diff --git "a/112097/metadata.json" "b/112097/metadata.json" new file mode 100644--- /dev/null +++ "b/112097/metadata.json" @@ -0,0 +1,57787 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "112097", + "quality_score": 0.841, + "per_segment_quality_scores": [ + { + "start": 25.28, + "end": 25.66, + "probability": 0.0609 + }, + { + "start": 25.66, + "end": 27.66, + "probability": 0.4249 + }, + { + "start": 27.84, + "end": 32.46, + "probability": 0.8437 + }, + { + "start": 32.56, + "end": 32.74, + "probability": 0.8229 + }, + { + "start": 33.66, + "end": 34.92, + "probability": 0.8074 + }, + { + "start": 35.06, + "end": 36.12, + "probability": 0.8618 + }, + { + "start": 36.26, + "end": 37.78, + "probability": 0.9326 + }, + { + "start": 37.98, + "end": 39.26, + "probability": 0.9083 + }, + { + "start": 39.44, + "end": 40.22, + "probability": 0.8296 + }, + { + "start": 41.99, + "end": 45.26, + "probability": 0.4853 + }, + { + "start": 46.12, + "end": 48.58, + "probability": 0.2497 + }, + { + "start": 51.7, + "end": 54.38, + "probability": 0.0667 + }, + { + "start": 54.38, + "end": 55.64, + "probability": 0.0711 + }, + { + "start": 56.15, + "end": 57.52, + "probability": 0.0995 + }, + { + "start": 57.64, + "end": 60.58, + "probability": 0.1579 + }, + { + "start": 61.0, + "end": 62.84, + "probability": 0.4017 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 127.08, + "end": 127.44, + "probability": 0.0951 + }, + { + "start": 127.44, + "end": 129.72, + "probability": 0.8822 + }, + { + "start": 131.26, + "end": 132.24, + "probability": 0.9334 + }, + { + "start": 133.32, + "end": 135.12, + "probability": 0.9803 + }, + { + "start": 135.68, + "end": 136.96, + "probability": 0.9154 + }, + { + "start": 137.54, + "end": 141.96, + "probability": 0.9869 + }, + { + "start": 142.52, + "end": 143.88, + "probability": 0.7986 + }, + { + "start": 145.56, + "end": 146.32, + "probability": 0.9855 + }, + { + "start": 148.7, + "end": 151.28, + "probability": 0.993 + }, + { + "start": 151.88, + "end": 154.18, + "probability": 0.9739 + }, + { + "start": 155.42, + "end": 159.96, + "probability": 0.9853 + }, + { + "start": 160.82, + "end": 161.68, + "probability": 0.9838 + }, + { + "start": 162.36, + "end": 164.18, + "probability": 0.6487 + }, + { + "start": 164.94, + "end": 167.36, + "probability": 0.7346 + }, + { + "start": 168.54, + "end": 169.36, + "probability": 0.8325 + }, + { + "start": 170.02, + "end": 171.48, + "probability": 0.8503 + }, + { + "start": 172.48, + "end": 173.76, + "probability": 0.9718 + }, + { + "start": 175.1, + "end": 175.48, + "probability": 0.9293 + }, + { + "start": 176.54, + "end": 179.46, + "probability": 0.9908 + }, + { + "start": 180.16, + "end": 181.88, + "probability": 0.9526 + }, + { + "start": 182.74, + "end": 183.42, + "probability": 0.8579 + }, + { + "start": 184.04, + "end": 184.68, + "probability": 0.8267 + }, + { + "start": 185.4, + "end": 186.56, + "probability": 0.7666 + }, + { + "start": 188.96, + "end": 189.7, + "probability": 0.687 + }, + { + "start": 190.62, + "end": 193.98, + "probability": 0.9881 + }, + { + "start": 195.44, + "end": 200.58, + "probability": 0.9932 + }, + { + "start": 203.2, + "end": 206.72, + "probability": 0.9717 + }, + { + "start": 207.56, + "end": 210.48, + "probability": 0.9992 + }, + { + "start": 211.08, + "end": 214.08, + "probability": 0.9967 + }, + { + "start": 215.92, + "end": 216.5, + "probability": 0.8845 + }, + { + "start": 217.12, + "end": 223.28, + "probability": 0.9968 + }, + { + "start": 224.98, + "end": 228.28, + "probability": 0.9846 + }, + { + "start": 228.84, + "end": 230.52, + "probability": 0.6519 + }, + { + "start": 231.46, + "end": 232.36, + "probability": 0.9812 + }, + { + "start": 232.88, + "end": 233.42, + "probability": 0.9439 + }, + { + "start": 235.04, + "end": 237.48, + "probability": 0.8258 + }, + { + "start": 238.14, + "end": 240.28, + "probability": 0.9972 + }, + { + "start": 241.48, + "end": 242.72, + "probability": 0.0372 + }, + { + "start": 244.16, + "end": 245.03, + "probability": 0.9464 + }, + { + "start": 245.84, + "end": 246.38, + "probability": 0.8552 + }, + { + "start": 247.08, + "end": 248.08, + "probability": 0.7602 + }, + { + "start": 248.48, + "end": 252.14, + "probability": 0.874 + }, + { + "start": 253.26, + "end": 256.02, + "probability": 0.9733 + }, + { + "start": 257.0, + "end": 261.32, + "probability": 0.9591 + }, + { + "start": 263.78, + "end": 268.68, + "probability": 0.9762 + }, + { + "start": 270.18, + "end": 270.72, + "probability": 0.6582 + }, + { + "start": 270.82, + "end": 272.26, + "probability": 0.9271 + }, + { + "start": 272.76, + "end": 275.04, + "probability": 0.9726 + }, + { + "start": 277.62, + "end": 282.74, + "probability": 0.9608 + }, + { + "start": 284.4, + "end": 288.36, + "probability": 0.9878 + }, + { + "start": 289.04, + "end": 293.44, + "probability": 0.9995 + }, + { + "start": 294.6, + "end": 295.08, + "probability": 0.6858 + }, + { + "start": 295.92, + "end": 296.88, + "probability": 0.6689 + }, + { + "start": 298.24, + "end": 301.88, + "probability": 0.9969 + }, + { + "start": 301.88, + "end": 305.2, + "probability": 0.9271 + }, + { + "start": 307.22, + "end": 311.68, + "probability": 0.8444 + }, + { + "start": 313.5, + "end": 316.16, + "probability": 0.9169 + }, + { + "start": 316.92, + "end": 318.08, + "probability": 0.9718 + }, + { + "start": 318.4, + "end": 324.1, + "probability": 0.9898 + }, + { + "start": 324.92, + "end": 325.6, + "probability": 0.9478 + }, + { + "start": 328.76, + "end": 332.58, + "probability": 0.9663 + }, + { + "start": 333.18, + "end": 334.34, + "probability": 0.8697 + }, + { + "start": 335.34, + "end": 336.48, + "probability": 0.964 + }, + { + "start": 337.26, + "end": 338.2, + "probability": 0.9465 + }, + { + "start": 339.3, + "end": 341.12, + "probability": 0.9914 + }, + { + "start": 341.36, + "end": 347.86, + "probability": 0.9775 + }, + { + "start": 349.62, + "end": 351.46, + "probability": 0.9683 + }, + { + "start": 352.08, + "end": 357.98, + "probability": 0.9894 + }, + { + "start": 358.76, + "end": 359.44, + "probability": 0.8385 + }, + { + "start": 360.38, + "end": 362.1, + "probability": 0.9878 + }, + { + "start": 364.28, + "end": 367.96, + "probability": 0.9881 + }, + { + "start": 367.96, + "end": 373.62, + "probability": 0.9914 + }, + { + "start": 374.48, + "end": 375.7, + "probability": 0.8424 + }, + { + "start": 376.36, + "end": 380.71, + "probability": 0.9976 + }, + { + "start": 382.22, + "end": 386.18, + "probability": 0.9872 + }, + { + "start": 386.18, + "end": 391.38, + "probability": 0.9988 + }, + { + "start": 392.22, + "end": 393.6, + "probability": 0.9563 + }, + { + "start": 396.66, + "end": 404.0, + "probability": 0.9384 + }, + { + "start": 404.72, + "end": 409.86, + "probability": 0.9951 + }, + { + "start": 411.24, + "end": 411.98, + "probability": 0.9784 + }, + { + "start": 413.02, + "end": 413.78, + "probability": 0.6165 + }, + { + "start": 414.58, + "end": 418.0, + "probability": 0.9912 + }, + { + "start": 418.68, + "end": 423.22, + "probability": 0.9689 + }, + { + "start": 423.28, + "end": 424.76, + "probability": 0.8823 + }, + { + "start": 425.42, + "end": 429.22, + "probability": 0.9944 + }, + { + "start": 430.22, + "end": 431.74, + "probability": 0.9006 + }, + { + "start": 432.44, + "end": 434.34, + "probability": 0.9961 + }, + { + "start": 437.38, + "end": 439.76, + "probability": 0.9839 + }, + { + "start": 439.76, + "end": 443.2, + "probability": 0.9995 + }, + { + "start": 445.18, + "end": 448.94, + "probability": 0.9839 + }, + { + "start": 449.74, + "end": 451.42, + "probability": 0.8684 + }, + { + "start": 453.48, + "end": 458.2, + "probability": 0.977 + }, + { + "start": 458.4, + "end": 461.02, + "probability": 0.868 + }, + { + "start": 462.48, + "end": 465.52, + "probability": 0.9448 + }, + { + "start": 466.86, + "end": 468.74, + "probability": 0.9932 + }, + { + "start": 468.8, + "end": 472.78, + "probability": 0.9906 + }, + { + "start": 473.32, + "end": 475.4, + "probability": 0.9838 + }, + { + "start": 478.82, + "end": 484.18, + "probability": 0.9924 + }, + { + "start": 484.78, + "end": 486.78, + "probability": 0.7206 + }, + { + "start": 487.92, + "end": 488.34, + "probability": 0.9829 + }, + { + "start": 489.48, + "end": 493.18, + "probability": 0.9974 + }, + { + "start": 493.78, + "end": 495.4, + "probability": 0.8045 + }, + { + "start": 496.46, + "end": 498.38, + "probability": 0.9758 + }, + { + "start": 499.28, + "end": 499.86, + "probability": 0.9821 + }, + { + "start": 500.54, + "end": 502.78, + "probability": 0.8898 + }, + { + "start": 503.98, + "end": 504.68, + "probability": 0.8453 + }, + { + "start": 505.34, + "end": 507.36, + "probability": 0.9834 + }, + { + "start": 508.2, + "end": 511.54, + "probability": 0.9917 + }, + { + "start": 512.18, + "end": 517.5, + "probability": 0.9625 + }, + { + "start": 517.96, + "end": 518.74, + "probability": 0.9644 + }, + { + "start": 518.84, + "end": 519.22, + "probability": 0.9785 + }, + { + "start": 520.5, + "end": 521.22, + "probability": 0.6705 + }, + { + "start": 522.74, + "end": 526.5, + "probability": 0.9956 + }, + { + "start": 526.64, + "end": 527.0, + "probability": 0.9309 + }, + { + "start": 527.94, + "end": 528.78, + "probability": 0.9513 + }, + { + "start": 530.76, + "end": 534.58, + "probability": 0.9895 + }, + { + "start": 535.38, + "end": 536.32, + "probability": 0.9776 + }, + { + "start": 536.88, + "end": 537.56, + "probability": 0.9005 + }, + { + "start": 540.36, + "end": 542.36, + "probability": 0.953 + }, + { + "start": 543.2, + "end": 546.66, + "probability": 0.9738 + }, + { + "start": 547.22, + "end": 549.53, + "probability": 0.9868 + }, + { + "start": 550.36, + "end": 550.68, + "probability": 0.9743 + }, + { + "start": 551.42, + "end": 555.84, + "probability": 0.9651 + }, + { + "start": 557.3, + "end": 558.16, + "probability": 0.8207 + }, + { + "start": 559.2, + "end": 562.04, + "probability": 0.9775 + }, + { + "start": 563.26, + "end": 564.0, + "probability": 0.8381 + }, + { + "start": 565.6, + "end": 568.62, + "probability": 0.9968 + }, + { + "start": 568.78, + "end": 569.4, + "probability": 0.8696 + }, + { + "start": 571.64, + "end": 577.76, + "probability": 0.9912 + }, + { + "start": 579.48, + "end": 581.7, + "probability": 0.99 + }, + { + "start": 582.52, + "end": 583.46, + "probability": 0.9949 + }, + { + "start": 585.3, + "end": 585.82, + "probability": 0.8808 + }, + { + "start": 586.78, + "end": 587.72, + "probability": 0.8936 + }, + { + "start": 588.98, + "end": 594.82, + "probability": 0.877 + }, + { + "start": 595.68, + "end": 598.96, + "probability": 0.9822 + }, + { + "start": 600.88, + "end": 601.4, + "probability": 0.5657 + }, + { + "start": 602.66, + "end": 604.54, + "probability": 0.9479 + }, + { + "start": 605.2, + "end": 606.22, + "probability": 0.9941 + }, + { + "start": 606.82, + "end": 608.12, + "probability": 0.8656 + }, + { + "start": 608.84, + "end": 610.3, + "probability": 0.9961 + }, + { + "start": 611.88, + "end": 616.72, + "probability": 0.9808 + }, + { + "start": 617.9, + "end": 618.14, + "probability": 0.8786 + }, + { + "start": 620.74, + "end": 622.32, + "probability": 0.7825 + }, + { + "start": 622.5, + "end": 625.56, + "probability": 0.9792 + }, + { + "start": 625.56, + "end": 628.1, + "probability": 0.9823 + }, + { + "start": 644.48, + "end": 645.8, + "probability": 0.8385 + }, + { + "start": 646.82, + "end": 647.88, + "probability": 0.6609 + }, + { + "start": 648.08, + "end": 651.3, + "probability": 0.8926 + }, + { + "start": 652.06, + "end": 652.48, + "probability": 0.8307 + }, + { + "start": 658.62, + "end": 661.98, + "probability": 0.4055 + }, + { + "start": 662.58, + "end": 664.28, + "probability": 0.6809 + }, + { + "start": 665.98, + "end": 666.92, + "probability": 0.9948 + }, + { + "start": 671.74, + "end": 672.9, + "probability": 0.8327 + }, + { + "start": 676.16, + "end": 677.98, + "probability": 0.9788 + }, + { + "start": 679.36, + "end": 680.44, + "probability": 0.7498 + }, + { + "start": 684.22, + "end": 688.62, + "probability": 0.9172 + }, + { + "start": 688.78, + "end": 689.56, + "probability": 0.7837 + }, + { + "start": 689.96, + "end": 690.6, + "probability": 0.4184 + }, + { + "start": 692.28, + "end": 694.44, + "probability": 0.9564 + }, + { + "start": 695.24, + "end": 695.56, + "probability": 0.9441 + }, + { + "start": 697.64, + "end": 699.46, + "probability": 0.7971 + }, + { + "start": 701.26, + "end": 704.58, + "probability": 0.7217 + }, + { + "start": 705.94, + "end": 707.24, + "probability": 0.923 + }, + { + "start": 708.88, + "end": 711.14, + "probability": 0.9616 + }, + { + "start": 711.8, + "end": 715.16, + "probability": 0.8338 + }, + { + "start": 718.44, + "end": 723.78, + "probability": 0.9764 + }, + { + "start": 724.46, + "end": 725.52, + "probability": 0.864 + }, + { + "start": 731.16, + "end": 731.82, + "probability": 0.8156 + }, + { + "start": 733.44, + "end": 734.56, + "probability": 0.8201 + }, + { + "start": 735.18, + "end": 739.96, + "probability": 0.9983 + }, + { + "start": 741.44, + "end": 746.2, + "probability": 0.915 + }, + { + "start": 747.72, + "end": 751.48, + "probability": 0.9878 + }, + { + "start": 753.32, + "end": 756.31, + "probability": 0.9854 + }, + { + "start": 757.16, + "end": 761.52, + "probability": 0.9977 + }, + { + "start": 763.56, + "end": 766.12, + "probability": 0.9803 + }, + { + "start": 769.38, + "end": 770.72, + "probability": 0.7099 + }, + { + "start": 771.44, + "end": 771.98, + "probability": 0.5005 + }, + { + "start": 774.66, + "end": 775.18, + "probability": 0.5439 + }, + { + "start": 776.68, + "end": 777.58, + "probability": 0.9309 + }, + { + "start": 778.34, + "end": 779.34, + "probability": 0.9897 + }, + { + "start": 780.14, + "end": 784.46, + "probability": 0.908 + }, + { + "start": 785.46, + "end": 790.44, + "probability": 0.9798 + }, + { + "start": 793.48, + "end": 794.26, + "probability": 0.9531 + }, + { + "start": 795.6, + "end": 797.66, + "probability": 0.9981 + }, + { + "start": 798.82, + "end": 799.94, + "probability": 0.994 + }, + { + "start": 803.32, + "end": 805.7, + "probability": 0.8627 + }, + { + "start": 806.22, + "end": 809.14, + "probability": 0.9376 + }, + { + "start": 811.6, + "end": 812.44, + "probability": 0.9272 + }, + { + "start": 813.28, + "end": 815.98, + "probability": 0.9182 + }, + { + "start": 817.72, + "end": 818.72, + "probability": 0.489 + }, + { + "start": 819.38, + "end": 820.12, + "probability": 0.7763 + }, + { + "start": 821.36, + "end": 822.1, + "probability": 0.9462 + }, + { + "start": 822.84, + "end": 823.7, + "probability": 0.9398 + }, + { + "start": 824.84, + "end": 826.6, + "probability": 0.9368 + }, + { + "start": 827.98, + "end": 828.84, + "probability": 0.9668 + }, + { + "start": 830.96, + "end": 832.08, + "probability": 0.9976 + }, + { + "start": 832.72, + "end": 833.3, + "probability": 0.7188 + }, + { + "start": 834.68, + "end": 835.56, + "probability": 0.7042 + }, + { + "start": 838.6, + "end": 843.56, + "probability": 0.7021 + }, + { + "start": 844.28, + "end": 844.28, + "probability": 0.0975 + }, + { + "start": 844.28, + "end": 847.98, + "probability": 0.9339 + }, + { + "start": 849.66, + "end": 851.44, + "probability": 0.7764 + }, + { + "start": 852.28, + "end": 855.82, + "probability": 0.8109 + }, + { + "start": 856.66, + "end": 860.92, + "probability": 0.9763 + }, + { + "start": 866.54, + "end": 868.1, + "probability": 0.9476 + }, + { + "start": 869.08, + "end": 876.08, + "probability": 0.9095 + }, + { + "start": 876.28, + "end": 877.46, + "probability": 0.9913 + }, + { + "start": 877.68, + "end": 878.4, + "probability": 0.8303 + }, + { + "start": 879.82, + "end": 882.2, + "probability": 0.9801 + }, + { + "start": 883.1, + "end": 885.0, + "probability": 0.9816 + }, + { + "start": 885.94, + "end": 888.9, + "probability": 0.8021 + }, + { + "start": 889.34, + "end": 894.54, + "probability": 0.9346 + }, + { + "start": 895.3, + "end": 899.0, + "probability": 0.9749 + }, + { + "start": 900.02, + "end": 901.1, + "probability": 0.999 + }, + { + "start": 902.56, + "end": 903.52, + "probability": 0.9986 + }, + { + "start": 904.66, + "end": 905.54, + "probability": 0.7801 + }, + { + "start": 906.3, + "end": 908.2, + "probability": 0.7503 + }, + { + "start": 909.84, + "end": 910.94, + "probability": 0.3847 + }, + { + "start": 911.98, + "end": 914.26, + "probability": 0.9893 + }, + { + "start": 914.88, + "end": 919.4, + "probability": 0.9824 + }, + { + "start": 919.66, + "end": 921.18, + "probability": 0.993 + }, + { + "start": 921.44, + "end": 922.21, + "probability": 0.7449 + }, + { + "start": 923.3, + "end": 925.78, + "probability": 0.968 + }, + { + "start": 927.98, + "end": 929.4, + "probability": 0.9695 + }, + { + "start": 930.44, + "end": 931.9, + "probability": 0.6289 + }, + { + "start": 933.2, + "end": 936.28, + "probability": 0.9966 + }, + { + "start": 936.72, + "end": 938.32, + "probability": 0.9342 + }, + { + "start": 940.36, + "end": 940.36, + "probability": 0.8955 + }, + { + "start": 942.4, + "end": 943.36, + "probability": 0.5123 + }, + { + "start": 949.7, + "end": 950.6, + "probability": 0.8233 + }, + { + "start": 951.5, + "end": 952.08, + "probability": 0.7362 + }, + { + "start": 953.74, + "end": 958.3, + "probability": 0.9949 + }, + { + "start": 959.26, + "end": 961.16, + "probability": 0.9915 + }, + { + "start": 962.28, + "end": 963.0, + "probability": 0.7048 + }, + { + "start": 963.74, + "end": 965.96, + "probability": 0.7452 + }, + { + "start": 969.74, + "end": 971.02, + "probability": 0.9722 + }, + { + "start": 975.02, + "end": 979.1, + "probability": 0.9843 + }, + { + "start": 980.62, + "end": 981.84, + "probability": 0.9918 + }, + { + "start": 984.76, + "end": 986.02, + "probability": 0.8451 + }, + { + "start": 989.44, + "end": 990.68, + "probability": 0.4989 + }, + { + "start": 991.1, + "end": 994.88, + "probability": 0.6458 + }, + { + "start": 997.82, + "end": 1000.9, + "probability": 0.8247 + }, + { + "start": 1002.62, + "end": 1004.18, + "probability": 0.9946 + }, + { + "start": 1005.34, + "end": 1006.5, + "probability": 0.9749 + }, + { + "start": 1008.1, + "end": 1008.84, + "probability": 0.8691 + }, + { + "start": 1010.6, + "end": 1011.98, + "probability": 0.9951 + }, + { + "start": 1012.98, + "end": 1014.24, + "probability": 0.7362 + }, + { + "start": 1015.26, + "end": 1016.18, + "probability": 0.9073 + }, + { + "start": 1019.0, + "end": 1020.32, + "probability": 0.9671 + }, + { + "start": 1020.92, + "end": 1022.14, + "probability": 0.8341 + }, + { + "start": 1022.94, + "end": 1026.74, + "probability": 0.8504 + }, + { + "start": 1027.66, + "end": 1028.6, + "probability": 0.8257 + }, + { + "start": 1030.74, + "end": 1034.66, + "probability": 0.9922 + }, + { + "start": 1038.59, + "end": 1039.56, + "probability": 0.9971 + }, + { + "start": 1042.66, + "end": 1043.76, + "probability": 1.0 + }, + { + "start": 1044.74, + "end": 1046.26, + "probability": 0.9987 + }, + { + "start": 1047.2, + "end": 1055.16, + "probability": 0.9918 + }, + { + "start": 1057.12, + "end": 1064.14, + "probability": 0.9926 + }, + { + "start": 1064.26, + "end": 1067.06, + "probability": 0.6151 + }, + { + "start": 1067.92, + "end": 1070.64, + "probability": 0.9818 + }, + { + "start": 1070.84, + "end": 1072.02, + "probability": 0.9702 + }, + { + "start": 1072.48, + "end": 1073.82, + "probability": 0.8846 + }, + { + "start": 1074.52, + "end": 1076.34, + "probability": 0.9963 + }, + { + "start": 1076.86, + "end": 1077.9, + "probability": 0.7885 + }, + { + "start": 1078.54, + "end": 1082.24, + "probability": 0.953 + }, + { + "start": 1083.02, + "end": 1084.06, + "probability": 0.9961 + }, + { + "start": 1085.62, + "end": 1088.08, + "probability": 0.9765 + }, + { + "start": 1088.74, + "end": 1090.62, + "probability": 0.9685 + }, + { + "start": 1093.6, + "end": 1097.46, + "probability": 0.921 + }, + { + "start": 1098.2, + "end": 1100.76, + "probability": 0.9854 + }, + { + "start": 1102.58, + "end": 1106.84, + "probability": 0.9653 + }, + { + "start": 1107.18, + "end": 1109.02, + "probability": 0.896 + }, + { + "start": 1110.3, + "end": 1110.92, + "probability": 0.5716 + }, + { + "start": 1112.01, + "end": 1113.3, + "probability": 0.9521 + }, + { + "start": 1113.74, + "end": 1115.34, + "probability": 0.9348 + }, + { + "start": 1115.84, + "end": 1117.8, + "probability": 0.9877 + }, + { + "start": 1118.32, + "end": 1118.84, + "probability": 0.8069 + }, + { + "start": 1122.38, + "end": 1126.12, + "probability": 0.9881 + }, + { + "start": 1127.16, + "end": 1128.46, + "probability": 0.574 + }, + { + "start": 1128.68, + "end": 1131.12, + "probability": 0.9875 + }, + { + "start": 1131.84, + "end": 1136.8, + "probability": 0.9978 + }, + { + "start": 1137.48, + "end": 1139.38, + "probability": 0.9445 + }, + { + "start": 1139.64, + "end": 1140.12, + "probability": 0.7329 + }, + { + "start": 1157.84, + "end": 1158.14, + "probability": 0.2945 + }, + { + "start": 1164.0, + "end": 1165.18, + "probability": 0.6851 + }, + { + "start": 1165.64, + "end": 1167.14, + "probability": 0.6957 + }, + { + "start": 1167.62, + "end": 1172.6, + "probability": 0.894 + }, + { + "start": 1173.26, + "end": 1175.96, + "probability": 0.8659 + }, + { + "start": 1176.74, + "end": 1184.46, + "probability": 0.9954 + }, + { + "start": 1184.76, + "end": 1187.15, + "probability": 0.9891 + }, + { + "start": 1187.82, + "end": 1191.76, + "probability": 0.9971 + }, + { + "start": 1192.14, + "end": 1194.32, + "probability": 0.9958 + }, + { + "start": 1195.02, + "end": 1196.45, + "probability": 0.9604 + }, + { + "start": 1197.0, + "end": 1197.64, + "probability": 0.6099 + }, + { + "start": 1197.78, + "end": 1198.32, + "probability": 0.8075 + }, + { + "start": 1198.42, + "end": 1200.12, + "probability": 0.7661 + }, + { + "start": 1200.24, + "end": 1202.78, + "probability": 0.7024 + }, + { + "start": 1203.34, + "end": 1206.0, + "probability": 0.9779 + }, + { + "start": 1206.6, + "end": 1207.88, + "probability": 0.9294 + }, + { + "start": 1208.44, + "end": 1211.72, + "probability": 0.9531 + }, + { + "start": 1212.3, + "end": 1215.04, + "probability": 0.6736 + }, + { + "start": 1215.62, + "end": 1217.18, + "probability": 0.957 + }, + { + "start": 1217.6, + "end": 1221.64, + "probability": 0.9837 + }, + { + "start": 1222.22, + "end": 1223.96, + "probability": 0.9359 + }, + { + "start": 1225.02, + "end": 1227.4, + "probability": 0.978 + }, + { + "start": 1228.5, + "end": 1231.28, + "probability": 0.9875 + }, + { + "start": 1232.66, + "end": 1233.82, + "probability": 0.785 + }, + { + "start": 1234.7, + "end": 1236.04, + "probability": 0.9997 + }, + { + "start": 1236.76, + "end": 1241.62, + "probability": 0.9956 + }, + { + "start": 1241.62, + "end": 1245.06, + "probability": 0.9961 + }, + { + "start": 1245.56, + "end": 1246.58, + "probability": 0.7178 + }, + { + "start": 1247.52, + "end": 1248.26, + "probability": 0.7862 + }, + { + "start": 1248.9, + "end": 1253.54, + "probability": 0.9878 + }, + { + "start": 1254.24, + "end": 1257.06, + "probability": 0.9625 + }, + { + "start": 1257.56, + "end": 1259.38, + "probability": 0.9957 + }, + { + "start": 1259.94, + "end": 1261.88, + "probability": 0.9766 + }, + { + "start": 1262.48, + "end": 1263.06, + "probability": 0.808 + }, + { + "start": 1263.68, + "end": 1266.3, + "probability": 0.9116 + }, + { + "start": 1267.12, + "end": 1272.74, + "probability": 0.9222 + }, + { + "start": 1273.32, + "end": 1276.29, + "probability": 0.9932 + }, + { + "start": 1277.26, + "end": 1281.56, + "probability": 0.9989 + }, + { + "start": 1282.1, + "end": 1284.42, + "probability": 0.9699 + }, + { + "start": 1284.48, + "end": 1286.7, + "probability": 0.833 + }, + { + "start": 1287.24, + "end": 1288.18, + "probability": 0.8577 + }, + { + "start": 1288.34, + "end": 1288.68, + "probability": 0.5461 + }, + { + "start": 1288.72, + "end": 1289.58, + "probability": 0.8184 + }, + { + "start": 1290.36, + "end": 1293.02, + "probability": 0.8813 + }, + { + "start": 1293.04, + "end": 1293.58, + "probability": 0.7269 + }, + { + "start": 1293.92, + "end": 1294.32, + "probability": 0.8058 + }, + { + "start": 1294.64, + "end": 1298.06, + "probability": 0.8945 + }, + { + "start": 1298.48, + "end": 1302.66, + "probability": 0.9862 + }, + { + "start": 1302.98, + "end": 1304.84, + "probability": 0.8549 + }, + { + "start": 1305.08, + "end": 1305.26, + "probability": 0.5624 + }, + { + "start": 1305.26, + "end": 1306.58, + "probability": 0.0005 + }, + { + "start": 1307.14, + "end": 1308.88, + "probability": 0.9631 + }, + { + "start": 1309.17, + "end": 1310.83, + "probability": 0.9556 + }, + { + "start": 1311.12, + "end": 1311.98, + "probability": 0.9197 + }, + { + "start": 1312.12, + "end": 1312.9, + "probability": 0.4805 + }, + { + "start": 1312.98, + "end": 1315.18, + "probability": 0.948 + }, + { + "start": 1315.26, + "end": 1315.26, + "probability": 0.033 + }, + { + "start": 1315.26, + "end": 1315.78, + "probability": 0.8601 + }, + { + "start": 1315.9, + "end": 1319.68, + "probability": 0.9485 + }, + { + "start": 1319.78, + "end": 1321.04, + "probability": 0.801 + }, + { + "start": 1321.56, + "end": 1322.12, + "probability": 0.6667 + }, + { + "start": 1322.48, + "end": 1323.94, + "probability": 0.7529 + }, + { + "start": 1324.36, + "end": 1324.96, + "probability": 0.9281 + }, + { + "start": 1325.22, + "end": 1325.74, + "probability": 0.8761 + }, + { + "start": 1325.82, + "end": 1327.3, + "probability": 0.8125 + }, + { + "start": 1327.62, + "end": 1330.44, + "probability": 0.6616 + }, + { + "start": 1330.44, + "end": 1331.9, + "probability": 0.6483 + }, + { + "start": 1331.9, + "end": 1331.92, + "probability": 0.4019 + }, + { + "start": 1331.92, + "end": 1333.22, + "probability": 0.8553 + }, + { + "start": 1333.26, + "end": 1336.1, + "probability": 0.7047 + }, + { + "start": 1336.16, + "end": 1337.14, + "probability": 0.2705 + }, + { + "start": 1337.26, + "end": 1338.78, + "probability": 0.684 + }, + { + "start": 1338.92, + "end": 1342.6, + "probability": 0.9563 + }, + { + "start": 1342.86, + "end": 1345.56, + "probability": 0.9222 + }, + { + "start": 1346.36, + "end": 1348.48, + "probability": 0.9384 + }, + { + "start": 1352.54, + "end": 1355.56, + "probability": 0.9799 + }, + { + "start": 1355.56, + "end": 1358.16, + "probability": 0.9785 + }, + { + "start": 1358.26, + "end": 1358.88, + "probability": 0.6911 + }, + { + "start": 1363.94, + "end": 1365.34, + "probability": 0.8252 + }, + { + "start": 1372.66, + "end": 1374.03, + "probability": 0.9863 + }, + { + "start": 1374.8, + "end": 1377.92, + "probability": 0.9502 + }, + { + "start": 1378.0, + "end": 1378.46, + "probability": 0.819 + }, + { + "start": 1379.68, + "end": 1382.34, + "probability": 0.9729 + }, + { + "start": 1383.36, + "end": 1383.76, + "probability": 0.8338 + }, + { + "start": 1385.42, + "end": 1386.34, + "probability": 0.9253 + }, + { + "start": 1387.46, + "end": 1390.72, + "probability": 0.9972 + }, + { + "start": 1391.52, + "end": 1394.08, + "probability": 0.9748 + }, + { + "start": 1395.24, + "end": 1396.2, + "probability": 0.8791 + }, + { + "start": 1398.04, + "end": 1401.26, + "probability": 0.9996 + }, + { + "start": 1402.68, + "end": 1406.1, + "probability": 0.996 + }, + { + "start": 1407.28, + "end": 1411.03, + "probability": 0.9985 + }, + { + "start": 1412.22, + "end": 1412.92, + "probability": 0.8136 + }, + { + "start": 1413.04, + "end": 1413.68, + "probability": 0.6142 + }, + { + "start": 1415.44, + "end": 1419.04, + "probability": 0.9844 + }, + { + "start": 1420.74, + "end": 1424.28, + "probability": 0.9983 + }, + { + "start": 1424.28, + "end": 1426.78, + "probability": 0.9993 + }, + { + "start": 1427.46, + "end": 1428.14, + "probability": 0.8305 + }, + { + "start": 1429.26, + "end": 1432.22, + "probability": 0.9768 + }, + { + "start": 1432.3, + "end": 1432.66, + "probability": 0.7639 + }, + { + "start": 1433.36, + "end": 1436.18, + "probability": 0.9716 + }, + { + "start": 1436.88, + "end": 1437.9, + "probability": 0.8757 + }, + { + "start": 1439.12, + "end": 1442.1, + "probability": 0.9929 + }, + { + "start": 1443.2, + "end": 1445.86, + "probability": 0.6396 + }, + { + "start": 1446.04, + "end": 1446.83, + "probability": 0.5497 + }, + { + "start": 1447.32, + "end": 1448.44, + "probability": 0.8374 + }, + { + "start": 1449.24, + "end": 1450.5, + "probability": 0.9405 + }, + { + "start": 1451.16, + "end": 1452.96, + "probability": 0.9287 + }, + { + "start": 1454.36, + "end": 1456.64, + "probability": 0.9553 + }, + { + "start": 1457.64, + "end": 1461.72, + "probability": 0.9949 + }, + { + "start": 1462.38, + "end": 1463.9, + "probability": 0.9977 + }, + { + "start": 1465.26, + "end": 1467.76, + "probability": 0.9839 + }, + { + "start": 1468.66, + "end": 1472.31, + "probability": 0.9962 + }, + { + "start": 1472.66, + "end": 1473.74, + "probability": 0.7085 + }, + { + "start": 1474.64, + "end": 1476.38, + "probability": 0.9858 + }, + { + "start": 1482.04, + "end": 1484.28, + "probability": 0.8708 + }, + { + "start": 1484.54, + "end": 1485.18, + "probability": 0.1401 + }, + { + "start": 1485.2, + "end": 1486.38, + "probability": 0.1071 + }, + { + "start": 1486.74, + "end": 1491.06, + "probability": 0.9402 + }, + { + "start": 1491.1, + "end": 1492.94, + "probability": 0.9939 + }, + { + "start": 1493.5, + "end": 1497.54, + "probability": 0.9736 + }, + { + "start": 1498.72, + "end": 1500.88, + "probability": 0.8818 + }, + { + "start": 1502.2, + "end": 1503.72, + "probability": 0.9761 + }, + { + "start": 1504.68, + "end": 1505.24, + "probability": 0.5258 + }, + { + "start": 1505.44, + "end": 1508.56, + "probability": 0.9863 + }, + { + "start": 1509.66, + "end": 1511.34, + "probability": 0.9971 + }, + { + "start": 1512.2, + "end": 1513.0, + "probability": 0.8349 + }, + { + "start": 1513.64, + "end": 1515.56, + "probability": 0.9468 + }, + { + "start": 1517.38, + "end": 1519.78, + "probability": 0.9397 + }, + { + "start": 1520.62, + "end": 1521.46, + "probability": 0.6283 + }, + { + "start": 1521.56, + "end": 1523.28, + "probability": 0.9983 + }, + { + "start": 1523.8, + "end": 1524.62, + "probability": 0.986 + }, + { + "start": 1524.74, + "end": 1525.24, + "probability": 0.675 + }, + { + "start": 1525.86, + "end": 1526.6, + "probability": 0.4714 + }, + { + "start": 1526.72, + "end": 1527.38, + "probability": 0.934 + }, + { + "start": 1527.46, + "end": 1530.98, + "probability": 0.9912 + }, + { + "start": 1531.14, + "end": 1531.68, + "probability": 0.9355 + }, + { + "start": 1531.76, + "end": 1533.15, + "probability": 0.9946 + }, + { + "start": 1533.78, + "end": 1535.86, + "probability": 0.9907 + }, + { + "start": 1537.62, + "end": 1540.76, + "probability": 0.9782 + }, + { + "start": 1541.12, + "end": 1543.58, + "probability": 0.9983 + }, + { + "start": 1543.64, + "end": 1547.64, + "probability": 0.9794 + }, + { + "start": 1552.06, + "end": 1552.96, + "probability": 0.9832 + }, + { + "start": 1553.74, + "end": 1554.8, + "probability": 0.8882 + }, + { + "start": 1555.06, + "end": 1555.34, + "probability": 0.5151 + }, + { + "start": 1555.5, + "end": 1557.02, + "probability": 0.9634 + }, + { + "start": 1557.12, + "end": 1559.05, + "probability": 0.8491 + }, + { + "start": 1559.38, + "end": 1560.18, + "probability": 0.8545 + }, + { + "start": 1560.78, + "end": 1562.4, + "probability": 0.5293 + }, + { + "start": 1563.62, + "end": 1564.26, + "probability": 0.1667 + }, + { + "start": 1564.26, + "end": 1564.26, + "probability": 0.0042 + }, + { + "start": 1564.26, + "end": 1564.26, + "probability": 0.0759 + }, + { + "start": 1564.26, + "end": 1565.98, + "probability": 0.6413 + }, + { + "start": 1567.2, + "end": 1571.52, + "probability": 0.9746 + }, + { + "start": 1571.66, + "end": 1571.7, + "probability": 0.6947 + }, + { + "start": 1571.78, + "end": 1576.72, + "probability": 0.9943 + }, + { + "start": 1577.26, + "end": 1578.34, + "probability": 0.824 + }, + { + "start": 1579.12, + "end": 1581.08, + "probability": 0.9971 + }, + { + "start": 1581.24, + "end": 1583.14, + "probability": 0.9967 + }, + { + "start": 1583.32, + "end": 1584.96, + "probability": 0.9839 + }, + { + "start": 1585.14, + "end": 1587.0, + "probability": 0.9276 + }, + { + "start": 1587.72, + "end": 1589.54, + "probability": 0.993 + }, + { + "start": 1590.42, + "end": 1593.5, + "probability": 0.7633 + }, + { + "start": 1594.2, + "end": 1596.54, + "probability": 0.8297 + }, + { + "start": 1597.06, + "end": 1597.94, + "probability": 0.9174 + }, + { + "start": 1598.54, + "end": 1602.84, + "probability": 0.9988 + }, + { + "start": 1604.06, + "end": 1605.94, + "probability": 0.9519 + }, + { + "start": 1606.48, + "end": 1607.16, + "probability": 0.5628 + }, + { + "start": 1607.98, + "end": 1611.44, + "probability": 0.6701 + }, + { + "start": 1612.74, + "end": 1617.36, + "probability": 0.4731 + }, + { + "start": 1618.32, + "end": 1619.12, + "probability": 0.4437 + }, + { + "start": 1619.26, + "end": 1620.58, + "probability": 0.7972 + }, + { + "start": 1620.58, + "end": 1622.24, + "probability": 0.4036 + }, + { + "start": 1622.24, + "end": 1622.68, + "probability": 0.6651 + }, + { + "start": 1622.7, + "end": 1622.7, + "probability": 0.578 + }, + { + "start": 1622.7, + "end": 1625.43, + "probability": 0.3924 + }, + { + "start": 1625.82, + "end": 1626.54, + "probability": 0.8732 + }, + { + "start": 1627.34, + "end": 1629.16, + "probability": 0.8033 + }, + { + "start": 1630.0, + "end": 1630.68, + "probability": 0.1894 + }, + { + "start": 1631.6, + "end": 1631.6, + "probability": 0.5454 + }, + { + "start": 1631.64, + "end": 1632.98, + "probability": 0.7313 + }, + { + "start": 1634.44, + "end": 1635.9, + "probability": 0.9705 + }, + { + "start": 1637.12, + "end": 1637.94, + "probability": 0.9563 + }, + { + "start": 1639.64, + "end": 1642.44, + "probability": 0.9947 + }, + { + "start": 1643.06, + "end": 1644.4, + "probability": 0.9858 + }, + { + "start": 1645.46, + "end": 1646.68, + "probability": 0.9567 + }, + { + "start": 1647.26, + "end": 1649.18, + "probability": 0.983 + }, + { + "start": 1650.0, + "end": 1653.62, + "probability": 0.9727 + }, + { + "start": 1654.62, + "end": 1655.96, + "probability": 0.998 + }, + { + "start": 1656.68, + "end": 1662.72, + "probability": 0.988 + }, + { + "start": 1664.06, + "end": 1669.0, + "probability": 0.9573 + }, + { + "start": 1670.44, + "end": 1670.88, + "probability": 0.9845 + }, + { + "start": 1672.04, + "end": 1672.48, + "probability": 0.6353 + }, + { + "start": 1674.18, + "end": 1676.24, + "probability": 0.9974 + }, + { + "start": 1676.76, + "end": 1677.36, + "probability": 0.8183 + }, + { + "start": 1678.72, + "end": 1679.08, + "probability": 0.9823 + }, + { + "start": 1680.3, + "end": 1682.54, + "probability": 0.9879 + }, + { + "start": 1683.5, + "end": 1684.48, + "probability": 0.9771 + }, + { + "start": 1685.46, + "end": 1687.34, + "probability": 0.9868 + }, + { + "start": 1688.76, + "end": 1689.8, + "probability": 0.7949 + }, + { + "start": 1690.9, + "end": 1693.02, + "probability": 0.9893 + }, + { + "start": 1694.0, + "end": 1695.0, + "probability": 0.9935 + }, + { + "start": 1696.18, + "end": 1698.38, + "probability": 0.9805 + }, + { + "start": 1699.68, + "end": 1701.8, + "probability": 0.9885 + }, + { + "start": 1701.88, + "end": 1702.31, + "probability": 0.9829 + }, + { + "start": 1703.22, + "end": 1705.1, + "probability": 0.9955 + }, + { + "start": 1705.54, + "end": 1706.54, + "probability": 0.6628 + }, + { + "start": 1707.06, + "end": 1708.46, + "probability": 0.7737 + }, + { + "start": 1709.4, + "end": 1711.62, + "probability": 0.9766 + }, + { + "start": 1711.62, + "end": 1715.12, + "probability": 0.9918 + }, + { + "start": 1715.64, + "end": 1717.02, + "probability": 0.9747 + }, + { + "start": 1717.66, + "end": 1717.9, + "probability": 0.8115 + }, + { + "start": 1717.9, + "end": 1719.8, + "probability": 0.9663 + }, + { + "start": 1720.66, + "end": 1726.42, + "probability": 0.8845 + }, + { + "start": 1726.96, + "end": 1727.58, + "probability": 0.8619 + }, + { + "start": 1729.3, + "end": 1730.94, + "probability": 0.0089 + }, + { + "start": 1731.8, + "end": 1735.12, + "probability": 0.8926 + }, + { + "start": 1736.22, + "end": 1737.46, + "probability": 0.912 + }, + { + "start": 1738.56, + "end": 1739.44, + "probability": 0.9319 + }, + { + "start": 1740.62, + "end": 1741.06, + "probability": 0.9622 + }, + { + "start": 1741.9, + "end": 1742.48, + "probability": 0.9435 + }, + { + "start": 1743.74, + "end": 1744.22, + "probability": 0.8559 + }, + { + "start": 1744.3, + "end": 1749.24, + "probability": 0.9821 + }, + { + "start": 1750.58, + "end": 1751.28, + "probability": 0.9668 + }, + { + "start": 1752.16, + "end": 1752.92, + "probability": 0.9388 + }, + { + "start": 1754.46, + "end": 1755.86, + "probability": 0.999 + }, + { + "start": 1756.82, + "end": 1757.9, + "probability": 0.7354 + }, + { + "start": 1760.0, + "end": 1761.22, + "probability": 0.5756 + }, + { + "start": 1761.92, + "end": 1762.5, + "probability": 0.5457 + }, + { + "start": 1763.36, + "end": 1764.22, + "probability": 0.8624 + }, + { + "start": 1765.44, + "end": 1768.28, + "probability": 0.9945 + }, + { + "start": 1768.28, + "end": 1770.6, + "probability": 0.9922 + }, + { + "start": 1772.06, + "end": 1775.66, + "probability": 0.988 + }, + { + "start": 1776.42, + "end": 1778.88, + "probability": 0.967 + }, + { + "start": 1779.88, + "end": 1781.92, + "probability": 0.953 + }, + { + "start": 1782.64, + "end": 1784.98, + "probability": 0.997 + }, + { + "start": 1785.7, + "end": 1789.82, + "probability": 0.9965 + }, + { + "start": 1789.92, + "end": 1791.06, + "probability": 0.8065 + }, + { + "start": 1792.36, + "end": 1797.22, + "probability": 0.997 + }, + { + "start": 1797.22, + "end": 1802.12, + "probability": 0.9969 + }, + { + "start": 1803.06, + "end": 1807.22, + "probability": 0.9995 + }, + { + "start": 1807.88, + "end": 1813.18, + "probability": 0.9993 + }, + { + "start": 1814.44, + "end": 1817.92, + "probability": 0.9854 + }, + { + "start": 1819.06, + "end": 1821.32, + "probability": 0.6672 + }, + { + "start": 1822.48, + "end": 1824.4, + "probability": 0.9885 + }, + { + "start": 1824.82, + "end": 1825.46, + "probability": 0.8424 + }, + { + "start": 1825.74, + "end": 1827.67, + "probability": 0.9857 + }, + { + "start": 1828.16, + "end": 1830.76, + "probability": 0.7477 + }, + { + "start": 1831.94, + "end": 1834.5, + "probability": 0.9953 + }, + { + "start": 1835.14, + "end": 1837.85, + "probability": 0.9935 + }, + { + "start": 1838.72, + "end": 1841.54, + "probability": 0.9951 + }, + { + "start": 1842.4, + "end": 1845.14, + "probability": 0.998 + }, + { + "start": 1846.0, + "end": 1848.92, + "probability": 0.9978 + }, + { + "start": 1849.72, + "end": 1850.88, + "probability": 0.967 + }, + { + "start": 1851.7, + "end": 1853.92, + "probability": 0.9871 + }, + { + "start": 1854.82, + "end": 1856.5, + "probability": 0.9947 + }, + { + "start": 1857.84, + "end": 1859.32, + "probability": 0.9427 + }, + { + "start": 1860.7, + "end": 1862.68, + "probability": 0.9669 + }, + { + "start": 1863.72, + "end": 1864.24, + "probability": 0.9705 + }, + { + "start": 1865.2, + "end": 1869.54, + "probability": 0.9983 + }, + { + "start": 1870.1, + "end": 1871.18, + "probability": 0.9077 + }, + { + "start": 1872.58, + "end": 1873.96, + "probability": 0.9976 + }, + { + "start": 1874.8, + "end": 1877.94, + "probability": 0.993 + }, + { + "start": 1878.6, + "end": 1880.2, + "probability": 0.999 + }, + { + "start": 1880.8, + "end": 1882.36, + "probability": 0.9739 + }, + { + "start": 1882.96, + "end": 1884.36, + "probability": 0.8125 + }, + { + "start": 1885.62, + "end": 1886.28, + "probability": 0.9272 + }, + { + "start": 1886.98, + "end": 1888.59, + "probability": 0.9886 + }, + { + "start": 1889.2, + "end": 1890.5, + "probability": 0.9983 + }, + { + "start": 1892.52, + "end": 1893.12, + "probability": 0.8091 + }, + { + "start": 1895.04, + "end": 1896.54, + "probability": 0.9913 + }, + { + "start": 1897.56, + "end": 1897.88, + "probability": 0.0047 + }, + { + "start": 1898.64, + "end": 1900.84, + "probability": 0.8877 + }, + { + "start": 1901.36, + "end": 1902.72, + "probability": 0.9978 + }, + { + "start": 1903.78, + "end": 1904.78, + "probability": 0.8289 + }, + { + "start": 1905.7, + "end": 1906.2, + "probability": 0.8679 + }, + { + "start": 1906.72, + "end": 1910.2, + "probability": 0.8842 + }, + { + "start": 1910.68, + "end": 1912.4, + "probability": 0.9806 + }, + { + "start": 1913.9, + "end": 1916.1, + "probability": 0.9411 + }, + { + "start": 1916.8, + "end": 1917.48, + "probability": 0.3253 + }, + { + "start": 1918.14, + "end": 1918.74, + "probability": 0.8599 + }, + { + "start": 1919.26, + "end": 1920.28, + "probability": 0.6888 + }, + { + "start": 1921.9, + "end": 1924.88, + "probability": 0.9984 + }, + { + "start": 1926.6, + "end": 1927.3, + "probability": 0.9291 + }, + { + "start": 1928.2, + "end": 1931.0, + "probability": 0.8559 + }, + { + "start": 1931.94, + "end": 1933.08, + "probability": 0.9491 + }, + { + "start": 1934.12, + "end": 1935.78, + "probability": 0.963 + }, + { + "start": 1936.76, + "end": 1938.18, + "probability": 0.9985 + }, + { + "start": 1938.9, + "end": 1939.84, + "probability": 0.7591 + }, + { + "start": 1940.48, + "end": 1942.1, + "probability": 0.9952 + }, + { + "start": 1942.78, + "end": 1943.3, + "probability": 0.9744 + }, + { + "start": 1943.9, + "end": 1945.06, + "probability": 0.7047 + }, + { + "start": 1946.5, + "end": 1948.48, + "probability": 0.8163 + }, + { + "start": 1948.6, + "end": 1952.28, + "probability": 0.9575 + }, + { + "start": 1952.28, + "end": 1954.6, + "probability": 0.9933 + }, + { + "start": 1955.2, + "end": 1956.08, + "probability": 0.776 + }, + { + "start": 1965.12, + "end": 1965.72, + "probability": 0.7781 + }, + { + "start": 1968.0, + "end": 1969.24, + "probability": 0.9083 + }, + { + "start": 1969.32, + "end": 1971.32, + "probability": 0.9451 + }, + { + "start": 1980.66, + "end": 1981.28, + "probability": 0.4535 + }, + { + "start": 1981.28, + "end": 1982.24, + "probability": 0.7106 + }, + { + "start": 1982.66, + "end": 1985.92, + "probability": 0.9707 + }, + { + "start": 1986.74, + "end": 1991.74, + "probability": 0.9881 + }, + { + "start": 1991.92, + "end": 1992.28, + "probability": 0.6385 + }, + { + "start": 1992.68, + "end": 1994.02, + "probability": 0.9678 + }, + { + "start": 1995.82, + "end": 1996.58, + "probability": 0.0655 + }, + { + "start": 1996.72, + "end": 2000.54, + "probability": 0.7833 + }, + { + "start": 2001.4, + "end": 2004.34, + "probability": 0.9941 + }, + { + "start": 2004.62, + "end": 2009.21, + "probability": 0.3506 + }, + { + "start": 2011.6, + "end": 2013.02, + "probability": 0.3428 + }, + { + "start": 2014.16, + "end": 2015.14, + "probability": 0.022 + }, + { + "start": 2015.14, + "end": 2015.14, + "probability": 0.0701 + }, + { + "start": 2015.14, + "end": 2015.96, + "probability": 0.8889 + }, + { + "start": 2016.2, + "end": 2018.82, + "probability": 0.8861 + }, + { + "start": 2019.88, + "end": 2020.14, + "probability": 0.9252 + }, + { + "start": 2020.18, + "end": 2023.3, + "probability": 0.992 + }, + { + "start": 2024.98, + "end": 2028.46, + "probability": 0.9983 + }, + { + "start": 2029.88, + "end": 2034.4, + "probability": 0.9173 + }, + { + "start": 2035.44, + "end": 2036.4, + "probability": 0.8644 + }, + { + "start": 2037.3, + "end": 2038.97, + "probability": 0.9541 + }, + { + "start": 2039.66, + "end": 2041.92, + "probability": 0.9984 + }, + { + "start": 2043.3, + "end": 2045.94, + "probability": 0.9419 + }, + { + "start": 2045.94, + "end": 2049.18, + "probability": 0.991 + }, + { + "start": 2049.72, + "end": 2053.0, + "probability": 0.9976 + }, + { + "start": 2053.74, + "end": 2055.54, + "probability": 0.999 + }, + { + "start": 2055.96, + "end": 2058.6, + "probability": 0.8669 + }, + { + "start": 2058.64, + "end": 2059.2, + "probability": 0.8348 + }, + { + "start": 2059.48, + "end": 2061.84, + "probability": 0.978 + }, + { + "start": 2062.4, + "end": 2063.2, + "probability": 0.5376 + }, + { + "start": 2064.1, + "end": 2067.84, + "probability": 0.9941 + }, + { + "start": 2068.58, + "end": 2070.04, + "probability": 0.977 + }, + { + "start": 2070.36, + "end": 2071.24, + "probability": 0.8882 + }, + { + "start": 2071.36, + "end": 2071.78, + "probability": 0.977 + }, + { + "start": 2071.9, + "end": 2073.02, + "probability": 0.9929 + }, + { + "start": 2073.1, + "end": 2073.92, + "probability": 0.8477 + }, + { + "start": 2074.48, + "end": 2075.36, + "probability": 0.9835 + }, + { + "start": 2076.28, + "end": 2082.12, + "probability": 0.9023 + }, + { + "start": 2082.98, + "end": 2084.78, + "probability": 0.081 + }, + { + "start": 2085.3, + "end": 2085.7, + "probability": 0.8761 + }, + { + "start": 2086.71, + "end": 2087.68, + "probability": 0.9847 + }, + { + "start": 2087.78, + "end": 2089.44, + "probability": 0.8227 + }, + { + "start": 2089.84, + "end": 2094.78, + "probability": 0.9948 + }, + { + "start": 2095.3, + "end": 2096.48, + "probability": 0.7953 + }, + { + "start": 2097.74, + "end": 2098.91, + "probability": 0.9883 + }, + { + "start": 2099.6, + "end": 2101.44, + "probability": 0.9775 + }, + { + "start": 2102.48, + "end": 2103.32, + "probability": 0.8033 + }, + { + "start": 2103.76, + "end": 2107.72, + "probability": 0.9875 + }, + { + "start": 2108.06, + "end": 2108.54, + "probability": 0.7504 + }, + { + "start": 2108.68, + "end": 2109.18, + "probability": 0.618 + }, + { + "start": 2109.5, + "end": 2115.28, + "probability": 0.9768 + }, + { + "start": 2116.08, + "end": 2119.36, + "probability": 0.8669 + }, + { + "start": 2119.46, + "end": 2121.26, + "probability": 0.8818 + }, + { + "start": 2121.54, + "end": 2122.94, + "probability": 0.9082 + }, + { + "start": 2123.14, + "end": 2123.32, + "probability": 0.3736 + }, + { + "start": 2125.9, + "end": 2127.16, + "probability": 0.7625 + }, + { + "start": 2128.24, + "end": 2132.68, + "probability": 0.64 + }, + { + "start": 2132.76, + "end": 2133.64, + "probability": 0.8565 + }, + { + "start": 2142.88, + "end": 2143.4, + "probability": 0.9495 + }, + { + "start": 2145.68, + "end": 2148.36, + "probability": 0.8764 + }, + { + "start": 2149.6, + "end": 2150.42, + "probability": 0.8536 + }, + { + "start": 2151.5, + "end": 2157.1, + "probability": 0.9448 + }, + { + "start": 2158.2, + "end": 2162.32, + "probability": 0.7266 + }, + { + "start": 2162.54, + "end": 2165.24, + "probability": 0.9893 + }, + { + "start": 2166.56, + "end": 2168.1, + "probability": 0.8834 + }, + { + "start": 2169.2, + "end": 2172.9, + "probability": 0.995 + }, + { + "start": 2173.86, + "end": 2176.74, + "probability": 0.7905 + }, + { + "start": 2177.56, + "end": 2180.04, + "probability": 0.9419 + }, + { + "start": 2181.04, + "end": 2182.16, + "probability": 0.9631 + }, + { + "start": 2183.24, + "end": 2184.44, + "probability": 0.7169 + }, + { + "start": 2185.24, + "end": 2187.14, + "probability": 0.8731 + }, + { + "start": 2188.04, + "end": 2190.72, + "probability": 0.9678 + }, + { + "start": 2191.44, + "end": 2192.48, + "probability": 0.9924 + }, + { + "start": 2193.64, + "end": 2196.39, + "probability": 0.9878 + }, + { + "start": 2198.7, + "end": 2201.0, + "probability": 0.9326 + }, + { + "start": 2202.0, + "end": 2203.92, + "probability": 0.954 + }, + { + "start": 2204.6, + "end": 2205.64, + "probability": 0.9918 + }, + { + "start": 2206.32, + "end": 2207.74, + "probability": 0.5481 + }, + { + "start": 2208.56, + "end": 2209.62, + "probability": 0.6247 + }, + { + "start": 2210.2, + "end": 2212.26, + "probability": 0.8696 + }, + { + "start": 2213.04, + "end": 2216.42, + "probability": 0.9457 + }, + { + "start": 2217.74, + "end": 2220.2, + "probability": 0.4691 + }, + { + "start": 2220.2, + "end": 2221.1, + "probability": 0.1329 + }, + { + "start": 2221.1, + "end": 2221.17, + "probability": 0.1961 + }, + { + "start": 2221.18, + "end": 2221.82, + "probability": 0.1073 + }, + { + "start": 2221.88, + "end": 2223.36, + "probability": 0.4179 + }, + { + "start": 2223.52, + "end": 2223.52, + "probability": 0.1088 + }, + { + "start": 2223.54, + "end": 2225.34, + "probability": 0.865 + }, + { + "start": 2225.36, + "end": 2226.38, + "probability": 0.2269 + }, + { + "start": 2226.96, + "end": 2227.68, + "probability": 0.4318 + }, + { + "start": 2227.68, + "end": 2230.18, + "probability": 0.7483 + }, + { + "start": 2230.34, + "end": 2231.8, + "probability": 0.7437 + }, + { + "start": 2231.92, + "end": 2235.12, + "probability": 0.8834 + }, + { + "start": 2235.86, + "end": 2235.86, + "probability": 0.0449 + }, + { + "start": 2235.86, + "end": 2235.86, + "probability": 0.0878 + }, + { + "start": 2235.86, + "end": 2240.72, + "probability": 0.8591 + }, + { + "start": 2241.4, + "end": 2241.42, + "probability": 0.0959 + }, + { + "start": 2241.42, + "end": 2241.42, + "probability": 0.1412 + }, + { + "start": 2241.42, + "end": 2243.68, + "probability": 0.3899 + }, + { + "start": 2243.68, + "end": 2244.34, + "probability": 0.5012 + }, + { + "start": 2245.28, + "end": 2249.9, + "probability": 0.79 + }, + { + "start": 2250.2, + "end": 2251.26, + "probability": 0.0633 + }, + { + "start": 2251.82, + "end": 2252.1, + "probability": 0.0404 + }, + { + "start": 2252.1, + "end": 2252.1, + "probability": 0.2672 + }, + { + "start": 2252.1, + "end": 2253.97, + "probability": 0.6914 + }, + { + "start": 2254.36, + "end": 2258.72, + "probability": 0.9471 + }, + { + "start": 2259.48, + "end": 2259.58, + "probability": 0.0588 + }, + { + "start": 2259.58, + "end": 2260.12, + "probability": 0.1934 + }, + { + "start": 2260.34, + "end": 2261.44, + "probability": 0.7725 + }, + { + "start": 2261.84, + "end": 2264.02, + "probability": 0.7225 + }, + { + "start": 2264.38, + "end": 2264.42, + "probability": 0.0233 + }, + { + "start": 2264.42, + "end": 2265.54, + "probability": 0.7567 + }, + { + "start": 2265.58, + "end": 2266.89, + "probability": 0.9769 + }, + { + "start": 2267.58, + "end": 2268.62, + "probability": 0.9614 + }, + { + "start": 2269.34, + "end": 2270.56, + "probability": 0.9604 + }, + { + "start": 2271.3, + "end": 2273.3, + "probability": 0.9126 + }, + { + "start": 2273.88, + "end": 2276.7, + "probability": 0.9936 + }, + { + "start": 2277.28, + "end": 2278.65, + "probability": 0.9309 + }, + { + "start": 2279.66, + "end": 2281.07, + "probability": 0.9836 + }, + { + "start": 2281.9, + "end": 2284.38, + "probability": 0.9647 + }, + { + "start": 2285.18, + "end": 2287.08, + "probability": 0.9778 + }, + { + "start": 2287.88, + "end": 2290.8, + "probability": 0.3638 + }, + { + "start": 2290.88, + "end": 2291.54, + "probability": 0.1949 + }, + { + "start": 2291.62, + "end": 2291.68, + "probability": 0.2509 + }, + { + "start": 2291.68, + "end": 2292.54, + "probability": 0.3776 + }, + { + "start": 2292.88, + "end": 2294.02, + "probability": 0.3483 + }, + { + "start": 2294.42, + "end": 2295.52, + "probability": 0.2695 + }, + { + "start": 2295.52, + "end": 2296.36, + "probability": 0.3289 + }, + { + "start": 2296.36, + "end": 2296.36, + "probability": 0.0468 + }, + { + "start": 2296.36, + "end": 2297.78, + "probability": 0.8236 + }, + { + "start": 2297.88, + "end": 2297.88, + "probability": 0.8765 + }, + { + "start": 2297.96, + "end": 2301.2, + "probability": 0.8962 + }, + { + "start": 2301.42, + "end": 2301.88, + "probability": 0.4638 + }, + { + "start": 2302.6, + "end": 2303.4, + "probability": 0.4643 + }, + { + "start": 2303.96, + "end": 2304.3, + "probability": 0.129 + }, + { + "start": 2305.28, + "end": 2305.3, + "probability": 0.0156 + }, + { + "start": 2305.3, + "end": 2305.3, + "probability": 0.0787 + }, + { + "start": 2305.3, + "end": 2307.44, + "probability": 0.7997 + }, + { + "start": 2307.98, + "end": 2309.04, + "probability": 0.5239 + }, + { + "start": 2309.34, + "end": 2312.78, + "probability": 0.8929 + }, + { + "start": 2313.26, + "end": 2315.98, + "probability": 0.9174 + }, + { + "start": 2316.7, + "end": 2319.82, + "probability": 0.4672 + }, + { + "start": 2320.9, + "end": 2322.84, + "probability": 0.789 + }, + { + "start": 2323.56, + "end": 2323.98, + "probability": 0.9343 + }, + { + "start": 2324.06, + "end": 2330.02, + "probability": 0.7503 + }, + { + "start": 2330.86, + "end": 2334.02, + "probability": 0.9925 + }, + { + "start": 2334.56, + "end": 2335.48, + "probability": 0.9684 + }, + { + "start": 2336.52, + "end": 2338.1, + "probability": 0.7224 + }, + { + "start": 2338.72, + "end": 2340.9, + "probability": 0.8567 + }, + { + "start": 2341.04, + "end": 2341.48, + "probability": 0.5426 + }, + { + "start": 2341.96, + "end": 2348.48, + "probability": 0.9053 + }, + { + "start": 2349.14, + "end": 2351.3, + "probability": 0.9751 + }, + { + "start": 2351.84, + "end": 2354.35, + "probability": 0.9825 + }, + { + "start": 2354.64, + "end": 2359.36, + "probability": 0.9893 + }, + { + "start": 2359.98, + "end": 2362.11, + "probability": 0.9934 + }, + { + "start": 2362.8, + "end": 2364.96, + "probability": 0.7568 + }, + { + "start": 2365.48, + "end": 2369.56, + "probability": 0.8325 + }, + { + "start": 2370.48, + "end": 2373.0, + "probability": 0.9937 + }, + { + "start": 2373.56, + "end": 2375.1, + "probability": 0.6655 + }, + { + "start": 2375.7, + "end": 2378.56, + "probability": 0.9778 + }, + { + "start": 2379.14, + "end": 2381.98, + "probability": 0.8254 + }, + { + "start": 2382.02, + "end": 2382.88, + "probability": 0.8955 + }, + { + "start": 2383.2, + "end": 2385.44, + "probability": 0.996 + }, + { + "start": 2385.98, + "end": 2389.14, + "probability": 0.9926 + }, + { + "start": 2389.66, + "end": 2393.68, + "probability": 0.9865 + }, + { + "start": 2394.22, + "end": 2394.22, + "probability": 0.0551 + }, + { + "start": 2394.24, + "end": 2400.34, + "probability": 0.9385 + }, + { + "start": 2401.4, + "end": 2406.22, + "probability": 0.9867 + }, + { + "start": 2406.38, + "end": 2406.74, + "probability": 0.6128 + }, + { + "start": 2407.06, + "end": 2407.56, + "probability": 0.7912 + }, + { + "start": 2409.28, + "end": 2412.56, + "probability": 0.7448 + }, + { + "start": 2426.34, + "end": 2426.56, + "probability": 0.569 + }, + { + "start": 2426.56, + "end": 2428.66, + "probability": 0.7474 + }, + { + "start": 2428.72, + "end": 2430.9, + "probability": 0.8161 + }, + { + "start": 2432.14, + "end": 2439.2, + "probability": 0.9536 + }, + { + "start": 2439.3, + "end": 2442.62, + "probability": 0.9984 + }, + { + "start": 2443.14, + "end": 2444.4, + "probability": 0.9792 + }, + { + "start": 2445.18, + "end": 2448.68, + "probability": 0.9913 + }, + { + "start": 2449.66, + "end": 2451.68, + "probability": 0.6837 + }, + { + "start": 2452.74, + "end": 2454.36, + "probability": 0.8156 + }, + { + "start": 2455.64, + "end": 2455.98, + "probability": 0.9758 + }, + { + "start": 2456.56, + "end": 2457.96, + "probability": 0.9664 + }, + { + "start": 2459.4, + "end": 2461.16, + "probability": 0.9438 + }, + { + "start": 2462.48, + "end": 2467.62, + "probability": 0.953 + }, + { + "start": 2468.16, + "end": 2468.84, + "probability": 0.8033 + }, + { + "start": 2469.64, + "end": 2475.04, + "probability": 0.9961 + }, + { + "start": 2475.05, + "end": 2481.06, + "probability": 0.9932 + }, + { + "start": 2482.2, + "end": 2491.02, + "probability": 0.917 + }, + { + "start": 2491.8, + "end": 2493.28, + "probability": 0.8435 + }, + { + "start": 2493.88, + "end": 2497.64, + "probability": 0.9979 + }, + { + "start": 2497.88, + "end": 2497.9, + "probability": 0.6318 + }, + { + "start": 2499.2, + "end": 2501.87, + "probability": 0.4971 + }, + { + "start": 2504.06, + "end": 2505.9, + "probability": 0.6067 + }, + { + "start": 2506.5, + "end": 2508.32, + "probability": 0.9386 + }, + { + "start": 2509.28, + "end": 2512.8, + "probability": 0.97 + }, + { + "start": 2513.78, + "end": 2514.82, + "probability": 0.9895 + }, + { + "start": 2515.4, + "end": 2516.04, + "probability": 0.9894 + }, + { + "start": 2517.2, + "end": 2520.92, + "probability": 0.9706 + }, + { + "start": 2521.38, + "end": 2524.48, + "probability": 0.9449 + }, + { + "start": 2525.14, + "end": 2527.92, + "probability": 0.9938 + }, + { + "start": 2528.72, + "end": 2530.86, + "probability": 0.911 + }, + { + "start": 2531.38, + "end": 2536.38, + "probability": 0.9793 + }, + { + "start": 2536.38, + "end": 2541.38, + "probability": 0.9174 + }, + { + "start": 2541.82, + "end": 2542.66, + "probability": 0.9741 + }, + { + "start": 2543.18, + "end": 2545.44, + "probability": 0.9884 + }, + { + "start": 2546.32, + "end": 2547.52, + "probability": 0.5009 + }, + { + "start": 2548.12, + "end": 2550.4, + "probability": 0.9775 + }, + { + "start": 2551.16, + "end": 2553.42, + "probability": 0.8532 + }, + { + "start": 2554.16, + "end": 2557.58, + "probability": 0.9692 + }, + { + "start": 2558.26, + "end": 2562.75, + "probability": 0.9963 + }, + { + "start": 2564.92, + "end": 2572.54, + "probability": 0.9698 + }, + { + "start": 2573.92, + "end": 2579.86, + "probability": 0.9282 + }, + { + "start": 2580.74, + "end": 2586.18, + "probability": 0.99 + }, + { + "start": 2586.84, + "end": 2591.36, + "probability": 0.9866 + }, + { + "start": 2591.96, + "end": 2595.26, + "probability": 0.9444 + }, + { + "start": 2596.28, + "end": 2598.4, + "probability": 0.88 + }, + { + "start": 2599.12, + "end": 2605.16, + "probability": 0.9404 + }, + { + "start": 2605.88, + "end": 2606.98, + "probability": 0.7171 + }, + { + "start": 2607.64, + "end": 2611.68, + "probability": 0.8916 + }, + { + "start": 2611.92, + "end": 2613.08, + "probability": 0.9859 + }, + { + "start": 2613.56, + "end": 2617.16, + "probability": 0.9651 + }, + { + "start": 2617.28, + "end": 2617.62, + "probability": 0.419 + }, + { + "start": 2617.66, + "end": 2618.5, + "probability": 0.7382 + }, + { + "start": 2618.82, + "end": 2619.76, + "probability": 0.8472 + }, + { + "start": 2620.26, + "end": 2627.44, + "probability": 0.973 + }, + { + "start": 2627.44, + "end": 2636.1, + "probability": 0.9955 + }, + { + "start": 2636.18, + "end": 2637.22, + "probability": 0.9174 + }, + { + "start": 2637.84, + "end": 2639.46, + "probability": 0.9827 + }, + { + "start": 2640.08, + "end": 2643.1, + "probability": 0.7042 + }, + { + "start": 2643.52, + "end": 2645.48, + "probability": 0.9838 + }, + { + "start": 2646.16, + "end": 2648.38, + "probability": 0.929 + }, + { + "start": 2649.12, + "end": 2649.76, + "probability": 0.9186 + }, + { + "start": 2651.1, + "end": 2652.56, + "probability": 0.916 + }, + { + "start": 2652.8, + "end": 2653.26, + "probability": 0.8857 + }, + { + "start": 2653.28, + "end": 2655.62, + "probability": 0.9972 + }, + { + "start": 2656.22, + "end": 2656.76, + "probability": 0.9568 + }, + { + "start": 2657.98, + "end": 2658.44, + "probability": 0.4114 + }, + { + "start": 2658.52, + "end": 2660.2, + "probability": 0.7727 + }, + { + "start": 2660.58, + "end": 2661.56, + "probability": 0.9128 + }, + { + "start": 2661.74, + "end": 2662.52, + "probability": 0.8869 + }, + { + "start": 2681.26, + "end": 2682.4, + "probability": 0.7781 + }, + { + "start": 2685.44, + "end": 2686.64, + "probability": 0.6641 + }, + { + "start": 2687.8, + "end": 2688.66, + "probability": 0.8863 + }, + { + "start": 2689.86, + "end": 2691.54, + "probability": 0.8418 + }, + { + "start": 2692.8, + "end": 2695.08, + "probability": 0.9787 + }, + { + "start": 2696.68, + "end": 2698.44, + "probability": 0.8809 + }, + { + "start": 2699.52, + "end": 2703.62, + "probability": 0.7064 + }, + { + "start": 2704.22, + "end": 2707.76, + "probability": 0.998 + }, + { + "start": 2708.68, + "end": 2710.8, + "probability": 0.9086 + }, + { + "start": 2711.96, + "end": 2717.3, + "probability": 0.9612 + }, + { + "start": 2718.22, + "end": 2722.34, + "probability": 0.9899 + }, + { + "start": 2723.2, + "end": 2727.76, + "probability": 0.8772 + }, + { + "start": 2728.68, + "end": 2731.32, + "probability": 0.9653 + }, + { + "start": 2732.38, + "end": 2735.68, + "probability": 0.9122 + }, + { + "start": 2736.24, + "end": 2740.62, + "probability": 0.9932 + }, + { + "start": 2741.64, + "end": 2744.68, + "probability": 0.9377 + }, + { + "start": 2744.78, + "end": 2750.96, + "probability": 0.9895 + }, + { + "start": 2752.52, + "end": 2755.5, + "probability": 0.9927 + }, + { + "start": 2755.72, + "end": 2759.24, + "probability": 0.8797 + }, + { + "start": 2760.82, + "end": 2763.66, + "probability": 0.9721 + }, + { + "start": 2763.78, + "end": 2767.87, + "probability": 0.9608 + }, + { + "start": 2769.92, + "end": 2772.82, + "probability": 0.7457 + }, + { + "start": 2774.82, + "end": 2777.62, + "probability": 0.9965 + }, + { + "start": 2778.16, + "end": 2779.72, + "probability": 0.9952 + }, + { + "start": 2780.54, + "end": 2784.34, + "probability": 0.991 + }, + { + "start": 2785.02, + "end": 2786.16, + "probability": 0.8342 + }, + { + "start": 2786.3, + "end": 2788.72, + "probability": 0.8923 + }, + { + "start": 2789.48, + "end": 2791.98, + "probability": 0.9666 + }, + { + "start": 2793.28, + "end": 2793.8, + "probability": 0.9423 + }, + { + "start": 2794.46, + "end": 2796.82, + "probability": 0.9922 + }, + { + "start": 2797.94, + "end": 2801.48, + "probability": 0.8475 + }, + { + "start": 2802.18, + "end": 2805.58, + "probability": 0.9945 + }, + { + "start": 2806.8, + "end": 2808.7, + "probability": 0.9848 + }, + { + "start": 2809.34, + "end": 2812.16, + "probability": 0.9954 + }, + { + "start": 2812.86, + "end": 2814.26, + "probability": 0.9334 + }, + { + "start": 2814.92, + "end": 2822.2, + "probability": 0.9674 + }, + { + "start": 2823.14, + "end": 2827.46, + "probability": 0.947 + }, + { + "start": 2828.3, + "end": 2831.57, + "probability": 0.9914 + }, + { + "start": 2834.86, + "end": 2835.82, + "probability": 0.6243 + }, + { + "start": 2837.4, + "end": 2839.0, + "probability": 0.8951 + }, + { + "start": 2839.78, + "end": 2840.3, + "probability": 0.8885 + }, + { + "start": 2841.0, + "end": 2842.0, + "probability": 0.8223 + }, + { + "start": 2843.08, + "end": 2846.66, + "probability": 0.8862 + }, + { + "start": 2848.06, + "end": 2848.66, + "probability": 0.9346 + }, + { + "start": 2849.22, + "end": 2851.94, + "probability": 0.9716 + }, + { + "start": 2853.7, + "end": 2855.44, + "probability": 0.1615 + }, + { + "start": 2855.9, + "end": 2856.22, + "probability": 0.0089 + }, + { + "start": 2857.14, + "end": 2858.96, + "probability": 0.0171 + }, + { + "start": 2858.96, + "end": 2858.96, + "probability": 0.0144 + }, + { + "start": 2858.96, + "end": 2858.96, + "probability": 0.2118 + }, + { + "start": 2858.96, + "end": 2865.16, + "probability": 0.8532 + }, + { + "start": 2865.16, + "end": 2867.92, + "probability": 0.2801 + }, + { + "start": 2868.4, + "end": 2870.1, + "probability": 0.0843 + }, + { + "start": 2871.55, + "end": 2872.18, + "probability": 0.0674 + }, + { + "start": 2872.18, + "end": 2872.18, + "probability": 0.0296 + }, + { + "start": 2872.18, + "end": 2872.18, + "probability": 0.1336 + }, + { + "start": 2872.18, + "end": 2872.18, + "probability": 0.0481 + }, + { + "start": 2872.18, + "end": 2872.18, + "probability": 0.1677 + }, + { + "start": 2872.18, + "end": 2874.2, + "probability": 0.1853 + }, + { + "start": 2874.2, + "end": 2878.0, + "probability": 0.9777 + }, + { + "start": 2878.28, + "end": 2879.22, + "probability": 0.9257 + }, + { + "start": 2879.62, + "end": 2883.58, + "probability": 0.7957 + }, + { + "start": 2884.06, + "end": 2885.32, + "probability": 0.7798 + }, + { + "start": 2885.82, + "end": 2886.44, + "probability": 0.8697 + }, + { + "start": 2887.32, + "end": 2888.32, + "probability": 0.7823 + }, + { + "start": 2888.4, + "end": 2891.4, + "probability": 0.9297 + }, + { + "start": 2891.4, + "end": 2894.18, + "probability": 0.9282 + }, + { + "start": 2894.58, + "end": 2895.36, + "probability": 0.917 + }, + { + "start": 2895.52, + "end": 2897.72, + "probability": 0.9318 + }, + { + "start": 2898.18, + "end": 2900.4, + "probability": 0.8946 + }, + { + "start": 2901.38, + "end": 2903.24, + "probability": 0.8045 + }, + { + "start": 2903.94, + "end": 2904.02, + "probability": 0.0195 + }, + { + "start": 2925.56, + "end": 2925.7, + "probability": 0.0406 + }, + { + "start": 2925.7, + "end": 2925.92, + "probability": 0.1213 + }, + { + "start": 2925.92, + "end": 2925.96, + "probability": 0.1347 + }, + { + "start": 2925.96, + "end": 2926.16, + "probability": 0.2166 + }, + { + "start": 2926.26, + "end": 2926.6, + "probability": 0.2649 + }, + { + "start": 2926.64, + "end": 2926.64, + "probability": 0.1356 + }, + { + "start": 2926.64, + "end": 2926.98, + "probability": 0.0408 + }, + { + "start": 2942.8, + "end": 2943.74, + "probability": 0.6558 + }, + { + "start": 2945.64, + "end": 2947.82, + "probability": 0.5596 + }, + { + "start": 2949.28, + "end": 2949.94, + "probability": 0.7368 + }, + { + "start": 2952.76, + "end": 2952.82, + "probability": 0.0712 + }, + { + "start": 2952.82, + "end": 2952.82, + "probability": 0.1638 + }, + { + "start": 2952.82, + "end": 2954.68, + "probability": 0.9523 + }, + { + "start": 2956.2, + "end": 2957.94, + "probability": 0.7919 + }, + { + "start": 2959.5, + "end": 2960.27, + "probability": 0.7265 + }, + { + "start": 2962.14, + "end": 2966.86, + "probability": 0.9877 + }, + { + "start": 2967.76, + "end": 2970.18, + "probability": 0.818 + }, + { + "start": 2971.14, + "end": 2978.26, + "probability": 0.9476 + }, + { + "start": 2979.32, + "end": 2980.42, + "probability": 0.9414 + }, + { + "start": 2981.36, + "end": 2982.36, + "probability": 0.9318 + }, + { + "start": 2983.02, + "end": 2984.62, + "probability": 0.9147 + }, + { + "start": 2985.74, + "end": 2987.84, + "probability": 0.7636 + }, + { + "start": 2990.3, + "end": 2994.32, + "probability": 0.7542 + }, + { + "start": 2995.74, + "end": 2996.82, + "probability": 0.9688 + }, + { + "start": 2997.94, + "end": 2998.6, + "probability": 0.7094 + }, + { + "start": 2998.66, + "end": 3002.6, + "probability": 0.9353 + }, + { + "start": 3003.48, + "end": 3004.36, + "probability": 0.9715 + }, + { + "start": 3004.4, + "end": 3006.6, + "probability": 0.91 + }, + { + "start": 3008.8, + "end": 3011.06, + "probability": 0.8955 + }, + { + "start": 3011.16, + "end": 3012.44, + "probability": 0.8042 + }, + { + "start": 3012.56, + "end": 3015.49, + "probability": 0.9832 + }, + { + "start": 3016.78, + "end": 3017.92, + "probability": 0.9565 + }, + { + "start": 3019.2, + "end": 3021.02, + "probability": 0.9926 + }, + { + "start": 3021.56, + "end": 3022.38, + "probability": 0.6554 + }, + { + "start": 3023.52, + "end": 3024.8, + "probability": 0.9389 + }, + { + "start": 3024.94, + "end": 3025.2, + "probability": 0.7814 + }, + { + "start": 3025.3, + "end": 3028.08, + "probability": 0.9495 + }, + { + "start": 3028.82, + "end": 3029.9, + "probability": 0.9896 + }, + { + "start": 3030.44, + "end": 3031.38, + "probability": 0.9711 + }, + { + "start": 3031.52, + "end": 3032.1, + "probability": 0.9796 + }, + { + "start": 3032.98, + "end": 3034.9, + "probability": 0.9864 + }, + { + "start": 3035.48, + "end": 3036.54, + "probability": 0.7669 + }, + { + "start": 3039.28, + "end": 3040.71, + "probability": 0.9246 + }, + { + "start": 3041.82, + "end": 3043.56, + "probability": 0.9785 + }, + { + "start": 3044.7, + "end": 3045.34, + "probability": 0.7197 + }, + { + "start": 3045.8, + "end": 3048.35, + "probability": 0.9203 + }, + { + "start": 3048.64, + "end": 3050.96, + "probability": 0.9653 + }, + { + "start": 3051.96, + "end": 3052.9, + "probability": 0.9263 + }, + { + "start": 3053.44, + "end": 3055.28, + "probability": 0.9712 + }, + { + "start": 3056.68, + "end": 3059.26, + "probability": 0.9219 + }, + { + "start": 3059.32, + "end": 3060.0, + "probability": 0.5095 + }, + { + "start": 3060.04, + "end": 3060.86, + "probability": 0.6046 + }, + { + "start": 3061.88, + "end": 3064.18, + "probability": 0.9671 + }, + { + "start": 3064.24, + "end": 3065.08, + "probability": 0.9171 + }, + { + "start": 3065.22, + "end": 3065.5, + "probability": 0.6314 + }, + { + "start": 3066.26, + "end": 3070.06, + "probability": 0.9729 + }, + { + "start": 3071.32, + "end": 3072.4, + "probability": 0.6744 + }, + { + "start": 3072.88, + "end": 3073.86, + "probability": 0.8568 + }, + { + "start": 3074.82, + "end": 3075.74, + "probability": 0.1727 + }, + { + "start": 3077.02, + "end": 3077.92, + "probability": 0.9729 + }, + { + "start": 3079.7, + "end": 3082.7, + "probability": 0.9741 + }, + { + "start": 3084.14, + "end": 3085.38, + "probability": 0.9844 + }, + { + "start": 3086.78, + "end": 3088.04, + "probability": 0.9954 + }, + { + "start": 3088.68, + "end": 3093.02, + "probability": 0.8802 + }, + { + "start": 3093.76, + "end": 3096.34, + "probability": 0.9764 + }, + { + "start": 3097.33, + "end": 3100.26, + "probability": 0.7219 + }, + { + "start": 3100.34, + "end": 3101.84, + "probability": 0.9819 + }, + { + "start": 3102.56, + "end": 3104.66, + "probability": 0.9522 + }, + { + "start": 3105.32, + "end": 3106.16, + "probability": 0.9761 + }, + { + "start": 3107.42, + "end": 3111.04, + "probability": 0.9949 + }, + { + "start": 3111.04, + "end": 3113.4, + "probability": 0.9967 + }, + { + "start": 3114.66, + "end": 3116.1, + "probability": 0.7727 + }, + { + "start": 3116.88, + "end": 3119.26, + "probability": 0.9301 + }, + { + "start": 3119.92, + "end": 3122.58, + "probability": 0.9528 + }, + { + "start": 3124.04, + "end": 3127.46, + "probability": 0.7373 + }, + { + "start": 3128.08, + "end": 3130.48, + "probability": 0.9919 + }, + { + "start": 3130.48, + "end": 3133.26, + "probability": 0.9982 + }, + { + "start": 3133.52, + "end": 3134.1, + "probability": 0.6257 + }, + { + "start": 3135.14, + "end": 3139.52, + "probability": 0.9987 + }, + { + "start": 3140.3, + "end": 3142.0, + "probability": 0.999 + }, + { + "start": 3142.76, + "end": 3144.8, + "probability": 0.9974 + }, + { + "start": 3145.26, + "end": 3151.02, + "probability": 0.9846 + }, + { + "start": 3152.76, + "end": 3153.71, + "probability": 0.8477 + }, + { + "start": 3154.2, + "end": 3154.66, + "probability": 0.7038 + }, + { + "start": 3155.6, + "end": 3156.31, + "probability": 0.8047 + }, + { + "start": 3156.76, + "end": 3158.7, + "probability": 0.9038 + }, + { + "start": 3159.2, + "end": 3164.16, + "probability": 0.9949 + }, + { + "start": 3164.48, + "end": 3165.48, + "probability": 0.9183 + }, + { + "start": 3166.3, + "end": 3168.08, + "probability": 0.962 + }, + { + "start": 3168.16, + "end": 3170.42, + "probability": 0.7639 + }, + { + "start": 3198.36, + "end": 3200.16, + "probability": 0.8619 + }, + { + "start": 3203.08, + "end": 3203.96, + "probability": 0.7081 + }, + { + "start": 3205.82, + "end": 3208.3, + "probability": 0.8936 + }, + { + "start": 3210.22, + "end": 3212.3, + "probability": 0.9663 + }, + { + "start": 3213.84, + "end": 3216.08, + "probability": 0.981 + }, + { + "start": 3217.02, + "end": 3219.74, + "probability": 0.9872 + }, + { + "start": 3220.82, + "end": 3221.38, + "probability": 0.9538 + }, + { + "start": 3222.0, + "end": 3222.78, + "probability": 0.709 + }, + { + "start": 3223.64, + "end": 3225.2, + "probability": 0.4307 + }, + { + "start": 3226.46, + "end": 3229.4, + "probability": 0.718 + }, + { + "start": 3229.5, + "end": 3230.52, + "probability": 0.6698 + }, + { + "start": 3230.6, + "end": 3232.5, + "probability": 0.8502 + }, + { + "start": 3234.66, + "end": 3234.66, + "probability": 0.9561 + }, + { + "start": 3234.66, + "end": 3236.19, + "probability": 0.7808 + }, + { + "start": 3237.76, + "end": 3238.6, + "probability": 0.9938 + }, + { + "start": 3239.3, + "end": 3240.58, + "probability": 0.8761 + }, + { + "start": 3241.28, + "end": 3243.34, + "probability": 0.9808 + }, + { + "start": 3244.5, + "end": 3245.68, + "probability": 0.9494 + }, + { + "start": 3246.32, + "end": 3249.62, + "probability": 0.9818 + }, + { + "start": 3251.02, + "end": 3252.9, + "probability": 0.8962 + }, + { + "start": 3253.97, + "end": 3258.54, + "probability": 0.962 + }, + { + "start": 3259.14, + "end": 3259.9, + "probability": 0.4968 + }, + { + "start": 3261.18, + "end": 3262.16, + "probability": 0.9202 + }, + { + "start": 3263.0, + "end": 3265.14, + "probability": 0.8603 + }, + { + "start": 3266.22, + "end": 3268.9, + "probability": 0.9749 + }, + { + "start": 3269.42, + "end": 3270.74, + "probability": 0.8229 + }, + { + "start": 3272.1, + "end": 3273.36, + "probability": 0.9895 + }, + { + "start": 3274.16, + "end": 3278.58, + "probability": 0.9814 + }, + { + "start": 3278.58, + "end": 3283.26, + "probability": 0.9984 + }, + { + "start": 3285.16, + "end": 3287.46, + "probability": 0.9414 + }, + { + "start": 3288.46, + "end": 3290.5, + "probability": 0.8608 + }, + { + "start": 3291.46, + "end": 3293.04, + "probability": 0.918 + }, + { + "start": 3293.58, + "end": 3296.12, + "probability": 0.9402 + }, + { + "start": 3297.36, + "end": 3298.42, + "probability": 0.7135 + }, + { + "start": 3299.16, + "end": 3299.6, + "probability": 0.9312 + }, + { + "start": 3300.46, + "end": 3301.6, + "probability": 0.7243 + }, + { + "start": 3302.46, + "end": 3303.6, + "probability": 0.9272 + }, + { + "start": 3304.12, + "end": 3306.04, + "probability": 0.9217 + }, + { + "start": 3306.82, + "end": 3309.5, + "probability": 0.9924 + }, + { + "start": 3311.2, + "end": 3313.22, + "probability": 0.9897 + }, + { + "start": 3313.8, + "end": 3314.62, + "probability": 0.6198 + }, + { + "start": 3315.6, + "end": 3316.66, + "probability": 0.9961 + }, + { + "start": 3317.4, + "end": 3317.68, + "probability": 0.8449 + }, + { + "start": 3318.7, + "end": 3322.16, + "probability": 0.9631 + }, + { + "start": 3322.74, + "end": 3323.48, + "probability": 0.9029 + }, + { + "start": 3324.12, + "end": 3326.28, + "probability": 0.9857 + }, + { + "start": 3326.82, + "end": 3330.9, + "probability": 0.9834 + }, + { + "start": 3332.52, + "end": 3336.66, + "probability": 0.9863 + }, + { + "start": 3336.74, + "end": 3336.92, + "probability": 0.623 + }, + { + "start": 3336.92, + "end": 3337.86, + "probability": 0.3534 + }, + { + "start": 3338.44, + "end": 3340.36, + "probability": 0.9433 + }, + { + "start": 3341.26, + "end": 3342.76, + "probability": 0.9456 + }, + { + "start": 3343.44, + "end": 3344.76, + "probability": 0.8143 + }, + { + "start": 3345.1, + "end": 3346.48, + "probability": 0.9963 + }, + { + "start": 3346.86, + "end": 3347.02, + "probability": 0.1818 + }, + { + "start": 3347.04, + "end": 3347.88, + "probability": 0.7312 + }, + { + "start": 3348.18, + "end": 3352.68, + "probability": 0.9736 + }, + { + "start": 3353.46, + "end": 3356.0, + "probability": 0.9443 + }, + { + "start": 3357.06, + "end": 3359.36, + "probability": 0.8137 + }, + { + "start": 3359.9, + "end": 3362.68, + "probability": 0.9272 + }, + { + "start": 3363.04, + "end": 3363.86, + "probability": 0.765 + }, + { + "start": 3365.22, + "end": 3366.88, + "probability": 0.8911 + }, + { + "start": 3367.4, + "end": 3369.12, + "probability": 0.9807 + }, + { + "start": 3370.51, + "end": 3372.7, + "probability": 0.9755 + }, + { + "start": 3373.38, + "end": 3375.75, + "probability": 0.7952 + }, + { + "start": 3376.4, + "end": 3377.08, + "probability": 0.8116 + }, + { + "start": 3377.92, + "end": 3379.2, + "probability": 0.9746 + }, + { + "start": 3380.18, + "end": 3381.62, + "probability": 0.8257 + }, + { + "start": 3382.42, + "end": 3383.84, + "probability": 0.7818 + }, + { + "start": 3384.44, + "end": 3385.82, + "probability": 0.9728 + }, + { + "start": 3386.4, + "end": 3388.6, + "probability": 0.9552 + }, + { + "start": 3389.4, + "end": 3390.9, + "probability": 0.9484 + }, + { + "start": 3391.64, + "end": 3395.2, + "probability": 0.998 + }, + { + "start": 3395.92, + "end": 3398.28, + "probability": 0.8002 + }, + { + "start": 3398.82, + "end": 3402.46, + "probability": 0.9315 + }, + { + "start": 3402.76, + "end": 3402.84, + "probability": 0.1687 + }, + { + "start": 3403.14, + "end": 3407.2, + "probability": 0.9852 + }, + { + "start": 3408.32, + "end": 3411.0, + "probability": 0.987 + }, + { + "start": 3411.54, + "end": 3414.74, + "probability": 0.9592 + }, + { + "start": 3415.46, + "end": 3418.06, + "probability": 0.936 + }, + { + "start": 3418.06, + "end": 3421.84, + "probability": 0.7726 + }, + { + "start": 3422.58, + "end": 3426.24, + "probability": 0.9932 + }, + { + "start": 3426.7, + "end": 3428.04, + "probability": 0.9314 + }, + { + "start": 3428.92, + "end": 3431.58, + "probability": 0.9819 + }, + { + "start": 3432.46, + "end": 3434.16, + "probability": 0.4917 + }, + { + "start": 3435.56, + "end": 3436.34, + "probability": 0.6001 + }, + { + "start": 3436.62, + "end": 3439.26, + "probability": 0.8002 + }, + { + "start": 3439.56, + "end": 3442.16, + "probability": 0.9955 + }, + { + "start": 3442.72, + "end": 3443.98, + "probability": 0.955 + }, + { + "start": 3444.44, + "end": 3444.98, + "probability": 0.9535 + }, + { + "start": 3445.38, + "end": 3447.94, + "probability": 0.9134 + }, + { + "start": 3448.84, + "end": 3449.56, + "probability": 0.9876 + }, + { + "start": 3450.48, + "end": 3451.42, + "probability": 0.6578 + }, + { + "start": 3451.82, + "end": 3452.38, + "probability": 0.5829 + }, + { + "start": 3452.98, + "end": 3454.42, + "probability": 0.79 + }, + { + "start": 3454.64, + "end": 3456.5, + "probability": 0.9273 + }, + { + "start": 3457.34, + "end": 3458.4, + "probability": 0.9758 + }, + { + "start": 3459.24, + "end": 3462.58, + "probability": 0.9841 + }, + { + "start": 3462.92, + "end": 3464.86, + "probability": 0.979 + }, + { + "start": 3465.66, + "end": 3467.04, + "probability": 0.9366 + }, + { + "start": 3467.38, + "end": 3470.46, + "probability": 0.9756 + }, + { + "start": 3470.7, + "end": 3471.08, + "probability": 0.7292 + }, + { + "start": 3471.14, + "end": 3472.6, + "probability": 0.9471 + }, + { + "start": 3473.06, + "end": 3474.34, + "probability": 0.9634 + }, + { + "start": 3474.48, + "end": 3475.06, + "probability": 0.793 + }, + { + "start": 3475.62, + "end": 3479.32, + "probability": 0.9867 + }, + { + "start": 3479.8, + "end": 3482.26, + "probability": 0.8893 + }, + { + "start": 3482.66, + "end": 3482.94, + "probability": 0.7872 + }, + { + "start": 3483.52, + "end": 3484.18, + "probability": 0.8017 + }, + { + "start": 3486.4, + "end": 3488.66, + "probability": 0.9002 + }, + { + "start": 3490.48, + "end": 3491.3, + "probability": 0.9444 + }, + { + "start": 3495.54, + "end": 3496.06, + "probability": 0.4385 + }, + { + "start": 3496.22, + "end": 3500.12, + "probability": 0.7549 + }, + { + "start": 3500.74, + "end": 3500.92, + "probability": 0.0665 + }, + { + "start": 3501.06, + "end": 3502.56, + "probability": 0.5879 + }, + { + "start": 3502.64, + "end": 3504.94, + "probability": 0.7263 + }, + { + "start": 3505.08, + "end": 3505.48, + "probability": 0.8752 + }, + { + "start": 3505.96, + "end": 3507.5, + "probability": 0.9337 + }, + { + "start": 3507.52, + "end": 3508.08, + "probability": 0.3989 + }, + { + "start": 3508.78, + "end": 3510.36, + "probability": 0.5636 + }, + { + "start": 3510.6, + "end": 3511.76, + "probability": 0.9193 + }, + { + "start": 3513.0, + "end": 3514.44, + "probability": 0.757 + }, + { + "start": 3515.56, + "end": 3515.6, + "probability": 0.0002 + }, + { + "start": 3516.22, + "end": 3516.44, + "probability": 0.2169 + }, + { + "start": 3519.18, + "end": 3519.7, + "probability": 0.1004 + }, + { + "start": 3519.7, + "end": 3519.7, + "probability": 0.055 + }, + { + "start": 3519.7, + "end": 3520.0, + "probability": 0.6105 + }, + { + "start": 3520.08, + "end": 3523.36, + "probability": 0.9698 + }, + { + "start": 3524.34, + "end": 3527.38, + "probability": 0.9599 + }, + { + "start": 3527.9, + "end": 3529.56, + "probability": 0.9884 + }, + { + "start": 3531.88, + "end": 3532.56, + "probability": 0.7454 + }, + { + "start": 3533.12, + "end": 3534.34, + "probability": 0.9997 + }, + { + "start": 3535.0, + "end": 3537.68, + "probability": 0.9833 + }, + { + "start": 3538.38, + "end": 3540.0, + "probability": 0.9981 + }, + { + "start": 3540.58, + "end": 3541.98, + "probability": 0.998 + }, + { + "start": 3542.58, + "end": 3543.58, + "probability": 0.914 + }, + { + "start": 3544.98, + "end": 3548.02, + "probability": 0.9966 + }, + { + "start": 3549.26, + "end": 3549.86, + "probability": 0.9631 + }, + { + "start": 3550.58, + "end": 3551.58, + "probability": 0.9786 + }, + { + "start": 3552.28, + "end": 3553.22, + "probability": 0.7188 + }, + { + "start": 3555.3, + "end": 3558.24, + "probability": 0.7744 + }, + { + "start": 3558.94, + "end": 3563.82, + "probability": 0.9838 + }, + { + "start": 3564.18, + "end": 3565.75, + "probability": 0.9972 + }, + { + "start": 3566.56, + "end": 3567.46, + "probability": 0.9572 + }, + { + "start": 3568.3, + "end": 3570.14, + "probability": 0.9092 + }, + { + "start": 3571.06, + "end": 3573.82, + "probability": 0.9873 + }, + { + "start": 3574.7, + "end": 3577.46, + "probability": 0.9419 + }, + { + "start": 3578.78, + "end": 3579.56, + "probability": 0.6199 + }, + { + "start": 3580.08, + "end": 3581.94, + "probability": 0.8715 + }, + { + "start": 3582.32, + "end": 3587.8, + "probability": 0.9863 + }, + { + "start": 3588.72, + "end": 3589.54, + "probability": 0.8373 + }, + { + "start": 3590.62, + "end": 3593.98, + "probability": 0.9658 + }, + { + "start": 3594.64, + "end": 3596.34, + "probability": 0.999 + }, + { + "start": 3596.96, + "end": 3597.9, + "probability": 0.9957 + }, + { + "start": 3598.46, + "end": 3602.1, + "probability": 0.8543 + }, + { + "start": 3602.66, + "end": 3603.38, + "probability": 0.9642 + }, + { + "start": 3604.14, + "end": 3607.72, + "probability": 0.9931 + }, + { + "start": 3608.4, + "end": 3612.04, + "probability": 0.9946 + }, + { + "start": 3612.6, + "end": 3613.75, + "probability": 0.9946 + }, + { + "start": 3614.5, + "end": 3618.02, + "probability": 0.9441 + }, + { + "start": 3620.08, + "end": 3622.36, + "probability": 0.9891 + }, + { + "start": 3623.62, + "end": 3625.64, + "probability": 0.9772 + }, + { + "start": 3626.18, + "end": 3629.72, + "probability": 0.9774 + }, + { + "start": 3630.78, + "end": 3631.5, + "probability": 0.7764 + }, + { + "start": 3632.04, + "end": 3633.58, + "probability": 0.8533 + }, + { + "start": 3634.06, + "end": 3636.94, + "probability": 0.9846 + }, + { + "start": 3637.46, + "end": 3640.26, + "probability": 0.815 + }, + { + "start": 3640.7, + "end": 3647.3, + "probability": 0.9184 + }, + { + "start": 3648.6, + "end": 3649.66, + "probability": 0.9761 + }, + { + "start": 3650.06, + "end": 3652.08, + "probability": 0.6996 + }, + { + "start": 3652.46, + "end": 3654.36, + "probability": 0.9675 + }, + { + "start": 3654.76, + "end": 3656.46, + "probability": 0.9888 + }, + { + "start": 3657.06, + "end": 3658.37, + "probability": 0.987 + }, + { + "start": 3658.88, + "end": 3660.1, + "probability": 0.4414 + }, + { + "start": 3660.48, + "end": 3661.6, + "probability": 0.8929 + }, + { + "start": 3662.0, + "end": 3663.17, + "probability": 0.9368 + }, + { + "start": 3663.4, + "end": 3669.16, + "probability": 0.9302 + }, + { + "start": 3669.64, + "end": 3672.04, + "probability": 0.9429 + }, + { + "start": 3672.58, + "end": 3675.72, + "probability": 0.9956 + }, + { + "start": 3676.16, + "end": 3678.56, + "probability": 0.9635 + }, + { + "start": 3679.38, + "end": 3680.3, + "probability": 0.6837 + }, + { + "start": 3681.16, + "end": 3682.99, + "probability": 0.9839 + }, + { + "start": 3684.46, + "end": 3686.28, + "probability": 0.9971 + }, + { + "start": 3686.62, + "end": 3688.52, + "probability": 0.8896 + }, + { + "start": 3689.16, + "end": 3689.94, + "probability": 0.8492 + }, + { + "start": 3690.64, + "end": 3693.26, + "probability": 0.9357 + }, + { + "start": 3693.88, + "end": 3695.76, + "probability": 0.9657 + }, + { + "start": 3696.24, + "end": 3696.72, + "probability": 0.6911 + }, + { + "start": 3697.22, + "end": 3697.78, + "probability": 0.7928 + }, + { + "start": 3699.08, + "end": 3700.94, + "probability": 0.8352 + }, + { + "start": 3701.82, + "end": 3703.62, + "probability": 0.7865 + }, + { + "start": 3715.59, + "end": 3716.24, + "probability": 0.945 + }, + { + "start": 3716.98, + "end": 3717.72, + "probability": 0.9282 + }, + { + "start": 3718.12, + "end": 3721.32, + "probability": 0.8394 + }, + { + "start": 3722.88, + "end": 3725.0, + "probability": 0.966 + }, + { + "start": 3725.94, + "end": 3727.13, + "probability": 0.0434 + }, + { + "start": 3728.64, + "end": 3728.8, + "probability": 0.2645 + }, + { + "start": 3728.88, + "end": 3730.36, + "probability": 0.5151 + }, + { + "start": 3730.5, + "end": 3734.2, + "probability": 0.9946 + }, + { + "start": 3735.22, + "end": 3735.56, + "probability": 0.8272 + }, + { + "start": 3736.86, + "end": 3737.46, + "probability": 0.0565 + }, + { + "start": 3737.5, + "end": 3743.66, + "probability": 0.9563 + }, + { + "start": 3744.16, + "end": 3745.12, + "probability": 0.6539 + }, + { + "start": 3745.72, + "end": 3745.72, + "probability": 0.0785 + }, + { + "start": 3745.72, + "end": 3747.46, + "probability": 0.7257 + }, + { + "start": 3747.46, + "end": 3747.46, + "probability": 0.4141 + }, + { + "start": 3747.46, + "end": 3748.74, + "probability": 0.6278 + }, + { + "start": 3748.9, + "end": 3750.26, + "probability": 0.8812 + }, + { + "start": 3750.76, + "end": 3753.44, + "probability": 0.7046 + }, + { + "start": 3753.82, + "end": 3757.34, + "probability": 0.1773 + }, + { + "start": 3758.74, + "end": 3759.7, + "probability": 0.4933 + }, + { + "start": 3759.9, + "end": 3761.78, + "probability": 0.6068 + }, + { + "start": 3761.78, + "end": 3762.9, + "probability": 0.0318 + }, + { + "start": 3763.16, + "end": 3764.82, + "probability": 0.8265 + }, + { + "start": 3765.88, + "end": 3768.08, + "probability": 0.0701 + }, + { + "start": 3768.3, + "end": 3771.0, + "probability": 0.0294 + }, + { + "start": 3771.0, + "end": 3772.15, + "probability": 0.2804 + }, + { + "start": 3773.22, + "end": 3773.98, + "probability": 0.0174 + }, + { + "start": 3774.8, + "end": 3774.96, + "probability": 0.0364 + }, + { + "start": 3779.64, + "end": 3784.28, + "probability": 0.0468 + }, + { + "start": 3784.28, + "end": 3784.38, + "probability": 0.2305 + }, + { + "start": 3784.38, + "end": 3786.48, + "probability": 0.0668 + }, + { + "start": 3786.48, + "end": 3788.02, + "probability": 0.206 + }, + { + "start": 3788.02, + "end": 3790.88, + "probability": 0.0575 + }, + { + "start": 3791.46, + "end": 3792.62, + "probability": 0.0817 + }, + { + "start": 3792.74, + "end": 3797.84, + "probability": 0.0244 + }, + { + "start": 3798.3, + "end": 3799.08, + "probability": 0.4379 + }, + { + "start": 3799.08, + "end": 3801.35, + "probability": 0.0932 + }, + { + "start": 3804.33, + "end": 3807.63, + "probability": 0.0513 + }, + { + "start": 3807.9, + "end": 3808.98, + "probability": 0.0593 + }, + { + "start": 3808.98, + "end": 3809.6, + "probability": 0.1936 + }, + { + "start": 3809.6, + "end": 3809.94, + "probability": 0.2415 + }, + { + "start": 3810.0, + "end": 3810.0, + "probability": 0.0 + }, + { + "start": 3810.0, + "end": 3810.0, + "probability": 0.0 + }, + { + "start": 3810.0, + "end": 3810.0, + "probability": 0.0 + }, + { + "start": 3810.28, + "end": 3811.56, + "probability": 0.2136 + }, + { + "start": 3811.58, + "end": 3812.86, + "probability": 0.4672 + }, + { + "start": 3812.86, + "end": 3818.1, + "probability": 0.3462 + }, + { + "start": 3819.61, + "end": 3822.2, + "probability": 0.0772 + }, + { + "start": 3822.35, + "end": 3822.55, + "probability": 0.0924 + }, + { + "start": 3822.74, + "end": 3826.5, + "probability": 0.0888 + }, + { + "start": 3826.98, + "end": 3828.52, + "probability": 0.1011 + }, + { + "start": 3829.14, + "end": 3829.36, + "probability": 0.0168 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.0, + "end": 3931.0, + "probability": 0.0 + }, + { + "start": 3931.68, + "end": 3931.86, + "probability": 0.009 + }, + { + "start": 3931.86, + "end": 3931.86, + "probability": 0.0576 + }, + { + "start": 3931.86, + "end": 3931.86, + "probability": 0.1938 + }, + { + "start": 3931.86, + "end": 3932.9, + "probability": 0.2524 + }, + { + "start": 3933.06, + "end": 3934.76, + "probability": 0.4408 + }, + { + "start": 3935.94, + "end": 3937.1, + "probability": 0.7993 + }, + { + "start": 3937.16, + "end": 3938.0, + "probability": 0.9214 + }, + { + "start": 3938.54, + "end": 3940.5, + "probability": 0.3438 + }, + { + "start": 3940.82, + "end": 3942.14, + "probability": 0.034 + }, + { + "start": 3942.22, + "end": 3942.66, + "probability": 0.2782 + }, + { + "start": 3942.74, + "end": 3943.46, + "probability": 0.4748 + }, + { + "start": 3943.62, + "end": 3945.98, + "probability": 0.0463 + }, + { + "start": 3946.32, + "end": 3947.36, + "probability": 0.1422 + }, + { + "start": 3947.64, + "end": 3950.86, + "probability": 0.6372 + }, + { + "start": 3950.94, + "end": 3951.72, + "probability": 0.7846 + }, + { + "start": 3951.82, + "end": 3953.22, + "probability": 0.897 + }, + { + "start": 3953.68, + "end": 3955.76, + "probability": 0.6253 + }, + { + "start": 3955.94, + "end": 3956.62, + "probability": 0.8214 + }, + { + "start": 3956.98, + "end": 3959.32, + "probability": 0.175 + }, + { + "start": 3959.66, + "end": 3961.22, + "probability": 0.2514 + }, + { + "start": 3961.34, + "end": 3962.12, + "probability": 0.2142 + }, + { + "start": 3962.12, + "end": 3963.68, + "probability": 0.5217 + }, + { + "start": 3963.78, + "end": 3964.3, + "probability": 0.6875 + }, + { + "start": 3964.4, + "end": 3965.26, + "probability": 0.7631 + }, + { + "start": 3965.3, + "end": 3966.72, + "probability": 0.8282 + }, + { + "start": 3967.34, + "end": 3968.4, + "probability": 0.8359 + }, + { + "start": 3969.4, + "end": 3970.72, + "probability": 0.6107 + }, + { + "start": 3970.96, + "end": 3972.36, + "probability": 0.5497 + }, + { + "start": 3972.9, + "end": 3975.08, + "probability": 0.8562 + }, + { + "start": 3976.38, + "end": 3978.06, + "probability": 0.9667 + }, + { + "start": 3978.1, + "end": 3979.31, + "probability": 0.144 + }, + { + "start": 3980.64, + "end": 3982.26, + "probability": 0.9833 + }, + { + "start": 3985.85, + "end": 3989.6, + "probability": 0.7324 + }, + { + "start": 3989.92, + "end": 3991.14, + "probability": 0.8881 + }, + { + "start": 3992.58, + "end": 4003.08, + "probability": 0.9719 + }, + { + "start": 4004.34, + "end": 4005.28, + "probability": 0.7003 + }, + { + "start": 4006.24, + "end": 4009.68, + "probability": 0.9385 + }, + { + "start": 4009.96, + "end": 4013.0, + "probability": 0.8241 + }, + { + "start": 4013.82, + "end": 4014.46, + "probability": 0.7309 + }, + { + "start": 4014.52, + "end": 4019.08, + "probability": 0.9751 + }, + { + "start": 4019.2, + "end": 4020.36, + "probability": 0.9935 + }, + { + "start": 4021.4, + "end": 4026.5, + "probability": 0.4988 + }, + { + "start": 4028.9, + "end": 4034.48, + "probability": 0.9451 + }, + { + "start": 4035.08, + "end": 4035.85, + "probability": 0.9269 + }, + { + "start": 4035.86, + "end": 4038.04, + "probability": 0.4822 + }, + { + "start": 4038.1, + "end": 4040.46, + "probability": 0.6793 + }, + { + "start": 4040.56, + "end": 4041.54, + "probability": 0.8949 + }, + { + "start": 4041.8, + "end": 4042.56, + "probability": 0.3276 + }, + { + "start": 4042.56, + "end": 4043.36, + "probability": 0.4118 + }, + { + "start": 4043.5, + "end": 4045.42, + "probability": 0.2213 + }, + { + "start": 4045.42, + "end": 4046.02, + "probability": 0.4707 + }, + { + "start": 4046.14, + "end": 4047.94, + "probability": 0.7352 + }, + { + "start": 4048.76, + "end": 4049.44, + "probability": 0.8702 + }, + { + "start": 4049.54, + "end": 4049.9, + "probability": 0.693 + }, + { + "start": 4050.04, + "end": 4054.42, + "probability": 0.9875 + }, + { + "start": 4054.42, + "end": 4057.3, + "probability": 0.6453 + }, + { + "start": 4057.36, + "end": 4060.44, + "probability": 0.9629 + }, + { + "start": 4060.56, + "end": 4061.04, + "probability": 0.0922 + }, + { + "start": 4061.46, + "end": 4062.8, + "probability": 0.0084 + }, + { + "start": 4062.8, + "end": 4063.06, + "probability": 0.1744 + }, + { + "start": 4063.06, + "end": 4067.86, + "probability": 0.7653 + }, + { + "start": 4070.28, + "end": 4070.42, + "probability": 0.1137 + }, + { + "start": 4070.42, + "end": 4071.23, + "probability": 0.3879 + }, + { + "start": 4071.8, + "end": 4073.32, + "probability": 0.746 + }, + { + "start": 4073.76, + "end": 4073.8, + "probability": 0.0265 + }, + { + "start": 4073.8, + "end": 4074.54, + "probability": 0.0622 + }, + { + "start": 4075.3, + "end": 4077.94, + "probability": 0.4297 + }, + { + "start": 4078.02, + "end": 4078.42, + "probability": 0.1077 + }, + { + "start": 4080.54, + "end": 4083.06, + "probability": 0.0143 + }, + { + "start": 4085.08, + "end": 4094.3, + "probability": 0.0703 + }, + { + "start": 4095.42, + "end": 4097.02, + "probability": 0.2579 + }, + { + "start": 4097.02, + "end": 4097.36, + "probability": 0.0208 + }, + { + "start": 4101.52, + "end": 4107.36, + "probability": 0.1914 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.0, + "end": 4141.0, + "probability": 0.0 + }, + { + "start": 4141.2, + "end": 4142.5, + "probability": 0.0186 + }, + { + "start": 4143.42, + "end": 4144.34, + "probability": 0.1288 + }, + { + "start": 4145.26, + "end": 4145.9, + "probability": 0.0286 + }, + { + "start": 4147.22, + "end": 4147.34, + "probability": 0.001 + }, + { + "start": 4147.34, + "end": 4148.32, + "probability": 0.0046 + }, + { + "start": 4149.18, + "end": 4153.87, + "probability": 0.0546 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4264.0, + "end": 4264.0, + "probability": 0.0 + }, + { + "start": 4265.0, + "end": 4265.54, + "probability": 0.4001 + }, + { + "start": 4265.62, + "end": 4266.3, + "probability": 0.1401 + }, + { + "start": 4267.28, + "end": 4269.82, + "probability": 0.7416 + }, + { + "start": 4270.54, + "end": 4273.1, + "probability": 0.4828 + }, + { + "start": 4274.84, + "end": 4279.12, + "probability": 0.3757 + }, + { + "start": 4280.92, + "end": 4281.84, + "probability": 0.6798 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.0, + "end": 4405.0, + "probability": 0.0 + }, + { + "start": 4405.2, + "end": 4407.76, + "probability": 0.1042 + }, + { + "start": 4409.14, + "end": 4412.42, + "probability": 0.0679 + }, + { + "start": 4413.87, + "end": 4416.84, + "probability": 0.1479 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4527.0, + "end": 4527.0, + "probability": 0.0 + }, + { + "start": 4543.12, + "end": 4543.22, + "probability": 0.0015 + }, + { + "start": 4543.22, + "end": 4544.1, + "probability": 0.6274 + }, + { + "start": 4544.24, + "end": 4544.84, + "probability": 0.9319 + }, + { + "start": 4544.84, + "end": 4546.54, + "probability": 0.8659 + }, + { + "start": 4548.14, + "end": 4548.9, + "probability": 0.8169 + }, + { + "start": 4551.24, + "end": 4557.16, + "probability": 0.9955 + }, + { + "start": 4558.3, + "end": 4560.64, + "probability": 0.9264 + }, + { + "start": 4561.52, + "end": 4565.92, + "probability": 0.9832 + }, + { + "start": 4565.92, + "end": 4569.48, + "probability": 0.978 + }, + { + "start": 4570.02, + "end": 4576.96, + "probability": 0.7574 + }, + { + "start": 4577.16, + "end": 4578.42, + "probability": 0.8177 + }, + { + "start": 4578.94, + "end": 4581.98, + "probability": 0.9476 + }, + { + "start": 4583.36, + "end": 4587.1, + "probability": 0.9766 + }, + { + "start": 4587.78, + "end": 4589.98, + "probability": 0.984 + }, + { + "start": 4590.5, + "end": 4591.96, + "probability": 0.9761 + }, + { + "start": 4592.54, + "end": 4598.06, + "probability": 0.9495 + }, + { + "start": 4598.8, + "end": 4601.44, + "probability": 0.9731 + }, + { + "start": 4602.24, + "end": 4605.64, + "probability": 0.9466 + }, + { + "start": 4607.76, + "end": 4609.52, + "probability": 0.7798 + }, + { + "start": 4610.4, + "end": 4616.14, + "probability": 0.9927 + }, + { + "start": 4616.14, + "end": 4621.18, + "probability": 0.9993 + }, + { + "start": 4621.18, + "end": 4625.42, + "probability": 0.9995 + }, + { + "start": 4626.02, + "end": 4628.36, + "probability": 0.9281 + }, + { + "start": 4629.58, + "end": 4631.8, + "probability": 0.9894 + }, + { + "start": 4632.46, + "end": 4633.44, + "probability": 0.9631 + }, + { + "start": 4633.62, + "end": 4636.92, + "probability": 0.9245 + }, + { + "start": 4637.36, + "end": 4637.44, + "probability": 0.3662 + }, + { + "start": 4637.56, + "end": 4637.9, + "probability": 0.7406 + }, + { + "start": 4638.0, + "end": 4638.74, + "probability": 0.5993 + }, + { + "start": 4638.98, + "end": 4642.7, + "probability": 0.8247 + }, + { + "start": 4644.0, + "end": 4646.04, + "probability": 0.9481 + }, + { + "start": 4646.04, + "end": 4648.06, + "probability": 0.8332 + }, + { + "start": 4648.1, + "end": 4650.1, + "probability": 0.8789 + }, + { + "start": 4651.64, + "end": 4656.04, + "probability": 0.9873 + }, + { + "start": 4656.3, + "end": 4656.88, + "probability": 0.9564 + }, + { + "start": 4656.92, + "end": 4658.16, + "probability": 0.7729 + }, + { + "start": 4658.9, + "end": 4660.2, + "probability": 0.4593 + }, + { + "start": 4661.0, + "end": 4661.58, + "probability": 0.9028 + }, + { + "start": 4663.28, + "end": 4664.72, + "probability": 0.8266 + }, + { + "start": 4664.84, + "end": 4668.18, + "probability": 0.9946 + }, + { + "start": 4669.34, + "end": 4672.06, + "probability": 0.8977 + }, + { + "start": 4673.2, + "end": 4675.14, + "probability": 0.9631 + }, + { + "start": 4675.68, + "end": 4676.38, + "probability": 0.9458 + }, + { + "start": 4677.3, + "end": 4678.6, + "probability": 0.9808 + }, + { + "start": 4679.88, + "end": 4681.6, + "probability": 0.7369 + }, + { + "start": 4682.34, + "end": 4683.88, + "probability": 0.8888 + }, + { + "start": 4684.0, + "end": 4688.6, + "probability": 0.9946 + }, + { + "start": 4689.52, + "end": 4695.36, + "probability": 0.9674 + }, + { + "start": 4695.46, + "end": 4698.52, + "probability": 0.7994 + }, + { + "start": 4698.88, + "end": 4702.59, + "probability": 0.9799 + }, + { + "start": 4703.72, + "end": 4703.8, + "probability": 0.6658 + }, + { + "start": 4703.88, + "end": 4705.1, + "probability": 0.8673 + }, + { + "start": 4705.2, + "end": 4709.3, + "probability": 0.987 + }, + { + "start": 4710.4, + "end": 4713.96, + "probability": 0.9961 + }, + { + "start": 4714.16, + "end": 4716.08, + "probability": 0.8911 + }, + { + "start": 4716.3, + "end": 4718.06, + "probability": 0.7142 + }, + { + "start": 4718.88, + "end": 4719.36, + "probability": 0.9167 + }, + { + "start": 4719.44, + "end": 4720.06, + "probability": 0.8784 + }, + { + "start": 4720.4, + "end": 4723.54, + "probability": 0.9915 + }, + { + "start": 4724.78, + "end": 4725.88, + "probability": 0.8282 + }, + { + "start": 4726.18, + "end": 4729.62, + "probability": 0.4283 + }, + { + "start": 4729.68, + "end": 4731.64, + "probability": 0.5884 + }, + { + "start": 4731.68, + "end": 4731.98, + "probability": 0.8718 + }, + { + "start": 4732.06, + "end": 4736.38, + "probability": 0.9873 + }, + { + "start": 4736.47, + "end": 4736.86, + "probability": 0.2452 + }, + { + "start": 4736.9, + "end": 4738.84, + "probability": 0.9907 + }, + { + "start": 4738.96, + "end": 4742.92, + "probability": 0.9386 + }, + { + "start": 4742.94, + "end": 4743.3, + "probability": 0.5931 + }, + { + "start": 4743.3, + "end": 4743.38, + "probability": 0.5351 + }, + { + "start": 4743.38, + "end": 4743.54, + "probability": 0.1553 + }, + { + "start": 4743.54, + "end": 4743.54, + "probability": 0.4355 + }, + { + "start": 4743.54, + "end": 4745.2, + "probability": 0.6541 + }, + { + "start": 4745.66, + "end": 4747.18, + "probability": 0.9795 + }, + { + "start": 4747.66, + "end": 4750.76, + "probability": 0.9895 + }, + { + "start": 4751.14, + "end": 4754.22, + "probability": 0.4287 + }, + { + "start": 4754.72, + "end": 4754.78, + "probability": 0.1195 + }, + { + "start": 4754.78, + "end": 4754.78, + "probability": 0.421 + }, + { + "start": 4754.78, + "end": 4756.4, + "probability": 0.9578 + }, + { + "start": 4756.74, + "end": 4757.74, + "probability": 0.9438 + }, + { + "start": 4757.86, + "end": 4759.78, + "probability": 0.9899 + }, + { + "start": 4760.14, + "end": 4760.64, + "probability": 0.7056 + }, + { + "start": 4761.4, + "end": 4761.9, + "probability": 0.926 + }, + { + "start": 4762.66, + "end": 4766.1, + "probability": 0.8888 + }, + { + "start": 4782.18, + "end": 4782.88, + "probability": 0.6636 + }, + { + "start": 4784.64, + "end": 4786.48, + "probability": 0.7604 + }, + { + "start": 4788.58, + "end": 4791.94, + "probability": 0.9774 + }, + { + "start": 4792.48, + "end": 4796.16, + "probability": 0.9772 + }, + { + "start": 4797.42, + "end": 4800.82, + "probability": 0.9995 + }, + { + "start": 4801.56, + "end": 4807.96, + "probability": 0.9919 + }, + { + "start": 4808.78, + "end": 4811.72, + "probability": 0.9246 + }, + { + "start": 4811.72, + "end": 4814.9, + "probability": 0.9915 + }, + { + "start": 4815.72, + "end": 4817.2, + "probability": 0.945 + }, + { + "start": 4817.82, + "end": 4819.98, + "probability": 0.9943 + }, + { + "start": 4820.7, + "end": 4827.0, + "probability": 0.991 + }, + { + "start": 4827.56, + "end": 4833.74, + "probability": 0.9991 + }, + { + "start": 4834.6, + "end": 4837.04, + "probability": 0.9961 + }, + { + "start": 4837.16, + "end": 4840.82, + "probability": 0.9926 + }, + { + "start": 4841.64, + "end": 4843.76, + "probability": 0.9946 + }, + { + "start": 4844.46, + "end": 4846.42, + "probability": 0.9008 + }, + { + "start": 4848.06, + "end": 4851.38, + "probability": 0.9736 + }, + { + "start": 4852.1, + "end": 4854.8, + "probability": 0.9566 + }, + { + "start": 4855.66, + "end": 4856.94, + "probability": 0.8851 + }, + { + "start": 4857.66, + "end": 4859.5, + "probability": 0.959 + }, + { + "start": 4860.24, + "end": 4861.72, + "probability": 0.9658 + }, + { + "start": 4862.34, + "end": 4864.92, + "probability": 0.9862 + }, + { + "start": 4865.48, + "end": 4867.86, + "probability": 0.9901 + }, + { + "start": 4868.58, + "end": 4870.42, + "probability": 0.64 + }, + { + "start": 4871.02, + "end": 4874.48, + "probability": 0.9954 + }, + { + "start": 4875.04, + "end": 4877.38, + "probability": 0.9548 + }, + { + "start": 4878.18, + "end": 4878.9, + "probability": 0.9477 + }, + { + "start": 4879.48, + "end": 4881.77, + "probability": 0.9968 + }, + { + "start": 4882.5, + "end": 4884.46, + "probability": 0.9409 + }, + { + "start": 4885.14, + "end": 4889.28, + "probability": 0.9244 + }, + { + "start": 4890.4, + "end": 4892.79, + "probability": 0.9897 + }, + { + "start": 4893.0, + "end": 4893.78, + "probability": 0.7486 + }, + { + "start": 4894.56, + "end": 4896.38, + "probability": 0.9897 + }, + { + "start": 4897.26, + "end": 4899.68, + "probability": 0.988 + }, + { + "start": 4900.42, + "end": 4903.18, + "probability": 0.9014 + }, + { + "start": 4903.76, + "end": 4905.88, + "probability": 0.9398 + }, + { + "start": 4906.76, + "end": 4908.92, + "probability": 0.9615 + }, + { + "start": 4909.78, + "end": 4911.74, + "probability": 0.9858 + }, + { + "start": 4912.34, + "end": 4913.9, + "probability": 0.9827 + }, + { + "start": 4914.86, + "end": 4916.28, + "probability": 0.9911 + }, + { + "start": 4916.82, + "end": 4921.38, + "probability": 0.9943 + }, + { + "start": 4922.24, + "end": 4923.3, + "probability": 0.991 + }, + { + "start": 4923.86, + "end": 4927.04, + "probability": 0.9555 + }, + { + "start": 4927.72, + "end": 4929.12, + "probability": 0.8298 + }, + { + "start": 4929.86, + "end": 4931.16, + "probability": 0.7341 + }, + { + "start": 4932.14, + "end": 4939.02, + "probability": 0.9843 + }, + { + "start": 4939.02, + "end": 4942.9, + "probability": 0.9961 + }, + { + "start": 4943.82, + "end": 4945.28, + "probability": 0.9989 + }, + { + "start": 4945.82, + "end": 4951.06, + "probability": 0.8438 + }, + { + "start": 4951.5, + "end": 4951.96, + "probability": 0.8768 + }, + { + "start": 4954.26, + "end": 4955.92, + "probability": 0.835 + }, + { + "start": 4956.0, + "end": 4959.86, + "probability": 0.9515 + }, + { + "start": 4984.12, + "end": 4985.6, + "probability": 0.9202 + }, + { + "start": 4992.36, + "end": 4993.58, + "probability": 0.7804 + }, + { + "start": 4994.16, + "end": 4994.56, + "probability": 0.8119 + }, + { + "start": 4995.94, + "end": 4997.06, + "probability": 0.7231 + }, + { + "start": 4998.62, + "end": 5002.22, + "probability": 0.9401 + }, + { + "start": 5003.3, + "end": 5007.68, + "probability": 0.9914 + }, + { + "start": 5008.24, + "end": 5010.72, + "probability": 0.8831 + }, + { + "start": 5011.5, + "end": 5016.04, + "probability": 0.9958 + }, + { + "start": 5016.72, + "end": 5019.62, + "probability": 0.9732 + }, + { + "start": 5021.14, + "end": 5022.08, + "probability": 0.7423 + }, + { + "start": 5023.14, + "end": 5024.16, + "probability": 0.7477 + }, + { + "start": 5024.86, + "end": 5027.1, + "probability": 0.8035 + }, + { + "start": 5028.44, + "end": 5029.94, + "probability": 0.7612 + }, + { + "start": 5031.04, + "end": 5035.46, + "probability": 0.9799 + }, + { + "start": 5035.46, + "end": 5041.08, + "probability": 0.9975 + }, + { + "start": 5041.78, + "end": 5042.48, + "probability": 0.9754 + }, + { + "start": 5043.48, + "end": 5045.4, + "probability": 0.978 + }, + { + "start": 5046.42, + "end": 5048.18, + "probability": 0.9775 + }, + { + "start": 5049.0, + "end": 5054.5, + "probability": 0.9946 + }, + { + "start": 5056.28, + "end": 5057.8, + "probability": 0.9495 + }, + { + "start": 5058.82, + "end": 5063.14, + "probability": 0.9474 + }, + { + "start": 5063.8, + "end": 5064.98, + "probability": 0.9734 + }, + { + "start": 5066.14, + "end": 5066.92, + "probability": 0.7179 + }, + { + "start": 5066.98, + "end": 5069.72, + "probability": 0.9971 + }, + { + "start": 5071.38, + "end": 5076.34, + "probability": 0.9216 + }, + { + "start": 5077.58, + "end": 5078.4, + "probability": 0.9259 + }, + { + "start": 5079.4, + "end": 5082.58, + "probability": 0.9985 + }, + { + "start": 5082.58, + "end": 5086.38, + "probability": 0.95 + }, + { + "start": 5087.24, + "end": 5090.72, + "probability": 0.913 + }, + { + "start": 5091.76, + "end": 5094.98, + "probability": 0.9875 + }, + { + "start": 5095.64, + "end": 5100.18, + "probability": 0.9965 + }, + { + "start": 5100.18, + "end": 5104.68, + "probability": 0.9988 + }, + { + "start": 5106.14, + "end": 5110.38, + "probability": 0.9794 + }, + { + "start": 5111.36, + "end": 5111.84, + "probability": 0.8638 + }, + { + "start": 5114.06, + "end": 5115.84, + "probability": 0.768 + }, + { + "start": 5116.02, + "end": 5119.44, + "probability": 0.9882 + }, + { + "start": 5120.88, + "end": 5121.62, + "probability": 0.8215 + }, + { + "start": 5142.6, + "end": 5147.14, + "probability": 0.9925 + }, + { + "start": 5154.58, + "end": 5154.72, + "probability": 0.8531 + }, + { + "start": 5157.1, + "end": 5158.32, + "probability": 0.7281 + }, + { + "start": 5160.66, + "end": 5164.52, + "probability": 0.9921 + }, + { + "start": 5165.34, + "end": 5167.42, + "probability": 0.9902 + }, + { + "start": 5168.3, + "end": 5169.62, + "probability": 0.9831 + }, + { + "start": 5170.9, + "end": 5171.94, + "probability": 0.75 + }, + { + "start": 5172.86, + "end": 5175.64, + "probability": 0.9971 + }, + { + "start": 5175.74, + "end": 5178.08, + "probability": 0.9102 + }, + { + "start": 5178.46, + "end": 5181.74, + "probability": 0.9892 + }, + { + "start": 5182.26, + "end": 5187.44, + "probability": 0.9972 + }, + { + "start": 5188.28, + "end": 5188.74, + "probability": 0.8491 + }, + { + "start": 5189.92, + "end": 5192.06, + "probability": 0.969 + }, + { + "start": 5193.32, + "end": 5193.76, + "probability": 0.371 + }, + { + "start": 5193.96, + "end": 5195.48, + "probability": 0.0357 + }, + { + "start": 5195.56, + "end": 5197.65, + "probability": 0.3807 + }, + { + "start": 5199.16, + "end": 5201.36, + "probability": 0.6765 + }, + { + "start": 5202.56, + "end": 5203.76, + "probability": 0.1236 + }, + { + "start": 5204.0, + "end": 5204.48, + "probability": 0.8408 + }, + { + "start": 5204.98, + "end": 5209.94, + "probability": 0.9557 + }, + { + "start": 5210.0, + "end": 5210.48, + "probability": 0.4698 + }, + { + "start": 5211.2, + "end": 5213.62, + "probability": 0.9913 + }, + { + "start": 5214.2, + "end": 5217.24, + "probability": 0.9965 + }, + { + "start": 5217.68, + "end": 5219.66, + "probability": 0.9482 + }, + { + "start": 5220.3, + "end": 5222.64, + "probability": 0.9233 + }, + { + "start": 5222.78, + "end": 5224.1, + "probability": 0.9741 + }, + { + "start": 5224.92, + "end": 5226.42, + "probability": 0.8741 + }, + { + "start": 5227.18, + "end": 5229.88, + "probability": 0.9585 + }, + { + "start": 5230.34, + "end": 5232.2, + "probability": 0.9829 + }, + { + "start": 5232.37, + "end": 5236.9, + "probability": 0.993 + }, + { + "start": 5237.08, + "end": 5237.42, + "probability": 0.8094 + }, + { + "start": 5237.46, + "end": 5237.94, + "probability": 0.8264 + }, + { + "start": 5239.33, + "end": 5243.86, + "probability": 0.9932 + }, + { + "start": 5244.6, + "end": 5248.64, + "probability": 0.8184 + }, + { + "start": 5249.36, + "end": 5254.62, + "probability": 0.9901 + }, + { + "start": 5255.38, + "end": 5259.74, + "probability": 0.9819 + }, + { + "start": 5259.88, + "end": 5262.46, + "probability": 0.9752 + }, + { + "start": 5262.46, + "end": 5268.72, + "probability": 0.9856 + }, + { + "start": 5269.2, + "end": 5269.88, + "probability": 0.0384 + }, + { + "start": 5270.0, + "end": 5270.9, + "probability": 0.2733 + }, + { + "start": 5271.8, + "end": 5272.96, + "probability": 0.0562 + }, + { + "start": 5273.16, + "end": 5274.76, + "probability": 0.0439 + }, + { + "start": 5275.26, + "end": 5275.26, + "probability": 0.1106 + }, + { + "start": 5280.6, + "end": 5282.8, + "probability": 0.2341 + }, + { + "start": 5283.68, + "end": 5286.32, + "probability": 0.1202 + }, + { + "start": 5286.32, + "end": 5286.32, + "probability": 0.1377 + }, + { + "start": 5286.32, + "end": 5287.04, + "probability": 0.1725 + }, + { + "start": 5287.92, + "end": 5291.28, + "probability": 0.0694 + }, + { + "start": 5291.76, + "end": 5295.84, + "probability": 0.9842 + }, + { + "start": 5296.46, + "end": 5301.36, + "probability": 0.9862 + }, + { + "start": 5301.52, + "end": 5305.64, + "probability": 0.9968 + }, + { + "start": 5306.24, + "end": 5307.91, + "probability": 0.9889 + }, + { + "start": 5308.54, + "end": 5310.3, + "probability": 0.958 + }, + { + "start": 5310.64, + "end": 5312.6, + "probability": 0.9983 + }, + { + "start": 5313.32, + "end": 5320.76, + "probability": 0.9709 + }, + { + "start": 5321.44, + "end": 5324.46, + "probability": 0.9985 + }, + { + "start": 5324.98, + "end": 5326.13, + "probability": 0.9951 + }, + { + "start": 5327.26, + "end": 5327.38, + "probability": 0.1526 + }, + { + "start": 5327.38, + "end": 5329.7, + "probability": 0.7646 + }, + { + "start": 5330.0, + "end": 5331.43, + "probability": 0.9846 + }, + { + "start": 5331.58, + "end": 5333.18, + "probability": 0.9321 + }, + { + "start": 5334.02, + "end": 5334.68, + "probability": 0.7225 + }, + { + "start": 5335.12, + "end": 5339.5, + "probability": 0.9702 + }, + { + "start": 5340.1, + "end": 5344.1, + "probability": 0.7962 + }, + { + "start": 5344.84, + "end": 5349.06, + "probability": 0.999 + }, + { + "start": 5350.56, + "end": 5350.92, + "probability": 0.6836 + }, + { + "start": 5352.48, + "end": 5354.76, + "probability": 0.8998 + }, + { + "start": 5357.3, + "end": 5358.82, + "probability": 0.7963 + }, + { + "start": 5366.86, + "end": 5368.02, + "probability": 0.6273 + }, + { + "start": 5368.93, + "end": 5371.06, + "probability": 0.7543 + }, + { + "start": 5371.14, + "end": 5372.48, + "probability": 0.6664 + }, + { + "start": 5372.52, + "end": 5373.35, + "probability": 0.7053 + }, + { + "start": 5373.4, + "end": 5374.1, + "probability": 0.5687 + }, + { + "start": 5375.86, + "end": 5378.62, + "probability": 0.5292 + }, + { + "start": 5378.62, + "end": 5378.98, + "probability": 0.4326 + }, + { + "start": 5379.26, + "end": 5387.38, + "probability": 0.9099 + }, + { + "start": 5389.66, + "end": 5392.96, + "probability": 0.9989 + }, + { + "start": 5393.8, + "end": 5400.22, + "probability": 0.9983 + }, + { + "start": 5400.96, + "end": 5402.02, + "probability": 0.9983 + }, + { + "start": 5402.64, + "end": 5409.16, + "probability": 0.9988 + }, + { + "start": 5410.16, + "end": 5414.12, + "probability": 0.9259 + }, + { + "start": 5415.24, + "end": 5419.94, + "probability": 0.9958 + }, + { + "start": 5420.46, + "end": 5421.18, + "probability": 0.9971 + }, + { + "start": 5422.28, + "end": 5429.3, + "probability": 0.9935 + }, + { + "start": 5430.08, + "end": 5433.44, + "probability": 0.879 + }, + { + "start": 5434.24, + "end": 5436.98, + "probability": 0.9961 + }, + { + "start": 5437.8, + "end": 5440.26, + "probability": 0.9756 + }, + { + "start": 5440.4, + "end": 5442.78, + "probability": 0.9336 + }, + { + "start": 5443.8, + "end": 5446.01, + "probability": 0.9942 + }, + { + "start": 5446.56, + "end": 5449.54, + "probability": 0.9332 + }, + { + "start": 5450.42, + "end": 5454.88, + "probability": 0.9976 + }, + { + "start": 5455.44, + "end": 5459.08, + "probability": 0.9978 + }, + { + "start": 5460.9, + "end": 5463.92, + "probability": 0.894 + }, + { + "start": 5464.28, + "end": 5464.86, + "probability": 0.7925 + }, + { + "start": 5465.0, + "end": 5466.0, + "probability": 0.8337 + }, + { + "start": 5466.06, + "end": 5466.74, + "probability": 0.8568 + }, + { + "start": 5467.22, + "end": 5468.9, + "probability": 0.9779 + }, + { + "start": 5469.52, + "end": 5472.02, + "probability": 0.9714 + }, + { + "start": 5472.92, + "end": 5476.44, + "probability": 0.998 + }, + { + "start": 5477.5, + "end": 5483.62, + "probability": 0.9946 + }, + { + "start": 5484.6, + "end": 5485.34, + "probability": 0.9987 + }, + { + "start": 5486.12, + "end": 5488.76, + "probability": 0.9902 + }, + { + "start": 5489.0, + "end": 5490.52, + "probability": 0.957 + }, + { + "start": 5491.6, + "end": 5497.32, + "probability": 0.9958 + }, + { + "start": 5497.32, + "end": 5501.28, + "probability": 0.9792 + }, + { + "start": 5504.5, + "end": 5507.08, + "probability": 0.926 + }, + { + "start": 5508.06, + "end": 5511.92, + "probability": 0.8092 + }, + { + "start": 5512.56, + "end": 5518.96, + "probability": 0.993 + }, + { + "start": 5519.88, + "end": 5524.44, + "probability": 0.9915 + }, + { + "start": 5525.08, + "end": 5527.12, + "probability": 0.9824 + }, + { + "start": 5529.4, + "end": 5529.96, + "probability": 0.8118 + }, + { + "start": 5531.1, + "end": 5532.26, + "probability": 0.9943 + }, + { + "start": 5534.02, + "end": 5537.12, + "probability": 0.7495 + }, + { + "start": 5537.3, + "end": 5543.06, + "probability": 0.978 + }, + { + "start": 5543.88, + "end": 5545.64, + "probability": 0.8578 + }, + { + "start": 5545.68, + "end": 5546.36, + "probability": 0.5535 + }, + { + "start": 5546.4, + "end": 5547.46, + "probability": 0.701 + }, + { + "start": 5548.7, + "end": 5549.2, + "probability": 0.7603 + }, + { + "start": 5549.34, + "end": 5555.96, + "probability": 0.9693 + }, + { + "start": 5556.56, + "end": 5558.92, + "probability": 0.9059 + }, + { + "start": 5560.04, + "end": 5563.52, + "probability": 0.8421 + }, + { + "start": 5563.66, + "end": 5565.74, + "probability": 0.998 + }, + { + "start": 5567.18, + "end": 5569.74, + "probability": 0.8679 + }, + { + "start": 5569.9, + "end": 5571.74, + "probability": 0.8165 + }, + { + "start": 5573.8, + "end": 5576.36, + "probability": 0.9298 + }, + { + "start": 5576.84, + "end": 5581.56, + "probability": 0.9823 + }, + { + "start": 5582.86, + "end": 5586.96, + "probability": 0.9113 + }, + { + "start": 5588.08, + "end": 5590.46, + "probability": 0.7688 + }, + { + "start": 5591.18, + "end": 5596.78, + "probability": 0.9954 + }, + { + "start": 5597.3, + "end": 5601.38, + "probability": 0.9943 + }, + { + "start": 5602.06, + "end": 5603.15, + "probability": 0.9555 + }, + { + "start": 5604.2, + "end": 5610.35, + "probability": 0.996 + }, + { + "start": 5613.41, + "end": 5616.0, + "probability": 0.5083 + }, + { + "start": 5618.32, + "end": 5623.56, + "probability": 0.9853 + }, + { + "start": 5624.4, + "end": 5627.62, + "probability": 0.808 + }, + { + "start": 5627.78, + "end": 5629.72, + "probability": 0.4679 + }, + { + "start": 5629.76, + "end": 5630.42, + "probability": 0.5427 + }, + { + "start": 5631.38, + "end": 5633.64, + "probability": 0.9773 + }, + { + "start": 5635.08, + "end": 5637.36, + "probability": 0.8815 + }, + { + "start": 5637.48, + "end": 5638.04, + "probability": 0.8722 + }, + { + "start": 5638.2, + "end": 5639.48, + "probability": 0.9886 + }, + { + "start": 5639.5, + "end": 5640.77, + "probability": 0.9971 + }, + { + "start": 5641.42, + "end": 5642.94, + "probability": 0.7806 + }, + { + "start": 5643.72, + "end": 5645.36, + "probability": 0.8843 + }, + { + "start": 5645.6, + "end": 5647.4, + "probability": 0.8649 + }, + { + "start": 5647.74, + "end": 5649.66, + "probability": 0.9975 + }, + { + "start": 5649.74, + "end": 5650.36, + "probability": 0.9041 + }, + { + "start": 5651.8, + "end": 5652.4, + "probability": 0.7931 + }, + { + "start": 5653.12, + "end": 5655.18, + "probability": 0.8967 + }, + { + "start": 5655.78, + "end": 5659.28, + "probability": 0.9219 + }, + { + "start": 5660.08, + "end": 5661.26, + "probability": 0.5876 + }, + { + "start": 5661.9, + "end": 5664.22, + "probability": 0.6355 + }, + { + "start": 5665.4, + "end": 5666.48, + "probability": 0.9355 + }, + { + "start": 5666.58, + "end": 5671.58, + "probability": 0.9988 + }, + { + "start": 5671.6, + "end": 5673.48, + "probability": 0.9871 + }, + { + "start": 5673.6, + "end": 5675.51, + "probability": 0.9105 + }, + { + "start": 5677.34, + "end": 5679.34, + "probability": 0.8986 + }, + { + "start": 5679.98, + "end": 5684.74, + "probability": 0.9702 + }, + { + "start": 5684.88, + "end": 5686.08, + "probability": 0.8196 + }, + { + "start": 5686.6, + "end": 5691.5, + "probability": 0.9518 + }, + { + "start": 5692.04, + "end": 5692.62, + "probability": 0.755 + }, + { + "start": 5692.92, + "end": 5693.12, + "probability": 0.3499 + }, + { + "start": 5693.42, + "end": 5696.38, + "probability": 0.9583 + }, + { + "start": 5696.52, + "end": 5698.44, + "probability": 0.9714 + }, + { + "start": 5698.98, + "end": 5700.26, + "probability": 0.9993 + }, + { + "start": 5700.78, + "end": 5701.74, + "probability": 0.8669 + }, + { + "start": 5702.18, + "end": 5702.44, + "probability": 0.6051 + }, + { + "start": 5702.5, + "end": 5703.1, + "probability": 0.9142 + }, + { + "start": 5703.16, + "end": 5703.64, + "probability": 0.956 + }, + { + "start": 5703.74, + "end": 5704.78, + "probability": 0.9658 + }, + { + "start": 5704.88, + "end": 5705.96, + "probability": 0.8351 + }, + { + "start": 5706.04, + "end": 5707.3, + "probability": 0.9637 + }, + { + "start": 5708.8, + "end": 5710.7, + "probability": 0.863 + }, + { + "start": 5712.0, + "end": 5717.58, + "probability": 0.8549 + }, + { + "start": 5718.9, + "end": 5720.06, + "probability": 0.7458 + }, + { + "start": 5720.3, + "end": 5721.22, + "probability": 0.6906 + }, + { + "start": 5721.72, + "end": 5725.0, + "probability": 0.985 + }, + { + "start": 5725.46, + "end": 5726.66, + "probability": 0.9666 + }, + { + "start": 5727.22, + "end": 5729.32, + "probability": 0.9987 + }, + { + "start": 5729.74, + "end": 5732.16, + "probability": 0.75 + }, + { + "start": 5733.68, + "end": 5735.38, + "probability": 0.6563 + }, + { + "start": 5735.54, + "end": 5736.28, + "probability": 0.8946 + }, + { + "start": 5736.46, + "end": 5737.28, + "probability": 0.9663 + }, + { + "start": 5738.02, + "end": 5739.28, + "probability": 0.8346 + }, + { + "start": 5746.78, + "end": 5750.76, + "probability": 0.9139 + }, + { + "start": 5750.78, + "end": 5751.56, + "probability": 0.652 + }, + { + "start": 5751.64, + "end": 5752.62, + "probability": 0.858 + }, + { + "start": 5753.14, + "end": 5753.62, + "probability": 0.5434 + }, + { + "start": 5753.84, + "end": 5755.42, + "probability": 0.8612 + }, + { + "start": 5755.48, + "end": 5756.64, + "probability": 0.7303 + }, + { + "start": 5756.7, + "end": 5757.2, + "probability": 0.9382 + }, + { + "start": 5759.28, + "end": 5760.4, + "probability": 0.9475 + }, + { + "start": 5760.56, + "end": 5761.32, + "probability": 0.9296 + }, + { + "start": 5761.6, + "end": 5765.24, + "probability": 0.9946 + }, + { + "start": 5765.24, + "end": 5769.3, + "probability": 0.9785 + }, + { + "start": 5769.98, + "end": 5770.54, + "probability": 0.7148 + }, + { + "start": 5770.9, + "end": 5771.96, + "probability": 0.3463 + }, + { + "start": 5772.0, + "end": 5775.58, + "probability": 0.9612 + }, + { + "start": 5776.54, + "end": 5778.04, + "probability": 0.992 + }, + { + "start": 5778.74, + "end": 5782.5, + "probability": 0.9388 + }, + { + "start": 5783.6, + "end": 5786.84, + "probability": 0.987 + }, + { + "start": 5787.42, + "end": 5791.8, + "probability": 0.9787 + }, + { + "start": 5792.72, + "end": 5795.14, + "probability": 0.9657 + }, + { + "start": 5795.8, + "end": 5799.18, + "probability": 0.9965 + }, + { + "start": 5799.84, + "end": 5801.72, + "probability": 0.3437 + }, + { + "start": 5802.46, + "end": 5804.58, + "probability": 0.8942 + }, + { + "start": 5805.42, + "end": 5808.78, + "probability": 0.9965 + }, + { + "start": 5809.56, + "end": 5811.88, + "probability": 0.9925 + }, + { + "start": 5812.6, + "end": 5815.28, + "probability": 0.7916 + }, + { + "start": 5815.8, + "end": 5819.86, + "probability": 0.8739 + }, + { + "start": 5820.14, + "end": 5822.6, + "probability": 0.7214 + }, + { + "start": 5823.3, + "end": 5825.72, + "probability": 0.9925 + }, + { + "start": 5826.5, + "end": 5828.3, + "probability": 0.998 + }, + { + "start": 5829.04, + "end": 5834.58, + "probability": 0.9904 + }, + { + "start": 5835.5, + "end": 5837.44, + "probability": 0.6804 + }, + { + "start": 5838.2, + "end": 5841.1, + "probability": 0.9899 + }, + { + "start": 5841.96, + "end": 5844.04, + "probability": 0.9793 + }, + { + "start": 5844.62, + "end": 5847.86, + "probability": 0.9927 + }, + { + "start": 5848.72, + "end": 5850.73, + "probability": 0.5127 + }, + { + "start": 5851.7, + "end": 5853.6, + "probability": 0.7301 + }, + { + "start": 5854.3, + "end": 5858.78, + "probability": 0.7129 + }, + { + "start": 5860.64, + "end": 5864.32, + "probability": 0.9701 + }, + { + "start": 5865.02, + "end": 5866.76, + "probability": 0.9728 + }, + { + "start": 5867.38, + "end": 5871.0, + "probability": 0.8571 + }, + { + "start": 5871.68, + "end": 5873.98, + "probability": 0.7435 + }, + { + "start": 5875.78, + "end": 5878.22, + "probability": 0.6348 + }, + { + "start": 5880.6, + "end": 5883.05, + "probability": 0.8765 + }, + { + "start": 5883.64, + "end": 5885.04, + "probability": 0.9179 + }, + { + "start": 5887.48, + "end": 5889.26, + "probability": 0.9174 + }, + { + "start": 5890.02, + "end": 5894.32, + "probability": 0.941 + }, + { + "start": 5894.54, + "end": 5895.1, + "probability": 0.5654 + }, + { + "start": 5898.52, + "end": 5898.84, + "probability": 0.705 + }, + { + "start": 5899.84, + "end": 5900.52, + "probability": 0.9618 + }, + { + "start": 5901.06, + "end": 5901.42, + "probability": 0.671 + }, + { + "start": 5901.56, + "end": 5902.74, + "probability": 0.8653 + }, + { + "start": 5902.82, + "end": 5907.26, + "probability": 0.9556 + }, + { + "start": 5907.66, + "end": 5910.02, + "probability": 0.4255 + }, + { + "start": 5910.38, + "end": 5912.62, + "probability": 0.9908 + }, + { + "start": 5913.08, + "end": 5915.34, + "probability": 0.9961 + }, + { + "start": 5915.9, + "end": 5917.92, + "probability": 0.8804 + }, + { + "start": 5918.44, + "end": 5919.8, + "probability": 0.9302 + }, + { + "start": 5921.1, + "end": 5923.04, + "probability": 0.645 + }, + { + "start": 5924.0, + "end": 5931.22, + "probability": 0.9961 + }, + { + "start": 5931.92, + "end": 5933.3, + "probability": 0.643 + }, + { + "start": 5937.1, + "end": 5940.92, + "probability": 0.5446 + }, + { + "start": 5941.64, + "end": 5944.6, + "probability": 0.0655 + }, + { + "start": 5945.54, + "end": 5947.72, + "probability": 0.5759 + }, + { + "start": 5949.72, + "end": 5951.58, + "probability": 0.814 + }, + { + "start": 5958.2, + "end": 5961.76, + "probability": 0.8693 + }, + { + "start": 5963.48, + "end": 5965.7, + "probability": 0.9904 + }, + { + "start": 5965.7, + "end": 5966.7, + "probability": 0.9096 + }, + { + "start": 5971.42, + "end": 5974.14, + "probability": 0.7359 + }, + { + "start": 5978.8, + "end": 5980.3, + "probability": 0.5601 + }, + { + "start": 5980.94, + "end": 5984.64, + "probability": 0.9056 + }, + { + "start": 5985.18, + "end": 5987.96, + "probability": 0.8424 + }, + { + "start": 5989.27, + "end": 5990.43, + "probability": 0.551 + }, + { + "start": 5991.8, + "end": 5992.24, + "probability": 0.9692 + }, + { + "start": 5993.16, + "end": 5994.18, + "probability": 0.8416 + }, + { + "start": 5995.16, + "end": 5995.56, + "probability": 0.8327 + }, + { + "start": 5996.72, + "end": 5998.32, + "probability": 0.8246 + }, + { + "start": 5999.14, + "end": 5999.9, + "probability": 0.6531 + }, + { + "start": 6001.98, + "end": 6003.22, + "probability": 0.9534 + }, + { + "start": 6004.1, + "end": 6004.5, + "probability": 0.7988 + }, + { + "start": 6005.22, + "end": 6006.1, + "probability": 0.8659 + }, + { + "start": 6009.52, + "end": 6010.04, + "probability": 0.9756 + }, + { + "start": 6011.5, + "end": 6012.06, + "probability": 0.749 + }, + { + "start": 6015.92, + "end": 6017.16, + "probability": 0.9798 + }, + { + "start": 6018.26, + "end": 6019.24, + "probability": 0.6771 + }, + { + "start": 6025.1, + "end": 6025.9, + "probability": 0.802 + }, + { + "start": 6026.92, + "end": 6027.7, + "probability": 0.4995 + }, + { + "start": 6028.9, + "end": 6029.32, + "probability": 0.9275 + }, + { + "start": 6031.22, + "end": 6031.78, + "probability": 0.9344 + }, + { + "start": 6036.54, + "end": 6037.06, + "probability": 0.9819 + }, + { + "start": 6038.5, + "end": 6039.28, + "probability": 0.9531 + }, + { + "start": 6041.0, + "end": 6041.42, + "probability": 0.986 + }, + { + "start": 6042.88, + "end": 6043.68, + "probability": 0.9692 + }, + { + "start": 6044.58, + "end": 6044.96, + "probability": 0.9959 + }, + { + "start": 6046.22, + "end": 6046.92, + "probability": 0.9656 + }, + { + "start": 6047.88, + "end": 6048.66, + "probability": 0.9907 + }, + { + "start": 6049.26, + "end": 6049.96, + "probability": 0.9936 + }, + { + "start": 6050.86, + "end": 6051.18, + "probability": 0.9653 + }, + { + "start": 6052.14, + "end": 6052.84, + "probability": 0.99 + }, + { + "start": 6053.5, + "end": 6053.84, + "probability": 0.9951 + }, + { + "start": 6055.62, + "end": 6056.3, + "probability": 0.6409 + }, + { + "start": 6057.92, + "end": 6058.3, + "probability": 0.6542 + }, + { + "start": 6059.72, + "end": 6060.18, + "probability": 0.8972 + }, + { + "start": 6061.4, + "end": 6062.34, + "probability": 0.9951 + }, + { + "start": 6063.16, + "end": 6064.4, + "probability": 0.9329 + }, + { + "start": 6065.87, + "end": 6067.84, + "probability": 0.9585 + }, + { + "start": 6070.42, + "end": 6070.9, + "probability": 0.9821 + }, + { + "start": 6071.7, + "end": 6072.4, + "probability": 0.928 + }, + { + "start": 6073.46, + "end": 6073.86, + "probability": 0.9928 + }, + { + "start": 6075.1, + "end": 6076.0, + "probability": 0.945 + }, + { + "start": 6076.7, + "end": 6077.78, + "probability": 0.8809 + }, + { + "start": 6078.32, + "end": 6079.08, + "probability": 0.9806 + }, + { + "start": 6080.68, + "end": 6081.1, + "probability": 0.9929 + }, + { + "start": 6082.28, + "end": 6083.0, + "probability": 0.9702 + }, + { + "start": 6085.48, + "end": 6085.92, + "probability": 0.5784 + }, + { + "start": 6087.3, + "end": 6088.14, + "probability": 0.7881 + }, + { + "start": 6089.38, + "end": 6089.64, + "probability": 0.9694 + }, + { + "start": 6091.32, + "end": 6092.28, + "probability": 0.973 + }, + { + "start": 6093.54, + "end": 6095.28, + "probability": 0.9764 + }, + { + "start": 6095.84, + "end": 6096.68, + "probability": 0.7277 + }, + { + "start": 6102.48, + "end": 6103.38, + "probability": 0.9824 + }, + { + "start": 6106.84, + "end": 6107.26, + "probability": 0.3232 + }, + { + "start": 6107.88, + "end": 6108.18, + "probability": 0.7311 + }, + { + "start": 6109.1, + "end": 6109.76, + "probability": 0.8218 + }, + { + "start": 6115.36, + "end": 6115.78, + "probability": 0.8073 + }, + { + "start": 6117.04, + "end": 6117.64, + "probability": 0.72 + }, + { + "start": 6118.88, + "end": 6119.18, + "probability": 0.9754 + }, + { + "start": 6120.3, + "end": 6120.98, + "probability": 0.881 + }, + { + "start": 6122.9, + "end": 6124.96, + "probability": 0.9396 + }, + { + "start": 6128.94, + "end": 6129.36, + "probability": 0.9767 + }, + { + "start": 6130.6, + "end": 6131.26, + "probability": 0.9631 + }, + { + "start": 6134.66, + "end": 6135.32, + "probability": 0.9495 + }, + { + "start": 6136.3, + "end": 6136.82, + "probability": 0.9085 + }, + { + "start": 6138.44, + "end": 6138.82, + "probability": 0.9969 + }, + { + "start": 6139.92, + "end": 6140.56, + "probability": 0.9393 + }, + { + "start": 6141.78, + "end": 6141.98, + "probability": 0.5304 + }, + { + "start": 6143.82, + "end": 6144.62, + "probability": 0.7738 + }, + { + "start": 6145.52, + "end": 6145.82, + "probability": 0.9492 + }, + { + "start": 6146.58, + "end": 6147.72, + "probability": 0.7767 + }, + { + "start": 6148.94, + "end": 6149.42, + "probability": 0.9868 + }, + { + "start": 6150.82, + "end": 6151.44, + "probability": 0.6365 + }, + { + "start": 6152.41, + "end": 6154.36, + "probability": 0.9691 + }, + { + "start": 6159.92, + "end": 6160.68, + "probability": 0.8605 + }, + { + "start": 6162.0, + "end": 6162.8, + "probability": 0.9761 + }, + { + "start": 6163.72, + "end": 6164.56, + "probability": 0.9867 + }, + { + "start": 6165.3, + "end": 6166.18, + "probability": 0.8716 + }, + { + "start": 6167.12, + "end": 6167.48, + "probability": 0.9871 + }, + { + "start": 6169.24, + "end": 6170.4, + "probability": 0.8879 + }, + { + "start": 6173.04, + "end": 6173.42, + "probability": 0.5552 + }, + { + "start": 6175.12, + "end": 6175.92, + "probability": 0.5734 + }, + { + "start": 6177.0, + "end": 6177.26, + "probability": 0.9531 + }, + { + "start": 6178.3, + "end": 6179.39, + "probability": 0.9331 + }, + { + "start": 6181.04, + "end": 6181.42, + "probability": 0.9899 + }, + { + "start": 6183.38, + "end": 6184.28, + "probability": 0.9753 + }, + { + "start": 6184.96, + "end": 6185.94, + "probability": 0.902 + }, + { + "start": 6186.76, + "end": 6187.56, + "probability": 0.898 + }, + { + "start": 6189.28, + "end": 6189.62, + "probability": 0.9753 + }, + { + "start": 6191.38, + "end": 6192.36, + "probability": 0.7087 + }, + { + "start": 6193.68, + "end": 6195.22, + "probability": 0.3544 + }, + { + "start": 6196.46, + "end": 6197.08, + "probability": 0.8833 + }, + { + "start": 6198.08, + "end": 6198.9, + "probability": 0.6574 + }, + { + "start": 6200.7, + "end": 6201.04, + "probability": 0.5712 + }, + { + "start": 6202.42, + "end": 6203.18, + "probability": 0.5498 + }, + { + "start": 6208.46, + "end": 6208.86, + "probability": 0.8228 + }, + { + "start": 6210.54, + "end": 6210.94, + "probability": 0.9566 + }, + { + "start": 6214.5, + "end": 6214.92, + "probability": 0.9888 + }, + { + "start": 6215.98, + "end": 6216.38, + "probability": 0.8999 + }, + { + "start": 6217.58, + "end": 6217.86, + "probability": 0.9626 + }, + { + "start": 6219.34, + "end": 6219.96, + "probability": 0.6917 + }, + { + "start": 6221.18, + "end": 6221.54, + "probability": 0.9759 + }, + { + "start": 6222.72, + "end": 6223.22, + "probability": 0.9667 + }, + { + "start": 6224.42, + "end": 6224.98, + "probability": 0.9432 + }, + { + "start": 6227.26, + "end": 6227.8, + "probability": 0.7785 + }, + { + "start": 6231.24, + "end": 6231.58, + "probability": 0.6545 + }, + { + "start": 6232.74, + "end": 6233.18, + "probability": 0.5684 + }, + { + "start": 6234.4, + "end": 6234.72, + "probability": 0.7352 + }, + { + "start": 6235.9, + "end": 6236.56, + "probability": 0.9008 + }, + { + "start": 6240.22, + "end": 6241.28, + "probability": 0.7337 + }, + { + "start": 6242.3, + "end": 6242.94, + "probability": 0.9221 + }, + { + "start": 6245.84, + "end": 6246.2, + "probability": 0.9556 + }, + { + "start": 6247.22, + "end": 6247.82, + "probability": 0.9843 + }, + { + "start": 6248.81, + "end": 6250.86, + "probability": 0.9858 + }, + { + "start": 6252.62, + "end": 6253.04, + "probability": 0.9949 + }, + { + "start": 6254.46, + "end": 6254.96, + "probability": 0.9651 + }, + { + "start": 6256.38, + "end": 6256.64, + "probability": 0.9946 + }, + { + "start": 6257.44, + "end": 6258.66, + "probability": 0.8901 + }, + { + "start": 6259.36, + "end": 6259.6, + "probability": 0.9652 + }, + { + "start": 6261.08, + "end": 6261.78, + "probability": 0.5301 + }, + { + "start": 6265.58, + "end": 6266.08, + "probability": 0.9824 + }, + { + "start": 6266.9, + "end": 6267.38, + "probability": 0.8439 + }, + { + "start": 6268.4, + "end": 6268.78, + "probability": 0.745 + }, + { + "start": 6269.94, + "end": 6271.06, + "probability": 0.7607 + }, + { + "start": 6272.56, + "end": 6272.98, + "probability": 0.9902 + }, + { + "start": 6274.2, + "end": 6275.08, + "probability": 0.9691 + }, + { + "start": 6276.58, + "end": 6278.6, + "probability": 0.9695 + }, + { + "start": 6279.88, + "end": 6280.7, + "probability": 0.9924 + }, + { + "start": 6281.96, + "end": 6282.76, + "probability": 0.9317 + }, + { + "start": 6286.06, + "end": 6286.44, + "probability": 0.9832 + }, + { + "start": 6287.98, + "end": 6288.86, + "probability": 0.9812 + }, + { + "start": 6289.94, + "end": 6290.16, + "probability": 0.5739 + }, + { + "start": 6291.66, + "end": 6292.44, + "probability": 0.824 + }, + { + "start": 6293.28, + "end": 6295.46, + "probability": 0.9604 + }, + { + "start": 6296.04, + "end": 6298.58, + "probability": 0.545 + }, + { + "start": 6304.04, + "end": 6306.56, + "probability": 0.8272 + }, + { + "start": 6309.42, + "end": 6310.2, + "probability": 0.5311 + }, + { + "start": 6312.56, + "end": 6312.9, + "probability": 0.798 + }, + { + "start": 6315.4, + "end": 6316.46, + "probability": 0.7378 + }, + { + "start": 6317.64, + "end": 6319.1, + "probability": 0.9696 + }, + { + "start": 6320.18, + "end": 6320.88, + "probability": 0.8539 + }, + { + "start": 6322.1, + "end": 6322.5, + "probability": 0.8914 + }, + { + "start": 6323.7, + "end": 6324.7, + "probability": 0.8712 + }, + { + "start": 6327.86, + "end": 6328.3, + "probability": 0.9956 + }, + { + "start": 6330.42, + "end": 6331.06, + "probability": 0.9462 + }, + { + "start": 6331.92, + "end": 6332.32, + "probability": 0.9857 + }, + { + "start": 6334.02, + "end": 6334.68, + "probability": 0.9288 + }, + { + "start": 6335.78, + "end": 6336.14, + "probability": 0.9964 + }, + { + "start": 6337.94, + "end": 6338.62, + "probability": 0.7949 + }, + { + "start": 6340.76, + "end": 6342.54, + "probability": 0.8592 + }, + { + "start": 6343.72, + "end": 6344.4, + "probability": 0.8225 + }, + { + "start": 6345.72, + "end": 6346.14, + "probability": 0.8235 + }, + { + "start": 6347.18, + "end": 6348.28, + "probability": 0.9168 + }, + { + "start": 6351.58, + "end": 6352.3, + "probability": 0.8564 + }, + { + "start": 6355.3, + "end": 6356.28, + "probability": 0.6756 + }, + { + "start": 6357.9, + "end": 6358.34, + "probability": 0.812 + }, + { + "start": 6358.98, + "end": 6359.76, + "probability": 0.6022 + }, + { + "start": 6360.42, + "end": 6362.2, + "probability": 0.7864 + }, + { + "start": 6363.28, + "end": 6363.76, + "probability": 0.9927 + }, + { + "start": 6364.5, + "end": 6365.62, + "probability": 0.8562 + }, + { + "start": 6366.52, + "end": 6368.18, + "probability": 0.9406 + }, + { + "start": 6370.18, + "end": 6370.66, + "probability": 0.984 + }, + { + "start": 6371.42, + "end": 6372.5, + "probability": 0.9632 + }, + { + "start": 6373.96, + "end": 6374.68, + "probability": 0.1646 + }, + { + "start": 6391.6, + "end": 6391.96, + "probability": 0.735 + }, + { + "start": 6393.76, + "end": 6394.46, + "probability": 0.5317 + }, + { + "start": 6395.42, + "end": 6395.88, + "probability": 0.973 + }, + { + "start": 6397.18, + "end": 6397.94, + "probability": 0.9138 + }, + { + "start": 6399.44, + "end": 6399.84, + "probability": 0.9226 + }, + { + "start": 6401.04, + "end": 6401.74, + "probability": 0.965 + }, + { + "start": 6404.26, + "end": 6405.58, + "probability": 0.9593 + }, + { + "start": 6406.8, + "end": 6408.76, + "probability": 0.9619 + }, + { + "start": 6409.72, + "end": 6410.08, + "probability": 0.9888 + }, + { + "start": 6411.06, + "end": 6411.94, + "probability": 0.5413 + }, + { + "start": 6413.92, + "end": 6414.7, + "probability": 0.991 + }, + { + "start": 6415.82, + "end": 6416.5, + "probability": 0.7677 + }, + { + "start": 6418.42, + "end": 6419.76, + "probability": 0.9622 + }, + { + "start": 6422.16, + "end": 6423.04, + "probability": 0.7074 + }, + { + "start": 6423.78, + "end": 6424.06, + "probability": 0.9165 + }, + { + "start": 6424.72, + "end": 6425.52, + "probability": 0.9529 + }, + { + "start": 6426.18, + "end": 6428.38, + "probability": 0.9661 + }, + { + "start": 6432.2, + "end": 6432.72, + "probability": 0.9818 + }, + { + "start": 6433.72, + "end": 6434.54, + "probability": 0.8522 + }, + { + "start": 6435.64, + "end": 6438.5, + "probability": 0.98 + }, + { + "start": 6439.61, + "end": 6442.44, + "probability": 0.9365 + }, + { + "start": 6447.3, + "end": 6448.2, + "probability": 0.837 + }, + { + "start": 6448.88, + "end": 6449.7, + "probability": 0.8131 + }, + { + "start": 6453.18, + "end": 6454.32, + "probability": 0.4706 + }, + { + "start": 6456.46, + "end": 6457.18, + "probability": 0.6636 + }, + { + "start": 6459.12, + "end": 6459.92, + "probability": 0.8151 + }, + { + "start": 6460.94, + "end": 6461.18, + "probability": 0.8687 + }, + { + "start": 6462.7, + "end": 6463.42, + "probability": 0.9776 + }, + { + "start": 6465.45, + "end": 6467.8, + "probability": 0.9484 + }, + { + "start": 6469.38, + "end": 6470.88, + "probability": 0.9463 + }, + { + "start": 6471.7, + "end": 6472.58, + "probability": 0.9876 + }, + { + "start": 6473.8, + "end": 6474.14, + "probability": 0.9548 + }, + { + "start": 6475.34, + "end": 6476.42, + "probability": 0.8989 + }, + { + "start": 6478.6, + "end": 6481.48, + "probability": 0.421 + }, + { + "start": 6482.9, + "end": 6483.26, + "probability": 0.7941 + }, + { + "start": 6484.92, + "end": 6485.96, + "probability": 0.9695 + }, + { + "start": 6488.9, + "end": 6491.32, + "probability": 0.9786 + }, + { + "start": 6494.08, + "end": 6496.06, + "probability": 0.9761 + }, + { + "start": 6496.92, + "end": 6497.38, + "probability": 0.9231 + }, + { + "start": 6498.02, + "end": 6499.9, + "probability": 0.9785 + }, + { + "start": 6500.66, + "end": 6501.84, + "probability": 0.9417 + }, + { + "start": 6502.84, + "end": 6505.66, + "probability": 0.8838 + }, + { + "start": 6507.16, + "end": 6507.56, + "probability": 0.9939 + }, + { + "start": 6509.02, + "end": 6509.98, + "probability": 0.9086 + }, + { + "start": 6511.24, + "end": 6511.64, + "probability": 0.58 + }, + { + "start": 6512.24, + "end": 6513.74, + "probability": 0.6581 + }, + { + "start": 6515.62, + "end": 6516.06, + "probability": 0.96 + }, + { + "start": 6517.48, + "end": 6518.36, + "probability": 0.9608 + }, + { + "start": 6519.28, + "end": 6519.66, + "probability": 0.8975 + }, + { + "start": 6521.02, + "end": 6522.2, + "probability": 0.8975 + }, + { + "start": 6524.04, + "end": 6526.14, + "probability": 0.9917 + }, + { + "start": 6526.94, + "end": 6527.4, + "probability": 0.585 + }, + { + "start": 6528.92, + "end": 6530.1, + "probability": 0.5824 + }, + { + "start": 6530.78, + "end": 6531.5, + "probability": 0.9683 + }, + { + "start": 6533.04, + "end": 6533.9, + "probability": 0.6908 + }, + { + "start": 6535.64, + "end": 6538.9, + "probability": 0.9047 + }, + { + "start": 6539.9, + "end": 6540.74, + "probability": 0.6721 + }, + { + "start": 6540.86, + "end": 6543.38, + "probability": 0.8445 + }, + { + "start": 6544.28, + "end": 6545.86, + "probability": 0.4075 + }, + { + "start": 6548.02, + "end": 6548.44, + "probability": 0.906 + }, + { + "start": 6550.66, + "end": 6551.62, + "probability": 0.7502 + }, + { + "start": 6553.26, + "end": 6554.96, + "probability": 0.9902 + }, + { + "start": 6556.54, + "end": 6557.3, + "probability": 0.8801 + }, + { + "start": 6570.42, + "end": 6572.36, + "probability": 0.5002 + }, + { + "start": 6573.08, + "end": 6573.42, + "probability": 0.891 + }, + { + "start": 6577.14, + "end": 6577.52, + "probability": 0.2002 + }, + { + "start": 6578.44, + "end": 6580.58, + "probability": 0.8531 + }, + { + "start": 6581.4, + "end": 6582.1, + "probability": 0.9309 + }, + { + "start": 6585.12, + "end": 6585.4, + "probability": 0.5102 + }, + { + "start": 6587.94, + "end": 6589.14, + "probability": 0.5034 + }, + { + "start": 6593.78, + "end": 6594.66, + "probability": 0.825 + }, + { + "start": 6595.8, + "end": 6596.82, + "probability": 0.792 + }, + { + "start": 6599.36, + "end": 6600.12, + "probability": 0.9715 + }, + { + "start": 6602.34, + "end": 6603.62, + "probability": 0.1533 + }, + { + "start": 6606.06, + "end": 6606.98, + "probability": 0.9767 + }, + { + "start": 6610.1, + "end": 6610.9, + "probability": 0.5318 + }, + { + "start": 6612.14, + "end": 6614.78, + "probability": 0.8561 + }, + { + "start": 6616.3, + "end": 6620.14, + "probability": 0.9966 + }, + { + "start": 6621.13, + "end": 6621.62, + "probability": 0.0874 + }, + { + "start": 6622.76, + "end": 6622.86, + "probability": 0.0024 + }, + { + "start": 6742.42, + "end": 6743.04, + "probability": 0.0012 + }, + { + "start": 6743.7, + "end": 6744.46, + "probability": 0.0872 + }, + { + "start": 6746.82, + "end": 6751.27, + "probability": 0.072 + }, + { + "start": 6751.62, + "end": 6751.94, + "probability": 0.0203 + }, + { + "start": 6752.0, + "end": 6752.0, + "probability": 0.0013 + }, + { + "start": 6753.1, + "end": 6754.82, + "probability": 0.0109 + }, + { + "start": 6755.56, + "end": 6757.19, + "probability": 0.0709 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.0, + "end": 7026.0, + "probability": 0.0 + }, + { + "start": 7026.5, + "end": 7026.74, + "probability": 0.7439 + }, + { + "start": 7027.88, + "end": 7028.9, + "probability": 0.7013 + }, + { + "start": 7029.9, + "end": 7030.2, + "probability": 0.6707 + }, + { + "start": 7030.9, + "end": 7035.24, + "probability": 0.7065 + }, + { + "start": 7035.8, + "end": 7036.78, + "probability": 0.7208 + }, + { + "start": 7039.16, + "end": 7040.72, + "probability": 0.8501 + }, + { + "start": 7041.7, + "end": 7043.44, + "probability": 0.9939 + }, + { + "start": 7044.7, + "end": 7045.14, + "probability": 0.9961 + }, + { + "start": 7046.26, + "end": 7046.88, + "probability": 0.9246 + }, + { + "start": 7047.6, + "end": 7048.02, + "probability": 0.984 + }, + { + "start": 7048.9, + "end": 7049.28, + "probability": 0.92 + }, + { + "start": 7055.28, + "end": 7055.62, + "probability": 0.7283 + }, + { + "start": 7057.64, + "end": 7058.48, + "probability": 0.7242 + }, + { + "start": 7059.18, + "end": 7059.86, + "probability": 0.8644 + }, + { + "start": 7062.24, + "end": 7063.06, + "probability": 0.6435 + }, + { + "start": 7065.14, + "end": 7065.54, + "probability": 0.936 + }, + { + "start": 7067.58, + "end": 7068.18, + "probability": 0.8315 + }, + { + "start": 7072.98, + "end": 7073.34, + "probability": 0.9811 + }, + { + "start": 7074.36, + "end": 7075.02, + "probability": 0.8853 + }, + { + "start": 7076.54, + "end": 7077.0, + "probability": 0.9616 + }, + { + "start": 7078.2, + "end": 7078.88, + "probability": 0.9524 + }, + { + "start": 7079.9, + "end": 7080.18, + "probability": 0.856 + }, + { + "start": 7080.8, + "end": 7081.18, + "probability": 0.9892 + }, + { + "start": 7082.38, + "end": 7082.86, + "probability": 0.9949 + }, + { + "start": 7083.46, + "end": 7084.12, + "probability": 0.8143 + }, + { + "start": 7084.82, + "end": 7085.0, + "probability": 0.42 + }, + { + "start": 7085.52, + "end": 7086.22, + "probability": 0.677 + }, + { + "start": 7087.42, + "end": 7087.72, + "probability": 0.9707 + }, + { + "start": 7088.24, + "end": 7088.86, + "probability": 0.8934 + }, + { + "start": 7090.0, + "end": 7091.48, + "probability": 0.9736 + }, + { + "start": 7092.82, + "end": 7094.38, + "probability": 0.9806 + }, + { + "start": 7095.46, + "end": 7097.44, + "probability": 0.703 + }, + { + "start": 7098.64, + "end": 7099.02, + "probability": 0.9922 + }, + { + "start": 7099.86, + "end": 7100.44, + "probability": 0.9742 + }, + { + "start": 7102.2, + "end": 7103.82, + "probability": 0.9774 + }, + { + "start": 7111.92, + "end": 7112.34, + "probability": 0.7668 + }, + { + "start": 7113.6, + "end": 7114.42, + "probability": 0.6736 + }, + { + "start": 7119.2, + "end": 7119.56, + "probability": 0.6858 + }, + { + "start": 7120.88, + "end": 7121.8, + "probability": 0.8928 + }, + { + "start": 7124.43, + "end": 7126.12, + "probability": 0.9712 + }, + { + "start": 7127.14, + "end": 7128.76, + "probability": 0.9792 + }, + { + "start": 7129.9, + "end": 7132.18, + "probability": 0.9724 + }, + { + "start": 7135.43, + "end": 7137.46, + "probability": 0.9775 + }, + { + "start": 7138.96, + "end": 7139.34, + "probability": 0.992 + }, + { + "start": 7140.84, + "end": 7141.76, + "probability": 0.9246 + }, + { + "start": 7143.02, + "end": 7143.3, + "probability": 0.9945 + }, + { + "start": 7145.14, + "end": 7145.9, + "probability": 0.8578 + }, + { + "start": 7146.82, + "end": 7147.14, + "probability": 0.5522 + }, + { + "start": 7149.14, + "end": 7150.04, + "probability": 0.7973 + }, + { + "start": 7150.8, + "end": 7151.16, + "probability": 0.9673 + }, + { + "start": 7152.34, + "end": 7153.0, + "probability": 0.9502 + }, + { + "start": 7154.7, + "end": 7155.1, + "probability": 0.9937 + }, + { + "start": 7155.9, + "end": 7156.5, + "probability": 0.9424 + }, + { + "start": 7158.6, + "end": 7159.0, + "probability": 0.9958 + }, + { + "start": 7159.92, + "end": 7160.7, + "probability": 0.9866 + }, + { + "start": 7164.08, + "end": 7164.44, + "probability": 0.944 + }, + { + "start": 7165.7, + "end": 7166.28, + "probability": 0.9899 + }, + { + "start": 7168.88, + "end": 7169.28, + "probability": 0.9785 + }, + { + "start": 7170.2, + "end": 7171.24, + "probability": 0.987 + }, + { + "start": 7172.5, + "end": 7173.48, + "probability": 0.9739 + }, + { + "start": 7178.78, + "end": 7179.48, + "probability": 0.4829 + }, + { + "start": 7180.5, + "end": 7182.32, + "probability": 0.5648 + }, + { + "start": 7183.22, + "end": 7185.32, + "probability": 0.8174 + }, + { + "start": 7189.52, + "end": 7190.02, + "probability": 0.7883 + }, + { + "start": 7190.92, + "end": 7191.96, + "probability": 0.7965 + }, + { + "start": 7192.96, + "end": 7193.28, + "probability": 0.9329 + }, + { + "start": 7194.64, + "end": 7195.56, + "probability": 0.8135 + }, + { + "start": 7198.68, + "end": 7201.44, + "probability": 0.8134 + }, + { + "start": 7203.38, + "end": 7204.38, + "probability": 0.947 + }, + { + "start": 7207.02, + "end": 7207.54, + "probability": 0.6757 + }, + { + "start": 7210.56, + "end": 7212.06, + "probability": 0.5506 + }, + { + "start": 7213.06, + "end": 7213.56, + "probability": 0.748 + }, + { + "start": 7214.18, + "end": 7214.9, + "probability": 0.7286 + }, + { + "start": 7220.84, + "end": 7222.38, + "probability": 0.9315 + }, + { + "start": 7223.88, + "end": 7224.28, + "probability": 0.658 + }, + { + "start": 7227.32, + "end": 7227.88, + "probability": 0.5827 + }, + { + "start": 7229.82, + "end": 7230.18, + "probability": 0.6355 + }, + { + "start": 7236.68, + "end": 7237.06, + "probability": 0.443 + }, + { + "start": 7243.3, + "end": 7244.62, + "probability": 0.1079 + }, + { + "start": 7249.42, + "end": 7249.78, + "probability": 0.6168 + }, + { + "start": 7251.78, + "end": 7252.72, + "probability": 0.4437 + }, + { + "start": 7256.56, + "end": 7257.06, + "probability": 0.9539 + }, + { + "start": 7258.56, + "end": 7259.24, + "probability": 0.7766 + }, + { + "start": 7260.24, + "end": 7260.74, + "probability": 0.9648 + }, + { + "start": 7261.42, + "end": 7262.08, + "probability": 0.9117 + }, + { + "start": 7263.54, + "end": 7264.06, + "probability": 0.9827 + }, + { + "start": 7264.76, + "end": 7265.46, + "probability": 0.8982 + }, + { + "start": 7267.74, + "end": 7268.1, + "probability": 0.9729 + }, + { + "start": 7268.98, + "end": 7269.78, + "probability": 0.9831 + }, + { + "start": 7271.06, + "end": 7272.7, + "probability": 0.8286 + }, + { + "start": 7275.18, + "end": 7275.64, + "probability": 0.555 + }, + { + "start": 7280.78, + "end": 7281.16, + "probability": 0.5282 + }, + { + "start": 7282.94, + "end": 7284.2, + "probability": 0.7924 + }, + { + "start": 7285.34, + "end": 7288.2, + "probability": 0.8155 + }, + { + "start": 7292.48, + "end": 7293.5, + "probability": 0.9622 + }, + { + "start": 7294.56, + "end": 7295.34, + "probability": 0.9727 + }, + { + "start": 7296.22, + "end": 7296.6, + "probability": 0.9515 + }, + { + "start": 7298.44, + "end": 7299.28, + "probability": 0.9954 + }, + { + "start": 7300.52, + "end": 7301.0, + "probability": 0.9201 + }, + { + "start": 7301.6, + "end": 7302.52, + "probability": 0.9338 + }, + { + "start": 7304.28, + "end": 7304.72, + "probability": 0.9961 + }, + { + "start": 7305.44, + "end": 7305.8, + "probability": 0.8404 + }, + { + "start": 7307.52, + "end": 7307.96, + "probability": 0.5292 + }, + { + "start": 7309.48, + "end": 7310.24, + "probability": 0.6559 + }, + { + "start": 7311.54, + "end": 7311.86, + "probability": 0.9061 + }, + { + "start": 7313.16, + "end": 7313.96, + "probability": 0.9198 + }, + { + "start": 7315.04, + "end": 7315.48, + "probability": 0.9513 + }, + { + "start": 7316.66, + "end": 7317.36, + "probability": 0.9419 + }, + { + "start": 7318.92, + "end": 7320.18, + "probability": 0.9896 + }, + { + "start": 7322.02, + "end": 7322.78, + "probability": 0.9686 + }, + { + "start": 7323.52, + "end": 7324.94, + "probability": 0.9787 + }, + { + "start": 7326.7, + "end": 7327.08, + "probability": 0.9805 + }, + { + "start": 7327.78, + "end": 7328.62, + "probability": 0.9554 + }, + { + "start": 7329.56, + "end": 7329.98, + "probability": 0.9883 + }, + { + "start": 7330.88, + "end": 7331.8, + "probability": 0.9282 + }, + { + "start": 7333.56, + "end": 7334.26, + "probability": 0.0976 + }, + { + "start": 7337.6, + "end": 7339.3, + "probability": 0.4995 + }, + { + "start": 7339.9, + "end": 7340.72, + "probability": 0.5459 + }, + { + "start": 7341.62, + "end": 7343.3, + "probability": 0.9429 + }, + { + "start": 7344.5, + "end": 7346.3, + "probability": 0.9485 + }, + { + "start": 7355.66, + "end": 7356.42, + "probability": 0.8892 + }, + { + "start": 7357.06, + "end": 7358.14, + "probability": 0.8228 + }, + { + "start": 7359.14, + "end": 7359.54, + "probability": 0.7981 + }, + { + "start": 7361.12, + "end": 7361.82, + "probability": 0.9441 + }, + { + "start": 7363.1, + "end": 7365.22, + "probability": 0.9324 + }, + { + "start": 7366.46, + "end": 7368.78, + "probability": 0.8283 + }, + { + "start": 7370.78, + "end": 7371.64, + "probability": 0.9915 + }, + { + "start": 7372.28, + "end": 7373.12, + "probability": 0.7259 + }, + { + "start": 7373.22, + "end": 7376.34, + "probability": 0.866 + }, + { + "start": 7377.58, + "end": 7378.24, + "probability": 0.1868 + }, + { + "start": 7379.36, + "end": 7379.82, + "probability": 0.7747 + }, + { + "start": 7381.94, + "end": 7382.28, + "probability": 0.6691 + }, + { + "start": 7392.48, + "end": 7393.56, + "probability": 0.0678 + }, + { + "start": 7394.18, + "end": 7394.74, + "probability": 0.524 + }, + { + "start": 7399.56, + "end": 7399.8, + "probability": 0.3347 + }, + { + "start": 7403.1, + "end": 7404.08, + "probability": 0.3374 + }, + { + "start": 7407.2, + "end": 7407.9, + "probability": 0.7947 + }, + { + "start": 7408.62, + "end": 7409.34, + "probability": 0.7644 + }, + { + "start": 7410.48, + "end": 7410.82, + "probability": 0.8418 + }, + { + "start": 7412.86, + "end": 7413.84, + "probability": 0.7408 + }, + { + "start": 7415.08, + "end": 7415.94, + "probability": 0.9622 + }, + { + "start": 7419.04, + "end": 7419.62, + "probability": 0.7589 + }, + { + "start": 7421.24, + "end": 7421.5, + "probability": 0.9028 + }, + { + "start": 7424.3, + "end": 7425.42, + "probability": 0.5749 + }, + { + "start": 7427.17, + "end": 7429.46, + "probability": 0.965 + }, + { + "start": 7430.12, + "end": 7431.98, + "probability": 0.9924 + }, + { + "start": 7433.24, + "end": 7433.92, + "probability": 0.3164 + }, + { + "start": 7434.64, + "end": 7435.32, + "probability": 0.9156 + }, + { + "start": 7436.38, + "end": 7437.36, + "probability": 0.9338 + }, + { + "start": 7438.92, + "end": 7439.64, + "probability": 0.9842 + }, + { + "start": 7443.14, + "end": 7444.12, + "probability": 0.6372 + }, + { + "start": 7446.3, + "end": 7446.76, + "probability": 0.772 + }, + { + "start": 7450.5, + "end": 7450.74, + "probability": 0.5746 + }, + { + "start": 7453.0, + "end": 7454.0, + "probability": 0.2147 + }, + { + "start": 7456.26, + "end": 7456.7, + "probability": 0.6412 + }, + { + "start": 7459.26, + "end": 7460.54, + "probability": 0.6957 + }, + { + "start": 7462.3, + "end": 7463.18, + "probability": 0.9327 + }, + { + "start": 7465.68, + "end": 7466.56, + "probability": 0.8723 + }, + { + "start": 7472.94, + "end": 7475.5, + "probability": 0.743 + }, + { + "start": 7477.86, + "end": 7478.66, + "probability": 0.9737 + }, + { + "start": 7479.5, + "end": 7483.64, + "probability": 0.9832 + }, + { + "start": 7486.44, + "end": 7488.26, + "probability": 0.3779 + }, + { + "start": 7488.4, + "end": 7488.98, + "probability": 0.8758 + }, + { + "start": 7490.26, + "end": 7490.68, + "probability": 0.0172 + }, + { + "start": 7490.83, + "end": 7493.35, + "probability": 0.0603 + }, + { + "start": 7495.94, + "end": 7496.04, + "probability": 0.039 + }, + { + "start": 7496.04, + "end": 7496.7, + "probability": 0.076 + }, + { + "start": 7497.34, + "end": 7498.42, + "probability": 0.0554 + }, + { + "start": 7506.16, + "end": 7513.44, + "probability": 0.0333 + }, + { + "start": 7514.1, + "end": 7517.38, + "probability": 0.0311 + }, + { + "start": 7517.4, + "end": 7519.02, + "probability": 0.0639 + }, + { + "start": 7520.0, + "end": 7523.94, + "probability": 0.033 + }, + { + "start": 7525.54, + "end": 7526.52, + "probability": 0.0941 + }, + { + "start": 7527.42, + "end": 7531.68, + "probability": 0.0151 + }, + { + "start": 7532.26, + "end": 7533.94, + "probability": 0.0867 + }, + { + "start": 7537.1, + "end": 7540.36, + "probability": 0.087 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8268.0, + "end": 8268.0, + "probability": 0.0 + }, + { + "start": 8269.08, + "end": 8274.18, + "probability": 0.7266 + }, + { + "start": 8275.14, + "end": 8275.98, + "probability": 0.9365 + }, + { + "start": 8277.14, + "end": 8278.12, + "probability": 0.9118 + }, + { + "start": 8279.4, + "end": 8279.84, + "probability": 0.6718 + }, + { + "start": 8284.08, + "end": 8284.78, + "probability": 0.7293 + }, + { + "start": 8285.94, + "end": 8286.52, + "probability": 0.9242 + }, + { + "start": 8287.06, + "end": 8288.82, + "probability": 0.9066 + }, + { + "start": 8289.76, + "end": 8290.18, + "probability": 0.8456 + }, + { + "start": 8291.8, + "end": 8292.4, + "probability": 0.9803 + }, + { + "start": 8293.04, + "end": 8294.18, + "probability": 0.8822 + }, + { + "start": 8294.72, + "end": 8297.1, + "probability": 0.9175 + }, + { + "start": 8298.62, + "end": 8299.54, + "probability": 0.9919 + }, + { + "start": 8300.08, + "end": 8300.9, + "probability": 0.7777 + }, + { + "start": 8302.78, + "end": 8303.72, + "probability": 0.9937 + }, + { + "start": 8309.1, + "end": 8310.16, + "probability": 0.9398 + }, + { + "start": 8310.22, + "end": 8314.4, + "probability": 0.9901 + }, + { + "start": 8314.62, + "end": 8315.76, + "probability": 0.3865 + }, + { + "start": 8317.8, + "end": 8318.36, + "probability": 0.8867 + }, + { + "start": 8318.98, + "end": 8322.58, + "probability": 0.9896 + }, + { + "start": 8323.42, + "end": 8324.74, + "probability": 0.393 + }, + { + "start": 8324.74, + "end": 8325.56, + "probability": 0.9786 + }, + { + "start": 8326.18, + "end": 8326.34, + "probability": 0.0063 + }, + { + "start": 8469.44, + "end": 8471.0, + "probability": 0.1324 + }, + { + "start": 8471.0, + "end": 8471.0, + "probability": 0.0235 + }, + { + "start": 8471.0, + "end": 8474.06, + "probability": 0.4662 + }, + { + "start": 8474.12, + "end": 8475.38, + "probability": 0.7146 + }, + { + "start": 8476.1, + "end": 8477.98, + "probability": 0.8094 + }, + { + "start": 8478.68, + "end": 8480.82, + "probability": 0.8789 + }, + { + "start": 8481.4, + "end": 8485.72, + "probability": 0.9689 + }, + { + "start": 8486.54, + "end": 8490.2, + "probability": 0.9595 + }, + { + "start": 8490.66, + "end": 8491.2, + "probability": 0.817 + }, + { + "start": 8491.28, + "end": 8491.46, + "probability": 0.694 + }, + { + "start": 8495.26, + "end": 8496.86, + "probability": 0.6908 + }, + { + "start": 8498.28, + "end": 8499.6, + "probability": 0.0368 + }, + { + "start": 8501.76, + "end": 8502.38, + "probability": 0.7966 + }, + { + "start": 8502.5, + "end": 8503.36, + "probability": 0.6966 + }, + { + "start": 8503.58, + "end": 8504.26, + "probability": 0.6323 + }, + { + "start": 8506.02, + "end": 8507.9, + "probability": 0.951 + }, + { + "start": 8508.44, + "end": 8510.96, + "probability": 0.9841 + }, + { + "start": 8511.24, + "end": 8512.54, + "probability": 0.4244 + }, + { + "start": 8512.76, + "end": 8514.74, + "probability": 0.9916 + }, + { + "start": 8515.38, + "end": 8519.73, + "probability": 0.9541 + }, + { + "start": 8520.6, + "end": 8520.92, + "probability": 0.2246 + }, + { + "start": 8521.02, + "end": 8526.34, + "probability": 0.7754 + }, + { + "start": 8527.1, + "end": 8529.58, + "probability": 0.937 + }, + { + "start": 8529.58, + "end": 8532.26, + "probability": 0.8789 + }, + { + "start": 8533.02, + "end": 8534.94, + "probability": 0.3506 + }, + { + "start": 8535.58, + "end": 8537.9, + "probability": 0.4528 + }, + { + "start": 8538.44, + "end": 8543.56, + "probability": 0.6472 + }, + { + "start": 8545.42, + "end": 8552.6, + "probability": 0.9766 + }, + { + "start": 8552.7, + "end": 8553.28, + "probability": 0.8048 + }, + { + "start": 8553.92, + "end": 8558.06, + "probability": 0.9941 + }, + { + "start": 8558.18, + "end": 8561.9, + "probability": 0.9521 + }, + { + "start": 8562.28, + "end": 8562.92, + "probability": 0.6858 + }, + { + "start": 8563.48, + "end": 8564.64, + "probability": 0.67 + }, + { + "start": 8565.56, + "end": 8567.48, + "probability": 0.9498 + }, + { + "start": 8568.12, + "end": 8571.18, + "probability": 0.8799 + }, + { + "start": 8571.28, + "end": 8575.48, + "probability": 0.9885 + }, + { + "start": 8575.48, + "end": 8578.72, + "probability": 0.9477 + }, + { + "start": 8579.24, + "end": 8582.86, + "probability": 0.9813 + }, + { + "start": 8583.34, + "end": 8584.22, + "probability": 0.7399 + }, + { + "start": 8585.04, + "end": 8586.04, + "probability": 0.4645 + }, + { + "start": 8586.74, + "end": 8588.02, + "probability": 0.8991 + }, + { + "start": 8588.92, + "end": 8591.1, + "probability": 0.9556 + }, + { + "start": 8591.54, + "end": 8592.24, + "probability": 0.5111 + }, + { + "start": 8594.18, + "end": 8599.58, + "probability": 0.8896 + }, + { + "start": 8600.32, + "end": 8603.38, + "probability": 0.9625 + }, + { + "start": 8604.74, + "end": 8605.1, + "probability": 0.9017 + }, + { + "start": 8609.66, + "end": 8611.44, + "probability": 0.7953 + }, + { + "start": 8627.0, + "end": 8628.24, + "probability": 0.8197 + }, + { + "start": 8632.18, + "end": 8634.1, + "probability": 0.7708 + }, + { + "start": 8634.72, + "end": 8639.04, + "probability": 0.9932 + }, + { + "start": 8639.7, + "end": 8643.26, + "probability": 0.9959 + }, + { + "start": 8643.26, + "end": 8648.06, + "probability": 0.9968 + }, + { + "start": 8648.72, + "end": 8652.38, + "probability": 0.9989 + }, + { + "start": 8652.38, + "end": 8656.04, + "probability": 0.8468 + }, + { + "start": 8656.92, + "end": 8657.46, + "probability": 0.7705 + }, + { + "start": 8657.56, + "end": 8661.04, + "probability": 0.9846 + }, + { + "start": 8661.04, + "end": 8665.58, + "probability": 0.9988 + }, + { + "start": 8666.02, + "end": 8666.98, + "probability": 0.8721 + }, + { + "start": 8667.38, + "end": 8667.94, + "probability": 0.8154 + }, + { + "start": 8668.6, + "end": 8669.38, + "probability": 0.9896 + }, + { + "start": 8670.18, + "end": 8674.84, + "probability": 0.9738 + }, + { + "start": 8674.84, + "end": 8680.58, + "probability": 0.9993 + }, + { + "start": 8681.82, + "end": 8684.92, + "probability": 0.9944 + }, + { + "start": 8685.68, + "end": 8690.98, + "probability": 0.9967 + }, + { + "start": 8691.5, + "end": 8695.9, + "probability": 0.953 + }, + { + "start": 8696.82, + "end": 8699.32, + "probability": 0.9785 + }, + { + "start": 8699.9, + "end": 8705.0, + "probability": 0.9976 + }, + { + "start": 8705.5, + "end": 8709.56, + "probability": 0.9474 + }, + { + "start": 8710.3, + "end": 8711.1, + "probability": 0.8622 + }, + { + "start": 8711.54, + "end": 8716.46, + "probability": 0.9974 + }, + { + "start": 8716.9, + "end": 8720.04, + "probability": 0.9792 + }, + { + "start": 8721.02, + "end": 8724.44, + "probability": 0.9679 + }, + { + "start": 8724.88, + "end": 8728.76, + "probability": 0.9967 + }, + { + "start": 8729.34, + "end": 8733.26, + "probability": 0.9961 + }, + { + "start": 8733.96, + "end": 8738.5, + "probability": 0.9912 + }, + { + "start": 8739.34, + "end": 8742.94, + "probability": 0.9976 + }, + { + "start": 8743.44, + "end": 8749.24, + "probability": 0.9856 + }, + { + "start": 8749.24, + "end": 8755.58, + "probability": 0.9988 + }, + { + "start": 8756.46, + "end": 8758.47, + "probability": 0.7189 + }, + { + "start": 8759.52, + "end": 8762.08, + "probability": 0.8602 + }, + { + "start": 8762.92, + "end": 8763.58, + "probability": 0.8037 + }, + { + "start": 8763.74, + "end": 8764.52, + "probability": 0.7646 + }, + { + "start": 8764.68, + "end": 8767.14, + "probability": 0.9879 + }, + { + "start": 8767.68, + "end": 8770.48, + "probability": 0.9965 + }, + { + "start": 8771.0, + "end": 8777.16, + "probability": 0.9939 + }, + { + "start": 8777.7, + "end": 8780.32, + "probability": 0.9966 + }, + { + "start": 8780.32, + "end": 8784.04, + "probability": 0.9821 + }, + { + "start": 8784.92, + "end": 8788.0, + "probability": 0.809 + }, + { + "start": 8788.98, + "end": 8791.5, + "probability": 0.8801 + }, + { + "start": 8792.42, + "end": 8796.06, + "probability": 0.9801 + }, + { + "start": 8796.6, + "end": 8799.4, + "probability": 0.9691 + }, + { + "start": 8799.64, + "end": 8803.32, + "probability": 0.9709 + }, + { + "start": 8804.44, + "end": 8808.96, + "probability": 0.9899 + }, + { + "start": 8809.72, + "end": 8811.94, + "probability": 0.908 + }, + { + "start": 8812.06, + "end": 8812.5, + "probability": 0.7195 + }, + { + "start": 8812.7, + "end": 8813.86, + "probability": 0.5852 + }, + { + "start": 8813.96, + "end": 8814.54, + "probability": 0.9574 + }, + { + "start": 8814.64, + "end": 8817.46, + "probability": 0.9151 + }, + { + "start": 8817.57, + "end": 8819.7, + "probability": 0.9943 + }, + { + "start": 8820.98, + "end": 8823.96, + "probability": 0.9939 + }, + { + "start": 8824.02, + "end": 8827.44, + "probability": 0.9984 + }, + { + "start": 8827.44, + "end": 8831.26, + "probability": 0.997 + }, + { + "start": 8831.9, + "end": 8832.14, + "probability": 0.4841 + }, + { + "start": 8832.22, + "end": 8832.92, + "probability": 0.9671 + }, + { + "start": 8833.06, + "end": 8835.72, + "probability": 0.947 + }, + { + "start": 8835.72, + "end": 8838.94, + "probability": 0.9972 + }, + { + "start": 8839.1, + "end": 8839.3, + "probability": 0.155 + }, + { + "start": 8839.3, + "end": 8839.36, + "probability": 0.3756 + }, + { + "start": 8839.44, + "end": 8839.46, + "probability": 0.4258 + }, + { + "start": 8839.5, + "end": 8845.14, + "probability": 0.9577 + }, + { + "start": 8845.14, + "end": 8848.32, + "probability": 0.9943 + }, + { + "start": 8848.42, + "end": 8849.36, + "probability": 0.4937 + }, + { + "start": 8849.36, + "end": 8850.02, + "probability": 0.4785 + }, + { + "start": 8850.08, + "end": 8855.68, + "probability": 0.9862 + }, + { + "start": 8856.04, + "end": 8857.52, + "probability": 0.8968 + }, + { + "start": 8858.0, + "end": 8860.54, + "probability": 0.9487 + }, + { + "start": 8861.7, + "end": 8862.04, + "probability": 0.9485 + }, + { + "start": 8862.76, + "end": 8862.88, + "probability": 0.6322 + }, + { + "start": 8863.86, + "end": 8865.4, + "probability": 0.991 + }, + { + "start": 8877.2, + "end": 8878.51, + "probability": 0.5022 + }, + { + "start": 8879.72, + "end": 8881.16, + "probability": 0.7698 + }, + { + "start": 8884.0, + "end": 8885.74, + "probability": 0.8516 + }, + { + "start": 8886.79, + "end": 8889.56, + "probability": 0.933 + }, + { + "start": 8894.74, + "end": 8895.4, + "probability": 0.363 + }, + { + "start": 8895.4, + "end": 8896.86, + "probability": 0.8818 + }, + { + "start": 8898.52, + "end": 8900.34, + "probability": 0.3954 + }, + { + "start": 8900.44, + "end": 8901.34, + "probability": 0.8505 + }, + { + "start": 8901.4, + "end": 8904.7, + "probability": 0.9465 + }, + { + "start": 8904.82, + "end": 8906.86, + "probability": 0.7921 + }, + { + "start": 8906.98, + "end": 8907.18, + "probability": 0.9111 + }, + { + "start": 8907.28, + "end": 8907.48, + "probability": 0.8763 + }, + { + "start": 8907.5, + "end": 8910.12, + "probability": 0.8987 + }, + { + "start": 8910.32, + "end": 8912.44, + "probability": 0.9522 + }, + { + "start": 8913.16, + "end": 8913.34, + "probability": 0.7375 + }, + { + "start": 8913.46, + "end": 8914.52, + "probability": 0.626 + }, + { + "start": 8914.58, + "end": 8915.3, + "probability": 0.72 + }, + { + "start": 8915.42, + "end": 8919.34, + "probability": 0.9531 + }, + { + "start": 8919.86, + "end": 8922.72, + "probability": 0.9036 + }, + { + "start": 8923.58, + "end": 8928.42, + "probability": 0.9262 + }, + { + "start": 8928.92, + "end": 8931.2, + "probability": 0.8 + }, + { + "start": 8931.64, + "end": 8933.62, + "probability": 0.9845 + }, + { + "start": 8934.48, + "end": 8936.68, + "probability": 0.9284 + }, + { + "start": 8937.2, + "end": 8937.88, + "probability": 0.8417 + }, + { + "start": 8938.08, + "end": 8938.58, + "probability": 0.9552 + }, + { + "start": 8938.78, + "end": 8939.19, + "probability": 0.8757 + }, + { + "start": 8939.78, + "end": 8940.33, + "probability": 0.9473 + }, + { + "start": 8941.2, + "end": 8943.58, + "probability": 0.9878 + }, + { + "start": 8944.22, + "end": 8947.68, + "probability": 0.9473 + }, + { + "start": 8948.28, + "end": 8949.68, + "probability": 0.8757 + }, + { + "start": 8950.34, + "end": 8952.38, + "probability": 0.6086 + }, + { + "start": 8952.82, + "end": 8953.42, + "probability": 0.9361 + }, + { + "start": 8954.2, + "end": 8956.86, + "probability": 0.9817 + }, + { + "start": 8957.02, + "end": 8959.02, + "probability": 0.9788 + }, + { + "start": 8959.56, + "end": 8961.94, + "probability": 0.9906 + }, + { + "start": 8962.44, + "end": 8964.52, + "probability": 0.903 + }, + { + "start": 8964.96, + "end": 8966.66, + "probability": 0.5778 + }, + { + "start": 8967.14, + "end": 8968.9, + "probability": 0.5602 + }, + { + "start": 8969.32, + "end": 8973.12, + "probability": 0.9634 + }, + { + "start": 8973.66, + "end": 8976.84, + "probability": 0.9634 + }, + { + "start": 8977.16, + "end": 8978.38, + "probability": 0.981 + }, + { + "start": 8978.8, + "end": 8980.5, + "probability": 0.9852 + }, + { + "start": 8980.88, + "end": 8984.36, + "probability": 0.7781 + }, + { + "start": 8984.96, + "end": 8988.4, + "probability": 0.9272 + }, + { + "start": 8988.96, + "end": 8991.48, + "probability": 0.9436 + }, + { + "start": 8992.14, + "end": 8995.96, + "probability": 0.9159 + }, + { + "start": 8996.46, + "end": 8998.08, + "probability": 0.9939 + }, + { + "start": 8999.56, + "end": 9003.14, + "probability": 0.9836 + }, + { + "start": 9003.74, + "end": 9007.76, + "probability": 0.9949 + }, + { + "start": 9008.34, + "end": 9010.75, + "probability": 0.9979 + }, + { + "start": 9011.06, + "end": 9011.65, + "probability": 0.4881 + }, + { + "start": 9012.78, + "end": 9015.98, + "probability": 0.9431 + }, + { + "start": 9016.48, + "end": 9018.5, + "probability": 0.6201 + }, + { + "start": 9019.0, + "end": 9021.86, + "probability": 0.9664 + }, + { + "start": 9022.38, + "end": 9026.16, + "probability": 0.9908 + }, + { + "start": 9026.6, + "end": 9027.42, + "probability": 0.932 + }, + { + "start": 9027.78, + "end": 9032.24, + "probability": 0.9922 + }, + { + "start": 9032.92, + "end": 9034.14, + "probability": 0.9106 + }, + { + "start": 9034.18, + "end": 9039.08, + "probability": 0.8732 + }, + { + "start": 9039.8, + "end": 9045.9, + "probability": 0.9963 + }, + { + "start": 9046.38, + "end": 9046.74, + "probability": 0.5056 + }, + { + "start": 9046.8, + "end": 9049.0, + "probability": 0.978 + }, + { + "start": 9049.04, + "end": 9049.26, + "probability": 0.4396 + }, + { + "start": 9049.26, + "end": 9049.36, + "probability": 0.4862 + }, + { + "start": 9049.6, + "end": 9051.58, + "probability": 0.6996 + }, + { + "start": 9052.02, + "end": 9053.48, + "probability": 0.9658 + }, + { + "start": 9053.56, + "end": 9053.82, + "probability": 0.5058 + }, + { + "start": 9053.92, + "end": 9055.08, + "probability": 0.9001 + }, + { + "start": 9055.56, + "end": 9056.84, + "probability": 0.9528 + }, + { + "start": 9057.28, + "end": 9058.12, + "probability": 0.623 + }, + { + "start": 9058.44, + "end": 9060.58, + "probability": 0.9326 + }, + { + "start": 9061.02, + "end": 9063.18, + "probability": 0.9465 + }, + { + "start": 9063.8, + "end": 9064.18, + "probability": 0.6989 + }, + { + "start": 9064.42, + "end": 9066.14, + "probability": 0.9761 + }, + { + "start": 9066.56, + "end": 9067.54, + "probability": 0.9631 + }, + { + "start": 9068.28, + "end": 9069.38, + "probability": 0.6672 + }, + { + "start": 9070.28, + "end": 9073.12, + "probability": 0.9845 + }, + { + "start": 9073.36, + "end": 9073.59, + "probability": 0.9196 + }, + { + "start": 9074.18, + "end": 9077.06, + "probability": 0.9771 + }, + { + "start": 9077.56, + "end": 9078.12, + "probability": 0.6584 + }, + { + "start": 9078.22, + "end": 9079.06, + "probability": 0.5341 + }, + { + "start": 9079.18, + "end": 9081.3, + "probability": 0.9418 + }, + { + "start": 9081.48, + "end": 9081.88, + "probability": 0.5053 + }, + { + "start": 9082.0, + "end": 9083.18, + "probability": 0.9037 + }, + { + "start": 9086.8, + "end": 9087.64, + "probability": 0.9011 + }, + { + "start": 9090.94, + "end": 9091.74, + "probability": 0.5534 + }, + { + "start": 9092.0, + "end": 9093.02, + "probability": 0.4603 + }, + { + "start": 9093.44, + "end": 9094.68, + "probability": 0.8739 + }, + { + "start": 9095.14, + "end": 9099.54, + "probability": 0.9856 + }, + { + "start": 9100.64, + "end": 9103.96, + "probability": 0.7948 + }, + { + "start": 9104.12, + "end": 9107.4, + "probability": 0.8747 + }, + { + "start": 9107.82, + "end": 9111.04, + "probability": 0.8035 + }, + { + "start": 9111.2, + "end": 9114.06, + "probability": 0.962 + }, + { + "start": 9114.64, + "end": 9118.66, + "probability": 0.9865 + }, + { + "start": 9118.68, + "end": 9122.74, + "probability": 0.6561 + }, + { + "start": 9122.96, + "end": 9123.46, + "probability": 0.5023 + }, + { + "start": 9123.68, + "end": 9124.14, + "probability": 0.5034 + }, + { + "start": 9124.76, + "end": 9128.04, + "probability": 0.9819 + }, + { + "start": 9128.52, + "end": 9131.66, + "probability": 0.6561 + }, + { + "start": 9131.82, + "end": 9132.36, + "probability": 0.5545 + }, + { + "start": 9132.48, + "end": 9134.7, + "probability": 0.9131 + }, + { + "start": 9134.84, + "end": 9136.1, + "probability": 0.8496 + }, + { + "start": 9136.66, + "end": 9138.3, + "probability": 0.7595 + }, + { + "start": 9139.44, + "end": 9140.84, + "probability": 0.5465 + }, + { + "start": 9140.94, + "end": 9142.42, + "probability": 0.9112 + }, + { + "start": 9142.82, + "end": 9145.72, + "probability": 0.8169 + }, + { + "start": 9145.88, + "end": 9148.02, + "probability": 0.9805 + }, + { + "start": 9148.5, + "end": 9150.62, + "probability": 0.9174 + }, + { + "start": 9151.54, + "end": 9154.46, + "probability": 0.9523 + }, + { + "start": 9155.0, + "end": 9158.2, + "probability": 0.8635 + }, + { + "start": 9158.78, + "end": 9162.34, + "probability": 0.6225 + }, + { + "start": 9163.32, + "end": 9164.36, + "probability": 0.7517 + }, + { + "start": 9164.68, + "end": 9166.64, + "probability": 0.6586 + }, + { + "start": 9166.66, + "end": 9168.28, + "probability": 0.6265 + }, + { + "start": 9169.2, + "end": 9173.2, + "probability": 0.9011 + }, + { + "start": 9173.96, + "end": 9175.54, + "probability": 0.8062 + }, + { + "start": 9176.08, + "end": 9178.36, + "probability": 0.707 + }, + { + "start": 9179.3, + "end": 9180.31, + "probability": 0.6059 + }, + { + "start": 9180.7, + "end": 9183.34, + "probability": 0.798 + }, + { + "start": 9183.7, + "end": 9185.14, + "probability": 0.9556 + }, + { + "start": 9185.68, + "end": 9189.03, + "probability": 0.9917 + }, + { + "start": 9189.48, + "end": 9195.26, + "probability": 0.9819 + }, + { + "start": 9196.9, + "end": 9198.08, + "probability": 0.7203 + }, + { + "start": 9198.78, + "end": 9202.14, + "probability": 0.9388 + }, + { + "start": 9203.14, + "end": 9204.24, + "probability": 0.951 + }, + { + "start": 9204.82, + "end": 9207.04, + "probability": 0.8682 + }, + { + "start": 9207.18, + "end": 9208.82, + "probability": 0.8952 + }, + { + "start": 9210.5, + "end": 9211.96, + "probability": 0.9041 + }, + { + "start": 9212.06, + "end": 9216.5, + "probability": 0.9839 + }, + { + "start": 9216.7, + "end": 9218.42, + "probability": 0.8604 + }, + { + "start": 9218.82, + "end": 9222.6, + "probability": 0.8183 + }, + { + "start": 9223.12, + "end": 9225.63, + "probability": 0.6403 + }, + { + "start": 9226.22, + "end": 9228.68, + "probability": 0.9631 + }, + { + "start": 9229.36, + "end": 9231.56, + "probability": 0.7361 + }, + { + "start": 9232.24, + "end": 9233.56, + "probability": 0.9717 + }, + { + "start": 9234.12, + "end": 9237.2, + "probability": 0.8285 + }, + { + "start": 9239.82, + "end": 9242.7, + "probability": 0.6533 + }, + { + "start": 9243.16, + "end": 9243.84, + "probability": 0.6496 + }, + { + "start": 9243.98, + "end": 9247.48, + "probability": 0.9906 + }, + { + "start": 9248.42, + "end": 9249.12, + "probability": 0.6724 + }, + { + "start": 9249.88, + "end": 9252.62, + "probability": 0.8583 + }, + { + "start": 9252.66, + "end": 9253.48, + "probability": 0.5463 + }, + { + "start": 9253.62, + "end": 9254.32, + "probability": 0.6429 + }, + { + "start": 9254.7, + "end": 9255.28, + "probability": 0.6585 + }, + { + "start": 9255.9, + "end": 9256.36, + "probability": 0.3988 + }, + { + "start": 9256.94, + "end": 9261.5, + "probability": 0.8726 + }, + { + "start": 9262.08, + "end": 9266.3, + "probability": 0.8511 + }, + { + "start": 9267.1, + "end": 9270.46, + "probability": 0.9138 + }, + { + "start": 9271.06, + "end": 9274.26, + "probability": 0.7989 + }, + { + "start": 9274.94, + "end": 9277.86, + "probability": 0.6434 + }, + { + "start": 9278.04, + "end": 9280.5, + "probability": 0.6711 + }, + { + "start": 9280.66, + "end": 9283.64, + "probability": 0.7415 + }, + { + "start": 9283.76, + "end": 9284.1, + "probability": 0.7564 + }, + { + "start": 9284.76, + "end": 9286.24, + "probability": 0.8296 + }, + { + "start": 9286.76, + "end": 9287.88, + "probability": 0.6176 + }, + { + "start": 9288.22, + "end": 9289.78, + "probability": 0.6998 + }, + { + "start": 9289.82, + "end": 9291.72, + "probability": 0.6641 + }, + { + "start": 9292.44, + "end": 9294.98, + "probability": 0.8782 + }, + { + "start": 9297.66, + "end": 9301.28, + "probability": 0.9604 + }, + { + "start": 9301.47, + "end": 9304.68, + "probability": 0.873 + }, + { + "start": 9305.32, + "end": 9306.26, + "probability": 0.6422 + }, + { + "start": 9306.76, + "end": 9308.12, + "probability": 0.9873 + }, + { + "start": 9308.9, + "end": 9309.1, + "probability": 0.7235 + }, + { + "start": 9309.7, + "end": 9310.32, + "probability": 0.6849 + }, + { + "start": 9310.68, + "end": 9312.04, + "probability": 0.9497 + }, + { + "start": 9312.7, + "end": 9314.82, + "probability": 0.9609 + }, + { + "start": 9314.86, + "end": 9316.9, + "probability": 0.8037 + }, + { + "start": 9317.62, + "end": 9318.14, + "probability": 0.5894 + }, + { + "start": 9319.32, + "end": 9321.7, + "probability": 0.8722 + }, + { + "start": 9324.82, + "end": 9325.16, + "probability": 0.0014 + }, + { + "start": 9333.32, + "end": 9334.86, + "probability": 0.085 + }, + { + "start": 9334.88, + "end": 9334.88, + "probability": 0.1369 + }, + { + "start": 9334.88, + "end": 9334.88, + "probability": 0.0801 + }, + { + "start": 9334.88, + "end": 9335.0, + "probability": 0.1786 + }, + { + "start": 9335.18, + "end": 9335.18, + "probability": 0.0308 + }, + { + "start": 9335.18, + "end": 9338.42, + "probability": 0.078 + }, + { + "start": 9348.42, + "end": 9349.7, + "probability": 0.0455 + }, + { + "start": 9363.94, + "end": 9373.9, + "probability": 0.7036 + }, + { + "start": 9374.04, + "end": 9374.16, + "probability": 0.4465 + }, + { + "start": 9374.38, + "end": 9375.12, + "probability": 0.6068 + }, + { + "start": 9375.14, + "end": 9375.42, + "probability": 0.7267 + }, + { + "start": 9376.6, + "end": 9378.48, + "probability": 0.9774 + }, + { + "start": 9379.46, + "end": 9384.86, + "probability": 0.9733 + }, + { + "start": 9386.22, + "end": 9388.14, + "probability": 0.9433 + }, + { + "start": 9389.56, + "end": 9391.14, + "probability": 0.9983 + }, + { + "start": 9391.94, + "end": 9392.62, + "probability": 0.9844 + }, + { + "start": 9396.04, + "end": 9399.0, + "probability": 0.9989 + }, + { + "start": 9399.0, + "end": 9403.88, + "probability": 0.9734 + }, + { + "start": 9406.04, + "end": 9410.68, + "probability": 0.9943 + }, + { + "start": 9412.44, + "end": 9414.8, + "probability": 0.9697 + }, + { + "start": 9416.12, + "end": 9416.8, + "probability": 0.582 + }, + { + "start": 9418.78, + "end": 9422.6, + "probability": 0.8733 + }, + { + "start": 9423.32, + "end": 9425.18, + "probability": 0.7986 + }, + { + "start": 9426.02, + "end": 9430.78, + "probability": 0.9933 + }, + { + "start": 9430.8, + "end": 9434.66, + "probability": 0.9961 + }, + { + "start": 9436.16, + "end": 9440.12, + "probability": 0.875 + }, + { + "start": 9442.28, + "end": 9443.66, + "probability": 0.6714 + }, + { + "start": 9444.7, + "end": 9447.3, + "probability": 0.9034 + }, + { + "start": 9447.9, + "end": 9449.26, + "probability": 0.8904 + }, + { + "start": 9451.64, + "end": 9452.64, + "probability": 0.6522 + }, + { + "start": 9453.4, + "end": 9461.64, + "probability": 0.9941 + }, + { + "start": 9462.48, + "end": 9466.78, + "probability": 0.9961 + }, + { + "start": 9466.78, + "end": 9468.04, + "probability": 0.9908 + }, + { + "start": 9468.24, + "end": 9468.54, + "probability": 0.8703 + }, + { + "start": 9468.7, + "end": 9470.92, + "probability": 0.9747 + }, + { + "start": 9473.1, + "end": 9476.74, + "probability": 0.9967 + }, + { + "start": 9478.96, + "end": 9481.64, + "probability": 0.9954 + }, + { + "start": 9481.76, + "end": 9482.1, + "probability": 0.5684 + }, + { + "start": 9482.36, + "end": 9488.74, + "probability": 0.7864 + }, + { + "start": 9490.04, + "end": 9493.34, + "probability": 0.9543 + }, + { + "start": 9495.68, + "end": 9498.04, + "probability": 0.98 + }, + { + "start": 9499.18, + "end": 9500.82, + "probability": 0.8647 + }, + { + "start": 9502.6, + "end": 9504.3, + "probability": 0.9855 + }, + { + "start": 9506.54, + "end": 9507.62, + "probability": 0.6497 + }, + { + "start": 9508.58, + "end": 9510.4, + "probability": 0.9314 + }, + { + "start": 9510.4, + "end": 9513.88, + "probability": 0.9909 + }, + { + "start": 9515.12, + "end": 9519.1, + "probability": 0.4945 + }, + { + "start": 9519.72, + "end": 9521.82, + "probability": 0.9918 + }, + { + "start": 9522.52, + "end": 9524.22, + "probability": 0.9428 + }, + { + "start": 9525.02, + "end": 9529.4, + "probability": 0.9875 + }, + { + "start": 9529.76, + "end": 9530.14, + "probability": 0.8619 + }, + { + "start": 9530.34, + "end": 9533.76, + "probability": 0.8088 + }, + { + "start": 9536.3, + "end": 9538.7, + "probability": 0.6726 + }, + { + "start": 9540.9, + "end": 9542.82, + "probability": 0.9976 + }, + { + "start": 9543.54, + "end": 9545.08, + "probability": 0.9918 + }, + { + "start": 9545.84, + "end": 9548.06, + "probability": 0.966 + }, + { + "start": 9549.66, + "end": 9550.86, + "probability": 0.8082 + }, + { + "start": 9551.88, + "end": 9554.94, + "probability": 0.9942 + }, + { + "start": 9555.02, + "end": 9556.56, + "probability": 0.9211 + }, + { + "start": 9556.7, + "end": 9557.08, + "probability": 0.6727 + }, + { + "start": 9558.02, + "end": 9559.58, + "probability": 0.9777 + }, + { + "start": 9560.14, + "end": 9561.36, + "probability": 0.6677 + }, + { + "start": 9561.54, + "end": 9566.54, + "probability": 0.9813 + }, + { + "start": 9567.1, + "end": 9570.02, + "probability": 0.4975 + }, + { + "start": 9570.64, + "end": 9572.34, + "probability": 0.5721 + }, + { + "start": 9572.44, + "end": 9573.08, + "probability": 0.4515 + }, + { + "start": 9573.5, + "end": 9579.7, + "probability": 0.9855 + }, + { + "start": 9579.92, + "end": 9580.16, + "probability": 0.7432 + }, + { + "start": 9580.8, + "end": 9581.42, + "probability": 0.8491 + }, + { + "start": 9582.94, + "end": 9584.26, + "probability": 0.5875 + }, + { + "start": 9585.56, + "end": 9588.18, + "probability": 0.9233 + }, + { + "start": 9589.28, + "end": 9590.34, + "probability": 0.7332 + }, + { + "start": 9592.2, + "end": 9592.82, + "probability": 0.3632 + }, + { + "start": 9594.68, + "end": 9596.28, + "probability": 0.9194 + }, + { + "start": 9598.34, + "end": 9598.86, + "probability": 0.7195 + }, + { + "start": 9607.48, + "end": 9609.13, + "probability": 0.6439 + }, + { + "start": 9610.82, + "end": 9612.42, + "probability": 0.8289 + }, + { + "start": 9632.12, + "end": 9632.56, + "probability": 0.4778 + }, + { + "start": 9636.68, + "end": 9636.68, + "probability": 0.6808 + }, + { + "start": 9636.68, + "end": 9639.26, + "probability": 0.8614 + }, + { + "start": 9640.26, + "end": 9644.4, + "probability": 0.9758 + }, + { + "start": 9645.34, + "end": 9647.52, + "probability": 0.9963 + }, + { + "start": 9648.12, + "end": 9649.86, + "probability": 0.9448 + }, + { + "start": 9650.7, + "end": 9658.84, + "probability": 0.9969 + }, + { + "start": 9660.48, + "end": 9660.5, + "probability": 0.2378 + }, + { + "start": 9661.18, + "end": 9670.14, + "probability": 0.9839 + }, + { + "start": 9670.42, + "end": 9673.7, + "probability": 0.9557 + }, + { + "start": 9674.12, + "end": 9675.24, + "probability": 0.873 + }, + { + "start": 9675.7, + "end": 9676.88, + "probability": 0.9521 + }, + { + "start": 9677.5, + "end": 9684.76, + "probability": 0.9502 + }, + { + "start": 9685.36, + "end": 9686.54, + "probability": 0.869 + }, + { + "start": 9687.52, + "end": 9692.5, + "probability": 0.981 + }, + { + "start": 9693.42, + "end": 9697.26, + "probability": 0.8696 + }, + { + "start": 9698.26, + "end": 9700.36, + "probability": 0.9448 + }, + { + "start": 9701.12, + "end": 9705.29, + "probability": 0.7511 + }, + { + "start": 9706.46, + "end": 9711.28, + "probability": 0.9462 + }, + { + "start": 9711.88, + "end": 9712.94, + "probability": 0.8876 + }, + { + "start": 9713.76, + "end": 9720.02, + "probability": 0.9446 + }, + { + "start": 9721.14, + "end": 9722.58, + "probability": 0.9623 + }, + { + "start": 9723.58, + "end": 9727.38, + "probability": 0.9968 + }, + { + "start": 9727.94, + "end": 9730.06, + "probability": 0.9829 + }, + { + "start": 9730.6, + "end": 9735.98, + "probability": 0.9393 + }, + { + "start": 9737.02, + "end": 9743.6, + "probability": 0.9959 + }, + { + "start": 9744.3, + "end": 9751.66, + "probability": 0.9957 + }, + { + "start": 9751.66, + "end": 9758.46, + "probability": 0.9995 + }, + { + "start": 9758.98, + "end": 9766.8, + "probability": 0.9919 + }, + { + "start": 9767.5, + "end": 9771.22, + "probability": 0.9303 + }, + { + "start": 9772.52, + "end": 9775.06, + "probability": 0.8707 + }, + { + "start": 9775.76, + "end": 9778.28, + "probability": 0.9738 + }, + { + "start": 9779.22, + "end": 9783.14, + "probability": 0.9843 + }, + { + "start": 9783.44, + "end": 9788.5, + "probability": 0.9314 + }, + { + "start": 9789.32, + "end": 9792.2, + "probability": 0.9854 + }, + { + "start": 9792.78, + "end": 9801.52, + "probability": 0.9947 + }, + { + "start": 9801.68, + "end": 9802.34, + "probability": 0.4922 + }, + { + "start": 9802.9, + "end": 9804.9, + "probability": 0.9533 + }, + { + "start": 9805.52, + "end": 9807.06, + "probability": 0.9951 + }, + { + "start": 9807.87, + "end": 9815.04, + "probability": 0.9472 + }, + { + "start": 9816.1, + "end": 9819.98, + "probability": 0.6782 + }, + { + "start": 9820.62, + "end": 9822.06, + "probability": 0.8613 + }, + { + "start": 9822.06, + "end": 9830.66, + "probability": 0.9879 + }, + { + "start": 9830.84, + "end": 9831.28, + "probability": 0.7485 + }, + { + "start": 9833.34, + "end": 9835.58, + "probability": 0.7517 + }, + { + "start": 9836.38, + "end": 9836.8, + "probability": 0.6346 + }, + { + "start": 9837.92, + "end": 9839.26, + "probability": 0.9854 + }, + { + "start": 9840.84, + "end": 9841.4, + "probability": 0.7398 + }, + { + "start": 9842.32, + "end": 9843.9, + "probability": 0.896 + }, + { + "start": 9871.22, + "end": 9871.22, + "probability": 0.6939 + }, + { + "start": 9871.22, + "end": 9871.89, + "probability": 0.5013 + }, + { + "start": 9873.0, + "end": 9873.94, + "probability": 0.6763 + }, + { + "start": 9875.28, + "end": 9877.04, + "probability": 0.9382 + }, + { + "start": 9878.36, + "end": 9881.02, + "probability": 0.9963 + }, + { + "start": 9882.54, + "end": 9883.5, + "probability": 0.9451 + }, + { + "start": 9884.86, + "end": 9886.74, + "probability": 0.6775 + }, + { + "start": 9887.9, + "end": 9889.0, + "probability": 0.5966 + }, + { + "start": 9890.0, + "end": 9892.94, + "probability": 0.9946 + }, + { + "start": 9895.3, + "end": 9900.64, + "probability": 0.9954 + }, + { + "start": 9900.8, + "end": 9901.24, + "probability": 0.7137 + }, + { + "start": 9902.5, + "end": 9906.5, + "probability": 0.8908 + }, + { + "start": 9907.64, + "end": 9908.9, + "probability": 0.9688 + }, + { + "start": 9910.04, + "end": 9911.46, + "probability": 0.9825 + }, + { + "start": 9912.22, + "end": 9913.28, + "probability": 0.7886 + }, + { + "start": 9914.76, + "end": 9915.66, + "probability": 0.8984 + }, + { + "start": 9916.78, + "end": 9920.1, + "probability": 0.9744 + }, + { + "start": 9920.62, + "end": 9923.72, + "probability": 0.8261 + }, + { + "start": 9925.0, + "end": 9929.88, + "probability": 0.89 + }, + { + "start": 9930.62, + "end": 9932.66, + "probability": 0.47 + }, + { + "start": 9933.4, + "end": 9934.33, + "probability": 0.6425 + }, + { + "start": 9934.54, + "end": 9935.4, + "probability": 0.9844 + }, + { + "start": 9936.06, + "end": 9939.84, + "probability": 0.8051 + }, + { + "start": 9940.94, + "end": 9941.52, + "probability": 0.6848 + }, + { + "start": 9941.62, + "end": 9942.48, + "probability": 0.8677 + }, + { + "start": 9942.66, + "end": 9944.64, + "probability": 0.829 + }, + { + "start": 9945.86, + "end": 9948.34, + "probability": 0.7901 + }, + { + "start": 9949.3, + "end": 9951.86, + "probability": 0.611 + }, + { + "start": 9952.4, + "end": 9953.8, + "probability": 0.8856 + }, + { + "start": 9954.62, + "end": 9957.32, + "probability": 0.9187 + }, + { + "start": 9958.0, + "end": 9960.72, + "probability": 0.9863 + }, + { + "start": 9962.22, + "end": 9963.68, + "probability": 0.9973 + }, + { + "start": 9964.26, + "end": 9965.1, + "probability": 0.9339 + }, + { + "start": 9965.86, + "end": 9969.04, + "probability": 0.9579 + }, + { + "start": 9970.28, + "end": 9974.44, + "probability": 0.995 + }, + { + "start": 9974.46, + "end": 9978.94, + "probability": 0.8343 + }, + { + "start": 9979.1, + "end": 9980.56, + "probability": 0.8625 + }, + { + "start": 9981.14, + "end": 9983.74, + "probability": 0.901 + }, + { + "start": 9984.64, + "end": 9989.04, + "probability": 0.9761 + }, + { + "start": 9989.62, + "end": 9990.9, + "probability": 0.9875 + }, + { + "start": 9991.92, + "end": 9995.18, + "probability": 0.9832 + }, + { + "start": 9995.88, + "end": 9997.7, + "probability": 0.9741 + }, + { + "start": 9997.98, + "end": 10001.22, + "probability": 0.9367 + }, + { + "start": 10001.46, + "end": 10002.42, + "probability": 0.6443 + }, + { + "start": 10002.98, + "end": 10003.56, + "probability": 0.5869 + }, + { + "start": 10003.82, + "end": 10005.06, + "probability": 0.8213 + }, + { + "start": 10005.96, + "end": 10007.54, + "probability": 0.9705 + }, + { + "start": 10008.88, + "end": 10009.36, + "probability": 0.7468 + }, + { + "start": 10010.68, + "end": 10014.56, + "probability": 0.8648 + }, + { + "start": 10015.86, + "end": 10021.5, + "probability": 0.954 + }, + { + "start": 10021.74, + "end": 10025.6, + "probability": 0.9671 + }, + { + "start": 10025.76, + "end": 10030.42, + "probability": 0.6914 + }, + { + "start": 10030.54, + "end": 10031.12, + "probability": 0.5673 + }, + { + "start": 10031.88, + "end": 10034.86, + "probability": 0.9898 + }, + { + "start": 10035.08, + "end": 10043.02, + "probability": 0.9853 + }, + { + "start": 10044.0, + "end": 10047.14, + "probability": 0.9846 + }, + { + "start": 10048.08, + "end": 10048.84, + "probability": 0.9013 + }, + { + "start": 10049.68, + "end": 10051.1, + "probability": 0.7227 + }, + { + "start": 10052.2, + "end": 10055.12, + "probability": 0.9873 + }, + { + "start": 10055.34, + "end": 10057.68, + "probability": 0.9531 + }, + { + "start": 10058.28, + "end": 10062.02, + "probability": 0.6922 + }, + { + "start": 10062.27, + "end": 10064.24, + "probability": 0.9395 + }, + { + "start": 10065.54, + "end": 10067.34, + "probability": 0.9924 + }, + { + "start": 10067.58, + "end": 10068.36, + "probability": 0.7552 + }, + { + "start": 10068.56, + "end": 10070.38, + "probability": 0.6063 + }, + { + "start": 10070.54, + "end": 10074.12, + "probability": 0.867 + }, + { + "start": 10074.66, + "end": 10077.56, + "probability": 0.4529 + }, + { + "start": 10077.94, + "end": 10078.36, + "probability": 0.2819 + }, + { + "start": 10078.36, + "end": 10079.18, + "probability": 0.6539 + }, + { + "start": 10080.79, + "end": 10084.42, + "probability": 0.8536 + }, + { + "start": 10085.18, + "end": 10086.28, + "probability": 0.8402 + }, + { + "start": 10088.0, + "end": 10088.64, + "probability": 0.7409 + }, + { + "start": 10089.5, + "end": 10091.12, + "probability": 0.9093 + }, + { + "start": 10113.72, + "end": 10113.8, + "probability": 0.3606 + }, + { + "start": 10113.8, + "end": 10114.71, + "probability": 0.8977 + }, + { + "start": 10115.64, + "end": 10117.12, + "probability": 0.6599 + }, + { + "start": 10117.24, + "end": 10120.2, + "probability": 0.8046 + }, + { + "start": 10121.02, + "end": 10124.34, + "probability": 0.9942 + }, + { + "start": 10124.34, + "end": 10126.84, + "probability": 0.9908 + }, + { + "start": 10127.94, + "end": 10131.06, + "probability": 0.9761 + }, + { + "start": 10131.68, + "end": 10134.74, + "probability": 0.9607 + }, + { + "start": 10135.84, + "end": 10137.7, + "probability": 0.9323 + }, + { + "start": 10137.7, + "end": 10140.9, + "probability": 0.986 + }, + { + "start": 10141.78, + "end": 10143.02, + "probability": 0.8672 + }, + { + "start": 10143.76, + "end": 10145.88, + "probability": 0.9911 + }, + { + "start": 10146.22, + "end": 10147.18, + "probability": 0.7378 + }, + { + "start": 10147.3, + "end": 10148.04, + "probability": 0.6876 + }, + { + "start": 10148.58, + "end": 10150.62, + "probability": 0.968 + }, + { + "start": 10151.44, + "end": 10152.66, + "probability": 0.9469 + }, + { + "start": 10153.24, + "end": 10157.56, + "probability": 0.9797 + }, + { + "start": 10157.62, + "end": 10158.64, + "probability": 0.4382 + }, + { + "start": 10158.74, + "end": 10159.44, + "probability": 0.0594 + }, + { + "start": 10160.56, + "end": 10163.24, + "probability": 0.9128 + }, + { + "start": 10164.44, + "end": 10166.06, + "probability": 0.9176 + }, + { + "start": 10167.46, + "end": 10173.26, + "probability": 0.9731 + }, + { + "start": 10173.84, + "end": 10177.48, + "probability": 0.8328 + }, + { + "start": 10178.26, + "end": 10180.42, + "probability": 0.9886 + }, + { + "start": 10181.24, + "end": 10184.06, + "probability": 0.8237 + }, + { + "start": 10184.06, + "end": 10187.38, + "probability": 0.9932 + }, + { + "start": 10188.2, + "end": 10188.9, + "probability": 0.721 + }, + { + "start": 10189.04, + "end": 10192.72, + "probability": 0.9351 + }, + { + "start": 10193.36, + "end": 10194.58, + "probability": 0.8258 + }, + { + "start": 10195.4, + "end": 10196.16, + "probability": 0.9661 + }, + { + "start": 10198.18, + "end": 10199.74, + "probability": 0.8193 + }, + { + "start": 10200.88, + "end": 10201.3, + "probability": 0.9195 + }, + { + "start": 10201.84, + "end": 10203.56, + "probability": 0.8852 + }, + { + "start": 10204.8, + "end": 10210.82, + "probability": 0.8149 + }, + { + "start": 10211.02, + "end": 10214.94, + "probability": 0.9288 + }, + { + "start": 10215.4, + "end": 10217.48, + "probability": 0.9204 + }, + { + "start": 10218.1, + "end": 10222.02, + "probability": 0.9282 + }, + { + "start": 10222.02, + "end": 10224.34, + "probability": 0.9667 + }, + { + "start": 10225.72, + "end": 10226.06, + "probability": 0.7971 + }, + { + "start": 10227.02, + "end": 10231.32, + "probability": 0.9851 + }, + { + "start": 10231.46, + "end": 10232.68, + "probability": 0.8888 + }, + { + "start": 10233.26, + "end": 10234.72, + "probability": 0.9146 + }, + { + "start": 10235.46, + "end": 10237.72, + "probability": 0.5492 + }, + { + "start": 10238.7, + "end": 10239.83, + "probability": 0.9292 + }, + { + "start": 10240.1, + "end": 10242.66, + "probability": 0.9771 + }, + { + "start": 10242.82, + "end": 10246.02, + "probability": 0.8309 + }, + { + "start": 10246.5, + "end": 10250.22, + "probability": 0.9597 + }, + { + "start": 10250.58, + "end": 10252.24, + "probability": 0.8392 + }, + { + "start": 10252.72, + "end": 10258.4, + "probability": 0.95 + }, + { + "start": 10258.96, + "end": 10263.04, + "probability": 0.986 + }, + { + "start": 10264.48, + "end": 10265.6, + "probability": 0.652 + }, + { + "start": 10266.3, + "end": 10268.12, + "probability": 0.8833 + }, + { + "start": 10268.48, + "end": 10270.75, + "probability": 0.9922 + }, + { + "start": 10271.02, + "end": 10272.18, + "probability": 0.7605 + }, + { + "start": 10272.28, + "end": 10274.92, + "probability": 0.8352 + }, + { + "start": 10275.4, + "end": 10276.36, + "probability": 0.9741 + }, + { + "start": 10277.26, + "end": 10282.56, + "probability": 0.8644 + }, + { + "start": 10283.48, + "end": 10285.32, + "probability": 0.9281 + }, + { + "start": 10286.06, + "end": 10287.4, + "probability": 0.9447 + }, + { + "start": 10287.76, + "end": 10288.12, + "probability": 0.8786 + }, + { + "start": 10288.52, + "end": 10290.14, + "probability": 0.9249 + }, + { + "start": 10290.62, + "end": 10291.94, + "probability": 0.9238 + }, + { + "start": 10292.14, + "end": 10293.04, + "probability": 0.9619 + }, + { + "start": 10293.94, + "end": 10294.4, + "probability": 0.7243 + }, + { + "start": 10294.5, + "end": 10298.34, + "probability": 0.9614 + }, + { + "start": 10298.34, + "end": 10302.82, + "probability": 0.9499 + }, + { + "start": 10303.18, + "end": 10303.18, + "probability": 0.0986 + }, + { + "start": 10303.18, + "end": 10306.18, + "probability": 0.8747 + }, + { + "start": 10306.62, + "end": 10308.22, + "probability": 0.7843 + }, + { + "start": 10308.72, + "end": 10310.34, + "probability": 0.8283 + }, + { + "start": 10310.88, + "end": 10315.76, + "probability": 0.7767 + }, + { + "start": 10316.32, + "end": 10319.18, + "probability": 0.7045 + }, + { + "start": 10320.9, + "end": 10322.36, + "probability": 0.7518 + }, + { + "start": 10322.4, + "end": 10325.18, + "probability": 0.6701 + }, + { + "start": 10325.2, + "end": 10326.4, + "probability": 0.1719 + }, + { + "start": 10327.1, + "end": 10328.44, + "probability": 0.5709 + }, + { + "start": 10329.32, + "end": 10329.6, + "probability": 0.7909 + }, + { + "start": 10330.2, + "end": 10330.74, + "probability": 0.5927 + }, + { + "start": 10330.82, + "end": 10333.8, + "probability": 0.9253 + }, + { + "start": 10340.32, + "end": 10341.98, + "probability": 0.7066 + }, + { + "start": 10348.46, + "end": 10350.36, + "probability": 0.7962 + }, + { + "start": 10354.42, + "end": 10356.06, + "probability": 0.6336 + }, + { + "start": 10356.64, + "end": 10358.74, + "probability": 0.8967 + }, + { + "start": 10358.86, + "end": 10359.44, + "probability": 0.406 + }, + { + "start": 10359.6, + "end": 10360.28, + "probability": 0.404 + }, + { + "start": 10360.34, + "end": 10360.34, + "probability": 0.0915 + }, + { + "start": 10360.34, + "end": 10360.34, + "probability": 0.716 + }, + { + "start": 10360.48, + "end": 10361.52, + "probability": 0.8821 + }, + { + "start": 10364.32, + "end": 10366.48, + "probability": 0.9946 + }, + { + "start": 10367.2, + "end": 10371.34, + "probability": 0.9938 + }, + { + "start": 10372.3, + "end": 10373.0, + "probability": 0.7139 + }, + { + "start": 10373.64, + "end": 10374.64, + "probability": 0.7713 + }, + { + "start": 10375.56, + "end": 10378.62, + "probability": 0.9904 + }, + { + "start": 10379.44, + "end": 10380.16, + "probability": 0.7583 + }, + { + "start": 10380.7, + "end": 10384.18, + "probability": 0.954 + }, + { + "start": 10385.1, + "end": 10388.07, + "probability": 0.9841 + }, + { + "start": 10388.8, + "end": 10391.96, + "probability": 0.9969 + }, + { + "start": 10393.5, + "end": 10394.78, + "probability": 0.9445 + }, + { + "start": 10396.68, + "end": 10402.74, + "probability": 0.9541 + }, + { + "start": 10403.68, + "end": 10404.76, + "probability": 0.9991 + }, + { + "start": 10405.32, + "end": 10406.06, + "probability": 0.938 + }, + { + "start": 10406.8, + "end": 10410.92, + "probability": 0.9724 + }, + { + "start": 10411.7, + "end": 10413.52, + "probability": 0.812 + }, + { + "start": 10414.62, + "end": 10416.28, + "probability": 0.9973 + }, + { + "start": 10418.16, + "end": 10419.48, + "probability": 0.8604 + }, + { + "start": 10420.64, + "end": 10425.76, + "probability": 0.9382 + }, + { + "start": 10426.78, + "end": 10428.58, + "probability": 0.9966 + }, + { + "start": 10430.48, + "end": 10431.3, + "probability": 0.9189 + }, + { + "start": 10432.88, + "end": 10433.6, + "probability": 0.9891 + }, + { + "start": 10434.36, + "end": 10435.4, + "probability": 0.998 + }, + { + "start": 10437.14, + "end": 10441.56, + "probability": 0.7298 + }, + { + "start": 10442.8, + "end": 10445.0, + "probability": 0.9877 + }, + { + "start": 10447.89, + "end": 10448.76, + "probability": 0.0291 + }, + { + "start": 10448.76, + "end": 10449.48, + "probability": 0.5098 + }, + { + "start": 10450.28, + "end": 10451.68, + "probability": 0.9839 + }, + { + "start": 10452.58, + "end": 10454.5, + "probability": 0.9968 + }, + { + "start": 10455.32, + "end": 10456.32, + "probability": 0.9405 + }, + { + "start": 10457.14, + "end": 10460.36, + "probability": 0.9844 + }, + { + "start": 10461.06, + "end": 10464.52, + "probability": 0.9181 + }, + { + "start": 10466.22, + "end": 10467.5, + "probability": 0.7711 + }, + { + "start": 10468.06, + "end": 10469.26, + "probability": 0.9676 + }, + { + "start": 10470.86, + "end": 10474.42, + "probability": 0.938 + }, + { + "start": 10474.86, + "end": 10476.76, + "probability": 0.8706 + }, + { + "start": 10477.62, + "end": 10478.9, + "probability": 0.9959 + }, + { + "start": 10479.54, + "end": 10480.38, + "probability": 0.8304 + }, + { + "start": 10481.18, + "end": 10485.74, + "probability": 0.9753 + }, + { + "start": 10486.26, + "end": 10489.08, + "probability": 0.9756 + }, + { + "start": 10490.08, + "end": 10491.88, + "probability": 0.9976 + }, + { + "start": 10492.4, + "end": 10494.46, + "probability": 0.8511 + }, + { + "start": 10495.44, + "end": 10496.48, + "probability": 0.9037 + }, + { + "start": 10497.66, + "end": 10499.64, + "probability": 0.6873 + }, + { + "start": 10500.6, + "end": 10504.32, + "probability": 0.9916 + }, + { + "start": 10504.54, + "end": 10505.36, + "probability": 0.6727 + }, + { + "start": 10505.84, + "end": 10507.54, + "probability": 0.916 + }, + { + "start": 10508.1, + "end": 10509.28, + "probability": 0.9788 + }, + { + "start": 10509.48, + "end": 10512.32, + "probability": 0.9551 + }, + { + "start": 10513.22, + "end": 10517.08, + "probability": 0.9828 + }, + { + "start": 10517.08, + "end": 10521.88, + "probability": 0.9665 + }, + { + "start": 10522.46, + "end": 10525.36, + "probability": 0.9979 + }, + { + "start": 10525.36, + "end": 10529.82, + "probability": 0.9992 + }, + { + "start": 10530.66, + "end": 10532.26, + "probability": 0.9949 + }, + { + "start": 10532.68, + "end": 10535.52, + "probability": 0.9977 + }, + { + "start": 10536.1, + "end": 10536.72, + "probability": 0.9642 + }, + { + "start": 10537.64, + "end": 10538.58, + "probability": 0.607 + }, + { + "start": 10538.92, + "end": 10541.56, + "probability": 0.9855 + }, + { + "start": 10542.16, + "end": 10542.94, + "probability": 0.9017 + }, + { + "start": 10543.46, + "end": 10544.01, + "probability": 0.98 + }, + { + "start": 10544.46, + "end": 10545.12, + "probability": 0.6927 + }, + { + "start": 10545.2, + "end": 10546.92, + "probability": 0.9909 + }, + { + "start": 10547.24, + "end": 10551.02, + "probability": 0.9948 + }, + { + "start": 10551.6, + "end": 10556.34, + "probability": 0.9196 + }, + { + "start": 10557.04, + "end": 10559.96, + "probability": 0.9093 + }, + { + "start": 10560.44, + "end": 10562.96, + "probability": 0.9536 + }, + { + "start": 10563.24, + "end": 10564.64, + "probability": 0.9289 + }, + { + "start": 10564.86, + "end": 10565.02, + "probability": 0.699 + }, + { + "start": 10565.42, + "end": 10567.58, + "probability": 0.991 + }, + { + "start": 10568.32, + "end": 10568.68, + "probability": 0.4445 + }, + { + "start": 10568.68, + "end": 10568.9, + "probability": 0.5739 + }, + { + "start": 10569.06, + "end": 10570.62, + "probability": 0.6649 + }, + { + "start": 10575.1, + "end": 10576.29, + "probability": 0.1496 + }, + { + "start": 10582.88, + "end": 10583.84, + "probability": 0.5818 + }, + { + "start": 10584.06, + "end": 10585.32, + "probability": 0.668 + }, + { + "start": 10586.24, + "end": 10589.76, + "probability": 0.649 + }, + { + "start": 10591.76, + "end": 10593.2, + "probability": 0.526 + }, + { + "start": 10594.42, + "end": 10595.32, + "probability": 0.7575 + }, + { + "start": 10596.7, + "end": 10599.12, + "probability": 0.9954 + }, + { + "start": 10599.2, + "end": 10600.72, + "probability": 0.9518 + }, + { + "start": 10602.44, + "end": 10603.38, + "probability": 0.9773 + }, + { + "start": 10604.94, + "end": 10608.36, + "probability": 0.98 + }, + { + "start": 10609.72, + "end": 10613.2, + "probability": 0.9952 + }, + { + "start": 10613.2, + "end": 10616.42, + "probability": 0.9904 + }, + { + "start": 10618.44, + "end": 10621.7, + "probability": 0.9993 + }, + { + "start": 10621.94, + "end": 10623.98, + "probability": 0.7656 + }, + { + "start": 10624.96, + "end": 10626.66, + "probability": 0.9954 + }, + { + "start": 10627.34, + "end": 10628.98, + "probability": 0.985 + }, + { + "start": 10629.9, + "end": 10632.64, + "probability": 0.9468 + }, + { + "start": 10633.3, + "end": 10636.64, + "probability": 0.9717 + }, + { + "start": 10637.64, + "end": 10639.2, + "probability": 0.9986 + }, + { + "start": 10639.74, + "end": 10640.5, + "probability": 0.884 + }, + { + "start": 10641.54, + "end": 10645.82, + "probability": 0.9847 + }, + { + "start": 10645.98, + "end": 10648.56, + "probability": 0.9985 + }, + { + "start": 10649.18, + "end": 10650.44, + "probability": 0.95 + }, + { + "start": 10651.72, + "end": 10651.86, + "probability": 0.9236 + }, + { + "start": 10653.12, + "end": 10656.9, + "probability": 0.9904 + }, + { + "start": 10657.56, + "end": 10660.01, + "probability": 0.5409 + }, + { + "start": 10660.74, + "end": 10662.58, + "probability": 0.9717 + }, + { + "start": 10663.34, + "end": 10666.44, + "probability": 0.983 + }, + { + "start": 10667.36, + "end": 10668.88, + "probability": 0.9841 + }, + { + "start": 10669.38, + "end": 10670.42, + "probability": 0.9971 + }, + { + "start": 10670.98, + "end": 10673.98, + "probability": 0.9178 + }, + { + "start": 10674.06, + "end": 10676.2, + "probability": 0.8576 + }, + { + "start": 10676.72, + "end": 10677.82, + "probability": 0.9661 + }, + { + "start": 10678.44, + "end": 10684.22, + "probability": 0.9221 + }, + { + "start": 10684.64, + "end": 10690.22, + "probability": 0.9921 + }, + { + "start": 10690.86, + "end": 10693.22, + "probability": 0.9675 + }, + { + "start": 10694.02, + "end": 10696.46, + "probability": 0.7303 + }, + { + "start": 10696.52, + "end": 10697.68, + "probability": 0.9907 + }, + { + "start": 10698.28, + "end": 10700.08, + "probability": 0.8292 + }, + { + "start": 10700.88, + "end": 10704.94, + "probability": 0.832 + }, + { + "start": 10705.68, + "end": 10707.04, + "probability": 0.6767 + }, + { + "start": 10707.18, + "end": 10707.96, + "probability": 0.7286 + }, + { + "start": 10708.16, + "end": 10709.62, + "probability": 0.9966 + }, + { + "start": 10710.36, + "end": 10713.9, + "probability": 0.9993 + }, + { + "start": 10714.26, + "end": 10716.58, + "probability": 0.9282 + }, + { + "start": 10717.02, + "end": 10718.1, + "probability": 0.812 + }, + { + "start": 10718.6, + "end": 10719.78, + "probability": 0.8705 + }, + { + "start": 10720.4, + "end": 10721.52, + "probability": 0.9551 + }, + { + "start": 10721.68, + "end": 10723.0, + "probability": 0.9442 + }, + { + "start": 10723.4, + "end": 10725.4, + "probability": 0.8898 + }, + { + "start": 10725.52, + "end": 10726.22, + "probability": 0.6637 + }, + { + "start": 10726.62, + "end": 10727.44, + "probability": 0.8225 + }, + { + "start": 10728.1, + "end": 10730.1, + "probability": 0.9969 + }, + { + "start": 10730.74, + "end": 10731.78, + "probability": 0.9844 + }, + { + "start": 10731.98, + "end": 10734.22, + "probability": 0.9294 + }, + { + "start": 10734.55, + "end": 10737.34, + "probability": 0.9956 + }, + { + "start": 10738.22, + "end": 10740.1, + "probability": 0.8438 + }, + { + "start": 10740.64, + "end": 10741.8, + "probability": 0.9008 + }, + { + "start": 10742.28, + "end": 10745.42, + "probability": 0.9517 + }, + { + "start": 10746.14, + "end": 10747.52, + "probability": 0.9561 + }, + { + "start": 10748.26, + "end": 10750.46, + "probability": 0.2774 + }, + { + "start": 10751.08, + "end": 10751.36, + "probability": 0.0408 + }, + { + "start": 10751.36, + "end": 10754.26, + "probability": 0.3106 + }, + { + "start": 10757.98, + "end": 10761.04, + "probability": 0.0193 + }, + { + "start": 10761.94, + "end": 10765.08, + "probability": 0.0949 + }, + { + "start": 10769.24, + "end": 10772.3, + "probability": 0.018 + }, + { + "start": 10772.3, + "end": 10774.74, + "probability": 0.0685 + }, + { + "start": 10774.74, + "end": 10777.0, + "probability": 0.0379 + }, + { + "start": 10778.76, + "end": 10780.26, + "probability": 0.1373 + }, + { + "start": 10780.33, + "end": 10781.42, + "probability": 0.0539 + }, + { + "start": 10781.97, + "end": 10783.46, + "probability": 0.0385 + }, + { + "start": 10783.56, + "end": 10784.88, + "probability": 0.3343 + }, + { + "start": 10785.28, + "end": 10788.7, + "probability": 0.239 + }, + { + "start": 10788.7, + "end": 10790.68, + "probability": 0.4146 + }, + { + "start": 10791.44, + "end": 10792.73, + "probability": 0.0443 + }, + { + "start": 10793.16, + "end": 10793.52, + "probability": 0.1253 + }, + { + "start": 10793.52, + "end": 10794.62, + "probability": 0.0348 + }, + { + "start": 10795.1, + "end": 10797.41, + "probability": 0.4637 + }, + { + "start": 10801.44, + "end": 10802.12, + "probability": 0.0281 + }, + { + "start": 10802.24, + "end": 10806.66, + "probability": 0.0274 + }, + { + "start": 10806.73, + "end": 10808.78, + "probability": 0.0138 + }, + { + "start": 10808.82, + "end": 10811.78, + "probability": 0.0574 + }, + { + "start": 10812.06, + "end": 10815.64, + "probability": 0.1165 + }, + { + "start": 10815.64, + "end": 10816.98, + "probability": 0.0475 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10817.0, + "end": 10817.0, + "probability": 0.0 + }, + { + "start": 10821.18, + "end": 10823.62, + "probability": 0.7778 + }, + { + "start": 10824.96, + "end": 10828.34, + "probability": 0.985 + }, + { + "start": 10828.88, + "end": 10832.64, + "probability": 0.9889 + }, + { + "start": 10832.64, + "end": 10836.42, + "probability": 0.9993 + }, + { + "start": 10837.26, + "end": 10844.2, + "probability": 0.9783 + }, + { + "start": 10844.78, + "end": 10849.76, + "probability": 0.9971 + }, + { + "start": 10850.26, + "end": 10851.82, + "probability": 0.9713 + }, + { + "start": 10852.28, + "end": 10853.7, + "probability": 0.9217 + }, + { + "start": 10854.24, + "end": 10855.92, + "probability": 0.8829 + }, + { + "start": 10857.16, + "end": 10860.82, + "probability": 0.9944 + }, + { + "start": 10861.36, + "end": 10864.32, + "probability": 0.9803 + }, + { + "start": 10865.04, + "end": 10866.42, + "probability": 0.7785 + }, + { + "start": 10867.42, + "end": 10868.82, + "probability": 0.6733 + }, + { + "start": 10869.38, + "end": 10870.84, + "probability": 0.994 + }, + { + "start": 10871.4, + "end": 10876.4, + "probability": 0.9834 + }, + { + "start": 10877.54, + "end": 10882.74, + "probability": 0.9982 + }, + { + "start": 10882.74, + "end": 10889.5, + "probability": 0.9922 + }, + { + "start": 10890.28, + "end": 10892.6, + "probability": 0.8975 + }, + { + "start": 10892.7, + "end": 10893.62, + "probability": 0.677 + }, + { + "start": 10893.9, + "end": 10899.32, + "probability": 0.9883 + }, + { + "start": 10900.16, + "end": 10906.04, + "probability": 0.999 + }, + { + "start": 10906.04, + "end": 10912.64, + "probability": 0.998 + }, + { + "start": 10913.32, + "end": 10914.44, + "probability": 0.9425 + }, + { + "start": 10915.36, + "end": 10920.06, + "probability": 0.9985 + }, + { + "start": 10920.06, + "end": 10926.5, + "probability": 0.9968 + }, + { + "start": 10927.1, + "end": 10932.34, + "probability": 0.998 + }, + { + "start": 10932.86, + "end": 10934.7, + "probability": 0.9654 + }, + { + "start": 10935.58, + "end": 10940.24, + "probability": 0.9816 + }, + { + "start": 10940.94, + "end": 10942.22, + "probability": 0.9062 + }, + { + "start": 10943.06, + "end": 10944.6, + "probability": 0.9231 + }, + { + "start": 10945.92, + "end": 10946.82, + "probability": 0.8405 + }, + { + "start": 10947.36, + "end": 10952.02, + "probability": 0.9795 + }, + { + "start": 10952.54, + "end": 10957.06, + "probability": 0.9833 + }, + { + "start": 10957.06, + "end": 10961.7, + "probability": 0.9955 + }, + { + "start": 10963.38, + "end": 10967.92, + "probability": 0.9983 + }, + { + "start": 10968.6, + "end": 10968.82, + "probability": 0.3874 + }, + { + "start": 10968.94, + "end": 10969.5, + "probability": 0.8662 + }, + { + "start": 10969.82, + "end": 10973.28, + "probability": 0.8861 + }, + { + "start": 10974.14, + "end": 10975.18, + "probability": 0.9514 + }, + { + "start": 10975.86, + "end": 10980.98, + "probability": 0.9878 + }, + { + "start": 10981.68, + "end": 10983.16, + "probability": 0.857 + }, + { + "start": 10983.86, + "end": 10989.62, + "probability": 0.9888 + }, + { + "start": 10990.36, + "end": 10992.3, + "probability": 0.9961 + }, + { + "start": 10992.92, + "end": 10995.08, + "probability": 0.9905 + }, + { + "start": 10995.42, + "end": 10997.4, + "probability": 0.9932 + }, + { + "start": 10997.84, + "end": 10998.46, + "probability": 0.8905 + }, + { + "start": 10999.6, + "end": 11000.7, + "probability": 0.5638 + }, + { + "start": 11001.12, + "end": 11001.72, + "probability": 0.6887 + }, + { + "start": 11002.92, + "end": 11004.76, + "probability": 0.7605 + }, + { + "start": 11018.06, + "end": 11018.84, + "probability": 0.4891 + }, + { + "start": 11019.18, + "end": 11021.42, + "probability": 0.8763 + }, + { + "start": 11021.62, + "end": 11022.14, + "probability": 0.6935 + }, + { + "start": 11022.82, + "end": 11025.36, + "probability": 0.8128 + }, + { + "start": 11026.8, + "end": 11029.46, + "probability": 0.9971 + }, + { + "start": 11030.5, + "end": 11031.72, + "probability": 0.8629 + }, + { + "start": 11033.08, + "end": 11034.86, + "probability": 0.9783 + }, + { + "start": 11035.76, + "end": 11040.51, + "probability": 0.9933 + }, + { + "start": 11042.68, + "end": 11049.24, + "probability": 0.6818 + }, + { + "start": 11050.56, + "end": 11051.14, + "probability": 0.5633 + }, + { + "start": 11052.52, + "end": 11054.96, + "probability": 0.9808 + }, + { + "start": 11054.96, + "end": 11058.4, + "probability": 0.9982 + }, + { + "start": 11060.16, + "end": 11060.62, + "probability": 0.2605 + }, + { + "start": 11062.34, + "end": 11065.9, + "probability": 0.9723 + }, + { + "start": 11066.42, + "end": 11067.22, + "probability": 0.8633 + }, + { + "start": 11068.26, + "end": 11069.08, + "probability": 0.9924 + }, + { + "start": 11070.14, + "end": 11070.38, + "probability": 0.8436 + }, + { + "start": 11071.52, + "end": 11072.12, + "probability": 0.0939 + }, + { + "start": 11072.74, + "end": 11077.64, + "probability": 0.9404 + }, + { + "start": 11078.11, + "end": 11080.48, + "probability": 0.8787 + }, + { + "start": 11081.84, + "end": 11089.58, + "probability": 0.9907 + }, + { + "start": 11090.92, + "end": 11091.42, + "probability": 0.5072 + }, + { + "start": 11094.2, + "end": 11096.86, + "probability": 0.9717 + }, + { + "start": 11097.48, + "end": 11097.5, + "probability": 0.1006 + }, + { + "start": 11097.5, + "end": 11097.5, + "probability": 0.0068 + }, + { + "start": 11097.5, + "end": 11101.24, + "probability": 0.7829 + }, + { + "start": 11101.5, + "end": 11104.42, + "probability": 0.964 + }, + { + "start": 11105.16, + "end": 11106.34, + "probability": 0.999 + }, + { + "start": 11107.52, + "end": 11108.92, + "probability": 0.9673 + }, + { + "start": 11110.0, + "end": 11111.44, + "probability": 0.9139 + }, + { + "start": 11112.48, + "end": 11113.52, + "probability": 0.9821 + }, + { + "start": 11114.72, + "end": 11115.84, + "probability": 0.9759 + }, + { + "start": 11117.2, + "end": 11118.06, + "probability": 0.8882 + }, + { + "start": 11118.66, + "end": 11119.28, + "probability": 0.9741 + }, + { + "start": 11120.46, + "end": 11121.0, + "probability": 0.8207 + }, + { + "start": 11122.0, + "end": 11122.58, + "probability": 0.9904 + }, + { + "start": 11123.42, + "end": 11123.84, + "probability": 0.5345 + }, + { + "start": 11124.78, + "end": 11125.0, + "probability": 0.8035 + }, + { + "start": 11126.44, + "end": 11126.98, + "probability": 0.7143 + }, + { + "start": 11127.7, + "end": 11128.9, + "probability": 0.9265 + }, + { + "start": 11129.94, + "end": 11131.4, + "probability": 0.7073 + }, + { + "start": 11133.16, + "end": 11136.52, + "probability": 0.6828 + }, + { + "start": 11137.66, + "end": 11138.24, + "probability": 0.5629 + }, + { + "start": 11139.16, + "end": 11139.96, + "probability": 0.9819 + }, + { + "start": 11143.96, + "end": 11144.6, + "probability": 0.7381 + }, + { + "start": 11147.08, + "end": 11148.4, + "probability": 0.9751 + }, + { + "start": 11149.88, + "end": 11151.82, + "probability": 0.7432 + }, + { + "start": 11152.12, + "end": 11153.64, + "probability": 0.4308 + }, + { + "start": 11153.98, + "end": 11154.4, + "probability": 0.4402 + }, + { + "start": 11156.42, + "end": 11159.68, + "probability": 0.0473 + }, + { + "start": 11168.16, + "end": 11169.06, + "probability": 0.7792 + }, + { + "start": 11170.16, + "end": 11171.0, + "probability": 0.5189 + }, + { + "start": 11171.26, + "end": 11172.08, + "probability": 0.8605 + }, + { + "start": 11172.3, + "end": 11172.94, + "probability": 0.6357 + }, + { + "start": 11173.2, + "end": 11175.14, + "probability": 0.819 + }, + { + "start": 11176.2, + "end": 11178.5, + "probability": 0.9561 + }, + { + "start": 11179.3, + "end": 11180.38, + "probability": 0.9795 + }, + { + "start": 11181.9, + "end": 11182.7, + "probability": 0.9774 + }, + { + "start": 11183.34, + "end": 11184.58, + "probability": 0.7261 + }, + { + "start": 11185.38, + "end": 11186.56, + "probability": 0.4647 + }, + { + "start": 11187.6, + "end": 11189.7, + "probability": 0.9325 + }, + { + "start": 11191.02, + "end": 11194.92, + "probability": 0.9918 + }, + { + "start": 11197.58, + "end": 11199.44, + "probability": 0.9991 + }, + { + "start": 11200.56, + "end": 11204.26, + "probability": 0.9917 + }, + { + "start": 11204.56, + "end": 11205.1, + "probability": 0.2491 + }, + { + "start": 11206.14, + "end": 11208.4, + "probability": 0.0554 + }, + { + "start": 11210.1, + "end": 11210.24, + "probability": 0.2057 + }, + { + "start": 11210.38, + "end": 11214.48, + "probability": 0.4911 + }, + { + "start": 11214.54, + "end": 11216.02, + "probability": 0.8369 + }, + { + "start": 11216.16, + "end": 11217.3, + "probability": 0.2042 + }, + { + "start": 11218.72, + "end": 11223.82, + "probability": 0.7593 + }, + { + "start": 11224.38, + "end": 11226.96, + "probability": 0.9009 + }, + { + "start": 11227.48, + "end": 11228.75, + "probability": 0.9272 + }, + { + "start": 11229.8, + "end": 11231.88, + "probability": 0.9257 + }, + { + "start": 11233.02, + "end": 11233.88, + "probability": 0.8765 + }, + { + "start": 11235.0, + "end": 11236.26, + "probability": 0.9681 + }, + { + "start": 11237.64, + "end": 11239.52, + "probability": 0.9034 + }, + { + "start": 11239.92, + "end": 11243.38, + "probability": 0.9595 + }, + { + "start": 11243.62, + "end": 11247.24, + "probability": 0.3088 + }, + { + "start": 11247.26, + "end": 11247.32, + "probability": 0.168 + }, + { + "start": 11247.32, + "end": 11252.44, + "probability": 0.8275 + }, + { + "start": 11252.76, + "end": 11253.22, + "probability": 0.0625 + }, + { + "start": 11253.22, + "end": 11253.38, + "probability": 0.1956 + }, + { + "start": 11253.38, + "end": 11254.7, + "probability": 0.8655 + }, + { + "start": 11254.88, + "end": 11255.78, + "probability": 0.86 + }, + { + "start": 11256.3, + "end": 11258.12, + "probability": 0.7505 + }, + { + "start": 11258.18, + "end": 11258.7, + "probability": 0.1852 + }, + { + "start": 11258.7, + "end": 11259.46, + "probability": 0.1067 + }, + { + "start": 11260.52, + "end": 11261.82, + "probability": 0.2542 + }, + { + "start": 11262.3, + "end": 11264.24, + "probability": 0.459 + }, + { + "start": 11264.24, + "end": 11266.54, + "probability": 0.794 + }, + { + "start": 11266.54, + "end": 11267.04, + "probability": 0.333 + }, + { + "start": 11267.36, + "end": 11270.5, + "probability": 0.5713 + }, + { + "start": 11271.04, + "end": 11273.02, + "probability": 0.7773 + }, + { + "start": 11273.2, + "end": 11278.86, + "probability": 0.9585 + }, + { + "start": 11278.94, + "end": 11280.62, + "probability": 0.7961 + }, + { + "start": 11280.78, + "end": 11281.24, + "probability": 0.166 + }, + { + "start": 11282.78, + "end": 11283.06, + "probability": 0.0693 + }, + { + "start": 11283.52, + "end": 11288.82, + "probability": 0.972 + }, + { + "start": 11289.56, + "end": 11291.16, + "probability": 0.937 + }, + { + "start": 11292.0, + "end": 11294.78, + "probability": 0.9744 + }, + { + "start": 11295.4, + "end": 11296.02, + "probability": 0.5907 + }, + { + "start": 11296.82, + "end": 11299.72, + "probability": 0.4221 + }, + { + "start": 11300.52, + "end": 11300.8, + "probability": 0.0535 + }, + { + "start": 11300.8, + "end": 11300.8, + "probability": 0.062 + }, + { + "start": 11300.8, + "end": 11300.8, + "probability": 0.0722 + }, + { + "start": 11300.8, + "end": 11300.8, + "probability": 0.4021 + }, + { + "start": 11300.8, + "end": 11301.91, + "probability": 0.9008 + }, + { + "start": 11301.98, + "end": 11302.68, + "probability": 0.2957 + }, + { + "start": 11303.02, + "end": 11304.98, + "probability": 0.8789 + }, + { + "start": 11304.98, + "end": 11305.66, + "probability": 0.566 + }, + { + "start": 11305.84, + "end": 11306.32, + "probability": 0.8485 + }, + { + "start": 11306.38, + "end": 11307.14, + "probability": 0.3224 + }, + { + "start": 11307.28, + "end": 11308.74, + "probability": 0.5123 + }, + { + "start": 11308.98, + "end": 11311.28, + "probability": 0.1379 + }, + { + "start": 11314.04, + "end": 11314.46, + "probability": 0.4194 + }, + { + "start": 11314.46, + "end": 11314.96, + "probability": 0.0352 + }, + { + "start": 11315.46, + "end": 11316.94, + "probability": 0.8115 + }, + { + "start": 11316.94, + "end": 11319.21, + "probability": 0.319 + }, + { + "start": 11319.74, + "end": 11326.38, + "probability": 0.0785 + }, + { + "start": 11326.46, + "end": 11326.46, + "probability": 0.2084 + }, + { + "start": 11326.58, + "end": 11332.3, + "probability": 0.1129 + }, + { + "start": 11332.54, + "end": 11334.97, + "probability": 0.0293 + }, + { + "start": 11338.96, + "end": 11339.14, + "probability": 0.0595 + }, + { + "start": 11340.0, + "end": 11342.0, + "probability": 0.2609 + }, + { + "start": 11343.04, + "end": 11344.92, + "probability": 0.1411 + }, + { + "start": 11345.84, + "end": 11348.12, + "probability": 0.0814 + }, + { + "start": 11348.22, + "end": 11348.22, + "probability": 0.2501 + }, + { + "start": 11348.22, + "end": 11348.4, + "probability": 0.0475 + }, + { + "start": 11348.4, + "end": 11348.4, + "probability": 0.0529 + }, + { + "start": 11348.44, + "end": 11350.12, + "probability": 0.152 + }, + { + "start": 11350.24, + "end": 11350.32, + "probability": 0.0848 + }, + { + "start": 11350.32, + "end": 11351.98, + "probability": 0.0356 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11352.0, + "end": 11352.0, + "probability": 0.0 + }, + { + "start": 11356.23, + "end": 11357.53, + "probability": 0.0487 + }, + { + "start": 11357.71, + "end": 11358.59, + "probability": 0.4252 + }, + { + "start": 11358.75, + "end": 11359.92, + "probability": 0.7944 + }, + { + "start": 11361.04, + "end": 11361.71, + "probability": 0.2076 + }, + { + "start": 11361.71, + "end": 11363.55, + "probability": 0.5907 + }, + { + "start": 11363.57, + "end": 11364.61, + "probability": 0.288 + }, + { + "start": 11364.69, + "end": 11366.01, + "probability": 0.3242 + }, + { + "start": 11366.19, + "end": 11366.19, + "probability": 0.0782 + }, + { + "start": 11366.19, + "end": 11366.19, + "probability": 0.0056 + }, + { + "start": 11366.19, + "end": 11366.19, + "probability": 0.1487 + }, + { + "start": 11366.19, + "end": 11366.19, + "probability": 0.1339 + }, + { + "start": 11366.19, + "end": 11367.52, + "probability": 0.6537 + }, + { + "start": 11367.99, + "end": 11372.39, + "probability": 0.8008 + }, + { + "start": 11373.69, + "end": 11373.93, + "probability": 0.0107 + }, + { + "start": 11373.93, + "end": 11374.33, + "probability": 0.061 + }, + { + "start": 11374.93, + "end": 11374.93, + "probability": 0.1968 + }, + { + "start": 11374.95, + "end": 11378.81, + "probability": 0.9611 + }, + { + "start": 11379.05, + "end": 11379.53, + "probability": 0.6952 + }, + { + "start": 11379.93, + "end": 11382.33, + "probability": 0.9956 + }, + { + "start": 11383.15, + "end": 11386.83, + "probability": 0.9374 + }, + { + "start": 11389.41, + "end": 11390.08, + "probability": 0.0237 + }, + { + "start": 11393.01, + "end": 11399.71, + "probability": 0.9856 + }, + { + "start": 11400.33, + "end": 11400.77, + "probability": 0.3562 + }, + { + "start": 11401.01, + "end": 11402.45, + "probability": 0.0136 + }, + { + "start": 11402.45, + "end": 11402.45, + "probability": 0.0843 + }, + { + "start": 11402.45, + "end": 11402.45, + "probability": 0.3406 + }, + { + "start": 11402.45, + "end": 11404.73, + "probability": 0.5498 + }, + { + "start": 11404.95, + "end": 11405.59, + "probability": 0.1087 + }, + { + "start": 11405.67, + "end": 11406.53, + "probability": 0.3479 + }, + { + "start": 11406.99, + "end": 11409.63, + "probability": 0.6278 + }, + { + "start": 11411.27, + "end": 11414.35, + "probability": 0.984 + }, + { + "start": 11415.51, + "end": 11415.51, + "probability": 0.2179 + }, + { + "start": 11415.51, + "end": 11416.87, + "probability": 0.7793 + }, + { + "start": 11416.93, + "end": 11420.51, + "probability": 0.8118 + }, + { + "start": 11421.13, + "end": 11426.23, + "probability": 0.9805 + }, + { + "start": 11427.99, + "end": 11435.65, + "probability": 0.0393 + }, + { + "start": 11438.89, + "end": 11439.05, + "probability": 0.1973 + }, + { + "start": 11439.73, + "end": 11441.6, + "probability": 0.069 + }, + { + "start": 11441.73, + "end": 11444.29, + "probability": 0.043 + }, + { + "start": 11444.56, + "end": 11445.26, + "probability": 0.1974 + }, + { + "start": 11450.19, + "end": 11451.63, + "probability": 0.0684 + }, + { + "start": 11451.77, + "end": 11453.67, + "probability": 0.1475 + }, + { + "start": 11453.67, + "end": 11455.55, + "probability": 0.3774 + }, + { + "start": 11455.71, + "end": 11458.01, + "probability": 0.7374 + }, + { + "start": 11460.79, + "end": 11461.75, + "probability": 0.0325 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.0, + "end": 11473.0, + "probability": 0.0 + }, + { + "start": 11473.24, + "end": 11473.78, + "probability": 0.0215 + }, + { + "start": 11473.78, + "end": 11473.78, + "probability": 0.0183 + }, + { + "start": 11473.78, + "end": 11473.78, + "probability": 0.0587 + }, + { + "start": 11473.78, + "end": 11476.66, + "probability": 0.7199 + }, + { + "start": 11477.14, + "end": 11477.32, + "probability": 0.345 + }, + { + "start": 11477.6, + "end": 11482.18, + "probability": 0.7557 + }, + { + "start": 11482.76, + "end": 11487.2, + "probability": 0.698 + }, + { + "start": 11488.0, + "end": 11488.46, + "probability": 0.0076 + }, + { + "start": 11488.46, + "end": 11488.46, + "probability": 0.1764 + }, + { + "start": 11488.46, + "end": 11488.46, + "probability": 0.1179 + }, + { + "start": 11488.46, + "end": 11490.23, + "probability": 0.281 + }, + { + "start": 11491.42, + "end": 11492.1, + "probability": 0.2182 + }, + { + "start": 11492.22, + "end": 11494.94, + "probability": 0.8978 + }, + { + "start": 11495.62, + "end": 11498.04, + "probability": 0.2901 + }, + { + "start": 11498.04, + "end": 11498.04, + "probability": 0.3017 + }, + { + "start": 11498.14, + "end": 11504.2, + "probability": 0.9396 + }, + { + "start": 11505.02, + "end": 11506.84, + "probability": 0.5398 + }, + { + "start": 11507.3, + "end": 11509.34, + "probability": 0.8199 + }, + { + "start": 11509.4, + "end": 11509.9, + "probability": 0.4416 + }, + { + "start": 11510.88, + "end": 11511.18, + "probability": 0.9108 + }, + { + "start": 11512.34, + "end": 11515.06, + "probability": 0.6298 + }, + { + "start": 11517.04, + "end": 11517.92, + "probability": 0.3293 + }, + { + "start": 11519.06, + "end": 11522.34, + "probability": 0.508 + }, + { + "start": 11523.28, + "end": 11523.36, + "probability": 0.0692 + }, + { + "start": 11524.66, + "end": 11528.0, + "probability": 0.2184 + }, + { + "start": 11530.45, + "end": 11532.5, + "probability": 0.8008 + }, + { + "start": 11534.34, + "end": 11537.99, + "probability": 0.3593 + }, + { + "start": 11539.24, + "end": 11539.7, + "probability": 0.0834 + }, + { + "start": 11539.7, + "end": 11540.08, + "probability": 0.0287 + }, + { + "start": 11540.08, + "end": 11540.08, + "probability": 0.36 + }, + { + "start": 11540.08, + "end": 11540.29, + "probability": 0.0239 + }, + { + "start": 11540.5, + "end": 11541.5, + "probability": 0.1705 + }, + { + "start": 11542.02, + "end": 11542.08, + "probability": 0.0969 + }, + { + "start": 11544.56, + "end": 11545.58, + "probability": 0.3039 + }, + { + "start": 11545.82, + "end": 11548.56, + "probability": 0.3077 + }, + { + "start": 11549.76, + "end": 11551.36, + "probability": 0.0204 + }, + { + "start": 11551.86, + "end": 11552.9, + "probability": 0.3092 + }, + { + "start": 11553.22, + "end": 11553.68, + "probability": 0.0428 + }, + { + "start": 11553.68, + "end": 11554.28, + "probability": 0.1007 + }, + { + "start": 11554.6, + "end": 11555.58, + "probability": 0.2829 + }, + { + "start": 11555.9, + "end": 11556.67, + "probability": 0.0242 + }, + { + "start": 11557.5, + "end": 11560.54, + "probability": 0.2164 + }, + { + "start": 11560.64, + "end": 11561.28, + "probability": 0.0474 + }, + { + "start": 11561.66, + "end": 11561.74, + "probability": 0.2382 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.0, + "end": 11593.0, + "probability": 0.0 + }, + { + "start": 11593.12, + "end": 11593.14, + "probability": 0.2058 + }, + { + "start": 11593.14, + "end": 11594.0, + "probability": 0.3113 + }, + { + "start": 11594.16, + "end": 11594.74, + "probability": 0.8466 + }, + { + "start": 11594.88, + "end": 11595.6, + "probability": 0.8367 + }, + { + "start": 11596.18, + "end": 11596.8, + "probability": 0.9734 + }, + { + "start": 11597.68, + "end": 11598.48, + "probability": 0.9661 + }, + { + "start": 11599.36, + "end": 11600.58, + "probability": 0.848 + }, + { + "start": 11601.24, + "end": 11602.48, + "probability": 0.9979 + }, + { + "start": 11603.32, + "end": 11604.2, + "probability": 0.7448 + }, + { + "start": 11605.22, + "end": 11607.64, + "probability": 0.9551 + }, + { + "start": 11608.86, + "end": 11611.96, + "probability": 0.9064 + }, + { + "start": 11612.48, + "end": 11613.54, + "probability": 0.7056 + }, + { + "start": 11614.08, + "end": 11616.84, + "probability": 0.9876 + }, + { + "start": 11617.6, + "end": 11619.6, + "probability": 0.7582 + }, + { + "start": 11619.92, + "end": 11620.16, + "probability": 0.3209 + }, + { + "start": 11620.72, + "end": 11621.82, + "probability": 0.5286 + }, + { + "start": 11622.68, + "end": 11627.36, + "probability": 0.9309 + }, + { + "start": 11629.02, + "end": 11629.4, + "probability": 0.9302 + }, + { + "start": 11630.1, + "end": 11632.58, + "probability": 0.9946 + }, + { + "start": 11632.62, + "end": 11633.08, + "probability": 0.8966 + }, + { + "start": 11633.12, + "end": 11633.42, + "probability": 0.6908 + }, + { + "start": 11633.62, + "end": 11635.24, + "probability": 0.9904 + }, + { + "start": 11636.44, + "end": 11639.46, + "probability": 0.9963 + }, + { + "start": 11640.16, + "end": 11641.48, + "probability": 0.9939 + }, + { + "start": 11642.4, + "end": 11643.1, + "probability": 0.8674 + }, + { + "start": 11643.82, + "end": 11646.76, + "probability": 0.9942 + }, + { + "start": 11647.46, + "end": 11648.8, + "probability": 0.9141 + }, + { + "start": 11649.66, + "end": 11651.96, + "probability": 0.8488 + }, + { + "start": 11652.32, + "end": 11653.24, + "probability": 0.8438 + }, + { + "start": 11654.38, + "end": 11654.95, + "probability": 0.9038 + }, + { + "start": 11656.02, + "end": 11656.6, + "probability": 0.5478 + }, + { + "start": 11657.73, + "end": 11659.46, + "probability": 0.9837 + }, + { + "start": 11660.86, + "end": 11662.98, + "probability": 0.9838 + }, + { + "start": 11663.88, + "end": 11665.56, + "probability": 0.8372 + }, + { + "start": 11666.24, + "end": 11666.24, + "probability": 0.1422 + }, + { + "start": 11666.54, + "end": 11667.56, + "probability": 0.9927 + }, + { + "start": 11668.52, + "end": 11672.48, + "probability": 0.8376 + }, + { + "start": 11672.86, + "end": 11676.62, + "probability": 0.883 + }, + { + "start": 11677.36, + "end": 11679.92, + "probability": 0.8259 + }, + { + "start": 11680.68, + "end": 11681.58, + "probability": 0.6548 + }, + { + "start": 11681.72, + "end": 11682.5, + "probability": 0.8749 + }, + { + "start": 11683.04, + "end": 11686.58, + "probability": 0.9722 + }, + { + "start": 11687.3, + "end": 11687.88, + "probability": 0.9678 + }, + { + "start": 11688.76, + "end": 11689.8, + "probability": 0.6171 + }, + { + "start": 11690.44, + "end": 11691.3, + "probability": 0.624 + }, + { + "start": 11692.1, + "end": 11693.44, + "probability": 0.995 + }, + { + "start": 11694.14, + "end": 11695.05, + "probability": 0.8626 + }, + { + "start": 11695.72, + "end": 11700.36, + "probability": 0.9938 + }, + { + "start": 11700.8, + "end": 11701.8, + "probability": 0.9746 + }, + { + "start": 11702.96, + "end": 11704.16, + "probability": 0.9714 + }, + { + "start": 11704.66, + "end": 11705.5, + "probability": 0.9373 + }, + { + "start": 11706.24, + "end": 11707.1, + "probability": 0.5317 + }, + { + "start": 11708.34, + "end": 11708.88, + "probability": 0.8753 + }, + { + "start": 11709.38, + "end": 11711.48, + "probability": 0.9952 + }, + { + "start": 11711.94, + "end": 11712.82, + "probability": 0.8911 + }, + { + "start": 11713.52, + "end": 11717.54, + "probability": 0.9844 + }, + { + "start": 11718.0, + "end": 11724.1, + "probability": 0.9926 + }, + { + "start": 11724.48, + "end": 11726.92, + "probability": 0.8858 + }, + { + "start": 11726.92, + "end": 11728.1, + "probability": 0.7046 + }, + { + "start": 11728.2, + "end": 11728.84, + "probability": 0.8165 + }, + { + "start": 11729.38, + "end": 11730.64, + "probability": 0.5063 + }, + { + "start": 11730.68, + "end": 11734.94, + "probability": 0.9536 + }, + { + "start": 11735.74, + "end": 11737.92, + "probability": 0.9825 + }, + { + "start": 11738.04, + "end": 11741.86, + "probability": 0.9619 + }, + { + "start": 11741.96, + "end": 11742.24, + "probability": 0.4922 + }, + { + "start": 11742.32, + "end": 11744.64, + "probability": 0.9761 + }, + { + "start": 11744.68, + "end": 11744.68, + "probability": 0.5023 + }, + { + "start": 11744.74, + "end": 11745.74, + "probability": 0.8067 + }, + { + "start": 11746.04, + "end": 11746.18, + "probability": 0.4336 + }, + { + "start": 11746.22, + "end": 11746.84, + "probability": 0.4198 + }, + { + "start": 11747.0, + "end": 11749.62, + "probability": 0.9044 + }, + { + "start": 11749.62, + "end": 11751.96, + "probability": 0.6622 + }, + { + "start": 11752.34, + "end": 11753.42, + "probability": 0.9408 + }, + { + "start": 11753.52, + "end": 11755.14, + "probability": 0.9917 + }, + { + "start": 11755.66, + "end": 11757.34, + "probability": 0.9907 + }, + { + "start": 11757.72, + "end": 11759.44, + "probability": 0.6354 + }, + { + "start": 11759.44, + "end": 11759.8, + "probability": 0.2747 + }, + { + "start": 11759.92, + "end": 11759.92, + "probability": 0.3763 + }, + { + "start": 11759.96, + "end": 11760.8, + "probability": 0.9257 + }, + { + "start": 11760.94, + "end": 11761.38, + "probability": 0.082 + }, + { + "start": 11761.52, + "end": 11762.62, + "probability": 0.9935 + }, + { + "start": 11762.78, + "end": 11765.4, + "probability": 0.957 + }, + { + "start": 11765.48, + "end": 11766.94, + "probability": 0.9966 + }, + { + "start": 11767.4, + "end": 11771.34, + "probability": 0.7198 + }, + { + "start": 11771.36, + "end": 11772.7, + "probability": 0.9839 + }, + { + "start": 11772.88, + "end": 11772.98, + "probability": 0.4358 + }, + { + "start": 11772.98, + "end": 11775.0, + "probability": 0.7946 + }, + { + "start": 11775.1, + "end": 11778.48, + "probability": 0.7242 + }, + { + "start": 11778.48, + "end": 11779.05, + "probability": 0.9666 + }, + { + "start": 11779.14, + "end": 11779.18, + "probability": 0.1674 + }, + { + "start": 11779.18, + "end": 11781.92, + "probability": 0.5806 + }, + { + "start": 11782.14, + "end": 11784.42, + "probability": 0.3619 + }, + { + "start": 11784.42, + "end": 11784.42, + "probability": 0.1133 + }, + { + "start": 11784.42, + "end": 11784.42, + "probability": 0.4592 + }, + { + "start": 11784.42, + "end": 11787.11, + "probability": 0.7098 + }, + { + "start": 11787.7, + "end": 11787.98, + "probability": 0.0078 + }, + { + "start": 11787.98, + "end": 11787.98, + "probability": 0.105 + }, + { + "start": 11787.98, + "end": 11789.18, + "probability": 0.657 + }, + { + "start": 11789.18, + "end": 11790.0, + "probability": 0.0221 + }, + { + "start": 11790.86, + "end": 11791.94, + "probability": 0.205 + }, + { + "start": 11792.04, + "end": 11792.04, + "probability": 0.3928 + }, + { + "start": 11792.1, + "end": 11793.11, + "probability": 0.4534 + }, + { + "start": 11793.48, + "end": 11796.98, + "probability": 0.9592 + }, + { + "start": 11796.98, + "end": 11799.72, + "probability": 0.9929 + }, + { + "start": 11799.92, + "end": 11803.06, + "probability": 0.9701 + }, + { + "start": 11803.06, + "end": 11805.58, + "probability": 0.9978 + }, + { + "start": 11806.12, + "end": 11807.2, + "probability": 0.9958 + }, + { + "start": 11807.32, + "end": 11808.55, + "probability": 0.9961 + }, + { + "start": 11810.18, + "end": 11811.1, + "probability": 0.2021 + }, + { + "start": 11811.34, + "end": 11811.78, + "probability": 0.7445 + }, + { + "start": 11812.3, + "end": 11812.68, + "probability": 0.7627 + }, + { + "start": 11813.26, + "end": 11815.4, + "probability": 0.9134 + }, + { + "start": 11815.64, + "end": 11815.92, + "probability": 0.7674 + }, + { + "start": 11816.04, + "end": 11816.32, + "probability": 0.75 + }, + { + "start": 11816.42, + "end": 11818.02, + "probability": 0.9898 + }, + { + "start": 11818.06, + "end": 11821.18, + "probability": 0.7227 + }, + { + "start": 11821.24, + "end": 11822.12, + "probability": 0.4373 + }, + { + "start": 11822.38, + "end": 11822.7, + "probability": 0.6434 + }, + { + "start": 11822.76, + "end": 11823.34, + "probability": 0.9268 + }, + { + "start": 11823.52, + "end": 11824.42, + "probability": 0.4468 + }, + { + "start": 11824.5, + "end": 11825.84, + "probability": 0.92 + }, + { + "start": 11825.84, + "end": 11826.92, + "probability": 0.5198 + }, + { + "start": 11826.94, + "end": 11827.42, + "probability": 0.2592 + }, + { + "start": 11827.5, + "end": 11828.62, + "probability": 0.2035 + }, + { + "start": 11830.22, + "end": 11830.22, + "probability": 0.4795 + }, + { + "start": 11830.22, + "end": 11830.26, + "probability": 0.0682 + }, + { + "start": 11830.26, + "end": 11831.18, + "probability": 0.8402 + }, + { + "start": 11831.24, + "end": 11833.04, + "probability": 0.7771 + }, + { + "start": 11833.04, + "end": 11833.86, + "probability": 0.9873 + }, + { + "start": 11834.66, + "end": 11837.64, + "probability": 0.6603 + }, + { + "start": 11838.7, + "end": 11839.08, + "probability": 0.7994 + }, + { + "start": 11839.08, + "end": 11840.52, + "probability": 0.4135 + }, + { + "start": 11840.52, + "end": 11840.52, + "probability": 0.0228 + }, + { + "start": 11840.52, + "end": 11840.94, + "probability": 0.3682 + }, + { + "start": 11841.26, + "end": 11843.12, + "probability": 0.9912 + }, + { + "start": 11843.24, + "end": 11843.64, + "probability": 0.8173 + }, + { + "start": 11844.06, + "end": 11844.1, + "probability": 0.6025 + }, + { + "start": 11844.1, + "end": 11845.3, + "probability": 0.7046 + }, + { + "start": 11845.96, + "end": 11847.26, + "probability": 0.8044 + }, + { + "start": 11847.76, + "end": 11851.5, + "probability": 0.6831 + }, + { + "start": 11851.78, + "end": 11852.1, + "probability": 0.1841 + }, + { + "start": 11857.72, + "end": 11859.14, + "probability": 0.0441 + }, + { + "start": 11861.84, + "end": 11864.5, + "probability": 0.0684 + }, + { + "start": 11866.52, + "end": 11868.78, + "probability": 0.3322 + }, + { + "start": 11869.18, + "end": 11869.94, + "probability": 0.9098 + }, + { + "start": 11870.24, + "end": 11870.68, + "probability": 0.7425 + }, + { + "start": 11871.44, + "end": 11873.18, + "probability": 0.8852 + }, + { + "start": 11873.86, + "end": 11876.72, + "probability": 0.9857 + }, + { + "start": 11877.62, + "end": 11879.2, + "probability": 0.9485 + }, + { + "start": 11880.02, + "end": 11882.31, + "probability": 0.8979 + }, + { + "start": 11883.26, + "end": 11884.36, + "probability": 0.6367 + }, + { + "start": 11884.46, + "end": 11887.68, + "probability": 0.5285 + }, + { + "start": 11887.92, + "end": 11888.64, + "probability": 0.0943 + }, + { + "start": 11888.7, + "end": 11888.7, + "probability": 0.1818 + }, + { + "start": 11888.74, + "end": 11888.74, + "probability": 0.1475 + }, + { + "start": 11888.74, + "end": 11889.5, + "probability": 0.6462 + }, + { + "start": 11890.64, + "end": 11892.76, + "probability": 0.9506 + }, + { + "start": 11894.3, + "end": 11895.8, + "probability": 0.5911 + }, + { + "start": 11896.06, + "end": 11897.92, + "probability": 0.8618 + }, + { + "start": 11899.06, + "end": 11902.14, + "probability": 0.0303 + }, + { + "start": 11902.46, + "end": 11903.28, + "probability": 0.1662 + }, + { + "start": 11903.28, + "end": 11903.78, + "probability": 0.3377 + }, + { + "start": 11904.64, + "end": 11904.92, + "probability": 0.5846 + }, + { + "start": 11904.98, + "end": 11906.28, + "probability": 0.086 + }, + { + "start": 11907.46, + "end": 11908.74, + "probability": 0.4385 + }, + { + "start": 11908.98, + "end": 11909.7, + "probability": 0.7594 + }, + { + "start": 11909.7, + "end": 11911.2, + "probability": 0.728 + }, + { + "start": 11912.82, + "end": 11913.37, + "probability": 0.9668 + }, + { + "start": 11913.78, + "end": 11919.18, + "probability": 0.9956 + }, + { + "start": 11919.22, + "end": 11920.92, + "probability": 0.8962 + }, + { + "start": 11921.02, + "end": 11926.7, + "probability": 0.988 + }, + { + "start": 11927.28, + "end": 11931.14, + "probability": 0.9984 + }, + { + "start": 11931.14, + "end": 11935.9, + "probability": 0.9945 + }, + { + "start": 11936.52, + "end": 11939.37, + "probability": 0.7913 + }, + { + "start": 11939.82, + "end": 11941.44, + "probability": 0.9657 + }, + { + "start": 11942.18, + "end": 11943.34, + "probability": 0.7699 + }, + { + "start": 11944.5, + "end": 11949.58, + "probability": 0.9741 + }, + { + "start": 11950.42, + "end": 11951.64, + "probability": 0.7639 + }, + { + "start": 11951.76, + "end": 11957.46, + "probability": 0.9898 + }, + { + "start": 11958.32, + "end": 11960.31, + "probability": 0.9658 + }, + { + "start": 11962.12, + "end": 11963.66, + "probability": 0.7806 + }, + { + "start": 11963.82, + "end": 11966.98, + "probability": 0.8766 + }, + { + "start": 11967.1, + "end": 11970.8, + "probability": 0.972 + }, + { + "start": 11971.0, + "end": 11972.02, + "probability": 0.9619 + }, + { + "start": 11973.28, + "end": 11978.1, + "probability": 0.9556 + }, + { + "start": 11978.96, + "end": 11982.86, + "probability": 0.9807 + }, + { + "start": 11983.64, + "end": 11987.34, + "probability": 0.9759 + }, + { + "start": 11987.34, + "end": 11990.8, + "probability": 0.9978 + }, + { + "start": 11991.2, + "end": 11991.72, + "probability": 0.7356 + }, + { + "start": 11991.76, + "end": 11994.9, + "probability": 0.9837 + }, + { + "start": 11995.8, + "end": 11998.92, + "probability": 0.9917 + }, + { + "start": 11999.1, + "end": 12001.08, + "probability": 0.8408 + }, + { + "start": 12001.22, + "end": 12002.64, + "probability": 0.9699 + }, + { + "start": 12003.12, + "end": 12004.24, + "probability": 0.9074 + }, + { + "start": 12006.52, + "end": 12007.7, + "probability": 0.915 + }, + { + "start": 12008.1, + "end": 12010.9, + "probability": 0.9969 + }, + { + "start": 12011.44, + "end": 12015.54, + "probability": 0.974 + }, + { + "start": 12016.02, + "end": 12019.62, + "probability": 0.9848 + }, + { + "start": 12020.48, + "end": 12025.92, + "probability": 0.8291 + }, + { + "start": 12026.4, + "end": 12027.14, + "probability": 0.8366 + }, + { + "start": 12027.48, + "end": 12031.46, + "probability": 0.5812 + }, + { + "start": 12031.96, + "end": 12033.48, + "probability": 0.6728 + }, + { + "start": 12034.02, + "end": 12034.86, + "probability": 0.6637 + }, + { + "start": 12035.34, + "end": 12035.78, + "probability": 0.7743 + }, + { + "start": 12036.0, + "end": 12039.0, + "probability": 0.5667 + }, + { + "start": 12039.3, + "end": 12042.16, + "probability": 0.9733 + }, + { + "start": 12043.2, + "end": 12043.68, + "probability": 0.5137 + }, + { + "start": 12043.68, + "end": 12045.26, + "probability": 0.5173 + }, + { + "start": 12045.4, + "end": 12047.52, + "probability": 0.9847 + }, + { + "start": 12048.18, + "end": 12054.28, + "probability": 0.9917 + }, + { + "start": 12055.2, + "end": 12057.86, + "probability": 0.8979 + }, + { + "start": 12058.32, + "end": 12063.24, + "probability": 0.7398 + }, + { + "start": 12063.92, + "end": 12069.86, + "probability": 0.9609 + }, + { + "start": 12069.86, + "end": 12073.86, + "probability": 0.9979 + }, + { + "start": 12074.22, + "end": 12076.16, + "probability": 0.8185 + }, + { + "start": 12076.24, + "end": 12076.92, + "probability": 0.5123 + }, + { + "start": 12077.28, + "end": 12081.16, + "probability": 0.6663 + }, + { + "start": 12081.78, + "end": 12084.31, + "probability": 0.9701 + }, + { + "start": 12084.72, + "end": 12086.08, + "probability": 0.9005 + }, + { + "start": 12086.48, + "end": 12092.44, + "probability": 0.9484 + }, + { + "start": 12092.82, + "end": 12094.94, + "probability": 0.9723 + }, + { + "start": 12095.94, + "end": 12098.44, + "probability": 0.9824 + }, + { + "start": 12098.94, + "end": 12103.36, + "probability": 0.9639 + }, + { + "start": 12103.66, + "end": 12104.78, + "probability": 0.8332 + }, + { + "start": 12104.98, + "end": 12105.52, + "probability": 0.769 + }, + { + "start": 12105.6, + "end": 12107.26, + "probability": 0.8517 + }, + { + "start": 12109.14, + "end": 12109.64, + "probability": 0.7084 + }, + { + "start": 12110.9, + "end": 12112.44, + "probability": 0.8201 + }, + { + "start": 12121.62, + "end": 12122.72, + "probability": 0.7867 + }, + { + "start": 12123.48, + "end": 12125.04, + "probability": 0.7021 + }, + { + "start": 12127.86, + "end": 12129.12, + "probability": 0.5898 + }, + { + "start": 12130.28, + "end": 12131.58, + "probability": 0.0213 + }, + { + "start": 12132.1, + "end": 12132.46, + "probability": 0.86 + }, + { + "start": 12133.5, + "end": 12137.78, + "probability": 0.9867 + }, + { + "start": 12139.1, + "end": 12140.48, + "probability": 0.7387 + }, + { + "start": 12140.6, + "end": 12142.9, + "probability": 0.9913 + }, + { + "start": 12143.78, + "end": 12145.04, + "probability": 0.7641 + }, + { + "start": 12146.06, + "end": 12149.46, + "probability": 0.9946 + }, + { + "start": 12150.2, + "end": 12154.78, + "probability": 0.9905 + }, + { + "start": 12155.48, + "end": 12156.46, + "probability": 0.839 + }, + { + "start": 12158.0, + "end": 12158.59, + "probability": 0.967 + }, + { + "start": 12159.52, + "end": 12160.78, + "probability": 0.968 + }, + { + "start": 12161.12, + "end": 12163.7, + "probability": 0.992 + }, + { + "start": 12164.44, + "end": 12164.78, + "probability": 0.9316 + }, + { + "start": 12165.98, + "end": 12166.8, + "probability": 0.9769 + }, + { + "start": 12167.4, + "end": 12168.9, + "probability": 0.7629 + }, + { + "start": 12169.68, + "end": 12172.96, + "probability": 0.9902 + }, + { + "start": 12174.06, + "end": 12178.32, + "probability": 0.9589 + }, + { + "start": 12178.9, + "end": 12184.12, + "probability": 0.8305 + }, + { + "start": 12185.74, + "end": 12186.16, + "probability": 0.999 + }, + { + "start": 12186.96, + "end": 12189.72, + "probability": 0.9764 + }, + { + "start": 12190.24, + "end": 12192.08, + "probability": 0.988 + }, + { + "start": 12192.4, + "end": 12194.96, + "probability": 0.2857 + }, + { + "start": 12196.1, + "end": 12197.2, + "probability": 0.2414 + }, + { + "start": 12197.46, + "end": 12198.2, + "probability": 0.2591 + }, + { + "start": 12198.82, + "end": 12198.96, + "probability": 0.3684 + }, + { + "start": 12199.6, + "end": 12200.14, + "probability": 0.7742 + }, + { + "start": 12200.14, + "end": 12200.52, + "probability": 0.7392 + }, + { + "start": 12200.52, + "end": 12200.64, + "probability": 0.3802 + }, + { + "start": 12200.94, + "end": 12204.52, + "probability": 0.9696 + }, + { + "start": 12204.62, + "end": 12206.44, + "probability": 0.8851 + }, + { + "start": 12206.82, + "end": 12206.84, + "probability": 0.0052 + }, + { + "start": 12206.84, + "end": 12207.11, + "probability": 0.2308 + }, + { + "start": 12207.44, + "end": 12208.12, + "probability": 0.5876 + }, + { + "start": 12208.38, + "end": 12211.68, + "probability": 0.9863 + }, + { + "start": 12211.82, + "end": 12212.74, + "probability": 0.9082 + }, + { + "start": 12213.36, + "end": 12214.06, + "probability": 0.8541 + }, + { + "start": 12214.44, + "end": 12215.92, + "probability": 0.8296 + }, + { + "start": 12216.08, + "end": 12216.9, + "probability": 0.7404 + }, + { + "start": 12217.32, + "end": 12218.76, + "probability": 0.6745 + }, + { + "start": 12218.84, + "end": 12220.0, + "probability": 0.7515 + }, + { + "start": 12220.68, + "end": 12223.72, + "probability": 0.9658 + }, + { + "start": 12224.28, + "end": 12225.22, + "probability": 0.6005 + }, + { + "start": 12225.4, + "end": 12225.58, + "probability": 0.4565 + }, + { + "start": 12225.78, + "end": 12226.2, + "probability": 0.9576 + }, + { + "start": 12226.26, + "end": 12226.56, + "probability": 0.972 + }, + { + "start": 12226.62, + "end": 12227.06, + "probability": 0.9642 + }, + { + "start": 12227.14, + "end": 12227.98, + "probability": 0.933 + }, + { + "start": 12228.36, + "end": 12229.98, + "probability": 0.9776 + }, + { + "start": 12230.62, + "end": 12232.28, + "probability": 0.9604 + }, + { + "start": 12232.72, + "end": 12233.8, + "probability": 0.9891 + }, + { + "start": 12233.9, + "end": 12234.3, + "probability": 0.9769 + }, + { + "start": 12234.42, + "end": 12235.2, + "probability": 0.9084 + }, + { + "start": 12235.88, + "end": 12238.24, + "probability": 0.9246 + }, + { + "start": 12238.88, + "end": 12241.28, + "probability": 0.9338 + }, + { + "start": 12242.26, + "end": 12243.64, + "probability": 0.9794 + }, + { + "start": 12243.68, + "end": 12245.6, + "probability": 0.8572 + }, + { + "start": 12246.2, + "end": 12249.18, + "probability": 0.8817 + }, + { + "start": 12249.72, + "end": 12252.18, + "probability": 0.6986 + }, + { + "start": 12252.88, + "end": 12255.16, + "probability": 0.9348 + }, + { + "start": 12255.88, + "end": 12257.12, + "probability": 0.9341 + }, + { + "start": 12257.86, + "end": 12260.56, + "probability": 0.8256 + }, + { + "start": 12261.34, + "end": 12261.74, + "probability": 0.8367 + }, + { + "start": 12261.9, + "end": 12264.1, + "probability": 0.9542 + }, + { + "start": 12264.12, + "end": 12266.44, + "probability": 0.9715 + }, + { + "start": 12267.26, + "end": 12267.9, + "probability": 0.9744 + }, + { + "start": 12268.52, + "end": 12271.9, + "probability": 0.9954 + }, + { + "start": 12272.46, + "end": 12273.32, + "probability": 0.6497 + }, + { + "start": 12273.4, + "end": 12277.96, + "probability": 0.8826 + }, + { + "start": 12279.58, + "end": 12281.22, + "probability": 0.9036 + }, + { + "start": 12281.92, + "end": 12285.86, + "probability": 0.9374 + }, + { + "start": 12285.86, + "end": 12289.74, + "probability": 0.9438 + }, + { + "start": 12290.82, + "end": 12292.64, + "probability": 0.8671 + }, + { + "start": 12293.5, + "end": 12295.54, + "probability": 0.9768 + }, + { + "start": 12296.28, + "end": 12297.98, + "probability": 0.5128 + }, + { + "start": 12298.52, + "end": 12299.92, + "probability": 0.9533 + }, + { + "start": 12300.62, + "end": 12303.34, + "probability": 0.7637 + }, + { + "start": 12303.88, + "end": 12305.38, + "probability": 0.5899 + }, + { + "start": 12305.9, + "end": 12309.88, + "probability": 0.8734 + }, + { + "start": 12310.12, + "end": 12310.12, + "probability": 0.1236 + }, + { + "start": 12310.4, + "end": 12311.54, + "probability": 0.6988 + }, + { + "start": 12312.2, + "end": 12316.32, + "probability": 0.9711 + }, + { + "start": 12316.98, + "end": 12319.0, + "probability": 0.7995 + }, + { + "start": 12319.74, + "end": 12320.48, + "probability": 0.6216 + }, + { + "start": 12320.98, + "end": 12321.52, + "probability": 0.7574 + }, + { + "start": 12323.38, + "end": 12325.0, + "probability": 0.8664 + }, + { + "start": 12337.44, + "end": 12338.78, + "probability": 0.7953 + }, + { + "start": 12340.96, + "end": 12341.8, + "probability": 0.5702 + }, + { + "start": 12341.92, + "end": 12345.14, + "probability": 0.8717 + }, + { + "start": 12346.8, + "end": 12351.1, + "probability": 0.9868 + }, + { + "start": 12351.38, + "end": 12353.46, + "probability": 0.9958 + }, + { + "start": 12354.0, + "end": 12357.64, + "probability": 0.9987 + }, + { + "start": 12357.64, + "end": 12360.28, + "probability": 0.9995 + }, + { + "start": 12361.36, + "end": 12363.98, + "probability": 0.7739 + }, + { + "start": 12364.81, + "end": 12371.66, + "probability": 0.9974 + }, + { + "start": 12372.7, + "end": 12378.58, + "probability": 0.9955 + }, + { + "start": 12378.72, + "end": 12380.26, + "probability": 0.9993 + }, + { + "start": 12381.04, + "end": 12387.6, + "probability": 0.9885 + }, + { + "start": 12388.92, + "end": 12390.56, + "probability": 0.7173 + }, + { + "start": 12391.56, + "end": 12394.84, + "probability": 0.9924 + }, + { + "start": 12395.32, + "end": 12396.14, + "probability": 0.5766 + }, + { + "start": 12396.86, + "end": 12400.12, + "probability": 0.9585 + }, + { + "start": 12400.46, + "end": 12404.52, + "probability": 0.9665 + }, + { + "start": 12405.22, + "end": 12406.06, + "probability": 0.6729 + }, + { + "start": 12406.84, + "end": 12408.02, + "probability": 0.9607 + }, + { + "start": 12408.88, + "end": 12412.3, + "probability": 0.9731 + }, + { + "start": 12412.96, + "end": 12415.7, + "probability": 0.0089 + }, + { + "start": 12415.7, + "end": 12417.62, + "probability": 0.1397 + }, + { + "start": 12422.12, + "end": 12423.4, + "probability": 0.3852 + }, + { + "start": 12423.54, + "end": 12424.44, + "probability": 0.3125 + }, + { + "start": 12425.26, + "end": 12426.62, + "probability": 0.9363 + }, + { + "start": 12427.66, + "end": 12428.98, + "probability": 0.9363 + }, + { + "start": 12429.12, + "end": 12430.0, + "probability": 0.9155 + }, + { + "start": 12430.34, + "end": 12431.14, + "probability": 0.3769 + }, + { + "start": 12431.22, + "end": 12433.06, + "probability": 0.9759 + }, + { + "start": 12433.68, + "end": 12433.84, + "probability": 0.7597 + }, + { + "start": 12433.84, + "end": 12434.32, + "probability": 0.9255 + }, + { + "start": 12434.66, + "end": 12436.8, + "probability": 0.4584 + }, + { + "start": 12438.06, + "end": 12438.84, + "probability": 0.0945 + }, + { + "start": 12439.04, + "end": 12440.82, + "probability": 0.9869 + }, + { + "start": 12441.42, + "end": 12441.74, + "probability": 0.3364 + }, + { + "start": 12443.04, + "end": 12445.8, + "probability": 0.9824 + }, + { + "start": 12445.92, + "end": 12446.54, + "probability": 0.3597 + }, + { + "start": 12447.24, + "end": 12448.0, + "probability": 0.396 + }, + { + "start": 12448.0, + "end": 12450.22, + "probability": 0.9564 + }, + { + "start": 12450.92, + "end": 12451.02, + "probability": 0.0028 + }, + { + "start": 12454.74, + "end": 12455.36, + "probability": 0.0561 + }, + { + "start": 12455.36, + "end": 12455.6, + "probability": 0.2397 + }, + { + "start": 12456.26, + "end": 12456.6, + "probability": 0.1368 + }, + { + "start": 12456.6, + "end": 12456.78, + "probability": 0.0766 + }, + { + "start": 12457.44, + "end": 12458.24, + "probability": 0.0195 + }, + { + "start": 12458.24, + "end": 12460.3, + "probability": 0.0521 + }, + { + "start": 12460.6, + "end": 12460.76, + "probability": 0.2415 + }, + { + "start": 12460.76, + "end": 12462.38, + "probability": 0.2245 + }, + { + "start": 12464.22, + "end": 12465.26, + "probability": 0.1242 + }, + { + "start": 12467.1, + "end": 12468.22, + "probability": 0.1474 + }, + { + "start": 12468.73, + "end": 12470.74, + "probability": 0.1331 + }, + { + "start": 12470.9, + "end": 12471.72, + "probability": 0.028 + }, + { + "start": 12471.98, + "end": 12472.1, + "probability": 0.4195 + }, + { + "start": 12472.1, + "end": 12474.4, + "probability": 0.0749 + }, + { + "start": 12474.6, + "end": 12474.6, + "probability": 0.2736 + }, + { + "start": 12475.62, + "end": 12476.22, + "probability": 0.012 + }, + { + "start": 12476.72, + "end": 12476.72, + "probability": 0.028 + }, + { + "start": 12477.34, + "end": 12481.22, + "probability": 0.0818 + }, + { + "start": 12481.26, + "end": 12486.14, + "probability": 0.2401 + }, + { + "start": 12486.75, + "end": 12488.16, + "probability": 0.0509 + }, + { + "start": 12488.74, + "end": 12488.84, + "probability": 0.1176 + }, + { + "start": 12490.04, + "end": 12492.43, + "probability": 0.108 + }, + { + "start": 12492.84, + "end": 12493.7, + "probability": 0.0862 + }, + { + "start": 12493.94, + "end": 12495.28, + "probability": 0.3873 + }, + { + "start": 12497.56, + "end": 12498.28, + "probability": 0.3155 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.0, + "end": 12520.0, + "probability": 0.0 + }, + { + "start": 12520.14, + "end": 12520.2, + "probability": 0.0178 + }, + { + "start": 12520.2, + "end": 12522.7, + "probability": 0.0946 + }, + { + "start": 12522.7, + "end": 12522.7, + "probability": 0.028 + }, + { + "start": 12523.58, + "end": 12525.36, + "probability": 0.0069 + }, + { + "start": 12531.72, + "end": 12533.12, + "probability": 0.0093 + }, + { + "start": 12533.12, + "end": 12534.7, + "probability": 0.0018 + }, + { + "start": 12545.46, + "end": 12548.02, + "probability": 0.0719 + }, + { + "start": 12548.14, + "end": 12552.02, + "probability": 0.023 + }, + { + "start": 12552.32, + "end": 12552.94, + "probability": 0.0327 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12641.0, + "end": 12641.0, + "probability": 0.0 + }, + { + "start": 12650.5, + "end": 12650.5, + "probability": 0.4544 + }, + { + "start": 12650.5, + "end": 12650.5, + "probability": 0.0482 + }, + { + "start": 12650.5, + "end": 12650.5, + "probability": 0.23 + }, + { + "start": 12650.5, + "end": 12650.68, + "probability": 0.069 + }, + { + "start": 12667.62, + "end": 12672.76, + "probability": 0.5816 + }, + { + "start": 12673.5, + "end": 12677.8, + "probability": 0.9878 + }, + { + "start": 12679.08, + "end": 12681.42, + "probability": 0.9514 + }, + { + "start": 12681.86, + "end": 12685.54, + "probability": 0.9751 + }, + { + "start": 12686.88, + "end": 12689.06, + "probability": 0.9761 + }, + { + "start": 12689.92, + "end": 12693.1, + "probability": 0.8289 + }, + { + "start": 12694.72, + "end": 12697.2, + "probability": 0.865 + }, + { + "start": 12697.82, + "end": 12698.64, + "probability": 0.7585 + }, + { + "start": 12699.26, + "end": 12701.04, + "probability": 0.9059 + }, + { + "start": 12702.08, + "end": 12703.6, + "probability": 0.7264 + }, + { + "start": 12704.42, + "end": 12707.04, + "probability": 0.9448 + }, + { + "start": 12708.28, + "end": 12712.54, + "probability": 0.9089 + }, + { + "start": 12712.58, + "end": 12716.08, + "probability": 0.7564 + }, + { + "start": 12717.07, + "end": 12718.9, + "probability": 0.9855 + }, + { + "start": 12720.08, + "end": 12722.88, + "probability": 0.9308 + }, + { + "start": 12723.76, + "end": 12728.82, + "probability": 0.9312 + }, + { + "start": 12729.36, + "end": 12731.22, + "probability": 0.8551 + }, + { + "start": 12731.36, + "end": 12732.42, + "probability": 0.947 + }, + { + "start": 12733.3, + "end": 12734.76, + "probability": 0.8799 + }, + { + "start": 12736.24, + "end": 12738.02, + "probability": 0.8759 + }, + { + "start": 12738.4, + "end": 12741.1, + "probability": 0.9951 + }, + { + "start": 12741.86, + "end": 12742.5, + "probability": 0.9549 + }, + { + "start": 12743.1, + "end": 12746.6, + "probability": 0.991 + }, + { + "start": 12746.76, + "end": 12748.4, + "probability": 0.9917 + }, + { + "start": 12749.44, + "end": 12751.74, + "probability": 0.8645 + }, + { + "start": 12753.46, + "end": 12755.26, + "probability": 0.9871 + }, + { + "start": 12756.06, + "end": 12761.38, + "probability": 0.9246 + }, + { + "start": 12761.56, + "end": 12763.68, + "probability": 0.9337 + }, + { + "start": 12764.5, + "end": 12766.8, + "probability": 0.9886 + }, + { + "start": 12766.8, + "end": 12769.46, + "probability": 0.9788 + }, + { + "start": 12770.0, + "end": 12770.32, + "probability": 0.6828 + }, + { + "start": 12771.98, + "end": 12774.66, + "probability": 0.8172 + }, + { + "start": 12774.66, + "end": 12778.5, + "probability": 0.9262 + }, + { + "start": 12778.52, + "end": 12779.28, + "probability": 0.3888 + }, + { + "start": 12780.22, + "end": 12780.58, + "probability": 0.6316 + }, + { + "start": 12781.2, + "end": 12781.34, + "probability": 0.8173 + }, + { + "start": 12782.3, + "end": 12782.7, + "probability": 0.6125 + }, + { + "start": 12783.66, + "end": 12786.12, + "probability": 0.9927 + }, + { + "start": 12814.08, + "end": 12814.24, + "probability": 0.0146 + }, + { + "start": 12814.24, + "end": 12814.24, + "probability": 0.0506 + }, + { + "start": 12814.24, + "end": 12816.1, + "probability": 0.6858 + }, + { + "start": 12817.72, + "end": 12818.56, + "probability": 0.6374 + }, + { + "start": 12818.84, + "end": 12820.34, + "probability": 0.658 + }, + { + "start": 12820.4, + "end": 12824.16, + "probability": 0.6361 + }, + { + "start": 12835.98, + "end": 12836.78, + "probability": 0.0704 + }, + { + "start": 12836.78, + "end": 12836.78, + "probability": 0.3 + }, + { + "start": 12836.78, + "end": 12837.4, + "probability": 0.1409 + }, + { + "start": 12839.62, + "end": 12841.66, + "probability": 0.7524 + }, + { + "start": 12842.34, + "end": 12847.54, + "probability": 0.9802 + }, + { + "start": 12848.36, + "end": 12851.98, + "probability": 0.9959 + }, + { + "start": 12852.5, + "end": 12853.4, + "probability": 0.8498 + }, + { + "start": 12853.5, + "end": 12856.0, + "probability": 0.905 + }, + { + "start": 12856.16, + "end": 12857.14, + "probability": 0.984 + }, + { + "start": 12857.44, + "end": 12858.36, + "probability": 0.6124 + }, + { + "start": 12858.88, + "end": 12860.26, + "probability": 0.7497 + }, + { + "start": 12861.1, + "end": 12863.42, + "probability": 0.9946 + }, + { + "start": 12863.84, + "end": 12867.14, + "probability": 0.981 + }, + { + "start": 12867.88, + "end": 12871.18, + "probability": 0.9579 + }, + { + "start": 12871.74, + "end": 12875.0, + "probability": 0.9678 + }, + { + "start": 12875.64, + "end": 12877.84, + "probability": 0.9978 + }, + { + "start": 12878.4, + "end": 12882.24, + "probability": 0.9973 + }, + { + "start": 12883.18, + "end": 12884.88, + "probability": 0.996 + }, + { + "start": 12884.98, + "end": 12886.32, + "probability": 0.9073 + }, + { + "start": 12887.62, + "end": 12891.42, + "probability": 0.9937 + }, + { + "start": 12892.14, + "end": 12894.16, + "probability": 0.9803 + }, + { + "start": 12894.8, + "end": 12897.32, + "probability": 0.9775 + }, + { + "start": 12897.76, + "end": 12900.28, + "probability": 0.9984 + }, + { + "start": 12900.28, + "end": 12903.1, + "probability": 0.999 + }, + { + "start": 12903.84, + "end": 12905.06, + "probability": 0.8081 + }, + { + "start": 12905.54, + "end": 12907.28, + "probability": 0.9956 + }, + { + "start": 12907.96, + "end": 12909.72, + "probability": 0.9941 + }, + { + "start": 12910.54, + "end": 12912.22, + "probability": 0.9969 + }, + { + "start": 12912.82, + "end": 12915.0, + "probability": 0.9984 + }, + { + "start": 12915.76, + "end": 12917.7, + "probability": 0.9988 + }, + { + "start": 12918.36, + "end": 12919.76, + "probability": 0.9987 + }, + { + "start": 12920.48, + "end": 12921.88, + "probability": 0.999 + }, + { + "start": 12922.74, + "end": 12925.4, + "probability": 0.9989 + }, + { + "start": 12925.98, + "end": 12926.58, + "probability": 0.5657 + }, + { + "start": 12927.14, + "end": 12928.44, + "probability": 0.9958 + }, + { + "start": 12929.38, + "end": 12932.42, + "probability": 0.9043 + }, + { + "start": 12932.92, + "end": 12933.78, + "probability": 0.7511 + }, + { + "start": 12934.52, + "end": 12938.72, + "probability": 0.9723 + }, + { + "start": 12939.1, + "end": 12941.6, + "probability": 0.9512 + }, + { + "start": 12942.42, + "end": 12946.1, + "probability": 0.9953 + }, + { + "start": 12946.1, + "end": 12950.06, + "probability": 0.9977 + }, + { + "start": 12950.38, + "end": 12951.56, + "probability": 0.9352 + }, + { + "start": 12952.02, + "end": 12953.94, + "probability": 0.9437 + }, + { + "start": 12954.58, + "end": 12958.32, + "probability": 0.9989 + }, + { + "start": 12958.32, + "end": 12961.84, + "probability": 0.7615 + }, + { + "start": 12962.3, + "end": 12965.58, + "probability": 0.8886 + }, + { + "start": 12966.38, + "end": 12973.34, + "probability": 0.9731 + }, + { + "start": 12974.56, + "end": 12975.02, + "probability": 0.8854 + }, + { + "start": 12976.3, + "end": 12977.58, + "probability": 0.611 + }, + { + "start": 12980.9, + "end": 12983.82, + "probability": 0.8318 + }, + { + "start": 12983.88, + "end": 12986.62, + "probability": 0.7949 + }, + { + "start": 13001.4, + "end": 13001.46, + "probability": 0.3825 + }, + { + "start": 13001.46, + "end": 13002.28, + "probability": 0.7603 + }, + { + "start": 13003.0, + "end": 13004.16, + "probability": 0.6282 + }, + { + "start": 13004.44, + "end": 13006.02, + "probability": 0.6046 + }, + { + "start": 13007.3, + "end": 13010.18, + "probability": 0.9616 + }, + { + "start": 13010.18, + "end": 13014.0, + "probability": 0.9852 + }, + { + "start": 13014.98, + "end": 13017.48, + "probability": 0.714 + }, + { + "start": 13018.64, + "end": 13020.64, + "probability": 0.7657 + }, + { + "start": 13020.84, + "end": 13023.22, + "probability": 0.9954 + }, + { + "start": 13023.6, + "end": 13024.98, + "probability": 0.9835 + }, + { + "start": 13025.08, + "end": 13028.86, + "probability": 0.9697 + }, + { + "start": 13029.46, + "end": 13031.62, + "probability": 0.9908 + }, + { + "start": 13032.22, + "end": 13036.24, + "probability": 0.9965 + }, + { + "start": 13037.3, + "end": 13039.18, + "probability": 0.995 + }, + { + "start": 13039.42, + "end": 13042.34, + "probability": 0.9927 + }, + { + "start": 13043.16, + "end": 13045.84, + "probability": 0.9975 + }, + { + "start": 13045.92, + "end": 13050.68, + "probability": 0.9907 + }, + { + "start": 13050.86, + "end": 13052.48, + "probability": 0.9081 + }, + { + "start": 13053.42, + "end": 13056.08, + "probability": 0.991 + }, + { + "start": 13056.7, + "end": 13058.84, + "probability": 0.934 + }, + { + "start": 13059.28, + "end": 13059.98, + "probability": 0.9895 + }, + { + "start": 13060.14, + "end": 13060.74, + "probability": 0.9912 + }, + { + "start": 13061.0, + "end": 13061.54, + "probability": 0.4663 + }, + { + "start": 13062.04, + "end": 13062.48, + "probability": 0.754 + }, + { + "start": 13062.54, + "end": 13063.74, + "probability": 0.5862 + }, + { + "start": 13064.7, + "end": 13067.92, + "probability": 0.984 + }, + { + "start": 13068.68, + "end": 13071.3, + "probability": 0.988 + }, + { + "start": 13071.86, + "end": 13073.9, + "probability": 0.9904 + }, + { + "start": 13074.06, + "end": 13075.6, + "probability": 0.9957 + }, + { + "start": 13076.2, + "end": 13077.5, + "probability": 0.5041 + }, + { + "start": 13078.08, + "end": 13081.26, + "probability": 0.9727 + }, + { + "start": 13081.26, + "end": 13084.76, + "probability": 0.9924 + }, + { + "start": 13085.54, + "end": 13088.82, + "probability": 0.9601 + }, + { + "start": 13089.5, + "end": 13094.92, + "probability": 0.9906 + }, + { + "start": 13095.64, + "end": 13097.35, + "probability": 0.9888 + }, + { + "start": 13097.92, + "end": 13101.88, + "probability": 0.9984 + }, + { + "start": 13103.1, + "end": 13105.94, + "probability": 0.9109 + }, + { + "start": 13107.2, + "end": 13110.24, + "probability": 0.9966 + }, + { + "start": 13110.68, + "end": 13113.36, + "probability": 0.9947 + }, + { + "start": 13114.3, + "end": 13116.62, + "probability": 0.9457 + }, + { + "start": 13117.26, + "end": 13121.9, + "probability": 0.9844 + }, + { + "start": 13122.44, + "end": 13125.52, + "probability": 0.9963 + }, + { + "start": 13126.62, + "end": 13129.72, + "probability": 0.9893 + }, + { + "start": 13129.72, + "end": 13134.28, + "probability": 0.9969 + }, + { + "start": 13134.56, + "end": 13135.16, + "probability": 0.4644 + }, + { + "start": 13135.2, + "end": 13136.42, + "probability": 0.9897 + }, + { + "start": 13137.56, + "end": 13142.82, + "probability": 0.9753 + }, + { + "start": 13143.14, + "end": 13145.14, + "probability": 0.9648 + }, + { + "start": 13146.16, + "end": 13149.22, + "probability": 0.9854 + }, + { + "start": 13150.12, + "end": 13154.16, + "probability": 0.9948 + }, + { + "start": 13154.16, + "end": 13158.34, + "probability": 0.9881 + }, + { + "start": 13158.66, + "end": 13159.92, + "probability": 0.7628 + }, + { + "start": 13160.76, + "end": 13161.26, + "probability": 0.717 + }, + { + "start": 13161.82, + "end": 13163.34, + "probability": 0.9873 + }, + { + "start": 13163.78, + "end": 13164.46, + "probability": 0.8848 + }, + { + "start": 13165.1, + "end": 13165.88, + "probability": 0.8984 + }, + { + "start": 13166.32, + "end": 13171.4, + "probability": 0.9767 + }, + { + "start": 13172.56, + "end": 13176.82, + "probability": 0.9919 + }, + { + "start": 13176.82, + "end": 13181.08, + "probability": 0.9973 + }, + { + "start": 13182.06, + "end": 13184.36, + "probability": 0.9951 + }, + { + "start": 13184.62, + "end": 13185.02, + "probability": 0.4975 + }, + { + "start": 13185.1, + "end": 13187.22, + "probability": 0.9997 + }, + { + "start": 13187.92, + "end": 13191.76, + "probability": 0.9697 + }, + { + "start": 13192.26, + "end": 13195.22, + "probability": 0.9794 + }, + { + "start": 13195.86, + "end": 13198.38, + "probability": 0.9976 + }, + { + "start": 13198.78, + "end": 13202.26, + "probability": 0.9621 + }, + { + "start": 13202.74, + "end": 13202.74, + "probability": 0.1471 + }, + { + "start": 13202.96, + "end": 13208.12, + "probability": 0.9987 + }, + { + "start": 13208.16, + "end": 13209.78, + "probability": 0.9709 + }, + { + "start": 13210.46, + "end": 13216.18, + "probability": 0.9827 + }, + { + "start": 13216.18, + "end": 13222.2, + "probability": 0.9878 + }, + { + "start": 13222.38, + "end": 13222.84, + "probability": 0.7139 + }, + { + "start": 13224.22, + "end": 13224.28, + "probability": 0.4227 + }, + { + "start": 13224.28, + "end": 13225.92, + "probability": 0.8637 + }, + { + "start": 13234.32, + "end": 13235.04, + "probability": 0.1415 + }, + { + "start": 13235.31, + "end": 13235.54, + "probability": 0.065 + }, + { + "start": 13240.92, + "end": 13241.76, + "probability": 0.0289 + }, + { + "start": 13248.06, + "end": 13249.26, + "probability": 0.1869 + }, + { + "start": 13250.06, + "end": 13251.29, + "probability": 0.018 + }, + { + "start": 13252.78, + "end": 13253.56, + "probability": 0.0184 + }, + { + "start": 13254.2, + "end": 13255.62, + "probability": 0.073 + }, + { + "start": 13258.12, + "end": 13258.12, + "probability": 0.2374 + }, + { + "start": 13258.14, + "end": 13259.02, + "probability": 0.1439 + }, + { + "start": 13266.86, + "end": 13267.56, + "probability": 0.2627 + }, + { + "start": 13269.64, + "end": 13270.2, + "probability": 0.0927 + }, + { + "start": 13271.9, + "end": 13272.36, + "probability": 0.0178 + }, + { + "start": 13304.52, + "end": 13305.4, + "probability": 0.4597 + }, + { + "start": 13306.72, + "end": 13307.34, + "probability": 0.5536 + }, + { + "start": 13307.88, + "end": 13308.98, + "probability": 0.9702 + }, + { + "start": 13309.52, + "end": 13312.26, + "probability": 0.9604 + }, + { + "start": 13314.14, + "end": 13316.47, + "probability": 0.9937 + }, + { + "start": 13317.36, + "end": 13318.06, + "probability": 0.8523 + }, + { + "start": 13319.42, + "end": 13321.02, + "probability": 0.9691 + }, + { + "start": 13322.02, + "end": 13324.14, + "probability": 0.8193 + }, + { + "start": 13324.92, + "end": 13326.1, + "probability": 0.9996 + }, + { + "start": 13327.22, + "end": 13329.98, + "probability": 0.876 + }, + { + "start": 13330.74, + "end": 13335.14, + "probability": 0.8731 + }, + { + "start": 13335.42, + "end": 13339.6, + "probability": 0.9641 + }, + { + "start": 13340.1, + "end": 13340.62, + "probability": 0.9144 + }, + { + "start": 13340.68, + "end": 13341.24, + "probability": 0.954 + }, + { + "start": 13341.4, + "end": 13342.42, + "probability": 0.9658 + }, + { + "start": 13342.54, + "end": 13345.26, + "probability": 0.3919 + }, + { + "start": 13345.44, + "end": 13346.98, + "probability": 0.8867 + }, + { + "start": 13348.08, + "end": 13349.32, + "probability": 0.9749 + }, + { + "start": 13352.6, + "end": 13355.6, + "probability": 0.9984 + }, + { + "start": 13356.86, + "end": 13358.94, + "probability": 0.9939 + }, + { + "start": 13359.94, + "end": 13361.26, + "probability": 0.9911 + }, + { + "start": 13362.46, + "end": 13363.78, + "probability": 0.7506 + }, + { + "start": 13366.62, + "end": 13369.32, + "probability": 0.9959 + }, + { + "start": 13369.4, + "end": 13371.12, + "probability": 0.9489 + }, + { + "start": 13371.28, + "end": 13372.6, + "probability": 0.9938 + }, + { + "start": 13373.04, + "end": 13374.1, + "probability": 0.9526 + }, + { + "start": 13375.58, + "end": 13378.46, + "probability": 0.9049 + }, + { + "start": 13380.48, + "end": 13382.88, + "probability": 0.6364 + }, + { + "start": 13384.06, + "end": 13384.9, + "probability": 0.8102 + }, + { + "start": 13386.66, + "end": 13389.14, + "probability": 0.9443 + }, + { + "start": 13390.8, + "end": 13391.72, + "probability": 0.9912 + }, + { + "start": 13391.8, + "end": 13393.54, + "probability": 0.5763 + }, + { + "start": 13394.9, + "end": 13395.6, + "probability": 0.9922 + }, + { + "start": 13397.58, + "end": 13398.84, + "probability": 0.8561 + }, + { + "start": 13399.0, + "end": 13400.14, + "probability": 0.5306 + }, + { + "start": 13400.28, + "end": 13400.76, + "probability": 0.1209 + }, + { + "start": 13401.39, + "end": 13403.86, + "probability": 0.7986 + }, + { + "start": 13405.28, + "end": 13405.76, + "probability": 0.9795 + }, + { + "start": 13406.73, + "end": 13410.06, + "probability": 0.3911 + }, + { + "start": 13410.6, + "end": 13412.04, + "probability": 0.4079 + }, + { + "start": 13412.12, + "end": 13412.18, + "probability": 0.5042 + }, + { + "start": 13412.3, + "end": 13413.5, + "probability": 0.8013 + }, + { + "start": 13413.8, + "end": 13415.24, + "probability": 0.8696 + }, + { + "start": 13415.44, + "end": 13416.04, + "probability": 0.2647 + }, + { + "start": 13416.1, + "end": 13416.74, + "probability": 0.2778 + }, + { + "start": 13416.76, + "end": 13417.36, + "probability": 0.7747 + }, + { + "start": 13417.38, + "end": 13417.48, + "probability": 0.6172 + }, + { + "start": 13417.76, + "end": 13419.62, + "probability": 0.8349 + }, + { + "start": 13419.98, + "end": 13422.54, + "probability": 0.9223 + }, + { + "start": 13423.34, + "end": 13426.2, + "probability": 0.9208 + }, + { + "start": 13426.92, + "end": 13429.28, + "probability": 0.9976 + }, + { + "start": 13430.64, + "end": 13433.9, + "probability": 0.9954 + }, + { + "start": 13434.62, + "end": 13438.2, + "probability": 0.9922 + }, + { + "start": 13439.82, + "end": 13440.26, + "probability": 0.9627 + }, + { + "start": 13441.18, + "end": 13442.32, + "probability": 0.66 + }, + { + "start": 13444.22, + "end": 13446.62, + "probability": 0.6785 + }, + { + "start": 13446.68, + "end": 13448.3, + "probability": 0.9551 + }, + { + "start": 13448.32, + "end": 13448.42, + "probability": 0.284 + }, + { + "start": 13448.42, + "end": 13449.12, + "probability": 0.6782 + }, + { + "start": 13450.28, + "end": 13452.04, + "probability": 0.9302 + }, + { + "start": 13452.7, + "end": 13454.74, + "probability": 0.8471 + }, + { + "start": 13455.18, + "end": 13459.36, + "probability": 0.804 + }, + { + "start": 13461.18, + "end": 13465.82, + "probability": 0.8825 + }, + { + "start": 13466.66, + "end": 13468.54, + "probability": 0.6934 + }, + { + "start": 13470.04, + "end": 13472.9, + "probability": 0.995 + }, + { + "start": 13473.1, + "end": 13473.1, + "probability": 0.411 + }, + { + "start": 13473.1, + "end": 13473.76, + "probability": 0.768 + }, + { + "start": 13475.18, + "end": 13477.3, + "probability": 0.9349 + }, + { + "start": 13479.44, + "end": 13481.6, + "probability": 0.8532 + }, + { + "start": 13482.34, + "end": 13482.44, + "probability": 0.269 + }, + { + "start": 13482.44, + "end": 13483.03, + "probability": 0.8449 + }, + { + "start": 13484.0, + "end": 13485.52, + "probability": 0.9612 + }, + { + "start": 13487.02, + "end": 13488.12, + "probability": 0.9111 + }, + { + "start": 13489.32, + "end": 13491.5, + "probability": 0.7033 + }, + { + "start": 13492.48, + "end": 13493.92, + "probability": 0.9757 + }, + { + "start": 13494.5, + "end": 13495.72, + "probability": 0.5821 + }, + { + "start": 13497.2, + "end": 13497.64, + "probability": 0.7286 + }, + { + "start": 13498.24, + "end": 13498.96, + "probability": 0.7484 + }, + { + "start": 13499.26, + "end": 13502.66, + "probability": 0.8638 + }, + { + "start": 13502.94, + "end": 13503.24, + "probability": 0.2564 + }, + { + "start": 13503.24, + "end": 13503.52, + "probability": 0.7055 + }, + { + "start": 13504.06, + "end": 13506.18, + "probability": 0.6019 + }, + { + "start": 13514.88, + "end": 13515.28, + "probability": 0.0414 + }, + { + "start": 13516.1, + "end": 13516.18, + "probability": 0.1119 + }, + { + "start": 13516.18, + "end": 13516.18, + "probability": 0.0028 + }, + { + "start": 13516.7, + "end": 13521.14, + "probability": 0.4289 + }, + { + "start": 13521.92, + "end": 13522.42, + "probability": 0.8823 + }, + { + "start": 13522.9, + "end": 13524.68, + "probability": 0.6855 + }, + { + "start": 13525.22, + "end": 13527.64, + "probability": 0.9928 + }, + { + "start": 13528.2, + "end": 13533.4, + "probability": 0.9987 + }, + { + "start": 13534.18, + "end": 13535.14, + "probability": 0.6802 + }, + { + "start": 13535.72, + "end": 13539.26, + "probability": 0.9986 + }, + { + "start": 13539.92, + "end": 13541.48, + "probability": 0.9844 + }, + { + "start": 13541.9, + "end": 13542.88, + "probability": 0.9591 + }, + { + "start": 13543.3, + "end": 13547.0, + "probability": 0.9914 + }, + { + "start": 13547.64, + "end": 13552.34, + "probability": 0.9862 + }, + { + "start": 13553.12, + "end": 13556.8, + "probability": 0.9749 + }, + { + "start": 13557.68, + "end": 13561.82, + "probability": 0.999 + }, + { + "start": 13563.04, + "end": 13566.64, + "probability": 0.9681 + }, + { + "start": 13567.16, + "end": 13571.44, + "probability": 0.9973 + }, + { + "start": 13572.32, + "end": 13577.16, + "probability": 0.9794 + }, + { + "start": 13578.8, + "end": 13584.02, + "probability": 0.9829 + }, + { + "start": 13584.48, + "end": 13587.42, + "probability": 0.9872 + }, + { + "start": 13589.28, + "end": 13589.98, + "probability": 0.732 + }, + { + "start": 13590.26, + "end": 13590.98, + "probability": 0.6447 + }, + { + "start": 13591.1, + "end": 13592.24, + "probability": 0.9487 + }, + { + "start": 13592.86, + "end": 13595.54, + "probability": 0.938 + }, + { + "start": 13595.96, + "end": 13597.22, + "probability": 0.9929 + }, + { + "start": 13597.54, + "end": 13598.54, + "probability": 0.9602 + }, + { + "start": 13599.56, + "end": 13603.48, + "probability": 0.782 + }, + { + "start": 13605.0, + "end": 13606.72, + "probability": 0.8687 + }, + { + "start": 13607.42, + "end": 13609.21, + "probability": 0.8023 + }, + { + "start": 13610.94, + "end": 13611.82, + "probability": 0.8584 + }, + { + "start": 13612.44, + "end": 13616.34, + "probability": 0.978 + }, + { + "start": 13616.34, + "end": 13620.14, + "probability": 0.8137 + }, + { + "start": 13620.38, + "end": 13620.38, + "probability": 0.7598 + }, + { + "start": 13620.92, + "end": 13623.18, + "probability": 0.7158 + }, + { + "start": 13623.88, + "end": 13626.66, + "probability": 0.9744 + }, + { + "start": 13626.66, + "end": 13629.58, + "probability": 0.5638 + }, + { + "start": 13629.78, + "end": 13629.78, + "probability": 0.0003 + }, + { + "start": 13632.56, + "end": 13632.66, + "probability": 0.2958 + }, + { + "start": 13632.78, + "end": 13637.82, + "probability": 0.6914 + }, + { + "start": 13638.52, + "end": 13639.18, + "probability": 0.7921 + }, + { + "start": 13639.88, + "end": 13640.66, + "probability": 0.914 + }, + { + "start": 13641.1, + "end": 13643.98, + "probability": 0.9956 + }, + { + "start": 13644.06, + "end": 13645.74, + "probability": 0.8177 + }, + { + "start": 13646.72, + "end": 13649.34, + "probability": 0.9923 + }, + { + "start": 13651.34, + "end": 13652.48, + "probability": 0.6502 + }, + { + "start": 13653.36, + "end": 13654.18, + "probability": 0.6756 + }, + { + "start": 13655.94, + "end": 13657.24, + "probability": 0.9282 + }, + { + "start": 13659.38, + "end": 13660.76, + "probability": 0.7539 + }, + { + "start": 13661.28, + "end": 13665.24, + "probability": 0.8771 + }, + { + "start": 13665.64, + "end": 13666.64, + "probability": 0.9688 + }, + { + "start": 13667.12, + "end": 13668.4, + "probability": 0.9727 + }, + { + "start": 13669.0, + "end": 13670.48, + "probability": 0.9929 + }, + { + "start": 13670.54, + "end": 13671.68, + "probability": 0.9797 + }, + { + "start": 13672.18, + "end": 13672.84, + "probability": 0.9577 + }, + { + "start": 13675.08, + "end": 13676.74, + "probability": 0.9779 + }, + { + "start": 13676.96, + "end": 13680.68, + "probability": 0.8831 + }, + { + "start": 13680.86, + "end": 13682.36, + "probability": 0.9995 + }, + { + "start": 13683.16, + "end": 13684.9, + "probability": 0.2934 + }, + { + "start": 13684.9, + "end": 13687.36, + "probability": 0.9132 + }, + { + "start": 13687.54, + "end": 13688.18, + "probability": 0.88 + }, + { + "start": 13688.28, + "end": 13690.0, + "probability": 0.9746 + }, + { + "start": 13690.44, + "end": 13691.3, + "probability": 0.8762 + }, + { + "start": 13692.0, + "end": 13693.38, + "probability": 0.9797 + }, + { + "start": 13694.04, + "end": 13696.18, + "probability": 0.9927 + }, + { + "start": 13696.64, + "end": 13699.5, + "probability": 0.9754 + }, + { + "start": 13699.9, + "end": 13700.64, + "probability": 0.9128 + }, + { + "start": 13701.42, + "end": 13702.88, + "probability": 0.7957 + }, + { + "start": 13703.42, + "end": 13703.42, + "probability": 0.3221 + }, + { + "start": 13703.42, + "end": 13706.44, + "probability": 0.9536 + }, + { + "start": 13706.48, + "end": 13709.12, + "probability": 0.9849 + }, + { + "start": 13710.12, + "end": 13710.78, + "probability": 0.6931 + }, + { + "start": 13711.32, + "end": 13711.78, + "probability": 0.7607 + }, + { + "start": 13712.68, + "end": 13713.86, + "probability": 0.7222 + }, + { + "start": 13714.7, + "end": 13715.32, + "probability": 0.9444 + }, + { + "start": 13715.76, + "end": 13721.4, + "probability": 0.9887 + }, + { + "start": 13722.0, + "end": 13722.92, + "probability": 0.9374 + }, + { + "start": 13722.98, + "end": 13724.38, + "probability": 0.9561 + }, + { + "start": 13724.48, + "end": 13729.72, + "probability": 0.9695 + }, + { + "start": 13730.84, + "end": 13734.16, + "probability": 0.9952 + }, + { + "start": 13735.3, + "end": 13738.24, + "probability": 0.998 + }, + { + "start": 13738.58, + "end": 13740.08, + "probability": 0.9976 + }, + { + "start": 13740.94, + "end": 13741.46, + "probability": 0.76 + }, + { + "start": 13743.32, + "end": 13743.66, + "probability": 0.7484 + }, + { + "start": 13744.26, + "end": 13745.72, + "probability": 0.6549 + }, + { + "start": 13746.26, + "end": 13748.2, + "probability": 0.8214 + }, + { + "start": 13761.96, + "end": 13762.44, + "probability": 0.6869 + }, + { + "start": 13763.08, + "end": 13763.18, + "probability": 0.9051 + }, + { + "start": 13764.08, + "end": 13766.46, + "probability": 0.7911 + }, + { + "start": 13767.6, + "end": 13769.8, + "probability": 0.975 + }, + { + "start": 13770.72, + "end": 13773.0, + "probability": 0.8594 + }, + { + "start": 13773.42, + "end": 13774.98, + "probability": 0.9953 + }, + { + "start": 13776.12, + "end": 13779.62, + "probability": 0.9868 + }, + { + "start": 13780.24, + "end": 13782.46, + "probability": 0.9579 + }, + { + "start": 13784.42, + "end": 13786.8, + "probability": 0.955 + }, + { + "start": 13787.66, + "end": 13788.64, + "probability": 0.9923 + }, + { + "start": 13789.56, + "end": 13791.08, + "probability": 0.9924 + }, + { + "start": 13791.76, + "end": 13793.8, + "probability": 0.9477 + }, + { + "start": 13794.56, + "end": 13795.56, + "probability": 0.9774 + }, + { + "start": 13796.3, + "end": 13800.28, + "probability": 0.995 + }, + { + "start": 13800.82, + "end": 13803.12, + "probability": 0.9988 + }, + { + "start": 13804.56, + "end": 13808.42, + "probability": 0.9934 + }, + { + "start": 13809.0, + "end": 13811.98, + "probability": 0.9737 + }, + { + "start": 13813.38, + "end": 13819.66, + "probability": 0.9974 + }, + { + "start": 13819.66, + "end": 13824.26, + "probability": 0.9824 + }, + { + "start": 13825.12, + "end": 13827.62, + "probability": 0.9558 + }, + { + "start": 13827.8, + "end": 13830.88, + "probability": 0.9858 + }, + { + "start": 13831.74, + "end": 13834.28, + "probability": 0.9937 + }, + { + "start": 13835.18, + "end": 13837.41, + "probability": 0.9517 + }, + { + "start": 13838.14, + "end": 13839.1, + "probability": 0.6697 + }, + { + "start": 13841.28, + "end": 13842.66, + "probability": 0.988 + }, + { + "start": 13844.08, + "end": 13844.44, + "probability": 0.7746 + }, + { + "start": 13844.92, + "end": 13845.54, + "probability": 0.7584 + }, + { + "start": 13849.2, + "end": 13851.16, + "probability": 0.8561 + }, + { + "start": 13851.78, + "end": 13852.64, + "probability": 0.7975 + }, + { + "start": 13853.96, + "end": 13854.92, + "probability": 0.0541 + }, + { + "start": 13871.56, + "end": 13872.86, + "probability": 0.654 + }, + { + "start": 13873.34, + "end": 13875.68, + "probability": 0.5912 + }, + { + "start": 13877.58, + "end": 13878.1, + "probability": 0.7498 + }, + { + "start": 13881.6, + "end": 13882.14, + "probability": 0.1876 + }, + { + "start": 13882.24, + "end": 13885.7, + "probability": 0.7312 + }, + { + "start": 13886.2, + "end": 13886.7, + "probability": 0.5408 + }, + { + "start": 13886.76, + "end": 13892.12, + "probability": 0.9429 + }, + { + "start": 13892.34, + "end": 13893.0, + "probability": 0.8652 + }, + { + "start": 13893.08, + "end": 13896.1, + "probability": 0.9932 + }, + { + "start": 13897.32, + "end": 13898.68, + "probability": 0.6806 + }, + { + "start": 13899.12, + "end": 13902.2, + "probability": 0.8736 + }, + { + "start": 13903.86, + "end": 13907.0, + "probability": 0.9478 + }, + { + "start": 13908.52, + "end": 13911.26, + "probability": 0.9259 + }, + { + "start": 13912.82, + "end": 13915.06, + "probability": 0.562 + }, + { + "start": 13916.86, + "end": 13927.78, + "probability": 0.9861 + }, + { + "start": 13927.94, + "end": 13929.38, + "probability": 0.9728 + }, + { + "start": 13929.56, + "end": 13930.1, + "probability": 0.7194 + }, + { + "start": 13933.02, + "end": 13934.56, + "probability": 0.9632 + }, + { + "start": 13936.04, + "end": 13936.8, + "probability": 0.949 + }, + { + "start": 13937.82, + "end": 13938.46, + "probability": 0.9976 + }, + { + "start": 13939.62, + "end": 13940.12, + "probability": 0.9909 + }, + { + "start": 13941.14, + "end": 13942.0, + "probability": 0.988 + }, + { + "start": 13942.58, + "end": 13944.96, + "probability": 0.9884 + }, + { + "start": 13946.12, + "end": 13948.3, + "probability": 0.6447 + }, + { + "start": 13950.86, + "end": 13952.14, + "probability": 0.6783 + }, + { + "start": 13952.32, + "end": 13958.3, + "probability": 0.9759 + }, + { + "start": 13961.2, + "end": 13967.78, + "probability": 0.9709 + }, + { + "start": 13969.76, + "end": 13971.5, + "probability": 0.9213 + }, + { + "start": 13974.52, + "end": 13976.74, + "probability": 0.983 + }, + { + "start": 13978.2, + "end": 13979.92, + "probability": 0.989 + }, + { + "start": 13981.96, + "end": 13983.3, + "probability": 0.7411 + }, + { + "start": 13985.28, + "end": 13986.22, + "probability": 0.9566 + }, + { + "start": 13986.3, + "end": 13987.07, + "probability": 0.8549 + }, + { + "start": 13987.64, + "end": 13988.76, + "probability": 0.8347 + }, + { + "start": 13989.18, + "end": 13990.12, + "probability": 0.6251 + }, + { + "start": 13991.5, + "end": 13993.04, + "probability": 0.7325 + }, + { + "start": 13994.02, + "end": 13994.94, + "probability": 0.3563 + }, + { + "start": 13995.96, + "end": 14000.42, + "probability": 0.9092 + }, + { + "start": 14001.32, + "end": 14003.22, + "probability": 0.991 + }, + { + "start": 14003.88, + "end": 14004.58, + "probability": 0.2646 + }, + { + "start": 14006.64, + "end": 14007.16, + "probability": 0.9852 + }, + { + "start": 14007.8, + "end": 14011.02, + "probability": 0.9784 + }, + { + "start": 14011.72, + "end": 14013.52, + "probability": 0.559 + }, + { + "start": 14013.56, + "end": 14014.54, + "probability": 0.6514 + }, + { + "start": 14015.96, + "end": 14019.34, + "probability": 0.816 + }, + { + "start": 14020.94, + "end": 14021.46, + "probability": 0.8577 + }, + { + "start": 14023.0, + "end": 14028.4, + "probability": 0.9699 + }, + { + "start": 14029.4, + "end": 14035.66, + "probability": 0.8544 + }, + { + "start": 14037.42, + "end": 14040.66, + "probability": 0.8002 + }, + { + "start": 14041.56, + "end": 14043.2, + "probability": 0.9976 + }, + { + "start": 14043.42, + "end": 14048.42, + "probability": 0.995 + }, + { + "start": 14050.1, + "end": 14050.84, + "probability": 0.5226 + }, + { + "start": 14052.52, + "end": 14055.26, + "probability": 0.9913 + }, + { + "start": 14055.92, + "end": 14059.02, + "probability": 0.972 + }, + { + "start": 14059.1, + "end": 14059.22, + "probability": 0.345 + }, + { + "start": 14059.94, + "end": 14060.8, + "probability": 0.9082 + }, + { + "start": 14061.32, + "end": 14063.96, + "probability": 0.9658 + }, + { + "start": 14065.42, + "end": 14065.7, + "probability": 0.293 + }, + { + "start": 14065.84, + "end": 14066.46, + "probability": 0.6214 + }, + { + "start": 14067.24, + "end": 14068.9, + "probability": 0.7705 + }, + { + "start": 14085.25, + "end": 14087.5, + "probability": 0.8883 + }, + { + "start": 14089.46, + "end": 14090.69, + "probability": 0.7258 + }, + { + "start": 14092.08, + "end": 14093.06, + "probability": 0.7511 + }, + { + "start": 14094.74, + "end": 14096.82, + "probability": 0.7986 + }, + { + "start": 14098.22, + "end": 14098.28, + "probability": 0.083 + }, + { + "start": 14098.28, + "end": 14103.28, + "probability": 0.9716 + }, + { + "start": 14103.94, + "end": 14105.02, + "probability": 0.8709 + }, + { + "start": 14105.98, + "end": 14108.7, + "probability": 0.8898 + }, + { + "start": 14108.7, + "end": 14111.12, + "probability": 0.9953 + }, + { + "start": 14111.68, + "end": 14112.6, + "probability": 0.751 + }, + { + "start": 14112.7, + "end": 14113.44, + "probability": 0.6371 + }, + { + "start": 14114.36, + "end": 14115.16, + "probability": 0.9418 + }, + { + "start": 14115.96, + "end": 14118.56, + "probability": 0.9767 + }, + { + "start": 14120.0, + "end": 14122.84, + "probability": 0.9763 + }, + { + "start": 14122.98, + "end": 14124.9, + "probability": 0.9807 + }, + { + "start": 14125.68, + "end": 14126.22, + "probability": 0.947 + }, + { + "start": 14127.32, + "end": 14129.54, + "probability": 0.9976 + }, + { + "start": 14130.12, + "end": 14133.48, + "probability": 0.9961 + }, + { + "start": 14134.0, + "end": 14134.22, + "probability": 0.0822 + }, + { + "start": 14134.34, + "end": 14140.78, + "probability": 0.943 + }, + { + "start": 14141.46, + "end": 14143.52, + "probability": 0.7472 + }, + { + "start": 14143.7, + "end": 14146.2, + "probability": 0.9555 + }, + { + "start": 14146.24, + "end": 14148.16, + "probability": 0.9332 + }, + { + "start": 14148.78, + "end": 14153.14, + "probability": 0.9707 + }, + { + "start": 14154.18, + "end": 14155.46, + "probability": 0.9492 + }, + { + "start": 14155.68, + "end": 14156.46, + "probability": 0.4999 + }, + { + "start": 14156.64, + "end": 14163.62, + "probability": 0.9961 + }, + { + "start": 14164.82, + "end": 14166.4, + "probability": 0.9992 + }, + { + "start": 14166.96, + "end": 14169.0, + "probability": 0.9148 + }, + { + "start": 14169.86, + "end": 14170.38, + "probability": 0.6795 + }, + { + "start": 14171.57, + "end": 14173.02, + "probability": 0.9885 + }, + { + "start": 14175.06, + "end": 14175.6, + "probability": 0.614 + }, + { + "start": 14176.52, + "end": 14177.64, + "probability": 0.9878 + }, + { + "start": 14178.4, + "end": 14180.28, + "probability": 0.9822 + }, + { + "start": 14181.18, + "end": 14184.38, + "probability": 0.992 + }, + { + "start": 14185.38, + "end": 14186.08, + "probability": 0.938 + }, + { + "start": 14186.9, + "end": 14188.56, + "probability": 0.9907 + }, + { + "start": 14189.94, + "end": 14190.78, + "probability": 0.8411 + }, + { + "start": 14192.08, + "end": 14195.78, + "probability": 0.996 + }, + { + "start": 14196.56, + "end": 14198.46, + "probability": 0.9751 + }, + { + "start": 14199.28, + "end": 14202.02, + "probability": 0.9941 + }, + { + "start": 14202.74, + "end": 14205.94, + "probability": 0.9796 + }, + { + "start": 14206.62, + "end": 14208.58, + "probability": 0.9692 + }, + { + "start": 14209.56, + "end": 14210.88, + "probability": 0.9987 + }, + { + "start": 14211.62, + "end": 14214.46, + "probability": 0.9928 + }, + { + "start": 14215.96, + "end": 14216.64, + "probability": 0.8703 + }, + { + "start": 14217.58, + "end": 14220.5, + "probability": 0.9431 + }, + { + "start": 14221.02, + "end": 14221.46, + "probability": 0.6483 + }, + { + "start": 14222.94, + "end": 14224.44, + "probability": 0.7445 + }, + { + "start": 14225.68, + "end": 14226.18, + "probability": 0.4824 + }, + { + "start": 14226.88, + "end": 14229.68, + "probability": 0.8806 + }, + { + "start": 14230.62, + "end": 14233.3, + "probability": 0.9885 + }, + { + "start": 14233.3, + "end": 14236.62, + "probability": 0.9971 + }, + { + "start": 14237.46, + "end": 14242.96, + "probability": 0.9881 + }, + { + "start": 14243.88, + "end": 14247.68, + "probability": 0.9867 + }, + { + "start": 14248.3, + "end": 14251.44, + "probability": 0.8979 + }, + { + "start": 14252.5, + "end": 14253.82, + "probability": 0.994 + }, + { + "start": 14254.84, + "end": 14257.76, + "probability": 0.9144 + }, + { + "start": 14258.3, + "end": 14259.85, + "probability": 0.998 + }, + { + "start": 14260.82, + "end": 14264.3, + "probability": 0.9666 + }, + { + "start": 14264.38, + "end": 14264.98, + "probability": 0.7247 + }, + { + "start": 14265.4, + "end": 14267.24, + "probability": 0.9984 + }, + { + "start": 14267.34, + "end": 14271.72, + "probability": 0.9966 + }, + { + "start": 14272.32, + "end": 14273.14, + "probability": 0.9101 + }, + { + "start": 14273.84, + "end": 14275.74, + "probability": 0.9888 + }, + { + "start": 14275.92, + "end": 14277.06, + "probability": 0.5093 + }, + { + "start": 14277.18, + "end": 14281.48, + "probability": 0.8804 + }, + { + "start": 14282.3, + "end": 14282.88, + "probability": 0.6452 + }, + { + "start": 14283.32, + "end": 14285.54, + "probability": 0.7907 + }, + { + "start": 14286.94, + "end": 14289.4, + "probability": 0.9922 + }, + { + "start": 14290.22, + "end": 14291.18, + "probability": 0.9236 + }, + { + "start": 14292.04, + "end": 14293.29, + "probability": 0.9821 + }, + { + "start": 14294.12, + "end": 14297.22, + "probability": 0.9959 + }, + { + "start": 14298.34, + "end": 14298.96, + "probability": 0.7478 + }, + { + "start": 14300.32, + "end": 14302.16, + "probability": 0.6364 + }, + { + "start": 14302.7, + "end": 14303.28, + "probability": 0.6002 + }, + { + "start": 14304.0, + "end": 14305.34, + "probability": 0.9775 + }, + { + "start": 14305.94, + "end": 14306.56, + "probability": 0.734 + }, + { + "start": 14307.26, + "end": 14308.24, + "probability": 0.9886 + }, + { + "start": 14318.98, + "end": 14319.42, + "probability": 0.7802 + }, + { + "start": 14323.1, + "end": 14325.5, + "probability": 0.688 + }, + { + "start": 14325.74, + "end": 14327.0, + "probability": 0.9889 + }, + { + "start": 14327.88, + "end": 14330.28, + "probability": 0.6567 + }, + { + "start": 14331.18, + "end": 14333.72, + "probability": 0.9888 + }, + { + "start": 14334.56, + "end": 14342.62, + "probability": 0.9858 + }, + { + "start": 14343.36, + "end": 14347.04, + "probability": 0.8793 + }, + { + "start": 14348.68, + "end": 14349.22, + "probability": 0.9445 + }, + { + "start": 14350.1, + "end": 14351.26, + "probability": 0.8323 + }, + { + "start": 14352.78, + "end": 14353.94, + "probability": 0.9504 + }, + { + "start": 14354.7, + "end": 14356.68, + "probability": 0.9769 + }, + { + "start": 14358.26, + "end": 14358.8, + "probability": 0.8929 + }, + { + "start": 14362.26, + "end": 14364.11, + "probability": 0.9749 + }, + { + "start": 14366.42, + "end": 14369.42, + "probability": 0.9469 + }, + { + "start": 14372.04, + "end": 14372.28, + "probability": 0.2392 + }, + { + "start": 14373.78, + "end": 14373.88, + "probability": 0.9941 + }, + { + "start": 14375.38, + "end": 14380.34, + "probability": 0.9826 + }, + { + "start": 14382.66, + "end": 14386.28, + "probability": 0.9963 + }, + { + "start": 14387.62, + "end": 14389.45, + "probability": 0.0167 + }, + { + "start": 14389.8, + "end": 14390.32, + "probability": 0.447 + }, + { + "start": 14390.48, + "end": 14391.14, + "probability": 0.1893 + }, + { + "start": 14391.92, + "end": 14396.88, + "probability": 0.9963 + }, + { + "start": 14397.92, + "end": 14398.34, + "probability": 0.9849 + }, + { + "start": 14400.62, + "end": 14403.26, + "probability": 0.9759 + }, + { + "start": 14404.6, + "end": 14406.12, + "probability": 0.991 + }, + { + "start": 14407.16, + "end": 14408.98, + "probability": 0.8159 + }, + { + "start": 14409.68, + "end": 14412.02, + "probability": 0.4989 + }, + { + "start": 14412.38, + "end": 14414.22, + "probability": 0.2823 + }, + { + "start": 14414.88, + "end": 14414.96, + "probability": 0.055 + }, + { + "start": 14414.96, + "end": 14414.96, + "probability": 0.0734 + }, + { + "start": 14414.96, + "end": 14415.26, + "probability": 0.1905 + }, + { + "start": 14416.16, + "end": 14423.28, + "probability": 0.6694 + }, + { + "start": 14424.04, + "end": 14426.4, + "probability": 0.8394 + }, + { + "start": 14427.02, + "end": 14427.6, + "probability": 0.7415 + }, + { + "start": 14427.94, + "end": 14431.32, + "probability": 0.9183 + }, + { + "start": 14432.46, + "end": 14434.94, + "probability": 0.8174 + }, + { + "start": 14436.0, + "end": 14437.3, + "probability": 0.8219 + }, + { + "start": 14437.96, + "end": 14441.52, + "probability": 0.9785 + }, + { + "start": 14443.04, + "end": 14446.62, + "probability": 0.9762 + }, + { + "start": 14447.22, + "end": 14452.01, + "probability": 0.9927 + }, + { + "start": 14453.76, + "end": 14454.52, + "probability": 0.825 + }, + { + "start": 14455.24, + "end": 14456.96, + "probability": 0.9974 + }, + { + "start": 14458.26, + "end": 14460.28, + "probability": 0.7445 + }, + { + "start": 14461.0, + "end": 14462.0, + "probability": 0.8264 + }, + { + "start": 14463.66, + "end": 14467.76, + "probability": 0.9489 + }, + { + "start": 14469.08, + "end": 14474.6, + "probability": 0.8839 + }, + { + "start": 14475.02, + "end": 14476.66, + "probability": 0.95 + }, + { + "start": 14477.32, + "end": 14481.02, + "probability": 0.9952 + }, + { + "start": 14481.56, + "end": 14482.86, + "probability": 0.9245 + }, + { + "start": 14483.34, + "end": 14486.64, + "probability": 0.9531 + }, + { + "start": 14487.5, + "end": 14488.4, + "probability": 0.9907 + }, + { + "start": 14489.0, + "end": 14492.72, + "probability": 0.9941 + }, + { + "start": 14493.82, + "end": 14495.32, + "probability": 0.9724 + }, + { + "start": 14496.12, + "end": 14496.89, + "probability": 0.998 + }, + { + "start": 14497.5, + "end": 14499.76, + "probability": 0.9783 + }, + { + "start": 14500.86, + "end": 14501.88, + "probability": 0.9696 + }, + { + "start": 14502.68, + "end": 14503.42, + "probability": 0.8077 + }, + { + "start": 14504.14, + "end": 14507.34, + "probability": 0.7609 + }, + { + "start": 14508.62, + "end": 14512.3, + "probability": 0.9181 + }, + { + "start": 14513.02, + "end": 14514.16, + "probability": 0.7963 + }, + { + "start": 14516.68, + "end": 14522.76, + "probability": 0.9973 + }, + { + "start": 14523.46, + "end": 14523.46, + "probability": 0.341 + }, + { + "start": 14523.46, + "end": 14524.22, + "probability": 0.6297 + }, + { + "start": 14525.9, + "end": 14526.72, + "probability": 0.7195 + }, + { + "start": 14527.42, + "end": 14530.32, + "probability": 0.9907 + }, + { + "start": 14531.02, + "end": 14533.82, + "probability": 0.9969 + }, + { + "start": 14534.46, + "end": 14534.82, + "probability": 0.7766 + }, + { + "start": 14535.34, + "end": 14535.86, + "probability": 0.8859 + }, + { + "start": 14537.18, + "end": 14540.9, + "probability": 0.9653 + }, + { + "start": 14541.86, + "end": 14543.06, + "probability": 0.9773 + }, + { + "start": 14543.58, + "end": 14546.92, + "probability": 0.9914 + }, + { + "start": 14547.6, + "end": 14548.3, + "probability": 0.9579 + }, + { + "start": 14548.98, + "end": 14552.46, + "probability": 0.9611 + }, + { + "start": 14553.46, + "end": 14555.68, + "probability": 0.9542 + }, + { + "start": 14557.0, + "end": 14558.16, + "probability": 0.9813 + }, + { + "start": 14559.08, + "end": 14562.5, + "probability": 0.9465 + }, + { + "start": 14563.02, + "end": 14564.72, + "probability": 0.7963 + }, + { + "start": 14565.34, + "end": 14566.68, + "probability": 0.5634 + }, + { + "start": 14567.2, + "end": 14568.04, + "probability": 0.6671 + }, + { + "start": 14568.66, + "end": 14570.2, + "probability": 0.9565 + }, + { + "start": 14570.56, + "end": 14571.6, + "probability": 0.9301 + }, + { + "start": 14571.96, + "end": 14573.14, + "probability": 0.9562 + }, + { + "start": 14573.54, + "end": 14577.66, + "probability": 0.6164 + }, + { + "start": 14578.32, + "end": 14579.52, + "probability": 0.624 + }, + { + "start": 14580.28, + "end": 14582.18, + "probability": 0.9386 + }, + { + "start": 14582.76, + "end": 14585.76, + "probability": 0.8554 + }, + { + "start": 14605.48, + "end": 14605.48, + "probability": 0.2884 + }, + { + "start": 14605.78, + "end": 14606.74, + "probability": 0.8833 + }, + { + "start": 14606.9, + "end": 14608.04, + "probability": 0.8467 + }, + { + "start": 14608.22, + "end": 14610.54, + "probability": 0.9076 + }, + { + "start": 14610.64, + "end": 14613.1, + "probability": 0.9761 + }, + { + "start": 14613.92, + "end": 14617.24, + "probability": 0.9892 + }, + { + "start": 14617.5, + "end": 14618.94, + "probability": 0.9466 + }, + { + "start": 14620.06, + "end": 14621.32, + "probability": 0.9456 + }, + { + "start": 14621.92, + "end": 14622.89, + "probability": 0.884 + }, + { + "start": 14623.48, + "end": 14625.5, + "probability": 0.9896 + }, + { + "start": 14626.54, + "end": 14626.88, + "probability": 0.4075 + }, + { + "start": 14627.16, + "end": 14628.18, + "probability": 0.958 + }, + { + "start": 14628.6, + "end": 14633.9, + "probability": 0.9873 + }, + { + "start": 14634.5, + "end": 14639.6, + "probability": 0.8858 + }, + { + "start": 14639.76, + "end": 14641.5, + "probability": 0.9844 + }, + { + "start": 14642.02, + "end": 14643.16, + "probability": 0.8799 + }, + { + "start": 14644.38, + "end": 14645.48, + "probability": 0.9987 + }, + { + "start": 14646.42, + "end": 14647.62, + "probability": 0.9395 + }, + { + "start": 14648.02, + "end": 14650.06, + "probability": 0.9902 + }, + { + "start": 14650.46, + "end": 14651.54, + "probability": 0.9559 + }, + { + "start": 14651.94, + "end": 14655.18, + "probability": 0.9229 + }, + { + "start": 14656.26, + "end": 14657.68, + "probability": 0.9039 + }, + { + "start": 14657.86, + "end": 14659.22, + "probability": 0.9961 + }, + { + "start": 14659.66, + "end": 14661.3, + "probability": 0.9531 + }, + { + "start": 14661.8, + "end": 14667.14, + "probability": 0.9912 + }, + { + "start": 14667.82, + "end": 14669.52, + "probability": 0.8869 + }, + { + "start": 14669.6, + "end": 14670.48, + "probability": 0.9275 + }, + { + "start": 14670.54, + "end": 14672.72, + "probability": 0.9749 + }, + { + "start": 14674.98, + "end": 14677.44, + "probability": 0.9937 + }, + { + "start": 14678.06, + "end": 14678.9, + "probability": 0.3344 + }, + { + "start": 14679.42, + "end": 14682.92, + "probability": 0.9272 + }, + { + "start": 14683.8, + "end": 14690.84, + "probability": 0.998 + }, + { + "start": 14691.38, + "end": 14695.78, + "probability": 0.9963 + }, + { + "start": 14696.2, + "end": 14701.1, + "probability": 0.9951 + }, + { + "start": 14701.62, + "end": 14707.18, + "probability": 0.9956 + }, + { + "start": 14707.62, + "end": 14709.2, + "probability": 0.7859 + }, + { + "start": 14709.24, + "end": 14710.36, + "probability": 0.9768 + }, + { + "start": 14710.42, + "end": 14714.2, + "probability": 0.9539 + }, + { + "start": 14714.24, + "end": 14715.44, + "probability": 0.8019 + }, + { + "start": 14715.5, + "end": 14716.58, + "probability": 0.8844 + }, + { + "start": 14717.54, + "end": 14718.66, + "probability": 0.707 + }, + { + "start": 14719.26, + "end": 14719.7, + "probability": 0.9867 + }, + { + "start": 14720.26, + "end": 14720.46, + "probability": 0.9716 + }, + { + "start": 14722.14, + "end": 14725.04, + "probability": 0.9749 + }, + { + "start": 14725.4, + "end": 14728.66, + "probability": 0.9955 + }, + { + "start": 14728.76, + "end": 14732.02, + "probability": 0.9941 + }, + { + "start": 14733.5, + "end": 14734.72, + "probability": 0.928 + }, + { + "start": 14736.92, + "end": 14739.9, + "probability": 0.9971 + }, + { + "start": 14739.98, + "end": 14741.14, + "probability": 0.8317 + }, + { + "start": 14741.8, + "end": 14743.38, + "probability": 0.883 + }, + { + "start": 14743.5, + "end": 14744.66, + "probability": 0.7912 + }, + { + "start": 14745.04, + "end": 14749.34, + "probability": 0.9949 + }, + { + "start": 14750.18, + "end": 14753.2, + "probability": 0.9949 + }, + { + "start": 14754.8, + "end": 14756.22, + "probability": 0.9187 + }, + { + "start": 14757.0, + "end": 14757.8, + "probability": 0.9619 + }, + { + "start": 14759.32, + "end": 14760.66, + "probability": 0.9375 + }, + { + "start": 14760.78, + "end": 14761.36, + "probability": 0.9111 + }, + { + "start": 14761.48, + "end": 14762.9, + "probability": 0.9725 + }, + { + "start": 14763.28, + "end": 14764.62, + "probability": 0.9517 + }, + { + "start": 14765.4, + "end": 14766.9, + "probability": 0.9888 + }, + { + "start": 14767.46, + "end": 14770.24, + "probability": 0.9938 + }, + { + "start": 14771.18, + "end": 14773.32, + "probability": 0.9977 + }, + { + "start": 14774.0, + "end": 14777.32, + "probability": 0.9851 + }, + { + "start": 14777.8, + "end": 14780.12, + "probability": 0.9943 + }, + { + "start": 14781.68, + "end": 14782.54, + "probability": 0.7415 + }, + { + "start": 14782.66, + "end": 14786.76, + "probability": 0.9869 + }, + { + "start": 14787.88, + "end": 14789.54, + "probability": 0.55 + }, + { + "start": 14789.82, + "end": 14790.6, + "probability": 0.4586 + }, + { + "start": 14790.7, + "end": 14791.66, + "probability": 0.3932 + }, + { + "start": 14792.06, + "end": 14793.74, + "probability": 0.9648 + }, + { + "start": 14793.92, + "end": 14795.3, + "probability": 0.9956 + }, + { + "start": 14796.14, + "end": 14799.78, + "probability": 0.9863 + }, + { + "start": 14800.88, + "end": 14804.78, + "probability": 0.992 + }, + { + "start": 14805.52, + "end": 14808.3, + "probability": 0.9217 + }, + { + "start": 14808.76, + "end": 14810.14, + "probability": 0.9976 + }, + { + "start": 14810.6, + "end": 14814.64, + "probability": 0.9839 + }, + { + "start": 14815.04, + "end": 14815.88, + "probability": 0.6914 + }, + { + "start": 14816.16, + "end": 14816.16, + "probability": 0.4139 + }, + { + "start": 14816.16, + "end": 14818.02, + "probability": 0.6866 + }, + { + "start": 14828.47, + "end": 14831.42, + "probability": 0.9687 + }, + { + "start": 14839.58, + "end": 14839.58, + "probability": 0.0306 + }, + { + "start": 14839.58, + "end": 14839.58, + "probability": 0.0551 + }, + { + "start": 14839.58, + "end": 14841.48, + "probability": 0.5677 + }, + { + "start": 14842.34, + "end": 14846.46, + "probability": 0.9923 + }, + { + "start": 14847.02, + "end": 14850.16, + "probability": 0.9292 + }, + { + "start": 14851.12, + "end": 14852.74, + "probability": 0.9537 + }, + { + "start": 14853.56, + "end": 14854.18, + "probability": 0.6998 + }, + { + "start": 14854.7, + "end": 14858.32, + "probability": 0.5948 + }, + { + "start": 14859.41, + "end": 14862.44, + "probability": 0.5753 + }, + { + "start": 14862.78, + "end": 14865.12, + "probability": 0.9312 + }, + { + "start": 14866.52, + "end": 14867.24, + "probability": 0.0018 + }, + { + "start": 14867.24, + "end": 14868.23, + "probability": 0.3795 + }, + { + "start": 14869.04, + "end": 14870.47, + "probability": 0.2385 + }, + { + "start": 14872.68, + "end": 14872.96, + "probability": 0.224 + }, + { + "start": 14872.96, + "end": 14873.06, + "probability": 0.1468 + }, + { + "start": 14873.34, + "end": 14874.8, + "probability": 0.5004 + }, + { + "start": 14874.8, + "end": 14875.66, + "probability": 0.2205 + }, + { + "start": 14875.84, + "end": 14876.48, + "probability": 0.2216 + }, + { + "start": 14876.62, + "end": 14879.59, + "probability": 0.9423 + }, + { + "start": 14880.02, + "end": 14881.34, + "probability": 0.0018 + }, + { + "start": 14883.44, + "end": 14886.2, + "probability": 0.5455 + }, + { + "start": 14886.82, + "end": 14891.54, + "probability": 0.9375 + }, + { + "start": 14892.32, + "end": 14894.48, + "probability": 0.8526 + }, + { + "start": 14895.72, + "end": 14898.76, + "probability": 0.9621 + }, + { + "start": 14898.9, + "end": 14899.58, + "probability": 0.609 + }, + { + "start": 14900.54, + "end": 14904.26, + "probability": 0.9963 + }, + { + "start": 14904.8, + "end": 14906.88, + "probability": 0.9995 + }, + { + "start": 14907.58, + "end": 14909.05, + "probability": 0.9297 + }, + { + "start": 14909.46, + "end": 14913.86, + "probability": 0.8955 + }, + { + "start": 14914.96, + "end": 14918.1, + "probability": 0.8159 + }, + { + "start": 14919.04, + "end": 14921.78, + "probability": 0.9907 + }, + { + "start": 14923.12, + "end": 14925.86, + "probability": 0.8337 + }, + { + "start": 14926.64, + "end": 14929.26, + "probability": 0.9874 + }, + { + "start": 14929.8, + "end": 14931.94, + "probability": 0.9968 + }, + { + "start": 14933.02, + "end": 14935.52, + "probability": 0.9237 + }, + { + "start": 14936.16, + "end": 14938.62, + "probability": 0.6562 + }, + { + "start": 14939.22, + "end": 14945.26, + "probability": 0.9963 + }, + { + "start": 14946.26, + "end": 14951.02, + "probability": 0.9968 + }, + { + "start": 14951.92, + "end": 14957.54, + "probability": 0.9854 + }, + { + "start": 14957.54, + "end": 14964.48, + "probability": 0.9995 + }, + { + "start": 14965.26, + "end": 14966.76, + "probability": 0.9832 + }, + { + "start": 14967.6, + "end": 14969.58, + "probability": 0.9642 + }, + { + "start": 14970.62, + "end": 14972.6, + "probability": 0.9399 + }, + { + "start": 14973.26, + "end": 14975.84, + "probability": 0.988 + }, + { + "start": 14977.92, + "end": 14979.46, + "probability": 0.8841 + }, + { + "start": 14980.06, + "end": 14986.0, + "probability": 0.9615 + }, + { + "start": 14986.58, + "end": 14989.42, + "probability": 0.9609 + }, + { + "start": 14989.54, + "end": 14992.2, + "probability": 0.9926 + }, + { + "start": 14992.64, + "end": 14992.92, + "probability": 0.8512 + }, + { + "start": 14994.4, + "end": 14996.68, + "probability": 0.7571 + }, + { + "start": 14998.3, + "end": 14999.8, + "probability": 0.9766 + }, + { + "start": 15002.3, + "end": 15002.86, + "probability": 0.3324 + }, + { + "start": 15003.62, + "end": 15004.92, + "probability": 0.9462 + }, + { + "start": 15012.2, + "end": 15013.64, + "probability": 0.6016 + }, + { + "start": 15015.04, + "end": 15017.94, + "probability": 0.9128 + }, + { + "start": 15018.08, + "end": 15019.49, + "probability": 0.9879 + }, + { + "start": 15020.56, + "end": 15022.28, + "probability": 0.7624 + }, + { + "start": 15022.28, + "end": 15024.76, + "probability": 0.8774 + }, + { + "start": 15025.46, + "end": 15028.53, + "probability": 0.9942 + }, + { + "start": 15029.62, + "end": 15033.22, + "probability": 0.8333 + }, + { + "start": 15033.28, + "end": 15034.66, + "probability": 0.8449 + }, + { + "start": 15036.3, + "end": 15038.16, + "probability": 0.9971 + }, + { + "start": 15039.28, + "end": 15041.62, + "probability": 0.9572 + }, + { + "start": 15042.26, + "end": 15043.18, + "probability": 0.9146 + }, + { + "start": 15043.8, + "end": 15045.48, + "probability": 0.9244 + }, + { + "start": 15045.74, + "end": 15047.38, + "probability": 0.9758 + }, + { + "start": 15048.22, + "end": 15051.12, + "probability": 0.991 + }, + { + "start": 15051.8, + "end": 15054.24, + "probability": 0.9775 + }, + { + "start": 15054.74, + "end": 15056.28, + "probability": 0.9688 + }, + { + "start": 15057.3, + "end": 15058.26, + "probability": 0.6997 + }, + { + "start": 15058.3, + "end": 15060.88, + "probability": 0.996 + }, + { + "start": 15061.52, + "end": 15063.72, + "probability": 0.9683 + }, + { + "start": 15064.24, + "end": 15067.46, + "probability": 0.9344 + }, + { + "start": 15068.18, + "end": 15069.26, + "probability": 0.9935 + }, + { + "start": 15070.4, + "end": 15071.48, + "probability": 0.7716 + }, + { + "start": 15071.68, + "end": 15072.34, + "probability": 0.6582 + }, + { + "start": 15072.38, + "end": 15075.68, + "probability": 0.8346 + }, + { + "start": 15076.34, + "end": 15077.76, + "probability": 0.845 + }, + { + "start": 15078.54, + "end": 15080.26, + "probability": 0.9476 + }, + { + "start": 15080.34, + "end": 15081.5, + "probability": 0.9393 + }, + { + "start": 15081.58, + "end": 15083.14, + "probability": 0.9693 + }, + { + "start": 15084.32, + "end": 15086.74, + "probability": 0.9799 + }, + { + "start": 15087.34, + "end": 15087.58, + "probability": 0.7774 + }, + { + "start": 15088.54, + "end": 15089.64, + "probability": 0.957 + }, + { + "start": 15089.7, + "end": 15092.08, + "probability": 0.9276 + }, + { + "start": 15092.74, + "end": 15095.16, + "probability": 0.9785 + }, + { + "start": 15095.6, + "end": 15097.32, + "probability": 0.9641 + }, + { + "start": 15097.78, + "end": 15099.56, + "probability": 0.9639 + }, + { + "start": 15100.4, + "end": 15101.38, + "probability": 0.7923 + }, + { + "start": 15101.92, + "end": 15104.22, + "probability": 0.994 + }, + { + "start": 15105.02, + "end": 15105.7, + "probability": 0.9525 + }, + { + "start": 15106.1, + "end": 15108.0, + "probability": 0.9891 + }, + { + "start": 15108.98, + "end": 15111.04, + "probability": 0.9817 + }, + { + "start": 15111.64, + "end": 15114.14, + "probability": 0.9014 + }, + { + "start": 15114.62, + "end": 15115.18, + "probability": 0.8439 + }, + { + "start": 15115.92, + "end": 15116.54, + "probability": 0.9577 + }, + { + "start": 15117.8, + "end": 15121.38, + "probability": 0.9886 + }, + { + "start": 15121.86, + "end": 15124.14, + "probability": 0.9757 + }, + { + "start": 15124.26, + "end": 15128.62, + "probability": 0.9957 + }, + { + "start": 15128.88, + "end": 15130.56, + "probability": 0.9989 + }, + { + "start": 15130.78, + "end": 15132.14, + "probability": 0.97 + }, + { + "start": 15133.0, + "end": 15136.3, + "probability": 0.9963 + }, + { + "start": 15136.78, + "end": 15138.07, + "probability": 0.967 + }, + { + "start": 15138.32, + "end": 15138.76, + "probability": 0.8182 + }, + { + "start": 15139.68, + "end": 15141.28, + "probability": 0.9408 + }, + { + "start": 15141.52, + "end": 15142.9, + "probability": 0.8987 + }, + { + "start": 15143.46, + "end": 15144.24, + "probability": 0.9618 + }, + { + "start": 15145.24, + "end": 15148.02, + "probability": 0.9924 + }, + { + "start": 15148.56, + "end": 15149.82, + "probability": 0.953 + }, + { + "start": 15150.34, + "end": 15153.58, + "probability": 0.9849 + }, + { + "start": 15154.68, + "end": 15157.04, + "probability": 0.9839 + }, + { + "start": 15157.68, + "end": 15158.84, + "probability": 0.9785 + }, + { + "start": 15159.48, + "end": 15160.96, + "probability": 0.9556 + }, + { + "start": 15161.88, + "end": 15162.44, + "probability": 0.3519 + }, + { + "start": 15164.06, + "end": 15166.8, + "probability": 0.9034 + }, + { + "start": 15167.2, + "end": 15168.96, + "probability": 0.9795 + }, + { + "start": 15169.16, + "end": 15170.68, + "probability": 0.9768 + }, + { + "start": 15170.78, + "end": 15170.98, + "probability": 0.9009 + }, + { + "start": 15171.38, + "end": 15172.06, + "probability": 0.8181 + }, + { + "start": 15173.0, + "end": 15173.14, + "probability": 0.2078 + }, + { + "start": 15173.22, + "end": 15176.64, + "probability": 0.9387 + }, + { + "start": 15176.64, + "end": 15180.06, + "probability": 0.9879 + }, + { + "start": 15180.7, + "end": 15183.08, + "probability": 0.968 + }, + { + "start": 15183.92, + "end": 15184.0, + "probability": 0.8386 + }, + { + "start": 15184.14, + "end": 15186.36, + "probability": 0.965 + }, + { + "start": 15186.4, + "end": 15187.26, + "probability": 0.9719 + }, + { + "start": 15188.08, + "end": 15188.24, + "probability": 0.5857 + }, + { + "start": 15188.28, + "end": 15190.2, + "probability": 0.9954 + }, + { + "start": 15190.34, + "end": 15192.34, + "probability": 0.9916 + }, + { + "start": 15192.54, + "end": 15192.78, + "probability": 0.4666 + }, + { + "start": 15192.8, + "end": 15194.78, + "probability": 0.9943 + }, + { + "start": 15194.86, + "end": 15196.58, + "probability": 0.9743 + }, + { + "start": 15196.94, + "end": 15198.68, + "probability": 0.9934 + }, + { + "start": 15199.08, + "end": 15200.32, + "probability": 0.9977 + }, + { + "start": 15200.98, + "end": 15201.82, + "probability": 0.9029 + }, + { + "start": 15201.96, + "end": 15202.16, + "probability": 0.8877 + }, + { + "start": 15203.2, + "end": 15203.76, + "probability": 0.739 + }, + { + "start": 15203.82, + "end": 15204.32, + "probability": 0.7214 + }, + { + "start": 15204.48, + "end": 15205.84, + "probability": 0.8621 + }, + { + "start": 15205.98, + "end": 15207.29, + "probability": 0.9985 + }, + { + "start": 15207.58, + "end": 15210.06, + "probability": 0.9339 + }, + { + "start": 15210.72, + "end": 15212.44, + "probability": 0.8674 + }, + { + "start": 15212.48, + "end": 15213.76, + "probability": 0.6641 + }, + { + "start": 15213.96, + "end": 15214.96, + "probability": 0.8647 + }, + { + "start": 15229.36, + "end": 15230.12, + "probability": 0.7073 + }, + { + "start": 15230.94, + "end": 15231.4, + "probability": 0.5399 + }, + { + "start": 15231.46, + "end": 15232.3, + "probability": 0.627 + }, + { + "start": 15232.92, + "end": 15233.52, + "probability": 0.6949 + }, + { + "start": 15235.08, + "end": 15238.24, + "probability": 0.9957 + }, + { + "start": 15239.7, + "end": 15244.7, + "probability": 0.9959 + }, + { + "start": 15245.56, + "end": 15247.44, + "probability": 0.8201 + }, + { + "start": 15248.12, + "end": 15250.76, + "probability": 0.9982 + }, + { + "start": 15251.5, + "end": 15256.44, + "probability": 0.9852 + }, + { + "start": 15257.62, + "end": 15258.84, + "probability": 0.976 + }, + { + "start": 15260.38, + "end": 15262.72, + "probability": 0.8477 + }, + { + "start": 15263.52, + "end": 15265.88, + "probability": 0.9917 + }, + { + "start": 15266.38, + "end": 15267.68, + "probability": 0.9939 + }, + { + "start": 15268.78, + "end": 15268.92, + "probability": 0.7021 + }, + { + "start": 15268.96, + "end": 15273.52, + "probability": 0.9978 + }, + { + "start": 15274.14, + "end": 15274.48, + "probability": 0.5804 + }, + { + "start": 15275.32, + "end": 15275.7, + "probability": 0.9127 + }, + { + "start": 15276.58, + "end": 15278.52, + "probability": 0.9965 + }, + { + "start": 15279.08, + "end": 15280.26, + "probability": 0.9917 + }, + { + "start": 15280.42, + "end": 15281.79, + "probability": 0.9819 + }, + { + "start": 15282.4, + "end": 15287.52, + "probability": 0.9952 + }, + { + "start": 15288.88, + "end": 15291.58, + "probability": 0.9943 + }, + { + "start": 15292.74, + "end": 15293.52, + "probability": 0.9966 + }, + { + "start": 15294.7, + "end": 15297.38, + "probability": 0.9961 + }, + { + "start": 15298.54, + "end": 15298.86, + "probability": 0.9534 + }, + { + "start": 15299.9, + "end": 15303.42, + "probability": 0.9956 + }, + { + "start": 15304.08, + "end": 15305.46, + "probability": 0.9981 + }, + { + "start": 15306.0, + "end": 15306.96, + "probability": 0.998 + }, + { + "start": 15307.62, + "end": 15309.76, + "probability": 0.9988 + }, + { + "start": 15309.76, + "end": 15313.1, + "probability": 0.9963 + }, + { + "start": 15313.58, + "end": 15314.46, + "probability": 0.9367 + }, + { + "start": 15314.56, + "end": 15315.21, + "probability": 0.9583 + }, + { + "start": 15315.76, + "end": 15319.26, + "probability": 0.9775 + }, + { + "start": 15319.3, + "end": 15319.88, + "probability": 0.7265 + }, + { + "start": 15320.34, + "end": 15320.8, + "probability": 0.7651 + }, + { + "start": 15321.4, + "end": 15322.4, + "probability": 0.9912 + }, + { + "start": 15323.32, + "end": 15327.74, + "probability": 0.9808 + }, + { + "start": 15328.1, + "end": 15328.6, + "probability": 0.3291 + }, + { + "start": 15328.96, + "end": 15329.7, + "probability": 0.9499 + }, + { + "start": 15330.14, + "end": 15333.22, + "probability": 0.9675 + }, + { + "start": 15333.22, + "end": 15335.86, + "probability": 0.9954 + }, + { + "start": 15336.02, + "end": 15338.98, + "probability": 0.9575 + }, + { + "start": 15339.6, + "end": 15343.26, + "probability": 0.982 + }, + { + "start": 15343.78, + "end": 15346.22, + "probability": 0.9931 + }, + { + "start": 15346.9, + "end": 15351.42, + "probability": 0.9662 + }, + { + "start": 15352.92, + "end": 15353.96, + "probability": 0.9844 + }, + { + "start": 15354.92, + "end": 15356.92, + "probability": 0.9927 + }, + { + "start": 15357.34, + "end": 15362.36, + "probability": 0.9878 + }, + { + "start": 15363.16, + "end": 15365.8, + "probability": 0.9959 + }, + { + "start": 15367.02, + "end": 15371.62, + "probability": 0.9974 + }, + { + "start": 15371.66, + "end": 15375.06, + "probability": 0.9963 + }, + { + "start": 15375.82, + "end": 15376.2, + "probability": 0.5974 + }, + { + "start": 15376.26, + "end": 15379.06, + "probability": 0.9975 + }, + { + "start": 15379.24, + "end": 15379.74, + "probability": 0.9032 + }, + { + "start": 15379.88, + "end": 15380.28, + "probability": 0.8924 + }, + { + "start": 15381.68, + "end": 15382.36, + "probability": 0.9427 + }, + { + "start": 15382.84, + "end": 15388.1, + "probability": 0.9957 + }, + { + "start": 15388.62, + "end": 15392.1, + "probability": 0.7887 + }, + { + "start": 15392.9, + "end": 15394.46, + "probability": 0.739 + }, + { + "start": 15395.18, + "end": 15396.9, + "probability": 0.9891 + }, + { + "start": 15397.8, + "end": 15399.52, + "probability": 0.9085 + }, + { + "start": 15400.1, + "end": 15403.04, + "probability": 0.9911 + }, + { + "start": 15403.06, + "end": 15405.88, + "probability": 0.9917 + }, + { + "start": 15406.82, + "end": 15408.32, + "probability": 0.8276 + }, + { + "start": 15409.34, + "end": 15410.5, + "probability": 0.9666 + }, + { + "start": 15410.52, + "end": 15411.6, + "probability": 0.9515 + }, + { + "start": 15412.08, + "end": 15413.34, + "probability": 0.9565 + }, + { + "start": 15413.74, + "end": 15417.62, + "probability": 0.9979 + }, + { + "start": 15418.2, + "end": 15419.48, + "probability": 0.8114 + }, + { + "start": 15419.84, + "end": 15422.16, + "probability": 0.9249 + }, + { + "start": 15422.3, + "end": 15423.92, + "probability": 0.9952 + }, + { + "start": 15424.36, + "end": 15429.08, + "probability": 0.9961 + }, + { + "start": 15429.54, + "end": 15431.32, + "probability": 0.9335 + }, + { + "start": 15432.2, + "end": 15432.62, + "probability": 0.5448 + }, + { + "start": 15432.74, + "end": 15434.14, + "probability": 0.7251 + }, + { + "start": 15434.38, + "end": 15436.48, + "probability": 0.7314 + }, + { + "start": 15438.64, + "end": 15441.64, + "probability": 0.9837 + }, + { + "start": 15444.34, + "end": 15444.74, + "probability": 0.4333 + }, + { + "start": 15445.12, + "end": 15446.35, + "probability": 0.8081 + }, + { + "start": 15447.6, + "end": 15448.16, + "probability": 0.8074 + }, + { + "start": 15451.46, + "end": 15456.78, + "probability": 0.8428 + }, + { + "start": 15456.78, + "end": 15461.44, + "probability": 0.9969 + }, + { + "start": 15461.96, + "end": 15463.86, + "probability": 0.9981 + }, + { + "start": 15467.1, + "end": 15467.52, + "probability": 0.5694 + }, + { + "start": 15468.04, + "end": 15468.66, + "probability": 0.8879 + }, + { + "start": 15470.8, + "end": 15472.14, + "probability": 0.443 + }, + { + "start": 15474.86, + "end": 15475.86, + "probability": 0.7397 + }, + { + "start": 15477.2, + "end": 15480.82, + "probability": 0.9468 + }, + { + "start": 15482.16, + "end": 15485.74, + "probability": 0.9156 + }, + { + "start": 15486.02, + "end": 15487.72, + "probability": 0.8601 + }, + { + "start": 15489.14, + "end": 15490.0, + "probability": 0.7367 + }, + { + "start": 15490.22, + "end": 15492.62, + "probability": 0.9849 + }, + { + "start": 15492.62, + "end": 15496.64, + "probability": 0.6677 + }, + { + "start": 15497.82, + "end": 15498.7, + "probability": 0.749 + }, + { + "start": 15499.7, + "end": 15501.22, + "probability": 0.9836 + }, + { + "start": 15502.32, + "end": 15504.58, + "probability": 0.9863 + }, + { + "start": 15504.58, + "end": 15507.7, + "probability": 0.9564 + }, + { + "start": 15508.42, + "end": 15511.2, + "probability": 0.9221 + }, + { + "start": 15511.6, + "end": 15513.08, + "probability": 0.4125 + }, + { + "start": 15514.16, + "end": 15515.92, + "probability": 0.9214 + }, + { + "start": 15517.8, + "end": 15519.5, + "probability": 0.8074 + }, + { + "start": 15520.4, + "end": 15524.3, + "probability": 0.9412 + }, + { + "start": 15525.54, + "end": 15528.56, + "probability": 0.9966 + }, + { + "start": 15529.52, + "end": 15531.78, + "probability": 0.9144 + }, + { + "start": 15532.32, + "end": 15535.04, + "probability": 0.7421 + }, + { + "start": 15535.48, + "end": 15537.86, + "probability": 0.9748 + }, + { + "start": 15538.48, + "end": 15541.14, + "probability": 0.7069 + }, + { + "start": 15541.14, + "end": 15544.22, + "probability": 0.9938 + }, + { + "start": 15544.86, + "end": 15547.44, + "probability": 0.9019 + }, + { + "start": 15548.26, + "end": 15552.9, + "probability": 0.8336 + }, + { + "start": 15554.42, + "end": 15557.88, + "probability": 0.9956 + }, + { + "start": 15557.88, + "end": 15562.42, + "probability": 0.9579 + }, + { + "start": 15562.6, + "end": 15564.62, + "probability": 0.8257 + }, + { + "start": 15565.22, + "end": 15568.4, + "probability": 0.9848 + }, + { + "start": 15569.78, + "end": 15573.48, + "probability": 0.9917 + }, + { + "start": 15574.72, + "end": 15578.26, + "probability": 0.9919 + }, + { + "start": 15578.26, + "end": 15583.64, + "probability": 0.9079 + }, + { + "start": 15584.94, + "end": 15587.94, + "probability": 0.9947 + }, + { + "start": 15588.48, + "end": 15590.08, + "probability": 0.9693 + }, + { + "start": 15590.82, + "end": 15595.38, + "probability": 0.9609 + }, + { + "start": 15595.64, + "end": 15598.96, + "probability": 0.9755 + }, + { + "start": 15600.06, + "end": 15601.98, + "probability": 0.9922 + }, + { + "start": 15602.6, + "end": 15609.39, + "probability": 0.9875 + }, + { + "start": 15610.86, + "end": 15614.58, + "probability": 0.9794 + }, + { + "start": 15616.12, + "end": 15619.84, + "probability": 0.8477 + }, + { + "start": 15619.86, + "end": 15625.52, + "probability": 0.9717 + }, + { + "start": 15626.14, + "end": 15631.42, + "probability": 0.9808 + }, + { + "start": 15632.66, + "end": 15636.34, + "probability": 0.9858 + }, + { + "start": 15636.98, + "end": 15639.98, + "probability": 0.9405 + }, + { + "start": 15640.34, + "end": 15642.76, + "probability": 0.7688 + }, + { + "start": 15643.66, + "end": 15646.96, + "probability": 0.9037 + }, + { + "start": 15647.08, + "end": 15650.18, + "probability": 0.9976 + }, + { + "start": 15650.96, + "end": 15655.88, + "probability": 0.9807 + }, + { + "start": 15655.94, + "end": 15657.76, + "probability": 0.9697 + }, + { + "start": 15658.02, + "end": 15661.0, + "probability": 0.9623 + }, + { + "start": 15661.06, + "end": 15662.84, + "probability": 0.5716 + }, + { + "start": 15663.06, + "end": 15663.5, + "probability": 0.2598 + }, + { + "start": 15663.5, + "end": 15663.8, + "probability": 0.6948 + }, + { + "start": 15665.55, + "end": 15667.54, + "probability": 0.7739 + }, + { + "start": 15668.04, + "end": 15668.56, + "probability": 0.5055 + }, + { + "start": 15669.36, + "end": 15671.06, + "probability": 0.9532 + }, + { + "start": 15680.66, + "end": 15681.14, + "probability": 0.6165 + }, + { + "start": 15684.52, + "end": 15685.14, + "probability": 0.868 + }, + { + "start": 15686.06, + "end": 15690.38, + "probability": 0.8757 + }, + { + "start": 15691.12, + "end": 15691.96, + "probability": 0.9126 + }, + { + "start": 15692.48, + "end": 15696.2, + "probability": 0.9664 + }, + { + "start": 15696.74, + "end": 15700.28, + "probability": 0.981 + }, + { + "start": 15701.68, + "end": 15704.02, + "probability": 0.9484 + }, + { + "start": 15704.62, + "end": 15708.66, + "probability": 0.9937 + }, + { + "start": 15708.74, + "end": 15712.14, + "probability": 0.9907 + }, + { + "start": 15712.14, + "end": 15715.52, + "probability": 0.9669 + }, + { + "start": 15717.14, + "end": 15720.92, + "probability": 0.9705 + }, + { + "start": 15721.24, + "end": 15723.24, + "probability": 0.9904 + }, + { + "start": 15723.24, + "end": 15726.9, + "probability": 0.9967 + }, + { + "start": 15729.68, + "end": 15732.06, + "probability": 0.9126 + }, + { + "start": 15732.44, + "end": 15733.6, + "probability": 0.7332 + }, + { + "start": 15733.74, + "end": 15735.5, + "probability": 0.968 + }, + { + "start": 15735.6, + "end": 15738.18, + "probability": 0.9696 + }, + { + "start": 15738.28, + "end": 15741.42, + "probability": 0.9901 + }, + { + "start": 15750.14, + "end": 15754.52, + "probability": 0.7792 + }, + { + "start": 15756.72, + "end": 15759.74, + "probability": 0.8297 + }, + { + "start": 15760.56, + "end": 15763.34, + "probability": 0.9794 + }, + { + "start": 15763.88, + "end": 15764.5, + "probability": 0.8679 + }, + { + "start": 15765.3, + "end": 15767.48, + "probability": 0.9888 + }, + { + "start": 15768.74, + "end": 15769.18, + "probability": 0.8194 + }, + { + "start": 15769.58, + "end": 15771.98, + "probability": 0.9809 + }, + { + "start": 15772.08, + "end": 15775.86, + "probability": 0.9794 + }, + { + "start": 15776.78, + "end": 15778.6, + "probability": 0.9695 + }, + { + "start": 15779.12, + "end": 15782.98, + "probability": 0.9747 + }, + { + "start": 15783.74, + "end": 15786.68, + "probability": 0.9202 + }, + { + "start": 15786.86, + "end": 15789.72, + "probability": 0.9935 + }, + { + "start": 15790.7, + "end": 15793.12, + "probability": 0.9985 + }, + { + "start": 15793.28, + "end": 15793.52, + "probability": 0.8024 + }, + { + "start": 15793.68, + "end": 15800.3, + "probability": 0.992 + }, + { + "start": 15801.1, + "end": 15806.46, + "probability": 0.998 + }, + { + "start": 15807.46, + "end": 15809.44, + "probability": 0.9903 + }, + { + "start": 15810.36, + "end": 15811.97, + "probability": 0.9954 + }, + { + "start": 15812.52, + "end": 15813.96, + "probability": 0.9793 + }, + { + "start": 15814.24, + "end": 15816.66, + "probability": 0.9114 + }, + { + "start": 15817.32, + "end": 15819.38, + "probability": 0.9946 + }, + { + "start": 15819.88, + "end": 15825.6, + "probability": 0.9977 + }, + { + "start": 15826.36, + "end": 15827.92, + "probability": 0.9871 + }, + { + "start": 15828.44, + "end": 15831.14, + "probability": 0.9961 + }, + { + "start": 15831.78, + "end": 15833.38, + "probability": 0.9932 + }, + { + "start": 15834.84, + "end": 15840.18, + "probability": 0.9658 + }, + { + "start": 15840.82, + "end": 15846.38, + "probability": 0.9902 + }, + { + "start": 15847.82, + "end": 15852.55, + "probability": 0.9965 + }, + { + "start": 15854.18, + "end": 15859.42, + "probability": 0.9989 + }, + { + "start": 15859.64, + "end": 15862.84, + "probability": 0.9995 + }, + { + "start": 15863.06, + "end": 15863.44, + "probability": 0.3225 + }, + { + "start": 15863.44, + "end": 15863.78, + "probability": 0.6187 + }, + { + "start": 15864.28, + "end": 15866.2, + "probability": 0.9693 + }, + { + "start": 15866.22, + "end": 15866.8, + "probability": 0.5938 + }, + { + "start": 15866.84, + "end": 15868.1, + "probability": 0.7529 + }, + { + "start": 15868.86, + "end": 15879.62, + "probability": 0.6379 + }, + { + "start": 15880.38, + "end": 15881.51, + "probability": 0.5874 + }, + { + "start": 15881.62, + "end": 15882.72, + "probability": 0.6386 + }, + { + "start": 15884.74, + "end": 15889.08, + "probability": 0.9215 + }, + { + "start": 15889.2, + "end": 15892.58, + "probability": 0.9692 + }, + { + "start": 15893.62, + "end": 15899.16, + "probability": 0.9913 + }, + { + "start": 15899.52, + "end": 15901.88, + "probability": 0.7136 + }, + { + "start": 15902.12, + "end": 15902.76, + "probability": 0.9711 + }, + { + "start": 15903.38, + "end": 15909.34, + "probability": 0.9924 + }, + { + "start": 15909.88, + "end": 15911.92, + "probability": 0.9775 + }, + { + "start": 15912.66, + "end": 15913.44, + "probability": 0.849 + }, + { + "start": 15914.2, + "end": 15914.68, + "probability": 0.6577 + }, + { + "start": 15914.76, + "end": 15920.3, + "probability": 0.9797 + }, + { + "start": 15920.9, + "end": 15925.92, + "probability": 0.9973 + }, + { + "start": 15926.54, + "end": 15927.52, + "probability": 0.8871 + }, + { + "start": 15928.1, + "end": 15933.06, + "probability": 0.9932 + }, + { + "start": 15934.14, + "end": 15936.62, + "probability": 0.9581 + }, + { + "start": 15936.84, + "end": 15941.52, + "probability": 0.9857 + }, + { + "start": 15942.32, + "end": 15945.36, + "probability": 0.9893 + }, + { + "start": 15945.8, + "end": 15948.78, + "probability": 0.9971 + }, + { + "start": 15949.42, + "end": 15951.98, + "probability": 0.9926 + }, + { + "start": 15952.56, + "end": 15954.78, + "probability": 0.8608 + }, + { + "start": 15955.64, + "end": 15958.16, + "probability": 0.9989 + }, + { + "start": 15958.88, + "end": 15961.74, + "probability": 0.9788 + }, + { + "start": 15962.64, + "end": 15964.02, + "probability": 0.6392 + }, + { + "start": 15965.36, + "end": 15970.36, + "probability": 0.9805 + }, + { + "start": 15971.86, + "end": 15974.9, + "probability": 0.9902 + }, + { + "start": 15975.06, + "end": 15976.32, + "probability": 0.9091 + }, + { + "start": 15976.44, + "end": 15979.64, + "probability": 0.9961 + }, + { + "start": 15980.92, + "end": 15984.62, + "probability": 0.9984 + }, + { + "start": 15984.62, + "end": 15986.58, + "probability": 0.9864 + }, + { + "start": 15987.42, + "end": 15988.18, + "probability": 0.9861 + }, + { + "start": 15989.0, + "end": 15992.7, + "probability": 0.9688 + }, + { + "start": 15993.3, + "end": 15993.66, + "probability": 0.9346 + }, + { + "start": 15993.86, + "end": 15998.94, + "probability": 0.9956 + }, + { + "start": 15999.68, + "end": 16003.42, + "probability": 0.965 + }, + { + "start": 16003.58, + "end": 16004.76, + "probability": 0.5471 + }, + { + "start": 16004.88, + "end": 16007.86, + "probability": 0.8953 + }, + { + "start": 16008.1, + "end": 16008.78, + "probability": 0.952 + }, + { + "start": 16009.56, + "end": 16012.8, + "probability": 0.9955 + }, + { + "start": 16012.94, + "end": 16014.38, + "probability": 0.9863 + }, + { + "start": 16015.22, + "end": 16015.88, + "probability": 0.9538 + }, + { + "start": 16016.04, + "end": 16019.12, + "probability": 0.9762 + }, + { + "start": 16019.4, + "end": 16022.9, + "probability": 0.955 + }, + { + "start": 16023.0, + "end": 16024.26, + "probability": 0.8815 + }, + { + "start": 16024.38, + "end": 16024.98, + "probability": 0.9547 + }, + { + "start": 16025.08, + "end": 16025.88, + "probability": 0.9888 + }, + { + "start": 16026.3, + "end": 16028.18, + "probability": 0.899 + }, + { + "start": 16028.72, + "end": 16030.6, + "probability": 0.9688 + }, + { + "start": 16031.38, + "end": 16035.64, + "probability": 0.9875 + }, + { + "start": 16036.2, + "end": 16043.36, + "probability": 0.9954 + }, + { + "start": 16044.02, + "end": 16045.24, + "probability": 0.9961 + }, + { + "start": 16046.42, + "end": 16051.9, + "probability": 0.9788 + }, + { + "start": 16052.8, + "end": 16057.78, + "probability": 0.999 + }, + { + "start": 16057.86, + "end": 16058.58, + "probability": 0.7629 + }, + { + "start": 16058.92, + "end": 16061.68, + "probability": 0.9824 + }, + { + "start": 16062.72, + "end": 16063.14, + "probability": 0.548 + }, + { + "start": 16063.14, + "end": 16064.52, + "probability": 0.8823 + }, + { + "start": 16065.26, + "end": 16065.96, + "probability": 0.8576 + }, + { + "start": 16066.62, + "end": 16067.56, + "probability": 0.9866 + }, + { + "start": 16068.36, + "end": 16070.44, + "probability": 0.9945 + }, + { + "start": 16070.72, + "end": 16071.14, + "probability": 0.1723 + }, + { + "start": 16071.14, + "end": 16071.14, + "probability": 0.1054 + }, + { + "start": 16071.14, + "end": 16071.14, + "probability": 0.1308 + }, + { + "start": 16071.14, + "end": 16071.14, + "probability": 0.0755 + }, + { + "start": 16071.14, + "end": 16071.74, + "probability": 0.2703 + }, + { + "start": 16072.26, + "end": 16075.44, + "probability": 0.5358 + }, + { + "start": 16076.12, + "end": 16078.54, + "probability": 0.7922 + }, + { + "start": 16079.26, + "end": 16080.26, + "probability": 0.9255 + }, + { + "start": 16080.36, + "end": 16082.36, + "probability": 0.4923 + }, + { + "start": 16082.38, + "end": 16082.48, + "probability": 0.0079 + }, + { + "start": 16082.48, + "end": 16082.48, + "probability": 0.1785 + }, + { + "start": 16082.48, + "end": 16084.74, + "probability": 0.2787 + }, + { + "start": 16085.26, + "end": 16087.02, + "probability": 0.5695 + }, + { + "start": 16087.02, + "end": 16087.02, + "probability": 0.4625 + }, + { + "start": 16087.02, + "end": 16087.68, + "probability": 0.5036 + }, + { + "start": 16089.0, + "end": 16090.9, + "probability": 0.601 + }, + { + "start": 16090.98, + "end": 16091.56, + "probability": 0.4725 + }, + { + "start": 16091.56, + "end": 16092.1, + "probability": 0.0393 + }, + { + "start": 16092.62, + "end": 16093.38, + "probability": 0.2933 + }, + { + "start": 16093.38, + "end": 16093.38, + "probability": 0.3605 + }, + { + "start": 16093.38, + "end": 16093.74, + "probability": 0.0427 + }, + { + "start": 16094.52, + "end": 16096.36, + "probability": 0.5167 + }, + { + "start": 16097.81, + "end": 16099.56, + "probability": 0.0611 + }, + { + "start": 16100.44, + "end": 16101.02, + "probability": 0.1001 + }, + { + "start": 16101.36, + "end": 16103.54, + "probability": 0.1725 + }, + { + "start": 16103.68, + "end": 16103.68, + "probability": 0.2192 + }, + { + "start": 16103.96, + "end": 16107.9, + "probability": 0.0739 + }, + { + "start": 16108.32, + "end": 16109.16, + "probability": 0.0806 + }, + { + "start": 16109.68, + "end": 16110.66, + "probability": 0.0366 + }, + { + "start": 16110.66, + "end": 16113.48, + "probability": 0.1091 + }, + { + "start": 16115.65, + "end": 16116.96, + "probability": 0.0346 + }, + { + "start": 16117.1, + "end": 16117.52, + "probability": 0.2025 + }, + { + "start": 16117.86, + "end": 16120.0, + "probability": 0.1462 + }, + { + "start": 16120.0, + "end": 16122.56, + "probability": 0.0674 + }, + { + "start": 16122.86, + "end": 16124.4, + "probability": 0.0826 + }, + { + "start": 16126.16, + "end": 16127.66, + "probability": 0.2423 + }, + { + "start": 16128.06, + "end": 16128.06, + "probability": 0.0344 + }, + { + "start": 16128.46, + "end": 16129.92, + "probability": 0.239 + }, + { + "start": 16130.52, + "end": 16132.66, + "probability": 0.0041 + }, + { + "start": 16132.84, + "end": 16133.26, + "probability": 0.185 + }, + { + "start": 16133.26, + "end": 16133.54, + "probability": 0.1582 + }, + { + "start": 16133.54, + "end": 16135.16, + "probability": 0.2542 + }, + { + "start": 16136.1, + "end": 16137.02, + "probability": 0.3572 + }, + { + "start": 16137.08, + "end": 16137.57, + "probability": 0.0207 + }, + { + "start": 16138.16, + "end": 16138.56, + "probability": 0.0539 + }, + { + "start": 16138.56, + "end": 16138.84, + "probability": 0.0114 + }, + { + "start": 16139.42, + "end": 16139.42, + "probability": 0.0529 + }, + { + "start": 16139.48, + "end": 16139.92, + "probability": 0.0756 + }, + { + "start": 16139.92, + "end": 16139.96, + "probability": 0.2009 + }, + { + "start": 16140.24, + "end": 16140.52, + "probability": 0.056 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.0, + "end": 16141.0, + "probability": 0.0 + }, + { + "start": 16141.18, + "end": 16142.66, + "probability": 0.033 + }, + { + "start": 16144.91, + "end": 16144.98, + "probability": 0.0526 + }, + { + "start": 16144.98, + "end": 16145.16, + "probability": 0.1727 + }, + { + "start": 16145.16, + "end": 16147.74, + "probability": 0.59 + }, + { + "start": 16148.14, + "end": 16149.12, + "probability": 0.874 + }, + { + "start": 16149.64, + "end": 16151.0, + "probability": 0.5153 + }, + { + "start": 16151.0, + "end": 16151.48, + "probability": 0.1556 + }, + { + "start": 16151.48, + "end": 16152.76, + "probability": 0.6723 + }, + { + "start": 16153.6, + "end": 16154.66, + "probability": 0.2707 + }, + { + "start": 16154.66, + "end": 16156.68, + "probability": 0.9465 + }, + { + "start": 16156.84, + "end": 16158.54, + "probability": 0.14 + }, + { + "start": 16159.59, + "end": 16163.34, + "probability": 0.0681 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.0, + "end": 16286.0, + "probability": 0.0 + }, + { + "start": 16286.36, + "end": 16289.58, + "probability": 0.8604 + }, + { + "start": 16290.48, + "end": 16294.37, + "probability": 0.9235 + }, + { + "start": 16295.12, + "end": 16296.24, + "probability": 0.8121 + }, + { + "start": 16296.24, + "end": 16296.38, + "probability": 0.4044 + }, + { + "start": 16296.38, + "end": 16300.38, + "probability": 0.605 + }, + { + "start": 16302.1, + "end": 16303.12, + "probability": 0.4602 + }, + { + "start": 16303.44, + "end": 16304.72, + "probability": 0.131 + }, + { + "start": 16306.26, + "end": 16307.26, + "probability": 0.3459 + }, + { + "start": 16308.7, + "end": 16309.96, + "probability": 0.0498 + }, + { + "start": 16310.56, + "end": 16310.64, + "probability": 0.3217 + }, + { + "start": 16310.64, + "end": 16311.6, + "probability": 0.037 + }, + { + "start": 16311.82, + "end": 16313.48, + "probability": 0.0367 + }, + { + "start": 16314.46, + "end": 16314.56, + "probability": 0.002 + }, + { + "start": 16314.58, + "end": 16316.39, + "probability": 0.1892 + }, + { + "start": 16316.68, + "end": 16318.25, + "probability": 0.4738 + }, + { + "start": 16319.56, + "end": 16321.5, + "probability": 0.9971 + }, + { + "start": 16322.18, + "end": 16324.44, + "probability": 0.9942 + }, + { + "start": 16325.52, + "end": 16327.1, + "probability": 0.9829 + }, + { + "start": 16328.22, + "end": 16331.88, + "probability": 0.9799 + }, + { + "start": 16332.62, + "end": 16335.7, + "probability": 0.9789 + }, + { + "start": 16336.38, + "end": 16337.98, + "probability": 0.881 + }, + { + "start": 16338.74, + "end": 16340.38, + "probability": 0.9603 + }, + { + "start": 16341.04, + "end": 16347.14, + "probability": 0.995 + }, + { + "start": 16348.24, + "end": 16349.94, + "probability": 0.9581 + }, + { + "start": 16350.94, + "end": 16355.9, + "probability": 0.9827 + }, + { + "start": 16356.56, + "end": 16358.62, + "probability": 0.9764 + }, + { + "start": 16358.7, + "end": 16359.32, + "probability": 0.5717 + }, + { + "start": 16359.54, + "end": 16360.26, + "probability": 0.6971 + }, + { + "start": 16360.58, + "end": 16361.44, + "probability": 0.6902 + }, + { + "start": 16362.04, + "end": 16364.62, + "probability": 0.9362 + }, + { + "start": 16365.96, + "end": 16367.1, + "probability": 0.9756 + }, + { + "start": 16367.72, + "end": 16368.42, + "probability": 0.9205 + }, + { + "start": 16370.56, + "end": 16372.44, + "probability": 0.9567 + }, + { + "start": 16372.82, + "end": 16374.2, + "probability": 0.9494 + }, + { + "start": 16374.68, + "end": 16375.24, + "probability": 0.5452 + }, + { + "start": 16375.36, + "end": 16376.7, + "probability": 0.6857 + }, + { + "start": 16389.3, + "end": 16391.54, + "probability": 0.6945 + }, + { + "start": 16393.54, + "end": 16398.52, + "probability": 0.9692 + }, + { + "start": 16399.8, + "end": 16402.6, + "probability": 0.9446 + }, + { + "start": 16403.24, + "end": 16406.46, + "probability": 0.937 + }, + { + "start": 16407.8, + "end": 16408.57, + "probability": 0.9902 + }, + { + "start": 16410.67, + "end": 16415.48, + "probability": 0.7692 + }, + { + "start": 16416.52, + "end": 16417.25, + "probability": 0.8772 + }, + { + "start": 16418.94, + "end": 16424.86, + "probability": 0.9398 + }, + { + "start": 16425.08, + "end": 16425.94, + "probability": 0.9396 + }, + { + "start": 16426.02, + "end": 16427.78, + "probability": 0.9941 + }, + { + "start": 16429.04, + "end": 16429.82, + "probability": 0.0417 + }, + { + "start": 16429.82, + "end": 16430.06, + "probability": 0.3074 + }, + { + "start": 16430.86, + "end": 16433.02, + "probability": 0.7034 + }, + { + "start": 16434.04, + "end": 16435.44, + "probability": 0.5 + }, + { + "start": 16436.18, + "end": 16436.42, + "probability": 0.0214 + }, + { + "start": 16436.42, + "end": 16436.42, + "probability": 0.1339 + }, + { + "start": 16436.42, + "end": 16436.42, + "probability": 0.1152 + }, + { + "start": 16436.42, + "end": 16440.08, + "probability": 0.7325 + }, + { + "start": 16440.62, + "end": 16447.2, + "probability": 0.8221 + }, + { + "start": 16448.2, + "end": 16449.26, + "probability": 0.0534 + }, + { + "start": 16450.6, + "end": 16452.52, + "probability": 0.0493 + }, + { + "start": 16453.52, + "end": 16453.52, + "probability": 0.0544 + }, + { + "start": 16453.52, + "end": 16455.08, + "probability": 0.6204 + }, + { + "start": 16455.86, + "end": 16458.02, + "probability": 0.974 + }, + { + "start": 16459.56, + "end": 16461.76, + "probability": 0.6103 + }, + { + "start": 16463.02, + "end": 16466.56, + "probability": 0.0116 + }, + { + "start": 16466.56, + "end": 16469.7, + "probability": 0.0425 + }, + { + "start": 16474.26, + "end": 16474.58, + "probability": 0.0547 + }, + { + "start": 16474.58, + "end": 16474.58, + "probability": 0.0559 + }, + { + "start": 16474.58, + "end": 16474.58, + "probability": 0.0117 + }, + { + "start": 16474.58, + "end": 16474.58, + "probability": 0.0789 + }, + { + "start": 16474.58, + "end": 16474.58, + "probability": 0.112 + }, + { + "start": 16474.58, + "end": 16474.58, + "probability": 0.0822 + }, + { + "start": 16474.58, + "end": 16480.99, + "probability": 0.5962 + }, + { + "start": 16481.68, + "end": 16481.86, + "probability": 0.0927 + }, + { + "start": 16482.58, + "end": 16482.58, + "probability": 0.2915 + }, + { + "start": 16482.58, + "end": 16488.16, + "probability": 0.9705 + }, + { + "start": 16489.08, + "end": 16489.76, + "probability": 0.6662 + }, + { + "start": 16490.36, + "end": 16493.3, + "probability": 0.9321 + }, + { + "start": 16494.14, + "end": 16495.58, + "probability": 0.7527 + }, + { + "start": 16496.18, + "end": 16499.18, + "probability": 0.9545 + }, + { + "start": 16499.72, + "end": 16505.5, + "probability": 0.9788 + }, + { + "start": 16506.08, + "end": 16507.26, + "probability": 0.7613 + }, + { + "start": 16508.26, + "end": 16509.26, + "probability": 0.9663 + }, + { + "start": 16511.96, + "end": 16513.82, + "probability": 0.6536 + }, + { + "start": 16514.6, + "end": 16517.16, + "probability": 0.7923 + }, + { + "start": 16517.82, + "end": 16519.46, + "probability": 0.9588 + }, + { + "start": 16520.1, + "end": 16521.08, + "probability": 0.9526 + }, + { + "start": 16523.44, + "end": 16523.96, + "probability": 0.9525 + }, + { + "start": 16525.14, + "end": 16529.3, + "probability": 0.9985 + }, + { + "start": 16530.54, + "end": 16532.66, + "probability": 0.9972 + }, + { + "start": 16533.38, + "end": 16536.04, + "probability": 0.9956 + }, + { + "start": 16536.82, + "end": 16540.2, + "probability": 0.8838 + }, + { + "start": 16540.9, + "end": 16542.82, + "probability": 0.9897 + }, + { + "start": 16543.4, + "end": 16546.72, + "probability": 0.9927 + }, + { + "start": 16547.28, + "end": 16550.2, + "probability": 0.7619 + }, + { + "start": 16550.92, + "end": 16551.2, + "probability": 0.96 + }, + { + "start": 16551.82, + "end": 16553.2, + "probability": 0.6744 + }, + { + "start": 16553.84, + "end": 16556.0, + "probability": 0.9546 + }, + { + "start": 16556.24, + "end": 16561.28, + "probability": 0.9966 + }, + { + "start": 16561.44, + "end": 16561.84, + "probability": 0.7308 + }, + { + "start": 16562.52, + "end": 16565.34, + "probability": 0.9954 + }, + { + "start": 16565.84, + "end": 16566.98, + "probability": 0.9195 + }, + { + "start": 16567.54, + "end": 16572.4, + "probability": 0.998 + }, + { + "start": 16573.28, + "end": 16575.42, + "probability": 0.8554 + }, + { + "start": 16575.88, + "end": 16576.1, + "probability": 0.7358 + }, + { + "start": 16576.42, + "end": 16577.0, + "probability": 0.6001 + }, + { + "start": 16577.04, + "end": 16578.88, + "probability": 0.8335 + }, + { + "start": 16579.8, + "end": 16581.08, + "probability": 0.9182 + }, + { + "start": 16581.84, + "end": 16583.92, + "probability": 0.1516 + }, + { + "start": 16584.02, + "end": 16586.3, + "probability": 0.8937 + }, + { + "start": 16589.02, + "end": 16589.12, + "probability": 0.0461 + }, + { + "start": 16590.12, + "end": 16590.84, + "probability": 0.0338 + }, + { + "start": 16590.84, + "end": 16591.08, + "probability": 0.2042 + }, + { + "start": 16591.08, + "end": 16596.3, + "probability": 0.7406 + }, + { + "start": 16596.34, + "end": 16596.9, + "probability": 0.3207 + }, + { + "start": 16596.92, + "end": 16597.76, + "probability": 0.6565 + }, + { + "start": 16598.68, + "end": 16599.24, + "probability": 0.0348 + }, + { + "start": 16600.98, + "end": 16600.98, + "probability": 0.2207 + }, + { + "start": 16600.98, + "end": 16602.0, + "probability": 0.8484 + }, + { + "start": 16602.88, + "end": 16604.66, + "probability": 0.9912 + }, + { + "start": 16604.86, + "end": 16605.3, + "probability": 0.825 + }, + { + "start": 16606.34, + "end": 16607.4, + "probability": 0.0294 + }, + { + "start": 16607.86, + "end": 16609.06, + "probability": 0.4212 + }, + { + "start": 16609.72, + "end": 16610.86, + "probability": 0.6165 + }, + { + "start": 16612.62, + "end": 16614.58, + "probability": 0.5466 + }, + { + "start": 16616.28, + "end": 16618.62, + "probability": 0.8136 + }, + { + "start": 16619.52, + "end": 16620.66, + "probability": 0.9435 + }, + { + "start": 16622.62, + "end": 16628.7, + "probability": 0.9868 + }, + { + "start": 16629.6, + "end": 16630.14, + "probability": 0.7853 + }, + { + "start": 16631.1, + "end": 16632.86, + "probability": 0.968 + }, + { + "start": 16634.82, + "end": 16635.99, + "probability": 0.7197 + }, + { + "start": 16639.7, + "end": 16640.77, + "probability": 0.9907 + }, + { + "start": 16643.6, + "end": 16646.29, + "probability": 0.9644 + }, + { + "start": 16648.18, + "end": 16649.76, + "probability": 0.9124 + }, + { + "start": 16649.92, + "end": 16651.26, + "probability": 0.9678 + }, + { + "start": 16651.26, + "end": 16653.66, + "probability": 0.7084 + }, + { + "start": 16653.92, + "end": 16657.06, + "probability": 0.8189 + }, + { + "start": 16657.16, + "end": 16659.42, + "probability": 0.9948 + }, + { + "start": 16659.56, + "end": 16661.6, + "probability": 0.9883 + }, + { + "start": 16662.54, + "end": 16663.96, + "probability": 0.8643 + }, + { + "start": 16665.26, + "end": 16668.08, + "probability": 0.9966 + }, + { + "start": 16668.08, + "end": 16670.58, + "probability": 0.9964 + }, + { + "start": 16671.04, + "end": 16673.15, + "probability": 0.9959 + }, + { + "start": 16673.66, + "end": 16675.76, + "probability": 0.9653 + }, + { + "start": 16676.4, + "end": 16677.26, + "probability": 0.7645 + }, + { + "start": 16677.86, + "end": 16677.96, + "probability": 0.4069 + }, + { + "start": 16679.52, + "end": 16681.76, + "probability": 0.8139 + }, + { + "start": 16683.96, + "end": 16687.24, + "probability": 0.8971 + }, + { + "start": 16688.9, + "end": 16689.96, + "probability": 0.9035 + }, + { + "start": 16690.86, + "end": 16692.3, + "probability": 0.9731 + }, + { + "start": 16693.5, + "end": 16697.02, + "probability": 0.9349 + }, + { + "start": 16697.04, + "end": 16697.66, + "probability": 0.5699 + }, + { + "start": 16697.66, + "end": 16698.56, + "probability": 0.9337 + }, + { + "start": 16698.6, + "end": 16699.1, + "probability": 0.9447 + }, + { + "start": 16699.14, + "end": 16700.0, + "probability": 0.8195 + }, + { + "start": 16701.4, + "end": 16705.76, + "probability": 0.9733 + }, + { + "start": 16706.78, + "end": 16712.4, + "probability": 0.9922 + }, + { + "start": 16712.72, + "end": 16713.84, + "probability": 0.9946 + }, + { + "start": 16714.16, + "end": 16714.74, + "probability": 0.6381 + }, + { + "start": 16714.98, + "end": 16715.6, + "probability": 0.7841 + }, + { + "start": 16716.64, + "end": 16717.4, + "probability": 0.9747 + }, + { + "start": 16717.94, + "end": 16720.36, + "probability": 0.7698 + }, + { + "start": 16720.9, + "end": 16722.48, + "probability": 0.9479 + }, + { + "start": 16723.46, + "end": 16724.98, + "probability": 0.9568 + }, + { + "start": 16726.72, + "end": 16728.82, + "probability": 0.9745 + }, + { + "start": 16728.82, + "end": 16731.12, + "probability": 0.7639 + }, + { + "start": 16731.32, + "end": 16733.02, + "probability": 0.8721 + }, + { + "start": 16733.58, + "end": 16735.1, + "probability": 0.9333 + }, + { + "start": 16735.24, + "end": 16736.89, + "probability": 0.8232 + }, + { + "start": 16738.14, + "end": 16738.48, + "probability": 0.8896 + }, + { + "start": 16739.0, + "end": 16741.58, + "probability": 0.9846 + }, + { + "start": 16742.74, + "end": 16743.64, + "probability": 0.8658 + }, + { + "start": 16744.48, + "end": 16748.3, + "probability": 0.9917 + }, + { + "start": 16748.42, + "end": 16749.16, + "probability": 0.9246 + }, + { + "start": 16749.4, + "end": 16750.18, + "probability": 0.9673 + }, + { + "start": 16750.24, + "end": 16750.74, + "probability": 0.6462 + }, + { + "start": 16752.48, + "end": 16754.24, + "probability": 0.9905 + }, + { + "start": 16754.78, + "end": 16758.68, + "probability": 0.9967 + }, + { + "start": 16760.0, + "end": 16760.86, + "probability": 0.7983 + }, + { + "start": 16762.16, + "end": 16765.38, + "probability": 0.9977 + }, + { + "start": 16765.46, + "end": 16765.96, + "probability": 0.1024 + }, + { + "start": 16766.66, + "end": 16769.92, + "probability": 0.9893 + }, + { + "start": 16770.08, + "end": 16770.67, + "probability": 0.9192 + }, + { + "start": 16771.18, + "end": 16771.96, + "probability": 0.842 + }, + { + "start": 16772.3, + "end": 16773.0, + "probability": 0.7922 + }, + { + "start": 16773.28, + "end": 16777.62, + "probability": 0.9661 + }, + { + "start": 16777.96, + "end": 16782.48, + "probability": 0.9977 + }, + { + "start": 16782.9, + "end": 16783.72, + "probability": 0.8826 + }, + { + "start": 16785.02, + "end": 16785.76, + "probability": 0.6897 + }, + { + "start": 16785.88, + "end": 16787.8, + "probability": 0.719 + }, + { + "start": 16789.28, + "end": 16791.42, + "probability": 0.9729 + }, + { + "start": 16792.0, + "end": 16792.78, + "probability": 0.6731 + }, + { + "start": 16810.1, + "end": 16810.18, + "probability": 0.4752 + }, + { + "start": 16810.18, + "end": 16810.78, + "probability": 0.4706 + }, + { + "start": 16811.22, + "end": 16811.9, + "probability": 0.7404 + }, + { + "start": 16814.12, + "end": 16816.74, + "probability": 0.9613 + }, + { + "start": 16816.88, + "end": 16817.05, + "probability": 0.0506 + }, + { + "start": 16819.16, + "end": 16820.48, + "probability": 0.7827 + }, + { + "start": 16821.02, + "end": 16821.78, + "probability": 0.9003 + }, + { + "start": 16822.0, + "end": 16822.9, + "probability": 0.6316 + }, + { + "start": 16823.2, + "end": 16825.64, + "probability": 0.7236 + }, + { + "start": 16825.7, + "end": 16825.8, + "probability": 0.6506 + }, + { + "start": 16825.88, + "end": 16826.66, + "probability": 0.9404 + }, + { + "start": 16827.3, + "end": 16834.72, + "probability": 0.9953 + }, + { + "start": 16837.72, + "end": 16839.6, + "probability": 0.8521 + }, + { + "start": 16839.62, + "end": 16842.22, + "probability": 0.8792 + }, + { + "start": 16842.46, + "end": 16843.28, + "probability": 0.7479 + }, + { + "start": 16844.26, + "end": 16845.36, + "probability": 0.907 + }, + { + "start": 16846.72, + "end": 16847.66, + "probability": 0.2826 + }, + { + "start": 16847.8, + "end": 16848.04, + "probability": 0.7971 + }, + { + "start": 16848.38, + "end": 16848.84, + "probability": 0.4047 + }, + { + "start": 16848.92, + "end": 16850.39, + "probability": 0.9854 + }, + { + "start": 16851.86, + "end": 16856.24, + "probability": 0.8183 + }, + { + "start": 16856.88, + "end": 16859.68, + "probability": 0.9105 + }, + { + "start": 16861.0, + "end": 16865.38, + "probability": 0.8809 + }, + { + "start": 16866.8, + "end": 16868.19, + "probability": 0.98 + }, + { + "start": 16868.62, + "end": 16871.48, + "probability": 0.465 + }, + { + "start": 16871.92, + "end": 16872.52, + "probability": 0.9355 + }, + { + "start": 16872.66, + "end": 16873.36, + "probability": 0.9715 + }, + { + "start": 16873.46, + "end": 16875.86, + "probability": 0.988 + }, + { + "start": 16876.3, + "end": 16879.82, + "probability": 0.7785 + }, + { + "start": 16880.42, + "end": 16882.44, + "probability": 0.8804 + }, + { + "start": 16882.76, + "end": 16882.9, + "probability": 0.8488 + }, + { + "start": 16883.72, + "end": 16884.2, + "probability": 0.8212 + }, + { + "start": 16884.42, + "end": 16885.52, + "probability": 0.8638 + }, + { + "start": 16886.0, + "end": 16887.21, + "probability": 0.4961 + }, + { + "start": 16888.46, + "end": 16890.06, + "probability": 0.8965 + }, + { + "start": 16890.16, + "end": 16892.46, + "probability": 0.9678 + }, + { + "start": 16892.52, + "end": 16898.08, + "probability": 0.9919 + }, + { + "start": 16898.5, + "end": 16900.38, + "probability": 0.926 + }, + { + "start": 16900.9, + "end": 16906.6, + "probability": 0.8662 + }, + { + "start": 16907.62, + "end": 16909.42, + "probability": 0.9556 + }, + { + "start": 16910.08, + "end": 16912.78, + "probability": 0.9229 + }, + { + "start": 16913.78, + "end": 16918.14, + "probability": 0.9203 + }, + { + "start": 16919.38, + "end": 16920.58, + "probability": 0.814 + }, + { + "start": 16920.78, + "end": 16925.0, + "probability": 0.8873 + }, + { + "start": 16926.12, + "end": 16926.56, + "probability": 0.3679 + }, + { + "start": 16927.2, + "end": 16930.02, + "probability": 0.9466 + }, + { + "start": 16930.52, + "end": 16932.9, + "probability": 0.9362 + }, + { + "start": 16934.48, + "end": 16938.2, + "probability": 0.8775 + }, + { + "start": 16938.28, + "end": 16938.38, + "probability": 0.9058 + }, + { + "start": 16938.98, + "end": 16941.04, + "probability": 0.8637 + }, + { + "start": 16942.08, + "end": 16942.84, + "probability": 0.6254 + }, + { + "start": 16943.6, + "end": 16944.64, + "probability": 0.91 + }, + { + "start": 16944.74, + "end": 16946.3, + "probability": 0.7004 + }, + { + "start": 16946.9, + "end": 16949.86, + "probability": 0.9436 + }, + { + "start": 16950.08, + "end": 16953.92, + "probability": 0.8296 + }, + { + "start": 16954.96, + "end": 16956.46, + "probability": 0.8445 + }, + { + "start": 16957.28, + "end": 16958.14, + "probability": 0.9246 + }, + { + "start": 16958.66, + "end": 16959.0, + "probability": 0.7166 + }, + { + "start": 16959.08, + "end": 16961.31, + "probability": 0.9744 + }, + { + "start": 16962.18, + "end": 16963.88, + "probability": 0.9561 + }, + { + "start": 16964.38, + "end": 16967.64, + "probability": 0.7496 + }, + { + "start": 16967.82, + "end": 16969.22, + "probability": 0.7467 + }, + { + "start": 16969.74, + "end": 16972.92, + "probability": 0.9771 + }, + { + "start": 16973.24, + "end": 16974.24, + "probability": 0.9912 + }, + { + "start": 16975.86, + "end": 16981.14, + "probability": 0.9292 + }, + { + "start": 16981.26, + "end": 16983.3, + "probability": 0.8143 + }, + { + "start": 16983.46, + "end": 16985.06, + "probability": 0.6618 + }, + { + "start": 16985.12, + "end": 16987.36, + "probability": 0.981 + }, + { + "start": 16987.88, + "end": 16989.4, + "probability": 0.9905 + }, + { + "start": 16989.92, + "end": 16992.52, + "probability": 0.9808 + }, + { + "start": 16993.26, + "end": 16993.5, + "probability": 0.7984 + }, + { + "start": 16994.08, + "end": 16997.72, + "probability": 0.8781 + }, + { + "start": 16998.0, + "end": 16998.18, + "probability": 0.4091 + }, + { + "start": 16998.5, + "end": 16999.72, + "probability": 0.9749 + }, + { + "start": 16999.88, + "end": 17003.32, + "probability": 0.9951 + }, + { + "start": 17003.48, + "end": 17004.34, + "probability": 0.9416 + }, + { + "start": 17004.66, + "end": 17005.58, + "probability": 0.5213 + }, + { + "start": 17005.88, + "end": 17007.48, + "probability": 0.7699 + }, + { + "start": 17007.52, + "end": 17008.95, + "probability": 0.8977 + }, + { + "start": 17010.28, + "end": 17011.06, + "probability": 0.5972 + }, + { + "start": 17011.64, + "end": 17013.51, + "probability": 0.877 + }, + { + "start": 17022.18, + "end": 17023.24, + "probability": 0.6092 + }, + { + "start": 17023.92, + "end": 17024.78, + "probability": 0.7537 + }, + { + "start": 17026.48, + "end": 17028.14, + "probability": 0.9076 + }, + { + "start": 17028.82, + "end": 17029.6, + "probability": 0.9433 + }, + { + "start": 17030.5, + "end": 17034.18, + "probability": 0.9952 + }, + { + "start": 17035.08, + "end": 17038.18, + "probability": 0.9194 + }, + { + "start": 17039.02, + "end": 17042.64, + "probability": 0.8979 + }, + { + "start": 17043.76, + "end": 17048.24, + "probability": 0.928 + }, + { + "start": 17048.62, + "end": 17049.22, + "probability": 0.6301 + }, + { + "start": 17050.48, + "end": 17053.98, + "probability": 0.9555 + }, + { + "start": 17055.94, + "end": 17060.18, + "probability": 0.9921 + }, + { + "start": 17060.98, + "end": 17062.02, + "probability": 0.7744 + }, + { + "start": 17062.9, + "end": 17065.0, + "probability": 0.9907 + }, + { + "start": 17065.94, + "end": 17067.32, + "probability": 0.9961 + }, + { + "start": 17067.88, + "end": 17069.58, + "probability": 0.9352 + }, + { + "start": 17070.3, + "end": 17073.2, + "probability": 0.9842 + }, + { + "start": 17074.66, + "end": 17077.86, + "probability": 0.9465 + }, + { + "start": 17078.62, + "end": 17079.16, + "probability": 0.5511 + }, + { + "start": 17080.04, + "end": 17082.56, + "probability": 0.6675 + }, + { + "start": 17083.64, + "end": 17086.52, + "probability": 0.7844 + }, + { + "start": 17087.5, + "end": 17088.92, + "probability": 0.9766 + }, + { + "start": 17089.06, + "end": 17092.72, + "probability": 0.9926 + }, + { + "start": 17093.46, + "end": 17094.34, + "probability": 0.8441 + }, + { + "start": 17094.56, + "end": 17099.55, + "probability": 0.9959 + }, + { + "start": 17099.6, + "end": 17103.66, + "probability": 0.9895 + }, + { + "start": 17104.76, + "end": 17109.74, + "probability": 0.9966 + }, + { + "start": 17109.8, + "end": 17110.58, + "probability": 0.9109 + }, + { + "start": 17110.62, + "end": 17111.34, + "probability": 0.8462 + }, + { + "start": 17112.6, + "end": 17115.46, + "probability": 0.9958 + }, + { + "start": 17116.32, + "end": 17117.14, + "probability": 0.5661 + }, + { + "start": 17117.24, + "end": 17119.4, + "probability": 0.981 + }, + { + "start": 17120.16, + "end": 17123.96, + "probability": 0.9829 + }, + { + "start": 17124.84, + "end": 17126.38, + "probability": 0.8086 + }, + { + "start": 17126.42, + "end": 17133.14, + "probability": 0.9064 + }, + { + "start": 17134.58, + "end": 17135.98, + "probability": 0.8327 + }, + { + "start": 17136.9, + "end": 17139.92, + "probability": 0.863 + }, + { + "start": 17140.44, + "end": 17141.02, + "probability": 0.6309 + }, + { + "start": 17141.72, + "end": 17143.86, + "probability": 0.9505 + }, + { + "start": 17144.62, + "end": 17147.9, + "probability": 0.9941 + }, + { + "start": 17149.04, + "end": 17149.72, + "probability": 0.7285 + }, + { + "start": 17149.82, + "end": 17151.56, + "probability": 0.9938 + }, + { + "start": 17151.6, + "end": 17152.16, + "probability": 0.5803 + }, + { + "start": 17152.82, + "end": 17153.54, + "probability": 0.676 + }, + { + "start": 17153.96, + "end": 17156.64, + "probability": 0.9923 + }, + { + "start": 17156.64, + "end": 17160.04, + "probability": 0.9687 + }, + { + "start": 17161.26, + "end": 17164.46, + "probability": 0.9292 + }, + { + "start": 17164.5, + "end": 17168.98, + "probability": 0.9995 + }, + { + "start": 17169.58, + "end": 17171.88, + "probability": 0.9991 + }, + { + "start": 17172.86, + "end": 17175.36, + "probability": 0.9991 + }, + { + "start": 17176.22, + "end": 17180.22, + "probability": 0.9468 + }, + { + "start": 17180.92, + "end": 17185.9, + "probability": 0.9974 + }, + { + "start": 17186.62, + "end": 17188.24, + "probability": 0.9989 + }, + { + "start": 17189.22, + "end": 17192.36, + "probability": 0.9949 + }, + { + "start": 17193.16, + "end": 17195.24, + "probability": 0.9976 + }, + { + "start": 17195.24, + "end": 17198.16, + "probability": 0.9949 + }, + { + "start": 17198.92, + "end": 17201.1, + "probability": 0.9806 + }, + { + "start": 17202.0, + "end": 17205.3, + "probability": 0.9292 + }, + { + "start": 17205.7, + "end": 17207.32, + "probability": 0.7041 + }, + { + "start": 17207.92, + "end": 17210.44, + "probability": 0.9945 + }, + { + "start": 17210.94, + "end": 17211.9, + "probability": 0.6053 + }, + { + "start": 17211.9, + "end": 17214.32, + "probability": 0.8042 + }, + { + "start": 17214.94, + "end": 17216.26, + "probability": 0.8736 + }, + { + "start": 17216.58, + "end": 17220.46, + "probability": 0.9832 + }, + { + "start": 17221.4, + "end": 17223.84, + "probability": 0.9651 + }, + { + "start": 17224.58, + "end": 17227.06, + "probability": 0.9776 + }, + { + "start": 17227.66, + "end": 17231.4, + "probability": 0.9833 + }, + { + "start": 17232.02, + "end": 17235.3, + "probability": 0.9932 + }, + { + "start": 17235.84, + "end": 17237.48, + "probability": 0.9971 + }, + { + "start": 17237.86, + "end": 17237.96, + "probability": 0.6479 + }, + { + "start": 17238.26, + "end": 17238.9, + "probability": 0.5985 + }, + { + "start": 17239.0, + "end": 17241.52, + "probability": 0.6931 + }, + { + "start": 17242.46, + "end": 17244.02, + "probability": 0.803 + }, + { + "start": 17247.48, + "end": 17248.58, + "probability": 0.9299 + }, + { + "start": 17248.68, + "end": 17251.94, + "probability": 0.9399 + }, + { + "start": 17252.3, + "end": 17252.76, + "probability": 0.0897 + }, + { + "start": 17252.96, + "end": 17253.62, + "probability": 0.3434 + }, + { + "start": 17255.8, + "end": 17258.16, + "probability": 0.9384 + }, + { + "start": 17258.28, + "end": 17261.04, + "probability": 0.6965 + }, + { + "start": 17262.28, + "end": 17266.58, + "probability": 0.9926 + }, + { + "start": 17267.02, + "end": 17268.18, + "probability": 0.9821 + }, + { + "start": 17269.22, + "end": 17270.78, + "probability": 0.8966 + }, + { + "start": 17272.26, + "end": 17277.2, + "probability": 0.9818 + }, + { + "start": 17278.52, + "end": 17279.61, + "probability": 0.9827 + }, + { + "start": 17280.4, + "end": 17280.98, + "probability": 0.9899 + }, + { + "start": 17281.66, + "end": 17284.2, + "probability": 0.9988 + }, + { + "start": 17285.56, + "end": 17289.84, + "probability": 0.9948 + }, + { + "start": 17289.94, + "end": 17291.87, + "probability": 0.9609 + }, + { + "start": 17292.86, + "end": 17293.38, + "probability": 0.8888 + }, + { + "start": 17294.12, + "end": 17295.2, + "probability": 0.8943 + }, + { + "start": 17295.88, + "end": 17296.6, + "probability": 0.9233 + }, + { + "start": 17297.64, + "end": 17298.94, + "probability": 0.9409 + }, + { + "start": 17300.06, + "end": 17303.74, + "probability": 0.9966 + }, + { + "start": 17304.3, + "end": 17310.24, + "probability": 0.9985 + }, + { + "start": 17310.34, + "end": 17311.14, + "probability": 0.7047 + }, + { + "start": 17312.12, + "end": 17313.82, + "probability": 0.9976 + }, + { + "start": 17315.2, + "end": 17319.38, + "probability": 0.9926 + }, + { + "start": 17319.84, + "end": 17324.96, + "probability": 0.9995 + }, + { + "start": 17325.66, + "end": 17326.8, + "probability": 0.921 + }, + { + "start": 17327.46, + "end": 17331.38, + "probability": 0.9974 + }, + { + "start": 17331.88, + "end": 17333.96, + "probability": 0.8959 + }, + { + "start": 17334.72, + "end": 17338.26, + "probability": 0.9977 + }, + { + "start": 17339.44, + "end": 17340.52, + "probability": 0.7229 + }, + { + "start": 17341.68, + "end": 17342.3, + "probability": 0.7701 + }, + { + "start": 17342.88, + "end": 17344.16, + "probability": 0.9977 + }, + { + "start": 17344.8, + "end": 17348.14, + "probability": 0.9069 + }, + { + "start": 17349.55, + "end": 17353.22, + "probability": 0.9859 + }, + { + "start": 17354.36, + "end": 17355.0, + "probability": 0.9472 + }, + { + "start": 17355.02, + "end": 17355.62, + "probability": 0.894 + }, + { + "start": 17355.76, + "end": 17356.44, + "probability": 0.5505 + }, + { + "start": 17357.4, + "end": 17361.38, + "probability": 0.974 + }, + { + "start": 17362.48, + "end": 17363.46, + "probability": 0.0048 + }, + { + "start": 17363.46, + "end": 17364.86, + "probability": 0.7319 + }, + { + "start": 17366.52, + "end": 17367.34, + "probability": 0.2859 + }, + { + "start": 17368.68, + "end": 17370.58, + "probability": 0.9772 + }, + { + "start": 17371.1, + "end": 17372.56, + "probability": 0.9981 + }, + { + "start": 17373.08, + "end": 17374.58, + "probability": 0.9858 + }, + { + "start": 17375.62, + "end": 17377.78, + "probability": 0.8371 + }, + { + "start": 17379.13, + "end": 17382.26, + "probability": 0.6904 + }, + { + "start": 17383.49, + "end": 17387.88, + "probability": 0.8045 + }, + { + "start": 17388.4, + "end": 17391.54, + "probability": 0.9814 + }, + { + "start": 17391.62, + "end": 17394.14, + "probability": 0.7864 + }, + { + "start": 17394.56, + "end": 17395.8, + "probability": 0.8766 + }, + { + "start": 17397.14, + "end": 17398.34, + "probability": 0.9039 + }, + { + "start": 17398.84, + "end": 17403.36, + "probability": 0.9883 + }, + { + "start": 17403.58, + "end": 17404.8, + "probability": 0.9756 + }, + { + "start": 17405.88, + "end": 17408.76, + "probability": 0.9942 + }, + { + "start": 17409.36, + "end": 17411.58, + "probability": 0.9995 + }, + { + "start": 17411.68, + "end": 17415.39, + "probability": 0.9868 + }, + { + "start": 17415.64, + "end": 17416.32, + "probability": 0.4959 + }, + { + "start": 17416.72, + "end": 17417.84, + "probability": 0.9692 + }, + { + "start": 17418.5, + "end": 17422.8, + "probability": 0.9888 + }, + { + "start": 17422.9, + "end": 17423.82, + "probability": 0.5353 + }, + { + "start": 17424.1, + "end": 17424.8, + "probability": 0.9857 + }, + { + "start": 17424.98, + "end": 17425.66, + "probability": 0.9074 + }, + { + "start": 17426.04, + "end": 17431.86, + "probability": 0.9772 + }, + { + "start": 17432.3, + "end": 17434.68, + "probability": 0.969 + }, + { + "start": 17435.26, + "end": 17436.41, + "probability": 0.9846 + }, + { + "start": 17437.34, + "end": 17438.42, + "probability": 0.972 + }, + { + "start": 17439.08, + "end": 17440.1, + "probability": 0.7906 + }, + { + "start": 17440.88, + "end": 17441.56, + "probability": 0.9983 + }, + { + "start": 17442.68, + "end": 17442.96, + "probability": 0.9221 + }, + { + "start": 17444.32, + "end": 17445.5, + "probability": 0.976 + }, + { + "start": 17446.44, + "end": 17452.92, + "probability": 0.9968 + }, + { + "start": 17453.16, + "end": 17454.68, + "probability": 0.9979 + }, + { + "start": 17455.42, + "end": 17457.26, + "probability": 0.8623 + }, + { + "start": 17459.38, + "end": 17459.46, + "probability": 0.1751 + }, + { + "start": 17459.46, + "end": 17459.56, + "probability": 0.8438 + }, + { + "start": 17460.1, + "end": 17461.9, + "probability": 0.9507 + }, + { + "start": 17462.82, + "end": 17464.94, + "probability": 0.9741 + }, + { + "start": 17465.4, + "end": 17466.54, + "probability": 0.8754 + }, + { + "start": 17466.6, + "end": 17469.78, + "probability": 0.8206 + }, + { + "start": 17470.26, + "end": 17470.72, + "probability": 0.9182 + }, + { + "start": 17471.38, + "end": 17471.86, + "probability": 0.8446 + }, + { + "start": 17471.9, + "end": 17476.32, + "probability": 0.9709 + }, + { + "start": 17476.32, + "end": 17479.6, + "probability": 0.9807 + }, + { + "start": 17480.28, + "end": 17482.08, + "probability": 0.9731 + }, + { + "start": 17482.5, + "end": 17482.96, + "probability": 0.6926 + }, + { + "start": 17482.98, + "end": 17486.76, + "probability": 0.9907 + }, + { + "start": 17487.54, + "end": 17488.1, + "probability": 0.8021 + }, + { + "start": 17488.58, + "end": 17491.62, + "probability": 0.9491 + }, + { + "start": 17491.78, + "end": 17494.2, + "probability": 0.9377 + }, + { + "start": 17495.28, + "end": 17495.7, + "probability": 0.6012 + }, + { + "start": 17497.78, + "end": 17499.46, + "probability": 0.9929 + }, + { + "start": 17500.2, + "end": 17500.76, + "probability": 0.8544 + }, + { + "start": 17506.52, + "end": 17507.66, + "probability": 0.2542 + }, + { + "start": 17512.56, + "end": 17512.7, + "probability": 0.4757 + }, + { + "start": 17515.38, + "end": 17517.44, + "probability": 0.8923 + }, + { + "start": 17518.2, + "end": 17520.24, + "probability": 0.9921 + }, + { + "start": 17522.14, + "end": 17523.8, + "probability": 0.775 + }, + { + "start": 17524.44, + "end": 17524.78, + "probability": 0.9451 + }, + { + "start": 17525.88, + "end": 17526.64, + "probability": 0.9602 + }, + { + "start": 17526.74, + "end": 17527.96, + "probability": 0.5864 + }, + { + "start": 17528.58, + "end": 17529.56, + "probability": 0.2851 + }, + { + "start": 17530.4, + "end": 17530.66, + "probability": 0.6084 + }, + { + "start": 17538.8, + "end": 17539.56, + "probability": 0.9774 + }, + { + "start": 17540.66, + "end": 17542.16, + "probability": 0.9641 + }, + { + "start": 17542.48, + "end": 17543.68, + "probability": 0.8826 + }, + { + "start": 17544.08, + "end": 17545.06, + "probability": 0.1795 + }, + { + "start": 17545.9, + "end": 17547.08, + "probability": 0.7578 + }, + { + "start": 17547.93, + "end": 17548.5, + "probability": 0.7588 + }, + { + "start": 17548.52, + "end": 17550.1, + "probability": 0.8145 + }, + { + "start": 17551.08, + "end": 17553.16, + "probability": 0.9036 + }, + { + "start": 17553.72, + "end": 17554.98, + "probability": 0.9342 + }, + { + "start": 17556.06, + "end": 17559.8, + "probability": 0.8384 + }, + { + "start": 17560.4, + "end": 17561.62, + "probability": 0.7905 + }, + { + "start": 17562.68, + "end": 17564.8, + "probability": 0.9128 + }, + { + "start": 17566.08, + "end": 17568.48, + "probability": 0.3433 + }, + { + "start": 17569.62, + "end": 17572.42, + "probability": 0.9986 + }, + { + "start": 17573.56, + "end": 17575.26, + "probability": 0.9891 + }, + { + "start": 17575.84, + "end": 17576.86, + "probability": 0.8029 + }, + { + "start": 17578.58, + "end": 17583.8, + "probability": 0.9602 + }, + { + "start": 17584.54, + "end": 17586.0, + "probability": 0.7294 + }, + { + "start": 17587.68, + "end": 17588.32, + "probability": 0.4974 + }, + { + "start": 17590.24, + "end": 17590.92, + "probability": 0.0556 + }, + { + "start": 17590.92, + "end": 17591.42, + "probability": 0.2571 + }, + { + "start": 17591.56, + "end": 17592.76, + "probability": 0.7039 + }, + { + "start": 17594.4, + "end": 17595.62, + "probability": 0.8581 + }, + { + "start": 17595.92, + "end": 17598.34, + "probability": 0.9473 + }, + { + "start": 17601.28, + "end": 17602.38, + "probability": 0.9702 + }, + { + "start": 17602.9, + "end": 17605.04, + "probability": 0.9739 + }, + { + "start": 17605.8, + "end": 17607.6, + "probability": 0.6611 + }, + { + "start": 17608.34, + "end": 17609.34, + "probability": 0.9402 + }, + { + "start": 17609.56, + "end": 17610.24, + "probability": 0.9218 + }, + { + "start": 17610.36, + "end": 17611.0, + "probability": 0.894 + }, + { + "start": 17611.28, + "end": 17611.9, + "probability": 0.9707 + }, + { + "start": 17612.74, + "end": 17614.14, + "probability": 0.9751 + }, + { + "start": 17615.84, + "end": 17616.36, + "probability": 0.9765 + }, + { + "start": 17619.38, + "end": 17620.26, + "probability": 0.728 + }, + { + "start": 17620.34, + "end": 17625.66, + "probability": 0.9899 + }, + { + "start": 17626.02, + "end": 17627.06, + "probability": 0.7627 + }, + { + "start": 17627.38, + "end": 17628.2, + "probability": 0.9199 + }, + { + "start": 17628.68, + "end": 17629.88, + "probability": 0.8855 + }, + { + "start": 17630.76, + "end": 17631.72, + "probability": 0.9954 + }, + { + "start": 17633.66, + "end": 17636.66, + "probability": 0.8734 + }, + { + "start": 17636.82, + "end": 17638.34, + "probability": 0.8911 + }, + { + "start": 17639.22, + "end": 17640.58, + "probability": 0.5027 + }, + { + "start": 17642.66, + "end": 17644.46, + "probability": 0.9937 + }, + { + "start": 17646.12, + "end": 17648.44, + "probability": 0.9915 + }, + { + "start": 17650.53, + "end": 17651.78, + "probability": 0.9965 + }, + { + "start": 17652.38, + "end": 17653.79, + "probability": 0.999 + }, + { + "start": 17656.3, + "end": 17659.86, + "probability": 0.9753 + }, + { + "start": 17661.32, + "end": 17663.02, + "probability": 0.9941 + }, + { + "start": 17663.8, + "end": 17664.64, + "probability": 0.8921 + }, + { + "start": 17666.08, + "end": 17666.64, + "probability": 0.6272 + }, + { + "start": 17668.18, + "end": 17672.64, + "probability": 0.9774 + }, + { + "start": 17677.28, + "end": 17677.9, + "probability": 0.6737 + }, + { + "start": 17679.26, + "end": 17679.52, + "probability": 0.521 + }, + { + "start": 17680.7, + "end": 17685.36, + "probability": 0.8289 + }, + { + "start": 17685.36, + "end": 17688.18, + "probability": 0.9662 + }, + { + "start": 17688.9, + "end": 17689.88, + "probability": 0.9453 + }, + { + "start": 17691.3, + "end": 17696.7, + "probability": 0.3125 + }, + { + "start": 17697.46, + "end": 17699.68, + "probability": 0.3257 + }, + { + "start": 17700.94, + "end": 17704.88, + "probability": 0.818 + }, + { + "start": 17705.8, + "end": 17707.24, + "probability": 0.8188 + }, + { + "start": 17709.19, + "end": 17711.82, + "probability": 0.9551 + }, + { + "start": 17711.92, + "end": 17713.2, + "probability": 0.9639 + }, + { + "start": 17714.7, + "end": 17716.22, + "probability": 0.9969 + }, + { + "start": 17717.2, + "end": 17717.62, + "probability": 0.7992 + }, + { + "start": 17723.0, + "end": 17723.96, + "probability": 0.4051 + }, + { + "start": 17725.28, + "end": 17727.67, + "probability": 0.6956 + }, + { + "start": 17727.74, + "end": 17728.84, + "probability": 0.2204 + }, + { + "start": 17730.02, + "end": 17730.66, + "probability": 0.8109 + }, + { + "start": 17732.18, + "end": 17732.66, + "probability": 0.4965 + }, + { + "start": 17733.56, + "end": 17736.74, + "probability": 0.7241 + }, + { + "start": 17737.3, + "end": 17739.08, + "probability": 0.7713 + }, + { + "start": 17742.7, + "end": 17745.48, + "probability": 0.993 + }, + { + "start": 17747.96, + "end": 17748.16, + "probability": 0.037 + }, + { + "start": 17758.56, + "end": 17758.56, + "probability": 0.0844 + }, + { + "start": 17758.56, + "end": 17760.38, + "probability": 0.4756 + }, + { + "start": 17764.0, + "end": 17766.52, + "probability": 0.5986 + }, + { + "start": 17766.6, + "end": 17767.36, + "probability": 0.8015 + }, + { + "start": 17767.66, + "end": 17768.84, + "probability": 0.8977 + }, + { + "start": 17769.06, + "end": 17769.88, + "probability": 0.7065 + }, + { + "start": 17769.88, + "end": 17772.66, + "probability": 0.9124 + }, + { + "start": 17773.56, + "end": 17776.6, + "probability": 0.8896 + }, + { + "start": 17778.18, + "end": 17779.04, + "probability": 0.9128 + }, + { + "start": 17779.7, + "end": 17780.28, + "probability": 0.9167 + }, + { + "start": 17784.42, + "end": 17786.24, + "probability": 0.91 + }, + { + "start": 17787.22, + "end": 17790.4, + "probability": 0.9935 + }, + { + "start": 17790.54, + "end": 17791.76, + "probability": 0.9963 + }, + { + "start": 17792.44, + "end": 17795.74, + "probability": 0.7783 + }, + { + "start": 17796.62, + "end": 17801.78, + "probability": 0.9974 + }, + { + "start": 17802.46, + "end": 17805.1, + "probability": 0.8831 + }, + { + "start": 17806.18, + "end": 17809.0, + "probability": 0.9945 + }, + { + "start": 17809.66, + "end": 17810.58, + "probability": 0.3894 + }, + { + "start": 17811.66, + "end": 17816.06, + "probability": 0.995 + }, + { + "start": 17817.04, + "end": 17818.72, + "probability": 0.9921 + }, + { + "start": 17819.44, + "end": 17826.86, + "probability": 0.9823 + }, + { + "start": 17828.12, + "end": 17829.62, + "probability": 0.5608 + }, + { + "start": 17830.64, + "end": 17835.68, + "probability": 0.9812 + }, + { + "start": 17836.42, + "end": 17838.86, + "probability": 0.7299 + }, + { + "start": 17839.9, + "end": 17843.1, + "probability": 0.9915 + }, + { + "start": 17844.08, + "end": 17845.94, + "probability": 0.974 + }, + { + "start": 17846.62, + "end": 17848.74, + "probability": 0.9691 + }, + { + "start": 17849.76, + "end": 17851.88, + "probability": 0.9053 + }, + { + "start": 17854.82, + "end": 17856.96, + "probability": 0.9874 + }, + { + "start": 17858.06, + "end": 17860.22, + "probability": 0.9688 + }, + { + "start": 17861.02, + "end": 17861.36, + "probability": 0.6937 + }, + { + "start": 17861.5, + "end": 17862.52, + "probability": 0.9763 + }, + { + "start": 17862.92, + "end": 17868.34, + "probability": 0.907 + }, + { + "start": 17868.94, + "end": 17874.08, + "probability": 0.9497 + }, + { + "start": 17875.1, + "end": 17876.78, + "probability": 0.9133 + }, + { + "start": 17877.72, + "end": 17883.92, + "probability": 0.9465 + }, + { + "start": 17883.92, + "end": 17889.7, + "probability": 0.9901 + }, + { + "start": 17890.28, + "end": 17891.3, + "probability": 0.5259 + }, + { + "start": 17892.74, + "end": 17895.48, + "probability": 0.9607 + }, + { + "start": 17896.1, + "end": 17897.16, + "probability": 0.6893 + }, + { + "start": 17898.18, + "end": 17900.74, + "probability": 0.6256 + }, + { + "start": 17901.3, + "end": 17903.04, + "probability": 0.8402 + }, + { + "start": 17903.54, + "end": 17905.64, + "probability": 0.9649 + }, + { + "start": 17906.54, + "end": 17910.0, + "probability": 0.9798 + }, + { + "start": 17910.6, + "end": 17914.3, + "probability": 0.8941 + }, + { + "start": 17915.26, + "end": 17916.74, + "probability": 0.9978 + }, + { + "start": 17918.0, + "end": 17922.56, + "probability": 0.9544 + }, + { + "start": 17922.58, + "end": 17924.64, + "probability": 0.881 + }, + { + "start": 17925.26, + "end": 17926.18, + "probability": 0.9393 + }, + { + "start": 17926.62, + "end": 17927.6, + "probability": 0.985 + }, + { + "start": 17928.08, + "end": 17929.36, + "probability": 0.9925 + }, + { + "start": 17929.7, + "end": 17932.56, + "probability": 0.9338 + }, + { + "start": 17933.12, + "end": 17937.06, + "probability": 0.9188 + }, + { + "start": 17937.96, + "end": 17942.62, + "probability": 0.9729 + }, + { + "start": 17943.44, + "end": 17949.86, + "probability": 0.942 + }, + { + "start": 17950.4, + "end": 17952.14, + "probability": 0.9956 + }, + { + "start": 17952.78, + "end": 17954.46, + "probability": 0.9338 + }, + { + "start": 17955.6, + "end": 17957.6, + "probability": 0.9596 + }, + { + "start": 17958.28, + "end": 17964.06, + "probability": 0.9904 + }, + { + "start": 17964.62, + "end": 17968.18, + "probability": 0.9928 + }, + { + "start": 17968.7, + "end": 17969.16, + "probability": 0.8451 + }, + { + "start": 17969.82, + "end": 17970.87, + "probability": 0.9004 + }, + { + "start": 17972.34, + "end": 17973.42, + "probability": 0.6486 + }, + { + "start": 17973.66, + "end": 17974.08, + "probability": 0.4713 + }, + { + "start": 17974.54, + "end": 17974.76, + "probability": 0.7639 + }, + { + "start": 17976.92, + "end": 17978.94, + "probability": 0.6987 + }, + { + "start": 17979.04, + "end": 17980.96, + "probability": 0.979 + }, + { + "start": 17982.48, + "end": 17986.4, + "probability": 0.9863 + }, + { + "start": 17987.22, + "end": 17991.84, + "probability": 0.9983 + }, + { + "start": 17992.46, + "end": 17996.54, + "probability": 0.9942 + }, + { + "start": 17996.92, + "end": 17999.36, + "probability": 0.8761 + }, + { + "start": 18000.06, + "end": 18000.58, + "probability": 0.6277 + }, + { + "start": 18000.62, + "end": 18002.38, + "probability": 0.8081 + }, + { + "start": 18003.8, + "end": 18008.58, + "probability": 0.6162 + }, + { + "start": 18027.4, + "end": 18028.04, + "probability": 0.4878 + }, + { + "start": 18035.06, + "end": 18036.02, + "probability": 0.4854 + }, + { + "start": 18036.86, + "end": 18037.74, + "probability": 0.694 + }, + { + "start": 18055.48, + "end": 18059.24, + "probability": 0.895 + }, + { + "start": 18060.5, + "end": 18065.68, + "probability": 0.9209 + }, + { + "start": 18066.28, + "end": 18070.36, + "probability": 0.9232 + }, + { + "start": 18071.1, + "end": 18073.76, + "probability": 0.9736 + }, + { + "start": 18074.64, + "end": 18076.82, + "probability": 0.9822 + }, + { + "start": 18077.6, + "end": 18078.66, + "probability": 0.8494 + }, + { + "start": 18079.48, + "end": 18080.28, + "probability": 0.5872 + }, + { + "start": 18080.74, + "end": 18089.24, + "probability": 0.7015 + }, + { + "start": 18089.82, + "end": 18094.2, + "probability": 0.9679 + }, + { + "start": 18094.2, + "end": 18099.06, + "probability": 0.9462 + }, + { + "start": 18099.58, + "end": 18102.14, + "probability": 0.646 + }, + { + "start": 18102.84, + "end": 18105.48, + "probability": 0.9956 + }, + { + "start": 18106.16, + "end": 18108.28, + "probability": 0.9276 + }, + { + "start": 18108.28, + "end": 18108.94, + "probability": 0.9459 + }, + { + "start": 18110.22, + "end": 18113.72, + "probability": 0.9958 + }, + { + "start": 18114.56, + "end": 18121.36, + "probability": 0.9939 + }, + { + "start": 18121.5, + "end": 18125.04, + "probability": 0.9993 + }, + { + "start": 18125.5, + "end": 18130.48, + "probability": 0.9868 + }, + { + "start": 18130.9, + "end": 18134.9, + "probability": 0.8555 + }, + { + "start": 18137.16, + "end": 18137.5, + "probability": 0.1518 + }, + { + "start": 18137.5, + "end": 18140.66, + "probability": 0.8134 + }, + { + "start": 18141.26, + "end": 18144.2, + "probability": 0.5442 + }, + { + "start": 18144.2, + "end": 18144.24, + "probability": 0.0429 + }, + { + "start": 18144.24, + "end": 18145.48, + "probability": 0.1166 + }, + { + "start": 18145.48, + "end": 18145.5, + "probability": 0.1479 + }, + { + "start": 18145.5, + "end": 18152.86, + "probability": 0.9936 + }, + { + "start": 18153.42, + "end": 18155.74, + "probability": 0.9449 + }, + { + "start": 18156.4, + "end": 18156.42, + "probability": 0.3188 + }, + { + "start": 18156.42, + "end": 18156.42, + "probability": 0.2025 + }, + { + "start": 18156.42, + "end": 18156.94, + "probability": 0.5686 + }, + { + "start": 18157.58, + "end": 18158.74, + "probability": 0.8853 + }, + { + "start": 18159.28, + "end": 18161.14, + "probability": 0.934 + }, + { + "start": 18161.36, + "end": 18161.6, + "probability": 0.0306 + }, + { + "start": 18162.08, + "end": 18162.18, + "probability": 0.0637 + }, + { + "start": 18162.26, + "end": 18164.18, + "probability": 0.9727 + }, + { + "start": 18165.26, + "end": 18166.74, + "probability": 0.7728 + }, + { + "start": 18167.48, + "end": 18169.7, + "probability": 0.9977 + }, + { + "start": 18172.19, + "end": 18174.67, + "probability": 0.038 + }, + { + "start": 18174.92, + "end": 18176.54, + "probability": 0.0324 + }, + { + "start": 18177.28, + "end": 18184.6, + "probability": 0.3547 + }, + { + "start": 18184.88, + "end": 18186.0, + "probability": 0.2403 + }, + { + "start": 18188.82, + "end": 18193.88, + "probability": 0.9682 + }, + { + "start": 18194.42, + "end": 18196.5, + "probability": 0.9951 + }, + { + "start": 18197.02, + "end": 18198.26, + "probability": 0.8171 + }, + { + "start": 18198.5, + "end": 18198.5, + "probability": 0.0207 + }, + { + "start": 18198.5, + "end": 18201.7, + "probability": 0.9163 + }, + { + "start": 18202.34, + "end": 18205.9, + "probability": 0.9701 + }, + { + "start": 18205.94, + "end": 18207.88, + "probability": 0.9987 + }, + { + "start": 18208.76, + "end": 18212.06, + "probability": 0.9465 + }, + { + "start": 18212.74, + "end": 18214.32, + "probability": 0.8031 + }, + { + "start": 18215.57, + "end": 18216.0, + "probability": 0.232 + }, + { + "start": 18216.5, + "end": 18219.96, + "probability": 0.4449 + }, + { + "start": 18220.4, + "end": 18221.98, + "probability": 0.8955 + }, + { + "start": 18222.08, + "end": 18223.06, + "probability": 0.7778 + }, + { + "start": 18223.16, + "end": 18224.98, + "probability": 0.7492 + }, + { + "start": 18225.7, + "end": 18228.16, + "probability": 0.9943 + }, + { + "start": 18229.22, + "end": 18229.62, + "probability": 0.408 + }, + { + "start": 18229.82, + "end": 18231.2, + "probability": 0.4597 + }, + { + "start": 18231.66, + "end": 18236.96, + "probability": 0.6765 + }, + { + "start": 18237.3, + "end": 18242.68, + "probability": 0.937 + }, + { + "start": 18243.64, + "end": 18245.5, + "probability": 0.0324 + }, + { + "start": 18246.62, + "end": 18247.4, + "probability": 0.0394 + }, + { + "start": 18247.4, + "end": 18248.64, + "probability": 0.4813 + }, + { + "start": 18248.88, + "end": 18249.54, + "probability": 0.5792 + }, + { + "start": 18249.62, + "end": 18250.5, + "probability": 0.5301 + }, + { + "start": 18252.52, + "end": 18253.16, + "probability": 0.7981 + }, + { + "start": 18253.34, + "end": 18254.18, + "probability": 0.4302 + }, + { + "start": 18254.28, + "end": 18258.78, + "probability": 0.8867 + }, + { + "start": 18259.4, + "end": 18261.32, + "probability": 0.9497 + }, + { + "start": 18261.6, + "end": 18263.38, + "probability": 0.7487 + }, + { + "start": 18264.14, + "end": 18266.66, + "probability": 0.1345 + }, + { + "start": 18267.72, + "end": 18269.72, + "probability": 0.9754 + }, + { + "start": 18270.44, + "end": 18272.22, + "probability": 0.9448 + }, + { + "start": 18272.94, + "end": 18276.8, + "probability": 0.9604 + }, + { + "start": 18276.84, + "end": 18282.84, + "probability": 0.9849 + }, + { + "start": 18283.34, + "end": 18285.18, + "probability": 0.9533 + }, + { + "start": 18285.52, + "end": 18287.26, + "probability": 0.795 + }, + { + "start": 18287.74, + "end": 18289.3, + "probability": 0.8651 + }, + { + "start": 18289.62, + "end": 18292.76, + "probability": 0.9791 + }, + { + "start": 18293.2, + "end": 18296.1, + "probability": 0.0429 + }, + { + "start": 18297.14, + "end": 18298.24, + "probability": 0.6023 + }, + { + "start": 18298.78, + "end": 18302.78, + "probability": 0.992 + }, + { + "start": 18303.18, + "end": 18303.66, + "probability": 0.1176 + }, + { + "start": 18303.92, + "end": 18308.74, + "probability": 0.4488 + }, + { + "start": 18308.82, + "end": 18309.76, + "probability": 0.6667 + }, + { + "start": 18310.28, + "end": 18312.84, + "probability": 0.97 + }, + { + "start": 18313.18, + "end": 18315.56, + "probability": 0.9858 + }, + { + "start": 18316.12, + "end": 18317.83, + "probability": 0.0435 + }, + { + "start": 18318.38, + "end": 18319.34, + "probability": 0.5056 + }, + { + "start": 18319.62, + "end": 18321.38, + "probability": 0.9899 + }, + { + "start": 18321.72, + "end": 18322.16, + "probability": 0.1798 + }, + { + "start": 18322.72, + "end": 18323.28, + "probability": 0.1489 + }, + { + "start": 18324.08, + "end": 18324.5, + "probability": 0.0868 + }, + { + "start": 18324.5, + "end": 18324.66, + "probability": 0.043 + }, + { + "start": 18324.82, + "end": 18326.12, + "probability": 0.7314 + }, + { + "start": 18327.12, + "end": 18333.34, + "probability": 0.9653 + }, + { + "start": 18333.96, + "end": 18334.52, + "probability": 0.7467 + }, + { + "start": 18336.2, + "end": 18339.52, + "probability": 0.0576 + }, + { + "start": 18339.92, + "end": 18341.36, + "probability": 0.1431 + }, + { + "start": 18341.84, + "end": 18341.84, + "probability": 0.1548 + }, + { + "start": 18341.84, + "end": 18342.36, + "probability": 0.3684 + }, + { + "start": 18342.44, + "end": 18343.24, + "probability": 0.4987 + }, + { + "start": 18343.24, + "end": 18344.72, + "probability": 0.9401 + }, + { + "start": 18345.22, + "end": 18346.1, + "probability": 0.9688 + }, + { + "start": 18346.82, + "end": 18352.92, + "probability": 0.9495 + }, + { + "start": 18353.02, + "end": 18353.9, + "probability": 0.8429 + }, + { + "start": 18354.53, + "end": 18356.92, + "probability": 0.9399 + }, + { + "start": 18357.46, + "end": 18361.38, + "probability": 0.8882 + }, + { + "start": 18361.84, + "end": 18365.58, + "probability": 0.9897 + }, + { + "start": 18366.26, + "end": 18372.2, + "probability": 0.9845 + }, + { + "start": 18372.76, + "end": 18373.76, + "probability": 0.8289 + }, + { + "start": 18374.38, + "end": 18378.0, + "probability": 0.8907 + }, + { + "start": 18379.48, + "end": 18379.9, + "probability": 0.0841 + }, + { + "start": 18379.9, + "end": 18379.96, + "probability": 0.2696 + }, + { + "start": 18379.96, + "end": 18384.16, + "probability": 0.7794 + }, + { + "start": 18385.28, + "end": 18386.24, + "probability": 0.4449 + }, + { + "start": 18386.24, + "end": 18387.12, + "probability": 0.4816 + }, + { + "start": 18387.74, + "end": 18389.46, + "probability": 0.7423 + }, + { + "start": 18391.68, + "end": 18394.18, + "probability": 0.0803 + }, + { + "start": 18394.26, + "end": 18397.14, + "probability": 0.3184 + }, + { + "start": 18397.2, + "end": 18398.4, + "probability": 0.5919 + }, + { + "start": 18398.66, + "end": 18400.68, + "probability": 0.891 + }, + { + "start": 18401.68, + "end": 18403.08, + "probability": 0.0845 + }, + { + "start": 18403.18, + "end": 18403.18, + "probability": 0.0598 + }, + { + "start": 18403.18, + "end": 18404.5, + "probability": 0.7196 + }, + { + "start": 18407.56, + "end": 18414.8, + "probability": 0.9963 + }, + { + "start": 18415.14, + "end": 18416.42, + "probability": 0.3588 + }, + { + "start": 18416.5, + "end": 18418.6, + "probability": 0.5019 + }, + { + "start": 18419.24, + "end": 18419.78, + "probability": 0.0498 + }, + { + "start": 18420.37, + "end": 18425.2, + "probability": 0.2861 + }, + { + "start": 18425.2, + "end": 18431.74, + "probability": 0.9691 + }, + { + "start": 18432.34, + "end": 18435.7, + "probability": 0.9787 + }, + { + "start": 18435.7, + "end": 18435.7, + "probability": 0.03 + }, + { + "start": 18435.7, + "end": 18442.08, + "probability": 0.993 + }, + { + "start": 18442.24, + "end": 18446.22, + "probability": 0.9949 + }, + { + "start": 18447.06, + "end": 18447.12, + "probability": 0.0033 + }, + { + "start": 18447.12, + "end": 18447.12, + "probability": 0.042 + }, + { + "start": 18447.12, + "end": 18448.6, + "probability": 0.9917 + }, + { + "start": 18449.34, + "end": 18450.3, + "probability": 0.893 + }, + { + "start": 18452.14, + "end": 18457.0, + "probability": 0.9894 + }, + { + "start": 18457.78, + "end": 18458.0, + "probability": 0.1038 + }, + { + "start": 18459.72, + "end": 18461.16, + "probability": 0.53 + }, + { + "start": 18464.22, + "end": 18465.5, + "probability": 0.7033 + }, + { + "start": 18466.62, + "end": 18467.14, + "probability": 0.0242 + }, + { + "start": 18469.04, + "end": 18469.8, + "probability": 0.1674 + }, + { + "start": 18470.86, + "end": 18470.86, + "probability": 0.2658 + }, + { + "start": 18470.86, + "end": 18472.6, + "probability": 0.9681 + }, + { + "start": 18474.82, + "end": 18476.32, + "probability": 0.8118 + }, + { + "start": 18478.49, + "end": 18483.44, + "probability": 0.1372 + }, + { + "start": 18484.22, + "end": 18485.25, + "probability": 0.5775 + }, + { + "start": 18486.28, + "end": 18492.9, + "probability": 0.9951 + }, + { + "start": 18493.78, + "end": 18495.04, + "probability": 0.8071 + }, + { + "start": 18495.44, + "end": 18498.88, + "probability": 0.9715 + }, + { + "start": 18499.08, + "end": 18500.38, + "probability": 0.8903 + }, + { + "start": 18500.9, + "end": 18503.72, + "probability": 0.9353 + }, + { + "start": 18503.76, + "end": 18509.3, + "probability": 0.9925 + }, + { + "start": 18509.68, + "end": 18511.38, + "probability": 0.9495 + }, + { + "start": 18511.96, + "end": 18514.56, + "probability": 0.9985 + }, + { + "start": 18515.88, + "end": 18520.2, + "probability": 0.7738 + }, + { + "start": 18521.02, + "end": 18527.32, + "probability": 0.9205 + }, + { + "start": 18527.36, + "end": 18528.14, + "probability": 0.4768 + }, + { + "start": 18528.26, + "end": 18529.38, + "probability": 0.7297 + }, + { + "start": 18529.94, + "end": 18533.94, + "probability": 0.9975 + }, + { + "start": 18535.04, + "end": 18535.74, + "probability": 0.7305 + }, + { + "start": 18536.4, + "end": 18537.34, + "probability": 0.9009 + }, + { + "start": 18537.86, + "end": 18538.86, + "probability": 0.6872 + }, + { + "start": 18539.48, + "end": 18544.5, + "probability": 0.9722 + }, + { + "start": 18546.36, + "end": 18547.72, + "probability": 0.1449 + }, + { + "start": 18547.98, + "end": 18548.2, + "probability": 0.0001 + }, + { + "start": 18550.36, + "end": 18551.3, + "probability": 0.0435 + }, + { + "start": 18580.32, + "end": 18586.18, + "probability": 0.8686 + }, + { + "start": 18586.24, + "end": 18590.58, + "probability": 0.9653 + }, + { + "start": 18591.2, + "end": 18593.58, + "probability": 0.9844 + }, + { + "start": 18594.18, + "end": 18596.44, + "probability": 0.9855 + }, + { + "start": 18597.3, + "end": 18599.56, + "probability": 0.9964 + }, + { + "start": 18600.18, + "end": 18601.8, + "probability": 0.9505 + }, + { + "start": 18603.64, + "end": 18607.0, + "probability": 0.8848 + }, + { + "start": 18609.74, + "end": 18610.32, + "probability": 0.3199 + }, + { + "start": 18611.48, + "end": 18611.98, + "probability": 0.9221 + }, + { + "start": 18613.06, + "end": 18614.1, + "probability": 0.6257 + }, + { + "start": 18614.9, + "end": 18616.36, + "probability": 0.6741 + }, + { + "start": 18617.2, + "end": 18619.02, + "probability": 0.8888 + }, + { + "start": 18619.98, + "end": 18620.46, + "probability": 0.9849 + }, + { + "start": 18621.02, + "end": 18621.72, + "probability": 0.8845 + }, + { + "start": 18622.9, + "end": 18623.32, + "probability": 0.981 + }, + { + "start": 18625.04, + "end": 18627.06, + "probability": 0.9463 + }, + { + "start": 18628.06, + "end": 18628.74, + "probability": 0.5439 + }, + { + "start": 18629.9, + "end": 18630.36, + "probability": 0.9895 + }, + { + "start": 18630.92, + "end": 18631.9, + "probability": 0.7375 + }, + { + "start": 18633.2, + "end": 18633.78, + "probability": 0.9922 + }, + { + "start": 18635.28, + "end": 18636.08, + "probability": 0.7721 + }, + { + "start": 18637.42, + "end": 18637.98, + "probability": 0.9943 + }, + { + "start": 18638.94, + "end": 18639.64, + "probability": 0.4997 + }, + { + "start": 18642.3, + "end": 18643.2, + "probability": 0.751 + }, + { + "start": 18644.38, + "end": 18645.3, + "probability": 0.7169 + }, + { + "start": 18647.42, + "end": 18648.08, + "probability": 0.8672 + }, + { + "start": 18649.28, + "end": 18652.2, + "probability": 0.9636 + }, + { + "start": 18653.22, + "end": 18655.12, + "probability": 0.9452 + }, + { + "start": 18661.72, + "end": 18663.92, + "probability": 0.8587 + }, + { + "start": 18665.36, + "end": 18665.64, + "probability": 0.7328 + }, + { + "start": 18666.7, + "end": 18667.46, + "probability": 0.7668 + }, + { + "start": 18670.06, + "end": 18670.5, + "probability": 0.9704 + }, + { + "start": 18671.32, + "end": 18671.96, + "probability": 0.9261 + }, + { + "start": 18673.11, + "end": 18675.72, + "probability": 0.9601 + }, + { + "start": 18677.18, + "end": 18677.7, + "probability": 0.9757 + }, + { + "start": 18678.82, + "end": 18679.44, + "probability": 0.9363 + }, + { + "start": 18684.38, + "end": 18686.04, + "probability": 0.6271 + }, + { + "start": 18686.92, + "end": 18687.68, + "probability": 0.7741 + }, + { + "start": 18688.68, + "end": 18688.94, + "probability": 0.8896 + }, + { + "start": 18689.62, + "end": 18690.56, + "probability": 0.8645 + }, + { + "start": 18691.72, + "end": 18692.16, + "probability": 0.8353 + }, + { + "start": 18693.4, + "end": 18694.34, + "probability": 0.9804 + }, + { + "start": 18695.42, + "end": 18697.14, + "probability": 0.8965 + }, + { + "start": 18702.9, + "end": 18703.74, + "probability": 0.9004 + }, + { + "start": 18705.3, + "end": 18706.22, + "probability": 0.9802 + }, + { + "start": 18706.9, + "end": 18707.32, + "probability": 0.7832 + }, + { + "start": 18708.54, + "end": 18709.48, + "probability": 0.978 + }, + { + "start": 18710.8, + "end": 18713.18, + "probability": 0.9741 + }, + { + "start": 18716.44, + "end": 18717.36, + "probability": 0.9755 + }, + { + "start": 18719.02, + "end": 18719.68, + "probability": 0.9047 + }, + { + "start": 18722.76, + "end": 18724.74, + "probability": 0.9873 + }, + { + "start": 18726.48, + "end": 18728.04, + "probability": 0.9805 + }, + { + "start": 18732.84, + "end": 18734.52, + "probability": 0.6945 + }, + { + "start": 18735.4, + "end": 18736.14, + "probability": 0.5914 + }, + { + "start": 18739.2, + "end": 18739.6, + "probability": 0.9199 + }, + { + "start": 18740.62, + "end": 18741.32, + "probability": 0.8157 + }, + { + "start": 18743.1, + "end": 18743.5, + "probability": 0.9812 + }, + { + "start": 18744.66, + "end": 18745.36, + "probability": 0.9457 + }, + { + "start": 18749.96, + "end": 18750.72, + "probability": 0.8693 + }, + { + "start": 18751.26, + "end": 18751.82, + "probability": 0.772 + }, + { + "start": 18755.48, + "end": 18756.48, + "probability": 0.8267 + }, + { + "start": 18758.24, + "end": 18758.8, + "probability": 0.8969 + }, + { + "start": 18759.86, + "end": 18760.28, + "probability": 0.9915 + }, + { + "start": 18762.18, + "end": 18762.8, + "probability": 0.9482 + }, + { + "start": 18763.46, + "end": 18765.62, + "probability": 0.668 + }, + { + "start": 18766.5, + "end": 18767.76, + "probability": 0.8884 + }, + { + "start": 18770.22, + "end": 18771.84, + "probability": 0.989 + }, + { + "start": 18772.68, + "end": 18774.28, + "probability": 0.9864 + }, + { + "start": 18779.08, + "end": 18779.54, + "probability": 0.6327 + }, + { + "start": 18781.16, + "end": 18782.18, + "probability": 0.6985 + }, + { + "start": 18784.32, + "end": 18787.36, + "probability": 0.7809 + }, + { + "start": 18788.4, + "end": 18789.52, + "probability": 0.7498 + }, + { + "start": 18790.52, + "end": 18790.98, + "probability": 0.9748 + }, + { + "start": 18792.44, + "end": 18793.42, + "probability": 0.8222 + }, + { + "start": 18795.02, + "end": 18795.46, + "probability": 0.991 + }, + { + "start": 18796.72, + "end": 18798.01, + "probability": 0.9743 + }, + { + "start": 18800.18, + "end": 18800.68, + "probability": 0.9814 + }, + { + "start": 18801.9, + "end": 18802.98, + "probability": 0.971 + }, + { + "start": 18803.82, + "end": 18804.18, + "probability": 0.9888 + }, + { + "start": 18805.54, + "end": 18806.38, + "probability": 0.5002 + }, + { + "start": 18807.44, + "end": 18807.76, + "probability": 0.9437 + }, + { + "start": 18808.4, + "end": 18809.5, + "probability": 0.7176 + }, + { + "start": 18810.4, + "end": 18810.94, + "probability": 0.9906 + }, + { + "start": 18812.02, + "end": 18815.24, + "probability": 0.6656 + }, + { + "start": 18820.24, + "end": 18820.66, + "probability": 0.9313 + }, + { + "start": 18822.3, + "end": 18822.92, + "probability": 0.7415 + }, + { + "start": 18823.68, + "end": 18824.14, + "probability": 0.9959 + }, + { + "start": 18825.1, + "end": 18825.94, + "probability": 0.9186 + }, + { + "start": 18828.42, + "end": 18829.9, + "probability": 0.6288 + }, + { + "start": 18837.82, + "end": 18838.3, + "probability": 0.6077 + }, + { + "start": 18840.32, + "end": 18841.3, + "probability": 0.5268 + }, + { + "start": 18842.76, + "end": 18843.36, + "probability": 0.8285 + }, + { + "start": 18847.12, + "end": 18848.76, + "probability": 0.9384 + }, + { + "start": 18849.34, + "end": 18852.94, + "probability": 0.8593 + }, + { + "start": 18853.78, + "end": 18854.24, + "probability": 0.8162 + }, + { + "start": 18855.38, + "end": 18856.1, + "probability": 0.9056 + }, + { + "start": 18858.04, + "end": 18858.52, + "probability": 0.8592 + }, + { + "start": 18859.74, + "end": 18860.18, + "probability": 0.9683 + }, + { + "start": 18865.2, + "end": 18865.94, + "probability": 0.5825 + }, + { + "start": 18866.9, + "end": 18867.94, + "probability": 0.9552 + }, + { + "start": 18870.62, + "end": 18871.92, + "probability": 0.1944 + }, + { + "start": 18873.2, + "end": 18873.64, + "probability": 0.7597 + }, + { + "start": 18874.56, + "end": 18875.2, + "probability": 0.7131 + }, + { + "start": 18876.48, + "end": 18878.14, + "probability": 0.9701 + }, + { + "start": 18880.46, + "end": 18881.78, + "probability": 0.9865 + }, + { + "start": 18882.92, + "end": 18883.34, + "probability": 0.9039 + }, + { + "start": 18884.86, + "end": 18885.28, + "probability": 0.9331 + }, + { + "start": 18886.32, + "end": 18886.78, + "probability": 0.8647 + }, + { + "start": 18889.4, + "end": 18889.88, + "probability": 0.9802 + }, + { + "start": 18892.98, + "end": 18893.46, + "probability": 0.5657 + }, + { + "start": 18896.66, + "end": 18897.14, + "probability": 0.9699 + }, + { + "start": 18898.3, + "end": 18899.34, + "probability": 0.7413 + }, + { + "start": 18905.38, + "end": 18905.78, + "probability": 0.9456 + }, + { + "start": 18907.64, + "end": 18908.14, + "probability": 0.8757 + }, + { + "start": 18911.36, + "end": 18911.8, + "probability": 0.9895 + }, + { + "start": 18916.8, + "end": 18917.04, + "probability": 0.656 + }, + { + "start": 18922.8, + "end": 18926.54, + "probability": 0.4978 + }, + { + "start": 18928.14, + "end": 18928.98, + "probability": 0.6967 + }, + { + "start": 18931.68, + "end": 18932.0, + "probability": 0.9038 + }, + { + "start": 18933.76, + "end": 18934.78, + "probability": 0.8597 + }, + { + "start": 18942.72, + "end": 18943.48, + "probability": 0.8965 + }, + { + "start": 18944.16, + "end": 18944.88, + "probability": 0.8026 + }, + { + "start": 18948.68, + "end": 18949.42, + "probability": 0.7494 + }, + { + "start": 18951.04, + "end": 18952.06, + "probability": 0.85 + }, + { + "start": 18952.66, + "end": 18953.0, + "probability": 0.8752 + }, + { + "start": 18954.82, + "end": 18955.78, + "probability": 0.5331 + }, + { + "start": 18960.76, + "end": 18961.24, + "probability": 0.9103 + }, + { + "start": 18963.34, + "end": 18964.26, + "probability": 0.8389 + }, + { + "start": 18965.14, + "end": 18965.6, + "probability": 0.8167 + }, + { + "start": 18967.0, + "end": 18968.24, + "probability": 0.9135 + }, + { + "start": 18970.16, + "end": 18970.76, + "probability": 0.9778 + }, + { + "start": 18971.9, + "end": 18972.98, + "probability": 0.8947 + }, + { + "start": 18973.56, + "end": 18973.9, + "probability": 0.978 + }, + { + "start": 18975.38, + "end": 18975.76, + "probability": 0.9565 + }, + { + "start": 18978.84, + "end": 18979.82, + "probability": 0.7333 + }, + { + "start": 18980.78, + "end": 18981.62, + "probability": 0.6238 + }, + { + "start": 18983.24, + "end": 18983.78, + "probability": 0.8143 + }, + { + "start": 18985.68, + "end": 18987.44, + "probability": 0.968 + }, + { + "start": 18988.36, + "end": 18989.92, + "probability": 0.968 + }, + { + "start": 18991.16, + "end": 18992.72, + "probability": 0.9917 + }, + { + "start": 18994.1, + "end": 18994.64, + "probability": 0.9769 + }, + { + "start": 18995.26, + "end": 18996.34, + "probability": 0.9466 + }, + { + "start": 18998.72, + "end": 18999.46, + "probability": 0.9638 + }, + { + "start": 19002.54, + "end": 19003.54, + "probability": 0.7233 + }, + { + "start": 19004.22, + "end": 19005.9, + "probability": 0.7011 + }, + { + "start": 19006.56, + "end": 19006.88, + "probability": 0.9886 + }, + { + "start": 19007.58, + "end": 19008.46, + "probability": 0.7276 + }, + { + "start": 19010.0, + "end": 19010.5, + "probability": 0.8716 + }, + { + "start": 19011.1, + "end": 19012.18, + "probability": 0.8242 + }, + { + "start": 19014.08, + "end": 19014.62, + "probability": 0.9851 + }, + { + "start": 19015.16, + "end": 19015.88, + "probability": 0.8834 + }, + { + "start": 19019.72, + "end": 19021.88, + "probability": 0.9702 + }, + { + "start": 19024.2, + "end": 19025.54, + "probability": 0.9595 + }, + { + "start": 19027.36, + "end": 19029.18, + "probability": 0.8264 + }, + { + "start": 19030.18, + "end": 19030.92, + "probability": 0.8642 + }, + { + "start": 19032.04, + "end": 19032.48, + "probability": 0.6921 + }, + { + "start": 19033.5, + "end": 19034.32, + "probability": 0.7969 + }, + { + "start": 19036.2, + "end": 19036.68, + "probability": 0.9871 + }, + { + "start": 19037.94, + "end": 19038.92, + "probability": 0.9583 + }, + { + "start": 19043.46, + "end": 19043.84, + "probability": 0.8451 + }, + { + "start": 19045.1, + "end": 19045.8, + "probability": 0.9179 + }, + { + "start": 19046.84, + "end": 19047.92, + "probability": 0.9653 + }, + { + "start": 19048.66, + "end": 19049.62, + "probability": 0.9205 + }, + { + "start": 19050.54, + "end": 19051.04, + "probability": 0.9917 + }, + { + "start": 19051.96, + "end": 19053.0, + "probability": 0.5079 + }, + { + "start": 19053.7, + "end": 19054.26, + "probability": 0.9802 + }, + { + "start": 19055.64, + "end": 19056.32, + "probability": 0.9016 + }, + { + "start": 19057.12, + "end": 19057.6, + "probability": 0.9961 + }, + { + "start": 19058.78, + "end": 19059.56, + "probability": 0.7039 + }, + { + "start": 19061.56, + "end": 19061.98, + "probability": 0.5563 + }, + { + "start": 19062.94, + "end": 19063.78, + "probability": 0.8217 + }, + { + "start": 19065.26, + "end": 19065.58, + "probability": 0.9658 + }, + { + "start": 19066.36, + "end": 19067.08, + "probability": 0.9648 + }, + { + "start": 19069.18, + "end": 19069.64, + "probability": 0.9858 + }, + { + "start": 19071.18, + "end": 19071.9, + "probability": 0.7434 + }, + { + "start": 19072.7, + "end": 19073.2, + "probability": 0.9946 + }, + { + "start": 19074.48, + "end": 19075.38, + "probability": 0.9507 + }, + { + "start": 19076.62, + "end": 19077.1, + "probability": 0.9355 + }, + { + "start": 19077.62, + "end": 19078.9, + "probability": 0.7971 + }, + { + "start": 19080.68, + "end": 19081.56, + "probability": 0.944 + }, + { + "start": 19082.1, + "end": 19083.42, + "probability": 0.9168 + }, + { + "start": 19085.86, + "end": 19086.24, + "probability": 0.9961 + }, + { + "start": 19087.8, + "end": 19088.96, + "probability": 0.9626 + }, + { + "start": 19095.04, + "end": 19095.96, + "probability": 0.8215 + }, + { + "start": 19097.34, + "end": 19097.62, + "probability": 0.5377 + }, + { + "start": 19099.22, + "end": 19099.98, + "probability": 0.8299 + }, + { + "start": 19101.64, + "end": 19102.72, + "probability": 0.9623 + }, + { + "start": 19104.28, + "end": 19104.68, + "probability": 0.9059 + }, + { + "start": 19105.36, + "end": 19106.04, + "probability": 0.8065 + }, + { + "start": 19107.22, + "end": 19109.38, + "probability": 0.9871 + }, + { + "start": 19110.6, + "end": 19111.08, + "probability": 0.9851 + }, + { + "start": 19111.92, + "end": 19112.94, + "probability": 0.9785 + }, + { + "start": 19115.04, + "end": 19116.58, + "probability": 0.3309 + }, + { + "start": 19121.24, + "end": 19122.52, + "probability": 0.5524 + }, + { + "start": 19123.5, + "end": 19124.02, + "probability": 0.7973 + }, + { + "start": 19124.6, + "end": 19125.48, + "probability": 0.8014 + }, + { + "start": 19130.8, + "end": 19131.54, + "probability": 0.8401 + }, + { + "start": 19133.0, + "end": 19134.08, + "probability": 0.9343 + }, + { + "start": 19135.06, + "end": 19136.86, + "probability": 0.8635 + }, + { + "start": 19137.98, + "end": 19138.4, + "probability": 0.9821 + }, + { + "start": 19139.48, + "end": 19140.4, + "probability": 0.9415 + }, + { + "start": 19141.24, + "end": 19141.62, + "probability": 0.9559 + }, + { + "start": 19142.92, + "end": 19143.88, + "probability": 0.9714 + }, + { + "start": 19145.9, + "end": 19146.08, + "probability": 0.6919 + }, + { + "start": 19149.3, + "end": 19150.2, + "probability": 0.7337 + }, + { + "start": 19150.86, + "end": 19151.1, + "probability": 0.6326 + }, + { + "start": 19152.5, + "end": 19153.52, + "probability": 0.6588 + }, + { + "start": 19155.38, + "end": 19156.52, + "probability": 0.8055 + }, + { + "start": 19157.32, + "end": 19157.98, + "probability": 0.871 + }, + { + "start": 19160.12, + "end": 19160.4, + "probability": 0.9746 + }, + { + "start": 19161.74, + "end": 19162.92, + "probability": 0.8483 + }, + { + "start": 19164.48, + "end": 19164.84, + "probability": 0.9954 + }, + { + "start": 19166.2, + "end": 19167.0, + "probability": 0.6744 + }, + { + "start": 19169.1, + "end": 19173.3, + "probability": 0.9619 + }, + { + "start": 19174.96, + "end": 19175.64, + "probability": 0.0302 + }, + { + "start": 19176.5, + "end": 19178.24, + "probability": 0.1024 + }, + { + "start": 19179.52, + "end": 19179.8, + "probability": 0.1144 + }, + { + "start": 19181.74, + "end": 19182.54, + "probability": 0.8113 + }, + { + "start": 19183.22, + "end": 19183.52, + "probability": 0.8853 + }, + { + "start": 19185.76, + "end": 19186.8, + "probability": 0.7293 + }, + { + "start": 19187.8, + "end": 19188.62, + "probability": 0.822 + }, + { + "start": 19189.14, + "end": 19189.82, + "probability": 0.7132 + }, + { + "start": 19198.86, + "end": 19199.32, + "probability": 0.5369 + }, + { + "start": 19203.88, + "end": 19204.86, + "probability": 0.6454 + }, + { + "start": 19206.72, + "end": 19207.54, + "probability": 0.8005 + }, + { + "start": 19208.34, + "end": 19209.4, + "probability": 0.6696 + }, + { + "start": 19211.94, + "end": 19214.36, + "probability": 0.7094 + }, + { + "start": 19215.32, + "end": 19218.92, + "probability": 0.9332 + }, + { + "start": 19222.54, + "end": 19223.6, + "probability": 0.6699 + }, + { + "start": 19226.4, + "end": 19227.14, + "probability": 0.8186 + }, + { + "start": 19227.82, + "end": 19228.56, + "probability": 0.8394 + }, + { + "start": 19230.46, + "end": 19231.26, + "probability": 0.9712 + }, + { + "start": 19231.84, + "end": 19232.92, + "probability": 0.9615 + }, + { + "start": 19234.24, + "end": 19235.02, + "probability": 0.9962 + }, + { + "start": 19236.62, + "end": 19237.8, + "probability": 0.8393 + }, + { + "start": 19238.36, + "end": 19239.2, + "probability": 0.9813 + }, + { + "start": 19240.62, + "end": 19241.56, + "probability": 0.8703 + }, + { + "start": 19243.98, + "end": 19244.72, + "probability": 0.9936 + }, + { + "start": 19249.98, + "end": 19254.44, + "probability": 0.9979 + }, + { + "start": 19258.14, + "end": 19258.92, + "probability": 0.6652 + }, + { + "start": 19259.86, + "end": 19260.84, + "probability": 0.4542 + }, + { + "start": 19260.92, + "end": 19261.52, + "probability": 0.9485 + }, + { + "start": 19416.27, + "end": 19419.36, + "probability": 0.6837 + }, + { + "start": 19420.78, + "end": 19421.86, + "probability": 0.6078 + }, + { + "start": 19422.44, + "end": 19425.18, + "probability": 0.9145 + }, + { + "start": 19425.74, + "end": 19429.2, + "probability": 0.9917 + }, + { + "start": 19431.2, + "end": 19433.94, + "probability": 0.9417 + }, + { + "start": 19434.46, + "end": 19437.02, + "probability": 0.9586 + }, + { + "start": 19437.06, + "end": 19440.14, + "probability": 0.9618 + }, + { + "start": 19440.2, + "end": 19441.7, + "probability": 0.7839 + }, + { + "start": 19442.1, + "end": 19442.12, + "probability": 0.4343 + }, + { + "start": 19450.86, + "end": 19451.78, + "probability": 0.5237 + }, + { + "start": 19467.34, + "end": 19468.66, + "probability": 0.7021 + }, + { + "start": 19470.36, + "end": 19473.48, + "probability": 0.9948 + }, + { + "start": 19474.18, + "end": 19474.62, + "probability": 0.8184 + }, + { + "start": 19475.24, + "end": 19476.24, + "probability": 0.7596 + }, + { + "start": 19477.36, + "end": 19479.62, + "probability": 0.9128 + }, + { + "start": 19479.78, + "end": 19480.44, + "probability": 0.766 + }, + { + "start": 19480.58, + "end": 19482.02, + "probability": 0.8568 + }, + { + "start": 19482.74, + "end": 19485.96, + "probability": 0.8833 + }, + { + "start": 19486.5, + "end": 19486.9, + "probability": 0.7891 + }, + { + "start": 19486.98, + "end": 19488.12, + "probability": 0.9141 + }, + { + "start": 19488.2, + "end": 19491.46, + "probability": 0.9883 + }, + { + "start": 19492.4, + "end": 19492.82, + "probability": 0.8224 + }, + { + "start": 19493.44, + "end": 19496.74, + "probability": 0.9551 + }, + { + "start": 19496.76, + "end": 19497.62, + "probability": 0.8215 + }, + { + "start": 19497.74, + "end": 19499.34, + "probability": 0.9029 + }, + { + "start": 19500.14, + "end": 19500.66, + "probability": 0.8025 + }, + { + "start": 19500.66, + "end": 19504.92, + "probability": 0.9746 + }, + { + "start": 19505.76, + "end": 19506.6, + "probability": 0.7834 + }, + { + "start": 19506.74, + "end": 19510.0, + "probability": 0.9104 + }, + { + "start": 19510.22, + "end": 19510.82, + "probability": 0.8545 + }, + { + "start": 19510.9, + "end": 19511.56, + "probability": 0.7766 + }, + { + "start": 19511.92, + "end": 19513.24, + "probability": 0.965 + }, + { + "start": 19514.74, + "end": 19516.14, + "probability": 0.82 + }, + { + "start": 19516.24, + "end": 19519.4, + "probability": 0.9476 + }, + { + "start": 19519.82, + "end": 19520.77, + "probability": 0.8147 + }, + { + "start": 19521.18, + "end": 19521.94, + "probability": 0.9193 + }, + { + "start": 19522.02, + "end": 19523.4, + "probability": 0.9599 + }, + { + "start": 19524.22, + "end": 19526.2, + "probability": 0.7823 + }, + { + "start": 19526.3, + "end": 19528.3, + "probability": 0.9337 + }, + { + "start": 19529.26, + "end": 19531.54, + "probability": 0.8997 + }, + { + "start": 19532.28, + "end": 19534.82, + "probability": 0.9734 + }, + { + "start": 19535.84, + "end": 19537.56, + "probability": 0.7954 + }, + { + "start": 19538.08, + "end": 19540.92, + "probability": 0.8785 + }, + { + "start": 19541.02, + "end": 19541.76, + "probability": 0.6556 + }, + { + "start": 19541.86, + "end": 19543.54, + "probability": 0.6094 + }, + { + "start": 19544.38, + "end": 19545.12, + "probability": 0.8816 + }, + { + "start": 19545.22, + "end": 19545.84, + "probability": 0.9316 + }, + { + "start": 19545.98, + "end": 19549.28, + "probability": 0.9433 + }, + { + "start": 19549.44, + "end": 19550.14, + "probability": 0.7886 + }, + { + "start": 19550.32, + "end": 19551.3, + "probability": 0.8308 + }, + { + "start": 19552.28, + "end": 19554.64, + "probability": 0.9401 + }, + { + "start": 19555.56, + "end": 19556.9, + "probability": 0.8462 + }, + { + "start": 19556.94, + "end": 19558.0, + "probability": 0.9761 + }, + { + "start": 19558.08, + "end": 19559.42, + "probability": 0.9578 + }, + { + "start": 19559.56, + "end": 19560.24, + "probability": 0.5791 + }, + { + "start": 19560.26, + "end": 19561.6, + "probability": 0.8272 + }, + { + "start": 19562.18, + "end": 19564.3, + "probability": 0.8656 + }, + { + "start": 19565.72, + "end": 19569.84, + "probability": 0.8789 + }, + { + "start": 19570.0, + "end": 19571.52, + "probability": 0.7935 + }, + { + "start": 19572.28, + "end": 19575.02, + "probability": 0.5168 + }, + { + "start": 19575.08, + "end": 19578.24, + "probability": 0.9545 + }, + { + "start": 19578.28, + "end": 19579.0, + "probability": 0.9184 + }, + { + "start": 19579.66, + "end": 19581.12, + "probability": 0.7887 + }, + { + "start": 19583.22, + "end": 19583.94, + "probability": 0.662 + }, + { + "start": 19584.04, + "end": 19584.84, + "probability": 0.6828 + }, + { + "start": 19584.96, + "end": 19585.9, + "probability": 0.891 + }, + { + "start": 19586.26, + "end": 19587.78, + "probability": 0.9294 + }, + { + "start": 19587.94, + "end": 19588.52, + "probability": 0.9249 + }, + { + "start": 19588.56, + "end": 19590.06, + "probability": 0.6971 + }, + { + "start": 19590.42, + "end": 19591.4, + "probability": 0.8743 + }, + { + "start": 19591.92, + "end": 19593.0, + "probability": 0.7681 + }, + { + "start": 19594.1, + "end": 19596.5, + "probability": 0.7224 + }, + { + "start": 19597.2, + "end": 19600.78, + "probability": 0.8949 + }, + { + "start": 19601.44, + "end": 19603.7, + "probability": 0.9668 + }, + { + "start": 19605.18, + "end": 19606.44, + "probability": 0.7548 + }, + { + "start": 19606.52, + "end": 19607.5, + "probability": 0.8485 + }, + { + "start": 19607.64, + "end": 19608.84, + "probability": 0.9448 + }, + { + "start": 19609.18, + "end": 19609.6, + "probability": 0.7982 + }, + { + "start": 19609.9, + "end": 19611.46, + "probability": 0.8569 + }, + { + "start": 19612.36, + "end": 19614.96, + "probability": 0.9858 + }, + { + "start": 19615.02, + "end": 19615.98, + "probability": 0.8643 + }, + { + "start": 19616.62, + "end": 19618.66, + "probability": 0.9434 + }, + { + "start": 19619.64, + "end": 19620.96, + "probability": 0.9747 + }, + { + "start": 19621.14, + "end": 19622.14, + "probability": 0.9979 + }, + { + "start": 19622.64, + "end": 19625.24, + "probability": 0.9856 + }, + { + "start": 19626.9, + "end": 19629.64, + "probability": 0.8088 + }, + { + "start": 19631.8, + "end": 19634.08, + "probability": 0.9954 + }, + { + "start": 19634.08, + "end": 19637.22, + "probability": 0.9958 + }, + { + "start": 19637.26, + "end": 19641.9, + "probability": 0.9932 + }, + { + "start": 19642.8, + "end": 19645.1, + "probability": 0.9937 + }, + { + "start": 19645.5, + "end": 19646.64, + "probability": 0.9887 + }, + { + "start": 19647.44, + "end": 19649.94, + "probability": 0.9928 + }, + { + "start": 19650.14, + "end": 19653.32, + "probability": 0.9967 + }, + { + "start": 19653.32, + "end": 19656.08, + "probability": 0.9869 + }, + { + "start": 19656.78, + "end": 19660.12, + "probability": 0.9937 + }, + { + "start": 19662.64, + "end": 19664.84, + "probability": 0.9974 + }, + { + "start": 19665.58, + "end": 19667.9, + "probability": 0.9774 + }, + { + "start": 19667.9, + "end": 19670.38, + "probability": 0.995 + }, + { + "start": 19671.02, + "end": 19673.56, + "probability": 0.9347 + }, + { + "start": 19674.12, + "end": 19677.58, + "probability": 0.9934 + }, + { + "start": 19678.74, + "end": 19681.0, + "probability": 0.9993 + }, + { + "start": 19681.54, + "end": 19685.9, + "probability": 0.9626 + }, + { + "start": 19686.64, + "end": 19688.14, + "probability": 0.9007 + }, + { + "start": 19688.24, + "end": 19691.32, + "probability": 0.9708 + }, + { + "start": 19692.12, + "end": 19692.76, + "probability": 0.7476 + }, + { + "start": 19692.98, + "end": 19695.38, + "probability": 0.8983 + }, + { + "start": 19695.86, + "end": 19696.6, + "probability": 0.8574 + }, + { + "start": 19696.76, + "end": 19697.34, + "probability": 0.7055 + }, + { + "start": 19697.44, + "end": 19698.66, + "probability": 0.812 + }, + { + "start": 19698.96, + "end": 19699.72, + "probability": 0.8752 + }, + { + "start": 19700.12, + "end": 19700.42, + "probability": 0.9165 + }, + { + "start": 19700.78, + "end": 19701.28, + "probability": 0.8242 + }, + { + "start": 19701.42, + "end": 19702.19, + "probability": 0.9831 + }, + { + "start": 19702.42, + "end": 19704.4, + "probability": 0.8601 + }, + { + "start": 19704.58, + "end": 19705.66, + "probability": 0.9849 + }, + { + "start": 19705.98, + "end": 19706.88, + "probability": 0.9779 + }, + { + "start": 19707.7, + "end": 19711.16, + "probability": 0.771 + }, + { + "start": 19711.94, + "end": 19714.78, + "probability": 0.773 + }, + { + "start": 19714.82, + "end": 19717.72, + "probability": 0.9357 + }, + { + "start": 19718.16, + "end": 19720.24, + "probability": 0.774 + }, + { + "start": 19721.0, + "end": 19724.7, + "probability": 0.9552 + }, + { + "start": 19726.16, + "end": 19728.1, + "probability": 0.9366 + }, + { + "start": 19729.84, + "end": 19733.04, + "probability": 0.9961 + }, + { + "start": 19733.04, + "end": 19735.44, + "probability": 0.9985 + }, + { + "start": 19736.06, + "end": 19740.3, + "probability": 0.9972 + }, + { + "start": 19740.76, + "end": 19744.24, + "probability": 0.9476 + }, + { + "start": 19744.98, + "end": 19748.56, + "probability": 0.9954 + }, + { + "start": 19748.56, + "end": 19752.4, + "probability": 0.9975 + }, + { + "start": 19753.6, + "end": 19755.78, + "probability": 0.9966 + }, + { + "start": 19756.42, + "end": 19758.9, + "probability": 0.999 + }, + { + "start": 19758.9, + "end": 19761.84, + "probability": 0.9897 + }, + { + "start": 19762.56, + "end": 19765.28, + "probability": 0.9407 + }, + { + "start": 19765.48, + "end": 19769.42, + "probability": 0.9102 + }, + { + "start": 19770.26, + "end": 19772.6, + "probability": 0.6318 + }, + { + "start": 19772.8, + "end": 19774.6, + "probability": 0.7864 + }, + { + "start": 19774.68, + "end": 19775.32, + "probability": 0.9555 + }, + { + "start": 19775.42, + "end": 19776.2, + "probability": 0.8649 + }, + { + "start": 19776.26, + "end": 19776.82, + "probability": 0.9734 + }, + { + "start": 19776.94, + "end": 19777.22, + "probability": 0.8757 + }, + { + "start": 19777.56, + "end": 19779.32, + "probability": 0.8206 + }, + { + "start": 19779.68, + "end": 19780.56, + "probability": 0.8593 + }, + { + "start": 19780.74, + "end": 19781.82, + "probability": 0.8746 + }, + { + "start": 19782.28, + "end": 19783.46, + "probability": 0.9754 + }, + { + "start": 19783.86, + "end": 19784.74, + "probability": 0.9679 + }, + { + "start": 19785.2, + "end": 19785.58, + "probability": 0.8413 + }, + { + "start": 19785.7, + "end": 19786.72, + "probability": 0.955 + }, + { + "start": 19787.38, + "end": 19790.2, + "probability": 0.8915 + }, + { + "start": 19790.38, + "end": 19791.22, + "probability": 0.916 + }, + { + "start": 19793.02, + "end": 19794.72, + "probability": 0.9607 + }, + { + "start": 19795.5, + "end": 19796.28, + "probability": 0.8956 + }, + { + "start": 19797.0, + "end": 19800.06, + "probability": 0.9963 + }, + { + "start": 19800.06, + "end": 19802.7, + "probability": 0.939 + }, + { + "start": 19803.12, + "end": 19805.1, + "probability": 0.9625 + }, + { + "start": 19805.18, + "end": 19806.42, + "probability": 0.7019 + }, + { + "start": 19807.04, + "end": 19808.42, + "probability": 0.9301 + }, + { + "start": 19808.6, + "end": 19811.98, + "probability": 0.9973 + }, + { + "start": 19811.98, + "end": 19816.32, + "probability": 0.9963 + }, + { + "start": 19817.08, + "end": 19819.8, + "probability": 0.6847 + }, + { + "start": 19819.88, + "end": 19820.62, + "probability": 0.8953 + }, + { + "start": 19821.26, + "end": 19821.52, + "probability": 0.621 + }, + { + "start": 19821.82, + "end": 19823.3, + "probability": 0.6582 + }, + { + "start": 19823.4, + "end": 19824.6, + "probability": 0.7811 + }, + { + "start": 19825.14, + "end": 19825.76, + "probability": 0.8115 + }, + { + "start": 19825.84, + "end": 19826.36, + "probability": 0.9131 + }, + { + "start": 19826.5, + "end": 19827.36, + "probability": 0.9727 + }, + { + "start": 19827.7, + "end": 19829.46, + "probability": 0.7267 + }, + { + "start": 19830.14, + "end": 19830.7, + "probability": 0.9395 + }, + { + "start": 19830.86, + "end": 19832.06, + "probability": 0.6842 + }, + { + "start": 19832.24, + "end": 19833.02, + "probability": 0.6811 + }, + { + "start": 19833.14, + "end": 19833.66, + "probability": 0.88 + }, + { + "start": 19834.12, + "end": 19834.94, + "probability": 0.7421 + }, + { + "start": 19835.08, + "end": 19837.26, + "probability": 0.7193 + }, + { + "start": 19837.32, + "end": 19840.02, + "probability": 0.8643 + }, + { + "start": 19842.56, + "end": 19845.38, + "probability": 0.8845 + }, + { + "start": 19845.78, + "end": 19846.46, + "probability": 0.8415 + }, + { + "start": 19847.0, + "end": 19849.12, + "probability": 0.985 + }, + { + "start": 19849.12, + "end": 19851.68, + "probability": 0.9938 + }, + { + "start": 19852.22, + "end": 19856.42, + "probability": 0.98 + }, + { + "start": 19856.96, + "end": 19860.0, + "probability": 0.9988 + }, + { + "start": 19860.58, + "end": 19863.42, + "probability": 0.8918 + }, + { + "start": 19864.12, + "end": 19866.94, + "probability": 0.9367 + }, + { + "start": 19867.06, + "end": 19867.56, + "probability": 0.5632 + }, + { + "start": 19868.18, + "end": 19868.5, + "probability": 0.738 + }, + { + "start": 19868.8, + "end": 19869.3, + "probability": 0.8907 + }, + { + "start": 19869.4, + "end": 19869.96, + "probability": 0.9077 + }, + { + "start": 19870.02, + "end": 19870.46, + "probability": 0.9037 + }, + { + "start": 19870.54, + "end": 19871.7, + "probability": 0.9398 + }, + { + "start": 19872.18, + "end": 19873.44, + "probability": 0.7639 + }, + { + "start": 19873.52, + "end": 19873.8, + "probability": 0.7454 + }, + { + "start": 19874.06, + "end": 19874.48, + "probability": 0.9198 + }, + { + "start": 19874.54, + "end": 19875.14, + "probability": 0.6648 + }, + { + "start": 19875.46, + "end": 19875.82, + "probability": 0.5715 + }, + { + "start": 19876.32, + "end": 19877.08, + "probability": 0.835 + }, + { + "start": 19877.18, + "end": 19878.06, + "probability": 0.6725 + }, + { + "start": 19878.88, + "end": 19880.28, + "probability": 0.7477 + }, + { + "start": 19880.8, + "end": 19882.5, + "probability": 0.9604 + }, + { + "start": 19883.28, + "end": 19886.34, + "probability": 0.9918 + }, + { + "start": 19886.44, + "end": 19889.46, + "probability": 0.9836 + }, + { + "start": 19890.22, + "end": 19890.78, + "probability": 0.7676 + }, + { + "start": 19891.96, + "end": 19893.68, + "probability": 0.7649 + }, + { + "start": 19893.82, + "end": 19896.18, + "probability": 0.9988 + }, + { + "start": 19897.2, + "end": 19900.32, + "probability": 0.9718 + }, + { + "start": 19905.4, + "end": 19906.9, + "probability": 0.7849 + }, + { + "start": 19915.62, + "end": 19916.62, + "probability": 0.6809 + }, + { + "start": 19916.7, + "end": 19922.16, + "probability": 0.9881 + }, + { + "start": 19922.94, + "end": 19926.24, + "probability": 0.9735 + }, + { + "start": 19927.2, + "end": 19928.48, + "probability": 0.8401 + }, + { + "start": 19930.68, + "end": 19934.02, + "probability": 0.8855 + }, + { + "start": 19934.6, + "end": 19941.9, + "probability": 0.9934 + }, + { + "start": 19942.86, + "end": 19943.22, + "probability": 0.6489 + }, + { + "start": 19943.66, + "end": 19947.06, + "probability": 0.9941 + }, + { + "start": 19947.06, + "end": 19950.44, + "probability": 0.9977 + }, + { + "start": 19951.84, + "end": 19956.74, + "probability": 0.9946 + }, + { + "start": 19957.8, + "end": 19960.1, + "probability": 0.808 + }, + { + "start": 19960.66, + "end": 19965.38, + "probability": 0.9956 + }, + { + "start": 19965.92, + "end": 19967.76, + "probability": 0.9287 + }, + { + "start": 19969.06, + "end": 19971.86, + "probability": 0.9843 + }, + { + "start": 19972.24, + "end": 19977.3, + "probability": 0.9832 + }, + { + "start": 19978.0, + "end": 19981.98, + "probability": 0.9714 + }, + { + "start": 19983.06, + "end": 19987.72, + "probability": 0.9948 + }, + { + "start": 19988.4, + "end": 19991.36, + "probability": 0.9823 + }, + { + "start": 19991.88, + "end": 19993.66, + "probability": 0.8073 + }, + { + "start": 19994.26, + "end": 19997.24, + "probability": 0.9457 + }, + { + "start": 19998.18, + "end": 20000.66, + "probability": 0.9982 + }, + { + "start": 20000.7, + "end": 20003.7, + "probability": 0.9902 + }, + { + "start": 20004.38, + "end": 20008.64, + "probability": 0.9944 + }, + { + "start": 20009.42, + "end": 20013.08, + "probability": 0.9944 + }, + { + "start": 20013.38, + "end": 20013.68, + "probability": 0.503 + }, + { + "start": 20013.7, + "end": 20015.34, + "probability": 0.8154 + }, + { + "start": 20016.18, + "end": 20017.0, + "probability": 0.9622 + }, + { + "start": 20017.56, + "end": 20020.0, + "probability": 0.9932 + }, + { + "start": 20020.74, + "end": 20022.45, + "probability": 0.9427 + }, + { + "start": 20023.36, + "end": 20024.04, + "probability": 0.6838 + }, + { + "start": 20025.46, + "end": 20026.12, + "probability": 0.086 + }, + { + "start": 20027.02, + "end": 20027.18, + "probability": 0.2527 + }, + { + "start": 20027.18, + "end": 20032.26, + "probability": 0.7423 + }, + { + "start": 20032.34, + "end": 20036.34, + "probability": 0.3356 + }, + { + "start": 20037.16, + "end": 20037.16, + "probability": 0.1702 + }, + { + "start": 20037.16, + "end": 20037.16, + "probability": 0.0563 + }, + { + "start": 20037.16, + "end": 20040.5, + "probability": 0.774 + }, + { + "start": 20040.72, + "end": 20041.0, + "probability": 0.5718 + }, + { + "start": 20041.24, + "end": 20045.8, + "probability": 0.9665 + }, + { + "start": 20046.32, + "end": 20050.22, + "probability": 0.9619 + }, + { + "start": 20050.62, + "end": 20053.96, + "probability": 0.7547 + }, + { + "start": 20054.54, + "end": 20055.88, + "probability": 0.1085 + }, + { + "start": 20055.96, + "end": 20056.8, + "probability": 0.4815 + }, + { + "start": 20056.9, + "end": 20059.4, + "probability": 0.7444 + }, + { + "start": 20059.89, + "end": 20062.4, + "probability": 0.838 + }, + { + "start": 20065.72, + "end": 20068.18, + "probability": 0.7136 + }, + { + "start": 20070.82, + "end": 20072.5, + "probability": 0.5516 + }, + { + "start": 20074.34, + "end": 20076.3, + "probability": 0.9883 + }, + { + "start": 20076.78, + "end": 20077.56, + "probability": 0.2081 + }, + { + "start": 20077.82, + "end": 20078.48, + "probability": 0.7701 + }, + { + "start": 20079.12, + "end": 20087.36, + "probability": 0.2423 + }, + { + "start": 20115.26, + "end": 20120.54, + "probability": 0.998 + }, + { + "start": 20122.22, + "end": 20124.8, + "probability": 0.9216 + }, + { + "start": 20126.3, + "end": 20130.4, + "probability": 0.9429 + }, + { + "start": 20131.74, + "end": 20132.46, + "probability": 0.7718 + }, + { + "start": 20133.4, + "end": 20135.2, + "probability": 0.7573 + }, + { + "start": 20136.78, + "end": 20140.18, + "probability": 0.978 + }, + { + "start": 20141.26, + "end": 20144.5, + "probability": 0.7794 + }, + { + "start": 20146.14, + "end": 20147.42, + "probability": 0.958 + }, + { + "start": 20148.02, + "end": 20148.7, + "probability": 0.8389 + }, + { + "start": 20149.38, + "end": 20151.48, + "probability": 0.9672 + }, + { + "start": 20152.42, + "end": 20153.08, + "probability": 0.9204 + }, + { + "start": 20154.52, + "end": 20158.72, + "probability": 0.9699 + }, + { + "start": 20159.66, + "end": 20159.66, + "probability": 0.0146 + }, + { + "start": 20159.66, + "end": 20161.8, + "probability": 0.8718 + }, + { + "start": 20162.12, + "end": 20163.66, + "probability": 0.8743 + }, + { + "start": 20164.34, + "end": 20168.68, + "probability": 0.8407 + }, + { + "start": 20169.66, + "end": 20179.14, + "probability": 0.3788 + }, + { + "start": 20179.22, + "end": 20180.54, + "probability": 0.0685 + }, + { + "start": 20180.54, + "end": 20181.62, + "probability": 0.246 + }, + { + "start": 20182.13, + "end": 20182.76, + "probability": 0.0253 + }, + { + "start": 20182.76, + "end": 20182.76, + "probability": 0.0245 + }, + { + "start": 20182.76, + "end": 20182.76, + "probability": 0.3543 + }, + { + "start": 20182.76, + "end": 20183.7, + "probability": 0.4626 + }, + { + "start": 20184.36, + "end": 20186.5, + "probability": 0.9532 + }, + { + "start": 20187.48, + "end": 20187.48, + "probability": 0.0088 + }, + { + "start": 20187.48, + "end": 20187.5, + "probability": 0.2196 + }, + { + "start": 20187.5, + "end": 20187.5, + "probability": 0.6621 + }, + { + "start": 20187.5, + "end": 20191.54, + "probability": 0.3854 + }, + { + "start": 20192.22, + "end": 20197.1, + "probability": 0.6526 + }, + { + "start": 20197.52, + "end": 20197.58, + "probability": 0.2066 + }, + { + "start": 20197.58, + "end": 20199.24, + "probability": 0.2807 + }, + { + "start": 20199.62, + "end": 20201.08, + "probability": 0.7964 + }, + { + "start": 20202.76, + "end": 20202.86, + "probability": 0.0907 + }, + { + "start": 20202.86, + "end": 20204.5, + "probability": 0.5975 + }, + { + "start": 20204.82, + "end": 20205.98, + "probability": 0.344 + }, + { + "start": 20205.98, + "end": 20207.24, + "probability": 0.2723 + }, + { + "start": 20208.12, + "end": 20209.08, + "probability": 0.2265 + }, + { + "start": 20209.08, + "end": 20210.43, + "probability": 0.5945 + }, + { + "start": 20211.46, + "end": 20212.16, + "probability": 0.5522 + }, + { + "start": 20212.42, + "end": 20217.44, + "probability": 0.9559 + }, + { + "start": 20217.52, + "end": 20219.38, + "probability": 0.8454 + }, + { + "start": 20219.38, + "end": 20220.18, + "probability": 0.1692 + }, + { + "start": 20220.26, + "end": 20222.64, + "probability": 0.0037 + }, + { + "start": 20222.92, + "end": 20225.18, + "probability": 0.4198 + }, + { + "start": 20225.4, + "end": 20228.4, + "probability": 0.25 + }, + { + "start": 20229.62, + "end": 20230.98, + "probability": 0.0632 + }, + { + "start": 20233.34, + "end": 20233.94, + "probability": 0.3023 + }, + { + "start": 20235.88, + "end": 20236.48, + "probability": 0.0075 + }, + { + "start": 20236.48, + "end": 20238.96, + "probability": 0.0729 + }, + { + "start": 20239.66, + "end": 20240.76, + "probability": 0.0114 + }, + { + "start": 20240.76, + "end": 20240.82, + "probability": 0.0464 + }, + { + "start": 20240.92, + "end": 20241.56, + "probability": 0.2097 + }, + { + "start": 20241.56, + "end": 20245.62, + "probability": 0.0281 + }, + { + "start": 20245.62, + "end": 20251.42, + "probability": 0.0615 + }, + { + "start": 20251.46, + "end": 20251.94, + "probability": 0.027 + }, + { + "start": 20251.94, + "end": 20253.7, + "probability": 0.1809 + }, + { + "start": 20254.22, + "end": 20259.26, + "probability": 0.1535 + }, + { + "start": 20266.28, + "end": 20266.98, + "probability": 0.0036 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20268.0, + "end": 20268.0, + "probability": 0.0 + }, + { + "start": 20269.73, + "end": 20272.32, + "probability": 0.3218 + }, + { + "start": 20272.84, + "end": 20273.88, + "probability": 0.2486 + }, + { + "start": 20273.98, + "end": 20276.06, + "probability": 0.4414 + }, + { + "start": 20276.34, + "end": 20276.8, + "probability": 0.0496 + }, + { + "start": 20276.8, + "end": 20276.82, + "probability": 0.3269 + }, + { + "start": 20276.82, + "end": 20279.81, + "probability": 0.6923 + }, + { + "start": 20280.04, + "end": 20280.04, + "probability": 0.0045 + }, + { + "start": 20280.04, + "end": 20281.82, + "probability": 0.025 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.0, + "end": 20391.0, + "probability": 0.0 + }, + { + "start": 20391.06, + "end": 20391.4, + "probability": 0.0785 + }, + { + "start": 20391.76, + "end": 20393.14, + "probability": 0.598 + }, + { + "start": 20393.38, + "end": 20393.5, + "probability": 0.1355 + }, + { + "start": 20393.56, + "end": 20394.88, + "probability": 0.7899 + }, + { + "start": 20394.88, + "end": 20396.66, + "probability": 0.9473 + }, + { + "start": 20396.7, + "end": 20397.68, + "probability": 0.3333 + }, + { + "start": 20397.76, + "end": 20400.5, + "probability": 0.226 + }, + { + "start": 20400.72, + "end": 20401.22, + "probability": 0.8725 + }, + { + "start": 20401.28, + "end": 20405.6, + "probability": 0.9378 + }, + { + "start": 20406.38, + "end": 20406.62, + "probability": 0.9666 + }, + { + "start": 20407.34, + "end": 20407.52, + "probability": 0.0089 + }, + { + "start": 20408.24, + "end": 20409.38, + "probability": 0.4024 + }, + { + "start": 20409.46, + "end": 20415.06, + "probability": 0.6431 + }, + { + "start": 20415.42, + "end": 20423.74, + "probability": 0.1396 + }, + { + "start": 20428.2, + "end": 20430.64, + "probability": 0.0285 + }, + { + "start": 20430.64, + "end": 20433.26, + "probability": 0.0281 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.0, + "end": 20514.0, + "probability": 0.0 + }, + { + "start": 20514.2, + "end": 20516.16, + "probability": 0.3264 + }, + { + "start": 20516.88, + "end": 20517.06, + "probability": 0.2713 + }, + { + "start": 20517.06, + "end": 20520.66, + "probability": 0.9248 + }, + { + "start": 20521.42, + "end": 20523.56, + "probability": 0.7004 + }, + { + "start": 20523.86, + "end": 20525.31, + "probability": 0.8707 + }, + { + "start": 20525.74, + "end": 20527.79, + "probability": 0.9198 + }, + { + "start": 20527.94, + "end": 20528.04, + "probability": 0.6765 + }, + { + "start": 20530.6, + "end": 20531.6, + "probability": 0.3551 + }, + { + "start": 20532.12, + "end": 20532.72, + "probability": 0.499 + }, + { + "start": 20532.86, + "end": 20533.88, + "probability": 0.4703 + }, + { + "start": 20534.12, + "end": 20536.32, + "probability": 0.213 + }, + { + "start": 20536.72, + "end": 20538.28, + "probability": 0.0682 + }, + { + "start": 20538.58, + "end": 20540.9, + "probability": 0.0756 + }, + { + "start": 20540.9, + "end": 20547.08, + "probability": 0.2583 + }, + { + "start": 20547.32, + "end": 20548.26, + "probability": 0.0546 + }, + { + "start": 20549.32, + "end": 20555.62, + "probability": 0.1632 + }, + { + "start": 20555.94, + "end": 20557.11, + "probability": 0.364 + }, + { + "start": 20558.68, + "end": 20559.15, + "probability": 0.0394 + }, + { + "start": 20562.48, + "end": 20564.14, + "probability": 0.2143 + }, + { + "start": 20565.0, + "end": 20565.28, + "probability": 0.0693 + }, + { + "start": 20566.02, + "end": 20567.02, + "probability": 0.0953 + }, + { + "start": 20567.08, + "end": 20568.98, + "probability": 0.0801 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.0, + "end": 20640.0, + "probability": 0.0 + }, + { + "start": 20640.52, + "end": 20640.56, + "probability": 0.0041 + }, + { + "start": 20640.56, + "end": 20641.08, + "probability": 0.4576 + }, + { + "start": 20641.18, + "end": 20641.54, + "probability": 0.7298 + }, + { + "start": 20641.94, + "end": 20645.1, + "probability": 0.8612 + }, + { + "start": 20645.58, + "end": 20646.34, + "probability": 0.8777 + }, + { + "start": 20646.42, + "end": 20646.78, + "probability": 0.9032 + }, + { + "start": 20647.28, + "end": 20649.42, + "probability": 0.8961 + }, + { + "start": 20649.6, + "end": 20651.18, + "probability": 0.8484 + }, + { + "start": 20651.82, + "end": 20653.46, + "probability": 0.9973 + }, + { + "start": 20654.08, + "end": 20654.81, + "probability": 0.9918 + }, + { + "start": 20655.46, + "end": 20656.3, + "probability": 0.5736 + }, + { + "start": 20656.42, + "end": 20657.4, + "probability": 0.7433 + }, + { + "start": 20657.6, + "end": 20658.88, + "probability": 0.9231 + }, + { + "start": 20659.61, + "end": 20660.44, + "probability": 0.0379 + }, + { + "start": 20660.94, + "end": 20662.2, + "probability": 0.3231 + }, + { + "start": 20662.26, + "end": 20662.46, + "probability": 0.2722 + }, + { + "start": 20662.46, + "end": 20664.71, + "probability": 0.5104 + }, + { + "start": 20666.72, + "end": 20668.72, + "probability": 0.1389 + }, + { + "start": 20669.84, + "end": 20670.94, + "probability": 0.0445 + }, + { + "start": 20672.68, + "end": 20673.02, + "probability": 0.0236 + }, + { + "start": 20673.02, + "end": 20673.84, + "probability": 0.0367 + }, + { + "start": 20673.84, + "end": 20673.84, + "probability": 0.0414 + }, + { + "start": 20673.84, + "end": 20674.61, + "probability": 0.1064 + }, + { + "start": 20674.84, + "end": 20677.11, + "probability": 0.0459 + }, + { + "start": 20677.66, + "end": 20682.08, + "probability": 0.4464 + }, + { + "start": 20685.84, + "end": 20685.98, + "probability": 0.0262 + }, + { + "start": 20688.64, + "end": 20691.54, + "probability": 0.0313 + }, + { + "start": 20692.64, + "end": 20693.53, + "probability": 0.2255 + }, + { + "start": 20695.96, + "end": 20698.04, + "probability": 0.1285 + }, + { + "start": 20698.64, + "end": 20701.06, + "probability": 0.0142 + }, + { + "start": 20701.12, + "end": 20703.14, + "probability": 0.2263 + }, + { + "start": 20703.76, + "end": 20704.0, + "probability": 0.0152 + }, + { + "start": 20708.1, + "end": 20708.2, + "probability": 0.3844 + }, + { + "start": 20712.82, + "end": 20713.34, + "probability": 0.1047 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.0, + "end": 20780.0, + "probability": 0.0 + }, + { + "start": 20780.1, + "end": 20780.16, + "probability": 0.2539 + }, + { + "start": 20780.16, + "end": 20780.84, + "probability": 0.0237 + }, + { + "start": 20781.12, + "end": 20783.22, + "probability": 0.9941 + }, + { + "start": 20784.04, + "end": 20786.78, + "probability": 0.9673 + }, + { + "start": 20787.2, + "end": 20788.93, + "probability": 0.789 + }, + { + "start": 20789.48, + "end": 20790.67, + "probability": 0.9956 + }, + { + "start": 20791.54, + "end": 20792.28, + "probability": 0.8804 + }, + { + "start": 20792.9, + "end": 20793.36, + "probability": 0.749 + }, + { + "start": 20793.44, + "end": 20794.64, + "probability": 0.7949 + }, + { + "start": 20795.86, + "end": 20798.18, + "probability": 0.8764 + }, + { + "start": 20798.26, + "end": 20799.43, + "probability": 0.5931 + }, + { + "start": 20800.2, + "end": 20802.32, + "probability": 0.8711 + }, + { + "start": 20802.86, + "end": 20804.84, + "probability": 0.9261 + }, + { + "start": 20805.1, + "end": 20807.02, + "probability": 0.6657 + }, + { + "start": 20807.4, + "end": 20808.74, + "probability": 0.5444 + }, + { + "start": 20808.84, + "end": 20810.94, + "probability": 0.957 + }, + { + "start": 20811.64, + "end": 20812.86, + "probability": 0.8742 + }, + { + "start": 20813.38, + "end": 20814.34, + "probability": 0.9009 + }, + { + "start": 20814.44, + "end": 20815.5, + "probability": 0.9247 + }, + { + "start": 20815.64, + "end": 20815.76, + "probability": 0.3353 + }, + { + "start": 20816.96, + "end": 20817.66, + "probability": 0.6514 + }, + { + "start": 20817.82, + "end": 20818.56, + "probability": 0.9622 + }, + { + "start": 20819.66, + "end": 20822.84, + "probability": 0.9914 + }, + { + "start": 20823.54, + "end": 20824.62, + "probability": 0.8742 + }, + { + "start": 20825.16, + "end": 20828.3, + "probability": 0.994 + }, + { + "start": 20828.48, + "end": 20829.34, + "probability": 0.8039 + }, + { + "start": 20829.6, + "end": 20830.1, + "probability": 0.8682 + }, + { + "start": 20830.22, + "end": 20832.82, + "probability": 0.9541 + }, + { + "start": 20833.44, + "end": 20835.28, + "probability": 0.7972 + }, + { + "start": 20835.32, + "end": 20837.9, + "probability": 0.9927 + }, + { + "start": 20838.5, + "end": 20840.78, + "probability": 0.5998 + }, + { + "start": 20841.4, + "end": 20845.0, + "probability": 0.9863 + }, + { + "start": 20845.02, + "end": 20847.6, + "probability": 0.9821 + }, + { + "start": 20848.84, + "end": 20850.32, + "probability": 0.0362 + }, + { + "start": 20850.32, + "end": 20853.69, + "probability": 0.5414 + }, + { + "start": 20854.46, + "end": 20855.75, + "probability": 0.0499 + }, + { + "start": 20857.74, + "end": 20858.6, + "probability": 0.3234 + }, + { + "start": 20860.66, + "end": 20861.1, + "probability": 0.001 + }, + { + "start": 20861.1, + "end": 20861.1, + "probability": 0.0993 + }, + { + "start": 20861.1, + "end": 20861.1, + "probability": 0.0914 + }, + { + "start": 20861.1, + "end": 20861.1, + "probability": 0.1688 + }, + { + "start": 20861.1, + "end": 20861.1, + "probability": 0.0098 + }, + { + "start": 20861.1, + "end": 20862.89, + "probability": 0.0624 + }, + { + "start": 20863.22, + "end": 20863.26, + "probability": 0.2506 + }, + { + "start": 20863.26, + "end": 20863.88, + "probability": 0.5366 + }, + { + "start": 20863.96, + "end": 20865.76, + "probability": 0.8389 + }, + { + "start": 20865.96, + "end": 20867.7, + "probability": 0.9196 + }, + { + "start": 20867.9, + "end": 20868.16, + "probability": 0.5437 + }, + { + "start": 20868.22, + "end": 20868.44, + "probability": 0.7648 + }, + { + "start": 20868.6, + "end": 20869.92, + "probability": 0.978 + }, + { + "start": 20870.68, + "end": 20872.66, + "probability": 0.9407 + }, + { + "start": 20873.22, + "end": 20874.16, + "probability": 0.7698 + }, + { + "start": 20874.28, + "end": 20875.82, + "probability": 0.6308 + }, + { + "start": 20875.92, + "end": 20876.7, + "probability": 0.8503 + }, + { + "start": 20876.82, + "end": 20877.88, + "probability": 0.6179 + }, + { + "start": 20877.92, + "end": 20878.2, + "probability": 0.3338 + }, + { + "start": 20878.34, + "end": 20879.52, + "probability": 0.8033 + }, + { + "start": 20879.62, + "end": 20881.88, + "probability": 0.8687 + }, + { + "start": 20882.14, + "end": 20883.26, + "probability": 0.9258 + }, + { + "start": 20883.42, + "end": 20885.6, + "probability": 0.9378 + }, + { + "start": 20885.62, + "end": 20886.84, + "probability": 0.055 + }, + { + "start": 20886.92, + "end": 20888.54, + "probability": 0.2089 + }, + { + "start": 20889.26, + "end": 20889.97, + "probability": 0.0366 + }, + { + "start": 20897.45, + "end": 20901.22, + "probability": 0.9774 + }, + { + "start": 20902.02, + "end": 20902.74, + "probability": 0.3688 + }, + { + "start": 20902.78, + "end": 20904.6, + "probability": 0.5067 + }, + { + "start": 20904.6, + "end": 20906.48, + "probability": 0.3761 + }, + { + "start": 20906.52, + "end": 20906.82, + "probability": 0.839 + }, + { + "start": 20907.16, + "end": 20909.4, + "probability": 0.6244 + }, + { + "start": 20909.48, + "end": 20913.62, + "probability": 0.1246 + }, + { + "start": 20913.62, + "end": 20914.82, + "probability": 0.1949 + }, + { + "start": 20915.68, + "end": 20915.92, + "probability": 0.1236 + }, + { + "start": 20915.92, + "end": 20916.12, + "probability": 0.2338 + }, + { + "start": 20916.64, + "end": 20917.7, + "probability": 0.8384 + }, + { + "start": 20917.84, + "end": 20918.98, + "probability": 0.9326 + }, + { + "start": 20919.04, + "end": 20922.34, + "probability": 0.9882 + }, + { + "start": 20924.9, + "end": 20926.18, + "probability": 0.0055 + }, + { + "start": 20926.18, + "end": 20926.18, + "probability": 0.2473 + }, + { + "start": 20926.18, + "end": 20929.54, + "probability": 0.5684 + }, + { + "start": 20929.94, + "end": 20930.66, + "probability": 0.8896 + }, + { + "start": 20931.92, + "end": 20932.08, + "probability": 0.5615 + }, + { + "start": 20932.14, + "end": 20935.34, + "probability": 0.7274 + }, + { + "start": 20935.58, + "end": 20935.68, + "probability": 0.0584 + }, + { + "start": 20935.68, + "end": 20935.68, + "probability": 0.2947 + }, + { + "start": 20935.68, + "end": 20938.46, + "probability": 0.9819 + }, + { + "start": 20938.52, + "end": 20939.17, + "probability": 0.0406 + }, + { + "start": 20939.54, + "end": 20939.58, + "probability": 0.1311 + }, + { + "start": 20939.58, + "end": 20939.58, + "probability": 0.1992 + }, + { + "start": 20939.58, + "end": 20940.4, + "probability": 0.4684 + }, + { + "start": 20941.5, + "end": 20944.42, + "probability": 0.3812 + }, + { + "start": 20944.42, + "end": 20946.44, + "probability": 0.9259 + }, + { + "start": 20946.66, + "end": 20950.18, + "probability": 0.6471 + }, + { + "start": 20950.22, + "end": 20952.01, + "probability": 0.4512 + }, + { + "start": 20952.22, + "end": 20953.52, + "probability": 0.027 + }, + { + "start": 20953.56, + "end": 20954.32, + "probability": 0.776 + }, + { + "start": 20954.69, + "end": 20956.45, + "probability": 0.3736 + }, + { + "start": 20956.9, + "end": 20958.7, + "probability": 0.0301 + }, + { + "start": 20958.7, + "end": 20958.7, + "probability": 0.1405 + }, + { + "start": 20958.74, + "end": 20958.74, + "probability": 0.5132 + }, + { + "start": 20958.74, + "end": 20965.08, + "probability": 0.8544 + }, + { + "start": 20965.92, + "end": 20967.32, + "probability": 0.982 + }, + { + "start": 20968.0, + "end": 20969.72, + "probability": 0.9547 + }, + { + "start": 20970.36, + "end": 20970.46, + "probability": 0.0812 + }, + { + "start": 20970.46, + "end": 20971.58, + "probability": 0.6728 + }, + { + "start": 20972.08, + "end": 20975.78, + "probability": 0.6463 + }, + { + "start": 20975.82, + "end": 20979.32, + "probability": 0.5044 + }, + { + "start": 20979.88, + "end": 20981.84, + "probability": 0.3688 + }, + { + "start": 20981.84, + "end": 20982.64, + "probability": 0.6869 + }, + { + "start": 20982.72, + "end": 20984.56, + "probability": 0.9436 + }, + { + "start": 20985.08, + "end": 20986.16, + "probability": 0.7969 + }, + { + "start": 20987.04, + "end": 20987.56, + "probability": 0.4015 + }, + { + "start": 20988.44, + "end": 20989.6, + "probability": 0.6156 + }, + { + "start": 20989.62, + "end": 20991.22, + "probability": 0.4785 + }, + { + "start": 20991.26, + "end": 20994.72, + "probability": 0.6768 + }, + { + "start": 20995.34, + "end": 20995.82, + "probability": 0.9771 + }, + { + "start": 20996.36, + "end": 21002.48, + "probability": 0.9911 + }, + { + "start": 21002.96, + "end": 21003.28, + "probability": 0.1828 + }, + { + "start": 21003.28, + "end": 21005.18, + "probability": 0.8499 + }, + { + "start": 21005.26, + "end": 21006.42, + "probability": 0.619 + }, + { + "start": 21007.45, + "end": 21008.22, + "probability": 0.1123 + }, + { + "start": 21008.22, + "end": 21009.02, + "probability": 0.1125 + }, + { + "start": 21009.1, + "end": 21012.84, + "probability": 0.2066 + }, + { + "start": 21013.78, + "end": 21013.78, + "probability": 0.0435 + }, + { + "start": 21013.78, + "end": 21014.75, + "probability": 0.3408 + }, + { + "start": 21015.4, + "end": 21015.79, + "probability": 0.1874 + }, + { + "start": 21015.88, + "end": 21016.98, + "probability": 0.151 + }, + { + "start": 21017.18, + "end": 21018.44, + "probability": 0.7882 + }, + { + "start": 21018.5, + "end": 21021.24, + "probability": 0.1632 + }, + { + "start": 21021.36, + "end": 21021.99, + "probability": 0.3894 + }, + { + "start": 21022.18, + "end": 21024.1, + "probability": 0.7046 + }, + { + "start": 21024.18, + "end": 21024.18, + "probability": 0.0019 + }, + { + "start": 21024.18, + "end": 21027.6, + "probability": 0.9565 + }, + { + "start": 21028.76, + "end": 21029.86, + "probability": 0.4594 + }, + { + "start": 21029.86, + "end": 21033.0, + "probability": 0.957 + }, + { + "start": 21033.54, + "end": 21033.58, + "probability": 0.4276 + }, + { + "start": 21034.32, + "end": 21034.58, + "probability": 0.3605 + }, + { + "start": 21034.71, + "end": 21034.88, + "probability": 0.0034 + }, + { + "start": 21035.0, + "end": 21037.62, + "probability": 0.8877 + }, + { + "start": 21037.76, + "end": 21038.6, + "probability": 0.7698 + }, + { + "start": 21038.99, + "end": 21040.34, + "probability": 0.2837 + }, + { + "start": 21040.34, + "end": 21040.96, + "probability": 0.4879 + }, + { + "start": 21042.2, + "end": 21042.81, + "probability": 0.2788 + }, + { + "start": 21043.52, + "end": 21044.84, + "probability": 0.9845 + }, + { + "start": 21045.42, + "end": 21045.76, + "probability": 0.5951 + }, + { + "start": 21045.92, + "end": 21049.38, + "probability": 0.3469 + }, + { + "start": 21051.52, + "end": 21052.42, + "probability": 0.1068 + }, + { + "start": 21052.42, + "end": 21052.82, + "probability": 0.0636 + }, + { + "start": 21052.9, + "end": 21052.9, + "probability": 0.0308 + }, + { + "start": 21053.04, + "end": 21053.24, + "probability": 0.2249 + }, + { + "start": 21053.24, + "end": 21055.19, + "probability": 0.5193 + }, + { + "start": 21055.84, + "end": 21056.96, + "probability": 0.8389 + }, + { + "start": 21057.2, + "end": 21058.94, + "probability": 0.9899 + }, + { + "start": 21059.52, + "end": 21061.6, + "probability": 0.0763 + }, + { + "start": 21061.98, + "end": 21062.82, + "probability": 0.5364 + }, + { + "start": 21062.9, + "end": 21062.9, + "probability": 0.554 + }, + { + "start": 21062.9, + "end": 21062.9, + "probability": 0.2779 + }, + { + "start": 21062.9, + "end": 21066.24, + "probability": 0.8158 + }, + { + "start": 21067.76, + "end": 21068.24, + "probability": 0.2133 + }, + { + "start": 21068.24, + "end": 21068.66, + "probability": 0.3384 + }, + { + "start": 21068.9, + "end": 21070.5, + "probability": 0.3216 + }, + { + "start": 21071.3, + "end": 21072.57, + "probability": 0.4247 + }, + { + "start": 21073.6, + "end": 21076.86, + "probability": 0.7165 + }, + { + "start": 21077.22, + "end": 21078.42, + "probability": 0.8733 + }, + { + "start": 21078.46, + "end": 21080.34, + "probability": 0.9424 + }, + { + "start": 21080.4, + "end": 21081.66, + "probability": 0.9973 + }, + { + "start": 21082.54, + "end": 21083.2, + "probability": 0.0475 + }, + { + "start": 21083.4, + "end": 21086.0, + "probability": 0.7378 + }, + { + "start": 21086.5, + "end": 21087.33, + "probability": 0.7183 + }, + { + "start": 21087.74, + "end": 21088.46, + "probability": 0.3795 + }, + { + "start": 21088.92, + "end": 21089.2, + "probability": 0.7514 + }, + { + "start": 21090.19, + "end": 21092.8, + "probability": 0.0278 + }, + { + "start": 21092.8, + "end": 21096.7, + "probability": 0.2135 + }, + { + "start": 21097.32, + "end": 21098.66, + "probability": 0.0565 + }, + { + "start": 21098.66, + "end": 21101.68, + "probability": 0.1645 + }, + { + "start": 21102.08, + "end": 21102.74, + "probability": 0.0415 + }, + { + "start": 21102.74, + "end": 21102.74, + "probability": 0.4379 + }, + { + "start": 21102.74, + "end": 21104.96, + "probability": 0.1392 + }, + { + "start": 21105.22, + "end": 21105.92, + "probability": 0.5209 + }, + { + "start": 21106.68, + "end": 21108.4, + "probability": 0.9211 + }, + { + "start": 21108.82, + "end": 21108.82, + "probability": 0.0166 + }, + { + "start": 21110.02, + "end": 21110.56, + "probability": 0.0061 + }, + { + "start": 21110.56, + "end": 21110.62, + "probability": 0.1972 + }, + { + "start": 21110.62, + "end": 21110.62, + "probability": 0.0878 + }, + { + "start": 21110.62, + "end": 21112.28, + "probability": 0.0618 + }, + { + "start": 21112.36, + "end": 21113.0, + "probability": 0.7801 + }, + { + "start": 21113.2, + "end": 21114.14, + "probability": 0.689 + }, + { + "start": 21114.44, + "end": 21116.64, + "probability": 0.6479 + }, + { + "start": 21117.48, + "end": 21117.48, + "probability": 0.4395 + }, + { + "start": 21117.48, + "end": 21117.58, + "probability": 0.0363 + }, + { + "start": 21118.06, + "end": 21119.12, + "probability": 0.187 + }, + { + "start": 21119.32, + "end": 21121.74, + "probability": 0.4933 + }, + { + "start": 21122.18, + "end": 21123.46, + "probability": 0.2848 + }, + { + "start": 21123.62, + "end": 21123.62, + "probability": 0.2887 + }, + { + "start": 21123.86, + "end": 21124.4, + "probability": 0.5383 + }, + { + "start": 21124.4, + "end": 21127.18, + "probability": 0.377 + }, + { + "start": 21127.26, + "end": 21129.0, + "probability": 0.8157 + }, + { + "start": 21129.66, + "end": 21131.08, + "probability": 0.9008 + }, + { + "start": 21131.4, + "end": 21131.92, + "probability": 0.0316 + }, + { + "start": 21131.92, + "end": 21131.92, + "probability": 0.353 + }, + { + "start": 21131.92, + "end": 21131.92, + "probability": 0.1857 + }, + { + "start": 21131.92, + "end": 21133.58, + "probability": 0.3922 + }, + { + "start": 21134.38, + "end": 21136.14, + "probability": 0.0614 + }, + { + "start": 21136.86, + "end": 21137.76, + "probability": 0.0096 + }, + { + "start": 21137.92, + "end": 21140.78, + "probability": 0.2262 + }, + { + "start": 21141.26, + "end": 21142.52, + "probability": 0.7183 + }, + { + "start": 21144.04, + "end": 21145.61, + "probability": 0.8125 + }, + { + "start": 21147.36, + "end": 21151.78, + "probability": 0.4203 + }, + { + "start": 21151.78, + "end": 21154.2, + "probability": 0.968 + }, + { + "start": 21154.52, + "end": 21156.82, + "probability": 0.9925 + }, + { + "start": 21156.94, + "end": 21157.42, + "probability": 0.2132 + }, + { + "start": 21157.42, + "end": 21157.42, + "probability": 0.0024 + }, + { + "start": 21157.42, + "end": 21159.62, + "probability": 0.9238 + }, + { + "start": 21159.62, + "end": 21161.34, + "probability": 0.783 + }, + { + "start": 21161.66, + "end": 21162.38, + "probability": 0.8349 + }, + { + "start": 21162.62, + "end": 21163.84, + "probability": 0.9735 + }, + { + "start": 21164.56, + "end": 21166.6, + "probability": 0.829 + }, + { + "start": 21167.14, + "end": 21167.22, + "probability": 0.7865 + }, + { + "start": 21167.52, + "end": 21170.68, + "probability": 0.9052 + }, + { + "start": 21171.08, + "end": 21173.0, + "probability": 0.9714 + }, + { + "start": 21173.1, + "end": 21175.16, + "probability": 0.9971 + }, + { + "start": 21175.86, + "end": 21178.78, + "probability": 0.9512 + }, + { + "start": 21178.96, + "end": 21179.96, + "probability": 0.7962 + }, + { + "start": 21180.44, + "end": 21181.96, + "probability": 0.9448 + }, + { + "start": 21182.78, + "end": 21184.64, + "probability": 0.9927 + }, + { + "start": 21184.64, + "end": 21188.16, + "probability": 0.9681 + }, + { + "start": 21188.28, + "end": 21192.3, + "probability": 0.9722 + }, + { + "start": 21192.92, + "end": 21197.22, + "probability": 0.8889 + }, + { + "start": 21197.36, + "end": 21199.72, + "probability": 0.9973 + }, + { + "start": 21199.72, + "end": 21203.6, + "probability": 0.9909 + }, + { + "start": 21204.26, + "end": 21205.44, + "probability": 0.9954 + }, + { + "start": 21205.46, + "end": 21206.74, + "probability": 0.9703 + }, + { + "start": 21207.34, + "end": 21210.98, + "probability": 0.988 + }, + { + "start": 21211.44, + "end": 21214.92, + "probability": 0.8194 + }, + { + "start": 21215.44, + "end": 21217.94, + "probability": 0.9964 + }, + { + "start": 21218.32, + "end": 21221.36, + "probability": 0.9457 + }, + { + "start": 21222.1, + "end": 21226.24, + "probability": 0.9229 + }, + { + "start": 21226.84, + "end": 21230.06, + "probability": 0.9975 + }, + { + "start": 21231.04, + "end": 21231.66, + "probability": 0.738 + }, + { + "start": 21232.18, + "end": 21237.82, + "probability": 0.9976 + }, + { + "start": 21238.08, + "end": 21239.16, + "probability": 0.6795 + }, + { + "start": 21239.54, + "end": 21241.34, + "probability": 0.9948 + }, + { + "start": 21241.98, + "end": 21244.24, + "probability": 0.9003 + }, + { + "start": 21244.68, + "end": 21245.48, + "probability": 0.7954 + }, + { + "start": 21245.82, + "end": 21246.74, + "probability": 0.7881 + }, + { + "start": 21247.2, + "end": 21248.22, + "probability": 0.9836 + }, + { + "start": 21248.62, + "end": 21249.78, + "probability": 0.9403 + }, + { + "start": 21250.04, + "end": 21251.2, + "probability": 0.993 + }, + { + "start": 21251.46, + "end": 21252.48, + "probability": 0.9658 + }, + { + "start": 21252.82, + "end": 21256.02, + "probability": 0.9967 + }, + { + "start": 21257.74, + "end": 21258.56, + "probability": 0.622 + }, + { + "start": 21258.56, + "end": 21259.58, + "probability": 0.4786 + }, + { + "start": 21259.72, + "end": 21260.94, + "probability": 0.792 + }, + { + "start": 21261.04, + "end": 21263.0, + "probability": 0.925 + }, + { + "start": 21263.22, + "end": 21263.72, + "probability": 0.7699 + }, + { + "start": 21264.04, + "end": 21265.26, + "probability": 0.9765 + }, + { + "start": 21265.6, + "end": 21270.72, + "probability": 0.9924 + }, + { + "start": 21271.04, + "end": 21271.64, + "probability": 0.8672 + }, + { + "start": 21271.72, + "end": 21272.68, + "probability": 0.9597 + }, + { + "start": 21273.28, + "end": 21275.85, + "probability": 0.982 + }, + { + "start": 21277.3, + "end": 21281.82, + "probability": 0.978 + }, + { + "start": 21282.86, + "end": 21284.65, + "probability": 0.9147 + }, + { + "start": 21285.28, + "end": 21285.98, + "probability": 0.8868 + }, + { + "start": 21286.04, + "end": 21286.56, + "probability": 0.9886 + }, + { + "start": 21286.7, + "end": 21287.92, + "probability": 0.9596 + }, + { + "start": 21288.86, + "end": 21290.32, + "probability": 0.8927 + }, + { + "start": 21290.46, + "end": 21294.22, + "probability": 0.9798 + }, + { + "start": 21294.7, + "end": 21298.8, + "probability": 0.9752 + }, + { + "start": 21299.72, + "end": 21301.28, + "probability": 0.9365 + }, + { + "start": 21301.62, + "end": 21307.04, + "probability": 0.922 + }, + { + "start": 21307.22, + "end": 21308.68, + "probability": 0.9974 + }, + { + "start": 21309.38, + "end": 21310.2, + "probability": 0.7891 + }, + { + "start": 21310.98, + "end": 21312.54, + "probability": 0.9985 + }, + { + "start": 21313.12, + "end": 21315.46, + "probability": 0.9832 + }, + { + "start": 21315.98, + "end": 21317.9, + "probability": 0.9973 + }, + { + "start": 21318.44, + "end": 21320.76, + "probability": 0.9199 + }, + { + "start": 21321.18, + "end": 21325.24, + "probability": 0.9834 + }, + { + "start": 21325.24, + "end": 21327.9, + "probability": 0.9897 + }, + { + "start": 21328.42, + "end": 21330.86, + "probability": 0.9951 + }, + { + "start": 21331.52, + "end": 21332.58, + "probability": 0.8623 + }, + { + "start": 21333.14, + "end": 21335.7, + "probability": 0.955 + }, + { + "start": 21336.22, + "end": 21337.38, + "probability": 0.9768 + }, + { + "start": 21338.24, + "end": 21341.5, + "probability": 0.8828 + }, + { + "start": 21342.12, + "end": 21345.5, + "probability": 0.9815 + }, + { + "start": 21346.62, + "end": 21347.08, + "probability": 0.8102 + }, + { + "start": 21347.66, + "end": 21351.4, + "probability": 0.834 + }, + { + "start": 21352.9, + "end": 21355.06, + "probability": 0.8806 + }, + { + "start": 21355.96, + "end": 21357.6, + "probability": 0.9676 + }, + { + "start": 21357.98, + "end": 21360.72, + "probability": 0.9119 + }, + { + "start": 21360.84, + "end": 21361.3, + "probability": 0.8176 + }, + { + "start": 21361.78, + "end": 21365.26, + "probability": 0.9656 + }, + { + "start": 21365.82, + "end": 21368.56, + "probability": 0.9899 + }, + { + "start": 21369.08, + "end": 21369.84, + "probability": 0.7199 + }, + { + "start": 21370.02, + "end": 21372.22, + "probability": 0.9843 + }, + { + "start": 21372.54, + "end": 21374.0, + "probability": 0.8379 + }, + { + "start": 21374.42, + "end": 21375.05, + "probability": 0.8497 + }, + { + "start": 21375.22, + "end": 21376.35, + "probability": 0.9629 + }, + { + "start": 21377.08, + "end": 21377.84, + "probability": 0.6274 + }, + { + "start": 21380.0, + "end": 21380.35, + "probability": 0.9459 + }, + { + "start": 21381.16, + "end": 21382.92, + "probability": 0.992 + }, + { + "start": 21383.8, + "end": 21385.9, + "probability": 0.9588 + }, + { + "start": 21386.52, + "end": 21389.26, + "probability": 0.9634 + }, + { + "start": 21389.7, + "end": 21393.08, + "probability": 0.9536 + }, + { + "start": 21393.16, + "end": 21395.9, + "probability": 0.9955 + }, + { + "start": 21397.28, + "end": 21400.76, + "probability": 0.9915 + }, + { + "start": 21401.5, + "end": 21403.98, + "probability": 0.9807 + }, + { + "start": 21404.3, + "end": 21407.18, + "probability": 0.9836 + }, + { + "start": 21407.56, + "end": 21410.92, + "probability": 0.9684 + }, + { + "start": 21411.46, + "end": 21411.46, + "probability": 0.1174 + }, + { + "start": 21411.46, + "end": 21411.62, + "probability": 0.1495 + }, + { + "start": 21411.62, + "end": 21411.88, + "probability": 0.4857 + }, + { + "start": 21412.08, + "end": 21414.14, + "probability": 0.2898 + }, + { + "start": 21414.34, + "end": 21414.88, + "probability": 0.2134 + }, + { + "start": 21415.02, + "end": 21416.2, + "probability": 0.6035 + }, + { + "start": 21434.68, + "end": 21435.86, + "probability": 0.5967 + }, + { + "start": 21437.22, + "end": 21438.32, + "probability": 0.6578 + }, + { + "start": 21438.7, + "end": 21440.18, + "probability": 0.9164 + }, + { + "start": 21440.74, + "end": 21442.02, + "probability": 0.807 + }, + { + "start": 21444.22, + "end": 21449.74, + "probability": 0.9316 + }, + { + "start": 21450.78, + "end": 21452.86, + "probability": 0.9006 + }, + { + "start": 21454.22, + "end": 21462.74, + "probability": 0.9692 + }, + { + "start": 21463.8, + "end": 21464.4, + "probability": 0.8068 + }, + { + "start": 21465.6, + "end": 21469.02, + "probability": 0.8784 + }, + { + "start": 21469.18, + "end": 21471.6, + "probability": 0.9258 + }, + { + "start": 21472.4, + "end": 21476.3, + "probability": 0.7521 + }, + { + "start": 21477.18, + "end": 21483.12, + "probability": 0.979 + }, + { + "start": 21483.72, + "end": 21485.98, + "probability": 0.9939 + }, + { + "start": 21487.16, + "end": 21488.04, + "probability": 0.7143 + }, + { + "start": 21488.64, + "end": 21490.48, + "probability": 0.9824 + }, + { + "start": 21490.56, + "end": 21492.54, + "probability": 0.88 + }, + { + "start": 21493.66, + "end": 21495.88, + "probability": 0.9575 + }, + { + "start": 21495.98, + "end": 21497.98, + "probability": 0.4995 + }, + { + "start": 21498.08, + "end": 21499.54, + "probability": 0.8309 + }, + { + "start": 21499.6, + "end": 21500.8, + "probability": 0.7669 + }, + { + "start": 21501.32, + "end": 21502.61, + "probability": 0.7598 + }, + { + "start": 21503.5, + "end": 21505.56, + "probability": 0.7484 + }, + { + "start": 21505.86, + "end": 21507.6, + "probability": 0.9229 + }, + { + "start": 21508.42, + "end": 21510.49, + "probability": 0.9841 + }, + { + "start": 21511.48, + "end": 21512.8, + "probability": 0.9307 + }, + { + "start": 21512.96, + "end": 21515.22, + "probability": 0.9551 + }, + { + "start": 21515.34, + "end": 21516.11, + "probability": 0.8985 + }, + { + "start": 21516.64, + "end": 21517.32, + "probability": 0.973 + }, + { + "start": 21518.08, + "end": 21519.2, + "probability": 0.8572 + }, + { + "start": 21519.34, + "end": 21519.86, + "probability": 0.6609 + }, + { + "start": 21520.12, + "end": 21520.7, + "probability": 0.5343 + }, + { + "start": 21521.66, + "end": 21525.12, + "probability": 0.8271 + }, + { + "start": 21525.12, + "end": 21529.5, + "probability": 0.7369 + }, + { + "start": 21530.0, + "end": 21531.0, + "probability": 0.9631 + }, + { + "start": 21531.24, + "end": 21531.26, + "probability": 0.7322 + }, + { + "start": 21531.42, + "end": 21532.46, + "probability": 0.9764 + }, + { + "start": 21532.66, + "end": 21533.24, + "probability": 0.6168 + }, + { + "start": 21533.6, + "end": 21534.08, + "probability": 0.9574 + }, + { + "start": 21534.62, + "end": 21535.06, + "probability": 0.3692 + }, + { + "start": 21535.16, + "end": 21535.96, + "probability": 0.3374 + }, + { + "start": 21536.56, + "end": 21538.87, + "probability": 0.7831 + }, + { + "start": 21539.96, + "end": 21542.32, + "probability": 0.8024 + }, + { + "start": 21543.4, + "end": 21546.7, + "probability": 0.9712 + }, + { + "start": 21547.92, + "end": 21551.13, + "probability": 0.9062 + }, + { + "start": 21551.92, + "end": 21553.72, + "probability": 0.9027 + }, + { + "start": 21554.76, + "end": 21557.36, + "probability": 0.9587 + }, + { + "start": 21557.98, + "end": 21560.8, + "probability": 0.9263 + }, + { + "start": 21562.1, + "end": 21565.1, + "probability": 0.2607 + }, + { + "start": 21565.14, + "end": 21569.9, + "probability": 0.9867 + }, + { + "start": 21570.34, + "end": 21573.43, + "probability": 0.8677 + }, + { + "start": 21573.82, + "end": 21574.58, + "probability": 0.459 + }, + { + "start": 21575.57, + "end": 21577.12, + "probability": 0.8806 + }, + { + "start": 21577.24, + "end": 21578.46, + "probability": 0.9957 + }, + { + "start": 21578.88, + "end": 21580.84, + "probability": 0.718 + }, + { + "start": 21580.98, + "end": 21584.44, + "probability": 0.9794 + }, + { + "start": 21584.9, + "end": 21587.36, + "probability": 0.9921 + }, + { + "start": 21588.14, + "end": 21591.98, + "probability": 0.9069 + }, + { + "start": 21592.0, + "end": 21594.38, + "probability": 0.8762 + }, + { + "start": 21594.98, + "end": 21596.52, + "probability": 0.7602 + }, + { + "start": 21596.98, + "end": 21597.76, + "probability": 0.6733 + }, + { + "start": 21597.82, + "end": 21598.52, + "probability": 0.7131 + }, + { + "start": 21598.82, + "end": 21599.2, + "probability": 0.9167 + }, + { + "start": 21599.28, + "end": 21600.28, + "probability": 0.8922 + }, + { + "start": 21600.62, + "end": 21602.52, + "probability": 0.5996 + }, + { + "start": 21603.12, + "end": 21608.68, + "probability": 0.8519 + }, + { + "start": 21609.48, + "end": 21610.96, + "probability": 0.9973 + }, + { + "start": 21611.46, + "end": 21615.46, + "probability": 0.8076 + }, + { + "start": 21615.46, + "end": 21618.86, + "probability": 0.96 + }, + { + "start": 21619.0, + "end": 21619.76, + "probability": 0.6055 + }, + { + "start": 21620.34, + "end": 21622.3, + "probability": 0.8289 + }, + { + "start": 21622.92, + "end": 21623.84, + "probability": 0.5719 + }, + { + "start": 21625.18, + "end": 21628.28, + "probability": 0.9855 + }, + { + "start": 21628.62, + "end": 21631.48, + "probability": 0.9876 + }, + { + "start": 21632.42, + "end": 21634.95, + "probability": 0.9854 + }, + { + "start": 21635.06, + "end": 21637.13, + "probability": 0.5668 + }, + { + "start": 21637.56, + "end": 21637.82, + "probability": 0.3638 + }, + { + "start": 21637.98, + "end": 21638.64, + "probability": 0.691 + }, + { + "start": 21638.84, + "end": 21640.1, + "probability": 0.7235 + }, + { + "start": 21640.62, + "end": 21642.44, + "probability": 0.5778 + }, + { + "start": 21642.46, + "end": 21643.86, + "probability": 0.0702 + }, + { + "start": 21644.08, + "end": 21645.0, + "probability": 0.8468 + }, + { + "start": 21645.02, + "end": 21650.56, + "probability": 0.9387 + }, + { + "start": 21651.26, + "end": 21653.72, + "probability": 0.5968 + }, + { + "start": 21654.16, + "end": 21656.0, + "probability": 0.2186 + }, + { + "start": 21657.82, + "end": 21657.82, + "probability": 0.021 + }, + { + "start": 21657.82, + "end": 21660.94, + "probability": 0.0417 + }, + { + "start": 21667.02, + "end": 21668.86, + "probability": 0.635 + }, + { + "start": 21669.56, + "end": 21670.38, + "probability": 0.5667 + }, + { + "start": 21670.76, + "end": 21671.88, + "probability": 0.8872 + }, + { + "start": 21672.0, + "end": 21675.66, + "probability": 0.954 + }, + { + "start": 21675.78, + "end": 21679.32, + "probability": 0.9708 + }, + { + "start": 21679.32, + "end": 21681.1, + "probability": 0.9939 + }, + { + "start": 21681.59, + "end": 21683.54, + "probability": 0.8606 + }, + { + "start": 21683.58, + "end": 21684.84, + "probability": 0.9341 + }, + { + "start": 21685.02, + "end": 21687.64, + "probability": 0.7853 + }, + { + "start": 21687.76, + "end": 21689.88, + "probability": 0.9609 + }, + { + "start": 21690.42, + "end": 21691.14, + "probability": 0.8342 + }, + { + "start": 21692.34, + "end": 21693.92, + "probability": 0.9287 + }, + { + "start": 21694.1, + "end": 21696.38, + "probability": 0.9757 + }, + { + "start": 21697.48, + "end": 21699.24, + "probability": 0.849 + }, + { + "start": 21700.46, + "end": 21706.06, + "probability": 0.9342 + }, + { + "start": 21707.08, + "end": 21714.18, + "probability": 0.9629 + }, + { + "start": 21714.18, + "end": 21715.0, + "probability": 0.8496 + }, + { + "start": 21715.1, + "end": 21716.84, + "probability": 0.8669 + }, + { + "start": 21718.04, + "end": 21718.94, + "probability": 0.468 + }, + { + "start": 21719.36, + "end": 21721.16, + "probability": 0.3652 + }, + { + "start": 21721.8, + "end": 21723.64, + "probability": 0.8994 + }, + { + "start": 21723.72, + "end": 21727.88, + "probability": 0.9798 + }, + { + "start": 21728.0, + "end": 21728.9, + "probability": 0.9736 + }, + { + "start": 21729.72, + "end": 21733.04, + "probability": 0.6372 + }, + { + "start": 21734.06, + "end": 21739.8, + "probability": 0.9602 + }, + { + "start": 21740.1, + "end": 21741.46, + "probability": 0.9439 + }, + { + "start": 21742.28, + "end": 21743.6, + "probability": 0.903 + }, + { + "start": 21744.48, + "end": 21745.8, + "probability": 0.8522 + }, + { + "start": 21745.88, + "end": 21749.5, + "probability": 0.9938 + }, + { + "start": 21749.5, + "end": 21751.6, + "probability": 0.7467 + }, + { + "start": 21751.94, + "end": 21753.18, + "probability": 0.8987 + }, + { + "start": 21753.46, + "end": 21754.94, + "probability": 0.9437 + }, + { + "start": 21755.04, + "end": 21758.32, + "probability": 0.6652 + }, + { + "start": 21758.9, + "end": 21760.7, + "probability": 0.9948 + }, + { + "start": 21761.3, + "end": 21762.54, + "probability": 0.8084 + }, + { + "start": 21763.22, + "end": 21766.2, + "probability": 0.9805 + }, + { + "start": 21767.18, + "end": 21769.8, + "probability": 0.4101 + }, + { + "start": 21769.8, + "end": 21772.72, + "probability": 0.8229 + }, + { + "start": 21772.72, + "end": 21775.37, + "probability": 0.5434 + }, + { + "start": 21776.15, + "end": 21777.16, + "probability": 0.5989 + }, + { + "start": 21777.42, + "end": 21778.66, + "probability": 0.0941 + }, + { + "start": 21778.74, + "end": 21779.28, + "probability": 0.8516 + }, + { + "start": 21779.42, + "end": 21780.5, + "probability": 0.9082 + }, + { + "start": 21780.6, + "end": 21784.18, + "probability": 0.9977 + }, + { + "start": 21784.18, + "end": 21788.48, + "probability": 0.9971 + }, + { + "start": 21789.04, + "end": 21790.38, + "probability": 0.0581 + }, + { + "start": 21791.18, + "end": 21793.38, + "probability": 0.0092 + }, + { + "start": 21793.38, + "end": 21793.38, + "probability": 0.1028 + }, + { + "start": 21793.38, + "end": 21793.92, + "probability": 0.0201 + }, + { + "start": 21795.68, + "end": 21799.3, + "probability": 0.9365 + }, + { + "start": 21799.88, + "end": 21802.0, + "probability": 0.9394 + }, + { + "start": 21802.52, + "end": 21803.68, + "probability": 0.944 + }, + { + "start": 21804.16, + "end": 21805.58, + "probability": 0.9364 + }, + { + "start": 21806.06, + "end": 21806.84, + "probability": 0.9359 + }, + { + "start": 21806.92, + "end": 21809.78, + "probability": 0.9945 + }, + { + "start": 21810.24, + "end": 21811.38, + "probability": 0.8668 + }, + { + "start": 21811.82, + "end": 21816.76, + "probability": 0.9966 + }, + { + "start": 21817.24, + "end": 21821.36, + "probability": 0.9083 + }, + { + "start": 21822.0, + "end": 21825.42, + "probability": 0.9951 + }, + { + "start": 21825.42, + "end": 21829.1, + "probability": 0.9893 + }, + { + "start": 21829.68, + "end": 21832.3, + "probability": 0.991 + }, + { + "start": 21832.92, + "end": 21834.16, + "probability": 0.875 + }, + { + "start": 21834.26, + "end": 21835.48, + "probability": 0.866 + }, + { + "start": 21835.92, + "end": 21837.96, + "probability": 0.9956 + }, + { + "start": 21838.44, + "end": 21839.12, + "probability": 0.7753 + }, + { + "start": 21839.44, + "end": 21840.38, + "probability": 0.4921 + }, + { + "start": 21840.68, + "end": 21841.7, + "probability": 0.8047 + }, + { + "start": 21841.84, + "end": 21842.7, + "probability": 0.7641 + }, + { + "start": 21842.86, + "end": 21843.5, + "probability": 0.8214 + }, + { + "start": 21843.58, + "end": 21846.2, + "probability": 0.9742 + }, + { + "start": 21846.64, + "end": 21847.1, + "probability": 0.8522 + }, + { + "start": 21847.28, + "end": 21847.86, + "probability": 0.7407 + }, + { + "start": 21847.9, + "end": 21850.66, + "probability": 0.9484 + }, + { + "start": 21851.34, + "end": 21852.76, + "probability": 0.4668 + }, + { + "start": 21853.5, + "end": 21855.48, + "probability": 0.8102 + }, + { + "start": 21858.1, + "end": 21859.63, + "probability": 0.7471 + }, + { + "start": 21860.82, + "end": 21863.5, + "probability": 0.7838 + }, + { + "start": 21863.96, + "end": 21864.62, + "probability": 0.3292 + }, + { + "start": 21864.9, + "end": 21866.3, + "probability": 0.9468 + }, + { + "start": 21867.08, + "end": 21868.86, + "probability": 0.4905 + }, + { + "start": 21868.9, + "end": 21869.46, + "probability": 0.8516 + }, + { + "start": 21870.92, + "end": 21871.94, + "probability": 0.8849 + }, + { + "start": 21874.84, + "end": 21876.32, + "probability": 0.6629 + }, + { + "start": 21877.5, + "end": 21878.5, + "probability": 0.6343 + }, + { + "start": 21880.54, + "end": 21884.08, + "probability": 0.917 + }, + { + "start": 21884.18, + "end": 21887.06, + "probability": 0.9486 + }, + { + "start": 21888.06, + "end": 21891.58, + "probability": 0.9937 + }, + { + "start": 21892.54, + "end": 21895.26, + "probability": 0.946 + }, + { + "start": 21896.0, + "end": 21900.28, + "probability": 0.9914 + }, + { + "start": 21900.46, + "end": 21901.5, + "probability": 0.7346 + }, + { + "start": 21901.6, + "end": 21903.22, + "probability": 0.875 + }, + { + "start": 21904.34, + "end": 21907.0, + "probability": 0.993 + }, + { + "start": 21907.96, + "end": 21910.46, + "probability": 0.9578 + }, + { + "start": 21912.62, + "end": 21915.94, + "probability": 0.9891 + }, + { + "start": 21916.86, + "end": 21918.0, + "probability": 0.9448 + }, + { + "start": 21918.64, + "end": 21920.1, + "probability": 0.969 + }, + { + "start": 21921.44, + "end": 21924.44, + "probability": 0.9178 + }, + { + "start": 21924.52, + "end": 21926.88, + "probability": 0.8691 + }, + { + "start": 21927.12, + "end": 21927.2, + "probability": 0.672 + }, + { + "start": 21927.34, + "end": 21927.78, + "probability": 0.9168 + }, + { + "start": 21928.06, + "end": 21929.08, + "probability": 0.7612 + }, + { + "start": 21929.26, + "end": 21931.14, + "probability": 0.9001 + }, + { + "start": 21932.78, + "end": 21933.56, + "probability": 0.6316 + }, + { + "start": 21934.42, + "end": 21935.66, + "probability": 0.8972 + }, + { + "start": 21937.32, + "end": 21938.18, + "probability": 0.9407 + }, + { + "start": 21939.7, + "end": 21940.24, + "probability": 0.6916 + }, + { + "start": 21941.48, + "end": 21943.68, + "probability": 0.9955 + }, + { + "start": 21945.26, + "end": 21946.38, + "probability": 0.9546 + }, + { + "start": 21947.04, + "end": 21948.4, + "probability": 0.9927 + }, + { + "start": 21950.18, + "end": 21952.02, + "probability": 0.9671 + }, + { + "start": 21952.64, + "end": 21954.26, + "probability": 0.8315 + }, + { + "start": 21955.54, + "end": 21956.88, + "probability": 0.1252 + }, + { + "start": 21956.98, + "end": 21957.04, + "probability": 0.0253 + }, + { + "start": 21957.04, + "end": 21959.7, + "probability": 0.5708 + }, + { + "start": 21960.62, + "end": 21961.42, + "probability": 0.791 + }, + { + "start": 21963.14, + "end": 21964.12, + "probability": 0.7933 + }, + { + "start": 21964.92, + "end": 21965.98, + "probability": 0.8025 + }, + { + "start": 21967.48, + "end": 21969.14, + "probability": 0.9365 + }, + { + "start": 21969.86, + "end": 21971.02, + "probability": 0.9719 + }, + { + "start": 21972.34, + "end": 21976.04, + "probability": 0.9397 + }, + { + "start": 21977.52, + "end": 21980.56, + "probability": 0.8547 + }, + { + "start": 21981.38, + "end": 21983.78, + "probability": 0.7659 + }, + { + "start": 21984.5, + "end": 21988.5, + "probability": 0.9567 + }, + { + "start": 21989.12, + "end": 21991.98, + "probability": 0.9786 + }, + { + "start": 21992.7, + "end": 21995.8, + "probability": 0.8081 + }, + { + "start": 21996.6, + "end": 21997.32, + "probability": 0.4989 + }, + { + "start": 21997.94, + "end": 21998.96, + "probability": 0.9726 + }, + { + "start": 21999.66, + "end": 22000.62, + "probability": 0.9766 + }, + { + "start": 22001.5, + "end": 22002.38, + "probability": 0.9741 + }, + { + "start": 22002.56, + "end": 22003.24, + "probability": 0.9159 + }, + { + "start": 22003.34, + "end": 22007.92, + "probability": 0.9962 + }, + { + "start": 22008.96, + "end": 22012.14, + "probability": 0.9977 + }, + { + "start": 22013.58, + "end": 22014.46, + "probability": 0.9897 + }, + { + "start": 22015.08, + "end": 22015.76, + "probability": 0.9699 + }, + { + "start": 22016.8, + "end": 22017.08, + "probability": 0.1501 + }, + { + "start": 22018.16, + "end": 22019.04, + "probability": 0.8905 + }, + { + "start": 22019.92, + "end": 22020.78, + "probability": 0.7992 + }, + { + "start": 22021.58, + "end": 22023.82, + "probability": 0.6889 + }, + { + "start": 22024.4, + "end": 22028.44, + "probability": 0.9836 + }, + { + "start": 22030.0, + "end": 22032.32, + "probability": 0.9622 + }, + { + "start": 22033.62, + "end": 22037.02, + "probability": 0.9636 + }, + { + "start": 22037.74, + "end": 22040.4, + "probability": 0.9332 + }, + { + "start": 22041.0, + "end": 22044.8, + "probability": 0.9736 + }, + { + "start": 22044.88, + "end": 22045.3, + "probability": 0.8113 + }, + { + "start": 22045.64, + "end": 22046.3, + "probability": 0.4824 + }, + { + "start": 22046.36, + "end": 22047.08, + "probability": 0.8193 + }, + { + "start": 22047.2, + "end": 22049.54, + "probability": 0.8909 + }, + { + "start": 22049.54, + "end": 22051.58, + "probability": 0.8945 + }, + { + "start": 22054.06, + "end": 22057.94, + "probability": 0.4079 + }, + { + "start": 22058.8, + "end": 22059.18, + "probability": 0.0058 + }, + { + "start": 22061.12, + "end": 22062.08, + "probability": 0.0549 + }, + { + "start": 22062.22, + "end": 22063.84, + "probability": 0.2175 + }, + { + "start": 22066.48, + "end": 22066.7, + "probability": 0.7661 + }, + { + "start": 22067.8, + "end": 22067.98, + "probability": 0.3762 + }, + { + "start": 22068.78, + "end": 22069.7, + "probability": 0.6646 + }, + { + "start": 22070.66, + "end": 22072.22, + "probability": 0.746 + }, + { + "start": 22072.78, + "end": 22078.06, + "probability": 0.9946 + }, + { + "start": 22079.0, + "end": 22080.36, + "probability": 0.9441 + }, + { + "start": 22080.78, + "end": 22085.0, + "probability": 0.9609 + }, + { + "start": 22085.0, + "end": 22090.52, + "probability": 0.9054 + }, + { + "start": 22091.18, + "end": 22092.2, + "probability": 0.9587 + }, + { + "start": 22093.72, + "end": 22096.64, + "probability": 0.9937 + }, + { + "start": 22096.7, + "end": 22097.38, + "probability": 0.8481 + }, + { + "start": 22097.54, + "end": 22100.28, + "probability": 0.7862 + }, + { + "start": 22101.72, + "end": 22102.5, + "probability": 0.913 + }, + { + "start": 22103.36, + "end": 22106.2, + "probability": 0.9902 + }, + { + "start": 22106.94, + "end": 22108.2, + "probability": 0.9194 + }, + { + "start": 22109.46, + "end": 22110.64, + "probability": 0.8572 + }, + { + "start": 22111.36, + "end": 22114.54, + "probability": 0.9995 + }, + { + "start": 22114.54, + "end": 22118.69, + "probability": 0.9955 + }, + { + "start": 22119.28, + "end": 22119.76, + "probability": 0.4701 + }, + { + "start": 22120.0, + "end": 22122.85, + "probability": 0.9928 + }, + { + "start": 22123.02, + "end": 22125.48, + "probability": 0.9338 + }, + { + "start": 22125.48, + "end": 22126.12, + "probability": 0.9225 + }, + { + "start": 22126.24, + "end": 22127.46, + "probability": 0.9665 + }, + { + "start": 22128.14, + "end": 22131.44, + "probability": 0.992 + }, + { + "start": 22131.9, + "end": 22132.84, + "probability": 0.925 + }, + { + "start": 22133.82, + "end": 22138.17, + "probability": 0.981 + }, + { + "start": 22140.12, + "end": 22145.48, + "probability": 0.9995 + }, + { + "start": 22145.88, + "end": 22149.66, + "probability": 0.9958 + }, + { + "start": 22149.84, + "end": 22150.93, + "probability": 0.9983 + }, + { + "start": 22151.16, + "end": 22152.21, + "probability": 0.999 + }, + { + "start": 22153.2, + "end": 22154.58, + "probability": 0.9992 + }, + { + "start": 22154.68, + "end": 22157.42, + "probability": 0.9993 + }, + { + "start": 22158.26, + "end": 22160.2, + "probability": 0.9983 + }, + { + "start": 22160.34, + "end": 22161.76, + "probability": 0.8391 + }, + { + "start": 22162.58, + "end": 22164.8, + "probability": 0.544 + }, + { + "start": 22166.1, + "end": 22167.06, + "probability": 0.816 + }, + { + "start": 22167.9, + "end": 22170.42, + "probability": 0.9626 + }, + { + "start": 22170.64, + "end": 22171.9, + "probability": 0.9603 + }, + { + "start": 22172.42, + "end": 22173.48, + "probability": 0.9937 + }, + { + "start": 22173.9, + "end": 22178.62, + "probability": 0.9502 + }, + { + "start": 22179.92, + "end": 22183.81, + "probability": 0.9844 + }, + { + "start": 22183.84, + "end": 22186.54, + "probability": 0.9907 + }, + { + "start": 22186.7, + "end": 22187.74, + "probability": 0.7482 + }, + { + "start": 22188.46, + "end": 22191.18, + "probability": 0.9678 + }, + { + "start": 22191.42, + "end": 22195.2, + "probability": 0.8689 + }, + { + "start": 22195.56, + "end": 22197.92, + "probability": 0.9956 + }, + { + "start": 22198.8, + "end": 22200.94, + "probability": 0.3082 + }, + { + "start": 22201.02, + "end": 22204.98, + "probability": 0.9395 + }, + { + "start": 22205.06, + "end": 22205.74, + "probability": 0.8784 + }, + { + "start": 22206.08, + "end": 22206.62, + "probability": 0.8123 + }, + { + "start": 22206.84, + "end": 22207.02, + "probability": 0.2882 + }, + { + "start": 22207.04, + "end": 22207.4, + "probability": 0.8987 + }, + { + "start": 22207.5, + "end": 22207.9, + "probability": 0.8044 + }, + { + "start": 22208.06, + "end": 22208.14, + "probability": 0.8997 + }, + { + "start": 22208.3, + "end": 22211.12, + "probability": 0.9961 + }, + { + "start": 22211.14, + "end": 22214.52, + "probability": 0.9928 + }, + { + "start": 22216.12, + "end": 22217.84, + "probability": 0.7495 + }, + { + "start": 22220.1, + "end": 22222.3, + "probability": 0.2651 + }, + { + "start": 22223.38, + "end": 22225.36, + "probability": 0.7052 + }, + { + "start": 22225.6, + "end": 22226.76, + "probability": 0.8847 + }, + { + "start": 22229.78, + "end": 22232.02, + "probability": 0.6142 + }, + { + "start": 22233.68, + "end": 22239.46, + "probability": 0.0762 + }, + { + "start": 22246.66, + "end": 22246.78, + "probability": 0.0816 + }, + { + "start": 22246.78, + "end": 22247.27, + "probability": 0.0144 + }, + { + "start": 22250.04, + "end": 22251.18, + "probability": 0.891 + }, + { + "start": 22253.36, + "end": 22254.96, + "probability": 0.5456 + }, + { + "start": 22255.38, + "end": 22255.48, + "probability": 0.5402 + }, + { + "start": 22255.72, + "end": 22255.82, + "probability": 0.645 + }, + { + "start": 22255.82, + "end": 22256.06, + "probability": 0.5339 + }, + { + "start": 22258.8, + "end": 22259.58, + "probability": 0.606 + }, + { + "start": 22263.62, + "end": 22267.64, + "probability": 0.9714 + }, + { + "start": 22268.88, + "end": 22270.04, + "probability": 0.8099 + }, + { + "start": 22270.16, + "end": 22273.08, + "probability": 0.7255 + }, + { + "start": 22273.5, + "end": 22275.78, + "probability": 0.9162 + }, + { + "start": 22276.3, + "end": 22278.4, + "probability": 0.9654 + }, + { + "start": 22278.98, + "end": 22281.78, + "probability": 0.9104 + }, + { + "start": 22283.06, + "end": 22291.04, + "probability": 0.9558 + }, + { + "start": 22291.8, + "end": 22297.66, + "probability": 0.9771 + }, + { + "start": 22298.58, + "end": 22305.14, + "probability": 0.996 + }, + { + "start": 22306.0, + "end": 22309.5, + "probability": 0.9982 + }, + { + "start": 22309.82, + "end": 22312.28, + "probability": 0.9896 + }, + { + "start": 22314.0, + "end": 22316.76, + "probability": 0.9971 + }, + { + "start": 22317.42, + "end": 22321.48, + "probability": 0.9993 + }, + { + "start": 22322.32, + "end": 22323.7, + "probability": 0.759 + }, + { + "start": 22324.62, + "end": 22326.8, + "probability": 0.9401 + }, + { + "start": 22327.12, + "end": 22328.98, + "probability": 0.9372 + }, + { + "start": 22329.4, + "end": 22331.58, + "probability": 0.9513 + }, + { + "start": 22332.1, + "end": 22334.56, + "probability": 0.9793 + }, + { + "start": 22334.96, + "end": 22335.36, + "probability": 0.7498 + }, + { + "start": 22336.2, + "end": 22336.86, + "probability": 0.7698 + }, + { + "start": 22337.58, + "end": 22339.36, + "probability": 0.9738 + }, + { + "start": 22343.36, + "end": 22344.86, + "probability": 0.9385 + }, + { + "start": 22366.18, + "end": 22367.08, + "probability": 0.7753 + }, + { + "start": 22367.24, + "end": 22371.88, + "probability": 0.9936 + }, + { + "start": 22371.88, + "end": 22378.4, + "probability": 0.9976 + }, + { + "start": 22378.4, + "end": 22383.86, + "probability": 0.9972 + }, + { + "start": 22383.86, + "end": 22391.72, + "probability": 0.9856 + }, + { + "start": 22392.54, + "end": 22393.48, + "probability": 0.6798 + }, + { + "start": 22394.0, + "end": 22398.78, + "probability": 0.9962 + }, + { + "start": 22398.78, + "end": 22402.84, + "probability": 0.9869 + }, + { + "start": 22403.86, + "end": 22404.64, + "probability": 0.5196 + }, + { + "start": 22404.66, + "end": 22407.0, + "probability": 0.9945 + }, + { + "start": 22407.0, + "end": 22410.44, + "probability": 0.9976 + }, + { + "start": 22410.94, + "end": 22414.4, + "probability": 0.9658 + }, + { + "start": 22415.22, + "end": 22415.5, + "probability": 0.493 + }, + { + "start": 22415.52, + "end": 22418.34, + "probability": 0.998 + }, + { + "start": 22418.34, + "end": 22421.54, + "probability": 0.9955 + }, + { + "start": 22422.24, + "end": 22428.3, + "probability": 0.9692 + }, + { + "start": 22428.92, + "end": 22432.8, + "probability": 0.9915 + }, + { + "start": 22433.68, + "end": 22438.32, + "probability": 0.9819 + }, + { + "start": 22438.32, + "end": 22443.42, + "probability": 0.9976 + }, + { + "start": 22444.02, + "end": 22451.02, + "probability": 0.9883 + }, + { + "start": 22451.02, + "end": 22457.82, + "probability": 0.9978 + }, + { + "start": 22458.66, + "end": 22462.68, + "probability": 0.9977 + }, + { + "start": 22463.26, + "end": 22467.78, + "probability": 0.9941 + }, + { + "start": 22467.82, + "end": 22471.76, + "probability": 0.9939 + }, + { + "start": 22472.68, + "end": 22476.88, + "probability": 0.9948 + }, + { + "start": 22476.88, + "end": 22480.8, + "probability": 0.9993 + }, + { + "start": 22481.84, + "end": 22484.14, + "probability": 0.9582 + }, + { + "start": 22484.8, + "end": 22487.76, + "probability": 0.9822 + }, + { + "start": 22487.76, + "end": 22491.06, + "probability": 0.9993 + }, + { + "start": 22491.82, + "end": 22494.32, + "probability": 0.9893 + }, + { + "start": 22494.8, + "end": 22495.52, + "probability": 0.9377 + }, + { + "start": 22496.5, + "end": 22498.58, + "probability": 0.9946 + }, + { + "start": 22500.6, + "end": 22506.04, + "probability": 0.9897 + }, + { + "start": 22506.04, + "end": 22510.96, + "probability": 0.9987 + }, + { + "start": 22510.96, + "end": 22515.56, + "probability": 0.9994 + }, + { + "start": 22516.02, + "end": 22516.68, + "probability": 0.6258 + }, + { + "start": 22517.2, + "end": 22520.64, + "probability": 0.9937 + }, + { + "start": 22521.38, + "end": 22525.08, + "probability": 0.9801 + }, + { + "start": 22525.5, + "end": 22528.62, + "probability": 0.9942 + }, + { + "start": 22529.34, + "end": 22533.52, + "probability": 0.9824 + }, + { + "start": 22533.9, + "end": 22538.02, + "probability": 0.9984 + }, + { + "start": 22538.02, + "end": 22542.76, + "probability": 0.9983 + }, + { + "start": 22543.16, + "end": 22545.77, + "probability": 0.9946 + }, + { + "start": 22546.54, + "end": 22548.0, + "probability": 0.9664 + }, + { + "start": 22548.32, + "end": 22548.98, + "probability": 0.6775 + }, + { + "start": 22549.54, + "end": 22550.0, + "probability": 0.547 + }, + { + "start": 22550.54, + "end": 22551.52, + "probability": 0.8997 + }, + { + "start": 22551.54, + "end": 22552.14, + "probability": 0.9836 + }, + { + "start": 22553.02, + "end": 22555.58, + "probability": 0.8872 + }, + { + "start": 22556.28, + "end": 22562.26, + "probability": 0.9784 + }, + { + "start": 22562.26, + "end": 22567.96, + "probability": 0.9987 + }, + { + "start": 22568.62, + "end": 22570.46, + "probability": 0.9875 + }, + { + "start": 22570.9, + "end": 22571.56, + "probability": 0.5109 + }, + { + "start": 22571.6, + "end": 22573.06, + "probability": 0.9371 + }, + { + "start": 22573.94, + "end": 22575.92, + "probability": 0.5326 + }, + { + "start": 22576.54, + "end": 22577.78, + "probability": 0.5381 + }, + { + "start": 22578.86, + "end": 22579.5, + "probability": 0.7368 + }, + { + "start": 22587.44, + "end": 22589.04, + "probability": 0.6288 + }, + { + "start": 22590.74, + "end": 22594.92, + "probability": 0.7537 + }, + { + "start": 22595.88, + "end": 22597.46, + "probability": 0.7467 + }, + { + "start": 22598.6, + "end": 22600.09, + "probability": 0.9946 + }, + { + "start": 22600.76, + "end": 22601.31, + "probability": 0.9189 + }, + { + "start": 22602.26, + "end": 22603.6, + "probability": 0.8437 + }, + { + "start": 22605.46, + "end": 22608.2, + "probability": 0.9288 + }, + { + "start": 22608.5, + "end": 22611.24, + "probability": 0.9359 + }, + { + "start": 22611.76, + "end": 22612.98, + "probability": 0.9816 + }, + { + "start": 22613.24, + "end": 22613.62, + "probability": 0.7976 + }, + { + "start": 22614.1, + "end": 22615.98, + "probability": 0.9771 + }, + { + "start": 22616.64, + "end": 22618.8, + "probability": 0.9377 + }, + { + "start": 22619.44, + "end": 22621.98, + "probability": 0.9253 + }, + { + "start": 22622.56, + "end": 22626.86, + "probability": 0.7135 + }, + { + "start": 22627.36, + "end": 22628.94, + "probability": 0.8547 + }, + { + "start": 22629.46, + "end": 22631.82, + "probability": 0.994 + }, + { + "start": 22632.7, + "end": 22633.72, + "probability": 0.6684 + }, + { + "start": 22634.38, + "end": 22637.34, + "probability": 0.9122 + }, + { + "start": 22638.06, + "end": 22639.18, + "probability": 0.7155 + }, + { + "start": 22639.92, + "end": 22640.82, + "probability": 0.5905 + }, + { + "start": 22641.44, + "end": 22644.86, + "probability": 0.9888 + }, + { + "start": 22645.72, + "end": 22646.84, + "probability": 0.3619 + }, + { + "start": 22647.38, + "end": 22650.44, + "probability": 0.6316 + }, + { + "start": 22651.02, + "end": 22651.48, + "probability": 0.5488 + }, + { + "start": 22652.0, + "end": 22656.54, + "probability": 0.9924 + }, + { + "start": 22656.88, + "end": 22657.3, + "probability": 0.8713 + }, + { + "start": 22658.52, + "end": 22659.86, + "probability": 0.9805 + }, + { + "start": 22660.52, + "end": 22663.26, + "probability": 0.8866 + }, + { + "start": 22663.98, + "end": 22664.62, + "probability": 0.8285 + }, + { + "start": 22664.68, + "end": 22666.36, + "probability": 0.9703 + }, + { + "start": 22666.46, + "end": 22668.0, + "probability": 0.9837 + }, + { + "start": 22668.68, + "end": 22671.18, + "probability": 0.9736 + }, + { + "start": 22671.7, + "end": 22674.0, + "probability": 0.8279 + }, + { + "start": 22674.58, + "end": 22677.16, + "probability": 0.8925 + }, + { + "start": 22677.68, + "end": 22678.02, + "probability": 0.7874 + }, + { + "start": 22679.04, + "end": 22679.54, + "probability": 0.66 + }, + { + "start": 22680.88, + "end": 22684.52, + "probability": 0.9476 + }, + { + "start": 22685.14, + "end": 22686.74, + "probability": 0.9066 + }, + { + "start": 22687.7, + "end": 22689.7, + "probability": 0.6175 + }, + { + "start": 22689.7, + "end": 22689.98, + "probability": 0.7537 + }, + { + "start": 22691.12, + "end": 22696.32, + "probability": 0.98 + }, + { + "start": 22696.9, + "end": 22700.84, + "probability": 0.9826 + }, + { + "start": 22700.96, + "end": 22701.82, + "probability": 0.9018 + }, + { + "start": 22702.66, + "end": 22704.82, + "probability": 0.7333 + }, + { + "start": 22705.58, + "end": 22707.24, + "probability": 0.7401 + }, + { + "start": 22707.76, + "end": 22713.42, + "probability": 0.986 + }, + { + "start": 22713.92, + "end": 22715.34, + "probability": 0.6062 + }, + { + "start": 22715.88, + "end": 22717.18, + "probability": 0.9576 + }, + { + "start": 22717.76, + "end": 22718.76, + "probability": 0.7429 + }, + { + "start": 22719.36, + "end": 22721.16, + "probability": 0.8843 + }, + { + "start": 22721.22, + "end": 22725.14, + "probability": 0.9812 + }, + { + "start": 22725.54, + "end": 22726.32, + "probability": 0.9243 + }, + { + "start": 22726.84, + "end": 22728.3, + "probability": 0.9774 + }, + { + "start": 22728.66, + "end": 22730.48, + "probability": 0.9946 + }, + { + "start": 22731.1, + "end": 22731.56, + "probability": 0.9515 + }, + { + "start": 22732.5, + "end": 22733.52, + "probability": 0.5165 + }, + { + "start": 22734.38, + "end": 22736.88, + "probability": 0.5943 + }, + { + "start": 22737.62, + "end": 22739.26, + "probability": 0.978 + }, + { + "start": 22739.96, + "end": 22741.3, + "probability": 0.9797 + }, + { + "start": 22741.88, + "end": 22744.26, + "probability": 0.9968 + }, + { + "start": 22745.06, + "end": 22745.76, + "probability": 0.7862 + }, + { + "start": 22746.52, + "end": 22747.32, + "probability": 0.8099 + }, + { + "start": 22747.42, + "end": 22748.1, + "probability": 0.6886 + }, + { + "start": 22748.16, + "end": 22749.04, + "probability": 0.9312 + }, + { + "start": 22749.16, + "end": 22749.88, + "probability": 0.9373 + }, + { + "start": 22750.34, + "end": 22752.06, + "probability": 0.945 + }, + { + "start": 22752.58, + "end": 22754.24, + "probability": 0.8984 + }, + { + "start": 22754.88, + "end": 22758.48, + "probability": 0.9243 + }, + { + "start": 22759.02, + "end": 22761.26, + "probability": 0.9247 + }, + { + "start": 22761.92, + "end": 22763.34, + "probability": 0.8114 + }, + { + "start": 22764.08, + "end": 22765.18, + "probability": 0.765 + }, + { + "start": 22766.42, + "end": 22768.78, + "probability": 0.8715 + }, + { + "start": 22769.7, + "end": 22770.46, + "probability": 0.7476 + }, + { + "start": 22771.12, + "end": 22773.54, + "probability": 0.9553 + }, + { + "start": 22775.56, + "end": 22777.68, + "probability": 0.7931 + }, + { + "start": 22780.94, + "end": 22781.8, + "probability": 0.4689 + }, + { + "start": 22790.66, + "end": 22790.86, + "probability": 0.5611 + }, + { + "start": 22791.62, + "end": 22792.04, + "probability": 0.6148 + }, + { + "start": 22794.38, + "end": 22797.26, + "probability": 0.9408 + }, + { + "start": 22797.88, + "end": 22799.62, + "probability": 0.9898 + }, + { + "start": 22800.5, + "end": 22803.52, + "probability": 0.905 + }, + { + "start": 22803.74, + "end": 22804.94, + "probability": 0.9599 + }, + { + "start": 22805.58, + "end": 22808.58, + "probability": 0.9962 + }, + { + "start": 22809.74, + "end": 22815.24, + "probability": 0.939 + }, + { + "start": 22815.68, + "end": 22816.62, + "probability": 0.6453 + }, + { + "start": 22816.74, + "end": 22819.56, + "probability": 0.9279 + }, + { + "start": 22820.54, + "end": 22821.52, + "probability": 0.5474 + }, + { + "start": 22822.14, + "end": 22822.46, + "probability": 0.7485 + }, + { + "start": 22823.52, + "end": 22824.8, + "probability": 0.9164 + }, + { + "start": 22825.28, + "end": 22826.64, + "probability": 0.7685 + }, + { + "start": 22826.66, + "end": 22827.84, + "probability": 0.8823 + }, + { + "start": 22828.02, + "end": 22830.42, + "probability": 0.8212 + }, + { + "start": 22831.02, + "end": 22832.86, + "probability": 0.9922 + }, + { + "start": 22833.5, + "end": 22834.42, + "probability": 0.7174 + }, + { + "start": 22834.6, + "end": 22838.44, + "probability": 0.9599 + }, + { + "start": 22839.0, + "end": 22841.94, + "probability": 0.9935 + }, + { + "start": 22841.94, + "end": 22844.26, + "probability": 0.984 + }, + { + "start": 22845.28, + "end": 22847.38, + "probability": 0.9576 + }, + { + "start": 22848.0, + "end": 22849.6, + "probability": 0.9641 + }, + { + "start": 22850.02, + "end": 22850.62, + "probability": 0.4133 + }, + { + "start": 22851.24, + "end": 22852.22, + "probability": 0.7871 + }, + { + "start": 22852.46, + "end": 22853.6, + "probability": 0.9058 + }, + { + "start": 22855.02, + "end": 22857.9, + "probability": 0.8333 + }, + { + "start": 22858.52, + "end": 22863.28, + "probability": 0.9971 + }, + { + "start": 22863.56, + "end": 22867.3, + "probability": 0.9885 + }, + { + "start": 22867.9, + "end": 22871.0, + "probability": 0.8556 + }, + { + "start": 22871.74, + "end": 22873.84, + "probability": 0.7282 + }, + { + "start": 22874.3, + "end": 22876.94, + "probability": 0.781 + }, + { + "start": 22877.32, + "end": 22878.66, + "probability": 0.9858 + }, + { + "start": 22879.72, + "end": 22883.26, + "probability": 0.9876 + }, + { + "start": 22884.0, + "end": 22884.82, + "probability": 0.6693 + }, + { + "start": 22885.18, + "end": 22885.58, + "probability": 0.9227 + }, + { + "start": 22886.94, + "end": 22889.04, + "probability": 0.5465 + }, + { + "start": 22889.58, + "end": 22891.38, + "probability": 0.8239 + }, + { + "start": 22892.12, + "end": 22895.16, + "probability": 0.8731 + }, + { + "start": 22895.6, + "end": 22898.14, + "probability": 0.955 + }, + { + "start": 22899.18, + "end": 22899.97, + "probability": 0.7052 + }, + { + "start": 22900.54, + "end": 22902.7, + "probability": 0.9917 + }, + { + "start": 22903.5, + "end": 22906.08, + "probability": 0.9971 + }, + { + "start": 22906.66, + "end": 22908.22, + "probability": 0.9813 + }, + { + "start": 22909.18, + "end": 22909.92, + "probability": 0.6865 + }, + { + "start": 22910.9, + "end": 22915.68, + "probability": 0.8629 + }, + { + "start": 22916.3, + "end": 22918.32, + "probability": 0.7694 + }, + { + "start": 22918.86, + "end": 22922.66, + "probability": 0.9532 + }, + { + "start": 22923.62, + "end": 22924.84, + "probability": 0.8851 + }, + { + "start": 22925.3, + "end": 22925.96, + "probability": 0.7333 + }, + { + "start": 22926.42, + "end": 22928.45, + "probability": 0.9862 + }, + { + "start": 22929.02, + "end": 22929.8, + "probability": 0.751 + }, + { + "start": 22930.24, + "end": 22931.18, + "probability": 0.9866 + }, + { + "start": 22933.38, + "end": 22935.05, + "probability": 0.982 + }, + { + "start": 22935.98, + "end": 22938.1, + "probability": 0.9634 + }, + { + "start": 22938.8, + "end": 22940.2, + "probability": 0.9819 + }, + { + "start": 22944.18, + "end": 22945.4, + "probability": 0.8776 + }, + { + "start": 22946.96, + "end": 22949.1, + "probability": 0.9657 + }, + { + "start": 22949.78, + "end": 22951.74, + "probability": 0.9925 + }, + { + "start": 22952.4, + "end": 22957.22, + "probability": 0.999 + }, + { + "start": 22957.76, + "end": 22963.1, + "probability": 0.9958 + }, + { + "start": 22963.66, + "end": 22964.38, + "probability": 0.9484 + }, + { + "start": 22965.46, + "end": 22967.98, + "probability": 0.9932 + }, + { + "start": 22968.94, + "end": 22970.46, + "probability": 0.9906 + }, + { + "start": 22970.84, + "end": 22972.08, + "probability": 0.8403 + }, + { + "start": 22972.4, + "end": 22973.58, + "probability": 0.9606 + }, + { + "start": 22974.02, + "end": 22976.68, + "probability": 0.9097 + }, + { + "start": 22976.7, + "end": 22977.54, + "probability": 0.8307 + }, + { + "start": 22977.82, + "end": 22981.16, + "probability": 0.9095 + }, + { + "start": 22982.08, + "end": 22982.5, + "probability": 0.6421 + }, + { + "start": 22982.62, + "end": 22987.68, + "probability": 0.9917 + }, + { + "start": 22988.54, + "end": 22990.88, + "probability": 0.9634 + }, + { + "start": 22992.02, + "end": 22995.48, + "probability": 0.9863 + }, + { + "start": 22995.76, + "end": 22996.24, + "probability": 0.6602 + }, + { + "start": 22996.66, + "end": 22998.7, + "probability": 0.6027 + }, + { + "start": 22998.74, + "end": 23000.98, + "probability": 0.7512 + }, + { + "start": 23001.72, + "end": 23002.08, + "probability": 0.5779 + }, + { + "start": 23002.14, + "end": 23002.64, + "probability": 0.7039 + }, + { + "start": 23002.66, + "end": 23005.02, + "probability": 0.8122 + }, + { + "start": 23010.82, + "end": 23010.82, + "probability": 0.0205 + }, + { + "start": 23010.82, + "end": 23011.08, + "probability": 0.2137 + }, + { + "start": 23011.14, + "end": 23011.98, + "probability": 0.4143 + }, + { + "start": 23012.02, + "end": 23012.38, + "probability": 0.0591 + }, + { + "start": 23012.38, + "end": 23013.9, + "probability": 0.6384 + }, + { + "start": 23030.06, + "end": 23030.06, + "probability": 0.0959 + }, + { + "start": 23030.06, + "end": 23030.08, + "probability": 0.1362 + }, + { + "start": 23030.08, + "end": 23030.08, + "probability": 0.1063 + }, + { + "start": 23030.08, + "end": 23030.08, + "probability": 0.1024 + }, + { + "start": 23030.08, + "end": 23030.1, + "probability": 0.0387 + }, + { + "start": 23030.1, + "end": 23030.14, + "probability": 0.006 + }, + { + "start": 23044.18, + "end": 23044.84, + "probability": 0.0133 + }, + { + "start": 23055.98, + "end": 23057.3, + "probability": 0.0096 + }, + { + "start": 23062.23, + "end": 23063.96, + "probability": 0.7259 + }, + { + "start": 23065.22, + "end": 23071.86, + "probability": 0.1756 + }, + { + "start": 23072.14, + "end": 23073.3, + "probability": 0.7064 + }, + { + "start": 23074.14, + "end": 23077.76, + "probability": 0.9906 + }, + { + "start": 23078.26, + "end": 23083.8, + "probability": 0.964 + }, + { + "start": 23083.88, + "end": 23085.96, + "probability": 0.6018 + }, + { + "start": 23086.08, + "end": 23086.86, + "probability": 0.4611 + }, + { + "start": 23089.24, + "end": 23090.04, + "probability": 0.6427 + }, + { + "start": 23090.64, + "end": 23092.48, + "probability": 0.6748 + }, + { + "start": 23092.72, + "end": 23093.0, + "probability": 0.8928 + }, + { + "start": 23093.22, + "end": 23093.6, + "probability": 0.9573 + }, + { + "start": 23095.04, + "end": 23097.5, + "probability": 0.9266 + }, + { + "start": 23098.36, + "end": 23100.5, + "probability": 0.9773 + }, + { + "start": 23100.72, + "end": 23101.28, + "probability": 0.9976 + }, + { + "start": 23101.86, + "end": 23106.16, + "probability": 0.9939 + }, + { + "start": 23106.78, + "end": 23110.38, + "probability": 0.8568 + }, + { + "start": 23110.92, + "end": 23111.5, + "probability": 0.9905 + }, + { + "start": 23112.78, + "end": 23118.04, + "probability": 0.6856 + }, + { + "start": 23118.37, + "end": 23123.18, + "probability": 0.9231 + }, + { + "start": 23124.52, + "end": 23128.26, + "probability": 0.9803 + }, + { + "start": 23128.3, + "end": 23130.94, + "probability": 0.992 + }, + { + "start": 23132.1, + "end": 23135.06, + "probability": 0.7786 + }, + { + "start": 23135.12, + "end": 23139.48, + "probability": 0.6685 + }, + { + "start": 23140.02, + "end": 23144.06, + "probability": 0.9896 + }, + { + "start": 23146.66, + "end": 23151.88, + "probability": 0.916 + }, + { + "start": 23152.46, + "end": 23152.82, + "probability": 0.902 + }, + { + "start": 23153.36, + "end": 23154.2, + "probability": 0.9761 + }, + { + "start": 23155.72, + "end": 23158.14, + "probability": 0.8235 + }, + { + "start": 23158.14, + "end": 23161.6, + "probability": 0.9125 + }, + { + "start": 23165.56, + "end": 23169.06, + "probability": 0.7126 + }, + { + "start": 23169.12, + "end": 23170.04, + "probability": 0.5983 + }, + { + "start": 23171.32, + "end": 23173.22, + "probability": 0.4741 + }, + { + "start": 23174.22, + "end": 23175.44, + "probability": 0.5878 + }, + { + "start": 23175.44, + "end": 23175.92, + "probability": 0.8753 + }, + { + "start": 23176.14, + "end": 23178.68, + "probability": 0.9844 + }, + { + "start": 23178.68, + "end": 23182.64, + "probability": 0.7822 + }, + { + "start": 23183.58, + "end": 23187.96, + "probability": 0.984 + }, + { + "start": 23188.36, + "end": 23189.42, + "probability": 0.8168 + }, + { + "start": 23189.52, + "end": 23192.02, + "probability": 0.8855 + }, + { + "start": 23193.1, + "end": 23194.8, + "probability": 0.7753 + }, + { + "start": 23195.64, + "end": 23197.94, + "probability": 0.8401 + }, + { + "start": 23199.54, + "end": 23201.52, + "probability": 0.8828 + }, + { + "start": 23202.42, + "end": 23204.46, + "probability": 0.9949 + }, + { + "start": 23205.34, + "end": 23207.42, + "probability": 0.7795 + }, + { + "start": 23208.46, + "end": 23217.1, + "probability": 0.7665 + }, + { + "start": 23218.48, + "end": 23219.36, + "probability": 0.8162 + }, + { + "start": 23220.38, + "end": 23220.78, + "probability": 0.8119 + }, + { + "start": 23221.1, + "end": 23221.88, + "probability": 0.8688 + }, + { + "start": 23222.42, + "end": 23224.76, + "probability": 0.928 + }, + { + "start": 23230.46, + "end": 23232.56, + "probability": 0.6433 + }, + { + "start": 23249.34, + "end": 23251.08, + "probability": 0.9512 + }, + { + "start": 23251.72, + "end": 23252.58, + "probability": 0.8769 + }, + { + "start": 23253.66, + "end": 23254.72, + "probability": 0.9951 + }, + { + "start": 23255.98, + "end": 23257.02, + "probability": 0.769 + }, + { + "start": 23258.12, + "end": 23258.76, + "probability": 0.654 + }, + { + "start": 23260.44, + "end": 23261.08, + "probability": 0.9045 + }, + { + "start": 23263.64, + "end": 23266.86, + "probability": 0.6383 + }, + { + "start": 23267.5, + "end": 23269.18, + "probability": 0.9893 + }, + { + "start": 23269.24, + "end": 23270.74, + "probability": 0.645 + }, + { + "start": 23271.14, + "end": 23273.18, + "probability": 0.6138 + }, + { + "start": 23274.4, + "end": 23277.96, + "probability": 0.9918 + }, + { + "start": 23279.52, + "end": 23283.84, + "probability": 0.988 + }, + { + "start": 23284.76, + "end": 23288.17, + "probability": 0.9891 + }, + { + "start": 23288.41, + "end": 23290.04, + "probability": 0.9983 + }, + { + "start": 23290.96, + "end": 23293.2, + "probability": 0.6582 + }, + { + "start": 23293.68, + "end": 23295.42, + "probability": 0.9066 + }, + { + "start": 23296.94, + "end": 23300.99, + "probability": 0.9771 + }, + { + "start": 23301.18, + "end": 23302.9, + "probability": 0.9128 + }, + { + "start": 23302.94, + "end": 23303.66, + "probability": 0.9575 + }, + { + "start": 23304.56, + "end": 23306.38, + "probability": 0.8947 + }, + { + "start": 23306.64, + "end": 23308.16, + "probability": 0.7485 + }, + { + "start": 23308.26, + "end": 23309.43, + "probability": 0.995 + }, + { + "start": 23309.82, + "end": 23311.07, + "probability": 0.9337 + }, + { + "start": 23312.6, + "end": 23314.66, + "probability": 0.9541 + }, + { + "start": 23315.06, + "end": 23316.6, + "probability": 0.8185 + }, + { + "start": 23316.86, + "end": 23318.32, + "probability": 0.9662 + }, + { + "start": 23318.56, + "end": 23319.92, + "probability": 0.9829 + }, + { + "start": 23321.04, + "end": 23323.56, + "probability": 0.8236 + }, + { + "start": 23324.7, + "end": 23324.84, + "probability": 0.6043 + }, + { + "start": 23324.98, + "end": 23326.76, + "probability": 0.9802 + }, + { + "start": 23326.96, + "end": 23327.3, + "probability": 0.6411 + }, + { + "start": 23327.86, + "end": 23329.32, + "probability": 0.9956 + }, + { + "start": 23330.14, + "end": 23331.74, + "probability": 0.9707 + }, + { + "start": 23333.76, + "end": 23335.6, + "probability": 0.9435 + }, + { + "start": 23335.64, + "end": 23337.84, + "probability": 0.9959 + }, + { + "start": 23338.58, + "end": 23342.58, + "probability": 0.8918 + }, + { + "start": 23343.32, + "end": 23345.72, + "probability": 0.9438 + }, + { + "start": 23346.64, + "end": 23347.7, + "probability": 0.9858 + }, + { + "start": 23347.92, + "end": 23351.44, + "probability": 0.8618 + }, + { + "start": 23351.76, + "end": 23353.42, + "probability": 0.8712 + }, + { + "start": 23354.54, + "end": 23358.02, + "probability": 0.9277 + }, + { + "start": 23358.24, + "end": 23359.66, + "probability": 0.8773 + }, + { + "start": 23360.34, + "end": 23362.54, + "probability": 0.5229 + }, + { + "start": 23363.7, + "end": 23364.12, + "probability": 0.7666 + }, + { + "start": 23364.78, + "end": 23365.02, + "probability": 0.8982 + }, + { + "start": 23366.0, + "end": 23371.88, + "probability": 0.8617 + }, + { + "start": 23371.96, + "end": 23373.02, + "probability": 0.9875 + }, + { + "start": 23373.72, + "end": 23377.0, + "probability": 0.8677 + }, + { + "start": 23377.1, + "end": 23378.38, + "probability": 0.7521 + }, + { + "start": 23379.06, + "end": 23379.83, + "probability": 0.9678 + }, + { + "start": 23380.46, + "end": 23381.34, + "probability": 0.9281 + }, + { + "start": 23381.52, + "end": 23384.72, + "probability": 0.9971 + }, + { + "start": 23385.14, + "end": 23386.66, + "probability": 0.9029 + }, + { + "start": 23386.74, + "end": 23387.84, + "probability": 0.9895 + }, + { + "start": 23387.96, + "end": 23388.97, + "probability": 0.7482 + }, + { + "start": 23389.92, + "end": 23392.24, + "probability": 0.9823 + }, + { + "start": 23392.76, + "end": 23393.74, + "probability": 0.3882 + }, + { + "start": 23394.0, + "end": 23394.48, + "probability": 0.7148 + }, + { + "start": 23395.18, + "end": 23399.08, + "probability": 0.7334 + }, + { + "start": 23399.26, + "end": 23401.18, + "probability": 0.792 + }, + { + "start": 23401.56, + "end": 23402.14, + "probability": 0.9141 + }, + { + "start": 23403.06, + "end": 23404.28, + "probability": 0.9744 + }, + { + "start": 23404.8, + "end": 23406.3, + "probability": 0.7255 + }, + { + "start": 23407.04, + "end": 23407.76, + "probability": 0.3746 + }, + { + "start": 23408.4, + "end": 23409.6, + "probability": 0.8188 + }, + { + "start": 23410.56, + "end": 23411.82, + "probability": 0.7427 + }, + { + "start": 23412.32, + "end": 23415.22, + "probability": 0.9491 + }, + { + "start": 23415.66, + "end": 23417.28, + "probability": 0.9977 + }, + { + "start": 23417.44, + "end": 23418.56, + "probability": 0.8805 + }, + { + "start": 23419.1, + "end": 23420.5, + "probability": 0.9976 + }, + { + "start": 23421.02, + "end": 23423.14, + "probability": 0.9712 + }, + { + "start": 23423.3, + "end": 23426.32, + "probability": 0.987 + }, + { + "start": 23426.54, + "end": 23428.38, + "probability": 0.9975 + }, + { + "start": 23429.98, + "end": 23430.76, + "probability": 0.7219 + }, + { + "start": 23430.84, + "end": 23432.06, + "probability": 0.8862 + }, + { + "start": 23432.2, + "end": 23432.56, + "probability": 0.9065 + }, + { + "start": 23432.66, + "end": 23434.02, + "probability": 0.7228 + }, + { + "start": 23434.02, + "end": 23434.38, + "probability": 0.3896 + }, + { + "start": 23434.42, + "end": 23436.66, + "probability": 0.981 + }, + { + "start": 23437.36, + "end": 23438.5, + "probability": 0.928 + }, + { + "start": 23438.64, + "end": 23440.44, + "probability": 0.9274 + }, + { + "start": 23441.24, + "end": 23442.38, + "probability": 0.0022 + }, + { + "start": 23444.64, + "end": 23445.56, + "probability": 0.6929 + }, + { + "start": 23446.52, + "end": 23448.4, + "probability": 0.8662 + }, + { + "start": 23448.42, + "end": 23449.12, + "probability": 0.9184 + }, + { + "start": 23453.6, + "end": 23455.49, + "probability": 0.52 + }, + { + "start": 23456.84, + "end": 23458.66, + "probability": 0.3537 + }, + { + "start": 23458.74, + "end": 23458.92, + "probability": 0.121 + }, + { + "start": 23458.92, + "end": 23459.08, + "probability": 0.3118 + }, + { + "start": 23459.16, + "end": 23464.79, + "probability": 0.495 + }, + { + "start": 23465.34, + "end": 23467.68, + "probability": 0.5771 + }, + { + "start": 23468.58, + "end": 23468.92, + "probability": 0.463 + }, + { + "start": 23468.94, + "end": 23469.38, + "probability": 0.5826 + }, + { + "start": 23470.14, + "end": 23471.46, + "probability": 0.9961 + }, + { + "start": 23471.68, + "end": 23471.86, + "probability": 0.7135 + }, + { + "start": 23472.46, + "end": 23474.1, + "probability": 0.0786 + }, + { + "start": 23476.3, + "end": 23480.46, + "probability": 0.4463 + }, + { + "start": 23480.5, + "end": 23481.26, + "probability": 0.6258 + }, + { + "start": 23483.44, + "end": 23487.68, + "probability": 0.9455 + }, + { + "start": 23488.08, + "end": 23488.74, + "probability": 0.2789 + }, + { + "start": 23488.9, + "end": 23489.96, + "probability": 0.475 + }, + { + "start": 23491.18, + "end": 23495.78, + "probability": 0.998 + }, + { + "start": 23495.78, + "end": 23499.22, + "probability": 0.8168 + }, + { + "start": 23500.08, + "end": 23502.66, + "probability": 0.828 + }, + { + "start": 23504.04, + "end": 23506.42, + "probability": 0.9328 + }, + { + "start": 23506.48, + "end": 23508.25, + "probability": 0.9882 + }, + { + "start": 23509.24, + "end": 23510.16, + "probability": 0.6599 + }, + { + "start": 23511.4, + "end": 23512.46, + "probability": 0.9486 + }, + { + "start": 23512.98, + "end": 23513.28, + "probability": 0.7858 + }, + { + "start": 23513.38, + "end": 23513.9, + "probability": 0.9401 + }, + { + "start": 23513.96, + "end": 23515.66, + "probability": 0.925 + }, + { + "start": 23515.76, + "end": 23517.32, + "probability": 0.8415 + }, + { + "start": 23518.26, + "end": 23518.62, + "probability": 0.7786 + }, + { + "start": 23518.64, + "end": 23521.4, + "probability": 0.946 + }, + { + "start": 23521.52, + "end": 23523.82, + "probability": 0.987 + }, + { + "start": 23525.82, + "end": 23526.9, + "probability": 0.0385 + }, + { + "start": 23527.66, + "end": 23528.18, + "probability": 0.1017 + }, + { + "start": 23528.4, + "end": 23528.64, + "probability": 0.0261 + }, + { + "start": 23528.64, + "end": 23529.64, + "probability": 0.4551 + }, + { + "start": 23532.0, + "end": 23533.74, + "probability": 0.7421 + }, + { + "start": 23533.94, + "end": 23534.24, + "probability": 0.5081 + }, + { + "start": 23535.38, + "end": 23536.36, + "probability": 0.8918 + }, + { + "start": 23536.46, + "end": 23538.32, + "probability": 0.9873 + }, + { + "start": 23538.38, + "end": 23538.81, + "probability": 0.813 + }, + { + "start": 23539.54, + "end": 23540.28, + "probability": 0.8289 + }, + { + "start": 23540.48, + "end": 23542.74, + "probability": 0.7072 + }, + { + "start": 23542.82, + "end": 23543.16, + "probability": 0.7856 + }, + { + "start": 23543.2, + "end": 23546.46, + "probability": 0.9226 + }, + { + "start": 23547.34, + "end": 23549.54, + "probability": 0.9739 + }, + { + "start": 23549.6, + "end": 23552.0, + "probability": 0.9895 + }, + { + "start": 23552.68, + "end": 23555.63, + "probability": 0.9983 + }, + { + "start": 23558.78, + "end": 23562.98, + "probability": 0.9916 + }, + { + "start": 23563.92, + "end": 23567.44, + "probability": 0.997 + }, + { + "start": 23567.88, + "end": 23569.46, + "probability": 0.9122 + }, + { + "start": 23569.68, + "end": 23571.74, + "probability": 0.998 + }, + { + "start": 23572.22, + "end": 23574.46, + "probability": 0.9954 + }, + { + "start": 23575.22, + "end": 23578.14, + "probability": 0.9644 + }, + { + "start": 23578.26, + "end": 23579.88, + "probability": 0.8838 + }, + { + "start": 23581.04, + "end": 23583.56, + "probability": 0.9462 + }, + { + "start": 23584.76, + "end": 23588.72, + "probability": 0.9976 + }, + { + "start": 23589.54, + "end": 23591.35, + "probability": 0.9766 + }, + { + "start": 23591.46, + "end": 23592.94, + "probability": 0.936 + }, + { + "start": 23593.78, + "end": 23595.36, + "probability": 0.9849 + }, + { + "start": 23596.08, + "end": 23599.16, + "probability": 0.9802 + }, + { + "start": 23601.45, + "end": 23602.94, + "probability": 0.9937 + }, + { + "start": 23605.24, + "end": 23607.74, + "probability": 0.814 + }, + { + "start": 23607.76, + "end": 23610.06, + "probability": 0.9976 + }, + { + "start": 23610.54, + "end": 23612.44, + "probability": 0.9963 + }, + { + "start": 23613.24, + "end": 23614.64, + "probability": 0.6622 + }, + { + "start": 23615.28, + "end": 23616.38, + "probability": 0.7376 + }, + { + "start": 23616.5, + "end": 23617.64, + "probability": 0.9844 + }, + { + "start": 23617.9, + "end": 23619.94, + "probability": 0.9811 + }, + { + "start": 23620.06, + "end": 23621.56, + "probability": 0.8955 + }, + { + "start": 23621.96, + "end": 23623.7, + "probability": 0.9484 + }, + { + "start": 23623.88, + "end": 23624.84, + "probability": 0.9711 + }, + { + "start": 23625.44, + "end": 23626.88, + "probability": 0.9788 + }, + { + "start": 23626.98, + "end": 23628.14, + "probability": 0.9875 + }, + { + "start": 23628.56, + "end": 23631.8, + "probability": 0.9903 + }, + { + "start": 23632.64, + "end": 23634.38, + "probability": 0.7723 + }, + { + "start": 23635.22, + "end": 23638.72, + "probability": 0.7762 + }, + { + "start": 23638.84, + "end": 23640.56, + "probability": 0.9587 + }, + { + "start": 23641.34, + "end": 23647.9, + "probability": 0.8243 + }, + { + "start": 23647.9, + "end": 23648.26, + "probability": 0.7286 + }, + { + "start": 23648.36, + "end": 23652.8, + "probability": 0.9596 + }, + { + "start": 23653.16, + "end": 23654.2, + "probability": 0.5602 + }, + { + "start": 23655.74, + "end": 23657.0, + "probability": 0.8713 + }, + { + "start": 23658.18, + "end": 23662.02, + "probability": 0.9903 + }, + { + "start": 23663.1, + "end": 23663.76, + "probability": 0.7791 + }, + { + "start": 23663.94, + "end": 23669.74, + "probability": 0.9966 + }, + { + "start": 23670.22, + "end": 23673.24, + "probability": 0.9944 + }, + { + "start": 23673.24, + "end": 23675.96, + "probability": 0.999 + }, + { + "start": 23676.4, + "end": 23676.76, + "probability": 0.7681 + }, + { + "start": 23676.96, + "end": 23677.46, + "probability": 0.9068 + }, + { + "start": 23677.7, + "end": 23679.0, + "probability": 0.8537 + }, + { + "start": 23680.54, + "end": 23680.78, + "probability": 0.7429 + }, + { + "start": 23694.52, + "end": 23695.44, + "probability": 0.7266 + }, + { + "start": 23696.76, + "end": 23697.88, + "probability": 0.9007 + }, + { + "start": 23698.4, + "end": 23699.1, + "probability": 0.7619 + }, + { + "start": 23700.36, + "end": 23701.42, + "probability": 0.753 + }, + { + "start": 23702.94, + "end": 23705.66, + "probability": 0.9958 + }, + { + "start": 23706.86, + "end": 23707.96, + "probability": 0.9734 + }, + { + "start": 23709.02, + "end": 23709.9, + "probability": 0.9736 + }, + { + "start": 23711.56, + "end": 23713.98, + "probability": 0.9844 + }, + { + "start": 23715.64, + "end": 23719.02, + "probability": 0.9944 + }, + { + "start": 23720.72, + "end": 23731.16, + "probability": 0.9948 + }, + { + "start": 23731.6, + "end": 23732.12, + "probability": 0.0205 + }, + { + "start": 23732.98, + "end": 23735.62, + "probability": 0.8999 + }, + { + "start": 23739.12, + "end": 23740.24, + "probability": 0.0906 + }, + { + "start": 23740.24, + "end": 23741.24, + "probability": 0.5302 + }, + { + "start": 23741.42, + "end": 23742.4, + "probability": 0.8644 + }, + { + "start": 23742.8, + "end": 23743.9, + "probability": 0.8491 + }, + { + "start": 23744.62, + "end": 23748.6, + "probability": 0.9971 + }, + { + "start": 23749.38, + "end": 23751.37, + "probability": 0.8345 + }, + { + "start": 23753.52, + "end": 23759.0, + "probability": 0.9929 + }, + { + "start": 23759.9, + "end": 23764.04, + "probability": 0.9991 + }, + { + "start": 23765.84, + "end": 23770.64, + "probability": 0.9888 + }, + { + "start": 23771.58, + "end": 23772.86, + "probability": 0.9893 + }, + { + "start": 23774.04, + "end": 23775.5, + "probability": 0.9916 + }, + { + "start": 23776.3, + "end": 23778.34, + "probability": 0.9946 + }, + { + "start": 23779.78, + "end": 23781.3, + "probability": 0.8764 + }, + { + "start": 23782.32, + "end": 23782.94, + "probability": 0.3984 + }, + { + "start": 23783.64, + "end": 23785.7, + "probability": 0.8053 + }, + { + "start": 23786.44, + "end": 23788.76, + "probability": 0.9971 + }, + { + "start": 23789.52, + "end": 23791.08, + "probability": 0.9971 + }, + { + "start": 23792.16, + "end": 23793.12, + "probability": 0.8117 + }, + { + "start": 23793.74, + "end": 23795.36, + "probability": 0.9922 + }, + { + "start": 23796.04, + "end": 23799.58, + "probability": 0.8354 + }, + { + "start": 23800.16, + "end": 23801.16, + "probability": 0.8406 + }, + { + "start": 23801.82, + "end": 23802.9, + "probability": 0.9238 + }, + { + "start": 23803.78, + "end": 23806.05, + "probability": 0.8958 + }, + { + "start": 23806.88, + "end": 23807.48, + "probability": 0.7802 + }, + { + "start": 23809.44, + "end": 23810.1, + "probability": 0.5646 + }, + { + "start": 23810.14, + "end": 23811.46, + "probability": 0.9158 + }, + { + "start": 23821.42, + "end": 23821.42, + "probability": 0.1644 + }, + { + "start": 23821.42, + "end": 23821.42, + "probability": 0.1588 + }, + { + "start": 23821.42, + "end": 23821.42, + "probability": 0.3186 + }, + { + "start": 23821.42, + "end": 23821.42, + "probability": 0.0817 + }, + { + "start": 23821.42, + "end": 23821.42, + "probability": 0.0423 + }, + { + "start": 23843.56, + "end": 23846.84, + "probability": 0.8621 + }, + { + "start": 23848.48, + "end": 23849.18, + "probability": 0.8181 + }, + { + "start": 23850.2, + "end": 23854.18, + "probability": 0.9939 + }, + { + "start": 23854.3, + "end": 23856.04, + "probability": 0.9937 + }, + { + "start": 23856.2, + "end": 23856.72, + "probability": 0.8027 + }, + { + "start": 23857.2, + "end": 23859.38, + "probability": 0.987 + }, + { + "start": 23859.66, + "end": 23860.87, + "probability": 0.9915 + }, + { + "start": 23861.76, + "end": 23864.4, + "probability": 0.998 + }, + { + "start": 23864.56, + "end": 23865.06, + "probability": 0.747 + }, + { + "start": 23865.52, + "end": 23866.2, + "probability": 0.9622 + }, + { + "start": 23867.2, + "end": 23873.34, + "probability": 0.7885 + }, + { + "start": 23874.7, + "end": 23877.08, + "probability": 0.7837 + }, + { + "start": 23877.32, + "end": 23879.74, + "probability": 0.9851 + }, + { + "start": 23880.44, + "end": 23882.78, + "probability": 0.9821 + }, + { + "start": 23883.38, + "end": 23887.6, + "probability": 0.9947 + }, + { + "start": 23888.88, + "end": 23890.22, + "probability": 0.8847 + }, + { + "start": 23890.78, + "end": 23893.94, + "probability": 0.9542 + }, + { + "start": 23894.84, + "end": 23900.44, + "probability": 0.9194 + }, + { + "start": 23900.88, + "end": 23902.0, + "probability": 0.9837 + }, + { + "start": 23902.88, + "end": 23905.52, + "probability": 0.8043 + }, + { + "start": 23905.58, + "end": 23907.56, + "probability": 0.9941 + }, + { + "start": 23909.16, + "end": 23912.92, + "probability": 0.9974 + }, + { + "start": 23913.72, + "end": 23913.9, + "probability": 0.6619 + }, + { + "start": 23914.18, + "end": 23916.12, + "probability": 0.9982 + }, + { + "start": 23916.86, + "end": 23918.25, + "probability": 0.9442 + }, + { + "start": 23919.18, + "end": 23922.86, + "probability": 0.9971 + }, + { + "start": 23923.76, + "end": 23924.92, + "probability": 0.9484 + }, + { + "start": 23925.4, + "end": 23929.48, + "probability": 0.9956 + }, + { + "start": 23929.66, + "end": 23930.96, + "probability": 0.9958 + }, + { + "start": 23931.06, + "end": 23931.4, + "probability": 0.6708 + }, + { + "start": 23932.4, + "end": 23934.84, + "probability": 0.9714 + }, + { + "start": 23934.98, + "end": 23935.68, + "probability": 0.6181 + }, + { + "start": 23936.58, + "end": 23938.58, + "probability": 0.983 + }, + { + "start": 23938.76, + "end": 23940.22, + "probability": 0.8478 + }, + { + "start": 23940.76, + "end": 23944.74, + "probability": 0.9893 + }, + { + "start": 23945.18, + "end": 23945.5, + "probability": 0.7609 + }, + { + "start": 23945.58, + "end": 23946.6, + "probability": 0.9648 + }, + { + "start": 23947.28, + "end": 23949.88, + "probability": 0.9932 + }, + { + "start": 23950.06, + "end": 23950.34, + "probability": 0.951 + }, + { + "start": 23950.42, + "end": 23950.94, + "probability": 0.5105 + }, + { + "start": 23951.24, + "end": 23952.28, + "probability": 0.7949 + }, + { + "start": 23952.32, + "end": 23953.16, + "probability": 0.9259 + }, + { + "start": 23953.56, + "end": 23954.4, + "probability": 0.5222 + }, + { + "start": 23954.58, + "end": 23955.0, + "probability": 0.9563 + }, + { + "start": 23955.02, + "end": 23955.3, + "probability": 0.9215 + }, + { + "start": 23955.34, + "end": 23955.46, + "probability": 0.9922 + }, + { + "start": 23955.68, + "end": 23955.86, + "probability": 0.9228 + }, + { + "start": 23956.82, + "end": 23959.46, + "probability": 0.9898 + }, + { + "start": 23960.12, + "end": 23962.24, + "probability": 0.9938 + }, + { + "start": 23962.78, + "end": 23964.9, + "probability": 0.8601 + }, + { + "start": 23965.46, + "end": 23968.48, + "probability": 0.998 + }, + { + "start": 23968.92, + "end": 23973.12, + "probability": 0.9818 + }, + { + "start": 23973.76, + "end": 23976.62, + "probability": 0.9979 + }, + { + "start": 23977.36, + "end": 23977.7, + "probability": 0.3005 + }, + { + "start": 23978.28, + "end": 23979.6, + "probability": 0.937 + }, + { + "start": 23979.62, + "end": 23980.32, + "probability": 0.8712 + }, + { + "start": 23980.54, + "end": 23981.62, + "probability": 0.7725 + }, + { + "start": 23982.24, + "end": 23982.58, + "probability": 0.4789 + }, + { + "start": 23982.62, + "end": 23987.94, + "probability": 0.9793 + }, + { + "start": 23988.28, + "end": 23988.65, + "probability": 0.9268 + }, + { + "start": 23989.44, + "end": 23990.36, + "probability": 0.9362 + }, + { + "start": 23990.84, + "end": 23992.24, + "probability": 0.507 + }, + { + "start": 23992.92, + "end": 23993.98, + "probability": 0.7596 + }, + { + "start": 23994.24, + "end": 23996.22, + "probability": 0.6924 + }, + { + "start": 23996.72, + "end": 23998.24, + "probability": 0.9526 + }, + { + "start": 23998.96, + "end": 23999.6, + "probability": 0.9367 + }, + { + "start": 24000.24, + "end": 24003.86, + "probability": 0.6487 + }, + { + "start": 24005.56, + "end": 24006.92, + "probability": 0.8492 + }, + { + "start": 24028.9, + "end": 24030.02, + "probability": 0.7269 + }, + { + "start": 24031.42, + "end": 24033.38, + "probability": 0.9226 + }, + { + "start": 24036.24, + "end": 24038.76, + "probability": 0.9548 + }, + { + "start": 24040.2, + "end": 24042.48, + "probability": 0.9259 + }, + { + "start": 24043.8, + "end": 24044.44, + "probability": 0.9846 + }, + { + "start": 24044.98, + "end": 24046.2, + "probability": 0.998 + }, + { + "start": 24047.24, + "end": 24048.56, + "probability": 0.8417 + }, + { + "start": 24049.58, + "end": 24050.6, + "probability": 0.9563 + }, + { + "start": 24051.24, + "end": 24052.4, + "probability": 0.7321 + }, + { + "start": 24054.2, + "end": 24056.02, + "probability": 0.8275 + }, + { + "start": 24056.8, + "end": 24059.66, + "probability": 0.9956 + }, + { + "start": 24060.18, + "end": 24060.92, + "probability": 0.905 + }, + { + "start": 24061.94, + "end": 24066.22, + "probability": 0.9988 + }, + { + "start": 24067.16, + "end": 24068.56, + "probability": 0.7551 + }, + { + "start": 24069.14, + "end": 24069.76, + "probability": 0.8067 + }, + { + "start": 24070.41, + "end": 24072.58, + "probability": 0.6108 + }, + { + "start": 24073.44, + "end": 24076.44, + "probability": 0.9798 + }, + { + "start": 24077.98, + "end": 24080.14, + "probability": 0.9949 + }, + { + "start": 24081.1, + "end": 24082.16, + "probability": 0.9312 + }, + { + "start": 24082.3, + "end": 24085.64, + "probability": 0.8875 + }, + { + "start": 24087.48, + "end": 24088.46, + "probability": 0.8551 + }, + { + "start": 24089.08, + "end": 24089.92, + "probability": 0.8177 + }, + { + "start": 24091.46, + "end": 24095.3, + "probability": 0.9961 + }, + { + "start": 24095.3, + "end": 24098.82, + "probability": 0.9972 + }, + { + "start": 24099.4, + "end": 24100.16, + "probability": 0.9816 + }, + { + "start": 24103.16, + "end": 24103.9, + "probability": 0.9097 + }, + { + "start": 24106.0, + "end": 24111.22, + "probability": 0.9968 + }, + { + "start": 24111.32, + "end": 24112.75, + "probability": 0.9966 + }, + { + "start": 24113.82, + "end": 24115.4, + "probability": 0.9982 + }, + { + "start": 24116.0, + "end": 24116.98, + "probability": 0.9714 + }, + { + "start": 24118.02, + "end": 24119.34, + "probability": 0.9894 + }, + { + "start": 24120.7, + "end": 24123.2, + "probability": 0.9954 + }, + { + "start": 24123.92, + "end": 24125.46, + "probability": 0.9952 + }, + { + "start": 24126.76, + "end": 24131.04, + "probability": 0.8521 + }, + { + "start": 24134.1, + "end": 24136.84, + "probability": 0.9973 + }, + { + "start": 24137.98, + "end": 24139.2, + "probability": 0.944 + }, + { + "start": 24140.52, + "end": 24142.82, + "probability": 0.9539 + }, + { + "start": 24144.9, + "end": 24146.48, + "probability": 0.6092 + }, + { + "start": 24147.64, + "end": 24148.7, + "probability": 0.9868 + }, + { + "start": 24149.34, + "end": 24152.96, + "probability": 0.9662 + }, + { + "start": 24154.24, + "end": 24154.84, + "probability": 0.9661 + }, + { + "start": 24155.98, + "end": 24156.76, + "probability": 0.7474 + }, + { + "start": 24157.72, + "end": 24160.66, + "probability": 0.9982 + }, + { + "start": 24161.66, + "end": 24162.82, + "probability": 0.9746 + }, + { + "start": 24164.86, + "end": 24167.74, + "probability": 0.9922 + }, + { + "start": 24168.82, + "end": 24169.08, + "probability": 0.6884 + }, + { + "start": 24170.65, + "end": 24172.18, + "probability": 0.9737 + }, + { + "start": 24173.3, + "end": 24175.26, + "probability": 0.9968 + }, + { + "start": 24176.76, + "end": 24178.9, + "probability": 0.9993 + }, + { + "start": 24180.04, + "end": 24182.12, + "probability": 0.9974 + }, + { + "start": 24182.82, + "end": 24183.88, + "probability": 0.8841 + }, + { + "start": 24185.8, + "end": 24186.78, + "probability": 0.9703 + }, + { + "start": 24187.96, + "end": 24188.86, + "probability": 0.9932 + }, + { + "start": 24189.78, + "end": 24191.24, + "probability": 0.9984 + }, + { + "start": 24192.98, + "end": 24195.08, + "probability": 0.9116 + }, + { + "start": 24196.12, + "end": 24199.04, + "probability": 0.9976 + }, + { + "start": 24199.92, + "end": 24200.96, + "probability": 0.9783 + }, + { + "start": 24201.84, + "end": 24202.8, + "probability": 0.9998 + }, + { + "start": 24203.76, + "end": 24204.42, + "probability": 0.9986 + }, + { + "start": 24205.2, + "end": 24208.68, + "probability": 0.9998 + }, + { + "start": 24209.24, + "end": 24210.16, + "probability": 0.9998 + }, + { + "start": 24211.14, + "end": 24212.24, + "probability": 0.7676 + }, + { + "start": 24213.38, + "end": 24217.2, + "probability": 0.9874 + }, + { + "start": 24217.88, + "end": 24218.3, + "probability": 0.601 + }, + { + "start": 24218.34, + "end": 24219.64, + "probability": 0.9176 + }, + { + "start": 24220.18, + "end": 24220.7, + "probability": 0.7111 + }, + { + "start": 24221.34, + "end": 24222.84, + "probability": 0.8144 + }, + { + "start": 24223.76, + "end": 24224.62, + "probability": 0.8335 + }, + { + "start": 24233.04, + "end": 24233.34, + "probability": 0.3587 + }, + { + "start": 24233.52, + "end": 24234.58, + "probability": 0.6968 + }, + { + "start": 24235.38, + "end": 24236.52, + "probability": 0.8198 + }, + { + "start": 24237.66, + "end": 24241.94, + "probability": 0.9778 + }, + { + "start": 24242.66, + "end": 24243.5, + "probability": 0.9185 + }, + { + "start": 24244.06, + "end": 24244.56, + "probability": 0.9963 + }, + { + "start": 24245.08, + "end": 24245.28, + "probability": 0.7825 + }, + { + "start": 24246.0, + "end": 24247.96, + "probability": 0.7654 + }, + { + "start": 24248.1, + "end": 24248.92, + "probability": 0.9619 + }, + { + "start": 24261.36, + "end": 24262.14, + "probability": 0.0789 + }, + { + "start": 24262.14, + "end": 24262.14, + "probability": 0.1761 + }, + { + "start": 24262.14, + "end": 24262.14, + "probability": 0.1232 + }, + { + "start": 24262.14, + "end": 24262.14, + "probability": 0.3629 + }, + { + "start": 24262.14, + "end": 24263.47, + "probability": 0.6838 + }, + { + "start": 24265.62, + "end": 24266.28, + "probability": 0.7428 + }, + { + "start": 24267.68, + "end": 24270.74, + "probability": 0.5855 + }, + { + "start": 24271.8, + "end": 24273.12, + "probability": 0.7485 + }, + { + "start": 24274.14, + "end": 24274.76, + "probability": 0.9802 + }, + { + "start": 24276.06, + "end": 24277.72, + "probability": 0.8381 + }, + { + "start": 24279.12, + "end": 24281.64, + "probability": 0.9987 + }, + { + "start": 24283.36, + "end": 24286.24, + "probability": 0.9181 + }, + { + "start": 24290.22, + "end": 24291.48, + "probability": 0.7736 + }, + { + "start": 24292.22, + "end": 24293.68, + "probability": 0.7867 + }, + { + "start": 24294.84, + "end": 24298.08, + "probability": 0.9973 + }, + { + "start": 24299.0, + "end": 24304.12, + "probability": 0.9979 + }, + { + "start": 24304.78, + "end": 24305.4, + "probability": 0.6643 + }, + { + "start": 24306.74, + "end": 24309.56, + "probability": 0.705 + }, + { + "start": 24310.42, + "end": 24316.16, + "probability": 0.9072 + }, + { + "start": 24316.74, + "end": 24319.12, + "probability": 0.9886 + }, + { + "start": 24320.18, + "end": 24321.32, + "probability": 0.5506 + }, + { + "start": 24322.0, + "end": 24323.84, + "probability": 0.9716 + }, + { + "start": 24324.6, + "end": 24326.54, + "probability": 0.9949 + }, + { + "start": 24327.3, + "end": 24332.1, + "probability": 0.9852 + }, + { + "start": 24333.16, + "end": 24333.63, + "probability": 0.876 + }, + { + "start": 24334.82, + "end": 24337.14, + "probability": 0.9865 + }, + { + "start": 24337.82, + "end": 24339.92, + "probability": 0.9434 + }, + { + "start": 24341.26, + "end": 24343.88, + "probability": 0.9882 + }, + { + "start": 24344.82, + "end": 24347.98, + "probability": 0.9505 + }, + { + "start": 24348.5, + "end": 24348.88, + "probability": 0.785 + }, + { + "start": 24349.76, + "end": 24352.24, + "probability": 0.9905 + }, + { + "start": 24352.88, + "end": 24360.44, + "probability": 0.9916 + }, + { + "start": 24361.52, + "end": 24365.2, + "probability": 0.9317 + }, + { + "start": 24365.64, + "end": 24368.76, + "probability": 0.9474 + }, + { + "start": 24369.28, + "end": 24369.82, + "probability": 0.8065 + }, + { + "start": 24370.92, + "end": 24373.88, + "probability": 0.6501 + }, + { + "start": 24375.0, + "end": 24375.7, + "probability": 0.8862 + }, + { + "start": 24376.44, + "end": 24378.74, + "probability": 0.929 + }, + { + "start": 24379.82, + "end": 24382.8, + "probability": 0.9889 + }, + { + "start": 24384.0, + "end": 24385.54, + "probability": 0.9759 + }, + { + "start": 24386.14, + "end": 24389.26, + "probability": 0.9881 + }, + { + "start": 24390.08, + "end": 24391.2, + "probability": 0.9609 + }, + { + "start": 24391.96, + "end": 24395.4, + "probability": 0.9861 + }, + { + "start": 24396.18, + "end": 24398.94, + "probability": 0.9087 + }, + { + "start": 24399.02, + "end": 24403.88, + "probability": 0.9696 + }, + { + "start": 24404.98, + "end": 24406.58, + "probability": 0.978 + }, + { + "start": 24407.2, + "end": 24408.06, + "probability": 0.9774 + }, + { + "start": 24408.76, + "end": 24409.9, + "probability": 0.9719 + }, + { + "start": 24411.18, + "end": 24413.89, + "probability": 0.7027 + }, + { + "start": 24414.94, + "end": 24415.78, + "probability": 0.7661 + }, + { + "start": 24416.08, + "end": 24416.94, + "probability": 0.8225 + }, + { + "start": 24417.04, + "end": 24418.16, + "probability": 0.7539 + }, + { + "start": 24418.26, + "end": 24421.7, + "probability": 0.9469 + }, + { + "start": 24422.3, + "end": 24424.64, + "probability": 0.9868 + }, + { + "start": 24425.26, + "end": 24427.46, + "probability": 0.9722 + }, + { + "start": 24428.74, + "end": 24429.78, + "probability": 0.1027 + }, + { + "start": 24430.36, + "end": 24431.62, + "probability": 0.5157 + }, + { + "start": 24432.44, + "end": 24433.76, + "probability": 0.8032 + }, + { + "start": 24434.22, + "end": 24434.46, + "probability": 0.7737 + }, + { + "start": 24434.84, + "end": 24435.36, + "probability": 0.6098 + }, + { + "start": 24435.48, + "end": 24439.6, + "probability": 0.6711 + }, + { + "start": 24441.4, + "end": 24442.9, + "probability": 0.9521 + }, + { + "start": 24443.76, + "end": 24444.1, + "probability": 0.9171 + }, + { + "start": 24445.48, + "end": 24447.18, + "probability": 0.8586 + }, + { + "start": 24447.78, + "end": 24448.92, + "probability": 0.9837 + }, + { + "start": 24449.56, + "end": 24450.16, + "probability": 0.9643 + }, + { + "start": 24451.0, + "end": 24453.62, + "probability": 0.9119 + }, + { + "start": 24454.42, + "end": 24456.28, + "probability": 0.8762 + }, + { + "start": 24457.34, + "end": 24457.88, + "probability": 0.9788 + }, + { + "start": 24459.2, + "end": 24460.68, + "probability": 0.9666 + }, + { + "start": 24461.24, + "end": 24461.56, + "probability": 0.5406 + }, + { + "start": 24462.66, + "end": 24464.06, + "probability": 0.525 + }, + { + "start": 24464.12, + "end": 24464.32, + "probability": 0.8679 + }, + { + "start": 24464.42, + "end": 24465.64, + "probability": 0.9578 + }, + { + "start": 24465.68, + "end": 24465.78, + "probability": 0.1988 + }, + { + "start": 24465.98, + "end": 24466.7, + "probability": 0.9722 + }, + { + "start": 24468.96, + "end": 24471.32, + "probability": 0.6495 + }, + { + "start": 24488.7, + "end": 24490.84, + "probability": 0.5861 + }, + { + "start": 24493.72, + "end": 24496.7, + "probability": 0.981 + }, + { + "start": 24498.78, + "end": 24500.34, + "probability": 0.9949 + }, + { + "start": 24501.94, + "end": 24504.04, + "probability": 0.9873 + }, + { + "start": 24505.74, + "end": 24507.6, + "probability": 0.9551 + }, + { + "start": 24509.72, + "end": 24512.32, + "probability": 0.9729 + }, + { + "start": 24512.58, + "end": 24513.38, + "probability": 0.7336 + }, + { + "start": 24513.54, + "end": 24514.98, + "probability": 0.9842 + }, + { + "start": 24517.18, + "end": 24518.3, + "probability": 0.8849 + }, + { + "start": 24520.02, + "end": 24521.68, + "probability": 0.9805 + }, + { + "start": 24522.38, + "end": 24523.24, + "probability": 0.8528 + }, + { + "start": 24523.34, + "end": 24526.86, + "probability": 0.9854 + }, + { + "start": 24526.98, + "end": 24527.86, + "probability": 0.856 + }, + { + "start": 24529.66, + "end": 24531.56, + "probability": 0.9978 + }, + { + "start": 24532.18, + "end": 24533.0, + "probability": 0.9813 + }, + { + "start": 24533.92, + "end": 24536.46, + "probability": 0.9741 + }, + { + "start": 24537.52, + "end": 24539.06, + "probability": 0.9095 + }, + { + "start": 24539.86, + "end": 24542.5, + "probability": 0.9976 + }, + { + "start": 24543.78, + "end": 24544.12, + "probability": 0.3939 + }, + { + "start": 24544.82, + "end": 24545.36, + "probability": 0.904 + }, + { + "start": 24546.38, + "end": 24548.22, + "probability": 0.9642 + }, + { + "start": 24548.78, + "end": 24551.68, + "probability": 0.9971 + }, + { + "start": 24552.66, + "end": 24556.06, + "probability": 0.8149 + }, + { + "start": 24556.68, + "end": 24559.66, + "probability": 0.993 + }, + { + "start": 24561.2, + "end": 24562.14, + "probability": 0.8066 + }, + { + "start": 24562.26, + "end": 24563.36, + "probability": 0.9785 + }, + { + "start": 24563.44, + "end": 24563.88, + "probability": 0.7027 + }, + { + "start": 24565.06, + "end": 24565.94, + "probability": 0.9609 + }, + { + "start": 24566.02, + "end": 24567.68, + "probability": 0.854 + }, + { + "start": 24568.88, + "end": 24570.44, + "probability": 0.9963 + }, + { + "start": 24570.66, + "end": 24571.94, + "probability": 0.8633 + }, + { + "start": 24572.18, + "end": 24573.46, + "probability": 0.8792 + }, + { + "start": 24573.64, + "end": 24576.52, + "probability": 0.9893 + }, + { + "start": 24576.62, + "end": 24578.18, + "probability": 0.6096 + }, + { + "start": 24578.2, + "end": 24578.82, + "probability": 0.8646 + }, + { + "start": 24579.36, + "end": 24581.8, + "probability": 0.979 + }, + { + "start": 24583.26, + "end": 24584.82, + "probability": 0.7907 + }, + { + "start": 24586.3, + "end": 24588.4, + "probability": 0.7978 + }, + { + "start": 24589.44, + "end": 24590.58, + "probability": 0.9208 + }, + { + "start": 24591.82, + "end": 24593.04, + "probability": 0.8852 + }, + { + "start": 24593.1, + "end": 24595.84, + "probability": 0.9653 + }, + { + "start": 24595.84, + "end": 24600.64, + "probability": 0.9969 + }, + { + "start": 24601.3, + "end": 24601.88, + "probability": 0.8668 + }, + { + "start": 24602.38, + "end": 24604.96, + "probability": 0.9126 + }, + { + "start": 24606.78, + "end": 24608.52, + "probability": 0.9979 + }, + { + "start": 24609.32, + "end": 24611.67, + "probability": 0.8901 + }, + { + "start": 24612.8, + "end": 24614.26, + "probability": 0.6016 + }, + { + "start": 24614.32, + "end": 24615.42, + "probability": 0.963 + }, + { + "start": 24616.18, + "end": 24617.5, + "probability": 0.9795 + }, + { + "start": 24618.14, + "end": 24619.12, + "probability": 0.8891 + }, + { + "start": 24619.88, + "end": 24621.52, + "probability": 0.9915 + }, + { + "start": 24621.68, + "end": 24622.04, + "probability": 0.9735 + }, + { + "start": 24622.4, + "end": 24624.02, + "probability": 0.9876 + }, + { + "start": 24624.54, + "end": 24625.96, + "probability": 0.9346 + }, + { + "start": 24626.0, + "end": 24629.39, + "probability": 0.9677 + }, + { + "start": 24630.44, + "end": 24631.76, + "probability": 0.9939 + }, + { + "start": 24632.94, + "end": 24634.5, + "probability": 0.7384 + }, + { + "start": 24635.16, + "end": 24636.48, + "probability": 0.747 + }, + { + "start": 24637.04, + "end": 24638.84, + "probability": 0.9951 + }, + { + "start": 24639.34, + "end": 24639.82, + "probability": 0.338 + }, + { + "start": 24640.38, + "end": 24642.86, + "probability": 0.9922 + }, + { + "start": 24644.82, + "end": 24646.82, + "probability": 0.9108 + }, + { + "start": 24647.96, + "end": 24649.4, + "probability": 0.8293 + }, + { + "start": 24650.02, + "end": 24651.41, + "probability": 0.9348 + }, + { + "start": 24651.78, + "end": 24654.18, + "probability": 0.9822 + }, + { + "start": 24655.02, + "end": 24656.86, + "probability": 0.9039 + }, + { + "start": 24656.96, + "end": 24658.54, + "probability": 0.8853 + }, + { + "start": 24659.12, + "end": 24659.7, + "probability": 0.9185 + }, + { + "start": 24660.24, + "end": 24662.36, + "probability": 0.7847 + }, + { + "start": 24663.19, + "end": 24665.36, + "probability": 0.8085 + }, + { + "start": 24665.92, + "end": 24667.28, + "probability": 0.9858 + }, + { + "start": 24668.06, + "end": 24668.88, + "probability": 0.807 + }, + { + "start": 24669.44, + "end": 24670.52, + "probability": 0.5906 + }, + { + "start": 24671.36, + "end": 24671.68, + "probability": 0.6508 + }, + { + "start": 24671.74, + "end": 24672.52, + "probability": 0.9799 + }, + { + "start": 24673.08, + "end": 24674.16, + "probability": 0.8992 + }, + { + "start": 24674.5, + "end": 24676.64, + "probability": 0.9902 + }, + { + "start": 24677.06, + "end": 24677.7, + "probability": 0.9055 + }, + { + "start": 24677.88, + "end": 24678.22, + "probability": 0.1883 + }, + { + "start": 24678.26, + "end": 24678.78, + "probability": 0.7267 + }, + { + "start": 24678.84, + "end": 24679.3, + "probability": 0.9043 + }, + { + "start": 24679.38, + "end": 24679.98, + "probability": 0.8077 + }, + { + "start": 24680.42, + "end": 24682.2, + "probability": 0.9917 + }, + { + "start": 24682.36, + "end": 24682.62, + "probability": 0.7491 + }, + { + "start": 24682.64, + "end": 24683.2, + "probability": 0.759 + }, + { + "start": 24683.28, + "end": 24684.52, + "probability": 0.736 + }, + { + "start": 24684.66, + "end": 24685.76, + "probability": 0.6812 + }, + { + "start": 24685.86, + "end": 24686.98, + "probability": 0.9051 + }, + { + "start": 24687.28, + "end": 24687.7, + "probability": 0.5071 + }, + { + "start": 24688.76, + "end": 24690.76, + "probability": 0.8119 + }, + { + "start": 24691.78, + "end": 24694.34, + "probability": 0.8409 + }, + { + "start": 24695.08, + "end": 24696.56, + "probability": 0.9556 + }, + { + "start": 24696.68, + "end": 24696.9, + "probability": 0.9609 + }, + { + "start": 24697.1, + "end": 24698.16, + "probability": 0.9602 + }, + { + "start": 24698.96, + "end": 24699.46, + "probability": 0.9661 + }, + { + "start": 24700.04, + "end": 24701.14, + "probability": 0.9241 + }, + { + "start": 24701.2, + "end": 24701.54, + "probability": 0.9591 + }, + { + "start": 24701.66, + "end": 24703.96, + "probability": 0.6586 + }, + { + "start": 24704.68, + "end": 24705.16, + "probability": 0.4584 + }, + { + "start": 24705.4, + "end": 24707.1, + "probability": 0.0353 + }, + { + "start": 24708.26, + "end": 24708.96, + "probability": 0.7016 + }, + { + "start": 24709.36, + "end": 24709.68, + "probability": 0.9249 + }, + { + "start": 24710.22, + "end": 24710.66, + "probability": 0.1513 + }, + { + "start": 24711.18, + "end": 24711.78, + "probability": 0.6437 + }, + { + "start": 24714.06, + "end": 24717.42, + "probability": 0.108 + }, + { + "start": 24718.84, + "end": 24719.32, + "probability": 0.9772 + }, + { + "start": 24719.58, + "end": 24722.82, + "probability": 0.7432 + }, + { + "start": 24724.94, + "end": 24728.3, + "probability": 0.9381 + }, + { + "start": 24729.74, + "end": 24731.32, + "probability": 0.6942 + }, + { + "start": 24731.58, + "end": 24733.6, + "probability": 0.787 + }, + { + "start": 24734.48, + "end": 24741.94, + "probability": 0.9723 + }, + { + "start": 24742.76, + "end": 24744.4, + "probability": 0.9959 + }, + { + "start": 24744.96, + "end": 24746.7, + "probability": 0.9998 + }, + { + "start": 24747.8, + "end": 24750.22, + "probability": 0.9896 + }, + { + "start": 24750.76, + "end": 24753.1, + "probability": 0.9883 + }, + { + "start": 24753.87, + "end": 24754.87, + "probability": 0.9844 + }, + { + "start": 24756.76, + "end": 24759.48, + "probability": 0.9673 + }, + { + "start": 24760.3, + "end": 24761.92, + "probability": 0.9719 + }, + { + "start": 24763.16, + "end": 24764.08, + "probability": 0.9992 + }, + { + "start": 24764.64, + "end": 24772.16, + "probability": 0.9879 + }, + { + "start": 24773.02, + "end": 24775.18, + "probability": 0.9947 + }, + { + "start": 24776.04, + "end": 24778.54, + "probability": 0.999 + }, + { + "start": 24778.9, + "end": 24780.54, + "probability": 0.9918 + }, + { + "start": 24781.04, + "end": 24784.92, + "probability": 0.9247 + }, + { + "start": 24785.64, + "end": 24786.64, + "probability": 0.7127 + }, + { + "start": 24787.02, + "end": 24787.8, + "probability": 0.9848 + }, + { + "start": 24788.86, + "end": 24790.32, + "probability": 0.9662 + }, + { + "start": 24790.74, + "end": 24794.5, + "probability": 0.9689 + }, + { + "start": 24794.98, + "end": 24796.26, + "probability": 0.9177 + }, + { + "start": 24797.3, + "end": 24799.82, + "probability": 0.9089 + }, + { + "start": 24800.32, + "end": 24802.6, + "probability": 0.9941 + }, + { + "start": 24802.94, + "end": 24806.36, + "probability": 0.9727 + }, + { + "start": 24806.92, + "end": 24809.2, + "probability": 0.8879 + }, + { + "start": 24810.26, + "end": 24813.34, + "probability": 0.9012 + }, + { + "start": 24814.14, + "end": 24816.02, + "probability": 0.985 + }, + { + "start": 24816.66, + "end": 24818.44, + "probability": 0.9426 + }, + { + "start": 24819.12, + "end": 24821.46, + "probability": 0.7124 + }, + { + "start": 24821.9, + "end": 24823.48, + "probability": 0.978 + }, + { + "start": 24824.52, + "end": 24825.4, + "probability": 0.7075 + }, + { + "start": 24826.54, + "end": 24829.3, + "probability": 0.989 + }, + { + "start": 24830.12, + "end": 24831.56, + "probability": 0.6609 + }, + { + "start": 24832.08, + "end": 24832.92, + "probability": 0.9749 + }, + { + "start": 24833.6, + "end": 24834.31, + "probability": 0.9905 + }, + { + "start": 24835.0, + "end": 24836.84, + "probability": 0.9508 + }, + { + "start": 24837.38, + "end": 24838.16, + "probability": 0.7047 + }, + { + "start": 24838.72, + "end": 24840.85, + "probability": 0.999 + }, + { + "start": 24841.82, + "end": 24843.76, + "probability": 0.8869 + }, + { + "start": 24844.32, + "end": 24847.94, + "probability": 0.991 + }, + { + "start": 24848.82, + "end": 24849.14, + "probability": 0.4057 + }, + { + "start": 24849.76, + "end": 24851.3, + "probability": 0.9815 + }, + { + "start": 24851.88, + "end": 24852.74, + "probability": 0.9425 + }, + { + "start": 24853.14, + "end": 24855.09, + "probability": 0.9952 + }, + { + "start": 24855.76, + "end": 24858.02, + "probability": 0.9926 + }, + { + "start": 24858.62, + "end": 24865.64, + "probability": 0.9871 + }, + { + "start": 24866.24, + "end": 24867.46, + "probability": 0.8774 + }, + { + "start": 24868.18, + "end": 24869.82, + "probability": 0.9702 + }, + { + "start": 24870.38, + "end": 24872.9, + "probability": 0.7103 + }, + { + "start": 24873.98, + "end": 24874.33, + "probability": 0.5407 + }, + { + "start": 24874.84, + "end": 24875.14, + "probability": 0.6106 + }, + { + "start": 24875.64, + "end": 24879.87, + "probability": 0.9925 + }, + { + "start": 24880.5, + "end": 24883.78, + "probability": 0.9985 + }, + { + "start": 24884.28, + "end": 24889.4, + "probability": 0.9946 + }, + { + "start": 24891.1, + "end": 24892.44, + "probability": 0.9909 + }, + { + "start": 24893.46, + "end": 24894.2, + "probability": 0.7995 + }, + { + "start": 24895.0, + "end": 24896.46, + "probability": 0.6158 + }, + { + "start": 24897.46, + "end": 24899.76, + "probability": 0.927 + }, + { + "start": 24900.56, + "end": 24902.48, + "probability": 0.9604 + }, + { + "start": 24904.22, + "end": 24909.37, + "probability": 0.9884 + }, + { + "start": 24910.0, + "end": 24910.0, + "probability": 0.2482 + }, + { + "start": 24910.0, + "end": 24910.02, + "probability": 0.6247 + }, + { + "start": 24910.02, + "end": 24910.72, + "probability": 0.4271 + }, + { + "start": 24912.24, + "end": 24915.8, + "probability": 0.996 + }, + { + "start": 24915.96, + "end": 24920.86, + "probability": 0.9982 + }, + { + "start": 24920.86, + "end": 24925.9, + "probability": 0.9965 + }, + { + "start": 24926.34, + "end": 24926.44, + "probability": 0.3422 + }, + { + "start": 24926.56, + "end": 24927.0, + "probability": 0.8481 + }, + { + "start": 24927.48, + "end": 24929.32, + "probability": 0.7605 + }, + { + "start": 24929.8, + "end": 24931.34, + "probability": 0.9933 + }, + { + "start": 24931.98, + "end": 24932.84, + "probability": 0.752 + }, + { + "start": 24933.32, + "end": 24934.28, + "probability": 0.9702 + }, + { + "start": 24935.3, + "end": 24936.36, + "probability": 0.981 + }, + { + "start": 24936.96, + "end": 24938.04, + "probability": 0.8688 + }, + { + "start": 24938.62, + "end": 24940.48, + "probability": 0.9095 + }, + { + "start": 24941.26, + "end": 24941.7, + "probability": 0.6383 + }, + { + "start": 24942.1, + "end": 24943.06, + "probability": 0.6237 + }, + { + "start": 24943.28, + "end": 24943.64, + "probability": 0.6441 + }, + { + "start": 24943.74, + "end": 24944.48, + "probability": 0.8608 + }, + { + "start": 24945.0, + "end": 24945.22, + "probability": 0.7949 + }, + { + "start": 24945.34, + "end": 24946.66, + "probability": 0.9434 + }, + { + "start": 24947.1, + "end": 24948.14, + "probability": 0.4901 + }, + { + "start": 24948.26, + "end": 24948.9, + "probability": 0.8941 + }, + { + "start": 24949.78, + "end": 24950.8, + "probability": 0.7029 + }, + { + "start": 24951.52, + "end": 24952.54, + "probability": 0.7412 + }, + { + "start": 24952.58, + "end": 24952.78, + "probability": 0.9215 + }, + { + "start": 24952.96, + "end": 24953.9, + "probability": 0.5788 + }, + { + "start": 24953.92, + "end": 24954.04, + "probability": 0.7401 + }, + { + "start": 24954.14, + "end": 24954.9, + "probability": 0.9927 + }, + { + "start": 24955.42, + "end": 24956.9, + "probability": 0.8856 + }, + { + "start": 24957.4, + "end": 24960.12, + "probability": 0.8602 + }, + { + "start": 24964.98, + "end": 24966.08, + "probability": 0.8385 + }, + { + "start": 24966.88, + "end": 24967.6, + "probability": 0.8286 + }, + { + "start": 24979.48, + "end": 24982.86, + "probability": 0.9869 + }, + { + "start": 24983.52, + "end": 24984.28, + "probability": 0.6082 + }, + { + "start": 24984.68, + "end": 24986.46, + "probability": 0.7865 + }, + { + "start": 24987.22, + "end": 24987.88, + "probability": 0.5 + }, + { + "start": 24987.88, + "end": 24988.9, + "probability": 0.6476 + }, + { + "start": 25004.1, + "end": 25008.38, + "probability": 0.7219 + }, + { + "start": 25010.22, + "end": 25013.52, + "probability": 0.8956 + }, + { + "start": 25027.2, + "end": 25032.74, + "probability": 0.7812 + }, + { + "start": 25034.5, + "end": 25035.1, + "probability": 0.5126 + }, + { + "start": 25035.44, + "end": 25038.16, + "probability": 0.9468 + }, + { + "start": 25038.26, + "end": 25043.82, + "probability": 0.9876 + }, + { + "start": 25046.78, + "end": 25050.29, + "probability": 0.9836 + }, + { + "start": 25051.04, + "end": 25051.14, + "probability": 0.0083 + }, + { + "start": 25051.68, + "end": 25052.86, + "probability": 0.4647 + }, + { + "start": 25053.76, + "end": 25054.94, + "probability": 0.4832 + }, + { + "start": 25056.77, + "end": 25058.08, + "probability": 0.999 + }, + { + "start": 25065.9, + "end": 25066.92, + "probability": 0.7172 + }, + { + "start": 25067.42, + "end": 25069.4, + "probability": 0.7915 + }, + { + "start": 25074.17, + "end": 25078.65, + "probability": 0.9937 + }, + { + "start": 25078.98, + "end": 25079.58, + "probability": 0.9433 + }, + { + "start": 25079.72, + "end": 25081.1, + "probability": 0.7936 + }, + { + "start": 25083.58, + "end": 25085.96, + "probability": 0.9976 + }, + { + "start": 25087.56, + "end": 25092.54, + "probability": 0.8626 + }, + { + "start": 25092.78, + "end": 25093.8, + "probability": 0.8343 + }, + { + "start": 25094.76, + "end": 25096.22, + "probability": 0.627 + }, + { + "start": 25098.66, + "end": 25102.62, + "probability": 0.9526 + }, + { + "start": 25105.0, + "end": 25108.38, + "probability": 0.4948 + }, + { + "start": 25109.9, + "end": 25112.06, + "probability": 0.9945 + }, + { + "start": 25112.78, + "end": 25115.62, + "probability": 0.9849 + }, + { + "start": 25117.3, + "end": 25119.72, + "probability": 0.5779 + }, + { + "start": 25121.16, + "end": 25122.03, + "probability": 0.6793 + }, + { + "start": 25124.26, + "end": 25129.28, + "probability": 0.9666 + }, + { + "start": 25130.56, + "end": 25131.96, + "probability": 0.9947 + }, + { + "start": 25134.34, + "end": 25134.58, + "probability": 0.8857 + }, + { + "start": 25134.68, + "end": 25135.14, + "probability": 0.8422 + }, + { + "start": 25135.24, + "end": 25136.88, + "probability": 0.9738 + }, + { + "start": 25137.0, + "end": 25137.32, + "probability": 0.9425 + }, + { + "start": 25137.44, + "end": 25137.78, + "probability": 0.4502 + }, + { + "start": 25137.9, + "end": 25138.12, + "probability": 0.656 + }, + { + "start": 25138.86, + "end": 25141.48, + "probability": 0.9984 + }, + { + "start": 25142.82, + "end": 25145.18, + "probability": 0.7311 + }, + { + "start": 25145.32, + "end": 25147.8, + "probability": 0.852 + }, + { + "start": 25151.42, + "end": 25152.06, + "probability": 0.9771 + }, + { + "start": 25152.78, + "end": 25153.86, + "probability": 0.8574 + }, + { + "start": 25154.04, + "end": 25155.52, + "probability": 0.9443 + }, + { + "start": 25155.6, + "end": 25157.22, + "probability": 0.7151 + }, + { + "start": 25159.42, + "end": 25161.58, + "probability": 0.9821 + }, + { + "start": 25162.72, + "end": 25170.86, + "probability": 0.9819 + }, + { + "start": 25172.32, + "end": 25173.96, + "probability": 0.9966 + }, + { + "start": 25174.66, + "end": 25175.5, + "probability": 0.8326 + }, + { + "start": 25176.76, + "end": 25179.54, + "probability": 0.9945 + }, + { + "start": 25180.96, + "end": 25185.6, + "probability": 0.9858 + }, + { + "start": 25186.84, + "end": 25191.0, + "probability": 0.9413 + }, + { + "start": 25192.38, + "end": 25193.46, + "probability": 0.5086 + }, + { + "start": 25193.58, + "end": 25199.5, + "probability": 0.9857 + }, + { + "start": 25201.66, + "end": 25203.72, + "probability": 0.9945 + }, + { + "start": 25209.18, + "end": 25214.16, + "probability": 0.9979 + }, + { + "start": 25214.34, + "end": 25217.92, + "probability": 0.998 + }, + { + "start": 25219.02, + "end": 25220.0, + "probability": 0.8691 + }, + { + "start": 25221.18, + "end": 25222.58, + "probability": 0.9901 + }, + { + "start": 25222.66, + "end": 25224.06, + "probability": 0.94 + }, + { + "start": 25224.12, + "end": 25225.82, + "probability": 0.8849 + }, + { + "start": 25226.38, + "end": 25227.24, + "probability": 0.9183 + }, + { + "start": 25228.25, + "end": 25229.78, + "probability": 0.5346 + }, + { + "start": 25229.86, + "end": 25232.3, + "probability": 0.7115 + }, + { + "start": 25232.68, + "end": 25233.24, + "probability": 0.9833 + }, + { + "start": 25235.46, + "end": 25239.68, + "probability": 0.9726 + }, + { + "start": 25240.08, + "end": 25240.48, + "probability": 0.9331 + }, + { + "start": 25241.88, + "end": 25243.5, + "probability": 0.9951 + }, + { + "start": 25244.24, + "end": 25245.48, + "probability": 0.9955 + }, + { + "start": 25246.84, + "end": 25251.54, + "probability": 0.7099 + }, + { + "start": 25252.98, + "end": 25255.08, + "probability": 0.9966 + }, + { + "start": 25256.14, + "end": 25258.12, + "probability": 0.9954 + }, + { + "start": 25259.16, + "end": 25261.44, + "probability": 0.9985 + }, + { + "start": 25262.5, + "end": 25264.34, + "probability": 0.6199 + }, + { + "start": 25264.44, + "end": 25267.98, + "probability": 0.9935 + }, + { + "start": 25268.04, + "end": 25269.18, + "probability": 0.9016 + }, + { + "start": 25270.86, + "end": 25272.74, + "probability": 0.9227 + }, + { + "start": 25274.2, + "end": 25276.56, + "probability": 0.9766 + }, + { + "start": 25277.9, + "end": 25283.36, + "probability": 0.886 + }, + { + "start": 25285.28, + "end": 25286.74, + "probability": 0.9985 + }, + { + "start": 25287.82, + "end": 25291.54, + "probability": 0.9971 + }, + { + "start": 25291.68, + "end": 25293.72, + "probability": 0.9805 + }, + { + "start": 25294.9, + "end": 25296.92, + "probability": 0.9865 + }, + { + "start": 25297.62, + "end": 25298.4, + "probability": 0.9785 + }, + { + "start": 25299.86, + "end": 25302.38, + "probability": 0.9966 + }, + { + "start": 25303.04, + "end": 25306.15, + "probability": 0.9768 + }, + { + "start": 25306.38, + "end": 25308.78, + "probability": 0.9922 + }, + { + "start": 25309.04, + "end": 25311.34, + "probability": 0.7184 + }, + { + "start": 25332.0, + "end": 25332.0, + "probability": 0.0123 + }, + { + "start": 25340.28, + "end": 25340.6, + "probability": 0.049 + }, + { + "start": 25340.6, + "end": 25340.7, + "probability": 0.0699 + }, + { + "start": 25340.7, + "end": 25340.7, + "probability": 0.0214 + }, + { + "start": 25340.7, + "end": 25340.7, + "probability": 0.0355 + }, + { + "start": 25350.07, + "end": 25352.1, + "probability": 0.9938 + }, + { + "start": 25373.4, + "end": 25376.2, + "probability": 0.1597 + }, + { + "start": 25378.32, + "end": 25379.54, + "probability": 0.5031 + }, + { + "start": 25379.72, + "end": 25381.74, + "probability": 0.9999 + }, + { + "start": 25382.26, + "end": 25389.1, + "probability": 0.9893 + }, + { + "start": 25389.82, + "end": 25392.06, + "probability": 0.9987 + }, + { + "start": 25392.8, + "end": 25396.08, + "probability": 0.981 + }, + { + "start": 25396.28, + "end": 25398.9, + "probability": 0.9671 + }, + { + "start": 25399.4, + "end": 25401.62, + "probability": 0.9636 + }, + { + "start": 25401.62, + "end": 25404.68, + "probability": 0.9426 + }, + { + "start": 25404.78, + "end": 25405.26, + "probability": 0.5466 + }, + { + "start": 25405.32, + "end": 25406.3, + "probability": 0.7337 + }, + { + "start": 25407.54, + "end": 25411.74, + "probability": 0.7134 + }, + { + "start": 25412.42, + "end": 25413.55, + "probability": 0.8921 + }, + { + "start": 25413.76, + "end": 25417.21, + "probability": 0.8511 + }, + { + "start": 25419.1, + "end": 25421.82, + "probability": 0.667 + }, + { + "start": 25422.58, + "end": 25424.56, + "probability": 0.8163 + }, + { + "start": 25437.42, + "end": 25438.16, + "probability": 0.1057 + }, + { + "start": 25442.22, + "end": 25442.48, + "probability": 0.4773 + }, + { + "start": 25443.68, + "end": 25444.52, + "probability": 0.538 + }, + { + "start": 25445.7, + "end": 25446.04, + "probability": 0.9736 + }, + { + "start": 25446.9, + "end": 25447.64, + "probability": 0.8063 + }, + { + "start": 25448.32, + "end": 25450.24, + "probability": 0.8705 + }, + { + "start": 25451.0, + "end": 25451.3, + "probability": 0.9783 + }, + { + "start": 25452.14, + "end": 25452.96, + "probability": 0.8302 + }, + { + "start": 25454.26, + "end": 25455.3, + "probability": 0.9858 + }, + { + "start": 25456.66, + "end": 25458.52, + "probability": 0.9133 + }, + { + "start": 25459.3, + "end": 25459.82, + "probability": 0.3782 + }, + { + "start": 25461.1, + "end": 25461.48, + "probability": 0.5495 + }, + { + "start": 25462.34, + "end": 25463.34, + "probability": 0.4807 + }, + { + "start": 25465.56, + "end": 25467.46, + "probability": 0.6454 + }, + { + "start": 25468.68, + "end": 25470.28, + "probability": 0.9336 + }, + { + "start": 25471.0, + "end": 25471.44, + "probability": 0.9055 + }, + { + "start": 25472.02, + "end": 25472.88, + "probability": 0.8633 + }, + { + "start": 25476.18, + "end": 25477.7, + "probability": 0.725 + }, + { + "start": 25478.38, + "end": 25479.0, + "probability": 0.9138 + }, + { + "start": 25480.9, + "end": 25482.98, + "probability": 0.9688 + }, + { + "start": 25485.4, + "end": 25487.24, + "probability": 0.9718 + }, + { + "start": 25489.32, + "end": 25492.04, + "probability": 0.8893 + }, + { + "start": 25492.86, + "end": 25493.32, + "probability": 0.7489 + }, + { + "start": 25494.64, + "end": 25495.42, + "probability": 0.9148 + }, + { + "start": 25496.5, + "end": 25498.64, + "probability": 0.9412 + }, + { + "start": 25500.9, + "end": 25501.64, + "probability": 0.9338 + }, + { + "start": 25502.26, + "end": 25503.6, + "probability": 0.9545 + }, + { + "start": 25505.8, + "end": 25507.94, + "probability": 0.9515 + }, + { + "start": 25510.24, + "end": 25511.68, + "probability": 0.8871 + }, + { + "start": 25513.24, + "end": 25516.86, + "probability": 0.6576 + }, + { + "start": 25518.5, + "end": 25521.86, + "probability": 0.7049 + }, + { + "start": 25524.3, + "end": 25525.42, + "probability": 0.8839 + }, + { + "start": 25526.68, + "end": 25527.48, + "probability": 0.9174 + }, + { + "start": 25529.68, + "end": 25532.2, + "probability": 0.9823 + }, + { + "start": 25534.36, + "end": 25537.28, + "probability": 0.965 + }, + { + "start": 25538.22, + "end": 25538.7, + "probability": 0.7881 + }, + { + "start": 25539.34, + "end": 25540.42, + "probability": 0.9054 + }, + { + "start": 25541.26, + "end": 25542.2, + "probability": 0.8838 + }, + { + "start": 25544.44, + "end": 25546.02, + "probability": 0.9578 + }, + { + "start": 25547.52, + "end": 25548.28, + "probability": 0.5728 + }, + { + "start": 25549.52, + "end": 25550.02, + "probability": 0.9741 + }, + { + "start": 25550.78, + "end": 25551.56, + "probability": 0.7655 + }, + { + "start": 25556.16, + "end": 25556.62, + "probability": 0.5345 + }, + { + "start": 25557.58, + "end": 25558.32, + "probability": 0.7898 + }, + { + "start": 25560.82, + "end": 25563.32, + "probability": 0.8142 + }, + { + "start": 25565.32, + "end": 25565.84, + "probability": 0.9592 + }, + { + "start": 25566.9, + "end": 25567.6, + "probability": 0.9598 + }, + { + "start": 25571.0, + "end": 25572.74, + "probability": 0.9443 + }, + { + "start": 25575.82, + "end": 25578.06, + "probability": 0.92 + }, + { + "start": 25581.82, + "end": 25582.74, + "probability": 0.0995 + }, + { + "start": 25588.32, + "end": 25589.14, + "probability": 0.5855 + }, + { + "start": 25589.74, + "end": 25590.26, + "probability": 0.559 + }, + { + "start": 25591.16, + "end": 25592.36, + "probability": 0.7017 + }, + { + "start": 25597.03, + "end": 25598.96, + "probability": 0.8696 + }, + { + "start": 25599.82, + "end": 25601.82, + "probability": 0.8958 + }, + { + "start": 25606.18, + "end": 25606.92, + "probability": 0.7945 + }, + { + "start": 25607.62, + "end": 25609.44, + "probability": 0.7688 + }, + { + "start": 25610.68, + "end": 25611.82, + "probability": 0.9294 + }, + { + "start": 25615.4, + "end": 25616.36, + "probability": 0.9583 + }, + { + "start": 25617.24, + "end": 25618.44, + "probability": 0.6647 + }, + { + "start": 25621.02, + "end": 25623.32, + "probability": 0.8339 + }, + { + "start": 25626.15, + "end": 25628.73, + "probability": 0.8791 + }, + { + "start": 25629.96, + "end": 25630.8, + "probability": 0.9749 + }, + { + "start": 25631.94, + "end": 25633.1, + "probability": 0.7183 + }, + { + "start": 25633.94, + "end": 25634.34, + "probability": 0.7217 + }, + { + "start": 25635.04, + "end": 25636.0, + "probability": 0.7331 + }, + { + "start": 25637.22, + "end": 25640.9, + "probability": 0.7608 + }, + { + "start": 25641.2, + "end": 25643.06, + "probability": 0.5491 + }, + { + "start": 25643.16, + "end": 25645.34, + "probability": 0.8771 + }, + { + "start": 25646.46, + "end": 25647.22, + "probability": 0.5125 + }, + { + "start": 25647.82, + "end": 25648.74, + "probability": 0.6326 + }, + { + "start": 25654.74, + "end": 25655.6, + "probability": 0.8297 + }, + { + "start": 25656.68, + "end": 25657.5, + "probability": 0.6819 + }, + { + "start": 25659.24, + "end": 25661.18, + "probability": 0.9054 + }, + { + "start": 25662.22, + "end": 25664.42, + "probability": 0.8233 + }, + { + "start": 25667.26, + "end": 25669.34, + "probability": 0.6 + }, + { + "start": 25677.12, + "end": 25677.92, + "probability": 0.4996 + }, + { + "start": 25680.04, + "end": 25680.28, + "probability": 0.479 + }, + { + "start": 25686.56, + "end": 25687.02, + "probability": 0.5125 + }, + { + "start": 25687.86, + "end": 25688.54, + "probability": 0.554 + }, + { + "start": 25690.92, + "end": 25693.06, + "probability": 0.9153 + }, + { + "start": 25694.08, + "end": 25696.38, + "probability": 0.9666 + }, + { + "start": 25697.52, + "end": 25698.18, + "probability": 0.3772 + }, + { + "start": 25699.7, + "end": 25700.92, + "probability": 0.7252 + }, + { + "start": 25705.94, + "end": 25706.84, + "probability": 0.8195 + }, + { + "start": 25708.68, + "end": 25709.7, + "probability": 0.5723 + }, + { + "start": 25710.56, + "end": 25711.04, + "probability": 0.6594 + }, + { + "start": 25712.02, + "end": 25712.8, + "probability": 0.7538 + }, + { + "start": 25716.14, + "end": 25717.88, + "probability": 0.5126 + }, + { + "start": 25724.27, + "end": 25725.66, + "probability": 0.2248 + }, + { + "start": 25733.82, + "end": 25734.64, + "probability": 0.7569 + }, + { + "start": 25735.76, + "end": 25736.38, + "probability": 0.6261 + }, + { + "start": 25747.1, + "end": 25750.2, + "probability": 0.6415 + }, + { + "start": 25754.78, + "end": 25755.64, + "probability": 0.7398 + }, + { + "start": 25756.6, + "end": 25758.0, + "probability": 0.5543 + }, + { + "start": 25761.5, + "end": 25763.38, + "probability": 0.6092 + }, + { + "start": 25766.52, + "end": 25766.72, + "probability": 0.7971 + }, + { + "start": 25773.22, + "end": 25773.78, + "probability": 0.7492 + }, + { + "start": 25775.33, + "end": 25777.14, + "probability": 0.4894 + }, + { + "start": 25778.26, + "end": 25778.78, + "probability": 0.6431 + }, + { + "start": 25779.96, + "end": 25780.96, + "probability": 0.6783 + }, + { + "start": 25785.6, + "end": 25786.52, + "probability": 0.656 + }, + { + "start": 25787.46, + "end": 25788.44, + "probability": 0.7585 + }, + { + "start": 25789.56, + "end": 25790.32, + "probability": 0.8244 + }, + { + "start": 25790.96, + "end": 25791.72, + "probability": 0.8977 + }, + { + "start": 25794.12, + "end": 25794.94, + "probability": 0.9464 + }, + { + "start": 25795.5, + "end": 25796.56, + "probability": 0.869 + }, + { + "start": 25798.4, + "end": 25800.28, + "probability": 0.9477 + }, + { + "start": 25803.0, + "end": 25803.96, + "probability": 0.9412 + }, + { + "start": 25804.54, + "end": 25806.26, + "probability": 0.7961 + }, + { + "start": 25807.48, + "end": 25808.57, + "probability": 0.5129 + }, + { + "start": 25809.42, + "end": 25809.92, + "probability": 0.52 + }, + { + "start": 25810.9, + "end": 25812.02, + "probability": 0.7726 + }, + { + "start": 25812.94, + "end": 25813.22, + "probability": 0.979 + }, + { + "start": 25813.84, + "end": 25815.06, + "probability": 0.8341 + }, + { + "start": 25815.68, + "end": 25815.98, + "probability": 0.9893 + }, + { + "start": 25816.62, + "end": 25817.34, + "probability": 0.9102 + }, + { + "start": 25819.19, + "end": 25821.3, + "probability": 0.9701 + }, + { + "start": 25822.32, + "end": 25824.14, + "probability": 0.9734 + }, + { + "start": 25829.62, + "end": 25831.6, + "probability": 0.8178 + }, + { + "start": 25833.14, + "end": 25833.6, + "probability": 0.7778 + }, + { + "start": 25834.38, + "end": 25835.48, + "probability": 0.8867 + }, + { + "start": 25836.86, + "end": 25837.74, + "probability": 0.9427 + }, + { + "start": 25839.04, + "end": 25839.98, + "probability": 0.7153 + }, + { + "start": 25844.28, + "end": 25845.9, + "probability": 0.981 + }, + { + "start": 25849.52, + "end": 25852.46, + "probability": 0.5191 + }, + { + "start": 25853.16, + "end": 25853.5, + "probability": 0.6172 + }, + { + "start": 25854.8, + "end": 25855.92, + "probability": 0.8242 + }, + { + "start": 25857.06, + "end": 25858.88, + "probability": 0.9526 + }, + { + "start": 25859.78, + "end": 25861.72, + "probability": 0.9294 + }, + { + "start": 25864.38, + "end": 25865.68, + "probability": 0.9199 + }, + { + "start": 25866.5, + "end": 25866.86, + "probability": 0.573 + }, + { + "start": 25870.7, + "end": 25872.84, + "probability": 0.7321 + }, + { + "start": 25874.56, + "end": 25875.34, + "probability": 0.5338 + }, + { + "start": 25876.06, + "end": 25876.48, + "probability": 0.5984 + }, + { + "start": 25877.84, + "end": 25878.72, + "probability": 0.829 + }, + { + "start": 25880.1, + "end": 25880.6, + "probability": 0.9666 + }, + { + "start": 25881.88, + "end": 25882.66, + "probability": 0.7916 + }, + { + "start": 25885.52, + "end": 25886.68, + "probability": 0.9817 + }, + { + "start": 25887.9, + "end": 25888.68, + "probability": 0.8659 + }, + { + "start": 25891.02, + "end": 25891.96, + "probability": 0.9934 + }, + { + "start": 25892.56, + "end": 25893.46, + "probability": 0.8102 + }, + { + "start": 25895.9, + "end": 25897.8, + "probability": 0.5115 + }, + { + "start": 25898.48, + "end": 25899.0, + "probability": 0.5632 + }, + { + "start": 25900.44, + "end": 25901.2, + "probability": 0.6738 + }, + { + "start": 25901.92, + "end": 25902.42, + "probability": 0.9763 + }, + { + "start": 25902.98, + "end": 25903.8, + "probability": 0.976 + }, + { + "start": 25904.76, + "end": 25905.12, + "probability": 0.9917 + }, + { + "start": 25905.82, + "end": 25906.66, + "probability": 0.9412 + }, + { + "start": 25907.72, + "end": 25909.62, + "probability": 0.979 + }, + { + "start": 25917.26, + "end": 25917.74, + "probability": 0.9175 + }, + { + "start": 25918.72, + "end": 25922.74, + "probability": 0.8934 + }, + { + "start": 25926.28, + "end": 25928.88, + "probability": 0.7493 + }, + { + "start": 25929.8, + "end": 25932.02, + "probability": 0.8359 + }, + { + "start": 25934.44, + "end": 25935.94, + "probability": 0.8812 + }, + { + "start": 25937.32, + "end": 25937.8, + "probability": 0.7712 + }, + { + "start": 25938.54, + "end": 25939.54, + "probability": 0.9033 + }, + { + "start": 25943.12, + "end": 25945.5, + "probability": 0.9341 + }, + { + "start": 25946.66, + "end": 25946.98, + "probability": 0.9727 + }, + { + "start": 25947.98, + "end": 25948.72, + "probability": 0.9412 + }, + { + "start": 25951.98, + "end": 25953.66, + "probability": 0.521 + }, + { + "start": 25954.64, + "end": 25955.36, + "probability": 0.5723 + }, + { + "start": 25956.54, + "end": 25958.48, + "probability": 0.8528 + }, + { + "start": 25965.66, + "end": 25968.7, + "probability": 0.8763 + }, + { + "start": 25969.92, + "end": 25970.54, + "probability": 0.9631 + }, + { + "start": 25971.94, + "end": 25972.9, + "probability": 0.8575 + }, + { + "start": 25975.58, + "end": 25978.02, + "probability": 0.0763 + }, + { + "start": 25984.8, + "end": 25985.72, + "probability": 0.2419 + }, + { + "start": 25988.46, + "end": 25990.4, + "probability": 0.917 + }, + { + "start": 25991.82, + "end": 25994.54, + "probability": 0.7002 + }, + { + "start": 25995.22, + "end": 25997.54, + "probability": 0.8596 + }, + { + "start": 26004.32, + "end": 26004.78, + "probability": 0.5839 + }, + { + "start": 26005.54, + "end": 26006.42, + "probability": 0.8139 + }, + { + "start": 26008.8, + "end": 26011.74, + "probability": 0.8821 + }, + { + "start": 26012.74, + "end": 26013.1, + "probability": 0.9553 + }, + { + "start": 26014.06, + "end": 26015.36, + "probability": 0.8451 + }, + { + "start": 26018.1, + "end": 26019.82, + "probability": 0.8142 + }, + { + "start": 26021.48, + "end": 26022.32, + "probability": 0.4761 + }, + { + "start": 26022.9, + "end": 26025.34, + "probability": 0.664 + }, + { + "start": 26027.3, + "end": 26028.36, + "probability": 0.9454 + }, + { + "start": 26029.34, + "end": 26031.66, + "probability": 0.7189 + }, + { + "start": 26032.53, + "end": 26036.14, + "probability": 0.9961 + }, + { + "start": 26037.94, + "end": 26038.92, + "probability": 0.2084 + }, + { + "start": 26039.94, + "end": 26041.5, + "probability": 0.6669 + }, + { + "start": 26042.14, + "end": 26044.26, + "probability": 0.8231 + }, + { + "start": 26046.96, + "end": 26048.66, + "probability": 0.7724 + }, + { + "start": 26051.04, + "end": 26052.4, + "probability": 0.7893 + }, + { + "start": 26053.34, + "end": 26053.88, + "probability": 0.7382 + }, + { + "start": 26055.52, + "end": 26056.32, + "probability": 0.8659 + }, + { + "start": 26057.98, + "end": 26060.54, + "probability": 0.946 + }, + { + "start": 26062.26, + "end": 26063.86, + "probability": 0.9851 + }, + { + "start": 26065.46, + "end": 26065.96, + "probability": 0.9934 + }, + { + "start": 26068.26, + "end": 26069.8, + "probability": 0.9912 + }, + { + "start": 26070.5, + "end": 26071.1, + "probability": 0.9702 + }, + { + "start": 26072.98, + "end": 26073.78, + "probability": 0.9375 + }, + { + "start": 26075.66, + "end": 26076.42, + "probability": 0.9812 + }, + { + "start": 26077.34, + "end": 26078.14, + "probability": 0.6921 + }, + { + "start": 26081.18, + "end": 26082.72, + "probability": 0.9266 + }, + { + "start": 26084.98, + "end": 26085.86, + "probability": 0.8441 + }, + { + "start": 26086.4, + "end": 26087.48, + "probability": 0.9447 + }, + { + "start": 26090.66, + "end": 26093.44, + "probability": 0.9475 + }, + { + "start": 26095.12, + "end": 26095.86, + "probability": 0.8868 + }, + { + "start": 26098.8, + "end": 26099.78, + "probability": 0.9421 + }, + { + "start": 26100.48, + "end": 26101.32, + "probability": 0.9468 + }, + { + "start": 26101.88, + "end": 26103.6, + "probability": 0.9143 + }, + { + "start": 26106.84, + "end": 26107.76, + "probability": 0.7768 + }, + { + "start": 26108.42, + "end": 26109.2, + "probability": 0.5228 + }, + { + "start": 26110.14, + "end": 26110.7, + "probability": 0.6852 + }, + { + "start": 26113.44, + "end": 26114.56, + "probability": 0.7706 + }, + { + "start": 26115.86, + "end": 26117.76, + "probability": 0.7336 + }, + { + "start": 26119.08, + "end": 26120.54, + "probability": 0.9351 + }, + { + "start": 26121.5, + "end": 26122.36, + "probability": 0.7061 + }, + { + "start": 26123.56, + "end": 26124.84, + "probability": 0.9722 + }, + { + "start": 26125.86, + "end": 26126.78, + "probability": 0.6912 + }, + { + "start": 26128.4, + "end": 26130.16, + "probability": 0.7496 + }, + { + "start": 26130.24, + "end": 26132.26, + "probability": 0.4843 + }, + { + "start": 26132.3, + "end": 26132.8, + "probability": 0.5294 + }, + { + "start": 26133.38, + "end": 26134.28, + "probability": 0.4998 + }, + { + "start": 26136.98, + "end": 26138.0, + "probability": 0.9685 + }, + { + "start": 26139.12, + "end": 26139.84, + "probability": 0.9309 + }, + { + "start": 26140.6, + "end": 26141.34, + "probability": 0.9809 + }, + { + "start": 26142.88, + "end": 26143.78, + "probability": 0.9342 + }, + { + "start": 26145.98, + "end": 26146.92, + "probability": 0.9777 + }, + { + "start": 26148.3, + "end": 26148.82, + "probability": 0.8503 + }, + { + "start": 26149.98, + "end": 26150.46, + "probability": 0.9355 + }, + { + "start": 26152.96, + "end": 26153.64, + "probability": 0.9088 + }, + { + "start": 26155.62, + "end": 26157.46, + "probability": 0.8997 + }, + { + "start": 26160.54, + "end": 26163.24, + "probability": 0.7035 + }, + { + "start": 26164.7, + "end": 26166.54, + "probability": 0.8724 + }, + { + "start": 26167.32, + "end": 26169.22, + "probability": 0.6206 + }, + { + "start": 26169.74, + "end": 26174.14, + "probability": 0.8637 + }, + { + "start": 26175.58, + "end": 26177.8, + "probability": 0.9342 + }, + { + "start": 26180.0, + "end": 26182.44, + "probability": 0.6412 + }, + { + "start": 26183.2, + "end": 26183.92, + "probability": 0.9798 + }, + { + "start": 26184.96, + "end": 26185.9, + "probability": 0.6232 + }, + { + "start": 26188.66, + "end": 26191.14, + "probability": 0.7664 + }, + { + "start": 26192.78, + "end": 26193.76, + "probability": 0.7209 + }, + { + "start": 26194.42, + "end": 26194.96, + "probability": 0.9302 + }, + { + "start": 26196.76, + "end": 26197.5, + "probability": 0.7515 + }, + { + "start": 26199.94, + "end": 26201.4, + "probability": 0.983 + }, + { + "start": 26201.94, + "end": 26202.74, + "probability": 0.8372 + }, + { + "start": 26203.26, + "end": 26205.18, + "probability": 0.871 + }, + { + "start": 26205.7, + "end": 26208.5, + "probability": 0.8998 + }, + { + "start": 26209.96, + "end": 26211.02, + "probability": 0.9051 + }, + { + "start": 26211.64, + "end": 26214.64, + "probability": 0.7753 + }, + { + "start": 26215.94, + "end": 26217.78, + "probability": 0.9234 + }, + { + "start": 26220.98, + "end": 26221.92, + "probability": 0.7133 + }, + { + "start": 26223.0, + "end": 26223.78, + "probability": 0.934 + }, + { + "start": 26225.66, + "end": 26227.4, + "probability": 0.9148 + }, + { + "start": 26228.54, + "end": 26230.12, + "probability": 0.9772 + }, + { + "start": 26231.12, + "end": 26232.7, + "probability": 0.9514 + }, + { + "start": 26235.08, + "end": 26237.0, + "probability": 0.6825 + }, + { + "start": 26237.42, + "end": 26238.86, + "probability": 0.8639 + }, + { + "start": 26239.06, + "end": 26240.56, + "probability": 0.9302 + }, + { + "start": 26241.64, + "end": 26244.7, + "probability": 0.9867 + }, + { + "start": 26246.47, + "end": 26247.26, + "probability": 0.5371 + }, + { + "start": 26248.98, + "end": 26249.42, + "probability": 0.7084 + }, + { + "start": 26251.92, + "end": 26254.04, + "probability": 0.0847 + }, + { + "start": 26254.04, + "end": 26255.09, + "probability": 0.0052 + }, + { + "start": 26308.72, + "end": 26309.82, + "probability": 0.146 + }, + { + "start": 26312.24, + "end": 26313.64, + "probability": 0.0447 + }, + { + "start": 26315.58, + "end": 26319.48, + "probability": 0.0849 + }, + { + "start": 26321.08, + "end": 26321.62, + "probability": 0.1431 + }, + { + "start": 26325.66, + "end": 26331.92, + "probability": 0.0514 + }, + { + "start": 26429.0, + "end": 26429.0, + "probability": 0.0 + }, + { + "start": 26429.0, + "end": 26429.0, + "probability": 0.0 + }, + { + "start": 26429.0, + "end": 26429.0, + "probability": 0.0 + }, + { + "start": 26429.0, + "end": 26429.0, + "probability": 0.0 + }, + { + "start": 26429.0, + "end": 26429.0, + "probability": 0.0 + }, + { + "start": 26429.0, + "end": 26429.0, + "probability": 0.0 + }, + { + "start": 26429.26, + "end": 26429.46, + "probability": 0.0605 + }, + { + "start": 26429.46, + "end": 26429.46, + "probability": 0.0649 + }, + { + "start": 26429.46, + "end": 26432.1, + "probability": 0.6796 + }, + { + "start": 26432.22, + "end": 26433.54, + "probability": 0.9634 + }, + { + "start": 26434.2, + "end": 26435.06, + "probability": 0.6915 + }, + { + "start": 26435.84, + "end": 26440.1, + "probability": 0.9783 + }, + { + "start": 26440.78, + "end": 26443.28, + "probability": 0.9878 + }, + { + "start": 26444.08, + "end": 26447.13, + "probability": 0.9974 + }, + { + "start": 26448.38, + "end": 26452.44, + "probability": 0.9951 + }, + { + "start": 26452.44, + "end": 26456.28, + "probability": 0.9968 + }, + { + "start": 26456.76, + "end": 26458.66, + "probability": 0.5381 + }, + { + "start": 26459.02, + "end": 26462.26, + "probability": 0.9614 + }, + { + "start": 26462.26, + "end": 26466.78, + "probability": 0.7346 + }, + { + "start": 26467.08, + "end": 26467.18, + "probability": 0.0074 + }, + { + "start": 26467.18, + "end": 26470.88, + "probability": 0.6469 + }, + { + "start": 26471.08, + "end": 26473.3, + "probability": 0.3437 + }, + { + "start": 26473.56, + "end": 26477.34, + "probability": 0.8873 + }, + { + "start": 26482.74, + "end": 26485.26, + "probability": 0.5235 + }, + { + "start": 26485.66, + "end": 26485.66, + "probability": 0.0272 + }, + { + "start": 26485.66, + "end": 26489.58, + "probability": 0.3072 + }, + { + "start": 26490.84, + "end": 26494.24, + "probability": 0.635 + }, + { + "start": 26495.78, + "end": 26496.32, + "probability": 0.5174 + }, + { + "start": 26496.52, + "end": 26498.3, + "probability": 0.9164 + }, + { + "start": 26498.3, + "end": 26501.36, + "probability": 0.7692 + }, + { + "start": 26502.04, + "end": 26503.86, + "probability": 0.8959 + }, + { + "start": 26504.52, + "end": 26506.62, + "probability": 0.5165 + }, + { + "start": 26507.2, + "end": 26508.4, + "probability": 0.9237 + }, + { + "start": 26508.96, + "end": 26512.18, + "probability": 0.9883 + }, + { + "start": 26512.22, + "end": 26512.84, + "probability": 0.9128 + }, + { + "start": 26523.7, + "end": 26527.58, + "probability": 0.6559 + }, + { + "start": 26528.54, + "end": 26530.34, + "probability": 0.9499 + }, + { + "start": 26531.4, + "end": 26535.3, + "probability": 0.9956 + }, + { + "start": 26535.5, + "end": 26537.38, + "probability": 0.4458 + }, + { + "start": 26537.48, + "end": 26539.36, + "probability": 0.9402 + }, + { + "start": 26539.6, + "end": 26546.16, + "probability": 0.9883 + }, + { + "start": 26546.84, + "end": 26549.78, + "probability": 0.9987 + }, + { + "start": 26550.58, + "end": 26556.7, + "probability": 0.9594 + }, + { + "start": 26556.7, + "end": 26562.82, + "probability": 0.9846 + }, + { + "start": 26564.1, + "end": 26565.18, + "probability": 0.4391 + }, + { + "start": 26566.96, + "end": 26567.58, + "probability": 0.8091 + }, + { + "start": 26568.78, + "end": 26569.22, + "probability": 0.2997 + }, + { + "start": 26570.02, + "end": 26570.92, + "probability": 0.6275 + }, + { + "start": 26571.22, + "end": 26571.52, + "probability": 0.3378 + }, + { + "start": 26572.44, + "end": 26573.17, + "probability": 0.9653 + }, + { + "start": 26573.32, + "end": 26575.66, + "probability": 0.9978 + }, + { + "start": 26575.84, + "end": 26577.02, + "probability": 0.6021 + }, + { + "start": 26579.4, + "end": 26582.04, + "probability": 0.7921 + }, + { + "start": 26582.14, + "end": 26584.06, + "probability": 0.9987 + }, + { + "start": 26586.64, + "end": 26591.24, + "probability": 0.6653 + }, + { + "start": 26591.8, + "end": 26600.34, + "probability": 0.902 + }, + { + "start": 26600.34, + "end": 26603.76, + "probability": 0.9955 + }, + { + "start": 26604.82, + "end": 26609.04, + "probability": 0.9991 + }, + { + "start": 26609.04, + "end": 26612.94, + "probability": 0.9993 + }, + { + "start": 26613.64, + "end": 26615.84, + "probability": 0.9988 + }, + { + "start": 26616.6, + "end": 26618.82, + "probability": 0.9988 + }, + { + "start": 26619.6, + "end": 26624.68, + "probability": 0.9956 + }, + { + "start": 26625.4, + "end": 26631.2, + "probability": 0.9965 + }, + { + "start": 26632.04, + "end": 26636.54, + "probability": 0.9784 + }, + { + "start": 26637.02, + "end": 26637.9, + "probability": 0.8264 + }, + { + "start": 26638.3, + "end": 26641.48, + "probability": 0.9816 + }, + { + "start": 26642.74, + "end": 26646.9, + "probability": 0.9891 + }, + { + "start": 26647.06, + "end": 26649.18, + "probability": 0.9478 + }, + { + "start": 26649.74, + "end": 26653.56, + "probability": 0.9858 + }, + { + "start": 26654.78, + "end": 26657.06, + "probability": 0.873 + }, + { + "start": 26663.06, + "end": 26663.18, + "probability": 0.2057 + }, + { + "start": 26663.18, + "end": 26668.24, + "probability": 0.629 + }, + { + "start": 26668.24, + "end": 26672.18, + "probability": 0.6183 + }, + { + "start": 26672.64, + "end": 26676.56, + "probability": 0.0637 + }, + { + "start": 26676.76, + "end": 26677.46, + "probability": 0.0093 + }, + { + "start": 26678.08, + "end": 26681.02, + "probability": 0.2536 + }, + { + "start": 26681.16, + "end": 26683.42, + "probability": 0.6464 + }, + { + "start": 26684.06, + "end": 26689.1, + "probability": 0.9927 + }, + { + "start": 26690.4, + "end": 26693.5, + "probability": 0.4966 + }, + { + "start": 26694.18, + "end": 26696.24, + "probability": 0.9596 + }, + { + "start": 26696.32, + "end": 26697.26, + "probability": 0.9697 + }, + { + "start": 26697.36, + "end": 26700.38, + "probability": 0.7529 + }, + { + "start": 26700.72, + "end": 26705.36, + "probability": 0.9983 + }, + { + "start": 26705.36, + "end": 26708.44, + "probability": 0.9966 + }, + { + "start": 26708.92, + "end": 26711.46, + "probability": 0.8405 + }, + { + "start": 26712.72, + "end": 26715.68, + "probability": 0.5493 + }, + { + "start": 26715.82, + "end": 26718.74, + "probability": 0.505 + }, + { + "start": 26719.0, + "end": 26719.68, + "probability": 0.9293 + }, + { + "start": 26719.8, + "end": 26721.58, + "probability": 0.9331 + }, + { + "start": 26721.64, + "end": 26723.97, + "probability": 0.7819 + }, + { + "start": 26724.54, + "end": 26725.86, + "probability": 0.9807 + }, + { + "start": 26725.98, + "end": 26728.25, + "probability": 0.9612 + }, + { + "start": 26729.32, + "end": 26733.08, + "probability": 0.9561 + }, + { + "start": 26733.12, + "end": 26739.28, + "probability": 0.9956 + }, + { + "start": 26740.04, + "end": 26740.22, + "probability": 0.0269 + }, + { + "start": 26740.22, + "end": 26742.44, + "probability": 0.6237 + }, + { + "start": 26742.46, + "end": 26747.86, + "probability": 0.9465 + }, + { + "start": 26748.1, + "end": 26749.62, + "probability": 0.9201 + }, + { + "start": 26750.22, + "end": 26755.26, + "probability": 0.968 + }, + { + "start": 26755.46, + "end": 26761.0, + "probability": 0.9906 + }, + { + "start": 26761.9, + "end": 26766.58, + "probability": 0.036 + }, + { + "start": 26768.62, + "end": 26768.88, + "probability": 0.0522 + }, + { + "start": 26768.88, + "end": 26770.7, + "probability": 0.2233 + }, + { + "start": 26771.07, + "end": 26774.0, + "probability": 0.7917 + }, + { + "start": 26774.16, + "end": 26777.08, + "probability": 0.8754 + }, + { + "start": 26777.86, + "end": 26784.48, + "probability": 0.5956 + }, + { + "start": 26784.98, + "end": 26787.24, + "probability": 0.8874 + }, + { + "start": 26787.86, + "end": 26793.1, + "probability": 0.9456 + }, + { + "start": 26793.8, + "end": 26797.74, + "probability": 0.993 + }, + { + "start": 26797.74, + "end": 26803.28, + "probability": 0.9934 + }, + { + "start": 26803.82, + "end": 26806.74, + "probability": 0.8869 + }, + { + "start": 26806.74, + "end": 26809.84, + "probability": 0.9782 + }, + { + "start": 26810.38, + "end": 26815.24, + "probability": 0.9884 + }, + { + "start": 26816.46, + "end": 26818.7, + "probability": 0.9735 + }, + { + "start": 26818.7, + "end": 26820.9, + "probability": 0.9938 + }, + { + "start": 26820.94, + "end": 26823.22, + "probability": 0.9769 + }, + { + "start": 26823.22, + "end": 26825.95, + "probability": 0.9961 + }, + { + "start": 26827.4, + "end": 26832.82, + "probability": 0.9936 + }, + { + "start": 26832.82, + "end": 26839.24, + "probability": 0.999 + }, + { + "start": 26839.7, + "end": 26844.62, + "probability": 0.9634 + }, + { + "start": 26845.42, + "end": 26851.54, + "probability": 0.993 + }, + { + "start": 26853.0, + "end": 26853.9, + "probability": 0.8237 + }, + { + "start": 26854.08, + "end": 26855.27, + "probability": 0.9553 + }, + { + "start": 26855.46, + "end": 26858.9, + "probability": 0.9583 + }, + { + "start": 26859.72, + "end": 26863.54, + "probability": 0.958 + }, + { + "start": 26863.54, + "end": 26866.76, + "probability": 0.9833 + }, + { + "start": 26866.94, + "end": 26874.28, + "probability": 0.9919 + }, + { + "start": 26875.48, + "end": 26876.3, + "probability": 0.1531 + }, + { + "start": 26876.3, + "end": 26879.36, + "probability": 0.9414 + }, + { + "start": 26879.44, + "end": 26880.28, + "probability": 0.8948 + }, + { + "start": 26880.5, + "end": 26883.48, + "probability": 0.9846 + }, + { + "start": 26885.84, + "end": 26886.28, + "probability": 0.023 + }, + { + "start": 26886.36, + "end": 26892.04, + "probability": 0.9763 + }, + { + "start": 26892.04, + "end": 26895.92, + "probability": 0.9961 + }, + { + "start": 26896.48, + "end": 26899.9, + "probability": 0.999 + }, + { + "start": 26900.44, + "end": 26905.1, + "probability": 0.9879 + }, + { + "start": 26905.1, + "end": 26907.8, + "probability": 0.9995 + }, + { + "start": 26908.06, + "end": 26914.68, + "probability": 0.9735 + }, + { + "start": 26915.06, + "end": 26915.4, + "probability": 0.8326 + }, + { + "start": 26916.88, + "end": 26919.92, + "probability": 0.9177 + }, + { + "start": 26921.18, + "end": 26924.12, + "probability": 0.8235 + }, + { + "start": 26925.0, + "end": 26927.72, + "probability": 0.9071 + }, + { + "start": 26930.43, + "end": 26932.02, + "probability": 0.3458 + }, + { + "start": 26932.16, + "end": 26933.42, + "probability": 0.7489 + }, + { + "start": 26933.44, + "end": 26934.64, + "probability": 0.7458 + }, + { + "start": 26935.1, + "end": 26937.68, + "probability": 0.9352 + }, + { + "start": 26938.3, + "end": 26940.08, + "probability": 0.9858 + }, + { + "start": 26940.08, + "end": 26943.74, + "probability": 0.9662 + }, + { + "start": 26943.8, + "end": 26946.22, + "probability": 0.9218 + }, + { + "start": 26946.22, + "end": 26948.3, + "probability": 0.9771 + }, + { + "start": 26949.18, + "end": 26951.14, + "probability": 0.8472 + }, + { + "start": 26951.28, + "end": 26952.36, + "probability": 0.8927 + }, + { + "start": 26952.74, + "end": 26955.88, + "probability": 0.8114 + }, + { + "start": 26955.92, + "end": 26956.36, + "probability": 0.8243 + }, + { + "start": 26956.46, + "end": 26956.81, + "probability": 0.2732 + }, + { + "start": 26957.52, + "end": 26958.16, + "probability": 0.1923 + }, + { + "start": 26958.4, + "end": 26960.34, + "probability": 0.5579 + }, + { + "start": 26960.62, + "end": 26963.18, + "probability": 0.4105 + }, + { + "start": 26963.34, + "end": 26964.62, + "probability": 0.2101 + }, + { + "start": 26965.14, + "end": 26966.28, + "probability": 0.8834 + }, + { + "start": 26966.4, + "end": 26967.45, + "probability": 0.7673 + }, + { + "start": 26968.54, + "end": 26968.9, + "probability": 0.4455 + }, + { + "start": 26968.96, + "end": 26972.58, + "probability": 0.8027 + }, + { + "start": 26974.3, + "end": 26976.46, + "probability": 0.6407 + }, + { + "start": 26977.52, + "end": 26978.32, + "probability": 0.9402 + }, + { + "start": 26978.96, + "end": 26979.54, + "probability": 0.9451 + }, + { + "start": 26980.2, + "end": 26980.92, + "probability": 0.9217 + }, + { + "start": 26981.44, + "end": 26983.16, + "probability": 0.8174 + }, + { + "start": 26984.08, + "end": 26984.66, + "probability": 0.9702 + }, + { + "start": 26985.7, + "end": 26990.0, + "probability": 0.8593 + }, + { + "start": 26991.22, + "end": 26997.9, + "probability": 0.9897 + }, + { + "start": 26998.08, + "end": 27002.1, + "probability": 0.9932 + }, + { + "start": 27002.1, + "end": 27005.12, + "probability": 0.9995 + }, + { + "start": 27006.36, + "end": 27010.2, + "probability": 0.9419 + }, + { + "start": 27010.86, + "end": 27017.32, + "probability": 0.9973 + }, + { + "start": 27017.5, + "end": 27019.55, + "probability": 0.9476 + }, + { + "start": 27020.9, + "end": 27021.12, + "probability": 0.7601 + }, + { + "start": 27021.2, + "end": 27024.66, + "probability": 0.9541 + }, + { + "start": 27024.8, + "end": 27026.2, + "probability": 0.979 + }, + { + "start": 27026.44, + "end": 27027.22, + "probability": 0.6199 + }, + { + "start": 27027.84, + "end": 27029.32, + "probability": 0.9823 + }, + { + "start": 27029.52, + "end": 27031.22, + "probability": 0.9801 + }, + { + "start": 27032.52, + "end": 27034.8, + "probability": 0.9784 + }, + { + "start": 27034.94, + "end": 27036.66, + "probability": 0.9551 + }, + { + "start": 27037.12, + "end": 27037.66, + "probability": 0.6957 + }, + { + "start": 27037.7, + "end": 27042.46, + "probability": 0.9927 + }, + { + "start": 27042.88, + "end": 27043.86, + "probability": 0.8192 + }, + { + "start": 27044.18, + "end": 27045.3, + "probability": 0.8662 + }, + { + "start": 27045.86, + "end": 27050.08, + "probability": 0.9479 + }, + { + "start": 27051.08, + "end": 27055.3, + "probability": 0.9065 + }, + { + "start": 27056.2, + "end": 27059.52, + "probability": 0.9579 + }, + { + "start": 27060.32, + "end": 27064.0, + "probability": 0.9945 + }, + { + "start": 27064.78, + "end": 27066.62, + "probability": 0.9961 + }, + { + "start": 27067.46, + "end": 27069.64, + "probability": 0.8605 + }, + { + "start": 27070.1, + "end": 27074.96, + "probability": 0.9408 + }, + { + "start": 27076.04, + "end": 27079.9, + "probability": 0.9871 + }, + { + "start": 27080.56, + "end": 27081.88, + "probability": 0.8301 + }, + { + "start": 27082.16, + "end": 27085.1, + "probability": 0.6447 + }, + { + "start": 27086.8, + "end": 27091.18, + "probability": 0.9641 + }, + { + "start": 27091.36, + "end": 27092.48, + "probability": 0.8452 + }, + { + "start": 27094.36, + "end": 27095.12, + "probability": 0.6663 + }, + { + "start": 27095.36, + "end": 27099.34, + "probability": 0.9796 + }, + { + "start": 27099.38, + "end": 27101.14, + "probability": 0.9571 + }, + { + "start": 27101.32, + "end": 27102.42, + "probability": 0.9638 + }, + { + "start": 27102.64, + "end": 27102.88, + "probability": 0.7817 + }, + { + "start": 27104.18, + "end": 27105.68, + "probability": 0.8711 + }, + { + "start": 27105.98, + "end": 27108.44, + "probability": 0.8862 + }, + { + "start": 27124.26, + "end": 27124.3, + "probability": 0.789 + }, + { + "start": 27124.3, + "end": 27124.7, + "probability": 0.6716 + }, + { + "start": 27125.24, + "end": 27125.34, + "probability": 0.8438 + }, + { + "start": 27129.98, + "end": 27130.48, + "probability": 0.5355 + }, + { + "start": 27130.54, + "end": 27131.76, + "probability": 0.6923 + }, + { + "start": 27133.22, + "end": 27136.56, + "probability": 0.9397 + }, + { + "start": 27137.44, + "end": 27139.12, + "probability": 0.205 + }, + { + "start": 27139.56, + "end": 27145.9, + "probability": 0.9657 + }, + { + "start": 27146.46, + "end": 27153.86, + "probability": 0.9925 + }, + { + "start": 27154.04, + "end": 27155.52, + "probability": 0.7504 + }, + { + "start": 27156.24, + "end": 27159.9, + "probability": 0.9977 + }, + { + "start": 27160.82, + "end": 27164.46, + "probability": 0.9724 + }, + { + "start": 27164.7, + "end": 27168.16, + "probability": 0.8679 + }, + { + "start": 27169.24, + "end": 27176.4, + "probability": 0.9985 + }, + { + "start": 27178.52, + "end": 27183.02, + "probability": 0.994 + }, + { + "start": 27183.02, + "end": 27185.38, + "probability": 0.9987 + }, + { + "start": 27186.32, + "end": 27187.6, + "probability": 0.5669 + }, + { + "start": 27188.26, + "end": 27189.12, + "probability": 0.9133 + }, + { + "start": 27189.98, + "end": 27191.9, + "probability": 0.8002 + }, + { + "start": 27192.14, + "end": 27195.82, + "probability": 0.9956 + }, + { + "start": 27197.06, + "end": 27200.86, + "probability": 0.9912 + }, + { + "start": 27200.86, + "end": 27206.14, + "probability": 0.9941 + }, + { + "start": 27206.94, + "end": 27209.96, + "probability": 0.9678 + }, + { + "start": 27210.42, + "end": 27210.74, + "probability": 0.7994 + }, + { + "start": 27210.88, + "end": 27214.68, + "probability": 0.9108 + }, + { + "start": 27215.36, + "end": 27217.32, + "probability": 0.7893 + }, + { + "start": 27217.78, + "end": 27219.89, + "probability": 0.9846 + }, + { + "start": 27220.46, + "end": 27221.62, + "probability": 0.8802 + }, + { + "start": 27221.68, + "end": 27225.62, + "probability": 0.872 + }, + { + "start": 27226.64, + "end": 27235.8, + "probability": 0.9667 + }, + { + "start": 27235.8, + "end": 27240.76, + "probability": 0.9992 + }, + { + "start": 27242.04, + "end": 27242.82, + "probability": 0.5687 + }, + { + "start": 27243.52, + "end": 27244.7, + "probability": 0.8716 + }, + { + "start": 27245.62, + "end": 27247.72, + "probability": 0.9788 + }, + { + "start": 27247.84, + "end": 27249.84, + "probability": 0.999 + }, + { + "start": 27250.68, + "end": 27254.08, + "probability": 0.8726 + }, + { + "start": 27254.46, + "end": 27255.87, + "probability": 0.8362 + }, + { + "start": 27256.78, + "end": 27258.34, + "probability": 0.9969 + }, + { + "start": 27260.26, + "end": 27263.14, + "probability": 0.9731 + }, + { + "start": 27263.56, + "end": 27264.52, + "probability": 0.7532 + }, + { + "start": 27264.56, + "end": 27265.28, + "probability": 0.8738 + }, + { + "start": 27266.2, + "end": 27268.02, + "probability": 0.8364 + }, + { + "start": 27269.9, + "end": 27272.24, + "probability": 0.9846 + }, + { + "start": 27272.4, + "end": 27274.82, + "probability": 0.7483 + }, + { + "start": 27275.48, + "end": 27276.12, + "probability": 0.6521 + }, + { + "start": 27277.26, + "end": 27279.14, + "probability": 0.8791 + }, + { + "start": 27279.9, + "end": 27280.58, + "probability": 0.6572 + }, + { + "start": 27281.36, + "end": 27282.7, + "probability": 0.9077 + }, + { + "start": 27298.16, + "end": 27298.16, + "probability": 0.6436 + }, + { + "start": 27298.2, + "end": 27299.14, + "probability": 0.6 + }, + { + "start": 27301.7, + "end": 27302.36, + "probability": 0.7269 + }, + { + "start": 27303.46, + "end": 27304.18, + "probability": 0.6016 + }, + { + "start": 27304.24, + "end": 27305.78, + "probability": 0.4445 + }, + { + "start": 27305.84, + "end": 27307.5, + "probability": 0.9346 + }, + { + "start": 27308.32, + "end": 27310.78, + "probability": 0.8716 + }, + { + "start": 27311.92, + "end": 27318.1, + "probability": 0.9451 + }, + { + "start": 27319.1, + "end": 27321.24, + "probability": 0.9967 + }, + { + "start": 27321.8, + "end": 27323.22, + "probability": 0.9979 + }, + { + "start": 27324.5, + "end": 27326.56, + "probability": 0.958 + }, + { + "start": 27327.32, + "end": 27329.78, + "probability": 0.9965 + }, + { + "start": 27330.96, + "end": 27337.02, + "probability": 0.8403 + }, + { + "start": 27338.04, + "end": 27338.66, + "probability": 0.8475 + }, + { + "start": 27339.64, + "end": 27345.86, + "probability": 0.9969 + }, + { + "start": 27347.16, + "end": 27354.06, + "probability": 0.8966 + }, + { + "start": 27354.48, + "end": 27355.94, + "probability": 0.3845 + }, + { + "start": 27356.96, + "end": 27358.06, + "probability": 0.2039 + }, + { + "start": 27358.12, + "end": 27359.67, + "probability": 0.1046 + }, + { + "start": 27360.3, + "end": 27363.8, + "probability": 0.8819 + }, + { + "start": 27364.32, + "end": 27365.3, + "probability": 0.9893 + }, + { + "start": 27366.26, + "end": 27366.8, + "probability": 0.7305 + }, + { + "start": 27367.94, + "end": 27369.36, + "probability": 0.0114 + }, + { + "start": 27369.84, + "end": 27376.64, + "probability": 0.8543 + }, + { + "start": 27376.76, + "end": 27379.2, + "probability": 0.9042 + }, + { + "start": 27379.88, + "end": 27384.34, + "probability": 0.934 + }, + { + "start": 27384.34, + "end": 27389.54, + "probability": 0.9057 + }, + { + "start": 27390.52, + "end": 27392.4, + "probability": 0.767 + }, + { + "start": 27393.36, + "end": 27396.28, + "probability": 0.7812 + }, + { + "start": 27396.28, + "end": 27398.54, + "probability": 0.5894 + }, + { + "start": 27399.9, + "end": 27401.18, + "probability": 0.9641 + }, + { + "start": 27401.3, + "end": 27405.98, + "probability": 0.9243 + }, + { + "start": 27406.74, + "end": 27409.94, + "probability": 0.986 + }, + { + "start": 27410.64, + "end": 27414.3, + "probability": 0.649 + }, + { + "start": 27414.84, + "end": 27416.98, + "probability": 0.8538 + }, + { + "start": 27417.58, + "end": 27419.78, + "probability": 0.9061 + }, + { + "start": 27420.38, + "end": 27422.08, + "probability": 0.9749 + }, + { + "start": 27422.68, + "end": 27423.96, + "probability": 0.9712 + }, + { + "start": 27424.96, + "end": 27426.32, + "probability": 0.8474 + }, + { + "start": 27427.0, + "end": 27430.68, + "probability": 0.9897 + }, + { + "start": 27431.32, + "end": 27432.44, + "probability": 0.7931 + }, + { + "start": 27432.7, + "end": 27436.76, + "probability": 0.9012 + }, + { + "start": 27437.28, + "end": 27440.64, + "probability": 0.9698 + }, + { + "start": 27441.12, + "end": 27441.36, + "probability": 0.9592 + }, + { + "start": 27441.52, + "end": 27442.72, + "probability": 0.8035 + }, + { + "start": 27443.44, + "end": 27446.96, + "probability": 0.7971 + }, + { + "start": 27447.7, + "end": 27451.5, + "probability": 0.988 + }, + { + "start": 27452.38, + "end": 27454.33, + "probability": 0.9702 + }, + { + "start": 27456.1, + "end": 27458.1, + "probability": 0.9804 + }, + { + "start": 27458.98, + "end": 27463.08, + "probability": 0.9331 + }, + { + "start": 27463.54, + "end": 27467.36, + "probability": 0.9725 + }, + { + "start": 27468.34, + "end": 27472.34, + "probability": 0.9876 + }, + { + "start": 27472.34, + "end": 27476.7, + "probability": 0.9981 + }, + { + "start": 27477.54, + "end": 27479.5, + "probability": 0.9961 + }, + { + "start": 27480.06, + "end": 27483.22, + "probability": 0.9155 + }, + { + "start": 27483.74, + "end": 27486.52, + "probability": 0.9787 + }, + { + "start": 27487.16, + "end": 27490.12, + "probability": 0.9321 + }, + { + "start": 27490.68, + "end": 27493.88, + "probability": 0.9195 + }, + { + "start": 27494.48, + "end": 27496.9, + "probability": 0.7985 + }, + { + "start": 27496.96, + "end": 27497.31, + "probability": 0.0301 + }, + { + "start": 27499.04, + "end": 27503.84, + "probability": 0.9663 + }, + { + "start": 27504.34, + "end": 27505.68, + "probability": 0.333 + }, + { + "start": 27506.06, + "end": 27509.58, + "probability": 0.7296 + }, + { + "start": 27512.24, + "end": 27514.1, + "probability": 0.6812 + }, + { + "start": 27516.56, + "end": 27516.66, + "probability": 0.7373 + }, + { + "start": 27517.16, + "end": 27518.08, + "probability": 0.9709 + }, + { + "start": 27518.2, + "end": 27518.36, + "probability": 0.7468 + }, + { + "start": 27518.46, + "end": 27522.03, + "probability": 0.9538 + }, + { + "start": 27522.72, + "end": 27525.78, + "probability": 0.6265 + }, + { + "start": 27526.66, + "end": 27530.4, + "probability": 0.9279 + }, + { + "start": 27530.96, + "end": 27535.46, + "probability": 0.8716 + }, + { + "start": 27535.52, + "end": 27536.0, + "probability": 0.7591 + }, + { + "start": 27536.62, + "end": 27539.8, + "probability": 0.5836 + }, + { + "start": 27540.34, + "end": 27540.58, + "probability": 0.7497 + }, + { + "start": 27540.58, + "end": 27542.45, + "probability": 0.9253 + }, + { + "start": 27543.36, + "end": 27548.14, + "probability": 0.238 + }, + { + "start": 27549.04, + "end": 27550.17, + "probability": 0.0565 + }, + { + "start": 27550.7, + "end": 27551.94, + "probability": 0.066 + }, + { + "start": 27552.52, + "end": 27553.74, + "probability": 0.4013 + }, + { + "start": 27553.94, + "end": 27555.64, + "probability": 0.3889 + }, + { + "start": 27559.38, + "end": 27562.54, + "probability": 0.2395 + }, + { + "start": 27564.3, + "end": 27566.82, + "probability": 0.848 + }, + { + "start": 27570.3, + "end": 27571.56, + "probability": 0.0833 + }, + { + "start": 27572.36, + "end": 27572.72, + "probability": 0.309 + }, + { + "start": 27573.25, + "end": 27577.36, + "probability": 0.1646 + }, + { + "start": 27579.41, + "end": 27579.48, + "probability": 0.0616 + }, + { + "start": 27596.6, + "end": 27598.74, + "probability": 0.799 + }, + { + "start": 27598.76, + "end": 27604.34, + "probability": 0.998 + }, + { + "start": 27605.36, + "end": 27606.04, + "probability": 0.9504 + }, + { + "start": 27606.54, + "end": 27606.54, + "probability": 0.4158 + }, + { + "start": 27606.9, + "end": 27607.92, + "probability": 0.8763 + }, + { + "start": 27609.56, + "end": 27610.52, + "probability": 0.9527 + }, + { + "start": 27611.5, + "end": 27612.46, + "probability": 0.8858 + }, + { + "start": 27613.4, + "end": 27617.16, + "probability": 0.9633 + }, + { + "start": 27617.5, + "end": 27617.98, + "probability": 0.8211 + }, + { + "start": 27618.56, + "end": 27619.02, + "probability": 0.9711 + }, + { + "start": 27619.84, + "end": 27622.76, + "probability": 0.2866 + }, + { + "start": 27623.72, + "end": 27624.0, + "probability": 0.3297 + }, + { + "start": 27624.16, + "end": 27624.16, + "probability": 0.015 + }, + { + "start": 27624.16, + "end": 27624.16, + "probability": 0.2398 + }, + { + "start": 27624.16, + "end": 27624.16, + "probability": 0.0683 + }, + { + "start": 27624.16, + "end": 27628.36, + "probability": 0.8371 + }, + { + "start": 27628.56, + "end": 27630.85, + "probability": 0.9965 + }, + { + "start": 27631.18, + "end": 27632.2, + "probability": 0.6537 + }, + { + "start": 27632.96, + "end": 27635.26, + "probability": 0.0411 + }, + { + "start": 27635.5, + "end": 27641.1, + "probability": 0.8655 + }, + { + "start": 27641.26, + "end": 27642.1, + "probability": 0.9751 + }, + { + "start": 27642.44, + "end": 27647.3, + "probability": 0.9931 + }, + { + "start": 27648.56, + "end": 27651.42, + "probability": 0.9992 + }, + { + "start": 27652.18, + "end": 27652.18, + "probability": 0.0193 + }, + { + "start": 27652.18, + "end": 27653.38, + "probability": 0.8396 + }, + { + "start": 27653.74, + "end": 27656.32, + "probability": 0.9947 + }, + { + "start": 27656.32, + "end": 27662.18, + "probability": 0.9871 + }, + { + "start": 27663.08, + "end": 27666.15, + "probability": 0.9443 + }, + { + "start": 27666.56, + "end": 27670.96, + "probability": 0.9139 + }, + { + "start": 27671.08, + "end": 27677.22, + "probability": 0.694 + }, + { + "start": 27677.24, + "end": 27678.05, + "probability": 0.9276 + }, + { + "start": 27678.88, + "end": 27681.5, + "probability": 0.9604 + }, + { + "start": 27681.62, + "end": 27685.22, + "probability": 0.9832 + }, + { + "start": 27685.72, + "end": 27687.54, + "probability": 0.7568 + }, + { + "start": 27687.64, + "end": 27690.12, + "probability": 0.9443 + }, + { + "start": 27690.22, + "end": 27692.46, + "probability": 0.9224 + }, + { + "start": 27693.02, + "end": 27695.26, + "probability": 0.8524 + }, + { + "start": 27695.3, + "end": 27695.56, + "probability": 0.0551 + }, + { + "start": 27695.56, + "end": 27696.64, + "probability": 0.4681 + }, + { + "start": 27696.96, + "end": 27698.9, + "probability": 0.8622 + }, + { + "start": 27699.22, + "end": 27701.22, + "probability": 0.7782 + }, + { + "start": 27701.46, + "end": 27702.72, + "probability": 0.4538 + }, + { + "start": 27702.84, + "end": 27705.42, + "probability": 0.9107 + }, + { + "start": 27705.56, + "end": 27705.56, + "probability": 0.0263 + }, + { + "start": 27705.64, + "end": 27705.98, + "probability": 0.0334 + }, + { + "start": 27707.4, + "end": 27709.1, + "probability": 0.9164 + }, + { + "start": 27709.58, + "end": 27710.62, + "probability": 0.729 + }, + { + "start": 27711.64, + "end": 27711.76, + "probability": 0.0253 + }, + { + "start": 27711.76, + "end": 27711.76, + "probability": 0.0343 + }, + { + "start": 27711.76, + "end": 27713.9, + "probability": 0.5343 + }, + { + "start": 27714.62, + "end": 27717.56, + "probability": 0.8507 + }, + { + "start": 27717.56, + "end": 27719.88, + "probability": 0.7601 + }, + { + "start": 27723.82, + "end": 27724.82, + "probability": 0.418 + }, + { + "start": 27724.96, + "end": 27725.22, + "probability": 0.015 + }, + { + "start": 27725.22, + "end": 27725.22, + "probability": 0.1248 + }, + { + "start": 27725.22, + "end": 27725.8, + "probability": 0.2057 + }, + { + "start": 27725.82, + "end": 27728.62, + "probability": 0.8464 + }, + { + "start": 27730.26, + "end": 27731.1, + "probability": 0.794 + }, + { + "start": 27732.2, + "end": 27733.1, + "probability": 0.951 + }, + { + "start": 27733.2, + "end": 27735.02, + "probability": 0.7662 + }, + { + "start": 27737.58, + "end": 27738.3, + "probability": 0.8324 + }, + { + "start": 27739.28, + "end": 27742.76, + "probability": 0.657 + }, + { + "start": 27743.4, + "end": 27745.64, + "probability": 0.9822 + }, + { + "start": 27746.08, + "end": 27748.66, + "probability": 0.6366 + }, + { + "start": 27748.84, + "end": 27751.04, + "probability": 0.883 + }, + { + "start": 27751.76, + "end": 27754.24, + "probability": 0.9672 + }, + { + "start": 27754.6, + "end": 27756.18, + "probability": 0.1528 + }, + { + "start": 27756.18, + "end": 27761.42, + "probability": 0.5653 + }, + { + "start": 27762.16, + "end": 27763.64, + "probability": 0.9976 + }, + { + "start": 27763.9, + "end": 27764.32, + "probability": 0.4913 + }, + { + "start": 27764.6, + "end": 27766.16, + "probability": 0.9775 + }, + { + "start": 27766.18, + "end": 27767.57, + "probability": 0.9814 + }, + { + "start": 27767.82, + "end": 27767.92, + "probability": 0.4089 + }, + { + "start": 27767.92, + "end": 27770.31, + "probability": 0.4641 + }, + { + "start": 27770.82, + "end": 27772.58, + "probability": 0.8455 + }, + { + "start": 27772.86, + "end": 27773.0, + "probability": 0.6839 + }, + { + "start": 27773.0, + "end": 27775.08, + "probability": 0.9651 + }, + { + "start": 27775.4, + "end": 27781.22, + "probability": 0.746 + }, + { + "start": 27781.38, + "end": 27783.67, + "probability": 0.8175 + }, + { + "start": 27784.24, + "end": 27786.46, + "probability": 0.9603 + }, + { + "start": 27786.74, + "end": 27789.04, + "probability": 0.9782 + }, + { + "start": 27789.08, + "end": 27790.48, + "probability": 0.8301 + }, + { + "start": 27790.62, + "end": 27793.28, + "probability": 0.9631 + }, + { + "start": 27793.34, + "end": 27794.84, + "probability": 0.7706 + }, + { + "start": 27795.12, + "end": 27796.6, + "probability": 0.9142 + }, + { + "start": 27796.8, + "end": 27801.62, + "probability": 0.9957 + }, + { + "start": 27801.88, + "end": 27803.36, + "probability": 0.8365 + }, + { + "start": 27804.4, + "end": 27805.26, + "probability": 0.76 + }, + { + "start": 27805.58, + "end": 27809.31, + "probability": 0.505 + }, + { + "start": 27818.32, + "end": 27818.92, + "probability": 0.8891 + }, + { + "start": 27820.62, + "end": 27822.48, + "probability": 0.7407 + }, + { + "start": 27823.82, + "end": 27827.8, + "probability": 0.8625 + }, + { + "start": 27829.64, + "end": 27830.54, + "probability": 0.8289 + }, + { + "start": 27830.54, + "end": 27832.18, + "probability": 0.8357 + }, + { + "start": 27832.18, + "end": 27834.92, + "probability": 0.1171 + }, + { + "start": 27836.06, + "end": 27837.78, + "probability": 0.9567 + }, + { + "start": 27838.14, + "end": 27840.3, + "probability": 0.8259 + }, + { + "start": 27845.91, + "end": 27847.34, + "probability": 0.6829 + }, + { + "start": 27847.42, + "end": 27849.94, + "probability": 0.898 + }, + { + "start": 27849.94, + "end": 27850.44, + "probability": 0.3766 + }, + { + "start": 27850.52, + "end": 27851.26, + "probability": 0.6099 + }, + { + "start": 27851.26, + "end": 27853.06, + "probability": 0.8065 + }, + { + "start": 27853.12, + "end": 27854.1, + "probability": 0.5409 + }, + { + "start": 27854.42, + "end": 27855.5, + "probability": 0.4228 + }, + { + "start": 27855.54, + "end": 27855.7, + "probability": 0.0603 + }, + { + "start": 27855.74, + "end": 27856.84, + "probability": 0.6676 + }, + { + "start": 27857.24, + "end": 27857.34, + "probability": 0.1373 + }, + { + "start": 27857.62, + "end": 27859.32, + "probability": 0.7061 + }, + { + "start": 27859.48, + "end": 27864.02, + "probability": 0.7939 + }, + { + "start": 27864.32, + "end": 27864.64, + "probability": 0.5478 + }, + { + "start": 27865.6, + "end": 27868.72, + "probability": 0.8574 + }, + { + "start": 27869.68, + "end": 27871.64, + "probability": 0.924 + }, + { + "start": 27871.86, + "end": 27872.64, + "probability": 0.0914 + }, + { + "start": 27873.14, + "end": 27875.58, + "probability": 0.9349 + }, + { + "start": 27875.64, + "end": 27877.12, + "probability": 0.7831 + }, + { + "start": 27877.12, + "end": 27879.68, + "probability": 0.9979 + }, + { + "start": 27880.94, + "end": 27881.46, + "probability": 0.4861 + }, + { + "start": 27882.64, + "end": 27886.58, + "probability": 0.9941 + }, + { + "start": 27887.02, + "end": 27887.96, + "probability": 0.3409 + }, + { + "start": 27888.12, + "end": 27889.32, + "probability": 0.3349 + }, + { + "start": 27889.52, + "end": 27890.96, + "probability": 0.9872 + }, + { + "start": 27891.06, + "end": 27891.42, + "probability": 0.8397 + }, + { + "start": 27891.58, + "end": 27892.16, + "probability": 0.1549 + }, + { + "start": 27892.58, + "end": 27894.69, + "probability": 0.9106 + }, + { + "start": 27895.16, + "end": 27897.56, + "probability": 0.7549 + }, + { + "start": 27898.18, + "end": 27898.24, + "probability": 0.4883 + }, + { + "start": 27898.24, + "end": 27900.22, + "probability": 0.9536 + }, + { + "start": 27900.32, + "end": 27901.0, + "probability": 0.6475 + }, + { + "start": 27901.1, + "end": 27902.0, + "probability": 0.1803 + }, + { + "start": 27902.46, + "end": 27902.8, + "probability": 0.0213 + }, + { + "start": 27902.8, + "end": 27904.9, + "probability": 0.8516 + }, + { + "start": 27905.52, + "end": 27906.7, + "probability": 0.9286 + }, + { + "start": 27906.86, + "end": 27907.04, + "probability": 0.4106 + }, + { + "start": 27907.18, + "end": 27907.94, + "probability": 0.9617 + }, + { + "start": 27908.36, + "end": 27913.16, + "probability": 0.8798 + }, + { + "start": 27913.16, + "end": 27915.14, + "probability": 0.6061 + }, + { + "start": 27916.82, + "end": 27919.78, + "probability": 0.9025 + }, + { + "start": 27920.68, + "end": 27922.1, + "probability": 0.8631 + }, + { + "start": 27923.74, + "end": 27927.72, + "probability": 0.9698 + }, + { + "start": 27928.7, + "end": 27935.22, + "probability": 0.9865 + }, + { + "start": 27935.54, + "end": 27936.12, + "probability": 0.5001 + }, + { + "start": 27936.28, + "end": 27942.44, + "probability": 0.5003 + }, + { + "start": 27942.62, + "end": 27943.22, + "probability": 0.8784 + }, + { + "start": 27943.3, + "end": 27949.56, + "probability": 0.9553 + }, + { + "start": 27949.76, + "end": 27952.4, + "probability": 0.9949 + }, + { + "start": 27952.74, + "end": 27953.74, + "probability": 0.2864 + }, + { + "start": 27953.76, + "end": 27955.54, + "probability": 0.7666 + }, + { + "start": 27956.58, + "end": 27960.7, + "probability": 0.0623 + }, + { + "start": 27960.7, + "end": 27962.08, + "probability": 0.7515 + }, + { + "start": 27962.32, + "end": 27967.48, + "probability": 0.9244 + }, + { + "start": 27967.5, + "end": 27969.16, + "probability": 0.9274 + }, + { + "start": 27969.72, + "end": 27972.7, + "probability": 0.7479 + }, + { + "start": 27973.1, + "end": 27976.78, + "probability": 0.783 + }, + { + "start": 27977.36, + "end": 27979.0, + "probability": 0.9639 + }, + { + "start": 27979.48, + "end": 27980.86, + "probability": 0.9832 + }, + { + "start": 27981.16, + "end": 27982.52, + "probability": 0.7407 + }, + { + "start": 27982.84, + "end": 27984.24, + "probability": 0.9419 + }, + { + "start": 27984.42, + "end": 27985.08, + "probability": 0.4867 + }, + { + "start": 27985.34, + "end": 27986.92, + "probability": 0.9611 + }, + { + "start": 27986.98, + "end": 27987.56, + "probability": 0.2363 + }, + { + "start": 27987.88, + "end": 27989.48, + "probability": 0.624 + }, + { + "start": 27989.56, + "end": 27989.88, + "probability": 0.331 + }, + { + "start": 27989.88, + "end": 27991.64, + "probability": 0.8186 + }, + { + "start": 27991.76, + "end": 27992.88, + "probability": 0.4313 + }, + { + "start": 27992.9, + "end": 27997.06, + "probability": 0.4557 + }, + { + "start": 27997.24, + "end": 27999.4, + "probability": 0.9338 + }, + { + "start": 27999.48, + "end": 28001.24, + "probability": 0.7591 + }, + { + "start": 28001.52, + "end": 28003.36, + "probability": 0.954 + }, + { + "start": 28003.74, + "end": 28005.42, + "probability": 0.968 + }, + { + "start": 28005.92, + "end": 28007.92, + "probability": 0.9784 + }, + { + "start": 28008.18, + "end": 28008.7, + "probability": 0.6679 + }, + { + "start": 28009.28, + "end": 28010.51, + "probability": 0.9609 + }, + { + "start": 28011.34, + "end": 28012.56, + "probability": 0.8504 + }, + { + "start": 28013.04, + "end": 28014.28, + "probability": 0.8117 + }, + { + "start": 28014.28, + "end": 28014.58, + "probability": 0.7581 + }, + { + "start": 28014.76, + "end": 28015.52, + "probability": 0.6782 + }, + { + "start": 28016.12, + "end": 28018.52, + "probability": 0.8315 + }, + { + "start": 28018.88, + "end": 28022.2, + "probability": 0.9818 + }, + { + "start": 28022.86, + "end": 28023.8, + "probability": 0.8744 + }, + { + "start": 28024.0, + "end": 28024.7, + "probability": 0.7336 + }, + { + "start": 28024.92, + "end": 28025.72, + "probability": 0.8106 + }, + { + "start": 28026.14, + "end": 28029.46, + "probability": 0.7631 + }, + { + "start": 28029.88, + "end": 28031.58, + "probability": 0.9873 + }, + { + "start": 28031.86, + "end": 28036.34, + "probability": 0.9282 + }, + { + "start": 28036.82, + "end": 28040.32, + "probability": 0.6943 + }, + { + "start": 28040.36, + "end": 28041.04, + "probability": 0.932 + }, + { + "start": 28041.34, + "end": 28043.98, + "probability": 0.8268 + }, + { + "start": 28044.02, + "end": 28047.26, + "probability": 0.9374 + }, + { + "start": 28047.4, + "end": 28048.06, + "probability": 0.8031 + }, + { + "start": 28048.6, + "end": 28049.64, + "probability": 0.8268 + }, + { + "start": 28050.74, + "end": 28052.7, + "probability": 0.6343 + }, + { + "start": 28053.96, + "end": 28054.52, + "probability": 0.4915 + }, + { + "start": 28055.26, + "end": 28057.06, + "probability": 0.886 + }, + { + "start": 28057.88, + "end": 28060.5, + "probability": 0.8499 + }, + { + "start": 28061.42, + "end": 28062.12, + "probability": 0.4083 + }, + { + "start": 28063.42, + "end": 28064.76, + "probability": 0.9735 + }, + { + "start": 28068.06, + "end": 28069.38, + "probability": 0.7645 + }, + { + "start": 28071.18, + "end": 28072.12, + "probability": 0.3184 + }, + { + "start": 28072.28, + "end": 28074.52, + "probability": 0.4163 + }, + { + "start": 28074.88, + "end": 28078.12, + "probability": 0.6251 + }, + { + "start": 28083.78, + "end": 28084.2, + "probability": 0.0766 + }, + { + "start": 28084.28, + "end": 28085.77, + "probability": 0.5034 + }, + { + "start": 28087.52, + "end": 28089.84, + "probability": 0.8535 + }, + { + "start": 28101.33, + "end": 28104.88, + "probability": 0.6607 + }, + { + "start": 28106.08, + "end": 28107.43, + "probability": 0.988 + }, + { + "start": 28108.82, + "end": 28110.48, + "probability": 0.7411 + }, + { + "start": 28111.44, + "end": 28113.32, + "probability": 0.9489 + }, + { + "start": 28114.64, + "end": 28117.02, + "probability": 0.9573 + }, + { + "start": 28118.24, + "end": 28123.06, + "probability": 0.6997 + }, + { + "start": 28123.6, + "end": 28126.42, + "probability": 0.8542 + }, + { + "start": 28126.96, + "end": 28129.86, + "probability": 0.9468 + }, + { + "start": 28129.98, + "end": 28131.62, + "probability": 0.9522 + }, + { + "start": 28134.92, + "end": 28139.4, + "probability": 0.6332 + }, + { + "start": 28140.16, + "end": 28141.52, + "probability": 0.8557 + }, + { + "start": 28141.68, + "end": 28146.06, + "probability": 0.8714 + }, + { + "start": 28146.32, + "end": 28146.85, + "probability": 0.9782 + }, + { + "start": 28147.08, + "end": 28147.61, + "probability": 0.985 + }, + { + "start": 28147.88, + "end": 28148.5, + "probability": 0.7725 + }, + { + "start": 28149.48, + "end": 28151.28, + "probability": 0.9586 + }, + { + "start": 28152.3, + "end": 28157.0, + "probability": 0.7179 + }, + { + "start": 28158.22, + "end": 28159.78, + "probability": 0.5479 + }, + { + "start": 28159.96, + "end": 28160.84, + "probability": 0.9559 + }, + { + "start": 28160.86, + "end": 28162.14, + "probability": 0.9695 + }, + { + "start": 28162.18, + "end": 28162.94, + "probability": 0.8219 + }, + { + "start": 28163.9, + "end": 28166.43, + "probability": 0.8929 + }, + { + "start": 28167.16, + "end": 28171.0, + "probability": 0.9845 + }, + { + "start": 28171.1, + "end": 28172.54, + "probability": 0.8655 + }, + { + "start": 28172.76, + "end": 28173.58, + "probability": 0.481 + }, + { + "start": 28174.06, + "end": 28175.0, + "probability": 0.5299 + }, + { + "start": 28175.16, + "end": 28175.3, + "probability": 0.4152 + }, + { + "start": 28175.34, + "end": 28175.56, + "probability": 0.027 + }, + { + "start": 28175.72, + "end": 28176.34, + "probability": 0.8125 + }, + { + "start": 28176.46, + "end": 28176.98, + "probability": 0.8528 + }, + { + "start": 28177.04, + "end": 28178.72, + "probability": 0.9817 + }, + { + "start": 28178.86, + "end": 28179.98, + "probability": 0.9365 + }, + { + "start": 28180.56, + "end": 28184.04, + "probability": 0.9888 + }, + { + "start": 28184.76, + "end": 28188.78, + "probability": 0.9974 + }, + { + "start": 28189.46, + "end": 28192.16, + "probability": 0.5982 + }, + { + "start": 28192.26, + "end": 28195.82, + "probability": 0.5507 + }, + { + "start": 28197.38, + "end": 28197.74, + "probability": 0.8228 + }, + { + "start": 28197.76, + "end": 28197.86, + "probability": 0.7397 + }, + { + "start": 28198.22, + "end": 28198.6, + "probability": 0.7398 + }, + { + "start": 28199.0, + "end": 28199.2, + "probability": 0.2985 + }, + { + "start": 28199.26, + "end": 28201.18, + "probability": 0.7521 + }, + { + "start": 28201.58, + "end": 28203.28, + "probability": 0.2558 + }, + { + "start": 28203.4, + "end": 28204.0, + "probability": 0.6677 + }, + { + "start": 28204.02, + "end": 28209.42, + "probability": 0.6273 + }, + { + "start": 28209.92, + "end": 28211.96, + "probability": 0.8496 + }, + { + "start": 28212.82, + "end": 28218.59, + "probability": 0.9589 + }, + { + "start": 28219.5, + "end": 28219.78, + "probability": 0.7519 + }, + { + "start": 28219.92, + "end": 28221.36, + "probability": 0.8916 + }, + { + "start": 28221.52, + "end": 28222.0, + "probability": 0.8383 + }, + { + "start": 28222.12, + "end": 28222.66, + "probability": 0.775 + }, + { + "start": 28222.98, + "end": 28223.44, + "probability": 0.9653 + }, + { + "start": 28223.9, + "end": 28224.84, + "probability": 0.9491 + }, + { + "start": 28224.88, + "end": 28225.52, + "probability": 0.6021 + }, + { + "start": 28225.54, + "end": 28226.04, + "probability": 0.4217 + }, + { + "start": 28226.48, + "end": 28226.8, + "probability": 0.6616 + }, + { + "start": 28227.26, + "end": 28229.54, + "probability": 0.9933 + }, + { + "start": 28230.16, + "end": 28231.98, + "probability": 0.9944 + }, + { + "start": 28232.14, + "end": 28233.22, + "probability": 0.9915 + }, + { + "start": 28233.6, + "end": 28234.8, + "probability": 0.9451 + }, + { + "start": 28236.04, + "end": 28238.08, + "probability": 0.9035 + }, + { + "start": 28238.62, + "end": 28242.0, + "probability": 0.9385 + }, + { + "start": 28242.68, + "end": 28243.84, + "probability": 0.7552 + }, + { + "start": 28244.12, + "end": 28244.71, + "probability": 0.995 + }, + { + "start": 28245.04, + "end": 28247.34, + "probability": 0.9837 + }, + { + "start": 28247.9, + "end": 28249.24, + "probability": 0.917 + }, + { + "start": 28249.36, + "end": 28251.98, + "probability": 0.856 + }, + { + "start": 28252.46, + "end": 28254.64, + "probability": 0.9679 + }, + { + "start": 28255.24, + "end": 28261.2, + "probability": 0.9929 + }, + { + "start": 28261.94, + "end": 28263.44, + "probability": 0.5026 + }, + { + "start": 28263.48, + "end": 28265.9, + "probability": 0.9411 + }, + { + "start": 28266.16, + "end": 28267.76, + "probability": 0.8633 + }, + { + "start": 28268.16, + "end": 28269.48, + "probability": 0.9728 + }, + { + "start": 28269.7, + "end": 28271.08, + "probability": 0.8879 + }, + { + "start": 28271.54, + "end": 28276.28, + "probability": 0.9858 + }, + { + "start": 28276.32, + "end": 28277.2, + "probability": 0.561 + }, + { + "start": 28277.38, + "end": 28277.56, + "probability": 0.5352 + }, + { + "start": 28278.54, + "end": 28280.46, + "probability": 0.6904 + }, + { + "start": 28281.08, + "end": 28283.48, + "probability": 0.9439 + }, + { + "start": 28283.88, + "end": 28286.08, + "probability": 0.6555 + }, + { + "start": 28286.18, + "end": 28287.76, + "probability": 0.743 + }, + { + "start": 28288.57, + "end": 28289.54, + "probability": 0.6308 + }, + { + "start": 28289.64, + "end": 28290.04, + "probability": 0.5947 + }, + { + "start": 28290.06, + "end": 28291.14, + "probability": 0.823 + }, + { + "start": 28291.2, + "end": 28293.66, + "probability": 0.9451 + }, + { + "start": 28293.76, + "end": 28294.46, + "probability": 0.409 + }, + { + "start": 28295.08, + "end": 28295.78, + "probability": 0.2927 + }, + { + "start": 28296.06, + "end": 28297.5, + "probability": 0.751 + }, + { + "start": 28297.84, + "end": 28300.02, + "probability": 0.2335 + }, + { + "start": 28300.06, + "end": 28302.02, + "probability": 0.2711 + }, + { + "start": 28304.32, + "end": 28306.98, + "probability": 0.1903 + }, + { + "start": 28313.64, + "end": 28314.58, + "probability": 0.5003 + }, + { + "start": 28314.58, + "end": 28315.0, + "probability": 0.9303 + }, + { + "start": 28322.08, + "end": 28325.12, + "probability": 0.8641 + }, + { + "start": 28326.3, + "end": 28329.8, + "probability": 0.9806 + }, + { + "start": 28330.98, + "end": 28332.8, + "probability": 0.9718 + }, + { + "start": 28334.0, + "end": 28338.76, + "probability": 0.9939 + }, + { + "start": 28340.28, + "end": 28343.16, + "probability": 0.9777 + }, + { + "start": 28343.88, + "end": 28346.04, + "probability": 0.9783 + }, + { + "start": 28346.8, + "end": 28348.64, + "probability": 0.7314 + }, + { + "start": 28349.66, + "end": 28351.16, + "probability": 0.9873 + }, + { + "start": 28351.6, + "end": 28354.93, + "probability": 0.9976 + }, + { + "start": 28355.92, + "end": 28358.84, + "probability": 0.9971 + }, + { + "start": 28359.08, + "end": 28359.84, + "probability": 0.7985 + }, + { + "start": 28361.5, + "end": 28362.4, + "probability": 0.2437 + }, + { + "start": 28363.74, + "end": 28369.42, + "probability": 0.9755 + }, + { + "start": 28369.42, + "end": 28373.8, + "probability": 0.9988 + }, + { + "start": 28374.84, + "end": 28379.32, + "probability": 0.9879 + }, + { + "start": 28380.1, + "end": 28382.47, + "probability": 0.9988 + }, + { + "start": 28382.98, + "end": 28384.52, + "probability": 0.7718 + }, + { + "start": 28385.1, + "end": 28387.86, + "probability": 0.9333 + }, + { + "start": 28389.16, + "end": 28394.6, + "probability": 0.9734 + }, + { + "start": 28395.6, + "end": 28398.88, + "probability": 0.9666 + }, + { + "start": 28399.54, + "end": 28402.34, + "probability": 0.9595 + }, + { + "start": 28403.4, + "end": 28406.14, + "probability": 0.9822 + }, + { + "start": 28406.66, + "end": 28408.48, + "probability": 0.9924 + }, + { + "start": 28409.04, + "end": 28411.4, + "probability": 0.9971 + }, + { + "start": 28411.92, + "end": 28413.38, + "probability": 0.6211 + }, + { + "start": 28414.0, + "end": 28415.42, + "probability": 0.768 + }, + { + "start": 28416.48, + "end": 28418.72, + "probability": 0.9177 + }, + { + "start": 28419.56, + "end": 28423.66, + "probability": 0.0516 + }, + { + "start": 28424.88, + "end": 28424.88, + "probability": 0.0848 + }, + { + "start": 28424.88, + "end": 28424.88, + "probability": 0.5145 + }, + { + "start": 28424.88, + "end": 28424.88, + "probability": 0.0253 + }, + { + "start": 28424.88, + "end": 28424.88, + "probability": 0.4761 + }, + { + "start": 28424.88, + "end": 28424.88, + "probability": 0.1336 + }, + { + "start": 28424.88, + "end": 28424.88, + "probability": 0.0935 + }, + { + "start": 28424.88, + "end": 28427.18, + "probability": 0.7291 + }, + { + "start": 28428.68, + "end": 28432.64, + "probability": 0.9788 + }, + { + "start": 28433.22, + "end": 28436.38, + "probability": 0.9146 + }, + { + "start": 28436.82, + "end": 28443.02, + "probability": 0.0658 + }, + { + "start": 28443.64, + "end": 28444.58, + "probability": 0.2993 + }, + { + "start": 28444.7, + "end": 28445.96, + "probability": 0.614 + }, + { + "start": 28446.18, + "end": 28446.28, + "probability": 0.0571 + }, + { + "start": 28446.92, + "end": 28447.06, + "probability": 0.1076 + }, + { + "start": 28447.06, + "end": 28447.06, + "probability": 0.2257 + }, + { + "start": 28447.06, + "end": 28448.66, + "probability": 0.4157 + }, + { + "start": 28450.5, + "end": 28450.5, + "probability": 0.0259 + }, + { + "start": 28450.5, + "end": 28455.58, + "probability": 0.6175 + }, + { + "start": 28455.64, + "end": 28461.44, + "probability": 0.967 + }, + { + "start": 28462.52, + "end": 28467.9, + "probability": 0.9814 + }, + { + "start": 28469.06, + "end": 28473.52, + "probability": 0.8691 + }, + { + "start": 28474.16, + "end": 28474.68, + "probability": 0.9335 + }, + { + "start": 28476.24, + "end": 28476.9, + "probability": 0.5433 + }, + { + "start": 28477.84, + "end": 28480.6, + "probability": 0.7995 + }, + { + "start": 28488.74, + "end": 28490.16, + "probability": 0.8722 + }, + { + "start": 28492.58, + "end": 28494.46, + "probability": 0.7873 + }, + { + "start": 28495.22, + "end": 28496.8, + "probability": 0.9293 + }, + { + "start": 28497.64, + "end": 28501.44, + "probability": 0.9678 + }, + { + "start": 28502.22, + "end": 28505.76, + "probability": 0.9907 + }, + { + "start": 28506.48, + "end": 28509.06, + "probability": 0.9894 + }, + { + "start": 28510.34, + "end": 28513.02, + "probability": 0.9979 + }, + { + "start": 28513.7, + "end": 28515.38, + "probability": 0.9009 + }, + { + "start": 28516.62, + "end": 28520.02, + "probability": 0.8789 + }, + { + "start": 28520.7, + "end": 28521.64, + "probability": 0.9001 + }, + { + "start": 28522.3, + "end": 28522.9, + "probability": 0.7944 + }, + { + "start": 28523.58, + "end": 28524.52, + "probability": 0.9017 + }, + { + "start": 28525.12, + "end": 28527.02, + "probability": 0.9341 + }, + { + "start": 28527.62, + "end": 28531.82, + "probability": 0.9954 + }, + { + "start": 28532.8, + "end": 28534.3, + "probability": 0.9793 + }, + { + "start": 28535.26, + "end": 28539.14, + "probability": 0.9767 + }, + { + "start": 28540.3, + "end": 28541.38, + "probability": 0.7413 + }, + { + "start": 28542.28, + "end": 28543.56, + "probability": 0.8345 + }, + { + "start": 28544.32, + "end": 28545.2, + "probability": 0.9255 + }, + { + "start": 28545.36, + "end": 28549.9, + "probability": 0.9878 + }, + { + "start": 28550.42, + "end": 28552.52, + "probability": 0.9449 + }, + { + "start": 28553.48, + "end": 28555.92, + "probability": 0.0964 + }, + { + "start": 28555.92, + "end": 28556.88, + "probability": 0.1785 + }, + { + "start": 28556.88, + "end": 28556.88, + "probability": 0.3356 + }, + { + "start": 28556.88, + "end": 28559.22, + "probability": 0.719 + }, + { + "start": 28559.3, + "end": 28560.46, + "probability": 0.809 + }, + { + "start": 28560.5, + "end": 28561.9, + "probability": 0.7896 + }, + { + "start": 28561.9, + "end": 28562.86, + "probability": 0.1504 + }, + { + "start": 28562.88, + "end": 28566.82, + "probability": 0.5146 + }, + { + "start": 28567.46, + "end": 28567.58, + "probability": 0.017 + }, + { + "start": 28567.58, + "end": 28567.7, + "probability": 0.2633 + }, + { + "start": 28567.7, + "end": 28567.74, + "probability": 0.1259 + }, + { + "start": 28567.74, + "end": 28571.72, + "probability": 0.537 + }, + { + "start": 28571.94, + "end": 28574.74, + "probability": 0.9976 + }, + { + "start": 28575.52, + "end": 28576.22, + "probability": 0.9031 + }, + { + "start": 28576.88, + "end": 28578.32, + "probability": 0.682 + }, + { + "start": 28579.0, + "end": 28579.06, + "probability": 0.0093 + }, + { + "start": 28579.06, + "end": 28582.92, + "probability": 0.9862 + }, + { + "start": 28584.12, + "end": 28589.12, + "probability": 0.9685 + }, + { + "start": 28589.92, + "end": 28591.76, + "probability": 0.9835 + }, + { + "start": 28592.18, + "end": 28592.42, + "probability": 0.1838 + }, + { + "start": 28592.42, + "end": 28592.42, + "probability": 0.1404 + }, + { + "start": 28592.46, + "end": 28593.92, + "probability": 0.5475 + }, + { + "start": 28594.6, + "end": 28595.2, + "probability": 0.8295 + }, + { + "start": 28596.02, + "end": 28596.76, + "probability": 0.8336 + }, + { + "start": 28597.86, + "end": 28601.04, + "probability": 0.9622 + }, + { + "start": 28601.9, + "end": 28605.96, + "probability": 0.9951 + }, + { + "start": 28606.68, + "end": 28609.42, + "probability": 0.8948 + }, + { + "start": 28609.42, + "end": 28612.68, + "probability": 0.9875 + }, + { + "start": 28613.24, + "end": 28617.76, + "probability": 0.9888 + }, + { + "start": 28618.24, + "end": 28622.47, + "probability": 0.7551 + }, + { + "start": 28623.16, + "end": 28623.56, + "probability": 0.4577 + }, + { + "start": 28624.12, + "end": 28625.04, + "probability": 0.8511 + }, + { + "start": 28625.64, + "end": 28626.86, + "probability": 0.8511 + }, + { + "start": 28627.8, + "end": 28632.12, + "probability": 0.9896 + }, + { + "start": 28632.64, + "end": 28634.8, + "probability": 0.8549 + }, + { + "start": 28636.0, + "end": 28642.22, + "probability": 0.9957 + }, + { + "start": 28642.84, + "end": 28644.42, + "probability": 0.7344 + }, + { + "start": 28645.24, + "end": 28646.48, + "probability": 0.9323 + }, + { + "start": 28647.02, + "end": 28650.54, + "probability": 0.9855 + }, + { + "start": 28650.54, + "end": 28654.16, + "probability": 0.8605 + }, + { + "start": 28654.64, + "end": 28659.5, + "probability": 0.9834 + }, + { + "start": 28660.42, + "end": 28663.74, + "probability": 0.8512 + }, + { + "start": 28665.48, + "end": 28666.82, + "probability": 0.91 + }, + { + "start": 28668.2, + "end": 28668.86, + "probability": 0.6133 + }, + { + "start": 28669.8, + "end": 28670.5, + "probability": 0.0868 + }, + { + "start": 28670.6, + "end": 28671.68, + "probability": 0.7839 + }, + { + "start": 28672.26, + "end": 28673.14, + "probability": 0.8798 + }, + { + "start": 28673.16, + "end": 28676.96, + "probability": 0.4999 + }, + { + "start": 28677.1, + "end": 28677.72, + "probability": 0.5844 + }, + { + "start": 28677.72, + "end": 28678.52, + "probability": 0.6108 + }, + { + "start": 28678.72, + "end": 28680.14, + "probability": 0.2644 + }, + { + "start": 28680.4, + "end": 28683.0, + "probability": 0.0594 + }, + { + "start": 28683.0, + "end": 28687.02, + "probability": 0.6954 + }, + { + "start": 28687.66, + "end": 28689.3, + "probability": 0.3522 + }, + { + "start": 28689.5, + "end": 28691.02, + "probability": 0.5068 + }, + { + "start": 28691.48, + "end": 28692.86, + "probability": 0.1226 + }, + { + "start": 28692.9, + "end": 28692.9, + "probability": 0.2887 + }, + { + "start": 28693.24, + "end": 28694.8, + "probability": 0.0945 + }, + { + "start": 28696.32, + "end": 28697.1, + "probability": 0.0857 + }, + { + "start": 28697.1, + "end": 28697.1, + "probability": 0.0271 + }, + { + "start": 28697.1, + "end": 28699.54, + "probability": 0.7603 + }, + { + "start": 28701.24, + "end": 28702.72, + "probability": 0.9282 + }, + { + "start": 28703.52, + "end": 28704.8, + "probability": 0.9795 + }, + { + "start": 28705.49, + "end": 28707.36, + "probability": 0.8347 + }, + { + "start": 28707.42, + "end": 28711.26, + "probability": 0.8848 + }, + { + "start": 28711.6, + "end": 28712.26, + "probability": 0.2496 + }, + { + "start": 28712.34, + "end": 28713.7, + "probability": 0.6781 + }, + { + "start": 28714.18, + "end": 28716.06, + "probability": 0.7041 + }, + { + "start": 28716.1, + "end": 28717.04, + "probability": 0.7197 + }, + { + "start": 28717.1, + "end": 28717.78, + "probability": 0.7716 + }, + { + "start": 28718.44, + "end": 28718.68, + "probability": 0.0407 + }, + { + "start": 28718.68, + "end": 28718.91, + "probability": 0.4427 + }, + { + "start": 28719.84, + "end": 28721.94, + "probability": 0.885 + }, + { + "start": 28722.3, + "end": 28723.84, + "probability": 0.4028 + }, + { + "start": 28724.26, + "end": 28728.4, + "probability": 0.7536 + }, + { + "start": 28729.31, + "end": 28732.32, + "probability": 0.8921 + }, + { + "start": 28732.88, + "end": 28735.8, + "probability": 0.6852 + }, + { + "start": 28735.82, + "end": 28736.84, + "probability": 0.6567 + }, + { + "start": 28736.92, + "end": 28736.98, + "probability": 0.5965 + }, + { + "start": 28736.98, + "end": 28739.84, + "probability": 0.9507 + }, + { + "start": 28740.82, + "end": 28741.66, + "probability": 0.9275 + }, + { + "start": 28742.32, + "end": 28743.74, + "probability": 0.6471 + }, + { + "start": 28745.52, + "end": 28747.58, + "probability": 0.8677 + }, + { + "start": 28748.14, + "end": 28749.08, + "probability": 0.6465 + }, + { + "start": 28750.08, + "end": 28750.78, + "probability": 0.9509 + }, + { + "start": 28750.84, + "end": 28753.92, + "probability": 0.9774 + }, + { + "start": 28754.46, + "end": 28756.04, + "probability": 0.8437 + }, + { + "start": 28756.98, + "end": 28758.54, + "probability": 0.9903 + }, + { + "start": 28759.98, + "end": 28763.96, + "probability": 0.8968 + }, + { + "start": 28765.62, + "end": 28767.6, + "probability": 0.9587 + }, + { + "start": 28768.9, + "end": 28771.96, + "probability": 0.7383 + }, + { + "start": 28771.96, + "end": 28772.44, + "probability": 0.8467 + }, + { + "start": 28772.62, + "end": 28773.34, + "probability": 0.947 + }, + { + "start": 28773.38, + "end": 28776.34, + "probability": 0.9921 + }, + { + "start": 28777.54, + "end": 28779.68, + "probability": 0.9612 + }, + { + "start": 28781.54, + "end": 28785.66, + "probability": 0.8594 + }, + { + "start": 28786.3, + "end": 28790.4, + "probability": 0.9912 + }, + { + "start": 28790.48, + "end": 28791.94, + "probability": 0.9827 + }, + { + "start": 28792.42, + "end": 28793.0, + "probability": 0.4941 + }, + { + "start": 28793.5, + "end": 28794.8, + "probability": 0.9888 + }, + { + "start": 28794.94, + "end": 28798.08, + "probability": 0.8149 + }, + { + "start": 28799.4, + "end": 28801.63, + "probability": 0.9978 + }, + { + "start": 28802.24, + "end": 28806.1, + "probability": 0.9053 + }, + { + "start": 28806.24, + "end": 28809.28, + "probability": 0.998 + }, + { + "start": 28809.42, + "end": 28810.12, + "probability": 0.9702 + }, + { + "start": 28810.64, + "end": 28811.56, + "probability": 0.6326 + }, + { + "start": 28811.72, + "end": 28813.3, + "probability": 0.9928 + }, + { + "start": 28813.76, + "end": 28814.64, + "probability": 0.9082 + }, + { + "start": 28815.9, + "end": 28818.22, + "probability": 0.9774 + }, + { + "start": 28819.3, + "end": 28821.46, + "probability": 0.967 + }, + { + "start": 28822.04, + "end": 28827.9, + "probability": 0.9951 + }, + { + "start": 28828.26, + "end": 28828.78, + "probability": 0.7153 + }, + { + "start": 28829.42, + "end": 28833.36, + "probability": 0.9814 + }, + { + "start": 28834.58, + "end": 28836.68, + "probability": 0.9873 + }, + { + "start": 28836.8, + "end": 28838.28, + "probability": 0.952 + }, + { + "start": 28839.14, + "end": 28841.28, + "probability": 0.9526 + }, + { + "start": 28841.36, + "end": 28841.56, + "probability": 0.5338 + }, + { + "start": 28841.9, + "end": 28842.16, + "probability": 0.602 + }, + { + "start": 28842.22, + "end": 28842.61, + "probability": 0.9658 + }, + { + "start": 28843.36, + "end": 28846.6, + "probability": 0.9951 + }, + { + "start": 28846.66, + "end": 28848.66, + "probability": 0.8523 + }, + { + "start": 28848.98, + "end": 28850.12, + "probability": 0.0039 + }, + { + "start": 28851.04, + "end": 28852.3, + "probability": 0.0812 + }, + { + "start": 28852.96, + "end": 28854.4, + "probability": 0.774 + }, + { + "start": 28854.46, + "end": 28855.32, + "probability": 0.922 + }, + { + "start": 28856.0, + "end": 28857.56, + "probability": 0.2198 + }, + { + "start": 28857.7, + "end": 28858.72, + "probability": 0.9802 + }, + { + "start": 28858.96, + "end": 28859.22, + "probability": 0.1873 + }, + { + "start": 28859.44, + "end": 28860.58, + "probability": 0.3364 + }, + { + "start": 28860.64, + "end": 28861.24, + "probability": 0.14 + }, + { + "start": 28861.24, + "end": 28861.46, + "probability": 0.3099 + }, + { + "start": 28861.46, + "end": 28867.88, + "probability": 0.6632 + }, + { + "start": 28868.74, + "end": 28872.4, + "probability": 0.9709 + }, + { + "start": 28873.06, + "end": 28878.54, + "probability": 0.8828 + }, + { + "start": 28878.72, + "end": 28879.96, + "probability": 0.7152 + }, + { + "start": 28880.52, + "end": 28882.9, + "probability": 0.9971 + }, + { + "start": 28883.0, + "end": 28883.8, + "probability": 0.2273 + }, + { + "start": 28883.86, + "end": 28886.75, + "probability": 0.9946 + }, + { + "start": 28887.7, + "end": 28887.7, + "probability": 0.1902 + }, + { + "start": 28887.94, + "end": 28891.54, + "probability": 0.6719 + }, + { + "start": 28891.58, + "end": 28892.24, + "probability": 0.4517 + }, + { + "start": 28892.36, + "end": 28897.06, + "probability": 0.5115 + }, + { + "start": 28897.06, + "end": 28897.74, + "probability": 0.34 + }, + { + "start": 28898.2, + "end": 28898.92, + "probability": 0.4379 + }, + { + "start": 28898.98, + "end": 28899.26, + "probability": 0.293 + }, + { + "start": 28899.26, + "end": 28900.5, + "probability": 0.3197 + }, + { + "start": 28900.54, + "end": 28901.38, + "probability": 0.1623 + }, + { + "start": 28901.48, + "end": 28905.4, + "probability": 0.0383 + }, + { + "start": 28905.4, + "end": 28905.4, + "probability": 0.0059 + }, + { + "start": 28905.4, + "end": 28906.54, + "probability": 0.7499 + }, + { + "start": 28907.1, + "end": 28908.32, + "probability": 0.9915 + }, + { + "start": 28908.9, + "end": 28911.68, + "probability": 0.526 + }, + { + "start": 28912.12, + "end": 28914.22, + "probability": 0.9917 + }, + { + "start": 28914.76, + "end": 28918.48, + "probability": 0.9446 + }, + { + "start": 28918.86, + "end": 28919.56, + "probability": 0.9241 + }, + { + "start": 28919.66, + "end": 28920.46, + "probability": 0.8076 + }, + { + "start": 28920.7, + "end": 28922.04, + "probability": 0.7033 + }, + { + "start": 28922.04, + "end": 28923.04, + "probability": 0.8879 + }, + { + "start": 28923.66, + "end": 28925.44, + "probability": 0.6405 + }, + { + "start": 28925.58, + "end": 28927.16, + "probability": 0.7562 + }, + { + "start": 28927.6, + "end": 28929.24, + "probability": 0.7574 + }, + { + "start": 28929.78, + "end": 28932.54, + "probability": 0.1659 + }, + { + "start": 28933.26, + "end": 28933.52, + "probability": 0.1955 + }, + { + "start": 28933.52, + "end": 28934.26, + "probability": 0.3455 + }, + { + "start": 28934.6, + "end": 28937.56, + "probability": 0.5927 + }, + { + "start": 28938.36, + "end": 28940.14, + "probability": 0.9954 + }, + { + "start": 28940.26, + "end": 28941.18, + "probability": 0.7548 + }, + { + "start": 28941.26, + "end": 28942.86, + "probability": 0.7911 + }, + { + "start": 28943.04, + "end": 28943.74, + "probability": 0.7104 + }, + { + "start": 28944.4, + "end": 28947.26, + "probability": 0.9973 + }, + { + "start": 28947.64, + "end": 28949.0, + "probability": 0.8577 + }, + { + "start": 28949.32, + "end": 28951.96, + "probability": 0.6583 + }, + { + "start": 28952.14, + "end": 28953.72, + "probability": 0.9988 + }, + { + "start": 28954.34, + "end": 28956.04, + "probability": 0.9941 + }, + { + "start": 28956.32, + "end": 28956.72, + "probability": 0.4663 + }, + { + "start": 28956.72, + "end": 28958.2, + "probability": 0.7709 + }, + { + "start": 28958.56, + "end": 28959.16, + "probability": 0.6356 + }, + { + "start": 28959.24, + "end": 28960.86, + "probability": 0.4267 + }, + { + "start": 28963.1, + "end": 28963.72, + "probability": 0.7355 + }, + { + "start": 28964.6, + "end": 28966.7, + "probability": 0.9512 + }, + { + "start": 28967.7, + "end": 28968.32, + "probability": 0.7424 + }, + { + "start": 28969.14, + "end": 28970.32, + "probability": 0.9793 + }, + { + "start": 28970.9, + "end": 28971.4, + "probability": 0.7615 + }, + { + "start": 28973.06, + "end": 28976.3, + "probability": 0.1138 + }, + { + "start": 28977.26, + "end": 28978.62, + "probability": 0.2858 + }, + { + "start": 28978.78, + "end": 28980.22, + "probability": 0.3712 + }, + { + "start": 28984.0, + "end": 28984.6, + "probability": 0.9182 + }, + { + "start": 28985.38, + "end": 28987.1, + "probability": 0.7542 + }, + { + "start": 28987.22, + "end": 28987.66, + "probability": 0.3401 + }, + { + "start": 28988.86, + "end": 28990.5, + "probability": 0.9199 + }, + { + "start": 28990.58, + "end": 28990.98, + "probability": 0.9775 + }, + { + "start": 28991.92, + "end": 28994.12, + "probability": 0.6162 + }, + { + "start": 28995.92, + "end": 28996.02, + "probability": 0.059 + }, + { + "start": 28998.48, + "end": 29001.46, + "probability": 0.7033 + }, + { + "start": 29010.58, + "end": 29013.02, + "probability": 0.7897 + }, + { + "start": 29013.7, + "end": 29017.2, + "probability": 0.9795 + }, + { + "start": 29017.2, + "end": 29021.5, + "probability": 0.9971 + }, + { + "start": 29022.26, + "end": 29026.16, + "probability": 0.9957 + }, + { + "start": 29026.16, + "end": 29030.32, + "probability": 0.9991 + }, + { + "start": 29031.0, + "end": 29038.22, + "probability": 0.9886 + }, + { + "start": 29039.1, + "end": 29042.74, + "probability": 0.9835 + }, + { + "start": 29043.46, + "end": 29046.46, + "probability": 0.9952 + }, + { + "start": 29046.92, + "end": 29050.94, + "probability": 0.9146 + }, + { + "start": 29051.38, + "end": 29052.32, + "probability": 0.9695 + }, + { + "start": 29053.36, + "end": 29054.76, + "probability": 0.8546 + }, + { + "start": 29057.28, + "end": 29057.28, + "probability": 0.115 + }, + { + "start": 29057.28, + "end": 29058.91, + "probability": 0.7574 + }, + { + "start": 29059.86, + "end": 29062.2, + "probability": 0.9409 + }, + { + "start": 29063.6, + "end": 29065.26, + "probability": 0.9682 + }, + { + "start": 29065.72, + "end": 29069.07, + "probability": 0.8335 + }, + { + "start": 29069.86, + "end": 29074.06, + "probability": 0.9881 + }, + { + "start": 29074.06, + "end": 29079.16, + "probability": 0.9904 + }, + { + "start": 29079.82, + "end": 29083.54, + "probability": 0.9946 + }, + { + "start": 29083.54, + "end": 29088.74, + "probability": 0.9569 + }, + { + "start": 29089.2, + "end": 29091.12, + "probability": 0.874 + }, + { + "start": 29092.12, + "end": 29097.5, + "probability": 0.9922 + }, + { + "start": 29097.52, + "end": 29104.6, + "probability": 0.9871 + }, + { + "start": 29105.24, + "end": 29108.96, + "probability": 0.9814 + }, + { + "start": 29108.98, + "end": 29112.68, + "probability": 0.9954 + }, + { + "start": 29113.42, + "end": 29120.38, + "probability": 0.9943 + }, + { + "start": 29120.92, + "end": 29123.88, + "probability": 0.9895 + }, + { + "start": 29124.3, + "end": 29129.22, + "probability": 0.9966 + }, + { + "start": 29129.22, + "end": 29134.88, + "probability": 0.9967 + }, + { + "start": 29135.46, + "end": 29138.78, + "probability": 0.9976 + }, + { + "start": 29139.26, + "end": 29140.2, + "probability": 0.6657 + }, + { + "start": 29140.44, + "end": 29143.68, + "probability": 0.8963 + }, + { + "start": 29143.68, + "end": 29147.54, + "probability": 0.9056 + }, + { + "start": 29148.04, + "end": 29151.08, + "probability": 0.8975 + }, + { + "start": 29151.66, + "end": 29157.1, + "probability": 0.9713 + }, + { + "start": 29157.68, + "end": 29162.74, + "probability": 0.9948 + }, + { + "start": 29163.3, + "end": 29167.98, + "probability": 0.9971 + }, + { + "start": 29169.26, + "end": 29172.78, + "probability": 0.769 + }, + { + "start": 29173.24, + "end": 29176.32, + "probability": 0.9824 + }, + { + "start": 29176.4, + "end": 29177.0, + "probability": 0.6783 + }, + { + "start": 29177.18, + "end": 29180.74, + "probability": 0.9898 + }, + { + "start": 29181.2, + "end": 29183.76, + "probability": 0.9827 + }, + { + "start": 29184.34, + "end": 29186.68, + "probability": 0.9359 + }, + { + "start": 29186.68, + "end": 29186.81, + "probability": 0.2578 + }, + { + "start": 29187.32, + "end": 29187.84, + "probability": 0.5857 + }, + { + "start": 29188.06, + "end": 29192.26, + "probability": 0.9916 + }, + { + "start": 29192.84, + "end": 29196.56, + "probability": 0.96 + }, + { + "start": 29196.88, + "end": 29200.96, + "probability": 0.9068 + }, + { + "start": 29201.4, + "end": 29203.4, + "probability": 0.8154 + }, + { + "start": 29203.54, + "end": 29204.26, + "probability": 0.7716 + }, + { + "start": 29204.88, + "end": 29206.5, + "probability": 0.7381 + }, + { + "start": 29207.28, + "end": 29207.84, + "probability": 0.5178 + }, + { + "start": 29208.48, + "end": 29209.36, + "probability": 0.957 + }, + { + "start": 29210.34, + "end": 29210.5, + "probability": 0.9366 + }, + { + "start": 29212.28, + "end": 29212.63, + "probability": 0.0779 + }, + { + "start": 29224.74, + "end": 29228.24, + "probability": 0.8402 + }, + { + "start": 29229.64, + "end": 29233.15, + "probability": 0.9932 + }, + { + "start": 29238.88, + "end": 29241.12, + "probability": 0.5187 + }, + { + "start": 29242.38, + "end": 29244.6, + "probability": 0.7852 + }, + { + "start": 29246.88, + "end": 29250.84, + "probability": 0.5345 + }, + { + "start": 29251.88, + "end": 29254.24, + "probability": 0.9351 + }, + { + "start": 29255.3, + "end": 29257.64, + "probability": 0.8146 + }, + { + "start": 29258.48, + "end": 29260.28, + "probability": 0.7316 + }, + { + "start": 29261.9, + "end": 29263.1, + "probability": 0.8462 + }, + { + "start": 29264.06, + "end": 29265.46, + "probability": 0.7073 + }, + { + "start": 29266.26, + "end": 29267.12, + "probability": 0.991 + }, + { + "start": 29267.88, + "end": 29272.02, + "probability": 0.9924 + }, + { + "start": 29273.86, + "end": 29274.58, + "probability": 0.699 + }, + { + "start": 29275.5, + "end": 29278.1, + "probability": 0.9781 + }, + { + "start": 29278.1, + "end": 29283.02, + "probability": 0.9902 + }, + { + "start": 29284.28, + "end": 29287.96, + "probability": 0.9964 + }, + { + "start": 29288.52, + "end": 29291.3, + "probability": 0.9987 + }, + { + "start": 29291.3, + "end": 29294.44, + "probability": 0.9992 + }, + { + "start": 29295.92, + "end": 29296.64, + "probability": 0.5499 + }, + { + "start": 29297.78, + "end": 29302.36, + "probability": 0.9714 + }, + { + "start": 29302.84, + "end": 29303.94, + "probability": 0.9937 + }, + { + "start": 29305.5, + "end": 29308.36, + "probability": 0.9937 + }, + { + "start": 29309.1, + "end": 29312.94, + "probability": 0.9996 + }, + { + "start": 29313.68, + "end": 29316.34, + "probability": 0.9854 + }, + { + "start": 29316.48, + "end": 29317.44, + "probability": 0.991 + }, + { + "start": 29317.48, + "end": 29318.56, + "probability": 0.7801 + }, + { + "start": 29318.56, + "end": 29319.24, + "probability": 0.5227 + }, + { + "start": 29320.1, + "end": 29323.3, + "probability": 0.8215 + }, + { + "start": 29323.9, + "end": 29324.95, + "probability": 0.994 + }, + { + "start": 29326.3, + "end": 29327.42, + "probability": 0.9898 + }, + { + "start": 29328.04, + "end": 29328.14, + "probability": 0.5654 + }, + { + "start": 29329.2, + "end": 29333.76, + "probability": 0.9839 + }, + { + "start": 29334.38, + "end": 29338.7, + "probability": 0.9955 + }, + { + "start": 29338.82, + "end": 29342.24, + "probability": 0.9741 + }, + { + "start": 29342.92, + "end": 29343.9, + "probability": 0.8855 + }, + { + "start": 29345.58, + "end": 29346.19, + "probability": 0.0331 + }, + { + "start": 29347.72, + "end": 29350.6, + "probability": 0.99 + }, + { + "start": 29351.56, + "end": 29358.74, + "probability": 0.9568 + }, + { + "start": 29359.52, + "end": 29361.54, + "probability": 0.8677 + }, + { + "start": 29362.12, + "end": 29363.82, + "probability": 0.9819 + }, + { + "start": 29364.54, + "end": 29368.5, + "probability": 0.9736 + }, + { + "start": 29369.9, + "end": 29372.96, + "probability": 0.9953 + }, + { + "start": 29372.96, + "end": 29376.48, + "probability": 0.9885 + }, + { + "start": 29376.66, + "end": 29377.78, + "probability": 0.9567 + }, + { + "start": 29377.9, + "end": 29380.8, + "probability": 0.9976 + }, + { + "start": 29381.14, + "end": 29384.62, + "probability": 0.9435 + }, + { + "start": 29385.02, + "end": 29387.78, + "probability": 0.9579 + }, + { + "start": 29388.22, + "end": 29391.6, + "probability": 0.9613 + }, + { + "start": 29392.14, + "end": 29396.4, + "probability": 0.9635 + }, + { + "start": 29396.84, + "end": 29400.36, + "probability": 0.9637 + }, + { + "start": 29400.36, + "end": 29404.08, + "probability": 0.9804 + }, + { + "start": 29404.74, + "end": 29405.58, + "probability": 0.7831 + }, + { + "start": 29406.6, + "end": 29409.9, + "probability": 0.9434 + }, + { + "start": 29415.08, + "end": 29415.58, + "probability": 0.2647 + }, + { + "start": 29416.32, + "end": 29416.32, + "probability": 0.0506 + }, + { + "start": 29416.4, + "end": 29416.4, + "probability": 0.0207 + }, + { + "start": 29416.4, + "end": 29416.4, + "probability": 0.0369 + }, + { + "start": 29416.42, + "end": 29419.3, + "probability": 0.8021 + }, + { + "start": 29419.6, + "end": 29419.6, + "probability": 0.3026 + }, + { + "start": 29419.6, + "end": 29421.04, + "probability": 0.8699 + }, + { + "start": 29421.14, + "end": 29422.06, + "probability": 0.5601 + }, + { + "start": 29422.62, + "end": 29423.32, + "probability": 0.9357 + }, + { + "start": 29423.68, + "end": 29426.12, + "probability": 0.8532 + }, + { + "start": 29426.86, + "end": 29427.08, + "probability": 0.4371 + }, + { + "start": 29427.58, + "end": 29429.24, + "probability": 0.7209 + }, + { + "start": 29429.38, + "end": 29430.66, + "probability": 0.9354 + }, + { + "start": 29430.74, + "end": 29431.04, + "probability": 0.5819 + }, + { + "start": 29431.34, + "end": 29432.64, + "probability": 0.8233 + }, + { + "start": 29432.8, + "end": 29433.46, + "probability": 0.929 + }, + { + "start": 29433.54, + "end": 29434.98, + "probability": 0.9297 + }, + { + "start": 29435.04, + "end": 29439.5, + "probability": 0.8934 + }, + { + "start": 29439.62, + "end": 29440.08, + "probability": 0.733 + }, + { + "start": 29440.36, + "end": 29440.86, + "probability": 0.5506 + }, + { + "start": 29440.96, + "end": 29443.28, + "probability": 0.8005 + }, + { + "start": 29444.24, + "end": 29444.84, + "probability": 0.7425 + }, + { + "start": 29445.68, + "end": 29448.44, + "probability": 0.8567 + }, + { + "start": 29449.42, + "end": 29450.14, + "probability": 0.8199 + }, + { + "start": 29450.5, + "end": 29452.6, + "probability": 0.96 + }, + { + "start": 29453.06, + "end": 29453.56, + "probability": 0.3929 + }, + { + "start": 29453.68, + "end": 29455.24, + "probability": 0.954 + }, + { + "start": 29455.6, + "end": 29456.16, + "probability": 0.6747 + }, + { + "start": 29456.72, + "end": 29457.94, + "probability": 0.8735 + }, + { + "start": 29458.62, + "end": 29459.22, + "probability": 0.7629 + }, + { + "start": 29460.34, + "end": 29461.96, + "probability": 0.8019 + }, + { + "start": 29462.58, + "end": 29464.92, + "probability": 0.9889 + }, + { + "start": 29465.62, + "end": 29467.62, + "probability": 0.8786 + }, + { + "start": 29468.8, + "end": 29469.32, + "probability": 0.5872 + }, + { + "start": 29470.12, + "end": 29471.24, + "probability": 0.9484 + }, + { + "start": 29472.24, + "end": 29472.8, + "probability": 0.5087 + }, + { + "start": 29473.12, + "end": 29473.12, + "probability": 0.6864 + }, + { + "start": 29473.4, + "end": 29474.86, + "probability": 0.996 + }, + { + "start": 29475.74, + "end": 29476.44, + "probability": 0.9583 + }, + { + "start": 29477.0, + "end": 29479.48, + "probability": 0.6717 + }, + { + "start": 29480.32, + "end": 29482.66, + "probability": 0.7928 + }, + { + "start": 29483.42, + "end": 29484.06, + "probability": 0.42 + }, + { + "start": 29485.02, + "end": 29486.38, + "probability": 0.9777 + }, + { + "start": 29487.36, + "end": 29489.58, + "probability": 0.8157 + }, + { + "start": 29490.72, + "end": 29491.5, + "probability": 0.9525 + }, + { + "start": 29492.12, + "end": 29493.9, + "probability": 0.9976 + }, + { + "start": 29495.66, + "end": 29497.82, + "probability": 0.7376 + }, + { + "start": 29498.86, + "end": 29501.54, + "probability": 0.8703 + }, + { + "start": 29502.18, + "end": 29502.98, + "probability": 0.7386 + }, + { + "start": 29503.14, + "end": 29504.54, + "probability": 0.8718 + }, + { + "start": 29505.44, + "end": 29507.32, + "probability": 0.8615 + }, + { + "start": 29507.84, + "end": 29510.82, + "probability": 0.4315 + }, + { + "start": 29512.61, + "end": 29514.06, + "probability": 0.0653 + }, + { + "start": 29514.06, + "end": 29514.62, + "probability": 0.6167 + }, + { + "start": 29516.38, + "end": 29518.62, + "probability": 0.4513 + }, + { + "start": 29523.5, + "end": 29525.2, + "probability": 0.6198 + }, + { + "start": 29525.74, + "end": 29527.0, + "probability": 0.6759 + }, + { + "start": 29527.72, + "end": 29529.0, + "probability": 0.7724 + }, + { + "start": 29529.38, + "end": 29531.56, + "probability": 0.7169 + }, + { + "start": 29532.24, + "end": 29533.88, + "probability": 0.9847 + }, + { + "start": 29536.1, + "end": 29537.08, + "probability": 0.9532 + }, + { + "start": 29538.14, + "end": 29543.82, + "probability": 0.9163 + }, + { + "start": 29543.82, + "end": 29551.84, + "probability": 0.9968 + }, + { + "start": 29552.46, + "end": 29555.28, + "probability": 0.9922 + }, + { + "start": 29558.04, + "end": 29562.48, + "probability": 0.9998 + }, + { + "start": 29563.96, + "end": 29567.02, + "probability": 0.9976 + }, + { + "start": 29568.44, + "end": 29569.6, + "probability": 0.7661 + }, + { + "start": 29571.08, + "end": 29575.08, + "probability": 0.9932 + }, + { + "start": 29576.32, + "end": 29577.0, + "probability": 0.7957 + }, + { + "start": 29577.62, + "end": 29579.94, + "probability": 0.9944 + }, + { + "start": 29581.58, + "end": 29585.64, + "probability": 0.9065 + }, + { + "start": 29586.2, + "end": 29587.44, + "probability": 0.9993 + }, + { + "start": 29588.34, + "end": 29590.52, + "probability": 0.8748 + }, + { + "start": 29590.86, + "end": 29592.72, + "probability": 0.7358 + }, + { + "start": 29594.18, + "end": 29595.96, + "probability": 0.9974 + }, + { + "start": 29596.72, + "end": 29597.56, + "probability": 0.6973 + }, + { + "start": 29599.02, + "end": 29599.68, + "probability": 0.9484 + }, + { + "start": 29600.6, + "end": 29601.34, + "probability": 0.8395 + }, + { + "start": 29601.58, + "end": 29602.8, + "probability": 0.9358 + }, + { + "start": 29602.86, + "end": 29606.32, + "probability": 0.9953 + }, + { + "start": 29607.24, + "end": 29608.12, + "probability": 0.7283 + }, + { + "start": 29609.76, + "end": 29613.32, + "probability": 0.9537 + }, + { + "start": 29614.68, + "end": 29618.88, + "probability": 0.9818 + }, + { + "start": 29621.3, + "end": 29625.48, + "probability": 0.9881 + }, + { + "start": 29626.12, + "end": 29630.68, + "probability": 0.9867 + }, + { + "start": 29633.12, + "end": 29635.98, + "probability": 0.8739 + }, + { + "start": 29636.84, + "end": 29636.94, + "probability": 0.6647 + }, + { + "start": 29637.86, + "end": 29639.08, + "probability": 0.9028 + }, + { + "start": 29639.68, + "end": 29640.66, + "probability": 0.8499 + }, + { + "start": 29641.52, + "end": 29643.56, + "probability": 0.8581 + }, + { + "start": 29644.1, + "end": 29644.88, + "probability": 0.951 + }, + { + "start": 29645.48, + "end": 29646.82, + "probability": 0.8955 + }, + { + "start": 29646.86, + "end": 29647.5, + "probability": 0.709 + }, + { + "start": 29647.98, + "end": 29650.22, + "probability": 0.9636 + }, + { + "start": 29650.42, + "end": 29652.42, + "probability": 0.7158 + }, + { + "start": 29653.12, + "end": 29654.5, + "probability": 0.9413 + }, + { + "start": 29655.62, + "end": 29660.26, + "probability": 0.9554 + }, + { + "start": 29660.74, + "end": 29661.44, + "probability": 0.8069 + }, + { + "start": 29662.92, + "end": 29664.16, + "probability": 0.9544 + }, + { + "start": 29664.74, + "end": 29665.64, + "probability": 0.8667 + }, + { + "start": 29666.54, + "end": 29667.52, + "probability": 0.8303 + }, + { + "start": 29668.36, + "end": 29669.26, + "probability": 0.6428 + }, + { + "start": 29669.58, + "end": 29674.48, + "probability": 0.9788 + }, + { + "start": 29675.38, + "end": 29678.84, + "probability": 0.9946 + }, + { + "start": 29680.76, + "end": 29687.68, + "probability": 0.996 + }, + { + "start": 29688.08, + "end": 29688.64, + "probability": 0.958 + }, + { + "start": 29689.28, + "end": 29689.98, + "probability": 0.7505 + }, + { + "start": 29691.2, + "end": 29691.62, + "probability": 0.4189 + }, + { + "start": 29691.68, + "end": 29694.26, + "probability": 0.6871 + }, + { + "start": 29694.36, + "end": 29695.72, + "probability": 0.9717 + }, + { + "start": 29696.44, + "end": 29697.0, + "probability": 0.9414 + }, + { + "start": 29697.66, + "end": 29699.58, + "probability": 0.9905 + }, + { + "start": 29700.18, + "end": 29700.66, + "probability": 0.9623 + }, + { + "start": 29701.78, + "end": 29704.1, + "probability": 0.9935 + }, + { + "start": 29704.64, + "end": 29705.2, + "probability": 0.9815 + }, + { + "start": 29706.08, + "end": 29706.98, + "probability": 0.8394 + }, + { + "start": 29707.74, + "end": 29708.32, + "probability": 0.7488 + }, + { + "start": 29709.42, + "end": 29709.96, + "probability": 0.516 + }, + { + "start": 29710.1, + "end": 29710.84, + "probability": 0.7347 + }, + { + "start": 29710.86, + "end": 29711.14, + "probability": 0.7326 + }, + { + "start": 29711.2, + "end": 29712.36, + "probability": 0.9671 + }, + { + "start": 29712.98, + "end": 29713.54, + "probability": 0.6572 + }, + { + "start": 29714.36, + "end": 29716.4, + "probability": 0.9168 + }, + { + "start": 29716.92, + "end": 29717.24, + "probability": 0.926 + }, + { + "start": 29719.42, + "end": 29720.62, + "probability": 0.0532 + }, + { + "start": 29736.94, + "end": 29738.62, + "probability": 0.6223 + }, + { + "start": 29741.06, + "end": 29742.18, + "probability": 0.7444 + }, + { + "start": 29742.36, + "end": 29747.1, + "probability": 0.8525 + }, + { + "start": 29747.82, + "end": 29754.7, + "probability": 0.991 + }, + { + "start": 29754.7, + "end": 29763.1, + "probability": 0.8678 + }, + { + "start": 29763.1, + "end": 29763.1, + "probability": 0.0121 + }, + { + "start": 29763.1, + "end": 29763.12, + "probability": 0.2181 + }, + { + "start": 29763.18, + "end": 29763.18, + "probability": 0.3238 + }, + { + "start": 29763.18, + "end": 29764.98, + "probability": 0.3909 + }, + { + "start": 29765.08, + "end": 29765.62, + "probability": 0.8227 + }, + { + "start": 29766.54, + "end": 29769.15, + "probability": 0.1833 + }, + { + "start": 29770.08, + "end": 29770.32, + "probability": 0.0297 + }, + { + "start": 29770.32, + "end": 29772.56, + "probability": 0.6801 + }, + { + "start": 29774.29, + "end": 29777.2, + "probability": 0.754 + }, + { + "start": 29779.48, + "end": 29781.3, + "probability": 0.9404 + }, + { + "start": 29781.56, + "end": 29785.78, + "probability": 0.9941 + }, + { + "start": 29786.12, + "end": 29787.44, + "probability": 0.9609 + }, + { + "start": 29788.0, + "end": 29790.16, + "probability": 0.895 + }, + { + "start": 29790.5, + "end": 29794.58, + "probability": 0.9924 + }, + { + "start": 29794.58, + "end": 29797.78, + "probability": 0.9804 + }, + { + "start": 29798.22, + "end": 29802.66, + "probability": 0.9403 + }, + { + "start": 29802.94, + "end": 29804.68, + "probability": 0.9984 + }, + { + "start": 29805.26, + "end": 29805.78, + "probability": 0.9334 + }, + { + "start": 29806.48, + "end": 29812.9, + "probability": 0.9994 + }, + { + "start": 29812.9, + "end": 29817.58, + "probability": 0.9989 + }, + { + "start": 29818.0, + "end": 29822.18, + "probability": 0.9775 + }, + { + "start": 29822.26, + "end": 29823.02, + "probability": 0.867 + }, + { + "start": 29823.2, + "end": 29825.5, + "probability": 0.9878 + }, + { + "start": 29825.5, + "end": 29829.2, + "probability": 0.9982 + }, + { + "start": 29829.68, + "end": 29836.12, + "probability": 0.9603 + }, + { + "start": 29836.3, + "end": 29837.0, + "probability": 0.4486 + }, + { + "start": 29837.44, + "end": 29837.84, + "probability": 0.295 + }, + { + "start": 29838.06, + "end": 29839.96, + "probability": 0.9622 + }, + { + "start": 29840.76, + "end": 29844.84, + "probability": 0.9494 + }, + { + "start": 29845.56, + "end": 29847.3, + "probability": 0.9357 + }, + { + "start": 29847.94, + "end": 29851.5, + "probability": 0.7957 + }, + { + "start": 29851.9, + "end": 29855.96, + "probability": 0.8965 + }, + { + "start": 29856.36, + "end": 29856.77, + "probability": 0.7012 + }, + { + "start": 29857.92, + "end": 29860.74, + "probability": 0.9792 + }, + { + "start": 29860.84, + "end": 29863.18, + "probability": 0.9955 + }, + { + "start": 29864.24, + "end": 29864.38, + "probability": 0.3058 + }, + { + "start": 29864.52, + "end": 29865.58, + "probability": 0.8931 + }, + { + "start": 29865.76, + "end": 29869.64, + "probability": 0.9723 + }, + { + "start": 29869.64, + "end": 29874.34, + "probability": 0.9595 + }, + { + "start": 29875.26, + "end": 29877.74, + "probability": 0.949 + }, + { + "start": 29878.14, + "end": 29883.52, + "probability": 0.9312 + }, + { + "start": 29884.06, + "end": 29885.32, + "probability": 0.742 + }, + { + "start": 29885.4, + "end": 29890.82, + "probability": 0.9862 + }, + { + "start": 29891.14, + "end": 29891.16, + "probability": 0.316 + }, + { + "start": 29891.16, + "end": 29892.46, + "probability": 0.7943 + }, + { + "start": 29892.88, + "end": 29900.76, + "probability": 0.8372 + }, + { + "start": 29901.26, + "end": 29901.28, + "probability": 0.6353 + }, + { + "start": 29901.34, + "end": 29901.34, + "probability": 0.6538 + }, + { + "start": 29901.34, + "end": 29901.34, + "probability": 0.0497 + }, + { + "start": 29901.34, + "end": 29901.34, + "probability": 0.3697 + }, + { + "start": 29901.34, + "end": 29902.25, + "probability": 0.5454 + }, + { + "start": 29902.9, + "end": 29908.14, + "probability": 0.7087 + }, + { + "start": 29908.14, + "end": 29908.14, + "probability": 0.4922 + }, + { + "start": 29908.14, + "end": 29911.68, + "probability": 0.7622 + }, + { + "start": 29911.68, + "end": 29911.87, + "probability": 0.0442 + }, + { + "start": 29912.3, + "end": 29913.54, + "probability": 0.8082 + }, + { + "start": 29913.78, + "end": 29914.76, + "probability": 0.5336 + }, + { + "start": 29914.98, + "end": 29917.82, + "probability": 0.9217 + }, + { + "start": 29917.98, + "end": 29920.8, + "probability": 0.8316 + }, + { + "start": 29921.02, + "end": 29921.38, + "probability": 0.2556 + }, + { + "start": 29921.38, + "end": 29922.88, + "probability": 0.4815 + }, + { + "start": 29922.94, + "end": 29929.32, + "probability": 0.4663 + }, + { + "start": 29931.5, + "end": 29935.08, + "probability": 0.1065 + }, + { + "start": 29935.42, + "end": 29940.42, + "probability": 0.2725 + }, + { + "start": 29940.42, + "end": 29944.86, + "probability": 0.0947 + }, + { + "start": 29944.86, + "end": 29945.74, + "probability": 0.6861 + }, + { + "start": 29945.74, + "end": 29946.65, + "probability": 0.0928 + }, + { + "start": 29947.16, + "end": 29948.57, + "probability": 0.3973 + }, + { + "start": 29949.68, + "end": 29950.44, + "probability": 0.3064 + }, + { + "start": 29950.88, + "end": 29951.76, + "probability": 0.563 + }, + { + "start": 29952.38, + "end": 29957.28, + "probability": 0.1028 + }, + { + "start": 29958.72, + "end": 29959.46, + "probability": 0.0939 + }, + { + "start": 29960.28, + "end": 29961.88, + "probability": 0.6133 + }, + { + "start": 29961.96, + "end": 29962.44, + "probability": 0.5276 + }, + { + "start": 29962.6, + "end": 29963.7, + "probability": 0.6173 + }, + { + "start": 29963.82, + "end": 29964.5, + "probability": 0.3732 + }, + { + "start": 29965.24, + "end": 29967.96, + "probability": 0.3809 + }, + { + "start": 29977.5, + "end": 29978.02, + "probability": 0.3053 + }, + { + "start": 29979.6, + "end": 29981.18, + "probability": 0.5902 + }, + { + "start": 29982.44, + "end": 29983.04, + "probability": 0.4954 + }, + { + "start": 29984.48, + "end": 29985.18, + "probability": 0.0495 + }, + { + "start": 29986.44, + "end": 29987.96, + "probability": 0.3283 + }, + { + "start": 29990.24, + "end": 29993.79, + "probability": 0.1167 + }, + { + "start": 29999.36, + "end": 30000.06, + "probability": 0.1198 + }, + { + "start": 30000.21, + "end": 30001.98, + "probability": 0.0927 + }, + { + "start": 30004.78, + "end": 30005.58, + "probability": 0.3256 + }, + { + "start": 30019.0, + "end": 30019.0, + "probability": 0.0 + }, + { + "start": 30019.0, + "end": 30019.0, + "probability": 0.0 + }, + { + "start": 30019.0, + "end": 30019.0, + "probability": 0.0 + }, + { + "start": 30019.0, + "end": 30019.0, + "probability": 0.0 + }, + { + "start": 30019.0, + "end": 30019.0, + "probability": 0.0 + }, + { + "start": 30019.0, + "end": 30019.0, + "probability": 0.0 + }, + { + "start": 30019.0, + "end": 30019.0, + "probability": 0.0 + }, + { + "start": 30020.42, + "end": 30020.72, + "probability": 0.1679 + }, + { + "start": 30020.72, + "end": 30020.72, + "probability": 0.2188 + }, + { + "start": 30020.72, + "end": 30022.28, + "probability": 0.5454 + }, + { + "start": 30025.6, + "end": 30031.04, + "probability": 0.9634 + }, + { + "start": 30032.24, + "end": 30034.68, + "probability": 0.9896 + }, + { + "start": 30035.88, + "end": 30036.84, + "probability": 0.8794 + }, + { + "start": 30038.52, + "end": 30043.15, + "probability": 0.9764 + }, + { + "start": 30044.76, + "end": 30050.3, + "probability": 0.9993 + }, + { + "start": 30051.24, + "end": 30052.84, + "probability": 0.972 + }, + { + "start": 30053.78, + "end": 30055.78, + "probability": 0.8809 + }, + { + "start": 30056.88, + "end": 30060.22, + "probability": 0.9383 + }, + { + "start": 30061.74, + "end": 30064.48, + "probability": 0.8255 + }, + { + "start": 30066.24, + "end": 30068.47, + "probability": 0.9966 + }, + { + "start": 30069.42, + "end": 30071.12, + "probability": 0.9338 + }, + { + "start": 30072.02, + "end": 30074.98, + "probability": 0.8619 + }, + { + "start": 30075.94, + "end": 30077.06, + "probability": 0.9966 + }, + { + "start": 30077.14, + "end": 30078.78, + "probability": 0.9871 + }, + { + "start": 30079.18, + "end": 30079.76, + "probability": 0.9737 + }, + { + "start": 30079.86, + "end": 30080.48, + "probability": 0.9697 + }, + { + "start": 30081.0, + "end": 30082.72, + "probability": 0.997 + }, + { + "start": 30082.74, + "end": 30084.94, + "probability": 0.0453 + }, + { + "start": 30085.32, + "end": 30090.12, + "probability": 0.8179 + }, + { + "start": 30091.3, + "end": 30093.6, + "probability": 0.984 + }, + { + "start": 30094.24, + "end": 30095.84, + "probability": 0.9507 + }, + { + "start": 30096.36, + "end": 30097.32, + "probability": 0.9954 + }, + { + "start": 30098.82, + "end": 30102.34, + "probability": 0.998 + }, + { + "start": 30103.1, + "end": 30104.94, + "probability": 0.8457 + }, + { + "start": 30106.26, + "end": 30108.82, + "probability": 0.8564 + }, + { + "start": 30109.46, + "end": 30112.54, + "probability": 0.9696 + }, + { + "start": 30113.28, + "end": 30119.7, + "probability": 0.9958 + }, + { + "start": 30119.7, + "end": 30123.38, + "probability": 0.9929 + }, + { + "start": 30124.28, + "end": 30124.96, + "probability": 0.8406 + }, + { + "start": 30125.82, + "end": 30126.88, + "probability": 0.9457 + }, + { + "start": 30127.48, + "end": 30128.68, + "probability": 0.5215 + }, + { + "start": 30129.32, + "end": 30132.3, + "probability": 0.9868 + }, + { + "start": 30132.96, + "end": 30133.82, + "probability": 0.9696 + }, + { + "start": 30134.52, + "end": 30136.73, + "probability": 0.99 + }, + { + "start": 30137.2, + "end": 30138.98, + "probability": 0.8372 + }, + { + "start": 30139.56, + "end": 30142.36, + "probability": 0.9948 + }, + { + "start": 30143.0, + "end": 30144.76, + "probability": 0.9944 + }, + { + "start": 30145.64, + "end": 30147.64, + "probability": 0.9963 + }, + { + "start": 30149.34, + "end": 30152.24, + "probability": 0.9791 + }, + { + "start": 30152.3, + "end": 30154.82, + "probability": 0.9945 + }, + { + "start": 30155.26, + "end": 30156.86, + "probability": 0.971 + }, + { + "start": 30157.42, + "end": 30161.01, + "probability": 0.966 + }, + { + "start": 30161.58, + "end": 30166.32, + "probability": 0.9727 + }, + { + "start": 30166.32, + "end": 30169.34, + "probability": 0.9983 + }, + { + "start": 30169.88, + "end": 30172.72, + "probability": 0.9635 + }, + { + "start": 30173.34, + "end": 30174.5, + "probability": 0.8839 + }, + { + "start": 30174.58, + "end": 30175.14, + "probability": 0.8281 + }, + { + "start": 30175.24, + "end": 30177.42, + "probability": 0.9878 + }, + { + "start": 30177.84, + "end": 30180.0, + "probability": 0.9984 + }, + { + "start": 30180.38, + "end": 30183.58, + "probability": 0.9727 + }, + { + "start": 30184.46, + "end": 30187.92, + "probability": 0.8368 + }, + { + "start": 30188.08, + "end": 30188.72, + "probability": 0.8274 + }, + { + "start": 30189.1, + "end": 30193.02, + "probability": 0.9869 + }, + { + "start": 30194.96, + "end": 30196.98, + "probability": 0.6805 + }, + { + "start": 30197.37, + "end": 30204.02, + "probability": 0.9753 + }, + { + "start": 30204.12, + "end": 30205.24, + "probability": 0.81 + }, + { + "start": 30205.4, + "end": 30205.49, + "probability": 0.1775 + }, + { + "start": 30206.98, + "end": 30206.98, + "probability": 0.1523 + }, + { + "start": 30206.98, + "end": 30208.49, + "probability": 0.7561 + }, + { + "start": 30209.8, + "end": 30212.62, + "probability": 0.8799 + }, + { + "start": 30212.66, + "end": 30213.26, + "probability": 0.5696 + }, + { + "start": 30213.26, + "end": 30214.36, + "probability": 0.7081 + }, + { + "start": 30214.46, + "end": 30215.69, + "probability": 0.9932 + }, + { + "start": 30216.1, + "end": 30217.12, + "probability": 0.803 + }, + { + "start": 30217.38, + "end": 30219.78, + "probability": 0.9928 + }, + { + "start": 30220.32, + "end": 30220.94, + "probability": 0.5569 + }, + { + "start": 30220.94, + "end": 30221.1, + "probability": 0.463 + }, + { + "start": 30221.5, + "end": 30221.8, + "probability": 0.948 + }, + { + "start": 30222.98, + "end": 30223.26, + "probability": 0.4221 + }, + { + "start": 30223.76, + "end": 30224.79, + "probability": 0.5645 + }, + { + "start": 30228.26, + "end": 30230.04, + "probability": 0.9405 + }, + { + "start": 30231.4, + "end": 30233.82, + "probability": 0.7905 + }, + { + "start": 30234.74, + "end": 30237.9, + "probability": 0.9941 + }, + { + "start": 30242.5, + "end": 30244.5, + "probability": 0.1643 + }, + { + "start": 30244.94, + "end": 30246.28, + "probability": 0.7621 + }, + { + "start": 30247.28, + "end": 30249.96, + "probability": 0.9927 + }, + { + "start": 30250.98, + "end": 30251.46, + "probability": 0.6282 + }, + { + "start": 30252.02, + "end": 30255.74, + "probability": 0.9938 + }, + { + "start": 30256.32, + "end": 30257.8, + "probability": 0.8774 + }, + { + "start": 30258.78, + "end": 30263.46, + "probability": 0.9939 + }, + { + "start": 30264.18, + "end": 30265.25, + "probability": 0.9318 + }, + { + "start": 30267.06, + "end": 30268.42, + "probability": 0.9399 + }, + { + "start": 30268.52, + "end": 30271.08, + "probability": 0.9927 + }, + { + "start": 30271.52, + "end": 30272.52, + "probability": 0.0452 + }, + { + "start": 30273.0, + "end": 30273.76, + "probability": 0.9553 + }, + { + "start": 30275.06, + "end": 30278.66, + "probability": 0.9731 + }, + { + "start": 30279.66, + "end": 30281.62, + "probability": 0.8333 + }, + { + "start": 30281.92, + "end": 30284.1, + "probability": 0.8777 + }, + { + "start": 30285.58, + "end": 30286.52, + "probability": 0.0251 + }, + { + "start": 30286.52, + "end": 30291.06, + "probability": 0.996 + }, + { + "start": 30294.5, + "end": 30295.51, + "probability": 0.5359 + }, + { + "start": 30296.42, + "end": 30297.3, + "probability": 0.9021 + }, + { + "start": 30298.28, + "end": 30298.44, + "probability": 0.0297 + }, + { + "start": 30298.44, + "end": 30298.44, + "probability": 0.0955 + }, + { + "start": 30298.44, + "end": 30302.72, + "probability": 0.7884 + }, + { + "start": 30303.16, + "end": 30303.58, + "probability": 0.2774 + }, + { + "start": 30303.72, + "end": 30308.84, + "probability": 0.9966 + }, + { + "start": 30308.92, + "end": 30309.8, + "probability": 0.8432 + }, + { + "start": 30310.02, + "end": 30310.42, + "probability": 0.022 + }, + { + "start": 30310.42, + "end": 30311.1, + "probability": 0.302 + }, + { + "start": 30312.44, + "end": 30313.56, + "probability": 0.1826 + }, + { + "start": 30314.74, + "end": 30315.24, + "probability": 0.0789 + }, + { + "start": 30315.24, + "end": 30315.24, + "probability": 0.0064 + }, + { + "start": 30315.24, + "end": 30315.62, + "probability": 0.3311 + }, + { + "start": 30315.76, + "end": 30315.76, + "probability": 0.111 + }, + { + "start": 30315.76, + "end": 30315.76, + "probability": 0.1042 + }, + { + "start": 30315.76, + "end": 30318.22, + "probability": 0.5344 + }, + { + "start": 30318.22, + "end": 30318.76, + "probability": 0.6164 + }, + { + "start": 30318.8, + "end": 30321.08, + "probability": 0.884 + }, + { + "start": 30322.34, + "end": 30323.68, + "probability": 0.8423 + }, + { + "start": 30323.72, + "end": 30326.74, + "probability": 0.3765 + }, + { + "start": 30326.78, + "end": 30327.06, + "probability": 0.4608 + }, + { + "start": 30327.14, + "end": 30327.34, + "probability": 0.2811 + }, + { + "start": 30327.34, + "end": 30329.2, + "probability": 0.5825 + }, + { + "start": 30329.2, + "end": 30330.6, + "probability": 0.5264 + }, + { + "start": 30331.58, + "end": 30331.58, + "probability": 0.0018 + }, + { + "start": 30331.58, + "end": 30334.28, + "probability": 0.8006 + }, + { + "start": 30335.38, + "end": 30341.52, + "probability": 0.9615 + }, + { + "start": 30342.28, + "end": 30343.68, + "probability": 0.9619 + }, + { + "start": 30344.72, + "end": 30350.16, + "probability": 0.9922 + }, + { + "start": 30350.74, + "end": 30354.62, + "probability": 0.994 + }, + { + "start": 30354.82, + "end": 30357.22, + "probability": 0.9968 + }, + { + "start": 30358.28, + "end": 30359.68, + "probability": 0.0596 + }, + { + "start": 30359.78, + "end": 30360.98, + "probability": 0.2651 + }, + { + "start": 30361.0, + "end": 30361.0, + "probability": 0.8269 + }, + { + "start": 30361.12, + "end": 30362.24, + "probability": 0.9384 + }, + { + "start": 30362.32, + "end": 30365.14, + "probability": 0.9956 + }, + { + "start": 30365.18, + "end": 30366.16, + "probability": 0.9182 + }, + { + "start": 30366.22, + "end": 30369.86, + "probability": 0.9735 + }, + { + "start": 30369.86, + "end": 30374.58, + "probability": 0.9764 + }, + { + "start": 30374.58, + "end": 30378.52, + "probability": 0.4761 + }, + { + "start": 30379.66, + "end": 30381.32, + "probability": 0.2827 + }, + { + "start": 30381.96, + "end": 30382.88, + "probability": 0.0816 + }, + { + "start": 30382.88, + "end": 30387.62, + "probability": 0.7438 + }, + { + "start": 30388.5, + "end": 30388.8, + "probability": 0.7595 + }, + { + "start": 30388.9, + "end": 30389.72, + "probability": 0.9576 + }, + { + "start": 30389.88, + "end": 30391.19, + "probability": 0.9299 + }, + { + "start": 30391.32, + "end": 30392.38, + "probability": 0.8689 + }, + { + "start": 30392.58, + "end": 30394.76, + "probability": 0.9137 + }, + { + "start": 30394.8, + "end": 30395.48, + "probability": 0.8917 + }, + { + "start": 30396.72, + "end": 30397.38, + "probability": 0.6583 + }, + { + "start": 30397.7, + "end": 30399.22, + "probability": 0.9424 + }, + { + "start": 30399.84, + "end": 30401.48, + "probability": 0.7318 + }, + { + "start": 30401.74, + "end": 30405.56, + "probability": 0.9539 + }, + { + "start": 30406.52, + "end": 30409.94, + "probability": 0.7972 + }, + { + "start": 30411.7, + "end": 30411.82, + "probability": 0.2859 + }, + { + "start": 30411.82, + "end": 30413.04, + "probability": 0.5602 + }, + { + "start": 30418.68, + "end": 30419.16, + "probability": 0.0619 + }, + { + "start": 30420.36, + "end": 30421.35, + "probability": 0.1986 + }, + { + "start": 30424.08, + "end": 30424.08, + "probability": 0.0094 + }, + { + "start": 30424.08, + "end": 30425.48, + "probability": 0.3679 + }, + { + "start": 30425.62, + "end": 30427.02, + "probability": 0.8536 + }, + { + "start": 30427.16, + "end": 30428.16, + "probability": 0.2954 + }, + { + "start": 30429.26, + "end": 30429.86, + "probability": 0.2789 + }, + { + "start": 30430.5, + "end": 30432.85, + "probability": 0.9911 + }, + { + "start": 30434.32, + "end": 30436.96, + "probability": 0.5505 + }, + { + "start": 30438.22, + "end": 30441.32, + "probability": 0.8744 + }, + { + "start": 30442.04, + "end": 30446.22, + "probability": 0.9832 + }, + { + "start": 30446.42, + "end": 30450.76, + "probability": 0.8391 + }, + { + "start": 30450.94, + "end": 30452.4, + "probability": 0.864 + }, + { + "start": 30453.2, + "end": 30454.18, + "probability": 0.9485 + }, + { + "start": 30454.24, + "end": 30454.94, + "probability": 0.5571 + }, + { + "start": 30455.16, + "end": 30456.92, + "probability": 0.8643 + }, + { + "start": 30456.98, + "end": 30457.44, + "probability": 0.8172 + }, + { + "start": 30458.3, + "end": 30461.54, + "probability": 0.8909 + }, + { + "start": 30462.5, + "end": 30463.22, + "probability": 0.4192 + }, + { + "start": 30466.58, + "end": 30469.44, + "probability": 0.8826 + }, + { + "start": 30470.1, + "end": 30470.76, + "probability": 0.7833 + }, + { + "start": 30471.94, + "end": 30473.84, + "probability": 0.464 + }, + { + "start": 30474.98, + "end": 30475.34, + "probability": 0.8638 + }, + { + "start": 30476.2, + "end": 30476.92, + "probability": 0.6859 + }, + { + "start": 30478.16, + "end": 30479.94, + "probability": 0.9548 + }, + { + "start": 30482.12, + "end": 30483.4, + "probability": 0.9141 + }, + { + "start": 30484.34, + "end": 30486.5, + "probability": 0.7651 + }, + { + "start": 30488.54, + "end": 30488.96, + "probability": 0.9925 + }, + { + "start": 30489.96, + "end": 30490.62, + "probability": 0.7074 + }, + { + "start": 30491.64, + "end": 30493.38, + "probability": 0.9594 + }, + { + "start": 30494.18, + "end": 30494.62, + "probability": 0.9888 + }, + { + "start": 30495.54, + "end": 30496.36, + "probability": 0.9573 + }, + { + "start": 30498.16, + "end": 30498.86, + "probability": 0.9928 + }, + { + "start": 30499.68, + "end": 30500.58, + "probability": 0.771 + }, + { + "start": 30502.76, + "end": 30503.46, + "probability": 0.8665 + }, + { + "start": 30504.42, + "end": 30505.1, + "probability": 0.7496 + }, + { + "start": 30505.84, + "end": 30506.26, + "probability": 0.8201 + }, + { + "start": 30506.98, + "end": 30507.76, + "probability": 0.939 + }, + { + "start": 30509.84, + "end": 30511.34, + "probability": 0.7358 + }, + { + "start": 30512.16, + "end": 30512.82, + "probability": 0.8753 + }, + { + "start": 30515.4, + "end": 30516.44, + "probability": 0.99 + }, + { + "start": 30517.18, + "end": 30517.7, + "probability": 0.9696 + }, + { + "start": 30518.92, + "end": 30520.54, + "probability": 0.9201 + }, + { + "start": 30521.58, + "end": 30522.0, + "probability": 0.9927 + }, + { + "start": 30523.38, + "end": 30524.54, + "probability": 0.9729 + }, + { + "start": 30525.18, + "end": 30525.6, + "probability": 0.9919 + }, + { + "start": 30526.68, + "end": 30527.32, + "probability": 0.9851 + }, + { + "start": 30527.86, + "end": 30529.48, + "probability": 0.7096 + }, + { + "start": 30530.3, + "end": 30530.68, + "probability": 0.8425 + }, + { + "start": 30531.44, + "end": 30532.24, + "probability": 0.8826 + }, + { + "start": 30534.54, + "end": 30535.14, + "probability": 0.9703 + }, + { + "start": 30535.92, + "end": 30536.62, + "probability": 0.9764 + }, + { + "start": 30537.36, + "end": 30538.1, + "probability": 0.9812 + }, + { + "start": 30538.7, + "end": 30539.5, + "probability": 0.9856 + }, + { + "start": 30540.92, + "end": 30541.62, + "probability": 0.986 + }, + { + "start": 30542.18, + "end": 30542.74, + "probability": 0.9984 + }, + { + "start": 30544.72, + "end": 30546.7, + "probability": 0.9934 + }, + { + "start": 30547.48, + "end": 30547.84, + "probability": 0.8533 + }, + { + "start": 30549.02, + "end": 30550.92, + "probability": 0.8074 + }, + { + "start": 30552.28, + "end": 30552.88, + "probability": 0.7248 + }, + { + "start": 30554.0, + "end": 30554.26, + "probability": 0.6361 + }, + { + "start": 30555.46, + "end": 30555.88, + "probability": 0.909 + }, + { + "start": 30559.96, + "end": 30561.42, + "probability": 0.9056 + }, + { + "start": 30564.58, + "end": 30566.02, + "probability": 0.9344 + }, + { + "start": 30568.3, + "end": 30570.4, + "probability": 0.9791 + }, + { + "start": 30571.32, + "end": 30571.76, + "probability": 0.969 + }, + { + "start": 30572.68, + "end": 30573.26, + "probability": 0.9919 + }, + { + "start": 30574.24, + "end": 30575.52, + "probability": 0.9604 + }, + { + "start": 30577.56, + "end": 30578.14, + "probability": 0.9968 + }, + { + "start": 30579.28, + "end": 30579.84, + "probability": 0.733 + }, + { + "start": 30582.74, + "end": 30584.54, + "probability": 0.8262 + }, + { + "start": 30585.34, + "end": 30585.56, + "probability": 0.7998 + }, + { + "start": 30586.16, + "end": 30587.18, + "probability": 0.748 + }, + { + "start": 30589.26, + "end": 30590.7, + "probability": 0.9021 + }, + { + "start": 30591.74, + "end": 30593.06, + "probability": 0.9741 + }, + { + "start": 30593.68, + "end": 30595.6, + "probability": 0.9941 + }, + { + "start": 30596.62, + "end": 30597.06, + "probability": 0.9966 + }, + { + "start": 30597.64, + "end": 30598.56, + "probability": 0.9591 + }, + { + "start": 30599.52, + "end": 30601.52, + "probability": 0.9269 + }, + { + "start": 30602.28, + "end": 30603.72, + "probability": 0.5381 + }, + { + "start": 30605.22, + "end": 30605.6, + "probability": 0.9614 + }, + { + "start": 30606.46, + "end": 30607.5, + "probability": 0.9777 + }, + { + "start": 30608.44, + "end": 30610.16, + "probability": 0.9505 + }, + { + "start": 30613.4, + "end": 30613.78, + "probability": 0.9927 + }, + { + "start": 30614.46, + "end": 30615.2, + "probability": 0.7404 + }, + { + "start": 30616.12, + "end": 30616.44, + "probability": 0.9865 + }, + { + "start": 30618.28, + "end": 30619.24, + "probability": 0.705 + }, + { + "start": 30621.7, + "end": 30625.44, + "probability": 0.7664 + }, + { + "start": 30627.58, + "end": 30629.2, + "probability": 0.731 + }, + { + "start": 30630.62, + "end": 30631.32, + "probability": 0.987 + }, + { + "start": 30631.84, + "end": 30632.46, + "probability": 0.9165 + }, + { + "start": 30633.46, + "end": 30633.78, + "probability": 0.9663 + }, + { + "start": 30635.48, + "end": 30636.06, + "probability": 0.9507 + }, + { + "start": 30636.96, + "end": 30637.38, + "probability": 0.6864 + }, + { + "start": 30638.04, + "end": 30638.4, + "probability": 0.958 + }, + { + "start": 30639.58, + "end": 30641.42, + "probability": 0.9801 + }, + { + "start": 30642.8, + "end": 30643.96, + "probability": 0.9905 + }, + { + "start": 30645.16, + "end": 30645.88, + "probability": 0.9445 + }, + { + "start": 30646.74, + "end": 30648.22, + "probability": 0.9814 + }, + { + "start": 30651.32, + "end": 30651.98, + "probability": 0.9965 + }, + { + "start": 30652.52, + "end": 30653.12, + "probability": 0.8934 + }, + { + "start": 30654.24, + "end": 30654.46, + "probability": 0.6 + }, + { + "start": 30655.54, + "end": 30656.14, + "probability": 0.5274 + }, + { + "start": 30658.08, + "end": 30658.76, + "probability": 0.7734 + }, + { + "start": 30659.68, + "end": 30660.1, + "probability": 0.9057 + }, + { + "start": 30661.28, + "end": 30661.62, + "probability": 0.959 + }, + { + "start": 30662.36, + "end": 30662.98, + "probability": 0.9714 + }, + { + "start": 30663.84, + "end": 30665.2, + "probability": 0.9586 + }, + { + "start": 30666.88, + "end": 30667.32, + "probability": 0.9801 + }, + { + "start": 30668.26, + "end": 30668.66, + "probability": 0.955 + }, + { + "start": 30669.58, + "end": 30670.84, + "probability": 0.9756 + }, + { + "start": 30675.0, + "end": 30675.22, + "probability": 0.5194 + }, + { + "start": 30675.92, + "end": 30676.32, + "probability": 0.7123 + }, + { + "start": 30677.84, + "end": 30680.7, + "probability": 0.6966 + }, + { + "start": 30681.28, + "end": 30681.86, + "probability": 0.863 + }, + { + "start": 30683.45, + "end": 30685.14, + "probability": 0.9385 + }, + { + "start": 30689.14, + "end": 30690.14, + "probability": 0.4902 + }, + { + "start": 30692.44, + "end": 30695.42, + "probability": 0.921 + }, + { + "start": 30696.12, + "end": 30699.66, + "probability": 0.8347 + }, + { + "start": 30700.78, + "end": 30702.56, + "probability": 0.766 + }, + { + "start": 30703.88, + "end": 30704.36, + "probability": 0.9338 + }, + { + "start": 30707.4, + "end": 30708.28, + "probability": 0.6352 + }, + { + "start": 30709.06, + "end": 30709.34, + "probability": 0.7324 + }, + { + "start": 30710.54, + "end": 30711.56, + "probability": 0.8551 + }, + { + "start": 30712.3, + "end": 30712.78, + "probability": 0.9827 + }, + { + "start": 30713.58, + "end": 30714.52, + "probability": 0.8461 + }, + { + "start": 30715.66, + "end": 30717.64, + "probability": 0.8955 + }, + { + "start": 30718.4, + "end": 30719.76, + "probability": 0.9473 + }, + { + "start": 30721.12, + "end": 30722.46, + "probability": 0.9653 + }, + { + "start": 30724.5, + "end": 30726.34, + "probability": 0.9642 + }, + { + "start": 30728.68, + "end": 30730.38, + "probability": 0.9566 + }, + { + "start": 30731.46, + "end": 30731.92, + "probability": 0.5912 + }, + { + "start": 30733.04, + "end": 30734.0, + "probability": 0.8848 + }, + { + "start": 30735.38, + "end": 30736.06, + "probability": 0.7492 + }, + { + "start": 30738.08, + "end": 30739.18, + "probability": 0.752 + }, + { + "start": 30740.8, + "end": 30742.46, + "probability": 0.9402 + }, + { + "start": 30744.08, + "end": 30746.14, + "probability": 0.9285 + }, + { + "start": 30748.34, + "end": 30748.8, + "probability": 0.9919 + }, + { + "start": 30749.34, + "end": 30750.36, + "probability": 0.7756 + }, + { + "start": 30751.32, + "end": 30753.0, + "probability": 0.9739 + }, + { + "start": 30753.82, + "end": 30755.34, + "probability": 0.9846 + }, + { + "start": 30759.24, + "end": 30760.42, + "probability": 0.3688 + }, + { + "start": 30761.4, + "end": 30764.32, + "probability": 0.7168 + }, + { + "start": 30766.9, + "end": 30767.88, + "probability": 0.7248 + }, + { + "start": 30770.1, + "end": 30770.62, + "probability": 0.9253 + }, + { + "start": 30771.22, + "end": 30771.94, + "probability": 0.6526 + }, + { + "start": 30772.9, + "end": 30774.66, + "probability": 0.8923 + }, + { + "start": 30777.18, + "end": 30777.82, + "probability": 0.8692 + }, + { + "start": 30778.56, + "end": 30779.26, + "probability": 0.8823 + }, + { + "start": 30781.24, + "end": 30781.62, + "probability": 0.995 + }, + { + "start": 30783.38, + "end": 30784.06, + "probability": 0.9389 + }, + { + "start": 30785.12, + "end": 30785.46, + "probability": 0.9961 + }, + { + "start": 30786.62, + "end": 30787.48, + "probability": 0.8593 + }, + { + "start": 30788.68, + "end": 30789.12, + "probability": 0.8376 + }, + { + "start": 30790.06, + "end": 30790.94, + "probability": 0.5769 + }, + { + "start": 30791.52, + "end": 30793.04, + "probability": 0.832 + }, + { + "start": 30794.64, + "end": 30796.12, + "probability": 0.9445 + }, + { + "start": 30796.86, + "end": 30797.3, + "probability": 0.9839 + }, + { + "start": 30801.06, + "end": 30801.36, + "probability": 0.7118 + }, + { + "start": 30802.88, + "end": 30804.56, + "probability": 0.8546 + }, + { + "start": 30806.42, + "end": 30806.8, + "probability": 0.9514 + }, + { + "start": 30807.92, + "end": 30808.46, + "probability": 0.7069 + }, + { + "start": 30809.06, + "end": 30809.56, + "probability": 0.9849 + }, + { + "start": 30810.1, + "end": 30810.78, + "probability": 0.9432 + }, + { + "start": 30811.32, + "end": 30814.44, + "probability": 0.9031 + }, + { + "start": 30815.74, + "end": 30817.86, + "probability": 0.97 + }, + { + "start": 30818.46, + "end": 30820.08, + "probability": 0.9465 + }, + { + "start": 30820.86, + "end": 30822.16, + "probability": 0.9919 + }, + { + "start": 30823.26, + "end": 30823.98, + "probability": 0.9264 + }, + { + "start": 30825.12, + "end": 30825.5, + "probability": 0.557 + }, + { + "start": 30828.12, + "end": 30828.78, + "probability": 0.8522 + }, + { + "start": 30830.38, + "end": 30832.26, + "probability": 0.9729 + }, + { + "start": 30833.36, + "end": 30833.76, + "probability": 0.9352 + }, + { + "start": 30834.36, + "end": 30835.0, + "probability": 0.8257 + }, + { + "start": 30835.76, + "end": 30837.64, + "probability": 0.9653 + }, + { + "start": 30839.26, + "end": 30842.88, + "probability": 0.9634 + }, + { + "start": 30845.62, + "end": 30846.44, + "probability": 0.5999 + }, + { + "start": 30849.22, + "end": 30850.74, + "probability": 0.7419 + }, + { + "start": 30852.5, + "end": 30853.2, + "probability": 0.9297 + }, + { + "start": 30859.94, + "end": 30860.82, + "probability": 0.4938 + }, + { + "start": 30862.68, + "end": 30863.44, + "probability": 0.5677 + }, + { + "start": 30864.54, + "end": 30865.52, + "probability": 0.8721 + }, + { + "start": 30867.08, + "end": 30867.38, + "probability": 0.9507 + }, + { + "start": 30869.76, + "end": 30870.88, + "probability": 0.7056 + }, + { + "start": 30871.48, + "end": 30873.14, + "probability": 0.951 + }, + { + "start": 30874.18, + "end": 30874.58, + "probability": 0.9473 + }, + { + "start": 30875.36, + "end": 30878.42, + "probability": 0.9605 + }, + { + "start": 30881.84, + "end": 30882.3, + "probability": 0.9722 + }, + { + "start": 30883.72, + "end": 30886.6, + "probability": 0.6931 + }, + { + "start": 30887.26, + "end": 30887.7, + "probability": 0.9734 + }, + { + "start": 30888.6, + "end": 30889.47, + "probability": 0.7881 + }, + { + "start": 30890.74, + "end": 30891.1, + "probability": 0.9696 + }, + { + "start": 30892.32, + "end": 30893.1, + "probability": 0.5571 + }, + { + "start": 30893.56, + "end": 30898.28, + "probability": 0.7339 + }, + { + "start": 30899.7, + "end": 30900.34, + "probability": 0.0367 + }, + { + "start": 30901.22, + "end": 30902.82, + "probability": 0.7459 + }, + { + "start": 30902.84, + "end": 30904.16, + "probability": 0.5776 + }, + { + "start": 30904.28, + "end": 30905.7, + "probability": 0.923 + }, + { + "start": 30905.82, + "end": 30907.28, + "probability": 0.8508 + }, + { + "start": 30907.48, + "end": 30909.4, + "probability": 0.8916 + }, + { + "start": 30910.6, + "end": 30911.18, + "probability": 0.7668 + }, + { + "start": 30911.72, + "end": 30912.1, + "probability": 0.6071 + }, + { + "start": 30912.62, + "end": 30914.38, + "probability": 0.9559 + }, + { + "start": 30914.92, + "end": 30915.56, + "probability": 0.9601 + }, + { + "start": 30916.3, + "end": 30917.22, + "probability": 0.8731 + }, + { + "start": 30917.92, + "end": 30919.74, + "probability": 0.9836 + }, + { + "start": 30920.3, + "end": 30921.64, + "probability": 0.9747 + }, + { + "start": 30922.38, + "end": 30923.76, + "probability": 0.9917 + }, + { + "start": 30923.98, + "end": 30925.13, + "probability": 0.6899 + }, + { + "start": 30925.48, + "end": 30926.14, + "probability": 0.8266 + }, + { + "start": 30927.88, + "end": 30928.52, + "probability": 0.7491 + }, + { + "start": 30929.36, + "end": 30930.58, + "probability": 0.9795 + }, + { + "start": 30931.44, + "end": 30932.28, + "probability": 0.9944 + }, + { + "start": 30933.26, + "end": 30933.82, + "probability": 0.9707 + }, + { + "start": 30935.02, + "end": 30935.62, + "probability": 0.9171 + }, + { + "start": 30936.68, + "end": 30937.12, + "probability": 0.9808 + }, + { + "start": 30937.82, + "end": 30939.34, + "probability": 0.9683 + }, + { + "start": 30940.06, + "end": 30941.86, + "probability": 0.6508 + }, + { + "start": 30942.88, + "end": 30943.64, + "probability": 0.8754 + }, + { + "start": 30944.28, + "end": 30944.92, + "probability": 0.7733 + }, + { + "start": 30945.62, + "end": 30947.44, + "probability": 0.5997 + }, + { + "start": 30947.46, + "end": 30949.02, + "probability": 0.8852 + }, + { + "start": 30949.04, + "end": 30950.34, + "probability": 0.77 + }, + { + "start": 30950.92, + "end": 30951.7, + "probability": 0.9874 + }, + { + "start": 30953.28, + "end": 30953.9, + "probability": 0.9589 + }, + { + "start": 30954.66, + "end": 30955.36, + "probability": 0.9459 + }, + { + "start": 30956.3, + "end": 30956.7, + "probability": 0.5322 + }, + { + "start": 30957.32, + "end": 30957.9, + "probability": 0.752 + }, + { + "start": 30959.06, + "end": 30961.28, + "probability": 0.7698 + }, + { + "start": 30962.42, + "end": 30962.68, + "probability": 0.9694 + }, + { + "start": 30965.04, + "end": 30967.5, + "probability": 0.9409 + }, + { + "start": 30968.12, + "end": 30969.84, + "probability": 0.9353 + }, + { + "start": 30970.38, + "end": 30971.96, + "probability": 0.9836 + }, + { + "start": 30973.58, + "end": 30975.38, + "probability": 0.5888 + }, + { + "start": 30976.76, + "end": 30977.4, + "probability": 0.9721 + }, + { + "start": 30978.16, + "end": 30978.92, + "probability": 0.9681 + }, + { + "start": 30979.64, + "end": 30980.24, + "probability": 0.976 + }, + { + "start": 30981.02, + "end": 30983.66, + "probability": 0.9701 + }, + { + "start": 30984.08, + "end": 30985.9, + "probability": 0.4859 + }, + { + "start": 30986.08, + "end": 30987.3, + "probability": 0.9084 + }, + { + "start": 30987.48, + "end": 30988.0, + "probability": 0.5707 + }, + { + "start": 30988.76, + "end": 30989.54, + "probability": 0.4912 + }, + { + "start": 30990.02, + "end": 30991.58, + "probability": 0.9381 + }, + { + "start": 30991.76, + "end": 30993.72, + "probability": 0.9596 + }, + { + "start": 30994.12, + "end": 30996.18, + "probability": 0.8934 + }, + { + "start": 30996.38, + "end": 30998.4, + "probability": 0.9191 + }, + { + "start": 30998.84, + "end": 31000.36, + "probability": 0.9691 + }, + { + "start": 31001.14, + "end": 31002.9, + "probability": 0.9768 + }, + { + "start": 31003.14, + "end": 31004.48, + "probability": 0.5833 + }, + { + "start": 31004.62, + "end": 31006.4, + "probability": 0.7573 + }, + { + "start": 31006.54, + "end": 31007.9, + "probability": 0.7825 + }, + { + "start": 31007.98, + "end": 31009.78, + "probability": 0.9469 + }, + { + "start": 31009.86, + "end": 31010.32, + "probability": 0.5634 + }, + { + "start": 31011.4, + "end": 31012.93, + "probability": 0.8035 + }, + { + "start": 31015.18, + "end": 31015.18, + "probability": 0.1101 + }, + { + "start": 31015.34, + "end": 31020.18, + "probability": 0.6351 + }, + { + "start": 31020.56, + "end": 31020.76, + "probability": 0.5033 + }, + { + "start": 31020.9, + "end": 31021.8, + "probability": 0.7023 + }, + { + "start": 31022.08, + "end": 31022.32, + "probability": 0.9366 + }, + { + "start": 31037.86, + "end": 31038.02, + "probability": 0.0948 + }, + { + "start": 31039.4, + "end": 31039.72, + "probability": 0.0839 + }, + { + "start": 31040.58, + "end": 31041.14, + "probability": 0.1106 + }, + { + "start": 31043.62, + "end": 31045.22, + "probability": 0.1323 + }, + { + "start": 31047.88, + "end": 31048.67, + "probability": 0.0006 + }, + { + "start": 31080.4, + "end": 31081.22, + "probability": 0.1047 + }, + { + "start": 31082.14, + "end": 31082.6, + "probability": 0.1065 + }, + { + "start": 31082.6, + "end": 31084.12, + "probability": 0.0176 + }, + { + "start": 31084.12, + "end": 31088.62, + "probability": 0.0645 + }, + { + "start": 31089.68, + "end": 31093.14, + "probability": 0.1835 + }, + { + "start": 31095.64, + "end": 31096.1, + "probability": 0.0184 + }, + { + "start": 31096.1, + "end": 31096.85, + "probability": 0.076 + } + ], + "segments_count": 11554, + "words_count": 52544, + "avg_words_per_segment": 4.5477, + "avg_segment_duration": 1.6313, + "avg_words_per_minute": 101.0546, + "plenum_id": "112097", + "duration": 31197.39, + "title": null, + "plenum_date": "2023-01-09" +} \ No newline at end of file