diff --git "a/18759/metadata.json" "b/18759/metadata.json" new file mode 100644--- /dev/null +++ "b/18759/metadata.json" @@ -0,0 +1,71257 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "18759", + "quality_score": 0.8939, + "per_segment_quality_scores": [ + { + "start": 15.94, + "end": 20.52, + "probability": 0.0448 + }, + { + "start": 21.36, + "end": 21.72, + "probability": 0.1346 + }, + { + "start": 40.88, + "end": 41.3, + "probability": 0.1128 + }, + { + "start": 74.54, + "end": 79.6, + "probability": 0.4065 + }, + { + "start": 80.54, + "end": 86.58, + "probability": 0.7767 + }, + { + "start": 87.0, + "end": 89.54, + "probability": 0.992 + }, + { + "start": 91.0, + "end": 93.62, + "probability": 0.9476 + }, + { + "start": 97.16, + "end": 101.2, + "probability": 0.9728 + }, + { + "start": 102.36, + "end": 104.14, + "probability": 0.9927 + }, + { + "start": 106.26, + "end": 107.04, + "probability": 0.5785 + }, + { + "start": 107.06, + "end": 107.82, + "probability": 0.7844 + }, + { + "start": 107.92, + "end": 111.4, + "probability": 0.9355 + }, + { + "start": 111.5, + "end": 113.38, + "probability": 0.986 + }, + { + "start": 113.84, + "end": 115.38, + "probability": 0.9521 + }, + { + "start": 116.08, + "end": 116.62, + "probability": 0.4882 + }, + { + "start": 116.7, + "end": 117.82, + "probability": 0.8414 + }, + { + "start": 117.92, + "end": 121.4, + "probability": 0.9683 + }, + { + "start": 121.9, + "end": 124.88, + "probability": 0.9697 + }, + { + "start": 125.6, + "end": 129.84, + "probability": 0.892 + }, + { + "start": 131.28, + "end": 132.02, + "probability": 0.5883 + }, + { + "start": 133.08, + "end": 135.0, + "probability": 0.7863 + }, + { + "start": 135.32, + "end": 138.44, + "probability": 0.9205 + }, + { + "start": 138.92, + "end": 141.98, + "probability": 0.9585 + }, + { + "start": 142.5, + "end": 143.14, + "probability": 0.8765 + }, + { + "start": 143.42, + "end": 149.24, + "probability": 0.8974 + }, + { + "start": 149.62, + "end": 152.36, + "probability": 0.9288 + }, + { + "start": 152.94, + "end": 154.14, + "probability": 0.6677 + }, + { + "start": 155.04, + "end": 158.75, + "probability": 0.9502 + }, + { + "start": 159.1, + "end": 159.7, + "probability": 0.816 + }, + { + "start": 159.78, + "end": 160.04, + "probability": 0.3724 + }, + { + "start": 160.1, + "end": 160.58, + "probability": 0.6684 + }, + { + "start": 160.66, + "end": 161.88, + "probability": 0.9095 + }, + { + "start": 161.98, + "end": 163.42, + "probability": 0.9727 + }, + { + "start": 163.42, + "end": 164.16, + "probability": 0.8643 + }, + { + "start": 164.62, + "end": 166.22, + "probability": 0.8924 + }, + { + "start": 166.7, + "end": 167.32, + "probability": 0.9622 + }, + { + "start": 167.44, + "end": 169.66, + "probability": 0.9719 + }, + { + "start": 169.94, + "end": 170.6, + "probability": 0.9891 + }, + { + "start": 170.98, + "end": 171.68, + "probability": 0.9921 + }, + { + "start": 171.72, + "end": 172.32, + "probability": 0.9623 + }, + { + "start": 172.5, + "end": 172.84, + "probability": 0.7005 + }, + { + "start": 173.3, + "end": 174.88, + "probability": 0.9459 + }, + { + "start": 175.76, + "end": 176.62, + "probability": 0.3107 + }, + { + "start": 176.98, + "end": 177.6, + "probability": 0.7358 + }, + { + "start": 178.24, + "end": 178.92, + "probability": 0.7553 + }, + { + "start": 179.18, + "end": 179.66, + "probability": 0.7275 + }, + { + "start": 179.66, + "end": 184.9, + "probability": 0.7422 + }, + { + "start": 185.2, + "end": 189.6, + "probability": 0.7308 + }, + { + "start": 190.34, + "end": 193.6, + "probability": 0.9556 + }, + { + "start": 193.84, + "end": 194.66, + "probability": 0.8435 + }, + { + "start": 194.8, + "end": 195.56, + "probability": 0.5306 + }, + { + "start": 195.58, + "end": 195.68, + "probability": 0.4105 + }, + { + "start": 196.78, + "end": 199.16, + "probability": 0.9164 + }, + { + "start": 199.28, + "end": 202.84, + "probability": 0.6768 + }, + { + "start": 202.84, + "end": 202.84, + "probability": 0.6828 + }, + { + "start": 202.88, + "end": 207.7, + "probability": 0.9807 + }, + { + "start": 207.78, + "end": 209.88, + "probability": 0.8326 + }, + { + "start": 210.28, + "end": 213.22, + "probability": 0.789 + }, + { + "start": 213.44, + "end": 216.3, + "probability": 0.8083 + }, + { + "start": 216.3, + "end": 219.5, + "probability": 0.9932 + }, + { + "start": 219.94, + "end": 222.76, + "probability": 0.9907 + }, + { + "start": 223.22, + "end": 223.64, + "probability": 0.5153 + }, + { + "start": 224.08, + "end": 224.32, + "probability": 0.3843 + }, + { + "start": 226.96, + "end": 230.18, + "probability": 0.7659 + }, + { + "start": 231.84, + "end": 234.86, + "probability": 0.9239 + }, + { + "start": 235.74, + "end": 240.94, + "probability": 0.9695 + }, + { + "start": 241.54, + "end": 243.44, + "probability": 0.6734 + }, + { + "start": 244.22, + "end": 245.6, + "probability": 0.7561 + }, + { + "start": 246.64, + "end": 249.06, + "probability": 0.9855 + }, + { + "start": 250.7, + "end": 255.0, + "probability": 0.9772 + }, + { + "start": 255.8, + "end": 256.36, + "probability": 0.9661 + }, + { + "start": 257.64, + "end": 263.04, + "probability": 0.8926 + }, + { + "start": 264.3, + "end": 264.92, + "probability": 0.6664 + }, + { + "start": 265.54, + "end": 267.06, + "probability": 0.7695 + }, + { + "start": 267.98, + "end": 270.38, + "probability": 0.9852 + }, + { + "start": 270.72, + "end": 271.85, + "probability": 0.8842 + }, + { + "start": 272.62, + "end": 274.68, + "probability": 0.9235 + }, + { + "start": 275.28, + "end": 279.42, + "probability": 0.9911 + }, + { + "start": 279.42, + "end": 282.0, + "probability": 0.958 + }, + { + "start": 283.16, + "end": 285.28, + "probability": 0.8594 + }, + { + "start": 286.86, + "end": 288.22, + "probability": 0.6765 + }, + { + "start": 288.64, + "end": 289.34, + "probability": 0.859 + }, + { + "start": 289.52, + "end": 291.04, + "probability": 0.9858 + }, + { + "start": 291.9, + "end": 294.68, + "probability": 0.9932 + }, + { + "start": 295.6, + "end": 299.24, + "probability": 0.8436 + }, + { + "start": 299.88, + "end": 301.72, + "probability": 0.828 + }, + { + "start": 302.52, + "end": 307.55, + "probability": 0.8806 + }, + { + "start": 309.4, + "end": 312.08, + "probability": 0.9156 + }, + { + "start": 312.6, + "end": 314.01, + "probability": 0.9836 + }, + { + "start": 314.2, + "end": 317.74, + "probability": 0.854 + }, + { + "start": 318.54, + "end": 323.26, + "probability": 0.9501 + }, + { + "start": 323.64, + "end": 324.86, + "probability": 0.837 + }, + { + "start": 324.96, + "end": 325.55, + "probability": 0.8145 + }, + { + "start": 326.71, + "end": 330.48, + "probability": 0.7525 + }, + { + "start": 330.54, + "end": 331.93, + "probability": 0.8773 + }, + { + "start": 332.84, + "end": 338.22, + "probability": 0.9546 + }, + { + "start": 338.78, + "end": 340.02, + "probability": 0.7764 + }, + { + "start": 341.42, + "end": 343.2, + "probability": 0.6227 + }, + { + "start": 343.28, + "end": 346.08, + "probability": 0.9971 + }, + { + "start": 346.64, + "end": 352.86, + "probability": 0.9704 + }, + { + "start": 353.64, + "end": 357.84, + "probability": 0.9903 + }, + { + "start": 358.04, + "end": 359.8, + "probability": 0.9879 + }, + { + "start": 360.76, + "end": 361.04, + "probability": 0.6592 + }, + { + "start": 361.12, + "end": 362.42, + "probability": 0.8873 + }, + { + "start": 362.84, + "end": 363.3, + "probability": 0.3958 + }, + { + "start": 363.42, + "end": 365.28, + "probability": 0.9556 + }, + { + "start": 366.02, + "end": 366.98, + "probability": 0.9345 + }, + { + "start": 368.4, + "end": 369.3, + "probability": 0.9351 + }, + { + "start": 370.82, + "end": 372.26, + "probability": 0.9517 + }, + { + "start": 372.82, + "end": 372.94, + "probability": 0.0725 + }, + { + "start": 373.52, + "end": 374.68, + "probability": 0.3954 + }, + { + "start": 375.12, + "end": 375.68, + "probability": 0.9087 + }, + { + "start": 375.82, + "end": 378.22, + "probability": 0.8823 + }, + { + "start": 378.32, + "end": 382.44, + "probability": 0.9956 + }, + { + "start": 383.18, + "end": 385.82, + "probability": 0.9736 + }, + { + "start": 386.18, + "end": 388.56, + "probability": 0.9916 + }, + { + "start": 388.72, + "end": 391.46, + "probability": 0.9855 + }, + { + "start": 393.9, + "end": 394.66, + "probability": 0.6156 + }, + { + "start": 395.06, + "end": 397.88, + "probability": 0.9553 + }, + { + "start": 397.98, + "end": 400.86, + "probability": 0.9193 + }, + { + "start": 401.36, + "end": 403.3, + "probability": 0.8597 + }, + { + "start": 403.52, + "end": 405.72, + "probability": 0.9937 + }, + { + "start": 405.9, + "end": 408.08, + "probability": 0.974 + }, + { + "start": 408.22, + "end": 410.7, + "probability": 0.9951 + }, + { + "start": 411.36, + "end": 417.5, + "probability": 0.853 + }, + { + "start": 417.56, + "end": 419.76, + "probability": 0.9973 + }, + { + "start": 420.66, + "end": 423.84, + "probability": 0.9897 + }, + { + "start": 424.07, + "end": 426.94, + "probability": 0.6606 + }, + { + "start": 427.06, + "end": 430.24, + "probability": 0.9556 + }, + { + "start": 430.34, + "end": 433.6, + "probability": 0.9917 + }, + { + "start": 433.6, + "end": 436.9, + "probability": 0.9897 + }, + { + "start": 437.26, + "end": 438.42, + "probability": 0.5401 + }, + { + "start": 438.8, + "end": 442.44, + "probability": 0.6677 + }, + { + "start": 444.12, + "end": 445.8, + "probability": 0.7612 + }, + { + "start": 446.02, + "end": 446.82, + "probability": 0.6628 + }, + { + "start": 446.92, + "end": 448.0, + "probability": 0.5464 + }, + { + "start": 448.18, + "end": 450.14, + "probability": 0.95 + }, + { + "start": 451.2, + "end": 454.14, + "probability": 0.9343 + }, + { + "start": 454.6, + "end": 455.48, + "probability": 0.7142 + }, + { + "start": 455.58, + "end": 458.26, + "probability": 0.7537 + }, + { + "start": 459.86, + "end": 461.62, + "probability": 0.35 + }, + { + "start": 461.74, + "end": 462.9, + "probability": 0.7202 + }, + { + "start": 463.32, + "end": 466.78, + "probability": 0.9341 + }, + { + "start": 468.0, + "end": 468.0, + "probability": 0.6271 + }, + { + "start": 468.52, + "end": 469.62, + "probability": 0.9238 + }, + { + "start": 469.7, + "end": 475.34, + "probability": 0.9688 + }, + { + "start": 475.62, + "end": 476.32, + "probability": 0.9227 + }, + { + "start": 476.96, + "end": 478.02, + "probability": 0.9735 + }, + { + "start": 478.56, + "end": 480.1, + "probability": 0.6074 + }, + { + "start": 480.14, + "end": 481.06, + "probability": 0.7409 + }, + { + "start": 481.1, + "end": 481.55, + "probability": 0.8292 + }, + { + "start": 482.02, + "end": 483.58, + "probability": 0.688 + }, + { + "start": 484.36, + "end": 488.56, + "probability": 0.8107 + }, + { + "start": 489.14, + "end": 490.54, + "probability": 0.8296 + }, + { + "start": 491.38, + "end": 494.72, + "probability": 0.9427 + }, + { + "start": 494.8, + "end": 495.37, + "probability": 0.834 + }, + { + "start": 495.48, + "end": 497.86, + "probability": 0.9139 + }, + { + "start": 498.28, + "end": 500.9, + "probability": 0.9237 + }, + { + "start": 500.96, + "end": 502.9, + "probability": 0.9966 + }, + { + "start": 503.26, + "end": 506.92, + "probability": 0.8267 + }, + { + "start": 507.6, + "end": 508.0, + "probability": 0.8376 + }, + { + "start": 508.9, + "end": 509.8, + "probability": 0.9837 + }, + { + "start": 510.38, + "end": 510.9, + "probability": 0.525 + }, + { + "start": 512.18, + "end": 514.5, + "probability": 0.3333 + }, + { + "start": 514.5, + "end": 517.82, + "probability": 0.9132 + }, + { + "start": 518.64, + "end": 519.62, + "probability": 0.7979 + }, + { + "start": 519.7, + "end": 522.87, + "probability": 0.9744 + }, + { + "start": 524.9, + "end": 525.42, + "probability": 0.6691 + }, + { + "start": 525.46, + "end": 527.25, + "probability": 0.9829 + }, + { + "start": 527.9, + "end": 529.9, + "probability": 0.9305 + }, + { + "start": 529.96, + "end": 532.7, + "probability": 0.9865 + }, + { + "start": 532.78, + "end": 533.94, + "probability": 0.9264 + }, + { + "start": 534.4, + "end": 539.38, + "probability": 0.9967 + }, + { + "start": 539.38, + "end": 543.82, + "probability": 0.989 + }, + { + "start": 544.12, + "end": 546.46, + "probability": 0.9858 + }, + { + "start": 546.9, + "end": 547.92, + "probability": 0.7139 + }, + { + "start": 548.36, + "end": 549.26, + "probability": 0.3654 + }, + { + "start": 549.28, + "end": 549.42, + "probability": 0.0205 + }, + { + "start": 549.42, + "end": 551.24, + "probability": 0.6027 + }, + { + "start": 551.34, + "end": 553.38, + "probability": 0.9766 + }, + { + "start": 553.9, + "end": 556.94, + "probability": 0.9767 + }, + { + "start": 557.5, + "end": 558.44, + "probability": 0.6918 + }, + { + "start": 558.56, + "end": 559.72, + "probability": 0.9957 + }, + { + "start": 559.98, + "end": 563.58, + "probability": 0.9719 + }, + { + "start": 563.58, + "end": 563.6, + "probability": 0.5034 + }, + { + "start": 563.62, + "end": 563.84, + "probability": 0.5285 + }, + { + "start": 563.86, + "end": 563.86, + "probability": 0.4623 + }, + { + "start": 563.88, + "end": 565.3, + "probability": 0.8514 + }, + { + "start": 565.42, + "end": 566.26, + "probability": 0.8126 + }, + { + "start": 566.72, + "end": 567.12, + "probability": 0.3913 + }, + { + "start": 567.12, + "end": 568.02, + "probability": 0.8813 + }, + { + "start": 568.58, + "end": 570.26, + "probability": 0.8055 + }, + { + "start": 570.78, + "end": 571.56, + "probability": 0.9646 + }, + { + "start": 572.2, + "end": 574.0, + "probability": 0.8638 + }, + { + "start": 574.4, + "end": 576.2, + "probability": 0.7686 + }, + { + "start": 576.48, + "end": 577.56, + "probability": 0.9813 + }, + { + "start": 578.1, + "end": 578.48, + "probability": 0.7766 + }, + { + "start": 578.74, + "end": 578.84, + "probability": 0.2638 + }, + { + "start": 578.84, + "end": 578.84, + "probability": 0.3994 + }, + { + "start": 578.84, + "end": 582.72, + "probability": 0.929 + }, + { + "start": 583.76, + "end": 588.34, + "probability": 0.9786 + }, + { + "start": 589.42, + "end": 591.9, + "probability": 0.9822 + }, + { + "start": 592.02, + "end": 593.78, + "probability": 0.9958 + }, + { + "start": 594.32, + "end": 597.74, + "probability": 0.9639 + }, + { + "start": 599.32, + "end": 602.44, + "probability": 0.4134 + }, + { + "start": 602.92, + "end": 603.73, + "probability": 0.7012 + }, + { + "start": 604.12, + "end": 606.44, + "probability": 0.8473 + }, + { + "start": 607.66, + "end": 609.02, + "probability": 0.9287 + }, + { + "start": 609.36, + "end": 610.64, + "probability": 0.9225 + }, + { + "start": 611.0, + "end": 612.6, + "probability": 0.8274 + }, + { + "start": 613.14, + "end": 614.84, + "probability": 0.9795 + }, + { + "start": 614.84, + "end": 615.88, + "probability": 0.8955 + }, + { + "start": 616.02, + "end": 617.84, + "probability": 0.5915 + }, + { + "start": 617.9, + "end": 620.22, + "probability": 0.8881 + }, + { + "start": 620.36, + "end": 621.72, + "probability": 0.8438 + }, + { + "start": 622.24, + "end": 623.66, + "probability": 0.8286 + }, + { + "start": 623.86, + "end": 625.4, + "probability": 0.2465 + }, + { + "start": 625.4, + "end": 625.96, + "probability": 0.4731 + }, + { + "start": 625.96, + "end": 627.32, + "probability": 0.9581 + }, + { + "start": 627.48, + "end": 630.8, + "probability": 0.273 + }, + { + "start": 631.74, + "end": 632.28, + "probability": 0.0053 + }, + { + "start": 632.28, + "end": 632.28, + "probability": 0.0274 + }, + { + "start": 632.28, + "end": 632.72, + "probability": 0.4041 + }, + { + "start": 632.9, + "end": 633.42, + "probability": 0.7672 + }, + { + "start": 633.5, + "end": 635.42, + "probability": 0.8287 + }, + { + "start": 635.84, + "end": 637.52, + "probability": 0.8857 + }, + { + "start": 637.83, + "end": 638.18, + "probability": 0.5915 + }, + { + "start": 639.32, + "end": 639.56, + "probability": 0.0857 + }, + { + "start": 639.56, + "end": 639.56, + "probability": 0.4313 + }, + { + "start": 639.56, + "end": 641.0, + "probability": 0.5076 + }, + { + "start": 642.32, + "end": 644.18, + "probability": 0.7002 + }, + { + "start": 644.48, + "end": 644.72, + "probability": 0.4349 + }, + { + "start": 645.04, + "end": 645.34, + "probability": 0.7694 + }, + { + "start": 646.68, + "end": 647.64, + "probability": 0.9463 + }, + { + "start": 648.36, + "end": 649.78, + "probability": 0.6683 + }, + { + "start": 649.82, + "end": 652.62, + "probability": 0.9809 + }, + { + "start": 653.12, + "end": 654.0, + "probability": 0.6382 + }, + { + "start": 654.42, + "end": 655.26, + "probability": 0.8056 + }, + { + "start": 655.38, + "end": 659.94, + "probability": 0.8247 + }, + { + "start": 660.34, + "end": 663.7, + "probability": 0.9128 + }, + { + "start": 664.3, + "end": 665.54, + "probability": 0.9741 + }, + { + "start": 666.65, + "end": 670.34, + "probability": 0.9053 + }, + { + "start": 670.96, + "end": 674.42, + "probability": 0.6782 + }, + { + "start": 675.08, + "end": 678.68, + "probability": 0.8794 + }, + { + "start": 679.26, + "end": 680.36, + "probability": 0.9445 + }, + { + "start": 681.0, + "end": 682.5, + "probability": 0.8452 + }, + { + "start": 682.88, + "end": 684.32, + "probability": 0.9951 + }, + { + "start": 685.22, + "end": 688.8, + "probability": 0.9406 + }, + { + "start": 689.18, + "end": 690.8, + "probability": 0.8898 + }, + { + "start": 691.34, + "end": 694.62, + "probability": 0.9785 + }, + { + "start": 695.44, + "end": 697.58, + "probability": 0.7628 + }, + { + "start": 698.42, + "end": 700.28, + "probability": 0.961 + }, + { + "start": 700.44, + "end": 703.16, + "probability": 0.6273 + }, + { + "start": 703.26, + "end": 704.74, + "probability": 0.2913 + }, + { + "start": 704.82, + "end": 706.84, + "probability": 0.8688 + }, + { + "start": 708.0, + "end": 711.02, + "probability": 0.87 + }, + { + "start": 711.94, + "end": 714.1, + "probability": 0.9912 + }, + { + "start": 714.66, + "end": 717.31, + "probability": 0.9945 + }, + { + "start": 717.52, + "end": 719.6, + "probability": 0.9215 + }, + { + "start": 720.14, + "end": 722.32, + "probability": 0.6283 + }, + { + "start": 722.32, + "end": 723.36, + "probability": 0.9071 + }, + { + "start": 723.96, + "end": 725.74, + "probability": 0.9849 + }, + { + "start": 726.14, + "end": 727.62, + "probability": 0.8603 + }, + { + "start": 728.34, + "end": 730.58, + "probability": 0.8599 + }, + { + "start": 730.98, + "end": 731.98, + "probability": 0.6714 + }, + { + "start": 732.1, + "end": 733.56, + "probability": 0.8846 + }, + { + "start": 733.7, + "end": 737.17, + "probability": 0.9727 + }, + { + "start": 737.76, + "end": 739.44, + "probability": 0.9917 + }, + { + "start": 740.02, + "end": 745.06, + "probability": 0.9951 + }, + { + "start": 745.27, + "end": 746.2, + "probability": 0.9617 + }, + { + "start": 747.1, + "end": 748.54, + "probability": 0.9097 + }, + { + "start": 750.18, + "end": 752.5, + "probability": 0.9281 + }, + { + "start": 752.66, + "end": 754.42, + "probability": 0.9357 + }, + { + "start": 754.76, + "end": 758.82, + "probability": 0.9103 + }, + { + "start": 759.4, + "end": 759.74, + "probability": 0.7164 + }, + { + "start": 759.82, + "end": 763.08, + "probability": 0.9503 + }, + { + "start": 763.32, + "end": 763.99, + "probability": 0.7806 + }, + { + "start": 764.58, + "end": 764.82, + "probability": 0.7084 + }, + { + "start": 764.98, + "end": 768.22, + "probability": 0.9485 + }, + { + "start": 769.74, + "end": 770.66, + "probability": 0.8203 + }, + { + "start": 771.42, + "end": 772.62, + "probability": 0.9888 + }, + { + "start": 773.18, + "end": 774.6, + "probability": 0.7255 + }, + { + "start": 774.64, + "end": 776.47, + "probability": 0.9946 + }, + { + "start": 776.94, + "end": 778.62, + "probability": 0.9881 + }, + { + "start": 778.94, + "end": 779.5, + "probability": 0.4194 + }, + { + "start": 780.66, + "end": 781.36, + "probability": 0.5922 + }, + { + "start": 782.16, + "end": 782.84, + "probability": 0.8098 + }, + { + "start": 783.4, + "end": 788.3, + "probability": 0.9828 + }, + { + "start": 788.66, + "end": 789.56, + "probability": 0.7756 + }, + { + "start": 790.78, + "end": 793.3, + "probability": 0.8701 + }, + { + "start": 794.1, + "end": 795.02, + "probability": 0.8756 + }, + { + "start": 795.18, + "end": 795.94, + "probability": 0.4226 + }, + { + "start": 796.42, + "end": 798.88, + "probability": 0.911 + }, + { + "start": 798.94, + "end": 799.78, + "probability": 0.6685 + }, + { + "start": 800.54, + "end": 801.14, + "probability": 0.9456 + }, + { + "start": 802.12, + "end": 804.06, + "probability": 0.9175 + }, + { + "start": 804.64, + "end": 806.6, + "probability": 0.9854 + }, + { + "start": 807.18, + "end": 810.88, + "probability": 0.7811 + }, + { + "start": 811.78, + "end": 812.62, + "probability": 0.4639 + }, + { + "start": 813.24, + "end": 814.72, + "probability": 0.3082 + }, + { + "start": 815.04, + "end": 816.1, + "probability": 0.0421 + }, + { + "start": 816.1, + "end": 817.68, + "probability": 0.8379 + }, + { + "start": 817.86, + "end": 818.9, + "probability": 0.8511 + }, + { + "start": 819.28, + "end": 821.32, + "probability": 0.2949 + }, + { + "start": 821.32, + "end": 824.68, + "probability": 0.9521 + }, + { + "start": 824.8, + "end": 826.88, + "probability": 0.2234 + }, + { + "start": 827.04, + "end": 829.18, + "probability": 0.75 + }, + { + "start": 829.68, + "end": 832.5, + "probability": 0.103 + }, + { + "start": 833.82, + "end": 834.16, + "probability": 0.1153 + }, + { + "start": 835.02, + "end": 836.84, + "probability": 0.2957 + }, + { + "start": 837.08, + "end": 839.62, + "probability": 0.8384 + }, + { + "start": 839.82, + "end": 840.66, + "probability": 0.6894 + }, + { + "start": 840.82, + "end": 842.78, + "probability": 0.98 + }, + { + "start": 843.66, + "end": 847.42, + "probability": 0.9092 + }, + { + "start": 847.7, + "end": 849.24, + "probability": 0.8313 + }, + { + "start": 849.34, + "end": 850.16, + "probability": 0.4883 + }, + { + "start": 850.84, + "end": 852.64, + "probability": 0.8532 + }, + { + "start": 853.78, + "end": 857.24, + "probability": 0.8813 + }, + { + "start": 858.26, + "end": 861.82, + "probability": 0.9876 + }, + { + "start": 861.88, + "end": 868.16, + "probability": 0.991 + }, + { + "start": 868.2, + "end": 871.02, + "probability": 0.8257 + }, + { + "start": 871.06, + "end": 873.34, + "probability": 0.8579 + }, + { + "start": 873.46, + "end": 873.9, + "probability": 0.6518 + }, + { + "start": 873.9, + "end": 876.84, + "probability": 0.5085 + }, + { + "start": 876.9, + "end": 881.68, + "probability": 0.7598 + }, + { + "start": 881.68, + "end": 882.32, + "probability": 0.2019 + }, + { + "start": 883.02, + "end": 883.82, + "probability": 0.6782 + }, + { + "start": 884.56, + "end": 886.42, + "probability": 0.8127 + }, + { + "start": 886.7, + "end": 887.21, + "probability": 0.7617 + }, + { + "start": 887.24, + "end": 889.46, + "probability": 0.7803 + }, + { + "start": 889.8, + "end": 890.7, + "probability": 0.5016 + }, + { + "start": 890.94, + "end": 893.5, + "probability": 0.8242 + }, + { + "start": 893.7, + "end": 894.16, + "probability": 0.8726 + }, + { + "start": 894.62, + "end": 895.72, + "probability": 0.8056 + }, + { + "start": 896.36, + "end": 897.49, + "probability": 0.7868 + }, + { + "start": 897.98, + "end": 901.18, + "probability": 0.336 + }, + { + "start": 901.24, + "end": 902.08, + "probability": 0.4091 + }, + { + "start": 903.1, + "end": 904.72, + "probability": 0.6046 + }, + { + "start": 904.72, + "end": 905.48, + "probability": 0.8571 + }, + { + "start": 905.84, + "end": 907.18, + "probability": 0.7572 + }, + { + "start": 907.26, + "end": 908.0, + "probability": 0.8177 + }, + { + "start": 908.18, + "end": 910.2, + "probability": 0.9681 + }, + { + "start": 910.38, + "end": 913.92, + "probability": 0.3841 + }, + { + "start": 913.92, + "end": 913.92, + "probability": 0.1295 + }, + { + "start": 914.08, + "end": 914.48, + "probability": 0.4881 + }, + { + "start": 914.56, + "end": 916.1, + "probability": 0.9155 + }, + { + "start": 916.32, + "end": 918.1, + "probability": 0.895 + }, + { + "start": 918.32, + "end": 919.44, + "probability": 0.6264 + }, + { + "start": 919.86, + "end": 921.0, + "probability": 0.9663 + }, + { + "start": 921.08, + "end": 921.38, + "probability": 0.3254 + }, + { + "start": 921.54, + "end": 927.0, + "probability": 0.9585 + }, + { + "start": 927.6, + "end": 930.4, + "probability": 0.9 + }, + { + "start": 930.94, + "end": 932.18, + "probability": 0.9725 + }, + { + "start": 932.26, + "end": 933.46, + "probability": 0.8105 + }, + { + "start": 934.62, + "end": 936.59, + "probability": 0.8635 + }, + { + "start": 936.9, + "end": 936.9, + "probability": 0.5017 + }, + { + "start": 936.9, + "end": 938.3, + "probability": 0.7887 + }, + { + "start": 938.82, + "end": 939.72, + "probability": 0.96 + }, + { + "start": 939.94, + "end": 942.22, + "probability": 0.9244 + }, + { + "start": 942.38, + "end": 945.1, + "probability": 0.9922 + }, + { + "start": 945.8, + "end": 946.88, + "probability": 0.9841 + }, + { + "start": 948.06, + "end": 949.6, + "probability": 0.5284 + }, + { + "start": 950.7, + "end": 952.36, + "probability": 0.9278 + }, + { + "start": 952.46, + "end": 952.85, + "probability": 0.9619 + }, + { + "start": 953.04, + "end": 954.88, + "probability": 0.9972 + }, + { + "start": 955.46, + "end": 956.24, + "probability": 0.9941 + }, + { + "start": 956.92, + "end": 959.46, + "probability": 0.8181 + }, + { + "start": 960.24, + "end": 962.26, + "probability": 0.8777 + }, + { + "start": 962.8, + "end": 964.08, + "probability": 0.648 + }, + { + "start": 964.48, + "end": 966.02, + "probability": 0.8953 + }, + { + "start": 966.42, + "end": 968.8, + "probability": 0.9389 + }, + { + "start": 968.88, + "end": 971.94, + "probability": 0.7694 + }, + { + "start": 972.02, + "end": 975.32, + "probability": 0.9565 + }, + { + "start": 975.84, + "end": 977.66, + "probability": 0.881 + }, + { + "start": 978.32, + "end": 979.36, + "probability": 0.8191 + }, + { + "start": 979.36, + "end": 980.18, + "probability": 0.7481 + }, + { + "start": 980.32, + "end": 985.56, + "probability": 0.8177 + }, + { + "start": 985.68, + "end": 987.6, + "probability": 0.735 + }, + { + "start": 987.64, + "end": 988.88, + "probability": 0.8983 + }, + { + "start": 990.83, + "end": 993.52, + "probability": 0.6854 + }, + { + "start": 994.42, + "end": 1000.02, + "probability": 0.9798 + }, + { + "start": 1001.12, + "end": 1004.1, + "probability": 0.8748 + }, + { + "start": 1004.1, + "end": 1008.26, + "probability": 0.8284 + }, + { + "start": 1009.82, + "end": 1012.98, + "probability": 0.9756 + }, + { + "start": 1013.3, + "end": 1014.74, + "probability": 0.6005 + }, + { + "start": 1014.76, + "end": 1016.52, + "probability": 0.9302 + }, + { + "start": 1018.06, + "end": 1019.7, + "probability": 0.7998 + }, + { + "start": 1019.86, + "end": 1020.06, + "probability": 0.7323 + }, + { + "start": 1022.52, + "end": 1023.58, + "probability": 0.6292 + }, + { + "start": 1024.44, + "end": 1025.38, + "probability": 0.645 + }, + { + "start": 1027.64, + "end": 1032.96, + "probability": 0.9953 + }, + { + "start": 1035.18, + "end": 1039.22, + "probability": 0.9844 + }, + { + "start": 1040.8, + "end": 1043.42, + "probability": 0.9924 + }, + { + "start": 1043.66, + "end": 1046.88, + "probability": 0.9539 + }, + { + "start": 1048.86, + "end": 1055.12, + "probability": 0.9844 + }, + { + "start": 1055.78, + "end": 1057.7, + "probability": 0.774 + }, + { + "start": 1058.26, + "end": 1059.22, + "probability": 0.529 + }, + { + "start": 1060.34, + "end": 1064.96, + "probability": 0.9782 + }, + { + "start": 1065.84, + "end": 1068.5, + "probability": 0.6498 + }, + { + "start": 1069.16, + "end": 1069.7, + "probability": 0.8887 + }, + { + "start": 1071.06, + "end": 1071.6, + "probability": 0.819 + }, + { + "start": 1071.8, + "end": 1072.24, + "probability": 0.9752 + }, + { + "start": 1072.32, + "end": 1073.82, + "probability": 0.8899 + }, + { + "start": 1073.98, + "end": 1076.12, + "probability": 0.9983 + }, + { + "start": 1076.86, + "end": 1078.22, + "probability": 0.9839 + }, + { + "start": 1078.84, + "end": 1083.84, + "probability": 0.9972 + }, + { + "start": 1085.26, + "end": 1089.58, + "probability": 0.9927 + }, + { + "start": 1089.64, + "end": 1090.38, + "probability": 0.8881 + }, + { + "start": 1090.42, + "end": 1094.76, + "probability": 0.9953 + }, + { + "start": 1095.04, + "end": 1096.36, + "probability": 0.6635 + }, + { + "start": 1098.08, + "end": 1102.4, + "probability": 0.9846 + }, + { + "start": 1102.4, + "end": 1107.32, + "probability": 0.9909 + }, + { + "start": 1108.2, + "end": 1109.66, + "probability": 0.9401 + }, + { + "start": 1110.94, + "end": 1116.74, + "probability": 0.9049 + }, + { + "start": 1117.56, + "end": 1121.58, + "probability": 0.9813 + }, + { + "start": 1123.46, + "end": 1125.02, + "probability": 0.7892 + }, + { + "start": 1125.14, + "end": 1127.58, + "probability": 0.9234 + }, + { + "start": 1128.18, + "end": 1130.0, + "probability": 0.9587 + }, + { + "start": 1130.58, + "end": 1134.86, + "probability": 0.816 + }, + { + "start": 1134.92, + "end": 1138.78, + "probability": 0.9837 + }, + { + "start": 1139.88, + "end": 1142.6, + "probability": 0.9778 + }, + { + "start": 1143.42, + "end": 1147.24, + "probability": 0.872 + }, + { + "start": 1147.9, + "end": 1149.46, + "probability": 0.7712 + }, + { + "start": 1150.62, + "end": 1153.98, + "probability": 0.9909 + }, + { + "start": 1153.98, + "end": 1158.26, + "probability": 0.8322 + }, + { + "start": 1158.74, + "end": 1161.66, + "probability": 0.9726 + }, + { + "start": 1161.78, + "end": 1164.68, + "probability": 0.9879 + }, + { + "start": 1165.12, + "end": 1165.32, + "probability": 0.7388 + }, + { + "start": 1166.4, + "end": 1167.5, + "probability": 0.6001 + }, + { + "start": 1168.38, + "end": 1169.3, + "probability": 0.5952 + }, + { + "start": 1169.94, + "end": 1170.98, + "probability": 0.9718 + }, + { + "start": 1173.1, + "end": 1174.06, + "probability": 0.813 + }, + { + "start": 1174.24, + "end": 1174.7, + "probability": 0.9257 + }, + { + "start": 1174.78, + "end": 1175.24, + "probability": 0.5539 + }, + { + "start": 1175.26, + "end": 1176.14, + "probability": 0.8566 + }, + { + "start": 1177.14, + "end": 1179.76, + "probability": 0.894 + }, + { + "start": 1181.14, + "end": 1183.02, + "probability": 0.777 + }, + { + "start": 1183.34, + "end": 1184.54, + "probability": 0.9776 + }, + { + "start": 1184.68, + "end": 1187.64, + "probability": 0.9763 + }, + { + "start": 1187.82, + "end": 1189.04, + "probability": 0.711 + }, + { + "start": 1189.64, + "end": 1193.9, + "probability": 0.9945 + }, + { + "start": 1194.96, + "end": 1197.52, + "probability": 0.9969 + }, + { + "start": 1198.5, + "end": 1198.72, + "probability": 0.5039 + }, + { + "start": 1199.1, + "end": 1204.82, + "probability": 0.7932 + }, + { + "start": 1205.14, + "end": 1211.1, + "probability": 0.9985 + }, + { + "start": 1211.34, + "end": 1213.9, + "probability": 0.9733 + }, + { + "start": 1214.9, + "end": 1215.48, + "probability": 0.9236 + }, + { + "start": 1215.62, + "end": 1216.86, + "probability": 0.7331 + }, + { + "start": 1217.17, + "end": 1220.64, + "probability": 0.9916 + }, + { + "start": 1221.68, + "end": 1229.96, + "probability": 0.9926 + }, + { + "start": 1230.72, + "end": 1235.8, + "probability": 0.8246 + }, + { + "start": 1236.84, + "end": 1237.43, + "probability": 0.7305 + }, + { + "start": 1237.7, + "end": 1240.76, + "probability": 0.875 + }, + { + "start": 1240.8, + "end": 1241.88, + "probability": 0.8476 + }, + { + "start": 1242.98, + "end": 1245.32, + "probability": 0.9543 + }, + { + "start": 1246.9, + "end": 1248.32, + "probability": 0.8923 + }, + { + "start": 1249.8, + "end": 1252.58, + "probability": 0.9559 + }, + { + "start": 1253.12, + "end": 1254.32, + "probability": 0.7542 + }, + { + "start": 1255.62, + "end": 1256.9, + "probability": 0.7876 + }, + { + "start": 1257.62, + "end": 1259.62, + "probability": 0.5461 + }, + { + "start": 1259.72, + "end": 1260.3, + "probability": 0.427 + }, + { + "start": 1260.64, + "end": 1263.05, + "probability": 0.54 + }, + { + "start": 1265.1, + "end": 1266.7, + "probability": 0.7966 + }, + { + "start": 1267.32, + "end": 1267.74, + "probability": 0.883 + }, + { + "start": 1268.28, + "end": 1270.62, + "probability": 0.9027 + }, + { + "start": 1271.84, + "end": 1276.24, + "probability": 0.8825 + }, + { + "start": 1276.24, + "end": 1280.1, + "probability": 0.9585 + }, + { + "start": 1280.14, + "end": 1282.02, + "probability": 0.8918 + }, + { + "start": 1282.66, + "end": 1283.1, + "probability": 0.7573 + }, + { + "start": 1283.18, + "end": 1287.78, + "probability": 0.9893 + }, + { + "start": 1287.82, + "end": 1289.04, + "probability": 0.9116 + }, + { + "start": 1289.64, + "end": 1291.4, + "probability": 0.9306 + }, + { + "start": 1291.98, + "end": 1294.36, + "probability": 0.6964 + }, + { + "start": 1294.52, + "end": 1300.06, + "probability": 0.9926 + }, + { + "start": 1300.22, + "end": 1301.22, + "probability": 0.8786 + }, + { + "start": 1301.32, + "end": 1301.94, + "probability": 0.9769 + }, + { + "start": 1302.46, + "end": 1303.26, + "probability": 0.6736 + }, + { + "start": 1303.38, + "end": 1303.56, + "probability": 0.9011 + }, + { + "start": 1304.46, + "end": 1305.8, + "probability": 0.8625 + }, + { + "start": 1306.28, + "end": 1309.1, + "probability": 0.7511 + }, + { + "start": 1309.82, + "end": 1312.9, + "probability": 0.9995 + }, + { + "start": 1313.64, + "end": 1316.7, + "probability": 0.7854 + }, + { + "start": 1317.78, + "end": 1319.18, + "probability": 0.6486 + }, + { + "start": 1321.27, + "end": 1328.9, + "probability": 0.765 + }, + { + "start": 1329.32, + "end": 1330.48, + "probability": 0.8124 + }, + { + "start": 1330.64, + "end": 1334.2, + "probability": 0.9763 + }, + { + "start": 1335.22, + "end": 1336.34, + "probability": 0.8782 + }, + { + "start": 1336.66, + "end": 1341.72, + "probability": 0.9958 + }, + { + "start": 1342.0, + "end": 1346.99, + "probability": 0.795 + }, + { + "start": 1349.0, + "end": 1350.38, + "probability": 0.4151 + }, + { + "start": 1351.17, + "end": 1354.48, + "probability": 0.8362 + }, + { + "start": 1354.74, + "end": 1357.7, + "probability": 0.9425 + }, + { + "start": 1357.76, + "end": 1359.12, + "probability": 0.4086 + }, + { + "start": 1359.12, + "end": 1359.94, + "probability": 0.803 + }, + { + "start": 1360.04, + "end": 1362.52, + "probability": 0.889 + }, + { + "start": 1362.86, + "end": 1364.6, + "probability": 0.4671 + }, + { + "start": 1365.06, + "end": 1365.34, + "probability": 0.8308 + }, + { + "start": 1365.4, + "end": 1366.78, + "probability": 0.6531 + }, + { + "start": 1366.82, + "end": 1367.8, + "probability": 0.9575 + }, + { + "start": 1367.88, + "end": 1368.7, + "probability": 0.9424 + }, + { + "start": 1369.44, + "end": 1372.22, + "probability": 0.8634 + }, + { + "start": 1372.8, + "end": 1375.58, + "probability": 0.9649 + }, + { + "start": 1375.94, + "end": 1377.54, + "probability": 0.7542 + }, + { + "start": 1377.84, + "end": 1379.44, + "probability": 0.7973 + }, + { + "start": 1380.34, + "end": 1381.74, + "probability": 0.9976 + }, + { + "start": 1382.64, + "end": 1386.64, + "probability": 0.7456 + }, + { + "start": 1387.68, + "end": 1387.7, + "probability": 0.1608 + }, + { + "start": 1388.48, + "end": 1391.46, + "probability": 0.8947 + }, + { + "start": 1392.14, + "end": 1397.22, + "probability": 0.9758 + }, + { + "start": 1398.52, + "end": 1401.28, + "probability": 0.9898 + }, + { + "start": 1402.04, + "end": 1405.12, + "probability": 0.7174 + }, + { + "start": 1405.2, + "end": 1407.76, + "probability": 0.9863 + }, + { + "start": 1408.24, + "end": 1408.34, + "probability": 0.138 + }, + { + "start": 1408.42, + "end": 1412.6, + "probability": 0.9937 + }, + { + "start": 1413.3, + "end": 1414.72, + "probability": 0.9792 + }, + { + "start": 1415.02, + "end": 1417.44, + "probability": 0.6143 + }, + { + "start": 1417.78, + "end": 1418.96, + "probability": 0.7427 + }, + { + "start": 1419.46, + "end": 1421.4, + "probability": 0.9456 + }, + { + "start": 1421.82, + "end": 1425.08, + "probability": 0.9904 + }, + { + "start": 1425.16, + "end": 1427.36, + "probability": 0.9684 + }, + { + "start": 1427.72, + "end": 1429.56, + "probability": 0.9371 + }, + { + "start": 1430.02, + "end": 1432.64, + "probability": 0.8131 + }, + { + "start": 1432.76, + "end": 1433.54, + "probability": 0.5715 + }, + { + "start": 1433.56, + "end": 1436.3, + "probability": 0.959 + }, + { + "start": 1436.4, + "end": 1437.04, + "probability": 0.8328 + }, + { + "start": 1437.22, + "end": 1438.18, + "probability": 0.7491 + }, + { + "start": 1438.72, + "end": 1441.76, + "probability": 0.9043 + }, + { + "start": 1442.1, + "end": 1442.56, + "probability": 0.4366 + }, + { + "start": 1442.7, + "end": 1442.7, + "probability": 0.3796 + }, + { + "start": 1442.7, + "end": 1442.7, + "probability": 0.1814 + }, + { + "start": 1442.82, + "end": 1444.84, + "probability": 0.7381 + }, + { + "start": 1447.24, + "end": 1447.24, + "probability": 0.1075 + }, + { + "start": 1447.24, + "end": 1447.24, + "probability": 0.0221 + }, + { + "start": 1447.24, + "end": 1447.24, + "probability": 0.0644 + }, + { + "start": 1447.3, + "end": 1449.82, + "probability": 0.7052 + }, + { + "start": 1449.98, + "end": 1451.8, + "probability": 0.9043 + }, + { + "start": 1452.04, + "end": 1452.94, + "probability": 0.74 + }, + { + "start": 1453.0, + "end": 1453.32, + "probability": 0.7782 + }, + { + "start": 1453.38, + "end": 1457.0, + "probability": 0.9445 + }, + { + "start": 1458.06, + "end": 1460.58, + "probability": 0.7659 + }, + { + "start": 1460.96, + "end": 1461.68, + "probability": 0.7795 + }, + { + "start": 1462.2, + "end": 1462.82, + "probability": 0.432 + }, + { + "start": 1463.2, + "end": 1463.54, + "probability": 0.7904 + }, + { + "start": 1463.58, + "end": 1464.16, + "probability": 0.4739 + }, + { + "start": 1464.32, + "end": 1467.12, + "probability": 0.6891 + }, + { + "start": 1469.6, + "end": 1470.7, + "probability": 0.8177 + }, + { + "start": 1471.14, + "end": 1471.54, + "probability": 0.5678 + }, + { + "start": 1471.66, + "end": 1474.24, + "probability": 0.5345 + }, + { + "start": 1474.26, + "end": 1474.89, + "probability": 0.2725 + }, + { + "start": 1476.04, + "end": 1477.66, + "probability": 0.8444 + }, + { + "start": 1478.8, + "end": 1480.72, + "probability": 0.1505 + }, + { + "start": 1482.1, + "end": 1482.74, + "probability": 0.776 + }, + { + "start": 1483.34, + "end": 1484.5, + "probability": 0.7136 + }, + { + "start": 1484.72, + "end": 1487.58, + "probability": 0.3175 + }, + { + "start": 1487.9, + "end": 1488.42, + "probability": 0.5808 + }, + { + "start": 1488.66, + "end": 1491.24, + "probability": 0.686 + }, + { + "start": 1491.84, + "end": 1493.96, + "probability": 0.1451 + }, + { + "start": 1494.26, + "end": 1495.44, + "probability": 0.6507 + }, + { + "start": 1496.24, + "end": 1498.92, + "probability": 0.5586 + }, + { + "start": 1499.5, + "end": 1502.66, + "probability": 0.5678 + }, + { + "start": 1502.98, + "end": 1503.2, + "probability": 0.5941 + }, + { + "start": 1504.64, + "end": 1507.18, + "probability": 0.8712 + }, + { + "start": 1508.3, + "end": 1511.86, + "probability": 0.7301 + }, + { + "start": 1511.9, + "end": 1516.58, + "probability": 0.9438 + }, + { + "start": 1517.7, + "end": 1519.18, + "probability": 0.7114 + }, + { + "start": 1519.8, + "end": 1525.46, + "probability": 0.9799 + }, + { + "start": 1525.46, + "end": 1528.94, + "probability": 0.998 + }, + { + "start": 1529.7, + "end": 1530.72, + "probability": 0.911 + }, + { + "start": 1531.37, + "end": 1534.86, + "probability": 0.7866 + }, + { + "start": 1535.9, + "end": 1538.04, + "probability": 0.9849 + }, + { + "start": 1538.78, + "end": 1541.9, + "probability": 0.9127 + }, + { + "start": 1542.64, + "end": 1548.2, + "probability": 0.8807 + }, + { + "start": 1548.7, + "end": 1552.62, + "probability": 0.8151 + }, + { + "start": 1552.86, + "end": 1554.06, + "probability": 0.9292 + }, + { + "start": 1554.42, + "end": 1555.4, + "probability": 0.5127 + }, + { + "start": 1555.82, + "end": 1556.54, + "probability": 0.8192 + }, + { + "start": 1556.62, + "end": 1557.82, + "probability": 0.8445 + }, + { + "start": 1560.78, + "end": 1561.62, + "probability": 0.7834 + }, + { + "start": 1562.28, + "end": 1567.4, + "probability": 0.7907 + }, + { + "start": 1567.54, + "end": 1570.5, + "probability": 0.8125 + }, + { + "start": 1570.84, + "end": 1574.02, + "probability": 0.9955 + }, + { + "start": 1574.04, + "end": 1574.28, + "probability": 0.8414 + }, + { + "start": 1575.62, + "end": 1576.06, + "probability": 0.5241 + }, + { + "start": 1576.58, + "end": 1577.72, + "probability": 0.8492 + }, + { + "start": 1578.46, + "end": 1579.12, + "probability": 0.6074 + }, + { + "start": 1580.48, + "end": 1581.92, + "probability": 0.8499 + }, + { + "start": 1582.92, + "end": 1584.96, + "probability": 0.9887 + }, + { + "start": 1586.36, + "end": 1588.54, + "probability": 0.9006 + }, + { + "start": 1589.04, + "end": 1594.82, + "probability": 0.9399 + }, + { + "start": 1596.06, + "end": 1596.92, + "probability": 0.8255 + }, + { + "start": 1597.08, + "end": 1598.86, + "probability": 0.9871 + }, + { + "start": 1598.9, + "end": 1600.76, + "probability": 0.8832 + }, + { + "start": 1601.56, + "end": 1606.16, + "probability": 0.9326 + }, + { + "start": 1606.18, + "end": 1613.1, + "probability": 0.9585 + }, + { + "start": 1613.18, + "end": 1613.78, + "probability": 0.7736 + }, + { + "start": 1613.84, + "end": 1614.66, + "probability": 0.9846 + }, + { + "start": 1615.52, + "end": 1617.5, + "probability": 0.8036 + }, + { + "start": 1619.15, + "end": 1620.84, + "probability": 0.8704 + }, + { + "start": 1621.0, + "end": 1622.05, + "probability": 0.9501 + }, + { + "start": 1622.26, + "end": 1625.5, + "probability": 0.9921 + }, + { + "start": 1625.96, + "end": 1626.38, + "probability": 0.9536 + }, + { + "start": 1626.48, + "end": 1627.16, + "probability": 0.9746 + }, + { + "start": 1627.16, + "end": 1628.74, + "probability": 0.9932 + }, + { + "start": 1628.88, + "end": 1631.16, + "probability": 0.4875 + }, + { + "start": 1631.62, + "end": 1634.96, + "probability": 0.5527 + }, + { + "start": 1635.31, + "end": 1637.82, + "probability": 0.9044 + }, + { + "start": 1638.7, + "end": 1641.74, + "probability": 0.5668 + }, + { + "start": 1642.84, + "end": 1645.32, + "probability": 0.8725 + }, + { + "start": 1645.4, + "end": 1648.54, + "probability": 0.918 + }, + { + "start": 1649.38, + "end": 1652.84, + "probability": 0.9408 + }, + { + "start": 1652.92, + "end": 1655.02, + "probability": 0.9622 + }, + { + "start": 1655.52, + "end": 1656.4, + "probability": 0.8899 + }, + { + "start": 1656.66, + "end": 1657.48, + "probability": 0.7676 + }, + { + "start": 1657.6, + "end": 1660.62, + "probability": 0.9478 + }, + { + "start": 1661.1, + "end": 1663.0, + "probability": 0.968 + }, + { + "start": 1663.48, + "end": 1666.28, + "probability": 0.8441 + }, + { + "start": 1667.1, + "end": 1670.18, + "probability": 0.9385 + }, + { + "start": 1670.8, + "end": 1670.92, + "probability": 0.6733 + }, + { + "start": 1671.96, + "end": 1673.38, + "probability": 0.9209 + }, + { + "start": 1673.6, + "end": 1674.24, + "probability": 0.6836 + }, + { + "start": 1674.38, + "end": 1677.08, + "probability": 0.5615 + }, + { + "start": 1677.1, + "end": 1677.28, + "probability": 0.1217 + }, + { + "start": 1677.28, + "end": 1680.34, + "probability": 0.6986 + }, + { + "start": 1680.38, + "end": 1680.86, + "probability": 0.837 + }, + { + "start": 1680.94, + "end": 1686.4, + "probability": 0.9489 + }, + { + "start": 1686.44, + "end": 1687.36, + "probability": 0.9641 + }, + { + "start": 1687.98, + "end": 1691.1, + "probability": 0.8555 + }, + { + "start": 1691.74, + "end": 1693.34, + "probability": 0.6466 + }, + { + "start": 1693.56, + "end": 1698.1, + "probability": 0.9565 + }, + { + "start": 1698.34, + "end": 1702.84, + "probability": 0.9814 + }, + { + "start": 1703.98, + "end": 1704.34, + "probability": 0.1657 + }, + { + "start": 1704.38, + "end": 1706.38, + "probability": 0.9873 + }, + { + "start": 1706.48, + "end": 1709.96, + "probability": 0.8836 + }, + { + "start": 1710.94, + "end": 1713.28, + "probability": 0.9226 + }, + { + "start": 1713.3, + "end": 1716.68, + "probability": 0.9775 + }, + { + "start": 1717.12, + "end": 1718.22, + "probability": 0.7772 + }, + { + "start": 1718.34, + "end": 1723.48, + "probability": 0.899 + }, + { + "start": 1723.8, + "end": 1724.9, + "probability": 0.8121 + }, + { + "start": 1725.6, + "end": 1726.36, + "probability": 0.9922 + }, + { + "start": 1726.68, + "end": 1731.28, + "probability": 0.9935 + }, + { + "start": 1731.36, + "end": 1732.64, + "probability": 0.8372 + }, + { + "start": 1732.84, + "end": 1738.9, + "probability": 0.9946 + }, + { + "start": 1739.18, + "end": 1742.04, + "probability": 0.8762 + }, + { + "start": 1743.24, + "end": 1746.32, + "probability": 0.8831 + }, + { + "start": 1746.34, + "end": 1746.58, + "probability": 0.2101 + }, + { + "start": 1746.62, + "end": 1747.68, + "probability": 0.7864 + }, + { + "start": 1747.84, + "end": 1749.76, + "probability": 0.9946 + }, + { + "start": 1749.92, + "end": 1750.56, + "probability": 0.5434 + }, + { + "start": 1751.08, + "end": 1752.12, + "probability": 0.6892 + }, + { + "start": 1752.18, + "end": 1754.82, + "probability": 0.4287 + }, + { + "start": 1755.42, + "end": 1756.26, + "probability": 0.7251 + }, + { + "start": 1756.34, + "end": 1756.56, + "probability": 0.8771 + }, + { + "start": 1756.58, + "end": 1757.64, + "probability": 0.766 + }, + { + "start": 1758.02, + "end": 1760.42, + "probability": 0.9772 + }, + { + "start": 1765.16, + "end": 1765.96, + "probability": 0.8675 + }, + { + "start": 1766.28, + "end": 1766.74, + "probability": 0.866 + }, + { + "start": 1766.88, + "end": 1768.63, + "probability": 0.9517 + }, + { + "start": 1769.02, + "end": 1775.6, + "probability": 0.9529 + }, + { + "start": 1775.88, + "end": 1776.53, + "probability": 0.9834 + }, + { + "start": 1777.28, + "end": 1778.2, + "probability": 0.9622 + }, + { + "start": 1779.11, + "end": 1782.18, + "probability": 0.8253 + }, + { + "start": 1782.44, + "end": 1784.02, + "probability": 0.7918 + }, + { + "start": 1784.72, + "end": 1785.56, + "probability": 0.9219 + }, + { + "start": 1786.28, + "end": 1787.26, + "probability": 0.9209 + }, + { + "start": 1788.06, + "end": 1792.2, + "probability": 0.9771 + }, + { + "start": 1792.98, + "end": 1795.6, + "probability": 0.9462 + }, + { + "start": 1796.04, + "end": 1799.78, + "probability": 0.9549 + }, + { + "start": 1800.28, + "end": 1802.96, + "probability": 0.9902 + }, + { + "start": 1802.96, + "end": 1806.22, + "probability": 0.996 + }, + { + "start": 1806.72, + "end": 1809.3, + "probability": 0.957 + }, + { + "start": 1809.68, + "end": 1809.92, + "probability": 0.2809 + }, + { + "start": 1810.02, + "end": 1810.26, + "probability": 0.6562 + }, + { + "start": 1810.4, + "end": 1810.72, + "probability": 0.6353 + }, + { + "start": 1811.36, + "end": 1812.44, + "probability": 0.8847 + }, + { + "start": 1813.06, + "end": 1813.58, + "probability": 0.9479 + }, + { + "start": 1813.68, + "end": 1814.36, + "probability": 0.6778 + }, + { + "start": 1814.68, + "end": 1818.52, + "probability": 0.9111 + }, + { + "start": 1819.02, + "end": 1821.46, + "probability": 0.9937 + }, + { + "start": 1822.0, + "end": 1823.92, + "probability": 0.8931 + }, + { + "start": 1823.96, + "end": 1825.36, + "probability": 0.9941 + }, + { + "start": 1825.74, + "end": 1829.36, + "probability": 0.9931 + }, + { + "start": 1829.36, + "end": 1832.64, + "probability": 0.75 + }, + { + "start": 1832.84, + "end": 1833.1, + "probability": 0.7023 + }, + { + "start": 1833.26, + "end": 1833.7, + "probability": 0.4457 + }, + { + "start": 1833.78, + "end": 1840.04, + "probability": 0.9722 + }, + { + "start": 1840.04, + "end": 1846.16, + "probability": 0.7863 + }, + { + "start": 1846.42, + "end": 1846.74, + "probability": 0.8513 + }, + { + "start": 1848.1, + "end": 1849.94, + "probability": 0.7725 + }, + { + "start": 1850.54, + "end": 1854.66, + "probability": 0.5922 + }, + { + "start": 1855.48, + "end": 1861.86, + "probability": 0.9533 + }, + { + "start": 1862.5, + "end": 1863.94, + "probability": 0.5186 + }, + { + "start": 1864.84, + "end": 1865.37, + "probability": 0.3387 + }, + { + "start": 1866.34, + "end": 1868.34, + "probability": 0.6498 + }, + { + "start": 1869.02, + "end": 1872.62, + "probability": 0.827 + }, + { + "start": 1873.65, + "end": 1876.38, + "probability": 0.9272 + }, + { + "start": 1876.52, + "end": 1880.12, + "probability": 0.7734 + }, + { + "start": 1881.2, + "end": 1881.68, + "probability": 0.6396 + }, + { + "start": 1882.22, + "end": 1883.76, + "probability": 0.9931 + }, + { + "start": 1884.9, + "end": 1886.56, + "probability": 0.9298 + }, + { + "start": 1886.84, + "end": 1892.12, + "probability": 0.8983 + }, + { + "start": 1892.76, + "end": 1893.0, + "probability": 0.5073 + }, + { + "start": 1893.46, + "end": 1895.28, + "probability": 0.9457 + }, + { + "start": 1895.62, + "end": 1898.04, + "probability": 0.9842 + }, + { + "start": 1898.54, + "end": 1902.1, + "probability": 0.9108 + }, + { + "start": 1902.46, + "end": 1909.12, + "probability": 0.8936 + }, + { + "start": 1909.86, + "end": 1911.96, + "probability": 0.978 + }, + { + "start": 1912.12, + "end": 1913.12, + "probability": 0.8614 + }, + { + "start": 1913.98, + "end": 1914.66, + "probability": 0.9945 + }, + { + "start": 1914.92, + "end": 1916.64, + "probability": 0.6653 + }, + { + "start": 1916.86, + "end": 1916.92, + "probability": 0.0046 + }, + { + "start": 1917.62, + "end": 1919.52, + "probability": 0.6408 + }, + { + "start": 1919.96, + "end": 1920.8, + "probability": 0.6596 + }, + { + "start": 1922.54, + "end": 1925.38, + "probability": 0.8104 + }, + { + "start": 1925.44, + "end": 1928.66, + "probability": 0.7384 + }, + { + "start": 1929.34, + "end": 1930.12, + "probability": 0.7942 + }, + { + "start": 1930.28, + "end": 1931.46, + "probability": 0.7274 + }, + { + "start": 1931.72, + "end": 1934.32, + "probability": 0.9283 + }, + { + "start": 1935.04, + "end": 1936.24, + "probability": 0.8999 + }, + { + "start": 1937.32, + "end": 1941.72, + "probability": 0.9771 + }, + { + "start": 1943.42, + "end": 1946.66, + "probability": 0.9366 + }, + { + "start": 1947.8, + "end": 1949.94, + "probability": 0.6495 + }, + { + "start": 1949.94, + "end": 1951.2, + "probability": 0.4273 + }, + { + "start": 1951.4, + "end": 1952.96, + "probability": 0.7443 + }, + { + "start": 1953.04, + "end": 1953.7, + "probability": 0.7452 + }, + { + "start": 1954.2, + "end": 1955.3, + "probability": 0.9489 + }, + { + "start": 1955.52, + "end": 1956.42, + "probability": 0.9479 + }, + { + "start": 1957.06, + "end": 1960.82, + "probability": 0.8772 + }, + { + "start": 1961.36, + "end": 1962.52, + "probability": 0.8321 + }, + { + "start": 1962.69, + "end": 1963.7, + "probability": 0.5436 + }, + { + "start": 1964.76, + "end": 1967.28, + "probability": 0.8712 + }, + { + "start": 1968.4, + "end": 1969.06, + "probability": 0.9141 + }, + { + "start": 1969.52, + "end": 1970.9, + "probability": 0.9742 + }, + { + "start": 1971.34, + "end": 1974.32, + "probability": 0.9861 + }, + { + "start": 1975.59, + "end": 1978.38, + "probability": 0.6873 + }, + { + "start": 1979.68, + "end": 1981.68, + "probability": 0.7983 + }, + { + "start": 1982.58, + "end": 1987.68, + "probability": 0.9971 + }, + { + "start": 1987.72, + "end": 1988.4, + "probability": 0.4715 + }, + { + "start": 1989.52, + "end": 1991.18, + "probability": 0.5972 + }, + { + "start": 1991.6, + "end": 1992.84, + "probability": 0.8087 + }, + { + "start": 1993.2, + "end": 1993.94, + "probability": 0.8744 + }, + { + "start": 1994.0, + "end": 1994.7, + "probability": 0.7633 + }, + { + "start": 1994.82, + "end": 1996.14, + "probability": 0.8671 + }, + { + "start": 1996.56, + "end": 1998.42, + "probability": 0.7832 + }, + { + "start": 1998.58, + "end": 2000.78, + "probability": 0.7911 + }, + { + "start": 2001.58, + "end": 2004.82, + "probability": 0.998 + }, + { + "start": 2005.62, + "end": 2006.88, + "probability": 0.7172 + }, + { + "start": 2007.94, + "end": 2009.7, + "probability": 0.9979 + }, + { + "start": 2009.98, + "end": 2015.02, + "probability": 0.9913 + }, + { + "start": 2015.1, + "end": 2017.18, + "probability": 0.7978 + }, + { + "start": 2017.96, + "end": 2023.06, + "probability": 0.9551 + }, + { + "start": 2023.8, + "end": 2026.94, + "probability": 0.9579 + }, + { + "start": 2027.14, + "end": 2028.36, + "probability": 0.9857 + }, + { + "start": 2028.7, + "end": 2031.98, + "probability": 0.835 + }, + { + "start": 2032.36, + "end": 2034.12, + "probability": 0.7474 + }, + { + "start": 2034.3, + "end": 2034.88, + "probability": 0.5439 + }, + { + "start": 2036.5, + "end": 2039.18, + "probability": 0.7346 + }, + { + "start": 2039.54, + "end": 2041.06, + "probability": 0.9869 + }, + { + "start": 2042.04, + "end": 2042.44, + "probability": 0.3819 + }, + { + "start": 2042.64, + "end": 2045.6, + "probability": 0.8796 + }, + { + "start": 2045.66, + "end": 2046.56, + "probability": 0.9373 + }, + { + "start": 2047.62, + "end": 2048.22, + "probability": 0.6058 + }, + { + "start": 2048.34, + "end": 2048.58, + "probability": 0.6709 + }, + { + "start": 2048.68, + "end": 2049.08, + "probability": 0.8949 + }, + { + "start": 2049.14, + "end": 2050.62, + "probability": 0.8003 + }, + { + "start": 2050.68, + "end": 2053.56, + "probability": 0.9028 + }, + { + "start": 2054.16, + "end": 2057.2, + "probability": 0.9673 + }, + { + "start": 2057.34, + "end": 2060.24, + "probability": 0.9537 + }, + { + "start": 2060.4, + "end": 2062.1, + "probability": 0.6746 + }, + { + "start": 2062.22, + "end": 2064.48, + "probability": 0.9844 + }, + { + "start": 2065.46, + "end": 2067.86, + "probability": 0.9801 + }, + { + "start": 2068.54, + "end": 2069.74, + "probability": 0.851 + }, + { + "start": 2070.28, + "end": 2070.96, + "probability": 0.5253 + }, + { + "start": 2071.64, + "end": 2074.4, + "probability": 0.9963 + }, + { + "start": 2074.5, + "end": 2075.66, + "probability": 0.7997 + }, + { + "start": 2076.26, + "end": 2082.28, + "probability": 0.9072 + }, + { + "start": 2082.86, + "end": 2086.22, + "probability": 0.9833 + }, + { + "start": 2086.86, + "end": 2087.46, + "probability": 0.8174 + }, + { + "start": 2087.56, + "end": 2089.68, + "probability": 0.7393 + }, + { + "start": 2090.3, + "end": 2092.92, + "probability": 0.7424 + }, + { + "start": 2093.16, + "end": 2095.39, + "probability": 0.9788 + }, + { + "start": 2096.66, + "end": 2097.3, + "probability": 0.9142 + }, + { + "start": 2098.08, + "end": 2099.76, + "probability": 0.6908 + }, + { + "start": 2099.9, + "end": 2100.68, + "probability": 0.6077 + }, + { + "start": 2100.96, + "end": 2103.8, + "probability": 0.9727 + }, + { + "start": 2103.84, + "end": 2106.82, + "probability": 0.8563 + }, + { + "start": 2107.32, + "end": 2109.84, + "probability": 0.9717 + }, + { + "start": 2110.38, + "end": 2115.54, + "probability": 0.9906 + }, + { + "start": 2116.04, + "end": 2117.56, + "probability": 0.984 + }, + { + "start": 2118.4, + "end": 2122.6, + "probability": 0.8799 + }, + { + "start": 2123.48, + "end": 2126.96, + "probability": 0.9761 + }, + { + "start": 2127.24, + "end": 2128.48, + "probability": 0.9524 + }, + { + "start": 2128.92, + "end": 2129.66, + "probability": 0.9973 + }, + { + "start": 2130.4, + "end": 2130.5, + "probability": 0.1778 + }, + { + "start": 2130.58, + "end": 2131.06, + "probability": 0.3466 + }, + { + "start": 2131.16, + "end": 2131.98, + "probability": 0.8983 + }, + { + "start": 2132.38, + "end": 2134.34, + "probability": 0.9574 + }, + { + "start": 2134.9, + "end": 2137.08, + "probability": 0.9404 + }, + { + "start": 2137.2, + "end": 2140.16, + "probability": 0.9927 + }, + { + "start": 2140.96, + "end": 2145.6, + "probability": 0.9959 + }, + { + "start": 2146.65, + "end": 2149.44, + "probability": 0.8801 + }, + { + "start": 2150.0, + "end": 2150.3, + "probability": 0.811 + }, + { + "start": 2150.82, + "end": 2152.1, + "probability": 0.429 + }, + { + "start": 2152.78, + "end": 2159.02, + "probability": 0.8364 + }, + { + "start": 2159.2, + "end": 2160.11, + "probability": 0.8901 + }, + { + "start": 2162.1, + "end": 2164.08, + "probability": 0.4679 + }, + { + "start": 2164.08, + "end": 2166.32, + "probability": 0.6968 + }, + { + "start": 2166.44, + "end": 2168.06, + "probability": 0.8584 + }, + { + "start": 2168.18, + "end": 2168.84, + "probability": 0.8366 + }, + { + "start": 2168.96, + "end": 2169.42, + "probability": 0.7422 + }, + { + "start": 2169.5, + "end": 2171.52, + "probability": 0.9791 + }, + { + "start": 2172.3, + "end": 2175.9, + "probability": 0.9865 + }, + { + "start": 2176.23, + "end": 2180.68, + "probability": 0.9417 + }, + { + "start": 2180.8, + "end": 2182.92, + "probability": 0.7983 + }, + { + "start": 2183.76, + "end": 2186.06, + "probability": 0.7569 + }, + { + "start": 2186.84, + "end": 2191.44, + "probability": 0.957 + }, + { + "start": 2192.3, + "end": 2194.48, + "probability": 0.9854 + }, + { + "start": 2194.94, + "end": 2195.54, + "probability": 0.3616 + }, + { + "start": 2195.68, + "end": 2199.22, + "probability": 0.9217 + }, + { + "start": 2199.32, + "end": 2199.84, + "probability": 0.6825 + }, + { + "start": 2200.04, + "end": 2201.38, + "probability": 0.8831 + }, + { + "start": 2201.88, + "end": 2205.8, + "probability": 0.9844 + }, + { + "start": 2205.84, + "end": 2207.86, + "probability": 0.9525 + }, + { + "start": 2208.28, + "end": 2211.24, + "probability": 0.9395 + }, + { + "start": 2211.84, + "end": 2212.82, + "probability": 0.9881 + }, + { + "start": 2213.0, + "end": 2216.58, + "probability": 0.9175 + }, + { + "start": 2217.3, + "end": 2220.45, + "probability": 0.9663 + }, + { + "start": 2220.52, + "end": 2221.99, + "probability": 0.8544 + }, + { + "start": 2223.64, + "end": 2223.78, + "probability": 0.0616 + }, + { + "start": 2223.78, + "end": 2224.88, + "probability": 0.8391 + }, + { + "start": 2224.98, + "end": 2225.84, + "probability": 0.8222 + }, + { + "start": 2225.98, + "end": 2227.5, + "probability": 0.9944 + }, + { + "start": 2228.16, + "end": 2230.88, + "probability": 0.8876 + }, + { + "start": 2231.4, + "end": 2232.88, + "probability": 0.6521 + }, + { + "start": 2233.54, + "end": 2236.34, + "probability": 0.9948 + }, + { + "start": 2236.68, + "end": 2238.44, + "probability": 0.9533 + }, + { + "start": 2239.24, + "end": 2239.78, + "probability": 0.9209 + }, + { + "start": 2239.92, + "end": 2241.36, + "probability": 0.5055 + }, + { + "start": 2241.68, + "end": 2243.7, + "probability": 0.9857 + }, + { + "start": 2244.3, + "end": 2248.02, + "probability": 0.9854 + }, + { + "start": 2248.42, + "end": 2250.36, + "probability": 0.9924 + }, + { + "start": 2250.82, + "end": 2254.88, + "probability": 0.9331 + }, + { + "start": 2255.32, + "end": 2257.38, + "probability": 0.8986 + }, + { + "start": 2257.42, + "end": 2259.0, + "probability": 0.9691 + }, + { + "start": 2259.64, + "end": 2260.14, + "probability": 0.6368 + }, + { + "start": 2260.4, + "end": 2261.2, + "probability": 0.1425 + }, + { + "start": 2262.7, + "end": 2263.44, + "probability": 0.5856 + }, + { + "start": 2263.49, + "end": 2264.61, + "probability": 0.501 + }, + { + "start": 2265.2, + "end": 2266.78, + "probability": 0.7507 + }, + { + "start": 2267.36, + "end": 2268.56, + "probability": 0.5295 + }, + { + "start": 2269.32, + "end": 2272.58, + "probability": 0.7549 + }, + { + "start": 2272.9, + "end": 2274.14, + "probability": 0.566 + }, + { + "start": 2274.16, + "end": 2275.46, + "probability": 0.649 + }, + { + "start": 2275.56, + "end": 2276.7, + "probability": 0.9348 + }, + { + "start": 2276.9, + "end": 2277.26, + "probability": 0.6171 + }, + { + "start": 2277.36, + "end": 2280.9, + "probability": 0.985 + }, + { + "start": 2281.64, + "end": 2282.44, + "probability": 0.7922 + }, + { + "start": 2282.74, + "end": 2287.3, + "probability": 0.9674 + }, + { + "start": 2287.56, + "end": 2290.14, + "probability": 0.7246 + }, + { + "start": 2290.98, + "end": 2298.39, + "probability": 0.9966 + }, + { + "start": 2299.96, + "end": 2300.9, + "probability": 0.9076 + }, + { + "start": 2301.06, + "end": 2304.08, + "probability": 0.9008 + }, + { + "start": 2307.7, + "end": 2309.92, + "probability": 0.8513 + }, + { + "start": 2310.12, + "end": 2311.04, + "probability": 0.7344 + }, + { + "start": 2311.1, + "end": 2312.16, + "probability": 0.7718 + }, + { + "start": 2312.24, + "end": 2313.0, + "probability": 0.9307 + }, + { + "start": 2313.48, + "end": 2318.62, + "probability": 0.9604 + }, + { + "start": 2318.72, + "end": 2322.02, + "probability": 0.9858 + }, + { + "start": 2322.78, + "end": 2325.48, + "probability": 0.9062 + }, + { + "start": 2326.06, + "end": 2328.74, + "probability": 0.9988 + }, + { + "start": 2328.88, + "end": 2332.16, + "probability": 0.7493 + }, + { + "start": 2332.76, + "end": 2335.08, + "probability": 0.9743 + }, + { + "start": 2335.08, + "end": 2339.76, + "probability": 0.9985 + }, + { + "start": 2339.98, + "end": 2340.98, + "probability": 0.6433 + }, + { + "start": 2341.58, + "end": 2344.34, + "probability": 0.9529 + }, + { + "start": 2344.52, + "end": 2347.42, + "probability": 0.9944 + }, + { + "start": 2347.84, + "end": 2348.9, + "probability": 0.9756 + }, + { + "start": 2349.08, + "end": 2350.98, + "probability": 0.8691 + }, + { + "start": 2351.88, + "end": 2357.04, + "probability": 0.9863 + }, + { + "start": 2358.32, + "end": 2359.62, + "probability": 0.9962 + }, + { + "start": 2360.3, + "end": 2365.5, + "probability": 0.9784 + }, + { + "start": 2366.16, + "end": 2372.76, + "probability": 0.9928 + }, + { + "start": 2373.74, + "end": 2374.22, + "probability": 0.7887 + }, + { + "start": 2374.28, + "end": 2374.96, + "probability": 0.7007 + }, + { + "start": 2375.14, + "end": 2378.28, + "probability": 0.9688 + }, + { + "start": 2379.24, + "end": 2382.88, + "probability": 0.9705 + }, + { + "start": 2383.38, + "end": 2385.08, + "probability": 0.9914 + }, + { + "start": 2385.14, + "end": 2386.82, + "probability": 0.9967 + }, + { + "start": 2387.34, + "end": 2390.16, + "probability": 0.9451 + }, + { + "start": 2391.06, + "end": 2391.58, + "probability": 0.6201 + }, + { + "start": 2391.88, + "end": 2394.62, + "probability": 0.9889 + }, + { + "start": 2394.78, + "end": 2396.98, + "probability": 0.9845 + }, + { + "start": 2397.5, + "end": 2398.16, + "probability": 0.8494 + }, + { + "start": 2398.28, + "end": 2399.04, + "probability": 0.8888 + }, + { + "start": 2399.28, + "end": 2402.36, + "probability": 0.9863 + }, + { + "start": 2402.6, + "end": 2403.78, + "probability": 0.8656 + }, + { + "start": 2404.4, + "end": 2405.5, + "probability": 0.8851 + }, + { + "start": 2405.9, + "end": 2408.12, + "probability": 0.973 + }, + { + "start": 2408.8, + "end": 2409.02, + "probability": 0.2764 + }, + { + "start": 2409.08, + "end": 2411.04, + "probability": 0.5221 + }, + { + "start": 2417.36, + "end": 2419.42, + "probability": 0.814 + }, + { + "start": 2420.5, + "end": 2423.28, + "probability": 0.9849 + }, + { + "start": 2424.72, + "end": 2427.72, + "probability": 0.849 + }, + { + "start": 2428.36, + "end": 2430.78, + "probability": 0.9047 + }, + { + "start": 2431.66, + "end": 2437.98, + "probability": 0.9165 + }, + { + "start": 2438.8, + "end": 2439.88, + "probability": 0.8277 + }, + { + "start": 2440.6, + "end": 2444.28, + "probability": 0.956 + }, + { + "start": 2444.88, + "end": 2447.12, + "probability": 0.4741 + }, + { + "start": 2447.78, + "end": 2450.4, + "probability": 0.9834 + }, + { + "start": 2450.88, + "end": 2453.76, + "probability": 0.7819 + }, + { + "start": 2454.22, + "end": 2458.44, + "probability": 0.9882 + }, + { + "start": 2458.7, + "end": 2460.4, + "probability": 0.8176 + }, + { + "start": 2460.92, + "end": 2462.64, + "probability": 0.8919 + }, + { + "start": 2465.8, + "end": 2466.5, + "probability": 0.597 + }, + { + "start": 2467.0, + "end": 2468.0, + "probability": 0.715 + }, + { + "start": 2468.12, + "end": 2470.12, + "probability": 0.9939 + }, + { + "start": 2470.66, + "end": 2471.94, + "probability": 0.9454 + }, + { + "start": 2472.54, + "end": 2477.3, + "probability": 0.9837 + }, + { + "start": 2477.34, + "end": 2477.68, + "probability": 0.8724 + }, + { + "start": 2478.62, + "end": 2479.08, + "probability": 0.6968 + }, + { + "start": 2479.22, + "end": 2479.8, + "probability": 0.6235 + }, + { + "start": 2481.5, + "end": 2482.9, + "probability": 0.7111 + }, + { + "start": 2483.04, + "end": 2484.0, + "probability": 0.7131 + }, + { + "start": 2484.22, + "end": 2486.78, + "probability": 0.9756 + }, + { + "start": 2487.53, + "end": 2489.9, + "probability": 0.7482 + }, + { + "start": 2489.98, + "end": 2490.77, + "probability": 0.8719 + }, + { + "start": 2490.96, + "end": 2492.42, + "probability": 0.9326 + }, + { + "start": 2492.52, + "end": 2492.96, + "probability": 0.3406 + }, + { + "start": 2493.84, + "end": 2495.7, + "probability": 0.8936 + }, + { + "start": 2495.76, + "end": 2497.46, + "probability": 0.6969 + }, + { + "start": 2497.58, + "end": 2498.17, + "probability": 0.8906 + }, + { + "start": 2498.44, + "end": 2499.82, + "probability": 0.9538 + }, + { + "start": 2500.44, + "end": 2500.86, + "probability": 0.6027 + }, + { + "start": 2500.86, + "end": 2504.66, + "probability": 0.8545 + }, + { + "start": 2504.76, + "end": 2505.64, + "probability": 0.7161 + }, + { + "start": 2505.64, + "end": 2506.52, + "probability": 0.6267 + }, + { + "start": 2507.14, + "end": 2509.04, + "probability": 0.7651 + }, + { + "start": 2509.24, + "end": 2512.82, + "probability": 0.9736 + }, + { + "start": 2513.64, + "end": 2517.62, + "probability": 0.9639 + }, + { + "start": 2517.96, + "end": 2519.26, + "probability": 0.9222 + }, + { + "start": 2519.48, + "end": 2520.86, + "probability": 0.9552 + }, + { + "start": 2521.3, + "end": 2522.84, + "probability": 0.7306 + }, + { + "start": 2522.98, + "end": 2523.82, + "probability": 0.5208 + }, + { + "start": 2524.24, + "end": 2529.18, + "probability": 0.8722 + }, + { + "start": 2530.06, + "end": 2531.48, + "probability": 0.8602 + }, + { + "start": 2532.06, + "end": 2533.86, + "probability": 0.8724 + }, + { + "start": 2533.9, + "end": 2534.56, + "probability": 0.7765 + }, + { + "start": 2534.72, + "end": 2536.94, + "probability": 0.9583 + }, + { + "start": 2537.22, + "end": 2537.98, + "probability": 0.4466 + }, + { + "start": 2538.32, + "end": 2542.02, + "probability": 0.8306 + }, + { + "start": 2542.44, + "end": 2547.12, + "probability": 0.9779 + }, + { + "start": 2547.22, + "end": 2548.32, + "probability": 0.6787 + }, + { + "start": 2548.8, + "end": 2551.46, + "probability": 0.5006 + }, + { + "start": 2552.12, + "end": 2553.3, + "probability": 0.946 + }, + { + "start": 2554.18, + "end": 2556.5, + "probability": 0.9772 + }, + { + "start": 2557.1, + "end": 2559.44, + "probability": 0.6148 + }, + { + "start": 2560.06, + "end": 2561.3, + "probability": 0.9502 + }, + { + "start": 2561.74, + "end": 2563.4, + "probability": 0.9204 + }, + { + "start": 2563.46, + "end": 2567.36, + "probability": 0.9843 + }, + { + "start": 2567.54, + "end": 2570.22, + "probability": 0.6635 + }, + { + "start": 2570.96, + "end": 2572.12, + "probability": 0.4965 + }, + { + "start": 2572.72, + "end": 2576.2, + "probability": 0.916 + }, + { + "start": 2577.0, + "end": 2579.84, + "probability": 0.9711 + }, + { + "start": 2580.64, + "end": 2585.32, + "probability": 0.9839 + }, + { + "start": 2586.1, + "end": 2588.48, + "probability": 0.8382 + }, + { + "start": 2588.54, + "end": 2590.54, + "probability": 0.9839 + }, + { + "start": 2590.64, + "end": 2591.36, + "probability": 0.9958 + }, + { + "start": 2592.78, + "end": 2596.88, + "probability": 0.8164 + }, + { + "start": 2597.86, + "end": 2602.4, + "probability": 0.998 + }, + { + "start": 2602.92, + "end": 2606.1, + "probability": 0.9073 + }, + { + "start": 2606.48, + "end": 2608.64, + "probability": 0.9825 + }, + { + "start": 2608.8, + "end": 2609.6, + "probability": 0.7073 + }, + { + "start": 2609.64, + "end": 2612.16, + "probability": 0.9797 + }, + { + "start": 2612.82, + "end": 2614.96, + "probability": 0.9932 + }, + { + "start": 2616.26, + "end": 2622.8, + "probability": 0.9797 + }, + { + "start": 2623.08, + "end": 2624.82, + "probability": 0.9917 + }, + { + "start": 2625.88, + "end": 2626.54, + "probability": 0.8998 + }, + { + "start": 2627.18, + "end": 2629.44, + "probability": 0.9111 + }, + { + "start": 2629.92, + "end": 2631.54, + "probability": 0.743 + }, + { + "start": 2631.96, + "end": 2634.12, + "probability": 0.9775 + }, + { + "start": 2634.34, + "end": 2636.52, + "probability": 0.9556 + }, + { + "start": 2637.28, + "end": 2637.6, + "probability": 0.804 + }, + { + "start": 2638.08, + "end": 2642.18, + "probability": 0.9839 + }, + { + "start": 2642.84, + "end": 2643.02, + "probability": 0.6331 + }, + { + "start": 2643.52, + "end": 2643.92, + "probability": 0.7524 + }, + { + "start": 2644.18, + "end": 2649.52, + "probability": 0.9899 + }, + { + "start": 2649.92, + "end": 2651.54, + "probability": 0.9988 + }, + { + "start": 2652.14, + "end": 2654.56, + "probability": 0.9767 + }, + { + "start": 2654.7, + "end": 2656.02, + "probability": 0.9667 + }, + { + "start": 2656.6, + "end": 2660.06, + "probability": 0.9509 + }, + { + "start": 2661.1, + "end": 2665.3, + "probability": 0.9845 + }, + { + "start": 2665.44, + "end": 2666.74, + "probability": 0.5159 + }, + { + "start": 2666.96, + "end": 2667.34, + "probability": 0.9223 + }, + { + "start": 2668.32, + "end": 2670.78, + "probability": 0.8287 + }, + { + "start": 2671.1, + "end": 2671.6, + "probability": 0.547 + }, + { + "start": 2671.64, + "end": 2672.43, + "probability": 0.4952 + }, + { + "start": 2673.1, + "end": 2674.02, + "probability": 0.9556 + }, + { + "start": 2675.0, + "end": 2678.8, + "probability": 0.9737 + }, + { + "start": 2679.44, + "end": 2682.82, + "probability": 0.9946 + }, + { + "start": 2683.94, + "end": 2685.78, + "probability": 0.9793 + }, + { + "start": 2686.16, + "end": 2687.04, + "probability": 0.9763 + }, + { + "start": 2687.4, + "end": 2689.58, + "probability": 0.9868 + }, + { + "start": 2690.04, + "end": 2692.44, + "probability": 0.8475 + }, + { + "start": 2692.52, + "end": 2695.84, + "probability": 0.969 + }, + { + "start": 2696.04, + "end": 2696.48, + "probability": 0.7614 + }, + { + "start": 2696.98, + "end": 2698.5, + "probability": 0.7912 + }, + { + "start": 2699.24, + "end": 2701.73, + "probability": 0.9729 + }, + { + "start": 2702.26, + "end": 2705.26, + "probability": 0.9906 + }, + { + "start": 2706.74, + "end": 2708.62, + "probability": 0.9249 + }, + { + "start": 2708.74, + "end": 2710.5, + "probability": 0.7964 + }, + { + "start": 2710.56, + "end": 2711.48, + "probability": 0.9459 + }, + { + "start": 2712.04, + "end": 2714.92, + "probability": 0.9862 + }, + { + "start": 2715.52, + "end": 2717.46, + "probability": 0.667 + }, + { + "start": 2718.1, + "end": 2719.16, + "probability": 0.1276 + }, + { + "start": 2719.26, + "end": 2721.92, + "probability": 0.9642 + }, + { + "start": 2722.3, + "end": 2723.72, + "probability": 0.8276 + }, + { + "start": 2723.78, + "end": 2724.95, + "probability": 0.9504 + }, + { + "start": 2725.44, + "end": 2729.18, + "probability": 0.9862 + }, + { + "start": 2729.3, + "end": 2730.52, + "probability": 0.6761 + }, + { + "start": 2731.02, + "end": 2733.34, + "probability": 0.9844 + }, + { + "start": 2733.5, + "end": 2734.34, + "probability": 0.7124 + }, + { + "start": 2734.88, + "end": 2736.58, + "probability": 0.9766 + }, + { + "start": 2736.62, + "end": 2740.38, + "probability": 0.9922 + }, + { + "start": 2741.04, + "end": 2742.48, + "probability": 0.8992 + }, + { + "start": 2742.62, + "end": 2744.14, + "probability": 0.9728 + }, + { + "start": 2744.2, + "end": 2745.5, + "probability": 0.8448 + }, + { + "start": 2745.92, + "end": 2746.32, + "probability": 0.5772 + }, + { + "start": 2746.42, + "end": 2750.98, + "probability": 0.9923 + }, + { + "start": 2750.98, + "end": 2756.84, + "probability": 0.9855 + }, + { + "start": 2756.98, + "end": 2757.2, + "probability": 0.6068 + }, + { + "start": 2757.68, + "end": 2760.34, + "probability": 0.8941 + }, + { + "start": 2760.64, + "end": 2761.46, + "probability": 0.8106 + }, + { + "start": 2762.92, + "end": 2766.76, + "probability": 0.8754 + }, + { + "start": 2767.34, + "end": 2772.32, + "probability": 0.8969 + }, + { + "start": 2772.32, + "end": 2774.66, + "probability": 0.877 + }, + { + "start": 2775.92, + "end": 2777.03, + "probability": 0.9237 + }, + { + "start": 2777.83, + "end": 2781.78, + "probability": 0.7104 + }, + { + "start": 2782.38, + "end": 2782.7, + "probability": 0.8657 + }, + { + "start": 2783.94, + "end": 2786.74, + "probability": 0.9291 + }, + { + "start": 2787.4, + "end": 2791.52, + "probability": 0.9776 + }, + { + "start": 2792.08, + "end": 2793.96, + "probability": 0.6359 + }, + { + "start": 2794.52, + "end": 2796.78, + "probability": 0.9861 + }, + { + "start": 2796.9, + "end": 2798.48, + "probability": 0.6244 + }, + { + "start": 2802.62, + "end": 2802.8, + "probability": 0.4106 + }, + { + "start": 2803.62, + "end": 2803.82, + "probability": 0.445 + }, + { + "start": 2803.82, + "end": 2803.92, + "probability": 0.3447 + }, + { + "start": 2804.08, + "end": 2804.42, + "probability": 0.8474 + }, + { + "start": 2804.85, + "end": 2808.57, + "probability": 0.6137 + }, + { + "start": 2809.74, + "end": 2813.46, + "probability": 0.9529 + }, + { + "start": 2814.14, + "end": 2817.84, + "probability": 0.993 + }, + { + "start": 2818.58, + "end": 2822.28, + "probability": 0.9933 + }, + { + "start": 2822.5, + "end": 2825.84, + "probability": 0.992 + }, + { + "start": 2826.06, + "end": 2831.16, + "probability": 0.9702 + }, + { + "start": 2831.16, + "end": 2834.06, + "probability": 0.9301 + }, + { + "start": 2834.6, + "end": 2837.36, + "probability": 0.9842 + }, + { + "start": 2838.24, + "end": 2841.84, + "probability": 0.914 + }, + { + "start": 2842.04, + "end": 2842.56, + "probability": 0.9187 + }, + { + "start": 2842.74, + "end": 2843.86, + "probability": 0.8295 + }, + { + "start": 2843.86, + "end": 2844.68, + "probability": 0.9419 + }, + { + "start": 2845.3, + "end": 2848.68, + "probability": 0.9328 + }, + { + "start": 2850.5, + "end": 2853.36, + "probability": 0.9893 + }, + { + "start": 2853.36, + "end": 2855.94, + "probability": 0.999 + }, + { + "start": 2856.76, + "end": 2858.06, + "probability": 0.9413 + }, + { + "start": 2858.22, + "end": 2858.44, + "probability": 0.3429 + }, + { + "start": 2858.6, + "end": 2859.5, + "probability": 0.8494 + }, + { + "start": 2859.56, + "end": 2860.9, + "probability": 0.9559 + }, + { + "start": 2861.06, + "end": 2863.74, + "probability": 0.8101 + }, + { + "start": 2865.4, + "end": 2869.24, + "probability": 0.8972 + }, + { + "start": 2869.62, + "end": 2870.28, + "probability": 0.9652 + }, + { + "start": 2870.92, + "end": 2875.08, + "probability": 0.9814 + }, + { + "start": 2875.08, + "end": 2879.14, + "probability": 0.8858 + }, + { + "start": 2879.78, + "end": 2882.96, + "probability": 0.9736 + }, + { + "start": 2882.96, + "end": 2886.27, + "probability": 0.9947 + }, + { + "start": 2888.62, + "end": 2894.06, + "probability": 0.754 + }, + { + "start": 2894.32, + "end": 2897.82, + "probability": 0.9611 + }, + { + "start": 2898.58, + "end": 2900.72, + "probability": 0.9985 + }, + { + "start": 2900.72, + "end": 2903.4, + "probability": 0.7677 + }, + { + "start": 2903.52, + "end": 2904.7, + "probability": 0.9007 + }, + { + "start": 2905.22, + "end": 2908.82, + "probability": 0.9819 + }, + { + "start": 2909.72, + "end": 2914.24, + "probability": 0.9969 + }, + { + "start": 2915.3, + "end": 2915.64, + "probability": 0.156 + }, + { + "start": 2916.2, + "end": 2928.28, + "probability": 0.9939 + }, + { + "start": 2929.1, + "end": 2931.62, + "probability": 0.5628 + }, + { + "start": 2932.38, + "end": 2934.54, + "probability": 0.9935 + }, + { + "start": 2934.54, + "end": 2936.82, + "probability": 0.9717 + }, + { + "start": 2937.5, + "end": 2941.5, + "probability": 0.9978 + }, + { + "start": 2942.38, + "end": 2943.04, + "probability": 0.8423 + }, + { + "start": 2943.08, + "end": 2943.82, + "probability": 0.9198 + }, + { + "start": 2943.96, + "end": 2948.18, + "probability": 0.9927 + }, + { + "start": 2948.34, + "end": 2951.18, + "probability": 0.9817 + }, + { + "start": 2951.98, + "end": 2955.84, + "probability": 0.9949 + }, + { + "start": 2955.9, + "end": 2956.72, + "probability": 0.9575 + }, + { + "start": 2956.86, + "end": 2959.22, + "probability": 0.9722 + }, + { + "start": 2959.7, + "end": 2962.36, + "probability": 0.9946 + }, + { + "start": 2963.06, + "end": 2966.0, + "probability": 0.9925 + }, + { + "start": 2966.0, + "end": 2970.0, + "probability": 0.9985 + }, + { + "start": 2970.06, + "end": 2972.9, + "probability": 0.5827 + }, + { + "start": 2973.02, + "end": 2975.03, + "probability": 0.9527 + }, + { + "start": 2975.62, + "end": 2979.78, + "probability": 0.981 + }, + { + "start": 2980.42, + "end": 2981.96, + "probability": 0.9113 + }, + { + "start": 2982.28, + "end": 2987.12, + "probability": 0.9463 + }, + { + "start": 2987.68, + "end": 2990.12, + "probability": 0.9971 + }, + { + "start": 2990.88, + "end": 2994.46, + "probability": 0.9774 + }, + { + "start": 2995.12, + "end": 3000.34, + "probability": 0.9946 + }, + { + "start": 3000.98, + "end": 3005.06, + "probability": 0.9019 + }, + { + "start": 3005.06, + "end": 3008.76, + "probability": 0.9894 + }, + { + "start": 3008.9, + "end": 3010.88, + "probability": 0.7667 + }, + { + "start": 3011.52, + "end": 3013.5, + "probability": 0.9273 + }, + { + "start": 3013.56, + "end": 3015.58, + "probability": 0.9658 + }, + { + "start": 3016.1, + "end": 3018.02, + "probability": 0.9945 + }, + { + "start": 3018.16, + "end": 3020.74, + "probability": 0.9939 + }, + { + "start": 3021.56, + "end": 3023.6, + "probability": 0.8288 + }, + { + "start": 3024.28, + "end": 3028.0, + "probability": 0.9982 + }, + { + "start": 3028.0, + "end": 3032.4, + "probability": 0.9976 + }, + { + "start": 3032.48, + "end": 3033.48, + "probability": 0.8962 + }, + { + "start": 3034.08, + "end": 3039.02, + "probability": 0.981 + }, + { + "start": 3039.02, + "end": 3043.12, + "probability": 0.9979 + }, + { + "start": 3043.12, + "end": 3047.38, + "probability": 0.9988 + }, + { + "start": 3048.02, + "end": 3050.84, + "probability": 0.9707 + }, + { + "start": 3051.5, + "end": 3052.84, + "probability": 0.7112 + }, + { + "start": 3053.62, + "end": 3054.0, + "probability": 0.5659 + }, + { + "start": 3054.2, + "end": 3056.08, + "probability": 0.9232 + }, + { + "start": 3056.52, + "end": 3057.36, + "probability": 0.766 + }, + { + "start": 3057.42, + "end": 3058.8, + "probability": 0.9541 + }, + { + "start": 3059.56, + "end": 3062.46, + "probability": 0.6915 + }, + { + "start": 3063.12, + "end": 3065.08, + "probability": 0.8795 + }, + { + "start": 3065.22, + "end": 3067.47, + "probability": 0.9871 + }, + { + "start": 3068.66, + "end": 3071.74, + "probability": 0.9634 + }, + { + "start": 3071.74, + "end": 3074.26, + "probability": 0.9934 + }, + { + "start": 3074.46, + "end": 3077.24, + "probability": 0.5555 + }, + { + "start": 3077.34, + "end": 3078.44, + "probability": 0.937 + }, + { + "start": 3078.62, + "end": 3078.96, + "probability": 0.2635 + }, + { + "start": 3079.0, + "end": 3080.42, + "probability": 0.4284 + }, + { + "start": 3080.46, + "end": 3083.2, + "probability": 0.6218 + }, + { + "start": 3084.28, + "end": 3085.22, + "probability": 0.9404 + }, + { + "start": 3085.7, + "end": 3086.18, + "probability": 0.5276 + }, + { + "start": 3086.44, + "end": 3089.0, + "probability": 0.9094 + }, + { + "start": 3089.46, + "end": 3091.02, + "probability": 0.7918 + }, + { + "start": 3091.48, + "end": 3092.38, + "probability": 0.8374 + }, + { + "start": 3092.5, + "end": 3092.94, + "probability": 0.9333 + }, + { + "start": 3093.52, + "end": 3096.02, + "probability": 0.877 + }, + { + "start": 3096.28, + "end": 3099.22, + "probability": 0.4806 + }, + { + "start": 3099.5, + "end": 3101.4, + "probability": 0.3725 + }, + { + "start": 3101.4, + "end": 3101.4, + "probability": 0.5399 + }, + { + "start": 3101.4, + "end": 3103.64, + "probability": 0.895 + }, + { + "start": 3103.66, + "end": 3107.56, + "probability": 0.9712 + }, + { + "start": 3107.86, + "end": 3109.3, + "probability": 0.7817 + }, + { + "start": 3111.34, + "end": 3114.14, + "probability": 0.6318 + }, + { + "start": 3114.71, + "end": 3115.36, + "probability": 0.1961 + }, + { + "start": 3115.36, + "end": 3116.34, + "probability": 0.8532 + }, + { + "start": 3116.42, + "end": 3116.88, + "probability": 0.3979 + }, + { + "start": 3116.92, + "end": 3118.16, + "probability": 0.8194 + }, + { + "start": 3118.62, + "end": 3126.06, + "probability": 0.8066 + }, + { + "start": 3126.46, + "end": 3132.42, + "probability": 0.9751 + }, + { + "start": 3132.84, + "end": 3134.42, + "probability": 0.9956 + }, + { + "start": 3134.42, + "end": 3137.02, + "probability": 0.98 + }, + { + "start": 3137.54, + "end": 3139.2, + "probability": 0.9972 + }, + { + "start": 3139.38, + "end": 3141.5, + "probability": 0.665 + }, + { + "start": 3141.94, + "end": 3146.56, + "probability": 0.98 + }, + { + "start": 3147.1, + "end": 3148.46, + "probability": 0.7256 + }, + { + "start": 3148.54, + "end": 3152.06, + "probability": 0.9817 + }, + { + "start": 3152.06, + "end": 3155.15, + "probability": 0.9897 + }, + { + "start": 3156.24, + "end": 3156.54, + "probability": 0.8576 + }, + { + "start": 3157.02, + "end": 3157.82, + "probability": 0.8248 + }, + { + "start": 3157.84, + "end": 3158.88, + "probability": 0.8403 + }, + { + "start": 3159.2, + "end": 3160.98, + "probability": 0.937 + }, + { + "start": 3161.54, + "end": 3162.54, + "probability": 0.9718 + }, + { + "start": 3162.66, + "end": 3163.69, + "probability": 0.726 + }, + { + "start": 3164.3, + "end": 3165.06, + "probability": 0.9692 + }, + { + "start": 3165.5, + "end": 3167.94, + "probability": 0.9806 + }, + { + "start": 3168.02, + "end": 3168.88, + "probability": 0.7186 + }, + { + "start": 3169.18, + "end": 3172.22, + "probability": 0.9773 + }, + { + "start": 3173.96, + "end": 3174.52, + "probability": 0.6779 + }, + { + "start": 3174.78, + "end": 3177.04, + "probability": 0.9869 + }, + { + "start": 3177.38, + "end": 3181.72, + "probability": 0.7366 + }, + { + "start": 3181.76, + "end": 3182.78, + "probability": 0.8756 + }, + { + "start": 3183.06, + "end": 3184.66, + "probability": 0.9741 + }, + { + "start": 3185.14, + "end": 3185.5, + "probability": 0.4379 + }, + { + "start": 3185.5, + "end": 3186.44, + "probability": 0.8413 + }, + { + "start": 3186.74, + "end": 3186.88, + "probability": 0.7276 + }, + { + "start": 3187.42, + "end": 3187.62, + "probability": 0.299 + }, + { + "start": 3187.74, + "end": 3189.56, + "probability": 0.6159 + }, + { + "start": 3197.1, + "end": 3197.76, + "probability": 0.8125 + }, + { + "start": 3197.84, + "end": 3203.78, + "probability": 0.9321 + }, + { + "start": 3204.26, + "end": 3207.18, + "probability": 0.9945 + }, + { + "start": 3208.12, + "end": 3208.96, + "probability": 0.5914 + }, + { + "start": 3209.06, + "end": 3211.46, + "probability": 0.9855 + }, + { + "start": 3211.56, + "end": 3211.94, + "probability": 0.9386 + }, + { + "start": 3213.44, + "end": 3220.42, + "probability": 0.9735 + }, + { + "start": 3220.7, + "end": 3221.66, + "probability": 0.7226 + }, + { + "start": 3222.34, + "end": 3222.78, + "probability": 0.768 + }, + { + "start": 3223.02, + "end": 3225.9, + "probability": 0.9852 + }, + { + "start": 3226.44, + "end": 3231.69, + "probability": 0.9827 + }, + { + "start": 3232.8, + "end": 3235.46, + "probability": 0.9752 + }, + { + "start": 3236.04, + "end": 3236.2, + "probability": 0.4536 + }, + { + "start": 3236.32, + "end": 3236.66, + "probability": 0.8626 + }, + { + "start": 3236.7, + "end": 3240.2, + "probability": 0.9537 + }, + { + "start": 3240.8, + "end": 3241.62, + "probability": 0.6526 + }, + { + "start": 3241.82, + "end": 3242.06, + "probability": 0.9843 + }, + { + "start": 3242.14, + "end": 3243.06, + "probability": 0.9275 + }, + { + "start": 3243.2, + "end": 3246.66, + "probability": 0.8371 + }, + { + "start": 3246.78, + "end": 3250.28, + "probability": 0.9702 + }, + { + "start": 3250.6, + "end": 3250.7, + "probability": 0.3987 + }, + { + "start": 3250.9, + "end": 3253.34, + "probability": 0.9763 + }, + { + "start": 3253.82, + "end": 3255.12, + "probability": 0.9547 + }, + { + "start": 3255.76, + "end": 3257.24, + "probability": 0.9649 + }, + { + "start": 3257.58, + "end": 3260.7, + "probability": 0.9501 + }, + { + "start": 3260.84, + "end": 3262.66, + "probability": 0.9966 + }, + { + "start": 3262.98, + "end": 3263.92, + "probability": 0.7479 + }, + { + "start": 3264.72, + "end": 3266.78, + "probability": 0.9113 + }, + { + "start": 3266.84, + "end": 3272.92, + "probability": 0.9839 + }, + { + "start": 3272.92, + "end": 3275.7, + "probability": 0.9983 + }, + { + "start": 3275.84, + "end": 3276.86, + "probability": 0.9943 + }, + { + "start": 3278.2, + "end": 3283.82, + "probability": 0.9634 + }, + { + "start": 3284.62, + "end": 3288.14, + "probability": 0.9844 + }, + { + "start": 3288.76, + "end": 3290.8, + "probability": 0.9224 + }, + { + "start": 3291.48, + "end": 3292.24, + "probability": 0.8157 + }, + { + "start": 3293.06, + "end": 3293.82, + "probability": 0.8031 + }, + { + "start": 3294.24, + "end": 3297.76, + "probability": 0.9894 + }, + { + "start": 3298.16, + "end": 3299.3, + "probability": 0.7651 + }, + { + "start": 3299.36, + "end": 3299.66, + "probability": 0.659 + }, + { + "start": 3299.76, + "end": 3303.56, + "probability": 0.7846 + }, + { + "start": 3304.76, + "end": 3306.96, + "probability": 0.999 + }, + { + "start": 3306.96, + "end": 3309.7, + "probability": 0.9988 + }, + { + "start": 3310.48, + "end": 3312.86, + "probability": 0.9979 + }, + { + "start": 3313.04, + "end": 3314.73, + "probability": 0.9741 + }, + { + "start": 3315.36, + "end": 3320.42, + "probability": 0.9908 + }, + { + "start": 3320.48, + "end": 3323.64, + "probability": 0.9719 + }, + { + "start": 3323.8, + "end": 3325.32, + "probability": 0.9345 + }, + { + "start": 3325.46, + "end": 3325.72, + "probability": 0.7966 + }, + { + "start": 3326.0, + "end": 3326.62, + "probability": 0.6868 + }, + { + "start": 3326.9, + "end": 3328.86, + "probability": 0.8884 + }, + { + "start": 3336.9, + "end": 3339.0, + "probability": 0.7303 + }, + { + "start": 3340.02, + "end": 3345.26, + "probability": 0.7441 + }, + { + "start": 3346.26, + "end": 3349.4, + "probability": 0.9507 + }, + { + "start": 3350.28, + "end": 3351.8, + "probability": 0.8989 + }, + { + "start": 3352.88, + "end": 3354.08, + "probability": 0.842 + }, + { + "start": 3355.26, + "end": 3356.74, + "probability": 0.793 + }, + { + "start": 3357.54, + "end": 3358.56, + "probability": 0.5096 + }, + { + "start": 3359.62, + "end": 3360.92, + "probability": 0.7095 + }, + { + "start": 3361.8, + "end": 3364.74, + "probability": 0.7726 + }, + { + "start": 3365.9, + "end": 3368.76, + "probability": 0.7318 + }, + { + "start": 3369.4, + "end": 3372.59, + "probability": 0.7534 + }, + { + "start": 3372.76, + "end": 3373.0, + "probability": 0.912 + }, + { + "start": 3373.76, + "end": 3374.16, + "probability": 0.3018 + }, + { + "start": 3374.34, + "end": 3376.2, + "probability": 0.7462 + }, + { + "start": 3376.76, + "end": 3378.88, + "probability": 0.8914 + }, + { + "start": 3379.3, + "end": 3381.06, + "probability": 0.4256 + }, + { + "start": 3381.38, + "end": 3386.14, + "probability": 0.9861 + }, + { + "start": 3386.7, + "end": 3391.72, + "probability": 0.6754 + }, + { + "start": 3402.1, + "end": 3404.22, + "probability": 0.0333 + }, + { + "start": 3404.22, + "end": 3404.22, + "probability": 0.0741 + }, + { + "start": 3404.22, + "end": 3404.22, + "probability": 0.0247 + }, + { + "start": 3404.22, + "end": 3404.22, + "probability": 0.0985 + }, + { + "start": 3404.22, + "end": 3408.1, + "probability": 0.3141 + }, + { + "start": 3408.1, + "end": 3413.18, + "probability": 0.1148 + }, + { + "start": 3413.98, + "end": 3421.36, + "probability": 0.9844 + }, + { + "start": 3422.02, + "end": 3424.66, + "probability": 0.9832 + }, + { + "start": 3425.56, + "end": 3431.52, + "probability": 0.9953 + }, + { + "start": 3433.58, + "end": 3437.18, + "probability": 0.9951 + }, + { + "start": 3437.28, + "end": 3439.64, + "probability": 0.9424 + }, + { + "start": 3440.08, + "end": 3443.98, + "probability": 0.9946 + }, + { + "start": 3445.2, + "end": 3445.48, + "probability": 0.5151 + }, + { + "start": 3445.62, + "end": 3446.8, + "probability": 0.7258 + }, + { + "start": 3450.06, + "end": 3451.02, + "probability": 0.962 + }, + { + "start": 3451.08, + "end": 3451.96, + "probability": 0.7945 + }, + { + "start": 3452.2, + "end": 3453.59, + "probability": 0.9805 + }, + { + "start": 3454.06, + "end": 3458.16, + "probability": 0.9937 + }, + { + "start": 3459.12, + "end": 3460.44, + "probability": 0.8835 + }, + { + "start": 3460.5, + "end": 3465.36, + "probability": 0.9908 + }, + { + "start": 3466.18, + "end": 3471.2, + "probability": 0.9588 + }, + { + "start": 3471.5, + "end": 3473.58, + "probability": 0.8724 + }, + { + "start": 3474.64, + "end": 3479.62, + "probability": 0.9941 + }, + { + "start": 3479.62, + "end": 3483.38, + "probability": 0.9989 + }, + { + "start": 3484.44, + "end": 3487.78, + "probability": 0.988 + }, + { + "start": 3488.6, + "end": 3490.86, + "probability": 0.9982 + }, + { + "start": 3491.66, + "end": 3492.78, + "probability": 0.9807 + }, + { + "start": 3492.92, + "end": 3493.81, + "probability": 0.9846 + }, + { + "start": 3494.06, + "end": 3495.44, + "probability": 0.9328 + }, + { + "start": 3495.58, + "end": 3497.66, + "probability": 0.9261 + }, + { + "start": 3498.08, + "end": 3499.72, + "probability": 0.9964 + }, + { + "start": 3500.38, + "end": 3500.74, + "probability": 0.3155 + }, + { + "start": 3500.86, + "end": 3501.42, + "probability": 0.8617 + }, + { + "start": 3501.48, + "end": 3504.62, + "probability": 0.9321 + }, + { + "start": 3505.12, + "end": 3507.9, + "probability": 0.8445 + }, + { + "start": 3508.44, + "end": 3511.58, + "probability": 0.9287 + }, + { + "start": 3511.66, + "end": 3512.56, + "probability": 0.9785 + }, + { + "start": 3512.72, + "end": 3512.94, + "probability": 0.9968 + }, + { + "start": 3513.54, + "end": 3515.1, + "probability": 0.9546 + }, + { + "start": 3515.62, + "end": 3518.04, + "probability": 0.8506 + }, + { + "start": 3518.84, + "end": 3520.1, + "probability": 0.6073 + }, + { + "start": 3520.7, + "end": 3523.88, + "probability": 0.991 + }, + { + "start": 3523.88, + "end": 3526.94, + "probability": 0.8864 + }, + { + "start": 3527.68, + "end": 3528.88, + "probability": 0.6583 + }, + { + "start": 3529.64, + "end": 3533.16, + "probability": 0.9857 + }, + { + "start": 3533.16, + "end": 3535.78, + "probability": 0.8455 + }, + { + "start": 3536.42, + "end": 3540.48, + "probability": 0.9968 + }, + { + "start": 3541.08, + "end": 3543.9, + "probability": 0.9718 + }, + { + "start": 3543.98, + "end": 3547.06, + "probability": 0.9683 + }, + { + "start": 3547.18, + "end": 3547.82, + "probability": 0.9585 + }, + { + "start": 3547.9, + "end": 3548.54, + "probability": 0.4767 + }, + { + "start": 3549.0, + "end": 3551.56, + "probability": 0.9905 + }, + { + "start": 3551.72, + "end": 3552.98, + "probability": 0.9083 + }, + { + "start": 3553.36, + "end": 3555.82, + "probability": 0.9866 + }, + { + "start": 3555.96, + "end": 3556.8, + "probability": 0.466 + }, + { + "start": 3556.88, + "end": 3558.82, + "probability": 0.9404 + }, + { + "start": 3559.28, + "end": 3562.72, + "probability": 0.9847 + }, + { + "start": 3562.72, + "end": 3566.92, + "probability": 0.8728 + }, + { + "start": 3567.04, + "end": 3567.68, + "probability": 0.9459 + }, + { + "start": 3568.08, + "end": 3568.58, + "probability": 0.7705 + }, + { + "start": 3568.64, + "end": 3569.16, + "probability": 0.7911 + }, + { + "start": 3569.24, + "end": 3570.44, + "probability": 0.5294 + }, + { + "start": 3570.96, + "end": 3573.58, + "probability": 0.8657 + }, + { + "start": 3573.66, + "end": 3574.94, + "probability": 0.9718 + }, + { + "start": 3579.08, + "end": 3579.7, + "probability": 0.5411 + }, + { + "start": 3580.42, + "end": 3584.2, + "probability": 0.6603 + }, + { + "start": 3585.0, + "end": 3587.16, + "probability": 0.6254 + }, + { + "start": 3588.66, + "end": 3589.8, + "probability": 0.5792 + }, + { + "start": 3589.8, + "end": 3590.7, + "probability": 0.717 + }, + { + "start": 3590.94, + "end": 3592.3, + "probability": 0.9113 + }, + { + "start": 3592.5, + "end": 3598.5, + "probability": 0.969 + }, + { + "start": 3598.8, + "end": 3604.72, + "probability": 0.9878 + }, + { + "start": 3604.96, + "end": 3605.56, + "probability": 0.8882 + }, + { + "start": 3605.7, + "end": 3611.04, + "probability": 0.9328 + }, + { + "start": 3611.4, + "end": 3612.4, + "probability": 0.7372 + }, + { + "start": 3613.36, + "end": 3615.78, + "probability": 0.8595 + }, + { + "start": 3616.3, + "end": 3619.7, + "probability": 0.8974 + }, + { + "start": 3619.86, + "end": 3620.24, + "probability": 0.8792 + }, + { + "start": 3621.2, + "end": 3628.36, + "probability": 0.9347 + }, + { + "start": 3628.36, + "end": 3635.48, + "probability": 0.8935 + }, + { + "start": 3635.58, + "end": 3637.48, + "probability": 0.7798 + }, + { + "start": 3638.16, + "end": 3641.6, + "probability": 0.9702 + }, + { + "start": 3642.46, + "end": 3644.1, + "probability": 0.9104 + }, + { + "start": 3645.8, + "end": 3648.52, + "probability": 0.9318 + }, + { + "start": 3648.64, + "end": 3649.42, + "probability": 0.7363 + }, + { + "start": 3649.46, + "end": 3650.54, + "probability": 0.7006 + }, + { + "start": 3651.42, + "end": 3653.64, + "probability": 0.8618 + }, + { + "start": 3654.32, + "end": 3654.74, + "probability": 0.4716 + }, + { + "start": 3655.5, + "end": 3658.82, + "probability": 0.9978 + }, + { + "start": 3658.82, + "end": 3664.04, + "probability": 0.8047 + }, + { + "start": 3664.76, + "end": 3668.52, + "probability": 0.9736 + }, + { + "start": 3669.34, + "end": 3672.84, + "probability": 0.9907 + }, + { + "start": 3673.6, + "end": 3677.44, + "probability": 0.8182 + }, + { + "start": 3678.0, + "end": 3680.91, + "probability": 0.9803 + }, + { + "start": 3681.22, + "end": 3685.74, + "probability": 0.9894 + }, + { + "start": 3686.36, + "end": 3688.28, + "probability": 0.9173 + }, + { + "start": 3688.58, + "end": 3690.36, + "probability": 0.4505 + }, + { + "start": 3690.48, + "end": 3692.22, + "probability": 0.7806 + }, + { + "start": 3692.52, + "end": 3695.42, + "probability": 0.9653 + }, + { + "start": 3696.1, + "end": 3698.28, + "probability": 0.3043 + }, + { + "start": 3698.8, + "end": 3702.28, + "probability": 0.8273 + }, + { + "start": 3703.12, + "end": 3705.72, + "probability": 0.9921 + }, + { + "start": 3705.8, + "end": 3706.32, + "probability": 0.452 + }, + { + "start": 3706.36, + "end": 3712.02, + "probability": 0.9839 + }, + { + "start": 3712.02, + "end": 3716.52, + "probability": 0.9666 + }, + { + "start": 3716.74, + "end": 3719.84, + "probability": 0.9962 + }, + { + "start": 3720.04, + "end": 3721.0, + "probability": 0.4818 + }, + { + "start": 3721.38, + "end": 3724.34, + "probability": 0.8285 + }, + { + "start": 3724.74, + "end": 3724.94, + "probability": 0.7362 + }, + { + "start": 3725.22, + "end": 3732.4, + "probability": 0.9954 + }, + { + "start": 3732.9, + "end": 3734.82, + "probability": 0.8031 + }, + { + "start": 3735.4, + "end": 3740.28, + "probability": 0.8707 + }, + { + "start": 3740.38, + "end": 3742.16, + "probability": 0.7021 + }, + { + "start": 3742.22, + "end": 3745.18, + "probability": 0.9509 + }, + { + "start": 3745.24, + "end": 3747.94, + "probability": 0.9741 + }, + { + "start": 3748.34, + "end": 3752.88, + "probability": 0.9858 + }, + { + "start": 3753.08, + "end": 3753.64, + "probability": 0.9052 + }, + { + "start": 3754.14, + "end": 3755.08, + "probability": 0.9092 + }, + { + "start": 3755.34, + "end": 3756.52, + "probability": 0.8262 + }, + { + "start": 3756.6, + "end": 3759.31, + "probability": 0.9915 + }, + { + "start": 3759.66, + "end": 3762.8, + "probability": 0.9907 + }, + { + "start": 3763.14, + "end": 3770.7, + "probability": 0.988 + }, + { + "start": 3771.14, + "end": 3771.72, + "probability": 0.5983 + }, + { + "start": 3771.78, + "end": 3774.84, + "probability": 0.9688 + }, + { + "start": 3775.24, + "end": 3777.34, + "probability": 0.9959 + }, + { + "start": 3777.98, + "end": 3780.3, + "probability": 0.9512 + }, + { + "start": 3780.4, + "end": 3781.89, + "probability": 0.9941 + }, + { + "start": 3783.18, + "end": 3783.72, + "probability": 0.683 + }, + { + "start": 3783.98, + "end": 3785.84, + "probability": 0.9692 + }, + { + "start": 3786.04, + "end": 3788.96, + "probability": 0.9699 + }, + { + "start": 3789.54, + "end": 3790.54, + "probability": 0.8592 + }, + { + "start": 3790.92, + "end": 3794.97, + "probability": 0.9893 + }, + { + "start": 3795.02, + "end": 3798.82, + "probability": 0.9947 + }, + { + "start": 3798.94, + "end": 3802.84, + "probability": 0.9946 + }, + { + "start": 3803.24, + "end": 3805.22, + "probability": 0.998 + }, + { + "start": 3805.32, + "end": 3806.09, + "probability": 0.9526 + }, + { + "start": 3807.18, + "end": 3812.2, + "probability": 0.9911 + }, + { + "start": 3813.24, + "end": 3816.64, + "probability": 0.9735 + }, + { + "start": 3816.84, + "end": 3817.4, + "probability": 0.6821 + }, + { + "start": 3817.48, + "end": 3820.1, + "probability": 0.9868 + }, + { + "start": 3821.3, + "end": 3824.28, + "probability": 0.9649 + }, + { + "start": 3824.8, + "end": 3829.36, + "probability": 0.7567 + }, + { + "start": 3829.56, + "end": 3831.46, + "probability": 0.3575 + }, + { + "start": 3831.52, + "end": 3831.86, + "probability": 0.3667 + }, + { + "start": 3831.94, + "end": 3833.28, + "probability": 0.5993 + }, + { + "start": 3833.8, + "end": 3835.44, + "probability": 0.4626 + }, + { + "start": 3835.44, + "end": 3836.42, + "probability": 0.4444 + }, + { + "start": 3836.44, + "end": 3839.01, + "probability": 0.9905 + }, + { + "start": 3839.12, + "end": 3840.87, + "probability": 0.7418 + }, + { + "start": 3841.36, + "end": 3845.0, + "probability": 0.797 + }, + { + "start": 3846.26, + "end": 3846.26, + "probability": 0.0524 + }, + { + "start": 3846.26, + "end": 3847.22, + "probability": 0.6276 + }, + { + "start": 3847.3, + "end": 3851.78, + "probability": 0.9768 + }, + { + "start": 3851.78, + "end": 3855.7, + "probability": 0.9945 + }, + { + "start": 3855.78, + "end": 3855.92, + "probability": 0.7174 + }, + { + "start": 3856.04, + "end": 3861.16, + "probability": 0.9803 + }, + { + "start": 3861.58, + "end": 3863.12, + "probability": 0.8842 + }, + { + "start": 3863.18, + "end": 3865.42, + "probability": 0.7388 + }, + { + "start": 3865.44, + "end": 3867.38, + "probability": 0.9246 + }, + { + "start": 3868.06, + "end": 3869.98, + "probability": 0.9056 + }, + { + "start": 3870.1, + "end": 3872.92, + "probability": 0.9858 + }, + { + "start": 3872.96, + "end": 3874.6, + "probability": 0.9663 + }, + { + "start": 3874.64, + "end": 3879.22, + "probability": 0.9977 + }, + { + "start": 3879.92, + "end": 3883.05, + "probability": 0.9883 + }, + { + "start": 3883.22, + "end": 3885.46, + "probability": 0.7378 + }, + { + "start": 3885.64, + "end": 3888.4, + "probability": 0.7622 + }, + { + "start": 3889.2, + "end": 3890.52, + "probability": 0.9868 + }, + { + "start": 3890.98, + "end": 3891.68, + "probability": 0.7411 + }, + { + "start": 3891.88, + "end": 3892.26, + "probability": 0.8782 + }, + { + "start": 3892.32, + "end": 3895.07, + "probability": 0.9226 + }, + { + "start": 3895.1, + "end": 3896.52, + "probability": 0.9167 + }, + { + "start": 3896.64, + "end": 3901.96, + "probability": 0.9596 + }, + { + "start": 3902.0, + "end": 3903.72, + "probability": 0.9911 + }, + { + "start": 3903.96, + "end": 3908.6, + "probability": 0.9799 + }, + { + "start": 3908.84, + "end": 3911.94, + "probability": 0.8039 + }, + { + "start": 3912.08, + "end": 3912.52, + "probability": 0.8527 + }, + { + "start": 3912.56, + "end": 3913.18, + "probability": 0.8963 + }, + { + "start": 3913.6, + "end": 3914.92, + "probability": 0.9722 + }, + { + "start": 3915.06, + "end": 3919.74, + "probability": 0.9707 + }, + { + "start": 3919.98, + "end": 3925.9, + "probability": 0.9831 + }, + { + "start": 3926.32, + "end": 3932.32, + "probability": 0.9948 + }, + { + "start": 3932.56, + "end": 3934.44, + "probability": 0.9985 + }, + { + "start": 3935.04, + "end": 3935.76, + "probability": 0.9907 + }, + { + "start": 3936.16, + "end": 3936.78, + "probability": 0.8736 + }, + { + "start": 3936.84, + "end": 3939.56, + "probability": 0.9683 + }, + { + "start": 3939.92, + "end": 3942.88, + "probability": 0.979 + }, + { + "start": 3942.88, + "end": 3946.09, + "probability": 0.8228 + }, + { + "start": 3946.82, + "end": 3950.04, + "probability": 0.9312 + }, + { + "start": 3951.08, + "end": 3953.84, + "probability": 0.9816 + }, + { + "start": 3953.92, + "end": 3956.62, + "probability": 0.9868 + }, + { + "start": 3957.52, + "end": 3961.5, + "probability": 0.9985 + }, + { + "start": 3961.5, + "end": 3965.86, + "probability": 0.9958 + }, + { + "start": 3966.36, + "end": 3970.79, + "probability": 0.7783 + }, + { + "start": 3971.46, + "end": 3972.78, + "probability": 0.5545 + }, + { + "start": 3973.24, + "end": 3976.74, + "probability": 0.5772 + }, + { + "start": 3976.74, + "end": 3978.16, + "probability": 0.5737 + }, + { + "start": 3978.78, + "end": 3981.68, + "probability": 0.8771 + }, + { + "start": 3982.26, + "end": 3983.46, + "probability": 0.7817 + }, + { + "start": 3986.24, + "end": 3988.3, + "probability": 0.807 + }, + { + "start": 3994.22, + "end": 3994.96, + "probability": 0.1782 + }, + { + "start": 3994.96, + "end": 3994.96, + "probability": 0.101 + }, + { + "start": 3994.96, + "end": 3997.76, + "probability": 0.9954 + }, + { + "start": 3998.1, + "end": 3999.18, + "probability": 0.8328 + }, + { + "start": 3999.44, + "end": 4001.66, + "probability": 0.7549 + }, + { + "start": 4001.78, + "end": 4003.38, + "probability": 0.9932 + }, + { + "start": 4003.46, + "end": 4006.94, + "probability": 0.7922 + }, + { + "start": 4007.0, + "end": 4008.1, + "probability": 0.9907 + }, + { + "start": 4008.7, + "end": 4012.48, + "probability": 0.534 + }, + { + "start": 4021.34, + "end": 4025.52, + "probability": 0.8259 + }, + { + "start": 4025.58, + "end": 4026.02, + "probability": 0.5581 + }, + { + "start": 4026.14, + "end": 4027.5, + "probability": 0.6719 + }, + { + "start": 4027.76, + "end": 4030.66, + "probability": 0.8781 + }, + { + "start": 4030.76, + "end": 4030.84, + "probability": 0.1321 + }, + { + "start": 4030.92, + "end": 4032.16, + "probability": 0.6307 + }, + { + "start": 4032.32, + "end": 4033.9, + "probability": 0.9475 + }, + { + "start": 4036.34, + "end": 4036.34, + "probability": 0.5793 + }, + { + "start": 4036.34, + "end": 4038.28, + "probability": 0.5208 + }, + { + "start": 4038.44, + "end": 4041.18, + "probability": 0.7885 + }, + { + "start": 4041.94, + "end": 4043.52, + "probability": 0.9209 + }, + { + "start": 4044.72, + "end": 4047.58, + "probability": 0.994 + }, + { + "start": 4048.4, + "end": 4049.76, + "probability": 0.8027 + }, + { + "start": 4049.88, + "end": 4054.1, + "probability": 0.8593 + }, + { + "start": 4055.02, + "end": 4055.2, + "probability": 0.002 + }, + { + "start": 4055.2, + "end": 4056.46, + "probability": 0.6021 + }, + { + "start": 4056.52, + "end": 4057.2, + "probability": 0.7051 + }, + { + "start": 4057.34, + "end": 4059.7, + "probability": 0.4406 + }, + { + "start": 4059.78, + "end": 4060.38, + "probability": 0.5241 + }, + { + "start": 4060.38, + "end": 4062.58, + "probability": 0.9541 + }, + { + "start": 4063.62, + "end": 4065.6, + "probability": 0.6644 + }, + { + "start": 4066.6, + "end": 4070.78, + "probability": 0.8936 + }, + { + "start": 4071.06, + "end": 4077.6, + "probability": 0.9751 + }, + { + "start": 4078.08, + "end": 4082.22, + "probability": 0.5683 + }, + { + "start": 4082.3, + "end": 4085.26, + "probability": 0.9709 + }, + { + "start": 4085.84, + "end": 4088.24, + "probability": 0.4774 + }, + { + "start": 4088.78, + "end": 4090.94, + "probability": 0.5273 + }, + { + "start": 4091.1, + "end": 4091.34, + "probability": 0.5137 + }, + { + "start": 4091.4, + "end": 4091.94, + "probability": 0.3013 + }, + { + "start": 4092.12, + "end": 4093.82, + "probability": 0.7345 + }, + { + "start": 4094.22, + "end": 4094.98, + "probability": 0.9592 + }, + { + "start": 4095.88, + "end": 4098.24, + "probability": 0.7665 + }, + { + "start": 4098.28, + "end": 4101.86, + "probability": 0.9399 + }, + { + "start": 4101.96, + "end": 4104.28, + "probability": 0.9829 + }, + { + "start": 4104.98, + "end": 4109.4, + "probability": 0.9932 + }, + { + "start": 4110.14, + "end": 4112.26, + "probability": 0.9756 + }, + { + "start": 4113.44, + "end": 4119.24, + "probability": 0.9795 + }, + { + "start": 4120.2, + "end": 4121.97, + "probability": 0.9917 + }, + { + "start": 4122.22, + "end": 4126.14, + "probability": 0.9989 + }, + { + "start": 4126.24, + "end": 4128.24, + "probability": 0.8404 + }, + { + "start": 4128.32, + "end": 4129.92, + "probability": 0.9736 + }, + { + "start": 4130.06, + "end": 4131.6, + "probability": 0.9927 + }, + { + "start": 4133.7, + "end": 4135.22, + "probability": 0.7303 + }, + { + "start": 4135.54, + "end": 4136.84, + "probability": 0.9051 + }, + { + "start": 4136.96, + "end": 4138.04, + "probability": 0.9951 + }, + { + "start": 4138.56, + "end": 4140.58, + "probability": 0.9788 + }, + { + "start": 4140.64, + "end": 4141.48, + "probability": 0.973 + }, + { + "start": 4141.62, + "end": 4143.14, + "probability": 0.9844 + }, + { + "start": 4143.2, + "end": 4149.88, + "probability": 0.98 + }, + { + "start": 4150.12, + "end": 4150.54, + "probability": 0.8344 + }, + { + "start": 4151.22, + "end": 4154.92, + "probability": 0.834 + }, + { + "start": 4155.04, + "end": 4156.42, + "probability": 0.9237 + }, + { + "start": 4156.96, + "end": 4159.02, + "probability": 0.9478 + }, + { + "start": 4161.52, + "end": 4163.16, + "probability": 0.7394 + }, + { + "start": 4163.34, + "end": 4165.8, + "probability": 0.9974 + }, + { + "start": 4165.94, + "end": 4171.25, + "probability": 0.9753 + }, + { + "start": 4172.52, + "end": 4174.38, + "probability": 0.8865 + }, + { + "start": 4174.46, + "end": 4177.16, + "probability": 0.9821 + }, + { + "start": 4177.3, + "end": 4179.78, + "probability": 0.9526 + }, + { + "start": 4179.82, + "end": 4186.3, + "probability": 0.9913 + }, + { + "start": 4186.84, + "end": 4187.62, + "probability": 0.9731 + }, + { + "start": 4187.86, + "end": 4188.42, + "probability": 0.6755 + }, + { + "start": 4188.58, + "end": 4189.3, + "probability": 0.8672 + }, + { + "start": 4189.36, + "end": 4191.38, + "probability": 0.877 + }, + { + "start": 4192.4, + "end": 4195.25, + "probability": 0.9851 + }, + { + "start": 4195.62, + "end": 4198.93, + "probability": 0.9842 + }, + { + "start": 4199.2, + "end": 4201.04, + "probability": 0.6764 + }, + { + "start": 4201.44, + "end": 4202.74, + "probability": 0.9157 + }, + { + "start": 4202.8, + "end": 4206.34, + "probability": 0.958 + }, + { + "start": 4206.94, + "end": 4209.28, + "probability": 0.9976 + }, + { + "start": 4209.42, + "end": 4212.54, + "probability": 0.9623 + }, + { + "start": 4213.54, + "end": 4215.66, + "probability": 0.9746 + }, + { + "start": 4216.08, + "end": 4220.21, + "probability": 0.9984 + }, + { + "start": 4220.94, + "end": 4225.52, + "probability": 0.9976 + }, + { + "start": 4225.66, + "end": 4225.94, + "probability": 0.471 + }, + { + "start": 4226.04, + "end": 4227.78, + "probability": 0.9241 + }, + { + "start": 4228.46, + "end": 4233.72, + "probability": 0.9563 + }, + { + "start": 4234.2, + "end": 4234.68, + "probability": 0.9245 + }, + { + "start": 4234.82, + "end": 4235.67, + "probability": 0.8365 + }, + { + "start": 4235.86, + "end": 4239.8, + "probability": 0.9959 + }, + { + "start": 4239.86, + "end": 4242.86, + "probability": 0.973 + }, + { + "start": 4243.56, + "end": 4244.06, + "probability": 0.3974 + }, + { + "start": 4244.68, + "end": 4249.04, + "probability": 0.8689 + }, + { + "start": 4249.32, + "end": 4250.38, + "probability": 0.874 + }, + { + "start": 4250.5, + "end": 4251.58, + "probability": 0.6639 + }, + { + "start": 4252.04, + "end": 4255.56, + "probability": 0.9897 + }, + { + "start": 4255.56, + "end": 4259.44, + "probability": 0.9259 + }, + { + "start": 4274.8, + "end": 4278.24, + "probability": 0.9988 + }, + { + "start": 4278.26, + "end": 4280.4, + "probability": 0.96 + }, + { + "start": 4280.48, + "end": 4283.06, + "probability": 0.851 + }, + { + "start": 4283.86, + "end": 4284.04, + "probability": 0.9166 + }, + { + "start": 4284.14, + "end": 4285.23, + "probability": 0.9961 + }, + { + "start": 4285.54, + "end": 4287.65, + "probability": 0.998 + }, + { + "start": 4288.44, + "end": 4290.96, + "probability": 0.9824 + }, + { + "start": 4291.5, + "end": 4294.98, + "probability": 0.9976 + }, + { + "start": 4295.0, + "end": 4298.32, + "probability": 0.9379 + }, + { + "start": 4298.58, + "end": 4300.92, + "probability": 0.9498 + }, + { + "start": 4301.42, + "end": 4302.52, + "probability": 0.7853 + }, + { + "start": 4302.64, + "end": 4304.4, + "probability": 0.9993 + }, + { + "start": 4304.98, + "end": 4309.09, + "probability": 0.9928 + }, + { + "start": 4309.66, + "end": 4311.68, + "probability": 0.8045 + }, + { + "start": 4311.74, + "end": 4318.66, + "probability": 0.9666 + }, + { + "start": 4319.42, + "end": 4320.1, + "probability": 0.7048 + }, + { + "start": 4320.44, + "end": 4325.32, + "probability": 0.8408 + }, + { + "start": 4325.46, + "end": 4327.18, + "probability": 0.9001 + }, + { + "start": 4327.78, + "end": 4330.28, + "probability": 0.9889 + }, + { + "start": 4330.82, + "end": 4332.63, + "probability": 0.7476 + }, + { + "start": 4333.06, + "end": 4335.94, + "probability": 0.8037 + }, + { + "start": 4336.02, + "end": 4339.72, + "probability": 0.9977 + }, + { + "start": 4339.92, + "end": 4341.04, + "probability": 0.7858 + }, + { + "start": 4341.1, + "end": 4342.42, + "probability": 0.9126 + }, + { + "start": 4342.42, + "end": 4344.72, + "probability": 0.9907 + }, + { + "start": 4345.8, + "end": 4346.18, + "probability": 0.4769 + }, + { + "start": 4346.62, + "end": 4348.18, + "probability": 0.8846 + }, + { + "start": 4348.76, + "end": 4349.84, + "probability": 0.8376 + }, + { + "start": 4349.96, + "end": 4351.8, + "probability": 0.7454 + }, + { + "start": 4351.86, + "end": 4353.0, + "probability": 0.9183 + }, + { + "start": 4353.54, + "end": 4354.6, + "probability": 0.9739 + }, + { + "start": 4354.84, + "end": 4358.3, + "probability": 0.6392 + }, + { + "start": 4358.34, + "end": 4359.52, + "probability": 0.9612 + }, + { + "start": 4359.68, + "end": 4361.5, + "probability": 0.6523 + }, + { + "start": 4362.32, + "end": 4366.36, + "probability": 0.9521 + }, + { + "start": 4366.44, + "end": 4368.28, + "probability": 0.9869 + }, + { + "start": 4368.8, + "end": 4371.04, + "probability": 0.9661 + }, + { + "start": 4371.04, + "end": 4374.3, + "probability": 0.9871 + }, + { + "start": 4374.62, + "end": 4374.86, + "probability": 0.8186 + }, + { + "start": 4375.0, + "end": 4376.28, + "probability": 0.4592 + }, + { + "start": 4376.28, + "end": 4380.0, + "probability": 0.9236 + }, + { + "start": 4380.56, + "end": 4381.64, + "probability": 0.7114 + }, + { + "start": 4381.72, + "end": 4382.68, + "probability": 0.9375 + }, + { + "start": 4382.74, + "end": 4384.8, + "probability": 0.9246 + }, + { + "start": 4385.5, + "end": 4387.0, + "probability": 0.818 + }, + { + "start": 4387.12, + "end": 4388.24, + "probability": 0.7021 + }, + { + "start": 4388.46, + "end": 4390.04, + "probability": 0.9133 + }, + { + "start": 4390.48, + "end": 4390.98, + "probability": 0.75 + }, + { + "start": 4391.06, + "end": 4395.24, + "probability": 0.9905 + }, + { + "start": 4395.24, + "end": 4400.8, + "probability": 0.9772 + }, + { + "start": 4400.8, + "end": 4404.2, + "probability": 0.9805 + }, + { + "start": 4404.6, + "end": 4407.48, + "probability": 0.9979 + }, + { + "start": 4407.6, + "end": 4410.02, + "probability": 0.9893 + }, + { + "start": 4410.18, + "end": 4410.94, + "probability": 0.8982 + }, + { + "start": 4411.24, + "end": 4415.66, + "probability": 0.9844 + }, + { + "start": 4416.34, + "end": 4421.28, + "probability": 0.9067 + }, + { + "start": 4421.28, + "end": 4424.68, + "probability": 0.9961 + }, + { + "start": 4424.76, + "end": 4425.04, + "probability": 0.7018 + }, + { + "start": 4425.4, + "end": 4426.04, + "probability": 0.6012 + }, + { + "start": 4426.18, + "end": 4427.4, + "probability": 0.5412 + }, + { + "start": 4427.54, + "end": 4429.32, + "probability": 0.99 + }, + { + "start": 4429.32, + "end": 4435.52, + "probability": 0.9585 + }, + { + "start": 4436.22, + "end": 4437.22, + "probability": 0.9236 + }, + { + "start": 4437.32, + "end": 4440.62, + "probability": 0.9808 + }, + { + "start": 4441.2, + "end": 4442.24, + "probability": 0.6794 + }, + { + "start": 4442.44, + "end": 4442.94, + "probability": 0.7059 + }, + { + "start": 4443.62, + "end": 4445.58, + "probability": 0.9424 + }, + { + "start": 4446.24, + "end": 4448.14, + "probability": 0.9976 + }, + { + "start": 4448.38, + "end": 4452.7, + "probability": 0.9916 + }, + { + "start": 4453.42, + "end": 4461.24, + "probability": 0.9974 + }, + { + "start": 4461.42, + "end": 4462.72, + "probability": 0.9917 + }, + { + "start": 4462.88, + "end": 4467.86, + "probability": 0.95 + }, + { + "start": 4467.86, + "end": 4471.18, + "probability": 0.9974 + }, + { + "start": 4471.72, + "end": 4477.16, + "probability": 0.9819 + }, + { + "start": 4477.3, + "end": 4478.24, + "probability": 0.9154 + }, + { + "start": 4478.98, + "end": 4483.78, + "probability": 0.95 + }, + { + "start": 4484.24, + "end": 4486.36, + "probability": 0.9596 + }, + { + "start": 4486.82, + "end": 4489.58, + "probability": 0.9996 + }, + { + "start": 4489.58, + "end": 4492.5, + "probability": 0.998 + }, + { + "start": 4493.58, + "end": 4497.5, + "probability": 0.8892 + }, + { + "start": 4497.9, + "end": 4498.26, + "probability": 0.3971 + }, + { + "start": 4498.36, + "end": 4500.28, + "probability": 0.4529 + }, + { + "start": 4500.68, + "end": 4501.4, + "probability": 0.5013 + }, + { + "start": 4501.48, + "end": 4504.7, + "probability": 0.8943 + }, + { + "start": 4505.18, + "end": 4505.98, + "probability": 0.6771 + }, + { + "start": 4506.02, + "end": 4507.12, + "probability": 0.9542 + }, + { + "start": 4507.54, + "end": 4509.5, + "probability": 0.9985 + }, + { + "start": 4509.6, + "end": 4510.62, + "probability": 0.878 + }, + { + "start": 4511.74, + "end": 4512.9, + "probability": 0.6099 + }, + { + "start": 4514.5, + "end": 4519.38, + "probability": 0.6685 + }, + { + "start": 4520.02, + "end": 4521.68, + "probability": 0.9893 + }, + { + "start": 4521.86, + "end": 4522.3, + "probability": 0.7395 + }, + { + "start": 4522.78, + "end": 4526.48, + "probability": 0.7853 + }, + { + "start": 4526.48, + "end": 4528.82, + "probability": 0.3334 + }, + { + "start": 4528.82, + "end": 4529.46, + "probability": 0.5679 + }, + { + "start": 4529.52, + "end": 4530.18, + "probability": 0.7391 + }, + { + "start": 4530.36, + "end": 4530.92, + "probability": 0.872 + }, + { + "start": 4530.98, + "end": 4533.02, + "probability": 0.8779 + }, + { + "start": 4533.16, + "end": 4536.98, + "probability": 0.9502 + }, + { + "start": 4537.54, + "end": 4541.42, + "probability": 0.9969 + }, + { + "start": 4542.02, + "end": 4542.7, + "probability": 0.6594 + }, + { + "start": 4542.82, + "end": 4543.36, + "probability": 0.8668 + }, + { + "start": 4543.44, + "end": 4548.82, + "probability": 0.9763 + }, + { + "start": 4549.38, + "end": 4552.04, + "probability": 0.9949 + }, + { + "start": 4552.16, + "end": 4553.2, + "probability": 0.9839 + }, + { + "start": 4553.72, + "end": 4555.7, + "probability": 0.9205 + }, + { + "start": 4556.32, + "end": 4559.74, + "probability": 0.9984 + }, + { + "start": 4560.24, + "end": 4563.06, + "probability": 0.968 + }, + { + "start": 4563.4, + "end": 4564.68, + "probability": 0.8857 + }, + { + "start": 4564.8, + "end": 4565.46, + "probability": 0.6271 + }, + { + "start": 4565.56, + "end": 4566.0, + "probability": 0.8388 + }, + { + "start": 4566.16, + "end": 4569.36, + "probability": 0.9362 + }, + { + "start": 4570.14, + "end": 4571.44, + "probability": 0.9844 + }, + { + "start": 4571.5, + "end": 4573.82, + "probability": 0.9619 + }, + { + "start": 4574.26, + "end": 4577.06, + "probability": 0.8878 + }, + { + "start": 4577.46, + "end": 4580.0, + "probability": 0.7018 + }, + { + "start": 4580.0, + "end": 4580.46, + "probability": 0.8116 + }, + { + "start": 4581.26, + "end": 4581.94, + "probability": 0.6207 + }, + { + "start": 4582.42, + "end": 4584.82, + "probability": 0.5808 + }, + { + "start": 4585.58, + "end": 4589.3, + "probability": 0.8955 + }, + { + "start": 4590.0, + "end": 4593.78, + "probability": 0.9244 + }, + { + "start": 4594.22, + "end": 4595.22, + "probability": 0.5655 + }, + { + "start": 4596.3, + "end": 4598.36, + "probability": 0.7993 + }, + { + "start": 4598.74, + "end": 4600.06, + "probability": 0.9342 + }, + { + "start": 4600.88, + "end": 4602.5, + "probability": 0.9343 + }, + { + "start": 4603.06, + "end": 4604.46, + "probability": 0.9691 + }, + { + "start": 4605.18, + "end": 4611.12, + "probability": 0.9764 + }, + { + "start": 4611.56, + "end": 4612.92, + "probability": 0.7612 + }, + { + "start": 4614.88, + "end": 4617.04, + "probability": 0.2187 + }, + { + "start": 4617.62, + "end": 4618.1, + "probability": 0.0016 + }, + { + "start": 4618.8, + "end": 4623.28, + "probability": 0.6116 + }, + { + "start": 4623.44, + "end": 4626.22, + "probability": 0.9816 + }, + { + "start": 4626.46, + "end": 4628.94, + "probability": 0.8308 + }, + { + "start": 4629.38, + "end": 4635.3, + "probability": 0.8546 + }, + { + "start": 4635.68, + "end": 4638.79, + "probability": 0.9901 + }, + { + "start": 4639.56, + "end": 4640.0, + "probability": 0.3513 + }, + { + "start": 4640.58, + "end": 4640.76, + "probability": 0.0005 + }, + { + "start": 4640.76, + "end": 4644.78, + "probability": 0.8605 + }, + { + "start": 4644.92, + "end": 4646.32, + "probability": 0.8456 + }, + { + "start": 4646.7, + "end": 4647.3, + "probability": 0.5151 + }, + { + "start": 4647.88, + "end": 4650.28, + "probability": 0.8511 + }, + { + "start": 4650.84, + "end": 4651.12, + "probability": 0.012 + }, + { + "start": 4651.46, + "end": 4652.32, + "probability": 0.8209 + }, + { + "start": 4652.48, + "end": 4654.38, + "probability": 0.8647 + }, + { + "start": 4654.72, + "end": 4655.88, + "probability": 0.6825 + }, + { + "start": 4656.2, + "end": 4658.64, + "probability": 0.3139 + }, + { + "start": 4659.16, + "end": 4660.4, + "probability": 0.0868 + }, + { + "start": 4660.4, + "end": 4662.22, + "probability": 0.4026 + }, + { + "start": 4663.04, + "end": 4665.22, + "probability": 0.8389 + }, + { + "start": 4666.16, + "end": 4668.66, + "probability": 0.5977 + }, + { + "start": 4668.66, + "end": 4671.74, + "probability": 0.7622 + }, + { + "start": 4672.04, + "end": 4675.46, + "probability": 0.9931 + }, + { + "start": 4676.34, + "end": 4676.9, + "probability": 0.5565 + }, + { + "start": 4677.1, + "end": 4687.96, + "probability": 0.9808 + }, + { + "start": 4688.38, + "end": 4693.08, + "probability": 0.8738 + }, + { + "start": 4693.54, + "end": 4696.12, + "probability": 0.9961 + }, + { + "start": 4696.58, + "end": 4697.9, + "probability": 0.9697 + }, + { + "start": 4701.4, + "end": 4702.84, + "probability": 0.4729 + }, + { + "start": 4703.22, + "end": 4705.12, + "probability": 0.9219 + }, + { + "start": 4705.16, + "end": 4710.3, + "probability": 0.6722 + }, + { + "start": 4711.18, + "end": 4715.92, + "probability": 0.6094 + }, + { + "start": 4716.18, + "end": 4718.7, + "probability": 0.9778 + }, + { + "start": 4718.98, + "end": 4722.0, + "probability": 0.9272 + }, + { + "start": 4722.44, + "end": 4727.02, + "probability": 0.9396 + }, + { + "start": 4727.92, + "end": 4730.44, + "probability": 0.7267 + }, + { + "start": 4730.72, + "end": 4732.68, + "probability": 0.9263 + }, + { + "start": 4733.02, + "end": 4733.92, + "probability": 0.7672 + }, + { + "start": 4734.16, + "end": 4736.06, + "probability": 0.9816 + }, + { + "start": 4736.44, + "end": 4737.46, + "probability": 0.6153 + }, + { + "start": 4737.54, + "end": 4738.04, + "probability": 0.5649 + }, + { + "start": 4745.44, + "end": 4748.56, + "probability": 0.8135 + }, + { + "start": 4748.74, + "end": 4752.76, + "probability": 0.9924 + }, + { + "start": 4752.78, + "end": 4754.1, + "probability": 0.7197 + }, + { + "start": 4754.82, + "end": 4755.02, + "probability": 0.8189 + }, + { + "start": 4755.94, + "end": 4757.54, + "probability": 0.8452 + }, + { + "start": 4758.96, + "end": 4761.66, + "probability": 0.9107 + }, + { + "start": 4762.44, + "end": 4767.08, + "probability": 0.9868 + }, + { + "start": 4768.38, + "end": 4768.92, + "probability": 0.8651 + }, + { + "start": 4769.44, + "end": 4769.96, + "probability": 0.7906 + }, + { + "start": 4775.32, + "end": 4777.94, + "probability": 0.6689 + }, + { + "start": 4778.48, + "end": 4780.78, + "probability": 0.975 + }, + { + "start": 4784.56, + "end": 4785.4, + "probability": 0.7384 + }, + { + "start": 4786.16, + "end": 4787.12, + "probability": 0.8314 + }, + { + "start": 4788.38, + "end": 4790.62, + "probability": 0.8906 + }, + { + "start": 4791.48, + "end": 4794.66, + "probability": 0.7681 + }, + { + "start": 4794.8, + "end": 4795.38, + "probability": 0.8173 + }, + { + "start": 4797.12, + "end": 4800.28, + "probability": 0.7804 + }, + { + "start": 4801.56, + "end": 4804.82, + "probability": 0.9944 + }, + { + "start": 4806.62, + "end": 4808.8, + "probability": 0.9112 + }, + { + "start": 4809.78, + "end": 4810.5, + "probability": 0.9737 + }, + { + "start": 4811.2, + "end": 4812.02, + "probability": 0.7472 + }, + { + "start": 4812.78, + "end": 4813.86, + "probability": 0.7685 + }, + { + "start": 4814.4, + "end": 4814.82, + "probability": 0.9548 + }, + { + "start": 4815.56, + "end": 4816.48, + "probability": 0.9691 + }, + { + "start": 4817.26, + "end": 4818.6, + "probability": 0.9893 + }, + { + "start": 4819.44, + "end": 4819.68, + "probability": 0.7704 + }, + { + "start": 4821.2, + "end": 4822.96, + "probability": 0.8885 + }, + { + "start": 4823.78, + "end": 4824.44, + "probability": 0.9596 + }, + { + "start": 4825.94, + "end": 4827.1, + "probability": 0.7904 + }, + { + "start": 4829.12, + "end": 4833.0, + "probability": 0.9402 + }, + { + "start": 4834.92, + "end": 4835.6, + "probability": 0.6262 + }, + { + "start": 4836.18, + "end": 4837.98, + "probability": 0.9861 + }, + { + "start": 4839.0, + "end": 4839.68, + "probability": 0.972 + }, + { + "start": 4841.18, + "end": 4842.86, + "probability": 0.9963 + }, + { + "start": 4845.18, + "end": 4846.32, + "probability": 0.7793 + }, + { + "start": 4847.26, + "end": 4848.32, + "probability": 0.9919 + }, + { + "start": 4848.84, + "end": 4849.34, + "probability": 0.8906 + }, + { + "start": 4850.86, + "end": 4852.76, + "probability": 0.9971 + }, + { + "start": 4853.84, + "end": 4857.28, + "probability": 0.9876 + }, + { + "start": 4858.82, + "end": 4859.34, + "probability": 0.798 + }, + { + "start": 4860.58, + "end": 4865.54, + "probability": 0.9954 + }, + { + "start": 4865.54, + "end": 4869.5, + "probability": 0.9906 + }, + { + "start": 4869.84, + "end": 4874.02, + "probability": 0.9971 + }, + { + "start": 4875.02, + "end": 4876.88, + "probability": 0.4366 + }, + { + "start": 4878.82, + "end": 4881.46, + "probability": 0.6401 + }, + { + "start": 4882.86, + "end": 4883.4, + "probability": 0.6768 + }, + { + "start": 4884.28, + "end": 4885.62, + "probability": 0.9548 + }, + { + "start": 4886.54, + "end": 4890.88, + "probability": 0.9952 + }, + { + "start": 4892.38, + "end": 4895.36, + "probability": 0.6177 + }, + { + "start": 4897.62, + "end": 4898.62, + "probability": 0.7979 + }, + { + "start": 4900.22, + "end": 4905.42, + "probability": 0.9771 + }, + { + "start": 4907.46, + "end": 4915.0, + "probability": 0.9154 + }, + { + "start": 4916.68, + "end": 4920.52, + "probability": 0.9941 + }, + { + "start": 4921.86, + "end": 4923.64, + "probability": 0.944 + }, + { + "start": 4924.46, + "end": 4927.9, + "probability": 0.6586 + }, + { + "start": 4929.14, + "end": 4931.78, + "probability": 0.9819 + }, + { + "start": 4932.12, + "end": 4932.44, + "probability": 0.4902 + }, + { + "start": 4932.56, + "end": 4933.82, + "probability": 0.9587 + }, + { + "start": 4934.0, + "end": 4938.94, + "probability": 0.9663 + }, + { + "start": 4940.82, + "end": 4942.02, + "probability": 0.7817 + }, + { + "start": 4943.58, + "end": 4944.36, + "probability": 0.8445 + }, + { + "start": 4945.38, + "end": 4947.3, + "probability": 0.9824 + }, + { + "start": 4948.36, + "end": 4952.56, + "probability": 0.9923 + }, + { + "start": 4953.12, + "end": 4956.76, + "probability": 0.9966 + }, + { + "start": 4957.66, + "end": 4959.92, + "probability": 0.978 + }, + { + "start": 4960.42, + "end": 4962.76, + "probability": 0.9967 + }, + { + "start": 4963.24, + "end": 4966.78, + "probability": 0.9972 + }, + { + "start": 4967.26, + "end": 4968.84, + "probability": 0.998 + }, + { + "start": 4970.28, + "end": 4972.48, + "probability": 0.6706 + }, + { + "start": 4972.64, + "end": 4973.3, + "probability": 0.5407 + }, + { + "start": 4973.38, + "end": 4975.08, + "probability": 0.9111 + }, + { + "start": 4975.96, + "end": 4977.12, + "probability": 0.8589 + }, + { + "start": 4978.68, + "end": 4981.96, + "probability": 0.9938 + }, + { + "start": 4983.66, + "end": 4985.26, + "probability": 0.6712 + }, + { + "start": 4985.32, + "end": 4986.86, + "probability": 0.8525 + }, + { + "start": 4987.0, + "end": 4991.38, + "probability": 0.9946 + }, + { + "start": 4992.38, + "end": 4994.06, + "probability": 0.9932 + }, + { + "start": 4997.2, + "end": 5000.48, + "probability": 0.6726 + }, + { + "start": 5002.4, + "end": 5003.04, + "probability": 0.8011 + }, + { + "start": 5003.8, + "end": 5005.32, + "probability": 0.9976 + }, + { + "start": 5006.14, + "end": 5007.96, + "probability": 0.522 + }, + { + "start": 5008.64, + "end": 5010.06, + "probability": 0.3787 + }, + { + "start": 5012.2, + "end": 5012.74, + "probability": 0.3911 + }, + { + "start": 5013.78, + "end": 5015.36, + "probability": 0.9993 + }, + { + "start": 5016.0, + "end": 5016.96, + "probability": 0.8269 + }, + { + "start": 5018.24, + "end": 5019.26, + "probability": 0.8069 + }, + { + "start": 5020.34, + "end": 5021.06, + "probability": 0.7932 + }, + { + "start": 5021.52, + "end": 5024.35, + "probability": 0.7679 + }, + { + "start": 5026.48, + "end": 5026.62, + "probability": 0.2115 + }, + { + "start": 5028.74, + "end": 5030.22, + "probability": 0.8337 + }, + { + "start": 5030.32, + "end": 5033.96, + "probability": 0.8879 + }, + { + "start": 5035.38, + "end": 5037.22, + "probability": 0.9822 + }, + { + "start": 5037.54, + "end": 5040.8, + "probability": 0.3965 + }, + { + "start": 5042.56, + "end": 5045.52, + "probability": 0.9755 + }, + { + "start": 5046.98, + "end": 5047.96, + "probability": 0.8014 + }, + { + "start": 5048.56, + "end": 5049.92, + "probability": 0.9032 + }, + { + "start": 5051.1, + "end": 5053.92, + "probability": 0.9899 + }, + { + "start": 5054.38, + "end": 5056.24, + "probability": 0.9857 + }, + { + "start": 5056.96, + "end": 5058.02, + "probability": 0.7061 + }, + { + "start": 5058.38, + "end": 5062.4, + "probability": 0.9907 + }, + { + "start": 5062.98, + "end": 5063.4, + "probability": 0.4325 + }, + { + "start": 5065.74, + "end": 5073.84, + "probability": 0.9648 + }, + { + "start": 5075.16, + "end": 5078.88, + "probability": 0.8032 + }, + { + "start": 5079.2, + "end": 5080.16, + "probability": 0.9668 + }, + { + "start": 5080.16, + "end": 5082.8, + "probability": 0.9421 + }, + { + "start": 5082.88, + "end": 5084.88, + "probability": 0.9665 + }, + { + "start": 5085.12, + "end": 5086.68, + "probability": 0.7037 + }, + { + "start": 5086.8, + "end": 5087.82, + "probability": 0.2341 + }, + { + "start": 5088.8, + "end": 5090.64, + "probability": 0.9592 + }, + { + "start": 5091.12, + "end": 5092.42, + "probability": 0.8455 + }, + { + "start": 5092.5, + "end": 5094.0, + "probability": 0.7251 + }, + { + "start": 5094.1, + "end": 5095.66, + "probability": 0.8595 + }, + { + "start": 5095.84, + "end": 5097.56, + "probability": 0.8322 + }, + { + "start": 5098.12, + "end": 5101.5, + "probability": 0.8598 + }, + { + "start": 5102.04, + "end": 5106.78, + "probability": 0.9843 + }, + { + "start": 5107.5, + "end": 5113.1, + "probability": 0.9441 + }, + { + "start": 5113.66, + "end": 5114.44, + "probability": 0.8059 + }, + { + "start": 5117.36, + "end": 5121.72, + "probability": 0.866 + }, + { + "start": 5121.88, + "end": 5124.96, + "probability": 0.7086 + }, + { + "start": 5125.2, + "end": 5125.34, + "probability": 0.7276 + }, + { + "start": 5126.86, + "end": 5127.46, + "probability": 0.2803 + }, + { + "start": 5129.28, + "end": 5131.94, + "probability": 0.4189 + }, + { + "start": 5132.28, + "end": 5134.44, + "probability": 0.2724 + }, + { + "start": 5137.76, + "end": 5140.44, + "probability": 0.0691 + }, + { + "start": 5140.96, + "end": 5140.96, + "probability": 0.0049 + }, + { + "start": 5141.92, + "end": 5142.44, + "probability": 0.0141 + }, + { + "start": 5143.14, + "end": 5143.88, + "probability": 0.0036 + }, + { + "start": 5145.24, + "end": 5145.85, + "probability": 0.0309 + }, + { + "start": 5147.72, + "end": 5148.54, + "probability": 0.2921 + }, + { + "start": 5149.64, + "end": 5153.14, + "probability": 0.0497 + }, + { + "start": 5153.18, + "end": 5153.18, + "probability": 0.0025 + }, + { + "start": 5181.28, + "end": 5184.8, + "probability": 0.5 + }, + { + "start": 5185.54, + "end": 5189.06, + "probability": 0.9412 + }, + { + "start": 5189.22, + "end": 5189.44, + "probability": 0.4634 + }, + { + "start": 5189.46, + "end": 5190.24, + "probability": 0.5641 + }, + { + "start": 5190.66, + "end": 5192.82, + "probability": 0.9546 + }, + { + "start": 5193.68, + "end": 5196.82, + "probability": 0.9922 + }, + { + "start": 5200.18, + "end": 5201.14, + "probability": 0.8621 + }, + { + "start": 5201.22, + "end": 5205.8, + "probability": 0.9719 + }, + { + "start": 5213.16, + "end": 5215.54, + "probability": 0.5303 + }, + { + "start": 5216.14, + "end": 5216.86, + "probability": 0.7756 + }, + { + "start": 5224.94, + "end": 5226.32, + "probability": 0.651 + }, + { + "start": 5228.0, + "end": 5228.5, + "probability": 0.4784 + }, + { + "start": 5229.74, + "end": 5231.32, + "probability": 0.8778 + }, + { + "start": 5236.8, + "end": 5237.9, + "probability": 0.388 + }, + { + "start": 5238.46, + "end": 5240.0, + "probability": 0.8937 + }, + { + "start": 5241.78, + "end": 5249.32, + "probability": 0.9892 + }, + { + "start": 5249.82, + "end": 5252.22, + "probability": 0.9502 + }, + { + "start": 5253.06, + "end": 5255.8, + "probability": 0.9761 + }, + { + "start": 5256.86, + "end": 5257.68, + "probability": 0.958 + }, + { + "start": 5258.06, + "end": 5260.12, + "probability": 0.7859 + }, + { + "start": 5260.41, + "end": 5264.36, + "probability": 0.9699 + }, + { + "start": 5264.36, + "end": 5268.12, + "probability": 0.9392 + }, + { + "start": 5268.4, + "end": 5273.66, + "probability": 0.9766 + }, + { + "start": 5273.94, + "end": 5276.86, + "probability": 0.9318 + }, + { + "start": 5277.36, + "end": 5279.88, + "probability": 0.5369 + }, + { + "start": 5280.12, + "end": 5280.6, + "probability": 0.8129 + }, + { + "start": 5280.74, + "end": 5281.1, + "probability": 0.3996 + }, + { + "start": 5281.26, + "end": 5283.2, + "probability": 0.9939 + }, + { + "start": 5283.52, + "end": 5284.46, + "probability": 0.7952 + }, + { + "start": 5285.86, + "end": 5289.54, + "probability": 0.9758 + }, + { + "start": 5290.84, + "end": 5294.6, + "probability": 0.8566 + }, + { + "start": 5295.32, + "end": 5300.7, + "probability": 0.9704 + }, + { + "start": 5300.7, + "end": 5309.34, + "probability": 0.9801 + }, + { + "start": 5309.9, + "end": 5313.04, + "probability": 0.849 + }, + { + "start": 5313.7, + "end": 5316.72, + "probability": 0.946 + }, + { + "start": 5318.72, + "end": 5319.52, + "probability": 0.7596 + }, + { + "start": 5321.72, + "end": 5324.82, + "probability": 0.9945 + }, + { + "start": 5325.64, + "end": 5326.3, + "probability": 0.7966 + }, + { + "start": 5328.2, + "end": 5329.86, + "probability": 0.9873 + }, + { + "start": 5329.98, + "end": 5332.08, + "probability": 0.7793 + }, + { + "start": 5332.14, + "end": 5333.0, + "probability": 0.6264 + }, + { + "start": 5333.42, + "end": 5334.05, + "probability": 0.9401 + }, + { + "start": 5334.64, + "end": 5335.6, + "probability": 0.9443 + }, + { + "start": 5336.66, + "end": 5339.9, + "probability": 0.7861 + }, + { + "start": 5340.66, + "end": 5343.28, + "probability": 0.9885 + }, + { + "start": 5344.26, + "end": 5347.0, + "probability": 0.9762 + }, + { + "start": 5348.84, + "end": 5351.52, + "probability": 0.9976 + }, + { + "start": 5354.12, + "end": 5357.94, + "probability": 0.8393 + }, + { + "start": 5359.78, + "end": 5361.04, + "probability": 0.9857 + }, + { + "start": 5363.2, + "end": 5370.6, + "probability": 0.9927 + }, + { + "start": 5370.8, + "end": 5373.56, + "probability": 0.7647 + }, + { + "start": 5374.3, + "end": 5376.58, + "probability": 0.9985 + }, + { + "start": 5377.18, + "end": 5379.08, + "probability": 0.7555 + }, + { + "start": 5380.24, + "end": 5381.1, + "probability": 0.7919 + }, + { + "start": 5381.2, + "end": 5381.6, + "probability": 0.6437 + }, + { + "start": 5381.76, + "end": 5382.8, + "probability": 0.9262 + }, + { + "start": 5383.06, + "end": 5385.24, + "probability": 0.9083 + }, + { + "start": 5385.76, + "end": 5388.9, + "probability": 0.9319 + }, + { + "start": 5389.12, + "end": 5390.4, + "probability": 0.7041 + }, + { + "start": 5390.5, + "end": 5392.92, + "probability": 0.4927 + }, + { + "start": 5392.92, + "end": 5396.48, + "probability": 0.991 + }, + { + "start": 5397.0, + "end": 5397.9, + "probability": 0.821 + }, + { + "start": 5398.54, + "end": 5402.92, + "probability": 0.9607 + }, + { + "start": 5403.44, + "end": 5406.38, + "probability": 0.7554 + }, + { + "start": 5407.3, + "end": 5409.06, + "probability": 0.7472 + }, + { + "start": 5409.42, + "end": 5410.78, + "probability": 0.9635 + }, + { + "start": 5411.18, + "end": 5412.56, + "probability": 0.9888 + }, + { + "start": 5413.2, + "end": 5415.12, + "probability": 0.9887 + }, + { + "start": 5415.52, + "end": 5415.9, + "probability": 0.8704 + }, + { + "start": 5416.16, + "end": 5416.72, + "probability": 0.7996 + }, + { + "start": 5416.86, + "end": 5420.78, + "probability": 0.9864 + }, + { + "start": 5421.64, + "end": 5424.98, + "probability": 0.7519 + }, + { + "start": 5425.52, + "end": 5427.26, + "probability": 0.8921 + }, + { + "start": 5427.52, + "end": 5428.76, + "probability": 0.9058 + }, + { + "start": 5431.46, + "end": 5433.6, + "probability": 0.7744 + }, + { + "start": 5435.46, + "end": 5438.06, + "probability": 0.7373 + }, + { + "start": 5444.22, + "end": 5446.32, + "probability": 0.6701 + }, + { + "start": 5447.16, + "end": 5447.26, + "probability": 0.1035 + }, + { + "start": 5447.28, + "end": 5448.42, + "probability": 0.4648 + }, + { + "start": 5448.44, + "end": 5452.52, + "probability": 0.9674 + }, + { + "start": 5452.84, + "end": 5453.71, + "probability": 0.8458 + }, + { + "start": 5454.9, + "end": 5456.36, + "probability": 0.6218 + }, + { + "start": 5458.04, + "end": 5460.76, + "probability": 0.0778 + }, + { + "start": 5461.02, + "end": 5461.02, + "probability": 0.0021 + }, + { + "start": 5461.7, + "end": 5461.8, + "probability": 0.0223 + }, + { + "start": 5461.8, + "end": 5461.82, + "probability": 0.1744 + }, + { + "start": 5461.82, + "end": 5466.12, + "probability": 0.9527 + }, + { + "start": 5466.42, + "end": 5467.96, + "probability": 0.9838 + }, + { + "start": 5468.52, + "end": 5468.88, + "probability": 0.7275 + }, + { + "start": 5469.26, + "end": 5469.8, + "probability": 0.2515 + }, + { + "start": 5472.98, + "end": 5472.98, + "probability": 0.2468 + }, + { + "start": 5472.98, + "end": 5476.56, + "probability": 0.8286 + }, + { + "start": 5477.52, + "end": 5479.8, + "probability": 0.9058 + }, + { + "start": 5480.96, + "end": 5484.0, + "probability": 0.782 + }, + { + "start": 5484.6, + "end": 5488.58, + "probability": 0.9655 + }, + { + "start": 5489.28, + "end": 5490.84, + "probability": 0.698 + }, + { + "start": 5490.98, + "end": 5493.4, + "probability": 0.5386 + }, + { + "start": 5494.94, + "end": 5500.56, + "probability": 0.9384 + }, + { + "start": 5500.64, + "end": 5501.94, + "probability": 0.6318 + }, + { + "start": 5502.26, + "end": 5504.4, + "probability": 0.9105 + }, + { + "start": 5505.0, + "end": 5506.62, + "probability": 0.9346 + }, + { + "start": 5507.22, + "end": 5509.38, + "probability": 0.9666 + }, + { + "start": 5510.68, + "end": 5512.66, + "probability": 0.995 + }, + { + "start": 5512.74, + "end": 5513.48, + "probability": 0.1591 + }, + { + "start": 5514.24, + "end": 5518.98, + "probability": 0.3766 + }, + { + "start": 5519.56, + "end": 5525.46, + "probability": 0.5273 + }, + { + "start": 5525.72, + "end": 5526.42, + "probability": 0.2735 + }, + { + "start": 5526.78, + "end": 5528.1, + "probability": 0.2671 + }, + { + "start": 5528.1, + "end": 5532.6, + "probability": 0.4674 + }, + { + "start": 5532.94, + "end": 5534.74, + "probability": 0.1309 + }, + { + "start": 5534.78, + "end": 5536.7, + "probability": 0.5674 + }, + { + "start": 5537.78, + "end": 5539.16, + "probability": 0.6481 + }, + { + "start": 5539.34, + "end": 5542.6, + "probability": 0.9064 + }, + { + "start": 5542.9, + "end": 5545.14, + "probability": 0.8643 + }, + { + "start": 5545.34, + "end": 5545.76, + "probability": 0.6746 + }, + { + "start": 5545.86, + "end": 5546.32, + "probability": 0.8225 + }, + { + "start": 5546.44, + "end": 5547.46, + "probability": 0.7728 + }, + { + "start": 5547.52, + "end": 5553.78, + "probability": 0.9243 + }, + { + "start": 5554.5, + "end": 5557.08, + "probability": 0.9609 + }, + { + "start": 5557.7, + "end": 5558.66, + "probability": 0.6314 + }, + { + "start": 5559.02, + "end": 5565.86, + "probability": 0.7474 + }, + { + "start": 5565.86, + "end": 5565.98, + "probability": 0.5847 + }, + { + "start": 5566.32, + "end": 5570.48, + "probability": 0.8149 + }, + { + "start": 5570.54, + "end": 5574.68, + "probability": 0.8373 + }, + { + "start": 5575.24, + "end": 5578.84, + "probability": 0.9524 + }, + { + "start": 5579.46, + "end": 5581.58, + "probability": 0.9246 + }, + { + "start": 5581.66, + "end": 5584.24, + "probability": 0.8631 + }, + { + "start": 5584.46, + "end": 5586.05, + "probability": 0.7941 + }, + { + "start": 5586.68, + "end": 5589.2, + "probability": 0.7896 + }, + { + "start": 5590.14, + "end": 5593.58, + "probability": 0.774 + }, + { + "start": 5594.2, + "end": 5597.04, + "probability": 0.9938 + }, + { + "start": 5597.7, + "end": 5600.3, + "probability": 0.4494 + }, + { + "start": 5601.0, + "end": 5601.54, + "probability": 0.3431 + }, + { + "start": 5601.64, + "end": 5602.12, + "probability": 0.6071 + }, + { + "start": 5602.24, + "end": 5603.5, + "probability": 0.6439 + }, + { + "start": 5604.94, + "end": 5607.02, + "probability": 0.0785 + }, + { + "start": 5619.62, + "end": 5623.72, + "probability": 0.3768 + }, + { + "start": 5623.72, + "end": 5627.18, + "probability": 0.8512 + }, + { + "start": 5627.18, + "end": 5630.16, + "probability": 0.9838 + }, + { + "start": 5630.84, + "end": 5632.5, + "probability": 0.1061 + }, + { + "start": 5632.5, + "end": 5633.48, + "probability": 0.2778 + }, + { + "start": 5633.62, + "end": 5637.88, + "probability": 0.5911 + }, + { + "start": 5637.89, + "end": 5640.84, + "probability": 0.0757 + }, + { + "start": 5643.6, + "end": 5647.06, + "probability": 0.1495 + }, + { + "start": 5647.06, + "end": 5652.82, + "probability": 0.0479 + }, + { + "start": 5653.36, + "end": 5655.26, + "probability": 0.0358 + }, + { + "start": 5659.34, + "end": 5663.12, + "probability": 0.064 + }, + { + "start": 5663.8, + "end": 5667.54, + "probability": 0.1014 + }, + { + "start": 5667.8, + "end": 5669.47, + "probability": 0.0593 + }, + { + "start": 5669.48, + "end": 5669.58, + "probability": 0.0704 + }, + { + "start": 5670.02, + "end": 5671.44, + "probability": 0.0839 + }, + { + "start": 5673.43, + "end": 5675.06, + "probability": 0.0406 + }, + { + "start": 5675.12, + "end": 5676.62, + "probability": 0.0316 + }, + { + "start": 5677.29, + "end": 5677.88, + "probability": 0.0375 + }, + { + "start": 5677.88, + "end": 5677.88, + "probability": 0.0557 + }, + { + "start": 5677.88, + "end": 5678.46, + "probability": 0.031 + }, + { + "start": 5678.68, + "end": 5679.14, + "probability": 0.2141 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.0, + "end": 5691.0, + "probability": 0.0 + }, + { + "start": 5691.52, + "end": 5692.24, + "probability": 0.1577 + }, + { + "start": 5692.24, + "end": 5692.24, + "probability": 0.1088 + }, + { + "start": 5692.24, + "end": 5692.24, + "probability": 0.1259 + }, + { + "start": 5692.24, + "end": 5692.24, + "probability": 0.0993 + }, + { + "start": 5692.24, + "end": 5694.46, + "probability": 0.5006 + }, + { + "start": 5694.46, + "end": 5696.96, + "probability": 0.538 + }, + { + "start": 5697.46, + "end": 5698.74, + "probability": 0.6175 + }, + { + "start": 5698.88, + "end": 5700.8, + "probability": 0.6718 + }, + { + "start": 5701.3, + "end": 5702.86, + "probability": 0.8934 + }, + { + "start": 5703.22, + "end": 5707.88, + "probability": 0.7806 + }, + { + "start": 5707.88, + "end": 5713.76, + "probability": 0.9683 + }, + { + "start": 5714.08, + "end": 5719.82, + "probability": 0.9053 + }, + { + "start": 5720.3, + "end": 5721.3, + "probability": 0.9339 + }, + { + "start": 5721.6, + "end": 5722.3, + "probability": 0.5701 + }, + { + "start": 5722.3, + "end": 5729.02, + "probability": 0.9106 + }, + { + "start": 5729.48, + "end": 5731.84, + "probability": 0.9741 + }, + { + "start": 5731.84, + "end": 5734.58, + "probability": 0.9895 + }, + { + "start": 5735.1, + "end": 5735.54, + "probability": 0.6741 + }, + { + "start": 5735.62, + "end": 5736.36, + "probability": 0.8116 + }, + { + "start": 5736.84, + "end": 5737.24, + "probability": 0.573 + }, + { + "start": 5737.38, + "end": 5738.6, + "probability": 0.0592 + }, + { + "start": 5738.6, + "end": 5741.58, + "probability": 0.841 + }, + { + "start": 5741.7, + "end": 5742.2, + "probability": 0.9667 + }, + { + "start": 5742.62, + "end": 5744.42, + "probability": 0.6512 + }, + { + "start": 5744.42, + "end": 5745.2, + "probability": 0.4818 + }, + { + "start": 5746.02, + "end": 5747.1, + "probability": 0.5715 + }, + { + "start": 5747.2, + "end": 5747.42, + "probability": 0.1459 + }, + { + "start": 5747.52, + "end": 5749.82, + "probability": 0.9238 + }, + { + "start": 5749.82, + "end": 5751.3, + "probability": 0.6667 + }, + { + "start": 5751.32, + "end": 5751.74, + "probability": 0.3649 + }, + { + "start": 5751.82, + "end": 5752.94, + "probability": 0.7642 + }, + { + "start": 5753.08, + "end": 5756.48, + "probability": 0.9856 + }, + { + "start": 5756.59, + "end": 5759.58, + "probability": 0.9879 + }, + { + "start": 5760.24, + "end": 5764.6, + "probability": 0.99 + }, + { + "start": 5764.6, + "end": 5769.46, + "probability": 0.9949 + }, + { + "start": 5769.94, + "end": 5772.84, + "probability": 0.834 + }, + { + "start": 5772.94, + "end": 5778.3, + "probability": 0.9668 + }, + { + "start": 5778.66, + "end": 5779.12, + "probability": 0.6765 + }, + { + "start": 5779.3, + "end": 5780.62, + "probability": 0.7354 + }, + { + "start": 5780.88, + "end": 5781.54, + "probability": 0.8781 + }, + { + "start": 5782.0, + "end": 5785.12, + "probability": 0.7867 + }, + { + "start": 5788.36, + "end": 5790.16, + "probability": 0.523 + }, + { + "start": 5790.6, + "end": 5798.68, + "probability": 0.9469 + }, + { + "start": 5799.02, + "end": 5804.3, + "probability": 0.9078 + }, + { + "start": 5804.54, + "end": 5809.2, + "probability": 0.9941 + }, + { + "start": 5809.2, + "end": 5814.96, + "probability": 0.9977 + }, + { + "start": 5815.14, + "end": 5821.06, + "probability": 0.8442 + }, + { + "start": 5821.5, + "end": 5824.52, + "probability": 0.5441 + }, + { + "start": 5827.3, + "end": 5828.26, + "probability": 0.1391 + }, + { + "start": 5828.28, + "end": 5834.5, + "probability": 0.896 + }, + { + "start": 5835.12, + "end": 5840.04, + "probability": 0.9445 + }, + { + "start": 5840.56, + "end": 5847.56, + "probability": 0.9662 + }, + { + "start": 5847.82, + "end": 5850.65, + "probability": 0.7487 + }, + { + "start": 5850.88, + "end": 5854.06, + "probability": 0.9321 + }, + { + "start": 5854.12, + "end": 5854.52, + "probability": 0.7908 + }, + { + "start": 5855.0, + "end": 5857.58, + "probability": 0.897 + }, + { + "start": 5858.74, + "end": 5863.35, + "probability": 0.6044 + }, + { + "start": 5864.44, + "end": 5865.4, + "probability": 0.6507 + }, + { + "start": 5865.72, + "end": 5866.6, + "probability": 0.9322 + }, + { + "start": 5866.64, + "end": 5869.96, + "probability": 0.9666 + }, + { + "start": 5885.34, + "end": 5889.14, + "probability": 0.2846 + }, + { + "start": 5896.08, + "end": 5896.98, + "probability": 0.5086 + }, + { + "start": 5899.2, + "end": 5900.8, + "probability": 0.7275 + }, + { + "start": 5903.02, + "end": 5909.0, + "probability": 0.9482 + }, + { + "start": 5910.4, + "end": 5911.94, + "probability": 0.8062 + }, + { + "start": 5912.88, + "end": 5915.5, + "probability": 0.751 + }, + { + "start": 5916.4, + "end": 5918.94, + "probability": 0.9967 + }, + { + "start": 5922.38, + "end": 5923.78, + "probability": 0.6732 + }, + { + "start": 5924.5, + "end": 5927.36, + "probability": 0.9722 + }, + { + "start": 5928.18, + "end": 5933.42, + "probability": 0.9966 + }, + { + "start": 5934.02, + "end": 5935.96, + "probability": 0.9781 + }, + { + "start": 5936.76, + "end": 5937.82, + "probability": 0.8678 + }, + { + "start": 5937.96, + "end": 5938.72, + "probability": 0.9329 + }, + { + "start": 5938.82, + "end": 5941.94, + "probability": 0.9532 + }, + { + "start": 5942.76, + "end": 5944.48, + "probability": 0.9732 + }, + { + "start": 5944.58, + "end": 5945.16, + "probability": 0.6569 + }, + { + "start": 5945.26, + "end": 5945.96, + "probability": 0.9665 + }, + { + "start": 5946.06, + "end": 5946.34, + "probability": 0.6613 + }, + { + "start": 5947.14, + "end": 5948.66, + "probability": 0.9064 + }, + { + "start": 5949.76, + "end": 5950.66, + "probability": 0.9346 + }, + { + "start": 5950.78, + "end": 5953.52, + "probability": 0.9934 + }, + { + "start": 5954.36, + "end": 5955.2, + "probability": 0.5477 + }, + { + "start": 5955.67, + "end": 5959.64, + "probability": 0.9655 + }, + { + "start": 5960.16, + "end": 5969.48, + "probability": 0.9164 + }, + { + "start": 5970.12, + "end": 5974.0, + "probability": 0.7779 + }, + { + "start": 5974.42, + "end": 5980.76, + "probability": 0.9875 + }, + { + "start": 5981.52, + "end": 5985.1, + "probability": 0.928 + }, + { + "start": 5985.16, + "end": 5985.56, + "probability": 0.73 + }, + { + "start": 5985.58, + "end": 5986.3, + "probability": 0.9077 + }, + { + "start": 5986.58, + "end": 5987.9, + "probability": 0.8343 + }, + { + "start": 5988.02, + "end": 5988.32, + "probability": 0.8342 + }, + { + "start": 5989.24, + "end": 5991.84, + "probability": 0.9724 + }, + { + "start": 5992.7, + "end": 5995.52, + "probability": 0.2859 + }, + { + "start": 5996.26, + "end": 6000.16, + "probability": 0.6366 + }, + { + "start": 6001.06, + "end": 6004.8, + "probability": 0.972 + }, + { + "start": 6005.36, + "end": 6007.8, + "probability": 0.9277 + }, + { + "start": 6008.32, + "end": 6008.72, + "probability": 0.7759 + }, + { + "start": 6009.28, + "end": 6010.46, + "probability": 0.0975 + }, + { + "start": 6010.66, + "end": 6011.28, + "probability": 0.8054 + }, + { + "start": 6011.4, + "end": 6012.24, + "probability": 0.902 + }, + { + "start": 6012.34, + "end": 6015.38, + "probability": 0.884 + }, + { + "start": 6016.52, + "end": 6017.64, + "probability": 0.9233 + }, + { + "start": 6017.72, + "end": 6020.88, + "probability": 0.9824 + }, + { + "start": 6020.88, + "end": 6023.06, + "probability": 0.9887 + }, + { + "start": 6023.2, + "end": 6024.26, + "probability": 0.5021 + }, + { + "start": 6024.34, + "end": 6025.92, + "probability": 0.7935 + }, + { + "start": 6026.94, + "end": 6027.7, + "probability": 0.9162 + }, + { + "start": 6027.8, + "end": 6029.32, + "probability": 0.9685 + }, + { + "start": 6029.38, + "end": 6030.08, + "probability": 0.9585 + }, + { + "start": 6030.56, + "end": 6034.08, + "probability": 0.7998 + }, + { + "start": 6034.08, + "end": 6036.0, + "probability": 0.9109 + }, + { + "start": 6036.44, + "end": 6036.64, + "probability": 0.4827 + }, + { + "start": 6036.66, + "end": 6037.96, + "probability": 0.9704 + }, + { + "start": 6038.02, + "end": 6038.94, + "probability": 0.8846 + }, + { + "start": 6039.18, + "end": 6040.38, + "probability": 0.9191 + }, + { + "start": 6040.48, + "end": 6041.78, + "probability": 0.9457 + }, + { + "start": 6042.16, + "end": 6042.94, + "probability": 0.8135 + }, + { + "start": 6043.0, + "end": 6044.02, + "probability": 0.9768 + }, + { + "start": 6044.8, + "end": 6046.28, + "probability": 0.8691 + }, + { + "start": 6046.68, + "end": 6047.66, + "probability": 0.9115 + }, + { + "start": 6047.76, + "end": 6049.6, + "probability": 0.9692 + }, + { + "start": 6050.46, + "end": 6050.56, + "probability": 0.5942 + }, + { + "start": 6051.48, + "end": 6056.06, + "probability": 0.9878 + }, + { + "start": 6056.9, + "end": 6057.28, + "probability": 0.6689 + }, + { + "start": 6057.32, + "end": 6058.4, + "probability": 0.8163 + }, + { + "start": 6059.2, + "end": 6060.42, + "probability": 0.5714 + }, + { + "start": 6060.68, + "end": 6061.4, + "probability": 0.9003 + }, + { + "start": 6061.4, + "end": 6062.22, + "probability": 0.5647 + }, + { + "start": 6062.22, + "end": 6063.1, + "probability": 0.3174 + }, + { + "start": 6067.32, + "end": 6068.08, + "probability": 0.8911 + }, + { + "start": 6069.38, + "end": 6069.38, + "probability": 0.0274 + }, + { + "start": 6069.38, + "end": 6069.38, + "probability": 0.4912 + }, + { + "start": 6069.38, + "end": 6069.38, + "probability": 0.1315 + }, + { + "start": 6069.38, + "end": 6069.84, + "probability": 0.0478 + }, + { + "start": 6069.88, + "end": 6071.46, + "probability": 0.6412 + }, + { + "start": 6072.3, + "end": 6077.06, + "probability": 0.9243 + }, + { + "start": 6078.2, + "end": 6083.14, + "probability": 0.9771 + }, + { + "start": 6083.86, + "end": 6084.42, + "probability": 0.0015 + }, + { + "start": 6087.08, + "end": 6089.48, + "probability": 0.6638 + }, + { + "start": 6090.02, + "end": 6094.7, + "probability": 0.9541 + }, + { + "start": 6094.7, + "end": 6099.0, + "probability": 0.9867 + }, + { + "start": 6099.42, + "end": 6101.34, + "probability": 0.9967 + }, + { + "start": 6102.26, + "end": 6105.58, + "probability": 0.9671 + }, + { + "start": 6105.96, + "end": 6108.0, + "probability": 0.9963 + }, + { + "start": 6108.16, + "end": 6109.32, + "probability": 0.5013 + }, + { + "start": 6109.94, + "end": 6115.8, + "probability": 0.9267 + }, + { + "start": 6116.22, + "end": 6119.2, + "probability": 0.7133 + }, + { + "start": 6119.32, + "end": 6121.63, + "probability": 0.8247 + }, + { + "start": 6122.08, + "end": 6125.98, + "probability": 0.9968 + }, + { + "start": 6126.14, + "end": 6127.48, + "probability": 0.7569 + }, + { + "start": 6128.42, + "end": 6130.04, + "probability": 0.9739 + }, + { + "start": 6132.26, + "end": 6132.88, + "probability": 0.2435 + }, + { + "start": 6133.68, + "end": 6135.4, + "probability": 0.8669 + }, + { + "start": 6136.18, + "end": 6141.74, + "probability": 0.9966 + }, + { + "start": 6141.74, + "end": 6147.46, + "probability": 0.993 + }, + { + "start": 6148.26, + "end": 6150.8, + "probability": 0.5654 + }, + { + "start": 6151.52, + "end": 6152.66, + "probability": 0.7148 + }, + { + "start": 6152.76, + "end": 6154.14, + "probability": 0.7212 + }, + { + "start": 6154.2, + "end": 6154.44, + "probability": 0.9048 + }, + { + "start": 6154.56, + "end": 6155.5, + "probability": 0.9073 + }, + { + "start": 6156.1, + "end": 6158.6, + "probability": 0.9654 + }, + { + "start": 6158.6, + "end": 6161.88, + "probability": 0.9744 + }, + { + "start": 6162.2, + "end": 6165.36, + "probability": 0.921 + }, + { + "start": 6165.36, + "end": 6167.8, + "probability": 0.995 + }, + { + "start": 6168.62, + "end": 6171.38, + "probability": 0.9067 + }, + { + "start": 6171.98, + "end": 6175.66, + "probability": 0.9983 + }, + { + "start": 6175.74, + "end": 6176.34, + "probability": 0.7617 + }, + { + "start": 6176.5, + "end": 6177.66, + "probability": 0.7537 + }, + { + "start": 6177.7, + "end": 6180.24, + "probability": 0.9006 + }, + { + "start": 6180.68, + "end": 6182.72, + "probability": 0.9012 + }, + { + "start": 6182.82, + "end": 6183.52, + "probability": 0.934 + }, + { + "start": 6184.28, + "end": 6185.78, + "probability": 0.9596 + }, + { + "start": 6187.04, + "end": 6189.02, + "probability": 0.9377 + }, + { + "start": 6189.6, + "end": 6190.08, + "probability": 0.4866 + }, + { + "start": 6190.62, + "end": 6194.5, + "probability": 0.9862 + }, + { + "start": 6194.92, + "end": 6197.74, + "probability": 0.903 + }, + { + "start": 6197.78, + "end": 6198.64, + "probability": 0.9375 + }, + { + "start": 6199.9, + "end": 6204.44, + "probability": 0.9594 + }, + { + "start": 6204.68, + "end": 6209.86, + "probability": 0.9924 + }, + { + "start": 6209.92, + "end": 6210.58, + "probability": 0.9309 + }, + { + "start": 6210.66, + "end": 6211.32, + "probability": 0.7287 + }, + { + "start": 6211.56, + "end": 6212.26, + "probability": 0.8298 + }, + { + "start": 6212.74, + "end": 6216.18, + "probability": 0.9931 + }, + { + "start": 6216.4, + "end": 6217.12, + "probability": 0.6123 + }, + { + "start": 6217.18, + "end": 6221.02, + "probability": 0.9844 + }, + { + "start": 6221.38, + "end": 6224.54, + "probability": 0.9889 + }, + { + "start": 6224.64, + "end": 6225.96, + "probability": 0.9463 + }, + { + "start": 6226.28, + "end": 6228.8, + "probability": 0.9938 + }, + { + "start": 6229.74, + "end": 6231.78, + "probability": 0.846 + }, + { + "start": 6232.62, + "end": 6236.96, + "probability": 0.9628 + }, + { + "start": 6238.12, + "end": 6239.28, + "probability": 0.9334 + }, + { + "start": 6239.72, + "end": 6244.71, + "probability": 0.9637 + }, + { + "start": 6245.7, + "end": 6247.96, + "probability": 0.1929 + }, + { + "start": 6248.08, + "end": 6249.56, + "probability": 0.5971 + }, + { + "start": 6250.9, + "end": 6253.76, + "probability": 0.4672 + }, + { + "start": 6254.38, + "end": 6255.6, + "probability": 0.5019 + }, + { + "start": 6255.94, + "end": 6260.94, + "probability": 0.7652 + }, + { + "start": 6277.54, + "end": 6282.16, + "probability": 0.1156 + }, + { + "start": 6282.16, + "end": 6283.84, + "probability": 0.7495 + }, + { + "start": 6284.1, + "end": 6284.52, + "probability": 0.0983 + }, + { + "start": 6284.52, + "end": 6285.42, + "probability": 0.241 + }, + { + "start": 6285.58, + "end": 6287.82, + "probability": 0.4541 + }, + { + "start": 6289.5, + "end": 6291.6, + "probability": 0.6481 + }, + { + "start": 6292.2, + "end": 6292.2, + "probability": 0.0707 + }, + { + "start": 6292.2, + "end": 6293.14, + "probability": 0.0888 + }, + { + "start": 6293.88, + "end": 6299.02, + "probability": 0.4592 + }, + { + "start": 6299.93, + "end": 6301.42, + "probability": 0.0515 + }, + { + "start": 6301.42, + "end": 6305.14, + "probability": 0.0223 + }, + { + "start": 6305.14, + "end": 6307.92, + "probability": 0.047 + }, + { + "start": 6308.8, + "end": 6309.24, + "probability": 0.0382 + }, + { + "start": 6312.9, + "end": 6315.58, + "probability": 0.128 + }, + { + "start": 6316.38, + "end": 6318.26, + "probability": 0.0574 + }, + { + "start": 6324.68, + "end": 6325.06, + "probability": 0.0602 + }, + { + "start": 6326.5, + "end": 6328.58, + "probability": 0.0549 + }, + { + "start": 6328.58, + "end": 6334.52, + "probability": 0.0964 + }, + { + "start": 6334.7, + "end": 6335.44, + "probability": 0.1758 + }, + { + "start": 6335.52, + "end": 6337.6, + "probability": 0.3107 + }, + { + "start": 6337.74, + "end": 6339.8, + "probability": 0.0549 + }, + { + "start": 6340.83, + "end": 6342.71, + "probability": 0.038 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.0, + "end": 6343.0, + "probability": 0.0 + }, + { + "start": 6343.18, + "end": 6343.32, + "probability": 0.0751 + }, + { + "start": 6343.32, + "end": 6343.32, + "probability": 0.1157 + }, + { + "start": 6343.32, + "end": 6343.32, + "probability": 0.0413 + }, + { + "start": 6343.32, + "end": 6344.6, + "probability": 0.4547 + }, + { + "start": 6345.48, + "end": 6346.24, + "probability": 0.7611 + }, + { + "start": 6346.44, + "end": 6350.22, + "probability": 0.6421 + }, + { + "start": 6351.5, + "end": 6351.62, + "probability": 0.0523 + }, + { + "start": 6354.28, + "end": 6356.26, + "probability": 0.2894 + }, + { + "start": 6356.98, + "end": 6356.98, + "probability": 0.1027 + }, + { + "start": 6356.98, + "end": 6356.98, + "probability": 0.0848 + }, + { + "start": 6356.98, + "end": 6356.98, + "probability": 0.0799 + }, + { + "start": 6356.98, + "end": 6357.84, + "probability": 0.4409 + }, + { + "start": 6357.96, + "end": 6358.24, + "probability": 0.4626 + }, + { + "start": 6358.82, + "end": 6363.17, + "probability": 0.8464 + }, + { + "start": 6364.6, + "end": 6365.0, + "probability": 0.054 + }, + { + "start": 6365.0, + "end": 6366.46, + "probability": 0.3493 + }, + { + "start": 6366.62, + "end": 6369.54, + "probability": 0.7564 + }, + { + "start": 6369.72, + "end": 6371.64, + "probability": 0.8372 + }, + { + "start": 6372.02, + "end": 6372.98, + "probability": 0.7378 + }, + { + "start": 6373.28, + "end": 6374.34, + "probability": 0.8837 + }, + { + "start": 6374.48, + "end": 6374.72, + "probability": 0.7548 + }, + { + "start": 6375.16, + "end": 6376.34, + "probability": 0.8397 + }, + { + "start": 6376.5, + "end": 6380.63, + "probability": 0.9777 + }, + { + "start": 6381.02, + "end": 6381.56, + "probability": 0.7328 + }, + { + "start": 6382.34, + "end": 6383.22, + "probability": 0.6685 + }, + { + "start": 6383.68, + "end": 6385.02, + "probability": 0.9479 + }, + { + "start": 6385.44, + "end": 6385.66, + "probability": 0.8004 + }, + { + "start": 6386.48, + "end": 6387.82, + "probability": 0.7431 + }, + { + "start": 6388.98, + "end": 6389.91, + "probability": 0.9861 + }, + { + "start": 6390.6, + "end": 6393.02, + "probability": 0.9724 + }, + { + "start": 6394.0, + "end": 6394.96, + "probability": 0.8851 + }, + { + "start": 6395.96, + "end": 6399.94, + "probability": 0.9049 + }, + { + "start": 6401.64, + "end": 6402.92, + "probability": 0.8183 + }, + { + "start": 6403.78, + "end": 6406.4, + "probability": 0.9891 + }, + { + "start": 6407.74, + "end": 6408.34, + "probability": 0.9353 + }, + { + "start": 6409.84, + "end": 6410.28, + "probability": 0.4333 + }, + { + "start": 6411.06, + "end": 6414.6, + "probability": 0.8178 + }, + { + "start": 6414.68, + "end": 6415.82, + "probability": 0.7361 + }, + { + "start": 6416.68, + "end": 6417.56, + "probability": 0.0032 + }, + { + "start": 6417.56, + "end": 6417.56, + "probability": 0.1845 + }, + { + "start": 6417.56, + "end": 6418.52, + "probability": 0.6189 + }, + { + "start": 6418.8, + "end": 6419.9, + "probability": 0.6441 + }, + { + "start": 6420.64, + "end": 6424.44, + "probability": 0.4117 + }, + { + "start": 6424.44, + "end": 6425.12, + "probability": 0.01 + }, + { + "start": 6425.4, + "end": 6425.7, + "probability": 0.1812 + }, + { + "start": 6425.7, + "end": 6426.88, + "probability": 0.5661 + }, + { + "start": 6428.96, + "end": 6430.82, + "probability": 0.0155 + }, + { + "start": 6431.88, + "end": 6432.82, + "probability": 0.3756 + }, + { + "start": 6437.3, + "end": 6439.02, + "probability": 0.7335 + }, + { + "start": 6439.6, + "end": 6441.44, + "probability": 0.5196 + }, + { + "start": 6441.48, + "end": 6443.3, + "probability": 0.0972 + }, + { + "start": 6443.4, + "end": 6445.9, + "probability": 0.009 + }, + { + "start": 6447.04, + "end": 6447.68, + "probability": 0.3754 + }, + { + "start": 6447.68, + "end": 6447.92, + "probability": 0.2107 + }, + { + "start": 6447.94, + "end": 6448.26, + "probability": 0.522 + }, + { + "start": 6448.26, + "end": 6448.26, + "probability": 0.0288 + }, + { + "start": 6448.26, + "end": 6448.26, + "probability": 0.1265 + }, + { + "start": 6448.26, + "end": 6449.86, + "probability": 0.1499 + }, + { + "start": 6449.86, + "end": 6451.78, + "probability": 0.1173 + }, + { + "start": 6455.8, + "end": 6458.32, + "probability": 0.2454 + }, + { + "start": 6458.58, + "end": 6459.14, + "probability": 0.1298 + }, + { + "start": 6459.14, + "end": 6459.14, + "probability": 0.0742 + }, + { + "start": 6459.14, + "end": 6459.14, + "probability": 0.0237 + }, + { + "start": 6459.14, + "end": 6460.57, + "probability": 0.1186 + }, + { + "start": 6460.72, + "end": 6463.72, + "probability": 0.6688 + }, + { + "start": 6464.3, + "end": 6465.88, + "probability": 0.8677 + }, + { + "start": 6465.94, + "end": 6468.66, + "probability": 0.8368 + }, + { + "start": 6469.5, + "end": 6470.46, + "probability": 0.2914 + }, + { + "start": 6470.64, + "end": 6470.92, + "probability": 0.1901 + }, + { + "start": 6470.92, + "end": 6472.52, + "probability": 0.0499 + }, + { + "start": 6472.72, + "end": 6473.18, + "probability": 0.2845 + }, + { + "start": 6473.48, + "end": 6476.7, + "probability": 0.807 + }, + { + "start": 6477.26, + "end": 6482.2, + "probability": 0.9743 + }, + { + "start": 6482.38, + "end": 6483.06, + "probability": 0.8281 + }, + { + "start": 6483.56, + "end": 6484.04, + "probability": 0.7125 + }, + { + "start": 6484.12, + "end": 6485.7, + "probability": 0.9954 + }, + { + "start": 6486.12, + "end": 6486.64, + "probability": 0.9694 + }, + { + "start": 6487.4, + "end": 6487.9, + "probability": 0.9465 + }, + { + "start": 6488.04, + "end": 6489.44, + "probability": 0.8217 + }, + { + "start": 6490.76, + "end": 6495.04, + "probability": 0.9375 + }, + { + "start": 6496.62, + "end": 6497.58, + "probability": 0.934 + }, + { + "start": 6498.5, + "end": 6501.64, + "probability": 0.9819 + }, + { + "start": 6503.2, + "end": 6505.14, + "probability": 0.8865 + }, + { + "start": 6505.26, + "end": 6509.82, + "probability": 0.9819 + }, + { + "start": 6510.28, + "end": 6513.92, + "probability": 0.9302 + }, + { + "start": 6514.6, + "end": 6517.68, + "probability": 0.8013 + }, + { + "start": 6518.06, + "end": 6521.16, + "probability": 0.9935 + }, + { + "start": 6521.6, + "end": 6525.48, + "probability": 0.8198 + }, + { + "start": 6526.7, + "end": 6529.08, + "probability": 0.5288 + }, + { + "start": 6529.08, + "end": 6530.29, + "probability": 0.0769 + }, + { + "start": 6530.84, + "end": 6536.76, + "probability": 0.4308 + }, + { + "start": 6536.84, + "end": 6539.6, + "probability": 0.8823 + }, + { + "start": 6539.6, + "end": 6539.6, + "probability": 0.6311 + }, + { + "start": 6539.6, + "end": 6540.26, + "probability": 0.1454 + }, + { + "start": 6540.34, + "end": 6541.2, + "probability": 0.8691 + }, + { + "start": 6541.2, + "end": 6541.38, + "probability": 0.9019 + }, + { + "start": 6541.52, + "end": 6543.04, + "probability": 0.8176 + }, + { + "start": 6543.08, + "end": 6545.3, + "probability": 0.2604 + }, + { + "start": 6545.56, + "end": 6547.12, + "probability": 0.8862 + }, + { + "start": 6547.46, + "end": 6547.66, + "probability": 0.2503 + }, + { + "start": 6547.92, + "end": 6549.8, + "probability": 0.5479 + }, + { + "start": 6550.2, + "end": 6551.94, + "probability": 0.3619 + }, + { + "start": 6552.24, + "end": 6553.44, + "probability": 0.9114 + }, + { + "start": 6553.56, + "end": 6556.2, + "probability": 0.9343 + }, + { + "start": 6556.26, + "end": 6556.92, + "probability": 0.6163 + }, + { + "start": 6557.32, + "end": 6559.36, + "probability": 0.9561 + }, + { + "start": 6559.68, + "end": 6561.94, + "probability": 0.3867 + }, + { + "start": 6561.94, + "end": 6565.52, + "probability": 0.7652 + }, + { + "start": 6566.02, + "end": 6567.1, + "probability": 0.4293 + }, + { + "start": 6567.52, + "end": 6568.3, + "probability": 0.7157 + }, + { + "start": 6568.82, + "end": 6571.74, + "probability": 0.5099 + }, + { + "start": 6572.9, + "end": 6575.42, + "probability": 0.4965 + }, + { + "start": 6576.26, + "end": 6576.6, + "probability": 0.8872 + }, + { + "start": 6577.14, + "end": 6578.16, + "probability": 0.9597 + }, + { + "start": 6578.22, + "end": 6580.8, + "probability": 0.9701 + }, + { + "start": 6581.64, + "end": 6586.0, + "probability": 0.7927 + }, + { + "start": 6586.98, + "end": 6589.7, + "probability": 0.932 + }, + { + "start": 6590.3, + "end": 6594.9, + "probability": 0.9674 + }, + { + "start": 6594.98, + "end": 6595.22, + "probability": 0.2673 + }, + { + "start": 6595.22, + "end": 6596.0, + "probability": 0.4962 + }, + { + "start": 6596.08, + "end": 6596.4, + "probability": 0.7744 + }, + { + "start": 6598.3, + "end": 6600.48, + "probability": 0.9976 + }, + { + "start": 6601.24, + "end": 6602.44, + "probability": 0.9917 + }, + { + "start": 6603.1, + "end": 6608.34, + "probability": 0.9714 + }, + { + "start": 6608.44, + "end": 6609.28, + "probability": 0.8944 + }, + { + "start": 6609.76, + "end": 6610.6, + "probability": 0.6582 + }, + { + "start": 6610.66, + "end": 6615.18, + "probability": 0.9863 + }, + { + "start": 6615.7, + "end": 6616.44, + "probability": 0.9535 + }, + { + "start": 6616.8, + "end": 6618.1, + "probability": 0.3455 + }, + { + "start": 6618.26, + "end": 6621.28, + "probability": 0.7462 + }, + { + "start": 6621.86, + "end": 6627.82, + "probability": 0.6602 + }, + { + "start": 6627.91, + "end": 6628.03, + "probability": 0.1188 + }, + { + "start": 6629.54, + "end": 6629.94, + "probability": 0.0011 + }, + { + "start": 6629.94, + "end": 6629.94, + "probability": 0.21 + }, + { + "start": 6629.94, + "end": 6629.94, + "probability": 0.1548 + }, + { + "start": 6629.94, + "end": 6630.42, + "probability": 0.1305 + }, + { + "start": 6630.46, + "end": 6631.74, + "probability": 0.4397 + }, + { + "start": 6631.86, + "end": 6631.86, + "probability": 0.5539 + }, + { + "start": 6631.88, + "end": 6632.58, + "probability": 0.4666 + }, + { + "start": 6633.36, + "end": 6634.4, + "probability": 0.832 + }, + { + "start": 6634.86, + "end": 6635.76, + "probability": 0.9217 + }, + { + "start": 6635.78, + "end": 6636.16, + "probability": 0.7537 + }, + { + "start": 6636.92, + "end": 6638.28, + "probability": 0.6822 + }, + { + "start": 6639.4, + "end": 6641.78, + "probability": 0.2816 + }, + { + "start": 6642.74, + "end": 6643.72, + "probability": 0.3261 + }, + { + "start": 6645.74, + "end": 6647.14, + "probability": 0.1249 + }, + { + "start": 6647.74, + "end": 6649.54, + "probability": 0.8517 + }, + { + "start": 6649.82, + "end": 6652.2, + "probability": 0.7844 + }, + { + "start": 6652.56, + "end": 6655.02, + "probability": 0.964 + }, + { + "start": 6656.4, + "end": 6657.46, + "probability": 0.4966 + }, + { + "start": 6657.58, + "end": 6658.56, + "probability": 0.17 + }, + { + "start": 6658.7, + "end": 6660.24, + "probability": 0.1217 + }, + { + "start": 6660.34, + "end": 6663.12, + "probability": 0.6709 + }, + { + "start": 6663.65, + "end": 6666.64, + "probability": 0.9692 + }, + { + "start": 6666.9, + "end": 6669.54, + "probability": 0.7756 + }, + { + "start": 6670.1, + "end": 6673.26, + "probability": 0.9134 + }, + { + "start": 6673.26, + "end": 6674.52, + "probability": 0.3787 + }, + { + "start": 6674.52, + "end": 6675.76, + "probability": 0.7836 + }, + { + "start": 6676.3, + "end": 6680.42, + "probability": 0.9937 + }, + { + "start": 6681.1, + "end": 6682.1, + "probability": 0.988 + }, + { + "start": 6682.84, + "end": 6683.26, + "probability": 0.5235 + }, + { + "start": 6683.3, + "end": 6683.7, + "probability": 0.8445 + }, + { + "start": 6683.78, + "end": 6684.58, + "probability": 0.9861 + }, + { + "start": 6684.74, + "end": 6686.34, + "probability": 0.8615 + }, + { + "start": 6686.92, + "end": 6687.52, + "probability": 0.0074 + }, + { + "start": 6694.4, + "end": 6696.24, + "probability": 0.4964 + }, + { + "start": 6697.04, + "end": 6698.26, + "probability": 0.5422 + }, + { + "start": 6701.52, + "end": 6703.62, + "probability": 0.6968 + }, + { + "start": 6704.42, + "end": 6705.62, + "probability": 0.8941 + }, + { + "start": 6705.68, + "end": 6706.6, + "probability": 0.9523 + }, + { + "start": 6706.72, + "end": 6707.66, + "probability": 0.9798 + }, + { + "start": 6708.34, + "end": 6709.92, + "probability": 0.9992 + }, + { + "start": 6711.22, + "end": 6717.12, + "probability": 0.6027 + }, + { + "start": 6719.14, + "end": 6719.44, + "probability": 0.0367 + }, + { + "start": 6719.44, + "end": 6719.64, + "probability": 0.0015 + }, + { + "start": 6719.74, + "end": 6722.68, + "probability": 0.3855 + }, + { + "start": 6723.02, + "end": 6723.44, + "probability": 0.0181 + }, + { + "start": 6723.92, + "end": 6724.12, + "probability": 0.0303 + }, + { + "start": 6724.12, + "end": 6726.2, + "probability": 0.5113 + }, + { + "start": 6726.36, + "end": 6727.52, + "probability": 0.2846 + }, + { + "start": 6728.26, + "end": 6730.01, + "probability": 0.7127 + }, + { + "start": 6730.56, + "end": 6733.2, + "probability": 0.2326 + }, + { + "start": 6733.62, + "end": 6735.58, + "probability": 0.1921 + }, + { + "start": 6735.82, + "end": 6736.68, + "probability": 0.2291 + }, + { + "start": 6736.68, + "end": 6736.68, + "probability": 0.0704 + }, + { + "start": 6736.68, + "end": 6738.78, + "probability": 0.076 + }, + { + "start": 6738.96, + "end": 6743.1, + "probability": 0.6519 + }, + { + "start": 6743.26, + "end": 6744.56, + "probability": 0.4806 + }, + { + "start": 6744.78, + "end": 6746.68, + "probability": 0.5538 + }, + { + "start": 6746.88, + "end": 6747.32, + "probability": 0.0089 + }, + { + "start": 6747.32, + "end": 6747.32, + "probability": 0.2742 + }, + { + "start": 6747.32, + "end": 6747.32, + "probability": 0.5443 + }, + { + "start": 6747.42, + "end": 6748.54, + "probability": 0.7695 + }, + { + "start": 6749.88, + "end": 6750.3, + "probability": 0.7182 + }, + { + "start": 6752.0, + "end": 6754.44, + "probability": 0.9469 + }, + { + "start": 6755.48, + "end": 6758.68, + "probability": 0.7629 + }, + { + "start": 6760.36, + "end": 6761.92, + "probability": 0.973 + }, + { + "start": 6762.5, + "end": 6763.88, + "probability": 0.9641 + }, + { + "start": 6764.96, + "end": 6768.18, + "probability": 0.949 + }, + { + "start": 6768.18, + "end": 6771.02, + "probability": 0.9954 + }, + { + "start": 6771.36, + "end": 6772.44, + "probability": 0.8385 + }, + { + "start": 6772.72, + "end": 6772.98, + "probability": 0.4167 + }, + { + "start": 6773.02, + "end": 6773.56, + "probability": 0.6543 + }, + { + "start": 6773.64, + "end": 6774.08, + "probability": 0.6938 + }, + { + "start": 6774.48, + "end": 6775.8, + "probability": 0.8067 + }, + { + "start": 6775.8, + "end": 6776.34, + "probability": 0.6562 + }, + { + "start": 6776.66, + "end": 6776.96, + "probability": 0.074 + }, + { + "start": 6776.96, + "end": 6777.56, + "probability": 0.697 + }, + { + "start": 6778.48, + "end": 6780.42, + "probability": 0.8385 + }, + { + "start": 6781.1, + "end": 6783.24, + "probability": 0.8716 + }, + { + "start": 6783.96, + "end": 6783.96, + "probability": 0.1663 + }, + { + "start": 6783.96, + "end": 6787.22, + "probability": 0.9546 + }, + { + "start": 6787.32, + "end": 6788.14, + "probability": 0.9367 + }, + { + "start": 6788.22, + "end": 6789.04, + "probability": 0.8289 + }, + { + "start": 6789.2, + "end": 6790.94, + "probability": 0.9513 + }, + { + "start": 6791.0, + "end": 6794.14, + "probability": 0.9867 + }, + { + "start": 6794.5, + "end": 6795.42, + "probability": 0.8087 + }, + { + "start": 6795.78, + "end": 6796.56, + "probability": 0.8564 + }, + { + "start": 6796.64, + "end": 6799.6, + "probability": 0.9952 + }, + { + "start": 6799.76, + "end": 6802.1, + "probability": 0.7101 + }, + { + "start": 6802.16, + "end": 6802.56, + "probability": 0.5554 + }, + { + "start": 6803.0, + "end": 6803.36, + "probability": 0.7668 + }, + { + "start": 6803.48, + "end": 6803.58, + "probability": 0.8472 + }, + { + "start": 6803.66, + "end": 6804.38, + "probability": 0.9944 + }, + { + "start": 6805.14, + "end": 6806.42, + "probability": 0.7631 + }, + { + "start": 6807.32, + "end": 6811.06, + "probability": 0.9651 + }, + { + "start": 6811.7, + "end": 6813.74, + "probability": 0.7339 + }, + { + "start": 6814.48, + "end": 6816.74, + "probability": 0.9816 + }, + { + "start": 6817.24, + "end": 6818.8, + "probability": 0.9916 + }, + { + "start": 6819.38, + "end": 6820.58, + "probability": 0.6671 + }, + { + "start": 6821.24, + "end": 6824.26, + "probability": 0.9138 + }, + { + "start": 6824.32, + "end": 6825.66, + "probability": 0.8896 + }, + { + "start": 6826.24, + "end": 6827.58, + "probability": 0.5618 + }, + { + "start": 6828.8, + "end": 6831.96, + "probability": 0.8414 + }, + { + "start": 6832.86, + "end": 6834.34, + "probability": 0.913 + }, + { + "start": 6835.22, + "end": 6837.58, + "probability": 0.9723 + }, + { + "start": 6838.48, + "end": 6841.72, + "probability": 0.5028 + }, + { + "start": 6842.24, + "end": 6843.82, + "probability": 0.9419 + }, + { + "start": 6844.48, + "end": 6848.72, + "probability": 0.8726 + }, + { + "start": 6848.84, + "end": 6850.18, + "probability": 0.6275 + }, + { + "start": 6850.6, + "end": 6851.54, + "probability": 0.7223 + }, + { + "start": 6851.98, + "end": 6852.72, + "probability": 0.7848 + }, + { + "start": 6855.1, + "end": 6856.74, + "probability": 0.765 + }, + { + "start": 6858.28, + "end": 6862.38, + "probability": 0.8881 + }, + { + "start": 6863.2, + "end": 6868.64, + "probability": 0.9722 + }, + { + "start": 6869.16, + "end": 6871.36, + "probability": 0.9501 + }, + { + "start": 6871.42, + "end": 6872.74, + "probability": 0.949 + }, + { + "start": 6873.18, + "end": 6876.82, + "probability": 0.9871 + }, + { + "start": 6877.08, + "end": 6877.56, + "probability": 0.4341 + }, + { + "start": 6877.84, + "end": 6879.1, + "probability": 0.8234 + }, + { + "start": 6879.44, + "end": 6881.46, + "probability": 0.7493 + }, + { + "start": 6882.08, + "end": 6884.02, + "probability": 0.8298 + }, + { + "start": 6884.46, + "end": 6888.76, + "probability": 0.8884 + }, + { + "start": 6889.34, + "end": 6891.92, + "probability": 0.9142 + }, + { + "start": 6892.56, + "end": 6898.9, + "probability": 0.8823 + }, + { + "start": 6899.42, + "end": 6901.02, + "probability": 0.791 + }, + { + "start": 6901.52, + "end": 6908.06, + "probability": 0.8493 + }, + { + "start": 6908.36, + "end": 6909.6, + "probability": 0.9232 + }, + { + "start": 6910.02, + "end": 6911.5, + "probability": 0.8263 + }, + { + "start": 6912.02, + "end": 6914.52, + "probability": 0.9383 + }, + { + "start": 6914.7, + "end": 6920.0, + "probability": 0.6418 + }, + { + "start": 6920.08, + "end": 6923.7, + "probability": 0.9865 + }, + { + "start": 6925.11, + "end": 6927.92, + "probability": 0.7515 + }, + { + "start": 6928.52, + "end": 6931.64, + "probability": 0.7884 + }, + { + "start": 6931.8, + "end": 6932.54, + "probability": 0.6976 + }, + { + "start": 6932.62, + "end": 6934.3, + "probability": 0.9309 + }, + { + "start": 6934.7, + "end": 6936.33, + "probability": 0.6895 + }, + { + "start": 6937.42, + "end": 6940.68, + "probability": 0.5078 + }, + { + "start": 6940.88, + "end": 6944.22, + "probability": 0.9194 + }, + { + "start": 6944.8, + "end": 6947.7, + "probability": 0.5216 + }, + { + "start": 6947.82, + "end": 6948.18, + "probability": 0.0496 + }, + { + "start": 6948.48, + "end": 6950.5, + "probability": 0.9596 + }, + { + "start": 6950.76, + "end": 6951.7, + "probability": 0.8907 + }, + { + "start": 6952.84, + "end": 6958.6, + "probability": 0.62 + }, + { + "start": 6961.08, + "end": 6965.82, + "probability": 0.8484 + }, + { + "start": 6965.9, + "end": 6968.66, + "probability": 0.9604 + }, + { + "start": 6968.88, + "end": 6971.26, + "probability": 0.7471 + }, + { + "start": 6971.34, + "end": 6973.8, + "probability": 0.9607 + }, + { + "start": 6974.68, + "end": 6975.92, + "probability": 0.8189 + }, + { + "start": 6976.6, + "end": 6980.04, + "probability": 0.9731 + }, + { + "start": 6980.18, + "end": 6983.12, + "probability": 0.9783 + }, + { + "start": 6983.16, + "end": 6984.26, + "probability": 0.6947 + }, + { + "start": 6985.5, + "end": 6987.4, + "probability": 0.5187 + }, + { + "start": 6987.74, + "end": 6991.52, + "probability": 0.8399 + }, + { + "start": 6991.76, + "end": 6993.04, + "probability": 0.9976 + }, + { + "start": 6993.24, + "end": 6994.92, + "probability": 0.9956 + }, + { + "start": 6995.76, + "end": 6997.22, + "probability": 0.8477 + }, + { + "start": 6998.72, + "end": 7002.84, + "probability": 0.9917 + }, + { + "start": 7003.7, + "end": 7004.4, + "probability": 0.7586 + }, + { + "start": 7004.48, + "end": 7005.82, + "probability": 0.8997 + }, + { + "start": 7005.9, + "end": 7008.44, + "probability": 0.7798 + }, + { + "start": 7008.8, + "end": 7010.14, + "probability": 0.9072 + }, + { + "start": 7010.44, + "end": 7011.14, + "probability": 0.9601 + }, + { + "start": 7011.6, + "end": 7012.12, + "probability": 0.947 + }, + { + "start": 7012.22, + "end": 7013.26, + "probability": 0.7995 + }, + { + "start": 7013.5, + "end": 7015.22, + "probability": 0.9926 + }, + { + "start": 7015.54, + "end": 7017.4, + "probability": 0.8753 + }, + { + "start": 7017.78, + "end": 7018.34, + "probability": 0.9164 + }, + { + "start": 7018.92, + "end": 7019.3, + "probability": 0.6028 + }, + { + "start": 7019.44, + "end": 7020.64, + "probability": 0.8604 + }, + { + "start": 7020.96, + "end": 7028.56, + "probability": 0.837 + }, + { + "start": 7029.08, + "end": 7030.92, + "probability": 0.7084 + }, + { + "start": 7030.92, + "end": 7034.26, + "probability": 0.5918 + }, + { + "start": 7034.26, + "end": 7034.26, + "probability": 0.0194 + }, + { + "start": 7034.26, + "end": 7037.12, + "probability": 0.7592 + }, + { + "start": 7037.52, + "end": 7039.54, + "probability": 0.9265 + }, + { + "start": 7039.66, + "end": 7040.96, + "probability": 0.9111 + }, + { + "start": 7041.96, + "end": 7043.2, + "probability": 0.9243 + }, + { + "start": 7043.88, + "end": 7044.89, + "probability": 0.5189 + }, + { + "start": 7046.08, + "end": 7047.24, + "probability": 0.6534 + }, + { + "start": 7047.56, + "end": 7048.98, + "probability": 0.4184 + }, + { + "start": 7049.2, + "end": 7050.7, + "probability": 0.6979 + }, + { + "start": 7051.74, + "end": 7054.92, + "probability": 0.9143 + }, + { + "start": 7054.96, + "end": 7057.84, + "probability": 0.8442 + }, + { + "start": 7058.8, + "end": 7059.22, + "probability": 0.6568 + }, + { + "start": 7059.58, + "end": 7062.7, + "probability": 0.9438 + }, + { + "start": 7063.04, + "end": 7065.64, + "probability": 0.6896 + }, + { + "start": 7065.94, + "end": 7066.1, + "probability": 0.4611 + }, + { + "start": 7067.5, + "end": 7068.78, + "probability": 0.7701 + }, + { + "start": 7069.56, + "end": 7071.88, + "probability": 0.7293 + }, + { + "start": 7072.42, + "end": 7072.92, + "probability": 0.6923 + }, + { + "start": 7073.0, + "end": 7076.12, + "probability": 0.7338 + }, + { + "start": 7077.28, + "end": 7081.34, + "probability": 0.7843 + }, + { + "start": 7082.06, + "end": 7087.64, + "probability": 0.9642 + }, + { + "start": 7087.76, + "end": 7091.18, + "probability": 0.9816 + }, + { + "start": 7091.42, + "end": 7092.1, + "probability": 0.8946 + }, + { + "start": 7092.14, + "end": 7093.08, + "probability": 0.9741 + }, + { + "start": 7093.64, + "end": 7095.28, + "probability": 0.086 + }, + { + "start": 7095.4, + "end": 7097.71, + "probability": 0.3396 + }, + { + "start": 7098.5, + "end": 7099.86, + "probability": 0.6383 + }, + { + "start": 7100.06, + "end": 7101.94, + "probability": 0.8439 + }, + { + "start": 7102.42, + "end": 7107.08, + "probability": 0.91 + }, + { + "start": 7107.64, + "end": 7111.56, + "probability": 0.9896 + }, + { + "start": 7111.74, + "end": 7113.68, + "probability": 0.9892 + }, + { + "start": 7114.94, + "end": 7119.04, + "probability": 0.9683 + }, + { + "start": 7119.26, + "end": 7126.16, + "probability": 0.9585 + }, + { + "start": 7126.74, + "end": 7130.1, + "probability": 0.9845 + }, + { + "start": 7130.1, + "end": 7135.3, + "probability": 0.9859 + }, + { + "start": 7136.0, + "end": 7138.56, + "probability": 0.838 + }, + { + "start": 7138.8, + "end": 7140.42, + "probability": 0.9648 + }, + { + "start": 7141.26, + "end": 7145.7, + "probability": 0.9572 + }, + { + "start": 7146.36, + "end": 7152.72, + "probability": 0.9825 + }, + { + "start": 7153.0, + "end": 7155.83, + "probability": 0.988 + }, + { + "start": 7156.4, + "end": 7163.38, + "probability": 0.9961 + }, + { + "start": 7163.9, + "end": 7164.4, + "probability": 0.5777 + }, + { + "start": 7164.98, + "end": 7167.98, + "probability": 0.7708 + }, + { + "start": 7168.68, + "end": 7170.66, + "probability": 0.46 + }, + { + "start": 7171.6, + "end": 7176.7, + "probability": 0.9849 + }, + { + "start": 7177.18, + "end": 7180.77, + "probability": 0.993 + }, + { + "start": 7180.84, + "end": 7186.0, + "probability": 0.8846 + }, + { + "start": 7186.48, + "end": 7191.06, + "probability": 0.9854 + }, + { + "start": 7191.06, + "end": 7194.78, + "probability": 0.9984 + }, + { + "start": 7195.18, + "end": 7196.28, + "probability": 0.9578 + }, + { + "start": 7197.04, + "end": 7197.94, + "probability": 0.826 + }, + { + "start": 7198.28, + "end": 7199.72, + "probability": 0.9391 + }, + { + "start": 7199.84, + "end": 7200.33, + "probability": 0.9727 + }, + { + "start": 7201.44, + "end": 7204.88, + "probability": 0.9118 + }, + { + "start": 7205.34, + "end": 7206.52, + "probability": 0.8271 + }, + { + "start": 7206.6, + "end": 7209.42, + "probability": 0.8846 + }, + { + "start": 7209.78, + "end": 7214.52, + "probability": 0.8215 + }, + { + "start": 7214.94, + "end": 7218.54, + "probability": 0.8411 + }, + { + "start": 7219.18, + "end": 7222.04, + "probability": 0.7266 + }, + { + "start": 7222.52, + "end": 7224.86, + "probability": 0.9956 + }, + { + "start": 7225.44, + "end": 7226.82, + "probability": 0.4382 + }, + { + "start": 7227.56, + "end": 7229.48, + "probability": 0.7456 + }, + { + "start": 7229.54, + "end": 7232.94, + "probability": 0.9835 + }, + { + "start": 7233.38, + "end": 7234.26, + "probability": 0.9834 + }, + { + "start": 7234.58, + "end": 7234.96, + "probability": 0.5551 + }, + { + "start": 7235.06, + "end": 7240.23, + "probability": 0.9106 + }, + { + "start": 7250.76, + "end": 7252.62, + "probability": 0.6559 + }, + { + "start": 7253.9, + "end": 7256.74, + "probability": 0.8824 + }, + { + "start": 7257.42, + "end": 7258.56, + "probability": 0.7479 + }, + { + "start": 7259.54, + "end": 7263.0, + "probability": 0.7752 + }, + { + "start": 7263.54, + "end": 7265.56, + "probability": 0.1629 + }, + { + "start": 7266.5, + "end": 7268.1, + "probability": 0.9232 + }, + { + "start": 7268.84, + "end": 7270.02, + "probability": 0.921 + }, + { + "start": 7270.54, + "end": 7273.76, + "probability": 0.8247 + }, + { + "start": 7274.72, + "end": 7278.64, + "probability": 0.9028 + }, + { + "start": 7278.64, + "end": 7284.02, + "probability": 0.7407 + }, + { + "start": 7285.4, + "end": 7288.92, + "probability": 0.4597 + }, + { + "start": 7289.16, + "end": 7290.66, + "probability": 0.9962 + }, + { + "start": 7291.24, + "end": 7292.08, + "probability": 0.4951 + }, + { + "start": 7292.76, + "end": 7299.16, + "probability": 0.9635 + }, + { + "start": 7299.89, + "end": 7304.16, + "probability": 0.9972 + }, + { + "start": 7304.96, + "end": 7307.26, + "probability": 0.9728 + }, + { + "start": 7307.8, + "end": 7310.14, + "probability": 0.9899 + }, + { + "start": 7310.72, + "end": 7310.82, + "probability": 0.9991 + }, + { + "start": 7311.78, + "end": 7314.76, + "probability": 0.9134 + }, + { + "start": 7315.28, + "end": 7319.54, + "probability": 0.887 + }, + { + "start": 7319.54, + "end": 7324.92, + "probability": 0.5931 + }, + { + "start": 7325.82, + "end": 7326.32, + "probability": 0.2299 + }, + { + "start": 7326.32, + "end": 7331.15, + "probability": 0.8848 + }, + { + "start": 7331.24, + "end": 7338.58, + "probability": 0.9951 + }, + { + "start": 7338.58, + "end": 7344.72, + "probability": 0.9474 + }, + { + "start": 7344.72, + "end": 7350.88, + "probability": 0.9566 + }, + { + "start": 7351.54, + "end": 7352.26, + "probability": 0.7289 + }, + { + "start": 7352.96, + "end": 7356.64, + "probability": 0.7203 + }, + { + "start": 7356.64, + "end": 7361.66, + "probability": 0.9968 + }, + { + "start": 7363.08, + "end": 7363.96, + "probability": 0.7266 + }, + { + "start": 7364.54, + "end": 7368.34, + "probability": 0.9985 + }, + { + "start": 7369.06, + "end": 7371.9, + "probability": 0.9985 + }, + { + "start": 7372.5, + "end": 7376.22, + "probability": 0.9862 + }, + { + "start": 7376.22, + "end": 7381.58, + "probability": 0.9279 + }, + { + "start": 7382.08, + "end": 7386.08, + "probability": 0.9927 + }, + { + "start": 7386.84, + "end": 7389.42, + "probability": 0.448 + }, + { + "start": 7390.22, + "end": 7395.84, + "probability": 0.9883 + }, + { + "start": 7395.9, + "end": 7401.94, + "probability": 0.9967 + }, + { + "start": 7402.46, + "end": 7405.82, + "probability": 0.988 + }, + { + "start": 7406.38, + "end": 7406.74, + "probability": 0.26 + }, + { + "start": 7407.82, + "end": 7410.22, + "probability": 0.4193 + }, + { + "start": 7410.74, + "end": 7414.42, + "probability": 0.9534 + }, + { + "start": 7415.02, + "end": 7421.76, + "probability": 0.991 + }, + { + "start": 7422.02, + "end": 7426.94, + "probability": 0.5577 + }, + { + "start": 7427.16, + "end": 7430.44, + "probability": 0.9665 + }, + { + "start": 7430.44, + "end": 7433.0, + "probability": 0.9985 + }, + { + "start": 7433.5, + "end": 7437.0, + "probability": 0.9979 + }, + { + "start": 7440.66, + "end": 7442.18, + "probability": 0.8364 + }, + { + "start": 7442.24, + "end": 7444.58, + "probability": 0.6288 + }, + { + "start": 7444.92, + "end": 7445.02, + "probability": 0.268 + }, + { + "start": 7446.52, + "end": 7446.9, + "probability": 0.6199 + }, + { + "start": 7447.62, + "end": 7449.0, + "probability": 0.7883 + }, + { + "start": 7449.3, + "end": 7450.77, + "probability": 0.9902 + }, + { + "start": 7451.58, + "end": 7460.12, + "probability": 0.929 + }, + { + "start": 7460.12, + "end": 7460.62, + "probability": 0.7071 + }, + { + "start": 7460.74, + "end": 7465.44, + "probability": 0.9528 + }, + { + "start": 7466.26, + "end": 7466.68, + "probability": 0.7632 + }, + { + "start": 7466.74, + "end": 7468.56, + "probability": 0.9822 + }, + { + "start": 7468.96, + "end": 7469.3, + "probability": 0.1899 + }, + { + "start": 7469.36, + "end": 7470.3, + "probability": 0.896 + }, + { + "start": 7471.22, + "end": 7471.52, + "probability": 0.225 + }, + { + "start": 7473.34, + "end": 7474.64, + "probability": 0.035 + }, + { + "start": 7474.64, + "end": 7474.64, + "probability": 0.1031 + }, + { + "start": 7474.64, + "end": 7479.1, + "probability": 0.6938 + }, + { + "start": 7480.1, + "end": 7482.5, + "probability": 0.8337 + }, + { + "start": 7483.02, + "end": 7484.67, + "probability": 0.9717 + }, + { + "start": 7484.85, + "end": 7487.71, + "probability": 0.957 + }, + { + "start": 7488.21, + "end": 7488.89, + "probability": 0.4539 + }, + { + "start": 7489.03, + "end": 7489.33, + "probability": 0.2595 + }, + { + "start": 7490.39, + "end": 7490.41, + "probability": 0.0742 + }, + { + "start": 7490.65, + "end": 7491.09, + "probability": 0.3353 + }, + { + "start": 7491.33, + "end": 7492.97, + "probability": 0.9352 + }, + { + "start": 7493.35, + "end": 7495.33, + "probability": 0.7838 + }, + { + "start": 7496.9, + "end": 7501.11, + "probability": 0.972 + }, + { + "start": 7501.93, + "end": 7506.87, + "probability": 0.7446 + }, + { + "start": 7507.65, + "end": 7509.47, + "probability": 0.9146 + }, + { + "start": 7509.67, + "end": 7512.29, + "probability": 0.8895 + }, + { + "start": 7512.57, + "end": 7513.49, + "probability": 0.7234 + }, + { + "start": 7513.81, + "end": 7514.37, + "probability": 0.5205 + }, + { + "start": 7514.67, + "end": 7515.29, + "probability": 0.6239 + }, + { + "start": 7515.29, + "end": 7516.23, + "probability": 0.6315 + }, + { + "start": 7516.23, + "end": 7517.09, + "probability": 0.671 + }, + { + "start": 7517.53, + "end": 7518.47, + "probability": 0.3942 + }, + { + "start": 7518.83, + "end": 7521.25, + "probability": 0.2627 + }, + { + "start": 7531.35, + "end": 7532.69, + "probability": 0.0404 + }, + { + "start": 7535.36, + "end": 7537.05, + "probability": 0.0839 + }, + { + "start": 7537.77, + "end": 7540.19, + "probability": 0.0168 + }, + { + "start": 7540.47, + "end": 7549.19, + "probability": 0.2924 + }, + { + "start": 7549.19, + "end": 7553.45, + "probability": 0.0504 + }, + { + "start": 7553.45, + "end": 7555.99, + "probability": 0.3842 + }, + { + "start": 7566.89, + "end": 7568.27, + "probability": 0.0443 + }, + { + "start": 7568.27, + "end": 7571.15, + "probability": 0.0787 + }, + { + "start": 7571.15, + "end": 7571.51, + "probability": 0.241 + }, + { + "start": 7575.59, + "end": 7577.57, + "probability": 0.0941 + }, + { + "start": 7581.51, + "end": 7585.21, + "probability": 0.061 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.0, + "end": 7610.0, + "probability": 0.0 + }, + { + "start": 7610.16, + "end": 7617.5, + "probability": 0.871 + }, + { + "start": 7618.86, + "end": 7620.84, + "probability": 0.9865 + }, + { + "start": 7622.64, + "end": 7626.35, + "probability": 0.7954 + }, + { + "start": 7627.46, + "end": 7630.62, + "probability": 0.9587 + }, + { + "start": 7631.26, + "end": 7633.54, + "probability": 0.9879 + }, + { + "start": 7634.02, + "end": 7635.7, + "probability": 0.8278 + }, + { + "start": 7635.9, + "end": 7641.14, + "probability": 0.7777 + }, + { + "start": 7642.0, + "end": 7649.35, + "probability": 0.9293 + }, + { + "start": 7650.6, + "end": 7652.6, + "probability": 0.8032 + }, + { + "start": 7652.92, + "end": 7653.8, + "probability": 0.4443 + }, + { + "start": 7653.84, + "end": 7655.92, + "probability": 0.77 + }, + { + "start": 7656.46, + "end": 7663.52, + "probability": 0.8642 + }, + { + "start": 7663.6, + "end": 7664.62, + "probability": 0.8416 + }, + { + "start": 7665.5, + "end": 7671.3, + "probability": 0.9734 + }, + { + "start": 7671.4, + "end": 7680.26, + "probability": 0.9917 + }, + { + "start": 7680.46, + "end": 7682.83, + "probability": 0.5992 + }, + { + "start": 7684.38, + "end": 7686.48, + "probability": 0.1859 + }, + { + "start": 7686.48, + "end": 7689.98, + "probability": 0.7836 + }, + { + "start": 7690.4, + "end": 7690.5, + "probability": 0.131 + }, + { + "start": 7690.5, + "end": 7695.44, + "probability": 0.9799 + }, + { + "start": 7695.5, + "end": 7700.36, + "probability": 0.9197 + }, + { + "start": 7700.84, + "end": 7706.14, + "probability": 0.6065 + }, + { + "start": 7706.22, + "end": 7706.7, + "probability": 0.6093 + }, + { + "start": 7707.14, + "end": 7713.72, + "probability": 0.9878 + }, + { + "start": 7714.54, + "end": 7715.04, + "probability": 0.8199 + }, + { + "start": 7715.44, + "end": 7716.06, + "probability": 0.7242 + }, + { + "start": 7716.96, + "end": 7719.08, + "probability": 0.7279 + }, + { + "start": 7721.12, + "end": 7721.92, + "probability": 0.1598 + }, + { + "start": 7722.34, + "end": 7728.42, + "probability": 0.0361 + }, + { + "start": 7728.62, + "end": 7732.14, + "probability": 0.9919 + }, + { + "start": 7732.24, + "end": 7733.26, + "probability": 0.6557 + }, + { + "start": 7733.58, + "end": 7735.74, + "probability": 0.9946 + }, + { + "start": 7736.5, + "end": 7742.06, + "probability": 0.9189 + }, + { + "start": 7742.72, + "end": 7743.24, + "probability": 0.7449 + }, + { + "start": 7743.92, + "end": 7746.94, + "probability": 0.4441 + }, + { + "start": 7748.78, + "end": 7750.36, + "probability": 0.6709 + }, + { + "start": 7750.48, + "end": 7751.48, + "probability": 0.6995 + }, + { + "start": 7751.88, + "end": 7756.78, + "probability": 0.9272 + }, + { + "start": 7756.78, + "end": 7762.96, + "probability": 0.9599 + }, + { + "start": 7763.04, + "end": 7766.42, + "probability": 0.7351 + }, + { + "start": 7767.22, + "end": 7777.68, + "probability": 0.7936 + }, + { + "start": 7778.88, + "end": 7784.3, + "probability": 0.9888 + }, + { + "start": 7784.3, + "end": 7791.1, + "probability": 0.9707 + }, + { + "start": 7791.7, + "end": 7795.14, + "probability": 0.7618 + }, + { + "start": 7795.96, + "end": 7796.96, + "probability": 0.8034 + }, + { + "start": 7797.36, + "end": 7798.88, + "probability": 0.68 + }, + { + "start": 7799.38, + "end": 7805.26, + "probability": 0.7089 + }, + { + "start": 7806.0, + "end": 7809.0, + "probability": 0.527 + }, + { + "start": 7809.8, + "end": 7812.64, + "probability": 0.8853 + }, + { + "start": 7814.34, + "end": 7818.9, + "probability": 0.6788 + }, + { + "start": 7819.12, + "end": 7826.09, + "probability": 0.9571 + }, + { + "start": 7826.3, + "end": 7832.26, + "probability": 0.987 + }, + { + "start": 7833.04, + "end": 7834.72, + "probability": 0.6992 + }, + { + "start": 7835.58, + "end": 7840.66, + "probability": 0.6944 + }, + { + "start": 7840.84, + "end": 7844.02, + "probability": 0.8229 + }, + { + "start": 7844.14, + "end": 7850.74, + "probability": 0.9556 + }, + { + "start": 7851.36, + "end": 7855.6, + "probability": 0.847 + }, + { + "start": 7856.79, + "end": 7860.92, + "probability": 0.9092 + }, + { + "start": 7861.36, + "end": 7865.72, + "probability": 0.8511 + }, + { + "start": 7866.06, + "end": 7871.4, + "probability": 0.7373 + }, + { + "start": 7872.18, + "end": 7877.74, + "probability": 0.8866 + }, + { + "start": 7878.8, + "end": 7885.1, + "probability": 0.9878 + }, + { + "start": 7885.1, + "end": 7891.88, + "probability": 0.9829 + }, + { + "start": 7892.48, + "end": 7897.14, + "probability": 0.9956 + }, + { + "start": 7897.14, + "end": 7901.86, + "probability": 0.9589 + }, + { + "start": 7902.08, + "end": 7905.4, + "probability": 0.8404 + }, + { + "start": 7906.14, + "end": 7906.88, + "probability": 0.5423 + }, + { + "start": 7907.0, + "end": 7907.6, + "probability": 0.8739 + }, + { + "start": 7907.68, + "end": 7909.98, + "probability": 0.83 + }, + { + "start": 7910.2, + "end": 7914.58, + "probability": 0.8955 + }, + { + "start": 7914.84, + "end": 7916.18, + "probability": 0.8179 + }, + { + "start": 7916.54, + "end": 7922.1, + "probability": 0.5962 + }, + { + "start": 7923.12, + "end": 7930.74, + "probability": 0.7652 + }, + { + "start": 7931.4, + "end": 7937.86, + "probability": 0.8437 + }, + { + "start": 7938.04, + "end": 7945.32, + "probability": 0.7462 + }, + { + "start": 7945.56, + "end": 7952.02, + "probability": 0.8472 + }, + { + "start": 7952.02, + "end": 7957.24, + "probability": 0.947 + }, + { + "start": 7957.24, + "end": 7963.88, + "probability": 0.6088 + }, + { + "start": 7963.94, + "end": 7966.56, + "probability": 0.9971 + }, + { + "start": 7967.3, + "end": 7969.56, + "probability": 0.8424 + }, + { + "start": 7970.1, + "end": 7972.96, + "probability": 0.6805 + }, + { + "start": 7973.58, + "end": 7978.26, + "probability": 0.9929 + }, + { + "start": 7978.26, + "end": 7984.38, + "probability": 0.7505 + }, + { + "start": 7985.0, + "end": 7988.1, + "probability": 0.6449 + }, + { + "start": 7988.16, + "end": 7991.34, + "probability": 0.9563 + }, + { + "start": 7991.78, + "end": 7992.38, + "probability": 0.8674 + }, + { + "start": 7992.86, + "end": 7993.24, + "probability": 0.6791 + }, + { + "start": 7993.96, + "end": 7994.86, + "probability": 0.7849 + }, + { + "start": 7995.38, + "end": 7997.02, + "probability": 0.8875 + }, + { + "start": 7998.26, + "end": 7998.68, + "probability": 0.9879 + }, + { + "start": 7998.78, + "end": 7999.4, + "probability": 0.9734 + }, + { + "start": 7999.86, + "end": 8000.92, + "probability": 0.9137 + }, + { + "start": 8000.96, + "end": 8002.82, + "probability": 0.8931 + }, + { + "start": 8003.54, + "end": 8004.6, + "probability": 0.9242 + }, + { + "start": 8005.56, + "end": 8005.94, + "probability": 0.6803 + }, + { + "start": 8006.04, + "end": 8006.3, + "probability": 0.6753 + }, + { + "start": 8006.4, + "end": 8008.98, + "probability": 0.9528 + }, + { + "start": 8008.98, + "end": 8010.94, + "probability": 0.9741 + }, + { + "start": 8011.46, + "end": 8012.74, + "probability": 0.8517 + }, + { + "start": 8013.86, + "end": 8015.0, + "probability": 0.7783 + }, + { + "start": 8015.72, + "end": 8016.34, + "probability": 0.712 + }, + { + "start": 8017.92, + "end": 8019.4, + "probability": 0.5654 + }, + { + "start": 8019.76, + "end": 8020.02, + "probability": 0.5777 + }, + { + "start": 8021.54, + "end": 8021.74, + "probability": 0.9304 + }, + { + "start": 8023.18, + "end": 8024.64, + "probability": 0.8965 + }, + { + "start": 8031.06, + "end": 8032.42, + "probability": 0.6439 + }, + { + "start": 8034.48, + "end": 8035.6, + "probability": 0.8848 + }, + { + "start": 8037.88, + "end": 8040.36, + "probability": 0.8881 + }, + { + "start": 8041.28, + "end": 8042.78, + "probability": 0.8006 + }, + { + "start": 8047.54, + "end": 8049.15, + "probability": 0.5564 + }, + { + "start": 8050.03, + "end": 8053.34, + "probability": 0.8179 + }, + { + "start": 8054.54, + "end": 8057.12, + "probability": 0.9653 + }, + { + "start": 8060.88, + "end": 8061.68, + "probability": 0.6578 + }, + { + "start": 8061.94, + "end": 8063.98, + "probability": 0.8625 + }, + { + "start": 8064.1, + "end": 8064.6, + "probability": 0.7432 + }, + { + "start": 8067.38, + "end": 8067.56, + "probability": 0.8561 + }, + { + "start": 8067.64, + "end": 8068.36, + "probability": 0.9929 + }, + { + "start": 8068.46, + "end": 8071.16, + "probability": 0.9307 + }, + { + "start": 8071.16, + "end": 8075.0, + "probability": 0.9441 + }, + { + "start": 8077.2, + "end": 8079.36, + "probability": 0.9921 + }, + { + "start": 8080.4, + "end": 8082.42, + "probability": 0.9644 + }, + { + "start": 8084.56, + "end": 8085.18, + "probability": 0.846 + }, + { + "start": 8086.18, + "end": 8091.04, + "probability": 0.9625 + }, + { + "start": 8092.18, + "end": 8094.74, + "probability": 0.958 + }, + { + "start": 8096.28, + "end": 8100.94, + "probability": 0.9893 + }, + { + "start": 8102.32, + "end": 8105.54, + "probability": 0.9802 + }, + { + "start": 8105.62, + "end": 8108.4, + "probability": 0.9858 + }, + { + "start": 8109.44, + "end": 8111.48, + "probability": 0.8813 + }, + { + "start": 8111.48, + "end": 8114.4, + "probability": 0.9907 + }, + { + "start": 8115.14, + "end": 8116.42, + "probability": 0.9668 + }, + { + "start": 8119.04, + "end": 8120.02, + "probability": 0.8189 + }, + { + "start": 8121.0, + "end": 8121.7, + "probability": 0.7727 + }, + { + "start": 8122.8, + "end": 8125.54, + "probability": 0.9655 + }, + { + "start": 8128.64, + "end": 8129.1, + "probability": 0.9513 + }, + { + "start": 8130.58, + "end": 8134.22, + "probability": 0.505 + }, + { + "start": 8135.1, + "end": 8138.54, + "probability": 0.9337 + }, + { + "start": 8138.72, + "end": 8140.36, + "probability": 0.9448 + }, + { + "start": 8141.56, + "end": 8142.36, + "probability": 0.6248 + }, + { + "start": 8146.84, + "end": 8147.66, + "probability": 0.8273 + }, + { + "start": 8150.46, + "end": 8151.08, + "probability": 0.6781 + }, + { + "start": 8153.78, + "end": 8155.24, + "probability": 0.6769 + }, + { + "start": 8155.24, + "end": 8156.8, + "probability": 0.9198 + }, + { + "start": 8157.02, + "end": 8160.46, + "probability": 0.9923 + }, + { + "start": 8161.86, + "end": 8164.66, + "probability": 0.9961 + }, + { + "start": 8165.26, + "end": 8168.16, + "probability": 0.5177 + }, + { + "start": 8168.92, + "end": 8170.48, + "probability": 0.9248 + }, + { + "start": 8170.66, + "end": 8171.08, + "probability": 0.4241 + }, + { + "start": 8171.14, + "end": 8171.94, + "probability": 0.7201 + }, + { + "start": 8173.04, + "end": 8177.66, + "probability": 0.9069 + }, + { + "start": 8177.8, + "end": 8183.26, + "probability": 0.813 + }, + { + "start": 8184.3, + "end": 8185.1, + "probability": 0.6957 + }, + { + "start": 8185.24, + "end": 8185.8, + "probability": 0.802 + }, + { + "start": 8185.88, + "end": 8188.14, + "probability": 0.9062 + }, + { + "start": 8188.14, + "end": 8188.76, + "probability": 0.7696 + }, + { + "start": 8188.8, + "end": 8189.34, + "probability": 0.868 + }, + { + "start": 8190.42, + "end": 8191.68, + "probability": 0.9249 + }, + { + "start": 8191.98, + "end": 8193.78, + "probability": 0.3836 + }, + { + "start": 8194.22, + "end": 8195.1, + "probability": 0.2923 + }, + { + "start": 8195.2, + "end": 8196.22, + "probability": 0.8586 + }, + { + "start": 8196.32, + "end": 8197.44, + "probability": 0.9061 + }, + { + "start": 8199.9, + "end": 8202.5, + "probability": 0.6457 + }, + { + "start": 8202.5, + "end": 8202.64, + "probability": 0.434 + }, + { + "start": 8203.82, + "end": 8204.32, + "probability": 0.2849 + }, + { + "start": 8204.32, + "end": 8204.42, + "probability": 0.3772 + }, + { + "start": 8204.58, + "end": 8206.9, + "probability": 0.8127 + }, + { + "start": 8207.5, + "end": 8208.08, + "probability": 0.6227 + }, + { + "start": 8208.2, + "end": 8210.28, + "probability": 0.922 + }, + { + "start": 8211.04, + "end": 8211.94, + "probability": 0.9604 + }, + { + "start": 8212.06, + "end": 8212.78, + "probability": 0.8779 + }, + { + "start": 8213.2, + "end": 8214.62, + "probability": 0.7693 + }, + { + "start": 8214.82, + "end": 8215.42, + "probability": 0.5185 + }, + { + "start": 8215.54, + "end": 8216.72, + "probability": 0.7664 + }, + { + "start": 8217.1, + "end": 8219.5, + "probability": 0.9114 + }, + { + "start": 8220.28, + "end": 8221.4, + "probability": 0.8371 + }, + { + "start": 8222.2, + "end": 8224.38, + "probability": 0.982 + }, + { + "start": 8225.62, + "end": 8226.76, + "probability": 0.8774 + }, + { + "start": 8227.72, + "end": 8228.0, + "probability": 0.8711 + }, + { + "start": 8228.1, + "end": 8228.64, + "probability": 0.3409 + }, + { + "start": 8230.12, + "end": 8231.6, + "probability": 0.9958 + }, + { + "start": 8231.98, + "end": 8233.92, + "probability": 0.8731 + }, + { + "start": 8234.0, + "end": 8234.72, + "probability": 0.9233 + }, + { + "start": 8234.8, + "end": 8234.98, + "probability": 0.752 + }, + { + "start": 8235.8, + "end": 8237.74, + "probability": 0.6805 + }, + { + "start": 8238.3, + "end": 8239.26, + "probability": 0.9712 + }, + { + "start": 8239.28, + "end": 8240.76, + "probability": 0.965 + }, + { + "start": 8240.92, + "end": 8241.2, + "probability": 0.5808 + }, + { + "start": 8241.32, + "end": 8241.64, + "probability": 0.9098 + }, + { + "start": 8241.76, + "end": 8242.14, + "probability": 0.4238 + }, + { + "start": 8243.26, + "end": 8244.18, + "probability": 0.3838 + }, + { + "start": 8244.24, + "end": 8244.8, + "probability": 0.7247 + }, + { + "start": 8245.3, + "end": 8247.96, + "probability": 0.6442 + }, + { + "start": 8248.64, + "end": 8254.98, + "probability": 0.9438 + }, + { + "start": 8255.58, + "end": 8256.64, + "probability": 0.958 + }, + { + "start": 8257.24, + "end": 8261.2, + "probability": 0.9492 + }, + { + "start": 8262.2, + "end": 8265.32, + "probability": 0.8485 + }, + { + "start": 8266.2, + "end": 8272.46, + "probability": 0.8268 + }, + { + "start": 8272.62, + "end": 8275.1, + "probability": 0.7639 + }, + { + "start": 8275.72, + "end": 8286.0, + "probability": 0.9297 + }, + { + "start": 8286.24, + "end": 8289.26, + "probability": 0.507 + }, + { + "start": 8289.26, + "end": 8296.02, + "probability": 0.7739 + }, + { + "start": 8296.44, + "end": 8299.72, + "probability": 0.6594 + }, + { + "start": 8300.46, + "end": 8308.18, + "probability": 0.876 + }, + { + "start": 8308.94, + "end": 8316.1, + "probability": 0.9844 + }, + { + "start": 8316.24, + "end": 8316.9, + "probability": 0.3325 + }, + { + "start": 8317.04, + "end": 8320.12, + "probability": 0.6584 + }, + { + "start": 8320.58, + "end": 8325.12, + "probability": 0.7805 + }, + { + "start": 8327.08, + "end": 8331.9, + "probability": 0.9691 + }, + { + "start": 8332.08, + "end": 8340.56, + "probability": 0.9194 + }, + { + "start": 8340.62, + "end": 8341.32, + "probability": 0.7247 + }, + { + "start": 8341.68, + "end": 8342.82, + "probability": 0.5526 + }, + { + "start": 8342.82, + "end": 8344.44, + "probability": 0.7744 + }, + { + "start": 8344.5, + "end": 8345.53, + "probability": 0.9473 + }, + { + "start": 8346.86, + "end": 8347.28, + "probability": 0.0229 + }, + { + "start": 8347.28, + "end": 8348.84, + "probability": 0.9688 + }, + { + "start": 8349.0, + "end": 8350.22, + "probability": 0.6015 + }, + { + "start": 8350.28, + "end": 8350.7, + "probability": 0.8419 + }, + { + "start": 8350.82, + "end": 8350.96, + "probability": 0.5156 + }, + { + "start": 8354.16, + "end": 8355.52, + "probability": 0.1429 + }, + { + "start": 8357.48, + "end": 8358.2, + "probability": 0.1043 + }, + { + "start": 8360.96, + "end": 8363.46, + "probability": 0.7124 + }, + { + "start": 8363.48, + "end": 8364.22, + "probability": 0.6724 + }, + { + "start": 8364.76, + "end": 8365.26, + "probability": 0.7602 + }, + { + "start": 8366.6, + "end": 8367.84, + "probability": 0.5911 + }, + { + "start": 8368.88, + "end": 8371.56, + "probability": 0.9245 + }, + { + "start": 8371.88, + "end": 8374.93, + "probability": 0.0304 + }, + { + "start": 8376.56, + "end": 8376.84, + "probability": 0.0108 + }, + { + "start": 8386.14, + "end": 8387.94, + "probability": 0.4045 + }, + { + "start": 8388.88, + "end": 8389.88, + "probability": 0.1783 + }, + { + "start": 8389.9, + "end": 8392.24, + "probability": 0.2622 + }, + { + "start": 8407.24, + "end": 8408.72, + "probability": 0.0606 + }, + { + "start": 8410.7, + "end": 8411.98, + "probability": 0.017 + }, + { + "start": 8416.44, + "end": 8417.98, + "probability": 0.0036 + }, + { + "start": 8419.2, + "end": 8424.86, + "probability": 0.0675 + }, + { + "start": 8425.48, + "end": 8426.5, + "probability": 0.0358 + }, + { + "start": 8426.5, + "end": 8428.26, + "probability": 0.2553 + }, + { + "start": 8432.46, + "end": 8432.78, + "probability": 0.1295 + }, + { + "start": 8433.86, + "end": 8434.9, + "probability": 0.1729 + }, + { + "start": 8437.97, + "end": 8440.46, + "probability": 0.0473 + }, + { + "start": 8441.58, + "end": 8442.56, + "probability": 0.0988 + }, + { + "start": 8444.4, + "end": 8445.0, + "probability": 0.037 + }, + { + "start": 8445.0, + "end": 8445.52, + "probability": 0.0176 + }, + { + "start": 8448.16, + "end": 8449.28, + "probability": 0.057 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.0, + "end": 8450.0, + "probability": 0.0 + }, + { + "start": 8450.98, + "end": 8451.3, + "probability": 0.0489 + }, + { + "start": 8451.3, + "end": 8451.3, + "probability": 0.1405 + }, + { + "start": 8451.3, + "end": 8454.06, + "probability": 0.803 + }, + { + "start": 8454.6, + "end": 8459.72, + "probability": 0.9113 + }, + { + "start": 8460.3, + "end": 8462.36, + "probability": 0.89 + }, + { + "start": 8463.5, + "end": 8467.54, + "probability": 0.968 + }, + { + "start": 8469.06, + "end": 8472.24, + "probability": 0.9978 + }, + { + "start": 8472.34, + "end": 8474.8, + "probability": 0.9622 + }, + { + "start": 8475.84, + "end": 8477.07, + "probability": 0.948 + }, + { + "start": 8478.85, + "end": 8480.96, + "probability": 0.8684 + }, + { + "start": 8483.28, + "end": 8486.28, + "probability": 0.8757 + }, + { + "start": 8486.28, + "end": 8487.58, + "probability": 0.9456 + }, + { + "start": 8487.62, + "end": 8489.04, + "probability": 0.7795 + }, + { + "start": 8489.1, + "end": 8490.72, + "probability": 0.8422 + }, + { + "start": 8490.76, + "end": 8492.1, + "probability": 0.8088 + }, + { + "start": 8492.18, + "end": 8493.24, + "probability": 0.7346 + }, + { + "start": 8494.3, + "end": 8495.72, + "probability": 0.9368 + }, + { + "start": 8496.22, + "end": 8497.02, + "probability": 0.0164 + }, + { + "start": 8499.28, + "end": 8500.54, + "probability": 0.8206 + }, + { + "start": 8501.34, + "end": 8502.7, + "probability": 0.9442 + }, + { + "start": 8503.36, + "end": 8503.88, + "probability": 0.8303 + }, + { + "start": 8505.0, + "end": 8507.9, + "probability": 0.9944 + }, + { + "start": 8509.2, + "end": 8511.62, + "probability": 0.7439 + }, + { + "start": 8512.26, + "end": 8514.84, + "probability": 0.8393 + }, + { + "start": 8515.98, + "end": 8517.27, + "probability": 0.5676 + }, + { + "start": 8518.08, + "end": 8519.9, + "probability": 0.8463 + }, + { + "start": 8520.78, + "end": 8522.0, + "probability": 0.9787 + }, + { + "start": 8522.06, + "end": 8523.74, + "probability": 0.7832 + }, + { + "start": 8523.94, + "end": 8525.72, + "probability": 0.9036 + }, + { + "start": 8526.12, + "end": 8526.64, + "probability": 0.2066 + }, + { + "start": 8527.36, + "end": 8530.12, + "probability": 0.8032 + }, + { + "start": 8530.78, + "end": 8532.86, + "probability": 0.9274 + }, + { + "start": 8533.6, + "end": 8533.96, + "probability": 0.5994 + }, + { + "start": 8538.5, + "end": 8539.68, + "probability": 0.6623 + }, + { + "start": 8540.72, + "end": 8541.94, + "probability": 0.6514 + }, + { + "start": 8542.46, + "end": 8542.82, + "probability": 0.2208 + }, + { + "start": 8542.96, + "end": 8543.82, + "probability": 0.4553 + }, + { + "start": 8544.08, + "end": 8546.66, + "probability": 0.0871 + }, + { + "start": 8547.34, + "end": 8549.36, + "probability": 0.0139 + }, + { + "start": 8549.74, + "end": 8552.08, + "probability": 0.7738 + }, + { + "start": 8552.72, + "end": 8554.36, + "probability": 0.7615 + }, + { + "start": 8554.44, + "end": 8554.98, + "probability": 0.6587 + }, + { + "start": 8555.12, + "end": 8557.64, + "probability": 0.9979 + }, + { + "start": 8557.82, + "end": 8558.7, + "probability": 0.8872 + }, + { + "start": 8558.78, + "end": 8562.19, + "probability": 0.9832 + }, + { + "start": 8563.22, + "end": 8563.84, + "probability": 0.4945 + }, + { + "start": 8564.08, + "end": 8565.84, + "probability": 0.9897 + }, + { + "start": 8565.94, + "end": 8568.96, + "probability": 0.9932 + }, + { + "start": 8569.04, + "end": 8569.82, + "probability": 0.7704 + }, + { + "start": 8570.2, + "end": 8573.48, + "probability": 0.965 + }, + { + "start": 8573.6, + "end": 8574.38, + "probability": 0.9482 + }, + { + "start": 8575.2, + "end": 8576.82, + "probability": 0.915 + }, + { + "start": 8577.24, + "end": 8578.58, + "probability": 0.9632 + }, + { + "start": 8579.04, + "end": 8580.86, + "probability": 0.6773 + }, + { + "start": 8581.46, + "end": 8581.9, + "probability": 0.7166 + }, + { + "start": 8582.06, + "end": 8586.0, + "probability": 0.9876 + }, + { + "start": 8586.46, + "end": 8588.3, + "probability": 0.9199 + }, + { + "start": 8588.34, + "end": 8590.88, + "probability": 0.9954 + }, + { + "start": 8591.52, + "end": 8593.2, + "probability": 0.9862 + }, + { + "start": 8594.9, + "end": 8598.2, + "probability": 0.7816 + }, + { + "start": 8599.06, + "end": 8602.16, + "probability": 0.9323 + }, + { + "start": 8602.9, + "end": 8603.3, + "probability": 0.8625 + }, + { + "start": 8603.84, + "end": 8606.72, + "probability": 0.9768 + }, + { + "start": 8606.92, + "end": 8607.6, + "probability": 0.7858 + }, + { + "start": 8608.5, + "end": 8610.73, + "probability": 0.9868 + }, + { + "start": 8610.92, + "end": 8616.36, + "probability": 0.9668 + }, + { + "start": 8616.42, + "end": 8617.3, + "probability": 0.786 + }, + { + "start": 8618.18, + "end": 8620.64, + "probability": 0.8447 + }, + { + "start": 8621.34, + "end": 8622.08, + "probability": 0.9307 + }, + { + "start": 8622.9, + "end": 8625.2, + "probability": 0.9288 + }, + { + "start": 8626.04, + "end": 8627.74, + "probability": 0.9884 + }, + { + "start": 8628.98, + "end": 8631.66, + "probability": 0.9943 + }, + { + "start": 8631.66, + "end": 8634.1, + "probability": 0.9833 + }, + { + "start": 8634.28, + "end": 8635.4, + "probability": 0.7031 + }, + { + "start": 8635.7, + "end": 8641.46, + "probability": 0.7548 + }, + { + "start": 8641.72, + "end": 8642.28, + "probability": 0.8799 + }, + { + "start": 8642.5, + "end": 8645.25, + "probability": 0.9806 + }, + { + "start": 8646.12, + "end": 8646.88, + "probability": 0.7065 + }, + { + "start": 8648.2, + "end": 8649.22, + "probability": 0.5562 + }, + { + "start": 8649.86, + "end": 8650.64, + "probability": 0.69 + }, + { + "start": 8651.14, + "end": 8652.46, + "probability": 0.6011 + }, + { + "start": 8652.68, + "end": 8654.34, + "probability": 0.7218 + }, + { + "start": 8654.38, + "end": 8654.84, + "probability": 0.8778 + }, + { + "start": 8655.16, + "end": 8655.78, + "probability": 0.6381 + }, + { + "start": 8656.04, + "end": 8658.16, + "probability": 0.8178 + }, + { + "start": 8658.22, + "end": 8659.74, + "probability": 0.9983 + }, + { + "start": 8659.78, + "end": 8663.24, + "probability": 0.9969 + }, + { + "start": 8663.32, + "end": 8665.88, + "probability": 0.9969 + }, + { + "start": 8666.78, + "end": 8667.48, + "probability": 0.9285 + }, + { + "start": 8667.56, + "end": 8670.36, + "probability": 0.9223 + }, + { + "start": 8670.48, + "end": 8674.62, + "probability": 0.9356 + }, + { + "start": 8674.62, + "end": 8678.38, + "probability": 0.9527 + }, + { + "start": 8679.12, + "end": 8680.37, + "probability": 0.7502 + }, + { + "start": 8681.34, + "end": 8684.18, + "probability": 0.9884 + }, + { + "start": 8684.3, + "end": 8685.4, + "probability": 0.7362 + }, + { + "start": 8685.54, + "end": 8686.42, + "probability": 0.9546 + }, + { + "start": 8687.32, + "end": 8688.26, + "probability": 0.9827 + }, + { + "start": 8688.42, + "end": 8689.72, + "probability": 0.9541 + }, + { + "start": 8690.28, + "end": 8693.24, + "probability": 0.9508 + }, + { + "start": 8693.84, + "end": 8696.36, + "probability": 0.9984 + }, + { + "start": 8696.92, + "end": 8702.32, + "probability": 0.9791 + }, + { + "start": 8702.46, + "end": 8704.26, + "probability": 0.8806 + }, + { + "start": 8704.84, + "end": 8707.68, + "probability": 0.949 + }, + { + "start": 8708.56, + "end": 8711.96, + "probability": 0.9819 + }, + { + "start": 8711.96, + "end": 8716.08, + "probability": 0.6591 + }, + { + "start": 8716.64, + "end": 8719.36, + "probability": 0.9187 + }, + { + "start": 8719.88, + "end": 8720.96, + "probability": 0.9598 + }, + { + "start": 8721.54, + "end": 8722.22, + "probability": 0.785 + }, + { + "start": 8722.36, + "end": 8723.08, + "probability": 0.9274 + }, + { + "start": 8723.32, + "end": 8726.3, + "probability": 0.9941 + }, + { + "start": 8726.5, + "end": 8727.36, + "probability": 0.7627 + }, + { + "start": 8727.42, + "end": 8728.52, + "probability": 0.9358 + }, + { + "start": 8728.92, + "end": 8730.5, + "probability": 0.9095 + }, + { + "start": 8730.96, + "end": 8733.04, + "probability": 0.9927 + }, + { + "start": 8734.24, + "end": 8736.21, + "probability": 0.9834 + }, + { + "start": 8736.84, + "end": 8741.56, + "probability": 0.9737 + }, + { + "start": 8742.66, + "end": 8744.42, + "probability": 0.9501 + }, + { + "start": 8744.78, + "end": 8751.8, + "probability": 0.9938 + }, + { + "start": 8752.3, + "end": 8755.52, + "probability": 0.9939 + }, + { + "start": 8756.48, + "end": 8757.08, + "probability": 0.9321 + }, + { + "start": 8757.28, + "end": 8760.12, + "probability": 0.5286 + }, + { + "start": 8760.12, + "end": 8761.24, + "probability": 0.4967 + }, + { + "start": 8761.24, + "end": 8763.82, + "probability": 0.9961 + }, + { + "start": 8764.42, + "end": 8767.06, + "probability": 0.8379 + }, + { + "start": 8767.24, + "end": 8769.38, + "probability": 0.8276 + }, + { + "start": 8770.02, + "end": 8773.32, + "probability": 0.9832 + }, + { + "start": 8773.54, + "end": 8773.84, + "probability": 0.8131 + }, + { + "start": 8774.02, + "end": 8778.46, + "probability": 0.9888 + }, + { + "start": 8778.62, + "end": 8780.52, + "probability": 0.7985 + }, + { + "start": 8780.66, + "end": 8781.26, + "probability": 0.8946 + }, + { + "start": 8781.72, + "end": 8783.6, + "probability": 0.9626 + }, + { + "start": 8784.0, + "end": 8785.04, + "probability": 0.9379 + }, + { + "start": 8785.16, + "end": 8787.24, + "probability": 0.9919 + }, + { + "start": 8787.36, + "end": 8788.74, + "probability": 0.6705 + }, + { + "start": 8789.14, + "end": 8789.16, + "probability": 0.0403 + }, + { + "start": 8789.16, + "end": 8789.28, + "probability": 0.3268 + }, + { + "start": 8789.52, + "end": 8789.64, + "probability": 0.4345 + }, + { + "start": 8790.14, + "end": 8790.92, + "probability": 0.5786 + }, + { + "start": 8790.98, + "end": 8793.5, + "probability": 0.967 + }, + { + "start": 8793.58, + "end": 8793.88, + "probability": 0.3946 + }, + { + "start": 8793.92, + "end": 8795.66, + "probability": 0.9716 + }, + { + "start": 8796.72, + "end": 8799.9, + "probability": 0.9388 + }, + { + "start": 8800.04, + "end": 8805.24, + "probability": 0.9949 + }, + { + "start": 8805.44, + "end": 8807.04, + "probability": 0.5555 + }, + { + "start": 8807.1, + "end": 8810.72, + "probability": 0.8869 + }, + { + "start": 8810.76, + "end": 8814.78, + "probability": 0.9962 + }, + { + "start": 8815.0, + "end": 8819.76, + "probability": 0.9795 + }, + { + "start": 8819.9, + "end": 8820.4, + "probability": 0.7506 + }, + { + "start": 8820.56, + "end": 8821.5, + "probability": 0.8621 + }, + { + "start": 8821.62, + "end": 8821.98, + "probability": 0.6679 + }, + { + "start": 8822.42, + "end": 8823.36, + "probability": 0.838 + }, + { + "start": 8823.48, + "end": 8824.06, + "probability": 0.7938 + }, + { + "start": 8824.4, + "end": 8826.3, + "probability": 0.9823 + }, + { + "start": 8826.7, + "end": 8829.2, + "probability": 0.8428 + }, + { + "start": 8829.74, + "end": 8831.74, + "probability": 0.8649 + }, + { + "start": 8832.7, + "end": 8834.02, + "probability": 0.9478 + }, + { + "start": 8834.28, + "end": 8835.28, + "probability": 0.7272 + }, + { + "start": 8835.48, + "end": 8837.3, + "probability": 0.834 + }, + { + "start": 8837.82, + "end": 8838.42, + "probability": 0.7123 + }, + { + "start": 8839.0, + "end": 8840.98, + "probability": 0.8711 + }, + { + "start": 8841.12, + "end": 8843.06, + "probability": 0.9004 + }, + { + "start": 8843.16, + "end": 8843.75, + "probability": 0.951 + }, + { + "start": 8843.84, + "end": 8845.62, + "probability": 0.889 + }, + { + "start": 8846.44, + "end": 8847.7, + "probability": 0.8453 + }, + { + "start": 8848.54, + "end": 8849.08, + "probability": 0.001 + }, + { + "start": 8850.56, + "end": 8853.08, + "probability": 0.5671 + }, + { + "start": 8853.26, + "end": 8856.52, + "probability": 0.6829 + }, + { + "start": 8856.96, + "end": 8857.18, + "probability": 0.4945 + }, + { + "start": 8857.36, + "end": 8858.6, + "probability": 0.9905 + }, + { + "start": 8859.88, + "end": 8860.32, + "probability": 0.9347 + }, + { + "start": 8861.36, + "end": 8863.58, + "probability": 0.8895 + }, + { + "start": 8869.26, + "end": 8869.78, + "probability": 0.5901 + }, + { + "start": 8871.7, + "end": 8873.02, + "probability": 0.6717 + }, + { + "start": 8874.06, + "end": 8877.84, + "probability": 0.9426 + }, + { + "start": 8879.26, + "end": 8883.92, + "probability": 0.8925 + }, + { + "start": 8887.0, + "end": 8888.48, + "probability": 0.8893 + }, + { + "start": 8888.54, + "end": 8889.26, + "probability": 0.5222 + }, + { + "start": 8889.28, + "end": 8893.76, + "probability": 0.8159 + }, + { + "start": 8895.34, + "end": 8897.48, + "probability": 0.5774 + }, + { + "start": 8898.18, + "end": 8900.63, + "probability": 0.9618 + }, + { + "start": 8901.16, + "end": 8905.44, + "probability": 0.9279 + }, + { + "start": 8905.86, + "end": 8907.2, + "probability": 0.9644 + }, + { + "start": 8909.01, + "end": 8909.24, + "probability": 0.1727 + }, + { + "start": 8909.5, + "end": 8910.08, + "probability": 0.6723 + }, + { + "start": 8910.56, + "end": 8911.68, + "probability": 0.4711 + }, + { + "start": 8911.68, + "end": 8912.34, + "probability": 0.4669 + }, + { + "start": 8913.28, + "end": 8917.25, + "probability": 0.9756 + }, + { + "start": 8918.56, + "end": 8920.1, + "probability": 0.9404 + }, + { + "start": 8920.58, + "end": 8926.34, + "probability": 0.939 + }, + { + "start": 8926.38, + "end": 8926.76, + "probability": 0.3103 + }, + { + "start": 8926.84, + "end": 8927.6, + "probability": 0.7754 + }, + { + "start": 8928.22, + "end": 8929.04, + "probability": 0.7382 + }, + { + "start": 8929.3, + "end": 8933.5, + "probability": 0.9383 + }, + { + "start": 8933.5, + "end": 8938.28, + "probability": 0.8974 + }, + { + "start": 8939.1, + "end": 8939.66, + "probability": 0.5422 + }, + { + "start": 8940.04, + "end": 8940.4, + "probability": 0.7562 + }, + { + "start": 8940.46, + "end": 8943.08, + "probability": 0.95 + }, + { + "start": 8944.0, + "end": 8944.58, + "probability": 0.7766 + }, + { + "start": 8944.72, + "end": 8946.24, + "probability": 0.7201 + }, + { + "start": 8946.62, + "end": 8948.0, + "probability": 0.7606 + }, + { + "start": 8948.52, + "end": 8949.26, + "probability": 0.9785 + }, + { + "start": 8949.96, + "end": 8953.02, + "probability": 0.8661 + }, + { + "start": 8954.04, + "end": 8960.02, + "probability": 0.772 + }, + { + "start": 8961.54, + "end": 8964.44, + "probability": 0.8394 + }, + { + "start": 8966.38, + "end": 8968.14, + "probability": 0.8246 + }, + { + "start": 8969.38, + "end": 8972.0, + "probability": 0.984 + }, + { + "start": 8972.08, + "end": 8973.18, + "probability": 0.6399 + }, + { + "start": 8974.08, + "end": 8976.86, + "probability": 0.971 + }, + { + "start": 8976.9, + "end": 8977.78, + "probability": 0.8161 + }, + { + "start": 8978.88, + "end": 8981.72, + "probability": 0.8796 + }, + { + "start": 8982.54, + "end": 8982.88, + "probability": 0.5838 + }, + { + "start": 8982.96, + "end": 8987.82, + "probability": 0.9841 + }, + { + "start": 8987.98, + "end": 8993.68, + "probability": 0.9537 + }, + { + "start": 8994.6, + "end": 8995.5, + "probability": 0.7089 + }, + { + "start": 8997.36, + "end": 9001.14, + "probability": 0.8779 + }, + { + "start": 9001.9, + "end": 9003.44, + "probability": 0.9824 + }, + { + "start": 9004.56, + "end": 9007.26, + "probability": 0.9973 + }, + { + "start": 9007.66, + "end": 9009.52, + "probability": 0.9332 + }, + { + "start": 9010.5, + "end": 9011.76, + "probability": 0.9968 + }, + { + "start": 9013.14, + "end": 9014.94, + "probability": 0.9824 + }, + { + "start": 9015.76, + "end": 9017.64, + "probability": 0.6524 + }, + { + "start": 9018.9, + "end": 9021.54, + "probability": 0.9965 + }, + { + "start": 9021.78, + "end": 9025.1, + "probability": 0.9839 + }, + { + "start": 9026.2, + "end": 9030.52, + "probability": 0.9588 + }, + { + "start": 9030.52, + "end": 9034.18, + "probability": 0.9817 + }, + { + "start": 9034.3, + "end": 9034.84, + "probability": 0.2628 + }, + { + "start": 9035.42, + "end": 9036.84, + "probability": 0.7379 + }, + { + "start": 9037.1, + "end": 9038.84, + "probability": 0.9691 + }, + { + "start": 9040.14, + "end": 9040.64, + "probability": 0.8343 + }, + { + "start": 9041.94, + "end": 9044.5, + "probability": 0.8139 + }, + { + "start": 9044.5, + "end": 9047.26, + "probability": 0.8757 + }, + { + "start": 9048.04, + "end": 9049.14, + "probability": 0.8624 + }, + { + "start": 9049.76, + "end": 9051.66, + "probability": 0.9871 + }, + { + "start": 9052.24, + "end": 9053.34, + "probability": 0.8319 + }, + { + "start": 9054.36, + "end": 9056.8, + "probability": 0.9385 + }, + { + "start": 9057.38, + "end": 9059.92, + "probability": 0.9956 + }, + { + "start": 9060.7, + "end": 9061.56, + "probability": 0.7333 + }, + { + "start": 9061.78, + "end": 9065.62, + "probability": 0.965 + }, + { + "start": 9065.72, + "end": 9066.26, + "probability": 0.9536 + }, + { + "start": 9066.86, + "end": 9071.48, + "probability": 0.7997 + }, + { + "start": 9071.58, + "end": 9073.11, + "probability": 0.9883 + }, + { + "start": 9073.78, + "end": 9076.04, + "probability": 0.9266 + }, + { + "start": 9076.72, + "end": 9082.1, + "probability": 0.9351 + }, + { + "start": 9082.8, + "end": 9086.82, + "probability": 0.9717 + }, + { + "start": 9087.22, + "end": 9088.82, + "probability": 0.6533 + }, + { + "start": 9088.92, + "end": 9090.44, + "probability": 0.8682 + }, + { + "start": 9090.64, + "end": 9092.96, + "probability": 0.1094 + }, + { + "start": 9095.58, + "end": 9095.68, + "probability": 0.0005 + }, + { + "start": 9098.66, + "end": 9099.16, + "probability": 0.1199 + }, + { + "start": 9099.16, + "end": 9099.16, + "probability": 0.3318 + }, + { + "start": 9099.16, + "end": 9099.18, + "probability": 0.069 + }, + { + "start": 9099.24, + "end": 9099.96, + "probability": 0.5203 + }, + { + "start": 9100.7, + "end": 9100.9, + "probability": 0.843 + }, + { + "start": 9101.36, + "end": 9102.6, + "probability": 0.7656 + }, + { + "start": 9104.24, + "end": 9104.7, + "probability": 0.7398 + }, + { + "start": 9107.82, + "end": 9109.06, + "probability": 0.7689 + }, + { + "start": 9111.88, + "end": 9113.22, + "probability": 0.8931 + }, + { + "start": 9115.88, + "end": 9116.8, + "probability": 0.6962 + }, + { + "start": 9117.58, + "end": 9118.4, + "probability": 0.7965 + }, + { + "start": 9119.64, + "end": 9120.92, + "probability": 0.9279 + }, + { + "start": 9121.46, + "end": 9122.32, + "probability": 0.9776 + }, + { + "start": 9123.26, + "end": 9124.88, + "probability": 0.9897 + }, + { + "start": 9125.5, + "end": 9130.36, + "probability": 0.9338 + }, + { + "start": 9130.92, + "end": 9133.78, + "probability": 0.9771 + }, + { + "start": 9134.72, + "end": 9136.1, + "probability": 0.8534 + }, + { + "start": 9136.92, + "end": 9139.52, + "probability": 0.9771 + }, + { + "start": 9140.1, + "end": 9141.08, + "probability": 0.7047 + }, + { + "start": 9141.3, + "end": 9148.0, + "probability": 0.9919 + }, + { + "start": 9149.27, + "end": 9151.1, + "probability": 0.5409 + }, + { + "start": 9154.1, + "end": 9159.52, + "probability": 0.9586 + }, + { + "start": 9159.62, + "end": 9160.76, + "probability": 0.9622 + }, + { + "start": 9160.9, + "end": 9162.64, + "probability": 0.8772 + }, + { + "start": 9163.26, + "end": 9165.46, + "probability": 0.7274 + }, + { + "start": 9166.66, + "end": 9167.9, + "probability": 0.8722 + }, + { + "start": 9168.26, + "end": 9169.24, + "probability": 0.5668 + }, + { + "start": 9169.24, + "end": 9171.38, + "probability": 0.7773 + }, + { + "start": 9171.58, + "end": 9172.26, + "probability": 0.7588 + }, + { + "start": 9172.5, + "end": 9177.68, + "probability": 0.9237 + }, + { + "start": 9177.8, + "end": 9179.9, + "probability": 0.8629 + }, + { + "start": 9180.76, + "end": 9183.9, + "probability": 0.9428 + }, + { + "start": 9183.97, + "end": 9188.72, + "probability": 0.9209 + }, + { + "start": 9189.36, + "end": 9191.26, + "probability": 0.9719 + }, + { + "start": 9191.4, + "end": 9192.62, + "probability": 0.7873 + }, + { + "start": 9192.8, + "end": 9193.08, + "probability": 0.6047 + }, + { + "start": 9193.12, + "end": 9194.26, + "probability": 0.9641 + }, + { + "start": 9194.8, + "end": 9196.1, + "probability": 0.9006 + }, + { + "start": 9197.04, + "end": 9199.52, + "probability": 0.9884 + }, + { + "start": 9199.52, + "end": 9202.7, + "probability": 0.8216 + }, + { + "start": 9203.04, + "end": 9207.26, + "probability": 0.998 + }, + { + "start": 9207.74, + "end": 9209.28, + "probability": 0.9599 + }, + { + "start": 9209.74, + "end": 9210.64, + "probability": 0.9454 + }, + { + "start": 9211.32, + "end": 9215.22, + "probability": 0.9862 + }, + { + "start": 9215.34, + "end": 9216.82, + "probability": 0.999 + }, + { + "start": 9217.56, + "end": 9222.56, + "probability": 0.9161 + }, + { + "start": 9223.0, + "end": 9226.26, + "probability": 0.9469 + }, + { + "start": 9229.2, + "end": 9230.44, + "probability": 0.9883 + }, + { + "start": 9230.64, + "end": 9231.44, + "probability": 0.6739 + }, + { + "start": 9231.62, + "end": 9231.88, + "probability": 0.4969 + }, + { + "start": 9232.04, + "end": 9232.64, + "probability": 0.637 + }, + { + "start": 9232.68, + "end": 9236.2, + "probability": 0.8478 + }, + { + "start": 9236.4, + "end": 9236.74, + "probability": 0.6549 + }, + { + "start": 9236.96, + "end": 9238.32, + "probability": 0.9871 + }, + { + "start": 9238.34, + "end": 9238.9, + "probability": 0.8793 + }, + { + "start": 9239.02, + "end": 9241.17, + "probability": 0.9906 + }, + { + "start": 9241.32, + "end": 9242.18, + "probability": 0.8776 + }, + { + "start": 9242.74, + "end": 9244.2, + "probability": 0.9792 + }, + { + "start": 9244.32, + "end": 9244.68, + "probability": 0.7712 + }, + { + "start": 9244.8, + "end": 9245.72, + "probability": 0.7803 + }, + { + "start": 9245.84, + "end": 9247.6, + "probability": 0.8379 + }, + { + "start": 9247.72, + "end": 9248.48, + "probability": 0.8811 + }, + { + "start": 9248.98, + "end": 9251.06, + "probability": 0.7745 + }, + { + "start": 9251.14, + "end": 9255.56, + "probability": 0.9749 + }, + { + "start": 9255.68, + "end": 9256.38, + "probability": 0.8269 + }, + { + "start": 9256.56, + "end": 9257.1, + "probability": 0.6803 + }, + { + "start": 9257.66, + "end": 9262.0, + "probability": 0.9959 + }, + { + "start": 9262.08, + "end": 9264.38, + "probability": 0.872 + }, + { + "start": 9264.96, + "end": 9265.92, + "probability": 0.9148 + }, + { + "start": 9265.94, + "end": 9268.4, + "probability": 0.9669 + }, + { + "start": 9268.66, + "end": 9272.46, + "probability": 0.999 + }, + { + "start": 9272.68, + "end": 9272.72, + "probability": 0.1449 + }, + { + "start": 9273.26, + "end": 9275.16, + "probability": 0.9835 + }, + { + "start": 9275.34, + "end": 9276.24, + "probability": 0.8711 + }, + { + "start": 9276.34, + "end": 9277.32, + "probability": 0.916 + }, + { + "start": 9277.44, + "end": 9278.46, + "probability": 0.9459 + }, + { + "start": 9279.42, + "end": 9281.64, + "probability": 0.9754 + }, + { + "start": 9281.72, + "end": 9284.52, + "probability": 0.6954 + }, + { + "start": 9284.62, + "end": 9288.94, + "probability": 0.6755 + }, + { + "start": 9288.94, + "end": 9290.96, + "probability": 0.7706 + }, + { + "start": 9291.4, + "end": 9297.7, + "probability": 0.7296 + }, + { + "start": 9298.04, + "end": 9299.28, + "probability": 0.8816 + }, + { + "start": 9299.36, + "end": 9300.44, + "probability": 0.7105 + }, + { + "start": 9300.66, + "end": 9304.34, + "probability": 0.9297 + }, + { + "start": 9304.66, + "end": 9305.76, + "probability": 0.4941 + }, + { + "start": 9305.82, + "end": 9306.8, + "probability": 0.7444 + }, + { + "start": 9307.44, + "end": 9307.92, + "probability": 0.1318 + }, + { + "start": 9309.08, + "end": 9312.16, + "probability": 0.858 + }, + { + "start": 9312.4, + "end": 9314.42, + "probability": 0.9956 + }, + { + "start": 9314.6, + "end": 9315.94, + "probability": 0.5214 + }, + { + "start": 9316.6, + "end": 9317.7, + "probability": 0.9883 + }, + { + "start": 9318.4, + "end": 9318.74, + "probability": 0.0362 + }, + { + "start": 9318.74, + "end": 9319.36, + "probability": 0.3556 + }, + { + "start": 9319.38, + "end": 9320.04, + "probability": 0.539 + }, + { + "start": 9320.14, + "end": 9320.58, + "probability": 0.7766 + }, + { + "start": 9320.66, + "end": 9321.2, + "probability": 0.6779 + }, + { + "start": 9321.3, + "end": 9321.64, + "probability": 0.7119 + }, + { + "start": 9322.42, + "end": 9322.62, + "probability": 0.4498 + }, + { + "start": 9322.68, + "end": 9326.42, + "probability": 0.9964 + }, + { + "start": 9327.12, + "end": 9332.36, + "probability": 0.8874 + }, + { + "start": 9333.14, + "end": 9335.35, + "probability": 0.9099 + }, + { + "start": 9335.36, + "end": 9336.08, + "probability": 0.8788 + }, + { + "start": 9336.08, + "end": 9338.22, + "probability": 0.7064 + }, + { + "start": 9338.68, + "end": 9339.65, + "probability": 0.8361 + }, + { + "start": 9340.68, + "end": 9343.4, + "probability": 0.9951 + }, + { + "start": 9343.52, + "end": 9344.44, + "probability": 0.5388 + }, + { + "start": 9344.48, + "end": 9344.9, + "probability": 0.7733 + }, + { + "start": 9345.08, + "end": 9345.38, + "probability": 0.7989 + }, + { + "start": 9345.54, + "end": 9346.24, + "probability": 0.9374 + }, + { + "start": 9349.28, + "end": 9350.98, + "probability": 0.2005 + }, + { + "start": 9358.36, + "end": 9360.34, + "probability": 0.1515 + }, + { + "start": 9360.34, + "end": 9360.66, + "probability": 0.0338 + }, + { + "start": 9360.96, + "end": 9361.2, + "probability": 0.0294 + }, + { + "start": 9361.2, + "end": 9361.2, + "probability": 0.0501 + }, + { + "start": 9361.38, + "end": 9364.9, + "probability": 0.6543 + }, + { + "start": 9365.06, + "end": 9367.72, + "probability": 0.7116 + }, + { + "start": 9367.76, + "end": 9371.38, + "probability": 0.7832 + }, + { + "start": 9372.28, + "end": 9372.9, + "probability": 0.3953 + }, + { + "start": 9373.46, + "end": 9374.46, + "probability": 0.0835 + }, + { + "start": 9374.52, + "end": 9375.48, + "probability": 0.5098 + }, + { + "start": 9375.74, + "end": 9376.0, + "probability": 0.0442 + }, + { + "start": 9376.32, + "end": 9376.96, + "probability": 0.7671 + }, + { + "start": 9376.96, + "end": 9378.5, + "probability": 0.6349 + }, + { + "start": 9379.02, + "end": 9379.32, + "probability": 0.906 + }, + { + "start": 9379.86, + "end": 9380.68, + "probability": 0.5449 + }, + { + "start": 9380.7, + "end": 9382.34, + "probability": 0.6949 + }, + { + "start": 9383.34, + "end": 9384.76, + "probability": 0.8667 + }, + { + "start": 9385.22, + "end": 9388.02, + "probability": 0.8701 + }, + { + "start": 9388.18, + "end": 9390.96, + "probability": 0.9612 + }, + { + "start": 9392.28, + "end": 9393.68, + "probability": 0.8417 + }, + { + "start": 9393.74, + "end": 9394.65, + "probability": 0.9734 + }, + { + "start": 9395.24, + "end": 9397.72, + "probability": 0.9423 + }, + { + "start": 9398.32, + "end": 9400.38, + "probability": 0.1435 + }, + { + "start": 9400.38, + "end": 9405.02, + "probability": 0.7187 + }, + { + "start": 9405.1, + "end": 9406.4, + "probability": 0.9312 + }, + { + "start": 9406.84, + "end": 9408.2, + "probability": 0.8971 + }, + { + "start": 9408.32, + "end": 9411.6, + "probability": 0.9695 + }, + { + "start": 9411.72, + "end": 9412.76, + "probability": 0.4961 + }, + { + "start": 9413.34, + "end": 9414.98, + "probability": 0.9733 + }, + { + "start": 9415.98, + "end": 9419.14, + "probability": 0.7551 + }, + { + "start": 9419.18, + "end": 9419.82, + "probability": 0.4419 + }, + { + "start": 9419.9, + "end": 9420.18, + "probability": 0.9464 + }, + { + "start": 9430.32, + "end": 9431.42, + "probability": 0.8244 + }, + { + "start": 9432.18, + "end": 9434.18, + "probability": 0.6234 + }, + { + "start": 9435.22, + "end": 9439.84, + "probability": 0.9424 + }, + { + "start": 9440.88, + "end": 9442.92, + "probability": 0.9539 + }, + { + "start": 9443.96, + "end": 9445.78, + "probability": 0.9954 + }, + { + "start": 9446.28, + "end": 9449.9, + "probability": 0.9897 + }, + { + "start": 9450.04, + "end": 9451.68, + "probability": 0.6571 + }, + { + "start": 9452.28, + "end": 9456.83, + "probability": 0.9927 + }, + { + "start": 9457.34, + "end": 9462.18, + "probability": 0.9933 + }, + { + "start": 9463.12, + "end": 9465.04, + "probability": 0.9888 + }, + { + "start": 9465.62, + "end": 9467.72, + "probability": 0.9556 + }, + { + "start": 9468.24, + "end": 9474.39, + "probability": 0.9934 + }, + { + "start": 9474.7, + "end": 9479.66, + "probability": 0.9811 + }, + { + "start": 9481.14, + "end": 9482.58, + "probability": 0.7023 + }, + { + "start": 9483.16, + "end": 9485.3, + "probability": 0.9851 + }, + { + "start": 9486.32, + "end": 9487.96, + "probability": 0.9949 + }, + { + "start": 9488.6, + "end": 9493.76, + "probability": 0.9854 + }, + { + "start": 9494.42, + "end": 9495.06, + "probability": 0.9024 + }, + { + "start": 9496.28, + "end": 9497.44, + "probability": 0.809 + }, + { + "start": 9497.5, + "end": 9498.16, + "probability": 0.8615 + }, + { + "start": 9498.58, + "end": 9502.42, + "probability": 0.7546 + }, + { + "start": 9503.52, + "end": 9508.98, + "probability": 0.981 + }, + { + "start": 9509.6, + "end": 9510.7, + "probability": 0.9285 + }, + { + "start": 9511.6, + "end": 9514.88, + "probability": 0.8829 + }, + { + "start": 9515.64, + "end": 9519.2, + "probability": 0.9496 + }, + { + "start": 9519.38, + "end": 9520.58, + "probability": 0.8773 + }, + { + "start": 9521.0, + "end": 9522.78, + "probability": 0.9557 + }, + { + "start": 9524.04, + "end": 9528.16, + "probability": 0.7366 + }, + { + "start": 9528.16, + "end": 9531.24, + "probability": 0.9878 + }, + { + "start": 9531.9, + "end": 9534.52, + "probability": 0.9863 + }, + { + "start": 9535.2, + "end": 9535.82, + "probability": 0.9177 + }, + { + "start": 9536.38, + "end": 9537.36, + "probability": 0.8894 + }, + { + "start": 9537.64, + "end": 9539.18, + "probability": 0.9268 + }, + { + "start": 9539.38, + "end": 9540.64, + "probability": 0.6721 + }, + { + "start": 9541.3, + "end": 9541.84, + "probability": 0.6793 + }, + { + "start": 9541.96, + "end": 9546.92, + "probability": 0.9492 + }, + { + "start": 9548.4, + "end": 9550.94, + "probability": 0.9437 + }, + { + "start": 9552.44, + "end": 9556.3, + "probability": 0.9946 + }, + { + "start": 9557.14, + "end": 9558.68, + "probability": 0.9707 + }, + { + "start": 9560.42, + "end": 9562.28, + "probability": 0.9714 + }, + { + "start": 9562.94, + "end": 9564.44, + "probability": 0.9923 + }, + { + "start": 9564.6, + "end": 9566.06, + "probability": 0.5676 + }, + { + "start": 9566.86, + "end": 9567.26, + "probability": 0.686 + }, + { + "start": 9567.78, + "end": 9573.7, + "probability": 0.9667 + }, + { + "start": 9573.86, + "end": 9580.36, + "probability": 0.9976 + }, + { + "start": 9580.84, + "end": 9583.66, + "probability": 0.8347 + }, + { + "start": 9584.48, + "end": 9586.22, + "probability": 0.9957 + }, + { + "start": 9586.92, + "end": 9587.9, + "probability": 0.9817 + }, + { + "start": 9589.88, + "end": 9590.44, + "probability": 0.1217 + }, + { + "start": 9590.94, + "end": 9595.18, + "probability": 0.9807 + }, + { + "start": 9595.58, + "end": 9597.02, + "probability": 0.5661 + }, + { + "start": 9597.46, + "end": 9600.38, + "probability": 0.9275 + }, + { + "start": 9600.42, + "end": 9601.26, + "probability": 0.8832 + }, + { + "start": 9601.86, + "end": 9602.74, + "probability": 0.8008 + }, + { + "start": 9604.28, + "end": 9604.96, + "probability": 0.8884 + }, + { + "start": 9605.62, + "end": 9607.7, + "probability": 0.9694 + }, + { + "start": 9608.68, + "end": 9610.64, + "probability": 0.9073 + }, + { + "start": 9611.18, + "end": 9614.56, + "probability": 0.9902 + }, + { + "start": 9615.37, + "end": 9620.24, + "probability": 0.9561 + }, + { + "start": 9621.14, + "end": 9622.22, + "probability": 0.9696 + }, + { + "start": 9622.84, + "end": 9623.84, + "probability": 0.9929 + }, + { + "start": 9626.68, + "end": 9627.32, + "probability": 0.1201 + }, + { + "start": 9627.32, + "end": 9628.24, + "probability": 0.6842 + }, + { + "start": 9628.38, + "end": 9630.82, + "probability": 0.971 + }, + { + "start": 9631.52, + "end": 9632.96, + "probability": 0.9965 + }, + { + "start": 9633.66, + "end": 9634.7, + "probability": 0.8301 + }, + { + "start": 9635.7, + "end": 9637.5, + "probability": 0.9963 + }, + { + "start": 9638.2, + "end": 9640.34, + "probability": 0.9847 + }, + { + "start": 9640.38, + "end": 9642.02, + "probability": 0.9833 + }, + { + "start": 9642.28, + "end": 9642.99, + "probability": 0.0533 + }, + { + "start": 9643.18, + "end": 9644.46, + "probability": 0.9918 + }, + { + "start": 9644.64, + "end": 9646.78, + "probability": 0.9573 + }, + { + "start": 9647.24, + "end": 9649.26, + "probability": 0.8638 + }, + { + "start": 9649.38, + "end": 9652.48, + "probability": 0.9845 + }, + { + "start": 9652.5, + "end": 9652.84, + "probability": 0.8649 + }, + { + "start": 9653.0, + "end": 9653.99, + "probability": 0.1113 + }, + { + "start": 9654.16, + "end": 9654.76, + "probability": 0.7187 + }, + { + "start": 9655.02, + "end": 9655.64, + "probability": 0.0848 + }, + { + "start": 9655.82, + "end": 9657.12, + "probability": 0.6368 + }, + { + "start": 9658.62, + "end": 9661.28, + "probability": 0.9398 + }, + { + "start": 9662.06, + "end": 9663.8, + "probability": 0.986 + }, + { + "start": 9664.72, + "end": 9666.22, + "probability": 0.6854 + }, + { + "start": 9666.98, + "end": 9667.4, + "probability": 0.5092 + }, + { + "start": 9667.56, + "end": 9672.52, + "probability": 0.9653 + }, + { + "start": 9673.08, + "end": 9673.56, + "probability": 0.6016 + }, + { + "start": 9675.24, + "end": 9676.38, + "probability": 0.901 + }, + { + "start": 9676.6, + "end": 9677.04, + "probability": 0.7578 + }, + { + "start": 9677.3, + "end": 9679.1, + "probability": 0.9624 + }, + { + "start": 9679.76, + "end": 9682.86, + "probability": 0.8572 + }, + { + "start": 9683.24, + "end": 9684.18, + "probability": 0.0057 + }, + { + "start": 9684.22, + "end": 9684.52, + "probability": 0.4412 + }, + { + "start": 9685.12, + "end": 9685.82, + "probability": 0.9703 + }, + { + "start": 9686.56, + "end": 9688.62, + "probability": 0.0381 + }, + { + "start": 9689.26, + "end": 9692.34, + "probability": 0.8569 + }, + { + "start": 9692.34, + "end": 9693.14, + "probability": 0.7246 + }, + { + "start": 9693.56, + "end": 9695.4, + "probability": 0.8285 + }, + { + "start": 9695.54, + "end": 9695.68, + "probability": 0.7776 + }, + { + "start": 9695.72, + "end": 9698.08, + "probability": 0.9966 + }, + { + "start": 9699.42, + "end": 9700.87, + "probability": 0.972 + }, + { + "start": 9701.06, + "end": 9701.46, + "probability": 0.4896 + }, + { + "start": 9701.56, + "end": 9702.08, + "probability": 0.9202 + }, + { + "start": 9702.1, + "end": 9702.17, + "probability": 0.6796 + }, + { + "start": 9703.14, + "end": 9704.54, + "probability": 0.7149 + }, + { + "start": 9704.58, + "end": 9706.38, + "probability": 0.9315 + }, + { + "start": 9706.44, + "end": 9709.72, + "probability": 0.8611 + }, + { + "start": 9710.4, + "end": 9711.96, + "probability": 0.8958 + }, + { + "start": 9712.16, + "end": 9714.16, + "probability": 0.816 + }, + { + "start": 9714.22, + "end": 9716.66, + "probability": 0.8452 + }, + { + "start": 9716.72, + "end": 9717.18, + "probability": 0.3308 + }, + { + "start": 9717.28, + "end": 9719.4, + "probability": 0.9983 + }, + { + "start": 9719.86, + "end": 9720.76, + "probability": 0.9355 + }, + { + "start": 9720.88, + "end": 9722.16, + "probability": 0.9455 + }, + { + "start": 9722.56, + "end": 9726.38, + "probability": 0.9785 + }, + { + "start": 9726.92, + "end": 9728.84, + "probability": 0.6702 + }, + { + "start": 9729.0, + "end": 9729.36, + "probability": 0.5176 + }, + { + "start": 9730.06, + "end": 9731.02, + "probability": 0.9912 + }, + { + "start": 9733.64, + "end": 9734.96, + "probability": 0.5955 + }, + { + "start": 9734.96, + "end": 9734.96, + "probability": 0.9624 + }, + { + "start": 9735.16, + "end": 9737.0, + "probability": 0.8652 + }, + { + "start": 9737.42, + "end": 9738.78, + "probability": 0.2812 + }, + { + "start": 9740.02, + "end": 9741.02, + "probability": 0.1957 + }, + { + "start": 9741.38, + "end": 9741.76, + "probability": 0.2071 + }, + { + "start": 9741.76, + "end": 9742.72, + "probability": 0.832 + }, + { + "start": 9743.4, + "end": 9744.94, + "probability": 0.9634 + }, + { + "start": 9745.24, + "end": 9747.3, + "probability": 0.6559 + }, + { + "start": 9747.84, + "end": 9749.66, + "probability": 0.8468 + }, + { + "start": 9750.1, + "end": 9752.32, + "probability": 0.9719 + }, + { + "start": 9752.68, + "end": 9753.46, + "probability": 0.8954 + }, + { + "start": 9753.58, + "end": 9755.5, + "probability": 0.9419 + }, + { + "start": 9756.14, + "end": 9757.38, + "probability": 0.7993 + }, + { + "start": 9757.92, + "end": 9759.38, + "probability": 0.8252 + }, + { + "start": 9760.32, + "end": 9763.56, + "probability": 0.8797 + }, + { + "start": 9763.62, + "end": 9764.56, + "probability": 0.9568 + }, + { + "start": 9764.68, + "end": 9765.86, + "probability": 0.9205 + }, + { + "start": 9766.34, + "end": 9768.42, + "probability": 0.7386 + }, + { + "start": 9769.28, + "end": 9770.48, + "probability": 0.2236 + }, + { + "start": 9771.02, + "end": 9771.82, + "probability": 0.6484 + }, + { + "start": 9772.36, + "end": 9773.42, + "probability": 0.8184 + }, + { + "start": 9773.74, + "end": 9774.34, + "probability": 0.9585 + }, + { + "start": 9774.8, + "end": 9775.56, + "probability": 0.8967 + }, + { + "start": 9775.84, + "end": 9778.22, + "probability": 0.9225 + }, + { + "start": 9778.76, + "end": 9780.77, + "probability": 0.4077 + }, + { + "start": 9781.68, + "end": 9783.04, + "probability": 0.7216 + }, + { + "start": 9785.28, + "end": 9786.05, + "probability": 0.9927 + }, + { + "start": 9786.28, + "end": 9787.72, + "probability": 0.6396 + }, + { + "start": 9787.8, + "end": 9789.38, + "probability": 0.822 + }, + { + "start": 9789.46, + "end": 9790.26, + "probability": 0.9966 + }, + { + "start": 9790.86, + "end": 9791.92, + "probability": 0.8685 + }, + { + "start": 9791.98, + "end": 9792.34, + "probability": 0.8096 + }, + { + "start": 9793.06, + "end": 9795.46, + "probability": 0.9196 + }, + { + "start": 9795.86, + "end": 9796.9, + "probability": 0.8765 + }, + { + "start": 9800.38, + "end": 9802.0, + "probability": 0.0285 + }, + { + "start": 9802.72, + "end": 9804.86, + "probability": 0.1204 + }, + { + "start": 9805.26, + "end": 9806.38, + "probability": 0.0182 + }, + { + "start": 9806.38, + "end": 9806.44, + "probability": 0.1809 + }, + { + "start": 9806.44, + "end": 9806.88, + "probability": 0.4846 + }, + { + "start": 9807.56, + "end": 9808.42, + "probability": 0.5187 + }, + { + "start": 9808.56, + "end": 9809.48, + "probability": 0.3198 + }, + { + "start": 9813.14, + "end": 9814.83, + "probability": 0.2886 + }, + { + "start": 9816.3, + "end": 9820.1, + "probability": 0.8118 + }, + { + "start": 9820.96, + "end": 9822.1, + "probability": 0.9409 + }, + { + "start": 9823.22, + "end": 9825.48, + "probability": 0.7097 + }, + { + "start": 9825.56, + "end": 9826.34, + "probability": 0.6534 + }, + { + "start": 9828.34, + "end": 9828.68, + "probability": 0.0663 + }, + { + "start": 9828.68, + "end": 9831.32, + "probability": 0.8772 + }, + { + "start": 9831.38, + "end": 9832.92, + "probability": 0.9734 + }, + { + "start": 9833.38, + "end": 9834.0, + "probability": 0.7217 + }, + { + "start": 9834.12, + "end": 9834.67, + "probability": 0.9297 + }, + { + "start": 9834.98, + "end": 9835.82, + "probability": 0.9794 + }, + { + "start": 9835.92, + "end": 9837.98, + "probability": 0.9954 + }, + { + "start": 9837.98, + "end": 9841.12, + "probability": 0.9966 + }, + { + "start": 9841.68, + "end": 9843.08, + "probability": 0.7676 + }, + { + "start": 9843.16, + "end": 9845.18, + "probability": 0.7521 + }, + { + "start": 9845.54, + "end": 9847.14, + "probability": 0.9099 + }, + { + "start": 9847.5, + "end": 9847.9, + "probability": 0.7968 + }, + { + "start": 9847.98, + "end": 9851.06, + "probability": 0.9116 + }, + { + "start": 9851.3, + "end": 9851.9, + "probability": 0.9865 + }, + { + "start": 9851.96, + "end": 9853.54, + "probability": 0.9623 + }, + { + "start": 9854.24, + "end": 9857.14, + "probability": 0.9385 + }, + { + "start": 9857.28, + "end": 9858.04, + "probability": 0.9025 + }, + { + "start": 9858.08, + "end": 9859.64, + "probability": 0.9937 + }, + { + "start": 9859.9, + "end": 9860.26, + "probability": 0.6038 + }, + { + "start": 9860.82, + "end": 9862.72, + "probability": 0.6713 + }, + { + "start": 9863.3, + "end": 9863.72, + "probability": 0.6998 + }, + { + "start": 9863.8, + "end": 9865.38, + "probability": 0.9446 + }, + { + "start": 9865.72, + "end": 9866.42, + "probability": 0.9448 + }, + { + "start": 9866.48, + "end": 9868.9, + "probability": 0.9937 + }, + { + "start": 9869.4, + "end": 9871.6, + "probability": 0.7764 + }, + { + "start": 9873.18, + "end": 9874.14, + "probability": 0.8628 + }, + { + "start": 9874.32, + "end": 9875.02, + "probability": 0.875 + }, + { + "start": 9875.74, + "end": 9877.46, + "probability": 0.9797 + }, + { + "start": 9877.92, + "end": 9882.5, + "probability": 0.9831 + }, + { + "start": 9883.34, + "end": 9885.08, + "probability": 0.9083 + }, + { + "start": 9885.78, + "end": 9886.26, + "probability": 0.8584 + }, + { + "start": 9886.46, + "end": 9886.72, + "probability": 0.6527 + }, + { + "start": 9887.02, + "end": 9887.61, + "probability": 0.7328 + }, + { + "start": 9888.0, + "end": 9890.44, + "probability": 0.6369 + }, + { + "start": 9890.5, + "end": 9893.86, + "probability": 0.9873 + }, + { + "start": 9893.92, + "end": 9894.5, + "probability": 0.9187 + }, + { + "start": 9894.6, + "end": 9896.04, + "probability": 0.9962 + }, + { + "start": 9896.7, + "end": 9898.12, + "probability": 0.7009 + }, + { + "start": 9898.3, + "end": 9899.8, + "probability": 0.7757 + }, + { + "start": 9900.38, + "end": 9901.07, + "probability": 0.9946 + }, + { + "start": 9901.88, + "end": 9902.6, + "probability": 0.8655 + }, + { + "start": 9902.68, + "end": 9907.26, + "probability": 0.9398 + }, + { + "start": 9908.26, + "end": 9912.46, + "probability": 0.9941 + }, + { + "start": 9912.76, + "end": 9914.84, + "probability": 0.5376 + }, + { + "start": 9914.88, + "end": 9916.22, + "probability": 0.9443 + }, + { + "start": 9916.98, + "end": 9919.48, + "probability": 0.8918 + }, + { + "start": 9920.06, + "end": 9921.22, + "probability": 0.3537 + }, + { + "start": 9921.6, + "end": 9922.3, + "probability": 0.9018 + }, + { + "start": 9922.72, + "end": 9923.78, + "probability": 0.9567 + }, + { + "start": 9923.88, + "end": 9924.56, + "probability": 0.6598 + }, + { + "start": 9924.98, + "end": 9925.92, + "probability": 0.9888 + }, + { + "start": 9926.56, + "end": 9928.12, + "probability": 0.8787 + }, + { + "start": 9928.38, + "end": 9929.18, + "probability": 0.7759 + }, + { + "start": 9929.62, + "end": 9930.6, + "probability": 0.9864 + }, + { + "start": 9930.66, + "end": 9931.52, + "probability": 0.9636 + }, + { + "start": 9931.9, + "end": 9933.56, + "probability": 0.8854 + }, + { + "start": 9933.92, + "end": 9938.1, + "probability": 0.9158 + }, + { + "start": 9938.85, + "end": 9941.66, + "probability": 0.9118 + }, + { + "start": 9942.32, + "end": 9942.64, + "probability": 0.7363 + }, + { + "start": 9943.02, + "end": 9946.16, + "probability": 0.9342 + }, + { + "start": 9948.81, + "end": 9949.56, + "probability": 0.1046 + }, + { + "start": 9949.56, + "end": 9950.68, + "probability": 0.2203 + }, + { + "start": 9950.68, + "end": 9954.98, + "probability": 0.9146 + }, + { + "start": 9955.42, + "end": 9956.06, + "probability": 0.9027 + }, + { + "start": 9956.16, + "end": 9960.82, + "probability": 0.9902 + }, + { + "start": 9961.2, + "end": 9963.91, + "probability": 0.6686 + }, + { + "start": 9964.38, + "end": 9968.2, + "probability": 0.9753 + }, + { + "start": 9968.64, + "end": 9970.12, + "probability": 0.9422 + }, + { + "start": 9970.4, + "end": 9972.12, + "probability": 0.6839 + }, + { + "start": 9972.18, + "end": 9974.92, + "probability": 0.9626 + }, + { + "start": 9975.18, + "end": 9977.94, + "probability": 0.9001 + }, + { + "start": 9978.0, + "end": 9979.48, + "probability": 0.8183 + }, + { + "start": 9980.02, + "end": 9981.14, + "probability": 0.9001 + }, + { + "start": 9981.58, + "end": 9983.0, + "probability": 0.7446 + }, + { + "start": 9983.1, + "end": 9983.54, + "probability": 0.754 + }, + { + "start": 9983.6, + "end": 9984.32, + "probability": 0.8798 + }, + { + "start": 9984.4, + "end": 9985.45, + "probability": 0.959 + }, + { + "start": 9986.4, + "end": 9986.68, + "probability": 0.8391 + }, + { + "start": 9987.04, + "end": 9988.8, + "probability": 0.9535 + }, + { + "start": 9989.2, + "end": 9990.98, + "probability": 0.624 + }, + { + "start": 9991.58, + "end": 9994.92, + "probability": 0.9656 + }, + { + "start": 9995.7, + "end": 9997.0, + "probability": 0.6319 + }, + { + "start": 9997.16, + "end": 9997.9, + "probability": 0.9733 + }, + { + "start": 9998.26, + "end": 9999.08, + "probability": 0.8037 + }, + { + "start": 9999.48, + "end": 10000.6, + "probability": 0.8364 + }, + { + "start": 10001.28, + "end": 10002.54, + "probability": 0.8948 + }, + { + "start": 10003.02, + "end": 10003.12, + "probability": 0.3969 + }, + { + "start": 10003.58, + "end": 10006.88, + "probability": 0.9668 + }, + { + "start": 10006.88, + "end": 10007.28, + "probability": 0.7324 + }, + { + "start": 10007.64, + "end": 10008.62, + "probability": 0.657 + }, + { + "start": 10008.62, + "end": 10009.68, + "probability": 0.8962 + }, + { + "start": 10011.18, + "end": 10013.0, + "probability": 0.9433 + }, + { + "start": 10013.4, + "end": 10015.02, + "probability": 0.9607 + }, + { + "start": 10015.72, + "end": 10017.04, + "probability": 0.8445 + }, + { + "start": 10017.16, + "end": 10017.52, + "probability": 0.5073 + }, + { + "start": 10018.92, + "end": 10020.2, + "probability": 0.8476 + }, + { + "start": 10023.68, + "end": 10025.46, + "probability": 0.9808 + }, + { + "start": 10026.57, + "end": 10027.68, + "probability": 0.9497 + }, + { + "start": 10028.2, + "end": 10030.96, + "probability": 0.7309 + }, + { + "start": 10031.94, + "end": 10033.18, + "probability": 0.9624 + }, + { + "start": 10033.3, + "end": 10033.58, + "probability": 0.5571 + }, + { + "start": 10033.6, + "end": 10035.04, + "probability": 0.7302 + }, + { + "start": 10037.17, + "end": 10039.78, + "probability": 0.999 + }, + { + "start": 10040.52, + "end": 10045.66, + "probability": 0.9638 + }, + { + "start": 10046.18, + "end": 10047.58, + "probability": 0.951 + }, + { + "start": 10048.02, + "end": 10049.34, + "probability": 0.9987 + }, + { + "start": 10049.46, + "end": 10050.3, + "probability": 0.8195 + }, + { + "start": 10050.9, + "end": 10052.06, + "probability": 0.9941 + }, + { + "start": 10052.32, + "end": 10053.28, + "probability": 0.7798 + }, + { + "start": 10053.36, + "end": 10055.26, + "probability": 0.6162 + }, + { + "start": 10056.22, + "end": 10058.82, + "probability": 0.0468 + }, + { + "start": 10058.88, + "end": 10059.14, + "probability": 0.061 + }, + { + "start": 10059.36, + "end": 10059.36, + "probability": 0.2028 + }, + { + "start": 10059.52, + "end": 10063.0, + "probability": 0.963 + }, + { + "start": 10063.84, + "end": 10065.98, + "probability": 0.9969 + }, + { + "start": 10066.44, + "end": 10067.32, + "probability": 0.6643 + }, + { + "start": 10067.34, + "end": 10068.12, + "probability": 0.5202 + }, + { + "start": 10068.9, + "end": 10069.48, + "probability": 0.5488 + }, + { + "start": 10069.62, + "end": 10071.56, + "probability": 0.7458 + }, + { + "start": 10071.78, + "end": 10073.98, + "probability": 0.9009 + }, + { + "start": 10073.98, + "end": 10074.46, + "probability": 0.3665 + }, + { + "start": 10075.3, + "end": 10076.5, + "probability": 0.4765 + }, + { + "start": 10076.92, + "end": 10078.72, + "probability": 0.9989 + }, + { + "start": 10079.12, + "end": 10082.02, + "probability": 0.9905 + }, + { + "start": 10082.42, + "end": 10082.74, + "probability": 0.8122 + }, + { + "start": 10082.8, + "end": 10083.4, + "probability": 0.8919 + }, + { + "start": 10083.8, + "end": 10085.4, + "probability": 0.973 + }, + { + "start": 10085.6, + "end": 10087.6, + "probability": 0.7625 + }, + { + "start": 10087.6, + "end": 10088.08, + "probability": 0.6247 + }, + { + "start": 10088.46, + "end": 10089.44, + "probability": 0.4312 + }, + { + "start": 10089.76, + "end": 10091.04, + "probability": 0.9879 + }, + { + "start": 10091.52, + "end": 10092.58, + "probability": 0.0278 + }, + { + "start": 10092.9, + "end": 10093.4, + "probability": 0.7724 + }, + { + "start": 10093.66, + "end": 10094.74, + "probability": 0.9092 + }, + { + "start": 10094.86, + "end": 10096.06, + "probability": 0.9849 + }, + { + "start": 10096.08, + "end": 10098.43, + "probability": 0.8957 + }, + { + "start": 10098.54, + "end": 10098.88, + "probability": 0.0446 + }, + { + "start": 10098.88, + "end": 10100.06, + "probability": 0.9656 + }, + { + "start": 10100.16, + "end": 10101.88, + "probability": 0.9968 + }, + { + "start": 10102.74, + "end": 10108.14, + "probability": 0.9916 + }, + { + "start": 10108.92, + "end": 10112.1, + "probability": 0.984 + }, + { + "start": 10112.64, + "end": 10114.6, + "probability": 0.9973 + }, + { + "start": 10115.84, + "end": 10115.96, + "probability": 0.0121 + }, + { + "start": 10116.08, + "end": 10116.44, + "probability": 0.8363 + }, + { + "start": 10116.8, + "end": 10117.9, + "probability": 0.7648 + }, + { + "start": 10118.48, + "end": 10121.81, + "probability": 0.7785 + }, + { + "start": 10122.78, + "end": 10124.04, + "probability": 0.9347 + }, + { + "start": 10124.36, + "end": 10127.38, + "probability": 0.9889 + }, + { + "start": 10127.52, + "end": 10128.37, + "probability": 0.7239 + }, + { + "start": 10128.96, + "end": 10129.02, + "probability": 0.438 + }, + { + "start": 10129.1, + "end": 10130.22, + "probability": 0.9023 + }, + { + "start": 10130.7, + "end": 10132.28, + "probability": 0.9961 + }, + { + "start": 10132.8, + "end": 10133.8, + "probability": 0.9658 + }, + { + "start": 10134.32, + "end": 10135.84, + "probability": 0.9525 + }, + { + "start": 10136.62, + "end": 10138.36, + "probability": 0.957 + }, + { + "start": 10138.96, + "end": 10142.12, + "probability": 0.9919 + }, + { + "start": 10142.54, + "end": 10146.02, + "probability": 0.9951 + }, + { + "start": 10146.1, + "end": 10147.62, + "probability": 0.8569 + }, + { + "start": 10148.26, + "end": 10150.3, + "probability": 0.9596 + }, + { + "start": 10150.84, + "end": 10151.6, + "probability": 0.9801 + }, + { + "start": 10151.84, + "end": 10154.54, + "probability": 0.7955 + }, + { + "start": 10155.86, + "end": 10162.44, + "probability": 0.9862 + }, + { + "start": 10162.44, + "end": 10166.4, + "probability": 0.9751 + }, + { + "start": 10167.14, + "end": 10169.5, + "probability": 0.9819 + }, + { + "start": 10169.5, + "end": 10172.34, + "probability": 0.9753 + }, + { + "start": 10173.24, + "end": 10176.08, + "probability": 0.9958 + }, + { + "start": 10176.88, + "end": 10180.51, + "probability": 0.9956 + }, + { + "start": 10183.76, + "end": 10186.02, + "probability": 0.9565 + }, + { + "start": 10186.04, + "end": 10190.18, + "probability": 0.9968 + }, + { + "start": 10190.66, + "end": 10199.96, + "probability": 0.9611 + }, + { + "start": 10199.96, + "end": 10204.36, + "probability": 0.9801 + }, + { + "start": 10205.24, + "end": 10208.26, + "probability": 0.978 + }, + { + "start": 10208.26, + "end": 10212.87, + "probability": 0.9203 + }, + { + "start": 10213.26, + "end": 10214.14, + "probability": 0.8765 + }, + { + "start": 10214.28, + "end": 10218.14, + "probability": 0.9228 + }, + { + "start": 10218.3, + "end": 10223.26, + "probability": 0.9965 + }, + { + "start": 10223.26, + "end": 10228.24, + "probability": 0.9954 + }, + { + "start": 10229.0, + "end": 10229.66, + "probability": 0.6695 + }, + { + "start": 10229.9, + "end": 10232.78, + "probability": 0.9785 + }, + { + "start": 10233.26, + "end": 10233.28, + "probability": 0.1986 + }, + { + "start": 10233.88, + "end": 10235.18, + "probability": 0.4635 + }, + { + "start": 10236.59, + "end": 10241.64, + "probability": 0.6472 + }, + { + "start": 10244.96, + "end": 10248.98, + "probability": 0.9694 + }, + { + "start": 10249.14, + "end": 10250.9, + "probability": 0.975 + }, + { + "start": 10251.38, + "end": 10253.88, + "probability": 0.9937 + }, + { + "start": 10254.72, + "end": 10257.2, + "probability": 0.9969 + }, + { + "start": 10257.2, + "end": 10260.16, + "probability": 0.9303 + }, + { + "start": 10260.76, + "end": 10265.28, + "probability": 0.9831 + }, + { + "start": 10265.9, + "end": 10266.84, + "probability": 0.7594 + }, + { + "start": 10267.04, + "end": 10270.06, + "probability": 0.9937 + }, + { + "start": 10270.8, + "end": 10275.4, + "probability": 0.9966 + }, + { + "start": 10276.34, + "end": 10279.82, + "probability": 0.9902 + }, + { + "start": 10280.82, + "end": 10285.38, + "probability": 0.9791 + }, + { + "start": 10286.54, + "end": 10287.66, + "probability": 0.8171 + }, + { + "start": 10288.48, + "end": 10290.64, + "probability": 0.7535 + }, + { + "start": 10291.8, + "end": 10295.56, + "probability": 0.9838 + }, + { + "start": 10296.54, + "end": 10301.26, + "probability": 0.9723 + }, + { + "start": 10301.42, + "end": 10303.12, + "probability": 0.9971 + }, + { + "start": 10303.64, + "end": 10306.04, + "probability": 0.9957 + }, + { + "start": 10306.82, + "end": 10311.1, + "probability": 0.9687 + }, + { + "start": 10311.26, + "end": 10315.42, + "probability": 0.9778 + }, + { + "start": 10316.5, + "end": 10323.22, + "probability": 0.881 + }, + { + "start": 10324.16, + "end": 10326.12, + "probability": 0.9902 + }, + { + "start": 10326.12, + "end": 10329.94, + "probability": 0.9716 + }, + { + "start": 10330.42, + "end": 10333.11, + "probability": 0.9753 + }, + { + "start": 10334.48, + "end": 10341.6, + "probability": 0.7192 + }, + { + "start": 10341.64, + "end": 10344.6, + "probability": 0.9497 + }, + { + "start": 10345.14, + "end": 10346.3, + "probability": 0.9758 + }, + { + "start": 10346.92, + "end": 10347.82, + "probability": 0.4647 + }, + { + "start": 10348.62, + "end": 10351.88, + "probability": 0.9049 + }, + { + "start": 10352.62, + "end": 10357.1, + "probability": 0.9621 + }, + { + "start": 10357.2, + "end": 10363.7, + "probability": 0.9912 + }, + { + "start": 10364.3, + "end": 10368.04, + "probability": 0.9943 + }, + { + "start": 10369.3, + "end": 10369.92, + "probability": 0.74 + }, + { + "start": 10370.22, + "end": 10371.3, + "probability": 0.7704 + }, + { + "start": 10371.4, + "end": 10371.68, + "probability": 0.4801 + }, + { + "start": 10372.38, + "end": 10373.02, + "probability": 0.6474 + }, + { + "start": 10373.06, + "end": 10373.26, + "probability": 0.7662 + }, + { + "start": 10373.54, + "end": 10374.66, + "probability": 0.9339 + }, + { + "start": 10384.18, + "end": 10384.78, + "probability": 0.7026 + }, + { + "start": 10384.86, + "end": 10387.76, + "probability": 0.9968 + }, + { + "start": 10388.48, + "end": 10389.24, + "probability": 0.7544 + }, + { + "start": 10389.54, + "end": 10390.7, + "probability": 0.9554 + }, + { + "start": 10390.74, + "end": 10392.04, + "probability": 0.9193 + }, + { + "start": 10392.58, + "end": 10396.4, + "probability": 0.864 + }, + { + "start": 10396.44, + "end": 10397.28, + "probability": 0.9318 + }, + { + "start": 10398.04, + "end": 10399.5, + "probability": 0.9884 + }, + { + "start": 10400.0, + "end": 10400.45, + "probability": 0.9082 + }, + { + "start": 10401.22, + "end": 10402.32, + "probability": 0.0426 + }, + { + "start": 10402.64, + "end": 10403.14, + "probability": 0.0398 + }, + { + "start": 10403.26, + "end": 10404.42, + "probability": 0.2123 + }, + { + "start": 10406.08, + "end": 10406.08, + "probability": 0.2197 + }, + { + "start": 10406.08, + "end": 10407.03, + "probability": 0.5443 + }, + { + "start": 10407.28, + "end": 10408.34, + "probability": 0.6691 + }, + { + "start": 10408.74, + "end": 10412.3, + "probability": 0.9572 + }, + { + "start": 10413.14, + "end": 10414.28, + "probability": 0.8922 + }, + { + "start": 10414.88, + "end": 10415.34, + "probability": 0.3904 + }, + { + "start": 10415.5, + "end": 10416.14, + "probability": 0.9547 + }, + { + "start": 10416.5, + "end": 10418.8, + "probability": 0.4848 + }, + { + "start": 10419.34, + "end": 10421.76, + "probability": 0.9769 + }, + { + "start": 10422.02, + "end": 10422.8, + "probability": 0.9243 + }, + { + "start": 10422.92, + "end": 10425.36, + "probability": 0.8311 + }, + { + "start": 10425.64, + "end": 10427.36, + "probability": 0.9266 + }, + { + "start": 10427.72, + "end": 10431.46, + "probability": 0.9956 + }, + { + "start": 10431.86, + "end": 10433.62, + "probability": 0.9919 + }, + { + "start": 10434.1, + "end": 10437.74, + "probability": 0.9417 + }, + { + "start": 10438.54, + "end": 10440.14, + "probability": 0.7002 + }, + { + "start": 10440.58, + "end": 10446.04, + "probability": 0.8895 + }, + { + "start": 10446.4, + "end": 10448.08, + "probability": 0.9678 + }, + { + "start": 10448.4, + "end": 10449.88, + "probability": 0.9562 + }, + { + "start": 10450.06, + "end": 10450.74, + "probability": 0.8642 + }, + { + "start": 10450.88, + "end": 10451.44, + "probability": 0.8851 + }, + { + "start": 10451.54, + "end": 10452.38, + "probability": 0.828 + }, + { + "start": 10452.84, + "end": 10453.46, + "probability": 0.8284 + }, + { + "start": 10453.52, + "end": 10454.24, + "probability": 0.904 + }, + { + "start": 10454.3, + "end": 10454.94, + "probability": 0.955 + }, + { + "start": 10455.96, + "end": 10457.62, + "probability": 0.9722 + }, + { + "start": 10458.32, + "end": 10461.08, + "probability": 0.7411 + }, + { + "start": 10461.36, + "end": 10461.94, + "probability": 0.5714 + }, + { + "start": 10462.88, + "end": 10466.38, + "probability": 0.7942 + }, + { + "start": 10467.0, + "end": 10468.62, + "probability": 0.9946 + }, + { + "start": 10469.66, + "end": 10470.74, + "probability": 0.9669 + }, + { + "start": 10470.88, + "end": 10471.98, + "probability": 0.9634 + }, + { + "start": 10472.28, + "end": 10473.16, + "probability": 0.9694 + }, + { + "start": 10473.58, + "end": 10474.86, + "probability": 0.8247 + }, + { + "start": 10474.93, + "end": 10479.04, + "probability": 0.9465 + }, + { + "start": 10479.34, + "end": 10480.68, + "probability": 0.9954 + }, + { + "start": 10481.14, + "end": 10482.24, + "probability": 0.7968 + }, + { + "start": 10482.5, + "end": 10483.66, + "probability": 0.5336 + }, + { + "start": 10483.98, + "end": 10484.22, + "probability": 0.7893 + }, + { + "start": 10485.3, + "end": 10486.3, + "probability": 0.9209 + }, + { + "start": 10486.7, + "end": 10487.99, + "probability": 0.9807 + }, + { + "start": 10488.1, + "end": 10488.92, + "probability": 0.9904 + }, + { + "start": 10489.0, + "end": 10489.98, + "probability": 0.9946 + }, + { + "start": 10490.06, + "end": 10491.34, + "probability": 0.9841 + }, + { + "start": 10491.82, + "end": 10493.38, + "probability": 0.8101 + }, + { + "start": 10493.76, + "end": 10496.48, + "probability": 0.9949 + }, + { + "start": 10496.96, + "end": 10497.46, + "probability": 0.631 + }, + { + "start": 10497.78, + "end": 10498.18, + "probability": 0.7936 + }, + { + "start": 10498.54, + "end": 10504.34, + "probability": 0.7544 + }, + { + "start": 10504.56, + "end": 10505.42, + "probability": 0.8667 + }, + { + "start": 10505.96, + "end": 10507.14, + "probability": 0.4983 + }, + { + "start": 10507.22, + "end": 10509.72, + "probability": 0.7064 + }, + { + "start": 10510.04, + "end": 10511.78, + "probability": 0.9666 + }, + { + "start": 10512.1, + "end": 10514.62, + "probability": 0.9805 + }, + { + "start": 10515.06, + "end": 10516.4, + "probability": 0.9466 + }, + { + "start": 10516.95, + "end": 10519.3, + "probability": 0.0777 + }, + { + "start": 10519.3, + "end": 10519.3, + "probability": 0.0334 + }, + { + "start": 10519.3, + "end": 10519.84, + "probability": 0.5078 + }, + { + "start": 10520.2, + "end": 10522.7, + "probability": 0.9292 + }, + { + "start": 10523.26, + "end": 10524.28, + "probability": 0.6102 + }, + { + "start": 10524.66, + "end": 10526.9, + "probability": 0.9731 + }, + { + "start": 10527.38, + "end": 10528.66, + "probability": 0.8491 + }, + { + "start": 10528.9, + "end": 10529.62, + "probability": 0.9033 + }, + { + "start": 10530.08, + "end": 10530.08, + "probability": 0.0931 + }, + { + "start": 10530.08, + "end": 10532.4, + "probability": 0.9358 + }, + { + "start": 10532.86, + "end": 10533.68, + "probability": 0.8704 + }, + { + "start": 10533.78, + "end": 10535.0, + "probability": 0.7696 + }, + { + "start": 10535.3, + "end": 10536.14, + "probability": 0.5693 + }, + { + "start": 10536.3, + "end": 10538.5, + "probability": 0.809 + }, + { + "start": 10538.7, + "end": 10540.08, + "probability": 0.8123 + }, + { + "start": 10540.36, + "end": 10541.4, + "probability": 0.7689 + }, + { + "start": 10541.59, + "end": 10544.38, + "probability": 0.9459 + }, + { + "start": 10545.54, + "end": 10548.78, + "probability": 0.7811 + }, + { + "start": 10549.74, + "end": 10550.1, + "probability": 0.8043 + }, + { + "start": 10550.16, + "end": 10552.4, + "probability": 0.993 + }, + { + "start": 10552.68, + "end": 10553.9, + "probability": 0.9663 + }, + { + "start": 10554.02, + "end": 10555.34, + "probability": 0.8225 + }, + { + "start": 10555.78, + "end": 10558.2, + "probability": 0.953 + }, + { + "start": 10559.04, + "end": 10560.0, + "probability": 0.8384 + }, + { + "start": 10560.0, + "end": 10561.96, + "probability": 0.9882 + }, + { + "start": 10562.5, + "end": 10565.56, + "probability": 0.9434 + }, + { + "start": 10566.18, + "end": 10566.48, + "probability": 0.8485 + }, + { + "start": 10567.08, + "end": 10568.52, + "probability": 0.7454 + }, + { + "start": 10568.6, + "end": 10570.84, + "probability": 0.8134 + }, + { + "start": 10570.92, + "end": 10572.76, + "probability": 0.6754 + }, + { + "start": 10572.82, + "end": 10573.36, + "probability": 0.8409 + }, + { + "start": 10573.42, + "end": 10574.48, + "probability": 0.9567 + }, + { + "start": 10574.62, + "end": 10574.92, + "probability": 0.6825 + }, + { + "start": 10575.74, + "end": 10577.58, + "probability": 0.9343 + }, + { + "start": 10577.94, + "end": 10581.72, + "probability": 0.9797 + }, + { + "start": 10581.8, + "end": 10582.6, + "probability": 0.7188 + }, + { + "start": 10584.74, + "end": 10588.86, + "probability": 0.8734 + }, + { + "start": 10589.32, + "end": 10591.44, + "probability": 0.8777 + }, + { + "start": 10592.76, + "end": 10595.26, + "probability": 0.6682 + }, + { + "start": 10596.3, + "end": 10597.9, + "probability": 0.9675 + }, + { + "start": 10598.78, + "end": 10603.04, + "probability": 0.6407 + }, + { + "start": 10604.16, + "end": 10604.36, + "probability": 0.0019 + }, + { + "start": 10604.92, + "end": 10605.26, + "probability": 0.3349 + }, + { + "start": 10610.94, + "end": 10612.86, + "probability": 0.2175 + }, + { + "start": 10613.22, + "end": 10616.12, + "probability": 0.6942 + }, + { + "start": 10618.17, + "end": 10622.14, + "probability": 0.8922 + }, + { + "start": 10622.28, + "end": 10623.12, + "probability": 0.4861 + }, + { + "start": 10623.2, + "end": 10624.5, + "probability": 0.9814 + }, + { + "start": 10624.74, + "end": 10626.06, + "probability": 0.8836 + }, + { + "start": 10626.74, + "end": 10630.04, + "probability": 0.9479 + }, + { + "start": 10630.6, + "end": 10631.44, + "probability": 0.7384 + }, + { + "start": 10632.08, + "end": 10636.12, + "probability": 0.5464 + }, + { + "start": 10636.96, + "end": 10640.32, + "probability": 0.8169 + }, + { + "start": 10640.94, + "end": 10641.26, + "probability": 0.1298 + }, + { + "start": 10641.26, + "end": 10641.87, + "probability": 0.2841 + }, + { + "start": 10641.94, + "end": 10644.22, + "probability": 0.6155 + }, + { + "start": 10644.28, + "end": 10645.36, + "probability": 0.8496 + }, + { + "start": 10645.36, + "end": 10646.62, + "probability": 0.7194 + }, + { + "start": 10647.02, + "end": 10648.06, + "probability": 0.855 + }, + { + "start": 10648.12, + "end": 10648.92, + "probability": 0.6989 + }, + { + "start": 10649.1, + "end": 10652.96, + "probability": 0.8984 + }, + { + "start": 10653.56, + "end": 10656.05, + "probability": 0.9424 + }, + { + "start": 10656.8, + "end": 10658.3, + "probability": 0.9812 + }, + { + "start": 10658.34, + "end": 10659.4, + "probability": 0.8484 + }, + { + "start": 10659.8, + "end": 10661.61, + "probability": 0.9951 + }, + { + "start": 10661.76, + "end": 10663.14, + "probability": 0.8421 + }, + { + "start": 10663.22, + "end": 10664.44, + "probability": 0.8237 + }, + { + "start": 10664.82, + "end": 10667.78, + "probability": 0.9944 + }, + { + "start": 10668.28, + "end": 10670.12, + "probability": 0.7961 + }, + { + "start": 10670.2, + "end": 10673.58, + "probability": 0.9959 + }, + { + "start": 10673.98, + "end": 10675.3, + "probability": 0.9635 + }, + { + "start": 10675.42, + "end": 10678.12, + "probability": 0.8299 + }, + { + "start": 10678.84, + "end": 10682.14, + "probability": 0.9792 + }, + { + "start": 10682.5, + "end": 10685.96, + "probability": 0.9402 + }, + { + "start": 10686.02, + "end": 10687.56, + "probability": 0.97 + }, + { + "start": 10690.14, + "end": 10690.42, + "probability": 0.0396 + }, + { + "start": 10690.42, + "end": 10690.42, + "probability": 0.2036 + }, + { + "start": 10690.42, + "end": 10692.88, + "probability": 0.9883 + }, + { + "start": 10692.88, + "end": 10695.18, + "probability": 0.9944 + }, + { + "start": 10695.52, + "end": 10698.42, + "probability": 0.971 + }, + { + "start": 10698.46, + "end": 10700.36, + "probability": 0.7869 + }, + { + "start": 10700.74, + "end": 10707.7, + "probability": 0.9854 + }, + { + "start": 10708.02, + "end": 10709.76, + "probability": 0.9521 + }, + { + "start": 10710.08, + "end": 10711.68, + "probability": 0.969 + }, + { + "start": 10712.34, + "end": 10714.34, + "probability": 0.9542 + }, + { + "start": 10714.88, + "end": 10716.66, + "probability": 0.9944 + }, + { + "start": 10717.06, + "end": 10718.1, + "probability": 0.9194 + }, + { + "start": 10718.32, + "end": 10718.7, + "probability": 0.6762 + }, + { + "start": 10718.8, + "end": 10719.78, + "probability": 0.8839 + }, + { + "start": 10719.86, + "end": 10721.78, + "probability": 0.7668 + }, + { + "start": 10722.46, + "end": 10727.04, + "probability": 0.9438 + }, + { + "start": 10727.04, + "end": 10727.04, + "probability": 0.1591 + }, + { + "start": 10727.04, + "end": 10727.36, + "probability": 0.3185 + }, + { + "start": 10727.38, + "end": 10727.94, + "probability": 0.7017 + }, + { + "start": 10736.48, + "end": 10737.04, + "probability": 0.6342 + }, + { + "start": 10739.1, + "end": 10741.86, + "probability": 0.0769 + }, + { + "start": 10747.06, + "end": 10749.6, + "probability": 0.9712 + }, + { + "start": 10749.6, + "end": 10749.78, + "probability": 0.1344 + }, + { + "start": 10749.92, + "end": 10750.04, + "probability": 0.0311 + }, + { + "start": 10750.04, + "end": 10750.04, + "probability": 0.0887 + }, + { + "start": 10750.04, + "end": 10752.08, + "probability": 0.774 + }, + { + "start": 10752.42, + "end": 10753.3, + "probability": 0.9853 + }, + { + "start": 10753.98, + "end": 10757.69, + "probability": 0.8289 + }, + { + "start": 10758.0, + "end": 10760.2, + "probability": 0.7985 + }, + { + "start": 10760.66, + "end": 10762.0, + "probability": 0.9609 + }, + { + "start": 10762.52, + "end": 10766.08, + "probability": 0.8977 + }, + { + "start": 10767.06, + "end": 10767.44, + "probability": 0.4403 + }, + { + "start": 10767.44, + "end": 10767.88, + "probability": 0.9502 + }, + { + "start": 10777.04, + "end": 10779.08, + "probability": 0.6633 + }, + { + "start": 10781.96, + "end": 10783.62, + "probability": 0.658 + }, + { + "start": 10784.2, + "end": 10787.16, + "probability": 0.9829 + }, + { + "start": 10787.52, + "end": 10789.0, + "probability": 0.8265 + }, + { + "start": 10791.2, + "end": 10796.46, + "probability": 0.7893 + }, + { + "start": 10797.12, + "end": 10799.92, + "probability": 0.9637 + }, + { + "start": 10800.48, + "end": 10801.24, + "probability": 0.5542 + }, + { + "start": 10802.2, + "end": 10805.81, + "probability": 0.6499 + }, + { + "start": 10807.52, + "end": 10810.98, + "probability": 0.7508 + }, + { + "start": 10810.98, + "end": 10814.78, + "probability": 0.9165 + }, + { + "start": 10816.28, + "end": 10821.14, + "probability": 0.6299 + }, + { + "start": 10826.0, + "end": 10831.94, + "probability": 0.9478 + }, + { + "start": 10833.12, + "end": 10834.56, + "probability": 0.6657 + }, + { + "start": 10835.26, + "end": 10839.26, + "probability": 0.8663 + }, + { + "start": 10839.84, + "end": 10840.3, + "probability": 0.6792 + }, + { + "start": 10840.96, + "end": 10841.8, + "probability": 0.8902 + }, + { + "start": 10842.2, + "end": 10842.8, + "probability": 0.7332 + }, + { + "start": 10842.92, + "end": 10845.32, + "probability": 0.9865 + }, + { + "start": 10846.12, + "end": 10846.62, + "probability": 0.1996 + }, + { + "start": 10847.12, + "end": 10847.64, + "probability": 0.8821 + }, + { + "start": 10848.16, + "end": 10851.36, + "probability": 0.9595 + }, + { + "start": 10851.9, + "end": 10855.7, + "probability": 0.9565 + }, + { + "start": 10855.74, + "end": 10855.88, + "probability": 0.9086 + }, + { + "start": 10856.34, + "end": 10858.06, + "probability": 0.9214 + }, + { + "start": 10858.36, + "end": 10859.3, + "probability": 0.9946 + }, + { + "start": 10859.56, + "end": 10861.14, + "probability": 0.966 + }, + { + "start": 10861.72, + "end": 10862.86, + "probability": 0.9688 + }, + { + "start": 10863.2, + "end": 10867.07, + "probability": 0.9943 + }, + { + "start": 10868.06, + "end": 10868.64, + "probability": 0.562 + }, + { + "start": 10869.24, + "end": 10870.94, + "probability": 0.6727 + }, + { + "start": 10871.62, + "end": 10873.36, + "probability": 0.7425 + }, + { + "start": 10873.4, + "end": 10874.5, + "probability": 0.7462 + }, + { + "start": 10874.68, + "end": 10877.3, + "probability": 0.7458 + }, + { + "start": 10877.5, + "end": 10879.22, + "probability": 0.9899 + }, + { + "start": 10880.26, + "end": 10881.98, + "probability": 0.7245 + }, + { + "start": 10883.08, + "end": 10886.64, + "probability": 0.6657 + }, + { + "start": 10887.5, + "end": 10888.68, + "probability": 0.5358 + }, + { + "start": 10889.6, + "end": 10892.78, + "probability": 0.9738 + }, + { + "start": 10893.32, + "end": 10894.74, + "probability": 0.6489 + }, + { + "start": 10895.2, + "end": 10898.46, + "probability": 0.9637 + }, + { + "start": 10899.12, + "end": 10900.9, + "probability": 0.9937 + }, + { + "start": 10901.6, + "end": 10904.5, + "probability": 0.7123 + }, + { + "start": 10905.06, + "end": 10906.43, + "probability": 0.8169 + }, + { + "start": 10907.1, + "end": 10909.36, + "probability": 0.9551 + }, + { + "start": 10909.94, + "end": 10911.34, + "probability": 0.958 + }, + { + "start": 10911.7, + "end": 10912.42, + "probability": 0.6782 + }, + { + "start": 10912.78, + "end": 10914.02, + "probability": 0.9324 + }, + { + "start": 10914.78, + "end": 10916.44, + "probability": 0.8002 + }, + { + "start": 10916.98, + "end": 10917.36, + "probability": 0.891 + }, + { + "start": 10918.12, + "end": 10918.91, + "probability": 0.9524 + }, + { + "start": 10919.66, + "end": 10920.56, + "probability": 0.9117 + }, + { + "start": 10921.22, + "end": 10922.2, + "probability": 0.947 + }, + { + "start": 10922.68, + "end": 10925.04, + "probability": 0.9648 + }, + { + "start": 10926.0, + "end": 10927.86, + "probability": 0.8937 + }, + { + "start": 10929.02, + "end": 10929.76, + "probability": 0.6165 + }, + { + "start": 10930.84, + "end": 10931.36, + "probability": 0.5354 + }, + { + "start": 10932.56, + "end": 10936.06, + "probability": 0.8287 + }, + { + "start": 10937.32, + "end": 10939.78, + "probability": 0.7847 + }, + { + "start": 10940.6, + "end": 10941.9, + "probability": 0.9165 + }, + { + "start": 10943.24, + "end": 10949.42, + "probability": 0.9018 + }, + { + "start": 10950.54, + "end": 10952.24, + "probability": 0.8475 + }, + { + "start": 10952.8, + "end": 10958.78, + "probability": 0.8998 + }, + { + "start": 10959.38, + "end": 10962.58, + "probability": 0.5862 + }, + { + "start": 10964.78, + "end": 10965.38, + "probability": 0.5884 + }, + { + "start": 10965.42, + "end": 10966.54, + "probability": 0.7404 + }, + { + "start": 10966.68, + "end": 10970.58, + "probability": 0.7169 + }, + { + "start": 10973.16, + "end": 10973.74, + "probability": 0.9176 + }, + { + "start": 10973.86, + "end": 10974.6, + "probability": 0.6964 + }, + { + "start": 10974.62, + "end": 10976.24, + "probability": 0.7757 + }, + { + "start": 10976.46, + "end": 10976.92, + "probability": 0.9873 + }, + { + "start": 10977.02, + "end": 10978.68, + "probability": 0.0293 + }, + { + "start": 10978.74, + "end": 10982.28, + "probability": 0.8136 + }, + { + "start": 10982.5, + "end": 10985.2, + "probability": 0.965 + }, + { + "start": 10985.24, + "end": 10985.74, + "probability": 0.8859 + }, + { + "start": 10986.64, + "end": 10988.8, + "probability": 0.2617 + }, + { + "start": 10990.72, + "end": 10991.56, + "probability": 0.9409 + }, + { + "start": 10992.06, + "end": 10992.86, + "probability": 0.8272 + }, + { + "start": 10992.92, + "end": 10993.56, + "probability": 0.7939 + }, + { + "start": 10994.08, + "end": 10995.06, + "probability": 0.4455 + }, + { + "start": 10995.18, + "end": 10998.02, + "probability": 0.9895 + }, + { + "start": 10998.02, + "end": 11001.21, + "probability": 0.9699 + }, + { + "start": 11001.54, + "end": 11002.1, + "probability": 0.795 + }, + { + "start": 11002.94, + "end": 11003.34, + "probability": 0.233 + }, + { + "start": 11003.34, + "end": 11003.94, + "probability": 0.8845 + }, + { + "start": 11004.56, + "end": 11005.94, + "probability": 0.6101 + }, + { + "start": 11006.3, + "end": 11006.86, + "probability": 0.7391 + }, + { + "start": 11007.1, + "end": 11009.7, + "probability": 0.8572 + }, + { + "start": 11010.34, + "end": 11013.64, + "probability": 0.6501 + }, + { + "start": 11014.18, + "end": 11015.34, + "probability": 0.8011 + }, + { + "start": 11016.32, + "end": 11018.12, + "probability": 0.9928 + }, + { + "start": 11018.64, + "end": 11021.12, + "probability": 0.9141 + }, + { + "start": 11021.3, + "end": 11021.64, + "probability": 0.6808 + }, + { + "start": 11021.68, + "end": 11022.1, + "probability": 0.1528 + }, + { + "start": 11022.1, + "end": 11022.16, + "probability": 0.135 + }, + { + "start": 11022.16, + "end": 11025.2, + "probability": 0.8854 + }, + { + "start": 11025.76, + "end": 11027.4, + "probability": 0.8754 + }, + { + "start": 11027.5, + "end": 11028.15, + "probability": 0.8892 + }, + { + "start": 11028.4, + "end": 11029.76, + "probability": 0.9795 + }, + { + "start": 11030.82, + "end": 11035.9, + "probability": 0.7629 + }, + { + "start": 11036.88, + "end": 11038.3, + "probability": 0.9056 + }, + { + "start": 11038.68, + "end": 11040.46, + "probability": 0.4998 + }, + { + "start": 11040.58, + "end": 11041.3, + "probability": 0.8382 + }, + { + "start": 11041.76, + "end": 11043.46, + "probability": 0.9629 + }, + { + "start": 11043.66, + "end": 11044.5, + "probability": 0.7967 + }, + { + "start": 11044.58, + "end": 11045.5, + "probability": 0.9941 + }, + { + "start": 11046.3, + "end": 11047.3, + "probability": 0.9028 + }, + { + "start": 11047.52, + "end": 11049.18, + "probability": 0.4077 + }, + { + "start": 11049.22, + "end": 11049.9, + "probability": 0.623 + }, + { + "start": 11050.02, + "end": 11053.2, + "probability": 0.9897 + }, + { + "start": 11053.5, + "end": 11054.58, + "probability": 0.573 + }, + { + "start": 11056.4, + "end": 11057.36, + "probability": 0.4018 + }, + { + "start": 11058.3, + "end": 11062.66, + "probability": 0.9951 + }, + { + "start": 11063.66, + "end": 11067.14, + "probability": 0.7375 + }, + { + "start": 11067.7, + "end": 11068.34, + "probability": 0.6409 + }, + { + "start": 11069.24, + "end": 11072.7, + "probability": 0.9695 + }, + { + "start": 11074.12, + "end": 11076.5, + "probability": 0.6626 + }, + { + "start": 11077.12, + "end": 11079.1, + "probability": 0.6075 + }, + { + "start": 11079.58, + "end": 11080.34, + "probability": 0.6834 + }, + { + "start": 11080.38, + "end": 11082.88, + "probability": 0.0596 + }, + { + "start": 11082.88, + "end": 11083.44, + "probability": 0.5786 + }, + { + "start": 11084.04, + "end": 11089.08, + "probability": 0.8541 + }, + { + "start": 11089.08, + "end": 11089.08, + "probability": 0.3188 + }, + { + "start": 11089.08, + "end": 11090.36, + "probability": 0.7035 + }, + { + "start": 11090.74, + "end": 11096.52, + "probability": 0.737 + }, + { + "start": 11098.92, + "end": 11099.34, + "probability": 0.9113 + }, + { + "start": 11099.4, + "end": 11103.5, + "probability": 0.9938 + }, + { + "start": 11105.14, + "end": 11105.8, + "probability": 0.0059 + }, + { + "start": 11108.74, + "end": 11108.74, + "probability": 0.0015 + }, + { + "start": 11108.74, + "end": 11108.74, + "probability": 0.1393 + }, + { + "start": 11108.74, + "end": 11109.51, + "probability": 0.9031 + }, + { + "start": 11110.14, + "end": 11112.84, + "probability": 0.8358 + }, + { + "start": 11113.04, + "end": 11113.58, + "probability": 0.4831 + }, + { + "start": 11114.14, + "end": 11117.48, + "probability": 0.6832 + }, + { + "start": 11119.04, + "end": 11124.84, + "probability": 0.8643 + }, + { + "start": 11124.84, + "end": 11126.68, + "probability": 0.7522 + }, + { + "start": 11127.36, + "end": 11128.58, + "probability": 0.7253 + }, + { + "start": 11129.3, + "end": 11130.9, + "probability": 0.4896 + }, + { + "start": 11131.6, + "end": 11133.14, + "probability": 0.9965 + }, + { + "start": 11133.64, + "end": 11135.18, + "probability": 0.8375 + }, + { + "start": 11135.96, + "end": 11137.04, + "probability": 0.9799 + }, + { + "start": 11138.12, + "end": 11139.18, + "probability": 0.9019 + }, + { + "start": 11139.84, + "end": 11141.46, + "probability": 0.9971 + }, + { + "start": 11143.2, + "end": 11146.5, + "probability": 0.8375 + }, + { + "start": 11147.54, + "end": 11149.6, + "probability": 0.7688 + }, + { + "start": 11150.2, + "end": 11154.98, + "probability": 0.6826 + }, + { + "start": 11155.84, + "end": 11159.6, + "probability": 0.8629 + }, + { + "start": 11160.42, + "end": 11163.64, + "probability": 0.6496 + }, + { + "start": 11163.98, + "end": 11166.58, + "probability": 0.6785 + }, + { + "start": 11167.24, + "end": 11168.94, + "probability": 0.3883 + }, + { + "start": 11170.04, + "end": 11172.62, + "probability": 0.776 + }, + { + "start": 11173.06, + "end": 11173.9, + "probability": 0.8555 + }, + { + "start": 11174.04, + "end": 11178.68, + "probability": 0.8788 + }, + { + "start": 11179.34, + "end": 11181.7, + "probability": 0.9262 + }, + { + "start": 11181.96, + "end": 11183.08, + "probability": 0.8195 + }, + { + "start": 11183.61, + "end": 11185.33, + "probability": 0.9397 + }, + { + "start": 11185.56, + "end": 11187.66, + "probability": 0.9731 + }, + { + "start": 11188.12, + "end": 11191.08, + "probability": 0.9333 + }, + { + "start": 11192.56, + "end": 11194.24, + "probability": 0.8452 + }, + { + "start": 11194.86, + "end": 11200.06, + "probability": 0.9919 + }, + { + "start": 11200.5, + "end": 11203.32, + "probability": 0.8576 + }, + { + "start": 11203.52, + "end": 11205.84, + "probability": 0.9434 + }, + { + "start": 11205.86, + "end": 11208.72, + "probability": 0.9918 + }, + { + "start": 11209.04, + "end": 11212.34, + "probability": 0.9587 + }, + { + "start": 11212.72, + "end": 11214.76, + "probability": 0.8921 + }, + { + "start": 11215.72, + "end": 11220.4, + "probability": 0.9777 + }, + { + "start": 11220.8, + "end": 11222.64, + "probability": 0.9857 + }, + { + "start": 11223.26, + "end": 11225.4, + "probability": 0.8405 + }, + { + "start": 11225.98, + "end": 11229.44, + "probability": 0.9557 + }, + { + "start": 11229.8, + "end": 11231.14, + "probability": 0.9522 + }, + { + "start": 11231.72, + "end": 11234.18, + "probability": 0.9741 + }, + { + "start": 11234.98, + "end": 11237.26, + "probability": 0.9018 + }, + { + "start": 11237.82, + "end": 11240.7, + "probability": 0.9797 + }, + { + "start": 11241.24, + "end": 11241.52, + "probability": 0.8406 + }, + { + "start": 11243.24, + "end": 11246.24, + "probability": 0.4753 + }, + { + "start": 11246.9, + "end": 11250.18, + "probability": 0.9264 + }, + { + "start": 11250.64, + "end": 11253.86, + "probability": 0.9512 + }, + { + "start": 11254.08, + "end": 11255.49, + "probability": 0.9897 + }, + { + "start": 11256.05, + "end": 11257.88, + "probability": 0.7534 + }, + { + "start": 11257.88, + "end": 11258.16, + "probability": 0.6871 + }, + { + "start": 11258.66, + "end": 11261.74, + "probability": 0.9658 + }, + { + "start": 11261.98, + "end": 11262.92, + "probability": 0.6205 + }, + { + "start": 11263.0, + "end": 11264.1, + "probability": 0.9756 + }, + { + "start": 11264.56, + "end": 11265.12, + "probability": 0.7276 + }, + { + "start": 11266.9, + "end": 11268.34, + "probability": 0.194 + }, + { + "start": 11269.14, + "end": 11272.32, + "probability": 0.4605 + }, + { + "start": 11273.16, + "end": 11273.22, + "probability": 0.1186 + }, + { + "start": 11273.22, + "end": 11273.22, + "probability": 0.0697 + }, + { + "start": 11273.22, + "end": 11273.64, + "probability": 0.6698 + }, + { + "start": 11274.26, + "end": 11278.02, + "probability": 0.9259 + }, + { + "start": 11278.14, + "end": 11281.58, + "probability": 0.9913 + }, + { + "start": 11282.02, + "end": 11282.36, + "probability": 0.2515 + }, + { + "start": 11282.44, + "end": 11283.82, + "probability": 0.9775 + }, + { + "start": 11285.14, + "end": 11286.8, + "probability": 0.649 + }, + { + "start": 11289.82, + "end": 11291.5, + "probability": 0.9287 + }, + { + "start": 11292.02, + "end": 11292.6, + "probability": 0.5131 + }, + { + "start": 11293.38, + "end": 11294.74, + "probability": 0.896 + }, + { + "start": 11295.66, + "end": 11296.12, + "probability": 0.6785 + }, + { + "start": 11297.3, + "end": 11302.2, + "probability": 0.4455 + }, + { + "start": 11302.8, + "end": 11304.5, + "probability": 0.0078 + }, + { + "start": 11305.74, + "end": 11307.8, + "probability": 0.9814 + }, + { + "start": 11308.98, + "end": 11309.36, + "probability": 0.9067 + }, + { + "start": 11310.56, + "end": 11314.52, + "probability": 0.7299 + }, + { + "start": 11316.14, + "end": 11317.42, + "probability": 0.2101 + }, + { + "start": 11317.48, + "end": 11321.12, + "probability": 0.9857 + }, + { + "start": 11322.2, + "end": 11327.36, + "probability": 0.9984 + }, + { + "start": 11328.36, + "end": 11331.18, + "probability": 0.93 + }, + { + "start": 11332.26, + "end": 11333.76, + "probability": 0.7774 + }, + { + "start": 11334.18, + "end": 11335.12, + "probability": 0.6971 + }, + { + "start": 11335.56, + "end": 11337.54, + "probability": 0.9875 + }, + { + "start": 11338.5, + "end": 11341.84, + "probability": 0.8241 + }, + { + "start": 11342.94, + "end": 11344.62, + "probability": 0.9834 + }, + { + "start": 11345.36, + "end": 11346.2, + "probability": 0.5081 + }, + { + "start": 11347.5, + "end": 11347.6, + "probability": 0.0502 + }, + { + "start": 11347.6, + "end": 11348.45, + "probability": 0.542 + }, + { + "start": 11350.16, + "end": 11351.72, + "probability": 0.2998 + }, + { + "start": 11351.74, + "end": 11356.94, + "probability": 0.0321 + }, + { + "start": 11359.14, + "end": 11360.06, + "probability": 0.0513 + }, + { + "start": 11361.38, + "end": 11362.04, + "probability": 0.0307 + }, + { + "start": 11362.04, + "end": 11362.04, + "probability": 0.1059 + }, + { + "start": 11362.04, + "end": 11362.2, + "probability": 0.3423 + }, + { + "start": 11362.34, + "end": 11363.1, + "probability": 0.3988 + }, + { + "start": 11363.18, + "end": 11364.25, + "probability": 0.4873 + }, + { + "start": 11364.52, + "end": 11365.18, + "probability": 0.138 + }, + { + "start": 11365.76, + "end": 11367.58, + "probability": 0.409 + }, + { + "start": 11371.16, + "end": 11371.16, + "probability": 0.0567 + }, + { + "start": 11371.26, + "end": 11371.36, + "probability": 0.0547 + }, + { + "start": 11371.46, + "end": 11371.46, + "probability": 0.0496 + }, + { + "start": 11371.48, + "end": 11372.26, + "probability": 0.3208 + }, + { + "start": 11373.46, + "end": 11376.16, + "probability": 0.9058 + }, + { + "start": 11376.82, + "end": 11379.56, + "probability": 0.8716 + }, + { + "start": 11380.2, + "end": 11381.08, + "probability": 0.5568 + }, + { + "start": 11381.66, + "end": 11383.68, + "probability": 0.9818 + }, + { + "start": 11384.38, + "end": 11387.1, + "probability": 0.7072 + }, + { + "start": 11387.46, + "end": 11388.62, + "probability": 0.9155 + }, + { + "start": 11388.68, + "end": 11391.06, + "probability": 0.7952 + }, + { + "start": 11391.18, + "end": 11395.36, + "probability": 0.9365 + }, + { + "start": 11395.58, + "end": 11395.58, + "probability": 0.0052 + }, + { + "start": 11396.96, + "end": 11398.06, + "probability": 0.1313 + }, + { + "start": 11398.24, + "end": 11399.22, + "probability": 0.786 + }, + { + "start": 11399.3, + "end": 11400.24, + "probability": 0.7463 + }, + { + "start": 11400.28, + "end": 11401.8, + "probability": 0.7896 + }, + { + "start": 11402.3, + "end": 11403.68, + "probability": 0.9243 + }, + { + "start": 11403.78, + "end": 11404.86, + "probability": 0.728 + }, + { + "start": 11405.82, + "end": 11408.74, + "probability": 0.6976 + }, + { + "start": 11409.7, + "end": 11411.84, + "probability": 0.9414 + }, + { + "start": 11413.24, + "end": 11414.24, + "probability": 0.6423 + }, + { + "start": 11414.32, + "end": 11418.46, + "probability": 0.855 + }, + { + "start": 11418.46, + "end": 11422.08, + "probability": 0.933 + }, + { + "start": 11423.1, + "end": 11431.04, + "probability": 0.9896 + }, + { + "start": 11431.62, + "end": 11434.94, + "probability": 0.6768 + }, + { + "start": 11435.88, + "end": 11436.28, + "probability": 0.7062 + }, + { + "start": 11436.42, + "end": 11440.24, + "probability": 0.8131 + }, + { + "start": 11440.9, + "end": 11445.18, + "probability": 0.9382 + }, + { + "start": 11445.28, + "end": 11446.33, + "probability": 0.9036 + }, + { + "start": 11447.04, + "end": 11451.48, + "probability": 0.9313 + }, + { + "start": 11451.62, + "end": 11454.82, + "probability": 0.5528 + }, + { + "start": 11455.34, + "end": 11458.96, + "probability": 0.9263 + }, + { + "start": 11459.22, + "end": 11461.02, + "probability": 0.912 + }, + { + "start": 11461.88, + "end": 11466.62, + "probability": 0.9738 + }, + { + "start": 11467.2, + "end": 11470.76, + "probability": 0.9785 + }, + { + "start": 11471.74, + "end": 11474.66, + "probability": 0.9905 + }, + { + "start": 11475.12, + "end": 11476.9, + "probability": 0.9453 + }, + { + "start": 11477.62, + "end": 11478.18, + "probability": 0.9265 + }, + { + "start": 11478.34, + "end": 11481.52, + "probability": 0.9246 + }, + { + "start": 11481.68, + "end": 11483.0, + "probability": 0.9448 + }, + { + "start": 11484.18, + "end": 11486.48, + "probability": 0.8278 + }, + { + "start": 11487.18, + "end": 11488.68, + "probability": 0.9946 + }, + { + "start": 11489.28, + "end": 11492.54, + "probability": 0.9722 + }, + { + "start": 11493.3, + "end": 11496.52, + "probability": 0.8904 + }, + { + "start": 11496.52, + "end": 11499.42, + "probability": 0.9949 + }, + { + "start": 11500.0, + "end": 11501.76, + "probability": 0.9718 + }, + { + "start": 11502.52, + "end": 11505.54, + "probability": 0.9897 + }, + { + "start": 11506.16, + "end": 11509.54, + "probability": 0.8989 + }, + { + "start": 11510.14, + "end": 11514.96, + "probability": 0.9896 + }, + { + "start": 11515.38, + "end": 11518.06, + "probability": 0.9717 + }, + { + "start": 11518.06, + "end": 11520.92, + "probability": 0.9556 + }, + { + "start": 11521.9, + "end": 11525.48, + "probability": 0.9224 + }, + { + "start": 11525.48, + "end": 11530.24, + "probability": 0.7885 + }, + { + "start": 11530.78, + "end": 11531.78, + "probability": 0.7154 + }, + { + "start": 11531.86, + "end": 11533.34, + "probability": 0.8344 + }, + { + "start": 11533.88, + "end": 11536.56, + "probability": 0.9089 + }, + { + "start": 11537.5, + "end": 11540.88, + "probability": 0.655 + }, + { + "start": 11541.0, + "end": 11543.36, + "probability": 0.8846 + }, + { + "start": 11543.84, + "end": 11544.38, + "probability": 0.4735 + }, + { + "start": 11544.9, + "end": 11545.66, + "probability": 0.6931 + }, + { + "start": 11546.94, + "end": 11550.88, + "probability": 0.9585 + }, + { + "start": 11550.88, + "end": 11554.4, + "probability": 0.7104 + }, + { + "start": 11555.16, + "end": 11555.86, + "probability": 0.1048 + }, + { + "start": 11556.0, + "end": 11559.36, + "probability": 0.6783 + }, + { + "start": 11559.86, + "end": 11565.16, + "probability": 0.9918 + }, + { + "start": 11565.74, + "end": 11568.32, + "probability": 0.9724 + }, + { + "start": 11568.82, + "end": 11570.2, + "probability": 0.9958 + }, + { + "start": 11574.02, + "end": 11574.04, + "probability": 0.1877 + }, + { + "start": 11574.04, + "end": 11575.28, + "probability": 0.7415 + }, + { + "start": 11575.64, + "end": 11580.74, + "probability": 0.5664 + }, + { + "start": 11580.76, + "end": 11584.74, + "probability": 0.8639 + }, + { + "start": 11585.22, + "end": 11586.66, + "probability": 0.9936 + }, + { + "start": 11586.74, + "end": 11589.44, + "probability": 0.8427 + }, + { + "start": 11589.56, + "end": 11591.16, + "probability": 0.9731 + }, + { + "start": 11591.76, + "end": 11595.48, + "probability": 0.9723 + }, + { + "start": 11596.02, + "end": 11597.94, + "probability": 0.9951 + }, + { + "start": 11598.04, + "end": 11599.9, + "probability": 0.9846 + }, + { + "start": 11599.98, + "end": 11601.12, + "probability": 0.8625 + }, + { + "start": 11601.84, + "end": 11603.58, + "probability": 0.114 + }, + { + "start": 11603.68, + "end": 11604.02, + "probability": 0.4065 + }, + { + "start": 11604.32, + "end": 11604.84, + "probability": 0.2286 + }, + { + "start": 11605.18, + "end": 11605.18, + "probability": 0.1945 + }, + { + "start": 11605.18, + "end": 11606.48, + "probability": 0.8755 + }, + { + "start": 11606.52, + "end": 11608.16, + "probability": 0.0643 + }, + { + "start": 11609.03, + "end": 11609.66, + "probability": 0.3084 + }, + { + "start": 11609.66, + "end": 11609.66, + "probability": 0.0191 + }, + { + "start": 11609.66, + "end": 11610.96, + "probability": 0.0479 + }, + { + "start": 11610.96, + "end": 11613.04, + "probability": 0.8697 + }, + { + "start": 11613.18, + "end": 11615.92, + "probability": 0.8923 + }, + { + "start": 11615.96, + "end": 11616.86, + "probability": 0.772 + }, + { + "start": 11616.96, + "end": 11617.56, + "probability": 0.4121 + }, + { + "start": 11617.62, + "end": 11618.3, + "probability": 0.3801 + }, + { + "start": 11618.42, + "end": 11619.18, + "probability": 0.3728 + }, + { + "start": 11619.18, + "end": 11620.22, + "probability": 0.6783 + }, + { + "start": 11620.7, + "end": 11622.8, + "probability": 0.7965 + }, + { + "start": 11622.84, + "end": 11624.5, + "probability": 0.9069 + }, + { + "start": 11624.58, + "end": 11624.98, + "probability": 0.4921 + }, + { + "start": 11625.22, + "end": 11625.22, + "probability": 0.3765 + }, + { + "start": 11625.22, + "end": 11625.46, + "probability": 0.5586 + }, + { + "start": 11625.56, + "end": 11626.9, + "probability": 0.8219 + }, + { + "start": 11627.74, + "end": 11629.4, + "probability": 0.7253 + }, + { + "start": 11629.58, + "end": 11630.72, + "probability": 0.6141 + }, + { + "start": 11630.84, + "end": 11631.52, + "probability": 0.8079 + }, + { + "start": 11632.06, + "end": 11635.14, + "probability": 0.7197 + }, + { + "start": 11635.72, + "end": 11639.34, + "probability": 0.9048 + }, + { + "start": 11639.72, + "end": 11639.98, + "probability": 0.6302 + }, + { + "start": 11640.04, + "end": 11641.56, + "probability": 0.9896 + }, + { + "start": 11641.82, + "end": 11642.72, + "probability": 0.6778 + }, + { + "start": 11643.54, + "end": 11645.46, + "probability": 0.7151 + }, + { + "start": 11645.96, + "end": 11648.52, + "probability": 0.7594 + }, + { + "start": 11648.9, + "end": 11650.25, + "probability": 0.8724 + }, + { + "start": 11650.66, + "end": 11653.65, + "probability": 0.9065 + }, + { + "start": 11653.92, + "end": 11657.34, + "probability": 0.9878 + }, + { + "start": 11657.36, + "end": 11659.46, + "probability": 0.8129 + }, + { + "start": 11659.5, + "end": 11663.6, + "probability": 0.9863 + }, + { + "start": 11663.98, + "end": 11664.56, + "probability": 0.6186 + }, + { + "start": 11665.12, + "end": 11665.84, + "probability": 0.6525 + }, + { + "start": 11665.84, + "end": 11666.36, + "probability": 0.9147 + }, + { + "start": 11673.38, + "end": 11673.38, + "probability": 0.2277 + }, + { + "start": 11673.38, + "end": 11674.8, + "probability": 0.7766 + }, + { + "start": 11675.04, + "end": 11676.34, + "probability": 0.883 + }, + { + "start": 11676.74, + "end": 11676.84, + "probability": 0.2205 + }, + { + "start": 11676.84, + "end": 11678.98, + "probability": 0.8689 + }, + { + "start": 11680.32, + "end": 11683.08, + "probability": 0.7939 + }, + { + "start": 11683.94, + "end": 11684.36, + "probability": 0.8434 + }, + { + "start": 11686.92, + "end": 11687.18, + "probability": 0.5916 + }, + { + "start": 11688.92, + "end": 11690.28, + "probability": 0.7298 + }, + { + "start": 11692.62, + "end": 11693.18, + "probability": 0.2839 + }, + { + "start": 11693.89, + "end": 11694.11, + "probability": 0.2819 + }, + { + "start": 11694.36, + "end": 11695.3, + "probability": 0.6396 + }, + { + "start": 11695.94, + "end": 11697.4, + "probability": 0.7839 + }, + { + "start": 11697.44, + "end": 11698.7, + "probability": 0.755 + }, + { + "start": 11699.82, + "end": 11702.94, + "probability": 0.4676 + }, + { + "start": 11705.04, + "end": 11705.04, + "probability": 0.114 + }, + { + "start": 11705.04, + "end": 11705.04, + "probability": 0.0909 + }, + { + "start": 11705.04, + "end": 11705.04, + "probability": 0.189 + }, + { + "start": 11705.04, + "end": 11705.04, + "probability": 0.2293 + }, + { + "start": 11705.04, + "end": 11706.46, + "probability": 0.5509 + }, + { + "start": 11706.56, + "end": 11708.84, + "probability": 0.1847 + }, + { + "start": 11710.0, + "end": 11715.58, + "probability": 0.882 + }, + { + "start": 11717.02, + "end": 11723.26, + "probability": 0.9761 + }, + { + "start": 11724.0, + "end": 11725.84, + "probability": 0.9842 + }, + { + "start": 11726.64, + "end": 11730.3, + "probability": 0.9979 + }, + { + "start": 11731.34, + "end": 11731.76, + "probability": 0.2749 + }, + { + "start": 11731.86, + "end": 11733.58, + "probability": 0.9979 + }, + { + "start": 11733.66, + "end": 11737.18, + "probability": 0.9983 + }, + { + "start": 11737.9, + "end": 11739.72, + "probability": 0.9741 + }, + { + "start": 11740.4, + "end": 11745.82, + "probability": 0.8599 + }, + { + "start": 11747.56, + "end": 11750.8, + "probability": 0.9917 + }, + { + "start": 11751.92, + "end": 11755.46, + "probability": 0.7624 + }, + { + "start": 11756.72, + "end": 11760.42, + "probability": 0.9836 + }, + { + "start": 11762.46, + "end": 11766.4, + "probability": 0.9915 + }, + { + "start": 11768.56, + "end": 11771.66, + "probability": 0.9705 + }, + { + "start": 11771.76, + "end": 11773.0, + "probability": 0.9805 + }, + { + "start": 11774.02, + "end": 11776.64, + "probability": 0.8554 + }, + { + "start": 11777.74, + "end": 11781.4, + "probability": 0.7591 + }, + { + "start": 11782.04, + "end": 11783.24, + "probability": 0.9605 + }, + { + "start": 11785.1, + "end": 11786.8, + "probability": 0.877 + }, + { + "start": 11786.88, + "end": 11787.86, + "probability": 0.9567 + }, + { + "start": 11788.02, + "end": 11789.26, + "probability": 0.9715 + }, + { + "start": 11789.36, + "end": 11790.28, + "probability": 0.6747 + }, + { + "start": 11790.46, + "end": 11791.52, + "probability": 0.4797 + }, + { + "start": 11791.52, + "end": 11799.52, + "probability": 0.8685 + }, + { + "start": 11800.62, + "end": 11801.6, + "probability": 0.8973 + }, + { + "start": 11802.2, + "end": 11803.68, + "probability": 0.957 + }, + { + "start": 11804.54, + "end": 11808.94, + "probability": 0.9751 + }, + { + "start": 11809.8, + "end": 11812.22, + "probability": 0.9148 + }, + { + "start": 11813.14, + "end": 11814.88, + "probability": 0.9504 + }, + { + "start": 11816.26, + "end": 11818.94, + "probability": 0.9389 + }, + { + "start": 11820.1, + "end": 11823.92, + "probability": 0.9382 + }, + { + "start": 11824.54, + "end": 11827.34, + "probability": 0.9233 + }, + { + "start": 11830.05, + "end": 11831.19, + "probability": 0.638 + }, + { + "start": 11831.7, + "end": 11834.06, + "probability": 0.6127 + }, + { + "start": 11834.82, + "end": 11836.01, + "probability": 0.8628 + }, + { + "start": 11836.66, + "end": 11839.94, + "probability": 0.8792 + }, + { + "start": 11840.86, + "end": 11843.72, + "probability": 0.9871 + }, + { + "start": 11843.8, + "end": 11844.1, + "probability": 0.8216 + }, + { + "start": 11844.22, + "end": 11845.12, + "probability": 0.5458 + }, + { + "start": 11845.36, + "end": 11845.85, + "probability": 0.7358 + }, + { + "start": 11847.04, + "end": 11850.96, + "probability": 0.98 + }, + { + "start": 11851.4, + "end": 11852.12, + "probability": 0.8722 + }, + { + "start": 11852.28, + "end": 11853.0, + "probability": 0.8743 + }, + { + "start": 11853.5, + "end": 11854.14, + "probability": 0.9814 + }, + { + "start": 11854.52, + "end": 11856.28, + "probability": 0.908 + }, + { + "start": 11856.9, + "end": 11858.86, + "probability": 0.9356 + }, + { + "start": 11859.76, + "end": 11862.64, + "probability": 0.9023 + }, + { + "start": 11862.7, + "end": 11864.44, + "probability": 0.8557 + }, + { + "start": 11865.08, + "end": 11866.91, + "probability": 0.9746 + }, + { + "start": 11867.98, + "end": 11871.73, + "probability": 0.9634 + }, + { + "start": 11872.96, + "end": 11874.58, + "probability": 0.9579 + }, + { + "start": 11874.94, + "end": 11876.74, + "probability": 0.9233 + }, + { + "start": 11877.36, + "end": 11878.22, + "probability": 0.9951 + }, + { + "start": 11879.48, + "end": 11880.58, + "probability": 0.9919 + }, + { + "start": 11880.82, + "end": 11885.88, + "probability": 0.9373 + }, + { + "start": 11886.38, + "end": 11887.48, + "probability": 0.7134 + }, + { + "start": 11888.86, + "end": 11891.22, + "probability": 0.9661 + }, + { + "start": 11891.96, + "end": 11895.38, + "probability": 0.9787 + }, + { + "start": 11896.58, + "end": 11899.98, + "probability": 0.991 + }, + { + "start": 11900.54, + "end": 11903.76, + "probability": 0.8145 + }, + { + "start": 11904.42, + "end": 11908.5, + "probability": 0.8898 + }, + { + "start": 11908.58, + "end": 11910.26, + "probability": 0.731 + }, + { + "start": 11910.58, + "end": 11910.86, + "probability": 0.827 + }, + { + "start": 11911.62, + "end": 11912.54, + "probability": 0.6603 + }, + { + "start": 11912.8, + "end": 11917.34, + "probability": 0.9283 + }, + { + "start": 11918.12, + "end": 11920.28, + "probability": 0.6707 + }, + { + "start": 11920.44, + "end": 11921.12, + "probability": 0.9834 + }, + { + "start": 11921.14, + "end": 11923.48, + "probability": 0.8745 + }, + { + "start": 11923.8, + "end": 11927.72, + "probability": 0.9574 + }, + { + "start": 11927.86, + "end": 11928.32, + "probability": 0.7868 + }, + { + "start": 11928.6, + "end": 11929.32, + "probability": 0.4897 + }, + { + "start": 11929.4, + "end": 11931.26, + "probability": 0.8195 + }, + { + "start": 11931.66, + "end": 11932.27, + "probability": 0.929 + }, + { + "start": 11932.92, + "end": 11935.78, + "probability": 0.804 + }, + { + "start": 11935.78, + "end": 11937.46, + "probability": 0.6706 + }, + { + "start": 11937.78, + "end": 11941.64, + "probability": 0.7095 + }, + { + "start": 11941.64, + "end": 11942.18, + "probability": 0.8471 + }, + { + "start": 11942.3, + "end": 11943.7, + "probability": 0.9511 + }, + { + "start": 11944.16, + "end": 11946.53, + "probability": 0.6459 + }, + { + "start": 11947.18, + "end": 11948.74, + "probability": 0.9451 + }, + { + "start": 11948.84, + "end": 11953.3, + "probability": 0.8816 + }, + { + "start": 11953.3, + "end": 11957.16, + "probability": 0.9871 + }, + { + "start": 11959.27, + "end": 11964.49, + "probability": 0.9215 + }, + { + "start": 11964.86, + "end": 11965.56, + "probability": 0.9217 + }, + { + "start": 11965.7, + "end": 11966.22, + "probability": 0.6239 + }, + { + "start": 11966.66, + "end": 11967.92, + "probability": 0.7072 + }, + { + "start": 11968.1, + "end": 11968.56, + "probability": 0.8111 + }, + { + "start": 11968.66, + "end": 11969.08, + "probability": 0.9814 + }, + { + "start": 11969.86, + "end": 11970.56, + "probability": 0.619 + }, + { + "start": 11972.32, + "end": 11974.84, + "probability": 0.7247 + }, + { + "start": 11975.28, + "end": 11976.18, + "probability": 0.7545 + }, + { + "start": 11976.68, + "end": 11976.84, + "probability": 0.6115 + }, + { + "start": 11982.44, + "end": 11982.54, + "probability": 0.486 + }, + { + "start": 11983.4, + "end": 11984.86, + "probability": 0.6133 + }, + { + "start": 11985.18, + "end": 11986.38, + "probability": 0.9756 + }, + { + "start": 11986.8, + "end": 11988.6, + "probability": 0.9785 + }, + { + "start": 11989.02, + "end": 11992.42, + "probability": 0.8193 + }, + { + "start": 11994.54, + "end": 11999.14, + "probability": 0.9856 + }, + { + "start": 11999.3, + "end": 11999.54, + "probability": 0.2961 + }, + { + "start": 11999.76, + "end": 12003.66, + "probability": 0.9905 + }, + { + "start": 12004.38, + "end": 12004.58, + "probability": 0.8562 + }, + { + "start": 12004.7, + "end": 12005.68, + "probability": 0.5753 + }, + { + "start": 12005.74, + "end": 12008.38, + "probability": 0.9581 + }, + { + "start": 12009.66, + "end": 12012.84, + "probability": 0.538 + }, + { + "start": 12014.18, + "end": 12017.35, + "probability": 0.7487 + }, + { + "start": 12019.02, + "end": 12022.68, + "probability": 0.9935 + }, + { + "start": 12022.68, + "end": 12024.7, + "probability": 0.9819 + }, + { + "start": 12024.86, + "end": 12027.28, + "probability": 0.9946 + }, + { + "start": 12027.88, + "end": 12029.14, + "probability": 0.9523 + }, + { + "start": 12031.98, + "end": 12033.92, + "probability": 0.9873 + }, + { + "start": 12034.06, + "end": 12035.0, + "probability": 0.6952 + }, + { + "start": 12035.1, + "end": 12036.56, + "probability": 0.9114 + }, + { + "start": 12036.82, + "end": 12038.98, + "probability": 0.9644 + }, + { + "start": 12040.02, + "end": 12042.54, + "probability": 0.9981 + }, + { + "start": 12046.04, + "end": 12047.68, + "probability": 0.8334 + }, + { + "start": 12048.22, + "end": 12050.58, + "probability": 0.7572 + }, + { + "start": 12050.72, + "end": 12052.5, + "probability": 0.8238 + }, + { + "start": 12053.52, + "end": 12055.03, + "probability": 0.7856 + }, + { + "start": 12055.5, + "end": 12056.04, + "probability": 0.8247 + }, + { + "start": 12056.16, + "end": 12057.85, + "probability": 0.7225 + }, + { + "start": 12058.48, + "end": 12059.26, + "probability": 0.4956 + }, + { + "start": 12059.84, + "end": 12062.66, + "probability": 0.9366 + }, + { + "start": 12063.86, + "end": 12065.34, + "probability": 0.9984 + }, + { + "start": 12065.9, + "end": 12068.76, + "probability": 0.9976 + }, + { + "start": 12068.9, + "end": 12071.83, + "probability": 0.9984 + }, + { + "start": 12071.92, + "end": 12073.83, + "probability": 0.8577 + }, + { + "start": 12075.18, + "end": 12076.42, + "probability": 0.8379 + }, + { + "start": 12076.94, + "end": 12079.38, + "probability": 0.7628 + }, + { + "start": 12079.46, + "end": 12081.46, + "probability": 0.9629 + }, + { + "start": 12081.58, + "end": 12083.5, + "probability": 0.7407 + }, + { + "start": 12084.02, + "end": 12086.76, + "probability": 0.9585 + }, + { + "start": 12088.0, + "end": 12088.58, + "probability": 0.9258 + }, + { + "start": 12088.7, + "end": 12090.92, + "probability": 0.9645 + }, + { + "start": 12090.98, + "end": 12092.12, + "probability": 0.9068 + }, + { + "start": 12092.35, + "end": 12093.36, + "probability": 0.7805 + }, + { + "start": 12093.48, + "end": 12094.05, + "probability": 0.6461 + }, + { + "start": 12094.36, + "end": 12095.68, + "probability": 0.7873 + }, + { + "start": 12095.9, + "end": 12097.1, + "probability": 0.9371 + }, + { + "start": 12099.0, + "end": 12099.62, + "probability": 0.7278 + }, + { + "start": 12099.7, + "end": 12101.04, + "probability": 0.903 + }, + { + "start": 12101.4, + "end": 12103.0, + "probability": 0.8823 + }, + { + "start": 12103.06, + "end": 12106.32, + "probability": 0.9858 + }, + { + "start": 12106.94, + "end": 12108.0, + "probability": 0.6433 + }, + { + "start": 12108.06, + "end": 12111.5, + "probability": 0.9939 + }, + { + "start": 12112.1, + "end": 12113.24, + "probability": 0.4037 + }, + { + "start": 12114.06, + "end": 12114.06, + "probability": 0.0111 + }, + { + "start": 12119.8, + "end": 12121.26, + "probability": 0.0047 + }, + { + "start": 12122.74, + "end": 12126.09, + "probability": 0.208 + }, + { + "start": 12126.58, + "end": 12126.72, + "probability": 0.091 + }, + { + "start": 12126.72, + "end": 12127.02, + "probability": 0.385 + }, + { + "start": 12127.96, + "end": 12128.82, + "probability": 0.4494 + }, + { + "start": 12130.18, + "end": 12132.34, + "probability": 0.0524 + }, + { + "start": 12133.36, + "end": 12137.24, + "probability": 0.0164 + }, + { + "start": 12139.46, + "end": 12140.58, + "probability": 0.1957 + }, + { + "start": 12141.5, + "end": 12142.34, + "probability": 0.1826 + }, + { + "start": 12152.34, + "end": 12153.46, + "probability": 0.1813 + }, + { + "start": 12154.98, + "end": 12160.3, + "probability": 0.2123 + }, + { + "start": 12160.98, + "end": 12161.34, + "probability": 0.0431 + }, + { + "start": 12161.64, + "end": 12164.98, + "probability": 0.0914 + }, + { + "start": 12165.1, + "end": 12167.3, + "probability": 0.0797 + }, + { + "start": 12167.58, + "end": 12171.18, + "probability": 0.0314 + }, + { + "start": 12171.96, + "end": 12172.72, + "probability": 0.0955 + }, + { + "start": 12174.42, + "end": 12175.52, + "probability": 0.0723 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12199.0, + "end": 12199.0, + "probability": 0.0 + }, + { + "start": 12207.52, + "end": 12208.02, + "probability": 0.0134 + }, + { + "start": 12208.92, + "end": 12211.8, + "probability": 0.008 + }, + { + "start": 12212.8, + "end": 12212.8, + "probability": 0.1 + }, + { + "start": 12212.86, + "end": 12214.8, + "probability": 0.0922 + }, + { + "start": 12214.8, + "end": 12216.18, + "probability": 0.2901 + }, + { + "start": 12221.88, + "end": 12223.44, + "probability": 0.0159 + }, + { + "start": 12228.38, + "end": 12232.62, + "probability": 0.063 + }, + { + "start": 12232.62, + "end": 12232.78, + "probability": 0.0876 + }, + { + "start": 12232.78, + "end": 12232.96, + "probability": 0.2131 + }, + { + "start": 12233.18, + "end": 12233.76, + "probability": 0.0518 + }, + { + "start": 12233.76, + "end": 12237.58, + "probability": 0.0863 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12341.0, + "end": 12341.0, + "probability": 0.0 + }, + { + "start": 12343.0, + "end": 12346.3, + "probability": 0.46 + }, + { + "start": 12346.86, + "end": 12347.16, + "probability": 0.1761 + }, + { + "start": 12347.16, + "end": 12347.16, + "probability": 0.0935 + }, + { + "start": 12347.16, + "end": 12347.8, + "probability": 0.113 + }, + { + "start": 12347.8, + "end": 12351.26, + "probability": 0.5262 + }, + { + "start": 12351.66, + "end": 12358.96, + "probability": 0.6633 + }, + { + "start": 12359.06, + "end": 12361.5, + "probability": 0.9686 + }, + { + "start": 12361.68, + "end": 12362.24, + "probability": 0.8236 + }, + { + "start": 12362.66, + "end": 12364.26, + "probability": 0.7518 + }, + { + "start": 12365.0, + "end": 12370.94, + "probability": 0.5784 + }, + { + "start": 12370.98, + "end": 12372.14, + "probability": 0.6018 + }, + { + "start": 12372.86, + "end": 12378.06, + "probability": 0.9939 + }, + { + "start": 12378.72, + "end": 12381.38, + "probability": 0.727 + }, + { + "start": 12381.8, + "end": 12388.86, + "probability": 0.9435 + }, + { + "start": 12389.76, + "end": 12395.88, + "probability": 0.4687 + }, + { + "start": 12396.08, + "end": 12397.01, + "probability": 0.9387 + }, + { + "start": 12397.4, + "end": 12401.56, + "probability": 0.7873 + }, + { + "start": 12401.6, + "end": 12407.14, + "probability": 0.4955 + }, + { + "start": 12408.7, + "end": 12413.28, + "probability": 0.8737 + }, + { + "start": 12413.32, + "end": 12416.24, + "probability": 0.5162 + }, + { + "start": 12418.38, + "end": 12422.7, + "probability": 0.8227 + }, + { + "start": 12422.74, + "end": 12423.22, + "probability": 0.7481 + }, + { + "start": 12423.24, + "end": 12431.46, + "probability": 0.8944 + }, + { + "start": 12431.46, + "end": 12443.52, + "probability": 0.9836 + }, + { + "start": 12444.22, + "end": 12448.68, + "probability": 0.4144 + }, + { + "start": 12448.78, + "end": 12457.16, + "probability": 0.5625 + }, + { + "start": 12457.28, + "end": 12461.34, + "probability": 0.9889 + }, + { + "start": 12461.9, + "end": 12465.26, + "probability": 0.9176 + }, + { + "start": 12465.66, + "end": 12467.24, + "probability": 0.5069 + }, + { + "start": 12467.3, + "end": 12470.38, + "probability": 0.9845 + }, + { + "start": 12470.52, + "end": 12471.28, + "probability": 0.7451 + }, + { + "start": 12471.34, + "end": 12472.28, + "probability": 0.8266 + }, + { + "start": 12472.74, + "end": 12477.06, + "probability": 0.6456 + }, + { + "start": 12477.58, + "end": 12478.32, + "probability": 0.9662 + }, + { + "start": 12484.4, + "end": 12488.52, + "probability": 0.6652 + }, + { + "start": 12489.2, + "end": 12491.6, + "probability": 0.722 + }, + { + "start": 12492.3, + "end": 12497.4, + "probability": 0.9028 + }, + { + "start": 12497.94, + "end": 12498.57, + "probability": 0.7336 + }, + { + "start": 12499.08, + "end": 12501.26, + "probability": 0.8502 + }, + { + "start": 12501.72, + "end": 12507.88, + "probability": 0.8757 + }, + { + "start": 12508.24, + "end": 12510.48, + "probability": 0.7783 + }, + { + "start": 12510.5, + "end": 12512.3, + "probability": 0.9856 + }, + { + "start": 12512.76, + "end": 12517.72, + "probability": 0.8009 + }, + { + "start": 12517.74, + "end": 12524.1, + "probability": 0.8141 + }, + { + "start": 12524.96, + "end": 12526.42, + "probability": 0.8021 + }, + { + "start": 12526.56, + "end": 12530.24, + "probability": 0.9907 + }, + { + "start": 12530.24, + "end": 12534.96, + "probability": 0.9992 + }, + { + "start": 12535.7, + "end": 12540.54, + "probability": 0.8807 + }, + { + "start": 12541.56, + "end": 12546.2, + "probability": 0.6742 + }, + { + "start": 12546.96, + "end": 12550.78, + "probability": 0.9582 + }, + { + "start": 12551.36, + "end": 12551.86, + "probability": 0.4114 + }, + { + "start": 12552.06, + "end": 12555.72, + "probability": 0.6382 + }, + { + "start": 12555.9, + "end": 12560.83, + "probability": 0.9067 + }, + { + "start": 12561.2, + "end": 12564.42, + "probability": 0.9914 + }, + { + "start": 12564.82, + "end": 12569.18, + "probability": 0.9929 + }, + { + "start": 12569.44, + "end": 12574.46, + "probability": 0.9732 + }, + { + "start": 12574.68, + "end": 12576.98, + "probability": 0.9868 + }, + { + "start": 12577.62, + "end": 12582.74, + "probability": 0.8653 + }, + { + "start": 12583.26, + "end": 12583.56, + "probability": 0.4954 + }, + { + "start": 12583.66, + "end": 12587.5, + "probability": 0.9929 + }, + { + "start": 12587.84, + "end": 12590.12, + "probability": 0.9843 + }, + { + "start": 12590.52, + "end": 12592.46, + "probability": 0.9465 + }, + { + "start": 12592.88, + "end": 12593.98, + "probability": 0.6896 + }, + { + "start": 12594.16, + "end": 12597.52, + "probability": 0.959 + }, + { + "start": 12597.84, + "end": 12600.82, + "probability": 0.962 + }, + { + "start": 12600.96, + "end": 12603.02, + "probability": 0.6602 + }, + { + "start": 12603.02, + "end": 12606.88, + "probability": 0.7773 + }, + { + "start": 12607.04, + "end": 12610.86, + "probability": 0.9932 + }, + { + "start": 12610.94, + "end": 12613.94, + "probability": 0.9922 + }, + { + "start": 12614.26, + "end": 12614.26, + "probability": 0.5913 + }, + { + "start": 12614.36, + "end": 12615.5, + "probability": 0.8281 + }, + { + "start": 12615.66, + "end": 12616.14, + "probability": 0.9673 + }, + { + "start": 12624.0, + "end": 12627.0, + "probability": 0.6826 + }, + { + "start": 12627.62, + "end": 12628.46, + "probability": 0.5424 + }, + { + "start": 12628.48, + "end": 12629.18, + "probability": 0.8434 + }, + { + "start": 12630.08, + "end": 12631.6, + "probability": 0.9792 + }, + { + "start": 12631.6, + "end": 12633.42, + "probability": 0.7916 + }, + { + "start": 12634.14, + "end": 12637.9, + "probability": 0.4636 + }, + { + "start": 12637.9, + "end": 12638.34, + "probability": 0.3415 + }, + { + "start": 12638.34, + "end": 12639.48, + "probability": 0.6433 + }, + { + "start": 12644.28, + "end": 12646.28, + "probability": 0.0116 + }, + { + "start": 12647.69, + "end": 12651.05, + "probability": 0.0293 + }, + { + "start": 12655.3, + "end": 12655.94, + "probability": 0.3233 + }, + { + "start": 12656.22, + "end": 12656.22, + "probability": 0.013 + }, + { + "start": 12656.22, + "end": 12656.3, + "probability": 0.0868 + }, + { + "start": 12656.3, + "end": 12656.3, + "probability": 0.0681 + }, + { + "start": 12656.3, + "end": 12658.37, + "probability": 0.6598 + }, + { + "start": 12661.74, + "end": 12664.85, + "probability": 0.6684 + }, + { + "start": 12667.2, + "end": 12668.6, + "probability": 0.034 + }, + { + "start": 12668.7, + "end": 12669.06, + "probability": 0.4321 + }, + { + "start": 12669.06, + "end": 12669.06, + "probability": 0.6498 + }, + { + "start": 12669.08, + "end": 12669.86, + "probability": 0.9088 + }, + { + "start": 12676.6, + "end": 12677.3, + "probability": 0.5055 + }, + { + "start": 12678.0, + "end": 12679.66, + "probability": 0.8595 + }, + { + "start": 12681.72, + "end": 12684.78, + "probability": 0.848 + }, + { + "start": 12684.92, + "end": 12686.1, + "probability": 0.9805 + }, + { + "start": 12686.14, + "end": 12689.68, + "probability": 0.9718 + }, + { + "start": 12689.96, + "end": 12691.38, + "probability": 0.9792 + }, + { + "start": 12691.82, + "end": 12693.8, + "probability": 0.8466 + }, + { + "start": 12715.86, + "end": 12716.6, + "probability": 0.4989 + }, + { + "start": 12717.06, + "end": 12718.1, + "probability": 0.679 + }, + { + "start": 12718.42, + "end": 12720.66, + "probability": 0.9186 + }, + { + "start": 12720.76, + "end": 12722.18, + "probability": 0.9047 + }, + { + "start": 12723.48, + "end": 12731.0, + "probability": 0.8687 + }, + { + "start": 12731.68, + "end": 12733.78, + "probability": 0.9811 + }, + { + "start": 12733.88, + "end": 12734.52, + "probability": 0.5707 + }, + { + "start": 12734.62, + "end": 12739.06, + "probability": 0.928 + }, + { + "start": 12739.18, + "end": 12740.54, + "probability": 0.9541 + }, + { + "start": 12741.12, + "end": 12742.29, + "probability": 0.9683 + }, + { + "start": 12743.88, + "end": 12745.48, + "probability": 0.9131 + }, + { + "start": 12745.84, + "end": 12746.88, + "probability": 0.7102 + }, + { + "start": 12747.38, + "end": 12752.32, + "probability": 0.9963 + }, + { + "start": 12752.98, + "end": 12754.18, + "probability": 0.7545 + }, + { + "start": 12754.72, + "end": 12756.46, + "probability": 0.7399 + }, + { + "start": 12756.62, + "end": 12758.36, + "probability": 0.9608 + }, + { + "start": 12758.46, + "end": 12764.9, + "probability": 0.9778 + }, + { + "start": 12765.76, + "end": 12767.86, + "probability": 0.9551 + }, + { + "start": 12768.44, + "end": 12773.88, + "probability": 0.9719 + }, + { + "start": 12773.88, + "end": 12777.38, + "probability": 0.9945 + }, + { + "start": 12777.9, + "end": 12781.0, + "probability": 0.9382 + }, + { + "start": 12781.1, + "end": 12785.74, + "probability": 0.8673 + }, + { + "start": 12786.32, + "end": 12786.32, + "probability": 0.0447 + }, + { + "start": 12786.32, + "end": 12790.98, + "probability": 0.9321 + }, + { + "start": 12791.54, + "end": 12792.1, + "probability": 0.7112 + }, + { + "start": 12792.72, + "end": 12795.96, + "probability": 0.9553 + }, + { + "start": 12796.64, + "end": 12800.98, + "probability": 0.7803 + }, + { + "start": 12801.04, + "end": 12805.36, + "probability": 0.9753 + }, + { + "start": 12806.0, + "end": 12806.86, + "probability": 0.6667 + }, + { + "start": 12807.6, + "end": 12808.5, + "probability": 0.8122 + }, + { + "start": 12808.62, + "end": 12810.14, + "probability": 0.9905 + }, + { + "start": 12810.58, + "end": 12813.08, + "probability": 0.9218 + }, + { + "start": 12813.7, + "end": 12815.62, + "probability": 0.9683 + }, + { + "start": 12816.1, + "end": 12818.4, + "probability": 0.9792 + }, + { + "start": 12818.46, + "end": 12821.04, + "probability": 0.8976 + }, + { + "start": 12821.44, + "end": 12822.28, + "probability": 0.7452 + }, + { + "start": 12822.62, + "end": 12825.72, + "probability": 0.667 + }, + { + "start": 12826.44, + "end": 12828.29, + "probability": 0.9857 + }, + { + "start": 12828.92, + "end": 12829.02, + "probability": 0.8213 + }, + { + "start": 12829.1, + "end": 12830.1, + "probability": 0.9136 + }, + { + "start": 12830.38, + "end": 12832.88, + "probability": 0.9857 + }, + { + "start": 12832.96, + "end": 12834.0, + "probability": 0.96 + }, + { + "start": 12834.52, + "end": 12839.92, + "probability": 0.9793 + }, + { + "start": 12840.12, + "end": 12840.85, + "probability": 0.7692 + }, + { + "start": 12841.06, + "end": 12842.08, + "probability": 0.9204 + }, + { + "start": 12842.48, + "end": 12844.48, + "probability": 0.9408 + }, + { + "start": 12845.2, + "end": 12848.24, + "probability": 0.96 + }, + { + "start": 12848.38, + "end": 12848.68, + "probability": 0.5547 + }, + { + "start": 12848.7, + "end": 12849.28, + "probability": 0.9399 + }, + { + "start": 12849.92, + "end": 12851.98, + "probability": 0.5508 + }, + { + "start": 12852.12, + "end": 12852.84, + "probability": 0.8782 + }, + { + "start": 12852.88, + "end": 12856.86, + "probability": 0.9959 + }, + { + "start": 12857.18, + "end": 12859.0, + "probability": 0.9897 + }, + { + "start": 12859.5, + "end": 12860.61, + "probability": 0.9497 + }, + { + "start": 12861.38, + "end": 12862.82, + "probability": 0.9609 + }, + { + "start": 12863.44, + "end": 12864.84, + "probability": 0.9697 + }, + { + "start": 12864.86, + "end": 12866.78, + "probability": 0.9932 + }, + { + "start": 12867.56, + "end": 12872.76, + "probability": 0.9944 + }, + { + "start": 12873.56, + "end": 12874.64, + "probability": 0.7669 + }, + { + "start": 12875.5, + "end": 12877.12, + "probability": 0.6584 + }, + { + "start": 12877.66, + "end": 12879.02, + "probability": 0.9676 + }, + { + "start": 12879.5, + "end": 12881.06, + "probability": 0.9285 + }, + { + "start": 12881.34, + "end": 12882.5, + "probability": 0.962 + }, + { + "start": 12882.78, + "end": 12883.98, + "probability": 0.9172 + }, + { + "start": 12884.26, + "end": 12885.9, + "probability": 0.9829 + }, + { + "start": 12886.0, + "end": 12886.62, + "probability": 0.7761 + }, + { + "start": 12886.64, + "end": 12893.86, + "probability": 0.9971 + }, + { + "start": 12894.54, + "end": 12898.1, + "probability": 0.9557 + }, + { + "start": 12899.91, + "end": 12902.0, + "probability": 0.9849 + }, + { + "start": 12902.12, + "end": 12905.16, + "probability": 0.9458 + }, + { + "start": 12905.8, + "end": 12909.88, + "probability": 0.9803 + }, + { + "start": 12910.64, + "end": 12914.72, + "probability": 0.9521 + }, + { + "start": 12914.8, + "end": 12915.46, + "probability": 0.6479 + }, + { + "start": 12916.56, + "end": 12918.2, + "probability": 0.95 + }, + { + "start": 12918.64, + "end": 12919.38, + "probability": 0.7733 + }, + { + "start": 12920.38, + "end": 12923.74, + "probability": 0.9878 + }, + { + "start": 12924.32, + "end": 12925.44, + "probability": 0.8485 + }, + { + "start": 12926.0, + "end": 12928.86, + "probability": 0.7362 + }, + { + "start": 12928.9, + "end": 12932.8, + "probability": 0.9912 + }, + { + "start": 12932.82, + "end": 12934.06, + "probability": 0.9648 + }, + { + "start": 12934.94, + "end": 12937.92, + "probability": 0.6693 + }, + { + "start": 12937.92, + "end": 12938.4, + "probability": 0.1284 + }, + { + "start": 12938.58, + "end": 12940.1, + "probability": 0.9851 + }, + { + "start": 12940.58, + "end": 12944.76, + "probability": 0.974 + }, + { + "start": 12945.2, + "end": 12949.1, + "probability": 0.8677 + }, + { + "start": 12949.4, + "end": 12950.88, + "probability": 0.9725 + }, + { + "start": 12951.26, + "end": 12953.0, + "probability": 0.9175 + }, + { + "start": 12953.46, + "end": 12955.34, + "probability": 0.7274 + }, + { + "start": 12955.4, + "end": 12956.2, + "probability": 0.946 + }, + { + "start": 12956.32, + "end": 12957.09, + "probability": 0.7516 + }, + { + "start": 12957.92, + "end": 12960.34, + "probability": 0.8856 + }, + { + "start": 12960.9, + "end": 12961.4, + "probability": 0.8853 + }, + { + "start": 12961.52, + "end": 12968.88, + "probability": 0.9907 + }, + { + "start": 12969.54, + "end": 12977.4, + "probability": 0.8579 + }, + { + "start": 12977.64, + "end": 12978.43, + "probability": 0.7783 + }, + { + "start": 12979.1, + "end": 12981.42, + "probability": 0.8752 + }, + { + "start": 12983.44, + "end": 12984.88, + "probability": 0.8352 + }, + { + "start": 12985.3, + "end": 12985.82, + "probability": 0.9092 + }, + { + "start": 12986.36, + "end": 12987.76, + "probability": 0.9453 + }, + { + "start": 12988.28, + "end": 12990.02, + "probability": 0.9727 + }, + { + "start": 12990.12, + "end": 12991.22, + "probability": 0.9817 + }, + { + "start": 12991.38, + "end": 12992.54, + "probability": 0.9854 + }, + { + "start": 12993.26, + "end": 12994.46, + "probability": 0.9898 + }, + { + "start": 12995.16, + "end": 12999.26, + "probability": 0.9688 + }, + { + "start": 12999.26, + "end": 12999.98, + "probability": 0.8559 + }, + { + "start": 13000.12, + "end": 13000.98, + "probability": 0.3934 + }, + { + "start": 13001.04, + "end": 13002.92, + "probability": 0.9216 + }, + { + "start": 13003.46, + "end": 13004.86, + "probability": 0.6432 + }, + { + "start": 13005.06, + "end": 13007.18, + "probability": 0.5072 + }, + { + "start": 13007.18, + "end": 13008.5, + "probability": 0.7534 + }, + { + "start": 13009.02, + "end": 13013.14, + "probability": 0.9846 + }, + { + "start": 13013.2, + "end": 13015.34, + "probability": 0.9694 + }, + { + "start": 13015.9, + "end": 13017.22, + "probability": 0.7766 + }, + { + "start": 13017.32, + "end": 13018.0, + "probability": 0.4648 + }, + { + "start": 13018.56, + "end": 13020.18, + "probability": 0.4976 + }, + { + "start": 13020.28, + "end": 13024.32, + "probability": 0.7684 + }, + { + "start": 13024.38, + "end": 13025.0, + "probability": 0.6507 + }, + { + "start": 13025.12, + "end": 13026.74, + "probability": 0.8785 + }, + { + "start": 13027.2, + "end": 13027.88, + "probability": 0.9236 + }, + { + "start": 13027.98, + "end": 13029.88, + "probability": 0.8943 + }, + { + "start": 13030.5, + "end": 13031.2, + "probability": 0.7727 + }, + { + "start": 13031.28, + "end": 13031.4, + "probability": 0.6017 + }, + { + "start": 13031.48, + "end": 13032.8, + "probability": 0.8721 + }, + { + "start": 13032.92, + "end": 13035.98, + "probability": 0.92 + }, + { + "start": 13036.68, + "end": 13039.56, + "probability": 0.7193 + }, + { + "start": 13040.08, + "end": 13042.14, + "probability": 0.7915 + }, + { + "start": 13042.7, + "end": 13044.58, + "probability": 0.9875 + }, + { + "start": 13044.94, + "end": 13050.74, + "probability": 0.7926 + }, + { + "start": 13051.28, + "end": 13051.42, + "probability": 0.0214 + }, + { + "start": 13051.42, + "end": 13054.68, + "probability": 0.7791 + }, + { + "start": 13055.32, + "end": 13056.04, + "probability": 0.7739 + }, + { + "start": 13056.5, + "end": 13057.62, + "probability": 0.9636 + }, + { + "start": 13057.7, + "end": 13059.18, + "probability": 0.8967 + }, + { + "start": 13059.58, + "end": 13061.64, + "probability": 0.7407 + }, + { + "start": 13061.64, + "end": 13064.52, + "probability": 0.9644 + }, + { + "start": 13064.66, + "end": 13067.7, + "probability": 0.9924 + }, + { + "start": 13068.02, + "end": 13069.26, + "probability": 0.7093 + }, + { + "start": 13069.38, + "end": 13070.21, + "probability": 0.8706 + }, + { + "start": 13070.62, + "end": 13072.0, + "probability": 0.609 + }, + { + "start": 13072.16, + "end": 13073.9, + "probability": 0.9056 + }, + { + "start": 13074.44, + "end": 13075.12, + "probability": 0.8836 + }, + { + "start": 13075.18, + "end": 13075.83, + "probability": 0.8807 + }, + { + "start": 13076.7, + "end": 13078.82, + "probability": 0.9595 + }, + { + "start": 13079.54, + "end": 13083.98, + "probability": 0.9707 + }, + { + "start": 13084.38, + "end": 13085.84, + "probability": 0.9291 + }, + { + "start": 13086.04, + "end": 13087.38, + "probability": 0.9854 + }, + { + "start": 13088.18, + "end": 13091.22, + "probability": 0.7574 + }, + { + "start": 13091.62, + "end": 13093.56, + "probability": 0.9984 + }, + { + "start": 13094.1, + "end": 13096.46, + "probability": 0.8645 + }, + { + "start": 13096.54, + "end": 13100.68, + "probability": 0.8002 + }, + { + "start": 13100.82, + "end": 13101.86, + "probability": 0.8411 + }, + { + "start": 13101.96, + "end": 13103.04, + "probability": 0.7284 + }, + { + "start": 13103.58, + "end": 13106.16, + "probability": 0.9973 + }, + { + "start": 13106.58, + "end": 13108.02, + "probability": 0.9713 + }, + { + "start": 13108.04, + "end": 13110.28, + "probability": 0.9736 + }, + { + "start": 13110.38, + "end": 13111.92, + "probability": 0.7233 + }, + { + "start": 13112.88, + "end": 13113.5, + "probability": 0.6091 + }, + { + "start": 13113.6, + "end": 13117.38, + "probability": 0.9583 + }, + { + "start": 13117.88, + "end": 13118.76, + "probability": 0.9038 + }, + { + "start": 13119.66, + "end": 13121.78, + "probability": 0.9142 + }, + { + "start": 13121.98, + "end": 13125.32, + "probability": 0.9149 + }, + { + "start": 13125.56, + "end": 13126.3, + "probability": 0.9199 + }, + { + "start": 13126.36, + "end": 13126.58, + "probability": 0.5621 + }, + { + "start": 13126.7, + "end": 13127.32, + "probability": 0.791 + }, + { + "start": 13127.4, + "end": 13128.34, + "probability": 0.9523 + }, + { + "start": 13128.42, + "end": 13128.87, + "probability": 0.9496 + }, + { + "start": 13129.84, + "end": 13130.51, + "probability": 0.9818 + }, + { + "start": 13131.5, + "end": 13133.02, + "probability": 0.9551 + }, + { + "start": 13133.34, + "end": 13134.84, + "probability": 0.9884 + }, + { + "start": 13134.86, + "end": 13136.12, + "probability": 0.9159 + }, + { + "start": 13136.48, + "end": 13137.86, + "probability": 0.8657 + }, + { + "start": 13138.06, + "end": 13138.68, + "probability": 0.7081 + }, + { + "start": 13138.88, + "end": 13139.68, + "probability": 0.769 + }, + { + "start": 13140.18, + "end": 13142.18, + "probability": 0.9575 + }, + { + "start": 13142.78, + "end": 13147.97, + "probability": 0.9424 + }, + { + "start": 13149.76, + "end": 13152.4, + "probability": 0.9978 + }, + { + "start": 13153.47, + "end": 13157.16, + "probability": 0.993 + }, + { + "start": 13159.12, + "end": 13160.76, + "probability": 0.4069 + }, + { + "start": 13160.76, + "end": 13161.06, + "probability": 0.5981 + }, + { + "start": 13161.12, + "end": 13165.14, + "probability": 0.9929 + }, + { + "start": 13165.28, + "end": 13166.02, + "probability": 0.7812 + }, + { + "start": 13166.4, + "end": 13170.38, + "probability": 0.7765 + }, + { + "start": 13170.58, + "end": 13172.78, + "probability": 0.9893 + }, + { + "start": 13174.22, + "end": 13176.32, + "probability": 0.7915 + }, + { + "start": 13177.04, + "end": 13180.8, + "probability": 0.9903 + }, + { + "start": 13180.94, + "end": 13181.52, + "probability": 0.412 + }, + { + "start": 13182.09, + "end": 13185.34, + "probability": 0.9731 + }, + { + "start": 13185.7, + "end": 13190.22, + "probability": 0.9926 + }, + { + "start": 13190.22, + "end": 13190.7, + "probability": 0.0473 + }, + { + "start": 13190.98, + "end": 13191.76, + "probability": 0.7659 + }, + { + "start": 13192.0, + "end": 13197.34, + "probability": 0.6945 + }, + { + "start": 13197.88, + "end": 13200.62, + "probability": 0.9421 + }, + { + "start": 13201.3, + "end": 13202.54, + "probability": 0.9839 + }, + { + "start": 13203.02, + "end": 13208.52, + "probability": 0.979 + }, + { + "start": 13208.72, + "end": 13210.34, + "probability": 0.7856 + }, + { + "start": 13210.62, + "end": 13212.74, + "probability": 0.9773 + }, + { + "start": 13212.96, + "end": 13216.32, + "probability": 0.9927 + }, + { + "start": 13216.9, + "end": 13218.02, + "probability": 0.9493 + }, + { + "start": 13218.32, + "end": 13224.0, + "probability": 0.9396 + }, + { + "start": 13224.16, + "end": 13224.8, + "probability": 0.8604 + }, + { + "start": 13224.88, + "end": 13225.74, + "probability": 0.6279 + }, + { + "start": 13225.74, + "end": 13226.1, + "probability": 0.453 + }, + { + "start": 13226.1, + "end": 13226.58, + "probability": 0.7315 + }, + { + "start": 13227.38, + "end": 13228.34, + "probability": 0.2667 + }, + { + "start": 13228.4, + "end": 13231.88, + "probability": 0.7854 + }, + { + "start": 13232.44, + "end": 13234.94, + "probability": 0.9302 + }, + { + "start": 13235.06, + "end": 13235.88, + "probability": 0.9618 + }, + { + "start": 13236.0, + "end": 13236.88, + "probability": 0.3181 + }, + { + "start": 13236.88, + "end": 13238.28, + "probability": 0.9907 + }, + { + "start": 13238.74, + "end": 13240.72, + "probability": 0.6923 + }, + { + "start": 13240.82, + "end": 13241.6, + "probability": 0.947 + }, + { + "start": 13241.84, + "end": 13246.46, + "probability": 0.9823 + }, + { + "start": 13247.32, + "end": 13248.28, + "probability": 0.9512 + }, + { + "start": 13248.38, + "end": 13251.16, + "probability": 0.9103 + }, + { + "start": 13251.24, + "end": 13253.28, + "probability": 0.9821 + }, + { + "start": 13254.08, + "end": 13257.98, + "probability": 0.9891 + }, + { + "start": 13257.98, + "end": 13260.9, + "probability": 0.8456 + }, + { + "start": 13261.46, + "end": 13261.46, + "probability": 0.2611 + }, + { + "start": 13261.46, + "end": 13266.2, + "probability": 0.9723 + }, + { + "start": 13267.0, + "end": 13269.46, + "probability": 0.7577 + }, + { + "start": 13269.7, + "end": 13271.28, + "probability": 0.8881 + }, + { + "start": 13271.66, + "end": 13274.0, + "probability": 0.8758 + }, + { + "start": 13274.2, + "end": 13277.84, + "probability": 0.9902 + }, + { + "start": 13277.9, + "end": 13279.26, + "probability": 0.9885 + }, + { + "start": 13279.86, + "end": 13280.6, + "probability": 0.8054 + }, + { + "start": 13280.78, + "end": 13281.68, + "probability": 0.995 + }, + { + "start": 13281.8, + "end": 13284.8, + "probability": 0.9814 + }, + { + "start": 13285.16, + "end": 13287.09, + "probability": 0.9902 + }, + { + "start": 13287.22, + "end": 13288.6, + "probability": 0.9539 + }, + { + "start": 13288.76, + "end": 13289.8, + "probability": 0.855 + }, + { + "start": 13290.3, + "end": 13292.0, + "probability": 0.7878 + }, + { + "start": 13292.46, + "end": 13295.66, + "probability": 0.9811 + }, + { + "start": 13295.74, + "end": 13297.42, + "probability": 0.9115 + }, + { + "start": 13298.26, + "end": 13302.08, + "probability": 0.9948 + }, + { + "start": 13302.88, + "end": 13305.22, + "probability": 0.96 + }, + { + "start": 13306.22, + "end": 13309.48, + "probability": 0.9876 + }, + { + "start": 13309.86, + "end": 13312.26, + "probability": 0.8932 + }, + { + "start": 13312.32, + "end": 13313.86, + "probability": 0.794 + }, + { + "start": 13314.18, + "end": 13317.48, + "probability": 0.7891 + }, + { + "start": 13317.48, + "end": 13320.9, + "probability": 0.8585 + }, + { + "start": 13321.0, + "end": 13322.42, + "probability": 0.719 + }, + { + "start": 13322.5, + "end": 13325.34, + "probability": 0.6248 + }, + { + "start": 13326.18, + "end": 13326.62, + "probability": 0.0349 + }, + { + "start": 13327.7, + "end": 13327.7, + "probability": 0.0132 + }, + { + "start": 13329.16, + "end": 13330.62, + "probability": 0.0395 + }, + { + "start": 13339.06, + "end": 13339.49, + "probability": 0.0674 + }, + { + "start": 13339.78, + "end": 13340.0, + "probability": 0.2672 + }, + { + "start": 13340.0, + "end": 13342.14, + "probability": 0.2048 + }, + { + "start": 13342.14, + "end": 13342.92, + "probability": 0.0112 + }, + { + "start": 13351.44, + "end": 13351.56, + "probability": 0.3594 + }, + { + "start": 13351.56, + "end": 13354.5, + "probability": 0.7669 + }, + { + "start": 13355.66, + "end": 13358.0, + "probability": 0.8681 + }, + { + "start": 13359.76, + "end": 13367.5, + "probability": 0.7545 + }, + { + "start": 13367.88, + "end": 13370.18, + "probability": 0.8071 + }, + { + "start": 13370.24, + "end": 13370.9, + "probability": 0.7922 + }, + { + "start": 13371.0, + "end": 13371.18, + "probability": 0.534 + }, + { + "start": 13371.73, + "end": 13374.84, + "probability": 0.4595 + }, + { + "start": 13375.38, + "end": 13376.24, + "probability": 0.9528 + }, + { + "start": 13378.28, + "end": 13379.39, + "probability": 0.9839 + }, + { + "start": 13381.04, + "end": 13382.68, + "probability": 0.9456 + }, + { + "start": 13384.0, + "end": 13387.18, + "probability": 0.6003 + }, + { + "start": 13387.24, + "end": 13388.58, + "probability": 0.8366 + }, + { + "start": 13389.98, + "end": 13390.16, + "probability": 0.326 + }, + { + "start": 13390.44, + "end": 13391.44, + "probability": 0.8971 + }, + { + "start": 13391.56, + "end": 13393.36, + "probability": 0.9905 + }, + { + "start": 13395.42, + "end": 13398.04, + "probability": 0.988 + }, + { + "start": 13399.44, + "end": 13400.68, + "probability": 0.984 + }, + { + "start": 13401.3, + "end": 13402.42, + "probability": 0.9498 + }, + { + "start": 13404.32, + "end": 13405.55, + "probability": 0.3608 + }, + { + "start": 13407.06, + "end": 13407.88, + "probability": 0.452 + }, + { + "start": 13409.0, + "end": 13410.1, + "probability": 0.5929 + }, + { + "start": 13412.3, + "end": 13413.31, + "probability": 0.9878 + }, + { + "start": 13414.62, + "end": 13414.9, + "probability": 0.9222 + }, + { + "start": 13415.86, + "end": 13416.52, + "probability": 0.5899 + }, + { + "start": 13417.34, + "end": 13420.68, + "probability": 0.9321 + }, + { + "start": 13422.66, + "end": 13425.22, + "probability": 0.9564 + }, + { + "start": 13425.54, + "end": 13425.7, + "probability": 0.8021 + }, + { + "start": 13427.1, + "end": 13427.84, + "probability": 0.5594 + }, + { + "start": 13427.84, + "end": 13428.34, + "probability": 0.577 + }, + { + "start": 13429.46, + "end": 13431.12, + "probability": 0.5876 + }, + { + "start": 13432.9, + "end": 13437.0, + "probability": 0.9655 + }, + { + "start": 13438.06, + "end": 13440.1, + "probability": 0.6917 + }, + { + "start": 13441.86, + "end": 13442.78, + "probability": 0.9741 + }, + { + "start": 13444.32, + "end": 13446.46, + "probability": 0.9364 + }, + { + "start": 13446.46, + "end": 13448.98, + "probability": 0.7359 + }, + { + "start": 13449.78, + "end": 13452.36, + "probability": 0.9484 + }, + { + "start": 13452.36, + "end": 13456.7, + "probability": 0.7226 + }, + { + "start": 13463.02, + "end": 13463.26, + "probability": 0.1856 + }, + { + "start": 13463.26, + "end": 13466.1, + "probability": 0.5962 + }, + { + "start": 13466.56, + "end": 13467.42, + "probability": 0.645 + }, + { + "start": 13469.46, + "end": 13471.18, + "probability": 0.2208 + }, + { + "start": 13471.18, + "end": 13472.18, + "probability": 0.1514 + }, + { + "start": 13472.7, + "end": 13473.48, + "probability": 0.6863 + }, + { + "start": 13474.1, + "end": 13476.64, + "probability": 0.8736 + }, + { + "start": 13476.64, + "end": 13477.32, + "probability": 0.3916 + }, + { + "start": 13480.72, + "end": 13482.78, + "probability": 0.8113 + }, + { + "start": 13486.2, + "end": 13489.54, + "probability": 0.6214 + }, + { + "start": 13490.08, + "end": 13490.99, + "probability": 0.45 + }, + { + "start": 13491.78, + "end": 13493.46, + "probability": 0.9398 + }, + { + "start": 13494.4, + "end": 13496.72, + "probability": 0.9446 + }, + { + "start": 13496.76, + "end": 13498.0, + "probability": 0.934 + }, + { + "start": 13498.14, + "end": 13499.12, + "probability": 0.7251 + }, + { + "start": 13499.24, + "end": 13502.14, + "probability": 0.9003 + }, + { + "start": 13503.44, + "end": 13505.82, + "probability": 0.9574 + }, + { + "start": 13508.22, + "end": 13511.7, + "probability": 0.825 + }, + { + "start": 13512.98, + "end": 13514.96, + "probability": 0.8457 + }, + { + "start": 13514.96, + "end": 13516.96, + "probability": 0.9213 + }, + { + "start": 13517.8, + "end": 13521.02, + "probability": 0.9548 + }, + { + "start": 13521.56, + "end": 13522.56, + "probability": 0.8306 + }, + { + "start": 13523.22, + "end": 13524.86, + "probability": 0.9333 + }, + { + "start": 13526.82, + "end": 13528.54, + "probability": 0.773 + }, + { + "start": 13528.8, + "end": 13530.86, + "probability": 0.9873 + }, + { + "start": 13531.04, + "end": 13532.64, + "probability": 0.6007 + }, + { + "start": 13532.72, + "end": 13534.66, + "probability": 0.9546 + }, + { + "start": 13535.14, + "end": 13537.4, + "probability": 0.9279 + }, + { + "start": 13539.42, + "end": 13540.12, + "probability": 0.8672 + }, + { + "start": 13541.02, + "end": 13542.1, + "probability": 0.7998 + }, + { + "start": 13542.18, + "end": 13544.14, + "probability": 0.9494 + }, + { + "start": 13544.24, + "end": 13545.08, + "probability": 0.9805 + }, + { + "start": 13545.2, + "end": 13548.3, + "probability": 0.252 + }, + { + "start": 13548.84, + "end": 13550.38, + "probability": 0.7677 + }, + { + "start": 13550.56, + "end": 13551.7, + "probability": 0.9066 + }, + { + "start": 13552.04, + "end": 13553.4, + "probability": 0.6736 + }, + { + "start": 13553.46, + "end": 13554.54, + "probability": 0.7891 + }, + { + "start": 13555.1, + "end": 13556.16, + "probability": 0.7219 + }, + { + "start": 13556.28, + "end": 13557.02, + "probability": 0.9211 + }, + { + "start": 13557.16, + "end": 13558.12, + "probability": 0.8704 + }, + { + "start": 13558.24, + "end": 13561.12, + "probability": 0.9355 + }, + { + "start": 13561.42, + "end": 13562.42, + "probability": 0.0559 + }, + { + "start": 13562.9, + "end": 13563.1, + "probability": 0.3905 + }, + { + "start": 13563.1, + "end": 13564.74, + "probability": 0.5628 + }, + { + "start": 13566.22, + "end": 13569.16, + "probability": 0.7803 + }, + { + "start": 13570.42, + "end": 13573.56, + "probability": 0.8813 + }, + { + "start": 13574.06, + "end": 13574.88, + "probability": 0.6025 + }, + { + "start": 13575.22, + "end": 13576.0, + "probability": 0.8965 + }, + { + "start": 13576.38, + "end": 13577.18, + "probability": 0.8998 + }, + { + "start": 13577.44, + "end": 13578.08, + "probability": 0.8804 + }, + { + "start": 13578.22, + "end": 13578.98, + "probability": 0.8537 + }, + { + "start": 13579.38, + "end": 13580.32, + "probability": 0.7477 + }, + { + "start": 13580.54, + "end": 13582.32, + "probability": 0.2955 + }, + { + "start": 13584.41, + "end": 13588.38, + "probability": 0.1669 + }, + { + "start": 13589.7, + "end": 13592.66, + "probability": 0.7347 + }, + { + "start": 13592.92, + "end": 13593.41, + "probability": 0.8989 + }, + { + "start": 13594.32, + "end": 13595.88, + "probability": 0.9208 + }, + { + "start": 13599.26, + "end": 13600.72, + "probability": 0.9297 + }, + { + "start": 13601.02, + "end": 13602.62, + "probability": 0.5165 + }, + { + "start": 13602.72, + "end": 13604.2, + "probability": 0.8314 + }, + { + "start": 13604.74, + "end": 13607.58, + "probability": 0.9054 + }, + { + "start": 13608.8, + "end": 13610.98, + "probability": 0.9362 + }, + { + "start": 13611.9, + "end": 13615.0, + "probability": 0.7587 + }, + { + "start": 13615.66, + "end": 13616.16, + "probability": 0.9578 + }, + { + "start": 13618.7, + "end": 13619.2, + "probability": 0.8346 + }, + { + "start": 13619.28, + "end": 13620.48, + "probability": 0.767 + }, + { + "start": 13620.54, + "end": 13622.54, + "probability": 0.9658 + }, + { + "start": 13622.7, + "end": 13626.36, + "probability": 0.9775 + }, + { + "start": 13627.26, + "end": 13630.11, + "probability": 0.9378 + }, + { + "start": 13632.82, + "end": 13636.1, + "probability": 0.7247 + }, + { + "start": 13637.0, + "end": 13638.88, + "probability": 0.5363 + }, + { + "start": 13640.78, + "end": 13640.78, + "probability": 0.2482 + }, + { + "start": 13640.78, + "end": 13643.74, + "probability": 0.5824 + }, + { + "start": 13643.74, + "end": 13646.74, + "probability": 0.9851 + }, + { + "start": 13647.38, + "end": 13649.6, + "probability": 0.9046 + }, + { + "start": 13650.3, + "end": 13652.54, + "probability": 0.8241 + }, + { + "start": 13652.54, + "end": 13656.78, + "probability": 0.9785 + }, + { + "start": 13657.86, + "end": 13659.56, + "probability": 0.7607 + }, + { + "start": 13660.78, + "end": 13664.78, + "probability": 0.8315 + }, + { + "start": 13666.26, + "end": 13669.46, + "probability": 0.8374 + }, + { + "start": 13670.52, + "end": 13671.54, + "probability": 0.6377 + }, + { + "start": 13671.54, + "end": 13672.65, + "probability": 0.8615 + }, + { + "start": 13673.18, + "end": 13674.86, + "probability": 0.9826 + }, + { + "start": 13675.0, + "end": 13676.3, + "probability": 0.5998 + }, + { + "start": 13677.0, + "end": 13678.26, + "probability": 0.6988 + }, + { + "start": 13678.36, + "end": 13681.86, + "probability": 0.8298 + }, + { + "start": 13681.9, + "end": 13682.26, + "probability": 0.2318 + }, + { + "start": 13682.5, + "end": 13683.12, + "probability": 0.2653 + }, + { + "start": 13684.66, + "end": 13686.9, + "probability": 0.6829 + }, + { + "start": 13688.16, + "end": 13690.12, + "probability": 0.2324 + }, + { + "start": 13690.28, + "end": 13690.4, + "probability": 0.127 + }, + { + "start": 13691.58, + "end": 13692.76, + "probability": 0.951 + }, + { + "start": 13693.1, + "end": 13693.86, + "probability": 0.8497 + }, + { + "start": 13694.32, + "end": 13696.54, + "probability": 0.7488 + }, + { + "start": 13696.68, + "end": 13697.62, + "probability": 0.8815 + }, + { + "start": 13697.68, + "end": 13698.54, + "probability": 0.7929 + }, + { + "start": 13698.68, + "end": 13699.24, + "probability": 0.4192 + }, + { + "start": 13699.36, + "end": 13700.48, + "probability": 0.5954 + }, + { + "start": 13700.74, + "end": 13701.65, + "probability": 0.7421 + }, + { + "start": 13701.82, + "end": 13703.08, + "probability": 0.8111 + }, + { + "start": 13703.18, + "end": 13703.82, + "probability": 0.3727 + }, + { + "start": 13704.5, + "end": 13706.04, + "probability": 0.6605 + }, + { + "start": 13706.42, + "end": 13709.5, + "probability": 0.5403 + }, + { + "start": 13709.58, + "end": 13710.2, + "probability": 0.7878 + }, + { + "start": 13711.28, + "end": 13711.34, + "probability": 0.166 + }, + { + "start": 13711.34, + "end": 13714.18, + "probability": 0.2936 + }, + { + "start": 13714.58, + "end": 13717.02, + "probability": 0.3914 + }, + { + "start": 13717.5, + "end": 13718.06, + "probability": 0.725 + }, + { + "start": 13718.14, + "end": 13719.74, + "probability": 0.991 + }, + { + "start": 13719.84, + "end": 13720.16, + "probability": 0.7954 + }, + { + "start": 13720.28, + "end": 13720.86, + "probability": 0.716 + }, + { + "start": 13721.38, + "end": 13723.28, + "probability": 0.7769 + }, + { + "start": 13723.34, + "end": 13728.48, + "probability": 0.9829 + }, + { + "start": 13728.76, + "end": 13731.56, + "probability": 0.9838 + }, + { + "start": 13732.96, + "end": 13735.5, + "probability": 0.7125 + }, + { + "start": 13735.66, + "end": 13737.54, + "probability": 0.9978 + }, + { + "start": 13739.96, + "end": 13740.62, + "probability": 0.781 + }, + { + "start": 13740.84, + "end": 13742.18, + "probability": 0.8128 + }, + { + "start": 13742.32, + "end": 13742.94, + "probability": 0.813 + }, + { + "start": 13742.94, + "end": 13745.94, + "probability": 0.8849 + }, + { + "start": 13746.06, + "end": 13747.42, + "probability": 0.9226 + }, + { + "start": 13747.76, + "end": 13750.08, + "probability": 0.8051 + }, + { + "start": 13750.16, + "end": 13753.94, + "probability": 0.8784 + }, + { + "start": 13755.7, + "end": 13759.44, + "probability": 0.9627 + }, + { + "start": 13760.32, + "end": 13761.44, + "probability": 0.6714 + }, + { + "start": 13761.76, + "end": 13763.88, + "probability": 0.996 + }, + { + "start": 13764.02, + "end": 13766.0, + "probability": 0.9331 + }, + { + "start": 13766.54, + "end": 13768.03, + "probability": 0.8979 + }, + { + "start": 13768.6, + "end": 13770.4, + "probability": 0.6064 + }, + { + "start": 13770.44, + "end": 13771.14, + "probability": 0.8057 + }, + { + "start": 13771.28, + "end": 13772.46, + "probability": 0.9199 + }, + { + "start": 13772.58, + "end": 13773.2, + "probability": 0.2763 + }, + { + "start": 13773.66, + "end": 13774.62, + "probability": 0.8418 + }, + { + "start": 13774.66, + "end": 13775.82, + "probability": 0.7849 + }, + { + "start": 13776.06, + "end": 13777.5, + "probability": 0.9167 + }, + { + "start": 13777.5, + "end": 13778.12, + "probability": 0.672 + }, + { + "start": 13778.56, + "end": 13781.62, + "probability": 0.9983 + }, + { + "start": 13782.48, + "end": 13786.34, + "probability": 0.9869 + }, + { + "start": 13787.56, + "end": 13791.06, + "probability": 0.9856 + }, + { + "start": 13792.22, + "end": 13794.44, + "probability": 0.8683 + }, + { + "start": 13795.0, + "end": 13796.08, + "probability": 0.895 + }, + { + "start": 13796.18, + "end": 13797.08, + "probability": 0.9578 + }, + { + "start": 13797.14, + "end": 13802.08, + "probability": 0.9932 + }, + { + "start": 13802.2, + "end": 13804.48, + "probability": 0.9618 + }, + { + "start": 13805.06, + "end": 13809.3, + "probability": 0.9717 + }, + { + "start": 13809.72, + "end": 13813.96, + "probability": 0.9926 + }, + { + "start": 13814.1, + "end": 13817.38, + "probability": 0.9408 + }, + { + "start": 13817.52, + "end": 13822.56, + "probability": 0.9826 + }, + { + "start": 13822.7, + "end": 13826.2, + "probability": 0.8817 + }, + { + "start": 13826.36, + "end": 13827.18, + "probability": 0.7742 + }, + { + "start": 13827.44, + "end": 13828.21, + "probability": 0.5797 + }, + { + "start": 13828.9, + "end": 13829.78, + "probability": 0.7908 + }, + { + "start": 13829.78, + "end": 13831.2, + "probability": 0.9837 + }, + { + "start": 13831.46, + "end": 13831.54, + "probability": 0.0648 + }, + { + "start": 13831.54, + "end": 13831.54, + "probability": 0.45 + }, + { + "start": 13831.54, + "end": 13831.54, + "probability": 0.27 + }, + { + "start": 13831.54, + "end": 13835.29, + "probability": 0.9798 + }, + { + "start": 13835.84, + "end": 13839.28, + "probability": 0.9511 + }, + { + "start": 13839.66, + "end": 13841.46, + "probability": 0.8525 + }, + { + "start": 13841.82, + "end": 13844.72, + "probability": 0.9943 + }, + { + "start": 13844.72, + "end": 13848.14, + "probability": 0.7705 + }, + { + "start": 13848.48, + "end": 13848.98, + "probability": 0.6565 + }, + { + "start": 13849.02, + "end": 13852.78, + "probability": 0.9753 + }, + { + "start": 13852.88, + "end": 13854.72, + "probability": 0.8735 + }, + { + "start": 13854.96, + "end": 13855.34, + "probability": 0.742 + }, + { + "start": 13856.46, + "end": 13858.5, + "probability": 0.9369 + }, + { + "start": 13858.54, + "end": 13858.84, + "probability": 0.5906 + }, + { + "start": 13859.08, + "end": 13864.72, + "probability": 0.9448 + }, + { + "start": 13864.88, + "end": 13868.92, + "probability": 0.8976 + }, + { + "start": 13869.5, + "end": 13871.02, + "probability": 0.6326 + }, + { + "start": 13873.36, + "end": 13874.06, + "probability": 0.6876 + }, + { + "start": 13874.14, + "end": 13874.66, + "probability": 0.749 + }, + { + "start": 13874.7, + "end": 13875.4, + "probability": 0.9491 + }, + { + "start": 13876.0, + "end": 13879.82, + "probability": 0.0454 + }, + { + "start": 13892.32, + "end": 13892.48, + "probability": 0.0546 + }, + { + "start": 13892.48, + "end": 13892.48, + "probability": 0.0233 + }, + { + "start": 13892.48, + "end": 13892.48, + "probability": 0.0392 + }, + { + "start": 13892.48, + "end": 13895.38, + "probability": 0.4953 + }, + { + "start": 13895.48, + "end": 13898.2, + "probability": 0.7741 + }, + { + "start": 13898.92, + "end": 13901.12, + "probability": 0.7777 + }, + { + "start": 13902.92, + "end": 13904.12, + "probability": 0.7361 + }, + { + "start": 13904.16, + "end": 13905.0, + "probability": 0.5126 + }, + { + "start": 13905.12, + "end": 13908.3, + "probability": 0.8372 + }, + { + "start": 13908.62, + "end": 13910.8, + "probability": 0.8703 + }, + { + "start": 13911.82, + "end": 13915.88, + "probability": 0.9666 + }, + { + "start": 13916.06, + "end": 13917.4, + "probability": 0.6159 + }, + { + "start": 13917.4, + "end": 13917.56, + "probability": 0.6578 + }, + { + "start": 13918.78, + "end": 13920.34, + "probability": 0.7836 + }, + { + "start": 13920.48, + "end": 13922.68, + "probability": 0.9771 + }, + { + "start": 13923.5, + "end": 13925.44, + "probability": 0.681 + }, + { + "start": 13925.44, + "end": 13927.76, + "probability": 0.5261 + }, + { + "start": 13928.08, + "end": 13929.1, + "probability": 0.0788 + }, + { + "start": 13929.24, + "end": 13930.28, + "probability": 0.9325 + }, + { + "start": 13930.36, + "end": 13931.22, + "probability": 0.6413 + }, + { + "start": 13932.56, + "end": 13933.76, + "probability": 0.7914 + }, + { + "start": 13935.42, + "end": 13935.62, + "probability": 0.004 + }, + { + "start": 13948.2, + "end": 13948.68, + "probability": 0.2485 + }, + { + "start": 13948.68, + "end": 13949.2, + "probability": 0.4515 + }, + { + "start": 13949.32, + "end": 13950.4, + "probability": 0.685 + }, + { + "start": 13950.4, + "end": 13952.24, + "probability": 0.405 + }, + { + "start": 13952.52, + "end": 13953.32, + "probability": 0.3695 + }, + { + "start": 13960.42, + "end": 13963.32, + "probability": 0.6085 + }, + { + "start": 13963.84, + "end": 13965.9, + "probability": 0.7006 + }, + { + "start": 13966.1, + "end": 13972.26, + "probability": 0.9816 + }, + { + "start": 13972.4, + "end": 13973.66, + "probability": 0.0901 + }, + { + "start": 13975.5, + "end": 13976.24, + "probability": 0.1797 + }, + { + "start": 13976.38, + "end": 13977.54, + "probability": 0.567 + }, + { + "start": 13977.6, + "end": 13980.46, + "probability": 0.6361 + }, + { + "start": 13981.04, + "end": 13988.08, + "probability": 0.9926 + }, + { + "start": 13988.6, + "end": 13993.72, + "probability": 0.8595 + }, + { + "start": 13994.38, + "end": 13998.94, + "probability": 0.9655 + }, + { + "start": 13999.08, + "end": 14001.08, + "probability": 0.7089 + }, + { + "start": 14001.48, + "end": 14002.04, + "probability": 0.7276 + }, + { + "start": 14002.08, + "end": 14002.98, + "probability": 0.7179 + }, + { + "start": 14003.54, + "end": 14004.12, + "probability": 0.763 + }, + { + "start": 14004.32, + "end": 14004.56, + "probability": 0.7239 + }, + { + "start": 14004.56, + "end": 14008.46, + "probability": 0.9622 + }, + { + "start": 14009.1, + "end": 14016.06, + "probability": 0.9524 + }, + { + "start": 14016.72, + "end": 14019.58, + "probability": 0.813 + }, + { + "start": 14020.16, + "end": 14025.47, + "probability": 0.6667 + }, + { + "start": 14025.82, + "end": 14028.44, + "probability": 0.9158 + }, + { + "start": 14028.48, + "end": 14029.7, + "probability": 0.9058 + }, + { + "start": 14030.66, + "end": 14035.28, + "probability": 0.9506 + }, + { + "start": 14035.86, + "end": 14037.24, + "probability": 0.9556 + }, + { + "start": 14037.76, + "end": 14045.12, + "probability": 0.994 + }, + { + "start": 14047.18, + "end": 14050.12, + "probability": 0.9871 + }, + { + "start": 14050.74, + "end": 14052.39, + "probability": 0.9787 + }, + { + "start": 14052.68, + "end": 14053.5, + "probability": 0.9015 + }, + { + "start": 14054.0, + "end": 14057.76, + "probability": 0.9717 + }, + { + "start": 14059.0, + "end": 14063.36, + "probability": 0.9919 + }, + { + "start": 14064.18, + "end": 14066.8, + "probability": 0.9089 + }, + { + "start": 14067.54, + "end": 14069.84, + "probability": 0.9586 + }, + { + "start": 14070.86, + "end": 14075.94, + "probability": 0.9594 + }, + { + "start": 14077.44, + "end": 14082.4, + "probability": 0.9989 + }, + { + "start": 14082.4, + "end": 14087.16, + "probability": 0.93 + }, + { + "start": 14087.86, + "end": 14089.88, + "probability": 0.6847 + }, + { + "start": 14090.72, + "end": 14092.9, + "probability": 0.9149 + }, + { + "start": 14093.26, + "end": 14094.7, + "probability": 0.8135 + }, + { + "start": 14095.1, + "end": 14095.62, + "probability": 0.9235 + }, + { + "start": 14096.62, + "end": 14098.62, + "probability": 0.9986 + }, + { + "start": 14099.74, + "end": 14102.76, + "probability": 0.9615 + }, + { + "start": 14103.54, + "end": 14104.1, + "probability": 0.7596 + }, + { + "start": 14104.71, + "end": 14108.44, + "probability": 0.4752 + }, + { + "start": 14108.6, + "end": 14109.6, + "probability": 0.6516 + }, + { + "start": 14109.94, + "end": 14111.16, + "probability": 0.9415 + }, + { + "start": 14112.14, + "end": 14115.94, + "probability": 0.9195 + }, + { + "start": 14117.06, + "end": 14118.26, + "probability": 0.9578 + }, + { + "start": 14118.78, + "end": 14125.1, + "probability": 0.9896 + }, + { + "start": 14125.1, + "end": 14126.09, + "probability": 0.9188 + }, + { + "start": 14126.28, + "end": 14127.36, + "probability": 0.905 + }, + { + "start": 14127.8, + "end": 14130.08, + "probability": 0.9718 + }, + { + "start": 14130.48, + "end": 14131.3, + "probability": 0.0887 + }, + { + "start": 14131.46, + "end": 14133.64, + "probability": 0.0354 + }, + { + "start": 14133.86, + "end": 14135.52, + "probability": 0.5185 + }, + { + "start": 14135.6, + "end": 14136.36, + "probability": 0.9597 + }, + { + "start": 14136.58, + "end": 14139.8, + "probability": 0.0171 + }, + { + "start": 14140.1, + "end": 14144.59, + "probability": 0.8532 + }, + { + "start": 14145.42, + "end": 14149.14, + "probability": 0.9422 + }, + { + "start": 14149.84, + "end": 14151.52, + "probability": 0.9481 + }, + { + "start": 14151.6, + "end": 14152.4, + "probability": 0.9469 + }, + { + "start": 14152.76, + "end": 14154.26, + "probability": 0.9282 + }, + { + "start": 14155.68, + "end": 14157.84, + "probability": 0.868 + }, + { + "start": 14158.06, + "end": 14161.98, + "probability": 0.9901 + }, + { + "start": 14163.08, + "end": 14164.58, + "probability": 0.7208 + }, + { + "start": 14164.68, + "end": 14165.18, + "probability": 0.9788 + }, + { + "start": 14165.3, + "end": 14170.62, + "probability": 0.9746 + }, + { + "start": 14171.08, + "end": 14173.38, + "probability": 0.9894 + }, + { + "start": 14173.84, + "end": 14176.01, + "probability": 0.6476 + }, + { + "start": 14176.5, + "end": 14181.54, + "probability": 0.9587 + }, + { + "start": 14182.04, + "end": 14183.58, + "probability": 0.9624 + }, + { + "start": 14184.38, + "end": 14186.9, + "probability": 0.9267 + }, + { + "start": 14187.5, + "end": 14189.58, + "probability": 0.9232 + }, + { + "start": 14189.98, + "end": 14190.93, + "probability": 0.9236 + }, + { + "start": 14191.36, + "end": 14192.78, + "probability": 0.9894 + }, + { + "start": 14192.88, + "end": 14197.68, + "probability": 0.936 + }, + { + "start": 14197.82, + "end": 14198.02, + "probability": 0.9647 + }, + { + "start": 14198.36, + "end": 14199.16, + "probability": 0.8053 + }, + { + "start": 14199.54, + "end": 14200.64, + "probability": 0.9329 + }, + { + "start": 14201.2, + "end": 14202.3, + "probability": 0.9536 + }, + { + "start": 14202.88, + "end": 14208.8, + "probability": 0.9991 + }, + { + "start": 14209.48, + "end": 14213.34, + "probability": 0.981 + }, + { + "start": 14213.46, + "end": 14214.4, + "probability": 0.9764 + }, + { + "start": 14214.94, + "end": 14217.76, + "probability": 0.9819 + }, + { + "start": 14218.88, + "end": 14220.78, + "probability": 0.7109 + }, + { + "start": 14221.3, + "end": 14224.16, + "probability": 0.9906 + }, + { + "start": 14224.64, + "end": 14225.94, + "probability": 0.6831 + }, + { + "start": 14225.98, + "end": 14227.24, + "probability": 0.7054 + }, + { + "start": 14227.24, + "end": 14228.7, + "probability": 0.7654 + }, + { + "start": 14229.2, + "end": 14229.2, + "probability": 0.2764 + }, + { + "start": 14229.2, + "end": 14230.16, + "probability": 0.9597 + }, + { + "start": 14230.46, + "end": 14232.07, + "probability": 0.9393 + }, + { + "start": 14233.0, + "end": 14233.74, + "probability": 0.9092 + }, + { + "start": 14234.68, + "end": 14237.78, + "probability": 0.9316 + }, + { + "start": 14238.28, + "end": 14238.74, + "probability": 0.8356 + }, + { + "start": 14239.38, + "end": 14240.52, + "probability": 0.8111 + }, + { + "start": 14240.58, + "end": 14243.14, + "probability": 0.3319 + }, + { + "start": 14243.14, + "end": 14244.14, + "probability": 0.4752 + }, + { + "start": 14244.86, + "end": 14247.78, + "probability": 0.9911 + }, + { + "start": 14248.54, + "end": 14249.78, + "probability": 0.9844 + }, + { + "start": 14250.54, + "end": 14254.16, + "probability": 0.9865 + }, + { + "start": 14254.16, + "end": 14257.52, + "probability": 0.9932 + }, + { + "start": 14257.98, + "end": 14259.35, + "probability": 0.8979 + }, + { + "start": 14259.56, + "end": 14260.58, + "probability": 0.96 + }, + { + "start": 14261.12, + "end": 14263.76, + "probability": 0.9303 + }, + { + "start": 14264.82, + "end": 14267.54, + "probability": 0.9207 + }, + { + "start": 14267.94, + "end": 14269.96, + "probability": 0.9777 + }, + { + "start": 14270.38, + "end": 14271.38, + "probability": 0.9205 + }, + { + "start": 14271.72, + "end": 14272.7, + "probability": 0.9843 + }, + { + "start": 14272.84, + "end": 14273.42, + "probability": 0.8796 + }, + { + "start": 14273.66, + "end": 14276.42, + "probability": 0.8755 + }, + { + "start": 14276.52, + "end": 14277.96, + "probability": 0.877 + }, + { + "start": 14278.1, + "end": 14278.5, + "probability": 0.8982 + }, + { + "start": 14278.62, + "end": 14279.22, + "probability": 0.9021 + }, + { + "start": 14279.32, + "end": 14279.64, + "probability": 0.7415 + }, + { + "start": 14280.28, + "end": 14280.9, + "probability": 0.6548 + }, + { + "start": 14281.4, + "end": 14282.39, + "probability": 0.8374 + }, + { + "start": 14283.68, + "end": 14284.8, + "probability": 0.8889 + }, + { + "start": 14285.22, + "end": 14285.38, + "probability": 0.5316 + }, + { + "start": 14285.44, + "end": 14285.86, + "probability": 0.9556 + }, + { + "start": 14286.28, + "end": 14286.76, + "probability": 0.9619 + }, + { + "start": 14286.76, + "end": 14287.06, + "probability": 0.9888 + }, + { + "start": 14287.8, + "end": 14288.04, + "probability": 0.8258 + }, + { + "start": 14288.32, + "end": 14289.86, + "probability": 0.7654 + }, + { + "start": 14290.4, + "end": 14292.16, + "probability": 0.9919 + }, + { + "start": 14292.78, + "end": 14292.9, + "probability": 0.0787 + }, + { + "start": 14292.9, + "end": 14293.08, + "probability": 0.35 + }, + { + "start": 14293.18, + "end": 14297.5, + "probability": 0.8756 + }, + { + "start": 14301.08, + "end": 14301.54, + "probability": 0.7218 + }, + { + "start": 14302.16, + "end": 14302.88, + "probability": 0.7915 + }, + { + "start": 14304.74, + "end": 14305.94, + "probability": 0.8077 + }, + { + "start": 14306.12, + "end": 14306.12, + "probability": 0.001 + }, + { + "start": 14314.98, + "end": 14315.96, + "probability": 0.0505 + }, + { + "start": 14324.04, + "end": 14325.66, + "probability": 0.6067 + }, + { + "start": 14325.78, + "end": 14326.58, + "probability": 0.5574 + }, + { + "start": 14326.64, + "end": 14327.98, + "probability": 0.9341 + }, + { + "start": 14328.9, + "end": 14330.98, + "probability": 0.532 + }, + { + "start": 14331.2, + "end": 14331.68, + "probability": 0.5149 + }, + { + "start": 14334.16, + "end": 14335.12, + "probability": 0.5529 + }, + { + "start": 14335.89, + "end": 14337.8, + "probability": 0.5649 + }, + { + "start": 14338.56, + "end": 14338.68, + "probability": 0.1467 + }, + { + "start": 14341.88, + "end": 14345.22, + "probability": 0.699 + }, + { + "start": 14345.88, + "end": 14346.52, + "probability": 0.9726 + }, + { + "start": 14347.52, + "end": 14348.1, + "probability": 0.7979 + }, + { + "start": 14348.14, + "end": 14348.14, + "probability": 0.6735 + }, + { + "start": 14348.14, + "end": 14348.86, + "probability": 0.9377 + }, + { + "start": 14348.98, + "end": 14354.18, + "probability": 0.9857 + }, + { + "start": 14355.12, + "end": 14356.3, + "probability": 0.859 + }, + { + "start": 14357.2, + "end": 14358.84, + "probability": 0.7736 + }, + { + "start": 14360.52, + "end": 14364.0, + "probability": 0.9953 + }, + { + "start": 14364.52, + "end": 14369.14, + "probability": 0.9976 + }, + { + "start": 14369.14, + "end": 14373.5, + "probability": 0.9786 + }, + { + "start": 14374.46, + "end": 14376.52, + "probability": 0.975 + }, + { + "start": 14376.8, + "end": 14379.46, + "probability": 0.9346 + }, + { + "start": 14379.68, + "end": 14381.42, + "probability": 0.9277 + }, + { + "start": 14381.9, + "end": 14384.38, + "probability": 0.9668 + }, + { + "start": 14385.84, + "end": 14389.76, + "probability": 0.7478 + }, + { + "start": 14389.88, + "end": 14390.0, + "probability": 0.571 + }, + { + "start": 14390.08, + "end": 14392.74, + "probability": 0.9908 + }, + { + "start": 14393.44, + "end": 14395.52, + "probability": 0.9899 + }, + { + "start": 14395.56, + "end": 14396.76, + "probability": 0.9407 + }, + { + "start": 14397.26, + "end": 14399.42, + "probability": 0.8125 + }, + { + "start": 14400.32, + "end": 14401.16, + "probability": 0.9661 + }, + { + "start": 14401.2, + "end": 14405.46, + "probability": 0.9128 + }, + { + "start": 14406.36, + "end": 14407.02, + "probability": 0.5082 + }, + { + "start": 14407.48, + "end": 14412.24, + "probability": 0.9897 + }, + { + "start": 14412.64, + "end": 14413.72, + "probability": 0.8185 + }, + { + "start": 14414.3, + "end": 14414.94, + "probability": 0.9624 + }, + { + "start": 14415.0, + "end": 14415.3, + "probability": 0.8607 + }, + { + "start": 14415.3, + "end": 14416.92, + "probability": 0.9833 + }, + { + "start": 14417.06, + "end": 14418.04, + "probability": 0.9151 + }, + { + "start": 14418.54, + "end": 14420.32, + "probability": 0.5952 + }, + { + "start": 14420.4, + "end": 14423.18, + "probability": 0.9915 + }, + { + "start": 14423.62, + "end": 14424.96, + "probability": 0.9163 + }, + { + "start": 14425.4, + "end": 14426.52, + "probability": 0.9677 + }, + { + "start": 14427.28, + "end": 14429.34, + "probability": 0.9609 + }, + { + "start": 14430.02, + "end": 14430.88, + "probability": 0.9647 + }, + { + "start": 14431.04, + "end": 14432.1, + "probability": 0.882 + }, + { + "start": 14432.46, + "end": 14433.68, + "probability": 0.8898 + }, + { + "start": 14433.84, + "end": 14434.88, + "probability": 0.6427 + }, + { + "start": 14435.4, + "end": 14440.09, + "probability": 0.9213 + }, + { + "start": 14440.6, + "end": 14442.32, + "probability": 0.9108 + }, + { + "start": 14442.46, + "end": 14443.54, + "probability": 0.9382 + }, + { + "start": 14443.78, + "end": 14444.58, + "probability": 0.6136 + }, + { + "start": 14444.98, + "end": 14448.54, + "probability": 0.5219 + }, + { + "start": 14449.48, + "end": 14451.52, + "probability": 0.7256 + }, + { + "start": 14451.6, + "end": 14452.32, + "probability": 0.6842 + }, + { + "start": 14452.34, + "end": 14452.5, + "probability": 0.8537 + }, + { + "start": 14452.6, + "end": 14454.9, + "probability": 0.7428 + }, + { + "start": 14454.9, + "end": 14462.16, + "probability": 0.9746 + }, + { + "start": 14462.26, + "end": 14464.42, + "probability": 0.9901 + }, + { + "start": 14464.88, + "end": 14467.32, + "probability": 0.2768 + }, + { + "start": 14467.46, + "end": 14469.88, + "probability": 0.6807 + }, + { + "start": 14469.94, + "end": 14470.9, + "probability": 0.9664 + }, + { + "start": 14471.28, + "end": 14472.5, + "probability": 0.9941 + }, + { + "start": 14473.04, + "end": 14473.26, + "probability": 0.9095 + }, + { + "start": 14473.28, + "end": 14476.06, + "probability": 0.9874 + }, + { + "start": 14476.16, + "end": 14477.94, + "probability": 0.9961 + }, + { + "start": 14478.88, + "end": 14482.48, + "probability": 0.9862 + }, + { + "start": 14483.56, + "end": 14485.92, + "probability": 0.9974 + }, + { + "start": 14485.98, + "end": 14486.94, + "probability": 0.5657 + }, + { + "start": 14487.04, + "end": 14488.64, + "probability": 0.6952 + }, + { + "start": 14488.76, + "end": 14490.48, + "probability": 0.9844 + }, + { + "start": 14491.02, + "end": 14494.42, + "probability": 0.9934 + }, + { + "start": 14494.48, + "end": 14494.88, + "probability": 0.7934 + }, + { + "start": 14495.0, + "end": 14496.58, + "probability": 0.9065 + }, + { + "start": 14496.66, + "end": 14497.3, + "probability": 0.9328 + }, + { + "start": 14497.56, + "end": 14500.48, + "probability": 0.9709 + }, + { + "start": 14500.76, + "end": 14501.92, + "probability": 0.9756 + }, + { + "start": 14502.84, + "end": 14503.34, + "probability": 0.6144 + }, + { + "start": 14504.92, + "end": 14504.92, + "probability": 0.3102 + }, + { + "start": 14504.92, + "end": 14505.54, + "probability": 0.4382 + }, + { + "start": 14505.92, + "end": 14506.64, + "probability": 0.2695 + }, + { + "start": 14507.08, + "end": 14508.24, + "probability": 0.773 + }, + { + "start": 14509.38, + "end": 14511.28, + "probability": 0.5823 + }, + { + "start": 14511.92, + "end": 14514.57, + "probability": 0.6945 + }, + { + "start": 14515.34, + "end": 14518.38, + "probability": 0.9834 + }, + { + "start": 14519.04, + "end": 14523.5, + "probability": 0.9673 + }, + { + "start": 14524.02, + "end": 14526.54, + "probability": 0.9673 + }, + { + "start": 14526.66, + "end": 14527.06, + "probability": 0.779 + }, + { + "start": 14527.34, + "end": 14528.42, + "probability": 0.9792 + }, + { + "start": 14529.2, + "end": 14532.2, + "probability": 0.9947 + }, + { + "start": 14532.48, + "end": 14534.14, + "probability": 0.9983 + }, + { + "start": 14534.18, + "end": 14534.72, + "probability": 0.9029 + }, + { + "start": 14534.76, + "end": 14535.72, + "probability": 0.7488 + }, + { + "start": 14536.24, + "end": 14537.26, + "probability": 0.7695 + }, + { + "start": 14537.54, + "end": 14540.42, + "probability": 0.9046 + }, + { + "start": 14541.3, + "end": 14543.04, + "probability": 0.9692 + }, + { + "start": 14543.16, + "end": 14544.52, + "probability": 0.9783 + }, + { + "start": 14545.5, + "end": 14547.3, + "probability": 0.8691 + }, + { + "start": 14547.8, + "end": 14549.58, + "probability": 0.8391 + }, + { + "start": 14550.24, + "end": 14552.38, + "probability": 0.9627 + }, + { + "start": 14553.6, + "end": 14561.98, + "probability": 0.9175 + }, + { + "start": 14562.52, + "end": 14565.34, + "probability": 0.9634 + }, + { + "start": 14565.34, + "end": 14567.12, + "probability": 0.9928 + }, + { + "start": 14568.48, + "end": 14572.94, + "probability": 0.9907 + }, + { + "start": 14572.94, + "end": 14574.42, + "probability": 0.5162 + }, + { + "start": 14575.6, + "end": 14578.08, + "probability": 0.7834 + }, + { + "start": 14578.24, + "end": 14579.64, + "probability": 0.853 + }, + { + "start": 14579.82, + "end": 14581.9, + "probability": 0.0936 + }, + { + "start": 14581.92, + "end": 14582.02, + "probability": 0.0295 + }, + { + "start": 14582.02, + "end": 14582.56, + "probability": 0.9494 + }, + { + "start": 14583.22, + "end": 14585.96, + "probability": 0.8019 + }, + { + "start": 14587.2, + "end": 14589.26, + "probability": 0.9714 + }, + { + "start": 14590.3, + "end": 14593.64, + "probability": 0.9917 + }, + { + "start": 14596.9, + "end": 14598.36, + "probability": 0.7721 + }, + { + "start": 14598.76, + "end": 14600.92, + "probability": 0.9399 + }, + { + "start": 14601.62, + "end": 14601.74, + "probability": 0.1056 + }, + { + "start": 14601.74, + "end": 14603.64, + "probability": 0.7727 + }, + { + "start": 14603.7, + "end": 14604.26, + "probability": 0.7242 + }, + { + "start": 14604.38, + "end": 14607.7, + "probability": 0.992 + }, + { + "start": 14607.74, + "end": 14608.42, + "probability": 0.9299 + }, + { + "start": 14609.42, + "end": 14612.2, + "probability": 0.7575 + }, + { + "start": 14612.72, + "end": 14616.3, + "probability": 0.9785 + }, + { + "start": 14617.24, + "end": 14617.34, + "probability": 0.2952 + }, + { + "start": 14617.34, + "end": 14618.01, + "probability": 0.8865 + }, + { + "start": 14618.46, + "end": 14619.66, + "probability": 0.901 + }, + { + "start": 14619.66, + "end": 14620.5, + "probability": 0.1885 + }, + { + "start": 14620.72, + "end": 14623.24, + "probability": 0.8826 + }, + { + "start": 14623.32, + "end": 14627.24, + "probability": 0.9956 + }, + { + "start": 14627.36, + "end": 14628.44, + "probability": 0.8281 + }, + { + "start": 14629.48, + "end": 14633.44, + "probability": 0.993 + }, + { + "start": 14634.08, + "end": 14635.42, + "probability": 0.7789 + }, + { + "start": 14635.98, + "end": 14637.2, + "probability": 0.8782 + }, + { + "start": 14637.34, + "end": 14641.22, + "probability": 0.9023 + }, + { + "start": 14641.48, + "end": 14645.1, + "probability": 0.9958 + }, + { + "start": 14645.2, + "end": 14646.28, + "probability": 0.9028 + }, + { + "start": 14646.28, + "end": 14646.76, + "probability": 0.2267 + }, + { + "start": 14647.42, + "end": 14648.97, + "probability": 0.6606 + }, + { + "start": 14649.2, + "end": 14649.48, + "probability": 0.2875 + }, + { + "start": 14650.16, + "end": 14654.54, + "probability": 0.7507 + }, + { + "start": 14654.62, + "end": 14655.4, + "probability": 0.8026 + }, + { + "start": 14655.44, + "end": 14657.71, + "probability": 0.8481 + }, + { + "start": 14658.54, + "end": 14659.68, + "probability": 0.9497 + }, + { + "start": 14659.68, + "end": 14662.52, + "probability": 0.978 + }, + { + "start": 14662.52, + "end": 14665.22, + "probability": 0.6633 + }, + { + "start": 14665.32, + "end": 14665.84, + "probability": 0.2143 + }, + { + "start": 14665.99, + "end": 14667.3, + "probability": 0.0165 + }, + { + "start": 14667.48, + "end": 14668.42, + "probability": 0.336 + }, + { + "start": 14668.42, + "end": 14668.42, + "probability": 0.0153 + }, + { + "start": 14668.42, + "end": 14668.42, + "probability": 0.068 + }, + { + "start": 14668.42, + "end": 14668.42, + "probability": 0.1301 + }, + { + "start": 14668.42, + "end": 14668.42, + "probability": 0.1571 + }, + { + "start": 14668.42, + "end": 14668.52, + "probability": 0.2509 + }, + { + "start": 14668.52, + "end": 14669.76, + "probability": 0.529 + }, + { + "start": 14669.92, + "end": 14673.64, + "probability": 0.7173 + }, + { + "start": 14673.84, + "end": 14675.96, + "probability": 0.6049 + }, + { + "start": 14675.96, + "end": 14676.82, + "probability": 0.5579 + }, + { + "start": 14677.66, + "end": 14677.78, + "probability": 0.6742 + }, + { + "start": 14678.82, + "end": 14679.0, + "probability": 0.7877 + }, + { + "start": 14679.0, + "end": 14683.06, + "probability": 0.8612 + }, + { + "start": 14683.44, + "end": 14686.68, + "probability": 0.991 + }, + { + "start": 14687.32, + "end": 14693.32, + "probability": 0.9971 + }, + { + "start": 14693.48, + "end": 14695.5, + "probability": 0.9805 + }, + { + "start": 14696.1, + "end": 14698.26, + "probability": 0.8325 + }, + { + "start": 14698.34, + "end": 14700.24, + "probability": 0.8022 + }, + { + "start": 14700.66, + "end": 14701.16, + "probability": 0.9128 + }, + { + "start": 14701.2, + "end": 14701.68, + "probability": 0.0998 + }, + { + "start": 14703.24, + "end": 14703.68, + "probability": 0.0414 + }, + { + "start": 14703.68, + "end": 14703.68, + "probability": 0.1912 + }, + { + "start": 14703.68, + "end": 14705.76, + "probability": 0.5431 + }, + { + "start": 14705.86, + "end": 14708.24, + "probability": 0.9956 + }, + { + "start": 14708.32, + "end": 14709.84, + "probability": 0.9717 + }, + { + "start": 14710.02, + "end": 14714.0, + "probability": 0.7697 + }, + { + "start": 14714.7, + "end": 14718.02, + "probability": 0.6825 + }, + { + "start": 14718.86, + "end": 14719.86, + "probability": 0.8507 + }, + { + "start": 14720.48, + "end": 14723.58, + "probability": 0.9232 + }, + { + "start": 14724.28, + "end": 14725.0, + "probability": 0.8914 + }, + { + "start": 14725.72, + "end": 14729.18, + "probability": 0.9112 + }, + { + "start": 14731.26, + "end": 14732.94, + "probability": 0.0448 + }, + { + "start": 14732.94, + "end": 14733.08, + "probability": 0.2282 + }, + { + "start": 14733.08, + "end": 14736.64, + "probability": 0.6426 + }, + { + "start": 14737.28, + "end": 14741.48, + "probability": 0.9924 + }, + { + "start": 14742.82, + "end": 14744.92, + "probability": 0.8462 + }, + { + "start": 14745.44, + "end": 14749.88, + "probability": 0.8386 + }, + { + "start": 14750.0, + "end": 14751.32, + "probability": 0.0469 + }, + { + "start": 14751.78, + "end": 14753.04, + "probability": 0.7498 + }, + { + "start": 14754.26, + "end": 14754.26, + "probability": 0.2954 + }, + { + "start": 14754.26, + "end": 14754.92, + "probability": 0.1461 + }, + { + "start": 14754.92, + "end": 14755.32, + "probability": 0.6928 + }, + { + "start": 14755.32, + "end": 14755.97, + "probability": 0.9569 + }, + { + "start": 14756.52, + "end": 14757.56, + "probability": 0.6853 + }, + { + "start": 14757.66, + "end": 14759.26, + "probability": 0.1265 + }, + { + "start": 14759.36, + "end": 14762.07, + "probability": 0.937 + }, + { + "start": 14763.09, + "end": 14764.12, + "probability": 0.8369 + }, + { + "start": 14764.12, + "end": 14765.86, + "probability": 0.5012 + }, + { + "start": 14766.24, + "end": 14766.24, + "probability": 0.1015 + }, + { + "start": 14766.24, + "end": 14766.24, + "probability": 0.0266 + }, + { + "start": 14766.24, + "end": 14766.24, + "probability": 0.173 + }, + { + "start": 14766.24, + "end": 14770.3, + "probability": 0.9698 + }, + { + "start": 14770.66, + "end": 14771.68, + "probability": 0.9571 + }, + { + "start": 14771.94, + "end": 14772.98, + "probability": 0.8883 + }, + { + "start": 14773.2, + "end": 14773.84, + "probability": 0.8666 + }, + { + "start": 14773.94, + "end": 14775.56, + "probability": 0.7044 + }, + { + "start": 14776.08, + "end": 14777.22, + "probability": 0.6685 + }, + { + "start": 14778.02, + "end": 14779.0, + "probability": 0.9155 + }, + { + "start": 14779.12, + "end": 14781.42, + "probability": 0.7583 + }, + { + "start": 14782.5, + "end": 14783.62, + "probability": 0.9879 + }, + { + "start": 14784.0, + "end": 14785.24, + "probability": 0.9861 + }, + { + "start": 14785.36, + "end": 14786.72, + "probability": 0.959 + }, + { + "start": 14787.42, + "end": 14788.12, + "probability": 0.751 + }, + { + "start": 14788.16, + "end": 14788.9, + "probability": 0.9902 + }, + { + "start": 14789.58, + "end": 14790.08, + "probability": 0.0378 + }, + { + "start": 14790.86, + "end": 14790.96, + "probability": 0.2514 + }, + { + "start": 14792.48, + "end": 14793.34, + "probability": 0.5621 + }, + { + "start": 14793.44, + "end": 14795.4, + "probability": 0.9375 + }, + { + "start": 14796.92, + "end": 14797.56, + "probability": 0.3089 + }, + { + "start": 14797.56, + "end": 14799.38, + "probability": 0.8718 + }, + { + "start": 14799.5, + "end": 14800.42, + "probability": 0.9307 + }, + { + "start": 14800.58, + "end": 14801.96, + "probability": 0.7639 + }, + { + "start": 14802.88, + "end": 14803.56, + "probability": 0.6971 + }, + { + "start": 14804.28, + "end": 14804.6, + "probability": 0.537 + }, + { + "start": 14804.88, + "end": 14810.02, + "probability": 0.9797 + }, + { + "start": 14810.58, + "end": 14811.18, + "probability": 0.8032 + }, + { + "start": 14811.28, + "end": 14812.28, + "probability": 0.2796 + }, + { + "start": 14812.72, + "end": 14818.74, + "probability": 0.9912 + }, + { + "start": 14819.54, + "end": 14820.66, + "probability": 0.6991 + }, + { + "start": 14821.22, + "end": 14821.8, + "probability": 0.5479 + }, + { + "start": 14822.36, + "end": 14824.52, + "probability": 0.6058 + }, + { + "start": 14824.52, + "end": 14827.98, + "probability": 0.6851 + }, + { + "start": 14828.12, + "end": 14831.9, + "probability": 0.9897 + }, + { + "start": 14831.96, + "end": 14832.76, + "probability": 0.9146 + }, + { + "start": 14833.22, + "end": 14835.24, + "probability": 0.7869 + }, + { + "start": 14835.24, + "end": 14838.9, + "probability": 0.9761 + }, + { + "start": 14838.92, + "end": 14839.7, + "probability": 0.7352 + }, + { + "start": 14839.76, + "end": 14840.4, + "probability": 0.7342 + }, + { + "start": 14840.46, + "end": 14841.16, + "probability": 0.9233 + }, + { + "start": 14841.5, + "end": 14842.76, + "probability": 0.9914 + }, + { + "start": 14842.86, + "end": 14843.54, + "probability": 0.7002 + }, + { + "start": 14843.86, + "end": 14845.26, + "probability": 0.5166 + }, + { + "start": 14845.5, + "end": 14846.6, + "probability": 0.9672 + }, + { + "start": 14847.14, + "end": 14851.4, + "probability": 0.9119 + }, + { + "start": 14852.06, + "end": 14857.54, + "probability": 0.9437 + }, + { + "start": 14857.9, + "end": 14863.03, + "probability": 0.989 + }, + { + "start": 14863.62, + "end": 14865.4, + "probability": 0.4949 + }, + { + "start": 14865.82, + "end": 14867.14, + "probability": 0.9958 + }, + { + "start": 14867.5, + "end": 14870.3, + "probability": 0.9898 + }, + { + "start": 14870.52, + "end": 14871.56, + "probability": 0.9071 + }, + { + "start": 14871.76, + "end": 14874.32, + "probability": 0.9833 + }, + { + "start": 14874.58, + "end": 14877.08, + "probability": 0.9949 + }, + { + "start": 14877.72, + "end": 14877.9, + "probability": 0.8543 + }, + { + "start": 14878.0, + "end": 14878.76, + "probability": 0.7859 + }, + { + "start": 14879.18, + "end": 14881.0, + "probability": 0.8437 + }, + { + "start": 14881.64, + "end": 14884.1, + "probability": 0.8848 + }, + { + "start": 14884.56, + "end": 14886.16, + "probability": 0.989 + }, + { + "start": 14886.76, + "end": 14890.64, + "probability": 0.9922 + }, + { + "start": 14891.58, + "end": 14892.06, + "probability": 0.066 + }, + { + "start": 14892.06, + "end": 14892.78, + "probability": 0.6478 + }, + { + "start": 14893.18, + "end": 14897.34, + "probability": 0.9952 + }, + { + "start": 14897.72, + "end": 14899.22, + "probability": 0.9707 + }, + { + "start": 14899.72, + "end": 14902.36, + "probability": 0.8937 + }, + { + "start": 14902.42, + "end": 14903.86, + "probability": 0.9834 + }, + { + "start": 14904.12, + "end": 14905.0, + "probability": 0.8946 + }, + { + "start": 14905.28, + "end": 14906.24, + "probability": 0.9659 + }, + { + "start": 14906.44, + "end": 14907.74, + "probability": 0.9888 + }, + { + "start": 14907.82, + "end": 14908.32, + "probability": 0.812 + }, + { + "start": 14910.98, + "end": 14912.94, + "probability": 0.8092 + }, + { + "start": 14913.26, + "end": 14915.74, + "probability": 0.8574 + }, + { + "start": 14916.4, + "end": 14922.58, + "probability": 0.9561 + }, + { + "start": 14922.96, + "end": 14924.92, + "probability": 0.8252 + }, + { + "start": 14925.54, + "end": 14930.28, + "probability": 0.9395 + }, + { + "start": 14930.56, + "end": 14931.74, + "probability": 0.9687 + }, + { + "start": 14932.28, + "end": 14933.6, + "probability": 0.4155 + }, + { + "start": 14933.7, + "end": 14934.2, + "probability": 0.8325 + }, + { + "start": 14934.34, + "end": 14935.04, + "probability": 0.5713 + }, + { + "start": 14935.22, + "end": 14936.84, + "probability": 0.9687 + }, + { + "start": 14937.44, + "end": 14942.3, + "probability": 0.8388 + }, + { + "start": 14942.7, + "end": 14943.24, + "probability": 0.7804 + }, + { + "start": 14943.28, + "end": 14944.06, + "probability": 0.9288 + }, + { + "start": 14944.16, + "end": 14945.36, + "probability": 0.9568 + }, + { + "start": 14945.84, + "end": 14946.24, + "probability": 0.2581 + }, + { + "start": 14947.62, + "end": 14947.74, + "probability": 0.0553 + }, + { + "start": 14947.74, + "end": 14947.74, + "probability": 0.1009 + }, + { + "start": 14947.74, + "end": 14948.36, + "probability": 0.6824 + }, + { + "start": 14948.46, + "end": 14949.9, + "probability": 0.8898 + }, + { + "start": 14949.96, + "end": 14951.15, + "probability": 0.6904 + }, + { + "start": 14951.5, + "end": 14952.72, + "probability": 0.249 + }, + { + "start": 14952.98, + "end": 14954.0, + "probability": 0.873 + }, + { + "start": 14954.52, + "end": 14956.2, + "probability": 0.991 + }, + { + "start": 14956.7, + "end": 14959.1, + "probability": 0.8755 + }, + { + "start": 14959.8, + "end": 14961.4, + "probability": 0.9368 + }, + { + "start": 14961.86, + "end": 14962.6, + "probability": 0.8606 + }, + { + "start": 14963.54, + "end": 14964.22, + "probability": 0.8812 + }, + { + "start": 14964.64, + "end": 14965.8, + "probability": 0.6776 + }, + { + "start": 14966.01, + "end": 14968.72, + "probability": 0.5664 + }, + { + "start": 14970.1, + "end": 14971.94, + "probability": 0.8913 + }, + { + "start": 14973.02, + "end": 14974.48, + "probability": 0.9756 + }, + { + "start": 14974.56, + "end": 14975.08, + "probability": 0.9351 + }, + { + "start": 14978.6, + "end": 14980.05, + "probability": 0.5345 + }, + { + "start": 14980.9, + "end": 14982.46, + "probability": 0.5671 + }, + { + "start": 14983.36, + "end": 14985.14, + "probability": 0.9916 + }, + { + "start": 14985.22, + "end": 14987.32, + "probability": 0.9844 + }, + { + "start": 14988.84, + "end": 14989.83, + "probability": 0.6093 + }, + { + "start": 14991.04, + "end": 14991.98, + "probability": 0.7736 + }, + { + "start": 14992.1, + "end": 14992.62, + "probability": 0.7086 + }, + { + "start": 14992.66, + "end": 14993.56, + "probability": 0.5952 + }, + { + "start": 14994.16, + "end": 14996.8, + "probability": 0.6775 + }, + { + "start": 14997.36, + "end": 14997.99, + "probability": 0.939 + }, + { + "start": 14998.4, + "end": 14999.06, + "probability": 0.7394 + }, + { + "start": 14999.12, + "end": 15003.86, + "probability": 0.1431 + }, + { + "start": 15004.22, + "end": 15004.22, + "probability": 0.0103 + }, + { + "start": 15004.32, + "end": 15004.36, + "probability": 0.0286 + }, + { + "start": 15004.36, + "end": 15004.36, + "probability": 0.0385 + }, + { + "start": 15004.36, + "end": 15006.84, + "probability": 0.8486 + }, + { + "start": 15007.7, + "end": 15010.24, + "probability": 0.7223 + }, + { + "start": 15010.8, + "end": 15013.46, + "probability": 0.7009 + }, + { + "start": 15013.52, + "end": 15016.62, + "probability": 0.8505 + }, + { + "start": 15017.08, + "end": 15018.36, + "probability": 0.4464 + }, + { + "start": 15018.36, + "end": 15018.52, + "probability": 0.8581 + }, + { + "start": 15018.68, + "end": 15021.28, + "probability": 0.9805 + }, + { + "start": 15021.72, + "end": 15022.62, + "probability": 0.6664 + }, + { + "start": 15022.9, + "end": 15025.44, + "probability": 0.949 + }, + { + "start": 15026.76, + "end": 15027.46, + "probability": 0.7083 + }, + { + "start": 15028.3, + "end": 15030.4, + "probability": 0.9932 + }, + { + "start": 15031.08, + "end": 15031.7, + "probability": 0.9829 + }, + { + "start": 15031.78, + "end": 15032.42, + "probability": 0.9548 + }, + { + "start": 15032.9, + "end": 15034.0, + "probability": 0.9709 + }, + { + "start": 15034.1, + "end": 15034.4, + "probability": 0.3399 + }, + { + "start": 15034.48, + "end": 15034.94, + "probability": 0.6894 + }, + { + "start": 15035.56, + "end": 15037.52, + "probability": 0.849 + }, + { + "start": 15037.56, + "end": 15040.56, + "probability": 0.9857 + }, + { + "start": 15040.56, + "end": 15042.8, + "probability": 0.9984 + }, + { + "start": 15042.86, + "end": 15043.12, + "probability": 0.7588 + }, + { + "start": 15043.18, + "end": 15045.02, + "probability": 0.998 + }, + { + "start": 15045.8, + "end": 15047.01, + "probability": 0.7383 + }, + { + "start": 15047.94, + "end": 15049.24, + "probability": 0.9971 + }, + { + "start": 15049.24, + "end": 15050.9, + "probability": 0.4999 + }, + { + "start": 15050.9, + "end": 15051.28, + "probability": 0.7117 + }, + { + "start": 15051.3, + "end": 15051.92, + "probability": 0.7248 + }, + { + "start": 15052.32, + "end": 15053.98, + "probability": 0.7729 + }, + { + "start": 15054.08, + "end": 15054.72, + "probability": 0.7161 + }, + { + "start": 15054.9, + "end": 15055.41, + "probability": 0.9233 + }, + { + "start": 15055.62, + "end": 15056.54, + "probability": 0.8776 + }, + { + "start": 15057.12, + "end": 15058.0, + "probability": 0.9288 + }, + { + "start": 15058.32, + "end": 15059.3, + "probability": 0.9853 + }, + { + "start": 15061.36, + "end": 15062.44, + "probability": 0.9482 + }, + { + "start": 15063.48, + "end": 15063.48, + "probability": 0.0522 + }, + { + "start": 15063.48, + "end": 15063.68, + "probability": 0.6529 + }, + { + "start": 15063.9, + "end": 15065.42, + "probability": 0.8922 + }, + { + "start": 15065.5, + "end": 15067.8, + "probability": 0.676 + }, + { + "start": 15068.18, + "end": 15068.42, + "probability": 0.5563 + }, + { + "start": 15068.44, + "end": 15069.24, + "probability": 0.6823 + }, + { + "start": 15069.42, + "end": 15070.32, + "probability": 0.8986 + }, + { + "start": 15070.54, + "end": 15071.95, + "probability": 0.9775 + }, + { + "start": 15072.16, + "end": 15075.28, + "probability": 0.9851 + }, + { + "start": 15075.86, + "end": 15076.54, + "probability": 0.9111 + }, + { + "start": 15076.78, + "end": 15078.52, + "probability": 0.8765 + }, + { + "start": 15078.66, + "end": 15079.34, + "probability": 0.6645 + }, + { + "start": 15079.88, + "end": 15080.9, + "probability": 0.7351 + }, + { + "start": 15081.58, + "end": 15083.82, + "probability": 0.6743 + }, + { + "start": 15084.36, + "end": 15086.56, + "probability": 0.8826 + }, + { + "start": 15087.12, + "end": 15088.98, + "probability": 0.8546 + }, + { + "start": 15089.74, + "end": 15091.68, + "probability": 0.8565 + }, + { + "start": 15092.36, + "end": 15095.46, + "probability": 0.9666 + }, + { + "start": 15097.12, + "end": 15099.5, + "probability": 0.9149 + }, + { + "start": 15099.6, + "end": 15101.86, + "probability": 0.9944 + }, + { + "start": 15102.28, + "end": 15103.78, + "probability": 0.8528 + }, + { + "start": 15104.2, + "end": 15108.7, + "probability": 0.9287 + }, + { + "start": 15109.06, + "end": 15109.66, + "probability": 0.6854 + }, + { + "start": 15110.12, + "end": 15112.94, + "probability": 0.9645 + }, + { + "start": 15112.98, + "end": 15114.22, + "probability": 0.979 + }, + { + "start": 15116.58, + "end": 15118.88, + "probability": 0.981 + }, + { + "start": 15119.46, + "end": 15121.48, + "probability": 0.9583 + }, + { + "start": 15122.06, + "end": 15124.22, + "probability": 0.9951 + }, + { + "start": 15124.36, + "end": 15126.82, + "probability": 0.9849 + }, + { + "start": 15128.07, + "end": 15130.0, + "probability": 0.9774 + }, + { + "start": 15130.02, + "end": 15130.12, + "probability": 0.6866 + }, + { + "start": 15130.58, + "end": 15132.06, + "probability": 0.7562 + }, + { + "start": 15134.69, + "end": 15138.78, + "probability": 0.9792 + }, + { + "start": 15139.66, + "end": 15142.4, + "probability": 0.9958 + }, + { + "start": 15142.4, + "end": 15146.38, + "probability": 0.9954 + }, + { + "start": 15146.98, + "end": 15148.74, + "probability": 0.2155 + }, + { + "start": 15149.64, + "end": 15152.04, + "probability": 0.9923 + }, + { + "start": 15152.24, + "end": 15153.08, + "probability": 0.7069 + }, + { + "start": 15153.92, + "end": 15157.62, + "probability": 0.144 + }, + { + "start": 15173.16, + "end": 15177.02, + "probability": 0.2741 + }, + { + "start": 15177.16, + "end": 15178.72, + "probability": 0.0339 + }, + { + "start": 15180.35, + "end": 15181.59, + "probability": 0.1496 + }, + { + "start": 15183.2, + "end": 15183.84, + "probability": 0.2621 + }, + { + "start": 15184.16, + "end": 15184.22, + "probability": 0.2581 + }, + { + "start": 15184.22, + "end": 15185.16, + "probability": 0.3777 + }, + { + "start": 15185.18, + "end": 15185.56, + "probability": 0.2544 + }, + { + "start": 15185.7, + "end": 15189.36, + "probability": 0.8698 + }, + { + "start": 15189.54, + "end": 15191.4, + "probability": 0.1054 + }, + { + "start": 15191.4, + "end": 15192.72, + "probability": 0.0749 + }, + { + "start": 15192.76, + "end": 15194.34, + "probability": 0.0496 + }, + { + "start": 15194.6, + "end": 15196.56, + "probability": 0.5154 + }, + { + "start": 15223.1, + "end": 15223.78, + "probability": 0.2779 + }, + { + "start": 15231.34, + "end": 15235.14, + "probability": 0.3358 + }, + { + "start": 15235.3, + "end": 15237.02, + "probability": 0.1305 + }, + { + "start": 15237.5, + "end": 15240.22, + "probability": 0.6608 + }, + { + "start": 15241.0, + "end": 15242.82, + "probability": 0.8558 + }, + { + "start": 15243.28, + "end": 15245.96, + "probability": 0.1997 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.0, + "end": 15263.0, + "probability": 0.0 + }, + { + "start": 15263.12, + "end": 15263.16, + "probability": 0.0849 + }, + { + "start": 15263.16, + "end": 15263.16, + "probability": 0.1091 + }, + { + "start": 15263.16, + "end": 15263.16, + "probability": 0.0992 + }, + { + "start": 15263.16, + "end": 15263.16, + "probability": 0.0633 + }, + { + "start": 15263.16, + "end": 15265.0, + "probability": 0.8887 + }, + { + "start": 15265.38, + "end": 15266.76, + "probability": 0.9382 + }, + { + "start": 15267.08, + "end": 15269.54, + "probability": 0.8969 + }, + { + "start": 15269.7, + "end": 15271.94, + "probability": 0.9345 + }, + { + "start": 15272.08, + "end": 15273.74, + "probability": 0.0543 + }, + { + "start": 15273.92, + "end": 15275.09, + "probability": 0.9191 + }, + { + "start": 15275.96, + "end": 15276.8, + "probability": 0.9647 + }, + { + "start": 15292.86, + "end": 15292.86, + "probability": 0.0624 + }, + { + "start": 15292.86, + "end": 15292.86, + "probability": 0.0248 + }, + { + "start": 15292.86, + "end": 15292.86, + "probability": 0.1019 + }, + { + "start": 15292.86, + "end": 15294.52, + "probability": 0.4287 + }, + { + "start": 15294.6, + "end": 15295.9, + "probability": 0.5 + }, + { + "start": 15296.0, + "end": 15296.52, + "probability": 0.7385 + }, + { + "start": 15296.76, + "end": 15296.98, + "probability": 0.1234 + }, + { + "start": 15297.0, + "end": 15299.98, + "probability": 0.7261 + }, + { + "start": 15300.04, + "end": 15302.18, + "probability": 0.9438 + }, + { + "start": 15311.96, + "end": 15313.78, + "probability": 0.4301 + }, + { + "start": 15314.34, + "end": 15318.66, + "probability": 0.9525 + }, + { + "start": 15318.92, + "end": 15321.28, + "probability": 0.9423 + }, + { + "start": 15323.54, + "end": 15326.18, + "probability": 0.8334 + }, + { + "start": 15326.22, + "end": 15328.12, + "probability": 0.9605 + }, + { + "start": 15328.48, + "end": 15334.86, + "probability": 0.9927 + }, + { + "start": 15335.06, + "end": 15336.6, + "probability": 0.9907 + }, + { + "start": 15337.5, + "end": 15338.84, + "probability": 0.219 + }, + { + "start": 15338.94, + "end": 15339.73, + "probability": 0.9683 + }, + { + "start": 15348.38, + "end": 15349.92, + "probability": 0.4826 + }, + { + "start": 15350.3, + "end": 15351.06, + "probability": 0.8006 + }, + { + "start": 15351.32, + "end": 15353.68, + "probability": 0.9598 + }, + { + "start": 15355.02, + "end": 15360.42, + "probability": 0.8965 + }, + { + "start": 15360.84, + "end": 15362.64, + "probability": 0.8193 + }, + { + "start": 15362.82, + "end": 15364.12, + "probability": 0.297 + }, + { + "start": 15364.52, + "end": 15366.78, + "probability": 0.9285 + }, + { + "start": 15367.28, + "end": 15369.02, + "probability": 0.9564 + }, + { + "start": 15378.7, + "end": 15381.22, + "probability": 0.6283 + }, + { + "start": 15381.28, + "end": 15383.16, + "probability": 0.8947 + }, + { + "start": 15384.56, + "end": 15387.56, + "probability": 0.2396 + }, + { + "start": 15387.64, + "end": 15387.88, + "probability": 0.5816 + }, + { + "start": 15387.88, + "end": 15392.28, + "probability": 0.9897 + }, + { + "start": 15392.28, + "end": 15395.86, + "probability": 0.998 + }, + { + "start": 15396.7, + "end": 15400.34, + "probability": 0.7603 + }, + { + "start": 15402.04, + "end": 15405.56, + "probability": 0.9952 + }, + { + "start": 15406.14, + "end": 15411.14, + "probability": 0.994 + }, + { + "start": 15412.16, + "end": 15417.71, + "probability": 0.8789 + }, + { + "start": 15418.0, + "end": 15420.56, + "probability": 0.7967 + }, + { + "start": 15421.44, + "end": 15424.16, + "probability": 0.9683 + }, + { + "start": 15424.44, + "end": 15427.56, + "probability": 0.9722 + }, + { + "start": 15428.4, + "end": 15431.12, + "probability": 0.983 + }, + { + "start": 15432.5, + "end": 15434.1, + "probability": 0.9292 + }, + { + "start": 15434.28, + "end": 15438.76, + "probability": 0.9948 + }, + { + "start": 15438.76, + "end": 15443.0, + "probability": 0.9958 + }, + { + "start": 15443.74, + "end": 15444.88, + "probability": 0.9485 + }, + { + "start": 15445.64, + "end": 15448.36, + "probability": 0.998 + }, + { + "start": 15449.06, + "end": 15450.04, + "probability": 0.7413 + }, + { + "start": 15450.72, + "end": 15454.42, + "probability": 0.9758 + }, + { + "start": 15454.42, + "end": 15457.86, + "probability": 0.9991 + }, + { + "start": 15458.68, + "end": 15459.84, + "probability": 0.8931 + }, + { + "start": 15460.02, + "end": 15464.06, + "probability": 0.97 + }, + { + "start": 15464.94, + "end": 15471.06, + "probability": 0.9978 + }, + { + "start": 15471.36, + "end": 15474.2, + "probability": 0.9292 + }, + { + "start": 15474.78, + "end": 15478.4, + "probability": 0.9801 + }, + { + "start": 15480.36, + "end": 15483.18, + "probability": 0.9578 + }, + { + "start": 15483.28, + "end": 15484.4, + "probability": 0.7257 + }, + { + "start": 15484.54, + "end": 15484.74, + "probability": 0.5955 + }, + { + "start": 15484.84, + "end": 15485.63, + "probability": 0.6919 + }, + { + "start": 15496.84, + "end": 15500.08, + "probability": 0.9834 + }, + { + "start": 15501.04, + "end": 15503.86, + "probability": 0.9419 + }, + { + "start": 15504.66, + "end": 15509.38, + "probability": 0.9633 + }, + { + "start": 15509.38, + "end": 15514.54, + "probability": 0.996 + }, + { + "start": 15514.94, + "end": 15516.92, + "probability": 0.958 + }, + { + "start": 15517.38, + "end": 15518.86, + "probability": 0.8207 + }, + { + "start": 15518.94, + "end": 15519.65, + "probability": 0.9877 + }, + { + "start": 15520.72, + "end": 15526.32, + "probability": 0.989 + }, + { + "start": 15526.46, + "end": 15530.82, + "probability": 0.9412 + }, + { + "start": 15530.82, + "end": 15535.06, + "probability": 0.9888 + }, + { + "start": 15535.28, + "end": 15535.94, + "probability": 0.5342 + }, + { + "start": 15536.1, + "end": 15537.38, + "probability": 0.881 + }, + { + "start": 15537.94, + "end": 15542.84, + "probability": 0.9966 + }, + { + "start": 15542.84, + "end": 15547.94, + "probability": 0.997 + }, + { + "start": 15548.68, + "end": 15553.86, + "probability": 0.9961 + }, + { + "start": 15554.56, + "end": 15558.28, + "probability": 0.993 + }, + { + "start": 15558.66, + "end": 15562.22, + "probability": 0.9962 + }, + { + "start": 15562.78, + "end": 15567.12, + "probability": 0.9855 + }, + { + "start": 15567.6, + "end": 15571.32, + "probability": 0.9961 + }, + { + "start": 15571.32, + "end": 15575.08, + "probability": 0.9897 + }, + { + "start": 15575.84, + "end": 15579.24, + "probability": 0.9882 + }, + { + "start": 15579.24, + "end": 15584.14, + "probability": 0.9906 + }, + { + "start": 15584.7, + "end": 15588.04, + "probability": 0.8439 + }, + { + "start": 15588.52, + "end": 15592.68, + "probability": 0.9723 + }, + { + "start": 15593.04, + "end": 15596.52, + "probability": 0.9953 + }, + { + "start": 15596.9, + "end": 15599.84, + "probability": 0.9613 + }, + { + "start": 15600.29, + "end": 15602.98, + "probability": 0.9988 + }, + { + "start": 15603.86, + "end": 15608.4, + "probability": 0.9527 + }, + { + "start": 15608.86, + "end": 15616.56, + "probability": 0.8613 + }, + { + "start": 15616.56, + "end": 15621.8, + "probability": 0.9741 + }, + { + "start": 15622.26, + "end": 15624.82, + "probability": 0.9116 + }, + { + "start": 15624.82, + "end": 15628.58, + "probability": 0.9919 + }, + { + "start": 15628.8, + "end": 15631.54, + "probability": 0.9814 + }, + { + "start": 15631.54, + "end": 15634.1, + "probability": 0.9968 + }, + { + "start": 15635.12, + "end": 15637.4, + "probability": 0.8024 + }, + { + "start": 15638.02, + "end": 15643.8, + "probability": 0.9208 + }, + { + "start": 15644.44, + "end": 15648.1, + "probability": 0.9863 + }, + { + "start": 15649.36, + "end": 15653.06, + "probability": 0.9907 + }, + { + "start": 15654.24, + "end": 15660.72, + "probability": 0.9908 + }, + { + "start": 15660.96, + "end": 15664.06, + "probability": 0.9952 + }, + { + "start": 15664.92, + "end": 15667.99, + "probability": 0.9459 + }, + { + "start": 15668.7, + "end": 15673.48, + "probability": 0.9702 + }, + { + "start": 15674.24, + "end": 15677.46, + "probability": 0.9875 + }, + { + "start": 15677.62, + "end": 15678.64, + "probability": 0.8045 + }, + { + "start": 15679.12, + "end": 15682.4, + "probability": 0.9989 + }, + { + "start": 15682.78, + "end": 15686.18, + "probability": 0.9018 + }, + { + "start": 15686.62, + "end": 15689.48, + "probability": 0.9742 + }, + { + "start": 15689.48, + "end": 15692.78, + "probability": 0.9974 + }, + { + "start": 15693.16, + "end": 15699.92, + "probability": 0.978 + }, + { + "start": 15700.48, + "end": 15701.82, + "probability": 0.8066 + }, + { + "start": 15702.06, + "end": 15707.36, + "probability": 0.9839 + }, + { + "start": 15707.42, + "end": 15708.18, + "probability": 0.9125 + }, + { + "start": 15709.32, + "end": 15713.18, + "probability": 0.9473 + }, + { + "start": 15713.84, + "end": 15714.48, + "probability": 0.8356 + }, + { + "start": 15714.98, + "end": 15716.98, + "probability": 0.6295 + }, + { + "start": 15717.48, + "end": 15721.28, + "probability": 0.9951 + }, + { + "start": 15721.82, + "end": 15728.44, + "probability": 0.9974 + }, + { + "start": 15729.14, + "end": 15731.88, + "probability": 0.9975 + }, + { + "start": 15732.66, + "end": 15736.96, + "probability": 0.9941 + }, + { + "start": 15736.96, + "end": 15740.78, + "probability": 0.9813 + }, + { + "start": 15742.0, + "end": 15745.52, + "probability": 0.9941 + }, + { + "start": 15745.86, + "end": 15747.84, + "probability": 0.9919 + }, + { + "start": 15747.84, + "end": 15750.38, + "probability": 0.9531 + }, + { + "start": 15750.86, + "end": 15754.82, + "probability": 0.9603 + }, + { + "start": 15754.94, + "end": 15758.42, + "probability": 0.905 + }, + { + "start": 15759.1, + "end": 15760.74, + "probability": 0.8257 + }, + { + "start": 15760.92, + "end": 15762.32, + "probability": 0.8991 + }, + { + "start": 15763.42, + "end": 15768.82, + "probability": 0.9939 + }, + { + "start": 15768.82, + "end": 15774.0, + "probability": 0.9834 + }, + { + "start": 15775.02, + "end": 15779.14, + "probability": 0.9613 + }, + { + "start": 15779.14, + "end": 15782.48, + "probability": 0.9929 + }, + { + "start": 15782.96, + "end": 15785.92, + "probability": 0.8662 + }, + { + "start": 15786.42, + "end": 15789.24, + "probability": 0.9978 + }, + { + "start": 15790.32, + "end": 15792.62, + "probability": 0.5216 + }, + { + "start": 15793.46, + "end": 15796.32, + "probability": 0.9637 + }, + { + "start": 15796.32, + "end": 15799.12, + "probability": 0.9803 + }, + { + "start": 15799.76, + "end": 15801.94, + "probability": 0.9951 + }, + { + "start": 15803.08, + "end": 15807.7, + "probability": 0.9796 + }, + { + "start": 15807.74, + "end": 15810.9, + "probability": 0.6697 + }, + { + "start": 15811.18, + "end": 15815.82, + "probability": 0.9823 + }, + { + "start": 15817.02, + "end": 15822.3, + "probability": 0.9807 + }, + { + "start": 15822.3, + "end": 15825.18, + "probability": 0.9979 + }, + { + "start": 15826.08, + "end": 15830.88, + "probability": 0.9957 + }, + { + "start": 15831.36, + "end": 15834.2, + "probability": 0.9941 + }, + { + "start": 15834.2, + "end": 15837.42, + "probability": 0.6674 + }, + { + "start": 15838.14, + "end": 15838.88, + "probability": 0.6361 + }, + { + "start": 15838.92, + "end": 15841.78, + "probability": 0.9862 + }, + { + "start": 15841.88, + "end": 15845.96, + "probability": 0.9297 + }, + { + "start": 15845.96, + "end": 15848.9, + "probability": 0.9532 + }, + { + "start": 15849.52, + "end": 15851.54, + "probability": 0.8711 + }, + { + "start": 15852.72, + "end": 15857.84, + "probability": 0.984 + }, + { + "start": 15858.42, + "end": 15862.08, + "probability": 0.9943 + }, + { + "start": 15862.6, + "end": 15866.02, + "probability": 0.99 + }, + { + "start": 15867.06, + "end": 15868.94, + "probability": 0.601 + }, + { + "start": 15869.92, + "end": 15875.0, + "probability": 0.993 + }, + { + "start": 15875.44, + "end": 15876.86, + "probability": 0.9749 + }, + { + "start": 15877.3, + "end": 15881.08, + "probability": 0.9623 + }, + { + "start": 15881.08, + "end": 15886.16, + "probability": 0.9199 + }, + { + "start": 15886.94, + "end": 15890.72, + "probability": 0.9981 + }, + { + "start": 15891.36, + "end": 15893.94, + "probability": 0.9818 + }, + { + "start": 15893.94, + "end": 15896.7, + "probability": 0.9938 + }, + { + "start": 15896.86, + "end": 15899.24, + "probability": 0.9965 + }, + { + "start": 15899.9, + "end": 15902.2, + "probability": 0.9981 + }, + { + "start": 15902.94, + "end": 15907.47, + "probability": 0.9956 + }, + { + "start": 15908.14, + "end": 15910.68, + "probability": 0.7551 + }, + { + "start": 15911.24, + "end": 15915.0, + "probability": 0.9821 + }, + { + "start": 15916.36, + "end": 15919.22, + "probability": 0.9556 + }, + { + "start": 15919.8, + "end": 15921.38, + "probability": 0.9972 + }, + { + "start": 15921.78, + "end": 15922.14, + "probability": 0.262 + }, + { + "start": 15922.24, + "end": 15923.42, + "probability": 0.8843 + }, + { + "start": 15923.46, + "end": 15925.04, + "probability": 0.9881 + }, + { + "start": 15925.16, + "end": 15927.76, + "probability": 0.7142 + }, + { + "start": 15928.58, + "end": 15930.3, + "probability": 0.6961 + }, + { + "start": 15930.8, + "end": 15936.62, + "probability": 0.7808 + }, + { + "start": 15938.82, + "end": 15939.3, + "probability": 0.6709 + }, + { + "start": 15951.7, + "end": 15953.98, + "probability": 0.5584 + }, + { + "start": 15955.36, + "end": 15956.98, + "probability": 0.959 + }, + { + "start": 15958.1, + "end": 15960.92, + "probability": 0.9943 + }, + { + "start": 15961.7, + "end": 15966.18, + "probability": 0.9792 + }, + { + "start": 15966.18, + "end": 15970.58, + "probability": 0.9824 + }, + { + "start": 15971.56, + "end": 15975.64, + "probability": 0.9101 + }, + { + "start": 15976.52, + "end": 15981.76, + "probability": 0.9661 + }, + { + "start": 15983.04, + "end": 15988.38, + "probability": 0.9976 + }, + { + "start": 15988.38, + "end": 15993.68, + "probability": 0.9961 + }, + { + "start": 15994.8, + "end": 16000.76, + "probability": 0.9451 + }, + { + "start": 16000.76, + "end": 16006.88, + "probability": 0.9875 + }, + { + "start": 16007.6, + "end": 16010.66, + "probability": 0.8918 + }, + { + "start": 16012.24, + "end": 16015.1, + "probability": 0.9843 + }, + { + "start": 16015.1, + "end": 16018.86, + "probability": 0.8354 + }, + { + "start": 16019.52, + "end": 16025.18, + "probability": 0.9928 + }, + { + "start": 16026.2, + "end": 16030.06, + "probability": 0.8577 + }, + { + "start": 16030.86, + "end": 16034.54, + "probability": 0.9995 + }, + { + "start": 16035.1, + "end": 16041.08, + "probability": 0.9894 + }, + { + "start": 16042.26, + "end": 16044.6, + "probability": 0.9915 + }, + { + "start": 16045.2, + "end": 16050.7, + "probability": 0.9902 + }, + { + "start": 16051.44, + "end": 16054.16, + "probability": 0.8728 + }, + { + "start": 16055.3, + "end": 16059.48, + "probability": 0.9966 + }, + { + "start": 16060.38, + "end": 16064.54, + "probability": 0.9874 + }, + { + "start": 16065.62, + "end": 16070.6, + "probability": 0.992 + }, + { + "start": 16071.48, + "end": 16073.8, + "probability": 0.9921 + }, + { + "start": 16074.34, + "end": 16078.08, + "probability": 0.9956 + }, + { + "start": 16078.08, + "end": 16082.0, + "probability": 0.994 + }, + { + "start": 16083.06, + "end": 16085.48, + "probability": 0.9833 + }, + { + "start": 16086.02, + "end": 16088.42, + "probability": 0.9102 + }, + { + "start": 16089.36, + "end": 16090.66, + "probability": 0.904 + }, + { + "start": 16092.58, + "end": 16097.34, + "probability": 0.9556 + }, + { + "start": 16097.92, + "end": 16103.2, + "probability": 0.9791 + }, + { + "start": 16105.34, + "end": 16107.18, + "probability": 0.9276 + }, + { + "start": 16108.42, + "end": 16114.34, + "probability": 0.9102 + }, + { + "start": 16115.72, + "end": 16119.24, + "probability": 0.9987 + }, + { + "start": 16119.24, + "end": 16123.32, + "probability": 0.9844 + }, + { + "start": 16124.06, + "end": 16125.84, + "probability": 0.9837 + }, + { + "start": 16126.72, + "end": 16129.5, + "probability": 0.8486 + }, + { + "start": 16130.68, + "end": 16132.08, + "probability": 0.693 + }, + { + "start": 16132.36, + "end": 16135.58, + "probability": 0.995 + }, + { + "start": 16136.2, + "end": 16138.32, + "probability": 0.9804 + }, + { + "start": 16139.44, + "end": 16143.5, + "probability": 0.982 + }, + { + "start": 16143.5, + "end": 16146.74, + "probability": 0.9669 + }, + { + "start": 16147.5, + "end": 16153.34, + "probability": 0.9887 + }, + { + "start": 16153.42, + "end": 16161.48, + "probability": 0.9558 + }, + { + "start": 16162.34, + "end": 16162.84, + "probability": 0.5692 + }, + { + "start": 16162.94, + "end": 16168.48, + "probability": 0.9617 + }, + { + "start": 16168.96, + "end": 16169.84, + "probability": 0.9927 + }, + { + "start": 16170.98, + "end": 16175.48, + "probability": 0.9624 + }, + { + "start": 16175.48, + "end": 16180.62, + "probability": 0.9949 + }, + { + "start": 16182.24, + "end": 16183.4, + "probability": 0.7708 + }, + { + "start": 16184.36, + "end": 16188.78, + "probability": 0.9507 + }, + { + "start": 16189.52, + "end": 16193.0, + "probability": 0.9813 + }, + { + "start": 16193.9, + "end": 16197.18, + "probability": 0.9871 + }, + { + "start": 16197.18, + "end": 16200.98, + "probability": 0.9501 + }, + { + "start": 16201.74, + "end": 16203.32, + "probability": 0.8533 + }, + { + "start": 16204.08, + "end": 16207.3, + "probability": 0.863 + }, + { + "start": 16207.86, + "end": 16209.6, + "probability": 0.8874 + }, + { + "start": 16210.26, + "end": 16214.2, + "probability": 0.9814 + }, + { + "start": 16214.5, + "end": 16216.84, + "probability": 0.8712 + }, + { + "start": 16217.04, + "end": 16219.97, + "probability": 0.9191 + }, + { + "start": 16222.14, + "end": 16224.46, + "probability": 0.8184 + }, + { + "start": 16225.08, + "end": 16232.82, + "probability": 0.979 + }, + { + "start": 16233.3, + "end": 16235.3, + "probability": 0.9748 + }, + { + "start": 16236.04, + "end": 16237.08, + "probability": 0.8055 + }, + { + "start": 16237.66, + "end": 16243.97, + "probability": 0.9857 + }, + { + "start": 16244.66, + "end": 16246.98, + "probability": 0.9957 + }, + { + "start": 16247.4, + "end": 16250.7, + "probability": 0.9893 + }, + { + "start": 16251.02, + "end": 16251.58, + "probability": 0.744 + }, + { + "start": 16252.2, + "end": 16253.3, + "probability": 0.8659 + }, + { + "start": 16254.76, + "end": 16257.48, + "probability": 0.7617 + }, + { + "start": 16258.2, + "end": 16261.8, + "probability": 0.7975 + }, + { + "start": 16262.24, + "end": 16264.9, + "probability": 0.9975 + }, + { + "start": 16265.04, + "end": 16266.84, + "probability": 0.7583 + }, + { + "start": 16267.4, + "end": 16269.12, + "probability": 0.268 + }, + { + "start": 16269.46, + "end": 16272.75, + "probability": 0.859 + }, + { + "start": 16273.4, + "end": 16274.84, + "probability": 0.6609 + }, + { + "start": 16277.42, + "end": 16277.84, + "probability": 0.2197 + }, + { + "start": 16280.02, + "end": 16281.66, + "probability": 0.2293 + }, + { + "start": 16287.32, + "end": 16288.62, + "probability": 0.2303 + }, + { + "start": 16294.62, + "end": 16296.42, + "probability": 0.3914 + }, + { + "start": 16297.1, + "end": 16298.2, + "probability": 0.0028 + }, + { + "start": 16298.2, + "end": 16298.2, + "probability": 0.009 + }, + { + "start": 16298.36, + "end": 16298.88, + "probability": 0.0539 + }, + { + "start": 16298.88, + "end": 16300.36, + "probability": 0.1071 + }, + { + "start": 16302.36, + "end": 16303.96, + "probability": 0.0388 + }, + { + "start": 16304.46, + "end": 16305.05, + "probability": 0.0145 + }, + { + "start": 16305.24, + "end": 16305.44, + "probability": 0.0865 + }, + { + "start": 16305.44, + "end": 16305.5, + "probability": 0.0833 + }, + { + "start": 16305.5, + "end": 16310.9, + "probability": 0.0885 + }, + { + "start": 16310.9, + "end": 16311.94, + "probability": 0.0226 + }, + { + "start": 16311.94, + "end": 16314.64, + "probability": 0.3404 + }, + { + "start": 16317.16, + "end": 16317.16, + "probability": 0.014 + }, + { + "start": 16317.16, + "end": 16317.24, + "probability": 0.1288 + }, + { + "start": 16317.24, + "end": 16317.59, + "probability": 0.0242 + }, + { + "start": 16318.32, + "end": 16319.5, + "probability": 0.0568 + }, + { + "start": 16319.5, + "end": 16320.41, + "probability": 0.0829 + }, + { + "start": 16321.18, + "end": 16322.78, + "probability": 0.0173 + }, + { + "start": 16323.9, + "end": 16324.98, + "probability": 0.0926 + }, + { + "start": 16325.0, + "end": 16325.0, + "probability": 0.0 + }, + { + "start": 16325.0, + "end": 16325.0, + "probability": 0.0 + }, + { + "start": 16325.16, + "end": 16325.72, + "probability": 0.0139 + }, + { + "start": 16325.72, + "end": 16325.72, + "probability": 0.0711 + }, + { + "start": 16325.72, + "end": 16327.95, + "probability": 0.5543 + }, + { + "start": 16328.46, + "end": 16330.08, + "probability": 0.8062 + }, + { + "start": 16330.66, + "end": 16331.58, + "probability": 0.9387 + }, + { + "start": 16332.1, + "end": 16333.16, + "probability": 0.8011 + }, + { + "start": 16334.1, + "end": 16339.22, + "probability": 0.5347 + }, + { + "start": 16340.27, + "end": 16344.68, + "probability": 0.9669 + }, + { + "start": 16345.28, + "end": 16347.66, + "probability": 0.9953 + }, + { + "start": 16348.24, + "end": 16351.92, + "probability": 0.9341 + }, + { + "start": 16352.3, + "end": 16353.44, + "probability": 0.7581 + }, + { + "start": 16353.6, + "end": 16357.12, + "probability": 0.9504 + }, + { + "start": 16357.28, + "end": 16358.46, + "probability": 0.7593 + }, + { + "start": 16359.18, + "end": 16365.16, + "probability": 0.8835 + }, + { + "start": 16365.98, + "end": 16369.88, + "probability": 0.9568 + }, + { + "start": 16371.11, + "end": 16374.4, + "probability": 0.7942 + }, + { + "start": 16377.24, + "end": 16380.18, + "probability": 0.6862 + }, + { + "start": 16381.16, + "end": 16383.36, + "probability": 0.9542 + }, + { + "start": 16384.3, + "end": 16384.34, + "probability": 0.0092 + }, + { + "start": 16398.18, + "end": 16400.12, + "probability": 0.67 + }, + { + "start": 16401.24, + "end": 16402.08, + "probability": 0.6947 + }, + { + "start": 16405.74, + "end": 16405.74, + "probability": 0.3689 + }, + { + "start": 16408.38, + "end": 16409.58, + "probability": 0.5104 + }, + { + "start": 16410.84, + "end": 16412.22, + "probability": 0.6849 + }, + { + "start": 16413.38, + "end": 16416.22, + "probability": 0.9772 + }, + { + "start": 16419.3, + "end": 16427.8, + "probability": 0.9902 + }, + { + "start": 16429.06, + "end": 16432.88, + "probability": 0.9881 + }, + { + "start": 16434.66, + "end": 16435.8, + "probability": 0.8966 + }, + { + "start": 16438.16, + "end": 16442.96, + "probability": 0.9797 + }, + { + "start": 16444.04, + "end": 16447.48, + "probability": 0.9947 + }, + { + "start": 16448.38, + "end": 16450.98, + "probability": 0.9908 + }, + { + "start": 16451.82, + "end": 16453.72, + "probability": 0.8995 + }, + { + "start": 16455.44, + "end": 16459.44, + "probability": 0.9646 + }, + { + "start": 16460.94, + "end": 16462.92, + "probability": 0.9609 + }, + { + "start": 16464.6, + "end": 16467.34, + "probability": 0.5123 + }, + { + "start": 16467.48, + "end": 16470.62, + "probability": 0.8927 + }, + { + "start": 16472.04, + "end": 16473.14, + "probability": 0.751 + }, + { + "start": 16474.48, + "end": 16481.42, + "probability": 0.9738 + }, + { + "start": 16482.94, + "end": 16489.44, + "probability": 0.9771 + }, + { + "start": 16491.0, + "end": 16493.54, + "probability": 0.9912 + }, + { + "start": 16495.04, + "end": 16497.52, + "probability": 0.8966 + }, + { + "start": 16498.56, + "end": 16505.5, + "probability": 0.8429 + }, + { + "start": 16506.88, + "end": 16513.8, + "probability": 0.9959 + }, + { + "start": 16515.48, + "end": 16523.08, + "probability": 0.9915 + }, + { + "start": 16524.02, + "end": 16529.72, + "probability": 0.9367 + }, + { + "start": 16531.82, + "end": 16537.86, + "probability": 0.9862 + }, + { + "start": 16538.82, + "end": 16541.42, + "probability": 0.8459 + }, + { + "start": 16542.38, + "end": 16544.66, + "probability": 0.675 + }, + { + "start": 16545.04, + "end": 16545.38, + "probability": 0.3795 + }, + { + "start": 16546.18, + "end": 16547.7, + "probability": 0.4596 + }, + { + "start": 16548.1, + "end": 16550.04, + "probability": 0.3143 + }, + { + "start": 16551.6, + "end": 16557.12, + "probability": 0.2604 + }, + { + "start": 16560.02, + "end": 16561.28, + "probability": 0.3265 + }, + { + "start": 16564.45, + "end": 16566.86, + "probability": 0.7881 + }, + { + "start": 16572.82, + "end": 16575.24, + "probability": 0.0349 + }, + { + "start": 16576.63, + "end": 16577.26, + "probability": 0.0745 + }, + { + "start": 16578.28, + "end": 16578.54, + "probability": 0.0068 + }, + { + "start": 16579.56, + "end": 16579.66, + "probability": 0.0686 + }, + { + "start": 16616.08, + "end": 16616.86, + "probability": 0.0692 + }, + { + "start": 16616.86, + "end": 16619.54, + "probability": 0.2125 + }, + { + "start": 16619.54, + "end": 16619.54, + "probability": 0.0099 + }, + { + "start": 16619.54, + "end": 16620.3, + "probability": 0.0719 + }, + { + "start": 16620.72, + "end": 16620.82, + "probability": 0.0101 + }, + { + "start": 16622.1, + "end": 16623.13, + "probability": 0.0934 + }, + { + "start": 16623.86, + "end": 16624.48, + "probability": 0.025 + }, + { + "start": 16626.3, + "end": 16626.3, + "probability": 0.0066 + }, + { + "start": 16628.92, + "end": 16630.82, + "probability": 0.0574 + }, + { + "start": 16639.91, + "end": 16640.28, + "probability": 0.0796 + }, + { + "start": 16643.2, + "end": 16644.58, + "probability": 0.0251 + }, + { + "start": 16644.66, + "end": 16647.5, + "probability": 0.0472 + }, + { + "start": 16647.5, + "end": 16647.54, + "probability": 0.0904 + }, + { + "start": 16647.54, + "end": 16648.32, + "probability": 0.1524 + }, + { + "start": 16649.72, + "end": 16652.1, + "probability": 0.0624 + }, + { + "start": 16652.1, + "end": 16654.14, + "probability": 0.0745 + }, + { + "start": 16654.32, + "end": 16659.44, + "probability": 0.0965 + }, + { + "start": 16659.98, + "end": 16663.18, + "probability": 0.0336 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16676.0, + "end": 16676.0, + "probability": 0.0 + }, + { + "start": 16689.68, + "end": 16692.56, + "probability": 0.0368 + }, + { + "start": 16694.4, + "end": 16697.6, + "probability": 0.0839 + }, + { + "start": 16697.68, + "end": 16701.78, + "probability": 0.0717 + }, + { + "start": 16701.78, + "end": 16701.86, + "probability": 0.0517 + }, + { + "start": 16701.86, + "end": 16701.86, + "probability": 0.0147 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.0, + "end": 16802.0, + "probability": 0.0 + }, + { + "start": 16802.12, + "end": 16802.2, + "probability": 0.1689 + }, + { + "start": 16802.2, + "end": 16802.2, + "probability": 0.1913 + }, + { + "start": 16802.2, + "end": 16802.2, + "probability": 0.0342 + }, + { + "start": 16802.2, + "end": 16802.2, + "probability": 0.0954 + }, + { + "start": 16802.2, + "end": 16802.2, + "probability": 0.1396 + }, + { + "start": 16802.2, + "end": 16808.42, + "probability": 0.9565 + }, + { + "start": 16808.42, + "end": 16813.54, + "probability": 0.9208 + }, + { + "start": 16815.18, + "end": 16816.66, + "probability": 0.8262 + }, + { + "start": 16817.94, + "end": 16825.18, + "probability": 0.8823 + }, + { + "start": 16825.18, + "end": 16829.08, + "probability": 0.984 + }, + { + "start": 16830.2, + "end": 16835.28, + "probability": 0.9814 + }, + { + "start": 16836.48, + "end": 16839.46, + "probability": 0.9984 + }, + { + "start": 16840.34, + "end": 16842.76, + "probability": 0.9848 + }, + { + "start": 16843.54, + "end": 16848.48, + "probability": 0.9931 + }, + { + "start": 16849.04, + "end": 16851.52, + "probability": 0.999 + }, + { + "start": 16855.02, + "end": 16861.58, + "probability": 0.8602 + }, + { + "start": 16864.1, + "end": 16866.74, + "probability": 0.8865 + }, + { + "start": 16867.46, + "end": 16870.1, + "probability": 0.6332 + }, + { + "start": 16870.86, + "end": 16874.82, + "probability": 0.9753 + }, + { + "start": 16876.98, + "end": 16877.96, + "probability": 0.9323 + }, + { + "start": 16879.64, + "end": 16884.86, + "probability": 0.994 + }, + { + "start": 16885.22, + "end": 16889.46, + "probability": 0.9883 + }, + { + "start": 16889.62, + "end": 16894.3, + "probability": 0.998 + }, + { + "start": 16895.1, + "end": 16896.48, + "probability": 0.9939 + }, + { + "start": 16897.12, + "end": 16902.04, + "probability": 0.9889 + }, + { + "start": 16903.28, + "end": 16906.02, + "probability": 0.8387 + }, + { + "start": 16907.3, + "end": 16908.06, + "probability": 0.6764 + }, + { + "start": 16908.36, + "end": 16912.76, + "probability": 0.8654 + }, + { + "start": 16912.82, + "end": 16914.24, + "probability": 0.9717 + }, + { + "start": 16914.96, + "end": 16916.96, + "probability": 0.8667 + }, + { + "start": 16917.62, + "end": 16922.42, + "probability": 0.8714 + }, + { + "start": 16922.42, + "end": 16924.05, + "probability": 0.8071 + }, + { + "start": 16924.92, + "end": 16926.7, + "probability": 0.6966 + }, + { + "start": 16926.88, + "end": 16927.54, + "probability": 0.5396 + }, + { + "start": 16927.6, + "end": 16927.84, + "probability": 0.6802 + }, + { + "start": 16927.88, + "end": 16928.42, + "probability": 0.7851 + }, + { + "start": 16928.56, + "end": 16928.98, + "probability": 0.807 + }, + { + "start": 16929.02, + "end": 16929.74, + "probability": 0.7838 + }, + { + "start": 16929.8, + "end": 16930.76, + "probability": 0.6509 + }, + { + "start": 16931.28, + "end": 16934.26, + "probability": 0.9252 + }, + { + "start": 16935.38, + "end": 16935.84, + "probability": 0.4146 + }, + { + "start": 16936.68, + "end": 16942.0, + "probability": 0.9377 + }, + { + "start": 16942.34, + "end": 16943.18, + "probability": 0.8756 + }, + { + "start": 16948.32, + "end": 16948.54, + "probability": 0.1972 + }, + { + "start": 16948.54, + "end": 16949.88, + "probability": 0.3756 + }, + { + "start": 16950.78, + "end": 16953.24, + "probability": 0.8346 + }, + { + "start": 16954.0, + "end": 16954.92, + "probability": 0.8849 + }, + { + "start": 16955.64, + "end": 16956.0, + "probability": 0.8472 + }, + { + "start": 16956.7, + "end": 16961.18, + "probability": 0.6527 + }, + { + "start": 16962.58, + "end": 16965.12, + "probability": 0.9963 + }, + { + "start": 16965.12, + "end": 16968.9, + "probability": 0.9885 + }, + { + "start": 16969.74, + "end": 16973.44, + "probability": 0.9912 + }, + { + "start": 16973.84, + "end": 16975.54, + "probability": 0.9442 + }, + { + "start": 16976.36, + "end": 16978.6, + "probability": 0.9602 + }, + { + "start": 16979.12, + "end": 16982.24, + "probability": 0.9858 + }, + { + "start": 16983.12, + "end": 16986.4, + "probability": 0.9133 + }, + { + "start": 16986.4, + "end": 16990.98, + "probability": 0.9965 + }, + { + "start": 16991.54, + "end": 16992.04, + "probability": 0.7029 + }, + { + "start": 16992.16, + "end": 16996.22, + "probability": 0.9627 + }, + { + "start": 16996.7, + "end": 16997.24, + "probability": 0.4984 + }, + { + "start": 16997.24, + "end": 16999.48, + "probability": 0.7192 + }, + { + "start": 16999.56, + "end": 17003.08, + "probability": 0.5174 + }, + { + "start": 17003.18, + "end": 17003.68, + "probability": 0.6776 + }, + { + "start": 17003.92, + "end": 17004.14, + "probability": 0.5777 + }, + { + "start": 17004.14, + "end": 17004.76, + "probability": 0.8136 + }, + { + "start": 17004.78, + "end": 17005.22, + "probability": 0.4658 + }, + { + "start": 17005.3, + "end": 17005.82, + "probability": 0.6588 + }, + { + "start": 17005.88, + "end": 17006.82, + "probability": 0.5778 + }, + { + "start": 17009.03, + "end": 17012.56, + "probability": 0.9683 + }, + { + "start": 17012.72, + "end": 17013.22, + "probability": 0.7445 + }, + { + "start": 17013.72, + "end": 17014.76, + "probability": 0.6813 + }, + { + "start": 17015.4, + "end": 17016.18, + "probability": 0.8196 + }, + { + "start": 17024.72, + "end": 17025.85, + "probability": 0.5565 + }, + { + "start": 17027.32, + "end": 17029.92, + "probability": 0.8519 + }, + { + "start": 17034.16, + "end": 17035.24, + "probability": 0.6553 + }, + { + "start": 17035.92, + "end": 17039.8, + "probability": 0.8132 + }, + { + "start": 17040.02, + "end": 17042.2, + "probability": 0.9493 + }, + { + "start": 17042.45, + "end": 17043.12, + "probability": 0.5849 + }, + { + "start": 17043.16, + "end": 17045.5, + "probability": 0.8008 + }, + { + "start": 17046.18, + "end": 17052.1, + "probability": 0.8443 + }, + { + "start": 17052.1, + "end": 17056.86, + "probability": 0.9897 + }, + { + "start": 17057.74, + "end": 17060.4, + "probability": 0.9989 + }, + { + "start": 17061.1, + "end": 17065.48, + "probability": 0.9068 + }, + { + "start": 17066.02, + "end": 17067.8, + "probability": 0.9988 + }, + { + "start": 17068.52, + "end": 17070.14, + "probability": 0.9862 + }, + { + "start": 17070.78, + "end": 17074.14, + "probability": 0.9755 + }, + { + "start": 17075.1, + "end": 17078.66, + "probability": 0.9901 + }, + { + "start": 17078.66, + "end": 17081.78, + "probability": 0.9895 + }, + { + "start": 17082.3, + "end": 17085.78, + "probability": 0.9256 + }, + { + "start": 17086.2, + "end": 17092.96, + "probability": 0.9636 + }, + { + "start": 17093.96, + "end": 17095.3, + "probability": 0.7354 + }, + { + "start": 17095.46, + "end": 17095.74, + "probability": 0.5199 + }, + { + "start": 17095.94, + "end": 17101.48, + "probability": 0.9564 + }, + { + "start": 17101.48, + "end": 17107.9, + "probability": 0.9957 + }, + { + "start": 17108.78, + "end": 17112.6, + "probability": 0.9518 + }, + { + "start": 17112.6, + "end": 17116.94, + "probability": 0.9926 + }, + { + "start": 17117.8, + "end": 17122.76, + "probability": 0.9889 + }, + { + "start": 17122.76, + "end": 17127.38, + "probability": 0.9549 + }, + { + "start": 17127.92, + "end": 17130.76, + "probability": 0.948 + }, + { + "start": 17130.96, + "end": 17131.54, + "probability": 0.5784 + }, + { + "start": 17131.76, + "end": 17132.44, + "probability": 0.7484 + }, + { + "start": 17132.52, + "end": 17133.58, + "probability": 0.9209 + }, + { + "start": 17133.72, + "end": 17134.66, + "probability": 0.9557 + }, + { + "start": 17134.74, + "end": 17135.58, + "probability": 0.553 + }, + { + "start": 17136.16, + "end": 17139.7, + "probability": 0.875 + }, + { + "start": 17140.78, + "end": 17144.68, + "probability": 0.9374 + }, + { + "start": 17146.68, + "end": 17147.9, + "probability": 0.9809 + }, + { + "start": 17148.64, + "end": 17149.5, + "probability": 0.7245 + }, + { + "start": 17165.82, + "end": 17168.26, + "probability": 0.5646 + }, + { + "start": 17169.26, + "end": 17170.32, + "probability": 0.7195 + }, + { + "start": 17172.42, + "end": 17173.98, + "probability": 0.8392 + }, + { + "start": 17174.42, + "end": 17176.56, + "probability": 0.8924 + }, + { + "start": 17176.56, + "end": 17179.54, + "probability": 0.5913 + }, + { + "start": 17180.22, + "end": 17181.5, + "probability": 0.8867 + }, + { + "start": 17182.96, + "end": 17186.86, + "probability": 0.9838 + }, + { + "start": 17186.86, + "end": 17191.52, + "probability": 0.9529 + }, + { + "start": 17192.6, + "end": 17196.12, + "probability": 0.9834 + }, + { + "start": 17196.12, + "end": 17199.88, + "probability": 0.7641 + }, + { + "start": 17200.5, + "end": 17204.2, + "probability": 0.9624 + }, + { + "start": 17205.12, + "end": 17206.25, + "probability": 0.6406 + }, + { + "start": 17207.06, + "end": 17208.78, + "probability": 0.6586 + }, + { + "start": 17209.36, + "end": 17210.7, + "probability": 0.9541 + }, + { + "start": 17211.18, + "end": 17212.46, + "probability": 0.8636 + }, + { + "start": 17212.94, + "end": 17214.18, + "probability": 0.8104 + }, + { + "start": 17214.56, + "end": 17219.22, + "probability": 0.9645 + }, + { + "start": 17219.62, + "end": 17221.53, + "probability": 0.5051 + }, + { + "start": 17221.8, + "end": 17222.76, + "probability": 0.3915 + }, + { + "start": 17223.22, + "end": 17226.14, + "probability": 0.9843 + }, + { + "start": 17227.06, + "end": 17231.5, + "probability": 0.9126 + }, + { + "start": 17231.96, + "end": 17236.12, + "probability": 0.9414 + }, + { + "start": 17236.56, + "end": 17241.1, + "probability": 0.9979 + }, + { + "start": 17242.0, + "end": 17242.58, + "probability": 0.5316 + }, + { + "start": 17242.64, + "end": 17243.94, + "probability": 0.8173 + }, + { + "start": 17244.18, + "end": 17245.38, + "probability": 0.7656 + }, + { + "start": 17245.56, + "end": 17250.62, + "probability": 0.9479 + }, + { + "start": 17251.36, + "end": 17253.2, + "probability": 0.7855 + }, + { + "start": 17253.44, + "end": 17253.94, + "probability": 0.8571 + }, + { + "start": 17254.28, + "end": 17257.68, + "probability": 0.097 + }, + { + "start": 17258.34, + "end": 17260.22, + "probability": 0.0317 + }, + { + "start": 17288.74, + "end": 17290.44, + "probability": 0.6604 + }, + { + "start": 17292.52, + "end": 17294.72, + "probability": 0.9938 + }, + { + "start": 17295.46, + "end": 17296.06, + "probability": 0.8368 + }, + { + "start": 17298.32, + "end": 17299.84, + "probability": 0.9092 + }, + { + "start": 17300.18, + "end": 17304.36, + "probability": 0.8212 + }, + { + "start": 17305.5, + "end": 17308.33, + "probability": 0.5648 + }, + { + "start": 17308.9, + "end": 17311.28, + "probability": 0.792 + }, + { + "start": 17313.04, + "end": 17313.46, + "probability": 0.7703 + }, + { + "start": 17314.3, + "end": 17318.06, + "probability": 0.7902 + }, + { + "start": 17318.84, + "end": 17322.12, + "probability": 0.8958 + }, + { + "start": 17322.66, + "end": 17324.14, + "probability": 0.9336 + }, + { + "start": 17324.98, + "end": 17328.5, + "probability": 0.8892 + }, + { + "start": 17329.56, + "end": 17330.74, + "probability": 0.9341 + }, + { + "start": 17332.02, + "end": 17332.34, + "probability": 0.6968 + }, + { + "start": 17333.0, + "end": 17335.29, + "probability": 0.6172 + }, + { + "start": 17335.58, + "end": 17340.9, + "probability": 0.894 + }, + { + "start": 17341.58, + "end": 17342.42, + "probability": 0.8838 + }, + { + "start": 17343.22, + "end": 17344.44, + "probability": 0.8728 + }, + { + "start": 17350.64, + "end": 17350.76, + "probability": 0.0395 + }, + { + "start": 17350.76, + "end": 17356.3, + "probability": 0.9695 + }, + { + "start": 17356.64, + "end": 17358.3, + "probability": 0.8604 + }, + { + "start": 17360.7, + "end": 17360.98, + "probability": 0.8252 + }, + { + "start": 17365.54, + "end": 17368.18, + "probability": 0.7687 + }, + { + "start": 17369.0, + "end": 17372.64, + "probability": 0.9902 + }, + { + "start": 17372.64, + "end": 17376.92, + "probability": 0.989 + }, + { + "start": 17378.26, + "end": 17380.28, + "probability": 0.891 + }, + { + "start": 17380.8, + "end": 17382.98, + "probability": 0.9373 + }, + { + "start": 17383.98, + "end": 17388.52, + "probability": 0.9979 + }, + { + "start": 17389.58, + "end": 17392.0, + "probability": 0.9125 + }, + { + "start": 17392.66, + "end": 17396.32, + "probability": 0.9803 + }, + { + "start": 17396.88, + "end": 17400.4, + "probability": 0.993 + }, + { + "start": 17401.48, + "end": 17406.1, + "probability": 0.9747 + }, + { + "start": 17407.2, + "end": 17411.54, + "probability": 0.9969 + }, + { + "start": 17411.98, + "end": 17412.64, + "probability": 0.5526 + }, + { + "start": 17412.7, + "end": 17413.86, + "probability": 0.6313 + }, + { + "start": 17414.14, + "end": 17414.72, + "probability": 0.8594 + }, + { + "start": 17415.72, + "end": 17417.82, + "probability": 0.9432 + }, + { + "start": 17419.22, + "end": 17423.86, + "probability": 0.7511 + }, + { + "start": 17424.84, + "end": 17427.31, + "probability": 0.6512 + }, + { + "start": 17427.74, + "end": 17434.37, + "probability": 0.9756 + }, + { + "start": 17434.72, + "end": 17438.02, + "probability": 0.8374 + }, + { + "start": 17440.58, + "end": 17443.04, + "probability": 0.1301 + }, + { + "start": 17444.02, + "end": 17444.1, + "probability": 0.0273 + }, + { + "start": 17447.52, + "end": 17449.48, + "probability": 0.498 + }, + { + "start": 17449.48, + "end": 17449.9, + "probability": 0.4258 + }, + { + "start": 17449.9, + "end": 17455.38, + "probability": 0.9152 + }, + { + "start": 17456.18, + "end": 17460.9, + "probability": 0.9971 + }, + { + "start": 17460.98, + "end": 17463.32, + "probability": 0.8308 + }, + { + "start": 17468.2, + "end": 17473.43, + "probability": 0.0137 + }, + { + "start": 17477.04, + "end": 17480.2, + "probability": 0.5025 + }, + { + "start": 17480.58, + "end": 17481.16, + "probability": 0.3356 + }, + { + "start": 17481.56, + "end": 17481.78, + "probability": 0.6585 + }, + { + "start": 17481.78, + "end": 17485.44, + "probability": 0.8896 + }, + { + "start": 17486.04, + "end": 17486.72, + "probability": 0.9184 + }, + { + "start": 17487.34, + "end": 17492.14, + "probability": 0.9901 + }, + { + "start": 17493.76, + "end": 17494.71, + "probability": 0.6458 + }, + { + "start": 17494.8, + "end": 17495.36, + "probability": 0.7479 + }, + { + "start": 17495.66, + "end": 17498.04, + "probability": 0.9896 + }, + { + "start": 17500.92, + "end": 17504.74, + "probability": 0.6734 + }, + { + "start": 17506.12, + "end": 17507.46, + "probability": 0.0477 + }, + { + "start": 17507.76, + "end": 17512.26, + "probability": 0.5044 + }, + { + "start": 17512.74, + "end": 17513.08, + "probability": 0.2605 + }, + { + "start": 17513.18, + "end": 17513.46, + "probability": 0.4713 + }, + { + "start": 17513.64, + "end": 17517.02, + "probability": 0.9718 + }, + { + "start": 17517.46, + "end": 17518.34, + "probability": 0.7474 + }, + { + "start": 17518.54, + "end": 17519.16, + "probability": 0.6063 + }, + { + "start": 17519.76, + "end": 17523.0, + "probability": 0.8834 + }, + { + "start": 17523.16, + "end": 17524.06, + "probability": 0.6659 + }, + { + "start": 17524.28, + "end": 17524.42, + "probability": 0.086 + }, + { + "start": 17524.42, + "end": 17525.52, + "probability": 0.3721 + }, + { + "start": 17526.62, + "end": 17527.56, + "probability": 0.036 + }, + { + "start": 17527.94, + "end": 17529.94, + "probability": 0.4499 + }, + { + "start": 17530.1, + "end": 17533.54, + "probability": 0.9349 + }, + { + "start": 17533.6, + "end": 17534.56, + "probability": 0.6085 + }, + { + "start": 17534.9, + "end": 17540.18, + "probability": 0.9421 + }, + { + "start": 17540.8, + "end": 17542.04, + "probability": 0.7484 + }, + { + "start": 17542.12, + "end": 17545.66, + "probability": 0.8981 + }, + { + "start": 17545.92, + "end": 17548.34, + "probability": 0.9437 + }, + { + "start": 17548.98, + "end": 17551.76, + "probability": 0.9933 + }, + { + "start": 17551.84, + "end": 17552.96, + "probability": 0.7589 + }, + { + "start": 17553.56, + "end": 17555.58, + "probability": 0.9182 + }, + { + "start": 17555.62, + "end": 17556.3, + "probability": 0.6075 + }, + { + "start": 17557.36, + "end": 17559.12, + "probability": 0.1091 + }, + { + "start": 17562.54, + "end": 17568.06, + "probability": 0.0253 + }, + { + "start": 17569.72, + "end": 17572.0, + "probability": 0.4574 + }, + { + "start": 17572.18, + "end": 17572.92, + "probability": 0.559 + }, + { + "start": 17573.26, + "end": 17573.78, + "probability": 0.6135 + }, + { + "start": 17573.92, + "end": 17577.32, + "probability": 0.9842 + }, + { + "start": 17580.24, + "end": 17582.02, + "probability": 0.629 + }, + { + "start": 17582.12, + "end": 17584.26, + "probability": 0.9736 + }, + { + "start": 17584.9, + "end": 17585.96, + "probability": 0.9258 + }, + { + "start": 17586.02, + "end": 17586.62, + "probability": 0.5327 + }, + { + "start": 17586.66, + "end": 17586.86, + "probability": 0.597 + }, + { + "start": 17586.92, + "end": 17587.48, + "probability": 0.8522 + }, + { + "start": 17587.56, + "end": 17587.94, + "probability": 0.4438 + }, + { + "start": 17588.02, + "end": 17588.62, + "probability": 0.4589 + }, + { + "start": 17588.66, + "end": 17589.66, + "probability": 0.5098 + }, + { + "start": 17590.24, + "end": 17592.13, + "probability": 0.9819 + }, + { + "start": 17594.08, + "end": 17594.6, + "probability": 0.1305 + }, + { + "start": 17595.3, + "end": 17597.1, + "probability": 0.0922 + }, + { + "start": 17598.28, + "end": 17601.0, + "probability": 0.008 + }, + { + "start": 17606.6, + "end": 17607.56, + "probability": 0.446 + }, + { + "start": 17607.89, + "end": 17609.96, + "probability": 0.7494 + }, + { + "start": 17611.22, + "end": 17616.34, + "probability": 0.6855 + }, + { + "start": 17616.96, + "end": 17617.26, + "probability": 0.5338 + }, + { + "start": 17617.3, + "end": 17621.78, + "probability": 0.8881 + }, + { + "start": 17621.98, + "end": 17622.68, + "probability": 0.6394 + }, + { + "start": 17622.74, + "end": 17622.96, + "probability": 0.7135 + }, + { + "start": 17622.98, + "end": 17623.62, + "probability": 0.9555 + }, + { + "start": 17623.72, + "end": 17624.14, + "probability": 0.4061 + }, + { + "start": 17624.32, + "end": 17624.72, + "probability": 0.1485 + }, + { + "start": 17624.84, + "end": 17626.85, + "probability": 0.41 + }, + { + "start": 17628.3, + "end": 17630.74, + "probability": 0.9983 + }, + { + "start": 17631.72, + "end": 17633.58, + "probability": 0.5739 + }, + { + "start": 17633.64, + "end": 17636.3, + "probability": 0.145 + }, + { + "start": 17636.38, + "end": 17640.72, + "probability": 0.9679 + }, + { + "start": 17640.72, + "end": 17643.94, + "probability": 0.9951 + }, + { + "start": 17644.68, + "end": 17646.1, + "probability": 0.9956 + }, + { + "start": 17646.32, + "end": 17647.12, + "probability": 0.7668 + }, + { + "start": 17648.3, + "end": 17653.0, + "probability": 0.9412 + }, + { + "start": 17653.12, + "end": 17653.32, + "probability": 0.8461 + }, + { + "start": 17653.36, + "end": 17654.48, + "probability": 0.895 + }, + { + "start": 17654.68, + "end": 17655.9, + "probability": 0.9471 + }, + { + "start": 17656.18, + "end": 17658.04, + "probability": 0.9915 + }, + { + "start": 17658.92, + "end": 17663.12, + "probability": 0.8969 + }, + { + "start": 17663.38, + "end": 17666.02, + "probability": 0.9459 + }, + { + "start": 17666.46, + "end": 17667.88, + "probability": 0.8566 + }, + { + "start": 17668.54, + "end": 17670.48, + "probability": 0.5045 + }, + { + "start": 17671.64, + "end": 17672.54, + "probability": 0.3753 + }, + { + "start": 17674.96, + "end": 17679.16, + "probability": 0.0617 + }, + { + "start": 17679.16, + "end": 17679.16, + "probability": 0.4887 + }, + { + "start": 17679.16, + "end": 17680.43, + "probability": 0.3825 + }, + { + "start": 17680.8, + "end": 17685.92, + "probability": 0.9478 + }, + { + "start": 17686.06, + "end": 17688.88, + "probability": 0.9444 + }, + { + "start": 17688.94, + "end": 17689.34, + "probability": 0.7098 + }, + { + "start": 17689.48, + "end": 17690.24, + "probability": 0.4295 + }, + { + "start": 17690.38, + "end": 17691.04, + "probability": 0.7261 + }, + { + "start": 17691.12, + "end": 17691.96, + "probability": 0.7253 + }, + { + "start": 17692.32, + "end": 17694.4, + "probability": 0.9946 + }, + { + "start": 17695.06, + "end": 17698.5, + "probability": 0.845 + }, + { + "start": 17698.64, + "end": 17699.18, + "probability": 0.7068 + }, + { + "start": 17699.44, + "end": 17699.56, + "probability": 0.5246 + }, + { + "start": 17699.56, + "end": 17700.16, + "probability": 0.464 + }, + { + "start": 17700.28, + "end": 17700.64, + "probability": 0.4135 + }, + { + "start": 17700.68, + "end": 17701.24, + "probability": 0.4932 + }, + { + "start": 17701.24, + "end": 17702.08, + "probability": 0.5403 + }, + { + "start": 17702.6, + "end": 17704.6, + "probability": 0.7615 + }, + { + "start": 17713.26, + "end": 17714.54, + "probability": 0.6371 + }, + { + "start": 17715.52, + "end": 17719.26, + "probability": 0.7603 + }, + { + "start": 17719.8, + "end": 17720.94, + "probability": 0.9325 + }, + { + "start": 17721.16, + "end": 17721.88, + "probability": 0.6948 + }, + { + "start": 17721.94, + "end": 17722.22, + "probability": 0.7572 + }, + { + "start": 17722.22, + "end": 17722.88, + "probability": 0.8463 + }, + { + "start": 17722.98, + "end": 17723.54, + "probability": 0.9084 + }, + { + "start": 17723.82, + "end": 17724.54, + "probability": 0.7382 + }, + { + "start": 17724.82, + "end": 17725.48, + "probability": 0.2713 + }, + { + "start": 17726.14, + "end": 17731.0, + "probability": 0.9733 + }, + { + "start": 17731.48, + "end": 17734.54, + "probability": 0.9932 + }, + { + "start": 17734.54, + "end": 17738.32, + "probability": 0.9985 + }, + { + "start": 17738.82, + "end": 17744.1, + "probability": 0.9746 + }, + { + "start": 17744.48, + "end": 17746.92, + "probability": 0.974 + }, + { + "start": 17747.28, + "end": 17750.1, + "probability": 0.799 + }, + { + "start": 17750.1, + "end": 17752.88, + "probability": 0.9584 + }, + { + "start": 17753.18, + "end": 17757.14, + "probability": 0.9894 + }, + { + "start": 17757.56, + "end": 17764.0, + "probability": 0.8921 + }, + { + "start": 17764.0, + "end": 17769.74, + "probability": 0.9346 + }, + { + "start": 17771.0, + "end": 17771.98, + "probability": 0.6204 + }, + { + "start": 17772.14, + "end": 17773.66, + "probability": 0.8456 + }, + { + "start": 17773.92, + "end": 17774.74, + "probability": 0.9036 + }, + { + "start": 17774.88, + "end": 17775.4, + "probability": 0.6149 + }, + { + "start": 17775.54, + "end": 17775.72, + "probability": 0.322 + }, + { + "start": 17775.78, + "end": 17776.26, + "probability": 0.6045 + }, + { + "start": 17776.32, + "end": 17776.7, + "probability": 0.7235 + }, + { + "start": 17776.74, + "end": 17777.32, + "probability": 0.7492 + }, + { + "start": 17777.46, + "end": 17778.18, + "probability": 0.4141 + }, + { + "start": 17778.36, + "end": 17778.92, + "probability": 0.7398 + }, + { + "start": 17779.69, + "end": 17783.14, + "probability": 0.6853 + }, + { + "start": 17783.2, + "end": 17784.06, + "probability": 0.7198 + }, + { + "start": 17786.88, + "end": 17791.36, + "probability": 0.9727 + }, + { + "start": 17791.4, + "end": 17791.96, + "probability": 0.8142 + }, + { + "start": 17792.04, + "end": 17792.54, + "probability": 0.4806 + }, + { + "start": 17793.86, + "end": 17796.24, + "probability": 0.6807 + }, + { + "start": 17796.34, + "end": 17800.28, + "probability": 0.5953 + }, + { + "start": 17801.14, + "end": 17801.9, + "probability": 0.4539 + }, + { + "start": 17802.02, + "end": 17805.02, + "probability": 0.9771 + }, + { + "start": 17805.02, + "end": 17808.78, + "probability": 0.9878 + }, + { + "start": 17808.78, + "end": 17812.64, + "probability": 0.9986 + }, + { + "start": 17813.62, + "end": 17818.42, + "probability": 0.7922 + }, + { + "start": 17819.08, + "end": 17821.84, + "probability": 0.9673 + }, + { + "start": 17822.52, + "end": 17825.24, + "probability": 0.993 + }, + { + "start": 17825.62, + "end": 17828.34, + "probability": 0.9985 + }, + { + "start": 17828.84, + "end": 17834.18, + "probability": 0.9805 + }, + { + "start": 17834.68, + "end": 17837.28, + "probability": 0.9664 + }, + { + "start": 17838.38, + "end": 17841.18, + "probability": 0.9009 + }, + { + "start": 17841.7, + "end": 17844.04, + "probability": 0.9984 + }, + { + "start": 17844.58, + "end": 17849.62, + "probability": 0.9671 + }, + { + "start": 17849.62, + "end": 17854.2, + "probability": 0.9956 + }, + { + "start": 17854.72, + "end": 17857.74, + "probability": 0.7686 + }, + { + "start": 17858.34, + "end": 17859.4, + "probability": 0.8866 + }, + { + "start": 17859.78, + "end": 17863.44, + "probability": 0.9832 + }, + { + "start": 17863.88, + "end": 17868.94, + "probability": 0.9561 + }, + { + "start": 17869.2, + "end": 17872.42, + "probability": 0.8921 + }, + { + "start": 17872.42, + "end": 17876.3, + "probability": 0.9979 + }, + { + "start": 17876.56, + "end": 17877.0, + "probability": 0.7625 + }, + { + "start": 17877.48, + "end": 17880.18, + "probability": 0.8198 + }, + { + "start": 17880.7, + "end": 17883.82, + "probability": 0.6613 + }, + { + "start": 17885.38, + "end": 17892.22, + "probability": 0.9886 + }, + { + "start": 17898.9, + "end": 17899.24, + "probability": 0.5368 + }, + { + "start": 17899.26, + "end": 17902.76, + "probability": 0.9681 + }, + { + "start": 17902.88, + "end": 17905.94, + "probability": 0.9235 + }, + { + "start": 17906.04, + "end": 17906.14, + "probability": 0.7844 + }, + { + "start": 17906.8, + "end": 17908.71, + "probability": 0.0669 + }, + { + "start": 17908.78, + "end": 17909.68, + "probability": 0.0538 + }, + { + "start": 17918.78, + "end": 17922.76, + "probability": 0.6113 + }, + { + "start": 17922.86, + "end": 17924.04, + "probability": 0.8471 + }, + { + "start": 17925.24, + "end": 17926.44, + "probability": 0.8994 + }, + { + "start": 17927.46, + "end": 17929.78, + "probability": 0.9897 + }, + { + "start": 17930.56, + "end": 17933.66, + "probability": 0.9844 + }, + { + "start": 17934.5, + "end": 17939.24, + "probability": 0.9904 + }, + { + "start": 17939.24, + "end": 17947.04, + "probability": 0.9933 + }, + { + "start": 17947.92, + "end": 17950.68, + "probability": 0.9814 + }, + { + "start": 17950.82, + "end": 17956.54, + "probability": 0.9316 + }, + { + "start": 17957.46, + "end": 17959.98, + "probability": 0.9426 + }, + { + "start": 17960.7, + "end": 17961.98, + "probability": 0.8895 + }, + { + "start": 17962.48, + "end": 17966.08, + "probability": 0.9805 + }, + { + "start": 17966.6, + "end": 17970.44, + "probability": 0.9766 + }, + { + "start": 17970.44, + "end": 17973.44, + "probability": 0.9899 + }, + { + "start": 17974.06, + "end": 17978.48, + "probability": 0.9854 + }, + { + "start": 17978.48, + "end": 17983.4, + "probability": 0.9871 + }, + { + "start": 17983.4, + "end": 17987.42, + "probability": 0.9388 + }, + { + "start": 17988.72, + "end": 17989.5, + "probability": 0.6025 + }, + { + "start": 17989.5, + "end": 17991.86, + "probability": 0.9521 + }, + { + "start": 17992.04, + "end": 17993.38, + "probability": 0.9146 + }, + { + "start": 17994.1, + "end": 18000.78, + "probability": 0.9528 + }, + { + "start": 18001.06, + "end": 18001.78, + "probability": 0.9256 + }, + { + "start": 18003.68, + "end": 18004.74, + "probability": 0.6014 + }, + { + "start": 18022.02, + "end": 18023.6, + "probability": 0.5052 + }, + { + "start": 18023.78, + "end": 18024.56, + "probability": 0.876 + }, + { + "start": 18024.6, + "end": 18025.32, + "probability": 0.7714 + }, + { + "start": 18025.4, + "end": 18026.58, + "probability": 0.7218 + }, + { + "start": 18027.28, + "end": 18030.1, + "probability": 0.9839 + }, + { + "start": 18030.1, + "end": 18032.84, + "probability": 0.9904 + }, + { + "start": 18033.34, + "end": 18036.7, + "probability": 0.957 + }, + { + "start": 18037.86, + "end": 18042.26, + "probability": 0.9851 + }, + { + "start": 18042.98, + "end": 18044.79, + "probability": 0.6151 + }, + { + "start": 18045.76, + "end": 18046.16, + "probability": 0.8807 + }, + { + "start": 18046.22, + "end": 18046.68, + "probability": 0.4155 + }, + { + "start": 18046.72, + "end": 18049.92, + "probability": 0.8521 + }, + { + "start": 18051.16, + "end": 18051.98, + "probability": 0.7729 + }, + { + "start": 18052.06, + "end": 18054.4, + "probability": 0.802 + }, + { + "start": 18054.52, + "end": 18055.28, + "probability": 0.9712 + }, + { + "start": 18055.48, + "end": 18057.82, + "probability": 0.5033 + }, + { + "start": 18058.5, + "end": 18059.6, + "probability": 0.6361 + }, + { + "start": 18060.62, + "end": 18067.08, + "probability": 0.9726 + }, + { + "start": 18067.54, + "end": 18068.62, + "probability": 0.9799 + }, + { + "start": 18069.74, + "end": 18073.28, + "probability": 0.8866 + }, + { + "start": 18073.28, + "end": 18076.28, + "probability": 0.9987 + }, + { + "start": 18077.44, + "end": 18080.52, + "probability": 0.9982 + }, + { + "start": 18081.14, + "end": 18085.58, + "probability": 0.9991 + }, + { + "start": 18086.34, + "end": 18091.16, + "probability": 0.9987 + }, + { + "start": 18091.16, + "end": 18095.96, + "probability": 0.9994 + }, + { + "start": 18097.12, + "end": 18102.78, + "probability": 0.9967 + }, + { + "start": 18102.78, + "end": 18105.96, + "probability": 0.998 + }, + { + "start": 18107.3, + "end": 18111.22, + "probability": 0.9962 + }, + { + "start": 18111.22, + "end": 18114.78, + "probability": 0.9987 + }, + { + "start": 18115.18, + "end": 18116.46, + "probability": 0.7654 + }, + { + "start": 18117.3, + "end": 18122.48, + "probability": 0.9982 + }, + { + "start": 18123.58, + "end": 18128.28, + "probability": 0.9987 + }, + { + "start": 18128.28, + "end": 18133.52, + "probability": 0.9982 + }, + { + "start": 18133.96, + "end": 18137.9, + "probability": 0.9822 + }, + { + "start": 18139.16, + "end": 18142.4, + "probability": 0.9985 + }, + { + "start": 18142.4, + "end": 18145.62, + "probability": 0.9994 + }, + { + "start": 18146.22, + "end": 18149.88, + "probability": 0.9962 + }, + { + "start": 18150.58, + "end": 18153.26, + "probability": 0.9927 + }, + { + "start": 18153.26, + "end": 18156.62, + "probability": 0.9958 + }, + { + "start": 18157.62, + "end": 18160.82, + "probability": 0.9991 + }, + { + "start": 18160.82, + "end": 18163.3, + "probability": 0.9984 + }, + { + "start": 18163.46, + "end": 18164.52, + "probability": 0.7567 + }, + { + "start": 18164.78, + "end": 18166.06, + "probability": 0.8914 + }, + { + "start": 18166.88, + "end": 18170.56, + "probability": 0.9968 + }, + { + "start": 18170.56, + "end": 18175.18, + "probability": 0.9995 + }, + { + "start": 18175.92, + "end": 18177.12, + "probability": 0.998 + }, + { + "start": 18179.1, + "end": 18185.26, + "probability": 0.9978 + }, + { + "start": 18185.26, + "end": 18190.26, + "probability": 0.9992 + }, + { + "start": 18190.7, + "end": 18191.12, + "probability": 0.7436 + }, + { + "start": 18191.82, + "end": 18192.68, + "probability": 0.653 + }, + { + "start": 18192.78, + "end": 18193.82, + "probability": 0.7061 + }, + { + "start": 18194.02, + "end": 18195.28, + "probability": 0.7463 + }, + { + "start": 18195.9, + "end": 18197.72, + "probability": 0.8869 + }, + { + "start": 18198.64, + "end": 18200.44, + "probability": 0.5719 + }, + { + "start": 18201.28, + "end": 18202.0, + "probability": 0.9648 + }, + { + "start": 18202.54, + "end": 18205.2, + "probability": 0.9767 + }, + { + "start": 18213.1, + "end": 18216.92, + "probability": 0.9723 + }, + { + "start": 18217.12, + "end": 18217.86, + "probability": 0.7182 + }, + { + "start": 18220.02, + "end": 18224.18, + "probability": 0.9616 + }, + { + "start": 18225.72, + "end": 18231.1, + "probability": 0.9993 + }, + { + "start": 18231.1, + "end": 18236.84, + "probability": 0.9897 + }, + { + "start": 18237.6, + "end": 18238.68, + "probability": 0.8016 + }, + { + "start": 18242.28, + "end": 18245.56, + "probability": 0.8734 + }, + { + "start": 18246.26, + "end": 18247.88, + "probability": 0.6416 + }, + { + "start": 18248.5, + "end": 18253.7, + "probability": 0.7549 + }, + { + "start": 18253.8, + "end": 18254.06, + "probability": 0.7634 + }, + { + "start": 18254.64, + "end": 18256.95, + "probability": 0.7944 + }, + { + "start": 18258.98, + "end": 18259.34, + "probability": 0.9519 + }, + { + "start": 18261.74, + "end": 18262.42, + "probability": 0.306 + }, + { + "start": 18262.44, + "end": 18263.2, + "probability": 0.402 + }, + { + "start": 18263.26, + "end": 18265.84, + "probability": 0.9701 + }, + { + "start": 18266.52, + "end": 18270.22, + "probability": 0.7775 + }, + { + "start": 18270.42, + "end": 18273.22, + "probability": 0.697 + }, + { + "start": 18273.54, + "end": 18274.73, + "probability": 0.7549 + }, + { + "start": 18274.9, + "end": 18277.9, + "probability": 0.8838 + }, + { + "start": 18278.44, + "end": 18279.66, + "probability": 0.734 + }, + { + "start": 18290.34, + "end": 18293.32, + "probability": 0.0481 + }, + { + "start": 18294.14, + "end": 18296.0, + "probability": 0.4363 + }, + { + "start": 18296.12, + "end": 18296.64, + "probability": 0.3889 + }, + { + "start": 18297.08, + "end": 18297.38, + "probability": 0.624 + }, + { + "start": 18297.38, + "end": 18302.68, + "probability": 0.8208 + }, + { + "start": 18302.96, + "end": 18304.34, + "probability": 0.9804 + }, + { + "start": 18309.14, + "end": 18313.12, + "probability": 0.9064 + }, + { + "start": 18313.62, + "end": 18315.1, + "probability": 0.4045 + }, + { + "start": 18329.8, + "end": 18331.52, + "probability": 0.0411 + }, + { + "start": 18331.52, + "end": 18333.2, + "probability": 0.3149 + }, + { + "start": 18340.72, + "end": 18343.66, + "probability": 0.1648 + }, + { + "start": 18343.86, + "end": 18344.18, + "probability": 0.4359 + }, + { + "start": 18344.52, + "end": 18349.34, + "probability": 0.9777 + }, + { + "start": 18349.92, + "end": 18353.33, + "probability": 0.9959 + }, + { + "start": 18355.12, + "end": 18355.12, + "probability": 0.0021 + }, + { + "start": 18356.7, + "end": 18358.0, + "probability": 0.6944 + }, + { + "start": 18358.34, + "end": 18359.8, + "probability": 0.127 + }, + { + "start": 18374.7, + "end": 18374.88, + "probability": 0.0104 + }, + { + "start": 18374.88, + "end": 18376.22, + "probability": 0.5016 + }, + { + "start": 18376.38, + "end": 18377.12, + "probability": 0.2171 + }, + { + "start": 18377.24, + "end": 18377.78, + "probability": 0.7414 + }, + { + "start": 18377.84, + "end": 18382.88, + "probability": 0.897 + }, + { + "start": 18383.82, + "end": 18387.22, + "probability": 0.7928 + }, + { + "start": 18387.72, + "end": 18388.72, + "probability": 0.5935 + }, + { + "start": 18389.9, + "end": 18392.06, + "probability": 0.5906 + }, + { + "start": 18407.86, + "end": 18407.86, + "probability": 0.0884 + }, + { + "start": 18407.86, + "end": 18409.8, + "probability": 0.4105 + }, + { + "start": 18410.24, + "end": 18410.82, + "probability": 0.0905 + }, + { + "start": 18410.94, + "end": 18411.46, + "probability": 0.707 + }, + { + "start": 18411.48, + "end": 18414.66, + "probability": 0.9658 + }, + { + "start": 18414.7, + "end": 18416.56, + "probability": 0.7445 + }, + { + "start": 18417.32, + "end": 18422.44, + "probability": 0.8047 + }, + { + "start": 18422.6, + "end": 18423.14, + "probability": 0.6228 + }, + { + "start": 18423.28, + "end": 18423.48, + "probability": 0.3587 + }, + { + "start": 18423.6, + "end": 18424.12, + "probability": 0.6994 + }, + { + "start": 18424.22, + "end": 18424.58, + "probability": 0.5407 + }, + { + "start": 18424.66, + "end": 18425.12, + "probability": 0.5987 + }, + { + "start": 18425.2, + "end": 18425.84, + "probability": 0.5558 + }, + { + "start": 18425.9, + "end": 18427.0, + "probability": 0.8837 + }, + { + "start": 18427.06, + "end": 18429.58, + "probability": 0.9742 + }, + { + "start": 18430.3, + "end": 18432.13, + "probability": 0.6469 + }, + { + "start": 18432.76, + "end": 18435.82, + "probability": 0.0443 + }, + { + "start": 18446.2, + "end": 18446.42, + "probability": 0.1037 + }, + { + "start": 18446.42, + "end": 18450.14, + "probability": 0.7578 + }, + { + "start": 18450.88, + "end": 18451.86, + "probability": 0.3303 + }, + { + "start": 18452.38, + "end": 18452.7, + "probability": 0.8767 + }, + { + "start": 18452.72, + "end": 18453.46, + "probability": 0.9651 + }, + { + "start": 18453.56, + "end": 18454.34, + "probability": 0.7651 + }, + { + "start": 18454.82, + "end": 18458.32, + "probability": 0.9263 + }, + { + "start": 18458.46, + "end": 18459.14, + "probability": 0.5923 + }, + { + "start": 18459.18, + "end": 18459.36, + "probability": 0.3847 + }, + { + "start": 18459.44, + "end": 18460.06, + "probability": 0.8645 + }, + { + "start": 18460.14, + "end": 18460.42, + "probability": 0.3998 + }, + { + "start": 18460.62, + "end": 18461.08, + "probability": 0.5166 + }, + { + "start": 18461.12, + "end": 18462.78, + "probability": 0.8811 + }, + { + "start": 18463.56, + "end": 18465.16, + "probability": 0.9961 + }, + { + "start": 18466.32, + "end": 18468.6, + "probability": 0.8294 + }, + { + "start": 18468.68, + "end": 18469.86, + "probability": 0.9284 + }, + { + "start": 18469.98, + "end": 18474.0, + "probability": 0.98 + }, + { + "start": 18474.7, + "end": 18477.14, + "probability": 0.8808 + }, + { + "start": 18481.92, + "end": 18482.66, + "probability": 0.4989 + }, + { + "start": 18483.68, + "end": 18484.52, + "probability": 0.8227 + }, + { + "start": 18494.4, + "end": 18498.68, + "probability": 0.1878 + }, + { + "start": 18500.26, + "end": 18501.52, + "probability": 0.2277 + }, + { + "start": 18502.44, + "end": 18503.64, + "probability": 0.1202 + }, + { + "start": 18520.1, + "end": 18524.08, + "probability": 0.9686 + }, + { + "start": 18524.4, + "end": 18528.19, + "probability": 0.8483 + }, + { + "start": 18528.3, + "end": 18529.88, + "probability": 0.4884 + }, + { + "start": 18530.1, + "end": 18531.54, + "probability": 0.8076 + }, + { + "start": 18532.74, + "end": 18533.28, + "probability": 0.875 + }, + { + "start": 18533.3, + "end": 18537.9, + "probability": 0.9314 + }, + { + "start": 18539.38, + "end": 18541.2, + "probability": 0.9869 + }, + { + "start": 18541.32, + "end": 18544.4, + "probability": 0.8784 + }, + { + "start": 18546.0, + "end": 18548.06, + "probability": 0.7529 + }, + { + "start": 18549.82, + "end": 18551.58, + "probability": 0.9602 + }, + { + "start": 18552.2, + "end": 18553.58, + "probability": 0.9977 + }, + { + "start": 18554.48, + "end": 18555.84, + "probability": 0.9319 + }, + { + "start": 18556.04, + "end": 18557.14, + "probability": 0.9387 + }, + { + "start": 18559.54, + "end": 18561.64, + "probability": 0.9486 + }, + { + "start": 18561.68, + "end": 18562.62, + "probability": 0.5171 + }, + { + "start": 18562.72, + "end": 18563.63, + "probability": 0.9684 + }, + { + "start": 18563.96, + "end": 18570.52, + "probability": 0.9697 + }, + { + "start": 18571.78, + "end": 18572.88, + "probability": 0.667 + }, + { + "start": 18573.5, + "end": 18576.28, + "probability": 0.9657 + }, + { + "start": 18578.02, + "end": 18581.04, + "probability": 0.9773 + }, + { + "start": 18582.24, + "end": 18585.92, + "probability": 0.9855 + }, + { + "start": 18586.92, + "end": 18588.94, + "probability": 0.9879 + }, + { + "start": 18591.16, + "end": 18594.42, + "probability": 0.8662 + }, + { + "start": 18595.58, + "end": 18598.04, + "probability": 0.9625 + }, + { + "start": 18599.32, + "end": 18600.85, + "probability": 0.9821 + }, + { + "start": 18601.82, + "end": 18603.18, + "probability": 0.9296 + }, + { + "start": 18603.78, + "end": 18604.2, + "probability": 0.3546 + }, + { + "start": 18605.6, + "end": 18607.25, + "probability": 0.9742 + }, + { + "start": 18609.06, + "end": 18610.32, + "probability": 0.9038 + }, + { + "start": 18611.38, + "end": 18613.54, + "probability": 0.789 + }, + { + "start": 18615.04, + "end": 18615.94, + "probability": 0.9963 + }, + { + "start": 18617.02, + "end": 18619.0, + "probability": 0.9036 + }, + { + "start": 18620.34, + "end": 18625.46, + "probability": 0.9954 + }, + { + "start": 18626.8, + "end": 18630.24, + "probability": 0.9828 + }, + { + "start": 18631.54, + "end": 18632.92, + "probability": 0.9744 + }, + { + "start": 18633.74, + "end": 18637.4, + "probability": 0.998 + }, + { + "start": 18638.02, + "end": 18641.76, + "probability": 0.9597 + }, + { + "start": 18642.52, + "end": 18643.64, + "probability": 0.8048 + }, + { + "start": 18644.72, + "end": 18645.24, + "probability": 0.0003 + }, + { + "start": 18648.14, + "end": 18649.78, + "probability": 0.1966 + }, + { + "start": 18649.78, + "end": 18649.78, + "probability": 0.0773 + }, + { + "start": 18649.78, + "end": 18649.85, + "probability": 0.172 + }, + { + "start": 18649.98, + "end": 18652.4, + "probability": 0.6218 + }, + { + "start": 18652.82, + "end": 18655.04, + "probability": 0.2956 + }, + { + "start": 18655.18, + "end": 18656.84, + "probability": 0.8646 + }, + { + "start": 18657.02, + "end": 18657.93, + "probability": 0.6829 + }, + { + "start": 18658.34, + "end": 18660.16, + "probability": 0.3294 + }, + { + "start": 18660.46, + "end": 18661.7, + "probability": 0.7332 + }, + { + "start": 18661.82, + "end": 18663.04, + "probability": 0.8833 + }, + { + "start": 18663.48, + "end": 18665.74, + "probability": 0.9819 + }, + { + "start": 18666.04, + "end": 18667.96, + "probability": 0.9238 + }, + { + "start": 18668.04, + "end": 18668.34, + "probability": 0.4426 + }, + { + "start": 18668.62, + "end": 18668.62, + "probability": 0.0329 + }, + { + "start": 18668.62, + "end": 18671.5, + "probability": 0.6512 + }, + { + "start": 18671.82, + "end": 18672.92, + "probability": 0.7724 + }, + { + "start": 18673.38, + "end": 18675.66, + "probability": 0.9029 + }, + { + "start": 18676.14, + "end": 18676.58, + "probability": 0.7161 + }, + { + "start": 18676.66, + "end": 18677.74, + "probability": 0.7842 + }, + { + "start": 18677.92, + "end": 18678.84, + "probability": 0.7255 + }, + { + "start": 18679.72, + "end": 18680.76, + "probability": 0.6157 + }, + { + "start": 18680.76, + "end": 18682.04, + "probability": 0.8968 + }, + { + "start": 18682.12, + "end": 18685.08, + "probability": 0.988 + }, + { + "start": 18685.18, + "end": 18688.14, + "probability": 0.9963 + }, + { + "start": 18689.1, + "end": 18695.14, + "probability": 0.9182 + }, + { + "start": 18695.5, + "end": 18697.82, + "probability": 0.9248 + }, + { + "start": 18698.38, + "end": 18698.78, + "probability": 0.5287 + }, + { + "start": 18700.3, + "end": 18701.86, + "probability": 0.9181 + }, + { + "start": 18703.36, + "end": 18705.72, + "probability": 0.9834 + }, + { + "start": 18707.08, + "end": 18710.24, + "probability": 0.5996 + }, + { + "start": 18710.36, + "end": 18712.62, + "probability": 0.8776 + }, + { + "start": 18713.32, + "end": 18716.34, + "probability": 0.8887 + }, + { + "start": 18716.7, + "end": 18718.78, + "probability": 0.9766 + }, + { + "start": 18718.9, + "end": 18720.46, + "probability": 0.989 + }, + { + "start": 18721.54, + "end": 18722.0, + "probability": 0.6676 + }, + { + "start": 18722.1, + "end": 18722.9, + "probability": 0.8941 + }, + { + "start": 18723.02, + "end": 18724.54, + "probability": 0.8431 + }, + { + "start": 18724.64, + "end": 18729.68, + "probability": 0.9559 + }, + { + "start": 18735.72, + "end": 18736.82, + "probability": 0.4624 + }, + { + "start": 18737.58, + "end": 18740.3, + "probability": 0.9711 + }, + { + "start": 18741.44, + "end": 18745.08, + "probability": 0.9854 + }, + { + "start": 18745.74, + "end": 18747.1, + "probability": 0.9777 + }, + { + "start": 18748.42, + "end": 18749.86, + "probability": 0.9357 + }, + { + "start": 18750.62, + "end": 18751.32, + "probability": 0.9763 + }, + { + "start": 18753.06, + "end": 18754.0, + "probability": 0.8252 + }, + { + "start": 18755.6, + "end": 18757.96, + "probability": 0.8591 + }, + { + "start": 18758.62, + "end": 18761.18, + "probability": 0.9249 + }, + { + "start": 18762.3, + "end": 18768.58, + "probability": 0.7746 + }, + { + "start": 18770.38, + "end": 18771.84, + "probability": 0.5733 + }, + { + "start": 18772.66, + "end": 18774.9, + "probability": 0.4923 + }, + { + "start": 18775.36, + "end": 18778.46, + "probability": 0.9027 + }, + { + "start": 18778.98, + "end": 18779.42, + "probability": 0.6792 + }, + { + "start": 18779.6, + "end": 18780.8, + "probability": 0.7383 + }, + { + "start": 18781.0, + "end": 18783.62, + "probability": 0.9499 + }, + { + "start": 18783.84, + "end": 18786.4, + "probability": 0.7971 + }, + { + "start": 18788.92, + "end": 18790.03, + "probability": 0.8506 + }, + { + "start": 18790.24, + "end": 18791.17, + "probability": 0.9643 + }, + { + "start": 18791.68, + "end": 18792.3, + "probability": 0.8065 + }, + { + "start": 18792.44, + "end": 18793.56, + "probability": 0.8682 + }, + { + "start": 18795.0, + "end": 18795.44, + "probability": 0.5776 + }, + { + "start": 18795.52, + "end": 18796.08, + "probability": 0.957 + }, + { + "start": 18796.16, + "end": 18796.66, + "probability": 0.7783 + }, + { + "start": 18796.72, + "end": 18797.86, + "probability": 0.9868 + }, + { + "start": 18798.02, + "end": 18800.22, + "probability": 0.995 + }, + { + "start": 18800.92, + "end": 18802.62, + "probability": 0.3619 + }, + { + "start": 18802.7, + "end": 18804.98, + "probability": 0.3299 + }, + { + "start": 18806.18, + "end": 18808.62, + "probability": 0.894 + }, + { + "start": 18809.32, + "end": 18812.58, + "probability": 0.9658 + }, + { + "start": 18813.94, + "end": 18817.02, + "probability": 0.9927 + }, + { + "start": 18817.66, + "end": 18818.4, + "probability": 0.7107 + }, + { + "start": 18818.5, + "end": 18819.32, + "probability": 0.3683 + }, + { + "start": 18819.38, + "end": 18823.08, + "probability": 0.9615 + }, + { + "start": 18824.04, + "end": 18824.86, + "probability": 0.9134 + }, + { + "start": 18826.3, + "end": 18827.8, + "probability": 0.7673 + }, + { + "start": 18829.28, + "end": 18830.58, + "probability": 0.7217 + }, + { + "start": 18830.94, + "end": 18832.0, + "probability": 0.9834 + }, + { + "start": 18832.28, + "end": 18834.84, + "probability": 0.9937 + }, + { + "start": 18835.98, + "end": 18840.24, + "probability": 0.9575 + }, + { + "start": 18840.96, + "end": 18842.36, + "probability": 0.7174 + }, + { + "start": 18842.48, + "end": 18844.98, + "probability": 0.9934 + }, + { + "start": 18844.98, + "end": 18847.76, + "probability": 0.9895 + }, + { + "start": 18848.12, + "end": 18849.72, + "probability": 0.9785 + }, + { + "start": 18849.84, + "end": 18850.44, + "probability": 0.6942 + }, + { + "start": 18850.46, + "end": 18852.4, + "probability": 0.9618 + }, + { + "start": 18853.92, + "end": 18855.52, + "probability": 0.7808 + }, + { + "start": 18856.3, + "end": 18860.54, + "probability": 0.4869 + }, + { + "start": 18861.38, + "end": 18861.88, + "probability": 0.9248 + }, + { + "start": 18862.0, + "end": 18863.06, + "probability": 0.6285 + }, + { + "start": 18863.14, + "end": 18864.04, + "probability": 0.8156 + }, + { + "start": 18864.26, + "end": 18864.6, + "probability": 0.9281 + }, + { + "start": 18864.9, + "end": 18868.0, + "probability": 0.3409 + }, + { + "start": 18868.0, + "end": 18870.58, + "probability": 0.0282 + }, + { + "start": 18870.58, + "end": 18870.58, + "probability": 0.1622 + }, + { + "start": 18870.58, + "end": 18870.58, + "probability": 0.0137 + }, + { + "start": 18870.58, + "end": 18870.58, + "probability": 0.1311 + }, + { + "start": 18870.58, + "end": 18870.86, + "probability": 0.0567 + }, + { + "start": 18871.26, + "end": 18873.36, + "probability": 0.9247 + }, + { + "start": 18873.92, + "end": 18875.36, + "probability": 0.5758 + }, + { + "start": 18875.92, + "end": 18876.16, + "probability": 0.1848 + }, + { + "start": 18877.38, + "end": 18878.95, + "probability": 0.5178 + }, + { + "start": 18878.96, + "end": 18879.32, + "probability": 0.0727 + }, + { + "start": 18879.44, + "end": 18880.22, + "probability": 0.4177 + }, + { + "start": 18880.4, + "end": 18882.28, + "probability": 0.7931 + }, + { + "start": 18882.3, + "end": 18885.04, + "probability": 0.2949 + }, + { + "start": 18885.68, + "end": 18887.38, + "probability": 0.1403 + }, + { + "start": 18888.62, + "end": 18890.19, + "probability": 0.0469 + }, + { + "start": 18891.24, + "end": 18893.64, + "probability": 0.0986 + }, + { + "start": 18893.84, + "end": 18895.04, + "probability": 0.0407 + }, + { + "start": 18895.08, + "end": 18895.9, + "probability": 0.1924 + }, + { + "start": 18895.9, + "end": 18895.96, + "probability": 0.1081 + }, + { + "start": 18895.96, + "end": 18896.06, + "probability": 0.0234 + }, + { + "start": 18896.14, + "end": 18897.42, + "probability": 0.1044 + }, + { + "start": 18898.0, + "end": 18901.26, + "probability": 0.6667 + }, + { + "start": 18901.42, + "end": 18903.0, + "probability": 0.5055 + }, + { + "start": 18904.22, + "end": 18910.0, + "probability": 0.1134 + }, + { + "start": 18910.86, + "end": 18911.9, + "probability": 0.5259 + }, + { + "start": 18912.24, + "end": 18913.26, + "probability": 0.7394 + }, + { + "start": 18913.26, + "end": 18915.3, + "probability": 0.448 + }, + { + "start": 18915.42, + "end": 18918.7, + "probability": 0.9224 + }, + { + "start": 18919.84, + "end": 18922.98, + "probability": 0.994 + }, + { + "start": 18923.1, + "end": 18924.88, + "probability": 0.8037 + }, + { + "start": 18925.74, + "end": 18926.46, + "probability": 0.5377 + }, + { + "start": 18926.62, + "end": 18928.8, + "probability": 0.9978 + }, + { + "start": 18929.1, + "end": 18930.5, + "probability": 0.9238 + }, + { + "start": 18931.48, + "end": 18933.9, + "probability": 0.865 + }, + { + "start": 18934.24, + "end": 18937.32, + "probability": 0.9974 + }, + { + "start": 18938.66, + "end": 18939.38, + "probability": 0.328 + }, + { + "start": 18940.0, + "end": 18942.16, + "probability": 0.6493 + }, + { + "start": 18942.52, + "end": 18945.69, + "probability": 0.9429 + }, + { + "start": 18946.34, + "end": 18948.55, + "probability": 0.9943 + }, + { + "start": 18949.0, + "end": 18953.74, + "probability": 0.978 + }, + { + "start": 18953.8, + "end": 18957.68, + "probability": 0.9642 + }, + { + "start": 18958.34, + "end": 18961.1, + "probability": 0.8178 + }, + { + "start": 18961.72, + "end": 18962.8, + "probability": 0.7296 + }, + { + "start": 18964.52, + "end": 18967.42, + "probability": 0.8422 + }, + { + "start": 18968.18, + "end": 18970.62, + "probability": 0.8609 + }, + { + "start": 18971.12, + "end": 18972.62, + "probability": 0.8587 + }, + { + "start": 18973.3, + "end": 18976.14, + "probability": 0.8476 + }, + { + "start": 18976.62, + "end": 18977.94, + "probability": 0.865 + }, + { + "start": 18978.68, + "end": 18979.87, + "probability": 0.9803 + }, + { + "start": 18980.3, + "end": 18981.88, + "probability": 0.9735 + }, + { + "start": 18982.68, + "end": 18987.88, + "probability": 0.9894 + }, + { + "start": 18988.5, + "end": 18990.8, + "probability": 0.9481 + }, + { + "start": 18991.1, + "end": 18992.06, + "probability": 0.4615 + }, + { + "start": 18992.16, + "end": 18993.28, + "probability": 0.9744 + }, + { + "start": 18994.08, + "end": 18995.6, + "probability": 0.9165 + }, + { + "start": 18996.5, + "end": 18999.04, + "probability": 0.9873 + }, + { + "start": 19000.62, + "end": 19001.9, + "probability": 0.9648 + }, + { + "start": 19003.14, + "end": 19007.62, + "probability": 0.9897 + }, + { + "start": 19007.92, + "end": 19009.86, + "probability": 0.8438 + }, + { + "start": 19011.88, + "end": 19012.52, + "probability": 0.8549 + }, + { + "start": 19013.42, + "end": 19016.56, + "probability": 0.8656 + }, + { + "start": 19017.22, + "end": 19021.36, + "probability": 0.8987 + }, + { + "start": 19022.0, + "end": 19025.12, + "probability": 0.9926 + }, + { + "start": 19025.78, + "end": 19027.04, + "probability": 0.8838 + }, + { + "start": 19027.22, + "end": 19027.96, + "probability": 0.9652 + }, + { + "start": 19028.14, + "end": 19030.9, + "probability": 0.9922 + }, + { + "start": 19032.3, + "end": 19034.64, + "probability": 0.8265 + }, + { + "start": 19035.38, + "end": 19039.1, + "probability": 0.9772 + }, + { + "start": 19039.48, + "end": 19042.44, + "probability": 0.9548 + }, + { + "start": 19042.98, + "end": 19046.02, + "probability": 0.953 + }, + { + "start": 19046.26, + "end": 19047.78, + "probability": 0.9325 + }, + { + "start": 19049.02, + "end": 19051.82, + "probability": 0.8882 + }, + { + "start": 19052.4, + "end": 19057.1, + "probability": 0.7794 + }, + { + "start": 19057.54, + "end": 19058.88, + "probability": 0.9971 + }, + { + "start": 19059.42, + "end": 19062.4, + "probability": 0.9945 + }, + { + "start": 19063.22, + "end": 19065.0, + "probability": 0.9776 + }, + { + "start": 19065.24, + "end": 19066.9, + "probability": 0.9056 + }, + { + "start": 19070.5, + "end": 19072.64, + "probability": 0.9048 + }, + { + "start": 19072.82, + "end": 19073.7, + "probability": 0.8138 + }, + { + "start": 19074.64, + "end": 19075.45, + "probability": 0.9336 + }, + { + "start": 19076.48, + "end": 19080.46, + "probability": 0.9932 + }, + { + "start": 19081.18, + "end": 19085.88, + "probability": 0.9205 + }, + { + "start": 19085.9, + "end": 19089.02, + "probability": 0.9972 + }, + { + "start": 19089.86, + "end": 19090.48, + "probability": 0.8802 + }, + { + "start": 19092.08, + "end": 19093.56, + "probability": 0.8647 + }, + { + "start": 19094.38, + "end": 19096.12, + "probability": 0.8809 + }, + { + "start": 19096.84, + "end": 19099.96, + "probability": 0.9379 + }, + { + "start": 19101.44, + "end": 19103.36, + "probability": 0.9895 + }, + { + "start": 19103.4, + "end": 19106.62, + "probability": 0.9305 + }, + { + "start": 19107.14, + "end": 19108.84, + "probability": 0.9142 + }, + { + "start": 19109.3, + "end": 19111.33, + "probability": 0.9943 + }, + { + "start": 19111.56, + "end": 19112.47, + "probability": 0.9607 + }, + { + "start": 19113.66, + "end": 19116.42, + "probability": 0.9571 + }, + { + "start": 19117.06, + "end": 19118.5, + "probability": 0.952 + }, + { + "start": 19120.36, + "end": 19121.74, + "probability": 0.7475 + }, + { + "start": 19122.62, + "end": 19126.2, + "probability": 0.9968 + }, + { + "start": 19126.82, + "end": 19128.77, + "probability": 0.5798 + }, + { + "start": 19130.42, + "end": 19131.72, + "probability": 0.9681 + }, + { + "start": 19132.34, + "end": 19135.32, + "probability": 0.8879 + }, + { + "start": 19136.14, + "end": 19139.32, + "probability": 0.958 + }, + { + "start": 19140.24, + "end": 19142.72, + "probability": 0.877 + }, + { + "start": 19143.28, + "end": 19146.68, + "probability": 0.9912 + }, + { + "start": 19146.8, + "end": 19151.68, + "probability": 0.9788 + }, + { + "start": 19152.84, + "end": 19154.08, + "probability": 0.8136 + }, + { + "start": 19155.7, + "end": 19157.28, + "probability": 0.955 + }, + { + "start": 19158.08, + "end": 19161.02, + "probability": 0.9368 + }, + { + "start": 19161.84, + "end": 19162.52, + "probability": 0.376 + }, + { + "start": 19163.18, + "end": 19164.28, + "probability": 0.7929 + }, + { + "start": 19164.42, + "end": 19165.44, + "probability": 0.7467 + }, + { + "start": 19166.46, + "end": 19171.98, + "probability": 0.8783 + }, + { + "start": 19172.14, + "end": 19173.14, + "probability": 0.9232 + }, + { + "start": 19173.58, + "end": 19174.58, + "probability": 0.7388 + }, + { + "start": 19174.98, + "end": 19175.71, + "probability": 0.8872 + }, + { + "start": 19176.52, + "end": 19177.84, + "probability": 0.5117 + }, + { + "start": 19178.46, + "end": 19178.9, + "probability": 0.6431 + }, + { + "start": 19178.92, + "end": 19183.32, + "probability": 0.988 + }, + { + "start": 19183.48, + "end": 19184.98, + "probability": 0.5079 + }, + { + "start": 19185.38, + "end": 19186.92, + "probability": 0.8277 + }, + { + "start": 19187.04, + "end": 19187.94, + "probability": 0.8406 + }, + { + "start": 19189.18, + "end": 19189.88, + "probability": 0.0021 + }, + { + "start": 19190.96, + "end": 19191.0, + "probability": 0.1345 + }, + { + "start": 19191.16, + "end": 19192.46, + "probability": 0.341 + }, + { + "start": 19192.78, + "end": 19194.24, + "probability": 0.4836 + }, + { + "start": 19194.32, + "end": 19197.62, + "probability": 0.6639 + }, + { + "start": 19198.02, + "end": 19198.72, + "probability": 0.0898 + }, + { + "start": 19199.06, + "end": 19200.92, + "probability": 0.3183 + }, + { + "start": 19201.0, + "end": 19201.8, + "probability": 0.2839 + }, + { + "start": 19204.0, + "end": 19204.74, + "probability": 0.3234 + }, + { + "start": 19204.74, + "end": 19204.74, + "probability": 0.2725 + }, + { + "start": 19204.84, + "end": 19204.84, + "probability": 0.3169 + }, + { + "start": 19204.9, + "end": 19205.22, + "probability": 0.3217 + }, + { + "start": 19205.22, + "end": 19205.74, + "probability": 0.1248 + }, + { + "start": 19205.8, + "end": 19205.8, + "probability": 0.0236 + }, + { + "start": 19205.8, + "end": 19207.06, + "probability": 0.5973 + }, + { + "start": 19207.92, + "end": 19208.3, + "probability": 0.2367 + }, + { + "start": 19209.8, + "end": 19209.86, + "probability": 0.1231 + }, + { + "start": 19209.86, + "end": 19212.44, + "probability": 0.7344 + }, + { + "start": 19213.04, + "end": 19213.8, + "probability": 0.989 + }, + { + "start": 19213.8, + "end": 19214.52, + "probability": 0.6374 + }, + { + "start": 19214.72, + "end": 19218.2, + "probability": 0.9842 + }, + { + "start": 19219.04, + "end": 19220.88, + "probability": 0.8362 + }, + { + "start": 19221.68, + "end": 19223.24, + "probability": 0.9761 + }, + { + "start": 19223.76, + "end": 19225.84, + "probability": 0.998 + }, + { + "start": 19226.9, + "end": 19229.42, + "probability": 0.9976 + }, + { + "start": 19230.14, + "end": 19233.56, + "probability": 0.9946 + }, + { + "start": 19233.56, + "end": 19238.42, + "probability": 0.9437 + }, + { + "start": 19239.28, + "end": 19239.96, + "probability": 0.8501 + }, + { + "start": 19240.24, + "end": 19240.68, + "probability": 0.6161 + }, + { + "start": 19240.72, + "end": 19241.62, + "probability": 0.9688 + }, + { + "start": 19241.68, + "end": 19243.42, + "probability": 0.9964 + }, + { + "start": 19244.02, + "end": 19250.06, + "probability": 0.9946 + }, + { + "start": 19251.56, + "end": 19255.58, + "probability": 0.9484 + }, + { + "start": 19256.78, + "end": 19257.76, + "probability": 0.9388 + }, + { + "start": 19257.98, + "end": 19259.34, + "probability": 0.9309 + }, + { + "start": 19259.68, + "end": 19260.74, + "probability": 0.9458 + }, + { + "start": 19261.52, + "end": 19268.24, + "probability": 0.991 + }, + { + "start": 19269.6, + "end": 19272.46, + "probability": 0.9976 + }, + { + "start": 19273.06, + "end": 19278.7, + "probability": 0.9645 + }, + { + "start": 19279.82, + "end": 19281.88, + "probability": 0.7622 + }, + { + "start": 19281.98, + "end": 19282.77, + "probability": 0.7764 + }, + { + "start": 19282.94, + "end": 19284.6, + "probability": 0.979 + }, + { + "start": 19285.22, + "end": 19286.4, + "probability": 0.7006 + }, + { + "start": 19287.26, + "end": 19292.4, + "probability": 0.9738 + }, + { + "start": 19293.14, + "end": 19294.4, + "probability": 0.9326 + }, + { + "start": 19294.48, + "end": 19295.1, + "probability": 0.9179 + }, + { + "start": 19295.2, + "end": 19296.16, + "probability": 0.7617 + }, + { + "start": 19296.9, + "end": 19299.56, + "probability": 0.9785 + }, + { + "start": 19300.26, + "end": 19304.04, + "probability": 0.9861 + }, + { + "start": 19304.6, + "end": 19309.18, + "probability": 0.9678 + }, + { + "start": 19309.3, + "end": 19311.6, + "probability": 0.9507 + }, + { + "start": 19312.1, + "end": 19313.76, + "probability": 0.9839 + }, + { + "start": 19314.22, + "end": 19317.52, + "probability": 0.9944 + }, + { + "start": 19318.0, + "end": 19320.74, + "probability": 0.9931 + }, + { + "start": 19321.38, + "end": 19323.82, + "probability": 0.9908 + }, + { + "start": 19323.82, + "end": 19327.08, + "probability": 0.7821 + }, + { + "start": 19327.98, + "end": 19328.7, + "probability": 0.9658 + }, + { + "start": 19330.04, + "end": 19331.78, + "probability": 0.988 + }, + { + "start": 19332.67, + "end": 19334.46, + "probability": 0.8552 + }, + { + "start": 19335.42, + "end": 19336.18, + "probability": 0.8141 + }, + { + "start": 19336.32, + "end": 19337.12, + "probability": 0.967 + }, + { + "start": 19337.28, + "end": 19340.8, + "probability": 0.9853 + }, + { + "start": 19342.72, + "end": 19345.18, + "probability": 0.9855 + }, + { + "start": 19346.34, + "end": 19347.04, + "probability": 0.8784 + }, + { + "start": 19348.4, + "end": 19351.7, + "probability": 0.9849 + }, + { + "start": 19351.92, + "end": 19352.69, + "probability": 0.8025 + }, + { + "start": 19353.88, + "end": 19354.58, + "probability": 0.39 + }, + { + "start": 19354.76, + "end": 19356.77, + "probability": 0.9067 + }, + { + "start": 19356.94, + "end": 19362.36, + "probability": 0.9758 + }, + { + "start": 19362.7, + "end": 19363.66, + "probability": 0.4258 + }, + { + "start": 19365.28, + "end": 19366.26, + "probability": 0.9609 + }, + { + "start": 19366.46, + "end": 19367.56, + "probability": 0.9449 + }, + { + "start": 19367.62, + "end": 19368.96, + "probability": 0.9499 + }, + { + "start": 19369.66, + "end": 19373.8, + "probability": 0.9891 + }, + { + "start": 19374.58, + "end": 19377.18, + "probability": 0.9976 + }, + { + "start": 19377.52, + "end": 19379.54, + "probability": 0.9905 + }, + { + "start": 19381.14, + "end": 19383.64, + "probability": 0.9007 + }, + { + "start": 19385.12, + "end": 19388.56, + "probability": 0.9863 + }, + { + "start": 19389.44, + "end": 19392.48, + "probability": 0.9631 + }, + { + "start": 19393.28, + "end": 19394.54, + "probability": 0.9836 + }, + { + "start": 19395.66, + "end": 19397.64, + "probability": 0.9176 + }, + { + "start": 19398.56, + "end": 19401.12, + "probability": 0.9805 + }, + { + "start": 19401.28, + "end": 19401.7, + "probability": 0.7804 + }, + { + "start": 19401.8, + "end": 19402.14, + "probability": 0.9081 + }, + { + "start": 19402.54, + "end": 19403.58, + "probability": 0.6954 + }, + { + "start": 19403.64, + "end": 19408.04, + "probability": 0.9946 + }, + { + "start": 19408.04, + "end": 19411.44, + "probability": 0.9987 + }, + { + "start": 19412.16, + "end": 19412.8, + "probability": 0.6983 + }, + { + "start": 19412.94, + "end": 19417.34, + "probability": 0.7767 + }, + { + "start": 19417.5, + "end": 19418.64, + "probability": 0.9987 + }, + { + "start": 19418.78, + "end": 19420.22, + "probability": 0.8373 + }, + { + "start": 19421.34, + "end": 19422.06, + "probability": 0.559 + }, + { + "start": 19422.32, + "end": 19422.4, + "probability": 0.4191 + }, + { + "start": 19423.06, + "end": 19424.1, + "probability": 0.0518 + }, + { + "start": 19425.48, + "end": 19426.72, + "probability": 0.1236 + }, + { + "start": 19426.72, + "end": 19427.04, + "probability": 0.4665 + }, + { + "start": 19427.04, + "end": 19427.04, + "probability": 0.0781 + }, + { + "start": 19427.04, + "end": 19428.22, + "probability": 0.5614 + }, + { + "start": 19428.32, + "end": 19429.32, + "probability": 0.0334 + }, + { + "start": 19429.58, + "end": 19431.77, + "probability": 0.9338 + }, + { + "start": 19433.84, + "end": 19435.56, + "probability": 0.6261 + }, + { + "start": 19436.94, + "end": 19438.0, + "probability": 0.2891 + }, + { + "start": 19438.0, + "end": 19440.16, + "probability": 0.992 + }, + { + "start": 19440.36, + "end": 19440.52, + "probability": 0.274 + }, + { + "start": 19440.86, + "end": 19442.0, + "probability": 0.7717 + }, + { + "start": 19442.08, + "end": 19443.18, + "probability": 0.7749 + }, + { + "start": 19443.24, + "end": 19444.02, + "probability": 0.5962 + }, + { + "start": 19444.46, + "end": 19446.5, + "probability": 0.9964 + }, + { + "start": 19447.68, + "end": 19449.86, + "probability": 0.999 + }, + { + "start": 19451.56, + "end": 19454.74, + "probability": 0.9385 + }, + { + "start": 19455.8, + "end": 19456.28, + "probability": 0.7624 + }, + { + "start": 19456.46, + "end": 19459.22, + "probability": 0.9461 + }, + { + "start": 19459.86, + "end": 19462.38, + "probability": 0.9787 + }, + { + "start": 19463.44, + "end": 19464.36, + "probability": 0.2757 + }, + { + "start": 19464.64, + "end": 19466.46, + "probability": 0.7959 + }, + { + "start": 19467.1, + "end": 19470.16, + "probability": 0.9901 + }, + { + "start": 19470.16, + "end": 19473.8, + "probability": 0.9945 + }, + { + "start": 19475.62, + "end": 19476.04, + "probability": 0.7218 + }, + { + "start": 19476.42, + "end": 19477.26, + "probability": 0.8558 + }, + { + "start": 19477.32, + "end": 19481.06, + "probability": 0.9316 + }, + { + "start": 19481.54, + "end": 19481.9, + "probability": 0.4236 + }, + { + "start": 19481.98, + "end": 19482.76, + "probability": 0.7642 + }, + { + "start": 19482.82, + "end": 19487.52, + "probability": 0.976 + }, + { + "start": 19487.64, + "end": 19490.22, + "probability": 0.9879 + }, + { + "start": 19491.5, + "end": 19492.68, + "probability": 0.4623 + }, + { + "start": 19493.02, + "end": 19493.42, + "probability": 0.618 + }, + { + "start": 19493.64, + "end": 19497.14, + "probability": 0.8974 + }, + { + "start": 19497.7, + "end": 19501.9, + "probability": 0.8451 + }, + { + "start": 19502.68, + "end": 19504.18, + "probability": 0.8766 + }, + { + "start": 19505.14, + "end": 19508.22, + "probability": 0.9753 + }, + { + "start": 19508.3, + "end": 19510.0, + "probability": 0.8442 + }, + { + "start": 19510.88, + "end": 19513.04, + "probability": 0.9932 + }, + { + "start": 19513.9, + "end": 19516.49, + "probability": 0.903 + }, + { + "start": 19517.44, + "end": 19522.88, + "probability": 0.9825 + }, + { + "start": 19523.52, + "end": 19524.1, + "probability": 0.9235 + }, + { + "start": 19524.66, + "end": 19526.06, + "probability": 0.9696 + }, + { + "start": 19526.28, + "end": 19529.92, + "probability": 0.9801 + }, + { + "start": 19529.92, + "end": 19539.54, + "probability": 0.8771 + }, + { + "start": 19539.62, + "end": 19543.82, + "probability": 0.7867 + }, + { + "start": 19543.88, + "end": 19546.62, + "probability": 0.7724 + }, + { + "start": 19547.08, + "end": 19547.5, + "probability": 0.2553 + }, + { + "start": 19547.5, + "end": 19550.18, + "probability": 0.9569 + }, + { + "start": 19550.5, + "end": 19552.32, + "probability": 0.9368 + }, + { + "start": 19557.48, + "end": 19560.12, + "probability": 0.7271 + }, + { + "start": 19561.04, + "end": 19562.09, + "probability": 0.1573 + }, + { + "start": 19563.16, + "end": 19563.86, + "probability": 0.374 + }, + { + "start": 19563.86, + "end": 19564.3, + "probability": 0.2381 + }, + { + "start": 19564.94, + "end": 19566.42, + "probability": 0.9543 + }, + { + "start": 19566.5, + "end": 19568.66, + "probability": 0.895 + }, + { + "start": 19568.72, + "end": 19571.38, + "probability": 0.9858 + }, + { + "start": 19572.32, + "end": 19572.68, + "probability": 0.0042 + }, + { + "start": 19573.76, + "end": 19577.44, + "probability": 0.9018 + }, + { + "start": 19578.44, + "end": 19579.04, + "probability": 0.8406 + }, + { + "start": 19579.94, + "end": 19580.98, + "probability": 0.9709 + }, + { + "start": 19581.86, + "end": 19583.02, + "probability": 0.916 + }, + { + "start": 19583.88, + "end": 19586.32, + "probability": 0.988 + }, + { + "start": 19587.2, + "end": 19588.36, + "probability": 0.973 + }, + { + "start": 19588.9, + "end": 19592.42, + "probability": 0.9963 + }, + { + "start": 19592.5, + "end": 19594.1, + "probability": 0.9602 + }, + { + "start": 19594.52, + "end": 19596.04, + "probability": 0.9878 + }, + { + "start": 19596.5, + "end": 19598.5, + "probability": 0.9896 + }, + { + "start": 19598.96, + "end": 19600.04, + "probability": 0.9961 + }, + { + "start": 19600.66, + "end": 19603.66, + "probability": 0.9866 + }, + { + "start": 19603.98, + "end": 19606.82, + "probability": 0.995 + }, + { + "start": 19607.3, + "end": 19609.68, + "probability": 0.9969 + }, + { + "start": 19609.8, + "end": 19611.82, + "probability": 0.9456 + }, + { + "start": 19611.94, + "end": 19613.3, + "probability": 0.9033 + }, + { + "start": 19614.14, + "end": 19617.22, + "probability": 0.9957 + }, + { + "start": 19617.22, + "end": 19620.46, + "probability": 0.9936 + }, + { + "start": 19620.92, + "end": 19622.52, + "probability": 0.9985 + }, + { + "start": 19625.48, + "end": 19627.36, + "probability": 0.6782 + }, + { + "start": 19627.42, + "end": 19630.0, + "probability": 0.9728 + }, + { + "start": 19630.48, + "end": 19632.72, + "probability": 0.976 + }, + { + "start": 19633.46, + "end": 19636.2, + "probability": 0.7688 + }, + { + "start": 19636.5, + "end": 19639.4, + "probability": 0.994 + }, + { + "start": 19640.04, + "end": 19641.24, + "probability": 0.8848 + }, + { + "start": 19641.9, + "end": 19644.42, + "probability": 0.9233 + }, + { + "start": 19644.48, + "end": 19647.82, + "probability": 0.9971 + }, + { + "start": 19648.4, + "end": 19652.88, + "probability": 0.9978 + }, + { + "start": 19653.36, + "end": 19653.87, + "probability": 0.9473 + }, + { + "start": 19654.04, + "end": 19657.74, + "probability": 0.9969 + }, + { + "start": 19658.22, + "end": 19659.12, + "probability": 0.9824 + }, + { + "start": 19659.86, + "end": 19660.8, + "probability": 0.8779 + }, + { + "start": 19661.34, + "end": 19663.0, + "probability": 0.988 + }, + { + "start": 19663.5, + "end": 19665.14, + "probability": 0.9792 + }, + { + "start": 19665.48, + "end": 19666.86, + "probability": 0.9761 + }, + { + "start": 19667.16, + "end": 19671.44, + "probability": 0.9871 + }, + { + "start": 19671.72, + "end": 19675.38, + "probability": 0.9374 + }, + { + "start": 19675.38, + "end": 19678.1, + "probability": 0.9987 + }, + { + "start": 19678.5, + "end": 19678.86, + "probability": 0.738 + }, + { + "start": 19678.98, + "end": 19680.34, + "probability": 0.9231 + }, + { + "start": 19680.84, + "end": 19682.74, + "probability": 0.8555 + }, + { + "start": 19682.76, + "end": 19683.55, + "probability": 0.9845 + }, + { + "start": 19684.2, + "end": 19687.68, + "probability": 0.9397 + }, + { + "start": 19688.42, + "end": 19689.23, + "probability": 0.9825 + }, + { + "start": 19689.86, + "end": 19693.8, + "probability": 0.9775 + }, + { + "start": 19694.44, + "end": 19699.0, + "probability": 0.9954 + }, + { + "start": 19699.6, + "end": 19699.66, + "probability": 0.8282 + }, + { + "start": 19699.74, + "end": 19700.7, + "probability": 0.9492 + }, + { + "start": 19700.84, + "end": 19705.56, + "probability": 0.9832 + }, + { + "start": 19706.26, + "end": 19709.74, + "probability": 0.9512 + }, + { + "start": 19709.98, + "end": 19711.34, + "probability": 0.8988 + }, + { + "start": 19712.44, + "end": 19713.9, + "probability": 0.774 + }, + { + "start": 19714.22, + "end": 19716.54, + "probability": 0.9906 + }, + { + "start": 19716.86, + "end": 19718.18, + "probability": 0.9723 + }, + { + "start": 19719.12, + "end": 19722.5, + "probability": 0.9956 + }, + { + "start": 19722.98, + "end": 19725.06, + "probability": 0.9982 + }, + { + "start": 19725.52, + "end": 19730.76, + "probability": 0.9961 + }, + { + "start": 19731.18, + "end": 19732.74, + "probability": 0.9951 + }, + { + "start": 19733.36, + "end": 19734.22, + "probability": 0.5807 + }, + { + "start": 19734.64, + "end": 19737.72, + "probability": 0.9897 + }, + { + "start": 19738.5, + "end": 19742.92, + "probability": 0.9829 + }, + { + "start": 19743.44, + "end": 19745.78, + "probability": 0.8079 + }, + { + "start": 19746.16, + "end": 19748.52, + "probability": 0.9426 + }, + { + "start": 19748.52, + "end": 19751.8, + "probability": 0.9888 + }, + { + "start": 19752.52, + "end": 19753.24, + "probability": 0.7323 + }, + { + "start": 19753.66, + "end": 19754.76, + "probability": 0.9569 + }, + { + "start": 19755.14, + "end": 19759.26, + "probability": 0.946 + }, + { + "start": 19759.6, + "end": 19759.96, + "probability": 0.799 + }, + { + "start": 19760.0, + "end": 19762.5, + "probability": 0.9918 + }, + { + "start": 19763.1, + "end": 19764.8, + "probability": 0.8012 + }, + { + "start": 19764.8, + "end": 19767.56, + "probability": 0.9821 + }, + { + "start": 19767.68, + "end": 19769.64, + "probability": 0.7776 + }, + { + "start": 19770.3, + "end": 19773.52, + "probability": 0.8439 + }, + { + "start": 19773.72, + "end": 19774.12, + "probability": 0.811 + }, + { + "start": 19774.18, + "end": 19777.06, + "probability": 0.895 + }, + { + "start": 19777.76, + "end": 19778.92, + "probability": 0.7773 + }, + { + "start": 19779.0, + "end": 19779.64, + "probability": 0.7987 + }, + { + "start": 19779.68, + "end": 19780.6, + "probability": 0.831 + }, + { + "start": 19780.84, + "end": 19781.54, + "probability": 0.9719 + }, + { + "start": 19782.16, + "end": 19785.9, + "probability": 0.8609 + }, + { + "start": 19785.9, + "end": 19790.14, + "probability": 0.9919 + }, + { + "start": 19790.88, + "end": 19794.74, + "probability": 0.9778 + }, + { + "start": 19795.18, + "end": 19798.9, + "probability": 0.957 + }, + { + "start": 19800.46, + "end": 19801.43, + "probability": 0.9376 + }, + { + "start": 19802.2, + "end": 19806.94, + "probability": 0.8638 + }, + { + "start": 19808.42, + "end": 19812.8, + "probability": 0.9968 + }, + { + "start": 19813.36, + "end": 19817.12, + "probability": 0.9991 + }, + { + "start": 19817.12, + "end": 19820.62, + "probability": 0.6439 + }, + { + "start": 19820.74, + "end": 19821.32, + "probability": 0.6352 + }, + { + "start": 19822.18, + "end": 19824.2, + "probability": 0.9712 + }, + { + "start": 19825.56, + "end": 19825.56, + "probability": 0.531 + }, + { + "start": 19825.72, + "end": 19828.06, + "probability": 0.9308 + }, + { + "start": 19828.54, + "end": 19835.93, + "probability": 0.9735 + }, + { + "start": 19838.7, + "end": 19840.64, + "probability": 0.9819 + }, + { + "start": 19841.68, + "end": 19845.92, + "probability": 0.9956 + }, + { + "start": 19847.02, + "end": 19850.94, + "probability": 0.9868 + }, + { + "start": 19852.76, + "end": 19856.22, + "probability": 0.9803 + }, + { + "start": 19856.22, + "end": 19860.1, + "probability": 0.9975 + }, + { + "start": 19860.74, + "end": 19861.2, + "probability": 0.2335 + }, + { + "start": 19861.26, + "end": 19863.62, + "probability": 0.9958 + }, + { + "start": 19864.72, + "end": 19867.22, + "probability": 0.994 + }, + { + "start": 19867.54, + "end": 19869.14, + "probability": 0.958 + }, + { + "start": 19869.54, + "end": 19871.58, + "probability": 0.9552 + }, + { + "start": 19871.92, + "end": 19873.43, + "probability": 0.9932 + }, + { + "start": 19873.94, + "end": 19874.78, + "probability": 0.9261 + }, + { + "start": 19875.32, + "end": 19876.42, + "probability": 0.808 + }, + { + "start": 19876.7, + "end": 19879.64, + "probability": 0.8371 + }, + { + "start": 19880.02, + "end": 19881.88, + "probability": 0.9354 + }, + { + "start": 19882.36, + "end": 19886.76, + "probability": 0.9663 + }, + { + "start": 19887.44, + "end": 19889.42, + "probability": 0.998 + }, + { + "start": 19890.0, + "end": 19892.22, + "probability": 0.9846 + }, + { + "start": 19892.56, + "end": 19893.37, + "probability": 0.9331 + }, + { + "start": 19893.98, + "end": 19899.9, + "probability": 0.9671 + }, + { + "start": 19901.04, + "end": 19905.08, + "probability": 0.0409 + }, + { + "start": 19905.16, + "end": 19906.74, + "probability": 0.1476 + }, + { + "start": 19906.86, + "end": 19909.3, + "probability": 0.7847 + }, + { + "start": 19909.6, + "end": 19911.82, + "probability": 0.9497 + }, + { + "start": 19911.82, + "end": 19912.34, + "probability": 0.7246 + }, + { + "start": 19912.44, + "end": 19913.78, + "probability": 0.2806 + }, + { + "start": 19915.04, + "end": 19918.3, + "probability": 0.3137 + }, + { + "start": 19918.66, + "end": 19918.66, + "probability": 0.1764 + }, + { + "start": 19918.74, + "end": 19919.5, + "probability": 0.4283 + }, + { + "start": 19919.62, + "end": 19920.82, + "probability": 0.8087 + }, + { + "start": 19921.18, + "end": 19922.04, + "probability": 0.0612 + }, + { + "start": 19922.46, + "end": 19922.78, + "probability": 0.5033 + }, + { + "start": 19923.02, + "end": 19925.46, + "probability": 0.96 + }, + { + "start": 19925.86, + "end": 19929.36, + "probability": 0.4027 + }, + { + "start": 19929.56, + "end": 19931.0, + "probability": 0.8625 + }, + { + "start": 19932.54, + "end": 19933.72, + "probability": 0.4999 + }, + { + "start": 19934.32, + "end": 19935.38, + "probability": 0.8517 + }, + { + "start": 19935.78, + "end": 19939.7, + "probability": 0.895 + }, + { + "start": 19939.8, + "end": 19940.42, + "probability": 0.6987 + }, + { + "start": 19940.54, + "end": 19941.66, + "probability": 0.508 + }, + { + "start": 19941.96, + "end": 19944.2, + "probability": 0.5995 + }, + { + "start": 19944.2, + "end": 19944.9, + "probability": 0.8065 + }, + { + "start": 19947.8, + "end": 19949.82, + "probability": 0.1662 + }, + { + "start": 19960.96, + "end": 19961.16, + "probability": 0.0311 + }, + { + "start": 19961.16, + "end": 19961.16, + "probability": 0.0235 + }, + { + "start": 19961.16, + "end": 19961.16, + "probability": 0.0837 + }, + { + "start": 19961.16, + "end": 19961.16, + "probability": 0.0635 + }, + { + "start": 19961.16, + "end": 19962.99, + "probability": 0.4588 + }, + { + "start": 19964.4, + "end": 19967.59, + "probability": 0.8774 + }, + { + "start": 19967.94, + "end": 19969.9, + "probability": 0.9888 + }, + { + "start": 19970.04, + "end": 19970.81, + "probability": 0.9595 + }, + { + "start": 19970.86, + "end": 19974.08, + "probability": 0.8183 + }, + { + "start": 19975.04, + "end": 19975.76, + "probability": 0.3334 + }, + { + "start": 19976.25, + "end": 19978.38, + "probability": 0.8562 + }, + { + "start": 19978.72, + "end": 19980.6, + "probability": 0.9116 + }, + { + "start": 19980.76, + "end": 19983.5, + "probability": 0.9694 + }, + { + "start": 19984.89, + "end": 19989.28, + "probability": 0.9053 + }, + { + "start": 19989.28, + "end": 19993.72, + "probability": 0.8578 + }, + { + "start": 19996.24, + "end": 19997.23, + "probability": 0.9907 + }, + { + "start": 19997.38, + "end": 19998.21, + "probability": 0.3003 + }, + { + "start": 19999.62, + "end": 20000.58, + "probability": 0.1864 + }, + { + "start": 20000.58, + "end": 20002.1, + "probability": 0.0323 + }, + { + "start": 20002.2, + "end": 20003.11, + "probability": 0.4149 + }, + { + "start": 20003.28, + "end": 20004.06, + "probability": 0.5725 + }, + { + "start": 20004.5, + "end": 20005.84, + "probability": 0.6838 + }, + { + "start": 20006.08, + "end": 20007.08, + "probability": 0.9144 + }, + { + "start": 20007.22, + "end": 20009.52, + "probability": 0.7136 + }, + { + "start": 20009.56, + "end": 20010.46, + "probability": 0.8393 + }, + { + "start": 20010.72, + "end": 20012.08, + "probability": 0.9353 + }, + { + "start": 20012.2, + "end": 20013.96, + "probability": 0.8853 + }, + { + "start": 20013.98, + "end": 20015.04, + "probability": 0.9482 + }, + { + "start": 20015.52, + "end": 20016.3, + "probability": 0.2318 + }, + { + "start": 20016.5, + "end": 20016.94, + "probability": 0.436 + }, + { + "start": 20017.12, + "end": 20017.76, + "probability": 0.8896 + }, + { + "start": 20017.84, + "end": 20018.04, + "probability": 0.3793 + }, + { + "start": 20018.08, + "end": 20018.96, + "probability": 0.9082 + }, + { + "start": 20019.0, + "end": 20021.0, + "probability": 0.5308 + }, + { + "start": 20022.52, + "end": 20024.96, + "probability": 0.6441 + }, + { + "start": 20024.96, + "end": 20026.14, + "probability": 0.8897 + }, + { + "start": 20027.4, + "end": 20030.14, + "probability": 0.8864 + }, + { + "start": 20030.2, + "end": 20032.42, + "probability": 0.6783 + }, + { + "start": 20032.44, + "end": 20032.66, + "probability": 0.4041 + }, + { + "start": 20032.66, + "end": 20033.24, + "probability": 0.6843 + }, + { + "start": 20033.36, + "end": 20033.66, + "probability": 0.4522 + }, + { + "start": 20033.74, + "end": 20035.24, + "probability": 0.1175 + }, + { + "start": 20035.36, + "end": 20036.36, + "probability": 0.6366 + }, + { + "start": 20036.62, + "end": 20037.5, + "probability": 0.6659 + }, + { + "start": 20038.16, + "end": 20039.48, + "probability": 0.9766 + }, + { + "start": 20039.58, + "end": 20040.86, + "probability": 0.8441 + }, + { + "start": 20041.26, + "end": 20042.88, + "probability": 0.9635 + }, + { + "start": 20042.98, + "end": 20044.68, + "probability": 0.8236 + }, + { + "start": 20045.1, + "end": 20047.2, + "probability": 0.9631 + }, + { + "start": 20047.28, + "end": 20048.82, + "probability": 0.991 + }, + { + "start": 20049.4, + "end": 20051.22, + "probability": 0.8989 + }, + { + "start": 20051.3, + "end": 20054.11, + "probability": 0.7965 + }, + { + "start": 20054.66, + "end": 20055.66, + "probability": 0.771 + }, + { + "start": 20055.98, + "end": 20056.76, + "probability": 0.9259 + }, + { + "start": 20057.0, + "end": 20058.14, + "probability": 0.9767 + }, + { + "start": 20058.46, + "end": 20060.06, + "probability": 0.8916 + }, + { + "start": 20060.34, + "end": 20064.14, + "probability": 0.9305 + }, + { + "start": 20064.28, + "end": 20065.52, + "probability": 0.7039 + }, + { + "start": 20065.94, + "end": 20066.98, + "probability": 0.9733 + }, + { + "start": 20067.14, + "end": 20068.16, + "probability": 0.8802 + }, + { + "start": 20068.5, + "end": 20072.9, + "probability": 0.9854 + }, + { + "start": 20073.22, + "end": 20075.26, + "probability": 0.9894 + }, + { + "start": 20075.26, + "end": 20077.94, + "probability": 0.9965 + }, + { + "start": 20078.2, + "end": 20078.66, + "probability": 0.2716 + }, + { + "start": 20079.02, + "end": 20080.22, + "probability": 0.8507 + }, + { + "start": 20080.54, + "end": 20081.72, + "probability": 0.7452 + }, + { + "start": 20082.16, + "end": 20085.32, + "probability": 0.5842 + }, + { + "start": 20085.34, + "end": 20086.12, + "probability": 0.7292 + }, + { + "start": 20086.12, + "end": 20088.02, + "probability": 0.7068 + }, + { + "start": 20088.18, + "end": 20093.32, + "probability": 0.9905 + }, + { + "start": 20093.82, + "end": 20094.56, + "probability": 0.9747 + }, + { + "start": 20095.04, + "end": 20097.2, + "probability": 0.9756 + }, + { + "start": 20097.48, + "end": 20099.7, + "probability": 0.9858 + }, + { + "start": 20100.14, + "end": 20101.74, + "probability": 0.9411 + }, + { + "start": 20102.14, + "end": 20105.74, + "probability": 0.9523 + }, + { + "start": 20106.2, + "end": 20107.08, + "probability": 0.9716 + }, + { + "start": 20107.2, + "end": 20108.57, + "probability": 0.9823 + }, + { + "start": 20108.98, + "end": 20110.12, + "probability": 0.9709 + }, + { + "start": 20110.54, + "end": 20111.68, + "probability": 0.2903 + }, + { + "start": 20112.42, + "end": 20113.54, + "probability": 0.8919 + }, + { + "start": 20114.06, + "end": 20115.9, + "probability": 0.27 + }, + { + "start": 20115.92, + "end": 20115.94, + "probability": 0.2828 + }, + { + "start": 20116.02, + "end": 20119.4, + "probability": 0.8887 + }, + { + "start": 20119.64, + "end": 20123.44, + "probability": 0.8818 + }, + { + "start": 20123.5, + "end": 20124.66, + "probability": 0.6376 + }, + { + "start": 20124.66, + "end": 20128.2, + "probability": 0.7944 + }, + { + "start": 20128.38, + "end": 20129.95, + "probability": 0.9931 + }, + { + "start": 20130.62, + "end": 20134.66, + "probability": 0.9709 + }, + { + "start": 20134.82, + "end": 20136.91, + "probability": 0.7865 + }, + { + "start": 20138.02, + "end": 20138.06, + "probability": 0.0213 + }, + { + "start": 20138.06, + "end": 20138.06, + "probability": 0.084 + }, + { + "start": 20138.06, + "end": 20138.82, + "probability": 0.6512 + }, + { + "start": 20139.04, + "end": 20140.6, + "probability": 0.9943 + }, + { + "start": 20140.66, + "end": 20141.28, + "probability": 0.915 + }, + { + "start": 20141.8, + "end": 20142.66, + "probability": 0.995 + }, + { + "start": 20143.26, + "end": 20144.64, + "probability": 0.9922 + }, + { + "start": 20144.8, + "end": 20147.34, + "probability": 0.9912 + }, + { + "start": 20147.86, + "end": 20149.86, + "probability": 0.7496 + }, + { + "start": 20150.18, + "end": 20153.08, + "probability": 0.7546 + }, + { + "start": 20153.32, + "end": 20153.56, + "probability": 0.0005 + }, + { + "start": 20153.56, + "end": 20153.56, + "probability": 0.1445 + }, + { + "start": 20153.56, + "end": 20154.18, + "probability": 0.3144 + }, + { + "start": 20154.32, + "end": 20156.08, + "probability": 0.8279 + }, + { + "start": 20156.18, + "end": 20157.64, + "probability": 0.8706 + }, + { + "start": 20157.8, + "end": 20161.1, + "probability": 0.9829 + }, + { + "start": 20161.74, + "end": 20162.68, + "probability": 0.6334 + }, + { + "start": 20163.2, + "end": 20164.49, + "probability": 0.491 + }, + { + "start": 20164.96, + "end": 20166.14, + "probability": 0.9954 + }, + { + "start": 20166.16, + "end": 20169.02, + "probability": 0.7912 + }, + { + "start": 20169.24, + "end": 20170.6, + "probability": 0.825 + }, + { + "start": 20170.68, + "end": 20170.9, + "probability": 0.32 + }, + { + "start": 20170.9, + "end": 20171.28, + "probability": 0.5795 + }, + { + "start": 20171.48, + "end": 20175.56, + "probability": 0.9751 + }, + { + "start": 20176.87, + "end": 20180.62, + "probability": 0.684 + }, + { + "start": 20181.4, + "end": 20184.54, + "probability": 0.1287 + }, + { + "start": 20184.68, + "end": 20189.42, + "probability": 0.6777 + }, + { + "start": 20189.96, + "end": 20190.96, + "probability": 0.8407 + }, + { + "start": 20191.84, + "end": 20195.48, + "probability": 0.8708 + }, + { + "start": 20195.6, + "end": 20196.32, + "probability": 0.6856 + }, + { + "start": 20196.52, + "end": 20197.3, + "probability": 0.4726 + }, + { + "start": 20197.32, + "end": 20198.84, + "probability": 0.9249 + }, + { + "start": 20199.2, + "end": 20202.5, + "probability": 0.5678 + }, + { + "start": 20203.28, + "end": 20204.62, + "probability": 0.0283 + }, + { + "start": 20204.74, + "end": 20205.66, + "probability": 0.1567 + }, + { + "start": 20206.24, + "end": 20208.52, + "probability": 0.8439 + }, + { + "start": 20208.74, + "end": 20209.16, + "probability": 0.9143 + }, + { + "start": 20209.5, + "end": 20212.08, + "probability": 0.9548 + }, + { + "start": 20212.22, + "end": 20214.02, + "probability": 0.5894 + }, + { + "start": 20214.18, + "end": 20215.72, + "probability": 0.9629 + }, + { + "start": 20215.8, + "end": 20216.4, + "probability": 0.6926 + }, + { + "start": 20216.93, + "end": 20219.82, + "probability": 0.7793 + }, + { + "start": 20219.92, + "end": 20221.64, + "probability": 0.7214 + }, + { + "start": 20221.64, + "end": 20222.76, + "probability": 0.9097 + }, + { + "start": 20222.8, + "end": 20225.2, + "probability": 0.3024 + }, + { + "start": 20226.48, + "end": 20227.82, + "probability": 0.0948 + }, + { + "start": 20228.2, + "end": 20234.12, + "probability": 0.7033 + }, + { + "start": 20235.2, + "end": 20240.58, + "probability": 0.8648 + }, + { + "start": 20240.96, + "end": 20242.46, + "probability": 0.975 + }, + { + "start": 20242.8, + "end": 20244.72, + "probability": 0.783 + }, + { + "start": 20244.94, + "end": 20249.58, + "probability": 0.9793 + }, + { + "start": 20249.76, + "end": 20251.26, + "probability": 0.9377 + }, + { + "start": 20251.88, + "end": 20254.06, + "probability": 0.5807 + }, + { + "start": 20255.86, + "end": 20257.68, + "probability": 0.6402 + }, + { + "start": 20258.98, + "end": 20259.14, + "probability": 0.6045 + }, + { + "start": 20259.32, + "end": 20263.8, + "probability": 0.8912 + }, + { + "start": 20264.92, + "end": 20268.1, + "probability": 0.9885 + }, + { + "start": 20269.56, + "end": 20270.66, + "probability": 0.9736 + }, + { + "start": 20271.5, + "end": 20272.9, + "probability": 0.9836 + }, + { + "start": 20273.52, + "end": 20277.56, + "probability": 0.9685 + }, + { + "start": 20279.34, + "end": 20280.1, + "probability": 0.9771 + }, + { + "start": 20281.12, + "end": 20282.08, + "probability": 0.9028 + }, + { + "start": 20282.88, + "end": 20284.48, + "probability": 0.999 + }, + { + "start": 20285.0, + "end": 20288.0, + "probability": 0.9971 + }, + { + "start": 20288.86, + "end": 20289.32, + "probability": 0.765 + }, + { + "start": 20290.16, + "end": 20291.12, + "probability": 0.9935 + }, + { + "start": 20292.2, + "end": 20293.02, + "probability": 0.9588 + }, + { + "start": 20293.9, + "end": 20294.58, + "probability": 0.6083 + }, + { + "start": 20296.28, + "end": 20298.9, + "probability": 0.8237 + }, + { + "start": 20299.7, + "end": 20300.36, + "probability": 0.9683 + }, + { + "start": 20301.22, + "end": 20302.02, + "probability": 0.9946 + }, + { + "start": 20302.86, + "end": 20303.4, + "probability": 0.9947 + }, + { + "start": 20303.96, + "end": 20304.74, + "probability": 0.76 + }, + { + "start": 20305.38, + "end": 20306.0, + "probability": 0.9861 + }, + { + "start": 20306.72, + "end": 20307.4, + "probability": 0.998 + }, + { + "start": 20307.94, + "end": 20308.44, + "probability": 0.7015 + }, + { + "start": 20309.28, + "end": 20311.56, + "probability": 0.9786 + }, + { + "start": 20314.42, + "end": 20315.42, + "probability": 0.9584 + }, + { + "start": 20315.52, + "end": 20319.1, + "probability": 0.9403 + }, + { + "start": 20319.86, + "end": 20321.02, + "probability": 0.9937 + }, + { + "start": 20321.94, + "end": 20323.46, + "probability": 0.8658 + }, + { + "start": 20324.66, + "end": 20326.3, + "probability": 0.9958 + }, + { + "start": 20326.44, + "end": 20327.38, + "probability": 0.9852 + }, + { + "start": 20327.78, + "end": 20328.93, + "probability": 0.963 + }, + { + "start": 20329.12, + "end": 20330.4, + "probability": 0.9992 + }, + { + "start": 20330.66, + "end": 20331.56, + "probability": 0.9368 + }, + { + "start": 20332.42, + "end": 20333.84, + "probability": 0.9993 + }, + { + "start": 20334.68, + "end": 20336.3, + "probability": 0.6101 + }, + { + "start": 20337.3, + "end": 20339.8, + "probability": 0.8738 + }, + { + "start": 20340.86, + "end": 20342.76, + "probability": 0.8045 + }, + { + "start": 20343.82, + "end": 20345.4, + "probability": 0.9634 + }, + { + "start": 20347.12, + "end": 20349.98, + "probability": 0.5449 + }, + { + "start": 20350.3, + "end": 20351.86, + "probability": 0.2289 + }, + { + "start": 20352.16, + "end": 20352.16, + "probability": 0.3802 + }, + { + "start": 20352.16, + "end": 20356.46, + "probability": 0.998 + }, + { + "start": 20356.46, + "end": 20360.08, + "probability": 0.9972 + }, + { + "start": 20361.66, + "end": 20364.66, + "probability": 0.9995 + }, + { + "start": 20364.96, + "end": 20370.54, + "probability": 0.96 + }, + { + "start": 20371.68, + "end": 20372.78, + "probability": 0.8647 + }, + { + "start": 20373.66, + "end": 20374.92, + "probability": 0.939 + }, + { + "start": 20375.72, + "end": 20376.98, + "probability": 0.8586 + }, + { + "start": 20377.42, + "end": 20378.82, + "probability": 0.6751 + }, + { + "start": 20378.86, + "end": 20381.38, + "probability": 0.8608 + }, + { + "start": 20382.5, + "end": 20384.68, + "probability": 0.9351 + }, + { + "start": 20385.3, + "end": 20387.14, + "probability": 0.9634 + }, + { + "start": 20387.62, + "end": 20389.28, + "probability": 0.9934 + }, + { + "start": 20391.92, + "end": 20393.68, + "probability": 0.9253 + }, + { + "start": 20393.76, + "end": 20398.18, + "probability": 0.9821 + }, + { + "start": 20398.52, + "end": 20399.94, + "probability": 0.9973 + }, + { + "start": 20400.32, + "end": 20402.02, + "probability": 0.9935 + }, + { + "start": 20403.46, + "end": 20406.22, + "probability": 0.9961 + }, + { + "start": 20407.22, + "end": 20408.66, + "probability": 0.9846 + }, + { + "start": 20409.22, + "end": 20410.11, + "probability": 0.8994 + }, + { + "start": 20411.32, + "end": 20411.9, + "probability": 0.851 + }, + { + "start": 20412.96, + "end": 20414.16, + "probability": 0.9514 + }, + { + "start": 20414.42, + "end": 20415.22, + "probability": 0.8617 + }, + { + "start": 20415.6, + "end": 20416.68, + "probability": 0.9293 + }, + { + "start": 20416.78, + "end": 20418.18, + "probability": 0.8775 + }, + { + "start": 20418.2, + "end": 20419.82, + "probability": 0.9951 + }, + { + "start": 20421.06, + "end": 20425.08, + "probability": 0.8486 + }, + { + "start": 20425.62, + "end": 20427.6, + "probability": 0.9951 + }, + { + "start": 20427.74, + "end": 20428.16, + "probability": 0.9084 + }, + { + "start": 20428.16, + "end": 20430.68, + "probability": 0.6423 + }, + { + "start": 20430.94, + "end": 20431.68, + "probability": 0.4632 + }, + { + "start": 20432.16, + "end": 20436.4, + "probability": 0.6352 + }, + { + "start": 20436.88, + "end": 20438.28, + "probability": 0.9952 + }, + { + "start": 20439.1, + "end": 20442.4, + "probability": 0.6373 + }, + { + "start": 20442.84, + "end": 20444.56, + "probability": 0.7607 + }, + { + "start": 20446.72, + "end": 20450.92, + "probability": 0.066 + }, + { + "start": 20450.92, + "end": 20454.14, + "probability": 0.9215 + }, + { + "start": 20454.4, + "end": 20460.7, + "probability": 0.9864 + }, + { + "start": 20461.3, + "end": 20465.08, + "probability": 0.8027 + }, + { + "start": 20465.5, + "end": 20468.84, + "probability": 0.7103 + }, + { + "start": 20469.14, + "end": 20473.46, + "probability": 0.9959 + }, + { + "start": 20473.46, + "end": 20477.04, + "probability": 0.9929 + }, + { + "start": 20477.64, + "end": 20480.58, + "probability": 0.9331 + }, + { + "start": 20481.06, + "end": 20484.11, + "probability": 0.9916 + }, + { + "start": 20486.34, + "end": 20488.34, + "probability": 0.5946 + }, + { + "start": 20488.6, + "end": 20492.92, + "probability": 0.913 + }, + { + "start": 20493.18, + "end": 20494.49, + "probability": 0.6738 + }, + { + "start": 20495.16, + "end": 20496.1, + "probability": 0.9175 + }, + { + "start": 20496.38, + "end": 20497.22, + "probability": 0.8483 + }, + { + "start": 20497.4, + "end": 20498.46, + "probability": 0.9528 + }, + { + "start": 20498.52, + "end": 20500.78, + "probability": 0.8275 + }, + { + "start": 20501.14, + "end": 20502.36, + "probability": 0.9855 + }, + { + "start": 20502.56, + "end": 20503.94, + "probability": 0.6906 + }, + { + "start": 20504.14, + "end": 20507.24, + "probability": 0.9944 + }, + { + "start": 20508.14, + "end": 20508.79, + "probability": 0.0518 + }, + { + "start": 20509.14, + "end": 20512.7, + "probability": 0.3633 + }, + { + "start": 20512.76, + "end": 20513.0, + "probability": 0.0004 + }, + { + "start": 20515.78, + "end": 20516.84, + "probability": 0.0235 + }, + { + "start": 20517.11, + "end": 20518.67, + "probability": 0.6739 + }, + { + "start": 20520.07, + "end": 20521.84, + "probability": 0.5886 + }, + { + "start": 20521.98, + "end": 20523.02, + "probability": 0.6831 + }, + { + "start": 20523.76, + "end": 20525.5, + "probability": 0.8618 + }, + { + "start": 20525.64, + "end": 20528.7, + "probability": 0.9491 + }, + { + "start": 20529.3, + "end": 20532.44, + "probability": 0.6334 + }, + { + "start": 20532.72, + "end": 20536.02, + "probability": 0.6903 + }, + { + "start": 20536.32, + "end": 20539.96, + "probability": 0.7512 + }, + { + "start": 20540.38, + "end": 20541.7, + "probability": 0.9461 + }, + { + "start": 20541.76, + "end": 20543.32, + "probability": 0.8496 + }, + { + "start": 20543.36, + "end": 20547.32, + "probability": 0.9622 + }, + { + "start": 20547.48, + "end": 20549.78, + "probability": 0.5717 + }, + { + "start": 20550.08, + "end": 20551.3, + "probability": 0.9811 + }, + { + "start": 20551.48, + "end": 20552.66, + "probability": 0.5753 + }, + { + "start": 20552.84, + "end": 20553.66, + "probability": 0.1397 + }, + { + "start": 20553.66, + "end": 20557.0, + "probability": 0.6213 + }, + { + "start": 20557.18, + "end": 20558.72, + "probability": 0.9309 + }, + { + "start": 20559.02, + "end": 20559.86, + "probability": 0.6733 + }, + { + "start": 20559.94, + "end": 20560.2, + "probability": 0.9292 + }, + { + "start": 20561.06, + "end": 20563.52, + "probability": 0.8561 + }, + { + "start": 20564.48, + "end": 20565.5, + "probability": 0.7604 + }, + { + "start": 20565.86, + "end": 20568.3, + "probability": 0.992 + }, + { + "start": 20568.34, + "end": 20574.34, + "probability": 0.8859 + }, + { + "start": 20575.26, + "end": 20578.26, + "probability": 0.9991 + }, + { + "start": 20578.38, + "end": 20581.2, + "probability": 0.834 + }, + { + "start": 20581.88, + "end": 20582.2, + "probability": 0.6961 + }, + { + "start": 20582.22, + "end": 20582.44, + "probability": 0.796 + }, + { + "start": 20582.52, + "end": 20587.1, + "probability": 0.9916 + }, + { + "start": 20587.82, + "end": 20590.58, + "probability": 0.894 + }, + { + "start": 20591.3, + "end": 20592.0, + "probability": 0.6321 + }, + { + "start": 20592.78, + "end": 20595.46, + "probability": 0.9364 + }, + { + "start": 20595.9, + "end": 20596.64, + "probability": 0.9419 + }, + { + "start": 20597.22, + "end": 20601.24, + "probability": 0.948 + }, + { + "start": 20601.36, + "end": 20601.66, + "probability": 0.9689 + }, + { + "start": 20601.76, + "end": 20603.06, + "probability": 0.9878 + }, + { + "start": 20603.64, + "end": 20604.48, + "probability": 0.8843 + }, + { + "start": 20604.66, + "end": 20605.14, + "probability": 0.2981 + }, + { + "start": 20605.28, + "end": 20605.3, + "probability": 0.4359 + }, + { + "start": 20605.3, + "end": 20607.1, + "probability": 0.7402 + }, + { + "start": 20607.8, + "end": 20608.62, + "probability": 0.7319 + }, + { + "start": 20609.36, + "end": 20611.28, + "probability": 0.9279 + }, + { + "start": 20611.74, + "end": 20613.22, + "probability": 0.907 + }, + { + "start": 20613.68, + "end": 20616.56, + "probability": 0.5711 + }, + { + "start": 20616.74, + "end": 20619.62, + "probability": 0.9941 + }, + { + "start": 20619.92, + "end": 20620.98, + "probability": 0.7831 + }, + { + "start": 20621.65, + "end": 20624.9, + "probability": 0.9692 + }, + { + "start": 20625.12, + "end": 20626.08, + "probability": 0.802 + }, + { + "start": 20626.66, + "end": 20627.12, + "probability": 0.5262 + }, + { + "start": 20627.76, + "end": 20629.72, + "probability": 0.9834 + }, + { + "start": 20629.78, + "end": 20631.5, + "probability": 0.9672 + }, + { + "start": 20631.92, + "end": 20636.06, + "probability": 0.8657 + }, + { + "start": 20637.26, + "end": 20639.74, + "probability": 0.9212 + }, + { + "start": 20641.48, + "end": 20642.8, + "probability": 0.985 + }, + { + "start": 20643.78, + "end": 20644.54, + "probability": 0.9319 + }, + { + "start": 20645.42, + "end": 20647.26, + "probability": 0.9236 + }, + { + "start": 20648.26, + "end": 20648.98, + "probability": 0.8413 + }, + { + "start": 20649.86, + "end": 20651.48, + "probability": 0.9895 + }, + { + "start": 20652.52, + "end": 20655.22, + "probability": 0.9727 + }, + { + "start": 20656.6, + "end": 20657.24, + "probability": 0.5807 + }, + { + "start": 20657.4, + "end": 20658.3, + "probability": 0.0807 + }, + { + "start": 20658.52, + "end": 20659.4, + "probability": 0.9028 + }, + { + "start": 20659.82, + "end": 20660.54, + "probability": 0.6088 + }, + { + "start": 20661.48, + "end": 20664.32, + "probability": 0.6697 + }, + { + "start": 20664.46, + "end": 20666.3, + "probability": 0.9199 + }, + { + "start": 20666.56, + "end": 20670.88, + "probability": 0.9627 + }, + { + "start": 20671.44, + "end": 20674.62, + "probability": 0.9862 + }, + { + "start": 20674.68, + "end": 20680.72, + "probability": 0.8425 + }, + { + "start": 20681.0, + "end": 20683.08, + "probability": 0.8918 + }, + { + "start": 20684.02, + "end": 20692.4, + "probability": 0.8433 + }, + { + "start": 20693.14, + "end": 20695.24, + "probability": 0.7418 + }, + { + "start": 20695.78, + "end": 20699.14, + "probability": 0.1454 + }, + { + "start": 20699.5, + "end": 20701.34, + "probability": 0.5874 + }, + { + "start": 20702.59, + "end": 20704.92, + "probability": 0.9883 + }, + { + "start": 20704.96, + "end": 20706.82, + "probability": 0.9663 + }, + { + "start": 20707.42, + "end": 20709.76, + "probability": 0.7444 + }, + { + "start": 20710.06, + "end": 20712.37, + "probability": 0.9596 + }, + { + "start": 20713.54, + "end": 20715.2, + "probability": 0.8305 + }, + { + "start": 20715.26, + "end": 20716.84, + "probability": 0.9951 + }, + { + "start": 20716.92, + "end": 20717.92, + "probability": 0.4361 + }, + { + "start": 20717.92, + "end": 20719.8, + "probability": 0.8936 + }, + { + "start": 20720.18, + "end": 20721.52, + "probability": 0.9863 + }, + { + "start": 20721.56, + "end": 20722.48, + "probability": 0.8121 + }, + { + "start": 20723.47, + "end": 20725.06, + "probability": 0.9932 + }, + { + "start": 20725.76, + "end": 20728.0, + "probability": 0.8397 + }, + { + "start": 20728.56, + "end": 20729.18, + "probability": 0.7532 + }, + { + "start": 20729.3, + "end": 20730.8, + "probability": 0.1471 + }, + { + "start": 20730.8, + "end": 20733.52, + "probability": 0.4023 + }, + { + "start": 20733.7, + "end": 20735.34, + "probability": 0.8852 + }, + { + "start": 20735.5, + "end": 20736.66, + "probability": 0.9199 + }, + { + "start": 20737.34, + "end": 20739.72, + "probability": 0.574 + }, + { + "start": 20740.74, + "end": 20742.06, + "probability": 0.4843 + }, + { + "start": 20743.44, + "end": 20743.64, + "probability": 0.0758 + }, + { + "start": 20743.72, + "end": 20745.04, + "probability": 0.5805 + }, + { + "start": 20745.12, + "end": 20745.66, + "probability": 0.8806 + }, + { + "start": 20745.86, + "end": 20747.44, + "probability": 0.9675 + }, + { + "start": 20747.54, + "end": 20747.86, + "probability": 0.8841 + }, + { + "start": 20748.42, + "end": 20750.54, + "probability": 0.9087 + }, + { + "start": 20751.28, + "end": 20752.76, + "probability": 0.6233 + }, + { + "start": 20752.98, + "end": 20755.34, + "probability": 0.5461 + }, + { + "start": 20755.36, + "end": 20755.8, + "probability": 0.029 + }, + { + "start": 20756.54, + "end": 20758.38, + "probability": 0.1606 + }, + { + "start": 20758.38, + "end": 20759.28, + "probability": 0.0949 + }, + { + "start": 20759.38, + "end": 20760.82, + "probability": 0.5667 + }, + { + "start": 20760.98, + "end": 20761.86, + "probability": 0.74 + }, + { + "start": 20762.02, + "end": 20766.68, + "probability": 0.902 + }, + { + "start": 20767.32, + "end": 20771.74, + "probability": 0.9878 + }, + { + "start": 20771.74, + "end": 20772.16, + "probability": 0.7147 + }, + { + "start": 20772.18, + "end": 20773.05, + "probability": 0.7701 + }, + { + "start": 20773.58, + "end": 20775.44, + "probability": 0.9714 + }, + { + "start": 20776.16, + "end": 20778.28, + "probability": 0.0494 + }, + { + "start": 20778.28, + "end": 20778.98, + "probability": 0.0677 + }, + { + "start": 20779.58, + "end": 20781.73, + "probability": 0.8688 + }, + { + "start": 20782.0, + "end": 20782.62, + "probability": 0.7627 + }, + { + "start": 20782.78, + "end": 20783.7, + "probability": 0.3724 + }, + { + "start": 20783.74, + "end": 20785.1, + "probability": 0.8623 + }, + { + "start": 20785.46, + "end": 20785.84, + "probability": 0.6732 + }, + { + "start": 20786.02, + "end": 20789.4, + "probability": 0.8959 + }, + { + "start": 20789.6, + "end": 20791.76, + "probability": 0.2386 + }, + { + "start": 20791.88, + "end": 20793.14, + "probability": 0.4827 + }, + { + "start": 20793.28, + "end": 20796.84, + "probability": 0.7374 + }, + { + "start": 20797.7, + "end": 20798.62, + "probability": 0.0256 + }, + { + "start": 20800.5, + "end": 20801.76, + "probability": 0.6744 + }, + { + "start": 20802.66, + "end": 20804.2, + "probability": 0.4045 + }, + { + "start": 20804.2, + "end": 20805.74, + "probability": 0.7678 + }, + { + "start": 20807.06, + "end": 20809.28, + "probability": 0.823 + }, + { + "start": 20810.02, + "end": 20813.42, + "probability": 0.8993 + }, + { + "start": 20814.2, + "end": 20817.14, + "probability": 0.9686 + }, + { + "start": 20817.93, + "end": 20820.08, + "probability": 0.9739 + }, + { + "start": 20820.88, + "end": 20824.84, + "probability": 0.9497 + }, + { + "start": 20825.0, + "end": 20825.36, + "probability": 0.7625 + }, + { + "start": 20825.46, + "end": 20826.12, + "probability": 0.6749 + }, + { + "start": 20826.98, + "end": 20830.88, + "probability": 0.9902 + }, + { + "start": 20831.44, + "end": 20832.86, + "probability": 0.8308 + }, + { + "start": 20834.58, + "end": 20838.98, + "probability": 0.9278 + }, + { + "start": 20840.0, + "end": 20844.12, + "probability": 0.9924 + }, + { + "start": 20844.12, + "end": 20847.36, + "probability": 0.8161 + }, + { + "start": 20847.74, + "end": 20849.28, + "probability": 0.8413 + }, + { + "start": 20849.94, + "end": 20854.1, + "probability": 0.9321 + }, + { + "start": 20854.18, + "end": 20857.68, + "probability": 0.7206 + }, + { + "start": 20858.36, + "end": 20860.5, + "probability": 0.9487 + }, + { + "start": 20860.6, + "end": 20860.88, + "probability": 0.4725 + }, + { + "start": 20861.0, + "end": 20862.26, + "probability": 0.9185 + }, + { + "start": 20862.64, + "end": 20863.8, + "probability": 0.9684 + }, + { + "start": 20864.46, + "end": 20868.17, + "probability": 0.8661 + }, + { + "start": 20868.6, + "end": 20868.72, + "probability": 0.4784 + }, + { + "start": 20868.86, + "end": 20869.08, + "probability": 0.4011 + }, + { + "start": 20869.12, + "end": 20872.32, + "probability": 0.8063 + }, + { + "start": 20873.36, + "end": 20876.82, + "probability": 0.9935 + }, + { + "start": 20877.24, + "end": 20878.78, + "probability": 0.6985 + }, + { + "start": 20879.22, + "end": 20882.28, + "probability": 0.9761 + }, + { + "start": 20882.8, + "end": 20886.12, + "probability": 0.6608 + }, + { + "start": 20886.68, + "end": 20889.08, + "probability": 0.8098 + }, + { + "start": 20889.82, + "end": 20890.46, + "probability": 0.8996 + }, + { + "start": 20890.78, + "end": 20891.74, + "probability": 0.9023 + }, + { + "start": 20891.78, + "end": 20893.24, + "probability": 0.9614 + }, + { + "start": 20894.1, + "end": 20899.14, + "probability": 0.9816 + }, + { + "start": 20899.82, + "end": 20904.74, + "probability": 0.9731 + }, + { + "start": 20905.18, + "end": 20907.06, + "probability": 0.9515 + }, + { + "start": 20907.78, + "end": 20909.82, + "probability": 0.9875 + }, + { + "start": 20910.7, + "end": 20915.78, + "probability": 0.8977 + }, + { + "start": 20915.78, + "end": 20920.42, + "probability": 0.999 + }, + { + "start": 20921.44, + "end": 20926.44, + "probability": 0.9548 + }, + { + "start": 20926.58, + "end": 20926.58, + "probability": 0.0189 + }, + { + "start": 20927.42, + "end": 20927.46, + "probability": 0.1049 + }, + { + "start": 20927.46, + "end": 20931.1, + "probability": 0.8162 + }, + { + "start": 20931.44, + "end": 20933.36, + "probability": 0.916 + }, + { + "start": 20933.72, + "end": 20938.38, + "probability": 0.9723 + }, + { + "start": 20938.84, + "end": 20939.8, + "probability": 0.6249 + }, + { + "start": 20940.2, + "end": 20943.98, + "probability": 0.9388 + }, + { + "start": 20944.02, + "end": 20946.58, + "probability": 0.8869 + }, + { + "start": 20947.08, + "end": 20948.72, + "probability": 0.9717 + }, + { + "start": 20949.14, + "end": 20949.8, + "probability": 0.9166 + }, + { + "start": 20950.08, + "end": 20951.14, + "probability": 0.9716 + }, + { + "start": 20951.36, + "end": 20951.6, + "probability": 0.6629 + }, + { + "start": 20951.68, + "end": 20953.52, + "probability": 0.679 + }, + { + "start": 20953.62, + "end": 20957.46, + "probability": 0.9793 + }, + { + "start": 20957.82, + "end": 20959.02, + "probability": 0.6351 + }, + { + "start": 20959.18, + "end": 20960.44, + "probability": 0.9314 + }, + { + "start": 20961.14, + "end": 20962.42, + "probability": 0.8445 + }, + { + "start": 20962.42, + "end": 20963.2, + "probability": 0.811 + }, + { + "start": 20964.16, + "end": 20964.94, + "probability": 0.68 + }, + { + "start": 20965.78, + "end": 20966.43, + "probability": 0.9137 + }, + { + "start": 20966.9, + "end": 20968.14, + "probability": 0.9181 + }, + { + "start": 20968.34, + "end": 20972.16, + "probability": 0.909 + }, + { + "start": 20972.6, + "end": 20974.08, + "probability": 0.9858 + }, + { + "start": 20974.38, + "end": 20975.08, + "probability": 0.9114 + }, + { + "start": 20975.36, + "end": 20977.06, + "probability": 0.9139 + }, + { + "start": 20977.64, + "end": 20978.78, + "probability": 0.9684 + }, + { + "start": 20978.98, + "end": 20981.14, + "probability": 0.991 + }, + { + "start": 20981.14, + "end": 20984.46, + "probability": 0.7637 + }, + { + "start": 20984.74, + "end": 20986.98, + "probability": 0.9977 + }, + { + "start": 20987.62, + "end": 20988.02, + "probability": 0.5694 + }, + { + "start": 20989.12, + "end": 20990.84, + "probability": 0.9228 + }, + { + "start": 20991.4, + "end": 20992.78, + "probability": 0.7311 + }, + { + "start": 20993.38, + "end": 20995.64, + "probability": 0.993 + }, + { + "start": 20996.34, + "end": 20997.36, + "probability": 0.8738 + }, + { + "start": 20997.44, + "end": 20998.62, + "probability": 0.804 + }, + { + "start": 20999.28, + "end": 21000.06, + "probability": 0.7875 + }, + { + "start": 21000.3, + "end": 21003.24, + "probability": 0.9502 + }, + { + "start": 21003.74, + "end": 21006.16, + "probability": 0.9968 + }, + { + "start": 21006.58, + "end": 21009.02, + "probability": 0.7734 + }, + { + "start": 21010.48, + "end": 21013.26, + "probability": 0.8206 + }, + { + "start": 21014.32, + "end": 21016.22, + "probability": 0.7756 + }, + { + "start": 21016.56, + "end": 21022.93, + "probability": 0.9929 + }, + { + "start": 21025.82, + "end": 21027.9, + "probability": 0.8717 + }, + { + "start": 21028.0, + "end": 21031.28, + "probability": 0.8882 + }, + { + "start": 21031.44, + "end": 21032.12, + "probability": 0.5891 + }, + { + "start": 21034.3, + "end": 21034.88, + "probability": 0.5999 + }, + { + "start": 21034.88, + "end": 21036.1, + "probability": 0.6188 + }, + { + "start": 21036.2, + "end": 21040.24, + "probability": 0.8336 + }, + { + "start": 21040.68, + "end": 21041.16, + "probability": 0.4437 + }, + { + "start": 21041.18, + "end": 21043.24, + "probability": 0.7713 + }, + { + "start": 21043.92, + "end": 21045.44, + "probability": 0.7235 + }, + { + "start": 21045.66, + "end": 21049.3, + "probability": 0.7657 + }, + { + "start": 21059.2, + "end": 21060.08, + "probability": 0.7383 + }, + { + "start": 21060.48, + "end": 21061.98, + "probability": 0.7048 + }, + { + "start": 21062.3, + "end": 21062.96, + "probability": 0.6722 + }, + { + "start": 21064.16, + "end": 21068.64, + "probability": 0.9954 + }, + { + "start": 21069.46, + "end": 21072.84, + "probability": 0.9115 + }, + { + "start": 21072.98, + "end": 21074.26, + "probability": 0.9137 + }, + { + "start": 21074.92, + "end": 21076.84, + "probability": 0.9539 + }, + { + "start": 21078.16, + "end": 21080.24, + "probability": 0.7366 + }, + { + "start": 21081.06, + "end": 21081.92, + "probability": 0.9451 + }, + { + "start": 21082.02, + "end": 21082.88, + "probability": 0.9595 + }, + { + "start": 21083.44, + "end": 21084.1, + "probability": 0.8694 + }, + { + "start": 21085.42, + "end": 21087.48, + "probability": 0.9702 + }, + { + "start": 21088.12, + "end": 21093.66, + "probability": 0.8465 + }, + { + "start": 21094.58, + "end": 21097.88, + "probability": 0.7532 + }, + { + "start": 21098.54, + "end": 21099.08, + "probability": 0.5903 + }, + { + "start": 21100.38, + "end": 21101.56, + "probability": 0.411 + }, + { + "start": 21104.76, + "end": 21107.68, + "probability": 0.3453 + }, + { + "start": 21108.2, + "end": 21109.4, + "probability": 0.3927 + }, + { + "start": 21109.9, + "end": 21111.06, + "probability": 0.5377 + }, + { + "start": 21111.38, + "end": 21112.36, + "probability": 0.868 + }, + { + "start": 21112.78, + "end": 21113.58, + "probability": 0.8117 + }, + { + "start": 21114.1, + "end": 21115.66, + "probability": 0.9821 + }, + { + "start": 21115.86, + "end": 21116.86, + "probability": 0.9646 + }, + { + "start": 21117.42, + "end": 21119.02, + "probability": 0.8857 + }, + { + "start": 21120.42, + "end": 21123.04, + "probability": 0.8969 + }, + { + "start": 21124.32, + "end": 21127.56, + "probability": 0.9715 + }, + { + "start": 21128.56, + "end": 21129.08, + "probability": 0.6649 + }, + { + "start": 21130.8, + "end": 21131.4, + "probability": 0.8516 + }, + { + "start": 21131.48, + "end": 21134.22, + "probability": 0.6465 + }, + { + "start": 21134.38, + "end": 21135.18, + "probability": 0.5091 + }, + { + "start": 21135.64, + "end": 21140.18, + "probability": 0.9218 + }, + { + "start": 21140.62, + "end": 21141.86, + "probability": 0.6741 + }, + { + "start": 21143.18, + "end": 21145.04, + "probability": 0.1688 + }, + { + "start": 21145.2, + "end": 21146.66, + "probability": 0.731 + }, + { + "start": 21146.78, + "end": 21147.1, + "probability": 0.2357 + }, + { + "start": 21147.2, + "end": 21151.5, + "probability": 0.5443 + }, + { + "start": 21151.66, + "end": 21152.34, + "probability": 0.5644 + }, + { + "start": 21152.38, + "end": 21154.5, + "probability": 0.8187 + }, + { + "start": 21155.08, + "end": 21156.58, + "probability": 0.5817 + }, + { + "start": 21157.12, + "end": 21162.14, + "probability": 0.9618 + }, + { + "start": 21162.76, + "end": 21164.14, + "probability": 0.8552 + }, + { + "start": 21164.56, + "end": 21165.68, + "probability": 0.9655 + }, + { + "start": 21166.1, + "end": 21169.64, + "probability": 0.8866 + }, + { + "start": 21169.7, + "end": 21170.14, + "probability": 0.3842 + }, + { + "start": 21170.24, + "end": 21170.64, + "probability": 0.7002 + }, + { + "start": 21171.16, + "end": 21172.3, + "probability": 0.7862 + }, + { + "start": 21172.74, + "end": 21176.3, + "probability": 0.6462 + }, + { + "start": 21176.62, + "end": 21177.58, + "probability": 0.5865 + }, + { + "start": 21178.26, + "end": 21182.8, + "probability": 0.9517 + }, + { + "start": 21183.2, + "end": 21183.92, + "probability": 0.7462 + }, + { + "start": 21184.3, + "end": 21185.02, + "probability": 0.284 + }, + { + "start": 21185.14, + "end": 21185.74, + "probability": 0.9072 + }, + { + "start": 21186.9, + "end": 21189.52, + "probability": 0.9981 + }, + { + "start": 21191.1, + "end": 21191.1, + "probability": 0.0702 + }, + { + "start": 21191.1, + "end": 21191.38, + "probability": 0.2895 + }, + { + "start": 21192.4, + "end": 21192.4, + "probability": 0.1877 + }, + { + "start": 21192.4, + "end": 21193.86, + "probability": 0.1033 + }, + { + "start": 21195.08, + "end": 21197.8, + "probability": 0.941 + }, + { + "start": 21197.9, + "end": 21202.1, + "probability": 0.4294 + }, + { + "start": 21203.76, + "end": 21204.36, + "probability": 0.541 + }, + { + "start": 21204.36, + "end": 21205.69, + "probability": 0.3434 + }, + { + "start": 21206.62, + "end": 21207.08, + "probability": 0.5984 + }, + { + "start": 21207.12, + "end": 21207.88, + "probability": 0.2588 + }, + { + "start": 21207.88, + "end": 21209.17, + "probability": 0.2693 + }, + { + "start": 21209.58, + "end": 21210.0, + "probability": 0.8191 + }, + { + "start": 21210.02, + "end": 21211.02, + "probability": 0.5415 + }, + { + "start": 21211.38, + "end": 21212.2, + "probability": 0.855 + }, + { + "start": 21213.12, + "end": 21213.96, + "probability": 0.9446 + }, + { + "start": 21215.04, + "end": 21216.82, + "probability": 0.8413 + }, + { + "start": 21217.5, + "end": 21217.9, + "probability": 0.7993 + }, + { + "start": 21218.22, + "end": 21220.78, + "probability": 0.31 + }, + { + "start": 21220.94, + "end": 21223.71, + "probability": 0.4344 + }, + { + "start": 21224.48, + "end": 21227.04, + "probability": 0.3684 + }, + { + "start": 21227.84, + "end": 21229.88, + "probability": 0.5739 + }, + { + "start": 21229.88, + "end": 21234.3, + "probability": 0.085 + }, + { + "start": 21235.24, + "end": 21235.38, + "probability": 0.3394 + }, + { + "start": 21235.38, + "end": 21235.38, + "probability": 0.0293 + }, + { + "start": 21235.38, + "end": 21237.48, + "probability": 0.5452 + }, + { + "start": 21238.04, + "end": 21239.28, + "probability": 0.6819 + }, + { + "start": 21239.48, + "end": 21239.82, + "probability": 0.1439 + }, + { + "start": 21240.08, + "end": 21240.96, + "probability": 0.9165 + }, + { + "start": 21241.08, + "end": 21242.32, + "probability": 0.5552 + }, + { + "start": 21242.78, + "end": 21244.62, + "probability": 0.2927 + }, + { + "start": 21244.68, + "end": 21246.12, + "probability": 0.4749 + }, + { + "start": 21246.88, + "end": 21251.12, + "probability": 0.2246 + }, + { + "start": 21251.16, + "end": 21255.0, + "probability": 0.3648 + }, + { + "start": 21255.56, + "end": 21255.74, + "probability": 0.1126 + }, + { + "start": 21256.04, + "end": 21257.82, + "probability": 0.7111 + }, + { + "start": 21258.66, + "end": 21258.66, + "probability": 0.0504 + }, + { + "start": 21258.68, + "end": 21261.98, + "probability": 0.9851 + }, + { + "start": 21262.2, + "end": 21263.02, + "probability": 0.6483 + }, + { + "start": 21263.2, + "end": 21265.24, + "probability": 0.6988 + }, + { + "start": 21265.7, + "end": 21268.28, + "probability": 0.978 + }, + { + "start": 21268.38, + "end": 21268.94, + "probability": 0.8058 + }, + { + "start": 21269.44, + "end": 21271.28, + "probability": 0.8644 + }, + { + "start": 21271.36, + "end": 21272.31, + "probability": 0.9622 + }, + { + "start": 21272.86, + "end": 21274.4, + "probability": 0.9709 + }, + { + "start": 21275.08, + "end": 21275.78, + "probability": 0.838 + }, + { + "start": 21275.88, + "end": 21278.72, + "probability": 0.8721 + }, + { + "start": 21279.16, + "end": 21282.92, + "probability": 0.8909 + }, + { + "start": 21283.1, + "end": 21287.76, + "probability": 0.8435 + }, + { + "start": 21287.98, + "end": 21290.92, + "probability": 0.6187 + }, + { + "start": 21291.78, + "end": 21294.4, + "probability": 0.2105 + }, + { + "start": 21296.48, + "end": 21297.58, + "probability": 0.4147 + }, + { + "start": 21297.84, + "end": 21297.98, + "probability": 0.5915 + }, + { + "start": 21297.98, + "end": 21300.72, + "probability": 0.9302 + }, + { + "start": 21300.72, + "end": 21301.1, + "probability": 0.3578 + }, + { + "start": 21301.82, + "end": 21304.18, + "probability": 0.8822 + }, + { + "start": 21304.7, + "end": 21305.02, + "probability": 0.7938 + }, + { + "start": 21306.08, + "end": 21307.62, + "probability": 0.6264 + }, + { + "start": 21307.74, + "end": 21309.9, + "probability": 0.9976 + }, + { + "start": 21309.9, + "end": 21313.22, + "probability": 0.9889 + }, + { + "start": 21313.78, + "end": 21314.42, + "probability": 0.5258 + }, + { + "start": 21314.9, + "end": 21319.4, + "probability": 0.9447 + }, + { + "start": 21319.5, + "end": 21320.16, + "probability": 0.5192 + }, + { + "start": 21320.3, + "end": 21320.72, + "probability": 0.6827 + }, + { + "start": 21321.06, + "end": 21322.28, + "probability": 0.87 + }, + { + "start": 21322.46, + "end": 21322.84, + "probability": 0.708 + }, + { + "start": 21322.94, + "end": 21323.14, + "probability": 0.9839 + }, + { + "start": 21323.46, + "end": 21323.74, + "probability": 0.7893 + }, + { + "start": 21324.32, + "end": 21324.9, + "probability": 0.7949 + }, + { + "start": 21325.3, + "end": 21325.8, + "probability": 0.8516 + }, + { + "start": 21326.52, + "end": 21327.4, + "probability": 0.6966 + }, + { + "start": 21327.82, + "end": 21329.94, + "probability": 0.9929 + }, + { + "start": 21330.94, + "end": 21331.4, + "probability": 0.9365 + }, + { + "start": 21332.12, + "end": 21332.7, + "probability": 0.2756 + }, + { + "start": 21333.68, + "end": 21336.04, + "probability": 0.9285 + }, + { + "start": 21336.6, + "end": 21339.82, + "probability": 0.7461 + }, + { + "start": 21340.26, + "end": 21342.94, + "probability": 0.5608 + }, + { + "start": 21343.18, + "end": 21344.22, + "probability": 0.7867 + }, + { + "start": 21344.58, + "end": 21348.28, + "probability": 0.9713 + }, + { + "start": 21348.6, + "end": 21350.22, + "probability": 0.9956 + }, + { + "start": 21350.54, + "end": 21352.9, + "probability": 0.5956 + }, + { + "start": 21353.3, + "end": 21354.96, + "probability": 0.7049 + }, + { + "start": 21355.16, + "end": 21355.74, + "probability": 0.7192 + }, + { + "start": 21356.58, + "end": 21360.0, + "probability": 0.8509 + }, + { + "start": 21360.3, + "end": 21362.98, + "probability": 0.9817 + }, + { + "start": 21363.46, + "end": 21363.58, + "probability": 0.3455 + }, + { + "start": 21363.7, + "end": 21365.24, + "probability": 0.8971 + }, + { + "start": 21365.56, + "end": 21365.92, + "probability": 0.7172 + }, + { + "start": 21366.5, + "end": 21367.5, + "probability": 0.4964 + }, + { + "start": 21367.9, + "end": 21370.34, + "probability": 0.9542 + }, + { + "start": 21370.72, + "end": 21371.4, + "probability": 0.3469 + }, + { + "start": 21371.58, + "end": 21374.24, + "probability": 0.8931 + }, + { + "start": 21374.42, + "end": 21375.46, + "probability": 0.7166 + }, + { + "start": 21376.02, + "end": 21379.04, + "probability": 0.8458 + }, + { + "start": 21379.12, + "end": 21379.94, + "probability": 0.7482 + }, + { + "start": 21380.24, + "end": 21382.56, + "probability": 0.9796 + }, + { + "start": 21382.96, + "end": 21386.95, + "probability": 0.7849 + }, + { + "start": 21388.08, + "end": 21388.98, + "probability": 0.7622 + }, + { + "start": 21389.0, + "end": 21393.68, + "probability": 0.9886 + }, + { + "start": 21394.0, + "end": 21395.46, + "probability": 0.972 + }, + { + "start": 21395.92, + "end": 21398.14, + "probability": 0.9761 + }, + { + "start": 21398.3, + "end": 21401.6, + "probability": 0.7125 + }, + { + "start": 21401.96, + "end": 21404.28, + "probability": 0.9941 + }, + { + "start": 21404.64, + "end": 21407.14, + "probability": 0.6406 + }, + { + "start": 21407.28, + "end": 21408.05, + "probability": 0.9196 + }, + { + "start": 21408.58, + "end": 21412.3, + "probability": 0.9709 + }, + { + "start": 21412.48, + "end": 21412.76, + "probability": 0.2543 + }, + { + "start": 21412.76, + "end": 21414.72, + "probability": 0.6159 + }, + { + "start": 21415.5, + "end": 21419.06, + "probability": 0.8999 + }, + { + "start": 21419.34, + "end": 21419.7, + "probability": 0.5552 + }, + { + "start": 21419.86, + "end": 21424.6, + "probability": 0.8966 + }, + { + "start": 21430.62, + "end": 21432.08, + "probability": 0.6793 + }, + { + "start": 21434.04, + "end": 21435.14, + "probability": 0.7028 + }, + { + "start": 21437.94, + "end": 21444.2, + "probability": 0.9889 + }, + { + "start": 21445.62, + "end": 21447.6, + "probability": 0.9995 + }, + { + "start": 21448.3, + "end": 21453.2, + "probability": 0.9905 + }, + { + "start": 21454.86, + "end": 21463.98, + "probability": 0.9915 + }, + { + "start": 21465.96, + "end": 21466.9, + "probability": 0.8706 + }, + { + "start": 21468.18, + "end": 21470.37, + "probability": 0.9797 + }, + { + "start": 21472.92, + "end": 21475.84, + "probability": 0.9891 + }, + { + "start": 21476.84, + "end": 21478.06, + "probability": 0.8271 + }, + { + "start": 21479.98, + "end": 21483.38, + "probability": 0.662 + }, + { + "start": 21485.46, + "end": 21486.42, + "probability": 0.6302 + }, + { + "start": 21487.54, + "end": 21491.14, + "probability": 0.9604 + }, + { + "start": 21492.9, + "end": 21493.82, + "probability": 0.9587 + }, + { + "start": 21495.62, + "end": 21496.3, + "probability": 0.8945 + }, + { + "start": 21500.08, + "end": 21503.24, + "probability": 0.9699 + }, + { + "start": 21505.04, + "end": 21506.92, + "probability": 0.9873 + }, + { + "start": 21510.36, + "end": 21514.0, + "probability": 0.9905 + }, + { + "start": 21516.1, + "end": 21517.8, + "probability": 0.9922 + }, + { + "start": 21519.72, + "end": 21522.08, + "probability": 0.9883 + }, + { + "start": 21523.3, + "end": 21524.74, + "probability": 0.9344 + }, + { + "start": 21526.5, + "end": 21528.62, + "probability": 0.768 + }, + { + "start": 21530.32, + "end": 21532.52, + "probability": 0.7881 + }, + { + "start": 21533.08, + "end": 21534.34, + "probability": 0.9883 + }, + { + "start": 21536.36, + "end": 21544.85, + "probability": 0.9724 + }, + { + "start": 21545.88, + "end": 21547.64, + "probability": 0.9073 + }, + { + "start": 21549.94, + "end": 21551.2, + "probability": 0.8213 + }, + { + "start": 21551.98, + "end": 21554.42, + "probability": 0.9484 + }, + { + "start": 21555.06, + "end": 21555.96, + "probability": 0.9043 + }, + { + "start": 21556.86, + "end": 21558.11, + "probability": 0.8437 + }, + { + "start": 21559.02, + "end": 21561.6, + "probability": 0.9025 + }, + { + "start": 21564.16, + "end": 21566.74, + "probability": 0.7656 + }, + { + "start": 21570.14, + "end": 21575.0, + "probability": 0.9832 + }, + { + "start": 21576.6, + "end": 21578.67, + "probability": 0.9977 + }, + { + "start": 21579.88, + "end": 21581.04, + "probability": 0.9883 + }, + { + "start": 21583.9, + "end": 21584.5, + "probability": 0.6647 + }, + { + "start": 21586.7, + "end": 21587.02, + "probability": 0.7929 + }, + { + "start": 21587.72, + "end": 21593.28, + "probability": 0.7039 + }, + { + "start": 21594.12, + "end": 21595.38, + "probability": 0.6868 + }, + { + "start": 21596.26, + "end": 21601.16, + "probability": 0.9498 + }, + { + "start": 21604.42, + "end": 21605.62, + "probability": 0.6872 + }, + { + "start": 21606.08, + "end": 21606.74, + "probability": 0.7839 + }, + { + "start": 21609.38, + "end": 21612.4, + "probability": 0.926 + }, + { + "start": 21614.04, + "end": 21615.24, + "probability": 0.8259 + }, + { + "start": 21618.5, + "end": 21620.84, + "probability": 0.8608 + }, + { + "start": 21625.94, + "end": 21629.52, + "probability": 0.9952 + }, + { + "start": 21630.6, + "end": 21632.26, + "probability": 0.9902 + }, + { + "start": 21634.72, + "end": 21636.34, + "probability": 0.9249 + }, + { + "start": 21637.52, + "end": 21640.84, + "probability": 0.9979 + }, + { + "start": 21641.2, + "end": 21642.56, + "probability": 0.9591 + }, + { + "start": 21644.16, + "end": 21645.94, + "probability": 0.6261 + }, + { + "start": 21646.12, + "end": 21647.34, + "probability": 0.7384 + }, + { + "start": 21647.4, + "end": 21648.36, + "probability": 0.3665 + }, + { + "start": 21648.52, + "end": 21649.98, + "probability": 0.7677 + }, + { + "start": 21651.42, + "end": 21652.96, + "probability": 0.95 + }, + { + "start": 21653.1, + "end": 21655.82, + "probability": 0.624 + }, + { + "start": 21655.92, + "end": 21657.12, + "probability": 0.4322 + }, + { + "start": 21658.58, + "end": 21659.56, + "probability": 0.7995 + }, + { + "start": 21661.06, + "end": 21663.06, + "probability": 0.9391 + }, + { + "start": 21665.08, + "end": 21665.76, + "probability": 0.9028 + }, + { + "start": 21666.63, + "end": 21667.08, + "probability": 0.74 + }, + { + "start": 21668.32, + "end": 21669.08, + "probability": 0.9404 + }, + { + "start": 21670.78, + "end": 21671.85, + "probability": 0.8747 + }, + { + "start": 21673.62, + "end": 21675.44, + "probability": 0.9746 + }, + { + "start": 21677.7, + "end": 21679.8, + "probability": 0.9833 + }, + { + "start": 21681.12, + "end": 21682.42, + "probability": 0.9658 + }, + { + "start": 21684.0, + "end": 21686.5, + "probability": 0.9844 + }, + { + "start": 21687.28, + "end": 21689.46, + "probability": 0.9375 + }, + { + "start": 21689.46, + "end": 21690.26, + "probability": 0.9519 + }, + { + "start": 21690.46, + "end": 21690.58, + "probability": 0.7878 + }, + { + "start": 21691.84, + "end": 21692.9, + "probability": 0.8612 + }, + { + "start": 21694.62, + "end": 21696.6, + "probability": 0.9488 + }, + { + "start": 21697.9, + "end": 21698.9, + "probability": 0.5483 + }, + { + "start": 21700.0, + "end": 21701.47, + "probability": 0.7685 + }, + { + "start": 21702.5, + "end": 21709.14, + "probability": 0.9211 + }, + { + "start": 21709.3, + "end": 21710.46, + "probability": 0.8239 + }, + { + "start": 21710.6, + "end": 21711.26, + "probability": 0.4633 + }, + { + "start": 21712.06, + "end": 21716.96, + "probability": 0.9906 + }, + { + "start": 21718.56, + "end": 21719.25, + "probability": 0.8462 + }, + { + "start": 21720.34, + "end": 21720.58, + "probability": 0.4633 + }, + { + "start": 21721.42, + "end": 21721.94, + "probability": 0.9183 + }, + { + "start": 21724.1, + "end": 21726.42, + "probability": 0.9109 + }, + { + "start": 21727.16, + "end": 21728.24, + "probability": 0.8019 + }, + { + "start": 21729.22, + "end": 21730.66, + "probability": 0.9837 + }, + { + "start": 21733.6, + "end": 21736.48, + "probability": 0.9702 + }, + { + "start": 21739.0, + "end": 21741.76, + "probability": 0.9849 + }, + { + "start": 21742.82, + "end": 21744.27, + "probability": 0.9812 + }, + { + "start": 21746.22, + "end": 21749.2, + "probability": 0.9881 + }, + { + "start": 21751.0, + "end": 21751.66, + "probability": 0.776 + }, + { + "start": 21753.06, + "end": 21753.6, + "probability": 0.8986 + }, + { + "start": 21754.44, + "end": 21755.2, + "probability": 0.8067 + }, + { + "start": 21758.58, + "end": 21759.55, + "probability": 0.9934 + }, + { + "start": 21761.2, + "end": 21762.74, + "probability": 0.9596 + }, + { + "start": 21763.66, + "end": 21764.04, + "probability": 0.7894 + }, + { + "start": 21765.36, + "end": 21769.96, + "probability": 0.951 + }, + { + "start": 21771.06, + "end": 21771.6, + "probability": 0.9972 + }, + { + "start": 21774.26, + "end": 21777.26, + "probability": 0.9964 + }, + { + "start": 21777.86, + "end": 21778.72, + "probability": 0.9367 + }, + { + "start": 21780.84, + "end": 21781.72, + "probability": 0.8848 + }, + { + "start": 21781.82, + "end": 21784.22, + "probability": 0.7829 + }, + { + "start": 21784.26, + "end": 21784.78, + "probability": 0.686 + }, + { + "start": 21784.84, + "end": 21785.48, + "probability": 0.3047 + }, + { + "start": 21786.02, + "end": 21787.16, + "probability": 0.9907 + }, + { + "start": 21787.9, + "end": 21788.92, + "probability": 0.7075 + }, + { + "start": 21791.42, + "end": 21791.96, + "probability": 0.8612 + }, + { + "start": 21792.98, + "end": 21794.2, + "probability": 0.8928 + }, + { + "start": 21794.98, + "end": 21797.88, + "probability": 0.8535 + }, + { + "start": 21799.28, + "end": 21800.0, + "probability": 0.7535 + }, + { + "start": 21800.84, + "end": 21802.84, + "probability": 0.4124 + }, + { + "start": 21803.5, + "end": 21805.05, + "probability": 0.9779 + }, + { + "start": 21805.12, + "end": 21806.88, + "probability": 0.9734 + }, + { + "start": 21808.24, + "end": 21809.32, + "probability": 0.8472 + }, + { + "start": 21811.22, + "end": 21815.98, + "probability": 0.9347 + }, + { + "start": 21816.86, + "end": 21818.72, + "probability": 0.92 + }, + { + "start": 21820.82, + "end": 21821.2, + "probability": 0.8613 + }, + { + "start": 21823.5, + "end": 21825.1, + "probability": 0.966 + }, + { + "start": 21826.96, + "end": 21828.22, + "probability": 0.9873 + }, + { + "start": 21829.64, + "end": 21830.54, + "probability": 0.9861 + }, + { + "start": 21832.46, + "end": 21833.34, + "probability": 0.9864 + }, + { + "start": 21835.2, + "end": 21837.14, + "probability": 0.9904 + }, + { + "start": 21837.76, + "end": 21838.88, + "probability": 0.4485 + }, + { + "start": 21840.96, + "end": 21844.58, + "probability": 0.9873 + }, + { + "start": 21847.46, + "end": 21848.38, + "probability": 0.862 + }, + { + "start": 21849.6, + "end": 21850.36, + "probability": 0.8472 + }, + { + "start": 21851.18, + "end": 21852.64, + "probability": 0.6405 + }, + { + "start": 21853.58, + "end": 21858.26, + "probability": 0.9755 + }, + { + "start": 21859.66, + "end": 21861.04, + "probability": 0.9319 + }, + { + "start": 21863.96, + "end": 21866.34, + "probability": 0.9927 + }, + { + "start": 21867.12, + "end": 21868.22, + "probability": 0.9634 + }, + { + "start": 21869.88, + "end": 21873.2, + "probability": 0.9568 + }, + { + "start": 21873.98, + "end": 21877.88, + "probability": 0.9626 + }, + { + "start": 21878.92, + "end": 21881.46, + "probability": 0.9612 + }, + { + "start": 21884.66, + "end": 21885.72, + "probability": 0.8748 + }, + { + "start": 21886.98, + "end": 21892.54, + "probability": 0.9668 + }, + { + "start": 21893.84, + "end": 21895.04, + "probability": 0.9384 + }, + { + "start": 21896.18, + "end": 21897.1, + "probability": 0.9531 + }, + { + "start": 21899.12, + "end": 21904.64, + "probability": 0.9627 + }, + { + "start": 21905.64, + "end": 21907.93, + "probability": 0.6666 + }, + { + "start": 21908.66, + "end": 21910.62, + "probability": 0.9029 + }, + { + "start": 21911.76, + "end": 21913.0, + "probability": 0.5093 + }, + { + "start": 21914.04, + "end": 21915.62, + "probability": 0.826 + }, + { + "start": 21916.36, + "end": 21916.84, + "probability": 0.9714 + }, + { + "start": 21918.1, + "end": 21920.75, + "probability": 0.9897 + }, + { + "start": 21921.64, + "end": 21926.61, + "probability": 0.9974 + }, + { + "start": 21927.1, + "end": 21928.02, + "probability": 0.5948 + }, + { + "start": 21930.16, + "end": 21931.55, + "probability": 0.9339 + }, + { + "start": 21933.02, + "end": 21933.72, + "probability": 0.9285 + }, + { + "start": 21935.32, + "end": 21935.94, + "probability": 0.9961 + }, + { + "start": 21937.9, + "end": 21940.12, + "probability": 0.9946 + }, + { + "start": 21941.72, + "end": 21944.06, + "probability": 0.9684 + }, + { + "start": 21945.4, + "end": 21947.73, + "probability": 0.8671 + }, + { + "start": 21948.92, + "end": 21949.68, + "probability": 0.9876 + }, + { + "start": 21950.48, + "end": 21951.8, + "probability": 0.9369 + }, + { + "start": 21953.3, + "end": 21955.5, + "probability": 0.959 + }, + { + "start": 21956.52, + "end": 21957.0, + "probability": 0.8853 + }, + { + "start": 21957.28, + "end": 21957.6, + "probability": 0.7118 + }, + { + "start": 21958.38, + "end": 21960.22, + "probability": 0.8846 + }, + { + "start": 21961.24, + "end": 21964.18, + "probability": 0.9726 + }, + { + "start": 21965.18, + "end": 21965.68, + "probability": 0.6024 + }, + { + "start": 21966.32, + "end": 21969.6, + "probability": 0.9824 + }, + { + "start": 21970.24, + "end": 21974.4, + "probability": 0.8602 + }, + { + "start": 21975.04, + "end": 21978.54, + "probability": 0.991 + }, + { + "start": 21979.72, + "end": 21980.32, + "probability": 0.3401 + }, + { + "start": 21981.18, + "end": 21982.42, + "probability": 0.9175 + }, + { + "start": 22006.0, + "end": 22007.82, + "probability": 0.6173 + }, + { + "start": 22010.02, + "end": 22014.94, + "probability": 0.9396 + }, + { + "start": 22016.52, + "end": 22018.0, + "probability": 0.8333 + }, + { + "start": 22018.42, + "end": 22019.56, + "probability": 0.8271 + }, + { + "start": 22019.7, + "end": 22022.96, + "probability": 0.8932 + }, + { + "start": 22025.2, + "end": 22027.82, + "probability": 0.9442 + }, + { + "start": 22028.58, + "end": 22030.18, + "probability": 0.8826 + }, + { + "start": 22031.24, + "end": 22033.18, + "probability": 0.7504 + }, + { + "start": 22034.24, + "end": 22036.88, + "probability": 0.5716 + }, + { + "start": 22037.62, + "end": 22040.8, + "probability": 0.9072 + }, + { + "start": 22043.26, + "end": 22044.57, + "probability": 0.9351 + }, + { + "start": 22045.34, + "end": 22050.22, + "probability": 0.9892 + }, + { + "start": 22050.22, + "end": 22053.76, + "probability": 0.9845 + }, + { + "start": 22054.78, + "end": 22057.32, + "probability": 0.9216 + }, + { + "start": 22060.72, + "end": 22064.38, + "probability": 0.8607 + }, + { + "start": 22065.58, + "end": 22069.12, + "probability": 0.9454 + }, + { + "start": 22075.98, + "end": 22077.2, + "probability": 0.7753 + }, + { + "start": 22078.08, + "end": 22079.0, + "probability": 0.6609 + }, + { + "start": 22079.16, + "end": 22082.58, + "probability": 0.9829 + }, + { + "start": 22083.24, + "end": 22086.12, + "probability": 0.7514 + }, + { + "start": 22087.68, + "end": 22089.16, + "probability": 0.6377 + }, + { + "start": 22090.42, + "end": 22093.14, + "probability": 0.9554 + }, + { + "start": 22093.34, + "end": 22098.08, + "probability": 0.9482 + }, + { + "start": 22098.18, + "end": 22099.28, + "probability": 0.8525 + }, + { + "start": 22101.48, + "end": 22102.9, + "probability": 0.9376 + }, + { + "start": 22103.2, + "end": 22110.82, + "probability": 0.871 + }, + { + "start": 22111.78, + "end": 22112.7, + "probability": 0.7148 + }, + { + "start": 22112.88, + "end": 22114.78, + "probability": 0.915 + }, + { + "start": 22115.66, + "end": 22118.78, + "probability": 0.9766 + }, + { + "start": 22119.54, + "end": 22120.66, + "probability": 0.6758 + }, + { + "start": 22121.6, + "end": 22122.6, + "probability": 0.9355 + }, + { + "start": 22122.72, + "end": 22123.41, + "probability": 0.8898 + }, + { + "start": 22123.62, + "end": 22125.38, + "probability": 0.978 + }, + { + "start": 22126.18, + "end": 22127.94, + "probability": 0.8359 + }, + { + "start": 22128.5, + "end": 22129.3, + "probability": 0.8669 + }, + { + "start": 22130.0, + "end": 22131.72, + "probability": 0.8315 + }, + { + "start": 22132.58, + "end": 22134.18, + "probability": 0.9343 + }, + { + "start": 22134.28, + "end": 22136.2, + "probability": 0.9946 + }, + { + "start": 22137.3, + "end": 22141.56, + "probability": 0.733 + }, + { + "start": 22141.7, + "end": 22143.54, + "probability": 0.6656 + }, + { + "start": 22143.78, + "end": 22144.72, + "probability": 0.9741 + }, + { + "start": 22145.28, + "end": 22147.5, + "probability": 0.9755 + }, + { + "start": 22148.3, + "end": 22149.64, + "probability": 0.8596 + }, + { + "start": 22150.36, + "end": 22151.98, + "probability": 0.9719 + }, + { + "start": 22153.4, + "end": 22159.04, + "probability": 0.9663 + }, + { + "start": 22159.32, + "end": 22161.08, + "probability": 0.9789 + }, + { + "start": 22161.28, + "end": 22163.0, + "probability": 0.908 + }, + { + "start": 22163.58, + "end": 22165.32, + "probability": 0.8254 + }, + { + "start": 22166.88, + "end": 22170.9, + "probability": 0.7333 + }, + { + "start": 22170.94, + "end": 22171.7, + "probability": 0.5826 + }, + { + "start": 22171.86, + "end": 22172.4, + "probability": 0.3923 + }, + { + "start": 22172.86, + "end": 22173.42, + "probability": 0.1325 + }, + { + "start": 22174.8, + "end": 22175.7, + "probability": 0.5735 + }, + { + "start": 22176.88, + "end": 22177.76, + "probability": 0.965 + }, + { + "start": 22178.5, + "end": 22182.7, + "probability": 0.8762 + }, + { + "start": 22183.42, + "end": 22187.22, + "probability": 0.9338 + }, + { + "start": 22187.82, + "end": 22188.3, + "probability": 0.9869 + }, + { + "start": 22188.74, + "end": 22190.78, + "probability": 0.7109 + }, + { + "start": 22191.3, + "end": 22192.28, + "probability": 0.6687 + }, + { + "start": 22192.46, + "end": 22194.52, + "probability": 0.9884 + }, + { + "start": 22195.12, + "end": 22198.78, + "probability": 0.9932 + }, + { + "start": 22199.5, + "end": 22201.56, + "probability": 0.7931 + }, + { + "start": 22203.92, + "end": 22204.94, + "probability": 0.9673 + }, + { + "start": 22213.8, + "end": 22216.52, + "probability": 0.9661 + }, + { + "start": 22217.9, + "end": 22219.54, + "probability": 0.4792 + }, + { + "start": 22220.22, + "end": 22223.34, + "probability": 0.9525 + }, + { + "start": 22225.1, + "end": 22229.5, + "probability": 0.183 + }, + { + "start": 22231.06, + "end": 22238.4, + "probability": 0.1254 + }, + { + "start": 22239.78, + "end": 22240.78, + "probability": 0.1615 + }, + { + "start": 22240.78, + "end": 22240.78, + "probability": 0.1707 + }, + { + "start": 22240.78, + "end": 22240.78, + "probability": 0.2377 + }, + { + "start": 22240.78, + "end": 22240.78, + "probability": 0.2821 + }, + { + "start": 22240.78, + "end": 22240.78, + "probability": 0.0917 + }, + { + "start": 22240.78, + "end": 22240.78, + "probability": 0.3567 + }, + { + "start": 22240.78, + "end": 22243.72, + "probability": 0.5507 + }, + { + "start": 22243.72, + "end": 22248.4, + "probability": 0.8309 + }, + { + "start": 22248.52, + "end": 22251.43, + "probability": 0.9971 + }, + { + "start": 22254.04, + "end": 22254.58, + "probability": 0.0954 + }, + { + "start": 22254.9, + "end": 22260.24, + "probability": 0.151 + }, + { + "start": 22260.32, + "end": 22261.82, + "probability": 0.881 + }, + { + "start": 22264.7, + "end": 22266.4, + "probability": 0.9946 + }, + { + "start": 22266.81, + "end": 22268.5, + "probability": 0.6747 + }, + { + "start": 22268.98, + "end": 22269.96, + "probability": 0.6239 + }, + { + "start": 22269.96, + "end": 22273.3, + "probability": 0.8804 + }, + { + "start": 22273.66, + "end": 22274.8, + "probability": 0.5924 + }, + { + "start": 22274.98, + "end": 22276.94, + "probability": 0.9373 + }, + { + "start": 22277.44, + "end": 22279.98, + "probability": 0.9185 + }, + { + "start": 22280.2, + "end": 22282.32, + "probability": 0.9756 + }, + { + "start": 22282.7, + "end": 22283.24, + "probability": 0.8167 + }, + { + "start": 22284.36, + "end": 22285.66, + "probability": 0.7445 + }, + { + "start": 22286.58, + "end": 22287.78, + "probability": 0.2297 + }, + { + "start": 22287.78, + "end": 22291.52, + "probability": 0.5831 + }, + { + "start": 22292.36, + "end": 22296.68, + "probability": 0.9933 + }, + { + "start": 22296.7, + "end": 22297.44, + "probability": 0.6263 + }, + { + "start": 22299.4, + "end": 22300.84, + "probability": 0.9106 + }, + { + "start": 22300.94, + "end": 22301.76, + "probability": 0.9518 + }, + { + "start": 22301.78, + "end": 22306.66, + "probability": 0.6963 + }, + { + "start": 22307.4, + "end": 22312.96, + "probability": 0.9656 + }, + { + "start": 22313.04, + "end": 22315.14, + "probability": 0.9936 + }, + { + "start": 22315.38, + "end": 22316.3, + "probability": 0.8877 + }, + { + "start": 22316.68, + "end": 22319.02, + "probability": 0.9448 + }, + { + "start": 22319.18, + "end": 22320.28, + "probability": 0.9156 + }, + { + "start": 22320.68, + "end": 22322.42, + "probability": 0.9772 + }, + { + "start": 22323.86, + "end": 22330.36, + "probability": 0.8313 + }, + { + "start": 22331.3, + "end": 22335.76, + "probability": 0.5092 + }, + { + "start": 22336.46, + "end": 22339.26, + "probability": 0.9115 + }, + { + "start": 22340.1, + "end": 22342.96, + "probability": 0.9927 + }, + { + "start": 22343.9, + "end": 22346.84, + "probability": 0.9988 + }, + { + "start": 22348.62, + "end": 22354.08, + "probability": 0.9307 + }, + { + "start": 22355.02, + "end": 22358.26, + "probability": 0.9522 + }, + { + "start": 22359.3, + "end": 22359.4, + "probability": 0.4824 + }, + { + "start": 22359.52, + "end": 22364.68, + "probability": 0.9716 + }, + { + "start": 22365.38, + "end": 22367.06, + "probability": 0.9449 + }, + { + "start": 22367.68, + "end": 22371.06, + "probability": 0.9688 + }, + { + "start": 22371.64, + "end": 22373.5, + "probability": 0.9906 + }, + { + "start": 22374.3, + "end": 22377.8, + "probability": 0.9869 + }, + { + "start": 22377.8, + "end": 22384.2, + "probability": 0.9668 + }, + { + "start": 22384.74, + "end": 22387.14, + "probability": 0.9644 + }, + { + "start": 22387.82, + "end": 22391.82, + "probability": 0.9627 + }, + { + "start": 22393.22, + "end": 22396.74, + "probability": 0.9962 + }, + { + "start": 22396.94, + "end": 22400.84, + "probability": 0.9555 + }, + { + "start": 22401.92, + "end": 22404.66, + "probability": 0.9557 + }, + { + "start": 22405.34, + "end": 22406.62, + "probability": 0.9614 + }, + { + "start": 22407.76, + "end": 22413.13, + "probability": 0.9385 + }, + { + "start": 22413.22, + "end": 22414.0, + "probability": 0.5528 + }, + { + "start": 22415.22, + "end": 22419.86, + "probability": 0.8851 + }, + { + "start": 22420.5, + "end": 22422.35, + "probability": 0.9949 + }, + { + "start": 22422.84, + "end": 22424.28, + "probability": 0.9944 + }, + { + "start": 22426.44, + "end": 22429.36, + "probability": 0.6223 + }, + { + "start": 22429.5, + "end": 22431.2, + "probability": 0.8013 + }, + { + "start": 22431.26, + "end": 22433.2, + "probability": 0.7081 + }, + { + "start": 22433.82, + "end": 22433.92, + "probability": 0.6013 + }, + { + "start": 22433.92, + "end": 22435.48, + "probability": 0.7219 + }, + { + "start": 22435.74, + "end": 22439.4, + "probability": 0.99 + }, + { + "start": 22440.12, + "end": 22440.62, + "probability": 0.6657 + }, + { + "start": 22441.02, + "end": 22443.82, + "probability": 0.981 + }, + { + "start": 22444.3, + "end": 22445.36, + "probability": 0.964 + }, + { + "start": 22445.84, + "end": 22448.26, + "probability": 0.9915 + }, + { + "start": 22449.04, + "end": 22451.64, + "probability": 0.9854 + }, + { + "start": 22452.12, + "end": 22454.92, + "probability": 0.9374 + }, + { + "start": 22455.7, + "end": 22456.46, + "probability": 0.7862 + }, + { + "start": 22456.62, + "end": 22457.62, + "probability": 0.8231 + }, + { + "start": 22457.74, + "end": 22459.54, + "probability": 0.6717 + }, + { + "start": 22460.54, + "end": 22465.9, + "probability": 0.9836 + }, + { + "start": 22468.38, + "end": 22470.96, + "probability": 0.9705 + }, + { + "start": 22471.04, + "end": 22476.3, + "probability": 0.7528 + }, + { + "start": 22476.92, + "end": 22481.5, + "probability": 0.9832 + }, + { + "start": 22481.9, + "end": 22485.26, + "probability": 0.9775 + }, + { + "start": 22486.28, + "end": 22489.14, + "probability": 0.9674 + }, + { + "start": 22489.44, + "end": 22491.36, + "probability": 0.7743 + }, + { + "start": 22492.18, + "end": 22494.18, + "probability": 0.8652 + }, + { + "start": 22494.18, + "end": 22497.46, + "probability": 0.7812 + }, + { + "start": 22498.68, + "end": 22501.22, + "probability": 0.9272 + }, + { + "start": 22506.94, + "end": 22506.94, + "probability": 0.0613 + }, + { + "start": 22506.94, + "end": 22508.16, + "probability": 0.6518 + }, + { + "start": 22520.68, + "end": 22523.2, + "probability": 0.6579 + }, + { + "start": 22525.38, + "end": 22529.64, + "probability": 0.9569 + }, + { + "start": 22530.9, + "end": 22532.04, + "probability": 0.8869 + }, + { + "start": 22533.8, + "end": 22535.26, + "probability": 0.9633 + }, + { + "start": 22536.66, + "end": 22537.92, + "probability": 0.9318 + }, + { + "start": 22540.56, + "end": 22544.98, + "probability": 0.9598 + }, + { + "start": 22546.44, + "end": 22549.44, + "probability": 0.9123 + }, + { + "start": 22550.34, + "end": 22551.07, + "probability": 0.9858 + }, + { + "start": 22552.3, + "end": 22555.14, + "probability": 0.9583 + }, + { + "start": 22556.32, + "end": 22557.82, + "probability": 0.9288 + }, + { + "start": 22559.12, + "end": 22560.58, + "probability": 0.8328 + }, + { + "start": 22561.86, + "end": 22564.24, + "probability": 0.8108 + }, + { + "start": 22565.0, + "end": 22566.76, + "probability": 0.9941 + }, + { + "start": 22567.84, + "end": 22571.82, + "probability": 0.9938 + }, + { + "start": 22572.9, + "end": 22574.7, + "probability": 0.7858 + }, + { + "start": 22576.26, + "end": 22576.42, + "probability": 0.5676 + }, + { + "start": 22576.48, + "end": 22577.08, + "probability": 0.8741 + }, + { + "start": 22577.24, + "end": 22578.46, + "probability": 0.9625 + }, + { + "start": 22578.66, + "end": 22580.28, + "probability": 0.7288 + }, + { + "start": 22580.36, + "end": 22581.55, + "probability": 0.9907 + }, + { + "start": 22582.46, + "end": 22583.16, + "probability": 0.8216 + }, + { + "start": 22583.26, + "end": 22591.52, + "probability": 0.976 + }, + { + "start": 22592.22, + "end": 22593.8, + "probability": 0.9922 + }, + { + "start": 22596.28, + "end": 22603.78, + "probability": 0.9119 + }, + { + "start": 22604.7, + "end": 22606.08, + "probability": 0.7729 + }, + { + "start": 22607.14, + "end": 22609.66, + "probability": 0.7265 + }, + { + "start": 22610.36, + "end": 22611.54, + "probability": 0.9927 + }, + { + "start": 22612.06, + "end": 22613.42, + "probability": 0.9336 + }, + { + "start": 22615.48, + "end": 22619.82, + "probability": 0.9756 + }, + { + "start": 22620.94, + "end": 22621.98, + "probability": 0.6697 + }, + { + "start": 22622.04, + "end": 22622.64, + "probability": 0.5221 + }, + { + "start": 22622.78, + "end": 22623.62, + "probability": 0.958 + }, + { + "start": 22623.74, + "end": 22624.39, + "probability": 0.8797 + }, + { + "start": 22625.64, + "end": 22629.7, + "probability": 0.9561 + }, + { + "start": 22630.34, + "end": 22636.76, + "probability": 0.9778 + }, + { + "start": 22638.36, + "end": 22639.82, + "probability": 0.9082 + }, + { + "start": 22641.04, + "end": 22646.96, + "probability": 0.9839 + }, + { + "start": 22647.54, + "end": 22649.9, + "probability": 0.9958 + }, + { + "start": 22651.12, + "end": 22652.2, + "probability": 0.7598 + }, + { + "start": 22652.96, + "end": 22658.12, + "probability": 0.9937 + }, + { + "start": 22658.2, + "end": 22659.2, + "probability": 0.7114 + }, + { + "start": 22661.52, + "end": 22663.92, + "probability": 0.9919 + }, + { + "start": 22664.58, + "end": 22667.12, + "probability": 0.8879 + }, + { + "start": 22668.28, + "end": 22671.66, + "probability": 0.7776 + }, + { + "start": 22672.32, + "end": 22677.44, + "probability": 0.9706 + }, + { + "start": 22679.4, + "end": 22680.72, + "probability": 0.9449 + }, + { + "start": 22682.62, + "end": 22685.26, + "probability": 0.7229 + }, + { + "start": 22686.0, + "end": 22688.64, + "probability": 0.9684 + }, + { + "start": 22689.48, + "end": 22692.28, + "probability": 0.8793 + }, + { + "start": 22694.08, + "end": 22694.8, + "probability": 0.6635 + }, + { + "start": 22695.9, + "end": 22699.08, + "probability": 0.9778 + }, + { + "start": 22699.8, + "end": 22702.22, + "probability": 0.6649 + }, + { + "start": 22702.62, + "end": 22704.18, + "probability": 0.9393 + }, + { + "start": 22705.32, + "end": 22707.02, + "probability": 0.9966 + }, + { + "start": 22707.6, + "end": 22710.08, + "probability": 0.7427 + }, + { + "start": 22711.22, + "end": 22712.52, + "probability": 0.9761 + }, + { + "start": 22712.66, + "end": 22715.9, + "probability": 0.847 + }, + { + "start": 22716.1, + "end": 22716.94, + "probability": 0.7646 + }, + { + "start": 22718.04, + "end": 22720.28, + "probability": 0.1431 + }, + { + "start": 22720.94, + "end": 22721.46, + "probability": 0.9406 + }, + { + "start": 22722.6, + "end": 22723.88, + "probability": 0.8004 + }, + { + "start": 22724.02, + "end": 22724.62, + "probability": 0.7449 + }, + { + "start": 22724.84, + "end": 22728.5, + "probability": 0.9521 + }, + { + "start": 22729.66, + "end": 22732.4, + "probability": 0.8376 + }, + { + "start": 22732.64, + "end": 22733.86, + "probability": 0.5648 + }, + { + "start": 22734.48, + "end": 22737.9, + "probability": 0.7768 + }, + { + "start": 22738.24, + "end": 22739.16, + "probability": 0.1229 + }, + { + "start": 22739.18, + "end": 22740.52, + "probability": 0.6302 + }, + { + "start": 22741.3, + "end": 22744.74, + "probability": 0.9355 + }, + { + "start": 22745.68, + "end": 22746.94, + "probability": 0.8825 + }, + { + "start": 22747.82, + "end": 22749.64, + "probability": 0.4406 + }, + { + "start": 22749.84, + "end": 22752.5, + "probability": 0.5267 + }, + { + "start": 22752.5, + "end": 22755.38, + "probability": 0.9333 + }, + { + "start": 22756.2, + "end": 22757.26, + "probability": 0.8793 + }, + { + "start": 22758.1, + "end": 22758.62, + "probability": 0.7401 + }, + { + "start": 22758.64, + "end": 22759.3, + "probability": 0.6119 + }, + { + "start": 22759.3, + "end": 22760.1, + "probability": 0.3438 + }, + { + "start": 22760.26, + "end": 22761.52, + "probability": 0.7651 + }, + { + "start": 22762.02, + "end": 22763.12, + "probability": 0.9391 + }, + { + "start": 22763.2, + "end": 22763.88, + "probability": 0.974 + }, + { + "start": 22764.54, + "end": 22766.04, + "probability": 0.9349 + }, + { + "start": 22767.08, + "end": 22770.0, + "probability": 0.8399 + }, + { + "start": 22770.82, + "end": 22776.62, + "probability": 0.5779 + }, + { + "start": 22777.34, + "end": 22779.18, + "probability": 0.9473 + }, + { + "start": 22779.82, + "end": 22781.34, + "probability": 0.969 + }, + { + "start": 22781.38, + "end": 22781.72, + "probability": 0.7157 + }, + { + "start": 22782.42, + "end": 22785.58, + "probability": 0.9942 + }, + { + "start": 22786.24, + "end": 22787.38, + "probability": 0.92 + }, + { + "start": 22788.42, + "end": 22793.18, + "probability": 0.9716 + }, + { + "start": 22793.56, + "end": 22794.2, + "probability": 0.7976 + }, + { + "start": 22794.24, + "end": 22794.78, + "probability": 0.539 + }, + { + "start": 22795.76, + "end": 22797.02, + "probability": 0.8375 + }, + { + "start": 22797.8, + "end": 22800.3, + "probability": 0.918 + }, + { + "start": 22801.44, + "end": 22803.76, + "probability": 0.978 + }, + { + "start": 22804.8, + "end": 22806.06, + "probability": 0.9779 + }, + { + "start": 22806.18, + "end": 22809.14, + "probability": 0.984 + }, + { + "start": 22809.54, + "end": 22810.18, + "probability": 0.846 + }, + { + "start": 22810.86, + "end": 22813.38, + "probability": 0.8681 + }, + { + "start": 22814.02, + "end": 22815.92, + "probability": 0.9771 + }, + { + "start": 22816.82, + "end": 22820.5, + "probability": 0.7853 + }, + { + "start": 22821.4, + "end": 22824.4, + "probability": 0.9703 + }, + { + "start": 22824.86, + "end": 22826.12, + "probability": 0.926 + }, + { + "start": 22826.56, + "end": 22827.44, + "probability": 0.4963 + }, + { + "start": 22827.52, + "end": 22829.74, + "probability": 0.9795 + }, + { + "start": 22830.18, + "end": 22831.32, + "probability": 0.9731 + }, + { + "start": 22831.68, + "end": 22834.94, + "probability": 0.9921 + }, + { + "start": 22835.46, + "end": 22839.32, + "probability": 0.9945 + }, + { + "start": 22839.44, + "end": 22840.06, + "probability": 0.4261 + }, + { + "start": 22840.6, + "end": 22843.52, + "probability": 0.8666 + }, + { + "start": 22843.76, + "end": 22845.64, + "probability": 0.8364 + }, + { + "start": 22846.18, + "end": 22847.2, + "probability": 0.92 + }, + { + "start": 22847.76, + "end": 22847.96, + "probability": 0.8306 + }, + { + "start": 22848.7, + "end": 22849.22, + "probability": 0.9312 + }, + { + "start": 22849.26, + "end": 22850.01, + "probability": 0.9733 + }, + { + "start": 22850.54, + "end": 22851.28, + "probability": 0.4881 + }, + { + "start": 22851.6, + "end": 22855.7, + "probability": 0.9951 + }, + { + "start": 22856.96, + "end": 22859.04, + "probability": 0.8027 + }, + { + "start": 22859.52, + "end": 22860.16, + "probability": 0.7851 + }, + { + "start": 22860.98, + "end": 22865.28, + "probability": 0.9827 + }, + { + "start": 22865.82, + "end": 22868.08, + "probability": 0.9492 + }, + { + "start": 22868.78, + "end": 22873.18, + "probability": 0.9648 + }, + { + "start": 22874.26, + "end": 22875.96, + "probability": 0.8217 + }, + { + "start": 22876.66, + "end": 22878.56, + "probability": 0.993 + }, + { + "start": 22878.68, + "end": 22880.68, + "probability": 0.7932 + }, + { + "start": 22881.08, + "end": 22883.8, + "probability": 0.9954 + }, + { + "start": 22884.54, + "end": 22885.42, + "probability": 0.9585 + }, + { + "start": 22886.26, + "end": 22887.96, + "probability": 0.9971 + }, + { + "start": 22888.02, + "end": 22890.22, + "probability": 0.772 + }, + { + "start": 22890.78, + "end": 22895.58, + "probability": 0.5553 + }, + { + "start": 22896.78, + "end": 22899.48, + "probability": 0.6707 + }, + { + "start": 22899.98, + "end": 22900.9, + "probability": 0.9482 + }, + { + "start": 22901.2, + "end": 22901.74, + "probability": 0.6066 + }, + { + "start": 22901.74, + "end": 22902.06, + "probability": 0.7778 + }, + { + "start": 22902.44, + "end": 22903.56, + "probability": 0.922 + }, + { + "start": 22904.08, + "end": 22905.22, + "probability": 0.978 + }, + { + "start": 22905.66, + "end": 22908.28, + "probability": 0.9683 + }, + { + "start": 22909.18, + "end": 22910.56, + "probability": 0.9504 + }, + { + "start": 22910.74, + "end": 22912.74, + "probability": 0.8075 + }, + { + "start": 22913.2, + "end": 22915.98, + "probability": 0.8615 + }, + { + "start": 22916.6, + "end": 22919.44, + "probability": 0.9552 + }, + { + "start": 22935.12, + "end": 22936.26, + "probability": 0.7458 + }, + { + "start": 22937.2, + "end": 22937.76, + "probability": 0.9512 + }, + { + "start": 22938.8, + "end": 22939.7, + "probability": 0.8786 + }, + { + "start": 22940.28, + "end": 22940.64, + "probability": 0.757 + }, + { + "start": 22941.94, + "end": 22942.88, + "probability": 0.9052 + }, + { + "start": 22943.08, + "end": 22943.81, + "probability": 0.9717 + }, + { + "start": 22944.02, + "end": 22947.06, + "probability": 0.9444 + }, + { + "start": 22947.6, + "end": 22949.38, + "probability": 0.7613 + }, + { + "start": 22950.64, + "end": 22951.4, + "probability": 0.9851 + }, + { + "start": 22951.54, + "end": 22952.73, + "probability": 0.8416 + }, + { + "start": 22953.02, + "end": 22956.22, + "probability": 0.9987 + }, + { + "start": 22956.36, + "end": 22957.76, + "probability": 0.6205 + }, + { + "start": 22958.62, + "end": 22959.62, + "probability": 0.9935 + }, + { + "start": 22960.28, + "end": 22963.4, + "probability": 0.9669 + }, + { + "start": 22964.12, + "end": 22966.1, + "probability": 0.6384 + }, + { + "start": 22966.52, + "end": 22970.02, + "probability": 0.9296 + }, + { + "start": 22970.9, + "end": 22973.84, + "probability": 0.7684 + }, + { + "start": 22974.68, + "end": 22978.44, + "probability": 0.9737 + }, + { + "start": 22979.44, + "end": 22983.18, + "probability": 0.9971 + }, + { + "start": 22983.82, + "end": 22986.48, + "probability": 0.9688 + }, + { + "start": 22986.84, + "end": 22991.7, + "probability": 0.8371 + }, + { + "start": 22992.26, + "end": 22995.48, + "probability": 0.8205 + }, + { + "start": 22996.68, + "end": 23000.56, + "probability": 0.8967 + }, + { + "start": 23000.7, + "end": 23001.18, + "probability": 0.4998 + }, + { + "start": 23001.28, + "end": 23005.34, + "probability": 0.9545 + }, + { + "start": 23005.38, + "end": 23008.04, + "probability": 0.88 + }, + { + "start": 23008.74, + "end": 23012.2, + "probability": 0.8372 + }, + { + "start": 23016.42, + "end": 23019.76, + "probability": 0.6151 + }, + { + "start": 23020.38, + "end": 23024.82, + "probability": 0.6721 + }, + { + "start": 23026.52, + "end": 23027.44, + "probability": 0.9426 + }, + { + "start": 23028.0, + "end": 23028.92, + "probability": 0.9251 + }, + { + "start": 23029.14, + "end": 23031.88, + "probability": 0.975 + }, + { + "start": 23032.4, + "end": 23034.84, + "probability": 0.5964 + }, + { + "start": 23035.48, + "end": 23036.56, + "probability": 0.8904 + }, + { + "start": 23037.34, + "end": 23037.62, + "probability": 0.0599 + }, + { + "start": 23038.0, + "end": 23040.04, + "probability": 0.8345 + }, + { + "start": 23040.18, + "end": 23043.96, + "probability": 0.872 + }, + { + "start": 23044.06, + "end": 23044.68, + "probability": 0.79 + }, + { + "start": 23045.36, + "end": 23048.04, + "probability": 0.8185 + }, + { + "start": 23048.64, + "end": 23051.14, + "probability": 0.9513 + }, + { + "start": 23052.34, + "end": 23054.24, + "probability": 0.1995 + }, + { + "start": 23055.64, + "end": 23062.2, + "probability": 0.176 + }, + { + "start": 23064.22, + "end": 23065.0, + "probability": 0.1144 + }, + { + "start": 23066.2, + "end": 23066.52, + "probability": 0.0388 + }, + { + "start": 23066.52, + "end": 23070.14, + "probability": 0.0847 + }, + { + "start": 23071.62, + "end": 23073.12, + "probability": 0.0607 + }, + { + "start": 23086.24, + "end": 23087.58, + "probability": 0.3722 + }, + { + "start": 23089.81, + "end": 23092.94, + "probability": 0.3193 + }, + { + "start": 23093.42, + "end": 23097.16, + "probability": 0.4955 + }, + { + "start": 23099.27, + "end": 23101.0, + "probability": 0.7897 + }, + { + "start": 23101.14, + "end": 23102.02, + "probability": 0.787 + }, + { + "start": 23102.56, + "end": 23102.78, + "probability": 0.2661 + }, + { + "start": 23104.24, + "end": 23105.06, + "probability": 0.6674 + }, + { + "start": 23105.72, + "end": 23109.86, + "probability": 0.6848 + }, + { + "start": 23110.4, + "end": 23115.62, + "probability": 0.7417 + }, + { + "start": 23115.76, + "end": 23118.36, + "probability": 0.4317 + }, + { + "start": 23118.72, + "end": 23120.94, + "probability": 0.849 + }, + { + "start": 23121.02, + "end": 23122.46, + "probability": 0.5402 + }, + { + "start": 23127.38, + "end": 23131.92, + "probability": 0.5778 + }, + { + "start": 23132.86, + "end": 23138.37, + "probability": 0.496 + }, + { + "start": 23143.48, + "end": 23145.54, + "probability": 0.3833 + }, + { + "start": 23146.96, + "end": 23149.5, + "probability": 0.3233 + }, + { + "start": 23149.98, + "end": 23152.38, + "probability": 0.3442 + }, + { + "start": 23152.66, + "end": 23159.62, + "probability": 0.6731 + }, + { + "start": 23159.82, + "end": 23163.7, + "probability": 0.9354 + }, + { + "start": 23163.86, + "end": 23164.42, + "probability": 0.212 + }, + { + "start": 23164.56, + "end": 23166.52, + "probability": 0.671 + }, + { + "start": 23166.58, + "end": 23167.3, + "probability": 0.6512 + }, + { + "start": 23167.32, + "end": 23168.32, + "probability": 0.6151 + }, + { + "start": 23168.46, + "end": 23169.46, + "probability": 0.4328 + }, + { + "start": 23169.74, + "end": 23170.88, + "probability": 0.7252 + }, + { + "start": 23171.44, + "end": 23172.64, + "probability": 0.6575 + }, + { + "start": 23172.8, + "end": 23173.98, + "probability": 0.6786 + }, + { + "start": 23174.46, + "end": 23177.42, + "probability": 0.7705 + }, + { + "start": 23177.68, + "end": 23183.24, + "probability": 0.4676 + }, + { + "start": 23184.02, + "end": 23186.48, + "probability": 0.667 + }, + { + "start": 23186.9, + "end": 23188.1, + "probability": 0.9755 + }, + { + "start": 23188.42, + "end": 23190.36, + "probability": 0.7147 + }, + { + "start": 23190.4, + "end": 23190.64, + "probability": 0.8487 + }, + { + "start": 23191.76, + "end": 23192.5, + "probability": 0.2929 + }, + { + "start": 23192.74, + "end": 23194.28, + "probability": 0.4999 + }, + { + "start": 23194.64, + "end": 23198.4, + "probability": 0.4896 + }, + { + "start": 23198.4, + "end": 23200.14, + "probability": 0.8379 + }, + { + "start": 23201.22, + "end": 23202.46, + "probability": 0.8242 + }, + { + "start": 23202.62, + "end": 23207.28, + "probability": 0.2044 + }, + { + "start": 23207.58, + "end": 23211.56, + "probability": 0.6875 + }, + { + "start": 23212.45, + "end": 23215.18, + "probability": 0.6717 + }, + { + "start": 23215.76, + "end": 23219.64, + "probability": 0.8963 + }, + { + "start": 23220.28, + "end": 23225.44, + "probability": 0.9092 + }, + { + "start": 23226.84, + "end": 23230.2, + "probability": 0.9636 + }, + { + "start": 23231.22, + "end": 23232.44, + "probability": 0.9453 + }, + { + "start": 23232.5, + "end": 23233.28, + "probability": 0.661 + }, + { + "start": 23233.66, + "end": 23234.86, + "probability": 0.9529 + }, + { + "start": 23234.86, + "end": 23236.62, + "probability": 0.9305 + }, + { + "start": 23237.26, + "end": 23238.4, + "probability": 0.9955 + }, + { + "start": 23238.54, + "end": 23244.58, + "probability": 0.953 + }, + { + "start": 23245.3, + "end": 23247.32, + "probability": 0.8629 + }, + { + "start": 23247.72, + "end": 23248.78, + "probability": 0.4701 + }, + { + "start": 23249.4, + "end": 23250.54, + "probability": 0.8252 + }, + { + "start": 23250.8, + "end": 23251.26, + "probability": 0.4491 + }, + { + "start": 23251.72, + "end": 23252.38, + "probability": 0.8708 + }, + { + "start": 23252.42, + "end": 23253.18, + "probability": 0.8917 + }, + { + "start": 23253.4, + "end": 23254.11, + "probability": 0.86 + }, + { + "start": 23254.92, + "end": 23258.14, + "probability": 0.9298 + }, + { + "start": 23259.08, + "end": 23262.62, + "probability": 0.9774 + }, + { + "start": 23263.0, + "end": 23263.98, + "probability": 0.7462 + }, + { + "start": 23264.68, + "end": 23268.48, + "probability": 0.8103 + }, + { + "start": 23268.54, + "end": 23268.54, + "probability": 0.403 + }, + { + "start": 23268.56, + "end": 23268.56, + "probability": 0.3556 + }, + { + "start": 23268.7, + "end": 23271.9, + "probability": 0.9574 + }, + { + "start": 23272.86, + "end": 23277.3, + "probability": 0.9922 + }, + { + "start": 23277.84, + "end": 23281.38, + "probability": 0.9987 + }, + { + "start": 23281.38, + "end": 23285.22, + "probability": 0.9738 + }, + { + "start": 23285.62, + "end": 23286.26, + "probability": 0.8595 + }, + { + "start": 23286.72, + "end": 23289.44, + "probability": 0.9912 + }, + { + "start": 23289.44, + "end": 23292.28, + "probability": 0.9812 + }, + { + "start": 23292.34, + "end": 23294.06, + "probability": 0.8717 + }, + { + "start": 23294.34, + "end": 23300.82, + "probability": 0.9941 + }, + { + "start": 23300.84, + "end": 23301.64, + "probability": 0.7453 + }, + { + "start": 23302.68, + "end": 23305.5, + "probability": 0.0775 + }, + { + "start": 23309.67, + "end": 23313.78, + "probability": 0.8607 + }, + { + "start": 23313.96, + "end": 23316.88, + "probability": 0.9931 + }, + { + "start": 23320.92, + "end": 23323.42, + "probability": 0.3821 + }, + { + "start": 23324.31, + "end": 23327.3, + "probability": 0.7776 + }, + { + "start": 23332.04, + "end": 23334.6, + "probability": 0.6611 + }, + { + "start": 23336.3, + "end": 23338.6, + "probability": 0.4226 + }, + { + "start": 23338.62, + "end": 23341.38, + "probability": 0.9822 + }, + { + "start": 23341.38, + "end": 23344.94, + "probability": 0.9888 + }, + { + "start": 23346.18, + "end": 23352.1, + "probability": 0.9935 + }, + { + "start": 23352.1, + "end": 23356.38, + "probability": 0.9946 + }, + { + "start": 23356.5, + "end": 23356.92, + "probability": 0.5786 + }, + { + "start": 23356.94, + "end": 23357.76, + "probability": 0.7616 + }, + { + "start": 23357.86, + "end": 23358.8, + "probability": 0.9183 + }, + { + "start": 23360.42, + "end": 23362.5, + "probability": 0.9114 + }, + { + "start": 23362.7, + "end": 23369.98, + "probability": 0.9945 + }, + { + "start": 23371.08, + "end": 23373.62, + "probability": 0.978 + }, + { + "start": 23374.02, + "end": 23374.6, + "probability": 0.4481 + }, + { + "start": 23374.76, + "end": 23375.2, + "probability": 0.782 + }, + { + "start": 23375.26, + "end": 23376.26, + "probability": 0.8408 + }, + { + "start": 23377.9, + "end": 23382.2, + "probability": 0.8215 + }, + { + "start": 23386.68, + "end": 23392.42, + "probability": 0.9421 + }, + { + "start": 23392.48, + "end": 23394.22, + "probability": 0.967 + }, + { + "start": 23394.3, + "end": 23395.5, + "probability": 0.5078 + }, + { + "start": 23396.56, + "end": 23399.74, + "probability": 0.994 + }, + { + "start": 23400.34, + "end": 23401.72, + "probability": 0.9973 + }, + { + "start": 23402.62, + "end": 23405.22, + "probability": 0.9878 + }, + { + "start": 23405.54, + "end": 23408.08, + "probability": 0.8159 + }, + { + "start": 23408.18, + "end": 23409.62, + "probability": 0.8755 + }, + { + "start": 23410.04, + "end": 23411.46, + "probability": 0.5903 + }, + { + "start": 23412.6, + "end": 23414.64, + "probability": 0.9305 + }, + { + "start": 23414.84, + "end": 23417.42, + "probability": 0.9774 + }, + { + "start": 23418.48, + "end": 23422.28, + "probability": 0.9855 + }, + { + "start": 23422.3, + "end": 23426.86, + "probability": 0.9236 + }, + { + "start": 23427.02, + "end": 23431.0, + "probability": 0.9924 + }, + { + "start": 23431.0, + "end": 23436.1, + "probability": 0.9967 + }, + { + "start": 23438.71, + "end": 23441.46, + "probability": 0.9406 + }, + { + "start": 23441.72, + "end": 23442.98, + "probability": 0.9938 + }, + { + "start": 23443.7, + "end": 23447.5, + "probability": 0.9935 + }, + { + "start": 23448.08, + "end": 23449.68, + "probability": 0.9741 + }, + { + "start": 23450.42, + "end": 23452.82, + "probability": 0.8673 + }, + { + "start": 23453.3, + "end": 23456.83, + "probability": 0.9556 + }, + { + "start": 23458.54, + "end": 23461.98, + "probability": 0.989 + }, + { + "start": 23461.98, + "end": 23465.76, + "probability": 0.9692 + }, + { + "start": 23466.2, + "end": 23467.54, + "probability": 0.9436 + }, + { + "start": 23467.74, + "end": 23473.06, + "probability": 0.994 + }, + { + "start": 23473.06, + "end": 23479.1, + "probability": 0.9873 + }, + { + "start": 23480.42, + "end": 23481.92, + "probability": 0.764 + }, + { + "start": 23483.71, + "end": 23486.16, + "probability": 0.9979 + }, + { + "start": 23486.72, + "end": 23492.38, + "probability": 0.9971 + }, + { + "start": 23492.86, + "end": 23497.16, + "probability": 0.9431 + }, + { + "start": 23498.8, + "end": 23504.26, + "probability": 0.9925 + }, + { + "start": 23505.26, + "end": 23509.08, + "probability": 0.974 + }, + { + "start": 23509.18, + "end": 23509.9, + "probability": 0.7887 + }, + { + "start": 23510.1, + "end": 23512.2, + "probability": 0.9793 + }, + { + "start": 23513.08, + "end": 23513.8, + "probability": 0.9084 + }, + { + "start": 23513.9, + "end": 23514.56, + "probability": 0.9569 + }, + { + "start": 23514.66, + "end": 23515.7, + "probability": 0.5259 + }, + { + "start": 23515.86, + "end": 23518.66, + "probability": 0.9839 + }, + { + "start": 23519.92, + "end": 23520.3, + "probability": 0.35 + }, + { + "start": 23520.38, + "end": 23525.36, + "probability": 0.9601 + }, + { + "start": 23525.92, + "end": 23531.14, + "probability": 0.9847 + }, + { + "start": 23532.46, + "end": 23533.36, + "probability": 0.6021 + }, + { + "start": 23533.5, + "end": 23535.5, + "probability": 0.937 + }, + { + "start": 23535.92, + "end": 23536.66, + "probability": 0.9582 + }, + { + "start": 23536.76, + "end": 23540.98, + "probability": 0.9097 + }, + { + "start": 23541.0, + "end": 23542.68, + "probability": 0.9602 + }, + { + "start": 23543.32, + "end": 23547.2, + "probability": 0.9035 + }, + { + "start": 23548.54, + "end": 23555.92, + "probability": 0.9244 + }, + { + "start": 23556.12, + "end": 23558.0, + "probability": 0.8275 + }, + { + "start": 23558.08, + "end": 23559.96, + "probability": 0.9629 + }, + { + "start": 23560.5, + "end": 23564.86, + "probability": 0.9049 + }, + { + "start": 23565.6, + "end": 23569.46, + "probability": 0.98 + }, + { + "start": 23569.46, + "end": 23572.4, + "probability": 0.9562 + }, + { + "start": 23573.14, + "end": 23574.95, + "probability": 0.8582 + }, + { + "start": 23576.0, + "end": 23581.2, + "probability": 0.7486 + }, + { + "start": 23581.46, + "end": 23585.8, + "probability": 0.9521 + }, + { + "start": 23585.92, + "end": 23587.56, + "probability": 0.7625 + }, + { + "start": 23587.9, + "end": 23588.86, + "probability": 0.6347 + }, + { + "start": 23590.08, + "end": 23590.92, + "probability": 0.567 + }, + { + "start": 23591.08, + "end": 23596.46, + "probability": 0.983 + }, + { + "start": 23597.1, + "end": 23598.54, + "probability": 0.8544 + }, + { + "start": 23601.5, + "end": 23606.88, + "probability": 0.9639 + }, + { + "start": 23606.9, + "end": 23607.82, + "probability": 0.8853 + }, + { + "start": 23607.92, + "end": 23608.92, + "probability": 0.7715 + }, + { + "start": 23609.68, + "end": 23612.96, + "probability": 0.9815 + }, + { + "start": 23613.12, + "end": 23614.4, + "probability": 0.9952 + }, + { + "start": 23616.18, + "end": 23617.74, + "probability": 0.9978 + }, + { + "start": 23618.36, + "end": 23620.7, + "probability": 0.9976 + }, + { + "start": 23620.78, + "end": 23623.34, + "probability": 0.9862 + }, + { + "start": 23623.44, + "end": 23625.82, + "probability": 0.9484 + }, + { + "start": 23626.74, + "end": 23628.82, + "probability": 0.9976 + }, + { + "start": 23628.94, + "end": 23632.72, + "probability": 0.9907 + }, + { + "start": 23633.2, + "end": 23634.47, + "probability": 0.7386 + }, + { + "start": 23635.22, + "end": 23637.14, + "probability": 0.8965 + }, + { + "start": 23639.8, + "end": 23643.16, + "probability": 0.8257 + }, + { + "start": 23643.54, + "end": 23644.52, + "probability": 0.9033 + }, + { + "start": 23644.58, + "end": 23645.18, + "probability": 0.7746 + }, + { + "start": 23645.18, + "end": 23646.48, + "probability": 0.9927 + }, + { + "start": 23646.96, + "end": 23651.88, + "probability": 0.7018 + }, + { + "start": 23653.52, + "end": 23657.7, + "probability": 0.6927 + }, + { + "start": 23658.76, + "end": 23662.12, + "probability": 0.9408 + }, + { + "start": 23662.98, + "end": 23664.76, + "probability": 0.9893 + }, + { + "start": 23664.82, + "end": 23667.36, + "probability": 0.998 + }, + { + "start": 23668.14, + "end": 23674.0, + "probability": 0.9645 + }, + { + "start": 23674.08, + "end": 23675.36, + "probability": 0.7815 + }, + { + "start": 23675.46, + "end": 23678.32, + "probability": 0.9077 + }, + { + "start": 23681.86, + "end": 23686.98, + "probability": 0.994 + }, + { + "start": 23687.28, + "end": 23690.54, + "probability": 0.9871 + }, + { + "start": 23690.72, + "end": 23693.06, + "probability": 0.7916 + }, + { + "start": 23693.08, + "end": 23693.99, + "probability": 0.9767 + }, + { + "start": 23694.78, + "end": 23698.3, + "probability": 0.8968 + }, + { + "start": 23698.44, + "end": 23699.94, + "probability": 0.7196 + }, + { + "start": 23700.34, + "end": 23702.18, + "probability": 0.9543 + }, + { + "start": 23703.08, + "end": 23707.46, + "probability": 0.9234 + }, + { + "start": 23708.08, + "end": 23709.36, + "probability": 0.7793 + }, + { + "start": 23710.12, + "end": 23713.6, + "probability": 0.8627 + }, + { + "start": 23713.68, + "end": 23718.92, + "probability": 0.9373 + }, + { + "start": 23719.44, + "end": 23719.92, + "probability": 0.2448 + }, + { + "start": 23720.46, + "end": 23722.92, + "probability": 0.9346 + }, + { + "start": 23722.96, + "end": 23724.04, + "probability": 0.9015 + }, + { + "start": 23724.5, + "end": 23726.03, + "probability": 0.7866 + }, + { + "start": 23726.4, + "end": 23729.66, + "probability": 0.6923 + }, + { + "start": 23730.8, + "end": 23733.04, + "probability": 0.729 + }, + { + "start": 23733.48, + "end": 23735.38, + "probability": 0.8319 + }, + { + "start": 23735.96, + "end": 23737.84, + "probability": 0.9168 + }, + { + "start": 23738.02, + "end": 23740.1, + "probability": 0.9762 + }, + { + "start": 23740.64, + "end": 23746.03, + "probability": 0.9111 + }, + { + "start": 23746.3, + "end": 23747.38, + "probability": 0.7981 + }, + { + "start": 23747.46, + "end": 23747.9, + "probability": 0.6619 + }, + { + "start": 23748.04, + "end": 23749.14, + "probability": 0.6729 + }, + { + "start": 23749.76, + "end": 23751.4, + "probability": 0.6509 + }, + { + "start": 23751.62, + "end": 23754.24, + "probability": 0.9839 + }, + { + "start": 23754.82, + "end": 23757.92, + "probability": 0.8608 + }, + { + "start": 23758.14, + "end": 23758.8, + "probability": 0.5511 + }, + { + "start": 23758.92, + "end": 23764.06, + "probability": 0.7295 + }, + { + "start": 23764.54, + "end": 23769.81, + "probability": 0.8729 + }, + { + "start": 23770.04, + "end": 23770.98, + "probability": 0.6719 + }, + { + "start": 23774.3, + "end": 23775.34, + "probability": 0.4885 + }, + { + "start": 23775.58, + "end": 23777.4, + "probability": 0.6312 + }, + { + "start": 23777.56, + "end": 23777.97, + "probability": 0.8973 + }, + { + "start": 23778.82, + "end": 23779.72, + "probability": 0.648 + }, + { + "start": 23780.06, + "end": 23780.6, + "probability": 0.9775 + }, + { + "start": 23781.86, + "end": 23782.76, + "probability": 0.8202 + }, + { + "start": 23782.86, + "end": 23783.45, + "probability": 0.9834 + }, + { + "start": 23783.92, + "end": 23785.74, + "probability": 0.9069 + }, + { + "start": 23785.76, + "end": 23786.58, + "probability": 0.876 + }, + { + "start": 23786.8, + "end": 23788.76, + "probability": 0.7896 + }, + { + "start": 23788.86, + "end": 23789.14, + "probability": 0.0254 + }, + { + "start": 23789.74, + "end": 23790.72, + "probability": 0.5688 + }, + { + "start": 23791.28, + "end": 23792.32, + "probability": 0.8511 + }, + { + "start": 23793.48, + "end": 23793.82, + "probability": 0.9005 + }, + { + "start": 23798.24, + "end": 23800.38, + "probability": 0.6678 + }, + { + "start": 23801.52, + "end": 23804.76, + "probability": 0.9093 + }, + { + "start": 23805.72, + "end": 23807.1, + "probability": 0.5379 + }, + { + "start": 23809.5, + "end": 23811.09, + "probability": 0.9709 + }, + { + "start": 23811.74, + "end": 23813.12, + "probability": 0.2201 + }, + { + "start": 23813.34, + "end": 23814.86, + "probability": 0.1564 + }, + { + "start": 23815.62, + "end": 23818.56, + "probability": 0.6661 + }, + { + "start": 23818.56, + "end": 23820.06, + "probability": 0.2207 + }, + { + "start": 23821.18, + "end": 23821.74, + "probability": 0.1349 + }, + { + "start": 23822.44, + "end": 23822.84, + "probability": 0.0006 + }, + { + "start": 23823.22, + "end": 23826.44, + "probability": 0.157 + }, + { + "start": 23826.88, + "end": 23827.63, + "probability": 0.7535 + }, + { + "start": 23828.4, + "end": 23831.56, + "probability": 0.0258 + }, + { + "start": 23831.62, + "end": 23832.38, + "probability": 0.1881 + }, + { + "start": 23832.54, + "end": 23834.44, + "probability": 0.5708 + }, + { + "start": 23834.78, + "end": 23835.04, + "probability": 0.1711 + }, + { + "start": 23835.12, + "end": 23837.98, + "probability": 0.3315 + }, + { + "start": 23839.6, + "end": 23840.8, + "probability": 0.8949 + }, + { + "start": 23843.42, + "end": 23843.54, + "probability": 0.3083 + }, + { + "start": 23843.54, + "end": 23843.54, + "probability": 0.0308 + }, + { + "start": 23843.54, + "end": 23843.54, + "probability": 0.0402 + }, + { + "start": 23843.54, + "end": 23843.66, + "probability": 0.2043 + }, + { + "start": 23843.74, + "end": 23847.98, + "probability": 0.271 + }, + { + "start": 23848.56, + "end": 23849.68, + "probability": 0.4571 + }, + { + "start": 23850.26, + "end": 23851.2, + "probability": 0.604 + }, + { + "start": 23851.97, + "end": 23855.44, + "probability": 0.5759 + }, + { + "start": 23855.84, + "end": 23859.6, + "probability": 0.27 + }, + { + "start": 23860.3, + "end": 23862.24, + "probability": 0.707 + }, + { + "start": 23862.28, + "end": 23863.46, + "probability": 0.7557 + }, + { + "start": 23864.66, + "end": 23865.29, + "probability": 0.9719 + }, + { + "start": 23865.32, + "end": 23865.58, + "probability": 0.7449 + }, + { + "start": 23865.8, + "end": 23866.43, + "probability": 0.5693 + }, + { + "start": 23866.62, + "end": 23868.44, + "probability": 0.5364 + }, + { + "start": 23868.5, + "end": 23870.94, + "probability": 0.9664 + }, + { + "start": 23871.18, + "end": 23872.24, + "probability": 0.9504 + }, + { + "start": 23872.74, + "end": 23874.12, + "probability": 0.9308 + }, + { + "start": 23875.58, + "end": 23877.88, + "probability": 0.9794 + }, + { + "start": 23878.18, + "end": 23883.24, + "probability": 0.9972 + }, + { + "start": 23884.58, + "end": 23887.48, + "probability": 0.8992 + }, + { + "start": 23888.2, + "end": 23890.28, + "probability": 0.9766 + }, + { + "start": 23890.32, + "end": 23892.34, + "probability": 0.8474 + }, + { + "start": 23893.4, + "end": 23895.42, + "probability": 0.9907 + }, + { + "start": 23895.6, + "end": 23896.52, + "probability": 0.7519 + }, + { + "start": 23897.34, + "end": 23904.0, + "probability": 0.9678 + }, + { + "start": 23905.3, + "end": 23908.12, + "probability": 0.9968 + }, + { + "start": 23909.02, + "end": 23910.96, + "probability": 0.9961 + }, + { + "start": 23912.0, + "end": 23913.38, + "probability": 0.9929 + }, + { + "start": 23916.52, + "end": 23919.28, + "probability": 0.7963 + }, + { + "start": 23920.48, + "end": 23924.42, + "probability": 0.9985 + }, + { + "start": 23925.12, + "end": 23925.72, + "probability": 0.7882 + }, + { + "start": 23925.86, + "end": 23927.58, + "probability": 0.9933 + }, + { + "start": 23928.18, + "end": 23929.74, + "probability": 0.8187 + }, + { + "start": 23929.74, + "end": 23930.12, + "probability": 0.0418 + }, + { + "start": 23930.32, + "end": 23930.92, + "probability": 0.0007 + }, + { + "start": 23931.22, + "end": 23932.38, + "probability": 0.6268 + }, + { + "start": 23932.38, + "end": 23933.06, + "probability": 0.6194 + }, + { + "start": 23933.78, + "end": 23934.82, + "probability": 0.7618 + }, + { + "start": 23934.98, + "end": 23937.5, + "probability": 0.9253 + }, + { + "start": 23937.76, + "end": 23940.26, + "probability": 0.9937 + }, + { + "start": 23941.06, + "end": 23941.08, + "probability": 0.3556 + }, + { + "start": 23941.08, + "end": 23941.08, + "probability": 0.0109 + }, + { + "start": 23941.08, + "end": 23942.88, + "probability": 0.8135 + }, + { + "start": 23943.04, + "end": 23946.52, + "probability": 0.9958 + }, + { + "start": 23947.36, + "end": 23948.66, + "probability": 0.9762 + }, + { + "start": 23949.16, + "end": 23949.22, + "probability": 0.22 + }, + { + "start": 23949.34, + "end": 23949.92, + "probability": 0.8639 + }, + { + "start": 23949.96, + "end": 23950.7, + "probability": 0.7987 + }, + { + "start": 23950.8, + "end": 23951.16, + "probability": 0.8864 + }, + { + "start": 23951.7, + "end": 23954.66, + "probability": 0.9832 + }, + { + "start": 23954.92, + "end": 23958.96, + "probability": 0.9948 + }, + { + "start": 23958.96, + "end": 23962.82, + "probability": 0.9968 + }, + { + "start": 23963.3, + "end": 23963.96, + "probability": 0.3262 + }, + { + "start": 23964.08, + "end": 23964.18, + "probability": 0.052 + }, + { + "start": 23965.06, + "end": 23965.2, + "probability": 0.1793 + }, + { + "start": 23965.2, + "end": 23965.2, + "probability": 0.2282 + }, + { + "start": 23965.2, + "end": 23965.74, + "probability": 0.5064 + }, + { + "start": 23965.78, + "end": 23965.88, + "probability": 0.0029 + }, + { + "start": 23965.92, + "end": 23966.86, + "probability": 0.4763 + }, + { + "start": 23967.14, + "end": 23968.5, + "probability": 0.626 + }, + { + "start": 23968.5, + "end": 23971.78, + "probability": 0.1873 + }, + { + "start": 23971.84, + "end": 23974.74, + "probability": 0.1572 + }, + { + "start": 23975.28, + "end": 23976.71, + "probability": 0.8273 + }, + { + "start": 23979.44, + "end": 23984.6, + "probability": 0.9954 + }, + { + "start": 23985.74, + "end": 23987.2, + "probability": 0.8421 + }, + { + "start": 23987.32, + "end": 23989.4, + "probability": 0.9749 + }, + { + "start": 23989.5, + "end": 23990.36, + "probability": 0.9413 + }, + { + "start": 23991.24, + "end": 23997.06, + "probability": 0.9904 + }, + { + "start": 23998.16, + "end": 24000.06, + "probability": 0.9205 + }, + { + "start": 24000.74, + "end": 24001.56, + "probability": 0.8595 + }, + { + "start": 24002.56, + "end": 24003.6, + "probability": 0.8854 + }, + { + "start": 24004.44, + "end": 24007.54, + "probability": 0.9893 + }, + { + "start": 24010.1, + "end": 24013.0, + "probability": 0.9904 + }, + { + "start": 24013.58, + "end": 24014.8, + "probability": 0.8822 + }, + { + "start": 24014.98, + "end": 24016.58, + "probability": 0.9941 + }, + { + "start": 24017.08, + "end": 24018.72, + "probability": 0.9049 + }, + { + "start": 24020.08, + "end": 24023.02, + "probability": 0.9829 + }, + { + "start": 24023.04, + "end": 24023.68, + "probability": 0.9069 + }, + { + "start": 24025.26, + "end": 24027.1, + "probability": 0.9971 + }, + { + "start": 24028.72, + "end": 24030.58, + "probability": 0.995 + }, + { + "start": 24031.32, + "end": 24032.26, + "probability": 0.9813 + }, + { + "start": 24033.3, + "end": 24034.54, + "probability": 0.9834 + }, + { + "start": 24036.16, + "end": 24038.26, + "probability": 0.9741 + }, + { + "start": 24039.76, + "end": 24040.2, + "probability": 0.8338 + }, + { + "start": 24041.88, + "end": 24043.89, + "probability": 0.8086 + }, + { + "start": 24044.32, + "end": 24044.96, + "probability": 0.6904 + }, + { + "start": 24045.26, + "end": 24046.2, + "probability": 0.5764 + }, + { + "start": 24046.52, + "end": 24048.0, + "probability": 0.5666 + }, + { + "start": 24048.37, + "end": 24049.16, + "probability": 0.185 + }, + { + "start": 24049.3, + "end": 24052.42, + "probability": 0.9147 + }, + { + "start": 24053.26, + "end": 24054.28, + "probability": 0.5397 + }, + { + "start": 24054.44, + "end": 24055.0, + "probability": 0.7077 + }, + { + "start": 24055.28, + "end": 24057.38, + "probability": 0.7337 + }, + { + "start": 24058.54, + "end": 24059.42, + "probability": 0.9426 + }, + { + "start": 24059.48, + "end": 24060.38, + "probability": 0.4386 + }, + { + "start": 24060.5, + "end": 24061.9, + "probability": 0.9187 + }, + { + "start": 24062.0, + "end": 24062.5, + "probability": 0.3691 + }, + { + "start": 24063.14, + "end": 24067.82, + "probability": 0.9246 + }, + { + "start": 24069.6, + "end": 24070.72, + "probability": 0.9924 + }, + { + "start": 24071.46, + "end": 24072.36, + "probability": 0.9998 + }, + { + "start": 24072.7, + "end": 24075.82, + "probability": 0.8264 + }, + { + "start": 24075.9, + "end": 24076.9, + "probability": 0.6581 + }, + { + "start": 24077.46, + "end": 24079.28, + "probability": 0.8376 + }, + { + "start": 24080.12, + "end": 24085.8, + "probability": 0.9318 + }, + { + "start": 24086.4, + "end": 24088.94, + "probability": 0.6124 + }, + { + "start": 24089.34, + "end": 24091.58, + "probability": 0.9119 + }, + { + "start": 24092.02, + "end": 24093.86, + "probability": 0.9666 + }, + { + "start": 24096.36, + "end": 24096.7, + "probability": 0.8513 + }, + { + "start": 24107.02, + "end": 24110.22, + "probability": 0.712 + }, + { + "start": 24112.88, + "end": 24114.6, + "probability": 0.9893 + }, + { + "start": 24116.64, + "end": 24117.86, + "probability": 0.9192 + }, + { + "start": 24119.72, + "end": 24120.9, + "probability": 0.9525 + }, + { + "start": 24124.18, + "end": 24126.82, + "probability": 0.9952 + }, + { + "start": 24131.52, + "end": 24135.04, + "probability": 0.6116 + }, + { + "start": 24139.3, + "end": 24141.9, + "probability": 0.9189 + }, + { + "start": 24142.9, + "end": 24146.16, + "probability": 0.9084 + }, + { + "start": 24147.72, + "end": 24148.28, + "probability": 0.4486 + }, + { + "start": 24151.33, + "end": 24153.02, + "probability": 0.869 + }, + { + "start": 24153.2, + "end": 24154.96, + "probability": 0.8495 + }, + { + "start": 24155.54, + "end": 24159.5, + "probability": 0.8174 + }, + { + "start": 24159.64, + "end": 24160.72, + "probability": 0.9374 + }, + { + "start": 24163.42, + "end": 24165.2, + "probability": 0.9668 + }, + { + "start": 24167.68, + "end": 24173.32, + "probability": 0.8743 + }, + { + "start": 24174.16, + "end": 24175.22, + "probability": 0.8796 + }, + { + "start": 24177.14, + "end": 24177.42, + "probability": 0.4916 + }, + { + "start": 24178.18, + "end": 24178.96, + "probability": 0.8593 + }, + { + "start": 24180.12, + "end": 24184.0, + "probability": 0.9824 + }, + { + "start": 24185.16, + "end": 24188.32, + "probability": 0.8039 + }, + { + "start": 24190.14, + "end": 24196.94, + "probability": 0.9677 + }, + { + "start": 24198.66, + "end": 24202.48, + "probability": 0.9983 + }, + { + "start": 24203.78, + "end": 24204.64, + "probability": 0.7167 + }, + { + "start": 24205.28, + "end": 24206.82, + "probability": 0.8554 + }, + { + "start": 24208.68, + "end": 24209.62, + "probability": 0.7494 + }, + { + "start": 24210.54, + "end": 24211.26, + "probability": 0.6011 + }, + { + "start": 24211.4, + "end": 24213.48, + "probability": 0.9839 + }, + { + "start": 24213.58, + "end": 24213.8, + "probability": 0.5428 + }, + { + "start": 24214.08, + "end": 24216.52, + "probability": 0.8325 + }, + { + "start": 24216.68, + "end": 24217.56, + "probability": 0.9206 + }, + { + "start": 24219.18, + "end": 24220.32, + "probability": 0.7237 + }, + { + "start": 24221.78, + "end": 24223.4, + "probability": 0.8413 + }, + { + "start": 24223.4, + "end": 24223.82, + "probability": 0.6692 + }, + { + "start": 24224.2, + "end": 24225.06, + "probability": 0.8669 + }, + { + "start": 24226.98, + "end": 24226.98, + "probability": 0.3678 + }, + { + "start": 24226.98, + "end": 24227.26, + "probability": 0.5321 + }, + { + "start": 24228.96, + "end": 24230.8, + "probability": 0.5463 + }, + { + "start": 24231.56, + "end": 24233.56, + "probability": 0.9312 + }, + { + "start": 24235.09, + "end": 24238.04, + "probability": 0.9858 + }, + { + "start": 24243.84, + "end": 24245.8, + "probability": 0.95 + }, + { + "start": 24246.46, + "end": 24252.32, + "probability": 0.9854 + }, + { + "start": 24253.3, + "end": 24256.04, + "probability": 0.9577 + }, + { + "start": 24256.56, + "end": 24257.74, + "probability": 0.8251 + }, + { + "start": 24258.66, + "end": 24259.5, + "probability": 0.5341 + }, + { + "start": 24261.34, + "end": 24264.56, + "probability": 0.9424 + }, + { + "start": 24265.2, + "end": 24265.94, + "probability": 0.6557 + }, + { + "start": 24266.62, + "end": 24267.7, + "probability": 0.9577 + }, + { + "start": 24268.36, + "end": 24269.66, + "probability": 0.7125 + }, + { + "start": 24270.5, + "end": 24273.18, + "probability": 0.9015 + }, + { + "start": 24274.86, + "end": 24275.34, + "probability": 0.2325 + }, + { + "start": 24275.48, + "end": 24280.24, + "probability": 0.9626 + }, + { + "start": 24280.44, + "end": 24280.96, + "probability": 0.2811 + }, + { + "start": 24281.92, + "end": 24282.82, + "probability": 0.6428 + }, + { + "start": 24283.56, + "end": 24285.88, + "probability": 0.5659 + }, + { + "start": 24286.54, + "end": 24287.46, + "probability": 0.9482 + }, + { + "start": 24290.02, + "end": 24294.08, + "probability": 0.9409 + }, + { + "start": 24295.32, + "end": 24302.74, + "probability": 0.8716 + }, + { + "start": 24303.1, + "end": 24304.36, + "probability": 0.4011 + }, + { + "start": 24308.5, + "end": 24315.42, + "probability": 0.9652 + }, + { + "start": 24317.52, + "end": 24320.56, + "probability": 0.9951 + }, + { + "start": 24323.72, + "end": 24326.88, + "probability": 0.6742 + }, + { + "start": 24327.02, + "end": 24328.7, + "probability": 0.5421 + }, + { + "start": 24328.9, + "end": 24329.18, + "probability": 0.7136 + }, + { + "start": 24331.18, + "end": 24333.48, + "probability": 0.6273 + }, + { + "start": 24333.92, + "end": 24337.4, + "probability": 0.4887 + }, + { + "start": 24338.0, + "end": 24339.6, + "probability": 0.5294 + }, + { + "start": 24340.46, + "end": 24343.54, + "probability": 0.856 + }, + { + "start": 24343.58, + "end": 24345.56, + "probability": 0.813 + }, + { + "start": 24346.32, + "end": 24346.48, + "probability": 0.015 + }, + { + "start": 24346.48, + "end": 24346.76, + "probability": 0.1343 + }, + { + "start": 24347.0, + "end": 24348.7, + "probability": 0.642 + }, + { + "start": 24348.86, + "end": 24349.5, + "probability": 0.3341 + }, + { + "start": 24350.86, + "end": 24353.24, + "probability": 0.9003 + }, + { + "start": 24354.64, + "end": 24356.06, + "probability": 0.2893 + }, + { + "start": 24356.12, + "end": 24356.58, + "probability": 0.1988 + }, + { + "start": 24356.58, + "end": 24356.7, + "probability": 0.1278 + }, + { + "start": 24356.7, + "end": 24357.94, + "probability": 0.8463 + }, + { + "start": 24358.22, + "end": 24360.26, + "probability": 0.942 + }, + { + "start": 24360.78, + "end": 24361.78, + "probability": 0.7886 + }, + { + "start": 24361.94, + "end": 24363.34, + "probability": 0.8867 + }, + { + "start": 24363.82, + "end": 24365.94, + "probability": 0.9385 + }, + { + "start": 24366.2, + "end": 24367.08, + "probability": 0.3381 + }, + { + "start": 24367.18, + "end": 24368.34, + "probability": 0.83 + }, + { + "start": 24368.42, + "end": 24369.44, + "probability": 0.7153 + }, + { + "start": 24369.7, + "end": 24372.76, + "probability": 0.5832 + }, + { + "start": 24372.78, + "end": 24373.34, + "probability": 0.5126 + }, + { + "start": 24374.08, + "end": 24376.96, + "probability": 0.375 + }, + { + "start": 24377.0, + "end": 24378.4, + "probability": 0.8088 + }, + { + "start": 24378.66, + "end": 24379.0, + "probability": 0.7544 + }, + { + "start": 24379.02, + "end": 24379.7, + "probability": 0.6559 + }, + { + "start": 24380.78, + "end": 24382.26, + "probability": 0.8672 + }, + { + "start": 24382.26, + "end": 24383.16, + "probability": 0.8471 + }, + { + "start": 24383.88, + "end": 24384.94, + "probability": 0.7629 + }, + { + "start": 24385.58, + "end": 24390.06, + "probability": 0.8183 + }, + { + "start": 24391.34, + "end": 24392.64, + "probability": 0.9226 + }, + { + "start": 24393.78, + "end": 24396.98, + "probability": 0.968 + }, + { + "start": 24397.9, + "end": 24400.12, + "probability": 0.9565 + }, + { + "start": 24400.8, + "end": 24403.2, + "probability": 0.846 + }, + { + "start": 24403.66, + "end": 24404.78, + "probability": 0.5357 + }, + { + "start": 24405.54, + "end": 24409.16, + "probability": 0.7076 + }, + { + "start": 24410.48, + "end": 24412.28, + "probability": 0.9971 + }, + { + "start": 24412.44, + "end": 24414.02, + "probability": 0.993 + }, + { + "start": 24415.08, + "end": 24417.66, + "probability": 0.3114 + }, + { + "start": 24418.56, + "end": 24420.02, + "probability": 0.8699 + }, + { + "start": 24421.4, + "end": 24423.38, + "probability": 0.878 + }, + { + "start": 24423.9, + "end": 24425.82, + "probability": 0.8374 + }, + { + "start": 24426.2, + "end": 24430.82, + "probability": 0.807 + }, + { + "start": 24431.1, + "end": 24434.24, + "probability": 0.7813 + }, + { + "start": 24434.64, + "end": 24436.46, + "probability": 0.9165 + }, + { + "start": 24438.1, + "end": 24439.64, + "probability": 0.9188 + }, + { + "start": 24440.38, + "end": 24442.24, + "probability": 0.9622 + }, + { + "start": 24442.84, + "end": 24444.2, + "probability": 0.8008 + }, + { + "start": 24444.34, + "end": 24446.48, + "probability": 0.6266 + }, + { + "start": 24446.64, + "end": 24447.62, + "probability": 0.7421 + }, + { + "start": 24448.32, + "end": 24453.2, + "probability": 0.9159 + }, + { + "start": 24453.3, + "end": 24453.56, + "probability": 0.7689 + }, + { + "start": 24453.62, + "end": 24454.0, + "probability": 0.733 + }, + { + "start": 24455.56, + "end": 24456.5, + "probability": 0.877 + }, + { + "start": 24456.52, + "end": 24458.0, + "probability": 0.998 + }, + { + "start": 24458.12, + "end": 24459.3, + "probability": 0.7254 + }, + { + "start": 24459.96, + "end": 24464.14, + "probability": 0.9629 + }, + { + "start": 24464.74, + "end": 24465.56, + "probability": 0.7301 + }, + { + "start": 24465.78, + "end": 24467.46, + "probability": 0.7189 + }, + { + "start": 24474.35, + "end": 24477.04, + "probability": 0.7818 + }, + { + "start": 24477.08, + "end": 24478.64, + "probability": 0.9016 + }, + { + "start": 24479.16, + "end": 24480.14, + "probability": 0.7081 + }, + { + "start": 24480.58, + "end": 24484.0, + "probability": 0.8801 + }, + { + "start": 24484.46, + "end": 24486.97, + "probability": 0.6866 + }, + { + "start": 24487.92, + "end": 24491.18, + "probability": 0.8339 + }, + { + "start": 24492.84, + "end": 24493.48, + "probability": 0.1846 + }, + { + "start": 24494.28, + "end": 24497.02, + "probability": 0.9964 + }, + { + "start": 24497.8, + "end": 24500.46, + "probability": 0.9653 + }, + { + "start": 24501.3, + "end": 24511.02, + "probability": 0.9759 + }, + { + "start": 24512.24, + "end": 24513.76, + "probability": 0.8845 + }, + { + "start": 24514.0, + "end": 24519.8, + "probability": 0.821 + }, + { + "start": 24521.14, + "end": 24526.06, + "probability": 0.5222 + }, + { + "start": 24526.56, + "end": 24527.9, + "probability": 0.611 + }, + { + "start": 24528.14, + "end": 24529.3, + "probability": 0.7628 + }, + { + "start": 24530.38, + "end": 24531.28, + "probability": 0.4684 + }, + { + "start": 24532.56, + "end": 24534.58, + "probability": 0.6611 + }, + { + "start": 24535.34, + "end": 24536.72, + "probability": 0.7349 + }, + { + "start": 24537.7, + "end": 24541.1, + "probability": 0.8075 + }, + { + "start": 24541.99, + "end": 24544.72, + "probability": 0.9476 + }, + { + "start": 24546.1, + "end": 24550.72, + "probability": 0.9545 + }, + { + "start": 24551.68, + "end": 24553.02, + "probability": 0.7784 + }, + { + "start": 24553.28, + "end": 24558.08, + "probability": 0.8932 + }, + { + "start": 24558.7, + "end": 24560.32, + "probability": 0.8563 + }, + { + "start": 24561.22, + "end": 24561.86, + "probability": 0.9541 + }, + { + "start": 24563.42, + "end": 24567.34, + "probability": 0.9493 + }, + { + "start": 24568.6, + "end": 24573.64, + "probability": 0.8622 + }, + { + "start": 24575.24, + "end": 24576.34, + "probability": 0.769 + }, + { + "start": 24578.2, + "end": 24580.02, + "probability": 0.5441 + }, + { + "start": 24580.36, + "end": 24582.42, + "probability": 0.7694 + }, + { + "start": 24583.8, + "end": 24584.58, + "probability": 0.8511 + }, + { + "start": 24585.42, + "end": 24589.04, + "probability": 0.9906 + }, + { + "start": 24590.18, + "end": 24592.48, + "probability": 0.9963 + }, + { + "start": 24594.18, + "end": 24594.96, + "probability": 0.7072 + }, + { + "start": 24595.14, + "end": 24599.98, + "probability": 0.9277 + }, + { + "start": 24601.64, + "end": 24604.74, + "probability": 0.8276 + }, + { + "start": 24605.76, + "end": 24609.3, + "probability": 0.9678 + }, + { + "start": 24610.92, + "end": 24617.54, + "probability": 0.9831 + }, + { + "start": 24619.76, + "end": 24620.38, + "probability": 0.1908 + }, + { + "start": 24620.52, + "end": 24620.62, + "probability": 0.5361 + }, + { + "start": 24622.22, + "end": 24625.24, + "probability": 0.8765 + }, + { + "start": 24625.46, + "end": 24625.98, + "probability": 0.3836 + }, + { + "start": 24626.48, + "end": 24630.4, + "probability": 0.6514 + }, + { + "start": 24630.72, + "end": 24633.1, + "probability": 0.9714 + }, + { + "start": 24635.44, + "end": 24641.82, + "probability": 0.9587 + }, + { + "start": 24643.7, + "end": 24645.36, + "probability": 0.9823 + }, + { + "start": 24646.22, + "end": 24647.86, + "probability": 0.8695 + }, + { + "start": 24648.64, + "end": 24650.84, + "probability": 0.9582 + }, + { + "start": 24652.58, + "end": 24654.26, + "probability": 0.7465 + }, + { + "start": 24655.02, + "end": 24655.66, + "probability": 0.9311 + }, + { + "start": 24657.06, + "end": 24658.4, + "probability": 0.7525 + }, + { + "start": 24658.96, + "end": 24663.92, + "probability": 0.7908 + }, + { + "start": 24664.54, + "end": 24666.66, + "probability": 0.9866 + }, + { + "start": 24667.2, + "end": 24669.64, + "probability": 0.9434 + }, + { + "start": 24669.96, + "end": 24670.94, + "probability": 0.6521 + }, + { + "start": 24671.06, + "end": 24671.88, + "probability": 0.6172 + }, + { + "start": 24672.42, + "end": 24674.34, + "probability": 0.7925 + }, + { + "start": 24675.62, + "end": 24676.36, + "probability": 0.8491 + }, + { + "start": 24677.1, + "end": 24679.74, + "probability": 0.8703 + }, + { + "start": 24679.88, + "end": 24680.82, + "probability": 0.8888 + }, + { + "start": 24681.22, + "end": 24681.92, + "probability": 0.1028 + }, + { + "start": 24682.1, + "end": 24684.8, + "probability": 0.952 + }, + { + "start": 24685.48, + "end": 24691.92, + "probability": 0.911 + }, + { + "start": 24692.9, + "end": 24695.86, + "probability": 0.8108 + }, + { + "start": 24696.88, + "end": 24697.44, + "probability": 0.8967 + }, + { + "start": 24697.56, + "end": 24699.74, + "probability": 0.9916 + }, + { + "start": 24700.42, + "end": 24701.6, + "probability": 0.8311 + }, + { + "start": 24701.82, + "end": 24706.42, + "probability": 0.9865 + }, + { + "start": 24706.56, + "end": 24709.26, + "probability": 0.9562 + }, + { + "start": 24711.1, + "end": 24711.78, + "probability": 0.7328 + }, + { + "start": 24712.08, + "end": 24716.02, + "probability": 0.6484 + }, + { + "start": 24717.6, + "end": 24718.12, + "probability": 0.7814 + }, + { + "start": 24719.1, + "end": 24720.24, + "probability": 0.8853 + }, + { + "start": 24721.2, + "end": 24722.52, + "probability": 0.935 + }, + { + "start": 24724.1, + "end": 24726.76, + "probability": 0.9907 + }, + { + "start": 24727.32, + "end": 24731.26, + "probability": 0.9454 + }, + { + "start": 24732.04, + "end": 24733.68, + "probability": 0.7333 + }, + { + "start": 24734.64, + "end": 24735.16, + "probability": 0.6458 + }, + { + "start": 24735.68, + "end": 24737.14, + "probability": 0.9867 + }, + { + "start": 24737.98, + "end": 24739.44, + "probability": 0.9564 + }, + { + "start": 24740.4, + "end": 24742.31, + "probability": 0.94 + }, + { + "start": 24743.56, + "end": 24751.24, + "probability": 0.9823 + }, + { + "start": 24751.76, + "end": 24753.52, + "probability": 0.8033 + }, + { + "start": 24754.78, + "end": 24755.82, + "probability": 0.9141 + }, + { + "start": 24756.7, + "end": 24757.42, + "probability": 0.7833 + }, + { + "start": 24758.32, + "end": 24759.14, + "probability": 0.6097 + }, + { + "start": 24759.7, + "end": 24760.44, + "probability": 0.9683 + }, + { + "start": 24761.2, + "end": 24761.64, + "probability": 0.9098 + }, + { + "start": 24764.36, + "end": 24768.56, + "probability": 0.9868 + }, + { + "start": 24769.36, + "end": 24770.92, + "probability": 0.9608 + }, + { + "start": 24771.5, + "end": 24772.48, + "probability": 0.9719 + }, + { + "start": 24773.18, + "end": 24776.32, + "probability": 0.9873 + }, + { + "start": 24777.16, + "end": 24777.82, + "probability": 0.7062 + }, + { + "start": 24777.86, + "end": 24780.24, + "probability": 0.7903 + }, + { + "start": 24780.74, + "end": 24781.34, + "probability": 0.9138 + }, + { + "start": 24781.5, + "end": 24782.44, + "probability": 0.998 + }, + { + "start": 24783.14, + "end": 24785.72, + "probability": 0.9409 + }, + { + "start": 24786.24, + "end": 24788.56, + "probability": 0.854 + }, + { + "start": 24788.98, + "end": 24789.95, + "probability": 0.5385 + }, + { + "start": 24790.76, + "end": 24793.58, + "probability": 0.9455 + }, + { + "start": 24796.16, + "end": 24796.94, + "probability": 0.102 + }, + { + "start": 24797.98, + "end": 24800.04, + "probability": 0.9945 + }, + { + "start": 24800.76, + "end": 24804.02, + "probability": 0.8879 + }, + { + "start": 24804.58, + "end": 24806.12, + "probability": 0.8674 + }, + { + "start": 24806.58, + "end": 24808.86, + "probability": 0.8867 + }, + { + "start": 24808.86, + "end": 24812.22, + "probability": 0.9948 + }, + { + "start": 24812.86, + "end": 24814.82, + "probability": 0.9887 + }, + { + "start": 24815.5, + "end": 24818.22, + "probability": 0.7435 + }, + { + "start": 24818.68, + "end": 24820.2, + "probability": 0.9487 + }, + { + "start": 24820.44, + "end": 24821.02, + "probability": 0.3334 + }, + { + "start": 24821.3, + "end": 24821.8, + "probability": 0.593 + }, + { + "start": 24822.68, + "end": 24824.16, + "probability": 0.8391 + }, + { + "start": 24824.66, + "end": 24827.44, + "probability": 0.9965 + }, + { + "start": 24827.96, + "end": 24829.74, + "probability": 0.9244 + }, + { + "start": 24830.34, + "end": 24831.92, + "probability": 0.7966 + }, + { + "start": 24831.98, + "end": 24832.4, + "probability": 0.9579 + }, + { + "start": 24833.04, + "end": 24833.58, + "probability": 0.9722 + }, + { + "start": 24835.22, + "end": 24836.44, + "probability": 0.8199 + }, + { + "start": 24837.14, + "end": 24841.84, + "probability": 0.6917 + }, + { + "start": 24842.72, + "end": 24844.5, + "probability": 0.9041 + }, + { + "start": 24845.06, + "end": 24846.18, + "probability": 0.8095 + }, + { + "start": 24848.06, + "end": 24849.2, + "probability": 0.976 + }, + { + "start": 24849.28, + "end": 24851.66, + "probability": 0.8767 + }, + { + "start": 24852.16, + "end": 24854.96, + "probability": 0.7746 + }, + { + "start": 24855.14, + "end": 24855.5, + "probability": 0.9365 + }, + { + "start": 24856.86, + "end": 24858.02, + "probability": 0.8813 + }, + { + "start": 24858.7, + "end": 24859.74, + "probability": 0.9212 + }, + { + "start": 24859.8, + "end": 24860.2, + "probability": 0.4838 + }, + { + "start": 24860.26, + "end": 24861.02, + "probability": 0.7305 + }, + { + "start": 24861.38, + "end": 24862.08, + "probability": 0.8502 + }, + { + "start": 24862.22, + "end": 24866.28, + "probability": 0.9408 + }, + { + "start": 24866.76, + "end": 24868.42, + "probability": 0.929 + }, + { + "start": 24869.0, + "end": 24872.04, + "probability": 0.6457 + }, + { + "start": 24872.24, + "end": 24875.48, + "probability": 0.9202 + }, + { + "start": 24876.37, + "end": 24879.49, + "probability": 0.8496 + }, + { + "start": 24880.0, + "end": 24880.56, + "probability": 0.9419 + }, + { + "start": 24882.48, + "end": 24885.22, + "probability": 0.9873 + }, + { + "start": 24887.86, + "end": 24889.42, + "probability": 0.9781 + }, + { + "start": 24890.1, + "end": 24890.98, + "probability": 0.572 + }, + { + "start": 24891.9, + "end": 24894.2, + "probability": 0.7124 + }, + { + "start": 24896.02, + "end": 24897.24, + "probability": 0.6819 + }, + { + "start": 24897.34, + "end": 24897.46, + "probability": 0.2335 + }, + { + "start": 24897.46, + "end": 24898.18, + "probability": 0.6502 + }, + { + "start": 24898.44, + "end": 24898.9, + "probability": 0.5295 + }, + { + "start": 24898.94, + "end": 24900.32, + "probability": 0.6917 + }, + { + "start": 24900.54, + "end": 24901.42, + "probability": 0.8718 + }, + { + "start": 24901.7, + "end": 24904.66, + "probability": 0.6776 + }, + { + "start": 24905.98, + "end": 24906.48, + "probability": 0.5391 + }, + { + "start": 24907.0, + "end": 24910.06, + "probability": 0.9868 + }, + { + "start": 24910.56, + "end": 24911.0, + "probability": 0.6389 + }, + { + "start": 24911.82, + "end": 24911.82, + "probability": 0.107 + }, + { + "start": 24911.9, + "end": 24913.76, + "probability": 0.971 + }, + { + "start": 24914.14, + "end": 24915.4, + "probability": 0.4297 + }, + { + "start": 24915.48, + "end": 24916.26, + "probability": 0.5044 + }, + { + "start": 24916.38, + "end": 24918.94, + "probability": 0.7487 + }, + { + "start": 24919.46, + "end": 24921.4, + "probability": 0.4473 + }, + { + "start": 24922.54, + "end": 24924.0, + "probability": 0.5759 + }, + { + "start": 24924.66, + "end": 24925.76, + "probability": 0.8994 + }, + { + "start": 24925.86, + "end": 24929.51, + "probability": 0.7478 + }, + { + "start": 24932.16, + "end": 24932.5, + "probability": 0.1196 + }, + { + "start": 24933.5, + "end": 24933.78, + "probability": 0.1477 + }, + { + "start": 24933.82, + "end": 24934.38, + "probability": 0.008 + }, + { + "start": 24934.5, + "end": 24934.68, + "probability": 0.2207 + }, + { + "start": 24934.68, + "end": 24934.96, + "probability": 0.0813 + }, + { + "start": 24935.42, + "end": 24936.04, + "probability": 0.0389 + }, + { + "start": 24936.9, + "end": 24938.82, + "probability": 0.7341 + }, + { + "start": 24939.26, + "end": 24941.18, + "probability": 0.9762 + }, + { + "start": 24941.64, + "end": 24942.22, + "probability": 0.7595 + }, + { + "start": 24942.28, + "end": 24944.3, + "probability": 0.848 + }, + { + "start": 24945.06, + "end": 24945.68, + "probability": 0.666 + }, + { + "start": 24945.86, + "end": 24946.97, + "probability": 0.9706 + }, + { + "start": 24947.2, + "end": 24950.56, + "probability": 0.9639 + }, + { + "start": 24950.68, + "end": 24951.86, + "probability": 0.3539 + }, + { + "start": 24952.22, + "end": 24953.4, + "probability": 0.6719 + }, + { + "start": 24953.56, + "end": 24956.8, + "probability": 0.8696 + }, + { + "start": 24957.02, + "end": 24961.48, + "probability": 0.9634 + }, + { + "start": 24961.82, + "end": 24962.46, + "probability": 0.6311 + }, + { + "start": 24962.5, + "end": 24963.76, + "probability": 0.4795 + }, + { + "start": 24963.76, + "end": 24964.34, + "probability": 0.457 + }, + { + "start": 24965.5, + "end": 24967.24, + "probability": 0.0853 + }, + { + "start": 24967.58, + "end": 24967.68, + "probability": 0.1081 + }, + { + "start": 24967.8, + "end": 24974.51, + "probability": 0.3593 + }, + { + "start": 24974.68, + "end": 24974.78, + "probability": 0.1184 + }, + { + "start": 24974.92, + "end": 24975.24, + "probability": 0.0575 + }, + { + "start": 24975.74, + "end": 24976.8, + "probability": 0.689 + }, + { + "start": 24976.84, + "end": 24978.28, + "probability": 0.5112 + }, + { + "start": 24978.34, + "end": 24978.8, + "probability": 0.4464 + }, + { + "start": 24978.8, + "end": 24980.72, + "probability": 0.2098 + }, + { + "start": 24980.82, + "end": 24980.92, + "probability": 0.1393 + }, + { + "start": 24980.92, + "end": 24981.78, + "probability": 0.9446 + }, + { + "start": 24982.46, + "end": 24983.32, + "probability": 0.3113 + }, + { + "start": 24983.56, + "end": 24985.7, + "probability": 0.6507 + }, + { + "start": 24985.74, + "end": 24986.84, + "probability": 0.3554 + }, + { + "start": 24986.92, + "end": 24990.24, + "probability": 0.9745 + }, + { + "start": 24993.68, + "end": 24994.34, + "probability": 0.2587 + }, + { + "start": 24995.14, + "end": 24997.74, + "probability": 0.8606 + }, + { + "start": 24998.4, + "end": 24999.56, + "probability": 0.8273 + }, + { + "start": 24999.6, + "end": 25002.7, + "probability": 0.9294 + }, + { + "start": 25002.7, + "end": 25004.04, + "probability": 0.5119 + }, + { + "start": 25004.42, + "end": 25008.94, + "probability": 0.9349 + }, + { + "start": 25009.24, + "end": 25010.7, + "probability": 0.8162 + }, + { + "start": 25010.94, + "end": 25012.23, + "probability": 0.7899 + }, + { + "start": 25012.92, + "end": 25014.98, + "probability": 0.5979 + }, + { + "start": 25014.98, + "end": 25017.22, + "probability": 0.8426 + }, + { + "start": 25018.8, + "end": 25019.12, + "probability": 0.1409 + }, + { + "start": 25019.12, + "end": 25019.74, + "probability": 0.8347 + }, + { + "start": 25019.94, + "end": 25020.7, + "probability": 0.5568 + }, + { + "start": 25020.7, + "end": 25020.72, + "probability": 0.0572 + }, + { + "start": 25020.72, + "end": 25020.81, + "probability": 0.5101 + }, + { + "start": 25021.32, + "end": 25022.58, + "probability": 0.6523 + }, + { + "start": 25022.66, + "end": 25023.82, + "probability": 0.9093 + }, + { + "start": 25023.88, + "end": 25024.67, + "probability": 0.9822 + }, + { + "start": 25024.88, + "end": 25027.54, + "probability": 0.7198 + }, + { + "start": 25027.62, + "end": 25028.3, + "probability": 0.7874 + }, + { + "start": 25029.12, + "end": 25030.42, + "probability": 0.6827 + }, + { + "start": 25030.72, + "end": 25030.96, + "probability": 0.6842 + }, + { + "start": 25031.08, + "end": 25034.74, + "probability": 0.9861 + }, + { + "start": 25035.12, + "end": 25040.5, + "probability": 0.9507 + }, + { + "start": 25041.14, + "end": 25043.86, + "probability": 0.4045 + }, + { + "start": 25044.74, + "end": 25048.0, + "probability": 0.6038 + }, + { + "start": 25048.02, + "end": 25048.64, + "probability": 0.0881 + }, + { + "start": 25048.64, + "end": 25049.76, + "probability": 0.4475 + }, + { + "start": 25050.77, + "end": 25053.45, + "probability": 0.9424 + }, + { + "start": 25053.88, + "end": 25056.26, + "probability": 0.9689 + }, + { + "start": 25056.76, + "end": 25059.52, + "probability": 0.877 + }, + { + "start": 25060.0, + "end": 25060.96, + "probability": 0.712 + }, + { + "start": 25061.4, + "end": 25061.86, + "probability": 0.929 + }, + { + "start": 25061.94, + "end": 25065.26, + "probability": 0.8528 + }, + { + "start": 25065.42, + "end": 25068.34, + "probability": 0.9247 + }, + { + "start": 25068.86, + "end": 25069.78, + "probability": 0.7339 + }, + { + "start": 25070.34, + "end": 25072.66, + "probability": 0.8806 + }, + { + "start": 25073.06, + "end": 25075.56, + "probability": 0.8621 + }, + { + "start": 25076.3, + "end": 25078.76, + "probability": 0.8461 + }, + { + "start": 25079.0, + "end": 25079.34, + "probability": 0.8079 + }, + { + "start": 25079.4, + "end": 25080.92, + "probability": 0.489 + }, + { + "start": 25081.1, + "end": 25083.14, + "probability": 0.7886 + }, + { + "start": 25083.7, + "end": 25086.16, + "probability": 0.7047 + }, + { + "start": 25086.6, + "end": 25092.82, + "probability": 0.9833 + }, + { + "start": 25092.96, + "end": 25094.66, + "probability": 0.9985 + }, + { + "start": 25095.42, + "end": 25100.3, + "probability": 0.8898 + }, + { + "start": 25102.98, + "end": 25104.24, + "probability": 0.7982 + }, + { + "start": 25105.86, + "end": 25107.1, + "probability": 0.9842 + }, + { + "start": 25107.3, + "end": 25108.62, + "probability": 0.8011 + }, + { + "start": 25108.8, + "end": 25115.46, + "probability": 0.9976 + }, + { + "start": 25116.14, + "end": 25120.2, + "probability": 0.9872 + }, + { + "start": 25120.76, + "end": 25121.86, + "probability": 0.9135 + }, + { + "start": 25121.92, + "end": 25122.89, + "probability": 0.8526 + }, + { + "start": 25123.22, + "end": 25123.88, + "probability": 0.9533 + }, + { + "start": 25124.22, + "end": 25124.94, + "probability": 0.9329 + }, + { + "start": 25125.1, + "end": 25130.22, + "probability": 0.8566 + }, + { + "start": 25131.06, + "end": 25131.78, + "probability": 0.6387 + }, + { + "start": 25132.64, + "end": 25133.94, + "probability": 0.4851 + }, + { + "start": 25133.94, + "end": 25133.94, + "probability": 0.6159 + }, + { + "start": 25134.24, + "end": 25134.68, + "probability": 0.519 + }, + { + "start": 25134.72, + "end": 25135.28, + "probability": 0.66 + }, + { + "start": 25135.36, + "end": 25137.06, + "probability": 0.7527 + }, + { + "start": 25137.18, + "end": 25137.86, + "probability": 0.8456 + }, + { + "start": 25138.04, + "end": 25138.54, + "probability": 0.3989 + }, + { + "start": 25138.96, + "end": 25139.86, + "probability": 0.7614 + }, + { + "start": 25139.96, + "end": 25140.96, + "probability": 0.637 + }, + { + "start": 25141.1, + "end": 25141.58, + "probability": 0.709 + }, + { + "start": 25141.92, + "end": 25143.86, + "probability": 0.8937 + }, + { + "start": 25143.88, + "end": 25144.08, + "probability": 0.6143 + }, + { + "start": 25144.12, + "end": 25145.84, + "probability": 0.98 + }, + { + "start": 25146.24, + "end": 25146.36, + "probability": 0.834 + }, + { + "start": 25149.52, + "end": 25151.38, + "probability": 0.9793 + }, + { + "start": 25152.44, + "end": 25154.3, + "probability": 0.9866 + }, + { + "start": 25154.96, + "end": 25155.98, + "probability": 0.9849 + }, + { + "start": 25156.02, + "end": 25158.76, + "probability": 0.9277 + }, + { + "start": 25159.16, + "end": 25160.62, + "probability": 0.6685 + }, + { + "start": 25161.46, + "end": 25162.17, + "probability": 0.9893 + }, + { + "start": 25162.34, + "end": 25165.9, + "probability": 0.9658 + }, + { + "start": 25166.64, + "end": 25168.32, + "probability": 0.9928 + }, + { + "start": 25169.3, + "end": 25170.97, + "probability": 0.9991 + }, + { + "start": 25171.7, + "end": 25173.76, + "probability": 0.7677 + }, + { + "start": 25174.4, + "end": 25175.02, + "probability": 0.6157 + }, + { + "start": 25175.12, + "end": 25177.2, + "probability": 0.9943 + }, + { + "start": 25178.1, + "end": 25180.24, + "probability": 0.9675 + }, + { + "start": 25180.34, + "end": 25180.9, + "probability": 0.8525 + }, + { + "start": 25181.1, + "end": 25182.26, + "probability": 0.4516 + }, + { + "start": 25182.38, + "end": 25182.7, + "probability": 0.258 + }, + { + "start": 25182.76, + "end": 25183.08, + "probability": 0.5043 + }, + { + "start": 25184.02, + "end": 25186.06, + "probability": 0.9954 + }, + { + "start": 25186.68, + "end": 25189.06, + "probability": 0.9648 + }, + { + "start": 25190.22, + "end": 25192.12, + "probability": 0.9899 + }, + { + "start": 25192.2, + "end": 25192.87, + "probability": 0.6955 + }, + { + "start": 25193.8, + "end": 25195.94, + "probability": 0.7938 + }, + { + "start": 25196.56, + "end": 25198.12, + "probability": 0.9954 + }, + { + "start": 25198.66, + "end": 25199.82, + "probability": 0.5768 + }, + { + "start": 25200.72, + "end": 25205.58, + "probability": 0.9633 + }, + { + "start": 25206.44, + "end": 25209.68, + "probability": 0.9966 + }, + { + "start": 25210.26, + "end": 25211.3, + "probability": 0.7634 + }, + { + "start": 25211.8, + "end": 25213.14, + "probability": 0.9951 + }, + { + "start": 25213.88, + "end": 25217.48, + "probability": 0.9746 + }, + { + "start": 25218.22, + "end": 25219.9, + "probability": 0.9951 + }, + { + "start": 25220.62, + "end": 25223.22, + "probability": 0.9947 + }, + { + "start": 25224.0, + "end": 25224.72, + "probability": 0.5302 + }, + { + "start": 25225.06, + "end": 25225.68, + "probability": 0.9602 + }, + { + "start": 25225.84, + "end": 25227.08, + "probability": 0.6718 + }, + { + "start": 25227.18, + "end": 25227.82, + "probability": 0.6842 + }, + { + "start": 25228.34, + "end": 25231.66, + "probability": 0.8834 + }, + { + "start": 25232.38, + "end": 25233.66, + "probability": 0.9605 + }, + { + "start": 25234.56, + "end": 25234.58, + "probability": 0.0006 + }, + { + "start": 25244.34, + "end": 25244.34, + "probability": 0.2205 + }, + { + "start": 25244.34, + "end": 25244.34, + "probability": 0.0184 + }, + { + "start": 25244.34, + "end": 25244.34, + "probability": 0.0777 + }, + { + "start": 25244.34, + "end": 25244.34, + "probability": 0.0684 + }, + { + "start": 25244.34, + "end": 25244.34, + "probability": 0.0965 + }, + { + "start": 25244.34, + "end": 25244.48, + "probability": 0.322 + }, + { + "start": 25245.06, + "end": 25248.62, + "probability": 0.795 + }, + { + "start": 25249.26, + "end": 25252.99, + "probability": 0.9955 + }, + { + "start": 25253.18, + "end": 25255.06, + "probability": 0.7671 + }, + { + "start": 25255.8, + "end": 25257.58, + "probability": 0.6335 + }, + { + "start": 25258.14, + "end": 25262.7, + "probability": 0.9761 + }, + { + "start": 25262.84, + "end": 25265.36, + "probability": 0.938 + }, + { + "start": 25266.16, + "end": 25266.52, + "probability": 0.7414 + }, + { + "start": 25267.36, + "end": 25270.32, + "probability": 0.7116 + }, + { + "start": 25270.9, + "end": 25272.4, + "probability": 0.8771 + }, + { + "start": 25273.2, + "end": 25274.16, + "probability": 0.8262 + }, + { + "start": 25274.66, + "end": 25275.15, + "probability": 0.6591 + }, + { + "start": 25276.18, + "end": 25277.96, + "probability": 0.8115 + }, + { + "start": 25278.12, + "end": 25279.4, + "probability": 0.7853 + }, + { + "start": 25280.1, + "end": 25282.38, + "probability": 0.9203 + }, + { + "start": 25282.84, + "end": 25283.34, + "probability": 0.8139 + }, + { + "start": 25283.78, + "end": 25284.86, + "probability": 0.5029 + }, + { + "start": 25284.86, + "end": 25285.76, + "probability": 0.1633 + }, + { + "start": 25285.76, + "end": 25286.44, + "probability": 0.5842 + }, + { + "start": 25286.48, + "end": 25286.82, + "probability": 0.8813 + }, + { + "start": 25286.94, + "end": 25287.56, + "probability": 0.8326 + }, + { + "start": 25287.78, + "end": 25288.26, + "probability": 0.9399 + }, + { + "start": 25288.54, + "end": 25289.76, + "probability": 0.9688 + }, + { + "start": 25290.32, + "end": 25293.18, + "probability": 0.9581 + }, + { + "start": 25293.62, + "end": 25295.39, + "probability": 0.9529 + }, + { + "start": 25295.66, + "end": 25297.44, + "probability": 0.9522 + }, + { + "start": 25297.96, + "end": 25300.22, + "probability": 0.877 + }, + { + "start": 25300.42, + "end": 25301.26, + "probability": 0.9829 + }, + { + "start": 25301.36, + "end": 25302.0, + "probability": 0.7199 + }, + { + "start": 25302.12, + "end": 25304.62, + "probability": 0.4756 + }, + { + "start": 25305.28, + "end": 25306.47, + "probability": 0.8706 + }, + { + "start": 25307.04, + "end": 25308.28, + "probability": 0.9755 + }, + { + "start": 25308.58, + "end": 25310.23, + "probability": 0.9557 + }, + { + "start": 25310.52, + "end": 25311.22, + "probability": 0.8171 + }, + { + "start": 25311.8, + "end": 25313.56, + "probability": 0.9907 + }, + { + "start": 25314.06, + "end": 25315.22, + "probability": 0.9614 + }, + { + "start": 25316.14, + "end": 25321.02, + "probability": 0.9543 + }, + { + "start": 25321.02, + "end": 25325.14, + "probability": 0.9328 + }, + { + "start": 25325.58, + "end": 25328.46, + "probability": 0.9943 + }, + { + "start": 25329.6, + "end": 25330.24, + "probability": 0.5233 + }, + { + "start": 25330.34, + "end": 25332.62, + "probability": 0.787 + }, + { + "start": 25332.72, + "end": 25334.15, + "probability": 0.9888 + }, + { + "start": 25334.94, + "end": 25337.18, + "probability": 0.9688 + }, + { + "start": 25337.82, + "end": 25338.84, + "probability": 0.7528 + }, + { + "start": 25339.38, + "end": 25339.88, + "probability": 0.4938 + }, + { + "start": 25339.94, + "end": 25345.12, + "probability": 0.995 + }, + { + "start": 25345.14, + "end": 25345.66, + "probability": 0.7663 + }, + { + "start": 25346.0, + "end": 25347.15, + "probability": 0.3938 + }, + { + "start": 25347.3, + "end": 25347.98, + "probability": 0.7058 + }, + { + "start": 25348.52, + "end": 25351.12, + "probability": 0.7288 + }, + { + "start": 25351.86, + "end": 25353.76, + "probability": 0.975 + }, + { + "start": 25354.84, + "end": 25356.55, + "probability": 0.993 + }, + { + "start": 25357.24, + "end": 25361.02, + "probability": 0.9614 + }, + { + "start": 25361.7, + "end": 25364.42, + "probability": 0.2783 + }, + { + "start": 25364.64, + "end": 25366.44, + "probability": 0.9503 + }, + { + "start": 25367.62, + "end": 25370.02, + "probability": 0.0882 + }, + { + "start": 25370.02, + "end": 25370.22, + "probability": 0.0389 + }, + { + "start": 25370.22, + "end": 25370.86, + "probability": 0.326 + }, + { + "start": 25370.98, + "end": 25371.78, + "probability": 0.6409 + }, + { + "start": 25372.16, + "end": 25373.88, + "probability": 0.9929 + }, + { + "start": 25374.32, + "end": 25375.4, + "probability": 0.953 + }, + { + "start": 25375.44, + "end": 25378.36, + "probability": 0.9706 + }, + { + "start": 25378.36, + "end": 25381.28, + "probability": 0.8779 + }, + { + "start": 25381.92, + "end": 25382.16, + "probability": 0.5286 + }, + { + "start": 25382.3, + "end": 25382.62, + "probability": 0.7766 + }, + { + "start": 25382.66, + "end": 25385.44, + "probability": 0.8521 + }, + { + "start": 25386.28, + "end": 25390.58, + "probability": 0.5529 + }, + { + "start": 25391.1, + "end": 25392.24, + "probability": 0.9335 + }, + { + "start": 25392.34, + "end": 25392.82, + "probability": 0.8464 + }, + { + "start": 25394.28, + "end": 25396.1, + "probability": 0.1239 + }, + { + "start": 25396.1, + "end": 25400.79, + "probability": 0.1867 + }, + { + "start": 25401.0, + "end": 25401.96, + "probability": 0.9685 + }, + { + "start": 25402.18, + "end": 25405.12, + "probability": 0.9826 + }, + { + "start": 25405.56, + "end": 25409.64, + "probability": 0.9959 + }, + { + "start": 25410.26, + "end": 25414.06, + "probability": 0.9758 + }, + { + "start": 25414.86, + "end": 25417.32, + "probability": 0.7276 + }, + { + "start": 25417.7, + "end": 25419.12, + "probability": 0.9899 + }, + { + "start": 25419.2, + "end": 25422.36, + "probability": 0.9785 + }, + { + "start": 25422.36, + "end": 25425.18, + "probability": 0.6599 + }, + { + "start": 25425.92, + "end": 25427.46, + "probability": 0.5181 + }, + { + "start": 25427.58, + "end": 25430.12, + "probability": 0.9614 + }, + { + "start": 25430.58, + "end": 25431.26, + "probability": 0.9625 + }, + { + "start": 25431.86, + "end": 25434.54, + "probability": 0.6524 + }, + { + "start": 25435.2, + "end": 25438.02, + "probability": 0.7576 + }, + { + "start": 25439.14, + "end": 25440.8, + "probability": 0.6295 + }, + { + "start": 25441.38, + "end": 25443.26, + "probability": 0.8433 + }, + { + "start": 25443.66, + "end": 25445.26, + "probability": 0.9164 + }, + { + "start": 25445.92, + "end": 25448.04, + "probability": 0.9261 + }, + { + "start": 25448.16, + "end": 25448.76, + "probability": 0.2049 + }, + { + "start": 25449.36, + "end": 25452.84, + "probability": 0.2988 + }, + { + "start": 25452.96, + "end": 25454.82, + "probability": 0.7057 + }, + { + "start": 25454.96, + "end": 25455.88, + "probability": 0.8308 + }, + { + "start": 25455.94, + "end": 25456.24, + "probability": 0.2965 + }, + { + "start": 25456.44, + "end": 25458.74, + "probability": 0.6283 + }, + { + "start": 25459.06, + "end": 25461.04, + "probability": 0.7437 + }, + { + "start": 25461.9, + "end": 25463.8, + "probability": 0.5791 + }, + { + "start": 25464.52, + "end": 25465.48, + "probability": 0.8776 + }, + { + "start": 25465.84, + "end": 25466.0, + "probability": 0.0423 + }, + { + "start": 25466.42, + "end": 25469.78, + "probability": 0.9892 + }, + { + "start": 25469.9, + "end": 25472.46, + "probability": 0.912 + }, + { + "start": 25472.5, + "end": 25472.97, + "probability": 0.4879 + }, + { + "start": 25473.32, + "end": 25473.88, + "probability": 0.1708 + }, + { + "start": 25474.18, + "end": 25476.66, + "probability": 0.6545 + }, + { + "start": 25476.68, + "end": 25477.58, + "probability": 0.4759 + }, + { + "start": 25478.1, + "end": 25481.08, + "probability": 0.985 + }, + { + "start": 25481.52, + "end": 25482.56, + "probability": 0.938 + }, + { + "start": 25483.14, + "end": 25486.54, + "probability": 0.9861 + }, + { + "start": 25487.3, + "end": 25489.16, + "probability": 0.9714 + }, + { + "start": 25489.84, + "end": 25491.42, + "probability": 0.803 + }, + { + "start": 25491.76, + "end": 25492.92, + "probability": 0.8659 + }, + { + "start": 25493.58, + "end": 25497.12, + "probability": 0.6938 + }, + { + "start": 25497.82, + "end": 25500.36, + "probability": 0.1693 + }, + { + "start": 25500.36, + "end": 25500.7, + "probability": 0.0056 + }, + { + "start": 25500.7, + "end": 25502.77, + "probability": 0.5859 + }, + { + "start": 25503.24, + "end": 25504.82, + "probability": 0.8288 + }, + { + "start": 25504.98, + "end": 25509.68, + "probability": 0.8236 + }, + { + "start": 25510.04, + "end": 25511.18, + "probability": 0.8181 + }, + { + "start": 25511.64, + "end": 25512.08, + "probability": 0.5027 + }, + { + "start": 25512.92, + "end": 25513.8, + "probability": 0.8989 + }, + { + "start": 25514.38, + "end": 25514.86, + "probability": 0.6329 + }, + { + "start": 25514.94, + "end": 25516.36, + "probability": 0.6218 + }, + { + "start": 25516.84, + "end": 25517.5, + "probability": 0.9527 + }, + { + "start": 25517.58, + "end": 25518.08, + "probability": 0.8393 + }, + { + "start": 25518.68, + "end": 25519.58, + "probability": 0.8075 + }, + { + "start": 25520.3, + "end": 25521.94, + "probability": 0.9902 + }, + { + "start": 25522.24, + "end": 25523.06, + "probability": 0.6118 + }, + { + "start": 25523.1, + "end": 25524.01, + "probability": 0.7117 + }, + { + "start": 25524.84, + "end": 25526.2, + "probability": 0.9317 + }, + { + "start": 25526.94, + "end": 25528.48, + "probability": 0.8567 + }, + { + "start": 25528.92, + "end": 25530.28, + "probability": 0.9991 + }, + { + "start": 25531.0, + "end": 25532.2, + "probability": 0.8433 + }, + { + "start": 25532.76, + "end": 25535.38, + "probability": 0.9967 + }, + { + "start": 25535.38, + "end": 25538.76, + "probability": 0.7793 + }, + { + "start": 25539.44, + "end": 25541.84, + "probability": 0.9567 + }, + { + "start": 25542.32, + "end": 25542.96, + "probability": 0.8718 + }, + { + "start": 25543.68, + "end": 25545.06, + "probability": 0.9034 + }, + { + "start": 25545.48, + "end": 25546.42, + "probability": 0.7782 + }, + { + "start": 25546.9, + "end": 25549.68, + "probability": 0.9809 + }, + { + "start": 25549.78, + "end": 25550.7, + "probability": 0.9498 + }, + { + "start": 25551.08, + "end": 25552.02, + "probability": 0.9739 + }, + { + "start": 25552.48, + "end": 25552.86, + "probability": 0.4333 + }, + { + "start": 25552.88, + "end": 25555.24, + "probability": 0.7889 + }, + { + "start": 25555.54, + "end": 25556.2, + "probability": 0.9426 + }, + { + "start": 25556.6, + "end": 25559.02, + "probability": 0.8018 + }, + { + "start": 25559.64, + "end": 25563.46, + "probability": 0.9912 + }, + { + "start": 25563.46, + "end": 25566.46, + "probability": 0.9006 + }, + { + "start": 25567.04, + "end": 25571.48, + "probability": 0.9975 + }, + { + "start": 25572.14, + "end": 25573.94, + "probability": 0.6872 + }, + { + "start": 25574.46, + "end": 25577.56, + "probability": 0.9344 + }, + { + "start": 25578.16, + "end": 25578.26, + "probability": 0.609 + }, + { + "start": 25579.16, + "end": 25581.88, + "probability": 0.958 + }, + { + "start": 25582.46, + "end": 25584.42, + "probability": 0.9118 + }, + { + "start": 25584.48, + "end": 25586.38, + "probability": 0.9641 + }, + { + "start": 25586.66, + "end": 25589.64, + "probability": 0.9937 + }, + { + "start": 25590.16, + "end": 25591.08, + "probability": 0.8154 + }, + { + "start": 25591.5, + "end": 25595.6, + "probability": 0.9656 + }, + { + "start": 25595.68, + "end": 25596.8, + "probability": 0.6787 + }, + { + "start": 25597.14, + "end": 25597.58, + "probability": 0.5865 + }, + { + "start": 25597.58, + "end": 25598.92, + "probability": 0.0457 + }, + { + "start": 25598.92, + "end": 25601.42, + "probability": 0.6604 + }, + { + "start": 25601.71, + "end": 25604.12, + "probability": 0.7061 + }, + { + "start": 25604.56, + "end": 25604.68, + "probability": 0.6343 + }, + { + "start": 25604.68, + "end": 25606.94, + "probability": 0.7353 + }, + { + "start": 25607.3, + "end": 25609.08, + "probability": 0.4724 + }, + { + "start": 25610.06, + "end": 25610.64, + "probability": 0.0217 + }, + { + "start": 25610.64, + "end": 25612.86, + "probability": 0.7596 + }, + { + "start": 25612.9, + "end": 25616.52, + "probability": 0.8056 + }, + { + "start": 25616.9, + "end": 25618.04, + "probability": 0.9663 + }, + { + "start": 25618.3, + "end": 25619.1, + "probability": 0.4896 + }, + { + "start": 25619.14, + "end": 25619.82, + "probability": 0.5991 + }, + { + "start": 25619.84, + "end": 25621.38, + "probability": 0.7044 + }, + { + "start": 25621.82, + "end": 25623.5, + "probability": 0.9583 + }, + { + "start": 25624.2, + "end": 25628.26, + "probability": 0.9981 + }, + { + "start": 25628.86, + "end": 25630.12, + "probability": 0.9319 + }, + { + "start": 25630.22, + "end": 25630.74, + "probability": 0.9183 + }, + { + "start": 25631.12, + "end": 25632.18, + "probability": 0.9309 + }, + { + "start": 25632.26, + "end": 25635.78, + "probability": 0.9924 + }, + { + "start": 25636.12, + "end": 25641.04, + "probability": 0.9958 + }, + { + "start": 25641.52, + "end": 25643.68, + "probability": 0.9961 + }, + { + "start": 25643.76, + "end": 25644.88, + "probability": 0.8842 + }, + { + "start": 25644.9, + "end": 25644.94, + "probability": 0.0356 + }, + { + "start": 25644.94, + "end": 25645.38, + "probability": 0.3702 + }, + { + "start": 25645.52, + "end": 25645.92, + "probability": 0.582 + }, + { + "start": 25645.98, + "end": 25650.82, + "probability": 0.87 + }, + { + "start": 25651.16, + "end": 25652.94, + "probability": 0.8746 + }, + { + "start": 25652.96, + "end": 25654.08, + "probability": 0.3716 + }, + { + "start": 25654.32, + "end": 25654.59, + "probability": 0.1029 + }, + { + "start": 25654.82, + "end": 25656.76, + "probability": 0.998 + }, + { + "start": 25657.1, + "end": 25658.38, + "probability": 0.9093 + }, + { + "start": 25658.54, + "end": 25660.3, + "probability": 0.9291 + }, + { + "start": 25660.46, + "end": 25662.02, + "probability": 0.9627 + }, + { + "start": 25664.38, + "end": 25666.16, + "probability": 0.9683 + }, + { + "start": 25666.94, + "end": 25668.46, + "probability": 0.9814 + }, + { + "start": 25668.48, + "end": 25671.36, + "probability": 0.9916 + }, + { + "start": 25671.5, + "end": 25671.5, + "probability": 0.1694 + }, + { + "start": 25671.5, + "end": 25672.44, + "probability": 0.9202 + }, + { + "start": 25673.53, + "end": 25674.16, + "probability": 0.5737 + }, + { + "start": 25674.88, + "end": 25675.46, + "probability": 0.8572 + }, + { + "start": 25676.06, + "end": 25678.18, + "probability": 0.9065 + }, + { + "start": 25678.26, + "end": 25678.38, + "probability": 0.7266 + }, + { + "start": 25679.48, + "end": 25680.28, + "probability": 0.9541 + }, + { + "start": 25680.8, + "end": 25682.02, + "probability": 0.8647 + }, + { + "start": 25682.1, + "end": 25683.56, + "probability": 0.8321 + }, + { + "start": 25683.64, + "end": 25684.1, + "probability": 0.4531 + }, + { + "start": 25684.4, + "end": 25685.07, + "probability": 0.9509 + }, + { + "start": 25685.26, + "end": 25686.9, + "probability": 0.968 + }, + { + "start": 25686.96, + "end": 25687.52, + "probability": 0.9248 + }, + { + "start": 25687.96, + "end": 25688.6, + "probability": 0.7584 + }, + { + "start": 25688.7, + "end": 25689.22, + "probability": 0.9655 + }, + { + "start": 25689.36, + "end": 25690.15, + "probability": 0.9511 + }, + { + "start": 25690.44, + "end": 25694.62, + "probability": 0.964 + }, + { + "start": 25694.92, + "end": 25698.34, + "probability": 0.9766 + }, + { + "start": 25698.68, + "end": 25700.12, + "probability": 0.6943 + }, + { + "start": 25700.46, + "end": 25702.66, + "probability": 0.9471 + }, + { + "start": 25703.42, + "end": 25708.32, + "probability": 0.9968 + }, + { + "start": 25717.14, + "end": 25717.14, + "probability": 0.0381 + }, + { + "start": 25717.14, + "end": 25717.14, + "probability": 0.0679 + }, + { + "start": 25717.14, + "end": 25717.38, + "probability": 0.0809 + }, + { + "start": 25717.38, + "end": 25717.9, + "probability": 0.0089 + }, + { + "start": 25718.1, + "end": 25718.7, + "probability": 0.3605 + }, + { + "start": 25718.74, + "end": 25718.74, + "probability": 0.1349 + }, + { + "start": 25718.74, + "end": 25719.04, + "probability": 0.3129 + }, + { + "start": 25745.48, + "end": 25747.78, + "probability": 0.6658 + }, + { + "start": 25750.46, + "end": 25751.4, + "probability": 0.7678 + }, + { + "start": 25754.82, + "end": 25755.1, + "probability": 0.3112 + }, + { + "start": 25755.34, + "end": 25760.32, + "probability": 0.9446 + }, + { + "start": 25762.14, + "end": 25763.34, + "probability": 0.772 + }, + { + "start": 25765.04, + "end": 25765.74, + "probability": 0.9498 + }, + { + "start": 25768.66, + "end": 25769.24, + "probability": 0.7424 + }, + { + "start": 25773.26, + "end": 25778.52, + "probability": 0.9289 + }, + { + "start": 25783.34, + "end": 25784.26, + "probability": 0.8679 + }, + { + "start": 25785.9, + "end": 25792.32, + "probability": 0.8266 + }, + { + "start": 25794.7, + "end": 25795.74, + "probability": 0.7076 + }, + { + "start": 25798.74, + "end": 25798.82, + "probability": 0.8208 + }, + { + "start": 25799.64, + "end": 25803.1, + "probability": 0.9835 + }, + { + "start": 25805.46, + "end": 25806.6, + "probability": 0.9092 + }, + { + "start": 25809.0, + "end": 25813.1, + "probability": 0.9408 + }, + { + "start": 25813.2, + "end": 25813.9, + "probability": 0.6665 + }, + { + "start": 25815.06, + "end": 25816.38, + "probability": 0.9976 + }, + { + "start": 25818.94, + "end": 25821.2, + "probability": 0.8916 + }, + { + "start": 25822.94, + "end": 25826.88, + "probability": 0.8708 + }, + { + "start": 25828.24, + "end": 25832.7, + "probability": 0.9902 + }, + { + "start": 25835.02, + "end": 25838.56, + "probability": 0.8341 + }, + { + "start": 25839.28, + "end": 25840.88, + "probability": 0.9858 + }, + { + "start": 25843.0, + "end": 25844.38, + "probability": 0.9954 + }, + { + "start": 25845.46, + "end": 25846.5, + "probability": 0.7473 + }, + { + "start": 25847.5, + "end": 25848.64, + "probability": 0.9233 + }, + { + "start": 25849.46, + "end": 25852.04, + "probability": 0.8856 + }, + { + "start": 25852.6, + "end": 25852.96, + "probability": 0.7848 + }, + { + "start": 25853.16, + "end": 25855.54, + "probability": 0.9834 + }, + { + "start": 25856.32, + "end": 25858.06, + "probability": 0.6309 + }, + { + "start": 25858.64, + "end": 25859.07, + "probability": 0.9902 + }, + { + "start": 25860.8, + "end": 25863.1, + "probability": 0.8127 + }, + { + "start": 25863.94, + "end": 25864.72, + "probability": 0.8505 + }, + { + "start": 25864.86, + "end": 25865.98, + "probability": 0.6653 + }, + { + "start": 25866.18, + "end": 25868.12, + "probability": 0.6304 + }, + { + "start": 25868.28, + "end": 25868.58, + "probability": 0.4344 + }, + { + "start": 25871.2, + "end": 25873.38, + "probability": 0.8729 + }, + { + "start": 25876.4, + "end": 25877.42, + "probability": 0.9332 + }, + { + "start": 25877.98, + "end": 25879.26, + "probability": 0.9829 + }, + { + "start": 25880.76, + "end": 25882.98, + "probability": 0.9757 + }, + { + "start": 25882.98, + "end": 25883.77, + "probability": 0.35 + }, + { + "start": 25885.46, + "end": 25886.34, + "probability": 0.9984 + }, + { + "start": 25889.46, + "end": 25890.24, + "probability": 0.9467 + }, + { + "start": 25892.52, + "end": 25894.06, + "probability": 0.973 + }, + { + "start": 25898.18, + "end": 25901.55, + "probability": 0.7143 + }, + { + "start": 25903.34, + "end": 25905.38, + "probability": 0.9889 + }, + { + "start": 25905.68, + "end": 25907.08, + "probability": 0.9856 + }, + { + "start": 25907.26, + "end": 25907.86, + "probability": 0.3855 + }, + { + "start": 25908.86, + "end": 25908.96, + "probability": 0.7136 + }, + { + "start": 25911.98, + "end": 25913.64, + "probability": 0.9476 + }, + { + "start": 25913.82, + "end": 25914.48, + "probability": 0.7732 + }, + { + "start": 25914.74, + "end": 25916.38, + "probability": 0.8926 + }, + { + "start": 25916.66, + "end": 25917.16, + "probability": 0.8735 + }, + { + "start": 25917.78, + "end": 25918.84, + "probability": 0.8246 + }, + { + "start": 25920.16, + "end": 25921.6, + "probability": 0.9221 + }, + { + "start": 25921.8, + "end": 25921.8, + "probability": 0.626 + }, + { + "start": 25924.46, + "end": 25926.34, + "probability": 0.9287 + }, + { + "start": 25930.22, + "end": 25933.18, + "probability": 0.664 + }, + { + "start": 25936.32, + "end": 25938.46, + "probability": 0.9591 + }, + { + "start": 25940.12, + "end": 25941.76, + "probability": 0.9969 + }, + { + "start": 25942.64, + "end": 25947.2, + "probability": 0.9626 + }, + { + "start": 25948.26, + "end": 25952.42, + "probability": 0.9429 + }, + { + "start": 25954.04, + "end": 25954.46, + "probability": 0.7927 + }, + { + "start": 25955.48, + "end": 25956.62, + "probability": 0.97 + }, + { + "start": 25956.74, + "end": 25958.82, + "probability": 0.9956 + }, + { + "start": 25959.7, + "end": 25962.5, + "probability": 0.9478 + }, + { + "start": 25966.02, + "end": 25970.24, + "probability": 0.9126 + }, + { + "start": 25971.72, + "end": 25975.78, + "probability": 0.9956 + }, + { + "start": 25975.84, + "end": 25977.1, + "probability": 0.7532 + }, + { + "start": 25980.58, + "end": 25981.76, + "probability": 0.939 + }, + { + "start": 25983.66, + "end": 25986.62, + "probability": 0.9853 + }, + { + "start": 25988.78, + "end": 25990.04, + "probability": 0.9533 + }, + { + "start": 25990.96, + "end": 25991.66, + "probability": 0.7961 + }, + { + "start": 25992.8, + "end": 25995.88, + "probability": 0.939 + }, + { + "start": 25997.22, + "end": 25999.42, + "probability": 0.8499 + }, + { + "start": 26000.6, + "end": 26002.16, + "probability": 0.2252 + }, + { + "start": 26003.84, + "end": 26005.0, + "probability": 0.8247 + }, + { + "start": 26006.92, + "end": 26009.66, + "probability": 0.9916 + }, + { + "start": 26012.38, + "end": 26019.06, + "probability": 0.9803 + }, + { + "start": 26019.92, + "end": 26021.82, + "probability": 0.9998 + }, + { + "start": 26024.1, + "end": 26024.98, + "probability": 0.7795 + }, + { + "start": 26026.3, + "end": 26028.56, + "probability": 0.7943 + }, + { + "start": 26031.58, + "end": 26034.82, + "probability": 0.9753 + }, + { + "start": 26036.76, + "end": 26037.56, + "probability": 0.8641 + }, + { + "start": 26040.28, + "end": 26042.3, + "probability": 0.9969 + }, + { + "start": 26046.46, + "end": 26048.62, + "probability": 0.9916 + }, + { + "start": 26048.78, + "end": 26049.93, + "probability": 0.9536 + }, + { + "start": 26050.16, + "end": 26051.72, + "probability": 0.9946 + }, + { + "start": 26054.04, + "end": 26059.56, + "probability": 0.9963 + }, + { + "start": 26062.16, + "end": 26062.86, + "probability": 0.722 + }, + { + "start": 26064.26, + "end": 26065.72, + "probability": 0.9849 + }, + { + "start": 26067.08, + "end": 26070.6, + "probability": 0.8916 + }, + { + "start": 26072.36, + "end": 26073.58, + "probability": 0.9113 + }, + { + "start": 26073.72, + "end": 26075.68, + "probability": 0.9937 + }, + { + "start": 26076.32, + "end": 26078.16, + "probability": 0.9908 + }, + { + "start": 26082.36, + "end": 26086.66, + "probability": 0.9052 + }, + { + "start": 26087.92, + "end": 26091.17, + "probability": 0.996 + }, + { + "start": 26092.72, + "end": 26094.1, + "probability": 0.7335 + }, + { + "start": 26094.18, + "end": 26096.39, + "probability": 0.9632 + }, + { + "start": 26098.14, + "end": 26099.14, + "probability": 0.6966 + }, + { + "start": 26102.24, + "end": 26104.3, + "probability": 0.9951 + }, + { + "start": 26106.26, + "end": 26109.58, + "probability": 0.9954 + }, + { + "start": 26112.18, + "end": 26113.48, + "probability": 0.7232 + }, + { + "start": 26116.34, + "end": 26116.6, + "probability": 0.5426 + }, + { + "start": 26120.76, + "end": 26122.3, + "probability": 0.9592 + }, + { + "start": 26124.06, + "end": 26124.38, + "probability": 0.5258 + }, + { + "start": 26124.48, + "end": 26126.72, + "probability": 0.9585 + }, + { + "start": 26126.82, + "end": 26128.66, + "probability": 0.8569 + }, + { + "start": 26131.08, + "end": 26132.12, + "probability": 0.9507 + }, + { + "start": 26132.18, + "end": 26134.28, + "probability": 0.9873 + }, + { + "start": 26134.56, + "end": 26134.78, + "probability": 0.452 + }, + { + "start": 26134.84, + "end": 26136.3, + "probability": 0.9219 + }, + { + "start": 26137.8, + "end": 26140.12, + "probability": 0.5847 + }, + { + "start": 26141.62, + "end": 26142.54, + "probability": 0.7163 + }, + { + "start": 26142.68, + "end": 26143.0, + "probability": 0.4795 + }, + { + "start": 26147.86, + "end": 26148.16, + "probability": 0.7635 + }, + { + "start": 26150.92, + "end": 26153.24, + "probability": 0.9916 + }, + { + "start": 26153.7, + "end": 26154.22, + "probability": 0.7573 + }, + { + "start": 26160.96, + "end": 26165.22, + "probability": 0.9967 + }, + { + "start": 26166.18, + "end": 26167.74, + "probability": 0.6784 + }, + { + "start": 26167.8, + "end": 26170.19, + "probability": 0.9969 + }, + { + "start": 26170.24, + "end": 26174.64, + "probability": 0.9984 + }, + { + "start": 26175.84, + "end": 26176.96, + "probability": 0.6764 + }, + { + "start": 26177.24, + "end": 26179.3, + "probability": 0.7532 + }, + { + "start": 26179.82, + "end": 26181.18, + "probability": 0.97 + }, + { + "start": 26184.04, + "end": 26184.82, + "probability": 0.9136 + }, + { + "start": 26188.12, + "end": 26191.58, + "probability": 0.8461 + }, + { + "start": 26192.98, + "end": 26193.5, + "probability": 0.8645 + }, + { + "start": 26195.28, + "end": 26197.58, + "probability": 0.9928 + }, + { + "start": 26198.26, + "end": 26200.04, + "probability": 0.9989 + }, + { + "start": 26201.54, + "end": 26202.58, + "probability": 0.9211 + }, + { + "start": 26202.82, + "end": 26205.0, + "probability": 0.9321 + }, + { + "start": 26208.9, + "end": 26214.52, + "probability": 0.9742 + }, + { + "start": 26215.92, + "end": 26217.54, + "probability": 0.9961 + }, + { + "start": 26219.08, + "end": 26219.94, + "probability": 0.5561 + }, + { + "start": 26221.3, + "end": 26225.34, + "probability": 0.9988 + }, + { + "start": 26227.14, + "end": 26230.74, + "probability": 0.9778 + }, + { + "start": 26231.52, + "end": 26234.9, + "probability": 0.9729 + }, + { + "start": 26236.14, + "end": 26238.32, + "probability": 0.8975 + }, + { + "start": 26239.9, + "end": 26245.28, + "probability": 0.9861 + }, + { + "start": 26246.34, + "end": 26248.06, + "probability": 0.9879 + }, + { + "start": 26248.92, + "end": 26252.2, + "probability": 0.9656 + }, + { + "start": 26252.8, + "end": 26253.49, + "probability": 0.5893 + }, + { + "start": 26254.22, + "end": 26255.94, + "probability": 0.9034 + }, + { + "start": 26257.56, + "end": 26258.96, + "probability": 0.772 + }, + { + "start": 26260.42, + "end": 26261.56, + "probability": 0.8175 + }, + { + "start": 26262.9, + "end": 26263.16, + "probability": 0.7158 + }, + { + "start": 26263.76, + "end": 26265.0, + "probability": 0.6042 + }, + { + "start": 26265.9, + "end": 26266.86, + "probability": 0.8705 + }, + { + "start": 26267.16, + "end": 26270.18, + "probability": 0.9932 + }, + { + "start": 26271.5, + "end": 26273.1, + "probability": 0.9778 + }, + { + "start": 26274.76, + "end": 26275.49, + "probability": 0.8621 + }, + { + "start": 26276.1, + "end": 26276.8, + "probability": 0.4488 + }, + { + "start": 26277.18, + "end": 26277.92, + "probability": 0.9217 + }, + { + "start": 26277.98, + "end": 26279.26, + "probability": 0.8936 + }, + { + "start": 26280.84, + "end": 26282.56, + "probability": 0.991 + }, + { + "start": 26284.34, + "end": 26285.66, + "probability": 0.9011 + }, + { + "start": 26286.96, + "end": 26291.52, + "probability": 0.7468 + }, + { + "start": 26293.4, + "end": 26295.4, + "probability": 0.9855 + }, + { + "start": 26296.68, + "end": 26297.48, + "probability": 0.9178 + }, + { + "start": 26299.82, + "end": 26300.88, + "probability": 0.9318 + }, + { + "start": 26302.78, + "end": 26304.58, + "probability": 0.9747 + }, + { + "start": 26306.04, + "end": 26309.46, + "probability": 0.7926 + }, + { + "start": 26310.5, + "end": 26317.74, + "probability": 0.9771 + }, + { + "start": 26321.56, + "end": 26325.82, + "probability": 0.8528 + }, + { + "start": 26326.68, + "end": 26327.34, + "probability": 0.7822 + }, + { + "start": 26329.84, + "end": 26332.54, + "probability": 0.9498 + }, + { + "start": 26334.6, + "end": 26335.42, + "probability": 0.9403 + }, + { + "start": 26336.72, + "end": 26337.42, + "probability": 0.6623 + }, + { + "start": 26338.4, + "end": 26340.04, + "probability": 0.9915 + }, + { + "start": 26341.52, + "end": 26343.03, + "probability": 0.9697 + }, + { + "start": 26344.5, + "end": 26347.08, + "probability": 0.9995 + }, + { + "start": 26349.04, + "end": 26350.02, + "probability": 0.9995 + }, + { + "start": 26350.78, + "end": 26353.06, + "probability": 0.9964 + }, + { + "start": 26353.68, + "end": 26354.72, + "probability": 0.1892 + }, + { + "start": 26355.42, + "end": 26356.46, + "probability": 0.779 + }, + { + "start": 26359.34, + "end": 26359.44, + "probability": 0.0285 + }, + { + "start": 26359.44, + "end": 26360.06, + "probability": 0.3138 + }, + { + "start": 26361.22, + "end": 26364.02, + "probability": 0.5143 + }, + { + "start": 26364.58, + "end": 26366.62, + "probability": 0.3708 + }, + { + "start": 26367.8, + "end": 26368.57, + "probability": 0.6246 + }, + { + "start": 26369.56, + "end": 26372.16, + "probability": 0.0307 + }, + { + "start": 26374.78, + "end": 26376.76, + "probability": 0.0781 + }, + { + "start": 26377.32, + "end": 26378.04, + "probability": 0.0622 + }, + { + "start": 26378.04, + "end": 26378.08, + "probability": 0.2247 + }, + { + "start": 26378.1, + "end": 26378.56, + "probability": 0.0502 + }, + { + "start": 26378.74, + "end": 26382.96, + "probability": 0.0403 + }, + { + "start": 26388.68, + "end": 26391.1, + "probability": 0.0123 + }, + { + "start": 26391.28, + "end": 26391.28, + "probability": 0.0401 + }, + { + "start": 26391.28, + "end": 26391.28, + "probability": 0.0491 + }, + { + "start": 26391.28, + "end": 26391.6, + "probability": 0.0432 + }, + { + "start": 26391.6, + "end": 26391.6, + "probability": 0.0688 + }, + { + "start": 26391.6, + "end": 26392.18, + "probability": 0.3791 + }, + { + "start": 26393.3, + "end": 26394.58, + "probability": 0.6927 + }, + { + "start": 26394.8, + "end": 26398.02, + "probability": 0.5414 + }, + { + "start": 26398.82, + "end": 26399.84, + "probability": 0.8569 + }, + { + "start": 26400.56, + "end": 26400.82, + "probability": 0.7464 + }, + { + "start": 26401.52, + "end": 26403.94, + "probability": 0.7856 + }, + { + "start": 26404.02, + "end": 26404.62, + "probability": 0.9521 + }, + { + "start": 26404.72, + "end": 26405.86, + "probability": 0.9462 + }, + { + "start": 26406.6, + "end": 26408.52, + "probability": 0.8387 + }, + { + "start": 26410.7, + "end": 26417.72, + "probability": 0.9263 + }, + { + "start": 26419.38, + "end": 26419.72, + "probability": 0.9901 + }, + { + "start": 26420.46, + "end": 26422.28, + "probability": 0.8132 + }, + { + "start": 26422.4, + "end": 26423.2, + "probability": 0.5363 + }, + { + "start": 26423.5, + "end": 26424.06, + "probability": 0.2762 + }, + { + "start": 26425.08, + "end": 26426.02, + "probability": 0.7941 + }, + { + "start": 26427.22, + "end": 26429.24, + "probability": 0.9909 + }, + { + "start": 26431.1, + "end": 26432.08, + "probability": 0.9699 + }, + { + "start": 26433.08, + "end": 26436.42, + "probability": 0.9947 + }, + { + "start": 26437.24, + "end": 26441.13, + "probability": 0.852 + }, + { + "start": 26442.96, + "end": 26443.56, + "probability": 0.736 + }, + { + "start": 26443.62, + "end": 26447.58, + "probability": 0.9619 + }, + { + "start": 26448.66, + "end": 26452.48, + "probability": 0.99 + }, + { + "start": 26454.48, + "end": 26455.75, + "probability": 0.8026 + }, + { + "start": 26458.96, + "end": 26460.68, + "probability": 0.8988 + }, + { + "start": 26460.84, + "end": 26461.77, + "probability": 0.9927 + }, + { + "start": 26465.6, + "end": 26467.82, + "probability": 0.999 + }, + { + "start": 26467.96, + "end": 26471.28, + "probability": 0.9946 + }, + { + "start": 26472.48, + "end": 26474.28, + "probability": 0.8682 + }, + { + "start": 26475.36, + "end": 26476.58, + "probability": 0.9265 + }, + { + "start": 26477.38, + "end": 26479.46, + "probability": 0.8983 + }, + { + "start": 26480.62, + "end": 26482.68, + "probability": 0.9258 + }, + { + "start": 26483.68, + "end": 26485.3, + "probability": 0.9968 + }, + { + "start": 26485.46, + "end": 26487.56, + "probability": 0.9419 + }, + { + "start": 26491.28, + "end": 26491.92, + "probability": 0.6714 + }, + { + "start": 26492.06, + "end": 26495.68, + "probability": 0.9431 + }, + { + "start": 26495.82, + "end": 26496.72, + "probability": 0.8613 + }, + { + "start": 26498.68, + "end": 26501.9, + "probability": 0.9939 + }, + { + "start": 26502.52, + "end": 26506.16, + "probability": 0.9883 + }, + { + "start": 26508.04, + "end": 26508.62, + "probability": 0.806 + }, + { + "start": 26509.28, + "end": 26513.58, + "probability": 0.94 + }, + { + "start": 26513.74, + "end": 26514.36, + "probability": 0.8324 + }, + { + "start": 26517.38, + "end": 26519.12, + "probability": 0.9876 + }, + { + "start": 26519.2, + "end": 26521.12, + "probability": 0.8016 + }, + { + "start": 26522.4, + "end": 26524.64, + "probability": 0.9565 + }, + { + "start": 26526.58, + "end": 26527.9, + "probability": 0.9276 + }, + { + "start": 26528.06, + "end": 26529.64, + "probability": 0.8336 + }, + { + "start": 26529.7, + "end": 26530.24, + "probability": 0.905 + }, + { + "start": 26531.12, + "end": 26533.08, + "probability": 0.9794 + }, + { + "start": 26535.24, + "end": 26536.02, + "probability": 0.7934 + }, + { + "start": 26536.08, + "end": 26536.94, + "probability": 0.9324 + }, + { + "start": 26537.02, + "end": 26540.66, + "probability": 0.9907 + }, + { + "start": 26541.04, + "end": 26542.16, + "probability": 0.96 + }, + { + "start": 26542.76, + "end": 26544.8, + "probability": 0.9587 + }, + { + "start": 26546.82, + "end": 26547.75, + "probability": 0.8716 + }, + { + "start": 26549.24, + "end": 26551.02, + "probability": 0.9815 + }, + { + "start": 26551.76, + "end": 26554.2, + "probability": 0.9487 + }, + { + "start": 26554.72, + "end": 26557.96, + "probability": 0.8029 + }, + { + "start": 26560.0, + "end": 26563.9, + "probability": 0.9686 + }, + { + "start": 26565.16, + "end": 26567.22, + "probability": 0.9989 + }, + { + "start": 26568.38, + "end": 26570.66, + "probability": 0.9993 + }, + { + "start": 26573.14, + "end": 26573.98, + "probability": 0.9728 + }, + { + "start": 26575.14, + "end": 26575.34, + "probability": 0.9673 + }, + { + "start": 26575.52, + "end": 26576.84, + "probability": 0.9727 + }, + { + "start": 26577.18, + "end": 26578.6, + "probability": 0.9294 + }, + { + "start": 26579.98, + "end": 26582.04, + "probability": 0.948 + }, + { + "start": 26582.18, + "end": 26583.18, + "probability": 0.9247 + }, + { + "start": 26583.4, + "end": 26583.94, + "probability": 0.9727 + }, + { + "start": 26585.02, + "end": 26587.54, + "probability": 0.9668 + }, + { + "start": 26589.7, + "end": 26590.96, + "probability": 0.9941 + }, + { + "start": 26592.12, + "end": 26592.74, + "probability": 0.7491 + }, + { + "start": 26594.12, + "end": 26594.86, + "probability": 0.988 + }, + { + "start": 26595.48, + "end": 26597.68, + "probability": 0.9204 + }, + { + "start": 26598.54, + "end": 26600.2, + "probability": 0.9508 + }, + { + "start": 26600.38, + "end": 26604.06, + "probability": 0.9905 + }, + { + "start": 26605.54, + "end": 26607.74, + "probability": 0.9854 + }, + { + "start": 26607.78, + "end": 26608.82, + "probability": 0.6709 + }, + { + "start": 26609.58, + "end": 26610.66, + "probability": 0.6265 + }, + { + "start": 26610.94, + "end": 26611.99, + "probability": 0.9686 + }, + { + "start": 26614.18, + "end": 26616.82, + "probability": 0.9644 + }, + { + "start": 26619.32, + "end": 26622.32, + "probability": 0.9279 + }, + { + "start": 26624.06, + "end": 26624.82, + "probability": 0.4439 + }, + { + "start": 26626.94, + "end": 26628.02, + "probability": 0.9673 + }, + { + "start": 26628.78, + "end": 26630.22, + "probability": 0.7205 + }, + { + "start": 26631.98, + "end": 26632.78, + "probability": 0.0356 + }, + { + "start": 26633.42, + "end": 26637.32, + "probability": 0.8291 + }, + { + "start": 26637.36, + "end": 26639.16, + "probability": 0.5625 + }, + { + "start": 26639.6, + "end": 26642.34, + "probability": 0.9926 + }, + { + "start": 26642.96, + "end": 26645.02, + "probability": 0.8976 + }, + { + "start": 26645.2, + "end": 26645.36, + "probability": 0.2547 + }, + { + "start": 26645.42, + "end": 26645.64, + "probability": 0.9486 + }, + { + "start": 26645.72, + "end": 26647.1, + "probability": 0.8526 + }, + { + "start": 26647.32, + "end": 26647.75, + "probability": 0.2947 + }, + { + "start": 26648.34, + "end": 26649.12, + "probability": 0.0338 + }, + { + "start": 26649.22, + "end": 26649.78, + "probability": 0.1814 + }, + { + "start": 26649.96, + "end": 26650.84, + "probability": 0.3582 + }, + { + "start": 26650.92, + "end": 26652.8, + "probability": 0.523 + }, + { + "start": 26652.8, + "end": 26656.96, + "probability": 0.8647 + }, + { + "start": 26657.24, + "end": 26657.94, + "probability": 0.4084 + }, + { + "start": 26658.2, + "end": 26658.22, + "probability": 0.0807 + }, + { + "start": 26658.22, + "end": 26660.48, + "probability": 0.3951 + }, + { + "start": 26661.2, + "end": 26663.45, + "probability": 0.4558 + }, + { + "start": 26664.2, + "end": 26666.44, + "probability": 0.7688 + }, + { + "start": 26666.9, + "end": 26668.32, + "probability": 0.8139 + }, + { + "start": 26668.54, + "end": 26670.28, + "probability": 0.6689 + }, + { + "start": 26670.62, + "end": 26672.28, + "probability": 0.6429 + }, + { + "start": 26672.3, + "end": 26675.3, + "probability": 0.9729 + }, + { + "start": 26676.04, + "end": 26676.66, + "probability": 0.9199 + }, + { + "start": 26677.18, + "end": 26678.03, + "probability": 0.9268 + }, + { + "start": 26679.76, + "end": 26681.62, + "probability": 0.9364 + }, + { + "start": 26681.74, + "end": 26684.78, + "probability": 0.9115 + }, + { + "start": 26686.14, + "end": 26687.32, + "probability": 0.9476 + }, + { + "start": 26688.96, + "end": 26691.64, + "probability": 0.9853 + }, + { + "start": 26692.72, + "end": 26693.64, + "probability": 0.8367 + }, + { + "start": 26693.84, + "end": 26695.4, + "probability": 0.9884 + }, + { + "start": 26695.56, + "end": 26698.12, + "probability": 0.9948 + }, + { + "start": 26698.4, + "end": 26698.84, + "probability": 0.6835 + }, + { + "start": 26698.96, + "end": 26699.52, + "probability": 0.6393 + }, + { + "start": 26700.24, + "end": 26700.95, + "probability": 0.9465 + }, + { + "start": 26701.92, + "end": 26704.24, + "probability": 0.8864 + }, + { + "start": 26704.36, + "end": 26705.0, + "probability": 0.5071 + }, + { + "start": 26705.06, + "end": 26706.08, + "probability": 0.7691 + }, + { + "start": 26706.44, + "end": 26707.6, + "probability": 0.9211 + }, + { + "start": 26709.94, + "end": 26712.34, + "probability": 0.6493 + }, + { + "start": 26712.48, + "end": 26714.22, + "probability": 0.9315 + }, + { + "start": 26717.83, + "end": 26718.62, + "probability": 0.0137 + }, + { + "start": 26718.62, + "end": 26719.54, + "probability": 0.3328 + }, + { + "start": 26719.58, + "end": 26720.66, + "probability": 0.2557 + }, + { + "start": 26720.96, + "end": 26721.16, + "probability": 0.3621 + }, + { + "start": 26721.18, + "end": 26721.66, + "probability": 0.947 + }, + { + "start": 26721.78, + "end": 26723.22, + "probability": 0.6967 + }, + { + "start": 26723.34, + "end": 26724.92, + "probability": 0.9299 + }, + { + "start": 26726.54, + "end": 26731.12, + "probability": 0.9674 + }, + { + "start": 26731.18, + "end": 26733.48, + "probability": 0.9708 + }, + { + "start": 26733.58, + "end": 26733.82, + "probability": 0.3548 + }, + { + "start": 26734.58, + "end": 26736.86, + "probability": 0.9955 + }, + { + "start": 26738.84, + "end": 26740.18, + "probability": 0.4867 + }, + { + "start": 26740.38, + "end": 26740.96, + "probability": 0.0943 + }, + { + "start": 26741.62, + "end": 26742.56, + "probability": 0.7414 + }, + { + "start": 26743.44, + "end": 26746.52, + "probability": 0.9133 + }, + { + "start": 26746.7, + "end": 26748.96, + "probability": 0.9062 + }, + { + "start": 26749.52, + "end": 26753.64, + "probability": 0.9703 + }, + { + "start": 26753.78, + "end": 26754.24, + "probability": 0.6775 + }, + { + "start": 26755.1, + "end": 26755.7, + "probability": 0.8905 + }, + { + "start": 26756.84, + "end": 26758.12, + "probability": 0.9415 + }, + { + "start": 26758.38, + "end": 26759.06, + "probability": 0.4865 + }, + { + "start": 26759.12, + "end": 26759.98, + "probability": 0.5969 + }, + { + "start": 26760.22, + "end": 26761.38, + "probability": 0.7247 + }, + { + "start": 26761.46, + "end": 26762.08, + "probability": 0.8742 + }, + { + "start": 26763.56, + "end": 26765.24, + "probability": 0.9867 + }, + { + "start": 26766.82, + "end": 26769.46, + "probability": 0.8999 + }, + { + "start": 26769.58, + "end": 26770.64, + "probability": 0.8287 + }, + { + "start": 26771.42, + "end": 26772.02, + "probability": 0.9106 + }, + { + "start": 26772.74, + "end": 26773.18, + "probability": 0.9557 + }, + { + "start": 26774.08, + "end": 26775.8, + "probability": 0.793 + }, + { + "start": 26776.46, + "end": 26778.78, + "probability": 0.9677 + }, + { + "start": 26780.1, + "end": 26784.0, + "probability": 0.9183 + }, + { + "start": 26785.1, + "end": 26793.02, + "probability": 0.978 + }, + { + "start": 26793.2, + "end": 26795.19, + "probability": 0.9736 + }, + { + "start": 26796.0, + "end": 26797.62, + "probability": 0.9153 + }, + { + "start": 26798.6, + "end": 26799.86, + "probability": 0.8854 + }, + { + "start": 26800.0, + "end": 26800.58, + "probability": 0.4973 + }, + { + "start": 26800.66, + "end": 26801.36, + "probability": 0.959 + }, + { + "start": 26801.64, + "end": 26802.44, + "probability": 0.5135 + }, + { + "start": 26803.3, + "end": 26803.9, + "probability": 0.5438 + }, + { + "start": 26806.78, + "end": 26807.18, + "probability": 0.2139 + }, + { + "start": 26807.18, + "end": 26808.16, + "probability": 0.9083 + }, + { + "start": 26808.72, + "end": 26811.09, + "probability": 0.9785 + }, + { + "start": 26811.52, + "end": 26811.52, + "probability": 0.1871 + }, + { + "start": 26812.06, + "end": 26814.22, + "probability": 0.5736 + }, + { + "start": 26814.76, + "end": 26816.24, + "probability": 0.6296 + }, + { + "start": 26816.34, + "end": 26816.9, + "probability": 0.7186 + }, + { + "start": 26817.04, + "end": 26822.16, + "probability": 0.8641 + }, + { + "start": 26822.76, + "end": 26825.16, + "probability": 0.5543 + }, + { + "start": 26825.84, + "end": 26829.46, + "probability": 0.9846 + }, + { + "start": 26830.34, + "end": 26830.44, + "probability": 0.4486 + }, + { + "start": 26830.58, + "end": 26831.12, + "probability": 0.8634 + }, + { + "start": 26831.44, + "end": 26833.2, + "probability": 0.9683 + }, + { + "start": 26835.12, + "end": 26840.5, + "probability": 0.9864 + }, + { + "start": 26842.34, + "end": 26845.34, + "probability": 0.9829 + }, + { + "start": 26845.46, + "end": 26845.8, + "probability": 0.7837 + }, + { + "start": 26846.84, + "end": 26848.14, + "probability": 0.7773 + }, + { + "start": 26848.74, + "end": 26849.44, + "probability": 0.8329 + }, + { + "start": 26849.6, + "end": 26850.22, + "probability": 0.5469 + }, + { + "start": 26850.22, + "end": 26850.96, + "probability": 0.6414 + }, + { + "start": 26851.24, + "end": 26853.94, + "probability": 0.9561 + }, + { + "start": 26853.94, + "end": 26854.22, + "probability": 0.3566 + }, + { + "start": 26854.76, + "end": 26856.28, + "probability": 0.0584 + }, + { + "start": 26856.28, + "end": 26856.9, + "probability": 0.3415 + }, + { + "start": 26857.04, + "end": 26859.56, + "probability": 0.7271 + }, + { + "start": 26859.56, + "end": 26860.84, + "probability": 0.715 + }, + { + "start": 26861.02, + "end": 26867.2, + "probability": 0.9424 + }, + { + "start": 26867.38, + "end": 26868.96, + "probability": 0.8456 + }, + { + "start": 26869.22, + "end": 26871.5, + "probability": 0.9957 + }, + { + "start": 26871.62, + "end": 26872.08, + "probability": 0.6618 + }, + { + "start": 26872.32, + "end": 26872.74, + "probability": 0.2393 + }, + { + "start": 26872.74, + "end": 26873.7, + "probability": 0.9763 + }, + { + "start": 26874.06, + "end": 26875.58, + "probability": 0.9674 + }, + { + "start": 26876.12, + "end": 26877.14, + "probability": 0.9901 + }, + { + "start": 26878.48, + "end": 26879.92, + "probability": 0.2297 + }, + { + "start": 26881.54, + "end": 26882.96, + "probability": 0.6945 + }, + { + "start": 26883.28, + "end": 26886.36, + "probability": 0.7508 + }, + { + "start": 26886.52, + "end": 26887.06, + "probability": 0.5872 + }, + { + "start": 26887.3, + "end": 26887.68, + "probability": 0.8902 + }, + { + "start": 26887.74, + "end": 26889.58, + "probability": 0.9531 + }, + { + "start": 26890.3, + "end": 26894.46, + "probability": 0.8774 + }, + { + "start": 26895.08, + "end": 26897.76, + "probability": 0.995 + }, + { + "start": 26898.48, + "end": 26899.66, + "probability": 0.7055 + }, + { + "start": 26900.06, + "end": 26904.72, + "probability": 0.9778 + }, + { + "start": 26904.72, + "end": 26907.54, + "probability": 0.8987 + }, + { + "start": 26908.16, + "end": 26910.48, + "probability": 0.9954 + }, + { + "start": 26911.24, + "end": 26914.3, + "probability": 0.8626 + }, + { + "start": 26914.76, + "end": 26917.94, + "probability": 0.9446 + }, + { + "start": 26918.46, + "end": 26918.84, + "probability": 0.9041 + }, + { + "start": 26920.64, + "end": 26921.2, + "probability": 0.4633 + }, + { + "start": 26921.4, + "end": 26926.2, + "probability": 0.9709 + }, + { + "start": 26926.86, + "end": 26932.24, + "probability": 0.9908 + }, + { + "start": 26932.36, + "end": 26933.52, + "probability": 0.8135 + }, + { + "start": 26934.6, + "end": 26937.12, + "probability": 0.9885 + }, + { + "start": 26937.12, + "end": 26941.02, + "probability": 0.981 + }, + { + "start": 26942.12, + "end": 26943.94, + "probability": 0.8243 + }, + { + "start": 26944.1, + "end": 26946.28, + "probability": 0.9382 + }, + { + "start": 26947.0, + "end": 26947.85, + "probability": 0.9263 + }, + { + "start": 26948.56, + "end": 26950.88, + "probability": 0.9703 + }, + { + "start": 26951.9, + "end": 26955.18, + "probability": 0.9883 + }, + { + "start": 26956.98, + "end": 26957.52, + "probability": 0.9655 + }, + { + "start": 26959.42, + "end": 26959.98, + "probability": 0.9964 + }, + { + "start": 26960.28, + "end": 26962.82, + "probability": 0.9973 + }, + { + "start": 26963.4, + "end": 26964.64, + "probability": 0.8206 + }, + { + "start": 26965.18, + "end": 26966.98, + "probability": 0.7864 + }, + { + "start": 26967.5, + "end": 26972.46, + "probability": 0.9578 + }, + { + "start": 26972.94, + "end": 26974.48, + "probability": 0.9155 + }, + { + "start": 26974.56, + "end": 26976.06, + "probability": 0.9023 + }, + { + "start": 26977.54, + "end": 26979.42, + "probability": 0.897 + }, + { + "start": 26979.46, + "end": 26982.68, + "probability": 0.9185 + }, + { + "start": 26982.84, + "end": 26983.29, + "probability": 0.2237 + }, + { + "start": 26984.0, + "end": 26989.14, + "probability": 0.9985 + }, + { + "start": 26989.48, + "end": 26990.98, + "probability": 0.9524 + }, + { + "start": 26992.06, + "end": 26992.43, + "probability": 0.8451 + }, + { + "start": 26993.26, + "end": 26994.22, + "probability": 0.9365 + }, + { + "start": 26994.84, + "end": 26995.69, + "probability": 0.8967 + }, + { + "start": 26997.68, + "end": 27001.6, + "probability": 0.7833 + }, + { + "start": 27003.64, + "end": 27006.4, + "probability": 0.9906 + }, + { + "start": 27008.08, + "end": 27009.32, + "probability": 0.6285 + }, + { + "start": 27010.18, + "end": 27013.34, + "probability": 0.9975 + }, + { + "start": 27014.34, + "end": 27015.52, + "probability": 0.9767 + }, + { + "start": 27017.86, + "end": 27018.58, + "probability": 0.6021 + }, + { + "start": 27020.7, + "end": 27022.92, + "probability": 0.5138 + }, + { + "start": 27027.82, + "end": 27029.68, + "probability": 0.9884 + }, + { + "start": 27033.7, + "end": 27036.4, + "probability": 0.8037 + }, + { + "start": 27037.44, + "end": 27039.8, + "probability": 0.9492 + }, + { + "start": 27039.96, + "end": 27041.04, + "probability": 0.8207 + }, + { + "start": 27041.08, + "end": 27046.22, + "probability": 0.9314 + }, + { + "start": 27046.32, + "end": 27047.78, + "probability": 0.9912 + }, + { + "start": 27049.0, + "end": 27049.42, + "probability": 0.4577 + }, + { + "start": 27050.1, + "end": 27050.7, + "probability": 0.0478 + }, + { + "start": 27050.7, + "end": 27050.84, + "probability": 0.0232 + }, + { + "start": 27051.02, + "end": 27053.31, + "probability": 0.2663 + }, + { + "start": 27053.4, + "end": 27054.86, + "probability": 0.5173 + }, + { + "start": 27055.16, + "end": 27057.48, + "probability": 0.9042 + }, + { + "start": 27060.54, + "end": 27060.54, + "probability": 0.1001 + }, + { + "start": 27060.54, + "end": 27060.54, + "probability": 0.039 + }, + { + "start": 27060.54, + "end": 27060.54, + "probability": 0.3186 + }, + { + "start": 27060.54, + "end": 27061.62, + "probability": 0.4632 + }, + { + "start": 27062.62, + "end": 27064.2, + "probability": 0.5159 + }, + { + "start": 27064.3, + "end": 27067.44, + "probability": 0.7855 + }, + { + "start": 27068.94, + "end": 27070.72, + "probability": 0.9979 + }, + { + "start": 27070.72, + "end": 27074.02, + "probability": 0.9866 + }, + { + "start": 27074.3, + "end": 27076.8, + "probability": 0.8684 + }, + { + "start": 27076.88, + "end": 27079.62, + "probability": 0.742 + }, + { + "start": 27080.22, + "end": 27080.8, + "probability": 0.9164 + }, + { + "start": 27080.94, + "end": 27083.1, + "probability": 0.9871 + }, + { + "start": 27083.16, + "end": 27083.58, + "probability": 0.7972 + }, + { + "start": 27084.68, + "end": 27089.42, + "probability": 0.7429 + }, + { + "start": 27090.38, + "end": 27091.96, + "probability": 0.985 + }, + { + "start": 27092.44, + "end": 27093.21, + "probability": 0.8801 + }, + { + "start": 27094.28, + "end": 27097.0, + "probability": 0.9823 + }, + { + "start": 27097.1, + "end": 27097.92, + "probability": 0.9909 + }, + { + "start": 27099.26, + "end": 27099.68, + "probability": 0.9612 + }, + { + "start": 27100.5, + "end": 27102.4, + "probability": 0.9886 + }, + { + "start": 27103.06, + "end": 27104.16, + "probability": 0.9473 + }, + { + "start": 27104.7, + "end": 27107.74, + "probability": 0.773 + }, + { + "start": 27110.7, + "end": 27113.04, + "probability": 0.985 + }, + { + "start": 27113.04, + "end": 27116.48, + "probability": 0.9644 + }, + { + "start": 27116.6, + "end": 27118.0, + "probability": 0.9956 + }, + { + "start": 27118.34, + "end": 27118.86, + "probability": 0.9148 + }, + { + "start": 27119.56, + "end": 27120.36, + "probability": 0.7622 + }, + { + "start": 27122.02, + "end": 27122.46, + "probability": 0.5973 + }, + { + "start": 27122.52, + "end": 27124.52, + "probability": 0.9957 + }, + { + "start": 27125.28, + "end": 27127.52, + "probability": 0.9241 + }, + { + "start": 27127.66, + "end": 27128.3, + "probability": 0.6935 + }, + { + "start": 27128.46, + "end": 27129.14, + "probability": 0.6935 + }, + { + "start": 27130.52, + "end": 27132.72, + "probability": 0.9875 + }, + { + "start": 27134.48, + "end": 27135.96, + "probability": 0.9512 + }, + { + "start": 27137.02, + "end": 27139.86, + "probability": 0.9942 + }, + { + "start": 27141.44, + "end": 27143.04, + "probability": 0.8457 + }, + { + "start": 27143.66, + "end": 27147.78, + "probability": 0.9845 + }, + { + "start": 27149.86, + "end": 27151.98, + "probability": 0.993 + }, + { + "start": 27152.02, + "end": 27156.48, + "probability": 0.9538 + }, + { + "start": 27157.18, + "end": 27159.62, + "probability": 0.9795 + }, + { + "start": 27159.7, + "end": 27161.74, + "probability": 0.9804 + }, + { + "start": 27164.54, + "end": 27167.38, + "probability": 0.9695 + }, + { + "start": 27169.8, + "end": 27173.74, + "probability": 0.9949 + }, + { + "start": 27174.14, + "end": 27177.2, + "probability": 0.7793 + }, + { + "start": 27177.9, + "end": 27178.74, + "probability": 0.8357 + }, + { + "start": 27179.66, + "end": 27181.74, + "probability": 0.7373 + }, + { + "start": 27182.3, + "end": 27184.2, + "probability": 0.8713 + }, + { + "start": 27184.24, + "end": 27186.74, + "probability": 0.7573 + }, + { + "start": 27187.82, + "end": 27189.6, + "probability": 0.89 + }, + { + "start": 27193.4, + "end": 27195.52, + "probability": 0.9583 + }, + { + "start": 27195.66, + "end": 27200.28, + "probability": 0.9506 + }, + { + "start": 27200.56, + "end": 27200.56, + "probability": 0.979 + }, + { + "start": 27201.3, + "end": 27204.74, + "probability": 0.9929 + }, + { + "start": 27205.32, + "end": 27212.66, + "probability": 0.9525 + }, + { + "start": 27213.54, + "end": 27219.68, + "probability": 0.9893 + }, + { + "start": 27219.94, + "end": 27225.42, + "probability": 0.867 + }, + { + "start": 27226.04, + "end": 27228.0, + "probability": 0.9985 + }, + { + "start": 27229.64, + "end": 27231.5, + "probability": 0.7939 + }, + { + "start": 27232.08, + "end": 27233.86, + "probability": 0.6142 + }, + { + "start": 27234.1, + "end": 27237.48, + "probability": 0.9956 + }, + { + "start": 27238.5, + "end": 27239.62, + "probability": 0.981 + }, + { + "start": 27240.5, + "end": 27241.4, + "probability": 0.8687 + }, + { + "start": 27242.26, + "end": 27245.9, + "probability": 0.9909 + }, + { + "start": 27245.9, + "end": 27250.22, + "probability": 0.9772 + }, + { + "start": 27250.3, + "end": 27250.54, + "probability": 0.8942 + }, + { + "start": 27250.7, + "end": 27254.5, + "probability": 0.9797 + }, + { + "start": 27255.08, + "end": 27255.72, + "probability": 0.6285 + }, + { + "start": 27256.56, + "end": 27259.4, + "probability": 0.9908 + }, + { + "start": 27259.52, + "end": 27262.08, + "probability": 0.9803 + }, + { + "start": 27262.3, + "end": 27263.44, + "probability": 0.9932 + }, + { + "start": 27265.28, + "end": 27265.28, + "probability": 0.0512 + }, + { + "start": 27265.28, + "end": 27265.28, + "probability": 0.138 + }, + { + "start": 27265.28, + "end": 27266.74, + "probability": 0.8608 + }, + { + "start": 27266.82, + "end": 27268.1, + "probability": 0.7254 + }, + { + "start": 27268.14, + "end": 27269.6, + "probability": 0.9936 + }, + { + "start": 27272.78, + "end": 27275.26, + "probability": 0.2525 + }, + { + "start": 27275.26, + "end": 27275.26, + "probability": 0.1231 + }, + { + "start": 27275.26, + "end": 27275.26, + "probability": 0.0248 + }, + { + "start": 27275.26, + "end": 27276.42, + "probability": 0.3818 + }, + { + "start": 27277.9, + "end": 27278.2, + "probability": 0.8543 + }, + { + "start": 27278.86, + "end": 27279.86, + "probability": 0.7887 + }, + { + "start": 27280.42, + "end": 27281.42, + "probability": 0.876 + }, + { + "start": 27284.74, + "end": 27285.72, + "probability": 0.9499 + }, + { + "start": 27285.92, + "end": 27287.21, + "probability": 0.9839 + }, + { + "start": 27287.44, + "end": 27288.9, + "probability": 0.4425 + }, + { + "start": 27289.84, + "end": 27291.24, + "probability": 0.989 + }, + { + "start": 27291.38, + "end": 27292.54, + "probability": 0.9958 + }, + { + "start": 27293.26, + "end": 27297.0, + "probability": 0.99 + }, + { + "start": 27297.44, + "end": 27297.9, + "probability": 0.6892 + }, + { + "start": 27298.88, + "end": 27299.8, + "probability": 0.9971 + }, + { + "start": 27300.34, + "end": 27302.3, + "probability": 0.7302 + }, + { + "start": 27302.56, + "end": 27303.14, + "probability": 0.675 + }, + { + "start": 27304.4, + "end": 27305.23, + "probability": 0.9351 + }, + { + "start": 27305.54, + "end": 27308.28, + "probability": 0.9915 + }, + { + "start": 27309.94, + "end": 27310.54, + "probability": 0.6315 + }, + { + "start": 27314.18, + "end": 27314.62, + "probability": 0.273 + }, + { + "start": 27316.24, + "end": 27317.6, + "probability": 0.7795 + }, + { + "start": 27318.8, + "end": 27320.24, + "probability": 0.8652 + }, + { + "start": 27321.24, + "end": 27321.68, + "probability": 0.9338 + }, + { + "start": 27321.74, + "end": 27324.16, + "probability": 0.3742 + }, + { + "start": 27325.28, + "end": 27327.62, + "probability": 0.9973 + }, + { + "start": 27329.84, + "end": 27331.9, + "probability": 0.7064 + }, + { + "start": 27332.4, + "end": 27333.14, + "probability": 0.9786 + }, + { + "start": 27333.86, + "end": 27335.44, + "probability": 0.9983 + }, + { + "start": 27336.78, + "end": 27337.7, + "probability": 0.9885 + }, + { + "start": 27339.12, + "end": 27341.28, + "probability": 0.8831 + }, + { + "start": 27341.6, + "end": 27342.4, + "probability": 0.8189 + }, + { + "start": 27342.64, + "end": 27344.37, + "probability": 0.8013 + }, + { + "start": 27346.2, + "end": 27346.34, + "probability": 0.1201 + }, + { + "start": 27346.34, + "end": 27346.6, + "probability": 0.4055 + }, + { + "start": 27348.16, + "end": 27348.64, + "probability": 0.9223 + }, + { + "start": 27350.12, + "end": 27350.9, + "probability": 0.8524 + }, + { + "start": 27351.36, + "end": 27352.24, + "probability": 0.9956 + }, + { + "start": 27352.6, + "end": 27353.48, + "probability": 0.9875 + }, + { + "start": 27353.54, + "end": 27354.4, + "probability": 0.9678 + }, + { + "start": 27354.74, + "end": 27359.48, + "probability": 0.9761 + }, + { + "start": 27359.6, + "end": 27361.47, + "probability": 0.8101 + }, + { + "start": 27362.78, + "end": 27363.63, + "probability": 0.9595 + }, + { + "start": 27365.98, + "end": 27367.22, + "probability": 0.3511 + }, + { + "start": 27368.5, + "end": 27370.14, + "probability": 0.8639 + }, + { + "start": 27371.04, + "end": 27373.08, + "probability": 0.9899 + }, + { + "start": 27375.58, + "end": 27376.38, + "probability": 0.9584 + }, + { + "start": 27376.54, + "end": 27377.86, + "probability": 0.8232 + }, + { + "start": 27377.92, + "end": 27378.86, + "probability": 0.9037 + }, + { + "start": 27378.94, + "end": 27379.74, + "probability": 0.9729 + }, + { + "start": 27380.14, + "end": 27382.44, + "probability": 0.9827 + }, + { + "start": 27385.88, + "end": 27386.36, + "probability": 0.8491 + }, + { + "start": 27386.42, + "end": 27388.42, + "probability": 0.9829 + }, + { + "start": 27389.18, + "end": 27390.98, + "probability": 0.1314 + }, + { + "start": 27392.12, + "end": 27392.64, + "probability": 0.916 + }, + { + "start": 27394.46, + "end": 27395.96, + "probability": 0.5905 + }, + { + "start": 27397.7, + "end": 27398.88, + "probability": 0.8625 + }, + { + "start": 27400.26, + "end": 27403.02, + "probability": 0.7833 + }, + { + "start": 27403.08, + "end": 27403.66, + "probability": 0.6585 + }, + { + "start": 27403.68, + "end": 27404.58, + "probability": 0.9194 + }, + { + "start": 27405.26, + "end": 27406.22, + "probability": 0.2633 + }, + { + "start": 27407.8, + "end": 27410.42, + "probability": 0.7442 + }, + { + "start": 27412.34, + "end": 27412.6, + "probability": 0.6617 + }, + { + "start": 27412.68, + "end": 27414.5, + "probability": 0.8017 + }, + { + "start": 27414.71, + "end": 27415.38, + "probability": 0.895 + }, + { + "start": 27416.0, + "end": 27416.7, + "probability": 0.5876 + }, + { + "start": 27417.56, + "end": 27417.72, + "probability": 0.5391 + }, + { + "start": 27417.9, + "end": 27418.46, + "probability": 0.7915 + }, + { + "start": 27418.5, + "end": 27420.18, + "probability": 0.4729 + }, + { + "start": 27420.44, + "end": 27422.04, + "probability": 0.9948 + }, + { + "start": 27422.2, + "end": 27423.98, + "probability": 0.4891 + }, + { + "start": 27424.86, + "end": 27425.54, + "probability": 0.9487 + }, + { + "start": 27427.68, + "end": 27428.98, + "probability": 0.8013 + }, + { + "start": 27430.9, + "end": 27431.8, + "probability": 0.947 + }, + { + "start": 27432.02, + "end": 27434.07, + "probability": 0.9924 + }, + { + "start": 27435.76, + "end": 27438.46, + "probability": 0.7205 + }, + { + "start": 27438.54, + "end": 27439.18, + "probability": 0.7296 + }, + { + "start": 27439.82, + "end": 27440.54, + "probability": 0.2129 + }, + { + "start": 27441.1, + "end": 27442.8, + "probability": 0.1845 + }, + { + "start": 27443.12, + "end": 27443.74, + "probability": 0.2784 + }, + { + "start": 27443.82, + "end": 27444.9, + "probability": 0.9069 + }, + { + "start": 27446.52, + "end": 27447.46, + "probability": 0.8886 + }, + { + "start": 27448.9, + "end": 27449.24, + "probability": 0.908 + }, + { + "start": 27449.68, + "end": 27451.1, + "probability": 0.9641 + }, + { + "start": 27451.38, + "end": 27451.86, + "probability": 0.3353 + }, + { + "start": 27451.94, + "end": 27452.14, + "probability": 0.7854 + }, + { + "start": 27452.28, + "end": 27452.94, + "probability": 0.8195 + }, + { + "start": 27452.94, + "end": 27453.56, + "probability": 0.3702 + }, + { + "start": 27455.06, + "end": 27456.1, + "probability": 0.9921 + }, + { + "start": 27456.24, + "end": 27457.38, + "probability": 0.8271 + }, + { + "start": 27457.72, + "end": 27459.94, + "probability": 0.6851 + }, + { + "start": 27460.54, + "end": 27462.52, + "probability": 0.171 + }, + { + "start": 27462.58, + "end": 27463.0, + "probability": 0.8049 + }, + { + "start": 27463.38, + "end": 27464.22, + "probability": 0.5343 + }, + { + "start": 27465.3, + "end": 27467.28, + "probability": 0.9337 + }, + { + "start": 27467.86, + "end": 27469.66, + "probability": 0.917 + }, + { + "start": 27469.94, + "end": 27470.48, + "probability": 0.9556 + }, + { + "start": 27472.5, + "end": 27473.66, + "probability": 0.6623 + }, + { + "start": 27474.22, + "end": 27476.48, + "probability": 0.9658 + }, + { + "start": 27477.98, + "end": 27478.42, + "probability": 0.8918 + }, + { + "start": 27479.82, + "end": 27480.46, + "probability": 0.8528 + }, + { + "start": 27484.1, + "end": 27484.64, + "probability": 0.2652 + }, + { + "start": 27484.82, + "end": 27486.42, + "probability": 0.0231 + }, + { + "start": 27486.68, + "end": 27492.1, + "probability": 0.853 + }, + { + "start": 27494.3, + "end": 27496.91, + "probability": 0.7901 + }, + { + "start": 27497.62, + "end": 27498.8, + "probability": 0.8583 + }, + { + "start": 27498.92, + "end": 27500.64, + "probability": 0.7621 + }, + { + "start": 27501.42, + "end": 27502.18, + "probability": 0.7581 + }, + { + "start": 27502.3, + "end": 27502.74, + "probability": 0.5611 + }, + { + "start": 27503.04, + "end": 27503.98, + "probability": 0.9603 + }, + { + "start": 27505.2, + "end": 27506.12, + "probability": 0.9971 + }, + { + "start": 27506.6, + "end": 27507.16, + "probability": 0.8267 + }, + { + "start": 27507.2, + "end": 27508.34, + "probability": 0.9807 + }, + { + "start": 27508.38, + "end": 27509.1, + "probability": 0.4874 + }, + { + "start": 27509.32, + "end": 27509.84, + "probability": 0.8889 + }, + { + "start": 27510.4, + "end": 27511.7, + "probability": 0.6811 + }, + { + "start": 27511.78, + "end": 27512.94, + "probability": 0.9895 + }, + { + "start": 27514.06, + "end": 27516.42, + "probability": 0.0255 + }, + { + "start": 27516.42, + "end": 27517.3, + "probability": 0.4146 + }, + { + "start": 27518.22, + "end": 27520.12, + "probability": 0.9541 + }, + { + "start": 27521.66, + "end": 27521.66, + "probability": 0.2877 + }, + { + "start": 27521.66, + "end": 27523.38, + "probability": 0.8079 + }, + { + "start": 27527.36, + "end": 27529.44, + "probability": 0.9866 + }, + { + "start": 27529.84, + "end": 27530.14, + "probability": 0.9827 + }, + { + "start": 27530.3, + "end": 27531.04, + "probability": 0.9976 + }, + { + "start": 27532.8, + "end": 27536.38, + "probability": 0.6955 + }, + { + "start": 27537.76, + "end": 27539.28, + "probability": 0.9745 + }, + { + "start": 27539.36, + "end": 27541.07, + "probability": 0.9723 + }, + { + "start": 27541.94, + "end": 27543.3, + "probability": 0.929 + }, + { + "start": 27543.42, + "end": 27543.92, + "probability": 0.9473 + }, + { + "start": 27544.0, + "end": 27546.46, + "probability": 0.6559 + }, + { + "start": 27547.02, + "end": 27549.2, + "probability": 0.3918 + }, + { + "start": 27549.2, + "end": 27549.58, + "probability": 0.8061 + }, + { + "start": 27549.96, + "end": 27552.04, + "probability": 0.7648 + }, + { + "start": 27552.94, + "end": 27555.1, + "probability": 0.7613 + }, + { + "start": 27555.22, + "end": 27556.62, + "probability": 0.8672 + }, + { + "start": 27557.24, + "end": 27560.4, + "probability": 0.9274 + }, + { + "start": 27561.08, + "end": 27562.78, + "probability": 0.7418 + }, + { + "start": 27563.28, + "end": 27565.48, + "probability": 0.8033 + }, + { + "start": 27566.48, + "end": 27568.9, + "probability": 0.9884 + }, + { + "start": 27569.42, + "end": 27569.64, + "probability": 0.754 + }, + { + "start": 27570.56, + "end": 27572.56, + "probability": 0.749 + }, + { + "start": 27572.76, + "end": 27576.02, + "probability": 0.7145 + }, + { + "start": 27576.2, + "end": 27577.3, + "probability": 0.745 + }, + { + "start": 27577.42, + "end": 27580.68, + "probability": 0.9182 + }, + { + "start": 27580.9, + "end": 27582.72, + "probability": 0.8015 + }, + { + "start": 27584.54, + "end": 27588.38, + "probability": 0.9873 + }, + { + "start": 27589.44, + "end": 27590.42, + "probability": 0.9079 + }, + { + "start": 27591.74, + "end": 27593.62, + "probability": 0.4698 + }, + { + "start": 27593.92, + "end": 27596.36, + "probability": 0.5819 + }, + { + "start": 27598.8, + "end": 27599.4, + "probability": 0.4661 + }, + { + "start": 27601.08, + "end": 27602.06, + "probability": 0.7145 + }, + { + "start": 27602.76, + "end": 27605.18, + "probability": 0.8889 + }, + { + "start": 27605.6, + "end": 27608.24, + "probability": 0.1234 + }, + { + "start": 27608.28, + "end": 27608.46, + "probability": 0.1982 + }, + { + "start": 27608.8, + "end": 27611.68, + "probability": 0.9276 + }, + { + "start": 27611.78, + "end": 27612.24, + "probability": 0.4173 + }, + { + "start": 27612.24, + "end": 27615.34, + "probability": 0.2081 + }, + { + "start": 27616.74, + "end": 27616.74, + "probability": 0.125 + }, + { + "start": 27616.74, + "end": 27618.32, + "probability": 0.8898 + }, + { + "start": 27618.58, + "end": 27621.52, + "probability": 0.8895 + }, + { + "start": 27624.64, + "end": 27627.12, + "probability": 0.9326 + }, + { + "start": 27629.62, + "end": 27633.44, + "probability": 0.9808 + }, + { + "start": 27633.96, + "end": 27637.7, + "probability": 0.999 + }, + { + "start": 27639.42, + "end": 27641.12, + "probability": 0.6257 + }, + { + "start": 27641.2, + "end": 27642.34, + "probability": 0.8834 + }, + { + "start": 27642.42, + "end": 27646.16, + "probability": 0.9751 + }, + { + "start": 27649.1, + "end": 27651.0, + "probability": 0.9882 + }, + { + "start": 27651.08, + "end": 27652.34, + "probability": 0.9988 + }, + { + "start": 27654.62, + "end": 27656.16, + "probability": 0.9967 + }, + { + "start": 27656.84, + "end": 27657.12, + "probability": 0.4848 + }, + { + "start": 27657.4, + "end": 27658.52, + "probability": 0.747 + }, + { + "start": 27658.62, + "end": 27660.58, + "probability": 0.969 + }, + { + "start": 27661.04, + "end": 27662.56, + "probability": 0.9888 + }, + { + "start": 27663.08, + "end": 27664.68, + "probability": 0.7203 + }, + { + "start": 27666.42, + "end": 27666.66, + "probability": 0.1309 + }, + { + "start": 27667.3, + "end": 27669.64, + "probability": 0.9546 + }, + { + "start": 27670.2, + "end": 27670.42, + "probability": 0.5164 + }, + { + "start": 27671.7, + "end": 27673.5, + "probability": 0.9868 + }, + { + "start": 27674.86, + "end": 27675.0, + "probability": 0.5643 + }, + { + "start": 27675.72, + "end": 27678.24, + "probability": 0.9624 + }, + { + "start": 27679.68, + "end": 27680.22, + "probability": 0.9321 + }, + { + "start": 27681.92, + "end": 27688.98, + "probability": 0.9917 + }, + { + "start": 27690.46, + "end": 27693.92, + "probability": 0.7709 + }, + { + "start": 27698.98, + "end": 27701.3, + "probability": 0.8365 + }, + { + "start": 27703.36, + "end": 27705.08, + "probability": 0.8223 + }, + { + "start": 27707.64, + "end": 27708.54, + "probability": 0.9851 + }, + { + "start": 27710.68, + "end": 27711.46, + "probability": 0.9093 + }, + { + "start": 27711.58, + "end": 27713.8, + "probability": 0.9924 + }, + { + "start": 27714.42, + "end": 27714.66, + "probability": 0.1622 + }, + { + "start": 27714.72, + "end": 27715.64, + "probability": 0.8979 + }, + { + "start": 27715.92, + "end": 27716.12, + "probability": 0.2422 + }, + { + "start": 27716.22, + "end": 27717.41, + "probability": 0.9824 + }, + { + "start": 27717.48, + "end": 27718.12, + "probability": 0.7418 + }, + { + "start": 27718.16, + "end": 27719.28, + "probability": 0.8797 + }, + { + "start": 27720.28, + "end": 27720.62, + "probability": 0.6086 + }, + { + "start": 27720.7, + "end": 27721.3, + "probability": 0.7934 + }, + { + "start": 27721.84, + "end": 27723.16, + "probability": 0.1697 + }, + { + "start": 27723.9, + "end": 27726.9, + "probability": 0.4554 + }, + { + "start": 27727.06, + "end": 27729.6, + "probability": 0.8939 + }, + { + "start": 27729.62, + "end": 27730.49, + "probability": 0.315 + }, + { + "start": 27732.78, + "end": 27734.0, + "probability": 0.424 + }, + { + "start": 27736.38, + "end": 27737.46, + "probability": 0.9742 + }, + { + "start": 27740.46, + "end": 27740.46, + "probability": 0.0236 + }, + { + "start": 27740.46, + "end": 27741.76, + "probability": 0.691 + }, + { + "start": 27742.44, + "end": 27749.24, + "probability": 0.7799 + }, + { + "start": 27750.5, + "end": 27751.54, + "probability": 0.9265 + }, + { + "start": 27751.92, + "end": 27753.43, + "probability": 0.9932 + }, + { + "start": 27753.78, + "end": 27754.78, + "probability": 0.6361 + }, + { + "start": 27755.24, + "end": 27755.34, + "probability": 0.0055 + }, + { + "start": 27755.34, + "end": 27755.92, + "probability": 0.2182 + }, + { + "start": 27755.92, + "end": 27756.84, + "probability": 0.4971 + }, + { + "start": 27757.24, + "end": 27759.72, + "probability": 0.9858 + }, + { + "start": 27760.84, + "end": 27762.38, + "probability": 0.6921 + }, + { + "start": 27763.16, + "end": 27764.98, + "probability": 0.9399 + }, + { + "start": 27766.64, + "end": 27767.83, + "probability": 0.0105 + }, + { + "start": 27770.1, + "end": 27770.4, + "probability": 0.0086 + }, + { + "start": 27770.4, + "end": 27770.4, + "probability": 0.1459 + }, + { + "start": 27770.4, + "end": 27771.46, + "probability": 0.1001 + }, + { + "start": 27772.08, + "end": 27772.98, + "probability": 0.9072 + }, + { + "start": 27773.2, + "end": 27775.16, + "probability": 0.8281 + }, + { + "start": 27775.74, + "end": 27779.3, + "probability": 0.9805 + }, + { + "start": 27780.4, + "end": 27782.36, + "probability": 0.9213 + }, + { + "start": 27783.82, + "end": 27785.4, + "probability": 0.9694 + }, + { + "start": 27786.56, + "end": 27788.82, + "probability": 0.7197 + }, + { + "start": 27789.22, + "end": 27789.84, + "probability": 0.061 + }, + { + "start": 27790.3, + "end": 27790.46, + "probability": 0.4823 + }, + { + "start": 27791.52, + "end": 27793.57, + "probability": 0.9889 + }, + { + "start": 27796.0, + "end": 27798.56, + "probability": 0.8376 + }, + { + "start": 27800.68, + "end": 27800.68, + "probability": 0.002 + }, + { + "start": 27801.8, + "end": 27801.8, + "probability": 0.2131 + }, + { + "start": 27801.8, + "end": 27801.8, + "probability": 0.2354 + }, + { + "start": 27801.8, + "end": 27802.83, + "probability": 0.5455 + }, + { + "start": 27803.3, + "end": 27803.68, + "probability": 0.916 + }, + { + "start": 27803.78, + "end": 27805.3, + "probability": 0.8794 + }, + { + "start": 27805.9, + "end": 27809.5, + "probability": 0.9432 + }, + { + "start": 27810.3, + "end": 27811.02, + "probability": 0.7118 + }, + { + "start": 27811.16, + "end": 27811.76, + "probability": 0.608 + }, + { + "start": 27811.76, + "end": 27812.86, + "probability": 0.553 + }, + { + "start": 27812.92, + "end": 27814.41, + "probability": 0.7129 + }, + { + "start": 27815.58, + "end": 27821.46, + "probability": 0.9936 + }, + { + "start": 27822.64, + "end": 27823.36, + "probability": 0.5342 + }, + { + "start": 27823.36, + "end": 27826.08, + "probability": 0.9937 + }, + { + "start": 27826.62, + "end": 27827.0, + "probability": 0.8171 + }, + { + "start": 27828.9, + "end": 27830.26, + "probability": 0.9193 + }, + { + "start": 27831.4, + "end": 27833.34, + "probability": 0.9648 + }, + { + "start": 27834.78, + "end": 27834.82, + "probability": 0.0257 + }, + { + "start": 27834.82, + "end": 27835.2, + "probability": 0.4656 + }, + { + "start": 27835.46, + "end": 27835.54, + "probability": 0.3277 + }, + { + "start": 27835.74, + "end": 27837.94, + "probability": 0.9567 + }, + { + "start": 27838.82, + "end": 27840.8, + "probability": 0.981 + }, + { + "start": 27841.9, + "end": 27843.24, + "probability": 0.9607 + }, + { + "start": 27845.14, + "end": 27846.16, + "probability": 0.8389 + }, + { + "start": 27846.88, + "end": 27847.44, + "probability": 0.7968 + }, + { + "start": 27847.54, + "end": 27848.34, + "probability": 0.963 + }, + { + "start": 27848.4, + "end": 27849.29, + "probability": 0.8386 + }, + { + "start": 27850.04, + "end": 27851.06, + "probability": 0.7066 + }, + { + "start": 27851.14, + "end": 27852.72, + "probability": 0.5652 + }, + { + "start": 27853.16, + "end": 27853.86, + "probability": 0.5977 + }, + { + "start": 27853.86, + "end": 27854.28, + "probability": 0.8447 + }, + { + "start": 27855.4, + "end": 27855.94, + "probability": 0.8051 + }, + { + "start": 27856.12, + "end": 27857.48, + "probability": 0.8926 + }, + { + "start": 27858.6, + "end": 27859.24, + "probability": 0.9477 + }, + { + "start": 27860.08, + "end": 27863.96, + "probability": 0.678 + }, + { + "start": 27865.62, + "end": 27866.52, + "probability": 0.8694 + }, + { + "start": 27867.04, + "end": 27868.7, + "probability": 0.6641 + }, + { + "start": 27868.78, + "end": 27871.36, + "probability": 0.6476 + }, + { + "start": 27872.88, + "end": 27874.66, + "probability": 0.3698 + }, + { + "start": 27874.72, + "end": 27876.38, + "probability": 0.9281 + }, + { + "start": 27877.94, + "end": 27880.34, + "probability": 0.9174 + }, + { + "start": 27882.72, + "end": 27883.58, + "probability": 0.9597 + }, + { + "start": 27885.2, + "end": 27887.14, + "probability": 0.048 + }, + { + "start": 27887.58, + "end": 27889.14, + "probability": 0.7019 + }, + { + "start": 27892.64, + "end": 27893.1, + "probability": 0.6097 + }, + { + "start": 27894.92, + "end": 27895.78, + "probability": 0.7781 + }, + { + "start": 27898.91, + "end": 27901.68, + "probability": 0.9204 + }, + { + "start": 27903.14, + "end": 27907.06, + "probability": 0.9458 + }, + { + "start": 27907.22, + "end": 27908.18, + "probability": 0.0016 + }, + { + "start": 27908.26, + "end": 27910.72, + "probability": 0.9014 + }, + { + "start": 27910.72, + "end": 27911.62, + "probability": 0.8149 + }, + { + "start": 27911.62, + "end": 27912.52, + "probability": 0.8587 + }, + { + "start": 27913.1, + "end": 27914.28, + "probability": 0.822 + }, + { + "start": 27915.96, + "end": 27918.6, + "probability": 0.1625 + }, + { + "start": 27918.68, + "end": 27920.2, + "probability": 0.6799 + }, + { + "start": 27920.86, + "end": 27921.68, + "probability": 0.7879 + }, + { + "start": 27923.0, + "end": 27929.84, + "probability": 0.5028 + }, + { + "start": 27930.04, + "end": 27933.28, + "probability": 0.8233 + }, + { + "start": 27934.94, + "end": 27935.06, + "probability": 0.0367 + }, + { + "start": 27935.06, + "end": 27935.41, + "probability": 0.6748 + }, + { + "start": 27936.54, + "end": 27943.72, + "probability": 0.6968 + }, + { + "start": 27944.82, + "end": 27948.3, + "probability": 0.8974 + }, + { + "start": 27948.74, + "end": 27949.24, + "probability": 0.2514 + }, + { + "start": 27949.52, + "end": 27949.8, + "probability": 0.5285 + }, + { + "start": 27950.9, + "end": 27951.26, + "probability": 0.0192 + }, + { + "start": 27951.26, + "end": 27951.26, + "probability": 0.0034 + }, + { + "start": 27951.26, + "end": 27953.76, + "probability": 0.6125 + }, + { + "start": 27955.0, + "end": 27956.16, + "probability": 0.9534 + }, + { + "start": 27957.4, + "end": 27959.08, + "probability": 0.9659 + }, + { + "start": 27959.3, + "end": 27960.4, + "probability": 0.1537 + }, + { + "start": 27960.52, + "end": 27962.42, + "probability": 0.7801 + }, + { + "start": 27963.28, + "end": 27964.22, + "probability": 0.8807 + }, + { + "start": 27964.3, + "end": 27964.98, + "probability": 0.7926 + }, + { + "start": 27965.48, + "end": 27968.78, + "probability": 0.9745 + }, + { + "start": 27969.42, + "end": 27972.24, + "probability": 0.8003 + }, + { + "start": 27972.62, + "end": 27977.5, + "probability": 0.9973 + }, + { + "start": 27978.04, + "end": 27979.3, + "probability": 0.9062 + }, + { + "start": 27980.26, + "end": 27982.16, + "probability": 0.9922 + }, + { + "start": 27982.62, + "end": 27984.92, + "probability": 0.7665 + }, + { + "start": 27992.78, + "end": 27995.16, + "probability": 0.7094 + }, + { + "start": 27996.44, + "end": 28000.96, + "probability": 0.9925 + }, + { + "start": 28001.62, + "end": 28002.02, + "probability": 0.703 + }, + { + "start": 28002.56, + "end": 28006.98, + "probability": 0.0732 + }, + { + "start": 28007.8, + "end": 28013.08, + "probability": 0.9666 + }, + { + "start": 28014.28, + "end": 28014.5, + "probability": 0.4482 + }, + { + "start": 28014.68, + "end": 28014.96, + "probability": 0.6703 + }, + { + "start": 28015.14, + "end": 28018.32, + "probability": 0.9648 + }, + { + "start": 28018.74, + "end": 28019.57, + "probability": 0.7144 + }, + { + "start": 28020.58, + "end": 28021.58, + "probability": 0.7699 + }, + { + "start": 28021.7, + "end": 28022.85, + "probability": 0.8928 + }, + { + "start": 28024.0, + "end": 28025.94, + "probability": 0.8434 + }, + { + "start": 28027.48, + "end": 28029.34, + "probability": 0.5151 + }, + { + "start": 28030.26, + "end": 28031.22, + "probability": 0.92 + }, + { + "start": 28032.0, + "end": 28033.35, + "probability": 0.952 + }, + { + "start": 28034.12, + "end": 28036.13, + "probability": 0.9951 + }, + { + "start": 28037.24, + "end": 28039.18, + "probability": 0.9954 + }, + { + "start": 28039.26, + "end": 28041.26, + "probability": 0.9937 + }, + { + "start": 28041.8, + "end": 28043.96, + "probability": 0.9867 + }, + { + "start": 28044.62, + "end": 28048.32, + "probability": 0.9973 + }, + { + "start": 28048.7, + "end": 28052.33, + "probability": 0.9949 + }, + { + "start": 28053.16, + "end": 28057.18, + "probability": 0.9586 + }, + { + "start": 28057.56, + "end": 28058.6, + "probability": 0.436 + }, + { + "start": 28059.0, + "end": 28061.64, + "probability": 0.4442 + }, + { + "start": 28062.2, + "end": 28063.62, + "probability": 0.2312 + }, + { + "start": 28063.9, + "end": 28065.86, + "probability": 0.9653 + }, + { + "start": 28067.82, + "end": 28069.34, + "probability": 0.9995 + }, + { + "start": 28069.52, + "end": 28070.7, + "probability": 0.4829 + }, + { + "start": 28070.92, + "end": 28072.6, + "probability": 0.4996 + }, + { + "start": 28072.96, + "end": 28073.5, + "probability": 0.0652 + }, + { + "start": 28073.5, + "end": 28074.9, + "probability": 0.4152 + }, + { + "start": 28075.4, + "end": 28078.56, + "probability": 0.1507 + }, + { + "start": 28078.72, + "end": 28079.04, + "probability": 0.1019 + }, + { + "start": 28079.1, + "end": 28079.56, + "probability": 0.5974 + }, + { + "start": 28079.64, + "end": 28082.25, + "probability": 0.9819 + }, + { + "start": 28082.64, + "end": 28084.38, + "probability": 0.754 + }, + { + "start": 28085.1, + "end": 28085.71, + "probability": 0.7127 + }, + { + "start": 28087.54, + "end": 28090.6, + "probability": 0.3798 + }, + { + "start": 28090.86, + "end": 28092.86, + "probability": 0.9565 + }, + { + "start": 28094.24, + "end": 28095.84, + "probability": 0.9995 + }, + { + "start": 28096.08, + "end": 28097.54, + "probability": 0.8297 + }, + { + "start": 28099.0, + "end": 28102.06, + "probability": 0.7754 + }, + { + "start": 28104.14, + "end": 28104.78, + "probability": 0.9467 + }, + { + "start": 28105.7, + "end": 28106.84, + "probability": 0.936 + }, + { + "start": 28107.94, + "end": 28109.1, + "probability": 0.9603 + }, + { + "start": 28110.04, + "end": 28111.78, + "probability": 0.9627 + }, + { + "start": 28114.04, + "end": 28115.72, + "probability": 0.911 + }, + { + "start": 28116.28, + "end": 28117.58, + "probability": 0.9894 + }, + { + "start": 28118.26, + "end": 28119.0, + "probability": 0.4886 + }, + { + "start": 28119.94, + "end": 28122.42, + "probability": 0.8472 + }, + { + "start": 28123.3, + "end": 28127.32, + "probability": 0.9812 + }, + { + "start": 28128.42, + "end": 28129.86, + "probability": 0.9795 + }, + { + "start": 28129.96, + "end": 28131.1, + "probability": 0.8934 + }, + { + "start": 28131.14, + "end": 28131.68, + "probability": 0.8818 + }, + { + "start": 28131.76, + "end": 28132.3, + "probability": 0.9602 + }, + { + "start": 28132.62, + "end": 28133.94, + "probability": 0.9909 + }, + { + "start": 28134.02, + "end": 28134.44, + "probability": 0.8326 + }, + { + "start": 28134.52, + "end": 28135.06, + "probability": 0.9489 + }, + { + "start": 28135.22, + "end": 28137.0, + "probability": 0.694 + }, + { + "start": 28138.1, + "end": 28139.92, + "probability": 0.8838 + }, + { + "start": 28140.02, + "end": 28141.28, + "probability": 0.9622 + }, + { + "start": 28141.42, + "end": 28142.24, + "probability": 0.8924 + }, + { + "start": 28142.88, + "end": 28144.3, + "probability": 0.9911 + }, + { + "start": 28144.46, + "end": 28145.6, + "probability": 0.7915 + }, + { + "start": 28145.92, + "end": 28146.65, + "probability": 0.9672 + }, + { + "start": 28148.34, + "end": 28151.14, + "probability": 0.9594 + }, + { + "start": 28151.98, + "end": 28153.04, + "probability": 0.9819 + }, + { + "start": 28154.86, + "end": 28158.58, + "probability": 0.9884 + }, + { + "start": 28159.76, + "end": 28162.26, + "probability": 0.9595 + }, + { + "start": 28162.84, + "end": 28164.32, + "probability": 0.9673 + }, + { + "start": 28164.94, + "end": 28169.44, + "probability": 0.9927 + }, + { + "start": 28170.98, + "end": 28174.84, + "probability": 0.9924 + }, + { + "start": 28176.02, + "end": 28179.16, + "probability": 0.8196 + }, + { + "start": 28180.26, + "end": 28181.64, + "probability": 0.9717 + }, + { + "start": 28184.62, + "end": 28187.38, + "probability": 0.7688 + }, + { + "start": 28187.52, + "end": 28189.5, + "probability": 0.9598 + }, + { + "start": 28189.9, + "end": 28189.9, + "probability": 0.0077 + }, + { + "start": 28191.12, + "end": 28193.8, + "probability": 0.8275 + }, + { + "start": 28194.54, + "end": 28196.14, + "probability": 0.9348 + }, + { + "start": 28196.76, + "end": 28199.02, + "probability": 0.8789 + }, + { + "start": 28199.2, + "end": 28200.92, + "probability": 0.599 + }, + { + "start": 28201.46, + "end": 28201.68, + "probability": 0.0458 + }, + { + "start": 28201.68, + "end": 28203.18, + "probability": 0.8327 + }, + { + "start": 28203.22, + "end": 28205.92, + "probability": 0.181 + }, + { + "start": 28208.38, + "end": 28208.42, + "probability": 0.021 + }, + { + "start": 28208.96, + "end": 28209.2, + "probability": 0.2572 + }, + { + "start": 28209.2, + "end": 28209.2, + "probability": 0.1304 + }, + { + "start": 28209.2, + "end": 28209.2, + "probability": 0.0298 + }, + { + "start": 28209.2, + "end": 28209.2, + "probability": 0.0391 + }, + { + "start": 28209.2, + "end": 28209.2, + "probability": 0.1031 + }, + { + "start": 28209.2, + "end": 28209.2, + "probability": 0.2352 + }, + { + "start": 28209.2, + "end": 28213.02, + "probability": 0.2603 + }, + { + "start": 28213.12, + "end": 28214.1, + "probability": 0.2144 + }, + { + "start": 28214.1, + "end": 28214.82, + "probability": 0.2741 + }, + { + "start": 28214.84, + "end": 28215.36, + "probability": 0.2708 + }, + { + "start": 28215.42, + "end": 28215.94, + "probability": 0.7575 + }, + { + "start": 28215.98, + "end": 28218.3, + "probability": 0.9043 + }, + { + "start": 28219.02, + "end": 28222.36, + "probability": 0.9678 + }, + { + "start": 28223.02, + "end": 28223.42, + "probability": 0.7283 + }, + { + "start": 28223.56, + "end": 28226.96, + "probability": 0.9353 + }, + { + "start": 28227.1, + "end": 28228.32, + "probability": 0.8564 + }, + { + "start": 28229.7, + "end": 28231.31, + "probability": 0.9946 + }, + { + "start": 28243.42, + "end": 28243.94, + "probability": 0.2461 + }, + { + "start": 28243.94, + "end": 28243.94, + "probability": 0.0792 + }, + { + "start": 28243.94, + "end": 28243.94, + "probability": 0.0609 + }, + { + "start": 28243.94, + "end": 28243.94, + "probability": 0.0062 + }, + { + "start": 28244.84, + "end": 28245.88, + "probability": 0.3223 + }, + { + "start": 28246.4, + "end": 28247.12, + "probability": 0.9482 + }, + { + "start": 28247.96, + "end": 28248.4, + "probability": 0.4874 + }, + { + "start": 28249.94, + "end": 28251.92, + "probability": 0.558 + }, + { + "start": 28252.24, + "end": 28253.68, + "probability": 0.761 + }, + { + "start": 28254.34, + "end": 28257.1, + "probability": 0.9677 + }, + { + "start": 28259.06, + "end": 28259.76, + "probability": 0.5969 + }, + { + "start": 28259.78, + "end": 28260.44, + "probability": 0.7903 + }, + { + "start": 28260.5, + "end": 28262.54, + "probability": 0.937 + }, + { + "start": 28263.02, + "end": 28266.32, + "probability": 0.7362 + }, + { + "start": 28268.22, + "end": 28270.26, + "probability": 0.8752 + }, + { + "start": 28270.88, + "end": 28272.24, + "probability": 0.9957 + }, + { + "start": 28273.1, + "end": 28277.9, + "probability": 0.9784 + }, + { + "start": 28278.54, + "end": 28279.24, + "probability": 0.6719 + }, + { + "start": 28280.06, + "end": 28281.9, + "probability": 0.9132 + }, + { + "start": 28282.62, + "end": 28283.8, + "probability": 0.9965 + }, + { + "start": 28284.34, + "end": 28286.08, + "probability": 0.999 + }, + { + "start": 28287.28, + "end": 28287.98, + "probability": 0.9024 + }, + { + "start": 28288.88, + "end": 28292.89, + "probability": 0.9854 + }, + { + "start": 28293.64, + "end": 28294.9, + "probability": 0.5375 + }, + { + "start": 28294.9, + "end": 28297.56, + "probability": 0.2218 + }, + { + "start": 28297.62, + "end": 28298.12, + "probability": 0.4519 + }, + { + "start": 28298.4, + "end": 28298.44, + "probability": 0.1161 + }, + { + "start": 28298.44, + "end": 28299.92, + "probability": 0.4459 + }, + { + "start": 28299.94, + "end": 28300.81, + "probability": 0.0608 + }, + { + "start": 28302.5, + "end": 28303.9, + "probability": 0.3932 + }, + { + "start": 28305.8, + "end": 28307.92, + "probability": 0.1407 + }, + { + "start": 28308.12, + "end": 28308.84, + "probability": 0.0201 + }, + { + "start": 28308.84, + "end": 28309.98, + "probability": 0.6671 + }, + { + "start": 28312.42, + "end": 28315.24, + "probability": 0.0532 + }, + { + "start": 28318.65, + "end": 28320.76, + "probability": 0.2795 + }, + { + "start": 28321.52, + "end": 28322.3, + "probability": 0.1099 + }, + { + "start": 28322.32, + "end": 28322.32, + "probability": 0.2724 + }, + { + "start": 28322.32, + "end": 28323.38, + "probability": 0.6831 + }, + { + "start": 28323.56, + "end": 28324.36, + "probability": 0.238 + }, + { + "start": 28326.0, + "end": 28327.19, + "probability": 0.034 + }, + { + "start": 28328.42, + "end": 28330.1, + "probability": 0.1077 + }, + { + "start": 28330.36, + "end": 28331.38, + "probability": 0.1805 + }, + { + "start": 28335.8, + "end": 28336.8, + "probability": 0.0176 + }, + { + "start": 28336.8, + "end": 28338.64, + "probability": 0.1251 + }, + { + "start": 28338.64, + "end": 28338.64, + "probability": 0.008 + }, + { + "start": 28338.64, + "end": 28341.32, + "probability": 0.173 + }, + { + "start": 28344.48, + "end": 28344.48, + "probability": 0.1955 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.0, + "end": 28390.0, + "probability": 0.0 + }, + { + "start": 28390.62, + "end": 28390.64, + "probability": 0.0291 + }, + { + "start": 28390.64, + "end": 28390.74, + "probability": 0.1035 + }, + { + "start": 28390.74, + "end": 28395.82, + "probability": 0.9565 + }, + { + "start": 28396.44, + "end": 28399.08, + "probability": 0.8944 + }, + { + "start": 28399.16, + "end": 28400.0, + "probability": 0.8058 + }, + { + "start": 28400.74, + "end": 28403.78, + "probability": 0.9841 + }, + { + "start": 28404.28, + "end": 28406.7, + "probability": 0.9327 + }, + { + "start": 28407.08, + "end": 28410.62, + "probability": 0.7933 + }, + { + "start": 28410.74, + "end": 28411.64, + "probability": 0.7265 + }, + { + "start": 28411.88, + "end": 28413.44, + "probability": 0.9056 + }, + { + "start": 28413.82, + "end": 28415.66, + "probability": 0.9844 + }, + { + "start": 28415.78, + "end": 28417.76, + "probability": 0.8416 + }, + { + "start": 28418.42, + "end": 28420.68, + "probability": 0.9941 + }, + { + "start": 28421.16, + "end": 28423.3, + "probability": 0.8459 + }, + { + "start": 28423.9, + "end": 28426.72, + "probability": 0.9285 + }, + { + "start": 28426.94, + "end": 28428.28, + "probability": 0.8819 + }, + { + "start": 28429.36, + "end": 28429.36, + "probability": 0.0107 + }, + { + "start": 28429.36, + "end": 28429.36, + "probability": 0.0405 + }, + { + "start": 28429.36, + "end": 28431.64, + "probability": 0.4301 + }, + { + "start": 28431.8, + "end": 28432.76, + "probability": 0.0603 + }, + { + "start": 28434.26, + "end": 28439.46, + "probability": 0.0584 + }, + { + "start": 28441.38, + "end": 28442.32, + "probability": 0.2437 + }, + { + "start": 28443.3, + "end": 28444.42, + "probability": 0.1189 + }, + { + "start": 28444.6, + "end": 28446.64, + "probability": 0.0538 + }, + { + "start": 28447.48, + "end": 28448.92, + "probability": 0.0658 + }, + { + "start": 28451.68, + "end": 28453.54, + "probability": 0.0206 + }, + { + "start": 28453.56, + "end": 28453.56, + "probability": 0.0109 + }, + { + "start": 28453.56, + "end": 28454.04, + "probability": 0.0897 + }, + { + "start": 28454.12, + "end": 28455.22, + "probability": 0.0685 + }, + { + "start": 28455.22, + "end": 28455.5, + "probability": 0.0508 + }, + { + "start": 28456.32, + "end": 28457.88, + "probability": 0.278 + }, + { + "start": 28459.08, + "end": 28461.36, + "probability": 0.3139 + }, + { + "start": 28461.92, + "end": 28465.46, + "probability": 0.0233 + }, + { + "start": 28467.86, + "end": 28468.8, + "probability": 0.2937 + }, + { + "start": 28469.74, + "end": 28471.56, + "probability": 0.0196 + }, + { + "start": 28472.62, + "end": 28473.92, + "probability": 0.1655 + }, + { + "start": 28475.42, + "end": 28481.0, + "probability": 0.3765 + }, + { + "start": 28485.0, + "end": 28489.16, + "probability": 0.2966 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.0, + "end": 28521.0, + "probability": 0.0 + }, + { + "start": 28521.04, + "end": 28524.24, + "probability": 0.0833 + }, + { + "start": 28524.86, + "end": 28525.42, + "probability": 0.0461 + }, + { + "start": 28525.42, + "end": 28526.82, + "probability": 0.4626 + }, + { + "start": 28526.82, + "end": 28527.94, + "probability": 0.6089 + }, + { + "start": 28528.4, + "end": 28528.4, + "probability": 0.7238 + }, + { + "start": 28528.4, + "end": 28533.11, + "probability": 0.7317 + }, + { + "start": 28534.38, + "end": 28535.8, + "probability": 0.5094 + }, + { + "start": 28536.04, + "end": 28537.84, + "probability": 0.9207 + }, + { + "start": 28538.42, + "end": 28538.62, + "probability": 0.014 + }, + { + "start": 28538.74, + "end": 28540.86, + "probability": 0.9536 + }, + { + "start": 28540.86, + "end": 28542.62, + "probability": 0.8117 + }, + { + "start": 28542.62, + "end": 28543.3, + "probability": 0.3933 + }, + { + "start": 28543.42, + "end": 28543.66, + "probability": 0.4125 + }, + { + "start": 28543.7, + "end": 28544.2, + "probability": 0.2882 + }, + { + "start": 28545.64, + "end": 28545.64, + "probability": 0.0235 + }, + { + "start": 28545.64, + "end": 28547.44, + "probability": 0.2387 + }, + { + "start": 28560.09, + "end": 28562.38, + "probability": 0.6819 + }, + { + "start": 28563.32, + "end": 28565.59, + "probability": 0.8155 + }, + { + "start": 28568.02, + "end": 28572.92, + "probability": 0.1614 + }, + { + "start": 28573.3, + "end": 28573.72, + "probability": 0.7821 + }, + { + "start": 28573.76, + "end": 28575.22, + "probability": 0.5989 + }, + { + "start": 28576.34, + "end": 28577.56, + "probability": 0.5775 + }, + { + "start": 28578.54, + "end": 28580.22, + "probability": 0.9924 + }, + { + "start": 28580.28, + "end": 28580.9, + "probability": 0.8153 + }, + { + "start": 28580.96, + "end": 28582.0, + "probability": 0.8978 + }, + { + "start": 28582.08, + "end": 28583.52, + "probability": 0.8997 + }, + { + "start": 28583.64, + "end": 28585.05, + "probability": 0.9635 + }, + { + "start": 28585.69, + "end": 28588.33, + "probability": 0.974 + }, + { + "start": 28589.11, + "end": 28593.15, + "probability": 0.9928 + }, + { + "start": 28593.15, + "end": 28597.44, + "probability": 0.9993 + }, + { + "start": 28597.63, + "end": 28599.85, + "probability": 0.9948 + }, + { + "start": 28602.17, + "end": 28604.95, + "probability": 0.9979 + }, + { + "start": 28606.11, + "end": 28609.07, + "probability": 0.9972 + }, + { + "start": 28610.39, + "end": 28613.33, + "probability": 0.9153 + }, + { + "start": 28614.39, + "end": 28617.13, + "probability": 0.9957 + }, + { + "start": 28617.55, + "end": 28618.57, + "probability": 0.9339 + }, + { + "start": 28618.75, + "end": 28620.65, + "probability": 0.9884 + }, + { + "start": 28620.71, + "end": 28621.35, + "probability": 0.9822 + }, + { + "start": 28621.43, + "end": 28623.03, + "probability": 0.9795 + }, + { + "start": 28623.67, + "end": 28625.23, + "probability": 0.8917 + }, + { + "start": 28625.73, + "end": 28627.33, + "probability": 0.9146 + }, + { + "start": 28628.55, + "end": 28629.53, + "probability": 0.6867 + }, + { + "start": 28630.91, + "end": 28635.17, + "probability": 0.9054 + }, + { + "start": 28635.89, + "end": 28640.37, + "probability": 0.9949 + }, + { + "start": 28640.71, + "end": 28641.75, + "probability": 0.991 + }, + { + "start": 28643.69, + "end": 28646.31, + "probability": 0.9994 + }, + { + "start": 28646.41, + "end": 28647.31, + "probability": 0.7234 + }, + { + "start": 28647.33, + "end": 28647.91, + "probability": 0.593 + }, + { + "start": 28648.73, + "end": 28648.93, + "probability": 0.0122 + }, + { + "start": 28648.93, + "end": 28650.93, + "probability": 0.8726 + }, + { + "start": 28650.93, + "end": 28650.93, + "probability": 0.0839 + }, + { + "start": 28650.93, + "end": 28652.85, + "probability": 0.5102 + }, + { + "start": 28654.25, + "end": 28656.47, + "probability": 0.1081 + }, + { + "start": 28656.53, + "end": 28658.01, + "probability": 0.1453 + }, + { + "start": 28659.57, + "end": 28660.97, + "probability": 0.2921 + }, + { + "start": 28661.11, + "end": 28661.19, + "probability": 0.3102 + }, + { + "start": 28661.19, + "end": 28661.75, + "probability": 0.3857 + }, + { + "start": 28663.83, + "end": 28664.49, + "probability": 0.0613 + }, + { + "start": 28664.49, + "end": 28664.73, + "probability": 0.0209 + }, + { + "start": 28665.33, + "end": 28672.19, + "probability": 0.0708 + }, + { + "start": 28674.71, + "end": 28676.79, + "probability": 0.0696 + }, + { + "start": 28676.85, + "end": 28676.85, + "probability": 0.2114 + }, + { + "start": 28677.59, + "end": 28679.13, + "probability": 0.2437 + }, + { + "start": 28679.13, + "end": 28679.13, + "probability": 0.1897 + }, + { + "start": 28680.47, + "end": 28681.71, + "probability": 0.2381 + }, + { + "start": 28682.53, + "end": 28683.75, + "probability": 0.1621 + }, + { + "start": 28683.85, + "end": 28683.92, + "probability": 0.0358 + }, + { + "start": 28685.93, + "end": 28687.17, + "probability": 0.242 + }, + { + "start": 28688.45, + "end": 28690.73, + "probability": 0.0726 + }, + { + "start": 28690.91, + "end": 28691.93, + "probability": 0.0899 + }, + { + "start": 28694.45, + "end": 28694.87, + "probability": 0.0614 + }, + { + "start": 28696.37, + "end": 28696.49, + "probability": 0.0059 + }, + { + "start": 28701.07, + "end": 28701.85, + "probability": 0.4084 + }, + { + "start": 28702.69, + "end": 28703.63, + "probability": 0.0922 + }, + { + "start": 28703.63, + "end": 28703.77, + "probability": 0.0295 + }, + { + "start": 28703.77, + "end": 28704.61, + "probability": 0.0271 + }, + { + "start": 28704.61, + "end": 28704.61, + "probability": 0.1181 + }, + { + "start": 28704.61, + "end": 28705.09, + "probability": 0.0673 + }, + { + "start": 28705.19, + "end": 28705.97, + "probability": 0.461 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.0, + "end": 28706.0, + "probability": 0.0 + }, + { + "start": 28706.16, + "end": 28707.84, + "probability": 0.578 + }, + { + "start": 28708.74, + "end": 28712.36, + "probability": 0.9594 + }, + { + "start": 28712.78, + "end": 28716.26, + "probability": 0.9771 + }, + { + "start": 28716.4, + "end": 28718.08, + "probability": 0.9144 + }, + { + "start": 28718.74, + "end": 28722.08, + "probability": 0.8973 + }, + { + "start": 28723.18, + "end": 28724.7, + "probability": 0.9853 + }, + { + "start": 28724.78, + "end": 28730.78, + "probability": 0.9944 + }, + { + "start": 28731.88, + "end": 28733.86, + "probability": 0.9976 + }, + { + "start": 28734.56, + "end": 28738.86, + "probability": 0.9912 + }, + { + "start": 28739.08, + "end": 28740.18, + "probability": 0.9551 + }, + { + "start": 28740.68, + "end": 28742.1, + "probability": 0.9873 + }, + { + "start": 28742.5, + "end": 28743.48, + "probability": 0.7451 + }, + { + "start": 28744.1, + "end": 28749.84, + "probability": 0.9637 + }, + { + "start": 28750.32, + "end": 28753.68, + "probability": 0.9905 + }, + { + "start": 28754.1, + "end": 28758.94, + "probability": 0.9941 + }, + { + "start": 28759.34, + "end": 28760.34, + "probability": 0.7725 + }, + { + "start": 28760.72, + "end": 28762.63, + "probability": 0.9683 + }, + { + "start": 28762.84, + "end": 28764.28, + "probability": 0.8398 + }, + { + "start": 28765.1, + "end": 28766.42, + "probability": 0.9771 + }, + { + "start": 28767.34, + "end": 28768.7, + "probability": 0.9342 + }, + { + "start": 28769.56, + "end": 28773.18, + "probability": 0.9532 + }, + { + "start": 28774.72, + "end": 28777.12, + "probability": 0.9408 + }, + { + "start": 28778.84, + "end": 28781.9, + "probability": 0.9644 + }, + { + "start": 28783.1, + "end": 28786.02, + "probability": 0.9866 + }, + { + "start": 28786.68, + "end": 28789.14, + "probability": 0.8469 + }, + { + "start": 28790.22, + "end": 28791.04, + "probability": 0.6663 + }, + { + "start": 28792.48, + "end": 28792.68, + "probability": 0.4748 + }, + { + "start": 28792.82, + "end": 28795.18, + "probability": 0.9783 + }, + { + "start": 28795.18, + "end": 28798.28, + "probability": 0.8794 + }, + { + "start": 28798.4, + "end": 28799.14, + "probability": 0.5088 + }, + { + "start": 28799.14, + "end": 28800.24, + "probability": 0.4784 + }, + { + "start": 28800.54, + "end": 28804.34, + "probability": 0.8858 + }, + { + "start": 28804.5, + "end": 28805.06, + "probability": 0.6615 + }, + { + "start": 28805.12, + "end": 28806.0, + "probability": 0.8826 + }, + { + "start": 28806.48, + "end": 28808.98, + "probability": 0.9924 + }, + { + "start": 28808.98, + "end": 28813.62, + "probability": 0.9908 + }, + { + "start": 28813.86, + "end": 28815.46, + "probability": 0.7809 + }, + { + "start": 28815.64, + "end": 28817.96, + "probability": 0.9897 + }, + { + "start": 28818.4, + "end": 28818.58, + "probability": 0.5369 + }, + { + "start": 28819.54, + "end": 28823.0, + "probability": 0.7992 + }, + { + "start": 28824.62, + "end": 28828.08, + "probability": 0.9941 + }, + { + "start": 28828.82, + "end": 28829.32, + "probability": 0.5161 + }, + { + "start": 28829.68, + "end": 28830.84, + "probability": 0.9896 + }, + { + "start": 28834.42, + "end": 28839.86, + "probability": 0.9965 + }, + { + "start": 28839.9, + "end": 28840.18, + "probability": 0.3552 + }, + { + "start": 28841.2, + "end": 28842.58, + "probability": 0.9871 + }, + { + "start": 28843.52, + "end": 28847.38, + "probability": 0.8687 + }, + { + "start": 28847.52, + "end": 28847.78, + "probability": 0.9432 + }, + { + "start": 28849.9, + "end": 28854.26, + "probability": 0.9619 + }, + { + "start": 28856.08, + "end": 28861.04, + "probability": 0.9978 + }, + { + "start": 28862.4, + "end": 28869.72, + "probability": 0.959 + }, + { + "start": 28870.14, + "end": 28871.76, + "probability": 0.9972 + }, + { + "start": 28872.3, + "end": 28877.16, + "probability": 0.9754 + }, + { + "start": 28877.44, + "end": 28880.68, + "probability": 0.998 + }, + { + "start": 28881.42, + "end": 28885.9, + "probability": 0.9954 + }, + { + "start": 28886.1, + "end": 28889.78, + "probability": 0.9722 + }, + { + "start": 28889.9, + "end": 28892.08, + "probability": 0.9901 + }, + { + "start": 28894.87, + "end": 28899.44, + "probability": 0.988 + }, + { + "start": 28899.44, + "end": 28903.1, + "probability": 0.9976 + }, + { + "start": 28903.96, + "end": 28907.44, + "probability": 0.7543 + }, + { + "start": 28907.68, + "end": 28911.1, + "probability": 0.9976 + }, + { + "start": 28911.24, + "end": 28916.2, + "probability": 0.9414 + }, + { + "start": 28916.86, + "end": 28922.06, + "probability": 0.9563 + }, + { + "start": 28922.84, + "end": 28924.08, + "probability": 0.9156 + }, + { + "start": 28925.04, + "end": 28926.38, + "probability": 0.9653 + }, + { + "start": 28927.04, + "end": 28927.66, + "probability": 0.9668 + }, + { + "start": 28928.6, + "end": 28929.82, + "probability": 0.7397 + }, + { + "start": 28930.26, + "end": 28933.0, + "probability": 0.9961 + }, + { + "start": 28933.92, + "end": 28935.52, + "probability": 0.9961 + }, + { + "start": 28935.8, + "end": 28937.04, + "probability": 0.949 + }, + { + "start": 28938.88, + "end": 28938.88, + "probability": 0.002 + }, + { + "start": 28938.88, + "end": 28942.94, + "probability": 0.8036 + }, + { + "start": 28943.74, + "end": 28948.64, + "probability": 0.6794 + }, + { + "start": 28950.98, + "end": 28955.34, + "probability": 0.0149 + }, + { + "start": 28956.6, + "end": 28957.08, + "probability": 0.0763 + }, + { + "start": 28957.98, + "end": 28957.98, + "probability": 0.1656 + }, + { + "start": 28958.48, + "end": 28958.48, + "probability": 0.0472 + }, + { + "start": 28958.48, + "end": 28958.48, + "probability": 0.074 + }, + { + "start": 28958.48, + "end": 28962.42, + "probability": 0.9782 + }, + { + "start": 28962.6, + "end": 28964.46, + "probability": 0.8905 + }, + { + "start": 28965.42, + "end": 28968.34, + "probability": 0.8075 + }, + { + "start": 28968.94, + "end": 28970.02, + "probability": 0.8828 + }, + { + "start": 28970.08, + "end": 28971.62, + "probability": 0.7811 + }, + { + "start": 28972.08, + "end": 28974.12, + "probability": 0.8557 + }, + { + "start": 28974.44, + "end": 28976.44, + "probability": 0.9989 + }, + { + "start": 28976.44, + "end": 28979.48, + "probability": 0.9971 + }, + { + "start": 28981.6, + "end": 28985.44, + "probability": 0.9971 + }, + { + "start": 28986.2, + "end": 28991.16, + "probability": 0.9624 + }, + { + "start": 28991.58, + "end": 28993.5, + "probability": 0.9761 + }, + { + "start": 28995.12, + "end": 28996.08, + "probability": 0.8804 + }, + { + "start": 28997.43, + "end": 28999.14, + "probability": 0.6347 + }, + { + "start": 29001.54, + "end": 29003.6, + "probability": 0.9932 + }, + { + "start": 29003.7, + "end": 29004.54, + "probability": 0.9654 + }, + { + "start": 29004.84, + "end": 29004.84, + "probability": 0.2006 + }, + { + "start": 29005.36, + "end": 29008.06, + "probability": 0.0863 + }, + { + "start": 29008.38, + "end": 29011.35, + "probability": 0.0847 + }, + { + "start": 29013.1, + "end": 29015.58, + "probability": 0.9802 + }, + { + "start": 29015.86, + "end": 29015.86, + "probability": 0.0518 + }, + { + "start": 29016.04, + "end": 29018.94, + "probability": 0.6903 + }, + { + "start": 29019.18, + "end": 29019.84, + "probability": 0.1382 + }, + { + "start": 29020.08, + "end": 29024.38, + "probability": 0.6778 + }, + { + "start": 29025.3, + "end": 29026.86, + "probability": 0.9395 + }, + { + "start": 29027.64, + "end": 29028.78, + "probability": 0.7576 + }, + { + "start": 29028.88, + "end": 29029.84, + "probability": 0.646 + }, + { + "start": 29029.98, + "end": 29033.38, + "probability": 0.9563 + }, + { + "start": 29034.3, + "end": 29038.84, + "probability": 0.9964 + }, + { + "start": 29040.04, + "end": 29041.74, + "probability": 0.806 + }, + { + "start": 29042.28, + "end": 29047.68, + "probability": 0.8887 + }, + { + "start": 29048.86, + "end": 29052.64, + "probability": 0.8713 + }, + { + "start": 29053.24, + "end": 29054.94, + "probability": 0.8035 + }, + { + "start": 29055.92, + "end": 29056.9, + "probability": 0.8449 + }, + { + "start": 29057.14, + "end": 29058.12, + "probability": 0.9746 + }, + { + "start": 29058.16, + "end": 29058.8, + "probability": 0.8611 + }, + { + "start": 29060.52, + "end": 29064.26, + "probability": 0.9453 + }, + { + "start": 29064.4, + "end": 29065.07, + "probability": 0.891 + }, + { + "start": 29066.16, + "end": 29068.64, + "probability": 0.9955 + }, + { + "start": 29069.42, + "end": 29070.32, + "probability": 0.8693 + }, + { + "start": 29071.6, + "end": 29075.46, + "probability": 0.9966 + }, + { + "start": 29075.54, + "end": 29076.46, + "probability": 0.9902 + }, + { + "start": 29076.88, + "end": 29077.22, + "probability": 0.6589 + }, + { + "start": 29077.36, + "end": 29078.48, + "probability": 0.7206 + }, + { + "start": 29080.04, + "end": 29081.54, + "probability": 0.9689 + }, + { + "start": 29081.62, + "end": 29082.3, + "probability": 0.9685 + }, + { + "start": 29082.54, + "end": 29083.7, + "probability": 0.9873 + }, + { + "start": 29083.84, + "end": 29084.87, + "probability": 0.98 + }, + { + "start": 29085.98, + "end": 29089.28, + "probability": 0.981 + }, + { + "start": 29089.34, + "end": 29090.46, + "probability": 0.885 + }, + { + "start": 29091.84, + "end": 29092.7, + "probability": 0.6444 + }, + { + "start": 29092.88, + "end": 29095.1, + "probability": 0.6944 + }, + { + "start": 29095.22, + "end": 29095.74, + "probability": 0.9266 + }, + { + "start": 29095.84, + "end": 29097.24, + "probability": 0.9724 + }, + { + "start": 29097.32, + "end": 29097.8, + "probability": 0.7574 + }, + { + "start": 29097.9, + "end": 29098.48, + "probability": 0.3487 + }, + { + "start": 29098.56, + "end": 29099.06, + "probability": 0.6963 + }, + { + "start": 29100.5, + "end": 29103.84, + "probability": 0.98 + }, + { + "start": 29104.72, + "end": 29105.58, + "probability": 0.6507 + }, + { + "start": 29106.14, + "end": 29109.64, + "probability": 0.998 + }, + { + "start": 29110.6, + "end": 29115.46, + "probability": 0.9897 + }, + { + "start": 29116.04, + "end": 29116.34, + "probability": 0.4406 + }, + { + "start": 29116.48, + "end": 29118.52, + "probability": 0.914 + }, + { + "start": 29118.66, + "end": 29120.38, + "probability": 0.9785 + }, + { + "start": 29120.54, + "end": 29122.26, + "probability": 0.9927 + }, + { + "start": 29122.92, + "end": 29125.02, + "probability": 0.9946 + }, + { + "start": 29125.72, + "end": 29129.62, + "probability": 0.94 + }, + { + "start": 29130.6, + "end": 29134.72, + "probability": 0.9803 + }, + { + "start": 29135.84, + "end": 29140.18, + "probability": 0.9839 + }, + { + "start": 29140.69, + "end": 29143.04, + "probability": 0.5967 + }, + { + "start": 29143.14, + "end": 29143.24, + "probability": 0.35 + }, + { + "start": 29143.52, + "end": 29143.98, + "probability": 0.6421 + }, + { + "start": 29144.0, + "end": 29146.96, + "probability": 0.9333 + }, + { + "start": 29146.96, + "end": 29150.74, + "probability": 0.9493 + }, + { + "start": 29150.86, + "end": 29151.46, + "probability": 0.6482 + }, + { + "start": 29151.7, + "end": 29153.64, + "probability": 0.6379 + }, + { + "start": 29154.32, + "end": 29154.38, + "probability": 0.569 + }, + { + "start": 29154.5, + "end": 29154.84, + "probability": 0.5571 + }, + { + "start": 29154.86, + "end": 29154.96, + "probability": 0.2939 + }, + { + "start": 29154.98, + "end": 29158.2, + "probability": 0.7731 + }, + { + "start": 29159.1, + "end": 29161.5, + "probability": 0.9587 + }, + { + "start": 29161.88, + "end": 29163.04, + "probability": 0.8706 + }, + { + "start": 29163.64, + "end": 29167.78, + "probability": 0.9698 + }, + { + "start": 29167.94, + "end": 29170.54, + "probability": 0.9988 + }, + { + "start": 29171.56, + "end": 29172.64, + "probability": 0.587 + }, + { + "start": 29174.98, + "end": 29177.06, + "probability": 0.9991 + }, + { + "start": 29177.06, + "end": 29180.6, + "probability": 0.9901 + }, + { + "start": 29181.1, + "end": 29183.4, + "probability": 0.999 + }, + { + "start": 29183.84, + "end": 29188.02, + "probability": 0.9962 + }, + { + "start": 29190.36, + "end": 29190.94, + "probability": 0.8829 + }, + { + "start": 29191.94, + "end": 29193.32, + "probability": 0.9494 + }, + { + "start": 29194.18, + "end": 29196.84, + "probability": 0.9311 + }, + { + "start": 29197.5, + "end": 29198.74, + "probability": 0.9636 + }, + { + "start": 29199.24, + "end": 29203.04, + "probability": 0.9636 + }, + { + "start": 29203.68, + "end": 29205.34, + "probability": 0.9842 + }, + { + "start": 29206.14, + "end": 29208.74, + "probability": 0.9446 + }, + { + "start": 29209.42, + "end": 29212.14, + "probability": 0.9782 + }, + { + "start": 29212.9, + "end": 29216.52, + "probability": 0.953 + }, + { + "start": 29217.44, + "end": 29220.14, + "probability": 0.9056 + }, + { + "start": 29221.08, + "end": 29223.58, + "probability": 0.9746 + }, + { + "start": 29224.64, + "end": 29225.02, + "probability": 0.7388 + }, + { + "start": 29225.2, + "end": 29228.3, + "probability": 0.9879 + }, + { + "start": 29228.36, + "end": 29228.82, + "probability": 0.632 + }, + { + "start": 29228.9, + "end": 29229.74, + "probability": 0.7754 + }, + { + "start": 29230.14, + "end": 29234.76, + "probability": 0.9733 + }, + { + "start": 29235.22, + "end": 29236.06, + "probability": 0.9743 + }, + { + "start": 29236.26, + "end": 29238.26, + "probability": 0.9897 + }, + { + "start": 29238.5, + "end": 29240.34, + "probability": 0.4735 + }, + { + "start": 29240.34, + "end": 29241.82, + "probability": 0.538 + }, + { + "start": 29241.82, + "end": 29243.32, + "probability": 0.9581 + }, + { + "start": 29243.32, + "end": 29244.03, + "probability": 0.958 + }, + { + "start": 29244.52, + "end": 29246.32, + "probability": 0.999 + }, + { + "start": 29246.54, + "end": 29249.0, + "probability": 0.9662 + }, + { + "start": 29249.06, + "end": 29250.27, + "probability": 0.4123 + }, + { + "start": 29250.76, + "end": 29250.86, + "probability": 0.7627 + }, + { + "start": 29252.16, + "end": 29253.26, + "probability": 0.9878 + }, + { + "start": 29253.78, + "end": 29258.62, + "probability": 0.9928 + }, + { + "start": 29259.16, + "end": 29260.62, + "probability": 0.624 + }, + { + "start": 29261.48, + "end": 29261.7, + "probability": 0.7195 + }, + { + "start": 29262.64, + "end": 29266.62, + "probability": 0.9619 + }, + { + "start": 29267.46, + "end": 29269.26, + "probability": 0.9958 + }, + { + "start": 29270.34, + "end": 29273.68, + "probability": 0.9504 + }, + { + "start": 29273.78, + "end": 29276.04, + "probability": 0.9775 + }, + { + "start": 29276.76, + "end": 29278.26, + "probability": 0.6926 + }, + { + "start": 29279.26, + "end": 29281.69, + "probability": 0.9451 + }, + { + "start": 29282.6, + "end": 29283.02, + "probability": 0.0221 + }, + { + "start": 29283.12, + "end": 29283.88, + "probability": 0.5181 + }, + { + "start": 29283.98, + "end": 29285.35, + "probability": 0.8296 + }, + { + "start": 29285.68, + "end": 29290.44, + "probability": 0.2205 + }, + { + "start": 29290.78, + "end": 29291.62, + "probability": 0.0121 + }, + { + "start": 29291.64, + "end": 29291.64, + "probability": 0.0662 + }, + { + "start": 29291.64, + "end": 29291.85, + "probability": 0.0575 + }, + { + "start": 29291.98, + "end": 29292.7, + "probability": 0.3931 + }, + { + "start": 29292.74, + "end": 29294.82, + "probability": 0.65 + }, + { + "start": 29294.96, + "end": 29295.07, + "probability": 0.0068 + }, + { + "start": 29295.76, + "end": 29297.78, + "probability": 0.1857 + }, + { + "start": 29298.74, + "end": 29299.51, + "probability": 0.1551 + }, + { + "start": 29300.98, + "end": 29300.98, + "probability": 0.0299 + }, + { + "start": 29301.96, + "end": 29302.4, + "probability": 0.0667 + }, + { + "start": 29302.4, + "end": 29302.4, + "probability": 0.0259 + }, + { + "start": 29302.4, + "end": 29306.16, + "probability": 0.5497 + }, + { + "start": 29311.88, + "end": 29313.9, + "probability": 0.9954 + }, + { + "start": 29314.72, + "end": 29319.04, + "probability": 0.9996 + }, + { + "start": 29320.84, + "end": 29325.18, + "probability": 0.8506 + }, + { + "start": 29325.88, + "end": 29328.52, + "probability": 0.998 + }, + { + "start": 29330.26, + "end": 29333.16, + "probability": 0.9945 + }, + { + "start": 29333.7, + "end": 29335.98, + "probability": 0.9872 + }, + { + "start": 29336.9, + "end": 29339.48, + "probability": 0.9932 + }, + { + "start": 29339.74, + "end": 29343.76, + "probability": 0.9824 + }, + { + "start": 29345.22, + "end": 29347.1, + "probability": 0.7988 + }, + { + "start": 29348.24, + "end": 29350.1, + "probability": 0.9932 + }, + { + "start": 29350.26, + "end": 29352.72, + "probability": 0.8931 + }, + { + "start": 29353.46, + "end": 29356.42, + "probability": 0.9918 + }, + { + "start": 29357.08, + "end": 29360.6, + "probability": 0.9918 + }, + { + "start": 29360.7, + "end": 29361.48, + "probability": 0.9227 + }, + { + "start": 29361.54, + "end": 29362.08, + "probability": 0.8991 + }, + { + "start": 29362.22, + "end": 29363.06, + "probability": 0.9136 + }, + { + "start": 29364.3, + "end": 29366.46, + "probability": 0.9095 + }, + { + "start": 29367.4, + "end": 29368.62, + "probability": 0.9969 + }, + { + "start": 29370.5, + "end": 29372.68, + "probability": 0.827 + }, + { + "start": 29374.42, + "end": 29375.61, + "probability": 0.9658 + }, + { + "start": 29376.22, + "end": 29378.06, + "probability": 0.953 + }, + { + "start": 29379.6, + "end": 29381.74, + "probability": 0.989 + }, + { + "start": 29383.12, + "end": 29384.12, + "probability": 0.716 + }, + { + "start": 29384.32, + "end": 29385.1, + "probability": 0.9059 + }, + { + "start": 29385.14, + "end": 29388.08, + "probability": 0.9554 + }, + { + "start": 29388.44, + "end": 29389.12, + "probability": 0.0798 + }, + { + "start": 29389.78, + "end": 29395.78, + "probability": 0.9312 + }, + { + "start": 29396.1, + "end": 29397.94, + "probability": 0.1927 + }, + { + "start": 29398.24, + "end": 29398.26, + "probability": 0.0366 + }, + { + "start": 29398.26, + "end": 29399.38, + "probability": 0.7461 + }, + { + "start": 29400.06, + "end": 29402.04, + "probability": 0.4913 + }, + { + "start": 29402.76, + "end": 29405.96, + "probability": 0.9395 + }, + { + "start": 29407.06, + "end": 29410.12, + "probability": 0.9978 + }, + { + "start": 29411.34, + "end": 29415.18, + "probability": 0.7587 + }, + { + "start": 29416.64, + "end": 29417.18, + "probability": 0.6145 + }, + { + "start": 29418.96, + "end": 29419.64, + "probability": 0.856 + }, + { + "start": 29421.26, + "end": 29423.68, + "probability": 0.8908 + }, + { + "start": 29424.68, + "end": 29427.18, + "probability": 0.9956 + }, + { + "start": 29427.28, + "end": 29427.66, + "probability": 0.354 + }, + { + "start": 29427.72, + "end": 29428.8, + "probability": 0.9297 + }, + { + "start": 29429.68, + "end": 29432.24, + "probability": 0.9972 + }, + { + "start": 29433.66, + "end": 29435.14, + "probability": 0.9641 + }, + { + "start": 29437.14, + "end": 29438.7, + "probability": 0.9767 + }, + { + "start": 29439.24, + "end": 29443.28, + "probability": 0.9986 + }, + { + "start": 29443.42, + "end": 29446.82, + "probability": 0.9856 + }, + { + "start": 29447.12, + "end": 29450.84, + "probability": 0.993 + }, + { + "start": 29451.54, + "end": 29456.02, + "probability": 0.9944 + }, + { + "start": 29457.1, + "end": 29461.62, + "probability": 0.9859 + }, + { + "start": 29462.72, + "end": 29467.44, + "probability": 0.9902 + }, + { + "start": 29469.18, + "end": 29473.42, + "probability": 0.9987 + }, + { + "start": 29474.12, + "end": 29475.58, + "probability": 0.8098 + }, + { + "start": 29475.68, + "end": 29477.08, + "probability": 0.716 + }, + { + "start": 29478.46, + "end": 29480.34, + "probability": 0.8774 + }, + { + "start": 29481.26, + "end": 29485.64, + "probability": 0.9402 + }, + { + "start": 29486.12, + "end": 29487.36, + "probability": 0.324 + }, + { + "start": 29487.56, + "end": 29491.88, + "probability": 0.7103 + }, + { + "start": 29492.06, + "end": 29492.88, + "probability": 0.957 + }, + { + "start": 29493.58, + "end": 29494.3, + "probability": 0.7194 + }, + { + "start": 29494.4, + "end": 29496.98, + "probability": 0.8934 + }, + { + "start": 29497.52, + "end": 29500.34, + "probability": 0.985 + }, + { + "start": 29500.52, + "end": 29502.92, + "probability": 0.9966 + }, + { + "start": 29504.5, + "end": 29510.22, + "probability": 0.1907 + }, + { + "start": 29511.26, + "end": 29511.26, + "probability": 0.1302 + }, + { + "start": 29511.28, + "end": 29513.97, + "probability": 0.4439 + }, + { + "start": 29515.08, + "end": 29515.9, + "probability": 0.0415 + }, + { + "start": 29516.1, + "end": 29517.46, + "probability": 0.7148 + }, + { + "start": 29517.64, + "end": 29518.2, + "probability": 0.1407 + }, + { + "start": 29518.2, + "end": 29519.46, + "probability": 0.7189 + }, + { + "start": 29520.36, + "end": 29521.36, + "probability": 0.504 + }, + { + "start": 29522.04, + "end": 29522.24, + "probability": 0.4785 + }, + { + "start": 29522.24, + "end": 29524.4, + "probability": 0.0576 + }, + { + "start": 29525.74, + "end": 29525.76, + "probability": 0.3725 + }, + { + "start": 29525.76, + "end": 29527.4, + "probability": 0.3801 + }, + { + "start": 29528.36, + "end": 29529.68, + "probability": 0.6991 + }, + { + "start": 29529.84, + "end": 29530.66, + "probability": 0.7965 + }, + { + "start": 29545.26, + "end": 29545.84, + "probability": 0.6936 + }, + { + "start": 29545.84, + "end": 29546.5, + "probability": 0.325 + }, + { + "start": 29547.26, + "end": 29548.52, + "probability": 0.8313 + }, + { + "start": 29549.08, + "end": 29551.98, + "probability": 0.8907 + }, + { + "start": 29552.48, + "end": 29553.28, + "probability": 0.7678 + }, + { + "start": 29553.8, + "end": 29558.22, + "probability": 0.8706 + }, + { + "start": 29558.6, + "end": 29562.88, + "probability": 0.3818 + }, + { + "start": 29562.92, + "end": 29568.66, + "probability": 0.7881 + }, + { + "start": 29570.46, + "end": 29570.46, + "probability": 0.0002 + }, + { + "start": 29571.02, + "end": 29571.04, + "probability": 0.243 + }, + { + "start": 29571.04, + "end": 29573.28, + "probability": 0.355 + }, + { + "start": 29574.64, + "end": 29575.84, + "probability": 0.8191 + }, + { + "start": 29576.96, + "end": 29583.06, + "probability": 0.9762 + }, + { + "start": 29583.68, + "end": 29584.62, + "probability": 0.5649 + }, + { + "start": 29585.2, + "end": 29586.66, + "probability": 0.6544 + }, + { + "start": 29586.66, + "end": 29586.72, + "probability": 0.6662 + }, + { + "start": 29586.8, + "end": 29587.78, + "probability": 0.9362 + }, + { + "start": 29587.86, + "end": 29590.44, + "probability": 0.7283 + }, + { + "start": 29591.04, + "end": 29598.32, + "probability": 0.995 + }, + { + "start": 29599.5, + "end": 29601.56, + "probability": 0.8924 + }, + { + "start": 29602.54, + "end": 29603.04, + "probability": 0.3473 + }, + { + "start": 29603.44, + "end": 29604.08, + "probability": 0.7011 + }, + { + "start": 29604.16, + "end": 29604.64, + "probability": 0.7046 + }, + { + "start": 29604.96, + "end": 29606.68, + "probability": 0.9821 + }, + { + "start": 29607.18, + "end": 29609.08, + "probability": 0.9558 + }, + { + "start": 29609.52, + "end": 29610.96, + "probability": 0.9296 + }, + { + "start": 29611.2, + "end": 29612.54, + "probability": 0.9712 + }, + { + "start": 29612.62, + "end": 29614.24, + "probability": 0.7932 + }, + { + "start": 29615.68, + "end": 29618.28, + "probability": 0.5972 + }, + { + "start": 29618.82, + "end": 29619.6, + "probability": 0.6937 + }, + { + "start": 29620.2, + "end": 29621.2, + "probability": 0.9238 + }, + { + "start": 29621.28, + "end": 29621.79, + "probability": 0.7471 + }, + { + "start": 29621.92, + "end": 29622.76, + "probability": 0.3553 + }, + { + "start": 29623.04, + "end": 29624.34, + "probability": 0.467 + }, + { + "start": 29625.16, + "end": 29625.72, + "probability": 0.778 + }, + { + "start": 29626.0, + "end": 29626.02, + "probability": 0.3409 + }, + { + "start": 29626.02, + "end": 29633.28, + "probability": 0.9966 + }, + { + "start": 29634.44, + "end": 29638.7, + "probability": 0.9994 + }, + { + "start": 29638.78, + "end": 29640.56, + "probability": 0.9411 + }, + { + "start": 29642.08, + "end": 29642.28, + "probability": 0.689 + }, + { + "start": 29643.38, + "end": 29644.92, + "probability": 0.7412 + }, + { + "start": 29645.12, + "end": 29645.92, + "probability": 0.8411 + }, + { + "start": 29646.18, + "end": 29648.42, + "probability": 0.7122 + }, + { + "start": 29649.08, + "end": 29654.18, + "probability": 0.9895 + }, + { + "start": 29654.96, + "end": 29660.36, + "probability": 0.9982 + }, + { + "start": 29660.98, + "end": 29664.82, + "probability": 0.9869 + }, + { + "start": 29664.82, + "end": 29668.16, + "probability": 0.9897 + }, + { + "start": 29668.82, + "end": 29673.58, + "probability": 0.8889 + }, + { + "start": 29675.42, + "end": 29679.26, + "probability": 0.9964 + }, + { + "start": 29679.26, + "end": 29684.06, + "probability": 0.9962 + }, + { + "start": 29685.04, + "end": 29690.66, + "probability": 0.827 + }, + { + "start": 29690.66, + "end": 29694.38, + "probability": 0.969 + }, + { + "start": 29694.4, + "end": 29695.36, + "probability": 0.7601 + }, + { + "start": 29696.2, + "end": 29697.6, + "probability": 0.6901 + }, + { + "start": 29697.68, + "end": 29698.67, + "probability": 0.6246 + }, + { + "start": 29698.96, + "end": 29700.06, + "probability": 0.771 + }, + { + "start": 29700.2, + "end": 29701.52, + "probability": 0.917 + }, + { + "start": 29702.22, + "end": 29703.75, + "probability": 0.9894 + }, + { + "start": 29705.28, + "end": 29710.4, + "probability": 0.9961 + }, + { + "start": 29710.94, + "end": 29716.56, + "probability": 0.9891 + }, + { + "start": 29717.16, + "end": 29720.74, + "probability": 0.9966 + }, + { + "start": 29721.42, + "end": 29723.14, + "probability": 0.9993 + }, + { + "start": 29723.74, + "end": 29726.04, + "probability": 0.9981 + }, + { + "start": 29726.5, + "end": 29727.18, + "probability": 0.6764 + }, + { + "start": 29727.32, + "end": 29728.85, + "probability": 0.5775 + }, + { + "start": 29731.5, + "end": 29732.1, + "probability": 0.0619 + }, + { + "start": 29732.14, + "end": 29734.5, + "probability": 0.7522 + }, + { + "start": 29735.5, + "end": 29736.42, + "probability": 0.7379 + }, + { + "start": 29736.54, + "end": 29736.66, + "probability": 0.6291 + }, + { + "start": 29736.66, + "end": 29738.68, + "probability": 0.5623 + }, + { + "start": 29739.88, + "end": 29742.34, + "probability": 0.3614 + }, + { + "start": 29743.06, + "end": 29744.69, + "probability": 0.9058 + }, + { + "start": 29745.9, + "end": 29748.02, + "probability": 0.9824 + }, + { + "start": 29748.22, + "end": 29748.94, + "probability": 0.908 + }, + { + "start": 29749.52, + "end": 29750.6, + "probability": 0.9172 + }, + { + "start": 29750.86, + "end": 29752.96, + "probability": 0.9532 + }, + { + "start": 29753.36, + "end": 29754.56, + "probability": 0.7046 + }, + { + "start": 29755.12, + "end": 29755.6, + "probability": 0.467 + }, + { + "start": 29756.24, + "end": 29761.34, + "probability": 0.9858 + }, + { + "start": 29761.48, + "end": 29767.9, + "probability": 0.9933 + }, + { + "start": 29767.9, + "end": 29772.6, + "probability": 0.9961 + }, + { + "start": 29773.42, + "end": 29777.18, + "probability": 0.8466 + }, + { + "start": 29779.98, + "end": 29781.98, + "probability": 0.9473 + }, + { + "start": 29782.56, + "end": 29783.0, + "probability": 0.6259 + }, + { + "start": 29783.12, + "end": 29783.7, + "probability": 0.8781 + }, + { + "start": 29783.78, + "end": 29784.82, + "probability": 0.8909 + }, + { + "start": 29784.98, + "end": 29787.0, + "probability": 0.9256 + }, + { + "start": 29787.06, + "end": 29787.32, + "probability": 0.8137 + }, + { + "start": 29787.44, + "end": 29788.74, + "probability": 0.9625 + }, + { + "start": 29789.18, + "end": 29791.29, + "probability": 0.9705 + }, + { + "start": 29792.74, + "end": 29793.5, + "probability": 0.6544 + }, + { + "start": 29794.44, + "end": 29796.3, + "probability": 0.9712 + }, + { + "start": 29798.16, + "end": 29799.46, + "probability": 0.9695 + }, + { + "start": 29801.34, + "end": 29802.66, + "probability": 0.9907 + }, + { + "start": 29803.86, + "end": 29808.7, + "probability": 0.8979 + }, + { + "start": 29809.12, + "end": 29810.68, + "probability": 0.8434 + }, + { + "start": 29810.7, + "end": 29812.04, + "probability": 0.5227 + }, + { + "start": 29812.82, + "end": 29816.94, + "probability": 0.9644 + }, + { + "start": 29816.94, + "end": 29820.78, + "probability": 0.9964 + }, + { + "start": 29821.42, + "end": 29822.32, + "probability": 0.9023 + }, + { + "start": 29822.44, + "end": 29823.24, + "probability": 0.9474 + }, + { + "start": 29823.32, + "end": 29829.46, + "probability": 0.8849 + }, + { + "start": 29829.6, + "end": 29829.94, + "probability": 0.1946 + }, + { + "start": 29830.04, + "end": 29833.46, + "probability": 0.9951 + }, + { + "start": 29833.56, + "end": 29835.02, + "probability": 0.9652 + }, + { + "start": 29835.52, + "end": 29836.9, + "probability": 0.8549 + }, + { + "start": 29836.98, + "end": 29839.24, + "probability": 0.9927 + }, + { + "start": 29839.64, + "end": 29843.18, + "probability": 0.9831 + }, + { + "start": 29843.22, + "end": 29847.12, + "probability": 0.9922 + }, + { + "start": 29847.46, + "end": 29853.44, + "probability": 0.9331 + }, + { + "start": 29854.8, + "end": 29857.94, + "probability": 0.9905 + }, + { + "start": 29858.66, + "end": 29861.84, + "probability": 0.9879 + }, + { + "start": 29861.84, + "end": 29866.76, + "probability": 0.9983 + }, + { + "start": 29866.76, + "end": 29870.78, + "probability": 0.9922 + }, + { + "start": 29871.24, + "end": 29874.34, + "probability": 0.9359 + }, + { + "start": 29874.86, + "end": 29877.9, + "probability": 0.9899 + }, + { + "start": 29878.52, + "end": 29882.9, + "probability": 0.9929 + }, + { + "start": 29883.44, + "end": 29886.76, + "probability": 0.9976 + }, + { + "start": 29887.6, + "end": 29891.52, + "probability": 0.8071 + }, + { + "start": 29892.9, + "end": 29897.0, + "probability": 0.9967 + }, + { + "start": 29897.1, + "end": 29900.18, + "probability": 0.9736 + }, + { + "start": 29901.18, + "end": 29904.12, + "probability": 0.8622 + }, + { + "start": 29904.92, + "end": 29908.84, + "probability": 0.9559 + }, + { + "start": 29909.4, + "end": 29912.24, + "probability": 0.9726 + }, + { + "start": 29913.32, + "end": 29915.1, + "probability": 0.9904 + }, + { + "start": 29915.52, + "end": 29918.04, + "probability": 0.9612 + }, + { + "start": 29918.68, + "end": 29920.08, + "probability": 0.2706 + }, + { + "start": 29920.3, + "end": 29921.32, + "probability": 0.7738 + }, + { + "start": 29921.94, + "end": 29922.6, + "probability": 0.6336 + }, + { + "start": 29923.12, + "end": 29928.42, + "probability": 0.8987 + }, + { + "start": 29928.5, + "end": 29933.94, + "probability": 0.8635 + }, + { + "start": 29934.0, + "end": 29936.5, + "probability": 0.9485 + }, + { + "start": 29937.1, + "end": 29938.62, + "probability": 0.9609 + }, + { + "start": 29939.64, + "end": 29943.56, + "probability": 0.9137 + }, + { + "start": 29944.5, + "end": 29947.86, + "probability": 0.9715 + }, + { + "start": 29948.5, + "end": 29950.02, + "probability": 0.9168 + }, + { + "start": 29950.12, + "end": 29950.32, + "probability": 0.8847 + }, + { + "start": 29950.44, + "end": 29951.8, + "probability": 0.9826 + }, + { + "start": 29951.8, + "end": 29954.64, + "probability": 0.8806 + }, + { + "start": 29955.72, + "end": 29956.7, + "probability": 0.807 + }, + { + "start": 29957.12, + "end": 29961.07, + "probability": 0.9847 + }, + { + "start": 29961.46, + "end": 29962.12, + "probability": 0.1162 + }, + { + "start": 29962.74, + "end": 29964.04, + "probability": 0.7292 + }, + { + "start": 29964.12, + "end": 29965.46, + "probability": 0.9582 + }, + { + "start": 29966.36, + "end": 29972.94, + "probability": 0.9928 + }, + { + "start": 29972.94, + "end": 29979.72, + "probability": 0.9989 + }, + { + "start": 29979.96, + "end": 29982.48, + "probability": 0.8568 + }, + { + "start": 29983.48, + "end": 29989.38, + "probability": 0.9977 + }, + { + "start": 29989.9, + "end": 29994.26, + "probability": 0.9957 + }, + { + "start": 29994.28, + "end": 29995.82, + "probability": 0.5098 + }, + { + "start": 29996.16, + "end": 29998.64, + "probability": 0.949 + }, + { + "start": 29999.26, + "end": 30001.26, + "probability": 0.6118 + }, + { + "start": 30004.04, + "end": 30006.0, + "probability": 0.795 + }, + { + "start": 30007.52, + "end": 30008.22, + "probability": 0.6899 + }, + { + "start": 30008.24, + "end": 30010.48, + "probability": 0.9811 + }, + { + "start": 30010.8, + "end": 30013.72, + "probability": 0.5002 + }, + { + "start": 30013.74, + "end": 30015.02, + "probability": 0.7287 + }, + { + "start": 30019.76, + "end": 30021.02, + "probability": 0.747 + }, + { + "start": 30023.74, + "end": 30024.38, + "probability": 0.6731 + }, + { + "start": 30024.62, + "end": 30027.8, + "probability": 0.7503 + }, + { + "start": 30028.88, + "end": 30035.3, + "probability": 0.9594 + }, + { + "start": 30035.3, + "end": 30037.46, + "probability": 0.9963 + }, + { + "start": 30038.72, + "end": 30041.09, + "probability": 0.988 + }, + { + "start": 30041.44, + "end": 30044.03, + "probability": 0.953 + }, + { + "start": 30044.22, + "end": 30047.52, + "probability": 0.9888 + }, + { + "start": 30048.26, + "end": 30050.96, + "probability": 0.9915 + }, + { + "start": 30051.66, + "end": 30055.48, + "probability": 0.9499 + }, + { + "start": 30056.6, + "end": 30061.14, + "probability": 0.984 + }, + { + "start": 30061.14, + "end": 30065.68, + "probability": 0.994 + }, + { + "start": 30066.68, + "end": 30069.98, + "probability": 0.9978 + }, + { + "start": 30070.72, + "end": 30073.36, + "probability": 0.9865 + }, + { + "start": 30073.36, + "end": 30076.18, + "probability": 0.9875 + }, + { + "start": 30077.18, + "end": 30078.78, + "probability": 0.9872 + }, + { + "start": 30079.48, + "end": 30080.22, + "probability": 0.6688 + }, + { + "start": 30080.9, + "end": 30082.04, + "probability": 0.9211 + }, + { + "start": 30082.08, + "end": 30086.0, + "probability": 0.9904 + }, + { + "start": 30086.7, + "end": 30089.8, + "probability": 0.9937 + }, + { + "start": 30090.8, + "end": 30092.37, + "probability": 0.9697 + }, + { + "start": 30092.6, + "end": 30098.46, + "probability": 0.9933 + }, + { + "start": 30099.28, + "end": 30099.62, + "probability": 0.4913 + }, + { + "start": 30099.72, + "end": 30100.94, + "probability": 0.8754 + }, + { + "start": 30101.24, + "end": 30104.08, + "probability": 0.9346 + }, + { + "start": 30104.08, + "end": 30108.18, + "probability": 0.9591 + }, + { + "start": 30108.92, + "end": 30109.14, + "probability": 0.7471 + }, + { + "start": 30109.24, + "end": 30112.62, + "probability": 0.9951 + }, + { + "start": 30113.32, + "end": 30117.34, + "probability": 0.9906 + }, + { + "start": 30118.14, + "end": 30120.5, + "probability": 0.7768 + }, + { + "start": 30121.14, + "end": 30125.8, + "probability": 0.9207 + }, + { + "start": 30125.8, + "end": 30129.08, + "probability": 0.9922 + }, + { + "start": 30129.8, + "end": 30133.64, + "probability": 0.988 + }, + { + "start": 30134.54, + "end": 30136.42, + "probability": 0.9917 + }, + { + "start": 30137.78, + "end": 30141.9, + "probability": 0.9105 + }, + { + "start": 30142.74, + "end": 30147.5, + "probability": 0.9933 + }, + { + "start": 30148.24, + "end": 30150.1, + "probability": 0.8442 + }, + { + "start": 30152.26, + "end": 30156.04, + "probability": 0.9956 + }, + { + "start": 30156.7, + "end": 30158.82, + "probability": 0.9951 + }, + { + "start": 30159.44, + "end": 30160.14, + "probability": 0.9592 + }, + { + "start": 30161.04, + "end": 30162.14, + "probability": 0.9473 + }, + { + "start": 30163.16, + "end": 30167.32, + "probability": 0.7668 + }, + { + "start": 30168.08, + "end": 30168.72, + "probability": 0.872 + }, + { + "start": 30169.3, + "end": 30170.2, + "probability": 0.646 + }, + { + "start": 30170.68, + "end": 30172.0, + "probability": 0.9661 + }, + { + "start": 30172.42, + "end": 30174.62, + "probability": 0.9347 + }, + { + "start": 30174.76, + "end": 30176.96, + "probability": 0.7927 + }, + { + "start": 30177.66, + "end": 30180.02, + "probability": 0.9956 + }, + { + "start": 30180.62, + "end": 30180.82, + "probability": 0.6662 + }, + { + "start": 30181.46, + "end": 30182.16, + "probability": 0.7961 + }, + { + "start": 30183.12, + "end": 30185.38, + "probability": 0.9662 + }, + { + "start": 30185.38, + "end": 30187.96, + "probability": 0.6895 + }, + { + "start": 30188.8, + "end": 30189.6, + "probability": 0.7077 + }, + { + "start": 30190.22, + "end": 30193.08, + "probability": 0.8968 + }, + { + "start": 30193.76, + "end": 30196.64, + "probability": 0.986 + }, + { + "start": 30197.82, + "end": 30201.32, + "probability": 0.8582 + }, + { + "start": 30201.36, + "end": 30206.54, + "probability": 0.9941 + }, + { + "start": 30207.58, + "end": 30210.2, + "probability": 0.9073 + }, + { + "start": 30210.54, + "end": 30212.36, + "probability": 0.7179 + }, + { + "start": 30212.98, + "end": 30217.72, + "probability": 0.991 + }, + { + "start": 30218.78, + "end": 30222.3, + "probability": 0.9894 + }, + { + "start": 30222.36, + "end": 30223.3, + "probability": 0.599 + }, + { + "start": 30223.46, + "end": 30225.5, + "probability": 0.9888 + }, + { + "start": 30225.64, + "end": 30228.98, + "probability": 0.9849 + }, + { + "start": 30229.54, + "end": 30229.92, + "probability": 0.7652 + }, + { + "start": 30230.64, + "end": 30231.71, + "probability": 0.6432 + }, + { + "start": 30232.26, + "end": 30232.26, + "probability": 0.7892 + }, + { + "start": 30232.26, + "end": 30234.34, + "probability": 0.6966 + }, + { + "start": 30234.34, + "end": 30238.72, + "probability": 0.7644 + }, + { + "start": 30239.54, + "end": 30245.23, + "probability": 0.9933 + }, + { + "start": 30245.93, + "end": 30248.76, + "probability": 0.9282 + }, + { + "start": 30249.42, + "end": 30251.58, + "probability": 0.9678 + }, + { + "start": 30252.18, + "end": 30253.04, + "probability": 0.9771 + }, + { + "start": 30253.16, + "end": 30253.94, + "probability": 0.7455 + }, + { + "start": 30254.32, + "end": 30255.44, + "probability": 0.9666 + }, + { + "start": 30256.18, + "end": 30260.16, + "probability": 0.9644 + }, + { + "start": 30260.7, + "end": 30265.0, + "probability": 0.9922 + }, + { + "start": 30265.34, + "end": 30265.86, + "probability": 0.8918 + }, + { + "start": 30266.06, + "end": 30267.02, + "probability": 0.7991 + }, + { + "start": 30268.62, + "end": 30270.7, + "probability": 0.9188 + }, + { + "start": 30271.68, + "end": 30274.52, + "probability": 0.9272 + }, + { + "start": 30275.28, + "end": 30275.3, + "probability": 0.1288 + }, + { + "start": 30275.3, + "end": 30276.68, + "probability": 0.942 + }, + { + "start": 30278.64, + "end": 30279.3, + "probability": 0.8232 + }, + { + "start": 30287.36, + "end": 30288.16, + "probability": 0.6138 + }, + { + "start": 30288.16, + "end": 30288.86, + "probability": 0.9448 + }, + { + "start": 30291.76, + "end": 30294.26, + "probability": 0.6913 + }, + { + "start": 30295.22, + "end": 30301.72, + "probability": 0.988 + }, + { + "start": 30301.82, + "end": 30302.52, + "probability": 0.8045 + }, + { + "start": 30302.84, + "end": 30308.64, + "probability": 0.8387 + }, + { + "start": 30309.98, + "end": 30316.0, + "probability": 0.8049 + }, + { + "start": 30316.06, + "end": 30317.92, + "probability": 0.5298 + }, + { + "start": 30318.04, + "end": 30323.36, + "probability": 0.7901 + }, + { + "start": 30324.72, + "end": 30325.04, + "probability": 0.3766 + }, + { + "start": 30325.12, + "end": 30327.5, + "probability": 0.9742 + }, + { + "start": 30327.6, + "end": 30332.54, + "probability": 0.8831 + }, + { + "start": 30332.62, + "end": 30336.24, + "probability": 0.9882 + }, + { + "start": 30339.16, + "end": 30341.4, + "probability": 0.8391 + }, + { + "start": 30341.4, + "end": 30345.72, + "probability": 0.9971 + }, + { + "start": 30347.38, + "end": 30349.02, + "probability": 0.8458 + }, + { + "start": 30349.9, + "end": 30354.46, + "probability": 0.8535 + }, + { + "start": 30354.66, + "end": 30356.12, + "probability": 0.9978 + }, + { + "start": 30357.0, + "end": 30362.74, + "probability": 0.9812 + }, + { + "start": 30362.84, + "end": 30363.74, + "probability": 0.5392 + }, + { + "start": 30365.18, + "end": 30371.14, + "probability": 0.9651 + }, + { + "start": 30372.04, + "end": 30376.98, + "probability": 0.9794 + }, + { + "start": 30377.18, + "end": 30377.8, + "probability": 0.9246 + }, + { + "start": 30378.72, + "end": 30380.74, + "probability": 0.8393 + }, + { + "start": 30381.42, + "end": 30385.76, + "probability": 0.8325 + }, + { + "start": 30387.82, + "end": 30388.54, + "probability": 0.6358 + }, + { + "start": 30388.66, + "end": 30392.9, + "probability": 0.8231 + }, + { + "start": 30393.44, + "end": 30395.64, + "probability": 0.8569 + }, + { + "start": 30396.02, + "end": 30397.26, + "probability": 0.5144 + }, + { + "start": 30397.46, + "end": 30398.36, + "probability": 0.6328 + }, + { + "start": 30399.3, + "end": 30402.48, + "probability": 0.9267 + }, + { + "start": 30402.68, + "end": 30403.36, + "probability": 0.5053 + }, + { + "start": 30403.76, + "end": 30406.04, + "probability": 0.795 + }, + { + "start": 30406.18, + "end": 30407.1, + "probability": 0.8832 + }, + { + "start": 30407.78, + "end": 30409.5, + "probability": 0.9098 + }, + { + "start": 30409.94, + "end": 30413.68, + "probability": 0.9646 + }, + { + "start": 30414.5, + "end": 30417.82, + "probability": 0.9934 + }, + { + "start": 30418.46, + "end": 30420.14, + "probability": 0.9903 + }, + { + "start": 30421.08, + "end": 30425.24, + "probability": 0.981 + }, + { + "start": 30425.84, + "end": 30426.72, + "probability": 0.7642 + }, + { + "start": 30427.62, + "end": 30433.72, + "probability": 0.9782 + }, + { + "start": 30434.56, + "end": 30435.72, + "probability": 0.7683 + }, + { + "start": 30436.46, + "end": 30438.04, + "probability": 0.9961 + }, + { + "start": 30439.16, + "end": 30444.81, + "probability": 0.7651 + }, + { + "start": 30445.06, + "end": 30447.4, + "probability": 0.9881 + }, + { + "start": 30448.1, + "end": 30449.68, + "probability": 0.8665 + }, + { + "start": 30450.2, + "end": 30455.26, + "probability": 0.9849 + }, + { + "start": 30455.46, + "end": 30457.72, + "probability": 0.9941 + }, + { + "start": 30458.78, + "end": 30465.7, + "probability": 0.8181 + }, + { + "start": 30466.08, + "end": 30467.86, + "probability": 0.9707 + }, + { + "start": 30468.44, + "end": 30470.28, + "probability": 0.9877 + }, + { + "start": 30470.4, + "end": 30474.14, + "probability": 0.9805 + }, + { + "start": 30474.14, + "end": 30478.1, + "probability": 0.9927 + }, + { + "start": 30478.54, + "end": 30482.22, + "probability": 0.9128 + }, + { + "start": 30484.1, + "end": 30485.66, + "probability": 0.5579 + }, + { + "start": 30488.71, + "end": 30493.16, + "probability": 0.9922 + }, + { + "start": 30493.72, + "end": 30498.38, + "probability": 0.9555 + }, + { + "start": 30498.38, + "end": 30501.44, + "probability": 0.9828 + }, + { + "start": 30502.4, + "end": 30502.72, + "probability": 0.406 + }, + { + "start": 30502.78, + "end": 30506.38, + "probability": 0.7042 + }, + { + "start": 30506.46, + "end": 30507.18, + "probability": 0.6885 + }, + { + "start": 30507.7, + "end": 30508.18, + "probability": 0.3958 + }, + { + "start": 30508.18, + "end": 30512.84, + "probability": 0.9919 + }, + { + "start": 30513.38, + "end": 30514.44, + "probability": 0.498 + }, + { + "start": 30514.44, + "end": 30518.4, + "probability": 0.985 + }, + { + "start": 30518.42, + "end": 30518.8, + "probability": 0.51 + }, + { + "start": 30519.32, + "end": 30520.16, + "probability": 0.6141 + }, + { + "start": 30520.44, + "end": 30521.16, + "probability": 0.6493 + }, + { + "start": 30521.26, + "end": 30523.72, + "probability": 0.8496 + }, + { + "start": 30523.82, + "end": 30524.54, + "probability": 0.8091 + }, + { + "start": 30538.94, + "end": 30540.8, + "probability": 0.7682 + }, + { + "start": 30543.06, + "end": 30544.86, + "probability": 0.7613 + }, + { + "start": 30545.04, + "end": 30545.08, + "probability": 0.9263 + }, + { + "start": 30545.08, + "end": 30545.78, + "probability": 0.7513 + }, + { + "start": 30545.88, + "end": 30547.06, + "probability": 0.8713 + }, + { + "start": 30548.42, + "end": 30550.28, + "probability": 0.6351 + }, + { + "start": 30551.12, + "end": 30553.04, + "probability": 0.8672 + }, + { + "start": 30554.66, + "end": 30556.52, + "probability": 0.9928 + }, + { + "start": 30556.62, + "end": 30557.8, + "probability": 0.9784 + }, + { + "start": 30557.86, + "end": 30560.1, + "probability": 0.9399 + }, + { + "start": 30560.18, + "end": 30560.74, + "probability": 0.9072 + }, + { + "start": 30560.96, + "end": 30561.94, + "probability": 0.9789 + }, + { + "start": 30562.4, + "end": 30564.54, + "probability": 0.9866 + }, + { + "start": 30565.36, + "end": 30566.94, + "probability": 0.8263 + }, + { + "start": 30567.02, + "end": 30568.26, + "probability": 0.8169 + }, + { + "start": 30568.44, + "end": 30569.42, + "probability": 0.4907 + }, + { + "start": 30569.62, + "end": 30570.24, + "probability": 0.6077 + }, + { + "start": 30571.14, + "end": 30574.32, + "probability": 0.7356 + }, + { + "start": 30575.08, + "end": 30577.76, + "probability": 0.9738 + }, + { + "start": 30579.36, + "end": 30580.78, + "probability": 0.9615 + }, + { + "start": 30581.26, + "end": 30583.38, + "probability": 0.7447 + }, + { + "start": 30583.38, + "end": 30587.08, + "probability": 0.9569 + }, + { + "start": 30587.74, + "end": 30590.08, + "probability": 0.9897 + }, + { + "start": 30591.64, + "end": 30593.02, + "probability": 0.6471 + }, + { + "start": 30593.06, + "end": 30594.64, + "probability": 0.8928 + }, + { + "start": 30595.6, + "end": 30596.4, + "probability": 0.8502 + }, + { + "start": 30596.52, + "end": 30601.04, + "probability": 0.7401 + }, + { + "start": 30601.2, + "end": 30602.86, + "probability": 0.5373 + }, + { + "start": 30603.2, + "end": 30604.98, + "probability": 0.8187 + }, + { + "start": 30605.68, + "end": 30608.2, + "probability": 0.9944 + }, + { + "start": 30608.9, + "end": 30612.68, + "probability": 0.9511 + }, + { + "start": 30613.85, + "end": 30616.16, + "probability": 0.5296 + }, + { + "start": 30616.8, + "end": 30618.52, + "probability": 0.9874 + }, + { + "start": 30618.72, + "end": 30619.86, + "probability": 0.978 + }, + { + "start": 30619.92, + "end": 30621.12, + "probability": 0.8762 + }, + { + "start": 30621.62, + "end": 30623.86, + "probability": 0.947 + }, + { + "start": 30624.46, + "end": 30624.88, + "probability": 0.8715 + }, + { + "start": 30625.18, + "end": 30626.44, + "probability": 0.7812 + }, + { + "start": 30626.5, + "end": 30627.14, + "probability": 0.7288 + }, + { + "start": 30628.6, + "end": 30629.17, + "probability": 0.1953 + }, + { + "start": 30629.76, + "end": 30631.82, + "probability": 0.8787 + }, + { + "start": 30631.86, + "end": 30633.06, + "probability": 0.996 + }, + { + "start": 30633.22, + "end": 30635.84, + "probability": 0.8683 + }, + { + "start": 30636.14, + "end": 30636.86, + "probability": 0.5621 + }, + { + "start": 30637.2, + "end": 30637.48, + "probability": 0.7196 + }, + { + "start": 30637.66, + "end": 30640.91, + "probability": 0.9409 + }, + { + "start": 30641.36, + "end": 30644.7, + "probability": 0.9312 + }, + { + "start": 30644.72, + "end": 30645.26, + "probability": 0.5554 + }, + { + "start": 30645.6, + "end": 30647.24, + "probability": 0.9232 + }, + { + "start": 30647.82, + "end": 30647.94, + "probability": 0.8167 + }, + { + "start": 30648.04, + "end": 30651.18, + "probability": 0.9209 + }, + { + "start": 30651.49, + "end": 30653.0, + "probability": 0.9688 + }, + { + "start": 30653.42, + "end": 30654.44, + "probability": 0.5375 + }, + { + "start": 30655.34, + "end": 30655.9, + "probability": 0.4314 + }, + { + "start": 30655.94, + "end": 30656.46, + "probability": 0.8431 + }, + { + "start": 30656.56, + "end": 30657.47, + "probability": 0.7983 + }, + { + "start": 30657.94, + "end": 30658.39, + "probability": 0.8069 + }, + { + "start": 30658.9, + "end": 30661.14, + "probability": 0.697 + }, + { + "start": 30661.28, + "end": 30664.42, + "probability": 0.5337 + }, + { + "start": 30664.52, + "end": 30667.42, + "probability": 0.7307 + }, + { + "start": 30667.44, + "end": 30668.28, + "probability": 0.7901 + }, + { + "start": 30668.5, + "end": 30669.52, + "probability": 0.0182 + }, + { + "start": 30669.58, + "end": 30669.88, + "probability": 0.0679 + }, + { + "start": 30669.96, + "end": 30670.38, + "probability": 0.2897 + }, + { + "start": 30670.4, + "end": 30673.44, + "probability": 0.8849 + }, + { + "start": 30674.66, + "end": 30675.64, + "probability": 0.7932 + }, + { + "start": 30675.73, + "end": 30680.34, + "probability": 0.6473 + }, + { + "start": 30681.12, + "end": 30683.38, + "probability": 0.831 + }, + { + "start": 30683.84, + "end": 30685.16, + "probability": 0.6518 + }, + { + "start": 30685.5, + "end": 30686.24, + "probability": 0.3641 + }, + { + "start": 30686.62, + "end": 30687.88, + "probability": 0.5524 + }, + { + "start": 30688.46, + "end": 30690.78, + "probability": 0.6917 + }, + { + "start": 30691.0, + "end": 30692.3, + "probability": 0.4914 + }, + { + "start": 30692.52, + "end": 30694.92, + "probability": 0.8232 + }, + { + "start": 30695.04, + "end": 30696.68, + "probability": 0.8081 + }, + { + "start": 30697.3, + "end": 30702.08, + "probability": 0.8268 + }, + { + "start": 30702.14, + "end": 30703.4, + "probability": 0.9951 + }, + { + "start": 30703.56, + "end": 30704.28, + "probability": 0.8655 + }, + { + "start": 30704.38, + "end": 30705.3, + "probability": 0.7818 + }, + { + "start": 30705.46, + "end": 30706.74, + "probability": 0.9729 + }, + { + "start": 30706.86, + "end": 30708.04, + "probability": 0.8114 + }, + { + "start": 30708.32, + "end": 30710.82, + "probability": 0.8414 + }, + { + "start": 30711.46, + "end": 30713.32, + "probability": 0.7641 + }, + { + "start": 30713.42, + "end": 30714.38, + "probability": 0.9133 + }, + { + "start": 30714.46, + "end": 30715.44, + "probability": 0.834 + }, + { + "start": 30715.58, + "end": 30718.27, + "probability": 0.2702 + }, + { + "start": 30719.86, + "end": 30721.44, + "probability": 0.5887 + }, + { + "start": 30722.32, + "end": 30722.96, + "probability": 0.7228 + }, + { + "start": 30723.16, + "end": 30725.66, + "probability": 0.4888 + }, + { + "start": 30725.9, + "end": 30726.98, + "probability": 0.9191 + }, + { + "start": 30727.28, + "end": 30728.56, + "probability": 0.9813 + }, + { + "start": 30728.58, + "end": 30729.64, + "probability": 0.9906 + }, + { + "start": 30730.82, + "end": 30732.1, + "probability": 0.543 + }, + { + "start": 30732.16, + "end": 30732.6, + "probability": 0.6638 + }, + { + "start": 30732.7, + "end": 30733.14, + "probability": 0.7872 + }, + { + "start": 30733.22, + "end": 30734.22, + "probability": 0.9557 + }, + { + "start": 30734.36, + "end": 30735.44, + "probability": 0.6649 + }, + { + "start": 30735.96, + "end": 30738.92, + "probability": 0.9586 + }, + { + "start": 30739.28, + "end": 30742.64, + "probability": 0.9921 + }, + { + "start": 30742.74, + "end": 30744.46, + "probability": 0.6449 + }, + { + "start": 30744.68, + "end": 30745.38, + "probability": 0.6177 + }, + { + "start": 30745.48, + "end": 30747.63, + "probability": 0.9727 + }, + { + "start": 30749.12, + "end": 30752.54, + "probability": 0.8101 + }, + { + "start": 30752.92, + "end": 30754.26, + "probability": 0.9927 + }, + { + "start": 30754.46, + "end": 30755.0, + "probability": 0.7721 + }, + { + "start": 30755.08, + "end": 30757.26, + "probability": 0.9946 + }, + { + "start": 30757.41, + "end": 30757.8, + "probability": 0.9526 + }, + { + "start": 30757.9, + "end": 30761.22, + "probability": 0.9288 + }, + { + "start": 30762.52, + "end": 30763.26, + "probability": 0.8748 + }, + { + "start": 30764.28, + "end": 30765.64, + "probability": 0.5966 + }, + { + "start": 30765.64, + "end": 30768.58, + "probability": 0.9438 + }, + { + "start": 30768.58, + "end": 30770.7, + "probability": 0.7598 + }, + { + "start": 30771.18, + "end": 30771.7, + "probability": 0.2291 + }, + { + "start": 30771.76, + "end": 30773.6, + "probability": 0.7887 + }, + { + "start": 30774.98, + "end": 30778.8, + "probability": 0.9812 + }, + { + "start": 30778.9, + "end": 30779.5, + "probability": 0.9498 + }, + { + "start": 30780.42, + "end": 30783.52, + "probability": 0.8194 + }, + { + "start": 30783.78, + "end": 30784.92, + "probability": 0.9343 + }, + { + "start": 30784.98, + "end": 30785.34, + "probability": 0.8638 + }, + { + "start": 30785.52, + "end": 30786.22, + "probability": 0.6708 + }, + { + "start": 30788.9, + "end": 30795.4, + "probability": 0.7157 + }, + { + "start": 30797.5, + "end": 30802.08, + "probability": 0.83 + }, + { + "start": 30802.4, + "end": 30804.38, + "probability": 0.5855 + }, + { + "start": 30807.6, + "end": 30812.04, + "probability": 0.8936 + }, + { + "start": 30812.24, + "end": 30818.38, + "probability": 0.8887 + }, + { + "start": 30819.66, + "end": 30821.02, + "probability": 0.6884 + }, + { + "start": 30821.9, + "end": 30823.28, + "probability": 0.8446 + }, + { + "start": 30824.48, + "end": 30824.88, + "probability": 0.4834 + }, + { + "start": 30825.0, + "end": 30828.94, + "probability": 0.9008 + }, + { + "start": 30829.14, + "end": 30830.24, + "probability": 0.8994 + }, + { + "start": 30831.1, + "end": 30833.62, + "probability": 0.9772 + }, + { + "start": 30836.34, + "end": 30836.34, + "probability": 0.9087 + }, + { + "start": 30839.38, + "end": 30843.88, + "probability": 0.9477 + }, + { + "start": 30844.84, + "end": 30847.06, + "probability": 0.5209 + }, + { + "start": 30848.08, + "end": 30848.94, + "probability": 0.9706 + }, + { + "start": 30850.52, + "end": 30853.72, + "probability": 0.986 + }, + { + "start": 30854.44, + "end": 30857.36, + "probability": 0.9948 + }, + { + "start": 30857.36, + "end": 30861.44, + "probability": 0.9898 + }, + { + "start": 30863.04, + "end": 30863.72, + "probability": 0.5032 + }, + { + "start": 30864.2, + "end": 30864.4, + "probability": 0.7076 + }, + { + "start": 30864.48, + "end": 30867.46, + "probability": 0.9917 + }, + { + "start": 30868.1, + "end": 30870.42, + "probability": 0.9845 + }, + { + "start": 30871.44, + "end": 30872.34, + "probability": 0.6962 + }, + { + "start": 30874.54, + "end": 30877.68, + "probability": 0.9978 + }, + { + "start": 30878.0, + "end": 30878.26, + "probability": 0.8134 + }, + { + "start": 30879.54, + "end": 30880.7, + "probability": 0.7966 + }, + { + "start": 30881.92, + "end": 30883.52, + "probability": 0.9915 + }, + { + "start": 30884.9, + "end": 30886.24, + "probability": 0.8742 + }, + { + "start": 30887.04, + "end": 30888.66, + "probability": 0.8518 + }, + { + "start": 30888.78, + "end": 30889.98, + "probability": 0.9953 + }, + { + "start": 30890.76, + "end": 30891.38, + "probability": 0.8733 + }, + { + "start": 30892.14, + "end": 30893.46, + "probability": 0.7452 + }, + { + "start": 30894.3, + "end": 30896.4, + "probability": 0.9861 + }, + { + "start": 30896.74, + "end": 30897.56, + "probability": 0.9575 + }, + { + "start": 30898.38, + "end": 30900.48, + "probability": 0.9843 + }, + { + "start": 30901.3, + "end": 30902.5, + "probability": 0.9974 + }, + { + "start": 30902.64, + "end": 30903.3, + "probability": 0.762 + }, + { + "start": 30904.02, + "end": 30905.0, + "probability": 0.9424 + }, + { + "start": 30905.12, + "end": 30906.96, + "probability": 0.8318 + }, + { + "start": 30907.1, + "end": 30909.12, + "probability": 0.7348 + }, + { + "start": 30909.9, + "end": 30910.44, + "probability": 0.7596 + }, + { + "start": 30911.6, + "end": 30913.2, + "probability": 0.4284 + }, + { + "start": 30913.42, + "end": 30915.3, + "probability": 0.3807 + }, + { + "start": 30915.5, + "end": 30916.51, + "probability": 0.6206 + }, + { + "start": 30917.84, + "end": 30921.62, + "probability": 0.4512 + }, + { + "start": 30923.23, + "end": 30925.08, + "probability": 0.6965 + }, + { + "start": 30925.74, + "end": 30927.86, + "probability": 0.9644 + }, + { + "start": 30927.96, + "end": 30928.86, + "probability": 0.8114 + }, + { + "start": 30929.56, + "end": 30929.66, + "probability": 0.186 + }, + { + "start": 30929.66, + "end": 30929.76, + "probability": 0.0153 + }, + { + "start": 30929.76, + "end": 30931.1, + "probability": 0.3753 + }, + { + "start": 30931.12, + "end": 30931.26, + "probability": 0.0107 + }, + { + "start": 30931.26, + "end": 30932.68, + "probability": 0.3727 + }, + { + "start": 30932.88, + "end": 30933.24, + "probability": 0.7275 + }, + { + "start": 30933.38, + "end": 30935.0, + "probability": 0.6128 + }, + { + "start": 30935.08, + "end": 30936.36, + "probability": 0.6572 + }, + { + "start": 30936.36, + "end": 30936.88, + "probability": 0.6817 + }, + { + "start": 30937.18, + "end": 30941.36, + "probability": 0.8868 + }, + { + "start": 30941.36, + "end": 30941.36, + "probability": 0.0646 + }, + { + "start": 30941.36, + "end": 30941.9, + "probability": 0.7053 + }, + { + "start": 30942.44, + "end": 30945.64, + "probability": 0.8346 + }, + { + "start": 30945.64, + "end": 30946.08, + "probability": 0.4722 + }, + { + "start": 30946.14, + "end": 30949.0, + "probability": 0.215 + }, + { + "start": 30949.22, + "end": 30950.0, + "probability": 0.0472 + }, + { + "start": 30950.0, + "end": 30950.0, + "probability": 0.3239 + }, + { + "start": 30950.0, + "end": 30951.14, + "probability": 0.0951 + }, + { + "start": 30951.96, + "end": 30956.12, + "probability": 0.4619 + }, + { + "start": 30956.94, + "end": 30959.62, + "probability": 0.9857 + }, + { + "start": 30960.14, + "end": 30960.68, + "probability": 0.8699 + }, + { + "start": 30962.68, + "end": 30966.56, + "probability": 0.9915 + }, + { + "start": 30966.62, + "end": 30967.25, + "probability": 0.8157 + }, + { + "start": 30967.96, + "end": 30971.46, + "probability": 0.7812 + }, + { + "start": 30972.04, + "end": 30973.6, + "probability": 0.9041 + }, + { + "start": 30974.52, + "end": 30975.94, + "probability": 0.6885 + }, + { + "start": 30977.86, + "end": 30980.56, + "probability": 0.8608 + }, + { + "start": 30982.4, + "end": 30984.44, + "probability": 0.7107 + }, + { + "start": 30984.6, + "end": 30985.36, + "probability": 0.9932 + }, + { + "start": 30986.76, + "end": 30990.72, + "probability": 0.9806 + }, + { + "start": 30990.98, + "end": 30991.7, + "probability": 0.9594 + }, + { + "start": 30992.12, + "end": 30993.78, + "probability": 0.9647 + }, + { + "start": 30996.04, + "end": 30997.04, + "probability": 0.9507 + }, + { + "start": 31001.7, + "end": 31003.84, + "probability": 0.8757 + }, + { + "start": 31005.24, + "end": 31006.74, + "probability": 0.9683 + }, + { + "start": 31006.84, + "end": 31007.7, + "probability": 0.6871 + }, + { + "start": 31007.76, + "end": 31008.5, + "probability": 0.9801 + }, + { + "start": 31009.1, + "end": 31010.3, + "probability": 0.8149 + }, + { + "start": 31011.16, + "end": 31012.42, + "probability": 0.7054 + }, + { + "start": 31014.16, + "end": 31014.78, + "probability": 0.73 + }, + { + "start": 31015.38, + "end": 31015.79, + "probability": 0.9688 + }, + { + "start": 31016.26, + "end": 31017.2, + "probability": 0.9404 + }, + { + "start": 31018.12, + "end": 31018.97, + "probability": 0.9375 + }, + { + "start": 31019.56, + "end": 31020.69, + "probability": 0.9353 + }, + { + "start": 31020.82, + "end": 31022.3, + "probability": 0.9287 + }, + { + "start": 31022.48, + "end": 31023.44, + "probability": 0.7195 + }, + { + "start": 31024.58, + "end": 31027.58, + "probability": 0.6617 + }, + { + "start": 31028.52, + "end": 31030.24, + "probability": 0.8942 + }, + { + "start": 31032.24, + "end": 31035.48, + "probability": 0.9563 + }, + { + "start": 31037.0, + "end": 31039.12, + "probability": 0.558 + }, + { + "start": 31040.1, + "end": 31041.62, + "probability": 0.9287 + }, + { + "start": 31041.72, + "end": 31041.92, + "probability": 0.5792 + }, + { + "start": 31042.04, + "end": 31043.38, + "probability": 0.9921 + }, + { + "start": 31047.88, + "end": 31049.1, + "probability": 0.8376 + }, + { + "start": 31051.54, + "end": 31053.48, + "probability": 0.9902 + }, + { + "start": 31054.9, + "end": 31056.2, + "probability": 0.9183 + }, + { + "start": 31057.44, + "end": 31058.68, + "probability": 0.995 + }, + { + "start": 31058.72, + "end": 31061.36, + "probability": 0.9259 + }, + { + "start": 31061.8, + "end": 31063.5, + "probability": 0.8276 + }, + { + "start": 31065.52, + "end": 31067.9, + "probability": 0.9725 + }, + { + "start": 31068.8, + "end": 31070.16, + "probability": 0.9396 + }, + { + "start": 31071.22, + "end": 31072.76, + "probability": 0.9957 + }, + { + "start": 31073.8, + "end": 31074.7, + "probability": 0.9951 + }, + { + "start": 31074.82, + "end": 31076.74, + "probability": 0.9885 + }, + { + "start": 31077.6, + "end": 31080.26, + "probability": 0.994 + }, + { + "start": 31080.38, + "end": 31081.82, + "probability": 0.9594 + }, + { + "start": 31082.66, + "end": 31084.96, + "probability": 0.9939 + }, + { + "start": 31086.16, + "end": 31086.44, + "probability": 0.7329 + }, + { + "start": 31086.5, + "end": 31089.2, + "probability": 0.8396 + }, + { + "start": 31089.7, + "end": 31090.22, + "probability": 0.5864 + }, + { + "start": 31091.38, + "end": 31095.66, + "probability": 0.9886 + }, + { + "start": 31096.12, + "end": 31096.2, + "probability": 0.6125 + }, + { + "start": 31096.3, + "end": 31096.44, + "probability": 0.6123 + }, + { + "start": 31096.64, + "end": 31097.18, + "probability": 0.4141 + }, + { + "start": 31097.52, + "end": 31098.8, + "probability": 0.9624 + }, + { + "start": 31099.36, + "end": 31100.86, + "probability": 0.7379 + }, + { + "start": 31101.72, + "end": 31102.27, + "probability": 0.9712 + }, + { + "start": 31103.72, + "end": 31105.85, + "probability": 0.9785 + }, + { + "start": 31106.04, + "end": 31106.72, + "probability": 0.9961 + }, + { + "start": 31107.34, + "end": 31109.56, + "probability": 0.8562 + }, + { + "start": 31110.06, + "end": 31110.78, + "probability": 0.907 + }, + { + "start": 31111.16, + "end": 31117.8, + "probability": 0.9613 + }, + { + "start": 31118.62, + "end": 31119.82, + "probability": 0.9542 + }, + { + "start": 31119.98, + "end": 31121.86, + "probability": 0.9836 + }, + { + "start": 31122.5, + "end": 31123.79, + "probability": 0.9951 + }, + { + "start": 31124.24, + "end": 31125.84, + "probability": 0.9961 + }, + { + "start": 31126.44, + "end": 31128.36, + "probability": 0.996 + }, + { + "start": 31130.24, + "end": 31132.4, + "probability": 0.9122 + }, + { + "start": 31132.54, + "end": 31133.32, + "probability": 0.6303 + }, + { + "start": 31133.52, + "end": 31136.55, + "probability": 0.9429 + }, + { + "start": 31137.3, + "end": 31138.12, + "probability": 0.7202 + }, + { + "start": 31138.8, + "end": 31140.48, + "probability": 0.9398 + }, + { + "start": 31141.68, + "end": 31142.34, + "probability": 0.9771 + }, + { + "start": 31142.98, + "end": 31144.08, + "probability": 0.3538 + }, + { + "start": 31144.54, + "end": 31149.1, + "probability": 0.9895 + }, + { + "start": 31149.86, + "end": 31150.66, + "probability": 0.9925 + }, + { + "start": 31152.25, + "end": 31156.84, + "probability": 0.9418 + }, + { + "start": 31157.34, + "end": 31160.6, + "probability": 0.9889 + }, + { + "start": 31161.12, + "end": 31165.88, + "probability": 0.5866 + }, + { + "start": 31165.88, + "end": 31170.18, + "probability": 0.9619 + }, + { + "start": 31171.86, + "end": 31175.1, + "probability": 0.6631 + }, + { + "start": 31175.13, + "end": 31178.24, + "probability": 0.9335 + }, + { + "start": 31178.28, + "end": 31180.06, + "probability": 0.6035 + }, + { + "start": 31180.56, + "end": 31181.14, + "probability": 0.8872 + }, + { + "start": 31181.98, + "end": 31187.68, + "probability": 0.8772 + }, + { + "start": 31188.24, + "end": 31189.04, + "probability": 0.9541 + }, + { + "start": 31189.84, + "end": 31190.72, + "probability": 0.9902 + }, + { + "start": 31191.9, + "end": 31194.34, + "probability": 0.987 + }, + { + "start": 31194.8, + "end": 31198.4, + "probability": 0.9712 + }, + { + "start": 31198.4, + "end": 31203.12, + "probability": 0.9954 + }, + { + "start": 31203.6, + "end": 31204.98, + "probability": 0.8087 + }, + { + "start": 31205.96, + "end": 31213.32, + "probability": 0.6802 + }, + { + "start": 31214.5, + "end": 31218.78, + "probability": 0.9719 + }, + { + "start": 31219.48, + "end": 31220.86, + "probability": 0.9741 + }, + { + "start": 31221.78, + "end": 31224.09, + "probability": 0.6584 + }, + { + "start": 31224.32, + "end": 31224.86, + "probability": 0.7551 + }, + { + "start": 31225.6, + "end": 31225.7, + "probability": 0.1358 + }, + { + "start": 31225.82, + "end": 31227.48, + "probability": 0.6271 + }, + { + "start": 31227.62, + "end": 31228.02, + "probability": 0.8357 + }, + { + "start": 31228.66, + "end": 31231.24, + "probability": 0.6454 + }, + { + "start": 31234.58, + "end": 31239.12, + "probability": 0.9531 + }, + { + "start": 31239.66, + "end": 31240.08, + "probability": 0.8478 + }, + { + "start": 31240.16, + "end": 31241.0, + "probability": 0.9016 + }, + { + "start": 31241.08, + "end": 31241.6, + "probability": 0.7447 + }, + { + "start": 31241.84, + "end": 31244.2, + "probability": 0.9854 + }, + { + "start": 31244.28, + "end": 31246.72, + "probability": 0.8084 + }, + { + "start": 31247.8, + "end": 31248.66, + "probability": 0.6322 + }, + { + "start": 31248.8, + "end": 31250.66, + "probability": 0.536 + }, + { + "start": 31250.72, + "end": 31251.66, + "probability": 0.8176 + }, + { + "start": 31252.94, + "end": 31253.22, + "probability": 0.7688 + }, + { + "start": 31253.3, + "end": 31256.22, + "probability": 0.8583 + }, + { + "start": 31256.42, + "end": 31260.22, + "probability": 0.6763 + }, + { + "start": 31260.32, + "end": 31260.86, + "probability": 0.9355 + }, + { + "start": 31261.52, + "end": 31262.72, + "probability": 0.3103 + }, + { + "start": 31264.0, + "end": 31265.87, + "probability": 0.2714 + }, + { + "start": 31266.78, + "end": 31267.13, + "probability": 0.1657 + }, + { + "start": 31268.32, + "end": 31268.42, + "probability": 0.5806 + }, + { + "start": 31268.42, + "end": 31269.16, + "probability": 0.2775 + }, + { + "start": 31269.54, + "end": 31271.32, + "probability": 0.7135 + }, + { + "start": 31272.48, + "end": 31273.38, + "probability": 0.7364 + }, + { + "start": 31274.34, + "end": 31274.92, + "probability": 0.7798 + }, + { + "start": 31275.34, + "end": 31277.1, + "probability": 0.4884 + }, + { + "start": 31277.48, + "end": 31279.22, + "probability": 0.3045 + }, + { + "start": 31279.3, + "end": 31279.72, + "probability": 0.6077 + }, + { + "start": 31280.9, + "end": 31280.9, + "probability": 0.3756 + }, + { + "start": 31280.9, + "end": 31284.3, + "probability": 0.3311 + }, + { + "start": 31284.36, + "end": 31285.68, + "probability": 0.7468 + }, + { + "start": 31286.1, + "end": 31287.4, + "probability": 0.9902 + }, + { + "start": 31287.98, + "end": 31290.98, + "probability": 0.7666 + }, + { + "start": 31291.8, + "end": 31294.24, + "probability": 0.9956 + }, + { + "start": 31294.24, + "end": 31297.16, + "probability": 0.9985 + }, + { + "start": 31297.24, + "end": 31297.82, + "probability": 0.745 + }, + { + "start": 31297.96, + "end": 31298.52, + "probability": 0.912 + }, + { + "start": 31299.4, + "end": 31302.74, + "probability": 0.9902 + }, + { + "start": 31302.88, + "end": 31303.76, + "probability": 0.8821 + }, + { + "start": 31304.08, + "end": 31309.36, + "probability": 0.8679 + }, + { + "start": 31309.48, + "end": 31312.22, + "probability": 0.9933 + }, + { + "start": 31312.22, + "end": 31315.62, + "probability": 0.981 + }, + { + "start": 31317.02, + "end": 31321.02, + "probability": 0.9985 + }, + { + "start": 31321.76, + "end": 31326.46, + "probability": 0.9943 + }, + { + "start": 31327.06, + "end": 31329.36, + "probability": 0.9603 + }, + { + "start": 31329.36, + "end": 31332.52, + "probability": 0.9784 + }, + { + "start": 31333.16, + "end": 31336.64, + "probability": 0.9963 + }, + { + "start": 31337.34, + "end": 31338.22, + "probability": 0.8165 + }, + { + "start": 31339.36, + "end": 31342.46, + "probability": 0.9951 + }, + { + "start": 31342.68, + "end": 31344.96, + "probability": 0.9922 + }, + { + "start": 31346.18, + "end": 31349.4, + "probability": 0.9958 + }, + { + "start": 31350.3, + "end": 31351.36, + "probability": 0.9476 + }, + { + "start": 31351.48, + "end": 31354.52, + "probability": 0.9892 + }, + { + "start": 31355.54, + "end": 31356.7, + "probability": 0.6 + }, + { + "start": 31356.82, + "end": 31357.68, + "probability": 0.8688 + }, + { + "start": 31357.82, + "end": 31362.44, + "probability": 0.9385 + }, + { + "start": 31362.62, + "end": 31369.56, + "probability": 0.9944 + }, + { + "start": 31369.8, + "end": 31370.5, + "probability": 0.335 + }, + { + "start": 31370.7, + "end": 31372.7, + "probability": 0.9077 + }, + { + "start": 31372.82, + "end": 31373.5, + "probability": 0.6637 + }, + { + "start": 31374.06, + "end": 31375.1, + "probability": 0.6616 + }, + { + "start": 31375.16, + "end": 31376.86, + "probability": 0.4409 + }, + { + "start": 31377.94, + "end": 31378.34, + "probability": 0.9061 + }, + { + "start": 31382.8, + "end": 31383.4, + "probability": 0.1106 + }, + { + "start": 31395.46, + "end": 31395.64, + "probability": 0.4764 + }, + { + "start": 31395.64, + "end": 31396.58, + "probability": 0.2144 + }, + { + "start": 31397.44, + "end": 31398.62, + "probability": 0.4005 + }, + { + "start": 31398.76, + "end": 31403.24, + "probability": 0.6896 + }, + { + "start": 31404.12, + "end": 31405.66, + "probability": 0.7734 + }, + { + "start": 31412.46, + "end": 31414.98, + "probability": 0.0665 + }, + { + "start": 31417.04, + "end": 31417.04, + "probability": 0.044 + }, + { + "start": 31417.04, + "end": 31419.66, + "probability": 0.5406 + }, + { + "start": 31420.48, + "end": 31422.48, + "probability": 0.8923 + }, + { + "start": 31446.88, + "end": 31447.52, + "probability": 0.5446 + }, + { + "start": 31448.2, + "end": 31450.7, + "probability": 0.6548 + }, + { + "start": 31451.94, + "end": 31455.04, + "probability": 0.9741 + }, + { + "start": 31455.64, + "end": 31459.72, + "probability": 0.9958 + }, + { + "start": 31459.72, + "end": 31465.74, + "probability": 0.9958 + }, + { + "start": 31466.68, + "end": 31472.76, + "probability": 0.8594 + }, + { + "start": 31473.44, + "end": 31479.6, + "probability": 0.9832 + }, + { + "start": 31479.6, + "end": 31484.96, + "probability": 0.9986 + }, + { + "start": 31485.58, + "end": 31489.6, + "probability": 0.9928 + }, + { + "start": 31489.94, + "end": 31490.7, + "probability": 0.5711 + }, + { + "start": 31491.38, + "end": 31492.68, + "probability": 0.7656 + }, + { + "start": 31494.26, + "end": 31496.96, + "probability": 0.9801 + }, + { + "start": 31497.64, + "end": 31500.32, + "probability": 0.9114 + }, + { + "start": 31501.24, + "end": 31505.9, + "probability": 0.8926 + }, + { + "start": 31506.6, + "end": 31512.94, + "probability": 0.9932 + }, + { + "start": 31513.42, + "end": 31514.66, + "probability": 0.8297 + }, + { + "start": 31515.12, + "end": 31519.02, + "probability": 0.6927 + }, + { + "start": 31520.14, + "end": 31523.92, + "probability": 0.9471 + }, + { + "start": 31524.72, + "end": 31529.14, + "probability": 0.8994 + }, + { + "start": 31529.96, + "end": 31535.0, + "probability": 0.9799 + }, + { + "start": 31535.52, + "end": 31537.4, + "probability": 0.9771 + }, + { + "start": 31538.1, + "end": 31539.82, + "probability": 0.803 + }, + { + "start": 31540.4, + "end": 31540.88, + "probability": 0.8215 + }, + { + "start": 31541.66, + "end": 31542.9, + "probability": 0.7886 + }, + { + "start": 31543.26, + "end": 31547.34, + "probability": 0.9512 + }, + { + "start": 31547.34, + "end": 31551.51, + "probability": 0.994 + }, + { + "start": 31551.92, + "end": 31555.6, + "probability": 0.9971 + }, + { + "start": 31555.66, + "end": 31557.72, + "probability": 0.9966 + }, + { + "start": 31558.2, + "end": 31561.42, + "probability": 0.8997 + }, + { + "start": 31562.12, + "end": 31562.5, + "probability": 0.894 + }, + { + "start": 31562.84, + "end": 31563.84, + "probability": 0.9178 + }, + { + "start": 31564.58, + "end": 31565.94, + "probability": 0.8729 + }, + { + "start": 31566.58, + "end": 31567.58, + "probability": 0.8435 + }, + { + "start": 31568.34, + "end": 31570.38, + "probability": 0.8145 + }, + { + "start": 31571.08, + "end": 31574.06, + "probability": 0.9771 + }, + { + "start": 31574.46, + "end": 31575.1, + "probability": 0.8689 + }, + { + "start": 31575.52, + "end": 31576.52, + "probability": 0.818 + }, + { + "start": 31576.98, + "end": 31578.02, + "probability": 0.7687 + }, + { + "start": 31578.1, + "end": 31579.86, + "probability": 0.9958 + }, + { + "start": 31580.38, + "end": 31583.51, + "probability": 0.9951 + }, + { + "start": 31584.54, + "end": 31586.0, + "probability": 0.9657 + }, + { + "start": 31586.56, + "end": 31590.08, + "probability": 0.8694 + }, + { + "start": 31591.02, + "end": 31591.93, + "probability": 0.898 + }, + { + "start": 31592.52, + "end": 31593.34, + "probability": 0.8896 + }, + { + "start": 31593.52, + "end": 31594.46, + "probability": 0.8778 + }, + { + "start": 31594.6, + "end": 31596.58, + "probability": 0.8955 + }, + { + "start": 31597.3, + "end": 31600.6, + "probability": 0.6772 + }, + { + "start": 31601.04, + "end": 31603.0, + "probability": 0.837 + }, + { + "start": 31603.54, + "end": 31605.54, + "probability": 0.9951 + }, + { + "start": 31606.2, + "end": 31610.36, + "probability": 0.9937 + }, + { + "start": 31611.1, + "end": 31613.4, + "probability": 0.9977 + }, + { + "start": 31614.02, + "end": 31617.42, + "probability": 0.9965 + }, + { + "start": 31618.22, + "end": 31622.88, + "probability": 0.995 + }, + { + "start": 31623.4, + "end": 31625.7, + "probability": 0.902 + }, + { + "start": 31626.22, + "end": 31626.82, + "probability": 0.8668 + }, + { + "start": 31627.34, + "end": 31627.9, + "probability": 0.971 + }, + { + "start": 31628.26, + "end": 31628.82, + "probability": 0.9835 + }, + { + "start": 31629.14, + "end": 31629.74, + "probability": 0.9152 + }, + { + "start": 31630.16, + "end": 31632.6, + "probability": 0.9644 + }, + { + "start": 31632.9, + "end": 31633.32, + "probability": 0.4773 + }, + { + "start": 31633.34, + "end": 31639.24, + "probability": 0.9866 + }, + { + "start": 31639.7, + "end": 31640.12, + "probability": 0.8236 + }, + { + "start": 31641.8, + "end": 31642.52, + "probability": 0.5015 + }, + { + "start": 31645.78, + "end": 31647.82, + "probability": 0.8079 + }, + { + "start": 31668.72, + "end": 31670.66, + "probability": 0.6154 + }, + { + "start": 31671.8, + "end": 31674.46, + "probability": 0.9862 + }, + { + "start": 31676.12, + "end": 31679.06, + "probability": 0.9965 + }, + { + "start": 31680.04, + "end": 31681.48, + "probability": 0.7723 + }, + { + "start": 31682.74, + "end": 31688.02, + "probability": 0.9683 + }, + { + "start": 31689.04, + "end": 31689.52, + "probability": 0.9355 + }, + { + "start": 31690.22, + "end": 31690.86, + "probability": 0.6117 + }, + { + "start": 31691.1, + "end": 31694.3, + "probability": 0.991 + }, + { + "start": 31695.14, + "end": 31696.56, + "probability": 0.9219 + }, + { + "start": 31697.87, + "end": 31703.42, + "probability": 0.8174 + }, + { + "start": 31704.2, + "end": 31707.16, + "probability": 0.9371 + }, + { + "start": 31707.66, + "end": 31709.26, + "probability": 0.9862 + }, + { + "start": 31710.1, + "end": 31710.96, + "probability": 0.9705 + }, + { + "start": 31711.68, + "end": 31713.58, + "probability": 0.7978 + }, + { + "start": 31713.96, + "end": 31715.28, + "probability": 0.1113 + }, + { + "start": 31715.36, + "end": 31716.76, + "probability": 0.4379 + }, + { + "start": 31716.96, + "end": 31719.16, + "probability": 0.5283 + }, + { + "start": 31719.22, + "end": 31719.48, + "probability": 0.7383 + }, + { + "start": 31720.06, + "end": 31723.18, + "probability": 0.8595 + }, + { + "start": 31724.26, + "end": 31727.7, + "probability": 0.9407 + }, + { + "start": 31728.4, + "end": 31731.26, + "probability": 0.9041 + }, + { + "start": 31731.8, + "end": 31732.5, + "probability": 0.1627 + }, + { + "start": 31732.56, + "end": 31732.72, + "probability": 0.0773 + }, + { + "start": 31732.72, + "end": 31733.44, + "probability": 0.5649 + }, + { + "start": 31733.68, + "end": 31734.96, + "probability": 0.5053 + }, + { + "start": 31735.48, + "end": 31737.83, + "probability": 0.7828 + }, + { + "start": 31738.04, + "end": 31739.06, + "probability": 0.8489 + }, + { + "start": 31740.26, + "end": 31741.82, + "probability": 0.9764 + }, + { + "start": 31743.14, + "end": 31745.9, + "probability": 0.8538 + }, + { + "start": 31746.66, + "end": 31747.4, + "probability": 0.9846 + }, + { + "start": 31748.16, + "end": 31749.82, + "probability": 0.5391 + }, + { + "start": 31750.54, + "end": 31751.34, + "probability": 0.9746 + }, + { + "start": 31751.62, + "end": 31752.62, + "probability": 0.1161 + }, + { + "start": 31752.78, + "end": 31753.76, + "probability": 0.6188 + }, + { + "start": 31755.82, + "end": 31756.27, + "probability": 0.8584 + }, + { + "start": 31756.66, + "end": 31757.06, + "probability": 0.8502 + }, + { + "start": 31757.2, + "end": 31761.54, + "probability": 0.9985 + }, + { + "start": 31762.54, + "end": 31763.68, + "probability": 0.9992 + }, + { + "start": 31765.78, + "end": 31767.44, + "probability": 0.2033 + }, + { + "start": 31768.8, + "end": 31771.44, + "probability": 0.7697 + }, + { + "start": 31773.28, + "end": 31777.48, + "probability": 0.9333 + }, + { + "start": 31777.48, + "end": 31780.04, + "probability": 0.9934 + }, + { + "start": 31780.86, + "end": 31784.48, + "probability": 0.8085 + }, + { + "start": 31785.3, + "end": 31791.92, + "probability": 0.947 + }, + { + "start": 31792.02, + "end": 31792.72, + "probability": 0.8518 + }, + { + "start": 31793.38, + "end": 31794.34, + "probability": 0.8678 + }, + { + "start": 31795.04, + "end": 31795.26, + "probability": 0.8892 + }, + { + "start": 31795.36, + "end": 31796.12, + "probability": 0.5607 + }, + { + "start": 31796.14, + "end": 31797.82, + "probability": 0.9905 + }, + { + "start": 31798.74, + "end": 31799.56, + "probability": 0.4648 + }, + { + "start": 31799.66, + "end": 31802.14, + "probability": 0.9775 + }, + { + "start": 31802.8, + "end": 31804.74, + "probability": 0.9907 + }, + { + "start": 31805.3, + "end": 31806.88, + "probability": 0.5404 + }, + { + "start": 31807.72, + "end": 31812.98, + "probability": 0.8315 + }, + { + "start": 31813.16, + "end": 31815.66, + "probability": 0.9533 + }, + { + "start": 31816.86, + "end": 31816.98, + "probability": 0.0159 + }, + { + "start": 31816.98, + "end": 31817.82, + "probability": 0.2563 + }, + { + "start": 31818.44, + "end": 31819.6, + "probability": 0.918 + }, + { + "start": 31819.72, + "end": 31820.88, + "probability": 0.8115 + }, + { + "start": 31820.94, + "end": 31824.96, + "probability": 0.8555 + }, + { + "start": 31825.62, + "end": 31827.78, + "probability": 0.3208 + }, + { + "start": 31827.96, + "end": 31834.7, + "probability": 0.5594 + }, + { + "start": 31837.24, + "end": 31838.88, + "probability": 0.3101 + }, + { + "start": 31839.6, + "end": 31841.38, + "probability": 0.5826 + }, + { + "start": 31841.78, + "end": 31842.1, + "probability": 0.7562 + }, + { + "start": 31844.6, + "end": 31846.7, + "probability": 0.2573 + }, + { + "start": 31848.51, + "end": 31855.5, + "probability": 0.8269 + }, + { + "start": 31855.58, + "end": 31856.04, + "probability": 0.3398 + }, + { + "start": 31856.52, + "end": 31858.42, + "probability": 0.9971 + }, + { + "start": 31859.02, + "end": 31859.26, + "probability": 0.8138 + }, + { + "start": 31859.3, + "end": 31861.34, + "probability": 0.9039 + }, + { + "start": 31861.62, + "end": 31865.24, + "probability": 0.5668 + }, + { + "start": 31866.08, + "end": 31870.4, + "probability": 0.8054 + }, + { + "start": 31871.2, + "end": 31873.62, + "probability": 0.7081 + }, + { + "start": 31874.2, + "end": 31878.62, + "probability": 0.8781 + }, + { + "start": 31878.88, + "end": 31879.66, + "probability": 0.9961 + }, + { + "start": 31880.12, + "end": 31883.92, + "probability": 0.9357 + }, + { + "start": 31884.84, + "end": 31886.68, + "probability": 0.9292 + }, + { + "start": 31887.24, + "end": 31890.04, + "probability": 0.9895 + }, + { + "start": 31890.12, + "end": 31890.72, + "probability": 0.9557 + }, + { + "start": 31891.98, + "end": 31895.04, + "probability": 0.5766 + }, + { + "start": 31895.58, + "end": 31896.32, + "probability": 0.6055 + }, + { + "start": 31896.4, + "end": 31896.8, + "probability": 0.7463 + }, + { + "start": 31897.69, + "end": 31898.3, + "probability": 0.9962 + }, + { + "start": 31898.4, + "end": 31900.1, + "probability": 0.9779 + }, + { + "start": 31901.04, + "end": 31905.24, + "probability": 0.8747 + }, + { + "start": 31905.42, + "end": 31907.5, + "probability": 0.9948 + }, + { + "start": 31908.48, + "end": 31909.42, + "probability": 0.3083 + }, + { + "start": 31910.16, + "end": 31912.26, + "probability": 0.9271 + }, + { + "start": 31912.84, + "end": 31916.4, + "probability": 0.8988 + }, + { + "start": 31917.52, + "end": 31919.48, + "probability": 0.9019 + }, + { + "start": 31920.76, + "end": 31921.56, + "probability": 0.3967 + }, + { + "start": 31921.56, + "end": 31921.74, + "probability": 0.7702 + }, + { + "start": 31922.12, + "end": 31924.38, + "probability": 0.8656 + }, + { + "start": 31924.38, + "end": 31926.28, + "probability": 0.6539 + }, + { + "start": 31926.52, + "end": 31927.22, + "probability": 0.6637 + }, + { + "start": 31927.26, + "end": 31929.2, + "probability": 0.6526 + }, + { + "start": 31929.74, + "end": 31930.93, + "probability": 0.1008 + }, + { + "start": 31931.65, + "end": 31936.7, + "probability": 0.8621 + }, + { + "start": 31938.2, + "end": 31943.28, + "probability": 0.9552 + }, + { + "start": 31943.28, + "end": 31949.32, + "probability": 0.3509 + }, + { + "start": 31950.68, + "end": 31956.12, + "probability": 0.8329 + }, + { + "start": 31956.38, + "end": 31960.6, + "probability": 0.9915 + }, + { + "start": 31960.74, + "end": 31968.38, + "probability": 0.9744 + }, + { + "start": 31968.38, + "end": 31975.86, + "probability": 0.9895 + }, + { + "start": 31976.58, + "end": 31976.78, + "probability": 0.4203 + }, + { + "start": 31976.78, + "end": 31977.28, + "probability": 0.1798 + }, + { + "start": 31977.38, + "end": 31984.28, + "probability": 0.9614 + }, + { + "start": 31984.48, + "end": 31984.96, + "probability": 0.6043 + }, + { + "start": 31985.34, + "end": 31990.12, + "probability": 0.8093 + }, + { + "start": 31990.28, + "end": 31992.22, + "probability": 0.5926 + }, + { + "start": 31992.64, + "end": 31993.46, + "probability": 0.4823 + }, + { + "start": 31993.58, + "end": 31995.62, + "probability": 0.9374 + }, + { + "start": 31996.34, + "end": 31996.96, + "probability": 0.8243 + }, + { + "start": 31997.9, + "end": 32004.04, + "probability": 0.8428 + }, + { + "start": 32004.54, + "end": 32005.28, + "probability": 0.6257 + }, + { + "start": 32005.38, + "end": 32006.6, + "probability": 0.9106 + }, + { + "start": 32009.64, + "end": 32011.08, + "probability": 0.7726 + }, + { + "start": 32013.76, + "end": 32014.92, + "probability": 0.9126 + }, + { + "start": 32015.28, + "end": 32018.96, + "probability": 0.9573 + }, + { + "start": 32019.5, + "end": 32021.88, + "probability": 0.9317 + }, + { + "start": 32023.7, + "end": 32029.32, + "probability": 0.9804 + }, + { + "start": 32029.4, + "end": 32033.12, + "probability": 0.9186 + }, + { + "start": 32036.48, + "end": 32037.48, + "probability": 0.7244 + }, + { + "start": 32038.56, + "end": 32039.2, + "probability": 0.9966 + }, + { + "start": 32040.14, + "end": 32044.04, + "probability": 0.9634 + }, + { + "start": 32044.64, + "end": 32045.64, + "probability": 0.9586 + }, + { + "start": 32048.14, + "end": 32055.38, + "probability": 0.9431 + }, + { + "start": 32056.6, + "end": 32058.24, + "probability": 0.6081 + }, + { + "start": 32058.78, + "end": 32060.96, + "probability": 0.929 + }, + { + "start": 32062.52, + "end": 32065.52, + "probability": 0.9956 + }, + { + "start": 32065.9, + "end": 32067.12, + "probability": 0.409 + }, + { + "start": 32067.46, + "end": 32070.47, + "probability": 0.8004 + }, + { + "start": 32076.6, + "end": 32076.82, + "probability": 0.0137 + }, + { + "start": 32077.06, + "end": 32079.0, + "probability": 0.2706 + }, + { + "start": 32079.12, + "end": 32079.76, + "probability": 0.1407 + }, + { + "start": 32082.58, + "end": 32087.6, + "probability": 0.8867 + }, + { + "start": 32088.54, + "end": 32089.9, + "probability": 0.9465 + }, + { + "start": 32092.32, + "end": 32092.42, + "probability": 0.6008 + }, + { + "start": 32093.24, + "end": 32094.6, + "probability": 0.3488 + }, + { + "start": 32094.82, + "end": 32096.08, + "probability": 0.7078 + }, + { + "start": 32096.28, + "end": 32098.98, + "probability": 0.8705 + }, + { + "start": 32100.36, + "end": 32103.34, + "probability": 0.8612 + }, + { + "start": 32103.96, + "end": 32105.12, + "probability": 0.995 + }, + { + "start": 32105.22, + "end": 32109.22, + "probability": 0.8205 + }, + { + "start": 32109.64, + "end": 32111.06, + "probability": 0.9824 + }, + { + "start": 32111.1, + "end": 32112.6, + "probability": 0.4939 + }, + { + "start": 32113.66, + "end": 32118.5, + "probability": 0.8817 + }, + { + "start": 32119.38, + "end": 32121.54, + "probability": 0.9614 + }, + { + "start": 32122.12, + "end": 32125.82, + "probability": 0.721 + }, + { + "start": 32126.8, + "end": 32130.66, + "probability": 0.8023 + }, + { + "start": 32131.22, + "end": 32133.32, + "probability": 0.562 + }, + { + "start": 32136.42, + "end": 32138.6, + "probability": 0.9151 + }, + { + "start": 32140.24, + "end": 32141.24, + "probability": 0.6419 + }, + { + "start": 32141.48, + "end": 32145.84, + "probability": 0.9395 + }, + { + "start": 32147.68, + "end": 32148.98, + "probability": 0.9959 + }, + { + "start": 32150.4, + "end": 32152.12, + "probability": 0.9633 + }, + { + "start": 32152.18, + "end": 32152.94, + "probability": 0.9412 + }, + { + "start": 32153.34, + "end": 32154.24, + "probability": 0.6677 + }, + { + "start": 32155.06, + "end": 32156.0, + "probability": 0.9685 + }, + { + "start": 32156.7, + "end": 32157.8, + "probability": 0.7197 + }, + { + "start": 32161.94, + "end": 32165.6, + "probability": 0.9839 + }, + { + "start": 32167.46, + "end": 32171.1, + "probability": 0.9976 + }, + { + "start": 32171.16, + "end": 32173.57, + "probability": 0.9524 + }, + { + "start": 32174.62, + "end": 32176.02, + "probability": 0.9821 + }, + { + "start": 32176.64, + "end": 32179.46, + "probability": 0.9761 + }, + { + "start": 32180.38, + "end": 32183.2, + "probability": 0.9913 + }, + { + "start": 32183.52, + "end": 32184.5, + "probability": 0.969 + }, + { + "start": 32185.16, + "end": 32186.2, + "probability": 0.9008 + }, + { + "start": 32187.12, + "end": 32188.16, + "probability": 0.9766 + }, + { + "start": 32189.02, + "end": 32192.78, + "probability": 0.9363 + }, + { + "start": 32194.18, + "end": 32196.84, + "probability": 0.9963 + }, + { + "start": 32197.98, + "end": 32201.24, + "probability": 0.9963 + }, + { + "start": 32202.04, + "end": 32206.54, + "probability": 0.9761 + }, + { + "start": 32206.98, + "end": 32211.24, + "probability": 0.998 + }, + { + "start": 32211.78, + "end": 32211.9, + "probability": 0.2572 + }, + { + "start": 32212.4, + "end": 32213.36, + "probability": 0.7316 + }, + { + "start": 32213.36, + "end": 32214.5, + "probability": 0.8764 + }, + { + "start": 32214.6, + "end": 32216.94, + "probability": 0.0615 + }, + { + "start": 32217.44, + "end": 32217.82, + "probability": 0.3666 + }, + { + "start": 32218.06, + "end": 32219.36, + "probability": 0.8132 + }, + { + "start": 32219.44, + "end": 32219.54, + "probability": 0.1465 + }, + { + "start": 32221.48, + "end": 32222.38, + "probability": 0.0376 + }, + { + "start": 32222.62, + "end": 32224.9, + "probability": 0.3874 + }, + { + "start": 32226.26, + "end": 32230.08, + "probability": 0.2664 + }, + { + "start": 32230.71, + "end": 32231.32, + "probability": 0.1149 + }, + { + "start": 32231.64, + "end": 32232.28, + "probability": 0.3588 + }, + { + "start": 32232.38, + "end": 32233.36, + "probability": 0.2981 + }, + { + "start": 32233.8, + "end": 32234.6, + "probability": 0.5055 + }, + { + "start": 32235.0, + "end": 32239.48, + "probability": 0.9596 + }, + { + "start": 32239.78, + "end": 32240.67, + "probability": 0.4016 + }, + { + "start": 32241.26, + "end": 32241.71, + "probability": 0.8682 + }, + { + "start": 32242.18, + "end": 32243.41, + "probability": 0.3048 + }, + { + "start": 32243.44, + "end": 32244.56, + "probability": 0.289 + }, + { + "start": 32244.98, + "end": 32246.14, + "probability": 0.7472 + }, + { + "start": 32248.64, + "end": 32249.62, + "probability": 0.9404 + }, + { + "start": 32249.72, + "end": 32251.18, + "probability": 0.9857 + }, + { + "start": 32251.96, + "end": 32254.2, + "probability": 0.9688 + }, + { + "start": 32255.56, + "end": 32257.52, + "probability": 0.6434 + }, + { + "start": 32258.2, + "end": 32259.7, + "probability": 0.9863 + }, + { + "start": 32260.34, + "end": 32261.86, + "probability": 0.9717 + }, + { + "start": 32262.1, + "end": 32264.58, + "probability": 0.9924 + }, + { + "start": 32265.12, + "end": 32265.92, + "probability": 0.7284 + }, + { + "start": 32267.48, + "end": 32269.36, + "probability": 0.9067 + }, + { + "start": 32270.06, + "end": 32271.44, + "probability": 0.9246 + }, + { + "start": 32271.94, + "end": 32274.32, + "probability": 0.9843 + }, + { + "start": 32274.36, + "end": 32275.6, + "probability": 0.9966 + }, + { + "start": 32275.6, + "end": 32276.46, + "probability": 0.6884 + }, + { + "start": 32276.84, + "end": 32277.54, + "probability": 0.9311 + }, + { + "start": 32278.34, + "end": 32280.52, + "probability": 0.8484 + }, + { + "start": 32280.72, + "end": 32283.52, + "probability": 0.896 + }, + { + "start": 32284.2, + "end": 32286.14, + "probability": 0.9641 + }, + { + "start": 32286.34, + "end": 32288.9, + "probability": 0.9977 + }, + { + "start": 32289.22, + "end": 32290.18, + "probability": 0.1579 + }, + { + "start": 32290.82, + "end": 32291.86, + "probability": 0.1833 + }, + { + "start": 32292.46, + "end": 32292.82, + "probability": 0.474 + }, + { + "start": 32293.82, + "end": 32295.9, + "probability": 0.582 + }, + { + "start": 32296.46, + "end": 32297.92, + "probability": 0.8055 + }, + { + "start": 32298.44, + "end": 32299.66, + "probability": 0.9147 + }, + { + "start": 32300.36, + "end": 32303.42, + "probability": 0.8547 + }, + { + "start": 32304.26, + "end": 32305.86, + "probability": 0.9707 + }, + { + "start": 32307.68, + "end": 32310.16, + "probability": 0.9282 + }, + { + "start": 32310.98, + "end": 32311.8, + "probability": 0.83 + }, + { + "start": 32313.24, + "end": 32316.0, + "probability": 0.9089 + }, + { + "start": 32316.14, + "end": 32322.05, + "probability": 0.9957 + }, + { + "start": 32322.76, + "end": 32322.92, + "probability": 0.2813 + }, + { + "start": 32323.08, + "end": 32325.28, + "probability": 0.9536 + }, + { + "start": 32325.34, + "end": 32325.96, + "probability": 0.8321 + }, + { + "start": 32326.32, + "end": 32327.34, + "probability": 0.9108 + }, + { + "start": 32327.42, + "end": 32328.46, + "probability": 0.9565 + }, + { + "start": 32329.52, + "end": 32330.2, + "probability": 0.7633 + }, + { + "start": 32331.14, + "end": 32336.08, + "probability": 0.8574 + }, + { + "start": 32336.72, + "end": 32337.22, + "probability": 0.317 + }, + { + "start": 32338.18, + "end": 32339.6, + "probability": 0.6638 + }, + { + "start": 32341.0, + "end": 32343.76, + "probability": 0.8978 + }, + { + "start": 32344.22, + "end": 32345.12, + "probability": 0.6666 + }, + { + "start": 32345.58, + "end": 32349.8, + "probability": 0.8115 + }, + { + "start": 32350.12, + "end": 32351.14, + "probability": 0.4386 + }, + { + "start": 32351.76, + "end": 32352.4, + "probability": 0.2701 + }, + { + "start": 32353.38, + "end": 32356.84, + "probability": 0.7842 + }, + { + "start": 32358.2, + "end": 32359.36, + "probability": 0.7198 + }, + { + "start": 32359.7, + "end": 32360.4, + "probability": 0.2643 + }, + { + "start": 32361.14, + "end": 32363.04, + "probability": 0.3342 + }, + { + "start": 32363.8, + "end": 32366.7, + "probability": 0.5362 + }, + { + "start": 32377.02, + "end": 32379.22, + "probability": 0.2825 + }, + { + "start": 32379.94, + "end": 32380.74, + "probability": 0.0435 + }, + { + "start": 32380.74, + "end": 32384.2, + "probability": 0.1661 + }, + { + "start": 32384.76, + "end": 32384.84, + "probability": 0.2877 + }, + { + "start": 32384.84, + "end": 32385.49, + "probability": 0.0724 + }, + { + "start": 32385.84, + "end": 32388.88, + "probability": 0.2643 + }, + { + "start": 32388.96, + "end": 32389.06, + "probability": 0.1488 + }, + { + "start": 32389.1, + "end": 32389.1, + "probability": 0.0155 + }, + { + "start": 32389.1, + "end": 32389.1, + "probability": 0.0331 + }, + { + "start": 32389.1, + "end": 32389.1, + "probability": 0.1059 + }, + { + "start": 32389.1, + "end": 32391.4, + "probability": 0.839 + }, + { + "start": 32391.5, + "end": 32393.14, + "probability": 0.9574 + }, + { + "start": 32393.98, + "end": 32399.89, + "probability": 0.9962 + }, + { + "start": 32401.24, + "end": 32401.34, + "probability": 0.4928 + }, + { + "start": 32401.34, + "end": 32402.3, + "probability": 0.9748 + }, + { + "start": 32402.48, + "end": 32404.38, + "probability": 0.0807 + }, + { + "start": 32404.66, + "end": 32409.02, + "probability": 0.9897 + }, + { + "start": 32409.6, + "end": 32410.6, + "probability": 0.8174 + }, + { + "start": 32411.7, + "end": 32415.08, + "probability": 0.9956 + }, + { + "start": 32416.5, + "end": 32417.06, + "probability": 0.7916 + }, + { + "start": 32417.62, + "end": 32422.0, + "probability": 0.8218 + }, + { + "start": 32422.6, + "end": 32423.12, + "probability": 0.7189 + }, + { + "start": 32423.72, + "end": 32424.6, + "probability": 0.866 + }, + { + "start": 32424.7, + "end": 32426.15, + "probability": 0.6694 + }, + { + "start": 32426.78, + "end": 32428.0, + "probability": 0.7624 + }, + { + "start": 32428.44, + "end": 32432.88, + "probability": 0.9318 + }, + { + "start": 32433.06, + "end": 32434.12, + "probability": 0.8173 + }, + { + "start": 32434.18, + "end": 32436.98, + "probability": 0.4877 + }, + { + "start": 32437.08, + "end": 32439.34, + "probability": 0.1265 + }, + { + "start": 32440.26, + "end": 32445.18, + "probability": 0.4913 + }, + { + "start": 32445.18, + "end": 32447.76, + "probability": 0.6895 + }, + { + "start": 32447.76, + "end": 32448.76, + "probability": 0.7435 + }, + { + "start": 32449.24, + "end": 32450.74, + "probability": 0.9589 + }, + { + "start": 32450.86, + "end": 32452.88, + "probability": 0.9834 + }, + { + "start": 32453.14, + "end": 32454.84, + "probability": 0.7335 + }, + { + "start": 32455.26, + "end": 32455.96, + "probability": 0.7122 + }, + { + "start": 32456.02, + "end": 32457.22, + "probability": 0.67 + }, + { + "start": 32459.96, + "end": 32460.64, + "probability": 0.95 + }, + { + "start": 32461.98, + "end": 32462.72, + "probability": 0.7926 + }, + { + "start": 32462.82, + "end": 32463.24, + "probability": 0.4573 + }, + { + "start": 32463.36, + "end": 32463.94, + "probability": 0.8057 + }, + { + "start": 32464.04, + "end": 32465.76, + "probability": 0.5143 + }, + { + "start": 32466.12, + "end": 32468.4, + "probability": 0.9835 + }, + { + "start": 32469.1, + "end": 32469.72, + "probability": 0.5197 + }, + { + "start": 32469.74, + "end": 32471.92, + "probability": 0.8286 + }, + { + "start": 32472.02, + "end": 32472.72, + "probability": 0.7746 + }, + { + "start": 32472.74, + "end": 32480.88, + "probability": 0.8363 + }, + { + "start": 32481.0, + "end": 32481.72, + "probability": 0.9797 + }, + { + "start": 32482.7, + "end": 32483.6, + "probability": 0.7502 + }, + { + "start": 32484.34, + "end": 32488.42, + "probability": 0.749 + }, + { + "start": 32488.96, + "end": 32491.84, + "probability": 0.9787 + }, + { + "start": 32492.3, + "end": 32493.16, + "probability": 0.7263 + }, + { + "start": 32493.72, + "end": 32496.06, + "probability": 0.9546 + }, + { + "start": 32496.96, + "end": 32498.16, + "probability": 0.8122 + }, + { + "start": 32498.64, + "end": 32499.18, + "probability": 0.6927 + }, + { + "start": 32499.2, + "end": 32501.24, + "probability": 0.974 + }, + { + "start": 32503.1, + "end": 32504.82, + "probability": 0.817 + }, + { + "start": 32505.36, + "end": 32507.02, + "probability": 0.9819 + }, + { + "start": 32507.54, + "end": 32509.12, + "probability": 0.9961 + }, + { + "start": 32509.6, + "end": 32511.24, + "probability": 0.9587 + }, + { + "start": 32511.86, + "end": 32512.3, + "probability": 0.7003 + }, + { + "start": 32512.38, + "end": 32513.36, + "probability": 0.8154 + }, + { + "start": 32513.46, + "end": 32516.53, + "probability": 0.75 + }, + { + "start": 32517.04, + "end": 32520.66, + "probability": 0.8711 + }, + { + "start": 32520.7, + "end": 32520.92, + "probability": 0.7432 + }, + { + "start": 32522.56, + "end": 32524.2, + "probability": 0.754 + }, + { + "start": 32525.36, + "end": 32526.98, + "probability": 0.5186 + }, + { + "start": 32528.72, + "end": 32530.8, + "probability": 0.7322 + }, + { + "start": 32531.78, + "end": 32533.8, + "probability": 0.9858 + }, + { + "start": 32535.26, + "end": 32535.68, + "probability": 0.9537 + }, + { + "start": 32560.52, + "end": 32560.56, + "probability": 0.1248 + }, + { + "start": 32560.56, + "end": 32562.9, + "probability": 0.2465 + }, + { + "start": 32564.0, + "end": 32568.58, + "probability": 0.8406 + }, + { + "start": 32570.04, + "end": 32570.42, + "probability": 0.7856 + }, + { + "start": 32571.76, + "end": 32574.54, + "probability": 0.1439 + }, + { + "start": 32574.54, + "end": 32577.64, + "probability": 0.8286 + }, + { + "start": 32579.7, + "end": 32581.82, + "probability": 0.0002 + }, + { + "start": 32582.6, + "end": 32582.62, + "probability": 0.0697 + }, + { + "start": 32583.92, + "end": 32584.02, + "probability": 0.3433 + }, + { + "start": 32584.78, + "end": 32586.46, + "probability": 0.4644 + }, + { + "start": 32587.36, + "end": 32588.6, + "probability": 0.1582 + }, + { + "start": 32592.34, + "end": 32592.52, + "probability": 0.1175 + }, + { + "start": 32592.52, + "end": 32592.52, + "probability": 0.2578 + }, + { + "start": 32592.52, + "end": 32593.28, + "probability": 0.4916 + }, + { + "start": 32601.16, + "end": 32603.28, + "probability": 0.343 + }, + { + "start": 32604.3, + "end": 32605.12, + "probability": 0.948 + }, + { + "start": 32606.04, + "end": 32606.76, + "probability": 0.0007 + }, + { + "start": 32609.7, + "end": 32610.0, + "probability": 0.0364 + }, + { + "start": 32610.0, + "end": 32610.88, + "probability": 0.7423 + }, + { + "start": 32612.82, + "end": 32615.14, + "probability": 0.7481 + }, + { + "start": 32626.42, + "end": 32627.62, + "probability": 0.5883 + }, + { + "start": 32628.98, + "end": 32629.5, + "probability": 0.9575 + }, + { + "start": 32631.1, + "end": 32632.82, + "probability": 0.6868 + }, + { + "start": 32633.96, + "end": 32636.6, + "probability": 0.9983 + }, + { + "start": 32637.12, + "end": 32638.1, + "probability": 0.8438 + }, + { + "start": 32639.16, + "end": 32643.7, + "probability": 0.9976 + }, + { + "start": 32644.82, + "end": 32647.7, + "probability": 0.929 + }, + { + "start": 32648.3, + "end": 32649.06, + "probability": 0.6655 + }, + { + "start": 32650.72, + "end": 32655.4, + "probability": 0.9973 + }, + { + "start": 32655.4, + "end": 32662.34, + "probability": 0.9941 + }, + { + "start": 32662.94, + "end": 32663.12, + "probability": 0.7582 + }, + { + "start": 32663.14, + "end": 32667.4, + "probability": 0.9672 + }, + { + "start": 32667.94, + "end": 32669.7, + "probability": 0.9641 + }, + { + "start": 32670.34, + "end": 32672.62, + "probability": 0.9981 + }, + { + "start": 32673.36, + "end": 32676.22, + "probability": 0.9812 + }, + { + "start": 32676.92, + "end": 32679.16, + "probability": 0.8418 + }, + { + "start": 32679.82, + "end": 32680.8, + "probability": 0.7644 + }, + { + "start": 32680.92, + "end": 32682.26, + "probability": 0.9925 + }, + { + "start": 32682.3, + "end": 32684.7, + "probability": 0.9699 + }, + { + "start": 32684.8, + "end": 32685.02, + "probability": 0.5367 + }, + { + "start": 32685.12, + "end": 32688.7, + "probability": 0.9644 + }, + { + "start": 32689.06, + "end": 32692.3, + "probability": 0.9962 + }, + { + "start": 32692.3, + "end": 32695.78, + "probability": 0.9793 + }, + { + "start": 32696.16, + "end": 32700.58, + "probability": 0.9959 + }, + { + "start": 32700.68, + "end": 32700.9, + "probability": 0.4885 + }, + { + "start": 32700.92, + "end": 32702.26, + "probability": 0.7415 + }, + { + "start": 32703.1, + "end": 32706.76, + "probability": 0.8631 + }, + { + "start": 32707.84, + "end": 32708.82, + "probability": 0.8595 + }, + { + "start": 32708.94, + "end": 32710.5, + "probability": 0.6984 + }, + { + "start": 32710.6, + "end": 32714.06, + "probability": 0.9941 + }, + { + "start": 32714.76, + "end": 32719.88, + "probability": 0.9983 + }, + { + "start": 32720.62, + "end": 32724.66, + "probability": 0.9951 + }, + { + "start": 32725.2, + "end": 32725.84, + "probability": 0.9902 + }, + { + "start": 32726.38, + "end": 32729.98, + "probability": 0.9562 + }, + { + "start": 32731.0, + "end": 32734.66, + "probability": 0.9941 + }, + { + "start": 32734.78, + "end": 32736.16, + "probability": 0.8923 + }, + { + "start": 32736.18, + "end": 32737.52, + "probability": 0.6994 + }, + { + "start": 32738.06, + "end": 32742.98, + "probability": 0.9531 + }, + { + "start": 32743.6, + "end": 32747.7, + "probability": 0.9951 + }, + { + "start": 32747.7, + "end": 32750.83, + "probability": 0.9993 + }, + { + "start": 32752.28, + "end": 32754.58, + "probability": 0.6814 + }, + { + "start": 32755.74, + "end": 32761.52, + "probability": 0.9667 + }, + { + "start": 32761.7, + "end": 32762.42, + "probability": 0.8203 + }, + { + "start": 32764.16, + "end": 32767.86, + "probability": 0.8799 + }, + { + "start": 32768.6, + "end": 32772.24, + "probability": 0.9742 + }, + { + "start": 32772.72, + "end": 32776.18, + "probability": 0.9729 + }, + { + "start": 32776.78, + "end": 32781.26, + "probability": 0.9392 + }, + { + "start": 32781.72, + "end": 32783.58, + "probability": 0.8617 + }, + { + "start": 32783.76, + "end": 32785.02, + "probability": 0.6916 + }, + { + "start": 32785.12, + "end": 32786.6, + "probability": 0.9105 + }, + { + "start": 32786.74, + "end": 32789.12, + "probability": 0.9007 + }, + { + "start": 32789.4, + "end": 32790.08, + "probability": 0.5523 + }, + { + "start": 32791.08, + "end": 32793.86, + "probability": 0.9984 + }, + { + "start": 32793.96, + "end": 32794.14, + "probability": 0.8848 + }, + { + "start": 32794.26, + "end": 32794.6, + "probability": 0.5812 + }, + { + "start": 32794.64, + "end": 32798.3, + "probability": 0.9675 + }, + { + "start": 32798.34, + "end": 32799.02, + "probability": 0.9167 + }, + { + "start": 32799.12, + "end": 32799.56, + "probability": 0.9806 + }, + { + "start": 32800.46, + "end": 32802.46, + "probability": 0.9948 + }, + { + "start": 32803.3, + "end": 32805.5, + "probability": 0.7815 + }, + { + "start": 32805.68, + "end": 32808.02, + "probability": 0.9834 + }, + { + "start": 32808.72, + "end": 32810.74, + "probability": 0.8405 + }, + { + "start": 32810.98, + "end": 32812.74, + "probability": 0.9836 + }, + { + "start": 32813.34, + "end": 32820.94, + "probability": 0.9922 + }, + { + "start": 32821.04, + "end": 32822.72, + "probability": 0.9985 + }, + { + "start": 32823.12, + "end": 32825.58, + "probability": 0.9935 + }, + { + "start": 32825.66, + "end": 32826.85, + "probability": 0.8565 + }, + { + "start": 32826.94, + "end": 32828.7, + "probability": 0.9342 + }, + { + "start": 32829.3, + "end": 32831.58, + "probability": 0.9662 + }, + { + "start": 32831.58, + "end": 32834.08, + "probability": 0.9969 + }, + { + "start": 32834.92, + "end": 32837.96, + "probability": 0.9601 + }, + { + "start": 32837.98, + "end": 32840.1, + "probability": 0.8618 + }, + { + "start": 32840.14, + "end": 32840.68, + "probability": 0.7578 + }, + { + "start": 32841.42, + "end": 32843.44, + "probability": 0.9891 + }, + { + "start": 32843.5, + "end": 32844.74, + "probability": 0.6615 + }, + { + "start": 32844.82, + "end": 32846.12, + "probability": 0.9807 + }, + { + "start": 32846.6, + "end": 32848.2, + "probability": 0.989 + }, + { + "start": 32848.26, + "end": 32851.36, + "probability": 0.9808 + }, + { + "start": 32851.9, + "end": 32855.4, + "probability": 0.9857 + }, + { + "start": 32856.2, + "end": 32857.48, + "probability": 0.7708 + }, + { + "start": 32857.72, + "end": 32859.6, + "probability": 0.9924 + }, + { + "start": 32859.7, + "end": 32861.7, + "probability": 0.9923 + }, + { + "start": 32862.62, + "end": 32865.39, + "probability": 0.9823 + }, + { + "start": 32866.6, + "end": 32867.24, + "probability": 0.7796 + }, + { + "start": 32867.4, + "end": 32869.06, + "probability": 0.6227 + }, + { + "start": 32869.26, + "end": 32874.78, + "probability": 0.8513 + }, + { + "start": 32874.88, + "end": 32876.04, + "probability": 0.9703 + }, + { + "start": 32876.48, + "end": 32879.34, + "probability": 0.9779 + }, + { + "start": 32879.96, + "end": 32882.78, + "probability": 0.952 + }, + { + "start": 32882.96, + "end": 32883.66, + "probability": 0.6992 + }, + { + "start": 32884.18, + "end": 32885.5, + "probability": 0.8112 + }, + { + "start": 32886.34, + "end": 32890.28, + "probability": 0.882 + }, + { + "start": 32890.86, + "end": 32891.92, + "probability": 0.9792 + }, + { + "start": 32892.0, + "end": 32894.72, + "probability": 0.9769 + }, + { + "start": 32895.24, + "end": 32898.88, + "probability": 0.9769 + }, + { + "start": 32899.1, + "end": 32901.08, + "probability": 0.9771 + }, + { + "start": 32901.74, + "end": 32905.95, + "probability": 0.1726 + }, + { + "start": 32906.46, + "end": 32907.66, + "probability": 0.3484 + }, + { + "start": 32908.32, + "end": 32909.78, + "probability": 0.2845 + }, + { + "start": 32910.52, + "end": 32914.06, + "probability": 0.7607 + }, + { + "start": 32915.1, + "end": 32915.62, + "probability": 0.4475 + }, + { + "start": 32915.78, + "end": 32916.7, + "probability": 0.5918 + }, + { + "start": 32917.88, + "end": 32920.66, + "probability": 0.8959 + }, + { + "start": 32920.74, + "end": 32921.98, + "probability": 0.9448 + }, + { + "start": 32922.82, + "end": 32927.4, + "probability": 0.5767 + }, + { + "start": 32927.4, + "end": 32928.24, + "probability": 0.9175 + }, + { + "start": 32928.68, + "end": 32932.92, + "probability": 0.97 + }, + { + "start": 32933.22, + "end": 32934.34, + "probability": 0.9316 + }, + { + "start": 32934.42, + "end": 32936.28, + "probability": 0.8767 + }, + { + "start": 32936.32, + "end": 32936.92, + "probability": 0.6793 + }, + { + "start": 32941.14, + "end": 32942.81, + "probability": 0.8835 + }, + { + "start": 32944.62, + "end": 32944.96, + "probability": 0.7347 + }, + { + "start": 32945.06, + "end": 32946.6, + "probability": 0.9173 + }, + { + "start": 32946.9, + "end": 32947.66, + "probability": 0.8189 + }, + { + "start": 32947.9, + "end": 32949.0, + "probability": 0.7778 + }, + { + "start": 32951.76, + "end": 32952.64, + "probability": 0.6704 + }, + { + "start": 32952.7, + "end": 32953.94, + "probability": 0.9684 + }, + { + "start": 32957.38, + "end": 32960.76, + "probability": 0.793 + }, + { + "start": 32961.66, + "end": 32967.52, + "probability": 0.8746 + }, + { + "start": 32968.54, + "end": 32971.5, + "probability": 0.7668 + }, + { + "start": 32972.62, + "end": 32976.06, + "probability": 0.9985 + }, + { + "start": 32977.28, + "end": 32981.72, + "probability": 0.9949 + }, + { + "start": 32982.14, + "end": 32982.92, + "probability": 0.9921 + }, + { + "start": 32983.0, + "end": 32987.68, + "probability": 0.912 + }, + { + "start": 32989.3, + "end": 32991.0, + "probability": 0.9978 + }, + { + "start": 32992.0, + "end": 32993.1, + "probability": 0.9501 + }, + { + "start": 32994.86, + "end": 32997.44, + "probability": 0.8021 + }, + { + "start": 32998.44, + "end": 33002.1, + "probability": 0.995 + }, + { + "start": 33002.54, + "end": 33004.36, + "probability": 0.9045 + }, + { + "start": 33004.98, + "end": 33007.08, + "probability": 0.9807 + }, + { + "start": 33008.68, + "end": 33010.04, + "probability": 0.834 + }, + { + "start": 33010.96, + "end": 33011.94, + "probability": 0.5509 + }, + { + "start": 33013.72, + "end": 33016.32, + "probability": 0.989 + }, + { + "start": 33016.72, + "end": 33017.84, + "probability": 0.3144 + }, + { + "start": 33018.18, + "end": 33020.26, + "probability": 0.7443 + }, + { + "start": 33020.28, + "end": 33020.94, + "probability": 0.3519 + }, + { + "start": 33021.02, + "end": 33021.76, + "probability": 0.3374 + }, + { + "start": 33021.76, + "end": 33024.32, + "probability": 0.579 + }, + { + "start": 33024.44, + "end": 33028.22, + "probability": 0.7706 + }, + { + "start": 33029.08, + "end": 33029.08, + "probability": 0.1727 + }, + { + "start": 33029.08, + "end": 33029.08, + "probability": 0.5116 + }, + { + "start": 33029.08, + "end": 33032.03, + "probability": 0.3943 + }, + { + "start": 33032.36, + "end": 33032.62, + "probability": 0.3087 + }, + { + "start": 33032.86, + "end": 33032.94, + "probability": 0.5473 + }, + { + "start": 33033.04, + "end": 33033.88, + "probability": 0.8154 + }, + { + "start": 33034.8, + "end": 33040.7, + "probability": 0.877 + }, + { + "start": 33041.76, + "end": 33043.88, + "probability": 0.5207 + }, + { + "start": 33044.28, + "end": 33045.9, + "probability": 0.5507 + }, + { + "start": 33045.94, + "end": 33047.08, + "probability": 0.8762 + }, + { + "start": 33047.22, + "end": 33047.28, + "probability": 0.1342 + }, + { + "start": 33047.28, + "end": 33048.48, + "probability": 0.7755 + }, + { + "start": 33048.72, + "end": 33050.08, + "probability": 0.9933 + }, + { + "start": 33050.12, + "end": 33052.88, + "probability": 0.8729 + }, + { + "start": 33052.94, + "end": 33054.28, + "probability": 0.8823 + }, + { + "start": 33054.38, + "end": 33055.44, + "probability": 0.5025 + }, + { + "start": 33055.9, + "end": 33058.74, + "probability": 0.8686 + }, + { + "start": 33059.11, + "end": 33065.78, + "probability": 0.8936 + }, + { + "start": 33065.78, + "end": 33069.12, + "probability": 0.9965 + }, + { + "start": 33069.42, + "end": 33069.86, + "probability": 0.4078 + }, + { + "start": 33070.36, + "end": 33070.48, + "probability": 0.9915 + }, + { + "start": 33072.04, + "end": 33072.56, + "probability": 0.3431 + }, + { + "start": 33072.74, + "end": 33072.84, + "probability": 0.4978 + }, + { + "start": 33072.84, + "end": 33076.6, + "probability": 0.9092 + }, + { + "start": 33076.78, + "end": 33077.16, + "probability": 0.2788 + }, + { + "start": 33077.32, + "end": 33078.78, + "probability": 0.2162 + }, + { + "start": 33078.96, + "end": 33081.64, + "probability": 0.5594 + }, + { + "start": 33081.84, + "end": 33085.96, + "probability": 0.9821 + }, + { + "start": 33086.2, + "end": 33087.14, + "probability": 0.8816 + }, + { + "start": 33087.62, + "end": 33090.12, + "probability": 0.6641 + }, + { + "start": 33090.86, + "end": 33096.66, + "probability": 0.9984 + }, + { + "start": 33097.4, + "end": 33100.64, + "probability": 0.9897 + }, + { + "start": 33100.94, + "end": 33101.5, + "probability": 0.6423 + }, + { + "start": 33101.56, + "end": 33102.38, + "probability": 0.2614 + }, + { + "start": 33102.38, + "end": 33103.42, + "probability": 0.2732 + }, + { + "start": 33103.64, + "end": 33104.44, + "probability": 0.2829 + }, + { + "start": 33104.56, + "end": 33105.66, + "probability": 0.8662 + }, + { + "start": 33106.96, + "end": 33108.62, + "probability": 0.959 + }, + { + "start": 33109.06, + "end": 33109.18, + "probability": 0.1282 + }, + { + "start": 33109.18, + "end": 33109.18, + "probability": 0.0873 + }, + { + "start": 33109.18, + "end": 33109.18, + "probability": 0.0903 + }, + { + "start": 33109.18, + "end": 33110.39, + "probability": 0.6094 + }, + { + "start": 33111.34, + "end": 33112.52, + "probability": 0.6691 + }, + { + "start": 33112.72, + "end": 33113.92, + "probability": 0.1282 + }, + { + "start": 33114.24, + "end": 33117.26, + "probability": 0.7257 + }, + { + "start": 33118.46, + "end": 33119.8, + "probability": 0.8935 + }, + { + "start": 33119.9, + "end": 33120.57, + "probability": 0.7467 + }, + { + "start": 33120.82, + "end": 33122.12, + "probability": 0.8802 + }, + { + "start": 33122.14, + "end": 33124.52, + "probability": 0.4446 + }, + { + "start": 33124.58, + "end": 33125.68, + "probability": 0.7679 + }, + { + "start": 33126.34, + "end": 33128.42, + "probability": 0.9839 + }, + { + "start": 33128.52, + "end": 33129.12, + "probability": 0.6253 + }, + { + "start": 33130.8, + "end": 33130.8, + "probability": 0.0552 + }, + { + "start": 33130.8, + "end": 33135.02, + "probability": 0.4663 + }, + { + "start": 33135.08, + "end": 33135.78, + "probability": 0.6378 + }, + { + "start": 33135.82, + "end": 33136.26, + "probability": 0.7105 + }, + { + "start": 33136.3, + "end": 33136.3, + "probability": 0.4635 + }, + { + "start": 33136.3, + "end": 33140.3, + "probability": 0.9572 + }, + { + "start": 33140.98, + "end": 33142.63, + "probability": 0.8378 + }, + { + "start": 33143.06, + "end": 33144.63, + "probability": 0.9442 + }, + { + "start": 33145.98, + "end": 33147.28, + "probability": 0.6378 + }, + { + "start": 33147.86, + "end": 33150.82, + "probability": 0.9902 + }, + { + "start": 33151.12, + "end": 33152.34, + "probability": 0.9286 + }, + { + "start": 33153.04, + "end": 33156.12, + "probability": 0.9983 + }, + { + "start": 33156.74, + "end": 33157.84, + "probability": 0.7592 + }, + { + "start": 33158.4, + "end": 33161.6, + "probability": 0.9984 + }, + { + "start": 33161.97, + "end": 33165.06, + "probability": 0.9993 + }, + { + "start": 33165.54, + "end": 33166.78, + "probability": 0.9955 + }, + { + "start": 33167.3, + "end": 33168.38, + "probability": 0.9996 + }, + { + "start": 33169.12, + "end": 33173.8, + "probability": 0.9976 + }, + { + "start": 33174.22, + "end": 33175.08, + "probability": 0.9146 + }, + { + "start": 33175.16, + "end": 33176.54, + "probability": 0.9058 + }, + { + "start": 33176.92, + "end": 33177.66, + "probability": 0.9656 + }, + { + "start": 33177.66, + "end": 33178.56, + "probability": 0.9956 + }, + { + "start": 33179.12, + "end": 33180.12, + "probability": 0.9904 + }, + { + "start": 33180.44, + "end": 33181.56, + "probability": 0.598 + }, + { + "start": 33182.6, + "end": 33183.45, + "probability": 0.9902 + }, + { + "start": 33184.14, + "end": 33186.12, + "probability": 0.9727 + }, + { + "start": 33186.8, + "end": 33188.5, + "probability": 0.6532 + }, + { + "start": 33188.94, + "end": 33190.6, + "probability": 0.9897 + }, + { + "start": 33191.32, + "end": 33191.98, + "probability": 0.9968 + }, + { + "start": 33192.58, + "end": 33193.76, + "probability": 0.8893 + }, + { + "start": 33194.1, + "end": 33194.82, + "probability": 0.5316 + }, + { + "start": 33195.0, + "end": 33195.66, + "probability": 0.6497 + }, + { + "start": 33195.88, + "end": 33197.04, + "probability": 0.8491 + }, + { + "start": 33198.02, + "end": 33199.54, + "probability": 0.0372 + }, + { + "start": 33201.02, + "end": 33203.66, + "probability": 0.0119 + }, + { + "start": 33204.42, + "end": 33206.71, + "probability": 0.1064 + }, + { + "start": 33210.76, + "end": 33213.0, + "probability": 0.928 + }, + { + "start": 33213.46, + "end": 33215.11, + "probability": 0.0161 + }, + { + "start": 33216.02, + "end": 33218.32, + "probability": 0.07 + }, + { + "start": 33224.94, + "end": 33225.36, + "probability": 0.184 + }, + { + "start": 33226.72, + "end": 33229.28, + "probability": 0.0388 + }, + { + "start": 33230.75, + "end": 33232.76, + "probability": 0.0536 + }, + { + "start": 33234.9, + "end": 33236.36, + "probability": 0.2432 + }, + { + "start": 33237.23, + "end": 33237.46, + "probability": 0.1842 + }, + { + "start": 33237.48, + "end": 33238.84, + "probability": 0.0203 + }, + { + "start": 33243.36, + "end": 33243.46, + "probability": 0.4695 + }, + { + "start": 33252.76, + "end": 33253.96, + "probability": 0.1326 + }, + { + "start": 33254.58, + "end": 33254.96, + "probability": 0.0499 + }, + { + "start": 33266.74, + "end": 33272.22, + "probability": 0.0315 + }, + { + "start": 33278.5, + "end": 33278.84, + "probability": 0.0143 + }, + { + "start": 33278.84, + "end": 33280.02, + "probability": 0.0305 + }, + { + "start": 33280.45, + "end": 33281.58, + "probability": 0.031 + }, + { + "start": 33281.92, + "end": 33283.46, + "probability": 0.3283 + }, + { + "start": 33283.58, + "end": 33285.26, + "probability": 0.0955 + }, + { + "start": 33286.12, + "end": 33287.37, + "probability": 0.0495 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.0, + "end": 33288.0, + "probability": 0.0 + }, + { + "start": 33288.1, + "end": 33288.62, + "probability": 0.0113 + }, + { + "start": 33290.84, + "end": 33291.7, + "probability": 0.449 + }, + { + "start": 33291.8, + "end": 33292.3, + "probability": 0.3379 + }, + { + "start": 33292.4, + "end": 33294.9, + "probability": 0.7413 + }, + { + "start": 33296.49, + "end": 33298.7, + "probability": 0.4164 + }, + { + "start": 33298.74, + "end": 33299.7, + "probability": 0.6616 + }, + { + "start": 33299.72, + "end": 33300.6, + "probability": 0.0364 + }, + { + "start": 33300.66, + "end": 33302.58, + "probability": 0.4873 + }, + { + "start": 33303.04, + "end": 33305.72, + "probability": 0.6753 + }, + { + "start": 33306.5, + "end": 33307.08, + "probability": 0.7372 + }, + { + "start": 33307.14, + "end": 33307.88, + "probability": 0.1738 + }, + { + "start": 33307.88, + "end": 33308.86, + "probability": 0.0064 + }, + { + "start": 33308.86, + "end": 33309.96, + "probability": 0.5549 + }, + { + "start": 33310.8, + "end": 33312.22, + "probability": 0.744 + }, + { + "start": 33312.38, + "end": 33316.38, + "probability": 0.9897 + }, + { + "start": 33317.08, + "end": 33318.64, + "probability": 0.9956 + }, + { + "start": 33319.26, + "end": 33320.44, + "probability": 0.7917 + }, + { + "start": 33321.02, + "end": 33321.02, + "probability": 0.0522 + }, + { + "start": 33321.02, + "end": 33322.66, + "probability": 0.6644 + }, + { + "start": 33323.54, + "end": 33327.08, + "probability": 0.9841 + }, + { + "start": 33327.84, + "end": 33329.88, + "probability": 0.9558 + }, + { + "start": 33329.88, + "end": 33332.08, + "probability": 0.9492 + }, + { + "start": 33332.6, + "end": 33333.08, + "probability": 0.3968 + }, + { + "start": 33333.2, + "end": 33335.58, + "probability": 0.9879 + }, + { + "start": 33336.6, + "end": 33338.14, + "probability": 0.8586 + }, + { + "start": 33338.62, + "end": 33342.28, + "probability": 0.9902 + }, + { + "start": 33342.58, + "end": 33347.06, + "probability": 0.9619 + }, + { + "start": 33347.64, + "end": 33349.56, + "probability": 0.9633 + }, + { + "start": 33350.16, + "end": 33354.3, + "probability": 0.947 + }, + { + "start": 33354.38, + "end": 33356.86, + "probability": 0.9716 + }, + { + "start": 33357.74, + "end": 33359.3, + "probability": 0.7866 + }, + { + "start": 33360.1, + "end": 33360.2, + "probability": 0.0316 + }, + { + "start": 33360.2, + "end": 33361.26, + "probability": 0.4075 + }, + { + "start": 33361.48, + "end": 33364.1, + "probability": 0.6357 + }, + { + "start": 33365.11, + "end": 33366.42, + "probability": 0.9897 + }, + { + "start": 33367.02, + "end": 33370.46, + "probability": 0.9524 + }, + { + "start": 33370.56, + "end": 33372.72, + "probability": 0.9951 + }, + { + "start": 33373.22, + "end": 33375.08, + "probability": 0.9976 + }, + { + "start": 33375.68, + "end": 33377.75, + "probability": 0.9863 + }, + { + "start": 33378.36, + "end": 33384.24, + "probability": 0.9627 + }, + { + "start": 33384.54, + "end": 33385.84, + "probability": 0.8148 + }, + { + "start": 33386.12, + "end": 33389.24, + "probability": 0.9755 + }, + { + "start": 33389.98, + "end": 33390.75, + "probability": 0.9658 + }, + { + "start": 33391.46, + "end": 33393.22, + "probability": 0.9919 + }, + { + "start": 33393.88, + "end": 33394.62, + "probability": 0.6218 + }, + { + "start": 33394.92, + "end": 33396.62, + "probability": 0.9146 + }, + { + "start": 33397.28, + "end": 33400.3, + "probability": 0.9818 + }, + { + "start": 33400.72, + "end": 33403.24, + "probability": 0.7395 + }, + { + "start": 33403.38, + "end": 33403.8, + "probability": 0.7649 + }, + { + "start": 33404.42, + "end": 33407.34, + "probability": 0.9894 + }, + { + "start": 33407.4, + "end": 33409.16, + "probability": 0.8755 + }, + { + "start": 33409.44, + "end": 33410.04, + "probability": 0.0312 + }, + { + "start": 33410.84, + "end": 33411.59, + "probability": 0.3887 + }, + { + "start": 33411.86, + "end": 33412.6, + "probability": 0.3729 + }, + { + "start": 33412.9, + "end": 33413.62, + "probability": 0.9219 + }, + { + "start": 33414.22, + "end": 33416.68, + "probability": 0.6831 + }, + { + "start": 33416.76, + "end": 33418.88, + "probability": 0.7257 + }, + { + "start": 33419.48, + "end": 33419.64, + "probability": 0.0922 + }, + { + "start": 33419.64, + "end": 33420.4, + "probability": 0.3925 + }, + { + "start": 33420.5, + "end": 33420.56, + "probability": 0.4376 + }, + { + "start": 33420.72, + "end": 33421.24, + "probability": 0.6077 + }, + { + "start": 33421.26, + "end": 33421.54, + "probability": 0.7688 + }, + { + "start": 33421.62, + "end": 33422.48, + "probability": 0.7056 + }, + { + "start": 33423.22, + "end": 33425.08, + "probability": 0.0388 + }, + { + "start": 33425.08, + "end": 33425.08, + "probability": 0.1557 + }, + { + "start": 33425.08, + "end": 33425.08, + "probability": 0.1211 + }, + { + "start": 33425.08, + "end": 33425.48, + "probability": 0.1421 + }, + { + "start": 33425.7, + "end": 33426.36, + "probability": 0.7435 + }, + { + "start": 33426.42, + "end": 33427.08, + "probability": 0.5394 + }, + { + "start": 33427.1, + "end": 33427.84, + "probability": 0.6084 + }, + { + "start": 33427.94, + "end": 33430.3, + "probability": 0.6459 + }, + { + "start": 33430.38, + "end": 33435.5, + "probability": 0.7557 + }, + { + "start": 33435.76, + "end": 33436.63, + "probability": 0.8091 + }, + { + "start": 33436.8, + "end": 33438.24, + "probability": 0.9702 + }, + { + "start": 33438.3, + "end": 33442.9, + "probability": 0.9731 + }, + { + "start": 33443.44, + "end": 33445.64, + "probability": 0.834 + }, + { + "start": 33446.32, + "end": 33448.34, + "probability": 0.9312 + }, + { + "start": 33448.4, + "end": 33450.5, + "probability": 0.9952 + }, + { + "start": 33450.96, + "end": 33451.58, + "probability": 0.9771 + }, + { + "start": 33451.92, + "end": 33455.16, + "probability": 0.6895 + }, + { + "start": 33455.64, + "end": 33457.1, + "probability": 0.9718 + }, + { + "start": 33457.46, + "end": 33458.72, + "probability": 0.8864 + }, + { + "start": 33459.32, + "end": 33460.32, + "probability": 0.996 + }, + { + "start": 33460.88, + "end": 33462.06, + "probability": 0.8398 + }, + { + "start": 33462.24, + "end": 33465.06, + "probability": 0.9379 + }, + { + "start": 33465.52, + "end": 33466.34, + "probability": 0.8132 + }, + { + "start": 33466.44, + "end": 33467.22, + "probability": 0.6685 + }, + { + "start": 33467.58, + "end": 33470.52, + "probability": 0.9638 + }, + { + "start": 33471.16, + "end": 33473.58, + "probability": 0.9722 + }, + { + "start": 33473.66, + "end": 33475.5, + "probability": 0.9961 + }, + { + "start": 33475.86, + "end": 33478.94, + "probability": 0.9819 + }, + { + "start": 33479.4, + "end": 33480.38, + "probability": 0.9858 + }, + { + "start": 33480.48, + "end": 33482.28, + "probability": 0.9355 + }, + { + "start": 33482.96, + "end": 33483.28, + "probability": 0.7609 + }, + { + "start": 33483.82, + "end": 33484.08, + "probability": 0.84 + }, + { + "start": 33485.3, + "end": 33485.88, + "probability": 0.8396 + }, + { + "start": 33486.72, + "end": 33488.12, + "probability": 0.8796 + }, + { + "start": 33491.5, + "end": 33496.94, + "probability": 0.4051 + }, + { + "start": 33499.18, + "end": 33501.18, + "probability": 0.7823 + }, + { + "start": 33501.78, + "end": 33502.2, + "probability": 0.5716 + }, + { + "start": 33503.72, + "end": 33505.26, + "probability": 0.8797 + }, + { + "start": 33506.1, + "end": 33506.22, + "probability": 0.0059 + }, + { + "start": 33508.1, + "end": 33510.92, + "probability": 0.0316 + }, + { + "start": 33510.94, + "end": 33511.68, + "probability": 0.1108 + }, + { + "start": 33511.68, + "end": 33514.04, + "probability": 0.3532 + }, + { + "start": 33514.04, + "end": 33514.08, + "probability": 0.4586 + }, + { + "start": 33514.1, + "end": 33517.11, + "probability": 0.9852 + }, + { + "start": 33518.2, + "end": 33526.56, + "probability": 0.9679 + }, + { + "start": 33527.62, + "end": 33529.0, + "probability": 0.9307 + }, + { + "start": 33530.04, + "end": 33534.0, + "probability": 0.8306 + }, + { + "start": 33534.82, + "end": 33536.5, + "probability": 0.9967 + }, + { + "start": 33536.56, + "end": 33537.02, + "probability": 0.7767 + }, + { + "start": 33537.64, + "end": 33538.4, + "probability": 0.9348 + }, + { + "start": 33539.32, + "end": 33542.76, + "probability": 0.9814 + }, + { + "start": 33543.28, + "end": 33543.72, + "probability": 0.2169 + }, + { + "start": 33544.38, + "end": 33546.56, + "probability": 0.7915 + }, + { + "start": 33547.86, + "end": 33548.26, + "probability": 0.7859 + }, + { + "start": 33548.72, + "end": 33550.74, + "probability": 0.7264 + }, + { + "start": 33551.36, + "end": 33553.0, + "probability": 0.9585 + }, + { + "start": 33554.34, + "end": 33560.12, + "probability": 0.929 + }, + { + "start": 33560.5, + "end": 33560.84, + "probability": 0.3835 + }, + { + "start": 33560.84, + "end": 33560.84, + "probability": 0.3155 + }, + { + "start": 33560.84, + "end": 33561.86, + "probability": 0.5187 + }, + { + "start": 33562.44, + "end": 33566.4, + "probability": 0.7897 + }, + { + "start": 33567.12, + "end": 33569.68, + "probability": 0.2744 + }, + { + "start": 33571.0, + "end": 33572.78, + "probability": 0.0141 + }, + { + "start": 33572.78, + "end": 33574.22, + "probability": 0.0741 + }, + { + "start": 33574.22, + "end": 33574.44, + "probability": 0.0724 + }, + { + "start": 33574.44, + "end": 33575.22, + "probability": 0.097 + }, + { + "start": 33575.22, + "end": 33577.12, + "probability": 0.1001 + }, + { + "start": 33579.06, + "end": 33580.16, + "probability": 0.1535 + }, + { + "start": 33580.3, + "end": 33582.22, + "probability": 0.4324 + }, + { + "start": 33582.34, + "end": 33583.6, + "probability": 0.5175 + }, + { + "start": 33583.62, + "end": 33584.54, + "probability": 0.875 + }, + { + "start": 33584.8, + "end": 33585.76, + "probability": 0.3884 + }, + { + "start": 33586.1, + "end": 33587.02, + "probability": 0.9468 + }, + { + "start": 33587.3, + "end": 33588.04, + "probability": 0.9794 + }, + { + "start": 33588.22, + "end": 33589.02, + "probability": 0.9099 + }, + { + "start": 33589.52, + "end": 33589.66, + "probability": 0.679 + }, + { + "start": 33589.7, + "end": 33590.26, + "probability": 0.5927 + }, + { + "start": 33594.36, + "end": 33595.74, + "probability": 0.3032 + }, + { + "start": 33595.86, + "end": 33596.22, + "probability": 0.0503 + }, + { + "start": 33596.22, + "end": 33597.58, + "probability": 0.0844 + }, + { + "start": 33598.12, + "end": 33599.24, + "probability": 0.0308 + }, + { + "start": 33600.18, + "end": 33601.2, + "probability": 0.209 + }, + { + "start": 33601.4, + "end": 33601.78, + "probability": 0.1384 + }, + { + "start": 33601.96, + "end": 33602.82, + "probability": 0.1795 + }, + { + "start": 33603.84, + "end": 33604.74, + "probability": 0.2131 + }, + { + "start": 33610.15, + "end": 33612.44, + "probability": 0.0635 + }, + { + "start": 33612.94, + "end": 33613.64, + "probability": 0.0837 + }, + { + "start": 33614.66, + "end": 33615.32, + "probability": 0.0874 + }, + { + "start": 33616.52, + "end": 33618.3, + "probability": 0.0285 + }, + { + "start": 33618.36, + "end": 33618.54, + "probability": 0.1166 + }, + { + "start": 33621.66, + "end": 33623.28, + "probability": 0.2668 + }, + { + "start": 33623.86, + "end": 33626.56, + "probability": 0.6899 + }, + { + "start": 33626.72, + "end": 33627.42, + "probability": 0.0632 + }, + { + "start": 33627.96, + "end": 33628.76, + "probability": 0.0125 + }, + { + "start": 33630.24, + "end": 33630.42, + "probability": 0.1806 + }, + { + "start": 33630.42, + "end": 33630.54, + "probability": 0.0557 + }, + { + "start": 33631.06, + "end": 33631.94, + "probability": 0.2005 + }, + { + "start": 33631.94, + "end": 33633.1, + "probability": 0.3333 + }, + { + "start": 33633.64, + "end": 33634.46, + "probability": 0.0529 + }, + { + "start": 33635.1, + "end": 33636.18, + "probability": 0.026 + }, + { + "start": 33636.4, + "end": 33636.52, + "probability": 0.06 + }, + { + "start": 33636.52, + "end": 33636.6, + "probability": 0.3448 + }, + { + "start": 33636.6, + "end": 33636.76, + "probability": 0.3138 + }, + { + "start": 33637.0, + "end": 33637.0, + "probability": 0.0 + }, + { + "start": 33637.0, + "end": 33637.0, + "probability": 0.0 + }, + { + "start": 33637.0, + "end": 33637.0, + "probability": 0.0 + }, + { + "start": 33637.2, + "end": 33637.26, + "probability": 0.0324 + }, + { + "start": 33637.26, + "end": 33637.26, + "probability": 0.0522 + }, + { + "start": 33637.26, + "end": 33637.26, + "probability": 0.0095 + }, + { + "start": 33637.26, + "end": 33638.99, + "probability": 0.4918 + }, + { + "start": 33639.86, + "end": 33642.02, + "probability": 0.6471 + }, + { + "start": 33642.56, + "end": 33644.14, + "probability": 0.3311 + }, + { + "start": 33644.26, + "end": 33646.74, + "probability": 0.9016 + }, + { + "start": 33647.18, + "end": 33650.44, + "probability": 0.909 + }, + { + "start": 33650.72, + "end": 33653.2, + "probability": 0.7961 + }, + { + "start": 33653.74, + "end": 33656.94, + "probability": 0.0115 + }, + { + "start": 33657.68, + "end": 33657.68, + "probability": 0.006 + }, + { + "start": 33657.68, + "end": 33657.88, + "probability": 0.039 + }, + { + "start": 33657.88, + "end": 33658.1, + "probability": 0.1778 + }, + { + "start": 33658.66, + "end": 33659.06, + "probability": 0.7743 + }, + { + "start": 33659.92, + "end": 33661.08, + "probability": 0.1136 + }, + { + "start": 33661.08, + "end": 33662.97, + "probability": 0.5376 + }, + { + "start": 33663.54, + "end": 33664.74, + "probability": 0.8217 + }, + { + "start": 33665.8, + "end": 33668.28, + "probability": 0.3052 + }, + { + "start": 33668.94, + "end": 33671.02, + "probability": 0.7917 + }, + { + "start": 33671.46, + "end": 33676.82, + "probability": 0.7387 + }, + { + "start": 33677.24, + "end": 33679.42, + "probability": 0.0876 + }, + { + "start": 33679.42, + "end": 33681.18, + "probability": 0.2328 + }, + { + "start": 33681.46, + "end": 33686.22, + "probability": 0.284 + }, + { + "start": 33689.3, + "end": 33691.36, + "probability": 0.0621 + }, + { + "start": 33692.02, + "end": 33692.46, + "probability": 0.0911 + }, + { + "start": 33692.98, + "end": 33694.46, + "probability": 0.0319 + }, + { + "start": 33694.46, + "end": 33694.46, + "probability": 0.2395 + }, + { + "start": 33696.32, + "end": 33697.04, + "probability": 0.0502 + }, + { + "start": 33697.34, + "end": 33699.76, + "probability": 0.4237 + }, + { + "start": 33700.34, + "end": 33701.48, + "probability": 0.0168 + }, + { + "start": 33710.42, + "end": 33710.6, + "probability": 0.108 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.0, + "end": 33757.0, + "probability": 0.0 + }, + { + "start": 33757.28, + "end": 33761.46, + "probability": 0.7194 + }, + { + "start": 33761.9, + "end": 33761.9, + "probability": 0.2489 + }, + { + "start": 33761.92, + "end": 33761.92, + "probability": 0.0874 + }, + { + "start": 33761.92, + "end": 33762.64, + "probability": 0.5297 + }, + { + "start": 33762.76, + "end": 33764.04, + "probability": 0.965 + }, + { + "start": 33764.3, + "end": 33765.04, + "probability": 0.8764 + }, + { + "start": 33765.16, + "end": 33766.4, + "probability": 0.3811 + }, + { + "start": 33766.74, + "end": 33768.8, + "probability": 0.9546 + }, + { + "start": 33769.16, + "end": 33771.1, + "probability": 0.9436 + }, + { + "start": 33771.3, + "end": 33771.44, + "probability": 0.0362 + }, + { + "start": 33771.44, + "end": 33774.26, + "probability": 0.5158 + }, + { + "start": 33774.52, + "end": 33775.04, + "probability": 0.6196 + }, + { + "start": 33775.76, + "end": 33776.92, + "probability": 0.6576 + }, + { + "start": 33777.26, + "end": 33777.86, + "probability": 0.7328 + }, + { + "start": 33777.96, + "end": 33778.82, + "probability": 0.8956 + }, + { + "start": 33779.08, + "end": 33780.08, + "probability": 0.0348 + }, + { + "start": 33780.08, + "end": 33784.33, + "probability": 0.1033 + }, + { + "start": 33785.62, + "end": 33785.76, + "probability": 0.5045 + }, + { + "start": 33786.88, + "end": 33787.72, + "probability": 0.7664 + }, + { + "start": 33789.58, + "end": 33789.6, + "probability": 0.0151 + }, + { + "start": 33790.14, + "end": 33790.36, + "probability": 0.6168 + }, + { + "start": 33790.36, + "end": 33791.5, + "probability": 0.1892 + }, + { + "start": 33792.56, + "end": 33793.04, + "probability": 0.2032 + }, + { + "start": 33793.56, + "end": 33794.54, + "probability": 0.963 + }, + { + "start": 33795.64, + "end": 33795.86, + "probability": 0.7183 + }, + { + "start": 33796.9, + "end": 33801.32, + "probability": 0.8804 + }, + { + "start": 33802.16, + "end": 33804.08, + "probability": 0.1122 + }, + { + "start": 33804.08, + "end": 33804.08, + "probability": 0.1889 + }, + { + "start": 33804.08, + "end": 33804.08, + "probability": 0.0166 + }, + { + "start": 33804.08, + "end": 33806.32, + "probability": 0.2881 + }, + { + "start": 33806.46, + "end": 33808.62, + "probability": 0.0438 + }, + { + "start": 33808.88, + "end": 33810.2, + "probability": 0.2646 + }, + { + "start": 33811.02, + "end": 33811.66, + "probability": 0.0296 + }, + { + "start": 33811.66, + "end": 33812.26, + "probability": 0.6907 + }, + { + "start": 33812.52, + "end": 33812.56, + "probability": 0.6819 + }, + { + "start": 33812.56, + "end": 33814.98, + "probability": 0.2062 + }, + { + "start": 33815.58, + "end": 33816.28, + "probability": 0.1859 + }, + { + "start": 33816.7, + "end": 33818.46, + "probability": 0.239 + }, + { + "start": 33822.48, + "end": 33822.76, + "probability": 0.4951 + }, + { + "start": 33824.74, + "end": 33826.44, + "probability": 0.2255 + }, + { + "start": 33830.34, + "end": 33831.62, + "probability": 0.3321 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33883.0, + "end": 33883.0, + "probability": 0.0 + }, + { + "start": 33889.94, + "end": 33890.87, + "probability": 0.2006 + }, + { + "start": 33894.37, + "end": 33898.41, + "probability": 0.8743 + }, + { + "start": 33899.69, + "end": 33899.69, + "probability": 0.0653 + }, + { + "start": 33899.69, + "end": 33902.25, + "probability": 0.6337 + }, + { + "start": 33926.03, + "end": 33926.65, + "probability": 0.5732 + }, + { + "start": 33926.83, + "end": 33928.03, + "probability": 0.9219 + }, + { + "start": 33929.49, + "end": 33931.75, + "probability": 0.9233 + }, + { + "start": 33933.13, + "end": 33934.29, + "probability": 0.7607 + }, + { + "start": 33937.57, + "end": 33938.35, + "probability": 0.9901 + }, + { + "start": 33939.63, + "end": 33941.59, + "probability": 0.9981 + }, + { + "start": 33942.33, + "end": 33944.79, + "probability": 0.999 + }, + { + "start": 33945.89, + "end": 33947.59, + "probability": 0.9995 + }, + { + "start": 33948.51, + "end": 33949.71, + "probability": 0.867 + }, + { + "start": 33949.71, + "end": 33950.9, + "probability": 0.9462 + }, + { + "start": 33953.05, + "end": 33954.27, + "probability": 0.0457 + }, + { + "start": 33954.27, + "end": 33961.37, + "probability": 0.9906 + }, + { + "start": 33961.49, + "end": 33961.77, + "probability": 0.8623 + }, + { + "start": 33962.31, + "end": 33963.93, + "probability": 0.9955 + }, + { + "start": 33964.43, + "end": 33967.35, + "probability": 0.7568 + }, + { + "start": 33968.55, + "end": 33970.63, + "probability": 0.752 + }, + { + "start": 33971.19, + "end": 33972.69, + "probability": 0.9759 + }, + { + "start": 33973.25, + "end": 33973.88, + "probability": 0.9836 + }, + { + "start": 33974.47, + "end": 33975.69, + "probability": 0.945 + }, + { + "start": 33975.73, + "end": 33976.17, + "probability": 0.6224 + }, + { + "start": 33976.37, + "end": 33978.61, + "probability": 0.9476 + }, + { + "start": 33978.71, + "end": 33979.43, + "probability": 0.7183 + }, + { + "start": 33980.13, + "end": 33982.33, + "probability": 0.8989 + }, + { + "start": 33983.11, + "end": 33989.13, + "probability": 0.8568 + }, + { + "start": 33989.29, + "end": 33992.42, + "probability": 0.9292 + }, + { + "start": 33993.41, + "end": 33999.85, + "probability": 0.9749 + }, + { + "start": 34001.45, + "end": 34003.67, + "probability": 0.9175 + }, + { + "start": 34005.25, + "end": 34006.53, + "probability": 0.9209 + }, + { + "start": 34008.15, + "end": 34014.25, + "probability": 0.9954 + }, + { + "start": 34014.61, + "end": 34015.39, + "probability": 0.7437 + }, + { + "start": 34015.45, + "end": 34017.17, + "probability": 0.822 + }, + { + "start": 34017.97, + "end": 34022.87, + "probability": 0.9778 + }, + { + "start": 34023.13, + "end": 34023.41, + "probability": 0.9521 + }, + { + "start": 34024.81, + "end": 34026.79, + "probability": 0.7785 + }, + { + "start": 34031.31, + "end": 34032.51, + "probability": 0.9924 + }, + { + "start": 34033.05, + "end": 34034.55, + "probability": 0.86 + }, + { + "start": 34034.79, + "end": 34036.55, + "probability": 0.6975 + }, + { + "start": 34037.29, + "end": 34037.81, + "probability": 0.6558 + }, + { + "start": 34037.95, + "end": 34038.39, + "probability": 0.8029 + }, + { + "start": 34038.47, + "end": 34040.41, + "probability": 0.8863 + }, + { + "start": 34041.01, + "end": 34042.39, + "probability": 0.7832 + }, + { + "start": 34043.01, + "end": 34046.91, + "probability": 0.7485 + }, + { + "start": 34047.55, + "end": 34050.87, + "probability": 0.9978 + }, + { + "start": 34050.87, + "end": 34054.75, + "probability": 0.9863 + }, + { + "start": 34055.21, + "end": 34056.21, + "probability": 0.9824 + }, + { + "start": 34056.73, + "end": 34059.53, + "probability": 0.9774 + }, + { + "start": 34059.99, + "end": 34063.59, + "probability": 0.9718 + }, + { + "start": 34064.19, + "end": 34068.41, + "probability": 0.8633 + }, + { + "start": 34069.07, + "end": 34070.17, + "probability": 0.9045 + }, + { + "start": 34070.91, + "end": 34074.27, + "probability": 0.9762 + }, + { + "start": 34074.77, + "end": 34076.35, + "probability": 0.7379 + }, + { + "start": 34076.87, + "end": 34081.81, + "probability": 0.9576 + }, + { + "start": 34081.85, + "end": 34082.09, + "probability": 0.3124 + }, + { + "start": 34082.21, + "end": 34083.13, + "probability": 0.9641 + }, + { + "start": 34086.01, + "end": 34087.89, + "probability": 0.9492 + }, + { + "start": 34087.95, + "end": 34088.81, + "probability": 0.6511 + }, + { + "start": 34088.85, + "end": 34089.67, + "probability": 0.915 + }, + { + "start": 34090.23, + "end": 34092.99, + "probability": 0.9504 + }, + { + "start": 34093.05, + "end": 34093.59, + "probability": 0.5858 + }, + { + "start": 34094.25, + "end": 34095.31, + "probability": 0.9888 + }, + { + "start": 34096.18, + "end": 34099.95, + "probability": 0.9873 + }, + { + "start": 34100.47, + "end": 34105.21, + "probability": 0.8989 + }, + { + "start": 34105.35, + "end": 34108.15, + "probability": 0.9938 + }, + { + "start": 34108.29, + "end": 34113.19, + "probability": 0.9893 + }, + { + "start": 34113.49, + "end": 34114.35, + "probability": 0.9475 + }, + { + "start": 34116.65, + "end": 34117.23, + "probability": 0.0321 + }, + { + "start": 34117.23, + "end": 34117.23, + "probability": 0.1338 + }, + { + "start": 34117.23, + "end": 34122.71, + "probability": 0.8987 + }, + { + "start": 34123.17, + "end": 34124.13, + "probability": 0.7771 + }, + { + "start": 34124.49, + "end": 34126.59, + "probability": 0.6566 + }, + { + "start": 34127.07, + "end": 34131.17, + "probability": 0.97 + }, + { + "start": 34131.91, + "end": 34132.85, + "probability": 0.846 + }, + { + "start": 34133.41, + "end": 34134.29, + "probability": 0.9724 + }, + { + "start": 34134.69, + "end": 34136.13, + "probability": 0.9856 + }, + { + "start": 34136.39, + "end": 34137.81, + "probability": 0.7701 + }, + { + "start": 34138.09, + "end": 34138.25, + "probability": 0.823 + }, + { + "start": 34138.73, + "end": 34139.59, + "probability": 0.7122 + }, + { + "start": 34140.65, + "end": 34143.21, + "probability": 0.7551 + }, + { + "start": 34169.61, + "end": 34169.85, + "probability": 0.3026 + }, + { + "start": 34169.85, + "end": 34170.45, + "probability": 0.4978 + }, + { + "start": 34172.29, + "end": 34173.55, + "probability": 0.7296 + }, + { + "start": 34174.83, + "end": 34177.79, + "probability": 0.6256 + }, + { + "start": 34177.93, + "end": 34178.11, + "probability": 0.3982 + }, + { + "start": 34179.47, + "end": 34185.17, + "probability": 0.9785 + }, + { + "start": 34188.53, + "end": 34190.95, + "probability": 0.7163 + }, + { + "start": 34190.95, + "end": 34194.07, + "probability": 0.9646 + }, + { + "start": 34194.21, + "end": 34197.27, + "probability": 0.753 + }, + { + "start": 34197.27, + "end": 34198.97, + "probability": 0.8149 + }, + { + "start": 34199.47, + "end": 34200.23, + "probability": 0.5075 + }, + { + "start": 34200.29, + "end": 34201.71, + "probability": 0.9795 + }, + { + "start": 34202.53, + "end": 34203.79, + "probability": 0.848 + }, + { + "start": 34204.75, + "end": 34205.41, + "probability": 0.9858 + }, + { + "start": 34205.83, + "end": 34206.27, + "probability": 0.9714 + }, + { + "start": 34207.51, + "end": 34209.97, + "probability": 0.8948 + }, + { + "start": 34210.71, + "end": 34211.47, + "probability": 0.9771 + }, + { + "start": 34212.63, + "end": 34214.01, + "probability": 0.9712 + }, + { + "start": 34214.89, + "end": 34217.17, + "probability": 0.7794 + }, + { + "start": 34217.81, + "end": 34219.09, + "probability": 0.9046 + }, + { + "start": 34220.41, + "end": 34223.35, + "probability": 0.9335 + }, + { + "start": 34223.43, + "end": 34224.69, + "probability": 0.9946 + }, + { + "start": 34225.27, + "end": 34227.0, + "probability": 0.9937 + }, + { + "start": 34227.46, + "end": 34228.09, + "probability": 0.7097 + }, + { + "start": 34229.51, + "end": 34230.13, + "probability": 0.6239 + }, + { + "start": 34231.8, + "end": 34235.75, + "probability": 0.8829 + }, + { + "start": 34235.81, + "end": 34238.19, + "probability": 0.819 + }, + { + "start": 34238.51, + "end": 34240.25, + "probability": 0.7545 + }, + { + "start": 34240.25, + "end": 34242.43, + "probability": 0.9847 + }, + { + "start": 34243.13, + "end": 34244.17, + "probability": 0.9933 + }, + { + "start": 34245.11, + "end": 34247.95, + "probability": 0.9328 + }, + { + "start": 34248.05, + "end": 34248.91, + "probability": 0.8021 + }, + { + "start": 34249.71, + "end": 34251.19, + "probability": 0.9871 + }, + { + "start": 34252.57, + "end": 34255.53, + "probability": 0.9641 + }, + { + "start": 34255.53, + "end": 34258.57, + "probability": 0.9947 + }, + { + "start": 34258.93, + "end": 34262.17, + "probability": 0.9156 + }, + { + "start": 34263.45, + "end": 34264.99, + "probability": 0.829 + }, + { + "start": 34265.07, + "end": 34266.97, + "probability": 0.8293 + }, + { + "start": 34266.97, + "end": 34269.25, + "probability": 0.6287 + }, + { + "start": 34269.63, + "end": 34272.39, + "probability": 0.9468 + }, + { + "start": 34272.57, + "end": 34274.57, + "probability": 0.8254 + }, + { + "start": 34275.35, + "end": 34276.23, + "probability": 0.904 + }, + { + "start": 34276.89, + "end": 34279.15, + "probability": 0.9923 + }, + { + "start": 34279.79, + "end": 34283.39, + "probability": 0.8987 + }, + { + "start": 34283.95, + "end": 34285.47, + "probability": 0.8249 + }, + { + "start": 34287.28, + "end": 34289.61, + "probability": 0.6463 + }, + { + "start": 34290.41, + "end": 34291.99, + "probability": 0.7101 + }, + { + "start": 34293.39, + "end": 34294.75, + "probability": 0.3078 + }, + { + "start": 34298.21, + "end": 34298.81, + "probability": 0.7513 + }, + { + "start": 34298.91, + "end": 34299.07, + "probability": 0.3954 + }, + { + "start": 34299.49, + "end": 34300.03, + "probability": 0.4889 + }, + { + "start": 34300.19, + "end": 34302.23, + "probability": 0.9889 + }, + { + "start": 34302.75, + "end": 34304.01, + "probability": 0.5452 + }, + { + "start": 34304.97, + "end": 34307.89, + "probability": 0.7779 + }, + { + "start": 34308.43, + "end": 34309.51, + "probability": 0.9808 + }, + { + "start": 34310.09, + "end": 34311.18, + "probability": 0.7506 + }, + { + "start": 34311.97, + "end": 34315.37, + "probability": 0.2106 + }, + { + "start": 34316.23, + "end": 34319.71, + "probability": 0.7158 + }, + { + "start": 34320.29, + "end": 34320.79, + "probability": 0.4108 + }, + { + "start": 34321.81, + "end": 34323.11, + "probability": 0.9819 + }, + { + "start": 34325.99, + "end": 34327.17, + "probability": 0.7799 + }, + { + "start": 34327.25, + "end": 34328.99, + "probability": 0.921 + }, + { + "start": 34329.51, + "end": 34331.13, + "probability": 0.0261 + }, + { + "start": 34331.13, + "end": 34332.28, + "probability": 0.857 + }, + { + "start": 34334.95, + "end": 34336.01, + "probability": 0.6681 + }, + { + "start": 34336.11, + "end": 34337.49, + "probability": 0.7402 + }, + { + "start": 34337.65, + "end": 34338.07, + "probability": 0.2178 + }, + { + "start": 34339.17, + "end": 34342.53, + "probability": 0.3887 + }, + { + "start": 34342.77, + "end": 34343.43, + "probability": 0.8029 + }, + { + "start": 34348.05, + "end": 34348.59, + "probability": 0.3702 + }, + { + "start": 34348.69, + "end": 34349.35, + "probability": 0.4758 + }, + { + "start": 34349.35, + "end": 34350.53, + "probability": 0.191 + }, + { + "start": 34351.05, + "end": 34353.27, + "probability": 0.2945 + }, + { + "start": 34360.65, + "end": 34360.89, + "probability": 0.0307 + }, + { + "start": 34360.89, + "end": 34362.97, + "probability": 0.3232 + }, + { + "start": 34363.21, + "end": 34369.01, + "probability": 0.9849 + }, + { + "start": 34369.19, + "end": 34372.61, + "probability": 0.9916 + }, + { + "start": 34373.81, + "end": 34375.13, + "probability": 0.8477 + }, + { + "start": 34375.93, + "end": 34378.77, + "probability": 0.937 + }, + { + "start": 34378.77, + "end": 34381.49, + "probability": 0.9164 + }, + { + "start": 34382.97, + "end": 34386.27, + "probability": 0.0672 + }, + { + "start": 34389.93, + "end": 34389.93, + "probability": 0.1308 + }, + { + "start": 34389.93, + "end": 34389.93, + "probability": 0.2334 + }, + { + "start": 34389.93, + "end": 34390.15, + "probability": 0.1292 + }, + { + "start": 34390.27, + "end": 34392.7, + "probability": 0.5042 + }, + { + "start": 34393.61, + "end": 34394.03, + "probability": 0.6116 + }, + { + "start": 34394.05, + "end": 34396.03, + "probability": 0.5019 + }, + { + "start": 34397.29, + "end": 34399.57, + "probability": 0.9398 + }, + { + "start": 34401.87, + "end": 34402.75, + "probability": 0.7819 + }, + { + "start": 34406.03, + "end": 34406.81, + "probability": 0.9801 + }, + { + "start": 34408.75, + "end": 34409.31, + "probability": 0.7295 + }, + { + "start": 34409.41, + "end": 34413.29, + "probability": 0.9523 + }, + { + "start": 34413.41, + "end": 34414.45, + "probability": 0.7574 + }, + { + "start": 34415.29, + "end": 34417.21, + "probability": 0.917 + }, + { + "start": 34417.25, + "end": 34417.91, + "probability": 0.8161 + }, + { + "start": 34418.01, + "end": 34421.43, + "probability": 0.9734 + }, + { + "start": 34421.75, + "end": 34424.19, + "probability": 0.8009 + }, + { + "start": 34424.95, + "end": 34428.95, + "probability": 0.9946 + }, + { + "start": 34429.49, + "end": 34430.95, + "probability": 0.9289 + }, + { + "start": 34431.77, + "end": 34433.83, + "probability": 0.998 + }, + { + "start": 34433.99, + "end": 34434.93, + "probability": 0.9194 + }, + { + "start": 34435.25, + "end": 34438.43, + "probability": 0.9857 + }, + { + "start": 34438.81, + "end": 34442.35, + "probability": 0.7227 + }, + { + "start": 34443.27, + "end": 34448.01, + "probability": 0.9614 + }, + { + "start": 34448.09, + "end": 34448.25, + "probability": 0.939 + }, + { + "start": 34448.41, + "end": 34450.09, + "probability": 0.9836 + }, + { + "start": 34450.19, + "end": 34450.81, + "probability": 0.6705 + }, + { + "start": 34451.03, + "end": 34452.17, + "probability": 0.9468 + }, + { + "start": 34453.05, + "end": 34456.47, + "probability": 0.9966 + }, + { + "start": 34457.0, + "end": 34461.47, + "probability": 0.9514 + }, + { + "start": 34462.25, + "end": 34463.29, + "probability": 0.8158 + }, + { + "start": 34463.37, + "end": 34464.33, + "probability": 0.8112 + }, + { + "start": 34464.55, + "end": 34466.11, + "probability": 0.7319 + }, + { + "start": 34466.59, + "end": 34469.17, + "probability": 0.9956 + }, + { + "start": 34469.35, + "end": 34470.98, + "probability": 0.6244 + }, + { + "start": 34471.19, + "end": 34472.7, + "probability": 0.8875 + }, + { + "start": 34473.63, + "end": 34475.81, + "probability": 0.9113 + }, + { + "start": 34476.05, + "end": 34477.21, + "probability": 0.9676 + }, + { + "start": 34477.37, + "end": 34479.05, + "probability": 0.9556 + }, + { + "start": 34479.87, + "end": 34480.51, + "probability": 0.936 + }, + { + "start": 34481.03, + "end": 34483.25, + "probability": 0.9285 + }, + { + "start": 34485.01, + "end": 34488.71, + "probability": 0.8988 + }, + { + "start": 34489.15, + "end": 34490.95, + "probability": 0.9971 + }, + { + "start": 34491.55, + "end": 34494.67, + "probability": 0.8698 + }, + { + "start": 34495.79, + "end": 34498.31, + "probability": 0.7108 + }, + { + "start": 34499.01, + "end": 34501.29, + "probability": 0.9692 + }, + { + "start": 34502.25, + "end": 34503.49, + "probability": 0.6696 + }, + { + "start": 34503.51, + "end": 34508.49, + "probability": 0.9869 + }, + { + "start": 34509.57, + "end": 34513.39, + "probability": 0.9984 + }, + { + "start": 34513.93, + "end": 34515.95, + "probability": 0.999 + }, + { + "start": 34517.23, + "end": 34522.89, + "probability": 0.9884 + }, + { + "start": 34522.89, + "end": 34525.95, + "probability": 0.9976 + }, + { + "start": 34527.99, + "end": 34531.01, + "probability": 0.9565 + }, + { + "start": 34531.53, + "end": 34534.89, + "probability": 0.995 + }, + { + "start": 34535.53, + "end": 34537.23, + "probability": 0.845 + }, + { + "start": 34538.01, + "end": 34541.89, + "probability": 0.9737 + }, + { + "start": 34543.83, + "end": 34548.45, + "probability": 0.9906 + }, + { + "start": 34548.67, + "end": 34549.31, + "probability": 0.8974 + }, + { + "start": 34549.57, + "end": 34551.63, + "probability": 0.9197 + }, + { + "start": 34553.21, + "end": 34560.49, + "probability": 0.9849 + }, + { + "start": 34561.17, + "end": 34566.86, + "probability": 0.9319 + }, + { + "start": 34568.01, + "end": 34572.69, + "probability": 0.9886 + }, + { + "start": 34573.65, + "end": 34575.69, + "probability": 0.7124 + }, + { + "start": 34576.87, + "end": 34583.49, + "probability": 0.9709 + }, + { + "start": 34584.67, + "end": 34585.35, + "probability": 0.8326 + }, + { + "start": 34585.45, + "end": 34586.95, + "probability": 0.968 + }, + { + "start": 34587.19, + "end": 34588.15, + "probability": 0.9761 + }, + { + "start": 34588.77, + "end": 34591.53, + "probability": 0.9949 + }, + { + "start": 34592.18, + "end": 34593.97, + "probability": 0.959 + }, + { + "start": 34594.35, + "end": 34594.65, + "probability": 0.7847 + }, + { + "start": 34594.71, + "end": 34597.11, + "probability": 0.9954 + }, + { + "start": 34597.73, + "end": 34599.19, + "probability": 0.6027 + }, + { + "start": 34600.51, + "end": 34601.59, + "probability": 0.0816 + }, + { + "start": 34601.59, + "end": 34605.97, + "probability": 0.9251 + }, + { + "start": 34605.97, + "end": 34612.55, + "probability": 0.9966 + }, + { + "start": 34614.13, + "end": 34614.87, + "probability": 0.6416 + }, + { + "start": 34614.99, + "end": 34615.73, + "probability": 0.6403 + }, + { + "start": 34615.73, + "end": 34620.41, + "probability": 0.9551 + }, + { + "start": 34620.57, + "end": 34621.49, + "probability": 0.6187 + }, + { + "start": 34622.05, + "end": 34623.73, + "probability": 0.9072 + }, + { + "start": 34624.43, + "end": 34624.71, + "probability": 0.9727 + }, + { + "start": 34625.53, + "end": 34628.33, + "probability": 0.9778 + }, + { + "start": 34629.21, + "end": 34629.57, + "probability": 0.8252 + }, + { + "start": 34629.73, + "end": 34630.75, + "probability": 0.9481 + }, + { + "start": 34630.91, + "end": 34634.93, + "probability": 0.8929 + }, + { + "start": 34635.09, + "end": 34635.45, + "probability": 0.8604 + }, + { + "start": 34636.15, + "end": 34639.37, + "probability": 0.8116 + }, + { + "start": 34639.99, + "end": 34642.53, + "probability": 0.9582 + }, + { + "start": 34642.53, + "end": 34645.13, + "probability": 0.9365 + }, + { + "start": 34645.19, + "end": 34646.11, + "probability": 0.9937 + }, + { + "start": 34646.43, + "end": 34647.93, + "probability": 0.9664 + }, + { + "start": 34649.63, + "end": 34650.39, + "probability": 0.1948 + }, + { + "start": 34650.51, + "end": 34650.77, + "probability": 0.7269 + }, + { + "start": 34650.89, + "end": 34651.19, + "probability": 0.6478 + }, + { + "start": 34652.11, + "end": 34654.17, + "probability": 0.9577 + }, + { + "start": 34654.55, + "end": 34654.89, + "probability": 0.699 + }, + { + "start": 34655.25, + "end": 34659.21, + "probability": 0.996 + }, + { + "start": 34660.65, + "end": 34662.97, + "probability": 0.5354 + }, + { + "start": 34663.07, + "end": 34664.31, + "probability": 0.8857 + }, + { + "start": 34664.49, + "end": 34666.29, + "probability": 0.9905 + }, + { + "start": 34666.41, + "end": 34667.05, + "probability": 0.8846 + }, + { + "start": 34667.67, + "end": 34669.67, + "probability": 0.7675 + }, + { + "start": 34669.83, + "end": 34671.25, + "probability": 0.9756 + }, + { + "start": 34671.73, + "end": 34673.95, + "probability": 0.9529 + }, + { + "start": 34674.79, + "end": 34675.37, + "probability": 0.8155 + }, + { + "start": 34675.75, + "end": 34682.23, + "probability": 0.9912 + }, + { + "start": 34682.75, + "end": 34683.27, + "probability": 0.8757 + }, + { + "start": 34683.97, + "end": 34684.57, + "probability": 0.9009 + }, + { + "start": 34685.31, + "end": 34687.95, + "probability": 0.9894 + }, + { + "start": 34688.13, + "end": 34691.41, + "probability": 0.9886 + }, + { + "start": 34692.01, + "end": 34695.31, + "probability": 0.9972 + }, + { + "start": 34695.83, + "end": 34701.99, + "probability": 0.9993 + }, + { + "start": 34702.23, + "end": 34702.91, + "probability": 0.7469 + }, + { + "start": 34702.93, + "end": 34703.35, + "probability": 0.5654 + }, + { + "start": 34706.85, + "end": 34708.57, + "probability": 0.812 + }, + { + "start": 34708.67, + "end": 34709.01, + "probability": 0.1535 + }, + { + "start": 34709.45, + "end": 34710.61, + "probability": 0.8301 + }, + { + "start": 34711.19, + "end": 34711.91, + "probability": 0.7089 + }, + { + "start": 34713.07, + "end": 34714.97, + "probability": 0.9092 + }, + { + "start": 34730.31, + "end": 34732.17, + "probability": 0.7322 + }, + { + "start": 34733.65, + "end": 34736.71, + "probability": 0.8104 + }, + { + "start": 34737.99, + "end": 34741.55, + "probability": 0.9824 + }, + { + "start": 34743.05, + "end": 34747.77, + "probability": 0.9902 + }, + { + "start": 34751.27, + "end": 34752.59, + "probability": 0.9822 + }, + { + "start": 34756.07, + "end": 34759.13, + "probability": 0.7304 + }, + { + "start": 34760.35, + "end": 34764.53, + "probability": 0.9377 + }, + { + "start": 34766.27, + "end": 34769.77, + "probability": 0.9877 + }, + { + "start": 34771.59, + "end": 34772.81, + "probability": 0.9417 + }, + { + "start": 34774.27, + "end": 34776.59, + "probability": 0.9517 + }, + { + "start": 34777.63, + "end": 34782.89, + "probability": 0.9941 + }, + { + "start": 34784.73, + "end": 34787.49, + "probability": 0.8401 + }, + { + "start": 34789.17, + "end": 34789.41, + "probability": 0.9956 + }, + { + "start": 34792.81, + "end": 34793.93, + "probability": 0.8941 + }, + { + "start": 34795.27, + "end": 34796.93, + "probability": 0.9066 + }, + { + "start": 34798.55, + "end": 34803.91, + "probability": 0.9982 + }, + { + "start": 34805.07, + "end": 34807.05, + "probability": 0.3161 + }, + { + "start": 34808.81, + "end": 34810.11, + "probability": 0.9136 + }, + { + "start": 34811.37, + "end": 34814.71, + "probability": 0.8262 + }, + { + "start": 34816.37, + "end": 34821.13, + "probability": 0.9758 + }, + { + "start": 34822.65, + "end": 34826.57, + "probability": 0.9939 + }, + { + "start": 34827.93, + "end": 34829.55, + "probability": 0.9939 + }, + { + "start": 34830.63, + "end": 34832.25, + "probability": 0.8181 + }, + { + "start": 34833.73, + "end": 34836.31, + "probability": 0.9032 + }, + { + "start": 34837.59, + "end": 34839.73, + "probability": 0.9591 + }, + { + "start": 34840.97, + "end": 34846.47, + "probability": 0.9702 + }, + { + "start": 34847.25, + "end": 34849.51, + "probability": 0.9812 + }, + { + "start": 34854.63, + "end": 34859.85, + "probability": 0.9912 + }, + { + "start": 34861.15, + "end": 34866.01, + "probability": 0.6884 + }, + { + "start": 34867.03, + "end": 34871.35, + "probability": 0.9401 + }, + { + "start": 34873.81, + "end": 34874.55, + "probability": 0.7277 + }, + { + "start": 34874.59, + "end": 34875.47, + "probability": 0.9246 + }, + { + "start": 34875.53, + "end": 34875.99, + "probability": 0.3631 + }, + { + "start": 34876.09, + "end": 34876.89, + "probability": 0.6585 + }, + { + "start": 34877.57, + "end": 34878.49, + "probability": 0.6178 + }, + { + "start": 34879.41, + "end": 34881.39, + "probability": 0.7698 + }, + { + "start": 34882.11, + "end": 34883.65, + "probability": 0.8593 + }, + { + "start": 34884.99, + "end": 34886.45, + "probability": 0.7614 + }, + { + "start": 34887.67, + "end": 34890.81, + "probability": 0.9966 + }, + { + "start": 34891.85, + "end": 34894.73, + "probability": 0.9536 + }, + { + "start": 34895.49, + "end": 34896.75, + "probability": 0.8159 + }, + { + "start": 34898.11, + "end": 34899.05, + "probability": 0.9668 + }, + { + "start": 34900.55, + "end": 34901.99, + "probability": 0.6602 + }, + { + "start": 34902.43, + "end": 34906.65, + "probability": 0.6074 + }, + { + "start": 34909.47, + "end": 34909.97, + "probability": 0.6211 + }, + { + "start": 34910.01, + "end": 34914.01, + "probability": 0.8848 + }, + { + "start": 34914.97, + "end": 34916.89, + "probability": 0.9487 + }, + { + "start": 34917.75, + "end": 34919.01, + "probability": 0.9246 + }, + { + "start": 34919.79, + "end": 34921.95, + "probability": 0.8201 + }, + { + "start": 34922.53, + "end": 34926.27, + "probability": 0.9741 + }, + { + "start": 34926.59, + "end": 34928.65, + "probability": 0.6764 + }, + { + "start": 34929.49, + "end": 34931.01, + "probability": 0.969 + }, + { + "start": 34931.81, + "end": 34936.63, + "probability": 0.7104 + }, + { + "start": 34937.31, + "end": 34938.85, + "probability": 0.8845 + }, + { + "start": 34939.71, + "end": 34942.75, + "probability": 0.6328 + }, + { + "start": 34943.27, + "end": 34945.99, + "probability": 0.9633 + }, + { + "start": 34946.43, + "end": 34946.91, + "probability": 0.6317 + }, + { + "start": 34947.23, + "end": 34947.25, + "probability": 0.6148 + }, + { + "start": 34947.31, + "end": 34949.91, + "probability": 0.9246 + }, + { + "start": 34950.25, + "end": 34950.65, + "probability": 0.5826 + }, + { + "start": 34951.33, + "end": 34952.29, + "probability": 0.1802 + }, + { + "start": 34952.33, + "end": 34953.58, + "probability": 0.8085 + }, + { + "start": 34953.85, + "end": 34954.31, + "probability": 0.549 + }, + { + "start": 34954.59, + "end": 34957.81, + "probability": 0.793 + }, + { + "start": 34958.49, + "end": 34959.07, + "probability": 0.5458 + }, + { + "start": 34959.21, + "end": 34960.03, + "probability": 0.9147 + }, + { + "start": 34960.45, + "end": 34963.03, + "probability": 0.9344 + }, + { + "start": 34963.73, + "end": 34964.43, + "probability": 0.9788 + }, + { + "start": 34964.57, + "end": 34966.61, + "probability": 0.6727 + }, + { + "start": 34967.33, + "end": 34968.69, + "probability": 0.499 + }, + { + "start": 34968.79, + "end": 34969.17, + "probability": 0.8243 + }, + { + "start": 34969.29, + "end": 34971.43, + "probability": 0.7422 + }, + { + "start": 34971.51, + "end": 34973.94, + "probability": 0.6573 + }, + { + "start": 34974.65, + "end": 34974.97, + "probability": 0.129 + }, + { + "start": 34974.97, + "end": 34975.11, + "probability": 0.437 + }, + { + "start": 34975.11, + "end": 34978.91, + "probability": 0.9744 + }, + { + "start": 34979.43, + "end": 34980.25, + "probability": 0.9128 + }, + { + "start": 34980.25, + "end": 34980.27, + "probability": 0.7002 + }, + { + "start": 34980.27, + "end": 34982.07, + "probability": 0.9548 + }, + { + "start": 34982.43, + "end": 34984.49, + "probability": 0.9802 + }, + { + "start": 34985.09, + "end": 34988.91, + "probability": 0.9888 + }, + { + "start": 34989.33, + "end": 34991.17, + "probability": 0.9905 + }, + { + "start": 34991.79, + "end": 34995.23, + "probability": 0.9697 + }, + { + "start": 34995.37, + "end": 34996.12, + "probability": 0.9165 + }, + { + "start": 34996.65, + "end": 34997.73, + "probability": 0.8449 + }, + { + "start": 34997.75, + "end": 34998.31, + "probability": 0.8 + }, + { + "start": 34998.53, + "end": 34999.33, + "probability": 0.7667 + }, + { + "start": 35000.41, + "end": 35003.49, + "probability": 0.5862 + }, + { + "start": 35003.53, + "end": 35006.85, + "probability": 0.9907 + }, + { + "start": 35007.41, + "end": 35009.41, + "probability": 0.9805 + }, + { + "start": 35010.05, + "end": 35012.73, + "probability": 0.6128 + }, + { + "start": 35013.43, + "end": 35014.85, + "probability": 0.8563 + }, + { + "start": 35015.47, + "end": 35017.01, + "probability": 0.4792 + }, + { + "start": 35017.43, + "end": 35019.29, + "probability": 0.9218 + }, + { + "start": 35019.43, + "end": 35020.79, + "probability": 0.9065 + }, + { + "start": 35021.79, + "end": 35023.03, + "probability": 0.8213 + }, + { + "start": 35023.35, + "end": 35025.23, + "probability": 0.6902 + }, + { + "start": 35027.01, + "end": 35028.09, + "probability": 0.8779 + }, + { + "start": 35029.33, + "end": 35029.39, + "probability": 0.0128 + }, + { + "start": 35029.39, + "end": 35031.99, + "probability": 0.851 + }, + { + "start": 35033.81, + "end": 35035.61, + "probability": 0.9849 + }, + { + "start": 35036.89, + "end": 35037.75, + "probability": 0.9272 + }, + { + "start": 35038.85, + "end": 35040.07, + "probability": 0.9453 + }, + { + "start": 35041.75, + "end": 35042.59, + "probability": 0.9428 + }, + { + "start": 35043.35, + "end": 35045.57, + "probability": 0.9843 + }, + { + "start": 35046.59, + "end": 35048.31, + "probability": 0.9855 + }, + { + "start": 35049.19, + "end": 35051.05, + "probability": 0.9777 + }, + { + "start": 35052.59, + "end": 35056.35, + "probability": 0.8137 + }, + { + "start": 35057.17, + "end": 35059.61, + "probability": 0.7434 + }, + { + "start": 35060.67, + "end": 35063.09, + "probability": 0.9853 + }, + { + "start": 35063.75, + "end": 35065.17, + "probability": 0.8528 + }, + { + "start": 35066.97, + "end": 35068.13, + "probability": 0.9971 + }, + { + "start": 35070.27, + "end": 35075.79, + "probability": 0.8907 + }, + { + "start": 35076.77, + "end": 35078.32, + "probability": 0.9927 + }, + { + "start": 35080.89, + "end": 35082.31, + "probability": 0.9069 + }, + { + "start": 35083.71, + "end": 35085.55, + "probability": 0.8135 + }, + { + "start": 35085.89, + "end": 35089.59, + "probability": 0.8309 + }, + { + "start": 35090.51, + "end": 35093.73, + "probability": 0.9815 + }, + { + "start": 35093.77, + "end": 35094.95, + "probability": 0.9578 + }, + { + "start": 35096.75, + "end": 35099.57, + "probability": 0.9958 + }, + { + "start": 35100.21, + "end": 35101.89, + "probability": 0.5157 + }, + { + "start": 35102.17, + "end": 35102.79, + "probability": 0.9907 + }, + { + "start": 35104.03, + "end": 35105.41, + "probability": 0.9063 + }, + { + "start": 35107.21, + "end": 35109.19, + "probability": 0.9505 + }, + { + "start": 35109.97, + "end": 35110.95, + "probability": 0.9548 + }, + { + "start": 35112.15, + "end": 35113.37, + "probability": 0.9311 + }, + { + "start": 35114.31, + "end": 35115.05, + "probability": 0.938 + }, + { + "start": 35115.77, + "end": 35117.29, + "probability": 0.6588 + }, + { + "start": 35118.35, + "end": 35120.73, + "probability": 0.9919 + }, + { + "start": 35121.39, + "end": 35122.73, + "probability": 0.9533 + }, + { + "start": 35123.75, + "end": 35125.09, + "probability": 0.9421 + }, + { + "start": 35125.89, + "end": 35129.61, + "probability": 0.9868 + }, + { + "start": 35130.45, + "end": 35132.25, + "probability": 0.9019 + }, + { + "start": 35133.61, + "end": 35134.33, + "probability": 0.135 + }, + { + "start": 35134.33, + "end": 35134.33, + "probability": 0.6758 + }, + { + "start": 35134.33, + "end": 35135.43, + "probability": 0.705 + }, + { + "start": 35136.33, + "end": 35139.39, + "probability": 0.8826 + }, + { + "start": 35140.07, + "end": 35143.03, + "probability": 0.9612 + }, + { + "start": 35143.63, + "end": 35144.23, + "probability": 0.8562 + }, + { + "start": 35145.63, + "end": 35148.95, + "probability": 0.9978 + }, + { + "start": 35150.25, + "end": 35153.25, + "probability": 0.9586 + }, + { + "start": 35154.21, + "end": 35154.87, + "probability": 0.9004 + }, + { + "start": 35155.07, + "end": 35155.77, + "probability": 0.8608 + }, + { + "start": 35156.13, + "end": 35157.67, + "probability": 0.2839 + }, + { + "start": 35157.99, + "end": 35158.51, + "probability": 0.6407 + }, + { + "start": 35158.61, + "end": 35159.7, + "probability": 0.7366 + }, + { + "start": 35160.63, + "end": 35160.91, + "probability": 0.4112 + }, + { + "start": 35162.71, + "end": 35163.45, + "probability": 0.7094 + }, + { + "start": 35164.37, + "end": 35166.97, + "probability": 0.947 + }, + { + "start": 35167.37, + "end": 35168.05, + "probability": 0.7299 + }, + { + "start": 35168.05, + "end": 35168.43, + "probability": 0.7653 + }, + { + "start": 35168.59, + "end": 35168.91, + "probability": 0.5115 + }, + { + "start": 35169.03, + "end": 35170.49, + "probability": 0.6534 + }, + { + "start": 35171.25, + "end": 35179.53, + "probability": 0.9656 + }, + { + "start": 35179.67, + "end": 35180.16, + "probability": 0.9888 + }, + { + "start": 35180.45, + "end": 35181.24, + "probability": 0.998 + }, + { + "start": 35182.45, + "end": 35184.33, + "probability": 0.9121 + }, + { + "start": 35188.11, + "end": 35189.07, + "probability": 0.4905 + }, + { + "start": 35189.25, + "end": 35191.53, + "probability": 0.9633 + }, + { + "start": 35191.69, + "end": 35195.13, + "probability": 0.9836 + }, + { + "start": 35196.41, + "end": 35197.85, + "probability": 0.9519 + }, + { + "start": 35198.69, + "end": 35199.15, + "probability": 0.67 + }, + { + "start": 35202.13, + "end": 35202.37, + "probability": 0.7979 + }, + { + "start": 35204.19, + "end": 35206.79, + "probability": 0.963 + }, + { + "start": 35207.61, + "end": 35210.87, + "probability": 0.9563 + }, + { + "start": 35211.43, + "end": 35212.51, + "probability": 0.7068 + }, + { + "start": 35213.25, + "end": 35214.03, + "probability": 0.3747 + }, + { + "start": 35214.69, + "end": 35216.85, + "probability": 0.8845 + }, + { + "start": 35217.79, + "end": 35218.87, + "probability": 0.2553 + }, + { + "start": 35219.01, + "end": 35219.69, + "probability": 0.7448 + }, + { + "start": 35220.01, + "end": 35221.11, + "probability": 0.7873 + }, + { + "start": 35221.47, + "end": 35221.95, + "probability": 0.3296 + }, + { + "start": 35222.19, + "end": 35222.77, + "probability": 0.5112 + }, + { + "start": 35222.91, + "end": 35223.53, + "probability": 0.7827 + }, + { + "start": 35223.77, + "end": 35225.67, + "probability": 0.6506 + }, + { + "start": 35225.81, + "end": 35227.71, + "probability": 0.9873 + }, + { + "start": 35228.25, + "end": 35230.69, + "probability": 0.8018 + }, + { + "start": 35231.41, + "end": 35232.63, + "probability": 0.9067 + }, + { + "start": 35232.73, + "end": 35234.33, + "probability": 0.8621 + }, + { + "start": 35234.99, + "end": 35236.57, + "probability": 0.953 + }, + { + "start": 35236.65, + "end": 35238.45, + "probability": 0.97 + }, + { + "start": 35239.37, + "end": 35244.79, + "probability": 0.9686 + }, + { + "start": 35246.09, + "end": 35246.73, + "probability": 0.6117 + }, + { + "start": 35246.95, + "end": 35249.09, + "probability": 0.9971 + }, + { + "start": 35249.17, + "end": 35249.93, + "probability": 0.7383 + }, + { + "start": 35250.71, + "end": 35252.57, + "probability": 0.9471 + }, + { + "start": 35252.75, + "end": 35254.49, + "probability": 0.9814 + }, + { + "start": 35254.99, + "end": 35255.85, + "probability": 0.987 + }, + { + "start": 35255.97, + "end": 35256.35, + "probability": 0.9944 + }, + { + "start": 35258.15, + "end": 35260.53, + "probability": 0.9315 + }, + { + "start": 35261.35, + "end": 35263.01, + "probability": 0.986 + }, + { + "start": 35263.71, + "end": 35265.95, + "probability": 0.9288 + }, + { + "start": 35267.79, + "end": 35270.27, + "probability": 0.9873 + }, + { + "start": 35271.25, + "end": 35272.69, + "probability": 0.9663 + }, + { + "start": 35275.13, + "end": 35277.97, + "probability": 0.9406 + }, + { + "start": 35278.59, + "end": 35279.49, + "probability": 0.7475 + }, + { + "start": 35282.25, + "end": 35283.33, + "probability": 0.9745 + }, + { + "start": 35283.49, + "end": 35284.51, + "probability": 0.9213 + }, + { + "start": 35285.65, + "end": 35287.27, + "probability": 0.908 + }, + { + "start": 35288.21, + "end": 35288.85, + "probability": 0.7374 + }, + { + "start": 35290.19, + "end": 35292.53, + "probability": 0.9785 + }, + { + "start": 35293.53, + "end": 35296.49, + "probability": 0.951 + }, + { + "start": 35297.69, + "end": 35299.41, + "probability": 0.9829 + }, + { + "start": 35300.45, + "end": 35301.43, + "probability": 0.9448 + }, + { + "start": 35302.05, + "end": 35303.31, + "probability": 0.7251 + }, + { + "start": 35304.55, + "end": 35305.59, + "probability": 0.9199 + }, + { + "start": 35306.17, + "end": 35308.89, + "probability": 0.9924 + }, + { + "start": 35309.27, + "end": 35309.59, + "probability": 0.5623 + }, + { + "start": 35309.67, + "end": 35310.37, + "probability": 0.8679 + }, + { + "start": 35310.45, + "end": 35312.15, + "probability": 0.9506 + }, + { + "start": 35312.87, + "end": 35315.45, + "probability": 0.9982 + }, + { + "start": 35315.81, + "end": 35316.31, + "probability": 0.5699 + }, + { + "start": 35316.71, + "end": 35318.23, + "probability": 0.7894 + }, + { + "start": 35318.79, + "end": 35319.49, + "probability": 0.938 + }, + { + "start": 35320.25, + "end": 35321.35, + "probability": 0.9359 + }, + { + "start": 35321.49, + "end": 35322.45, + "probability": 0.6952 + }, + { + "start": 35322.73, + "end": 35322.87, + "probability": 0.2934 + }, + { + "start": 35323.69, + "end": 35325.59, + "probability": 0.912 + }, + { + "start": 35328.72, + "end": 35330.75, + "probability": 0.9825 + }, + { + "start": 35331.53, + "end": 35331.65, + "probability": 0.2685 + }, + { + "start": 35333.79, + "end": 35335.37, + "probability": 0.4431 + }, + { + "start": 35335.63, + "end": 35337.19, + "probability": 0.6936 + }, + { + "start": 35337.25, + "end": 35337.93, + "probability": 0.985 + }, + { + "start": 35339.31, + "end": 35341.41, + "probability": 0.8393 + }, + { + "start": 35342.07, + "end": 35343.41, + "probability": 0.3245 + }, + { + "start": 35344.55, + "end": 35345.55, + "probability": 0.8664 + }, + { + "start": 35345.89, + "end": 35348.39, + "probability": 0.9948 + }, + { + "start": 35348.97, + "end": 35350.87, + "probability": 0.8939 + }, + { + "start": 35351.07, + "end": 35352.65, + "probability": 0.8916 + }, + { + "start": 35353.73, + "end": 35359.83, + "probability": 0.7501 + }, + { + "start": 35360.55, + "end": 35361.57, + "probability": 0.7573 + }, + { + "start": 35362.11, + "end": 35363.01, + "probability": 0.3938 + }, + { + "start": 35363.85, + "end": 35365.21, + "probability": 0.494 + }, + { + "start": 35366.83, + "end": 35367.71, + "probability": 0.5059 + }, + { + "start": 35368.89, + "end": 35369.91, + "probability": 0.5606 + }, + { + "start": 35370.99, + "end": 35375.01, + "probability": 0.8135 + }, + { + "start": 35375.11, + "end": 35376.33, + "probability": 0.9731 + }, + { + "start": 35376.37, + "end": 35377.05, + "probability": 0.5337 + }, + { + "start": 35378.13, + "end": 35379.87, + "probability": 0.9694 + }, + { + "start": 35380.77, + "end": 35381.35, + "probability": 0.5284 + }, + { + "start": 35381.43, + "end": 35382.03, + "probability": 0.1723 + }, + { + "start": 35383.11, + "end": 35384.47, + "probability": 0.8067 + }, + { + "start": 35384.57, + "end": 35388.3, + "probability": 0.8762 + }, + { + "start": 35388.79, + "end": 35390.75, + "probability": 0.9012 + }, + { + "start": 35391.93, + "end": 35392.47, + "probability": 0.6459 + }, + { + "start": 35393.15, + "end": 35393.45, + "probability": 0.8712 + }, + { + "start": 35393.79, + "end": 35393.95, + "probability": 0.4274 + }, + { + "start": 35394.17, + "end": 35395.33, + "probability": 0.8479 + }, + { + "start": 35395.63, + "end": 35396.17, + "probability": 0.5483 + }, + { + "start": 35396.25, + "end": 35396.68, + "probability": 0.721 + }, + { + "start": 35398.33, + "end": 35399.89, + "probability": 0.9673 + }, + { + "start": 35400.99, + "end": 35402.19, + "probability": 0.8275 + }, + { + "start": 35403.05, + "end": 35405.69, + "probability": 0.9425 + }, + { + "start": 35406.17, + "end": 35410.81, + "probability": 0.9956 + }, + { + "start": 35411.63, + "end": 35412.61, + "probability": 0.8261 + }, + { + "start": 35413.77, + "end": 35416.57, + "probability": 0.9976 + }, + { + "start": 35416.77, + "end": 35417.91, + "probability": 0.9941 + }, + { + "start": 35418.69, + "end": 35420.09, + "probability": 0.9992 + }, + { + "start": 35421.91, + "end": 35422.42, + "probability": 0.9531 + }, + { + "start": 35424.55, + "end": 35425.43, + "probability": 0.8502 + }, + { + "start": 35426.05, + "end": 35426.85, + "probability": 0.4845 + }, + { + "start": 35427.89, + "end": 35429.33, + "probability": 0.991 + }, + { + "start": 35430.67, + "end": 35431.79, + "probability": 0.8827 + }, + { + "start": 35433.25, + "end": 35435.63, + "probability": 0.9728 + }, + { + "start": 35436.45, + "end": 35437.57, + "probability": 0.6133 + }, + { + "start": 35437.69, + "end": 35441.97, + "probability": 0.9495 + }, + { + "start": 35442.63, + "end": 35444.35, + "probability": 0.9842 + }, + { + "start": 35445.29, + "end": 35448.31, + "probability": 0.8514 + }, + { + "start": 35448.39, + "end": 35448.97, + "probability": 0.7451 + }, + { + "start": 35449.11, + "end": 35451.28, + "probability": 0.4964 + }, + { + "start": 35455.37, + "end": 35455.97, + "probability": 0.9725 + }, + { + "start": 35456.11, + "end": 35457.03, + "probability": 0.7137 + }, + { + "start": 35457.41, + "end": 35458.19, + "probability": 0.9555 + }, + { + "start": 35458.29, + "end": 35459.51, + "probability": 0.7462 + }, + { + "start": 35460.91, + "end": 35461.75, + "probability": 0.9518 + }, + { + "start": 35462.51, + "end": 35463.34, + "probability": 0.8374 + }, + { + "start": 35464.23, + "end": 35465.39, + "probability": 0.9485 + }, + { + "start": 35467.59, + "end": 35470.81, + "probability": 0.7683 + }, + { + "start": 35471.35, + "end": 35472.73, + "probability": 0.9728 + }, + { + "start": 35473.83, + "end": 35474.79, + "probability": 0.7947 + }, + { + "start": 35475.71, + "end": 35476.57, + "probability": 0.9418 + }, + { + "start": 35477.41, + "end": 35479.55, + "probability": 0.9463 + }, + { + "start": 35480.67, + "end": 35482.15, + "probability": 0.9966 + }, + { + "start": 35482.41, + "end": 35484.55, + "probability": 0.9814 + }, + { + "start": 35485.33, + "end": 35486.13, + "probability": 0.946 + }, + { + "start": 35486.77, + "end": 35487.45, + "probability": 0.5588 + }, + { + "start": 35488.51, + "end": 35490.31, + "probability": 0.9787 + }, + { + "start": 35491.67, + "end": 35494.65, + "probability": 0.9724 + }, + { + "start": 35495.01, + "end": 35495.67, + "probability": 0.8844 + }, + { + "start": 35496.03, + "end": 35497.19, + "probability": 0.9192 + }, + { + "start": 35497.31, + "end": 35498.07, + "probability": 0.9524 + }, + { + "start": 35498.57, + "end": 35499.57, + "probability": 0.9878 + }, + { + "start": 35501.17, + "end": 35501.71, + "probability": 0.8117 + }, + { + "start": 35502.31, + "end": 35503.04, + "probability": 0.9751 + }, + { + "start": 35504.11, + "end": 35508.99, + "probability": 0.9126 + }, + { + "start": 35509.15, + "end": 35509.59, + "probability": 0.3541 + }, + { + "start": 35509.77, + "end": 35510.45, + "probability": 0.8599 + }, + { + "start": 35511.09, + "end": 35512.21, + "probability": 0.9707 + }, + { + "start": 35512.45, + "end": 35515.25, + "probability": 0.985 + }, + { + "start": 35515.57, + "end": 35518.51, + "probability": 0.9932 + }, + { + "start": 35519.69, + "end": 35521.07, + "probability": 0.7495 + }, + { + "start": 35521.85, + "end": 35522.97, + "probability": 0.9945 + }, + { + "start": 35524.25, + "end": 35525.09, + "probability": 0.7405 + }, + { + "start": 35525.81, + "end": 35526.42, + "probability": 0.9907 + }, + { + "start": 35527.21, + "end": 35528.19, + "probability": 0.9745 + }, + { + "start": 35529.95, + "end": 35530.55, + "probability": 0.8216 + }, + { + "start": 35531.95, + "end": 35534.87, + "probability": 0.7696 + }, + { + "start": 35535.95, + "end": 35539.21, + "probability": 0.852 + }, + { + "start": 35539.81, + "end": 35540.77, + "probability": 0.9182 + }, + { + "start": 35541.45, + "end": 35543.15, + "probability": 0.8373 + }, + { + "start": 35543.83, + "end": 35544.19, + "probability": 0.8274 + }, + { + "start": 35545.23, + "end": 35546.19, + "probability": 0.9403 + }, + { + "start": 35548.25, + "end": 35548.49, + "probability": 0.798 + }, + { + "start": 35550.15, + "end": 35554.13, + "probability": 0.9767 + }, + { + "start": 35555.11, + "end": 35559.23, + "probability": 0.9892 + }, + { + "start": 35559.79, + "end": 35563.21, + "probability": 0.9822 + }, + { + "start": 35564.15, + "end": 35567.33, + "probability": 0.2228 + }, + { + "start": 35567.33, + "end": 35569.57, + "probability": 0.8451 + }, + { + "start": 35570.29, + "end": 35573.95, + "probability": 0.9991 + }, + { + "start": 35574.83, + "end": 35578.31, + "probability": 0.9425 + }, + { + "start": 35578.95, + "end": 35579.81, + "probability": 0.8975 + }, + { + "start": 35580.41, + "end": 35582.05, + "probability": 0.8416 + }, + { + "start": 35582.13, + "end": 35584.21, + "probability": 0.9956 + }, + { + "start": 35585.05, + "end": 35585.97, + "probability": 0.6481 + }, + { + "start": 35586.77, + "end": 35588.43, + "probability": 0.7404 + }, + { + "start": 35588.49, + "end": 35589.75, + "probability": 0.7698 + }, + { + "start": 35590.65, + "end": 35591.73, + "probability": 0.9741 + }, + { + "start": 35593.49, + "end": 35594.01, + "probability": 0.3186 + }, + { + "start": 35594.01, + "end": 35597.27, + "probability": 0.9901 + }, + { + "start": 35598.53, + "end": 35598.83, + "probability": 0.5553 + }, + { + "start": 35598.91, + "end": 35599.63, + "probability": 0.4185 + }, + { + "start": 35600.81, + "end": 35602.0, + "probability": 0.7319 + }, + { + "start": 35603.17, + "end": 35604.09, + "probability": 0.9214 + }, + { + "start": 35632.47, + "end": 35632.47, + "probability": 0.1974 + }, + { + "start": 35632.47, + "end": 35634.77, + "probability": 0.3874 + }, + { + "start": 35635.81, + "end": 35641.81, + "probability": 0.9364 + }, + { + "start": 35642.39, + "end": 35642.91, + "probability": 0.9821 + }, + { + "start": 35643.59, + "end": 35645.13, + "probability": 0.9711 + }, + { + "start": 35649.83, + "end": 35650.27, + "probability": 0.718 + }, + { + "start": 35651.31, + "end": 35652.41, + "probability": 0.2731 + }, + { + "start": 35653.05, + "end": 35654.63, + "probability": 0.9915 + }, + { + "start": 35655.77, + "end": 35657.29, + "probability": 0.5512 + }, + { + "start": 35662.81, + "end": 35662.81, + "probability": 0.2774 + }, + { + "start": 35662.81, + "end": 35664.96, + "probability": 0.5587 + }, + { + "start": 35667.49, + "end": 35669.65, + "probability": 0.4159 + }, + { + "start": 35671.71, + "end": 35672.45, + "probability": 0.2282 + }, + { + "start": 35674.51, + "end": 35675.47, + "probability": 0.7051 + }, + { + "start": 35675.65, + "end": 35676.93, + "probability": 0.5168 + }, + { + "start": 35677.25, + "end": 35678.61, + "probability": 0.6342 + }, + { + "start": 35678.69, + "end": 35678.91, + "probability": 0.3999 + }, + { + "start": 35678.91, + "end": 35680.11, + "probability": 0.7213 + }, + { + "start": 35681.53, + "end": 35683.85, + "probability": 0.8677 + }, + { + "start": 35686.03, + "end": 35686.73, + "probability": 0.7527 + }, + { + "start": 35687.31, + "end": 35687.51, + "probability": 0.86 + }, + { + "start": 35692.33, + "end": 35694.33, + "probability": 0.8249 + }, + { + "start": 35695.81, + "end": 35699.63, + "probability": 0.9747 + }, + { + "start": 35700.35, + "end": 35702.99, + "probability": 0.9799 + }, + { + "start": 35704.73, + "end": 35705.41, + "probability": 0.8096 + }, + { + "start": 35705.57, + "end": 35707.31, + "probability": 0.5789 + }, + { + "start": 35707.45, + "end": 35707.89, + "probability": 0.9788 + }, + { + "start": 35708.97, + "end": 35711.45, + "probability": 0.9385 + }, + { + "start": 35712.93, + "end": 35714.69, + "probability": 0.7818 + }, + { + "start": 35716.11, + "end": 35717.07, + "probability": 0.808 + }, + { + "start": 35718.19, + "end": 35719.13, + "probability": 0.9728 + }, + { + "start": 35719.73, + "end": 35720.17, + "probability": 0.5207 + }, + { + "start": 35720.45, + "end": 35721.63, + "probability": 0.978 + }, + { + "start": 35722.39, + "end": 35723.07, + "probability": 0.9399 + }, + { + "start": 35725.23, + "end": 35725.81, + "probability": 0.7259 + }, + { + "start": 35727.11, + "end": 35727.31, + "probability": 0.7423 + }, + { + "start": 35727.75, + "end": 35728.83, + "probability": 0.9543 + }, + { + "start": 35729.35, + "end": 35729.95, + "probability": 0.9256 + }, + { + "start": 35730.01, + "end": 35737.81, + "probability": 0.9362 + }, + { + "start": 35737.85, + "end": 35738.7, + "probability": 0.9731 + }, + { + "start": 35739.21, + "end": 35740.39, + "probability": 0.7446 + }, + { + "start": 35741.19, + "end": 35743.63, + "probability": 0.972 + }, + { + "start": 35743.71, + "end": 35744.15, + "probability": 0.9194 + }, + { + "start": 35745.37, + "end": 35749.05, + "probability": 0.8701 + }, + { + "start": 35749.73, + "end": 35752.35, + "probability": 0.995 + }, + { + "start": 35754.94, + "end": 35756.45, + "probability": 0.9006 + }, + { + "start": 35756.49, + "end": 35760.23, + "probability": 0.9884 + }, + { + "start": 35761.09, + "end": 35763.31, + "probability": 0.9897 + }, + { + "start": 35764.45, + "end": 35767.03, + "probability": 0.7755 + }, + { + "start": 35768.41, + "end": 35770.17, + "probability": 0.9991 + }, + { + "start": 35771.37, + "end": 35775.61, + "probability": 0.9163 + }, + { + "start": 35776.17, + "end": 35778.33, + "probability": 0.9932 + }, + { + "start": 35779.29, + "end": 35780.65, + "probability": 0.9875 + }, + { + "start": 35781.21, + "end": 35782.55, + "probability": 0.9819 + }, + { + "start": 35783.15, + "end": 35786.07, + "probability": 0.933 + }, + { + "start": 35786.67, + "end": 35789.95, + "probability": 0.8081 + }, + { + "start": 35790.41, + "end": 35792.21, + "probability": 0.9011 + }, + { + "start": 35793.63, + "end": 35795.43, + "probability": 0.8809 + }, + { + "start": 35796.09, + "end": 35798.43, + "probability": 0.9171 + }, + { + "start": 35799.05, + "end": 35800.41, + "probability": 0.9655 + }, + { + "start": 35800.77, + "end": 35801.77, + "probability": 0.9917 + }, + { + "start": 35802.81, + "end": 35803.89, + "probability": 0.962 + }, + { + "start": 35804.97, + "end": 35807.97, + "probability": 0.9966 + }, + { + "start": 35808.73, + "end": 35811.03, + "probability": 0.8932 + }, + { + "start": 35812.63, + "end": 35814.86, + "probability": 0.9506 + }, + { + "start": 35815.77, + "end": 35816.77, + "probability": 0.736 + }, + { + "start": 35817.25, + "end": 35818.03, + "probability": 0.8374 + }, + { + "start": 35818.47, + "end": 35820.95, + "probability": 0.8231 + }, + { + "start": 35820.95, + "end": 35824.17, + "probability": 0.8078 + }, + { + "start": 35824.83, + "end": 35827.91, + "probability": 0.6785 + }, + { + "start": 35828.79, + "end": 35829.47, + "probability": 0.9985 + }, + { + "start": 35829.57, + "end": 35830.08, + "probability": 0.5183 + }, + { + "start": 35831.37, + "end": 35832.73, + "probability": 0.7199 + }, + { + "start": 35832.85, + "end": 35835.16, + "probability": 0.9353 + }, + { + "start": 35836.19, + "end": 35840.37, + "probability": 0.9746 + }, + { + "start": 35840.79, + "end": 35843.85, + "probability": 0.8038 + }, + { + "start": 35844.15, + "end": 35846.67, + "probability": 0.6314 + }, + { + "start": 35847.27, + "end": 35851.15, + "probability": 0.8847 + }, + { + "start": 35852.05, + "end": 35853.71, + "probability": 0.9585 + }, + { + "start": 35854.89, + "end": 35858.75, + "probability": 0.9897 + }, + { + "start": 35859.25, + "end": 35860.01, + "probability": 0.6682 + }, + { + "start": 35862.48, + "end": 35864.69, + "probability": 0.7641 + }, + { + "start": 35865.03, + "end": 35866.36, + "probability": 0.9727 + }, + { + "start": 35867.11, + "end": 35869.07, + "probability": 0.9954 + }, + { + "start": 35869.77, + "end": 35870.71, + "probability": 0.596 + }, + { + "start": 35870.85, + "end": 35871.67, + "probability": 0.9264 + }, + { + "start": 35872.23, + "end": 35873.37, + "probability": 0.95 + }, + { + "start": 35875.55, + "end": 35877.53, + "probability": 0.9158 + }, + { + "start": 35878.01, + "end": 35879.79, + "probability": 0.9194 + }, + { + "start": 35880.45, + "end": 35882.35, + "probability": 0.9902 + }, + { + "start": 35882.81, + "end": 35884.65, + "probability": 0.9451 + }, + { + "start": 35884.77, + "end": 35885.09, + "probability": 0.9862 + }, + { + "start": 35886.45, + "end": 35888.95, + "probability": 0.9904 + }, + { + "start": 35889.57, + "end": 35890.69, + "probability": 0.7616 + }, + { + "start": 35891.31, + "end": 35894.39, + "probability": 0.8167 + }, + { + "start": 35895.55, + "end": 35899.25, + "probability": 0.9952 + }, + { + "start": 35901.25, + "end": 35903.91, + "probability": 0.9811 + }, + { + "start": 35904.51, + "end": 35906.79, + "probability": 0.9888 + }, + { + "start": 35907.11, + "end": 35909.32, + "probability": 0.6813 + }, + { + "start": 35910.13, + "end": 35912.49, + "probability": 0.9784 + }, + { + "start": 35914.45, + "end": 35916.43, + "probability": 0.9904 + }, + { + "start": 35916.67, + "end": 35919.53, + "probability": 0.9915 + }, + { + "start": 35921.01, + "end": 35925.21, + "probability": 0.9921 + }, + { + "start": 35925.75, + "end": 35927.29, + "probability": 0.9733 + }, + { + "start": 35928.17, + "end": 35929.77, + "probability": 0.695 + }, + { + "start": 35930.69, + "end": 35932.51, + "probability": 0.9274 + }, + { + "start": 35933.49, + "end": 35936.25, + "probability": 0.8101 + }, + { + "start": 35936.93, + "end": 35939.11, + "probability": 0.9753 + }, + { + "start": 35941.63, + "end": 35945.81, + "probability": 0.822 + }, + { + "start": 35946.91, + "end": 35950.19, + "probability": 0.9715 + }, + { + "start": 35950.89, + "end": 35951.81, + "probability": 0.9584 + }, + { + "start": 35952.77, + "end": 35954.89, + "probability": 0.9725 + }, + { + "start": 35956.09, + "end": 35957.79, + "probability": 0.7777 + }, + { + "start": 35958.23, + "end": 35960.45, + "probability": 0.939 + }, + { + "start": 35961.51, + "end": 35964.89, + "probability": 0.9912 + }, + { + "start": 35964.89, + "end": 35968.65, + "probability": 0.9461 + }, + { + "start": 35968.99, + "end": 35970.93, + "probability": 0.7759 + }, + { + "start": 35971.09, + "end": 35971.83, + "probability": 0.5394 + }, + { + "start": 35972.39, + "end": 35973.31, + "probability": 0.7992 + }, + { + "start": 35973.91, + "end": 35974.83, + "probability": 0.7435 + }, + { + "start": 35974.91, + "end": 35975.81, + "probability": 0.9233 + }, + { + "start": 35976.33, + "end": 35978.07, + "probability": 0.8652 + }, + { + "start": 35978.19, + "end": 35978.93, + "probability": 0.8844 + }, + { + "start": 35978.95, + "end": 35979.63, + "probability": 0.9632 + }, + { + "start": 35979.67, + "end": 35981.27, + "probability": 0.9788 + }, + { + "start": 35982.73, + "end": 35983.14, + "probability": 0.7593 + }, + { + "start": 35983.43, + "end": 35986.59, + "probability": 0.9301 + }, + { + "start": 35989.07, + "end": 35992.27, + "probability": 0.9537 + }, + { + "start": 35992.33, + "end": 35994.47, + "probability": 0.9414 + }, + { + "start": 35994.61, + "end": 35994.97, + "probability": 0.3607 + }, + { + "start": 35995.75, + "end": 35996.83, + "probability": 0.8993 + }, + { + "start": 35996.95, + "end": 35999.1, + "probability": 0.6807 + }, + { + "start": 35999.53, + "end": 36000.93, + "probability": 0.5703 + }, + { + "start": 36001.31, + "end": 36003.4, + "probability": 0.8904 + }, + { + "start": 36004.29, + "end": 36005.53, + "probability": 0.6403 + }, + { + "start": 36006.23, + "end": 36006.97, + "probability": 0.9441 + }, + { + "start": 36007.57, + "end": 36011.39, + "probability": 0.8712 + }, + { + "start": 36011.67, + "end": 36012.49, + "probability": 0.8176 + }, + { + "start": 36012.91, + "end": 36013.41, + "probability": 0.3702 + }, + { + "start": 36014.25, + "end": 36016.31, + "probability": 0.9983 + }, + { + "start": 36017.01, + "end": 36017.45, + "probability": 0.7545 + }, + { + "start": 36018.21, + "end": 36021.71, + "probability": 0.9677 + }, + { + "start": 36022.51, + "end": 36023.87, + "probability": 0.8005 + }, + { + "start": 36025.71, + "end": 36026.61, + "probability": 0.9927 + }, + { + "start": 36028.51, + "end": 36030.91, + "probability": 0.8158 + }, + { + "start": 36031.85, + "end": 36035.39, + "probability": 0.7857 + }, + { + "start": 36035.89, + "end": 36036.59, + "probability": 0.9539 + }, + { + "start": 36037.05, + "end": 36037.63, + "probability": 0.8912 + }, + { + "start": 36037.79, + "end": 36038.69, + "probability": 0.6534 + }, + { + "start": 36038.95, + "end": 36040.66, + "probability": 0.9805 + }, + { + "start": 36040.85, + "end": 36041.6, + "probability": 0.8726 + }, + { + "start": 36041.99, + "end": 36042.87, + "probability": 0.9023 + }, + { + "start": 36042.91, + "end": 36044.95, + "probability": 0.9777 + }, + { + "start": 36045.63, + "end": 36046.73, + "probability": 0.9842 + }, + { + "start": 36047.21, + "end": 36048.69, + "probability": 0.9834 + }, + { + "start": 36049.19, + "end": 36049.51, + "probability": 0.7167 + }, + { + "start": 36050.23, + "end": 36050.65, + "probability": 0.8115 + }, + { + "start": 36051.19, + "end": 36052.55, + "probability": 0.8424 + }, + { + "start": 36053.17, + "end": 36054.81, + "probability": 0.8193 + }, + { + "start": 36055.19, + "end": 36055.53, + "probability": 0.5834 + }, + { + "start": 36055.65, + "end": 36056.65, + "probability": 0.5998 + }, + { + "start": 36056.99, + "end": 36057.75, + "probability": 0.4914 + }, + { + "start": 36057.89, + "end": 36058.37, + "probability": 0.7429 + }, + { + "start": 36058.49, + "end": 36059.11, + "probability": 0.6434 + }, + { + "start": 36059.19, + "end": 36059.67, + "probability": 0.9442 + }, + { + "start": 36060.01, + "end": 36061.41, + "probability": 0.8875 + }, + { + "start": 36062.31, + "end": 36063.01, + "probability": 0.709 + }, + { + "start": 36063.71, + "end": 36065.09, + "probability": 0.8465 + }, + { + "start": 36067.67, + "end": 36069.37, + "probability": 0.9156 + }, + { + "start": 36070.41, + "end": 36073.07, + "probability": 0.9609 + }, + { + "start": 36073.23, + "end": 36075.47, + "probability": 0.7551 + }, + { + "start": 36077.53, + "end": 36080.75, + "probability": 0.8769 + }, + { + "start": 36081.43, + "end": 36085.29, + "probability": 0.9425 + }, + { + "start": 36087.33, + "end": 36090.51, + "probability": 0.9493 + }, + { + "start": 36090.97, + "end": 36092.83, + "probability": 0.4602 + }, + { + "start": 36092.93, + "end": 36094.09, + "probability": 0.6103 + }, + { + "start": 36094.41, + "end": 36096.65, + "probability": 0.9738 + }, + { + "start": 36100.45, + "end": 36101.29, + "probability": 0.5898 + }, + { + "start": 36101.89, + "end": 36103.71, + "probability": 0.9382 + }, + { + "start": 36104.13, + "end": 36105.85, + "probability": 0.9733 + }, + { + "start": 36106.61, + "end": 36107.73, + "probability": 0.9973 + }, + { + "start": 36107.79, + "end": 36108.51, + "probability": 0.6594 + }, + { + "start": 36108.73, + "end": 36111.25, + "probability": 0.9657 + }, + { + "start": 36111.63, + "end": 36114.37, + "probability": 0.9696 + }, + { + "start": 36114.93, + "end": 36115.97, + "probability": 0.8495 + }, + { + "start": 36117.03, + "end": 36118.19, + "probability": 0.9985 + }, + { + "start": 36121.93, + "end": 36123.83, + "probability": 0.7564 + }, + { + "start": 36124.87, + "end": 36132.01, + "probability": 0.9878 + }, + { + "start": 36132.85, + "end": 36133.93, + "probability": 0.9717 + }, + { + "start": 36135.09, + "end": 36139.55, + "probability": 0.9839 + }, + { + "start": 36140.77, + "end": 36142.87, + "probability": 0.8471 + }, + { + "start": 36143.55, + "end": 36144.33, + "probability": 0.4951 + }, + { + "start": 36144.41, + "end": 36145.63, + "probability": 0.964 + }, + { + "start": 36148.07, + "end": 36149.87, + "probability": 0.8462 + }, + { + "start": 36149.95, + "end": 36153.43, + "probability": 0.9801 + }, + { + "start": 36154.31, + "end": 36154.75, + "probability": 0.4783 + }, + { + "start": 36155.95, + "end": 36156.61, + "probability": 0.9941 + }, + { + "start": 36157.11, + "end": 36159.13, + "probability": 0.9243 + }, + { + "start": 36159.93, + "end": 36161.78, + "probability": 0.9321 + }, + { + "start": 36162.53, + "end": 36165.85, + "probability": 0.9979 + }, + { + "start": 36165.85, + "end": 36168.35, + "probability": 0.998 + }, + { + "start": 36168.73, + "end": 36171.23, + "probability": 0.9915 + }, + { + "start": 36171.77, + "end": 36172.53, + "probability": 0.8696 + }, + { + "start": 36179.17, + "end": 36179.97, + "probability": 0.811 + }, + { + "start": 36180.05, + "end": 36184.69, + "probability": 0.9647 + }, + { + "start": 36186.03, + "end": 36188.61, + "probability": 0.9492 + }, + { + "start": 36189.09, + "end": 36189.63, + "probability": 0.5769 + }, + { + "start": 36189.77, + "end": 36190.17, + "probability": 0.5717 + }, + { + "start": 36190.21, + "end": 36191.25, + "probability": 0.8372 + }, + { + "start": 36191.63, + "end": 36195.49, + "probability": 0.951 + }, + { + "start": 36196.83, + "end": 36198.27, + "probability": 0.9922 + }, + { + "start": 36199.73, + "end": 36203.93, + "probability": 0.7467 + }, + { + "start": 36204.55, + "end": 36206.39, + "probability": 0.6336 + }, + { + "start": 36206.93, + "end": 36208.21, + "probability": 0.8247 + }, + { + "start": 36208.45, + "end": 36208.81, + "probability": 0.4985 + }, + { + "start": 36208.93, + "end": 36210.45, + "probability": 0.9439 + }, + { + "start": 36211.07, + "end": 36211.55, + "probability": 0.9697 + }, + { + "start": 36212.71, + "end": 36213.72, + "probability": 0.5769 + }, + { + "start": 36213.83, + "end": 36215.14, + "probability": 0.9486 + }, + { + "start": 36216.55, + "end": 36217.59, + "probability": 0.9811 + }, + { + "start": 36217.83, + "end": 36220.05, + "probability": 0.9746 + }, + { + "start": 36220.05, + "end": 36220.81, + "probability": 0.3065 + }, + { + "start": 36220.89, + "end": 36221.67, + "probability": 0.7496 + }, + { + "start": 36222.53, + "end": 36223.39, + "probability": 0.7687 + }, + { + "start": 36224.05, + "end": 36224.76, + "probability": 0.9565 + }, + { + "start": 36225.35, + "end": 36226.39, + "probability": 0.9956 + }, + { + "start": 36226.49, + "end": 36226.85, + "probability": 0.7173 + }, + { + "start": 36227.77, + "end": 36229.29, + "probability": 0.9608 + }, + { + "start": 36231.39, + "end": 36231.91, + "probability": 0.7501 + }, + { + "start": 36231.95, + "end": 36232.57, + "probability": 0.743 + }, + { + "start": 36232.75, + "end": 36234.85, + "probability": 0.9886 + }, + { + "start": 36235.47, + "end": 36237.43, + "probability": 0.9862 + }, + { + "start": 36237.47, + "end": 36239.69, + "probability": 0.9932 + }, + { + "start": 36240.21, + "end": 36244.41, + "probability": 0.9895 + }, + { + "start": 36245.13, + "end": 36247.09, + "probability": 0.9523 + }, + { + "start": 36248.37, + "end": 36248.69, + "probability": 0.7974 + }, + { + "start": 36248.83, + "end": 36249.49, + "probability": 0.6852 + }, + { + "start": 36249.65, + "end": 36251.67, + "probability": 0.8734 + }, + { + "start": 36252.33, + "end": 36256.83, + "probability": 0.8917 + }, + { + "start": 36258.05, + "end": 36260.09, + "probability": 0.9966 + }, + { + "start": 36261.45, + "end": 36263.59, + "probability": 0.9693 + }, + { + "start": 36263.87, + "end": 36268.21, + "probability": 0.9944 + }, + { + "start": 36269.69, + "end": 36271.69, + "probability": 0.9919 + }, + { + "start": 36271.77, + "end": 36272.95, + "probability": 0.5747 + }, + { + "start": 36273.99, + "end": 36274.95, + "probability": 0.9575 + }, + { + "start": 36275.37, + "end": 36276.67, + "probability": 0.9687 + }, + { + "start": 36276.75, + "end": 36278.11, + "probability": 0.8523 + }, + { + "start": 36278.15, + "end": 36279.27, + "probability": 0.9485 + }, + { + "start": 36281.27, + "end": 36282.83, + "probability": 0.9204 + }, + { + "start": 36283.65, + "end": 36286.31, + "probability": 0.9805 + }, + { + "start": 36286.49, + "end": 36288.03, + "probability": 0.8352 + }, + { + "start": 36288.03, + "end": 36291.51, + "probability": 0.9005 + }, + { + "start": 36292.03, + "end": 36296.17, + "probability": 0.9681 + }, + { + "start": 36296.17, + "end": 36300.57, + "probability": 0.9985 + }, + { + "start": 36300.71, + "end": 36303.21, + "probability": 0.8936 + }, + { + "start": 36303.73, + "end": 36305.07, + "probability": 0.9834 + }, + { + "start": 36305.45, + "end": 36306.04, + "probability": 0.972 + }, + { + "start": 36306.35, + "end": 36307.51, + "probability": 0.8517 + }, + { + "start": 36307.63, + "end": 36308.16, + "probability": 0.9822 + }, + { + "start": 36308.95, + "end": 36313.15, + "probability": 0.9209 + }, + { + "start": 36314.05, + "end": 36315.95, + "probability": 0.8602 + }, + { + "start": 36316.85, + "end": 36317.57, + "probability": 0.748 + }, + { + "start": 36319.01, + "end": 36320.03, + "probability": 0.7856 + }, + { + "start": 36320.41, + "end": 36320.87, + "probability": 0.5538 + }, + { + "start": 36321.07, + "end": 36323.35, + "probability": 0.9883 + }, + { + "start": 36323.63, + "end": 36323.93, + "probability": 0.9678 + }, + { + "start": 36325.91, + "end": 36328.67, + "probability": 0.7209 + }, + { + "start": 36328.67, + "end": 36328.97, + "probability": 0.3367 + }, + { + "start": 36329.11, + "end": 36329.76, + "probability": 0.7918 + }, + { + "start": 36330.45, + "end": 36331.87, + "probability": 0.3717 + }, + { + "start": 36331.87, + "end": 36332.55, + "probability": 0.0316 + }, + { + "start": 36332.55, + "end": 36332.89, + "probability": 0.524 + }, + { + "start": 36333.03, + "end": 36335.21, + "probability": 0.9736 + }, + { + "start": 36335.49, + "end": 36338.66, + "probability": 0.9753 + }, + { + "start": 36339.17, + "end": 36341.53, + "probability": 0.8372 + }, + { + "start": 36343.07, + "end": 36344.34, + "probability": 0.7898 + }, + { + "start": 36344.53, + "end": 36347.69, + "probability": 0.8226 + }, + { + "start": 36348.65, + "end": 36354.05, + "probability": 0.978 + }, + { + "start": 36354.47, + "end": 36356.01, + "probability": 0.986 + }, + { + "start": 36356.89, + "end": 36357.55, + "probability": 0.3965 + }, + { + "start": 36357.55, + "end": 36358.31, + "probability": 0.3428 + }, + { + "start": 36358.87, + "end": 36360.11, + "probability": 0.2896 + }, + { + "start": 36360.97, + "end": 36360.99, + "probability": 0.1509 + }, + { + "start": 36360.99, + "end": 36361.75, + "probability": 0.2704 + }, + { + "start": 36361.93, + "end": 36363.07, + "probability": 0.759 + }, + { + "start": 36363.13, + "end": 36363.53, + "probability": 0.6287 + }, + { + "start": 36363.61, + "end": 36365.89, + "probability": 0.9001 + }, + { + "start": 36366.01, + "end": 36367.85, + "probability": 0.7172 + }, + { + "start": 36368.49, + "end": 36370.55, + "probability": 0.9827 + }, + { + "start": 36371.55, + "end": 36372.15, + "probability": 0.5213 + }, + { + "start": 36372.89, + "end": 36376.75, + "probability": 0.5064 + }, + { + "start": 36384.97, + "end": 36387.01, + "probability": 0.5934 + }, + { + "start": 36387.93, + "end": 36389.59, + "probability": 0.9579 + }, + { + "start": 36389.63, + "end": 36390.33, + "probability": 0.6346 + }, + { + "start": 36392.25, + "end": 36392.79, + "probability": 0.8855 + }, + { + "start": 36394.31, + "end": 36395.43, + "probability": 0.86 + }, + { + "start": 36395.43, + "end": 36395.89, + "probability": 0.7436 + }, + { + "start": 36396.73, + "end": 36398.89, + "probability": 0.8912 + }, + { + "start": 36400.85, + "end": 36402.01, + "probability": 0.448 + }, + { + "start": 36402.01, + "end": 36404.33, + "probability": 0.7364 + }, + { + "start": 36404.39, + "end": 36406.91, + "probability": 0.7711 + }, + { + "start": 36407.25, + "end": 36410.15, + "probability": 0.8399 + }, + { + "start": 36410.15, + "end": 36412.53, + "probability": 0.9866 + }, + { + "start": 36412.53, + "end": 36414.87, + "probability": 0.9882 + }, + { + "start": 36417.89, + "end": 36420.89, + "probability": 0.8167 + }, + { + "start": 36420.97, + "end": 36423.19, + "probability": 0.9029 + }, + { + "start": 36423.73, + "end": 36424.77, + "probability": 0.6699 + }, + { + "start": 36424.91, + "end": 36426.05, + "probability": 0.8526 + }, + { + "start": 36426.95, + "end": 36430.31, + "probability": 0.9155 + }, + { + "start": 36430.79, + "end": 36432.77, + "probability": 0.8271 + }, + { + "start": 36432.77, + "end": 36436.75, + "probability": 0.9497 + }, + { + "start": 36438.99, + "end": 36440.23, + "probability": 0.9973 + }, + { + "start": 36440.65, + "end": 36442.45, + "probability": 0.5632 + }, + { + "start": 36442.53, + "end": 36446.57, + "probability": 0.98 + }, + { + "start": 36446.63, + "end": 36448.28, + "probability": 0.9872 + }, + { + "start": 36448.93, + "end": 36452.0, + "probability": 0.994 + }, + { + "start": 36452.45, + "end": 36455.39, + "probability": 0.9492 + }, + { + "start": 36455.39, + "end": 36457.75, + "probability": 0.9942 + }, + { + "start": 36459.17, + "end": 36461.58, + "probability": 0.7689 + }, + { + "start": 36464.27, + "end": 36465.13, + "probability": 0.6923 + }, + { + "start": 36465.29, + "end": 36467.99, + "probability": 0.9157 + }, + { + "start": 36467.99, + "end": 36470.87, + "probability": 0.7155 + }, + { + "start": 36471.67, + "end": 36472.95, + "probability": 0.7119 + }, + { + "start": 36473.63, + "end": 36475.63, + "probability": 0.8988 + }, + { + "start": 36476.63, + "end": 36477.99, + "probability": 0.5988 + }, + { + "start": 36479.03, + "end": 36482.41, + "probability": 0.8984 + }, + { + "start": 36483.15, + "end": 36483.51, + "probability": 0.5864 + }, + { + "start": 36483.61, + "end": 36483.96, + "probability": 0.9194 + }, + { + "start": 36484.13, + "end": 36484.43, + "probability": 0.5612 + }, + { + "start": 36484.43, + "end": 36488.41, + "probability": 0.9915 + }, + { + "start": 36489.31, + "end": 36489.94, + "probability": 0.92 + }, + { + "start": 36490.67, + "end": 36491.37, + "probability": 0.7031 + }, + { + "start": 36492.11, + "end": 36494.07, + "probability": 0.9989 + }, + { + "start": 36496.95, + "end": 36497.57, + "probability": 0.8975 + }, + { + "start": 36498.95, + "end": 36499.59, + "probability": 0.654 + }, + { + "start": 36500.19, + "end": 36500.93, + "probability": 0.8425 + }, + { + "start": 36502.89, + "end": 36505.47, + "probability": 0.8663 + }, + { + "start": 36506.41, + "end": 36506.63, + "probability": 0.1425 + }, + { + "start": 36506.65, + "end": 36507.35, + "probability": 0.965 + }, + { + "start": 36508.69, + "end": 36509.95, + "probability": 0.9517 + }, + { + "start": 36511.09, + "end": 36514.63, + "probability": 0.8266 + }, + { + "start": 36514.89, + "end": 36516.03, + "probability": 0.6877 + }, + { + "start": 36516.05, + "end": 36516.53, + "probability": 0.6472 + }, + { + "start": 36517.19, + "end": 36518.55, + "probability": 0.9764 + }, + { + "start": 36519.53, + "end": 36520.89, + "probability": 0.9564 + }, + { + "start": 36521.11, + "end": 36522.17, + "probability": 0.9547 + }, + { + "start": 36522.41, + "end": 36523.51, + "probability": 0.9564 + }, + { + "start": 36524.85, + "end": 36526.71, + "probability": 0.9965 + }, + { + "start": 36527.79, + "end": 36530.43, + "probability": 0.9893 + }, + { + "start": 36532.09, + "end": 36534.43, + "probability": 0.9893 + }, + { + "start": 36536.09, + "end": 36538.83, + "probability": 0.9933 + }, + { + "start": 36539.37, + "end": 36540.67, + "probability": 0.6743 + }, + { + "start": 36541.89, + "end": 36542.75, + "probability": 0.9902 + }, + { + "start": 36542.93, + "end": 36543.55, + "probability": 0.9849 + }, + { + "start": 36543.89, + "end": 36545.11, + "probability": 0.9771 + }, + { + "start": 36546.33, + "end": 36549.55, + "probability": 0.9946 + }, + { + "start": 36549.85, + "end": 36550.51, + "probability": 0.9094 + }, + { + "start": 36552.13, + "end": 36553.27, + "probability": 0.8921 + }, + { + "start": 36553.69, + "end": 36554.61, + "probability": 0.8519 + }, + { + "start": 36554.93, + "end": 36557.65, + "probability": 0.9563 + }, + { + "start": 36558.09, + "end": 36559.15, + "probability": 0.9842 + }, + { + "start": 36559.63, + "end": 36561.13, + "probability": 0.937 + }, + { + "start": 36561.47, + "end": 36563.41, + "probability": 0.5829 + }, + { + "start": 36563.41, + "end": 36563.65, + "probability": 0.2713 + }, + { + "start": 36564.55, + "end": 36565.91, + "probability": 0.8262 + }, + { + "start": 36566.29, + "end": 36567.33, + "probability": 0.9399 + }, + { + "start": 36567.55, + "end": 36569.59, + "probability": 0.934 + }, + { + "start": 36570.61, + "end": 36575.31, + "probability": 0.8165 + }, + { + "start": 36575.99, + "end": 36577.49, + "probability": 0.9834 + }, + { + "start": 36578.57, + "end": 36579.19, + "probability": 0.5073 + }, + { + "start": 36579.73, + "end": 36581.61, + "probability": 0.9006 + }, + { + "start": 36582.33, + "end": 36584.23, + "probability": 0.9773 + }, + { + "start": 36585.95, + "end": 36586.47, + "probability": 0.6262 + }, + { + "start": 36586.55, + "end": 36587.79, + "probability": 0.6067 + }, + { + "start": 36587.89, + "end": 36588.45, + "probability": 0.9427 + }, + { + "start": 36588.71, + "end": 36590.99, + "probability": 0.9934 + }, + { + "start": 36591.63, + "end": 36592.15, + "probability": 0.8712 + }, + { + "start": 36593.05, + "end": 36594.27, + "probability": 0.9977 + }, + { + "start": 36594.33, + "end": 36594.93, + "probability": 0.7367 + }, + { + "start": 36595.03, + "end": 36595.55, + "probability": 0.4469 + }, + { + "start": 36595.63, + "end": 36596.51, + "probability": 0.643 + }, + { + "start": 36597.93, + "end": 36598.19, + "probability": 0.8788 + }, + { + "start": 36599.85, + "end": 36601.45, + "probability": 0.9468 + }, + { + "start": 36602.13, + "end": 36602.45, + "probability": 0.8487 + }, + { + "start": 36603.07, + "end": 36604.39, + "probability": 0.9987 + }, + { + "start": 36605.09, + "end": 36607.75, + "probability": 0.8971 + }, + { + "start": 36608.75, + "end": 36610.89, + "probability": 0.985 + }, + { + "start": 36611.55, + "end": 36613.43, + "probability": 0.8558 + }, + { + "start": 36614.47, + "end": 36615.53, + "probability": 0.9577 + }, + { + "start": 36615.85, + "end": 36616.77, + "probability": 0.9471 + }, + { + "start": 36617.21, + "end": 36619.73, + "probability": 0.8913 + }, + { + "start": 36620.93, + "end": 36621.55, + "probability": 0.4724 + }, + { + "start": 36622.19, + "end": 36623.59, + "probability": 0.9707 + }, + { + "start": 36625.59, + "end": 36629.89, + "probability": 0.9859 + }, + { + "start": 36630.67, + "end": 36635.0, + "probability": 0.9985 + }, + { + "start": 36637.27, + "end": 36639.13, + "probability": 0.9949 + }, + { + "start": 36639.77, + "end": 36640.23, + "probability": 0.8623 + }, + { + "start": 36641.55, + "end": 36642.61, + "probability": 0.798 + }, + { + "start": 36644.41, + "end": 36645.57, + "probability": 0.9085 + }, + { + "start": 36646.31, + "end": 36648.63, + "probability": 0.952 + }, + { + "start": 36651.19, + "end": 36651.65, + "probability": 0.5299 + }, + { + "start": 36651.73, + "end": 36655.21, + "probability": 0.9856 + }, + { + "start": 36656.17, + "end": 36656.85, + "probability": 0.9327 + }, + { + "start": 36659.71, + "end": 36660.51, + "probability": 0.9141 + }, + { + "start": 36661.47, + "end": 36665.41, + "probability": 0.925 + }, + { + "start": 36666.83, + "end": 36668.87, + "probability": 0.9461 + }, + { + "start": 36668.99, + "end": 36671.43, + "probability": 0.8182 + }, + { + "start": 36671.59, + "end": 36673.43, + "probability": 0.9143 + }, + { + "start": 36674.95, + "end": 36676.49, + "probability": 0.9845 + }, + { + "start": 36676.97, + "end": 36677.55, + "probability": 0.7573 + }, + { + "start": 36678.05, + "end": 36678.61, + "probability": 0.7891 + }, + { + "start": 36678.65, + "end": 36679.68, + "probability": 0.9099 + }, + { + "start": 36680.79, + "end": 36681.55, + "probability": 0.9765 + }, + { + "start": 36683.01, + "end": 36686.13, + "probability": 0.9922 + }, + { + "start": 36686.93, + "end": 36687.57, + "probability": 0.3933 + }, + { + "start": 36689.19, + "end": 36691.45, + "probability": 0.9881 + }, + { + "start": 36691.57, + "end": 36692.47, + "probability": 0.9359 + }, + { + "start": 36692.97, + "end": 36694.53, + "probability": 0.9315 + }, + { + "start": 36696.21, + "end": 36700.63, + "probability": 0.9985 + }, + { + "start": 36701.93, + "end": 36702.55, + "probability": 0.8057 + }, + { + "start": 36702.61, + "end": 36706.21, + "probability": 0.9785 + }, + { + "start": 36707.75, + "end": 36708.39, + "probability": 0.834 + }, + { + "start": 36709.57, + "end": 36712.71, + "probability": 0.999 + }, + { + "start": 36713.41, + "end": 36715.71, + "probability": 0.9939 + }, + { + "start": 36715.71, + "end": 36717.83, + "probability": 0.9757 + }, + { + "start": 36718.43, + "end": 36720.43, + "probability": 0.9976 + }, + { + "start": 36720.81, + "end": 36722.83, + "probability": 0.9425 + }, + { + "start": 36722.91, + "end": 36723.37, + "probability": 0.8852 + }, + { + "start": 36723.51, + "end": 36723.85, + "probability": 0.2034 + }, + { + "start": 36724.15, + "end": 36726.79, + "probability": 0.8745 + }, + { + "start": 36727.39, + "end": 36731.57, + "probability": 0.9116 + }, + { + "start": 36732.35, + "end": 36734.53, + "probability": 0.983 + }, + { + "start": 36735.63, + "end": 36736.91, + "probability": 0.52 + }, + { + "start": 36737.37, + "end": 36738.87, + "probability": 0.6093 + }, + { + "start": 36738.97, + "end": 36742.43, + "probability": 0.3221 + }, + { + "start": 36742.47, + "end": 36743.95, + "probability": 0.5838 + }, + { + "start": 36744.93, + "end": 36745.97, + "probability": 0.5068 + }, + { + "start": 36746.71, + "end": 36747.21, + "probability": 0.3844 + }, + { + "start": 36747.21, + "end": 36747.39, + "probability": 0.7846 + }, + { + "start": 36767.71, + "end": 36767.71, + "probability": 0.1506 + }, + { + "start": 36767.71, + "end": 36768.59, + "probability": 0.195 + }, + { + "start": 36769.47, + "end": 36770.75, + "probability": 0.499 + }, + { + "start": 36771.57, + "end": 36777.53, + "probability": 0.9953 + }, + { + "start": 36780.79, + "end": 36782.25, + "probability": 0.2497 + }, + { + "start": 36782.83, + "end": 36784.13, + "probability": 0.7064 + }, + { + "start": 36784.87, + "end": 36787.33, + "probability": 0.8257 + }, + { + "start": 36788.49, + "end": 36789.33, + "probability": 0.2745 + }, + { + "start": 36790.77, + "end": 36791.35, + "probability": 0.8798 + }, + { + "start": 36791.87, + "end": 36792.07, + "probability": 0.7845 + }, + { + "start": 36809.93, + "end": 36810.37, + "probability": 0.5245 + }, + { + "start": 36811.07, + "end": 36813.23, + "probability": 0.8557 + }, + { + "start": 36813.91, + "end": 36818.03, + "probability": 0.8809 + }, + { + "start": 36818.09, + "end": 36819.63, + "probability": 0.9532 + }, + { + "start": 36821.31, + "end": 36823.17, + "probability": 0.9695 + }, + { + "start": 36823.75, + "end": 36826.73, + "probability": 0.9906 + }, + { + "start": 36828.17, + "end": 36833.75, + "probability": 0.9868 + }, + { + "start": 36834.65, + "end": 36835.89, + "probability": 0.8599 + }, + { + "start": 36837.13, + "end": 36840.77, + "probability": 0.9948 + }, + { + "start": 36842.63, + "end": 36844.23, + "probability": 0.988 + }, + { + "start": 36844.95, + "end": 36845.99, + "probability": 0.9246 + }, + { + "start": 36846.09, + "end": 36848.91, + "probability": 0.97 + }, + { + "start": 36848.97, + "end": 36849.53, + "probability": 0.9136 + }, + { + "start": 36851.17, + "end": 36853.93, + "probability": 0.9962 + }, + { + "start": 36854.07, + "end": 36856.17, + "probability": 0.7509 + }, + { + "start": 36856.95, + "end": 36859.67, + "probability": 0.9858 + }, + { + "start": 36860.41, + "end": 36861.53, + "probability": 0.6548 + }, + { + "start": 36862.19, + "end": 36862.69, + "probability": 0.7395 + }, + { + "start": 36863.39, + "end": 36864.01, + "probability": 0.0165 + }, + { + "start": 36866.49, + "end": 36867.49, + "probability": 0.8621 + }, + { + "start": 36868.45, + "end": 36868.86, + "probability": 0.6633 + }, + { + "start": 36869.33, + "end": 36871.87, + "probability": 0.6472 + }, + { + "start": 36872.65, + "end": 36874.41, + "probability": 0.3199 + }, + { + "start": 36874.57, + "end": 36874.57, + "probability": 0.601 + }, + { + "start": 36874.69, + "end": 36875.25, + "probability": 0.4426 + }, + { + "start": 36875.87, + "end": 36879.07, + "probability": 0.9973 + }, + { + "start": 36880.55, + "end": 36881.45, + "probability": 0.9528 + }, + { + "start": 36882.83, + "end": 36883.69, + "probability": 0.9414 + }, + { + "start": 36884.15, + "end": 36885.43, + "probability": 0.993 + }, + { + "start": 36885.63, + "end": 36889.45, + "probability": 0.9512 + }, + { + "start": 36890.35, + "end": 36892.47, + "probability": 0.946 + }, + { + "start": 36893.53, + "end": 36897.05, + "probability": 0.9685 + }, + { + "start": 36898.19, + "end": 36901.19, + "probability": 0.9698 + }, + { + "start": 36902.43, + "end": 36907.07, + "probability": 0.9976 + }, + { + "start": 36907.85, + "end": 36911.63, + "probability": 0.996 + }, + { + "start": 36911.99, + "end": 36913.21, + "probability": 0.9195 + }, + { + "start": 36917.67, + "end": 36919.17, + "probability": 0.7887 + }, + { + "start": 36919.57, + "end": 36923.15, + "probability": 0.9917 + }, + { + "start": 36923.81, + "end": 36925.17, + "probability": 0.3729 + }, + { + "start": 36925.77, + "end": 36927.52, + "probability": 0.9187 + }, + { + "start": 36927.67, + "end": 36927.87, + "probability": 0.4717 + }, + { + "start": 36927.89, + "end": 36929.11, + "probability": 0.3222 + }, + { + "start": 36929.35, + "end": 36930.21, + "probability": 0.7527 + }, + { + "start": 36930.49, + "end": 36933.1, + "probability": 0.9507 + }, + { + "start": 36933.91, + "end": 36935.51, + "probability": 0.9932 + }, + { + "start": 36936.09, + "end": 36937.35, + "probability": 0.8179 + }, + { + "start": 36938.11, + "end": 36941.81, + "probability": 0.9672 + }, + { + "start": 36941.81, + "end": 36941.97, + "probability": 0.5034 + }, + { + "start": 36942.33, + "end": 36945.92, + "probability": 0.9878 + }, + { + "start": 36946.27, + "end": 36948.07, + "probability": 0.9849 + }, + { + "start": 36948.93, + "end": 36951.15, + "probability": 0.9763 + }, + { + "start": 36951.55, + "end": 36952.57, + "probability": 0.8565 + }, + { + "start": 36953.01, + "end": 36953.17, + "probability": 0.5764 + }, + { + "start": 36953.83, + "end": 36956.1, + "probability": 0.9885 + }, + { + "start": 36957.21, + "end": 36959.33, + "probability": 0.7845 + }, + { + "start": 36959.73, + "end": 36961.69, + "probability": 0.8345 + }, + { + "start": 36962.23, + "end": 36964.09, + "probability": 0.9734 + }, + { + "start": 36964.67, + "end": 36965.87, + "probability": 0.6014 + }, + { + "start": 36965.93, + "end": 36967.09, + "probability": 0.6558 + }, + { + "start": 36967.11, + "end": 36968.39, + "probability": 0.8071 + }, + { + "start": 36968.75, + "end": 36969.09, + "probability": 0.4724 + }, + { + "start": 36969.47, + "end": 36969.85, + "probability": 0.6465 + }, + { + "start": 36969.93, + "end": 36970.21, + "probability": 0.5715 + }, + { + "start": 36970.31, + "end": 36971.08, + "probability": 0.9434 + }, + { + "start": 36971.15, + "end": 36972.05, + "probability": 0.9108 + }, + { + "start": 36972.31, + "end": 36975.89, + "probability": 0.9165 + }, + { + "start": 36976.09, + "end": 36979.25, + "probability": 0.5895 + }, + { + "start": 36981.15, + "end": 36984.25, + "probability": 0.9285 + }, + { + "start": 36984.37, + "end": 36986.81, + "probability": 0.9961 + }, + { + "start": 36987.27, + "end": 36990.03, + "probability": 0.9946 + }, + { + "start": 36990.03, + "end": 36992.85, + "probability": 0.9945 + }, + { + "start": 36993.03, + "end": 36993.33, + "probability": 0.5872 + }, + { + "start": 36993.45, + "end": 36993.91, + "probability": 0.7548 + }, + { + "start": 36994.59, + "end": 36996.25, + "probability": 0.7241 + }, + { + "start": 36996.31, + "end": 36998.19, + "probability": 0.8647 + }, + { + "start": 36999.13, + "end": 37000.89, + "probability": 0.9341 + }, + { + "start": 37001.69, + "end": 37003.55, + "probability": 0.9614 + }, + { + "start": 37003.55, + "end": 37007.73, + "probability": 0.9586 + }, + { + "start": 37008.17, + "end": 37010.83, + "probability": 0.9774 + }, + { + "start": 37011.49, + "end": 37016.17, + "probability": 0.8862 + }, + { + "start": 37016.49, + "end": 37017.12, + "probability": 0.932 + }, + { + "start": 37017.97, + "end": 37018.97, + "probability": 0.9172 + }, + { + "start": 37019.65, + "end": 37021.84, + "probability": 0.9219 + }, + { + "start": 37022.27, + "end": 37024.73, + "probability": 0.726 + }, + { + "start": 37025.23, + "end": 37026.07, + "probability": 0.9523 + }, + { + "start": 37026.17, + "end": 37027.77, + "probability": 0.9842 + }, + { + "start": 37028.51, + "end": 37030.01, + "probability": 0.9412 + }, + { + "start": 37030.81, + "end": 37032.3, + "probability": 0.9862 + }, + { + "start": 37033.03, + "end": 37036.33, + "probability": 0.9727 + }, + { + "start": 37036.69, + "end": 37039.15, + "probability": 0.9963 + }, + { + "start": 37039.87, + "end": 37040.39, + "probability": 0.7396 + }, + { + "start": 37040.59, + "end": 37045.27, + "probability": 0.9812 + }, + { + "start": 37045.67, + "end": 37047.03, + "probability": 0.9885 + }, + { + "start": 37047.97, + "end": 37052.45, + "probability": 0.9894 + }, + { + "start": 37052.67, + "end": 37053.73, + "probability": 0.982 + }, + { + "start": 37054.19, + "end": 37054.92, + "probability": 0.811 + }, + { + "start": 37055.01, + "end": 37056.01, + "probability": 0.9849 + }, + { + "start": 37056.97, + "end": 37060.13, + "probability": 0.9336 + }, + { + "start": 37060.79, + "end": 37065.89, + "probability": 0.9833 + }, + { + "start": 37066.43, + "end": 37067.03, + "probability": 0.99 + }, + { + "start": 37067.85, + "end": 37070.15, + "probability": 0.7978 + }, + { + "start": 37071.21, + "end": 37073.07, + "probability": 0.9609 + }, + { + "start": 37073.79, + "end": 37075.05, + "probability": 0.9512 + }, + { + "start": 37075.79, + "end": 37076.89, + "probability": 0.9646 + }, + { + "start": 37076.93, + "end": 37078.09, + "probability": 0.9684 + }, + { + "start": 37078.17, + "end": 37079.79, + "probability": 0.9507 + }, + { + "start": 37081.31, + "end": 37085.23, + "probability": 0.9531 + }, + { + "start": 37085.45, + "end": 37090.69, + "probability": 0.9528 + }, + { + "start": 37093.13, + "end": 37096.09, + "probability": 0.9691 + }, + { + "start": 37097.05, + "end": 37097.95, + "probability": 0.9221 + }, + { + "start": 37098.13, + "end": 37101.27, + "probability": 0.9577 + }, + { + "start": 37101.47, + "end": 37102.37, + "probability": 0.7597 + }, + { + "start": 37102.81, + "end": 37103.67, + "probability": 0.5144 + }, + { + "start": 37103.85, + "end": 37104.59, + "probability": 0.7273 + }, + { + "start": 37105.15, + "end": 37106.37, + "probability": 0.8287 + }, + { + "start": 37107.03, + "end": 37109.51, + "probability": 0.9247 + }, + { + "start": 37109.67, + "end": 37109.99, + "probability": 0.8047 + }, + { + "start": 37110.07, + "end": 37112.61, + "probability": 0.9556 + }, + { + "start": 37115.85, + "end": 37116.49, + "probability": 0.2411 + }, + { + "start": 37116.49, + "end": 37119.65, + "probability": 0.8154 + }, + { + "start": 37120.15, + "end": 37121.75, + "probability": 0.9727 + }, + { + "start": 37122.35, + "end": 37123.58, + "probability": 0.7023 + }, + { + "start": 37124.71, + "end": 37127.05, + "probability": 0.834 + }, + { + "start": 37127.65, + "end": 37129.41, + "probability": 0.8677 + }, + { + "start": 37131.41, + "end": 37132.91, + "probability": 0.7053 + }, + { + "start": 37133.01, + "end": 37135.99, + "probability": 0.989 + }, + { + "start": 37136.73, + "end": 37139.35, + "probability": 0.9733 + }, + { + "start": 37140.11, + "end": 37141.07, + "probability": 0.9072 + }, + { + "start": 37141.65, + "end": 37144.75, + "probability": 0.9967 + }, + { + "start": 37145.35, + "end": 37147.61, + "probability": 0.936 + }, + { + "start": 37147.67, + "end": 37149.57, + "probability": 0.7572 + }, + { + "start": 37150.11, + "end": 37151.13, + "probability": 0.8304 + }, + { + "start": 37151.35, + "end": 37153.65, + "probability": 0.9865 + }, + { + "start": 37153.65, + "end": 37156.75, + "probability": 0.9899 + }, + { + "start": 37157.05, + "end": 37158.15, + "probability": 0.9219 + }, + { + "start": 37159.13, + "end": 37160.73, + "probability": 0.8397 + }, + { + "start": 37161.33, + "end": 37163.91, + "probability": 0.9658 + }, + { + "start": 37164.51, + "end": 37165.41, + "probability": 0.7504 + }, + { + "start": 37165.43, + "end": 37166.71, + "probability": 0.8194 + }, + { + "start": 37168.15, + "end": 37168.55, + "probability": 0.8186 + }, + { + "start": 37170.57, + "end": 37173.15, + "probability": 0.9922 + }, + { + "start": 37173.77, + "end": 37177.25, + "probability": 0.9977 + }, + { + "start": 37177.36, + "end": 37179.59, + "probability": 0.979 + }, + { + "start": 37179.65, + "end": 37180.37, + "probability": 0.9696 + }, + { + "start": 37181.99, + "end": 37183.09, + "probability": 0.7461 + }, + { + "start": 37183.27, + "end": 37183.99, + "probability": 0.9862 + }, + { + "start": 37184.61, + "end": 37185.42, + "probability": 0.9415 + }, + { + "start": 37186.89, + "end": 37188.23, + "probability": 0.9531 + }, + { + "start": 37188.45, + "end": 37192.53, + "probability": 0.9683 + }, + { + "start": 37192.67, + "end": 37194.01, + "probability": 0.6182 + }, + { + "start": 37196.73, + "end": 37196.97, + "probability": 0.3454 + }, + { + "start": 37197.09, + "end": 37197.45, + "probability": 0.144 + }, + { + "start": 37197.89, + "end": 37199.83, + "probability": 0.6977 + }, + { + "start": 37199.87, + "end": 37202.99, + "probability": 0.7036 + }, + { + "start": 37203.05, + "end": 37204.67, + "probability": 0.98 + }, + { + "start": 37205.39, + "end": 37206.21, + "probability": 0.6722 + }, + { + "start": 37206.89, + "end": 37210.73, + "probability": 0.6931 + }, + { + "start": 37212.11, + "end": 37214.41, + "probability": 0.8445 + }, + { + "start": 37219.27, + "end": 37221.55, + "probability": 0.6764 + }, + { + "start": 37222.87, + "end": 37225.59, + "probability": 0.9008 + }, + { + "start": 37227.33, + "end": 37228.03, + "probability": 0.8729 + }, + { + "start": 37228.89, + "end": 37231.76, + "probability": 0.9603 + }, + { + "start": 37233.49, + "end": 37240.49, + "probability": 0.5542 + }, + { + "start": 37240.71, + "end": 37240.71, + "probability": 0.3899 + }, + { + "start": 37240.71, + "end": 37241.09, + "probability": 0.199 + }, + { + "start": 37241.95, + "end": 37244.47, + "probability": 0.5954 + }, + { + "start": 37244.47, + "end": 37247.41, + "probability": 0.9947 + }, + { + "start": 37248.15, + "end": 37248.35, + "probability": 0.2252 + }, + { + "start": 37248.35, + "end": 37251.13, + "probability": 0.7915 + }, + { + "start": 37251.27, + "end": 37252.83, + "probability": 0.8773 + }, + { + "start": 37253.25, + "end": 37253.51, + "probability": 0.3776 + }, + { + "start": 37254.47, + "end": 37258.61, + "probability": 0.8976 + }, + { + "start": 37258.61, + "end": 37261.95, + "probability": 0.9323 + }, + { + "start": 37263.41, + "end": 37265.85, + "probability": 0.749 + }, + { + "start": 37266.37, + "end": 37267.03, + "probability": 0.5268 + }, + { + "start": 37269.55, + "end": 37270.25, + "probability": 0.6998 + }, + { + "start": 37270.31, + "end": 37272.05, + "probability": 0.6412 + }, + { + "start": 37272.25, + "end": 37275.57, + "probability": 0.9195 + }, + { + "start": 37275.85, + "end": 37279.95, + "probability": 0.9956 + }, + { + "start": 37282.11, + "end": 37282.95, + "probability": 0.7106 + }, + { + "start": 37284.11, + "end": 37285.21, + "probability": 0.9015 + }, + { + "start": 37285.41, + "end": 37286.89, + "probability": 0.8736 + }, + { + "start": 37287.13, + "end": 37290.17, + "probability": 0.9637 + }, + { + "start": 37291.17, + "end": 37294.81, + "probability": 0.9225 + }, + { + "start": 37295.69, + "end": 37297.35, + "probability": 0.9508 + }, + { + "start": 37297.45, + "end": 37298.55, + "probability": 0.4817 + }, + { + "start": 37298.67, + "end": 37299.39, + "probability": 0.9573 + }, + { + "start": 37299.47, + "end": 37299.93, + "probability": 0.9224 + }, + { + "start": 37300.09, + "end": 37303.35, + "probability": 0.8647 + }, + { + "start": 37304.77, + "end": 37305.25, + "probability": 0.5584 + }, + { + "start": 37307.85, + "end": 37310.59, + "probability": 0.9678 + }, + { + "start": 37311.55, + "end": 37313.01, + "probability": 0.9911 + }, + { + "start": 37314.17, + "end": 37314.61, + "probability": 0.9598 + }, + { + "start": 37315.27, + "end": 37317.95, + "probability": 0.9692 + }, + { + "start": 37318.55, + "end": 37320.79, + "probability": 0.8911 + }, + { + "start": 37321.19, + "end": 37322.65, + "probability": 0.8518 + }, + { + "start": 37323.41, + "end": 37325.67, + "probability": 0.8826 + }, + { + "start": 37326.55, + "end": 37326.67, + "probability": 0.4717 + }, + { + "start": 37327.41, + "end": 37328.11, + "probability": 0.531 + }, + { + "start": 37329.21, + "end": 37333.95, + "probability": 0.9836 + }, + { + "start": 37334.91, + "end": 37337.35, + "probability": 0.9966 + }, + { + "start": 37338.07, + "end": 37339.85, + "probability": 0.98 + }, + { + "start": 37340.87, + "end": 37342.57, + "probability": 0.9253 + }, + { + "start": 37342.59, + "end": 37343.39, + "probability": 0.7414 + }, + { + "start": 37343.39, + "end": 37345.31, + "probability": 0.9926 + }, + { + "start": 37346.93, + "end": 37347.81, + "probability": 0.726 + }, + { + "start": 37348.01, + "end": 37349.47, + "probability": 0.8871 + }, + { + "start": 37350.33, + "end": 37351.27, + "probability": 0.9605 + }, + { + "start": 37351.71, + "end": 37352.27, + "probability": 0.7633 + }, + { + "start": 37352.73, + "end": 37354.35, + "probability": 0.9398 + }, + { + "start": 37354.41, + "end": 37354.69, + "probability": 0.9393 + }, + { + "start": 37355.07, + "end": 37356.32, + "probability": 0.8218 + }, + { + "start": 37357.11, + "end": 37359.17, + "probability": 0.7803 + }, + { + "start": 37359.21, + "end": 37359.95, + "probability": 0.9172 + }, + { + "start": 37360.27, + "end": 37360.86, + "probability": 0.9293 + }, + { + "start": 37361.69, + "end": 37363.39, + "probability": 0.7888 + }, + { + "start": 37363.99, + "end": 37366.23, + "probability": 0.9362 + }, + { + "start": 37366.67, + "end": 37369.35, + "probability": 0.9956 + }, + { + "start": 37370.41, + "end": 37371.77, + "probability": 0.7784 + }, + { + "start": 37373.65, + "end": 37379.75, + "probability": 0.7723 + }, + { + "start": 37380.29, + "end": 37381.82, + "probability": 0.9756 + }, + { + "start": 37383.35, + "end": 37384.47, + "probability": 0.9812 + }, + { + "start": 37386.81, + "end": 37387.61, + "probability": 0.7657 + }, + { + "start": 37388.25, + "end": 37389.09, + "probability": 0.6725 + }, + { + "start": 37390.91, + "end": 37391.93, + "probability": 0.8896 + }, + { + "start": 37392.09, + "end": 37392.91, + "probability": 0.731 + }, + { + "start": 37413.03, + "end": 37413.15, + "probability": 0.7082 + }, + { + "start": 37413.15, + "end": 37413.15, + "probability": 0.1165 + }, + { + "start": 37413.15, + "end": 37414.01, + "probability": 0.101 + }, + { + "start": 37415.09, + "end": 37417.01, + "probability": 0.6215 + }, + { + "start": 37418.39, + "end": 37423.11, + "probability": 0.7783 + }, + { + "start": 37423.15, + "end": 37425.93, + "probability": 0.9412 + }, + { + "start": 37429.19, + "end": 37430.51, + "probability": 0.6568 + }, + { + "start": 37432.09, + "end": 37436.23, + "probability": 0.7483 + }, + { + "start": 37437.95, + "end": 37439.69, + "probability": 0.1262 + }, + { + "start": 37441.09, + "end": 37441.89, + "probability": 0.94 + }, + { + "start": 37448.93, + "end": 37449.13, + "probability": 0.7711 + }, + { + "start": 37449.13, + "end": 37451.77, + "probability": 0.9543 + }, + { + "start": 37453.45, + "end": 37456.25, + "probability": 0.9766 + }, + { + "start": 37468.73, + "end": 37468.73, + "probability": 0.669 + }, + { + "start": 37468.73, + "end": 37469.41, + "probability": 0.9863 + }, + { + "start": 37470.27, + "end": 37471.23, + "probability": 0.8538 + }, + { + "start": 37473.23, + "end": 37473.59, + "probability": 0.9745 + }, + { + "start": 37474.13, + "end": 37474.56, + "probability": 0.8071 + }, + { + "start": 37475.39, + "end": 37476.34, + "probability": 0.9656 + }, + { + "start": 37477.19, + "end": 37477.81, + "probability": 0.7341 + }, + { + "start": 37478.11, + "end": 37480.31, + "probability": 0.7448 + }, + { + "start": 37481.57, + "end": 37486.25, + "probability": 0.9904 + }, + { + "start": 37486.25, + "end": 37490.97, + "probability": 0.9989 + }, + { + "start": 37492.09, + "end": 37493.0, + "probability": 0.2681 + }, + { + "start": 37493.43, + "end": 37493.91, + "probability": 0.4835 + }, + { + "start": 37494.09, + "end": 37498.33, + "probability": 0.9954 + }, + { + "start": 37499.43, + "end": 37502.17, + "probability": 0.967 + }, + { + "start": 37503.49, + "end": 37509.31, + "probability": 0.9994 + }, + { + "start": 37509.99, + "end": 37513.69, + "probability": 0.9887 + }, + { + "start": 37514.93, + "end": 37518.25, + "probability": 0.9707 + }, + { + "start": 37518.45, + "end": 37519.99, + "probability": 0.8531 + }, + { + "start": 37520.59, + "end": 37523.85, + "probability": 0.991 + }, + { + "start": 37525.21, + "end": 37529.17, + "probability": 0.9375 + }, + { + "start": 37530.35, + "end": 37538.63, + "probability": 0.9966 + }, + { + "start": 37538.63, + "end": 37545.57, + "probability": 0.9868 + }, + { + "start": 37546.19, + "end": 37549.85, + "probability": 0.9961 + }, + { + "start": 37550.07, + "end": 37551.07, + "probability": 0.8708 + }, + { + "start": 37552.23, + "end": 37559.67, + "probability": 0.9917 + }, + { + "start": 37561.17, + "end": 37564.81, + "probability": 0.9661 + }, + { + "start": 37564.99, + "end": 37568.93, + "probability": 0.8757 + }, + { + "start": 37571.07, + "end": 37574.37, + "probability": 0.8716 + }, + { + "start": 37575.39, + "end": 37578.13, + "probability": 0.9186 + }, + { + "start": 37578.65, + "end": 37580.53, + "probability": 0.9738 + }, + { + "start": 37581.83, + "end": 37587.29, + "probability": 0.9968 + }, + { + "start": 37587.77, + "end": 37591.29, + "probability": 0.9814 + }, + { + "start": 37592.39, + "end": 37593.45, + "probability": 0.9496 + }, + { + "start": 37595.17, + "end": 37596.41, + "probability": 0.6993 + }, + { + "start": 37596.41, + "end": 37598.05, + "probability": 0.8147 + }, + { + "start": 37600.17, + "end": 37601.89, + "probability": 0.9444 + }, + { + "start": 37602.21, + "end": 37602.61, + "probability": 0.4203 + }, + { + "start": 37603.13, + "end": 37604.07, + "probability": 0.9316 + }, + { + "start": 37604.37, + "end": 37604.95, + "probability": 0.9679 + }, + { + "start": 37606.06, + "end": 37608.11, + "probability": 0.9954 + }, + { + "start": 37608.51, + "end": 37608.51, + "probability": 0.0003 + }, + { + "start": 37609.33, + "end": 37609.61, + "probability": 0.1532 + }, + { + "start": 37609.67, + "end": 37610.23, + "probability": 0.6011 + }, + { + "start": 37610.49, + "end": 37612.35, + "probability": 0.6873 + }, + { + "start": 37615.05, + "end": 37617.59, + "probability": 0.961 + }, + { + "start": 37618.85, + "end": 37621.67, + "probability": 0.9963 + }, + { + "start": 37621.73, + "end": 37624.41, + "probability": 0.9993 + }, + { + "start": 37625.45, + "end": 37626.39, + "probability": 0.5103 + }, + { + "start": 37628.19, + "end": 37631.84, + "probability": 0.9736 + }, + { + "start": 37632.39, + "end": 37637.27, + "probability": 0.9976 + }, + { + "start": 37638.93, + "end": 37641.35, + "probability": 0.8648 + }, + { + "start": 37642.15, + "end": 37646.45, + "probability": 0.9985 + }, + { + "start": 37648.09, + "end": 37655.03, + "probability": 0.996 + }, + { + "start": 37655.19, + "end": 37658.89, + "probability": 0.8797 + }, + { + "start": 37659.71, + "end": 37660.89, + "probability": 0.5415 + }, + { + "start": 37661.01, + "end": 37662.05, + "probability": 0.6397 + }, + { + "start": 37662.35, + "end": 37666.25, + "probability": 0.8715 + }, + { + "start": 37666.83, + "end": 37669.33, + "probability": 0.9291 + }, + { + "start": 37671.51, + "end": 37673.89, + "probability": 0.5234 + }, + { + "start": 37674.75, + "end": 37680.03, + "probability": 0.9155 + }, + { + "start": 37680.31, + "end": 37688.05, + "probability": 0.9749 + }, + { + "start": 37688.87, + "end": 37695.87, + "probability": 0.9985 + }, + { + "start": 37696.27, + "end": 37701.69, + "probability": 0.9974 + }, + { + "start": 37703.73, + "end": 37705.53, + "probability": 0.9023 + }, + { + "start": 37706.45, + "end": 37710.13, + "probability": 0.9985 + }, + { + "start": 37710.49, + "end": 37712.69, + "probability": 0.9976 + }, + { + "start": 37713.63, + "end": 37715.23, + "probability": 0.8858 + }, + { + "start": 37715.65, + "end": 37720.33, + "probability": 0.98 + }, + { + "start": 37721.47, + "end": 37721.53, + "probability": 0.7068 + }, + { + "start": 37721.61, + "end": 37722.29, + "probability": 0.9121 + }, + { + "start": 37722.33, + "end": 37724.39, + "probability": 0.9976 + }, + { + "start": 37724.63, + "end": 37728.19, + "probability": 0.9578 + }, + { + "start": 37728.77, + "end": 37732.55, + "probability": 0.9888 + }, + { + "start": 37733.29, + "end": 37736.23, + "probability": 0.9874 + }, + { + "start": 37736.45, + "end": 37737.23, + "probability": 0.9195 + }, + { + "start": 37737.61, + "end": 37739.27, + "probability": 0.9938 + }, + { + "start": 37739.35, + "end": 37740.05, + "probability": 0.9062 + }, + { + "start": 37740.51, + "end": 37742.45, + "probability": 0.9248 + }, + { + "start": 37743.97, + "end": 37746.35, + "probability": 0.8154 + }, + { + "start": 37747.31, + "end": 37749.87, + "probability": 0.9908 + }, + { + "start": 37750.67, + "end": 37753.83, + "probability": 0.9931 + }, + { + "start": 37754.35, + "end": 37755.65, + "probability": 0.8546 + }, + { + "start": 37756.63, + "end": 37758.31, + "probability": 0.9788 + }, + { + "start": 37758.61, + "end": 37761.09, + "probability": 0.9753 + }, + { + "start": 37761.75, + "end": 37767.53, + "probability": 0.9987 + }, + { + "start": 37767.65, + "end": 37768.79, + "probability": 0.8698 + }, + { + "start": 37769.21, + "end": 37770.31, + "probability": 0.7354 + }, + { + "start": 37771.45, + "end": 37774.27, + "probability": 0.9069 + }, + { + "start": 37774.31, + "end": 37776.51, + "probability": 0.9276 + }, + { + "start": 37777.11, + "end": 37778.7, + "probability": 0.9912 + }, + { + "start": 37779.61, + "end": 37781.55, + "probability": 0.9446 + }, + { + "start": 37782.27, + "end": 37783.63, + "probability": 0.7301 + }, + { + "start": 37784.35, + "end": 37785.53, + "probability": 0.9772 + }, + { + "start": 37786.35, + "end": 37789.39, + "probability": 0.9923 + }, + { + "start": 37789.39, + "end": 37793.33, + "probability": 0.9975 + }, + { + "start": 37795.63, + "end": 37797.13, + "probability": 0.5988 + }, + { + "start": 37797.23, + "end": 37797.61, + "probability": 0.4415 + }, + { + "start": 37797.69, + "end": 37803.83, + "probability": 0.9906 + }, + { + "start": 37804.63, + "end": 37808.57, + "probability": 0.9729 + }, + { + "start": 37808.71, + "end": 37812.59, + "probability": 0.9572 + }, + { + "start": 37813.19, + "end": 37814.51, + "probability": 0.9447 + }, + { + "start": 37815.09, + "end": 37816.51, + "probability": 0.7183 + }, + { + "start": 37817.33, + "end": 37820.13, + "probability": 0.9858 + }, + { + "start": 37820.69, + "end": 37821.85, + "probability": 0.979 + }, + { + "start": 37823.19, + "end": 37826.35, + "probability": 0.9619 + }, + { + "start": 37826.85, + "end": 37829.73, + "probability": 0.9102 + }, + { + "start": 37830.25, + "end": 37831.35, + "probability": 0.813 + }, + { + "start": 37831.81, + "end": 37834.03, + "probability": 0.9286 + }, + { + "start": 37834.81, + "end": 37837.01, + "probability": 0.946 + }, + { + "start": 37837.73, + "end": 37838.82, + "probability": 0.9645 + }, + { + "start": 37839.37, + "end": 37840.27, + "probability": 0.5195 + }, + { + "start": 37840.41, + "end": 37841.41, + "probability": 0.8909 + }, + { + "start": 37842.19, + "end": 37845.19, + "probability": 0.9277 + }, + { + "start": 37846.83, + "end": 37849.57, + "probability": 0.8302 + }, + { + "start": 37850.15, + "end": 37850.45, + "probability": 0.719 + }, + { + "start": 37850.51, + "end": 37854.67, + "probability": 0.9841 + }, + { + "start": 37855.01, + "end": 37860.73, + "probability": 0.9896 + }, + { + "start": 37861.37, + "end": 37864.03, + "probability": 0.983 + }, + { + "start": 37864.03, + "end": 37867.45, + "probability": 0.8744 + }, + { + "start": 37867.59, + "end": 37872.63, + "probability": 0.9313 + }, + { + "start": 37874.47, + "end": 37876.61, + "probability": 0.8563 + }, + { + "start": 37878.03, + "end": 37879.19, + "probability": 0.6885 + }, + { + "start": 37879.51, + "end": 37887.21, + "probability": 0.9938 + }, + { + "start": 37887.81, + "end": 37890.19, + "probability": 0.9751 + }, + { + "start": 37890.97, + "end": 37891.21, + "probability": 0.442 + }, + { + "start": 37891.39, + "end": 37895.79, + "probability": 0.9905 + }, + { + "start": 37896.33, + "end": 37899.83, + "probability": 0.9795 + }, + { + "start": 37900.39, + "end": 37904.65, + "probability": 0.9948 + }, + { + "start": 37904.77, + "end": 37906.85, + "probability": 0.8435 + }, + { + "start": 37907.81, + "end": 37909.13, + "probability": 0.9702 + }, + { + "start": 37910.93, + "end": 37914.79, + "probability": 0.9495 + }, + { + "start": 37915.33, + "end": 37917.79, + "probability": 0.9986 + }, + { + "start": 37918.07, + "end": 37919.21, + "probability": 0.7745 + }, + { + "start": 37920.35, + "end": 37921.21, + "probability": 0.8297 + }, + { + "start": 37921.35, + "end": 37922.15, + "probability": 0.8047 + }, + { + "start": 37922.25, + "end": 37923.51, + "probability": 0.711 + }, + { + "start": 37923.67, + "end": 37925.14, + "probability": 0.9932 + }, + { + "start": 37926.41, + "end": 37926.41, + "probability": 0.6846 + }, + { + "start": 37927.89, + "end": 37932.63, + "probability": 0.966 + }, + { + "start": 37933.43, + "end": 37938.41, + "probability": 0.9914 + }, + { + "start": 37938.49, + "end": 37942.11, + "probability": 0.9624 + }, + { + "start": 37942.51, + "end": 37946.29, + "probability": 0.9989 + }, + { + "start": 37946.91, + "end": 37950.53, + "probability": 0.98 + }, + { + "start": 37951.41, + "end": 37952.51, + "probability": 0.8745 + }, + { + "start": 37953.05, + "end": 37955.49, + "probability": 0.9965 + }, + { + "start": 37956.39, + "end": 37956.69, + "probability": 0.9136 + }, + { + "start": 37957.31, + "end": 37957.89, + "probability": 0.8646 + }, + { + "start": 37959.03, + "end": 37960.57, + "probability": 0.7144 + }, + { + "start": 37960.71, + "end": 37963.97, + "probability": 0.4223 + }, + { + "start": 37963.97, + "end": 37965.77, + "probability": 0.9551 + }, + { + "start": 37965.93, + "end": 37967.89, + "probability": 0.5268 + }, + { + "start": 37967.97, + "end": 37968.87, + "probability": 0.9516 + }, + { + "start": 37979.25, + "end": 37979.93, + "probability": 0.6682 + }, + { + "start": 37982.91, + "end": 37984.45, + "probability": 0.6455 + }, + { + "start": 37985.85, + "end": 37986.19, + "probability": 0.731 + }, + { + "start": 37986.27, + "end": 37986.97, + "probability": 0.9669 + }, + { + "start": 37987.03, + "end": 37991.13, + "probability": 0.6284 + }, + { + "start": 37991.33, + "end": 37993.59, + "probability": 0.7279 + }, + { + "start": 37994.53, + "end": 37997.95, + "probability": 0.9086 + }, + { + "start": 37998.25, + "end": 38000.73, + "probability": 0.9719 + }, + { + "start": 38000.89, + "end": 38001.19, + "probability": 0.78 + }, + { + "start": 38001.49, + "end": 38001.95, + "probability": 0.8918 + }, + { + "start": 38001.95, + "end": 38002.45, + "probability": 0.3945 + }, + { + "start": 38002.45, + "end": 38003.29, + "probability": 0.4981 + }, + { + "start": 38003.79, + "end": 38004.63, + "probability": 0.6242 + }, + { + "start": 38005.01, + "end": 38006.25, + "probability": 0.7451 + }, + { + "start": 38006.65, + "end": 38009.87, + "probability": 0.9539 + }, + { + "start": 38009.87, + "end": 38013.67, + "probability": 0.8444 + }, + { + "start": 38013.89, + "end": 38016.25, + "probability": 0.9869 + }, + { + "start": 38017.41, + "end": 38018.79, + "probability": 0.9471 + }, + { + "start": 38018.87, + "end": 38019.23, + "probability": 0.7844 + }, + { + "start": 38019.25, + "end": 38020.57, + "probability": 0.9434 + }, + { + "start": 38020.68, + "end": 38021.84, + "probability": 0.6355 + }, + { + "start": 38022.21, + "end": 38023.61, + "probability": 0.8828 + }, + { + "start": 38024.85, + "end": 38025.07, + "probability": 0.6997 + }, + { + "start": 38025.61, + "end": 38027.95, + "probability": 0.8733 + }, + { + "start": 38029.35, + "end": 38029.97, + "probability": 0.791 + }, + { + "start": 38030.21, + "end": 38032.77, + "probability": 0.8043 + }, + { + "start": 38032.77, + "end": 38035.77, + "probability": 0.9937 + }, + { + "start": 38035.83, + "end": 38038.35, + "probability": 0.7158 + }, + { + "start": 38038.47, + "end": 38039.15, + "probability": 0.7113 + }, + { + "start": 38039.61, + "end": 38040.61, + "probability": 0.7216 + }, + { + "start": 38040.65, + "end": 38043.19, + "probability": 0.8829 + }, + { + "start": 38043.63, + "end": 38045.91, + "probability": 0.9793 + }, + { + "start": 38046.87, + "end": 38047.85, + "probability": 0.859 + }, + { + "start": 38048.41, + "end": 38050.95, + "probability": 0.8864 + }, + { + "start": 38051.13, + "end": 38055.41, + "probability": 0.8277 + }, + { + "start": 38056.07, + "end": 38057.21, + "probability": 0.9914 + }, + { + "start": 38059.15, + "end": 38061.32, + "probability": 0.9814 + }, + { + "start": 38062.11, + "end": 38065.61, + "probability": 0.9541 + }, + { + "start": 38066.11, + "end": 38067.25, + "probability": 0.6545 + }, + { + "start": 38068.75, + "end": 38069.67, + "probability": 0.8823 + }, + { + "start": 38070.39, + "end": 38072.01, + "probability": 0.9968 + }, + { + "start": 38072.27, + "end": 38073.65, + "probability": 0.9604 + }, + { + "start": 38075.45, + "end": 38076.99, + "probability": 0.998 + }, + { + "start": 38077.65, + "end": 38078.27, + "probability": 0.991 + }, + { + "start": 38079.57, + "end": 38081.37, + "probability": 0.9959 + }, + { + "start": 38082.25, + "end": 38082.95, + "probability": 0.1458 + }, + { + "start": 38082.95, + "end": 38084.31, + "probability": 0.687 + }, + { + "start": 38084.79, + "end": 38085.71, + "probability": 0.9238 + }, + { + "start": 38085.85, + "end": 38089.67, + "probability": 0.8745 + }, + { + "start": 38090.09, + "end": 38092.63, + "probability": 0.7724 + }, + { + "start": 38092.77, + "end": 38093.75, + "probability": 0.6193 + }, + { + "start": 38094.75, + "end": 38097.03, + "probability": 0.8653 + }, + { + "start": 38098.15, + "end": 38098.45, + "probability": 0.4139 + }, + { + "start": 38098.51, + "end": 38099.87, + "probability": 0.49 + }, + { + "start": 38101.29, + "end": 38101.72, + "probability": 0.6296 + }, + { + "start": 38103.33, + "end": 38105.01, + "probability": 0.7949 + }, + { + "start": 38105.07, + "end": 38106.54, + "probability": 0.7278 + }, + { + "start": 38107.83, + "end": 38110.06, + "probability": 0.9751 + }, + { + "start": 38110.41, + "end": 38112.51, + "probability": 0.9456 + }, + { + "start": 38112.59, + "end": 38114.65, + "probability": 0.9886 + }, + { + "start": 38115.21, + "end": 38119.33, + "probability": 0.9003 + }, + { + "start": 38119.93, + "end": 38120.81, + "probability": 0.4707 + }, + { + "start": 38121.17, + "end": 38122.05, + "probability": 0.8209 + }, + { + "start": 38122.17, + "end": 38124.17, + "probability": 0.8468 + }, + { + "start": 38124.97, + "end": 38126.17, + "probability": 0.778 + }, + { + "start": 38126.55, + "end": 38129.83, + "probability": 0.8836 + }, + { + "start": 38130.23, + "end": 38131.13, + "probability": 0.9224 + }, + { + "start": 38131.47, + "end": 38134.33, + "probability": 0.9392 + }, + { + "start": 38134.85, + "end": 38136.75, + "probability": 0.5026 + }, + { + "start": 38137.43, + "end": 38139.13, + "probability": 0.9961 + }, + { + "start": 38140.33, + "end": 38142.59, + "probability": 0.9707 + }, + { + "start": 38142.99, + "end": 38144.21, + "probability": 0.4231 + }, + { + "start": 38146.97, + "end": 38146.97, + "probability": 0.6601 + }, + { + "start": 38146.97, + "end": 38147.35, + "probability": 0.6392 + }, + { + "start": 38148.71, + "end": 38149.63, + "probability": 0.6482 + }, + { + "start": 38150.05, + "end": 38151.49, + "probability": 0.4116 + }, + { + "start": 38151.49, + "end": 38151.99, + "probability": 0.8748 + }, + { + "start": 38158.51, + "end": 38159.37, + "probability": 0.0792 + }, + { + "start": 38160.91, + "end": 38162.33, + "probability": 0.3378 + }, + { + "start": 38162.89, + "end": 38165.07, + "probability": 0.1304 + }, + { + "start": 38166.39, + "end": 38167.28, + "probability": 0.1128 + }, + { + "start": 38176.05, + "end": 38177.07, + "probability": 0.1384 + }, + { + "start": 38177.81, + "end": 38181.75, + "probability": 0.9876 + }, + { + "start": 38184.17, + "end": 38185.83, + "probability": 0.3785 + }, + { + "start": 38186.65, + "end": 38189.39, + "probability": 0.8991 + }, + { + "start": 38189.75, + "end": 38191.61, + "probability": 0.3181 + }, + { + "start": 38192.97, + "end": 38193.46, + "probability": 0.7069 + }, + { + "start": 38193.75, + "end": 38193.89, + "probability": 0.865 + }, + { + "start": 38195.09, + "end": 38197.07, + "probability": 0.7235 + }, + { + "start": 38197.59, + "end": 38198.07, + "probability": 0.8947 + }, + { + "start": 38198.17, + "end": 38201.57, + "probability": 0.9278 + }, + { + "start": 38201.65, + "end": 38205.45, + "probability": 0.9756 + }, + { + "start": 38205.92, + "end": 38208.61, + "probability": 0.9823 + }, + { + "start": 38209.11, + "end": 38210.29, + "probability": 0.6689 + }, + { + "start": 38210.81, + "end": 38213.99, + "probability": 0.9868 + }, + { + "start": 38214.69, + "end": 38218.47, + "probability": 0.9766 + }, + { + "start": 38219.31, + "end": 38221.07, + "probability": 0.9431 + }, + { + "start": 38222.03, + "end": 38222.89, + "probability": 0.4431 + }, + { + "start": 38222.97, + "end": 38227.89, + "probability": 0.7974 + }, + { + "start": 38228.25, + "end": 38229.23, + "probability": 0.9221 + }, + { + "start": 38229.31, + "end": 38229.41, + "probability": 0.5767 + }, + { + "start": 38230.19, + "end": 38231.97, + "probability": 0.7842 + }, + { + "start": 38232.67, + "end": 38234.13, + "probability": 0.9076 + }, + { + "start": 38234.19, + "end": 38234.37, + "probability": 0.0125 + }, + { + "start": 38234.37, + "end": 38236.23, + "probability": 0.4641 + }, + { + "start": 38237.55, + "end": 38243.29, + "probability": 0.4278 + }, + { + "start": 38243.81, + "end": 38244.77, + "probability": 0.4619 + }, + { + "start": 38244.77, + "end": 38245.43, + "probability": 0.7109 + }, + { + "start": 38246.45, + "end": 38246.69, + "probability": 0.532 + }, + { + "start": 38246.97, + "end": 38248.81, + "probability": 0.8344 + }, + { + "start": 38249.39, + "end": 38255.03, + "probability": 0.9775 + }, + { + "start": 38256.71, + "end": 38261.23, + "probability": 0.9583 + }, + { + "start": 38261.93, + "end": 38261.93, + "probability": 0.8818 + }, + { + "start": 38262.87, + "end": 38266.79, + "probability": 0.8442 + }, + { + "start": 38267.05, + "end": 38269.63, + "probability": 0.6733 + }, + { + "start": 38270.11, + "end": 38270.85, + "probability": 0.8331 + }, + { + "start": 38271.31, + "end": 38271.93, + "probability": 0.6914 + }, + { + "start": 38272.77, + "end": 38273.83, + "probability": 0.9127 + }, + { + "start": 38274.05, + "end": 38275.15, + "probability": 0.5681 + }, + { + "start": 38275.15, + "end": 38276.79, + "probability": 0.928 + }, + { + "start": 38277.49, + "end": 38279.51, + "probability": 0.951 + }, + { + "start": 38280.27, + "end": 38281.67, + "probability": 0.8299 + }, + { + "start": 38282.39, + "end": 38287.07, + "probability": 0.7603 + }, + { + "start": 38287.11, + "end": 38289.21, + "probability": 0.8979 + }, + { + "start": 38289.43, + "end": 38296.21, + "probability": 0.8354 + }, + { + "start": 38296.85, + "end": 38298.91, + "probability": 0.8911 + }, + { + "start": 38299.45, + "end": 38301.33, + "probability": 0.7986 + }, + { + "start": 38301.95, + "end": 38305.47, + "probability": 0.9905 + }, + { + "start": 38305.47, + "end": 38307.69, + "probability": 0.9975 + }, + { + "start": 38307.95, + "end": 38309.3, + "probability": 0.8203 + }, + { + "start": 38309.97, + "end": 38312.67, + "probability": 0.9236 + }, + { + "start": 38312.85, + "end": 38313.91, + "probability": 0.6685 + }, + { + "start": 38313.97, + "end": 38314.19, + "probability": 0.4333 + }, + { + "start": 38315.27, + "end": 38318.89, + "probability": 0.9765 + }, + { + "start": 38319.89, + "end": 38323.53, + "probability": 0.7411 + }, + { + "start": 38324.23, + "end": 38325.09, + "probability": 0.818 + }, + { + "start": 38326.73, + "end": 38330.39, + "probability": 0.9933 + }, + { + "start": 38330.39, + "end": 38333.47, + "probability": 0.9661 + }, + { + "start": 38333.89, + "end": 38336.59, + "probability": 0.6563 + }, + { + "start": 38336.59, + "end": 38340.05, + "probability": 0.9927 + }, + { + "start": 38340.83, + "end": 38344.51, + "probability": 0.9327 + }, + { + "start": 38345.09, + "end": 38346.69, + "probability": 0.9025 + }, + { + "start": 38347.61, + "end": 38351.15, + "probability": 0.9167 + }, + { + "start": 38351.67, + "end": 38355.65, + "probability": 0.9268 + }, + { + "start": 38355.65, + "end": 38357.57, + "probability": 0.9983 + }, + { + "start": 38358.05, + "end": 38361.23, + "probability": 0.8878 + }, + { + "start": 38361.63, + "end": 38362.31, + "probability": 0.9834 + }, + { + "start": 38362.59, + "end": 38367.13, + "probability": 0.9913 + }, + { + "start": 38367.61, + "end": 38369.97, + "probability": 0.9855 + }, + { + "start": 38369.97, + "end": 38373.07, + "probability": 0.9915 + }, + { + "start": 38373.55, + "end": 38375.37, + "probability": 0.9918 + }, + { + "start": 38375.73, + "end": 38376.21, + "probability": 0.4997 + }, + { + "start": 38376.63, + "end": 38380.29, + "probability": 0.9868 + }, + { + "start": 38380.95, + "end": 38383.53, + "probability": 0.9674 + }, + { + "start": 38384.41, + "end": 38387.11, + "probability": 0.7605 + }, + { + "start": 38387.69, + "end": 38388.91, + "probability": 0.6145 + }, + { + "start": 38389.45, + "end": 38390.73, + "probability": 0.9661 + }, + { + "start": 38391.67, + "end": 38393.33, + "probability": 0.7441 + }, + { + "start": 38393.75, + "end": 38398.21, + "probability": 0.9929 + }, + { + "start": 38399.45, + "end": 38402.4, + "probability": 0.9951 + }, + { + "start": 38402.83, + "end": 38406.27, + "probability": 0.9093 + }, + { + "start": 38406.71, + "end": 38407.99, + "probability": 0.998 + }, + { + "start": 38408.43, + "end": 38409.69, + "probability": 0.9451 + }, + { + "start": 38410.37, + "end": 38410.85, + "probability": 0.9038 + }, + { + "start": 38411.19, + "end": 38417.57, + "probability": 0.957 + }, + { + "start": 38417.91, + "end": 38419.21, + "probability": 0.9955 + }, + { + "start": 38419.85, + "end": 38420.37, + "probability": 0.7515 + }, + { + "start": 38420.67, + "end": 38424.17, + "probability": 0.7233 + }, + { + "start": 38424.69, + "end": 38427.17, + "probability": 0.9877 + }, + { + "start": 38427.83, + "end": 38429.07, + "probability": 0.8716 + }, + { + "start": 38429.93, + "end": 38432.43, + "probability": 0.9829 + }, + { + "start": 38432.93, + "end": 38434.85, + "probability": 0.9272 + }, + { + "start": 38434.85, + "end": 38435.21, + "probability": 0.7584 + }, + { + "start": 38435.33, + "end": 38437.37, + "probability": 0.9718 + }, + { + "start": 38437.69, + "end": 38438.27, + "probability": 0.8466 + }, + { + "start": 38438.89, + "end": 38443.15, + "probability": 0.9854 + }, + { + "start": 38444.13, + "end": 38444.67, + "probability": 0.8621 + }, + { + "start": 38444.75, + "end": 38448.39, + "probability": 0.8903 + }, + { + "start": 38448.47, + "end": 38452.95, + "probability": 0.9915 + }, + { + "start": 38452.95, + "end": 38457.93, + "probability": 0.9961 + }, + { + "start": 38457.94, + "end": 38462.33, + "probability": 0.8705 + }, + { + "start": 38462.89, + "end": 38467.75, + "probability": 0.9499 + }, + { + "start": 38468.11, + "end": 38471.24, + "probability": 0.7081 + }, + { + "start": 38472.58, + "end": 38477.59, + "probability": 0.9807 + }, + { + "start": 38478.91, + "end": 38484.16, + "probability": 0.9922 + }, + { + "start": 38485.97, + "end": 38488.35, + "probability": 0.9299 + }, + { + "start": 38488.51, + "end": 38490.33, + "probability": 0.9088 + }, + { + "start": 38491.03, + "end": 38492.77, + "probability": 0.8062 + }, + { + "start": 38494.17, + "end": 38497.88, + "probability": 0.8788 + }, + { + "start": 38498.25, + "end": 38498.91, + "probability": 0.8963 + }, + { + "start": 38499.11, + "end": 38499.87, + "probability": 0.8401 + }, + { + "start": 38500.23, + "end": 38500.71, + "probability": 0.7814 + }, + { + "start": 38500.79, + "end": 38501.17, + "probability": 0.7507 + }, + { + "start": 38501.25, + "end": 38501.91, + "probability": 0.8099 + }, + { + "start": 38502.31, + "end": 38503.21, + "probability": 0.7778 + }, + { + "start": 38504.95, + "end": 38505.34, + "probability": 0.9751 + }, + { + "start": 38507.37, + "end": 38509.31, + "probability": 0.9644 + }, + { + "start": 38510.17, + "end": 38511.87, + "probability": 0.8619 + }, + { + "start": 38512.35, + "end": 38515.07, + "probability": 0.8689 + }, + { + "start": 38515.79, + "end": 38518.01, + "probability": 0.7814 + }, + { + "start": 38518.49, + "end": 38519.93, + "probability": 0.9111 + }, + { + "start": 38520.53, + "end": 38521.63, + "probability": 0.9577 + }, + { + "start": 38522.21, + "end": 38522.97, + "probability": 0.9727 + }, + { + "start": 38524.23, + "end": 38528.85, + "probability": 0.8512 + }, + { + "start": 38528.93, + "end": 38530.93, + "probability": 0.9817 + }, + { + "start": 38530.97, + "end": 38534.13, + "probability": 0.9309 + }, + { + "start": 38535.23, + "end": 38537.33, + "probability": 0.72 + }, + { + "start": 38537.75, + "end": 38539.73, + "probability": 0.8558 + }, + { + "start": 38540.17, + "end": 38541.89, + "probability": 0.9353 + }, + { + "start": 38542.37, + "end": 38544.43, + "probability": 0.9134 + }, + { + "start": 38544.79, + "end": 38545.63, + "probability": 0.9691 + }, + { + "start": 38546.07, + "end": 38547.09, + "probability": 0.9854 + }, + { + "start": 38547.43, + "end": 38548.35, + "probability": 0.6884 + }, + { + "start": 38548.81, + "end": 38551.97, + "probability": 0.8777 + }, + { + "start": 38552.41, + "end": 38553.65, + "probability": 0.9945 + }, + { + "start": 38554.27, + "end": 38555.65, + "probability": 0.9464 + }, + { + "start": 38556.53, + "end": 38556.89, + "probability": 0.7632 + }, + { + "start": 38558.24, + "end": 38563.77, + "probability": 0.7505 + }, + { + "start": 38564.45, + "end": 38566.59, + "probability": 0.8036 + }, + { + "start": 38567.09, + "end": 38567.86, + "probability": 0.8783 + }, + { + "start": 38569.47, + "end": 38573.23, + "probability": 0.6908 + }, + { + "start": 38573.79, + "end": 38575.27, + "probability": 0.6554 + }, + { + "start": 38575.99, + "end": 38578.07, + "probability": 0.7983 + }, + { + "start": 38579.33, + "end": 38580.39, + "probability": 0.8402 + }, + { + "start": 38581.25, + "end": 38584.07, + "probability": 0.4293 + }, + { + "start": 38584.77, + "end": 38585.05, + "probability": 0.9674 + }, + { + "start": 38586.13, + "end": 38588.19, + "probability": 0.8443 + }, + { + "start": 38588.69, + "end": 38589.27, + "probability": 0.7694 + }, + { + "start": 38589.63, + "end": 38591.97, + "probability": 0.8682 + }, + { + "start": 38592.83, + "end": 38593.31, + "probability": 0.1639 + }, + { + "start": 38594.17, + "end": 38595.77, + "probability": 0.995 + }, + { + "start": 38596.35, + "end": 38597.33, + "probability": 0.8105 + }, + { + "start": 38598.19, + "end": 38599.97, + "probability": 0.3439 + }, + { + "start": 38600.51, + "end": 38603.91, + "probability": 0.9183 + }, + { + "start": 38604.33, + "end": 38609.11, + "probability": 0.9347 + }, + { + "start": 38609.61, + "end": 38610.03, + "probability": 0.8564 + }, + { + "start": 38611.97, + "end": 38614.45, + "probability": 0.9409 + }, + { + "start": 38615.07, + "end": 38619.57, + "probability": 0.7571 + }, + { + "start": 38620.41, + "end": 38624.17, + "probability": 0.9661 + }, + { + "start": 38624.61, + "end": 38627.71, + "probability": 0.9953 + }, + { + "start": 38628.33, + "end": 38630.63, + "probability": 0.9674 + }, + { + "start": 38631.03, + "end": 38631.25, + "probability": 0.7708 + }, + { + "start": 38632.63, + "end": 38633.29, + "probability": 0.8471 + }, + { + "start": 38634.31, + "end": 38635.73, + "probability": 0.6776 + }, + { + "start": 38636.71, + "end": 38637.81, + "probability": 0.6694 + }, + { + "start": 38647.22, + "end": 38647.22, + "probability": 0.3006 + }, + { + "start": 38647.22, + "end": 38647.81, + "probability": 0.4843 + }, + { + "start": 38648.32, + "end": 38649.96, + "probability": 0.4341 + }, + { + "start": 38651.34, + "end": 38653.66, + "probability": 0.6903 + }, + { + "start": 38655.32, + "end": 38655.62, + "probability": 0.9803 + }, + { + "start": 38656.26, + "end": 38657.26, + "probability": 0.8374 + }, + { + "start": 38659.33, + "end": 38660.88, + "probability": 0.9692 + }, + { + "start": 38661.4, + "end": 38661.5, + "probability": 0.4424 + }, + { + "start": 38663.65, + "end": 38665.58, + "probability": 0.9355 + }, + { + "start": 38665.92, + "end": 38668.7, + "probability": 0.524 + }, + { + "start": 38668.9, + "end": 38669.14, + "probability": 0.7222 + }, + { + "start": 38669.24, + "end": 38669.34, + "probability": 0.4861 + }, + { + "start": 38669.46, + "end": 38671.06, + "probability": 0.9932 + }, + { + "start": 38671.14, + "end": 38674.14, + "probability": 0.9961 + }, + { + "start": 38676.0, + "end": 38680.24, + "probability": 0.7742 + }, + { + "start": 38681.56, + "end": 38684.04, + "probability": 0.9341 + }, + { + "start": 38686.68, + "end": 38688.44, + "probability": 0.6714 + }, + { + "start": 38689.3, + "end": 38691.97, + "probability": 0.9484 + }, + { + "start": 38692.24, + "end": 38695.52, + "probability": 0.8938 + }, + { + "start": 38696.0, + "end": 38698.28, + "probability": 0.9707 + }, + { + "start": 38698.28, + "end": 38700.06, + "probability": 0.8403 + }, + { + "start": 38700.12, + "end": 38701.02, + "probability": 0.7472 + }, + { + "start": 38701.22, + "end": 38702.44, + "probability": 0.945 + }, + { + "start": 38703.18, + "end": 38704.68, + "probability": 0.8819 + }, + { + "start": 38705.1, + "end": 38707.0, + "probability": 0.9396 + }, + { + "start": 38707.12, + "end": 38710.08, + "probability": 0.9228 + }, + { + "start": 38710.84, + "end": 38714.12, + "probability": 0.9785 + }, + { + "start": 38715.66, + "end": 38718.22, + "probability": 0.9898 + }, + { + "start": 38718.3, + "end": 38721.6, + "probability": 0.6968 + }, + { + "start": 38721.68, + "end": 38723.94, + "probability": 0.8183 + }, + { + "start": 38724.04, + "end": 38725.1, + "probability": 0.5036 + }, + { + "start": 38725.38, + "end": 38726.62, + "probability": 0.7697 + }, + { + "start": 38726.82, + "end": 38728.9, + "probability": 0.9675 + }, + { + "start": 38729.58, + "end": 38732.32, + "probability": 0.9779 + }, + { + "start": 38732.96, + "end": 38735.42, + "probability": 0.9273 + }, + { + "start": 38735.42, + "end": 38738.1, + "probability": 0.9021 + }, + { + "start": 38738.88, + "end": 38739.2, + "probability": 0.727 + }, + { + "start": 38739.28, + "end": 38741.16, + "probability": 0.9804 + }, + { + "start": 38741.16, + "end": 38743.84, + "probability": 0.7491 + }, + { + "start": 38744.5, + "end": 38748.1, + "probability": 0.8062 + }, + { + "start": 38748.64, + "end": 38753.02, + "probability": 0.8799 + }, + { + "start": 38753.02, + "end": 38756.6, + "probability": 0.9971 + }, + { + "start": 38757.24, + "end": 38759.18, + "probability": 0.8308 + }, + { + "start": 38759.86, + "end": 38762.2, + "probability": 0.9705 + }, + { + "start": 38763.34, + "end": 38768.72, + "probability": 0.761 + }, + { + "start": 38768.98, + "end": 38769.12, + "probability": 0.262 + }, + { + "start": 38769.3, + "end": 38771.8, + "probability": 0.8956 + }, + { + "start": 38772.44, + "end": 38775.92, + "probability": 0.9146 + }, + { + "start": 38776.84, + "end": 38778.55, + "probability": 0.6312 + }, + { + "start": 38780.54, + "end": 38783.12, + "probability": 0.9757 + }, + { + "start": 38783.32, + "end": 38783.66, + "probability": 0.8775 + }, + { + "start": 38786.54, + "end": 38788.52, + "probability": 0.9641 + }, + { + "start": 38789.06, + "end": 38791.7, + "probability": 0.8121 + }, + { + "start": 38792.88, + "end": 38795.16, + "probability": 0.9883 + }, + { + "start": 38796.18, + "end": 38797.9, + "probability": 0.9867 + }, + { + "start": 38798.8, + "end": 38801.04, + "probability": 0.8075 + }, + { + "start": 38801.92, + "end": 38801.98, + "probability": 0.1909 + }, + { + "start": 38802.12, + "end": 38802.96, + "probability": 0.9178 + }, + { + "start": 38803.06, + "end": 38804.56, + "probability": 0.9971 + }, + { + "start": 38806.26, + "end": 38808.02, + "probability": 0.7932 + }, + { + "start": 38808.16, + "end": 38811.34, + "probability": 0.9519 + }, + { + "start": 38811.36, + "end": 38812.63, + "probability": 0.8992 + }, + { + "start": 38813.68, + "end": 38816.2, + "probability": 0.979 + }, + { + "start": 38816.78, + "end": 38817.78, + "probability": 0.7702 + }, + { + "start": 38818.46, + "end": 38819.98, + "probability": 0.9305 + }, + { + "start": 38820.94, + "end": 38821.46, + "probability": 0.7838 + }, + { + "start": 38822.06, + "end": 38823.66, + "probability": 0.9573 + }, + { + "start": 38823.8, + "end": 38824.84, + "probability": 0.9937 + }, + { + "start": 38824.9, + "end": 38828.02, + "probability": 0.9517 + }, + { + "start": 38828.02, + "end": 38830.42, + "probability": 0.9918 + }, + { + "start": 38830.44, + "end": 38830.54, + "probability": 0.865 + }, + { + "start": 38831.1, + "end": 38832.15, + "probability": 0.9467 + }, + { + "start": 38832.4, + "end": 38832.8, + "probability": 0.415 + }, + { + "start": 38833.56, + "end": 38834.78, + "probability": 0.8796 + }, + { + "start": 38837.52, + "end": 38839.14, + "probability": 0.4934 + }, + { + "start": 38839.24, + "end": 38843.78, + "probability": 0.9096 + }, + { + "start": 38844.76, + "end": 38845.88, + "probability": 0.9881 + }, + { + "start": 38846.78, + "end": 38848.1, + "probability": 0.6653 + }, + { + "start": 38848.42, + "end": 38848.9, + "probability": 0.673 + }, + { + "start": 38849.86, + "end": 38850.26, + "probability": 0.7928 + }, + { + "start": 38850.42, + "end": 38851.96, + "probability": 0.8063 + }, + { + "start": 38851.96, + "end": 38852.62, + "probability": 0.3559 + }, + { + "start": 38853.34, + "end": 38854.9, + "probability": 0.9505 + }, + { + "start": 38855.2, + "end": 38856.12, + "probability": 0.8672 + }, + { + "start": 38856.36, + "end": 38859.12, + "probability": 0.6357 + }, + { + "start": 38859.52, + "end": 38860.42, + "probability": 0.203 + }, + { + "start": 38861.0, + "end": 38861.56, + "probability": 0.6065 + }, + { + "start": 38861.92, + "end": 38864.85, + "probability": 0.9862 + }, + { + "start": 38865.68, + "end": 38867.04, + "probability": 0.6071 + }, + { + "start": 38867.7, + "end": 38871.64, + "probability": 0.9687 + }, + { + "start": 38872.72, + "end": 38873.12, + "probability": 0.7813 + }, + { + "start": 38873.68, + "end": 38875.5, + "probability": 0.9532 + }, + { + "start": 38876.02, + "end": 38877.98, + "probability": 0.9888 + }, + { + "start": 38878.76, + "end": 38882.02, + "probability": 0.869 + }, + { + "start": 38882.62, + "end": 38882.98, + "probability": 0.7972 + }, + { + "start": 38883.16, + "end": 38883.36, + "probability": 0.6582 + }, + { + "start": 38883.68, + "end": 38884.14, + "probability": 0.6571 + }, + { + "start": 38884.3, + "end": 38884.4, + "probability": 0.6297 + }, + { + "start": 38884.74, + "end": 38885.08, + "probability": 0.7338 + }, + { + "start": 38885.34, + "end": 38886.18, + "probability": 0.7333 + }, + { + "start": 38887.0, + "end": 38887.66, + "probability": 0.6491 + }, + { + "start": 38888.76, + "end": 38890.06, + "probability": 0.7575 + }, + { + "start": 38890.62, + "end": 38893.5, + "probability": 0.9298 + }, + { + "start": 38894.96, + "end": 38896.46, + "probability": 0.9587 + }, + { + "start": 38896.6, + "end": 38897.46, + "probability": 0.8999 + }, + { + "start": 38897.54, + "end": 38899.6, + "probability": 0.8466 + }, + { + "start": 38899.68, + "end": 38900.48, + "probability": 0.9222 + }, + { + "start": 38900.66, + "end": 38905.76, + "probability": 0.9764 + }, + { + "start": 38905.92, + "end": 38906.34, + "probability": 0.9037 + }, + { + "start": 38906.64, + "end": 38908.68, + "probability": 0.9093 + }, + { + "start": 38910.44, + "end": 38913.84, + "probability": 0.7646 + }, + { + "start": 38914.52, + "end": 38918.0, + "probability": 0.9984 + }, + { + "start": 38918.07, + "end": 38922.96, + "probability": 0.9845 + }, + { + "start": 38923.7, + "end": 38927.76, + "probability": 0.782 + }, + { + "start": 38928.7, + "end": 38929.48, + "probability": 0.5681 + }, + { + "start": 38929.62, + "end": 38930.94, + "probability": 0.9589 + }, + { + "start": 38931.68, + "end": 38935.24, + "probability": 0.9622 + }, + { + "start": 38936.02, + "end": 38936.04, + "probability": 0.116 + }, + { + "start": 38936.04, + "end": 38939.96, + "probability": 0.8446 + }, + { + "start": 38940.04, + "end": 38940.52, + "probability": 0.6932 + }, + { + "start": 38941.42, + "end": 38947.16, + "probability": 0.8519 + }, + { + "start": 38947.78, + "end": 38949.64, + "probability": 0.8308 + }, + { + "start": 38949.8, + "end": 38950.42, + "probability": 0.9456 + }, + { + "start": 38950.5, + "end": 38951.08, + "probability": 0.6356 + }, + { + "start": 38951.78, + "end": 38952.92, + "probability": 0.7077 + }, + { + "start": 38954.12, + "end": 38955.46, + "probability": 0.7359 + }, + { + "start": 38956.02, + "end": 38957.52, + "probability": 0.3706 + }, + { + "start": 38958.1, + "end": 38959.68, + "probability": 0.9861 + }, + { + "start": 38960.3, + "end": 38963.1, + "probability": 0.7272 + }, + { + "start": 38963.9, + "end": 38964.06, + "probability": 0.3226 + }, + { + "start": 38964.1, + "end": 38966.72, + "probability": 0.6229 + }, + { + "start": 38967.8, + "end": 38969.38, + "probability": 0.8856 + }, + { + "start": 38970.3, + "end": 38972.98, + "probability": 0.7689 + }, + { + "start": 38974.04, + "end": 38976.44, + "probability": 0.9966 + }, + { + "start": 38976.46, + "end": 38978.18, + "probability": 0.7862 + }, + { + "start": 38979.02, + "end": 38980.06, + "probability": 0.5318 + }, + { + "start": 38980.84, + "end": 38981.3, + "probability": 0.7493 + }, + { + "start": 38982.34, + "end": 38983.49, + "probability": 0.8042 + }, + { + "start": 38984.82, + "end": 38988.5, + "probability": 0.8351 + }, + { + "start": 38989.54, + "end": 38990.52, + "probability": 0.9718 + }, + { + "start": 38991.6, + "end": 38993.67, + "probability": 0.6934 + }, + { + "start": 38996.84, + "end": 38996.84, + "probability": 0.039 + }, + { + "start": 38996.84, + "end": 38999.6, + "probability": 0.5394 + }, + { + "start": 38999.68, + "end": 39000.66, + "probability": 0.9006 + }, + { + "start": 39001.16, + "end": 39003.42, + "probability": 0.79 + }, + { + "start": 39004.36, + "end": 39005.02, + "probability": 0.936 + }, + { + "start": 39007.02, + "end": 39008.6, + "probability": 0.9613 + }, + { + "start": 39008.96, + "end": 39010.86, + "probability": 0.5701 + }, + { + "start": 39011.96, + "end": 39015.48, + "probability": 0.6989 + }, + { + "start": 39016.04, + "end": 39017.5, + "probability": 0.558 + }, + { + "start": 39017.64, + "end": 39018.76, + "probability": 0.7784 + }, + { + "start": 39020.08, + "end": 39021.08, + "probability": 0.7999 + }, + { + "start": 39022.3, + "end": 39023.26, + "probability": 0.9849 + }, + { + "start": 39024.72, + "end": 39025.34, + "probability": 0.8064 + }, + { + "start": 39025.66, + "end": 39027.7, + "probability": 0.9 + }, + { + "start": 39029.1, + "end": 39030.86, + "probability": 0.9841 + }, + { + "start": 39031.14, + "end": 39032.62, + "probability": 0.8908 + }, + { + "start": 39033.98, + "end": 39036.72, + "probability": 0.9252 + }, + { + "start": 39037.0, + "end": 39038.6, + "probability": 0.9948 + }, + { + "start": 39039.54, + "end": 39042.82, + "probability": 0.999 + }, + { + "start": 39042.82, + "end": 39045.9, + "probability": 0.9926 + }, + { + "start": 39046.82, + "end": 39048.28, + "probability": 0.8236 + }, + { + "start": 39049.66, + "end": 39050.44, + "probability": 0.7333 + }, + { + "start": 39050.81, + "end": 39053.4, + "probability": 0.7992 + }, + { + "start": 39053.56, + "end": 39056.37, + "probability": 0.9174 + }, + { + "start": 39056.92, + "end": 39057.66, + "probability": 0.2911 + }, + { + "start": 39057.8, + "end": 39059.0, + "probability": 0.7764 + }, + { + "start": 39059.24, + "end": 39062.48, + "probability": 0.6553 + }, + { + "start": 39063.3, + "end": 39064.44, + "probability": 0.9607 + }, + { + "start": 39065.54, + "end": 39066.2, + "probability": 0.9136 + }, + { + "start": 39066.6, + "end": 39070.64, + "probability": 0.933 + }, + { + "start": 39071.3, + "end": 39078.1, + "probability": 0.9846 + }, + { + "start": 39078.52, + "end": 39079.56, + "probability": 0.6621 + }, + { + "start": 39081.66, + "end": 39084.44, + "probability": 0.4929 + }, + { + "start": 39088.88, + "end": 39089.68, + "probability": 0.3822 + }, + { + "start": 39091.1, + "end": 39092.55, + "probability": 0.2289 + }, + { + "start": 39109.7, + "end": 39111.2, + "probability": 0.2338 + }, + { + "start": 39112.02, + "end": 39113.28, + "probability": 0.5618 + }, + { + "start": 39114.54, + "end": 39120.76, + "probability": 0.9668 + }, + { + "start": 39122.9, + "end": 39125.52, + "probability": 0.4928 + }, + { + "start": 39127.38, + "end": 39128.46, + "probability": 0.8842 + }, + { + "start": 39129.2, + "end": 39130.6, + "probability": 0.9291 + }, + { + "start": 39131.58, + "end": 39133.55, + "probability": 0.3856 + }, + { + "start": 39134.88, + "end": 39137.26, + "probability": 0.8037 + }, + { + "start": 39137.84, + "end": 39138.34, + "probability": 0.4966 + } + ], + "segments_count": 14248, + "words_count": 69064, + "avg_words_per_segment": 4.8473, + "avg_segment_duration": 1.986, + "avg_words_per_minute": 105.5145, + "plenum_id": "18759", + "duration": 39272.7, + "title": null, + "plenum_date": "2012-01-25" +} \ No newline at end of file