diff --git "a/115283/metadata.json" "b/115283/metadata.json" new file mode 100644--- /dev/null +++ "b/115283/metadata.json" @@ -0,0 +1,13662 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "115283", + "quality_score": 0.9434, + "per_segment_quality_scores": [ + { + "start": 49.0, + "end": 52.54, + "probability": 0.6154 + }, + { + "start": 52.64, + "end": 55.3, + "probability": 0.9964 + }, + { + "start": 55.3, + "end": 59.32, + "probability": 0.8125 + }, + { + "start": 59.42, + "end": 60.02, + "probability": 0.7661 + }, + { + "start": 60.08, + "end": 61.02, + "probability": 0.4912 + }, + { + "start": 61.42, + "end": 62.4, + "probability": 0.7336 + }, + { + "start": 62.58, + "end": 65.56, + "probability": 0.7454 + }, + { + "start": 65.56, + "end": 69.38, + "probability": 0.8959 + }, + { + "start": 73.08, + "end": 74.94, + "probability": 0.546 + }, + { + "start": 75.14, + "end": 75.66, + "probability": 0.5055 + }, + { + "start": 75.84, + "end": 76.62, + "probability": 0.8497 + }, + { + "start": 77.1, + "end": 80.02, + "probability": 0.6932 + }, + { + "start": 83.46, + "end": 85.74, + "probability": 0.0417 + }, + { + "start": 86.08, + "end": 86.08, + "probability": 0.0337 + }, + { + "start": 86.08, + "end": 86.08, + "probability": 0.0755 + }, + { + "start": 86.08, + "end": 86.7, + "probability": 0.3787 + }, + { + "start": 86.9, + "end": 88.8, + "probability": 0.8698 + }, + { + "start": 89.4, + "end": 92.92, + "probability": 0.9668 + }, + { + "start": 92.92, + "end": 97.2, + "probability": 0.9424 + }, + { + "start": 97.34, + "end": 101.56, + "probability": 0.9062 + }, + { + "start": 101.78, + "end": 105.06, + "probability": 0.6596 + }, + { + "start": 105.2, + "end": 105.44, + "probability": 0.8544 + }, + { + "start": 106.86, + "end": 107.86, + "probability": 0.6751 + }, + { + "start": 108.02, + "end": 110.34, + "probability": 0.7913 + }, + { + "start": 110.4, + "end": 114.88, + "probability": 0.9758 + }, + { + "start": 129.14, + "end": 130.5, + "probability": 0.7498 + }, + { + "start": 130.58, + "end": 131.5, + "probability": 0.8459 + }, + { + "start": 131.54, + "end": 133.54, + "probability": 0.748 + }, + { + "start": 134.08, + "end": 134.8, + "probability": 0.9392 + }, + { + "start": 144.8, + "end": 145.84, + "probability": 0.4854 + }, + { + "start": 146.56, + "end": 150.5, + "probability": 0.6477 + }, + { + "start": 152.72, + "end": 155.64, + "probability": 0.7977 + }, + { + "start": 156.92, + "end": 161.66, + "probability": 0.9688 + }, + { + "start": 164.84, + "end": 165.46, + "probability": 0.3688 + }, + { + "start": 166.36, + "end": 172.2, + "probability": 0.9776 + }, + { + "start": 172.28, + "end": 176.4, + "probability": 0.7774 + }, + { + "start": 177.14, + "end": 179.8, + "probability": 0.9712 + }, + { + "start": 179.86, + "end": 180.56, + "probability": 0.8107 + }, + { + "start": 180.96, + "end": 186.66, + "probability": 0.9899 + }, + { + "start": 187.18, + "end": 189.98, + "probability": 0.9989 + }, + { + "start": 190.5, + "end": 192.74, + "probability": 0.9748 + }, + { + "start": 193.7, + "end": 198.32, + "probability": 0.8978 + }, + { + "start": 200.02, + "end": 202.02, + "probability": 0.4975 + }, + { + "start": 202.28, + "end": 209.56, + "probability": 0.9885 + }, + { + "start": 210.6, + "end": 216.68, + "probability": 0.9793 + }, + { + "start": 217.5, + "end": 225.6, + "probability": 0.9863 + }, + { + "start": 226.2, + "end": 230.24, + "probability": 0.9927 + }, + { + "start": 230.98, + "end": 232.38, + "probability": 0.9899 + }, + { + "start": 233.06, + "end": 233.88, + "probability": 0.7708 + }, + { + "start": 234.18, + "end": 241.28, + "probability": 0.9919 + }, + { + "start": 242.0, + "end": 242.24, + "probability": 0.5579 + }, + { + "start": 242.92, + "end": 246.2, + "probability": 0.6192 + }, + { + "start": 246.8, + "end": 247.62, + "probability": 0.4342 + }, + { + "start": 247.7, + "end": 250.16, + "probability": 0.8961 + }, + { + "start": 250.2, + "end": 250.92, + "probability": 0.5845 + }, + { + "start": 250.98, + "end": 252.46, + "probability": 0.9372 + }, + { + "start": 255.74, + "end": 258.06, + "probability": 0.7101 + }, + { + "start": 258.92, + "end": 266.2, + "probability": 0.9756 + }, + { + "start": 266.36, + "end": 267.38, + "probability": 0.9841 + }, + { + "start": 267.96, + "end": 268.54, + "probability": 0.6694 + }, + { + "start": 268.7, + "end": 275.64, + "probability": 0.8408 + }, + { + "start": 277.0, + "end": 281.04, + "probability": 0.994 + }, + { + "start": 281.12, + "end": 283.14, + "probability": 0.9491 + }, + { + "start": 283.54, + "end": 286.08, + "probability": 0.8081 + }, + { + "start": 286.92, + "end": 292.0, + "probability": 0.9789 + }, + { + "start": 293.04, + "end": 296.14, + "probability": 0.8212 + }, + { + "start": 296.14, + "end": 298.54, + "probability": 0.8829 + }, + { + "start": 299.02, + "end": 302.12, + "probability": 0.9417 + }, + { + "start": 303.2, + "end": 308.26, + "probability": 0.978 + }, + { + "start": 308.86, + "end": 313.86, + "probability": 0.9922 + }, + { + "start": 313.86, + "end": 320.2, + "probability": 0.9967 + }, + { + "start": 321.06, + "end": 326.18, + "probability": 0.8807 + }, + { + "start": 326.66, + "end": 333.3, + "probability": 0.9747 + }, + { + "start": 333.88, + "end": 336.42, + "probability": 0.9969 + }, + { + "start": 336.42, + "end": 340.34, + "probability": 0.9873 + }, + { + "start": 341.58, + "end": 342.56, + "probability": 0.9451 + }, + { + "start": 342.68, + "end": 349.24, + "probability": 0.9971 + }, + { + "start": 349.24, + "end": 354.7, + "probability": 0.9958 + }, + { + "start": 355.32, + "end": 358.62, + "probability": 0.902 + }, + { + "start": 358.64, + "end": 363.06, + "probability": 0.9592 + }, + { + "start": 363.36, + "end": 363.64, + "probability": 0.6984 + }, + { + "start": 363.84, + "end": 364.84, + "probability": 0.4927 + }, + { + "start": 364.86, + "end": 366.46, + "probability": 0.9762 + }, + { + "start": 366.48, + "end": 367.02, + "probability": 0.5751 + }, + { + "start": 367.04, + "end": 368.82, + "probability": 0.6222 + }, + { + "start": 372.78, + "end": 373.89, + "probability": 0.5562 + }, + { + "start": 374.08, + "end": 375.04, + "probability": 0.7328 + }, + { + "start": 375.28, + "end": 378.86, + "probability": 0.8247 + }, + { + "start": 379.56, + "end": 382.6, + "probability": 0.96 + }, + { + "start": 384.16, + "end": 385.32, + "probability": 0.9502 + }, + { + "start": 385.48, + "end": 388.16, + "probability": 0.9878 + }, + { + "start": 388.16, + "end": 391.26, + "probability": 0.9986 + }, + { + "start": 392.52, + "end": 393.96, + "probability": 0.7978 + }, + { + "start": 395.04, + "end": 397.1, + "probability": 0.7798 + }, + { + "start": 397.7, + "end": 403.44, + "probability": 0.9627 + }, + { + "start": 404.62, + "end": 407.24, + "probability": 0.7198 + }, + { + "start": 407.92, + "end": 410.26, + "probability": 0.9853 + }, + { + "start": 411.78, + "end": 413.76, + "probability": 0.9701 + }, + { + "start": 414.32, + "end": 419.32, + "probability": 0.9907 + }, + { + "start": 420.42, + "end": 424.32, + "probability": 0.9921 + }, + { + "start": 424.76, + "end": 428.02, + "probability": 0.9803 + }, + { + "start": 429.22, + "end": 431.42, + "probability": 0.9963 + }, + { + "start": 432.12, + "end": 433.94, + "probability": 0.99 + }, + { + "start": 434.72, + "end": 438.08, + "probability": 0.9969 + }, + { + "start": 438.68, + "end": 439.26, + "probability": 0.974 + }, + { + "start": 440.16, + "end": 441.06, + "probability": 0.98 + }, + { + "start": 441.2, + "end": 445.78, + "probability": 0.9984 + }, + { + "start": 446.54, + "end": 447.84, + "probability": 0.943 + }, + { + "start": 448.54, + "end": 450.0, + "probability": 0.8885 + }, + { + "start": 450.52, + "end": 451.9, + "probability": 0.8506 + }, + { + "start": 452.76, + "end": 454.48, + "probability": 0.9941 + }, + { + "start": 454.96, + "end": 457.32, + "probability": 0.9771 + }, + { + "start": 457.92, + "end": 460.08, + "probability": 0.9812 + }, + { + "start": 460.76, + "end": 461.26, + "probability": 0.7735 + }, + { + "start": 461.38, + "end": 462.92, + "probability": 0.5627 + }, + { + "start": 463.24, + "end": 465.1, + "probability": 0.7741 + }, + { + "start": 465.1, + "end": 467.94, + "probability": 0.9984 + }, + { + "start": 470.59, + "end": 471.08, + "probability": 0.175 + }, + { + "start": 471.08, + "end": 471.08, + "probability": 0.1343 + }, + { + "start": 471.08, + "end": 473.56, + "probability": 0.6085 + }, + { + "start": 480.32, + "end": 481.94, + "probability": 0.6816 + }, + { + "start": 482.98, + "end": 484.84, + "probability": 0.9533 + }, + { + "start": 484.92, + "end": 485.48, + "probability": 0.9375 + }, + { + "start": 486.02, + "end": 489.16, + "probability": 0.9818 + }, + { + "start": 490.14, + "end": 491.2, + "probability": 0.9805 + }, + { + "start": 494.02, + "end": 496.58, + "probability": 0.9805 + }, + { + "start": 497.52, + "end": 501.9, + "probability": 0.9985 + }, + { + "start": 501.9, + "end": 505.28, + "probability": 0.9969 + }, + { + "start": 507.14, + "end": 511.62, + "probability": 0.9177 + }, + { + "start": 511.7, + "end": 513.54, + "probability": 0.9556 + }, + { + "start": 514.8, + "end": 519.46, + "probability": 0.8987 + }, + { + "start": 520.28, + "end": 521.78, + "probability": 0.9542 + }, + { + "start": 522.36, + "end": 525.38, + "probability": 0.9973 + }, + { + "start": 526.42, + "end": 527.7, + "probability": 0.9935 + }, + { + "start": 527.98, + "end": 529.52, + "probability": 0.9961 + }, + { + "start": 530.54, + "end": 533.86, + "probability": 0.9875 + }, + { + "start": 535.14, + "end": 537.22, + "probability": 0.9091 + }, + { + "start": 537.4, + "end": 539.1, + "probability": 0.5841 + }, + { + "start": 539.94, + "end": 543.24, + "probability": 0.9488 + }, + { + "start": 543.76, + "end": 544.86, + "probability": 0.5931 + }, + { + "start": 544.86, + "end": 546.66, + "probability": 0.8608 + }, + { + "start": 546.74, + "end": 547.24, + "probability": 0.5045 + }, + { + "start": 547.28, + "end": 548.7, + "probability": 0.9004 + }, + { + "start": 550.22, + "end": 552.46, + "probability": 0.7061 + }, + { + "start": 553.24, + "end": 555.9, + "probability": 0.9879 + }, + { + "start": 556.94, + "end": 558.58, + "probability": 0.7917 + }, + { + "start": 559.46, + "end": 561.76, + "probability": 0.9508 + }, + { + "start": 561.96, + "end": 563.86, + "probability": 0.9915 + }, + { + "start": 564.58, + "end": 566.72, + "probability": 0.984 + }, + { + "start": 566.94, + "end": 568.92, + "probability": 0.8919 + }, + { + "start": 569.66, + "end": 572.7, + "probability": 0.9885 + }, + { + "start": 572.82, + "end": 573.22, + "probability": 0.9694 + }, + { + "start": 573.38, + "end": 574.56, + "probability": 0.9473 + }, + { + "start": 575.16, + "end": 577.46, + "probability": 0.9417 + }, + { + "start": 578.04, + "end": 579.2, + "probability": 0.925 + }, + { + "start": 579.38, + "end": 581.16, + "probability": 0.9924 + }, + { + "start": 581.8, + "end": 582.4, + "probability": 0.4928 + }, + { + "start": 582.5, + "end": 585.22, + "probability": 0.9796 + }, + { + "start": 585.74, + "end": 587.56, + "probability": 0.9829 + }, + { + "start": 588.2, + "end": 590.08, + "probability": 0.807 + }, + { + "start": 590.16, + "end": 591.5, + "probability": 0.7983 + }, + { + "start": 592.1, + "end": 593.26, + "probability": 0.8503 + }, + { + "start": 593.8, + "end": 595.72, + "probability": 0.7784 + }, + { + "start": 595.86, + "end": 597.52, + "probability": 0.9759 + }, + { + "start": 598.62, + "end": 600.51, + "probability": 0.9386 + }, + { + "start": 601.1, + "end": 601.48, + "probability": 0.8315 + }, + { + "start": 601.56, + "end": 602.16, + "probability": 0.9395 + }, + { + "start": 602.46, + "end": 603.9, + "probability": 0.9781 + }, + { + "start": 604.96, + "end": 606.62, + "probability": 0.672 + }, + { + "start": 607.02, + "end": 607.81, + "probability": 0.6333 + }, + { + "start": 608.5, + "end": 611.04, + "probability": 0.9626 + }, + { + "start": 611.78, + "end": 619.04, + "probability": 0.9746 + }, + { + "start": 619.14, + "end": 619.98, + "probability": 0.7381 + }, + { + "start": 620.56, + "end": 622.48, + "probability": 0.9507 + }, + { + "start": 623.04, + "end": 624.82, + "probability": 0.7466 + }, + { + "start": 625.06, + "end": 626.82, + "probability": 0.9703 + }, + { + "start": 626.9, + "end": 627.32, + "probability": 0.5402 + }, + { + "start": 627.46, + "end": 629.14, + "probability": 0.9302 + }, + { + "start": 633.48, + "end": 634.81, + "probability": 0.7454 + }, + { + "start": 635.74, + "end": 638.44, + "probability": 0.7342 + }, + { + "start": 638.74, + "end": 642.08, + "probability": 0.968 + }, + { + "start": 643.4, + "end": 647.62, + "probability": 0.9969 + }, + { + "start": 647.62, + "end": 651.22, + "probability": 0.9968 + }, + { + "start": 651.92, + "end": 652.7, + "probability": 0.9766 + }, + { + "start": 653.86, + "end": 656.98, + "probability": 0.9399 + }, + { + "start": 657.52, + "end": 659.48, + "probability": 0.9917 + }, + { + "start": 660.12, + "end": 660.98, + "probability": 0.9604 + }, + { + "start": 661.58, + "end": 664.44, + "probability": 0.998 + }, + { + "start": 665.04, + "end": 667.86, + "probability": 0.9915 + }, + { + "start": 669.02, + "end": 674.36, + "probability": 0.9912 + }, + { + "start": 675.38, + "end": 677.14, + "probability": 0.9988 + }, + { + "start": 677.78, + "end": 679.48, + "probability": 0.9612 + }, + { + "start": 680.04, + "end": 683.44, + "probability": 0.9985 + }, + { + "start": 683.44, + "end": 686.72, + "probability": 0.9344 + }, + { + "start": 688.06, + "end": 693.66, + "probability": 0.9989 + }, + { + "start": 694.18, + "end": 699.58, + "probability": 0.9915 + }, + { + "start": 700.3, + "end": 704.28, + "probability": 0.9991 + }, + { + "start": 704.28, + "end": 707.42, + "probability": 0.9974 + }, + { + "start": 707.8, + "end": 708.22, + "probability": 0.7512 + }, + { + "start": 708.66, + "end": 709.36, + "probability": 0.3821 + }, + { + "start": 709.46, + "end": 711.9, + "probability": 0.922 + }, + { + "start": 712.06, + "end": 712.74, + "probability": 0.5153 + }, + { + "start": 713.04, + "end": 715.24, + "probability": 0.9185 + }, + { + "start": 720.12, + "end": 722.12, + "probability": 0.8399 + }, + { + "start": 723.06, + "end": 728.6, + "probability": 0.8325 + }, + { + "start": 729.02, + "end": 732.86, + "probability": 0.9941 + }, + { + "start": 734.14, + "end": 736.18, + "probability": 0.9378 + }, + { + "start": 736.42, + "end": 737.72, + "probability": 0.7601 + }, + { + "start": 737.8, + "end": 738.62, + "probability": 0.5169 + }, + { + "start": 738.74, + "end": 740.42, + "probability": 0.7976 + }, + { + "start": 740.92, + "end": 741.88, + "probability": 0.8857 + }, + { + "start": 742.28, + "end": 745.12, + "probability": 0.9441 + }, + { + "start": 745.54, + "end": 747.02, + "probability": 0.8719 + }, + { + "start": 747.04, + "end": 749.78, + "probability": 0.9786 + }, + { + "start": 750.6, + "end": 753.72, + "probability": 0.9912 + }, + { + "start": 754.5, + "end": 756.08, + "probability": 0.962 + }, + { + "start": 756.28, + "end": 759.94, + "probability": 0.9929 + }, + { + "start": 760.44, + "end": 762.7, + "probability": 0.9597 + }, + { + "start": 763.44, + "end": 766.96, + "probability": 0.9995 + }, + { + "start": 767.0, + "end": 768.64, + "probability": 0.9528 + }, + { + "start": 769.14, + "end": 772.01, + "probability": 0.9887 + }, + { + "start": 772.96, + "end": 777.72, + "probability": 0.9629 + }, + { + "start": 777.72, + "end": 781.5, + "probability": 0.9883 + }, + { + "start": 782.16, + "end": 783.04, + "probability": 0.9104 + }, + { + "start": 783.16, + "end": 784.08, + "probability": 0.8188 + }, + { + "start": 784.42, + "end": 788.16, + "probability": 0.9826 + }, + { + "start": 788.54, + "end": 791.14, + "probability": 0.9976 + }, + { + "start": 791.14, + "end": 794.16, + "probability": 0.9914 + }, + { + "start": 795.38, + "end": 796.64, + "probability": 0.8644 + }, + { + "start": 796.82, + "end": 797.2, + "probability": 0.6716 + }, + { + "start": 797.52, + "end": 799.44, + "probability": 0.9615 + }, + { + "start": 799.52, + "end": 802.28, + "probability": 0.9983 + }, + { + "start": 802.28, + "end": 805.98, + "probability": 0.9935 + }, + { + "start": 806.98, + "end": 809.2, + "probability": 0.3423 + }, + { + "start": 809.2, + "end": 812.46, + "probability": 0.9995 + }, + { + "start": 812.9, + "end": 818.68, + "probability": 0.9735 + }, + { + "start": 820.24, + "end": 822.18, + "probability": 0.9328 + }, + { + "start": 822.32, + "end": 823.36, + "probability": 0.8906 + }, + { + "start": 823.64, + "end": 826.3, + "probability": 0.9947 + }, + { + "start": 827.16, + "end": 829.34, + "probability": 0.886 + }, + { + "start": 829.8, + "end": 834.16, + "probability": 0.9128 + }, + { + "start": 834.58, + "end": 837.38, + "probability": 0.9519 + }, + { + "start": 837.38, + "end": 840.22, + "probability": 0.9847 + }, + { + "start": 840.64, + "end": 843.44, + "probability": 0.8223 + }, + { + "start": 843.5, + "end": 844.04, + "probability": 0.7591 + }, + { + "start": 844.42, + "end": 844.66, + "probability": 0.4202 + }, + { + "start": 844.76, + "end": 847.16, + "probability": 0.9961 + }, + { + "start": 847.22, + "end": 847.7, + "probability": 0.8382 + }, + { + "start": 847.74, + "end": 848.96, + "probability": 0.9575 + }, + { + "start": 849.54, + "end": 854.06, + "probability": 0.9841 + }, + { + "start": 854.18, + "end": 855.62, + "probability": 0.0328 + }, + { + "start": 856.32, + "end": 857.08, + "probability": 0.5993 + }, + { + "start": 858.14, + "end": 861.38, + "probability": 0.7095 + }, + { + "start": 861.92, + "end": 865.02, + "probability": 0.9465 + }, + { + "start": 871.7, + "end": 874.1, + "probability": 0.6817 + }, + { + "start": 875.32, + "end": 879.88, + "probability": 0.9852 + }, + { + "start": 879.88, + "end": 884.44, + "probability": 0.9977 + }, + { + "start": 885.24, + "end": 886.12, + "probability": 0.937 + }, + { + "start": 886.98, + "end": 887.72, + "probability": 0.6575 + }, + { + "start": 888.36, + "end": 892.38, + "probability": 0.7803 + }, + { + "start": 892.38, + "end": 897.88, + "probability": 0.9966 + }, + { + "start": 898.86, + "end": 904.84, + "probability": 0.9474 + }, + { + "start": 904.84, + "end": 910.24, + "probability": 0.7702 + }, + { + "start": 911.02, + "end": 916.98, + "probability": 0.9974 + }, + { + "start": 917.82, + "end": 918.14, + "probability": 0.5729 + }, + { + "start": 918.6, + "end": 923.9, + "probability": 0.9866 + }, + { + "start": 925.06, + "end": 927.98, + "probability": 0.9519 + }, + { + "start": 927.98, + "end": 932.46, + "probability": 0.9968 + }, + { + "start": 933.22, + "end": 934.72, + "probability": 0.8776 + }, + { + "start": 935.22, + "end": 939.56, + "probability": 0.9879 + }, + { + "start": 940.0, + "end": 940.4, + "probability": 0.7564 + }, + { + "start": 941.2, + "end": 942.28, + "probability": 0.3209 + }, + { + "start": 944.5, + "end": 948.68, + "probability": 0.7929 + }, + { + "start": 954.44, + "end": 957.98, + "probability": 0.7606 + }, + { + "start": 958.62, + "end": 964.4, + "probability": 0.9918 + }, + { + "start": 964.54, + "end": 967.77, + "probability": 0.949 + }, + { + "start": 969.36, + "end": 972.12, + "probability": 0.9633 + }, + { + "start": 972.3, + "end": 973.42, + "probability": 0.8367 + }, + { + "start": 973.42, + "end": 974.48, + "probability": 0.9276 + }, + { + "start": 976.0, + "end": 979.24, + "probability": 0.9951 + }, + { + "start": 979.24, + "end": 982.78, + "probability": 0.995 + }, + { + "start": 982.88, + "end": 983.14, + "probability": 0.9685 + }, + { + "start": 983.64, + "end": 984.26, + "probability": 0.8054 + }, + { + "start": 984.42, + "end": 985.68, + "probability": 0.8353 + }, + { + "start": 986.42, + "end": 989.0, + "probability": 0.9557 + }, + { + "start": 989.02, + "end": 991.82, + "probability": 0.9956 + }, + { + "start": 992.22, + "end": 995.2, + "probability": 0.9943 + }, + { + "start": 996.12, + "end": 999.68, + "probability": 0.9936 + }, + { + "start": 1000.46, + "end": 1002.18, + "probability": 0.9687 + }, + { + "start": 1002.76, + "end": 1005.46, + "probability": 0.9927 + }, + { + "start": 1006.54, + "end": 1009.9, + "probability": 0.9336 + }, + { + "start": 1009.98, + "end": 1012.18, + "probability": 0.9812 + }, + { + "start": 1013.08, + "end": 1018.88, + "probability": 0.9959 + }, + { + "start": 1019.0, + "end": 1019.66, + "probability": 0.9657 + }, + { + "start": 1020.02, + "end": 1020.94, + "probability": 0.7931 + }, + { + "start": 1021.08, + "end": 1021.88, + "probability": 0.5196 + }, + { + "start": 1022.24, + "end": 1022.34, + "probability": 0.5267 + }, + { + "start": 1022.96, + "end": 1023.28, + "probability": 0.8267 + }, + { + "start": 1024.28, + "end": 1025.06, + "probability": 0.9189 + }, + { + "start": 1025.88, + "end": 1027.9, + "probability": 0.9347 + }, + { + "start": 1038.6, + "end": 1039.66, + "probability": 0.6834 + }, + { + "start": 1039.76, + "end": 1040.06, + "probability": 0.3751 + }, + { + "start": 1040.06, + "end": 1044.48, + "probability": 0.9533 + }, + { + "start": 1044.96, + "end": 1047.38, + "probability": 0.9813 + }, + { + "start": 1047.38, + "end": 1051.18, + "probability": 0.988 + }, + { + "start": 1051.4, + "end": 1054.46, + "probability": 0.9949 + }, + { + "start": 1054.92, + "end": 1056.12, + "probability": 0.8432 + }, + { + "start": 1056.2, + "end": 1056.5, + "probability": 0.4504 + }, + { + "start": 1056.62, + "end": 1057.14, + "probability": 0.5066 + }, + { + "start": 1057.18, + "end": 1060.46, + "probability": 0.9454 + }, + { + "start": 1060.9, + "end": 1066.52, + "probability": 0.9931 + }, + { + "start": 1067.14, + "end": 1072.52, + "probability": 0.9881 + }, + { + "start": 1072.92, + "end": 1078.02, + "probability": 0.9608 + }, + { + "start": 1078.22, + "end": 1079.9, + "probability": 0.6848 + }, + { + "start": 1081.16, + "end": 1085.18, + "probability": 0.9008 + }, + { + "start": 1085.56, + "end": 1089.4, + "probability": 0.8936 + }, + { + "start": 1089.4, + "end": 1093.9, + "probability": 0.997 + }, + { + "start": 1094.36, + "end": 1096.64, + "probability": 0.9863 + }, + { + "start": 1096.64, + "end": 1099.14, + "probability": 0.9224 + }, + { + "start": 1099.74, + "end": 1103.04, + "probability": 0.9966 + }, + { + "start": 1103.04, + "end": 1108.54, + "probability": 0.8667 + }, + { + "start": 1108.88, + "end": 1111.44, + "probability": 0.9103 + }, + { + "start": 1112.52, + "end": 1113.24, + "probability": 0.7194 + }, + { + "start": 1114.44, + "end": 1116.72, + "probability": 0.9119 + }, + { + "start": 1121.48, + "end": 1123.24, + "probability": 0.8892 + }, + { + "start": 1123.78, + "end": 1124.56, + "probability": 0.7689 + }, + { + "start": 1125.32, + "end": 1126.44, + "probability": 0.9067 + }, + { + "start": 1126.74, + "end": 1127.54, + "probability": 0.9085 + }, + { + "start": 1127.88, + "end": 1129.42, + "probability": 0.9326 + }, + { + "start": 1130.26, + "end": 1131.74, + "probability": 0.9589 + }, + { + "start": 1131.82, + "end": 1134.32, + "probability": 0.9979 + }, + { + "start": 1134.76, + "end": 1136.1, + "probability": 0.7991 + }, + { + "start": 1136.98, + "end": 1138.52, + "probability": 0.9462 + }, + { + "start": 1139.44, + "end": 1140.46, + "probability": 0.7911 + }, + { + "start": 1140.56, + "end": 1141.32, + "probability": 0.9221 + }, + { + "start": 1141.7, + "end": 1142.5, + "probability": 0.975 + }, + { + "start": 1142.8, + "end": 1144.06, + "probability": 0.7233 + }, + { + "start": 1144.88, + "end": 1147.6, + "probability": 0.9983 + }, + { + "start": 1148.28, + "end": 1151.3, + "probability": 0.9661 + }, + { + "start": 1151.4, + "end": 1155.06, + "probability": 0.9893 + }, + { + "start": 1155.94, + "end": 1157.66, + "probability": 0.9695 + }, + { + "start": 1158.46, + "end": 1161.08, + "probability": 0.9863 + }, + { + "start": 1161.54, + "end": 1165.54, + "probability": 0.9922 + }, + { + "start": 1166.1, + "end": 1168.98, + "probability": 0.9827 + }, + { + "start": 1169.86, + "end": 1170.54, + "probability": 0.8541 + }, + { + "start": 1170.82, + "end": 1173.96, + "probability": 0.9843 + }, + { + "start": 1174.62, + "end": 1178.24, + "probability": 0.9525 + }, + { + "start": 1178.8, + "end": 1182.08, + "probability": 0.9832 + }, + { + "start": 1183.26, + "end": 1183.64, + "probability": 0.6964 + }, + { + "start": 1183.68, + "end": 1185.48, + "probability": 0.9487 + }, + { + "start": 1185.56, + "end": 1189.52, + "probability": 0.9918 + }, + { + "start": 1190.5, + "end": 1195.38, + "probability": 0.9941 + }, + { + "start": 1195.62, + "end": 1197.4, + "probability": 0.8379 + }, + { + "start": 1197.62, + "end": 1200.3, + "probability": 0.8239 + }, + { + "start": 1200.88, + "end": 1204.84, + "probability": 0.9381 + }, + { + "start": 1205.42, + "end": 1207.32, + "probability": 0.9678 + }, + { + "start": 1208.08, + "end": 1210.6, + "probability": 0.9028 + }, + { + "start": 1210.66, + "end": 1212.2, + "probability": 0.9616 + }, + { + "start": 1212.82, + "end": 1215.06, + "probability": 0.9726 + }, + { + "start": 1215.72, + "end": 1218.84, + "probability": 0.9907 + }, + { + "start": 1219.62, + "end": 1221.26, + "probability": 0.995 + }, + { + "start": 1221.68, + "end": 1223.14, + "probability": 0.9135 + }, + { + "start": 1223.66, + "end": 1224.28, + "probability": 0.6925 + }, + { + "start": 1224.9, + "end": 1228.02, + "probability": 0.9956 + }, + { + "start": 1228.7, + "end": 1232.4, + "probability": 0.9072 + }, + { + "start": 1233.06, + "end": 1235.9, + "probability": 0.9782 + }, + { + "start": 1236.28, + "end": 1238.54, + "probability": 0.9956 + }, + { + "start": 1239.3, + "end": 1241.52, + "probability": 0.8098 + }, + { + "start": 1242.02, + "end": 1246.4, + "probability": 0.8776 + }, + { + "start": 1246.96, + "end": 1249.8, + "probability": 0.8081 + }, + { + "start": 1250.08, + "end": 1250.9, + "probability": 0.6665 + }, + { + "start": 1250.94, + "end": 1251.34, + "probability": 0.8857 + }, + { + "start": 1251.64, + "end": 1252.5, + "probability": 0.8531 + }, + { + "start": 1253.16, + "end": 1255.44, + "probability": 0.8053 + }, + { + "start": 1257.22, + "end": 1260.34, + "probability": 0.6742 + }, + { + "start": 1261.48, + "end": 1264.46, + "probability": 0.6963 + }, + { + "start": 1265.56, + "end": 1270.92, + "probability": 0.8331 + }, + { + "start": 1271.06, + "end": 1273.42, + "probability": 0.9862 + }, + { + "start": 1274.2, + "end": 1277.2, + "probability": 0.9412 + }, + { + "start": 1277.78, + "end": 1281.2, + "probability": 0.9952 + }, + { + "start": 1281.28, + "end": 1284.64, + "probability": 0.9989 + }, + { + "start": 1285.28, + "end": 1287.74, + "probability": 0.6637 + }, + { + "start": 1288.32, + "end": 1289.6, + "probability": 0.9844 + }, + { + "start": 1290.28, + "end": 1292.26, + "probability": 0.9183 + }, + { + "start": 1292.98, + "end": 1294.8, + "probability": 0.9341 + }, + { + "start": 1295.34, + "end": 1298.92, + "probability": 0.9825 + }, + { + "start": 1299.56, + "end": 1304.36, + "probability": 0.9875 + }, + { + "start": 1304.66, + "end": 1307.78, + "probability": 0.886 + }, + { + "start": 1308.34, + "end": 1309.24, + "probability": 0.6709 + }, + { + "start": 1309.44, + "end": 1314.74, + "probability": 0.9148 + }, + { + "start": 1315.26, + "end": 1321.14, + "probability": 0.9914 + }, + { + "start": 1321.54, + "end": 1323.36, + "probability": 0.9492 + }, + { + "start": 1323.5, + "end": 1323.68, + "probability": 0.54 + }, + { + "start": 1324.9, + "end": 1325.66, + "probability": 0.6766 + }, + { + "start": 1325.72, + "end": 1327.7, + "probability": 0.7269 + }, + { + "start": 1328.0, + "end": 1328.1, + "probability": 0.9205 + }, + { + "start": 1330.7, + "end": 1331.24, + "probability": 0.5738 + }, + { + "start": 1331.34, + "end": 1335.62, + "probability": 0.9967 + }, + { + "start": 1335.68, + "end": 1338.04, + "probability": 0.9703 + }, + { + "start": 1338.62, + "end": 1343.32, + "probability": 0.9702 + }, + { + "start": 1343.44, + "end": 1348.56, + "probability": 0.9587 + }, + { + "start": 1349.58, + "end": 1350.58, + "probability": 0.9745 + }, + { + "start": 1351.28, + "end": 1355.7, + "probability": 0.9978 + }, + { + "start": 1356.52, + "end": 1358.5, + "probability": 0.6353 + }, + { + "start": 1359.14, + "end": 1361.72, + "probability": 0.5932 + }, + { + "start": 1362.74, + "end": 1364.2, + "probability": 0.8618 + }, + { + "start": 1364.82, + "end": 1366.18, + "probability": 0.9139 + }, + { + "start": 1366.52, + "end": 1367.76, + "probability": 0.9675 + }, + { + "start": 1368.54, + "end": 1373.72, + "probability": 0.9776 + }, + { + "start": 1373.98, + "end": 1374.36, + "probability": 0.9316 + }, + { + "start": 1374.5, + "end": 1377.58, + "probability": 0.9775 + }, + { + "start": 1380.6, + "end": 1382.2, + "probability": 0.4855 + }, + { + "start": 1382.38, + "end": 1383.02, + "probability": 0.8044 + }, + { + "start": 1384.14, + "end": 1386.44, + "probability": 0.8783 + }, + { + "start": 1387.82, + "end": 1390.56, + "probability": 0.0224 + }, + { + "start": 1390.56, + "end": 1390.7, + "probability": 0.4504 + }, + { + "start": 1390.82, + "end": 1391.7, + "probability": 0.6 + }, + { + "start": 1391.78, + "end": 1396.36, + "probability": 0.0971 + }, + { + "start": 1397.22, + "end": 1397.86, + "probability": 0.1551 + }, + { + "start": 1398.16, + "end": 1398.96, + "probability": 0.2657 + }, + { + "start": 1399.04, + "end": 1399.26, + "probability": 0.1178 + }, + { + "start": 1399.26, + "end": 1399.26, + "probability": 0.0883 + }, + { + "start": 1399.26, + "end": 1400.02, + "probability": 0.408 + }, + { + "start": 1402.26, + "end": 1403.0, + "probability": 0.6655 + }, + { + "start": 1403.26, + "end": 1404.74, + "probability": 0.6449 + }, + { + "start": 1404.9, + "end": 1406.73, + "probability": 0.8811 + }, + { + "start": 1406.96, + "end": 1410.18, + "probability": 0.9738 + }, + { + "start": 1410.96, + "end": 1413.94, + "probability": 0.9474 + }, + { + "start": 1414.62, + "end": 1414.98, + "probability": 0.8844 + }, + { + "start": 1428.42, + "end": 1430.36, + "probability": 0.5588 + }, + { + "start": 1431.34, + "end": 1433.72, + "probability": 0.8872 + }, + { + "start": 1434.26, + "end": 1435.76, + "probability": 0.8777 + }, + { + "start": 1436.44, + "end": 1439.02, + "probability": 0.9522 + }, + { + "start": 1440.98, + "end": 1443.1, + "probability": 0.9878 + }, + { + "start": 1443.14, + "end": 1444.28, + "probability": 0.9533 + }, + { + "start": 1445.44, + "end": 1446.68, + "probability": 0.9923 + }, + { + "start": 1447.42, + "end": 1448.74, + "probability": 0.7771 + }, + { + "start": 1449.42, + "end": 1450.16, + "probability": 0.8807 + }, + { + "start": 1450.22, + "end": 1452.08, + "probability": 0.9934 + }, + { + "start": 1452.62, + "end": 1453.6, + "probability": 0.9197 + }, + { + "start": 1454.2, + "end": 1454.72, + "probability": 0.9938 + }, + { + "start": 1455.44, + "end": 1459.98, + "probability": 0.9894 + }, + { + "start": 1461.16, + "end": 1465.5, + "probability": 0.8532 + }, + { + "start": 1465.76, + "end": 1466.52, + "probability": 0.9142 + }, + { + "start": 1467.2, + "end": 1468.66, + "probability": 0.9448 + }, + { + "start": 1469.2, + "end": 1470.8, + "probability": 0.9298 + }, + { + "start": 1471.4, + "end": 1473.54, + "probability": 0.8289 + }, + { + "start": 1474.08, + "end": 1476.48, + "probability": 0.4763 + }, + { + "start": 1478.06, + "end": 1479.98, + "probability": 0.854 + }, + { + "start": 1480.48, + "end": 1480.78, + "probability": 0.8205 + }, + { + "start": 1481.36, + "end": 1482.54, + "probability": 0.9939 + }, + { + "start": 1482.86, + "end": 1483.16, + "probability": 0.9134 + }, + { + "start": 1483.6, + "end": 1484.7, + "probability": 0.9966 + }, + { + "start": 1485.02, + "end": 1487.1, + "probability": 0.9105 + }, + { + "start": 1488.38, + "end": 1490.86, + "probability": 0.898 + }, + { + "start": 1492.4, + "end": 1493.86, + "probability": 0.9921 + }, + { + "start": 1494.6, + "end": 1495.84, + "probability": 0.5229 + }, + { + "start": 1496.46, + "end": 1498.34, + "probability": 0.9433 + }, + { + "start": 1499.86, + "end": 1500.7, + "probability": 0.8521 + }, + { + "start": 1500.86, + "end": 1504.46, + "probability": 0.8313 + }, + { + "start": 1505.62, + "end": 1508.74, + "probability": 0.9935 + }, + { + "start": 1509.62, + "end": 1510.72, + "probability": 0.8246 + }, + { + "start": 1510.84, + "end": 1512.62, + "probability": 0.8173 + }, + { + "start": 1513.24, + "end": 1514.34, + "probability": 0.7369 + }, + { + "start": 1514.72, + "end": 1517.74, + "probability": 0.8541 + }, + { + "start": 1518.36, + "end": 1520.94, + "probability": 0.9271 + }, + { + "start": 1521.24, + "end": 1522.68, + "probability": 0.6357 + }, + { + "start": 1523.02, + "end": 1524.58, + "probability": 0.876 + }, + { + "start": 1525.54, + "end": 1528.4, + "probability": 0.9841 + }, + { + "start": 1529.52, + "end": 1531.12, + "probability": 0.9922 + }, + { + "start": 1531.8, + "end": 1534.32, + "probability": 0.9858 + }, + { + "start": 1535.02, + "end": 1537.22, + "probability": 0.9701 + }, + { + "start": 1537.92, + "end": 1540.42, + "probability": 0.7961 + }, + { + "start": 1540.98, + "end": 1541.5, + "probability": 0.9577 + }, + { + "start": 1541.78, + "end": 1543.54, + "probability": 0.8612 + }, + { + "start": 1543.86, + "end": 1547.08, + "probability": 0.9897 + }, + { + "start": 1547.82, + "end": 1550.34, + "probability": 0.9864 + }, + { + "start": 1550.52, + "end": 1550.86, + "probability": 0.8832 + }, + { + "start": 1551.08, + "end": 1552.82, + "probability": 0.9311 + }, + { + "start": 1553.44, + "end": 1556.56, + "probability": 0.977 + }, + { + "start": 1557.1, + "end": 1559.74, + "probability": 0.7413 + }, + { + "start": 1560.38, + "end": 1562.72, + "probability": 0.7591 + }, + { + "start": 1562.84, + "end": 1565.74, + "probability": 0.9238 + }, + { + "start": 1565.92, + "end": 1569.54, + "probability": 0.8592 + }, + { + "start": 1570.52, + "end": 1574.06, + "probability": 0.986 + }, + { + "start": 1574.48, + "end": 1575.5, + "probability": 0.6665 + }, + { + "start": 1576.36, + "end": 1580.76, + "probability": 0.9339 + }, + { + "start": 1581.26, + "end": 1581.98, + "probability": 0.685 + }, + { + "start": 1582.06, + "end": 1582.22, + "probability": 0.7067 + }, + { + "start": 1583.62, + "end": 1584.48, + "probability": 0.7864 + }, + { + "start": 1585.72, + "end": 1588.22, + "probability": 0.9123 + }, + { + "start": 1588.76, + "end": 1590.36, + "probability": 0.9806 + }, + { + "start": 1590.52, + "end": 1590.88, + "probability": 0.9801 + }, + { + "start": 1591.0, + "end": 1591.34, + "probability": 0.9677 + }, + { + "start": 1591.46, + "end": 1591.76, + "probability": 0.8253 + }, + { + "start": 1591.82, + "end": 1592.58, + "probability": 0.7477 + }, + { + "start": 1593.02, + "end": 1594.04, + "probability": 0.9261 + }, + { + "start": 1594.64, + "end": 1595.36, + "probability": 0.8944 + }, + { + "start": 1595.48, + "end": 1597.0, + "probability": 0.9984 + }, + { + "start": 1597.68, + "end": 1598.22, + "probability": 0.9254 + }, + { + "start": 1598.37, + "end": 1599.29, + "probability": 0.5035 + }, + { + "start": 1599.74, + "end": 1603.98, + "probability": 0.996 + }, + { + "start": 1604.6, + "end": 1605.1, + "probability": 0.5692 + }, + { + "start": 1605.14, + "end": 1606.92, + "probability": 0.9989 + }, + { + "start": 1607.04, + "end": 1608.58, + "probability": 0.9813 + }, + { + "start": 1609.0, + "end": 1610.18, + "probability": 0.9917 + }, + { + "start": 1611.82, + "end": 1612.44, + "probability": 0.8148 + }, + { + "start": 1612.72, + "end": 1613.88, + "probability": 0.9262 + }, + { + "start": 1613.98, + "end": 1617.06, + "probability": 0.9814 + }, + { + "start": 1617.06, + "end": 1620.72, + "probability": 0.901 + }, + { + "start": 1621.4, + "end": 1622.96, + "probability": 0.6781 + }, + { + "start": 1623.44, + "end": 1625.56, + "probability": 0.9912 + }, + { + "start": 1626.1, + "end": 1627.2, + "probability": 0.7963 + }, + { + "start": 1627.6, + "end": 1630.02, + "probability": 0.9609 + }, + { + "start": 1630.12, + "end": 1630.9, + "probability": 0.7657 + }, + { + "start": 1631.6, + "end": 1632.16, + "probability": 0.8271 + }, + { + "start": 1632.86, + "end": 1633.68, + "probability": 0.7783 + }, + { + "start": 1634.86, + "end": 1635.92, + "probability": 0.9803 + }, + { + "start": 1636.28, + "end": 1638.22, + "probability": 0.9619 + }, + { + "start": 1638.34, + "end": 1640.74, + "probability": 0.9866 + }, + { + "start": 1640.82, + "end": 1642.76, + "probability": 0.7242 + }, + { + "start": 1642.9, + "end": 1645.46, + "probability": 0.9585 + }, + { + "start": 1646.2, + "end": 1647.44, + "probability": 0.9406 + }, + { + "start": 1647.94, + "end": 1649.88, + "probability": 0.9799 + }, + { + "start": 1651.08, + "end": 1652.74, + "probability": 0.9898 + }, + { + "start": 1654.06, + "end": 1658.46, + "probability": 0.9548 + }, + { + "start": 1659.08, + "end": 1660.02, + "probability": 0.7751 + }, + { + "start": 1660.46, + "end": 1663.96, + "probability": 0.9971 + }, + { + "start": 1663.96, + "end": 1667.56, + "probability": 0.9927 + }, + { + "start": 1668.5, + "end": 1670.92, + "probability": 0.9944 + }, + { + "start": 1671.26, + "end": 1671.4, + "probability": 0.7747 + }, + { + "start": 1671.44, + "end": 1674.08, + "probability": 0.9355 + }, + { + "start": 1674.5, + "end": 1675.43, + "probability": 0.9856 + }, + { + "start": 1676.02, + "end": 1677.72, + "probability": 0.9487 + }, + { + "start": 1677.78, + "end": 1678.88, + "probability": 0.9689 + }, + { + "start": 1679.0, + "end": 1679.78, + "probability": 0.909 + }, + { + "start": 1679.8, + "end": 1682.36, + "probability": 0.9502 + }, + { + "start": 1682.98, + "end": 1687.06, + "probability": 0.9844 + }, + { + "start": 1687.46, + "end": 1690.18, + "probability": 0.8254 + }, + { + "start": 1690.24, + "end": 1692.82, + "probability": 0.8636 + }, + { + "start": 1692.82, + "end": 1694.88, + "probability": 0.9971 + }, + { + "start": 1695.92, + "end": 1698.0, + "probability": 0.9156 + }, + { + "start": 1698.3, + "end": 1702.68, + "probability": 0.8682 + }, + { + "start": 1703.7, + "end": 1705.32, + "probability": 0.9764 + }, + { + "start": 1705.32, + "end": 1708.14, + "probability": 0.9399 + }, + { + "start": 1708.58, + "end": 1711.56, + "probability": 0.9376 + }, + { + "start": 1712.18, + "end": 1714.28, + "probability": 0.5732 + }, + { + "start": 1714.28, + "end": 1715.7, + "probability": 0.9833 + }, + { + "start": 1716.26, + "end": 1720.2, + "probability": 0.9929 + }, + { + "start": 1720.86, + "end": 1721.18, + "probability": 0.9729 + }, + { + "start": 1721.62, + "end": 1725.96, + "probability": 0.9929 + }, + { + "start": 1726.32, + "end": 1727.08, + "probability": 0.9969 + }, + { + "start": 1727.14, + "end": 1727.66, + "probability": 0.9902 + }, + { + "start": 1727.7, + "end": 1729.06, + "probability": 0.9899 + }, + { + "start": 1729.16, + "end": 1729.96, + "probability": 0.8439 + }, + { + "start": 1730.22, + "end": 1731.72, + "probability": 0.9042 + }, + { + "start": 1731.8, + "end": 1732.68, + "probability": 0.8293 + }, + { + "start": 1732.9, + "end": 1735.48, + "probability": 0.9962 + }, + { + "start": 1735.78, + "end": 1738.58, + "probability": 0.9916 + }, + { + "start": 1739.26, + "end": 1740.18, + "probability": 0.5444 + }, + { + "start": 1741.06, + "end": 1744.26, + "probability": 0.8831 + }, + { + "start": 1744.68, + "end": 1747.44, + "probability": 0.99 + }, + { + "start": 1747.68, + "end": 1748.32, + "probability": 0.9766 + }, + { + "start": 1750.08, + "end": 1750.24, + "probability": 0.6573 + }, + { + "start": 1750.32, + "end": 1750.86, + "probability": 0.9435 + }, + { + "start": 1750.94, + "end": 1751.68, + "probability": 0.7501 + }, + { + "start": 1752.06, + "end": 1755.64, + "probability": 0.9461 + }, + { + "start": 1756.28, + "end": 1760.2, + "probability": 0.9885 + }, + { + "start": 1760.62, + "end": 1761.82, + "probability": 0.9741 + }, + { + "start": 1761.92, + "end": 1764.36, + "probability": 0.8848 + }, + { + "start": 1765.16, + "end": 1766.16, + "probability": 0.5517 + }, + { + "start": 1766.78, + "end": 1769.4, + "probability": 0.9345 + }, + { + "start": 1770.32, + "end": 1770.36, + "probability": 0.4771 + }, + { + "start": 1770.44, + "end": 1771.58, + "probability": 0.9603 + }, + { + "start": 1771.66, + "end": 1773.46, + "probability": 0.9967 + }, + { + "start": 1773.96, + "end": 1776.42, + "probability": 0.988 + }, + { + "start": 1777.12, + "end": 1780.04, + "probability": 0.958 + }, + { + "start": 1781.48, + "end": 1782.28, + "probability": 0.8651 + }, + { + "start": 1783.98, + "end": 1786.3, + "probability": 0.9641 + }, + { + "start": 1787.42, + "end": 1789.5, + "probability": 0.9849 + }, + { + "start": 1789.7, + "end": 1794.28, + "probability": 0.9909 + }, + { + "start": 1794.64, + "end": 1795.54, + "probability": 0.7711 + }, + { + "start": 1795.86, + "end": 1797.02, + "probability": 0.9655 + }, + { + "start": 1798.28, + "end": 1804.48, + "probability": 0.8138 + }, + { + "start": 1805.12, + "end": 1808.06, + "probability": 0.995 + }, + { + "start": 1808.3, + "end": 1809.79, + "probability": 0.6865 + }, + { + "start": 1810.42, + "end": 1811.88, + "probability": 0.9935 + }, + { + "start": 1812.64, + "end": 1813.7, + "probability": 0.8899 + }, + { + "start": 1814.4, + "end": 1814.85, + "probability": 0.9774 + }, + { + "start": 1815.46, + "end": 1819.14, + "probability": 0.984 + }, + { + "start": 1819.16, + "end": 1820.92, + "probability": 0.9671 + }, + { + "start": 1824.52, + "end": 1827.8, + "probability": 0.9918 + }, + { + "start": 1827.84, + "end": 1828.92, + "probability": 0.9729 + }, + { + "start": 1830.0, + "end": 1831.26, + "probability": 0.9935 + }, + { + "start": 1832.46, + "end": 1835.48, + "probability": 0.9142 + }, + { + "start": 1835.92, + "end": 1837.44, + "probability": 0.9117 + }, + { + "start": 1838.46, + "end": 1839.52, + "probability": 0.9454 + }, + { + "start": 1839.9, + "end": 1843.14, + "probability": 0.866 + }, + { + "start": 1843.66, + "end": 1845.54, + "probability": 0.9888 + }, + { + "start": 1845.92, + "end": 1847.3, + "probability": 0.9084 + }, + { + "start": 1847.98, + "end": 1850.34, + "probability": 0.988 + }, + { + "start": 1850.44, + "end": 1851.84, + "probability": 0.9988 + }, + { + "start": 1852.38, + "end": 1854.88, + "probability": 0.9954 + }, + { + "start": 1855.2, + "end": 1857.9, + "probability": 0.9979 + }, + { + "start": 1858.94, + "end": 1861.3, + "probability": 0.8834 + }, + { + "start": 1861.92, + "end": 1862.38, + "probability": 0.9679 + }, + { + "start": 1865.3, + "end": 1865.94, + "probability": 0.505 + }, + { + "start": 1866.02, + "end": 1868.14, + "probability": 0.9622 + }, + { + "start": 1868.3, + "end": 1873.76, + "probability": 0.9806 + }, + { + "start": 1875.16, + "end": 1875.64, + "probability": 0.7788 + }, + { + "start": 1876.6, + "end": 1877.74, + "probability": 0.996 + }, + { + "start": 1878.36, + "end": 1879.9, + "probability": 0.9913 + }, + { + "start": 1879.96, + "end": 1884.6, + "probability": 0.952 + }, + { + "start": 1884.62, + "end": 1884.7, + "probability": 0.4548 + }, + { + "start": 1884.7, + "end": 1885.38, + "probability": 0.932 + }, + { + "start": 1885.64, + "end": 1889.26, + "probability": 0.9139 + }, + { + "start": 1890.04, + "end": 1890.28, + "probability": 0.5743 + }, + { + "start": 1890.36, + "end": 1894.64, + "probability": 0.9961 + }, + { + "start": 1894.92, + "end": 1896.22, + "probability": 0.9958 + }, + { + "start": 1897.52, + "end": 1900.02, + "probability": 0.9371 + }, + { + "start": 1900.64, + "end": 1901.12, + "probability": 0.9097 + }, + { + "start": 1902.06, + "end": 1903.94, + "probability": 0.9716 + }, + { + "start": 1904.46, + "end": 1905.74, + "probability": 0.9845 + }, + { + "start": 1906.5, + "end": 1909.28, + "probability": 0.961 + }, + { + "start": 1910.24, + "end": 1910.82, + "probability": 0.4972 + }, + { + "start": 1911.4, + "end": 1915.0, + "probability": 0.8649 + }, + { + "start": 1916.3, + "end": 1917.0, + "probability": 0.989 + }, + { + "start": 1918.18, + "end": 1918.78, + "probability": 0.9025 + }, + { + "start": 1920.18, + "end": 1922.7, + "probability": 0.7679 + }, + { + "start": 1924.64, + "end": 1927.7, + "probability": 0.7896 + }, + { + "start": 1928.32, + "end": 1929.28, + "probability": 0.6493 + }, + { + "start": 1930.2, + "end": 1932.12, + "probability": 0.9924 + }, + { + "start": 1932.88, + "end": 1935.09, + "probability": 0.9574 + }, + { + "start": 1935.36, + "end": 1936.38, + "probability": 0.8398 + }, + { + "start": 1940.16, + "end": 1941.56, + "probability": 0.8685 + }, + { + "start": 1942.38, + "end": 1943.8, + "probability": 0.7431 + }, + { + "start": 1944.44, + "end": 1945.54, + "probability": 0.9368 + }, + { + "start": 1945.84, + "end": 1948.5, + "probability": 0.9933 + }, + { + "start": 1949.42, + "end": 1950.3, + "probability": 0.8734 + }, + { + "start": 1950.66, + "end": 1952.18, + "probability": 0.9738 + }, + { + "start": 1952.56, + "end": 1954.04, + "probability": 0.8374 + }, + { + "start": 1954.36, + "end": 1955.4, + "probability": 0.6577 + }, + { + "start": 1955.48, + "end": 1956.2, + "probability": 0.9508 + }, + { + "start": 1956.9, + "end": 1957.6, + "probability": 0.9262 + }, + { + "start": 1957.94, + "end": 1960.72, + "probability": 0.8879 + }, + { + "start": 1961.18, + "end": 1961.72, + "probability": 0.9708 + }, + { + "start": 1961.86, + "end": 1963.78, + "probability": 0.9517 + }, + { + "start": 1964.58, + "end": 1967.54, + "probability": 0.7036 + }, + { + "start": 1968.08, + "end": 1970.5, + "probability": 0.9215 + }, + { + "start": 1971.54, + "end": 1972.52, + "probability": 0.8115 + }, + { + "start": 1973.32, + "end": 1974.16, + "probability": 0.9293 + }, + { + "start": 1974.24, + "end": 1974.66, + "probability": 0.9117 + }, + { + "start": 1974.76, + "end": 1975.28, + "probability": 0.9379 + }, + { + "start": 1975.74, + "end": 1978.76, + "probability": 0.9963 + }, + { + "start": 1978.76, + "end": 1982.54, + "probability": 0.993 + }, + { + "start": 1983.32, + "end": 1984.24, + "probability": 0.8928 + }, + { + "start": 1986.3, + "end": 1987.14, + "probability": 0.6001 + }, + { + "start": 1987.86, + "end": 1989.44, + "probability": 0.9908 + }, + { + "start": 1989.96, + "end": 1992.1, + "probability": 0.8752 + }, + { + "start": 1993.08, + "end": 1995.23, + "probability": 0.9552 + }, + { + "start": 1995.96, + "end": 2001.42, + "probability": 0.9165 + }, + { + "start": 2001.92, + "end": 2002.36, + "probability": 0.7743 + }, + { + "start": 2004.6, + "end": 2007.26, + "probability": 0.982 + }, + { + "start": 2008.96, + "end": 2011.22, + "probability": 0.4121 + }, + { + "start": 2014.78, + "end": 2017.54, + "probability": 0.399 + }, + { + "start": 2023.08, + "end": 2025.48, + "probability": 0.7903 + }, + { + "start": 2025.56, + "end": 2026.6, + "probability": 0.4242 + }, + { + "start": 2026.66, + "end": 2029.88, + "probability": 0.9673 + }, + { + "start": 2029.88, + "end": 2033.5, + "probability": 0.8275 + }, + { + "start": 2034.12, + "end": 2035.96, + "probability": 0.6935 + }, + { + "start": 2036.36, + "end": 2036.56, + "probability": 0.028 + }, + { + "start": 2048.74, + "end": 2053.02, + "probability": 0.0235 + }, + { + "start": 2053.02, + "end": 2054.5, + "probability": 0.5646 + }, + { + "start": 2055.42, + "end": 2056.92, + "probability": 0.8996 + }, + { + "start": 2059.28, + "end": 2062.22, + "probability": 0.9313 + }, + { + "start": 2063.94, + "end": 2065.04, + "probability": 0.9437 + }, + { + "start": 2065.96, + "end": 2067.22, + "probability": 0.6806 + }, + { + "start": 2068.88, + "end": 2071.34, + "probability": 0.8679 + }, + { + "start": 2073.2, + "end": 2076.26, + "probability": 0.8153 + }, + { + "start": 2077.48, + "end": 2080.48, + "probability": 0.9891 + }, + { + "start": 2081.22, + "end": 2081.8, + "probability": 0.5928 + }, + { + "start": 2082.0, + "end": 2082.43, + "probability": 0.8001 + }, + { + "start": 2083.9, + "end": 2085.22, + "probability": 0.9857 + }, + { + "start": 2089.92, + "end": 2091.16, + "probability": 0.9113 + }, + { + "start": 2092.6, + "end": 2093.0, + "probability": 0.8167 + }, + { + "start": 2094.48, + "end": 2095.04, + "probability": 0.9784 + }, + { + "start": 2096.78, + "end": 2098.8, + "probability": 0.9712 + }, + { + "start": 2100.92, + "end": 2101.26, + "probability": 0.937 + }, + { + "start": 2101.26, + "end": 2101.6, + "probability": 0.285 + }, + { + "start": 2101.68, + "end": 2107.76, + "probability": 0.9902 + }, + { + "start": 2109.94, + "end": 2111.12, + "probability": 0.9755 + }, + { + "start": 2113.14, + "end": 2116.78, + "probability": 0.9895 + }, + { + "start": 2118.82, + "end": 2120.08, + "probability": 0.8948 + }, + { + "start": 2121.06, + "end": 2122.6, + "probability": 0.7234 + }, + { + "start": 2124.52, + "end": 2129.36, + "probability": 0.9939 + }, + { + "start": 2130.76, + "end": 2131.86, + "probability": 0.9514 + }, + { + "start": 2131.9, + "end": 2134.44, + "probability": 0.9915 + }, + { + "start": 2134.54, + "end": 2134.89, + "probability": 0.835 + }, + { + "start": 2136.18, + "end": 2137.46, + "probability": 0.9412 + }, + { + "start": 2138.04, + "end": 2139.48, + "probability": 0.9698 + }, + { + "start": 2139.88, + "end": 2140.72, + "probability": 0.8678 + }, + { + "start": 2141.14, + "end": 2142.44, + "probability": 0.9202 + }, + { + "start": 2142.82, + "end": 2144.42, + "probability": 0.9887 + }, + { + "start": 2145.18, + "end": 2146.6, + "probability": 0.757 + }, + { + "start": 2148.98, + "end": 2156.64, + "probability": 0.9556 + }, + { + "start": 2158.78, + "end": 2160.1, + "probability": 0.9048 + }, + { + "start": 2160.16, + "end": 2161.9, + "probability": 0.971 + }, + { + "start": 2161.98, + "end": 2164.76, + "probability": 0.9956 + }, + { + "start": 2164.86, + "end": 2165.52, + "probability": 0.7131 + }, + { + "start": 2165.7, + "end": 2165.94, + "probability": 0.5064 + }, + { + "start": 2166.02, + "end": 2168.46, + "probability": 0.3732 + }, + { + "start": 2169.5, + "end": 2172.18, + "probability": 0.9708 + }, + { + "start": 2172.24, + "end": 2173.04, + "probability": 0.7441 + }, + { + "start": 2173.26, + "end": 2173.92, + "probability": 0.5735 + }, + { + "start": 2174.02, + "end": 2175.26, + "probability": 0.5771 + }, + { + "start": 2175.38, + "end": 2176.1, + "probability": 0.5588 + }, + { + "start": 2177.84, + "end": 2180.82, + "probability": 0.8547 + }, + { + "start": 2182.34, + "end": 2183.64, + "probability": 0.9509 + }, + { + "start": 2185.26, + "end": 2187.48, + "probability": 0.7851 + }, + { + "start": 2188.28, + "end": 2189.5, + "probability": 0.7584 + }, + { + "start": 2190.26, + "end": 2192.52, + "probability": 0.8798 + }, + { + "start": 2193.88, + "end": 2194.52, + "probability": 0.8472 + }, + { + "start": 2195.08, + "end": 2195.88, + "probability": 0.9361 + }, + { + "start": 2196.96, + "end": 2197.76, + "probability": 0.9581 + }, + { + "start": 2199.06, + "end": 2201.72, + "probability": 0.987 + }, + { + "start": 2202.16, + "end": 2202.58, + "probability": 0.9051 + }, + { + "start": 2202.6, + "end": 2205.54, + "probability": 0.9121 + }, + { + "start": 2206.34, + "end": 2209.66, + "probability": 0.9884 + }, + { + "start": 2210.18, + "end": 2210.72, + "probability": 0.9838 + }, + { + "start": 2212.3, + "end": 2212.32, + "probability": 0.5449 + }, + { + "start": 2213.28, + "end": 2214.26, + "probability": 0.4301 + }, + { + "start": 2215.16, + "end": 2215.76, + "probability": 0.7523 + }, + { + "start": 2219.0, + "end": 2221.52, + "probability": 0.9709 + }, + { + "start": 2222.8, + "end": 2225.05, + "probability": 0.998 + }, + { + "start": 2225.44, + "end": 2226.04, + "probability": 0.9579 + }, + { + "start": 2226.78, + "end": 2228.82, + "probability": 0.8067 + }, + { + "start": 2229.44, + "end": 2232.0, + "probability": 0.9827 + }, + { + "start": 2233.6, + "end": 2235.14, + "probability": 0.7326 + }, + { + "start": 2236.04, + "end": 2239.38, + "probability": 0.8079 + }, + { + "start": 2240.6, + "end": 2243.24, + "probability": 0.9963 + }, + { + "start": 2244.12, + "end": 2246.06, + "probability": 0.9951 + }, + { + "start": 2247.24, + "end": 2248.2, + "probability": 0.9923 + }, + { + "start": 2248.92, + "end": 2249.78, + "probability": 0.9445 + }, + { + "start": 2250.5, + "end": 2251.34, + "probability": 0.9859 + }, + { + "start": 2251.88, + "end": 2252.5, + "probability": 0.984 + }, + { + "start": 2253.12, + "end": 2256.0, + "probability": 0.7904 + }, + { + "start": 2257.0, + "end": 2257.76, + "probability": 0.5369 + }, + { + "start": 2258.62, + "end": 2259.28, + "probability": 0.9521 + }, + { + "start": 2260.0, + "end": 2260.98, + "probability": 0.9805 + }, + { + "start": 2261.56, + "end": 2262.66, + "probability": 0.8954 + }, + { + "start": 2264.52, + "end": 2268.4, + "probability": 0.9502 + }, + { + "start": 2270.02, + "end": 2271.08, + "probability": 0.9363 + }, + { + "start": 2271.64, + "end": 2272.52, + "probability": 0.7778 + }, + { + "start": 2273.6, + "end": 2274.98, + "probability": 0.9941 + }, + { + "start": 2276.28, + "end": 2276.98, + "probability": 0.6652 + }, + { + "start": 2277.5, + "end": 2278.02, + "probability": 0.8087 + }, + { + "start": 2279.04, + "end": 2280.08, + "probability": 0.8426 + }, + { + "start": 2280.12, + "end": 2283.7, + "probability": 0.8876 + }, + { + "start": 2284.82, + "end": 2285.62, + "probability": 0.9752 + }, + { + "start": 2286.72, + "end": 2290.02, + "probability": 0.9805 + }, + { + "start": 2291.12, + "end": 2293.29, + "probability": 0.9048 + }, + { + "start": 2295.22, + "end": 2295.54, + "probability": 0.681 + }, + { + "start": 2295.62, + "end": 2296.3, + "probability": 0.7436 + }, + { + "start": 2296.68, + "end": 2297.96, + "probability": 0.8602 + }, + { + "start": 2298.08, + "end": 2299.02, + "probability": 0.4983 + }, + { + "start": 2299.08, + "end": 2301.66, + "probability": 0.9983 + }, + { + "start": 2301.96, + "end": 2306.02, + "probability": 0.9971 + }, + { + "start": 2308.94, + "end": 2314.88, + "probability": 0.9357 + }, + { + "start": 2314.96, + "end": 2317.64, + "probability": 0.7335 + }, + { + "start": 2319.24, + "end": 2320.92, + "probability": 0.8424 + }, + { + "start": 2321.74, + "end": 2322.42, + "probability": 0.8581 + }, + { + "start": 2323.04, + "end": 2324.28, + "probability": 0.975 + }, + { + "start": 2324.48, + "end": 2328.0, + "probability": 0.9948 + }, + { + "start": 2328.52, + "end": 2329.28, + "probability": 0.7929 + }, + { + "start": 2331.38, + "end": 2335.64, + "probability": 0.9824 + }, + { + "start": 2336.7, + "end": 2339.8, + "probability": 0.9866 + }, + { + "start": 2339.8, + "end": 2343.92, + "probability": 0.9982 + }, + { + "start": 2345.46, + "end": 2347.08, + "probability": 0.9909 + }, + { + "start": 2349.74, + "end": 2351.62, + "probability": 0.9852 + }, + { + "start": 2353.04, + "end": 2354.04, + "probability": 0.5181 + }, + { + "start": 2354.18, + "end": 2355.72, + "probability": 0.644 + }, + { + "start": 2356.62, + "end": 2361.78, + "probability": 0.7325 + }, + { + "start": 2361.78, + "end": 2364.96, + "probability": 0.9602 + }, + { + "start": 2366.38, + "end": 2368.86, + "probability": 0.7292 + }, + { + "start": 2370.82, + "end": 2371.88, + "probability": 0.7224 + }, + { + "start": 2372.12, + "end": 2376.52, + "probability": 0.9878 + }, + { + "start": 2376.6, + "end": 2377.15, + "probability": 0.9956 + }, + { + "start": 2377.38, + "end": 2377.85, + "probability": 0.8561 + }, + { + "start": 2378.56, + "end": 2381.6, + "probability": 0.923 + }, + { + "start": 2381.74, + "end": 2383.93, + "probability": 0.947 + }, + { + "start": 2384.88, + "end": 2386.02, + "probability": 0.9243 + }, + { + "start": 2386.08, + "end": 2388.04, + "probability": 0.9591 + }, + { + "start": 2388.08, + "end": 2393.1, + "probability": 0.895 + }, + { + "start": 2393.18, + "end": 2394.96, + "probability": 0.8775 + }, + { + "start": 2395.26, + "end": 2397.62, + "probability": 0.9941 + }, + { + "start": 2397.7, + "end": 2398.68, + "probability": 0.4702 + }, + { + "start": 2399.7, + "end": 2401.14, + "probability": 0.9328 + }, + { + "start": 2401.24, + "end": 2405.28, + "probability": 0.8715 + }, + { + "start": 2405.74, + "end": 2409.88, + "probability": 0.9871 + }, + { + "start": 2409.96, + "end": 2411.22, + "probability": 0.7042 + }, + { + "start": 2411.24, + "end": 2411.78, + "probability": 0.2807 + }, + { + "start": 2412.08, + "end": 2414.8, + "probability": 0.9412 + }, + { + "start": 2415.0, + "end": 2416.48, + "probability": 0.9819 + }, + { + "start": 2418.08, + "end": 2419.9, + "probability": 0.9269 + }, + { + "start": 2420.48, + "end": 2422.26, + "probability": 0.7139 + }, + { + "start": 2422.34, + "end": 2423.8, + "probability": 0.6927 + }, + { + "start": 2423.92, + "end": 2425.76, + "probability": 0.9258 + }, + { + "start": 2426.96, + "end": 2427.92, + "probability": 0.7012 + }, + { + "start": 2428.46, + "end": 2432.06, + "probability": 0.4366 + }, + { + "start": 2432.06, + "end": 2432.22, + "probability": 0.0737 + }, + { + "start": 2432.32, + "end": 2432.64, + "probability": 0.7243 + }, + { + "start": 2432.72, + "end": 2433.06, + "probability": 0.6132 + }, + { + "start": 2433.06, + "end": 2435.18, + "probability": 0.8124 + }, + { + "start": 2435.3, + "end": 2437.36, + "probability": 0.9943 + }, + { + "start": 2438.5, + "end": 2441.04, + "probability": 0.9202 + }, + { + "start": 2441.96, + "end": 2444.06, + "probability": 0.8971 + }, + { + "start": 2444.06, + "end": 2446.58, + "probability": 0.9942 + }, + { + "start": 2448.7, + "end": 2450.82, + "probability": 0.9611 + }, + { + "start": 2450.82, + "end": 2453.28, + "probability": 0.9023 + }, + { + "start": 2454.22, + "end": 2454.92, + "probability": 0.9828 + }, + { + "start": 2456.04, + "end": 2456.88, + "probability": 0.8539 + }, + { + "start": 2457.1, + "end": 2457.8, + "probability": 0.9742 + }, + { + "start": 2457.9, + "end": 2458.6, + "probability": 0.9698 + }, + { + "start": 2458.66, + "end": 2459.5, + "probability": 0.9574 + }, + { + "start": 2460.62, + "end": 2464.28, + "probability": 0.9917 + }, + { + "start": 2464.42, + "end": 2466.1, + "probability": 0.7582 + }, + { + "start": 2467.66, + "end": 2468.84, + "probability": 0.983 + }, + { + "start": 2469.74, + "end": 2470.78, + "probability": 0.9028 + }, + { + "start": 2471.48, + "end": 2475.14, + "probability": 0.9908 + }, + { + "start": 2476.16, + "end": 2476.94, + "probability": 0.9922 + }, + { + "start": 2477.44, + "end": 2478.2, + "probability": 0.937 + }, + { + "start": 2478.26, + "end": 2479.96, + "probability": 0.9003 + }, + { + "start": 2480.02, + "end": 2480.6, + "probability": 0.8824 + }, + { + "start": 2482.28, + "end": 2483.66, + "probability": 0.9969 + }, + { + "start": 2483.76, + "end": 2484.2, + "probability": 0.8501 + }, + { + "start": 2484.28, + "end": 2486.66, + "probability": 0.9927 + }, + { + "start": 2489.12, + "end": 2491.0, + "probability": 0.891 + }, + { + "start": 2491.86, + "end": 2493.38, + "probability": 0.9951 + }, + { + "start": 2494.14, + "end": 2496.32, + "probability": 0.8428 + }, + { + "start": 2497.62, + "end": 2498.56, + "probability": 0.9873 + }, + { + "start": 2498.74, + "end": 2499.92, + "probability": 0.88 + }, + { + "start": 2501.0, + "end": 2502.82, + "probability": 0.9816 + }, + { + "start": 2502.86, + "end": 2504.64, + "probability": 0.8903 + }, + { + "start": 2505.6, + "end": 2506.32, + "probability": 0.689 + }, + { + "start": 2507.1, + "end": 2510.24, + "probability": 0.9094 + }, + { + "start": 2510.4, + "end": 2512.79, + "probability": 0.918 + }, + { + "start": 2515.34, + "end": 2516.81, + "probability": 0.9814 + }, + { + "start": 2519.24, + "end": 2520.18, + "probability": 0.9688 + }, + { + "start": 2521.54, + "end": 2523.74, + "probability": 0.9338 + }, + { + "start": 2524.86, + "end": 2527.28, + "probability": 0.9785 + }, + { + "start": 2527.28, + "end": 2529.68, + "probability": 0.9961 + }, + { + "start": 2530.22, + "end": 2532.66, + "probability": 0.9988 + }, + { + "start": 2533.5, + "end": 2535.82, + "probability": 0.9123 + }, + { + "start": 2536.06, + "end": 2540.08, + "probability": 0.9927 + }, + { + "start": 2540.92, + "end": 2542.94, + "probability": 0.9535 + }, + { + "start": 2544.46, + "end": 2547.34, + "probability": 0.7209 + }, + { + "start": 2548.16, + "end": 2550.02, + "probability": 0.9219 + }, + { + "start": 2550.7, + "end": 2552.36, + "probability": 0.8164 + }, + { + "start": 2553.84, + "end": 2555.78, + "probability": 0.9833 + }, + { + "start": 2557.14, + "end": 2559.46, + "probability": 0.9802 + }, + { + "start": 2560.92, + "end": 2561.3, + "probability": 0.6577 + }, + { + "start": 2561.44, + "end": 2561.78, + "probability": 0.5975 + }, + { + "start": 2561.9, + "end": 2564.32, + "probability": 0.9279 + }, + { + "start": 2564.32, + "end": 2568.46, + "probability": 0.9786 + }, + { + "start": 2572.2, + "end": 2575.08, + "probability": 0.9895 + }, + { + "start": 2576.3, + "end": 2578.9, + "probability": 0.9486 + }, + { + "start": 2580.52, + "end": 2581.58, + "probability": 0.8644 + }, + { + "start": 2581.8, + "end": 2584.42, + "probability": 0.9896 + }, + { + "start": 2584.5, + "end": 2585.44, + "probability": 0.5012 + }, + { + "start": 2585.54, + "end": 2586.66, + "probability": 0.9413 + }, + { + "start": 2586.76, + "end": 2587.46, + "probability": 0.9082 + }, + { + "start": 2587.56, + "end": 2591.2, + "probability": 0.8643 + }, + { + "start": 2592.16, + "end": 2593.78, + "probability": 0.9885 + }, + { + "start": 2593.88, + "end": 2594.7, + "probability": 0.9405 + }, + { + "start": 2594.78, + "end": 2595.8, + "probability": 0.938 + }, + { + "start": 2597.12, + "end": 2598.06, + "probability": 0.9675 + }, + { + "start": 2599.2, + "end": 2601.54, + "probability": 0.9792 + }, + { + "start": 2602.24, + "end": 2603.44, + "probability": 0.7343 + }, + { + "start": 2603.56, + "end": 2605.52, + "probability": 0.946 + }, + { + "start": 2605.6, + "end": 2609.24, + "probability": 0.9875 + }, + { + "start": 2610.32, + "end": 2611.14, + "probability": 0.9446 + }, + { + "start": 2611.34, + "end": 2612.86, + "probability": 0.8886 + }, + { + "start": 2613.04, + "end": 2615.52, + "probability": 0.7051 + }, + { + "start": 2615.6, + "end": 2616.96, + "probability": 0.9526 + }, + { + "start": 2617.8, + "end": 2619.04, + "probability": 0.873 + }, + { + "start": 2619.7, + "end": 2623.26, + "probability": 0.9914 + }, + { + "start": 2623.26, + "end": 2626.78, + "probability": 0.9885 + }, + { + "start": 2626.84, + "end": 2630.14, + "probability": 0.9961 + }, + { + "start": 2631.76, + "end": 2634.14, + "probability": 0.9982 + }, + { + "start": 2634.28, + "end": 2635.84, + "probability": 0.6885 + }, + { + "start": 2636.58, + "end": 2640.24, + "probability": 0.9966 + }, + { + "start": 2640.28, + "end": 2641.84, + "probability": 0.9896 + }, + { + "start": 2643.3, + "end": 2646.66, + "probability": 0.9952 + }, + { + "start": 2647.44, + "end": 2650.12, + "probability": 0.9578 + }, + { + "start": 2650.12, + "end": 2652.72, + "probability": 0.9851 + }, + { + "start": 2653.32, + "end": 2656.44, + "probability": 0.9911 + }, + { + "start": 2656.7, + "end": 2658.86, + "probability": 0.8769 + }, + { + "start": 2661.46, + "end": 2663.78, + "probability": 0.7902 + }, + { + "start": 2665.02, + "end": 2666.08, + "probability": 0.9329 + }, + { + "start": 2666.24, + "end": 2667.22, + "probability": 0.888 + }, + { + "start": 2667.3, + "end": 2670.24, + "probability": 0.9786 + }, + { + "start": 2670.38, + "end": 2673.04, + "probability": 0.9518 + }, + { + "start": 2673.78, + "end": 2675.72, + "probability": 0.9913 + }, + { + "start": 2675.72, + "end": 2678.3, + "probability": 0.9949 + }, + { + "start": 2679.92, + "end": 2683.42, + "probability": 0.9827 + }, + { + "start": 2684.84, + "end": 2685.78, + "probability": 0.9536 + }, + { + "start": 2686.78, + "end": 2689.76, + "probability": 0.991 + }, + { + "start": 2690.74, + "end": 2693.98, + "probability": 0.9994 + }, + { + "start": 2693.98, + "end": 2696.98, + "probability": 0.998 + }, + { + "start": 2697.12, + "end": 2697.28, + "probability": 0.4864 + }, + { + "start": 2697.36, + "end": 2697.64, + "probability": 0.608 + }, + { + "start": 2698.36, + "end": 2699.28, + "probability": 0.9921 + }, + { + "start": 2701.3, + "end": 2704.28, + "probability": 0.9961 + }, + { + "start": 2705.96, + "end": 2707.74, + "probability": 0.8341 + }, + { + "start": 2707.82, + "end": 2709.44, + "probability": 0.7805 + }, + { + "start": 2709.52, + "end": 2709.52, + "probability": 0.0149 + }, + { + "start": 2709.58, + "end": 2710.28, + "probability": 0.5132 + }, + { + "start": 2711.06, + "end": 2714.54, + "probability": 0.9803 + }, + { + "start": 2715.8, + "end": 2716.92, + "probability": 0.9518 + }, + { + "start": 2717.02, + "end": 2717.3, + "probability": 0.913 + }, + { + "start": 2717.36, + "end": 2717.96, + "probability": 0.7447 + }, + { + "start": 2717.96, + "end": 2718.6, + "probability": 0.3218 + }, + { + "start": 2718.68, + "end": 2719.1, + "probability": 0.4978 + }, + { + "start": 2719.2, + "end": 2719.76, + "probability": 0.5751 + }, + { + "start": 2719.82, + "end": 2722.32, + "probability": 0.5781 + }, + { + "start": 2722.32, + "end": 2722.6, + "probability": 0.7188 + }, + { + "start": 2722.64, + "end": 2722.78, + "probability": 0.6905 + }, + { + "start": 2722.82, + "end": 2725.0, + "probability": 0.9966 + }, + { + "start": 2726.06, + "end": 2727.46, + "probability": 0.7411 + }, + { + "start": 2728.96, + "end": 2730.95, + "probability": 0.989 + }, + { + "start": 2731.74, + "end": 2733.43, + "probability": 0.965 + }, + { + "start": 2734.97, + "end": 2736.34, + "probability": 0.9726 + }, + { + "start": 2737.52, + "end": 2739.82, + "probability": 0.8553 + }, + { + "start": 2740.84, + "end": 2742.54, + "probability": 0.8557 + }, + { + "start": 2742.96, + "end": 2744.72, + "probability": 0.8998 + }, + { + "start": 2745.86, + "end": 2747.54, + "probability": 0.9475 + }, + { + "start": 2747.62, + "end": 2749.78, + "probability": 0.9985 + }, + { + "start": 2749.94, + "end": 2750.62, + "probability": 0.4907 + }, + { + "start": 2750.76, + "end": 2752.12, + "probability": 0.8219 + }, + { + "start": 2752.18, + "end": 2754.18, + "probability": 0.6701 + }, + { + "start": 2755.02, + "end": 2757.76, + "probability": 0.9944 + }, + { + "start": 2757.92, + "end": 2759.3, + "probability": 0.9814 + }, + { + "start": 2761.04, + "end": 2764.12, + "probability": 0.9892 + }, + { + "start": 2764.24, + "end": 2766.88, + "probability": 0.9991 + }, + { + "start": 2766.92, + "end": 2767.98, + "probability": 0.8146 + }, + { + "start": 2768.0, + "end": 2769.72, + "probability": 0.9633 + }, + { + "start": 2770.56, + "end": 2772.38, + "probability": 0.9857 + }, + { + "start": 2772.7, + "end": 2773.8, + "probability": 0.7151 + }, + { + "start": 2787.52, + "end": 2791.5, + "probability": 0.0913 + }, + { + "start": 2791.5, + "end": 2792.6, + "probability": 0.0463 + }, + { + "start": 2792.6, + "end": 2796.32, + "probability": 0.0719 + }, + { + "start": 2796.32, + "end": 2796.32, + "probability": 0.0625 + }, + { + "start": 2796.32, + "end": 2800.17, + "probability": 0.1057 + }, + { + "start": 2801.44, + "end": 2806.28, + "probability": 0.0062 + }, + { + "start": 2807.18, + "end": 2808.75, + "probability": 0.2255 + }, + { + "start": 2810.2, + "end": 2812.22, + "probability": 0.0232 + }, + { + "start": 2812.54, + "end": 2812.78, + "probability": 0.1671 + }, + { + "start": 2815.62, + "end": 2819.3, + "probability": 0.0206 + }, + { + "start": 2820.08, + "end": 2821.88, + "probability": 0.0577 + }, + { + "start": 2823.02, + "end": 2824.74, + "probability": 0.045 + }, + { + "start": 2825.92, + "end": 2826.94, + "probability": 0.005 + }, + { + "start": 2830.3, + "end": 2831.76, + "probability": 0.1032 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.0, + "end": 2846.0, + "probability": 0.0 + }, + { + "start": 2846.1, + "end": 2846.18, + "probability": 0.0001 + }, + { + "start": 2846.18, + "end": 2846.18, + "probability": 0.0429 + }, + { + "start": 2846.18, + "end": 2846.18, + "probability": 0.0446 + }, + { + "start": 2846.18, + "end": 2850.04, + "probability": 0.9334 + }, + { + "start": 2850.16, + "end": 2850.72, + "probability": 0.8981 + }, + { + "start": 2850.78, + "end": 2851.14, + "probability": 0.5937 + }, + { + "start": 2851.2, + "end": 2851.48, + "probability": 0.8699 + }, + { + "start": 2851.52, + "end": 2851.78, + "probability": 0.4751 + }, + { + "start": 2852.16, + "end": 2852.16, + "probability": 0.3384 + }, + { + "start": 2852.16, + "end": 2854.54, + "probability": 0.9882 + }, + { + "start": 2855.18, + "end": 2858.86, + "probability": 0.9775 + }, + { + "start": 2859.44, + "end": 2859.84, + "probability": 0.7993 + }, + { + "start": 2860.06, + "end": 2861.74, + "probability": 0.8434 + }, + { + "start": 2861.92, + "end": 2864.26, + "probability": 0.9962 + }, + { + "start": 2864.48, + "end": 2865.11, + "probability": 0.9826 + }, + { + "start": 2866.38, + "end": 2871.16, + "probability": 0.9617 + }, + { + "start": 2872.42, + "end": 2872.9, + "probability": 0.1166 + }, + { + "start": 2872.9, + "end": 2876.42, + "probability": 0.2677 + }, + { + "start": 2879.92, + "end": 2880.1, + "probability": 0.0355 + }, + { + "start": 2880.1, + "end": 2880.1, + "probability": 0.107 + }, + { + "start": 2880.1, + "end": 2880.1, + "probability": 0.0389 + }, + { + "start": 2880.1, + "end": 2880.1, + "probability": 0.2173 + }, + { + "start": 2880.1, + "end": 2881.18, + "probability": 0.6652 + }, + { + "start": 2881.2, + "end": 2883.46, + "probability": 0.676 + }, + { + "start": 2883.8, + "end": 2885.0, + "probability": 0.6684 + }, + { + "start": 2885.18, + "end": 2885.56, + "probability": 0.7947 + }, + { + "start": 2886.8, + "end": 2888.68, + "probability": 0.9467 + }, + { + "start": 2889.04, + "end": 2890.7, + "probability": 0.8167 + }, + { + "start": 2891.22, + "end": 2892.24, + "probability": 0.4995 + }, + { + "start": 2893.56, + "end": 2893.66, + "probability": 0.0947 + }, + { + "start": 2893.66, + "end": 2895.08, + "probability": 0.846 + }, + { + "start": 2895.4, + "end": 2895.98, + "probability": 0.078 + }, + { + "start": 2896.36, + "end": 2900.84, + "probability": 0.3977 + }, + { + "start": 2901.26, + "end": 2901.78, + "probability": 0.0382 + }, + { + "start": 2901.9, + "end": 2902.46, + "probability": 0.1937 + }, + { + "start": 2903.64, + "end": 2904.54, + "probability": 0.0756 + }, + { + "start": 2905.04, + "end": 2907.5, + "probability": 0.3778 + }, + { + "start": 2907.52, + "end": 2909.44, + "probability": 0.8906 + }, + { + "start": 2909.72, + "end": 2912.04, + "probability": 0.2451 + }, + { + "start": 2915.26, + "end": 2918.21, + "probability": 0.8294 + }, + { + "start": 2919.26, + "end": 2921.44, + "probability": 0.9824 + }, + { + "start": 2921.5, + "end": 2922.5, + "probability": 0.7471 + }, + { + "start": 2922.52, + "end": 2925.3, + "probability": 0.7308 + }, + { + "start": 2926.4, + "end": 2927.46, + "probability": 0.9441 + }, + { + "start": 2927.76, + "end": 2929.32, + "probability": 0.9423 + }, + { + "start": 2929.64, + "end": 2931.02, + "probability": 0.8952 + }, + { + "start": 2931.26, + "end": 2932.04, + "probability": 0.6993 + }, + { + "start": 2933.04, + "end": 2937.45, + "probability": 0.976 + }, + { + "start": 2939.04, + "end": 2941.38, + "probability": 0.8709 + }, + { + "start": 2941.9, + "end": 2944.58, + "probability": 0.7103 + }, + { + "start": 2944.66, + "end": 2945.62, + "probability": 0.9895 + }, + { + "start": 2946.34, + "end": 2948.24, + "probability": 0.987 + }, + { + "start": 2951.28, + "end": 2952.52, + "probability": 0.9903 + }, + { + "start": 2953.08, + "end": 2954.66, + "probability": 0.9202 + }, + { + "start": 2955.06, + "end": 2958.76, + "probability": 0.9924 + }, + { + "start": 2959.6, + "end": 2961.94, + "probability": 0.7807 + }, + { + "start": 2962.02, + "end": 2962.74, + "probability": 0.8884 + }, + { + "start": 2962.78, + "end": 2965.86, + "probability": 0.9458 + }, + { + "start": 2966.18, + "end": 2966.92, + "probability": 0.992 + }, + { + "start": 2967.06, + "end": 2969.26, + "probability": 0.9926 + }, + { + "start": 2969.5, + "end": 2977.5, + "probability": 0.9884 + }, + { + "start": 2977.6, + "end": 2981.2, + "probability": 0.9573 + }, + { + "start": 2982.08, + "end": 2987.46, + "probability": 0.9899 + }, + { + "start": 2988.06, + "end": 2991.26, + "probability": 0.999 + }, + { + "start": 2991.92, + "end": 2997.66, + "probability": 0.9967 + }, + { + "start": 2997.66, + "end": 3002.6, + "probability": 0.9996 + }, + { + "start": 3003.4, + "end": 3007.26, + "probability": 0.8878 + }, + { + "start": 3007.7, + "end": 3010.88, + "probability": 0.9137 + }, + { + "start": 3011.52, + "end": 3014.78, + "probability": 0.9741 + }, + { + "start": 3014.86, + "end": 3015.14, + "probability": 0.2703 + }, + { + "start": 3015.28, + "end": 3018.28, + "probability": 0.9651 + }, + { + "start": 3018.96, + "end": 3023.26, + "probability": 0.8237 + }, + { + "start": 3023.46, + "end": 3024.68, + "probability": 0.9676 + }, + { + "start": 3025.82, + "end": 3026.74, + "probability": 0.9168 + }, + { + "start": 3027.1, + "end": 3032.38, + "probability": 0.9868 + }, + { + "start": 3033.32, + "end": 3036.82, + "probability": 0.9831 + }, + { + "start": 3037.64, + "end": 3042.0, + "probability": 0.8884 + }, + { + "start": 3042.1, + "end": 3042.82, + "probability": 0.8692 + }, + { + "start": 3043.36, + "end": 3044.42, + "probability": 0.2286 + }, + { + "start": 3044.56, + "end": 3049.44, + "probability": 0.8668 + }, + { + "start": 3049.56, + "end": 3050.28, + "probability": 0.8298 + }, + { + "start": 3051.24, + "end": 3052.84, + "probability": 0.8856 + }, + { + "start": 3052.96, + "end": 3059.06, + "probability": 0.9492 + }, + { + "start": 3059.64, + "end": 3062.64, + "probability": 0.9187 + }, + { + "start": 3062.9, + "end": 3063.64, + "probability": 0.8422 + }, + { + "start": 3063.84, + "end": 3067.84, + "probability": 0.926 + }, + { + "start": 3068.04, + "end": 3071.76, + "probability": 0.8029 + }, + { + "start": 3072.34, + "end": 3077.64, + "probability": 0.9911 + }, + { + "start": 3078.52, + "end": 3081.28, + "probability": 0.922 + }, + { + "start": 3082.1, + "end": 3082.48, + "probability": 0.4164 + }, + { + "start": 3082.62, + "end": 3084.48, + "probability": 0.9602 + }, + { + "start": 3084.72, + "end": 3088.4, + "probability": 0.9375 + }, + { + "start": 3088.6, + "end": 3091.52, + "probability": 0.7036 + }, + { + "start": 3092.08, + "end": 3094.54, + "probability": 0.8439 + }, + { + "start": 3094.58, + "end": 3095.48, + "probability": 0.7085 + }, + { + "start": 3095.92, + "end": 3098.68, + "probability": 0.9025 + }, + { + "start": 3098.72, + "end": 3104.14, + "probability": 0.8527 + }, + { + "start": 3104.54, + "end": 3105.64, + "probability": 0.8091 + }, + { + "start": 3105.82, + "end": 3106.44, + "probability": 0.6463 + }, + { + "start": 3109.84, + "end": 3112.42, + "probability": 0.5112 + }, + { + "start": 3113.46, + "end": 3117.32, + "probability": 0.5472 + }, + { + "start": 3118.02, + "end": 3118.82, + "probability": 0.9191 + }, + { + "start": 3119.04, + "end": 3124.64, + "probability": 0.9778 + }, + { + "start": 3124.9, + "end": 3125.72, + "probability": 0.6333 + }, + { + "start": 3125.76, + "end": 3133.0, + "probability": 0.8869 + }, + { + "start": 3133.44, + "end": 3138.54, + "probability": 0.9961 + }, + { + "start": 3138.6, + "end": 3142.36, + "probability": 0.9893 + }, + { + "start": 3142.36, + "end": 3145.38, + "probability": 0.9907 + }, + { + "start": 3146.1, + "end": 3151.14, + "probability": 0.9918 + }, + { + "start": 3151.78, + "end": 3152.92, + "probability": 0.6257 + }, + { + "start": 3154.02, + "end": 3154.96, + "probability": 0.9093 + }, + { + "start": 3155.54, + "end": 3156.32, + "probability": 0.9569 + }, + { + "start": 3156.8, + "end": 3157.44, + "probability": 0.9777 + }, + { + "start": 3157.88, + "end": 3158.8, + "probability": 0.9405 + }, + { + "start": 3158.98, + "end": 3161.94, + "probability": 0.9943 + }, + { + "start": 3162.54, + "end": 3164.38, + "probability": 0.8614 + }, + { + "start": 3164.54, + "end": 3166.47, + "probability": 0.9686 + }, + { + "start": 3167.3, + "end": 3174.56, + "probability": 0.9937 + }, + { + "start": 3174.7, + "end": 3177.7, + "probability": 0.4714 + }, + { + "start": 3177.88, + "end": 3180.08, + "probability": 0.7957 + }, + { + "start": 3180.8, + "end": 3184.38, + "probability": 0.8508 + }, + { + "start": 3185.5, + "end": 3189.4, + "probability": 0.8833 + }, + { + "start": 3190.1, + "end": 3194.62, + "probability": 0.9878 + }, + { + "start": 3194.62, + "end": 3200.22, + "probability": 0.9927 + }, + { + "start": 3200.84, + "end": 3202.05, + "probability": 0.9611 + }, + { + "start": 3202.94, + "end": 3205.0, + "probability": 0.9782 + }, + { + "start": 3205.22, + "end": 3209.44, + "probability": 0.9897 + }, + { + "start": 3210.16, + "end": 3210.8, + "probability": 0.9243 + }, + { + "start": 3211.48, + "end": 3213.12, + "probability": 0.918 + }, + { + "start": 3213.2, + "end": 3217.24, + "probability": 0.9951 + }, + { + "start": 3217.5, + "end": 3223.76, + "probability": 0.8224 + }, + { + "start": 3224.68, + "end": 3228.72, + "probability": 0.9647 + }, + { + "start": 3229.7, + "end": 3236.5, + "probability": 0.9904 + }, + { + "start": 3236.98, + "end": 3237.98, + "probability": 0.742 + }, + { + "start": 3238.28, + "end": 3238.79, + "probability": 0.7817 + }, + { + "start": 3239.64, + "end": 3242.52, + "probability": 0.8935 + }, + { + "start": 3242.74, + "end": 3245.32, + "probability": 0.9834 + }, + { + "start": 3245.7, + "end": 3249.3, + "probability": 0.9125 + }, + { + "start": 3250.0, + "end": 3251.24, + "probability": 0.6967 + }, + { + "start": 3251.42, + "end": 3252.4, + "probability": 0.4822 + }, + { + "start": 3252.58, + "end": 3255.94, + "probability": 0.8866 + }, + { + "start": 3256.26, + "end": 3259.6, + "probability": 0.9763 + }, + { + "start": 3260.22, + "end": 3262.9, + "probability": 0.9182 + }, + { + "start": 3262.96, + "end": 3266.96, + "probability": 0.9597 + }, + { + "start": 3267.96, + "end": 3270.2, + "probability": 0.996 + }, + { + "start": 3270.76, + "end": 3272.22, + "probability": 0.8693 + }, + { + "start": 3272.56, + "end": 3274.7, + "probability": 0.874 + }, + { + "start": 3274.7, + "end": 3278.24, + "probability": 0.9963 + }, + { + "start": 3278.86, + "end": 3281.58, + "probability": 0.979 + }, + { + "start": 3281.88, + "end": 3284.3, + "probability": 0.936 + }, + { + "start": 3284.74, + "end": 3286.28, + "probability": 0.9457 + }, + { + "start": 3286.72, + "end": 3288.1, + "probability": 0.9626 + }, + { + "start": 3289.02, + "end": 3293.8, + "probability": 0.9368 + }, + { + "start": 3294.3, + "end": 3298.82, + "probability": 0.9574 + }, + { + "start": 3299.7, + "end": 3300.64, + "probability": 0.8324 + }, + { + "start": 3301.22, + "end": 3307.48, + "probability": 0.9878 + }, + { + "start": 3307.92, + "end": 3310.26, + "probability": 0.998 + }, + { + "start": 3310.26, + "end": 3313.54, + "probability": 0.9732 + }, + { + "start": 3313.6, + "end": 3314.58, + "probability": 0.7522 + }, + { + "start": 3315.28, + "end": 3316.36, + "probability": 0.8699 + }, + { + "start": 3316.46, + "end": 3320.44, + "probability": 0.9323 + }, + { + "start": 3320.66, + "end": 3323.32, + "probability": 0.9639 + }, + { + "start": 3323.74, + "end": 3324.78, + "probability": 0.9697 + }, + { + "start": 3325.54, + "end": 3328.42, + "probability": 0.9617 + }, + { + "start": 3328.64, + "end": 3330.44, + "probability": 0.9989 + }, + { + "start": 3330.44, + "end": 3333.92, + "probability": 0.9976 + }, + { + "start": 3334.18, + "end": 3336.64, + "probability": 0.9739 + }, + { + "start": 3336.88, + "end": 3340.38, + "probability": 0.8562 + }, + { + "start": 3341.52, + "end": 3347.08, + "probability": 0.999 + }, + { + "start": 3347.08, + "end": 3353.28, + "probability": 0.9997 + }, + { + "start": 3353.82, + "end": 3354.24, + "probability": 0.2875 + }, + { + "start": 3354.74, + "end": 3355.39, + "probability": 0.035 + }, + { + "start": 3355.68, + "end": 3359.14, + "probability": 0.9869 + }, + { + "start": 3359.16, + "end": 3359.86, + "probability": 0.7795 + }, + { + "start": 3360.02, + "end": 3360.24, + "probability": 0.6945 + }, + { + "start": 3360.32, + "end": 3362.98, + "probability": 0.9739 + }, + { + "start": 3363.82, + "end": 3366.22, + "probability": 0.8787 + }, + { + "start": 3366.32, + "end": 3369.24, + "probability": 0.9847 + }, + { + "start": 3369.24, + "end": 3371.84, + "probability": 0.9987 + }, + { + "start": 3372.72, + "end": 3375.34, + "probability": 0.9748 + }, + { + "start": 3375.48, + "end": 3377.62, + "probability": 0.7415 + }, + { + "start": 3378.3, + "end": 3379.94, + "probability": 0.815 + }, + { + "start": 3380.74, + "end": 3381.92, + "probability": 0.9798 + }, + { + "start": 3382.34, + "end": 3387.18, + "probability": 0.9545 + }, + { + "start": 3388.18, + "end": 3389.76, + "probability": 0.9765 + }, + { + "start": 3390.12, + "end": 3393.18, + "probability": 0.7821 + }, + { + "start": 3393.7, + "end": 3395.62, + "probability": 0.3649 + }, + { + "start": 3395.74, + "end": 3399.92, + "probability": 0.7227 + }, + { + "start": 3400.06, + "end": 3401.6, + "probability": 0.9537 + }, + { + "start": 3402.64, + "end": 3406.56, + "probability": 0.9841 + }, + { + "start": 3407.3, + "end": 3409.74, + "probability": 0.9846 + }, + { + "start": 3409.8, + "end": 3411.3, + "probability": 0.6534 + }, + { + "start": 3411.34, + "end": 3413.18, + "probability": 0.5113 + }, + { + "start": 3413.5, + "end": 3418.28, + "probability": 0.8251 + }, + { + "start": 3418.8, + "end": 3423.84, + "probability": 0.9749 + }, + { + "start": 3424.36, + "end": 3427.16, + "probability": 0.9803 + }, + { + "start": 3427.26, + "end": 3428.88, + "probability": 0.9424 + }, + { + "start": 3429.44, + "end": 3430.62, + "probability": 0.6997 + }, + { + "start": 3431.06, + "end": 3432.0, + "probability": 0.5581 + }, + { + "start": 3432.14, + "end": 3433.9, + "probability": 0.7403 + }, + { + "start": 3434.42, + "end": 3436.7, + "probability": 0.8738 + }, + { + "start": 3436.86, + "end": 3441.0, + "probability": 0.98 + }, + { + "start": 3441.0, + "end": 3441.0, + "probability": 0.0063 + }, + { + "start": 3441.22, + "end": 3442.37, + "probability": 0.7881 + }, + { + "start": 3442.56, + "end": 3446.44, + "probability": 0.9353 + }, + { + "start": 3446.82, + "end": 3449.52, + "probability": 0.9524 + }, + { + "start": 3449.62, + "end": 3450.14, + "probability": 0.8434 + }, + { + "start": 3450.6, + "end": 3452.14, + "probability": 0.821 + }, + { + "start": 3452.64, + "end": 3453.62, + "probability": 0.8278 + }, + { + "start": 3454.32, + "end": 3455.36, + "probability": 0.8203 + }, + { + "start": 3455.46, + "end": 3456.32, + "probability": 0.85 + }, + { + "start": 3456.42, + "end": 3458.26, + "probability": 0.8537 + }, + { + "start": 3460.07, + "end": 3464.28, + "probability": 0.9881 + }, + { + "start": 3464.7, + "end": 3467.02, + "probability": 0.8984 + }, + { + "start": 3467.04, + "end": 3470.12, + "probability": 0.9197 + }, + { + "start": 3470.6, + "end": 3472.62, + "probability": 0.9878 + }, + { + "start": 3473.46, + "end": 3474.3, + "probability": 0.4814 + }, + { + "start": 3474.86, + "end": 3481.3, + "probability": 0.9812 + }, + { + "start": 3481.48, + "end": 3486.8, + "probability": 0.9985 + }, + { + "start": 3487.12, + "end": 3490.5, + "probability": 0.6655 + }, + { + "start": 3490.64, + "end": 3492.7, + "probability": 0.8485 + }, + { + "start": 3493.14, + "end": 3497.06, + "probability": 0.9664 + }, + { + "start": 3497.32, + "end": 3502.78, + "probability": 0.9149 + }, + { + "start": 3502.92, + "end": 3504.49, + "probability": 0.5703 + }, + { + "start": 3505.28, + "end": 3509.72, + "probability": 0.9629 + }, + { + "start": 3510.14, + "end": 3514.38, + "probability": 0.8314 + }, + { + "start": 3514.44, + "end": 3514.92, + "probability": 0.8004 + }, + { + "start": 3515.42, + "end": 3515.84, + "probability": 0.6283 + }, + { + "start": 3516.0, + "end": 3518.08, + "probability": 0.6698 + }, + { + "start": 3518.22, + "end": 3520.48, + "probability": 0.9665 + }, + { + "start": 3521.26, + "end": 3525.32, + "probability": 0.7986 + }, + { + "start": 3526.6, + "end": 3527.48, + "probability": 0.2976 + }, + { + "start": 3527.54, + "end": 3529.6, + "probability": 0.8851 + }, + { + "start": 3531.28, + "end": 3531.5, + "probability": 0.0051 + }, + { + "start": 3532.88, + "end": 3533.9, + "probability": 0.5598 + }, + { + "start": 3533.9, + "end": 3534.0, + "probability": 0.6097 + }, + { + "start": 3534.0, + "end": 3534.1, + "probability": 0.169 + }, + { + "start": 3534.32, + "end": 3534.98, + "probability": 0.0351 + }, + { + "start": 3571.08, + "end": 3573.1, + "probability": 0.4217 + }, + { + "start": 3573.2, + "end": 3575.8, + "probability": 0.9379 + }, + { + "start": 3575.86, + "end": 3580.66, + "probability": 0.9768 + }, + { + "start": 3580.98, + "end": 3584.42, + "probability": 0.9763 + }, + { + "start": 3584.98, + "end": 3588.22, + "probability": 0.8873 + }, + { + "start": 3588.5, + "end": 3589.1, + "probability": 0.7581 + }, + { + "start": 3589.22, + "end": 3591.3, + "probability": 0.9912 + }, + { + "start": 3591.96, + "end": 3595.4, + "probability": 0.8613 + }, + { + "start": 3596.32, + "end": 3598.39, + "probability": 0.9928 + }, + { + "start": 3598.81, + "end": 3602.02, + "probability": 0.9452 + }, + { + "start": 3602.5, + "end": 3606.06, + "probability": 0.9915 + }, + { + "start": 3607.16, + "end": 3609.22, + "probability": 0.998 + }, + { + "start": 3611.0, + "end": 3613.1, + "probability": 0.999 + }, + { + "start": 3613.16, + "end": 3616.12, + "probability": 0.9956 + }, + { + "start": 3616.88, + "end": 3618.83, + "probability": 0.5001 + }, + { + "start": 3619.22, + "end": 3620.46, + "probability": 0.9332 + }, + { + "start": 3621.22, + "end": 3626.52, + "probability": 0.8383 + }, + { + "start": 3628.04, + "end": 3630.14, + "probability": 0.918 + }, + { + "start": 3630.7, + "end": 3632.5, + "probability": 0.9854 + }, + { + "start": 3633.32, + "end": 3636.44, + "probability": 0.8916 + }, + { + "start": 3637.08, + "end": 3638.46, + "probability": 0.8815 + }, + { + "start": 3639.3, + "end": 3643.74, + "probability": 0.9872 + }, + { + "start": 3644.46, + "end": 3645.88, + "probability": 0.9922 + }, + { + "start": 3646.44, + "end": 3650.74, + "probability": 0.9824 + }, + { + "start": 3650.76, + "end": 3651.55, + "probability": 0.5254 + }, + { + "start": 3652.48, + "end": 3655.46, + "probability": 0.9633 + }, + { + "start": 3655.84, + "end": 3656.97, + "probability": 0.9966 + }, + { + "start": 3657.1, + "end": 3658.94, + "probability": 0.9045 + }, + { + "start": 3659.6, + "end": 3661.94, + "probability": 0.7589 + }, + { + "start": 3662.12, + "end": 3668.14, + "probability": 0.9736 + }, + { + "start": 3668.26, + "end": 3669.3, + "probability": 0.9702 + }, + { + "start": 3669.44, + "end": 3673.24, + "probability": 0.953 + }, + { + "start": 3673.36, + "end": 3674.1, + "probability": 0.7563 + }, + { + "start": 3674.18, + "end": 3676.24, + "probability": 0.9542 + }, + { + "start": 3677.5, + "end": 3681.9, + "probability": 0.9967 + }, + { + "start": 3682.18, + "end": 3683.56, + "probability": 0.9704 + }, + { + "start": 3684.06, + "end": 3689.36, + "probability": 0.9474 + }, + { + "start": 3689.66, + "end": 3694.52, + "probability": 0.8184 + }, + { + "start": 3697.08, + "end": 3700.22, + "probability": 0.6978 + }, + { + "start": 3700.98, + "end": 3701.78, + "probability": 0.8146 + }, + { + "start": 3701.82, + "end": 3703.64, + "probability": 0.8451 + }, + { + "start": 3703.74, + "end": 3705.66, + "probability": 0.9475 + }, + { + "start": 3706.34, + "end": 3708.54, + "probability": 0.9926 + }, + { + "start": 3708.68, + "end": 3710.14, + "probability": 0.9711 + }, + { + "start": 3711.02, + "end": 3715.32, + "probability": 0.8066 + }, + { + "start": 3716.24, + "end": 3719.04, + "probability": 0.9956 + }, + { + "start": 3719.8, + "end": 3721.88, + "probability": 0.5176 + }, + { + "start": 3722.08, + "end": 3724.14, + "probability": 0.8149 + }, + { + "start": 3724.22, + "end": 3725.26, + "probability": 0.7157 + }, + { + "start": 3725.62, + "end": 3726.86, + "probability": 0.8146 + }, + { + "start": 3726.94, + "end": 3727.74, + "probability": 0.9723 + }, + { + "start": 3727.8, + "end": 3728.42, + "probability": 0.864 + }, + { + "start": 3729.09, + "end": 3729.78, + "probability": 0.9619 + }, + { + "start": 3729.84, + "end": 3731.48, + "probability": 0.9609 + }, + { + "start": 3731.86, + "end": 3733.71, + "probability": 0.9956 + }, + { + "start": 3734.58, + "end": 3737.93, + "probability": 0.7307 + }, + { + "start": 3738.3, + "end": 3739.43, + "probability": 0.9907 + }, + { + "start": 3740.6, + "end": 3744.02, + "probability": 0.9463 + }, + { + "start": 3744.84, + "end": 3745.75, + "probability": 0.8579 + }, + { + "start": 3746.72, + "end": 3748.84, + "probability": 0.9897 + }, + { + "start": 3749.54, + "end": 3750.94, + "probability": 0.8034 + }, + { + "start": 3751.66, + "end": 3753.48, + "probability": 0.7155 + }, + { + "start": 3755.06, + "end": 3757.0, + "probability": 0.7469 + }, + { + "start": 3758.22, + "end": 3762.18, + "probability": 0.7919 + }, + { + "start": 3762.3, + "end": 3763.18, + "probability": 0.9629 + }, + { + "start": 3763.26, + "end": 3764.86, + "probability": 0.6579 + }, + { + "start": 3765.82, + "end": 3769.32, + "probability": 0.749 + }, + { + "start": 3770.9, + "end": 3777.96, + "probability": 0.9969 + }, + { + "start": 3778.78, + "end": 3778.98, + "probability": 0.9146 + }, + { + "start": 3780.5, + "end": 3781.14, + "probability": 0.3914 + }, + { + "start": 3781.14, + "end": 3781.82, + "probability": 0.6797 + }, + { + "start": 3782.06, + "end": 3783.32, + "probability": 0.6392 + }, + { + "start": 3783.74, + "end": 3784.08, + "probability": 0.8251 + }, + { + "start": 3784.16, + "end": 3784.64, + "probability": 0.8721 + }, + { + "start": 3785.22, + "end": 3785.54, + "probability": 0.9456 + }, + { + "start": 3785.76, + "end": 3789.44, + "probability": 0.978 + }, + { + "start": 3789.66, + "end": 3790.93, + "probability": 0.9766 + }, + { + "start": 3792.02, + "end": 3794.7, + "probability": 0.9843 + }, + { + "start": 3795.42, + "end": 3797.74, + "probability": 0.5472 + }, + { + "start": 3798.24, + "end": 3799.32, + "probability": 0.8092 + }, + { + "start": 3799.94, + "end": 3804.94, + "probability": 0.8763 + }, + { + "start": 3805.02, + "end": 3805.57, + "probability": 0.95 + }, + { + "start": 3806.58, + "end": 3811.0, + "probability": 0.9815 + }, + { + "start": 3811.38, + "end": 3815.14, + "probability": 0.3194 + }, + { + "start": 3815.62, + "end": 3818.78, + "probability": 0.9767 + }, + { + "start": 3818.86, + "end": 3824.14, + "probability": 0.9891 + }, + { + "start": 3824.42, + "end": 3825.8, + "probability": 0.999 + }, + { + "start": 3826.82, + "end": 3827.87, + "probability": 0.8541 + }, + { + "start": 3828.02, + "end": 3829.96, + "probability": 0.7472 + }, + { + "start": 3830.36, + "end": 3832.16, + "probability": 0.9954 + }, + { + "start": 3832.8, + "end": 3833.4, + "probability": 0.9843 + }, + { + "start": 3834.08, + "end": 3836.97, + "probability": 0.8994 + }, + { + "start": 3838.48, + "end": 3841.22, + "probability": 0.958 + }, + { + "start": 3841.5, + "end": 3842.19, + "probability": 0.8599 + }, + { + "start": 3842.8, + "end": 3846.02, + "probability": 0.9937 + }, + { + "start": 3846.22, + "end": 3851.9, + "probability": 0.9561 + }, + { + "start": 3852.5, + "end": 3855.14, + "probability": 0.936 + }, + { + "start": 3855.68, + "end": 3856.62, + "probability": 0.7529 + }, + { + "start": 3857.26, + "end": 3858.54, + "probability": 0.9944 + }, + { + "start": 3858.68, + "end": 3861.54, + "probability": 0.9897 + }, + { + "start": 3862.16, + "end": 3863.08, + "probability": 0.1575 + }, + { + "start": 3863.5, + "end": 3865.41, + "probability": 0.9563 + }, + { + "start": 3866.32, + "end": 3867.06, + "probability": 0.9714 + }, + { + "start": 3867.12, + "end": 3869.52, + "probability": 0.8594 + }, + { + "start": 3869.86, + "end": 3871.46, + "probability": 0.6635 + }, + { + "start": 3872.04, + "end": 3874.82, + "probability": 0.8271 + }, + { + "start": 3876.06, + "end": 3880.08, + "probability": 0.941 + }, + { + "start": 3880.56, + "end": 3882.26, + "probability": 0.9245 + }, + { + "start": 3882.66, + "end": 3885.88, + "probability": 0.9791 + }, + { + "start": 3885.96, + "end": 3887.38, + "probability": 0.7537 + }, + { + "start": 3887.96, + "end": 3888.82, + "probability": 0.9276 + }, + { + "start": 3889.36, + "end": 3892.48, + "probability": 0.9814 + }, + { + "start": 3893.52, + "end": 3895.14, + "probability": 0.6002 + }, + { + "start": 3895.3, + "end": 3896.15, + "probability": 0.8813 + }, + { + "start": 3896.76, + "end": 3897.8, + "probability": 0.7988 + }, + { + "start": 3898.6, + "end": 3898.72, + "probability": 0.6213 + }, + { + "start": 3898.78, + "end": 3899.6, + "probability": 0.8956 + }, + { + "start": 3899.98, + "end": 3901.48, + "probability": 0.9946 + }, + { + "start": 3901.82, + "end": 3902.44, + "probability": 0.9274 + }, + { + "start": 3903.1, + "end": 3905.58, + "probability": 0.9803 + }, + { + "start": 3905.82, + "end": 3910.98, + "probability": 0.985 + }, + { + "start": 3911.1, + "end": 3913.08, + "probability": 0.8803 + }, + { + "start": 3913.9, + "end": 3916.14, + "probability": 0.9063 + }, + { + "start": 3916.76, + "end": 3922.28, + "probability": 0.5496 + }, + { + "start": 3924.02, + "end": 3924.94, + "probability": 0.8687 + }, + { + "start": 3925.6, + "end": 3929.06, + "probability": 0.9438 + }, + { + "start": 3929.6, + "end": 3932.58, + "probability": 0.8358 + }, + { + "start": 3933.42, + "end": 3933.54, + "probability": 0.6949 + }, + { + "start": 3934.42, + "end": 3934.64, + "probability": 0.3661 + }, + { + "start": 3934.64, + "end": 3937.24, + "probability": 0.8014 + }, + { + "start": 3937.76, + "end": 3939.28, + "probability": 0.8517 + }, + { + "start": 3940.04, + "end": 3942.44, + "probability": 0.7362 + }, + { + "start": 3943.84, + "end": 3946.6, + "probability": 0.979 + }, + { + "start": 3958.38, + "end": 3958.38, + "probability": 0.0266 + }, + { + "start": 3958.38, + "end": 3958.38, + "probability": 0.0419 + }, + { + "start": 3958.38, + "end": 3959.78, + "probability": 0.9204 + }, + { + "start": 3963.52, + "end": 3966.82, + "probability": 0.7156 + }, + { + "start": 3967.8, + "end": 3970.22, + "probability": 0.8994 + }, + { + "start": 3971.06, + "end": 3976.6, + "probability": 0.9932 + }, + { + "start": 3977.28, + "end": 3978.56, + "probability": 0.6583 + }, + { + "start": 3979.7, + "end": 3980.2, + "probability": 0.9076 + }, + { + "start": 3980.24, + "end": 3981.22, + "probability": 0.7962 + }, + { + "start": 3981.7, + "end": 3984.54, + "probability": 0.9766 + }, + { + "start": 3985.16, + "end": 3989.72, + "probability": 0.9845 + }, + { + "start": 3990.28, + "end": 3991.72, + "probability": 0.9632 + }, + { + "start": 3992.8, + "end": 3993.86, + "probability": 0.9502 + }, + { + "start": 3993.96, + "end": 3997.66, + "probability": 0.7954 + }, + { + "start": 3998.36, + "end": 4001.52, + "probability": 0.9689 + }, + { + "start": 4002.22, + "end": 4010.44, + "probability": 0.9209 + }, + { + "start": 4010.62, + "end": 4011.58, + "probability": 0.9531 + }, + { + "start": 4011.74, + "end": 4012.23, + "probability": 0.8423 + }, + { + "start": 4013.12, + "end": 4015.94, + "probability": 0.9578 + }, + { + "start": 4017.2, + "end": 4020.18, + "probability": 0.9952 + }, + { + "start": 4021.1, + "end": 4022.52, + "probability": 0.8395 + }, + { + "start": 4022.96, + "end": 4028.18, + "probability": 0.9802 + }, + { + "start": 4029.26, + "end": 4030.88, + "probability": 0.8421 + }, + { + "start": 4031.06, + "end": 4031.68, + "probability": 0.8851 + }, + { + "start": 4031.88, + "end": 4032.36, + "probability": 0.9013 + }, + { + "start": 4032.72, + "end": 4035.28, + "probability": 0.9343 + }, + { + "start": 4035.64, + "end": 4036.8, + "probability": 0.9957 + }, + { + "start": 4037.12, + "end": 4040.26, + "probability": 0.9982 + }, + { + "start": 4041.3, + "end": 4043.7, + "probability": 0.9981 + }, + { + "start": 4044.12, + "end": 4045.46, + "probability": 0.9459 + }, + { + "start": 4045.6, + "end": 4046.24, + "probability": 0.8576 + }, + { + "start": 4046.7, + "end": 4049.74, + "probability": 0.9963 + }, + { + "start": 4050.08, + "end": 4051.22, + "probability": 0.8454 + }, + { + "start": 4051.76, + "end": 4056.36, + "probability": 0.8526 + }, + { + "start": 4056.36, + "end": 4059.24, + "probability": 0.9501 + }, + { + "start": 4059.74, + "end": 4060.38, + "probability": 0.4806 + }, + { + "start": 4061.66, + "end": 4065.34, + "probability": 0.9814 + }, + { + "start": 4066.18, + "end": 4068.86, + "probability": 0.9956 + }, + { + "start": 4069.36, + "end": 4072.24, + "probability": 0.9878 + }, + { + "start": 4072.26, + "end": 4073.2, + "probability": 0.7317 + }, + { + "start": 4075.02, + "end": 4080.56, + "probability": 0.9987 + }, + { + "start": 4081.88, + "end": 4086.9, + "probability": 0.9973 + }, + { + "start": 4086.9, + "end": 4091.84, + "probability": 0.9987 + }, + { + "start": 4092.58, + "end": 4095.92, + "probability": 0.9908 + }, + { + "start": 4095.92, + "end": 4098.4, + "probability": 0.9955 + }, + { + "start": 4098.9, + "end": 4100.98, + "probability": 0.9954 + }, + { + "start": 4102.36, + "end": 4103.04, + "probability": 0.7953 + }, + { + "start": 4104.18, + "end": 4106.36, + "probability": 0.9971 + }, + { + "start": 4106.86, + "end": 4110.84, + "probability": 0.9528 + }, + { + "start": 4111.62, + "end": 4114.44, + "probability": 0.9792 + }, + { + "start": 4115.4, + "end": 4117.26, + "probability": 0.9868 + }, + { + "start": 4117.7, + "end": 4119.46, + "probability": 0.9944 + }, + { + "start": 4119.84, + "end": 4120.5, + "probability": 0.9581 + }, + { + "start": 4121.58, + "end": 4124.96, + "probability": 0.9819 + }, + { + "start": 4125.7, + "end": 4127.8, + "probability": 0.9709 + }, + { + "start": 4128.64, + "end": 4131.02, + "probability": 0.9962 + }, + { + "start": 4131.02, + "end": 4133.68, + "probability": 0.9978 + }, + { + "start": 4134.12, + "end": 4137.18, + "probability": 0.9665 + }, + { + "start": 4138.04, + "end": 4139.08, + "probability": 0.8785 + }, + { + "start": 4139.2, + "end": 4142.4, + "probability": 0.8133 + }, + { + "start": 4142.8, + "end": 4146.58, + "probability": 0.9363 + }, + { + "start": 4147.0, + "end": 4148.4, + "probability": 0.8981 + }, + { + "start": 4148.66, + "end": 4152.02, + "probability": 0.929 + }, + { + "start": 4152.9, + "end": 4153.92, + "probability": 0.967 + }, + { + "start": 4154.52, + "end": 4155.9, + "probability": 0.9952 + }, + { + "start": 4157.18, + "end": 4159.7, + "probability": 0.9823 + }, + { + "start": 4159.7, + "end": 4162.68, + "probability": 0.842 + }, + { + "start": 4163.92, + "end": 4167.88, + "probability": 0.9802 + }, + { + "start": 4167.88, + "end": 4171.48, + "probability": 0.9631 + }, + { + "start": 4171.78, + "end": 4176.7, + "probability": 0.9978 + }, + { + "start": 4177.22, + "end": 4180.12, + "probability": 0.9879 + }, + { + "start": 4180.92, + "end": 4185.76, + "probability": 0.9984 + }, + { + "start": 4186.26, + "end": 4187.64, + "probability": 0.966 + }, + { + "start": 4188.68, + "end": 4191.12, + "probability": 0.7158 + }, + { + "start": 4192.66, + "end": 4192.7, + "probability": 0.4004 + }, + { + "start": 4192.7, + "end": 4194.76, + "probability": 0.974 + }, + { + "start": 4194.76, + "end": 4197.14, + "probability": 0.9971 + }, + { + "start": 4197.54, + "end": 4200.84, + "probability": 0.9893 + }, + { + "start": 4201.58, + "end": 4204.06, + "probability": 0.9735 + }, + { + "start": 4204.66, + "end": 4206.78, + "probability": 0.8317 + }, + { + "start": 4207.64, + "end": 4208.62, + "probability": 0.9932 + }, + { + "start": 4209.28, + "end": 4212.22, + "probability": 0.9149 + }, + { + "start": 4212.8, + "end": 4214.1, + "probability": 0.9471 + }, + { + "start": 4214.36, + "end": 4215.38, + "probability": 0.9594 + }, + { + "start": 4216.36, + "end": 4217.84, + "probability": 0.8555 + }, + { + "start": 4219.18, + "end": 4221.54, + "probability": 0.7944 + }, + { + "start": 4222.2, + "end": 4225.14, + "probability": 0.8606 + }, + { + "start": 4225.72, + "end": 4227.4, + "probability": 0.5258 + }, + { + "start": 4230.12, + "end": 4233.26, + "probability": 0.9777 + }, + { + "start": 4233.5, + "end": 4238.2, + "probability": 0.9744 + }, + { + "start": 4238.2, + "end": 4243.26, + "probability": 0.8865 + }, + { + "start": 4243.58, + "end": 4244.46, + "probability": 0.7966 + }, + { + "start": 4245.08, + "end": 4246.44, + "probability": 0.3606 + }, + { + "start": 4246.88, + "end": 4249.9, + "probability": 0.9929 + }, + { + "start": 4250.44, + "end": 4252.0, + "probability": 0.9937 + }, + { + "start": 4252.72, + "end": 4255.06, + "probability": 0.7203 + }, + { + "start": 4255.96, + "end": 4258.84, + "probability": 0.899 + }, + { + "start": 4259.38, + "end": 4261.92, + "probability": 0.963 + }, + { + "start": 4262.46, + "end": 4268.14, + "probability": 0.7635 + }, + { + "start": 4268.88, + "end": 4269.24, + "probability": 0.8026 + }, + { + "start": 4269.36, + "end": 4270.72, + "probability": 0.6582 + }, + { + "start": 4271.3, + "end": 4272.22, + "probability": 0.9253 + }, + { + "start": 4272.4, + "end": 4273.98, + "probability": 0.988 + }, + { + "start": 4275.92, + "end": 4276.62, + "probability": 0.4544 + }, + { + "start": 4276.98, + "end": 4280.26, + "probability": 0.9868 + }, + { + "start": 4282.1, + "end": 4282.26, + "probability": 0.0469 + }, + { + "start": 4303.46, + "end": 4303.66, + "probability": 0.727 + }, + { + "start": 4310.46, + "end": 4311.4, + "probability": 0.7002 + }, + { + "start": 4312.94, + "end": 4313.92, + "probability": 0.7249 + }, + { + "start": 4315.72, + "end": 4319.62, + "probability": 0.9817 + }, + { + "start": 4319.62, + "end": 4324.12, + "probability": 0.9958 + }, + { + "start": 4325.72, + "end": 4330.14, + "probability": 0.9392 + }, + { + "start": 4332.0, + "end": 4335.62, + "probability": 0.9457 + }, + { + "start": 4336.72, + "end": 4337.92, + "probability": 0.917 + }, + { + "start": 4340.0, + "end": 4340.7, + "probability": 0.8823 + }, + { + "start": 4341.88, + "end": 4342.32, + "probability": 0.9431 + }, + { + "start": 4343.2, + "end": 4345.9, + "probability": 0.785 + }, + { + "start": 4346.96, + "end": 4348.36, + "probability": 0.9763 + }, + { + "start": 4348.94, + "end": 4349.78, + "probability": 0.843 + }, + { + "start": 4351.74, + "end": 4352.76, + "probability": 0.9912 + }, + { + "start": 4352.8, + "end": 4355.92, + "probability": 0.9985 + }, + { + "start": 4356.88, + "end": 4358.42, + "probability": 0.9678 + }, + { + "start": 4360.08, + "end": 4362.38, + "probability": 0.7791 + }, + { + "start": 4363.08, + "end": 4364.06, + "probability": 0.9802 + }, + { + "start": 4366.26, + "end": 4371.26, + "probability": 0.9858 + }, + { + "start": 4372.26, + "end": 4373.67, + "probability": 0.999 + }, + { + "start": 4374.64, + "end": 4376.02, + "probability": 0.9989 + }, + { + "start": 4376.58, + "end": 4377.1, + "probability": 0.9188 + }, + { + "start": 4379.32, + "end": 4381.22, + "probability": 0.7983 + }, + { + "start": 4382.18, + "end": 4383.78, + "probability": 0.9838 + }, + { + "start": 4384.66, + "end": 4387.86, + "probability": 0.9797 + }, + { + "start": 4389.38, + "end": 4392.3, + "probability": 0.9669 + }, + { + "start": 4393.68, + "end": 4395.62, + "probability": 0.9952 + }, + { + "start": 4396.88, + "end": 4398.5, + "probability": 0.9976 + }, + { + "start": 4399.14, + "end": 4399.88, + "probability": 0.6673 + }, + { + "start": 4401.14, + "end": 4402.84, + "probability": 0.7288 + }, + { + "start": 4404.1, + "end": 4406.2, + "probability": 0.9698 + }, + { + "start": 4407.46, + "end": 4411.5, + "probability": 0.9723 + }, + { + "start": 4412.12, + "end": 4412.54, + "probability": 0.8304 + }, + { + "start": 4413.98, + "end": 4414.77, + "probability": 0.9559 + }, + { + "start": 4415.98, + "end": 4418.64, + "probability": 0.7446 + }, + { + "start": 4419.8, + "end": 4423.82, + "probability": 0.9533 + }, + { + "start": 4425.56, + "end": 4428.96, + "probability": 0.9279 + }, + { + "start": 4429.84, + "end": 4434.24, + "probability": 0.9544 + }, + { + "start": 4434.98, + "end": 4438.28, + "probability": 0.8654 + }, + { + "start": 4439.62, + "end": 4442.86, + "probability": 0.999 + }, + { + "start": 4444.72, + "end": 4447.7, + "probability": 0.9632 + }, + { + "start": 4448.12, + "end": 4451.48, + "probability": 0.9761 + }, + { + "start": 4451.66, + "end": 4453.86, + "probability": 0.7769 + }, + { + "start": 4454.3, + "end": 4459.16, + "probability": 0.9003 + }, + { + "start": 4459.78, + "end": 4465.94, + "probability": 0.9973 + }, + { + "start": 4468.88, + "end": 4469.8, + "probability": 0.9847 + }, + { + "start": 4470.58, + "end": 4472.84, + "probability": 0.9938 + }, + { + "start": 4473.44, + "end": 4473.78, + "probability": 0.7647 + }, + { + "start": 4474.42, + "end": 4476.34, + "probability": 0.8771 + }, + { + "start": 4476.98, + "end": 4480.88, + "probability": 0.934 + }, + { + "start": 4481.86, + "end": 4483.44, + "probability": 0.982 + }, + { + "start": 4484.44, + "end": 4485.08, + "probability": 0.9631 + }, + { + "start": 4486.76, + "end": 4492.22, + "probability": 0.9409 + }, + { + "start": 4493.3, + "end": 4494.78, + "probability": 0.9908 + }, + { + "start": 4495.98, + "end": 4498.24, + "probability": 0.9897 + }, + { + "start": 4499.62, + "end": 4501.36, + "probability": 0.9332 + }, + { + "start": 4502.24, + "end": 4505.0, + "probability": 0.9926 + }, + { + "start": 4505.4, + "end": 4506.72, + "probability": 0.9902 + }, + { + "start": 4508.78, + "end": 4511.78, + "probability": 0.9211 + }, + { + "start": 4513.14, + "end": 4517.86, + "probability": 0.9886 + }, + { + "start": 4517.86, + "end": 4522.2, + "probability": 0.9989 + }, + { + "start": 4522.78, + "end": 4529.02, + "probability": 0.9996 + }, + { + "start": 4529.02, + "end": 4533.36, + "probability": 0.9956 + }, + { + "start": 4535.64, + "end": 4536.52, + "probability": 0.7892 + }, + { + "start": 4537.86, + "end": 4540.34, + "probability": 0.8364 + }, + { + "start": 4541.92, + "end": 4543.46, + "probability": 0.2971 + }, + { + "start": 4544.18, + "end": 4544.56, + "probability": 0.0521 + }, + { + "start": 4544.56, + "end": 4544.56, + "probability": 0.3359 + }, + { + "start": 4544.56, + "end": 4547.24, + "probability": 0.9708 + }, + { + "start": 4547.48, + "end": 4550.44, + "probability": 0.7867 + }, + { + "start": 4553.5, + "end": 4553.78, + "probability": 0.2226 + }, + { + "start": 4554.02, + "end": 4555.06, + "probability": 0.2876 + }, + { + "start": 4555.06, + "end": 4555.82, + "probability": 0.0862 + }, + { + "start": 4555.96, + "end": 4556.14, + "probability": 0.4074 + }, + { + "start": 4556.14, + "end": 4562.42, + "probability": 0.8208 + }, + { + "start": 4565.22, + "end": 4565.32, + "probability": 0.0834 + }, + { + "start": 4565.32, + "end": 4565.32, + "probability": 0.2058 + }, + { + "start": 4565.32, + "end": 4566.58, + "probability": 0.025 + }, + { + "start": 4566.64, + "end": 4569.4, + "probability": 0.6909 + }, + { + "start": 4569.76, + "end": 4574.68, + "probability": 0.0106 + }, + { + "start": 4576.28, + "end": 4576.9, + "probability": 0.0016 + }, + { + "start": 4577.1, + "end": 4580.42, + "probability": 0.1193 + }, + { + "start": 4580.7, + "end": 4585.98, + "probability": 0.1932 + }, + { + "start": 4586.0, + "end": 4586.82, + "probability": 0.0797 + }, + { + "start": 4588.1, + "end": 4588.1, + "probability": 0.2724 + }, + { + "start": 4588.1, + "end": 4588.1, + "probability": 0.2015 + }, + { + "start": 4588.1, + "end": 4588.1, + "probability": 0.2126 + }, + { + "start": 4588.1, + "end": 4589.33, + "probability": 0.3361 + }, + { + "start": 4591.18, + "end": 4593.98, + "probability": 0.9186 + }, + { + "start": 4594.8, + "end": 4596.38, + "probability": 0.9073 + }, + { + "start": 4596.94, + "end": 4598.36, + "probability": 0.9556 + }, + { + "start": 4599.3, + "end": 4605.18, + "probability": 0.9835 + }, + { + "start": 4606.4, + "end": 4607.02, + "probability": 0.9208 + }, + { + "start": 4607.94, + "end": 4611.66, + "probability": 0.9855 + }, + { + "start": 4613.14, + "end": 4613.92, + "probability": 0.6083 + }, + { + "start": 4614.56, + "end": 4617.52, + "probability": 0.8598 + }, + { + "start": 4618.62, + "end": 4621.52, + "probability": 0.9756 + }, + { + "start": 4622.6, + "end": 4626.0, + "probability": 0.9967 + }, + { + "start": 4627.8, + "end": 4630.62, + "probability": 0.998 + }, + { + "start": 4631.52, + "end": 4632.1, + "probability": 0.6444 + }, + { + "start": 4633.22, + "end": 4634.24, + "probability": 0.9196 + }, + { + "start": 4634.88, + "end": 4637.7, + "probability": 0.989 + }, + { + "start": 4638.48, + "end": 4642.92, + "probability": 0.9822 + }, + { + "start": 4643.98, + "end": 4645.4, + "probability": 0.2629 + }, + { + "start": 4646.22, + "end": 4648.7, + "probability": 0.9854 + }, + { + "start": 4649.52, + "end": 4651.58, + "probability": 0.9026 + }, + { + "start": 4653.06, + "end": 4653.7, + "probability": 0.6626 + }, + { + "start": 4654.76, + "end": 4658.78, + "probability": 0.9887 + }, + { + "start": 4659.38, + "end": 4659.88, + "probability": 0.9028 + }, + { + "start": 4661.64, + "end": 4663.53, + "probability": 0.0284 + }, + { + "start": 4663.84, + "end": 4664.26, + "probability": 0.0766 + }, + { + "start": 4664.3, + "end": 4664.3, + "probability": 0.4614 + }, + { + "start": 4664.48, + "end": 4668.04, + "probability": 0.7354 + }, + { + "start": 4684.01, + "end": 4685.82, + "probability": 0.8083 + }, + { + "start": 4691.9, + "end": 4697.02, + "probability": 0.5962 + }, + { + "start": 4697.62, + "end": 4699.0, + "probability": 0.7544 + }, + { + "start": 4699.88, + "end": 4701.06, + "probability": 0.946 + }, + { + "start": 4701.14, + "end": 4702.38, + "probability": 0.8984 + }, + { + "start": 4702.46, + "end": 4704.0, + "probability": 0.9954 + }, + { + "start": 4704.1, + "end": 4704.36, + "probability": 0.1117 + }, + { + "start": 4704.42, + "end": 4704.64, + "probability": 0.5063 + }, + { + "start": 4705.5, + "end": 4706.68, + "probability": 0.9867 + }, + { + "start": 4706.78, + "end": 4708.08, + "probability": 0.9188 + }, + { + "start": 4708.54, + "end": 4709.84, + "probability": 0.066 + }, + { + "start": 4710.18, + "end": 4714.08, + "probability": 0.28 + }, + { + "start": 4714.18, + "end": 4716.32, + "probability": 0.1504 + }, + { + "start": 4716.54, + "end": 4719.5, + "probability": 0.887 + }, + { + "start": 4720.02, + "end": 4720.56, + "probability": 0.9201 + }, + { + "start": 4720.8, + "end": 4722.34, + "probability": 0.6515 + }, + { + "start": 4722.4, + "end": 4723.82, + "probability": 0.7325 + }, + { + "start": 4724.06, + "end": 4726.14, + "probability": 0.0548 + }, + { + "start": 4726.9, + "end": 4729.22, + "probability": 0.697 + }, + { + "start": 4729.4, + "end": 4730.38, + "probability": 0.6719 + }, + { + "start": 4730.44, + "end": 4732.14, + "probability": 0.8454 + }, + { + "start": 4732.32, + "end": 4734.96, + "probability": 0.9805 + }, + { + "start": 4735.32, + "end": 4736.94, + "probability": 0.166 + }, + { + "start": 4738.96, + "end": 4740.84, + "probability": 0.6303 + }, + { + "start": 4740.98, + "end": 4743.32, + "probability": 0.4858 + }, + { + "start": 4743.9, + "end": 4744.9, + "probability": 0.7397 + }, + { + "start": 4746.12, + "end": 4750.2, + "probability": 0.9979 + }, + { + "start": 4750.88, + "end": 4751.52, + "probability": 0.871 + }, + { + "start": 4752.34, + "end": 4755.7, + "probability": 0.9914 + }, + { + "start": 4756.08, + "end": 4757.16, + "probability": 0.9895 + }, + { + "start": 4757.42, + "end": 4758.8, + "probability": 0.7986 + }, + { + "start": 4759.44, + "end": 4760.66, + "probability": 0.8301 + }, + { + "start": 4761.48, + "end": 4763.16, + "probability": 0.8428 + }, + { + "start": 4763.74, + "end": 4767.28, + "probability": 0.7863 + }, + { + "start": 4768.04, + "end": 4773.3, + "probability": 0.9611 + }, + { + "start": 4773.58, + "end": 4774.76, + "probability": 0.6445 + }, + { + "start": 4774.96, + "end": 4777.94, + "probability": 0.9823 + }, + { + "start": 4778.58, + "end": 4779.6, + "probability": 0.9907 + }, + { + "start": 4780.22, + "end": 4786.38, + "probability": 0.98 + }, + { + "start": 4786.86, + "end": 4789.8, + "probability": 0.9962 + }, + { + "start": 4790.32, + "end": 4793.16, + "probability": 0.9951 + }, + { + "start": 4793.68, + "end": 4797.4, + "probability": 0.9043 + }, + { + "start": 4798.38, + "end": 4801.18, + "probability": 0.9787 + }, + { + "start": 4802.36, + "end": 4805.3, + "probability": 0.9748 + }, + { + "start": 4805.62, + "end": 4806.69, + "probability": 0.887 + }, + { + "start": 4807.08, + "end": 4808.08, + "probability": 0.7961 + }, + { + "start": 4808.54, + "end": 4813.62, + "probability": 0.8367 + }, + { + "start": 4815.04, + "end": 4818.82, + "probability": 0.9727 + }, + { + "start": 4819.6, + "end": 4820.8, + "probability": 0.9332 + }, + { + "start": 4821.0, + "end": 4822.48, + "probability": 0.8721 + }, + { + "start": 4822.78, + "end": 4823.74, + "probability": 0.4998 + }, + { + "start": 4823.88, + "end": 4826.96, + "probability": 0.9889 + }, + { + "start": 4827.48, + "end": 4831.12, + "probability": 0.4556 + }, + { + "start": 4831.54, + "end": 4833.14, + "probability": 0.9067 + }, + { + "start": 4833.98, + "end": 4834.4, + "probability": 0.854 + }, + { + "start": 4835.14, + "end": 4835.24, + "probability": 0.3633 + }, + { + "start": 4835.78, + "end": 4837.94, + "probability": 0.8016 + }, + { + "start": 4839.27, + "end": 4845.04, + "probability": 0.9736 + }, + { + "start": 4845.26, + "end": 4845.92, + "probability": 0.6496 + }, + { + "start": 4845.94, + "end": 4847.14, + "probability": 0.9448 + }, + { + "start": 4847.74, + "end": 4849.56, + "probability": 0.9792 + }, + { + "start": 4851.08, + "end": 4851.86, + "probability": 0.9615 + }, + { + "start": 4854.06, + "end": 4855.5, + "probability": 0.8618 + }, + { + "start": 4856.12, + "end": 4860.06, + "probability": 0.8831 + }, + { + "start": 4860.58, + "end": 4864.1, + "probability": 0.932 + }, + { + "start": 4865.72, + "end": 4866.64, + "probability": 0.9648 + }, + { + "start": 4868.58, + "end": 4869.66, + "probability": 0.8228 + }, + { + "start": 4870.24, + "end": 4871.16, + "probability": 0.9854 + }, + { + "start": 4871.46, + "end": 4875.56, + "probability": 0.9893 + }, + { + "start": 4875.78, + "end": 4877.46, + "probability": 0.9716 + }, + { + "start": 4878.32, + "end": 4878.8, + "probability": 0.6119 + }, + { + "start": 4878.86, + "end": 4879.66, + "probability": 0.9106 + }, + { + "start": 4879.8, + "end": 4881.1, + "probability": 0.9587 + }, + { + "start": 4881.28, + "end": 4882.31, + "probability": 0.9046 + }, + { + "start": 4883.52, + "end": 4884.92, + "probability": 0.9412 + }, + { + "start": 4885.4, + "end": 4886.54, + "probability": 0.9801 + }, + { + "start": 4887.12, + "end": 4891.28, + "probability": 0.9733 + }, + { + "start": 4891.9, + "end": 4893.02, + "probability": 0.8692 + }, + { + "start": 4893.58, + "end": 4894.98, + "probability": 0.7441 + }, + { + "start": 4896.62, + "end": 4897.86, + "probability": 0.8563 + }, + { + "start": 4898.78, + "end": 4900.98, + "probability": 0.8948 + }, + { + "start": 4901.04, + "end": 4903.14, + "probability": 0.9115 + }, + { + "start": 4903.36, + "end": 4905.44, + "probability": 0.9956 + }, + { + "start": 4905.84, + "end": 4907.72, + "probability": 0.9875 + }, + { + "start": 4908.08, + "end": 4909.29, + "probability": 0.9491 + }, + { + "start": 4909.86, + "end": 4910.37, + "probability": 0.7798 + }, + { + "start": 4911.42, + "end": 4913.0, + "probability": 0.9936 + }, + { + "start": 4913.08, + "end": 4913.8, + "probability": 0.9805 + }, + { + "start": 4913.94, + "end": 4914.76, + "probability": 0.9901 + }, + { + "start": 4914.88, + "end": 4915.74, + "probability": 0.798 + }, + { + "start": 4917.1, + "end": 4918.14, + "probability": 0.7359 + }, + { + "start": 4919.66, + "end": 4920.76, + "probability": 0.9983 + }, + { + "start": 4922.14, + "end": 4924.58, + "probability": 0.8678 + }, + { + "start": 4924.94, + "end": 4926.4, + "probability": 0.9277 + }, + { + "start": 4926.44, + "end": 4928.54, + "probability": 0.9972 + }, + { + "start": 4928.66, + "end": 4929.32, + "probability": 0.7831 + }, + { + "start": 4929.34, + "end": 4930.06, + "probability": 0.9854 + }, + { + "start": 4930.12, + "end": 4931.45, + "probability": 0.9941 + }, + { + "start": 4932.6, + "end": 4935.18, + "probability": 0.9904 + }, + { + "start": 4935.72, + "end": 4936.15, + "probability": 0.9512 + }, + { + "start": 4937.2, + "end": 4938.88, + "probability": 0.9504 + }, + { + "start": 4940.12, + "end": 4941.36, + "probability": 0.9895 + }, + { + "start": 4943.6, + "end": 4949.62, + "probability": 0.9787 + }, + { + "start": 4949.86, + "end": 4950.76, + "probability": 0.9789 + }, + { + "start": 4951.26, + "end": 4951.82, + "probability": 0.7822 + }, + { + "start": 4952.74, + "end": 4953.04, + "probability": 0.8582 + }, + { + "start": 4953.84, + "end": 4956.04, + "probability": 0.9532 + }, + { + "start": 4956.56, + "end": 4957.66, + "probability": 0.9565 + }, + { + "start": 4958.56, + "end": 4959.66, + "probability": 0.9529 + }, + { + "start": 4960.26, + "end": 4961.58, + "probability": 0.9917 + }, + { + "start": 4961.82, + "end": 4963.08, + "probability": 0.7719 + }, + { + "start": 4963.14, + "end": 4964.83, + "probability": 0.8785 + }, + { + "start": 4965.2, + "end": 4965.8, + "probability": 0.7577 + }, + { + "start": 4966.34, + "end": 4968.1, + "probability": 0.9705 + }, + { + "start": 4969.36, + "end": 4972.08, + "probability": 0.9315 + }, + { + "start": 4972.32, + "end": 4977.7, + "probability": 0.9653 + }, + { + "start": 4979.2, + "end": 4982.16, + "probability": 0.978 + }, + { + "start": 4982.78, + "end": 4986.98, + "probability": 0.8901 + }, + { + "start": 4987.62, + "end": 4990.46, + "probability": 0.9596 + }, + { + "start": 4991.26, + "end": 4992.08, + "probability": 0.979 + }, + { + "start": 4992.72, + "end": 4997.76, + "probability": 0.9297 + }, + { + "start": 4998.18, + "end": 5000.08, + "probability": 0.9228 + }, + { + "start": 5000.38, + "end": 5000.88, + "probability": 0.8667 + }, + { + "start": 5002.28, + "end": 5003.18, + "probability": 0.8766 + }, + { + "start": 5003.8, + "end": 5005.22, + "probability": 0.9361 + }, + { + "start": 5024.3, + "end": 5026.6, + "probability": 0.628 + }, + { + "start": 5027.86, + "end": 5029.48, + "probability": 0.7015 + }, + { + "start": 5030.02, + "end": 5031.54, + "probability": 0.8944 + }, + { + "start": 5032.18, + "end": 5034.78, + "probability": 0.9928 + }, + { + "start": 5035.28, + "end": 5036.89, + "probability": 0.9668 + }, + { + "start": 5038.52, + "end": 5039.24, + "probability": 0.3854 + }, + { + "start": 5039.24, + "end": 5043.36, + "probability": 0.9866 + }, + { + "start": 5043.36, + "end": 5047.38, + "probability": 0.9994 + }, + { + "start": 5047.96, + "end": 5050.78, + "probability": 0.9815 + }, + { + "start": 5051.44, + "end": 5052.58, + "probability": 0.99 + }, + { + "start": 5053.86, + "end": 5059.8, + "probability": 0.9962 + }, + { + "start": 5060.7, + "end": 5063.3, + "probability": 0.856 + }, + { + "start": 5063.8, + "end": 5067.02, + "probability": 0.9929 + }, + { + "start": 5068.06, + "end": 5071.96, + "probability": 0.995 + }, + { + "start": 5071.96, + "end": 5075.8, + "probability": 0.9987 + }, + { + "start": 5076.64, + "end": 5077.76, + "probability": 0.8831 + }, + { + "start": 5078.34, + "end": 5083.92, + "probability": 0.9222 + }, + { + "start": 5084.12, + "end": 5084.68, + "probability": 0.6899 + }, + { + "start": 5085.28, + "end": 5088.62, + "probability": 0.9229 + }, + { + "start": 5089.58, + "end": 5089.92, + "probability": 0.6231 + }, + { + "start": 5090.06, + "end": 5090.3, + "probability": 0.9343 + }, + { + "start": 5090.32, + "end": 5091.38, + "probability": 0.9617 + }, + { + "start": 5091.74, + "end": 5092.24, + "probability": 0.6926 + }, + { + "start": 5092.28, + "end": 5092.8, + "probability": 0.8668 + }, + { + "start": 5093.14, + "end": 5096.2, + "probability": 0.9956 + }, + { + "start": 5096.84, + "end": 5102.28, + "probability": 0.9163 + }, + { + "start": 5103.6, + "end": 5104.52, + "probability": 0.5386 + }, + { + "start": 5104.58, + "end": 5108.18, + "probability": 0.9679 + }, + { + "start": 5108.18, + "end": 5113.92, + "probability": 0.9022 + }, + { + "start": 5114.94, + "end": 5115.8, + "probability": 0.5348 + }, + { + "start": 5115.94, + "end": 5118.26, + "probability": 0.7418 + }, + { + "start": 5119.1, + "end": 5122.34, + "probability": 0.9666 + }, + { + "start": 5122.98, + "end": 5127.19, + "probability": 0.9098 + }, + { + "start": 5128.32, + "end": 5129.82, + "probability": 0.9983 + }, + { + "start": 5130.48, + "end": 5136.3, + "probability": 0.9666 + }, + { + "start": 5136.3, + "end": 5136.3, + "probability": 0.5107 + }, + { + "start": 5136.32, + "end": 5136.44, + "probability": 0.6888 + }, + { + "start": 5136.44, + "end": 5137.88, + "probability": 0.9487 + }, + { + "start": 5138.34, + "end": 5142.22, + "probability": 0.8369 + }, + { + "start": 5142.34, + "end": 5142.62, + "probability": 0.6716 + }, + { + "start": 5142.68, + "end": 5146.29, + "probability": 0.9658 + }, + { + "start": 5147.64, + "end": 5151.08, + "probability": 0.9936 + }, + { + "start": 5151.66, + "end": 5156.5, + "probability": 0.9941 + }, + { + "start": 5156.98, + "end": 5160.32, + "probability": 0.9811 + }, + { + "start": 5162.1, + "end": 5166.04, + "probability": 0.9618 + }, + { + "start": 5166.04, + "end": 5169.66, + "probability": 1.0 + }, + { + "start": 5170.44, + "end": 5173.06, + "probability": 0.9948 + }, + { + "start": 5173.66, + "end": 5175.5, + "probability": 0.9234 + }, + { + "start": 5175.94, + "end": 5178.96, + "probability": 0.9287 + }, + { + "start": 5179.48, + "end": 5182.68, + "probability": 0.9944 + }, + { + "start": 5183.62, + "end": 5183.96, + "probability": 0.7836 + }, + { + "start": 5184.04, + "end": 5186.18, + "probability": 0.8792 + }, + { + "start": 5186.32, + "end": 5187.6, + "probability": 0.9057 + }, + { + "start": 5188.22, + "end": 5190.04, + "probability": 0.9526 + }, + { + "start": 5191.4, + "end": 5193.42, + "probability": 0.9983 + }, + { + "start": 5194.66, + "end": 5197.54, + "probability": 0.999 + }, + { + "start": 5198.52, + "end": 5201.28, + "probability": 0.9859 + }, + { + "start": 5201.88, + "end": 5203.66, + "probability": 0.9566 + }, + { + "start": 5206.58, + "end": 5210.24, + "probability": 0.7678 + }, + { + "start": 5211.48, + "end": 5213.74, + "probability": 0.7413 + }, + { + "start": 5213.82, + "end": 5216.7, + "probability": 0.962 + }, + { + "start": 5217.22, + "end": 5221.28, + "probability": 0.9685 + }, + { + "start": 5221.92, + "end": 5226.56, + "probability": 0.991 + }, + { + "start": 5227.46, + "end": 5229.46, + "probability": 0.9253 + }, + { + "start": 5229.6, + "end": 5231.48, + "probability": 0.8657 + }, + { + "start": 5231.98, + "end": 5235.96, + "probability": 0.9078 + }, + { + "start": 5235.96, + "end": 5240.78, + "probability": 0.9629 + }, + { + "start": 5242.16, + "end": 5245.62, + "probability": 0.9551 + }, + { + "start": 5245.62, + "end": 5248.44, + "probability": 0.9878 + }, + { + "start": 5249.16, + "end": 5251.74, + "probability": 0.9841 + }, + { + "start": 5252.14, + "end": 5255.0, + "probability": 0.9818 + }, + { + "start": 5255.56, + "end": 5259.58, + "probability": 0.9575 + }, + { + "start": 5260.6, + "end": 5265.12, + "probability": 0.9953 + }, + { + "start": 5265.68, + "end": 5266.74, + "probability": 0.943 + }, + { + "start": 5267.46, + "end": 5269.1, + "probability": 0.9565 + }, + { + "start": 5269.14, + "end": 5271.22, + "probability": 0.987 + }, + { + "start": 5272.26, + "end": 5274.04, + "probability": 0.825 + }, + { + "start": 5274.08, + "end": 5276.1, + "probability": 0.9789 + }, + { + "start": 5277.02, + "end": 5282.22, + "probability": 0.8638 + }, + { + "start": 5282.34, + "end": 5283.36, + "probability": 0.9471 + }, + { + "start": 5283.42, + "end": 5284.33, + "probability": 0.7945 + }, + { + "start": 5284.94, + "end": 5286.34, + "probability": 0.9594 + }, + { + "start": 5286.44, + "end": 5288.52, + "probability": 0.7746 + }, + { + "start": 5289.2, + "end": 5290.34, + "probability": 0.7925 + }, + { + "start": 5290.96, + "end": 5291.58, + "probability": 0.8431 + }, + { + "start": 5292.2, + "end": 5294.06, + "probability": 0.905 + }, + { + "start": 5294.5, + "end": 5296.26, + "probability": 0.9917 + }, + { + "start": 5296.7, + "end": 5300.36, + "probability": 0.9937 + }, + { + "start": 5300.92, + "end": 5305.74, + "probability": 0.9853 + }, + { + "start": 5307.48, + "end": 5309.52, + "probability": 0.9149 + }, + { + "start": 5309.66, + "end": 5312.04, + "probability": 0.988 + }, + { + "start": 5312.04, + "end": 5315.3, + "probability": 0.9869 + }, + { + "start": 5315.96, + "end": 5319.18, + "probability": 0.9575 + }, + { + "start": 5319.66, + "end": 5323.72, + "probability": 0.9811 + }, + { + "start": 5324.48, + "end": 5326.65, + "probability": 0.7009 + }, + { + "start": 5327.26, + "end": 5329.06, + "probability": 0.9438 + }, + { + "start": 5329.62, + "end": 5335.22, + "probability": 0.9963 + }, + { + "start": 5336.04, + "end": 5336.6, + "probability": 0.595 + }, + { + "start": 5336.62, + "end": 5337.5, + "probability": 0.2695 + }, + { + "start": 5338.46, + "end": 5343.48, + "probability": 0.9985 + }, + { + "start": 5343.5, + "end": 5345.24, + "probability": 0.9631 + }, + { + "start": 5345.26, + "end": 5345.4, + "probability": 0.3528 + }, + { + "start": 5345.64, + "end": 5346.46, + "probability": 0.9694 + }, + { + "start": 5347.73, + "end": 5352.34, + "probability": 0.9207 + }, + { + "start": 5352.78, + "end": 5354.32, + "probability": 0.3491 + }, + { + "start": 5354.78, + "end": 5356.24, + "probability": 0.4587 + }, + { + "start": 5356.24, + "end": 5358.16, + "probability": 0.538 + }, + { + "start": 5358.32, + "end": 5362.26, + "probability": 0.9707 + }, + { + "start": 5362.54, + "end": 5365.26, + "probability": 0.9849 + }, + { + "start": 5365.76, + "end": 5367.06, + "probability": 0.8568 + }, + { + "start": 5367.18, + "end": 5367.66, + "probability": 0.9816 + }, + { + "start": 5368.16, + "end": 5370.08, + "probability": 0.8217 + }, + { + "start": 5370.12, + "end": 5371.8, + "probability": 0.9101 + }, + { + "start": 5371.88, + "end": 5372.94, + "probability": 0.9925 + }, + { + "start": 5373.72, + "end": 5375.42, + "probability": 0.6396 + }, + { + "start": 5376.24, + "end": 5376.73, + "probability": 0.6734 + }, + { + "start": 5377.18, + "end": 5379.0, + "probability": 0.999 + }, + { + "start": 5379.04, + "end": 5381.22, + "probability": 0.9929 + }, + { + "start": 5381.54, + "end": 5382.46, + "probability": 0.9928 + }, + { + "start": 5382.64, + "end": 5383.28, + "probability": 0.9884 + }, + { + "start": 5383.76, + "end": 5385.84, + "probability": 0.9546 + }, + { + "start": 5386.7, + "end": 5390.54, + "probability": 0.9873 + }, + { + "start": 5391.24, + "end": 5395.56, + "probability": 0.8484 + }, + { + "start": 5395.6, + "end": 5396.24, + "probability": 0.811 + }, + { + "start": 5396.48, + "end": 5397.6, + "probability": 0.904 + }, + { + "start": 5397.74, + "end": 5402.24, + "probability": 0.9804 + }, + { + "start": 5402.92, + "end": 5405.36, + "probability": 0.9961 + }, + { + "start": 5405.82, + "end": 5406.18, + "probability": 0.8947 + }, + { + "start": 5406.28, + "end": 5408.48, + "probability": 0.8923 + }, + { + "start": 5408.56, + "end": 5411.08, + "probability": 0.6591 + }, + { + "start": 5434.04, + "end": 5434.1, + "probability": 0.788 + }, + { + "start": 5434.1, + "end": 5435.7, + "probability": 0.7967 + }, + { + "start": 5438.22, + "end": 5440.42, + "probability": 0.8088 + }, + { + "start": 5441.0, + "end": 5442.56, + "probability": 0.7426 + }, + { + "start": 5444.58, + "end": 5445.6, + "probability": 0.7565 + }, + { + "start": 5445.8, + "end": 5451.24, + "probability": 0.9806 + }, + { + "start": 5452.82, + "end": 5455.8, + "probability": 0.941 + }, + { + "start": 5457.26, + "end": 5460.42, + "probability": 0.0338 + }, + { + "start": 5461.34, + "end": 5461.54, + "probability": 0.0077 + }, + { + "start": 5465.71, + "end": 5467.14, + "probability": 0.0294 + }, + { + "start": 5467.14, + "end": 5469.48, + "probability": 0.1491 + }, + { + "start": 5470.08, + "end": 5471.59, + "probability": 0.0244 + }, + { + "start": 5473.04, + "end": 5474.22, + "probability": 0.0756 + }, + { + "start": 5474.86, + "end": 5478.42, + "probability": 0.1259 + }, + { + "start": 5479.18, + "end": 5480.86, + "probability": 0.0616 + }, + { + "start": 5481.32, + "end": 5484.54, + "probability": 0.407 + }, + { + "start": 5484.96, + "end": 5487.82, + "probability": 0.0954 + }, + { + "start": 5488.4, + "end": 5493.06, + "probability": 0.0535 + }, + { + "start": 5495.56, + "end": 5497.04, + "probability": 0.9429 + }, + { + "start": 5498.38, + "end": 5501.68, + "probability": 0.8997 + }, + { + "start": 5502.66, + "end": 5503.76, + "probability": 0.3009 + }, + { + "start": 5505.64, + "end": 5506.68, + "probability": 0.5181 + }, + { + "start": 5509.28, + "end": 5510.26, + "probability": 0.8193 + }, + { + "start": 5511.08, + "end": 5514.46, + "probability": 0.8171 + }, + { + "start": 5517.05, + "end": 5522.86, + "probability": 0.9257 + }, + { + "start": 5523.84, + "end": 5530.36, + "probability": 0.983 + }, + { + "start": 5531.68, + "end": 5534.16, + "probability": 0.8994 + }, + { + "start": 5536.18, + "end": 5541.42, + "probability": 0.8897 + }, + { + "start": 5541.42, + "end": 5545.12, + "probability": 0.9939 + }, + { + "start": 5546.9, + "end": 5547.86, + "probability": 0.7035 + }, + { + "start": 5547.98, + "end": 5550.8, + "probability": 0.9934 + }, + { + "start": 5550.9, + "end": 5552.8, + "probability": 0.9572 + }, + { + "start": 5553.64, + "end": 5557.5, + "probability": 0.9974 + }, + { + "start": 5558.32, + "end": 5561.64, + "probability": 0.6392 + }, + { + "start": 5563.42, + "end": 5566.04, + "probability": 0.74 + }, + { + "start": 5566.76, + "end": 5571.86, + "probability": 0.032 + }, + { + "start": 5572.14, + "end": 5573.02, + "probability": 0.1321 + }, + { + "start": 5574.28, + "end": 5576.82, + "probability": 0.9828 + }, + { + "start": 5578.12, + "end": 5582.84, + "probability": 0.9834 + }, + { + "start": 5582.84, + "end": 5585.64, + "probability": 0.3559 + }, + { + "start": 5586.26, + "end": 5589.82, + "probability": 0.9982 + }, + { + "start": 5592.1, + "end": 5598.18, + "probability": 0.8896 + }, + { + "start": 5599.32, + "end": 5606.96, + "probability": 0.9927 + }, + { + "start": 5608.84, + "end": 5610.2, + "probability": 0.989 + }, + { + "start": 5610.92, + "end": 5613.08, + "probability": 0.6118 + }, + { + "start": 5614.64, + "end": 5617.28, + "probability": 0.5572 + }, + { + "start": 5617.84, + "end": 5618.82, + "probability": 0.7927 + }, + { + "start": 5621.76, + "end": 5626.6, + "probability": 0.9707 + }, + { + "start": 5627.82, + "end": 5629.92, + "probability": 0.8227 + }, + { + "start": 5630.98, + "end": 5636.36, + "probability": 0.9933 + }, + { + "start": 5638.24, + "end": 5638.34, + "probability": 0.4761 + }, + { + "start": 5640.1, + "end": 5641.48, + "probability": 0.2921 + }, + { + "start": 5643.76, + "end": 5644.22, + "probability": 0.9078 + }, + { + "start": 5650.32, + "end": 5651.56, + "probability": 0.0372 + }, + { + "start": 5667.1, + "end": 5668.58, + "probability": 0.1954 + }, + { + "start": 5670.16, + "end": 5670.72, + "probability": 0.7451 + }, + { + "start": 5672.0, + "end": 5674.81, + "probability": 0.0292 + }, + { + "start": 5676.34, + "end": 5687.92, + "probability": 0.8809 + }, + { + "start": 5688.3, + "end": 5688.88, + "probability": 0.4599 + }, + { + "start": 5689.46, + "end": 5689.68, + "probability": 0.7449 + }, + { + "start": 5690.24, + "end": 5691.52, + "probability": 0.9989 + }, + { + "start": 5692.24, + "end": 5695.34, + "probability": 0.817 + }, + { + "start": 5696.26, + "end": 5696.72, + "probability": 0.7192 + }, + { + "start": 5697.44, + "end": 5699.9, + "probability": 0.9917 + }, + { + "start": 5700.58, + "end": 5702.98, + "probability": 0.9611 + }, + { + "start": 5706.98, + "end": 5712.08, + "probability": 0.9116 + }, + { + "start": 5712.08, + "end": 5717.88, + "probability": 0.9969 + }, + { + "start": 5719.08, + "end": 5719.8, + "probability": 0.6787 + }, + { + "start": 5720.5, + "end": 5723.48, + "probability": 0.9478 + }, + { + "start": 5724.44, + "end": 5729.6, + "probability": 0.9962 + }, + { + "start": 5730.94, + "end": 5736.74, + "probability": 0.9954 + }, + { + "start": 5737.29, + "end": 5744.44, + "probability": 0.9632 + }, + { + "start": 5745.66, + "end": 5751.6, + "probability": 0.9761 + }, + { + "start": 5752.52, + "end": 5758.29, + "probability": 0.9985 + }, + { + "start": 5760.1, + "end": 5760.12, + "probability": 0.0941 + }, + { + "start": 5760.12, + "end": 5762.64, + "probability": 0.5222 + }, + { + "start": 5763.26, + "end": 5771.22, + "probability": 0.9965 + }, + { + "start": 5771.36, + "end": 5774.1, + "probability": 0.9153 + }, + { + "start": 5775.2, + "end": 5777.62, + "probability": 0.9867 + }, + { + "start": 5778.44, + "end": 5784.38, + "probability": 0.8013 + }, + { + "start": 5785.62, + "end": 5790.88, + "probability": 0.9543 + }, + { + "start": 5793.1, + "end": 5799.74, + "probability": 0.9841 + }, + { + "start": 5799.74, + "end": 5808.18, + "probability": 0.7418 + }, + { + "start": 5808.56, + "end": 5808.82, + "probability": 0.6318 + }, + { + "start": 5809.18, + "end": 5811.34, + "probability": 0.6058 + }, + { + "start": 5811.52, + "end": 5813.82, + "probability": 0.8825 + }, + { + "start": 5839.22, + "end": 5839.28, + "probability": 0.8519 + }, + { + "start": 5839.28, + "end": 5840.98, + "probability": 0.8308 + }, + { + "start": 5841.32, + "end": 5843.29, + "probability": 0.7772 + }, + { + "start": 5845.34, + "end": 5847.92, + "probability": 0.8901 + }, + { + "start": 5849.24, + "end": 5853.32, + "probability": 0.9829 + }, + { + "start": 5854.22, + "end": 5857.0, + "probability": 0.9976 + }, + { + "start": 5858.1, + "end": 5862.8, + "probability": 0.9966 + }, + { + "start": 5863.46, + "end": 5866.6, + "probability": 0.9663 + }, + { + "start": 5868.38, + "end": 5871.92, + "probability": 0.9064 + }, + { + "start": 5872.46, + "end": 5875.56, + "probability": 0.9909 + }, + { + "start": 5876.74, + "end": 5876.84, + "probability": 0.5571 + }, + { + "start": 5876.9, + "end": 5877.98, + "probability": 0.9252 + }, + { + "start": 5878.12, + "end": 5879.62, + "probability": 0.915 + }, + { + "start": 5880.12, + "end": 5885.26, + "probability": 0.9969 + }, + { + "start": 5886.06, + "end": 5889.42, + "probability": 0.988 + }, + { + "start": 5890.18, + "end": 5895.64, + "probability": 0.9821 + }, + { + "start": 5896.18, + "end": 5902.06, + "probability": 0.9058 + }, + { + "start": 5902.64, + "end": 5907.9, + "probability": 0.9956 + }, + { + "start": 5908.46, + "end": 5912.16, + "probability": 0.9974 + }, + { + "start": 5913.04, + "end": 5915.54, + "probability": 0.9294 + }, + { + "start": 5916.58, + "end": 5918.76, + "probability": 0.9969 + }, + { + "start": 5919.58, + "end": 5921.04, + "probability": 0.8911 + }, + { + "start": 5922.06, + "end": 5924.08, + "probability": 0.9443 + }, + { + "start": 5926.92, + "end": 5933.36, + "probability": 0.9753 + }, + { + "start": 5933.54, + "end": 5937.34, + "probability": 0.9874 + }, + { + "start": 5937.34, + "end": 5942.94, + "probability": 0.9647 + }, + { + "start": 5943.44, + "end": 5950.8, + "probability": 0.9971 + }, + { + "start": 5951.9, + "end": 5952.48, + "probability": 0.5087 + }, + { + "start": 5953.26, + "end": 5955.04, + "probability": 0.9295 + }, + { + "start": 5956.46, + "end": 5958.0, + "probability": 0.8452 + }, + { + "start": 5959.64, + "end": 5961.82, + "probability": 0.9365 + }, + { + "start": 5961.94, + "end": 5962.38, + "probability": 0.5928 + }, + { + "start": 5962.6, + "end": 5963.04, + "probability": 0.9272 + }, + { + "start": 5963.5, + "end": 5966.56, + "probability": 0.9919 + }, + { + "start": 5967.66, + "end": 5970.32, + "probability": 0.9243 + }, + { + "start": 5971.36, + "end": 5975.84, + "probability": 0.9932 + }, + { + "start": 5976.66, + "end": 5983.8, + "probability": 0.9937 + }, + { + "start": 5984.96, + "end": 5991.88, + "probability": 0.9928 + }, + { + "start": 5992.4, + "end": 5993.3, + "probability": 0.9726 + }, + { + "start": 5993.66, + "end": 5994.68, + "probability": 0.865 + }, + { + "start": 5995.04, + "end": 5998.94, + "probability": 0.9912 + }, + { + "start": 6000.56, + "end": 6006.7, + "probability": 0.998 + }, + { + "start": 6006.8, + "end": 6007.66, + "probability": 0.9881 + }, + { + "start": 6008.1, + "end": 6008.98, + "probability": 0.9295 + }, + { + "start": 6009.62, + "end": 6014.69, + "probability": 0.9886 + }, + { + "start": 6015.38, + "end": 6015.76, + "probability": 0.9629 + }, + { + "start": 6016.58, + "end": 6018.78, + "probability": 0.941 + }, + { + "start": 6018.94, + "end": 6019.12, + "probability": 0.9014 + }, + { + "start": 6021.57, + "end": 6022.2, + "probability": 0.441 + }, + { + "start": 6022.2, + "end": 6022.2, + "probability": 0.0792 + }, + { + "start": 6022.2, + "end": 6022.54, + "probability": 0.2409 + }, + { + "start": 6023.12, + "end": 6025.5, + "probability": 0.9658 + }, + { + "start": 6026.24, + "end": 6030.18, + "probability": 0.9929 + }, + { + "start": 6030.92, + "end": 6034.94, + "probability": 0.957 + }, + { + "start": 6035.72, + "end": 6042.32, + "probability": 0.9617 + }, + { + "start": 6043.82, + "end": 6046.96, + "probability": 0.9799 + }, + { + "start": 6047.98, + "end": 6051.0, + "probability": 0.9442 + }, + { + "start": 6051.34, + "end": 6052.32, + "probability": 0.4918 + }, + { + "start": 6052.42, + "end": 6056.92, + "probability": 0.9744 + }, + { + "start": 6058.4, + "end": 6062.02, + "probability": 0.9886 + }, + { + "start": 6062.54, + "end": 6063.38, + "probability": 0.88 + }, + { + "start": 6063.88, + "end": 6070.98, + "probability": 0.8576 + }, + { + "start": 6071.5, + "end": 6079.28, + "probability": 0.9736 + }, + { + "start": 6080.84, + "end": 6084.82, + "probability": 0.8567 + }, + { + "start": 6085.44, + "end": 6089.44, + "probability": 0.802 + }, + { + "start": 6089.58, + "end": 6093.18, + "probability": 0.9092 + }, + { + "start": 6094.2, + "end": 6099.52, + "probability": 0.9441 + }, + { + "start": 6099.64, + "end": 6101.68, + "probability": 0.8279 + }, + { + "start": 6102.2, + "end": 6105.02, + "probability": 0.8402 + }, + { + "start": 6105.74, + "end": 6110.0, + "probability": 0.5732 + }, + { + "start": 6110.98, + "end": 6112.32, + "probability": 0.9525 + }, + { + "start": 6113.42, + "end": 6116.26, + "probability": 0.9368 + }, + { + "start": 6116.98, + "end": 6124.4, + "probability": 0.9919 + }, + { + "start": 6124.76, + "end": 6129.0, + "probability": 0.9604 + }, + { + "start": 6129.58, + "end": 6136.74, + "probability": 0.9946 + }, + { + "start": 6137.54, + "end": 6142.46, + "probability": 0.9921 + }, + { + "start": 6142.46, + "end": 6146.88, + "probability": 0.9976 + }, + { + "start": 6147.56, + "end": 6154.5, + "probability": 0.9984 + }, + { + "start": 6154.78, + "end": 6160.5, + "probability": 0.9155 + }, + { + "start": 6161.1, + "end": 6161.1, + "probability": 0.6486 + }, + { + "start": 6161.28, + "end": 6166.42, + "probability": 0.9561 + }, + { + "start": 6166.9, + "end": 6168.7, + "probability": 0.9983 + }, + { + "start": 6169.8, + "end": 6172.1, + "probability": 0.8875 + }, + { + "start": 6188.52, + "end": 6188.52, + "probability": 0.7616 + }, + { + "start": 6188.52, + "end": 6190.0, + "probability": 0.9492 + }, + { + "start": 6193.96, + "end": 6195.12, + "probability": 0.6093 + }, + { + "start": 6196.42, + "end": 6197.26, + "probability": 0.7618 + }, + { + "start": 6197.94, + "end": 6198.98, + "probability": 0.6926 + }, + { + "start": 6200.54, + "end": 6202.3, + "probability": 0.9856 + }, + { + "start": 6202.82, + "end": 6203.86, + "probability": 0.9731 + }, + { + "start": 6205.86, + "end": 6206.51, + "probability": 0.9568 + }, + { + "start": 6207.52, + "end": 6208.62, + "probability": 0.8638 + }, + { + "start": 6209.56, + "end": 6213.08, + "probability": 0.9462 + }, + { + "start": 6214.16, + "end": 6216.34, + "probability": 0.9849 + }, + { + "start": 6218.6, + "end": 6220.6, + "probability": 0.9915 + }, + { + "start": 6221.68, + "end": 6222.62, + "probability": 0.8663 + }, + { + "start": 6223.6, + "end": 6224.94, + "probability": 0.8018 + }, + { + "start": 6225.5, + "end": 6227.08, + "probability": 0.9628 + }, + { + "start": 6228.08, + "end": 6231.86, + "probability": 0.8491 + }, + { + "start": 6233.16, + "end": 6234.86, + "probability": 0.9926 + }, + { + "start": 6235.5, + "end": 6236.54, + "probability": 0.9822 + }, + { + "start": 6238.02, + "end": 6239.46, + "probability": 0.8003 + }, + { + "start": 6240.8, + "end": 6241.0, + "probability": 0.7996 + }, + { + "start": 6241.8, + "end": 6244.52, + "probability": 0.9042 + }, + { + "start": 6245.32, + "end": 6247.52, + "probability": 0.9979 + }, + { + "start": 6249.56, + "end": 6251.96, + "probability": 0.9214 + }, + { + "start": 6252.98, + "end": 6253.4, + "probability": 0.6997 + }, + { + "start": 6254.12, + "end": 6255.06, + "probability": 0.8805 + }, + { + "start": 6255.7, + "end": 6258.4, + "probability": 0.9133 + }, + { + "start": 6259.42, + "end": 6260.5, + "probability": 0.9683 + }, + { + "start": 6261.1, + "end": 6261.6, + "probability": 0.7614 + }, + { + "start": 6262.64, + "end": 6264.72, + "probability": 0.9038 + }, + { + "start": 6265.86, + "end": 6269.44, + "probability": 0.9933 + }, + { + "start": 6271.14, + "end": 6278.16, + "probability": 0.9858 + }, + { + "start": 6279.28, + "end": 6279.4, + "probability": 0.9073 + }, + { + "start": 6280.52, + "end": 6282.64, + "probability": 0.8198 + }, + { + "start": 6283.78, + "end": 6287.52, + "probability": 0.9973 + }, + { + "start": 6288.6, + "end": 6294.18, + "probability": 0.9735 + }, + { + "start": 6295.26, + "end": 6297.38, + "probability": 0.9587 + }, + { + "start": 6298.1, + "end": 6299.06, + "probability": 0.9889 + }, + { + "start": 6299.78, + "end": 6300.96, + "probability": 0.9938 + }, + { + "start": 6301.56, + "end": 6302.06, + "probability": 0.7045 + }, + { + "start": 6303.0, + "end": 6305.58, + "probability": 0.9688 + }, + { + "start": 6306.34, + "end": 6309.96, + "probability": 0.9575 + }, + { + "start": 6311.06, + "end": 6315.16, + "probability": 0.7311 + }, + { + "start": 6316.14, + "end": 6317.82, + "probability": 0.8637 + }, + { + "start": 6318.52, + "end": 6321.0, + "probability": 0.6156 + }, + { + "start": 6321.74, + "end": 6326.5, + "probability": 0.9855 + }, + { + "start": 6328.2, + "end": 6332.88, + "probability": 0.9945 + }, + { + "start": 6333.84, + "end": 6335.86, + "probability": 0.9641 + }, + { + "start": 6336.86, + "end": 6342.38, + "probability": 0.9908 + }, + { + "start": 6342.78, + "end": 6343.08, + "probability": 0.1065 + }, + { + "start": 6343.16, + "end": 6344.5, + "probability": 0.9933 + }, + { + "start": 6345.92, + "end": 6349.66, + "probability": 0.9501 + }, + { + "start": 6350.58, + "end": 6355.6, + "probability": 0.996 + }, + { + "start": 6356.28, + "end": 6360.42, + "probability": 0.9931 + }, + { + "start": 6360.7, + "end": 6361.32, + "probability": 0.5931 + }, + { + "start": 6361.9, + "end": 6363.1, + "probability": 0.9558 + }, + { + "start": 6363.92, + "end": 6366.08, + "probability": 0.9792 + }, + { + "start": 6366.72, + "end": 6369.04, + "probability": 0.9885 + }, + { + "start": 6369.74, + "end": 6371.32, + "probability": 0.9003 + }, + { + "start": 6371.96, + "end": 6372.98, + "probability": 0.991 + }, + { + "start": 6373.54, + "end": 6374.86, + "probability": 0.9926 + }, + { + "start": 6376.32, + "end": 6379.08, + "probability": 0.994 + }, + { + "start": 6379.86, + "end": 6383.9, + "probability": 0.9485 + }, + { + "start": 6384.58, + "end": 6386.46, + "probability": 0.9767 + }, + { + "start": 6387.22, + "end": 6387.66, + "probability": 0.6746 + }, + { + "start": 6387.72, + "end": 6388.15, + "probability": 0.787 + }, + { + "start": 6388.74, + "end": 6389.15, + "probability": 0.8804 + }, + { + "start": 6389.68, + "end": 6390.11, + "probability": 0.8846 + }, + { + "start": 6390.8, + "end": 6392.46, + "probability": 0.9883 + }, + { + "start": 6393.18, + "end": 6394.18, + "probability": 0.6743 + }, + { + "start": 6394.62, + "end": 6396.94, + "probability": 0.9674 + }, + { + "start": 6397.34, + "end": 6401.26, + "probability": 0.9863 + }, + { + "start": 6401.26, + "end": 6404.44, + "probability": 0.9979 + }, + { + "start": 6405.04, + "end": 6407.12, + "probability": 0.9206 + }, + { + "start": 6408.2, + "end": 6408.74, + "probability": 0.9209 + }, + { + "start": 6409.2, + "end": 6411.82, + "probability": 0.9349 + }, + { + "start": 6412.32, + "end": 6414.04, + "probability": 0.991 + }, + { + "start": 6416.04, + "end": 6419.46, + "probability": 0.8582 + }, + { + "start": 6420.26, + "end": 6421.6, + "probability": 0.986 + }, + { + "start": 6422.24, + "end": 6423.46, + "probability": 0.9069 + }, + { + "start": 6424.44, + "end": 6425.14, + "probability": 0.9709 + }, + { + "start": 6425.36, + "end": 6427.86, + "probability": 0.4675 + }, + { + "start": 6427.86, + "end": 6431.2, + "probability": 0.3731 + }, + { + "start": 6431.68, + "end": 6432.38, + "probability": 0.9731 + }, + { + "start": 6432.64, + "end": 6433.2, + "probability": 0.9268 + }, + { + "start": 6433.62, + "end": 6434.72, + "probability": 0.8842 + }, + { + "start": 6435.44, + "end": 6437.06, + "probability": 0.7624 + }, + { + "start": 6437.96, + "end": 6438.68, + "probability": 0.8829 + }, + { + "start": 6439.64, + "end": 6444.62, + "probability": 0.9373 + }, + { + "start": 6445.42, + "end": 6446.2, + "probability": 0.8985 + }, + { + "start": 6447.68, + "end": 6449.1, + "probability": 0.7943 + }, + { + "start": 6449.72, + "end": 6453.7, + "probability": 0.9836 + }, + { + "start": 6453.96, + "end": 6458.06, + "probability": 0.9927 + }, + { + "start": 6458.88, + "end": 6461.62, + "probability": 0.9971 + }, + { + "start": 6462.22, + "end": 6463.58, + "probability": 0.9927 + }, + { + "start": 6464.44, + "end": 6467.14, + "probability": 0.9847 + }, + { + "start": 6467.74, + "end": 6471.7, + "probability": 0.8943 + }, + { + "start": 6472.64, + "end": 6473.22, + "probability": 0.6944 + }, + { + "start": 6473.5, + "end": 6477.24, + "probability": 0.9451 + }, + { + "start": 6477.9, + "end": 6482.82, + "probability": 0.9946 + }, + { + "start": 6483.58, + "end": 6484.44, + "probability": 0.9502 + }, + { + "start": 6485.6, + "end": 6487.62, + "probability": 0.9987 + }, + { + "start": 6488.44, + "end": 6489.84, + "probability": 0.7511 + }, + { + "start": 6490.2, + "end": 6493.38, + "probability": 0.8068 + }, + { + "start": 6494.06, + "end": 6498.7, + "probability": 0.9891 + }, + { + "start": 6499.44, + "end": 6501.52, + "probability": 0.9904 + }, + { + "start": 6501.92, + "end": 6506.8, + "probability": 0.9427 + }, + { + "start": 6507.92, + "end": 6510.46, + "probability": 0.9854 + }, + { + "start": 6511.58, + "end": 6512.42, + "probability": 0.8223 + }, + { + "start": 6513.04, + "end": 6515.88, + "probability": 0.9905 + }, + { + "start": 6516.24, + "end": 6516.89, + "probability": 0.0314 + }, + { + "start": 6517.14, + "end": 6517.8, + "probability": 0.3153 + }, + { + "start": 6518.2, + "end": 6519.56, + "probability": 0.9758 + }, + { + "start": 6520.3, + "end": 6522.28, + "probability": 0.8967 + }, + { + "start": 6523.1, + "end": 6525.36, + "probability": 0.9943 + }, + { + "start": 6525.86, + "end": 6527.02, + "probability": 0.9703 + }, + { + "start": 6527.72, + "end": 6529.76, + "probability": 0.5496 + }, + { + "start": 6530.28, + "end": 6531.72, + "probability": 0.9668 + }, + { + "start": 6532.16, + "end": 6532.26, + "probability": 0.7895 + }, + { + "start": 6532.84, + "end": 6537.26, + "probability": 0.9741 + }, + { + "start": 6538.02, + "end": 6544.02, + "probability": 0.979 + }, + { + "start": 6544.5, + "end": 6545.7, + "probability": 0.8246 + }, + { + "start": 6547.0, + "end": 6547.92, + "probability": 0.7679 + }, + { + "start": 6550.56, + "end": 6552.72, + "probability": 0.97 + }, + { + "start": 6554.98, + "end": 6555.24, + "probability": 0.9836 + }, + { + "start": 6555.3, + "end": 6557.92, + "probability": 0.9752 + }, + { + "start": 6558.1, + "end": 6560.72, + "probability": 0.6366 + }, + { + "start": 6560.82, + "end": 6561.44, + "probability": 0.5068 + }, + { + "start": 6561.62, + "end": 6562.88, + "probability": 0.8282 + }, + { + "start": 6563.92, + "end": 6564.84, + "probability": 0.8371 + }, + { + "start": 6565.06, + "end": 6567.1, + "probability": 0.9829 + }, + { + "start": 6567.22, + "end": 6570.9, + "probability": 0.996 + }, + { + "start": 6576.14, + "end": 6577.68, + "probability": 0.9863 + }, + { + "start": 6579.12, + "end": 6582.18, + "probability": 0.6601 + }, + { + "start": 6586.86, + "end": 6590.18, + "probability": 0.9878 + }, + { + "start": 6590.96, + "end": 6592.7, + "probability": 0.9467 + }, + { + "start": 6593.7, + "end": 6594.34, + "probability": 0.9413 + }, + { + "start": 6594.4, + "end": 6597.72, + "probability": 0.9911 + }, + { + "start": 6603.13, + "end": 6605.16, + "probability": 0.0326 + }, + { + "start": 6605.16, + "end": 6605.16, + "probability": 0.1433 + }, + { + "start": 6605.16, + "end": 6605.48, + "probability": 0.0693 + }, + { + "start": 6605.56, + "end": 6606.8, + "probability": 0.7082 + }, + { + "start": 6607.62, + "end": 6607.64, + "probability": 0.084 + }, + { + "start": 6607.64, + "end": 6608.78, + "probability": 0.8468 + }, + { + "start": 6609.14, + "end": 6611.38, + "probability": 0.8361 + }, + { + "start": 6611.62, + "end": 6612.54, + "probability": 0.6468 + }, + { + "start": 6612.54, + "end": 6612.94, + "probability": 0.6727 + }, + { + "start": 6613.02, + "end": 6613.74, + "probability": 0.8541 + }, + { + "start": 6613.9, + "end": 6616.36, + "probability": 0.9364 + }, + { + "start": 6616.48, + "end": 6616.52, + "probability": 0.043 + }, + { + "start": 6616.52, + "end": 6618.6, + "probability": 0.8224 + }, + { + "start": 6621.74, + "end": 6621.86, + "probability": 0.2762 + }, + { + "start": 6621.86, + "end": 6621.86, + "probability": 0.098 + }, + { + "start": 6621.86, + "end": 6621.86, + "probability": 0.0243 + }, + { + "start": 6621.86, + "end": 6621.86, + "probability": 0.0742 + }, + { + "start": 6621.86, + "end": 6622.78, + "probability": 0.29 + }, + { + "start": 6623.22, + "end": 6624.88, + "probability": 0.814 + }, + { + "start": 6624.88, + "end": 6625.12, + "probability": 0.178 + }, + { + "start": 6625.24, + "end": 6626.34, + "probability": 0.452 + }, + { + "start": 6626.7, + "end": 6628.92, + "probability": 0.1442 + }, + { + "start": 6629.46, + "end": 6629.88, + "probability": 0.1083 + }, + { + "start": 6629.88, + "end": 6630.06, + "probability": 0.3539 + }, + { + "start": 6630.28, + "end": 6630.9, + "probability": 0.7474 + }, + { + "start": 6631.28, + "end": 6634.84, + "probability": 0.968 + }, + { + "start": 6635.12, + "end": 6636.22, + "probability": 0.873 + }, + { + "start": 6636.88, + "end": 6639.64, + "probability": 0.9544 + }, + { + "start": 6640.22, + "end": 6644.68, + "probability": 0.9582 + }, + { + "start": 6645.04, + "end": 6648.78, + "probability": 0.9851 + }, + { + "start": 6648.88, + "end": 6649.22, + "probability": 0.0855 + }, + { + "start": 6649.36, + "end": 6649.52, + "probability": 0.0855 + }, + { + "start": 6649.56, + "end": 6649.56, + "probability": 0.0828 + }, + { + "start": 6649.56, + "end": 6653.56, + "probability": 0.6509 + }, + { + "start": 6653.66, + "end": 6655.02, + "probability": 0.7217 + }, + { + "start": 6655.64, + "end": 6657.38, + "probability": 0.2175 + }, + { + "start": 6657.44, + "end": 6658.4, + "probability": 0.3925 + }, + { + "start": 6658.64, + "end": 6659.52, + "probability": 0.6662 + }, + { + "start": 6659.64, + "end": 6661.47, + "probability": 0.9934 + }, + { + "start": 6661.58, + "end": 6665.16, + "probability": 0.8372 + }, + { + "start": 6665.88, + "end": 6668.72, + "probability": 0.9939 + }, + { + "start": 6669.36, + "end": 6674.38, + "probability": 0.9966 + }, + { + "start": 6674.7, + "end": 6675.32, + "probability": 0.499 + }, + { + "start": 6676.0, + "end": 6677.98, + "probability": 0.9937 + }, + { + "start": 6678.5, + "end": 6681.12, + "probability": 0.9976 + }, + { + "start": 6681.64, + "end": 6686.54, + "probability": 0.9863 + }, + { + "start": 6686.86, + "end": 6689.38, + "probability": 0.9974 + }, + { + "start": 6690.12, + "end": 6692.04, + "probability": 0.9829 + }, + { + "start": 6692.92, + "end": 6693.66, + "probability": 0.9718 + }, + { + "start": 6694.22, + "end": 6696.26, + "probability": 0.9738 + }, + { + "start": 6697.46, + "end": 6697.8, + "probability": 0.562 + }, + { + "start": 6698.22, + "end": 6700.88, + "probability": 0.9669 + }, + { + "start": 6701.4, + "end": 6701.66, + "probability": 0.9521 + }, + { + "start": 6701.7, + "end": 6702.32, + "probability": 0.6765 + }, + { + "start": 6702.36, + "end": 6703.91, + "probability": 0.8828 + }, + { + "start": 6704.38, + "end": 6705.68, + "probability": 0.8676 + }, + { + "start": 6706.3, + "end": 6706.56, + "probability": 0.6089 + }, + { + "start": 6706.58, + "end": 6713.38, + "probability": 0.9922 + }, + { + "start": 6713.82, + "end": 6718.56, + "probability": 0.9964 + }, + { + "start": 6718.56, + "end": 6725.64, + "probability": 0.9975 + }, + { + "start": 6726.08, + "end": 6728.68, + "probability": 0.9784 + }, + { + "start": 6729.36, + "end": 6732.4, + "probability": 0.998 + }, + { + "start": 6732.88, + "end": 6736.38, + "probability": 0.9985 + }, + { + "start": 6737.44, + "end": 6739.9, + "probability": 0.9858 + }, + { + "start": 6740.26, + "end": 6741.78, + "probability": 0.9022 + }, + { + "start": 6742.2, + "end": 6742.76, + "probability": 0.7607 + }, + { + "start": 6745.52, + "end": 6747.9, + "probability": 0.7699 + }, + { + "start": 6748.8, + "end": 6751.44, + "probability": 0.9968 + }, + { + "start": 6752.16, + "end": 6753.44, + "probability": 0.8143 + }, + { + "start": 6753.64, + "end": 6754.9, + "probability": 0.95 + }, + { + "start": 6755.5, + "end": 6757.14, + "probability": 0.9849 + }, + { + "start": 6757.68, + "end": 6758.34, + "probability": 0.917 + }, + { + "start": 6758.94, + "end": 6760.38, + "probability": 0.9763 + }, + { + "start": 6761.0, + "end": 6761.02, + "probability": 0.1206 + }, + { + "start": 6761.02, + "end": 6764.72, + "probability": 0.9473 + }, + { + "start": 6765.28, + "end": 6766.84, + "probability": 0.7805 + }, + { + "start": 6767.58, + "end": 6769.08, + "probability": 0.9971 + }, + { + "start": 6769.54, + "end": 6771.66, + "probability": 0.9939 + }, + { + "start": 6771.66, + "end": 6774.3, + "probability": 0.9995 + }, + { + "start": 6774.74, + "end": 6776.92, + "probability": 0.9627 + }, + { + "start": 6777.46, + "end": 6780.72, + "probability": 0.9816 + }, + { + "start": 6781.38, + "end": 6785.64, + "probability": 0.9385 + }, + { + "start": 6786.18, + "end": 6787.74, + "probability": 0.9982 + }, + { + "start": 6788.14, + "end": 6790.34, + "probability": 0.9877 + }, + { + "start": 6790.64, + "end": 6791.56, + "probability": 0.7172 + }, + { + "start": 6791.96, + "end": 6793.96, + "probability": 0.9661 + }, + { + "start": 6794.44, + "end": 6797.0, + "probability": 0.9827 + }, + { + "start": 6797.54, + "end": 6799.08, + "probability": 0.9932 + }, + { + "start": 6799.7, + "end": 6800.8, + "probability": 0.9454 + }, + { + "start": 6801.2, + "end": 6804.98, + "probability": 0.9971 + }, + { + "start": 6805.38, + "end": 6807.16, + "probability": 0.948 + }, + { + "start": 6807.46, + "end": 6808.74, + "probability": 0.9941 + }, + { + "start": 6809.16, + "end": 6809.4, + "probability": 0.3595 + }, + { + "start": 6809.46, + "end": 6811.5, + "probability": 0.9974 + }, + { + "start": 6812.18, + "end": 6815.3, + "probability": 0.9178 + }, + { + "start": 6815.96, + "end": 6820.88, + "probability": 0.9485 + }, + { + "start": 6821.8, + "end": 6825.08, + "probability": 0.998 + }, + { + "start": 6825.64, + "end": 6826.02, + "probability": 0.7451 + }, + { + "start": 6826.5, + "end": 6828.36, + "probability": 0.9972 + }, + { + "start": 6828.76, + "end": 6829.1, + "probability": 0.7672 + }, + { + "start": 6829.18, + "end": 6829.66, + "probability": 0.9615 + }, + { + "start": 6829.72, + "end": 6830.83, + "probability": 0.9678 + }, + { + "start": 6830.88, + "end": 6834.52, + "probability": 0.9645 + }, + { + "start": 6834.88, + "end": 6835.56, + "probability": 0.9873 + }, + { + "start": 6836.34, + "end": 6837.5, + "probability": 0.9949 + }, + { + "start": 6838.82, + "end": 6841.92, + "probability": 0.9949 + }, + { + "start": 6842.64, + "end": 6847.96, + "probability": 0.999 + }, + { + "start": 6847.96, + "end": 6850.3, + "probability": 0.9985 + }, + { + "start": 6851.04, + "end": 6852.02, + "probability": 0.891 + }, + { + "start": 6852.64, + "end": 6854.12, + "probability": 0.9375 + }, + { + "start": 6854.64, + "end": 6856.1, + "probability": 0.9806 + }, + { + "start": 6856.44, + "end": 6862.38, + "probability": 0.9946 + }, + { + "start": 6862.8, + "end": 6866.52, + "probability": 0.9925 + }, + { + "start": 6867.04, + "end": 6872.32, + "probability": 0.9246 + }, + { + "start": 6873.02, + "end": 6877.58, + "probability": 0.9961 + }, + { + "start": 6878.16, + "end": 6882.7, + "probability": 0.9456 + }, + { + "start": 6883.24, + "end": 6884.14, + "probability": 0.8929 + }, + { + "start": 6884.6, + "end": 6885.1, + "probability": 0.6368 + }, + { + "start": 6885.12, + "end": 6886.34, + "probability": 0.9144 + }, + { + "start": 6886.66, + "end": 6889.46, + "probability": 0.9936 + }, + { + "start": 6889.76, + "end": 6891.82, + "probability": 0.9777 + }, + { + "start": 6892.16, + "end": 6894.46, + "probability": 0.9888 + }, + { + "start": 6894.78, + "end": 6897.7, + "probability": 0.9739 + }, + { + "start": 6898.0, + "end": 6899.76, + "probability": 0.9797 + }, + { + "start": 6900.5, + "end": 6902.42, + "probability": 0.6688 + }, + { + "start": 6902.58, + "end": 6904.38, + "probability": 0.9148 + }, + { + "start": 6907.38, + "end": 6911.69, + "probability": 0.3224 + }, + { + "start": 6915.84, + "end": 6915.84, + "probability": 0.2966 + }, + { + "start": 6915.84, + "end": 6920.14, + "probability": 0.4093 + }, + { + "start": 6925.46, + "end": 6927.38, + "probability": 0.9482 + }, + { + "start": 6930.46, + "end": 6933.02, + "probability": 0.773 + }, + { + "start": 6934.84, + "end": 6935.64, + "probability": 0.9771 + }, + { + "start": 6936.88, + "end": 6943.88, + "probability": 0.9929 + }, + { + "start": 6944.72, + "end": 6946.84, + "probability": 0.9093 + }, + { + "start": 6947.86, + "end": 6955.06, + "probability": 0.7878 + }, + { + "start": 6956.02, + "end": 6956.82, + "probability": 0.4868 + }, + { + "start": 6957.44, + "end": 6963.0, + "probability": 0.7151 + }, + { + "start": 6964.06, + "end": 6964.78, + "probability": 0.76 + }, + { + "start": 6965.92, + "end": 6966.78, + "probability": 0.6563 + }, + { + "start": 6967.42, + "end": 6969.14, + "probability": 0.9575 + }, + { + "start": 6970.06, + "end": 6971.28, + "probability": 0.7166 + }, + { + "start": 6972.78, + "end": 6973.62, + "probability": 0.8702 + }, + { + "start": 6974.54, + "end": 6979.22, + "probability": 0.9927 + }, + { + "start": 6979.98, + "end": 6980.5, + "probability": 0.9648 + }, + { + "start": 6981.46, + "end": 6982.58, + "probability": 0.9723 + }, + { + "start": 6983.42, + "end": 6987.3, + "probability": 0.9693 + }, + { + "start": 6987.3, + "end": 6990.74, + "probability": 0.999 + }, + { + "start": 6991.64, + "end": 6993.64, + "probability": 0.7158 + }, + { + "start": 6994.24, + "end": 6996.2, + "probability": 0.8056 + }, + { + "start": 6997.02, + "end": 6999.72, + "probability": 0.9619 + }, + { + "start": 7000.6, + "end": 7001.96, + "probability": 0.9352 + }, + { + "start": 7002.58, + "end": 7005.82, + "probability": 0.9203 + }, + { + "start": 7007.32, + "end": 7010.44, + "probability": 0.988 + }, + { + "start": 7010.58, + "end": 7014.76, + "probability": 0.9779 + }, + { + "start": 7015.64, + "end": 7019.12, + "probability": 0.9894 + }, + { + "start": 7019.64, + "end": 7022.24, + "probability": 0.9912 + }, + { + "start": 7023.14, + "end": 7026.2, + "probability": 0.9971 + }, + { + "start": 7027.02, + "end": 7031.82, + "probability": 0.8831 + }, + { + "start": 7031.82, + "end": 7037.7, + "probability": 0.9989 + }, + { + "start": 7038.66, + "end": 7042.32, + "probability": 0.9277 + }, + { + "start": 7043.02, + "end": 7044.5, + "probability": 0.9717 + }, + { + "start": 7045.14, + "end": 7052.3, + "probability": 0.9658 + }, + { + "start": 7052.88, + "end": 7055.4, + "probability": 0.8881 + }, + { + "start": 7056.0, + "end": 7059.24, + "probability": 0.9871 + }, + { + "start": 7059.82, + "end": 7065.36, + "probability": 0.991 + }, + { + "start": 7066.0, + "end": 7069.82, + "probability": 0.9963 + }, + { + "start": 7069.82, + "end": 7072.92, + "probability": 0.9991 + }, + { + "start": 7074.1, + "end": 7078.06, + "probability": 0.9551 + }, + { + "start": 7078.72, + "end": 7082.72, + "probability": 0.9971 + }, + { + "start": 7083.26, + "end": 7084.92, + "probability": 0.9984 + }, + { + "start": 7085.48, + "end": 7089.12, + "probability": 0.9968 + }, + { + "start": 7089.94, + "end": 7095.72, + "probability": 0.9772 + }, + { + "start": 7097.16, + "end": 7100.84, + "probability": 0.9902 + }, + { + "start": 7101.58, + "end": 7107.22, + "probability": 0.9885 + }, + { + "start": 7108.38, + "end": 7114.66, + "probability": 0.9956 + }, + { + "start": 7115.56, + "end": 7117.26, + "probability": 0.7965 + }, + { + "start": 7117.8, + "end": 7122.94, + "probability": 0.9954 + }, + { + "start": 7123.64, + "end": 7130.22, + "probability": 0.9985 + }, + { + "start": 7131.1, + "end": 7131.58, + "probability": 0.6952 + }, + { + "start": 7132.14, + "end": 7138.22, + "probability": 0.9959 + }, + { + "start": 7138.74, + "end": 7144.48, + "probability": 0.9889 + }, + { + "start": 7144.66, + "end": 7147.58, + "probability": 0.8701 + }, + { + "start": 7148.18, + "end": 7150.66, + "probability": 0.9259 + }, + { + "start": 7151.86, + "end": 7157.12, + "probability": 0.9344 + }, + { + "start": 7158.12, + "end": 7161.48, + "probability": 0.9825 + }, + { + "start": 7162.06, + "end": 7165.12, + "probability": 0.9969 + }, + { + "start": 7165.74, + "end": 7168.4, + "probability": 0.9741 + }, + { + "start": 7168.96, + "end": 7172.7, + "probability": 0.9443 + }, + { + "start": 7173.32, + "end": 7174.04, + "probability": 0.8392 + }, + { + "start": 7174.08, + "end": 7174.58, + "probability": 0.9587 + }, + { + "start": 7174.8, + "end": 7178.02, + "probability": 0.873 + }, + { + "start": 7178.44, + "end": 7180.78, + "probability": 0.99 + }, + { + "start": 7181.52, + "end": 7184.32, + "probability": 0.9961 + }, + { + "start": 7184.32, + "end": 7188.62, + "probability": 0.9975 + }, + { + "start": 7189.4, + "end": 7194.5, + "probability": 0.9951 + }, + { + "start": 7195.12, + "end": 7200.86, + "probability": 0.9966 + }, + { + "start": 7202.36, + "end": 7203.34, + "probability": 0.8342 + }, + { + "start": 7204.5, + "end": 7208.4, + "probability": 0.9956 + }, + { + "start": 7209.7, + "end": 7212.36, + "probability": 0.9728 + }, + { + "start": 7212.36, + "end": 7217.24, + "probability": 0.9958 + }, + { + "start": 7217.84, + "end": 7221.84, + "probability": 0.9811 + }, + { + "start": 7222.82, + "end": 7230.08, + "probability": 0.9851 + }, + { + "start": 7230.08, + "end": 7237.36, + "probability": 0.995 + }, + { + "start": 7238.0, + "end": 7240.86, + "probability": 0.9882 + }, + { + "start": 7241.1, + "end": 7241.62, + "probability": 0.7543 + }, + { + "start": 7242.06, + "end": 7242.92, + "probability": 0.6901 + }, + { + "start": 7243.46, + "end": 7245.08, + "probability": 0.7562 + }, + { + "start": 7252.72, + "end": 7252.92, + "probability": 0.7326 + }, + { + "start": 7254.9, + "end": 7261.76, + "probability": 0.911 + }, + { + "start": 7267.3, + "end": 7267.66, + "probability": 0.863 + }, + { + "start": 7268.26, + "end": 7269.44, + "probability": 0.8922 + }, + { + "start": 7270.18, + "end": 7271.34, + "probability": 0.7411 + }, + { + "start": 7272.1, + "end": 7272.48, + "probability": 0.4212 + }, + { + "start": 7273.18, + "end": 7274.56, + "probability": 0.7903 + }, + { + "start": 7275.76, + "end": 7277.14, + "probability": 0.8502 + }, + { + "start": 7278.2, + "end": 7279.2, + "probability": 0.755 + }, + { + "start": 7280.32, + "end": 7282.72, + "probability": 0.7318 + }, + { + "start": 7283.96, + "end": 7286.65, + "probability": 0.8639 + }, + { + "start": 7287.5, + "end": 7292.43, + "probability": 0.9876 + }, + { + "start": 7294.04, + "end": 7295.68, + "probability": 0.9891 + }, + { + "start": 7296.5, + "end": 7297.08, + "probability": 0.8492 + }, + { + "start": 7297.84, + "end": 7299.5, + "probability": 0.9988 + }, + { + "start": 7301.14, + "end": 7303.22, + "probability": 0.9911 + }, + { + "start": 7304.06, + "end": 7306.7, + "probability": 0.9769 + }, + { + "start": 7306.7, + "end": 7309.68, + "probability": 0.9977 + }, + { + "start": 7309.82, + "end": 7310.38, + "probability": 0.4819 + }, + { + "start": 7311.54, + "end": 7314.44, + "probability": 0.9895 + }, + { + "start": 7315.46, + "end": 7317.9, + "probability": 0.985 + }, + { + "start": 7319.72, + "end": 7321.9, + "probability": 0.9257 + }, + { + "start": 7321.96, + "end": 7325.26, + "probability": 0.9617 + }, + { + "start": 7326.3, + "end": 7327.16, + "probability": 0.8064 + }, + { + "start": 7327.8, + "end": 7329.37, + "probability": 0.9061 + }, + { + "start": 7330.81, + "end": 7331.92, + "probability": 0.9744 + }, + { + "start": 7331.98, + "end": 7333.26, + "probability": 0.8478 + }, + { + "start": 7333.48, + "end": 7335.68, + "probability": 0.5692 + }, + { + "start": 7342.64, + "end": 7344.9, + "probability": 0.1397 + }, + { + "start": 7344.9, + "end": 7344.9, + "probability": 0.2344 + }, + { + "start": 7344.9, + "end": 7345.46, + "probability": 0.41 + }, + { + "start": 7345.8, + "end": 7345.8, + "probability": 0.0494 + }, + { + "start": 7346.12, + "end": 7346.12, + "probability": 0.4461 + }, + { + "start": 7346.12, + "end": 7346.26, + "probability": 0.3015 + }, + { + "start": 7346.26, + "end": 7349.49, + "probability": 0.8848 + }, + { + "start": 7350.52, + "end": 7353.54, + "probability": 0.9871 + }, + { + "start": 7355.04, + "end": 7357.72, + "probability": 0.9886 + }, + { + "start": 7358.54, + "end": 7361.58, + "probability": 0.9085 + }, + { + "start": 7362.28, + "end": 7363.18, + "probability": 0.009 + }, + { + "start": 7363.18, + "end": 7364.68, + "probability": 0.9421 + }, + { + "start": 7365.28, + "end": 7366.82, + "probability": 0.948 + }, + { + "start": 7367.28, + "end": 7370.08, + "probability": 0.3836 + }, + { + "start": 7370.72, + "end": 7370.94, + "probability": 0.7438 + }, + { + "start": 7371.58, + "end": 7373.66, + "probability": 0.6827 + }, + { + "start": 7373.76, + "end": 7375.14, + "probability": 0.8608 + }, + { + "start": 7375.72, + "end": 7377.72, + "probability": 0.8866 + }, + { + "start": 7379.3, + "end": 7381.46, + "probability": 0.9441 + }, + { + "start": 7381.9, + "end": 7383.44, + "probability": 0.6663 + }, + { + "start": 7383.6, + "end": 7385.78, + "probability": 0.9904 + }, + { + "start": 7386.74, + "end": 7388.4, + "probability": 0.9944 + }, + { + "start": 7389.36, + "end": 7390.66, + "probability": 0.9137 + }, + { + "start": 7391.78, + "end": 7396.66, + "probability": 0.9815 + }, + { + "start": 7396.66, + "end": 7399.9, + "probability": 0.9962 + }, + { + "start": 7401.06, + "end": 7404.22, + "probability": 0.9819 + }, + { + "start": 7405.22, + "end": 7408.38, + "probability": 0.9952 + }, + { + "start": 7409.22, + "end": 7410.86, + "probability": 0.9907 + }, + { + "start": 7411.78, + "end": 7412.84, + "probability": 0.8525 + }, + { + "start": 7414.0, + "end": 7415.24, + "probability": 0.7526 + }, + { + "start": 7416.22, + "end": 7417.82, + "probability": 0.9888 + }, + { + "start": 7418.94, + "end": 7421.46, + "probability": 0.994 + }, + { + "start": 7421.46, + "end": 7427.3, + "probability": 0.912 + }, + { + "start": 7428.74, + "end": 7431.52, + "probability": 0.9911 + }, + { + "start": 7431.52, + "end": 7433.44, + "probability": 0.8816 + }, + { + "start": 7434.36, + "end": 7437.9, + "probability": 0.9869 + }, + { + "start": 7440.38, + "end": 7440.38, + "probability": 0.3603 + }, + { + "start": 7440.38, + "end": 7441.62, + "probability": 0.9212 + }, + { + "start": 7443.2, + "end": 7449.28, + "probability": 0.8584 + }, + { + "start": 7450.58, + "end": 7453.2, + "probability": 0.9866 + }, + { + "start": 7454.22, + "end": 7457.92, + "probability": 0.8928 + }, + { + "start": 7458.38, + "end": 7460.3, + "probability": 0.9979 + }, + { + "start": 7460.96, + "end": 7461.44, + "probability": 0.709 + }, + { + "start": 7463.18, + "end": 7465.82, + "probability": 0.8705 + }, + { + "start": 7467.52, + "end": 7468.92, + "probability": 0.9937 + }, + { + "start": 7469.9, + "end": 7470.97, + "probability": 0.5574 + }, + { + "start": 7471.86, + "end": 7475.66, + "probability": 0.9788 + }, + { + "start": 7476.96, + "end": 7480.38, + "probability": 0.9928 + }, + { + "start": 7480.4, + "end": 7484.16, + "probability": 0.9641 + }, + { + "start": 7484.5, + "end": 7486.29, + "probability": 0.1738 + }, + { + "start": 7486.48, + "end": 7488.06, + "probability": 0.5858 + }, + { + "start": 7488.42, + "end": 7492.3, + "probability": 0.0615 + }, + { + "start": 7492.32, + "end": 7495.76, + "probability": 0.0448 + }, + { + "start": 7496.82, + "end": 7496.9, + "probability": 0.3916 + }, + { + "start": 7497.42, + "end": 7500.5, + "probability": 0.5312 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.0, + "end": 7601.0, + "probability": 0.0 + }, + { + "start": 7601.26, + "end": 7601.64, + "probability": 0.5032 + }, + { + "start": 7601.64, + "end": 7601.64, + "probability": 0.0258 + }, + { + "start": 7601.64, + "end": 7601.64, + "probability": 0.0541 + }, + { + "start": 7601.64, + "end": 7603.14, + "probability": 0.041 + }, + { + "start": 7603.96, + "end": 7606.08, + "probability": 0.7596 + }, + { + "start": 7606.32, + "end": 7607.78, + "probability": 0.7528 + }, + { + "start": 7608.74, + "end": 7609.98, + "probability": 0.5363 + }, + { + "start": 7622.54, + "end": 7622.54, + "probability": 0.2383 + }, + { + "start": 7622.54, + "end": 7624.66, + "probability": 0.4552 + }, + { + "start": 7625.52, + "end": 7627.66, + "probability": 0.9953 + }, + { + "start": 7629.06, + "end": 7629.58, + "probability": 0.9108 + }, + { + "start": 7631.06, + "end": 7632.64, + "probability": 0.9778 + }, + { + "start": 7634.36, + "end": 7635.46, + "probability": 0.904 + }, + { + "start": 7636.98, + "end": 7638.16, + "probability": 0.8117 + }, + { + "start": 7639.62, + "end": 7641.62, + "probability": 0.9526 + }, + { + "start": 7642.68, + "end": 7643.68, + "probability": 0.9307 + }, + { + "start": 7644.4, + "end": 7645.48, + "probability": 0.8034 + }, + { + "start": 7646.74, + "end": 7650.08, + "probability": 0.864 + }, + { + "start": 7651.44, + "end": 7653.2, + "probability": 0.8248 + }, + { + "start": 7654.52, + "end": 7657.1, + "probability": 0.9958 + }, + { + "start": 7658.28, + "end": 7659.44, + "probability": 0.5033 + }, + { + "start": 7661.76, + "end": 7665.62, + "probability": 0.0867 + }, + { + "start": 7665.78, + "end": 7666.16, + "probability": 0.1958 + }, + { + "start": 7666.2, + "end": 7668.04, + "probability": 0.9097 + }, + { + "start": 7669.08, + "end": 7670.9, + "probability": 0.6356 + }, + { + "start": 7671.88, + "end": 7673.4, + "probability": 0.6062 + }, + { + "start": 7675.06, + "end": 7676.88, + "probability": 0.8623 + }, + { + "start": 7677.46, + "end": 7679.62, + "probability": 0.6732 + }, + { + "start": 7680.3, + "end": 7681.94, + "probability": 0.9518 + }, + { + "start": 7682.8, + "end": 7686.1, + "probability": 0.9315 + }, + { + "start": 7686.24, + "end": 7687.88, + "probability": 0.9463 + }, + { + "start": 7688.6, + "end": 7692.44, + "probability": 0.9788 + }, + { + "start": 7693.68, + "end": 7694.26, + "probability": 0.84 + }, + { + "start": 7695.64, + "end": 7698.34, + "probability": 0.8258 + }, + { + "start": 7699.2, + "end": 7701.72, + "probability": 0.9599 + }, + { + "start": 7703.16, + "end": 7706.5, + "probability": 0.9364 + }, + { + "start": 7707.48, + "end": 7708.18, + "probability": 0.9077 + }, + { + "start": 7709.94, + "end": 7712.76, + "probability": 0.9341 + }, + { + "start": 7713.46, + "end": 7715.66, + "probability": 0.8583 + }, + { + "start": 7716.42, + "end": 7718.12, + "probability": 0.9442 + }, + { + "start": 7718.18, + "end": 7719.44, + "probability": 0.8539 + }, + { + "start": 7719.5, + "end": 7721.34, + "probability": 0.9977 + }, + { + "start": 7721.84, + "end": 7723.04, + "probability": 0.7345 + }, + { + "start": 7724.42, + "end": 7725.12, + "probability": 0.9295 + }, + { + "start": 7726.0, + "end": 7728.76, + "probability": 0.9315 + }, + { + "start": 7730.34, + "end": 7731.74, + "probability": 0.9293 + }, + { + "start": 7731.84, + "end": 7732.42, + "probability": 0.8855 + }, + { + "start": 7732.48, + "end": 7733.92, + "probability": 0.9927 + }, + { + "start": 7735.82, + "end": 7737.56, + "probability": 0.9944 + }, + { + "start": 7738.12, + "end": 7742.2, + "probability": 0.9538 + }, + { + "start": 7743.22, + "end": 7744.28, + "probability": 0.853 + }, + { + "start": 7744.96, + "end": 7745.42, + "probability": 0.8551 + }, + { + "start": 7746.16, + "end": 7747.18, + "probability": 0.9924 + }, + { + "start": 7747.7, + "end": 7748.68, + "probability": 0.8836 + }, + { + "start": 7749.66, + "end": 7751.72, + "probability": 0.9228 + }, + { + "start": 7753.28, + "end": 7754.32, + "probability": 0.4885 + }, + { + "start": 7755.74, + "end": 7756.86, + "probability": 0.8372 + }, + { + "start": 7758.04, + "end": 7759.64, + "probability": 0.9979 + }, + { + "start": 7761.04, + "end": 7762.08, + "probability": 0.6423 + }, + { + "start": 7762.98, + "end": 7764.34, + "probability": 0.9675 + }, + { + "start": 7765.4, + "end": 7767.92, + "probability": 0.9274 + }, + { + "start": 7768.96, + "end": 7769.6, + "probability": 0.9428 + }, + { + "start": 7770.12, + "end": 7774.52, + "probability": 0.948 + }, + { + "start": 7776.04, + "end": 7780.46, + "probability": 0.6617 + }, + { + "start": 7780.58, + "end": 7781.02, + "probability": 0.7755 + }, + { + "start": 7781.96, + "end": 7783.7, + "probability": 0.9958 + }, + { + "start": 7784.54, + "end": 7786.3, + "probability": 0.922 + }, + { + "start": 7787.1, + "end": 7789.28, + "probability": 0.1693 + }, + { + "start": 7789.28, + "end": 7789.36, + "probability": 0.0274 + }, + { + "start": 7789.96, + "end": 7790.1, + "probability": 0.114 + }, + { + "start": 7790.1, + "end": 7790.96, + "probability": 0.6519 + }, + { + "start": 7792.02, + "end": 7792.62, + "probability": 0.036 + }, + { + "start": 7792.62, + "end": 7792.62, + "probability": 0.0326 + }, + { + "start": 7792.7, + "end": 7794.86, + "probability": 0.6735 + }, + { + "start": 7795.04, + "end": 7798.38, + "probability": 0.9712 + }, + { + "start": 7798.96, + "end": 7800.58, + "probability": 0.6585 + }, + { + "start": 7800.58, + "end": 7800.76, + "probability": 0.4718 + }, + { + "start": 7801.0, + "end": 7801.86, + "probability": 0.715 + }, + { + "start": 7802.0, + "end": 7802.54, + "probability": 0.6404 + }, + { + "start": 7802.66, + "end": 7807.26, + "probability": 0.7281 + }, + { + "start": 7807.82, + "end": 7812.9, + "probability": 0.9793 + }, + { + "start": 7812.98, + "end": 7814.28, + "probability": 0.6647 + }, + { + "start": 7814.36, + "end": 7815.42, + "probability": 0.2141 + }, + { + "start": 7815.46, + "end": 7815.8, + "probability": 0.0575 + }, + { + "start": 7815.8, + "end": 7816.28, + "probability": 0.4473 + }, + { + "start": 7816.8, + "end": 7819.54, + "probability": 0.7422 + }, + { + "start": 7820.66, + "end": 7822.54, + "probability": 0.8389 + }, + { + "start": 7823.26, + "end": 7824.88, + "probability": 0.0955 + }, + { + "start": 7824.88, + "end": 7827.51, + "probability": 0.0083 + }, + { + "start": 7829.46, + "end": 7830.0, + "probability": 0.0972 + }, + { + "start": 7830.0, + "end": 7830.0, + "probability": 0.1688 + }, + { + "start": 7830.0, + "end": 7830.06, + "probability": 0.0481 + }, + { + "start": 7830.06, + "end": 7830.06, + "probability": 0.03 + }, + { + "start": 7830.06, + "end": 7832.58, + "probability": 0.1922 + }, + { + "start": 7832.6, + "end": 7833.86, + "probability": 0.5339 + }, + { + "start": 7834.8, + "end": 7836.16, + "probability": 0.173 + }, + { + "start": 7836.16, + "end": 7836.16, + "probability": 0.4918 + }, + { + "start": 7836.16, + "end": 7837.02, + "probability": 0.6527 + }, + { + "start": 7837.62, + "end": 7839.72, + "probability": 0.9309 + }, + { + "start": 7840.6, + "end": 7841.08, + "probability": 0.0371 + }, + { + "start": 7841.08, + "end": 7841.32, + "probability": 0.1926 + }, + { + "start": 7841.72, + "end": 7842.5, + "probability": 0.2111 + }, + { + "start": 7842.7, + "end": 7843.52, + "probability": 0.9623 + }, + { + "start": 7843.6, + "end": 7844.3, + "probability": 0.8775 + }, + { + "start": 7844.52, + "end": 7847.44, + "probability": 0.3102 + }, + { + "start": 7847.54, + "end": 7847.82, + "probability": 0.1768 + }, + { + "start": 7847.82, + "end": 7848.1, + "probability": 0.2189 + }, + { + "start": 7848.16, + "end": 7850.82, + "probability": 0.623 + }, + { + "start": 7851.28, + "end": 7854.56, + "probability": 0.9673 + }, + { + "start": 7854.56, + "end": 7854.98, + "probability": 0.0639 + }, + { + "start": 7856.86, + "end": 7859.2, + "probability": 0.6055 + }, + { + "start": 7859.32, + "end": 7860.08, + "probability": 0.5046 + }, + { + "start": 7860.18, + "end": 7860.66, + "probability": 0.5837 + }, + { + "start": 7860.7, + "end": 7861.44, + "probability": 0.6569 + }, + { + "start": 7861.58, + "end": 7861.78, + "probability": 0.7472 + }, + { + "start": 7861.78, + "end": 7862.44, + "probability": 0.3949 + }, + { + "start": 7862.48, + "end": 7863.46, + "probability": 0.7462 + }, + { + "start": 7865.2, + "end": 7867.88, + "probability": 0.7216 + }, + { + "start": 7868.86, + "end": 7871.6, + "probability": 0.3265 + }, + { + "start": 7871.6, + "end": 7871.6, + "probability": 0.0766 + }, + { + "start": 7871.6, + "end": 7871.6, + "probability": 0.1964 + }, + { + "start": 7871.6, + "end": 7871.6, + "probability": 0.0143 + }, + { + "start": 7871.6, + "end": 7871.6, + "probability": 0.2929 + }, + { + "start": 7871.6, + "end": 7871.6, + "probability": 0.3023 + }, + { + "start": 7871.6, + "end": 7871.6, + "probability": 0.5303 + }, + { + "start": 7871.6, + "end": 7874.16, + "probability": 0.6243 + }, + { + "start": 7874.92, + "end": 7876.5, + "probability": 0.9609 + }, + { + "start": 7876.68, + "end": 7877.9, + "probability": 0.928 + }, + { + "start": 7879.42, + "end": 7881.24, + "probability": 0.8096 + }, + { + "start": 7881.84, + "end": 7884.72, + "probability": 0.999 + }, + { + "start": 7885.82, + "end": 7888.4, + "probability": 0.7183 + }, + { + "start": 7888.74, + "end": 7894.54, + "probability": 0.9733 + }, + { + "start": 7894.54, + "end": 7900.68, + "probability": 0.9937 + }, + { + "start": 7900.92, + "end": 7903.64, + "probability": 0.9972 + }, + { + "start": 7904.2, + "end": 7905.49, + "probability": 0.9336 + }, + { + "start": 7905.64, + "end": 7906.74, + "probability": 0.9763 + }, + { + "start": 7906.98, + "end": 7912.08, + "probability": 0.96 + }, + { + "start": 7912.16, + "end": 7914.34, + "probability": 0.7239 + }, + { + "start": 7914.96, + "end": 7917.22, + "probability": 0.9475 + }, + { + "start": 7917.74, + "end": 7923.0, + "probability": 0.9979 + }, + { + "start": 7923.74, + "end": 7925.48, + "probability": 0.9346 + }, + { + "start": 7925.7, + "end": 7929.2, + "probability": 0.9155 + }, + { + "start": 7930.22, + "end": 7930.6, + "probability": 0.4317 + }, + { + "start": 7931.02, + "end": 7931.7, + "probability": 0.7341 + }, + { + "start": 7932.38, + "end": 7933.97, + "probability": 0.9917 + }, + { + "start": 7935.14, + "end": 7938.02, + "probability": 0.9517 + }, + { + "start": 7938.54, + "end": 7939.82, + "probability": 0.8934 + }, + { + "start": 7940.12, + "end": 7941.82, + "probability": 0.9692 + }, + { + "start": 7942.02, + "end": 7946.54, + "probability": 0.9758 + }, + { + "start": 7946.66, + "end": 7948.76, + "probability": 0.9941 + }, + { + "start": 7949.28, + "end": 7951.23, + "probability": 0.7365 + }, + { + "start": 7952.46, + "end": 7953.46, + "probability": 0.8991 + }, + { + "start": 7953.76, + "end": 7956.54, + "probability": 0.9331 + }, + { + "start": 7956.7, + "end": 7958.54, + "probability": 0.8422 + }, + { + "start": 7958.76, + "end": 7959.32, + "probability": 0.9437 + }, + { + "start": 7959.32, + "end": 7964.46, + "probability": 0.9669 + }, + { + "start": 7964.82, + "end": 7968.52, + "probability": 0.9974 + }, + { + "start": 7968.62, + "end": 7969.74, + "probability": 0.9662 + }, + { + "start": 7970.16, + "end": 7970.64, + "probability": 0.585 + }, + { + "start": 7970.86, + "end": 7973.4, + "probability": 0.3494 + }, + { + "start": 7973.52, + "end": 7976.42, + "probability": 0.706 + }, + { + "start": 7976.74, + "end": 7980.38, + "probability": 0.9888 + }, + { + "start": 7980.38, + "end": 7982.98, + "probability": 0.9951 + }, + { + "start": 7983.74, + "end": 7987.06, + "probability": 0.7654 + }, + { + "start": 7987.06, + "end": 7991.22, + "probability": 0.9292 + }, + { + "start": 7991.64, + "end": 7996.55, + "probability": 0.9692 + }, + { + "start": 7997.14, + "end": 8001.04, + "probability": 0.9546 + }, + { + "start": 8002.02, + "end": 8003.02, + "probability": 0.3288 + }, + { + "start": 8003.32, + "end": 8006.94, + "probability": 0.836 + }, + { + "start": 8007.12, + "end": 8008.16, + "probability": 0.8406 + }, + { + "start": 8009.06, + "end": 8012.6, + "probability": 0.9757 + }, + { + "start": 8013.8, + "end": 8016.66, + "probability": 0.9836 + }, + { + "start": 8016.66, + "end": 8020.2, + "probability": 0.7416 + }, + { + "start": 8020.22, + "end": 8021.16, + "probability": 0.8416 + }, + { + "start": 8021.86, + "end": 8025.52, + "probability": 0.9953 + }, + { + "start": 8025.66, + "end": 8028.6, + "probability": 0.9993 + }, + { + "start": 8029.14, + "end": 8033.42, + "probability": 0.8768 + }, + { + "start": 8034.98, + "end": 8036.58, + "probability": 0.998 + }, + { + "start": 8036.68, + "end": 8039.16, + "probability": 0.8495 + }, + { + "start": 8039.22, + "end": 8045.14, + "probability": 0.9785 + }, + { + "start": 8045.8, + "end": 8050.14, + "probability": 0.9969 + }, + { + "start": 8050.32, + "end": 8051.04, + "probability": 0.9738 + }, + { + "start": 8054.38, + "end": 8056.72, + "probability": 0.9906 + }, + { + "start": 8057.62, + "end": 8059.54, + "probability": 0.9167 + }, + { + "start": 8061.9, + "end": 8064.33, + "probability": 0.9719 + }, + { + "start": 8064.92, + "end": 8068.04, + "probability": 0.9683 + }, + { + "start": 8068.08, + "end": 8071.02, + "probability": 0.7966 + }, + { + "start": 8071.02, + "end": 8073.42, + "probability": 0.9447 + }, + { + "start": 8073.96, + "end": 8077.5, + "probability": 0.9756 + }, + { + "start": 8078.14, + "end": 8078.7, + "probability": 0.7777 + }, + { + "start": 8079.74, + "end": 8080.79, + "probability": 0.7623 + }, + { + "start": 8081.04, + "end": 8082.1, + "probability": 0.7844 + }, + { + "start": 8082.26, + "end": 8085.04, + "probability": 0.9935 + }, + { + "start": 8085.04, + "end": 8087.96, + "probability": 0.9946 + }, + { + "start": 8087.96, + "end": 8092.02, + "probability": 0.9518 + }, + { + "start": 8092.12, + "end": 8092.46, + "probability": 0.556 + }, + { + "start": 8093.74, + "end": 8093.88, + "probability": 0.2788 + }, + { + "start": 8094.44, + "end": 8096.2, + "probability": 0.218 + }, + { + "start": 8096.88, + "end": 8097.3, + "probability": 0.4561 + }, + { + "start": 8097.4, + "end": 8099.12, + "probability": 0.9388 + }, + { + "start": 8099.4, + "end": 8100.76, + "probability": 0.6639 + }, + { + "start": 8100.94, + "end": 8102.0, + "probability": 0.7582 + }, + { + "start": 8102.08, + "end": 8102.6, + "probability": 0.9648 + }, + { + "start": 8107.26, + "end": 8108.16, + "probability": 0.3373 + }, + { + "start": 8108.26, + "end": 8109.2, + "probability": 0.8716 + }, + { + "start": 8109.24, + "end": 8109.86, + "probability": 0.9587 + }, + { + "start": 8110.76, + "end": 8111.48, + "probability": 0.8461 + }, + { + "start": 8111.54, + "end": 8114.0, + "probability": 0.6953 + }, + { + "start": 8114.5, + "end": 8115.96, + "probability": 0.0491 + }, + { + "start": 8116.64, + "end": 8117.6, + "probability": 0.6248 + }, + { + "start": 8117.66, + "end": 8121.04, + "probability": 0.9927 + }, + { + "start": 8121.04, + "end": 8124.78, + "probability": 0.9845 + }, + { + "start": 8124.9, + "end": 8128.09, + "probability": 0.7197 + }, + { + "start": 8128.44, + "end": 8131.62, + "probability": 0.813 + }, + { + "start": 8131.84, + "end": 8136.28, + "probability": 0.6689 + }, + { + "start": 8136.6, + "end": 8138.0, + "probability": 0.7579 + }, + { + "start": 8138.2, + "end": 8139.24, + "probability": 0.67 + }, + { + "start": 8139.88, + "end": 8142.54, + "probability": 0.973 + }, + { + "start": 8142.54, + "end": 8143.58, + "probability": 0.8316 + }, + { + "start": 8144.24, + "end": 8147.12, + "probability": 0.1637 + }, + { + "start": 8147.88, + "end": 8150.3, + "probability": 0.9538 + }, + { + "start": 8150.3, + "end": 8152.96, + "probability": 0.9826 + }, + { + "start": 8153.76, + "end": 8156.74, + "probability": 0.9978 + }, + { + "start": 8156.74, + "end": 8159.74, + "probability": 0.4794 + }, + { + "start": 8160.32, + "end": 8162.46, + "probability": 0.9818 + }, + { + "start": 8162.58, + "end": 8164.72, + "probability": 0.9202 + }, + { + "start": 8165.4, + "end": 8169.02, + "probability": 0.9607 + }, + { + "start": 8169.2, + "end": 8172.04, + "probability": 0.9033 + }, + { + "start": 8172.04, + "end": 8174.32, + "probability": 0.993 + }, + { + "start": 8175.68, + "end": 8177.76, + "probability": 0.9967 + }, + { + "start": 8179.06, + "end": 8181.6, + "probability": 0.9785 + }, + { + "start": 8182.76, + "end": 8185.94, + "probability": 0.9343 + }, + { + "start": 8186.54, + "end": 8187.86, + "probability": 0.7686 + }, + { + "start": 8187.96, + "end": 8190.94, + "probability": 0.771 + }, + { + "start": 8191.04, + "end": 8193.48, + "probability": 0.9981 + }, + { + "start": 8194.22, + "end": 8198.42, + "probability": 0.9802 + }, + { + "start": 8199.52, + "end": 8202.94, + "probability": 0.74 + }, + { + "start": 8203.02, + "end": 8205.4, + "probability": 0.8891 + }, + { + "start": 8205.4, + "end": 8207.82, + "probability": 0.9767 + }, + { + "start": 8208.0, + "end": 8210.56, + "probability": 0.9922 + }, + { + "start": 8212.12, + "end": 8213.18, + "probability": 0.6451 + }, + { + "start": 8213.68, + "end": 8216.44, + "probability": 0.691 + }, + { + "start": 8216.48, + "end": 8219.08, + "probability": 0.9935 + }, + { + "start": 8219.08, + "end": 8222.38, + "probability": 0.9657 + }, + { + "start": 8222.44, + "end": 8224.72, + "probability": 0.6554 + }, + { + "start": 8224.88, + "end": 8225.99, + "probability": 0.6761 + }, + { + "start": 8227.1, + "end": 8231.76, + "probability": 0.9878 + }, + { + "start": 8231.76, + "end": 8236.08, + "probability": 0.9961 + }, + { + "start": 8236.22, + "end": 8236.62, + "probability": 0.6895 + }, + { + "start": 8237.38, + "end": 8240.03, + "probability": 0.8479 + }, + { + "start": 8240.62, + "end": 8242.98, + "probability": 0.7039 + }, + { + "start": 8243.08, + "end": 8245.12, + "probability": 0.9849 + }, + { + "start": 8245.34, + "end": 8247.48, + "probability": 0.6938 + }, + { + "start": 8247.92, + "end": 8251.96, + "probability": 0.7595 + }, + { + "start": 8252.34, + "end": 8252.82, + "probability": 0.8787 + } + ], + "segments_count": 2729, + "words_count": 14204, + "avg_words_per_segment": 5.2048, + "avg_segment_duration": 2.2012, + "avg_words_per_minute": 102.632, + "plenum_id": "115283", + "duration": 8303.84, + "title": null, + "plenum_date": "2023-03-21" +} \ No newline at end of file