.42, + "end": 7394.24, + "probability": 0.4816 + }, + { + "start": 7398.08, + "end": 7399.94, + "probability": 0.7911 + }, + { + "start": 7401.18, + "end": 7402.26, + "probability": 0.572 + }, + { + "start": 7431.64, + "end": 7432.58, + "probability": 0.645 + }, + { + "start": 7433.22, + "end": 7434.6, + "probability": 0.6573 + }, + { + "start": 7441.02, + "end": 7444.63, + "probability": 0.9277 + }, + { + "start": 7446.44, + "end": 7448.76, + "probability": 0.9933 + }, + { + "start": 7449.5, + "end": 7452.18, + "probability": 0.9892 + }, + { + "start": 7452.3, + "end": 7455.44, + "probability": 0.7084 + }, + { + "start": 7457.24, + "end": 7467.28, + "probability": 0.8161 + }, + { + "start": 7468.24, + "end": 7471.02, + "probability": 0.9977 + }, + { + "start": 7472.04, + "end": 7474.72, + "probability": 0.993 + }, + { + "start": 7475.34, + "end": 7480.62, + "probability": 0.8602 + }, + { + "start": 7481.18, + "end": 7486.46, + "probability": 0.9514 + }, + { + "start": 7487.08, + "end": 7491.28, + "probability": 0.9956 + }, + { + "start": 7493.08, + "end": 7494.4, + "probability": 0.637 + }, + { + "start": 7494.96, + "end": 7500.24, + "probability": 0.9959 + }, + { + "start": 7500.84, + "end": 7502.26, + "probability": 0.9366 + }, + { + "start": 7504.14, + "end": 7507.0, + "probability": 0.9247 + }, + { + "start": 7507.66, + "end": 7510.82, + "probability": 0.9941 + }, + { + "start": 7511.94, + "end": 7512.66, + "probability": 0.8518 + }, + { + "start": 7513.44, + "end": 7515.52, + "probability": 0.8267 + }, + { + "start": 7515.68, + "end": 7519.2, + "probability": 0.9974 + }, + { + "start": 7519.96, + "end": 7522.42, + "probability": 0.4827 + }, + { + "start": 7523.3, + "end": 7526.38, + "probability": 0.9781 + }, + { + "start": 7526.38, + "end": 7528.84, + "probability": 0.9875 + }, + { + "start": 7529.72, + "end": 7532.2, + "probability": 0.9891 + }, + { + "start": 7532.36, + "end": 7534.12, + "probability": 0.924 + }, + { + "start": 7535.34, + "end": 7538.98, + "probability": 0.9972 + }, + { + "start": 7540.0, + "end": 7543.06, + "probability": 0.992 + }, + { + "start": 7543.06, + "end": 7545.74, + "probability": 0.9849 + }, + { + "start": 7546.6, + "end": 7547.8, + "probability": 0.998 + }, + { + "start": 7548.48, + "end": 7552.22, + "probability": 0.9971 + }, + { + "start": 7553.42, + "end": 7554.98, + "probability": 0.9954 + }, + { + "start": 7555.64, + "end": 7559.1, + "probability": 0.9954 + }, + { + "start": 7559.64, + "end": 7560.88, + "probability": 0.9998 + }, + { + "start": 7561.6, + "end": 7564.44, + "probability": 0.9829 + }, + { + "start": 7564.44, + "end": 7567.38, + "probability": 0.9875 + }, + { + "start": 7569.78, + "end": 7575.52, + "probability": 0.9991 + }, + { + "start": 7576.3, + "end": 7577.98, + "probability": 0.9941 + }, + { + "start": 7578.9, + "end": 7582.72, + "probability": 0.9954 + }, + { + "start": 7583.54, + "end": 7584.78, + "probability": 0.7896 + }, + { + "start": 7584.9, + "end": 7588.8, + "probability": 0.9827 + }, + { + "start": 7590.18, + "end": 7593.9, + "probability": 0.9977 + }, + { + "start": 7594.6, + "end": 7597.44, + "probability": 0.9997 + }, + { + "start": 7597.44, + "end": 7601.76, + "probability": 0.998 + }, + { + "start": 7602.46, + "end": 7605.24, + "probability": 0.9962 + }, + { + "start": 7607.58, + "end": 7610.64, + "probability": 0.9978 + }, + { + "start": 7611.32, + "end": 7613.86, + "probability": 0.9575 + }, + { + "start": 7614.76, + "end": 7617.54, + "probability": 0.9982 + }, + { + "start": 7617.8, + "end": 7621.08, + "probability": 0.8746 + }, + { + "start": 7622.52, + "end": 7625.22, + "probability": 0.975 + }, + { + "start": 7626.12, + "end": 7630.1, + "probability": 0.995 + }, + { + "start": 7630.74, + "end": 7634.46, + "probability": 0.9988 + }, + { + "start": 7634.58, + "end": 7635.2, + "probability": 0.4621 + }, + { + "start": 7635.36, + "end": 7636.38, + "probability": 0.9754 + }, + { + "start": 7637.58, + "end": 7640.6, + "probability": 0.9817 + }, + { + "start": 7640.6, + "end": 7643.88, + "probability": 0.9926 + }, + { + "start": 7644.56, + "end": 7648.9, + "probability": 0.9381 + }, + { + "start": 7649.84, + "end": 7653.02, + "probability": 0.9011 + }, + { + "start": 7654.04, + "end": 7657.32, + "probability": 0.9163 + }, + { + "start": 7657.38, + "end": 7659.8, + "probability": 0.996 + }, + { + "start": 7660.54, + "end": 7664.16, + "probability": 0.9946 + }, + { + "start": 7665.14, + "end": 7668.4, + "probability": 0.9856 + }, + { + "start": 7669.96, + "end": 7676.66, + "probability": 0.9543 + }, + { + "start": 7680.39, + "end": 7683.94, + "probability": 0.4922 + }, + { + "start": 7685.6, + "end": 7688.1, + "probability": 0.1214 + }, + { + "start": 7688.56, + "end": 7692.34, + "probability": 0.9307 + }, + { + "start": 7693.34, + "end": 7696.52, + "probability": 0.9972 + }, + { + "start": 7696.8, + "end": 7701.72, + "probability": 0.9824 + }, + { + "start": 7701.86, + "end": 7702.98, + "probability": 0.9664 + }, + { + "start": 7703.5, + "end": 7704.54, + "probability": 0.8062 + }, + { + "start": 7705.12, + "end": 7708.24, + "probability": 0.7158 + }, + { + "start": 7709.86, + "end": 7711.38, + "probability": 0.7733 + }, + { + "start": 7712.14, + "end": 7717.52, + "probability": 0.9961 + }, + { + "start": 7717.92, + "end": 7720.1, + "probability": 0.981 + }, + { + "start": 7720.66, + "end": 7723.78, + "probability": 0.9002 + }, + { + "start": 7725.6, + "end": 7728.3, + "probability": 0.9825 + }, + { + "start": 7729.14, + "end": 7734.3, + "probability": 0.9759 + }, + { + "start": 7734.46, + "end": 7735.5, + "probability": 0.7878 + }, + { + "start": 7739.42, + "end": 7740.1, + "probability": 0.2999 + }, + { + "start": 7740.26, + "end": 7741.46, + "probability": 0.1137 + }, + { + "start": 7741.56, + "end": 7745.66, + "probability": 0.973 + }, + { + "start": 7745.66, + "end": 7749.64, + "probability": 0.9985 + }, + { + "start": 7750.66, + "end": 7757.5, + "probability": 0.9659 + }, + { + "start": 7758.02, + "end": 7762.68, + "probability": 0.9971 + }, + { + "start": 7762.88, + "end": 7766.9, + "probability": 0.8126 + }, + { + "start": 7767.4, + "end": 7768.42, + "probability": 0.7648 + }, + { + "start": 7769.14, + "end": 7770.44, + "probability": 0.9305 + }, + { + "start": 7770.58, + "end": 7774.72, + "probability": 0.9836 + }, + { + "start": 7775.26, + "end": 7776.78, + "probability": 0.8255 + }, + { + "start": 7778.1, + "end": 7783.76, + "probability": 0.847 + }, + { + "start": 7784.86, + "end": 7788.12, + "probability": 0.9859 + }, + { + "start": 7789.16, + "end": 7789.58, + "probability": 0.7181 + }, + { + "start": 7790.24, + "end": 7792.32, + "probability": 0.9787 + }, + { + "start": 7793.1, + "end": 7795.02, + "probability": 0.9836 + }, + { + "start": 7795.2, + "end": 7798.4, + "probability": 0.9845 + }, + { + "start": 7798.54, + "end": 7799.96, + "probability": 0.9845 + }, + { + "start": 7800.08, + "end": 7801.76, + "probability": 0.9882 + }, + { + "start": 7802.46, + "end": 7805.78, + "probability": 0.937 + }, + { + "start": 7806.94, + "end": 7811.4, + "probability": 0.9946 + }, + { + "start": 7812.1, + "end": 7814.36, + "probability": 0.4963 + }, + { + "start": 7815.0, + "end": 7820.84, + "probability": 0.8784 + }, + { + "start": 7821.32, + "end": 7822.58, + "probability": 0.9039 + }, + { + "start": 7823.4, + "end": 7825.6, + "probability": 0.647 + }, + { + "start": 7826.28, + "end": 7827.96, + "probability": 0.8617 + }, + { + "start": 7828.7, + "end": 7830.4, + "probability": 0.9696 + }, + { + "start": 7831.14, + "end": 7834.56, + "probability": 0.9168 + }, + { + "start": 7834.66, + "end": 7836.11, + "probability": 0.9937 + }, + { + "start": 7837.58, + "end": 7838.87, + "probability": 0.9976 + }, + { + "start": 7840.18, + "end": 7843.54, + "probability": 0.5048 + }, + { + "start": 7849.14, + "end": 7849.7, + "probability": 0.7069 + }, + { + "start": 7856.36, + "end": 7857.7, + "probability": 0.4045 + }, + { + "start": 7857.7, + "end": 7859.24, + "probability": 0.4334 + }, + { + "start": 7859.92, + "end": 7861.02, + "probability": 0.2561 + }, + { + "start": 7862.63, + "end": 7864.3, + "probability": 0.4756 + }, + { + "start": 7864.3, + "end": 7865.32, + "probability": 0.8994 + }, + { + "start": 7865.68, + "end": 7866.74, + "probability": 0.9526 + }, + { + "start": 7867.44, + "end": 7868.83, + "probability": 0.9428 + }, + { + "start": 7870.14, + "end": 7870.92, + "probability": 0.8977 + }, + { + "start": 7871.26, + "end": 7872.92, + "probability": 0.9951 + }, + { + "start": 7873.62, + "end": 7875.54, + "probability": 0.8229 + }, + { + "start": 7875.76, + "end": 7877.16, + "probability": 0.9059 + }, + { + "start": 7877.6, + "end": 7877.94, + "probability": 0.7239 + }, + { + "start": 7878.94, + "end": 7879.58, + "probability": 0.8883 + }, + { + "start": 7879.7, + "end": 7885.82, + "probability": 0.9608 + }, + { + "start": 7886.54, + "end": 7886.54, + "probability": 0.6091 + }, + { + "start": 7886.54, + "end": 7888.58, + "probability": 0.1181 + }, + { + "start": 7888.94, + "end": 7889.74, + "probability": 0.2669 + }, + { + "start": 7889.76, + "end": 7890.88, + "probability": 0.1263 + }, + { + "start": 7897.22, + "end": 7899.32, + "probability": 0.8382 + }, + { + "start": 7899.48, + "end": 7902.24, + "probability": 0.8413 + }, + { + "start": 7902.92, + "end": 7904.28, + "probability": 0.525 + }, + { + "start": 7906.74, + "end": 7908.12, + "probability": 0.9792 + }, + { + "start": 7908.3, + "end": 7911.12, + "probability": 0.9839 + }, + { + "start": 7912.4, + "end": 7913.72, + "probability": 0.7309 + }, + { + "start": 7915.44, + "end": 7918.86, + "probability": 0.6186 + }, + { + "start": 7920.7, + "end": 7922.8, + "probability": 0.8607 + }, + { + "start": 7923.36, + "end": 7925.06, + "probability": 0.7713 + }, + { + "start": 7925.9, + "end": 7927.74, + "probability": 0.9736 + }, + { + "start": 7934.14, + "end": 7936.8, + "probability": 0.8711 + }, + { + "start": 7939.36, + "end": 7941.67, + "probability": 0.9727 + }, + { + "start": 7943.8, + "end": 7945.42, + "probability": 0.9901 + }, + { + "start": 7947.0, + "end": 7948.36, + "probability": 0.9667 + }, + { + "start": 7949.54, + "end": 7951.08, + "probability": 0.9703 + }, + { + "start": 7952.68, + "end": 7954.08, + "probability": 0.9119 + }, + { + "start": 7956.86, + "end": 7958.46, + "probability": 0.9852 + }, + { + "start": 7960.92, + "end": 7962.96, + "probability": 0.9844 + }, + { + "start": 7963.76, + "end": 7965.24, + "probability": 0.7458 + }, + { + "start": 7967.0, + "end": 7967.96, + "probability": 0.9957 + }, + { + "start": 7969.48, + "end": 7971.64, + "probability": 0.8163 + }, + { + "start": 7973.18, + "end": 7974.62, + "probability": 0.9475 + }, + { + "start": 7975.94, + "end": 7978.2, + "probability": 0.9469 + }, + { + "start": 7984.54, + "end": 7986.9, + "probability": 0.8392 + }, + { + "start": 7990.92, + "end": 7993.0, + "probability": 0.9421 + }, + { + "start": 8003.14, + "end": 8005.38, + "probability": 0.9404 + }, + { + "start": 8005.6, + "end": 8006.5, + "probability": 0.4985 + }, + { + "start": 8009.28, + "end": 8009.48, + "probability": 0.8276 + }, + { + "start": 8013.5, + "end": 8013.98, + "probability": 0.5761 + }, + { + "start": 8016.48, + "end": 8018.74, + "probability": 0.6449 + }, + { + "start": 8021.18, + "end": 8024.06, + "probability": 0.9967 + }, + { + "start": 8024.2, + "end": 8029.74, + "probability": 0.9944 + }, + { + "start": 8030.78, + "end": 8033.2, + "probability": 0.9977 + }, + { + "start": 8034.96, + "end": 8036.28, + "probability": 0.6274 + }, + { + "start": 8036.36, + "end": 8039.72, + "probability": 0.9951 + }, + { + "start": 8040.78, + "end": 8042.84, + "probability": 0.957 + }, + { + "start": 8044.22, + "end": 8046.16, + "probability": 0.987 + }, + { + "start": 8047.08, + "end": 8048.88, + "probability": 0.9937 + }, + { + "start": 8050.54, + "end": 8053.52, + "probability": 0.8652 + }, + { + "start": 8054.42, + "end": 8056.7, + "probability": 0.7474 + }, + { + "start": 8057.48, + "end": 8060.16, + "probability": 0.9645 + }, + { + "start": 8060.9, + "end": 8064.56, + "probability": 0.9724 + }, + { + "start": 8065.88, + "end": 8066.08, + "probability": 0.7451 + }, + { + "start": 8066.16, + "end": 8070.24, + "probability": 0.9978 + }, + { + "start": 8081.16, + "end": 8088.88, + "probability": 0.9973 + }, + { + "start": 8091.12, + "end": 8099.16, + "probability": 0.9264 + }, + { + "start": 8100.44, + "end": 8100.96, + "probability": 0.765 + }, + { + "start": 8101.84, + "end": 8103.74, + "probability": 0.9369 + }, + { + "start": 8104.52, + "end": 8105.62, + "probability": 0.6762 + }, + { + "start": 8106.72, + "end": 8107.66, + "probability": 0.9065 + }, + { + "start": 8108.46, + "end": 8113.65, + "probability": 0.9807 + }, + { + "start": 8115.96, + "end": 8122.29, + "probability": 0.9348 + }, + { + "start": 8123.52, + "end": 8127.32, + "probability": 0.9946 + }, + { + "start": 8128.7, + "end": 8130.77, + "probability": 0.6241 + }, + { + "start": 8131.9, + "end": 8136.44, + "probability": 0.9993 + }, + { + "start": 8137.92, + "end": 8141.7, + "probability": 0.9846 + }, + { + "start": 8143.5, + "end": 8145.06, + "probability": 0.7901 + }, + { + "start": 8146.32, + "end": 8150.56, + "probability": 0.9177 + }, + { + "start": 8151.14, + "end": 8152.58, + "probability": 0.9867 + }, + { + "start": 8154.4, + "end": 8156.9, + "probability": 0.761 + }, + { + "start": 8157.16, + "end": 8157.32, + "probability": 0.6827 + }, + { + "start": 8157.38, + "end": 8158.34, + "probability": 0.9158 + }, + { + "start": 8158.52, + "end": 8159.2, + "probability": 0.936 + }, + { + "start": 8159.66, + "end": 8160.72, + "probability": 0.8544 + }, + { + "start": 8160.78, + "end": 8165.2, + "probability": 0.9913 + }, + { + "start": 8166.28, + "end": 8170.04, + "probability": 0.9987 + }, + { + "start": 8170.46, + "end": 8173.0, + "probability": 0.9792 + }, + { + "start": 8173.9, + "end": 8175.5, + "probability": 0.9967 + }, + { + "start": 8175.58, + "end": 8176.22, + "probability": 0.6771 + }, + { + "start": 8177.14, + "end": 8178.24, + "probability": 0.6777 + }, + { + "start": 8179.02, + "end": 8180.06, + "probability": 0.8458 + }, + { + "start": 8181.7, + "end": 8184.44, + "probability": 0.9933 + }, + { + "start": 8184.7, + "end": 8186.98, + "probability": 0.961 + }, + { + "start": 8188.06, + "end": 8190.72, + "probability": 0.987 + }, + { + "start": 8191.36, + "end": 8192.76, + "probability": 0.5136 + }, + { + "start": 8192.82, + "end": 8194.38, + "probability": 0.2942 + }, + { + "start": 8194.56, + "end": 8196.52, + "probability": 0.3287 + }, + { + "start": 8200.56, + "end": 8201.61, + "probability": 0.8076 + }, + { + "start": 8202.06, + "end": 8203.7, + "probability": 0.804 + }, + { + "start": 8205.31, + "end": 8207.14, + "probability": 0.8467 + }, + { + "start": 8207.86, + "end": 8208.46, + "probability": 0.5354 + }, + { + "start": 8208.72, + "end": 8209.32, + "probability": 0.2757 + }, + { + "start": 8209.32, + "end": 8210.59, + "probability": 0.8105 + }, + { + "start": 8210.88, + "end": 8211.48, + "probability": 0.9193 + }, + { + "start": 8211.58, + "end": 8212.26, + "probability": 0.6359 + }, + { + "start": 8213.02, + "end": 8215.1, + "probability": 0.9384 + }, + { + "start": 8219.02, + "end": 8220.36, + "probability": 0.8228 + }, + { + "start": 8221.04, + "end": 8221.82, + "probability": 0.5177 + }, + { + "start": 8223.1, + "end": 8225.3, + "probability": 0.95 + }, + { + "start": 8227.78, + "end": 8232.04, + "probability": 0.9578 + }, + { + "start": 8233.57, + "end": 8237.2, + "probability": 0.9535 + }, + { + "start": 8239.06, + "end": 8240.82, + "probability": 0.5121 + }, + { + "start": 8243.28, + "end": 8244.88, + "probability": 0.9852 + }, + { + "start": 8247.12, + "end": 8249.62, + "probability": 0.7123 + }, + { + "start": 8251.44, + "end": 8253.82, + "probability": 0.9158 + }, + { + "start": 8256.78, + "end": 8257.04, + "probability": 0.3601 + }, + { + "start": 8257.04, + "end": 8257.04, + "probability": 0.0865 + }, + { + "start": 8259.52, + "end": 8260.94, + "probability": 0.1215 + }, + { + "start": 8262.98, + "end": 8264.44, + "probability": 0.6429 + }, + { + "start": 8265.44, + "end": 8268.0, + "probability": 0.9224 + }, + { + "start": 8269.54, + "end": 8271.84, + "probability": 0.7853 + }, + { + "start": 8272.86, + "end": 8275.18, + "probability": 0.8587 + }, + { + "start": 8279.86, + "end": 8281.48, + "probability": 0.6103 + }, + { + "start": 8282.1, + "end": 8283.5, + "probability": 0.8958 + }, + { + "start": 8287.0, + "end": 8287.48, + "probability": 0.4941 + }, + { + "start": 8288.24, + "end": 8289.56, + "probability": 0.9481 + }, + { + "start": 8291.72, + "end": 8292.36, + "probability": 0.3561 + }, + { + "start": 8292.88, + "end": 8295.14, + "probability": 0.8904 + }, + { + "start": 8298.02, + "end": 8299.3, + "probability": 0.5471 + }, + { + "start": 8300.4, + "end": 8303.4, + "probability": 0.8143 + }, + { + "start": 8305.34, + "end": 8307.78, + "probability": 0.7326 + }, + { + "start": 8308.98, + "end": 8310.28, + "probability": 0.8743 + }, + { + "start": 8312.12, + "end": 8313.14, + "probability": 0.961 + }, + { + "start": 8314.64, + "end": 8317.94, + "probability": 0.8146 + }, + { + "start": 8318.54, + "end": 8320.56, + "probability": 0.9792 + }, + { + "start": 8321.54, + "end": 8323.84, + "probability": 0.9077 + }, + { + "start": 8328.36, + "end": 8328.92, + "probability": 0.655 + }, + { + "start": 8331.24, + "end": 8332.76, + "probability": 0.8879 + }, + { + "start": 8334.06, + "end": 8334.52, + "probability": 0.7997 + }, + { + "start": 8335.9, + "end": 8337.58, + "probability": 0.9658 + }, + { + "start": 8341.84, + "end": 8342.94, + "probability": 0.8663 + }, + { + "start": 8345.54, + "end": 8347.98, + "probability": 0.7272 + }, + { + "start": 8349.44, + "end": 8350.12, + "probability": 0.5054 + }, + { + "start": 8351.88, + "end": 8354.84, + "probability": 0.9591 + }, + { + "start": 8355.44, + "end": 8356.18, + "probability": 0.2349 + }, + { + "start": 8364.0, + "end": 8365.2, + "probability": 0.1235 + }, + { + "start": 8365.2, + "end": 8368.0, + "probability": 0.0995 + }, + { + "start": 8369.32, + "end": 8370.12, + "probability": 0.8091 + }, + { + "start": 8370.34, + "end": 8374.84, + "probability": 0.9175 + }, + { + "start": 8375.2, + "end": 8376.12, + "probability": 0.6365 + }, + { + "start": 8376.43, + "end": 8377.36, + "probability": 0.1027 + }, + { + "start": 8378.44, + "end": 8379.5, + "probability": 0.9118 + }, + { + "start": 8380.0, + "end": 8381.66, + "probability": 0.0227 + }, + { + "start": 8381.66, + "end": 8384.62, + "probability": 0.9747 + }, + { + "start": 8385.48, + "end": 8386.42, + "probability": 0.7808 + }, + { + "start": 8387.1, + "end": 8387.1, + "probability": 0.0429 + }, + { + "start": 8387.72, + "end": 8392.06, + "probability": 0.9031 + }, + { + "start": 8393.7, + "end": 8397.66, + "probability": 0.7509 + }, + { + "start": 8398.78, + "end": 8402.72, + "probability": 0.9893 + }, + { + "start": 8402.94, + "end": 8408.78, + "probability": 0.9676 + }, + { + "start": 8409.54, + "end": 8411.66, + "probability": 0.0302 + }, + { + "start": 8412.4, + "end": 8412.58, + "probability": 0.6562 + }, + { + "start": 8413.48, + "end": 8418.68, + "probability": 0.9875 + }, + { + "start": 8419.42, + "end": 8422.5, + "probability": 0.9878 + }, + { + "start": 8423.48, + "end": 8424.54, + "probability": 0.9498 + }, + { + "start": 8425.06, + "end": 8426.34, + "probability": 0.8055 + }, + { + "start": 8426.38, + "end": 8427.14, + "probability": 0.6417 + }, + { + "start": 8428.48, + "end": 8429.48, + "probability": 0.64 + }, + { + "start": 8430.16, + "end": 8434.12, + "probability": 0.9028 + }, + { + "start": 8434.94, + "end": 8435.86, + "probability": 0.884 + }, + { + "start": 8436.62, + "end": 8437.5, + "probability": 0.8584 + }, + { + "start": 8438.04, + "end": 8438.34, + "probability": 0.0857 + }, + { + "start": 8439.4, + "end": 8440.2, + "probability": 0.0323 + }, + { + "start": 8440.2, + "end": 8440.2, + "probability": 0.028 + }, + { + "start": 8440.2, + "end": 8442.18, + "probability": 0.6233 + }, + { + "start": 8443.74, + "end": 8447.24, + "probability": 0.736 + }, + { + "start": 8448.5, + "end": 8450.2, + "probability": 0.6791 + }, + { + "start": 8452.38, + "end": 8457.2, + "probability": 0.9951 + }, + { + "start": 8457.76, + "end": 8459.86, + "probability": 0.9969 + }, + { + "start": 8460.54, + "end": 8462.5, + "probability": 0.75 + }, + { + "start": 8463.42, + "end": 8465.7, + "probability": 0.8435 + }, + { + "start": 8467.92, + "end": 8471.78, + "probability": 0.9863 + }, + { + "start": 8473.0, + "end": 8476.36, + "probability": 0.9913 + }, + { + "start": 8476.96, + "end": 8481.36, + "probability": 0.9963 + }, + { + "start": 8482.28, + "end": 8483.98, + "probability": 0.7275 + }, + { + "start": 8485.12, + "end": 8486.92, + "probability": 0.9383 + }, + { + "start": 8488.2, + "end": 8489.76, + "probability": 0.9484 + }, + { + "start": 8490.9, + "end": 8492.64, + "probability": 0.7582 + }, + { + "start": 8493.22, + "end": 8494.48, + "probability": 0.8093 + }, + { + "start": 8495.46, + "end": 8499.06, + "probability": 0.7605 + }, + { + "start": 8500.18, + "end": 8500.94, + "probability": 0.5505 + }, + { + "start": 8502.42, + "end": 8502.52, + "probability": 0.077 + }, + { + "start": 8502.52, + "end": 8502.52, + "probability": 0.1997 + }, + { + "start": 8502.52, + "end": 8504.3, + "probability": 0.9947 + }, + { + "start": 8505.94, + "end": 8508.26, + "probability": 0.9791 + }, + { + "start": 8508.9, + "end": 8515.4, + "probability": 0.9814 + }, + { + "start": 8515.9, + "end": 8516.7, + "probability": 0.007 + }, + { + "start": 8517.28, + "end": 8520.5, + "probability": 0.4087 + }, + { + "start": 8520.96, + "end": 8527.4, + "probability": 0.9828 + }, + { + "start": 8527.78, + "end": 8531.22, + "probability": 0.7058 + }, + { + "start": 8532.3, + "end": 8533.74, + "probability": 0.4108 + }, + { + "start": 8534.18, + "end": 8536.06, + "probability": 0.8608 + }, + { + "start": 8537.04, + "end": 8539.84, + "probability": 0.9819 + }, + { + "start": 8539.94, + "end": 8542.94, + "probability": 0.7377 + }, + { + "start": 8543.56, + "end": 8547.2, + "probability": 0.7517 + }, + { + "start": 8547.62, + "end": 8548.08, + "probability": 0.5043 + }, + { + "start": 8548.26, + "end": 8548.54, + "probability": 0.6068 + }, + { + "start": 8548.62, + "end": 8549.46, + "probability": 0.232 + }, + { + "start": 8550.14, + "end": 8552.14, + "probability": 0.7003 + }, + { + "start": 8553.72, + "end": 8554.52, + "probability": 0.6621 + }, + { + "start": 8555.0, + "end": 8561.2, + "probability": 0.7212 + }, + { + "start": 8561.6, + "end": 8562.06, + "probability": 0.0734 + }, + { + "start": 8563.02, + "end": 8563.68, + "probability": 0.1973 + }, + { + "start": 8564.12, + "end": 8564.98, + "probability": 0.0715 + }, + { + "start": 8566.24, + "end": 8566.68, + "probability": 0.1201 + }, + { + "start": 8566.86, + "end": 8566.86, + "probability": 0.5872 + }, + { + "start": 8566.86, + "end": 8570.32, + "probability": 0.5216 + }, + { + "start": 8570.54, + "end": 8571.24, + "probability": 0.9359 + }, + { + "start": 8574.22, + "end": 8574.24, + "probability": 0.4754 + }, + { + "start": 8574.24, + "end": 8575.52, + "probability": 0.8859 + }, + { + "start": 8575.8, + "end": 8576.9, + "probability": 0.5894 + }, + { + "start": 8579.2, + "end": 8580.68, + "probability": 0.9412 + }, + { + "start": 8583.26, + "end": 8584.18, + "probability": 0.8759 + }, + { + "start": 8584.9, + "end": 8585.4, + "probability": 0.5174 + }, + { + "start": 8586.82, + "end": 8588.92, + "probability": 0.7935 + }, + { + "start": 8589.64, + "end": 8590.32, + "probability": 0.5838 + }, + { + "start": 8591.32, + "end": 8592.68, + "probability": 0.575 + }, + { + "start": 8594.66, + "end": 8596.74, + "probability": 0.4062 + }, + { + "start": 8597.74, + "end": 8600.08, + "probability": 0.9639 + }, + { + "start": 8603.26, + "end": 8605.38, + "probability": 0.5294 + }, + { + "start": 8607.4, + "end": 8609.5, + "probability": 0.8835 + }, + { + "start": 8610.98, + "end": 8611.38, + "probability": 0.9136 + }, + { + "start": 8616.02, + "end": 8617.66, + "probability": 0.9512 + }, + { + "start": 8618.6, + "end": 8619.58, + "probability": 0.9828 + }, + { + "start": 8620.66, + "end": 8622.08, + "probability": 0.993 + }, + { + "start": 8623.22, + "end": 8624.34, + "probability": 0.508 + }, + { + "start": 8624.54, + "end": 8626.28, + "probability": 0.9833 + }, + { + "start": 8629.88, + "end": 8630.94, + "probability": 0.4188 + }, + { + "start": 8632.84, + "end": 8634.74, + "probability": 0.5881 + }, + { + "start": 8635.32, + "end": 8635.7, + "probability": 0.6746 + }, + { + "start": 8651.1, + "end": 8651.98, + "probability": 0.75 + }, + { + "start": 8659.3, + "end": 8659.6, + "probability": 0.4726 + }, + { + "start": 8659.98, + "end": 8660.6, + "probability": 0.4007 + }, + { + "start": 8660.92, + "end": 8664.04, + "probability": 0.945 + }, + { + "start": 8664.12, + "end": 8664.7, + "probability": 0.7002 + }, + { + "start": 8665.9, + "end": 8668.4, + "probability": 0.9829 + }, + { + "start": 8668.88, + "end": 8670.08, + "probability": 0.635 + }, + { + "start": 8670.2, + "end": 8672.32, + "probability": 0.8823 + }, + { + "start": 8672.56, + "end": 8674.3, + "probability": 0.9174 + }, + { + "start": 8675.85, + "end": 8679.26, + "probability": 0.7133 + }, + { + "start": 8679.48, + "end": 8680.52, + "probability": 0.7576 + }, + { + "start": 8680.78, + "end": 8682.24, + "probability": 0.9961 + }, + { + "start": 8682.46, + "end": 8685.02, + "probability": 0.9817 + }, + { + "start": 8685.8, + "end": 8689.1, + "probability": 0.9928 + }, + { + "start": 8690.42, + "end": 8691.58, + "probability": 0.5709 + }, + { + "start": 8692.74, + "end": 8697.28, + "probability": 0.9653 + }, + { + "start": 8698.04, + "end": 8700.42, + "probability": 0.9907 + }, + { + "start": 8701.76, + "end": 8704.1, + "probability": 0.9977 + }, + { + "start": 8704.5, + "end": 8705.04, + "probability": 0.886 + }, + { + "start": 8705.12, + "end": 8707.08, + "probability": 0.8975 + }, + { + "start": 8707.74, + "end": 8710.12, + "probability": 0.8284 + }, + { + "start": 8710.42, + "end": 8713.06, + "probability": 0.998 + }, + { + "start": 8713.2, + "end": 8713.78, + "probability": 0.7755 + }, + { + "start": 8714.14, + "end": 8716.4, + "probability": 0.9987 + }, + { + "start": 8717.18, + "end": 8721.08, + "probability": 0.9961 + }, + { + "start": 8721.98, + "end": 8724.78, + "probability": 0.9888 + }, + { + "start": 8724.9, + "end": 8726.12, + "probability": 0.7623 + }, + { + "start": 8727.28, + "end": 8729.64, + "probability": 0.9255 + }, + { + "start": 8730.62, + "end": 8733.5, + "probability": 0.8932 + }, + { + "start": 8733.58, + "end": 8734.56, + "probability": 0.9702 + }, + { + "start": 8735.08, + "end": 8736.3, + "probability": 0.9044 + }, + { + "start": 8737.44, + "end": 8738.14, + "probability": 0.895 + }, + { + "start": 8739.3, + "end": 8740.8, + "probability": 0.9976 + }, + { + "start": 8741.72, + "end": 8743.28, + "probability": 0.967 + }, + { + "start": 8743.5, + "end": 8744.26, + "probability": 0.3126 + }, + { + "start": 8744.34, + "end": 8745.72, + "probability": 0.8944 + }, + { + "start": 8746.4, + "end": 8747.8, + "probability": 0.9806 + }, + { + "start": 8747.92, + "end": 8748.5, + "probability": 0.94 + }, + { + "start": 8748.54, + "end": 8751.24, + "probability": 0.9902 + }, + { + "start": 8752.72, + "end": 8756.84, + "probability": 0.9965 + }, + { + "start": 8758.04, + "end": 8765.04, + "probability": 0.8641 + }, + { + "start": 8765.28, + "end": 8766.32, + "probability": 0.6989 + }, + { + "start": 8767.3, + "end": 8770.86, + "probability": 0.9956 + }, + { + "start": 8770.94, + "end": 8772.31, + "probability": 0.6004 + }, + { + "start": 8773.08, + "end": 8775.14, + "probability": 0.9272 + }, + { + "start": 8777.0, + "end": 8780.42, + "probability": 0.948 + }, + { + "start": 8780.6, + "end": 8781.22, + "probability": 0.3769 + }, + { + "start": 8781.46, + "end": 8781.98, + "probability": 0.09 + }, + { + "start": 8783.62, + "end": 8783.96, + "probability": 0.4709 + }, + { + "start": 8784.18, + "end": 8784.72, + "probability": 0.2418 + }, + { + "start": 8784.9, + "end": 8786.86, + "probability": 0.9172 + }, + { + "start": 8787.24, + "end": 8789.42, + "probability": 0.5126 + }, + { + "start": 8789.56, + "end": 8790.42, + "probability": 0.3298 + }, + { + "start": 8790.88, + "end": 8792.92, + "probability": 0.8339 + }, + { + "start": 8793.13, + "end": 8797.52, + "probability": 0.8039 + }, + { + "start": 8797.52, + "end": 8798.3, + "probability": 0.0276 + }, + { + "start": 8799.08, + "end": 8799.34, + "probability": 0.1254 + }, + { + "start": 8799.34, + "end": 8799.34, + "probability": 0.5866 + }, + { + "start": 8799.34, + "end": 8799.34, + "probability": 0.5103 + }, + { + "start": 8799.34, + "end": 8804.16, + "probability": 0.7273 + }, + { + "start": 8804.2, + "end": 8805.44, + "probability": 0.2059 + }, + { + "start": 8806.72, + "end": 8807.08, + "probability": 0.1497 + }, + { + "start": 8807.92, + "end": 8809.1, + "probability": 0.2044 + }, + { + "start": 8809.17, + "end": 8811.76, + "probability": 0.3473 + }, + { + "start": 8811.92, + "end": 8811.92, + "probability": 0.0476 + }, + { + "start": 8812.14, + "end": 8814.1, + "probability": 0.3527 + }, + { + "start": 8814.6, + "end": 8816.2, + "probability": 0.811 + }, + { + "start": 8816.2, + "end": 8817.7, + "probability": 0.7897 + }, + { + "start": 8818.32, + "end": 8821.94, + "probability": 0.7507 + }, + { + "start": 8822.02, + "end": 8824.6, + "probability": 0.0231 + }, + { + "start": 8824.68, + "end": 8824.68, + "probability": 0.0917 + }, + { + "start": 8824.68, + "end": 8824.68, + "probability": 0.4984 + }, + { + "start": 8824.68, + "end": 8824.84, + "probability": 0.2408 + }, + { + "start": 8824.84, + "end": 8826.6, + "probability": 0.4903 + }, + { + "start": 8826.63, + "end": 8829.2, + "probability": 0.6212 + }, + { + "start": 8829.2, + "end": 8834.2, + "probability": 0.9282 + }, + { + "start": 8835.34, + "end": 8839.28, + "probability": 0.8315 + }, + { + "start": 8840.14, + "end": 8840.9, + "probability": 0.7635 + }, + { + "start": 8842.06, + "end": 8844.08, + "probability": 0.9724 + }, + { + "start": 8844.82, + "end": 8846.0, + "probability": 0.9939 + }, + { + "start": 8847.22, + "end": 8850.44, + "probability": 0.9663 + }, + { + "start": 8850.64, + "end": 8850.9, + "probability": 0.3637 + }, + { + "start": 8850.92, + "end": 8852.28, + "probability": 0.6086 + }, + { + "start": 8852.38, + "end": 8854.46, + "probability": 0.8046 + }, + { + "start": 8856.0, + "end": 8859.42, + "probability": 0.8582 + }, + { + "start": 8860.22, + "end": 8864.16, + "probability": 0.9782 + }, + { + "start": 8864.8, + "end": 8866.3, + "probability": 0.89 + }, + { + "start": 8866.86, + "end": 8867.22, + "probability": 0.8617 + }, + { + "start": 8867.48, + "end": 8868.82, + "probability": 0.9008 + }, + { + "start": 8869.84, + "end": 8870.55, + "probability": 0.9733 + }, + { + "start": 8871.72, + "end": 8872.73, + "probability": 0.9561 + }, + { + "start": 8873.44, + "end": 8874.74, + "probability": 0.7905 + }, + { + "start": 8875.36, + "end": 8876.84, + "probability": 0.9967 + }, + { + "start": 8877.58, + "end": 8880.44, + "probability": 0.9465 + }, + { + "start": 8881.42, + "end": 8882.98, + "probability": 0.9197 + }, + { + "start": 8883.68, + "end": 8885.02, + "probability": 0.9343 + }, + { + "start": 8885.08, + "end": 8885.76, + "probability": 0.782 + }, + { + "start": 8885.78, + "end": 8886.7, + "probability": 0.8854 + }, + { + "start": 8886.92, + "end": 8888.35, + "probability": 0.9889 + }, + { + "start": 8888.66, + "end": 8888.8, + "probability": 0.0803 + }, + { + "start": 8888.94, + "end": 8891.78, + "probability": 0.699 + }, + { + "start": 8892.64, + "end": 8893.1, + "probability": 0.0794 + }, + { + "start": 8893.24, + "end": 8894.31, + "probability": 0.8826 + }, + { + "start": 8895.22, + "end": 8898.72, + "probability": 0.9518 + }, + { + "start": 8899.59, + "end": 8901.24, + "probability": 0.6791 + }, + { + "start": 8901.24, + "end": 8903.14, + "probability": 0.3833 + }, + { + "start": 8903.14, + "end": 8903.36, + "probability": 0.4397 + }, + { + "start": 8903.5, + "end": 8905.56, + "probability": 0.4969 + }, + { + "start": 8905.72, + "end": 8909.28, + "probability": 0.6822 + }, + { + "start": 8911.7, + "end": 8912.46, + "probability": 0.6779 + }, + { + "start": 8912.62, + "end": 8916.62, + "probability": 0.5563 + }, + { + "start": 8917.32, + "end": 8919.02, + "probability": 0.7652 + }, + { + "start": 8919.88, + "end": 8922.0, + "probability": 0.9257 + }, + { + "start": 8922.72, + "end": 8924.66, + "probability": 0.7243 + }, + { + "start": 8947.27, + "end": 8951.98, + "probability": 0.719 + }, + { + "start": 8952.98, + "end": 8957.6, + "probability": 0.8506 + }, + { + "start": 8957.66, + "end": 8957.76, + "probability": 0.8457 + }, + { + "start": 8958.14, + "end": 8960.99, + "probability": 0.967 + }, + { + "start": 8962.48, + "end": 8967.68, + "probability": 0.9971 + }, + { + "start": 8968.42, + "end": 8970.04, + "probability": 0.8308 + }, + { + "start": 8970.42, + "end": 8972.76, + "probability": 0.108 + }, + { + "start": 8973.02, + "end": 8974.96, + "probability": 0.8075 + }, + { + "start": 8977.92, + "end": 8981.8, + "probability": 0.9988 + }, + { + "start": 8981.9, + "end": 8986.74, + "probability": 0.988 + }, + { + "start": 8986.74, + "end": 8991.74, + "probability": 0.9912 + }, + { + "start": 8991.86, + "end": 8994.0, + "probability": 0.9967 + }, + { + "start": 8994.12, + "end": 8995.26, + "probability": 0.9023 + }, + { + "start": 8995.82, + "end": 9000.08, + "probability": 0.9144 + }, + { + "start": 9000.1, + "end": 9001.64, + "probability": 0.7295 + }, + { + "start": 9002.38, + "end": 9007.2, + "probability": 0.9619 + }, + { + "start": 9007.9, + "end": 9008.94, + "probability": 0.9792 + }, + { + "start": 9009.5, + "end": 9013.56, + "probability": 0.8457 + }, + { + "start": 9013.66, + "end": 9016.16, + "probability": 0.9847 + }, + { + "start": 9016.82, + "end": 9017.54, + "probability": 0.8056 + }, + { + "start": 9017.96, + "end": 9018.34, + "probability": 0.9111 + }, + { + "start": 9018.44, + "end": 9018.9, + "probability": 0.5434 + }, + { + "start": 9019.34, + "end": 9022.3, + "probability": 0.989 + }, + { + "start": 9023.04, + "end": 9025.94, + "probability": 0.9299 + }, + { + "start": 9026.4, + "end": 9031.7, + "probability": 0.9733 + }, + { + "start": 9032.1, + "end": 9032.54, + "probability": 0.7363 + }, + { + "start": 9033.78, + "end": 9039.66, + "probability": 0.8077 + }, + { + "start": 9040.2, + "end": 9046.51, + "probability": 0.9884 + }, + { + "start": 9047.12, + "end": 9048.72, + "probability": 0.7659 + }, + { + "start": 9048.78, + "end": 9049.42, + "probability": 0.8256 + }, + { + "start": 9050.02, + "end": 9052.89, + "probability": 0.9932 + }, + { + "start": 9053.26, + "end": 9055.94, + "probability": 0.8172 + }, + { + "start": 9056.14, + "end": 9058.18, + "probability": 0.6287 + }, + { + "start": 9059.78, + "end": 9067.0, + "probability": 0.9912 + }, + { + "start": 9067.26, + "end": 9068.16, + "probability": 0.9783 + }, + { + "start": 9068.44, + "end": 9069.34, + "probability": 0.8685 + }, + { + "start": 9069.78, + "end": 9074.8, + "probability": 0.9913 + }, + { + "start": 9075.42, + "end": 9077.88, + "probability": 0.9794 + }, + { + "start": 9078.48, + "end": 9081.06, + "probability": 0.998 + }, + { + "start": 9081.68, + "end": 9082.56, + "probability": 0.7604 + }, + { + "start": 9091.92, + "end": 9097.8, + "probability": 0.9834 + }, + { + "start": 9098.5, + "end": 9100.06, + "probability": 0.9633 + }, + { + "start": 9100.54, + "end": 9104.64, + "probability": 0.9912 + }, + { + "start": 9105.54, + "end": 9107.94, + "probability": 0.8019 + }, + { + "start": 9108.18, + "end": 9111.2, + "probability": 0.8984 + }, + { + "start": 9113.1, + "end": 9118.86, + "probability": 0.9462 + }, + { + "start": 9119.94, + "end": 9122.56, + "probability": 0.8677 + }, + { + "start": 9123.22, + "end": 9130.3, + "probability": 0.7406 + }, + { + "start": 9130.96, + "end": 9132.44, + "probability": 0.6202 + }, + { + "start": 9134.22, + "end": 9134.48, + "probability": 0.295 + }, + { + "start": 9135.24, + "end": 9136.24, + "probability": 0.7311 + }, + { + "start": 9137.16, + "end": 9139.38, + "probability": 0.7965 + }, + { + "start": 9139.7, + "end": 9141.06, + "probability": 0.076 + }, + { + "start": 9141.24, + "end": 9141.6, + "probability": 0.8689 + }, + { + "start": 9141.74, + "end": 9145.02, + "probability": 0.8877 + }, + { + "start": 9146.08, + "end": 9151.4, + "probability": 0.9961 + }, + { + "start": 9152.14, + "end": 9152.82, + "probability": 0.5803 + }, + { + "start": 9155.06, + "end": 9156.44, + "probability": 0.9719 + }, + { + "start": 9160.68, + "end": 9160.94, + "probability": 0.3591 + }, + { + "start": 9161.78, + "end": 9162.58, + "probability": 0.7121 + }, + { + "start": 9163.48, + "end": 9164.92, + "probability": 0.043 + }, + { + "start": 9166.16, + "end": 9167.29, + "probability": 0.0973 + }, + { + "start": 9168.36, + "end": 9168.7, + "probability": 0.6259 + }, + { + "start": 9170.54, + "end": 9171.98, + "probability": 0.9327 + }, + { + "start": 9172.52, + "end": 9173.7, + "probability": 0.7394 + }, + { + "start": 9174.4, + "end": 9174.84, + "probability": 0.0142 + }, + { + "start": 9177.74, + "end": 9180.12, + "probability": 0.0246 + }, + { + "start": 9180.16, + "end": 9180.46, + "probability": 0.2673 + }, + { + "start": 9181.82, + "end": 9182.9, + "probability": 0.5247 + }, + { + "start": 9183.2, + "end": 9183.44, + "probability": 0.5792 + }, + { + "start": 9183.44, + "end": 9186.23, + "probability": 0.2166 + }, + { + "start": 9186.46, + "end": 9187.58, + "probability": 0.8342 + }, + { + "start": 9187.68, + "end": 9189.86, + "probability": 0.8822 + }, + { + "start": 9192.67, + "end": 9196.78, + "probability": 0.691 + }, + { + "start": 9197.16, + "end": 9198.64, + "probability": 0.3898 + }, + { + "start": 9199.38, + "end": 9200.34, + "probability": 0.9771 + }, + { + "start": 9201.22, + "end": 9201.88, + "probability": 0.8741 + }, + { + "start": 9202.68, + "end": 9203.0, + "probability": 0.0381 + }, + { + "start": 9205.54, + "end": 9207.0, + "probability": 0.1978 + }, + { + "start": 9208.6, + "end": 9214.56, + "probability": 0.0245 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.0, + "end": 9276.0, + "probability": 0.0 + }, + { + "start": 9276.12, + "end": 9279.2, + "probability": 0.8392 + }, + { + "start": 9281.24, + "end": 9284.24, + "probability": 0.3222 + }, + { + "start": 9286.68, + "end": 9289.42, + "probability": 0.7379 + }, + { + "start": 9292.76, + "end": 9293.24, + "probability": 0.2259 + }, + { + "start": 9297.72, + "end": 9299.12, + "probability": 0.8644 + }, + { + "start": 9302.02, + "end": 9302.7, + "probability": 0.8621 + }, + { + "start": 9304.9, + "end": 9305.44, + "probability": 0.9704 + }, + { + "start": 9307.24, + "end": 9309.36, + "probability": 0.9976 + }, + { + "start": 9313.68, + "end": 9314.28, + "probability": 0.999 + }, + { + "start": 9316.2, + "end": 9318.18, + "probability": 0.966 + }, + { + "start": 9319.74, + "end": 9320.64, + "probability": 0.8218 + }, + { + "start": 9322.22, + "end": 9322.6, + "probability": 0.134 + }, + { + "start": 9322.86, + "end": 9324.04, + "probability": 0.8886 + }, + { + "start": 9324.3, + "end": 9324.6, + "probability": 0.9655 + }, + { + "start": 9324.72, + "end": 9325.66, + "probability": 0.7216 + }, + { + "start": 9325.98, + "end": 9329.2, + "probability": 0.9917 + }, + { + "start": 9330.28, + "end": 9334.08, + "probability": 0.9438 + }, + { + "start": 9335.42, + "end": 9337.52, + "probability": 0.9946 + }, + { + "start": 9339.4, + "end": 9340.9, + "probability": 0.8847 + }, + { + "start": 9341.86, + "end": 9341.88, + "probability": 0.3212 + }, + { + "start": 9341.88, + "end": 9342.88, + "probability": 0.2704 + }, + { + "start": 9342.94, + "end": 9343.42, + "probability": 0.7872 + }, + { + "start": 9343.5, + "end": 9344.34, + "probability": 0.3679 + }, + { + "start": 9344.54, + "end": 9345.96, + "probability": 0.2562 + }, + { + "start": 9346.02, + "end": 9348.36, + "probability": 0.8984 + }, + { + "start": 9350.46, + "end": 9351.96, + "probability": 0.9972 + }, + { + "start": 9354.24, + "end": 9356.82, + "probability": 0.9294 + }, + { + "start": 9358.64, + "end": 9360.2, + "probability": 0.8899 + }, + { + "start": 9362.2, + "end": 9363.6, + "probability": 0.7568 + }, + { + "start": 9364.36, + "end": 9366.12, + "probability": 0.9937 + }, + { + "start": 9367.64, + "end": 9368.24, + "probability": 0.5236 + }, + { + "start": 9369.88, + "end": 9372.7, + "probability": 0.9961 + }, + { + "start": 9376.23, + "end": 9378.9, + "probability": 0.753 + }, + { + "start": 9380.04, + "end": 9380.8, + "probability": 0.9056 + }, + { + "start": 9381.72, + "end": 9383.16, + "probability": 0.9839 + }, + { + "start": 9387.48, + "end": 9389.87, + "probability": 0.9976 + }, + { + "start": 9392.28, + "end": 9393.58, + "probability": 0.9787 + }, + { + "start": 9394.48, + "end": 9395.94, + "probability": 0.9794 + }, + { + "start": 9397.12, + "end": 9401.84, + "probability": 0.989 + }, + { + "start": 9401.92, + "end": 9403.0, + "probability": 0.9505 + }, + { + "start": 9403.86, + "end": 9405.94, + "probability": 0.9849 + }, + { + "start": 9406.32, + "end": 9406.68, + "probability": 0.8126 + }, + { + "start": 9406.96, + "end": 9409.54, + "probability": 0.1604 + }, + { + "start": 9410.5, + "end": 9412.04, + "probability": 0.4783 + }, + { + "start": 9415.12, + "end": 9416.46, + "probability": 0.4124 + }, + { + "start": 9417.6, + "end": 9419.26, + "probability": 0.496 + }, + { + "start": 9421.98, + "end": 9424.42, + "probability": 0.5393 + }, + { + "start": 9425.07, + "end": 9430.9, + "probability": 0.784 + }, + { + "start": 9432.26, + "end": 9433.24, + "probability": 0.9282 + }, + { + "start": 9435.9, + "end": 9437.56, + "probability": 0.7812 + }, + { + "start": 9440.18, + "end": 9442.12, + "probability": 0.1029 + }, + { + "start": 9442.34, + "end": 9445.28, + "probability": 0.7997 + }, + { + "start": 9445.46, + "end": 9446.26, + "probability": 0.6931 + }, + { + "start": 9446.76, + "end": 9447.92, + "probability": 0.9778 + }, + { + "start": 9448.1, + "end": 9450.3, + "probability": 0.8597 + }, + { + "start": 9450.7, + "end": 9451.76, + "probability": 0.3082 + }, + { + "start": 9452.74, + "end": 9453.98, + "probability": 0.0207 + }, + { + "start": 9477.8, + "end": 9480.2, + "probability": 0.7988 + }, + { + "start": 9485.74, + "end": 9487.22, + "probability": 0.3859 + }, + { + "start": 9488.26, + "end": 9490.12, + "probability": 0.9528 + }, + { + "start": 9493.92, + "end": 9496.1, + "probability": 0.2995 + }, + { + "start": 9498.02, + "end": 9499.44, + "probability": 0.8526 + }, + { + "start": 9502.26, + "end": 9503.84, + "probability": 0.8346 + }, + { + "start": 9504.5, + "end": 9505.9, + "probability": 0.9634 + }, + { + "start": 9506.8, + "end": 9507.28, + "probability": 0.9712 + }, + { + "start": 9508.02, + "end": 9509.42, + "probability": 0.9746 + }, + { + "start": 9511.36, + "end": 9512.04, + "probability": 0.9722 + }, + { + "start": 9513.04, + "end": 9514.4, + "probability": 0.9932 + }, + { + "start": 9515.58, + "end": 9516.16, + "probability": 0.9902 + }, + { + "start": 9516.88, + "end": 9519.6, + "probability": 0.9875 + }, + { + "start": 9520.14, + "end": 9521.42, + "probability": 0.9671 + }, + { + "start": 9523.08, + "end": 9523.44, + "probability": 0.8368 + }, + { + "start": 9524.18, + "end": 9525.58, + "probability": 0.9763 + }, + { + "start": 9527.58, + "end": 9530.64, + "probability": 0.7671 + }, + { + "start": 9531.74, + "end": 9532.96, + "probability": 0.9275 + }, + { + "start": 9534.4, + "end": 9534.98, + "probability": 0.9818 + }, + { + "start": 9535.52, + "end": 9536.82, + "probability": 0.9922 + }, + { + "start": 9539.04, + "end": 9539.42, + "probability": 0.9552 + }, + { + "start": 9540.46, + "end": 9541.86, + "probability": 0.9919 + }, + { + "start": 9543.82, + "end": 9546.32, + "probability": 0.9929 + }, + { + "start": 9547.66, + "end": 9551.5, + "probability": 0.5363 + }, + { + "start": 9552.32, + "end": 9553.84, + "probability": 0.9096 + }, + { + "start": 9555.02, + "end": 9555.84, + "probability": 0.9814 + }, + { + "start": 9556.74, + "end": 9558.24, + "probability": 0.9888 + }, + { + "start": 9559.02, + "end": 9559.56, + "probability": 0.9755 + }, + { + "start": 9560.66, + "end": 9562.02, + "probability": 0.9929 + }, + { + "start": 9563.06, + "end": 9563.62, + "probability": 0.9474 + }, + { + "start": 9565.39, + "end": 9567.62, + "probability": 0.8176 + }, + { + "start": 9569.62, + "end": 9570.36, + "probability": 0.7268 + }, + { + "start": 9572.94, + "end": 9574.62, + "probability": 0.577 + }, + { + "start": 9575.18, + "end": 9575.56, + "probability": 0.5435 + }, + { + "start": 9576.48, + "end": 9577.98, + "probability": 0.955 + }, + { + "start": 9579.34, + "end": 9579.9, + "probability": 0.9711 + }, + { + "start": 9580.56, + "end": 9581.86, + "probability": 0.9941 + }, + { + "start": 9582.58, + "end": 9583.32, + "probability": 0.9874 + }, + { + "start": 9584.16, + "end": 9585.52, + "probability": 0.9985 + }, + { + "start": 9589.3, + "end": 9592.98, + "probability": 0.9153 + }, + { + "start": 9593.7, + "end": 9594.46, + "probability": 0.9939 + }, + { + "start": 9595.34, + "end": 9596.06, + "probability": 0.7323 + }, + { + "start": 9596.6, + "end": 9597.32, + "probability": 0.7237 + }, + { + "start": 9598.7, + "end": 9599.06, + "probability": 0.6869 + }, + { + "start": 9599.76, + "end": 9601.18, + "probability": 0.928 + }, + { + "start": 9602.3, + "end": 9603.02, + "probability": 0.711 + }, + { + "start": 9603.7, + "end": 9604.86, + "probability": 0.9807 + }, + { + "start": 9607.72, + "end": 9608.42, + "probability": 0.9403 + }, + { + "start": 9608.96, + "end": 9611.22, + "probability": 0.9174 + }, + { + "start": 9611.92, + "end": 9614.64, + "probability": 0.9935 + }, + { + "start": 9616.44, + "end": 9617.92, + "probability": 0.5721 + }, + { + "start": 9618.8, + "end": 9620.48, + "probability": 0.6694 + }, + { + "start": 9622.44, + "end": 9624.38, + "probability": 0.8051 + }, + { + "start": 9648.14, + "end": 9649.1, + "probability": 0.6075 + }, + { + "start": 9651.12, + "end": 9652.06, + "probability": 0.7319 + }, + { + "start": 9653.1, + "end": 9654.8, + "probability": 0.9785 + }, + { + "start": 9656.52, + "end": 9659.14, + "probability": 0.9082 + }, + { + "start": 9659.24, + "end": 9661.7, + "probability": 0.9796 + }, + { + "start": 9661.82, + "end": 9663.52, + "probability": 0.7666 + }, + { + "start": 9664.84, + "end": 9667.88, + "probability": 0.9863 + }, + { + "start": 9669.08, + "end": 9672.88, + "probability": 0.9474 + }, + { + "start": 9673.44, + "end": 9673.88, + "probability": 0.4704 + }, + { + "start": 9674.88, + "end": 9679.48, + "probability": 0.9569 + }, + { + "start": 9679.78, + "end": 9685.38, + "probability": 0.9942 + }, + { + "start": 9685.98, + "end": 9691.26, + "probability": 0.9982 + }, + { + "start": 9691.36, + "end": 9696.38, + "probability": 0.9614 + }, + { + "start": 9697.22, + "end": 9699.08, + "probability": 0.8938 + }, + { + "start": 9699.22, + "end": 9701.26, + "probability": 0.9722 + }, + { + "start": 9701.74, + "end": 9706.48, + "probability": 0.949 + }, + { + "start": 9707.2, + "end": 9709.02, + "probability": 0.7163 + }, + { + "start": 9709.66, + "end": 9714.06, + "probability": 0.9866 + }, + { + "start": 9714.96, + "end": 9720.3, + "probability": 0.9914 + }, + { + "start": 9720.82, + "end": 9723.84, + "probability": 0.9979 + }, + { + "start": 9724.56, + "end": 9727.64, + "probability": 0.9641 + }, + { + "start": 9727.66, + "end": 9731.12, + "probability": 0.998 + }, + { + "start": 9731.64, + "end": 9733.66, + "probability": 0.9054 + }, + { + "start": 9734.14, + "end": 9735.64, + "probability": 0.9432 + }, + { + "start": 9736.28, + "end": 9741.84, + "probability": 0.9951 + }, + { + "start": 9741.84, + "end": 9745.94, + "probability": 0.999 + }, + { + "start": 9746.24, + "end": 9746.76, + "probability": 0.7089 + }, + { + "start": 9750.52, + "end": 9752.68, + "probability": 0.945 + }, + { + "start": 9753.32, + "end": 9756.58, + "probability": 0.9072 + }, + { + "start": 9757.62, + "end": 9758.5, + "probability": 0.3563 + }, + { + "start": 9759.2, + "end": 9760.1, + "probability": 0.6939 + }, + { + "start": 9761.0, + "end": 9761.7, + "probability": 0.5311 + }, + { + "start": 9763.36, + "end": 9765.48, + "probability": 0.9758 + }, + { + "start": 9766.72, + "end": 9767.66, + "probability": 0.89 + }, + { + "start": 9768.24, + "end": 9769.66, + "probability": 0.9924 + }, + { + "start": 9771.08, + "end": 9771.82, + "probability": 0.9659 + }, + { + "start": 9772.4, + "end": 9773.58, + "probability": 0.9971 + }, + { + "start": 9774.94, + "end": 9775.48, + "probability": 0.1625 + }, + { + "start": 9776.32, + "end": 9778.14, + "probability": 0.8396 + }, + { + "start": 9779.34, + "end": 9779.96, + "probability": 0.9304 + }, + { + "start": 9782.48, + "end": 9783.38, + "probability": 0.2609 + }, + { + "start": 9783.64, + "end": 9784.34, + "probability": 0.5521 + }, + { + "start": 9784.62, + "end": 9785.78, + "probability": 0.136 + }, + { + "start": 9786.0, + "end": 9787.44, + "probability": 0.0199 + }, + { + "start": 9788.1, + "end": 9790.8, + "probability": 0.0351 + }, + { + "start": 9791.84, + "end": 9792.82, + "probability": 0.0868 + }, + { + "start": 9793.92, + "end": 9794.3, + "probability": 0.0227 + }, + { + "start": 9794.44, + "end": 9795.56, + "probability": 0.1649 + }, + { + "start": 9798.06, + "end": 9801.16, + "probability": 0.116 + }, + { + "start": 9803.54, + "end": 9806.32, + "probability": 0.0815 + }, + { + "start": 9806.92, + "end": 9809.28, + "probability": 0.0574 + }, + { + "start": 9810.44, + "end": 9812.86, + "probability": 0.0428 + }, + { + "start": 9815.1, + "end": 9816.74, + "probability": 0.0923 + }, + { + "start": 9842.12, + "end": 9843.76, + "probability": 0.6939 + }, + { + "start": 9845.44, + "end": 9847.0, + "probability": 0.8174 + }, + { + "start": 9847.16, + "end": 9848.06, + "probability": 0.7123 + }, + { + "start": 9848.22, + "end": 9849.15, + "probability": 0.954 + }, + { + "start": 9849.36, + "end": 9850.33, + "probability": 0.6704 + }, + { + "start": 9852.18, + "end": 9854.96, + "probability": 0.9968 + }, + { + "start": 9855.94, + "end": 9857.24, + "probability": 0.9149 + }, + { + "start": 9859.14, + "end": 9859.7, + "probability": 0.9971 + }, + { + "start": 9860.76, + "end": 9863.72, + "probability": 0.9893 + }, + { + "start": 9864.72, + "end": 9869.62, + "probability": 0.9878 + }, + { + "start": 9871.3, + "end": 9873.88, + "probability": 0.9845 + }, + { + "start": 9874.06, + "end": 9874.76, + "probability": 0.9951 + }, + { + "start": 9876.1, + "end": 9879.06, + "probability": 0.9761 + }, + { + "start": 9879.72, + "end": 9881.65, + "probability": 0.9963 + }, + { + "start": 9882.02, + "end": 9883.4, + "probability": 0.7796 + }, + { + "start": 9885.06, + "end": 9886.97, + "probability": 0.9518 + }, + { + "start": 9888.26, + "end": 9888.9, + "probability": 0.7596 + }, + { + "start": 9890.58, + "end": 9892.68, + "probability": 0.905 + }, + { + "start": 9893.24, + "end": 9895.75, + "probability": 0.9769 + }, + { + "start": 9896.56, + "end": 9901.46, + "probability": 0.998 + }, + { + "start": 9902.9, + "end": 9902.92, + "probability": 0.019 + }, + { + "start": 9902.98, + "end": 9904.02, + "probability": 0.6747 + }, + { + "start": 9904.1, + "end": 9905.32, + "probability": 0.8875 + }, + { + "start": 9905.68, + "end": 9909.44, + "probability": 0.9836 + }, + { + "start": 9909.98, + "end": 9911.66, + "probability": 0.7053 + }, + { + "start": 9912.32, + "end": 9915.0, + "probability": 0.9654 + }, + { + "start": 9916.16, + "end": 9918.46, + "probability": 0.9586 + }, + { + "start": 9919.0, + "end": 9920.76, + "probability": 0.5216 + }, + { + "start": 9922.58, + "end": 9927.08, + "probability": 0.9584 + }, + { + "start": 9927.14, + "end": 9927.46, + "probability": 0.7243 + }, + { + "start": 9928.01, + "end": 9930.58, + "probability": 0.998 + }, + { + "start": 9931.08, + "end": 9936.9, + "probability": 0.999 + }, + { + "start": 9937.08, + "end": 9938.76, + "probability": 0.9287 + }, + { + "start": 9941.62, + "end": 9944.1, + "probability": 0.9471 + }, + { + "start": 9944.16, + "end": 9947.44, + "probability": 0.9938 + }, + { + "start": 9947.74, + "end": 9949.06, + "probability": 0.9778 + }, + { + "start": 9950.1, + "end": 9952.0, + "probability": 0.839 + }, + { + "start": 9952.92, + "end": 9953.56, + "probability": 0.8317 + }, + { + "start": 9954.4, + "end": 9954.92, + "probability": 0.8816 + }, + { + "start": 9955.82, + "end": 9958.28, + "probability": 0.985 + }, + { + "start": 9959.22, + "end": 9961.78, + "probability": 0.9964 + }, + { + "start": 9963.06, + "end": 9966.52, + "probability": 0.9846 + }, + { + "start": 9967.43, + "end": 9969.83, + "probability": 0.9341 + }, + { + "start": 9971.82, + "end": 9974.02, + "probability": 0.9309 + }, + { + "start": 9975.18, + "end": 9976.78, + "probability": 0.9663 + }, + { + "start": 9977.46, + "end": 9980.18, + "probability": 0.9979 + }, + { + "start": 9980.34, + "end": 9981.92, + "probability": 0.9995 + }, + { + "start": 9982.52, + "end": 9983.1, + "probability": 0.6921 + }, + { + "start": 9983.76, + "end": 9986.08, + "probability": 0.95 + }, + { + "start": 9987.02, + "end": 9988.56, + "probability": 0.9685 + }, + { + "start": 9989.16, + "end": 9990.24, + "probability": 0.8754 + }, + { + "start": 9990.9, + "end": 9991.64, + "probability": 0.7552 + }, + { + "start": 9992.26, + "end": 9993.92, + "probability": 0.8731 + }, + { + "start": 9994.52, + "end": 9997.74, + "probability": 0.9557 + }, + { + "start": 9998.12, + "end": 10001.08, + "probability": 0.9235 + }, + { + "start": 10001.94, + "end": 10003.22, + "probability": 0.96 + }, + { + "start": 10003.68, + "end": 10004.42, + "probability": 0.7889 + }, + { + "start": 10004.46, + "end": 10006.3, + "probability": 0.9262 + }, + { + "start": 10006.84, + "end": 10009.04, + "probability": 0.9956 + }, + { + "start": 10010.58, + "end": 10012.24, + "probability": 0.9984 + }, + { + "start": 10013.18, + "end": 10014.78, + "probability": 0.8193 + }, + { + "start": 10015.88, + "end": 10017.68, + "probability": 0.9919 + }, + { + "start": 10018.32, + "end": 10019.22, + "probability": 0.6573 + }, + { + "start": 10020.56, + "end": 10023.1, + "probability": 0.7487 + }, + { + "start": 10023.92, + "end": 10026.12, + "probability": 0.7298 + }, + { + "start": 10026.68, + "end": 10029.4, + "probability": 0.9958 + }, + { + "start": 10030.22, + "end": 10031.68, + "probability": 0.9414 + }, + { + "start": 10035.16, + "end": 10039.22, + "probability": 0.7944 + }, + { + "start": 10039.82, + "end": 10042.44, + "probability": 0.959 + }, + { + "start": 10043.04, + "end": 10045.78, + "probability": 0.8192 + }, + { + "start": 10046.3, + "end": 10048.02, + "probability": 0.9589 + }, + { + "start": 10048.62, + "end": 10050.2, + "probability": 0.9966 + }, + { + "start": 10050.84, + "end": 10051.91, + "probability": 0.8422 + }, + { + "start": 10052.28, + "end": 10054.74, + "probability": 0.9565 + }, + { + "start": 10054.82, + "end": 10059.5, + "probability": 0.9976 + }, + { + "start": 10059.98, + "end": 10063.24, + "probability": 0.7584 + }, + { + "start": 10063.5, + "end": 10064.68, + "probability": 0.2146 + }, + { + "start": 10064.68, + "end": 10068.54, + "probability": 0.2803 + }, + { + "start": 10069.18, + "end": 10069.72, + "probability": 0.7721 + }, + { + "start": 10069.98, + "end": 10071.8, + "probability": 0.7729 + }, + { + "start": 10072.9, + "end": 10075.16, + "probability": 0.345 + }, + { + "start": 10075.8, + "end": 10076.5, + "probability": 0.1496 + }, + { + "start": 10077.3, + "end": 10078.78, + "probability": 0.3027 + }, + { + "start": 10079.34, + "end": 10080.18, + "probability": 0.22 + }, + { + "start": 10080.74, + "end": 10081.6, + "probability": 0.2378 + }, + { + "start": 10082.4, + "end": 10084.58, + "probability": 0.6943 + }, + { + "start": 10085.94, + "end": 10088.42, + "probability": 0.103 + }, + { + "start": 10088.94, + "end": 10092.52, + "probability": 0.0149 + }, + { + "start": 10092.68, + "end": 10093.9, + "probability": 0.1669 + }, + { + "start": 10094.34, + "end": 10095.77, + "probability": 0.4253 + }, + { + "start": 10096.32, + "end": 10097.24, + "probability": 0.022 + }, + { + "start": 10098.52, + "end": 10099.06, + "probability": 0.2238 + }, + { + "start": 10101.62, + "end": 10102.52, + "probability": 0.4626 + }, + { + "start": 10109.46, + "end": 10110.6, + "probability": 0.0572 + }, + { + "start": 10111.96, + "end": 10112.8, + "probability": 0.1904 + }, + { + "start": 10134.6, + "end": 10137.36, + "probability": 0.9971 + }, + { + "start": 10137.96, + "end": 10141.6, + "probability": 0.9208 + }, + { + "start": 10143.34, + "end": 10147.24, + "probability": 0.9997 + }, + { + "start": 10148.02, + "end": 10150.78, + "probability": 0.9814 + }, + { + "start": 10151.78, + "end": 10156.44, + "probability": 0.9951 + }, + { + "start": 10157.12, + "end": 10161.56, + "probability": 0.9458 + }, + { + "start": 10162.19, + "end": 10165.48, + "probability": 0.9761 + }, + { + "start": 10166.66, + "end": 10167.1, + "probability": 0.4297 + }, + { + "start": 10168.5, + "end": 10173.1, + "probability": 0.995 + }, + { + "start": 10174.96, + "end": 10178.22, + "probability": 0.9894 + }, + { + "start": 10179.06, + "end": 10179.56, + "probability": 0.0774 + }, + { + "start": 10179.56, + "end": 10185.76, + "probability": 0.7935 + }, + { + "start": 10186.2, + "end": 10190.06, + "probability": 0.7253 + }, + { + "start": 10190.64, + "end": 10194.64, + "probability": 0.9922 + }, + { + "start": 10195.56, + "end": 10199.1, + "probability": 0.9181 + }, + { + "start": 10199.78, + "end": 10204.14, + "probability": 0.9768 + }, + { + "start": 10204.14, + "end": 10208.6, + "probability": 0.9967 + }, + { + "start": 10209.26, + "end": 10212.44, + "probability": 0.9077 + }, + { + "start": 10213.08, + "end": 10220.06, + "probability": 0.9767 + }, + { + "start": 10222.0, + "end": 10226.34, + "probability": 0.923 + }, + { + "start": 10227.1, + "end": 10229.82, + "probability": 0.8482 + }, + { + "start": 10229.9, + "end": 10230.36, + "probability": 0.5689 + }, + { + "start": 10230.48, + "end": 10233.46, + "probability": 0.8765 + }, + { + "start": 10234.44, + "end": 10238.36, + "probability": 0.9547 + }, + { + "start": 10239.34, + "end": 10240.5, + "probability": 0.9994 + }, + { + "start": 10241.36, + "end": 10244.22, + "probability": 0.9982 + }, + { + "start": 10244.9, + "end": 10246.32, + "probability": 0.8293 + }, + { + "start": 10246.48, + "end": 10247.2, + "probability": 0.6621 + }, + { + "start": 10247.5, + "end": 10253.32, + "probability": 0.9339 + }, + { + "start": 10253.32, + "end": 10257.86, + "probability": 0.9952 + }, + { + "start": 10258.44, + "end": 10259.8, + "probability": 0.9819 + }, + { + "start": 10259.96, + "end": 10260.4, + "probability": 0.7823 + }, + { + "start": 10260.5, + "end": 10264.58, + "probability": 0.8132 + }, + { + "start": 10265.88, + "end": 10273.05, + "probability": 0.9927 + }, + { + "start": 10273.22, + "end": 10276.36, + "probability": 0.9984 + }, + { + "start": 10277.38, + "end": 10279.6, + "probability": 0.997 + }, + { + "start": 10280.34, + "end": 10285.22, + "probability": 0.9474 + }, + { + "start": 10285.22, + "end": 10289.66, + "probability": 0.9969 + }, + { + "start": 10290.68, + "end": 10296.24, + "probability": 0.989 + }, + { + "start": 10296.74, + "end": 10300.6, + "probability": 0.9976 + }, + { + "start": 10300.68, + "end": 10304.32, + "probability": 0.777 + }, + { + "start": 10305.51, + "end": 10311.0, + "probability": 0.4903 + }, + { + "start": 10311.0, + "end": 10313.52, + "probability": 0.9445 + }, + { + "start": 10314.42, + "end": 10316.7, + "probability": 0.8982 + }, + { + "start": 10316.98, + "end": 10317.66, + "probability": 0.6601 + }, + { + "start": 10317.8, + "end": 10323.82, + "probability": 0.9225 + }, + { + "start": 10323.84, + "end": 10328.84, + "probability": 0.9816 + }, + { + "start": 10329.3, + "end": 10331.56, + "probability": 0.9559 + }, + { + "start": 10331.68, + "end": 10332.18, + "probability": 0.7236 + }, + { + "start": 10334.76, + "end": 10336.74, + "probability": 0.9943 + }, + { + "start": 10336.88, + "end": 10339.34, + "probability": 0.7985 + }, + { + "start": 10359.8, + "end": 10360.4, + "probability": 0.7035 + }, + { + "start": 10360.64, + "end": 10361.9, + "probability": 0.6393 + }, + { + "start": 10362.2, + "end": 10367.62, + "probability": 0.998 + }, + { + "start": 10367.82, + "end": 10369.72, + "probability": 0.9431 + }, + { + "start": 10370.48, + "end": 10370.48, + "probability": 0.0356 + }, + { + "start": 10370.48, + "end": 10373.06, + "probability": 0.9381 + }, + { + "start": 10374.46, + "end": 10376.46, + "probability": 0.9995 + }, + { + "start": 10377.18, + "end": 10380.28, + "probability": 0.998 + }, + { + "start": 10380.6, + "end": 10382.36, + "probability": 0.9033 + }, + { + "start": 10382.48, + "end": 10383.74, + "probability": 0.8701 + }, + { + "start": 10385.24, + "end": 10388.86, + "probability": 0.9913 + }, + { + "start": 10389.92, + "end": 10397.32, + "probability": 0.9385 + }, + { + "start": 10397.36, + "end": 10400.9, + "probability": 0.9748 + }, + { + "start": 10400.98, + "end": 10402.1, + "probability": 0.7216 + }, + { + "start": 10402.32, + "end": 10402.52, + "probability": 0.7498 + }, + { + "start": 10402.56, + "end": 10403.54, + "probability": 0.8467 + }, + { + "start": 10403.68, + "end": 10404.34, + "probability": 0.947 + }, + { + "start": 10404.36, + "end": 10404.92, + "probability": 0.6735 + }, + { + "start": 10406.02, + "end": 10406.96, + "probability": 0.9458 + }, + { + "start": 10407.24, + "end": 10410.56, + "probability": 0.9969 + }, + { + "start": 10410.62, + "end": 10417.28, + "probability": 0.9764 + }, + { + "start": 10418.06, + "end": 10418.18, + "probability": 0.9771 + }, + { + "start": 10419.1, + "end": 10420.78, + "probability": 0.7156 + }, + { + "start": 10423.06, + "end": 10424.48, + "probability": 0.7458 + }, + { + "start": 10425.1, + "end": 10426.34, + "probability": 0.9238 + }, + { + "start": 10426.94, + "end": 10431.86, + "probability": 0.9933 + }, + { + "start": 10432.08, + "end": 10432.9, + "probability": 0.8381 + }, + { + "start": 10434.58, + "end": 10437.57, + "probability": 0.998 + }, + { + "start": 10437.62, + "end": 10441.2, + "probability": 0.9838 + }, + { + "start": 10442.06, + "end": 10444.02, + "probability": 0.9403 + }, + { + "start": 10444.94, + "end": 10446.46, + "probability": 0.9922 + }, + { + "start": 10447.58, + "end": 10451.32, + "probability": 0.9241 + }, + { + "start": 10451.44, + "end": 10452.66, + "probability": 0.9988 + }, + { + "start": 10453.26, + "end": 10455.68, + "probability": 0.9824 + }, + { + "start": 10456.24, + "end": 10456.68, + "probability": 0.7378 + }, + { + "start": 10457.42, + "end": 10460.1, + "probability": 0.8961 + }, + { + "start": 10460.9, + "end": 10463.02, + "probability": 0.9689 + }, + { + "start": 10465.78, + "end": 10466.42, + "probability": 0.9679 + }, + { + "start": 10466.54, + "end": 10467.08, + "probability": 0.6468 + }, + { + "start": 10467.16, + "end": 10467.94, + "probability": 0.5292 + }, + { + "start": 10468.28, + "end": 10469.76, + "probability": 0.8937 + }, + { + "start": 10469.78, + "end": 10471.28, + "probability": 0.8676 + }, + { + "start": 10472.04, + "end": 10476.52, + "probability": 0.9884 + }, + { + "start": 10477.08, + "end": 10479.59, + "probability": 0.7413 + }, + { + "start": 10480.56, + "end": 10480.98, + "probability": 0.5332 + }, + { + "start": 10481.94, + "end": 10483.4, + "probability": 0.9893 + }, + { + "start": 10485.4, + "end": 10486.84, + "probability": 0.8232 + }, + { + "start": 10487.68, + "end": 10488.34, + "probability": 0.9638 + }, + { + "start": 10488.52, + "end": 10489.58, + "probability": 0.9472 + }, + { + "start": 10489.72, + "end": 10490.51, + "probability": 0.8149 + }, + { + "start": 10490.9, + "end": 10493.42, + "probability": 0.9906 + }, + { + "start": 10494.12, + "end": 10494.86, + "probability": 0.5021 + }, + { + "start": 10495.0, + "end": 10497.08, + "probability": 0.9589 + }, + { + "start": 10497.94, + "end": 10501.53, + "probability": 0.9496 + }, + { + "start": 10503.46, + "end": 10504.44, + "probability": 0.993 + }, + { + "start": 10506.4, + "end": 10507.42, + "probability": 0.9971 + }, + { + "start": 10508.0, + "end": 10508.56, + "probability": 0.6889 + }, + { + "start": 10509.0, + "end": 10509.34, + "probability": 0.7572 + }, + { + "start": 10509.42, + "end": 10510.27, + "probability": 0.9897 + }, + { + "start": 10511.04, + "end": 10511.48, + "probability": 0.9574 + }, + { + "start": 10512.34, + "end": 10512.92, + "probability": 0.9247 + }, + { + "start": 10514.24, + "end": 10517.46, + "probability": 0.9846 + }, + { + "start": 10518.46, + "end": 10519.63, + "probability": 0.7789 + }, + { + "start": 10520.54, + "end": 10522.98, + "probability": 0.9296 + }, + { + "start": 10524.28, + "end": 10524.74, + "probability": 0.728 + }, + { + "start": 10524.82, + "end": 10526.76, + "probability": 0.9966 + }, + { + "start": 10526.92, + "end": 10527.52, + "probability": 0.6436 + }, + { + "start": 10528.92, + "end": 10534.74, + "probability": 0.9977 + }, + { + "start": 10535.98, + "end": 10539.0, + "probability": 0.9985 + }, + { + "start": 10540.58, + "end": 10541.46, + "probability": 0.9276 + }, + { + "start": 10541.52, + "end": 10545.04, + "probability": 0.9941 + }, + { + "start": 10545.72, + "end": 10549.2, + "probability": 0.9993 + }, + { + "start": 10549.72, + "end": 10553.7, + "probability": 0.979 + }, + { + "start": 10554.26, + "end": 10555.7, + "probability": 0.9284 + }, + { + "start": 10556.78, + "end": 10558.0, + "probability": 0.9732 + }, + { + "start": 10558.52, + "end": 10558.96, + "probability": 0.9271 + }, + { + "start": 10559.04, + "end": 10560.1, + "probability": 0.908 + }, + { + "start": 10560.58, + "end": 10562.84, + "probability": 0.9841 + }, + { + "start": 10564.84, + "end": 10564.84, + "probability": 0.3184 + }, + { + "start": 10564.84, + "end": 10567.44, + "probability": 0.764 + }, + { + "start": 10567.88, + "end": 10570.5, + "probability": 0.9822 + }, + { + "start": 10570.76, + "end": 10571.86, + "probability": 0.9497 + }, + { + "start": 10572.5, + "end": 10574.76, + "probability": 0.5311 + }, + { + "start": 10575.16, + "end": 10579.28, + "probability": 0.8046 + }, + { + "start": 10579.74, + "end": 10580.98, + "probability": 0.9676 + }, + { + "start": 10581.68, + "end": 10581.78, + "probability": 0.081 + }, + { + "start": 10581.78, + "end": 10582.82, + "probability": 0.4876 + }, + { + "start": 10584.2, + "end": 10586.85, + "probability": 0.8258 + }, + { + "start": 10587.48, + "end": 10591.35, + "probability": 0.9261 + }, + { + "start": 10591.42, + "end": 10591.72, + "probability": 0.8086 + }, + { + "start": 10594.02, + "end": 10594.34, + "probability": 0.1849 + }, + { + "start": 10594.34, + "end": 10596.6, + "probability": 0.8562 + }, + { + "start": 10597.52, + "end": 10598.08, + "probability": 0.1656 + }, + { + "start": 10598.28, + "end": 10599.06, + "probability": 0.6205 + }, + { + "start": 10599.06, + "end": 10601.04, + "probability": 0.7836 + }, + { + "start": 10601.98, + "end": 10602.79, + "probability": 0.9967 + }, + { + "start": 10604.18, + "end": 10606.44, + "probability": 0.9982 + }, + { + "start": 10607.04, + "end": 10610.68, + "probability": 0.9006 + }, + { + "start": 10611.16, + "end": 10611.62, + "probability": 0.868 + }, + { + "start": 10611.78, + "end": 10612.7, + "probability": 0.6491 + }, + { + "start": 10613.36, + "end": 10614.22, + "probability": 0.995 + }, + { + "start": 10614.78, + "end": 10618.6, + "probability": 0.9961 + }, + { + "start": 10618.72, + "end": 10618.98, + "probability": 0.8638 + }, + { + "start": 10619.98, + "end": 10623.1, + "probability": 0.7484 + }, + { + "start": 10624.46, + "end": 10626.34, + "probability": 0.7732 + }, + { + "start": 10627.44, + "end": 10629.44, + "probability": 0.8186 + }, + { + "start": 10642.92, + "end": 10643.72, + "probability": 0.7134 + }, + { + "start": 10644.72, + "end": 10645.64, + "probability": 0.7742 + }, + { + "start": 10647.0, + "end": 10650.18, + "probability": 0.9597 + }, + { + "start": 10650.18, + "end": 10652.9, + "probability": 0.994 + }, + { + "start": 10653.88, + "end": 10657.38, + "probability": 0.9246 + }, + { + "start": 10658.5, + "end": 10661.8, + "probability": 0.9814 + }, + { + "start": 10661.96, + "end": 10663.58, + "probability": 0.8684 + }, + { + "start": 10664.38, + "end": 10667.1, + "probability": 0.9858 + }, + { + "start": 10667.94, + "end": 10670.4, + "probability": 0.9407 + }, + { + "start": 10671.46, + "end": 10672.04, + "probability": 0.9905 + }, + { + "start": 10672.94, + "end": 10676.68, + "probability": 0.9873 + }, + { + "start": 10677.4, + "end": 10678.6, + "probability": 0.9924 + }, + { + "start": 10679.5, + "end": 10683.02, + "probability": 0.9953 + }, + { + "start": 10683.68, + "end": 10687.46, + "probability": 0.9543 + }, + { + "start": 10688.42, + "end": 10689.2, + "probability": 0.8059 + }, + { + "start": 10691.26, + "end": 10692.7, + "probability": 0.9771 + }, + { + "start": 10693.64, + "end": 10698.22, + "probability": 0.9859 + }, + { + "start": 10699.02, + "end": 10699.86, + "probability": 0.6787 + }, + { + "start": 10701.26, + "end": 10702.3, + "probability": 0.8711 + }, + { + "start": 10702.9, + "end": 10703.56, + "probability": 0.9991 + }, + { + "start": 10704.48, + "end": 10709.04, + "probability": 0.9966 + }, + { + "start": 10709.24, + "end": 10714.1, + "probability": 0.9526 + }, + { + "start": 10714.1, + "end": 10715.98, + "probability": 0.9966 + }, + { + "start": 10716.88, + "end": 10718.9, + "probability": 0.973 + }, + { + "start": 10719.54, + "end": 10721.72, + "probability": 0.998 + }, + { + "start": 10721.72, + "end": 10724.08, + "probability": 0.9602 + }, + { + "start": 10724.9, + "end": 10726.58, + "probability": 0.9948 + }, + { + "start": 10727.28, + "end": 10727.78, + "probability": 0.999 + }, + { + "start": 10729.24, + "end": 10729.78, + "probability": 0.9977 + }, + { + "start": 10730.74, + "end": 10733.32, + "probability": 0.9764 + }, + { + "start": 10734.22, + "end": 10737.8, + "probability": 0.9834 + }, + { + "start": 10738.1, + "end": 10741.42, + "probability": 0.9667 + }, + { + "start": 10741.94, + "end": 10743.24, + "probability": 0.9062 + }, + { + "start": 10744.1, + "end": 10744.96, + "probability": 0.9827 + }, + { + "start": 10745.76, + "end": 10747.86, + "probability": 0.9941 + }, + { + "start": 10748.54, + "end": 10751.72, + "probability": 0.998 + }, + { + "start": 10752.08, + "end": 10753.16, + "probability": 0.9941 + }, + { + "start": 10753.86, + "end": 10758.32, + "probability": 0.9985 + }, + { + "start": 10758.76, + "end": 10760.48, + "probability": 0.9858 + }, + { + "start": 10760.94, + "end": 10763.52, + "probability": 0.9968 + }, + { + "start": 10763.58, + "end": 10764.92, + "probability": 0.9878 + }, + { + "start": 10766.02, + "end": 10766.28, + "probability": 0.9666 + }, + { + "start": 10766.88, + "end": 10767.82, + "probability": 0.9447 + }, + { + "start": 10768.34, + "end": 10770.88, + "probability": 0.9892 + }, + { + "start": 10772.06, + "end": 10773.64, + "probability": 0.9351 + }, + { + "start": 10774.82, + "end": 10776.66, + "probability": 0.8975 + }, + { + "start": 10777.88, + "end": 10779.7, + "probability": 0.8042 + }, + { + "start": 10780.24, + "end": 10780.92, + "probability": 0.9683 + }, + { + "start": 10781.02, + "end": 10784.42, + "probability": 0.999 + }, + { + "start": 10784.94, + "end": 10787.22, + "probability": 0.9979 + }, + { + "start": 10787.92, + "end": 10788.84, + "probability": 0.9985 + }, + { + "start": 10789.42, + "end": 10790.56, + "probability": 0.9697 + }, + { + "start": 10790.66, + "end": 10792.92, + "probability": 0.8662 + }, + { + "start": 10793.38, + "end": 10797.78, + "probability": 0.995 + }, + { + "start": 10798.16, + "end": 10798.52, + "probability": 0.8397 + }, + { + "start": 10800.64, + "end": 10802.28, + "probability": 0.7149 + }, + { + "start": 10805.26, + "end": 10807.04, + "probability": 0.7735 + }, + { + "start": 10807.48, + "end": 10808.2, + "probability": 0.9224 + }, + { + "start": 10811.12, + "end": 10811.82, + "probability": 0.5419 + }, + { + "start": 10812.5, + "end": 10813.0, + "probability": 0.7449 + }, + { + "start": 10815.12, + "end": 10815.58, + "probability": 0.4183 + }, + { + "start": 10816.06, + "end": 10816.92, + "probability": 0.2792 + }, + { + "start": 10818.2, + "end": 10819.26, + "probability": 0.9947 + }, + { + "start": 10823.34, + "end": 10824.94, + "probability": 0.3724 + }, + { + "start": 10825.84, + "end": 10828.54, + "probability": 0.7736 + }, + { + "start": 10852.1, + "end": 10852.1, + "probability": 0.1366 + }, + { + "start": 10852.1, + "end": 10852.1, + "probability": 0.3104 + }, + { + "start": 10852.1, + "end": 10852.1, + "probability": 0.0724 + }, + { + "start": 10852.1, + "end": 10852.14, + "probability": 0.0371 + }, + { + "start": 10852.14, + "end": 10852.14, + "probability": 0.0584 + }, + { + "start": 10880.72, + "end": 10889.26, + "probability": 0.9662 + }, + { + "start": 10890.8, + "end": 10892.72, + "probability": 0.7621 + }, + { + "start": 10894.84, + "end": 10895.24, + "probability": 0.0391 + }, + { + "start": 10895.24, + "end": 10897.12, + "probability": 0.9661 + }, + { + "start": 10899.48, + "end": 10909.58, + "probability": 0.97 + }, + { + "start": 10910.36, + "end": 10911.78, + "probability": 0.9985 + }, + { + "start": 10913.5, + "end": 10918.48, + "probability": 0.8736 + }, + { + "start": 10919.12, + "end": 10920.1, + "probability": 0.3296 + }, + { + "start": 10920.52, + "end": 10923.14, + "probability": 0.984 + }, + { + "start": 10924.36, + "end": 10926.68, + "probability": 0.9475 + }, + { + "start": 10927.5, + "end": 10932.54, + "probability": 0.9868 + }, + { + "start": 10934.38, + "end": 10936.86, + "probability": 0.3044 + }, + { + "start": 10938.88, + "end": 10939.0, + "probability": 0.0075 + }, + { + "start": 10939.0, + "end": 10939.0, + "probability": 0.0943 + }, + { + "start": 10939.0, + "end": 10941.54, + "probability": 0.869 + }, + { + "start": 10942.22, + "end": 10944.7, + "probability": 0.9536 + }, + { + "start": 10945.62, + "end": 10947.84, + "probability": 0.9749 + }, + { + "start": 10949.7, + "end": 10950.46, + "probability": 0.8555 + }, + { + "start": 10952.5, + "end": 10953.42, + "probability": 0.8514 + }, + { + "start": 10954.52, + "end": 10957.46, + "probability": 0.9086 + }, + { + "start": 10958.88, + "end": 10961.38, + "probability": 0.7654 + }, + { + "start": 10962.18, + "end": 10963.96, + "probability": 0.7278 + }, + { + "start": 10965.54, + "end": 10965.86, + "probability": 0.1108 + }, + { + "start": 10965.86, + "end": 10969.46, + "probability": 0.9598 + }, + { + "start": 10970.46, + "end": 10972.1, + "probability": 0.6899 + }, + { + "start": 10973.76, + "end": 10973.82, + "probability": 0.0733 + }, + { + "start": 10973.82, + "end": 10978.16, + "probability": 0.9332 + }, + { + "start": 10979.34, + "end": 10982.4, + "probability": 0.9713 + }, + { + "start": 10983.16, + "end": 10984.2, + "probability": 0.9263 + }, + { + "start": 10985.02, + "end": 10988.24, + "probability": 0.9466 + }, + { + "start": 10988.82, + "end": 10990.1, + "probability": 0.8352 + }, + { + "start": 10991.04, + "end": 10994.42, + "probability": 0.7202 + }, + { + "start": 10995.3, + "end": 10998.76, + "probability": 0.9758 + }, + { + "start": 10999.88, + "end": 11005.58, + "probability": 0.975 + }, + { + "start": 11006.44, + "end": 11011.86, + "probability": 0.7822 + }, + { + "start": 11013.52, + "end": 11014.06, + "probability": 0.0302 + }, + { + "start": 11014.06, + "end": 11015.8, + "probability": 0.812 + }, + { + "start": 11016.3, + "end": 11016.92, + "probability": 0.3407 + }, + { + "start": 11017.58, + "end": 11019.76, + "probability": 0.4465 + }, + { + "start": 11019.98, + "end": 11020.42, + "probability": 0.4499 + }, + { + "start": 11020.42, + "end": 11022.46, + "probability": 0.8831 + }, + { + "start": 11023.38, + "end": 11029.84, + "probability": 0.9847 + }, + { + "start": 11030.52, + "end": 11032.26, + "probability": 0.1861 + }, + { + "start": 11034.12, + "end": 11037.02, + "probability": 0.0086 + }, + { + "start": 11037.38, + "end": 11039.72, + "probability": 0.8126 + }, + { + "start": 11040.56, + "end": 11043.58, + "probability": 0.9059 + }, + { + "start": 11044.5, + "end": 11045.92, + "probability": 0.9727 + }, + { + "start": 11046.46, + "end": 11056.8, + "probability": 0.5614 + }, + { + "start": 11056.88, + "end": 11057.08, + "probability": 0.4119 + }, + { + "start": 11057.42, + "end": 11057.54, + "probability": 0.0659 + }, + { + "start": 11057.54, + "end": 11059.16, + "probability": 0.5155 + }, + { + "start": 11060.14, + "end": 11062.36, + "probability": 0.4351 + }, + { + "start": 11062.4, + "end": 11064.18, + "probability": 0.1809 + }, + { + "start": 11065.44, + "end": 11066.58, + "probability": 0.7079 + }, + { + "start": 11066.76, + "end": 11069.08, + "probability": 0.3418 + }, + { + "start": 11069.5, + "end": 11070.36, + "probability": 0.0141 + }, + { + "start": 11071.33, + "end": 11076.34, + "probability": 0.8821 + }, + { + "start": 11077.16, + "end": 11079.48, + "probability": 0.9507 + }, + { + "start": 11079.78, + "end": 11082.58, + "probability": 0.9976 + }, + { + "start": 11083.12, + "end": 11084.92, + "probability": 0.9691 + }, + { + "start": 11086.1, + "end": 11088.08, + "probability": 0.9893 + }, + { + "start": 11089.28, + "end": 11090.82, + "probability": 0.9888 + }, + { + "start": 11091.86, + "end": 11093.16, + "probability": 0.9939 + }, + { + "start": 11093.94, + "end": 11095.96, + "probability": 0.8514 + }, + { + "start": 11096.84, + "end": 11098.7, + "probability": 0.9727 + }, + { + "start": 11099.8, + "end": 11102.28, + "probability": 0.993 + }, + { + "start": 11103.68, + "end": 11108.66, + "probability": 0.7273 + }, + { + "start": 11109.56, + "end": 11110.32, + "probability": 0.7652 + }, + { + "start": 11111.1, + "end": 11112.64, + "probability": 0.9891 + }, + { + "start": 11113.36, + "end": 11114.96, + "probability": 0.9949 + }, + { + "start": 11115.64, + "end": 11119.08, + "probability": 0.9966 + }, + { + "start": 11119.86, + "end": 11125.36, + "probability": 0.9437 + }, + { + "start": 11126.02, + "end": 11127.72, + "probability": 0.8352 + }, + { + "start": 11128.4, + "end": 11130.88, + "probability": 0.8668 + }, + { + "start": 11131.72, + "end": 11134.54, + "probability": 0.7673 + }, + { + "start": 11134.72, + "end": 11135.98, + "probability": 0.7495 + }, + { + "start": 11153.42, + "end": 11154.04, + "probability": 0.5092 + }, + { + "start": 11154.2, + "end": 11156.46, + "probability": 0.6733 + }, + { + "start": 11157.16, + "end": 11158.74, + "probability": 0.9985 + }, + { + "start": 11159.82, + "end": 11161.16, + "probability": 0.9266 + }, + { + "start": 11161.74, + "end": 11161.84, + "probability": 0.7695 + }, + { + "start": 11163.42, + "end": 11165.08, + "probability": 0.8924 + }, + { + "start": 11165.2, + "end": 11166.98, + "probability": 0.7536 + }, + { + "start": 11169.96, + "end": 11170.96, + "probability": 0.6024 + }, + { + "start": 11172.65, + "end": 11174.92, + "probability": 0.9729 + }, + { + "start": 11175.38, + "end": 11180.36, + "probability": 0.9673 + }, + { + "start": 11182.56, + "end": 11185.34, + "probability": 0.9109 + }, + { + "start": 11186.02, + "end": 11189.4, + "probability": 0.9186 + }, + { + "start": 11190.62, + "end": 11192.18, + "probability": 0.6658 + }, + { + "start": 11193.02, + "end": 11193.72, + "probability": 0.312 + }, + { + "start": 11193.9, + "end": 11194.56, + "probability": 0.4665 + }, + { + "start": 11195.04, + "end": 11198.58, + "probability": 0.986 + }, + { + "start": 11199.5, + "end": 11200.72, + "probability": 0.7991 + }, + { + "start": 11201.3, + "end": 11202.3, + "probability": 0.9495 + }, + { + "start": 11202.76, + "end": 11204.74, + "probability": 0.9407 + }, + { + "start": 11204.92, + "end": 11206.1, + "probability": 0.9951 + }, + { + "start": 11207.04, + "end": 11208.62, + "probability": 0.9446 + }, + { + "start": 11209.38, + "end": 11211.8, + "probability": 0.9299 + }, + { + "start": 11212.44, + "end": 11214.32, + "probability": 0.9488 + }, + { + "start": 11214.78, + "end": 11219.62, + "probability": 0.9758 + }, + { + "start": 11220.56, + "end": 11226.1, + "probability": 0.9781 + }, + { + "start": 11226.44, + "end": 11227.1, + "probability": 0.7714 + }, + { + "start": 11227.34, + "end": 11229.04, + "probability": 0.5571 + }, + { + "start": 11229.1, + "end": 11229.5, + "probability": 0.8597 + }, + { + "start": 11229.9, + "end": 11230.98, + "probability": 0.908 + }, + { + "start": 11231.24, + "end": 11234.52, + "probability": 0.9435 + }, + { + "start": 11234.92, + "end": 11236.2, + "probability": 0.96 + }, + { + "start": 11236.46, + "end": 11237.6, + "probability": 0.9736 + }, + { + "start": 11238.4, + "end": 11239.2, + "probability": 0.7593 + }, + { + "start": 11239.24, + "end": 11242.98, + "probability": 0.8486 + }, + { + "start": 11243.36, + "end": 11247.12, + "probability": 0.9935 + }, + { + "start": 11247.6, + "end": 11251.06, + "probability": 0.9614 + }, + { + "start": 11252.12, + "end": 11254.38, + "probability": 0.9172 + }, + { + "start": 11255.3, + "end": 11257.62, + "probability": 0.9068 + }, + { + "start": 11258.32, + "end": 11263.12, + "probability": 0.993 + }, + { + "start": 11263.12, + "end": 11267.32, + "probability": 0.9958 + }, + { + "start": 11268.54, + "end": 11269.52, + "probability": 0.9979 + }, + { + "start": 11270.58, + "end": 11273.94, + "probability": 0.9978 + }, + { + "start": 11274.5, + "end": 11277.86, + "probability": 0.9971 + }, + { + "start": 11278.46, + "end": 11281.42, + "probability": 0.8896 + }, + { + "start": 11281.9, + "end": 11285.76, + "probability": 0.9727 + }, + { + "start": 11286.12, + "end": 11287.04, + "probability": 0.3582 + }, + { + "start": 11287.58, + "end": 11289.42, + "probability": 0.8809 + }, + { + "start": 11289.9, + "end": 11290.86, + "probability": 0.9818 + }, + { + "start": 11291.22, + "end": 11292.68, + "probability": 0.9424 + }, + { + "start": 11293.18, + "end": 11294.28, + "probability": 0.9285 + }, + { + "start": 11294.3, + "end": 11298.6, + "probability": 0.9887 + }, + { + "start": 11298.6, + "end": 11302.34, + "probability": 0.9822 + }, + { + "start": 11302.82, + "end": 11303.45, + "probability": 0.6332 + }, + { + "start": 11304.34, + "end": 11305.18, + "probability": 0.7025 + }, + { + "start": 11306.5, + "end": 11308.7, + "probability": 0.7707 + }, + { + "start": 11309.44, + "end": 11311.92, + "probability": 0.946 + }, + { + "start": 11314.84, + "end": 11315.48, + "probability": 0.7755 + }, + { + "start": 11316.16, + "end": 11321.06, + "probability": 0.3606 + }, + { + "start": 11321.96, + "end": 11322.38, + "probability": 0.6157 + }, + { + "start": 11324.21, + "end": 11325.86, + "probability": 0.084 + }, + { + "start": 11350.82, + "end": 11351.6, + "probability": 0.1862 + }, + { + "start": 11351.6, + "end": 11353.54, + "probability": 0.7055 + }, + { + "start": 11355.26, + "end": 11358.0, + "probability": 0.9927 + }, + { + "start": 11358.08, + "end": 11361.38, + "probability": 0.9528 + }, + { + "start": 11361.96, + "end": 11363.88, + "probability": 0.9332 + }, + { + "start": 11364.86, + "end": 11366.86, + "probability": 0.9937 + }, + { + "start": 11367.54, + "end": 11372.92, + "probability": 0.9775 + }, + { + "start": 11373.74, + "end": 11377.04, + "probability": 0.9961 + }, + { + "start": 11377.66, + "end": 11378.76, + "probability": 0.8194 + }, + { + "start": 11380.66, + "end": 11382.66, + "probability": 0.895 + }, + { + "start": 11383.36, + "end": 11383.9, + "probability": 0.5598 + }, + { + "start": 11384.98, + "end": 11385.44, + "probability": 0.797 + }, + { + "start": 11386.7, + "end": 11388.88, + "probability": 0.8502 + }, + { + "start": 11390.28, + "end": 11397.06, + "probability": 0.9124 + }, + { + "start": 11397.8, + "end": 11403.96, + "probability": 0.9702 + }, + { + "start": 11403.96, + "end": 11408.14, + "probability": 0.9977 + }, + { + "start": 11408.62, + "end": 11409.46, + "probability": 0.7495 + }, + { + "start": 11409.72, + "end": 11410.6, + "probability": 0.9534 + }, + { + "start": 11410.78, + "end": 11412.64, + "probability": 0.9622 + }, + { + "start": 11413.08, + "end": 11415.78, + "probability": 0.9538 + }, + { + "start": 11416.86, + "end": 11424.82, + "probability": 0.9933 + }, + { + "start": 11425.56, + "end": 11426.74, + "probability": 0.4772 + }, + { + "start": 11427.3, + "end": 11428.52, + "probability": 0.9362 + }, + { + "start": 11429.08, + "end": 11433.16, + "probability": 0.995 + }, + { + "start": 11433.86, + "end": 11436.16, + "probability": 0.9896 + }, + { + "start": 11436.16, + "end": 11438.56, + "probability": 0.9995 + }, + { + "start": 11440.02, + "end": 11444.26, + "probability": 0.9895 + }, + { + "start": 11444.44, + "end": 11448.14, + "probability": 0.9966 + }, + { + "start": 11449.54, + "end": 11450.89, + "probability": 0.9745 + }, + { + "start": 11451.44, + "end": 11452.74, + "probability": 0.9184 + }, + { + "start": 11453.06, + "end": 11453.8, + "probability": 0.86 + }, + { + "start": 11454.22, + "end": 11455.58, + "probability": 0.9711 + }, + { + "start": 11456.0, + "end": 11459.12, + "probability": 0.9954 + }, + { + "start": 11459.58, + "end": 11459.94, + "probability": 0.6676 + }, + { + "start": 11460.02, + "end": 11460.84, + "probability": 0.9799 + }, + { + "start": 11460.94, + "end": 11463.68, + "probability": 0.9843 + }, + { + "start": 11464.0, + "end": 11465.08, + "probability": 0.9451 + }, + { + "start": 11465.82, + "end": 11467.32, + "probability": 0.9397 + }, + { + "start": 11467.6, + "end": 11470.0, + "probability": 0.9816 + }, + { + "start": 11470.7, + "end": 11471.44, + "probability": 0.9739 + }, + { + "start": 11472.74, + "end": 11474.46, + "probability": 0.7721 + }, + { + "start": 11475.08, + "end": 11478.0, + "probability": 0.825 + }, + { + "start": 11478.52, + "end": 11480.22, + "probability": 0.8159 + }, + { + "start": 11481.28, + "end": 11482.34, + "probability": 0.9308 + }, + { + "start": 11482.64, + "end": 11483.06, + "probability": 0.6481 + }, + { + "start": 11483.86, + "end": 11485.06, + "probability": 0.8553 + }, + { + "start": 11485.36, + "end": 11490.52, + "probability": 0.9658 + }, + { + "start": 11491.34, + "end": 11495.36, + "probability": 0.9975 + }, + { + "start": 11496.5, + "end": 11499.4, + "probability": 0.9744 + }, + { + "start": 11499.68, + "end": 11504.8, + "probability": 0.9963 + }, + { + "start": 11505.26, + "end": 11506.36, + "probability": 0.9866 + }, + { + "start": 11506.6, + "end": 11509.54, + "probability": 0.9742 + }, + { + "start": 11510.02, + "end": 11512.22, + "probability": 0.7637 + }, + { + "start": 11512.74, + "end": 11513.6, + "probability": 0.4564 + }, + { + "start": 11513.64, + "end": 11514.64, + "probability": 0.6529 + }, + { + "start": 11514.8, + "end": 11521.13, + "probability": 0.9964 + }, + { + "start": 11521.64, + "end": 11524.64, + "probability": 0.9841 + }, + { + "start": 11524.64, + "end": 11528.58, + "probability": 0.9722 + }, + { + "start": 11529.08, + "end": 11533.44, + "probability": 0.9648 + }, + { + "start": 11533.5, + "end": 11533.86, + "probability": 0.7782 + }, + { + "start": 11534.4, + "end": 11535.38, + "probability": 0.9494 + }, + { + "start": 11535.98, + "end": 11537.52, + "probability": 0.7273 + }, + { + "start": 11537.98, + "end": 11538.68, + "probability": 0.7003 + }, + { + "start": 11539.99, + "end": 11542.42, + "probability": 0.4747 + }, + { + "start": 11542.88, + "end": 11545.34, + "probability": 0.8898 + }, + { + "start": 11545.62, + "end": 11546.66, + "probability": 0.8797 + }, + { + "start": 11546.82, + "end": 11547.52, + "probability": 0.7949 + }, + { + "start": 11548.36, + "end": 11548.86, + "probability": 0.0723 + }, + { + "start": 11551.88, + "end": 11554.48, + "probability": 0.0214 + }, + { + "start": 11555.5, + "end": 11555.5, + "probability": 0.269 + }, + { + "start": 11555.66, + "end": 11555.66, + "probability": 0.3749 + }, + { + "start": 11557.04, + "end": 11562.06, + "probability": 0.0038 + }, + { + "start": 11587.98, + "end": 11590.54, + "probability": 0.6281 + }, + { + "start": 11592.16, + "end": 11594.18, + "probability": 0.931 + }, + { + "start": 11594.6, + "end": 11595.58, + "probability": 0.5984 + }, + { + "start": 11596.28, + "end": 11599.22, + "probability": 0.97 + }, + { + "start": 11599.34, + "end": 11602.58, + "probability": 0.9763 + }, + { + "start": 11602.72, + "end": 11603.16, + "probability": 0.9832 + }, + { + "start": 11604.06, + "end": 11607.42, + "probability": 0.9541 + }, + { + "start": 11607.78, + "end": 11608.46, + "probability": 0.9619 + }, + { + "start": 11609.28, + "end": 11609.72, + "probability": 0.385 + }, + { + "start": 11612.72, + "end": 11614.98, + "probability": 0.0798 + }, + { + "start": 11615.68, + "end": 11618.86, + "probability": 0.9971 + }, + { + "start": 11619.08, + "end": 11621.0, + "probability": 0.9946 + }, + { + "start": 11621.4, + "end": 11626.42, + "probability": 0.9982 + }, + { + "start": 11627.18, + "end": 11630.64, + "probability": 0.9673 + }, + { + "start": 11631.48, + "end": 11635.4, + "probability": 0.968 + }, + { + "start": 11636.04, + "end": 11639.5, + "probability": 0.9993 + }, + { + "start": 11640.36, + "end": 11641.7, + "probability": 0.9987 + }, + { + "start": 11642.22, + "end": 11645.48, + "probability": 0.8847 + }, + { + "start": 11646.16, + "end": 11648.66, + "probability": 0.9578 + }, + { + "start": 11649.28, + "end": 11650.6, + "probability": 0.9767 + }, + { + "start": 11650.7, + "end": 11652.84, + "probability": 0.9863 + }, + { + "start": 11653.06, + "end": 11654.7, + "probability": 0.9977 + }, + { + "start": 11655.76, + "end": 11659.36, + "probability": 0.9952 + }, + { + "start": 11660.4, + "end": 11660.9, + "probability": 0.9062 + }, + { + "start": 11662.1, + "end": 11665.42, + "probability": 0.9657 + }, + { + "start": 11666.32, + "end": 11670.98, + "probability": 0.9835 + }, + { + "start": 11671.44, + "end": 11672.08, + "probability": 0.8923 + }, + { + "start": 11672.68, + "end": 11674.3, + "probability": 0.9492 + }, + { + "start": 11674.58, + "end": 11676.66, + "probability": 0.9316 + }, + { + "start": 11676.7, + "end": 11680.44, + "probability": 0.8225 + }, + { + "start": 11680.8, + "end": 11681.8, + "probability": 0.9527 + }, + { + "start": 11682.74, + "end": 11687.08, + "probability": 0.9291 + }, + { + "start": 11687.2, + "end": 11688.68, + "probability": 0.945 + }, + { + "start": 11689.72, + "end": 11692.86, + "probability": 0.9919 + }, + { + "start": 11694.72, + "end": 11697.68, + "probability": 0.9642 + }, + { + "start": 11698.74, + "end": 11700.8, + "probability": 0.9438 + }, + { + "start": 11701.84, + "end": 11704.02, + "probability": 0.9937 + }, + { + "start": 11705.12, + "end": 11711.0, + "probability": 0.9889 + }, + { + "start": 11711.9, + "end": 11714.08, + "probability": 0.8761 + }, + { + "start": 11714.42, + "end": 11715.74, + "probability": 0.9911 + }, + { + "start": 11716.16, + "end": 11718.94, + "probability": 0.9937 + }, + { + "start": 11719.62, + "end": 11722.74, + "probability": 0.9594 + }, + { + "start": 11724.52, + "end": 11727.84, + "probability": 0.9346 + }, + { + "start": 11728.52, + "end": 11729.73, + "probability": 0.9907 + }, + { + "start": 11730.66, + "end": 11731.74, + "probability": 0.9888 + }, + { + "start": 11732.52, + "end": 11735.86, + "probability": 0.9805 + }, + { + "start": 11736.38, + "end": 11738.58, + "probability": 0.9115 + }, + { + "start": 11739.02, + "end": 11743.08, + "probability": 0.994 + }, + { + "start": 11743.76, + "end": 11749.72, + "probability": 0.9972 + }, + { + "start": 11750.38, + "end": 11752.1, + "probability": 0.8885 + }, + { + "start": 11753.2, + "end": 11759.92, + "probability": 0.9796 + }, + { + "start": 11760.26, + "end": 11761.78, + "probability": 0.9495 + }, + { + "start": 11762.76, + "end": 11765.68, + "probability": 0.9729 + }, + { + "start": 11766.06, + "end": 11767.14, + "probability": 0.9805 + }, + { + "start": 11768.02, + "end": 11770.72, + "probability": 0.9331 + }, + { + "start": 11771.38, + "end": 11776.86, + "probability": 0.9932 + }, + { + "start": 11777.52, + "end": 11778.44, + "probability": 0.9645 + }, + { + "start": 11778.5, + "end": 11781.92, + "probability": 0.9945 + }, + { + "start": 11782.62, + "end": 11783.68, + "probability": 0.9824 + }, + { + "start": 11784.02, + "end": 11785.76, + "probability": 0.8446 + }, + { + "start": 11786.32, + "end": 11786.92, + "probability": 0.9481 + }, + { + "start": 11787.04, + "end": 11788.04, + "probability": 0.991 + }, + { + "start": 11788.12, + "end": 11788.92, + "probability": 0.9471 + }, + { + "start": 11789.24, + "end": 11791.14, + "probability": 0.9868 + }, + { + "start": 11792.02, + "end": 11792.48, + "probability": 0.7637 + }, + { + "start": 11792.66, + "end": 11793.44, + "probability": 0.9751 + }, + { + "start": 11794.14, + "end": 11795.9, + "probability": 0.9956 + }, + { + "start": 11796.48, + "end": 11797.48, + "probability": 0.9456 + }, + { + "start": 11798.14, + "end": 11800.54, + "probability": 0.9882 + }, + { + "start": 11801.04, + "end": 11804.62, + "probability": 0.9958 + }, + { + "start": 11805.18, + "end": 11807.0, + "probability": 0.967 + }, + { + "start": 11807.56, + "end": 11810.98, + "probability": 0.9825 + }, + { + "start": 11811.72, + "end": 11814.64, + "probability": 0.9982 + }, + { + "start": 11815.24, + "end": 11816.46, + "probability": 0.9307 + }, + { + "start": 11817.14, + "end": 11820.1, + "probability": 0.9941 + }, + { + "start": 11820.82, + "end": 11824.2, + "probability": 0.9949 + }, + { + "start": 11825.36, + "end": 11830.1, + "probability": 0.9985 + }, + { + "start": 11830.24, + "end": 11831.22, + "probability": 0.8828 + }, + { + "start": 11832.04, + "end": 11833.04, + "probability": 0.9824 + }, + { + "start": 11834.0, + "end": 11837.46, + "probability": 0.9837 + }, + { + "start": 11837.46, + "end": 11839.94, + "probability": 0.9983 + }, + { + "start": 11841.38, + "end": 11843.66, + "probability": 0.9933 + }, + { + "start": 11844.34, + "end": 11844.74, + "probability": 0.781 + }, + { + "start": 11845.32, + "end": 11847.16, + "probability": 0.9754 + }, + { + "start": 11847.34, + "end": 11847.52, + "probability": 0.4669 + }, + { + "start": 11847.74, + "end": 11849.74, + "probability": 0.9966 + }, + { + "start": 11850.72, + "end": 11853.44, + "probability": 0.9954 + }, + { + "start": 11853.58, + "end": 11854.9, + "probability": 0.9927 + }, + { + "start": 11855.68, + "end": 11858.68, + "probability": 0.9944 + }, + { + "start": 11859.42, + "end": 11864.14, + "probability": 0.9948 + }, + { + "start": 11864.96, + "end": 11867.92, + "probability": 0.9958 + }, + { + "start": 11868.56, + "end": 11870.59, + "probability": 0.9876 + }, + { + "start": 11871.7, + "end": 11874.7, + "probability": 0.9994 + }, + { + "start": 11875.36, + "end": 11880.26, + "probability": 0.9938 + }, + { + "start": 11880.68, + "end": 11882.16, + "probability": 0.9803 + }, + { + "start": 11882.86, + "end": 11885.96, + "probability": 0.9984 + }, + { + "start": 11886.7, + "end": 11888.6, + "probability": 0.9978 + }, + { + "start": 11889.04, + "end": 11890.72, + "probability": 0.8569 + }, + { + "start": 11890.9, + "end": 11891.0, + "probability": 0.9329 + }, + { + "start": 11892.24, + "end": 11892.92, + "probability": 0.9768 + }, + { + "start": 11894.24, + "end": 11896.6, + "probability": 0.9746 + }, + { + "start": 11897.72, + "end": 11900.06, + "probability": 0.9886 + }, + { + "start": 11900.62, + "end": 11900.84, + "probability": 0.9446 + }, + { + "start": 11901.76, + "end": 11902.88, + "probability": 0.8425 + }, + { + "start": 11903.42, + "end": 11906.86, + "probability": 0.9111 + }, + { + "start": 11907.64, + "end": 11909.18, + "probability": 0.8525 + }, + { + "start": 11909.56, + "end": 11911.44, + "probability": 0.9843 + }, + { + "start": 11912.04, + "end": 11912.76, + "probability": 0.9299 + }, + { + "start": 11913.26, + "end": 11916.8, + "probability": 0.9792 + }, + { + "start": 11917.04, + "end": 11919.92, + "probability": 0.9938 + }, + { + "start": 11920.7, + "end": 11923.04, + "probability": 0.9944 + }, + { + "start": 11924.06, + "end": 11929.1, + "probability": 0.9977 + }, + { + "start": 11929.38, + "end": 11930.4, + "probability": 0.9878 + }, + { + "start": 11933.72, + "end": 11939.22, + "probability": 0.9657 + }, + { + "start": 11939.22, + "end": 11944.38, + "probability": 0.9847 + }, + { + "start": 11944.74, + "end": 11946.22, + "probability": 0.9307 + }, + { + "start": 11947.08, + "end": 11947.42, + "probability": 0.1787 + }, + { + "start": 11948.02, + "end": 11950.0, + "probability": 0.9955 + }, + { + "start": 11950.28, + "end": 11954.02, + "probability": 0.9939 + }, + { + "start": 11954.02, + "end": 11957.74, + "probability": 0.9987 + }, + { + "start": 11958.1, + "end": 11958.94, + "probability": 0.8989 + }, + { + "start": 11959.3, + "end": 11960.48, + "probability": 0.7841 + }, + { + "start": 11960.98, + "end": 11963.4, + "probability": 0.9893 + }, + { + "start": 11964.04, + "end": 11966.34, + "probability": 0.9347 + }, + { + "start": 11967.14, + "end": 11968.72, + "probability": 0.9916 + }, + { + "start": 11969.34, + "end": 11971.42, + "probability": 0.8523 + }, + { + "start": 11972.18, + "end": 11976.12, + "probability": 0.9982 + }, + { + "start": 11976.72, + "end": 11977.68, + "probability": 0.8992 + }, + { + "start": 11978.5, + "end": 11979.97, + "probability": 0.9666 + }, + { + "start": 11981.08, + "end": 11982.8, + "probability": 0.9819 + }, + { + "start": 11983.84, + "end": 11985.58, + "probability": 0.9253 + }, + { + "start": 11986.4, + "end": 11987.98, + "probability": 0.9943 + }, + { + "start": 11988.6, + "end": 11990.26, + "probability": 0.5138 + }, + { + "start": 11990.7, + "end": 11994.24, + "probability": 0.9933 + }, + { + "start": 11994.7, + "end": 11998.06, + "probability": 0.9976 + }, + { + "start": 11998.72, + "end": 12000.74, + "probability": 0.8443 + }, + { + "start": 12001.52, + "end": 12002.78, + "probability": 0.9465 + }, + { + "start": 12004.18, + "end": 12009.36, + "probability": 0.9969 + }, + { + "start": 12009.94, + "end": 12011.92, + "probability": 0.988 + }, + { + "start": 12012.5, + "end": 12014.06, + "probability": 0.9953 + }, + { + "start": 12014.78, + "end": 12016.1, + "probability": 0.9784 + }, + { + "start": 12017.6, + "end": 12018.06, + "probability": 0.8399 + }, + { + "start": 12019.24, + "end": 12022.82, + "probability": 0.9928 + }, + { + "start": 12023.5, + "end": 12024.66, + "probability": 0.7345 + }, + { + "start": 12025.54, + "end": 12029.32, + "probability": 0.9883 + }, + { + "start": 12030.18, + "end": 12031.0, + "probability": 0.9336 + }, + { + "start": 12031.64, + "end": 12032.44, + "probability": 0.7677 + }, + { + "start": 12033.2, + "end": 12036.54, + "probability": 0.9769 + }, + { + "start": 12039.52, + "end": 12042.84, + "probability": 0.979 + }, + { + "start": 12044.06, + "end": 12047.48, + "probability": 0.9963 + }, + { + "start": 12047.94, + "end": 12049.94, + "probability": 0.9637 + }, + { + "start": 12051.45, + "end": 12054.91, + "probability": 0.7263 + }, + { + "start": 12056.18, + "end": 12058.98, + "probability": 0.5393 + }, + { + "start": 12060.46, + "end": 12061.24, + "probability": 0.9565 + }, + { + "start": 12063.32, + "end": 12067.82, + "probability": 0.9879 + }, + { + "start": 12070.17, + "end": 12073.5, + "probability": 0.8096 + }, + { + "start": 12074.38, + "end": 12075.56, + "probability": 0.9886 + }, + { + "start": 12076.32, + "end": 12081.22, + "probability": 0.9935 + }, + { + "start": 12084.84, + "end": 12085.46, + "probability": 0.7308 + }, + { + "start": 12086.14, + "end": 12090.24, + "probability": 0.9919 + }, + { + "start": 12091.14, + "end": 12092.68, + "probability": 0.9034 + }, + { + "start": 12094.04, + "end": 12095.2, + "probability": 0.9097 + }, + { + "start": 12095.6, + "end": 12098.66, + "probability": 0.9958 + }, + { + "start": 12099.18, + "end": 12099.82, + "probability": 0.4672 + }, + { + "start": 12100.46, + "end": 12101.88, + "probability": 0.9633 + }, + { + "start": 12102.6, + "end": 12105.66, + "probability": 0.9298 + }, + { + "start": 12106.24, + "end": 12107.56, + "probability": 0.9796 + }, + { + "start": 12110.56, + "end": 12110.66, + "probability": 0.5065 + }, + { + "start": 12112.12, + "end": 12114.68, + "probability": 0.9153 + }, + { + "start": 12115.68, + "end": 12118.78, + "probability": 0.6217 + }, + { + "start": 12119.16, + "end": 12120.88, + "probability": 0.595 + }, + { + "start": 12122.02, + "end": 12124.58, + "probability": 0.9194 + }, + { + "start": 12124.98, + "end": 12127.34, + "probability": 0.9401 + }, + { + "start": 12127.58, + "end": 12128.22, + "probability": 0.7899 + }, + { + "start": 12129.86, + "end": 12131.04, + "probability": 0.8609 + }, + { + "start": 12131.64, + "end": 12132.9, + "probability": 0.6004 + }, + { + "start": 12133.32, + "end": 12134.38, + "probability": 0.9298 + }, + { + "start": 12134.52, + "end": 12136.38, + "probability": 0.5143 + }, + { + "start": 12136.46, + "end": 12136.84, + "probability": 0.9214 + }, + { + "start": 12137.46, + "end": 12138.95, + "probability": 0.3064 + }, + { + "start": 12141.24, + "end": 12141.9, + "probability": 0.9615 + }, + { + "start": 12144.84, + "end": 12145.84, + "probability": 0.7806 + }, + { + "start": 12146.7, + "end": 12147.2, + "probability": 0.5948 + }, + { + "start": 12148.22, + "end": 12149.18, + "probability": 0.6717 + }, + { + "start": 12150.14, + "end": 12153.9, + "probability": 0.9383 + }, + { + "start": 12154.44, + "end": 12155.1, + "probability": 0.8831 + }, + { + "start": 12157.1, + "end": 12157.96, + "probability": 0.9955 + }, + { + "start": 12159.24, + "end": 12160.1, + "probability": 0.7021 + }, + { + "start": 12160.66, + "end": 12163.52, + "probability": 0.9601 + }, + { + "start": 12164.32, + "end": 12164.8, + "probability": 0.9502 + }, + { + "start": 12165.36, + "end": 12166.4, + "probability": 0.9203 + }, + { + "start": 12167.66, + "end": 12169.14, + "probability": 0.8264 + }, + { + "start": 12170.6, + "end": 12172.58, + "probability": 0.9348 + }, + { + "start": 12173.74, + "end": 12174.24, + "probability": 0.9092 + }, + { + "start": 12175.36, + "end": 12176.3, + "probability": 0.9079 + }, + { + "start": 12177.22, + "end": 12179.64, + "probability": 0.9833 + }, + { + "start": 12180.94, + "end": 12182.4, + "probability": 0.9167 + }, + { + "start": 12183.2, + "end": 12184.14, + "probability": 0.9798 + }, + { + "start": 12185.24, + "end": 12185.78, + "probability": 0.9941 + }, + { + "start": 12187.0, + "end": 12187.82, + "probability": 0.9751 + }, + { + "start": 12188.6, + "end": 12190.92, + "probability": 0.967 + }, + { + "start": 12193.3, + "end": 12194.2, + "probability": 0.9952 + }, + { + "start": 12194.82, + "end": 12195.8, + "probability": 0.387 + }, + { + "start": 12197.16, + "end": 12198.64, + "probability": 0.7369 + }, + { + "start": 12200.46, + "end": 12201.98, + "probability": 0.8595 + }, + { + "start": 12202.64, + "end": 12203.08, + "probability": 0.7839 + }, + { + "start": 12203.62, + "end": 12204.42, + "probability": 0.7847 + }, + { + "start": 12207.32, + "end": 12209.04, + "probability": 0.7505 + }, + { + "start": 12210.04, + "end": 12210.67, + "probability": 0.901 + }, + { + "start": 12214.36, + "end": 12214.82, + "probability": 0.9075 + }, + { + "start": 12215.96, + "end": 12216.92, + "probability": 0.9755 + }, + { + "start": 12219.0, + "end": 12219.9, + "probability": 0.9399 + }, + { + "start": 12220.82, + "end": 12221.7, + "probability": 0.9788 + }, + { + "start": 12222.94, + "end": 12223.44, + "probability": 0.9868 + }, + { + "start": 12224.56, + "end": 12225.32, + "probability": 0.8214 + }, + { + "start": 12226.78, + "end": 12229.3, + "probability": 0.5822 + }, + { + "start": 12229.98, + "end": 12230.44, + "probability": 0.6705 + }, + { + "start": 12231.5, + "end": 12235.14, + "probability": 0.9407 + }, + { + "start": 12236.64, + "end": 12237.08, + "probability": 0.9888 + }, + { + "start": 12238.62, + "end": 12239.4, + "probability": 0.8509 + }, + { + "start": 12240.21, + "end": 12242.08, + "probability": 0.949 + }, + { + "start": 12244.6, + "end": 12245.62, + "probability": 0.9563 + }, + { + "start": 12246.9, + "end": 12247.78, + "probability": 0.9419 + }, + { + "start": 12248.44, + "end": 12250.48, + "probability": 0.9814 + }, + { + "start": 12251.8, + "end": 12253.36, + "probability": 0.851 + }, + { + "start": 12254.04, + "end": 12254.48, + "probability": 0.5548 + }, + { + "start": 12255.38, + "end": 12256.28, + "probability": 0.726 + }, + { + "start": 12256.88, + "end": 12257.36, + "probability": 0.9719 + }, + { + "start": 12258.2, + "end": 12258.96, + "probability": 0.9099 + }, + { + "start": 12260.4, + "end": 12262.82, + "probability": 0.8276 + }, + { + "start": 12263.76, + "end": 12264.2, + "probability": 0.9746 + }, + { + "start": 12264.96, + "end": 12265.92, + "probability": 0.9239 + }, + { + "start": 12266.58, + "end": 12267.48, + "probability": 0.9917 + }, + { + "start": 12268.22, + "end": 12269.1, + "probability": 0.9827 + }, + { + "start": 12270.38, + "end": 12272.46, + "probability": 0.7434 + }, + { + "start": 12274.28, + "end": 12276.1, + "probability": 0.9224 + }, + { + "start": 12278.28, + "end": 12279.88, + "probability": 0.8114 + }, + { + "start": 12280.78, + "end": 12281.22, + "probability": 0.8611 + }, + { + "start": 12282.54, + "end": 12283.44, + "probability": 0.8017 + }, + { + "start": 12285.0, + "end": 12286.44, + "probability": 0.6619 + }, + { + "start": 12287.46, + "end": 12287.92, + "probability": 0.9719 + }, + { + "start": 12288.72, + "end": 12289.84, + "probability": 0.8819 + }, + { + "start": 12295.0, + "end": 12298.36, + "probability": 0.5509 + }, + { + "start": 12299.92, + "end": 12302.48, + "probability": 0.8229 + }, + { + "start": 12304.1, + "end": 12306.02, + "probability": 0.6911 + }, + { + "start": 12308.46, + "end": 12309.0, + "probability": 0.9653 + }, + { + "start": 12310.26, + "end": 12311.08, + "probability": 0.4787 + }, + { + "start": 12312.24, + "end": 12315.56, + "probability": 0.9168 + }, + { + "start": 12316.56, + "end": 12318.36, + "probability": 0.8081 + }, + { + "start": 12319.4, + "end": 12319.76, + "probability": 0.9839 + }, + { + "start": 12320.5, + "end": 12321.1, + "probability": 0.6378 + }, + { + "start": 12322.9, + "end": 12324.64, + "probability": 0.7838 + }, + { + "start": 12325.5, + "end": 12325.82, + "probability": 0.9707 + }, + { + "start": 12326.62, + "end": 12327.86, + "probability": 0.7975 + }, + { + "start": 12328.4, + "end": 12329.16, + "probability": 0.8986 + }, + { + "start": 12330.5, + "end": 12331.66, + "probability": 0.9689 + }, + { + "start": 12333.62, + "end": 12334.84, + "probability": 0.9812 + }, + { + "start": 12337.02, + "end": 12338.16, + "probability": 0.9739 + }, + { + "start": 12340.44, + "end": 12343.34, + "probability": 0.967 + }, + { + "start": 12345.88, + "end": 12347.5, + "probability": 0.9599 + }, + { + "start": 12348.88, + "end": 12349.32, + "probability": 0.5743 + }, + { + "start": 12350.1, + "end": 12350.38, + "probability": 0.6127 + }, + { + "start": 12353.34, + "end": 12354.54, + "probability": 0.8886 + }, + { + "start": 12355.48, + "end": 12357.46, + "probability": 0.9456 + }, + { + "start": 12358.56, + "end": 12359.8, + "probability": 0.9846 + }, + { + "start": 12361.68, + "end": 12362.12, + "probability": 0.969 + }, + { + "start": 12364.5, + "end": 12365.64, + "probability": 0.7888 + }, + { + "start": 12367.54, + "end": 12367.98, + "probability": 0.9719 + }, + { + "start": 12368.96, + "end": 12369.68, + "probability": 0.8659 + }, + { + "start": 12371.38, + "end": 12372.26, + "probability": 0.9899 + }, + { + "start": 12373.0, + "end": 12374.06, + "probability": 0.8854 + }, + { + "start": 12375.9, + "end": 12376.84, + "probability": 0.9852 + }, + { + "start": 12377.36, + "end": 12377.76, + "probability": 0.5232 + }, + { + "start": 12380.14, + "end": 12381.7, + "probability": 0.798 + }, + { + "start": 12384.92, + "end": 12388.1, + "probability": 0.8274 + }, + { + "start": 12388.86, + "end": 12390.98, + "probability": 0.9563 + }, + { + "start": 12392.1, + "end": 12394.12, + "probability": 0.9783 + }, + { + "start": 12395.38, + "end": 12397.32, + "probability": 0.9829 + }, + { + "start": 12398.08, + "end": 12398.34, + "probability": 0.988 + }, + { + "start": 12399.1, + "end": 12400.28, + "probability": 0.8195 + }, + { + "start": 12401.34, + "end": 12401.6, + "probability": 0.9893 + }, + { + "start": 12402.12, + "end": 12404.46, + "probability": 0.6771 + }, + { + "start": 12405.8, + "end": 12406.2, + "probability": 0.9905 + }, + { + "start": 12407.2, + "end": 12407.58, + "probability": 0.7687 + }, + { + "start": 12410.66, + "end": 12412.64, + "probability": 0.5186 + }, + { + "start": 12413.46, + "end": 12414.44, + "probability": 0.5414 + }, + { + "start": 12416.46, + "end": 12418.26, + "probability": 0.7316 + }, + { + "start": 12420.06, + "end": 12420.32, + "probability": 0.9419 + }, + { + "start": 12420.88, + "end": 12421.92, + "probability": 0.8388 + }, + { + "start": 12422.68, + "end": 12423.02, + "probability": 0.9771 + }, + { + "start": 12423.82, + "end": 12424.5, + "probability": 0.9031 + }, + { + "start": 12426.18, + "end": 12427.54, + "probability": 0.8037 + }, + { + "start": 12428.7, + "end": 12429.2, + "probability": 0.9885 + }, + { + "start": 12430.22, + "end": 12431.2, + "probability": 0.4364 + }, + { + "start": 12432.4, + "end": 12432.72, + "probability": 0.9866 + }, + { + "start": 12433.44, + "end": 12434.28, + "probability": 0.9727 + }, + { + "start": 12437.74, + "end": 12437.98, + "probability": 0.5125 + }, + { + "start": 12438.72, + "end": 12439.58, + "probability": 0.7224 + }, + { + "start": 12442.9, + "end": 12443.4, + "probability": 0.9226 + }, + { + "start": 12444.4, + "end": 12445.58, + "probability": 0.8896 + }, + { + "start": 12447.04, + "end": 12449.0, + "probability": 0.6377 + }, + { + "start": 12451.3, + "end": 12452.84, + "probability": 0.8947 + }, + { + "start": 12453.38, + "end": 12453.8, + "probability": 0.981 + }, + { + "start": 12455.74, + "end": 12456.5, + "probability": 0.938 + }, + { + "start": 12457.5, + "end": 12457.96, + "probability": 0.981 + }, + { + "start": 12459.2, + "end": 12459.84, + "probability": 0.8515 + }, + { + "start": 12461.1, + "end": 12462.96, + "probability": 0.9551 + }, + { + "start": 12466.7, + "end": 12468.56, + "probability": 0.3176 + }, + { + "start": 12469.66, + "end": 12470.14, + "probability": 0.7644 + }, + { + "start": 12470.9, + "end": 12471.82, + "probability": 0.6861 + }, + { + "start": 12473.04, + "end": 12473.48, + "probability": 0.958 + }, + { + "start": 12474.2, + "end": 12475.04, + "probability": 0.6578 + }, + { + "start": 12480.76, + "end": 12481.24, + "probability": 0.6082 + }, + { + "start": 12482.5, + "end": 12483.26, + "probability": 0.6629 + }, + { + "start": 12493.4, + "end": 12497.02, + "probability": 0.7417 + }, + { + "start": 12497.72, + "end": 12499.4, + "probability": 0.6132 + }, + { + "start": 12501.22, + "end": 12503.82, + "probability": 0.9116 + }, + { + "start": 12506.24, + "end": 12510.46, + "probability": 0.8415 + }, + { + "start": 12511.42, + "end": 12512.2, + "probability": 0.7678 + }, + { + "start": 12514.94, + "end": 12517.18, + "probability": 0.9155 + }, + { + "start": 12518.2, + "end": 12518.46, + "probability": 0.5376 + }, + { + "start": 12519.7, + "end": 12519.98, + "probability": 0.6711 + }, + { + "start": 12525.08, + "end": 12525.32, + "probability": 0.2438 + }, + { + "start": 12528.54, + "end": 12528.8, + "probability": 0.5025 + }, + { + "start": 12530.34, + "end": 12531.2, + "probability": 0.6862 + }, + { + "start": 12532.2, + "end": 12532.66, + "probability": 0.623 + }, + { + "start": 12534.6, + "end": 12535.24, + "probability": 0.8376 + }, + { + "start": 12537.04, + "end": 12539.48, + "probability": 0.9617 + }, + { + "start": 12540.5, + "end": 12541.14, + "probability": 0.6446 + }, + { + "start": 12543.2, + "end": 12545.24, + "probability": 0.5229 + }, + { + "start": 12547.74, + "end": 12549.24, + "probability": 0.6943 + }, + { + "start": 12550.14, + "end": 12551.72, + "probability": 0.8612 + }, + { + "start": 12553.96, + "end": 12556.4, + "probability": 0.6652 + }, + { + "start": 12557.46, + "end": 12559.94, + "probability": 0.9005 + }, + { + "start": 12561.26, + "end": 12562.32, + "probability": 0.9559 + }, + { + "start": 12563.3, + "end": 12564.8, + "probability": 0.946 + }, + { + "start": 12565.76, + "end": 12566.0, + "probability": 0.9751 + }, + { + "start": 12566.9, + "end": 12568.0, + "probability": 0.8988 + }, + { + "start": 12570.52, + "end": 12573.06, + "probability": 0.8562 + }, + { + "start": 12573.74, + "end": 12574.22, + "probability": 0.9514 + }, + { + "start": 12575.04, + "end": 12576.08, + "probability": 0.9049 + }, + { + "start": 12579.32, + "end": 12579.46, + "probability": 0.5474 + }, + { + "start": 12581.76, + "end": 12584.54, + "probability": 0.5081 + }, + { + "start": 12586.82, + "end": 12589.36, + "probability": 0.772 + }, + { + "start": 12589.9, + "end": 12591.02, + "probability": 0.5688 + }, + { + "start": 12592.4, + "end": 12594.08, + "probability": 0.8703 + }, + { + "start": 12594.88, + "end": 12596.8, + "probability": 0.874 + }, + { + "start": 12598.02, + "end": 12598.5, + "probability": 0.9756 + }, + { + "start": 12599.3, + "end": 12600.24, + "probability": 0.9401 + }, + { + "start": 12602.08, + "end": 12604.04, + "probability": 0.8506 + }, + { + "start": 12605.22, + "end": 12605.66, + "probability": 0.9729 + }, + { + "start": 12607.08, + "end": 12607.8, + "probability": 0.7156 + }, + { + "start": 12610.1, + "end": 12612.62, + "probability": 0.6942 + }, + { + "start": 12613.42, + "end": 12613.88, + "probability": 0.833 + }, + { + "start": 12614.9, + "end": 12616.08, + "probability": 0.5883 + }, + { + "start": 12617.11, + "end": 12620.62, + "probability": 0.8278 + }, + { + "start": 12621.64, + "end": 12622.33, + "probability": 0.5152 + }, + { + "start": 12623.82, + "end": 12624.62, + "probability": 0.9911 + }, + { + "start": 12625.36, + "end": 12626.32, + "probability": 0.5832 + }, + { + "start": 12627.12, + "end": 12628.58, + "probability": 0.7971 + }, + { + "start": 12629.62, + "end": 12631.1, + "probability": 0.9359 + }, + { + "start": 12632.92, + "end": 12633.38, + "probability": 0.938 + }, + { + "start": 12634.6, + "end": 12635.6, + "probability": 0.7199 + }, + { + "start": 12636.34, + "end": 12637.72, + "probability": 0.9759 + }, + { + "start": 12638.94, + "end": 12640.9, + "probability": 0.8689 + }, + { + "start": 12644.94, + "end": 12646.42, + "probability": 0.6655 + }, + { + "start": 12647.16, + "end": 12648.2, + "probability": 0.5716 + }, + { + "start": 12650.1, + "end": 12650.94, + "probability": 0.7137 + }, + { + "start": 12651.8, + "end": 12653.38, + "probability": 0.8857 + }, + { + "start": 12655.34, + "end": 12656.3, + "probability": 0.9888 + }, + { + "start": 12656.98, + "end": 12657.9, + "probability": 0.9482 + }, + { + "start": 12659.88, + "end": 12661.96, + "probability": 0.9396 + }, + { + "start": 12663.6, + "end": 12665.08, + "probability": 0.9095 + }, + { + "start": 12666.04, + "end": 12666.9, + "probability": 0.9629 + }, + { + "start": 12668.46, + "end": 12669.3, + "probability": 0.7802 + }, + { + "start": 12670.38, + "end": 12671.92, + "probability": 0.8575 + }, + { + "start": 12673.54, + "end": 12675.86, + "probability": 0.9654 + }, + { + "start": 12676.42, + "end": 12678.24, + "probability": 0.7734 + }, + { + "start": 12679.06, + "end": 12680.82, + "probability": 0.9268 + }, + { + "start": 12682.84, + "end": 12684.18, + "probability": 0.8353 + }, + { + "start": 12684.78, + "end": 12685.24, + "probability": 0.9104 + }, + { + "start": 12687.12, + "end": 12688.32, + "probability": 0.9647 + }, + { + "start": 12689.88, + "end": 12691.36, + "probability": 0.7752 + }, + { + "start": 12692.86, + "end": 12694.68, + "probability": 0.9001 + }, + { + "start": 12695.62, + "end": 12697.08, + "probability": 0.9803 + }, + { + "start": 12698.44, + "end": 12700.36, + "probability": 0.9573 + }, + { + "start": 12702.22, + "end": 12703.4, + "probability": 0.9917 + }, + { + "start": 12705.48, + "end": 12707.68, + "probability": 0.9924 + }, + { + "start": 12709.48, + "end": 12710.24, + "probability": 0.9463 + }, + { + "start": 12711.98, + "end": 12713.64, + "probability": 0.9819 + }, + { + "start": 12715.24, + "end": 12716.56, + "probability": 0.7591 + }, + { + "start": 12720.55, + "end": 12724.88, + "probability": 0.4258 + }, + { + "start": 12725.38, + "end": 12727.16, + "probability": 0.636 + }, + { + "start": 12728.74, + "end": 12730.32, + "probability": 0.8822 + }, + { + "start": 12731.16, + "end": 12732.86, + "probability": 0.9153 + }, + { + "start": 12733.92, + "end": 12734.9, + "probability": 0.8025 + }, + { + "start": 12735.82, + "end": 12736.24, + "probability": 0.7637 + }, + { + "start": 12738.66, + "end": 12739.46, + "probability": 0.8273 + }, + { + "start": 12741.56, + "end": 12742.64, + "probability": 0.9718 + }, + { + "start": 12745.16, + "end": 12745.58, + "probability": 0.8168 + }, + { + "start": 12748.02, + "end": 12748.8, + "probability": 0.7081 + }, + { + "start": 12750.0, + "end": 12753.08, + "probability": 0.807 + }, + { + "start": 12754.76, + "end": 12756.12, + "probability": 0.8617 + }, + { + "start": 12758.82, + "end": 12761.1, + "probability": 0.4927 + }, + { + "start": 12762.6, + "end": 12766.42, + "probability": 0.7358 + }, + { + "start": 12768.62, + "end": 12770.26, + "probability": 0.8654 + }, + { + "start": 12771.1, + "end": 12773.24, + "probability": 0.6412 + }, + { + "start": 12773.98, + "end": 12774.42, + "probability": 0.7913 + }, + { + "start": 12776.68, + "end": 12777.5, + "probability": 0.8063 + }, + { + "start": 12778.5, + "end": 12779.7, + "probability": 0.7658 + }, + { + "start": 12780.4, + "end": 12782.14, + "probability": 0.9241 + }, + { + "start": 12784.14, + "end": 12785.8, + "probability": 0.8639 + }, + { + "start": 12786.78, + "end": 12788.18, + "probability": 0.9686 + }, + { + "start": 12789.46, + "end": 12792.3, + "probability": 0.7503 + }, + { + "start": 12792.7, + "end": 12793.28, + "probability": 0.6357 + }, + { + "start": 12794.2, + "end": 12797.49, + "probability": 0.2221 + }, + { + "start": 12797.8, + "end": 12800.02, + "probability": 0.6982 + }, + { + "start": 12801.68, + "end": 12803.6, + "probability": 0.8181 + }, + { + "start": 12804.7, + "end": 12805.4, + "probability": 0.906 + }, + { + "start": 12806.8, + "end": 12807.1, + "probability": 0.9761 + }, + { + "start": 12807.86, + "end": 12811.78, + "probability": 0.7161 + }, + { + "start": 12813.02, + "end": 12814.1, + "probability": 0.3596 + }, + { + "start": 12814.18, + "end": 12815.08, + "probability": 0.722 + }, + { + "start": 12816.48, + "end": 12819.12, + "probability": 0.0642 + }, + { + "start": 12819.64, + "end": 12822.94, + "probability": 0.0955 + }, + { + "start": 12823.9, + "end": 12824.64, + "probability": 0.0372 + }, + { + "start": 12834.14, + "end": 12838.74, + "probability": 0.0126 + }, + { + "start": 12840.42, + "end": 12841.72, + "probability": 0.0171 + }, + { + "start": 12841.72, + "end": 12842.47, + "probability": 0.1268 + }, + { + "start": 12983.32, + "end": 12984.06, + "probability": 0.0182 + }, + { + "start": 12984.86, + "end": 12986.48, + "probability": 0.0664 + }, + { + "start": 12987.42, + "end": 12987.98, + "probability": 0.0054 + }, + { + "start": 12990.4, + "end": 12991.46, + "probability": 0.0654 + }, + { + "start": 13001.3, + "end": 13004.42, + "probability": 0.0766 + }, + { + "start": 13006.02, + "end": 13006.06, + "probability": 0.0651 + }, + { + "start": 13009.28, + "end": 13009.56, + "probability": 0.1083 + }, + { + "start": 13013.6, + "end": 13014.28, + "probability": 0.0864 + }, + { + "start": 13015.66, + "end": 13016.6, + "probability": 0.0189 + }, + { + "start": 13016.6, + "end": 13019.16, + "probability": 0.0848 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.0, + "end": 13102.0, + "probability": 0.0 + }, + { + "start": 13102.08, + "end": 13102.34, + "probability": 0.2075 + }, + { + "start": 13102.38, + "end": 13103.2, + "probability": 0.8085 + }, + { + "start": 13104.66, + "end": 13112.48, + "probability": 0.9757 + }, + { + "start": 13113.48, + "end": 13117.04, + "probability": 0.955 + }, + { + "start": 13118.42, + "end": 13120.34, + "probability": 0.9315 + }, + { + "start": 13121.48, + "end": 13127.48, + "probability": 0.9823 + }, + { + "start": 13128.3, + "end": 13134.1, + "probability": 0.9976 + }, + { + "start": 13134.84, + "end": 13136.28, + "probability": 0.9995 + }, + { + "start": 13137.1, + "end": 13139.44, + "probability": 0.9968 + }, + { + "start": 13140.6, + "end": 13145.8, + "probability": 0.9959 + }, + { + "start": 13146.88, + "end": 13148.88, + "probability": 0.7573 + }, + { + "start": 13150.02, + "end": 13154.44, + "probability": 0.7425 + }, + { + "start": 13155.5, + "end": 13155.96, + "probability": 0.4722 + }, + { + "start": 13157.3, + "end": 13160.56, + "probability": 0.7387 + }, + { + "start": 13162.0, + "end": 13169.32, + "probability": 0.9697 + }, + { + "start": 13170.2, + "end": 13177.23, + "probability": 0.9946 + }, + { + "start": 13178.0, + "end": 13181.06, + "probability": 0.9981 + }, + { + "start": 13181.8, + "end": 13188.96, + "probability": 0.9985 + }, + { + "start": 13189.98, + "end": 13190.26, + "probability": 0.5108 + }, + { + "start": 13190.28, + "end": 13196.84, + "probability": 0.9872 + }, + { + "start": 13196.92, + "end": 13197.54, + "probability": 0.4263 + }, + { + "start": 13198.36, + "end": 13200.1, + "probability": 0.9274 + }, + { + "start": 13200.82, + "end": 13201.06, + "probability": 0.5057 + }, + { + "start": 13201.78, + "end": 13202.44, + "probability": 0.7497 + }, + { + "start": 13203.1, + "end": 13207.02, + "probability": 0.8069 + }, + { + "start": 13207.42, + "end": 13208.1, + "probability": 0.834 + }, + { + "start": 13208.64, + "end": 13210.1, + "probability": 0.9499 + }, + { + "start": 13210.16, + "end": 13210.78, + "probability": 0.8014 + }, + { + "start": 13210.88, + "end": 13217.56, + "probability": 0.9717 + }, + { + "start": 13217.72, + "end": 13223.58, + "probability": 0.9931 + }, + { + "start": 13225.4, + "end": 13226.72, + "probability": 0.7897 + }, + { + "start": 13227.94, + "end": 13228.54, + "probability": 0.8074 + }, + { + "start": 13230.1, + "end": 13230.6, + "probability": 0.7798 + }, + { + "start": 13231.28, + "end": 13231.72, + "probability": 0.9561 + }, + { + "start": 13232.26, + "end": 13234.86, + "probability": 0.9954 + }, + { + "start": 13235.44, + "end": 13237.02, + "probability": 0.9591 + }, + { + "start": 13239.18, + "end": 13242.14, + "probability": 0.9901 + }, + { + "start": 13242.18, + "end": 13247.16, + "probability": 0.9976 + }, + { + "start": 13248.84, + "end": 13254.64, + "probability": 0.9765 + }, + { + "start": 13255.36, + "end": 13256.62, + "probability": 0.5242 + }, + { + "start": 13257.18, + "end": 13257.98, + "probability": 0.7479 + }, + { + "start": 13259.08, + "end": 13261.1, + "probability": 0.997 + }, + { + "start": 13261.72, + "end": 13268.44, + "probability": 0.9842 + }, + { + "start": 13270.58, + "end": 13271.88, + "probability": 0.9684 + }, + { + "start": 13273.64, + "end": 13277.48, + "probability": 0.9863 + }, + { + "start": 13277.48, + "end": 13282.0, + "probability": 0.9987 + }, + { + "start": 13283.2, + "end": 13285.28, + "probability": 0.9977 + }, + { + "start": 13286.0, + "end": 13288.16, + "probability": 0.9861 + }, + { + "start": 13289.5, + "end": 13292.2, + "probability": 0.8914 + }, + { + "start": 13292.86, + "end": 13293.52, + "probability": 0.9696 + }, + { + "start": 13294.78, + "end": 13295.3, + "probability": 0.3965 + }, + { + "start": 13295.86, + "end": 13299.32, + "probability": 0.9518 + }, + { + "start": 13299.92, + "end": 13302.2, + "probability": 0.983 + }, + { + "start": 13302.88, + "end": 13304.18, + "probability": 0.9949 + }, + { + "start": 13305.08, + "end": 13307.56, + "probability": 0.9206 + }, + { + "start": 13308.26, + "end": 13311.9, + "probability": 0.9938 + }, + { + "start": 13313.36, + "end": 13318.38, + "probability": 0.9911 + }, + { + "start": 13319.36, + "end": 13322.26, + "probability": 0.8704 + }, + { + "start": 13322.88, + "end": 13323.32, + "probability": 0.7764 + }, + { + "start": 13324.38, + "end": 13325.98, + "probability": 0.9405 + }, + { + "start": 13326.62, + "end": 13327.2, + "probability": 0.6378 + }, + { + "start": 13327.74, + "end": 13328.38, + "probability": 0.9832 + }, + { + "start": 13328.9, + "end": 13333.22, + "probability": 0.9893 + }, + { + "start": 13334.88, + "end": 13339.56, + "probability": 0.9905 + }, + { + "start": 13340.44, + "end": 13344.32, + "probability": 0.8943 + }, + { + "start": 13345.18, + "end": 13348.04, + "probability": 0.9924 + }, + { + "start": 13348.7, + "end": 13350.56, + "probability": 0.988 + }, + { + "start": 13352.36, + "end": 13352.78, + "probability": 0.8259 + }, + { + "start": 13353.42, + "end": 13355.92, + "probability": 0.973 + }, + { + "start": 13355.92, + "end": 13358.98, + "probability": 0.9827 + }, + { + "start": 13359.74, + "end": 13364.72, + "probability": 0.94 + }, + { + "start": 13365.28, + "end": 13368.64, + "probability": 0.9958 + }, + { + "start": 13369.22, + "end": 13372.14, + "probability": 0.9898 + }, + { + "start": 13373.14, + "end": 13375.52, + "probability": 0.9374 + }, + { + "start": 13377.56, + "end": 13382.09, + "probability": 0.9954 + }, + { + "start": 13383.54, + "end": 13385.64, + "probability": 0.9944 + }, + { + "start": 13386.22, + "end": 13387.12, + "probability": 0.995 + }, + { + "start": 13391.02, + "end": 13391.54, + "probability": 0.8755 + }, + { + "start": 13392.36, + "end": 13395.36, + "probability": 0.9982 + }, + { + "start": 13395.96, + "end": 13397.3, + "probability": 0.8136 + }, + { + "start": 13398.58, + "end": 13402.46, + "probability": 0.9873 + }, + { + "start": 13402.46, + "end": 13408.9, + "probability": 0.9924 + }, + { + "start": 13410.28, + "end": 13415.4, + "probability": 0.9951 + }, + { + "start": 13416.54, + "end": 13419.0, + "probability": 0.9966 + }, + { + "start": 13419.7, + "end": 13420.78, + "probability": 0.7461 + }, + { + "start": 13421.5, + "end": 13423.84, + "probability": 0.8868 + }, + { + "start": 13425.62, + "end": 13429.62, + "probability": 0.937 + }, + { + "start": 13430.04, + "end": 13430.98, + "probability": 0.963 + }, + { + "start": 13431.8, + "end": 13432.54, + "probability": 0.7944 + }, + { + "start": 13433.22, + "end": 13438.74, + "probability": 0.9724 + }, + { + "start": 13440.54, + "end": 13445.08, + "probability": 0.9988 + }, + { + "start": 13445.08, + "end": 13449.04, + "probability": 0.9986 + }, + { + "start": 13449.74, + "end": 13451.68, + "probability": 0.9194 + }, + { + "start": 13452.36, + "end": 13457.74, + "probability": 0.998 + }, + { + "start": 13458.36, + "end": 13462.6, + "probability": 0.9976 + }, + { + "start": 13462.6, + "end": 13467.5, + "probability": 0.992 + }, + { + "start": 13468.04, + "end": 13468.78, + "probability": 0.8766 + }, + { + "start": 13470.54, + "end": 13475.6, + "probability": 0.9253 + }, + { + "start": 13476.18, + "end": 13478.56, + "probability": 0.9954 + }, + { + "start": 13480.18, + "end": 13480.44, + "probability": 0.981 + }, + { + "start": 13481.1, + "end": 13485.08, + "probability": 0.8443 + }, + { + "start": 13486.02, + "end": 13487.72, + "probability": 0.9875 + }, + { + "start": 13488.88, + "end": 13491.68, + "probability": 0.9589 + }, + { + "start": 13493.06, + "end": 13496.9, + "probability": 0.9902 + }, + { + "start": 13497.56, + "end": 13501.84, + "probability": 0.9967 + }, + { + "start": 13502.4, + "end": 13505.3, + "probability": 0.988 + }, + { + "start": 13506.12, + "end": 13509.74, + "probability": 0.9694 + }, + { + "start": 13509.74, + "end": 13513.56, + "probability": 0.9822 + }, + { + "start": 13515.42, + "end": 13518.8, + "probability": 0.9917 + }, + { + "start": 13519.34, + "end": 13521.46, + "probability": 0.9995 + }, + { + "start": 13522.0, + "end": 13522.58, + "probability": 0.9933 + }, + { + "start": 13523.12, + "end": 13524.28, + "probability": 0.9995 + }, + { + "start": 13524.8, + "end": 13528.5, + "probability": 0.9982 + }, + { + "start": 13529.32, + "end": 13531.76, + "probability": 0.9991 + }, + { + "start": 13532.36, + "end": 13533.8, + "probability": 0.9889 + }, + { + "start": 13534.4, + "end": 13536.74, + "probability": 0.9768 + }, + { + "start": 13537.44, + "end": 13540.28, + "probability": 0.9689 + }, + { + "start": 13542.68, + "end": 13545.24, + "probability": 0.9839 + }, + { + "start": 13545.84, + "end": 13546.44, + "probability": 0.8812 + }, + { + "start": 13547.1, + "end": 13550.36, + "probability": 0.9963 + }, + { + "start": 13550.94, + "end": 13554.0, + "probability": 0.9976 + }, + { + "start": 13555.26, + "end": 13556.36, + "probability": 0.9077 + }, + { + "start": 13557.02, + "end": 13560.5, + "probability": 0.9922 + }, + { + "start": 13560.5, + "end": 13565.94, + "probability": 0.9977 + }, + { + "start": 13567.78, + "end": 13569.24, + "probability": 0.8076 + }, + { + "start": 13572.04, + "end": 13573.6, + "probability": 0.7802 + }, + { + "start": 13575.0, + "end": 13576.28, + "probability": 0.8309 + }, + { + "start": 13578.44, + "end": 13579.16, + "probability": 0.7398 + }, + { + "start": 13579.98, + "end": 13581.98, + "probability": 0.9839 + }, + { + "start": 13584.28, + "end": 13585.72, + "probability": 0.6441 + }, + { + "start": 13586.46, + "end": 13587.94, + "probability": 0.9753 + }, + { + "start": 13589.58, + "end": 13590.18, + "probability": 0.9006 + }, + { + "start": 13591.04, + "end": 13592.66, + "probability": 0.9797 + }, + { + "start": 13594.08, + "end": 13594.84, + "probability": 0.9882 + }, + { + "start": 13595.56, + "end": 13597.3, + "probability": 0.9466 + }, + { + "start": 13598.78, + "end": 13600.56, + "probability": 0.8174 + }, + { + "start": 13601.64, + "end": 13602.62, + "probability": 0.7017 + }, + { + "start": 13609.22, + "end": 13610.21, + "probability": 0.5536 + }, + { + "start": 13611.9, + "end": 13613.74, + "probability": 0.6195 + }, + { + "start": 13615.16, + "end": 13615.76, + "probability": 0.8025 + }, + { + "start": 13616.38, + "end": 13617.7, + "probability": 0.9645 + }, + { + "start": 13618.54, + "end": 13620.84, + "probability": 0.9167 + }, + { + "start": 13621.66, + "end": 13622.22, + "probability": 0.9482 + }, + { + "start": 13623.54, + "end": 13624.64, + "probability": 0.9349 + }, + { + "start": 13626.3, + "end": 13626.72, + "probability": 0.3492 + }, + { + "start": 13627.34, + "end": 13629.04, + "probability": 0.6852 + }, + { + "start": 13630.06, + "end": 13631.22, + "probability": 0.923 + }, + { + "start": 13632.06, + "end": 13633.4, + "probability": 0.9767 + }, + { + "start": 13634.68, + "end": 13635.32, + "probability": 0.9805 + }, + { + "start": 13635.96, + "end": 13636.82, + "probability": 0.9782 + }, + { + "start": 13637.64, + "end": 13638.44, + "probability": 0.7343 + }, + { + "start": 13638.54, + "end": 13639.7, + "probability": 0.8613 + }, + { + "start": 13640.82, + "end": 13643.12, + "probability": 0.6271 + }, + { + "start": 13646.9, + "end": 13649.06, + "probability": 0.2648 + }, + { + "start": 13653.52, + "end": 13655.04, + "probability": 0.9816 + }, + { + "start": 13656.2, + "end": 13657.18, + "probability": 0.0563 + }, + { + "start": 13657.74, + "end": 13659.22, + "probability": 0.7571 + }, + { + "start": 13660.51, + "end": 13661.22, + "probability": 0.3368 + }, + { + "start": 13661.84, + "end": 13662.36, + "probability": 0.9144 + }, + { + "start": 13662.68, + "end": 13663.47, + "probability": 0.8901 + }, + { + "start": 13664.58, + "end": 13665.42, + "probability": 0.0446 + }, + { + "start": 13666.84, + "end": 13667.48, + "probability": 0.7836 + }, + { + "start": 13667.94, + "end": 13669.22, + "probability": 0.8783 + }, + { + "start": 13669.54, + "end": 13669.96, + "probability": 0.6692 + }, + { + "start": 13670.06, + "end": 13670.7, + "probability": 0.7862 + }, + { + "start": 13671.74, + "end": 13672.94, + "probability": 0.9143 + }, + { + "start": 13673.94, + "end": 13677.88, + "probability": 0.9952 + }, + { + "start": 13677.88, + "end": 13682.78, + "probability": 0.9934 + }, + { + "start": 13684.16, + "end": 13686.8, + "probability": 0.9358 + }, + { + "start": 13688.32, + "end": 13689.5, + "probability": 0.7497 + }, + { + "start": 13691.76, + "end": 13697.14, + "probability": 0.6749 + }, + { + "start": 13698.38, + "end": 13700.26, + "probability": 0.9409 + }, + { + "start": 13701.18, + "end": 13702.74, + "probability": 0.9718 + }, + { + "start": 13704.1, + "end": 13704.82, + "probability": 0.7658 + }, + { + "start": 13704.96, + "end": 13707.86, + "probability": 0.9956 + }, + { + "start": 13708.52, + "end": 13710.34, + "probability": 0.9602 + }, + { + "start": 13711.1, + "end": 13712.34, + "probability": 0.994 + }, + { + "start": 13713.04, + "end": 13713.46, + "probability": 0.8412 + }, + { + "start": 13714.38, + "end": 13714.76, + "probability": 0.8096 + }, + { + "start": 13715.66, + "end": 13717.0, + "probability": 0.9487 + }, + { + "start": 13717.94, + "end": 13719.94, + "probability": 0.9539 + }, + { + "start": 13720.24, + "end": 13720.61, + "probability": 0.9641 + }, + { + "start": 13721.44, + "end": 13724.5, + "probability": 0.9928 + }, + { + "start": 13724.76, + "end": 13725.0, + "probability": 0.9235 + }, + { + "start": 13725.4, + "end": 13725.9, + "probability": 0.9867 + }, + { + "start": 13727.48, + "end": 13732.18, + "probability": 0.9865 + }, + { + "start": 13732.36, + "end": 13733.0, + "probability": 0.5736 + }, + { + "start": 13733.12, + "end": 13733.2, + "probability": 0.2806 + }, + { + "start": 13733.2, + "end": 13733.86, + "probability": 0.3773 + }, + { + "start": 13734.02, + "end": 13735.84, + "probability": 0.9532 + }, + { + "start": 13735.86, + "end": 13741.64, + "probability": 0.9953 + }, + { + "start": 13742.32, + "end": 13745.38, + "probability": 0.9907 + }, + { + "start": 13747.44, + "end": 13748.58, + "probability": 0.8042 + }, + { + "start": 13748.94, + "end": 13752.3, + "probability": 0.9966 + }, + { + "start": 13752.44, + "end": 13753.16, + "probability": 0.775 + }, + { + "start": 13754.0, + "end": 13756.2, + "probability": 0.8481 + }, + { + "start": 13757.48, + "end": 13758.42, + "probability": 0.9716 + }, + { + "start": 13759.24, + "end": 13761.32, + "probability": 0.986 + }, + { + "start": 13761.62, + "end": 13761.88, + "probability": 0.6952 + }, + { + "start": 13761.98, + "end": 13764.96, + "probability": 0.936 + }, + { + "start": 13765.9, + "end": 13769.06, + "probability": 0.9834 + }, + { + "start": 13769.16, + "end": 13770.84, + "probability": 0.7216 + }, + { + "start": 13771.6, + "end": 13771.74, + "probability": 0.8701 + }, + { + "start": 13772.56, + "end": 13775.46, + "probability": 0.9973 + }, + { + "start": 13776.12, + "end": 13776.88, + "probability": 0.9849 + }, + { + "start": 13777.2, + "end": 13778.36, + "probability": 0.8807 + }, + { + "start": 13779.08, + "end": 13783.54, + "probability": 0.9658 + }, + { + "start": 13784.72, + "end": 13787.64, + "probability": 0.8649 + }, + { + "start": 13787.8, + "end": 13790.64, + "probability": 0.702 + }, + { + "start": 13791.52, + "end": 13792.99, + "probability": 0.9855 + }, + { + "start": 13794.14, + "end": 13795.66, + "probability": 0.9886 + }, + { + "start": 13795.72, + "end": 13796.46, + "probability": 0.7603 + }, + { + "start": 13798.14, + "end": 13801.96, + "probability": 0.991 + }, + { + "start": 13802.39, + "end": 13805.56, + "probability": 0.9924 + }, + { + "start": 13806.34, + "end": 13808.8, + "probability": 0.9976 + }, + { + "start": 13808.88, + "end": 13812.18, + "probability": 0.9615 + }, + { + "start": 13812.76, + "end": 13816.22, + "probability": 0.9963 + }, + { + "start": 13817.2, + "end": 13817.88, + "probability": 0.897 + }, + { + "start": 13818.9, + "end": 13820.0, + "probability": 0.9469 + }, + { + "start": 13820.78, + "end": 13824.28, + "probability": 0.938 + }, + { + "start": 13825.14, + "end": 13828.04, + "probability": 0.9681 + }, + { + "start": 13829.14, + "end": 13830.04, + "probability": 0.8799 + }, + { + "start": 13830.8, + "end": 13834.98, + "probability": 0.8306 + }, + { + "start": 13835.72, + "end": 13836.52, + "probability": 0.7487 + }, + { + "start": 13836.56, + "end": 13840.96, + "probability": 0.8992 + }, + { + "start": 13841.1, + "end": 13843.0, + "probability": 0.9704 + }, + { + "start": 13843.58, + "end": 13846.12, + "probability": 0.9748 + }, + { + "start": 13847.2, + "end": 13851.16, + "probability": 0.8225 + }, + { + "start": 13851.54, + "end": 13852.5, + "probability": 0.8707 + }, + { + "start": 13852.66, + "end": 13854.64, + "probability": 0.9925 + }, + { + "start": 13855.18, + "end": 13855.86, + "probability": 0.8467 + }, + { + "start": 13856.4, + "end": 13859.36, + "probability": 0.8682 + }, + { + "start": 13859.68, + "end": 13860.2, + "probability": 0.5282 + }, + { + "start": 13860.32, + "end": 13861.38, + "probability": 0.9961 + }, + { + "start": 13862.18, + "end": 13863.76, + "probability": 0.9824 + }, + { + "start": 13864.34, + "end": 13865.2, + "probability": 0.7641 + }, + { + "start": 13866.08, + "end": 13867.12, + "probability": 0.483 + }, + { + "start": 13867.12, + "end": 13869.24, + "probability": 0.6042 + }, + { + "start": 13869.94, + "end": 13871.12, + "probability": 0.853 + }, + { + "start": 13872.34, + "end": 13873.88, + "probability": 0.4755 + }, + { + "start": 13874.86, + "end": 13876.9, + "probability": 0.9001 + }, + { + "start": 13878.46, + "end": 13879.2, + "probability": 0.7698 + }, + { + "start": 13880.0, + "end": 13880.9, + "probability": 0.8539 + }, + { + "start": 13881.92, + "end": 13882.84, + "probability": 0.9281 + }, + { + "start": 13905.06, + "end": 13907.36, + "probability": 0.753 + }, + { + "start": 13908.02, + "end": 13911.7, + "probability": 0.6804 + }, + { + "start": 13914.2, + "end": 13916.22, + "probability": 0.814 + }, + { + "start": 13916.76, + "end": 13917.54, + "probability": 0.7495 + }, + { + "start": 13919.22, + "end": 13920.51, + "probability": 0.9373 + }, + { + "start": 13922.36, + "end": 13925.58, + "probability": 0.9959 + }, + { + "start": 13926.34, + "end": 13926.96, + "probability": 0.7168 + }, + { + "start": 13928.34, + "end": 13932.8, + "probability": 0.9932 + }, + { + "start": 13934.3, + "end": 13937.66, + "probability": 0.9736 + }, + { + "start": 13938.54, + "end": 13940.58, + "probability": 0.9919 + }, + { + "start": 13941.1, + "end": 13943.7, + "probability": 0.756 + }, + { + "start": 13945.14, + "end": 13947.68, + "probability": 0.8898 + }, + { + "start": 13948.78, + "end": 13951.84, + "probability": 0.9141 + }, + { + "start": 13953.32, + "end": 13953.94, + "probability": 0.7929 + }, + { + "start": 13954.92, + "end": 13955.48, + "probability": 0.8395 + }, + { + "start": 13956.12, + "end": 13959.06, + "probability": 0.9937 + }, + { + "start": 13960.0, + "end": 13961.38, + "probability": 0.8648 + }, + { + "start": 13961.98, + "end": 13962.86, + "probability": 0.9197 + }, + { + "start": 13964.48, + "end": 13966.48, + "probability": 0.9223 + }, + { + "start": 13967.06, + "end": 13968.0, + "probability": 0.9055 + }, + { + "start": 13969.18, + "end": 13970.34, + "probability": 0.963 + }, + { + "start": 13972.06, + "end": 13973.12, + "probability": 0.9716 + }, + { + "start": 13973.7, + "end": 13974.66, + "probability": 0.8574 + }, + { + "start": 13976.04, + "end": 13976.92, + "probability": 0.5486 + }, + { + "start": 13977.96, + "end": 13980.58, + "probability": 0.9957 + }, + { + "start": 13981.56, + "end": 13984.58, + "probability": 0.9928 + }, + { + "start": 13985.3, + "end": 13987.32, + "probability": 0.9767 + }, + { + "start": 13988.54, + "end": 13989.52, + "probability": 0.7564 + }, + { + "start": 13990.38, + "end": 13991.64, + "probability": 0.837 + }, + { + "start": 13992.44, + "end": 13998.5, + "probability": 0.9943 + }, + { + "start": 13999.42, + "end": 14003.22, + "probability": 0.9674 + }, + { + "start": 14003.22, + "end": 14007.66, + "probability": 0.9983 + }, + { + "start": 14008.72, + "end": 14012.48, + "probability": 0.9974 + }, + { + "start": 14013.18, + "end": 14021.24, + "probability": 0.9623 + }, + { + "start": 14023.32, + "end": 14025.74, + "probability": 0.7471 + }, + { + "start": 14026.48, + "end": 14029.0, + "probability": 0.991 + }, + { + "start": 14029.62, + "end": 14032.66, + "probability": 0.995 + }, + { + "start": 14034.58, + "end": 14035.16, + "probability": 0.8621 + }, + { + "start": 14035.76, + "end": 14038.32, + "probability": 0.8952 + }, + { + "start": 14040.1, + "end": 14041.26, + "probability": 0.6599 + }, + { + "start": 14041.9, + "end": 14044.62, + "probability": 0.7539 + }, + { + "start": 14045.78, + "end": 14048.92, + "probability": 0.9568 + }, + { + "start": 14049.82, + "end": 14052.06, + "probability": 0.7529 + }, + { + "start": 14052.72, + "end": 14060.84, + "probability": 0.9608 + }, + { + "start": 14062.42, + "end": 14063.28, + "probability": 0.9517 + }, + { + "start": 14065.74, + "end": 14066.06, + "probability": 0.9644 + }, + { + "start": 14067.3, + "end": 14070.62, + "probability": 0.7146 + }, + { + "start": 14071.42, + "end": 14071.88, + "probability": 0.3199 + }, + { + "start": 14073.16, + "end": 14075.08, + "probability": 0.7384 + }, + { + "start": 14077.78, + "end": 14079.12, + "probability": 0.8943 + }, + { + "start": 14080.7, + "end": 14081.78, + "probability": 0.7495 + }, + { + "start": 14082.7, + "end": 14083.82, + "probability": 0.99 + }, + { + "start": 14084.5, + "end": 14085.5, + "probability": 0.7971 + }, + { + "start": 14108.42, + "end": 14109.82, + "probability": 0.7082 + }, + { + "start": 14111.38, + "end": 14112.34, + "probability": 0.8289 + }, + { + "start": 14113.78, + "end": 14119.96, + "probability": 0.857 + }, + { + "start": 14121.2, + "end": 14122.34, + "probability": 0.9719 + }, + { + "start": 14124.82, + "end": 14126.2, + "probability": 0.4806 + }, + { + "start": 14127.0, + "end": 14130.74, + "probability": 0.7806 + }, + { + "start": 14132.02, + "end": 14135.28, + "probability": 0.9797 + }, + { + "start": 14135.9, + "end": 14137.6, + "probability": 0.7633 + }, + { + "start": 14138.42, + "end": 14140.48, + "probability": 0.9902 + }, + { + "start": 14141.0, + "end": 14143.48, + "probability": 0.9944 + }, + { + "start": 14144.22, + "end": 14145.06, + "probability": 0.9845 + }, + { + "start": 14145.78, + "end": 14148.08, + "probability": 0.9702 + }, + { + "start": 14148.58, + "end": 14151.19, + "probability": 0.5419 + }, + { + "start": 14151.46, + "end": 14153.64, + "probability": 0.494 + }, + { + "start": 14155.18, + "end": 14157.64, + "probability": 0.9575 + }, + { + "start": 14158.96, + "end": 14163.8, + "probability": 0.71 + }, + { + "start": 14164.26, + "end": 14165.18, + "probability": 0.7716 + }, + { + "start": 14165.24, + "end": 14167.14, + "probability": 0.7348 + }, + { + "start": 14167.54, + "end": 14169.5, + "probability": 0.9803 + }, + { + "start": 14170.92, + "end": 14174.02, + "probability": 0.9414 + }, + { + "start": 14175.26, + "end": 14177.22, + "probability": 0.9011 + }, + { + "start": 14177.22, + "end": 14180.42, + "probability": 0.901 + }, + { + "start": 14181.26, + "end": 14186.48, + "probability": 0.9709 + }, + { + "start": 14187.32, + "end": 14189.96, + "probability": 0.5578 + }, + { + "start": 14190.58, + "end": 14191.05, + "probability": 0.6169 + }, + { + "start": 14192.18, + "end": 14195.32, + "probability": 0.9204 + }, + { + "start": 14196.3, + "end": 14200.46, + "probability": 0.9181 + }, + { + "start": 14200.6, + "end": 14201.54, + "probability": 0.3682 + }, + { + "start": 14201.66, + "end": 14202.42, + "probability": 0.5813 + }, + { + "start": 14203.06, + "end": 14204.37, + "probability": 0.8677 + }, + { + "start": 14206.24, + "end": 14206.24, + "probability": 0.1869 + }, + { + "start": 14206.24, + "end": 14207.85, + "probability": 0.91 + }, + { + "start": 14209.02, + "end": 14211.48, + "probability": 0.6782 + }, + { + "start": 14212.36, + "end": 14215.02, + "probability": 0.9083 + }, + { + "start": 14215.06, + "end": 14220.06, + "probability": 0.7329 + }, + { + "start": 14220.98, + "end": 14221.8, + "probability": 0.6629 + }, + { + "start": 14222.3, + "end": 14224.48, + "probability": 0.9969 + }, + { + "start": 14224.58, + "end": 14226.32, + "probability": 0.8028 + }, + { + "start": 14227.22, + "end": 14232.26, + "probability": 0.8817 + }, + { + "start": 14232.8, + "end": 14234.64, + "probability": 0.7804 + }, + { + "start": 14235.32, + "end": 14239.56, + "probability": 0.9442 + }, + { + "start": 14240.02, + "end": 14241.52, + "probability": 0.8815 + }, + { + "start": 14241.84, + "end": 14244.72, + "probability": 0.9746 + }, + { + "start": 14245.42, + "end": 14246.44, + "probability": 0.9907 + }, + { + "start": 14247.44, + "end": 14248.36, + "probability": 0.8492 + }, + { + "start": 14248.86, + "end": 14252.12, + "probability": 0.8077 + }, + { + "start": 14253.08, + "end": 14253.8, + "probability": 0.5583 + }, + { + "start": 14253.86, + "end": 14256.34, + "probability": 0.568 + }, + { + "start": 14256.46, + "end": 14257.82, + "probability": 0.8923 + }, + { + "start": 14258.52, + "end": 14259.02, + "probability": 0.6603 + }, + { + "start": 14259.18, + "end": 14261.92, + "probability": 0.8896 + }, + { + "start": 14262.54, + "end": 14264.22, + "probability": 0.8882 + }, + { + "start": 14264.82, + "end": 14265.94, + "probability": 0.8831 + }, + { + "start": 14266.24, + "end": 14267.52, + "probability": 0.971 + }, + { + "start": 14267.72, + "end": 14268.7, + "probability": 0.708 + }, + { + "start": 14268.76, + "end": 14268.86, + "probability": 0.8046 + }, + { + "start": 14270.06, + "end": 14272.13, + "probability": 0.9136 + }, + { + "start": 14272.7, + "end": 14274.94, + "probability": 0.7904 + }, + { + "start": 14274.94, + "end": 14277.94, + "probability": 0.7241 + }, + { + "start": 14278.06, + "end": 14279.14, + "probability": 0.9138 + }, + { + "start": 14279.9, + "end": 14280.78, + "probability": 0.6981 + }, + { + "start": 14281.42, + "end": 14283.84, + "probability": 0.9743 + }, + { + "start": 14284.66, + "end": 14285.82, + "probability": 0.8046 + }, + { + "start": 14286.78, + "end": 14289.06, + "probability": 0.9673 + }, + { + "start": 14290.26, + "end": 14293.66, + "probability": 0.9302 + }, + { + "start": 14294.32, + "end": 14297.7, + "probability": 0.9711 + }, + { + "start": 14297.7, + "end": 14302.34, + "probability": 0.9985 + }, + { + "start": 14302.58, + "end": 14302.82, + "probability": 0.6754 + }, + { + "start": 14304.08, + "end": 14306.22, + "probability": 0.74 + }, + { + "start": 14306.54, + "end": 14308.12, + "probability": 0.9333 + }, + { + "start": 14310.0, + "end": 14310.58, + "probability": 0.7261 + }, + { + "start": 14311.6, + "end": 14313.5, + "probability": 0.8219 + }, + { + "start": 14327.84, + "end": 14329.78, + "probability": 0.7784 + }, + { + "start": 14329.82, + "end": 14330.07, + "probability": 0.5765 + }, + { + "start": 14330.3, + "end": 14331.1, + "probability": 0.5703 + }, + { + "start": 14332.82, + "end": 14334.34, + "probability": 0.7072 + }, + { + "start": 14336.06, + "end": 14339.32, + "probability": 0.9546 + }, + { + "start": 14339.54, + "end": 14340.34, + "probability": 0.7573 + }, + { + "start": 14342.76, + "end": 14343.56, + "probability": 0.9189 + }, + { + "start": 14344.02, + "end": 14345.4, + "probability": 0.786 + }, + { + "start": 14345.9, + "end": 14348.54, + "probability": 0.8488 + }, + { + "start": 14349.56, + "end": 14349.66, + "probability": 0.8683 + }, + { + "start": 14349.88, + "end": 14351.78, + "probability": 0.6289 + }, + { + "start": 14352.8, + "end": 14354.08, + "probability": 0.9929 + }, + { + "start": 14355.08, + "end": 14357.32, + "probability": 0.804 + }, + { + "start": 14357.88, + "end": 14359.6, + "probability": 0.9946 + }, + { + "start": 14360.62, + "end": 14363.38, + "probability": 0.9915 + }, + { + "start": 14363.96, + "end": 14371.3, + "probability": 0.9541 + }, + { + "start": 14371.3, + "end": 14375.7, + "probability": 0.9937 + }, + { + "start": 14375.82, + "end": 14376.41, + "probability": 0.721 + }, + { + "start": 14377.7, + "end": 14380.74, + "probability": 0.9304 + }, + { + "start": 14381.44, + "end": 14383.22, + "probability": 0.9168 + }, + { + "start": 14383.96, + "end": 14386.24, + "probability": 0.9489 + }, + { + "start": 14386.92, + "end": 14388.5, + "probability": 0.8688 + }, + { + "start": 14389.36, + "end": 14391.88, + "probability": 0.9954 + }, + { + "start": 14393.44, + "end": 14396.88, + "probability": 0.8299 + }, + { + "start": 14397.84, + "end": 14398.82, + "probability": 0.8263 + }, + { + "start": 14399.7, + "end": 14401.96, + "probability": 0.9939 + }, + { + "start": 14403.66, + "end": 14406.54, + "probability": 0.9556 + }, + { + "start": 14408.28, + "end": 14414.26, + "probability": 0.8634 + }, + { + "start": 14415.58, + "end": 14417.64, + "probability": 0.7984 + }, + { + "start": 14419.18, + "end": 14421.56, + "probability": 0.8638 + }, + { + "start": 14421.64, + "end": 14423.84, + "probability": 0.9865 + }, + { + "start": 14425.0, + "end": 14426.4, + "probability": 0.9867 + }, + { + "start": 14427.34, + "end": 14432.56, + "probability": 0.754 + }, + { + "start": 14434.3, + "end": 14434.96, + "probability": 0.8071 + }, + { + "start": 14436.02, + "end": 14438.46, + "probability": 0.9703 + }, + { + "start": 14439.06, + "end": 14441.2, + "probability": 0.6836 + }, + { + "start": 14441.6, + "end": 14445.36, + "probability": 0.8003 + }, + { + "start": 14446.5, + "end": 14449.98, + "probability": 0.9608 + }, + { + "start": 14450.54, + "end": 14451.06, + "probability": 0.7977 + }, + { + "start": 14452.22, + "end": 14454.4, + "probability": 0.9931 + }, + { + "start": 14454.4, + "end": 14456.74, + "probability": 0.9956 + }, + { + "start": 14457.26, + "end": 14461.45, + "probability": 0.9946 + }, + { + "start": 14461.6, + "end": 14464.2, + "probability": 0.9722 + }, + { + "start": 14465.34, + "end": 14468.16, + "probability": 0.9879 + }, + { + "start": 14469.2, + "end": 14474.92, + "probability": 0.9014 + }, + { + "start": 14475.86, + "end": 14477.76, + "probability": 0.7837 + }, + { + "start": 14478.8, + "end": 14479.96, + "probability": 0.9793 + }, + { + "start": 14481.44, + "end": 14481.7, + "probability": 0.5762 + }, + { + "start": 14482.56, + "end": 14483.42, + "probability": 0.6229 + }, + { + "start": 14483.82, + "end": 14484.6, + "probability": 0.9506 + }, + { + "start": 14485.12, + "end": 14487.44, + "probability": 0.9276 + }, + { + "start": 14488.12, + "end": 14489.0, + "probability": 0.8325 + }, + { + "start": 14490.22, + "end": 14493.46, + "probability": 0.9449 + }, + { + "start": 14494.36, + "end": 14495.08, + "probability": 0.738 + }, + { + "start": 14496.38, + "end": 14498.43, + "probability": 0.9519 + }, + { + "start": 14500.16, + "end": 14501.56, + "probability": 0.8638 + }, + { + "start": 14502.32, + "end": 14505.46, + "probability": 0.6628 + }, + { + "start": 14506.24, + "end": 14507.54, + "probability": 0.9477 + }, + { + "start": 14507.7, + "end": 14508.2, + "probability": 0.8556 + }, + { + "start": 14508.7, + "end": 14511.04, + "probability": 0.7757 + }, + { + "start": 14511.14, + "end": 14511.5, + "probability": 0.7005 + }, + { + "start": 14511.58, + "end": 14512.78, + "probability": 0.7656 + }, + { + "start": 14513.2, + "end": 14517.38, + "probability": 0.8399 + }, + { + "start": 14518.56, + "end": 14521.38, + "probability": 0.7534 + }, + { + "start": 14523.12, + "end": 14524.14, + "probability": 0.6516 + }, + { + "start": 14524.68, + "end": 14528.92, + "probability": 0.8895 + }, + { + "start": 14529.84, + "end": 14532.02, + "probability": 0.8086 + }, + { + "start": 14533.26, + "end": 14534.12, + "probability": 0.9911 + }, + { + "start": 14535.1, + "end": 14536.2, + "probability": 0.9854 + }, + { + "start": 14536.22, + "end": 14538.76, + "probability": 0.8652 + }, + { + "start": 14540.08, + "end": 14542.34, + "probability": 0.998 + }, + { + "start": 14543.0, + "end": 14545.48, + "probability": 0.9963 + }, + { + "start": 14546.62, + "end": 14548.96, + "probability": 0.9981 + }, + { + "start": 14549.58, + "end": 14554.16, + "probability": 0.9612 + }, + { + "start": 14554.82, + "end": 14557.68, + "probability": 0.9551 + }, + { + "start": 14558.36, + "end": 14560.42, + "probability": 0.6701 + }, + { + "start": 14561.7, + "end": 14565.42, + "probability": 0.5008 + }, + { + "start": 14565.56, + "end": 14566.1, + "probability": 0.8997 + }, + { + "start": 14566.18, + "end": 14567.6, + "probability": 0.5631 + }, + { + "start": 14568.12, + "end": 14568.48, + "probability": 0.9572 + }, + { + "start": 14569.3, + "end": 14569.76, + "probability": 0.5979 + }, + { + "start": 14570.46, + "end": 14570.98, + "probability": 0.9418 + }, + { + "start": 14571.88, + "end": 14573.3, + "probability": 0.961 + }, + { + "start": 14574.16, + "end": 14577.26, + "probability": 0.9521 + }, + { + "start": 14579.44, + "end": 14581.76, + "probability": 0.9898 + }, + { + "start": 14582.4, + "end": 14583.7, + "probability": 0.9451 + }, + { + "start": 14584.48, + "end": 14585.92, + "probability": 0.9971 + }, + { + "start": 14586.74, + "end": 14588.52, + "probability": 0.9243 + }, + { + "start": 14589.08, + "end": 14590.8, + "probability": 0.9401 + }, + { + "start": 14591.4, + "end": 14595.42, + "probability": 0.9436 + }, + { + "start": 14596.18, + "end": 14597.5, + "probability": 0.9381 + }, + { + "start": 14598.44, + "end": 14599.4, + "probability": 0.8645 + }, + { + "start": 14599.46, + "end": 14600.04, + "probability": 0.6865 + }, + { + "start": 14600.2, + "end": 14601.52, + "probability": 0.7902 + }, + { + "start": 14601.62, + "end": 14603.1, + "probability": 0.9175 + }, + { + "start": 14603.44, + "end": 14607.1, + "probability": 0.9899 + }, + { + "start": 14608.16, + "end": 14611.54, + "probability": 0.5637 + }, + { + "start": 14612.16, + "end": 14612.58, + "probability": 0.9883 + }, + { + "start": 14613.28, + "end": 14615.9, + "probability": 0.9495 + }, + { + "start": 14616.24, + "end": 14616.48, + "probability": 0.8365 + }, + { + "start": 14616.9, + "end": 14619.0, + "probability": 0.8846 + }, + { + "start": 14620.74, + "end": 14622.7, + "probability": 0.9902 + }, + { + "start": 14623.66, + "end": 14624.36, + "probability": 0.7061 + }, + { + "start": 14625.12, + "end": 14626.14, + "probability": 0.4963 + }, + { + "start": 14627.16, + "end": 14627.82, + "probability": 0.5405 + }, + { + "start": 14628.7, + "end": 14629.94, + "probability": 0.9513 + }, + { + "start": 14630.56, + "end": 14632.88, + "probability": 0.9443 + }, + { + "start": 14633.5, + "end": 14635.1, + "probability": 0.9528 + }, + { + "start": 14636.02, + "end": 14636.72, + "probability": 0.9653 + }, + { + "start": 14637.26, + "end": 14638.22, + "probability": 0.8984 + }, + { + "start": 14638.92, + "end": 14639.56, + "probability": 0.3443 + }, + { + "start": 14640.14, + "end": 14641.62, + "probability": 0.7865 + }, + { + "start": 14642.12, + "end": 14642.7, + "probability": 0.5698 + }, + { + "start": 14643.2, + "end": 14644.4, + "probability": 0.9465 + }, + { + "start": 14645.04, + "end": 14645.6, + "probability": 0.9715 + }, + { + "start": 14646.26, + "end": 14647.06, + "probability": 0.7908 + }, + { + "start": 14647.98, + "end": 14650.26, + "probability": 0.7236 + }, + { + "start": 14650.82, + "end": 14652.6, + "probability": 0.6301 + }, + { + "start": 14653.12, + "end": 14654.9, + "probability": 0.9716 + }, + { + "start": 14655.46, + "end": 14656.66, + "probability": 0.6123 + }, + { + "start": 14657.26, + "end": 14659.3, + "probability": 0.964 + }, + { + "start": 14661.7, + "end": 14662.36, + "probability": 0.9737 + }, + { + "start": 14671.12, + "end": 14671.42, + "probability": 0.4116 + }, + { + "start": 14671.67, + "end": 14672.48, + "probability": 0.4777 + }, + { + "start": 14672.8, + "end": 14673.54, + "probability": 0.4992 + }, + { + "start": 14674.42, + "end": 14676.04, + "probability": 0.7299 + }, + { + "start": 14676.04, + "end": 14678.36, + "probability": 0.791 + }, + { + "start": 14678.74, + "end": 14679.5, + "probability": 0.9849 + }, + { + "start": 14679.64, + "end": 14680.2, + "probability": 0.8666 + }, + { + "start": 14680.52, + "end": 14681.78, + "probability": 0.8887 + }, + { + "start": 14682.3, + "end": 14683.18, + "probability": 0.9971 + }, + { + "start": 14684.06, + "end": 14685.22, + "probability": 0.8017 + }, + { + "start": 14686.16, + "end": 14687.13, + "probability": 0.9497 + }, + { + "start": 14688.18, + "end": 14691.6, + "probability": 0.9895 + }, + { + "start": 14691.6, + "end": 14696.26, + "probability": 0.9902 + }, + { + "start": 14696.4, + "end": 14696.94, + "probability": 0.8833 + }, + { + "start": 14697.28, + "end": 14699.06, + "probability": 0.8561 + }, + { + "start": 14699.7, + "end": 14700.48, + "probability": 0.9712 + }, + { + "start": 14702.46, + "end": 14704.1, + "probability": 0.9066 + }, + { + "start": 14704.74, + "end": 14705.75, + "probability": 0.9512 + }, + { + "start": 14706.5, + "end": 14708.68, + "probability": 0.9711 + }, + { + "start": 14709.94, + "end": 14712.46, + "probability": 0.8353 + }, + { + "start": 14713.22, + "end": 14714.56, + "probability": 0.9552 + }, + { + "start": 14716.14, + "end": 14717.92, + "probability": 0.9497 + }, + { + "start": 14718.58, + "end": 14719.55, + "probability": 0.9855 + }, + { + "start": 14720.98, + "end": 14724.24, + "probability": 0.9972 + }, + { + "start": 14724.72, + "end": 14726.96, + "probability": 0.9993 + }, + { + "start": 14727.8, + "end": 14730.22, + "probability": 0.9211 + }, + { + "start": 14731.46, + "end": 14734.75, + "probability": 0.9952 + }, + { + "start": 14735.61, + "end": 14737.02, + "probability": 0.9614 + }, + { + "start": 14737.4, + "end": 14738.01, + "probability": 0.5411 + }, + { + "start": 14738.36, + "end": 14740.12, + "probability": 0.8049 + }, + { + "start": 14741.14, + "end": 14742.64, + "probability": 0.978 + }, + { + "start": 14743.68, + "end": 14744.1, + "probability": 0.3621 + }, + { + "start": 14744.28, + "end": 14746.68, + "probability": 0.8407 + }, + { + "start": 14746.8, + "end": 14748.76, + "probability": 0.963 + }, + { + "start": 14748.96, + "end": 14749.96, + "probability": 0.6912 + }, + { + "start": 14750.66, + "end": 14753.09, + "probability": 0.9606 + }, + { + "start": 14753.68, + "end": 14756.42, + "probability": 0.9149 + }, + { + "start": 14756.7, + "end": 14758.42, + "probability": 0.9247 + }, + { + "start": 14758.85, + "end": 14760.82, + "probability": 0.9553 + }, + { + "start": 14762.6, + "end": 14763.36, + "probability": 0.8298 + }, + { + "start": 14763.56, + "end": 14764.78, + "probability": 0.6229 + }, + { + "start": 14764.86, + "end": 14765.24, + "probability": 0.5825 + }, + { + "start": 14765.28, + "end": 14766.36, + "probability": 0.7872 + }, + { + "start": 14766.5, + "end": 14768.48, + "probability": 0.7067 + }, + { + "start": 14769.98, + "end": 14776.96, + "probability": 0.4339 + }, + { + "start": 14777.0, + "end": 14778.8, + "probability": 0.6239 + }, + { + "start": 14779.5, + "end": 14781.1, + "probability": 0.4188 + }, + { + "start": 14781.1, + "end": 14783.22, + "probability": 0.583 + }, + { + "start": 14783.6, + "end": 14784.32, + "probability": 0.9551 + }, + { + "start": 14784.64, + "end": 14785.1, + "probability": 0.9926 + }, + { + "start": 14785.12, + "end": 14787.4, + "probability": 0.5571 + }, + { + "start": 14788.16, + "end": 14788.32, + "probability": 0.6952 + }, + { + "start": 14789.01, + "end": 14789.84, + "probability": 0.9698 + }, + { + "start": 14790.28, + "end": 14791.44, + "probability": 0.8686 + }, + { + "start": 14792.6, + "end": 14793.56, + "probability": 0.3857 + }, + { + "start": 14794.32, + "end": 14795.12, + "probability": 0.6815 + }, + { + "start": 14796.12, + "end": 14800.28, + "probability": 0.937 + }, + { + "start": 14800.42, + "end": 14802.46, + "probability": 0.9912 + }, + { + "start": 14803.1, + "end": 14808.3, + "probability": 0.9917 + }, + { + "start": 14808.36, + "end": 14809.38, + "probability": 0.9016 + }, + { + "start": 14810.06, + "end": 14812.98, + "probability": 0.9772 + }, + { + "start": 14813.3, + "end": 14814.44, + "probability": 0.7941 + }, + { + "start": 14814.62, + "end": 14818.76, + "probability": 0.9672 + }, + { + "start": 14819.4, + "end": 14821.18, + "probability": 0.9652 + }, + { + "start": 14821.9, + "end": 14824.44, + "probability": 0.6242 + }, + { + "start": 14824.78, + "end": 14828.12, + "probability": 0.9918 + }, + { + "start": 14828.2, + "end": 14832.8, + "probability": 0.8865 + }, + { + "start": 14833.46, + "end": 14834.26, + "probability": 0.9906 + }, + { + "start": 14834.56, + "end": 14835.42, + "probability": 0.5014 + }, + { + "start": 14835.56, + "end": 14836.28, + "probability": 0.9248 + }, + { + "start": 14836.76, + "end": 14840.78, + "probability": 0.9285 + }, + { + "start": 14841.4, + "end": 14843.26, + "probability": 0.9912 + }, + { + "start": 14843.36, + "end": 14843.88, + "probability": 0.9351 + }, + { + "start": 14844.12, + "end": 14845.2, + "probability": 0.9634 + }, + { + "start": 14845.36, + "end": 14847.14, + "probability": 0.9441 + }, + { + "start": 14847.48, + "end": 14848.32, + "probability": 0.5029 + }, + { + "start": 14848.92, + "end": 14850.18, + "probability": 0.9495 + }, + { + "start": 14850.82, + "end": 14852.08, + "probability": 0.6941 + }, + { + "start": 14852.2, + "end": 14853.22, + "probability": 0.9438 + }, + { + "start": 14853.26, + "end": 14853.46, + "probability": 0.8486 + }, + { + "start": 14853.56, + "end": 14854.72, + "probability": 0.8654 + }, + { + "start": 14854.8, + "end": 14856.68, + "probability": 0.9056 + }, + { + "start": 14856.78, + "end": 14857.5, + "probability": 0.9735 + }, + { + "start": 14857.84, + "end": 14858.6, + "probability": 0.7409 + }, + { + "start": 14859.22, + "end": 14860.72, + "probability": 0.8636 + }, + { + "start": 14860.74, + "end": 14863.7, + "probability": 0.9786 + }, + { + "start": 14864.06, + "end": 14864.46, + "probability": 0.9941 + }, + { + "start": 14865.56, + "end": 14866.26, + "probability": 0.8794 + }, + { + "start": 14866.32, + "end": 14867.48, + "probability": 0.9409 + }, + { + "start": 14867.94, + "end": 14868.4, + "probability": 0.8316 + }, + { + "start": 14868.84, + "end": 14874.78, + "probability": 0.9868 + }, + { + "start": 14875.5, + "end": 14875.78, + "probability": 0.5453 + }, + { + "start": 14875.96, + "end": 14880.16, + "probability": 0.993 + }, + { + "start": 14880.16, + "end": 14883.04, + "probability": 0.9969 + }, + { + "start": 14883.8, + "end": 14886.6, + "probability": 0.9896 + }, + { + "start": 14886.98, + "end": 14887.5, + "probability": 0.579 + }, + { + "start": 14887.52, + "end": 14888.0, + "probability": 0.2238 + }, + { + "start": 14889.16, + "end": 14889.94, + "probability": 0.7081 + }, + { + "start": 14890.84, + "end": 14893.63, + "probability": 0.8256 + }, + { + "start": 14894.57, + "end": 14897.74, + "probability": 0.5548 + }, + { + "start": 14897.92, + "end": 14898.94, + "probability": 0.3733 + }, + { + "start": 14899.2, + "end": 14900.32, + "probability": 0.9811 + }, + { + "start": 14900.48, + "end": 14902.32, + "probability": 0.9949 + }, + { + "start": 14903.72, + "end": 14904.54, + "probability": 0.9365 + }, + { + "start": 14905.7, + "end": 14906.86, + "probability": 0.9812 + }, + { + "start": 14908.04, + "end": 14910.26, + "probability": 0.9351 + }, + { + "start": 14911.02, + "end": 14915.32, + "probability": 0.9817 + }, + { + "start": 14915.56, + "end": 14916.46, + "probability": 0.852 + }, + { + "start": 14917.0, + "end": 14917.77, + "probability": 0.8594 + }, + { + "start": 14918.34, + "end": 14921.76, + "probability": 0.9852 + }, + { + "start": 14921.76, + "end": 14923.96, + "probability": 0.9823 + }, + { + "start": 14924.12, + "end": 14925.34, + "probability": 0.8672 + }, + { + "start": 14925.42, + "end": 14926.32, + "probability": 0.9177 + }, + { + "start": 14926.5, + "end": 14926.78, + "probability": 0.7555 + }, + { + "start": 14926.96, + "end": 14928.8, + "probability": 0.9973 + }, + { + "start": 14928.94, + "end": 14930.18, + "probability": 0.8239 + }, + { + "start": 14930.3, + "end": 14934.74, + "probability": 0.9993 + }, + { + "start": 14935.64, + "end": 14936.7, + "probability": 0.967 + }, + { + "start": 14937.4, + "end": 14938.34, + "probability": 0.793 + }, + { + "start": 14938.96, + "end": 14942.2, + "probability": 0.8932 + }, + { + "start": 14942.78, + "end": 14944.86, + "probability": 0.9925 + }, + { + "start": 14944.86, + "end": 14947.08, + "probability": 0.7889 + }, + { + "start": 14947.32, + "end": 14947.74, + "probability": 0.8963 + }, + { + "start": 14948.9, + "end": 14950.88, + "probability": 0.8716 + }, + { + "start": 14951.62, + "end": 14953.58, + "probability": 0.9436 + }, + { + "start": 14955.18, + "end": 14957.08, + "probability": 0.5269 + }, + { + "start": 14957.82, + "end": 14960.02, + "probability": 0.8621 + }, + { + "start": 14962.08, + "end": 14962.7, + "probability": 0.7236 + }, + { + "start": 14963.5, + "end": 14964.92, + "probability": 0.7141 + }, + { + "start": 14966.56, + "end": 14968.58, + "probability": 0.7523 + }, + { + "start": 14977.02, + "end": 14980.24, + "probability": 0.8818 + }, + { + "start": 14982.5, + "end": 14982.8, + "probability": 0.7776 + }, + { + "start": 14983.92, + "end": 14985.48, + "probability": 0.9317 + }, + { + "start": 14991.96, + "end": 14992.82, + "probability": 0.3023 + }, + { + "start": 14993.38, + "end": 14994.89, + "probability": 0.8876 + }, + { + "start": 14995.82, + "end": 14998.8, + "probability": 0.7431 + }, + { + "start": 14998.96, + "end": 15000.02, + "probability": 0.6629 + }, + { + "start": 15000.68, + "end": 15001.32, + "probability": 0.7301 + }, + { + "start": 15001.36, + "end": 15001.86, + "probability": 0.9849 + }, + { + "start": 15001.94, + "end": 15005.06, + "probability": 0.9598 + }, + { + "start": 15005.64, + "end": 15006.38, + "probability": 0.7928 + }, + { + "start": 15007.04, + "end": 15009.72, + "probability": 0.9809 + }, + { + "start": 15010.86, + "end": 15015.64, + "probability": 0.993 + }, + { + "start": 15016.14, + "end": 15022.46, + "probability": 0.9585 + }, + { + "start": 15022.66, + "end": 15023.42, + "probability": 0.8712 + }, + { + "start": 15024.36, + "end": 15026.44, + "probability": 0.9747 + }, + { + "start": 15026.72, + "end": 15027.36, + "probability": 0.7259 + }, + { + "start": 15027.5, + "end": 15027.78, + "probability": 0.8446 + }, + { + "start": 15028.7, + "end": 15029.82, + "probability": 0.919 + }, + { + "start": 15030.12, + "end": 15030.86, + "probability": 0.9235 + }, + { + "start": 15030.92, + "end": 15032.24, + "probability": 0.7048 + }, + { + "start": 15032.38, + "end": 15034.66, + "probability": 0.9335 + }, + { + "start": 15034.88, + "end": 15035.72, + "probability": 0.8059 + }, + { + "start": 15036.16, + "end": 15040.13, + "probability": 0.9862 + }, + { + "start": 15040.52, + "end": 15040.82, + "probability": 0.566 + }, + { + "start": 15041.32, + "end": 15042.16, + "probability": 0.9766 + }, + { + "start": 15042.64, + "end": 15048.94, + "probability": 0.9961 + }, + { + "start": 15049.34, + "end": 15049.7, + "probability": 0.942 + }, + { + "start": 15049.78, + "end": 15052.68, + "probability": 0.9715 + }, + { + "start": 15052.82, + "end": 15054.74, + "probability": 0.9928 + }, + { + "start": 15055.34, + "end": 15058.46, + "probability": 0.9871 + }, + { + "start": 15059.96, + "end": 15063.36, + "probability": 0.8076 + }, + { + "start": 15064.46, + "end": 15066.86, + "probability": 0.9973 + }, + { + "start": 15066.96, + "end": 15069.8, + "probability": 0.7548 + }, + { + "start": 15070.3, + "end": 15074.54, + "probability": 0.9666 + }, + { + "start": 15074.86, + "end": 15080.38, + "probability": 0.9793 + }, + { + "start": 15080.66, + "end": 15082.28, + "probability": 0.9185 + }, + { + "start": 15082.66, + "end": 15085.47, + "probability": 0.8138 + }, + { + "start": 15086.04, + "end": 15089.04, + "probability": 0.9561 + }, + { + "start": 15089.58, + "end": 15090.16, + "probability": 0.6345 + }, + { + "start": 15090.78, + "end": 15094.06, + "probability": 0.9762 + }, + { + "start": 15095.1, + "end": 15096.56, + "probability": 0.6322 + }, + { + "start": 15097.76, + "end": 15098.68, + "probability": 0.8939 + }, + { + "start": 15098.76, + "end": 15099.68, + "probability": 0.7473 + }, + { + "start": 15099.72, + "end": 15100.94, + "probability": 0.8884 + }, + { + "start": 15101.4, + "end": 15102.92, + "probability": 0.9355 + }, + { + "start": 15103.48, + "end": 15107.5, + "probability": 0.9915 + }, + { + "start": 15108.38, + "end": 15109.94, + "probability": 0.7763 + }, + { + "start": 15110.54, + "end": 15113.96, + "probability": 0.9918 + }, + { + "start": 15115.06, + "end": 15117.74, + "probability": 0.9882 + }, + { + "start": 15117.82, + "end": 15121.7, + "probability": 0.8945 + }, + { + "start": 15122.08, + "end": 15125.42, + "probability": 0.9878 + }, + { + "start": 15125.42, + "end": 15129.08, + "probability": 0.9939 + }, + { + "start": 15130.08, + "end": 15132.8, + "probability": 0.8212 + }, + { + "start": 15133.38, + "end": 15135.16, + "probability": 0.8778 + }, + { + "start": 15136.1, + "end": 15138.22, + "probability": 0.9984 + }, + { + "start": 15138.72, + "end": 15144.44, + "probability": 0.9938 + }, + { + "start": 15145.08, + "end": 15147.74, + "probability": 0.9147 + }, + { + "start": 15147.84, + "end": 15148.2, + "probability": 0.972 + }, + { + "start": 15148.66, + "end": 15149.68, + "probability": 0.9599 + }, + { + "start": 15149.74, + "end": 15150.28, + "probability": 0.7719 + }, + { + "start": 15150.84, + "end": 15152.86, + "probability": 0.9846 + }, + { + "start": 15153.84, + "end": 15155.12, + "probability": 0.9709 + }, + { + "start": 15155.64, + "end": 15159.92, + "probability": 0.9738 + }, + { + "start": 15160.5, + "end": 15163.86, + "probability": 0.8537 + }, + { + "start": 15164.62, + "end": 15166.54, + "probability": 0.9279 + }, + { + "start": 15166.92, + "end": 15167.82, + "probability": 0.9801 + }, + { + "start": 15167.94, + "end": 15168.88, + "probability": 0.9717 + }, + { + "start": 15169.04, + "end": 15170.18, + "probability": 0.5322 + }, + { + "start": 15170.28, + "end": 15171.3, + "probability": 0.8557 + }, + { + "start": 15171.78, + "end": 15172.5, + "probability": 0.4599 + }, + { + "start": 15173.04, + "end": 15174.84, + "probability": 0.8115 + }, + { + "start": 15174.96, + "end": 15176.52, + "probability": 0.9428 + }, + { + "start": 15176.96, + "end": 15178.1, + "probability": 0.9636 + }, + { + "start": 15178.82, + "end": 15179.4, + "probability": 0.7222 + }, + { + "start": 15179.56, + "end": 15180.46, + "probability": 0.9729 + }, + { + "start": 15180.64, + "end": 15181.34, + "probability": 0.9122 + }, + { + "start": 15181.62, + "end": 15182.48, + "probability": 0.9191 + }, + { + "start": 15182.8, + "end": 15183.42, + "probability": 0.7606 + }, + { + "start": 15183.94, + "end": 15184.28, + "probability": 0.6678 + }, + { + "start": 15185.8, + "end": 15188.14, + "probability": 0.5702 + }, + { + "start": 15188.82, + "end": 15190.77, + "probability": 0.851 + }, + { + "start": 15191.9, + "end": 15192.8, + "probability": 0.7351 + }, + { + "start": 15193.22, + "end": 15193.94, + "probability": 0.9091 + }, + { + "start": 15194.36, + "end": 15194.92, + "probability": 0.8553 + }, + { + "start": 15195.08, + "end": 15196.42, + "probability": 0.9954 + }, + { + "start": 15196.5, + "end": 15197.32, + "probability": 0.7413 + }, + { + "start": 15198.16, + "end": 15199.54, + "probability": 0.985 + }, + { + "start": 15200.14, + "end": 15200.42, + "probability": 0.7376 + }, + { + "start": 15201.34, + "end": 15201.98, + "probability": 0.5339 + }, + { + "start": 15202.78, + "end": 15203.86, + "probability": 0.3129 + }, + { + "start": 15204.66, + "end": 15204.87, + "probability": 0.5884 + }, + { + "start": 15208.0, + "end": 15212.5, + "probability": 0.5575 + }, + { + "start": 15213.86, + "end": 15214.74, + "probability": 0.5581 + }, + { + "start": 15215.52, + "end": 15218.38, + "probability": 0.9454 + }, + { + "start": 15219.42, + "end": 15221.26, + "probability": 0.6669 + }, + { + "start": 15223.66, + "end": 15225.56, + "probability": 0.4236 + }, + { + "start": 15226.28, + "end": 15228.98, + "probability": 0.4919 + }, + { + "start": 15229.0, + "end": 15229.58, + "probability": 0.8556 + }, + { + "start": 15230.14, + "end": 15230.62, + "probability": 0.2489 + }, + { + "start": 15231.92, + "end": 15234.4, + "probability": 0.8056 + }, + { + "start": 15235.44, + "end": 15239.02, + "probability": 0.8252 + }, + { + "start": 15239.66, + "end": 15245.82, + "probability": 0.9519 + }, + { + "start": 15246.02, + "end": 15253.38, + "probability": 0.983 + }, + { + "start": 15253.38, + "end": 15256.66, + "probability": 0.9998 + }, + { + "start": 15257.56, + "end": 15259.12, + "probability": 0.9692 + }, + { + "start": 15260.96, + "end": 15265.16, + "probability": 0.9307 + }, + { + "start": 15266.36, + "end": 15271.48, + "probability": 0.995 + }, + { + "start": 15273.3, + "end": 15278.64, + "probability": 0.6944 + }, + { + "start": 15279.28, + "end": 15284.4, + "probability": 0.9876 + }, + { + "start": 15284.54, + "end": 15285.52, + "probability": 0.9106 + }, + { + "start": 15290.46, + "end": 15292.32, + "probability": 0.7537 + }, + { + "start": 15292.88, + "end": 15294.45, + "probability": 0.9373 + }, + { + "start": 15295.74, + "end": 15302.02, + "probability": 0.9908 + }, + { + "start": 15303.52, + "end": 15305.54, + "probability": 0.9883 + }, + { + "start": 15306.42, + "end": 15310.02, + "probability": 0.8253 + }, + { + "start": 15311.08, + "end": 15311.88, + "probability": 0.5868 + }, + { + "start": 15312.44, + "end": 15318.92, + "probability": 0.9779 + }, + { + "start": 15320.2, + "end": 15328.36, + "probability": 0.7302 + }, + { + "start": 15329.2, + "end": 15334.38, + "probability": 0.9984 + }, + { + "start": 15335.02, + "end": 15338.28, + "probability": 0.853 + }, + { + "start": 15339.0, + "end": 15341.18, + "probability": 0.9097 + }, + { + "start": 15341.32, + "end": 15341.7, + "probability": 0.4735 + }, + { + "start": 15341.76, + "end": 15343.22, + "probability": 0.984 + }, + { + "start": 15344.1, + "end": 15348.34, + "probability": 0.9944 + }, + { + "start": 15350.3, + "end": 15351.68, + "probability": 0.8777 + }, + { + "start": 15351.86, + "end": 15352.72, + "probability": 0.8447 + }, + { + "start": 15352.86, + "end": 15357.32, + "probability": 0.9648 + }, + { + "start": 15358.1, + "end": 15361.2, + "probability": 0.7175 + }, + { + "start": 15362.0, + "end": 15366.12, + "probability": 0.8472 + }, + { + "start": 15366.82, + "end": 15367.7, + "probability": 0.9963 + }, + { + "start": 15368.8, + "end": 15371.3, + "probability": 0.9781 + }, + { + "start": 15371.66, + "end": 15374.96, + "probability": 0.8044 + }, + { + "start": 15375.98, + "end": 15380.94, + "probability": 0.9983 + }, + { + "start": 15381.86, + "end": 15384.7, + "probability": 0.9966 + }, + { + "start": 15386.64, + "end": 15389.34, + "probability": 0.8414 + }, + { + "start": 15389.5, + "end": 15392.2, + "probability": 0.9827 + }, + { + "start": 15392.94, + "end": 15395.66, + "probability": 0.9944 + }, + { + "start": 15396.26, + "end": 15401.1, + "probability": 0.9715 + }, + { + "start": 15401.56, + "end": 15404.3, + "probability": 0.9992 + }, + { + "start": 15404.82, + "end": 15410.76, + "probability": 0.9857 + }, + { + "start": 15411.5, + "end": 15417.76, + "probability": 0.9973 + }, + { + "start": 15417.76, + "end": 15422.52, + "probability": 0.9896 + }, + { + "start": 15423.44, + "end": 15430.3, + "probability": 0.9861 + }, + { + "start": 15430.3, + "end": 15435.08, + "probability": 0.9741 + }, + { + "start": 15435.76, + "end": 15441.64, + "probability": 0.8696 + }, + { + "start": 15442.06, + "end": 15445.78, + "probability": 0.926 + }, + { + "start": 15446.42, + "end": 15453.76, + "probability": 0.9895 + }, + { + "start": 15454.38, + "end": 15457.22, + "probability": 0.9954 + }, + { + "start": 15457.86, + "end": 15460.0, + "probability": 0.9255 + }, + { + "start": 15460.98, + "end": 15464.88, + "probability": 0.998 + }, + { + "start": 15465.6, + "end": 15467.98, + "probability": 0.9982 + }, + { + "start": 15469.82, + "end": 15471.58, + "probability": 0.9027 + }, + { + "start": 15471.88, + "end": 15471.9, + "probability": 0.5801 + }, + { + "start": 15471.9, + "end": 15472.66, + "probability": 0.8911 + }, + { + "start": 15472.98, + "end": 15474.06, + "probability": 0.6924 + }, + { + "start": 15474.12, + "end": 15475.06, + "probability": 0.998 + }, + { + "start": 15476.14, + "end": 15477.14, + "probability": 0.8976 + }, + { + "start": 15477.14, + "end": 15477.25, + "probability": 0.5221 + }, + { + "start": 15477.56, + "end": 15478.26, + "probability": 0.9399 + }, + { + "start": 15478.5, + "end": 15478.8, + "probability": 0.7504 + }, + { + "start": 15478.98, + "end": 15481.08, + "probability": 0.8494 + }, + { + "start": 15481.08, + "end": 15481.4, + "probability": 0.5029 + }, + { + "start": 15481.48, + "end": 15482.22, + "probability": 0.7417 + }, + { + "start": 15482.68, + "end": 15482.94, + "probability": 0.1722 + }, + { + "start": 15482.94, + "end": 15484.26, + "probability": 0.547 + }, + { + "start": 15484.82, + "end": 15488.2, + "probability": 0.9282 + }, + { + "start": 15488.7, + "end": 15493.92, + "probability": 0.971 + }, + { + "start": 15494.04, + "end": 15495.34, + "probability": 0.9285 + }, + { + "start": 15495.44, + "end": 15495.98, + "probability": 0.6549 + }, + { + "start": 15496.42, + "end": 15497.16, + "probability": 0.8199 + }, + { + "start": 15498.62, + "end": 15502.46, + "probability": 0.7658 + }, + { + "start": 15502.46, + "end": 15504.93, + "probability": 0.8342 + }, + { + "start": 15505.88, + "end": 15506.73, + "probability": 0.7173 + }, + { + "start": 15507.46, + "end": 15509.06, + "probability": 0.8976 + }, + { + "start": 15509.68, + "end": 15510.18, + "probability": 0.562 + }, + { + "start": 15512.54, + "end": 15513.86, + "probability": 0.9574 + }, + { + "start": 15514.94, + "end": 15517.26, + "probability": 0.8042 + }, + { + "start": 15518.1, + "end": 15518.9, + "probability": 0.7338 + }, + { + "start": 15519.52, + "end": 15521.08, + "probability": 0.9725 + }, + { + "start": 15522.04, + "end": 15522.76, + "probability": 0.6979 + }, + { + "start": 15522.88, + "end": 15524.58, + "probability": 0.9121 + }, + { + "start": 15525.26, + "end": 15526.34, + "probability": 0.6873 + }, + { + "start": 15529.14, + "end": 15529.16, + "probability": 0.4367 + }, + { + "start": 15548.2, + "end": 15549.22, + "probability": 0.623 + }, + { + "start": 15549.78, + "end": 15550.54, + "probability": 0.8172 + }, + { + "start": 15551.54, + "end": 15552.54, + "probability": 0.6089 + }, + { + "start": 15553.64, + "end": 15555.16, + "probability": 0.8553 + }, + { + "start": 15555.8, + "end": 15562.28, + "probability": 0.9575 + }, + { + "start": 15562.46, + "end": 15562.84, + "probability": 0.9532 + }, + { + "start": 15563.24, + "end": 15564.28, + "probability": 0.7192 + }, + { + "start": 15564.38, + "end": 15565.06, + "probability": 0.6479 + }, + { + "start": 15565.16, + "end": 15569.38, + "probability": 0.9987 + }, + { + "start": 15569.38, + "end": 15576.12, + "probability": 0.9858 + }, + { + "start": 15577.04, + "end": 15579.14, + "probability": 0.9502 + }, + { + "start": 15579.22, + "end": 15579.74, + "probability": 0.7164 + }, + { + "start": 15580.0, + "end": 15580.42, + "probability": 0.8427 + }, + { + "start": 15580.66, + "end": 15581.46, + "probability": 0.6382 + }, + { + "start": 15581.94, + "end": 15584.46, + "probability": 0.9888 + }, + { + "start": 15585.1, + "end": 15585.66, + "probability": 0.5201 + }, + { + "start": 15586.6, + "end": 15589.32, + "probability": 0.8499 + }, + { + "start": 15589.48, + "end": 15594.66, + "probability": 0.9133 + }, + { + "start": 15595.76, + "end": 15601.16, + "probability": 0.9942 + }, + { + "start": 15601.4, + "end": 15601.92, + "probability": 0.8267 + }, + { + "start": 15602.42, + "end": 15603.1, + "probability": 0.963 + }, + { + "start": 15603.6, + "end": 15604.54, + "probability": 0.7913 + }, + { + "start": 15605.48, + "end": 15609.38, + "probability": 0.9493 + }, + { + "start": 15610.1, + "end": 15613.08, + "probability": 0.9724 + }, + { + "start": 15614.22, + "end": 15624.4, + "probability": 0.9596 + }, + { + "start": 15625.12, + "end": 15628.7, + "probability": 0.9382 + }, + { + "start": 15630.02, + "end": 15633.8, + "probability": 0.9739 + }, + { + "start": 15633.94, + "end": 15635.44, + "probability": 0.8586 + }, + { + "start": 15636.22, + "end": 15636.82, + "probability": 0.7017 + }, + { + "start": 15636.96, + "end": 15638.54, + "probability": 0.9488 + }, + { + "start": 15638.6, + "end": 15640.5, + "probability": 0.9368 + }, + { + "start": 15640.62, + "end": 15643.02, + "probability": 0.9522 + }, + { + "start": 15644.38, + "end": 15647.96, + "probability": 0.8707 + }, + { + "start": 15648.0, + "end": 15648.22, + "probability": 0.336 + }, + { + "start": 15648.36, + "end": 15649.34, + "probability": 0.6882 + }, + { + "start": 15650.08, + "end": 15653.9, + "probability": 0.9639 + }, + { + "start": 15653.96, + "end": 15654.76, + "probability": 0.7717 + }, + { + "start": 15655.64, + "end": 15659.6, + "probability": 0.9629 + }, + { + "start": 15659.8, + "end": 15660.94, + "probability": 0.6414 + }, + { + "start": 15661.84, + "end": 15664.7, + "probability": 0.9771 + }, + { + "start": 15665.0, + "end": 15668.38, + "probability": 0.7144 + }, + { + "start": 15668.6, + "end": 15672.33, + "probability": 0.924 + }, + { + "start": 15673.48, + "end": 15674.52, + "probability": 0.8691 + }, + { + "start": 15675.04, + "end": 15679.44, + "probability": 0.984 + }, + { + "start": 15679.98, + "end": 15682.62, + "probability": 0.9993 + }, + { + "start": 15683.44, + "end": 15686.28, + "probability": 0.8726 + }, + { + "start": 15687.12, + "end": 15691.28, + "probability": 0.9878 + }, + { + "start": 15691.96, + "end": 15694.22, + "probability": 0.93 + }, + { + "start": 15694.96, + "end": 15696.6, + "probability": 0.8612 + }, + { + "start": 15697.46, + "end": 15700.52, + "probability": 0.9574 + }, + { + "start": 15700.62, + "end": 15702.8, + "probability": 0.9913 + }, + { + "start": 15703.42, + "end": 15707.22, + "probability": 0.9473 + }, + { + "start": 15707.8, + "end": 15712.1, + "probability": 0.989 + }, + { + "start": 15712.92, + "end": 15717.74, + "probability": 0.7315 + }, + { + "start": 15718.48, + "end": 15720.72, + "probability": 0.8188 + }, + { + "start": 15721.42, + "end": 15725.42, + "probability": 0.9932 + }, + { + "start": 15726.32, + "end": 15727.34, + "probability": 0.7118 + }, + { + "start": 15727.94, + "end": 15729.48, + "probability": 0.7052 + }, + { + "start": 15730.06, + "end": 15732.06, + "probability": 0.5697 + }, + { + "start": 15733.38, + "end": 15733.9, + "probability": 0.4007 + }, + { + "start": 15734.5, + "end": 15735.88, + "probability": 0.838 + }, + { + "start": 15737.12, + "end": 15738.24, + "probability": 0.7253 + }, + { + "start": 15738.84, + "end": 15739.78, + "probability": 0.9679 + }, + { + "start": 15740.3, + "end": 15740.76, + "probability": 0.8624 + }, + { + "start": 15742.6, + "end": 15743.04, + "probability": 0.7041 + }, + { + "start": 15744.12, + "end": 15744.92, + "probability": 0.9511 + }, + { + "start": 15745.6, + "end": 15747.46, + "probability": 0.576 + }, + { + "start": 15747.82, + "end": 15748.6, + "probability": 0.5166 + }, + { + "start": 15750.3, + "end": 15752.38, + "probability": 0.6936 + }, + { + "start": 15758.0, + "end": 15758.0, + "probability": 0.4761 + }, + { + "start": 15758.0, + "end": 15760.02, + "probability": 0.07 + }, + { + "start": 15760.92, + "end": 15761.84, + "probability": 0.0617 + }, + { + "start": 15763.02, + "end": 15763.2, + "probability": 0.7761 + }, + { + "start": 15771.74, + "end": 15773.02, + "probability": 0.829 + }, + { + "start": 15775.03, + "end": 15776.16, + "probability": 0.7383 + }, + { + "start": 15777.52, + "end": 15778.42, + "probability": 0.7173 + }, + { + "start": 15779.2, + "end": 15780.26, + "probability": 0.6899 + }, + { + "start": 15781.06, + "end": 15785.38, + "probability": 0.9902 + }, + { + "start": 15785.38, + "end": 15790.86, + "probability": 0.9878 + }, + { + "start": 15792.16, + "end": 15793.26, + "probability": 0.7733 + }, + { + "start": 15794.56, + "end": 15796.54, + "probability": 0.9732 + }, + { + "start": 15798.52, + "end": 15803.42, + "probability": 0.9939 + }, + { + "start": 15805.24, + "end": 15806.88, + "probability": 0.7818 + }, + { + "start": 15808.02, + "end": 15809.48, + "probability": 0.9315 + }, + { + "start": 15811.16, + "end": 15812.6, + "probability": 0.8425 + }, + { + "start": 15814.04, + "end": 15815.54, + "probability": 0.8658 + }, + { + "start": 15816.64, + "end": 15819.46, + "probability": 0.9653 + }, + { + "start": 15820.22, + "end": 15820.8, + "probability": 0.6927 + }, + { + "start": 15822.16, + "end": 15824.91, + "probability": 0.9961 + }, + { + "start": 15825.44, + "end": 15825.96, + "probability": 0.416 + }, + { + "start": 15826.06, + "end": 15826.86, + "probability": 0.6672 + }, + { + "start": 15827.72, + "end": 15828.49, + "probability": 0.7025 + }, + { + "start": 15830.56, + "end": 15832.16, + "probability": 0.985 + }, + { + "start": 15833.22, + "end": 15834.1, + "probability": 0.9889 + }, + { + "start": 15835.44, + "end": 15837.6, + "probability": 0.972 + }, + { + "start": 15838.62, + "end": 15839.8, + "probability": 0.9867 + }, + { + "start": 15841.34, + "end": 15843.6, + "probability": 0.9418 + }, + { + "start": 15845.1, + "end": 15845.92, + "probability": 0.6975 + }, + { + "start": 15846.12, + "end": 15848.4, + "probability": 0.9322 + }, + { + "start": 15848.44, + "end": 15849.04, + "probability": 0.8242 + }, + { + "start": 15850.24, + "end": 15852.04, + "probability": 0.9767 + }, + { + "start": 15852.88, + "end": 15856.56, + "probability": 0.9301 + }, + { + "start": 15857.32, + "end": 15858.22, + "probability": 0.9657 + }, + { + "start": 15858.34, + "end": 15859.02, + "probability": 0.8688 + }, + { + "start": 15859.16, + "end": 15860.86, + "probability": 0.9983 + }, + { + "start": 15861.22, + "end": 15862.66, + "probability": 0.6384 + }, + { + "start": 15862.82, + "end": 15863.08, + "probability": 0.6769 + }, + { + "start": 15863.2, + "end": 15863.52, + "probability": 0.9376 + }, + { + "start": 15866.14, + "end": 15867.98, + "probability": 0.798 + }, + { + "start": 15868.26, + "end": 15869.82, + "probability": 0.8072 + }, + { + "start": 15870.4, + "end": 15873.02, + "probability": 0.9542 + }, + { + "start": 15873.82, + "end": 15875.8, + "probability": 0.9973 + }, + { + "start": 15877.08, + "end": 15879.2, + "probability": 0.9995 + }, + { + "start": 15879.94, + "end": 15881.16, + "probability": 0.9279 + }, + { + "start": 15881.74, + "end": 15883.52, + "probability": 0.9962 + }, + { + "start": 15884.68, + "end": 15885.82, + "probability": 0.8218 + }, + { + "start": 15887.18, + "end": 15890.34, + "probability": 0.9988 + }, + { + "start": 15891.22, + "end": 15894.38, + "probability": 0.9922 + }, + { + "start": 15894.94, + "end": 15896.38, + "probability": 0.8279 + }, + { + "start": 15897.04, + "end": 15900.74, + "probability": 0.9783 + }, + { + "start": 15901.34, + "end": 15902.32, + "probability": 0.7482 + }, + { + "start": 15902.4, + "end": 15905.86, + "probability": 0.9504 + }, + { + "start": 15906.26, + "end": 15908.9, + "probability": 0.9866 + }, + { + "start": 15909.38, + "end": 15910.1, + "probability": 0.854 + }, + { + "start": 15911.48, + "end": 15915.98, + "probability": 0.6694 + }, + { + "start": 15916.56, + "end": 15919.82, + "probability": 0.9958 + }, + { + "start": 15920.54, + "end": 15923.4, + "probability": 0.902 + }, + { + "start": 15923.7, + "end": 15925.88, + "probability": 0.9639 + }, + { + "start": 15926.8, + "end": 15927.84, + "probability": 0.8643 + }, + { + "start": 15928.58, + "end": 15930.06, + "probability": 0.9935 + }, + { + "start": 15930.7, + "end": 15931.7, + "probability": 0.7532 + }, + { + "start": 15932.36, + "end": 15934.22, + "probability": 0.9548 + }, + { + "start": 15935.66, + "end": 15939.58, + "probability": 0.9858 + }, + { + "start": 15940.16, + "end": 15941.24, + "probability": 0.9868 + }, + { + "start": 15941.34, + "end": 15942.38, + "probability": 0.9731 + }, + { + "start": 15942.94, + "end": 15943.94, + "probability": 0.9819 + }, + { + "start": 15945.86, + "end": 15947.06, + "probability": 0.7207 + }, + { + "start": 15947.84, + "end": 15950.74, + "probability": 0.9992 + }, + { + "start": 15951.84, + "end": 15952.72, + "probability": 0.962 + }, + { + "start": 15953.4, + "end": 15955.72, + "probability": 0.9969 + }, + { + "start": 15956.36, + "end": 15959.02, + "probability": 0.9042 + }, + { + "start": 15960.1, + "end": 15963.42, + "probability": 0.9991 + }, + { + "start": 15963.9, + "end": 15967.2, + "probability": 0.7041 + }, + { + "start": 15967.54, + "end": 15968.36, + "probability": 0.9425 + }, + { + "start": 15969.08, + "end": 15970.1, + "probability": 0.8271 + }, + { + "start": 15970.5, + "end": 15970.84, + "probability": 0.6933 + }, + { + "start": 15971.02, + "end": 15973.62, + "probability": 0.9493 + }, + { + "start": 15974.14, + "end": 15976.26, + "probability": 0.8939 + }, + { + "start": 15981.42, + "end": 15981.54, + "probability": 0.2209 + }, + { + "start": 15981.54, + "end": 15983.31, + "probability": 0.571 + }, + { + "start": 16004.8, + "end": 16006.24, + "probability": 0.6341 + }, + { + "start": 16007.74, + "end": 16014.56, + "probability": 0.8176 + }, + { + "start": 16015.88, + "end": 16020.42, + "probability": 0.9913 + }, + { + "start": 16020.42, + "end": 16026.18, + "probability": 0.9939 + }, + { + "start": 16026.9, + "end": 16032.92, + "probability": 0.9526 + }, + { + "start": 16033.04, + "end": 16037.18, + "probability": 0.9556 + }, + { + "start": 16038.26, + "end": 16041.68, + "probability": 0.9551 + }, + { + "start": 16042.76, + "end": 16049.04, + "probability": 0.8296 + }, + { + "start": 16049.84, + "end": 16051.98, + "probability": 0.9764 + }, + { + "start": 16052.84, + "end": 16058.86, + "probability": 0.9948 + }, + { + "start": 16059.66, + "end": 16060.82, + "probability": 0.8185 + }, + { + "start": 16061.92, + "end": 16063.42, + "probability": 0.9927 + }, + { + "start": 16064.88, + "end": 16075.44, + "probability": 0.99 + }, + { + "start": 16076.14, + "end": 16077.4, + "probability": 0.9621 + }, + { + "start": 16078.2, + "end": 16079.92, + "probability": 0.8814 + }, + { + "start": 16080.58, + "end": 16083.34, + "probability": 0.9657 + }, + { + "start": 16084.48, + "end": 16090.84, + "probability": 0.9713 + }, + { + "start": 16091.48, + "end": 16094.0, + "probability": 0.7538 + }, + { + "start": 16094.9, + "end": 16098.7, + "probability": 0.9951 + }, + { + "start": 16099.46, + "end": 16100.72, + "probability": 0.9074 + }, + { + "start": 16102.14, + "end": 16103.44, + "probability": 0.8319 + }, + { + "start": 16104.22, + "end": 16105.82, + "probability": 0.6937 + }, + { + "start": 16108.22, + "end": 16110.11, + "probability": 0.7102 + }, + { + "start": 16111.52, + "end": 16113.66, + "probability": 0.9509 + }, + { + "start": 16114.02, + "end": 16114.34, + "probability": 0.5109 + }, + { + "start": 16115.14, + "end": 16120.7, + "probability": 0.9727 + }, + { + "start": 16121.62, + "end": 16127.9, + "probability": 0.9914 + }, + { + "start": 16129.14, + "end": 16132.64, + "probability": 0.7443 + }, + { + "start": 16133.18, + "end": 16139.24, + "probability": 0.892 + }, + { + "start": 16139.98, + "end": 16143.44, + "probability": 0.8091 + }, + { + "start": 16144.2, + "end": 16145.58, + "probability": 0.8929 + }, + { + "start": 16146.38, + "end": 16148.14, + "probability": 0.7745 + }, + { + "start": 16148.76, + "end": 16152.88, + "probability": 0.9526 + }, + { + "start": 16153.3, + "end": 16157.92, + "probability": 0.9772 + }, + { + "start": 16158.5, + "end": 16159.02, + "probability": 0.7957 + }, + { + "start": 16160.0, + "end": 16165.5, + "probability": 0.9971 + }, + { + "start": 16166.38, + "end": 16168.78, + "probability": 0.9851 + }, + { + "start": 16169.42, + "end": 16171.5, + "probability": 0.9922 + }, + { + "start": 16172.64, + "end": 16174.32, + "probability": 0.9908 + }, + { + "start": 16174.92, + "end": 16176.84, + "probability": 0.9 + }, + { + "start": 16178.26, + "end": 16183.14, + "probability": 0.9543 + }, + { + "start": 16183.86, + "end": 16184.64, + "probability": 0.9093 + }, + { + "start": 16185.88, + "end": 16187.84, + "probability": 0.9946 + }, + { + "start": 16189.02, + "end": 16191.46, + "probability": 0.9485 + }, + { + "start": 16191.98, + "end": 16196.62, + "probability": 0.9948 + }, + { + "start": 16197.74, + "end": 16202.66, + "probability": 0.9536 + }, + { + "start": 16203.46, + "end": 16204.88, + "probability": 0.9468 + }, + { + "start": 16205.42, + "end": 16207.88, + "probability": 0.9919 + }, + { + "start": 16209.18, + "end": 16211.62, + "probability": 0.8907 + }, + { + "start": 16212.26, + "end": 16220.34, + "probability": 0.9969 + }, + { + "start": 16220.34, + "end": 16226.84, + "probability": 0.9984 + }, + { + "start": 16227.6, + "end": 16229.66, + "probability": 0.9922 + }, + { + "start": 16231.26, + "end": 16232.46, + "probability": 0.9967 + }, + { + "start": 16233.22, + "end": 16234.6, + "probability": 0.999 + }, + { + "start": 16236.64, + "end": 16239.85, + "probability": 0.4965 + }, + { + "start": 16240.26, + "end": 16241.24, + "probability": 0.8516 + }, + { + "start": 16241.42, + "end": 16241.86, + "probability": 0.8668 + }, + { + "start": 16242.0, + "end": 16242.42, + "probability": 0.7574 + }, + { + "start": 16243.3, + "end": 16244.8, + "probability": 0.9276 + }, + { + "start": 16245.9, + "end": 16246.4, + "probability": 0.7098 + }, + { + "start": 16247.0, + "end": 16248.84, + "probability": 0.981 + }, + { + "start": 16249.44, + "end": 16251.26, + "probability": 0.9688 + }, + { + "start": 16252.12, + "end": 16252.98, + "probability": 0.9675 + }, + { + "start": 16254.08, + "end": 16254.66, + "probability": 0.8047 + }, + { + "start": 16255.44, + "end": 16257.22, + "probability": 0.9863 + }, + { + "start": 16257.8, + "end": 16258.76, + "probability": 0.7753 + }, + { + "start": 16259.4, + "end": 16262.26, + "probability": 0.975 + }, + { + "start": 16262.62, + "end": 16263.38, + "probability": 0.4716 + }, + { + "start": 16263.4, + "end": 16265.76, + "probability": 0.9679 + }, + { + "start": 16266.34, + "end": 16267.74, + "probability": 0.9843 + }, + { + "start": 16281.68, + "end": 16281.68, + "probability": 0.4147 + }, + { + "start": 16281.68, + "end": 16281.68, + "probability": 0.1562 + }, + { + "start": 16281.68, + "end": 16281.68, + "probability": 0.124 + }, + { + "start": 16281.68, + "end": 16281.76, + "probability": 0.0139 + }, + { + "start": 16281.78, + "end": 16281.82, + "probability": 0.1164 + }, + { + "start": 16281.82, + "end": 16281.82, + "probability": 0.003 + }, + { + "start": 16294.84, + "end": 16295.38, + "probability": 0.4579 + }, + { + "start": 16300.22, + "end": 16302.3, + "probability": 0.9595 + }, + { + "start": 16303.14, + "end": 16305.84, + "probability": 0.9688 + }, + { + "start": 16305.96, + "end": 16306.56, + "probability": 0.712 + }, + { + "start": 16307.14, + "end": 16309.9, + "probability": 0.8997 + }, + { + "start": 16310.0, + "end": 16310.76, + "probability": 0.6584 + }, + { + "start": 16310.82, + "end": 16311.36, + "probability": 0.5403 + }, + { + "start": 16312.12, + "end": 16314.18, + "probability": 0.9736 + }, + { + "start": 16314.46, + "end": 16316.3, + "probability": 0.9873 + }, + { + "start": 16316.9, + "end": 16319.12, + "probability": 0.9211 + }, + { + "start": 16319.18, + "end": 16319.76, + "probability": 0.9476 + }, + { + "start": 16320.26, + "end": 16322.06, + "probability": 0.9558 + }, + { + "start": 16322.1, + "end": 16323.48, + "probability": 0.7396 + }, + { + "start": 16323.94, + "end": 16324.62, + "probability": 0.4511 + }, + { + "start": 16324.62, + "end": 16327.34, + "probability": 0.9355 + }, + { + "start": 16327.86, + "end": 16332.62, + "probability": 0.9788 + }, + { + "start": 16333.18, + "end": 16334.26, + "probability": 0.5906 + }, + { + "start": 16335.24, + "end": 16338.68, + "probability": 0.9545 + }, + { + "start": 16338.76, + "end": 16339.38, + "probability": 0.7876 + }, + { + "start": 16339.8, + "end": 16342.46, + "probability": 0.8103 + }, + { + "start": 16342.46, + "end": 16345.02, + "probability": 0.9614 + }, + { + "start": 16345.68, + "end": 16346.4, + "probability": 0.4387 + }, + { + "start": 16346.5, + "end": 16348.28, + "probability": 0.8139 + }, + { + "start": 16348.7, + "end": 16349.86, + "probability": 0.8078 + }, + { + "start": 16349.94, + "end": 16351.12, + "probability": 0.923 + }, + { + "start": 16352.2, + "end": 16355.76, + "probability": 0.7554 + }, + { + "start": 16356.94, + "end": 16358.26, + "probability": 0.8689 + }, + { + "start": 16358.82, + "end": 16361.84, + "probability": 0.9774 + }, + { + "start": 16362.42, + "end": 16365.24, + "probability": 0.8785 + }, + { + "start": 16366.12, + "end": 16368.06, + "probability": 0.7634 + }, + { + "start": 16369.16, + "end": 16374.3, + "probability": 0.9945 + }, + { + "start": 16374.3, + "end": 16377.68, + "probability": 0.995 + }, + { + "start": 16379.52, + "end": 16380.02, + "probability": 0.4904 + }, + { + "start": 16380.76, + "end": 16381.65, + "probability": 0.9533 + }, + { + "start": 16383.72, + "end": 16384.68, + "probability": 0.9803 + }, + { + "start": 16384.94, + "end": 16389.88, + "probability": 0.9744 + }, + { + "start": 16390.38, + "end": 16391.8, + "probability": 0.9801 + }, + { + "start": 16392.3, + "end": 16393.48, + "probability": 0.9462 + }, + { + "start": 16394.62, + "end": 16396.96, + "probability": 0.9971 + }, + { + "start": 16397.64, + "end": 16401.08, + "probability": 0.985 + }, + { + "start": 16401.28, + "end": 16401.66, + "probability": 0.6243 + }, + { + "start": 16402.2, + "end": 16403.06, + "probability": 0.9662 + }, + { + "start": 16403.64, + "end": 16404.56, + "probability": 0.9102 + }, + { + "start": 16405.2, + "end": 16408.04, + "probability": 0.9919 + }, + { + "start": 16408.22, + "end": 16408.64, + "probability": 0.913 + }, + { + "start": 16410.5, + "end": 16412.16, + "probability": 0.5676 + }, + { + "start": 16412.32, + "end": 16415.74, + "probability": 0.8749 + }, + { + "start": 16433.04, + "end": 16437.76, + "probability": 0.491 + }, + { + "start": 16438.42, + "end": 16440.48, + "probability": 0.6875 + }, + { + "start": 16441.26, + "end": 16445.46, + "probability": 0.8035 + }, + { + "start": 16446.74, + "end": 16448.36, + "probability": 0.9172 + }, + { + "start": 16448.54, + "end": 16451.86, + "probability": 0.9928 + }, + { + "start": 16452.46, + "end": 16452.6, + "probability": 0.2893 + }, + { + "start": 16452.7, + "end": 16454.92, + "probability": 0.9954 + }, + { + "start": 16454.92, + "end": 16458.62, + "probability": 0.9897 + }, + { + "start": 16459.34, + "end": 16460.22, + "probability": 0.4025 + }, + { + "start": 16461.09, + "end": 16464.54, + "probability": 0.9778 + }, + { + "start": 16464.8, + "end": 16466.54, + "probability": 0.582 + }, + { + "start": 16467.24, + "end": 16469.14, + "probability": 0.6845 + }, + { + "start": 16469.26, + "end": 16471.02, + "probability": 0.8202 + }, + { + "start": 16472.32, + "end": 16473.04, + "probability": 0.597 + }, + { + "start": 16473.44, + "end": 16474.2, + "probability": 0.702 + }, + { + "start": 16474.5, + "end": 16478.86, + "probability": 0.6713 + }, + { + "start": 16481.12, + "end": 16482.62, + "probability": 0.6485 + }, + { + "start": 16484.04, + "end": 16485.1, + "probability": 0.6294 + }, + { + "start": 16485.3, + "end": 16490.92, + "probability": 0.9971 + }, + { + "start": 16491.88, + "end": 16495.9, + "probability": 0.9976 + }, + { + "start": 16496.1, + "end": 16501.32, + "probability": 0.9119 + }, + { + "start": 16501.6, + "end": 16502.26, + "probability": 0.7304 + }, + { + "start": 16504.98, + "end": 16507.84, + "probability": 0.9935 + }, + { + "start": 16508.9, + "end": 16513.52, + "probability": 0.9983 + }, + { + "start": 16514.4, + "end": 16516.76, + "probability": 0.6838 + }, + { + "start": 16517.54, + "end": 16520.88, + "probability": 0.9614 + }, + { + "start": 16522.16, + "end": 16524.24, + "probability": 0.7551 + }, + { + "start": 16525.62, + "end": 16526.2, + "probability": 0.7999 + }, + { + "start": 16528.34, + "end": 16529.8, + "probability": 0.9818 + }, + { + "start": 16530.58, + "end": 16534.14, + "probability": 0.9033 + }, + { + "start": 16534.76, + "end": 16536.6, + "probability": 0.6593 + }, + { + "start": 16537.82, + "end": 16539.48, + "probability": 0.998 + }, + { + "start": 16539.66, + "end": 16544.84, + "probability": 0.9313 + }, + { + "start": 16545.0, + "end": 16546.04, + "probability": 0.6271 + }, + { + "start": 16548.08, + "end": 16552.06, + "probability": 0.9627 + }, + { + "start": 16552.98, + "end": 16553.78, + "probability": 0.9159 + }, + { + "start": 16554.84, + "end": 16556.48, + "probability": 0.7527 + }, + { + "start": 16557.52, + "end": 16560.54, + "probability": 0.9683 + }, + { + "start": 16561.1, + "end": 16562.78, + "probability": 0.989 + }, + { + "start": 16564.42, + "end": 16565.6, + "probability": 0.9674 + }, + { + "start": 16568.0, + "end": 16568.8, + "probability": 0.438 + }, + { + "start": 16569.54, + "end": 16570.68, + "probability": 0.9614 + }, + { + "start": 16571.2, + "end": 16572.76, + "probability": 0.9846 + }, + { + "start": 16573.28, + "end": 16575.82, + "probability": 0.9581 + }, + { + "start": 16576.86, + "end": 16580.04, + "probability": 0.9956 + }, + { + "start": 16580.8, + "end": 16590.08, + "probability": 0.931 + }, + { + "start": 16590.22, + "end": 16592.92, + "probability": 0.6695 + }, + { + "start": 16594.48, + "end": 16598.28, + "probability": 0.9644 + }, + { + "start": 16598.48, + "end": 16602.94, + "probability": 0.7783 + }, + { + "start": 16603.8, + "end": 16604.82, + "probability": 0.8908 + }, + { + "start": 16605.48, + "end": 16607.08, + "probability": 0.9827 + }, + { + "start": 16608.62, + "end": 16609.9, + "probability": 0.9948 + }, + { + "start": 16610.42, + "end": 16612.84, + "probability": 0.5179 + }, + { + "start": 16613.4, + "end": 16615.68, + "probability": 0.7845 + }, + { + "start": 16616.7, + "end": 16619.8, + "probability": 0.6836 + }, + { + "start": 16620.04, + "end": 16621.84, + "probability": 0.6994 + }, + { + "start": 16630.38, + "end": 16634.24, + "probability": 0.4271 + }, + { + "start": 16635.4, + "end": 16636.96, + "probability": 0.3953 + }, + { + "start": 16637.24, + "end": 16637.86, + "probability": 0.4553 + }, + { + "start": 16638.04, + "end": 16638.58, + "probability": 0.5533 + }, + { + "start": 16638.58, + "end": 16645.92, + "probability": 0.9056 + }, + { + "start": 16645.98, + "end": 16647.34, + "probability": 0.9976 + }, + { + "start": 16648.4, + "end": 16649.9, + "probability": 0.4046 + }, + { + "start": 16650.04, + "end": 16650.3, + "probability": 0.3266 + }, + { + "start": 16650.3, + "end": 16650.56, + "probability": 0.3411 + }, + { + "start": 16650.68, + "end": 16652.3, + "probability": 0.9844 + }, + { + "start": 16652.46, + "end": 16653.12, + "probability": 0.8491 + }, + { + "start": 16653.2, + "end": 16653.46, + "probability": 0.9347 + }, + { + "start": 16653.5, + "end": 16655.98, + "probability": 0.8901 + }, + { + "start": 16656.28, + "end": 16659.3, + "probability": 0.6896 + }, + { + "start": 16659.42, + "end": 16661.12, + "probability": 0.6956 + }, + { + "start": 16661.14, + "end": 16663.8, + "probability": 0.7683 + }, + { + "start": 16663.92, + "end": 16665.3, + "probability": 0.9044 + }, + { + "start": 16665.46, + "end": 16665.74, + "probability": 0.7933 + }, + { + "start": 16665.9, + "end": 16667.41, + "probability": 0.6241 + }, + { + "start": 16668.16, + "end": 16670.7, + "probability": 0.72 + }, + { + "start": 16670.76, + "end": 16672.74, + "probability": 0.5623 + }, + { + "start": 16673.06, + "end": 16674.7, + "probability": 0.9511 + }, + { + "start": 16674.9, + "end": 16675.26, + "probability": 0.6324 + }, + { + "start": 16675.34, + "end": 16675.92, + "probability": 0.5612 + }, + { + "start": 16675.94, + "end": 16677.14, + "probability": 0.6074 + }, + { + "start": 16677.91, + "end": 16679.78, + "probability": 0.948 + }, + { + "start": 16687.04, + "end": 16687.34, + "probability": 0.6107 + }, + { + "start": 16690.24, + "end": 16690.44, + "probability": 0.3375 + }, + { + "start": 16698.76, + "end": 16699.68, + "probability": 0.6744 + }, + { + "start": 16701.34, + "end": 16703.62, + "probability": 0.4571 + }, + { + "start": 16706.14, + "end": 16707.56, + "probability": 0.939 + }, + { + "start": 16707.8, + "end": 16707.96, + "probability": 0.861 + }, + { + "start": 16710.0, + "end": 16711.06, + "probability": 0.8747 + }, + { + "start": 16714.84, + "end": 16716.7, + "probability": 0.5227 + }, + { + "start": 16717.66, + "end": 16719.26, + "probability": 0.6487 + }, + { + "start": 16720.3, + "end": 16722.7, + "probability": 0.9921 + }, + { + "start": 16722.9, + "end": 16724.12, + "probability": 0.8109 + }, + { + "start": 16724.94, + "end": 16725.88, + "probability": 0.6289 + }, + { + "start": 16727.18, + "end": 16729.24, + "probability": 0.8779 + }, + { + "start": 16729.42, + "end": 16733.78, + "probability": 0.9771 + }, + { + "start": 16733.78, + "end": 16737.76, + "probability": 0.9993 + }, + { + "start": 16737.96, + "end": 16739.63, + "probability": 0.9209 + }, + { + "start": 16739.92, + "end": 16743.64, + "probability": 0.9816 + }, + { + "start": 16744.06, + "end": 16744.06, + "probability": 0.3884 + }, + { + "start": 16744.94, + "end": 16746.24, + "probability": 0.9238 + }, + { + "start": 16746.9, + "end": 16747.94, + "probability": 0.6032 + }, + { + "start": 16748.1, + "end": 16749.14, + "probability": 0.4141 + }, + { + "start": 16751.56, + "end": 16751.56, + "probability": 0.0204 + }, + { + "start": 16753.0, + "end": 16753.0, + "probability": 0.1583 + }, + { + "start": 16753.14, + "end": 16753.92, + "probability": 0.784 + }, + { + "start": 16755.4, + "end": 16759.86, + "probability": 0.8746 + }, + { + "start": 16762.28, + "end": 16764.44, + "probability": 0.7631 + }, + { + "start": 16765.46, + "end": 16766.76, + "probability": 0.8001 + }, + { + "start": 16767.18, + "end": 16770.34, + "probability": 0.8037 + }, + { + "start": 16770.48, + "end": 16772.77, + "probability": 0.8586 + }, + { + "start": 16773.66, + "end": 16776.96, + "probability": 0.9949 + }, + { + "start": 16778.72, + "end": 16779.62, + "probability": 0.9677 + }, + { + "start": 16779.88, + "end": 16780.6, + "probability": 0.9255 + }, + { + "start": 16780.98, + "end": 16782.48, + "probability": 0.8989 + }, + { + "start": 16783.48, + "end": 16786.95, + "probability": 0.9605 + }, + { + "start": 16788.62, + "end": 16790.38, + "probability": 0.9904 + }, + { + "start": 16791.04, + "end": 16791.4, + "probability": 0.6855 + }, + { + "start": 16792.8, + "end": 16793.9, + "probability": 0.9559 + }, + { + "start": 16795.66, + "end": 16798.36, + "probability": 0.9644 + }, + { + "start": 16799.32, + "end": 16801.78, + "probability": 0.9963 + }, + { + "start": 16802.44, + "end": 16803.64, + "probability": 0.9615 + }, + { + "start": 16803.98, + "end": 16806.07, + "probability": 0.9873 + }, + { + "start": 16807.54, + "end": 16808.18, + "probability": 0.9985 + }, + { + "start": 16809.08, + "end": 16810.6, + "probability": 0.9994 + }, + { + "start": 16811.96, + "end": 16812.06, + "probability": 0.6299 + }, + { + "start": 16812.84, + "end": 16813.22, + "probability": 0.6684 + }, + { + "start": 16814.04, + "end": 16814.4, + "probability": 0.5857 + }, + { + "start": 16814.56, + "end": 16816.62, + "probability": 0.6227 + }, + { + "start": 16816.92, + "end": 16818.84, + "probability": 0.9197 + }, + { + "start": 16818.9, + "end": 16819.54, + "probability": 0.9259 + }, + { + "start": 16820.14, + "end": 16823.02, + "probability": 0.9677 + }, + { + "start": 16823.52, + "end": 16823.78, + "probability": 0.7339 + }, + { + "start": 16824.54, + "end": 16827.4, + "probability": 0.9315 + }, + { + "start": 16828.26, + "end": 16829.72, + "probability": 0.6835 + }, + { + "start": 16830.92, + "end": 16836.22, + "probability": 0.9806 + }, + { + "start": 16837.36, + "end": 16838.56, + "probability": 0.5707 + }, + { + "start": 16838.62, + "end": 16839.4, + "probability": 0.6961 + }, + { + "start": 16840.42, + "end": 16840.68, + "probability": 0.8052 + }, + { + "start": 16840.72, + "end": 16841.36, + "probability": 0.8555 + }, + { + "start": 16841.36, + "end": 16843.22, + "probability": 0.6408 + }, + { + "start": 16843.62, + "end": 16844.3, + "probability": 0.7533 + }, + { + "start": 16844.58, + "end": 16846.2, + "probability": 0.1556 + }, + { + "start": 16846.26, + "end": 16846.28, + "probability": 0.1481 + }, + { + "start": 16846.28, + "end": 16848.18, + "probability": 0.5099 + }, + { + "start": 16849.34, + "end": 16851.68, + "probability": 0.9728 + }, + { + "start": 16852.66, + "end": 16855.34, + "probability": 0.6497 + }, + { + "start": 16856.02, + "end": 16856.5, + "probability": 0.7695 + }, + { + "start": 16857.42, + "end": 16859.1, + "probability": 0.8923 + }, + { + "start": 16859.74, + "end": 16860.72, + "probability": 0.9751 + }, + { + "start": 16861.4, + "end": 16862.06, + "probability": 0.6687 + }, + { + "start": 16862.82, + "end": 16866.7, + "probability": 0.8717 + }, + { + "start": 16867.72, + "end": 16869.46, + "probability": 0.7728 + }, + { + "start": 16870.22, + "end": 16871.16, + "probability": 0.9507 + }, + { + "start": 16871.58, + "end": 16872.34, + "probability": 0.842 + }, + { + "start": 16872.54, + "end": 16872.7, + "probability": 0.6498 + }, + { + "start": 16872.78, + "end": 16875.28, + "probability": 0.9207 + }, + { + "start": 16875.84, + "end": 16876.25, + "probability": 0.7817 + }, + { + "start": 16877.32, + "end": 16877.52, + "probability": 0.6764 + }, + { + "start": 16878.7, + "end": 16879.26, + "probability": 0.7173 + }, + { + "start": 16879.4, + "end": 16881.64, + "probability": 0.9494 + }, + { + "start": 16881.88, + "end": 16883.36, + "probability": 0.7975 + }, + { + "start": 16883.44, + "end": 16884.2, + "probability": 0.3706 + }, + { + "start": 16884.32, + "end": 16884.68, + "probability": 0.9636 + }, + { + "start": 16885.66, + "end": 16887.33, + "probability": 0.8193 + }, + { + "start": 16888.84, + "end": 16889.9, + "probability": 0.5941 + }, + { + "start": 16890.16, + "end": 16894.48, + "probability": 0.9626 + }, + { + "start": 16895.0, + "end": 16895.9, + "probability": 0.813 + }, + { + "start": 16896.82, + "end": 16898.24, + "probability": 0.9943 + }, + { + "start": 16899.24, + "end": 16900.2, + "probability": 0.7944 + }, + { + "start": 16901.56, + "end": 16903.28, + "probability": 0.665 + }, + { + "start": 16904.34, + "end": 16906.0, + "probability": 0.9991 + }, + { + "start": 16906.9, + "end": 16909.0, + "probability": 0.5953 + }, + { + "start": 16909.08, + "end": 16909.86, + "probability": 0.8185 + }, + { + "start": 16910.4, + "end": 16913.56, + "probability": 0.8103 + }, + { + "start": 16914.16, + "end": 16914.64, + "probability": 0.9108 + }, + { + "start": 16914.92, + "end": 16916.06, + "probability": 0.9283 + }, + { + "start": 16916.48, + "end": 16917.48, + "probability": 0.9866 + }, + { + "start": 16918.46, + "end": 16920.48, + "probability": 0.8066 + }, + { + "start": 16921.28, + "end": 16922.2, + "probability": 0.8314 + }, + { + "start": 16922.26, + "end": 16924.62, + "probability": 0.8002 + }, + { + "start": 16926.64, + "end": 16927.04, + "probability": 0.0795 + }, + { + "start": 16927.04, + "end": 16927.34, + "probability": 0.4616 + }, + { + "start": 16929.88, + "end": 16932.48, + "probability": 0.7777 + }, + { + "start": 16951.65, + "end": 16952.46, + "probability": 0.26 + }, + { + "start": 16952.46, + "end": 16953.92, + "probability": 0.5576 + }, + { + "start": 16955.46, + "end": 16960.88, + "probability": 0.9867 + }, + { + "start": 16961.46, + "end": 16965.9, + "probability": 0.9875 + }, + { + "start": 16966.64, + "end": 16969.56, + "probability": 0.9918 + }, + { + "start": 16970.12, + "end": 16974.12, + "probability": 0.8909 + }, + { + "start": 16974.22, + "end": 16974.44, + "probability": 0.0712 + }, + { + "start": 16974.62, + "end": 16975.88, + "probability": 0.9428 + }, + { + "start": 16976.5, + "end": 16981.68, + "probability": 0.7278 + }, + { + "start": 16981.74, + "end": 16982.56, + "probability": 0.9262 + }, + { + "start": 16983.34, + "end": 16985.36, + "probability": 0.9961 + }, + { + "start": 16986.28, + "end": 16990.8, + "probability": 0.9839 + }, + { + "start": 16991.6, + "end": 16992.64, + "probability": 0.9232 + }, + { + "start": 16993.98, + "end": 16996.06, + "probability": 0.6541 + }, + { + "start": 16996.62, + "end": 16998.44, + "probability": 0.8774 + }, + { + "start": 16999.14, + "end": 17006.92, + "probability": 0.9771 + }, + { + "start": 17007.5, + "end": 17011.46, + "probability": 0.9762 + }, + { + "start": 17011.76, + "end": 17016.36, + "probability": 0.9971 + }, + { + "start": 17016.86, + "end": 17018.46, + "probability": 0.8945 + }, + { + "start": 17019.68, + "end": 17020.96, + "probability": 0.9866 + }, + { + "start": 17022.66, + "end": 17023.64, + "probability": 0.395 + }, + { + "start": 17023.88, + "end": 17026.16, + "probability": 0.9659 + }, + { + "start": 17026.44, + "end": 17030.14, + "probability": 0.9541 + }, + { + "start": 17032.16, + "end": 17037.58, + "probability": 0.8834 + }, + { + "start": 17037.98, + "end": 17039.46, + "probability": 0.6847 + }, + { + "start": 17040.14, + "end": 17042.28, + "probability": 0.9653 + }, + { + "start": 17042.86, + "end": 17044.02, + "probability": 0.7917 + }, + { + "start": 17044.83, + "end": 17049.74, + "probability": 0.7879 + }, + { + "start": 17052.2, + "end": 17053.82, + "probability": 0.9005 + }, + { + "start": 17054.06, + "end": 17054.74, + "probability": 0.7991 + }, + { + "start": 17055.02, + "end": 17055.9, + "probability": 0.6512 + }, + { + "start": 17055.94, + "end": 17057.34, + "probability": 0.8612 + }, + { + "start": 17057.66, + "end": 17058.76, + "probability": 0.8784 + }, + { + "start": 17060.08, + "end": 17062.0, + "probability": 0.9342 + }, + { + "start": 17063.3, + "end": 17067.64, + "probability": 0.9113 + }, + { + "start": 17068.34, + "end": 17072.54, + "probability": 0.9901 + }, + { + "start": 17072.7, + "end": 17075.14, + "probability": 0.4706 + }, + { + "start": 17075.9, + "end": 17080.68, + "probability": 0.9897 + }, + { + "start": 17082.06, + "end": 17083.12, + "probability": 0.5915 + }, + { + "start": 17083.32, + "end": 17084.04, + "probability": 0.5811 + }, + { + "start": 17084.08, + "end": 17084.66, + "probability": 0.723 + }, + { + "start": 17084.8, + "end": 17087.02, + "probability": 0.8751 + }, + { + "start": 17087.16, + "end": 17087.62, + "probability": 0.8978 + }, + { + "start": 17087.72, + "end": 17089.7, + "probability": 0.9968 + }, + { + "start": 17090.5, + "end": 17091.66, + "probability": 0.3662 + }, + { + "start": 17092.24, + "end": 17094.06, + "probability": 0.9073 + }, + { + "start": 17094.52, + "end": 17097.24, + "probability": 0.9878 + }, + { + "start": 17098.14, + "end": 17102.96, + "probability": 0.9398 + }, + { + "start": 17103.68, + "end": 17106.88, + "probability": 0.996 + }, + { + "start": 17107.22, + "end": 17109.34, + "probability": 0.9896 + }, + { + "start": 17109.46, + "end": 17115.02, + "probability": 0.959 + }, + { + "start": 17115.22, + "end": 17115.54, + "probability": 0.3546 + }, + { + "start": 17115.7, + "end": 17117.14, + "probability": 0.6979 + }, + { + "start": 17117.14, + "end": 17119.12, + "probability": 0.9867 + }, + { + "start": 17119.68, + "end": 17122.36, + "probability": 0.9758 + }, + { + "start": 17122.98, + "end": 17124.03, + "probability": 0.9768 + }, + { + "start": 17125.08, + "end": 17126.32, + "probability": 0.83 + }, + { + "start": 17126.7, + "end": 17132.38, + "probability": 0.8851 + }, + { + "start": 17132.74, + "end": 17135.4, + "probability": 0.9722 + }, + { + "start": 17135.98, + "end": 17139.16, + "probability": 0.9863 + }, + { + "start": 17139.16, + "end": 17142.18, + "probability": 0.9841 + }, + { + "start": 17142.52, + "end": 17148.87, + "probability": 0.8141 + }, + { + "start": 17149.2, + "end": 17150.2, + "probability": 0.8549 + }, + { + "start": 17150.46, + "end": 17152.7, + "probability": 0.9852 + }, + { + "start": 17153.42, + "end": 17153.72, + "probability": 0.8672 + }, + { + "start": 17154.52, + "end": 17156.88, + "probability": 0.7054 + }, + { + "start": 17157.0, + "end": 17158.94, + "probability": 0.8584 + }, + { + "start": 17159.66, + "end": 17162.52, + "probability": 0.6604 + }, + { + "start": 17163.42, + "end": 17163.42, + "probability": 0.2947 + }, + { + "start": 17170.94, + "end": 17172.22, + "probability": 0.0533 + }, + { + "start": 17172.44, + "end": 17172.92, + "probability": 0.1948 + }, + { + "start": 17203.0, + "end": 17204.9, + "probability": 0.6984 + }, + { + "start": 17206.3, + "end": 17213.8, + "probability": 0.9829 + }, + { + "start": 17213.98, + "end": 17220.2, + "probability": 0.991 + }, + { + "start": 17221.78, + "end": 17225.3, + "probability": 0.9966 + }, + { + "start": 17225.86, + "end": 17228.96, + "probability": 0.9919 + }, + { + "start": 17228.96, + "end": 17232.88, + "probability": 0.9849 + }, + { + "start": 17233.5, + "end": 17234.88, + "probability": 0.9441 + }, + { + "start": 17236.0, + "end": 17237.08, + "probability": 0.7519 + }, + { + "start": 17237.7, + "end": 17240.32, + "probability": 0.9523 + }, + { + "start": 17241.54, + "end": 17242.22, + "probability": 0.82 + }, + { + "start": 17243.24, + "end": 17245.2, + "probability": 0.9438 + }, + { + "start": 17245.84, + "end": 17250.8, + "probability": 0.995 + }, + { + "start": 17252.16, + "end": 17257.8, + "probability": 0.8814 + }, + { + "start": 17258.52, + "end": 17259.34, + "probability": 0.9282 + }, + { + "start": 17259.8, + "end": 17261.36, + "probability": 0.7955 + }, + { + "start": 17262.78, + "end": 17268.74, + "probability": 0.9938 + }, + { + "start": 17269.2, + "end": 17272.28, + "probability": 0.9909 + }, + { + "start": 17273.38, + "end": 17275.84, + "probability": 0.9691 + }, + { + "start": 17276.44, + "end": 17280.38, + "probability": 0.8503 + }, + { + "start": 17280.46, + "end": 17282.18, + "probability": 0.8345 + }, + { + "start": 17283.99, + "end": 17284.06, + "probability": 0.2071 + }, + { + "start": 17284.48, + "end": 17286.38, + "probability": 0.7891 + }, + { + "start": 17286.8, + "end": 17291.48, + "probability": 0.886 + }, + { + "start": 17292.16, + "end": 17296.28, + "probability": 0.8774 + }, + { + "start": 17297.08, + "end": 17300.48, + "probability": 0.8016 + }, + { + "start": 17301.14, + "end": 17302.56, + "probability": 0.7367 + }, + { + "start": 17303.54, + "end": 17304.92, + "probability": 0.9213 + }, + { + "start": 17306.36, + "end": 17307.86, + "probability": 0.8565 + }, + { + "start": 17308.5, + "end": 17313.24, + "probability": 0.9667 + }, + { + "start": 17315.36, + "end": 17315.98, + "probability": 0.7111 + }, + { + "start": 17316.6, + "end": 17320.6, + "probability": 0.9854 + }, + { + "start": 17322.46, + "end": 17325.56, + "probability": 0.9439 + }, + { + "start": 17326.38, + "end": 17330.44, + "probability": 0.9944 + }, + { + "start": 17331.12, + "end": 17335.2, + "probability": 0.9878 + }, + { + "start": 17335.82, + "end": 17341.58, + "probability": 0.9994 + }, + { + "start": 17342.38, + "end": 17349.14, + "probability": 0.9559 + }, + { + "start": 17349.46, + "end": 17349.94, + "probability": 0.5116 + }, + { + "start": 17350.5, + "end": 17352.54, + "probability": 0.7377 + }, + { + "start": 17353.24, + "end": 17355.16, + "probability": 0.9892 + }, + { + "start": 17355.8, + "end": 17356.92, + "probability": 0.8976 + }, + { + "start": 17357.6, + "end": 17362.02, + "probability": 0.9832 + }, + { + "start": 17362.54, + "end": 17369.76, + "probability": 0.974 + }, + { + "start": 17369.76, + "end": 17375.28, + "probability": 0.9977 + }, + { + "start": 17376.24, + "end": 17378.16, + "probability": 0.4957 + }, + { + "start": 17378.72, + "end": 17379.66, + "probability": 0.9087 + }, + { + "start": 17380.7, + "end": 17384.58, + "probability": 0.9849 + }, + { + "start": 17384.9, + "end": 17385.32, + "probability": 0.7591 + }, + { + "start": 17386.2, + "end": 17389.72, + "probability": 0.7037 + }, + { + "start": 17390.48, + "end": 17391.1, + "probability": 0.9618 + }, + { + "start": 17391.92, + "end": 17393.42, + "probability": 0.7701 + }, + { + "start": 17393.98, + "end": 17394.96, + "probability": 0.8378 + }, + { + "start": 17396.36, + "end": 17396.94, + "probability": 0.6875 + }, + { + "start": 17397.38, + "end": 17398.06, + "probability": 0.7969 + }, + { + "start": 17398.26, + "end": 17400.44, + "probability": 0.1696 + }, + { + "start": 17401.4, + "end": 17402.66, + "probability": 0.7744 + }, + { + "start": 17403.44, + "end": 17404.18, + "probability": 0.9027 + }, + { + "start": 17406.16, + "end": 17407.44, + "probability": 0.7399 + }, + { + "start": 17409.08, + "end": 17410.3, + "probability": 0.8104 + }, + { + "start": 17412.48, + "end": 17413.66, + "probability": 0.9456 + }, + { + "start": 17414.1, + "end": 17414.48, + "probability": 0.3711 + }, + { + "start": 17415.3, + "end": 17416.96, + "probability": 0.6578 + }, + { + "start": 17418.24, + "end": 17419.9, + "probability": 0.6488 + }, + { + "start": 17421.28, + "end": 17421.5, + "probability": 0.7768 + }, + { + "start": 17421.66, + "end": 17423.2, + "probability": 0.947 + }, + { + "start": 17424.0, + "end": 17426.96, + "probability": 0.797 + }, + { + "start": 17427.92, + "end": 17428.34, + "probability": 0.4479 + }, + { + "start": 17428.48, + "end": 17432.44, + "probability": 0.8032 + }, + { + "start": 17432.5, + "end": 17433.92, + "probability": 0.9824 + }, + { + "start": 17435.58, + "end": 17441.24, + "probability": 0.9844 + }, + { + "start": 17442.98, + "end": 17445.44, + "probability": 0.7126 + }, + { + "start": 17446.58, + "end": 17447.54, + "probability": 0.9878 + }, + { + "start": 17449.9, + "end": 17452.36, + "probability": 0.6548 + }, + { + "start": 17453.68, + "end": 17455.88, + "probability": 0.821 + }, + { + "start": 17456.9, + "end": 17459.14, + "probability": 0.9824 + }, + { + "start": 17459.24, + "end": 17459.98, + "probability": 0.9917 + }, + { + "start": 17460.08, + "end": 17460.98, + "probability": 0.9807 + }, + { + "start": 17461.04, + "end": 17461.78, + "probability": 0.9539 + }, + { + "start": 17462.84, + "end": 17467.1, + "probability": 0.9893 + }, + { + "start": 17468.56, + "end": 17470.34, + "probability": 0.3086 + }, + { + "start": 17470.98, + "end": 17473.04, + "probability": 0.7585 + }, + { + "start": 17474.1, + "end": 17476.9, + "probability": 0.9958 + }, + { + "start": 17477.54, + "end": 17481.17, + "probability": 0.9789 + }, + { + "start": 17483.04, + "end": 17484.16, + "probability": 0.8667 + }, + { + "start": 17485.72, + "end": 17488.16, + "probability": 0.6861 + }, + { + "start": 17488.86, + "end": 17491.3, + "probability": 0.9589 + }, + { + "start": 17492.28, + "end": 17493.78, + "probability": 0.9128 + }, + { + "start": 17495.9, + "end": 17498.28, + "probability": 0.4864 + }, + { + "start": 17498.92, + "end": 17501.1, + "probability": 0.8274 + }, + { + "start": 17502.46, + "end": 17505.18, + "probability": 0.9856 + }, + { + "start": 17506.02, + "end": 17508.82, + "probability": 0.9141 + }, + { + "start": 17510.88, + "end": 17513.64, + "probability": 0.9658 + }, + { + "start": 17514.44, + "end": 17515.5, + "probability": 0.9664 + }, + { + "start": 17516.16, + "end": 17517.24, + "probability": 0.5883 + }, + { + "start": 17517.8, + "end": 17518.1, + "probability": 0.811 + }, + { + "start": 17519.06, + "end": 17520.64, + "probability": 0.9888 + }, + { + "start": 17522.1, + "end": 17524.08, + "probability": 0.9576 + }, + { + "start": 17524.2, + "end": 17527.36, + "probability": 0.4891 + }, + { + "start": 17527.58, + "end": 17534.12, + "probability": 0.9663 + }, + { + "start": 17534.74, + "end": 17537.28, + "probability": 0.8499 + }, + { + "start": 17537.88, + "end": 17539.64, + "probability": 0.904 + }, + { + "start": 17540.58, + "end": 17541.62, + "probability": 0.74 + }, + { + "start": 17542.8, + "end": 17543.28, + "probability": 0.8936 + }, + { + "start": 17546.7, + "end": 17549.54, + "probability": 0.9535 + }, + { + "start": 17550.1, + "end": 17551.18, + "probability": 0.064 + }, + { + "start": 17551.98, + "end": 17551.98, + "probability": 0.2341 + }, + { + "start": 17552.32, + "end": 17553.82, + "probability": 0.9293 + }, + { + "start": 17555.48, + "end": 17558.22, + "probability": 0.7372 + }, + { + "start": 17558.3, + "end": 17564.94, + "probability": 0.9776 + }, + { + "start": 17566.06, + "end": 17570.08, + "probability": 0.7382 + }, + { + "start": 17571.06, + "end": 17577.62, + "probability": 0.9077 + }, + { + "start": 17579.38, + "end": 17581.58, + "probability": 0.9481 + }, + { + "start": 17583.38, + "end": 17584.44, + "probability": 0.3717 + }, + { + "start": 17584.44, + "end": 17585.64, + "probability": 0.6552 + }, + { + "start": 17586.22, + "end": 17587.35, + "probability": 0.1687 + }, + { + "start": 17588.24, + "end": 17590.02, + "probability": 0.4194 + }, + { + "start": 17590.1, + "end": 17591.04, + "probability": 0.8129 + }, + { + "start": 17591.98, + "end": 17593.66, + "probability": 0.2125 + }, + { + "start": 17593.95, + "end": 17594.02, + "probability": 0.2068 + }, + { + "start": 17594.1, + "end": 17595.48, + "probability": 0.4017 + }, + { + "start": 17595.72, + "end": 17595.72, + "probability": 0.3188 + }, + { + "start": 17595.72, + "end": 17595.72, + "probability": 0.0173 + }, + { + "start": 17595.72, + "end": 17596.42, + "probability": 0.5951 + }, + { + "start": 17596.6, + "end": 17597.44, + "probability": 0.8379 + }, + { + "start": 17597.96, + "end": 17597.98, + "probability": 0.2782 + }, + { + "start": 17597.98, + "end": 17602.2, + "probability": 0.6206 + }, + { + "start": 17603.08, + "end": 17604.76, + "probability": 0.4546 + }, + { + "start": 17604.78, + "end": 17605.88, + "probability": 0.8532 + }, + { + "start": 17605.98, + "end": 17607.06, + "probability": 0.1195 + }, + { + "start": 17607.34, + "end": 17608.9, + "probability": 0.6944 + }, + { + "start": 17609.02, + "end": 17609.44, + "probability": 0.595 + }, + { + "start": 17609.82, + "end": 17611.52, + "probability": 0.5359 + }, + { + "start": 17612.72, + "end": 17612.84, + "probability": 0.541 + }, + { + "start": 17612.86, + "end": 17615.54, + "probability": 0.9727 + }, + { + "start": 17616.92, + "end": 17620.76, + "probability": 0.9888 + }, + { + "start": 17622.06, + "end": 17622.74, + "probability": 0.9714 + }, + { + "start": 17624.18, + "end": 17624.97, + "probability": 0.9839 + }, + { + "start": 17625.96, + "end": 17628.46, + "probability": 0.9979 + }, + { + "start": 17629.06, + "end": 17630.16, + "probability": 0.9404 + }, + { + "start": 17630.94, + "end": 17632.68, + "probability": 0.9884 + }, + { + "start": 17633.5, + "end": 17635.1, + "probability": 0.9914 + }, + { + "start": 17635.62, + "end": 17637.8, + "probability": 0.969 + }, + { + "start": 17637.9, + "end": 17642.18, + "probability": 0.9974 + }, + { + "start": 17642.46, + "end": 17642.74, + "probability": 0.8306 + }, + { + "start": 17643.12, + "end": 17645.53, + "probability": 0.9712 + }, + { + "start": 17645.8, + "end": 17647.06, + "probability": 0.8032 + }, + { + "start": 17647.6, + "end": 17647.76, + "probability": 0.7828 + }, + { + "start": 17649.1, + "end": 17649.4, + "probability": 0.1158 + }, + { + "start": 17649.4, + "end": 17649.95, + "probability": 0.4537 + }, + { + "start": 17653.38, + "end": 17653.73, + "probability": 0.2297 + }, + { + "start": 17655.47, + "end": 17657.48, + "probability": 0.595 + }, + { + "start": 17661.06, + "end": 17661.68, + "probability": 0.8233 + }, + { + "start": 17672.86, + "end": 17673.52, + "probability": 0.5427 + }, + { + "start": 17673.88, + "end": 17674.52, + "probability": 0.8328 + }, + { + "start": 17675.6, + "end": 17677.1, + "probability": 0.7184 + }, + { + "start": 17677.68, + "end": 17678.42, + "probability": 0.7092 + }, + { + "start": 17681.72, + "end": 17683.48, + "probability": 0.6399 + }, + { + "start": 17683.6, + "end": 17684.46, + "probability": 0.6768 + }, + { + "start": 17685.5, + "end": 17686.38, + "probability": 0.9346 + }, + { + "start": 17687.5, + "end": 17690.7, + "probability": 0.9641 + }, + { + "start": 17691.58, + "end": 17696.32, + "probability": 0.9222 + }, + { + "start": 17696.42, + "end": 17700.7, + "probability": 0.9966 + }, + { + "start": 17701.72, + "end": 17704.82, + "probability": 0.9929 + }, + { + "start": 17705.44, + "end": 17706.06, + "probability": 0.8355 + }, + { + "start": 17706.84, + "end": 17711.2, + "probability": 0.9966 + }, + { + "start": 17712.9, + "end": 17717.16, + "probability": 0.9935 + }, + { + "start": 17718.24, + "end": 17719.12, + "probability": 0.9426 + }, + { + "start": 17719.9, + "end": 17722.18, + "probability": 0.9077 + }, + { + "start": 17722.96, + "end": 17724.32, + "probability": 0.9979 + }, + { + "start": 17725.28, + "end": 17727.46, + "probability": 0.954 + }, + { + "start": 17727.64, + "end": 17727.9, + "probability": 0.9202 + }, + { + "start": 17729.0, + "end": 17729.6, + "probability": 0.7676 + }, + { + "start": 17729.6, + "end": 17731.74, + "probability": 0.9587 + }, + { + "start": 17731.98, + "end": 17733.96, + "probability": 0.7708 + }, + { + "start": 17734.06, + "end": 17735.94, + "probability": 0.8785 + }, + { + "start": 17736.04, + "end": 17739.3, + "probability": 0.7611 + }, + { + "start": 17739.62, + "end": 17739.64, + "probability": 0.6553 + }, + { + "start": 17739.66, + "end": 17739.86, + "probability": 0.4784 + }, + { + "start": 17740.08, + "end": 17741.18, + "probability": 0.9629 + }, + { + "start": 17741.58, + "end": 17743.76, + "probability": 0.9893 + }, + { + "start": 17744.06, + "end": 17747.56, + "probability": 0.9875 + }, + { + "start": 17748.12, + "end": 17749.22, + "probability": 0.7802 + }, + { + "start": 17749.78, + "end": 17751.78, + "probability": 0.9863 + }, + { + "start": 17752.22, + "end": 17753.58, + "probability": 0.9974 + }, + { + "start": 17754.16, + "end": 17755.46, + "probability": 0.9023 + }, + { + "start": 17756.0, + "end": 17758.63, + "probability": 0.9919 + }, + { + "start": 17761.22, + "end": 17761.24, + "probability": 0.1248 + }, + { + "start": 17761.24, + "end": 17761.24, + "probability": 0.1059 + }, + { + "start": 17761.24, + "end": 17762.88, + "probability": 0.7719 + }, + { + "start": 17763.12, + "end": 17764.58, + "probability": 0.5102 + }, + { + "start": 17764.6, + "end": 17765.06, + "probability": 0.2047 + }, + { + "start": 17765.16, + "end": 17766.26, + "probability": 0.6458 + }, + { + "start": 17766.56, + "end": 17767.15, + "probability": 0.8451 + }, + { + "start": 17767.78, + "end": 17768.24, + "probability": 0.2491 + }, + { + "start": 17768.24, + "end": 17768.48, + "probability": 0.2398 + }, + { + "start": 17768.92, + "end": 17769.35, + "probability": 0.8604 + }, + { + "start": 17769.78, + "end": 17771.58, + "probability": 0.9154 + }, + { + "start": 17771.58, + "end": 17774.06, + "probability": 0.527 + }, + { + "start": 17774.22, + "end": 17776.84, + "probability": 0.8368 + }, + { + "start": 17776.96, + "end": 17778.36, + "probability": 0.8754 + }, + { + "start": 17778.7, + "end": 17781.24, + "probability": 0.8239 + }, + { + "start": 17781.34, + "end": 17785.04, + "probability": 0.9602 + }, + { + "start": 17785.1, + "end": 17785.12, + "probability": 0.3889 + }, + { + "start": 17785.12, + "end": 17785.12, + "probability": 0.1031 + }, + { + "start": 17785.12, + "end": 17785.98, + "probability": 0.6483 + }, + { + "start": 17786.48, + "end": 17787.66, + "probability": 0.9803 + }, + { + "start": 17787.88, + "end": 17789.0, + "probability": 0.9558 + }, + { + "start": 17789.12, + "end": 17789.8, + "probability": 0.9829 + }, + { + "start": 17789.92, + "end": 17792.18, + "probability": 0.816 + }, + { + "start": 17792.68, + "end": 17793.32, + "probability": 0.663 + }, + { + "start": 17793.42, + "end": 17794.8, + "probability": 0.7647 + }, + { + "start": 17795.14, + "end": 17795.38, + "probability": 0.243 + }, + { + "start": 17795.38, + "end": 17796.04, + "probability": 0.7576 + }, + { + "start": 17796.8, + "end": 17799.68, + "probability": 0.991 + }, + { + "start": 17800.34, + "end": 17803.76, + "probability": 0.9883 + }, + { + "start": 17803.88, + "end": 17806.28, + "probability": 0.9927 + }, + { + "start": 17806.84, + "end": 17809.58, + "probability": 0.871 + }, + { + "start": 17809.96, + "end": 17812.3, + "probability": 0.9943 + }, + { + "start": 17812.48, + "end": 17815.68, + "probability": 0.5922 + }, + { + "start": 17815.7, + "end": 17817.3, + "probability": 0.8042 + }, + { + "start": 17817.3, + "end": 17817.76, + "probability": 0.8479 + }, + { + "start": 17818.24, + "end": 17823.5, + "probability": 0.7323 + }, + { + "start": 17824.6, + "end": 17826.42, + "probability": 0.3533 + }, + { + "start": 17826.58, + "end": 17828.68, + "probability": 0.9291 + }, + { + "start": 17828.7, + "end": 17828.82, + "probability": 0.3756 + }, + { + "start": 17828.98, + "end": 17829.95, + "probability": 0.814 + }, + { + "start": 17830.12, + "end": 17831.14, + "probability": 0.0348 + }, + { + "start": 17831.2, + "end": 17832.6, + "probability": 0.0573 + }, + { + "start": 17833.82, + "end": 17835.77, + "probability": 0.3865 + }, + { + "start": 17836.58, + "end": 17837.62, + "probability": 0.7183 + }, + { + "start": 17837.96, + "end": 17839.26, + "probability": 0.626 + }, + { + "start": 17839.3, + "end": 17839.38, + "probability": 0.3141 + }, + { + "start": 17839.38, + "end": 17839.38, + "probability": 0.2088 + }, + { + "start": 17839.38, + "end": 17839.38, + "probability": 0.32 + }, + { + "start": 17839.38, + "end": 17839.38, + "probability": 0.0968 + }, + { + "start": 17839.38, + "end": 17841.12, + "probability": 0.9261 + }, + { + "start": 17841.2, + "end": 17841.34, + "probability": 0.3555 + }, + { + "start": 17841.34, + "end": 17841.54, + "probability": 0.1366 + }, + { + "start": 17841.54, + "end": 17845.36, + "probability": 0.9335 + }, + { + "start": 17845.36, + "end": 17845.4, + "probability": 0.8569 + }, + { + "start": 17845.4, + "end": 17845.6, + "probability": 0.2435 + }, + { + "start": 17845.82, + "end": 17847.09, + "probability": 0.9775 + }, + { + "start": 17847.2, + "end": 17850.48, + "probability": 0.9937 + }, + { + "start": 17850.48, + "end": 17853.02, + "probability": 0.9988 + }, + { + "start": 17853.02, + "end": 17853.76, + "probability": 0.7753 + }, + { + "start": 17854.46, + "end": 17855.62, + "probability": 0.9907 + }, + { + "start": 17855.68, + "end": 17856.5, + "probability": 0.7227 + }, + { + "start": 17856.54, + "end": 17859.02, + "probability": 0.8279 + }, + { + "start": 17859.84, + "end": 17860.56, + "probability": 0.1874 + }, + { + "start": 17860.56, + "end": 17860.6, + "probability": 0.0777 + }, + { + "start": 17860.6, + "end": 17863.44, + "probability": 0.9416 + }, + { + "start": 17863.7, + "end": 17863.98, + "probability": 0.8373 + }, + { + "start": 17864.02, + "end": 17865.32, + "probability": 0.7888 + }, + { + "start": 17865.34, + "end": 17866.18, + "probability": 0.3799 + }, + { + "start": 17866.18, + "end": 17868.92, + "probability": 0.7054 + }, + { + "start": 17870.28, + "end": 17872.96, + "probability": 0.3442 + }, + { + "start": 17873.02, + "end": 17873.1, + "probability": 0.297 + }, + { + "start": 17873.1, + "end": 17876.7, + "probability": 0.9463 + }, + { + "start": 17877.06, + "end": 17878.08, + "probability": 0.8772 + }, + { + "start": 17878.5, + "end": 17879.08, + "probability": 0.3351 + }, + { + "start": 17879.22, + "end": 17881.33, + "probability": 0.8267 + }, + { + "start": 17881.44, + "end": 17883.5, + "probability": 0.8619 + }, + { + "start": 17883.6, + "end": 17885.92, + "probability": 0.971 + }, + { + "start": 17886.04, + "end": 17886.76, + "probability": 0.8066 + }, + { + "start": 17886.84, + "end": 17887.5, + "probability": 0.9286 + }, + { + "start": 17887.64, + "end": 17888.08, + "probability": 0.763 + }, + { + "start": 17888.12, + "end": 17890.02, + "probability": 0.5469 + }, + { + "start": 17890.08, + "end": 17890.82, + "probability": 0.5257 + }, + { + "start": 17890.82, + "end": 17892.24, + "probability": 0.9895 + }, + { + "start": 17892.54, + "end": 17893.14, + "probability": 0.6042 + }, + { + "start": 17893.18, + "end": 17893.78, + "probability": 0.3426 + }, + { + "start": 17893.86, + "end": 17894.42, + "probability": 0.0702 + }, + { + "start": 17895.52, + "end": 17897.5, + "probability": 0.6722 + }, + { + "start": 17897.6, + "end": 17897.76, + "probability": 0.853 + }, + { + "start": 17897.82, + "end": 17898.16, + "probability": 0.8786 + }, + { + "start": 17898.3, + "end": 17899.46, + "probability": 0.9653 + }, + { + "start": 17899.5, + "end": 17900.9, + "probability": 0.8882 + }, + { + "start": 17901.4, + "end": 17901.74, + "probability": 0.9438 + }, + { + "start": 17901.92, + "end": 17901.94, + "probability": 0.6193 + }, + { + "start": 17902.16, + "end": 17902.38, + "probability": 0.7841 + }, + { + "start": 17902.52, + "end": 17903.28, + "probability": 0.5648 + }, + { + "start": 17903.28, + "end": 17903.38, + "probability": 0.0532 + }, + { + "start": 17903.38, + "end": 17903.38, + "probability": 0.0718 + }, + { + "start": 17903.38, + "end": 17904.0, + "probability": 0.0542 + }, + { + "start": 17904.0, + "end": 17905.26, + "probability": 0.5354 + }, + { + "start": 17905.26, + "end": 17905.89, + "probability": 0.5736 + }, + { + "start": 17906.18, + "end": 17906.52, + "probability": 0.3804 + }, + { + "start": 17906.9, + "end": 17908.54, + "probability": 0.4711 + }, + { + "start": 17908.54, + "end": 17911.32, + "probability": 0.3911 + }, + { + "start": 17922.38, + "end": 17923.26, + "probability": 0.1554 + }, + { + "start": 17923.26, + "end": 17923.28, + "probability": 0.0086 + }, + { + "start": 17923.28, + "end": 17925.36, + "probability": 0.0281 + }, + { + "start": 17925.58, + "end": 17925.93, + "probability": 0.0664 + }, + { + "start": 17926.3, + "end": 17926.3, + "probability": 0.0274 + }, + { + "start": 17927.18, + "end": 17927.28, + "probability": 0.0158 + }, + { + "start": 17927.28, + "end": 17928.45, + "probability": 0.0229 + }, + { + "start": 17929.04, + "end": 17929.6, + "probability": 0.3176 + }, + { + "start": 17929.68, + "end": 17930.22, + "probability": 0.1844 + }, + { + "start": 17931.1, + "end": 17932.62, + "probability": 0.0023 + }, + { + "start": 17933.54, + "end": 17938.08, + "probability": 0.1508 + }, + { + "start": 17938.08, + "end": 17938.1, + "probability": 0.2686 + }, + { + "start": 17938.1, + "end": 17938.1, + "probability": 0.0372 + }, + { + "start": 17938.1, + "end": 17939.92, + "probability": 0.1025 + }, + { + "start": 17940.24, + "end": 17941.36, + "probability": 0.0499 + }, + { + "start": 17941.64, + "end": 17942.43, + "probability": 0.0133 + }, + { + "start": 17942.88, + "end": 17943.02, + "probability": 0.3001 + }, + { + "start": 17943.02, + "end": 17943.64, + "probability": 0.6975 + }, + { + "start": 17943.64, + "end": 17943.84, + "probability": 0.4305 + }, + { + "start": 17944.1, + "end": 17944.46, + "probability": 0.0047 + }, + { + "start": 17944.7, + "end": 17944.82, + "probability": 0.0838 + }, + { + "start": 17944.82, + "end": 17947.62, + "probability": 0.4663 + }, + { + "start": 17947.62, + "end": 17948.82, + "probability": 0.0486 + }, + { + "start": 17951.8, + "end": 17952.69, + "probability": 0.0911 + }, + { + "start": 17953.12, + "end": 17954.32, + "probability": 0.2593 + }, + { + "start": 17955.08, + "end": 17955.68, + "probability": 0.043 + }, + { + "start": 17956.62, + "end": 17957.18, + "probability": 0.0526 + }, + { + "start": 17957.33, + "end": 17961.44, + "probability": 0.0583 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.0, + "end": 17962.0, + "probability": 0.0 + }, + { + "start": 17962.08, + "end": 17962.2, + "probability": 0.1421 + }, + { + "start": 17962.2, + "end": 17962.2, + "probability": 0.3133 + }, + { + "start": 17962.2, + "end": 17962.58, + "probability": 0.0641 + }, + { + "start": 17962.84, + "end": 17964.98, + "probability": 0.6299 + }, + { + "start": 17965.26, + "end": 17968.72, + "probability": 0.8092 + }, + { + "start": 17969.12, + "end": 17971.92, + "probability": 0.9673 + }, + { + "start": 17971.96, + "end": 17974.9, + "probability": 0.9316 + }, + { + "start": 17974.98, + "end": 17975.46, + "probability": 0.7716 + }, + { + "start": 17976.9, + "end": 17979.1, + "probability": 0.7922 + }, + { + "start": 17979.74, + "end": 17981.7, + "probability": 0.9537 + }, + { + "start": 17982.04, + "end": 17984.68, + "probability": 0.8206 + }, + { + "start": 17984.76, + "end": 17985.5, + "probability": 0.9513 + }, + { + "start": 17985.84, + "end": 17986.4, + "probability": 0.9321 + }, + { + "start": 17986.48, + "end": 17988.24, + "probability": 0.9954 + }, + { + "start": 17988.72, + "end": 17989.5, + "probability": 0.8699 + }, + { + "start": 17989.56, + "end": 17990.12, + "probability": 0.9426 + }, + { + "start": 17990.5, + "end": 17991.84, + "probability": 0.9929 + }, + { + "start": 17992.34, + "end": 17993.76, + "probability": 0.9983 + }, + { + "start": 17994.1, + "end": 17996.5, + "probability": 0.9896 + }, + { + "start": 17996.86, + "end": 17998.44, + "probability": 0.6479 + }, + { + "start": 17998.9, + "end": 18000.72, + "probability": 0.3287 + }, + { + "start": 18001.22, + "end": 18001.58, + "probability": 0.3346 + }, + { + "start": 18001.76, + "end": 18005.36, + "probability": 0.6333 + }, + { + "start": 18005.36, + "end": 18006.96, + "probability": 0.8191 + }, + { + "start": 18008.08, + "end": 18010.58, + "probability": 0.767 + }, + { + "start": 18010.98, + "end": 18012.32, + "probability": 0.8449 + }, + { + "start": 18013.04, + "end": 18014.72, + "probability": 0.6236 + }, + { + "start": 18015.98, + "end": 18018.7, + "probability": 0.7429 + }, + { + "start": 18021.64, + "end": 18022.22, + "probability": 0.4413 + }, + { + "start": 18022.46, + "end": 18023.84, + "probability": 0.9006 + }, + { + "start": 18024.06, + "end": 18025.77, + "probability": 0.5895 + }, + { + "start": 18036.56, + "end": 18036.6, + "probability": 0.0151 + }, + { + "start": 18036.6, + "end": 18037.81, + "probability": 0.678 + }, + { + "start": 18037.92, + "end": 18039.1, + "probability": 0.8239 + }, + { + "start": 18040.1, + "end": 18041.0, + "probability": 0.8164 + }, + { + "start": 18041.4, + "end": 18044.54, + "probability": 0.1342 + }, + { + "start": 18045.48, + "end": 18046.7, + "probability": 0.7026 + }, + { + "start": 18047.06, + "end": 18047.62, + "probability": 0.3124 + }, + { + "start": 18047.72, + "end": 18048.08, + "probability": 0.162 + }, + { + "start": 18048.18, + "end": 18049.64, + "probability": 0.4737 + }, + { + "start": 18049.88, + "end": 18053.28, + "probability": 0.9489 + }, + { + "start": 18053.38, + "end": 18054.82, + "probability": 0.8628 + }, + { + "start": 18054.88, + "end": 18054.98, + "probability": 0.8758 + }, + { + "start": 18056.2, + "end": 18059.56, + "probability": 0.6746 + }, + { + "start": 18059.68, + "end": 18061.31, + "probability": 0.8641 + }, + { + "start": 18061.52, + "end": 18065.68, + "probability": 0.8793 + }, + { + "start": 18065.94, + "end": 18066.6, + "probability": 0.9187 + }, + { + "start": 18066.84, + "end": 18067.72, + "probability": 0.8393 + }, + { + "start": 18067.84, + "end": 18072.1, + "probability": 0.9855 + }, + { + "start": 18072.86, + "end": 18078.74, + "probability": 0.9984 + }, + { + "start": 18079.94, + "end": 18085.2, + "probability": 0.986 + }, + { + "start": 18085.92, + "end": 18086.7, + "probability": 0.7003 + }, + { + "start": 18087.3, + "end": 18093.6, + "probability": 0.9614 + }, + { + "start": 18094.66, + "end": 18097.82, + "probability": 0.8432 + }, + { + "start": 18098.42, + "end": 18104.05, + "probability": 0.9663 + }, + { + "start": 18105.06, + "end": 18106.28, + "probability": 0.7341 + }, + { + "start": 18106.36, + "end": 18108.46, + "probability": 0.9775 + }, + { + "start": 18108.54, + "end": 18111.32, + "probability": 0.9066 + }, + { + "start": 18111.48, + "end": 18114.44, + "probability": 0.9944 + }, + { + "start": 18115.06, + "end": 18117.36, + "probability": 0.9673 + }, + { + "start": 18117.96, + "end": 18119.76, + "probability": 0.9462 + }, + { + "start": 18121.34, + "end": 18123.12, + "probability": 0.777 + }, + { + "start": 18123.18, + "end": 18124.14, + "probability": 0.8146 + }, + { + "start": 18124.68, + "end": 18128.06, + "probability": 0.9068 + }, + { + "start": 18128.82, + "end": 18131.12, + "probability": 0.947 + }, + { + "start": 18131.96, + "end": 18133.86, + "probability": 0.2993 + }, + { + "start": 18134.02, + "end": 18137.0, + "probability": 0.9922 + }, + { + "start": 18138.02, + "end": 18141.62, + "probability": 0.9587 + }, + { + "start": 18141.68, + "end": 18145.14, + "probability": 0.9604 + }, + { + "start": 18145.34, + "end": 18148.0, + "probability": 0.997 + }, + { + "start": 18148.08, + "end": 18152.3, + "probability": 0.965 + }, + { + "start": 18153.2, + "end": 18156.84, + "probability": 0.9922 + }, + { + "start": 18156.84, + "end": 18160.44, + "probability": 0.9917 + }, + { + "start": 18161.38, + "end": 18161.8, + "probability": 0.7627 + }, + { + "start": 18161.86, + "end": 18162.96, + "probability": 0.9045 + }, + { + "start": 18163.34, + "end": 18166.42, + "probability": 0.9901 + }, + { + "start": 18166.9, + "end": 18169.04, + "probability": 0.9515 + }, + { + "start": 18169.16, + "end": 18169.76, + "probability": 0.7478 + }, + { + "start": 18170.44, + "end": 18173.24, + "probability": 0.9877 + }, + { + "start": 18174.58, + "end": 18178.08, + "probability": 0.9834 + }, + { + "start": 18178.16, + "end": 18183.4, + "probability": 0.9921 + }, + { + "start": 18183.5, + "end": 18184.46, + "probability": 0.9709 + }, + { + "start": 18184.92, + "end": 18187.88, + "probability": 0.992 + }, + { + "start": 18187.88, + "end": 18190.74, + "probability": 0.9712 + }, + { + "start": 18191.36, + "end": 18193.96, + "probability": 0.9409 + }, + { + "start": 18194.52, + "end": 18194.62, + "probability": 0.7094 + }, + { + "start": 18194.74, + "end": 18198.3, + "probability": 0.9888 + }, + { + "start": 18199.6, + "end": 18200.98, + "probability": 0.8076 + }, + { + "start": 18201.44, + "end": 18203.3, + "probability": 0.9873 + }, + { + "start": 18204.68, + "end": 18207.46, + "probability": 0.7729 + }, + { + "start": 18207.46, + "end": 18210.7, + "probability": 0.9982 + }, + { + "start": 18211.36, + "end": 18214.74, + "probability": 0.917 + }, + { + "start": 18215.48, + "end": 18218.22, + "probability": 0.9493 + }, + { + "start": 18218.34, + "end": 18219.58, + "probability": 0.9874 + }, + { + "start": 18219.66, + "end": 18221.26, + "probability": 0.9905 + }, + { + "start": 18221.74, + "end": 18222.82, + "probability": 0.8392 + }, + { + "start": 18223.34, + "end": 18223.86, + "probability": 0.6369 + }, + { + "start": 18223.9, + "end": 18224.86, + "probability": 0.8397 + }, + { + "start": 18225.0, + "end": 18228.44, + "probability": 0.9945 + }, + { + "start": 18228.44, + "end": 18232.98, + "probability": 0.9944 + }, + { + "start": 18233.26, + "end": 18234.76, + "probability": 0.999 + }, + { + "start": 18234.82, + "end": 18235.96, + "probability": 0.8472 + }, + { + "start": 18236.58, + "end": 18239.32, + "probability": 0.9992 + }, + { + "start": 18239.32, + "end": 18243.1, + "probability": 0.9744 + }, + { + "start": 18243.6, + "end": 18245.58, + "probability": 0.9642 + }, + { + "start": 18246.06, + "end": 18246.34, + "probability": 0.7477 + }, + { + "start": 18246.68, + "end": 18249.3, + "probability": 0.4888 + }, + { + "start": 18249.96, + "end": 18252.09, + "probability": 0.8734 + }, + { + "start": 18252.58, + "end": 18252.6, + "probability": 0.1046 + }, + { + "start": 18252.72, + "end": 18253.3, + "probability": 0.7294 + }, + { + "start": 18253.92, + "end": 18255.32, + "probability": 0.9739 + }, + { + "start": 18256.42, + "end": 18258.04, + "probability": 0.7148 + }, + { + "start": 18258.56, + "end": 18259.78, + "probability": 0.9927 + }, + { + "start": 18261.84, + "end": 18263.3, + "probability": 0.5627 + }, + { + "start": 18264.47, + "end": 18267.24, + "probability": 0.7589 + }, + { + "start": 18268.18, + "end": 18268.4, + "probability": 0.7819 + }, + { + "start": 18269.32, + "end": 18270.17, + "probability": 0.6704 + }, + { + "start": 18272.0, + "end": 18275.06, + "probability": 0.8159 + }, + { + "start": 18280.24, + "end": 18282.5, + "probability": 0.806 + }, + { + "start": 18284.0, + "end": 18285.4, + "probability": 0.8658 + }, + { + "start": 18286.02, + "end": 18288.0, + "probability": 0.8261 + }, + { + "start": 18290.7, + "end": 18296.88, + "probability": 0.9419 + }, + { + "start": 18297.12, + "end": 18297.12, + "probability": 0.9658 + }, + { + "start": 18297.74, + "end": 18299.6, + "probability": 0.591 + }, + { + "start": 18300.7, + "end": 18301.86, + "probability": 0.9027 + }, + { + "start": 18302.88, + "end": 18304.55, + "probability": 0.9893 + }, + { + "start": 18306.37, + "end": 18307.06, + "probability": 0.9672 + }, + { + "start": 18308.16, + "end": 18314.4, + "probability": 0.7542 + }, + { + "start": 18314.78, + "end": 18314.8, + "probability": 0.1984 + }, + { + "start": 18314.8, + "end": 18314.96, + "probability": 0.2754 + }, + { + "start": 18315.0, + "end": 18317.86, + "probability": 0.9153 + }, + { + "start": 18318.42, + "end": 18320.66, + "probability": 0.613 + }, + { + "start": 18321.32, + "end": 18322.88, + "probability": 0.6803 + }, + { + "start": 18323.46, + "end": 18324.54, + "probability": 0.5066 + }, + { + "start": 18325.2, + "end": 18325.57, + "probability": 0.1636 + }, + { + "start": 18326.04, + "end": 18326.6, + "probability": 0.976 + }, + { + "start": 18326.92, + "end": 18334.9, + "probability": 0.9697 + }, + { + "start": 18336.64, + "end": 18337.8, + "probability": 0.144 + }, + { + "start": 18339.6, + "end": 18345.08, + "probability": 0.9331 + }, + { + "start": 18346.54, + "end": 18348.42, + "probability": 0.9896 + }, + { + "start": 18350.3, + "end": 18355.82, + "probability": 0.9966 + }, + { + "start": 18357.5, + "end": 18359.58, + "probability": 0.9985 + }, + { + "start": 18360.78, + "end": 18361.34, + "probability": 0.8774 + }, + { + "start": 18363.78, + "end": 18365.86, + "probability": 0.9844 + }, + { + "start": 18367.26, + "end": 18369.06, + "probability": 0.9473 + }, + { + "start": 18369.92, + "end": 18372.08, + "probability": 0.9515 + }, + { + "start": 18372.8, + "end": 18375.08, + "probability": 0.9059 + }, + { + "start": 18375.92, + "end": 18377.46, + "probability": 0.7639 + }, + { + "start": 18379.22, + "end": 18380.12, + "probability": 0.9712 + }, + { + "start": 18381.0, + "end": 18381.3, + "probability": 0.5424 + }, + { + "start": 18381.52, + "end": 18382.02, + "probability": 0.6597 + }, + { + "start": 18382.24, + "end": 18385.16, + "probability": 0.9959 + }, + { + "start": 18388.22, + "end": 18389.18, + "probability": 0.6644 + }, + { + "start": 18391.12, + "end": 18392.18, + "probability": 0.9611 + }, + { + "start": 18393.12, + "end": 18394.74, + "probability": 0.9055 + }, + { + "start": 18395.42, + "end": 18398.2, + "probability": 0.9774 + }, + { + "start": 18398.96, + "end": 18399.44, + "probability": 0.9784 + }, + { + "start": 18400.22, + "end": 18402.66, + "probability": 0.8931 + }, + { + "start": 18404.68, + "end": 18407.32, + "probability": 0.7126 + }, + { + "start": 18408.34, + "end": 18412.64, + "probability": 0.9924 + }, + { + "start": 18414.6, + "end": 18418.1, + "probability": 0.8853 + }, + { + "start": 18419.78, + "end": 18421.02, + "probability": 0.7414 + }, + { + "start": 18422.54, + "end": 18424.54, + "probability": 0.9907 + }, + { + "start": 18425.3, + "end": 18426.86, + "probability": 0.4331 + }, + { + "start": 18428.72, + "end": 18433.68, + "probability": 0.8079 + }, + { + "start": 18435.08, + "end": 18435.6, + "probability": 0.6412 + }, + { + "start": 18436.22, + "end": 18437.44, + "probability": 0.7182 + }, + { + "start": 18438.26, + "end": 18439.78, + "probability": 0.7431 + }, + { + "start": 18440.38, + "end": 18441.76, + "probability": 0.8693 + }, + { + "start": 18442.78, + "end": 18444.76, + "probability": 0.7619 + }, + { + "start": 18446.04, + "end": 18448.06, + "probability": 0.8583 + }, + { + "start": 18449.06, + "end": 18451.46, + "probability": 0.9753 + }, + { + "start": 18452.18, + "end": 18453.74, + "probability": 0.9904 + }, + { + "start": 18454.44, + "end": 18455.68, + "probability": 0.9958 + }, + { + "start": 18458.42, + "end": 18460.3, + "probability": 0.8947 + }, + { + "start": 18462.06, + "end": 18463.8, + "probability": 0.7835 + }, + { + "start": 18465.34, + "end": 18467.44, + "probability": 0.9909 + }, + { + "start": 18468.28, + "end": 18470.4, + "probability": 0.9413 + }, + { + "start": 18471.3, + "end": 18473.46, + "probability": 0.872 + }, + { + "start": 18475.58, + "end": 18484.2, + "probability": 0.9993 + }, + { + "start": 18485.56, + "end": 18486.12, + "probability": 0.9486 + }, + { + "start": 18486.74, + "end": 18491.26, + "probability": 0.8942 + }, + { + "start": 18493.46, + "end": 18494.86, + "probability": 0.9261 + }, + { + "start": 18496.4, + "end": 18500.82, + "probability": 0.9597 + }, + { + "start": 18501.92, + "end": 18502.74, + "probability": 0.4165 + }, + { + "start": 18503.3, + "end": 18504.9, + "probability": 0.7407 + }, + { + "start": 18504.96, + "end": 18508.42, + "probability": 0.9214 + }, + { + "start": 18508.86, + "end": 18509.78, + "probability": 0.9539 + }, + { + "start": 18514.86, + "end": 18519.58, + "probability": 0.9265 + }, + { + "start": 18520.42, + "end": 18521.82, + "probability": 0.6744 + }, + { + "start": 18522.66, + "end": 18524.24, + "probability": 0.9716 + }, + { + "start": 18525.08, + "end": 18527.82, + "probability": 0.9473 + }, + { + "start": 18528.68, + "end": 18531.0, + "probability": 0.9175 + }, + { + "start": 18532.52, + "end": 18534.36, + "probability": 0.9946 + }, + { + "start": 18535.22, + "end": 18537.58, + "probability": 0.9476 + }, + { + "start": 18541.04, + "end": 18543.52, + "probability": 0.9274 + }, + { + "start": 18544.58, + "end": 18548.5, + "probability": 0.9547 + }, + { + "start": 18549.62, + "end": 18552.44, + "probability": 0.9735 + }, + { + "start": 18553.56, + "end": 18555.08, + "probability": 0.9877 + }, + { + "start": 18555.92, + "end": 18557.8, + "probability": 0.7616 + }, + { + "start": 18558.46, + "end": 18560.16, + "probability": 0.9125 + }, + { + "start": 18561.56, + "end": 18563.82, + "probability": 0.8085 + }, + { + "start": 18564.8, + "end": 18568.1, + "probability": 0.9895 + }, + { + "start": 18569.96, + "end": 18571.74, + "probability": 0.6622 + }, + { + "start": 18573.14, + "end": 18574.86, + "probability": 0.7771 + }, + { + "start": 18575.76, + "end": 18584.74, + "probability": 0.9984 + }, + { + "start": 18585.3, + "end": 18588.42, + "probability": 0.9926 + }, + { + "start": 18590.12, + "end": 18591.62, + "probability": 0.4989 + }, + { + "start": 18592.42, + "end": 18594.36, + "probability": 0.5253 + }, + { + "start": 18595.38, + "end": 18597.22, + "probability": 0.8674 + }, + { + "start": 18597.96, + "end": 18599.46, + "probability": 0.9899 + }, + { + "start": 18600.84, + "end": 18604.04, + "probability": 0.9089 + }, + { + "start": 18604.84, + "end": 18607.24, + "probability": 0.8072 + }, + { + "start": 18607.64, + "end": 18609.26, + "probability": 0.9251 + }, + { + "start": 18610.04, + "end": 18613.16, + "probability": 0.9922 + }, + { + "start": 18614.08, + "end": 18615.48, + "probability": 0.9984 + }, + { + "start": 18616.0, + "end": 18619.9, + "probability": 0.9398 + }, + { + "start": 18620.34, + "end": 18622.72, + "probability": 0.99 + }, + { + "start": 18623.66, + "end": 18623.76, + "probability": 0.5964 + }, + { + "start": 18623.82, + "end": 18624.32, + "probability": 0.5578 + }, + { + "start": 18624.32, + "end": 18627.62, + "probability": 0.6771 + }, + { + "start": 18630.02, + "end": 18634.56, + "probability": 0.9128 + }, + { + "start": 18634.66, + "end": 18634.84, + "probability": 0.9032 + }, + { + "start": 18635.72, + "end": 18636.78, + "probability": 0.7845 + }, + { + "start": 18636.88, + "end": 18638.2, + "probability": 0.5683 + }, + { + "start": 18638.26, + "end": 18639.72, + "probability": 0.9062 + }, + { + "start": 18640.56, + "end": 18643.3, + "probability": 0.9938 + }, + { + "start": 18649.96, + "end": 18652.56, + "probability": 0.5468 + }, + { + "start": 18653.2, + "end": 18655.12, + "probability": 0.75 + }, + { + "start": 18669.86, + "end": 18670.7, + "probability": 0.199 + }, + { + "start": 18672.62, + "end": 18674.36, + "probability": 0.0487 + }, + { + "start": 18674.36, + "end": 18674.36, + "probability": 0.1697 + }, + { + "start": 18674.78, + "end": 18674.94, + "probability": 0.1644 + }, + { + "start": 18675.04, + "end": 18675.7, + "probability": 0.0975 + }, + { + "start": 18678.64, + "end": 18681.6, + "probability": 0.5559 + }, + { + "start": 18681.66, + "end": 18688.2, + "probability": 0.0397 + }, + { + "start": 18688.2, + "end": 18691.6, + "probability": 0.05 + }, + { + "start": 18699.76, + "end": 18701.04, + "probability": 0.0582 + }, + { + "start": 18702.18, + "end": 18706.16, + "probability": 0.0659 + }, + { + "start": 18707.19, + "end": 18709.26, + "probability": 0.0797 + }, + { + "start": 18709.42, + "end": 18710.89, + "probability": 0.0175 + }, + { + "start": 18712.2, + "end": 18715.1, + "probability": 0.1274 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18740.0, + "end": 18740.0, + "probability": 0.0 + }, + { + "start": 18805.22, + "end": 18805.72, + "probability": 0.0414 + }, + { + "start": 18806.27, + "end": 18807.4, + "probability": 0.0214 + }, + { + "start": 18807.4, + "end": 18808.6, + "probability": 0.0595 + }, + { + "start": 18808.89, + "end": 18810.96, + "probability": 0.0579 + }, + { + "start": 18812.1, + "end": 18813.0, + "probability": 0.1963 + }, + { + "start": 18815.3, + "end": 18816.1, + "probability": 0.2423 + }, + { + "start": 18817.22, + "end": 18817.78, + "probability": 0.0065 + }, + { + "start": 18818.22, + "end": 18823.12, + "probability": 0.0374 + }, + { + "start": 18823.34, + "end": 18827.1, + "probability": 0.089 + }, + { + "start": 18835.98, + "end": 18836.48, + "probability": 0.1641 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.0, + "end": 18866.0, + "probability": 0.0 + }, + { + "start": 18866.08, + "end": 18866.68, + "probability": 0.0653 + }, + { + "start": 18867.48, + "end": 18868.36, + "probability": 0.8175 + }, + { + "start": 18868.94, + "end": 18870.04, + "probability": 0.9426 + }, + { + "start": 18871.3, + "end": 18872.32, + "probability": 0.9718 + }, + { + "start": 18872.88, + "end": 18874.14, + "probability": 0.879 + }, + { + "start": 18875.14, + "end": 18879.36, + "probability": 0.9646 + }, + { + "start": 18879.44, + "end": 18882.72, + "probability": 0.9814 + }, + { + "start": 18883.1, + "end": 18885.98, + "probability": 0.9517 + }, + { + "start": 18886.26, + "end": 18889.22, + "probability": 0.9767 + }, + { + "start": 18890.02, + "end": 18892.72, + "probability": 0.9324 + }, + { + "start": 18893.34, + "end": 18893.82, + "probability": 0.5229 + }, + { + "start": 18893.9, + "end": 18895.0, + "probability": 0.9265 + }, + { + "start": 18903.88, + "end": 18904.38, + "probability": 0.4259 + }, + { + "start": 18904.38, + "end": 18906.86, + "probability": 0.1439 + }, + { + "start": 18932.02, + "end": 18938.16, + "probability": 0.9974 + }, + { + "start": 18939.74, + "end": 18940.92, + "probability": 0.6768 + }, + { + "start": 18941.9, + "end": 18945.22, + "probability": 0.9064 + }, + { + "start": 18945.88, + "end": 18948.98, + "probability": 0.998 + }, + { + "start": 18949.8, + "end": 18953.62, + "probability": 0.9919 + }, + { + "start": 18954.38, + "end": 18955.1, + "probability": 0.998 + }, + { + "start": 18955.66, + "end": 18958.06, + "probability": 0.9883 + }, + { + "start": 18959.62, + "end": 18962.28, + "probability": 0.8601 + }, + { + "start": 18962.9, + "end": 18964.6, + "probability": 0.9805 + }, + { + "start": 18964.66, + "end": 18965.36, + "probability": 0.9161 + }, + { + "start": 18965.4, + "end": 18965.52, + "probability": 0.2807 + }, + { + "start": 18965.6, + "end": 18965.92, + "probability": 0.8503 + }, + { + "start": 18965.96, + "end": 18968.36, + "probability": 0.8728 + }, + { + "start": 18969.0, + "end": 18970.04, + "probability": 0.9986 + }, + { + "start": 18971.74, + "end": 18973.92, + "probability": 0.92 + }, + { + "start": 18974.6, + "end": 18975.7, + "probability": 0.913 + }, + { + "start": 18976.84, + "end": 18978.22, + "probability": 0.9766 + }, + { + "start": 18978.74, + "end": 18981.98, + "probability": 0.9967 + }, + { + "start": 18981.98, + "end": 18984.84, + "probability": 0.998 + }, + { + "start": 18985.54, + "end": 18986.8, + "probability": 0.9226 + }, + { + "start": 18987.4, + "end": 18990.6, + "probability": 0.7892 + }, + { + "start": 18991.18, + "end": 18994.42, + "probability": 0.9168 + }, + { + "start": 18996.9, + "end": 18997.68, + "probability": 0.8501 + }, + { + "start": 18998.48, + "end": 19003.3, + "probability": 0.748 + }, + { + "start": 19004.0, + "end": 19005.08, + "probability": 0.911 + }, + { + "start": 19005.64, + "end": 19009.64, + "probability": 0.9707 + }, + { + "start": 19011.04, + "end": 19015.44, + "probability": 0.9835 + }, + { + "start": 19017.02, + "end": 19022.72, + "probability": 0.9751 + }, + { + "start": 19023.86, + "end": 19026.38, + "probability": 0.8979 + }, + { + "start": 19026.86, + "end": 19029.28, + "probability": 0.8668 + }, + { + "start": 19029.32, + "end": 19029.68, + "probability": 0.9005 + }, + { + "start": 19029.8, + "end": 19030.88, + "probability": 0.9227 + }, + { + "start": 19033.52, + "end": 19037.26, + "probability": 0.179 + }, + { + "start": 19037.56, + "end": 19039.22, + "probability": 0.8511 + }, + { + "start": 19039.56, + "end": 19041.36, + "probability": 0.9772 + }, + { + "start": 19042.78, + "end": 19045.6, + "probability": 0.9717 + }, + { + "start": 19046.3, + "end": 19052.28, + "probability": 0.996 + }, + { + "start": 19053.62, + "end": 19054.5, + "probability": 0.762 + }, + { + "start": 19054.88, + "end": 19055.52, + "probability": 0.741 + }, + { + "start": 19055.62, + "end": 19059.82, + "probability": 0.9742 + }, + { + "start": 19061.56, + "end": 19063.42, + "probability": 0.7892 + }, + { + "start": 19063.48, + "end": 19067.46, + "probability": 0.9539 + }, + { + "start": 19069.08, + "end": 19069.66, + "probability": 0.9799 + }, + { + "start": 19070.18, + "end": 19073.34, + "probability": 0.9886 + }, + { + "start": 19073.46, + "end": 19074.8, + "probability": 0.999 + }, + { + "start": 19076.06, + "end": 19076.76, + "probability": 0.8921 + }, + { + "start": 19077.94, + "end": 19081.48, + "probability": 0.9515 + }, + { + "start": 19082.16, + "end": 19085.33, + "probability": 0.9893 + }, + { + "start": 19085.4, + "end": 19088.66, + "probability": 0.9941 + }, + { + "start": 19089.62, + "end": 19090.76, + "probability": 0.9187 + }, + { + "start": 19090.9, + "end": 19093.44, + "probability": 0.9856 + }, + { + "start": 19093.98, + "end": 19098.0, + "probability": 0.9838 + }, + { + "start": 19098.84, + "end": 19102.02, + "probability": 0.9989 + }, + { + "start": 19103.62, + "end": 19106.28, + "probability": 0.9695 + }, + { + "start": 19107.18, + "end": 19110.56, + "probability": 0.9832 + }, + { + "start": 19110.64, + "end": 19113.14, + "probability": 0.8915 + }, + { + "start": 19113.92, + "end": 19114.9, + "probability": 0.999 + }, + { + "start": 19115.58, + "end": 19119.72, + "probability": 0.9761 + }, + { + "start": 19120.16, + "end": 19122.84, + "probability": 0.7493 + }, + { + "start": 19123.46, + "end": 19126.28, + "probability": 0.9264 + }, + { + "start": 19126.86, + "end": 19127.9, + "probability": 0.5613 + }, + { + "start": 19128.02, + "end": 19129.54, + "probability": 0.8514 + }, + { + "start": 19129.6, + "end": 19130.46, + "probability": 0.7778 + }, + { + "start": 19132.1, + "end": 19134.3, + "probability": 0.9607 + }, + { + "start": 19134.96, + "end": 19135.8, + "probability": 0.9753 + }, + { + "start": 19136.4, + "end": 19139.74, + "probability": 0.9807 + }, + { + "start": 19140.32, + "end": 19144.96, + "probability": 0.9825 + }, + { + "start": 19144.96, + "end": 19149.9, + "probability": 0.997 + }, + { + "start": 19150.36, + "end": 19152.02, + "probability": 0.9473 + }, + { + "start": 19152.48, + "end": 19157.08, + "probability": 0.9988 + }, + { + "start": 19157.82, + "end": 19158.6, + "probability": 0.6694 + }, + { + "start": 19159.26, + "end": 19160.36, + "probability": 0.958 + }, + { + "start": 19160.9, + "end": 19163.22, + "probability": 0.9967 + }, + { + "start": 19163.7, + "end": 19167.92, + "probability": 0.9938 + }, + { + "start": 19168.92, + "end": 19168.92, + "probability": 0.0479 + }, + { + "start": 19168.92, + "end": 19170.26, + "probability": 0.6761 + }, + { + "start": 19170.48, + "end": 19170.92, + "probability": 0.4981 + }, + { + "start": 19171.36, + "end": 19172.62, + "probability": 0.903 + }, + { + "start": 19173.36, + "end": 19178.02, + "probability": 0.9839 + }, + { + "start": 19178.02, + "end": 19183.62, + "probability": 0.9922 + }, + { + "start": 19183.62, + "end": 19189.02, + "probability": 0.8647 + }, + { + "start": 19189.96, + "end": 19190.64, + "probability": 0.591 + }, + { + "start": 19191.06, + "end": 19192.14, + "probability": 0.8312 + }, + { + "start": 19192.54, + "end": 19193.96, + "probability": 0.9049 + }, + { + "start": 19194.12, + "end": 19194.9, + "probability": 0.8106 + }, + { + "start": 19195.26, + "end": 19199.56, + "probability": 0.9572 + }, + { + "start": 19200.04, + "end": 19200.6, + "probability": 0.7556 + }, + { + "start": 19200.76, + "end": 19203.08, + "probability": 0.8943 + }, + { + "start": 19203.68, + "end": 19204.18, + "probability": 0.7344 + }, + { + "start": 19204.66, + "end": 19205.82, + "probability": 0.7844 + }, + { + "start": 19206.34, + "end": 19206.92, + "probability": 0.6999 + }, + { + "start": 19209.14, + "end": 19211.6, + "probability": 0.9623 + }, + { + "start": 19212.54, + "end": 19214.66, + "probability": 0.9769 + }, + { + "start": 19215.42, + "end": 19219.04, + "probability": 0.9728 + }, + { + "start": 19219.96, + "end": 19223.96, + "probability": 0.9921 + }, + { + "start": 19225.82, + "end": 19227.14, + "probability": 0.6951 + }, + { + "start": 19227.42, + "end": 19229.42, + "probability": 0.9963 + }, + { + "start": 19230.04, + "end": 19232.2, + "probability": 0.8077 + }, + { + "start": 19233.12, + "end": 19234.68, + "probability": 0.9672 + }, + { + "start": 19235.64, + "end": 19236.6, + "probability": 0.4502 + }, + { + "start": 19238.42, + "end": 19241.3, + "probability": 0.9963 + }, + { + "start": 19242.18, + "end": 19243.12, + "probability": 0.9941 + }, + { + "start": 19245.84, + "end": 19249.12, + "probability": 0.99 + }, + { + "start": 19249.94, + "end": 19254.26, + "probability": 0.9971 + }, + { + "start": 19255.18, + "end": 19258.66, + "probability": 0.9941 + }, + { + "start": 19260.28, + "end": 19261.84, + "probability": 0.8121 + }, + { + "start": 19263.12, + "end": 19265.48, + "probability": 0.8434 + }, + { + "start": 19266.54, + "end": 19268.94, + "probability": 0.9805 + }, + { + "start": 19268.94, + "end": 19272.0, + "probability": 0.9974 + }, + { + "start": 19273.16, + "end": 19274.4, + "probability": 0.9518 + }, + { + "start": 19275.98, + "end": 19277.44, + "probability": 0.6641 + }, + { + "start": 19278.88, + "end": 19279.92, + "probability": 0.83 + }, + { + "start": 19280.66, + "end": 19281.96, + "probability": 0.9214 + }, + { + "start": 19283.16, + "end": 19287.46, + "probability": 0.9708 + }, + { + "start": 19288.2, + "end": 19288.96, + "probability": 0.8647 + }, + { + "start": 19289.0, + "end": 19292.84, + "probability": 0.9907 + }, + { + "start": 19293.08, + "end": 19294.18, + "probability": 0.805 + }, + { + "start": 19294.92, + "end": 19298.42, + "probability": 0.984 + }, + { + "start": 19299.62, + "end": 19300.58, + "probability": 0.9845 + }, + { + "start": 19301.06, + "end": 19301.78, + "probability": 0.828 + }, + { + "start": 19302.3, + "end": 19304.06, + "probability": 0.9948 + }, + { + "start": 19306.44, + "end": 19308.34, + "probability": 0.6106 + }, + { + "start": 19310.06, + "end": 19310.76, + "probability": 0.6887 + }, + { + "start": 19312.4, + "end": 19316.86, + "probability": 0.9696 + }, + { + "start": 19317.06, + "end": 19317.72, + "probability": 0.8828 + }, + { + "start": 19318.12, + "end": 19319.34, + "probability": 0.5113 + }, + { + "start": 19320.06, + "end": 19322.13, + "probability": 0.9956 + }, + { + "start": 19322.18, + "end": 19326.62, + "probability": 0.8208 + }, + { + "start": 19328.02, + "end": 19331.98, + "probability": 0.9539 + }, + { + "start": 19332.72, + "end": 19333.24, + "probability": 0.5096 + }, + { + "start": 19334.04, + "end": 19336.82, + "probability": 0.9886 + }, + { + "start": 19337.66, + "end": 19340.6, + "probability": 0.9913 + }, + { + "start": 19341.4, + "end": 19343.95, + "probability": 0.9785 + }, + { + "start": 19344.54, + "end": 19348.36, + "probability": 0.9438 + }, + { + "start": 19348.5, + "end": 19349.4, + "probability": 0.9371 + }, + { + "start": 19349.58, + "end": 19350.74, + "probability": 0.8778 + }, + { + "start": 19351.7, + "end": 19353.74, + "probability": 0.8444 + }, + { + "start": 19354.56, + "end": 19355.82, + "probability": 0.9523 + }, + { + "start": 19357.2, + "end": 19360.2, + "probability": 0.9376 + }, + { + "start": 19360.72, + "end": 19364.3, + "probability": 0.9567 + }, + { + "start": 19366.0, + "end": 19369.22, + "probability": 0.9929 + }, + { + "start": 19370.28, + "end": 19375.54, + "probability": 0.9935 + }, + { + "start": 19375.68, + "end": 19375.78, + "probability": 0.6457 + }, + { + "start": 19376.78, + "end": 19378.12, + "probability": 0.9995 + }, + { + "start": 19378.88, + "end": 19384.36, + "probability": 0.9653 + }, + { + "start": 19384.84, + "end": 19387.02, + "probability": 0.9542 + }, + { + "start": 19388.98, + "end": 19391.68, + "probability": 0.9065 + }, + { + "start": 19392.2, + "end": 19394.8, + "probability": 0.9445 + }, + { + "start": 19395.62, + "end": 19398.72, + "probability": 0.9902 + }, + { + "start": 19399.06, + "end": 19402.76, + "probability": 0.9881 + }, + { + "start": 19403.58, + "end": 19404.28, + "probability": 0.768 + }, + { + "start": 19405.38, + "end": 19407.24, + "probability": 0.984 + }, + { + "start": 19407.4, + "end": 19409.3, + "probability": 0.9428 + }, + { + "start": 19409.88, + "end": 19412.62, + "probability": 0.9966 + }, + { + "start": 19413.28, + "end": 19414.26, + "probability": 0.5961 + }, + { + "start": 19414.52, + "end": 19415.84, + "probability": 0.9798 + }, + { + "start": 19416.86, + "end": 19418.6, + "probability": 0.9185 + }, + { + "start": 19418.72, + "end": 19420.48, + "probability": 0.8688 + }, + { + "start": 19421.02, + "end": 19423.64, + "probability": 0.0812 + }, + { + "start": 19424.24, + "end": 19425.33, + "probability": 0.0525 + }, + { + "start": 19426.08, + "end": 19427.82, + "probability": 0.2335 + }, + { + "start": 19428.38, + "end": 19430.94, + "probability": 0.3768 + }, + { + "start": 19442.04, + "end": 19442.04, + "probability": 0.0138 + }, + { + "start": 19442.04, + "end": 19442.04, + "probability": 0.0482 + }, + { + "start": 19442.04, + "end": 19442.04, + "probability": 0.0386 + }, + { + "start": 19442.04, + "end": 19442.04, + "probability": 0.025 + }, + { + "start": 19442.04, + "end": 19442.04, + "probability": 0.0748 + }, + { + "start": 19442.04, + "end": 19442.66, + "probability": 0.4014 + }, + { + "start": 19442.84, + "end": 19444.24, + "probability": 0.5088 + }, + { + "start": 19444.32, + "end": 19446.2, + "probability": 0.5719 + }, + { + "start": 19446.52, + "end": 19449.66, + "probability": 0.8973 + }, + { + "start": 19450.28, + "end": 19453.84, + "probability": 0.7913 + }, + { + "start": 19454.74, + "end": 19455.56, + "probability": 0.8096 + }, + { + "start": 19456.0, + "end": 19458.78, + "probability": 0.8621 + }, + { + "start": 19458.86, + "end": 19459.34, + "probability": 0.7596 + }, + { + "start": 19460.72, + "end": 19464.14, + "probability": 0.9786 + }, + { + "start": 19464.24, + "end": 19467.24, + "probability": 0.7377 + }, + { + "start": 19467.82, + "end": 19469.04, + "probability": 0.734 + }, + { + "start": 19469.98, + "end": 19474.98, + "probability": 0.908 + }, + { + "start": 19476.0, + "end": 19478.2, + "probability": 0.9613 + }, + { + "start": 19479.16, + "end": 19480.16, + "probability": 0.8217 + }, + { + "start": 19480.26, + "end": 19483.28, + "probability": 0.9872 + }, + { + "start": 19483.9, + "end": 19484.88, + "probability": 0.6017 + }, + { + "start": 19485.82, + "end": 19488.0, + "probability": 0.9606 + }, + { + "start": 19488.88, + "end": 19490.24, + "probability": 0.9935 + }, + { + "start": 19490.58, + "end": 19491.64, + "probability": 0.8967 + }, + { + "start": 19492.14, + "end": 19496.02, + "probability": 0.9717 + }, + { + "start": 19496.14, + "end": 19501.86, + "probability": 0.9791 + }, + { + "start": 19503.36, + "end": 19504.52, + "probability": 0.9997 + }, + { + "start": 19505.46, + "end": 19505.94, + "probability": 0.8798 + }, + { + "start": 19507.42, + "end": 19509.68, + "probability": 0.9419 + }, + { + "start": 19510.66, + "end": 19513.2, + "probability": 0.9407 + }, + { + "start": 19513.7, + "end": 19515.4, + "probability": 0.9977 + }, + { + "start": 19516.5, + "end": 19522.06, + "probability": 0.999 + }, + { + "start": 19522.56, + "end": 19525.26, + "probability": 0.9972 + }, + { + "start": 19526.66, + "end": 19527.36, + "probability": 0.7616 + }, + { + "start": 19528.32, + "end": 19532.56, + "probability": 0.9937 + }, + { + "start": 19532.56, + "end": 19534.82, + "probability": 0.9985 + }, + { + "start": 19535.34, + "end": 19535.92, + "probability": 0.9989 + }, + { + "start": 19536.44, + "end": 19537.58, + "probability": 0.9121 + }, + { + "start": 19538.58, + "end": 19540.48, + "probability": 0.9985 + }, + { + "start": 19540.64, + "end": 19540.98, + "probability": 0.5839 + }, + { + "start": 19542.96, + "end": 19544.16, + "probability": 0.4762 + }, + { + "start": 19544.26, + "end": 19548.82, + "probability": 0.9946 + }, + { + "start": 19549.72, + "end": 19550.24, + "probability": 0.5945 + }, + { + "start": 19550.9, + "end": 19555.92, + "probability": 0.9984 + }, + { + "start": 19556.24, + "end": 19559.74, + "probability": 0.9945 + }, + { + "start": 19560.8, + "end": 19561.26, + "probability": 0.8339 + }, + { + "start": 19561.32, + "end": 19563.8, + "probability": 0.9844 + }, + { + "start": 19565.62, + "end": 19567.68, + "probability": 0.9978 + }, + { + "start": 19567.84, + "end": 19571.1, + "probability": 0.8705 + }, + { + "start": 19571.84, + "end": 19573.12, + "probability": 0.8717 + }, + { + "start": 19573.92, + "end": 19574.9, + "probability": 0.2845 + }, + { + "start": 19576.08, + "end": 19578.64, + "probability": 0.9957 + }, + { + "start": 19580.5, + "end": 19582.74, + "probability": 0.9896 + }, + { + "start": 19583.84, + "end": 19585.2, + "probability": 0.8607 + }, + { + "start": 19585.32, + "end": 19585.62, + "probability": 0.3715 + }, + { + "start": 19585.7, + "end": 19586.2, + "probability": 0.5928 + }, + { + "start": 19586.26, + "end": 19588.62, + "probability": 0.8381 + }, + { + "start": 19590.08, + "end": 19592.82, + "probability": 0.8872 + }, + { + "start": 19593.52, + "end": 19594.36, + "probability": 0.9727 + }, + { + "start": 19595.84, + "end": 19598.38, + "probability": 0.9802 + }, + { + "start": 19598.5, + "end": 19600.28, + "probability": 0.9974 + }, + { + "start": 19600.46, + "end": 19601.2, + "probability": 0.9842 + }, + { + "start": 19601.96, + "end": 19603.48, + "probability": 0.9054 + }, + { + "start": 19604.22, + "end": 19606.3, + "probability": 0.9976 + }, + { + "start": 19606.3, + "end": 19609.06, + "probability": 0.999 + }, + { + "start": 19609.66, + "end": 19610.84, + "probability": 0.7485 + }, + { + "start": 19612.08, + "end": 19613.86, + "probability": 0.994 + }, + { + "start": 19614.74, + "end": 19617.1, + "probability": 0.9906 + }, + { + "start": 19617.3, + "end": 19619.7, + "probability": 0.995 + }, + { + "start": 19620.64, + "end": 19623.7, + "probability": 0.9756 + }, + { + "start": 19624.44, + "end": 19627.02, + "probability": 0.9893 + }, + { + "start": 19627.1, + "end": 19627.62, + "probability": 0.969 + }, + { + "start": 19628.36, + "end": 19630.96, + "probability": 0.9922 + }, + { + "start": 19631.74, + "end": 19632.14, + "probability": 0.308 + }, + { + "start": 19632.28, + "end": 19633.68, + "probability": 0.9846 + }, + { + "start": 19633.94, + "end": 19638.88, + "probability": 0.9739 + }, + { + "start": 19638.92, + "end": 19641.52, + "probability": 0.9679 + }, + { + "start": 19641.52, + "end": 19644.68, + "probability": 0.9146 + }, + { + "start": 19644.8, + "end": 19645.88, + "probability": 0.7541 + }, + { + "start": 19646.32, + "end": 19648.86, + "probability": 0.9613 + }, + { + "start": 19649.58, + "end": 19650.44, + "probability": 0.7267 + }, + { + "start": 19651.14, + "end": 19652.8, + "probability": 0.8003 + }, + { + "start": 19652.9, + "end": 19655.02, + "probability": 0.9425 + }, + { + "start": 19663.12, + "end": 19663.12, + "probability": 0.0008 + }, + { + "start": 19664.1, + "end": 19665.74, + "probability": 0.0794 + }, + { + "start": 19667.28, + "end": 19669.32, + "probability": 0.3242 + }, + { + "start": 19682.04, + "end": 19687.74, + "probability": 0.8497 + }, + { + "start": 19689.82, + "end": 19691.68, + "probability": 0.7859 + }, + { + "start": 19691.96, + "end": 19695.9, + "probability": 0.9863 + }, + { + "start": 19696.62, + "end": 19700.94, + "probability": 0.9399 + }, + { + "start": 19701.74, + "end": 19704.78, + "probability": 0.911 + }, + { + "start": 19705.14, + "end": 19707.64, + "probability": 0.7731 + }, + { + "start": 19707.68, + "end": 19711.9, + "probability": 0.9422 + }, + { + "start": 19712.56, + "end": 19716.18, + "probability": 0.9915 + }, + { + "start": 19716.18, + "end": 19721.76, + "probability": 0.9834 + }, + { + "start": 19722.74, + "end": 19730.6, + "probability": 0.9819 + }, + { + "start": 19731.48, + "end": 19735.36, + "probability": 0.9575 + }, + { + "start": 19736.2, + "end": 19737.96, + "probability": 0.9592 + }, + { + "start": 19738.64, + "end": 19739.96, + "probability": 0.9204 + }, + { + "start": 19740.66, + "end": 19745.14, + "probability": 0.9644 + }, + { + "start": 19745.2, + "end": 19745.5, + "probability": 0.5937 + }, + { + "start": 19745.56, + "end": 19747.69, + "probability": 0.9863 + }, + { + "start": 19748.62, + "end": 19750.68, + "probability": 0.9443 + }, + { + "start": 19751.88, + "end": 19753.9, + "probability": 0.8817 + }, + { + "start": 19754.9, + "end": 19757.94, + "probability": 0.9583 + }, + { + "start": 19758.92, + "end": 19762.14, + "probability": 0.9248 + }, + { + "start": 19764.02, + "end": 19771.22, + "probability": 0.9644 + }, + { + "start": 19772.06, + "end": 19774.46, + "probability": 0.835 + }, + { + "start": 19774.82, + "end": 19778.28, + "probability": 0.9739 + }, + { + "start": 19779.1, + "end": 19783.08, + "probability": 0.9976 + }, + { + "start": 19783.08, + "end": 19789.24, + "probability": 0.9958 + }, + { + "start": 19790.14, + "end": 19793.02, + "probability": 0.8723 + }, + { + "start": 19793.24, + "end": 19796.02, + "probability": 0.9617 + }, + { + "start": 19796.72, + "end": 19801.1, + "probability": 0.9827 + }, + { + "start": 19801.1, + "end": 19804.88, + "probability": 0.9957 + }, + { + "start": 19804.88, + "end": 19809.16, + "probability": 0.976 + }, + { + "start": 19809.88, + "end": 19813.46, + "probability": 0.9004 + }, + { + "start": 19814.28, + "end": 19817.24, + "probability": 0.9962 + }, + { + "start": 19817.64, + "end": 19823.26, + "probability": 0.9632 + }, + { + "start": 19824.04, + "end": 19825.24, + "probability": 0.9688 + }, + { + "start": 19825.88, + "end": 19830.72, + "probability": 0.8461 + }, + { + "start": 19830.78, + "end": 19831.96, + "probability": 0.8678 + }, + { + "start": 19832.7, + "end": 19836.54, + "probability": 0.9195 + }, + { + "start": 19836.9, + "end": 19839.26, + "probability": 0.2575 + }, + { + "start": 19839.38, + "end": 19840.4, + "probability": 0.6033 + }, + { + "start": 19840.4, + "end": 19841.42, + "probability": 0.0206 + }, + { + "start": 19841.62, + "end": 19841.76, + "probability": 0.1595 + }, + { + "start": 19842.28, + "end": 19845.26, + "probability": 0.8671 + }, + { + "start": 19845.6, + "end": 19850.14, + "probability": 0.9946 + }, + { + "start": 19850.58, + "end": 19854.0, + "probability": 0.9961 + }, + { + "start": 19854.38, + "end": 19856.68, + "probability": 0.9937 + }, + { + "start": 19856.84, + "end": 19860.04, + "probability": 0.9714 + }, + { + "start": 19860.58, + "end": 19864.42, + "probability": 0.9862 + }, + { + "start": 19864.98, + "end": 19867.58, + "probability": 0.9971 + }, + { + "start": 19868.66, + "end": 19869.68, + "probability": 0.7402 + }, + { + "start": 19869.82, + "end": 19872.72, + "probability": 0.9862 + }, + { + "start": 19874.94, + "end": 19876.44, + "probability": 0.8462 + }, + { + "start": 19877.94, + "end": 19878.76, + "probability": 0.9588 + }, + { + "start": 19879.72, + "end": 19884.49, + "probability": 0.974 + }, + { + "start": 19886.46, + "end": 19888.84, + "probability": 0.9857 + }, + { + "start": 19889.92, + "end": 19892.48, + "probability": 0.8937 + }, + { + "start": 19892.72, + "end": 19896.6, + "probability": 0.9661 + }, + { + "start": 19897.52, + "end": 19901.64, + "probability": 0.999 + }, + { + "start": 19901.64, + "end": 19906.94, + "probability": 0.994 + }, + { + "start": 19907.38, + "end": 19912.5, + "probability": 0.9907 + }, + { + "start": 19913.08, + "end": 19918.2, + "probability": 0.9893 + }, + { + "start": 19918.34, + "end": 19924.64, + "probability": 0.9631 + }, + { + "start": 19925.42, + "end": 19928.72, + "probability": 0.8485 + }, + { + "start": 19929.44, + "end": 19934.46, + "probability": 0.9915 + }, + { + "start": 19936.12, + "end": 19942.58, + "probability": 0.9901 + }, + { + "start": 19942.58, + "end": 19947.76, + "probability": 0.9954 + }, + { + "start": 19948.76, + "end": 19953.04, + "probability": 0.9973 + }, + { + "start": 19953.62, + "end": 19956.9, + "probability": 0.7659 + }, + { + "start": 19957.52, + "end": 19958.8, + "probability": 0.9502 + }, + { + "start": 19959.52, + "end": 19961.36, + "probability": 0.9854 + }, + { + "start": 19961.8, + "end": 19963.1, + "probability": 0.854 + }, + { + "start": 19963.48, + "end": 19965.2, + "probability": 0.811 + }, + { + "start": 19965.28, + "end": 19967.6, + "probability": 0.9851 + }, + { + "start": 19968.02, + "end": 19972.66, + "probability": 0.9502 + }, + { + "start": 19972.98, + "end": 19977.88, + "probability": 0.9621 + }, + { + "start": 19978.44, + "end": 19979.72, + "probability": 0.9675 + }, + { + "start": 19980.14, + "end": 19982.92, + "probability": 0.9653 + }, + { + "start": 19984.1, + "end": 19987.74, + "probability": 0.8524 + }, + { + "start": 19988.54, + "end": 19991.46, + "probability": 0.988 + }, + { + "start": 19991.96, + "end": 19995.66, + "probability": 0.9881 + }, + { + "start": 19996.02, + "end": 19996.38, + "probability": 0.8038 + }, + { + "start": 19999.48, + "end": 20001.56, + "probability": 0.8501 + }, + { + "start": 20002.86, + "end": 20003.7, + "probability": 0.7601 + }, + { + "start": 20007.74, + "end": 20008.6, + "probability": 0.5383 + }, + { + "start": 20010.44, + "end": 20012.55, + "probability": 0.966 + }, + { + "start": 20014.38, + "end": 20015.8, + "probability": 0.3216 + }, + { + "start": 20015.88, + "end": 20017.26, + "probability": 0.9672 + }, + { + "start": 20018.04, + "end": 20019.24, + "probability": 0.6921 + }, + { + "start": 20019.38, + "end": 20020.58, + "probability": 0.7575 + }, + { + "start": 20020.66, + "end": 20023.14, + "probability": 0.699 + }, + { + "start": 20043.62, + "end": 20043.8, + "probability": 0.0388 + }, + { + "start": 20043.8, + "end": 20043.8, + "probability": 0.4494 + }, + { + "start": 20043.8, + "end": 20043.8, + "probability": 0.1847 + }, + { + "start": 20043.8, + "end": 20043.8, + "probability": 0.5879 + }, + { + "start": 20043.8, + "end": 20047.7, + "probability": 0.7543 + }, + { + "start": 20048.24, + "end": 20049.68, + "probability": 0.7078 + }, + { + "start": 20050.8, + "end": 20054.46, + "probability": 0.9392 + }, + { + "start": 20055.32, + "end": 20060.36, + "probability": 0.9251 + }, + { + "start": 20061.42, + "end": 20062.26, + "probability": 0.4819 + }, + { + "start": 20062.88, + "end": 20063.96, + "probability": 0.6844 + }, + { + "start": 20064.5, + "end": 20065.28, + "probability": 0.382 + }, + { + "start": 20066.6, + "end": 20067.94, + "probability": 0.9453 + }, + { + "start": 20068.5, + "end": 20070.34, + "probability": 0.7603 + }, + { + "start": 20070.56, + "end": 20071.96, + "probability": 0.7111 + }, + { + "start": 20073.12, + "end": 20078.0, + "probability": 0.9761 + }, + { + "start": 20078.14, + "end": 20080.52, + "probability": 0.823 + }, + { + "start": 20081.54, + "end": 20084.42, + "probability": 0.8787 + }, + { + "start": 20084.62, + "end": 20088.02, + "probability": 0.5929 + }, + { + "start": 20089.48, + "end": 20094.08, + "probability": 0.8895 + }, + { + "start": 20094.98, + "end": 20098.28, + "probability": 0.905 + }, + { + "start": 20098.36, + "end": 20101.62, + "probability": 0.8408 + }, + { + "start": 20102.68, + "end": 20105.88, + "probability": 0.8974 + }, + { + "start": 20106.58, + "end": 20111.86, + "probability": 0.9802 + }, + { + "start": 20112.34, + "end": 20113.9, + "probability": 0.9685 + }, + { + "start": 20114.18, + "end": 20120.76, + "probability": 0.9548 + }, + { + "start": 20122.42, + "end": 20131.0, + "probability": 0.7939 + }, + { + "start": 20131.66, + "end": 20137.24, + "probability": 0.9263 + }, + { + "start": 20139.12, + "end": 20140.72, + "probability": 0.8501 + }, + { + "start": 20141.6, + "end": 20146.92, + "probability": 0.7724 + }, + { + "start": 20147.88, + "end": 20153.28, + "probability": 0.9746 + }, + { + "start": 20154.58, + "end": 20156.44, + "probability": 0.784 + }, + { + "start": 20157.02, + "end": 20158.64, + "probability": 0.9716 + }, + { + "start": 20158.9, + "end": 20160.2, + "probability": 0.9321 + }, + { + "start": 20160.76, + "end": 20163.32, + "probability": 0.9857 + }, + { + "start": 20164.06, + "end": 20166.48, + "probability": 0.8327 + }, + { + "start": 20166.6, + "end": 20169.32, + "probability": 0.8714 + }, + { + "start": 20170.08, + "end": 20170.96, + "probability": 0.9181 + }, + { + "start": 20171.22, + "end": 20175.96, + "probability": 0.9939 + }, + { + "start": 20177.04, + "end": 20183.58, + "probability": 0.9968 + }, + { + "start": 20183.8, + "end": 20185.5, + "probability": 0.8104 + }, + { + "start": 20186.22, + "end": 20188.52, + "probability": 0.7924 + }, + { + "start": 20189.16, + "end": 20191.14, + "probability": 0.9842 + }, + { + "start": 20191.22, + "end": 20192.64, + "probability": 0.9976 + }, + { + "start": 20193.32, + "end": 20195.62, + "probability": 0.9919 + }, + { + "start": 20196.24, + "end": 20198.59, + "probability": 0.9758 + }, + { + "start": 20199.0, + "end": 20203.54, + "probability": 0.9473 + }, + { + "start": 20204.34, + "end": 20207.3, + "probability": 0.7713 + }, + { + "start": 20208.12, + "end": 20211.34, + "probability": 0.9876 + }, + { + "start": 20212.54, + "end": 20216.44, + "probability": 0.9722 + }, + { + "start": 20216.62, + "end": 20217.82, + "probability": 0.6668 + }, + { + "start": 20218.34, + "end": 20224.84, + "probability": 0.927 + }, + { + "start": 20224.9, + "end": 20226.2, + "probability": 0.78 + }, + { + "start": 20226.72, + "end": 20228.12, + "probability": 0.7953 + }, + { + "start": 20228.74, + "end": 20233.98, + "probability": 0.9867 + }, + { + "start": 20234.04, + "end": 20235.24, + "probability": 0.9595 + }, + { + "start": 20236.02, + "end": 20240.12, + "probability": 0.6573 + }, + { + "start": 20240.24, + "end": 20243.96, + "probability": 0.8618 + }, + { + "start": 20244.46, + "end": 20247.28, + "probability": 0.9873 + }, + { + "start": 20247.54, + "end": 20248.86, + "probability": 0.7477 + }, + { + "start": 20249.08, + "end": 20253.94, + "probability": 0.8781 + }, + { + "start": 20254.0, + "end": 20254.88, + "probability": 0.8242 + }, + { + "start": 20255.0, + "end": 20257.0, + "probability": 0.9858 + }, + { + "start": 20257.54, + "end": 20259.7, + "probability": 0.994 + }, + { + "start": 20260.22, + "end": 20263.2, + "probability": 0.9962 + }, + { + "start": 20263.54, + "end": 20265.96, + "probability": 0.949 + }, + { + "start": 20266.16, + "end": 20270.08, + "probability": 0.9878 + }, + { + "start": 20270.08, + "end": 20276.46, + "probability": 0.9184 + }, + { + "start": 20276.56, + "end": 20277.58, + "probability": 0.5257 + }, + { + "start": 20278.6, + "end": 20281.88, + "probability": 0.8847 + }, + { + "start": 20282.6, + "end": 20284.24, + "probability": 0.9946 + }, + { + "start": 20287.36, + "end": 20291.02, + "probability": 0.9979 + }, + { + "start": 20291.6, + "end": 20294.72, + "probability": 0.8551 + }, + { + "start": 20294.72, + "end": 20299.7, + "probability": 0.9985 + }, + { + "start": 20300.4, + "end": 20305.66, + "probability": 0.9944 + }, + { + "start": 20306.12, + "end": 20308.62, + "probability": 0.8621 + }, + { + "start": 20309.2, + "end": 20309.48, + "probability": 0.6812 + }, + { + "start": 20310.06, + "end": 20311.54, + "probability": 0.2918 + }, + { + "start": 20312.52, + "end": 20322.8, + "probability": 0.9757 + }, + { + "start": 20323.87, + "end": 20326.58, + "probability": 0.9976 + }, + { + "start": 20327.74, + "end": 20328.22, + "probability": 0.7326 + }, + { + "start": 20329.5, + "end": 20334.4, + "probability": 0.926 + }, + { + "start": 20334.92, + "end": 20336.58, + "probability": 0.9697 + }, + { + "start": 20337.3, + "end": 20337.94, + "probability": 0.8052 + }, + { + "start": 20338.08, + "end": 20343.3, + "probability": 0.9173 + }, + { + "start": 20344.02, + "end": 20347.86, + "probability": 0.9661 + }, + { + "start": 20348.32, + "end": 20348.58, + "probability": 0.288 + }, + { + "start": 20348.9, + "end": 20349.3, + "probability": 0.9045 + }, + { + "start": 20349.68, + "end": 20350.26, + "probability": 0.6781 + }, + { + "start": 20350.26, + "end": 20351.24, + "probability": 0.8039 + }, + { + "start": 20352.9, + "end": 20355.02, + "probability": 0.9494 + }, + { + "start": 20376.32, + "end": 20377.56, + "probability": 0.7971 + }, + { + "start": 20378.46, + "end": 20378.98, + "probability": 0.7376 + }, + { + "start": 20380.2, + "end": 20384.4, + "probability": 0.9937 + }, + { + "start": 20386.0, + "end": 20388.42, + "probability": 0.8037 + }, + { + "start": 20388.42, + "end": 20392.4, + "probability": 0.9796 + }, + { + "start": 20394.48, + "end": 20396.42, + "probability": 0.9019 + }, + { + "start": 20397.78, + "end": 20398.32, + "probability": 0.95 + }, + { + "start": 20398.72, + "end": 20399.56, + "probability": 0.5702 + }, + { + "start": 20400.4, + "end": 20405.12, + "probability": 0.9572 + }, + { + "start": 20405.22, + "end": 20406.64, + "probability": 0.8209 + }, + { + "start": 20406.86, + "end": 20407.86, + "probability": 0.9861 + }, + { + "start": 20408.66, + "end": 20409.64, + "probability": 0.9907 + }, + { + "start": 20411.56, + "end": 20416.28, + "probability": 0.9778 + }, + { + "start": 20416.44, + "end": 20416.88, + "probability": 0.8378 + }, + { + "start": 20417.46, + "end": 20420.7, + "probability": 0.9644 + }, + { + "start": 20421.58, + "end": 20422.56, + "probability": 0.9763 + }, + { + "start": 20423.56, + "end": 20426.88, + "probability": 0.9975 + }, + { + "start": 20427.66, + "end": 20430.98, + "probability": 0.9736 + }, + { + "start": 20431.82, + "end": 20435.5, + "probability": 0.9816 + }, + { + "start": 20436.42, + "end": 20437.9, + "probability": 0.9989 + }, + { + "start": 20439.28, + "end": 20441.48, + "probability": 0.9993 + }, + { + "start": 20442.16, + "end": 20443.34, + "probability": 0.9214 + }, + { + "start": 20444.28, + "end": 20445.82, + "probability": 0.99 + }, + { + "start": 20446.5, + "end": 20449.76, + "probability": 0.9687 + }, + { + "start": 20450.94, + "end": 20452.1, + "probability": 0.9153 + }, + { + "start": 20453.12, + "end": 20454.36, + "probability": 0.8411 + }, + { + "start": 20455.38, + "end": 20458.34, + "probability": 0.9962 + }, + { + "start": 20459.42, + "end": 20460.06, + "probability": 0.7998 + }, + { + "start": 20460.98, + "end": 20464.06, + "probability": 0.9486 + }, + { + "start": 20464.86, + "end": 20467.16, + "probability": 0.9985 + }, + { + "start": 20468.8, + "end": 20469.7, + "probability": 0.8975 + }, + { + "start": 20472.1, + "end": 20473.92, + "probability": 0.9829 + }, + { + "start": 20474.74, + "end": 20475.82, + "probability": 0.8005 + }, + { + "start": 20477.24, + "end": 20478.68, + "probability": 0.9992 + }, + { + "start": 20480.08, + "end": 20482.02, + "probability": 0.875 + }, + { + "start": 20483.6, + "end": 20484.98, + "probability": 0.8179 + }, + { + "start": 20486.66, + "end": 20490.2, + "probability": 0.8756 + }, + { + "start": 20491.84, + "end": 20494.62, + "probability": 0.9861 + }, + { + "start": 20495.42, + "end": 20496.06, + "probability": 0.9569 + }, + { + "start": 20498.04, + "end": 20499.42, + "probability": 0.9973 + }, + { + "start": 20500.0, + "end": 20502.44, + "probability": 0.9877 + }, + { + "start": 20503.86, + "end": 20504.86, + "probability": 0.9502 + }, + { + "start": 20505.1, + "end": 20507.5, + "probability": 0.9673 + }, + { + "start": 20508.42, + "end": 20510.04, + "probability": 0.9434 + }, + { + "start": 20511.64, + "end": 20513.6, + "probability": 0.9893 + }, + { + "start": 20515.06, + "end": 20516.64, + "probability": 0.4546 + }, + { + "start": 20517.9, + "end": 20522.86, + "probability": 0.9344 + }, + { + "start": 20524.06, + "end": 20525.1, + "probability": 0.9974 + }, + { + "start": 20525.94, + "end": 20526.8, + "probability": 0.8494 + }, + { + "start": 20527.34, + "end": 20528.36, + "probability": 0.8076 + }, + { + "start": 20529.16, + "end": 20529.73, + "probability": 0.9592 + }, + { + "start": 20531.64, + "end": 20533.08, + "probability": 0.5439 + }, + { + "start": 20533.22, + "end": 20537.68, + "probability": 0.9451 + }, + { + "start": 20538.24, + "end": 20538.88, + "probability": 0.5409 + }, + { + "start": 20539.66, + "end": 20541.08, + "probability": 0.4989 + }, + { + "start": 20542.08, + "end": 20547.16, + "probability": 0.9618 + }, + { + "start": 20548.68, + "end": 20549.52, + "probability": 0.7479 + }, + { + "start": 20550.22, + "end": 20551.04, + "probability": 0.7172 + }, + { + "start": 20552.3, + "end": 20553.96, + "probability": 0.9229 + }, + { + "start": 20554.6, + "end": 20557.44, + "probability": 0.9899 + }, + { + "start": 20557.5, + "end": 20558.16, + "probability": 0.9857 + }, + { + "start": 20558.22, + "end": 20561.08, + "probability": 0.9722 + }, + { + "start": 20561.8, + "end": 20564.54, + "probability": 0.9884 + }, + { + "start": 20565.38, + "end": 20567.3, + "probability": 0.998 + }, + { + "start": 20568.12, + "end": 20570.18, + "probability": 0.9449 + }, + { + "start": 20570.28, + "end": 20574.82, + "probability": 0.9909 + }, + { + "start": 20575.74, + "end": 20577.7, + "probability": 0.7769 + }, + { + "start": 20578.44, + "end": 20579.7, + "probability": 0.8182 + }, + { + "start": 20580.66, + "end": 20581.08, + "probability": 0.9353 + }, + { + "start": 20582.22, + "end": 20586.74, + "probability": 0.9907 + }, + { + "start": 20587.18, + "end": 20588.18, + "probability": 0.9258 + }, + { + "start": 20588.52, + "end": 20589.5, + "probability": 0.7594 + }, + { + "start": 20589.86, + "end": 20593.06, + "probability": 0.9982 + }, + { + "start": 20593.46, + "end": 20593.98, + "probability": 0.9155 + }, + { + "start": 20594.3, + "end": 20594.78, + "probability": 0.5078 + }, + { + "start": 20594.8, + "end": 20595.86, + "probability": 0.5742 + }, + { + "start": 20605.44, + "end": 20606.26, + "probability": 0.4563 + }, + { + "start": 20606.26, + "end": 20607.5, + "probability": 0.162 + }, + { + "start": 20607.5, + "end": 20607.84, + "probability": 0.1812 + }, + { + "start": 20607.84, + "end": 20607.84, + "probability": 0.0401 + }, + { + "start": 20626.02, + "end": 20627.8, + "probability": 0.9894 + }, + { + "start": 20628.56, + "end": 20631.02, + "probability": 0.9909 + }, + { + "start": 20632.1, + "end": 20634.46, + "probability": 0.7345 + }, + { + "start": 20636.34, + "end": 20638.36, + "probability": 0.9969 + }, + { + "start": 20639.74, + "end": 20641.38, + "probability": 0.9165 + }, + { + "start": 20643.66, + "end": 20645.66, + "probability": 0.9883 + }, + { + "start": 20646.56, + "end": 20649.28, + "probability": 0.9761 + }, + { + "start": 20650.8, + "end": 20653.22, + "probability": 0.9936 + }, + { + "start": 20654.16, + "end": 20654.92, + "probability": 0.9337 + }, + { + "start": 20656.28, + "end": 20662.54, + "probability": 0.9975 + }, + { + "start": 20663.38, + "end": 20664.2, + "probability": 0.9794 + }, + { + "start": 20665.82, + "end": 20668.16, + "probability": 0.9688 + }, + { + "start": 20668.18, + "end": 20669.14, + "probability": 0.7095 + }, + { + "start": 20670.24, + "end": 20671.28, + "probability": 0.9591 + }, + { + "start": 20672.48, + "end": 20675.26, + "probability": 0.9561 + }, + { + "start": 20676.02, + "end": 20676.4, + "probability": 0.784 + }, + { + "start": 20677.7, + "end": 20679.3, + "probability": 0.9943 + }, + { + "start": 20680.06, + "end": 20681.58, + "probability": 0.9427 + }, + { + "start": 20681.6, + "end": 20682.31, + "probability": 0.998 + }, + { + "start": 20682.64, + "end": 20683.56, + "probability": 0.9307 + }, + { + "start": 20684.32, + "end": 20687.06, + "probability": 0.9602 + }, + { + "start": 20687.94, + "end": 20690.74, + "probability": 0.9896 + }, + { + "start": 20691.86, + "end": 20693.22, + "probability": 0.9213 + }, + { + "start": 20694.02, + "end": 20695.5, + "probability": 0.971 + }, + { + "start": 20696.4, + "end": 20696.86, + "probability": 0.9819 + }, + { + "start": 20697.88, + "end": 20699.04, + "probability": 0.9748 + }, + { + "start": 20700.1, + "end": 20701.7, + "probability": 0.7149 + }, + { + "start": 20702.4, + "end": 20706.94, + "probability": 0.9907 + }, + { + "start": 20707.8, + "end": 20710.8, + "probability": 0.9192 + }, + { + "start": 20711.62, + "end": 20713.16, + "probability": 0.992 + }, + { + "start": 20714.18, + "end": 20715.46, + "probability": 0.9954 + }, + { + "start": 20715.8, + "end": 20720.3, + "probability": 0.9569 + }, + { + "start": 20721.6, + "end": 20722.3, + "probability": 0.8937 + }, + { + "start": 20723.08, + "end": 20724.26, + "probability": 0.9411 + }, + { + "start": 20724.94, + "end": 20726.88, + "probability": 0.9759 + }, + { + "start": 20727.6, + "end": 20730.0, + "probability": 0.9886 + }, + { + "start": 20730.52, + "end": 20730.84, + "probability": 0.8135 + }, + { + "start": 20731.88, + "end": 20734.4, + "probability": 0.9686 + }, + { + "start": 20735.04, + "end": 20736.28, + "probability": 0.7708 + }, + { + "start": 20737.86, + "end": 20738.5, + "probability": 0.8277 + }, + { + "start": 20739.48, + "end": 20740.06, + "probability": 0.7413 + }, + { + "start": 20740.26, + "end": 20741.78, + "probability": 0.9374 + }, + { + "start": 20744.14, + "end": 20745.4, + "probability": 0.9717 + }, + { + "start": 20746.36, + "end": 20747.92, + "probability": 0.9854 + }, + { + "start": 20748.86, + "end": 20752.24, + "probability": 0.9744 + }, + { + "start": 20752.9, + "end": 20754.36, + "probability": 0.8439 + }, + { + "start": 20755.18, + "end": 20758.29, + "probability": 0.9835 + }, + { + "start": 20760.14, + "end": 20763.98, + "probability": 0.9987 + }, + { + "start": 20764.7, + "end": 20767.26, + "probability": 0.9927 + }, + { + "start": 20767.86, + "end": 20770.42, + "probability": 0.9648 + }, + { + "start": 20770.92, + "end": 20774.28, + "probability": 0.957 + }, + { + "start": 20775.3, + "end": 20777.42, + "probability": 0.9364 + }, + { + "start": 20778.26, + "end": 20781.32, + "probability": 0.8757 + }, + { + "start": 20782.68, + "end": 20788.18, + "probability": 0.9517 + }, + { + "start": 20789.12, + "end": 20790.02, + "probability": 0.537 + }, + { + "start": 20791.58, + "end": 20795.48, + "probability": 0.9581 + }, + { + "start": 20796.32, + "end": 20797.64, + "probability": 0.8739 + }, + { + "start": 20798.18, + "end": 20799.64, + "probability": 0.9993 + }, + { + "start": 20800.46, + "end": 20802.88, + "probability": 0.9785 + }, + { + "start": 20804.52, + "end": 20805.5, + "probability": 0.9971 + }, + { + "start": 20806.84, + "end": 20808.02, + "probability": 0.9858 + }, + { + "start": 20809.74, + "end": 20811.22, + "probability": 0.9462 + }, + { + "start": 20811.96, + "end": 20817.36, + "probability": 0.9759 + }, + { + "start": 20817.9, + "end": 20819.74, + "probability": 0.6672 + }, + { + "start": 20820.48, + "end": 20822.78, + "probability": 0.9933 + }, + { + "start": 20824.12, + "end": 20825.04, + "probability": 0.9544 + }, + { + "start": 20825.7, + "end": 20826.34, + "probability": 0.7993 + }, + { + "start": 20827.68, + "end": 20828.71, + "probability": 0.9924 + }, + { + "start": 20829.24, + "end": 20829.8, + "probability": 0.5395 + }, + { + "start": 20829.94, + "end": 20830.94, + "probability": 0.7549 + }, + { + "start": 20831.1, + "end": 20834.7, + "probability": 0.9946 + }, + { + "start": 20835.66, + "end": 20837.16, + "probability": 0.8478 + }, + { + "start": 20837.92, + "end": 20838.8, + "probability": 0.7725 + }, + { + "start": 20839.54, + "end": 20840.46, + "probability": 0.9426 + }, + { + "start": 20841.1, + "end": 20842.32, + "probability": 0.9769 + }, + { + "start": 20842.94, + "end": 20845.94, + "probability": 0.8572 + }, + { + "start": 20846.92, + "end": 20847.18, + "probability": 0.2757 + }, + { + "start": 20847.98, + "end": 20849.5, + "probability": 0.9953 + }, + { + "start": 20850.04, + "end": 20851.1, + "probability": 0.9492 + }, + { + "start": 20851.62, + "end": 20853.42, + "probability": 0.9671 + }, + { + "start": 20854.2, + "end": 20856.32, + "probability": 0.9773 + }, + { + "start": 20856.86, + "end": 20857.04, + "probability": 0.8555 + }, + { + "start": 20858.46, + "end": 20859.04, + "probability": 0.8409 + }, + { + "start": 20861.8, + "end": 20865.4, + "probability": 0.9231 + }, + { + "start": 20882.31, + "end": 20885.5, + "probability": 0.4526 + }, + { + "start": 20885.8, + "end": 20886.76, + "probability": 0.6605 + }, + { + "start": 20888.02, + "end": 20889.68, + "probability": 0.9204 + }, + { + "start": 20890.6, + "end": 20892.72, + "probability": 0.9681 + }, + { + "start": 20893.3, + "end": 20894.08, + "probability": 0.9705 + }, + { + "start": 20894.7, + "end": 20895.78, + "probability": 0.9722 + }, + { + "start": 20896.58, + "end": 20898.74, + "probability": 0.9919 + }, + { + "start": 20899.9, + "end": 20902.86, + "probability": 0.9743 + }, + { + "start": 20902.86, + "end": 20906.38, + "probability": 0.8467 + }, + { + "start": 20907.22, + "end": 20914.36, + "probability": 0.9795 + }, + { + "start": 20915.16, + "end": 20916.68, + "probability": 0.97 + }, + { + "start": 20917.38, + "end": 20919.34, + "probability": 0.8035 + }, + { + "start": 20919.82, + "end": 20921.42, + "probability": 0.8234 + }, + { + "start": 20923.24, + "end": 20926.36, + "probability": 0.9731 + }, + { + "start": 20927.0, + "end": 20928.04, + "probability": 0.888 + }, + { + "start": 20928.98, + "end": 20933.86, + "probability": 0.9971 + }, + { + "start": 20933.92, + "end": 20938.32, + "probability": 0.7031 + }, + { + "start": 20939.32, + "end": 20947.34, + "probability": 0.8899 + }, + { + "start": 20949.34, + "end": 20952.06, + "probability": 0.7382 + }, + { + "start": 20952.84, + "end": 20958.28, + "probability": 0.9404 + }, + { + "start": 20959.24, + "end": 20964.3, + "probability": 0.9888 + }, + { + "start": 20965.12, + "end": 20966.22, + "probability": 0.4316 + }, + { + "start": 20966.24, + "end": 20969.52, + "probability": 0.9945 + }, + { + "start": 20970.64, + "end": 20974.96, + "probability": 0.936 + }, + { + "start": 20976.16, + "end": 20977.12, + "probability": 0.8313 + }, + { + "start": 20977.7, + "end": 20980.32, + "probability": 0.9946 + }, + { + "start": 20981.58, + "end": 20984.02, + "probability": 0.9846 + }, + { + "start": 20985.46, + "end": 20986.52, + "probability": 0.8141 + }, + { + "start": 20986.9, + "end": 20989.72, + "probability": 0.9885 + }, + { + "start": 20990.44, + "end": 20992.34, + "probability": 0.8495 + }, + { + "start": 20993.26, + "end": 20997.02, + "probability": 0.9696 + }, + { + "start": 20998.22, + "end": 21001.3, + "probability": 0.9949 + }, + { + "start": 21002.52, + "end": 21005.26, + "probability": 0.9872 + }, + { + "start": 21006.24, + "end": 21009.34, + "probability": 0.9975 + }, + { + "start": 21010.94, + "end": 21013.54, + "probability": 0.6786 + }, + { + "start": 21014.08, + "end": 21015.46, + "probability": 0.8893 + }, + { + "start": 21016.7, + "end": 21018.7, + "probability": 0.6229 + }, + { + "start": 21019.34, + "end": 21021.66, + "probability": 0.9777 + }, + { + "start": 21022.28, + "end": 21026.16, + "probability": 0.9979 + }, + { + "start": 21027.04, + "end": 21029.44, + "probability": 0.9604 + }, + { + "start": 21031.8, + "end": 21033.26, + "probability": 0.9559 + }, + { + "start": 21034.06, + "end": 21036.76, + "probability": 0.9155 + }, + { + "start": 21037.44, + "end": 21039.72, + "probability": 0.9705 + }, + { + "start": 21039.98, + "end": 21041.0, + "probability": 0.9182 + }, + { + "start": 21042.16, + "end": 21043.22, + "probability": 0.5641 + }, + { + "start": 21043.24, + "end": 21047.08, + "probability": 0.9929 + }, + { + "start": 21047.76, + "end": 21048.72, + "probability": 0.7922 + }, + { + "start": 21049.38, + "end": 21050.76, + "probability": 0.974 + }, + { + "start": 21052.38, + "end": 21053.22, + "probability": 0.9339 + }, + { + "start": 21053.42, + "end": 21055.26, + "probability": 0.9572 + }, + { + "start": 21055.74, + "end": 21058.32, + "probability": 0.9329 + }, + { + "start": 21060.66, + "end": 21062.36, + "probability": 0.9983 + }, + { + "start": 21062.64, + "end": 21065.92, + "probability": 0.9872 + }, + { + "start": 21066.9, + "end": 21069.68, + "probability": 0.5656 + }, + { + "start": 21070.42, + "end": 21074.2, + "probability": 0.9948 + }, + { + "start": 21075.46, + "end": 21080.8, + "probability": 0.9977 + }, + { + "start": 21081.56, + "end": 21082.64, + "probability": 0.5054 + }, + { + "start": 21082.64, + "end": 21087.58, + "probability": 0.9952 + }, + { + "start": 21088.24, + "end": 21091.2, + "probability": 0.5719 + }, + { + "start": 21091.66, + "end": 21092.76, + "probability": 0.7467 + }, + { + "start": 21092.98, + "end": 21095.24, + "probability": 0.8995 + }, + { + "start": 21096.66, + "end": 21102.14, + "probability": 0.9923 + }, + { + "start": 21103.34, + "end": 21106.94, + "probability": 0.9177 + }, + { + "start": 21107.96, + "end": 21108.48, + "probability": 0.6702 + }, + { + "start": 21109.46, + "end": 21112.48, + "probability": 0.9885 + }, + { + "start": 21113.04, + "end": 21115.54, + "probability": 0.9982 + }, + { + "start": 21116.24, + "end": 21116.64, + "probability": 0.6883 + }, + { + "start": 21117.24, + "end": 21117.6, + "probability": 0.2666 + }, + { + "start": 21117.6, + "end": 21117.9, + "probability": 0.5891 + }, + { + "start": 21118.4, + "end": 21119.98, + "probability": 0.9182 + }, + { + "start": 21143.84, + "end": 21146.24, + "probability": 0.6683 + }, + { + "start": 21148.62, + "end": 21150.34, + "probability": 0.967 + }, + { + "start": 21150.94, + "end": 21153.44, + "probability": 0.3506 + }, + { + "start": 21154.38, + "end": 21157.96, + "probability": 0.9884 + }, + { + "start": 21157.96, + "end": 21160.98, + "probability": 0.9078 + }, + { + "start": 21161.96, + "end": 21170.6, + "probability": 0.9988 + }, + { + "start": 21172.34, + "end": 21173.02, + "probability": 0.3852 + }, + { + "start": 21175.02, + "end": 21176.24, + "probability": 0.916 + }, + { + "start": 21176.82, + "end": 21178.1, + "probability": 0.6716 + }, + { + "start": 21179.0, + "end": 21183.4, + "probability": 0.9209 + }, + { + "start": 21184.28, + "end": 21186.18, + "probability": 0.9616 + }, + { + "start": 21186.78, + "end": 21189.8, + "probability": 0.9789 + }, + { + "start": 21190.54, + "end": 21193.28, + "probability": 0.9838 + }, + { + "start": 21193.28, + "end": 21196.96, + "probability": 0.9985 + }, + { + "start": 21197.54, + "end": 21199.08, + "probability": 0.8479 + }, + { + "start": 21200.54, + "end": 21203.94, + "probability": 0.9302 + }, + { + "start": 21204.66, + "end": 21206.12, + "probability": 0.7863 + }, + { + "start": 21206.7, + "end": 21209.88, + "probability": 0.7576 + }, + { + "start": 21210.58, + "end": 21211.02, + "probability": 0.8093 + }, + { + "start": 21211.92, + "end": 21213.6, + "probability": 0.9918 + }, + { + "start": 21214.66, + "end": 21217.58, + "probability": 0.9376 + }, + { + "start": 21218.3, + "end": 21221.98, + "probability": 0.9832 + }, + { + "start": 21222.04, + "end": 21224.92, + "probability": 0.9839 + }, + { + "start": 21226.04, + "end": 21229.1, + "probability": 0.9979 + }, + { + "start": 21229.1, + "end": 21232.86, + "probability": 0.9891 + }, + { + "start": 21233.62, + "end": 21235.26, + "probability": 0.8993 + }, + { + "start": 21236.94, + "end": 21238.6, + "probability": 0.9463 + }, + { + "start": 21238.9, + "end": 21242.14, + "probability": 0.9765 + }, + { + "start": 21242.76, + "end": 21244.82, + "probability": 0.9042 + }, + { + "start": 21245.4, + "end": 21249.44, + "probability": 0.9875 + }, + { + "start": 21250.12, + "end": 21252.84, + "probability": 0.9536 + }, + { + "start": 21253.32, + "end": 21255.06, + "probability": 0.9844 + }, + { + "start": 21255.54, + "end": 21258.06, + "probability": 0.6097 + }, + { + "start": 21258.64, + "end": 21262.38, + "probability": 0.9154 + }, + { + "start": 21263.84, + "end": 21265.8, + "probability": 0.9676 + }, + { + "start": 21266.46, + "end": 21270.36, + "probability": 0.886 + }, + { + "start": 21271.16, + "end": 21274.72, + "probability": 0.9042 + }, + { + "start": 21275.3, + "end": 21277.74, + "probability": 0.9925 + }, + { + "start": 21277.74, + "end": 21280.9, + "probability": 0.9625 + }, + { + "start": 21281.52, + "end": 21286.72, + "probability": 0.9928 + }, + { + "start": 21287.18, + "end": 21288.16, + "probability": 0.6961 + }, + { + "start": 21288.56, + "end": 21291.48, + "probability": 0.9829 + }, + { + "start": 21292.04, + "end": 21294.0, + "probability": 0.8792 + }, + { + "start": 21296.02, + "end": 21298.5, + "probability": 0.9631 + }, + { + "start": 21298.56, + "end": 21300.34, + "probability": 0.9629 + }, + { + "start": 21301.14, + "end": 21304.56, + "probability": 0.9756 + }, + { + "start": 21305.52, + "end": 21310.04, + "probability": 0.9749 + }, + { + "start": 21310.76, + "end": 21313.46, + "probability": 0.9954 + }, + { + "start": 21316.34, + "end": 21318.1, + "probability": 0.9813 + }, + { + "start": 21318.9, + "end": 21319.88, + "probability": 0.9832 + }, + { + "start": 21320.1, + "end": 21320.96, + "probability": 0.7839 + }, + { + "start": 21321.26, + "end": 21323.7, + "probability": 0.831 + }, + { + "start": 21325.16, + "end": 21328.18, + "probability": 0.8468 + }, + { + "start": 21328.38, + "end": 21330.46, + "probability": 0.9502 + }, + { + "start": 21331.56, + "end": 21339.48, + "probability": 0.952 + }, + { + "start": 21339.92, + "end": 21340.88, + "probability": 0.8646 + }, + { + "start": 21343.4, + "end": 21343.96, + "probability": 0.5759 + }, + { + "start": 21344.5, + "end": 21346.5, + "probability": 0.9248 + }, + { + "start": 21347.3, + "end": 21351.08, + "probability": 0.9945 + }, + { + "start": 21352.38, + "end": 21353.46, + "probability": 0.7882 + }, + { + "start": 21354.0, + "end": 21355.26, + "probability": 0.9176 + }, + { + "start": 21355.84, + "end": 21361.02, + "probability": 0.9839 + }, + { + "start": 21361.82, + "end": 21367.16, + "probability": 0.9878 + }, + { + "start": 21367.98, + "end": 21369.18, + "probability": 0.9023 + }, + { + "start": 21369.42, + "end": 21370.69, + "probability": 0.9956 + }, + { + "start": 21371.56, + "end": 21373.52, + "probability": 0.8578 + }, + { + "start": 21374.32, + "end": 21377.68, + "probability": 0.96 + }, + { + "start": 21377.88, + "end": 21378.2, + "probability": 0.8821 + }, + { + "start": 21378.64, + "end": 21379.04, + "probability": 0.6673 + }, + { + "start": 21379.12, + "end": 21381.43, + "probability": 0.9352 + }, + { + "start": 21384.26, + "end": 21389.58, + "probability": 0.9276 + }, + { + "start": 21390.32, + "end": 21391.08, + "probability": 0.637 + }, + { + "start": 21391.34, + "end": 21393.72, + "probability": 0.7033 + }, + { + "start": 21412.02, + "end": 21413.08, + "probability": 0.6763 + }, + { + "start": 21413.48, + "end": 21415.0, + "probability": 0.8047 + }, + { + "start": 21415.26, + "end": 21416.28, + "probability": 0.9948 + }, + { + "start": 21417.24, + "end": 21420.71, + "probability": 0.9784 + }, + { + "start": 21422.24, + "end": 21425.76, + "probability": 0.6509 + }, + { + "start": 21426.88, + "end": 21429.98, + "probability": 0.8162 + }, + { + "start": 21430.02, + "end": 21431.68, + "probability": 0.6845 + }, + { + "start": 21432.5, + "end": 21437.04, + "probability": 0.9875 + }, + { + "start": 21437.04, + "end": 21442.06, + "probability": 0.7867 + }, + { + "start": 21443.68, + "end": 21443.88, + "probability": 0.5429 + }, + { + "start": 21444.04, + "end": 21444.98, + "probability": 0.9098 + }, + { + "start": 21445.18, + "end": 21445.5, + "probability": 0.052 + }, + { + "start": 21445.52, + "end": 21448.96, + "probability": 0.3841 + }, + { + "start": 21449.06, + "end": 21450.42, + "probability": 0.6256 + }, + { + "start": 21451.76, + "end": 21455.7, + "probability": 0.9234 + }, + { + "start": 21455.74, + "end": 21456.42, + "probability": 0.8141 + }, + { + "start": 21456.7, + "end": 21458.46, + "probability": 0.9753 + }, + { + "start": 21459.04, + "end": 21462.3, + "probability": 0.8232 + }, + { + "start": 21462.48, + "end": 21463.7, + "probability": 0.4736 + }, + { + "start": 21463.8, + "end": 21468.52, + "probability": 0.9221 + }, + { + "start": 21468.54, + "end": 21470.44, + "probability": 0.8951 + }, + { + "start": 21470.74, + "end": 21471.56, + "probability": 0.7155 + }, + { + "start": 21472.34, + "end": 21474.1, + "probability": 0.855 + }, + { + "start": 21474.82, + "end": 21477.34, + "probability": 0.9829 + }, + { + "start": 21477.92, + "end": 21480.84, + "probability": 0.8303 + }, + { + "start": 21481.1, + "end": 21482.98, + "probability": 0.0287 + }, + { + "start": 21483.04, + "end": 21483.04, + "probability": 0.1986 + }, + { + "start": 21483.12, + "end": 21483.34, + "probability": 0.4042 + }, + { + "start": 21483.44, + "end": 21483.98, + "probability": 0.6171 + }, + { + "start": 21485.4, + "end": 21485.4, + "probability": 0.2595 + }, + { + "start": 21485.4, + "end": 21485.4, + "probability": 0.1009 + }, + { + "start": 21485.4, + "end": 21487.3, + "probability": 0.5683 + }, + { + "start": 21488.34, + "end": 21492.5, + "probability": 0.9755 + }, + { + "start": 21492.52, + "end": 21496.12, + "probability": 0.9785 + }, + { + "start": 21496.4, + "end": 21497.42, + "probability": 0.7409 + }, + { + "start": 21497.54, + "end": 21499.42, + "probability": 0.7122 + }, + { + "start": 21500.1, + "end": 21502.92, + "probability": 0.9187 + }, + { + "start": 21503.74, + "end": 21509.88, + "probability": 0.9344 + }, + { + "start": 21510.96, + "end": 21513.68, + "probability": 0.9954 + }, + { + "start": 21515.38, + "end": 21517.36, + "probability": 0.9165 + }, + { + "start": 21517.58, + "end": 21518.32, + "probability": 0.809 + }, + { + "start": 21518.76, + "end": 21522.58, + "probability": 0.8191 + }, + { + "start": 21522.76, + "end": 21523.34, + "probability": 0.8687 + }, + { + "start": 21523.44, + "end": 21526.43, + "probability": 0.9805 + }, + { + "start": 21527.66, + "end": 21529.9, + "probability": 0.9722 + }, + { + "start": 21530.72, + "end": 21533.28, + "probability": 0.9684 + }, + { + "start": 21533.36, + "end": 21534.24, + "probability": 0.7952 + }, + { + "start": 21534.6, + "end": 21536.74, + "probability": 0.3351 + }, + { + "start": 21537.14, + "end": 21539.42, + "probability": 0.897 + }, + { + "start": 21540.16, + "end": 21541.88, + "probability": 0.7466 + }, + { + "start": 21542.22, + "end": 21543.91, + "probability": 0.1581 + }, + { + "start": 21544.78, + "end": 21545.22, + "probability": 0.301 + }, + { + "start": 21546.08, + "end": 21548.88, + "probability": 0.0249 + }, + { + "start": 21548.88, + "end": 21548.94, + "probability": 0.0054 + }, + { + "start": 21548.94, + "end": 21548.94, + "probability": 0.4591 + }, + { + "start": 21548.94, + "end": 21549.22, + "probability": 0.7625 + }, + { + "start": 21549.26, + "end": 21549.56, + "probability": 0.5533 + }, + { + "start": 21549.56, + "end": 21551.48, + "probability": 0.8762 + }, + { + "start": 21551.54, + "end": 21552.36, + "probability": 0.9762 + }, + { + "start": 21552.94, + "end": 21556.14, + "probability": 0.9824 + }, + { + "start": 21558.61, + "end": 21559.77, + "probability": 0.775 + }, + { + "start": 21560.46, + "end": 21562.06, + "probability": 0.9538 + }, + { + "start": 21562.42, + "end": 21563.82, + "probability": 0.9553 + }, + { + "start": 21564.36, + "end": 21566.08, + "probability": 0.9736 + }, + { + "start": 21566.36, + "end": 21568.28, + "probability": 0.9709 + }, + { + "start": 21568.7, + "end": 21571.25, + "probability": 0.9337 + }, + { + "start": 21571.62, + "end": 21572.52, + "probability": 0.8933 + }, + { + "start": 21574.32, + "end": 21575.3, + "probability": 0.9694 + }, + { + "start": 21575.5, + "end": 21576.54, + "probability": 0.7179 + }, + { + "start": 21577.1, + "end": 21578.3, + "probability": 0.5032 + }, + { + "start": 21578.3, + "end": 21579.2, + "probability": 0.1194 + }, + { + "start": 21579.2, + "end": 21580.68, + "probability": 0.0705 + }, + { + "start": 21581.0, + "end": 21581.92, + "probability": 0.0792 + }, + { + "start": 21581.92, + "end": 21582.7, + "probability": 0.4058 + }, + { + "start": 21583.38, + "end": 21585.8, + "probability": 0.9805 + }, + { + "start": 21587.17, + "end": 21589.05, + "probability": 0.281 + }, + { + "start": 21589.72, + "end": 21591.26, + "probability": 0.853 + }, + { + "start": 21591.46, + "end": 21592.52, + "probability": 0.8479 + }, + { + "start": 21592.62, + "end": 21592.9, + "probability": 0.8352 + }, + { + "start": 21593.0, + "end": 21594.36, + "probability": 0.9989 + }, + { + "start": 21594.42, + "end": 21595.72, + "probability": 0.952 + }, + { + "start": 21596.2, + "end": 21598.12, + "probability": 0.9906 + }, + { + "start": 21599.1, + "end": 21600.32, + "probability": 0.9293 + }, + { + "start": 21600.82, + "end": 21604.98, + "probability": 0.7767 + }, + { + "start": 21605.24, + "end": 21607.04, + "probability": 0.9217 + }, + { + "start": 21608.04, + "end": 21610.36, + "probability": 0.9557 + }, + { + "start": 21611.22, + "end": 21612.24, + "probability": 0.7367 + }, + { + "start": 21612.38, + "end": 21614.03, + "probability": 0.9674 + }, + { + "start": 21614.54, + "end": 21615.43, + "probability": 0.9023 + }, + { + "start": 21615.82, + "end": 21619.52, + "probability": 0.0052 + }, + { + "start": 21619.66, + "end": 21619.66, + "probability": 0.0404 + }, + { + "start": 21619.66, + "end": 21619.8, + "probability": 0.1507 + }, + { + "start": 21621.72, + "end": 21621.88, + "probability": 0.0048 + }, + { + "start": 21621.92, + "end": 21622.98, + "probability": 0.1897 + }, + { + "start": 21623.02, + "end": 21624.52, + "probability": 0.4686 + }, + { + "start": 21625.06, + "end": 21627.08, + "probability": 0.9489 + }, + { + "start": 21627.48, + "end": 21627.62, + "probability": 0.4531 + }, + { + "start": 21627.94, + "end": 21628.64, + "probability": 0.6979 + }, + { + "start": 21629.34, + "end": 21632.52, + "probability": 0.7433 + }, + { + "start": 21633.16, + "end": 21634.68, + "probability": 0.9917 + }, + { + "start": 21635.36, + "end": 21636.5, + "probability": 0.5667 + }, + { + "start": 21637.4, + "end": 21638.88, + "probability": 0.7558 + }, + { + "start": 21639.82, + "end": 21643.4, + "probability": 0.5527 + }, + { + "start": 21643.58, + "end": 21644.82, + "probability": 0.439 + }, + { + "start": 21645.22, + "end": 21646.14, + "probability": 0.7348 + }, + { + "start": 21646.18, + "end": 21649.18, + "probability": 0.5049 + }, + { + "start": 21649.26, + "end": 21649.98, + "probability": 0.7611 + }, + { + "start": 21650.04, + "end": 21651.64, + "probability": 0.8799 + }, + { + "start": 21651.84, + "end": 21652.94, + "probability": 0.9918 + }, + { + "start": 21653.48, + "end": 21654.54, + "probability": 0.9936 + }, + { + "start": 21655.12, + "end": 21658.06, + "probability": 0.9487 + }, + { + "start": 21659.36, + "end": 21660.1, + "probability": 0.8646 + }, + { + "start": 21661.4, + "end": 21661.8, + "probability": 0.9626 + }, + { + "start": 21662.32, + "end": 21664.72, + "probability": 0.7242 + }, + { + "start": 21666.02, + "end": 21666.98, + "probability": 0.5048 + }, + { + "start": 21670.04, + "end": 21672.48, + "probability": 0.8553 + }, + { + "start": 21692.86, + "end": 21694.9, + "probability": 0.719 + }, + { + "start": 21696.1, + "end": 21697.86, + "probability": 0.9775 + }, + { + "start": 21698.86, + "end": 21700.7, + "probability": 0.998 + }, + { + "start": 21700.8, + "end": 21703.2, + "probability": 0.991 + }, + { + "start": 21706.52, + "end": 21710.26, + "probability": 0.9906 + }, + { + "start": 21711.96, + "end": 21714.22, + "probability": 0.8652 + }, + { + "start": 21714.66, + "end": 21717.2, + "probability": 0.7767 + }, + { + "start": 21717.94, + "end": 21719.92, + "probability": 0.537 + }, + { + "start": 21720.84, + "end": 21722.3, + "probability": 0.3651 + }, + { + "start": 21722.88, + "end": 21724.6, + "probability": 0.4698 + }, + { + "start": 21726.42, + "end": 21728.7, + "probability": 0.8095 + }, + { + "start": 21729.5, + "end": 21730.46, + "probability": 0.6292 + }, + { + "start": 21731.52, + "end": 21732.38, + "probability": 0.8484 + }, + { + "start": 21733.08, + "end": 21733.58, + "probability": 0.9802 + }, + { + "start": 21735.28, + "end": 21737.88, + "probability": 0.9417 + }, + { + "start": 21738.96, + "end": 21739.38, + "probability": 0.7225 + }, + { + "start": 21739.6, + "end": 21740.44, + "probability": 0.8768 + }, + { + "start": 21740.68, + "end": 21741.62, + "probability": 0.4712 + }, + { + "start": 21741.9, + "end": 21743.48, + "probability": 0.9659 + }, + { + "start": 21743.52, + "end": 21745.88, + "probability": 0.9827 + }, + { + "start": 21747.16, + "end": 21750.62, + "probability": 0.9596 + }, + { + "start": 21750.9, + "end": 21752.96, + "probability": 0.7376 + }, + { + "start": 21754.02, + "end": 21756.24, + "probability": 0.9925 + }, + { + "start": 21757.02, + "end": 21759.14, + "probability": 0.9963 + }, + { + "start": 21760.5, + "end": 21763.6, + "probability": 0.9929 + }, + { + "start": 21764.66, + "end": 21766.98, + "probability": 0.9453 + }, + { + "start": 21767.7, + "end": 21769.7, + "probability": 0.9626 + }, + { + "start": 21770.96, + "end": 21772.02, + "probability": 0.9899 + }, + { + "start": 21772.7, + "end": 21776.72, + "probability": 0.926 + }, + { + "start": 21777.42, + "end": 21778.76, + "probability": 0.9619 + }, + { + "start": 21779.36, + "end": 21781.44, + "probability": 0.9504 + }, + { + "start": 21782.36, + "end": 21783.69, + "probability": 0.8823 + }, + { + "start": 21784.96, + "end": 21787.43, + "probability": 0.8907 + }, + { + "start": 21788.34, + "end": 21791.42, + "probability": 0.9884 + }, + { + "start": 21792.18, + "end": 21794.1, + "probability": 0.9976 + }, + { + "start": 21794.88, + "end": 21795.64, + "probability": 0.6974 + }, + { + "start": 21796.16, + "end": 21797.2, + "probability": 0.9784 + }, + { + "start": 21798.34, + "end": 21801.64, + "probability": 0.998 + }, + { + "start": 21801.84, + "end": 21802.72, + "probability": 0.418 + }, + { + "start": 21803.1, + "end": 21803.92, + "probability": 0.9086 + }, + { + "start": 21804.02, + "end": 21805.36, + "probability": 0.424 + }, + { + "start": 21805.58, + "end": 21805.62, + "probability": 0.4811 + }, + { + "start": 21805.62, + "end": 21806.08, + "probability": 0.3172 + }, + { + "start": 21806.22, + "end": 21808.67, + "probability": 0.646 + }, + { + "start": 21811.26, + "end": 21811.74, + "probability": 0.7467 + }, + { + "start": 21815.9, + "end": 21819.78, + "probability": 0.0598 + }, + { + "start": 21821.82, + "end": 21821.82, + "probability": 0.0503 + }, + { + "start": 21821.82, + "end": 21823.58, + "probability": 0.1235 + }, + { + "start": 21823.58, + "end": 21825.0, + "probability": 0.4792 + }, + { + "start": 21827.16, + "end": 21828.8, + "probability": 0.3891 + }, + { + "start": 21829.72, + "end": 21830.26, + "probability": 0.2677 + }, + { + "start": 21833.26, + "end": 21834.86, + "probability": 0.3898 + }, + { + "start": 21835.94, + "end": 21836.69, + "probability": 0.0394 + }, + { + "start": 21843.68, + "end": 21851.66, + "probability": 0.0212 + }, + { + "start": 21862.78, + "end": 21863.4, + "probability": 0.0063 + }, + { + "start": 21864.6, + "end": 21866.74, + "probability": 0.0994 + }, + { + "start": 21867.64, + "end": 21868.14, + "probability": 0.0235 + }, + { + "start": 21872.02, + "end": 21872.6, + "probability": 0.1636 + }, + { + "start": 21873.48, + "end": 21874.58, + "probability": 0.2627 + }, + { + "start": 21883.92, + "end": 21886.38, + "probability": 0.1403 + }, + { + "start": 21892.1, + "end": 21893.56, + "probability": 0.0274 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.0, + "end": 21906.0, + "probability": 0.0 + }, + { + "start": 21906.02, + "end": 21907.32, + "probability": 0.3368 + }, + { + "start": 21908.84, + "end": 21909.56, + "probability": 0.6379 + }, + { + "start": 21909.92, + "end": 21910.6, + "probability": 0.8039 + }, + { + "start": 21912.32, + "end": 21913.6, + "probability": 0.2545 + }, + { + "start": 21913.84, + "end": 21914.06, + "probability": 0.3233 + }, + { + "start": 21921.76, + "end": 21923.86, + "probability": 0.6897 + }, + { + "start": 21924.74, + "end": 21928.26, + "probability": 0.9783 + }, + { + "start": 21928.4, + "end": 21932.18, + "probability": 0.9873 + }, + { + "start": 21932.84, + "end": 21935.32, + "probability": 0.9739 + }, + { + "start": 21937.6, + "end": 21937.74, + "probability": 0.278 + }, + { + "start": 21937.88, + "end": 21938.72, + "probability": 0.8827 + }, + { + "start": 21938.92, + "end": 21940.34, + "probability": 0.9457 + }, + { + "start": 21940.58, + "end": 21942.28, + "probability": 0.9622 + }, + { + "start": 21942.84, + "end": 21948.24, + "probability": 0.9182 + }, + { + "start": 21950.31, + "end": 21951.28, + "probability": 0.0531 + }, + { + "start": 21951.28, + "end": 21955.46, + "probability": 0.9948 + }, + { + "start": 21956.6, + "end": 21957.52, + "probability": 0.9951 + }, + { + "start": 21957.9, + "end": 21962.06, + "probability": 0.8921 + }, + { + "start": 21963.42, + "end": 21966.24, + "probability": 0.8608 + }, + { + "start": 21967.12, + "end": 21967.92, + "probability": 0.781 + }, + { + "start": 21969.3, + "end": 21970.26, + "probability": 0.9704 + }, + { + "start": 21971.62, + "end": 21972.28, + "probability": 0.9414 + }, + { + "start": 21972.44, + "end": 21973.24, + "probability": 0.937 + }, + { + "start": 21973.4, + "end": 21975.03, + "probability": 0.9697 + }, + { + "start": 21975.46, + "end": 21976.34, + "probability": 0.9858 + }, + { + "start": 21976.53, + "end": 21977.12, + "probability": 0.9661 + }, + { + "start": 21979.52, + "end": 21980.46, + "probability": 0.5398 + }, + { + "start": 21980.9, + "end": 21985.4, + "probability": 0.9949 + }, + { + "start": 21985.4, + "end": 21992.06, + "probability": 0.9886 + }, + { + "start": 21992.24, + "end": 21996.08, + "probability": 0.9751 + }, + { + "start": 21996.8, + "end": 21997.78, + "probability": 0.4843 + }, + { + "start": 21998.72, + "end": 22001.88, + "probability": 0.9924 + }, + { + "start": 22002.48, + "end": 22004.34, + "probability": 0.9086 + }, + { + "start": 22004.74, + "end": 22007.06, + "probability": 0.9884 + }, + { + "start": 22008.04, + "end": 22008.66, + "probability": 0.9795 + }, + { + "start": 22009.58, + "end": 22013.42, + "probability": 0.9967 + }, + { + "start": 22013.66, + "end": 22021.24, + "probability": 0.9975 + }, + { + "start": 22021.48, + "end": 22024.32, + "probability": 0.7775 + }, + { + "start": 22025.2, + "end": 22025.86, + "probability": 0.5479 + }, + { + "start": 22026.14, + "end": 22028.4, + "probability": 0.9955 + }, + { + "start": 22029.12, + "end": 22033.2, + "probability": 0.9767 + }, + { + "start": 22033.82, + "end": 22035.14, + "probability": 0.8585 + }, + { + "start": 22035.96, + "end": 22041.94, + "probability": 0.9956 + }, + { + "start": 22042.34, + "end": 22043.24, + "probability": 0.9301 + }, + { + "start": 22043.88, + "end": 22048.16, + "probability": 0.998 + }, + { + "start": 22048.96, + "end": 22050.76, + "probability": 0.6897 + }, + { + "start": 22051.06, + "end": 22051.62, + "probability": 0.6859 + }, + { + "start": 22052.04, + "end": 22055.2, + "probability": 0.9775 + }, + { + "start": 22055.78, + "end": 22057.22, + "probability": 0.9946 + }, + { + "start": 22057.86, + "end": 22058.56, + "probability": 0.9248 + }, + { + "start": 22059.32, + "end": 22061.86, + "probability": 0.9972 + }, + { + "start": 22062.5, + "end": 22063.86, + "probability": 0.7907 + }, + { + "start": 22064.08, + "end": 22067.98, + "probability": 0.9741 + }, + { + "start": 22068.72, + "end": 22070.28, + "probability": 0.8675 + }, + { + "start": 22070.8, + "end": 22072.02, + "probability": 0.8631 + }, + { + "start": 22072.62, + "end": 22074.02, + "probability": 0.906 + }, + { + "start": 22074.24, + "end": 22077.0, + "probability": 0.9808 + }, + { + "start": 22077.72, + "end": 22078.72, + "probability": 0.9846 + }, + { + "start": 22079.74, + "end": 22081.96, + "probability": 0.7579 + }, + { + "start": 22083.18, + "end": 22085.27, + "probability": 0.9953 + }, + { + "start": 22085.8, + "end": 22087.2, + "probability": 0.9966 + }, + { + "start": 22088.14, + "end": 22093.64, + "probability": 0.9889 + }, + { + "start": 22093.92, + "end": 22098.86, + "probability": 0.9945 + }, + { + "start": 22098.94, + "end": 22103.42, + "probability": 0.9882 + }, + { + "start": 22103.6, + "end": 22106.52, + "probability": 0.9972 + }, + { + "start": 22107.12, + "end": 22107.8, + "probability": 0.8328 + }, + { + "start": 22107.88, + "end": 22108.38, + "probability": 0.7357 + }, + { + "start": 22110.82, + "end": 22111.32, + "probability": 0.6348 + }, + { + "start": 22111.36, + "end": 22112.6, + "probability": 0.9678 + }, + { + "start": 22113.2, + "end": 22114.26, + "probability": 0.9465 + }, + { + "start": 22124.52, + "end": 22124.62, + "probability": 0.4196 + }, + { + "start": 22134.64, + "end": 22136.58, + "probability": 0.5051 + }, + { + "start": 22137.28, + "end": 22139.6, + "probability": 0.8613 + }, + { + "start": 22139.96, + "end": 22140.5, + "probability": 0.9181 + }, + { + "start": 22140.88, + "end": 22141.26, + "probability": 0.7022 + }, + { + "start": 22141.34, + "end": 22141.84, + "probability": 0.7233 + }, + { + "start": 22142.0, + "end": 22144.42, + "probability": 0.9585 + }, + { + "start": 22145.08, + "end": 22147.54, + "probability": 0.926 + }, + { + "start": 22148.46, + "end": 22150.98, + "probability": 0.8138 + }, + { + "start": 22151.22, + "end": 22152.8, + "probability": 0.8065 + }, + { + "start": 22152.8, + "end": 22153.12, + "probability": 0.2681 + }, + { + "start": 22153.6, + "end": 22153.82, + "probability": 0.8416 + }, + { + "start": 22153.92, + "end": 22155.5, + "probability": 0.7471 + }, + { + "start": 22155.5, + "end": 22156.36, + "probability": 0.153 + }, + { + "start": 22156.36, + "end": 22160.64, + "probability": 0.8957 + }, + { + "start": 22160.8, + "end": 22161.16, + "probability": 0.5785 + }, + { + "start": 22161.24, + "end": 22161.44, + "probability": 0.1421 + }, + { + "start": 22161.44, + "end": 22161.66, + "probability": 0.1859 + }, + { + "start": 22161.76, + "end": 22162.2, + "probability": 0.4773 + }, + { + "start": 22162.22, + "end": 22162.5, + "probability": 0.5578 + }, + { + "start": 22162.66, + "end": 22163.36, + "probability": 0.9231 + }, + { + "start": 22163.94, + "end": 22164.86, + "probability": 0.8207 + }, + { + "start": 22165.22, + "end": 22166.44, + "probability": 0.9987 + }, + { + "start": 22166.52, + "end": 22167.84, + "probability": 0.9974 + }, + { + "start": 22167.94, + "end": 22169.11, + "probability": 0.9504 + }, + { + "start": 22169.24, + "end": 22170.38, + "probability": 0.3902 + }, + { + "start": 22170.5, + "end": 22173.48, + "probability": 0.9223 + }, + { + "start": 22174.02, + "end": 22174.4, + "probability": 0.5103 + }, + { + "start": 22174.52, + "end": 22176.82, + "probability": 0.9919 + }, + { + "start": 22177.16, + "end": 22178.42, + "probability": 0.9458 + }, + { + "start": 22178.5, + "end": 22180.22, + "probability": 0.9447 + }, + { + "start": 22180.62, + "end": 22182.26, + "probability": 0.9219 + }, + { + "start": 22182.9, + "end": 22184.92, + "probability": 0.8266 + }, + { + "start": 22185.44, + "end": 22188.44, + "probability": 0.949 + }, + { + "start": 22189.16, + "end": 22191.44, + "probability": 0.97 + }, + { + "start": 22192.02, + "end": 22193.22, + "probability": 0.9929 + }, + { + "start": 22194.02, + "end": 22198.92, + "probability": 0.7327 + }, + { + "start": 22199.44, + "end": 22201.68, + "probability": 0.6362 + }, + { + "start": 22202.56, + "end": 22205.01, + "probability": 0.8351 + }, + { + "start": 22206.04, + "end": 22207.52, + "probability": 0.8579 + }, + { + "start": 22208.14, + "end": 22208.14, + "probability": 0.1986 + }, + { + "start": 22208.14, + "end": 22208.14, + "probability": 0.4902 + }, + { + "start": 22208.14, + "end": 22210.46, + "probability": 0.984 + }, + { + "start": 22211.12, + "end": 22212.52, + "probability": 0.7883 + }, + { + "start": 22213.1, + "end": 22217.9, + "probability": 0.9734 + }, + { + "start": 22218.62, + "end": 22220.48, + "probability": 0.9978 + }, + { + "start": 22221.06, + "end": 22223.06, + "probability": 0.668 + }, + { + "start": 22223.46, + "end": 22224.42, + "probability": 0.0379 + }, + { + "start": 22224.42, + "end": 22224.42, + "probability": 0.439 + }, + { + "start": 22224.42, + "end": 22224.42, + "probability": 0.0134 + }, + { + "start": 22224.42, + "end": 22226.58, + "probability": 0.7475 + }, + { + "start": 22226.72, + "end": 22229.24, + "probability": 0.731 + }, + { + "start": 22229.62, + "end": 22232.32, + "probability": 0.9235 + }, + { + "start": 22232.4, + "end": 22234.39, + "probability": 0.9736 + }, + { + "start": 22234.88, + "end": 22235.9, + "probability": 0.1386 + }, + { + "start": 22235.9, + "end": 22235.98, + "probability": 0.0587 + }, + { + "start": 22235.98, + "end": 22235.98, + "probability": 0.0178 + }, + { + "start": 22235.98, + "end": 22236.88, + "probability": 0.6511 + }, + { + "start": 22236.88, + "end": 22238.64, + "probability": 0.7099 + }, + { + "start": 22240.2, + "end": 22240.86, + "probability": 0.0719 + }, + { + "start": 22240.86, + "end": 22241.52, + "probability": 0.6176 + }, + { + "start": 22241.52, + "end": 22241.78, + "probability": 0.1653 + }, + { + "start": 22241.78, + "end": 22241.78, + "probability": 0.3127 + }, + { + "start": 22242.82, + "end": 22242.82, + "probability": 0.6703 + }, + { + "start": 22242.82, + "end": 22244.04, + "probability": 0.3073 + }, + { + "start": 22244.06, + "end": 22244.1, + "probability": 0.0054 + }, + { + "start": 22244.1, + "end": 22244.19, + "probability": 0.0225 + }, + { + "start": 22245.28, + "end": 22245.28, + "probability": 0.0647 + }, + { + "start": 22245.28, + "end": 22245.28, + "probability": 0.5176 + }, + { + "start": 22245.44, + "end": 22249.68, + "probability": 0.994 + }, + { + "start": 22250.94, + "end": 22253.44, + "probability": 0.9984 + }, + { + "start": 22254.4, + "end": 22256.62, + "probability": 0.9873 + }, + { + "start": 22257.52, + "end": 22260.1, + "probability": 0.8738 + }, + { + "start": 22260.72, + "end": 22263.04, + "probability": 0.9945 + }, + { + "start": 22263.44, + "end": 22264.76, + "probability": 0.9462 + }, + { + "start": 22265.26, + "end": 22266.24, + "probability": 0.8975 + }, + { + "start": 22266.4, + "end": 22267.76, + "probability": 0.9839 + }, + { + "start": 22268.12, + "end": 22271.3, + "probability": 0.9436 + }, + { + "start": 22272.0, + "end": 22272.62, + "probability": 0.8839 + }, + { + "start": 22272.64, + "end": 22273.72, + "probability": 0.8647 + }, + { + "start": 22274.22, + "end": 22276.76, + "probability": 0.9824 + }, + { + "start": 22277.32, + "end": 22278.94, + "probability": 0.9314 + }, + { + "start": 22279.02, + "end": 22281.98, + "probability": 0.975 + }, + { + "start": 22282.46, + "end": 22287.9, + "probability": 0.9987 + }, + { + "start": 22288.64, + "end": 22290.52, + "probability": 0.8577 + }, + { + "start": 22290.6, + "end": 22291.54, + "probability": 0.8929 + }, + { + "start": 22292.06, + "end": 22292.34, + "probability": 0.4525 + }, + { + "start": 22292.36, + "end": 22293.34, + "probability": 0.9312 + }, + { + "start": 22293.74, + "end": 22295.36, + "probability": 0.9868 + }, + { + "start": 22295.38, + "end": 22296.24, + "probability": 0.8921 + }, + { + "start": 22296.48, + "end": 22297.68, + "probability": 0.9893 + }, + { + "start": 22298.02, + "end": 22300.0, + "probability": 0.9822 + }, + { + "start": 22300.04, + "end": 22301.15, + "probability": 0.6368 + }, + { + "start": 22302.3, + "end": 22306.56, + "probability": 0.9316 + }, + { + "start": 22306.98, + "end": 22309.14, + "probability": 0.9976 + }, + { + "start": 22309.72, + "end": 22309.96, + "probability": 0.3812 + }, + { + "start": 22310.06, + "end": 22310.28, + "probability": 0.657 + }, + { + "start": 22310.66, + "end": 22310.96, + "probability": 0.8828 + }, + { + "start": 22311.02, + "end": 22312.78, + "probability": 0.9742 + }, + { + "start": 22312.94, + "end": 22313.78, + "probability": 0.9478 + }, + { + "start": 22314.26, + "end": 22315.16, + "probability": 0.9614 + }, + { + "start": 22315.5, + "end": 22316.26, + "probability": 0.8285 + }, + { + "start": 22316.88, + "end": 22320.16, + "probability": 0.953 + }, + { + "start": 22322.66, + "end": 22323.46, + "probability": 0.7132 + }, + { + "start": 22325.14, + "end": 22326.34, + "probability": 0.6959 + }, + { + "start": 22326.34, + "end": 22327.12, + "probability": 0.1072 + }, + { + "start": 22327.36, + "end": 22328.34, + "probability": 0.0786 + }, + { + "start": 22328.42, + "end": 22330.16, + "probability": 0.6956 + }, + { + "start": 22330.16, + "end": 22330.39, + "probability": 0.231 + }, + { + "start": 22330.74, + "end": 22332.32, + "probability": 0.9078 + }, + { + "start": 22332.44, + "end": 22333.1, + "probability": 0.6461 + }, + { + "start": 22333.3, + "end": 22333.3, + "probability": 0.2777 + }, + { + "start": 22333.3, + "end": 22335.52, + "probability": 0.6693 + }, + { + "start": 22335.52, + "end": 22335.8, + "probability": 0.0857 + }, + { + "start": 22336.08, + "end": 22336.42, + "probability": 0.6893 + }, + { + "start": 22337.1, + "end": 22338.72, + "probability": 0.9326 + }, + { + "start": 22339.36, + "end": 22340.86, + "probability": 0.3082 + }, + { + "start": 22340.96, + "end": 22342.4, + "probability": 0.7649 + }, + { + "start": 22343.4, + "end": 22345.2, + "probability": 0.6129 + }, + { + "start": 22345.46, + "end": 22347.36, + "probability": 0.78 + }, + { + "start": 22347.36, + "end": 22350.7, + "probability": 0.2126 + }, + { + "start": 22350.78, + "end": 22352.8, + "probability": 0.9792 + }, + { + "start": 22353.28, + "end": 22353.68, + "probability": 0.7226 + }, + { + "start": 22357.5, + "end": 22359.49, + "probability": 0.788 + }, + { + "start": 22361.08, + "end": 22362.2, + "probability": 0.404 + }, + { + "start": 22362.34, + "end": 22362.58, + "probability": 0.1962 + }, + { + "start": 22362.62, + "end": 22363.8, + "probability": 0.7633 + }, + { + "start": 22364.26, + "end": 22365.64, + "probability": 0.9377 + }, + { + "start": 22366.7, + "end": 22368.94, + "probability": 0.3576 + }, + { + "start": 22369.0, + "end": 22371.68, + "probability": 0.1445 + }, + { + "start": 22372.42, + "end": 22374.36, + "probability": 0.2474 + }, + { + "start": 22376.22, + "end": 22376.22, + "probability": 0.367 + }, + { + "start": 22376.22, + "end": 22377.5, + "probability": 0.5026 + }, + { + "start": 22377.58, + "end": 22379.52, + "probability": 0.7934 + }, + { + "start": 22379.52, + "end": 22379.94, + "probability": 0.5714 + }, + { + "start": 22382.06, + "end": 22383.62, + "probability": 0.5038 + }, + { + "start": 22384.62, + "end": 22384.96, + "probability": 0.3874 + }, + { + "start": 22384.96, + "end": 22385.77, + "probability": 0.0113 + }, + { + "start": 22388.6, + "end": 22389.78, + "probability": 0.1096 + }, + { + "start": 22390.32, + "end": 22390.34, + "probability": 0.1596 + }, + { + "start": 22390.34, + "end": 22392.28, + "probability": 0.1755 + }, + { + "start": 22392.28, + "end": 22392.58, + "probability": 0.469 + }, + { + "start": 22394.16, + "end": 22394.16, + "probability": 0.1611 + }, + { + "start": 22394.72, + "end": 22395.92, + "probability": 0.1881 + }, + { + "start": 22396.42, + "end": 22399.64, + "probability": 0.5637 + }, + { + "start": 22400.74, + "end": 22401.3, + "probability": 0.7185 + }, + { + "start": 22402.14, + "end": 22405.4, + "probability": 0.1369 + }, + { + "start": 22405.4, + "end": 22406.8, + "probability": 0.1935 + }, + { + "start": 22407.22, + "end": 22407.78, + "probability": 0.3861 + }, + { + "start": 22409.82, + "end": 22413.07, + "probability": 0.1295 + }, + { + "start": 22414.0, + "end": 22414.7, + "probability": 0.0688 + }, + { + "start": 22415.88, + "end": 22418.56, + "probability": 0.1113 + }, + { + "start": 22420.24, + "end": 22427.84, + "probability": 0.0109 + }, + { + "start": 22428.0, + "end": 22428.0, + "probability": 0.0 + }, + { + "start": 22428.0, + "end": 22428.0, + "probability": 0.0 + }, + { + "start": 22428.0, + "end": 22428.0, + "probability": 0.0 + }, + { + "start": 22428.1, + "end": 22430.26, + "probability": 0.04 + }, + { + "start": 22431.82, + "end": 22432.42, + "probability": 0.0289 + }, + { + "start": 22435.06, + "end": 22435.78, + "probability": 0.1118 + }, + { + "start": 22436.36, + "end": 22436.54, + "probability": 0.2491 + }, + { + "start": 22436.54, + "end": 22437.1, + "probability": 0.247 + }, + { + "start": 22440.54, + "end": 22441.48, + "probability": 0.1576 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.0, + "end": 22548.0, + "probability": 0.0 + }, + { + "start": 22548.14, + "end": 22548.62, + "probability": 0.0395 + }, + { + "start": 22548.62, + "end": 22549.42, + "probability": 0.3225 + }, + { + "start": 22549.5, + "end": 22549.72, + "probability": 0.7245 + }, + { + "start": 22550.08, + "end": 22551.72, + "probability": 0.998 + }, + { + "start": 22552.74, + "end": 22555.56, + "probability": 0.9927 + }, + { + "start": 22555.92, + "end": 22556.2, + "probability": 0.5085 + }, + { + "start": 22556.42, + "end": 22560.54, + "probability": 0.9506 + }, + { + "start": 22561.1, + "end": 22564.56, + "probability": 0.998 + }, + { + "start": 22566.38, + "end": 22572.26, + "probability": 0.9253 + }, + { + "start": 22572.96, + "end": 22573.96, + "probability": 0.0198 + }, + { + "start": 22576.16, + "end": 22576.62, + "probability": 0.0208 + }, + { + "start": 22577.14, + "end": 22578.24, + "probability": 0.0363 + }, + { + "start": 22578.68, + "end": 22578.74, + "probability": 0.3717 + }, + { + "start": 22578.74, + "end": 22578.74, + "probability": 0.3267 + }, + { + "start": 22578.74, + "end": 22578.74, + "probability": 0.4277 + }, + { + "start": 22578.74, + "end": 22578.98, + "probability": 0.3282 + }, + { + "start": 22578.98, + "end": 22581.54, + "probability": 0.6801 + }, + { + "start": 22582.4, + "end": 22583.54, + "probability": 0.5996 + }, + { + "start": 22586.94, + "end": 22590.92, + "probability": 0.5935 + }, + { + "start": 22590.92, + "end": 22591.62, + "probability": 0.2576 + }, + { + "start": 22591.85, + "end": 22593.9, + "probability": 0.4083 + }, + { + "start": 22593.96, + "end": 22595.74, + "probability": 0.7177 + }, + { + "start": 22595.84, + "end": 22598.46, + "probability": 0.7737 + }, + { + "start": 22598.62, + "end": 22600.0, + "probability": 0.6993 + }, + { + "start": 22600.02, + "end": 22600.18, + "probability": 0.5822 + }, + { + "start": 22600.36, + "end": 22601.42, + "probability": 0.0333 + }, + { + "start": 22602.02, + "end": 22602.02, + "probability": 0.0664 + }, + { + "start": 22602.02, + "end": 22604.68, + "probability": 0.9812 + }, + { + "start": 22604.78, + "end": 22606.4, + "probability": 0.9653 + }, + { + "start": 22606.54, + "end": 22607.34, + "probability": 0.4357 + }, + { + "start": 22607.8, + "end": 22608.12, + "probability": 0.538 + }, + { + "start": 22608.12, + "end": 22608.12, + "probability": 0.3665 + }, + { + "start": 22608.26, + "end": 22608.72, + "probability": 0.4897 + }, + { + "start": 22608.82, + "end": 22609.88, + "probability": 0.5537 + }, + { + "start": 22610.02, + "end": 22612.34, + "probability": 0.9209 + }, + { + "start": 22613.56, + "end": 22614.66, + "probability": 0.7575 + }, + { + "start": 22615.44, + "end": 22615.84, + "probability": 0.3047 + }, + { + "start": 22615.84, + "end": 22617.84, + "probability": 0.2235 + }, + { + "start": 22617.84, + "end": 22617.84, + "probability": 0.5309 + }, + { + "start": 22617.84, + "end": 22618.66, + "probability": 0.255 + }, + { + "start": 22618.7, + "end": 22619.26, + "probability": 0.0228 + }, + { + "start": 22619.26, + "end": 22620.14, + "probability": 0.4894 + }, + { + "start": 22620.16, + "end": 22621.1, + "probability": 0.5369 + }, + { + "start": 22621.1, + "end": 22621.44, + "probability": 0.2822 + }, + { + "start": 22621.44, + "end": 22621.94, + "probability": 0.7959 + }, + { + "start": 22623.06, + "end": 22624.08, + "probability": 0.3933 + }, + { + "start": 22624.26, + "end": 22625.5, + "probability": 0.7526 + }, + { + "start": 22625.8, + "end": 22629.56, + "probability": 0.3221 + }, + { + "start": 22629.7, + "end": 22630.66, + "probability": 0.4558 + }, + { + "start": 22630.66, + "end": 22630.74, + "probability": 0.1817 + }, + { + "start": 22630.82, + "end": 22635.22, + "probability": 0.9668 + }, + { + "start": 22635.5, + "end": 22637.62, + "probability": 0.8785 + }, + { + "start": 22638.32, + "end": 22639.93, + "probability": 0.2404 + }, + { + "start": 22641.88, + "end": 22644.72, + "probability": 0.3957 + }, + { + "start": 22645.88, + "end": 22646.42, + "probability": 0.7867 + }, + { + "start": 22648.46, + "end": 22649.5, + "probability": 0.6606 + }, + { + "start": 22650.98, + "end": 22652.54, + "probability": 0.79 + }, + { + "start": 22653.2, + "end": 22653.94, + "probability": 0.993 + }, + { + "start": 22654.58, + "end": 22657.68, + "probability": 0.8889 + }, + { + "start": 22659.48, + "end": 22661.26, + "probability": 0.8826 + }, + { + "start": 22662.9, + "end": 22666.5, + "probability": 0.886 + }, + { + "start": 22668.26, + "end": 22671.24, + "probability": 0.9633 + }, + { + "start": 22672.24, + "end": 22674.33, + "probability": 0.2072 + }, + { + "start": 22676.52, + "end": 22678.04, + "probability": 0.814 + }, + { + "start": 22679.08, + "end": 22679.7, + "probability": 0.9642 + }, + { + "start": 22681.38, + "end": 22682.4, + "probability": 0.8658 + }, + { + "start": 22684.52, + "end": 22685.32, + "probability": 0.9481 + }, + { + "start": 22685.92, + "end": 22687.04, + "probability": 0.7371 + }, + { + "start": 22687.84, + "end": 22688.28, + "probability": 0.5337 + }, + { + "start": 22688.98, + "end": 22689.98, + "probability": 0.7257 + }, + { + "start": 22690.84, + "end": 22691.42, + "probability": 0.9207 + }, + { + "start": 22692.14, + "end": 22692.98, + "probability": 0.8838 + }, + { + "start": 22694.14, + "end": 22696.38, + "probability": 0.9431 + }, + { + "start": 22700.88, + "end": 22702.46, + "probability": 0.6562 + }, + { + "start": 22703.54, + "end": 22705.92, + "probability": 0.5047 + }, + { + "start": 22706.9, + "end": 22707.8, + "probability": 0.713 + }, + { + "start": 22711.42, + "end": 22712.26, + "probability": 0.8381 + }, + { + "start": 22713.06, + "end": 22713.98, + "probability": 0.8745 + }, + { + "start": 22716.12, + "end": 22716.64, + "probability": 0.9697 + }, + { + "start": 22718.58, + "end": 22719.42, + "probability": 0.9451 + }, + { + "start": 22720.48, + "end": 22720.92, + "probability": 0.916 + }, + { + "start": 22721.92, + "end": 22722.62, + "probability": 0.9868 + }, + { + "start": 22723.56, + "end": 22726.24, + "probability": 0.9247 + }, + { + "start": 22728.9, + "end": 22730.26, + "probability": 0.669 + }, + { + "start": 22733.7, + "end": 22734.94, + "probability": 0.7657 + }, + { + "start": 22736.06, + "end": 22736.84, + "probability": 0.6501 + }, + { + "start": 22738.36, + "end": 22740.66, + "probability": 0.6582 + }, + { + "start": 22741.8, + "end": 22742.26, + "probability": 0.7783 + }, + { + "start": 22743.08, + "end": 22743.78, + "probability": 0.8828 + }, + { + "start": 22745.0, + "end": 22745.56, + "probability": 0.9954 + }, + { + "start": 22746.36, + "end": 22747.08, + "probability": 0.8976 + }, + { + "start": 22748.28, + "end": 22751.76, + "probability": 0.8936 + }, + { + "start": 22755.86, + "end": 22757.62, + "probability": 0.9372 + }, + { + "start": 22758.34, + "end": 22759.4, + "probability": 0.2275 + }, + { + "start": 22768.02, + "end": 22769.54, + "probability": 0.6049 + }, + { + "start": 22776.96, + "end": 22779.18, + "probability": 0.6933 + }, + { + "start": 22779.96, + "end": 22780.7, + "probability": 0.7375 + }, + { + "start": 22782.38, + "end": 22783.32, + "probability": 0.9354 + }, + { + "start": 22783.88, + "end": 22784.82, + "probability": 0.7454 + }, + { + "start": 22785.52, + "end": 22785.98, + "probability": 0.7922 + }, + { + "start": 22786.98, + "end": 22787.72, + "probability": 0.8162 + }, + { + "start": 22795.58, + "end": 22796.66, + "probability": 0.5003 + }, + { + "start": 22797.68, + "end": 22798.58, + "probability": 0.5141 + }, + { + "start": 22799.74, + "end": 22800.16, + "probability": 0.8682 + }, + { + "start": 22801.38, + "end": 22802.44, + "probability": 0.8194 + }, + { + "start": 22802.96, + "end": 22803.42, + "probability": 0.9668 + }, + { + "start": 22804.14, + "end": 22804.96, + "probability": 0.8662 + }, + { + "start": 22808.56, + "end": 22810.84, + "probability": 0.7407 + }, + { + "start": 22811.56, + "end": 22812.74, + "probability": 0.9814 + }, + { + "start": 22814.06, + "end": 22815.22, + "probability": 0.9046 + }, + { + "start": 22817.74, + "end": 22820.0, + "probability": 0.7192 + }, + { + "start": 22821.72, + "end": 22822.54, + "probability": 0.7026 + }, + { + "start": 22823.16, + "end": 22825.26, + "probability": 0.8511 + }, + { + "start": 22826.93, + "end": 22829.02, + "probability": 0.7634 + }, + { + "start": 22829.96, + "end": 22832.56, + "probability": 0.9191 + }, + { + "start": 22836.94, + "end": 22837.32, + "probability": 0.7654 + }, + { + "start": 22837.84, + "end": 22838.96, + "probability": 0.7228 + }, + { + "start": 22839.62, + "end": 22840.12, + "probability": 0.7642 + }, + { + "start": 22840.86, + "end": 22842.06, + "probability": 0.8947 + }, + { + "start": 22844.54, + "end": 22846.54, + "probability": 0.7863 + }, + { + "start": 22847.9, + "end": 22848.42, + "probability": 0.9861 + }, + { + "start": 22849.54, + "end": 22850.34, + "probability": 0.5894 + }, + { + "start": 22851.94, + "end": 22854.4, + "probability": 0.8711 + }, + { + "start": 22855.26, + "end": 22855.66, + "probability": 0.9795 + }, + { + "start": 22856.6, + "end": 22857.14, + "probability": 0.8215 + }, + { + "start": 22858.52, + "end": 22858.8, + "probability": 0.9729 + }, + { + "start": 22859.46, + "end": 22860.24, + "probability": 0.6812 + }, + { + "start": 22861.76, + "end": 22862.3, + "probability": 0.7324 + }, + { + "start": 22863.28, + "end": 22864.04, + "probability": 0.7452 + }, + { + "start": 22865.7, + "end": 22866.24, + "probability": 0.9587 + }, + { + "start": 22866.98, + "end": 22868.2, + "probability": 0.7803 + }, + { + "start": 22869.08, + "end": 22870.12, + "probability": 0.978 + }, + { + "start": 22871.08, + "end": 22872.2, + "probability": 0.9514 + }, + { + "start": 22872.82, + "end": 22874.92, + "probability": 0.9641 + }, + { + "start": 22877.42, + "end": 22879.94, + "probability": 0.8804 + }, + { + "start": 22880.96, + "end": 22881.38, + "probability": 0.9937 + }, + { + "start": 22882.64, + "end": 22883.78, + "probability": 0.942 + }, + { + "start": 22884.44, + "end": 22884.84, + "probability": 0.9895 + }, + { + "start": 22886.54, + "end": 22887.36, + "probability": 0.9163 + }, + { + "start": 22888.28, + "end": 22888.78, + "probability": 0.9717 + }, + { + "start": 22889.68, + "end": 22890.4, + "probability": 0.5979 + }, + { + "start": 22891.04, + "end": 22891.84, + "probability": 0.9852 + }, + { + "start": 22892.6, + "end": 22893.38, + "probability": 0.8977 + }, + { + "start": 22895.21, + "end": 22897.18, + "probability": 0.885 + }, + { + "start": 22902.9, + "end": 22903.24, + "probability": 0.7643 + }, + { + "start": 22903.96, + "end": 22906.38, + "probability": 0.731 + }, + { + "start": 22907.76, + "end": 22909.2, + "probability": 0.554 + }, + { + "start": 22910.26, + "end": 22911.52, + "probability": 0.8565 + }, + { + "start": 22913.37, + "end": 22914.92, + "probability": 0.95 + }, + { + "start": 22915.66, + "end": 22917.9, + "probability": 0.9372 + }, + { + "start": 22919.1, + "end": 22919.7, + "probability": 0.9575 + }, + { + "start": 22920.9, + "end": 22921.66, + "probability": 0.8776 + }, + { + "start": 22923.78, + "end": 22926.28, + "probability": 0.072 + }, + { + "start": 22934.86, + "end": 22935.1, + "probability": 0.5212 + }, + { + "start": 22950.52, + "end": 22952.4, + "probability": 0.3682 + }, + { + "start": 22953.52, + "end": 22953.8, + "probability": 0.5 + }, + { + "start": 22954.54, + "end": 22955.66, + "probability": 0.9785 + }, + { + "start": 22956.3, + "end": 22958.84, + "probability": 0.8126 + }, + { + "start": 22962.04, + "end": 22964.26, + "probability": 0.7407 + }, + { + "start": 22965.54, + "end": 22966.02, + "probability": 0.9482 + }, + { + "start": 22967.3, + "end": 22968.56, + "probability": 0.6974 + }, + { + "start": 22969.4, + "end": 22969.82, + "probability": 0.5894 + }, + { + "start": 22970.64, + "end": 22971.62, + "probability": 0.5734 + }, + { + "start": 22973.76, + "end": 22976.16, + "probability": 0.9814 + }, + { + "start": 22976.72, + "end": 22978.96, + "probability": 0.8781 + }, + { + "start": 22985.08, + "end": 22985.64, + "probability": 0.7935 + }, + { + "start": 22987.46, + "end": 22988.28, + "probability": 0.8959 + }, + { + "start": 22989.6, + "end": 22990.2, + "probability": 0.9813 + }, + { + "start": 22991.6, + "end": 22992.34, + "probability": 0.8409 + }, + { + "start": 22995.54, + "end": 22996.46, + "probability": 0.0585 + }, + { + "start": 22998.98, + "end": 23000.56, + "probability": 0.0844 + }, + { + "start": 23002.94, + "end": 23004.04, + "probability": 0.5181 + }, + { + "start": 23005.88, + "end": 23006.86, + "probability": 0.8283 + }, + { + "start": 23008.16, + "end": 23008.64, + "probability": 0.756 + }, + { + "start": 23009.46, + "end": 23010.34, + "probability": 0.8772 + }, + { + "start": 23011.48, + "end": 23011.82, + "probability": 0.9309 + }, + { + "start": 23013.08, + "end": 23014.2, + "probability": 0.9548 + }, + { + "start": 23016.62, + "end": 23019.32, + "probability": 0.7162 + }, + { + "start": 23021.36, + "end": 23021.82, + "probability": 0.9719 + }, + { + "start": 23023.68, + "end": 23025.3, + "probability": 0.9722 + }, + { + "start": 23026.14, + "end": 23027.1, + "probability": 0.6415 + }, + { + "start": 23029.18, + "end": 23029.7, + "probability": 0.7899 + }, + { + "start": 23031.48, + "end": 23032.22, + "probability": 0.6703 + }, + { + "start": 23034.8, + "end": 23035.9, + "probability": 0.848 + }, + { + "start": 23037.02, + "end": 23037.84, + "probability": 0.8336 + }, + { + "start": 23040.54, + "end": 23042.88, + "probability": 0.7601 + }, + { + "start": 23044.12, + "end": 23044.54, + "probability": 0.9531 + }, + { + "start": 23046.26, + "end": 23047.22, + "probability": 0.7383 + }, + { + "start": 23048.2, + "end": 23048.78, + "probability": 0.9941 + }, + { + "start": 23049.86, + "end": 23050.84, + "probability": 0.6835 + }, + { + "start": 23051.84, + "end": 23052.38, + "probability": 0.9914 + }, + { + "start": 23053.86, + "end": 23054.82, + "probability": 0.5939 + }, + { + "start": 23062.68, + "end": 23066.14, + "probability": 0.5805 + }, + { + "start": 23067.16, + "end": 23069.46, + "probability": 0.5502 + }, + { + "start": 23071.9, + "end": 23072.58, + "probability": 0.9502 + }, + { + "start": 23075.54, + "end": 23076.26, + "probability": 0.6372 + }, + { + "start": 23077.56, + "end": 23078.1, + "probability": 0.9303 + }, + { + "start": 23078.76, + "end": 23081.74, + "probability": 0.7939 + }, + { + "start": 23083.26, + "end": 23083.88, + "probability": 0.9948 + }, + { + "start": 23085.84, + "end": 23086.78, + "probability": 0.9726 + }, + { + "start": 23088.08, + "end": 23088.54, + "probability": 0.9346 + }, + { + "start": 23089.58, + "end": 23090.4, + "probability": 0.8425 + }, + { + "start": 23093.98, + "end": 23094.46, + "probability": 0.9878 + }, + { + "start": 23095.48, + "end": 23096.46, + "probability": 0.8769 + }, + { + "start": 23100.6, + "end": 23101.08, + "probability": 0.9927 + }, + { + "start": 23102.12, + "end": 23102.82, + "probability": 0.6515 + }, + { + "start": 23103.92, + "end": 23104.52, + "probability": 0.6914 + }, + { + "start": 23105.9, + "end": 23106.68, + "probability": 0.755 + }, + { + "start": 23107.5, + "end": 23108.0, + "probability": 0.9287 + }, + { + "start": 23108.96, + "end": 23109.86, + "probability": 0.7809 + }, + { + "start": 23111.24, + "end": 23111.84, + "probability": 0.9722 + }, + { + "start": 23112.84, + "end": 23113.62, + "probability": 0.8657 + }, + { + "start": 23115.48, + "end": 23116.46, + "probability": 0.8454 + }, + { + "start": 23117.12, + "end": 23117.9, + "probability": 0.8273 + }, + { + "start": 23123.68, + "end": 23125.36, + "probability": 0.6361 + }, + { + "start": 23128.94, + "end": 23129.24, + "probability": 0.7593 + }, + { + "start": 23130.38, + "end": 23131.46, + "probability": 0.8069 + }, + { + "start": 23132.58, + "end": 23133.06, + "probability": 0.7681 + }, + { + "start": 23133.98, + "end": 23135.02, + "probability": 0.9661 + }, + { + "start": 23136.6, + "end": 23138.48, + "probability": 0.9529 + }, + { + "start": 23139.47, + "end": 23142.34, + "probability": 0.9662 + }, + { + "start": 23143.28, + "end": 23143.82, + "probability": 0.9951 + }, + { + "start": 23144.68, + "end": 23145.88, + "probability": 0.815 + }, + { + "start": 23146.68, + "end": 23147.14, + "probability": 0.9934 + }, + { + "start": 23148.0, + "end": 23149.22, + "probability": 0.8947 + }, + { + "start": 23150.1, + "end": 23150.36, + "probability": 0.9902 + }, + { + "start": 23151.3, + "end": 23152.24, + "probability": 0.9792 + }, + { + "start": 23152.9, + "end": 23153.38, + "probability": 0.9949 + }, + { + "start": 23154.38, + "end": 23155.2, + "probability": 0.7283 + }, + { + "start": 23157.54, + "end": 23158.12, + "probability": 0.7107 + }, + { + "start": 23158.88, + "end": 23159.66, + "probability": 0.6191 + }, + { + "start": 23161.12, + "end": 23161.78, + "probability": 0.9774 + }, + { + "start": 23162.66, + "end": 23163.66, + "probability": 0.9269 + }, + { + "start": 23165.02, + "end": 23165.58, + "probability": 0.7583 + }, + { + "start": 23166.64, + "end": 23167.5, + "probability": 0.7611 + }, + { + "start": 23169.76, + "end": 23172.18, + "probability": 0.9718 + }, + { + "start": 23173.06, + "end": 23173.6, + "probability": 0.9839 + }, + { + "start": 23174.46, + "end": 23175.54, + "probability": 0.8929 + }, + { + "start": 23176.44, + "end": 23177.82, + "probability": 0.9292 + }, + { + "start": 23178.46, + "end": 23179.28, + "probability": 0.8532 + }, + { + "start": 23182.9, + "end": 23183.86, + "probability": 0.2944 + }, + { + "start": 23188.12, + "end": 23188.54, + "probability": 0.5485 + }, + { + "start": 23189.16, + "end": 23190.36, + "probability": 0.6985 + }, + { + "start": 23191.2, + "end": 23191.76, + "probability": 0.9694 + }, + { + "start": 23193.26, + "end": 23197.16, + "probability": 0.6895 + }, + { + "start": 23198.24, + "end": 23198.96, + "probability": 0.5453 + }, + { + "start": 23199.74, + "end": 23200.22, + "probability": 0.9741 + }, + { + "start": 23202.0, + "end": 23202.92, + "probability": 0.2641 + }, + { + "start": 23204.56, + "end": 23208.46, + "probability": 0.697 + }, + { + "start": 23215.28, + "end": 23215.56, + "probability": 0.7301 + }, + { + "start": 23217.28, + "end": 23218.14, + "probability": 0.5074 + }, + { + "start": 23219.32, + "end": 23222.26, + "probability": 0.9395 + }, + { + "start": 23223.14, + "end": 23223.56, + "probability": 0.7599 + }, + { + "start": 23225.08, + "end": 23225.82, + "probability": 0.5762 + }, + { + "start": 23226.86, + "end": 23227.5, + "probability": 0.9611 + }, + { + "start": 23229.32, + "end": 23230.28, + "probability": 0.7099 + }, + { + "start": 23232.48, + "end": 23233.02, + "probability": 0.965 + }, + { + "start": 23235.72, + "end": 23236.5, + "probability": 0.6051 + }, + { + "start": 23237.42, + "end": 23237.94, + "probability": 0.9295 + }, + { + "start": 23240.0, + "end": 23240.94, + "probability": 0.7431 + }, + { + "start": 23241.74, + "end": 23242.98, + "probability": 0.9959 + }, + { + "start": 23244.18, + "end": 23245.32, + "probability": 0.9822 + }, + { + "start": 23248.02, + "end": 23248.42, + "probability": 0.689 + }, + { + "start": 23251.34, + "end": 23251.96, + "probability": 0.6366 + }, + { + "start": 23255.54, + "end": 23256.5, + "probability": 0.5006 + }, + { + "start": 23258.44, + "end": 23259.18, + "probability": 0.6286 + }, + { + "start": 23260.08, + "end": 23260.52, + "probability": 0.5337 + }, + { + "start": 23264.06, + "end": 23264.7, + "probability": 0.4744 + }, + { + "start": 23267.24, + "end": 23267.78, + "probability": 0.8472 + }, + { + "start": 23270.9, + "end": 23271.84, + "probability": 0.6524 + }, + { + "start": 23273.26, + "end": 23275.38, + "probability": 0.7783 + }, + { + "start": 23280.34, + "end": 23280.7, + "probability": 0.7729 + }, + { + "start": 23283.8, + "end": 23284.52, + "probability": 0.5361 + }, + { + "start": 23285.6, + "end": 23286.22, + "probability": 0.9315 + }, + { + "start": 23289.0, + "end": 23289.28, + "probability": 0.7524 + }, + { + "start": 23292.56, + "end": 23293.74, + "probability": 0.5566 + }, + { + "start": 23297.46, + "end": 23299.3, + "probability": 0.6645 + }, + { + "start": 23299.98, + "end": 23300.76, + "probability": 0.4357 + }, + { + "start": 23303.32, + "end": 23304.28, + "probability": 0.9365 + }, + { + "start": 23305.16, + "end": 23306.04, + "probability": 0.7384 + }, + { + "start": 23309.04, + "end": 23314.48, + "probability": 0.0602 + }, + { + "start": 23314.78, + "end": 23315.34, + "probability": 0.2929 + }, + { + "start": 23315.5, + "end": 23318.32, + "probability": 0.2979 + }, + { + "start": 23319.98, + "end": 23329.62, + "probability": 0.2396 + }, + { + "start": 23331.48, + "end": 23332.52, + "probability": 0.6477 + }, + { + "start": 23332.6, + "end": 23332.78, + "probability": 0.722 + }, + { + "start": 23338.16, + "end": 23341.82, + "probability": 0.0959 + }, + { + "start": 23342.54, + "end": 23343.26, + "probability": 0.1061 + }, + { + "start": 23357.1, + "end": 23361.04, + "probability": 0.0353 + }, + { + "start": 23505.12, + "end": 23505.3, + "probability": 0.0247 + }, + { + "start": 23505.3, + "end": 23505.3, + "probability": 0.0478 + }, + { + "start": 23505.3, + "end": 23506.7, + "probability": 0.5804 + }, + { + "start": 23507.64, + "end": 23508.44, + "probability": 0.1238 + }, + { + "start": 23509.66, + "end": 23509.8, + "probability": 0.4917 + }, + { + "start": 23509.8, + "end": 23511.18, + "probability": 0.4607 + }, + { + "start": 23511.64, + "end": 23512.4, + "probability": 0.5958 + }, + { + "start": 23513.32, + "end": 23519.62, + "probability": 0.9619 + }, + { + "start": 23520.28, + "end": 23522.7, + "probability": 0.7694 + }, + { + "start": 23524.12, + "end": 23525.8, + "probability": 0.8785 + }, + { + "start": 23543.22, + "end": 23546.82, + "probability": 0.9843 + }, + { + "start": 23546.96, + "end": 23551.18, + "probability": 0.516 + }, + { + "start": 23551.88, + "end": 23554.57, + "probability": 0.9307 + }, + { + "start": 23555.16, + "end": 23560.6, + "probability": 0.5889 + }, + { + "start": 23561.28, + "end": 23564.06, + "probability": 0.3789 + }, + { + "start": 23565.14, + "end": 23567.54, + "probability": 0.4938 + }, + { + "start": 23567.66, + "end": 23571.4, + "probability": 0.9239 + }, + { + "start": 23572.1, + "end": 23575.06, + "probability": 0.9024 + }, + { + "start": 23586.6, + "end": 23587.6, + "probability": 0.6897 + }, + { + "start": 23588.24, + "end": 23589.04, + "probability": 0.8464 + }, + { + "start": 23589.82, + "end": 23593.6, + "probability": 0.9873 + }, + { + "start": 23594.34, + "end": 23598.48, + "probability": 0.7506 + }, + { + "start": 23599.18, + "end": 23601.62, + "probability": 0.4991 + }, + { + "start": 23602.34, + "end": 23606.46, + "probability": 0.9128 + }, + { + "start": 23607.16, + "end": 23610.14, + "probability": 0.6689 + }, + { + "start": 23610.52, + "end": 23615.4, + "probability": 0.9836 + }, + { + "start": 23615.4, + "end": 23620.92, + "probability": 0.9939 + }, + { + "start": 23620.92, + "end": 23626.22, + "probability": 0.9995 + }, + { + "start": 23627.06, + "end": 23630.08, + "probability": 0.9913 + }, + { + "start": 23630.1, + "end": 23631.24, + "probability": 0.4165 + }, + { + "start": 23632.14, + "end": 23633.22, + "probability": 0.9805 + }, + { + "start": 23634.04, + "end": 23638.66, + "probability": 0.994 + }, + { + "start": 23639.7, + "end": 23643.48, + "probability": 0.9505 + }, + { + "start": 23643.48, + "end": 23647.58, + "probability": 0.9948 + }, + { + "start": 23647.76, + "end": 23649.56, + "probability": 0.9788 + }, + { + "start": 23650.0, + "end": 23652.6, + "probability": 0.9836 + }, + { + "start": 23653.36, + "end": 23655.88, + "probability": 0.9691 + }, + { + "start": 23656.96, + "end": 23661.88, + "probability": 0.9735 + }, + { + "start": 23662.84, + "end": 23666.0, + "probability": 0.9956 + }, + { + "start": 23666.68, + "end": 23669.44, + "probability": 0.9774 + }, + { + "start": 23670.46, + "end": 23671.48, + "probability": 0.8357 + }, + { + "start": 23672.14, + "end": 23675.26, + "probability": 0.8378 + }, + { + "start": 23675.4, + "end": 23678.46, + "probability": 0.995 + }, + { + "start": 23678.46, + "end": 23682.96, + "probability": 0.9943 + }, + { + "start": 23683.56, + "end": 23686.38, + "probability": 0.9991 + }, + { + "start": 23686.38, + "end": 23689.34, + "probability": 0.999 + }, + { + "start": 23689.8, + "end": 23693.72, + "probability": 0.9477 + }, + { + "start": 23695.4, + "end": 23698.2, + "probability": 0.994 + }, + { + "start": 23698.74, + "end": 23701.04, + "probability": 0.999 + }, + { + "start": 23701.86, + "end": 23702.34, + "probability": 0.573 + }, + { + "start": 23702.38, + "end": 23709.44, + "probability": 0.9948 + }, + { + "start": 23709.96, + "end": 23710.86, + "probability": 0.2788 + }, + { + "start": 23710.86, + "end": 23714.94, + "probability": 0.9396 + }, + { + "start": 23715.62, + "end": 23717.94, + "probability": 0.9977 + }, + { + "start": 23718.54, + "end": 23720.84, + "probability": 0.9958 + }, + { + "start": 23720.84, + "end": 23723.76, + "probability": 0.9424 + }, + { + "start": 23724.24, + "end": 23730.1, + "probability": 0.9954 + }, + { + "start": 23732.0, + "end": 23733.6, + "probability": 0.7939 + }, + { + "start": 23734.26, + "end": 23736.02, + "probability": 0.5098 + }, + { + "start": 23736.5, + "end": 23739.12, + "probability": 0.979 + }, + { + "start": 23739.12, + "end": 23742.48, + "probability": 0.9779 + }, + { + "start": 23743.14, + "end": 23746.72, + "probability": 0.9912 + }, + { + "start": 23747.56, + "end": 23750.74, + "probability": 0.9906 + }, + { + "start": 23750.74, + "end": 23757.44, + "probability": 0.9934 + }, + { + "start": 23758.28, + "end": 23762.74, + "probability": 0.993 + }, + { + "start": 23763.06, + "end": 23765.24, + "probability": 0.8823 + }, + { + "start": 23765.62, + "end": 23767.94, + "probability": 0.968 + }, + { + "start": 23768.8, + "end": 23772.02, + "probability": 0.9897 + }, + { + "start": 23772.66, + "end": 23774.98, + "probability": 0.9894 + }, + { + "start": 23775.36, + "end": 23777.38, + "probability": 0.9983 + }, + { + "start": 23778.86, + "end": 23783.5, + "probability": 0.9795 + }, + { + "start": 23784.96, + "end": 23790.08, + "probability": 0.9824 + }, + { + "start": 23790.78, + "end": 23794.78, + "probability": 0.9963 + }, + { + "start": 23795.04, + "end": 23796.74, + "probability": 0.7002 + }, + { + "start": 23797.22, + "end": 23801.68, + "probability": 0.9894 + }, + { + "start": 23802.02, + "end": 23805.34, + "probability": 0.9503 + }, + { + "start": 23806.04, + "end": 23808.18, + "probability": 0.9953 + }, + { + "start": 23808.18, + "end": 23811.66, + "probability": 0.9929 + }, + { + "start": 23812.46, + "end": 23813.26, + "probability": 0.6417 + }, + { + "start": 23813.8, + "end": 23818.18, + "probability": 0.9972 + }, + { + "start": 23819.98, + "end": 23823.1, + "probability": 0.6395 + }, + { + "start": 23823.7, + "end": 23825.48, + "probability": 0.9342 + }, + { + "start": 23826.26, + "end": 23829.92, + "probability": 0.9671 + }, + { + "start": 23829.92, + "end": 23833.14, + "probability": 0.963 + }, + { + "start": 23834.12, + "end": 23837.16, + "probability": 0.8581 + }, + { + "start": 23837.16, + "end": 23839.94, + "probability": 0.9834 + }, + { + "start": 23840.08, + "end": 23844.88, + "probability": 0.9858 + }, + { + "start": 23845.76, + "end": 23846.6, + "probability": 0.9988 + }, + { + "start": 23847.14, + "end": 23849.16, + "probability": 0.9958 + }, + { + "start": 23849.6, + "end": 23853.38, + "probability": 0.9979 + }, + { + "start": 23853.8, + "end": 23857.36, + "probability": 0.9912 + }, + { + "start": 23858.66, + "end": 23862.82, + "probability": 0.7946 + }, + { + "start": 23863.28, + "end": 23865.52, + "probability": 0.9824 + }, + { + "start": 23865.52, + "end": 23868.62, + "probability": 0.9985 + }, + { + "start": 23869.3, + "end": 23874.1, + "probability": 0.9973 + }, + { + "start": 23875.02, + "end": 23878.02, + "probability": 0.9951 + }, + { + "start": 23878.46, + "end": 23880.56, + "probability": 0.9873 + }, + { + "start": 23881.32, + "end": 23884.42, + "probability": 0.8611 + }, + { + "start": 23884.96, + "end": 23886.42, + "probability": 0.9663 + }, + { + "start": 23886.42, + "end": 23889.78, + "probability": 0.9972 + }, + { + "start": 23891.62, + "end": 23896.06, + "probability": 0.9973 + }, + { + "start": 23896.66, + "end": 23900.53, + "probability": 0.9982 + }, + { + "start": 23900.6, + "end": 23904.8, + "probability": 0.9973 + }, + { + "start": 23905.3, + "end": 23906.22, + "probability": 0.6971 + }, + { + "start": 23906.94, + "end": 23910.82, + "probability": 0.7853 + }, + { + "start": 23911.72, + "end": 23913.72, + "probability": 0.9984 + }, + { + "start": 23913.72, + "end": 23917.24, + "probability": 0.9956 + }, + { + "start": 23917.74, + "end": 23922.06, + "probability": 0.9349 + }, + { + "start": 23922.68, + "end": 23927.25, + "probability": 0.9922 + }, + { + "start": 23928.22, + "end": 23930.28, + "probability": 0.9986 + }, + { + "start": 23930.38, + "end": 23932.42, + "probability": 0.9308 + }, + { + "start": 23933.06, + "end": 23937.56, + "probability": 0.9698 + }, + { + "start": 23938.94, + "end": 23941.28, + "probability": 0.9131 + }, + { + "start": 23941.92, + "end": 23943.96, + "probability": 0.9925 + }, + { + "start": 23944.48, + "end": 23945.34, + "probability": 0.9696 + }, + { + "start": 23946.54, + "end": 23946.8, + "probability": 0.2572 + }, + { + "start": 23946.8, + "end": 23947.9, + "probability": 0.8345 + }, + { + "start": 23948.56, + "end": 23951.26, + "probability": 0.9326 + }, + { + "start": 23951.34, + "end": 23952.4, + "probability": 0.9537 + }, + { + "start": 23965.46, + "end": 23965.88, + "probability": 0.7309 + }, + { + "start": 23965.9, + "end": 23967.64, + "probability": 0.2694 + }, + { + "start": 23983.05, + "end": 23983.8, + "probability": 0.5085 + }, + { + "start": 23984.5, + "end": 23984.72, + "probability": 0.6106 + }, + { + "start": 23987.38, + "end": 23989.46, + "probability": 0.8307 + }, + { + "start": 23989.6, + "end": 23994.74, + "probability": 0.8502 + }, + { + "start": 23995.86, + "end": 23997.66, + "probability": 0.9764 + }, + { + "start": 23998.3, + "end": 23999.08, + "probability": 0.7335 + }, + { + "start": 24000.06, + "end": 24003.34, + "probability": 0.9939 + }, + { + "start": 24004.06, + "end": 24006.34, + "probability": 0.9979 + }, + { + "start": 24007.1, + "end": 24007.86, + "probability": 0.967 + }, + { + "start": 24008.94, + "end": 24012.98, + "probability": 0.9963 + }, + { + "start": 24013.6, + "end": 24017.04, + "probability": 0.9302 + }, + { + "start": 24017.86, + "end": 24022.12, + "probability": 0.9467 + }, + { + "start": 24022.68, + "end": 24025.3, + "probability": 0.8936 + }, + { + "start": 24026.22, + "end": 24029.72, + "probability": 0.9395 + }, + { + "start": 24030.9, + "end": 24033.56, + "probability": 0.9806 + }, + { + "start": 24034.46, + "end": 24039.86, + "probability": 0.9946 + }, + { + "start": 24040.46, + "end": 24041.2, + "probability": 0.72 + }, + { + "start": 24041.46, + "end": 24042.1, + "probability": 0.9308 + }, + { + "start": 24042.26, + "end": 24044.24, + "probability": 0.7987 + }, + { + "start": 24044.24, + "end": 24045.44, + "probability": 0.7623 + }, + { + "start": 24046.12, + "end": 24049.48, + "probability": 0.9885 + }, + { + "start": 24049.48, + "end": 24054.52, + "probability": 0.8718 + }, + { + "start": 24056.48, + "end": 24061.92, + "probability": 0.9014 + }, + { + "start": 24062.04, + "end": 24063.14, + "probability": 0.8359 + }, + { + "start": 24063.62, + "end": 24065.82, + "probability": 0.9484 + }, + { + "start": 24066.8, + "end": 24068.54, + "probability": 0.995 + }, + { + "start": 24070.08, + "end": 24074.88, + "probability": 0.9883 + }, + { + "start": 24076.5, + "end": 24077.7, + "probability": 0.938 + }, + { + "start": 24078.48, + "end": 24080.14, + "probability": 0.9094 + }, + { + "start": 24080.9, + "end": 24082.2, + "probability": 0.9895 + }, + { + "start": 24082.56, + "end": 24086.72, + "probability": 0.9011 + }, + { + "start": 24087.8, + "end": 24088.72, + "probability": 0.5809 + }, + { + "start": 24091.56, + "end": 24094.76, + "probability": 0.981 + }, + { + "start": 24094.98, + "end": 24096.82, + "probability": 0.9921 + }, + { + "start": 24097.48, + "end": 24102.48, + "probability": 0.9952 + }, + { + "start": 24103.6, + "end": 24105.3, + "probability": 0.9821 + }, + { + "start": 24105.42, + "end": 24107.34, + "probability": 0.957 + }, + { + "start": 24107.92, + "end": 24109.36, + "probability": 0.9271 + }, + { + "start": 24110.58, + "end": 24117.7, + "probability": 0.9818 + }, + { + "start": 24118.34, + "end": 24120.64, + "probability": 0.954 + }, + { + "start": 24120.8, + "end": 24124.08, + "probability": 0.9081 + }, + { + "start": 24124.08, + "end": 24128.92, + "probability": 0.986 + }, + { + "start": 24130.1, + "end": 24131.3, + "probability": 0.8744 + }, + { + "start": 24131.58, + "end": 24137.34, + "probability": 0.9771 + }, + { + "start": 24137.72, + "end": 24140.4, + "probability": 0.965 + }, + { + "start": 24141.04, + "end": 24144.53, + "probability": 0.9708 + }, + { + "start": 24144.82, + "end": 24146.16, + "probability": 0.5062 + }, + { + "start": 24147.13, + "end": 24153.86, + "probability": 0.9809 + }, + { + "start": 24154.48, + "end": 24159.16, + "probability": 0.9507 + }, + { + "start": 24160.02, + "end": 24167.36, + "probability": 0.9315 + }, + { + "start": 24167.8, + "end": 24171.16, + "probability": 0.8625 + }, + { + "start": 24171.86, + "end": 24173.78, + "probability": 0.9929 + }, + { + "start": 24174.14, + "end": 24174.4, + "probability": 0.7789 + }, + { + "start": 24174.5, + "end": 24175.16, + "probability": 0.8761 + }, + { + "start": 24175.6, + "end": 24176.28, + "probability": 0.6199 + }, + { + "start": 24176.3, + "end": 24180.8, + "probability": 0.9959 + }, + { + "start": 24182.16, + "end": 24184.16, + "probability": 0.8042 + }, + { + "start": 24184.82, + "end": 24190.24, + "probability": 0.9403 + }, + { + "start": 24190.66, + "end": 24191.8, + "probability": 0.8583 + }, + { + "start": 24192.26, + "end": 24195.72, + "probability": 0.9932 + }, + { + "start": 24196.1, + "end": 24198.7, + "probability": 0.9689 + }, + { + "start": 24199.14, + "end": 24199.51, + "probability": 0.9804 + }, + { + "start": 24200.62, + "end": 24201.01, + "probability": 0.9199 + }, + { + "start": 24201.76, + "end": 24202.98, + "probability": 0.9509 + }, + { + "start": 24203.18, + "end": 24203.46, + "probability": 0.8387 + }, + { + "start": 24205.9, + "end": 24207.2, + "probability": 0.7802 + }, + { + "start": 24220.28, + "end": 24220.28, + "probability": 0.1521 + }, + { + "start": 24220.28, + "end": 24220.3, + "probability": 0.1459 + }, + { + "start": 24220.3, + "end": 24220.3, + "probability": 0.1049 + }, + { + "start": 24220.3, + "end": 24220.3, + "probability": 0.1389 + }, + { + "start": 24220.3, + "end": 24220.3, + "probability": 0.1906 + }, + { + "start": 24220.3, + "end": 24220.3, + "probability": 0.1994 + }, + { + "start": 24246.0, + "end": 24248.32, + "probability": 0.481 + }, + { + "start": 24249.6, + "end": 24251.58, + "probability": 0.6965 + }, + { + "start": 24252.82, + "end": 24255.26, + "probability": 0.991 + }, + { + "start": 24260.36, + "end": 24261.5, + "probability": 0.3779 + }, + { + "start": 24262.06, + "end": 24262.6, + "probability": 0.6734 + }, + { + "start": 24263.8, + "end": 24267.12, + "probability": 0.9192 + }, + { + "start": 24268.38, + "end": 24269.14, + "probability": 0.9292 + }, + { + "start": 24270.32, + "end": 24271.06, + "probability": 0.959 + }, + { + "start": 24272.12, + "end": 24273.04, + "probability": 0.9858 + }, + { + "start": 24273.72, + "end": 24275.48, + "probability": 0.9767 + }, + { + "start": 24276.56, + "end": 24276.94, + "probability": 0.9111 + }, + { + "start": 24277.52, + "end": 24278.2, + "probability": 0.2034 + }, + { + "start": 24278.58, + "end": 24283.16, + "probability": 0.9916 + }, + { + "start": 24284.72, + "end": 24286.14, + "probability": 0.9712 + }, + { + "start": 24286.86, + "end": 24287.42, + "probability": 0.8225 + }, + { + "start": 24288.22, + "end": 24292.24, + "probability": 0.9854 + }, + { + "start": 24293.6, + "end": 24295.3, + "probability": 0.9561 + }, + { + "start": 24296.12, + "end": 24296.86, + "probability": 0.6689 + }, + { + "start": 24297.46, + "end": 24299.4, + "probability": 0.7933 + }, + { + "start": 24300.02, + "end": 24302.42, + "probability": 0.9973 + }, + { + "start": 24303.48, + "end": 24306.46, + "probability": 0.9849 + }, + { + "start": 24308.06, + "end": 24309.76, + "probability": 0.952 + }, + { + "start": 24310.58, + "end": 24314.92, + "probability": 0.7366 + }, + { + "start": 24315.56, + "end": 24316.9, + "probability": 0.994 + }, + { + "start": 24317.82, + "end": 24323.18, + "probability": 0.9832 + }, + { + "start": 24323.52, + "end": 24325.72, + "probability": 0.8337 + }, + { + "start": 24326.82, + "end": 24327.52, + "probability": 0.8644 + }, + { + "start": 24329.16, + "end": 24333.26, + "probability": 0.8134 + }, + { + "start": 24334.0, + "end": 24334.56, + "probability": 0.8863 + }, + { + "start": 24335.14, + "end": 24336.86, + "probability": 0.7668 + }, + { + "start": 24337.52, + "end": 24341.08, + "probability": 0.746 + }, + { + "start": 24342.04, + "end": 24346.2, + "probability": 0.8856 + }, + { + "start": 24346.82, + "end": 24349.58, + "probability": 0.9777 + }, + { + "start": 24349.82, + "end": 24351.14, + "probability": 0.9032 + }, + { + "start": 24351.24, + "end": 24351.68, + "probability": 0.8654 + }, + { + "start": 24352.42, + "end": 24353.74, + "probability": 0.9725 + }, + { + "start": 24354.8, + "end": 24356.52, + "probability": 0.9861 + }, + { + "start": 24356.98, + "end": 24360.14, + "probability": 0.8964 + }, + { + "start": 24360.98, + "end": 24361.58, + "probability": 0.859 + }, + { + "start": 24362.76, + "end": 24363.36, + "probability": 0.8544 + }, + { + "start": 24364.16, + "end": 24366.38, + "probability": 0.9818 + }, + { + "start": 24367.88, + "end": 24371.16, + "probability": 0.9849 + }, + { + "start": 24372.12, + "end": 24375.0, + "probability": 0.937 + }, + { + "start": 24376.32, + "end": 24378.52, + "probability": 0.9974 + }, + { + "start": 24379.16, + "end": 24380.94, + "probability": 0.9548 + }, + { + "start": 24381.32, + "end": 24382.44, + "probability": 0.9456 + }, + { + "start": 24382.9, + "end": 24383.86, + "probability": 0.8406 + }, + { + "start": 24384.74, + "end": 24388.94, + "probability": 0.9888 + }, + { + "start": 24390.94, + "end": 24392.3, + "probability": 0.9609 + }, + { + "start": 24395.4, + "end": 24397.56, + "probability": 0.944 + }, + { + "start": 24410.38, + "end": 24411.16, + "probability": 0.1542 + }, + { + "start": 24411.16, + "end": 24411.24, + "probability": 0.1585 + }, + { + "start": 24411.24, + "end": 24411.52, + "probability": 0.0739 + }, + { + "start": 24411.84, + "end": 24412.24, + "probability": 0.007 + }, + { + "start": 24431.66, + "end": 24433.66, + "probability": 0.9927 + }, + { + "start": 24434.32, + "end": 24437.3, + "probability": 0.9932 + }, + { + "start": 24438.0, + "end": 24438.76, + "probability": 0.8662 + }, + { + "start": 24439.34, + "end": 24440.08, + "probability": 0.9119 + }, + { + "start": 24441.38, + "end": 24442.08, + "probability": 0.7881 + }, + { + "start": 24442.7, + "end": 24443.3, + "probability": 0.7324 + }, + { + "start": 24443.94, + "end": 24447.86, + "probability": 0.996 + }, + { + "start": 24447.86, + "end": 24451.56, + "probability": 0.9718 + }, + { + "start": 24452.5, + "end": 24453.94, + "probability": 0.9908 + }, + { + "start": 24454.74, + "end": 24457.94, + "probability": 0.9974 + }, + { + "start": 24458.5, + "end": 24461.46, + "probability": 0.967 + }, + { + "start": 24462.42, + "end": 24465.22, + "probability": 0.918 + }, + { + "start": 24465.44, + "end": 24466.12, + "probability": 0.808 + }, + { + "start": 24467.22, + "end": 24470.08, + "probability": 0.9903 + }, + { + "start": 24470.74, + "end": 24471.4, + "probability": 0.4872 + }, + { + "start": 24475.02, + "end": 24477.24, + "probability": 0.9867 + }, + { + "start": 24478.14, + "end": 24479.78, + "probability": 0.7893 + }, + { + "start": 24480.52, + "end": 24482.56, + "probability": 0.9775 + }, + { + "start": 24483.74, + "end": 24488.34, + "probability": 0.9644 + }, + { + "start": 24489.14, + "end": 24491.98, + "probability": 0.9792 + }, + { + "start": 24492.84, + "end": 24496.36, + "probability": 0.994 + }, + { + "start": 24496.9, + "end": 24498.1, + "probability": 0.9891 + }, + { + "start": 24498.24, + "end": 24498.92, + "probability": 0.8606 + }, + { + "start": 24498.94, + "end": 24501.06, + "probability": 0.984 + }, + { + "start": 24501.92, + "end": 24505.24, + "probability": 0.9868 + }, + { + "start": 24505.86, + "end": 24506.5, + "probability": 0.9318 + }, + { + "start": 24507.06, + "end": 24509.08, + "probability": 0.8458 + }, + { + "start": 24509.26, + "end": 24511.8, + "probability": 0.9852 + }, + { + "start": 24512.76, + "end": 24515.38, + "probability": 0.9552 + }, + { + "start": 24522.84, + "end": 24524.66, + "probability": 0.756 + }, + { + "start": 24525.4, + "end": 24525.9, + "probability": 0.9267 + }, + { + "start": 24527.34, + "end": 24527.6, + "probability": 0.0631 + }, + { + "start": 24527.6, + "end": 24527.6, + "probability": 0.0285 + }, + { + "start": 24527.6, + "end": 24527.6, + "probability": 0.0703 + }, + { + "start": 24527.6, + "end": 24527.8, + "probability": 0.2792 + }, + { + "start": 24528.02, + "end": 24532.34, + "probability": 0.9316 + }, + { + "start": 24533.38, + "end": 24533.9, + "probability": 0.9331 + }, + { + "start": 24534.48, + "end": 24536.22, + "probability": 0.9591 + }, + { + "start": 24537.64, + "end": 24539.86, + "probability": 0.7723 + }, + { + "start": 24540.02, + "end": 24540.84, + "probability": 0.9301 + }, + { + "start": 24541.56, + "end": 24543.87, + "probability": 0.7714 + }, + { + "start": 24544.42, + "end": 24545.92, + "probability": 0.9879 + }, + { + "start": 24546.62, + "end": 24547.26, + "probability": 0.7036 + }, + { + "start": 24548.16, + "end": 24548.84, + "probability": 0.7799 + }, + { + "start": 24549.44, + "end": 24550.42, + "probability": 0.8079 + }, + { + "start": 24551.04, + "end": 24552.5, + "probability": 0.9116 + }, + { + "start": 24553.14, + "end": 24558.76, + "probability": 0.9893 + }, + { + "start": 24559.58, + "end": 24560.88, + "probability": 0.9973 + }, + { + "start": 24561.72, + "end": 24565.24, + "probability": 0.9048 + }, + { + "start": 24565.78, + "end": 24568.3, + "probability": 0.9868 + }, + { + "start": 24568.96, + "end": 24569.74, + "probability": 0.97 + }, + { + "start": 24570.58, + "end": 24572.72, + "probability": 0.9248 + }, + { + "start": 24573.26, + "end": 24573.74, + "probability": 0.9824 + }, + { + "start": 24574.76, + "end": 24576.66, + "probability": 0.8782 + }, + { + "start": 24577.26, + "end": 24579.04, + "probability": 0.8242 + }, + { + "start": 24579.82, + "end": 24583.38, + "probability": 0.9982 + }, + { + "start": 24584.18, + "end": 24586.48, + "probability": 0.9819 + }, + { + "start": 24587.22, + "end": 24590.62, + "probability": 0.9883 + }, + { + "start": 24591.5, + "end": 24593.76, + "probability": 0.9789 + }, + { + "start": 24594.3, + "end": 24596.86, + "probability": 0.9952 + }, + { + "start": 24597.52, + "end": 24601.32, + "probability": 0.9863 + }, + { + "start": 24602.02, + "end": 24605.6, + "probability": 0.9983 + }, + { + "start": 24606.34, + "end": 24608.2, + "probability": 0.96 + }, + { + "start": 24608.86, + "end": 24610.44, + "probability": 0.7856 + }, + { + "start": 24611.12, + "end": 24612.6, + "probability": 0.9743 + }, + { + "start": 24613.1, + "end": 24614.44, + "probability": 0.9344 + }, + { + "start": 24614.5, + "end": 24615.96, + "probability": 0.7612 + }, + { + "start": 24616.62, + "end": 24617.12, + "probability": 0.926 + }, + { + "start": 24617.82, + "end": 24618.34, + "probability": 0.8342 + }, + { + "start": 24618.92, + "end": 24620.14, + "probability": 0.7646 + }, + { + "start": 24620.48, + "end": 24622.72, + "probability": 0.9755 + }, + { + "start": 24623.22, + "end": 24626.3, + "probability": 0.9547 + }, + { + "start": 24626.76, + "end": 24627.76, + "probability": 0.9884 + }, + { + "start": 24628.28, + "end": 24630.16, + "probability": 0.971 + }, + { + "start": 24630.66, + "end": 24633.76, + "probability": 0.9991 + }, + { + "start": 24634.46, + "end": 24638.9, + "probability": 0.8806 + }, + { + "start": 24638.98, + "end": 24639.48, + "probability": 0.8868 + }, + { + "start": 24639.92, + "end": 24641.0, + "probability": 0.9203 + }, + { + "start": 24641.5, + "end": 24643.42, + "probability": 0.9491 + }, + { + "start": 24657.0, + "end": 24657.66, + "probability": 0.5719 + }, + { + "start": 24663.02, + "end": 24665.0, + "probability": 0.4772 + }, + { + "start": 24667.32, + "end": 24667.6, + "probability": 0.333 + }, + { + "start": 24667.6, + "end": 24667.6, + "probability": 0.0184 + }, + { + "start": 24679.48, + "end": 24679.62, + "probability": 0.1547 + }, + { + "start": 24679.62, + "end": 24679.62, + "probability": 0.089 + }, + { + "start": 24679.62, + "end": 24681.24, + "probability": 0.5922 + }, + { + "start": 24683.22, + "end": 24684.71, + "probability": 0.6347 + }, + { + "start": 24686.3, + "end": 24688.12, + "probability": 0.9922 + }, + { + "start": 24689.8, + "end": 24692.18, + "probability": 0.9478 + }, + { + "start": 24693.02, + "end": 24694.62, + "probability": 0.6554 + }, + { + "start": 24695.9, + "end": 24700.04, + "probability": 0.9285 + }, + { + "start": 24700.16, + "end": 24700.62, + "probability": 0.7804 + }, + { + "start": 24701.64, + "end": 24710.2, + "probability": 0.9805 + }, + { + "start": 24710.84, + "end": 24712.06, + "probability": 0.9161 + }, + { + "start": 24712.12, + "end": 24714.78, + "probability": 0.9865 + }, + { + "start": 24716.74, + "end": 24718.82, + "probability": 0.9477 + }, + { + "start": 24719.94, + "end": 24720.94, + "probability": 0.8638 + }, + { + "start": 24722.46, + "end": 24726.76, + "probability": 0.9431 + }, + { + "start": 24727.04, + "end": 24729.48, + "probability": 0.9888 + }, + { + "start": 24729.56, + "end": 24730.96, + "probability": 0.9912 + }, + { + "start": 24731.56, + "end": 24732.32, + "probability": 0.5772 + }, + { + "start": 24732.98, + "end": 24734.26, + "probability": 0.7108 + }, + { + "start": 24735.64, + "end": 24738.1, + "probability": 0.9855 + }, + { + "start": 24738.4, + "end": 24742.34, + "probability": 0.7098 + }, + { + "start": 24743.86, + "end": 24746.02, + "probability": 0.8693 + }, + { + "start": 24748.28, + "end": 24751.6, + "probability": 0.9147 + }, + { + "start": 24753.16, + "end": 24758.4, + "probability": 0.9854 + }, + { + "start": 24759.56, + "end": 24764.29, + "probability": 0.9805 + }, + { + "start": 24764.68, + "end": 24769.54, + "probability": 0.8329 + }, + { + "start": 24769.6, + "end": 24771.45, + "probability": 0.8204 + }, + { + "start": 24773.2, + "end": 24773.9, + "probability": 0.6958 + }, + { + "start": 24774.02, + "end": 24777.16, + "probability": 0.9882 + }, + { + "start": 24777.28, + "end": 24781.4, + "probability": 0.9409 + }, + { + "start": 24781.46, + "end": 24782.57, + "probability": 0.9521 + }, + { + "start": 24783.36, + "end": 24786.78, + "probability": 0.901 + }, + { + "start": 24787.2, + "end": 24790.96, + "probability": 0.9758 + }, + { + "start": 24791.28, + "end": 24793.88, + "probability": 0.6332 + }, + { + "start": 24793.98, + "end": 24796.14, + "probability": 0.8661 + }, + { + "start": 24797.02, + "end": 24798.88, + "probability": 0.9111 + }, + { + "start": 24799.4, + "end": 24802.8, + "probability": 0.9429 + }, + { + "start": 24803.44, + "end": 24804.2, + "probability": 0.9717 + }, + { + "start": 24805.06, + "end": 24808.8, + "probability": 0.923 + }, + { + "start": 24808.9, + "end": 24811.88, + "probability": 0.7676 + }, + { + "start": 24811.96, + "end": 24812.62, + "probability": 0.806 + }, + { + "start": 24813.06, + "end": 24815.0, + "probability": 0.8249 + }, + { + "start": 24816.4, + "end": 24816.86, + "probability": 0.792 + }, + { + "start": 24817.84, + "end": 24819.54, + "probability": 0.9905 + }, + { + "start": 24820.48, + "end": 24823.36, + "probability": 0.9664 + }, + { + "start": 24823.48, + "end": 24825.28, + "probability": 0.9847 + }, + { + "start": 24826.06, + "end": 24829.52, + "probability": 0.6619 + }, + { + "start": 24830.1, + "end": 24831.58, + "probability": 0.9432 + }, + { + "start": 24833.28, + "end": 24833.58, + "probability": 0.4624 + }, + { + "start": 24833.68, + "end": 24835.76, + "probability": 0.9741 + }, + { + "start": 24836.0, + "end": 24841.4, + "probability": 0.9127 + }, + { + "start": 24842.68, + "end": 24844.9, + "probability": 0.8921 + }, + { + "start": 24845.92, + "end": 24848.8, + "probability": 0.959 + }, + { + "start": 24849.46, + "end": 24851.6, + "probability": 0.9982 + }, + { + "start": 24853.52, + "end": 24856.67, + "probability": 0.8844 + }, + { + "start": 24856.84, + "end": 24861.62, + "probability": 0.9778 + }, + { + "start": 24863.7, + "end": 24864.08, + "probability": 0.4298 + }, + { + "start": 24864.22, + "end": 24866.24, + "probability": 0.9944 + }, + { + "start": 24866.24, + "end": 24870.08, + "probability": 0.9507 + }, + { + "start": 24870.26, + "end": 24871.15, + "probability": 0.981 + }, + { + "start": 24872.66, + "end": 24875.08, + "probability": 0.8104 + }, + { + "start": 24875.96, + "end": 24878.54, + "probability": 0.8778 + }, + { + "start": 24878.9, + "end": 24879.71, + "probability": 0.9484 + }, + { + "start": 24880.1, + "end": 24880.36, + "probability": 0.2609 + }, + { + "start": 24880.54, + "end": 24881.18, + "probability": 0.8697 + }, + { + "start": 24881.8, + "end": 24883.88, + "probability": 0.8482 + }, + { + "start": 24884.42, + "end": 24885.14, + "probability": 0.6009 + }, + { + "start": 24885.92, + "end": 24886.36, + "probability": 0.6119 + }, + { + "start": 24887.42, + "end": 24889.6, + "probability": 0.9883 + }, + { + "start": 24890.5, + "end": 24892.48, + "probability": 0.7551 + }, + { + "start": 24893.5, + "end": 24898.46, + "probability": 0.9239 + }, + { + "start": 24898.9, + "end": 24901.24, + "probability": 0.9254 + }, + { + "start": 24901.36, + "end": 24902.28, + "probability": 0.6435 + }, + { + "start": 24903.68, + "end": 24906.54, + "probability": 0.9508 + }, + { + "start": 24906.6, + "end": 24909.06, + "probability": 0.917 + }, + { + "start": 24910.46, + "end": 24911.38, + "probability": 0.979 + }, + { + "start": 24911.86, + "end": 24916.65, + "probability": 0.95 + }, + { + "start": 24917.14, + "end": 24918.2, + "probability": 0.6996 + }, + { + "start": 24918.22, + "end": 24918.98, + "probability": 0.6988 + }, + { + "start": 24919.1, + "end": 24919.64, + "probability": 0.4015 + }, + { + "start": 24920.26, + "end": 24922.84, + "probability": 0.6685 + }, + { + "start": 24923.96, + "end": 24927.0, + "probability": 0.7898 + }, + { + "start": 24927.44, + "end": 24928.03, + "probability": 0.984 + }, + { + "start": 24929.64, + "end": 24932.68, + "probability": 0.9836 + }, + { + "start": 24933.0, + "end": 24935.94, + "probability": 0.8635 + }, + { + "start": 24936.66, + "end": 24937.68, + "probability": 0.8528 + }, + { + "start": 24938.2, + "end": 24940.32, + "probability": 0.9985 + }, + { + "start": 24941.0, + "end": 24944.56, + "probability": 0.9525 + }, + { + "start": 24944.92, + "end": 24946.0, + "probability": 0.5084 + }, + { + "start": 24947.24, + "end": 24948.54, + "probability": 0.9563 + }, + { + "start": 24948.96, + "end": 24949.36, + "probability": 0.6874 + }, + { + "start": 24949.8, + "end": 24950.56, + "probability": 0.8389 + }, + { + "start": 24966.44, + "end": 24971.06, + "probability": 0.4954 + }, + { + "start": 24972.36, + "end": 24973.9, + "probability": 0.9708 + }, + { + "start": 24975.56, + "end": 24978.8, + "probability": 0.9467 + }, + { + "start": 24981.42, + "end": 24983.16, + "probability": 0.9767 + }, + { + "start": 24983.46, + "end": 24985.68, + "probability": 0.9934 + }, + { + "start": 24987.32, + "end": 24991.16, + "probability": 0.9988 + }, + { + "start": 24993.04, + "end": 24993.68, + "probability": 0.711 + }, + { + "start": 24993.78, + "end": 24998.64, + "probability": 0.9937 + }, + { + "start": 24998.84, + "end": 25001.66, + "probability": 0.9355 + }, + { + "start": 25001.8, + "end": 25005.42, + "probability": 0.9979 + }, + { + "start": 25005.6, + "end": 25005.88, + "probability": 0.5871 + }, + { + "start": 25006.96, + "end": 25009.54, + "probability": 0.9917 + }, + { + "start": 25012.05, + "end": 25014.78, + "probability": 0.7597 + }, + { + "start": 25016.24, + "end": 25020.08, + "probability": 0.9933 + }, + { + "start": 25020.36, + "end": 25022.18, + "probability": 0.9861 + }, + { + "start": 25022.26, + "end": 25023.84, + "probability": 0.8613 + }, + { + "start": 25024.82, + "end": 25025.66, + "probability": 0.9992 + }, + { + "start": 25028.38, + "end": 25029.46, + "probability": 0.8944 + }, + { + "start": 25029.52, + "end": 25030.76, + "probability": 0.8999 + }, + { + "start": 25031.02, + "end": 25033.28, + "probability": 0.9582 + }, + { + "start": 25033.86, + "end": 25035.1, + "probability": 0.9855 + }, + { + "start": 25036.76, + "end": 25040.02, + "probability": 0.9303 + }, + { + "start": 25040.8, + "end": 25047.32, + "probability": 0.9938 + }, + { + "start": 25047.38, + "end": 25049.14, + "probability": 0.9036 + }, + { + "start": 25049.84, + "end": 25050.36, + "probability": 0.7674 + }, + { + "start": 25050.98, + "end": 25052.76, + "probability": 0.9246 + }, + { + "start": 25053.88, + "end": 25054.38, + "probability": 0.9224 + }, + { + "start": 25055.86, + "end": 25056.96, + "probability": 0.9429 + }, + { + "start": 25058.16, + "end": 25064.06, + "probability": 0.9969 + }, + { + "start": 25064.58, + "end": 25064.9, + "probability": 0.6583 + }, + { + "start": 25065.7, + "end": 25066.27, + "probability": 0.4387 + }, + { + "start": 25067.02, + "end": 25068.48, + "probability": 0.959 + }, + { + "start": 25069.3, + "end": 25070.24, + "probability": 0.9933 + }, + { + "start": 25070.98, + "end": 25073.66, + "probability": 0.9068 + }, + { + "start": 25074.22, + "end": 25076.16, + "probability": 0.9858 + }, + { + "start": 25077.14, + "end": 25078.5, + "probability": 0.9526 + }, + { + "start": 25079.56, + "end": 25081.84, + "probability": 0.4191 + }, + { + "start": 25082.7, + "end": 25087.62, + "probability": 0.9948 + }, + { + "start": 25088.1, + "end": 25091.36, + "probability": 0.9932 + }, + { + "start": 25091.92, + "end": 25096.44, + "probability": 0.9918 + }, + { + "start": 25097.08, + "end": 25101.5, + "probability": 0.9801 + }, + { + "start": 25102.15, + "end": 25103.22, + "probability": 0.6856 + }, + { + "start": 25104.3, + "end": 25107.62, + "probability": 0.9816 + }, + { + "start": 25108.64, + "end": 25113.4, + "probability": 0.9934 + }, + { + "start": 25114.52, + "end": 25115.84, + "probability": 0.5942 + }, + { + "start": 25116.62, + "end": 25117.74, + "probability": 0.8978 + }, + { + "start": 25118.34, + "end": 25121.82, + "probability": 0.9767 + }, + { + "start": 25122.5, + "end": 25123.72, + "probability": 0.6001 + }, + { + "start": 25123.8, + "end": 25124.46, + "probability": 0.8755 + }, + { + "start": 25125.34, + "end": 25128.62, + "probability": 0.9811 + }, + { + "start": 25128.76, + "end": 25132.14, + "probability": 0.9977 + }, + { + "start": 25132.15, + "end": 25135.18, + "probability": 0.9684 + }, + { + "start": 25136.54, + "end": 25137.42, + "probability": 0.7219 + }, + { + "start": 25138.08, + "end": 25141.0, + "probability": 0.9849 + }, + { + "start": 25142.32, + "end": 25144.64, + "probability": 0.9596 + }, + { + "start": 25144.68, + "end": 25147.52, + "probability": 0.7329 + }, + { + "start": 25148.74, + "end": 25150.22, + "probability": 0.9052 + }, + { + "start": 25150.28, + "end": 25151.5, + "probability": 0.9106 + }, + { + "start": 25151.86, + "end": 25153.14, + "probability": 0.8849 + }, + { + "start": 25153.5, + "end": 25154.3, + "probability": 0.8644 + }, + { + "start": 25154.8, + "end": 25157.04, + "probability": 0.9385 + }, + { + "start": 25157.54, + "end": 25159.52, + "probability": 0.9047 + }, + { + "start": 25160.08, + "end": 25163.24, + "probability": 0.9829 + }, + { + "start": 25163.36, + "end": 25163.6, + "probability": 0.6154 + }, + { + "start": 25164.28, + "end": 25165.14, + "probability": 0.979 + }, + { + "start": 25165.52, + "end": 25166.04, + "probability": 0.886 + }, + { + "start": 25166.46, + "end": 25167.28, + "probability": 0.9036 + }, + { + "start": 25167.32, + "end": 25170.44, + "probability": 0.8835 + }, + { + "start": 25171.04, + "end": 25172.36, + "probability": 0.9868 + }, + { + "start": 25173.22, + "end": 25173.74, + "probability": 0.6885 + }, + { + "start": 25173.86, + "end": 25174.66, + "probability": 0.763 + }, + { + "start": 25175.28, + "end": 25175.98, + "probability": 0.8715 + }, + { + "start": 25180.76, + "end": 25180.82, + "probability": 0.2692 + }, + { + "start": 25186.42, + "end": 25186.66, + "probability": 0.014 + }, + { + "start": 25187.54, + "end": 25188.78, + "probability": 0.1683 + }, + { + "start": 25188.78, + "end": 25192.06, + "probability": 0.3421 + }, + { + "start": 25192.06, + "end": 25192.06, + "probability": 0.0996 + }, + { + "start": 25192.06, + "end": 25192.08, + "probability": 0.0325 + }, + { + "start": 25192.08, + "end": 25192.08, + "probability": 0.0212 + }, + { + "start": 25214.68, + "end": 25217.78, + "probability": 0.656 + }, + { + "start": 25218.22, + "end": 25219.3, + "probability": 0.5221 + }, + { + "start": 25219.38, + "end": 25220.08, + "probability": 0.6262 + }, + { + "start": 25221.5, + "end": 25221.92, + "probability": 0.0424 + }, + { + "start": 25223.32, + "end": 25226.36, + "probability": 0.6167 + }, + { + "start": 25226.9, + "end": 25229.08, + "probability": 0.8971 + }, + { + "start": 25229.96, + "end": 25232.88, + "probability": 0.7748 + }, + { + "start": 25233.56, + "end": 25236.24, + "probability": 0.9371 + }, + { + "start": 25236.34, + "end": 25237.32, + "probability": 0.6466 + }, + { + "start": 25237.38, + "end": 25239.12, + "probability": 0.9696 + }, + { + "start": 25239.28, + "end": 25241.62, + "probability": 0.991 + }, + { + "start": 25243.86, + "end": 25244.74, + "probability": 0.8118 + }, + { + "start": 25245.66, + "end": 25246.44, + "probability": 0.5909 + }, + { + "start": 25246.68, + "end": 25251.5, + "probability": 0.9316 + }, + { + "start": 25251.76, + "end": 25253.78, + "probability": 0.9136 + }, + { + "start": 25254.02, + "end": 25254.58, + "probability": 0.535 + }, + { + "start": 25256.48, + "end": 25257.08, + "probability": 0.9458 + }, + { + "start": 25257.62, + "end": 25261.02, + "probability": 0.9959 + }, + { + "start": 25262.1, + "end": 25265.96, + "probability": 0.9209 + }, + { + "start": 25267.28, + "end": 25268.68, + "probability": 0.544 + }, + { + "start": 25268.74, + "end": 25269.72, + "probability": 0.87 + }, + { + "start": 25269.76, + "end": 25274.5, + "probability": 0.9425 + }, + { + "start": 25274.66, + "end": 25279.7, + "probability": 0.9812 + }, + { + "start": 25283.42, + "end": 25283.94, + "probability": 0.5942 + }, + { + "start": 25286.42, + "end": 25286.86, + "probability": 0.5129 + }, + { + "start": 25286.98, + "end": 25287.94, + "probability": 0.9302 + }, + { + "start": 25289.64, + "end": 25292.33, + "probability": 0.937 + }, + { + "start": 25294.34, + "end": 25297.32, + "probability": 0.9597 + }, + { + "start": 25297.42, + "end": 25298.48, + "probability": 0.8749 + }, + { + "start": 25298.56, + "end": 25300.36, + "probability": 0.9768 + }, + { + "start": 25300.38, + "end": 25302.56, + "probability": 0.9267 + }, + { + "start": 25303.44, + "end": 25305.36, + "probability": 0.973 + }, + { + "start": 25306.26, + "end": 25309.78, + "probability": 0.9927 + }, + { + "start": 25311.22, + "end": 25313.88, + "probability": 0.99 + }, + { + "start": 25315.92, + "end": 25316.58, + "probability": 0.6495 + }, + { + "start": 25317.98, + "end": 25321.2, + "probability": 0.9968 + }, + { + "start": 25322.06, + "end": 25328.24, + "probability": 0.9938 + }, + { + "start": 25329.68, + "end": 25331.72, + "probability": 0.5503 + }, + { + "start": 25331.84, + "end": 25333.48, + "probability": 0.9095 + }, + { + "start": 25333.68, + "end": 25337.06, + "probability": 0.996 + }, + { + "start": 25339.0, + "end": 25341.04, + "probability": 0.8647 + }, + { + "start": 25341.8, + "end": 25344.7, + "probability": 0.9808 + }, + { + "start": 25346.92, + "end": 25348.04, + "probability": 0.7767 + }, + { + "start": 25349.42, + "end": 25351.36, + "probability": 0.8634 + }, + { + "start": 25351.88, + "end": 25354.3, + "probability": 0.9961 + }, + { + "start": 25354.56, + "end": 25355.86, + "probability": 0.9958 + }, + { + "start": 25356.0, + "end": 25356.62, + "probability": 0.8141 + }, + { + "start": 25357.3, + "end": 25358.66, + "probability": 0.9604 + }, + { + "start": 25359.44, + "end": 25361.06, + "probability": 0.9966 + }, + { + "start": 25361.66, + "end": 25363.12, + "probability": 0.9954 + }, + { + "start": 25363.98, + "end": 25364.78, + "probability": 0.7871 + }, + { + "start": 25364.84, + "end": 25372.52, + "probability": 0.9019 + }, + { + "start": 25373.98, + "end": 25375.66, + "probability": 0.9825 + }, + { + "start": 25377.14, + "end": 25380.16, + "probability": 0.9893 + }, + { + "start": 25380.9, + "end": 25382.16, + "probability": 0.7327 + }, + { + "start": 25382.84, + "end": 25383.76, + "probability": 0.748 + }, + { + "start": 25384.9, + "end": 25386.08, + "probability": 0.9072 + }, + { + "start": 25387.04, + "end": 25387.78, + "probability": 0.7245 + }, + { + "start": 25388.76, + "end": 25391.44, + "probability": 0.9556 + }, + { + "start": 25392.36, + "end": 25396.9, + "probability": 0.9359 + }, + { + "start": 25397.6, + "end": 25398.26, + "probability": 0.5255 + }, + { + "start": 25398.44, + "end": 25399.84, + "probability": 0.9462 + }, + { + "start": 25399.96, + "end": 25400.34, + "probability": 0.775 + }, + { + "start": 25401.74, + "end": 25403.28, + "probability": 0.8588 + }, + { + "start": 25404.76, + "end": 25406.72, + "probability": 0.9512 + }, + { + "start": 25408.54, + "end": 25410.6, + "probability": 0.9642 + }, + { + "start": 25410.68, + "end": 25412.58, + "probability": 0.924 + }, + { + "start": 25414.6, + "end": 25416.96, + "probability": 0.9772 + }, + { + "start": 25417.16, + "end": 25417.79, + "probability": 0.936 + }, + { + "start": 25419.72, + "end": 25423.46, + "probability": 0.8862 + }, + { + "start": 25424.12, + "end": 25427.24, + "probability": 0.8105 + }, + { + "start": 25427.7, + "end": 25428.68, + "probability": 0.9531 + }, + { + "start": 25431.86, + "end": 25433.46, + "probability": 0.2256 + }, + { + "start": 25442.82, + "end": 25444.84, + "probability": 0.1603 + }, + { + "start": 25445.72, + "end": 25447.72, + "probability": 0.1997 + }, + { + "start": 25461.42, + "end": 25461.42, + "probability": 0.0672 + }, + { + "start": 25461.42, + "end": 25461.42, + "probability": 0.1564 + }, + { + "start": 25461.42, + "end": 25461.42, + "probability": 0.0461 + }, + { + "start": 25461.42, + "end": 25461.42, + "probability": 0.0835 + }, + { + "start": 25461.42, + "end": 25461.42, + "probability": 0.0797 + }, + { + "start": 25461.42, + "end": 25461.42, + "probability": 0.0243 + }, + { + "start": 25461.42, + "end": 25461.44, + "probability": 0.1321 + }, + { + "start": 25461.44, + "end": 25461.46, + "probability": 0.031 + }, + { + "start": 25461.46, + "end": 25461.46, + "probability": 0.0157 + }, + { + "start": 25482.04, + "end": 25484.06, + "probability": 0.422 + }, + { + "start": 25485.98, + "end": 25486.58, + "probability": 0.4354 + }, + { + "start": 25487.8, + "end": 25489.32, + "probability": 0.9651 + }, + { + "start": 25490.34, + "end": 25492.46, + "probability": 0.6933 + }, + { + "start": 25493.1, + "end": 25493.46, + "probability": 0.5229 + }, + { + "start": 25493.8, + "end": 25494.52, + "probability": 0.9354 + }, + { + "start": 25495.94, + "end": 25496.74, + "probability": 0.9514 + }, + { + "start": 25497.7, + "end": 25499.04, + "probability": 0.7713 + }, + { + "start": 25499.82, + "end": 25503.34, + "probability": 0.9646 + }, + { + "start": 25504.12, + "end": 25504.42, + "probability": 0.7539 + }, + { + "start": 25505.04, + "end": 25505.68, + "probability": 0.5632 + }, + { + "start": 25506.58, + "end": 25506.86, + "probability": 0.3391 + }, + { + "start": 25507.6, + "end": 25508.46, + "probability": 0.6549 + }, + { + "start": 25508.6, + "end": 25509.44, + "probability": 0.9478 + }, + { + "start": 25509.64, + "end": 25510.7, + "probability": 0.9217 + }, + { + "start": 25512.26, + "end": 25512.7, + "probability": 0.8603 + }, + { + "start": 25512.88, + "end": 25514.74, + "probability": 0.9548 + }, + { + "start": 25514.78, + "end": 25516.46, + "probability": 0.9929 + }, + { + "start": 25518.04, + "end": 25518.92, + "probability": 0.7004 + }, + { + "start": 25519.86, + "end": 25523.5, + "probability": 0.9331 + }, + { + "start": 25525.0, + "end": 25526.12, + "probability": 0.5458 + }, + { + "start": 25526.26, + "end": 25526.78, + "probability": 0.6761 + }, + { + "start": 25529.08, + "end": 25531.1, + "probability": 0.944 + }, + { + "start": 25531.12, + "end": 25533.08, + "probability": 0.9593 + }, + { + "start": 25533.56, + "end": 25534.72, + "probability": 0.8126 + }, + { + "start": 25535.48, + "end": 25536.94, + "probability": 0.9952 + }, + { + "start": 25537.38, + "end": 25538.72, + "probability": 0.9718 + }, + { + "start": 25539.82, + "end": 25543.85, + "probability": 0.7455 + }, + { + "start": 25546.26, + "end": 25546.3, + "probability": 0.3513 + }, + { + "start": 25546.3, + "end": 25546.3, + "probability": 0.4728 + }, + { + "start": 25546.3, + "end": 25547.42, + "probability": 0.7927 + }, + { + "start": 25548.76, + "end": 25549.17, + "probability": 0.5079 + }, + { + "start": 25550.6, + "end": 25553.88, + "probability": 0.7381 + }, + { + "start": 25554.38, + "end": 25555.56, + "probability": 0.6782 + }, + { + "start": 25555.58, + "end": 25558.57, + "probability": 0.9888 + }, + { + "start": 25559.54, + "end": 25559.92, + "probability": 0.3271 + }, + { + "start": 25560.02, + "end": 25562.14, + "probability": 0.8739 + }, + { + "start": 25562.67, + "end": 25564.22, + "probability": 0.9805 + }, + { + "start": 25564.8, + "end": 25566.54, + "probability": 0.5509 + }, + { + "start": 25567.06, + "end": 25570.86, + "probability": 0.8697 + }, + { + "start": 25570.92, + "end": 25571.88, + "probability": 0.6809 + }, + { + "start": 25572.5, + "end": 25574.92, + "probability": 0.9868 + }, + { + "start": 25576.5, + "end": 25577.62, + "probability": 0.6227 + }, + { + "start": 25579.16, + "end": 25582.26, + "probability": 0.896 + }, + { + "start": 25583.2, + "end": 25584.25, + "probability": 0.9489 + }, + { + "start": 25584.9, + "end": 25585.76, + "probability": 0.7128 + }, + { + "start": 25586.34, + "end": 25588.48, + "probability": 0.6497 + }, + { + "start": 25589.94, + "end": 25591.46, + "probability": 0.922 + }, + { + "start": 25592.2, + "end": 25593.84, + "probability": 0.8111 + }, + { + "start": 25594.2, + "end": 25596.2, + "probability": 0.9967 + }, + { + "start": 25596.2, + "end": 25600.02, + "probability": 0.9915 + }, + { + "start": 25600.26, + "end": 25600.38, + "probability": 0.1489 + }, + { + "start": 25601.0, + "end": 25602.84, + "probability": 0.9561 + }, + { + "start": 25603.44, + "end": 25604.16, + "probability": 0.9214 + }, + { + "start": 25605.2, + "end": 25606.88, + "probability": 0.9743 + }, + { + "start": 25607.38, + "end": 25608.75, + "probability": 0.8604 + }, + { + "start": 25608.78, + "end": 25610.44, + "probability": 0.8882 + }, + { + "start": 25612.5, + "end": 25613.52, + "probability": 0.6088 + }, + { + "start": 25614.78, + "end": 25616.1, + "probability": 0.7808 + }, + { + "start": 25616.82, + "end": 25618.96, + "probability": 0.9341 + }, + { + "start": 25619.1, + "end": 25620.54, + "probability": 0.9919 + }, + { + "start": 25621.66, + "end": 25623.92, + "probability": 0.8765 + }, + { + "start": 25624.02, + "end": 25624.44, + "probability": 0.9087 + }, + { + "start": 25627.06, + "end": 25628.04, + "probability": 0.979 + }, + { + "start": 25628.9, + "end": 25630.9, + "probability": 0.6988 + }, + { + "start": 25631.52, + "end": 25631.9, + "probability": 0.9623 + }, + { + "start": 25632.62, + "end": 25633.06, + "probability": 0.4866 + }, + { + "start": 25633.06, + "end": 25635.92, + "probability": 0.6141 + }, + { + "start": 25636.5, + "end": 25636.98, + "probability": 0.9553 + }, + { + "start": 25637.18, + "end": 25638.98, + "probability": 0.9087 + }, + { + "start": 25639.54, + "end": 25639.96, + "probability": 0.3223 + }, + { + "start": 25640.94, + "end": 25641.92, + "probability": 0.8447 + }, + { + "start": 25642.64, + "end": 25644.48, + "probability": 0.9956 + }, + { + "start": 25645.0, + "end": 25645.74, + "probability": 0.7452 + }, + { + "start": 25646.3, + "end": 25648.88, + "probability": 0.9554 + }, + { + "start": 25650.28, + "end": 25651.78, + "probability": 0.9674 + }, + { + "start": 25652.66, + "end": 25654.08, + "probability": 0.9727 + }, + { + "start": 25654.5, + "end": 25655.68, + "probability": 0.625 + }, + { + "start": 25655.78, + "end": 25656.3, + "probability": 0.4788 + }, + { + "start": 25656.6, + "end": 25657.36, + "probability": 0.9721 + }, + { + "start": 25659.38, + "end": 25662.36, + "probability": 0.964 + }, + { + "start": 25662.44, + "end": 25663.46, + "probability": 0.643 + }, + { + "start": 25663.7, + "end": 25664.42, + "probability": 0.6166 + }, + { + "start": 25666.48, + "end": 25669.52, + "probability": 0.9866 + }, + { + "start": 25671.86, + "end": 25674.88, + "probability": 0.6724 + }, + { + "start": 25675.54, + "end": 25676.1, + "probability": 0.6226 + }, + { + "start": 25676.4, + "end": 25677.22, + "probability": 0.8994 + }, + { + "start": 25678.82, + "end": 25679.94, + "probability": 0.7655 + }, + { + "start": 25681.34, + "end": 25683.9, + "probability": 0.9808 + }, + { + "start": 25685.16, + "end": 25686.82, + "probability": 0.9723 + }, + { + "start": 25687.88, + "end": 25689.52, + "probability": 0.9938 + }, + { + "start": 25690.06, + "end": 25691.56, + "probability": 0.5422 + }, + { + "start": 25691.9, + "end": 25692.3, + "probability": 0.01 + }, + { + "start": 25692.62, + "end": 25694.22, + "probability": 0.8336 + }, + { + "start": 25694.62, + "end": 25694.62, + "probability": 0.2906 + }, + { + "start": 25694.74, + "end": 25695.0, + "probability": 0.3214 + }, + { + "start": 25695.0, + "end": 25695.0, + "probability": 0.1611 + }, + { + "start": 25695.0, + "end": 25697.52, + "probability": 0.6473 + }, + { + "start": 25698.14, + "end": 25698.14, + "probability": 0.0051 + }, + { + "start": 25698.14, + "end": 25698.14, + "probability": 0.0925 + }, + { + "start": 25698.14, + "end": 25701.4, + "probability": 0.8896 + }, + { + "start": 25702.3, + "end": 25702.92, + "probability": 0.8635 + }, + { + "start": 25703.48, + "end": 25704.22, + "probability": 0.7266 + }, + { + "start": 25704.34, + "end": 25706.9, + "probability": 0.4669 + }, + { + "start": 25706.94, + "end": 25708.18, + "probability": 0.6109 + }, + { + "start": 25708.54, + "end": 25710.3, + "probability": 0.9065 + }, + { + "start": 25711.08, + "end": 25715.04, + "probability": 0.9775 + }, + { + "start": 25716.3, + "end": 25717.56, + "probability": 0.8193 + }, + { + "start": 25718.46, + "end": 25720.36, + "probability": 0.9639 + }, + { + "start": 25720.96, + "end": 25722.65, + "probability": 0.8875 + }, + { + "start": 25723.68, + "end": 25723.68, + "probability": 0.7347 + }, + { + "start": 25723.94, + "end": 25725.74, + "probability": 0.9645 + }, + { + "start": 25726.28, + "end": 25730.74, + "probability": 0.9522 + }, + { + "start": 25731.2, + "end": 25732.72, + "probability": 0.9158 + }, + { + "start": 25732.78, + "end": 25734.32, + "probability": 0.6831 + }, + { + "start": 25734.98, + "end": 25736.44, + "probability": 0.9627 + }, + { + "start": 25736.74, + "end": 25737.46, + "probability": 0.7163 + }, + { + "start": 25737.46, + "end": 25738.6, + "probability": 0.9683 + }, + { + "start": 25738.7, + "end": 25739.97, + "probability": 0.6769 + }, + { + "start": 25740.88, + "end": 25742.04, + "probability": 0.6586 + }, + { + "start": 25742.46, + "end": 25743.76, + "probability": 0.7915 + }, + { + "start": 25743.88, + "end": 25744.82, + "probability": 0.6575 + }, + { + "start": 25745.78, + "end": 25748.5, + "probability": 0.9477 + }, + { + "start": 25749.0, + "end": 25751.52, + "probability": 0.8701 + }, + { + "start": 25752.24, + "end": 25753.36, + "probability": 0.5125 + }, + { + "start": 25754.19, + "end": 25754.94, + "probability": 0.7759 + }, + { + "start": 25754.94, + "end": 25756.23, + "probability": 0.6639 + }, + { + "start": 25756.34, + "end": 25756.54, + "probability": 0.7396 + }, + { + "start": 25757.14, + "end": 25758.26, + "probability": 0.9678 + }, + { + "start": 25758.46, + "end": 25760.72, + "probability": 0.7388 + }, + { + "start": 25760.8, + "end": 25760.88, + "probability": 0.6501 + }, + { + "start": 25760.88, + "end": 25763.63, + "probability": 0.8076 + }, + { + "start": 25764.48, + "end": 25766.18, + "probability": 0.9583 + }, + { + "start": 25766.88, + "end": 25768.48, + "probability": 0.8656 + }, + { + "start": 25768.98, + "end": 25768.98, + "probability": 0.1603 + }, + { + "start": 25768.98, + "end": 25769.56, + "probability": 0.3901 + }, + { + "start": 25769.78, + "end": 25771.62, + "probability": 0.7979 + }, + { + "start": 25772.24, + "end": 25773.06, + "probability": 0.915 + }, + { + "start": 25774.32, + "end": 25775.38, + "probability": 0.9229 + }, + { + "start": 25776.48, + "end": 25777.1, + "probability": 0.7722 + }, + { + "start": 25777.6, + "end": 25778.0, + "probability": 0.0877 + }, + { + "start": 25778.44, + "end": 25779.04, + "probability": 0.6959 + }, + { + "start": 25779.64, + "end": 25782.3, + "probability": 0.9829 + }, + { + "start": 25782.42, + "end": 25782.42, + "probability": 0.0311 + }, + { + "start": 25782.42, + "end": 25785.48, + "probability": 0.8359 + }, + { + "start": 25785.66, + "end": 25786.14, + "probability": 0.7552 + }, + { + "start": 25786.54, + "end": 25786.78, + "probability": 0.7643 + }, + { + "start": 25792.38, + "end": 25793.04, + "probability": 0.6462 + }, + { + "start": 25796.63, + "end": 25797.56, + "probability": 0.0384 + }, + { + "start": 25797.74, + "end": 25798.3, + "probability": 0.4448 + }, + { + "start": 25799.14, + "end": 25799.72, + "probability": 0.6693 + }, + { + "start": 25806.28, + "end": 25806.48, + "probability": 0.0441 + }, + { + "start": 25806.48, + "end": 25806.48, + "probability": 0.0942 + }, + { + "start": 25806.48, + "end": 25806.72, + "probability": 0.1564 + }, + { + "start": 25809.12, + "end": 25810.18, + "probability": 0.054 + }, + { + "start": 25824.55, + "end": 25827.78, + "probability": 0.9995 + }, + { + "start": 25829.52, + "end": 25832.82, + "probability": 0.927 + }, + { + "start": 25834.6, + "end": 25841.88, + "probability": 0.9172 + }, + { + "start": 25842.66, + "end": 25843.92, + "probability": 0.9701 + }, + { + "start": 25845.94, + "end": 25849.18, + "probability": 0.9854 + }, + { + "start": 25851.58, + "end": 25854.42, + "probability": 0.9927 + }, + { + "start": 25856.6, + "end": 25859.54, + "probability": 0.9932 + }, + { + "start": 25859.8, + "end": 25861.86, + "probability": 0.7694 + }, + { + "start": 25863.96, + "end": 25866.7, + "probability": 0.9653 + }, + { + "start": 25868.42, + "end": 25869.26, + "probability": 0.872 + }, + { + "start": 25871.2, + "end": 25872.5, + "probability": 0.9857 + }, + { + "start": 25874.06, + "end": 25878.3, + "probability": 0.9601 + }, + { + "start": 25879.44, + "end": 25885.4, + "probability": 0.8251 + }, + { + "start": 25886.94, + "end": 25886.94, + "probability": 0.1347 + }, + { + "start": 25886.94, + "end": 25888.34, + "probability": 0.8396 + }, + { + "start": 25888.52, + "end": 25890.54, + "probability": 0.563 + }, + { + "start": 25892.16, + "end": 25894.88, + "probability": 0.5936 + }, + { + "start": 25895.88, + "end": 25899.6, + "probability": 0.9907 + }, + { + "start": 25901.34, + "end": 25902.13, + "probability": 0.8445 + }, + { + "start": 25902.56, + "end": 25905.24, + "probability": 0.8318 + }, + { + "start": 25906.16, + "end": 25908.08, + "probability": 0.9127 + }, + { + "start": 25909.3, + "end": 25910.9, + "probability": 0.9727 + }, + { + "start": 25912.0, + "end": 25913.54, + "probability": 0.9783 + }, + { + "start": 25914.66, + "end": 25915.72, + "probability": 0.9984 + }, + { + "start": 25916.48, + "end": 25918.56, + "probability": 0.9784 + }, + { + "start": 25919.82, + "end": 25921.67, + "probability": 0.9889 + }, + { + "start": 25923.5, + "end": 25925.24, + "probability": 0.6514 + }, + { + "start": 25926.0, + "end": 25927.48, + "probability": 0.9284 + }, + { + "start": 25929.6, + "end": 25934.42, + "probability": 0.8454 + }, + { + "start": 25935.26, + "end": 25938.56, + "probability": 0.998 + }, + { + "start": 25939.46, + "end": 25940.2, + "probability": 0.7734 + }, + { + "start": 25941.42, + "end": 25943.34, + "probability": 0.9883 + }, + { + "start": 25944.76, + "end": 25947.6, + "probability": 0.9961 + }, + { + "start": 25948.4, + "end": 25949.48, + "probability": 0.6851 + }, + { + "start": 25950.5, + "end": 25953.54, + "probability": 0.8458 + }, + { + "start": 25954.26, + "end": 25956.26, + "probability": 0.9878 + }, + { + "start": 25957.12, + "end": 25957.52, + "probability": 0.1903 + }, + { + "start": 25958.74, + "end": 25959.36, + "probability": 0.0221 + }, + { + "start": 25962.82, + "end": 25963.02, + "probability": 0.8398 + }, + { + "start": 25963.74, + "end": 25965.04, + "probability": 0.0535 + }, + { + "start": 25965.62, + "end": 25967.06, + "probability": 0.9802 + }, + { + "start": 25967.76, + "end": 25968.68, + "probability": 0.9611 + }, + { + "start": 25976.22, + "end": 25977.1, + "probability": 0.6332 + }, + { + "start": 25977.68, + "end": 25978.28, + "probability": 0.3488 + }, + { + "start": 25978.3, + "end": 25979.1, + "probability": 0.7815 + }, + { + "start": 25980.1, + "end": 25980.16, + "probability": 0.2536 + }, + { + "start": 26006.02, + "end": 26008.4, + "probability": 0.6917 + }, + { + "start": 26009.18, + "end": 26011.28, + "probability": 0.7015 + }, + { + "start": 26013.6, + "end": 26015.76, + "probability": 0.0501 + }, + { + "start": 26016.9, + "end": 26017.98, + "probability": 0.0549 + }, + { + "start": 26017.98, + "end": 26018.0, + "probability": 0.3028 + }, + { + "start": 26019.4, + "end": 26020.82, + "probability": 0.2047 + }, + { + "start": 26022.38, + "end": 26023.04, + "probability": 0.0506 + }, + { + "start": 26027.7, + "end": 26028.52, + "probability": 0.2794 + }, + { + "start": 26029.06, + "end": 26030.31, + "probability": 0.0461 + }, + { + "start": 26034.14, + "end": 26035.26, + "probability": 0.0003 + }, + { + "start": 26037.44, + "end": 26038.57, + "probability": 0.0321 + }, + { + "start": 26039.76, + "end": 26041.77, + "probability": 0.0603 + }, + { + "start": 26043.32, + "end": 26045.88, + "probability": 0.0479 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.0, + "end": 26171.0, + "probability": 0.0 + }, + { + "start": 26171.14, + "end": 26177.94, + "probability": 0.0168 + }, + { + "start": 26179.66, + "end": 26182.56, + "probability": 0.905 + }, + { + "start": 26183.92, + "end": 26186.52, + "probability": 0.8204 + }, + { + "start": 26188.58, + "end": 26188.9, + "probability": 0.0098 + }, + { + "start": 26189.98, + "end": 26191.1, + "probability": 0.141 + }, + { + "start": 26191.8, + "end": 26192.62, + "probability": 0.725 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26292.0, + "probability": 0.0 + }, + { + "start": 26292.0, + "end": 26293.78, + "probability": 0.8379 + }, + { + "start": 26293.82, + "end": 26294.3, + "probability": 0.6348 + }, + { + "start": 26294.54, + "end": 26295.3, + "probability": 0.743 + }, + { + "start": 26295.86, + "end": 26298.0, + "probability": 0.9916 + }, + { + "start": 26298.6, + "end": 26300.9, + "probability": 0.8978 + }, + { + "start": 26301.02, + "end": 26303.38, + "probability": 0.9706 + }, + { + "start": 26303.82, + "end": 26305.5, + "probability": 0.9148 + }, + { + "start": 26305.86, + "end": 26307.7, + "probability": 0.9153 + }, + { + "start": 26308.4, + "end": 26309.56, + "probability": 0.8018 + }, + { + "start": 26310.06, + "end": 26314.04, + "probability": 0.9642 + }, + { + "start": 26314.9, + "end": 26318.68, + "probability": 0.8649 + }, + { + "start": 26319.1, + "end": 26321.28, + "probability": 0.9955 + }, + { + "start": 26321.28, + "end": 26324.6, + "probability": 0.952 + }, + { + "start": 26324.98, + "end": 26327.56, + "probability": 0.8759 + }, + { + "start": 26327.96, + "end": 26331.94, + "probability": 0.9811 + }, + { + "start": 26332.06, + "end": 26333.02, + "probability": 0.579 + }, + { + "start": 26333.6, + "end": 26334.14, + "probability": 0.7156 + }, + { + "start": 26335.04, + "end": 26339.94, + "probability": 0.9721 + }, + { + "start": 26341.24, + "end": 26342.78, + "probability": 0.9397 + }, + { + "start": 26342.92, + "end": 26345.38, + "probability": 0.9985 + }, + { + "start": 26345.38, + "end": 26349.9, + "probability": 0.9875 + }, + { + "start": 26350.7, + "end": 26351.38, + "probability": 0.5683 + }, + { + "start": 26352.66, + "end": 26357.54, + "probability": 0.7607 + }, + { + "start": 26358.24, + "end": 26358.97, + "probability": 0.7924 + }, + { + "start": 26359.96, + "end": 26363.0, + "probability": 0.7466 + }, + { + "start": 26363.56, + "end": 26365.32, + "probability": 0.9409 + }, + { + "start": 26366.02, + "end": 26368.82, + "probability": 0.9011 + }, + { + "start": 26368.94, + "end": 26370.22, + "probability": 0.5913 + }, + { + "start": 26371.5, + "end": 26372.98, + "probability": 0.8567 + }, + { + "start": 26373.56, + "end": 26376.1, + "probability": 0.9394 + }, + { + "start": 26376.84, + "end": 26377.66, + "probability": 0.6656 + }, + { + "start": 26379.06, + "end": 26380.56, + "probability": 0.977 + }, + { + "start": 26382.22, + "end": 26385.22, + "probability": 0.1119 + }, + { + "start": 26385.22, + "end": 26390.44, + "probability": 0.9095 + }, + { + "start": 26391.4, + "end": 26392.56, + "probability": 0.9855 + }, + { + "start": 26393.38, + "end": 26396.02, + "probability": 0.6491 + }, + { + "start": 26396.62, + "end": 26397.92, + "probability": 0.2652 + }, + { + "start": 26397.92, + "end": 26397.92, + "probability": 0.0265 + }, + { + "start": 26397.92, + "end": 26398.91, + "probability": 0.044 + }, + { + "start": 26399.16, + "end": 26399.3, + "probability": 0.0026 + }, + { + "start": 26399.38, + "end": 26399.98, + "probability": 0.7067 + }, + { + "start": 26401.88, + "end": 26403.68, + "probability": 0.999 + }, + { + "start": 26404.78, + "end": 26406.3, + "probability": 0.7971 + }, + { + "start": 26406.94, + "end": 26407.88, + "probability": 0.5001 + }, + { + "start": 26409.56, + "end": 26409.76, + "probability": 0.5502 + }, + { + "start": 26410.3, + "end": 26411.58, + "probability": 0.9448 + }, + { + "start": 26412.18, + "end": 26412.4, + "probability": 0.1345 + }, + { + "start": 26414.12, + "end": 26416.18, + "probability": 0.0286 + }, + { + "start": 26416.74, + "end": 26417.7, + "probability": 0.4886 + }, + { + "start": 26418.72, + "end": 26422.28, + "probability": 0.6809 + }, + { + "start": 26423.46, + "end": 26424.16, + "probability": 0.8085 + }, + { + "start": 26424.4, + "end": 26424.9, + "probability": 0.9819 + }, + { + "start": 26425.36, + "end": 26425.74, + "probability": 0.4145 + }, + { + "start": 26425.74, + "end": 26426.06, + "probability": 0.3091 + }, + { + "start": 26427.02, + "end": 26427.9, + "probability": 0.9351 + }, + { + "start": 26428.12, + "end": 26429.1, + "probability": 0.8979 + }, + { + "start": 26433.22, + "end": 26434.22, + "probability": 0.5027 + }, + { + "start": 26434.63, + "end": 26435.42, + "probability": 0.8784 + }, + { + "start": 26436.78, + "end": 26437.32, + "probability": 0.6985 + }, + { + "start": 26450.58, + "end": 26450.68, + "probability": 0.3173 + }, + { + "start": 26455.22, + "end": 26455.86, + "probability": 0.5948 + }, + { + "start": 26455.86, + "end": 26458.26, + "probability": 0.8701 + }, + { + "start": 26458.42, + "end": 26459.16, + "probability": 0.7101 + }, + { + "start": 26459.58, + "end": 26463.28, + "probability": 0.2398 + }, + { + "start": 26463.88, + "end": 26464.68, + "probability": 0.8195 + }, + { + "start": 26464.92, + "end": 26468.76, + "probability": 0.7763 + }, + { + "start": 26472.14, + "end": 26472.22, + "probability": 0.0749 + }, + { + "start": 26472.22, + "end": 26472.22, + "probability": 0.1055 + }, + { + "start": 26472.22, + "end": 26472.29, + "probability": 0.0116 + }, + { + "start": 26473.72, + "end": 26474.74, + "probability": 0.1745 + }, + { + "start": 26474.92, + "end": 26476.04, + "probability": 0.1369 + }, + { + "start": 26476.2, + "end": 26476.72, + "probability": 0.3262 + }, + { + "start": 26476.72, + "end": 26477.02, + "probability": 0.4866 + }, + { + "start": 26477.32, + "end": 26477.7, + "probability": 0.3085 + }, + { + "start": 26479.0, + "end": 26481.46, + "probability": 0.0684 + }, + { + "start": 26482.48, + "end": 26484.02, + "probability": 0.7157 + }, + { + "start": 26484.24, + "end": 26485.02, + "probability": 0.5238 + }, + { + "start": 26485.16, + "end": 26491.08, + "probability": 0.9814 + }, + { + "start": 26491.84, + "end": 26493.42, + "probability": 0.9628 + }, + { + "start": 26494.46, + "end": 26497.54, + "probability": 0.9782 + }, + { + "start": 26498.22, + "end": 26501.04, + "probability": 0.9794 + }, + { + "start": 26501.92, + "end": 26505.86, + "probability": 0.999 + }, + { + "start": 26506.42, + "end": 26510.16, + "probability": 0.9133 + }, + { + "start": 26510.56, + "end": 26512.06, + "probability": 0.9995 + }, + { + "start": 26512.92, + "end": 26514.82, + "probability": 0.9601 + }, + { + "start": 26515.76, + "end": 26517.1, + "probability": 0.8677 + }, + { + "start": 26517.74, + "end": 26520.64, + "probability": 0.8996 + }, + { + "start": 26521.34, + "end": 26524.2, + "probability": 0.99 + }, + { + "start": 26524.86, + "end": 26525.7, + "probability": 0.6482 + }, + { + "start": 26525.76, + "end": 26527.64, + "probability": 0.9539 + }, + { + "start": 26527.76, + "end": 26528.87, + "probability": 0.9697 + }, + { + "start": 26529.82, + "end": 26531.52, + "probability": 0.9902 + }, + { + "start": 26532.22, + "end": 26536.26, + "probability": 0.9345 + }, + { + "start": 26537.28, + "end": 26538.3, + "probability": 0.9875 + }, + { + "start": 26539.72, + "end": 26540.63, + "probability": 0.8354 + }, + { + "start": 26541.24, + "end": 26542.62, + "probability": 0.5814 + }, + { + "start": 26542.8, + "end": 26544.52, + "probability": 0.896 + }, + { + "start": 26545.02, + "end": 26549.22, + "probability": 0.946 + }, + { + "start": 26550.66, + "end": 26552.06, + "probability": 0.9115 + }, + { + "start": 26552.78, + "end": 26554.9, + "probability": 0.9939 + }, + { + "start": 26556.42, + "end": 26561.26, + "probability": 0.8682 + }, + { + "start": 26561.78, + "end": 26564.24, + "probability": 0.9066 + }, + { + "start": 26566.02, + "end": 26567.14, + "probability": 0.6778 + }, + { + "start": 26568.22, + "end": 26569.1, + "probability": 0.9413 + }, + { + "start": 26569.76, + "end": 26570.76, + "probability": 0.9715 + }, + { + "start": 26571.44, + "end": 26574.46, + "probability": 0.9729 + }, + { + "start": 26575.3, + "end": 26576.4, + "probability": 0.9171 + }, + { + "start": 26577.22, + "end": 26580.9, + "probability": 0.9822 + }, + { + "start": 26581.7, + "end": 26583.5, + "probability": 0.999 + }, + { + "start": 26584.48, + "end": 26589.32, + "probability": 0.9642 + }, + { + "start": 26590.98, + "end": 26594.62, + "probability": 0.9976 + }, + { + "start": 26595.56, + "end": 26598.74, + "probability": 0.9821 + }, + { + "start": 26599.5, + "end": 26603.8, + "probability": 0.9478 + }, + { + "start": 26604.0, + "end": 26607.66, + "probability": 0.9957 + }, + { + "start": 26609.24, + "end": 26610.2, + "probability": 0.5045 + }, + { + "start": 26611.24, + "end": 26613.6, + "probability": 0.9368 + }, + { + "start": 26614.18, + "end": 26616.88, + "probability": 0.9114 + }, + { + "start": 26618.6, + "end": 26618.8, + "probability": 0.948 + }, + { + "start": 26620.1, + "end": 26622.18, + "probability": 0.9989 + }, + { + "start": 26622.3, + "end": 26624.16, + "probability": 0.8256 + }, + { + "start": 26625.72, + "end": 26626.7, + "probability": 0.8574 + }, + { + "start": 26627.86, + "end": 26631.46, + "probability": 0.9971 + }, + { + "start": 26631.56, + "end": 26632.01, + "probability": 0.8993 + }, + { + "start": 26633.08, + "end": 26635.54, + "probability": 0.9897 + }, + { + "start": 26637.06, + "end": 26639.26, + "probability": 0.9958 + }, + { + "start": 26640.36, + "end": 26641.3, + "probability": 0.7221 + }, + { + "start": 26641.44, + "end": 26641.94, + "probability": 0.4896 + }, + { + "start": 26642.46, + "end": 26643.84, + "probability": 0.566 + }, + { + "start": 26644.42, + "end": 26646.73, + "probability": 0.5645 + }, + { + "start": 26647.44, + "end": 26650.02, + "probability": 0.9983 + }, + { + "start": 26651.12, + "end": 26651.91, + "probability": 0.9897 + }, + { + "start": 26653.06, + "end": 26655.32, + "probability": 0.9968 + }, + { + "start": 26656.02, + "end": 26659.4, + "probability": 0.9563 + }, + { + "start": 26660.78, + "end": 26662.5, + "probability": 0.9808 + }, + { + "start": 26663.18, + "end": 26666.67, + "probability": 0.9931 + }, + { + "start": 26667.48, + "end": 26669.07, + "probability": 0.9669 + }, + { + "start": 26670.04, + "end": 26670.91, + "probability": 0.9882 + }, + { + "start": 26671.18, + "end": 26672.16, + "probability": 0.998 + }, + { + "start": 26673.54, + "end": 26676.46, + "probability": 0.9125 + }, + { + "start": 26677.86, + "end": 26678.94, + "probability": 0.5291 + }, + { + "start": 26680.6, + "end": 26681.26, + "probability": 0.4079 + }, + { + "start": 26681.46, + "end": 26683.8, + "probability": 0.9935 + }, + { + "start": 26684.32, + "end": 26685.02, + "probability": 0.7976 + }, + { + "start": 26686.4, + "end": 26686.85, + "probability": 0.9819 + }, + { + "start": 26689.82, + "end": 26691.12, + "probability": 0.7968 + }, + { + "start": 26691.5, + "end": 26695.02, + "probability": 0.9958 + }, + { + "start": 26696.94, + "end": 26697.81, + "probability": 0.7255 + }, + { + "start": 26699.76, + "end": 26702.36, + "probability": 0.8757 + }, + { + "start": 26704.54, + "end": 26705.86, + "probability": 0.7865 + }, + { + "start": 26706.44, + "end": 26707.52, + "probability": 0.9937 + }, + { + "start": 26708.1, + "end": 26713.02, + "probability": 0.9834 + }, + { + "start": 26713.74, + "end": 26714.8, + "probability": 0.8884 + }, + { + "start": 26715.48, + "end": 26717.46, + "probability": 0.9956 + }, + { + "start": 26718.4, + "end": 26719.92, + "probability": 0.8871 + }, + { + "start": 26720.44, + "end": 26725.34, + "probability": 0.9761 + }, + { + "start": 26726.62, + "end": 26728.54, + "probability": 0.9726 + }, + { + "start": 26729.44, + "end": 26731.74, + "probability": 0.9985 + }, + { + "start": 26732.62, + "end": 26733.96, + "probability": 0.8043 + }, + { + "start": 26735.0, + "end": 26735.9, + "probability": 0.7321 + }, + { + "start": 26737.56, + "end": 26739.8, + "probability": 0.8616 + }, + { + "start": 26740.48, + "end": 26742.48, + "probability": 0.9568 + }, + { + "start": 26743.6, + "end": 26745.72, + "probability": 0.8767 + }, + { + "start": 26747.12, + "end": 26750.48, + "probability": 0.9961 + }, + { + "start": 26751.52, + "end": 26752.46, + "probability": 0.7847 + }, + { + "start": 26753.12, + "end": 26753.74, + "probability": 0.9463 + }, + { + "start": 26754.44, + "end": 26756.22, + "probability": 0.9604 + }, + { + "start": 26756.88, + "end": 26757.02, + "probability": 0.96 + }, + { + "start": 26758.24, + "end": 26759.0, + "probability": 0.4601 + }, + { + "start": 26759.54, + "end": 26761.3, + "probability": 0.9292 + }, + { + "start": 26762.16, + "end": 26762.94, + "probability": 0.7185 + }, + { + "start": 26777.98, + "end": 26777.98, + "probability": 0.1876 + }, + { + "start": 26777.98, + "end": 26777.98, + "probability": 0.1278 + }, + { + "start": 26777.98, + "end": 26778.4, + "probability": 0.1459 + }, + { + "start": 26781.64, + "end": 26784.54, + "probability": 0.0463 + }, + { + "start": 26784.54, + "end": 26785.34, + "probability": 0.0179 + }, + { + "start": 26785.34, + "end": 26785.34, + "probability": 0.1752 + }, + { + "start": 26785.34, + "end": 26786.72, + "probability": 0.2654 + }, + { + "start": 26787.12, + "end": 26787.34, + "probability": 0.6122 + }, + { + "start": 26787.92, + "end": 26789.22, + "probability": 0.9459 + }, + { + "start": 26789.98, + "end": 26792.0, + "probability": 0.6711 + }, + { + "start": 26792.08, + "end": 26792.75, + "probability": 0.6744 + }, + { + "start": 26793.4, + "end": 26794.12, + "probability": 0.432 + }, + { + "start": 26794.54, + "end": 26795.62, + "probability": 0.5554 + }, + { + "start": 26796.62, + "end": 26798.74, + "probability": 0.5617 + }, + { + "start": 26799.88, + "end": 26800.74, + "probability": 0.7319 + }, + { + "start": 26800.8, + "end": 26802.46, + "probability": 0.2303 + }, + { + "start": 26802.8, + "end": 26805.14, + "probability": 0.9844 + }, + { + "start": 26805.26, + "end": 26805.4, + "probability": 0.8103 + }, + { + "start": 26805.92, + "end": 26806.5, + "probability": 0.3862 + }, + { + "start": 26807.1, + "end": 26809.38, + "probability": 0.475 + }, + { + "start": 26810.38, + "end": 26812.64, + "probability": 0.7888 + }, + { + "start": 26812.78, + "end": 26814.2, + "probability": 0.7043 + }, + { + "start": 26814.36, + "end": 26814.6, + "probability": 0.081 + }, + { + "start": 26814.74, + "end": 26815.7, + "probability": 0.7367 + }, + { + "start": 26816.42, + "end": 26817.28, + "probability": 0.8758 + }, + { + "start": 26819.32, + "end": 26820.18, + "probability": 0.9026 + }, + { + "start": 26821.94, + "end": 26824.36, + "probability": 0.9964 + }, + { + "start": 26825.98, + "end": 26826.08, + "probability": 0.5257 + }, + { + "start": 26827.1, + "end": 26827.92, + "probability": 0.0752 + }, + { + "start": 26828.62, + "end": 26829.16, + "probability": 0.6227 + }, + { + "start": 26829.82, + "end": 26832.16, + "probability": 0.9803 + }, + { + "start": 26832.96, + "end": 26834.1, + "probability": 0.9712 + }, + { + "start": 26835.14, + "end": 26839.08, + "probability": 0.9841 + }, + { + "start": 26840.22, + "end": 26842.56, + "probability": 0.8879 + }, + { + "start": 26843.16, + "end": 26846.58, + "probability": 0.9921 + }, + { + "start": 26849.52, + "end": 26850.26, + "probability": 0.7286 + }, + { + "start": 26851.32, + "end": 26853.38, + "probability": 0.9402 + }, + { + "start": 26854.02, + "end": 26855.5, + "probability": 0.9089 + }, + { + "start": 26856.66, + "end": 26859.78, + "probability": 0.7127 + }, + { + "start": 26859.94, + "end": 26860.36, + "probability": 0.5176 + }, + { + "start": 26862.56, + "end": 26863.64, + "probability": 0.9575 + }, + { + "start": 26865.4, + "end": 26866.6, + "probability": 0.8419 + }, + { + "start": 26866.9, + "end": 26867.7, + "probability": 0.7439 + }, + { + "start": 26867.86, + "end": 26871.2, + "probability": 0.8044 + }, + { + "start": 26871.3, + "end": 26872.48, + "probability": 0.9305 + }, + { + "start": 26872.68, + "end": 26873.52, + "probability": 0.9039 + }, + { + "start": 26873.88, + "end": 26874.84, + "probability": 0.7475 + }, + { + "start": 26875.34, + "end": 26878.52, + "probability": 0.9954 + }, + { + "start": 26879.52, + "end": 26880.8, + "probability": 0.9541 + }, + { + "start": 26881.6, + "end": 26883.58, + "probability": 0.9855 + }, + { + "start": 26885.02, + "end": 26888.74, + "probability": 0.9985 + }, + { + "start": 26889.18, + "end": 26890.56, + "probability": 0.914 + }, + { + "start": 26891.98, + "end": 26893.38, + "probability": 0.8759 + }, + { + "start": 26893.38, + "end": 26896.88, + "probability": 0.9561 + }, + { + "start": 26898.86, + "end": 26899.58, + "probability": 0.8434 + }, + { + "start": 26900.36, + "end": 26901.96, + "probability": 0.9324 + }, + { + "start": 26902.04, + "end": 26903.32, + "probability": 0.9143 + }, + { + "start": 26903.98, + "end": 26905.46, + "probability": 0.8938 + }, + { + "start": 26905.98, + "end": 26906.78, + "probability": 0.836 + }, + { + "start": 26907.4, + "end": 26909.16, + "probability": 0.7543 + }, + { + "start": 26909.78, + "end": 26911.84, + "probability": 0.9888 + }, + { + "start": 26912.16, + "end": 26916.28, + "probability": 0.9923 + }, + { + "start": 26917.42, + "end": 26920.82, + "probability": 0.9394 + }, + { + "start": 26921.7, + "end": 26924.26, + "probability": 0.9425 + }, + { + "start": 26924.72, + "end": 26928.12, + "probability": 0.9937 + }, + { + "start": 26928.12, + "end": 26931.7, + "probability": 0.968 + }, + { + "start": 26932.68, + "end": 26933.4, + "probability": 0.8077 + }, + { + "start": 26934.1, + "end": 26935.26, + "probability": 0.8573 + }, + { + "start": 26938.72, + "end": 26939.48, + "probability": 0.9495 + }, + { + "start": 26940.08, + "end": 26943.88, + "probability": 0.9995 + }, + { + "start": 26944.5, + "end": 26947.62, + "probability": 0.9996 + }, + { + "start": 26948.22, + "end": 26953.32, + "probability": 0.9984 + }, + { + "start": 26953.74, + "end": 26957.92, + "probability": 0.9976 + }, + { + "start": 26958.6, + "end": 26964.22, + "probability": 0.9925 + }, + { + "start": 26965.76, + "end": 26968.48, + "probability": 0.9116 + }, + { + "start": 26969.14, + "end": 26971.02, + "probability": 0.766 + }, + { + "start": 26971.8, + "end": 26972.68, + "probability": 0.7222 + }, + { + "start": 26972.88, + "end": 26973.8, + "probability": 0.9928 + }, + { + "start": 26975.12, + "end": 26979.76, + "probability": 0.9387 + }, + { + "start": 26979.76, + "end": 26983.5, + "probability": 0.9878 + }, + { + "start": 26984.22, + "end": 26988.38, + "probability": 0.973 + }, + { + "start": 26988.86, + "end": 26989.52, + "probability": 0.7725 + }, + { + "start": 26993.84, + "end": 26995.29, + "probability": 0.8817 + }, + { + "start": 26996.06, + "end": 26996.48, + "probability": 0.5149 + }, + { + "start": 26997.68, + "end": 26998.82, + "probability": 0.749 + }, + { + "start": 26999.02, + "end": 27001.06, + "probability": 0.9775 + }, + { + "start": 27001.58, + "end": 27003.24, + "probability": 0.9863 + }, + { + "start": 27003.58, + "end": 27004.28, + "probability": 0.989 + }, + { + "start": 27004.38, + "end": 27005.32, + "probability": 0.96 + }, + { + "start": 27005.46, + "end": 27006.32, + "probability": 0.6786 + }, + { + "start": 27006.72, + "end": 27007.4, + "probability": 0.7223 + }, + { + "start": 27007.5, + "end": 27009.72, + "probability": 0.9392 + }, + { + "start": 27010.89, + "end": 27013.62, + "probability": 0.8872 + }, + { + "start": 27014.06, + "end": 27017.2, + "probability": 0.9898 + }, + { + "start": 27018.18, + "end": 27022.08, + "probability": 0.999 + }, + { + "start": 27022.92, + "end": 27025.48, + "probability": 0.8043 + }, + { + "start": 27025.48, + "end": 27026.72, + "probability": 0.9572 + }, + { + "start": 27026.88, + "end": 27027.16, + "probability": 0.9107 + }, + { + "start": 27027.52, + "end": 27028.66, + "probability": 0.9489 + }, + { + "start": 27047.3, + "end": 27049.46, + "probability": 0.6813 + }, + { + "start": 27053.44, + "end": 27057.54, + "probability": 0.9972 + }, + { + "start": 27058.42, + "end": 27064.22, + "probability": 0.9969 + }, + { + "start": 27065.24, + "end": 27066.6, + "probability": 0.8553 + }, + { + "start": 27066.68, + "end": 27068.66, + "probability": 0.9607 + }, + { + "start": 27069.54, + "end": 27071.6, + "probability": 0.1521 + }, + { + "start": 27072.08, + "end": 27078.92, + "probability": 0.9344 + }, + { + "start": 27079.76, + "end": 27080.88, + "probability": 0.7061 + }, + { + "start": 27081.8, + "end": 27086.14, + "probability": 0.9884 + }, + { + "start": 27086.82, + "end": 27088.38, + "probability": 0.9772 + }, + { + "start": 27089.7, + "end": 27090.94, + "probability": 0.8846 + }, + { + "start": 27093.08, + "end": 27099.18, + "probability": 0.9974 + }, + { + "start": 27100.14, + "end": 27103.7, + "probability": 0.752 + }, + { + "start": 27106.2, + "end": 27107.4, + "probability": 0.5121 + }, + { + "start": 27108.32, + "end": 27110.86, + "probability": 0.9291 + }, + { + "start": 27112.42, + "end": 27115.66, + "probability": 0.9366 + }, + { + "start": 27116.64, + "end": 27118.46, + "probability": 0.9984 + }, + { + "start": 27119.74, + "end": 27120.84, + "probability": 0.7397 + }, + { + "start": 27122.26, + "end": 27123.06, + "probability": 0.7789 + }, + { + "start": 27124.12, + "end": 27125.31, + "probability": 0.833 + }, + { + "start": 27125.92, + "end": 27127.72, + "probability": 0.5039 + }, + { + "start": 27128.38, + "end": 27130.3, + "probability": 0.9736 + }, + { + "start": 27131.3, + "end": 27133.79, + "probability": 0.8975 + }, + { + "start": 27134.36, + "end": 27137.18, + "probability": 0.9968 + }, + { + "start": 27137.24, + "end": 27138.36, + "probability": 0.9976 + }, + { + "start": 27139.3, + "end": 27139.84, + "probability": 0.8148 + }, + { + "start": 27140.92, + "end": 27142.8, + "probability": 0.8729 + }, + { + "start": 27144.24, + "end": 27146.43, + "probability": 0.7349 + }, + { + "start": 27147.3, + "end": 27151.94, + "probability": 0.9092 + }, + { + "start": 27153.3, + "end": 27155.58, + "probability": 0.4952 + }, + { + "start": 27156.83, + "end": 27159.53, + "probability": 0.4727 + }, + { + "start": 27160.88, + "end": 27163.76, + "probability": 0.5039 + }, + { + "start": 27163.76, + "end": 27165.9, + "probability": 0.4911 + }, + { + "start": 27165.98, + "end": 27169.1, + "probability": 0.6785 + }, + { + "start": 27169.26, + "end": 27170.02, + "probability": 0.159 + }, + { + "start": 27170.06, + "end": 27170.66, + "probability": 0.0724 + }, + { + "start": 27170.71, + "end": 27172.5, + "probability": 0.8122 + }, + { + "start": 27172.8, + "end": 27173.52, + "probability": 0.6594 + }, + { + "start": 27175.26, + "end": 27175.84, + "probability": 0.4061 + }, + { + "start": 27176.78, + "end": 27177.14, + "probability": 0.0633 + }, + { + "start": 27177.14, + "end": 27177.14, + "probability": 0.2698 + }, + { + "start": 27177.14, + "end": 27181.02, + "probability": 0.4345 + }, + { + "start": 27181.02, + "end": 27182.42, + "probability": 0.9076 + }, + { + "start": 27183.14, + "end": 27186.78, + "probability": 0.9612 + }, + { + "start": 27187.14, + "end": 27188.8, + "probability": 0.8867 + }, + { + "start": 27189.28, + "end": 27194.6, + "probability": 0.8478 + }, + { + "start": 27195.78, + "end": 27198.2, + "probability": 0.9937 + }, + { + "start": 27199.26, + "end": 27200.82, + "probability": 0.9948 + }, + { + "start": 27201.34, + "end": 27202.3, + "probability": 0.7839 + }, + { + "start": 27202.7, + "end": 27203.88, + "probability": 0.9081 + }, + { + "start": 27204.24, + "end": 27204.52, + "probability": 0.6268 + }, + { + "start": 27204.6, + "end": 27206.78, + "probability": 0.6744 + }, + { + "start": 27206.82, + "end": 27207.72, + "probability": 0.8596 + }, + { + "start": 27208.26, + "end": 27209.72, + "probability": 0.5086 + }, + { + "start": 27210.34, + "end": 27213.72, + "probability": 0.9113 + }, + { + "start": 27214.18, + "end": 27214.32, + "probability": 0.8719 + }, + { + "start": 27215.02, + "end": 27216.18, + "probability": 0.8831 + }, + { + "start": 27216.32, + "end": 27216.76, + "probability": 0.214 + }, + { + "start": 27217.08, + "end": 27219.04, + "probability": 0.7188 + }, + { + "start": 27219.26, + "end": 27221.79, + "probability": 0.8569 + }, + { + "start": 27222.46, + "end": 27223.94, + "probability": 0.4953 + }, + { + "start": 27224.12, + "end": 27227.07, + "probability": 0.7807 + }, + { + "start": 27227.7, + "end": 27232.52, + "probability": 0.898 + }, + { + "start": 27232.76, + "end": 27236.34, + "probability": 0.9703 + }, + { + "start": 27236.68, + "end": 27241.18, + "probability": 0.0175 + }, + { + "start": 27241.82, + "end": 27241.82, + "probability": 0.0955 + }, + { + "start": 27241.82, + "end": 27241.82, + "probability": 0.0714 + }, + { + "start": 27241.82, + "end": 27242.24, + "probability": 0.0378 + }, + { + "start": 27242.66, + "end": 27245.28, + "probability": 0.8973 + }, + { + "start": 27246.38, + "end": 27251.72, + "probability": 0.9914 + }, + { + "start": 27252.34, + "end": 27255.36, + "probability": 0.6212 + }, + { + "start": 27255.56, + "end": 27256.72, + "probability": 0.6212 + }, + { + "start": 27256.82, + "end": 27257.54, + "probability": 0.9346 + }, + { + "start": 27258.32, + "end": 27259.28, + "probability": 0.8228 + }, + { + "start": 27259.74, + "end": 27261.86, + "probability": 0.9582 + }, + { + "start": 27262.62, + "end": 27264.42, + "probability": 0.9534 + }, + { + "start": 27264.94, + "end": 27265.28, + "probability": 0.9375 + }, + { + "start": 27265.8, + "end": 27266.54, + "probability": 0.8117 + }, + { + "start": 27266.64, + "end": 27268.54, + "probability": 0.9512 + }, + { + "start": 27269.22, + "end": 27272.0, + "probability": 0.9966 + }, + { + "start": 27272.66, + "end": 27273.4, + "probability": 0.9885 + }, + { + "start": 27273.92, + "end": 27276.92, + "probability": 0.996 + }, + { + "start": 27277.5, + "end": 27278.46, + "probability": 0.8081 + }, + { + "start": 27279.86, + "end": 27280.06, + "probability": 0.0246 + }, + { + "start": 27280.06, + "end": 27280.06, + "probability": 0.45 + }, + { + "start": 27280.06, + "end": 27284.66, + "probability": 0.4442 + }, + { + "start": 27285.42, + "end": 27286.58, + "probability": 0.688 + }, + { + "start": 27287.14, + "end": 27289.2, + "probability": 0.8057 + }, + { + "start": 27289.74, + "end": 27295.74, + "probability": 0.6898 + }, + { + "start": 27296.38, + "end": 27296.92, + "probability": 0.2233 + }, + { + "start": 27297.0, + "end": 27298.8, + "probability": 0.882 + }, + { + "start": 27298.82, + "end": 27299.62, + "probability": 0.7118 + }, + { + "start": 27299.74, + "end": 27300.24, + "probability": 0.2256 + }, + { + "start": 27300.26, + "end": 27301.3, + "probability": 0.9106 + }, + { + "start": 27301.3, + "end": 27301.88, + "probability": 0.101 + }, + { + "start": 27302.48, + "end": 27305.12, + "probability": 0.9331 + }, + { + "start": 27305.22, + "end": 27308.86, + "probability": 0.978 + }, + { + "start": 27309.26, + "end": 27313.22, + "probability": 0.9823 + }, + { + "start": 27313.28, + "end": 27314.18, + "probability": 0.5973 + }, + { + "start": 27314.3, + "end": 27316.06, + "probability": 0.7531 + }, + { + "start": 27316.34, + "end": 27316.58, + "probability": 0.9248 + }, + { + "start": 27320.38, + "end": 27321.38, + "probability": 0.5869 + }, + { + "start": 27321.48, + "end": 27322.08, + "probability": 0.0683 + }, + { + "start": 27322.36, + "end": 27323.4, + "probability": 0.8787 + }, + { + "start": 27323.56, + "end": 27324.14, + "probability": 0.6437 + }, + { + "start": 27325.88, + "end": 27329.44, + "probability": 0.345 + }, + { + "start": 27331.26, + "end": 27331.96, + "probability": 0.2095 + }, + { + "start": 27331.96, + "end": 27332.54, + "probability": 0.1049 + }, + { + "start": 27332.54, + "end": 27332.94, + "probability": 0.5916 + }, + { + "start": 27333.86, + "end": 27338.52, + "probability": 0.0831 + }, + { + "start": 27339.28, + "end": 27339.58, + "probability": 0.4711 + }, + { + "start": 27339.58, + "end": 27339.98, + "probability": 0.2993 + }, + { + "start": 27339.98, + "end": 27341.18, + "probability": 0.2369 + }, + { + "start": 27341.2, + "end": 27343.44, + "probability": 0.4889 + }, + { + "start": 27344.66, + "end": 27345.38, + "probability": 0.2838 + }, + { + "start": 27345.7, + "end": 27346.2, + "probability": 0.764 + }, + { + "start": 27348.56, + "end": 27349.98, + "probability": 0.4981 + }, + { + "start": 27350.86, + "end": 27353.72, + "probability": 0.8826 + }, + { + "start": 27354.58, + "end": 27357.36, + "probability": 0.9507 + }, + { + "start": 27357.84, + "end": 27359.74, + "probability": 0.9972 + }, + { + "start": 27360.52, + "end": 27361.28, + "probability": 0.7408 + }, + { + "start": 27361.32, + "end": 27361.62, + "probability": 0.7499 + }, + { + "start": 27362.04, + "end": 27365.3, + "probability": 0.814 + }, + { + "start": 27365.3, + "end": 27365.58, + "probability": 0.6432 + }, + { + "start": 27365.6, + "end": 27367.9, + "probability": 0.8851 + }, + { + "start": 27368.2, + "end": 27372.96, + "probability": 0.9904 + }, + { + "start": 27373.1, + "end": 27373.92, + "probability": 0.9697 + }, + { + "start": 27374.04, + "end": 27375.88, + "probability": 0.8027 + }, + { + "start": 27376.24, + "end": 27378.9, + "probability": 0.9338 + }, + { + "start": 27379.14, + "end": 27383.26, + "probability": 0.7337 + }, + { + "start": 27383.34, + "end": 27383.34, + "probability": 0.375 + }, + { + "start": 27383.34, + "end": 27385.92, + "probability": 0.768 + }, + { + "start": 27385.94, + "end": 27390.18, + "probability": 0.993 + }, + { + "start": 27390.18, + "end": 27391.9, + "probability": 0.8194 + }, + { + "start": 27391.9, + "end": 27392.6, + "probability": 0.066 + }, + { + "start": 27392.64, + "end": 27393.82, + "probability": 0.8945 + }, + { + "start": 27393.82, + "end": 27393.86, + "probability": 0.3329 + }, + { + "start": 27393.86, + "end": 27396.28, + "probability": 0.2915 + }, + { + "start": 27396.28, + "end": 27397.46, + "probability": 0.7966 + }, + { + "start": 27399.18, + "end": 27399.82, + "probability": 0.0077 + }, + { + "start": 27399.82, + "end": 27399.82, + "probability": 0.2682 + }, + { + "start": 27399.82, + "end": 27401.26, + "probability": 0.481 + }, + { + "start": 27414.7, + "end": 27415.12, + "probability": 0.3465 + }, + { + "start": 27417.68, + "end": 27420.82, + "probability": 0.5872 + }, + { + "start": 27423.36, + "end": 27426.22, + "probability": 0.9376 + }, + { + "start": 27426.42, + "end": 27427.88, + "probability": 0.9956 + }, + { + "start": 27429.24, + "end": 27431.04, + "probability": 0.9546 + }, + { + "start": 27432.48, + "end": 27434.32, + "probability": 0.8843 + }, + { + "start": 27435.76, + "end": 27436.46, + "probability": 0.9065 + }, + { + "start": 27437.6, + "end": 27440.23, + "probability": 0.998 + }, + { + "start": 27440.66, + "end": 27442.52, + "probability": 0.9848 + }, + { + "start": 27443.4, + "end": 27444.34, + "probability": 0.9111 + }, + { + "start": 27445.82, + "end": 27450.42, + "probability": 0.985 + }, + { + "start": 27450.44, + "end": 27451.4, + "probability": 0.7975 + }, + { + "start": 27452.54, + "end": 27458.96, + "probability": 0.9437 + }, + { + "start": 27459.18, + "end": 27460.44, + "probability": 0.9995 + }, + { + "start": 27461.04, + "end": 27461.3, + "probability": 0.999 + }, + { + "start": 27461.82, + "end": 27462.8, + "probability": 0.9848 + }, + { + "start": 27463.82, + "end": 27464.94, + "probability": 0.9427 + }, + { + "start": 27465.22, + "end": 27472.08, + "probability": 0.9565 + }, + { + "start": 27472.7, + "end": 27475.04, + "probability": 0.9968 + }, + { + "start": 27475.9, + "end": 27480.56, + "probability": 0.9956 + }, + { + "start": 27481.3, + "end": 27482.06, + "probability": 0.9439 + }, + { + "start": 27482.98, + "end": 27485.08, + "probability": 0.999 + }, + { + "start": 27485.08, + "end": 27489.02, + "probability": 0.9884 + }, + { + "start": 27489.36, + "end": 27489.94, + "probability": 0.9109 + }, + { + "start": 27491.16, + "end": 27491.98, + "probability": 0.9846 + }, + { + "start": 27493.5, + "end": 27496.28, + "probability": 0.9985 + }, + { + "start": 27496.46, + "end": 27497.42, + "probability": 0.8333 + }, + { + "start": 27498.38, + "end": 27500.0, + "probability": 0.828 + }, + { + "start": 27500.12, + "end": 27502.28, + "probability": 0.9841 + }, + { + "start": 27503.78, + "end": 27505.62, + "probability": 0.9736 + }, + { + "start": 27506.36, + "end": 27508.6, + "probability": 0.5022 + }, + { + "start": 27510.22, + "end": 27517.22, + "probability": 0.9964 + }, + { + "start": 27517.28, + "end": 27520.78, + "probability": 0.9954 + }, + { + "start": 27520.78, + "end": 27525.94, + "probability": 0.9984 + }, + { + "start": 27526.02, + "end": 27529.36, + "probability": 0.7857 + }, + { + "start": 27529.94, + "end": 27535.02, + "probability": 0.9965 + }, + { + "start": 27535.54, + "end": 27537.52, + "probability": 0.969 + }, + { + "start": 27538.0, + "end": 27538.88, + "probability": 0.9305 + }, + { + "start": 27539.06, + "end": 27544.7, + "probability": 0.9949 + }, + { + "start": 27545.34, + "end": 27548.44, + "probability": 0.958 + }, + { + "start": 27548.6, + "end": 27548.6, + "probability": 0.1206 + }, + { + "start": 27548.6, + "end": 27552.78, + "probability": 0.9747 + }, + { + "start": 27552.78, + "end": 27556.18, + "probability": 0.9963 + }, + { + "start": 27556.76, + "end": 27558.16, + "probability": 0.8453 + }, + { + "start": 27558.2, + "end": 27558.76, + "probability": 0.846 + }, + { + "start": 27559.26, + "end": 27560.62, + "probability": 0.6565 + }, + { + "start": 27561.04, + "end": 27565.58, + "probability": 0.9842 + }, + { + "start": 27566.1, + "end": 27567.91, + "probability": 0.9969 + }, + { + "start": 27568.64, + "end": 27574.28, + "probability": 0.9902 + }, + { + "start": 27574.54, + "end": 27576.36, + "probability": 0.9256 + }, + { + "start": 27576.76, + "end": 27577.5, + "probability": 0.9264 + }, + { + "start": 27578.36, + "end": 27581.82, + "probability": 0.9823 + }, + { + "start": 27582.44, + "end": 27585.74, + "probability": 0.8565 + }, + { + "start": 27586.44, + "end": 27588.26, + "probability": 0.9639 + }, + { + "start": 27589.64, + "end": 27593.02, + "probability": 0.8615 + }, + { + "start": 27593.44, + "end": 27599.18, + "probability": 0.9896 + }, + { + "start": 27599.6, + "end": 27600.46, + "probability": 0.5335 + }, + { + "start": 27601.0, + "end": 27602.06, + "probability": 0.588 + }, + { + "start": 27603.36, + "end": 27605.42, + "probability": 0.9295 + }, + { + "start": 27605.62, + "end": 27607.02, + "probability": 0.9875 + }, + { + "start": 27607.6, + "end": 27609.96, + "probability": 0.966 + }, + { + "start": 27610.12, + "end": 27611.18, + "probability": 0.8986 + }, + { + "start": 27611.74, + "end": 27612.4, + "probability": 0.6878 + }, + { + "start": 27612.88, + "end": 27616.14, + "probability": 0.9662 + }, + { + "start": 27616.32, + "end": 27620.26, + "probability": 0.8809 + }, + { + "start": 27620.82, + "end": 27621.92, + "probability": 0.9305 + }, + { + "start": 27622.4, + "end": 27625.02, + "probability": 0.9951 + }, + { + "start": 27625.78, + "end": 27627.93, + "probability": 0.9172 + }, + { + "start": 27628.64, + "end": 27634.6, + "probability": 0.8942 + }, + { + "start": 27635.22, + "end": 27638.66, + "probability": 0.9654 + }, + { + "start": 27639.2, + "end": 27640.98, + "probability": 0.5419 + }, + { + "start": 27641.54, + "end": 27642.14, + "probability": 0.7906 + }, + { + "start": 27642.88, + "end": 27647.74, + "probability": 0.9935 + }, + { + "start": 27648.64, + "end": 27652.58, + "probability": 0.9995 + }, + { + "start": 27653.2, + "end": 27656.66, + "probability": 0.9791 + }, + { + "start": 27657.34, + "end": 27659.32, + "probability": 0.5544 + }, + { + "start": 27659.5, + "end": 27660.08, + "probability": 0.4132 + }, + { + "start": 27660.4, + "end": 27661.01, + "probability": 0.8592 + }, + { + "start": 27661.32, + "end": 27662.36, + "probability": 0.939 + }, + { + "start": 27662.38, + "end": 27662.78, + "probability": 0.7395 + }, + { + "start": 27662.86, + "end": 27663.46, + "probability": 0.7531 + }, + { + "start": 27663.98, + "end": 27665.75, + "probability": 0.951 + }, + { + "start": 27679.0, + "end": 27679.14, + "probability": 0.3738 + }, + { + "start": 27680.54, + "end": 27683.5, + "probability": 0.658 + }, + { + "start": 27684.92, + "end": 27689.19, + "probability": 0.8174 + }, + { + "start": 27691.58, + "end": 27692.12, + "probability": 0.8784 + }, + { + "start": 27693.76, + "end": 27697.9, + "probability": 0.767 + }, + { + "start": 27698.96, + "end": 27700.12, + "probability": 0.7659 + }, + { + "start": 27701.16, + "end": 27701.7, + "probability": 0.9852 + }, + { + "start": 27702.68, + "end": 27706.08, + "probability": 0.9683 + }, + { + "start": 27709.1, + "end": 27711.42, + "probability": 0.4037 + }, + { + "start": 27712.68, + "end": 27713.84, + "probability": 0.8317 + }, + { + "start": 27714.54, + "end": 27715.62, + "probability": 0.6842 + }, + { + "start": 27716.7, + "end": 27718.4, + "probability": 0.7058 + }, + { + "start": 27719.0, + "end": 27719.42, + "probability": 0.3372 + }, + { + "start": 27720.0, + "end": 27724.72, + "probability": 0.9954 + }, + { + "start": 27725.9, + "end": 27726.44, + "probability": 0.9409 + }, + { + "start": 27727.32, + "end": 27728.04, + "probability": 0.9465 + }, + { + "start": 27728.2, + "end": 27729.04, + "probability": 0.9688 + }, + { + "start": 27731.58, + "end": 27733.6, + "probability": 0.4256 + }, + { + "start": 27734.82, + "end": 27736.76, + "probability": 0.8175 + }, + { + "start": 27737.82, + "end": 27739.92, + "probability": 0.9563 + }, + { + "start": 27741.28, + "end": 27742.26, + "probability": 0.9973 + }, + { + "start": 27743.06, + "end": 27743.78, + "probability": 0.866 + }, + { + "start": 27744.48, + "end": 27745.68, + "probability": 0.8699 + }, + { + "start": 27746.24, + "end": 27747.6, + "probability": 0.9747 + }, + { + "start": 27748.4, + "end": 27749.34, + "probability": 0.7509 + }, + { + "start": 27749.82, + "end": 27753.94, + "probability": 0.9624 + }, + { + "start": 27755.86, + "end": 27756.72, + "probability": 0.8138 + }, + { + "start": 27756.94, + "end": 27759.18, + "probability": 0.9853 + }, + { + "start": 27760.3, + "end": 27763.32, + "probability": 0.8967 + }, + { + "start": 27764.18, + "end": 27764.62, + "probability": 0.4014 + }, + { + "start": 27764.8, + "end": 27765.8, + "probability": 0.9531 + }, + { + "start": 27766.62, + "end": 27767.6, + "probability": 0.6062 + }, + { + "start": 27768.22, + "end": 27769.28, + "probability": 0.9987 + }, + { + "start": 27770.1, + "end": 27770.74, + "probability": 0.6861 + }, + { + "start": 27770.76, + "end": 27771.58, + "probability": 0.9775 + }, + { + "start": 27772.1, + "end": 27774.12, + "probability": 0.5781 + }, + { + "start": 27774.16, + "end": 27777.4, + "probability": 0.7397 + }, + { + "start": 27778.72, + "end": 27781.96, + "probability": 0.9202 + }, + { + "start": 27782.7, + "end": 27784.88, + "probability": 0.7595 + }, + { + "start": 27785.5, + "end": 27786.42, + "probability": 0.7379 + }, + { + "start": 27787.14, + "end": 27788.66, + "probability": 0.5482 + }, + { + "start": 27790.12, + "end": 27791.62, + "probability": 0.9206 + }, + { + "start": 27792.76, + "end": 27793.34, + "probability": 0.6443 + }, + { + "start": 27794.04, + "end": 27799.02, + "probability": 0.7258 + }, + { + "start": 27799.4, + "end": 27801.2, + "probability": 0.9723 + }, + { + "start": 27802.9, + "end": 27803.6, + "probability": 0.7592 + }, + { + "start": 27805.34, + "end": 27807.54, + "probability": 0.9813 + }, + { + "start": 27808.6, + "end": 27810.16, + "probability": 0.9927 + }, + { + "start": 27811.26, + "end": 27813.08, + "probability": 0.9938 + }, + { + "start": 27813.86, + "end": 27815.39, + "probability": 0.9426 + }, + { + "start": 27816.52, + "end": 27820.88, + "probability": 0.9518 + }, + { + "start": 27820.88, + "end": 27824.6, + "probability": 0.9946 + }, + { + "start": 27825.66, + "end": 27826.82, + "probability": 0.5133 + }, + { + "start": 27827.4, + "end": 27829.76, + "probability": 0.9364 + }, + { + "start": 27831.14, + "end": 27835.08, + "probability": 0.8652 + }, + { + "start": 27836.14, + "end": 27837.18, + "probability": 0.8721 + }, + { + "start": 27837.84, + "end": 27838.92, + "probability": 0.9523 + }, + { + "start": 27839.8, + "end": 27841.1, + "probability": 0.8037 + }, + { + "start": 27841.78, + "end": 27844.98, + "probability": 0.9588 + }, + { + "start": 27846.85, + "end": 27848.3, + "probability": 0.6391 + }, + { + "start": 27849.96, + "end": 27853.2, + "probability": 0.9858 + }, + { + "start": 27853.84, + "end": 27854.76, + "probability": 0.9348 + }, + { + "start": 27855.34, + "end": 27856.5, + "probability": 0.8796 + }, + { + "start": 27857.04, + "end": 27859.14, + "probability": 0.9463 + }, + { + "start": 27859.88, + "end": 27860.5, + "probability": 0.7522 + }, + { + "start": 27860.76, + "end": 27863.42, + "probability": 0.3324 + }, + { + "start": 27870.14, + "end": 27871.48, + "probability": 0.0285 + }, + { + "start": 27881.86, + "end": 27882.66, + "probability": 0.4232 + }, + { + "start": 27882.96, + "end": 27883.22, + "probability": 0.7557 + }, + { + "start": 27884.24, + "end": 27885.94, + "probability": 0.8333 + }, + { + "start": 27887.38, + "end": 27890.86, + "probability": 0.9451 + }, + { + "start": 27891.66, + "end": 27893.08, + "probability": 0.849 + }, + { + "start": 27893.16, + "end": 27893.74, + "probability": 0.8554 + }, + { + "start": 27893.88, + "end": 27896.02, + "probability": 0.8317 + }, + { + "start": 27897.86, + "end": 27898.68, + "probability": 0.5956 + }, + { + "start": 27899.82, + "end": 27900.76, + "probability": 0.9575 + }, + { + "start": 27903.62, + "end": 27904.2, + "probability": 0.9715 + }, + { + "start": 27904.72, + "end": 27906.34, + "probability": 0.9948 + }, + { + "start": 27907.3, + "end": 27908.9, + "probability": 0.9252 + }, + { + "start": 27909.78, + "end": 27910.82, + "probability": 0.9756 + }, + { + "start": 27911.42, + "end": 27913.12, + "probability": 0.9414 + }, + { + "start": 27913.72, + "end": 27914.52, + "probability": 0.5959 + }, + { + "start": 27915.04, + "end": 27916.42, + "probability": 0.9789 + }, + { + "start": 27917.14, + "end": 27918.16, + "probability": 0.9985 + }, + { + "start": 27919.06, + "end": 27921.08, + "probability": 0.9966 + }, + { + "start": 27921.34, + "end": 27922.1, + "probability": 0.5663 + }, + { + "start": 27922.3, + "end": 27923.12, + "probability": 0.8856 + }, + { + "start": 27924.2, + "end": 27926.3, + "probability": 0.9458 + }, + { + "start": 27927.24, + "end": 27928.3, + "probability": 0.8386 + }, + { + "start": 27929.72, + "end": 27930.82, + "probability": 0.4712 + }, + { + "start": 27932.32, + "end": 27932.78, + "probability": 0.98 + }, + { + "start": 27933.72, + "end": 27934.38, + "probability": 0.7299 + }, + { + "start": 27934.92, + "end": 27938.66, + "probability": 0.6749 + }, + { + "start": 27939.24, + "end": 27940.24, + "probability": 0.8598 + }, + { + "start": 27941.34, + "end": 27944.42, + "probability": 0.9834 + }, + { + "start": 27946.0, + "end": 27948.74, + "probability": 0.9492 + }, + { + "start": 27949.66, + "end": 27950.78, + "probability": 0.9937 + }, + { + "start": 27951.02, + "end": 27952.34, + "probability": 0.9853 + }, + { + "start": 27952.7, + "end": 27953.56, + "probability": 0.4616 + }, + { + "start": 27953.64, + "end": 27954.76, + "probability": 0.8435 + }, + { + "start": 27955.36, + "end": 27956.63, + "probability": 0.99 + }, + { + "start": 27957.22, + "end": 27959.82, + "probability": 0.8231 + }, + { + "start": 27960.38, + "end": 27962.98, + "probability": 0.9248 + }, + { + "start": 27963.14, + "end": 27965.22, + "probability": 0.8525 + }, + { + "start": 27966.04, + "end": 27968.12, + "probability": 0.8909 + }, + { + "start": 27968.5, + "end": 27969.54, + "probability": 0.6006 + }, + { + "start": 27970.36, + "end": 27971.72, + "probability": 0.8534 + }, + { + "start": 27972.48, + "end": 27974.32, + "probability": 0.852 + }, + { + "start": 27975.16, + "end": 27978.86, + "probability": 0.9351 + }, + { + "start": 27980.58, + "end": 27984.18, + "probability": 0.6955 + }, + { + "start": 27984.36, + "end": 27985.58, + "probability": 0.4922 + }, + { + "start": 27985.78, + "end": 27987.62, + "probability": 0.9022 + }, + { + "start": 27988.84, + "end": 27993.3, + "probability": 0.9747 + }, + { + "start": 27993.94, + "end": 27997.04, + "probability": 0.8861 + }, + { + "start": 27997.9, + "end": 27998.39, + "probability": 0.8257 + }, + { + "start": 27999.32, + "end": 28001.03, + "probability": 0.978 + }, + { + "start": 28001.16, + "end": 28002.86, + "probability": 0.9829 + }, + { + "start": 28002.9, + "end": 28003.9, + "probability": 0.9498 + }, + { + "start": 28005.08, + "end": 28007.6, + "probability": 0.8255 + }, + { + "start": 28008.96, + "end": 28009.38, + "probability": 0.8726 + }, + { + "start": 28009.98, + "end": 28013.14, + "probability": 0.8737 + }, + { + "start": 28014.1, + "end": 28016.54, + "probability": 0.8585 + }, + { + "start": 28016.94, + "end": 28022.3, + "probability": 0.99 + }, + { + "start": 28023.8, + "end": 28024.48, + "probability": 0.5793 + }, + { + "start": 28025.28, + "end": 28026.08, + "probability": 0.5953 + }, + { + "start": 28027.2, + "end": 28028.86, + "probability": 0.9482 + }, + { + "start": 28029.44, + "end": 28033.88, + "probability": 0.9343 + }, + { + "start": 28034.7, + "end": 28035.9, + "probability": 0.8775 + }, + { + "start": 28039.7, + "end": 28041.46, + "probability": 0.9895 + }, + { + "start": 28041.62, + "end": 28042.74, + "probability": 0.7519 + }, + { + "start": 28042.84, + "end": 28044.44, + "probability": 0.4866 + }, + { + "start": 28048.4, + "end": 28051.42, + "probability": 0.6948 + }, + { + "start": 28052.0, + "end": 28056.48, + "probability": 0.9268 + }, + { + "start": 28058.28, + "end": 28059.94, + "probability": 0.9373 + }, + { + "start": 28060.08, + "end": 28061.92, + "probability": 0.9603 + }, + { + "start": 28064.44, + "end": 28067.58, + "probability": 0.6892 + }, + { + "start": 28068.38, + "end": 28068.96, + "probability": 0.614 + }, + { + "start": 28070.1, + "end": 28071.72, + "probability": 0.3379 + }, + { + "start": 28073.06, + "end": 28074.96, + "probability": 0.908 + }, + { + "start": 28076.7, + "end": 28078.72, + "probability": 0.9921 + }, + { + "start": 28079.86, + "end": 28082.84, + "probability": 0.773 + }, + { + "start": 28083.74, + "end": 28086.82, + "probability": 0.7285 + }, + { + "start": 28087.6, + "end": 28089.06, + "probability": 0.9539 + }, + { + "start": 28090.04, + "end": 28091.56, + "probability": 0.7963 + }, + { + "start": 28091.8, + "end": 28095.12, + "probability": 0.9814 + }, + { + "start": 28096.1, + "end": 28097.08, + "probability": 0.9661 + }, + { + "start": 28097.6, + "end": 28098.37, + "probability": 0.749 + }, + { + "start": 28099.42, + "end": 28105.04, + "probability": 0.9714 + }, + { + "start": 28105.72, + "end": 28107.96, + "probability": 0.865 + }, + { + "start": 28110.26, + "end": 28110.52, + "probability": 0.7694 + }, + { + "start": 28113.38, + "end": 28114.48, + "probability": 0.9463 + }, + { + "start": 28115.4, + "end": 28117.06, + "probability": 0.9881 + }, + { + "start": 28117.64, + "end": 28122.38, + "probability": 0.8662 + }, + { + "start": 28123.18, + "end": 28126.1, + "probability": 0.9805 + }, + { + "start": 28127.82, + "end": 28128.24, + "probability": 0.8218 + }, + { + "start": 28128.88, + "end": 28130.26, + "probability": 0.8199 + }, + { + "start": 28131.0, + "end": 28135.34, + "probability": 0.9291 + }, + { + "start": 28137.26, + "end": 28143.16, + "probability": 0.9951 + }, + { + "start": 28145.34, + "end": 28149.32, + "probability": 0.6794 + }, + { + "start": 28150.68, + "end": 28152.14, + "probability": 0.9119 + }, + { + "start": 28152.86, + "end": 28154.53, + "probability": 0.9812 + }, + { + "start": 28156.5, + "end": 28157.9, + "probability": 0.5714 + }, + { + "start": 28157.94, + "end": 28158.38, + "probability": 0.3722 + }, + { + "start": 28159.96, + "end": 28162.35, + "probability": 0.8365 + }, + { + "start": 28164.2, + "end": 28165.08, + "probability": 0.969 + }, + { + "start": 28165.76, + "end": 28168.68, + "probability": 0.8882 + }, + { + "start": 28168.84, + "end": 28171.0, + "probability": 0.8639 + }, + { + "start": 28172.36, + "end": 28173.7, + "probability": 0.8849 + }, + { + "start": 28174.52, + "end": 28176.1, + "probability": 0.9961 + }, + { + "start": 28178.36, + "end": 28178.8, + "probability": 0.8041 + }, + { + "start": 28180.34, + "end": 28183.0, + "probability": 0.9213 + }, + { + "start": 28183.02, + "end": 28183.02, + "probability": 0.3042 + }, + { + "start": 28183.1, + "end": 28183.8, + "probability": 0.7217 + }, + { + "start": 28184.34, + "end": 28186.86, + "probability": 0.9805 + }, + { + "start": 28188.42, + "end": 28189.84, + "probability": 0.901 + }, + { + "start": 28190.44, + "end": 28192.92, + "probability": 0.995 + }, + { + "start": 28193.4, + "end": 28194.24, + "probability": 0.7483 + }, + { + "start": 28194.78, + "end": 28199.02, + "probability": 0.9826 + }, + { + "start": 28200.42, + "end": 28203.58, + "probability": 0.98 + }, + { + "start": 28204.46, + "end": 28204.8, + "probability": 0.9115 + }, + { + "start": 28205.04, + "end": 28205.42, + "probability": 0.6634 + }, + { + "start": 28205.56, + "end": 28207.5, + "probability": 0.9893 + }, + { + "start": 28207.5, + "end": 28208.22, + "probability": 0.9143 + }, + { + "start": 28209.71, + "end": 28211.72, + "probability": 0.6369 + }, + { + "start": 28211.78, + "end": 28212.77, + "probability": 0.5752 + }, + { + "start": 28213.08, + "end": 28213.38, + "probability": 0.3026 + }, + { + "start": 28213.66, + "end": 28216.12, + "probability": 0.2566 + }, + { + "start": 28216.12, + "end": 28216.22, + "probability": 0.0153 + }, + { + "start": 28216.22, + "end": 28216.22, + "probability": 0.2283 + }, + { + "start": 28216.22, + "end": 28216.6, + "probability": 0.3822 + }, + { + "start": 28217.28, + "end": 28218.24, + "probability": 0.3878 + }, + { + "start": 28219.0, + "end": 28219.34, + "probability": 0.5172 + }, + { + "start": 28220.08, + "end": 28220.42, + "probability": 0.39 + }, + { + "start": 28221.62, + "end": 28222.26, + "probability": 0.9363 + }, + { + "start": 28222.74, + "end": 28223.92, + "probability": 0.6338 + }, + { + "start": 28224.32, + "end": 28226.72, + "probability": 0.9652 + }, + { + "start": 28227.04, + "end": 28227.38, + "probability": 0.889 + }, + { + "start": 28227.58, + "end": 28228.56, + "probability": 0.918 + }, + { + "start": 28228.74, + "end": 28228.98, + "probability": 0.7264 + }, + { + "start": 28229.04, + "end": 28229.76, + "probability": 0.7064 + }, + { + "start": 28229.76, + "end": 28233.5, + "probability": 0.6738 + }, + { + "start": 28233.9, + "end": 28238.78, + "probability": 0.9425 + }, + { + "start": 28239.4, + "end": 28240.73, + "probability": 0.8631 + }, + { + "start": 28241.6, + "end": 28250.64, + "probability": 0.7221 + }, + { + "start": 28251.22, + "end": 28253.6, + "probability": 0.9085 + }, + { + "start": 28254.62, + "end": 28255.56, + "probability": 0.763 + }, + { + "start": 28256.32, + "end": 28262.74, + "probability": 0.9678 + }, + { + "start": 28263.56, + "end": 28263.56, + "probability": 0.4641 + }, + { + "start": 28263.56, + "end": 28263.56, + "probability": 0.6868 + }, + { + "start": 28263.56, + "end": 28264.28, + "probability": 0.5145 + }, + { + "start": 28280.98, + "end": 28281.08, + "probability": 0.5138 + }, + { + "start": 28281.88, + "end": 28281.96, + "probability": 0.1606 + }, + { + "start": 28281.96, + "end": 28281.96, + "probability": 0.1285 + }, + { + "start": 28281.96, + "end": 28281.96, + "probability": 0.0565 + }, + { + "start": 28281.96, + "end": 28282.78, + "probability": 0.0396 + }, + { + "start": 28283.74, + "end": 28283.84, + "probability": 0.0856 + }, + { + "start": 28295.88, + "end": 28297.29, + "probability": 0.368 + }, + { + "start": 28312.34, + "end": 28316.2, + "probability": 0.7523 + }, + { + "start": 28317.12, + "end": 28318.5, + "probability": 0.9813 + }, + { + "start": 28319.22, + "end": 28322.0, + "probability": 0.8269 + }, + { + "start": 28322.64, + "end": 28323.32, + "probability": 0.6294 + }, + { + "start": 28324.02, + "end": 28326.22, + "probability": 0.9942 + }, + { + "start": 28327.12, + "end": 28327.9, + "probability": 0.9006 + }, + { + "start": 28328.64, + "end": 28329.16, + "probability": 0.6663 + }, + { + "start": 28329.9, + "end": 28332.46, + "probability": 0.8493 + }, + { + "start": 28333.36, + "end": 28334.14, + "probability": 0.6764 + }, + { + "start": 28335.02, + "end": 28337.92, + "probability": 0.8857 + }, + { + "start": 28338.72, + "end": 28339.42, + "probability": 0.7654 + }, + { + "start": 28340.84, + "end": 28342.96, + "probability": 0.9344 + }, + { + "start": 28344.48, + "end": 28345.3, + "probability": 0.964 + }, + { + "start": 28345.4, + "end": 28345.78, + "probability": 0.8487 + }, + { + "start": 28345.86, + "end": 28346.42, + "probability": 0.5114 + }, + { + "start": 28346.78, + "end": 28348.18, + "probability": 0.2438 + }, + { + "start": 28348.32, + "end": 28349.02, + "probability": 0.9285 + }, + { + "start": 28352.26, + "end": 28354.32, + "probability": 0.6903 + }, + { + "start": 28354.9, + "end": 28357.04, + "probability": 0.7726 + }, + { + "start": 28357.24, + "end": 28358.18, + "probability": 0.9874 + }, + { + "start": 28358.84, + "end": 28359.72, + "probability": 0.8244 + }, + { + "start": 28360.48, + "end": 28367.22, + "probability": 0.9329 + }, + { + "start": 28367.22, + "end": 28372.18, + "probability": 0.8992 + }, + { + "start": 28373.7, + "end": 28374.6, + "probability": 0.1556 + }, + { + "start": 28375.4, + "end": 28376.32, + "probability": 0.5732 + }, + { + "start": 28376.56, + "end": 28376.7, + "probability": 0.6493 + }, + { + "start": 28376.82, + "end": 28378.13, + "probability": 0.4026 + }, + { + "start": 28378.7, + "end": 28378.86, + "probability": 0.3286 + }, + { + "start": 28380.6, + "end": 28380.6, + "probability": 0.0257 + }, + { + "start": 28380.6, + "end": 28381.22, + "probability": 0.1567 + }, + { + "start": 28381.22, + "end": 28381.96, + "probability": 0.3577 + }, + { + "start": 28382.52, + "end": 28383.64, + "probability": 0.9152 + }, + { + "start": 28384.6, + "end": 28386.28, + "probability": 0.8146 + }, + { + "start": 28386.92, + "end": 28388.22, + "probability": 0.896 + }, + { + "start": 28389.76, + "end": 28389.76, + "probability": 0.1381 + }, + { + "start": 28389.76, + "end": 28391.76, + "probability": 0.5292 + }, + { + "start": 28392.52, + "end": 28397.84, + "probability": 0.9463 + }, + { + "start": 28398.0, + "end": 28399.6, + "probability": 0.9961 + }, + { + "start": 28400.32, + "end": 28401.04, + "probability": 0.7982 + }, + { + "start": 28401.14, + "end": 28401.8, + "probability": 0.8936 + }, + { + "start": 28401.98, + "end": 28406.06, + "probability": 0.9307 + }, + { + "start": 28406.66, + "end": 28407.72, + "probability": 0.9879 + }, + { + "start": 28409.02, + "end": 28409.94, + "probability": 0.5343 + }, + { + "start": 28410.08, + "end": 28410.98, + "probability": 0.7861 + }, + { + "start": 28411.24, + "end": 28413.92, + "probability": 0.8882 + }, + { + "start": 28414.44, + "end": 28414.76, + "probability": 0.0018 + }, + { + "start": 28416.06, + "end": 28416.22, + "probability": 0.0462 + }, + { + "start": 28416.22, + "end": 28417.1, + "probability": 0.2973 + }, + { + "start": 28418.46, + "end": 28418.96, + "probability": 0.4248 + }, + { + "start": 28419.18, + "end": 28420.08, + "probability": 0.6405 + }, + { + "start": 28420.52, + "end": 28424.7, + "probability": 0.847 + }, + { + "start": 28424.86, + "end": 28425.18, + "probability": 0.9109 + }, + { + "start": 28426.2, + "end": 28428.28, + "probability": 0.8911 + }, + { + "start": 28428.94, + "end": 28433.2, + "probability": 0.9712 + }, + { + "start": 28433.38, + "end": 28435.74, + "probability": 0.703 + }, + { + "start": 28436.32, + "end": 28437.88, + "probability": 0.9233 + }, + { + "start": 28439.06, + "end": 28439.94, + "probability": 0.8158 + }, + { + "start": 28440.12, + "end": 28441.18, + "probability": 0.9731 + }, + { + "start": 28441.62, + "end": 28445.42, + "probability": 0.9988 + }, + { + "start": 28446.08, + "end": 28448.52, + "probability": 0.6927 + }, + { + "start": 28449.44, + "end": 28449.88, + "probability": 0.839 + }, + { + "start": 28451.32, + "end": 28452.38, + "probability": 0.8521 + }, + { + "start": 28453.08, + "end": 28454.2, + "probability": 0.9905 + }, + { + "start": 28454.26, + "end": 28454.62, + "probability": 0.8921 + }, + { + "start": 28454.72, + "end": 28459.5, + "probability": 0.9183 + }, + { + "start": 28459.58, + "end": 28460.64, + "probability": 0.5383 + }, + { + "start": 28460.76, + "end": 28464.42, + "probability": 0.9976 + }, + { + "start": 28465.23, + "end": 28466.14, + "probability": 0.2686 + }, + { + "start": 28466.22, + "end": 28468.32, + "probability": 0.9906 + }, + { + "start": 28469.28, + "end": 28469.54, + "probability": 0.7755 + }, + { + "start": 28470.2, + "end": 28471.12, + "probability": 0.5012 + }, + { + "start": 28471.42, + "end": 28474.2, + "probability": 0.9668 + }, + { + "start": 28474.78, + "end": 28476.04, + "probability": 0.9054 + }, + { + "start": 28476.76, + "end": 28477.84, + "probability": 0.6542 + }, + { + "start": 28478.2, + "end": 28481.02, + "probability": 0.8646 + }, + { + "start": 28481.86, + "end": 28482.38, + "probability": 0.9025 + }, + { + "start": 28483.1, + "end": 28485.06, + "probability": 0.9753 + }, + { + "start": 28486.16, + "end": 28487.7, + "probability": 0.7388 + }, + { + "start": 28488.4, + "end": 28491.84, + "probability": 0.8463 + }, + { + "start": 28492.36, + "end": 28492.96, + "probability": 0.5009 + }, + { + "start": 28493.74, + "end": 28496.52, + "probability": 0.8952 + }, + { + "start": 28496.92, + "end": 28499.7, + "probability": 0.9868 + }, + { + "start": 28500.38, + "end": 28501.0, + "probability": 0.8541 + }, + { + "start": 28501.96, + "end": 28504.3, + "probability": 0.6014 + }, + { + "start": 28504.5, + "end": 28505.08, + "probability": 0.5093 + }, + { + "start": 28505.14, + "end": 28507.7, + "probability": 0.7277 + }, + { + "start": 28508.42, + "end": 28510.82, + "probability": 0.8511 + }, + { + "start": 28511.72, + "end": 28512.68, + "probability": 0.6122 + }, + { + "start": 28512.98, + "end": 28514.27, + "probability": 0.3111 + }, + { + "start": 28515.16, + "end": 28515.16, + "probability": 0.0928 + }, + { + "start": 28515.16, + "end": 28518.44, + "probability": 0.9836 + }, + { + "start": 28519.02, + "end": 28520.96, + "probability": 0.8893 + }, + { + "start": 28521.02, + "end": 28521.62, + "probability": 0.162 + }, + { + "start": 28521.92, + "end": 28522.88, + "probability": 0.8962 + }, + { + "start": 28523.46, + "end": 28525.4, + "probability": 0.223 + }, + { + "start": 28526.56, + "end": 28526.56, + "probability": 0.0144 + }, + { + "start": 28526.56, + "end": 28527.26, + "probability": 0.948 + }, + { + "start": 28527.56, + "end": 28528.04, + "probability": 0.7438 + }, + { + "start": 28528.38, + "end": 28529.74, + "probability": 0.2704 + }, + { + "start": 28529.74, + "end": 28529.74, + "probability": 0.5676 + }, + { + "start": 28530.22, + "end": 28533.78, + "probability": 0.9706 + }, + { + "start": 28535.3, + "end": 28537.28, + "probability": 0.936 + }, + { + "start": 28538.3, + "end": 28540.88, + "probability": 0.9865 + }, + { + "start": 28541.54, + "end": 28547.18, + "probability": 0.9805 + }, + { + "start": 28547.7, + "end": 28547.84, + "probability": 0.9997 + }, + { + "start": 28548.44, + "end": 28549.46, + "probability": 0.973 + }, + { + "start": 28550.42, + "end": 28551.46, + "probability": 0.9102 + }, + { + "start": 28551.54, + "end": 28551.82, + "probability": 0.8062 + }, + { + "start": 28552.18, + "end": 28552.7, + "probability": 0.793 + }, + { + "start": 28552.76, + "end": 28553.24, + "probability": 0.3836 + }, + { + "start": 28553.34, + "end": 28554.72, + "probability": 0.2049 + }, + { + "start": 28554.82, + "end": 28556.88, + "probability": 0.1731 + }, + { + "start": 28556.98, + "end": 28558.94, + "probability": 0.2151 + }, + { + "start": 28559.19, + "end": 28561.84, + "probability": 0.7973 + }, + { + "start": 28562.78, + "end": 28563.28, + "probability": 0.8307 + }, + { + "start": 28563.54, + "end": 28564.84, + "probability": 0.8415 + }, + { + "start": 28564.94, + "end": 28565.96, + "probability": 0.7441 + }, + { + "start": 28566.38, + "end": 28568.72, + "probability": 0.9588 + }, + { + "start": 28569.4, + "end": 28572.18, + "probability": 0.2554 + }, + { + "start": 28572.82, + "end": 28574.02, + "probability": 0.449 + }, + { + "start": 28574.6, + "end": 28575.2, + "probability": 0.2254 + }, + { + "start": 28575.24, + "end": 28575.98, + "probability": 0.7842 + }, + { + "start": 28576.74, + "end": 28578.66, + "probability": 0.9554 + }, + { + "start": 28578.94, + "end": 28581.08, + "probability": 0.821 + }, + { + "start": 28582.24, + "end": 28585.76, + "probability": 0.6693 + }, + { + "start": 28586.38, + "end": 28589.54, + "probability": 0.8113 + }, + { + "start": 28590.44, + "end": 28594.08, + "probability": 0.7757 + }, + { + "start": 28594.4, + "end": 28594.96, + "probability": 0.6219 + }, + { + "start": 28596.02, + "end": 28598.14, + "probability": 0.8562 + }, + { + "start": 28599.5, + "end": 28602.1, + "probability": 0.8535 + }, + { + "start": 28605.52, + "end": 28607.1, + "probability": 0.2968 + }, + { + "start": 28607.74, + "end": 28610.89, + "probability": 0.6678 + }, + { + "start": 28611.06, + "end": 28611.38, + "probability": 0.6842 + }, + { + "start": 28611.88, + "end": 28612.96, + "probability": 0.957 + }, + { + "start": 28613.1, + "end": 28616.2, + "probability": 0.9451 + }, + { + "start": 28616.56, + "end": 28617.08, + "probability": 0.9753 + }, + { + "start": 28617.54, + "end": 28619.32, + "probability": 0.971 + }, + { + "start": 28619.66, + "end": 28621.32, + "probability": 0.9569 + }, + { + "start": 28621.52, + "end": 28623.88, + "probability": 0.9534 + }, + { + "start": 28624.36, + "end": 28625.04, + "probability": 0.9518 + }, + { + "start": 28625.16, + "end": 28627.12, + "probability": 0.9972 + }, + { + "start": 28628.08, + "end": 28631.76, + "probability": 0.985 + }, + { + "start": 28631.86, + "end": 28633.92, + "probability": 0.9565 + }, + { + "start": 28634.56, + "end": 28638.78, + "probability": 0.98 + }, + { + "start": 28639.4, + "end": 28640.08, + "probability": 0.6984 + }, + { + "start": 28640.42, + "end": 28643.64, + "probability": 0.8718 + }, + { + "start": 28643.78, + "end": 28645.0, + "probability": 0.9844 + }, + { + "start": 28645.88, + "end": 28648.42, + "probability": 0.9302 + }, + { + "start": 28649.12, + "end": 28651.72, + "probability": 0.9731 + }, + { + "start": 28652.38, + "end": 28654.9, + "probability": 0.9852 + }, + { + "start": 28654.9, + "end": 28658.32, + "probability": 0.9902 + }, + { + "start": 28658.42, + "end": 28659.48, + "probability": 0.6808 + }, + { + "start": 28660.06, + "end": 28662.88, + "probability": 0.8723 + }, + { + "start": 28663.34, + "end": 28664.08, + "probability": 0.5495 + }, + { + "start": 28664.32, + "end": 28665.08, + "probability": 0.6718 + }, + { + "start": 28665.3, + "end": 28666.27, + "probability": 0.829 + }, + { + "start": 28666.76, + "end": 28667.56, + "probability": 0.6525 + }, + { + "start": 28667.68, + "end": 28668.44, + "probability": 0.9553 + }, + { + "start": 28669.2, + "end": 28669.86, + "probability": 0.8079 + }, + { + "start": 28672.22, + "end": 28674.9, + "probability": 0.6689 + }, + { + "start": 28675.68, + "end": 28678.58, + "probability": 0.9961 + }, + { + "start": 28679.12, + "end": 28679.3, + "probability": 0.6999 + }, + { + "start": 28679.44, + "end": 28683.96, + "probability": 0.9761 + }, + { + "start": 28685.0, + "end": 28686.37, + "probability": 0.9976 + }, + { + "start": 28687.12, + "end": 28688.96, + "probability": 0.9187 + }, + { + "start": 28689.16, + "end": 28691.62, + "probability": 0.9888 + }, + { + "start": 28692.24, + "end": 28695.54, + "probability": 0.9857 + }, + { + "start": 28696.58, + "end": 28700.88, + "probability": 0.7534 + }, + { + "start": 28701.6, + "end": 28702.0, + "probability": 0.5832 + }, + { + "start": 28702.52, + "end": 28707.98, + "probability": 0.9966 + }, + { + "start": 28708.62, + "end": 28710.47, + "probability": 0.9894 + }, + { + "start": 28711.32, + "end": 28712.26, + "probability": 0.1856 + }, + { + "start": 28712.4, + "end": 28713.78, + "probability": 0.5453 + }, + { + "start": 28714.04, + "end": 28714.86, + "probability": 0.5112 + }, + { + "start": 28715.18, + "end": 28717.7, + "probability": 0.9055 + }, + { + "start": 28717.76, + "end": 28718.32, + "probability": 0.7847 + }, + { + "start": 28718.84, + "end": 28722.3, + "probability": 0.9781 + }, + { + "start": 28722.68, + "end": 28725.24, + "probability": 0.6406 + }, + { + "start": 28725.56, + "end": 28728.18, + "probability": 0.9961 + }, + { + "start": 28728.7, + "end": 28731.2, + "probability": 0.6702 + }, + { + "start": 28731.32, + "end": 28731.74, + "probability": 0.968 + }, + { + "start": 28732.18, + "end": 28732.9, + "probability": 0.6343 + }, + { + "start": 28734.44, + "end": 28738.06, + "probability": 0.9924 + }, + { + "start": 28738.48, + "end": 28742.94, + "probability": 0.9098 + }, + { + "start": 28743.48, + "end": 28744.92, + "probability": 0.9867 + }, + { + "start": 28745.36, + "end": 28746.86, + "probability": 0.8125 + }, + { + "start": 28747.14, + "end": 28751.84, + "probability": 0.9854 + }, + { + "start": 28751.84, + "end": 28758.91, + "probability": 0.9824 + }, + { + "start": 28760.5, + "end": 28761.75, + "probability": 0.9805 + }, + { + "start": 28762.38, + "end": 28763.45, + "probability": 0.8339 + }, + { + "start": 28764.18, + "end": 28765.84, + "probability": 0.9858 + }, + { + "start": 28766.14, + "end": 28767.44, + "probability": 0.6991 + }, + { + "start": 28768.0, + "end": 28768.4, + "probability": 0.3971 + }, + { + "start": 28769.18, + "end": 28771.29, + "probability": 0.9648 + }, + { + "start": 28771.64, + "end": 28777.86, + "probability": 0.897 + }, + { + "start": 28778.46, + "end": 28780.26, + "probability": 0.9406 + }, + { + "start": 28780.76, + "end": 28781.6, + "probability": 0.5225 + }, + { + "start": 28781.82, + "end": 28783.88, + "probability": 0.9946 + }, + { + "start": 28784.58, + "end": 28787.22, + "probability": 0.8674 + }, + { + "start": 28787.7, + "end": 28789.66, + "probability": 0.7883 + }, + { + "start": 28789.66, + "end": 28793.87, + "probability": 0.7925 + }, + { + "start": 28794.4, + "end": 28794.5, + "probability": 0.0296 + }, + { + "start": 28795.08, + "end": 28797.72, + "probability": 0.9407 + }, + { + "start": 28797.82, + "end": 28797.82, + "probability": 0.6842 + }, + { + "start": 28797.88, + "end": 28799.02, + "probability": 0.959 + }, + { + "start": 28799.54, + "end": 28800.14, + "probability": 0.9299 + }, + { + "start": 28800.66, + "end": 28802.66, + "probability": 0.959 + }, + { + "start": 28803.82, + "end": 28804.04, + "probability": 0.7647 + }, + { + "start": 28804.26, + "end": 28805.26, + "probability": 0.9202 + }, + { + "start": 28805.84, + "end": 28807.04, + "probability": 0.9919 + }, + { + "start": 28807.72, + "end": 28808.83, + "probability": 0.9951 + }, + { + "start": 28809.1, + "end": 28810.32, + "probability": 0.9258 + }, + { + "start": 28811.16, + "end": 28814.83, + "probability": 0.7693 + }, + { + "start": 28815.24, + "end": 28816.94, + "probability": 0.9841 + }, + { + "start": 28817.6, + "end": 28818.7, + "probability": 0.9481 + }, + { + "start": 28818.84, + "end": 28819.37, + "probability": 0.5179 + }, + { + "start": 28819.5, + "end": 28826.96, + "probability": 0.9767 + }, + { + "start": 28826.96, + "end": 28831.96, + "probability": 0.9795 + }, + { + "start": 28832.52, + "end": 28833.7, + "probability": 0.5283 + }, + { + "start": 28833.9, + "end": 28838.62, + "probability": 0.354 + }, + { + "start": 28838.62, + "end": 28838.62, + "probability": 0.0279 + }, + { + "start": 28838.68, + "end": 28840.62, + "probability": 0.667 + }, + { + "start": 28841.58, + "end": 28842.98, + "probability": 0.0122 + }, + { + "start": 28843.72, + "end": 28843.82, + "probability": 0.4383 + }, + { + "start": 28843.82, + "end": 28844.72, + "probability": 0.4718 + }, + { + "start": 28845.46, + "end": 28846.84, + "probability": 0.9227 + }, + { + "start": 28846.84, + "end": 28848.12, + "probability": 0.7706 + }, + { + "start": 28849.58, + "end": 28851.26, + "probability": 0.0058 + }, + { + "start": 28856.6, + "end": 28856.76, + "probability": 0.0191 + }, + { + "start": 28859.24, + "end": 28861.08, + "probability": 0.023 + }, + { + "start": 28861.38, + "end": 28863.38, + "probability": 0.2622 + }, + { + "start": 28863.9, + "end": 28864.78, + "probability": 0.2429 + }, + { + "start": 28864.78, + "end": 28866.02, + "probability": 0.1527 + }, + { + "start": 28866.64, + "end": 28866.89, + "probability": 0.0143 + }, + { + "start": 28884.68, + "end": 28886.76, + "probability": 0.9948 + }, + { + "start": 28887.52, + "end": 28888.76, + "probability": 0.5914 + }, + { + "start": 28889.8, + "end": 28893.44, + "probability": 0.8512 + }, + { + "start": 28894.52, + "end": 28898.7, + "probability": 0.713 + }, + { + "start": 28898.7, + "end": 28904.26, + "probability": 0.9344 + }, + { + "start": 28904.96, + "end": 28906.44, + "probability": 0.9275 + }, + { + "start": 28907.14, + "end": 28909.64, + "probability": 0.8074 + }, + { + "start": 28911.04, + "end": 28914.7, + "probability": 0.8348 + }, + { + "start": 28914.9, + "end": 28916.18, + "probability": 0.7444 + }, + { + "start": 28917.2, + "end": 28918.04, + "probability": 0.9429 + }, + { + "start": 28919.44, + "end": 28922.14, + "probability": 0.9919 + }, + { + "start": 28922.78, + "end": 28923.58, + "probability": 0.7595 + }, + { + "start": 28924.36, + "end": 28927.0, + "probability": 0.8575 + }, + { + "start": 28927.54, + "end": 28928.2, + "probability": 0.8848 + }, + { + "start": 28928.94, + "end": 28930.48, + "probability": 0.9338 + }, + { + "start": 28931.2, + "end": 28935.62, + "probability": 0.6823 + }, + { + "start": 28936.6, + "end": 28939.4, + "probability": 0.9979 + }, + { + "start": 28939.58, + "end": 28940.64, + "probability": 0.9304 + }, + { + "start": 28941.28, + "end": 28946.38, + "probability": 0.9875 + }, + { + "start": 28946.44, + "end": 28948.54, + "probability": 0.9005 + }, + { + "start": 28948.94, + "end": 28950.5, + "probability": 0.9785 + }, + { + "start": 28951.08, + "end": 28956.36, + "probability": 0.958 + }, + { + "start": 28957.08, + "end": 28958.18, + "probability": 0.976 + }, + { + "start": 28959.06, + "end": 28959.92, + "probability": 0.8229 + }, + { + "start": 28960.74, + "end": 28968.88, + "probability": 0.8644 + }, + { + "start": 28969.52, + "end": 28970.98, + "probability": 0.9907 + }, + { + "start": 28971.68, + "end": 28974.16, + "probability": 0.9847 + }, + { + "start": 28974.68, + "end": 28978.24, + "probability": 0.9351 + }, + { + "start": 28978.24, + "end": 28980.42, + "probability": 0.9993 + }, + { + "start": 28981.34, + "end": 28987.14, + "probability": 0.9989 + }, + { + "start": 28987.68, + "end": 28989.48, + "probability": 0.9341 + }, + { + "start": 28990.3, + "end": 28992.2, + "probability": 0.9986 + }, + { + "start": 28992.94, + "end": 28995.16, + "probability": 0.9976 + }, + { + "start": 28995.74, + "end": 28998.96, + "probability": 0.9937 + }, + { + "start": 28999.84, + "end": 29003.0, + "probability": 0.7617 + }, + { + "start": 29003.66, + "end": 29006.04, + "probability": 0.9467 + }, + { + "start": 29006.68, + "end": 29009.32, + "probability": 0.8505 + }, + { + "start": 29009.94, + "end": 29011.34, + "probability": 0.8871 + }, + { + "start": 29012.54, + "end": 29014.12, + "probability": 0.9276 + }, + { + "start": 29014.66, + "end": 29016.8, + "probability": 0.8331 + }, + { + "start": 29017.5, + "end": 29018.86, + "probability": 0.8523 + }, + { + "start": 29019.42, + "end": 29026.9, + "probability": 0.9636 + }, + { + "start": 29027.56, + "end": 29028.5, + "probability": 0.9183 + }, + { + "start": 29029.58, + "end": 29031.9, + "probability": 0.9901 + }, + { + "start": 29032.46, + "end": 29034.42, + "probability": 0.9071 + }, + { + "start": 29035.08, + "end": 29035.72, + "probability": 0.9292 + }, + { + "start": 29035.84, + "end": 29038.03, + "probability": 0.9751 + }, + { + "start": 29038.72, + "end": 29042.88, + "probability": 0.9961 + }, + { + "start": 29042.88, + "end": 29046.04, + "probability": 0.9114 + }, + { + "start": 29047.08, + "end": 29050.92, + "probability": 0.9994 + }, + { + "start": 29050.92, + "end": 29055.34, + "probability": 0.9988 + }, + { + "start": 29056.0, + "end": 29057.22, + "probability": 0.7637 + }, + { + "start": 29058.0, + "end": 29061.84, + "probability": 0.9634 + }, + { + "start": 29061.84, + "end": 29063.42, + "probability": 0.6786 + }, + { + "start": 29063.78, + "end": 29065.68, + "probability": 0.885 + }, + { + "start": 29066.08, + "end": 29067.7, + "probability": 0.9303 + }, + { + "start": 29068.1, + "end": 29071.18, + "probability": 0.859 + }, + { + "start": 29072.58, + "end": 29072.58, + "probability": 0.6828 + }, + { + "start": 29073.1, + "end": 29073.68, + "probability": 0.764 + }, + { + "start": 29074.92, + "end": 29075.4, + "probability": 0.7657 + }, + { + "start": 29076.54, + "end": 29076.8, + "probability": 0.4756 + }, + { + "start": 29079.32, + "end": 29080.2, + "probability": 0.5037 + }, + { + "start": 29081.4, + "end": 29084.12, + "probability": 0.6885 + }, + { + "start": 29103.56, + "end": 29104.5, + "probability": 0.6388 + }, + { + "start": 29106.22, + "end": 29106.86, + "probability": 0.8249 + }, + { + "start": 29107.56, + "end": 29108.18, + "probability": 0.6442 + }, + { + "start": 29108.63, + "end": 29111.78, + "probability": 0.9729 + }, + { + "start": 29112.26, + "end": 29113.56, + "probability": 0.9632 + }, + { + "start": 29113.8, + "end": 29115.42, + "probability": 0.8969 + }, + { + "start": 29117.34, + "end": 29118.12, + "probability": 0.9377 + }, + { + "start": 29121.48, + "end": 29122.12, + "probability": 0.1554 + }, + { + "start": 29124.78, + "end": 29127.22, + "probability": 0.9163 + }, + { + "start": 29128.74, + "end": 29131.8, + "probability": 0.9871 + }, + { + "start": 29131.94, + "end": 29133.52, + "probability": 0.5697 + }, + { + "start": 29134.62, + "end": 29139.12, + "probability": 0.9809 + }, + { + "start": 29140.56, + "end": 29143.48, + "probability": 0.9989 + }, + { + "start": 29143.48, + "end": 29147.46, + "probability": 0.9972 + }, + { + "start": 29147.72, + "end": 29149.6, + "probability": 0.8537 + }, + { + "start": 29150.48, + "end": 29154.92, + "probability": 0.6334 + }, + { + "start": 29155.46, + "end": 29156.46, + "probability": 0.9463 + }, + { + "start": 29156.56, + "end": 29159.37, + "probability": 0.9605 + }, + { + "start": 29161.2, + "end": 29161.8, + "probability": 0.6669 + }, + { + "start": 29162.4, + "end": 29162.88, + "probability": 0.9808 + }, + { + "start": 29163.58, + "end": 29165.14, + "probability": 0.9985 + }, + { + "start": 29166.08, + "end": 29167.46, + "probability": 0.9896 + }, + { + "start": 29169.46, + "end": 29172.4, + "probability": 0.9822 + }, + { + "start": 29173.78, + "end": 29175.02, + "probability": 0.9941 + }, + { + "start": 29176.4, + "end": 29180.42, + "probability": 0.9727 + }, + { + "start": 29180.5, + "end": 29184.64, + "probability": 0.9978 + }, + { + "start": 29185.14, + "end": 29186.22, + "probability": 0.9181 + }, + { + "start": 29186.34, + "end": 29187.68, + "probability": 0.6706 + }, + { + "start": 29188.52, + "end": 29191.16, + "probability": 0.9785 + }, + { + "start": 29191.92, + "end": 29193.34, + "probability": 0.9101 + }, + { + "start": 29194.22, + "end": 29199.14, + "probability": 0.9502 + }, + { + "start": 29199.88, + "end": 29203.4, + "probability": 0.9779 + }, + { + "start": 29204.22, + "end": 29205.94, + "probability": 0.9968 + }, + { + "start": 29206.72, + "end": 29207.28, + "probability": 0.9551 + }, + { + "start": 29207.28, + "end": 29207.82, + "probability": 0.826 + }, + { + "start": 29207.98, + "end": 29210.34, + "probability": 0.9943 + }, + { + "start": 29211.1, + "end": 29212.48, + "probability": 0.7474 + }, + { + "start": 29213.48, + "end": 29215.06, + "probability": 0.935 + }, + { + "start": 29215.74, + "end": 29216.92, + "probability": 0.9398 + }, + { + "start": 29217.84, + "end": 29219.74, + "probability": 0.7478 + }, + { + "start": 29220.32, + "end": 29221.65, + "probability": 0.9028 + }, + { + "start": 29222.94, + "end": 29224.18, + "probability": 0.9141 + }, + { + "start": 29224.36, + "end": 29227.32, + "probability": 0.7815 + }, + { + "start": 29228.16, + "end": 29230.68, + "probability": 0.9053 + }, + { + "start": 29231.62, + "end": 29232.34, + "probability": 0.9243 + }, + { + "start": 29233.8, + "end": 29236.22, + "probability": 0.9374 + }, + { + "start": 29236.3, + "end": 29237.6, + "probability": 0.9934 + }, + { + "start": 29237.78, + "end": 29239.14, + "probability": 0.9189 + }, + { + "start": 29239.2, + "end": 29240.36, + "probability": 0.4234 + }, + { + "start": 29241.9, + "end": 29245.64, + "probability": 0.9691 + }, + { + "start": 29245.72, + "end": 29248.52, + "probability": 0.9852 + }, + { + "start": 29248.7, + "end": 29250.68, + "probability": 0.9573 + }, + { + "start": 29250.76, + "end": 29253.12, + "probability": 0.9768 + }, + { + "start": 29254.2, + "end": 29256.22, + "probability": 0.4995 + }, + { + "start": 29257.04, + "end": 29258.88, + "probability": 0.9919 + }, + { + "start": 29259.52, + "end": 29262.18, + "probability": 0.8604 + }, + { + "start": 29263.4, + "end": 29264.46, + "probability": 0.9683 + }, + { + "start": 29265.04, + "end": 29265.5, + "probability": 0.9849 + }, + { + "start": 29266.54, + "end": 29268.9, + "probability": 0.9826 + }, + { + "start": 29269.02, + "end": 29269.8, + "probability": 0.4656 + }, + { + "start": 29269.94, + "end": 29270.7, + "probability": 0.7747 + }, + { + "start": 29271.14, + "end": 29271.94, + "probability": 0.753 + }, + { + "start": 29273.4, + "end": 29276.66, + "probability": 0.9993 + }, + { + "start": 29276.78, + "end": 29277.88, + "probability": 0.6537 + }, + { + "start": 29278.78, + "end": 29281.2, + "probability": 0.8731 + }, + { + "start": 29281.76, + "end": 29284.12, + "probability": 0.913 + }, + { + "start": 29286.7, + "end": 29289.12, + "probability": 0.6031 + }, + { + "start": 29289.68, + "end": 29291.42, + "probability": 0.7463 + }, + { + "start": 29291.96, + "end": 29296.68, + "probability": 0.7363 + }, + { + "start": 29297.84, + "end": 29298.08, + "probability": 0.5493 + }, + { + "start": 29298.98, + "end": 29304.06, + "probability": 0.9919 + }, + { + "start": 29304.72, + "end": 29306.7, + "probability": 0.9995 + }, + { + "start": 29307.32, + "end": 29309.76, + "probability": 0.9907 + }, + { + "start": 29310.42, + "end": 29312.52, + "probability": 0.9215 + }, + { + "start": 29313.08, + "end": 29315.0, + "probability": 0.9658 + }, + { + "start": 29315.98, + "end": 29318.28, + "probability": 0.8427 + }, + { + "start": 29318.74, + "end": 29319.38, + "probability": 0.8301 + }, + { + "start": 29319.98, + "end": 29320.68, + "probability": 0.9739 + }, + { + "start": 29320.88, + "end": 29321.76, + "probability": 0.9894 + }, + { + "start": 29322.18, + "end": 29322.72, + "probability": 0.9842 + }, + { + "start": 29323.08, + "end": 29323.68, + "probability": 0.8143 + }, + { + "start": 29324.08, + "end": 29325.4, + "probability": 0.9946 + }, + { + "start": 29325.48, + "end": 29326.35, + "probability": 0.503 + }, + { + "start": 29326.7, + "end": 29329.98, + "probability": 0.8136 + }, + { + "start": 29330.62, + "end": 29334.5, + "probability": 0.8408 + }, + { + "start": 29334.64, + "end": 29335.1, + "probability": 0.8124 + }, + { + "start": 29335.74, + "end": 29335.74, + "probability": 0.6238 + }, + { + "start": 29335.84, + "end": 29336.68, + "probability": 0.8105 + }, + { + "start": 29345.6, + "end": 29346.06, + "probability": 0.356 + }, + { + "start": 29362.88, + "end": 29365.16, + "probability": 0.6254 + }, + { + "start": 29367.74, + "end": 29370.12, + "probability": 0.8477 + }, + { + "start": 29372.62, + "end": 29373.86, + "probability": 0.9896 + }, + { + "start": 29375.68, + "end": 29377.36, + "probability": 0.6901 + }, + { + "start": 29379.1, + "end": 29380.16, + "probability": 0.7535 + }, + { + "start": 29381.18, + "end": 29383.98, + "probability": 0.9751 + }, + { + "start": 29386.74, + "end": 29388.82, + "probability": 0.9155 + }, + { + "start": 29390.44, + "end": 29391.22, + "probability": 0.9182 + }, + { + "start": 29393.24, + "end": 29394.0, + "probability": 0.7613 + }, + { + "start": 29397.48, + "end": 29400.54, + "probability": 0.9305 + }, + { + "start": 29402.04, + "end": 29404.7, + "probability": 0.8212 + }, + { + "start": 29407.14, + "end": 29408.74, + "probability": 0.9756 + }, + { + "start": 29411.34, + "end": 29413.29, + "probability": 0.8577 + }, + { + "start": 29414.9, + "end": 29415.66, + "probability": 0.8451 + }, + { + "start": 29417.18, + "end": 29421.25, + "probability": 0.6688 + }, + { + "start": 29425.72, + "end": 29428.24, + "probability": 0.9636 + }, + { + "start": 29429.94, + "end": 29430.8, + "probability": 0.8232 + }, + { + "start": 29433.5, + "end": 29435.44, + "probability": 0.7467 + }, + { + "start": 29436.12, + "end": 29436.72, + "probability": 0.8617 + }, + { + "start": 29437.3, + "end": 29438.16, + "probability": 0.8888 + }, + { + "start": 29440.16, + "end": 29448.24, + "probability": 0.8756 + }, + { + "start": 29449.42, + "end": 29449.94, + "probability": 0.7231 + }, + { + "start": 29452.04, + "end": 29454.28, + "probability": 0.993 + }, + { + "start": 29455.14, + "end": 29457.24, + "probability": 0.9944 + }, + { + "start": 29458.84, + "end": 29463.26, + "probability": 0.6881 + }, + { + "start": 29464.62, + "end": 29467.24, + "probability": 0.8771 + }, + { + "start": 29470.7, + "end": 29474.32, + "probability": 0.976 + }, + { + "start": 29475.36, + "end": 29476.14, + "probability": 0.7447 + }, + { + "start": 29479.18, + "end": 29483.16, + "probability": 0.8906 + }, + { + "start": 29483.98, + "end": 29484.58, + "probability": 0.9222 + }, + { + "start": 29487.9, + "end": 29489.0, + "probability": 0.5086 + }, + { + "start": 29491.02, + "end": 29493.08, + "probability": 0.9761 + }, + { + "start": 29494.04, + "end": 29494.52, + "probability": 0.6307 + }, + { + "start": 29495.36, + "end": 29496.28, + "probability": 0.9542 + }, + { + "start": 29499.36, + "end": 29500.62, + "probability": 0.5706 + }, + { + "start": 29504.78, + "end": 29506.0, + "probability": 0.8141 + }, + { + "start": 29506.72, + "end": 29509.92, + "probability": 0.9897 + }, + { + "start": 29510.78, + "end": 29512.6, + "probability": 0.9869 + }, + { + "start": 29513.32, + "end": 29516.72, + "probability": 0.9263 + }, + { + "start": 29520.67, + "end": 29524.05, + "probability": 0.9966 + }, + { + "start": 29524.72, + "end": 29528.14, + "probability": 0.8976 + }, + { + "start": 29529.76, + "end": 29533.44, + "probability": 0.8191 + }, + { + "start": 29535.68, + "end": 29538.96, + "probability": 0.8577 + }, + { + "start": 29539.62, + "end": 29542.3, + "probability": 0.8375 + }, + { + "start": 29543.84, + "end": 29546.6, + "probability": 0.8623 + }, + { + "start": 29547.94, + "end": 29551.22, + "probability": 0.5636 + }, + { + "start": 29551.96, + "end": 29552.72, + "probability": 0.6142 + }, + { + "start": 29553.24, + "end": 29554.18, + "probability": 0.9102 + }, + { + "start": 29555.24, + "end": 29556.96, + "probability": 0.8159 + }, + { + "start": 29558.16, + "end": 29559.44, + "probability": 0.5097 + }, + { + "start": 29560.4, + "end": 29562.06, + "probability": 0.7604 + }, + { + "start": 29562.2, + "end": 29563.52, + "probability": 0.7741 + }, + { + "start": 29563.98, + "end": 29564.42, + "probability": 0.7402 + }, + { + "start": 29564.76, + "end": 29565.36, + "probability": 0.7977 + }, + { + "start": 29566.12, + "end": 29567.64, + "probability": 0.9199 + }, + { + "start": 29571.02, + "end": 29571.02, + "probability": 0.7747 + }, + { + "start": 29577.88, + "end": 29578.66, + "probability": 0.1618 + }, + { + "start": 29578.66, + "end": 29578.66, + "probability": 0.0584 + }, + { + "start": 29578.81, + "end": 29579.02, + "probability": 0.1815 + }, + { + "start": 29579.02, + "end": 29579.02, + "probability": 0.0054 + }, + { + "start": 29591.86, + "end": 29592.7, + "probability": 0.3668 + }, + { + "start": 29594.9, + "end": 29596.76, + "probability": 0.8522 + }, + { + "start": 29598.64, + "end": 29599.66, + "probability": 0.9071 + }, + { + "start": 29602.24, + "end": 29606.52, + "probability": 0.9717 + }, + { + "start": 29607.98, + "end": 29611.12, + "probability": 0.9978 + }, + { + "start": 29611.94, + "end": 29616.08, + "probability": 0.9983 + }, + { + "start": 29616.2, + "end": 29617.78, + "probability": 0.815 + }, + { + "start": 29619.94, + "end": 29621.2, + "probability": 0.996 + }, + { + "start": 29621.32, + "end": 29622.52, + "probability": 0.939 + }, + { + "start": 29622.56, + "end": 29623.52, + "probability": 0.7253 + }, + { + "start": 29623.68, + "end": 29626.78, + "probability": 0.8467 + }, + { + "start": 29626.9, + "end": 29627.66, + "probability": 0.8382 + }, + { + "start": 29627.78, + "end": 29629.32, + "probability": 0.9945 + }, + { + "start": 29630.9, + "end": 29634.44, + "probability": 0.9918 + }, + { + "start": 29636.42, + "end": 29637.86, + "probability": 0.9616 + }, + { + "start": 29639.22, + "end": 29642.92, + "probability": 0.9858 + }, + { + "start": 29643.72, + "end": 29647.4, + "probability": 0.9179 + }, + { + "start": 29647.48, + "end": 29649.26, + "probability": 0.6777 + }, + { + "start": 29649.28, + "end": 29649.96, + "probability": 0.9597 + }, + { + "start": 29650.04, + "end": 29650.94, + "probability": 0.7858 + }, + { + "start": 29653.26, + "end": 29656.94, + "probability": 0.9843 + }, + { + "start": 29658.3, + "end": 29659.36, + "probability": 0.6695 + }, + { + "start": 29663.72, + "end": 29664.3, + "probability": 0.7747 + }, + { + "start": 29664.4, + "end": 29664.64, + "probability": 0.7361 + }, + { + "start": 29664.78, + "end": 29664.98, + "probability": 0.7485 + }, + { + "start": 29665.18, + "end": 29666.74, + "probability": 0.7706 + }, + { + "start": 29666.86, + "end": 29667.48, + "probability": 0.5714 + }, + { + "start": 29667.66, + "end": 29669.87, + "probability": 0.9779 + }, + { + "start": 29670.84, + "end": 29672.86, + "probability": 0.9919 + }, + { + "start": 29672.9, + "end": 29675.1, + "probability": 0.9901 + }, + { + "start": 29676.62, + "end": 29678.14, + "probability": 0.8059 + }, + { + "start": 29678.9, + "end": 29680.0, + "probability": 0.8937 + }, + { + "start": 29680.12, + "end": 29683.46, + "probability": 0.8794 + }, + { + "start": 29683.58, + "end": 29685.86, + "probability": 0.8241 + }, + { + "start": 29686.52, + "end": 29693.34, + "probability": 0.9903 + }, + { + "start": 29698.12, + "end": 29699.74, + "probability": 0.8793 + }, + { + "start": 29700.56, + "end": 29702.2, + "probability": 0.9061 + }, + { + "start": 29702.3, + "end": 29704.54, + "probability": 0.2796 + }, + { + "start": 29704.78, + "end": 29708.6, + "probability": 0.9485 + }, + { + "start": 29710.54, + "end": 29716.53, + "probability": 0.9277 + }, + { + "start": 29717.2, + "end": 29717.68, + "probability": 0.4461 + }, + { + "start": 29717.88, + "end": 29719.3, + "probability": 0.9136 + }, + { + "start": 29719.86, + "end": 29722.76, + "probability": 0.9464 + }, + { + "start": 29724.4, + "end": 29724.82, + "probability": 0.0979 + }, + { + "start": 29725.38, + "end": 29726.38, + "probability": 0.5575 + }, + { + "start": 29726.94, + "end": 29726.98, + "probability": 0.8386 + }, + { + "start": 29727.1, + "end": 29727.72, + "probability": 0.7329 + }, + { + "start": 29727.88, + "end": 29728.52, + "probability": 0.6672 + }, + { + "start": 29728.72, + "end": 29731.26, + "probability": 0.9651 + }, + { + "start": 29731.72, + "end": 29733.34, + "probability": 0.9888 + }, + { + "start": 29733.34, + "end": 29737.08, + "probability": 0.9703 + }, + { + "start": 29739.36, + "end": 29744.24, + "probability": 0.9852 + }, + { + "start": 29744.4, + "end": 29745.1, + "probability": 0.498 + }, + { + "start": 29745.38, + "end": 29749.52, + "probability": 0.9961 + }, + { + "start": 29751.6, + "end": 29753.08, + "probability": 0.9847 + }, + { + "start": 29753.4, + "end": 29754.84, + "probability": 0.9558 + }, + { + "start": 29755.38, + "end": 29756.04, + "probability": 0.2522 + }, + { + "start": 29757.14, + "end": 29760.56, + "probability": 0.973 + }, + { + "start": 29761.26, + "end": 29763.54, + "probability": 0.9102 + }, + { + "start": 29764.32, + "end": 29765.76, + "probability": 0.9254 + }, + { + "start": 29765.88, + "end": 29766.56, + "probability": 0.9059 + }, + { + "start": 29766.58, + "end": 29767.72, + "probability": 0.8983 + }, + { + "start": 29767.88, + "end": 29773.14, + "probability": 0.9979 + }, + { + "start": 29773.28, + "end": 29775.04, + "probability": 0.8398 + }, + { + "start": 29775.08, + "end": 29777.4, + "probability": 0.9912 + }, + { + "start": 29778.0, + "end": 29781.6, + "probability": 0.7594 + }, + { + "start": 29782.98, + "end": 29786.22, + "probability": 0.9842 + }, + { + "start": 29786.3, + "end": 29786.46, + "probability": 0.4453 + }, + { + "start": 29786.54, + "end": 29790.52, + "probability": 0.9903 + }, + { + "start": 29791.22, + "end": 29794.45, + "probability": 0.9977 + }, + { + "start": 29795.72, + "end": 29798.34, + "probability": 0.9494 + }, + { + "start": 29800.22, + "end": 29801.94, + "probability": 0.9952 + }, + { + "start": 29808.22, + "end": 29810.84, + "probability": 0.0434 + }, + { + "start": 29833.04, + "end": 29833.22, + "probability": 0.0156 + }, + { + "start": 29833.22, + "end": 29833.22, + "probability": 0.1995 + }, + { + "start": 29833.22, + "end": 29835.04, + "probability": 0.6839 + }, + { + "start": 29836.88, + "end": 29838.02, + "probability": 0.6533 + }, + { + "start": 29839.48, + "end": 29841.16, + "probability": 0.9965 + }, + { + "start": 29843.24, + "end": 29847.54, + "probability": 0.9888 + }, + { + "start": 29848.54, + "end": 29850.48, + "probability": 0.9843 + }, + { + "start": 29851.76, + "end": 29854.36, + "probability": 0.9991 + }, + { + "start": 29854.44, + "end": 29859.1, + "probability": 0.9983 + }, + { + "start": 29860.16, + "end": 29861.28, + "probability": 0.8789 + }, + { + "start": 29864.4, + "end": 29865.12, + "probability": 0.1106 + }, + { + "start": 29866.4, + "end": 29869.72, + "probability": 0.9576 + }, + { + "start": 29870.56, + "end": 29873.94, + "probability": 0.9186 + }, + { + "start": 29874.82, + "end": 29876.36, + "probability": 0.9846 + }, + { + "start": 29878.12, + "end": 29882.32, + "probability": 0.9515 + }, + { + "start": 29883.38, + "end": 29886.24, + "probability": 0.9855 + }, + { + "start": 29887.56, + "end": 29892.4, + "probability": 0.9591 + }, + { + "start": 29893.12, + "end": 29897.96, + "probability": 0.978 + }, + { + "start": 29899.02, + "end": 29902.8, + "probability": 0.9709 + }, + { + "start": 29904.28, + "end": 29908.74, + "probability": 0.9312 + }, + { + "start": 29908.74, + "end": 29912.12, + "probability": 0.9993 + }, + { + "start": 29913.46, + "end": 29917.7, + "probability": 0.9957 + }, + { + "start": 29918.38, + "end": 29919.92, + "probability": 0.9904 + }, + { + "start": 29920.08, + "end": 29922.24, + "probability": 0.9444 + }, + { + "start": 29922.78, + "end": 29927.72, + "probability": 0.9879 + }, + { + "start": 29928.44, + "end": 29932.18, + "probability": 0.863 + }, + { + "start": 29932.82, + "end": 29934.42, + "probability": 0.9439 + }, + { + "start": 29935.38, + "end": 29938.86, + "probability": 0.9806 + }, + { + "start": 29938.86, + "end": 29942.7, + "probability": 0.999 + }, + { + "start": 29943.38, + "end": 29946.02, + "probability": 0.9964 + }, + { + "start": 29946.02, + "end": 29948.3, + "probability": 0.9376 + }, + { + "start": 29948.46, + "end": 29950.1, + "probability": 0.9467 + }, + { + "start": 29950.84, + "end": 29954.3, + "probability": 0.9684 + }, + { + "start": 29955.34, + "end": 29957.76, + "probability": 0.9833 + }, + { + "start": 29957.86, + "end": 29961.32, + "probability": 0.9495 + }, + { + "start": 29961.46, + "end": 29964.0, + "probability": 0.9404 + }, + { + "start": 29964.46, + "end": 29967.44, + "probability": 0.9949 + }, + { + "start": 29968.36, + "end": 29970.0, + "probability": 0.908 + }, + { + "start": 29971.08, + "end": 29973.7, + "probability": 0.9891 + }, + { + "start": 29974.48, + "end": 29979.68, + "probability": 0.9978 + }, + { + "start": 29979.68, + "end": 29984.74, + "probability": 0.9994 + }, + { + "start": 29985.3, + "end": 29989.26, + "probability": 0.9916 + }, + { + "start": 29990.22, + "end": 29995.86, + "probability": 0.9969 + }, + { + "start": 29995.86, + "end": 29999.3, + "probability": 0.9944 + }, + { + "start": 30000.22, + "end": 30005.1, + "probability": 0.9971 + }, + { + "start": 30005.7, + "end": 30006.62, + "probability": 0.5375 + }, + { + "start": 30007.38, + "end": 30008.46, + "probability": 0.5581 + }, + { + "start": 30008.7, + "end": 30013.42, + "probability": 0.9914 + }, + { + "start": 30014.12, + "end": 30016.44, + "probability": 0.9874 + }, + { + "start": 30016.66, + "end": 30020.42, + "probability": 0.993 + }, + { + "start": 30020.88, + "end": 30021.16, + "probability": 0.7035 + }, + { + "start": 30021.18, + "end": 30025.16, + "probability": 0.998 + }, + { + "start": 30025.68, + "end": 30030.54, + "probability": 0.992 + }, + { + "start": 30031.12, + "end": 30031.62, + "probability": 0.7996 + }, + { + "start": 30032.36, + "end": 30037.0, + "probability": 0.93 + }, + { + "start": 30037.38, + "end": 30037.9, + "probability": 0.8522 + }, + { + "start": 30038.2, + "end": 30038.22, + "probability": 0.6097 + }, + { + "start": 30038.38, + "end": 30039.68, + "probability": 0.6054 + }, + { + "start": 30040.2, + "end": 30042.62, + "probability": 0.6249 + }, + { + "start": 30049.22, + "end": 30049.98, + "probability": 0.7311 + }, + { + "start": 30053.58, + "end": 30055.5, + "probability": 0.9242 + }, + { + "start": 30056.82, + "end": 30064.44, + "probability": 0.506 + }, + { + "start": 30066.18, + "end": 30066.18, + "probability": 0.352 + }, + { + "start": 30066.18, + "end": 30067.27, + "probability": 0.5708 + }, + { + "start": 30068.2, + "end": 30068.68, + "probability": 0.9334 + }, + { + "start": 30068.68, + "end": 30068.68, + "probability": 0.0822 + }, + { + "start": 30075.06, + "end": 30076.08, + "probability": 0.7837 + }, + { + "start": 30082.0, + "end": 30082.76, + "probability": 0.5208 + }, + { + "start": 30082.98, + "end": 30084.43, + "probability": 0.7993 + }, + { + "start": 30085.3, + "end": 30086.3, + "probability": 0.6751 + }, + { + "start": 30087.24, + "end": 30087.42, + "probability": 0.9403 + }, + { + "start": 30087.48, + "end": 30090.39, + "probability": 0.9949 + }, + { + "start": 30091.06, + "end": 30091.82, + "probability": 0.9305 + }, + { + "start": 30092.56, + "end": 30096.1, + "probability": 0.9941 + }, + { + "start": 30096.8, + "end": 30100.06, + "probability": 0.9878 + }, + { + "start": 30101.74, + "end": 30105.11, + "probability": 0.987 + }, + { + "start": 30106.76, + "end": 30109.84, + "probability": 0.9679 + }, + { + "start": 30110.62, + "end": 30112.32, + "probability": 0.9131 + }, + { + "start": 30112.96, + "end": 30113.86, + "probability": 0.7354 + }, + { + "start": 30114.92, + "end": 30116.34, + "probability": 0.99 + }, + { + "start": 30116.44, + "end": 30118.06, + "probability": 0.9908 + }, + { + "start": 30118.64, + "end": 30120.62, + "probability": 0.978 + }, + { + "start": 30121.42, + "end": 30122.76, + "probability": 0.9878 + }, + { + "start": 30123.08, + "end": 30125.56, + "probability": 0.8928 + }, + { + "start": 30125.58, + "end": 30126.68, + "probability": 0.8934 + }, + { + "start": 30126.76, + "end": 30128.4, + "probability": 0.86 + }, + { + "start": 30129.2, + "end": 30130.47, + "probability": 0.7663 + }, + { + "start": 30131.48, + "end": 30134.2, + "probability": 0.9773 + }, + { + "start": 30135.16, + "end": 30138.56, + "probability": 0.9961 + }, + { + "start": 30139.42, + "end": 30143.66, + "probability": 0.9847 + }, + { + "start": 30145.04, + "end": 30148.76, + "probability": 0.9885 + }, + { + "start": 30149.98, + "end": 30150.58, + "probability": 0.5027 + }, + { + "start": 30151.48, + "end": 30153.94, + "probability": 0.9988 + }, + { + "start": 30154.04, + "end": 30154.78, + "probability": 0.9951 + }, + { + "start": 30155.32, + "end": 30157.16, + "probability": 0.9893 + }, + { + "start": 30158.92, + "end": 30159.2, + "probability": 0.8408 + }, + { + "start": 30160.5, + "end": 30167.04, + "probability": 0.9122 + }, + { + "start": 30168.38, + "end": 30174.42, + "probability": 0.8594 + }, + { + "start": 30175.1, + "end": 30175.84, + "probability": 0.6428 + }, + { + "start": 30176.78, + "end": 30177.86, + "probability": 0.8948 + }, + { + "start": 30178.82, + "end": 30181.76, + "probability": 0.9932 + }, + { + "start": 30181.86, + "end": 30182.92, + "probability": 0.7771 + }, + { + "start": 30183.82, + "end": 30186.96, + "probability": 0.5041 + }, + { + "start": 30186.96, + "end": 30191.5, + "probability": 0.9886 + }, + { + "start": 30192.48, + "end": 30192.96, + "probability": 0.6819 + }, + { + "start": 30193.12, + "end": 30195.8, + "probability": 0.9659 + }, + { + "start": 30195.8, + "end": 30201.1, + "probability": 0.9473 + }, + { + "start": 30201.1, + "end": 30204.22, + "probability": 0.9959 + }, + { + "start": 30204.74, + "end": 30205.32, + "probability": 0.7573 + }, + { + "start": 30206.02, + "end": 30207.94, + "probability": 0.9549 + }, + { + "start": 30208.84, + "end": 30212.14, + "probability": 0.9922 + }, + { + "start": 30212.46, + "end": 30216.54, + "probability": 0.999 + }, + { + "start": 30217.36, + "end": 30222.76, + "probability": 0.9623 + }, + { + "start": 30224.34, + "end": 30226.05, + "probability": 0.3475 + }, + { + "start": 30226.92, + "end": 30228.96, + "probability": 0.9974 + }, + { + "start": 30229.6, + "end": 30232.78, + "probability": 0.9951 + }, + { + "start": 30233.4, + "end": 30236.72, + "probability": 0.9824 + }, + { + "start": 30237.12, + "end": 30243.34, + "probability": 0.9784 + }, + { + "start": 30243.96, + "end": 30245.22, + "probability": 0.6932 + }, + { + "start": 30246.34, + "end": 30248.84, + "probability": 0.9434 + }, + { + "start": 30249.44, + "end": 30250.9, + "probability": 0.8355 + }, + { + "start": 30251.6, + "end": 30252.54, + "probability": 0.97 + }, + { + "start": 30253.14, + "end": 30256.34, + "probability": 0.998 + }, + { + "start": 30256.96, + "end": 30258.1, + "probability": 0.5714 + }, + { + "start": 30259.08, + "end": 30259.92, + "probability": 0.806 + }, + { + "start": 30260.82, + "end": 30264.84, + "probability": 0.9977 + }, + { + "start": 30264.84, + "end": 30268.44, + "probability": 0.8386 + }, + { + "start": 30269.08, + "end": 30270.36, + "probability": 0.6542 + }, + { + "start": 30271.26, + "end": 30272.0, + "probability": 0.9174 + }, + { + "start": 30272.84, + "end": 30274.92, + "probability": 0.9985 + }, + { + "start": 30275.6, + "end": 30279.7, + "probability": 0.9925 + }, + { + "start": 30280.22, + "end": 30281.08, + "probability": 0.9773 + }, + { + "start": 30281.22, + "end": 30283.82, + "probability": 0.9497 + }, + { + "start": 30284.36, + "end": 30285.04, + "probability": 0.7507 + }, + { + "start": 30285.9, + "end": 30289.36, + "probability": 0.9057 + }, + { + "start": 30290.28, + "end": 30290.93, + "probability": 0.6085 + }, + { + "start": 30292.06, + "end": 30295.0, + "probability": 0.9408 + }, + { + "start": 30295.34, + "end": 30298.92, + "probability": 0.9477 + }, + { + "start": 30298.98, + "end": 30299.2, + "probability": 0.8233 + }, + { + "start": 30299.92, + "end": 30299.92, + "probability": 0.4664 + }, + { + "start": 30300.22, + "end": 30300.98, + "probability": 0.8537 + }, + { + "start": 30301.76, + "end": 30302.18, + "probability": 0.8113 + }, + { + "start": 30302.54, + "end": 30303.2, + "probability": 0.644 + }, + { + "start": 30316.86, + "end": 30318.56, + "probability": 0.7474 + }, + { + "start": 30320.78, + "end": 30323.68, + "probability": 0.9661 + }, + { + "start": 30324.7, + "end": 30326.42, + "probability": 0.4939 + }, + { + "start": 30327.16, + "end": 30330.12, + "probability": 0.9945 + }, + { + "start": 30330.8, + "end": 30331.48, + "probability": 0.6457 + }, + { + "start": 30332.84, + "end": 30336.04, + "probability": 0.9949 + }, + { + "start": 30336.78, + "end": 30338.64, + "probability": 0.9574 + }, + { + "start": 30339.2, + "end": 30340.76, + "probability": 0.9976 + }, + { + "start": 30341.78, + "end": 30342.72, + "probability": 0.9993 + }, + { + "start": 30343.34, + "end": 30348.38, + "probability": 0.9988 + }, + { + "start": 30349.38, + "end": 30351.36, + "probability": 0.9276 + }, + { + "start": 30352.0, + "end": 30355.2, + "probability": 0.999 + }, + { + "start": 30355.2, + "end": 30360.16, + "probability": 0.9938 + }, + { + "start": 30360.84, + "end": 30362.54, + "probability": 0.9794 + }, + { + "start": 30363.94, + "end": 30365.98, + "probability": 0.9965 + }, + { + "start": 30367.34, + "end": 30370.86, + "probability": 0.9849 + }, + { + "start": 30372.08, + "end": 30372.77, + "probability": 0.8987 + }, + { + "start": 30373.88, + "end": 30374.28, + "probability": 0.8412 + }, + { + "start": 30375.1, + "end": 30376.5, + "probability": 0.9966 + }, + { + "start": 30377.86, + "end": 30381.82, + "probability": 0.9674 + }, + { + "start": 30383.06, + "end": 30386.08, + "probability": 0.8846 + }, + { + "start": 30386.78, + "end": 30389.64, + "probability": 0.7744 + }, + { + "start": 30390.32, + "end": 30392.0, + "probability": 0.9928 + }, + { + "start": 30392.52, + "end": 30395.42, + "probability": 0.9843 + }, + { + "start": 30396.52, + "end": 30400.46, + "probability": 0.9995 + }, + { + "start": 30401.12, + "end": 30406.48, + "probability": 0.9982 + }, + { + "start": 30407.02, + "end": 30408.46, + "probability": 0.9839 + }, + { + "start": 30408.98, + "end": 30412.16, + "probability": 0.9898 + }, + { + "start": 30412.94, + "end": 30413.71, + "probability": 0.6811 + }, + { + "start": 30415.08, + "end": 30418.96, + "probability": 0.9897 + }, + { + "start": 30419.68, + "end": 30422.72, + "probability": 0.976 + }, + { + "start": 30422.72, + "end": 30427.72, + "probability": 0.9983 + }, + { + "start": 30428.14, + "end": 30429.6, + "probability": 0.9124 + }, + { + "start": 30430.28, + "end": 30431.66, + "probability": 0.9969 + }, + { + "start": 30432.28, + "end": 30434.42, + "probability": 0.9989 + }, + { + "start": 30434.94, + "end": 30436.8, + "probability": 0.7404 + }, + { + "start": 30437.28, + "end": 30438.8, + "probability": 0.8379 + }, + { + "start": 30439.72, + "end": 30443.18, + "probability": 0.804 + }, + { + "start": 30444.82, + "end": 30446.76, + "probability": 0.981 + }, + { + "start": 30447.44, + "end": 30448.04, + "probability": 0.2737 + }, + { + "start": 30448.58, + "end": 30454.08, + "probability": 0.9909 + }, + { + "start": 30454.46, + "end": 30454.8, + "probability": 0.8214 + }, + { + "start": 30455.0, + "end": 30455.58, + "probability": 0.75 + }, + { + "start": 30456.22, + "end": 30457.78, + "probability": 0.9186 + }, + { + "start": 30459.02, + "end": 30460.72, + "probability": 0.241 + }, + { + "start": 30472.28, + "end": 30472.28, + "probability": 0.069 + }, + { + "start": 30472.28, + "end": 30472.28, + "probability": 0.1182 + }, + { + "start": 30472.28, + "end": 30472.3, + "probability": 0.1693 + }, + { + "start": 30472.3, + "end": 30472.3, + "probability": 0.0315 + }, + { + "start": 30472.3, + "end": 30472.32, + "probability": 0.03 + }, + { + "start": 30472.32, + "end": 30472.52, + "probability": 0.0804 + }, + { + "start": 30498.86, + "end": 30499.48, + "probability": 0.6143 + }, + { + "start": 30500.38, + "end": 30501.46, + "probability": 0.6974 + }, + { + "start": 30501.78, + "end": 30503.07, + "probability": 0.9966 + }, + { + "start": 30504.08, + "end": 30505.88, + "probability": 0.8196 + }, + { + "start": 30506.94, + "end": 30507.16, + "probability": 0.2785 + }, + { + "start": 30509.4, + "end": 30510.46, + "probability": 0.8675 + }, + { + "start": 30511.22, + "end": 30513.04, + "probability": 0.9403 + }, + { + "start": 30513.04, + "end": 30516.18, + "probability": 0.9511 + }, + { + "start": 30516.72, + "end": 30517.86, + "probability": 0.6102 + }, + { + "start": 30519.42, + "end": 30521.3, + "probability": 0.7605 + }, + { + "start": 30521.38, + "end": 30522.58, + "probability": 0.9396 + }, + { + "start": 30523.86, + "end": 30526.48, + "probability": 0.9784 + }, + { + "start": 30527.18, + "end": 30531.84, + "probability": 0.7364 + }, + { + "start": 30533.14, + "end": 30535.34, + "probability": 0.6231 + }, + { + "start": 30535.86, + "end": 30537.3, + "probability": 0.9512 + }, + { + "start": 30538.08, + "end": 30543.36, + "probability": 0.9788 + }, + { + "start": 30544.5, + "end": 30544.54, + "probability": 0.3118 + }, + { + "start": 30545.16, + "end": 30547.92, + "probability": 0.9541 + }, + { + "start": 30548.44, + "end": 30549.28, + "probability": 0.979 + }, + { + "start": 30549.86, + "end": 30551.5, + "probability": 0.9306 + }, + { + "start": 30552.14, + "end": 30556.46, + "probability": 0.7351 + }, + { + "start": 30557.12, + "end": 30561.78, + "probability": 0.6758 + }, + { + "start": 30561.9, + "end": 30563.6, + "probability": 0.9884 + }, + { + "start": 30564.08, + "end": 30568.24, + "probability": 0.927 + }, + { + "start": 30569.04, + "end": 30569.5, + "probability": 0.3689 + }, + { + "start": 30569.58, + "end": 30569.9, + "probability": 0.7681 + }, + { + "start": 30570.08, + "end": 30571.12, + "probability": 0.9758 + }, + { + "start": 30571.16, + "end": 30576.8, + "probability": 0.9968 + }, + { + "start": 30577.32, + "end": 30578.82, + "probability": 0.9589 + }, + { + "start": 30579.4, + "end": 30582.54, + "probability": 0.9995 + }, + { + "start": 30582.54, + "end": 30586.66, + "probability": 0.8349 + }, + { + "start": 30587.22, + "end": 30591.34, + "probability": 0.9071 + }, + { + "start": 30591.88, + "end": 30595.1, + "probability": 0.9287 + }, + { + "start": 30595.64, + "end": 30599.5, + "probability": 0.9722 + }, + { + "start": 30599.54, + "end": 30602.78, + "probability": 0.6949 + }, + { + "start": 30603.12, + "end": 30606.12, + "probability": 0.9633 + }, + { + "start": 30606.84, + "end": 30608.14, + "probability": 0.5838 + }, + { + "start": 30608.32, + "end": 30609.12, + "probability": 0.9031 + }, + { + "start": 30609.2, + "end": 30613.06, + "probability": 0.9567 + }, + { + "start": 30613.06, + "end": 30617.36, + "probability": 0.9963 + }, + { + "start": 30617.88, + "end": 30624.08, + "probability": 0.9919 + }, + { + "start": 30624.52, + "end": 30625.0, + "probability": 0.8908 + }, + { + "start": 30625.34, + "end": 30625.78, + "probability": 0.5618 + }, + { + "start": 30626.28, + "end": 30630.16, + "probability": 0.8062 + }, + { + "start": 30630.26, + "end": 30631.68, + "probability": 0.9625 + }, + { + "start": 30632.32, + "end": 30632.88, + "probability": 0.931 + }, + { + "start": 30633.38, + "end": 30636.5, + "probability": 0.8843 + }, + { + "start": 30636.54, + "end": 30639.72, + "probability": 0.9993 + }, + { + "start": 30640.74, + "end": 30644.1, + "probability": 0.9736 + }, + { + "start": 30644.36, + "end": 30648.04, + "probability": 0.9956 + }, + { + "start": 30648.34, + "end": 30652.96, + "probability": 0.8511 + }, + { + "start": 30652.96, + "end": 30655.86, + "probability": 0.7431 + }, + { + "start": 30656.66, + "end": 30657.8, + "probability": 0.9128 + }, + { + "start": 30658.06, + "end": 30660.66, + "probability": 0.9844 + }, + { + "start": 30660.84, + "end": 30664.22, + "probability": 0.9323 + }, + { + "start": 30664.74, + "end": 30665.94, + "probability": 0.919 + }, + { + "start": 30666.72, + "end": 30670.36, + "probability": 0.7493 + }, + { + "start": 30670.78, + "end": 30674.24, + "probability": 0.9845 + }, + { + "start": 30674.68, + "end": 30679.14, + "probability": 0.9871 + }, + { + "start": 30679.52, + "end": 30680.74, + "probability": 0.7615 + }, + { + "start": 30681.5, + "end": 30685.58, + "probability": 0.8026 + }, + { + "start": 30685.9, + "end": 30691.3, + "probability": 0.7966 + }, + { + "start": 30691.64, + "end": 30696.14, + "probability": 0.9912 + }, + { + "start": 30696.38, + "end": 30700.08, + "probability": 0.9086 + }, + { + "start": 30700.08, + "end": 30703.56, + "probability": 0.8883 + }, + { + "start": 30703.82, + "end": 30705.04, + "probability": 0.89 + }, + { + "start": 30705.4, + "end": 30708.44, + "probability": 0.9917 + }, + { + "start": 30708.96, + "end": 30709.48, + "probability": 0.7965 + }, + { + "start": 30710.78, + "end": 30713.42, + "probability": 0.4249 + }, + { + "start": 30713.42, + "end": 30713.52, + "probability": 0.4698 + }, + { + "start": 30713.82, + "end": 30716.2, + "probability": 0.6924 + }, + { + "start": 30716.2, + "end": 30718.22, + "probability": 0.706 + }, + { + "start": 30719.78, + "end": 30720.66, + "probability": 0.811 + }, + { + "start": 30720.94, + "end": 30721.28, + "probability": 0.9588 + }, + { + "start": 30722.26, + "end": 30724.32, + "probability": 0.5703 + }, + { + "start": 30724.94, + "end": 30726.22, + "probability": 0.7419 + }, + { + "start": 30728.0, + "end": 30731.16, + "probability": 0.6015 + }, + { + "start": 30731.86, + "end": 30732.24, + "probability": 0.827 + }, + { + "start": 30750.38, + "end": 30752.16, + "probability": 0.7319 + }, + { + "start": 30753.72, + "end": 30754.58, + "probability": 0.1491 + }, + { + "start": 30754.58, + "end": 30757.16, + "probability": 0.0122 + }, + { + "start": 30757.16, + "end": 30758.02, + "probability": 0.1439 + }, + { + "start": 30760.27, + "end": 30761.14, + "probability": 0.0366 + }, + { + "start": 30761.14, + "end": 30761.16, + "probability": 0.0039 + }, + { + "start": 30762.82, + "end": 30762.98, + "probability": 0.0193 + }, + { + "start": 30783.1, + "end": 30789.66, + "probability": 0.8965 + }, + { + "start": 30790.76, + "end": 30791.9, + "probability": 0.6891 + }, + { + "start": 30793.1, + "end": 30795.22, + "probability": 0.9865 + }, + { + "start": 30796.36, + "end": 30804.94, + "probability": 0.9906 + }, + { + "start": 30806.08, + "end": 30808.97, + "probability": 0.9927 + }, + { + "start": 30810.26, + "end": 30811.5, + "probability": 0.8476 + }, + { + "start": 30811.84, + "end": 30812.76, + "probability": 0.9807 + }, + { + "start": 30813.7, + "end": 30817.26, + "probability": 0.9898 + }, + { + "start": 30818.24, + "end": 30819.66, + "probability": 0.5747 + }, + { + "start": 30820.78, + "end": 30824.72, + "probability": 0.9753 + }, + { + "start": 30825.14, + "end": 30828.18, + "probability": 0.9792 + }, + { + "start": 30829.28, + "end": 30830.14, + "probability": 0.9248 + }, + { + "start": 30832.02, + "end": 30839.12, + "probability": 0.9963 + }, + { + "start": 30839.76, + "end": 30842.16, + "probability": 0.6779 + }, + { + "start": 30843.16, + "end": 30844.74, + "probability": 0.9567 + }, + { + "start": 30846.98, + "end": 30847.74, + "probability": 0.9794 + }, + { + "start": 30848.84, + "end": 30850.58, + "probability": 0.9854 + }, + { + "start": 30852.24, + "end": 30854.8, + "probability": 0.6637 + }, + { + "start": 30855.9, + "end": 30857.42, + "probability": 0.9305 + }, + { + "start": 30858.02, + "end": 30859.62, + "probability": 0.9831 + }, + { + "start": 30860.16, + "end": 30862.02, + "probability": 0.9839 + }, + { + "start": 30862.76, + "end": 30864.86, + "probability": 0.7624 + }, + { + "start": 30865.72, + "end": 30867.68, + "probability": 0.9944 + }, + { + "start": 30867.98, + "end": 30871.48, + "probability": 0.9692 + }, + { + "start": 30872.16, + "end": 30873.7, + "probability": 0.777 + }, + { + "start": 30874.72, + "end": 30879.46, + "probability": 0.786 + }, + { + "start": 30879.96, + "end": 30882.58, + "probability": 0.9028 + }, + { + "start": 30884.34, + "end": 30887.04, + "probability": 0.9928 + }, + { + "start": 30887.6, + "end": 30890.24, + "probability": 0.7921 + }, + { + "start": 30891.08, + "end": 30892.18, + "probability": 0.9635 + }, + { + "start": 30893.6, + "end": 30896.96, + "probability": 0.9795 + }, + { + "start": 30897.56, + "end": 30903.56, + "probability": 0.9689 + }, + { + "start": 30904.7, + "end": 30907.73, + "probability": 0.9749 + }, + { + "start": 30908.56, + "end": 30910.32, + "probability": 0.9202 + }, + { + "start": 30911.1, + "end": 30916.56, + "probability": 0.978 + }, + { + "start": 30917.66, + "end": 30921.2, + "probability": 0.9668 + }, + { + "start": 30921.94, + "end": 30925.85, + "probability": 0.9159 + }, + { + "start": 30926.44, + "end": 30929.92, + "probability": 0.9604 + }, + { + "start": 30931.72, + "end": 30934.16, + "probability": 0.9169 + }, + { + "start": 30934.56, + "end": 30935.56, + "probability": 0.847 + }, + { + "start": 30935.68, + "end": 30937.58, + "probability": 0.9827 + }, + { + "start": 30937.68, + "end": 30938.28, + "probability": 0.9518 + }, + { + "start": 30939.94, + "end": 30942.34, + "probability": 0.9813 + }, + { + "start": 30943.1, + "end": 30946.68, + "probability": 0.9945 + }, + { + "start": 30946.96, + "end": 30947.74, + "probability": 0.7819 + }, + { + "start": 30948.4, + "end": 30949.52, + "probability": 0.999 + }, + { + "start": 30949.76, + "end": 30951.9, + "probability": 0.9917 + }, + { + "start": 30952.5, + "end": 30953.34, + "probability": 0.7664 + }, + { + "start": 30953.48, + "end": 30954.42, + "probability": 0.895 + }, + { + "start": 30955.46, + "end": 30957.84, + "probability": 0.6692 + }, + { + "start": 30958.54, + "end": 30962.74, + "probability": 0.993 + }, + { + "start": 30963.12, + "end": 30963.46, + "probability": 0.7414 + }, + { + "start": 30963.64, + "end": 30964.18, + "probability": 0.6668 + }, + { + "start": 30964.84, + "end": 30970.32, + "probability": 0.9992 + }, + { + "start": 30970.94, + "end": 30971.16, + "probability": 0.7702 + }, + { + "start": 30971.7, + "end": 30975.88, + "probability": 0.9983 + }, + { + "start": 30975.88, + "end": 30981.24, + "probability": 0.9769 + }, + { + "start": 30982.16, + "end": 30982.9, + "probability": 0.5506 + }, + { + "start": 30984.92, + "end": 30985.6, + "probability": 0.9132 + }, + { + "start": 31017.52, + "end": 31018.82, + "probability": 0.5098 + }, + { + "start": 31021.92, + "end": 31024.76, + "probability": 0.9662 + }, + { + "start": 31024.9, + "end": 31025.28, + "probability": 0.555 + }, + { + "start": 31025.46, + "end": 31026.74, + "probability": 0.9531 + }, + { + "start": 31028.49, + "end": 31030.44, + "probability": 0.986 + }, + { + "start": 31030.58, + "end": 31034.6, + "probability": 0.9741 + }, + { + "start": 31035.64, + "end": 31037.38, + "probability": 0.8152 + }, + { + "start": 31038.0, + "end": 31043.34, + "probability": 0.994 + }, + { + "start": 31044.46, + "end": 31049.38, + "probability": 0.9922 + }, + { + "start": 31050.1, + "end": 31054.72, + "probability": 0.8695 + }, + { + "start": 31056.16, + "end": 31059.32, + "probability": 0.9902 + }, + { + "start": 31060.06, + "end": 31066.52, + "probability": 0.9401 + }, + { + "start": 31067.68, + "end": 31069.72, + "probability": 0.9946 + }, + { + "start": 31069.76, + "end": 31072.68, + "probability": 0.9371 + }, + { + "start": 31073.2, + "end": 31074.82, + "probability": 0.9792 + }, + { + "start": 31075.62, + "end": 31077.46, + "probability": 0.735 + }, + { + "start": 31078.0, + "end": 31079.86, + "probability": 0.9219 + }, + { + "start": 31080.8, + "end": 31084.9, + "probability": 0.9956 + }, + { + "start": 31085.14, + "end": 31087.94, + "probability": 0.998 + }, + { + "start": 31088.64, + "end": 31089.82, + "probability": 0.8569 + }, + { + "start": 31090.42, + "end": 31090.92, + "probability": 0.7311 + }, + { + "start": 31091.3, + "end": 31093.06, + "probability": 0.0551 + }, + { + "start": 31093.78, + "end": 31093.78, + "probability": 0.24 + }, + { + "start": 31093.86, + "end": 31094.1, + "probability": 0.9066 + }, + { + "start": 31094.18, + "end": 31094.66, + "probability": 0.9749 + }, + { + "start": 31095.82, + "end": 31097.08, + "probability": 0.2141 + }, + { + "start": 31097.5, + "end": 31097.88, + "probability": 0.4598 + }, + { + "start": 31097.96, + "end": 31099.52, + "probability": 0.8915 + }, + { + "start": 31099.52, + "end": 31100.98, + "probability": 0.8081 + }, + { + "start": 31101.3, + "end": 31103.5, + "probability": 0.7448 + }, + { + "start": 31103.74, + "end": 31103.82, + "probability": 0.0274 + }, + { + "start": 31103.82, + "end": 31104.62, + "probability": 0.0226 + }, + { + "start": 31104.68, + "end": 31105.3, + "probability": 0.5769 + }, + { + "start": 31105.54, + "end": 31106.08, + "probability": 0.9571 + }, + { + "start": 31106.18, + "end": 31106.56, + "probability": 0.9373 + }, + { + "start": 31107.32, + "end": 31107.86, + "probability": 0.7524 + }, + { + "start": 31108.45, + "end": 31109.02, + "probability": 0.1863 + }, + { + "start": 31109.02, + "end": 31109.2, + "probability": 0.5988 + }, + { + "start": 31110.22, + "end": 31114.14, + "probability": 0.9693 + }, + { + "start": 31114.84, + "end": 31118.78, + "probability": 0.9761 + }, + { + "start": 31119.62, + "end": 31121.46, + "probability": 0.9791 + }, + { + "start": 31121.58, + "end": 31122.57, + "probability": 0.9275 + }, + { + "start": 31123.9, + "end": 31125.8, + "probability": 0.9849 + }, + { + "start": 31126.48, + "end": 31128.58, + "probability": 0.8927 + }, + { + "start": 31129.64, + "end": 31131.36, + "probability": 0.9397 + }, + { + "start": 31132.34, + "end": 31133.62, + "probability": 0.8447 + }, + { + "start": 31133.86, + "end": 31135.28, + "probability": 0.9917 + }, + { + "start": 31136.64, + "end": 31137.66, + "probability": 0.9503 + }, + { + "start": 31139.04, + "end": 31141.06, + "probability": 0.8375 + }, + { + "start": 31141.32, + "end": 31147.4, + "probability": 0.9731 + }, + { + "start": 31147.62, + "end": 31151.72, + "probability": 0.8657 + }, + { + "start": 31152.04, + "end": 31153.1, + "probability": 0.9969 + }, + { + "start": 31153.58, + "end": 31156.76, + "probability": 0.4004 + }, + { + "start": 31156.88, + "end": 31157.52, + "probability": 0.2607 + }, + { + "start": 31157.74, + "end": 31159.32, + "probability": 0.8597 + }, + { + "start": 31159.42, + "end": 31159.76, + "probability": 0.5148 + }, + { + "start": 31159.84, + "end": 31161.26, + "probability": 0.7912 + }, + { + "start": 31161.7, + "end": 31167.8, + "probability": 0.9837 + }, + { + "start": 31168.4, + "end": 31169.78, + "probability": 0.3764 + }, + { + "start": 31170.12, + "end": 31172.46, + "probability": 0.9478 + }, + { + "start": 31173.62, + "end": 31174.42, + "probability": 0.6737 + }, + { + "start": 31174.7, + "end": 31175.32, + "probability": 0.9222 + }, + { + "start": 31175.8, + "end": 31177.42, + "probability": 0.9584 + }, + { + "start": 31178.58, + "end": 31181.88, + "probability": 0.8739 + }, + { + "start": 31182.58, + "end": 31184.68, + "probability": 0.9979 + }, + { + "start": 31184.68, + "end": 31188.08, + "probability": 0.998 + }, + { + "start": 31188.88, + "end": 31192.32, + "probability": 0.8976 + }, + { + "start": 31193.42, + "end": 31194.88, + "probability": 0.1398 + }, + { + "start": 31195.28, + "end": 31198.6, + "probability": 0.9956 + }, + { + "start": 31199.54, + "end": 31202.36, + "probability": 0.9178 + }, + { + "start": 31203.08, + "end": 31205.06, + "probability": 0.9883 + }, + { + "start": 31205.1, + "end": 31206.3, + "probability": 0.997 + }, + { + "start": 31207.12, + "end": 31209.58, + "probability": 0.9529 + }, + { + "start": 31210.12, + "end": 31211.94, + "probability": 0.3248 + }, + { + "start": 31212.46, + "end": 31218.76, + "probability": 0.9788 + }, + { + "start": 31218.78, + "end": 31221.54, + "probability": 0.571 + }, + { + "start": 31222.32, + "end": 31224.82, + "probability": 0.6917 + }, + { + "start": 31225.66, + "end": 31226.02, + "probability": 0.3979 + }, + { + "start": 31226.46, + "end": 31228.7, + "probability": 0.9952 + }, + { + "start": 31229.2, + "end": 31231.04, + "probability": 0.7681 + }, + { + "start": 31231.84, + "end": 31238.1, + "probability": 0.9596 + }, + { + "start": 31238.76, + "end": 31242.52, + "probability": 0.9935 + }, + { + "start": 31242.72, + "end": 31245.1, + "probability": 0.9934 + }, + { + "start": 31245.82, + "end": 31247.16, + "probability": 0.9709 + }, + { + "start": 31247.22, + "end": 31250.78, + "probability": 0.9762 + }, + { + "start": 31250.9, + "end": 31251.12, + "probability": 0.4746 + }, + { + "start": 31252.58, + "end": 31255.56, + "probability": 0.9955 + }, + { + "start": 31255.76, + "end": 31259.1, + "probability": 0.9981 + }, + { + "start": 31259.62, + "end": 31262.32, + "probability": 0.9984 + }, + { + "start": 31262.56, + "end": 31262.7, + "probability": 0.7375 + }, + { + "start": 31262.7, + "end": 31265.82, + "probability": 0.9736 + }, + { + "start": 31266.1, + "end": 31266.32, + "probability": 0.8046 + }, + { + "start": 31266.38, + "end": 31270.36, + "probability": 0.9621 + }, + { + "start": 31271.04, + "end": 31272.66, + "probability": 0.9607 + }, + { + "start": 31272.84, + "end": 31273.24, + "probability": 0.746 + }, + { + "start": 31273.9, + "end": 31275.22, + "probability": 0.961 + }, + { + "start": 31275.44, + "end": 31276.06, + "probability": 0.7381 + }, + { + "start": 31278.86, + "end": 31279.86, + "probability": 0.917 + }, + { + "start": 31281.98, + "end": 31282.9, + "probability": 0.7902 + }, + { + "start": 31290.6, + "end": 31291.0, + "probability": 0.371 + }, + { + "start": 31291.0, + "end": 31291.64, + "probability": 0.0789 + }, + { + "start": 31291.64, + "end": 31291.72, + "probability": 0.3895 + }, + { + "start": 31306.4, + "end": 31306.6, + "probability": 0.3253 + }, + { + "start": 31307.76, + "end": 31309.54, + "probability": 0.83 + }, + { + "start": 31312.86, + "end": 31313.5, + "probability": 0.7896 + }, + { + "start": 31314.08, + "end": 31315.8, + "probability": 0.5185 + }, + { + "start": 31316.46, + "end": 31316.96, + "probability": 0.4215 + }, + { + "start": 31316.96, + "end": 31317.24, + "probability": 0.8457 + }, + { + "start": 31319.46, + "end": 31322.7, + "probability": 0.7097 + }, + { + "start": 31324.02, + "end": 31326.98, + "probability": 0.9292 + }, + { + "start": 31328.18, + "end": 31331.24, + "probability": 0.7673 + }, + { + "start": 31332.18, + "end": 31332.28, + "probability": 0.6807 + }, + { + "start": 31333.32, + "end": 31333.82, + "probability": 0.8167 + }, + { + "start": 31334.18, + "end": 31334.86, + "probability": 0.2219 + }, + { + "start": 31336.38, + "end": 31336.56, + "probability": 0.3922 + }, + { + "start": 31338.1, + "end": 31339.28, + "probability": 0.9375 + }, + { + "start": 31339.72, + "end": 31340.62, + "probability": 0.2299 + }, + { + "start": 31340.94, + "end": 31342.46, + "probability": 0.2937 + }, + { + "start": 31342.62, + "end": 31344.02, + "probability": 0.5093 + }, + { + "start": 31344.26, + "end": 31346.18, + "probability": 0.8318 + }, + { + "start": 31346.32, + "end": 31347.66, + "probability": 0.7835 + }, + { + "start": 31348.2, + "end": 31349.26, + "probability": 0.7176 + }, + { + "start": 31349.34, + "end": 31350.64, + "probability": 0.6442 + }, + { + "start": 31350.7, + "end": 31355.5, + "probability": 0.9788 + }, + { + "start": 31356.44, + "end": 31358.48, + "probability": 0.0594 + }, + { + "start": 31358.54, + "end": 31364.1, + "probability": 0.98 + }, + { + "start": 31364.24, + "end": 31364.68, + "probability": 0.1644 + }, + { + "start": 31364.82, + "end": 31368.64, + "probability": 0.818 + }, + { + "start": 31368.78, + "end": 31369.22, + "probability": 0.7627 + }, + { + "start": 31369.32, + "end": 31371.24, + "probability": 0.9758 + }, + { + "start": 31371.54, + "end": 31374.44, + "probability": 0.8596 + }, + { + "start": 31375.72, + "end": 31376.12, + "probability": 0.5575 + }, + { + "start": 31377.72, + "end": 31381.04, + "probability": 0.0728 + }, + { + "start": 31382.04, + "end": 31383.28, + "probability": 0.5175 + }, + { + "start": 31383.48, + "end": 31385.68, + "probability": 0.9375 + }, + { + "start": 31385.8, + "end": 31386.3, + "probability": 0.119 + }, + { + "start": 31386.32, + "end": 31387.48, + "probability": 0.6295 + }, + { + "start": 31387.66, + "end": 31388.6, + "probability": 0.0319 + }, + { + "start": 31388.76, + "end": 31393.24, + "probability": 0.991 + }, + { + "start": 31394.76, + "end": 31399.53, + "probability": 0.9875 + }, + { + "start": 31399.94, + "end": 31404.92, + "probability": 0.8877 + }, + { + "start": 31405.54, + "end": 31407.34, + "probability": 0.9764 + }, + { + "start": 31408.0, + "end": 31409.2, + "probability": 0.9754 + }, + { + "start": 31409.38, + "end": 31411.28, + "probability": 0.9788 + }, + { + "start": 31411.38, + "end": 31412.7, + "probability": 0.9886 + }, + { + "start": 31413.3, + "end": 31415.5, + "probability": 0.9884 + }, + { + "start": 31416.12, + "end": 31421.46, + "probability": 0.7465 + }, + { + "start": 31421.62, + "end": 31422.88, + "probability": 0.8814 + }, + { + "start": 31423.74, + "end": 31424.68, + "probability": 0.9554 + }, + { + "start": 31425.48, + "end": 31427.6, + "probability": 0.9875 + }, + { + "start": 31427.76, + "end": 31428.73, + "probability": 0.835 + }, + { + "start": 31429.48, + "end": 31430.19, + "probability": 0.9043 + }, + { + "start": 31431.52, + "end": 31432.1, + "probability": 0.8312 + }, + { + "start": 31432.42, + "end": 31437.12, + "probability": 0.989 + }, + { + "start": 31437.6, + "end": 31440.52, + "probability": 0.9934 + }, + { + "start": 31442.06, + "end": 31442.52, + "probability": 0.7721 + }, + { + "start": 31443.68, + "end": 31444.98, + "probability": 0.9792 + }, + { + "start": 31445.06, + "end": 31446.5, + "probability": 0.9595 + }, + { + "start": 31446.96, + "end": 31448.52, + "probability": 0.9871 + }, + { + "start": 31448.58, + "end": 31450.7, + "probability": 0.9954 + }, + { + "start": 31451.26, + "end": 31454.12, + "probability": 0.9958 + }, + { + "start": 31455.18, + "end": 31459.52, + "probability": 0.9961 + }, + { + "start": 31460.44, + "end": 31463.1, + "probability": 0.9849 + }, + { + "start": 31463.1, + "end": 31466.1, + "probability": 0.9221 + }, + { + "start": 31467.94, + "end": 31469.02, + "probability": 0.9966 + }, + { + "start": 31469.28, + "end": 31472.94, + "probability": 0.9113 + }, + { + "start": 31474.14, + "end": 31474.94, + "probability": 0.8553 + }, + { + "start": 31475.22, + "end": 31478.14, + "probability": 0.6445 + }, + { + "start": 31478.16, + "end": 31480.44, + "probability": 0.9863 + }, + { + "start": 31480.52, + "end": 31481.11, + "probability": 0.9813 + }, + { + "start": 31482.54, + "end": 31482.78, + "probability": 0.5822 + }, + { + "start": 31482.98, + "end": 31487.98, + "probability": 0.8005 + }, + { + "start": 31488.14, + "end": 31488.63, + "probability": 0.5024 + }, + { + "start": 31488.76, + "end": 31490.38, + "probability": 0.5068 + }, + { + "start": 31490.86, + "end": 31492.82, + "probability": 0.7702 + }, + { + "start": 31493.28, + "end": 31495.2, + "probability": 0.9193 + }, + { + "start": 31496.76, + "end": 31500.64, + "probability": 0.867 + }, + { + "start": 31501.34, + "end": 31502.76, + "probability": 0.644 + }, + { + "start": 31502.82, + "end": 31505.4, + "probability": 0.9735 + }, + { + "start": 31506.0, + "end": 31507.66, + "probability": 0.9951 + }, + { + "start": 31508.62, + "end": 31510.48, + "probability": 0.8252 + }, + { + "start": 31511.84, + "end": 31512.58, + "probability": 0.3602 + }, + { + "start": 31512.6, + "end": 31513.4, + "probability": 0.7045 + }, + { + "start": 31513.44, + "end": 31516.0, + "probability": 0.9846 + }, + { + "start": 31516.22, + "end": 31517.2, + "probability": 0.9572 + }, + { + "start": 31517.88, + "end": 31519.76, + "probability": 0.9456 + }, + { + "start": 31522.5, + "end": 31525.22, + "probability": 0.9673 + }, + { + "start": 31526.08, + "end": 31527.02, + "probability": 0.7232 + }, + { + "start": 31527.4, + "end": 31528.28, + "probability": 0.8064 + }, + { + "start": 31528.34, + "end": 31529.74, + "probability": 0.9967 + }, + { + "start": 31529.84, + "end": 31531.44, + "probability": 0.9532 + }, + { + "start": 31532.42, + "end": 31533.46, + "probability": 0.7233 + }, + { + "start": 31534.78, + "end": 31536.94, + "probability": 0.6167 + }, + { + "start": 31537.02, + "end": 31538.44, + "probability": 0.9928 + }, + { + "start": 31539.06, + "end": 31539.86, + "probability": 0.467 + }, + { + "start": 31540.44, + "end": 31545.78, + "probability": 0.9968 + }, + { + "start": 31546.02, + "end": 31547.14, + "probability": 0.919 + }, + { + "start": 31547.56, + "end": 31555.45, + "probability": 0.9692 + }, + { + "start": 31556.28, + "end": 31557.62, + "probability": 0.8508 + }, + { + "start": 31557.68, + "end": 31557.92, + "probability": 0.7698 + }, + { + "start": 31557.92, + "end": 31558.02, + "probability": 0.6506 + }, + { + "start": 31558.14, + "end": 31559.14, + "probability": 0.9208 + }, + { + "start": 31564.14, + "end": 31566.94, + "probability": 0.6102 + }, + { + "start": 31566.94, + "end": 31567.46, + "probability": 0.4214 + }, + { + "start": 31570.18, + "end": 31573.06, + "probability": 0.6967 + }, + { + "start": 31574.66, + "end": 31578.12, + "probability": 0.384 + }, + { + "start": 31579.72, + "end": 31580.62, + "probability": 0.7571 + }, + { + "start": 31581.24, + "end": 31581.96, + "probability": 0.6966 + }, + { + "start": 31582.18, + "end": 31584.92, + "probability": 0.9476 + }, + { + "start": 31585.48, + "end": 31586.91, + "probability": 0.8032 + }, + { + "start": 31587.86, + "end": 31591.14, + "probability": 0.75 + }, + { + "start": 31592.3, + "end": 31592.74, + "probability": 0.2551 + }, + { + "start": 31593.36, + "end": 31595.79, + "probability": 0.9769 + }, + { + "start": 31596.52, + "end": 31597.34, + "probability": 0.6888 + }, + { + "start": 31597.44, + "end": 31601.1, + "probability": 0.9314 + }, + { + "start": 31601.28, + "end": 31602.22, + "probability": 0.8802 + }, + { + "start": 31603.14, + "end": 31606.6, + "probability": 0.8485 + }, + { + "start": 31606.6, + "end": 31606.96, + "probability": 0.137 + }, + { + "start": 31608.08, + "end": 31610.66, + "probability": 0.4868 + }, + { + "start": 31612.72, + "end": 31613.46, + "probability": 0.7443 + }, + { + "start": 31613.86, + "end": 31614.84, + "probability": 0.9427 + }, + { + "start": 31616.53, + "end": 31620.64, + "probability": 0.9369 + }, + { + "start": 31620.86, + "end": 31622.0, + "probability": 0.9449 + }, + { + "start": 31624.64, + "end": 31626.98, + "probability": 0.9963 + }, + { + "start": 31627.54, + "end": 31629.66, + "probability": 0.905 + }, + { + "start": 31631.25, + "end": 31632.28, + "probability": 0.7511 + }, + { + "start": 31632.82, + "end": 31634.02, + "probability": 0.9767 + }, + { + "start": 31635.52, + "end": 31637.16, + "probability": 0.805 + }, + { + "start": 31639.05, + "end": 31639.68, + "probability": 0.2707 + }, + { + "start": 31640.62, + "end": 31641.76, + "probability": 0.8421 + }, + { + "start": 31642.04, + "end": 31643.94, + "probability": 0.2524 + }, + { + "start": 31643.94, + "end": 31643.94, + "probability": 0.0844 + }, + { + "start": 31643.94, + "end": 31644.96, + "probability": 0.4913 + }, + { + "start": 31645.36, + "end": 31646.26, + "probability": 0.4932 + }, + { + "start": 31646.98, + "end": 31647.8, + "probability": 0.6044 + }, + { + "start": 31648.26, + "end": 31650.24, + "probability": 0.7682 + }, + { + "start": 31650.42, + "end": 31652.8, + "probability": 0.9741 + }, + { + "start": 31653.08, + "end": 31653.92, + "probability": 0.7652 + }, + { + "start": 31656.04, + "end": 31660.62, + "probability": 0.9758 + }, + { + "start": 31661.22, + "end": 31663.38, + "probability": 0.999 + }, + { + "start": 31664.1, + "end": 31664.6, + "probability": 0.5479 + }, + { + "start": 31665.42, + "end": 31666.58, + "probability": 0.9743 + }, + { + "start": 31667.02, + "end": 31667.43, + "probability": 0.9607 + }, + { + "start": 31668.14, + "end": 31671.94, + "probability": 0.3661 + }, + { + "start": 31672.44, + "end": 31673.81, + "probability": 0.813 + }, + { + "start": 31674.44, + "end": 31674.82, + "probability": 0.1216 + }, + { + "start": 31675.44, + "end": 31677.28, + "probability": 0.9773 + }, + { + "start": 31677.9, + "end": 31680.4, + "probability": 0.8754 + }, + { + "start": 31680.6, + "end": 31681.4, + "probability": 0.8962 + }, + { + "start": 31681.6, + "end": 31682.22, + "probability": 0.9589 + }, + { + "start": 31683.44, + "end": 31683.62, + "probability": 0.3184 + }, + { + "start": 31683.9, + "end": 31684.52, + "probability": 0.9793 + }, + { + "start": 31686.96, + "end": 31692.22, + "probability": 0.9793 + }, + { + "start": 31693.1, + "end": 31695.17, + "probability": 0.9991 + }, + { + "start": 31695.96, + "end": 31697.7, + "probability": 0.9993 + }, + { + "start": 31698.2, + "end": 31700.58, + "probability": 0.9065 + }, + { + "start": 31700.74, + "end": 31701.54, + "probability": 0.7497 + }, + { + "start": 31702.38, + "end": 31703.6, + "probability": 0.7875 + }, + { + "start": 31703.66, + "end": 31703.98, + "probability": 0.8624 + }, + { + "start": 31704.34, + "end": 31708.32, + "probability": 0.9883 + }, + { + "start": 31708.92, + "end": 31712.48, + "probability": 0.6064 + }, + { + "start": 31713.08, + "end": 31714.76, + "probability": 0.0045 + }, + { + "start": 31715.38, + "end": 31716.48, + "probability": 0.3398 + }, + { + "start": 31717.18, + "end": 31717.28, + "probability": 0.1086 + }, + { + "start": 31717.28, + "end": 31717.28, + "probability": 0.0434 + }, + { + "start": 31717.28, + "end": 31720.22, + "probability": 0.7999 + }, + { + "start": 31721.24, + "end": 31722.44, + "probability": 0.689 + }, + { + "start": 31723.82, + "end": 31727.0, + "probability": 0.9713 + }, + { + "start": 31727.94, + "end": 31728.88, + "probability": 0.775 + }, + { + "start": 31730.28, + "end": 31730.94, + "probability": 0.8896 + }, + { + "start": 31732.04, + "end": 31733.58, + "probability": 0.8894 + }, + { + "start": 31734.16, + "end": 31734.86, + "probability": 0.8561 + }, + { + "start": 31735.02, + "end": 31735.52, + "probability": 0.8265 + }, + { + "start": 31735.64, + "end": 31736.48, + "probability": 0.9082 + }, + { + "start": 31736.96, + "end": 31739.92, + "probability": 0.9889 + }, + { + "start": 31740.18, + "end": 31743.64, + "probability": 0.907 + }, + { + "start": 31744.62, + "end": 31747.56, + "probability": 0.9461 + }, + { + "start": 31748.32, + "end": 31750.28, + "probability": 0.4985 + }, + { + "start": 31750.92, + "end": 31752.68, + "probability": 0.9678 + }, + { + "start": 31753.68, + "end": 31755.3, + "probability": 0.9993 + }, + { + "start": 31756.22, + "end": 31759.12, + "probability": 0.8954 + }, + { + "start": 31759.56, + "end": 31761.48, + "probability": 0.7537 + }, + { + "start": 31762.28, + "end": 31762.82, + "probability": 0.9175 + }, + { + "start": 31763.78, + "end": 31764.26, + "probability": 0.6899 + }, + { + "start": 31770.22, + "end": 31771.66, + "probability": 0.5095 + }, + { + "start": 31771.86, + "end": 31772.22, + "probability": 0.3175 + }, + { + "start": 31772.54, + "end": 31772.58, + "probability": 0.1527 + }, + { + "start": 31772.58, + "end": 31774.52, + "probability": 0.2473 + }, + { + "start": 31775.04, + "end": 31775.6, + "probability": 0.8313 + }, + { + "start": 31775.84, + "end": 31777.4, + "probability": 0.8571 + }, + { + "start": 31777.52, + "end": 31781.26, + "probability": 0.9932 + }, + { + "start": 31781.84, + "end": 31784.32, + "probability": 0.8979 + }, + { + "start": 31784.42, + "end": 31784.98, + "probability": 0.9722 + }, + { + "start": 31786.04, + "end": 31787.22, + "probability": 0.9878 + }, + { + "start": 31787.86, + "end": 31789.4, + "probability": 0.8685 + }, + { + "start": 31790.28, + "end": 31792.56, + "probability": 0.9809 + }, + { + "start": 31793.58, + "end": 31796.1, + "probability": 0.9752 + }, + { + "start": 31797.16, + "end": 31800.46, + "probability": 0.9604 + }, + { + "start": 31801.36, + "end": 31801.6, + "probability": 0.725 + }, + { + "start": 31802.64, + "end": 31803.04, + "probability": 0.6038 + }, + { + "start": 31803.18, + "end": 31803.6, + "probability": 0.2671 + }, + { + "start": 31803.7, + "end": 31805.48, + "probability": 0.9651 + }, + { + "start": 31806.36, + "end": 31806.46, + "probability": 0.0168 + }, + { + "start": 31806.46, + "end": 31807.2, + "probability": 0.8167 + }, + { + "start": 31808.02, + "end": 31808.88, + "probability": 0.424 + }, + { + "start": 31809.36, + "end": 31809.76, + "probability": 0.9214 + }, + { + "start": 31810.56, + "end": 31810.68, + "probability": 0.6906 + }, + { + "start": 31810.96, + "end": 31812.02, + "probability": 0.971 + }, + { + "start": 31813.14, + "end": 31814.72, + "probability": 0.9052 + }, + { + "start": 31815.55, + "end": 31817.22, + "probability": 0.8577 + }, + { + "start": 31818.12, + "end": 31819.6, + "probability": 0.9973 + }, + { + "start": 31820.46, + "end": 31821.82, + "probability": 0.9056 + }, + { + "start": 31822.86, + "end": 31824.58, + "probability": 0.9583 + }, + { + "start": 31825.48, + "end": 31828.04, + "probability": 0.9385 + }, + { + "start": 31828.84, + "end": 31830.52, + "probability": 0.9794 + }, + { + "start": 31831.14, + "end": 31833.34, + "probability": 0.8449 + }, + { + "start": 31833.72, + "end": 31834.4, + "probability": 0.8765 + }, + { + "start": 31836.42, + "end": 31836.42, + "probability": 0.2925 + }, + { + "start": 31836.42, + "end": 31837.07, + "probability": 0.5563 + }, + { + "start": 31837.28, + "end": 31837.78, + "probability": 0.4322 + }, + { + "start": 31838.12, + "end": 31839.28, + "probability": 0.6352 + }, + { + "start": 31840.3, + "end": 31844.82, + "probability": 0.0589 + }, + { + "start": 31845.22, + "end": 31846.4, + "probability": 0.5165 + }, + { + "start": 31855.58, + "end": 31856.4, + "probability": 0.6617 + }, + { + "start": 31856.94, + "end": 31857.52, + "probability": 0.5668 + }, + { + "start": 31858.46, + "end": 31859.3, + "probability": 0.6893 + }, + { + "start": 31860.18, + "end": 31861.16, + "probability": 0.9788 + }, + { + "start": 31862.62, + "end": 31863.42, + "probability": 0.7554 + }, + { + "start": 31865.52, + "end": 31870.68, + "probability": 0.8992 + }, + { + "start": 31871.62, + "end": 31876.34, + "probability": 0.9741 + }, + { + "start": 31876.88, + "end": 31880.08, + "probability": 0.9919 + }, + { + "start": 31881.46, + "end": 31882.18, + "probability": 0.9739 + }, + { + "start": 31882.74, + "end": 31883.52, + "probability": 0.8149 + }, + { + "start": 31884.32, + "end": 31886.96, + "probability": 0.9103 + }, + { + "start": 31888.0, + "end": 31891.6, + "probability": 0.9759 + }, + { + "start": 31893.12, + "end": 31898.2, + "probability": 0.9638 + }, + { + "start": 31899.78, + "end": 31903.74, + "probability": 0.6127 + }, + { + "start": 31904.48, + "end": 31906.54, + "probability": 0.9922 + }, + { + "start": 31907.9, + "end": 31908.92, + "probability": 0.3668 + }, + { + "start": 31909.5, + "end": 31911.44, + "probability": 0.9779 + }, + { + "start": 31912.24, + "end": 31913.12, + "probability": 0.6126 + }, + { + "start": 31913.82, + "end": 31914.34, + "probability": 0.9526 + }, + { + "start": 31914.9, + "end": 31915.14, + "probability": 0.4917 + }, + { + "start": 31916.24, + "end": 31917.78, + "probability": 0.9309 + }, + { + "start": 31918.72, + "end": 31920.86, + "probability": 0.994 + }, + { + "start": 31921.84, + "end": 31922.8, + "probability": 0.7125 + }, + { + "start": 31923.42, + "end": 31924.5, + "probability": 0.4962 + }, + { + "start": 31925.1, + "end": 31925.58, + "probability": 0.6822 + }, + { + "start": 31926.1, + "end": 31926.76, + "probability": 0.7515 + }, + { + "start": 31928.42, + "end": 31931.66, + "probability": 0.9707 + }, + { + "start": 31932.28, + "end": 31933.67, + "probability": 0.8042 + }, + { + "start": 31935.37, + "end": 31937.72, + "probability": 0.4693 + }, + { + "start": 31938.38, + "end": 31940.08, + "probability": 0.833 + }, + { + "start": 31940.84, + "end": 31943.0, + "probability": 0.9982 + }, + { + "start": 31944.18, + "end": 31950.1, + "probability": 0.9949 + }, + { + "start": 31950.94, + "end": 31952.7, + "probability": 0.989 + }, + { + "start": 31953.5, + "end": 31953.9, + "probability": 0.5671 + }, + { + "start": 31954.92, + "end": 31957.56, + "probability": 0.9945 + }, + { + "start": 31959.02, + "end": 31961.38, + "probability": 0.8145 + }, + { + "start": 31961.98, + "end": 31964.9, + "probability": 0.9932 + }, + { + "start": 31965.52, + "end": 31967.68, + "probability": 0.9234 + }, + { + "start": 31968.58, + "end": 31971.36, + "probability": 0.793 + }, + { + "start": 31972.2, + "end": 31975.3, + "probability": 0.996 + }, + { + "start": 31976.66, + "end": 31980.32, + "probability": 0.9913 + }, + { + "start": 31980.98, + "end": 31981.62, + "probability": 0.9489 + }, + { + "start": 31982.58, + "end": 31983.18, + "probability": 0.6277 + }, + { + "start": 31983.88, + "end": 31984.34, + "probability": 0.7751 + }, + { + "start": 31984.98, + "end": 31987.84, + "probability": 0.9622 + }, + { + "start": 31990.46, + "end": 31992.15, + "probability": 0.7694 + }, + { + "start": 31993.86, + "end": 31995.4, + "probability": 0.9593 + }, + { + "start": 31996.54, + "end": 31998.96, + "probability": 0.8197 + }, + { + "start": 31999.86, + "end": 32003.04, + "probability": 0.9806 + }, + { + "start": 32003.98, + "end": 32005.66, + "probability": 0.9976 + }, + { + "start": 32006.6, + "end": 32009.74, + "probability": 0.9 + }, + { + "start": 32010.92, + "end": 32011.3, + "probability": 0.8157 + }, + { + "start": 32011.98, + "end": 32013.0, + "probability": 0.8063 + }, + { + "start": 32014.0, + "end": 32015.5, + "probability": 0.9951 + }, + { + "start": 32016.08, + "end": 32017.24, + "probability": 0.9918 + }, + { + "start": 32017.94, + "end": 32019.62, + "probability": 0.9219 + }, + { + "start": 32020.58, + "end": 32021.62, + "probability": 0.9327 + }, + { + "start": 32022.62, + "end": 32023.24, + "probability": 0.7716 + }, + { + "start": 32024.08, + "end": 32025.24, + "probability": 0.9543 + }, + { + "start": 32025.94, + "end": 32027.23, + "probability": 0.9697 + }, + { + "start": 32028.16, + "end": 32029.38, + "probability": 0.9811 + }, + { + "start": 32030.96, + "end": 32031.7, + "probability": 0.8734 + }, + { + "start": 32032.38, + "end": 32037.56, + "probability": 0.9647 + }, + { + "start": 32038.34, + "end": 32040.04, + "probability": 0.99 + }, + { + "start": 32040.68, + "end": 32042.1, + "probability": 0.9534 + }, + { + "start": 32043.24, + "end": 32043.9, + "probability": 0.4694 + }, + { + "start": 32044.7, + "end": 32045.78, + "probability": 0.8749 + }, + { + "start": 32046.66, + "end": 32047.8, + "probability": 0.9875 + }, + { + "start": 32048.68, + "end": 32049.78, + "probability": 0.9429 + }, + { + "start": 32050.2, + "end": 32050.9, + "probability": 0.7871 + }, + { + "start": 32051.78, + "end": 32053.96, + "probability": 0.9905 + }, + { + "start": 32054.86, + "end": 32055.52, + "probability": 0.0433 + }, + { + "start": 32063.26, + "end": 32063.68, + "probability": 0.137 + }, + { + "start": 32063.68, + "end": 32063.76, + "probability": 0.2335 + }, + { + "start": 32063.94, + "end": 32065.96, + "probability": 0.045 + }, + { + "start": 32070.32, + "end": 32070.94, + "probability": 0.0323 + }, + { + "start": 32071.9, + "end": 32072.86, + "probability": 0.0774 + }, + { + "start": 32073.9, + "end": 32074.4, + "probability": 0.0349 + }, + { + "start": 32084.38, + "end": 32084.4, + "probability": 0.164 + }, + { + "start": 32092.06, + "end": 32093.76, + "probability": 0.6541 + }, + { + "start": 32107.04, + "end": 32108.1, + "probability": 0.9875 + }, + { + "start": 32109.78, + "end": 32110.26, + "probability": 0.7611 + }, + { + "start": 32111.22, + "end": 32111.3, + "probability": 0.2371 + }, + { + "start": 32112.32, + "end": 32113.38, + "probability": 0.9698 + }, + { + "start": 32114.04, + "end": 32115.84, + "probability": 0.9944 + }, + { + "start": 32116.62, + "end": 32118.16, + "probability": 0.9927 + }, + { + "start": 32119.22, + "end": 32120.4, + "probability": 0.7425 + }, + { + "start": 32121.92, + "end": 32122.46, + "probability": 0.6168 + }, + { + "start": 32122.74, + "end": 32123.86, + "probability": 0.5779 + }, + { + "start": 32123.86, + "end": 32124.21, + "probability": 0.6049 + }, + { + "start": 32124.44, + "end": 32125.21, + "probability": 0.9927 + }, + { + "start": 32125.6, + "end": 32126.34, + "probability": 0.5067 + }, + { + "start": 32126.44, + "end": 32127.82, + "probability": 0.7111 + }, + { + "start": 32128.68, + "end": 32130.12, + "probability": 0.9609 + }, + { + "start": 32131.08, + "end": 32132.98, + "probability": 0.8857 + }, + { + "start": 32134.1, + "end": 32137.02, + "probability": 0.9857 + }, + { + "start": 32137.1, + "end": 32137.56, + "probability": 0.5297 + }, + { + "start": 32138.88, + "end": 32139.92, + "probability": 0.5781 + }, + { + "start": 32140.74, + "end": 32144.26, + "probability": 0.9899 + }, + { + "start": 32144.26, + "end": 32148.78, + "probability": 0.9969 + }, + { + "start": 32150.12, + "end": 32153.54, + "probability": 0.9946 + }, + { + "start": 32154.64, + "end": 32155.27, + "probability": 0.8457 + }, + { + "start": 32155.88, + "end": 32160.06, + "probability": 0.983 + }, + { + "start": 32160.84, + "end": 32164.86, + "probability": 0.9958 + }, + { + "start": 32165.16, + "end": 32165.8, + "probability": 0.6579 + }, + { + "start": 32166.48, + "end": 32170.04, + "probability": 0.9257 + }, + { + "start": 32170.74, + "end": 32175.06, + "probability": 0.9921 + }, + { + "start": 32175.26, + "end": 32175.34, + "probability": 0.1928 + }, + { + "start": 32176.3, + "end": 32178.18, + "probability": 0.8447 + }, + { + "start": 32179.44, + "end": 32180.18, + "probability": 0.9919 + }, + { + "start": 32182.06, + "end": 32183.62, + "probability": 0.9805 + }, + { + "start": 32184.96, + "end": 32186.52, + "probability": 0.9603 + }, + { + "start": 32188.66, + "end": 32189.42, + "probability": 0.7701 + }, + { + "start": 32190.12, + "end": 32191.18, + "probability": 0.9287 + }, + { + "start": 32192.2, + "end": 32194.31, + "probability": 0.9557 + }, + { + "start": 32195.48, + "end": 32198.44, + "probability": 0.8021 + }, + { + "start": 32199.56, + "end": 32201.82, + "probability": 0.9294 + }, + { + "start": 32202.66, + "end": 32203.36, + "probability": 0.9537 + }, + { + "start": 32204.68, + "end": 32207.58, + "probability": 0.7703 + }, + { + "start": 32208.52, + "end": 32210.2, + "probability": 0.9582 + }, + { + "start": 32211.4, + "end": 32212.32, + "probability": 0.6807 + }, + { + "start": 32213.82, + "end": 32214.08, + "probability": 0.0572 + }, + { + "start": 32216.06, + "end": 32218.2, + "probability": 0.268 + }, + { + "start": 32218.78, + "end": 32219.95, + "probability": 0.425 + }, + { + "start": 32221.34, + "end": 32223.48, + "probability": 0.9798 + }, + { + "start": 32224.22, + "end": 32227.8, + "probability": 0.9779 + }, + { + "start": 32228.52, + "end": 32230.53, + "probability": 0.6409 + }, + { + "start": 32230.86, + "end": 32231.44, + "probability": 0.1424 + }, + { + "start": 32232.76, + "end": 32233.7, + "probability": 0.4795 + }, + { + "start": 32233.78, + "end": 32235.48, + "probability": 0.5564 + }, + { + "start": 32236.04, + "end": 32237.94, + "probability": 0.8559 + }, + { + "start": 32238.02, + "end": 32240.52, + "probability": 0.8405 + }, + { + "start": 32241.58, + "end": 32242.04, + "probability": 0.5443 + }, + { + "start": 32242.1, + "end": 32242.68, + "probability": 0.4281 + }, + { + "start": 32242.74, + "end": 32243.04, + "probability": 0.5895 + }, + { + "start": 32243.42, + "end": 32243.91, + "probability": 0.9615 + }, + { + "start": 32244.08, + "end": 32244.3, + "probability": 0.4505 + }, + { + "start": 32244.46, + "end": 32246.68, + "probability": 0.6025 + }, + { + "start": 32246.84, + "end": 32248.7, + "probability": 0.211 + }, + { + "start": 32248.8, + "end": 32251.83, + "probability": 0.5703 + }, + { + "start": 32252.08, + "end": 32252.32, + "probability": 0.1664 + }, + { + "start": 32252.82, + "end": 32254.06, + "probability": 0.9705 + }, + { + "start": 32254.68, + "end": 32255.04, + "probability": 0.719 + }, + { + "start": 32255.08, + "end": 32255.96, + "probability": 0.4939 + }, + { + "start": 32256.08, + "end": 32256.7, + "probability": 0.5778 + }, + { + "start": 32256.84, + "end": 32257.12, + "probability": 0.7513 + }, + { + "start": 32257.2, + "end": 32259.44, + "probability": 0.871 + }, + { + "start": 32259.44, + "end": 32259.6, + "probability": 0.4782 + }, + { + "start": 32259.6, + "end": 32260.32, + "probability": 0.2466 + }, + { + "start": 32260.5, + "end": 32263.08, + "probability": 0.9783 + }, + { + "start": 32263.28, + "end": 32266.46, + "probability": 0.9555 + }, + { + "start": 32266.56, + "end": 32269.92, + "probability": 0.986 + }, + { + "start": 32270.62, + "end": 32273.32, + "probability": 0.9126 + }, + { + "start": 32274.1, + "end": 32278.44, + "probability": 0.9547 + }, + { + "start": 32278.9, + "end": 32281.34, + "probability": 0.9253 + }, + { + "start": 32281.64, + "end": 32288.12, + "probability": 0.9761 + }, + { + "start": 32289.04, + "end": 32290.82, + "probability": 0.9036 + }, + { + "start": 32291.38, + "end": 32292.16, + "probability": 0.9673 + }, + { + "start": 32292.34, + "end": 32295.0, + "probability": 0.9621 + }, + { + "start": 32295.14, + "end": 32295.6, + "probability": 0.7455 + }, + { + "start": 32296.26, + "end": 32297.82, + "probability": 0.9016 + }, + { + "start": 32298.36, + "end": 32299.4, + "probability": 0.9187 + }, + { + "start": 32299.74, + "end": 32300.06, + "probability": 0.6455 + }, + { + "start": 32300.84, + "end": 32301.66, + "probability": 0.5444 + }, + { + "start": 32301.92, + "end": 32304.02, + "probability": 0.502 + }, + { + "start": 32304.62, + "end": 32305.91, + "probability": 0.677 + }, + { + "start": 32306.92, + "end": 32308.68, + "probability": 0.8027 + }, + { + "start": 32308.68, + "end": 32310.03, + "probability": 0.5502 + }, + { + "start": 32310.86, + "end": 32311.36, + "probability": 0.0577 + }, + { + "start": 32311.74, + "end": 32312.42, + "probability": 0.5691 + }, + { + "start": 32312.78, + "end": 32313.4, + "probability": 0.6415 + }, + { + "start": 32313.4, + "end": 32313.96, + "probability": 0.2379 + }, + { + "start": 32314.04, + "end": 32314.3, + "probability": 0.7053 + }, + { + "start": 32314.46, + "end": 32314.46, + "probability": 0.0983 + }, + { + "start": 32314.46, + "end": 32314.46, + "probability": 0.0924 + }, + { + "start": 32314.46, + "end": 32314.64, + "probability": 0.0503 + }, + { + "start": 32314.76, + "end": 32315.08, + "probability": 0.3241 + }, + { + "start": 32316.16, + "end": 32317.72, + "probability": 0.3237 + }, + { + "start": 32318.34, + "end": 32318.76, + "probability": 0.4049 + }, + { + "start": 32319.08, + "end": 32319.18, + "probability": 0.1714 + }, + { + "start": 32319.18, + "end": 32319.18, + "probability": 0.4766 + }, + { + "start": 32319.18, + "end": 32320.52, + "probability": 0.9966 + }, + { + "start": 32320.82, + "end": 32321.42, + "probability": 0.3806 + }, + { + "start": 32321.5, + "end": 32322.1, + "probability": 0.4372 + }, + { + "start": 32322.46, + "end": 32324.88, + "probability": 0.7915 + }, + { + "start": 32325.0, + "end": 32325.36, + "probability": 0.6543 + }, + { + "start": 32325.36, + "end": 32326.2, + "probability": 0.8604 + }, + { + "start": 32326.28, + "end": 32326.5, + "probability": 0.5692 + }, + { + "start": 32326.54, + "end": 32326.88, + "probability": 0.723 + }, + { + "start": 32326.88, + "end": 32327.32, + "probability": 0.3649 + }, + { + "start": 32327.6, + "end": 32328.68, + "probability": 0.2037 + }, + { + "start": 32328.72, + "end": 32328.72, + "probability": 0.1171 + }, + { + "start": 32328.78, + "end": 32331.66, + "probability": 0.813 + }, + { + "start": 32332.34, + "end": 32333.5, + "probability": 0.9951 + }, + { + "start": 32334.4, + "end": 32335.54, + "probability": 0.9835 + }, + { + "start": 32338.16, + "end": 32339.52, + "probability": 0.8922 + }, + { + "start": 32339.78, + "end": 32340.66, + "probability": 0.9646 + }, + { + "start": 32340.66, + "end": 32343.62, + "probability": 0.3141 + }, + { + "start": 32343.94, + "end": 32343.98, + "probability": 0.0417 + }, + { + "start": 32343.98, + "end": 32345.7, + "probability": 0.8195 + }, + { + "start": 32345.86, + "end": 32346.63, + "probability": 0.9272 + }, + { + "start": 32347.16, + "end": 32348.04, + "probability": 0.7057 + }, + { + "start": 32348.16, + "end": 32350.26, + "probability": 0.9581 + }, + { + "start": 32350.54, + "end": 32351.22, + "probability": 0.7674 + }, + { + "start": 32351.5, + "end": 32352.1, + "probability": 0.9139 + }, + { + "start": 32352.42, + "end": 32352.82, + "probability": 0.8594 + }, + { + "start": 32352.98, + "end": 32353.46, + "probability": 0.537 + }, + { + "start": 32353.58, + "end": 32354.74, + "probability": 0.5596 + }, + { + "start": 32354.76, + "end": 32355.42, + "probability": 0.3704 + }, + { + "start": 32355.48, + "end": 32358.44, + "probability": 0.6437 + }, + { + "start": 32360.72, + "end": 32365.0, + "probability": 0.4407 + }, + { + "start": 32365.12, + "end": 32365.92, + "probability": 0.5892 + }, + { + "start": 32366.12, + "end": 32367.18, + "probability": 0.4223 + }, + { + "start": 32368.2, + "end": 32369.52, + "probability": 0.2091 + }, + { + "start": 32370.78, + "end": 32373.34, + "probability": 0.7411 + }, + { + "start": 32373.46, + "end": 32373.8, + "probability": 0.809 + }, + { + "start": 32374.42, + "end": 32376.99, + "probability": 0.4418 + }, + { + "start": 32381.78, + "end": 32382.64, + "probability": 0.2696 + }, + { + "start": 32382.66, + "end": 32383.7, + "probability": 0.1816 + }, + { + "start": 32383.84, + "end": 32384.3, + "probability": 0.3315 + }, + { + "start": 32385.18, + "end": 32385.96, + "probability": 0.2774 + }, + { + "start": 32385.96, + "end": 32386.45, + "probability": 0.0091 + }, + { + "start": 32387.44, + "end": 32389.19, + "probability": 0.4246 + }, + { + "start": 32390.58, + "end": 32392.8, + "probability": 0.195 + }, + { + "start": 32393.02, + "end": 32394.44, + "probability": 0.874 + }, + { + "start": 32394.74, + "end": 32396.22, + "probability": 0.6816 + }, + { + "start": 32397.36, + "end": 32400.64, + "probability": 0.9858 + }, + { + "start": 32402.4, + "end": 32406.1, + "probability": 0.1071 + }, + { + "start": 32407.04, + "end": 32416.14, + "probability": 0.2222 + }, + { + "start": 32417.52, + "end": 32419.06, + "probability": 0.2388 + }, + { + "start": 32419.82, + "end": 32420.32, + "probability": 0.5347 + }, + { + "start": 32420.92, + "end": 32422.96, + "probability": 0.7626 + }, + { + "start": 32423.9, + "end": 32427.92, + "probability": 0.0556 + }, + { + "start": 32428.26, + "end": 32430.7, + "probability": 0.0166 + }, + { + "start": 32430.78, + "end": 32431.58, + "probability": 0.3207 + }, + { + "start": 32431.58, + "end": 32433.94, + "probability": 0.0568 + }, + { + "start": 32435.37, + "end": 32436.77, + "probability": 0.0942 + }, + { + "start": 32438.18, + "end": 32438.72, + "probability": 0.1663 + }, + { + "start": 32441.68, + "end": 32443.98, + "probability": 0.2272 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.0, + "end": 32444.0, + "probability": 0.0 + }, + { + "start": 32444.04, + "end": 32444.68, + "probability": 0.1877 + }, + { + "start": 32445.1, + "end": 32445.1, + "probability": 0.6051 + }, + { + "start": 32445.1, + "end": 32446.42, + "probability": 0.6411 + }, + { + "start": 32446.46, + "end": 32446.84, + "probability": 0.9472 + }, + { + "start": 32447.88, + "end": 32449.78, + "probability": 0.6479 + }, + { + "start": 32451.4, + "end": 32453.56, + "probability": 0.5034 + }, + { + "start": 32453.56, + "end": 32454.61, + "probability": 0.3755 + }, + { + "start": 32455.56, + "end": 32456.08, + "probability": 0.0374 + }, + { + "start": 32456.08, + "end": 32457.14, + "probability": 0.2921 + }, + { + "start": 32457.6, + "end": 32459.94, + "probability": 0.8472 + }, + { + "start": 32460.38, + "end": 32461.88, + "probability": 0.9866 + }, + { + "start": 32463.18, + "end": 32464.74, + "probability": 0.7603 + }, + { + "start": 32465.26, + "end": 32468.56, + "probability": 0.9305 + }, + { + "start": 32469.3, + "end": 32472.74, + "probability": 0.9347 + }, + { + "start": 32473.58, + "end": 32475.2, + "probability": 0.7507 + }, + { + "start": 32477.07, + "end": 32479.12, + "probability": 0.7706 + }, + { + "start": 32479.46, + "end": 32479.94, + "probability": 0.7097 + }, + { + "start": 32481.16, + "end": 32485.3, + "probability": 0.9971 + }, + { + "start": 32485.8, + "end": 32490.1, + "probability": 0.9862 + }, + { + "start": 32490.56, + "end": 32491.46, + "probability": 0.8916 + }, + { + "start": 32491.78, + "end": 32493.06, + "probability": 0.6019 + }, + { + "start": 32493.08, + "end": 32495.08, + "probability": 0.9962 + }, + { + "start": 32495.7, + "end": 32497.9, + "probability": 0.9784 + }, + { + "start": 32498.56, + "end": 32501.64, + "probability": 0.9756 + }, + { + "start": 32502.38, + "end": 32505.34, + "probability": 0.9787 + }, + { + "start": 32506.48, + "end": 32507.74, + "probability": 0.9969 + }, + { + "start": 32508.42, + "end": 32510.72, + "probability": 0.924 + }, + { + "start": 32511.66, + "end": 32514.22, + "probability": 0.6353 + }, + { + "start": 32514.4, + "end": 32516.18, + "probability": 0.6196 + }, + { + "start": 32516.8, + "end": 32520.33, + "probability": 0.446 + }, + { + "start": 32520.54, + "end": 32521.36, + "probability": 0.0723 + }, + { + "start": 32521.58, + "end": 32522.22, + "probability": 0.5728 + }, + { + "start": 32522.94, + "end": 32523.26, + "probability": 0.7086 + }, + { + "start": 32523.64, + "end": 32524.32, + "probability": 0.4926 + }, + { + "start": 32524.46, + "end": 32524.66, + "probability": 0.1639 + }, + { + "start": 32524.92, + "end": 32525.89, + "probability": 0.9536 + }, + { + "start": 32526.84, + "end": 32527.46, + "probability": 0.8126 + }, + { + "start": 32527.7, + "end": 32532.88, + "probability": 0.5943 + }, + { + "start": 32533.44, + "end": 32533.64, + "probability": 0.0821 + }, + { + "start": 32533.64, + "end": 32534.26, + "probability": 0.0735 + }, + { + "start": 32534.48, + "end": 32538.5, + "probability": 0.9808 + }, + { + "start": 32538.5, + "end": 32541.58, + "probability": 0.9984 + }, + { + "start": 32541.94, + "end": 32548.36, + "probability": 0.9922 + }, + { + "start": 32548.9, + "end": 32553.56, + "probability": 0.9782 + }, + { + "start": 32553.76, + "end": 32555.72, + "probability": 0.95 + }, + { + "start": 32556.38, + "end": 32556.74, + "probability": 0.8085 + }, + { + "start": 32556.8, + "end": 32557.06, + "probability": 0.9605 + }, + { + "start": 32557.2, + "end": 32560.3, + "probability": 0.9945 + }, + { + "start": 32560.46, + "end": 32561.76, + "probability": 0.8104 + }, + { + "start": 32561.92, + "end": 32562.26, + "probability": 0.7771 + }, + { + "start": 32562.48, + "end": 32563.04, + "probability": 0.8392 + }, + { + "start": 32563.4, + "end": 32564.42, + "probability": 0.6245 + }, + { + "start": 32564.54, + "end": 32565.58, + "probability": 0.7317 + }, + { + "start": 32565.94, + "end": 32566.88, + "probability": 0.7122 + }, + { + "start": 32567.5, + "end": 32568.94, + "probability": 0.9676 + }, + { + "start": 32569.04, + "end": 32569.74, + "probability": 0.93 + }, + { + "start": 32569.8, + "end": 32573.5, + "probability": 0.9529 + }, + { + "start": 32573.92, + "end": 32575.56, + "probability": 0.9412 + }, + { + "start": 32576.5, + "end": 32577.46, + "probability": 0.6138 + }, + { + "start": 32577.62, + "end": 32578.62, + "probability": 0.8808 + }, + { + "start": 32579.2, + "end": 32584.04, + "probability": 0.9907 + }, + { + "start": 32584.04, + "end": 32588.34, + "probability": 0.999 + }, + { + "start": 32589.28, + "end": 32594.0, + "probability": 0.9854 + }, + { + "start": 32594.92, + "end": 32596.84, + "probability": 0.9221 + }, + { + "start": 32597.32, + "end": 32598.22, + "probability": 0.556 + }, + { + "start": 32598.44, + "end": 32603.36, + "probability": 0.9813 + }, + { + "start": 32604.47, + "end": 32611.74, + "probability": 0.8822 + }, + { + "start": 32611.9, + "end": 32617.5, + "probability": 0.9384 + }, + { + "start": 32617.6, + "end": 32619.4, + "probability": 0.9971 + }, + { + "start": 32619.74, + "end": 32621.42, + "probability": 0.9979 + }, + { + "start": 32621.86, + "end": 32623.14, + "probability": 0.8752 + }, + { + "start": 32624.16, + "end": 32628.8, + "probability": 0.9796 + }, + { + "start": 32628.88, + "end": 32630.3, + "probability": 0.9976 + }, + { + "start": 32630.92, + "end": 32632.6, + "probability": 0.9843 + }, + { + "start": 32632.76, + "end": 32633.34, + "probability": 0.5322 + }, + { + "start": 32633.46, + "end": 32634.76, + "probability": 0.9223 + }, + { + "start": 32636.18, + "end": 32636.38, + "probability": 0.7405 + }, + { + "start": 32637.22, + "end": 32639.32, + "probability": 0.1977 + }, + { + "start": 32639.32, + "end": 32641.1, + "probability": 0.0826 + }, + { + "start": 32641.2, + "end": 32642.92, + "probability": 0.9828 + }, + { + "start": 32644.6, + "end": 32645.68, + "probability": 0.1582 + }, + { + "start": 32645.68, + "end": 32647.84, + "probability": 0.8263 + }, + { + "start": 32650.1, + "end": 32650.42, + "probability": 0.6978 + }, + { + "start": 32650.58, + "end": 32654.8, + "probability": 0.3571 + }, + { + "start": 32655.36, + "end": 32659.54, + "probability": 0.0632 + }, + { + "start": 32659.82, + "end": 32660.96, + "probability": 0.3618 + }, + { + "start": 32661.22, + "end": 32661.83, + "probability": 0.6558 + }, + { + "start": 32661.98, + "end": 32662.88, + "probability": 0.8047 + }, + { + "start": 32662.92, + "end": 32664.92, + "probability": 0.9297 + }, + { + "start": 32674.38, + "end": 32674.94, + "probability": 0.7338 + }, + { + "start": 32675.66, + "end": 32677.24, + "probability": 0.4071 + }, + { + "start": 32677.32, + "end": 32678.36, + "probability": 0.5594 + }, + { + "start": 32680.38, + "end": 32682.24, + "probability": 0.6868 + }, + { + "start": 32685.06, + "end": 32687.58, + "probability": 0.5474 + }, + { + "start": 32687.78, + "end": 32688.28, + "probability": 0.3666 + }, + { + "start": 32688.38, + "end": 32688.78, + "probability": 0.5236 + }, + { + "start": 32689.78, + "end": 32691.4, + "probability": 0.8148 + }, + { + "start": 32691.56, + "end": 32692.2, + "probability": 0.6407 + }, + { + "start": 32692.4, + "end": 32700.18, + "probability": 0.9623 + }, + { + "start": 32701.35, + "end": 32703.74, + "probability": 0.8555 + }, + { + "start": 32704.84, + "end": 32709.18, + "probability": 0.912 + }, + { + "start": 32709.62, + "end": 32710.86, + "probability": 0.9197 + }, + { + "start": 32712.76, + "end": 32714.24, + "probability": 0.8189 + }, + { + "start": 32715.42, + "end": 32722.54, + "probability": 0.9805 + }, + { + "start": 32724.77, + "end": 32727.35, + "probability": 0.3225 + }, + { + "start": 32728.46, + "end": 32730.1, + "probability": 0.7244 + }, + { + "start": 32733.04, + "end": 32734.2, + "probability": 0.9304 + }, + { + "start": 32737.12, + "end": 32739.32, + "probability": 0.6166 + }, + { + "start": 32740.28, + "end": 32742.3, + "probability": 0.9897 + }, + { + "start": 32744.32, + "end": 32745.28, + "probability": 0.6795 + }, + { + "start": 32746.58, + "end": 32748.84, + "probability": 0.8406 + }, + { + "start": 32750.4, + "end": 32751.76, + "probability": 0.6501 + }, + { + "start": 32752.64, + "end": 32754.16, + "probability": 0.7316 + }, + { + "start": 32755.18, + "end": 32756.88, + "probability": 0.9976 + }, + { + "start": 32757.12, + "end": 32759.5, + "probability": 0.9972 + }, + { + "start": 32760.88, + "end": 32761.8, + "probability": 0.7816 + }, + { + "start": 32763.2, + "end": 32768.96, + "probability": 0.9978 + }, + { + "start": 32770.88, + "end": 32772.86, + "probability": 0.7263 + }, + { + "start": 32773.68, + "end": 32777.72, + "probability": 0.9941 + }, + { + "start": 32778.6, + "end": 32779.39, + "probability": 0.9676 + }, + { + "start": 32780.76, + "end": 32781.14, + "probability": 0.9714 + }, + { + "start": 32781.94, + "end": 32782.44, + "probability": 0.742 + }, + { + "start": 32783.4, + "end": 32784.62, + "probability": 0.5328 + }, + { + "start": 32786.7, + "end": 32790.14, + "probability": 0.8948 + }, + { + "start": 32791.92, + "end": 32792.68, + "probability": 0.8177 + }, + { + "start": 32794.14, + "end": 32796.82, + "probability": 0.9856 + }, + { + "start": 32796.98, + "end": 32798.1, + "probability": 0.6818 + }, + { + "start": 32799.46, + "end": 32801.01, + "probability": 0.5143 + }, + { + "start": 32801.56, + "end": 32802.06, + "probability": 0.7734 + }, + { + "start": 32802.12, + "end": 32802.98, + "probability": 0.9858 + }, + { + "start": 32804.52, + "end": 32805.22, + "probability": 0.5195 + }, + { + "start": 32806.6, + "end": 32809.88, + "probability": 0.981 + }, + { + "start": 32811.14, + "end": 32812.84, + "probability": 0.8962 + }, + { + "start": 32814.42, + "end": 32815.9, + "probability": 0.9667 + }, + { + "start": 32816.06, + "end": 32817.14, + "probability": 0.8998 + }, + { + "start": 32817.28, + "end": 32817.66, + "probability": 0.739 + }, + { + "start": 32817.76, + "end": 32818.04, + "probability": 0.9673 + }, + { + "start": 32819.88, + "end": 32821.54, + "probability": 0.9882 + }, + { + "start": 32822.94, + "end": 32825.38, + "probability": 0.9851 + }, + { + "start": 32826.56, + "end": 32829.36, + "probability": 0.9434 + }, + { + "start": 32830.46, + "end": 32832.38, + "probability": 0.7896 + }, + { + "start": 32833.2, + "end": 32835.24, + "probability": 0.998 + }, + { + "start": 32835.78, + "end": 32836.62, + "probability": 0.9282 + }, + { + "start": 32837.62, + "end": 32839.84, + "probability": 0.8963 + }, + { + "start": 32841.56, + "end": 32843.92, + "probability": 0.9511 + }, + { + "start": 32845.22, + "end": 32848.18, + "probability": 0.8943 + }, + { + "start": 32848.74, + "end": 32850.42, + "probability": 0.8593 + }, + { + "start": 32851.46, + "end": 32855.78, + "probability": 0.703 + }, + { + "start": 32857.78, + "end": 32859.1, + "probability": 0.7008 + }, + { + "start": 32860.78, + "end": 32861.78, + "probability": 0.8923 + }, + { + "start": 32862.7, + "end": 32863.8, + "probability": 0.983 + }, + { + "start": 32864.8, + "end": 32866.5, + "probability": 0.9957 + }, + { + "start": 32867.2, + "end": 32868.1, + "probability": 0.9631 + }, + { + "start": 32868.2, + "end": 32868.76, + "probability": 0.6034 + }, + { + "start": 32868.9, + "end": 32872.1, + "probability": 0.9751 + }, + { + "start": 32873.06, + "end": 32874.72, + "probability": 0.9243 + }, + { + "start": 32875.6, + "end": 32877.26, + "probability": 0.7383 + }, + { + "start": 32878.46, + "end": 32880.54, + "probability": 0.9844 + }, + { + "start": 32881.42, + "end": 32885.18, + "probability": 0.9463 + }, + { + "start": 32885.74, + "end": 32887.76, + "probability": 0.979 + }, + { + "start": 32888.32, + "end": 32890.04, + "probability": 0.9979 + }, + { + "start": 32890.54, + "end": 32893.5, + "probability": 0.9734 + }, + { + "start": 32894.16, + "end": 32895.12, + "probability": 0.833 + }, + { + "start": 32895.24, + "end": 32898.9, + "probability": 0.968 + }, + { + "start": 32899.82, + "end": 32900.61, + "probability": 0.8892 + }, + { + "start": 32901.24, + "end": 32902.34, + "probability": 0.9139 + }, + { + "start": 32902.76, + "end": 32904.5, + "probability": 0.9799 + }, + { + "start": 32904.96, + "end": 32905.74, + "probability": 0.9632 + }, + { + "start": 32906.56, + "end": 32907.2, + "probability": 0.4609 + }, + { + "start": 32909.54, + "end": 32912.34, + "probability": 0.8074 + }, + { + "start": 32916.06, + "end": 32916.44, + "probability": 0.0389 + }, + { + "start": 32943.1, + "end": 32943.2, + "probability": 0.2715 + }, + { + "start": 32943.3, + "end": 32948.46, + "probability": 0.5829 + }, + { + "start": 32948.46, + "end": 32948.58, + "probability": 0.6388 + }, + { + "start": 32950.64, + "end": 32951.38, + "probability": 0.6591 + }, + { + "start": 32957.7, + "end": 32961.94, + "probability": 0.9948 + }, + { + "start": 32963.5, + "end": 32965.78, + "probability": 0.9224 + }, + { + "start": 32965.9, + "end": 32966.68, + "probability": 0.5252 + }, + { + "start": 32966.78, + "end": 32968.14, + "probability": 0.5768 + }, + { + "start": 32968.32, + "end": 32974.86, + "probability": 0.3059 + }, + { + "start": 32977.06, + "end": 32977.06, + "probability": 0.0276 + }, + { + "start": 32979.22, + "end": 32979.32, + "probability": 0.0526 + }, + { + "start": 32979.32, + "end": 32980.08, + "probability": 0.1133 + }, + { + "start": 32980.08, + "end": 32980.94, + "probability": 0.1067 + }, + { + "start": 32981.04, + "end": 32984.84, + "probability": 0.8604 + }, + { + "start": 32985.52, + "end": 32989.72, + "probability": 0.9811 + }, + { + "start": 32990.06, + "end": 32991.16, + "probability": 0.9756 + }, + { + "start": 32991.44, + "end": 32992.14, + "probability": 0.6001 + }, + { + "start": 32992.64, + "end": 32993.74, + "probability": 0.1839 + }, + { + "start": 32993.82, + "end": 32994.8, + "probability": 0.3109 + }, + { + "start": 32994.94, + "end": 32997.08, + "probability": 0.9095 + }, + { + "start": 32997.16, + "end": 32999.14, + "probability": 0.9777 + }, + { + "start": 32999.22, + "end": 33004.84, + "probability": 0.99 + }, + { + "start": 33005.32, + "end": 33011.98, + "probability": 0.9985 + }, + { + "start": 33012.6, + "end": 33013.5, + "probability": 0.999 + }, + { + "start": 33015.9, + "end": 33019.96, + "probability": 0.5679 + }, + { + "start": 33020.08, + "end": 33021.22, + "probability": 0.8462 + }, + { + "start": 33022.26, + "end": 33023.56, + "probability": 0.9436 + }, + { + "start": 33024.52, + "end": 33025.14, + "probability": 0.2511 + }, + { + "start": 33025.26, + "end": 33030.26, + "probability": 0.979 + }, + { + "start": 33031.12, + "end": 33035.24, + "probability": 0.8256 + }, + { + "start": 33036.0, + "end": 33037.26, + "probability": 0.8752 + }, + { + "start": 33037.44, + "end": 33039.54, + "probability": 0.9956 + }, + { + "start": 33040.06, + "end": 33041.64, + "probability": 0.7833 + }, + { + "start": 33042.22, + "end": 33048.84, + "probability": 0.9834 + }, + { + "start": 33049.56, + "end": 33051.38, + "probability": 0.7051 + }, + { + "start": 33051.62, + "end": 33053.02, + "probability": 0.8872 + }, + { + "start": 33053.34, + "end": 33061.1, + "probability": 0.7281 + }, + { + "start": 33061.88, + "end": 33062.96, + "probability": 0.8827 + }, + { + "start": 33063.36, + "end": 33064.8, + "probability": 0.9114 + }, + { + "start": 33064.98, + "end": 33066.12, + "probability": 0.9573 + }, + { + "start": 33066.7, + "end": 33068.12, + "probability": 0.993 + }, + { + "start": 33068.72, + "end": 33071.28, + "probability": 0.9989 + }, + { + "start": 33072.22, + "end": 33074.58, + "probability": 0.8775 + }, + { + "start": 33075.2, + "end": 33082.82, + "probability": 0.8754 + }, + { + "start": 33084.06, + "end": 33088.16, + "probability": 0.9879 + }, + { + "start": 33089.62, + "end": 33090.94, + "probability": 0.6622 + }, + { + "start": 33091.74, + "end": 33092.83, + "probability": 0.9979 + }, + { + "start": 33093.5, + "end": 33099.18, + "probability": 0.9908 + }, + { + "start": 33099.38, + "end": 33100.88, + "probability": 0.8262 + }, + { + "start": 33101.62, + "end": 33102.38, + "probability": 0.5279 + }, + { + "start": 33102.58, + "end": 33103.06, + "probability": 0.7706 + }, + { + "start": 33103.14, + "end": 33104.5, + "probability": 0.9244 + }, + { + "start": 33104.98, + "end": 33106.06, + "probability": 0.9755 + }, + { + "start": 33106.18, + "end": 33107.28, + "probability": 0.9419 + }, + { + "start": 33107.8, + "end": 33109.24, + "probability": 0.7603 + }, + { + "start": 33109.9, + "end": 33114.62, + "probability": 0.871 + }, + { + "start": 33114.88, + "end": 33118.18, + "probability": 0.9971 + }, + { + "start": 33118.32, + "end": 33122.66, + "probability": 0.9995 + }, + { + "start": 33123.1, + "end": 33123.26, + "probability": 0.5526 + }, + { + "start": 33124.04, + "end": 33128.06, + "probability": 0.9968 + }, + { + "start": 33128.06, + "end": 33132.68, + "probability": 0.9981 + }, + { + "start": 33132.94, + "end": 33134.0, + "probability": 0.8745 + }, + { + "start": 33134.54, + "end": 33135.62, + "probability": 0.9565 + }, + { + "start": 33136.56, + "end": 33139.52, + "probability": 0.9949 + }, + { + "start": 33140.2, + "end": 33141.62, + "probability": 0.9523 + }, + { + "start": 33142.14, + "end": 33148.08, + "probability": 0.9926 + }, + { + "start": 33148.66, + "end": 33152.76, + "probability": 0.7849 + }, + { + "start": 33153.62, + "end": 33154.48, + "probability": 0.5264 + }, + { + "start": 33154.64, + "end": 33157.54, + "probability": 0.7012 + }, + { + "start": 33157.78, + "end": 33158.72, + "probability": 0.7102 + }, + { + "start": 33160.9, + "end": 33165.54, + "probability": 0.9365 + }, + { + "start": 33166.04, + "end": 33171.3, + "probability": 0.9561 + }, + { + "start": 33171.93, + "end": 33172.8, + "probability": 0.9091 + }, + { + "start": 33173.24, + "end": 33177.0, + "probability": 0.9941 + }, + { + "start": 33177.0, + "end": 33181.9, + "probability": 0.9917 + }, + { + "start": 33182.6, + "end": 33184.04, + "probability": 0.9713 + }, + { + "start": 33184.18, + "end": 33185.6, + "probability": 0.9469 + }, + { + "start": 33185.82, + "end": 33186.12, + "probability": 0.7996 + }, + { + "start": 33186.58, + "end": 33190.3, + "probability": 0.9239 + }, + { + "start": 33190.38, + "end": 33191.65, + "probability": 0.4998 + }, + { + "start": 33193.44, + "end": 33196.66, + "probability": 0.9902 + }, + { + "start": 33197.08, + "end": 33203.18, + "probability": 0.9673 + }, + { + "start": 33203.66, + "end": 33207.92, + "probability": 0.9419 + }, + { + "start": 33208.1, + "end": 33213.88, + "probability": 0.9365 + }, + { + "start": 33214.54, + "end": 33219.46, + "probability": 0.9453 + }, + { + "start": 33219.46, + "end": 33220.52, + "probability": 0.0536 + }, + { + "start": 33220.72, + "end": 33222.7, + "probability": 0.9827 + }, + { + "start": 33222.92, + "end": 33223.62, + "probability": 0.8072 + }, + { + "start": 33223.7, + "end": 33230.08, + "probability": 0.9897 + }, + { + "start": 33230.56, + "end": 33232.6, + "probability": 0.9922 + }, + { + "start": 33232.9, + "end": 33232.9, + "probability": 0.6942 + }, + { + "start": 33233.2, + "end": 33237.72, + "probability": 0.9932 + }, + { + "start": 33238.14, + "end": 33242.9, + "probability": 0.8815 + }, + { + "start": 33243.6, + "end": 33244.46, + "probability": 0.9907 + }, + { + "start": 33244.72, + "end": 33245.34, + "probability": 0.6008 + }, + { + "start": 33245.5, + "end": 33246.94, + "probability": 0.8667 + }, + { + "start": 33247.94, + "end": 33254.04, + "probability": 0.9722 + }, + { + "start": 33254.04, + "end": 33254.34, + "probability": 0.5834 + }, + { + "start": 33254.52, + "end": 33256.84, + "probability": 0.9896 + }, + { + "start": 33257.36, + "end": 33260.51, + "probability": 0.9647 + }, + { + "start": 33261.86, + "end": 33261.86, + "probability": 0.1694 + }, + { + "start": 33261.86, + "end": 33262.66, + "probability": 0.5553 + }, + { + "start": 33266.91, + "end": 33268.74, + "probability": 0.6413 + }, + { + "start": 33270.1, + "end": 33271.68, + "probability": 0.3605 + }, + { + "start": 33286.92, + "end": 33287.13, + "probability": 0.3551 + }, + { + "start": 33287.46, + "end": 33288.24, + "probability": 0.6392 + }, + { + "start": 33289.16, + "end": 33292.18, + "probability": 0.9827 + }, + { + "start": 33293.52, + "end": 33297.84, + "probability": 0.9904 + }, + { + "start": 33299.04, + "end": 33300.18, + "probability": 0.9963 + }, + { + "start": 33300.88, + "end": 33301.54, + "probability": 0.5321 + }, + { + "start": 33302.58, + "end": 33302.86, + "probability": 0.5721 + }, + { + "start": 33303.66, + "end": 33305.52, + "probability": 0.989 + }, + { + "start": 33307.32, + "end": 33311.32, + "probability": 0.8763 + }, + { + "start": 33311.96, + "end": 33313.9, + "probability": 0.9963 + }, + { + "start": 33314.48, + "end": 33315.48, + "probability": 0.3129 + }, + { + "start": 33316.1, + "end": 33317.82, + "probability": 0.8811 + }, + { + "start": 33318.62, + "end": 33320.16, + "probability": 0.9297 + }, + { + "start": 33320.72, + "end": 33323.88, + "probability": 0.9325 + }, + { + "start": 33325.1, + "end": 33326.92, + "probability": 0.8901 + }, + { + "start": 33327.64, + "end": 33328.66, + "probability": 0.6989 + }, + { + "start": 33329.46, + "end": 33331.64, + "probability": 0.9939 + }, + { + "start": 33332.4, + "end": 33334.08, + "probability": 0.9254 + }, + { + "start": 33334.72, + "end": 33334.98, + "probability": 0.9918 + }, + { + "start": 33335.7, + "end": 33340.3, + "probability": 0.8341 + }, + { + "start": 33341.42, + "end": 33343.38, + "probability": 0.9956 + }, + { + "start": 33344.14, + "end": 33346.32, + "probability": 0.9351 + }, + { + "start": 33347.74, + "end": 33352.7, + "probability": 0.7092 + }, + { + "start": 33353.48, + "end": 33355.02, + "probability": 0.9945 + }, + { + "start": 33355.54, + "end": 33359.62, + "probability": 0.9502 + }, + { + "start": 33360.22, + "end": 33361.9, + "probability": 0.9013 + }, + { + "start": 33362.38, + "end": 33365.78, + "probability": 0.964 + }, + { + "start": 33366.42, + "end": 33368.57, + "probability": 0.9994 + }, + { + "start": 33369.28, + "end": 33369.64, + "probability": 0.6593 + }, + { + "start": 33370.4, + "end": 33373.38, + "probability": 0.9831 + }, + { + "start": 33374.5, + "end": 33374.84, + "probability": 0.3141 + }, + { + "start": 33375.0, + "end": 33376.42, + "probability": 0.7518 + }, + { + "start": 33377.1, + "end": 33380.62, + "probability": 0.9967 + }, + { + "start": 33381.04, + "end": 33381.28, + "probability": 0.7764 + }, + { + "start": 33381.96, + "end": 33382.22, + "probability": 0.9304 + }, + { + "start": 33383.3, + "end": 33384.06, + "probability": 0.9611 + }, + { + "start": 33384.68, + "end": 33386.16, + "probability": 0.9452 + }, + { + "start": 33386.64, + "end": 33389.28, + "probability": 0.8521 + }, + { + "start": 33390.02, + "end": 33392.67, + "probability": 0.9757 + }, + { + "start": 33393.38, + "end": 33393.62, + "probability": 0.9897 + }, + { + "start": 33393.86, + "end": 33398.68, + "probability": 0.9739 + }, + { + "start": 33399.0, + "end": 33400.08, + "probability": 0.8986 + }, + { + "start": 33401.52, + "end": 33403.84, + "probability": 0.9935 + }, + { + "start": 33404.04, + "end": 33407.08, + "probability": 0.9927 + }, + { + "start": 33407.74, + "end": 33408.3, + "probability": 0.9569 + }, + { + "start": 33409.44, + "end": 33411.22, + "probability": 0.9262 + }, + { + "start": 33412.14, + "end": 33413.36, + "probability": 0.5536 + }, + { + "start": 33413.94, + "end": 33414.78, + "probability": 0.7404 + }, + { + "start": 33415.4, + "end": 33416.04, + "probability": 0.7231 + }, + { + "start": 33417.14, + "end": 33419.4, + "probability": 0.9442 + }, + { + "start": 33420.58, + "end": 33422.04, + "probability": 0.8162 + }, + { + "start": 33422.44, + "end": 33423.8, + "probability": 0.9631 + }, + { + "start": 33424.14, + "end": 33424.86, + "probability": 0.856 + }, + { + "start": 33425.52, + "end": 33427.8, + "probability": 0.9455 + }, + { + "start": 33428.16, + "end": 33429.18, + "probability": 0.9956 + }, + { + "start": 33430.44, + "end": 33431.7, + "probability": 0.9024 + }, + { + "start": 33432.26, + "end": 33432.72, + "probability": 0.916 + }, + { + "start": 33433.32, + "end": 33435.38, + "probability": 0.9614 + }, + { + "start": 33436.18, + "end": 33438.88, + "probability": 0.9209 + }, + { + "start": 33439.38, + "end": 33443.04, + "probability": 0.9938 + }, + { + "start": 33443.56, + "end": 33446.06, + "probability": 0.9919 + }, + { + "start": 33446.54, + "end": 33448.66, + "probability": 0.992 + }, + { + "start": 33449.68, + "end": 33452.46, + "probability": 0.9609 + }, + { + "start": 33453.54, + "end": 33455.96, + "probability": 0.9351 + }, + { + "start": 33456.6, + "end": 33460.04, + "probability": 0.755 + }, + { + "start": 33460.08, + "end": 33461.38, + "probability": 0.6436 + }, + { + "start": 33461.76, + "end": 33463.66, + "probability": 0.982 + }, + { + "start": 33463.92, + "end": 33464.84, + "probability": 0.8564 + }, + { + "start": 33465.08, + "end": 33465.08, + "probability": 0.3557 + }, + { + "start": 33465.12, + "end": 33466.28, + "probability": 0.6257 + }, + { + "start": 33487.44, + "end": 33490.06, + "probability": 0.521 + }, + { + "start": 33508.16, + "end": 33509.7, + "probability": 0.7643 + }, + { + "start": 33512.68, + "end": 33514.62, + "probability": 0.926 + }, + { + "start": 33522.72, + "end": 33528.46, + "probability": 0.9981 + }, + { + "start": 33529.4, + "end": 33531.98, + "probability": 0.8793 + }, + { + "start": 33533.24, + "end": 33533.86, + "probability": 0.8832 + }, + { + "start": 33534.86, + "end": 33535.64, + "probability": 0.9417 + }, + { + "start": 33536.34, + "end": 33537.86, + "probability": 0.9228 + }, + { + "start": 33539.26, + "end": 33541.84, + "probability": 0.9824 + }, + { + "start": 33542.9, + "end": 33547.2, + "probability": 0.9954 + }, + { + "start": 33549.56, + "end": 33552.9, + "probability": 0.9392 + }, + { + "start": 33554.22, + "end": 33555.37, + "probability": 0.7661 + }, + { + "start": 33556.42, + "end": 33560.84, + "probability": 0.8975 + }, + { + "start": 33561.38, + "end": 33563.84, + "probability": 0.9438 + }, + { + "start": 33564.62, + "end": 33566.12, + "probability": 0.9293 + }, + { + "start": 33566.8, + "end": 33567.88, + "probability": 0.9518 + }, + { + "start": 33567.98, + "end": 33570.14, + "probability": 0.9976 + }, + { + "start": 33570.3, + "end": 33574.92, + "probability": 0.9912 + }, + { + "start": 33575.6, + "end": 33578.68, + "probability": 0.9909 + }, + { + "start": 33581.82, + "end": 33582.6, + "probability": 0.6243 + }, + { + "start": 33584.5, + "end": 33587.12, + "probability": 0.7161 + }, + { + "start": 33588.66, + "end": 33589.96, + "probability": 0.962 + }, + { + "start": 33590.82, + "end": 33597.26, + "probability": 0.9365 + }, + { + "start": 33598.74, + "end": 33600.16, + "probability": 0.9861 + }, + { + "start": 33600.98, + "end": 33602.06, + "probability": 0.9371 + }, + { + "start": 33603.5, + "end": 33605.64, + "probability": 0.9524 + }, + { + "start": 33606.3, + "end": 33609.74, + "probability": 0.6671 + }, + { + "start": 33610.5, + "end": 33614.08, + "probability": 0.9068 + }, + { + "start": 33615.36, + "end": 33618.96, + "probability": 0.969 + }, + { + "start": 33619.62, + "end": 33620.8, + "probability": 0.741 + }, + { + "start": 33620.86, + "end": 33622.0, + "probability": 0.9297 + }, + { + "start": 33622.62, + "end": 33624.1, + "probability": 0.9868 + }, + { + "start": 33624.82, + "end": 33625.94, + "probability": 0.8568 + }, + { + "start": 33626.5, + "end": 33630.08, + "probability": 0.7234 + }, + { + "start": 33631.1, + "end": 33632.62, + "probability": 0.9882 + }, + { + "start": 33633.42, + "end": 33635.96, + "probability": 0.9193 + }, + { + "start": 33637.82, + "end": 33639.9, + "probability": 0.9655 + }, + { + "start": 33640.78, + "end": 33644.66, + "probability": 0.969 + }, + { + "start": 33645.74, + "end": 33648.98, + "probability": 0.9788 + }, + { + "start": 33649.84, + "end": 33651.46, + "probability": 0.9693 + }, + { + "start": 33653.08, + "end": 33657.84, + "probability": 0.9933 + }, + { + "start": 33658.42, + "end": 33659.58, + "probability": 0.8713 + }, + { + "start": 33660.5, + "end": 33661.72, + "probability": 0.9402 + }, + { + "start": 33662.7, + "end": 33665.52, + "probability": 0.9941 + }, + { + "start": 33667.08, + "end": 33669.42, + "probability": 0.8007 + }, + { + "start": 33669.9, + "end": 33670.66, + "probability": 0.7235 + }, + { + "start": 33671.24, + "end": 33672.04, + "probability": 0.8555 + }, + { + "start": 33672.4, + "end": 33674.28, + "probability": 0.9277 + }, + { + "start": 33674.34, + "end": 33674.52, + "probability": 0.0659 + }, + { + "start": 33674.56, + "end": 33675.94, + "probability": 0.6962 + }, + { + "start": 33676.36, + "end": 33679.5, + "probability": 0.9966 + }, + { + "start": 33679.92, + "end": 33681.38, + "probability": 0.8691 + }, + { + "start": 33683.75, + "end": 33687.54, + "probability": 0.9979 + }, + { + "start": 33688.38, + "end": 33690.66, + "probability": 0.9171 + }, + { + "start": 33691.2, + "end": 33693.82, + "probability": 0.9894 + }, + { + "start": 33694.24, + "end": 33696.74, + "probability": 0.8329 + }, + { + "start": 33697.36, + "end": 33698.98, + "probability": 0.9992 + }, + { + "start": 33699.52, + "end": 33702.9, + "probability": 0.7918 + }, + { + "start": 33703.72, + "end": 33705.94, + "probability": 0.941 + }, + { + "start": 33707.78, + "end": 33711.92, + "probability": 0.9544 + }, + { + "start": 33712.14, + "end": 33712.94, + "probability": 0.8534 + }, + { + "start": 33713.02, + "end": 33716.22, + "probability": 0.9866 + }, + { + "start": 33717.04, + "end": 33717.76, + "probability": 0.722 + }, + { + "start": 33718.4, + "end": 33720.72, + "probability": 0.7568 + }, + { + "start": 33721.42, + "end": 33723.52, + "probability": 0.8842 + }, + { + "start": 33724.06, + "end": 33727.52, + "probability": 0.978 + }, + { + "start": 33728.14, + "end": 33728.78, + "probability": 0.9122 + }, + { + "start": 33729.76, + "end": 33729.84, + "probability": 0.4756 + }, + { + "start": 33729.84, + "end": 33732.12, + "probability": 0.8136 + }, + { + "start": 33732.14, + "end": 33733.3, + "probability": 0.9989 + }, + { + "start": 33733.84, + "end": 33735.04, + "probability": 0.9245 + }, + { + "start": 33735.8, + "end": 33737.3, + "probability": 0.5578 + }, + { + "start": 33737.5, + "end": 33738.28, + "probability": 0.5818 + }, + { + "start": 33738.34, + "end": 33739.44, + "probability": 0.9561 + }, + { + "start": 33740.66, + "end": 33740.92, + "probability": 0.9033 + }, + { + "start": 33742.76, + "end": 33744.62, + "probability": 0.8431 + }, + { + "start": 33745.62, + "end": 33749.1, + "probability": 0.5468 + }, + { + "start": 33749.74, + "end": 33751.8, + "probability": 0.7664 + }, + { + "start": 33752.74, + "end": 33752.74, + "probability": 0.3128 + }, + { + "start": 33754.76, + "end": 33756.26, + "probability": 0.0524 + }, + { + "start": 33759.02, + "end": 33759.8, + "probability": 0.0658 + }, + { + "start": 33779.04, + "end": 33780.9, + "probability": 0.5815 + }, + { + "start": 33781.88, + "end": 33783.26, + "probability": 0.7804 + }, + { + "start": 33786.8, + "end": 33788.94, + "probability": 0.9606 + }, + { + "start": 33789.26, + "end": 33790.1, + "probability": 0.848 + }, + { + "start": 33791.9, + "end": 33793.1, + "probability": 0.9801 + }, + { + "start": 33794.88, + "end": 33794.88, + "probability": 0.8701 + }, + { + "start": 33796.2, + "end": 33796.9, + "probability": 0.9068 + }, + { + "start": 33798.18, + "end": 33799.62, + "probability": 0.9336 + }, + { + "start": 33800.58, + "end": 33801.46, + "probability": 0.9582 + }, + { + "start": 33802.82, + "end": 33804.62, + "probability": 0.8705 + }, + { + "start": 33804.96, + "end": 33807.08, + "probability": 0.9082 + }, + { + "start": 33808.06, + "end": 33808.26, + "probability": 0.9651 + }, + { + "start": 33809.3, + "end": 33810.1, + "probability": 0.7661 + }, + { + "start": 33811.16, + "end": 33811.52, + "probability": 0.8026 + }, + { + "start": 33812.08, + "end": 33815.76, + "probability": 0.9771 + }, + { + "start": 33816.4, + "end": 33817.04, + "probability": 0.9589 + }, + { + "start": 33818.96, + "end": 33820.26, + "probability": 0.9421 + }, + { + "start": 33822.28, + "end": 33826.88, + "probability": 0.9922 + }, + { + "start": 33827.1, + "end": 33827.94, + "probability": 0.7495 + }, + { + "start": 33828.92, + "end": 33829.68, + "probability": 0.8447 + }, + { + "start": 33830.39, + "end": 33833.96, + "probability": 0.8358 + }, + { + "start": 33834.54, + "end": 33835.54, + "probability": 0.9341 + }, + { + "start": 33836.08, + "end": 33839.94, + "probability": 0.8019 + }, + { + "start": 33840.04, + "end": 33840.5, + "probability": 0.324 + }, + { + "start": 33840.64, + "end": 33841.2, + "probability": 0.5862 + }, + { + "start": 33842.4, + "end": 33843.2, + "probability": 0.8267 + }, + { + "start": 33843.8, + "end": 33844.98, + "probability": 0.7612 + }, + { + "start": 33845.08, + "end": 33845.7, + "probability": 0.6748 + }, + { + "start": 33845.72, + "end": 33847.72, + "probability": 0.8696 + }, + { + "start": 33848.4, + "end": 33852.2, + "probability": 0.9164 + }, + { + "start": 33853.02, + "end": 33853.78, + "probability": 0.8139 + }, + { + "start": 33854.24, + "end": 33855.8, + "probability": 0.9922 + }, + { + "start": 33856.36, + "end": 33857.28, + "probability": 0.9888 + }, + { + "start": 33857.44, + "end": 33859.0, + "probability": 0.9359 + }, + { + "start": 33859.24, + "end": 33861.54, + "probability": 0.9171 + }, + { + "start": 33861.62, + "end": 33867.24, + "probability": 0.9911 + }, + { + "start": 33868.08, + "end": 33868.88, + "probability": 0.9763 + }, + { + "start": 33870.34, + "end": 33871.9, + "probability": 0.9888 + }, + { + "start": 33872.04, + "end": 33874.54, + "probability": 0.984 + }, + { + "start": 33875.92, + "end": 33876.72, + "probability": 0.939 + }, + { + "start": 33876.82, + "end": 33878.32, + "probability": 0.9635 + }, + { + "start": 33879.74, + "end": 33880.64, + "probability": 0.9878 + }, + { + "start": 33880.9, + "end": 33882.34, + "probability": 0.9312 + }, + { + "start": 33882.92, + "end": 33883.58, + "probability": 0.9404 + }, + { + "start": 33884.48, + "end": 33891.86, + "probability": 0.997 + }, + { + "start": 33891.96, + "end": 33892.32, + "probability": 0.8648 + }, + { + "start": 33892.88, + "end": 33894.06, + "probability": 0.9726 + }, + { + "start": 33894.62, + "end": 33895.9, + "probability": 0.9724 + }, + { + "start": 33896.26, + "end": 33898.7, + "probability": 0.998 + }, + { + "start": 33900.22, + "end": 33900.91, + "probability": 0.5333 + }, + { + "start": 33901.84, + "end": 33904.82, + "probability": 0.9849 + }, + { + "start": 33905.84, + "end": 33906.78, + "probability": 0.8782 + }, + { + "start": 33906.78, + "end": 33907.62, + "probability": 0.6505 + }, + { + "start": 33907.72, + "end": 33908.38, + "probability": 0.8385 + }, + { + "start": 33908.46, + "end": 33909.1, + "probability": 0.8605 + }, + { + "start": 33909.22, + "end": 33909.76, + "probability": 0.7537 + }, + { + "start": 33910.76, + "end": 33912.4, + "probability": 0.3031 + }, + { + "start": 33912.72, + "end": 33913.3, + "probability": 0.227 + }, + { + "start": 33914.85, + "end": 33918.56, + "probability": 0.7717 + }, + { + "start": 33919.36, + "end": 33922.42, + "probability": 0.9308 + }, + { + "start": 33922.98, + "end": 33925.18, + "probability": 0.7012 + }, + { + "start": 33925.32, + "end": 33925.81, + "probability": 0.9919 + }, + { + "start": 33927.0, + "end": 33927.72, + "probability": 0.7911 + }, + { + "start": 33928.68, + "end": 33929.32, + "probability": 0.6057 + }, + { + "start": 33929.56, + "end": 33930.54, + "probability": 0.6984 + }, + { + "start": 33931.12, + "end": 33931.38, + "probability": 0.6381 + }, + { + "start": 33931.46, + "end": 33931.95, + "probability": 0.9808 + }, + { + "start": 33932.3, + "end": 33932.69, + "probability": 0.9767 + }, + { + "start": 33933.34, + "end": 33933.91, + "probability": 0.9421 + }, + { + "start": 33934.22, + "end": 33934.68, + "probability": 0.7354 + }, + { + "start": 33935.76, + "end": 33937.42, + "probability": 0.8245 + }, + { + "start": 33938.08, + "end": 33939.52, + "probability": 0.9843 + }, + { + "start": 33942.18, + "end": 33945.04, + "probability": 0.6651 + }, + { + "start": 33945.18, + "end": 33947.32, + "probability": 0.8741 + }, + { + "start": 33948.5, + "end": 33950.26, + "probability": 0.916 + }, + { + "start": 33950.32, + "end": 33952.36, + "probability": 0.9514 + }, + { + "start": 33952.7, + "end": 33953.92, + "probability": 0.9424 + }, + { + "start": 33954.34, + "end": 33955.68, + "probability": 0.9956 + }, + { + "start": 33955.92, + "end": 33956.42, + "probability": 0.9506 + }, + { + "start": 33957.44, + "end": 33960.38, + "probability": 0.905 + }, + { + "start": 33960.86, + "end": 33963.9, + "probability": 0.9566 + }, + { + "start": 33964.46, + "end": 33967.1, + "probability": 0.9207 + }, + { + "start": 33967.8, + "end": 33969.48, + "probability": 0.9869 + }, + { + "start": 33970.4, + "end": 33971.62, + "probability": 0.9844 + }, + { + "start": 33971.7, + "end": 33972.2, + "probability": 0.898 + }, + { + "start": 33973.68, + "end": 33974.26, + "probability": 0.9678 + }, + { + "start": 33976.32, + "end": 33979.64, + "probability": 0.9946 + }, + { + "start": 33979.64, + "end": 33983.44, + "probability": 0.9949 + }, + { + "start": 33984.06, + "end": 33985.08, + "probability": 0.5884 + }, + { + "start": 33985.74, + "end": 33987.54, + "probability": 0.7192 + }, + { + "start": 33988.26, + "end": 33990.46, + "probability": 0.7496 + }, + { + "start": 33990.76, + "end": 33995.5, + "probability": 0.9762 + }, + { + "start": 33995.58, + "end": 33995.94, + "probability": 0.5952 + }, + { + "start": 33996.34, + "end": 33997.64, + "probability": 0.6764 + }, + { + "start": 33998.24, + "end": 33998.62, + "probability": 0.645 + }, + { + "start": 33999.76, + "end": 34001.78, + "probability": 0.9555 + }, + { + "start": 34002.7, + "end": 34003.04, + "probability": 0.9437 + }, + { + "start": 34003.38, + "end": 34005.68, + "probability": 0.7717 + }, + { + "start": 34016.5, + "end": 34016.74, + "probability": 0.1025 + }, + { + "start": 34017.12, + "end": 34017.78, + "probability": 0.0222 + }, + { + "start": 34030.1, + "end": 34031.48, + "probability": 0.6386 + }, + { + "start": 34033.04, + "end": 34034.14, + "probability": 0.7209 + }, + { + "start": 34035.0, + "end": 34036.4, + "probability": 0.6286 + }, + { + "start": 34045.42, + "end": 34045.78, + "probability": 0.5566 + }, + { + "start": 34048.56, + "end": 34049.82, + "probability": 0.4256 + }, + { + "start": 34050.26, + "end": 34050.7, + "probability": 0.8116 + }, + { + "start": 34050.82, + "end": 34051.0, + "probability": 0.8365 + }, + { + "start": 34053.86, + "end": 34058.42, + "probability": 0.9984 + }, + { + "start": 34059.94, + "end": 34061.37, + "probability": 0.4507 + }, + { + "start": 34062.94, + "end": 34063.22, + "probability": 0.9026 + }, + { + "start": 34065.02, + "end": 34070.02, + "probability": 0.9572 + }, + { + "start": 34070.06, + "end": 34070.68, + "probability": 0.5896 + }, + { + "start": 34072.48, + "end": 34073.9, + "probability": 0.9163 + }, + { + "start": 34074.6, + "end": 34075.18, + "probability": 0.8861 + }, + { + "start": 34075.84, + "end": 34076.64, + "probability": 0.7738 + }, + { + "start": 34077.96, + "end": 34080.14, + "probability": 0.9976 + }, + { + "start": 34081.24, + "end": 34082.56, + "probability": 0.7502 + }, + { + "start": 34083.32, + "end": 34084.6, + "probability": 0.9165 + }, + { + "start": 34085.18, + "end": 34087.78, + "probability": 0.9819 + }, + { + "start": 34089.54, + "end": 34091.86, + "probability": 0.9729 + }, + { + "start": 34092.14, + "end": 34095.13, + "probability": 0.6845 + }, + { + "start": 34097.16, + "end": 34101.12, + "probability": 0.9986 + }, + { + "start": 34101.8, + "end": 34103.76, + "probability": 0.9875 + }, + { + "start": 34104.04, + "end": 34105.08, + "probability": 0.8669 + }, + { + "start": 34106.3, + "end": 34110.5, + "probability": 0.9412 + }, + { + "start": 34111.16, + "end": 34113.44, + "probability": 0.9808 + }, + { + "start": 34114.94, + "end": 34116.64, + "probability": 0.9929 + }, + { + "start": 34117.24, + "end": 34120.55, + "probability": 0.9989 + }, + { + "start": 34122.9, + "end": 34124.52, + "probability": 0.9247 + }, + { + "start": 34125.74, + "end": 34127.3, + "probability": 0.9838 + }, + { + "start": 34128.74, + "end": 34130.37, + "probability": 0.7816 + }, + { + "start": 34132.06, + "end": 34134.98, + "probability": 0.9912 + }, + { + "start": 34136.02, + "end": 34145.66, + "probability": 0.992 + }, + { + "start": 34146.52, + "end": 34147.22, + "probability": 0.7598 + }, + { + "start": 34148.66, + "end": 34149.28, + "probability": 0.9442 + }, + { + "start": 34150.44, + "end": 34153.12, + "probability": 0.965 + }, + { + "start": 34154.56, + "end": 34156.8, + "probability": 0.9705 + }, + { + "start": 34157.8, + "end": 34159.2, + "probability": 0.9347 + }, + { + "start": 34161.08, + "end": 34164.52, + "probability": 0.9904 + }, + { + "start": 34164.69, + "end": 34171.74, + "probability": 0.9861 + }, + { + "start": 34173.4, + "end": 34177.91, + "probability": 0.8397 + }, + { + "start": 34178.5, + "end": 34179.74, + "probability": 0.9212 + }, + { + "start": 34180.52, + "end": 34181.1, + "probability": 0.7679 + }, + { + "start": 34182.58, + "end": 34183.34, + "probability": 0.9625 + }, + { + "start": 34184.76, + "end": 34186.62, + "probability": 0.999 + }, + { + "start": 34187.54, + "end": 34190.14, + "probability": 0.9927 + }, + { + "start": 34191.78, + "end": 34193.6, + "probability": 0.9574 + }, + { + "start": 34196.02, + "end": 34197.16, + "probability": 0.7935 + }, + { + "start": 34198.1, + "end": 34203.5, + "probability": 0.9745 + }, + { + "start": 34204.14, + "end": 34205.36, + "probability": 0.5138 + }, + { + "start": 34205.44, + "end": 34208.18, + "probability": 0.9857 + }, + { + "start": 34209.14, + "end": 34210.1, + "probability": 0.8943 + }, + { + "start": 34211.02, + "end": 34214.12, + "probability": 0.995 + }, + { + "start": 34215.08, + "end": 34216.1, + "probability": 0.9836 + }, + { + "start": 34216.72, + "end": 34217.97, + "probability": 0.9902 + }, + { + "start": 34219.5, + "end": 34220.76, + "probability": 0.9929 + }, + { + "start": 34221.56, + "end": 34223.74, + "probability": 0.9986 + }, + { + "start": 34225.3, + "end": 34228.52, + "probability": 0.9848 + }, + { + "start": 34229.34, + "end": 34232.0, + "probability": 0.9859 + }, + { + "start": 34233.28, + "end": 34235.96, + "probability": 0.9565 + }, + { + "start": 34236.5, + "end": 34236.96, + "probability": 0.9503 + }, + { + "start": 34237.02, + "end": 34237.48, + "probability": 0.7631 + }, + { + "start": 34237.74, + "end": 34237.9, + "probability": 0.0238 + }, + { + "start": 34237.92, + "end": 34239.7, + "probability": 0.9731 + }, + { + "start": 34240.46, + "end": 34241.36, + "probability": 0.7898 + }, + { + "start": 34242.3, + "end": 34246.04, + "probability": 0.8876 + }, + { + "start": 34247.42, + "end": 34251.55, + "probability": 0.9564 + }, + { + "start": 34252.5, + "end": 34255.92, + "probability": 0.9849 + }, + { + "start": 34256.7, + "end": 34260.84, + "probability": 0.9402 + }, + { + "start": 34261.92, + "end": 34263.42, + "probability": 0.5765 + }, + { + "start": 34264.1, + "end": 34264.68, + "probability": 0.5293 + }, + { + "start": 34265.08, + "end": 34266.3, + "probability": 0.8292 + }, + { + "start": 34267.96, + "end": 34270.78, + "probability": 0.9917 + }, + { + "start": 34271.22, + "end": 34273.92, + "probability": 0.9994 + }, + { + "start": 34274.16, + "end": 34274.54, + "probability": 0.733 + }, + { + "start": 34274.62, + "end": 34278.0, + "probability": 0.8345 + }, + { + "start": 34285.3, + "end": 34286.32, + "probability": 0.8067 + }, + { + "start": 34286.32, + "end": 34288.02, + "probability": 0.3258 + }, + { + "start": 34288.88, + "end": 34290.34, + "probability": 0.5076 + }, + { + "start": 34291.26, + "end": 34293.04, + "probability": 0.2409 + }, + { + "start": 34293.16, + "end": 34293.46, + "probability": 0.0157 + }, + { + "start": 34302.22, + "end": 34304.52, + "probability": 0.8628 + }, + { + "start": 34304.6, + "end": 34307.17, + "probability": 0.6031 + }, + { + "start": 34307.42, + "end": 34308.22, + "probability": 0.8836 + }, + { + "start": 34308.54, + "end": 34309.86, + "probability": 0.9634 + }, + { + "start": 34310.98, + "end": 34314.24, + "probability": 0.9536 + }, + { + "start": 34315.2, + "end": 34318.26, + "probability": 0.9971 + }, + { + "start": 34318.46, + "end": 34321.14, + "probability": 0.9946 + }, + { + "start": 34321.74, + "end": 34327.24, + "probability": 0.9518 + }, + { + "start": 34328.06, + "end": 34334.7, + "probability": 0.9972 + }, + { + "start": 34334.7, + "end": 34341.54, + "probability": 0.9987 + }, + { + "start": 34343.1, + "end": 34344.2, + "probability": 0.6409 + }, + { + "start": 34345.76, + "end": 34348.56, + "probability": 0.7654 + }, + { + "start": 34349.62, + "end": 34353.38, + "probability": 0.6649 + }, + { + "start": 34354.28, + "end": 34357.96, + "probability": 0.9749 + }, + { + "start": 34358.78, + "end": 34359.48, + "probability": 0.9146 + }, + { + "start": 34360.12, + "end": 34361.9, + "probability": 0.9824 + }, + { + "start": 34362.86, + "end": 34364.0, + "probability": 0.8318 + }, + { + "start": 34366.36, + "end": 34369.02, + "probability": 0.9817 + }, + { + "start": 34369.5, + "end": 34371.76, + "probability": 0.1646 + }, + { + "start": 34371.76, + "end": 34372.14, + "probability": 0.2199 + }, + { + "start": 34372.14, + "end": 34372.52, + "probability": 0.3439 + }, + { + "start": 34372.86, + "end": 34375.94, + "probability": 0.8536 + }, + { + "start": 34376.82, + "end": 34378.84, + "probability": 0.8765 + }, + { + "start": 34379.58, + "end": 34380.4, + "probability": 0.9939 + }, + { + "start": 34383.34, + "end": 34386.1, + "probability": 0.9951 + }, + { + "start": 34386.82, + "end": 34391.98, + "probability": 0.9916 + }, + { + "start": 34392.92, + "end": 34394.62, + "probability": 0.998 + }, + { + "start": 34395.54, + "end": 34395.74, + "probability": 0.3813 + }, + { + "start": 34396.36, + "end": 34398.26, + "probability": 0.9138 + }, + { + "start": 34398.54, + "end": 34402.02, + "probability": 0.9718 + }, + { + "start": 34402.18, + "end": 34402.36, + "probability": 0.7913 + }, + { + "start": 34403.6, + "end": 34404.28, + "probability": 0.8942 + }, + { + "start": 34405.7, + "end": 34407.98, + "probability": 0.9779 + }, + { + "start": 34409.54, + "end": 34411.8, + "probability": 0.9971 + }, + { + "start": 34412.52, + "end": 34414.94, + "probability": 0.9679 + }, + { + "start": 34415.8, + "end": 34417.7, + "probability": 0.9958 + }, + { + "start": 34419.28, + "end": 34425.72, + "probability": 0.9665 + }, + { + "start": 34426.08, + "end": 34428.44, + "probability": 0.9945 + }, + { + "start": 34429.1, + "end": 34430.24, + "probability": 0.5441 + }, + { + "start": 34430.78, + "end": 34436.66, + "probability": 0.9792 + }, + { + "start": 34437.5, + "end": 34440.88, + "probability": 0.9975 + }, + { + "start": 34442.46, + "end": 34447.9, + "probability": 0.9222 + }, + { + "start": 34449.02, + "end": 34450.02, + "probability": 0.6817 + }, + { + "start": 34450.12, + "end": 34451.08, + "probability": 0.9333 + }, + { + "start": 34451.82, + "end": 34453.06, + "probability": 0.9025 + }, + { + "start": 34454.52, + "end": 34455.07, + "probability": 0.9946 + }, + { + "start": 34455.72, + "end": 34456.86, + "probability": 0.9431 + }, + { + "start": 34458.5, + "end": 34459.18, + "probability": 0.962 + }, + { + "start": 34460.13, + "end": 34465.66, + "probability": 0.9951 + }, + { + "start": 34465.84, + "end": 34466.36, + "probability": 0.9924 + }, + { + "start": 34466.96, + "end": 34467.92, + "probability": 0.9088 + }, + { + "start": 34468.96, + "end": 34472.14, + "probability": 0.8083 + }, + { + "start": 34472.86, + "end": 34475.04, + "probability": 0.9522 + }, + { + "start": 34475.44, + "end": 34476.84, + "probability": 0.9017 + }, + { + "start": 34477.06, + "end": 34479.16, + "probability": 0.9972 + }, + { + "start": 34480.08, + "end": 34484.38, + "probability": 0.9681 + }, + { + "start": 34485.36, + "end": 34486.72, + "probability": 0.9834 + }, + { + "start": 34487.76, + "end": 34491.36, + "probability": 0.8882 + }, + { + "start": 34492.22, + "end": 34495.9, + "probability": 0.9988 + }, + { + "start": 34496.72, + "end": 34500.62, + "probability": 0.9871 + }, + { + "start": 34501.5, + "end": 34504.23, + "probability": 0.9807 + }, + { + "start": 34505.2, + "end": 34509.26, + "probability": 0.8147 + }, + { + "start": 34509.26, + "end": 34512.8, + "probability": 0.9958 + }, + { + "start": 34513.18, + "end": 34517.1, + "probability": 0.9487 + }, + { + "start": 34517.86, + "end": 34518.62, + "probability": 0.8207 + }, + { + "start": 34519.38, + "end": 34521.86, + "probability": 0.9762 + }, + { + "start": 34523.36, + "end": 34526.64, + "probability": 0.9927 + }, + { + "start": 34527.4, + "end": 34530.51, + "probability": 0.9881 + }, + { + "start": 34530.76, + "end": 34530.98, + "probability": 0.5459 + }, + { + "start": 34531.18, + "end": 34532.46, + "probability": 0.8976 + }, + { + "start": 34534.22, + "end": 34534.98, + "probability": 0.95 + }, + { + "start": 34535.52, + "end": 34536.64, + "probability": 0.7612 + }, + { + "start": 34536.94, + "end": 34537.46, + "probability": 0.9885 + }, + { + "start": 34537.82, + "end": 34538.52, + "probability": 0.9075 + }, + { + "start": 34539.16, + "end": 34542.12, + "probability": 0.9785 + }, + { + "start": 34542.68, + "end": 34545.78, + "probability": 0.8518 + }, + { + "start": 34552.1, + "end": 34552.62, + "probability": 0.8837 + }, + { + "start": 34552.62, + "end": 34556.2, + "probability": 0.0237 + }, + { + "start": 34567.9, + "end": 34568.84, + "probability": 0.0573 + }, + { + "start": 34570.08, + "end": 34570.62, + "probability": 0.6225 + }, + { + "start": 34570.78, + "end": 34572.78, + "probability": 0.8398 + }, + { + "start": 34573.1, + "end": 34575.36, + "probability": 0.8623 + }, + { + "start": 34576.66, + "end": 34577.4, + "probability": 0.9394 + }, + { + "start": 34577.94, + "end": 34580.76, + "probability": 0.8012 + }, + { + "start": 34581.46, + "end": 34587.9, + "probability": 0.8271 + }, + { + "start": 34588.68, + "end": 34589.86, + "probability": 0.8299 + }, + { + "start": 34591.6, + "end": 34595.76, + "probability": 0.8281 + }, + { + "start": 34597.04, + "end": 34598.5, + "probability": 0.9323 + }, + { + "start": 34599.26, + "end": 34601.8, + "probability": 0.9327 + }, + { + "start": 34603.54, + "end": 34605.2, + "probability": 0.3977 + }, + { + "start": 34606.86, + "end": 34612.4, + "probability": 0.984 + }, + { + "start": 34613.04, + "end": 34617.28, + "probability": 0.9408 + }, + { + "start": 34617.34, + "end": 34618.0, + "probability": 0.8184 + }, + { + "start": 34619.32, + "end": 34623.84, + "probability": 0.974 + }, + { + "start": 34624.8, + "end": 34630.68, + "probability": 0.9763 + }, + { + "start": 34631.4, + "end": 34637.18, + "probability": 0.9993 + }, + { + "start": 34638.22, + "end": 34641.64, + "probability": 0.9571 + }, + { + "start": 34642.24, + "end": 34649.04, + "probability": 0.9961 + }, + { + "start": 34650.36, + "end": 34657.14, + "probability": 0.7407 + }, + { + "start": 34657.92, + "end": 34660.48, + "probability": 0.9782 + }, + { + "start": 34662.26, + "end": 34664.36, + "probability": 0.7398 + }, + { + "start": 34665.08, + "end": 34669.06, + "probability": 0.9835 + }, + { + "start": 34670.2, + "end": 34675.98, + "probability": 0.9786 + }, + { + "start": 34677.34, + "end": 34680.96, + "probability": 0.9316 + }, + { + "start": 34683.38, + "end": 34686.04, + "probability": 0.689 + }, + { + "start": 34687.14, + "end": 34691.32, + "probability": 0.9712 + }, + { + "start": 34692.7, + "end": 34697.9, + "probability": 0.9287 + }, + { + "start": 34698.9, + "end": 34701.5, + "probability": 0.9678 + }, + { + "start": 34702.84, + "end": 34707.16, + "probability": 0.9937 + }, + { + "start": 34708.0, + "end": 34709.16, + "probability": 0.9899 + }, + { + "start": 34710.12, + "end": 34717.44, + "probability": 0.9758 + }, + { + "start": 34718.6, + "end": 34721.02, + "probability": 0.859 + }, + { + "start": 34722.24, + "end": 34732.36, + "probability": 0.9902 + }, + { + "start": 34732.5, + "end": 34733.34, + "probability": 0.9866 + }, + { + "start": 34733.94, + "end": 34735.3, + "probability": 0.9832 + }, + { + "start": 34736.06, + "end": 34739.68, + "probability": 0.9827 + }, + { + "start": 34740.38, + "end": 34746.36, + "probability": 0.7345 + }, + { + "start": 34747.2, + "end": 34748.0, + "probability": 0.7492 + }, + { + "start": 34748.74, + "end": 34749.64, + "probability": 0.894 + }, + { + "start": 34750.32, + "end": 34754.24, + "probability": 0.9705 + }, + { + "start": 34755.26, + "end": 34756.22, + "probability": 0.9764 + }, + { + "start": 34758.06, + "end": 34761.18, + "probability": 0.9371 + }, + { + "start": 34761.88, + "end": 34763.8, + "probability": 0.7128 + }, + { + "start": 34764.94, + "end": 34769.18, + "probability": 0.8724 + }, + { + "start": 34769.76, + "end": 34772.68, + "probability": 0.8342 + }, + { + "start": 34773.76, + "end": 34775.62, + "probability": 0.5289 + }, + { + "start": 34776.1, + "end": 34780.46, + "probability": 0.5902 + }, + { + "start": 34781.02, + "end": 34783.64, + "probability": 0.157 + }, + { + "start": 34783.72, + "end": 34786.08, + "probability": 0.8204 + }, + { + "start": 34786.78, + "end": 34793.72, + "probability": 0.9909 + }, + { + "start": 34793.72, + "end": 34801.04, + "probability": 0.9944 + }, + { + "start": 34801.12, + "end": 34811.7, + "probability": 0.9232 + }, + { + "start": 34812.76, + "end": 34817.34, + "probability": 0.9172 + }, + { + "start": 34819.18, + "end": 34820.46, + "probability": 0.9951 + }, + { + "start": 34821.08, + "end": 34824.71, + "probability": 0.9808 + }, + { + "start": 34825.26, + "end": 34831.98, + "probability": 0.9652 + }, + { + "start": 34832.56, + "end": 34835.52, + "probability": 0.9884 + }, + { + "start": 34835.74, + "end": 34842.86, + "probability": 0.9911 + }, + { + "start": 34843.34, + "end": 34848.44, + "probability": 0.9272 + }, + { + "start": 34849.7, + "end": 34854.24, + "probability": 0.5557 + }, + { + "start": 34855.02, + "end": 34858.66, + "probability": 0.9757 + }, + { + "start": 34859.48, + "end": 34865.02, + "probability": 0.9799 + }, + { + "start": 34865.58, + "end": 34868.62, + "probability": 0.9396 + }, + { + "start": 34872.92, + "end": 34874.64, + "probability": 0.5962 + }, + { + "start": 34875.28, + "end": 34877.7, + "probability": 0.993 + }, + { + "start": 34878.38, + "end": 34880.78, + "probability": 0.9778 + }, + { + "start": 34881.68, + "end": 34882.73, + "probability": 0.7256 + }, + { + "start": 34883.4, + "end": 34884.14, + "probability": 0.9125 + }, + { + "start": 34884.86, + "end": 34889.34, + "probability": 0.9756 + }, + { + "start": 34889.56, + "end": 34893.5, + "probability": 0.9927 + }, + { + "start": 34894.16, + "end": 34900.78, + "probability": 0.9941 + }, + { + "start": 34900.78, + "end": 34906.38, + "probability": 0.9976 + }, + { + "start": 34907.72, + "end": 34907.92, + "probability": 0.1043 + }, + { + "start": 34908.14, + "end": 34915.36, + "probability": 0.9745 + }, + { + "start": 34916.0, + "end": 34917.16, + "probability": 0.8944 + }, + { + "start": 34917.88, + "end": 34920.98, + "probability": 0.8376 + }, + { + "start": 34921.88, + "end": 34924.26, + "probability": 0.9169 + }, + { + "start": 34925.12, + "end": 34930.02, + "probability": 0.9956 + }, + { + "start": 34930.58, + "end": 34934.96, + "probability": 0.9819 + }, + { + "start": 34935.74, + "end": 34939.76, + "probability": 0.8497 + }, + { + "start": 34940.44, + "end": 34942.02, + "probability": 0.6878 + }, + { + "start": 34942.72, + "end": 34944.74, + "probability": 0.9893 + }, + { + "start": 34945.42, + "end": 34948.98, + "probability": 0.9806 + }, + { + "start": 34949.08, + "end": 34949.88, + "probability": 0.7832 + }, + { + "start": 34950.28, + "end": 34953.74, + "probability": 0.9905 + }, + { + "start": 34953.78, + "end": 34955.68, + "probability": 0.9946 + }, + { + "start": 34956.34, + "end": 34960.16, + "probability": 0.95 + }, + { + "start": 34960.86, + "end": 34965.54, + "probability": 0.9463 + }, + { + "start": 34965.88, + "end": 34966.7, + "probability": 0.8872 + }, + { + "start": 34967.62, + "end": 34970.28, + "probability": 0.9524 + }, + { + "start": 34971.24, + "end": 34972.42, + "probability": 0.9828 + }, + { + "start": 34973.14, + "end": 34977.62, + "probability": 0.9399 + }, + { + "start": 34978.18, + "end": 34978.84, + "probability": 0.8956 + }, + { + "start": 34978.92, + "end": 34980.56, + "probability": 0.9471 + }, + { + "start": 34980.9, + "end": 34982.94, + "probability": 0.9827 + }, + { + "start": 34983.5, + "end": 34986.72, + "probability": 0.9875 + }, + { + "start": 34986.72, + "end": 34992.2, + "probability": 0.9937 + }, + { + "start": 34992.64, + "end": 34994.34, + "probability": 0.9567 + }, + { + "start": 34995.68, + "end": 34996.9, + "probability": 0.9547 + }, + { + "start": 34997.62, + "end": 34999.28, + "probability": 0.9284 + }, + { + "start": 35000.9, + "end": 35003.26, + "probability": 0.9744 + }, + { + "start": 35004.2, + "end": 35005.54, + "probability": 0.9859 + }, + { + "start": 35007.02, + "end": 35013.18, + "probability": 0.8067 + }, + { + "start": 35013.96, + "end": 35015.56, + "probability": 0.8874 + }, + { + "start": 35016.16, + "end": 35019.84, + "probability": 0.6473 + }, + { + "start": 35020.5, + "end": 35025.0, + "probability": 0.9556 + }, + { + "start": 35025.86, + "end": 35026.86, + "probability": 0.8027 + }, + { + "start": 35027.78, + "end": 35030.22, + "probability": 0.8287 + }, + { + "start": 35030.86, + "end": 35032.66, + "probability": 0.7955 + }, + { + "start": 35033.56, + "end": 35034.7, + "probability": 0.9471 + }, + { + "start": 35035.66, + "end": 35036.24, + "probability": 0.5952 + }, + { + "start": 35036.78, + "end": 35039.12, + "probability": 0.9908 + }, + { + "start": 35040.12, + "end": 35050.1, + "probability": 0.9644 + }, + { + "start": 35050.98, + "end": 35056.4, + "probability": 0.9707 + }, + { + "start": 35057.58, + "end": 35063.04, + "probability": 0.7372 + }, + { + "start": 35063.04, + "end": 35068.6, + "probability": 0.9086 + }, + { + "start": 35069.7, + "end": 35070.8, + "probability": 0.2752 + }, + { + "start": 35072.24, + "end": 35072.84, + "probability": 0.5132 + }, + { + "start": 35072.9, + "end": 35075.76, + "probability": 0.7796 + }, + { + "start": 35076.4, + "end": 35076.42, + "probability": 0.5054 + }, + { + "start": 35077.2, + "end": 35078.58, + "probability": 0.938 + }, + { + "start": 35078.64, + "end": 35085.1, + "probability": 0.9863 + }, + { + "start": 35085.18, + "end": 35089.26, + "probability": 0.9602 + }, + { + "start": 35089.42, + "end": 35093.34, + "probability": 0.9214 + }, + { + "start": 35094.1, + "end": 35104.58, + "probability": 0.9961 + }, + { + "start": 35105.22, + "end": 35110.02, + "probability": 0.9991 + }, + { + "start": 35110.66, + "end": 35111.5, + "probability": 0.7829 + }, + { + "start": 35111.92, + "end": 35118.04, + "probability": 0.8805 + }, + { + "start": 35118.18, + "end": 35119.0, + "probability": 0.7668 + }, + { + "start": 35120.14, + "end": 35121.68, + "probability": 0.9533 + }, + { + "start": 35122.46, + "end": 35125.16, + "probability": 0.7335 + }, + { + "start": 35126.62, + "end": 35127.2, + "probability": 0.5444 + }, + { + "start": 35127.36, + "end": 35129.02, + "probability": 0.9985 + }, + { + "start": 35129.24, + "end": 35134.14, + "probability": 0.8661 + }, + { + "start": 35134.28, + "end": 35136.06, + "probability": 0.7094 + }, + { + "start": 35136.52, + "end": 35139.28, + "probability": 0.9888 + }, + { + "start": 35142.8, + "end": 35144.54, + "probability": 0.8345 + }, + { + "start": 35145.24, + "end": 35146.84, + "probability": 0.6055 + }, + { + "start": 35147.56, + "end": 35152.17, + "probability": 0.9917 + }, + { + "start": 35153.32, + "end": 35158.34, + "probability": 0.9924 + }, + { + "start": 35159.2, + "end": 35163.68, + "probability": 0.9294 + }, + { + "start": 35164.56, + "end": 35166.04, + "probability": 0.8307 + }, + { + "start": 35166.62, + "end": 35170.94, + "probability": 0.9448 + }, + { + "start": 35172.36, + "end": 35173.0, + "probability": 0.7352 + }, + { + "start": 35173.02, + "end": 35182.38, + "probability": 0.9893 + }, + { + "start": 35182.9, + "end": 35186.62, + "probability": 0.9368 + }, + { + "start": 35187.14, + "end": 35188.02, + "probability": 0.7745 + }, + { + "start": 35188.56, + "end": 35190.12, + "probability": 0.9963 + }, + { + "start": 35190.64, + "end": 35193.38, + "probability": 0.9932 + }, + { + "start": 35193.38, + "end": 35197.5, + "probability": 0.9878 + }, + { + "start": 35198.02, + "end": 35198.28, + "probability": 0.7042 + }, + { + "start": 35198.3, + "end": 35201.54, + "probability": 0.9753 + }, + { + "start": 35201.64, + "end": 35204.24, + "probability": 0.8456 + }, + { + "start": 35204.6, + "end": 35206.76, + "probability": 0.8146 + }, + { + "start": 35207.36, + "end": 35209.41, + "probability": 0.9186 + }, + { + "start": 35210.44, + "end": 35211.18, + "probability": 0.7026 + }, + { + "start": 35211.72, + "end": 35213.76, + "probability": 0.9306 + }, + { + "start": 35214.64, + "end": 35216.22, + "probability": 0.9099 + }, + { + "start": 35216.8, + "end": 35221.52, + "probability": 0.9255 + }, + { + "start": 35222.5, + "end": 35225.34, + "probability": 0.9111 + }, + { + "start": 35226.5, + "end": 35228.08, + "probability": 0.9367 + }, + { + "start": 35228.82, + "end": 35230.18, + "probability": 0.905 + }, + { + "start": 35230.8, + "end": 35231.24, + "probability": 0.986 + }, + { + "start": 35232.56, + "end": 35240.06, + "probability": 0.9784 + }, + { + "start": 35241.08, + "end": 35250.28, + "probability": 0.9935 + }, + { + "start": 35250.82, + "end": 35257.26, + "probability": 0.979 + }, + { + "start": 35258.28, + "end": 35264.4, + "probability": 0.9765 + }, + { + "start": 35264.5, + "end": 35267.3, + "probability": 0.7899 + }, + { + "start": 35268.1, + "end": 35270.12, + "probability": 0.9777 + }, + { + "start": 35270.86, + "end": 35272.54, + "probability": 0.7477 + }, + { + "start": 35273.14, + "end": 35278.48, + "probability": 0.9254 + }, + { + "start": 35279.24, + "end": 35285.28, + "probability": 0.8229 + }, + { + "start": 35286.24, + "end": 35290.24, + "probability": 0.9876 + }, + { + "start": 35292.3, + "end": 35294.26, + "probability": 0.3062 + }, + { + "start": 35296.48, + "end": 35304.56, + "probability": 0.9982 + }, + { + "start": 35304.56, + "end": 35308.58, + "probability": 0.9964 + }, + { + "start": 35309.33, + "end": 35313.5, + "probability": 0.9973 + }, + { + "start": 35314.08, + "end": 35316.38, + "probability": 0.9692 + }, + { + "start": 35317.26, + "end": 35318.48, + "probability": 0.3933 + }, + { + "start": 35319.52, + "end": 35320.36, + "probability": 0.7347 + }, + { + "start": 35321.38, + "end": 35321.72, + "probability": 0.8265 + }, + { + "start": 35322.48, + "end": 35331.5, + "probability": 0.9883 + }, + { + "start": 35332.26, + "end": 35343.02, + "probability": 0.9074 + }, + { + "start": 35343.16, + "end": 35347.0, + "probability": 0.7603 + }, + { + "start": 35348.24, + "end": 35349.56, + "probability": 0.9824 + }, + { + "start": 35349.7, + "end": 35350.62, + "probability": 0.964 + }, + { + "start": 35351.04, + "end": 35352.72, + "probability": 0.8961 + }, + { + "start": 35354.0, + "end": 35357.18, + "probability": 0.9155 + }, + { + "start": 35357.7, + "end": 35361.88, + "probability": 0.9915 + }, + { + "start": 35362.2, + "end": 35366.9, + "probability": 0.9815 + }, + { + "start": 35384.34, + "end": 35384.64, + "probability": 0.7276 + }, + { + "start": 35384.7, + "end": 35385.22, + "probability": 0.878 + }, + { + "start": 35385.3, + "end": 35388.1, + "probability": 0.9849 + }, + { + "start": 35388.1, + "end": 35392.53, + "probability": 0.9313 + }, + { + "start": 35393.88, + "end": 35395.7, + "probability": 0.8826 + }, + { + "start": 35396.36, + "end": 35400.32, + "probability": 0.9932 + }, + { + "start": 35400.84, + "end": 35403.98, + "probability": 0.9445 + }, + { + "start": 35404.7, + "end": 35410.48, + "probability": 0.7144 + }, + { + "start": 35411.1, + "end": 35417.84, + "probability": 0.9829 + }, + { + "start": 35418.5, + "end": 35419.44, + "probability": 0.0464 + }, + { + "start": 35419.44, + "end": 35419.46, + "probability": 0.1143 + }, + { + "start": 35419.46, + "end": 35424.72, + "probability": 0.8805 + }, + { + "start": 35425.28, + "end": 35426.05, + "probability": 0.6543 + }, + { + "start": 35426.82, + "end": 35431.52, + "probability": 0.9896 + }, + { + "start": 35431.52, + "end": 35437.84, + "probability": 0.9954 + }, + { + "start": 35438.68, + "end": 35443.66, + "probability": 0.9459 + }, + { + "start": 35446.64, + "end": 35446.92, + "probability": 0.0028 + }, + { + "start": 35446.92, + "end": 35448.87, + "probability": 0.7917 + }, + { + "start": 35449.58, + "end": 35453.32, + "probability": 0.9681 + }, + { + "start": 35454.46, + "end": 35458.0, + "probability": 0.9546 + }, + { + "start": 35458.86, + "end": 35462.98, + "probability": 0.9899 + }, + { + "start": 35463.54, + "end": 35473.26, + "probability": 0.9016 + }, + { + "start": 35473.68, + "end": 35474.24, + "probability": 0.7943 + }, + { + "start": 35474.72, + "end": 35475.4, + "probability": 0.8009 + }, + { + "start": 35476.02, + "end": 35479.78, + "probability": 0.9822 + }, + { + "start": 35479.94, + "end": 35481.9, + "probability": 0.9233 + }, + { + "start": 35482.38, + "end": 35483.72, + "probability": 0.8854 + }, + { + "start": 35484.4, + "end": 35490.78, + "probability": 0.8421 + }, + { + "start": 35491.48, + "end": 35496.08, + "probability": 0.9812 + }, + { + "start": 35496.94, + "end": 35501.0, + "probability": 0.9747 + }, + { + "start": 35501.64, + "end": 35505.22, + "probability": 0.9897 + }, + { + "start": 35506.06, + "end": 35506.92, + "probability": 0.8898 + }, + { + "start": 35507.52, + "end": 35508.14, + "probability": 0.7421 + }, + { + "start": 35508.94, + "end": 35511.58, + "probability": 0.8531 + }, + { + "start": 35512.48, + "end": 35519.34, + "probability": 0.7965 + }, + { + "start": 35520.52, + "end": 35523.36, + "probability": 0.9948 + }, + { + "start": 35523.94, + "end": 35525.06, + "probability": 0.9354 + }, + { + "start": 35526.0, + "end": 35534.16, + "probability": 0.9419 + }, + { + "start": 35534.64, + "end": 35539.58, + "probability": 0.9381 + }, + { + "start": 35541.0, + "end": 35542.46, + "probability": 0.9522 + }, + { + "start": 35542.74, + "end": 35542.96, + "probability": 0.6139 + }, + { + "start": 35543.92, + "end": 35546.32, + "probability": 0.9886 + }, + { + "start": 35547.3, + "end": 35548.02, + "probability": 0.9493 + }, + { + "start": 35548.1, + "end": 35548.56, + "probability": 0.9317 + }, + { + "start": 35549.36, + "end": 35550.76, + "probability": 0.8208 + }, + { + "start": 35551.42, + "end": 35554.28, + "probability": 0.8391 + }, + { + "start": 35556.16, + "end": 35556.3, + "probability": 0.1975 + }, + { + "start": 35557.36, + "end": 35557.79, + "probability": 0.0117 + }, + { + "start": 35558.68, + "end": 35558.96, + "probability": 0.5709 + }, + { + "start": 35561.34, + "end": 35563.78, + "probability": 0.9625 + }, + { + "start": 35564.0, + "end": 35566.96, + "probability": 0.4629 + }, + { + "start": 35567.02, + "end": 35568.56, + "probability": 0.6725 + }, + { + "start": 35568.64, + "end": 35569.94, + "probability": 0.6112 + }, + { + "start": 35569.98, + "end": 35571.68, + "probability": 0.5031 + }, + { + "start": 35571.68, + "end": 35572.61, + "probability": 0.0153 + }, + { + "start": 35573.78, + "end": 35573.8, + "probability": 0.0184 + }, + { + "start": 35573.8, + "end": 35573.8, + "probability": 0.0647 + }, + { + "start": 35573.8, + "end": 35574.22, + "probability": 0.3048 + }, + { + "start": 35574.94, + "end": 35580.84, + "probability": 0.9795 + }, + { + "start": 35580.96, + "end": 35582.39, + "probability": 0.2412 + }, + { + "start": 35582.4, + "end": 35583.48, + "probability": 0.1085 + }, + { + "start": 35583.88, + "end": 35584.36, + "probability": 0.1681 + }, + { + "start": 35584.78, + "end": 35587.78, + "probability": 0.74 + }, + { + "start": 35588.38, + "end": 35588.66, + "probability": 0.2635 + }, + { + "start": 35588.66, + "end": 35588.66, + "probability": 0.0514 + }, + { + "start": 35588.66, + "end": 35591.4, + "probability": 0.9106 + }, + { + "start": 35591.98, + "end": 35598.09, + "probability": 0.9879 + }, + { + "start": 35599.76, + "end": 35603.08, + "probability": 0.92 + }, + { + "start": 35604.38, + "end": 35605.26, + "probability": 0.2923 + }, + { + "start": 35606.02, + "end": 35606.76, + "probability": 0.6222 + }, + { + "start": 35607.4, + "end": 35610.8, + "probability": 0.9085 + }, + { + "start": 35611.04, + "end": 35611.82, + "probability": 0.276 + }, + { + "start": 35612.02, + "end": 35612.22, + "probability": 0.1214 + }, + { + "start": 35612.44, + "end": 35613.0, + "probability": 0.4297 + }, + { + "start": 35613.66, + "end": 35616.74, + "probability": 0.8732 + }, + { + "start": 35617.6, + "end": 35618.88, + "probability": 0.8474 + }, + { + "start": 35619.66, + "end": 35624.74, + "probability": 0.9092 + }, + { + "start": 35625.48, + "end": 35625.96, + "probability": 0.5556 + }, + { + "start": 35626.42, + "end": 35636.1, + "probability": 0.8763 + }, + { + "start": 35636.6, + "end": 35638.04, + "probability": 0.768 + }, + { + "start": 35638.18, + "end": 35639.66, + "probability": 0.7956 + }, + { + "start": 35640.16, + "end": 35641.24, + "probability": 0.9627 + }, + { + "start": 35642.16, + "end": 35642.9, + "probability": 0.8688 + }, + { + "start": 35644.54, + "end": 35648.4, + "probability": 0.9875 + }, + { + "start": 35648.5, + "end": 35649.22, + "probability": 0.8207 + }, + { + "start": 35650.04, + "end": 35657.16, + "probability": 0.999 + }, + { + "start": 35658.0, + "end": 35664.62, + "probability": 0.998 + }, + { + "start": 35666.1, + "end": 35667.18, + "probability": 0.7644 + }, + { + "start": 35667.82, + "end": 35668.4, + "probability": 0.4786 + }, + { + "start": 35669.54, + "end": 35676.5, + "probability": 0.9922 + }, + { + "start": 35677.04, + "end": 35685.8, + "probability": 0.998 + }, + { + "start": 35685.94, + "end": 35686.84, + "probability": 0.6623 + }, + { + "start": 35687.32, + "end": 35689.68, + "probability": 0.8869 + }, + { + "start": 35691.54, + "end": 35697.62, + "probability": 0.8884 + }, + { + "start": 35697.68, + "end": 35699.38, + "probability": 0.9582 + }, + { + "start": 35699.56, + "end": 35700.18, + "probability": 0.7763 + }, + { + "start": 35700.9, + "end": 35701.64, + "probability": 0.6426 + }, + { + "start": 35702.34, + "end": 35702.66, + "probability": 0.8428 + }, + { + "start": 35703.32, + "end": 35710.96, + "probability": 0.9918 + }, + { + "start": 35710.96, + "end": 35714.78, + "probability": 0.9944 + }, + { + "start": 35715.66, + "end": 35716.12, + "probability": 0.7896 + }, + { + "start": 35718.14, + "end": 35719.75, + "probability": 0.3634 + }, + { + "start": 35720.42, + "end": 35720.64, + "probability": 0.5144 + }, + { + "start": 35721.46, + "end": 35722.02, + "probability": 0.0577 + }, + { + "start": 35722.32, + "end": 35722.66, + "probability": 0.6826 + }, + { + "start": 35723.04, + "end": 35724.62, + "probability": 0.7827 + }, + { + "start": 35724.66, + "end": 35726.03, + "probability": 0.6194 + }, + { + "start": 35726.72, + "end": 35726.72, + "probability": 0.0784 + }, + { + "start": 35726.72, + "end": 35727.08, + "probability": 0.5963 + }, + { + "start": 35727.2, + "end": 35729.26, + "probability": 0.699 + }, + { + "start": 35729.68, + "end": 35729.68, + "probability": 0.068 + }, + { + "start": 35729.68, + "end": 35733.05, + "probability": 0.9851 + }, + { + "start": 35734.06, + "end": 35734.06, + "probability": 0.057 + }, + { + "start": 35734.06, + "end": 35736.84, + "probability": 0.9648 + }, + { + "start": 35737.56, + "end": 35737.84, + "probability": 0.3367 + }, + { + "start": 35739.18, + "end": 35739.2, + "probability": 0.1037 + }, + { + "start": 35739.42, + "end": 35741.3, + "probability": 0.8406 + }, + { + "start": 35741.3, + "end": 35742.46, + "probability": 0.7072 + }, + { + "start": 35743.18, + "end": 35745.06, + "probability": 0.0639 + }, + { + "start": 35745.06, + "end": 35746.1, + "probability": 0.5545 + }, + { + "start": 35747.04, + "end": 35747.16, + "probability": 0.3149 + }, + { + "start": 35747.16, + "end": 35747.7, + "probability": 0.7317 + }, + { + "start": 35748.02, + "end": 35749.4, + "probability": 0.0133 + }, + { + "start": 35749.4, + "end": 35750.52, + "probability": 0.7245 + }, + { + "start": 35750.66, + "end": 35751.12, + "probability": 0.0894 + }, + { + "start": 35752.5, + "end": 35752.88, + "probability": 0.0016 + }, + { + "start": 35754.0, + "end": 35756.08, + "probability": 0.2569 + }, + { + "start": 35757.64, + "end": 35757.64, + "probability": 0.2977 + }, + { + "start": 35757.64, + "end": 35760.06, + "probability": 0.7595 + }, + { + "start": 35760.1, + "end": 35761.43, + "probability": 0.1243 + }, + { + "start": 35763.88, + "end": 35765.98, + "probability": 0.8213 + }, + { + "start": 35766.06, + "end": 35766.24, + "probability": 0.0905 + }, + { + "start": 35767.52, + "end": 35767.96, + "probability": 0.9317 + }, + { + "start": 35768.38, + "end": 35768.9, + "probability": 0.3649 + }, + { + "start": 35768.96, + "end": 35769.78, + "probability": 0.1354 + }, + { + "start": 35769.94, + "end": 35772.96, + "probability": 0.9755 + }, + { + "start": 35773.18, + "end": 35773.86, + "probability": 0.2622 + }, + { + "start": 35773.92, + "end": 35776.52, + "probability": 0.9919 + }, + { + "start": 35776.8, + "end": 35777.96, + "probability": 0.3723 + }, + { + "start": 35778.04, + "end": 35778.04, + "probability": 0.1264 + }, + { + "start": 35778.04, + "end": 35779.16, + "probability": 0.7827 + }, + { + "start": 35779.24, + "end": 35780.72, + "probability": 0.7188 + }, + { + "start": 35780.82, + "end": 35783.46, + "probability": 0.751 + }, + { + "start": 35783.84, + "end": 35785.28, + "probability": 0.9572 + }, + { + "start": 35785.6, + "end": 35788.44, + "probability": 0.5687 + }, + { + "start": 35788.9, + "end": 35789.34, + "probability": 0.7225 + }, + { + "start": 35790.08, + "end": 35791.8, + "probability": 0.1366 + }, + { + "start": 35791.86, + "end": 35794.18, + "probability": 0.8809 + }, + { + "start": 35794.2, + "end": 35795.0, + "probability": 0.6625 + }, + { + "start": 35795.36, + "end": 35796.66, + "probability": 0.7967 + }, + { + "start": 35797.16, + "end": 35802.9, + "probability": 0.9685 + }, + { + "start": 35803.58, + "end": 35807.28, + "probability": 0.7153 + }, + { + "start": 35807.82, + "end": 35810.22, + "probability": 0.8791 + }, + { + "start": 35810.44, + "end": 35811.14, + "probability": 0.8628 + }, + { + "start": 35812.16, + "end": 35813.92, + "probability": 0.9259 + }, + { + "start": 35814.48, + "end": 35817.08, + "probability": 0.7501 + }, + { + "start": 35817.58, + "end": 35818.12, + "probability": 0.5661 + }, + { + "start": 35818.34, + "end": 35819.89, + "probability": 0.7382 + }, + { + "start": 35820.9, + "end": 35825.08, + "probability": 0.151 + }, + { + "start": 35825.08, + "end": 35825.08, + "probability": 0.6367 + }, + { + "start": 35825.08, + "end": 35825.08, + "probability": 0.0083 + }, + { + "start": 35825.08, + "end": 35828.36, + "probability": 0.6623 + }, + { + "start": 35828.52, + "end": 35829.06, + "probability": 0.2458 + }, + { + "start": 35830.08, + "end": 35831.52, + "probability": 0.0272 + }, + { + "start": 35831.54, + "end": 35835.54, + "probability": 0.2975 + }, + { + "start": 35835.74, + "end": 35837.13, + "probability": 0.8012 + }, + { + "start": 35837.52, + "end": 35840.12, + "probability": 0.5244 + }, + { + "start": 35840.18, + "end": 35843.1, + "probability": 0.8781 + }, + { + "start": 35847.08, + "end": 35847.5, + "probability": 0.3333 + }, + { + "start": 35849.42, + "end": 35854.32, + "probability": 0.0405 + }, + { + "start": 35856.04, + "end": 35860.08, + "probability": 0.0744 + }, + { + "start": 35865.2, + "end": 35865.82, + "probability": 0.0926 + }, + { + "start": 35865.84, + "end": 35870.64, + "probability": 0.6292 + }, + { + "start": 35872.3, + "end": 35875.88, + "probability": 0.0787 + }, + { + "start": 35877.72, + "end": 35878.41, + "probability": 0.0189 + }, + { + "start": 35879.38, + "end": 35883.18, + "probability": 0.0372 + }, + { + "start": 35883.18, + "end": 35889.38, + "probability": 0.0713 + }, + { + "start": 35889.38, + "end": 35890.58, + "probability": 0.0573 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35900.0, + "end": 35900.0, + "probability": 0.0 + }, + { + "start": 35901.96, + "end": 35903.98, + "probability": 0.1799 + }, + { + "start": 35903.98, + "end": 35906.82, + "probability": 0.3545 + }, + { + "start": 35906.82, + "end": 35906.88, + "probability": 0.0154 + }, + { + "start": 35910.56, + "end": 35913.24, + "probability": 0.6004 + }, + { + "start": 35913.78, + "end": 35913.92, + "probability": 0.3801 + }, + { + "start": 35913.92, + "end": 35916.06, + "probability": 0.7211 + }, + { + "start": 35916.42, + "end": 35917.34, + "probability": 0.443 + }, + { + "start": 35917.92, + "end": 35919.2, + "probability": 0.7546 + }, + { + "start": 35919.7, + "end": 35920.72, + "probability": 0.1534 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.0, + "end": 36022.0, + "probability": 0.0 + }, + { + "start": 36022.16, + "end": 36023.84, + "probability": 0.1299 + }, + { + "start": 36023.96, + "end": 36024.88, + "probability": 0.275 + }, + { + "start": 36024.96, + "end": 36024.96, + "probability": 0.0212 + }, + { + "start": 36024.98, + "end": 36027.18, + "probability": 0.2284 + }, + { + "start": 36027.44, + "end": 36029.56, + "probability": 0.5139 + }, + { + "start": 36030.06, + "end": 36030.88, + "probability": 0.0143 + }, + { + "start": 36050.36, + "end": 36052.32, + "probability": 0.3147 + }, + { + "start": 36052.32, + "end": 36052.32, + "probability": 0.0711 + }, + { + "start": 36052.32, + "end": 36052.32, + "probability": 0.2265 + }, + { + "start": 36052.32, + "end": 36052.32, + "probability": 0.0816 + }, + { + "start": 36052.32, + "end": 36052.32, + "probability": 0.2742 + }, + { + "start": 36052.32, + "end": 36053.16, + "probability": 0.511 + }, + { + "start": 36054.74, + "end": 36057.54, + "probability": 0.7503 + }, + { + "start": 36058.4, + "end": 36060.76, + "probability": 0.9528 + }, + { + "start": 36063.22, + "end": 36064.5, + "probability": 0.5854 + }, + { + "start": 36065.62, + "end": 36066.08, + "probability": 0.9769 + }, + { + "start": 36066.94, + "end": 36068.06, + "probability": 0.9232 + }, + { + "start": 36069.14, + "end": 36069.62, + "probability": 0.9954 + }, + { + "start": 36070.74, + "end": 36071.44, + "probability": 0.9725 + }, + { + "start": 36072.2, + "end": 36073.5, + "probability": 0.7206 + }, + { + "start": 36074.04, + "end": 36074.94, + "probability": 0.7939 + }, + { + "start": 36076.28, + "end": 36076.96, + "probability": 0.9784 + }, + { + "start": 36077.72, + "end": 36078.64, + "probability": 0.6198 + }, + { + "start": 36079.58, + "end": 36080.26, + "probability": 0.9238 + }, + { + "start": 36081.48, + "end": 36082.74, + "probability": 0.9452 + }, + { + "start": 36083.82, + "end": 36084.4, + "probability": 0.9891 + }, + { + "start": 36085.46, + "end": 36086.8, + "probability": 0.9685 + }, + { + "start": 36088.06, + "end": 36091.04, + "probability": 0.8786 + }, + { + "start": 36091.88, + "end": 36092.26, + "probability": 0.7494 + }, + { + "start": 36093.48, + "end": 36094.94, + "probability": 0.8147 + }, + { + "start": 36095.68, + "end": 36096.16, + "probability": 0.7554 + }, + { + "start": 36097.26, + "end": 36097.78, + "probability": 0.5202 + }, + { + "start": 36101.42, + "end": 36105.34, + "probability": 0.9176 + }, + { + "start": 36106.34, + "end": 36108.48, + "probability": 0.8439 + }, + { + "start": 36111.12, + "end": 36111.6, + "probability": 0.9944 + }, + { + "start": 36114.3, + "end": 36115.26, + "probability": 0.6861 + }, + { + "start": 36116.58, + "end": 36116.92, + "probability": 0.8075 + }, + { + "start": 36117.98, + "end": 36118.82, + "probability": 0.8736 + }, + { + "start": 36120.54, + "end": 36124.42, + "probability": 0.7332 + }, + { + "start": 36125.98, + "end": 36126.5, + "probability": 0.9504 + }, + { + "start": 36127.42, + "end": 36128.7, + "probability": 0.9654 + }, + { + "start": 36129.58, + "end": 36130.02, + "probability": 0.9924 + }, + { + "start": 36131.1, + "end": 36131.9, + "probability": 0.9832 + }, + { + "start": 36132.96, + "end": 36133.44, + "probability": 0.9549 + }, + { + "start": 36134.3, + "end": 36135.06, + "probability": 0.9974 + }, + { + "start": 36135.86, + "end": 36136.32, + "probability": 0.9954 + }, + { + "start": 36137.3, + "end": 36138.56, + "probability": 0.974 + }, + { + "start": 36139.72, + "end": 36140.0, + "probability": 0.9944 + }, + { + "start": 36141.04, + "end": 36141.5, + "probability": 0.7143 + }, + { + "start": 36143.52, + "end": 36143.88, + "probability": 0.704 + }, + { + "start": 36145.02, + "end": 36145.84, + "probability": 0.809 + }, + { + "start": 36147.0, + "end": 36147.36, + "probability": 0.7719 + }, + { + "start": 36148.18, + "end": 36149.02, + "probability": 0.535 + }, + { + "start": 36150.4, + "end": 36150.74, + "probability": 0.9871 + }, + { + "start": 36151.64, + "end": 36152.64, + "probability": 0.9185 + }, + { + "start": 36154.4, + "end": 36156.0, + "probability": 0.9413 + }, + { + "start": 36157.98, + "end": 36158.42, + "probability": 0.4117 + }, + { + "start": 36160.66, + "end": 36161.48, + "probability": 0.7746 + }, + { + "start": 36163.0, + "end": 36163.32, + "probability": 0.9795 + }, + { + "start": 36164.3, + "end": 36165.16, + "probability": 0.9672 + }, + { + "start": 36166.34, + "end": 36169.2, + "probability": 0.9196 + }, + { + "start": 36170.2, + "end": 36171.87, + "probability": 0.1357 + }, + { + "start": 36172.88, + "end": 36173.2, + "probability": 0.4386 + }, + { + "start": 36173.2, + "end": 36173.2, + "probability": 0.0216 + }, + { + "start": 36179.68, + "end": 36180.58, + "probability": 0.2499 + }, + { + "start": 36180.58, + "end": 36181.56, + "probability": 0.1582 + }, + { + "start": 36182.94, + "end": 36189.9, + "probability": 0.3377 + }, + { + "start": 36196.08, + "end": 36197.08, + "probability": 0.0081 + }, + { + "start": 36197.62, + "end": 36199.44, + "probability": 0.5063 + }, + { + "start": 36200.04, + "end": 36201.78, + "probability": 0.9108 + }, + { + "start": 36202.02, + "end": 36205.4, + "probability": 0.3536 + }, + { + "start": 36205.7, + "end": 36205.8, + "probability": 0.7416 + }, + { + "start": 36205.8, + "end": 36207.76, + "probability": 0.7828 + }, + { + "start": 36208.64, + "end": 36209.68, + "probability": 0.852 + }, + { + "start": 36209.76, + "end": 36211.3, + "probability": 0.5117 + }, + { + "start": 36212.1, + "end": 36212.62, + "probability": 0.0492 + }, + { + "start": 36213.53, + "end": 36217.18, + "probability": 0.0301 + }, + { + "start": 36217.7, + "end": 36217.98, + "probability": 0.0052 + }, + { + "start": 36219.16, + "end": 36219.71, + "probability": 0.0621 + }, + { + "start": 36224.54, + "end": 36225.56, + "probability": 0.4972 + }, + { + "start": 36226.1, + "end": 36228.34, + "probability": 0.1815 + }, + { + "start": 36228.42, + "end": 36228.42, + "probability": 0.1448 + }, + { + "start": 36228.42, + "end": 36229.58, + "probability": 0.6352 + }, + { + "start": 36231.12, + "end": 36233.49, + "probability": 0.8362 + }, + { + "start": 36234.1, + "end": 36235.84, + "probability": 0.5514 + }, + { + "start": 36235.86, + "end": 36236.54, + "probability": 0.0171 + }, + { + "start": 36236.7, + "end": 36237.82, + "probability": 0.3644 + }, + { + "start": 36237.9, + "end": 36239.62, + "probability": 0.4685 + }, + { + "start": 36239.62, + "end": 36240.16, + "probability": 0.6704 + }, + { + "start": 36240.66, + "end": 36241.58, + "probability": 0.7103 + }, + { + "start": 36241.58, + "end": 36243.22, + "probability": 0.927 + }, + { + "start": 36243.28, + "end": 36244.47, + "probability": 0.0413 + }, + { + "start": 36246.2, + "end": 36247.72, + "probability": 0.039 + }, + { + "start": 36247.72, + "end": 36247.72, + "probability": 0.1488 + }, + { + "start": 36247.72, + "end": 36248.39, + "probability": 0.5967 + }, + { + "start": 36250.06, + "end": 36250.96, + "probability": 0.7557 + }, + { + "start": 36251.78, + "end": 36253.08, + "probability": 0.9635 + }, + { + "start": 36255.48, + "end": 36256.88, + "probability": 0.8723 + }, + { + "start": 36257.78, + "end": 36258.67, + "probability": 0.5152 + }, + { + "start": 36259.18, + "end": 36261.16, + "probability": 0.9316 + }, + { + "start": 36263.58, + "end": 36264.98, + "probability": 0.2343 + }, + { + "start": 36265.52, + "end": 36266.48, + "probability": 0.1081 + }, + { + "start": 36266.48, + "end": 36266.62, + "probability": 0.0132 + }, + { + "start": 36267.02, + "end": 36268.84, + "probability": 0.1057 + }, + { + "start": 36269.08, + "end": 36270.62, + "probability": 0.8388 + }, + { + "start": 36271.78, + "end": 36272.62, + "probability": 0.8188 + }, + { + "start": 36274.06, + "end": 36274.72, + "probability": 0.9235 + }, + { + "start": 36275.12, + "end": 36276.06, + "probability": 0.9264 + }, + { + "start": 36276.56, + "end": 36281.54, + "probability": 0.843 + }, + { + "start": 36282.2, + "end": 36284.82, + "probability": 0.7139 + }, + { + "start": 36284.94, + "end": 36285.56, + "probability": 0.7902 + }, + { + "start": 36285.68, + "end": 36288.46, + "probability": 0.9127 + }, + { + "start": 36289.16, + "end": 36290.86, + "probability": 0.1346 + }, + { + "start": 36290.98, + "end": 36291.6, + "probability": 0.8557 + }, + { + "start": 36292.08, + "end": 36292.76, + "probability": 0.2842 + }, + { + "start": 36293.12, + "end": 36296.54, + "probability": 0.5019 + }, + { + "start": 36296.66, + "end": 36297.04, + "probability": 0.2058 + }, + { + "start": 36297.04, + "end": 36298.12, + "probability": 0.7555 + }, + { + "start": 36298.6, + "end": 36301.26, + "probability": 0.651 + }, + { + "start": 36301.66, + "end": 36302.3, + "probability": 0.3693 + }, + { + "start": 36302.52, + "end": 36303.86, + "probability": 0.4892 + }, + { + "start": 36303.9, + "end": 36306.36, + "probability": 0.7081 + }, + { + "start": 36306.52, + "end": 36306.94, + "probability": 0.3389 + }, + { + "start": 36308.48, + "end": 36308.86, + "probability": 0.744 + }, + { + "start": 36310.14, + "end": 36311.58, + "probability": 0.2902 + }, + { + "start": 36312.28, + "end": 36315.78, + "probability": 0.0527 + }, + { + "start": 36319.34, + "end": 36322.44, + "probability": 0.5412 + }, + { + "start": 36323.48, + "end": 36324.8, + "probability": 0.7766 + }, + { + "start": 36325.56, + "end": 36326.3, + "probability": 0.644 + }, + { + "start": 36326.4, + "end": 36327.58, + "probability": 0.9878 + }, + { + "start": 36327.82, + "end": 36331.04, + "probability": 0.9733 + }, + { + "start": 36331.08, + "end": 36332.08, + "probability": 0.7521 + }, + { + "start": 36332.64, + "end": 36332.98, + "probability": 0.1615 + }, + { + "start": 36333.18, + "end": 36333.42, + "probability": 0.7651 + }, + { + "start": 36335.2, + "end": 36336.72, + "probability": 0.1712 + }, + { + "start": 36338.64, + "end": 36340.32, + "probability": 0.2021 + }, + { + "start": 36341.86, + "end": 36344.72, + "probability": 0.3548 + }, + { + "start": 36347.3, + "end": 36352.26, + "probability": 0.6715 + }, + { + "start": 36352.98, + "end": 36355.24, + "probability": 0.7719 + }, + { + "start": 36356.6, + "end": 36357.86, + "probability": 0.9121 + }, + { + "start": 36359.48, + "end": 36360.2, + "probability": 0.5576 + }, + { + "start": 36364.36, + "end": 36365.74, + "probability": 0.1096 + }, + { + "start": 36366.5, + "end": 36367.93, + "probability": 0.4997 + }, + { + "start": 36368.2, + "end": 36369.04, + "probability": 0.8339 + }, + { + "start": 36369.8, + "end": 36371.68, + "probability": 0.0145 + }, + { + "start": 36372.3, + "end": 36373.56, + "probability": 0.2057 + }, + { + "start": 36373.96, + "end": 36374.28, + "probability": 0.3358 + }, + { + "start": 36374.6, + "end": 36376.94, + "probability": 0.4456 + }, + { + "start": 36376.96, + "end": 36377.9, + "probability": 0.0359 + }, + { + "start": 36377.9, + "end": 36378.53, + "probability": 0.4322 + }, + { + "start": 36380.8, + "end": 36381.08, + "probability": 0.8801 + }, + { + "start": 36382.1, + "end": 36383.26, + "probability": 0.4859 + }, + { + "start": 36383.98, + "end": 36386.66, + "probability": 0.8821 + }, + { + "start": 36390.08, + "end": 36392.76, + "probability": 0.7924 + }, + { + "start": 36398.88, + "end": 36399.8, + "probability": 0.5263 + }, + { + "start": 36405.9, + "end": 36407.26, + "probability": 0.6862 + }, + { + "start": 36408.34, + "end": 36409.08, + "probability": 0.4568 + }, + { + "start": 36413.42, + "end": 36413.72, + "probability": 0.7417 + }, + { + "start": 36414.24, + "end": 36417.3, + "probability": 0.2871 + }, + { + "start": 36424.4, + "end": 36424.72, + "probability": 0.45 + }, + { + "start": 36426.06, + "end": 36427.18, + "probability": 0.8331 + }, + { + "start": 36428.32, + "end": 36429.2, + "probability": 0.9362 + }, + { + "start": 36431.94, + "end": 36433.08, + "probability": 0.6203 + }, + { + "start": 36434.06, + "end": 36435.34, + "probability": 0.2273 + }, + { + "start": 36437.02, + "end": 36438.2, + "probability": 0.8174 + }, + { + "start": 36440.86, + "end": 36441.28, + "probability": 0.9019 + }, + { + "start": 36442.8, + "end": 36443.16, + "probability": 0.6825 + }, + { + "start": 36444.6, + "end": 36444.98, + "probability": 0.9739 + }, + { + "start": 36446.54, + "end": 36447.58, + "probability": 0.7672 + }, + { + "start": 36448.62, + "end": 36451.88, + "probability": 0.9544 + }, + { + "start": 36460.46, + "end": 36461.5, + "probability": 0.6175 + }, + { + "start": 36462.9, + "end": 36463.4, + "probability": 0.4552 + }, + { + "start": 36465.82, + "end": 36467.18, + "probability": 0.1272 + }, + { + "start": 36469.42, + "end": 36472.1, + "probability": 0.7454 + }, + { + "start": 36474.12, + "end": 36474.42, + "probability": 0.7632 + }, + { + "start": 36476.36, + "end": 36476.66, + "probability": 0.3278 + }, + { + "start": 36489.82, + "end": 36491.46, + "probability": 0.3574 + }, + { + "start": 36492.58, + "end": 36493.48, + "probability": 0.6868 + }, + { + "start": 36494.26, + "end": 36494.76, + "probability": 0.9481 + }, + { + "start": 36496.0, + "end": 36496.94, + "probability": 0.5109 + }, + { + "start": 36498.24, + "end": 36498.72, + "probability": 0.9922 + }, + { + "start": 36500.28, + "end": 36501.0, + "probability": 0.9348 + }, + { + "start": 36502.76, + "end": 36503.24, + "probability": 0.9336 + }, + { + "start": 36504.4, + "end": 36505.28, + "probability": 0.9338 + }, + { + "start": 36506.66, + "end": 36507.2, + "probability": 0.9961 + }, + { + "start": 36508.42, + "end": 36509.31, + "probability": 0.4964 + }, + { + "start": 36510.1, + "end": 36510.58, + "probability": 0.984 + }, + { + "start": 36512.86, + "end": 36513.16, + "probability": 0.8176 + }, + { + "start": 36516.38, + "end": 36519.72, + "probability": 0.1174 + }, + { + "start": 36520.3, + "end": 36521.2, + "probability": 0.8232 + }, + { + "start": 36521.58, + "end": 36524.22, + "probability": 0.0091 + }, + { + "start": 36527.26, + "end": 36530.6, + "probability": 0.7136 + }, + { + "start": 36531.16, + "end": 36531.92, + "probability": 0.4427 + }, + { + "start": 36533.64, + "end": 36538.0, + "probability": 0.7771 + }, + { + "start": 36540.26, + "end": 36540.66, + "probability": 0.8523 + }, + { + "start": 36541.2, + "end": 36541.84, + "probability": 0.7069 + }, + { + "start": 36543.96, + "end": 36544.36, + "probability": 0.9873 + }, + { + "start": 36545.7, + "end": 36546.76, + "probability": 0.8301 + }, + { + "start": 36549.88, + "end": 36553.12, + "probability": 0.5798 + }, + { + "start": 36554.2, + "end": 36555.62, + "probability": 0.048 + }, + { + "start": 36559.1, + "end": 36560.12, + "probability": 0.5007 + }, + { + "start": 36560.12, + "end": 36560.56, + "probability": 0.9322 + }, + { + "start": 36562.52, + "end": 36565.54, + "probability": 0.02 + }, + { + "start": 36566.08, + "end": 36567.12, + "probability": 0.7885 + }, + { + "start": 36569.16, + "end": 36571.9, + "probability": 0.6615 + }, + { + "start": 36572.82, + "end": 36576.36, + "probability": 0.0921 + }, + { + "start": 36576.36, + "end": 36576.72, + "probability": 0.0981 + }, + { + "start": 36576.72, + "end": 36577.32, + "probability": 0.6532 + }, + { + "start": 36578.76, + "end": 36580.0, + "probability": 0.2481 + }, + { + "start": 36580.56, + "end": 36581.92, + "probability": 0.2443 + }, + { + "start": 36582.52, + "end": 36583.1, + "probability": 0.2756 + }, + { + "start": 36583.82, + "end": 36585.94, + "probability": 0.1783 + }, + { + "start": 36589.28, + "end": 36590.22, + "probability": 0.6461 + }, + { + "start": 36591.38, + "end": 36592.12, + "probability": 0.3565 + }, + { + "start": 36602.84, + "end": 36603.78, + "probability": 0.3978 + }, + { + "start": 36604.98, + "end": 36605.98, + "probability": 0.8409 + }, + { + "start": 36607.22, + "end": 36609.78, + "probability": 0.6826 + }, + { + "start": 36611.32, + "end": 36613.0, + "probability": 0.9514 + }, + { + "start": 36614.02, + "end": 36614.38, + "probability": 0.6866 + }, + { + "start": 36615.92, + "end": 36617.72, + "probability": 0.9807 + }, + { + "start": 36618.75, + "end": 36620.82, + "probability": 0.9504 + }, + { + "start": 36621.94, + "end": 36624.52, + "probability": 0.9131 + }, + { + "start": 36625.38, + "end": 36626.04, + "probability": 0.9937 + }, + { + "start": 36627.2, + "end": 36628.58, + "probability": 0.8003 + }, + { + "start": 36629.63, + "end": 36632.86, + "probability": 0.8437 + }, + { + "start": 36634.92, + "end": 36635.18, + "probability": 0.3206 + }, + { + "start": 36640.74, + "end": 36641.7, + "probability": 0.5186 + }, + { + "start": 36642.62, + "end": 36642.84, + "probability": 0.5185 + }, + { + "start": 36644.04, + "end": 36644.54, + "probability": 0.661 + }, + { + "start": 36652.85, + "end": 36657.02, + "probability": 0.5698 + }, + { + "start": 36658.04, + "end": 36660.28, + "probability": 0.7977 + }, + { + "start": 36661.49, + "end": 36663.26, + "probability": 0.632 + }, + { + "start": 36664.98, + "end": 36667.76, + "probability": 0.8875 + }, + { + "start": 36673.62, + "end": 36678.72, + "probability": 0.6675 + }, + { + "start": 36679.76, + "end": 36680.14, + "probability": 0.6805 + }, + { + "start": 36681.62, + "end": 36682.52, + "probability": 0.8475 + }, + { + "start": 36684.24, + "end": 36686.04, + "probability": 0.9294 + }, + { + "start": 36687.21, + "end": 36690.08, + "probability": 0.7925 + }, + { + "start": 36691.14, + "end": 36691.66, + "probability": 0.9619 + }, + { + "start": 36695.96, + "end": 36700.3, + "probability": 0.9396 + }, + { + "start": 36707.8, + "end": 36709.22, + "probability": 0.3575 + }, + { + "start": 36710.8, + "end": 36714.06, + "probability": 0.0219 + }, + { + "start": 36715.2, + "end": 36716.84, + "probability": 0.1119 + }, + { + "start": 36716.92, + "end": 36718.54, + "probability": 0.7858 + }, + { + "start": 36718.58, + "end": 36719.26, + "probability": 0.4814 + }, + { + "start": 36720.22, + "end": 36720.22, + "probability": 0.0217 + }, + { + "start": 36720.22, + "end": 36721.68, + "probability": 0.6516 + }, + { + "start": 36721.86, + "end": 36722.69, + "probability": 0.6453 + }, + { + "start": 36722.8, + "end": 36723.92, + "probability": 0.6711 + }, + { + "start": 36724.36, + "end": 36724.8, + "probability": 0.0711 + }, + { + "start": 36726.22, + "end": 36727.86, + "probability": 0.2294 + }, + { + "start": 36727.92, + "end": 36729.28, + "probability": 0.0497 + }, + { + "start": 36729.54, + "end": 36730.28, + "probability": 0.6833 + }, + { + "start": 36731.6, + "end": 36732.64, + "probability": 0.2531 + }, + { + "start": 36733.6, + "end": 36734.3, + "probability": 0.0802 + }, + { + "start": 36735.76, + "end": 36736.32, + "probability": 0.0992 + }, + { + "start": 36737.08, + "end": 36737.44, + "probability": 0.8356 + }, + { + "start": 36737.72, + "end": 36740.46, + "probability": 0.0092 + }, + { + "start": 36746.04, + "end": 36747.07, + "probability": 0.537 + }, + { + "start": 36749.08, + "end": 36749.62, + "probability": 0.0591 + }, + { + "start": 36749.86, + "end": 36749.92, + "probability": 0.2829 + }, + { + "start": 36749.92, + "end": 36757.26, + "probability": 0.5171 + }, + { + "start": 36759.42, + "end": 36762.56, + "probability": 0.3219 + }, + { + "start": 36763.8, + "end": 36764.78, + "probability": 0.0782 + }, + { + "start": 36767.21, + "end": 36767.4, + "probability": 0.2556 + }, + { + "start": 36767.4, + "end": 36767.4, + "probability": 0.2007 + }, + { + "start": 36767.4, + "end": 36767.52, + "probability": 0.3514 + }, + { + "start": 36767.82, + "end": 36768.28, + "probability": 0.0373 + }, + { + "start": 36768.28, + "end": 36771.2, + "probability": 0.0605 + }, + { + "start": 36772.47, + "end": 36774.4, + "probability": 0.1388 + }, + { + "start": 36774.5, + "end": 36776.26, + "probability": 0.0363 + }, + { + "start": 36776.26, + "end": 36778.02, + "probability": 0.1004 + }, + { + "start": 36778.06, + "end": 36779.89, + "probability": 0.3282 + }, + { + "start": 36782.18, + "end": 36783.1, + "probability": 0.3936 + }, + { + "start": 36784.06, + "end": 36787.44, + "probability": 0.0652 + }, + { + "start": 36789.32, + "end": 36789.32, + "probability": 0.2494 + }, + { + "start": 36789.4, + "end": 36789.4, + "probability": 0.0063 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.0, + "end": 36828.0, + "probability": 0.0 + }, + { + "start": 36828.64, + "end": 36831.52, + "probability": 0.3133 + }, + { + "start": 36833.92, + "end": 36836.54, + "probability": 0.6677 + }, + { + "start": 36838.26, + "end": 36841.04, + "probability": 0.6057 + }, + { + "start": 36841.88, + "end": 36844.14, + "probability": 0.564 + }, + { + "start": 36844.96, + "end": 36846.92, + "probability": 0.5216 + }, + { + "start": 36846.96, + "end": 36854.46, + "probability": 0.2751 + }, + { + "start": 36855.62, + "end": 36855.88, + "probability": 0.9451 + }, + { + "start": 36859.12, + "end": 36860.18, + "probability": 0.7508 + }, + { + "start": 36863.13, + "end": 36873.7, + "probability": 0.9245 + }, + { + "start": 36876.2, + "end": 36877.26, + "probability": 0.6886 + }, + { + "start": 36877.52, + "end": 36877.82, + "probability": 0.2687 + }, + { + "start": 36879.34, + "end": 36879.72, + "probability": 0.4138 + }, + { + "start": 36881.62, + "end": 36885.48, + "probability": 0.9238 + }, + { + "start": 36892.2, + "end": 36893.36, + "probability": 0.116 + }, + { + "start": 36896.36, + "end": 36897.76, + "probability": 0.0687 + }, + { + "start": 36905.1, + "end": 36906.48, + "probability": 0.1581 + }, + { + "start": 36917.98, + "end": 36918.72, + "probability": 0.0557 + }, + { + "start": 36923.12, + "end": 36923.12, + "probability": 0.0469 + }, + { + "start": 37005.2, + "end": 37007.52, + "probability": 0.8022 + }, + { + "start": 37008.28, + "end": 37009.04, + "probability": 0.0837 + }, + { + "start": 37009.7, + "end": 37010.2, + "probability": 0.025 + }, + { + "start": 37010.8, + "end": 37011.7, + "probability": 0.4012 + }, + { + "start": 37012.24, + "end": 37015.5, + "probability": 0.507 + }, + { + "start": 37016.78, + "end": 37020.68, + "probability": 0.9556 + }, + { + "start": 37021.12, + "end": 37023.14, + "probability": 0.8544 + }, + { + "start": 37023.66, + "end": 37024.54, + "probability": 0.6646 + }, + { + "start": 37025.12, + "end": 37028.64, + "probability": 0.6981 + }, + { + "start": 37030.68, + "end": 37031.26, + "probability": 0.4971 + }, + { + "start": 37052.64, + "end": 37053.4, + "probability": 0.6774 + }, + { + "start": 37054.99, + "end": 37057.06, + "probability": 0.9771 + }, + { + "start": 37057.44, + "end": 37058.56, + "probability": 0.4767 + }, + { + "start": 37063.02, + "end": 37065.8, + "probability": 0.6909 + }, + { + "start": 37066.94, + "end": 37067.5, + "probability": 0.9792 + }, + { + "start": 37069.02, + "end": 37070.27, + "probability": 0.7162 + }, + { + "start": 37070.82, + "end": 37073.12, + "probability": 0.9635 + }, + { + "start": 37074.13, + "end": 37076.06, + "probability": 0.9744 + }, + { + "start": 37077.22, + "end": 37077.62, + "probability": 0.2289 + }, + { + "start": 37078.56, + "end": 37079.48, + "probability": 0.7575 + }, + { + "start": 37080.74, + "end": 37081.16, + "probability": 0.9979 + }, + { + "start": 37082.14, + "end": 37082.96, + "probability": 0.9373 + }, + { + "start": 37083.76, + "end": 37086.08, + "probability": 0.9314 + }, + { + "start": 37087.94, + "end": 37090.66, + "probability": 0.6916 + }, + { + "start": 37092.48, + "end": 37093.02, + "probability": 0.6962 + }, + { + "start": 37093.86, + "end": 37094.74, + "probability": 0.7406 + }, + { + "start": 37096.32, + "end": 37096.84, + "probability": 0.9834 + }, + { + "start": 37097.6, + "end": 37098.74, + "probability": 0.9573 + }, + { + "start": 37099.94, + "end": 37100.48, + "probability": 0.9932 + }, + { + "start": 37101.56, + "end": 37102.96, + "probability": 0.9884 + }, + { + "start": 37103.82, + "end": 37106.02, + "probability": 0.9794 + }, + { + "start": 37106.7, + "end": 37107.24, + "probability": 0.937 + }, + { + "start": 37108.16, + "end": 37108.94, + "probability": 0.9835 + }, + { + "start": 37109.8, + "end": 37110.22, + "probability": 0.9827 + }, + { + "start": 37111.12, + "end": 37111.9, + "probability": 0.9905 + }, + { + "start": 37112.76, + "end": 37113.28, + "probability": 0.8994 + }, + { + "start": 37114.79, + "end": 37116.32, + "probability": 0.9316 + }, + { + "start": 37116.88, + "end": 37117.28, + "probability": 0.9778 + }, + { + "start": 37118.16, + "end": 37118.48, + "probability": 0.753 + }, + { + "start": 37120.3, + "end": 37120.78, + "probability": 0.737 + }, + { + "start": 37121.64, + "end": 37122.7, + "probability": 0.8033 + }, + { + "start": 37123.58, + "end": 37124.0, + "probability": 0.6884 + }, + { + "start": 37125.94, + "end": 37126.74, + "probability": 0.9638 + }, + { + "start": 37128.18, + "end": 37128.6, + "probability": 0.9746 + }, + { + "start": 37129.56, + "end": 37130.28, + "probability": 0.9164 + }, + { + "start": 37133.52, + "end": 37135.88, + "probability": 0.9882 + }, + { + "start": 37136.82, + "end": 37137.28, + "probability": 0.9699 + }, + { + "start": 37138.16, + "end": 37139.1, + "probability": 0.9764 + }, + { + "start": 37140.14, + "end": 37140.66, + "probability": 0.9455 + }, + { + "start": 37141.62, + "end": 37142.54, + "probability": 0.9464 + }, + { + "start": 37146.71, + "end": 37148.31, + "probability": 0.0124 + }, + { + "start": 37153.94, + "end": 37154.72, + "probability": 0.6258 + }, + { + "start": 37156.0, + "end": 37156.3, + "probability": 0.9525 + }, + { + "start": 37157.38, + "end": 37158.2, + "probability": 0.816 + }, + { + "start": 37162.66, + "end": 37162.92, + "probability": 0.7603 + }, + { + "start": 37163.62, + "end": 37164.42, + "probability": 0.7386 + }, + { + "start": 37165.52, + "end": 37165.9, + "probability": 0.7515 + }, + { + "start": 37166.92, + "end": 37167.64, + "probability": 0.8844 + }, + { + "start": 37169.24, + "end": 37169.66, + "probability": 0.909 + }, + { + "start": 37171.14, + "end": 37172.16, + "probability": 0.9319 + }, + { + "start": 37173.44, + "end": 37173.88, + "probability": 0.9514 + }, + { + "start": 37174.84, + "end": 37175.16, + "probability": 0.9713 + }, + { + "start": 37176.56, + "end": 37177.04, + "probability": 0.803 + }, + { + "start": 37178.02, + "end": 37178.78, + "probability": 0.9295 + }, + { + "start": 37180.66, + "end": 37181.16, + "probability": 0.9886 + }, + { + "start": 37182.02, + "end": 37183.06, + "probability": 0.8357 + }, + { + "start": 37184.4, + "end": 37184.84, + "probability": 0.9915 + }, + { + "start": 37186.54, + "end": 37187.46, + "probability": 0.9807 + }, + { + "start": 37188.96, + "end": 37189.24, + "probability": 0.5172 + }, + { + "start": 37192.08, + "end": 37192.9, + "probability": 0.5807 + }, + { + "start": 37194.04, + "end": 37194.48, + "probability": 0.9329 + }, + { + "start": 37195.66, + "end": 37196.68, + "probability": 0.749 + }, + { + "start": 37197.4, + "end": 37197.84, + "probability": 0.9902 + }, + { + "start": 37198.74, + "end": 37199.56, + "probability": 0.9647 + }, + { + "start": 37200.5, + "end": 37203.1, + "probability": 0.8001 + }, + { + "start": 37204.06, + "end": 37204.54, + "probability": 0.9933 + }, + { + "start": 37205.24, + "end": 37206.32, + "probability": 0.9373 + }, + { + "start": 37207.44, + "end": 37207.92, + "probability": 0.9958 + }, + { + "start": 37209.12, + "end": 37209.78, + "probability": 0.9775 + }, + { + "start": 37210.5, + "end": 37210.92, + "probability": 0.9929 + }, + { + "start": 37211.78, + "end": 37212.76, + "probability": 0.7959 + }, + { + "start": 37215.78, + "end": 37216.16, + "probability": 0.7619 + }, + { + "start": 37217.74, + "end": 37218.52, + "probability": 0.181 + }, + { + "start": 37221.3, + "end": 37222.42, + "probability": 0.5315 + }, + { + "start": 37224.0, + "end": 37225.06, + "probability": 0.832 + }, + { + "start": 37226.12, + "end": 37226.68, + "probability": 0.887 + }, + { + "start": 37227.38, + "end": 37228.76, + "probability": 0.9238 + }, + { + "start": 37230.02, + "end": 37230.5, + "probability": 0.9387 + }, + { + "start": 37231.64, + "end": 37232.88, + "probability": 0.9585 + }, + { + "start": 37233.98, + "end": 37234.52, + "probability": 0.9748 + }, + { + "start": 37235.36, + "end": 37236.68, + "probability": 0.7431 + }, + { + "start": 37237.46, + "end": 37237.96, + "probability": 0.8628 + }, + { + "start": 37238.94, + "end": 37239.48, + "probability": 0.4902 + }, + { + "start": 37242.18, + "end": 37242.58, + "probability": 0.9897 + }, + { + "start": 37244.22, + "end": 37245.22, + "probability": 0.6598 + }, + { + "start": 37245.76, + "end": 37246.08, + "probability": 0.907 + }, + { + "start": 37246.9, + "end": 37247.76, + "probability": 0.7182 + }, + { + "start": 37248.66, + "end": 37250.86, + "probability": 0.9743 + }, + { + "start": 37253.12, + "end": 37253.64, + "probability": 0.9771 + }, + { + "start": 37254.6, + "end": 37255.38, + "probability": 0.9125 + }, + { + "start": 37258.86, + "end": 37261.98, + "probability": 0.9031 + }, + { + "start": 37262.96, + "end": 37263.44, + "probability": 0.9653 + }, + { + "start": 37264.98, + "end": 37266.24, + "probability": 0.9661 + }, + { + "start": 37267.38, + "end": 37267.82, + "probability": 0.9951 + }, + { + "start": 37268.58, + "end": 37269.46, + "probability": 0.9871 + }, + { + "start": 37272.7, + "end": 37272.98, + "probability": 0.697 + }, + { + "start": 37274.0, + "end": 37274.74, + "probability": 0.7302 + }, + { + "start": 37275.74, + "end": 37276.08, + "probability": 0.5831 + }, + { + "start": 37276.96, + "end": 37277.86, + "probability": 0.8444 + }, + { + "start": 37279.12, + "end": 37279.56, + "probability": 0.9836 + }, + { + "start": 37280.46, + "end": 37281.34, + "probability": 0.9522 + }, + { + "start": 37282.48, + "end": 37282.98, + "probability": 0.9199 + }, + { + "start": 37283.94, + "end": 37284.5, + "probability": 0.9478 + }, + { + "start": 37285.84, + "end": 37286.4, + "probability": 0.9325 + }, + { + "start": 37287.2, + "end": 37287.98, + "probability": 0.9937 + }, + { + "start": 37288.94, + "end": 37289.42, + "probability": 0.9844 + }, + { + "start": 37290.46, + "end": 37291.2, + "probability": 0.996 + }, + { + "start": 37292.08, + "end": 37292.52, + "probability": 0.9635 + }, + { + "start": 37293.26, + "end": 37293.92, + "probability": 0.991 + }, + { + "start": 37294.7, + "end": 37295.7, + "probability": 0.937 + }, + { + "start": 37296.56, + "end": 37297.66, + "probability": 0.5674 + }, + { + "start": 37298.5, + "end": 37298.86, + "probability": 0.9885 + }, + { + "start": 37299.84, + "end": 37300.46, + "probability": 0.859 + }, + { + "start": 37301.52, + "end": 37301.74, + "probability": 0.5449 + }, + { + "start": 37302.72, + "end": 37303.96, + "probability": 0.8559 + }, + { + "start": 37307.3, + "end": 37307.84, + "probability": 0.951 + }, + { + "start": 37309.0, + "end": 37309.9, + "probability": 0.9291 + }, + { + "start": 37311.08, + "end": 37313.52, + "probability": 0.9825 + }, + { + "start": 37315.2, + "end": 37316.88, + "probability": 0.9718 + }, + { + "start": 37318.34, + "end": 37318.84, + "probability": 0.911 + }, + { + "start": 37319.76, + "end": 37320.68, + "probability": 0.987 + }, + { + "start": 37322.08, + "end": 37322.58, + "probability": 0.9485 + }, + { + "start": 37329.32, + "end": 37330.12, + "probability": 0.6997 + }, + { + "start": 37331.58, + "end": 37334.34, + "probability": 0.5178 + }, + { + "start": 37335.56, + "end": 37336.72, + "probability": 0.9724 + }, + { + "start": 37337.9, + "end": 37340.38, + "probability": 0.8239 + }, + { + "start": 37342.58, + "end": 37344.94, + "probability": 0.8892 + }, + { + "start": 37350.0, + "end": 37350.3, + "probability": 0.7607 + }, + { + "start": 37351.44, + "end": 37352.32, + "probability": 0.7542 + }, + { + "start": 37353.52, + "end": 37353.98, + "probability": 0.5889 + }, + { + "start": 37355.14, + "end": 37356.28, + "probability": 0.772 + }, + { + "start": 37358.16, + "end": 37360.54, + "probability": 0.9025 + }, + { + "start": 37361.1, + "end": 37363.92, + "probability": 0.9143 + }, + { + "start": 37366.06, + "end": 37366.56, + "probability": 0.9919 + }, + { + "start": 37368.12, + "end": 37368.88, + "probability": 0.9759 + }, + { + "start": 37369.94, + "end": 37370.4, + "probability": 0.9907 + }, + { + "start": 37372.14, + "end": 37372.92, + "probability": 0.9079 + }, + { + "start": 37373.96, + "end": 37374.92, + "probability": 0.243 + }, + { + "start": 37380.54, + "end": 37381.96, + "probability": 0.5581 + }, + { + "start": 37382.98, + "end": 37383.36, + "probability": 0.7094 + }, + { + "start": 37384.9, + "end": 37385.92, + "probability": 0.7763 + }, + { + "start": 37388.86, + "end": 37389.16, + "probability": 0.5126 + }, + { + "start": 37391.34, + "end": 37392.52, + "probability": 0.7943 + }, + { + "start": 37394.86, + "end": 37396.26, + "probability": 0.7942 + }, + { + "start": 37397.6, + "end": 37398.52, + "probability": 0.7893 + }, + { + "start": 37402.2, + "end": 37402.44, + "probability": 0.5812 + }, + { + "start": 37403.32, + "end": 37404.26, + "probability": 0.569 + }, + { + "start": 37405.4, + "end": 37407.56, + "probability": 0.9517 + }, + { + "start": 37409.34, + "end": 37409.8, + "probability": 0.9543 + }, + { + "start": 37410.32, + "end": 37412.76, + "probability": 0.4008 + }, + { + "start": 37416.78, + "end": 37417.74, + "probability": 0.929 + }, + { + "start": 37418.48, + "end": 37419.48, + "probability": 0.8708 + }, + { + "start": 37420.82, + "end": 37423.58, + "probability": 0.7687 + }, + { + "start": 37425.08, + "end": 37425.52, + "probability": 0.9199 + }, + { + "start": 37426.2, + "end": 37427.26, + "probability": 0.8435 + }, + { + "start": 37429.32, + "end": 37430.28, + "probability": 0.5098 + }, + { + "start": 37431.6, + "end": 37432.04, + "probability": 0.9896 + }, + { + "start": 37432.72, + "end": 37433.6, + "probability": 0.9518 + }, + { + "start": 37434.54, + "end": 37435.0, + "probability": 0.9414 + }, + { + "start": 37435.82, + "end": 37436.64, + "probability": 0.9303 + }, + { + "start": 37437.62, + "end": 37438.18, + "probability": 0.9951 + }, + { + "start": 37438.82, + "end": 37439.88, + "probability": 0.7015 + }, + { + "start": 37440.64, + "end": 37441.56, + "probability": 0.9964 + }, + { + "start": 37442.8, + "end": 37443.6, + "probability": 0.987 + }, + { + "start": 37444.62, + "end": 37445.14, + "probability": 0.992 + }, + { + "start": 37445.8, + "end": 37448.2, + "probability": 0.9501 + }, + { + "start": 37449.62, + "end": 37450.42, + "probability": 0.9386 + }, + { + "start": 37452.52, + "end": 37452.98, + "probability": 0.8942 + }, + { + "start": 37453.74, + "end": 37454.22, + "probability": 0.6352 + }, + { + "start": 37455.64, + "end": 37456.0, + "probability": 0.541 + }, + { + "start": 37457.0, + "end": 37457.8, + "probability": 0.7497 + }, + { + "start": 37460.0, + "end": 37460.42, + "probability": 0.9771 + }, + { + "start": 37461.26, + "end": 37462.26, + "probability": 0.8294 + }, + { + "start": 37463.4, + "end": 37463.7, + "probability": 0.9729 + }, + { + "start": 37464.74, + "end": 37465.5, + "probability": 0.9022 + }, + { + "start": 37468.04, + "end": 37470.88, + "probability": 0.9775 + }, + { + "start": 37471.82, + "end": 37472.1, + "probability": 0.979 + }, + { + "start": 37473.04, + "end": 37473.84, + "probability": 0.8799 + }, + { + "start": 37474.86, + "end": 37475.28, + "probability": 0.9735 + }, + { + "start": 37476.12, + "end": 37479.78, + "probability": 0.8569 + }, + { + "start": 37481.06, + "end": 37481.96, + "probability": 0.8889 + }, + { + "start": 37483.98, + "end": 37484.1, + "probability": 0.9888 + }, + { + "start": 37485.32, + "end": 37486.32, + "probability": 0.6983 + }, + { + "start": 37487.22, + "end": 37487.68, + "probability": 0.9092 + }, + { + "start": 37488.44, + "end": 37489.92, + "probability": 0.968 + }, + { + "start": 37490.79, + "end": 37493.36, + "probability": 0.9836 + }, + { + "start": 37494.46, + "end": 37496.18, + "probability": 0.959 + }, + { + "start": 37497.04, + "end": 37499.12, + "probability": 0.9655 + }, + { + "start": 37499.72, + "end": 37500.38, + "probability": 0.9924 + }, + { + "start": 37501.02, + "end": 37502.3, + "probability": 0.8008 + }, + { + "start": 37502.98, + "end": 37503.44, + "probability": 0.991 + }, + { + "start": 37504.1, + "end": 37505.54, + "probability": 0.916 + }, + { + "start": 37506.54, + "end": 37508.32, + "probability": 0.9492 + }, + { + "start": 37509.22, + "end": 37509.48, + "probability": 0.5492 + }, + { + "start": 37510.66, + "end": 37511.58, + "probability": 0.7544 + }, + { + "start": 37512.7, + "end": 37513.12, + "probability": 0.9033 + }, + { + "start": 37513.94, + "end": 37514.74, + "probability": 0.7069 + }, + { + "start": 37518.4, + "end": 37519.0, + "probability": 0.9772 + }, + { + "start": 37519.88, + "end": 37521.0, + "probability": 0.9422 + }, + { + "start": 37521.96, + "end": 37522.46, + "probability": 0.9624 + }, + { + "start": 37523.26, + "end": 37523.86, + "probability": 0.7528 + }, + { + "start": 37525.52, + "end": 37527.1, + "probability": 0.9719 + }, + { + "start": 37527.66, + "end": 37528.74, + "probability": 0.807 + }, + { + "start": 37534.16, + "end": 37534.36, + "probability": 0.5937 + }, + { + "start": 37535.3, + "end": 37536.5, + "probability": 0.5912 + }, + { + "start": 37538.7, + "end": 37539.08, + "probability": 0.8757 + }, + { + "start": 37540.26, + "end": 37541.12, + "probability": 0.7432 + }, + { + "start": 37542.27, + "end": 37544.22, + "probability": 0.8314 + }, + { + "start": 37546.86, + "end": 37548.66, + "probability": 0.6248 + }, + { + "start": 37549.56, + "end": 37550.76, + "probability": 0.5985 + }, + { + "start": 37551.72, + "end": 37552.16, + "probability": 0.8402 + }, + { + "start": 37555.42, + "end": 37557.18, + "probability": 0.7753 + }, + { + "start": 37557.58, + "end": 37558.76, + "probability": 0.5588 + }, + { + "start": 37559.5, + "end": 37560.36, + "probability": 0.1072 + }, + { + "start": 37563.3, + "end": 37564.8, + "probability": 0.6698 + }, + { + "start": 37566.52, + "end": 37569.66, + "probability": 0.6583 + }, + { + "start": 37577.64, + "end": 37583.94, + "probability": 0.8372 + }, + { + "start": 37584.8, + "end": 37584.82, + "probability": 0.3093 + }, + { + "start": 37584.82, + "end": 37585.04, + "probability": 0.1873 + }, + { + "start": 37585.2, + "end": 37585.46, + "probability": 0.7248 + }, + { + "start": 37586.68, + "end": 37588.62, + "probability": 0.7548 + }, + { + "start": 37589.32, + "end": 37590.08, + "probability": 0.6801 + }, + { + "start": 37590.18, + "end": 37590.18, + "probability": 0.2851 + }, + { + "start": 37590.18, + "end": 37593.72, + "probability": 0.9456 + }, + { + "start": 37594.92, + "end": 37596.32, + "probability": 0.6925 + }, + { + "start": 37596.4, + "end": 37597.58, + "probability": 0.6677 + }, + { + "start": 37597.66, + "end": 37598.12, + "probability": 0.8822 + }, + { + "start": 37599.52, + "end": 37599.52, + "probability": 0.4892 + }, + { + "start": 37605.14, + "end": 37606.16, + "probability": 0.3736 + }, + { + "start": 37607.86, + "end": 37609.64, + "probability": 0.0677 + }, + { + "start": 37621.34, + "end": 37623.78, + "probability": 0.1296 + }, + { + "start": 37663.96, + "end": 37664.3, + "probability": 0.0849 + }, + { + "start": 37664.88, + "end": 37666.92, + "probability": 0.0586 + }, + { + "start": 37668.1, + "end": 37670.18, + "probability": 0.107 + }, + { + "start": 37672.26, + "end": 37676.28, + "probability": 0.0189 + }, + { + "start": 37677.64, + "end": 37678.4, + "probability": 0.0429 + }, + { + "start": 37679.59, + "end": 37681.02, + "probability": 0.0352 + }, + { + "start": 37681.36, + "end": 37681.48, + "probability": 0.0016 + }, + { + "start": 37683.2, + "end": 37685.82, + "probability": 0.03 + }, + { + "start": 37686.18, + "end": 37687.33, + "probability": 0.0073 + }, + { + "start": 37717.1, + "end": 37717.16, + "probability": 0.2032 + }, + { + "start": 37717.16, + "end": 37717.68, + "probability": 0.7139 + }, + { + "start": 37718.1, + "end": 37718.56, + "probability": 0.71 + }, + { + "start": 37718.62, + "end": 37723.54, + "probability": 0.8931 + }, + { + "start": 37723.9, + "end": 37725.12, + "probability": 0.7404 + }, + { + "start": 37725.8, + "end": 37728.94, + "probability": 0.9646 + }, + { + "start": 37735.49, + "end": 37743.74, + "probability": 0.0209 + }, + { + "start": 37744.36, + "end": 37745.48, + "probability": 0.0636 + }, + { + "start": 37745.48, + "end": 37746.72, + "probability": 0.017 + }, + { + "start": 37748.24, + "end": 37749.26, + "probability": 0.0231 + }, + { + "start": 37749.28, + "end": 37750.18, + "probability": 0.3419 + }, + { + "start": 37753.66, + "end": 37754.26, + "probability": 0.2245 + }, + { + "start": 37842.0, + "end": 37842.0, + "probability": 0.0 + }, + { + "start": 37842.0, + "end": 37842.0, + "probability": 0.0 + }, + { + "start": 37842.0, + "end": 37842.0, + "probability": 0.0 + }, + { + "start": 37842.0, + "end": 37842.0, + "probability": 0.0 + }, + { + "start": 37842.0, + "end": 37842.0, + "probability": 0.0 + }, + { + "start": 37842.0, + "end": 37842.0, + "probability": 0.0 + }, + { + "start": 37842.0, + "end": 37842.0, + "probability": 0.0 + }, + { + "start": 37842.0, + "end": 37842.0, + "probability": 0.0 + }, + { + "start": 37842.08, + "end": 37842.4, + "probability": 0.0219 + }, + { + "start": 37842.4, + "end": 37844.86, + "probability": 0.562 + }, + { + "start": 37846.3, + "end": 37848.32, + "probability": 0.9639 + }, + { + "start": 37848.88, + "end": 37852.08, + "probability": 0.9722 + }, + { + "start": 37853.64, + "end": 37857.26, + "probability": 0.9006 + }, + { + "start": 37858.34, + "end": 37858.96, + "probability": 0.7842 + }, + { + "start": 37859.42, + "end": 37864.62, + "probability": 0.9282 + }, + { + "start": 37865.52, + "end": 37869.0, + "probability": 0.7729 + }, + { + "start": 37869.0, + "end": 37874.12, + "probability": 0.9743 + }, + { + "start": 37874.64, + "end": 37875.86, + "probability": 0.9721 + }, + { + "start": 37876.16, + "end": 37877.18, + "probability": 0.893 + }, + { + "start": 37877.58, + "end": 37882.44, + "probability": 0.9807 + }, + { + "start": 37883.48, + "end": 37885.56, + "probability": 0.9979 + }, + { + "start": 37886.42, + "end": 37889.16, + "probability": 0.9851 + }, + { + "start": 37889.54, + "end": 37890.48, + "probability": 0.9316 + }, + { + "start": 37891.14, + "end": 37895.96, + "probability": 0.9902 + }, + { + "start": 37897.26, + "end": 37899.86, + "probability": 0.79 + }, + { + "start": 37900.44, + "end": 37901.62, + "probability": 0.9429 + }, + { + "start": 37902.08, + "end": 37905.9, + "probability": 0.9931 + }, + { + "start": 37905.9, + "end": 37910.44, + "probability": 0.927 + }, + { + "start": 37910.44, + "end": 37915.74, + "probability": 0.9878 + }, + { + "start": 37916.26, + "end": 37917.62, + "probability": 0.8143 + }, + { + "start": 37918.42, + "end": 37919.44, + "probability": 0.9695 + }, + { + "start": 37920.46, + "end": 37923.84, + "probability": 0.9089 + }, + { + "start": 37925.44, + "end": 37927.8, + "probability": 0.9972 + }, + { + "start": 37928.54, + "end": 37931.16, + "probability": 0.6586 + }, + { + "start": 37931.68, + "end": 37933.18, + "probability": 0.9797 + }, + { + "start": 37934.58, + "end": 37935.54, + "probability": 0.8303 + }, + { + "start": 37935.8, + "end": 37937.12, + "probability": 0.9602 + }, + { + "start": 37937.26, + "end": 37937.98, + "probability": 0.9761 + }, + { + "start": 37938.28, + "end": 37940.32, + "probability": 0.968 + }, + { + "start": 37940.84, + "end": 37944.04, + "probability": 0.8781 + }, + { + "start": 37944.74, + "end": 37946.72, + "probability": 0.9909 + }, + { + "start": 37946.72, + "end": 37950.2, + "probability": 0.9856 + }, + { + "start": 37950.84, + "end": 37952.22, + "probability": 0.9764 + }, + { + "start": 37953.54, + "end": 37957.88, + "probability": 0.9971 + }, + { + "start": 37958.08, + "end": 37960.54, + "probability": 0.9933 + }, + { + "start": 37960.72, + "end": 37963.36, + "probability": 0.9919 + }, + { + "start": 37964.38, + "end": 37964.8, + "probability": 0.8824 + }, + { + "start": 37966.04, + "end": 37967.88, + "probability": 0.9986 + }, + { + "start": 37968.14, + "end": 37970.92, + "probability": 0.9953 + }, + { + "start": 37970.92, + "end": 37973.0, + "probability": 0.963 + }, + { + "start": 37974.22, + "end": 37977.46, + "probability": 0.8589 + }, + { + "start": 37977.54, + "end": 37983.82, + "probability": 0.9772 + }, + { + "start": 37984.64, + "end": 37986.22, + "probability": 0.9021 + }, + { + "start": 37986.4, + "end": 37990.18, + "probability": 0.8331 + }, + { + "start": 37990.56, + "end": 37992.06, + "probability": 0.9272 + }, + { + "start": 37993.26, + "end": 37994.44, + "probability": 0.9771 + }, + { + "start": 37995.06, + "end": 37997.34, + "probability": 0.9191 + }, + { + "start": 37997.82, + "end": 38000.14, + "probability": 0.9426 + }, + { + "start": 38000.32, + "end": 38001.5, + "probability": 0.9348 + }, + { + "start": 38002.86, + "end": 38007.56, + "probability": 0.9948 + }, + { + "start": 38008.24, + "end": 38012.0, + "probability": 0.8615 + }, + { + "start": 38012.36, + "end": 38017.44, + "probability": 0.9596 + }, + { + "start": 38018.3, + "end": 38021.8, + "probability": 0.9792 + }, + { + "start": 38022.44, + "end": 38022.74, + "probability": 0.7395 + }, + { + "start": 38022.88, + "end": 38024.86, + "probability": 0.8919 + }, + { + "start": 38024.86, + "end": 38027.44, + "probability": 0.9978 + }, + { + "start": 38027.82, + "end": 38030.68, + "probability": 0.9487 + }, + { + "start": 38031.16, + "end": 38031.44, + "probability": 0.5055 + }, + { + "start": 38031.5, + "end": 38032.76, + "probability": 0.9718 + }, + { + "start": 38032.94, + "end": 38034.88, + "probability": 0.9565 + }, + { + "start": 38036.14, + "end": 38039.14, + "probability": 0.9336 + }, + { + "start": 38039.25, + "end": 38042.26, + "probability": 0.988 + }, + { + "start": 38043.54, + "end": 38046.42, + "probability": 0.9822 + }, + { + "start": 38046.42, + "end": 38050.06, + "probability": 0.9874 + }, + { + "start": 38050.76, + "end": 38052.16, + "probability": 0.9508 + }, + { + "start": 38052.9, + "end": 38055.06, + "probability": 0.9978 + }, + { + "start": 38055.06, + "end": 38058.82, + "probability": 0.8468 + }, + { + "start": 38059.32, + "end": 38064.28, + "probability": 0.9937 + }, + { + "start": 38064.76, + "end": 38065.86, + "probability": 0.9016 + }, + { + "start": 38066.3, + "end": 38068.76, + "probability": 0.9956 + }, + { + "start": 38068.94, + "end": 38069.92, + "probability": 0.8329 + }, + { + "start": 38071.82, + "end": 38074.5, + "probability": 0.8391 + }, + { + "start": 38075.66, + "end": 38079.14, + "probability": 0.7614 + }, + { + "start": 38079.78, + "end": 38081.26, + "probability": 0.9689 + }, + { + "start": 38099.64, + "end": 38099.71, + "probability": 0.1932 + }, + { + "start": 38100.36, + "end": 38104.27, + "probability": 0.075 + }, + { + "start": 38104.3, + "end": 38104.94, + "probability": 0.0247 + }, + { + "start": 38105.86, + "end": 38107.79, + "probability": 0.4459 + }, + { + "start": 38108.42, + "end": 38109.28, + "probability": 0.2021 + }, + { + "start": 38110.44, + "end": 38111.38, + "probability": 0.0446 + }, + { + "start": 38113.38, + "end": 38116.08, + "probability": 0.351 + }, + { + "start": 38119.36, + "end": 38123.68, + "probability": 0.04 + }, + { + "start": 38131.12, + "end": 38131.48, + "probability": 0.2549 + }, + { + "start": 38135.92, + "end": 38139.14, + "probability": 0.7048 + }, + { + "start": 38140.6, + "end": 38141.68, + "probability": 0.6684 + }, + { + "start": 38143.14, + "end": 38145.66, + "probability": 0.999 + }, + { + "start": 38147.16, + "end": 38151.44, + "probability": 0.9103 + }, + { + "start": 38152.46, + "end": 38153.88, + "probability": 0.5555 + }, + { + "start": 38154.6, + "end": 38155.6, + "probability": 0.9785 + }, + { + "start": 38156.86, + "end": 38161.5, + "probability": 0.9938 + }, + { + "start": 38162.64, + "end": 38167.42, + "probability": 0.9969 + }, + { + "start": 38168.5, + "end": 38171.86, + "probability": 0.9979 + }, + { + "start": 38171.86, + "end": 38175.2, + "probability": 0.9957 + }, + { + "start": 38176.58, + "end": 38180.3, + "probability": 0.9793 + }, + { + "start": 38180.6, + "end": 38182.88, + "probability": 0.6896 + }, + { + "start": 38183.54, + "end": 38187.18, + "probability": 0.9786 + }, + { + "start": 38188.18, + "end": 38190.34, + "probability": 0.9907 + }, + { + "start": 38191.08, + "end": 38191.64, + "probability": 0.6261 + }, + { + "start": 38192.36, + "end": 38193.86, + "probability": 0.8007 + }, + { + "start": 38194.56, + "end": 38195.86, + "probability": 0.8768 + }, + { + "start": 38195.94, + "end": 38198.62, + "probability": 0.9924 + }, + { + "start": 38199.62, + "end": 38202.88, + "probability": 0.8782 + }, + { + "start": 38203.9, + "end": 38205.98, + "probability": 0.8058 + }, + { + "start": 38206.94, + "end": 38210.98, + "probability": 0.818 + }, + { + "start": 38212.18, + "end": 38212.86, + "probability": 0.9778 + }, + { + "start": 38213.44, + "end": 38215.7, + "probability": 0.9253 + }, + { + "start": 38217.56, + "end": 38221.84, + "probability": 0.9946 + }, + { + "start": 38222.84, + "end": 38226.1, + "probability": 0.9922 + }, + { + "start": 38226.18, + "end": 38228.16, + "probability": 0.915 + }, + { + "start": 38228.74, + "end": 38232.48, + "probability": 0.9969 + }, + { + "start": 38233.16, + "end": 38236.82, + "probability": 0.9814 + }, + { + "start": 38237.04, + "end": 38238.44, + "probability": 0.9456 + }, + { + "start": 38239.02, + "end": 38240.42, + "probability": 0.8993 + }, + { + "start": 38241.24, + "end": 38242.36, + "probability": 0.9785 + }, + { + "start": 38242.98, + "end": 38244.7, + "probability": 0.9905 + }, + { + "start": 38245.8, + "end": 38250.0, + "probability": 0.9969 + }, + { + "start": 38250.52, + "end": 38253.34, + "probability": 0.9886 + }, + { + "start": 38253.86, + "end": 38258.14, + "probability": 0.9985 + }, + { + "start": 38258.94, + "end": 38262.64, + "probability": 0.9906 + }, + { + "start": 38263.46, + "end": 38266.24, + "probability": 0.9593 + }, + { + "start": 38266.96, + "end": 38273.0, + "probability": 0.9949 + }, + { + "start": 38273.2, + "end": 38273.72, + "probability": 0.5877 + }, + { + "start": 38274.32, + "end": 38275.88, + "probability": 0.9859 + }, + { + "start": 38276.68, + "end": 38280.32, + "probability": 0.9481 + }, + { + "start": 38280.36, + "end": 38284.64, + "probability": 0.9919 + }, + { + "start": 38285.6, + "end": 38287.9, + "probability": 0.9355 + }, + { + "start": 38288.52, + "end": 38291.48, + "probability": 0.9944 + }, + { + "start": 38291.54, + "end": 38294.66, + "probability": 0.992 + }, + { + "start": 38295.36, + "end": 38297.94, + "probability": 0.9205 + }, + { + "start": 38298.12, + "end": 38300.4, + "probability": 0.8281 + }, + { + "start": 38300.62, + "end": 38302.38, + "probability": 0.9812 + }, + { + "start": 38302.86, + "end": 38304.1, + "probability": 0.8235 + }, + { + "start": 38304.24, + "end": 38307.08, + "probability": 0.9919 + }, + { + "start": 38307.62, + "end": 38308.48, + "probability": 0.9846 + }, + { + "start": 38309.22, + "end": 38313.64, + "probability": 0.9919 + }, + { + "start": 38314.2, + "end": 38314.62, + "probability": 0.9779 + }, + { + "start": 38315.24, + "end": 38316.58, + "probability": 0.9928 + }, + { + "start": 38316.84, + "end": 38319.82, + "probability": 0.9963 + }, + { + "start": 38320.72, + "end": 38325.06, + "probability": 0.9951 + }, + { + "start": 38325.66, + "end": 38329.0, + "probability": 0.9924 + }, + { + "start": 38329.56, + "end": 38330.12, + "probability": 0.9694 + }, + { + "start": 38330.64, + "end": 38332.28, + "probability": 0.9874 + }, + { + "start": 38332.64, + "end": 38332.9, + "probability": 0.7444 + }, + { + "start": 38333.4, + "end": 38334.1, + "probability": 0.5777 + }, + { + "start": 38335.1, + "end": 38336.6, + "probability": 0.7349 + }, + { + "start": 38344.74, + "end": 38345.78, + "probability": 0.0328 + }, + { + "start": 38347.81, + "end": 38349.22, + "probability": 0.726 + }, + { + "start": 38353.8, + "end": 38354.6, + "probability": 0.3778 + }, + { + "start": 38355.32, + "end": 38356.14, + "probability": 0.6535 + }, + { + "start": 38362.94, + "end": 38365.64, + "probability": 0.6675 + }, + { + "start": 38366.38, + "end": 38367.24, + "probability": 0.704 + }, + { + "start": 38368.68, + "end": 38370.42, + "probability": 0.3015 + }, + { + "start": 38370.5, + "end": 38371.28, + "probability": 0.8496 + }, + { + "start": 38372.58, + "end": 38373.3, + "probability": 0.2337 + }, + { + "start": 38375.04, + "end": 38375.67, + "probability": 0.7871 + }, + { + "start": 38377.61, + "end": 38380.28, + "probability": 0.9902 + }, + { + "start": 38380.92, + "end": 38383.76, + "probability": 0.1074 + }, + { + "start": 38390.8, + "end": 38392.48, + "probability": 0.9139 + }, + { + "start": 38392.78, + "end": 38396.84, + "probability": 0.8969 + }, + { + "start": 38398.92, + "end": 38400.18, + "probability": 0.8152 + }, + { + "start": 38400.84, + "end": 38402.38, + "probability": 0.8395 + }, + { + "start": 38403.0, + "end": 38404.58, + "probability": 0.5501 + }, + { + "start": 38405.44, + "end": 38408.3, + "probability": 0.9471 + }, + { + "start": 38408.88, + "end": 38409.8, + "probability": 0.7196 + }, + { + "start": 38411.74, + "end": 38412.28, + "probability": 0.9169 + }, + { + "start": 38413.1, + "end": 38413.92, + "probability": 0.7131 + }, + { + "start": 38415.08, + "end": 38415.54, + "probability": 0.5672 + }, + { + "start": 38416.52, + "end": 38418.6, + "probability": 0.5756 + }, + { + "start": 38419.9, + "end": 38420.64, + "probability": 0.8638 + }, + { + "start": 38421.58, + "end": 38422.26, + "probability": 0.9416 + }, + { + "start": 38422.86, + "end": 38423.6, + "probability": 0.933 + }, + { + "start": 38424.58, + "end": 38425.22, + "probability": 0.9503 + }, + { + "start": 38425.8, + "end": 38426.86, + "probability": 0.9722 + }, + { + "start": 38428.4, + "end": 38428.88, + "probability": 0.9822 + }, + { + "start": 38429.66, + "end": 38430.34, + "probability": 0.9202 + }, + { + "start": 38431.12, + "end": 38431.58, + "probability": 0.7375 + }, + { + "start": 38432.28, + "end": 38433.1, + "probability": 0.952 + }, + { + "start": 38433.92, + "end": 38435.32, + "probability": 0.5694 + }, + { + "start": 38464.04, + "end": 38464.56, + "probability": 0.1802 + }, + { + "start": 38466.34, + "end": 38467.14, + "probability": 0.7361 + }, + { + "start": 38468.52, + "end": 38470.18, + "probability": 0.9125 + }, + { + "start": 38472.72, + "end": 38473.96, + "probability": 0.9644 + }, + { + "start": 38476.06, + "end": 38482.18, + "probability": 0.9434 + }, + { + "start": 38482.24, + "end": 38482.94, + "probability": 0.6799 + }, + { + "start": 38484.3, + "end": 38488.6, + "probability": 0.9826 + }, + { + "start": 38489.78, + "end": 38492.26, + "probability": 0.9928 + }, + { + "start": 38493.08, + "end": 38494.52, + "probability": 0.9458 + }, + { + "start": 38495.48, + "end": 38496.4, + "probability": 0.9844 + }, + { + "start": 38498.12, + "end": 38499.44, + "probability": 0.8257 + }, + { + "start": 38500.36, + "end": 38504.82, + "probability": 0.9834 + }, + { + "start": 38507.62, + "end": 38508.9, + "probability": 0.5191 + }, + { + "start": 38510.76, + "end": 38513.68, + "probability": 0.9565 + }, + { + "start": 38514.28, + "end": 38516.96, + "probability": 0.999 + }, + { + "start": 38518.1, + "end": 38519.32, + "probability": 0.9996 + }, + { + "start": 38520.32, + "end": 38521.7, + "probability": 0.9893 + }, + { + "start": 38522.98, + "end": 38525.16, + "probability": 0.9935 + }, + { + "start": 38526.06, + "end": 38527.8, + "probability": 0.9992 + }, + { + "start": 38529.44, + "end": 38530.36, + "probability": 0.7646 + }, + { + "start": 38530.5, + "end": 38530.88, + "probability": 0.4739 + }, + { + "start": 38531.1, + "end": 38532.54, + "probability": 0.9756 + }, + { + "start": 38534.0, + "end": 38535.2, + "probability": 0.9556 + }, + { + "start": 38536.14, + "end": 38537.54, + "probability": 0.9946 + }, + { + "start": 38538.44, + "end": 38539.6, + "probability": 0.9961 + }, + { + "start": 38540.24, + "end": 38541.52, + "probability": 0.9988 + }, + { + "start": 38542.14, + "end": 38542.96, + "probability": 0.8244 + }, + { + "start": 38544.14, + "end": 38548.42, + "probability": 0.9976 + }, + { + "start": 38550.14, + "end": 38551.34, + "probability": 0.7406 + }, + { + "start": 38552.0, + "end": 38553.64, + "probability": 0.986 + }, + { + "start": 38554.32, + "end": 38556.12, + "probability": 0.8829 + }, + { + "start": 38557.3, + "end": 38558.3, + "probability": 0.7501 + }, + { + "start": 38559.38, + "end": 38560.36, + "probability": 0.8544 + }, + { + "start": 38561.32, + "end": 38562.22, + "probability": 0.6748 + }, + { + "start": 38562.86, + "end": 38566.46, + "probability": 0.9846 + }, + { + "start": 38567.68, + "end": 38568.8, + "probability": 0.983 + }, + { + "start": 38570.54, + "end": 38571.9, + "probability": 0.9295 + }, + { + "start": 38572.92, + "end": 38574.46, + "probability": 0.9849 + }, + { + "start": 38575.76, + "end": 38579.12, + "probability": 0.9691 + }, + { + "start": 38579.74, + "end": 38581.18, + "probability": 0.7688 + }, + { + "start": 38581.9, + "end": 38582.84, + "probability": 0.7052 + }, + { + "start": 38584.12, + "end": 38585.58, + "probability": 0.9863 + }, + { + "start": 38586.56, + "end": 38591.84, + "probability": 0.8432 + }, + { + "start": 38592.68, + "end": 38594.78, + "probability": 0.9657 + }, + { + "start": 38595.58, + "end": 38597.5, + "probability": 0.9956 + }, + { + "start": 38598.28, + "end": 38598.88, + "probability": 0.5617 + }, + { + "start": 38599.44, + "end": 38600.92, + "probability": 0.8666 + }, + { + "start": 38601.14, + "end": 38603.24, + "probability": 0.9312 + }, + { + "start": 38603.96, + "end": 38607.62, + "probability": 0.9587 + }, + { + "start": 38609.2, + "end": 38611.42, + "probability": 0.8999 + }, + { + "start": 38612.0, + "end": 38613.94, + "probability": 0.9798 + }, + { + "start": 38614.52, + "end": 38616.26, + "probability": 0.983 + }, + { + "start": 38617.44, + "end": 38618.88, + "probability": 0.9889 + }, + { + "start": 38619.92, + "end": 38622.04, + "probability": 0.9916 + }, + { + "start": 38623.54, + "end": 38625.24, + "probability": 0.9853 + }, + { + "start": 38627.24, + "end": 38629.46, + "probability": 0.9642 + }, + { + "start": 38629.64, + "end": 38633.14, + "probability": 0.9963 + }, + { + "start": 38634.54, + "end": 38635.74, + "probability": 0.9961 + }, + { + "start": 38637.6, + "end": 38639.56, + "probability": 0.9586 + }, + { + "start": 38640.22, + "end": 38641.48, + "probability": 0.9717 + }, + { + "start": 38642.78, + "end": 38645.34, + "probability": 0.8291 + }, + { + "start": 38646.58, + "end": 38649.18, + "probability": 0.9964 + }, + { + "start": 38649.28, + "end": 38649.86, + "probability": 0.7682 + }, + { + "start": 38651.38, + "end": 38653.48, + "probability": 0.9805 + }, + { + "start": 38654.12, + "end": 38655.5, + "probability": 0.9985 + }, + { + "start": 38656.14, + "end": 38657.48, + "probability": 0.6825 + }, + { + "start": 38657.92, + "end": 38658.6, + "probability": 0.6938 + }, + { + "start": 38659.94, + "end": 38663.94, + "probability": 0.5721 + }, + { + "start": 38665.14, + "end": 38665.9, + "probability": 0.6638 + }, + { + "start": 38667.4, + "end": 38668.48, + "probability": 0.7101 + }, + { + "start": 38669.78, + "end": 38671.72, + "probability": 0.6687 + }, + { + "start": 38672.58, + "end": 38673.72, + "probability": 0.6917 + }, + { + "start": 38674.2, + "end": 38675.62, + "probability": 0.988 + }, + { + "start": 38682.5, + "end": 38682.6, + "probability": 0.0185 + }, + { + "start": 38682.6, + "end": 38682.89, + "probability": 0.2738 + }, + { + "start": 38683.12, + "end": 38685.6, + "probability": 0.0259 + }, + { + "start": 38686.32, + "end": 38687.2, + "probability": 0.1076 + }, + { + "start": 38690.14, + "end": 38690.78, + "probability": 0.5115 + }, + { + "start": 38690.86, + "end": 38692.0, + "probability": 0.9114 + }, + { + "start": 38692.88, + "end": 38694.3, + "probability": 0.9106 + }, + { + "start": 38697.28, + "end": 38698.34, + "probability": 0.5209 + }, + { + "start": 38698.7, + "end": 38699.3, + "probability": 0.731 + }, + { + "start": 38699.5, + "end": 38700.56, + "probability": 0.9583 + }, + { + "start": 38701.52, + "end": 38702.52, + "probability": 0.8527 + }, + { + "start": 38703.58, + "end": 38703.98, + "probability": 0.7769 + }, + { + "start": 38704.92, + "end": 38705.66, + "probability": 0.749 + }, + { + "start": 38706.84, + "end": 38707.46, + "probability": 0.6893 + }, + { + "start": 38708.04, + "end": 38708.94, + "probability": 0.4331 + }, + { + "start": 38725.72, + "end": 38726.44, + "probability": 0.168 + }, + { + "start": 38728.3, + "end": 38729.03, + "probability": 0.6136 + }, + { + "start": 38730.49, + "end": 38732.88, + "probability": 0.5436 + }, + { + "start": 38748.68, + "end": 38751.76, + "probability": 0.6514 + }, + { + "start": 38752.8, + "end": 38752.9, + "probability": 0.9268 + }, + { + "start": 38755.94, + "end": 38757.3, + "probability": 0.9933 + }, + { + "start": 38757.4, + "end": 38758.11, + "probability": 0.9777 + }, + { + "start": 38759.26, + "end": 38761.26, + "probability": 0.3959 + }, + { + "start": 38761.28, + "end": 38762.16, + "probability": 0.9409 + }, + { + "start": 38763.3, + "end": 38764.66, + "probability": 0.3372 + }, + { + "start": 38765.24, + "end": 38765.96, + "probability": 0.694 + }, + { + "start": 38766.58, + "end": 38769.45, + "probability": 0.5489 + }, + { + "start": 38770.96, + "end": 38771.96, + "probability": 0.7951 + }, + { + "start": 38773.18, + "end": 38779.78, + "probability": 0.9748 + }, + { + "start": 38781.96, + "end": 38783.24, + "probability": 0.9578 + }, + { + "start": 38786.0, + "end": 38787.76, + "probability": 0.9977 + }, + { + "start": 38789.48, + "end": 38793.58, + "probability": 0.9869 + }, + { + "start": 38794.98, + "end": 38796.46, + "probability": 0.4782 + }, + { + "start": 38798.26, + "end": 38798.66, + "probability": 0.498 + }, + { + "start": 38799.42, + "end": 38800.22, + "probability": 0.5486 + }, + { + "start": 38801.26, + "end": 38804.8, + "probability": 0.9669 + }, + { + "start": 38805.72, + "end": 38806.66, + "probability": 0.9863 + }, + { + "start": 38808.54, + "end": 38808.66, + "probability": 0.6924 + }, + { + "start": 38810.7, + "end": 38812.5, + "probability": 0.6649 + }, + { + "start": 38813.26, + "end": 38814.06, + "probability": 0.6967 + }, + { + "start": 38815.44, + "end": 38816.48, + "probability": 0.7835 + }, + { + "start": 38817.66, + "end": 38818.86, + "probability": 0.7461 + }, + { + "start": 38821.2, + "end": 38824.84, + "probability": 0.9755 + }, + { + "start": 38825.86, + "end": 38827.22, + "probability": 0.9856 + }, + { + "start": 38828.72, + "end": 38829.64, + "probability": 0.6956 + }, + { + "start": 38831.28, + "end": 38837.6, + "probability": 0.9272 + }, + { + "start": 38838.1, + "end": 38840.94, + "probability": 0.7939 + }, + { + "start": 38843.64, + "end": 38844.08, + "probability": 0.5651 + }, + { + "start": 38844.62, + "end": 38846.4, + "probability": 0.7875 + }, + { + "start": 38847.48, + "end": 38851.2, + "probability": 0.6698 + }, + { + "start": 38851.94, + "end": 38853.62, + "probability": 0.7645 + }, + { + "start": 38854.6, + "end": 38857.56, + "probability": 0.0499 + }, + { + "start": 38857.56, + "end": 38857.56, + "probability": 0.1629 + }, + { + "start": 38857.56, + "end": 38858.62, + "probability": 0.4902 + }, + { + "start": 38859.96, + "end": 38862.0, + "probability": 0.7058 + }, + { + "start": 38863.42, + "end": 38864.12, + "probability": 0.8107 + }, + { + "start": 38864.94, + "end": 38866.76, + "probability": 0.9148 + }, + { + "start": 38868.12, + "end": 38869.26, + "probability": 0.8579 + }, + { + "start": 38870.14, + "end": 38871.52, + "probability": 0.9305 + }, + { + "start": 38872.74, + "end": 38877.78, + "probability": 0.698 + }, + { + "start": 38878.66, + "end": 38880.06, + "probability": 0.6787 + }, + { + "start": 38881.44, + "end": 38883.12, + "probability": 0.8839 + }, + { + "start": 38884.54, + "end": 38885.22, + "probability": 0.9392 + }, + { + "start": 38886.08, + "end": 38886.5, + "probability": 0.6301 + }, + { + "start": 38887.76, + "end": 38888.32, + "probability": 0.9436 + }, + { + "start": 38889.44, + "end": 38890.1, + "probability": 0.988 + }, + { + "start": 38890.86, + "end": 38893.92, + "probability": 0.9064 + }, + { + "start": 38894.66, + "end": 38898.17, + "probability": 0.9951 + }, + { + "start": 38899.12, + "end": 38902.86, + "probability": 0.8857 + }, + { + "start": 38903.38, + "end": 38908.72, + "probability": 0.7938 + }, + { + "start": 38909.4, + "end": 38912.82, + "probability": 0.98 + }, + { + "start": 38913.68, + "end": 38915.74, + "probability": 0.9814 + }, + { + "start": 38917.14, + "end": 38917.56, + "probability": 0.9767 + }, + { + "start": 38918.9, + "end": 38923.32, + "probability": 0.6487 + }, + { + "start": 38924.02, + "end": 38925.16, + "probability": 0.8397 + }, + { + "start": 38925.22, + "end": 38925.96, + "probability": 0.4749 + }, + { + "start": 38926.16, + "end": 38927.62, + "probability": 0.718 + }, + { + "start": 38928.16, + "end": 38929.72, + "probability": 0.5855 + }, + { + "start": 38931.18, + "end": 38933.54, + "probability": 0.9961 + }, + { + "start": 38934.44, + "end": 38935.94, + "probability": 0.7594 + }, + { + "start": 38936.98, + "end": 38937.42, + "probability": 0.8048 + }, + { + "start": 38938.24, + "end": 38940.42, + "probability": 0.9398 + }, + { + "start": 38940.96, + "end": 38945.9, + "probability": 0.6826 + }, + { + "start": 38946.68, + "end": 38949.83, + "probability": 0.7623 + }, + { + "start": 38951.12, + "end": 38952.38, + "probability": 0.9434 + }, + { + "start": 38953.86, + "end": 38955.52, + "probability": 0.8919 + }, + { + "start": 38956.6, + "end": 38958.16, + "probability": 0.9541 + }, + { + "start": 38958.34, + "end": 38958.83, + "probability": 0.9263 + }, + { + "start": 38959.98, + "end": 38961.2, + "probability": 0.7892 + }, + { + "start": 38961.98, + "end": 38963.98, + "probability": 0.9755 + }, + { + "start": 38965.3, + "end": 38968.06, + "probability": 0.9332 + }, + { + "start": 38969.5, + "end": 38971.68, + "probability": 0.6912 + }, + { + "start": 38972.96, + "end": 38973.44, + "probability": 0.5102 + }, + { + "start": 38974.34, + "end": 38977.04, + "probability": 0.6715 + }, + { + "start": 38980.58, + "end": 38982.4, + "probability": 0.6662 + }, + { + "start": 38982.92, + "end": 38984.84, + "probability": 0.9458 + }, + { + "start": 38986.04, + "end": 38987.66, + "probability": 0.988 + }, + { + "start": 38988.46, + "end": 38994.34, + "probability": 0.9593 + }, + { + "start": 38995.74, + "end": 38996.48, + "probability": 0.8273 + }, + { + "start": 38997.7, + "end": 39000.92, + "probability": 0.8748 + }, + { + "start": 39002.28, + "end": 39004.42, + "probability": 0.4998 + }, + { + "start": 39005.82, + "end": 39007.22, + "probability": 0.6679 + }, + { + "start": 39008.6, + "end": 39012.3, + "probability": 0.9868 + }, + { + "start": 39012.48, + "end": 39014.7, + "probability": 0.5134 + }, + { + "start": 39016.08, + "end": 39018.36, + "probability": 0.9948 + }, + { + "start": 39019.08, + "end": 39019.72, + "probability": 0.7296 + }, + { + "start": 39020.46, + "end": 39023.52, + "probability": 0.7676 + }, + { + "start": 39023.58, + "end": 39024.39, + "probability": 0.9025 + }, + { + "start": 39025.04, + "end": 39026.04, + "probability": 0.6912 + }, + { + "start": 39026.96, + "end": 39028.0, + "probability": 0.9308 + }, + { + "start": 39028.82, + "end": 39029.98, + "probability": 0.97 + }, + { + "start": 39030.72, + "end": 39035.3, + "probability": 0.9331 + }, + { + "start": 39036.18, + "end": 39037.34, + "probability": 0.9854 + }, + { + "start": 39038.02, + "end": 39039.9, + "probability": 0.5721 + }, + { + "start": 39040.56, + "end": 39040.8, + "probability": 0.743 + }, + { + "start": 39043.24, + "end": 39044.22, + "probability": 0.7621 + }, + { + "start": 39045.24, + "end": 39045.86, + "probability": 0.9281 + }, + { + "start": 39046.5, + "end": 39048.46, + "probability": 0.7361 + }, + { + "start": 39049.52, + "end": 39051.94, + "probability": 0.9919 + }, + { + "start": 39052.52, + "end": 39053.6, + "probability": 0.9832 + }, + { + "start": 39056.66, + "end": 39057.26, + "probability": 0.5962 + }, + { + "start": 39058.24, + "end": 39058.54, + "probability": 0.3119 + }, + { + "start": 39059.0, + "end": 39060.66, + "probability": 0.8137 + }, + { + "start": 39061.1, + "end": 39063.72, + "probability": 0.8429 + }, + { + "start": 39064.72, + "end": 39066.86, + "probability": 0.9338 + }, + { + "start": 39067.56, + "end": 39067.94, + "probability": 0.9734 + }, + { + "start": 39069.08, + "end": 39070.42, + "probability": 0.8715 + }, + { + "start": 39071.32, + "end": 39072.94, + "probability": 0.9906 + }, + { + "start": 39075.12, + "end": 39078.42, + "probability": 0.0347 + }, + { + "start": 39079.6, + "end": 39082.0, + "probability": 0.0203 + }, + { + "start": 39083.04, + "end": 39084.64, + "probability": 0.1039 + }, + { + "start": 39084.97, + "end": 39085.56, + "probability": 0.0566 + }, + { + "start": 39085.56, + "end": 39086.54, + "probability": 0.2078 + }, + { + "start": 39087.8, + "end": 39090.3, + "probability": 0.365 + }, + { + "start": 39090.3, + "end": 39095.68, + "probability": 0.1341 + }, + { + "start": 39095.68, + "end": 39098.06, + "probability": 0.0387 + }, + { + "start": 39100.02, + "end": 39100.16, + "probability": 0.0306 + }, + { + "start": 39102.84, + "end": 39106.02, + "probability": 0.1239 + }, + { + "start": 39107.63, + "end": 39111.52, + "probability": 0.0763 + }, + { + "start": 39112.62, + "end": 39114.62, + "probability": 0.1253 + }, + { + "start": 39115.58, + "end": 39119.26, + "probability": 0.1126 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.0, + "end": 39234.0, + "probability": 0.0 + }, + { + "start": 39234.24, + "end": 39234.78, + "probability": 0.0085 + }, + { + "start": 39234.78, + "end": 39234.78, + "probability": 0.1674 + }, + { + "start": 39234.78, + "end": 39234.78, + "probability": 0.2067 + }, + { + "start": 39234.78, + "end": 39234.78, + "probability": 0.098 + }, + { + "start": 39234.78, + "end": 39234.78, + "probability": 0.091 + }, + { + "start": 39234.78, + "end": 39238.1, + "probability": 0.1172 + }, + { + "start": 39238.24, + "end": 39242.78, + "probability": 0.8986 + }, + { + "start": 39244.02, + "end": 39249.58, + "probability": 0.9945 + }, + { + "start": 39252.22, + "end": 39253.52, + "probability": 0.3613 + }, + { + "start": 39254.88, + "end": 39255.56, + "probability": 0.3874 + }, + { + "start": 39255.7, + "end": 39257.34, + "probability": 0.7874 + }, + { + "start": 39258.1, + "end": 39258.48, + "probability": 0.2649 + }, + { + "start": 39258.5, + "end": 39258.98, + "probability": 0.329 + }, + { + "start": 39259.14, + "end": 39260.98, + "probability": 0.8953 + }, + { + "start": 39261.94, + "end": 39262.82, + "probability": 0.9431 + }, + { + "start": 39265.54, + "end": 39269.1, + "probability": 0.9929 + }, + { + "start": 39269.8, + "end": 39275.18, + "probability": 0.8351 + }, + { + "start": 39275.92, + "end": 39277.02, + "probability": 0.5269 + }, + { + "start": 39278.5, + "end": 39283.16, + "probability": 0.9531 + }, + { + "start": 39284.08, + "end": 39286.08, + "probability": 0.8278 + }, + { + "start": 39286.7, + "end": 39288.44, + "probability": 0.9556 + }, + { + "start": 39289.02, + "end": 39290.44, + "probability": 0.3688 + }, + { + "start": 39291.4, + "end": 39293.72, + "probability": 0.8647 + }, + { + "start": 39294.36, + "end": 39295.34, + "probability": 0.5961 + }, + { + "start": 39296.06, + "end": 39301.56, + "probability": 0.9974 + }, + { + "start": 39302.08, + "end": 39303.88, + "probability": 0.8435 + }, + { + "start": 39304.44, + "end": 39304.78, + "probability": 0.8643 + }, + { + "start": 39305.3, + "end": 39308.74, + "probability": 0.8889 + }, + { + "start": 39308.82, + "end": 39311.41, + "probability": 0.7997 + }, + { + "start": 39312.32, + "end": 39319.14, + "probability": 0.9966 + }, + { + "start": 39319.14, + "end": 39324.92, + "probability": 0.9987 + }, + { + "start": 39326.0, + "end": 39327.28, + "probability": 0.8459 + }, + { + "start": 39328.02, + "end": 39330.22, + "probability": 0.6964 + }, + { + "start": 39330.62, + "end": 39331.08, + "probability": 0.87 + }, + { + "start": 39331.68, + "end": 39334.58, + "probability": 0.9727 + }, + { + "start": 39335.46, + "end": 39340.12, + "probability": 0.9985 + }, + { + "start": 39341.36, + "end": 39344.72, + "probability": 0.9905 + }, + { + "start": 39345.24, + "end": 39350.42, + "probability": 0.9928 + }, + { + "start": 39350.88, + "end": 39351.58, + "probability": 0.8137 + }, + { + "start": 39352.84, + "end": 39356.32, + "probability": 0.9933 + }, + { + "start": 39357.08, + "end": 39359.08, + "probability": 0.9559 + }, + { + "start": 39360.42, + "end": 39366.14, + "probability": 0.957 + }, + { + "start": 39366.24, + "end": 39369.4, + "probability": 0.6625 + }, + { + "start": 39370.6, + "end": 39372.18, + "probability": 0.8399 + }, + { + "start": 39372.32, + "end": 39374.78, + "probability": 0.9957 + }, + { + "start": 39375.5, + "end": 39376.12, + "probability": 0.9133 + }, + { + "start": 39376.94, + "end": 39379.8, + "probability": 0.9531 + }, + { + "start": 39380.06, + "end": 39388.1, + "probability": 0.9391 + }, + { + "start": 39388.64, + "end": 39389.96, + "probability": 0.9475 + }, + { + "start": 39391.0, + "end": 39397.14, + "probability": 0.9648 + }, + { + "start": 39398.2, + "end": 39402.1, + "probability": 0.9879 + }, + { + "start": 39402.66, + "end": 39407.4, + "probability": 0.8661 + }, + { + "start": 39408.33, + "end": 39415.28, + "probability": 0.9365 + }, + { + "start": 39415.84, + "end": 39419.18, + "probability": 0.9107 + }, + { + "start": 39419.94, + "end": 39424.52, + "probability": 0.9925 + }, + { + "start": 39425.88, + "end": 39431.62, + "probability": 0.9917 + }, + { + "start": 39431.92, + "end": 39432.3, + "probability": 0.7822 + }, + { + "start": 39432.5, + "end": 39432.76, + "probability": 0.8937 + }, + { + "start": 39433.06, + "end": 39433.32, + "probability": 0.5659 + }, + { + "start": 39434.58, + "end": 39438.6, + "probability": 0.5442 + }, + { + "start": 39439.16, + "end": 39441.42, + "probability": 0.5546 + }, + { + "start": 39441.58, + "end": 39445.36, + "probability": 0.9437 + }, + { + "start": 39445.5, + "end": 39446.48, + "probability": 0.9507 + }, + { + "start": 39447.28, + "end": 39448.5, + "probability": 0.9819 + }, + { + "start": 39449.94, + "end": 39455.56, + "probability": 0.9829 + }, + { + "start": 39456.26, + "end": 39458.14, + "probability": 0.9889 + }, + { + "start": 39458.36, + "end": 39459.1, + "probability": 0.9172 + }, + { + "start": 39459.6, + "end": 39461.72, + "probability": 0.8675 + }, + { + "start": 39462.28, + "end": 39463.74, + "probability": 0.5236 + }, + { + "start": 39464.48, + "end": 39467.6, + "probability": 0.9636 + }, + { + "start": 39467.92, + "end": 39473.68, + "probability": 0.9421 + }, + { + "start": 39474.14, + "end": 39479.44, + "probability": 0.9962 + }, + { + "start": 39480.18, + "end": 39481.7, + "probability": 0.9398 + }, + { + "start": 39482.34, + "end": 39483.22, + "probability": 0.8869 + }, + { + "start": 39483.98, + "end": 39487.84, + "probability": 0.98 + }, + { + "start": 39488.46, + "end": 39489.48, + "probability": 0.8596 + }, + { + "start": 39490.55, + "end": 39494.66, + "probability": 0.9385 + }, + { + "start": 39495.98, + "end": 39497.16, + "probability": 0.8745 + }, + { + "start": 39498.32, + "end": 39499.3, + "probability": 0.5372 + }, + { + "start": 39499.4, + "end": 39500.02, + "probability": 0.868 + }, + { + "start": 39500.62, + "end": 39505.38, + "probability": 0.9956 + }, + { + "start": 39507.48, + "end": 39507.64, + "probability": 0.6439 + }, + { + "start": 39508.78, + "end": 39510.72, + "probability": 0.5366 + }, + { + "start": 39513.4, + "end": 39516.64, + "probability": 0.6838 + }, + { + "start": 39517.2, + "end": 39519.4, + "probability": 0.6477 + }, + { + "start": 39520.06, + "end": 39521.86, + "probability": 0.9658 + }, + { + "start": 39522.44, + "end": 39522.46, + "probability": 0.8843 + }, + { + "start": 39523.68, + "end": 39525.64, + "probability": 0.8127 + }, + { + "start": 39526.6, + "end": 39530.18, + "probability": 0.9722 + }, + { + "start": 39530.32, + "end": 39530.9, + "probability": 0.621 + }, + { + "start": 39531.48, + "end": 39534.72, + "probability": 0.8276 + }, + { + "start": 39535.22, + "end": 39536.62, + "probability": 0.7861 + }, + { + "start": 39538.44, + "end": 39540.04, + "probability": 0.9741 + }, + { + "start": 39546.04, + "end": 39547.67, + "probability": 0.849 + }, + { + "start": 39548.22, + "end": 39548.64, + "probability": 0.7351 + }, + { + "start": 39549.74, + "end": 39550.66, + "probability": 0.7779 + }, + { + "start": 39552.64, + "end": 39553.28, + "probability": 0.9488 + }, + { + "start": 39555.0, + "end": 39555.8, + "probability": 0.9442 + }, + { + "start": 39557.8, + "end": 39558.1, + "probability": 0.957 + }, + { + "start": 39559.4, + "end": 39564.34, + "probability": 0.6992 + }, + { + "start": 39564.8, + "end": 39565.68, + "probability": 0.8772 + }, + { + "start": 39566.84, + "end": 39568.94, + "probability": 0.5665 + }, + { + "start": 39570.88, + "end": 39572.42, + "probability": 0.7352 + }, + { + "start": 39576.76, + "end": 39578.58, + "probability": 0.8615 + }, + { + "start": 39594.4, + "end": 39594.64, + "probability": 0.9729 + }, + { + "start": 39595.46, + "end": 39599.78, + "probability": 0.7425 + }, + { + "start": 39601.7, + "end": 39606.42, + "probability": 0.9627 + }, + { + "start": 39608.0, + "end": 39610.0, + "probability": 0.9417 + }, + { + "start": 39610.56, + "end": 39613.26, + "probability": 0.9291 + }, + { + "start": 39613.94, + "end": 39614.4, + "probability": 0.6265 + }, + { + "start": 39614.46, + "end": 39617.1, + "probability": 0.6727 + }, + { + "start": 39617.26, + "end": 39618.05, + "probability": 0.7072 + }, + { + "start": 39619.0, + "end": 39619.52, + "probability": 0.964 + }, + { + "start": 39620.04, + "end": 39620.84, + "probability": 0.9429 + }, + { + "start": 39622.0, + "end": 39625.72, + "probability": 0.9852 + }, + { + "start": 39626.58, + "end": 39627.84, + "probability": 0.976 + }, + { + "start": 39628.36, + "end": 39631.54, + "probability": 0.7969 + }, + { + "start": 39632.32, + "end": 39633.2, + "probability": 0.9583 + }, + { + "start": 39634.12, + "end": 39638.96, + "probability": 0.848 + }, + { + "start": 39639.58, + "end": 39643.3, + "probability": 0.8525 + }, + { + "start": 39644.94, + "end": 39647.08, + "probability": 0.9948 + }, + { + "start": 39648.58, + "end": 39650.88, + "probability": 0.9694 + }, + { + "start": 39652.0, + "end": 39653.98, + "probability": 0.9939 + }, + { + "start": 39657.56, + "end": 39659.74, + "probability": 0.839 + }, + { + "start": 39661.0, + "end": 39661.76, + "probability": 0.9617 + }, + { + "start": 39663.0, + "end": 39664.28, + "probability": 0.9486 + }, + { + "start": 39664.74, + "end": 39666.22, + "probability": 0.8418 + }, + { + "start": 39666.44, + "end": 39668.96, + "probability": 0.8578 + }, + { + "start": 39669.46, + "end": 39670.78, + "probability": 0.9652 + }, + { + "start": 39671.64, + "end": 39673.81, + "probability": 0.9844 + }, + { + "start": 39674.36, + "end": 39675.72, + "probability": 0.7627 + }, + { + "start": 39676.68, + "end": 39677.16, + "probability": 0.7348 + }, + { + "start": 39677.28, + "end": 39679.02, + "probability": 0.9731 + }, + { + "start": 39679.86, + "end": 39682.32, + "probability": 0.9354 + }, + { + "start": 39682.46, + "end": 39684.84, + "probability": 0.9863 + }, + { + "start": 39685.34, + "end": 39690.4, + "probability": 0.8525 + }, + { + "start": 39691.8, + "end": 39694.42, + "probability": 0.8935 + }, + { + "start": 39695.36, + "end": 39698.32, + "probability": 0.9912 + }, + { + "start": 39699.04, + "end": 39703.22, + "probability": 0.9871 + }, + { + "start": 39703.66, + "end": 39705.9, + "probability": 0.8924 + }, + { + "start": 39707.5, + "end": 39710.22, + "probability": 0.995 + }, + { + "start": 39710.82, + "end": 39715.26, + "probability": 0.7865 + }, + { + "start": 39715.66, + "end": 39717.94, + "probability": 0.9114 + }, + { + "start": 39718.46, + "end": 39719.25, + "probability": 0.981 + }, + { + "start": 39720.16, + "end": 39723.72, + "probability": 0.9729 + }, + { + "start": 39724.18, + "end": 39726.68, + "probability": 0.9817 + }, + { + "start": 39727.24, + "end": 39728.08, + "probability": 0.7253 + }, + { + "start": 39729.1, + "end": 39732.3, + "probability": 0.9951 + }, + { + "start": 39732.3, + "end": 39735.38, + "probability": 0.9819 + }, + { + "start": 39735.9, + "end": 39736.5, + "probability": 0.8502 + }, + { + "start": 39737.28, + "end": 39740.86, + "probability": 0.8075 + }, + { + "start": 39740.98, + "end": 39742.08, + "probability": 0.9338 + }, + { + "start": 39743.22, + "end": 39745.4, + "probability": 0.638 + }, + { + "start": 39746.04, + "end": 39746.94, + "probability": 0.7622 + }, + { + "start": 39747.7, + "end": 39750.56, + "probability": 0.9347 + }, + { + "start": 39751.68, + "end": 39753.06, + "probability": 0.9535 + }, + { + "start": 39753.24, + "end": 39757.22, + "probability": 0.7119 + }, + { + "start": 39757.66, + "end": 39758.46, + "probability": 0.7339 + }, + { + "start": 39759.8, + "end": 39760.84, + "probability": 0.7929 + }, + { + "start": 39761.38, + "end": 39763.04, + "probability": 0.83 + }, + { + "start": 39763.7, + "end": 39765.42, + "probability": 0.7399 + }, + { + "start": 39767.18, + "end": 39770.14, + "probability": 0.9909 + }, + { + "start": 39771.1, + "end": 39773.64, + "probability": 0.9808 + }, + { + "start": 39776.36, + "end": 39779.92, + "probability": 0.9973 + }, + { + "start": 39781.12, + "end": 39783.94, + "probability": 0.9988 + }, + { + "start": 39785.34, + "end": 39788.77, + "probability": 0.9238 + }, + { + "start": 39789.22, + "end": 39793.38, + "probability": 0.8877 + }, + { + "start": 39793.98, + "end": 39795.5, + "probability": 0.9983 + }, + { + "start": 39796.06, + "end": 39797.68, + "probability": 0.8425 + }, + { + "start": 39798.26, + "end": 39799.98, + "probability": 0.9105 + }, + { + "start": 39800.14, + "end": 39800.34, + "probability": 0.6838 + }, + { + "start": 39800.48, + "end": 39804.82, + "probability": 0.8697 + }, + { + "start": 39804.82, + "end": 39806.72, + "probability": 0.851 + }, + { + "start": 39807.22, + "end": 39808.62, + "probability": 0.9155 + }, + { + "start": 39808.82, + "end": 39809.38, + "probability": 0.3568 + }, + { + "start": 39810.8, + "end": 39813.72, + "probability": 0.9845 + }, + { + "start": 39814.54, + "end": 39816.3, + "probability": 0.7035 + }, + { + "start": 39817.62, + "end": 39819.88, + "probability": 0.885 + }, + { + "start": 39819.98, + "end": 39820.98, + "probability": 0.7557 + }, + { + "start": 39821.36, + "end": 39823.32, + "probability": 0.8816 + }, + { + "start": 39825.32, + "end": 39826.96, + "probability": 0.7371 + }, + { + "start": 39827.1, + "end": 39828.0, + "probability": 0.9388 + }, + { + "start": 39828.72, + "end": 39831.46, + "probability": 0.8027 + }, + { + "start": 39832.9, + "end": 39834.08, + "probability": 0.8028 + }, + { + "start": 39839.02, + "end": 39839.66, + "probability": 0.7036 + }, + { + "start": 39841.23, + "end": 39845.64, + "probability": 0.6733 + }, + { + "start": 39846.3, + "end": 39849.54, + "probability": 0.8486 + }, + { + "start": 39851.32, + "end": 39854.46, + "probability": 0.9275 + }, + { + "start": 39857.46, + "end": 39857.82, + "probability": 0.9748 + }, + { + "start": 39858.6, + "end": 39859.32, + "probability": 0.5678 + }, + { + "start": 39860.98, + "end": 39861.22, + "probability": 0.4681 + }, + { + "start": 39861.8, + "end": 39862.48, + "probability": 0.514 + }, + { + "start": 39865.02, + "end": 39865.98, + "probability": 0.6205 + }, + { + "start": 39878.98, + "end": 39880.42, + "probability": 0.7347 + }, + { + "start": 39881.74, + "end": 39884.74, + "probability": 0.8519 + }, + { + "start": 39884.92, + "end": 39885.9, + "probability": 0.7815 + }, + { + "start": 39898.14, + "end": 39899.11, + "probability": 0.8803 + }, + { + "start": 39906.06, + "end": 39906.34, + "probability": 0.628 + }, + { + "start": 39909.86, + "end": 39911.8, + "probability": 0.9664 + }, + { + "start": 39912.56, + "end": 39913.32, + "probability": 0.1711 + }, + { + "start": 39914.32, + "end": 39914.78, + "probability": 0.0865 + }, + { + "start": 39915.0, + "end": 39918.8, + "probability": 0.7189 + }, + { + "start": 39921.44, + "end": 39925.65, + "probability": 0.9841 + }, + { + "start": 39925.74, + "end": 39930.3, + "probability": 0.9966 + }, + { + "start": 39930.3, + "end": 39931.18, + "probability": 0.8212 + }, + { + "start": 39931.36, + "end": 39932.14, + "probability": 0.7181 + }, + { + "start": 39934.62, + "end": 39935.62, + "probability": 0.6525 + }, + { + "start": 39938.04, + "end": 39939.06, + "probability": 0.5856 + }, + { + "start": 39939.38, + "end": 39941.26, + "probability": 0.7801 + }, + { + "start": 39941.26, + "end": 39942.66, + "probability": 0.9699 + }, + { + "start": 39943.06, + "end": 39944.03, + "probability": 0.5477 + }, + { + "start": 39944.56, + "end": 39948.38, + "probability": 0.389 + }, + { + "start": 39948.72, + "end": 39950.76, + "probability": 0.3578 + }, + { + "start": 39951.32, + "end": 39957.8, + "probability": 0.7244 + }, + { + "start": 39958.52, + "end": 39961.38, + "probability": 0.9278 + }, + { + "start": 39962.26, + "end": 39965.1, + "probability": 0.9987 + }, + { + "start": 39966.28, + "end": 39969.96, + "probability": 0.938 + }, + { + "start": 39970.64, + "end": 39972.66, + "probability": 0.9862 + }, + { + "start": 39973.58, + "end": 39975.94, + "probability": 0.9922 + }, + { + "start": 39977.64, + "end": 39981.3, + "probability": 0.9977 + }, + { + "start": 39982.46, + "end": 39983.5, + "probability": 0.943 + }, + { + "start": 39985.32, + "end": 39986.6, + "probability": 0.9227 + }, + { + "start": 39988.12, + "end": 39988.88, + "probability": 0.9206 + }, + { + "start": 39990.5, + "end": 39992.86, + "probability": 0.9968 + }, + { + "start": 39993.64, + "end": 39999.6, + "probability": 0.8017 + }, + { + "start": 40000.68, + "end": 40005.86, + "probability": 0.9434 + }, + { + "start": 40006.44, + "end": 40006.88, + "probability": 0.6826 + }, + { + "start": 40007.42, + "end": 40010.08, + "probability": 0.9974 + }, + { + "start": 40010.62, + "end": 40016.84, + "probability": 0.9867 + }, + { + "start": 40017.32, + "end": 40017.82, + "probability": 0.8634 + }, + { + "start": 40017.96, + "end": 40022.68, + "probability": 0.9967 + }, + { + "start": 40022.68, + "end": 40026.24, + "probability": 0.9982 + }, + { + "start": 40027.2, + "end": 40029.56, + "probability": 0.9991 + }, + { + "start": 40030.44, + "end": 40033.0, + "probability": 0.994 + }, + { + "start": 40033.54, + "end": 40039.28, + "probability": 0.9995 + }, + { + "start": 40039.88, + "end": 40040.52, + "probability": 0.7576 + }, + { + "start": 40041.48, + "end": 40044.54, + "probability": 0.8945 + }, + { + "start": 40046.64, + "end": 40047.54, + "probability": 0.656 + }, + { + "start": 40048.02, + "end": 40053.3, + "probability": 0.5914 + }, + { + "start": 40054.1, + "end": 40055.56, + "probability": 0.7378 + }, + { + "start": 40055.98, + "end": 40057.53, + "probability": 0.9949 + }, + { + "start": 40058.24, + "end": 40066.72, + "probability": 0.97 + }, + { + "start": 40067.88, + "end": 40070.56, + "probability": 0.8992 + }, + { + "start": 40070.8, + "end": 40072.16, + "probability": 0.9731 + }, + { + "start": 40073.5, + "end": 40074.84, + "probability": 0.986 + }, + { + "start": 40075.46, + "end": 40077.98, + "probability": 0.942 + }, + { + "start": 40078.52, + "end": 40082.26, + "probability": 0.9752 + }, + { + "start": 40083.2, + "end": 40083.68, + "probability": 0.5269 + }, + { + "start": 40084.56, + "end": 40086.46, + "probability": 0.9291 + }, + { + "start": 40086.86, + "end": 40088.84, + "probability": 0.973 + }, + { + "start": 40088.98, + "end": 40090.38, + "probability": 0.9851 + }, + { + "start": 40090.58, + "end": 40093.62, + "probability": 0.981 + }, + { + "start": 40095.34, + "end": 40097.0, + "probability": 0.6768 + }, + { + "start": 40097.86, + "end": 40100.24, + "probability": 0.9854 + }, + { + "start": 40100.96, + "end": 40102.88, + "probability": 0.8274 + }, + { + "start": 40104.34, + "end": 40106.1, + "probability": 0.9727 + }, + { + "start": 40107.08, + "end": 40108.14, + "probability": 0.99 + }, + { + "start": 40108.78, + "end": 40115.26, + "probability": 0.9847 + }, + { + "start": 40115.82, + "end": 40119.18, + "probability": 0.9326 + }, + { + "start": 40120.28, + "end": 40122.54, + "probability": 0.9651 + }, + { + "start": 40122.84, + "end": 40123.94, + "probability": 0.6914 + }, + { + "start": 40124.44, + "end": 40127.18, + "probability": 0.9863 + }, + { + "start": 40127.84, + "end": 40130.18, + "probability": 0.98 + }, + { + "start": 40130.6, + "end": 40134.9, + "probability": 0.7121 + }, + { + "start": 40136.14, + "end": 40137.24, + "probability": 0.8556 + }, + { + "start": 40137.96, + "end": 40142.2, + "probability": 0.9487 + }, + { + "start": 40142.24, + "end": 40143.16, + "probability": 0.8689 + }, + { + "start": 40143.54, + "end": 40145.28, + "probability": 0.8254 + }, + { + "start": 40145.4, + "end": 40145.78, + "probability": 0.2685 + }, + { + "start": 40145.78, + "end": 40147.8, + "probability": 0.9922 + }, + { + "start": 40148.1, + "end": 40150.08, + "probability": 0.7755 + }, + { + "start": 40150.7, + "end": 40151.54, + "probability": 0.6735 + }, + { + "start": 40151.7, + "end": 40152.9, + "probability": 0.9756 + }, + { + "start": 40152.94, + "end": 40154.4, + "probability": 0.9626 + }, + { + "start": 40154.62, + "end": 40158.54, + "probability": 0.9567 + }, + { + "start": 40159.08, + "end": 40161.16, + "probability": 0.3297 + }, + { + "start": 40163.8, + "end": 40165.9, + "probability": 0.5358 + }, + { + "start": 40166.84, + "end": 40167.82, + "probability": 0.9519 + }, + { + "start": 40168.0, + "end": 40168.74, + "probability": 0.9341 + }, + { + "start": 40168.9, + "end": 40169.92, + "probability": 0.8687 + }, + { + "start": 40173.26, + "end": 40178.0, + "probability": 0.23 + }, + { + "start": 40179.6, + "end": 40180.88, + "probability": 0.1247 + }, + { + "start": 40181.0, + "end": 40181.88, + "probability": 0.4139 + }, + { + "start": 40182.84, + "end": 40187.62, + "probability": 0.8687 + }, + { + "start": 40188.16, + "end": 40188.6, + "probability": 0.2605 + }, + { + "start": 40190.3, + "end": 40193.7, + "probability": 0.5387 + }, + { + "start": 40193.7, + "end": 40197.26, + "probability": 0.5758 + }, + { + "start": 40198.52, + "end": 40204.48, + "probability": 0.9239 + }, + { + "start": 40205.54, + "end": 40205.74, + "probability": 0.6405 + }, + { + "start": 40205.74, + "end": 40207.16, + "probability": 0.7472 + }, + { + "start": 40207.82, + "end": 40212.22, + "probability": 0.6588 + }, + { + "start": 40213.04, + "end": 40216.74, + "probability": 0.5811 + }, + { + "start": 40217.58, + "end": 40221.8, + "probability": 0.6648 + }, + { + "start": 40222.08, + "end": 40222.54, + "probability": 0.5409 + }, + { + "start": 40223.04, + "end": 40224.9, + "probability": 0.4554 + }, + { + "start": 40225.74, + "end": 40230.12, + "probability": 0.0498 + }, + { + "start": 40230.12, + "end": 40231.28, + "probability": 0.3796 + }, + { + "start": 40231.46, + "end": 40233.26, + "probability": 0.1892 + }, + { + "start": 40233.62, + "end": 40235.38, + "probability": 0.5573 + }, + { + "start": 40236.38, + "end": 40237.6, + "probability": 0.4975 + }, + { + "start": 40237.82, + "end": 40239.27, + "probability": 0.3084 + }, + { + "start": 40240.04, + "end": 40243.2, + "probability": 0.8823 + }, + { + "start": 40243.32, + "end": 40246.14, + "probability": 0.9674 + }, + { + "start": 40246.3, + "end": 40247.8, + "probability": 0.8436 + }, + { + "start": 40248.52, + "end": 40249.16, + "probability": 0.0844 + }, + { + "start": 40249.16, + "end": 40249.23, + "probability": 0.054 + }, + { + "start": 40249.68, + "end": 40250.38, + "probability": 0.533 + }, + { + "start": 40250.54, + "end": 40253.54, + "probability": 0.7552 + }, + { + "start": 40253.94, + "end": 40257.9, + "probability": 0.6236 + }, + { + "start": 40257.94, + "end": 40263.04, + "probability": 0.7785 + }, + { + "start": 40263.16, + "end": 40264.81, + "probability": 0.5831 + }, + { + "start": 40265.86, + "end": 40268.58, + "probability": 0.6647 + }, + { + "start": 40269.44, + "end": 40270.64, + "probability": 0.9746 + }, + { + "start": 40271.52, + "end": 40274.32, + "probability": 0.9437 + }, + { + "start": 40275.16, + "end": 40276.7, + "probability": 0.7504 + }, + { + "start": 40276.96, + "end": 40280.3, + "probability": 0.6834 + }, + { + "start": 40280.48, + "end": 40282.3, + "probability": 0.9031 + }, + { + "start": 40282.82, + "end": 40284.46, + "probability": 0.8901 + }, + { + "start": 40284.82, + "end": 40288.86, + "probability": 0.9517 + }, + { + "start": 40289.36, + "end": 40291.02, + "probability": 0.9814 + }, + { + "start": 40291.72, + "end": 40295.94, + "probability": 0.886 + }, + { + "start": 40295.94, + "end": 40298.2, + "probability": 0.9985 + }, + { + "start": 40298.84, + "end": 40299.78, + "probability": 0.9971 + }, + { + "start": 40300.88, + "end": 40302.84, + "probability": 0.9555 + }, + { + "start": 40303.58, + "end": 40306.05, + "probability": 0.543 + }, + { + "start": 40306.82, + "end": 40311.28, + "probability": 0.9917 + }, + { + "start": 40311.52, + "end": 40315.0, + "probability": 0.9989 + }, + { + "start": 40315.64, + "end": 40319.56, + "probability": 0.9609 + }, + { + "start": 40319.98, + "end": 40322.52, + "probability": 0.9316 + }, + { + "start": 40322.64, + "end": 40324.32, + "probability": 0.4914 + }, + { + "start": 40324.7, + "end": 40325.85, + "probability": 0.934 + }, + { + "start": 40325.96, + "end": 40326.42, + "probability": 0.8771 + }, + { + "start": 40326.5, + "end": 40329.08, + "probability": 0.9782 + }, + { + "start": 40329.56, + "end": 40333.04, + "probability": 0.9961 + }, + { + "start": 40333.22, + "end": 40334.1, + "probability": 0.9564 + }, + { + "start": 40335.94, + "end": 40337.16, + "probability": 0.5375 + }, + { + "start": 40356.04, + "end": 40362.14, + "probability": 0.7221 + }, + { + "start": 40363.22, + "end": 40365.26, + "probability": 0.8835 + }, + { + "start": 40366.46, + "end": 40366.94, + "probability": 0.9707 + }, + { + "start": 40368.3, + "end": 40370.24, + "probability": 0.8416 + }, + { + "start": 40370.86, + "end": 40370.98, + "probability": 0.678 + }, + { + "start": 40371.56, + "end": 40372.6, + "probability": 0.9124 + }, + { + "start": 40373.52, + "end": 40375.38, + "probability": 0.9745 + }, + { + "start": 40376.52, + "end": 40377.28, + "probability": 0.9811 + }, + { + "start": 40378.34, + "end": 40378.94, + "probability": 0.9787 + }, + { + "start": 40379.6, + "end": 40379.96, + "probability": 0.4715 + }, + { + "start": 40380.84, + "end": 40384.36, + "probability": 0.7771 + }, + { + "start": 40387.7, + "end": 40388.3, + "probability": 0.2505 + }, + { + "start": 40389.04, + "end": 40390.12, + "probability": 0.6579 + }, + { + "start": 40392.32, + "end": 40393.62, + "probability": 0.8892 + }, + { + "start": 40394.84, + "end": 40394.94, + "probability": 0.234 + }, + { + "start": 40396.58, + "end": 40397.88, + "probability": 0.6124 + }, + { + "start": 40403.4, + "end": 40403.94, + "probability": 0.5209 + }, + { + "start": 40404.66, + "end": 40406.04, + "probability": 0.1051 + }, + { + "start": 40409.88, + "end": 40409.88, + "probability": 0.0476 + }, + { + "start": 40410.1, + "end": 40410.1, + "probability": 0.0985 + }, + { + "start": 40410.1, + "end": 40410.84, + "probability": 0.06 + }, + { + "start": 40413.06, + "end": 40415.0, + "probability": 0.1902 + }, + { + "start": 40422.45, + "end": 40427.92, + "probability": 0.1126 + }, + { + "start": 40429.18, + "end": 40430.58, + "probability": 0.1213 + }, + { + "start": 40443.74, + "end": 40444.42, + "probability": 0.2795 + }, + { + "start": 40445.94, + "end": 40446.24, + "probability": 0.0409 + }, + { + "start": 40446.74, + "end": 40447.18, + "probability": 0.8587 + }, + { + "start": 40449.86, + "end": 40453.56, + "probability": 0.4617 + }, + { + "start": 40453.84, + "end": 40456.7, + "probability": 0.5871 + }, + { + "start": 40457.47, + "end": 40457.82, + "probability": 0.0788 + }, + { + "start": 40458.02, + "end": 40458.9, + "probability": 0.271 + }, + { + "start": 40459.04, + "end": 40460.16, + "probability": 0.0893 + }, + { + "start": 40460.16, + "end": 40461.55, + "probability": 0.3089 + }, + { + "start": 40464.33, + "end": 40468.5, + "probability": 0.5198 + }, + { + "start": 40470.52, + "end": 40470.96, + "probability": 0.7524 + }, + { + "start": 40473.12, + "end": 40473.58, + "probability": 0.6165 + }, + { + "start": 40474.52, + "end": 40476.36, + "probability": 0.9888 + }, + { + "start": 40476.4, + "end": 40476.98, + "probability": 0.9192 + }, + { + "start": 40477.06, + "end": 40477.8, + "probability": 0.8564 + }, + { + "start": 40478.48, + "end": 40479.92, + "probability": 0.8997 + }, + { + "start": 40481.26, + "end": 40483.26, + "probability": 0.8661 + }, + { + "start": 40484.82, + "end": 40486.4, + "probability": 0.7861 + }, + { + "start": 40488.24, + "end": 40490.78, + "probability": 0.739 + }, + { + "start": 40494.5, + "end": 40497.5, + "probability": 0.8856 + }, + { + "start": 40499.14, + "end": 40500.14, + "probability": 0.8159 + }, + { + "start": 40501.74, + "end": 40504.08, + "probability": 0.9858 + }, + { + "start": 40504.28, + "end": 40505.32, + "probability": 0.8915 + }, + { + "start": 40507.66, + "end": 40510.36, + "probability": 0.9641 + }, + { + "start": 40511.66, + "end": 40514.11, + "probability": 0.9692 + }, + { + "start": 40516.74, + "end": 40517.42, + "probability": 0.8164 + }, + { + "start": 40519.04, + "end": 40520.94, + "probability": 0.9664 + }, + { + "start": 40521.98, + "end": 40523.46, + "probability": 0.9517 + }, + { + "start": 40525.44, + "end": 40525.6, + "probability": 0.2302 + }, + { + "start": 40525.62, + "end": 40525.9, + "probability": 0.6613 + }, + { + "start": 40526.14, + "end": 40527.8, + "probability": 0.6171 + }, + { + "start": 40528.64, + "end": 40530.5, + "probability": 0.5718 + }, + { + "start": 40531.08, + "end": 40531.38, + "probability": 0.6021 + }, + { + "start": 40535.96, + "end": 40541.68, + "probability": 0.3935 + }, + { + "start": 40543.46, + "end": 40547.58, + "probability": 0.4417 + }, + { + "start": 40547.74, + "end": 40549.92, + "probability": 0.0511 + }, + { + "start": 40551.36, + "end": 40552.9, + "probability": 0.2662 + }, + { + "start": 40553.08, + "end": 40557.64, + "probability": 0.6574 + }, + { + "start": 40557.76, + "end": 40558.5, + "probability": 0.6704 + }, + { + "start": 40558.5, + "end": 40559.1, + "probability": 0.7026 + }, + { + "start": 40559.92, + "end": 40561.46, + "probability": 0.761 + }, + { + "start": 40562.82, + "end": 40565.72, + "probability": 0.854 + }, + { + "start": 40566.34, + "end": 40567.36, + "probability": 0.9541 + }, + { + "start": 40569.14, + "end": 40570.54, + "probability": 0.5825 + }, + { + "start": 40571.19, + "end": 40573.34, + "probability": 0.8921 + }, + { + "start": 40574.48, + "end": 40577.8, + "probability": 0.9826 + }, + { + "start": 40578.96, + "end": 40580.06, + "probability": 0.967 + }, + { + "start": 40581.8, + "end": 40582.54, + "probability": 0.9662 + }, + { + "start": 40583.82, + "end": 40584.5, + "probability": 0.9499 + }, + { + "start": 40586.1, + "end": 40587.51, + "probability": 0.9785 + }, + { + "start": 40588.82, + "end": 40590.78, + "probability": 0.977 + }, + { + "start": 40590.88, + "end": 40591.46, + "probability": 0.9596 + }, + { + "start": 40591.5, + "end": 40594.72, + "probability": 0.9846 + }, + { + "start": 40594.72, + "end": 40597.54, + "probability": 0.97 + }, + { + "start": 40601.61, + "end": 40604.58, + "probability": 0.7439 + }, + { + "start": 40605.14, + "end": 40608.08, + "probability": 0.9526 + }, + { + "start": 40608.72, + "end": 40608.76, + "probability": 0.2172 + }, + { + "start": 40608.76, + "end": 40609.84, + "probability": 0.8549 + }, + { + "start": 40610.26, + "end": 40610.86, + "probability": 0.5456 + }, + { + "start": 40611.08, + "end": 40612.8, + "probability": 0.7277 + }, + { + "start": 40613.26, + "end": 40619.64, + "probability": 0.9479 + }, + { + "start": 40619.98, + "end": 40620.5, + "probability": 0.5296 + }, + { + "start": 40620.9, + "end": 40622.42, + "probability": 0.9733 + }, + { + "start": 40622.78, + "end": 40623.86, + "probability": 0.8298 + }, + { + "start": 40623.92, + "end": 40624.38, + "probability": 0.827 + }, + { + "start": 40625.1, + "end": 40625.1, + "probability": 0.0541 + }, + { + "start": 40625.1, + "end": 40626.94, + "probability": 0.6783 + }, + { + "start": 40627.98, + "end": 40628.78, + "probability": 0.8579 + }, + { + "start": 40629.3, + "end": 40630.2, + "probability": 0.9531 + }, + { + "start": 40630.6, + "end": 40631.8, + "probability": 0.994 + }, + { + "start": 40632.66, + "end": 40633.76, + "probability": 0.9977 + }, + { + "start": 40634.32, + "end": 40636.96, + "probability": 0.873 + }, + { + "start": 40637.96, + "end": 40640.86, + "probability": 0.9897 + }, + { + "start": 40642.5, + "end": 40643.14, + "probability": 0.8763 + }, + { + "start": 40643.76, + "end": 40644.68, + "probability": 0.0055 + }, + { + "start": 40645.98, + "end": 40646.16, + "probability": 0.0824 + }, + { + "start": 40646.16, + "end": 40646.16, + "probability": 0.1002 + }, + { + "start": 40646.16, + "end": 40652.52, + "probability": 0.4471 + }, + { + "start": 40653.84, + "end": 40656.26, + "probability": 0.9136 + }, + { + "start": 40656.78, + "end": 40658.8, + "probability": 0.9635 + }, + { + "start": 40658.9, + "end": 40659.66, + "probability": 0.791 + }, + { + "start": 40660.28, + "end": 40664.06, + "probability": 0.8027 + }, + { + "start": 40664.8, + "end": 40667.08, + "probability": 0.4862 + }, + { + "start": 40667.6, + "end": 40669.99, + "probability": 0.5252 + }, + { + "start": 40671.39, + "end": 40673.94, + "probability": 0.3418 + }, + { + "start": 40674.18, + "end": 40676.32, + "probability": 0.5755 + }, + { + "start": 40676.74, + "end": 40682.9, + "probability": 0.5076 + }, + { + "start": 40683.48, + "end": 40688.52, + "probability": 0.8809 + }, + { + "start": 40688.76, + "end": 40691.12, + "probability": 0.6878 + }, + { + "start": 40691.34, + "end": 40691.6, + "probability": 0.4818 + }, + { + "start": 40691.88, + "end": 40693.68, + "probability": 0.3874 + }, + { + "start": 40693.78, + "end": 40694.78, + "probability": 0.3964 + }, + { + "start": 40696.0, + "end": 40696.83, + "probability": 0.9873 + }, + { + "start": 40697.8, + "end": 40700.22, + "probability": 0.9533 + }, + { + "start": 40701.0, + "end": 40702.58, + "probability": 0.6862 + }, + { + "start": 40702.6, + "end": 40703.44, + "probability": 0.513 + }, + { + "start": 40703.54, + "end": 40705.77, + "probability": 0.4649 + }, + { + "start": 40706.34, + "end": 40707.46, + "probability": 0.9929 + }, + { + "start": 40708.46, + "end": 40709.72, + "probability": 0.9524 + }, + { + "start": 40710.54, + "end": 40712.12, + "probability": 0.9616 + }, + { + "start": 40713.16, + "end": 40714.36, + "probability": 0.723 + }, + { + "start": 40714.98, + "end": 40717.86, + "probability": 0.9908 + }, + { + "start": 40719.14, + "end": 40719.4, + "probability": 0.7782 + }, + { + "start": 40719.5, + "end": 40721.82, + "probability": 0.98 + }, + { + "start": 40721.82, + "end": 40722.28, + "probability": 0.5436 + }, + { + "start": 40722.58, + "end": 40723.64, + "probability": 0.9743 + }, + { + "start": 40723.64, + "end": 40726.66, + "probability": 0.6611 + }, + { + "start": 40727.54, + "end": 40728.16, + "probability": 0.9229 + }, + { + "start": 40729.14, + "end": 40731.56, + "probability": 0.9907 + }, + { + "start": 40731.9, + "end": 40733.6, + "probability": 0.9906 + }, + { + "start": 40734.0, + "end": 40738.96, + "probability": 0.9555 + }, + { + "start": 40739.72, + "end": 40740.54, + "probability": 0.1573 + }, + { + "start": 40741.12, + "end": 40741.84, + "probability": 0.041 + }, + { + "start": 40741.84, + "end": 40742.02, + "probability": 0.3078 + }, + { + "start": 40742.02, + "end": 40744.78, + "probability": 0.527 + }, + { + "start": 40746.18, + "end": 40747.58, + "probability": 0.3562 + }, + { + "start": 40747.8, + "end": 40750.62, + "probability": 0.8094 + }, + { + "start": 40750.9, + "end": 40751.9, + "probability": 0.777 + }, + { + "start": 40752.08, + "end": 40752.74, + "probability": 0.7109 + }, + { + "start": 40752.96, + "end": 40757.0, + "probability": 0.8765 + }, + { + "start": 40757.0, + "end": 40759.06, + "probability": 0.9961 + }, + { + "start": 40759.18, + "end": 40760.88, + "probability": 0.5765 + }, + { + "start": 40761.05, + "end": 40764.28, + "probability": 0.9985 + }, + { + "start": 40764.86, + "end": 40769.46, + "probability": 0.8105 + }, + { + "start": 40769.54, + "end": 40772.62, + "probability": 0.3522 + }, + { + "start": 40772.62, + "end": 40772.96, + "probability": 0.2379 + }, + { + "start": 40773.16, + "end": 40773.16, + "probability": 0.1065 + }, + { + "start": 40773.16, + "end": 40773.7, + "probability": 0.67 + }, + { + "start": 40773.7, + "end": 40775.2, + "probability": 0.674 + }, + { + "start": 40775.42, + "end": 40776.2, + "probability": 0.1905 + }, + { + "start": 40776.94, + "end": 40778.3, + "probability": 0.8154 + }, + { + "start": 40778.36, + "end": 40779.3, + "probability": 0.488 + }, + { + "start": 40779.82, + "end": 40780.39, + "probability": 0.276 + }, + { + "start": 40780.74, + "end": 40786.08, + "probability": 0.2533 + }, + { + "start": 40786.46, + "end": 40787.08, + "probability": 0.4396 + }, + { + "start": 40787.38, + "end": 40788.32, + "probability": 0.8953 + }, + { + "start": 40788.38, + "end": 40790.73, + "probability": 0.6788 + }, + { + "start": 40791.78, + "end": 40793.12, + "probability": 0.1207 + }, + { + "start": 40795.58, + "end": 40800.16, + "probability": 0.8091 + }, + { + "start": 40800.42, + "end": 40802.8, + "probability": 0.6933 + }, + { + "start": 40803.26, + "end": 40805.18, + "probability": 0.9787 + }, + { + "start": 40805.9, + "end": 40806.52, + "probability": 0.5853 + }, + { + "start": 40806.82, + "end": 40806.92, + "probability": 0.5414 + }, + { + "start": 40807.76, + "end": 40808.94, + "probability": 0.7791 + }, + { + "start": 40811.06, + "end": 40813.8, + "probability": 0.0483 + }, + { + "start": 40813.98, + "end": 40816.16, + "probability": 0.0603 + }, + { + "start": 40816.16, + "end": 40816.16, + "probability": 0.0882 + }, + { + "start": 40816.28, + "end": 40819.2, + "probability": 0.8007 + }, + { + "start": 40819.36, + "end": 40821.46, + "probability": 0.2819 + }, + { + "start": 40822.78, + "end": 40825.92, + "probability": 0.1695 + }, + { + "start": 40826.38, + "end": 40830.45, + "probability": 0.9307 + }, + { + "start": 40831.34, + "end": 40831.6, + "probability": 0.3684 + }, + { + "start": 40831.72, + "end": 40832.38, + "probability": 0.8663 + }, + { + "start": 40832.5, + "end": 40834.32, + "probability": 0.6071 + }, + { + "start": 40834.36, + "end": 40834.36, + "probability": 0.5227 + }, + { + "start": 40834.36, + "end": 40835.12, + "probability": 0.4567 + }, + { + "start": 40836.28, + "end": 40837.26, + "probability": 0.9788 + }, + { + "start": 40837.62, + "end": 40838.7, + "probability": 0.4356 + }, + { + "start": 40838.7, + "end": 40840.92, + "probability": 0.2331 + }, + { + "start": 40841.02, + "end": 40843.14, + "probability": 0.7997 + }, + { + "start": 40843.54, + "end": 40846.28, + "probability": 0.838 + }, + { + "start": 40847.06, + "end": 40847.46, + "probability": 0.2602 + }, + { + "start": 40847.58, + "end": 40848.82, + "probability": 0.8625 + }, + { + "start": 40849.38, + "end": 40849.98, + "probability": 0.4622 + }, + { + "start": 40850.18, + "end": 40850.52, + "probability": 0.3689 + }, + { + "start": 40851.34, + "end": 40852.2, + "probability": 0.5247 + }, + { + "start": 40852.36, + "end": 40853.16, + "probability": 0.2624 + }, + { + "start": 40853.16, + "end": 40853.62, + "probability": 0.5764 + }, + { + "start": 40854.06, + "end": 40859.26, + "probability": 0.3753 + }, + { + "start": 40860.32, + "end": 40860.94, + "probability": 0.2212 + }, + { + "start": 40863.35, + "end": 40863.64, + "probability": 0.5049 + }, + { + "start": 40863.64, + "end": 40865.94, + "probability": 0.5412 + }, + { + "start": 40866.34, + "end": 40867.3, + "probability": 0.3295 + }, + { + "start": 40867.36, + "end": 40872.52, + "probability": 0.4359 + }, + { + "start": 40872.82, + "end": 40873.88, + "probability": 0.3499 + }, + { + "start": 40875.54, + "end": 40875.54, + "probability": 0.0259 + }, + { + "start": 40875.54, + "end": 40877.43, + "probability": 0.3917 + }, + { + "start": 40877.66, + "end": 40878.76, + "probability": 0.8781 + }, + { + "start": 40880.9, + "end": 40885.74, + "probability": 0.076 + }, + { + "start": 40885.94, + "end": 40885.94, + "probability": 0.0192 + }, + { + "start": 40886.02, + "end": 40887.48, + "probability": 0.4117 + }, + { + "start": 40888.18, + "end": 40893.48, + "probability": 0.7932 + }, + { + "start": 40893.76, + "end": 40894.94, + "probability": 0.6958 + }, + { + "start": 40895.6, + "end": 40896.08, + "probability": 0.6159 + }, + { + "start": 40896.6, + "end": 40897.66, + "probability": 0.7464 + }, + { + "start": 40898.78, + "end": 40900.28, + "probability": 0.9113 + }, + { + "start": 40900.59, + "end": 40904.5, + "probability": 0.9843 + }, + { + "start": 40904.62, + "end": 40906.52, + "probability": 0.7984 + }, + { + "start": 40906.78, + "end": 40908.94, + "probability": 0.156 + }, + { + "start": 40913.1, + "end": 40916.08, + "probability": 0.5763 + }, + { + "start": 40917.44, + "end": 40919.66, + "probability": 0.8465 + }, + { + "start": 40922.76, + "end": 40924.42, + "probability": 0.8637 + }, + { + "start": 40925.74, + "end": 40927.2, + "probability": 0.926 + }, + { + "start": 40927.28, + "end": 40928.72, + "probability": 0.0822 + }, + { + "start": 40928.9, + "end": 40930.1, + "probability": 0.8207 + }, + { + "start": 40930.5, + "end": 40930.74, + "probability": 0.0307 + }, + { + "start": 40931.18, + "end": 40931.84, + "probability": 0.2277 + }, + { + "start": 40931.96, + "end": 40933.08, + "probability": 0.1063 + }, + { + "start": 40933.2, + "end": 40934.32, + "probability": 0.3971 + }, + { + "start": 40939.48, + "end": 40939.58, + "probability": 0.7417 + }, + { + "start": 40939.58, + "end": 40939.58, + "probability": 0.0491 + }, + { + "start": 40939.58, + "end": 40941.82, + "probability": 0.13 + }, + { + "start": 40952.26, + "end": 40952.88, + "probability": 0.6303 + }, + { + "start": 40954.82, + "end": 40959.8, + "probability": 0.9288 + }, + { + "start": 40960.34, + "end": 40960.94, + "probability": 0.8897 + }, + { + "start": 40961.82, + "end": 40963.0, + "probability": 0.6763 + }, + { + "start": 40963.88, + "end": 40966.5, + "probability": 0.9927 + }, + { + "start": 40966.5, + "end": 40972.14, + "probability": 0.8135 + }, + { + "start": 40973.94, + "end": 40978.02, + "probability": 0.9962 + }, + { + "start": 40978.88, + "end": 40984.24, + "probability": 0.8618 + }, + { + "start": 40985.48, + "end": 40986.88, + "probability": 0.9376 + }, + { + "start": 40987.02, + "end": 40989.58, + "probability": 0.8657 + }, + { + "start": 40989.78, + "end": 40996.26, + "probability": 0.8098 + }, + { + "start": 40997.66, + "end": 41002.1, + "probability": 0.9929 + }, + { + "start": 41002.23, + "end": 41007.86, + "probability": 0.9783 + }, + { + "start": 41008.16, + "end": 41009.04, + "probability": 0.1551 + }, + { + "start": 41009.04, + "end": 41009.14, + "probability": 0.5592 + }, + { + "start": 41009.4, + "end": 41009.56, + "probability": 0.2973 + }, + { + "start": 41009.6, + "end": 41012.4, + "probability": 0.9878 + }, + { + "start": 41012.4, + "end": 41016.0, + "probability": 0.9629 + }, + { + "start": 41016.36, + "end": 41016.46, + "probability": 0.0909 + }, + { + "start": 41016.76, + "end": 41018.48, + "probability": 0.9968 + }, + { + "start": 41019.72, + "end": 41023.88, + "probability": 0.9958 + }, + { + "start": 41023.88, + "end": 41027.84, + "probability": 0.9994 + }, + { + "start": 41028.56, + "end": 41032.26, + "probability": 0.981 + }, + { + "start": 41032.8, + "end": 41036.04, + "probability": 0.9946 + }, + { + "start": 41036.26, + "end": 41037.04, + "probability": 0.9323 + }, + { + "start": 41037.92, + "end": 41038.42, + "probability": 0.4998 + }, + { + "start": 41038.96, + "end": 41041.58, + "probability": 0.672 + }, + { + "start": 41042.66, + "end": 41044.78, + "probability": 0.7328 + }, + { + "start": 41045.7, + "end": 41047.44, + "probability": 0.9625 + }, + { + "start": 41047.94, + "end": 41049.06, + "probability": 0.9383 + }, + { + "start": 41049.16, + "end": 41050.19, + "probability": 0.8606 + }, + { + "start": 41050.7, + "end": 41051.48, + "probability": 0.52 + }, + { + "start": 41051.66, + "end": 41052.58, + "probability": 0.8636 + }, + { + "start": 41052.66, + "end": 41054.76, + "probability": 0.9497 + }, + { + "start": 41054.76, + "end": 41057.18, + "probability": 0.8896 + }, + { + "start": 41057.82, + "end": 41058.92, + "probability": 0.9727 + }, + { + "start": 41060.44, + "end": 41061.6, + "probability": 0.7233 + }, + { + "start": 41061.7, + "end": 41062.88, + "probability": 0.8222 + }, + { + "start": 41063.0, + "end": 41064.85, + "probability": 0.9714 + }, + { + "start": 41065.56, + "end": 41066.5, + "probability": 0.5934 + }, + { + "start": 41067.14, + "end": 41069.62, + "probability": 0.9907 + }, + { + "start": 41069.84, + "end": 41073.26, + "probability": 0.9822 + }, + { + "start": 41073.56, + "end": 41078.08, + "probability": 0.9751 + }, + { + "start": 41079.0, + "end": 41079.64, + "probability": 0.4975 + }, + { + "start": 41080.22, + "end": 41080.84, + "probability": 0.8841 + }, + { + "start": 41081.66, + "end": 41082.94, + "probability": 0.9234 + }, + { + "start": 41083.6, + "end": 41089.64, + "probability": 0.9513 + }, + { + "start": 41090.44, + "end": 41093.78, + "probability": 0.7725 + }, + { + "start": 41094.1, + "end": 41094.4, + "probability": 0.7961 + }, + { + "start": 41094.64, + "end": 41095.3, + "probability": 0.8394 + }, + { + "start": 41095.9, + "end": 41097.04, + "probability": 0.1691 + }, + { + "start": 41097.62, + "end": 41098.56, + "probability": 0.3104 + }, + { + "start": 41100.38, + "end": 41103.36, + "probability": 0.7235 + }, + { + "start": 41105.04, + "end": 41106.24, + "probability": 0.8777 + }, + { + "start": 41106.58, + "end": 41129.0, + "probability": 0.6229 + }, + { + "start": 41129.62, + "end": 41130.4, + "probability": 0.7558 + }, + { + "start": 41131.18, + "end": 41134.36, + "probability": 0.9852 + }, + { + "start": 41135.42, + "end": 41142.48, + "probability": 0.9824 + }, + { + "start": 41142.68, + "end": 41143.86, + "probability": 0.9421 + }, + { + "start": 41143.9, + "end": 41146.28, + "probability": 0.9897 + }, + { + "start": 41147.08, + "end": 41149.92, + "probability": 0.8315 + }, + { + "start": 41150.62, + "end": 41155.12, + "probability": 0.9832 + }, + { + "start": 41155.12, + "end": 41160.92, + "probability": 0.979 + }, + { + "start": 41161.68, + "end": 41162.78, + "probability": 0.6687 + }, + { + "start": 41163.58, + "end": 41165.76, + "probability": 0.7532 + }, + { + "start": 41166.52, + "end": 41169.38, + "probability": 0.9954 + }, + { + "start": 41169.92, + "end": 41170.4, + "probability": 0.4836 + }, + { + "start": 41170.92, + "end": 41175.48, + "probability": 0.9885 + }, + { + "start": 41176.18, + "end": 41176.36, + "probability": 0.567 + }, + { + "start": 41176.42, + "end": 41178.46, + "probability": 0.9813 + }, + { + "start": 41178.68, + "end": 41179.67, + "probability": 0.8247 + }, + { + "start": 41180.62, + "end": 41182.5, + "probability": 0.9814 + }, + { + "start": 41183.12, + "end": 41184.28, + "probability": 0.9976 + }, + { + "start": 41185.7, + "end": 41188.42, + "probability": 0.9314 + }, + { + "start": 41189.68, + "end": 41191.94, + "probability": 0.61 + }, + { + "start": 41193.14, + "end": 41196.64, + "probability": 0.9621 + }, + { + "start": 41197.38, + "end": 41198.35, + "probability": 0.9966 + }, + { + "start": 41199.92, + "end": 41201.58, + "probability": 0.9843 + }, + { + "start": 41202.28, + "end": 41205.12, + "probability": 0.9946 + }, + { + "start": 41205.2, + "end": 41206.62, + "probability": 0.998 + }, + { + "start": 41207.06, + "end": 41212.1, + "probability": 0.9673 + }, + { + "start": 41213.54, + "end": 41215.44, + "probability": 0.7852 + }, + { + "start": 41215.66, + "end": 41218.02, + "probability": 0.9521 + }, + { + "start": 41218.64, + "end": 41221.02, + "probability": 0.9778 + }, + { + "start": 41221.36, + "end": 41222.56, + "probability": 0.9836 + }, + { + "start": 41223.14, + "end": 41223.6, + "probability": 0.8511 + }, + { + "start": 41224.58, + "end": 41229.94, + "probability": 0.9675 + }, + { + "start": 41230.02, + "end": 41230.72, + "probability": 0.5165 + }, + { + "start": 41230.84, + "end": 41233.74, + "probability": 0.9977 + }, + { + "start": 41234.3, + "end": 41237.68, + "probability": 0.9863 + }, + { + "start": 41238.2, + "end": 41241.62, + "probability": 0.9899 + }, + { + "start": 41242.58, + "end": 41243.76, + "probability": 0.7241 + }, + { + "start": 41244.44, + "end": 41245.7, + "probability": 0.6919 + }, + { + "start": 41246.52, + "end": 41250.02, + "probability": 0.6649 + }, + { + "start": 41250.54, + "end": 41254.22, + "probability": 0.9071 + }, + { + "start": 41255.5, + "end": 41256.36, + "probability": 0.4817 + }, + { + "start": 41257.38, + "end": 41258.14, + "probability": 0.5899 + }, + { + "start": 41258.22, + "end": 41260.62, + "probability": 0.9663 + }, + { + "start": 41261.32, + "end": 41262.86, + "probability": 0.6114 + }, + { + "start": 41264.82, + "end": 41266.14, + "probability": 0.7178 + }, + { + "start": 41267.16, + "end": 41268.22, + "probability": 0.8632 + }, + { + "start": 41268.46, + "end": 41268.74, + "probability": 0.6005 + }, + { + "start": 41268.84, + "end": 41273.52, + "probability": 0.9854 + }, + { + "start": 41273.84, + "end": 41274.32, + "probability": 0.65 + }, + { + "start": 41274.36, + "end": 41274.9, + "probability": 0.8857 + }, + { + "start": 41276.16, + "end": 41277.62, + "probability": 0.9993 + }, + { + "start": 41278.28, + "end": 41279.12, + "probability": 0.9421 + }, + { + "start": 41279.6, + "end": 41282.2, + "probability": 0.9771 + }, + { + "start": 41282.66, + "end": 41283.64, + "probability": 0.9778 + }, + { + "start": 41284.0, + "end": 41285.62, + "probability": 0.955 + }, + { + "start": 41287.22, + "end": 41288.08, + "probability": 0.878 + }, + { + "start": 41289.34, + "end": 41292.6, + "probability": 0.9721 + }, + { + "start": 41293.3, + "end": 41294.24, + "probability": 0.7329 + }, + { + "start": 41294.42, + "end": 41297.22, + "probability": 0.987 + }, + { + "start": 41297.38, + "end": 41300.88, + "probability": 0.9268 + }, + { + "start": 41301.62, + "end": 41301.8, + "probability": 0.5013 + }, + { + "start": 41302.32, + "end": 41302.46, + "probability": 0.9965 + }, + { + "start": 41303.48, + "end": 41304.76, + "probability": 0.8256 + }, + { + "start": 41305.05, + "end": 41306.32, + "probability": 0.3865 + }, + { + "start": 41306.4, + "end": 41306.4, + "probability": 0.5838 + }, + { + "start": 41306.4, + "end": 41306.4, + "probability": 0.3867 + }, + { + "start": 41306.4, + "end": 41306.54, + "probability": 0.4583 + }, + { + "start": 41306.54, + "end": 41307.72, + "probability": 0.8983 + }, + { + "start": 41308.44, + "end": 41310.2, + "probability": 0.9915 + }, + { + "start": 41310.32, + "end": 41311.68, + "probability": 0.5002 + }, + { + "start": 41312.3, + "end": 41312.7, + "probability": 0.4342 + }, + { + "start": 41312.82, + "end": 41313.02, + "probability": 0.737 + }, + { + "start": 41313.3, + "end": 41319.08, + "probability": 0.9642 + }, + { + "start": 41320.14, + "end": 41321.18, + "probability": 0.7129 + }, + { + "start": 41321.66, + "end": 41322.46, + "probability": 0.8184 + }, + { + "start": 41323.48, + "end": 41325.84, + "probability": 0.8607 + }, + { + "start": 41326.5, + "end": 41328.5, + "probability": 0.8766 + }, + { + "start": 41329.02, + "end": 41330.1, + "probability": 0.7316 + }, + { + "start": 41330.34, + "end": 41331.42, + "probability": 0.9382 + }, + { + "start": 41331.82, + "end": 41334.34, + "probability": 0.9506 + }, + { + "start": 41334.54, + "end": 41334.76, + "probability": 0.7478 + }, + { + "start": 41335.8, + "end": 41337.26, + "probability": 0.9526 + }, + { + "start": 41337.92, + "end": 41341.53, + "probability": 0.9729 + }, + { + "start": 41342.16, + "end": 41344.88, + "probability": 0.9913 + }, + { + "start": 41345.4, + "end": 41348.4, + "probability": 0.9985 + }, + { + "start": 41349.18, + "end": 41349.46, + "probability": 0.873 + }, + { + "start": 41350.06, + "end": 41351.84, + "probability": 0.9736 + }, + { + "start": 41352.4, + "end": 41352.58, + "probability": 0.581 + }, + { + "start": 41352.58, + "end": 41352.92, + "probability": 0.7284 + }, + { + "start": 41353.92, + "end": 41356.56, + "probability": 0.9977 + }, + { + "start": 41357.16, + "end": 41357.66, + "probability": 0.9481 + }, + { + "start": 41358.24, + "end": 41360.22, + "probability": 0.5692 + }, + { + "start": 41360.22, + "end": 41361.26, + "probability": 0.2965 + }, + { + "start": 41361.34, + "end": 41362.74, + "probability": 0.8231 + }, + { + "start": 41363.24, + "end": 41366.58, + "probability": 0.9429 + }, + { + "start": 41366.88, + "end": 41368.7, + "probability": 0.0665 + }, + { + "start": 41370.98, + "end": 41371.18, + "probability": 0.0075 + }, + { + "start": 41371.2, + "end": 41371.36, + "probability": 0.2576 + }, + { + "start": 41372.12, + "end": 41372.12, + "probability": 0.0696 + }, + { + "start": 41372.12, + "end": 41374.3, + "probability": 0.9321 + }, + { + "start": 41375.3, + "end": 41375.3, + "probability": 0.008 + }, + { + "start": 41375.52, + "end": 41381.74, + "probability": 0.8792 + }, + { + "start": 41382.1, + "end": 41384.16, + "probability": 0.0524 + }, + { + "start": 41384.16, + "end": 41388.62, + "probability": 0.868 + }, + { + "start": 41388.62, + "end": 41389.62, + "probability": 0.2382 + }, + { + "start": 41389.76, + "end": 41389.76, + "probability": 0.1394 + }, + { + "start": 41389.88, + "end": 41392.14, + "probability": 0.1214 + }, + { + "start": 41392.52, + "end": 41393.56, + "probability": 0.5747 + }, + { + "start": 41393.66, + "end": 41394.58, + "probability": 0.7607 + }, + { + "start": 41394.94, + "end": 41395.1, + "probability": 0.4829 + }, + { + "start": 41395.2, + "end": 41396.24, + "probability": 0.0436 + }, + { + "start": 41396.24, + "end": 41396.36, + "probability": 0.0436 + }, + { + "start": 41396.36, + "end": 41396.36, + "probability": 0.0123 + }, + { + "start": 41396.36, + "end": 41401.5, + "probability": 0.6931 + }, + { + "start": 41402.26, + "end": 41403.11, + "probability": 0.1732 + }, + { + "start": 41403.38, + "end": 41404.42, + "probability": 0.947 + }, + { + "start": 41404.62, + "end": 41404.76, + "probability": 0.042 + }, + { + "start": 41404.88, + "end": 41405.72, + "probability": 0.3731 + }, + { + "start": 41405.72, + "end": 41406.92, + "probability": 0.9292 + }, + { + "start": 41406.92, + "end": 41407.26, + "probability": 0.0185 + }, + { + "start": 41407.48, + "end": 41407.97, + "probability": 0.1737 + }, + { + "start": 41408.14, + "end": 41408.68, + "probability": 0.6349 + }, + { + "start": 41409.06, + "end": 41410.66, + "probability": 0.8736 + }, + { + "start": 41413.1, + "end": 41413.66, + "probability": 0.5279 + }, + { + "start": 41414.3, + "end": 41415.71, + "probability": 0.9731 + }, + { + "start": 41416.02, + "end": 41416.73, + "probability": 0.9422 + }, + { + "start": 41416.96, + "end": 41419.64, + "probability": 0.9487 + }, + { + "start": 41421.54, + "end": 41423.68, + "probability": 0.5312 + }, + { + "start": 41424.26, + "end": 41424.46, + "probability": 0.0003 + }, + { + "start": 41426.98, + "end": 41428.06, + "probability": 0.2968 + }, + { + "start": 41428.38, + "end": 41429.24, + "probability": 0.026 + }, + { + "start": 41429.24, + "end": 41431.52, + "probability": 0.7729 + }, + { + "start": 41431.6, + "end": 41432.34, + "probability": 0.7582 + }, + { + "start": 41432.94, + "end": 41433.68, + "probability": 0.9079 + }, + { + "start": 41434.24, + "end": 41437.12, + "probability": 0.2032 + }, + { + "start": 41437.12, + "end": 41438.72, + "probability": 0.4464 + }, + { + "start": 41440.67, + "end": 41444.1, + "probability": 0.606 + }, + { + "start": 41445.1, + "end": 41445.72, + "probability": 0.6032 + }, + { + "start": 41445.9, + "end": 41447.2, + "probability": 0.3145 + }, + { + "start": 41447.32, + "end": 41448.68, + "probability": 0.4079 + }, + { + "start": 41448.8, + "end": 41449.68, + "probability": 0.8522 + }, + { + "start": 41450.26, + "end": 41451.39, + "probability": 0.266 + }, + { + "start": 41461.48, + "end": 41463.98, + "probability": 0.4552 + }, + { + "start": 41464.88, + "end": 41465.64, + "probability": 0.0924 + }, + { + "start": 41472.68, + "end": 41475.2, + "probability": 0.7868 + }, + { + "start": 41477.12, + "end": 41478.64, + "probability": 0.9168 + }, + { + "start": 41479.24, + "end": 41480.36, + "probability": 0.7636 + }, + { + "start": 41480.38, + "end": 41480.82, + "probability": 0.7481 + }, + { + "start": 41483.56, + "end": 41485.44, + "probability": 0.8204 + }, + { + "start": 41486.0, + "end": 41487.36, + "probability": 0.6261 + }, + { + "start": 41488.06, + "end": 41490.28, + "probability": 0.8621 + }, + { + "start": 41492.24, + "end": 41493.12, + "probability": 0.7614 + }, + { + "start": 41493.72, + "end": 41494.88, + "probability": 0.9905 + }, + { + "start": 41495.6, + "end": 41495.78, + "probability": 0.6322 + }, + { + "start": 41497.2, + "end": 41498.64, + "probability": 0.282 + }, + { + "start": 41500.56, + "end": 41501.04, + "probability": 0.0255 + }, + { + "start": 41501.28, + "end": 41502.82, + "probability": 0.2912 + }, + { + "start": 41504.52, + "end": 41507.1, + "probability": 0.2055 + }, + { + "start": 41507.64, + "end": 41508.78, + "probability": 0.0149 + }, + { + "start": 41511.54, + "end": 41511.8, + "probability": 0.0228 + }, + { + "start": 41511.8, + "end": 41513.86, + "probability": 0.0229 + }, + { + "start": 41515.42, + "end": 41517.22, + "probability": 0.0775 + }, + { + "start": 41517.26, + "end": 41518.18, + "probability": 0.0285 + }, + { + "start": 41518.3, + "end": 41520.7, + "probability": 0.0713 + }, + { + "start": 41522.0, + "end": 41524.3, + "probability": 0.3121 + }, + { + "start": 41524.3, + "end": 41526.14, + "probability": 0.2639 + }, + { + "start": 41526.16, + "end": 41526.34, + "probability": 0.509 + }, + { + "start": 41526.66, + "end": 41529.14, + "probability": 0.1215 + }, + { + "start": 41529.14, + "end": 41530.3, + "probability": 0.2165 + }, + { + "start": 41537.0, + "end": 41537.0, + "probability": 0.0 + }, + { + "start": 41537.0, + "end": 41537.0, + "probability": 0.0 + }, + { + "start": 41537.0, + "end": 41537.0, + "probability": 0.0 + }, + { + "start": 41538.06, + "end": 41538.2, + "probability": 0.112 + }, + { + "start": 41538.2, + "end": 41538.2, + "probability": 0.3996 + }, + { + "start": 41538.2, + "end": 41543.46, + "probability": 0.82 + }, + { + "start": 41543.46, + "end": 41545.7, + "probability": 0.536 + }, + { + "start": 41545.86, + "end": 41546.86, + "probability": 0.3584 + }, + { + "start": 41547.92, + "end": 41553.64, + "probability": 0.9567 + }, + { + "start": 41554.3, + "end": 41554.3, + "probability": 0.0162 + }, + { + "start": 41554.3, + "end": 41557.58, + "probability": 0.889 + }, + { + "start": 41557.58, + "end": 41560.28, + "probability": 0.9883 + }, + { + "start": 41560.86, + "end": 41563.04, + "probability": 0.7362 + }, + { + "start": 41563.86, + "end": 41565.4, + "probability": 0.9877 + }, + { + "start": 41566.08, + "end": 41566.2, + "probability": 0.1447 + }, + { + "start": 41566.2, + "end": 41568.66, + "probability": 0.9956 + }, + { + "start": 41569.52, + "end": 41570.52, + "probability": 0.9375 + }, + { + "start": 41572.38, + "end": 41573.42, + "probability": 0.8262 + }, + { + "start": 41574.46, + "end": 41575.26, + "probability": 0.6572 + }, + { + "start": 41575.36, + "end": 41577.02, + "probability": 0.1425 + }, + { + "start": 41577.64, + "end": 41581.3, + "probability": 0.2503 + }, + { + "start": 41581.7, + "end": 41584.08, + "probability": 0.6231 + }, + { + "start": 41585.3, + "end": 41588.87, + "probability": 0.959 + }, + { + "start": 41589.32, + "end": 41591.02, + "probability": 0.8313 + }, + { + "start": 41592.08, + "end": 41593.9, + "probability": 0.7202 + }, + { + "start": 41594.54, + "end": 41594.54, + "probability": 0.3837 + }, + { + "start": 41594.54, + "end": 41601.16, + "probability": 0.9768 + }, + { + "start": 41601.82, + "end": 41604.9, + "probability": 0.9915 + }, + { + "start": 41605.04, + "end": 41607.94, + "probability": 0.8838 + }, + { + "start": 41608.58, + "end": 41611.52, + "probability": 0.9247 + }, + { + "start": 41612.34, + "end": 41612.82, + "probability": 0.8337 + }, + { + "start": 41614.06, + "end": 41614.78, + "probability": 0.8408 + }, + { + "start": 41615.54, + "end": 41619.46, + "probability": 0.9072 + }, + { + "start": 41620.28, + "end": 41625.56, + "probability": 0.993 + }, + { + "start": 41626.36, + "end": 41628.86, + "probability": 0.9946 + }, + { + "start": 41629.48, + "end": 41631.78, + "probability": 0.9769 + }, + { + "start": 41632.62, + "end": 41633.1, + "probability": 0.0549 + }, + { + "start": 41633.1, + "end": 41633.1, + "probability": 0.3215 + }, + { + "start": 41633.1, + "end": 41634.71, + "probability": 0.7297 + }, + { + "start": 41635.12, + "end": 41637.04, + "probability": 0.8964 + }, + { + "start": 41637.14, + "end": 41640.1, + "probability": 0.5443 + }, + { + "start": 41640.12, + "end": 41641.8, + "probability": 0.2895 + }, + { + "start": 41641.84, + "end": 41642.28, + "probability": 0.1637 + }, + { + "start": 41642.68, + "end": 41643.02, + "probability": 0.5208 + }, + { + "start": 41643.02, + "end": 41643.24, + "probability": 0.2367 + }, + { + "start": 41644.06, + "end": 41645.0, + "probability": 0.087 + }, + { + "start": 41646.16, + "end": 41646.16, + "probability": 0.0701 + }, + { + "start": 41646.16, + "end": 41648.14, + "probability": 0.0174 + }, + { + "start": 41648.6, + "end": 41652.06, + "probability": 0.321 + }, + { + "start": 41652.46, + "end": 41653.54, + "probability": 0.704 + }, + { + "start": 41653.86, + "end": 41656.1, + "probability": 0.4853 + }, + { + "start": 41656.64, + "end": 41658.12, + "probability": 0.846 + }, + { + "start": 41658.2, + "end": 41658.79, + "probability": 0.2665 + }, + { + "start": 41659.62, + "end": 41660.76, + "probability": 0.0018 + }, + { + "start": 41664.28, + "end": 41664.78, + "probability": 0.0689 + }, + { + "start": 41664.78, + "end": 41665.82, + "probability": 0.234 + }, + { + "start": 41665.82, + "end": 41666.22, + "probability": 0.1698 + }, + { + "start": 41666.34, + "end": 41666.58, + "probability": 0.0196 + }, + { + "start": 41667.04, + "end": 41667.18, + "probability": 0.2299 + }, + { + "start": 41667.34, + "end": 41667.4, + "probability": 0.3451 + }, + { + "start": 41667.62, + "end": 41667.62, + "probability": 0.004 + }, + { + "start": 41667.62, + "end": 41672.08, + "probability": 0.8203 + }, + { + "start": 41672.48, + "end": 41673.91, + "probability": 0.995 + }, + { + "start": 41674.82, + "end": 41675.45, + "probability": 0.5636 + }, + { + "start": 41675.65, + "end": 41678.95, + "probability": 0.7275 + }, + { + "start": 41679.87, + "end": 41680.87, + "probability": 0.703 + }, + { + "start": 41681.51, + "end": 41682.79, + "probability": 0.9883 + }, + { + "start": 41682.89, + "end": 41684.01, + "probability": 0.9883 + }, + { + "start": 41685.25, + "end": 41687.51, + "probability": 0.8765 + }, + { + "start": 41688.11, + "end": 41690.97, + "probability": 0.7815 + }, + { + "start": 41691.29, + "end": 41697.23, + "probability": 0.6073 + }, + { + "start": 41697.65, + "end": 41698.95, + "probability": 0.8034 + }, + { + "start": 41699.43, + "end": 41701.69, + "probability": 0.7102 + }, + { + "start": 41702.09, + "end": 41707.83, + "probability": 0.959 + }, + { + "start": 41708.35, + "end": 41709.49, + "probability": 0.5717 + }, + { + "start": 41710.43, + "end": 41710.55, + "probability": 0.7222 + }, + { + "start": 41710.59, + "end": 41712.03, + "probability": 0.7903 + }, + { + "start": 41712.03, + "end": 41713.59, + "probability": 0.3553 + }, + { + "start": 41714.07, + "end": 41715.09, + "probability": 0.8682 + }, + { + "start": 41715.13, + "end": 41715.87, + "probability": 0.9211 + }, + { + "start": 41716.05, + "end": 41717.55, + "probability": 0.9568 + }, + { + "start": 41717.67, + "end": 41719.43, + "probability": 0.905 + }, + { + "start": 41719.87, + "end": 41721.61, + "probability": 0.8955 + }, + { + "start": 41723.15, + "end": 41725.95, + "probability": 0.3073 + }, + { + "start": 41726.63, + "end": 41727.79, + "probability": 0.075 + }, + { + "start": 41732.01, + "end": 41736.07, + "probability": 0.1206 + }, + { + "start": 41736.07, + "end": 41736.31, + "probability": 0.4999 + }, + { + "start": 41737.33, + "end": 41739.45, + "probability": 0.2331 + }, + { + "start": 41742.55, + "end": 41743.47, + "probability": 0.1556 + }, + { + "start": 41744.19, + "end": 41747.13, + "probability": 0.0834 + }, + { + "start": 41750.83, + "end": 41752.21, + "probability": 0.0818 + }, + { + "start": 41752.21, + "end": 41753.22, + "probability": 0.0961 + }, + { + "start": 41756.13, + "end": 41757.83, + "probability": 0.3622 + }, + { + "start": 41758.09, + "end": 41758.51, + "probability": 0.0553 + }, + { + "start": 41759.36, + "end": 41759.57, + "probability": 0.1676 + }, + { + "start": 41762.4, + "end": 41763.09, + "probability": 0.0646 + }, + { + "start": 41763.09, + "end": 41764.05, + "probability": 0.1802 + }, + { + "start": 41764.81, + "end": 41768.09, + "probability": 0.4384 + }, + { + "start": 41769.41, + "end": 41772.07, + "probability": 0.3882 + }, + { + "start": 41773.97, + "end": 41774.31, + "probability": 0.015 + }, + { + "start": 41774.79, + "end": 41775.43, + "probability": 0.3574 + }, + { + "start": 41775.51, + "end": 41775.55, + "probability": 0.0289 + }, + { + "start": 41775.55, + "end": 41776.11, + "probability": 0.0278 + }, + { + "start": 41778.57, + "end": 41779.47, + "probability": 0.3328 + }, + { + "start": 41782.81, + "end": 41786.33, + "probability": 0.5357 + }, + { + "start": 41786.33, + "end": 41788.57, + "probability": 0.0157 + }, + { + "start": 41788.61, + "end": 41789.89, + "probability": 0.1625 + }, + { + "start": 41789.89, + "end": 41794.97, + "probability": 0.0112 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41799.0, + "end": 41799.0, + "probability": 0.0 + }, + { + "start": 41812.06, + "end": 41812.2, + "probability": 0.0567 + }, + { + "start": 41812.2, + "end": 41812.2, + "probability": 0.0752 + }, + { + "start": 41812.2, + "end": 41812.2, + "probability": 0.0208 + }, + { + "start": 41812.2, + "end": 41812.7, + "probability": 0.3484 + }, + { + "start": 41813.16, + "end": 41813.74, + "probability": 0.3385 + }, + { + "start": 41814.02, + "end": 41814.74, + "probability": 0.6414 + }, + { + "start": 41814.84, + "end": 41815.23, + "probability": 0.9282 + }, + { + "start": 41815.46, + "end": 41815.82, + "probability": 0.6532 + }, + { + "start": 41815.92, + "end": 41821.38, + "probability": 0.9199 + }, + { + "start": 41822.84, + "end": 41825.02, + "probability": 0.9854 + }, + { + "start": 41825.64, + "end": 41827.34, + "probability": 0.7779 + }, + { + "start": 41827.42, + "end": 41828.82, + "probability": 0.9105 + }, + { + "start": 41829.14, + "end": 41829.54, + "probability": 0.7965 + }, + { + "start": 41829.62, + "end": 41833.66, + "probability": 0.9394 + }, + { + "start": 41834.04, + "end": 41834.52, + "probability": 0.5212 + }, + { + "start": 41836.12, + "end": 41838.28, + "probability": 0.9837 + }, + { + "start": 41838.48, + "end": 41839.44, + "probability": 0.8925 + }, + { + "start": 41839.64, + "end": 41840.28, + "probability": 0.809 + }, + { + "start": 41840.34, + "end": 41843.0, + "probability": 0.9771 + }, + { + "start": 41845.12, + "end": 41848.36, + "probability": 0.9842 + }, + { + "start": 41848.98, + "end": 41850.08, + "probability": 0.7892 + }, + { + "start": 41850.12, + "end": 41851.1, + "probability": 0.9072 + }, + { + "start": 41851.3, + "end": 41852.2, + "probability": 0.8762 + }, + { + "start": 41852.68, + "end": 41856.6, + "probability": 0.9917 + }, + { + "start": 41857.68, + "end": 41860.7, + "probability": 0.9629 + }, + { + "start": 41861.28, + "end": 41863.9, + "probability": 0.9937 + }, + { + "start": 41866.06, + "end": 41871.0, + "probability": 0.9411 + }, + { + "start": 41871.18, + "end": 41872.26, + "probability": 0.7151 + }, + { + "start": 41872.38, + "end": 41873.16, + "probability": 0.8745 + }, + { + "start": 41873.2, + "end": 41874.08, + "probability": 0.8746 + }, + { + "start": 41874.16, + "end": 41875.98, + "probability": 0.9634 + }, + { + "start": 41876.36, + "end": 41877.11, + "probability": 0.7206 + }, + { + "start": 41878.38, + "end": 41879.4, + "probability": 0.7566 + }, + { + "start": 41879.58, + "end": 41882.32, + "probability": 0.9042 + }, + { + "start": 41883.5, + "end": 41886.18, + "probability": 0.9841 + }, + { + "start": 41886.36, + "end": 41888.7, + "probability": 0.8838 + }, + { + "start": 41888.7, + "end": 41889.94, + "probability": 0.8823 + }, + { + "start": 41891.28, + "end": 41893.68, + "probability": 0.9944 + }, + { + "start": 41893.68, + "end": 41897.29, + "probability": 0.9917 + }, + { + "start": 41898.48, + "end": 41901.54, + "probability": 0.9958 + }, + { + "start": 41902.34, + "end": 41902.88, + "probability": 0.8258 + }, + { + "start": 41907.76, + "end": 41907.88, + "probability": 0.0037 + }, + { + "start": 41909.58, + "end": 41910.18, + "probability": 0.1729 + }, + { + "start": 41910.18, + "end": 41910.18, + "probability": 0.1472 + }, + { + "start": 41910.18, + "end": 41910.18, + "probability": 0.0082 + }, + { + "start": 41910.18, + "end": 41910.18, + "probability": 0.1097 + }, + { + "start": 41910.18, + "end": 41910.18, + "probability": 0.0544 + }, + { + "start": 41910.18, + "end": 41911.32, + "probability": 0.9021 + }, + { + "start": 41911.74, + "end": 41913.84, + "probability": 0.8374 + }, + { + "start": 41914.0, + "end": 41917.18, + "probability": 0.9628 + }, + { + "start": 41917.34, + "end": 41920.46, + "probability": 0.9808 + }, + { + "start": 41920.68, + "end": 41922.96, + "probability": 0.9868 + }, + { + "start": 41923.1, + "end": 41925.4, + "probability": 0.8787 + }, + { + "start": 41925.94, + "end": 41926.86, + "probability": 0.9773 + }, + { + "start": 41930.96, + "end": 41931.52, + "probability": 0.6725 + }, + { + "start": 41931.52, + "end": 41931.56, + "probability": 0.4283 + }, + { + "start": 41931.56, + "end": 41931.86, + "probability": 0.0255 + }, + { + "start": 41931.86, + "end": 41932.24, + "probability": 0.3815 + }, + { + "start": 41932.24, + "end": 41932.34, + "probability": 0.3205 + }, + { + "start": 41932.34, + "end": 41934.45, + "probability": 0.9774 + }, + { + "start": 41935.62, + "end": 41937.12, + "probability": 0.9918 + }, + { + "start": 41938.0, + "end": 41939.0, + "probability": 0.0655 + }, + { + "start": 41939.0, + "end": 41940.32, + "probability": 0.5647 + }, + { + "start": 41940.4, + "end": 41941.88, + "probability": 0.9843 + }, + { + "start": 41942.06, + "end": 41942.5, + "probability": 0.4294 + }, + { + "start": 41942.62, + "end": 41945.13, + "probability": 0.425 + }, + { + "start": 41947.64, + "end": 41948.24, + "probability": 0.0319 + }, + { + "start": 41948.24, + "end": 41948.24, + "probability": 0.0925 + }, + { + "start": 41948.24, + "end": 41948.24, + "probability": 0.152 + }, + { + "start": 41948.24, + "end": 41950.52, + "probability": 0.7235 + }, + { + "start": 41951.16, + "end": 41951.86, + "probability": 0.1203 + }, + { + "start": 41951.86, + "end": 41952.0, + "probability": 0.0704 + }, + { + "start": 41952.12, + "end": 41952.12, + "probability": 0.2176 + }, + { + "start": 41952.26, + "end": 41954.92, + "probability": 0.6479 + }, + { + "start": 41955.66, + "end": 41956.64, + "probability": 0.0783 + }, + { + "start": 41958.0, + "end": 41959.16, + "probability": 0.0551 + }, + { + "start": 41959.16, + "end": 41959.16, + "probability": 0.0295 + }, + { + "start": 41959.16, + "end": 41960.84, + "probability": 0.2971 + }, + { + "start": 41961.34, + "end": 41961.94, + "probability": 0.5431 + }, + { + "start": 41961.94, + "end": 41963.0, + "probability": 0.3879 + }, + { + "start": 41963.1, + "end": 41964.54, + "probability": 0.6638 + }, + { + "start": 41964.72, + "end": 41965.84, + "probability": 0.6772 + }, + { + "start": 41966.34, + "end": 41968.98, + "probability": 0.9026 + }, + { + "start": 41968.98, + "end": 41972.32, + "probability": 0.7607 + }, + { + "start": 41972.32, + "end": 41972.92, + "probability": 0.0451 + }, + { + "start": 41973.04, + "end": 41976.66, + "probability": 0.9769 + }, + { + "start": 41976.72, + "end": 41977.22, + "probability": 0.1287 + }, + { + "start": 41977.3, + "end": 41977.34, + "probability": 0.658 + }, + { + "start": 41977.34, + "end": 41981.44, + "probability": 0.9273 + }, + { + "start": 41981.52, + "end": 41982.52, + "probability": 0.4638 + }, + { + "start": 41997.08, + "end": 41998.46, + "probability": 0.4428 + }, + { + "start": 41998.58, + "end": 41999.18, + "probability": 0.1071 + }, + { + "start": 41999.18, + "end": 42000.16, + "probability": 0.087 + }, + { + "start": 42000.42, + "end": 42002.24, + "probability": 0.1414 + }, + { + "start": 42005.14, + "end": 42006.84, + "probability": 0.0327 + }, + { + "start": 42009.72, + "end": 42012.34, + "probability": 0.0369 + }, + { + "start": 42012.8, + "end": 42016.26, + "probability": 0.0258 + }, + { + "start": 42016.62, + "end": 42023.18, + "probability": 0.0409 + }, + { + "start": 42023.56, + "end": 42026.22, + "probability": 0.1257 + }, + { + "start": 42026.22, + "end": 42026.22, + "probability": 0.0117 + }, + { + "start": 42026.58, + "end": 42027.76, + "probability": 0.0403 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.0, + "end": 42044.0, + "probability": 0.0 + }, + { + "start": 42044.56, + "end": 42048.24, + "probability": 0.8137 + }, + { + "start": 42048.24, + "end": 42051.78, + "probability": 0.6125 + }, + { + "start": 42051.94, + "end": 42054.2, + "probability": 0.7375 + }, + { + "start": 42054.24, + "end": 42054.32, + "probability": 0.5783 + }, + { + "start": 42054.41, + "end": 42055.94, + "probability": 0.4809 + }, + { + "start": 42056.0, + "end": 42059.96, + "probability": 0.9561 + }, + { + "start": 42059.96, + "end": 42061.52, + "probability": 0.9374 + }, + { + "start": 42061.52, + "end": 42062.22, + "probability": 0.2494 + }, + { + "start": 42062.6, + "end": 42063.78, + "probability": 0.6365 + }, + { + "start": 42064.4, + "end": 42065.12, + "probability": 0.7029 + }, + { + "start": 42066.0, + "end": 42068.08, + "probability": 0.9366 + }, + { + "start": 42069.58, + "end": 42071.96, + "probability": 0.1754 + }, + { + "start": 42073.04, + "end": 42073.78, + "probability": 0.0179 + }, + { + "start": 42074.3, + "end": 42077.14, + "probability": 0.0128 + }, + { + "start": 42077.34, + "end": 42079.8, + "probability": 0.0314 + }, + { + "start": 42080.36, + "end": 42080.7, + "probability": 0.0598 + }, + { + "start": 42082.76, + "end": 42083.7, + "probability": 0.3904 + }, + { + "start": 42084.32, + "end": 42084.66, + "probability": 0.7529 + }, + { + "start": 42085.72, + "end": 42086.78, + "probability": 0.4324 + }, + { + "start": 42086.78, + "end": 42087.76, + "probability": 0.2414 + }, + { + "start": 42088.9, + "end": 42089.66, + "probability": 0.0071 + }, + { + "start": 42090.4, + "end": 42090.64, + "probability": 0.026 + }, + { + "start": 42090.64, + "end": 42092.52, + "probability": 0.5627 + }, + { + "start": 42093.94, + "end": 42094.84, + "probability": 0.3091 + }, + { + "start": 42095.24, + "end": 42095.64, + "probability": 0.7919 + }, + { + "start": 42097.24, + "end": 42097.24, + "probability": 0.3448 + }, + { + "start": 42097.24, + "end": 42097.82, + "probability": 0.5125 + }, + { + "start": 42097.82, + "end": 42098.82, + "probability": 0.087 + }, + { + "start": 42100.32, + "end": 42101.72, + "probability": 0.5535 + }, + { + "start": 42101.72, + "end": 42102.9, + "probability": 0.3902 + }, + { + "start": 42104.5, + "end": 42106.16, + "probability": 0.1357 + }, + { + "start": 42106.72, + "end": 42109.3, + "probability": 0.315 + }, + { + "start": 42111.36, + "end": 42113.3, + "probability": 0.3449 + }, + { + "start": 42115.04, + "end": 42115.58, + "probability": 0.136 + }, + { + "start": 42115.86, + "end": 42121.38, + "probability": 0.5205 + }, + { + "start": 42126.04, + "end": 42128.7, + "probability": 0.5146 + }, + { + "start": 42130.32, + "end": 42130.44, + "probability": 0.0119 + }, + { + "start": 42130.44, + "end": 42130.96, + "probability": 0.0556 + }, + { + "start": 42132.1, + "end": 42132.12, + "probability": 0.4761 + }, + { + "start": 42132.12, + "end": 42133.2, + "probability": 0.1654 + }, + { + "start": 42133.52, + "end": 42134.04, + "probability": 0.2226 + }, + { + "start": 42134.96, + "end": 42135.08, + "probability": 0.3114 + }, + { + "start": 42135.88, + "end": 42140.8, + "probability": 0.0694 + }, + { + "start": 42147.4, + "end": 42149.96, + "probability": 0.564 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42185.0, + "end": 42185.0, + "probability": 0.0 + }, + { + "start": 42191.32, + "end": 42192.92, + "probability": 0.6125 + }, + { + "start": 42193.0, + "end": 42195.0, + "probability": 0.4244 + }, + { + "start": 42195.0, + "end": 42198.74, + "probability": 0.8855 + }, + { + "start": 42199.7, + "end": 42200.48, + "probability": 0.6339 + }, + { + "start": 42201.84, + "end": 42203.52, + "probability": 0.6299 + }, + { + "start": 42208.2, + "end": 42214.4, + "probability": 0.9777 + }, + { + "start": 42214.78, + "end": 42215.98, + "probability": 0.4215 + }, + { + "start": 42216.46, + "end": 42225.66, + "probability": 0.942 + }, + { + "start": 42226.12, + "end": 42227.84, + "probability": 0.7842 + }, + { + "start": 42228.7, + "end": 42230.74, + "probability": 0.0764 + }, + { + "start": 42231.22, + "end": 42237.2, + "probability": 0.9712 + }, + { + "start": 42237.32, + "end": 42238.34, + "probability": 0.5134 + }, + { + "start": 42238.76, + "end": 42241.4, + "probability": 0.9097 + }, + { + "start": 42241.4, + "end": 42241.92, + "probability": 0.5343 + }, + { + "start": 42242.04, + "end": 42243.42, + "probability": 0.7345 + }, + { + "start": 42244.3, + "end": 42249.32, + "probability": 0.7477 + }, + { + "start": 42249.34, + "end": 42250.02, + "probability": 0.5784 + }, + { + "start": 42250.66, + "end": 42254.76, + "probability": 0.5134 + }, + { + "start": 42255.38, + "end": 42260.26, + "probability": 0.3155 + }, + { + "start": 42261.12, + "end": 42262.31, + "probability": 0.808 + }, + { + "start": 42275.22, + "end": 42275.78, + "probability": 0.0996 + }, + { + "start": 42275.78, + "end": 42276.6, + "probability": 0.4537 + }, + { + "start": 42277.26, + "end": 42282.98, + "probability": 0.6158 + }, + { + "start": 42283.2, + "end": 42283.66, + "probability": 0.0637 + }, + { + "start": 42284.05, + "end": 42284.9, + "probability": 0.0503 + }, + { + "start": 42285.14, + "end": 42286.14, + "probability": 0.242 + }, + { + "start": 42286.79, + "end": 42288.82, + "probability": 0.1194 + }, + { + "start": 42288.82, + "end": 42289.76, + "probability": 0.3282 + }, + { + "start": 42290.68, + "end": 42292.88, + "probability": 0.2727 + }, + { + "start": 42296.58, + "end": 42297.94, + "probability": 0.3386 + }, + { + "start": 42298.34, + "end": 42299.82, + "probability": 0.3018 + }, + { + "start": 42300.58, + "end": 42301.36, + "probability": 0.0224 + }, + { + "start": 42301.88, + "end": 42301.88, + "probability": 0.1323 + }, + { + "start": 42301.98, + "end": 42303.26, + "probability": 0.5811 + }, + { + "start": 42303.26, + "end": 42305.66, + "probability": 0.9331 + }, + { + "start": 42305.74, + "end": 42306.54, + "probability": 0.6441 + }, + { + "start": 42306.66, + "end": 42311.3, + "probability": 0.2551 + }, + { + "start": 42311.4, + "end": 42312.22, + "probability": 0.3842 + }, + { + "start": 42312.38, + "end": 42312.96, + "probability": 0.0243 + }, + { + "start": 42313.24, + "end": 42314.51, + "probability": 0.0304 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42358.0, + "end": 42358.0, + "probability": 0.0 + }, + { + "start": 42359.27, + "end": 42359.62, + "probability": 0.0444 + }, + { + "start": 42359.64, + "end": 42360.84, + "probability": 0.8104 + }, + { + "start": 42360.92, + "end": 42362.1, + "probability": 0.9815 + }, + { + "start": 42362.38, + "end": 42363.38, + "probability": 0.896 + }, + { + "start": 42364.58, + "end": 42367.96, + "probability": 0.9963 + }, + { + "start": 42368.72, + "end": 42371.56, + "probability": 0.9954 + }, + { + "start": 42372.16, + "end": 42374.11, + "probability": 0.9902 + }, + { + "start": 42374.68, + "end": 42377.64, + "probability": 0.9201 + }, + { + "start": 42378.08, + "end": 42379.4, + "probability": 0.952 + }, + { + "start": 42381.2, + "end": 42381.84, + "probability": 0.6855 + }, + { + "start": 42381.9, + "end": 42382.34, + "probability": 0.8818 + }, + { + "start": 42382.42, + "end": 42383.5, + "probability": 0.6862 + }, + { + "start": 42385.07, + "end": 42386.4, + "probability": 0.5976 + }, + { + "start": 42387.22, + "end": 42389.46, + "probability": 0.6712 + }, + { + "start": 42392.67, + "end": 42395.3, + "probability": 0.3626 + }, + { + "start": 42395.3, + "end": 42395.84, + "probability": 0.0703 + }, + { + "start": 42395.84, + "end": 42395.98, + "probability": 0.3498 + }, + { + "start": 42397.34, + "end": 42397.94, + "probability": 0.615 + }, + { + "start": 42398.08, + "end": 42398.88, + "probability": 0.3111 + }, + { + "start": 42399.04, + "end": 42399.56, + "probability": 0.2198 + }, + { + "start": 42400.12, + "end": 42404.32, + "probability": 0.3686 + }, + { + "start": 42404.54, + "end": 42405.08, + "probability": 0.3959 + }, + { + "start": 42407.0, + "end": 42407.1, + "probability": 0.3597 + }, + { + "start": 42407.84, + "end": 42408.33, + "probability": 0.55 + }, + { + "start": 42420.06, + "end": 42420.2, + "probability": 0.0212 + }, + { + "start": 42420.2, + "end": 42420.2, + "probability": 0.0389 + }, + { + "start": 42420.2, + "end": 42420.2, + "probability": 0.0768 + }, + { + "start": 42420.2, + "end": 42421.7, + "probability": 0.2204 + }, + { + "start": 42423.7, + "end": 42425.38, + "probability": 0.1394 + }, + { + "start": 42430.38, + "end": 42431.18, + "probability": 0.0644 + }, + { + "start": 42431.38, + "end": 42433.73, + "probability": 0.1401 + }, + { + "start": 42435.84, + "end": 42436.26, + "probability": 0.061 + }, + { + "start": 42436.34, + "end": 42437.82, + "probability": 0.83 + }, + { + "start": 42438.4, + "end": 42438.4, + "probability": 0.1011 + }, + { + "start": 42438.56, + "end": 42438.56, + "probability": 0.4338 + }, + { + "start": 42438.56, + "end": 42441.66, + "probability": 0.1852 + }, + { + "start": 42454.5, + "end": 42455.88, + "probability": 0.0539 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.0, + "end": 42482.0, + "probability": 0.0 + }, + { + "start": 42482.04, + "end": 42482.48, + "probability": 0.1577 + }, + { + "start": 42483.0, + "end": 42483.52, + "probability": 0.8711 + }, + { + "start": 42483.6, + "end": 42484.28, + "probability": 0.514 + }, + { + "start": 42486.0, + "end": 42486.68, + "probability": 0.8513 + }, + { + "start": 42487.62, + "end": 42489.18, + "probability": 0.8626 + }, + { + "start": 42489.98, + "end": 42492.38, + "probability": 0.9204 + }, + { + "start": 42493.04, + "end": 42496.14, + "probability": 0.8625 + }, + { + "start": 42496.7, + "end": 42497.6, + "probability": 0.2181 + }, + { + "start": 42498.16, + "end": 42499.08, + "probability": 0.7012 + }, + { + "start": 42499.1, + "end": 42501.5, + "probability": 0.285 + }, + { + "start": 42502.92, + "end": 42505.78, + "probability": 0.1834 + }, + { + "start": 42506.6, + "end": 42509.73, + "probability": 0.283 + }, + { + "start": 42511.94, + "end": 42512.74, + "probability": 0.2665 + }, + { + "start": 42512.74, + "end": 42514.94, + "probability": 0.4757 + }, + { + "start": 42518.3, + "end": 42522.38, + "probability": 0.0736 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.0, + "end": 42605.0, + "probability": 0.0 + }, + { + "start": 42605.1, + "end": 42605.56, + "probability": 0.0124 + }, + { + "start": 42605.56, + "end": 42606.58, + "probability": 0.3514 + }, + { + "start": 42607.04, + "end": 42609.16, + "probability": 0.8875 + }, + { + "start": 42609.3, + "end": 42610.24, + "probability": 0.6954 + }, + { + "start": 42610.82, + "end": 42612.0, + "probability": 0.9755 + }, + { + "start": 42612.22, + "end": 42612.64, + "probability": 0.6366 + }, + { + "start": 42612.88, + "end": 42613.72, + "probability": 0.0254 + }, + { + "start": 42613.8, + "end": 42615.05, + "probability": 0.7939 + }, + { + "start": 42615.26, + "end": 42622.74, + "probability": 0.8828 + }, + { + "start": 42622.84, + "end": 42625.92, + "probability": 0.9604 + }, + { + "start": 42625.92, + "end": 42627.68, + "probability": 0.9255 + }, + { + "start": 42628.08, + "end": 42628.74, + "probability": 0.7736 + }, + { + "start": 42629.18, + "end": 42630.1, + "probability": 0.1945 + }, + { + "start": 42630.28, + "end": 42632.48, + "probability": 0.7296 + }, + { + "start": 42633.16, + "end": 42636.16, + "probability": 0.7454 + }, + { + "start": 42636.86, + "end": 42639.72, + "probability": 0.8259 + }, + { + "start": 42640.3, + "end": 42641.22, + "probability": 0.4052 + }, + { + "start": 42642.58, + "end": 42646.42, + "probability": 0.8032 + }, + { + "start": 42646.54, + "end": 42649.48, + "probability": 0.7613 + }, + { + "start": 42649.76, + "end": 42650.56, + "probability": 0.7553 + }, + { + "start": 42650.88, + "end": 42652.1, + "probability": 0.5638 + }, + { + "start": 42652.18, + "end": 42652.98, + "probability": 0.5584 + }, + { + "start": 42653.32, + "end": 42653.44, + "probability": 0.8489 + }, + { + "start": 42654.08, + "end": 42654.62, + "probability": 0.2356 + }, + { + "start": 42654.62, + "end": 42655.34, + "probability": 0.1739 + }, + { + "start": 42655.46, + "end": 42657.06, + "probability": 0.6007 + }, + { + "start": 42657.16, + "end": 42658.72, + "probability": 0.5912 + }, + { + "start": 42658.72, + "end": 42660.75, + "probability": 0.5695 + }, + { + "start": 42661.2, + "end": 42663.26, + "probability": 0.8657 + }, + { + "start": 42664.73, + "end": 42665.88, + "probability": 0.0119 + }, + { + "start": 42666.84, + "end": 42667.18, + "probability": 0.0163 + }, + { + "start": 42668.26, + "end": 42669.34, + "probability": 0.6427 + }, + { + "start": 42670.26, + "end": 42672.36, + "probability": 0.7455 + }, + { + "start": 42673.18, + "end": 42675.46, + "probability": 0.9712 + }, + { + "start": 42676.1, + "end": 42676.64, + "probability": 0.9945 + }, + { + "start": 42677.56, + "end": 42678.52, + "probability": 0.9213 + }, + { + "start": 42679.12, + "end": 42681.16, + "probability": 0.837 + }, + { + "start": 42682.34, + "end": 42682.78, + "probability": 0.9971 + }, + { + "start": 42683.46, + "end": 42684.6, + "probability": 0.8703 + }, + { + "start": 42687.44, + "end": 42689.84, + "probability": 0.4366 + }, + { + "start": 42690.7, + "end": 42691.2, + "probability": 0.7608 + }, + { + "start": 42692.7, + "end": 42693.46, + "probability": 0.8314 + }, + { + "start": 42695.68, + "end": 42696.18, + "probability": 0.9855 + }, + { + "start": 42697.02, + "end": 42698.12, + "probability": 0.85 + }, + { + "start": 42699.26, + "end": 42701.86, + "probability": 0.9801 + }, + { + "start": 42702.7, + "end": 42705.32, + "probability": 0.9914 + }, + { + "start": 42706.38, + "end": 42708.24, + "probability": 0.9557 + }, + { + "start": 42710.2, + "end": 42713.3, + "probability": 0.7256 + }, + { + "start": 42714.26, + "end": 42716.46, + "probability": 0.9417 + }, + { + "start": 42717.26, + "end": 42717.8, + "probability": 0.9215 + }, + { + "start": 42718.32, + "end": 42722.68, + "probability": 0.9355 + }, + { + "start": 42725.9, + "end": 42726.44, + "probability": 0.9661 + }, + { + "start": 42727.54, + "end": 42728.72, + "probability": 0.9047 + }, + { + "start": 42729.56, + "end": 42730.42, + "probability": 0.9465 + }, + { + "start": 42731.14, + "end": 42732.06, + "probability": 0.9589 + }, + { + "start": 42732.62, + "end": 42734.56, + "probability": 0.9839 + }, + { + "start": 42735.2, + "end": 42737.32, + "probability": 0.9836 + }, + { + "start": 42738.32, + "end": 42738.86, + "probability": 0.7209 + }, + { + "start": 42739.9, + "end": 42740.84, + "probability": 0.488 + }, + { + "start": 42741.82, + "end": 42742.42, + "probability": 0.9382 + }, + { + "start": 42743.76, + "end": 42744.68, + "probability": 0.8796 + }, + { + "start": 42746.56, + "end": 42749.64, + "probability": 0.7712 + }, + { + "start": 42750.36, + "end": 42750.88, + "probability": 0.8018 + }, + { + "start": 42751.74, + "end": 42752.68, + "probability": 0.9309 + }, + { + "start": 42753.52, + "end": 42754.1, + "probability": 0.9959 + }, + { + "start": 42755.02, + "end": 42759.38, + "probability": 0.9658 + }, + { + "start": 42760.4, + "end": 42760.9, + "probability": 0.8691 + }, + { + "start": 42761.5, + "end": 42762.2, + "probability": 0.8992 + }, + { + "start": 42763.26, + "end": 42763.78, + "probability": 0.9927 + }, + { + "start": 42765.24, + "end": 42766.2, + "probability": 0.8972 + }, + { + "start": 42767.16, + "end": 42769.8, + "probability": 0.8333 + }, + { + "start": 42771.02, + "end": 42771.64, + "probability": 0.9009 + }, + { + "start": 42773.04, + "end": 42773.94, + "probability": 0.8894 + }, + { + "start": 42774.8, + "end": 42775.44, + "probability": 0.9777 + }, + { + "start": 42776.22, + "end": 42777.2, + "probability": 0.7466 + }, + { + "start": 42778.58, + "end": 42779.14, + "probability": 0.9639 + }, + { + "start": 42779.76, + "end": 42780.8, + "probability": 0.9796 + }, + { + "start": 42782.38, + "end": 42786.36, + "probability": 0.98 + }, + { + "start": 42788.04, + "end": 42788.66, + "probability": 0.991 + }, + { + "start": 42789.72, + "end": 42790.7, + "probability": 0.908 + }, + { + "start": 42791.54, + "end": 42791.94, + "probability": 0.9773 + }, + { + "start": 42792.9, + "end": 42793.86, + "probability": 0.9799 + }, + { + "start": 42794.72, + "end": 42795.28, + "probability": 0.9943 + }, + { + "start": 42795.92, + "end": 42797.18, + "probability": 0.6402 + }, + { + "start": 42798.16, + "end": 42798.54, + "probability": 0.7397 + }, + { + "start": 42799.22, + "end": 42800.32, + "probability": 0.8278 + }, + { + "start": 42801.8, + "end": 42802.84, + "probability": 0.9723 + }, + { + "start": 42803.94, + "end": 42804.78, + "probability": 0.9091 + }, + { + "start": 42805.3, + "end": 42806.7, + "probability": 0.647 + }, + { + "start": 42807.32, + "end": 42808.22, + "probability": 0.9711 + }, + { + "start": 42809.02, + "end": 42809.72, + "probability": 0.9539 + }, + { + "start": 42810.4, + "end": 42811.32, + "probability": 0.662 + }, + { + "start": 42812.06, + "end": 42814.48, + "probability": 0.9041 + }, + { + "start": 42815.36, + "end": 42817.8, + "probability": 0.8602 + }, + { + "start": 42819.5, + "end": 42822.18, + "probability": 0.9412 + }, + { + "start": 42822.84, + "end": 42823.36, + "probability": 0.7894 + }, + { + "start": 42824.12, + "end": 42825.24, + "probability": 0.788 + }, + { + "start": 42826.18, + "end": 42826.68, + "probability": 0.7849 + }, + { + "start": 42827.76, + "end": 42828.7, + "probability": 0.4722 + }, + { + "start": 42829.62, + "end": 42830.62, + "probability": 0.9885 + }, + { + "start": 42831.84, + "end": 42835.9, + "probability": 0.8495 + }, + { + "start": 42836.58, + "end": 42838.52, + "probability": 0.993 + }, + { + "start": 42839.54, + "end": 42840.12, + "probability": 0.9788 + }, + { + "start": 42841.16, + "end": 42842.02, + "probability": 0.9459 + }, + { + "start": 42843.12, + "end": 42845.82, + "probability": 0.8262 + }, + { + "start": 42846.64, + "end": 42847.22, + "probability": 0.9761 + }, + { + "start": 42847.98, + "end": 42850.16, + "probability": 0.7579 + }, + { + "start": 42851.62, + "end": 42852.5, + "probability": 0.7191 + }, + { + "start": 42853.42, + "end": 42854.06, + "probability": 0.9701 + }, + { + "start": 42854.78, + "end": 42855.56, + "probability": 0.9353 + }, + { + "start": 42857.34, + "end": 42858.68, + "probability": 0.9695 + }, + { + "start": 42859.66, + "end": 42860.76, + "probability": 0.9693 + }, + { + "start": 42861.84, + "end": 42863.48, + "probability": 0.9565 + }, + { + "start": 42864.68, + "end": 42867.06, + "probability": 0.9854 + }, + { + "start": 42868.01, + "end": 42870.12, + "probability": 0.9697 + }, + { + "start": 42872.42, + "end": 42876.32, + "probability": 0.9747 + }, + { + "start": 42877.49, + "end": 42878.28, + "probability": 0.4883 + }, + { + "start": 42884.22, + "end": 42885.44, + "probability": 0.3889 + }, + { + "start": 42886.38, + "end": 42886.82, + "probability": 0.5567 + }, + { + "start": 42887.72, + "end": 42888.66, + "probability": 0.8145 + }, + { + "start": 42889.32, + "end": 42891.4, + "probability": 0.955 + }, + { + "start": 42892.4, + "end": 42895.06, + "probability": 0.9473 + }, + { + "start": 42895.64, + "end": 42898.28, + "probability": 0.9479 + }, + { + "start": 42899.18, + "end": 42901.88, + "probability": 0.9884 + }, + { + "start": 42902.62, + "end": 42903.22, + "probability": 0.9383 + }, + { + "start": 42904.8, + "end": 42905.7, + "probability": 0.9876 + }, + { + "start": 42906.84, + "end": 42907.32, + "probability": 0.9653 + }, + { + "start": 42908.4, + "end": 42908.4, + "probability": 0.0431 + }, + { + "start": 42908.4, + "end": 42909.06, + "probability": 0.2072 + }, + { + "start": 42909.82, + "end": 42913.34, + "probability": 0.8998 + }, + { + "start": 42914.52, + "end": 42918.02, + "probability": 0.8406 + }, + { + "start": 42918.82, + "end": 42921.82, + "probability": 0.7788 + }, + { + "start": 42922.62, + "end": 42923.14, + "probability": 0.9868 + }, + { + "start": 42924.42, + "end": 42925.52, + "probability": 0.6656 + }, + { + "start": 42926.12, + "end": 42928.42, + "probability": 0.5372 + }, + { + "start": 42929.58, + "end": 42930.08, + "probability": 0.9731 + }, + { + "start": 42930.78, + "end": 42935.52, + "probability": 0.9344 + }, + { + "start": 42936.6, + "end": 42937.0, + "probability": 0.9326 + }, + { + "start": 42938.22, + "end": 42938.96, + "probability": 0.9295 + }, + { + "start": 42940.1, + "end": 42940.7, + "probability": 0.994 + }, + { + "start": 42942.1, + "end": 42943.0, + "probability": 0.9247 + }, + { + "start": 42945.66, + "end": 42946.26, + "probability": 0.9922 + }, + { + "start": 42947.38, + "end": 42948.48, + "probability": 0.5187 + }, + { + "start": 42949.3, + "end": 42951.9, + "probability": 0.9901 + }, + { + "start": 42952.94, + "end": 42953.48, + "probability": 0.9971 + }, + { + "start": 42954.76, + "end": 42955.68, + "probability": 0.5543 + }, + { + "start": 42956.36, + "end": 42959.16, + "probability": 0.7983 + }, + { + "start": 42960.6, + "end": 42961.1, + "probability": 0.9928 + }, + { + "start": 42962.54, + "end": 42963.68, + "probability": 0.8375 + }, + { + "start": 42967.06, + "end": 42967.54, + "probability": 0.5659 + }, + { + "start": 42969.26, + "end": 42970.26, + "probability": 0.6288 + }, + { + "start": 42971.16, + "end": 42973.26, + "probability": 0.9557 + }, + { + "start": 42975.54, + "end": 42976.18, + "probability": 0.9727 + }, + { + "start": 42977.7, + "end": 42977.98, + "probability": 0.881 + }, + { + "start": 42980.96, + "end": 42983.16, + "probability": 0.1828 + }, + { + "start": 42984.7, + "end": 42985.74, + "probability": 0.6441 + }, + { + "start": 42986.86, + "end": 42987.72, + "probability": 0.8098 + }, + { + "start": 42988.78, + "end": 42989.3, + "probability": 0.7754 + }, + { + "start": 42991.44, + "end": 42992.48, + "probability": 0.5712 + }, + { + "start": 42996.54, + "end": 42999.22, + "probability": 0.8928 + }, + { + "start": 43003.24, + "end": 43004.72, + "probability": 0.9713 + }, + { + "start": 43005.68, + "end": 43006.68, + "probability": 0.715 + }, + { + "start": 43008.08, + "end": 43008.7, + "probability": 0.8215 + }, + { + "start": 43009.74, + "end": 43010.82, + "probability": 0.688 + }, + { + "start": 43011.44, + "end": 43012.0, + "probability": 0.8601 + }, + { + "start": 43013.0, + "end": 43013.9, + "probability": 0.9314 + }, + { + "start": 43014.52, + "end": 43015.3, + "probability": 0.9751 + }, + { + "start": 43015.96, + "end": 43016.78, + "probability": 0.4913 + }, + { + "start": 43018.68, + "end": 43019.38, + "probability": 0.9767 + }, + { + "start": 43020.84, + "end": 43021.68, + "probability": 0.9762 + }, + { + "start": 43023.06, + "end": 43023.92, + "probability": 0.9788 + }, + { + "start": 43024.88, + "end": 43026.82, + "probability": 0.9391 + }, + { + "start": 43029.44, + "end": 43030.36, + "probability": 0.87 + }, + { + "start": 43031.18, + "end": 43031.76, + "probability": 0.9424 + }, + { + "start": 43033.08, + "end": 43034.14, + "probability": 0.9761 + }, + { + "start": 43034.98, + "end": 43035.48, + "probability": 0.9927 + }, + { + "start": 43036.98, + "end": 43037.78, + "probability": 0.7071 + }, + { + "start": 43038.98, + "end": 43041.34, + "probability": 0.5976 + }, + { + "start": 43042.12, + "end": 43043.08, + "probability": 0.9463 + }, + { + "start": 43044.12, + "end": 43044.8, + "probability": 0.849 + }, + { + "start": 43046.16, + "end": 43046.56, + "probability": 0.9209 + }, + { + "start": 43048.08, + "end": 43048.86, + "probability": 0.8134 + }, + { + "start": 43050.28, + "end": 43052.42, + "probability": 0.8477 + }, + { + "start": 43056.8, + "end": 43059.78, + "probability": 0.7998 + }, + { + "start": 43062.38, + "end": 43063.92, + "probability": 0.512 + }, + { + "start": 43065.28, + "end": 43066.2, + "probability": 0.1903 + }, + { + "start": 43067.4, + "end": 43067.86, + "probability": 0.5094 + }, + { + "start": 43069.44, + "end": 43070.48, + "probability": 0.7955 + }, + { + "start": 43072.5, + "end": 43073.02, + "probability": 0.9256 + }, + { + "start": 43074.72, + "end": 43075.78, + "probability": 0.958 + }, + { + "start": 43077.0, + "end": 43078.6, + "probability": 0.9363 + }, + { + "start": 43079.46, + "end": 43080.52, + "probability": 0.9909 + }, + { + "start": 43082.13, + "end": 43083.72, + "probability": 0.9331 + }, + { + "start": 43085.3, + "end": 43088.2, + "probability": 0.9571 + }, + { + "start": 43089.1, + "end": 43089.46, + "probability": 0.9834 + }, + { + "start": 43090.44, + "end": 43091.64, + "probability": 0.7817 + }, + { + "start": 43092.36, + "end": 43092.88, + "probability": 0.9924 + }, + { + "start": 43093.84, + "end": 43094.18, + "probability": 0.0058 + }, + { + "start": 43099.02, + "end": 43100.22, + "probability": 0.3353 + }, + { + "start": 43100.94, + "end": 43101.38, + "probability": 0.56 + }, + { + "start": 43102.22, + "end": 43103.16, + "probability": 0.7384 + }, + { + "start": 43104.44, + "end": 43106.46, + "probability": 0.9082 + }, + { + "start": 43109.54, + "end": 43110.2, + "probability": 0.9212 + }, + { + "start": 43112.64, + "end": 43113.46, + "probability": 0.7625 + }, + { + "start": 43114.58, + "end": 43116.68, + "probability": 0.9572 + }, + { + "start": 43117.9, + "end": 43118.2, + "probability": 0.5505 + }, + { + "start": 43119.32, + "end": 43120.1, + "probability": 0.41 + }, + { + "start": 43121.33, + "end": 43123.72, + "probability": 0.948 + }, + { + "start": 43124.38, + "end": 43124.96, + "probability": 0.916 + }, + { + "start": 43126.38, + "end": 43127.58, + "probability": 0.8851 + }, + { + "start": 43128.88, + "end": 43131.4, + "probability": 0.8772 + }, + { + "start": 43135.94, + "end": 43136.38, + "probability": 0.6321 + }, + { + "start": 43138.0, + "end": 43138.52, + "probability": 0.618 + }, + { + "start": 43139.86, + "end": 43141.92, + "probability": 0.7493 + }, + { + "start": 43142.9, + "end": 43143.3, + "probability": 0.9629 + }, + { + "start": 43147.4, + "end": 43150.66, + "probability": 0.9032 + }, + { + "start": 43150.92, + "end": 43152.3, + "probability": 0.2417 + }, + { + "start": 43155.02, + "end": 43155.76, + "probability": 0.7709 + }, + { + "start": 43160.04, + "end": 43160.68, + "probability": 0.3724 + }, + { + "start": 43168.42, + "end": 43170.74, + "probability": 0.6951 + }, + { + "start": 43171.64, + "end": 43172.22, + "probability": 0.9601 + }, + { + "start": 43175.36, + "end": 43177.36, + "probability": 0.6072 + }, + { + "start": 43178.14, + "end": 43179.04, + "probability": 0.3158 + }, + { + "start": 43179.72, + "end": 43180.14, + "probability": 0.8612 + }, + { + "start": 43185.7, + "end": 43189.18, + "probability": 0.9465 + }, + { + "start": 43189.84, + "end": 43190.84, + "probability": 0.5969 + }, + { + "start": 43190.86, + "end": 43192.04, + "probability": 0.7981 + }, + { + "start": 43193.5, + "end": 43194.12, + "probability": 0.0958 + }, + { + "start": 43320.24, + "end": 43320.24, + "probability": 0.0253 + }, + { + "start": 43320.24, + "end": 43320.24, + "probability": 0.0418 + }, + { + "start": 43320.24, + "end": 43322.2, + "probability": 0.4659 + }, + { + "start": 43323.06, + "end": 43325.94, + "probability": 0.5812 + }, + { + "start": 43326.12, + "end": 43329.38, + "probability": 0.9738 + }, + { + "start": 43331.1, + "end": 43332.34, + "probability": 0.2034 + }, + { + "start": 43334.48, + "end": 43335.56, + "probability": 0.783 + }, + { + "start": 43335.66, + "end": 43336.02, + "probability": 0.6294 + }, + { + "start": 43336.16, + "end": 43337.68, + "probability": 0.6747 + }, + { + "start": 43338.12, + "end": 43340.0, + "probability": 0.6577 + }, + { + "start": 43341.36, + "end": 43341.94, + "probability": 0.8281 + }, + { + "start": 43343.06, + "end": 43346.54, + "probability": 0.9828 + }, + { + "start": 43346.62, + "end": 43347.06, + "probability": 0.9456 + }, + { + "start": 43347.58, + "end": 43353.22, + "probability": 0.9518 + }, + { + "start": 43353.38, + "end": 43355.0, + "probability": 0.7516 + }, + { + "start": 43355.74, + "end": 43359.04, + "probability": 0.9361 + }, + { + "start": 43359.16, + "end": 43365.88, + "probability": 0.2867 + }, + { + "start": 43366.56, + "end": 43371.52, + "probability": 0.5121 + }, + { + "start": 43372.2, + "end": 43372.92, + "probability": 0.6232 + }, + { + "start": 43373.1, + "end": 43377.5, + "probability": 0.9175 + }, + { + "start": 43380.08, + "end": 43380.08, + "probability": 0.0002 + }, + { + "start": 43389.4, + "end": 43390.08, + "probability": 0.2565 + }, + { + "start": 43390.08, + "end": 43390.08, + "probability": 0.4618 + }, + { + "start": 43390.08, + "end": 43390.36, + "probability": 0.0453 + }, + { + "start": 43393.0, + "end": 43393.8, + "probability": 0.023 + }, + { + "start": 43396.78, + "end": 43398.03, + "probability": 0.5173 + }, + { + "start": 43398.88, + "end": 43399.36, + "probability": 0.8325 + }, + { + "start": 43399.52, + "end": 43400.5, + "probability": 0.2715 + }, + { + "start": 43411.12, + "end": 43412.64, + "probability": 0.0936 + }, + { + "start": 43414.26, + "end": 43416.64, + "probability": 0.4137 + }, + { + "start": 43417.26, + "end": 43419.84, + "probability": 0.3633 + }, + { + "start": 43422.98, + "end": 43425.6, + "probability": 0.2737 + }, + { + "start": 43426.16, + "end": 43427.52, + "probability": 0.3707 + }, + { + "start": 43427.52, + "end": 43428.9, + "probability": 0.7664 + }, + { + "start": 43429.02, + "end": 43429.08, + "probability": 0.42 + }, + { + "start": 43429.86, + "end": 43430.84, + "probability": 0.5978 + }, + { + "start": 43430.84, + "end": 43432.66, + "probability": 0.5745 + }, + { + "start": 43432.86, + "end": 43434.6, + "probability": 0.0341 + }, + { + "start": 43446.66, + "end": 43449.72, + "probability": 0.5412 + }, + { + "start": 43465.54, + "end": 43471.56, + "probability": 0.9943 + }, + { + "start": 43472.42, + "end": 43475.62, + "probability": 0.9956 + }, + { + "start": 43475.62, + "end": 43479.3, + "probability": 0.9935 + }, + { + "start": 43480.16, + "end": 43482.44, + "probability": 0.9876 + }, + { + "start": 43482.44, + "end": 43486.24, + "probability": 0.9731 + }, + { + "start": 43486.64, + "end": 43487.0, + "probability": 0.7123 + }, + { + "start": 43487.16, + "end": 43487.54, + "probability": 0.9342 + }, + { + "start": 43488.06, + "end": 43488.78, + "probability": 0.5714 + }, + { + "start": 43489.36, + "end": 43491.58, + "probability": 0.9984 + }, + { + "start": 43491.58, + "end": 43495.96, + "probability": 0.8555 + }, + { + "start": 43496.12, + "end": 43496.88, + "probability": 0.6582 + }, + { + "start": 43497.7, + "end": 43500.24, + "probability": 0.989 + }, + { + "start": 43500.92, + "end": 43504.72, + "probability": 0.9924 + }, + { + "start": 43504.72, + "end": 43508.04, + "probability": 0.9996 + }, + { + "start": 43508.7, + "end": 43514.66, + "probability": 0.9912 + }, + { + "start": 43515.6, + "end": 43523.92, + "probability": 0.9908 + }, + { + "start": 43523.92, + "end": 43528.36, + "probability": 0.9984 + }, + { + "start": 43528.36, + "end": 43534.04, + "probability": 0.999 + }, + { + "start": 43534.6, + "end": 43538.88, + "probability": 0.9994 + }, + { + "start": 43538.88, + "end": 43543.76, + "probability": 0.9992 + }, + { + "start": 43545.0, + "end": 43546.06, + "probability": 0.9011 + }, + { + "start": 43546.88, + "end": 43552.46, + "probability": 0.9727 + }, + { + "start": 43553.12, + "end": 43557.96, + "probability": 0.9583 + }, + { + "start": 43558.66, + "end": 43559.18, + "probability": 0.7674 + }, + { + "start": 43559.42, + "end": 43564.56, + "probability": 0.9959 + }, + { + "start": 43565.22, + "end": 43567.06, + "probability": 0.9729 + }, + { + "start": 43567.66, + "end": 43571.0, + "probability": 0.9979 + }, + { + "start": 43571.0, + "end": 43574.52, + "probability": 0.9814 + }, + { + "start": 43575.22, + "end": 43575.92, + "probability": 0.689 + }, + { + "start": 43576.44, + "end": 43577.41, + "probability": 0.6223 + }, + { + "start": 43577.54, + "end": 43580.6, + "probability": 0.8535 + }, + { + "start": 43581.12, + "end": 43583.0, + "probability": 0.9148 + }, + { + "start": 43589.18, + "end": 43590.08, + "probability": 0.9844 + }, + { + "start": 43591.26, + "end": 43591.8, + "probability": 0.5085 + }, + { + "start": 43592.8, + "end": 43594.2, + "probability": 0.9339 + }, + { + "start": 43595.16, + "end": 43597.28, + "probability": 0.9679 + }, + { + "start": 43601.18, + "end": 43602.52, + "probability": 0.9856 + }, + { + "start": 43609.54, + "end": 43611.52, + "probability": 0.7908 + }, + { + "start": 43612.16, + "end": 43613.58, + "probability": 0.9868 + }, + { + "start": 43615.1, + "end": 43617.44, + "probability": 0.9669 + }, + { + "start": 43618.6, + "end": 43620.86, + "probability": 0.7194 + }, + { + "start": 43624.1, + "end": 43625.62, + "probability": 0.6544 + }, + { + "start": 43626.5, + "end": 43628.44, + "probability": 0.9524 + }, + { + "start": 43630.48, + "end": 43631.24, + "probability": 0.5012 + }, + { + "start": 43631.9, + "end": 43632.92, + "probability": 0.9956 + }, + { + "start": 43633.88, + "end": 43636.7, + "probability": 0.8354 + }, + { + "start": 43637.24, + "end": 43638.42, + "probability": 0.9958 + }, + { + "start": 43639.94, + "end": 43640.46, + "probability": 0.8745 + }, + { + "start": 43640.98, + "end": 43642.36, + "probability": 0.983 + }, + { + "start": 43644.58, + "end": 43645.3, + "probability": 0.886 + }, + { + "start": 43645.96, + "end": 43647.04, + "probability": 0.9971 + }, + { + "start": 43648.22, + "end": 43650.72, + "probability": 0.8428 + }, + { + "start": 43652.06, + "end": 43654.14, + "probability": 0.8837 + }, + { + "start": 43657.28, + "end": 43658.12, + "probability": 0.8079 + }, + { + "start": 43658.5, + "end": 43661.48, + "probability": 0.8497 + }, + { + "start": 43661.84, + "end": 43662.76, + "probability": 0.7089 + }, + { + "start": 43662.86, + "end": 43664.0, + "probability": 0.9829 + }, + { + "start": 43666.18, + "end": 43667.42, + "probability": 0.9572 + }, + { + "start": 43668.22, + "end": 43670.16, + "probability": 0.9956 + }, + { + "start": 43671.04, + "end": 43671.8, + "probability": 0.8384 + }, + { + "start": 43676.76, + "end": 43678.18, + "probability": 0.7267 + }, + { + "start": 43679.24, + "end": 43681.34, + "probability": 0.9303 + }, + { + "start": 43682.62, + "end": 43685.12, + "probability": 0.9661 + }, + { + "start": 43687.0, + "end": 43688.68, + "probability": 0.9871 + }, + { + "start": 43690.06, + "end": 43691.94, + "probability": 0.9892 + }, + { + "start": 43693.1, + "end": 43695.0, + "probability": 0.7382 + }, + { + "start": 43695.62, + "end": 43699.1, + "probability": 0.966 + }, + { + "start": 43700.26, + "end": 43700.9, + "probability": 0.5236 + }, + { + "start": 43701.2, + "end": 43702.52, + "probability": 0.979 + }, + { + "start": 43703.08, + "end": 43703.64, + "probability": 0.9359 + }, + { + "start": 43710.62, + "end": 43710.62, + "probability": 0.2857 + }, + { + "start": 43721.3, + "end": 43723.66, + "probability": 0.787 + }, + { + "start": 43724.2, + "end": 43730.08, + "probability": 0.5381 + }, + { + "start": 43731.32, + "end": 43735.84, + "probability": 0.966 + }, + { + "start": 43737.28, + "end": 43737.87, + "probability": 0.9546 + }, + { + "start": 43740.98, + "end": 43745.5, + "probability": 0.9972 + }, + { + "start": 43747.0, + "end": 43751.3, + "probability": 0.9797 + }, + { + "start": 43752.76, + "end": 43755.42, + "probability": 0.9992 + }, + { + "start": 43756.84, + "end": 43758.22, + "probability": 0.8776 + }, + { + "start": 43759.34, + "end": 43760.68, + "probability": 0.9437 + }, + { + "start": 43763.18, + "end": 43767.88, + "probability": 0.9953 + }, + { + "start": 43771.0, + "end": 43773.14, + "probability": 0.9338 + }, + { + "start": 43775.34, + "end": 43775.9, + "probability": 0.6986 + }, + { + "start": 43778.54, + "end": 43779.26, + "probability": 0.8556 + }, + { + "start": 43780.92, + "end": 43782.2, + "probability": 0.7062 + }, + { + "start": 43782.4, + "end": 43783.52, + "probability": 0.8462 + }, + { + "start": 43783.6, + "end": 43788.28, + "probability": 0.9913 + }, + { + "start": 43790.48, + "end": 43791.64, + "probability": 0.7546 + }, + { + "start": 43791.72, + "end": 43795.94, + "probability": 0.9849 + }, + { + "start": 43797.18, + "end": 43800.52, + "probability": 0.9985 + }, + { + "start": 43801.42, + "end": 43803.84, + "probability": 0.9958 + }, + { + "start": 43806.02, + "end": 43809.41, + "probability": 0.9964 + }, + { + "start": 43809.58, + "end": 43817.86, + "probability": 0.9975 + }, + { + "start": 43817.86, + "end": 43822.0, + "probability": 0.9995 + }, + { + "start": 43823.78, + "end": 43827.82, + "probability": 0.9808 + }, + { + "start": 43829.42, + "end": 43830.52, + "probability": 0.9138 + }, + { + "start": 43832.16, + "end": 43836.28, + "probability": 0.982 + }, + { + "start": 43837.32, + "end": 43839.28, + "probability": 0.9551 + }, + { + "start": 43841.44, + "end": 43844.9, + "probability": 0.9492 + }, + { + "start": 43845.07, + "end": 43846.23, + "probability": 0.9819 + }, + { + "start": 43846.42, + "end": 43847.52, + "probability": 0.768 + }, + { + "start": 43848.24, + "end": 43852.45, + "probability": 0.9735 + }, + { + "start": 43853.18, + "end": 43854.7, + "probability": 0.8579 + }, + { + "start": 43855.32, + "end": 43861.97, + "probability": 0.8331 + }, + { + "start": 43862.42, + "end": 43863.32, + "probability": 0.8719 + }, + { + "start": 43866.26, + "end": 43871.52, + "probability": 0.868 + }, + { + "start": 43871.72, + "end": 43877.54, + "probability": 0.8044 + }, + { + "start": 43880.46, + "end": 43882.28, + "probability": 0.8953 + }, + { + "start": 43883.14, + "end": 43884.48, + "probability": 0.9615 + }, + { + "start": 43885.26, + "end": 43890.45, + "probability": 0.9991 + }, + { + "start": 43891.26, + "end": 43892.38, + "probability": 0.5981 + }, + { + "start": 43892.5, + "end": 43895.38, + "probability": 0.9803 + }, + { + "start": 43895.68, + "end": 43898.32, + "probability": 0.857 + }, + { + "start": 43902.06, + "end": 43906.36, + "probability": 0.673 + }, + { + "start": 43906.68, + "end": 43907.02, + "probability": 0.5609 + }, + { + "start": 43907.12, + "end": 43907.4, + "probability": 0.4779 + }, + { + "start": 43907.74, + "end": 43909.38, + "probability": 0.8148 + }, + { + "start": 43909.5, + "end": 43910.44, + "probability": 0.7701 + }, + { + "start": 43911.3, + "end": 43914.16, + "probability": 0.7029 + }, + { + "start": 43915.54, + "end": 43917.14, + "probability": 0.2428 + }, + { + "start": 43917.22, + "end": 43917.62, + "probability": 0.0783 + }, + { + "start": 43917.62, + "end": 43917.62, + "probability": 0.1937 + }, + { + "start": 43917.62, + "end": 43922.04, + "probability": 0.9678 + }, + { + "start": 43922.14, + "end": 43924.92, + "probability": 0.6786 + }, + { + "start": 43926.58, + "end": 43927.36, + "probability": 0.5738 + }, + { + "start": 43929.24, + "end": 43929.62, + "probability": 0.1482 + }, + { + "start": 43930.7, + "end": 43931.52, + "probability": 0.1277 + }, + { + "start": 43931.52, + "end": 43932.3, + "probability": 0.3861 + }, + { + "start": 43932.68, + "end": 43934.62, + "probability": 0.5846 + }, + { + "start": 43934.66, + "end": 43935.96, + "probability": 0.4613 + }, + { + "start": 43936.62, + "end": 43936.62, + "probability": 0.7455 + }, + { + "start": 43937.38, + "end": 43937.62, + "probability": 0.6344 + }, + { + "start": 43938.42, + "end": 43939.31, + "probability": 0.2968 + }, + { + "start": 43939.62, + "end": 43942.54, + "probability": 0.6202 + }, + { + "start": 43943.22, + "end": 43944.86, + "probability": 0.7276 + }, + { + "start": 43945.3, + "end": 43946.44, + "probability": 0.9951 + }, + { + "start": 43947.16, + "end": 43950.58, + "probability": 0.9918 + }, + { + "start": 43950.72, + "end": 43952.02, + "probability": 0.8967 + }, + { + "start": 43952.04, + "end": 43952.82, + "probability": 0.3534 + }, + { + "start": 43953.0, + "end": 43954.9, + "probability": 0.7773 + }, + { + "start": 43955.12, + "end": 43955.62, + "probability": 0.6084 + }, + { + "start": 43955.8, + "end": 43957.08, + "probability": 0.9357 + }, + { + "start": 43957.52, + "end": 43958.82, + "probability": 0.8333 + }, + { + "start": 43963.46, + "end": 43965.8, + "probability": 0.9646 + }, + { + "start": 43966.94, + "end": 43967.58, + "probability": 0.7804 + }, + { + "start": 43968.14, + "end": 43970.26, + "probability": 0.961 + }, + { + "start": 43971.22, + "end": 43973.62, + "probability": 0.8064 + }, + { + "start": 43974.14, + "end": 43975.14, + "probability": 0.8174 + }, + { + "start": 43976.94, + "end": 43977.52, + "probability": 0.786 + }, + { + "start": 43978.16, + "end": 43980.38, + "probability": 0.9625 + }, + { + "start": 43980.86, + "end": 43982.68, + "probability": 0.972 + }, + { + "start": 43983.34, + "end": 43984.98, + "probability": 0.1531 + }, + { + "start": 43986.52, + "end": 43987.62, + "probability": 0.0197 + }, + { + "start": 44012.26, + "end": 44014.9, + "probability": 0.6454 + }, + { + "start": 44015.06, + "end": 44017.6, + "probability": 0.9914 + }, + { + "start": 44018.82, + "end": 44022.56, + "probability": 0.9887 + }, + { + "start": 44023.38, + "end": 44026.1, + "probability": 0.9434 + }, + { + "start": 44026.62, + "end": 44029.7, + "probability": 0.8936 + }, + { + "start": 44030.28, + "end": 44035.9, + "probability": 0.9987 + }, + { + "start": 44036.74, + "end": 44040.66, + "probability": 0.9941 + }, + { + "start": 44041.5, + "end": 44043.04, + "probability": 0.9736 + }, + { + "start": 44043.6, + "end": 44044.84, + "probability": 0.9586 + }, + { + "start": 44045.14, + "end": 44046.14, + "probability": 0.9985 + }, + { + "start": 44047.12, + "end": 44048.66, + "probability": 0.9869 + }, + { + "start": 44049.9, + "end": 44053.88, + "probability": 0.9823 + }, + { + "start": 44054.42, + "end": 44055.74, + "probability": 0.7089 + }, + { + "start": 44056.1, + "end": 44058.85, + "probability": 0.9905 + }, + { + "start": 44059.28, + "end": 44061.0, + "probability": 0.9341 + }, + { + "start": 44061.4, + "end": 44063.3, + "probability": 0.999 + }, + { + "start": 44063.76, + "end": 44067.6, + "probability": 0.9851 + }, + { + "start": 44068.04, + "end": 44072.28, + "probability": 0.9222 + }, + { + "start": 44073.12, + "end": 44073.46, + "probability": 0.5952 + }, + { + "start": 44073.68, + "end": 44074.42, + "probability": 0.9756 + }, + { + "start": 44074.46, + "end": 44075.28, + "probability": 0.7965 + }, + { + "start": 44075.58, + "end": 44078.7, + "probability": 0.9311 + }, + { + "start": 44079.2, + "end": 44085.66, + "probability": 0.801 + }, + { + "start": 44086.08, + "end": 44087.68, + "probability": 0.6236 + }, + { + "start": 44088.2, + "end": 44093.32, + "probability": 0.9829 + }, + { + "start": 44093.7, + "end": 44095.8, + "probability": 0.816 + }, + { + "start": 44096.38, + "end": 44099.48, + "probability": 0.9634 + }, + { + "start": 44100.04, + "end": 44102.32, + "probability": 0.2701 + }, + { + "start": 44102.9, + "end": 44103.22, + "probability": 0.053 + }, + { + "start": 44103.22, + "end": 44105.72, + "probability": 0.5565 + }, + { + "start": 44106.16, + "end": 44110.86, + "probability": 0.9918 + }, + { + "start": 44111.7, + "end": 44113.76, + "probability": 0.9935 + }, + { + "start": 44114.28, + "end": 44116.52, + "probability": 0.9285 + }, + { + "start": 44117.24, + "end": 44123.6, + "probability": 0.9971 + }, + { + "start": 44124.44, + "end": 44127.38, + "probability": 0.8688 + }, + { + "start": 44127.9, + "end": 44128.6, + "probability": 0.7672 + }, + { + "start": 44129.3, + "end": 44129.36, + "probability": 0.644 + }, + { + "start": 44129.88, + "end": 44133.02, + "probability": 0.9936 + }, + { + "start": 44133.74, + "end": 44135.28, + "probability": 0.9528 + }, + { + "start": 44135.82, + "end": 44138.12, + "probability": 0.9958 + }, + { + "start": 44140.34, + "end": 44141.52, + "probability": 0.0111 + }, + { + "start": 44141.6, + "end": 44142.22, + "probability": 0.0298 + }, + { + "start": 44142.4, + "end": 44144.6, + "probability": 0.8737 + }, + { + "start": 44144.94, + "end": 44144.94, + "probability": 0.2524 + }, + { + "start": 44144.94, + "end": 44147.0, + "probability": 0.8571 + }, + { + "start": 44148.06, + "end": 44150.45, + "probability": 0.8865 + }, + { + "start": 44152.65, + "end": 44155.98, + "probability": 0.8089 + }, + { + "start": 44156.32, + "end": 44157.34, + "probability": 0.7391 + }, + { + "start": 44158.28, + "end": 44160.74, + "probability": 0.9915 + }, + { + "start": 44160.88, + "end": 44161.54, + "probability": 0.8377 + }, + { + "start": 44161.66, + "end": 44162.86, + "probability": 0.7804 + }, + { + "start": 44162.92, + "end": 44165.89, + "probability": 0.9624 + }, + { + "start": 44166.2, + "end": 44167.07, + "probability": 0.9954 + }, + { + "start": 44167.98, + "end": 44168.32, + "probability": 0.9425 + }, + { + "start": 44168.64, + "end": 44168.92, + "probability": 0.7853 + }, + { + "start": 44169.0, + "end": 44172.44, + "probability": 0.932 + }, + { + "start": 44172.82, + "end": 44174.48, + "probability": 0.9951 + }, + { + "start": 44175.76, + "end": 44177.0, + "probability": 0.9677 + }, + { + "start": 44178.1, + "end": 44182.3, + "probability": 0.991 + }, + { + "start": 44182.3, + "end": 44185.98, + "probability": 0.9963 + }, + { + "start": 44186.68, + "end": 44190.78, + "probability": 0.9985 + }, + { + "start": 44190.78, + "end": 44194.08, + "probability": 0.9884 + }, + { + "start": 44194.44, + "end": 44195.54, + "probability": 0.9612 + }, + { + "start": 44196.1, + "end": 44197.86, + "probability": 0.9976 + }, + { + "start": 44198.2, + "end": 44200.29, + "probability": 0.7461 + }, + { + "start": 44200.78, + "end": 44202.64, + "probability": 0.9956 + }, + { + "start": 44203.22, + "end": 44203.98, + "probability": 0.5308 + }, + { + "start": 44204.08, + "end": 44205.98, + "probability": 0.6715 + }, + { + "start": 44206.14, + "end": 44207.06, + "probability": 0.8975 + }, + { + "start": 44207.12, + "end": 44213.34, + "probability": 0.9932 + }, + { + "start": 44213.36, + "end": 44218.14, + "probability": 0.9938 + }, + { + "start": 44218.64, + "end": 44221.86, + "probability": 0.8614 + }, + { + "start": 44222.32, + "end": 44223.5, + "probability": 0.8629 + }, + { + "start": 44223.86, + "end": 44225.66, + "probability": 0.9404 + }, + { + "start": 44225.74, + "end": 44226.24, + "probability": 0.8667 + }, + { + "start": 44226.7, + "end": 44227.26, + "probability": 0.5467 + }, + { + "start": 44227.4, + "end": 44228.58, + "probability": 0.9883 + }, + { + "start": 44229.86, + "end": 44232.0, + "probability": 0.7607 + }, + { + "start": 44232.86, + "end": 44235.18, + "probability": 0.9429 + }, + { + "start": 44236.36, + "end": 44237.46, + "probability": 0.4838 + }, + { + "start": 44237.46, + "end": 44240.8, + "probability": 0.9701 + }, + { + "start": 44251.84, + "end": 44252.5, + "probability": 0.4554 + }, + { + "start": 44254.26, + "end": 44260.08, + "probability": 0.8667 + }, + { + "start": 44262.66, + "end": 44264.82, + "probability": 0.9988 + }, + { + "start": 44265.88, + "end": 44269.88, + "probability": 0.9539 + }, + { + "start": 44270.52, + "end": 44272.8, + "probability": 0.0187 + }, + { + "start": 44274.5, + "end": 44274.66, + "probability": 0.302 + }, + { + "start": 44276.98, + "end": 44278.98, + "probability": 0.5677 + }, + { + "start": 44281.63, + "end": 44282.57, + "probability": 0.0324 + }, + { + "start": 44289.62, + "end": 44290.9, + "probability": 0.5775 + }, + { + "start": 44290.9, + "end": 44292.52, + "probability": 0.6908 + }, + { + "start": 44292.52, + "end": 44296.88, + "probability": 0.1127 + }, + { + "start": 44298.2, + "end": 44300.6, + "probability": 0.0132 + }, + { + "start": 44301.6, + "end": 44303.54, + "probability": 0.0302 + }, + { + "start": 44304.54, + "end": 44304.72, + "probability": 0.6864 + }, + { + "start": 44304.72, + "end": 44304.72, + "probability": 0.653 + }, + { + "start": 44304.72, + "end": 44306.44, + "probability": 0.1624 + }, + { + "start": 44306.48, + "end": 44306.94, + "probability": 0.1049 + }, + { + "start": 44341.8, + "end": 44344.3, + "probability": 0.5846 + }, + { + "start": 44345.06, + "end": 44345.65, + "probability": 0.6809 + }, + { + "start": 44345.9, + "end": 44346.46, + "probability": 0.9658 + }, + { + "start": 44346.68, + "end": 44348.56, + "probability": 0.7937 + }, + { + "start": 44349.1, + "end": 44350.02, + "probability": 0.9355 + }, + { + "start": 44351.38, + "end": 44351.68, + "probability": 0.5199 + }, + { + "start": 44351.68, + "end": 44353.62, + "probability": 0.8032 + }, + { + "start": 44354.08, + "end": 44356.28, + "probability": 0.9918 + }, + { + "start": 44356.96, + "end": 44364.6, + "probability": 0.9714 + }, + { + "start": 44364.6, + "end": 44369.6, + "probability": 0.9998 + }, + { + "start": 44370.46, + "end": 44375.84, + "probability": 0.96 + }, + { + "start": 44375.84, + "end": 44379.9, + "probability": 0.9988 + }, + { + "start": 44381.72, + "end": 44383.56, + "probability": 0.7084 + }, + { + "start": 44383.66, + "end": 44384.44, + "probability": 0.9556 + }, + { + "start": 44384.94, + "end": 44386.44, + "probability": 0.6392 + }, + { + "start": 44386.58, + "end": 44387.74, + "probability": 0.5458 + }, + { + "start": 44388.06, + "end": 44388.58, + "probability": 0.954 + }, + { + "start": 44389.04, + "end": 44391.52, + "probability": 0.6968 + }, + { + "start": 44391.76, + "end": 44395.04, + "probability": 0.7937 + }, + { + "start": 44395.1, + "end": 44397.14, + "probability": 0.9844 + }, + { + "start": 44397.3, + "end": 44399.88, + "probability": 0.9585 + }, + { + "start": 44401.34, + "end": 44401.84, + "probability": 0.5376 + }, + { + "start": 44402.48, + "end": 44403.98, + "probability": 0.8271 + }, + { + "start": 44404.8, + "end": 44405.64, + "probability": 0.9482 + }, + { + "start": 44406.8, + "end": 44407.6, + "probability": 0.7571 + }, + { + "start": 44408.58, + "end": 44410.48, + "probability": 0.223 + }, + { + "start": 44410.74, + "end": 44412.88, + "probability": 0.7269 + }, + { + "start": 44413.12, + "end": 44414.94, + "probability": 0.7452 + }, + { + "start": 44433.98, + "end": 44435.94, + "probability": 0.6685 + }, + { + "start": 44436.96, + "end": 44437.8, + "probability": 0.6682 + }, + { + "start": 44439.86, + "end": 44446.12, + "probability": 0.9141 + }, + { + "start": 44447.78, + "end": 44449.98, + "probability": 0.828 + }, + { + "start": 44450.84, + "end": 44456.08, + "probability": 0.9474 + }, + { + "start": 44457.06, + "end": 44460.22, + "probability": 0.3902 + }, + { + "start": 44461.14, + "end": 44466.44, + "probability": 0.9801 + }, + { + "start": 44466.94, + "end": 44469.86, + "probability": 0.9976 + }, + { + "start": 44472.52, + "end": 44473.42, + "probability": 0.8069 + }, + { + "start": 44474.74, + "end": 44476.4, + "probability": 0.9455 + }, + { + "start": 44477.48, + "end": 44482.88, + "probability": 0.9976 + }, + { + "start": 44483.74, + "end": 44486.82, + "probability": 0.9203 + }, + { + "start": 44487.36, + "end": 44493.82, + "probability": 0.9935 + }, + { + "start": 44494.42, + "end": 44498.86, + "probability": 0.9993 + }, + { + "start": 44499.94, + "end": 44503.14, + "probability": 0.8568 + }, + { + "start": 44504.16, + "end": 44505.72, + "probability": 0.9944 + }, + { + "start": 44506.28, + "end": 44514.86, + "probability": 0.9938 + }, + { + "start": 44515.66, + "end": 44521.02, + "probability": 0.9965 + }, + { + "start": 44522.44, + "end": 44526.02, + "probability": 0.9619 + }, + { + "start": 44526.92, + "end": 44529.64, + "probability": 0.836 + }, + { + "start": 44530.52, + "end": 44532.74, + "probability": 0.9885 + }, + { + "start": 44535.48, + "end": 44537.84, + "probability": 0.9839 + }, + { + "start": 44538.66, + "end": 44540.1, + "probability": 0.9185 + }, + { + "start": 44540.22, + "end": 44542.88, + "probability": 0.865 + }, + { + "start": 44543.42, + "end": 44551.4, + "probability": 0.9337 + }, + { + "start": 44551.92, + "end": 44555.02, + "probability": 0.9757 + }, + { + "start": 44555.66, + "end": 44557.22, + "probability": 0.9778 + }, + { + "start": 44557.98, + "end": 44561.64, + "probability": 0.9414 + }, + { + "start": 44562.22, + "end": 44563.52, + "probability": 0.9723 + }, + { + "start": 44567.14, + "end": 44569.46, + "probability": 0.7719 + }, + { + "start": 44570.6, + "end": 44571.58, + "probability": 0.9871 + }, + { + "start": 44572.56, + "end": 44578.86, + "probability": 0.9944 + }, + { + "start": 44579.72, + "end": 44581.5, + "probability": 0.9346 + }, + { + "start": 44582.12, + "end": 44583.5, + "probability": 0.9614 + }, + { + "start": 44584.3, + "end": 44586.54, + "probability": 0.9834 + }, + { + "start": 44587.0, + "end": 44589.2, + "probability": 0.9976 + }, + { + "start": 44589.78, + "end": 44592.8, + "probability": 0.9708 + }, + { + "start": 44593.36, + "end": 44594.98, + "probability": 0.9873 + }, + { + "start": 44596.24, + "end": 44599.66, + "probability": 0.9881 + }, + { + "start": 44600.7, + "end": 44605.11, + "probability": 0.9617 + }, + { + "start": 44605.62, + "end": 44607.72, + "probability": 0.9924 + }, + { + "start": 44608.26, + "end": 44609.62, + "probability": 0.6879 + }, + { + "start": 44610.16, + "end": 44611.68, + "probability": 0.7504 + }, + { + "start": 44612.22, + "end": 44617.08, + "probability": 0.9845 + }, + { + "start": 44617.08, + "end": 44621.92, + "probability": 0.9728 + }, + { + "start": 44622.54, + "end": 44624.2, + "probability": 0.7577 + }, + { + "start": 44624.78, + "end": 44628.64, + "probability": 0.9774 + }, + { + "start": 44629.42, + "end": 44631.68, + "probability": 0.9962 + }, + { + "start": 44631.7, + "end": 44632.54, + "probability": 0.8199 + }, + { + "start": 44633.4, + "end": 44634.2, + "probability": 0.3558 + }, + { + "start": 44636.22, + "end": 44638.0, + "probability": 0.9359 + }, + { + "start": 44640.91, + "end": 44642.96, + "probability": 0.9238 + }, + { + "start": 44644.02, + "end": 44645.5, + "probability": 0.9519 + }, + { + "start": 44671.78, + "end": 44673.52, + "probability": 0.6252 + }, + { + "start": 44674.64, + "end": 44677.08, + "probability": 0.9717 + }, + { + "start": 44680.2, + "end": 44682.6, + "probability": 0.4723 + }, + { + "start": 44683.72, + "end": 44684.74, + "probability": 0.6707 + }, + { + "start": 44686.14, + "end": 44688.92, + "probability": 0.924 + }, + { + "start": 44690.14, + "end": 44692.02, + "probability": 0.9987 + }, + { + "start": 44693.82, + "end": 44696.08, + "probability": 0.9641 + }, + { + "start": 44697.76, + "end": 44702.9, + "probability": 0.6302 + }, + { + "start": 44704.08, + "end": 44709.16, + "probability": 0.957 + }, + { + "start": 44712.54, + "end": 44713.66, + "probability": 0.9412 + }, + { + "start": 44715.9, + "end": 44718.32, + "probability": 0.923 + }, + { + "start": 44720.64, + "end": 44725.2, + "probability": 0.9837 + }, + { + "start": 44726.34, + "end": 44727.2, + "probability": 0.987 + }, + { + "start": 44728.28, + "end": 44735.34, + "probability": 0.979 + }, + { + "start": 44737.08, + "end": 44739.14, + "probability": 0.9312 + }, + { + "start": 44740.64, + "end": 44744.8, + "probability": 0.9856 + }, + { + "start": 44745.94, + "end": 44747.72, + "probability": 0.8153 + }, + { + "start": 44748.74, + "end": 44750.86, + "probability": 0.9904 + }, + { + "start": 44751.72, + "end": 44753.12, + "probability": 0.9965 + }, + { + "start": 44754.22, + "end": 44758.6, + "probability": 0.6565 + }, + { + "start": 44759.94, + "end": 44761.07, + "probability": 0.9399 + }, + { + "start": 44761.58, + "end": 44763.84, + "probability": 0.619 + }, + { + "start": 44765.7, + "end": 44767.06, + "probability": 0.9691 + }, + { + "start": 44767.3, + "end": 44768.42, + "probability": 0.9521 + }, + { + "start": 44768.78, + "end": 44769.54, + "probability": 0.8446 + }, + { + "start": 44770.12, + "end": 44771.24, + "probability": 0.9106 + }, + { + "start": 44772.06, + "end": 44772.6, + "probability": 0.7897 + }, + { + "start": 44773.41, + "end": 44775.84, + "probability": 0.9766 + }, + { + "start": 44777.12, + "end": 44779.46, + "probability": 0.5475 + }, + { + "start": 44780.4, + "end": 44787.64, + "probability": 0.9543 + }, + { + "start": 44788.56, + "end": 44790.07, + "probability": 0.7178 + }, + { + "start": 44791.44, + "end": 44793.3, + "probability": 0.988 + }, + { + "start": 44795.12, + "end": 44795.96, + "probability": 0.6699 + }, + { + "start": 44796.4, + "end": 44798.2, + "probability": 0.877 + }, + { + "start": 44799.4, + "end": 44800.1, + "probability": 0.455 + }, + { + "start": 44800.84, + "end": 44803.04, + "probability": 0.9799 + }, + { + "start": 44803.88, + "end": 44807.78, + "probability": 0.9783 + }, + { + "start": 44808.56, + "end": 44809.84, + "probability": 0.8502 + }, + { + "start": 44810.44, + "end": 44814.3, + "probability": 0.9949 + }, + { + "start": 44814.9, + "end": 44820.64, + "probability": 0.9951 + }, + { + "start": 44820.82, + "end": 44821.3, + "probability": 0.9146 + }, + { + "start": 44822.7, + "end": 44823.98, + "probability": 0.7429 + }, + { + "start": 44825.76, + "end": 44829.2, + "probability": 0.8671 + }, + { + "start": 44830.62, + "end": 44831.06, + "probability": 0.3673 + }, + { + "start": 44831.68, + "end": 44833.62, + "probability": 0.7155 + }, + { + "start": 44836.46, + "end": 44838.7, + "probability": 0.7724 + }, + { + "start": 44839.24, + "end": 44840.36, + "probability": 0.8097 + }, + { + "start": 44841.1, + "end": 44843.02, + "probability": 0.7104 + }, + { + "start": 44844.24, + "end": 44845.6, + "probability": 0.4676 + }, + { + "start": 44848.92, + "end": 44853.58, + "probability": 0.9259 + }, + { + "start": 44856.22, + "end": 44857.9, + "probability": 0.6225 + }, + { + "start": 44858.98, + "end": 44859.56, + "probability": 0.3256 + }, + { + "start": 44860.1, + "end": 44861.54, + "probability": 0.8348 + }, + { + "start": 44862.84, + "end": 44865.36, + "probability": 0.9341 + }, + { + "start": 44866.1, + "end": 44866.52, + "probability": 0.8814 + }, + { + "start": 44878.16, + "end": 44878.34, + "probability": 0.3259 + }, + { + "start": 44878.52, + "end": 44880.02, + "probability": 0.9495 + }, + { + "start": 44880.28, + "end": 44881.82, + "probability": 0.983 + }, + { + "start": 44882.0, + "end": 44883.66, + "probability": 0.9562 + }, + { + "start": 44884.02, + "end": 44884.84, + "probability": 0.9716 + }, + { + "start": 44884.86, + "end": 44887.82, + "probability": 0.9827 + }, + { + "start": 44888.4, + "end": 44889.26, + "probability": 0.9421 + }, + { + "start": 44889.9, + "end": 44891.1, + "probability": 0.7442 + }, + { + "start": 44891.4, + "end": 44894.32, + "probability": 0.9971 + }, + { + "start": 44894.32, + "end": 44897.0, + "probability": 0.995 + }, + { + "start": 44900.98, + "end": 44902.3, + "probability": 0.5593 + }, + { + "start": 44903.36, + "end": 44904.8, + "probability": 0.9561 + }, + { + "start": 44907.2, + "end": 44910.0, + "probability": 0.8542 + }, + { + "start": 44911.34, + "end": 44912.8, + "probability": 0.5114 + }, + { + "start": 44913.42, + "end": 44914.38, + "probability": 0.9975 + }, + { + "start": 44915.32, + "end": 44915.96, + "probability": 0.6724 + }, + { + "start": 44919.66, + "end": 44919.76, + "probability": 0.7265 + }, + { + "start": 44921.4, + "end": 44921.96, + "probability": 0.0084 + }, + { + "start": 44974.84, + "end": 44975.54, + "probability": 0.0461 + }, + { + "start": 44975.54, + "end": 44977.14, + "probability": 0.1524 + }, + { + "start": 44977.9, + "end": 44978.0, + "probability": 0.1736 + }, + { + "start": 44978.06, + "end": 44978.72, + "probability": 0.3787 + }, + { + "start": 44980.4, + "end": 44980.4, + "probability": 0.0358 + }, + { + "start": 44980.72, + "end": 44981.5, + "probability": 0.1028 + }, + { + "start": 44984.09, + "end": 44985.74, + "probability": 0.0735 + }, + { + "start": 44987.77, + "end": 44989.92, + "probability": 0.0562 + }, + { + "start": 44991.12, + "end": 44992.7, + "probability": 0.153 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45917.0, + "end": 45917.0, + "probability": 0.0 + }, + { + "start": 45923.06, + "end": 45925.06, + "probability": 0.3758 + }, + { + "start": 45925.68, + "end": 45927.9, + "probability": 0.5841 + }, + { + "start": 45928.68, + "end": 45929.28, + "probability": 0.8523 + }, + { + "start": 45930.1, + "end": 45931.06, + "probability": 0.6224 + }, + { + "start": 45938.58, + "end": 45939.16, + "probability": 0.6463 + }, + { + "start": 45940.84, + "end": 45941.44, + "probability": 0.1739 + }, + { + "start": 45941.44, + "end": 45941.7, + "probability": 0.0133 + }, + { + "start": 45941.7, + "end": 45941.7, + "probability": 0.0743 + }, + { + "start": 45960.8, + "end": 45961.74, + "probability": 0.517 + }, + { + "start": 45963.4, + "end": 45963.78, + "probability": 0.7796 + }, + { + "start": 45965.72, + "end": 45966.78, + "probability": 0.726 + }, + { + "start": 45968.36, + "end": 45969.08, + "probability": 0.7724 + }, + { + "start": 45971.38, + "end": 45974.86, + "probability": 0.9208 + }, + { + "start": 45975.58, + "end": 45976.47, + "probability": 0.5155 + }, + { + "start": 45977.0, + "end": 45978.04, + "probability": 0.4929 + }, + { + "start": 45978.16, + "end": 45978.76, + "probability": 0.8159 + }, + { + "start": 45980.72, + "end": 45981.04, + "probability": 0.0997 + }, + { + "start": 46002.96, + "end": 46068.02, + "probability": 0.0769 + }, + { + "start": 46069.62, + "end": 46075.22, + "probability": 0.9945 + }, + { + "start": 46076.14, + "end": 46078.98, + "probability": 0.9388 + }, + { + "start": 46079.22, + "end": 46080.26, + "probability": 0.6682 + }, + { + "start": 46080.76, + "end": 46081.86, + "probability": 0.9095 + }, + { + "start": 46082.5, + "end": 46086.18, + "probability": 0.727 + }, + { + "start": 46086.82, + "end": 46088.42, + "probability": 0.985 + }, + { + "start": 46090.32, + "end": 46094.18, + "probability": 0.7634 + }, + { + "start": 46094.76, + "end": 46097.18, + "probability": 0.5695 + }, + { + "start": 46097.68, + "end": 46100.26, + "probability": 0.3209 + }, + { + "start": 46100.86, + "end": 46103.56, + "probability": 0.7435 + }, + { + "start": 46103.98, + "end": 46110.14, + "probability": 0.9591 + }, + { + "start": 46118.24, + "end": 46118.24, + "probability": 0.418 + }, + { + "start": 46118.24, + "end": 46118.24, + "probability": 0.06 + }, + { + "start": 46118.24, + "end": 46118.24, + "probability": 0.2065 + }, + { + "start": 46118.24, + "end": 46118.24, + "probability": 0.1376 + }, + { + "start": 46118.24, + "end": 46118.24, + "probability": 0.138 + }, + { + "start": 46118.24, + "end": 46118.24, + "probability": 0.0182 + }, + { + "start": 46118.24, + "end": 46118.24, + "probability": 0.1585 + }, + { + "start": 46118.24, + "end": 46118.32, + "probability": 0.0764 + }, + { + "start": 46118.32, + "end": 46118.32, + "probability": 0.429 + }, + { + "start": 46140.1, + "end": 46140.5, + "probability": 0.2442 + }, + { + "start": 46141.42, + "end": 46145.08, + "probability": 0.7927 + }, + { + "start": 46146.28, + "end": 46149.5, + "probability": 0.9965 + }, + { + "start": 46149.5, + "end": 46152.8, + "probability": 0.9821 + }, + { + "start": 46153.76, + "end": 46154.14, + "probability": 0.5545 + }, + { + "start": 46154.54, + "end": 46155.6, + "probability": 0.9017 + }, + { + "start": 46155.76, + "end": 46157.92, + "probability": 0.9338 + }, + { + "start": 46158.24, + "end": 46159.76, + "probability": 0.9979 + }, + { + "start": 46160.32, + "end": 46163.02, + "probability": 0.9777 + }, + { + "start": 46163.16, + "end": 46166.34, + "probability": 0.9934 + }, + { + "start": 46167.24, + "end": 46169.46, + "probability": 0.9935 + }, + { + "start": 46170.42, + "end": 46171.62, + "probability": 0.448 + }, + { + "start": 46171.78, + "end": 46171.78, + "probability": 0.097 + }, + { + "start": 46171.78, + "end": 46174.78, + "probability": 0.8972 + }, + { + "start": 46174.78, + "end": 46177.84, + "probability": 0.9966 + }, + { + "start": 46178.56, + "end": 46181.58, + "probability": 0.9982 + }, + { + "start": 46181.72, + "end": 46184.04, + "probability": 0.8045 + }, + { + "start": 46184.56, + "end": 46187.98, + "probability": 0.9566 + }, + { + "start": 46188.78, + "end": 46191.22, + "probability": 0.9413 + }, + { + "start": 46192.0, + "end": 46192.5, + "probability": 0.2485 + }, + { + "start": 46192.64, + "end": 46194.88, + "probability": 0.9626 + }, + { + "start": 46196.06, + "end": 46200.5, + "probability": 0.9875 + }, + { + "start": 46201.16, + "end": 46205.62, + "probability": 0.9922 + }, + { + "start": 46206.24, + "end": 46208.9, + "probability": 0.9801 + }, + { + "start": 46209.46, + "end": 46212.18, + "probability": 0.7514 + }, + { + "start": 46212.9, + "end": 46217.78, + "probability": 0.959 + }, + { + "start": 46217.78, + "end": 46221.88, + "probability": 0.9152 + }, + { + "start": 46222.44, + "end": 46227.46, + "probability": 0.995 + }, + { + "start": 46227.46, + "end": 46233.04, + "probability": 0.999 + }, + { + "start": 46233.16, + "end": 46233.42, + "probability": 0.4855 + }, + { + "start": 46233.54, + "end": 46237.24, + "probability": 0.9799 + }, + { + "start": 46237.24, + "end": 46240.64, + "probability": 0.8388 + }, + { + "start": 46241.18, + "end": 46243.22, + "probability": 0.9842 + }, + { + "start": 46244.74, + "end": 46247.56, + "probability": 0.8984 + }, + { + "start": 46247.84, + "end": 46251.6, + "probability": 0.9957 + }, + { + "start": 46251.6, + "end": 46254.5, + "probability": 0.8353 + }, + { + "start": 46254.84, + "end": 46260.0, + "probability": 0.801 + }, + { + "start": 46260.0, + "end": 46263.44, + "probability": 0.9953 + }, + { + "start": 46263.44, + "end": 46267.56, + "probability": 0.9974 + }, + { + "start": 46268.06, + "end": 46268.7, + "probability": 0.5315 + }, + { + "start": 46268.84, + "end": 46272.42, + "probability": 0.995 + }, + { + "start": 46272.42, + "end": 46276.8, + "probability": 0.996 + }, + { + "start": 46277.7, + "end": 46279.9, + "probability": 0.9652 + }, + { + "start": 46280.06, + "end": 46283.52, + "probability": 0.907 + }, + { + "start": 46284.04, + "end": 46286.24, + "probability": 0.9365 + }, + { + "start": 46286.24, + "end": 46289.26, + "probability": 0.9936 + }, + { + "start": 46290.14, + "end": 46291.78, + "probability": 0.8308 + }, + { + "start": 46292.82, + "end": 46293.88, + "probability": 0.884 + }, + { + "start": 46295.46, + "end": 46298.72, + "probability": 0.9973 + }, + { + "start": 46299.72, + "end": 46299.72, + "probability": 0.9326 + }, + { + "start": 46300.74, + "end": 46303.04, + "probability": 0.9163 + }, + { + "start": 46303.94, + "end": 46306.68, + "probability": 0.9797 + }, + { + "start": 46307.58, + "end": 46308.34, + "probability": 0.7085 + }, + { + "start": 46309.6, + "end": 46312.1, + "probability": 0.8922 + }, + { + "start": 46312.2, + "end": 46316.06, + "probability": 0.9644 + }, + { + "start": 46317.24, + "end": 46319.4, + "probability": 0.9727 + }, + { + "start": 46320.26, + "end": 46323.1, + "probability": 0.9757 + }, + { + "start": 46323.7, + "end": 46325.86, + "probability": 0.9948 + }, + { + "start": 46326.82, + "end": 46332.44, + "probability": 0.9925 + }, + { + "start": 46332.96, + "end": 46334.94, + "probability": 0.7072 + }, + { + "start": 46335.72, + "end": 46340.72, + "probability": 0.9982 + }, + { + "start": 46342.16, + "end": 46342.84, + "probability": 0.7667 + }, + { + "start": 46343.74, + "end": 46345.24, + "probability": 0.9618 + }, + { + "start": 46346.2, + "end": 46346.46, + "probability": 0.0337 + }, + { + "start": 46347.22, + "end": 46347.36, + "probability": 0.1536 + }, + { + "start": 46347.36, + "end": 46349.76, + "probability": 0.0098 + }, + { + "start": 46349.76, + "end": 46349.76, + "probability": 0.0601 + }, + { + "start": 46349.76, + "end": 46350.13, + "probability": 0.1473 + }, + { + "start": 46351.7, + "end": 46354.64, + "probability": 0.9976 + }, + { + "start": 46354.64, + "end": 46359.3, + "probability": 0.9708 + }, + { + "start": 46359.78, + "end": 46361.34, + "probability": 0.7014 + }, + { + "start": 46361.38, + "end": 46362.14, + "probability": 0.7302 + }, + { + "start": 46362.22, + "end": 46365.66, + "probability": 0.9897 + }, + { + "start": 46365.68, + "end": 46368.96, + "probability": 0.999 + }, + { + "start": 46369.2, + "end": 46370.74, + "probability": 0.976 + }, + { + "start": 46371.46, + "end": 46373.18, + "probability": 0.9678 + }, + { + "start": 46373.7, + "end": 46378.16, + "probability": 0.9228 + }, + { + "start": 46378.72, + "end": 46381.18, + "probability": 0.9562 + }, + { + "start": 46381.98, + "end": 46382.88, + "probability": 0.9867 + }, + { + "start": 46383.46, + "end": 46384.38, + "probability": 0.7745 + }, + { + "start": 46384.84, + "end": 46391.16, + "probability": 0.9861 + }, + { + "start": 46391.78, + "end": 46395.46, + "probability": 0.9928 + }, + { + "start": 46395.5, + "end": 46400.36, + "probability": 0.9376 + }, + { + "start": 46400.98, + "end": 46407.44, + "probability": 0.991 + }, + { + "start": 46408.74, + "end": 46409.88, + "probability": 0.9915 + }, + { + "start": 46411.2, + "end": 46411.88, + "probability": 0.7939 + }, + { + "start": 46413.44, + "end": 46413.74, + "probability": 0.0072 + }, + { + "start": 46413.74, + "end": 46414.28, + "probability": 0.0115 + }, + { + "start": 46414.5, + "end": 46416.02, + "probability": 0.8801 + }, + { + "start": 46416.12, + "end": 46418.34, + "probability": 0.9006 + }, + { + "start": 46423.74, + "end": 46424.46, + "probability": 0.6136 + }, + { + "start": 46424.56, + "end": 46426.0, + "probability": 0.6504 + }, + { + "start": 46426.14, + "end": 46427.32, + "probability": 0.9054 + }, + { + "start": 46428.06, + "end": 46432.0, + "probability": 0.6023 + }, + { + "start": 46432.46, + "end": 46434.46, + "probability": 0.8799 + }, + { + "start": 46435.68, + "end": 46438.38, + "probability": 0.9889 + }, + { + "start": 46438.58, + "end": 46443.38, + "probability": 0.9961 + }, + { + "start": 46443.62, + "end": 46449.34, + "probability": 0.9837 + }, + { + "start": 46449.34, + "end": 46452.7, + "probability": 0.9542 + }, + { + "start": 46452.98, + "end": 46456.46, + "probability": 0.9907 + }, + { + "start": 46456.64, + "end": 46459.06, + "probability": 0.8271 + }, + { + "start": 46459.86, + "end": 46463.28, + "probability": 0.8871 + }, + { + "start": 46463.72, + "end": 46465.44, + "probability": 0.9588 + }, + { + "start": 46466.2, + "end": 46467.86, + "probability": 0.6904 + }, + { + "start": 46468.38, + "end": 46468.8, + "probability": 0.814 + }, + { + "start": 46469.94, + "end": 46471.42, + "probability": 0.0265 + }, + { + "start": 46487.0, + "end": 46487.58, + "probability": 0.109 + }, + { + "start": 46489.17, + "end": 46493.98, + "probability": 0.9486 + }, + { + "start": 46494.68, + "end": 46499.16, + "probability": 0.9338 + }, + { + "start": 46499.82, + "end": 46500.5, + "probability": 0.1157 + }, + { + "start": 46500.68, + "end": 46501.3, + "probability": 0.7416 + }, + { + "start": 46501.34, + "end": 46503.63, + "probability": 0.8359 + }, + { + "start": 46503.9, + "end": 46510.76, + "probability": 0.966 + }, + { + "start": 46511.34, + "end": 46515.08, + "probability": 0.9523 + }, + { + "start": 46515.3, + "end": 46516.16, + "probability": 0.6689 + }, + { + "start": 46516.8, + "end": 46518.22, + "probability": 0.8677 + }, + { + "start": 46521.8, + "end": 46522.34, + "probability": 0.0068 + }, + { + "start": 46538.34, + "end": 46538.34, + "probability": 0.0492 + }, + { + "start": 46538.34, + "end": 46538.58, + "probability": 0.1476 + }, + { + "start": 46538.62, + "end": 46539.5, + "probability": 0.3519 + }, + { + "start": 46539.84, + "end": 46540.2, + "probability": 0.5322 + }, + { + "start": 46540.2, + "end": 46545.66, + "probability": 0.6656 + }, + { + "start": 46546.32, + "end": 46548.78, + "probability": 0.9786 + }, + { + "start": 46550.06, + "end": 46551.64, + "probability": 0.9989 + }, + { + "start": 46553.34, + "end": 46554.78, + "probability": 0.6386 + }, + { + "start": 46555.26, + "end": 46557.76, + "probability": 0.79 + }, + { + "start": 46558.52, + "end": 46561.64, + "probability": 0.4002 + }, + { + "start": 46562.5, + "end": 46565.16, + "probability": 0.7316 + }, + { + "start": 46566.2, + "end": 46566.26, + "probability": 0.0005 + } + ], + "segments_count": 15892, + "words_count": 72254, + "avg_words_per_segment": 4.5466, + "avg_segment_duration": 1.7746, + "avg_words_per_minute": 69.6424, + "plenum_id": "102588", + "duration": 62249.99, + "title": null, + "plenum_date": "2021-12-13" +} \ No newline at end of file