diff --git "a/2852/metadata.json" "b/2852/metadata.json" new file mode 100644--- /dev/null +++ "b/2852/metadata.json" @@ -0,0 +1,14427 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "2852", + "quality_score": 0.9115, + "per_segment_quality_scores": [ + { + "start": 115.0, + "end": 115.0, + "probability": 0.0 + }, + { + "start": 115.0, + "end": 115.0, + "probability": 0.0 + }, + { + "start": 115.0, + "end": 115.0, + "probability": 0.0 + }, + { + "start": 115.0, + "end": 115.0, + "probability": 0.0 + }, + { + "start": 115.0, + "end": 115.0, + "probability": 0.0 + }, + { + "start": 115.08, + "end": 117.16, + "probability": 0.3143 + }, + { + "start": 117.66, + "end": 122.64, + "probability": 0.5072 + }, + { + "start": 123.52, + "end": 126.73, + "probability": 0.8198 + }, + { + "start": 127.38, + "end": 130.62, + "probability": 0.9927 + }, + { + "start": 132.94, + "end": 137.0, + "probability": 0.9515 + }, + { + "start": 137.6, + "end": 140.54, + "probability": 0.8037 + }, + { + "start": 141.28, + "end": 144.23, + "probability": 0.9788 + }, + { + "start": 144.86, + "end": 145.28, + "probability": 0.7965 + }, + { + "start": 146.96, + "end": 152.27, + "probability": 0.9871 + }, + { + "start": 152.56, + "end": 154.66, + "probability": 0.9928 + }, + { + "start": 155.52, + "end": 157.06, + "probability": 0.8977 + }, + { + "start": 163.86, + "end": 165.48, + "probability": 0.6212 + }, + { + "start": 166.6, + "end": 167.62, + "probability": 0.8976 + }, + { + "start": 167.86, + "end": 170.9, + "probability": 0.813 + }, + { + "start": 171.76, + "end": 172.98, + "probability": 0.7856 + }, + { + "start": 173.7, + "end": 175.4, + "probability": 0.9493 + }, + { + "start": 176.16, + "end": 180.32, + "probability": 0.875 + }, + { + "start": 180.82, + "end": 183.0, + "probability": 0.9741 + }, + { + "start": 183.72, + "end": 185.7, + "probability": 0.976 + }, + { + "start": 186.5, + "end": 189.22, + "probability": 0.9898 + }, + { + "start": 189.3, + "end": 193.98, + "probability": 0.8529 + }, + { + "start": 194.62, + "end": 198.36, + "probability": 0.9008 + }, + { + "start": 199.1, + "end": 200.1, + "probability": 0.8461 + }, + { + "start": 200.3, + "end": 201.42, + "probability": 0.9941 + }, + { + "start": 201.5, + "end": 202.44, + "probability": 0.9755 + }, + { + "start": 202.86, + "end": 203.52, + "probability": 0.9368 + }, + { + "start": 203.98, + "end": 205.84, + "probability": 0.9775 + }, + { + "start": 206.4, + "end": 208.02, + "probability": 0.9755 + }, + { + "start": 208.46, + "end": 210.38, + "probability": 0.9966 + }, + { + "start": 210.42, + "end": 211.14, + "probability": 0.9648 + }, + { + "start": 211.38, + "end": 211.86, + "probability": 0.6499 + }, + { + "start": 211.96, + "end": 215.63, + "probability": 0.9941 + }, + { + "start": 216.1, + "end": 217.92, + "probability": 0.9954 + }, + { + "start": 218.28, + "end": 220.2, + "probability": 0.9719 + }, + { + "start": 221.06, + "end": 224.56, + "probability": 0.9927 + }, + { + "start": 224.76, + "end": 226.36, + "probability": 0.9241 + }, + { + "start": 226.76, + "end": 231.34, + "probability": 0.9982 + }, + { + "start": 231.56, + "end": 234.44, + "probability": 0.9694 + }, + { + "start": 234.6, + "end": 236.46, + "probability": 0.9824 + }, + { + "start": 237.48, + "end": 241.9, + "probability": 0.9967 + }, + { + "start": 241.92, + "end": 243.32, + "probability": 0.6377 + }, + { + "start": 243.78, + "end": 244.52, + "probability": 0.6509 + }, + { + "start": 245.06, + "end": 246.44, + "probability": 0.9086 + }, + { + "start": 246.56, + "end": 248.12, + "probability": 0.984 + }, + { + "start": 248.42, + "end": 248.66, + "probability": 0.7508 + }, + { + "start": 249.02, + "end": 249.64, + "probability": 0.607 + }, + { + "start": 249.86, + "end": 252.76, + "probability": 0.9099 + }, + { + "start": 253.24, + "end": 254.46, + "probability": 0.1579 + }, + { + "start": 256.12, + "end": 261.49, + "probability": 0.6961 + }, + { + "start": 262.16, + "end": 268.28, + "probability": 0.9423 + }, + { + "start": 269.54, + "end": 272.8, + "probability": 0.734 + }, + { + "start": 273.56, + "end": 274.61, + "probability": 0.9858 + }, + { + "start": 274.97, + "end": 281.4, + "probability": 0.9671 + }, + { + "start": 281.48, + "end": 282.52, + "probability": 0.9899 + }, + { + "start": 283.26, + "end": 287.7, + "probability": 0.9502 + }, + { + "start": 289.76, + "end": 291.18, + "probability": 0.8308 + }, + { + "start": 291.94, + "end": 292.53, + "probability": 0.7753 + }, + { + "start": 293.02, + "end": 294.4, + "probability": 0.7434 + }, + { + "start": 294.52, + "end": 296.64, + "probability": 0.8046 + }, + { + "start": 297.44, + "end": 302.4, + "probability": 0.8257 + }, + { + "start": 303.16, + "end": 304.8, + "probability": 0.1503 + }, + { + "start": 305.44, + "end": 307.94, + "probability": 0.8551 + }, + { + "start": 308.58, + "end": 309.38, + "probability": 0.9912 + }, + { + "start": 309.96, + "end": 312.38, + "probability": 0.9456 + }, + { + "start": 313.8, + "end": 318.85, + "probability": 0.8042 + }, + { + "start": 319.32, + "end": 320.2, + "probability": 0.1126 + }, + { + "start": 321.6, + "end": 326.52, + "probability": 0.9849 + }, + { + "start": 326.52, + "end": 328.37, + "probability": 0.9377 + }, + { + "start": 329.86, + "end": 333.44, + "probability": 0.9268 + }, + { + "start": 334.5, + "end": 336.68, + "probability": 0.6692 + }, + { + "start": 337.58, + "end": 337.92, + "probability": 0.4278 + }, + { + "start": 337.92, + "end": 340.16, + "probability": 0.8855 + }, + { + "start": 341.8, + "end": 343.42, + "probability": 0.6624 + }, + { + "start": 344.48, + "end": 348.8, + "probability": 0.8958 + }, + { + "start": 349.88, + "end": 351.68, + "probability": 0.9954 + }, + { + "start": 352.24, + "end": 352.44, + "probability": 0.9576 + }, + { + "start": 354.08, + "end": 357.58, + "probability": 0.8833 + }, + { + "start": 358.1, + "end": 366.34, + "probability": 0.8377 + }, + { + "start": 366.68, + "end": 367.36, + "probability": 0.5088 + }, + { + "start": 367.96, + "end": 368.76, + "probability": 0.846 + }, + { + "start": 370.08, + "end": 373.2, + "probability": 0.8846 + }, + { + "start": 374.08, + "end": 377.98, + "probability": 0.9129 + }, + { + "start": 378.42, + "end": 382.24, + "probability": 0.9505 + }, + { + "start": 382.78, + "end": 383.52, + "probability": 0.9628 + }, + { + "start": 384.14, + "end": 385.4, + "probability": 0.9925 + }, + { + "start": 386.48, + "end": 388.7, + "probability": 0.9922 + }, + { + "start": 389.66, + "end": 392.24, + "probability": 0.9979 + }, + { + "start": 392.24, + "end": 396.04, + "probability": 0.9261 + }, + { + "start": 398.36, + "end": 400.0, + "probability": 0.6656 + }, + { + "start": 400.38, + "end": 406.14, + "probability": 0.9054 + }, + { + "start": 406.8, + "end": 409.28, + "probability": 0.896 + }, + { + "start": 409.9, + "end": 411.12, + "probability": 0.8951 + }, + { + "start": 411.96, + "end": 414.4, + "probability": 0.9497 + }, + { + "start": 414.98, + "end": 415.64, + "probability": 0.9666 + }, + { + "start": 416.16, + "end": 416.94, + "probability": 0.9561 + }, + { + "start": 417.6, + "end": 417.9, + "probability": 0.6402 + }, + { + "start": 418.24, + "end": 419.96, + "probability": 0.5324 + }, + { + "start": 420.4, + "end": 423.2, + "probability": 0.9021 + }, + { + "start": 423.8, + "end": 426.86, + "probability": 0.7362 + }, + { + "start": 430.2, + "end": 431.16, + "probability": 0.7754 + }, + { + "start": 431.3, + "end": 432.3, + "probability": 0.7164 + }, + { + "start": 432.52, + "end": 434.63, + "probability": 0.969 + }, + { + "start": 435.12, + "end": 438.96, + "probability": 0.6901 + }, + { + "start": 438.96, + "end": 442.86, + "probability": 0.8424 + }, + { + "start": 442.94, + "end": 444.86, + "probability": 0.9414 + }, + { + "start": 444.88, + "end": 447.6, + "probability": 0.9521 + }, + { + "start": 447.6, + "end": 449.74, + "probability": 0.9979 + }, + { + "start": 450.56, + "end": 452.34, + "probability": 0.9658 + }, + { + "start": 452.4, + "end": 454.54, + "probability": 0.8488 + }, + { + "start": 454.96, + "end": 457.28, + "probability": 0.7933 + }, + { + "start": 457.28, + "end": 460.2, + "probability": 0.9924 + }, + { + "start": 460.62, + "end": 462.88, + "probability": 0.7962 + }, + { + "start": 463.16, + "end": 465.08, + "probability": 0.9611 + }, + { + "start": 467.2, + "end": 467.66, + "probability": 0.3776 + }, + { + "start": 467.89, + "end": 469.22, + "probability": 0.6942 + }, + { + "start": 469.3, + "end": 472.32, + "probability": 0.9559 + }, + { + "start": 472.7, + "end": 474.18, + "probability": 0.8159 + }, + { + "start": 474.24, + "end": 475.18, + "probability": 0.9929 + }, + { + "start": 475.24, + "end": 477.42, + "probability": 0.9078 + }, + { + "start": 477.86, + "end": 479.7, + "probability": 0.8291 + }, + { + "start": 480.52, + "end": 481.57, + "probability": 0.9816 + }, + { + "start": 481.7, + "end": 484.98, + "probability": 0.7816 + }, + { + "start": 485.1, + "end": 489.22, + "probability": 0.9912 + }, + { + "start": 489.32, + "end": 491.06, + "probability": 0.7271 + }, + { + "start": 491.48, + "end": 494.78, + "probability": 0.998 + }, + { + "start": 494.82, + "end": 496.08, + "probability": 0.9676 + }, + { + "start": 496.16, + "end": 497.92, + "probability": 0.9866 + }, + { + "start": 498.44, + "end": 499.52, + "probability": 0.971 + }, + { + "start": 500.1, + "end": 501.78, + "probability": 0.9914 + }, + { + "start": 502.16, + "end": 503.4, + "probability": 0.9779 + }, + { + "start": 503.72, + "end": 505.8, + "probability": 0.989 + }, + { + "start": 505.8, + "end": 508.84, + "probability": 0.5958 + }, + { + "start": 509.02, + "end": 511.04, + "probability": 0.5643 + }, + { + "start": 511.12, + "end": 512.29, + "probability": 0.9937 + }, + { + "start": 513.16, + "end": 513.46, + "probability": 0.7256 + }, + { + "start": 513.64, + "end": 515.2, + "probability": 0.9926 + }, + { + "start": 516.08, + "end": 516.28, + "probability": 0.6215 + }, + { + "start": 518.06, + "end": 520.02, + "probability": 0.7946 + }, + { + "start": 520.54, + "end": 522.54, + "probability": 0.9574 + }, + { + "start": 523.1, + "end": 524.02, + "probability": 0.7305 + }, + { + "start": 524.48, + "end": 525.04, + "probability": 0.9729 + }, + { + "start": 525.2, + "end": 530.62, + "probability": 0.8293 + }, + { + "start": 532.1, + "end": 534.59, + "probability": 0.4702 + }, + { + "start": 535.26, + "end": 535.72, + "probability": 0.5265 + }, + { + "start": 536.5, + "end": 537.14, + "probability": 0.6868 + }, + { + "start": 538.28, + "end": 538.74, + "probability": 0.676 + }, + { + "start": 539.0, + "end": 539.38, + "probability": 0.7092 + }, + { + "start": 539.74, + "end": 540.1, + "probability": 0.4851 + }, + { + "start": 540.28, + "end": 541.57, + "probability": 0.7681 + }, + { + "start": 544.62, + "end": 545.74, + "probability": 0.6995 + }, + { + "start": 545.98, + "end": 546.98, + "probability": 0.7638 + }, + { + "start": 547.42, + "end": 550.45, + "probability": 0.7993 + }, + { + "start": 551.6, + "end": 553.5, + "probability": 0.9731 + }, + { + "start": 555.36, + "end": 559.18, + "probability": 0.7496 + }, + { + "start": 559.74, + "end": 562.18, + "probability": 0.892 + }, + { + "start": 562.58, + "end": 566.32, + "probability": 0.9255 + }, + { + "start": 567.12, + "end": 570.3, + "probability": 0.5025 + }, + { + "start": 570.52, + "end": 571.18, + "probability": 0.981 + }, + { + "start": 572.32, + "end": 574.34, + "probability": 0.7134 + }, + { + "start": 575.1, + "end": 578.64, + "probability": 0.9751 + }, + { + "start": 579.5, + "end": 582.38, + "probability": 0.9541 + }, + { + "start": 582.48, + "end": 589.16, + "probability": 0.9905 + }, + { + "start": 589.38, + "end": 593.12, + "probability": 0.9938 + }, + { + "start": 594.2, + "end": 597.4, + "probability": 0.8957 + }, + { + "start": 597.92, + "end": 598.62, + "probability": 0.8179 + }, + { + "start": 599.7, + "end": 603.59, + "probability": 0.9878 + }, + { + "start": 604.06, + "end": 607.02, + "probability": 0.9916 + }, + { + "start": 607.02, + "end": 607.68, + "probability": 0.2474 + }, + { + "start": 607.74, + "end": 608.3, + "probability": 0.7519 + }, + { + "start": 608.9, + "end": 610.49, + "probability": 0.6939 + }, + { + "start": 611.62, + "end": 612.82, + "probability": 0.7181 + }, + { + "start": 613.34, + "end": 616.98, + "probability": 0.9009 + }, + { + "start": 619.82, + "end": 620.56, + "probability": 0.7963 + }, + { + "start": 621.06, + "end": 621.42, + "probability": 0.4168 + }, + { + "start": 621.5, + "end": 622.6, + "probability": 0.7946 + }, + { + "start": 622.7, + "end": 623.78, + "probability": 0.9102 + }, + { + "start": 624.66, + "end": 626.22, + "probability": 0.9307 + }, + { + "start": 626.32, + "end": 627.02, + "probability": 0.8366 + }, + { + "start": 627.06, + "end": 628.4, + "probability": 0.939 + }, + { + "start": 628.4, + "end": 629.74, + "probability": 0.9496 + }, + { + "start": 629.84, + "end": 630.78, + "probability": 0.686 + }, + { + "start": 631.42, + "end": 633.76, + "probability": 0.9863 + }, + { + "start": 637.06, + "end": 637.5, + "probability": 0.4446 + }, + { + "start": 638.02, + "end": 639.18, + "probability": 0.8273 + }, + { + "start": 639.24, + "end": 641.46, + "probability": 0.649 + }, + { + "start": 643.2, + "end": 648.04, + "probability": 0.9953 + }, + { + "start": 648.84, + "end": 649.92, + "probability": 0.9071 + }, + { + "start": 650.22, + "end": 651.7, + "probability": 0.9688 + }, + { + "start": 652.16, + "end": 653.02, + "probability": 0.8964 + }, + { + "start": 653.68, + "end": 657.09, + "probability": 0.8718 + }, + { + "start": 658.22, + "end": 660.22, + "probability": 0.3955 + }, + { + "start": 660.86, + "end": 662.7, + "probability": 0.9764 + }, + { + "start": 662.92, + "end": 664.3, + "probability": 0.6238 + }, + { + "start": 665.08, + "end": 665.54, + "probability": 0.446 + }, + { + "start": 666.92, + "end": 668.56, + "probability": 0.1411 + }, + { + "start": 669.28, + "end": 677.54, + "probability": 0.772 + }, + { + "start": 677.7, + "end": 680.34, + "probability": 0.9281 + }, + { + "start": 680.7, + "end": 681.68, + "probability": 0.9206 + }, + { + "start": 681.94, + "end": 685.78, + "probability": 0.8882 + }, + { + "start": 685.82, + "end": 687.44, + "probability": 0.9652 + }, + { + "start": 687.52, + "end": 690.18, + "probability": 0.9971 + }, + { + "start": 690.24, + "end": 692.28, + "probability": 0.797 + }, + { + "start": 693.08, + "end": 694.0, + "probability": 0.7049 + }, + { + "start": 694.7, + "end": 696.28, + "probability": 0.994 + }, + { + "start": 697.0, + "end": 700.14, + "probability": 0.7318 + }, + { + "start": 700.7, + "end": 702.28, + "probability": 0.9573 + }, + { + "start": 702.36, + "end": 702.58, + "probability": 0.8881 + }, + { + "start": 702.76, + "end": 703.76, + "probability": 0.9709 + }, + { + "start": 704.44, + "end": 705.1, + "probability": 0.6041 + }, + { + "start": 706.06, + "end": 708.74, + "probability": 0.8823 + }, + { + "start": 709.02, + "end": 711.02, + "probability": 0.9862 + }, + { + "start": 711.72, + "end": 713.82, + "probability": 0.9927 + }, + { + "start": 714.02, + "end": 716.18, + "probability": 0.9382 + }, + { + "start": 717.12, + "end": 718.44, + "probability": 0.9364 + }, + { + "start": 719.48, + "end": 720.66, + "probability": 0.972 + }, + { + "start": 721.22, + "end": 724.26, + "probability": 0.8006 + }, + { + "start": 724.7, + "end": 725.78, + "probability": 0.7538 + }, + { + "start": 726.38, + "end": 730.26, + "probability": 0.8034 + }, + { + "start": 730.56, + "end": 733.18, + "probability": 0.9832 + }, + { + "start": 733.52, + "end": 733.84, + "probability": 0.9686 + }, + { + "start": 734.62, + "end": 734.9, + "probability": 0.9128 + }, + { + "start": 735.96, + "end": 736.36, + "probability": 0.8486 + }, + { + "start": 738.23, + "end": 739.59, + "probability": 0.3959 + }, + { + "start": 742.1, + "end": 742.72, + "probability": 0.7524 + }, + { + "start": 743.56, + "end": 747.62, + "probability": 0.9626 + }, + { + "start": 747.76, + "end": 748.46, + "probability": 0.7159 + }, + { + "start": 749.34, + "end": 753.26, + "probability": 0.9937 + }, + { + "start": 755.14, + "end": 757.02, + "probability": 0.6935 + }, + { + "start": 758.36, + "end": 762.96, + "probability": 0.9621 + }, + { + "start": 763.7, + "end": 765.16, + "probability": 0.7746 + }, + { + "start": 765.92, + "end": 767.96, + "probability": 0.8716 + }, + { + "start": 768.9, + "end": 770.0, + "probability": 0.6957 + }, + { + "start": 771.0, + "end": 771.82, + "probability": 0.7498 + }, + { + "start": 772.6, + "end": 775.18, + "probability": 0.9955 + }, + { + "start": 775.88, + "end": 779.24, + "probability": 0.9966 + }, + { + "start": 779.8, + "end": 780.24, + "probability": 0.9807 + }, + { + "start": 780.98, + "end": 782.24, + "probability": 0.9815 + }, + { + "start": 783.1, + "end": 783.7, + "probability": 0.3535 + }, + { + "start": 791.86, + "end": 793.06, + "probability": 0.768 + }, + { + "start": 801.72, + "end": 802.38, + "probability": 0.6142 + }, + { + "start": 803.68, + "end": 807.94, + "probability": 0.9915 + }, + { + "start": 809.16, + "end": 810.26, + "probability": 0.9454 + }, + { + "start": 811.24, + "end": 812.94, + "probability": 0.9985 + }, + { + "start": 814.12, + "end": 817.38, + "probability": 0.9782 + }, + { + "start": 818.42, + "end": 820.16, + "probability": 0.9696 + }, + { + "start": 821.08, + "end": 823.54, + "probability": 0.7436 + }, + { + "start": 824.36, + "end": 827.6, + "probability": 0.6883 + }, + { + "start": 828.38, + "end": 829.1, + "probability": 0.868 + }, + { + "start": 829.26, + "end": 833.47, + "probability": 0.9625 + }, + { + "start": 835.12, + "end": 835.92, + "probability": 0.979 + }, + { + "start": 836.64, + "end": 842.72, + "probability": 0.9873 + }, + { + "start": 842.82, + "end": 843.63, + "probability": 0.9978 + }, + { + "start": 844.9, + "end": 847.32, + "probability": 0.9272 + }, + { + "start": 847.92, + "end": 851.42, + "probability": 0.8628 + }, + { + "start": 852.76, + "end": 853.9, + "probability": 0.912 + }, + { + "start": 854.32, + "end": 855.28, + "probability": 0.9934 + }, + { + "start": 856.86, + "end": 859.4, + "probability": 0.9546 + }, + { + "start": 859.52, + "end": 861.92, + "probability": 0.9636 + }, + { + "start": 862.22, + "end": 864.02, + "probability": 0.475 + }, + { + "start": 867.12, + "end": 869.22, + "probability": 0.7288 + }, + { + "start": 869.9, + "end": 871.4, + "probability": 0.9919 + }, + { + "start": 872.28, + "end": 872.94, + "probability": 0.918 + }, + { + "start": 873.38, + "end": 874.54, + "probability": 0.0234 + }, + { + "start": 874.54, + "end": 877.66, + "probability": 0.5603 + }, + { + "start": 877.82, + "end": 879.88, + "probability": 0.9102 + }, + { + "start": 880.54, + "end": 883.28, + "probability": 0.7435 + }, + { + "start": 884.0, + "end": 888.02, + "probability": 0.9887 + }, + { + "start": 888.6, + "end": 893.44, + "probability": 0.7842 + }, + { + "start": 893.68, + "end": 895.32, + "probability": 0.4438 + }, + { + "start": 895.46, + "end": 895.74, + "probability": 0.1299 + }, + { + "start": 897.5, + "end": 900.12, + "probability": 0.9609 + }, + { + "start": 900.32, + "end": 901.52, + "probability": 0.4021 + }, + { + "start": 901.92, + "end": 902.46, + "probability": 0.9269 + }, + { + "start": 903.12, + "end": 904.53, + "probability": 0.5773 + }, + { + "start": 905.46, + "end": 908.05, + "probability": 0.5971 + }, + { + "start": 908.3, + "end": 910.66, + "probability": 0.8592 + }, + { + "start": 911.4, + "end": 915.02, + "probability": 0.9737 + }, + { + "start": 915.66, + "end": 918.3, + "probability": 0.5315 + }, + { + "start": 919.46, + "end": 920.76, + "probability": 0.9312 + }, + { + "start": 921.52, + "end": 925.08, + "probability": 0.6092 + }, + { + "start": 925.58, + "end": 929.72, + "probability": 0.8072 + }, + { + "start": 930.78, + "end": 932.05, + "probability": 0.7905 + }, + { + "start": 932.78, + "end": 936.02, + "probability": 0.5774 + }, + { + "start": 936.86, + "end": 938.98, + "probability": 0.9867 + }, + { + "start": 940.36, + "end": 942.74, + "probability": 0.9419 + }, + { + "start": 942.88, + "end": 943.64, + "probability": 0.7543 + }, + { + "start": 943.74, + "end": 944.08, + "probability": 0.5189 + }, + { + "start": 944.08, + "end": 944.08, + "probability": 0.0884 + }, + { + "start": 944.2, + "end": 945.14, + "probability": 0.3738 + }, + { + "start": 945.48, + "end": 945.55, + "probability": 0.4969 + }, + { + "start": 945.88, + "end": 949.16, + "probability": 0.9175 + }, + { + "start": 949.72, + "end": 950.24, + "probability": 0.8821 + }, + { + "start": 950.88, + "end": 954.84, + "probability": 0.9938 + }, + { + "start": 955.26, + "end": 955.52, + "probability": 0.04 + }, + { + "start": 956.42, + "end": 957.7, + "probability": 0.9951 + }, + { + "start": 958.26, + "end": 959.12, + "probability": 0.9989 + }, + { + "start": 959.64, + "end": 962.86, + "probability": 0.9979 + }, + { + "start": 963.2, + "end": 963.44, + "probability": 0.5012 + }, + { + "start": 963.62, + "end": 964.32, + "probability": 0.7201 + }, + { + "start": 964.32, + "end": 964.8, + "probability": 0.739 + }, + { + "start": 965.32, + "end": 965.58, + "probability": 0.8186 + }, + { + "start": 967.5, + "end": 969.06, + "probability": 0.6217 + }, + { + "start": 969.66, + "end": 974.58, + "probability": 0.9694 + }, + { + "start": 975.08, + "end": 977.81, + "probability": 0.9946 + }, + { + "start": 978.47, + "end": 979.34, + "probability": 0.9482 + }, + { + "start": 980.02, + "end": 981.8, + "probability": 0.3566 + }, + { + "start": 982.62, + "end": 985.1, + "probability": 0.5005 + }, + { + "start": 985.16, + "end": 987.0, + "probability": 0.7185 + }, + { + "start": 987.04, + "end": 988.76, + "probability": 0.7188 + }, + { + "start": 993.84, + "end": 995.56, + "probability": 0.7243 + }, + { + "start": 996.8, + "end": 1001.84, + "probability": 0.9604 + }, + { + "start": 1002.94, + "end": 1006.32, + "probability": 0.9003 + }, + { + "start": 1007.28, + "end": 1010.55, + "probability": 0.804 + }, + { + "start": 1011.52, + "end": 1014.14, + "probability": 0.4263 + }, + { + "start": 1014.14, + "end": 1016.89, + "probability": 0.3019 + }, + { + "start": 1017.66, + "end": 1020.9, + "probability": 0.6121 + }, + { + "start": 1021.58, + "end": 1022.2, + "probability": 0.1356 + }, + { + "start": 1022.2, + "end": 1022.26, + "probability": 0.4856 + }, + { + "start": 1022.38, + "end": 1024.7, + "probability": 0.9658 + }, + { + "start": 1024.86, + "end": 1025.69, + "probability": 0.8604 + }, + { + "start": 1025.94, + "end": 1027.34, + "probability": 0.5612 + }, + { + "start": 1027.48, + "end": 1027.82, + "probability": 0.8409 + }, + { + "start": 1027.92, + "end": 1034.88, + "probability": 0.9644 + }, + { + "start": 1036.06, + "end": 1038.96, + "probability": 0.3209 + }, + { + "start": 1040.1, + "end": 1041.42, + "probability": 0.8643 + }, + { + "start": 1042.16, + "end": 1044.0, + "probability": 0.5672 + }, + { + "start": 1044.63, + "end": 1047.76, + "probability": 0.9889 + }, + { + "start": 1048.28, + "end": 1048.89, + "probability": 0.6892 + }, + { + "start": 1049.08, + "end": 1049.56, + "probability": 0.7725 + }, + { + "start": 1050.0, + "end": 1052.64, + "probability": 0.8005 + }, + { + "start": 1054.84, + "end": 1056.6, + "probability": 0.9028 + }, + { + "start": 1057.72, + "end": 1058.72, + "probability": 0.7673 + }, + { + "start": 1059.56, + "end": 1062.2, + "probability": 0.8796 + }, + { + "start": 1063.02, + "end": 1064.18, + "probability": 0.8257 + }, + { + "start": 1064.52, + "end": 1065.56, + "probability": 0.7483 + }, + { + "start": 1065.66, + "end": 1066.56, + "probability": 0.7725 + }, + { + "start": 1067.2, + "end": 1074.48, + "probability": 0.706 + }, + { + "start": 1075.1, + "end": 1079.78, + "probability": 0.951 + }, + { + "start": 1080.72, + "end": 1082.38, + "probability": 0.9933 + }, + { + "start": 1082.74, + "end": 1083.62, + "probability": 0.8295 + }, + { + "start": 1084.02, + "end": 1084.88, + "probability": 0.9072 + }, + { + "start": 1084.96, + "end": 1085.78, + "probability": 0.7797 + }, + { + "start": 1089.9, + "end": 1093.02, + "probability": 0.8572 + }, + { + "start": 1094.1, + "end": 1098.44, + "probability": 0.9961 + }, + { + "start": 1099.1, + "end": 1100.1, + "probability": 0.908 + }, + { + "start": 1102.92, + "end": 1105.26, + "probability": 0.9363 + }, + { + "start": 1105.48, + "end": 1106.04, + "probability": 0.9753 + }, + { + "start": 1106.78, + "end": 1108.58, + "probability": 0.9152 + }, + { + "start": 1109.3, + "end": 1112.26, + "probability": 0.7773 + }, + { + "start": 1112.56, + "end": 1115.02, + "probability": 0.888 + }, + { + "start": 1115.62, + "end": 1120.88, + "probability": 0.8913 + }, + { + "start": 1121.6, + "end": 1129.14, + "probability": 0.7774 + }, + { + "start": 1129.32, + "end": 1132.38, + "probability": 0.9268 + }, + { + "start": 1133.24, + "end": 1136.0, + "probability": 0.3396 + }, + { + "start": 1136.02, + "end": 1138.06, + "probability": 0.5412 + }, + { + "start": 1138.24, + "end": 1141.74, + "probability": 0.7971 + }, + { + "start": 1142.04, + "end": 1145.22, + "probability": 0.7814 + }, + { + "start": 1145.64, + "end": 1146.58, + "probability": 0.9365 + }, + { + "start": 1146.88, + "end": 1148.08, + "probability": 0.5427 + }, + { + "start": 1148.4, + "end": 1150.96, + "probability": 0.7966 + }, + { + "start": 1151.92, + "end": 1152.82, + "probability": 0.6289 + }, + { + "start": 1153.46, + "end": 1155.9, + "probability": 0.755 + }, + { + "start": 1156.32, + "end": 1157.76, + "probability": 0.8477 + }, + { + "start": 1158.95, + "end": 1161.2, + "probability": 0.6633 + }, + { + "start": 1161.86, + "end": 1162.6, + "probability": 0.7891 + }, + { + "start": 1163.46, + "end": 1165.58, + "probability": 0.9945 + }, + { + "start": 1165.86, + "end": 1166.24, + "probability": 0.77 + }, + { + "start": 1167.2, + "end": 1170.86, + "probability": 0.6748 + }, + { + "start": 1171.42, + "end": 1172.92, + "probability": 0.8815 + }, + { + "start": 1173.62, + "end": 1174.56, + "probability": 0.8939 + }, + { + "start": 1174.68, + "end": 1176.88, + "probability": 0.7081 + }, + { + "start": 1177.28, + "end": 1178.12, + "probability": 0.9917 + }, + { + "start": 1178.96, + "end": 1179.76, + "probability": 0.4343 + }, + { + "start": 1179.98, + "end": 1182.0, + "probability": 0.8973 + }, + { + "start": 1182.4, + "end": 1184.8, + "probability": 0.937 + }, + { + "start": 1185.18, + "end": 1186.0, + "probability": 0.9766 + }, + { + "start": 1186.54, + "end": 1187.2, + "probability": 0.9689 + }, + { + "start": 1187.98, + "end": 1190.7, + "probability": 0.9807 + }, + { + "start": 1190.84, + "end": 1193.22, + "probability": 0.6671 + }, + { + "start": 1194.55, + "end": 1196.46, + "probability": 0.8027 + }, + { + "start": 1196.88, + "end": 1202.42, + "probability": 0.9779 + }, + { + "start": 1203.66, + "end": 1205.18, + "probability": 0.3057 + }, + { + "start": 1205.26, + "end": 1207.52, + "probability": 0.4901 + }, + { + "start": 1208.0, + "end": 1210.32, + "probability": 0.9985 + }, + { + "start": 1210.82, + "end": 1213.56, + "probability": 0.9731 + }, + { + "start": 1213.86, + "end": 1214.4, + "probability": 0.2052 + }, + { + "start": 1214.6, + "end": 1214.88, + "probability": 0.6095 + }, + { + "start": 1215.1, + "end": 1215.42, + "probability": 0.2036 + }, + { + "start": 1215.42, + "end": 1218.32, + "probability": 0.7444 + }, + { + "start": 1218.32, + "end": 1222.88, + "probability": 0.9723 + }, + { + "start": 1223.0, + "end": 1224.44, + "probability": 0.6382 + }, + { + "start": 1224.88, + "end": 1225.94, + "probability": 0.9309 + }, + { + "start": 1226.46, + "end": 1228.68, + "probability": 0.9543 + }, + { + "start": 1228.74, + "end": 1231.3, + "probability": 0.9645 + }, + { + "start": 1232.42, + "end": 1234.38, + "probability": 0.9225 + }, + { + "start": 1234.92, + "end": 1237.72, + "probability": 0.9796 + }, + { + "start": 1237.86, + "end": 1239.44, + "probability": 0.964 + }, + { + "start": 1240.3, + "end": 1240.6, + "probability": 0.2916 + }, + { + "start": 1240.62, + "end": 1240.74, + "probability": 0.6803 + }, + { + "start": 1240.88, + "end": 1242.62, + "probability": 0.796 + }, + { + "start": 1242.8, + "end": 1243.88, + "probability": 0.8627 + }, + { + "start": 1244.1, + "end": 1251.38, + "probability": 0.9323 + }, + { + "start": 1251.72, + "end": 1256.54, + "probability": 0.9976 + }, + { + "start": 1256.76, + "end": 1257.4, + "probability": 0.972 + }, + { + "start": 1258.28, + "end": 1258.58, + "probability": 0.5401 + }, + { + "start": 1258.8, + "end": 1259.08, + "probability": 0.8642 + }, + { + "start": 1259.14, + "end": 1263.26, + "probability": 0.8756 + }, + { + "start": 1263.48, + "end": 1266.04, + "probability": 0.9883 + }, + { + "start": 1266.2, + "end": 1270.38, + "probability": 0.9946 + }, + { + "start": 1271.26, + "end": 1274.52, + "probability": 0.9824 + }, + { + "start": 1275.44, + "end": 1278.72, + "probability": 0.9805 + }, + { + "start": 1278.84, + "end": 1279.06, + "probability": 0.4724 + }, + { + "start": 1279.42, + "end": 1279.98, + "probability": 0.3945 + }, + { + "start": 1280.26, + "end": 1282.04, + "probability": 0.873 + }, + { + "start": 1282.46, + "end": 1283.28, + "probability": 0.7028 + }, + { + "start": 1283.3, + "end": 1283.9, + "probability": 0.8329 + }, + { + "start": 1284.62, + "end": 1290.3, + "probability": 0.9492 + }, + { + "start": 1291.34, + "end": 1292.04, + "probability": 0.4332 + }, + { + "start": 1292.04, + "end": 1292.72, + "probability": 0.8738 + }, + { + "start": 1292.86, + "end": 1293.56, + "probability": 0.8546 + }, + { + "start": 1293.78, + "end": 1294.46, + "probability": 0.6916 + }, + { + "start": 1294.9, + "end": 1295.9, + "probability": 0.756 + }, + { + "start": 1296.02, + "end": 1296.3, + "probability": 0.3887 + }, + { + "start": 1296.98, + "end": 1297.39, + "probability": 0.9155 + }, + { + "start": 1297.92, + "end": 1300.64, + "probability": 0.8234 + }, + { + "start": 1301.7, + "end": 1304.36, + "probability": 0.6926 + }, + { + "start": 1305.92, + "end": 1307.42, + "probability": 0.1051 + }, + { + "start": 1307.54, + "end": 1308.3, + "probability": 0.4783 + }, + { + "start": 1308.62, + "end": 1312.24, + "probability": 0.7568 + }, + { + "start": 1312.52, + "end": 1314.2, + "probability": 0.661 + }, + { + "start": 1314.26, + "end": 1315.88, + "probability": 0.7928 + }, + { + "start": 1316.6, + "end": 1317.46, + "probability": 0.5833 + }, + { + "start": 1317.6, + "end": 1321.96, + "probability": 0.963 + }, + { + "start": 1322.38, + "end": 1325.56, + "probability": 0.9971 + }, + { + "start": 1325.9, + "end": 1329.8, + "probability": 0.9893 + }, + { + "start": 1330.52, + "end": 1332.87, + "probability": 0.9746 + }, + { + "start": 1333.4, + "end": 1335.34, + "probability": 0.9032 + }, + { + "start": 1336.04, + "end": 1339.82, + "probability": 0.7266 + }, + { + "start": 1340.5, + "end": 1341.78, + "probability": 0.7155 + }, + { + "start": 1342.36, + "end": 1342.76, + "probability": 0.2883 + }, + { + "start": 1345.42, + "end": 1347.62, + "probability": 0.7126 + }, + { + "start": 1348.18, + "end": 1350.62, + "probability": 0.3022 + }, + { + "start": 1350.78, + "end": 1351.68, + "probability": 0.6266 + }, + { + "start": 1352.09, + "end": 1353.0, + "probability": 0.7428 + }, + { + "start": 1353.56, + "end": 1355.16, + "probability": 0.499 + }, + { + "start": 1355.46, + "end": 1357.44, + "probability": 0.9938 + }, + { + "start": 1358.04, + "end": 1360.52, + "probability": 0.8827 + }, + { + "start": 1361.56, + "end": 1361.92, + "probability": 0.849 + }, + { + "start": 1362.02, + "end": 1364.18, + "probability": 0.8086 + }, + { + "start": 1364.92, + "end": 1369.1, + "probability": 0.9968 + }, + { + "start": 1369.18, + "end": 1369.82, + "probability": 0.8136 + }, + { + "start": 1370.0, + "end": 1370.62, + "probability": 0.5986 + }, + { + "start": 1371.0, + "end": 1371.72, + "probability": 0.7038 + }, + { + "start": 1372.42, + "end": 1374.44, + "probability": 0.7291 + }, + { + "start": 1375.22, + "end": 1379.28, + "probability": 0.7825 + }, + { + "start": 1379.28, + "end": 1379.49, + "probability": 0.5243 + }, + { + "start": 1379.82, + "end": 1380.26, + "probability": 0.0235 + }, + { + "start": 1380.84, + "end": 1384.18, + "probability": 0.9835 + }, + { + "start": 1384.62, + "end": 1385.86, + "probability": 0.7991 + }, + { + "start": 1386.4, + "end": 1389.68, + "probability": 0.9506 + }, + { + "start": 1389.68, + "end": 1392.38, + "probability": 0.9333 + }, + { + "start": 1393.16, + "end": 1395.1, + "probability": 0.9423 + }, + { + "start": 1395.16, + "end": 1397.12, + "probability": 0.9935 + }, + { + "start": 1397.64, + "end": 1401.06, + "probability": 0.994 + }, + { + "start": 1401.76, + "end": 1407.15, + "probability": 0.9826 + }, + { + "start": 1407.68, + "end": 1409.85, + "probability": 0.8555 + }, + { + "start": 1410.56, + "end": 1411.46, + "probability": 0.9448 + }, + { + "start": 1412.44, + "end": 1413.72, + "probability": 0.9519 + }, + { + "start": 1414.4, + "end": 1416.16, + "probability": 0.9831 + }, + { + "start": 1416.22, + "end": 1419.58, + "probability": 0.9464 + }, + { + "start": 1420.58, + "end": 1421.8, + "probability": 0.91 + }, + { + "start": 1422.7, + "end": 1423.62, + "probability": 0.7449 + }, + { + "start": 1423.76, + "end": 1426.0, + "probability": 0.6114 + }, + { + "start": 1426.28, + "end": 1427.22, + "probability": 0.9976 + }, + { + "start": 1427.3, + "end": 1428.24, + "probability": 0.9142 + }, + { + "start": 1428.44, + "end": 1429.02, + "probability": 0.7847 + }, + { + "start": 1429.54, + "end": 1430.76, + "probability": 0.693 + }, + { + "start": 1430.9, + "end": 1434.78, + "probability": 0.9194 + }, + { + "start": 1434.78, + "end": 1436.76, + "probability": 0.6676 + }, + { + "start": 1439.56, + "end": 1442.68, + "probability": 0.7931 + }, + { + "start": 1443.1, + "end": 1446.12, + "probability": 0.6774 + }, + { + "start": 1446.7, + "end": 1451.1, + "probability": 0.8203 + }, + { + "start": 1451.1, + "end": 1455.68, + "probability": 0.8774 + }, + { + "start": 1457.0, + "end": 1457.49, + "probability": 0.0465 + }, + { + "start": 1458.66, + "end": 1459.88, + "probability": 0.8744 + }, + { + "start": 1460.54, + "end": 1461.12, + "probability": 0.814 + }, + { + "start": 1461.48, + "end": 1461.76, + "probability": 0.4713 + }, + { + "start": 1462.2, + "end": 1465.06, + "probability": 0.9425 + }, + { + "start": 1465.24, + "end": 1466.58, + "probability": 0.8553 + }, + { + "start": 1466.66, + "end": 1469.86, + "probability": 0.4387 + }, + { + "start": 1469.86, + "end": 1470.22, + "probability": 0.7311 + }, + { + "start": 1470.5, + "end": 1472.14, + "probability": 0.8159 + }, + { + "start": 1472.66, + "end": 1474.7, + "probability": 0.333 + }, + { + "start": 1474.76, + "end": 1475.92, + "probability": 0.9937 + }, + { + "start": 1477.0, + "end": 1480.4, + "probability": 0.9867 + }, + { + "start": 1480.4, + "end": 1486.04, + "probability": 0.9819 + }, + { + "start": 1486.52, + "end": 1488.26, + "probability": 0.693 + }, + { + "start": 1489.38, + "end": 1490.48, + "probability": 0.8509 + }, + { + "start": 1490.76, + "end": 1493.42, + "probability": 0.8683 + }, + { + "start": 1493.66, + "end": 1494.3, + "probability": 0.8713 + }, + { + "start": 1494.72, + "end": 1499.48, + "probability": 0.9919 + }, + { + "start": 1499.7, + "end": 1500.46, + "probability": 0.6612 + }, + { + "start": 1501.1, + "end": 1501.92, + "probability": 0.7327 + }, + { + "start": 1503.52, + "end": 1504.94, + "probability": 0.7952 + }, + { + "start": 1505.46, + "end": 1508.44, + "probability": 0.9744 + }, + { + "start": 1509.24, + "end": 1511.24, + "probability": 0.952 + }, + { + "start": 1512.02, + "end": 1515.32, + "probability": 0.9784 + }, + { + "start": 1516.8, + "end": 1520.26, + "probability": 0.9981 + }, + { + "start": 1520.72, + "end": 1522.66, + "probability": 0.895 + }, + { + "start": 1523.12, + "end": 1526.1, + "probability": 0.9309 + }, + { + "start": 1526.74, + "end": 1529.86, + "probability": 0.9188 + }, + { + "start": 1530.48, + "end": 1531.1, + "probability": 0.9927 + }, + { + "start": 1532.22, + "end": 1535.5, + "probability": 0.9893 + }, + { + "start": 1535.86, + "end": 1539.2, + "probability": 0.9863 + }, + { + "start": 1540.32, + "end": 1541.82, + "probability": 0.8297 + }, + { + "start": 1542.56, + "end": 1547.02, + "probability": 0.9691 + }, + { + "start": 1548.26, + "end": 1550.12, + "probability": 0.9854 + }, + { + "start": 1550.84, + "end": 1551.78, + "probability": 0.5925 + }, + { + "start": 1552.72, + "end": 1555.94, + "probability": 0.5561 + }, + { + "start": 1556.72, + "end": 1557.58, + "probability": 0.9688 + }, + { + "start": 1558.42, + "end": 1558.88, + "probability": 0.8552 + }, + { + "start": 1559.54, + "end": 1566.82, + "probability": 0.8549 + }, + { + "start": 1568.42, + "end": 1569.82, + "probability": 0.9245 + }, + { + "start": 1570.26, + "end": 1573.9, + "probability": 0.9905 + }, + { + "start": 1574.98, + "end": 1579.34, + "probability": 0.8076 + }, + { + "start": 1579.84, + "end": 1583.86, + "probability": 0.9893 + }, + { + "start": 1585.14, + "end": 1588.62, + "probability": 0.9619 + }, + { + "start": 1589.48, + "end": 1595.4, + "probability": 0.9901 + }, + { + "start": 1595.98, + "end": 1598.04, + "probability": 0.9902 + }, + { + "start": 1598.6, + "end": 1601.9, + "probability": 0.9246 + }, + { + "start": 1601.9, + "end": 1605.88, + "probability": 0.9827 + }, + { + "start": 1605.88, + "end": 1610.02, + "probability": 0.9884 + }, + { + "start": 1611.1, + "end": 1613.18, + "probability": 0.9083 + }, + { + "start": 1613.3, + "end": 1614.16, + "probability": 0.9816 + }, + { + "start": 1614.54, + "end": 1617.42, + "probability": 0.9104 + }, + { + "start": 1617.92, + "end": 1619.82, + "probability": 0.9973 + }, + { + "start": 1619.92, + "end": 1624.35, + "probability": 0.9788 + }, + { + "start": 1625.4, + "end": 1628.74, + "probability": 0.9907 + }, + { + "start": 1630.1, + "end": 1631.8, + "probability": 0.6993 + }, + { + "start": 1633.0, + "end": 1633.78, + "probability": 0.6799 + }, + { + "start": 1633.88, + "end": 1635.58, + "probability": 0.9704 + }, + { + "start": 1636.06, + "end": 1638.3, + "probability": 0.7747 + }, + { + "start": 1639.84, + "end": 1642.4, + "probability": 0.9983 + }, + { + "start": 1642.46, + "end": 1645.68, + "probability": 0.9858 + }, + { + "start": 1646.26, + "end": 1647.12, + "probability": 0.9917 + }, + { + "start": 1648.26, + "end": 1649.83, + "probability": 0.7855 + }, + { + "start": 1650.12, + "end": 1653.26, + "probability": 0.9966 + }, + { + "start": 1653.86, + "end": 1656.44, + "probability": 0.9778 + }, + { + "start": 1656.98, + "end": 1658.66, + "probability": 0.9851 + }, + { + "start": 1659.46, + "end": 1662.98, + "probability": 0.9943 + }, + { + "start": 1664.28, + "end": 1669.2, + "probability": 0.9954 + }, + { + "start": 1669.92, + "end": 1672.92, + "probability": 0.9982 + }, + { + "start": 1674.38, + "end": 1678.28, + "probability": 0.9488 + }, + { + "start": 1679.54, + "end": 1683.12, + "probability": 0.9839 + }, + { + "start": 1683.18, + "end": 1686.36, + "probability": 0.9867 + }, + { + "start": 1687.5, + "end": 1689.86, + "probability": 0.869 + }, + { + "start": 1690.78, + "end": 1694.04, + "probability": 0.8281 + }, + { + "start": 1694.58, + "end": 1694.82, + "probability": 0.9722 + }, + { + "start": 1696.12, + "end": 1696.96, + "probability": 0.6479 + }, + { + "start": 1698.1, + "end": 1702.66, + "probability": 0.7629 + }, + { + "start": 1703.42, + "end": 1705.15, + "probability": 0.9954 + }, + { + "start": 1705.96, + "end": 1709.56, + "probability": 0.993 + }, + { + "start": 1710.4, + "end": 1713.88, + "probability": 0.9702 + }, + { + "start": 1713.88, + "end": 1718.6, + "probability": 0.675 + }, + { + "start": 1718.6, + "end": 1720.5, + "probability": 0.981 + }, + { + "start": 1721.44, + "end": 1724.52, + "probability": 0.9204 + }, + { + "start": 1725.52, + "end": 1726.5, + "probability": 0.9456 + }, + { + "start": 1727.1, + "end": 1729.58, + "probability": 0.752 + }, + { + "start": 1730.1, + "end": 1731.64, + "probability": 0.7625 + }, + { + "start": 1732.36, + "end": 1735.12, + "probability": 0.9941 + }, + { + "start": 1735.78, + "end": 1736.46, + "probability": 0.8968 + }, + { + "start": 1737.6, + "end": 1739.2, + "probability": 0.8376 + }, + { + "start": 1740.26, + "end": 1742.48, + "probability": 0.999 + }, + { + "start": 1742.94, + "end": 1744.91, + "probability": 0.9661 + }, + { + "start": 1745.8, + "end": 1748.94, + "probability": 0.9844 + }, + { + "start": 1749.94, + "end": 1752.92, + "probability": 0.8184 + }, + { + "start": 1753.44, + "end": 1758.28, + "probability": 0.9955 + }, + { + "start": 1758.98, + "end": 1761.92, + "probability": 0.9917 + }, + { + "start": 1761.92, + "end": 1765.84, + "probability": 0.9825 + }, + { + "start": 1766.58, + "end": 1767.66, + "probability": 0.746 + }, + { + "start": 1768.26, + "end": 1771.44, + "probability": 0.9991 + }, + { + "start": 1772.3, + "end": 1774.12, + "probability": 0.9683 + }, + { + "start": 1775.12, + "end": 1778.34, + "probability": 0.9971 + }, + { + "start": 1778.34, + "end": 1782.6, + "probability": 0.9081 + }, + { + "start": 1783.1, + "end": 1788.74, + "probability": 0.998 + }, + { + "start": 1788.74, + "end": 1795.22, + "probability": 0.9973 + }, + { + "start": 1795.98, + "end": 1796.48, + "probability": 0.7752 + }, + { + "start": 1797.2, + "end": 1797.88, + "probability": 0.9419 + }, + { + "start": 1798.06, + "end": 1799.26, + "probability": 0.8195 + }, + { + "start": 1799.42, + "end": 1803.98, + "probability": 0.9898 + }, + { + "start": 1803.98, + "end": 1808.26, + "probability": 0.9875 + }, + { + "start": 1808.86, + "end": 1812.88, + "probability": 0.9959 + }, + { + "start": 1812.88, + "end": 1817.3, + "probability": 0.9197 + }, + { + "start": 1818.02, + "end": 1821.54, + "probability": 0.8198 + }, + { + "start": 1821.82, + "end": 1824.22, + "probability": 0.7658 + }, + { + "start": 1825.78, + "end": 1831.32, + "probability": 0.9426 + }, + { + "start": 1832.26, + "end": 1835.44, + "probability": 0.9895 + }, + { + "start": 1835.96, + "end": 1838.04, + "probability": 0.9962 + }, + { + "start": 1838.64, + "end": 1839.86, + "probability": 0.8322 + }, + { + "start": 1840.6, + "end": 1840.84, + "probability": 0.902 + }, + { + "start": 1842.32, + "end": 1846.2, + "probability": 0.9977 + }, + { + "start": 1846.76, + "end": 1848.48, + "probability": 0.9354 + }, + { + "start": 1848.8, + "end": 1852.58, + "probability": 0.9901 + }, + { + "start": 1853.26, + "end": 1854.26, + "probability": 0.8042 + }, + { + "start": 1855.1, + "end": 1859.56, + "probability": 0.9988 + }, + { + "start": 1859.7, + "end": 1859.74, + "probability": 0.0295 + }, + { + "start": 1859.74, + "end": 1861.0, + "probability": 0.676 + }, + { + "start": 1861.5, + "end": 1863.12, + "probability": 0.9623 + }, + { + "start": 1863.9, + "end": 1865.84, + "probability": 0.8286 + }, + { + "start": 1866.72, + "end": 1868.28, + "probability": 0.9282 + }, + { + "start": 1869.06, + "end": 1871.42, + "probability": 0.9819 + }, + { + "start": 1871.42, + "end": 1873.98, + "probability": 0.9995 + }, + { + "start": 1875.08, + "end": 1878.52, + "probability": 0.9892 + }, + { + "start": 1879.62, + "end": 1880.82, + "probability": 0.8812 + }, + { + "start": 1881.36, + "end": 1882.44, + "probability": 0.8122 + }, + { + "start": 1883.1, + "end": 1885.64, + "probability": 0.8903 + }, + { + "start": 1886.28, + "end": 1888.28, + "probability": 0.9608 + }, + { + "start": 1888.84, + "end": 1890.67, + "probability": 0.9921 + }, + { + "start": 1891.24, + "end": 1892.86, + "probability": 0.9903 + }, + { + "start": 1893.4, + "end": 1894.44, + "probability": 0.9784 + }, + { + "start": 1896.3, + "end": 1899.92, + "probability": 0.9961 + }, + { + "start": 1900.46, + "end": 1901.3, + "probability": 0.8758 + }, + { + "start": 1902.06, + "end": 1902.74, + "probability": 0.991 + }, + { + "start": 1904.16, + "end": 1904.18, + "probability": 0.6859 + }, + { + "start": 1904.18, + "end": 1911.4, + "probability": 0.9841 + }, + { + "start": 1911.98, + "end": 1912.74, + "probability": 0.8418 + }, + { + "start": 1913.14, + "end": 1915.76, + "probability": 0.9984 + }, + { + "start": 1916.9, + "end": 1920.32, + "probability": 0.9812 + }, + { + "start": 1921.02, + "end": 1921.84, + "probability": 0.838 + }, + { + "start": 1922.4, + "end": 1924.64, + "probability": 0.9983 + }, + { + "start": 1925.38, + "end": 1926.24, + "probability": 0.7611 + }, + { + "start": 1927.24, + "end": 1928.69, + "probability": 0.8336 + }, + { + "start": 1929.18, + "end": 1932.46, + "probability": 0.9902 + }, + { + "start": 1933.36, + "end": 1936.4, + "probability": 0.9927 + }, + { + "start": 1937.08, + "end": 1942.44, + "probability": 0.9891 + }, + { + "start": 1943.88, + "end": 1943.9, + "probability": 0.53 + }, + { + "start": 1943.9, + "end": 1951.02, + "probability": 0.8096 + }, + { + "start": 1953.04, + "end": 1956.4, + "probability": 0.9905 + }, + { + "start": 1956.92, + "end": 1964.0, + "probability": 0.9969 + }, + { + "start": 1964.74, + "end": 1968.9, + "probability": 0.8488 + }, + { + "start": 1969.54, + "end": 1973.46, + "probability": 0.9984 + }, + { + "start": 1973.72, + "end": 1974.42, + "probability": 0.8817 + }, + { + "start": 1975.78, + "end": 1978.8, + "probability": 0.9978 + }, + { + "start": 1979.2, + "end": 1979.68, + "probability": 0.8738 + }, + { + "start": 1980.36, + "end": 1983.42, + "probability": 0.9979 + }, + { + "start": 1984.2, + "end": 1987.76, + "probability": 0.9899 + }, + { + "start": 1988.56, + "end": 1990.8, + "probability": 0.9965 + }, + { + "start": 1991.34, + "end": 1992.04, + "probability": 0.9568 + }, + { + "start": 1994.16, + "end": 1995.4, + "probability": 0.717 + }, + { + "start": 1995.58, + "end": 1998.64, + "probability": 0.9929 + }, + { + "start": 1999.04, + "end": 2000.78, + "probability": 0.9756 + }, + { + "start": 2002.54, + "end": 2005.88, + "probability": 0.9959 + }, + { + "start": 2006.48, + "end": 2007.88, + "probability": 0.7721 + }, + { + "start": 2008.52, + "end": 2011.26, + "probability": 0.8984 + }, + { + "start": 2012.06, + "end": 2012.72, + "probability": 0.9336 + }, + { + "start": 2013.3, + "end": 2014.26, + "probability": 0.7718 + }, + { + "start": 2014.9, + "end": 2017.26, + "probability": 0.983 + }, + { + "start": 2018.38, + "end": 2019.92, + "probability": 0.7418 + }, + { + "start": 2020.9, + "end": 2024.86, + "probability": 0.6707 + }, + { + "start": 2025.9, + "end": 2027.88, + "probability": 0.9959 + }, + { + "start": 2028.66, + "end": 2032.9, + "probability": 0.9995 + }, + { + "start": 2034.04, + "end": 2038.42, + "probability": 0.9842 + }, + { + "start": 2038.5, + "end": 2039.2, + "probability": 0.8529 + }, + { + "start": 2039.84, + "end": 2045.08, + "probability": 0.996 + }, + { + "start": 2046.44, + "end": 2048.18, + "probability": 0.9053 + }, + { + "start": 2049.04, + "end": 2050.48, + "probability": 0.8704 + }, + { + "start": 2050.58, + "end": 2055.63, + "probability": 0.9697 + }, + { + "start": 2056.74, + "end": 2056.96, + "probability": 0.6841 + }, + { + "start": 2056.96, + "end": 2061.88, + "probability": 0.9751 + }, + { + "start": 2062.66, + "end": 2063.9, + "probability": 0.7433 + }, + { + "start": 2064.64, + "end": 2066.9, + "probability": 0.8315 + }, + { + "start": 2067.98, + "end": 2069.69, + "probability": 0.9604 + }, + { + "start": 2070.46, + "end": 2073.06, + "probability": 0.9567 + }, + { + "start": 2073.34, + "end": 2074.08, + "probability": 0.6976 + }, + { + "start": 2074.44, + "end": 2075.6, + "probability": 0.8487 + }, + { + "start": 2076.74, + "end": 2079.98, + "probability": 0.988 + }, + { + "start": 2080.12, + "end": 2080.96, + "probability": 0.7016 + }, + { + "start": 2081.68, + "end": 2082.58, + "probability": 0.3446 + }, + { + "start": 2082.96, + "end": 2083.86, + "probability": 0.9626 + }, + { + "start": 2084.2, + "end": 2085.62, + "probability": 0.957 + }, + { + "start": 2086.6, + "end": 2088.48, + "probability": 0.9109 + }, + { + "start": 2089.1, + "end": 2095.0, + "probability": 0.998 + }, + { + "start": 2095.12, + "end": 2099.38, + "probability": 0.9931 + }, + { + "start": 2099.72, + "end": 2100.88, + "probability": 0.0209 + }, + { + "start": 2102.82, + "end": 2102.98, + "probability": 0.0881 + }, + { + "start": 2102.98, + "end": 2105.3, + "probability": 0.9506 + }, + { + "start": 2105.4, + "end": 2106.02, + "probability": 0.75 + }, + { + "start": 2106.14, + "end": 2107.1, + "probability": 0.6643 + }, + { + "start": 2107.42, + "end": 2108.32, + "probability": 0.7285 + }, + { + "start": 2108.44, + "end": 2109.32, + "probability": 0.3181 + }, + { + "start": 2109.46, + "end": 2111.48, + "probability": 0.7153 + }, + { + "start": 2111.52, + "end": 2114.1, + "probability": 0.6366 + }, + { + "start": 2114.32, + "end": 2114.32, + "probability": 0.2287 + }, + { + "start": 2114.38, + "end": 2118.02, + "probability": 0.9667 + }, + { + "start": 2121.02, + "end": 2123.98, + "probability": 0.9497 + }, + { + "start": 2124.24, + "end": 2125.04, + "probability": 0.7329 + }, + { + "start": 2126.96, + "end": 2130.54, + "probability": 0.9933 + }, + { + "start": 2131.16, + "end": 2134.66, + "probability": 0.891 + }, + { + "start": 2135.18, + "end": 2136.7, + "probability": 0.7526 + }, + { + "start": 2137.3, + "end": 2138.26, + "probability": 0.9331 + }, + { + "start": 2140.62, + "end": 2141.0, + "probability": 0.0465 + }, + { + "start": 2141.0, + "end": 2145.57, + "probability": 0.9614 + }, + { + "start": 2146.34, + "end": 2147.48, + "probability": 0.9692 + }, + { + "start": 2148.08, + "end": 2150.98, + "probability": 0.9881 + }, + { + "start": 2151.64, + "end": 2152.86, + "probability": 0.7205 + }, + { + "start": 2154.84, + "end": 2163.9, + "probability": 0.9573 + }, + { + "start": 2164.72, + "end": 2166.64, + "probability": 0.4952 + }, + { + "start": 2167.22, + "end": 2170.3, + "probability": 0.8247 + }, + { + "start": 2171.92, + "end": 2173.64, + "probability": 0.909 + }, + { + "start": 2174.38, + "end": 2175.58, + "probability": 0.9528 + }, + { + "start": 2176.7, + "end": 2179.78, + "probability": 0.9349 + }, + { + "start": 2179.9, + "end": 2183.52, + "probability": 0.7741 + }, + { + "start": 2183.52, + "end": 2186.26, + "probability": 0.9985 + }, + { + "start": 2187.48, + "end": 2191.48, + "probability": 0.9957 + }, + { + "start": 2192.62, + "end": 2195.14, + "probability": 0.9028 + }, + { + "start": 2195.68, + "end": 2198.12, + "probability": 0.9209 + }, + { + "start": 2198.96, + "end": 2200.34, + "probability": 0.8552 + }, + { + "start": 2200.56, + "end": 2202.1, + "probability": 0.9922 + }, + { + "start": 2202.22, + "end": 2204.23, + "probability": 0.9741 + }, + { + "start": 2205.1, + "end": 2207.16, + "probability": 0.9982 + }, + { + "start": 2208.32, + "end": 2211.42, + "probability": 0.7947 + }, + { + "start": 2212.46, + "end": 2215.76, + "probability": 0.995 + }, + { + "start": 2215.92, + "end": 2218.68, + "probability": 0.9688 + }, + { + "start": 2220.88, + "end": 2224.46, + "probability": 0.9983 + }, + { + "start": 2224.98, + "end": 2227.46, + "probability": 0.9993 + }, + { + "start": 2228.16, + "end": 2234.08, + "probability": 0.9624 + }, + { + "start": 2234.96, + "end": 2236.36, + "probability": 0.5412 + }, + { + "start": 2237.5, + "end": 2237.54, + "probability": 0.5249 + }, + { + "start": 2237.54, + "end": 2237.92, + "probability": 0.498 + }, + { + "start": 2238.46, + "end": 2238.92, + "probability": 0.9529 + }, + { + "start": 2239.58, + "end": 2243.18, + "probability": 0.9798 + }, + { + "start": 2243.66, + "end": 2244.98, + "probability": 0.9745 + }, + { + "start": 2245.52, + "end": 2246.27, + "probability": 0.8286 + }, + { + "start": 2247.02, + "end": 2250.08, + "probability": 0.9916 + }, + { + "start": 2250.08, + "end": 2254.2, + "probability": 0.7451 + }, + { + "start": 2254.86, + "end": 2259.58, + "probability": 0.9658 + }, + { + "start": 2260.34, + "end": 2263.28, + "probability": 0.9774 + }, + { + "start": 2263.4, + "end": 2266.96, + "probability": 0.9932 + }, + { + "start": 2267.52, + "end": 2268.66, + "probability": 0.8454 + }, + { + "start": 2269.34, + "end": 2271.74, + "probability": 0.9236 + }, + { + "start": 2272.86, + "end": 2274.74, + "probability": 0.9015 + }, + { + "start": 2275.9, + "end": 2282.1, + "probability": 0.9787 + }, + { + "start": 2282.58, + "end": 2284.38, + "probability": 0.8667 + }, + { + "start": 2284.5, + "end": 2286.14, + "probability": 0.9933 + }, + { + "start": 2287.1, + "end": 2288.34, + "probability": 0.896 + }, + { + "start": 2288.98, + "end": 2291.56, + "probability": 0.7431 + }, + { + "start": 2292.36, + "end": 2296.58, + "probability": 0.9951 + }, + { + "start": 2297.1, + "end": 2299.1, + "probability": 0.9952 + }, + { + "start": 2299.58, + "end": 2300.52, + "probability": 0.9199 + }, + { + "start": 2300.82, + "end": 2302.28, + "probability": 0.7529 + }, + { + "start": 2302.36, + "end": 2302.98, + "probability": 0.9497 + }, + { + "start": 2303.66, + "end": 2304.84, + "probability": 0.9445 + }, + { + "start": 2305.08, + "end": 2306.32, + "probability": 0.618 + }, + { + "start": 2307.26, + "end": 2307.94, + "probability": 0.0418 + }, + { + "start": 2308.02, + "end": 2309.79, + "probability": 0.7529 + }, + { + "start": 2310.24, + "end": 2313.74, + "probability": 0.99 + }, + { + "start": 2313.86, + "end": 2315.04, + "probability": 0.8457 + }, + { + "start": 2315.68, + "end": 2317.88, + "probability": 0.9905 + }, + { + "start": 2318.68, + "end": 2321.74, + "probability": 0.5983 + }, + { + "start": 2322.1, + "end": 2323.94, + "probability": 0.5018 + }, + { + "start": 2324.38, + "end": 2325.14, + "probability": 0.707 + }, + { + "start": 2326.1, + "end": 2328.18, + "probability": 0.884 + }, + { + "start": 2328.42, + "end": 2331.55, + "probability": 0.6599 + }, + { + "start": 2332.36, + "end": 2332.74, + "probability": 0.3442 + }, + { + "start": 2334.13, + "end": 2334.38, + "probability": 0.0129 + }, + { + "start": 2334.38, + "end": 2336.5, + "probability": 0.6926 + }, + { + "start": 2336.5, + "end": 2339.02, + "probability": 0.9282 + }, + { + "start": 2339.86, + "end": 2340.48, + "probability": 0.7995 + }, + { + "start": 2340.82, + "end": 2341.02, + "probability": 0.2871 + }, + { + "start": 2341.18, + "end": 2341.64, + "probability": 0.8782 + }, + { + "start": 2341.9, + "end": 2343.6, + "probability": 0.9097 + }, + { + "start": 2344.32, + "end": 2348.84, + "probability": 0.9249 + }, + { + "start": 2349.14, + "end": 2349.54, + "probability": 0.6364 + }, + { + "start": 2349.76, + "end": 2349.76, + "probability": 0.2195 + }, + { + "start": 2349.76, + "end": 2351.32, + "probability": 0.9977 + }, + { + "start": 2351.84, + "end": 2354.08, + "probability": 0.799 + }, + { + "start": 2354.56, + "end": 2354.84, + "probability": 0.8732 + }, + { + "start": 2355.88, + "end": 2358.36, + "probability": 0.8781 + }, + { + "start": 2359.34, + "end": 2362.87, + "probability": 0.9729 + }, + { + "start": 2365.3, + "end": 2367.88, + "probability": 0.7765 + }, + { + "start": 2370.72, + "end": 2374.38, + "probability": 0.6711 + }, + { + "start": 2375.34, + "end": 2378.92, + "probability": 0.8978 + }, + { + "start": 2379.58, + "end": 2382.53, + "probability": 0.9977 + }, + { + "start": 2383.24, + "end": 2384.28, + "probability": 0.6701 + }, + { + "start": 2385.52, + "end": 2385.8, + "probability": 0.4 + }, + { + "start": 2387.3, + "end": 2387.4, + "probability": 0.0131 + }, + { + "start": 2387.4, + "end": 2387.4, + "probability": 0.0439 + }, + { + "start": 2387.4, + "end": 2388.24, + "probability": 0.5209 + }, + { + "start": 2388.82, + "end": 2390.12, + "probability": 0.6468 + }, + { + "start": 2392.04, + "end": 2393.68, + "probability": 0.4649 + }, + { + "start": 2396.1, + "end": 2396.84, + "probability": 0.432 + }, + { + "start": 2396.94, + "end": 2397.52, + "probability": 0.453 + }, + { + "start": 2397.8, + "end": 2400.9, + "probability": 0.7167 + }, + { + "start": 2401.14, + "end": 2402.64, + "probability": 0.5673 + }, + { + "start": 2404.58, + "end": 2405.42, + "probability": 0.7113 + }, + { + "start": 2406.4, + "end": 2407.96, + "probability": 0.9691 + }, + { + "start": 2408.52, + "end": 2411.78, + "probability": 0.7589 + }, + { + "start": 2413.1, + "end": 2415.44, + "probability": 0.7585 + }, + { + "start": 2415.58, + "end": 2416.84, + "probability": 0.7946 + }, + { + "start": 2416.98, + "end": 2417.36, + "probability": 0.7047 + }, + { + "start": 2417.56, + "end": 2418.08, + "probability": 0.8308 + }, + { + "start": 2419.48, + "end": 2421.92, + "probability": 0.9619 + }, + { + "start": 2422.16, + "end": 2424.56, + "probability": 0.9906 + }, + { + "start": 2424.74, + "end": 2426.76, + "probability": 0.9948 + }, + { + "start": 2427.7, + "end": 2430.7, + "probability": 0.871 + }, + { + "start": 2432.26, + "end": 2435.52, + "probability": 0.9738 + }, + { + "start": 2436.66, + "end": 2440.12, + "probability": 0.8402 + }, + { + "start": 2440.64, + "end": 2442.72, + "probability": 0.9375 + }, + { + "start": 2443.64, + "end": 2444.94, + "probability": 0.8207 + }, + { + "start": 2446.08, + "end": 2447.98, + "probability": 0.8399 + }, + { + "start": 2448.82, + "end": 2449.4, + "probability": 0.824 + }, + { + "start": 2449.66, + "end": 2451.14, + "probability": 0.9869 + }, + { + "start": 2451.38, + "end": 2454.16, + "probability": 0.9733 + }, + { + "start": 2455.28, + "end": 2459.98, + "probability": 0.9989 + }, + { + "start": 2461.18, + "end": 2462.98, + "probability": 0.6665 + }, + { + "start": 2464.02, + "end": 2465.7, + "probability": 0.9889 + }, + { + "start": 2466.32, + "end": 2468.1, + "probability": 0.9626 + }, + { + "start": 2468.98, + "end": 2469.88, + "probability": 0.9836 + }, + { + "start": 2470.82, + "end": 2471.54, + "probability": 0.8196 + }, + { + "start": 2472.26, + "end": 2477.68, + "probability": 0.9635 + }, + { + "start": 2478.44, + "end": 2479.82, + "probability": 0.8575 + }, + { + "start": 2480.52, + "end": 2483.8, + "probability": 0.9479 + }, + { + "start": 2485.76, + "end": 2487.06, + "probability": 0.9136 + }, + { + "start": 2487.88, + "end": 2491.24, + "probability": 0.9439 + }, + { + "start": 2492.7, + "end": 2500.86, + "probability": 0.9948 + }, + { + "start": 2501.6, + "end": 2502.44, + "probability": 0.9409 + }, + { + "start": 2503.7, + "end": 2505.18, + "probability": 0.998 + }, + { + "start": 2505.74, + "end": 2506.68, + "probability": 0.9886 + }, + { + "start": 2508.0, + "end": 2511.72, + "probability": 0.9367 + }, + { + "start": 2512.46, + "end": 2514.28, + "probability": 0.9905 + }, + { + "start": 2515.08, + "end": 2520.98, + "probability": 0.9886 + }, + { + "start": 2522.28, + "end": 2525.02, + "probability": 0.9946 + }, + { + "start": 2525.84, + "end": 2526.44, + "probability": 0.8889 + }, + { + "start": 2526.98, + "end": 2528.28, + "probability": 0.9331 + }, + { + "start": 2529.08, + "end": 2531.48, + "probability": 0.9953 + }, + { + "start": 2532.28, + "end": 2533.7, + "probability": 0.9642 + }, + { + "start": 2535.22, + "end": 2536.14, + "probability": 0.9634 + }, + { + "start": 2536.28, + "end": 2536.58, + "probability": 0.9641 + }, + { + "start": 2536.62, + "end": 2538.44, + "probability": 0.9936 + }, + { + "start": 2539.3, + "end": 2543.64, + "probability": 0.9686 + }, + { + "start": 2544.52, + "end": 2545.36, + "probability": 0.8033 + }, + { + "start": 2545.66, + "end": 2554.3, + "probability": 0.9969 + }, + { + "start": 2555.36, + "end": 2563.48, + "probability": 0.761 + }, + { + "start": 2564.88, + "end": 2567.34, + "probability": 0.5565 + }, + { + "start": 2567.9, + "end": 2569.68, + "probability": 0.9849 + }, + { + "start": 2569.78, + "end": 2571.1, + "probability": 0.986 + }, + { + "start": 2571.52, + "end": 2573.07, + "probability": 0.9287 + }, + { + "start": 2573.56, + "end": 2575.06, + "probability": 0.9976 + }, + { + "start": 2575.62, + "end": 2576.4, + "probability": 0.9512 + }, + { + "start": 2577.24, + "end": 2578.26, + "probability": 0.9901 + }, + { + "start": 2581.08, + "end": 2581.18, + "probability": 0.0 + }, + { + "start": 2582.82, + "end": 2583.32, + "probability": 0.0316 + }, + { + "start": 2583.32, + "end": 2584.7, + "probability": 0.6105 + }, + { + "start": 2585.42, + "end": 2587.9, + "probability": 0.9941 + }, + { + "start": 2588.76, + "end": 2595.32, + "probability": 0.8924 + }, + { + "start": 2595.32, + "end": 2600.22, + "probability": 0.6586 + }, + { + "start": 2600.26, + "end": 2601.7, + "probability": 0.7224 + }, + { + "start": 2603.12, + "end": 2610.02, + "probability": 0.8955 + }, + { + "start": 2611.04, + "end": 2612.14, + "probability": 0.9028 + }, + { + "start": 2613.18, + "end": 2614.44, + "probability": 0.9941 + }, + { + "start": 2615.06, + "end": 2617.86, + "probability": 0.9625 + }, + { + "start": 2619.18, + "end": 2622.44, + "probability": 0.8871 + }, + { + "start": 2623.28, + "end": 2624.72, + "probability": 0.8743 + }, + { + "start": 2625.94, + "end": 2629.12, + "probability": 0.9198 + }, + { + "start": 2630.2, + "end": 2631.36, + "probability": 0.9344 + }, + { + "start": 2633.02, + "end": 2636.06, + "probability": 0.3738 + }, + { + "start": 2636.32, + "end": 2639.04, + "probability": 0.762 + }, + { + "start": 2640.58, + "end": 2641.62, + "probability": 0.807 + }, + { + "start": 2642.72, + "end": 2648.12, + "probability": 0.9711 + }, + { + "start": 2648.38, + "end": 2650.48, + "probability": 0.8333 + }, + { + "start": 2652.16, + "end": 2654.64, + "probability": 0.7863 + }, + { + "start": 2655.84, + "end": 2659.56, + "probability": 0.9036 + }, + { + "start": 2660.24, + "end": 2663.82, + "probability": 0.9736 + }, + { + "start": 2665.98, + "end": 2666.58, + "probability": 0.7343 + }, + { + "start": 2666.78, + "end": 2668.64, + "probability": 0.9797 + }, + { + "start": 2668.98, + "end": 2670.42, + "probability": 0.9399 + }, + { + "start": 2670.7, + "end": 2674.04, + "probability": 0.9879 + }, + { + "start": 2674.98, + "end": 2677.26, + "probability": 0.8947 + }, + { + "start": 2677.4, + "end": 2678.48, + "probability": 0.9889 + }, + { + "start": 2679.22, + "end": 2680.76, + "probability": 0.8663 + }, + { + "start": 2681.32, + "end": 2683.78, + "probability": 0.8655 + }, + { + "start": 2684.3, + "end": 2686.84, + "probability": 0.9702 + }, + { + "start": 2687.66, + "end": 2691.28, + "probability": 0.9966 + }, + { + "start": 2691.42, + "end": 2692.99, + "probability": 0.7349 + }, + { + "start": 2693.9, + "end": 2694.82, + "probability": 0.8409 + }, + { + "start": 2695.6, + "end": 2698.0, + "probability": 0.9994 + }, + { + "start": 2698.6, + "end": 2699.56, + "probability": 0.9976 + }, + { + "start": 2700.9, + "end": 2706.1, + "probability": 0.9949 + }, + { + "start": 2706.7, + "end": 2709.88, + "probability": 0.9626 + }, + { + "start": 2711.3, + "end": 2714.42, + "probability": 0.9966 + }, + { + "start": 2714.62, + "end": 2717.38, + "probability": 0.9671 + }, + { + "start": 2718.26, + "end": 2720.5, + "probability": 0.9935 + }, + { + "start": 2720.66, + "end": 2721.56, + "probability": 0.8145 + }, + { + "start": 2721.76, + "end": 2723.78, + "probability": 0.7205 + }, + { + "start": 2725.16, + "end": 2731.3, + "probability": 0.9729 + }, + { + "start": 2732.12, + "end": 2734.98, + "probability": 0.8275 + }, + { + "start": 2735.94, + "end": 2738.4, + "probability": 0.8328 + }, + { + "start": 2738.7, + "end": 2742.86, + "probability": 0.9836 + }, + { + "start": 2743.16, + "end": 2746.37, + "probability": 0.9834 + }, + { + "start": 2747.42, + "end": 2751.66, + "probability": 0.8883 + }, + { + "start": 2751.66, + "end": 2754.6, + "probability": 0.9905 + }, + { + "start": 2755.2, + "end": 2759.42, + "probability": 0.8276 + }, + { + "start": 2759.42, + "end": 2763.54, + "probability": 0.9868 + }, + { + "start": 2764.92, + "end": 2767.34, + "probability": 0.7558 + }, + { + "start": 2767.9, + "end": 2773.08, + "probability": 0.9666 + }, + { + "start": 2773.92, + "end": 2775.6, + "probability": 0.9874 + }, + { + "start": 2777.1, + "end": 2780.5, + "probability": 0.9969 + }, + { + "start": 2783.08, + "end": 2784.06, + "probability": 0.9764 + }, + { + "start": 2785.42, + "end": 2786.34, + "probability": 0.1345 + }, + { + "start": 2786.34, + "end": 2790.2, + "probability": 0.9751 + }, + { + "start": 2790.44, + "end": 2795.02, + "probability": 0.9867 + }, + { + "start": 2796.28, + "end": 2797.96, + "probability": 0.9791 + }, + { + "start": 2798.58, + "end": 2802.82, + "probability": 0.9616 + }, + { + "start": 2804.5, + "end": 2807.28, + "probability": 0.9966 + }, + { + "start": 2807.34, + "end": 2810.22, + "probability": 0.9814 + }, + { + "start": 2811.32, + "end": 2812.36, + "probability": 0.7626 + }, + { + "start": 2812.52, + "end": 2813.12, + "probability": 0.6965 + }, + { + "start": 2813.28, + "end": 2813.56, + "probability": 0.7797 + }, + { + "start": 2814.06, + "end": 2815.14, + "probability": 0.5647 + }, + { + "start": 2815.6, + "end": 2817.0, + "probability": 0.9505 + }, + { + "start": 2818.28, + "end": 2821.88, + "probability": 0.894 + }, + { + "start": 2822.48, + "end": 2824.04, + "probability": 0.9089 + }, + { + "start": 2824.74, + "end": 2827.22, + "probability": 0.9916 + }, + { + "start": 2827.88, + "end": 2831.52, + "probability": 0.9914 + }, + { + "start": 2832.06, + "end": 2835.5, + "probability": 0.9847 + }, + { + "start": 2835.5, + "end": 2840.42, + "probability": 0.9661 + }, + { + "start": 2840.88, + "end": 2841.67, + "probability": 0.9587 + }, + { + "start": 2842.28, + "end": 2843.08, + "probability": 0.4982 + }, + { + "start": 2843.28, + "end": 2845.0, + "probability": 0.8436 + }, + { + "start": 2845.36, + "end": 2846.91, + "probability": 0.8002 + }, + { + "start": 2848.97, + "end": 2851.12, + "probability": 0.9776 + }, + { + "start": 2851.88, + "end": 2852.71, + "probability": 0.9966 + }, + { + "start": 2855.26, + "end": 2856.88, + "probability": 0.3081 + }, + { + "start": 2857.54, + "end": 2857.64, + "probability": 0.0521 + }, + { + "start": 2857.64, + "end": 2857.64, + "probability": 0.161 + }, + { + "start": 2857.64, + "end": 2857.64, + "probability": 0.1665 + }, + { + "start": 2857.64, + "end": 2859.6, + "probability": 0.5409 + }, + { + "start": 2860.22, + "end": 2861.88, + "probability": 0.7192 + }, + { + "start": 2862.66, + "end": 2863.26, + "probability": 0.7644 + }, + { + "start": 2863.32, + "end": 2863.44, + "probability": 0.4227 + }, + { + "start": 2863.44, + "end": 2863.82, + "probability": 0.4796 + }, + { + "start": 2863.98, + "end": 2865.32, + "probability": 0.4155 + }, + { + "start": 2865.64, + "end": 2869.16, + "probability": 0.4677 + }, + { + "start": 2869.34, + "end": 2872.12, + "probability": 0.9438 + }, + { + "start": 2872.24, + "end": 2872.98, + "probability": 0.8731 + }, + { + "start": 2873.38, + "end": 2873.66, + "probability": 0.1108 + }, + { + "start": 2874.06, + "end": 2874.74, + "probability": 0.9493 + }, + { + "start": 2875.24, + "end": 2876.86, + "probability": 0.7175 + }, + { + "start": 2876.86, + "end": 2881.94, + "probability": 0.998 + }, + { + "start": 2881.98, + "end": 2881.98, + "probability": 0.0371 + }, + { + "start": 2881.98, + "end": 2883.08, + "probability": 0.6106 + }, + { + "start": 2883.28, + "end": 2884.16, + "probability": 0.8092 + }, + { + "start": 2884.94, + "end": 2892.24, + "probability": 0.9863 + }, + { + "start": 2892.9, + "end": 2894.74, + "probability": 0.991 + }, + { + "start": 2896.2, + "end": 2901.14, + "probability": 0.9978 + }, + { + "start": 2901.32, + "end": 2904.9, + "probability": 0.9453 + }, + { + "start": 2905.56, + "end": 2909.44, + "probability": 0.9902 + }, + { + "start": 2910.0, + "end": 2911.88, + "probability": 0.9738 + }, + { + "start": 2912.48, + "end": 2916.06, + "probability": 0.9043 + }, + { + "start": 2916.62, + "end": 2919.66, + "probability": 0.8181 + }, + { + "start": 2920.42, + "end": 2922.14, + "probability": 0.9681 + }, + { + "start": 2923.48, + "end": 2926.0, + "probability": 0.7735 + }, + { + "start": 2926.82, + "end": 2928.48, + "probability": 0.8621 + }, + { + "start": 2929.54, + "end": 2934.48, + "probability": 0.9912 + }, + { + "start": 2935.52, + "end": 2936.28, + "probability": 0.6323 + }, + { + "start": 2937.04, + "end": 2938.54, + "probability": 0.6569 + }, + { + "start": 2939.64, + "end": 2943.56, + "probability": 0.8626 + }, + { + "start": 2945.04, + "end": 2946.82, + "probability": 0.9477 + }, + { + "start": 2947.74, + "end": 2951.74, + "probability": 0.9565 + }, + { + "start": 2953.06, + "end": 2954.26, + "probability": 0.7533 + }, + { + "start": 2955.02, + "end": 2956.7, + "probability": 0.9274 + }, + { + "start": 2957.64, + "end": 2962.12, + "probability": 0.9141 + }, + { + "start": 2962.28, + "end": 2962.62, + "probability": 0.9447 + }, + { + "start": 2963.44, + "end": 2964.92, + "probability": 0.9865 + }, + { + "start": 2966.0, + "end": 2967.24, + "probability": 0.9678 + }, + { + "start": 2968.46, + "end": 2969.57, + "probability": 0.9858 + }, + { + "start": 2969.8, + "end": 2970.86, + "probability": 0.9102 + }, + { + "start": 2971.84, + "end": 2972.62, + "probability": 0.7188 + }, + { + "start": 2973.26, + "end": 2973.86, + "probability": 0.8034 + }, + { + "start": 2974.26, + "end": 2982.22, + "probability": 0.9611 + }, + { + "start": 2983.92, + "end": 2984.98, + "probability": 0.9937 + }, + { + "start": 2985.84, + "end": 2987.46, + "probability": 0.9832 + }, + { + "start": 2987.58, + "end": 2988.52, + "probability": 0.8304 + }, + { + "start": 2989.62, + "end": 2992.14, + "probability": 0.92 + }, + { + "start": 2992.14, + "end": 2994.26, + "probability": 0.9749 + }, + { + "start": 2995.06, + "end": 2997.41, + "probability": 0.9976 + }, + { + "start": 2998.98, + "end": 3002.74, + "probability": 0.9278 + }, + { + "start": 3004.0, + "end": 3005.82, + "probability": 0.9575 + }, + { + "start": 3006.38, + "end": 3008.2, + "probability": 0.9823 + }, + { + "start": 3009.8, + "end": 3010.56, + "probability": 0.9333 + }, + { + "start": 3011.54, + "end": 3015.72, + "probability": 0.9543 + }, + { + "start": 3015.72, + "end": 3019.2, + "probability": 0.9944 + }, + { + "start": 3020.32, + "end": 3022.36, + "probability": 0.9611 + }, + { + "start": 3022.46, + "end": 3024.6, + "probability": 0.9828 + }, + { + "start": 3025.32, + "end": 3026.92, + "probability": 0.9829 + }, + { + "start": 3029.1, + "end": 3031.44, + "probability": 0.9803 + }, + { + "start": 3031.64, + "end": 3033.58, + "probability": 0.9627 + }, + { + "start": 3033.82, + "end": 3034.5, + "probability": 0.924 + }, + { + "start": 3034.58, + "end": 3035.3, + "probability": 0.6974 + }, + { + "start": 3036.22, + "end": 3037.54, + "probability": 0.7759 + }, + { + "start": 3037.64, + "end": 3041.68, + "probability": 0.9113 + }, + { + "start": 3041.74, + "end": 3046.22, + "probability": 0.9786 + }, + { + "start": 3046.46, + "end": 3046.76, + "probability": 0.7711 + }, + { + "start": 3047.3, + "end": 3047.84, + "probability": 0.5647 + }, + { + "start": 3047.9, + "end": 3049.64, + "probability": 0.9192 + }, + { + "start": 3050.16, + "end": 3052.12, + "probability": 0.9325 + }, + { + "start": 3053.14, + "end": 3056.29, + "probability": 0.9224 + }, + { + "start": 3056.74, + "end": 3057.44, + "probability": 0.6407 + }, + { + "start": 3058.08, + "end": 3060.04, + "probability": 0.5831 + }, + { + "start": 3060.9, + "end": 3067.46, + "probability": 0.8681 + }, + { + "start": 3067.94, + "end": 3068.74, + "probability": 0.9376 + }, + { + "start": 3069.14, + "end": 3071.48, + "probability": 0.925 + }, + { + "start": 3072.02, + "end": 3075.02, + "probability": 0.6979 + }, + { + "start": 3075.4, + "end": 3076.8, + "probability": 0.7124 + }, + { + "start": 3077.32, + "end": 3080.48, + "probability": 0.7533 + }, + { + "start": 3081.04, + "end": 3088.48, + "probability": 0.9937 + }, + { + "start": 3088.9, + "end": 3092.94, + "probability": 0.9978 + }, + { + "start": 3094.0, + "end": 3094.98, + "probability": 0.7205 + }, + { + "start": 3095.04, + "end": 3099.44, + "probability": 0.9968 + }, + { + "start": 3100.12, + "end": 3102.3, + "probability": 0.9922 + }, + { + "start": 3103.3, + "end": 3104.54, + "probability": 0.7523 + }, + { + "start": 3105.88, + "end": 3109.34, + "probability": 0.6918 + }, + { + "start": 3112.06, + "end": 3114.2, + "probability": 0.5145 + }, + { + "start": 3114.28, + "end": 3117.3, + "probability": 0.8302 + }, + { + "start": 3117.58, + "end": 3120.12, + "probability": 0.8394 + }, + { + "start": 3120.12, + "end": 3121.64, + "probability": 0.9916 + }, + { + "start": 3124.6, + "end": 3124.86, + "probability": 0.3835 + }, + { + "start": 3124.86, + "end": 3125.1, + "probability": 0.222 + }, + { + "start": 3125.36, + "end": 3130.4, + "probability": 0.6571 + }, + { + "start": 3130.46, + "end": 3131.34, + "probability": 0.6063 + }, + { + "start": 3131.48, + "end": 3135.12, + "probability": 0.6739 + }, + { + "start": 3140.79, + "end": 3142.52, + "probability": 0.4794 + }, + { + "start": 3145.18, + "end": 3149.6, + "probability": 0.7063 + }, + { + "start": 3149.78, + "end": 3153.12, + "probability": 0.8979 + }, + { + "start": 3155.78, + "end": 3157.14, + "probability": 0.7955 + }, + { + "start": 3157.26, + "end": 3160.58, + "probability": 0.9288 + }, + { + "start": 3162.34, + "end": 3163.22, + "probability": 0.7347 + }, + { + "start": 3163.52, + "end": 3164.46, + "probability": 0.7482 + }, + { + "start": 3164.8, + "end": 3167.84, + "probability": 0.9512 + }, + { + "start": 3167.84, + "end": 3173.32, + "probability": 0.988 + }, + { + "start": 3173.42, + "end": 3175.34, + "probability": 0.8716 + }, + { + "start": 3176.34, + "end": 3179.44, + "probability": 0.7301 + }, + { + "start": 3179.68, + "end": 3180.9, + "probability": 0.8329 + }, + { + "start": 3181.74, + "end": 3183.8, + "probability": 0.813 + }, + { + "start": 3185.84, + "end": 3189.42, + "probability": 0.9446 + }, + { + "start": 3189.46, + "end": 3194.84, + "probability": 0.9775 + }, + { + "start": 3195.98, + "end": 3199.42, + "probability": 0.9058 + }, + { + "start": 3201.19, + "end": 3205.12, + "probability": 0.8018 + }, + { + "start": 3205.12, + "end": 3208.18, + "probability": 0.953 + }, + { + "start": 3208.24, + "end": 3210.53, + "probability": 0.9706 + }, + { + "start": 3211.7, + "end": 3214.66, + "probability": 0.7145 + }, + { + "start": 3214.84, + "end": 3218.08, + "probability": 0.8744 + }, + { + "start": 3218.84, + "end": 3220.04, + "probability": 0.9862 + }, + { + "start": 3221.6, + "end": 3226.78, + "probability": 0.7698 + }, + { + "start": 3227.28, + "end": 3227.78, + "probability": 0.9417 + }, + { + "start": 3227.92, + "end": 3228.24, + "probability": 0.7364 + }, + { + "start": 3229.02, + "end": 3232.28, + "probability": 0.8691 + }, + { + "start": 3232.42, + "end": 3233.94, + "probability": 0.7855 + }, + { + "start": 3234.84, + "end": 3235.3, + "probability": 0.0007 + }, + { + "start": 3235.98, + "end": 3241.62, + "probability": 0.9952 + }, + { + "start": 3242.98, + "end": 3246.58, + "probability": 0.9807 + }, + { + "start": 3246.58, + "end": 3249.04, + "probability": 0.997 + }, + { + "start": 3250.04, + "end": 3251.22, + "probability": 0.9741 + }, + { + "start": 3251.88, + "end": 3253.32, + "probability": 0.8451 + }, + { + "start": 3254.56, + "end": 3256.42, + "probability": 0.8134 + }, + { + "start": 3256.5, + "end": 3257.34, + "probability": 0.5548 + }, + { + "start": 3257.58, + "end": 3259.0, + "probability": 0.981 + }, + { + "start": 3259.74, + "end": 3260.16, + "probability": 0.8337 + }, + { + "start": 3260.2, + "end": 3262.76, + "probability": 0.9798 + }, + { + "start": 3262.94, + "end": 3267.4, + "probability": 0.7485 + }, + { + "start": 3268.48, + "end": 3275.34, + "probability": 0.7502 + }, + { + "start": 3275.42, + "end": 3276.9, + "probability": 0.9714 + }, + { + "start": 3276.94, + "end": 3280.0, + "probability": 0.6913 + }, + { + "start": 3280.18, + "end": 3283.0, + "probability": 0.8888 + }, + { + "start": 3283.08, + "end": 3283.62, + "probability": 0.6569 + }, + { + "start": 3284.42, + "end": 3286.18, + "probability": 0.8916 + }, + { + "start": 3287.74, + "end": 3292.93, + "probability": 0.9128 + }, + { + "start": 3294.34, + "end": 3301.06, + "probability": 0.9929 + }, + { + "start": 3303.86, + "end": 3305.72, + "probability": 0.9974 + }, + { + "start": 3306.36, + "end": 3307.24, + "probability": 0.6148 + }, + { + "start": 3310.16, + "end": 3311.44, + "probability": 0.7813 + }, + { + "start": 3311.7, + "end": 3313.72, + "probability": 0.9709 + }, + { + "start": 3314.72, + "end": 3316.64, + "probability": 0.9785 + }, + { + "start": 3317.62, + "end": 3320.84, + "probability": 0.9691 + }, + { + "start": 3321.94, + "end": 3330.74, + "probability": 0.9973 + }, + { + "start": 3332.46, + "end": 3334.96, + "probability": 0.8748 + }, + { + "start": 3335.36, + "end": 3338.15, + "probability": 0.8275 + }, + { + "start": 3339.46, + "end": 3341.46, + "probability": 0.9956 + }, + { + "start": 3342.5, + "end": 3347.32, + "probability": 0.8618 + }, + { + "start": 3348.24, + "end": 3350.0, + "probability": 0.1821 + }, + { + "start": 3350.18, + "end": 3354.18, + "probability": 0.9716 + }, + { + "start": 3354.24, + "end": 3355.5, + "probability": 0.9166 + }, + { + "start": 3355.66, + "end": 3356.3, + "probability": 0.6828 + }, + { + "start": 3357.0, + "end": 3358.81, + "probability": 0.9175 + }, + { + "start": 3359.36, + "end": 3365.16, + "probability": 0.9032 + }, + { + "start": 3365.3, + "end": 3367.3, + "probability": 0.8329 + }, + { + "start": 3369.12, + "end": 3371.46, + "probability": 0.906 + }, + { + "start": 3372.14, + "end": 3374.5, + "probability": 0.8901 + }, + { + "start": 3375.12, + "end": 3375.76, + "probability": 0.942 + }, + { + "start": 3378.46, + "end": 3381.14, + "probability": 0.8128 + }, + { + "start": 3381.32, + "end": 3384.5, + "probability": 0.9912 + }, + { + "start": 3387.06, + "end": 3388.38, + "probability": 0.7953 + }, + { + "start": 3388.5, + "end": 3390.32, + "probability": 0.6448 + }, + { + "start": 3392.08, + "end": 3397.52, + "probability": 0.7743 + }, + { + "start": 3397.72, + "end": 3398.51, + "probability": 0.73 + }, + { + "start": 3398.68, + "end": 3399.26, + "probability": 0.522 + }, + { + "start": 3399.84, + "end": 3401.26, + "probability": 0.9301 + }, + { + "start": 3401.44, + "end": 3403.14, + "probability": 0.8501 + }, + { + "start": 3403.48, + "end": 3406.96, + "probability": 0.9665 + }, + { + "start": 3408.22, + "end": 3414.58, + "probability": 0.9936 + }, + { + "start": 3415.78, + "end": 3419.22, + "probability": 0.503 + }, + { + "start": 3419.5, + "end": 3423.3, + "probability": 0.8746 + }, + { + "start": 3423.68, + "end": 3425.36, + "probability": 0.6581 + }, + { + "start": 3426.12, + "end": 3428.16, + "probability": 0.8454 + }, + { + "start": 3428.32, + "end": 3429.7, + "probability": 0.5653 + }, + { + "start": 3429.8, + "end": 3432.26, + "probability": 0.6949 + }, + { + "start": 3432.96, + "end": 3434.22, + "probability": 0.6627 + }, + { + "start": 3435.74, + "end": 3442.24, + "probability": 0.8567 + }, + { + "start": 3442.24, + "end": 3448.58, + "probability": 0.9976 + }, + { + "start": 3448.76, + "end": 3452.34, + "probability": 0.9712 + }, + { + "start": 3452.38, + "end": 3455.5, + "probability": 0.9964 + }, + { + "start": 3456.42, + "end": 3457.8, + "probability": 0.4783 + }, + { + "start": 3459.22, + "end": 3461.64, + "probability": 0.8593 + }, + { + "start": 3464.04, + "end": 3465.1, + "probability": 0.6682 + }, + { + "start": 3465.24, + "end": 3465.92, + "probability": 0.7851 + }, + { + "start": 3466.06, + "end": 3467.42, + "probability": 0.9564 + }, + { + "start": 3467.62, + "end": 3468.14, + "probability": 0.4951 + }, + { + "start": 3468.52, + "end": 3469.28, + "probability": 0.8159 + }, + { + "start": 3469.44, + "end": 3475.82, + "probability": 0.9733 + }, + { + "start": 3476.46, + "end": 3481.0, + "probability": 0.9932 + }, + { + "start": 3481.66, + "end": 3483.42, + "probability": 0.998 + }, + { + "start": 3484.46, + "end": 3487.38, + "probability": 0.7271 + }, + { + "start": 3488.38, + "end": 3490.8, + "probability": 0.979 + }, + { + "start": 3492.91, + "end": 3498.52, + "probability": 0.9683 + }, + { + "start": 3498.89, + "end": 3503.34, + "probability": 0.8594 + }, + { + "start": 3503.62, + "end": 3506.54, + "probability": 0.718 + }, + { + "start": 3507.04, + "end": 3510.07, + "probability": 0.9705 + }, + { + "start": 3512.06, + "end": 3514.88, + "probability": 0.9829 + }, + { + "start": 3516.02, + "end": 3521.14, + "probability": 0.9716 + }, + { + "start": 3521.78, + "end": 3524.1, + "probability": 0.9958 + }, + { + "start": 3525.56, + "end": 3528.02, + "probability": 0.9497 + }, + { + "start": 3528.22, + "end": 3530.0, + "probability": 0.9909 + }, + { + "start": 3531.2, + "end": 3531.82, + "probability": 0.5355 + }, + { + "start": 3531.86, + "end": 3534.86, + "probability": 0.9302 + }, + { + "start": 3534.98, + "end": 3536.42, + "probability": 0.8185 + }, + { + "start": 3536.48, + "end": 3536.92, + "probability": 0.6562 + }, + { + "start": 3538.46, + "end": 3545.16, + "probability": 0.9567 + }, + { + "start": 3545.16, + "end": 3549.3, + "probability": 0.9176 + }, + { + "start": 3550.04, + "end": 3555.14, + "probability": 0.7881 + }, + { + "start": 3555.22, + "end": 3559.08, + "probability": 0.9307 + }, + { + "start": 3560.68, + "end": 3562.54, + "probability": 0.813 + }, + { + "start": 3562.66, + "end": 3564.4, + "probability": 0.9519 + }, + { + "start": 3564.46, + "end": 3566.72, + "probability": 0.6658 + }, + { + "start": 3566.72, + "end": 3569.66, + "probability": 0.8086 + }, + { + "start": 3570.22, + "end": 3570.96, + "probability": 0.6656 + }, + { + "start": 3571.96, + "end": 3577.26, + "probability": 0.9897 + }, + { + "start": 3577.48, + "end": 3578.38, + "probability": 0.6713 + }, + { + "start": 3579.1, + "end": 3580.28, + "probability": 0.5225 + }, + { + "start": 3581.28, + "end": 3583.8, + "probability": 0.7473 + }, + { + "start": 3584.54, + "end": 3589.18, + "probability": 0.957 + }, + { + "start": 3589.92, + "end": 3591.02, + "probability": 0.9987 + }, + { + "start": 3591.8, + "end": 3594.35, + "probability": 0.8975 + }, + { + "start": 3596.82, + "end": 3602.68, + "probability": 0.9331 + }, + { + "start": 3603.24, + "end": 3603.88, + "probability": 0.5315 + }, + { + "start": 3604.12, + "end": 3606.06, + "probability": 0.7998 + }, + { + "start": 3609.38, + "end": 3609.7, + "probability": 0.3662 + }, + { + "start": 3609.7, + "end": 3610.2, + "probability": 0.4019 + }, + { + "start": 3610.26, + "end": 3613.66, + "probability": 0.8905 + }, + { + "start": 3614.1, + "end": 3616.7, + "probability": 0.7967 + }, + { + "start": 3630.08, + "end": 3630.9, + "probability": 0.6574 + }, + { + "start": 3632.1, + "end": 3634.9, + "probability": 0.5498 + }, + { + "start": 3636.96, + "end": 3638.02, + "probability": 0.9495 + }, + { + "start": 3639.34, + "end": 3641.36, + "probability": 0.9633 + }, + { + "start": 3642.14, + "end": 3643.32, + "probability": 0.8417 + }, + { + "start": 3643.44, + "end": 3645.12, + "probability": 0.9656 + }, + { + "start": 3645.86, + "end": 3647.52, + "probability": 0.8232 + }, + { + "start": 3647.56, + "end": 3651.88, + "probability": 0.9722 + }, + { + "start": 3651.98, + "end": 3653.78, + "probability": 0.9897 + }, + { + "start": 3654.46, + "end": 3658.1, + "probability": 0.9449 + }, + { + "start": 3658.44, + "end": 3662.54, + "probability": 0.8356 + }, + { + "start": 3662.66, + "end": 3663.19, + "probability": 0.7543 + }, + { + "start": 3664.34, + "end": 3665.98, + "probability": 0.9724 + }, + { + "start": 3666.56, + "end": 3669.14, + "probability": 0.9963 + }, + { + "start": 3671.88, + "end": 3672.96, + "probability": 0.9277 + }, + { + "start": 3673.68, + "end": 3674.66, + "probability": 0.5063 + }, + { + "start": 3674.7, + "end": 3678.82, + "probability": 0.8838 + }, + { + "start": 3679.2, + "end": 3679.9, + "probability": 0.776 + }, + { + "start": 3679.94, + "end": 3681.5, + "probability": 0.5643 + }, + { + "start": 3682.28, + "end": 3684.16, + "probability": 0.9419 + }, + { + "start": 3685.04, + "end": 3685.5, + "probability": 0.7806 + }, + { + "start": 3686.02, + "end": 3688.33, + "probability": 0.9451 + }, + { + "start": 3689.12, + "end": 3691.92, + "probability": 0.94 + }, + { + "start": 3692.56, + "end": 3693.49, + "probability": 0.6623 + }, + { + "start": 3695.12, + "end": 3697.62, + "probability": 0.9061 + }, + { + "start": 3698.68, + "end": 3699.42, + "probability": 0.8503 + }, + { + "start": 3703.22, + "end": 3707.56, + "probability": 0.9922 + }, + { + "start": 3709.06, + "end": 3713.48, + "probability": 0.9588 + }, + { + "start": 3714.28, + "end": 3718.4, + "probability": 0.9858 + }, + { + "start": 3720.44, + "end": 3722.32, + "probability": 0.8671 + }, + { + "start": 3722.58, + "end": 3724.56, + "probability": 0.9968 + }, + { + "start": 3724.9, + "end": 3725.8, + "probability": 0.7905 + }, + { + "start": 3726.56, + "end": 3727.16, + "probability": 0.4844 + }, + { + "start": 3728.36, + "end": 3729.3, + "probability": 0.6498 + }, + { + "start": 3730.36, + "end": 3732.04, + "probability": 0.8107 + }, + { + "start": 3733.44, + "end": 3734.5, + "probability": 0.9465 + }, + { + "start": 3735.36, + "end": 3738.66, + "probability": 0.8726 + }, + { + "start": 3739.54, + "end": 3740.16, + "probability": 0.9761 + }, + { + "start": 3740.58, + "end": 3743.62, + "probability": 0.9836 + }, + { + "start": 3744.54, + "end": 3745.42, + "probability": 0.7106 + }, + { + "start": 3746.86, + "end": 3750.48, + "probability": 0.7499 + }, + { + "start": 3751.64, + "end": 3753.1, + "probability": 0.9319 + }, + { + "start": 3754.34, + "end": 3757.54, + "probability": 0.9937 + }, + { + "start": 3758.0, + "end": 3759.16, + "probability": 0.937 + }, + { + "start": 3759.66, + "end": 3760.2, + "probability": 0.8312 + }, + { + "start": 3760.36, + "end": 3761.54, + "probability": 0.7498 + }, + { + "start": 3761.94, + "end": 3762.06, + "probability": 0.5006 + }, + { + "start": 3762.82, + "end": 3765.06, + "probability": 0.955 + }, + { + "start": 3765.58, + "end": 3766.16, + "probability": 0.9189 + }, + { + "start": 3767.18, + "end": 3767.54, + "probability": 0.874 + }, + { + "start": 3768.68, + "end": 3771.46, + "probability": 0.8947 + }, + { + "start": 3771.6, + "end": 3772.34, + "probability": 0.6518 + }, + { + "start": 3772.68, + "end": 3775.8, + "probability": 0.7191 + }, + { + "start": 3775.9, + "end": 3780.01, + "probability": 0.6819 + }, + { + "start": 3781.76, + "end": 3783.18, + "probability": 0.9775 + }, + { + "start": 3784.1, + "end": 3784.68, + "probability": 0.6349 + }, + { + "start": 3785.8, + "end": 3788.36, + "probability": 0.9976 + }, + { + "start": 3788.36, + "end": 3791.08, + "probability": 0.9521 + }, + { + "start": 3793.15, + "end": 3794.18, + "probability": 0.9901 + }, + { + "start": 3795.04, + "end": 3795.32, + "probability": 0.1144 + }, + { + "start": 3797.11, + "end": 3800.18, + "probability": 0.9478 + }, + { + "start": 3801.1, + "end": 3804.7, + "probability": 0.9964 + }, + { + "start": 3805.1, + "end": 3807.9, + "probability": 0.0551 + }, + { + "start": 3808.84, + "end": 3810.96, + "probability": 0.6249 + }, + { + "start": 3812.5, + "end": 3814.58, + "probability": 0.9956 + }, + { + "start": 3815.48, + "end": 3817.36, + "probability": 0.7983 + }, + { + "start": 3819.54, + "end": 3824.04, + "probability": 0.2245 + }, + { + "start": 3824.04, + "end": 3824.06, + "probability": 0.1105 + }, + { + "start": 3824.06, + "end": 3825.09, + "probability": 0.1804 + }, + { + "start": 3825.32, + "end": 3826.92, + "probability": 0.8336 + }, + { + "start": 3827.98, + "end": 3830.96, + "probability": 0.9448 + }, + { + "start": 3832.86, + "end": 3834.18, + "probability": 0.9265 + }, + { + "start": 3835.06, + "end": 3835.58, + "probability": 0.7638 + }, + { + "start": 3836.24, + "end": 3838.22, + "probability": 0.98 + }, + { + "start": 3838.4, + "end": 3839.78, + "probability": 0.8527 + }, + { + "start": 3841.56, + "end": 3846.16, + "probability": 0.9963 + }, + { + "start": 3846.76, + "end": 3848.42, + "probability": 0.9649 + }, + { + "start": 3850.04, + "end": 3850.64, + "probability": 0.6461 + }, + { + "start": 3851.06, + "end": 3852.12, + "probability": 0.9138 + }, + { + "start": 3852.68, + "end": 3855.16, + "probability": 0.8918 + }, + { + "start": 3857.0, + "end": 3858.69, + "probability": 0.6007 + }, + { + "start": 3860.28, + "end": 3864.12, + "probability": 0.9653 + }, + { + "start": 3864.7, + "end": 3867.16, + "probability": 0.8436 + }, + { + "start": 3867.44, + "end": 3867.76, + "probability": 0.5012 + }, + { + "start": 3868.66, + "end": 3869.36, + "probability": 0.7094 + }, + { + "start": 3869.7, + "end": 3870.32, + "probability": 0.8307 + }, + { + "start": 3871.32, + "end": 3872.24, + "probability": 0.7372 + }, + { + "start": 3872.99, + "end": 3875.16, + "probability": 0.8406 + }, + { + "start": 3876.42, + "end": 3879.41, + "probability": 0.8925 + }, + { + "start": 3879.74, + "end": 3883.32, + "probability": 0.6184 + }, + { + "start": 3883.76, + "end": 3884.3, + "probability": 0.4858 + }, + { + "start": 3884.4, + "end": 3887.88, + "probability": 0.9194 + }, + { + "start": 3888.0, + "end": 3888.62, + "probability": 0.5511 + }, + { + "start": 3888.9, + "end": 3889.0, + "probability": 0.5305 + }, + { + "start": 3889.94, + "end": 3892.52, + "probability": 0.9473 + }, + { + "start": 3893.4, + "end": 3895.58, + "probability": 0.911 + }, + { + "start": 3896.34, + "end": 3898.28, + "probability": 0.8763 + }, + { + "start": 3910.2, + "end": 3911.92, + "probability": 0.8417 + }, + { + "start": 3914.04, + "end": 3916.2, + "probability": 0.1206 + }, + { + "start": 3916.84, + "end": 3916.94, + "probability": 0.0493 + }, + { + "start": 3916.94, + "end": 3918.1, + "probability": 0.0314 + }, + { + "start": 3918.1, + "end": 3918.24, + "probability": 0.4711 + }, + { + "start": 3928.32, + "end": 3929.14, + "probability": 0.4781 + }, + { + "start": 3930.7, + "end": 3932.24, + "probability": 0.1441 + }, + { + "start": 3933.18, + "end": 3935.99, + "probability": 0.0573 + }, + { + "start": 3936.66, + "end": 3936.68, + "probability": 0.069 + }, + { + "start": 3936.68, + "end": 3936.68, + "probability": 0.1617 + }, + { + "start": 3936.68, + "end": 3936.68, + "probability": 0.2777 + }, + { + "start": 3936.68, + "end": 3936.68, + "probability": 0.0821 + }, + { + "start": 3936.68, + "end": 3936.68, + "probability": 0.0946 + }, + { + "start": 3936.68, + "end": 3936.68, + "probability": 0.0518 + }, + { + "start": 3936.68, + "end": 3937.78, + "probability": 0.7479 + }, + { + "start": 3939.06, + "end": 3944.56, + "probability": 0.9708 + }, + { + "start": 3945.12, + "end": 3945.96, + "probability": 0.5369 + }, + { + "start": 3947.74, + "end": 3954.4, + "probability": 0.986 + }, + { + "start": 3955.28, + "end": 3956.56, + "probability": 0.4163 + }, + { + "start": 3958.74, + "end": 3962.24, + "probability": 0.9663 + }, + { + "start": 3962.38, + "end": 3962.86, + "probability": 0.2917 + }, + { + "start": 3964.02, + "end": 3965.58, + "probability": 0.9232 + }, + { + "start": 3966.2, + "end": 3967.96, + "probability": 0.9689 + }, + { + "start": 3968.54, + "end": 3969.0, + "probability": 0.7582 + }, + { + "start": 3969.52, + "end": 3970.62, + "probability": 0.7343 + }, + { + "start": 3972.24, + "end": 3972.8, + "probability": 0.5139 + }, + { + "start": 3973.94, + "end": 3975.22, + "probability": 0.9485 + }, + { + "start": 3975.82, + "end": 3976.4, + "probability": 0.7094 + }, + { + "start": 3977.12, + "end": 3980.92, + "probability": 0.8649 + }, + { + "start": 3982.68, + "end": 3985.98, + "probability": 0.9298 + }, + { + "start": 3986.74, + "end": 3988.6, + "probability": 0.7884 + }, + { + "start": 3989.26, + "end": 3990.02, + "probability": 0.8134 + }, + { + "start": 3991.16, + "end": 3993.12, + "probability": 0.9774 + }, + { + "start": 3993.72, + "end": 3995.32, + "probability": 0.4872 + }, + { + "start": 3996.66, + "end": 3998.16, + "probability": 0.1534 + }, + { + "start": 3999.28, + "end": 3999.58, + "probability": 0.796 + }, + { + "start": 4000.26, + "end": 4001.22, + "probability": 0.755 + }, + { + "start": 4002.04, + "end": 4002.7, + "probability": 0.5943 + }, + { + "start": 4003.98, + "end": 4005.6, + "probability": 0.6696 + }, + { + "start": 4006.54, + "end": 4007.16, + "probability": 0.9652 + }, + { + "start": 4007.72, + "end": 4010.5, + "probability": 0.6594 + }, + { + "start": 4011.13, + "end": 4014.54, + "probability": 0.9445 + }, + { + "start": 4014.88, + "end": 4017.19, + "probability": 0.9635 + }, + { + "start": 4017.56, + "end": 4018.92, + "probability": 0.932 + }, + { + "start": 4019.38, + "end": 4021.42, + "probability": 0.7529 + }, + { + "start": 4022.58, + "end": 4026.32, + "probability": 0.9653 + }, + { + "start": 4026.84, + "end": 4030.96, + "probability": 0.9785 + }, + { + "start": 4031.52, + "end": 4032.32, + "probability": 0.7835 + }, + { + "start": 4033.62, + "end": 4035.09, + "probability": 0.4949 + }, + { + "start": 4036.1, + "end": 4036.64, + "probability": 0.7366 + }, + { + "start": 4037.58, + "end": 4037.98, + "probability": 0.8865 + }, + { + "start": 4041.84, + "end": 4043.54, + "probability": 0.98 + }, + { + "start": 4044.04, + "end": 4048.4, + "probability": 0.9968 + }, + { + "start": 4049.48, + "end": 4052.78, + "probability": 0.7207 + }, + { + "start": 4053.36, + "end": 4054.4, + "probability": 0.6625 + }, + { + "start": 4055.2, + "end": 4057.5, + "probability": 0.979 + }, + { + "start": 4058.06, + "end": 4058.6, + "probability": 0.6988 + }, + { + "start": 4058.76, + "end": 4060.14, + "probability": 0.9679 + }, + { + "start": 4060.58, + "end": 4061.42, + "probability": 0.9666 + }, + { + "start": 4061.96, + "end": 4066.1, + "probability": 0.9918 + }, + { + "start": 4067.02, + "end": 4070.36, + "probability": 0.9546 + }, + { + "start": 4071.06, + "end": 4072.46, + "probability": 0.936 + }, + { + "start": 4073.08, + "end": 4075.44, + "probability": 0.9722 + }, + { + "start": 4076.16, + "end": 4078.32, + "probability": 0.9814 + }, + { + "start": 4079.32, + "end": 4081.14, + "probability": 0.9281 + }, + { + "start": 4081.36, + "end": 4083.72, + "probability": 0.9621 + }, + { + "start": 4087.3, + "end": 4090.16, + "probability": 0.9856 + }, + { + "start": 4091.02, + "end": 4093.32, + "probability": 0.8484 + }, + { + "start": 4095.12, + "end": 4100.76, + "probability": 0.988 + }, + { + "start": 4101.28, + "end": 4103.32, + "probability": 0.8293 + }, + { + "start": 4104.04, + "end": 4106.48, + "probability": 0.9976 + }, + { + "start": 4107.16, + "end": 4109.36, + "probability": 0.998 + }, + { + "start": 4109.36, + "end": 4112.62, + "probability": 0.9914 + }, + { + "start": 4113.54, + "end": 4116.34, + "probability": 0.9245 + }, + { + "start": 4116.88, + "end": 4117.9, + "probability": 0.908 + }, + { + "start": 4118.56, + "end": 4120.18, + "probability": 0.6533 + }, + { + "start": 4120.46, + "end": 4121.78, + "probability": 0.8506 + }, + { + "start": 4123.26, + "end": 4127.66, + "probability": 0.9968 + }, + { + "start": 4128.28, + "end": 4133.36, + "probability": 0.9957 + }, + { + "start": 4136.22, + "end": 4137.6, + "probability": 0.9048 + }, + { + "start": 4137.82, + "end": 4139.04, + "probability": 0.9447 + }, + { + "start": 4140.28, + "end": 4142.02, + "probability": 0.5452 + }, + { + "start": 4143.04, + "end": 4144.04, + "probability": 0.4552 + }, + { + "start": 4146.94, + "end": 4148.58, + "probability": 0.5778 + }, + { + "start": 4149.02, + "end": 4151.16, + "probability": 0.9351 + }, + { + "start": 4151.68, + "end": 4153.1, + "probability": 0.6205 + }, + { + "start": 4154.3, + "end": 4155.52, + "probability": 0.7596 + }, + { + "start": 4156.04, + "end": 4157.1, + "probability": 0.9915 + }, + { + "start": 4157.7, + "end": 4159.32, + "probability": 0.9464 + }, + { + "start": 4159.96, + "end": 4165.24, + "probability": 0.9564 + }, + { + "start": 4165.48, + "end": 4165.68, + "probability": 0.0 + }, + { + "start": 4166.72, + "end": 4167.38, + "probability": 0.2532 + }, + { + "start": 4168.34, + "end": 4170.67, + "probability": 0.7075 + }, + { + "start": 4181.72, + "end": 4187.74, + "probability": 0.7888 + }, + { + "start": 4188.32, + "end": 4192.7, + "probability": 0.993 + }, + { + "start": 4192.7, + "end": 4197.58, + "probability": 0.7405 + }, + { + "start": 4199.2, + "end": 4199.38, + "probability": 0.3643 + }, + { + "start": 4200.42, + "end": 4203.68, + "probability": 0.9956 + }, + { + "start": 4204.28, + "end": 4204.82, + "probability": 0.8151 + }, + { + "start": 4205.42, + "end": 4207.86, + "probability": 0.721 + }, + { + "start": 4208.6, + "end": 4209.34, + "probability": 0.8589 + }, + { + "start": 4209.7, + "end": 4211.86, + "probability": 0.9967 + }, + { + "start": 4212.0, + "end": 4214.37, + "probability": 0.8045 + }, + { + "start": 4215.48, + "end": 4218.34, + "probability": 0.9831 + }, + { + "start": 4219.3, + "end": 4222.3, + "probability": 0.9305 + }, + { + "start": 4222.76, + "end": 4225.86, + "probability": 0.6193 + }, + { + "start": 4227.06, + "end": 4227.16, + "probability": 0.571 + }, + { + "start": 4228.8, + "end": 4230.9, + "probability": 0.9949 + }, + { + "start": 4234.16, + "end": 4235.34, + "probability": 0.4509 + }, + { + "start": 4236.23, + "end": 4240.38, + "probability": 0.0013 + }, + { + "start": 4248.4, + "end": 4250.64, + "probability": 0.0995 + }, + { + "start": 4251.1, + "end": 4251.8, + "probability": 0.9092 + }, + { + "start": 4252.76, + "end": 4253.58, + "probability": 0.7253 + }, + { + "start": 4253.8, + "end": 4259.48, + "probability": 0.9724 + }, + { + "start": 4259.48, + "end": 4264.06, + "probability": 0.9897 + }, + { + "start": 4266.2, + "end": 4268.62, + "probability": 0.2611 + }, + { + "start": 4268.62, + "end": 4271.22, + "probability": 0.9188 + }, + { + "start": 4271.98, + "end": 4273.58, + "probability": 0.5375 + }, + { + "start": 4275.48, + "end": 4278.12, + "probability": 0.9486 + }, + { + "start": 4279.0, + "end": 4282.04, + "probability": 0.9888 + }, + { + "start": 4283.17, + "end": 4290.28, + "probability": 0.9952 + }, + { + "start": 4290.62, + "end": 4291.64, + "probability": 0.9188 + }, + { + "start": 4291.88, + "end": 4292.24, + "probability": 0.4225 + }, + { + "start": 4292.38, + "end": 4296.38, + "probability": 0.771 + }, + { + "start": 4297.76, + "end": 4300.34, + "probability": 0.9619 + }, + { + "start": 4300.8, + "end": 4304.56, + "probability": 0.9648 + }, + { + "start": 4304.56, + "end": 4308.38, + "probability": 0.8094 + }, + { + "start": 4308.54, + "end": 4310.54, + "probability": 0.984 + }, + { + "start": 4310.86, + "end": 4311.86, + "probability": 0.8107 + }, + { + "start": 4313.2, + "end": 4315.3, + "probability": 0.6294 + }, + { + "start": 4316.06, + "end": 4318.98, + "probability": 0.8474 + }, + { + "start": 4319.22, + "end": 4323.06, + "probability": 0.9961 + }, + { + "start": 4323.26, + "end": 4326.54, + "probability": 0.9937 + }, + { + "start": 4326.72, + "end": 4328.12, + "probability": 0.976 + }, + { + "start": 4328.6, + "end": 4334.14, + "probability": 0.9772 + }, + { + "start": 4334.3, + "end": 4335.0, + "probability": 0.928 + }, + { + "start": 4335.6, + "end": 4337.4, + "probability": 0.8133 + }, + { + "start": 4337.66, + "end": 4339.3, + "probability": 0.9856 + }, + { + "start": 4340.08, + "end": 4343.34, + "probability": 0.8445 + }, + { + "start": 4344.08, + "end": 4346.7, + "probability": 0.9111 + }, + { + "start": 4347.54, + "end": 4350.76, + "probability": 0.9526 + }, + { + "start": 4350.76, + "end": 4354.96, + "probability": 0.9664 + }, + { + "start": 4355.9, + "end": 4357.9, + "probability": 0.786 + }, + { + "start": 4358.74, + "end": 4362.04, + "probability": 0.9832 + }, + { + "start": 4362.04, + "end": 4365.66, + "probability": 0.95 + }, + { + "start": 4366.36, + "end": 4367.54, + "probability": 0.7889 + }, + { + "start": 4367.98, + "end": 4369.28, + "probability": 0.9513 + }, + { + "start": 4369.8, + "end": 4372.96, + "probability": 0.9525 + }, + { + "start": 4373.5, + "end": 4374.56, + "probability": 0.8671 + }, + { + "start": 4375.22, + "end": 4378.36, + "probability": 0.9084 + }, + { + "start": 4378.96, + "end": 4381.82, + "probability": 0.796 + }, + { + "start": 4381.96, + "end": 4384.52, + "probability": 0.8417 + }, + { + "start": 4384.96, + "end": 4388.0, + "probability": 0.9075 + }, + { + "start": 4388.54, + "end": 4389.94, + "probability": 0.8383 + }, + { + "start": 4390.2, + "end": 4393.76, + "probability": 0.991 + }, + { + "start": 4394.2, + "end": 4395.38, + "probability": 0.889 + }, + { + "start": 4395.6, + "end": 4397.42, + "probability": 0.8627 + }, + { + "start": 4397.6, + "end": 4398.94, + "probability": 0.977 + }, + { + "start": 4399.06, + "end": 4400.28, + "probability": 0.801 + }, + { + "start": 4401.0, + "end": 4405.9, + "probability": 0.9936 + }, + { + "start": 4405.9, + "end": 4410.32, + "probability": 0.8262 + }, + { + "start": 4410.64, + "end": 4412.78, + "probability": 0.8615 + }, + { + "start": 4413.58, + "end": 4418.18, + "probability": 0.9447 + }, + { + "start": 4418.84, + "end": 4420.68, + "probability": 0.9359 + }, + { + "start": 4421.34, + "end": 4421.54, + "probability": 0.3053 + }, + { + "start": 4421.74, + "end": 4422.7, + "probability": 0.9436 + }, + { + "start": 4422.8, + "end": 4429.52, + "probability": 0.9871 + }, + { + "start": 4430.12, + "end": 4432.3, + "probability": 0.9253 + }, + { + "start": 4433.36, + "end": 4435.54, + "probability": 0.9467 + }, + { + "start": 4436.42, + "end": 4440.1, + "probability": 0.8581 + }, + { + "start": 4440.66, + "end": 4442.16, + "probability": 0.673 + }, + { + "start": 4442.88, + "end": 4443.88, + "probability": 0.8906 + }, + { + "start": 4444.44, + "end": 4445.5, + "probability": 0.7512 + }, + { + "start": 4445.68, + "end": 4447.98, + "probability": 0.9793 + }, + { + "start": 4448.7, + "end": 4449.48, + "probability": 0.4373 + }, + { + "start": 4450.02, + "end": 4452.5, + "probability": 0.9382 + }, + { + "start": 4453.16, + "end": 4453.5, + "probability": 0.4169 + }, + { + "start": 4453.6, + "end": 4456.2, + "probability": 0.9875 + }, + { + "start": 4456.44, + "end": 4457.0, + "probability": 0.8663 + }, + { + "start": 4457.1, + "end": 4458.08, + "probability": 0.9615 + }, + { + "start": 4458.1, + "end": 4459.54, + "probability": 0.9761 + }, + { + "start": 4459.92, + "end": 4462.44, + "probability": 0.9976 + }, + { + "start": 4462.44, + "end": 4465.1, + "probability": 0.6799 + }, + { + "start": 4465.28, + "end": 4465.46, + "probability": 0.5939 + }, + { + "start": 4465.64, + "end": 4467.32, + "probability": 0.9099 + }, + { + "start": 4467.44, + "end": 4470.16, + "probability": 0.9186 + }, + { + "start": 4478.62, + "end": 4481.72, + "probability": 0.9753 + }, + { + "start": 4481.72, + "end": 4485.32, + "probability": 0.979 + }, + { + "start": 4486.16, + "end": 4490.12, + "probability": 0.6115 + }, + { + "start": 4490.18, + "end": 4490.72, + "probability": 0.2939 + }, + { + "start": 4490.92, + "end": 4492.0, + "probability": 0.8 + }, + { + "start": 4493.18, + "end": 4494.62, + "probability": 0.3667 + }, + { + "start": 4495.76, + "end": 4496.38, + "probability": 0.1591 + }, + { + "start": 4496.38, + "end": 4496.38, + "probability": 0.093 + }, + { + "start": 4496.38, + "end": 4501.24, + "probability": 0.8994 + }, + { + "start": 4501.24, + "end": 4506.7, + "probability": 0.9965 + }, + { + "start": 4507.3, + "end": 4508.88, + "probability": 0.9147 + }, + { + "start": 4509.84, + "end": 4511.76, + "probability": 0.9154 + }, + { + "start": 4512.78, + "end": 4514.82, + "probability": 0.8427 + }, + { + "start": 4515.86, + "end": 4517.82, + "probability": 0.9859 + }, + { + "start": 4518.72, + "end": 4520.16, + "probability": 0.9391 + }, + { + "start": 4521.48, + "end": 4526.54, + "probability": 0.9845 + }, + { + "start": 4527.4, + "end": 4530.58, + "probability": 0.8875 + }, + { + "start": 4530.66, + "end": 4533.14, + "probability": 0.9634 + }, + { + "start": 4533.32, + "end": 4535.18, + "probability": 0.9977 + }, + { + "start": 4536.4, + "end": 4537.22, + "probability": 0.9844 + }, + { + "start": 4537.94, + "end": 4539.06, + "probability": 0.8226 + }, + { + "start": 4540.1, + "end": 4541.58, + "probability": 0.8715 + }, + { + "start": 4542.94, + "end": 4545.12, + "probability": 0.9225 + }, + { + "start": 4546.86, + "end": 4548.56, + "probability": 0.8628 + }, + { + "start": 4549.58, + "end": 4550.92, + "probability": 0.8387 + }, + { + "start": 4552.28, + "end": 4552.98, + "probability": 0.2386 + }, + { + "start": 4553.82, + "end": 4557.26, + "probability": 0.8235 + }, + { + "start": 4557.98, + "end": 4559.76, + "probability": 0.7316 + }, + { + "start": 4560.66, + "end": 4562.14, + "probability": 0.8931 + }, + { + "start": 4563.12, + "end": 4566.38, + "probability": 0.9957 + }, + { + "start": 4567.26, + "end": 4571.58, + "probability": 0.788 + }, + { + "start": 4572.48, + "end": 4575.3, + "probability": 0.9937 + }, + { + "start": 4578.25, + "end": 4580.16, + "probability": 0.988 + }, + { + "start": 4581.12, + "end": 4584.18, + "probability": 0.9742 + }, + { + "start": 4585.12, + "end": 4590.49, + "probability": 0.9826 + }, + { + "start": 4591.38, + "end": 4596.42, + "probability": 0.6963 + }, + { + "start": 4597.34, + "end": 4598.0, + "probability": 0.8765 + }, + { + "start": 4598.72, + "end": 4601.68, + "probability": 0.8184 + }, + { + "start": 4602.9, + "end": 4606.85, + "probability": 0.9561 + }, + { + "start": 4607.78, + "end": 4609.48, + "probability": 0.9895 + }, + { + "start": 4610.76, + "end": 4612.22, + "probability": 0.998 + }, + { + "start": 4613.5, + "end": 4615.84, + "probability": 0.9397 + }, + { + "start": 4620.7, + "end": 4623.38, + "probability": 0.6327 + }, + { + "start": 4624.38, + "end": 4627.6, + "probability": 0.7524 + }, + { + "start": 4628.28, + "end": 4629.24, + "probability": 0.9678 + }, + { + "start": 4632.16, + "end": 4633.54, + "probability": 0.8168 + }, + { + "start": 4634.52, + "end": 4635.32, + "probability": 0.7438 + }, + { + "start": 4636.72, + "end": 4637.88, + "probability": 0.415 + }, + { + "start": 4637.98, + "end": 4638.12, + "probability": 0.6898 + }, + { + "start": 4639.42, + "end": 4640.54, + "probability": 0.8235 + }, + { + "start": 4641.22, + "end": 4641.9, + "probability": 0.7063 + }, + { + "start": 4642.5, + "end": 4644.42, + "probability": 0.988 + }, + { + "start": 4645.56, + "end": 4647.72, + "probability": 0.8591 + }, + { + "start": 4649.88, + "end": 4651.86, + "probability": 0.5804 + }, + { + "start": 4652.7, + "end": 4656.22, + "probability": 0.8007 + }, + { + "start": 4657.44, + "end": 4657.54, + "probability": 0.7503 + }, + { + "start": 4657.56, + "end": 4658.08, + "probability": 0.3963 + }, + { + "start": 4658.48, + "end": 4659.16, + "probability": 0.7324 + }, + { + "start": 4659.62, + "end": 4660.36, + "probability": 0.6465 + }, + { + "start": 4660.72, + "end": 4662.44, + "probability": 0.9668 + }, + { + "start": 4662.72, + "end": 4663.3, + "probability": 0.8188 + }, + { + "start": 4663.46, + "end": 4665.64, + "probability": 0.9824 + }, + { + "start": 4665.94, + "end": 4668.1, + "probability": 0.7548 + }, + { + "start": 4668.24, + "end": 4668.38, + "probability": 0.7413 + }, + { + "start": 4668.98, + "end": 4672.46, + "probability": 0.8997 + }, + { + "start": 4672.58, + "end": 4675.56, + "probability": 0.7933 + }, + { + "start": 4675.6, + "end": 4676.94, + "probability": 0.9775 + }, + { + "start": 4677.14, + "end": 4678.36, + "probability": 0.6791 + }, + { + "start": 4678.44, + "end": 4679.96, + "probability": 0.6233 + }, + { + "start": 4679.98, + "end": 4683.18, + "probability": 0.9494 + }, + { + "start": 4683.32, + "end": 4685.66, + "probability": 0.9645 + }, + { + "start": 4685.78, + "end": 4688.26, + "probability": 0.994 + }, + { + "start": 4688.44, + "end": 4690.18, + "probability": 0.6151 + }, + { + "start": 4690.84, + "end": 4692.18, + "probability": 0.9486 + }, + { + "start": 4692.3, + "end": 4694.51, + "probability": 0.9995 + }, + { + "start": 4695.26, + "end": 4703.04, + "probability": 0.9751 + }, + { + "start": 4704.28, + "end": 4704.66, + "probability": 0.5731 + }, + { + "start": 4704.74, + "end": 4705.1, + "probability": 0.9025 + }, + { + "start": 4705.2, + "end": 4706.98, + "probability": 0.9194 + }, + { + "start": 4707.84, + "end": 4712.9, + "probability": 0.8115 + }, + { + "start": 4713.08, + "end": 4715.84, + "probability": 0.8378 + }, + { + "start": 4716.28, + "end": 4721.72, + "probability": 0.9888 + }, + { + "start": 4722.83, + "end": 4725.86, + "probability": 0.9976 + }, + { + "start": 4726.12, + "end": 4731.16, + "probability": 0.9917 + }, + { + "start": 4731.28, + "end": 4736.46, + "probability": 0.7955 + }, + { + "start": 4736.56, + "end": 4737.84, + "probability": 0.9844 + }, + { + "start": 4738.18, + "end": 4739.84, + "probability": 0.978 + }, + { + "start": 4740.6, + "end": 4742.24, + "probability": 0.9971 + }, + { + "start": 4742.32, + "end": 4743.0, + "probability": 0.9204 + }, + { + "start": 4743.06, + "end": 4745.54, + "probability": 0.9701 + }, + { + "start": 4745.66, + "end": 4747.26, + "probability": 0.518 + }, + { + "start": 4747.86, + "end": 4750.04, + "probability": 0.9851 + }, + { + "start": 4750.16, + "end": 4753.6, + "probability": 0.9897 + }, + { + "start": 4754.16, + "end": 4759.22, + "probability": 0.9788 + }, + { + "start": 4759.36, + "end": 4761.52, + "probability": 0.9863 + }, + { + "start": 4761.96, + "end": 4763.6, + "probability": 0.7957 + }, + { + "start": 4763.68, + "end": 4764.12, + "probability": 0.4962 + }, + { + "start": 4764.22, + "end": 4768.85, + "probability": 0.8899 + }, + { + "start": 4769.6, + "end": 4771.3, + "probability": 0.9154 + }, + { + "start": 4771.66, + "end": 4774.76, + "probability": 0.9834 + }, + { + "start": 4774.9, + "end": 4775.36, + "probability": 0.9779 + }, + { + "start": 4775.88, + "end": 4784.9, + "probability": 0.8893 + }, + { + "start": 4785.08, + "end": 4788.74, + "probability": 0.9919 + }, + { + "start": 4788.82, + "end": 4791.86, + "probability": 0.6652 + }, + { + "start": 4792.26, + "end": 4798.24, + "probability": 0.8543 + }, + { + "start": 4798.32, + "end": 4802.64, + "probability": 0.9554 + }, + { + "start": 4803.6, + "end": 4806.88, + "probability": 0.9764 + }, + { + "start": 4807.34, + "end": 4808.24, + "probability": 0.7057 + }, + { + "start": 4808.28, + "end": 4808.7, + "probability": 0.9204 + }, + { + "start": 4808.82, + "end": 4810.8, + "probability": 0.9758 + }, + { + "start": 4811.18, + "end": 4819.08, + "probability": 0.9852 + }, + { + "start": 4819.5, + "end": 4823.82, + "probability": 0.9951 + }, + { + "start": 4824.48, + "end": 4828.74, + "probability": 0.9909 + }, + { + "start": 4828.82, + "end": 4831.04, + "probability": 0.9948 + }, + { + "start": 4832.0, + "end": 4833.14, + "probability": 0.0918 + }, + { + "start": 4834.06, + "end": 4835.96, + "probability": 0.7883 + }, + { + "start": 4836.78, + "end": 4840.12, + "probability": 0.826 + }, + { + "start": 4840.16, + "end": 4844.68, + "probability": 0.9663 + }, + { + "start": 4858.48, + "end": 4859.22, + "probability": 0.0482 + }, + { + "start": 4859.62, + "end": 4860.34, + "probability": 0.6311 + }, + { + "start": 4860.9, + "end": 4861.58, + "probability": 0.7267 + }, + { + "start": 4862.92, + "end": 4867.38, + "probability": 0.9805 + }, + { + "start": 4867.72, + "end": 4869.24, + "probability": 0.8044 + }, + { + "start": 4870.0, + "end": 4871.72, + "probability": 0.8341 + }, + { + "start": 4871.98, + "end": 4876.4, + "probability": 0.9468 + }, + { + "start": 4877.1, + "end": 4880.84, + "probability": 0.9353 + }, + { + "start": 4881.42, + "end": 4885.26, + "probability": 0.8467 + }, + { + "start": 4886.68, + "end": 4888.44, + "probability": 0.932 + }, + { + "start": 4888.62, + "end": 4889.08, + "probability": 0.5001 + }, + { + "start": 4889.68, + "end": 4891.5, + "probability": 0.9276 + }, + { + "start": 4891.66, + "end": 4892.84, + "probability": 0.9485 + }, + { + "start": 4892.92, + "end": 4893.64, + "probability": 0.5685 + }, + { + "start": 4894.24, + "end": 4895.66, + "probability": 0.9162 + }, + { + "start": 4896.3, + "end": 4898.0, + "probability": 0.8965 + }, + { + "start": 4898.64, + "end": 4899.9, + "probability": 0.8942 + }, + { + "start": 4900.9, + "end": 4903.64, + "probability": 0.915 + }, + { + "start": 4904.24, + "end": 4904.7, + "probability": 0.9191 + }, + { + "start": 4905.12, + "end": 4907.82, + "probability": 0.989 + }, + { + "start": 4908.26, + "end": 4909.66, + "probability": 0.8641 + }, + { + "start": 4910.52, + "end": 4912.46, + "probability": 0.7624 + }, + { + "start": 4913.14, + "end": 4913.38, + "probability": 0.475 + }, + { + "start": 4913.98, + "end": 4914.96, + "probability": 0.6401 + }, + { + "start": 4915.18, + "end": 4916.12, + "probability": 0.6712 + }, + { + "start": 4916.42, + "end": 4921.02, + "probability": 0.8187 + }, + { + "start": 4921.58, + "end": 4922.18, + "probability": 0.7323 + }, + { + "start": 4922.62, + "end": 4923.32, + "probability": 0.9883 + }, + { + "start": 4924.58, + "end": 4928.44, + "probability": 0.9308 + }, + { + "start": 4928.98, + "end": 4930.2, + "probability": 0.9383 + }, + { + "start": 4930.82, + "end": 4932.46, + "probability": 0.8711 + }, + { + "start": 4932.86, + "end": 4936.2, + "probability": 0.8722 + }, + { + "start": 4936.84, + "end": 4938.08, + "probability": 0.9797 + }, + { + "start": 4938.34, + "end": 4939.18, + "probability": 0.7594 + }, + { + "start": 4939.62, + "end": 4942.04, + "probability": 0.9312 + }, + { + "start": 4942.74, + "end": 4943.98, + "probability": 0.5804 + }, + { + "start": 4944.46, + "end": 4945.34, + "probability": 0.8055 + }, + { + "start": 4945.84, + "end": 4946.64, + "probability": 0.7488 + }, + { + "start": 4946.98, + "end": 4951.62, + "probability": 0.8487 + }, + { + "start": 4952.16, + "end": 4953.32, + "probability": 0.8539 + }, + { + "start": 4953.72, + "end": 4955.69, + "probability": 0.9495 + }, + { + "start": 4957.2, + "end": 4957.62, + "probability": 0.7774 + }, + { + "start": 4957.94, + "end": 4958.72, + "probability": 0.9814 + }, + { + "start": 4959.1, + "end": 4963.46, + "probability": 0.9663 + }, + { + "start": 4964.84, + "end": 4966.11, + "probability": 0.9681 + }, + { + "start": 4966.74, + "end": 4967.0, + "probability": 0.9197 + }, + { + "start": 4967.1, + "end": 4968.1, + "probability": 0.9612 + }, + { + "start": 4968.48, + "end": 4970.7, + "probability": 0.9625 + }, + { + "start": 4971.26, + "end": 4973.96, + "probability": 0.5826 + }, + { + "start": 4974.84, + "end": 4977.45, + "probability": 0.4705 + }, + { + "start": 4979.54, + "end": 4981.4, + "probability": 0.748 + }, + { + "start": 4981.96, + "end": 4982.62, + "probability": 0.6397 + }, + { + "start": 4982.8, + "end": 4982.92, + "probability": 0.8656 + }, + { + "start": 4983.08, + "end": 4984.06, + "probability": 0.9607 + }, + { + "start": 4984.54, + "end": 4985.52, + "probability": 0.9724 + }, + { + "start": 4985.96, + "end": 4986.68, + "probability": 0.7537 + }, + { + "start": 4987.72, + "end": 4989.96, + "probability": 0.3713 + }, + { + "start": 4990.84, + "end": 4992.3, + "probability": 0.8192 + }, + { + "start": 4992.92, + "end": 4993.98, + "probability": 0.6101 + }, + { + "start": 4994.82, + "end": 4997.0, + "probability": 0.8605 + }, + { + "start": 4997.4, + "end": 4997.6, + "probability": 0.8089 + }, + { + "start": 4999.18, + "end": 5001.68, + "probability": 0.6509 + }, + { + "start": 5003.36, + "end": 5004.4, + "probability": 0.9073 + }, + { + "start": 5004.78, + "end": 5005.22, + "probability": 0.6539 + }, + { + "start": 5005.48, + "end": 5007.26, + "probability": 0.9133 + }, + { + "start": 5008.04, + "end": 5009.24, + "probability": 0.8767 + }, + { + "start": 5009.44, + "end": 5013.14, + "probability": 0.9855 + }, + { + "start": 5013.42, + "end": 5016.32, + "probability": 0.9333 + }, + { + "start": 5016.74, + "end": 5017.42, + "probability": 0.8374 + }, + { + "start": 5018.0, + "end": 5023.08, + "probability": 0.9346 + }, + { + "start": 5024.34, + "end": 5026.74, + "probability": 0.7518 + }, + { + "start": 5027.1, + "end": 5029.08, + "probability": 0.1203 + }, + { + "start": 5029.66, + "end": 5030.44, + "probability": 0.2017 + }, + { + "start": 5032.58, + "end": 5032.96, + "probability": 0.0139 + }, + { + "start": 5035.4, + "end": 5043.9, + "probability": 0.0914 + }, + { + "start": 5044.4, + "end": 5046.75, + "probability": 0.7172 + }, + { + "start": 5047.78, + "end": 5050.78, + "probability": 0.449 + }, + { + "start": 5050.78, + "end": 5053.06, + "probability": 0.6801 + }, + { + "start": 5056.18, + "end": 5059.46, + "probability": 0.9239 + }, + { + "start": 5060.26, + "end": 5060.96, + "probability": 0.0572 + }, + { + "start": 5060.96, + "end": 5061.52, + "probability": 0.173 + }, + { + "start": 5063.62, + "end": 5072.96, + "probability": 0.8632 + }, + { + "start": 5073.04, + "end": 5075.0, + "probability": 0.6445 + }, + { + "start": 5076.48, + "end": 5078.76, + "probability": 0.546 + }, + { + "start": 5078.84, + "end": 5079.28, + "probability": 0.9381 + }, + { + "start": 5079.42, + "end": 5083.84, + "probability": 0.9601 + }, + { + "start": 5090.28, + "end": 5090.8, + "probability": 0.2553 + }, + { + "start": 5090.84, + "end": 5093.86, + "probability": 0.7568 + }, + { + "start": 5094.38, + "end": 5098.28, + "probability": 0.8979 + }, + { + "start": 5098.82, + "end": 5100.28, + "probability": 0.7182 + }, + { + "start": 5103.5, + "end": 5105.48, + "probability": 0.6746 + }, + { + "start": 5106.26, + "end": 5110.77, + "probability": 0.7151 + }, + { + "start": 5111.58, + "end": 5112.1, + "probability": 0.8863 + }, + { + "start": 5120.52, + "end": 5121.28, + "probability": 0.6961 + }, + { + "start": 5121.42, + "end": 5122.48, + "probability": 0.8959 + }, + { + "start": 5122.66, + "end": 5124.7, + "probability": 0.8908 + }, + { + "start": 5124.7, + "end": 5126.72, + "probability": 0.9392 + }, + { + "start": 5127.16, + "end": 5127.98, + "probability": 0.8939 + }, + { + "start": 5128.5, + "end": 5133.76, + "probability": 0.9373 + }, + { + "start": 5134.22, + "end": 5137.85, + "probability": 0.7522 + }, + { + "start": 5138.06, + "end": 5138.8, + "probability": 0.3535 + }, + { + "start": 5139.26, + "end": 5141.04, + "probability": 0.6889 + }, + { + "start": 5141.58, + "end": 5142.2, + "probability": 0.8187 + }, + { + "start": 5142.34, + "end": 5145.96, + "probability": 0.9142 + }, + { + "start": 5147.12, + "end": 5148.34, + "probability": 0.6958 + }, + { + "start": 5149.42, + "end": 5151.02, + "probability": 0.698 + }, + { + "start": 5151.58, + "end": 5153.76, + "probability": 0.9967 + }, + { + "start": 5153.8, + "end": 5156.6, + "probability": 0.9619 + }, + { + "start": 5156.6, + "end": 5159.8, + "probability": 0.9453 + }, + { + "start": 5160.26, + "end": 5164.04, + "probability": 0.7109 + }, + { + "start": 5164.12, + "end": 5165.08, + "probability": 0.937 + }, + { + "start": 5165.18, + "end": 5166.88, + "probability": 0.9535 + }, + { + "start": 5167.56, + "end": 5170.32, + "probability": 0.926 + }, + { + "start": 5170.42, + "end": 5171.02, + "probability": 0.8674 + }, + { + "start": 5171.1, + "end": 5171.6, + "probability": 0.9283 + }, + { + "start": 5171.68, + "end": 5172.48, + "probability": 0.6921 + }, + { + "start": 5173.46, + "end": 5174.2, + "probability": 0.9492 + }, + { + "start": 5174.3, + "end": 5176.28, + "probability": 0.8433 + }, + { + "start": 5176.5, + "end": 5177.06, + "probability": 0.6865 + }, + { + "start": 5177.12, + "end": 5177.74, + "probability": 0.6278 + }, + { + "start": 5177.92, + "end": 5179.18, + "probability": 0.7423 + }, + { + "start": 5180.06, + "end": 5182.28, + "probability": 0.9465 + }, + { + "start": 5183.88, + "end": 5186.72, + "probability": 0.822 + }, + { + "start": 5187.22, + "end": 5189.18, + "probability": 0.5464 + }, + { + "start": 5192.04, + "end": 5195.74, + "probability": 0.7311 + }, + { + "start": 5196.32, + "end": 5197.88, + "probability": 0.8997 + }, + { + "start": 5199.52, + "end": 5205.8, + "probability": 0.6923 + }, + { + "start": 5206.7, + "end": 5208.86, + "probability": 0.8253 + }, + { + "start": 5209.64, + "end": 5214.41, + "probability": 0.6012 + }, + { + "start": 5215.5, + "end": 5217.28, + "probability": 0.8088 + }, + { + "start": 5219.2, + "end": 5221.56, + "probability": 0.5806 + }, + { + "start": 5222.2, + "end": 5222.52, + "probability": 0.2675 + }, + { + "start": 5223.08, + "end": 5225.56, + "probability": 0.5178 + }, + { + "start": 5228.4, + "end": 5230.14, + "probability": 0.5327 + }, + { + "start": 5242.0, + "end": 5244.72, + "probability": 0.2874 + }, + { + "start": 5245.0, + "end": 5246.98, + "probability": 0.238 + }, + { + "start": 5246.98, + "end": 5248.0, + "probability": 0.1455 + }, + { + "start": 5248.88, + "end": 5250.1, + "probability": 0.8528 + }, + { + "start": 5251.4, + "end": 5256.78, + "probability": 0.4972 + }, + { + "start": 5258.34, + "end": 5259.6, + "probability": 0.9408 + }, + { + "start": 5261.2, + "end": 5263.12, + "probability": 0.468 + }, + { + "start": 5263.82, + "end": 5266.84, + "probability": 0.2547 + }, + { + "start": 5269.14, + "end": 5273.32, + "probability": 0.9872 + }, + { + "start": 5274.1, + "end": 5276.28, + "probability": 0.5 + }, + { + "start": 5277.1, + "end": 5278.34, + "probability": 0.6273 + }, + { + "start": 5280.16, + "end": 5281.06, + "probability": 0.877 + }, + { + "start": 5281.82, + "end": 5283.14, + "probability": 0.9758 + }, + { + "start": 5284.62, + "end": 5286.62, + "probability": 0.3348 + }, + { + "start": 5287.72, + "end": 5288.26, + "probability": 0.5407 + }, + { + "start": 5289.44, + "end": 5293.2, + "probability": 0.8548 + }, + { + "start": 5294.5, + "end": 5297.08, + "probability": 0.3577 + }, + { + "start": 5297.72, + "end": 5298.84, + "probability": 0.3988 + }, + { + "start": 5300.54, + "end": 5302.98, + "probability": 0.998 + }, + { + "start": 5304.08, + "end": 5305.16, + "probability": 0.8405 + }, + { + "start": 5306.38, + "end": 5307.92, + "probability": 0.8576 + }, + { + "start": 5308.78, + "end": 5309.56, + "probability": 0.9235 + }, + { + "start": 5310.58, + "end": 5311.6, + "probability": 0.2441 + }, + { + "start": 5325.42, + "end": 5325.54, + "probability": 0.4801 + }, + { + "start": 5325.54, + "end": 5325.64, + "probability": 0.1455 + }, + { + "start": 5325.64, + "end": 5325.76, + "probability": 0.1768 + }, + { + "start": 5325.76, + "end": 5326.02, + "probability": 0.1089 + }, + { + "start": 5326.08, + "end": 5326.32, + "probability": 0.0907 + }, + { + "start": 5326.32, + "end": 5326.36, + "probability": 0.033 + }, + { + "start": 5354.82, + "end": 5359.48, + "probability": 0.8173 + }, + { + "start": 5360.16, + "end": 5363.84, + "probability": 0.8006 + }, + { + "start": 5363.84, + "end": 5365.88, + "probability": 0.9441 + }, + { + "start": 5366.6, + "end": 5367.46, + "probability": 0.8293 + }, + { + "start": 5367.72, + "end": 5373.28, + "probability": 0.9961 + }, + { + "start": 5373.78, + "end": 5374.64, + "probability": 0.6806 + }, + { + "start": 5375.6, + "end": 5377.88, + "probability": 0.9767 + }, + { + "start": 5378.66, + "end": 5380.06, + "probability": 0.8549 + }, + { + "start": 5381.1, + "end": 5384.58, + "probability": 0.81 + }, + { + "start": 5385.72, + "end": 5387.66, + "probability": 0.9044 + }, + { + "start": 5389.04, + "end": 5393.82, + "probability": 0.9899 + }, + { + "start": 5394.1, + "end": 5399.14, + "probability": 0.9894 + }, + { + "start": 5399.62, + "end": 5401.34, + "probability": 0.9108 + }, + { + "start": 5401.46, + "end": 5402.44, + "probability": 0.8112 + }, + { + "start": 5403.06, + "end": 5404.92, + "probability": 0.9765 + }, + { + "start": 5405.58, + "end": 5408.42, + "probability": 0.9373 + }, + { + "start": 5409.16, + "end": 5413.68, + "probability": 0.8754 + }, + { + "start": 5414.28, + "end": 5416.28, + "probability": 0.754 + }, + { + "start": 5416.82, + "end": 5421.04, + "probability": 0.8814 + }, + { + "start": 5421.74, + "end": 5424.4, + "probability": 0.978 + }, + { + "start": 5424.56, + "end": 5426.0, + "probability": 0.7802 + }, + { + "start": 5426.72, + "end": 5428.14, + "probability": 0.6288 + }, + { + "start": 5429.4, + "end": 5433.12, + "probability": 0.9195 + }, + { + "start": 5433.58, + "end": 5434.32, + "probability": 0.8803 + }, + { + "start": 5434.88, + "end": 5435.98, + "probability": 0.8411 + }, + { + "start": 5436.18, + "end": 5441.5, + "probability": 0.6408 + }, + { + "start": 5441.66, + "end": 5444.98, + "probability": 0.8821 + }, + { + "start": 5445.7, + "end": 5446.46, + "probability": 0.4876 + }, + { + "start": 5447.28, + "end": 5449.16, + "probability": 0.625 + }, + { + "start": 5449.68, + "end": 5450.58, + "probability": 0.7774 + }, + { + "start": 5451.36, + "end": 5457.68, + "probability": 0.8571 + }, + { + "start": 5458.42, + "end": 5460.62, + "probability": 0.8135 + }, + { + "start": 5461.2, + "end": 5462.14, + "probability": 0.7183 + }, + { + "start": 5462.78, + "end": 5465.46, + "probability": 0.9242 + }, + { + "start": 5465.58, + "end": 5466.68, + "probability": 0.8534 + }, + { + "start": 5467.46, + "end": 5470.24, + "probability": 0.9241 + }, + { + "start": 5470.4, + "end": 5472.58, + "probability": 0.9506 + }, + { + "start": 5473.28, + "end": 5475.28, + "probability": 0.8926 + }, + { + "start": 5476.29, + "end": 5480.1, + "probability": 0.9074 + }, + { + "start": 5480.16, + "end": 5482.7, + "probability": 0.9455 + }, + { + "start": 5483.76, + "end": 5486.96, + "probability": 0.9652 + }, + { + "start": 5488.1, + "end": 5494.74, + "probability": 0.919 + }, + { + "start": 5495.72, + "end": 5498.68, + "probability": 0.674 + }, + { + "start": 5498.98, + "end": 5499.96, + "probability": 0.8417 + }, + { + "start": 5500.84, + "end": 5502.82, + "probability": 0.8728 + }, + { + "start": 5502.94, + "end": 5503.32, + "probability": 0.7142 + }, + { + "start": 5503.38, + "end": 5504.7, + "probability": 0.6191 + }, + { + "start": 5505.58, + "end": 5510.04, + "probability": 0.9865 + }, + { + "start": 5510.58, + "end": 5512.24, + "probability": 0.8547 + }, + { + "start": 5512.78, + "end": 5513.71, + "probability": 0.9189 + }, + { + "start": 5514.38, + "end": 5516.1, + "probability": 0.9839 + }, + { + "start": 5517.04, + "end": 5518.16, + "probability": 0.7352 + }, + { + "start": 5518.7, + "end": 5521.12, + "probability": 0.6641 + }, + { + "start": 5524.34, + "end": 5526.39, + "probability": 0.6636 + }, + { + "start": 5526.8, + "end": 5528.58, + "probability": 0.7358 + }, + { + "start": 5530.36, + "end": 5532.94, + "probability": 0.8295 + }, + { + "start": 5533.88, + "end": 5534.8, + "probability": 0.7721 + }, + { + "start": 5536.32, + "end": 5536.34, + "probability": 0.0044 + }, + { + "start": 5537.2, + "end": 5539.54, + "probability": 0.0362 + }, + { + "start": 5540.36, + "end": 5542.42, + "probability": 0.6596 + }, + { + "start": 5543.22, + "end": 5545.63, + "probability": 0.8804 + }, + { + "start": 5545.96, + "end": 5546.64, + "probability": 0.052 + }, + { + "start": 5546.64, + "end": 5547.14, + "probability": 0.3211 + }, + { + "start": 5548.3, + "end": 5549.28, + "probability": 0.4306 + }, + { + "start": 5549.44, + "end": 5551.54, + "probability": 0.9422 + }, + { + "start": 5552.12, + "end": 5553.66, + "probability": 0.9002 + }, + { + "start": 5554.44, + "end": 5557.1, + "probability": 0.8913 + }, + { + "start": 5557.72, + "end": 5559.16, + "probability": 0.9952 + }, + { + "start": 5559.24, + "end": 5560.12, + "probability": 0.9966 + }, + { + "start": 5560.28, + "end": 5560.99, + "probability": 0.6216 + }, + { + "start": 5561.5, + "end": 5562.96, + "probability": 0.2413 + }, + { + "start": 5563.38, + "end": 5564.46, + "probability": 0.7637 + }, + { + "start": 5565.86, + "end": 5565.86, + "probability": 0.4375 + }, + { + "start": 5565.86, + "end": 5566.5, + "probability": 0.5991 + }, + { + "start": 5566.66, + "end": 5572.3, + "probability": 0.8716 + }, + { + "start": 5573.46, + "end": 5577.14, + "probability": 0.7434 + }, + { + "start": 5577.76, + "end": 5580.66, + "probability": 0.9639 + }, + { + "start": 5581.16, + "end": 5583.74, + "probability": 0.8945 + }, + { + "start": 5584.66, + "end": 5587.82, + "probability": 0.9371 + }, + { + "start": 5587.82, + "end": 5592.96, + "probability": 0.9437 + }, + { + "start": 5593.1, + "end": 5593.76, + "probability": 0.3252 + }, + { + "start": 5594.42, + "end": 5597.72, + "probability": 0.9708 + }, + { + "start": 5598.64, + "end": 5600.09, + "probability": 0.7104 + }, + { + "start": 5601.16, + "end": 5604.22, + "probability": 0.9232 + }, + { + "start": 5605.86, + "end": 5608.1, + "probability": 0.915 + }, + { + "start": 5608.88, + "end": 5609.52, + "probability": 0.8792 + }, + { + "start": 5610.22, + "end": 5611.46, + "probability": 0.9922 + }, + { + "start": 5611.6, + "end": 5611.86, + "probability": 0.8562 + }, + { + "start": 5611.94, + "end": 5612.9, + "probability": 0.8347 + }, + { + "start": 5613.68, + "end": 5615.82, + "probability": 0.8001 + }, + { + "start": 5616.4, + "end": 5621.1, + "probability": 0.9759 + }, + { + "start": 5621.68, + "end": 5622.38, + "probability": 0.8482 + }, + { + "start": 5622.52, + "end": 5623.92, + "probability": 0.9777 + }, + { + "start": 5624.0, + "end": 5625.64, + "probability": 0.9974 + }, + { + "start": 5626.26, + "end": 5627.52, + "probability": 0.9898 + }, + { + "start": 5628.56, + "end": 5630.86, + "probability": 0.7735 + }, + { + "start": 5631.4, + "end": 5632.04, + "probability": 0.5209 + }, + { + "start": 5632.6, + "end": 5634.74, + "probability": 0.9185 + }, + { + "start": 5635.56, + "end": 5636.54, + "probability": 0.7865 + }, + { + "start": 5637.14, + "end": 5639.32, + "probability": 0.9533 + }, + { + "start": 5640.26, + "end": 5642.4, + "probability": 0.9218 + }, + { + "start": 5643.6, + "end": 5644.38, + "probability": 0.8989 + }, + { + "start": 5645.22, + "end": 5646.18, + "probability": 0.7161 + }, + { + "start": 5647.28, + "end": 5650.66, + "probability": 0.7826 + }, + { + "start": 5651.4, + "end": 5653.44, + "probability": 0.8458 + }, + { + "start": 5654.02, + "end": 5655.1, + "probability": 0.9363 + }, + { + "start": 5656.68, + "end": 5658.66, + "probability": 0.9127 + }, + { + "start": 5659.34, + "end": 5659.96, + "probability": 0.9247 + }, + { + "start": 5660.12, + "end": 5664.12, + "probability": 0.9746 + }, + { + "start": 5664.98, + "end": 5668.96, + "probability": 0.9744 + }, + { + "start": 5669.6, + "end": 5669.7, + "probability": 0.5725 + }, + { + "start": 5670.38, + "end": 5672.52, + "probability": 0.9624 + }, + { + "start": 5673.32, + "end": 5674.88, + "probability": 0.2447 + }, + { + "start": 5675.28, + "end": 5676.74, + "probability": 0.8608 + }, + { + "start": 5677.26, + "end": 5678.8, + "probability": 0.9696 + }, + { + "start": 5679.34, + "end": 5680.06, + "probability": 0.6774 + }, + { + "start": 5680.14, + "end": 5681.04, + "probability": 0.6462 + }, + { + "start": 5681.12, + "end": 5681.66, + "probability": 0.6343 + }, + { + "start": 5682.0, + "end": 5682.59, + "probability": 0.6909 + }, + { + "start": 5683.02, + "end": 5683.88, + "probability": 0.5781 + }, + { + "start": 5684.12, + "end": 5684.4, + "probability": 0.7362 + }, + { + "start": 5684.9, + "end": 5686.02, + "probability": 0.6413 + }, + { + "start": 5686.5, + "end": 5686.68, + "probability": 0.8388 + }, + { + "start": 5687.38, + "end": 5688.8, + "probability": 0.9106 + }, + { + "start": 5689.7, + "end": 5691.06, + "probability": 0.8803 + }, + { + "start": 5691.94, + "end": 5693.72, + "probability": 0.975 + }, + { + "start": 5694.28, + "end": 5696.84, + "probability": 0.8547 + }, + { + "start": 5697.46, + "end": 5698.44, + "probability": 0.747 + }, + { + "start": 5698.46, + "end": 5699.5, + "probability": 0.7625 + }, + { + "start": 5699.96, + "end": 5700.98, + "probability": 0.9461 + }, + { + "start": 5702.12, + "end": 5704.34, + "probability": 0.7572 + }, + { + "start": 5704.74, + "end": 5705.96, + "probability": 0.2445 + }, + { + "start": 5706.48, + "end": 5707.76, + "probability": 0.5363 + }, + { + "start": 5709.08, + "end": 5712.42, + "probability": 0.5178 + }, + { + "start": 5712.74, + "end": 5713.56, + "probability": 0.9489 + }, + { + "start": 5713.92, + "end": 5714.14, + "probability": 0.564 + }, + { + "start": 5714.14, + "end": 5714.16, + "probability": 0.9906 + }, + { + "start": 5714.16, + "end": 5714.3, + "probability": 0.0485 + }, + { + "start": 5716.02, + "end": 5717.28, + "probability": 0.9822 + }, + { + "start": 5717.98, + "end": 5719.66, + "probability": 0.9739 + }, + { + "start": 5720.14, + "end": 5720.14, + "probability": 0.0095 + }, + { + "start": 5723.54, + "end": 5725.52, + "probability": 0.9974 + }, + { + "start": 5725.68, + "end": 5726.26, + "probability": 0.5002 + }, + { + "start": 5727.0, + "end": 5727.9, + "probability": 0.0264 + }, + { + "start": 5728.44, + "end": 5730.82, + "probability": 0.4398 + }, + { + "start": 5731.46, + "end": 5732.76, + "probability": 0.3235 + }, + { + "start": 5733.02, + "end": 5736.34, + "probability": 0.988 + }, + { + "start": 5736.42, + "end": 5736.94, + "probability": 0.9927 + }, + { + "start": 5737.8, + "end": 5740.26, + "probability": 0.9238 + }, + { + "start": 5741.46, + "end": 5742.3, + "probability": 0.8417 + }, + { + "start": 5742.86, + "end": 5743.62, + "probability": 0.9524 + }, + { + "start": 5744.18, + "end": 5746.82, + "probability": 0.9956 + }, + { + "start": 5747.02, + "end": 5747.7, + "probability": 0.95 + }, + { + "start": 5748.36, + "end": 5749.52, + "probability": 0.9159 + }, + { + "start": 5749.94, + "end": 5750.5, + "probability": 0.8403 + }, + { + "start": 5750.68, + "end": 5750.98, + "probability": 0.8235 + }, + { + "start": 5751.06, + "end": 5751.66, + "probability": 0.9752 + }, + { + "start": 5751.84, + "end": 5752.2, + "probability": 0.799 + }, + { + "start": 5752.52, + "end": 5753.92, + "probability": 0.9776 + }, + { + "start": 5754.7, + "end": 5755.5, + "probability": 0.793 + }, + { + "start": 5757.2, + "end": 5758.92, + "probability": 0.8174 + }, + { + "start": 5759.46, + "end": 5760.41, + "probability": 0.9912 + }, + { + "start": 5760.94, + "end": 5761.98, + "probability": 0.9777 + }, + { + "start": 5762.06, + "end": 5762.77, + "probability": 0.9064 + }, + { + "start": 5763.36, + "end": 5764.48, + "probability": 0.9514 + }, + { + "start": 5765.2, + "end": 5768.18, + "probability": 0.8499 + }, + { + "start": 5768.2, + "end": 5769.88, + "probability": 0.8118 + }, + { + "start": 5770.16, + "end": 5772.1, + "probability": 0.9131 + }, + { + "start": 5773.06, + "end": 5774.34, + "probability": 0.6851 + }, + { + "start": 5775.12, + "end": 5776.63, + "probability": 0.9944 + }, + { + "start": 5777.16, + "end": 5778.7, + "probability": 0.8304 + }, + { + "start": 5779.72, + "end": 5784.02, + "probability": 0.994 + }, + { + "start": 5784.14, + "end": 5785.04, + "probability": 0.8133 + }, + { + "start": 5785.64, + "end": 5787.98, + "probability": 0.8922 + }, + { + "start": 5788.64, + "end": 5790.1, + "probability": 0.9971 + }, + { + "start": 5790.24, + "end": 5791.22, + "probability": 0.9673 + }, + { + "start": 5791.72, + "end": 5792.48, + "probability": 0.9905 + }, + { + "start": 5793.54, + "end": 5794.92, + "probability": 0.822 + }, + { + "start": 5795.58, + "end": 5796.62, + "probability": 0.9979 + }, + { + "start": 5797.46, + "end": 5799.68, + "probability": 0.9885 + }, + { + "start": 5800.34, + "end": 5801.98, + "probability": 0.7483 + }, + { + "start": 5803.06, + "end": 5803.92, + "probability": 0.9657 + }, + { + "start": 5804.8, + "end": 5806.06, + "probability": 0.6838 + }, + { + "start": 5806.68, + "end": 5808.7, + "probability": 0.9927 + }, + { + "start": 5809.64, + "end": 5810.2, + "probability": 0.8344 + }, + { + "start": 5811.38, + "end": 5814.18, + "probability": 0.7776 + }, + { + "start": 5818.7, + "end": 5819.48, + "probability": 0.0533 + }, + { + "start": 5820.08, + "end": 5821.85, + "probability": 0.6448 + }, + { + "start": 5823.06, + "end": 5824.44, + "probability": 0.1033 + }, + { + "start": 5824.86, + "end": 5826.08, + "probability": 0.567 + }, + { + "start": 5827.6, + "end": 5830.48, + "probability": 0.902 + }, + { + "start": 5830.58, + "end": 5831.94, + "probability": 0.6805 + }, + { + "start": 5833.12, + "end": 5835.2, + "probability": 0.6321 + }, + { + "start": 5835.62, + "end": 5839.66, + "probability": 0.9521 + }, + { + "start": 5839.66, + "end": 5842.49, + "probability": 0.9663 + }, + { + "start": 5842.84, + "end": 5844.1, + "probability": 0.6935 + }, + { + "start": 5844.18, + "end": 5846.32, + "probability": 0.8635 + }, + { + "start": 5847.02, + "end": 5848.72, + "probability": 0.9801 + }, + { + "start": 5849.2, + "end": 5849.3, + "probability": 0.4152 + }, + { + "start": 5850.28, + "end": 5852.27, + "probability": 0.4854 + }, + { + "start": 5853.18, + "end": 5853.86, + "probability": 0.8654 + }, + { + "start": 5855.38, + "end": 5862.02, + "probability": 0.7674 + }, + { + "start": 5862.14, + "end": 5867.38, + "probability": 0.9522 + }, + { + "start": 5867.98, + "end": 5870.94, + "probability": 0.9937 + }, + { + "start": 5871.42, + "end": 5873.7, + "probability": 0.9944 + }, + { + "start": 5875.2, + "end": 5877.56, + "probability": 0.8726 + }, + { + "start": 5878.78, + "end": 5880.7, + "probability": 0.9996 + }, + { + "start": 5881.22, + "end": 5881.9, + "probability": 0.9731 + }, + { + "start": 5883.98, + "end": 5884.92, + "probability": 0.9603 + }, + { + "start": 5886.92, + "end": 5887.58, + "probability": 0.9891 + }, + { + "start": 5889.68, + "end": 5892.48, + "probability": 0.9409 + }, + { + "start": 5893.52, + "end": 5894.1, + "probability": 0.9296 + }, + { + "start": 5895.12, + "end": 5896.0, + "probability": 0.9714 + }, + { + "start": 5897.32, + "end": 5898.0, + "probability": 0.9348 + }, + { + "start": 5898.64, + "end": 5899.46, + "probability": 0.8256 + }, + { + "start": 5901.04, + "end": 5903.44, + "probability": 0.9927 + }, + { + "start": 5903.94, + "end": 5906.12, + "probability": 0.9912 + }, + { + "start": 5906.24, + "end": 5909.52, + "probability": 0.837 + }, + { + "start": 5909.86, + "end": 5910.45, + "probability": 0.9259 + }, + { + "start": 5910.92, + "end": 5911.44, + "probability": 0.6555 + }, + { + "start": 5912.32, + "end": 5914.44, + "probability": 0.7915 + }, + { + "start": 5916.68, + "end": 5916.8, + "probability": 0.0136 + }, + { + "start": 5916.8, + "end": 5918.78, + "probability": 0.9818 + }, + { + "start": 5919.96, + "end": 5921.38, + "probability": 0.9082 + }, + { + "start": 5922.01, + "end": 5924.68, + "probability": 0.803 + }, + { + "start": 5925.96, + "end": 5927.04, + "probability": 0.9956 + }, + { + "start": 5928.0, + "end": 5931.18, + "probability": 0.9703 + }, + { + "start": 5933.22, + "end": 5934.38, + "probability": 0.9791 + }, + { + "start": 5935.64, + "end": 5937.8, + "probability": 0.9854 + }, + { + "start": 5938.96, + "end": 5941.14, + "probability": 0.9486 + }, + { + "start": 5941.88, + "end": 5943.82, + "probability": 0.9409 + }, + { + "start": 5944.94, + "end": 5948.12, + "probability": 0.9948 + }, + { + "start": 5948.92, + "end": 5951.68, + "probability": 0.9979 + }, + { + "start": 5951.68, + "end": 5956.88, + "probability": 0.9806 + }, + { + "start": 5957.76, + "end": 5961.68, + "probability": 0.9297 + }, + { + "start": 5962.26, + "end": 5964.34, + "probability": 0.982 + }, + { + "start": 5965.12, + "end": 5967.18, + "probability": 0.9588 + }, + { + "start": 5967.58, + "end": 5969.7, + "probability": 0.9974 + }, + { + "start": 5970.28, + "end": 5972.72, + "probability": 0.9661 + }, + { + "start": 5974.32, + "end": 5977.6, + "probability": 0.8083 + }, + { + "start": 5977.68, + "end": 5981.78, + "probability": 0.9917 + }, + { + "start": 5982.0, + "end": 5985.34, + "probability": 0.9987 + }, + { + "start": 5988.64, + "end": 5990.08, + "probability": 0.8405 + }, + { + "start": 5990.46, + "end": 5990.8, + "probability": 0.1555 + }, + { + "start": 5990.96, + "end": 5992.88, + "probability": 0.957 + }, + { + "start": 5994.02, + "end": 5994.32, + "probability": 0.7637 + }, + { + "start": 5996.06, + "end": 5996.58, + "probability": 0.7125 + }, + { + "start": 5996.86, + "end": 5999.56, + "probability": 0.8906 + }, + { + "start": 5999.74, + "end": 6004.64, + "probability": 0.9809 + }, + { + "start": 6005.26, + "end": 6007.34, + "probability": 0.9814 + }, + { + "start": 6008.56, + "end": 6011.92, + "probability": 0.9739 + }, + { + "start": 6012.66, + "end": 6014.16, + "probability": 0.9941 + }, + { + "start": 6016.63, + "end": 6017.76, + "probability": 0.8184 + }, + { + "start": 6018.92, + "end": 6020.48, + "probability": 0.903 + }, + { + "start": 6020.6, + "end": 6022.48, + "probability": 0.9961 + }, + { + "start": 6022.8, + "end": 6026.06, + "probability": 0.9706 + }, + { + "start": 6026.06, + "end": 6030.04, + "probability": 0.9842 + }, + { + "start": 6033.68, + "end": 6037.98, + "probability": 0.9287 + }, + { + "start": 6038.68, + "end": 6039.58, + "probability": 0.8339 + }, + { + "start": 6040.64, + "end": 6044.42, + "probability": 0.9511 + }, + { + "start": 6045.4, + "end": 6046.3, + "probability": 0.9689 + }, + { + "start": 6047.16, + "end": 6053.7, + "probability": 0.9948 + }, + { + "start": 6054.66, + "end": 6060.29, + "probability": 0.9836 + }, + { + "start": 6061.46, + "end": 6062.42, + "probability": 0.9432 + }, + { + "start": 6062.92, + "end": 6064.5, + "probability": 0.9972 + }, + { + "start": 6065.08, + "end": 6065.96, + "probability": 0.9873 + }, + { + "start": 6067.84, + "end": 6070.24, + "probability": 0.9926 + }, + { + "start": 6072.64, + "end": 6075.08, + "probability": 0.9912 + }, + { + "start": 6075.88, + "end": 6078.3, + "probability": 0.9397 + }, + { + "start": 6079.04, + "end": 6084.24, + "probability": 0.9897 + }, + { + "start": 6085.0, + "end": 6086.92, + "probability": 0.8248 + }, + { + "start": 6086.96, + "end": 6089.16, + "probability": 0.9513 + }, + { + "start": 6089.26, + "end": 6094.24, + "probability": 0.9945 + }, + { + "start": 6096.78, + "end": 6099.38, + "probability": 0.9352 + }, + { + "start": 6102.12, + "end": 6103.6, + "probability": 0.9912 + }, + { + "start": 6105.34, + "end": 6108.32, + "probability": 0.9984 + }, + { + "start": 6109.96, + "end": 6112.74, + "probability": 0.8298 + }, + { + "start": 6112.78, + "end": 6113.78, + "probability": 0.6837 + }, + { + "start": 6114.06, + "end": 6115.98, + "probability": 0.9868 + }, + { + "start": 6117.14, + "end": 6118.84, + "probability": 0.7066 + }, + { + "start": 6120.26, + "end": 6123.72, + "probability": 0.915 + }, + { + "start": 6124.96, + "end": 6127.92, + "probability": 0.9149 + }, + { + "start": 6129.0, + "end": 6136.12, + "probability": 0.9839 + }, + { + "start": 6136.76, + "end": 6139.32, + "probability": 0.9624 + }, + { + "start": 6140.18, + "end": 6141.58, + "probability": 0.7455 + }, + { + "start": 6142.02, + "end": 6147.1, + "probability": 0.9942 + }, + { + "start": 6147.64, + "end": 6149.22, + "probability": 0.6055 + }, + { + "start": 6149.96, + "end": 6155.02, + "probability": 0.9795 + }, + { + "start": 6156.52, + "end": 6157.94, + "probability": 0.7282 + }, + { + "start": 6158.3, + "end": 6159.14, + "probability": 0.969 + }, + { + "start": 6159.28, + "end": 6164.34, + "probability": 0.9188 + }, + { + "start": 6165.04, + "end": 6166.36, + "probability": 0.75 + }, + { + "start": 6167.02, + "end": 6170.44, + "probability": 0.9599 + }, + { + "start": 6171.08, + "end": 6171.9, + "probability": 0.9032 + }, + { + "start": 6172.0, + "end": 6172.9, + "probability": 0.9368 + }, + { + "start": 6172.98, + "end": 6173.82, + "probability": 0.9391 + }, + { + "start": 6174.22, + "end": 6176.46, + "probability": 0.7605 + }, + { + "start": 6176.8, + "end": 6181.38, + "probability": 0.9958 + }, + { + "start": 6182.06, + "end": 6185.3, + "probability": 0.9962 + }, + { + "start": 6186.1, + "end": 6189.22, + "probability": 0.6347 + }, + { + "start": 6190.24, + "end": 6190.66, + "probability": 0.5367 + }, + { + "start": 6191.18, + "end": 6192.58, + "probability": 0.9868 + }, + { + "start": 6192.68, + "end": 6196.76, + "probability": 0.9784 + }, + { + "start": 6198.14, + "end": 6201.54, + "probability": 0.9743 + }, + { + "start": 6201.7, + "end": 6206.0, + "probability": 0.9735 + }, + { + "start": 6206.48, + "end": 6206.78, + "probability": 0.8401 + }, + { + "start": 6206.94, + "end": 6209.88, + "probability": 0.9836 + }, + { + "start": 6210.58, + "end": 6213.62, + "probability": 0.7977 + }, + { + "start": 6214.48, + "end": 6217.52, + "probability": 0.8961 + }, + { + "start": 6217.74, + "end": 6218.7, + "probability": 0.7502 + }, + { + "start": 6219.3, + "end": 6221.0, + "probability": 0.9226 + }, + { + "start": 6221.72, + "end": 6222.95, + "probability": 0.9963 + }, + { + "start": 6223.9, + "end": 6224.84, + "probability": 0.8683 + }, + { + "start": 6227.46, + "end": 6228.1, + "probability": 0.3902 + }, + { + "start": 6228.14, + "end": 6230.66, + "probability": 0.9241 + }, + { + "start": 6231.14, + "end": 6231.92, + "probability": 0.5921 + }, + { + "start": 6232.04, + "end": 6232.18, + "probability": 0.3255 + }, + { + "start": 6235.16, + "end": 6235.94, + "probability": 0.1473 + }, + { + "start": 6236.34, + "end": 6238.46, + "probability": 0.1357 + }, + { + "start": 6238.9, + "end": 6239.87, + "probability": 0.269 + }, + { + "start": 6243.46, + "end": 6245.88, + "probability": 0.0266 + }, + { + "start": 6246.98, + "end": 6248.86, + "probability": 0.0792 + }, + { + "start": 6250.88, + "end": 6252.16, + "probability": 0.9741 + }, + { + "start": 6252.48, + "end": 6253.31, + "probability": 0.0207 + }, + { + "start": 6254.54, + "end": 6255.52, + "probability": 0.972 + }, + { + "start": 6258.72, + "end": 6261.56, + "probability": 0.5863 + }, + { + "start": 6261.74, + "end": 6262.26, + "probability": 0.5989 + }, + { + "start": 6263.16, + "end": 6263.98, + "probability": 0.8128 + }, + { + "start": 6265.22, + "end": 6266.12, + "probability": 0.8133 + }, + { + "start": 6266.6, + "end": 6267.26, + "probability": 0.7996 + }, + { + "start": 6267.66, + "end": 6271.32, + "probability": 0.9595 + }, + { + "start": 6271.44, + "end": 6273.4, + "probability": 0.6142 + }, + { + "start": 6274.44, + "end": 6278.62, + "probability": 0.8965 + }, + { + "start": 6278.8, + "end": 6279.76, + "probability": 0.5939 + }, + { + "start": 6279.96, + "end": 6281.34, + "probability": 0.7614 + }, + { + "start": 6281.4, + "end": 6287.62, + "probability": 0.9652 + }, + { + "start": 6289.4, + "end": 6296.42, + "probability": 0.9413 + }, + { + "start": 6296.98, + "end": 6300.47, + "probability": 0.9958 + }, + { + "start": 6302.62, + "end": 6305.94, + "probability": 0.9869 + }, + { + "start": 6306.36, + "end": 6310.26, + "probability": 0.9909 + }, + { + "start": 6310.58, + "end": 6315.42, + "probability": 0.8517 + }, + { + "start": 6315.48, + "end": 6315.48, + "probability": 0.0305 + }, + { + "start": 6315.5, + "end": 6316.36, + "probability": 0.7555 + }, + { + "start": 6316.44, + "end": 6317.24, + "probability": 0.7744 + }, + { + "start": 6317.96, + "end": 6322.18, + "probability": 0.9837 + }, + { + "start": 6322.28, + "end": 6322.91, + "probability": 0.713 + }, + { + "start": 6323.28, + "end": 6325.02, + "probability": 0.75 + }, + { + "start": 6326.7, + "end": 6327.34, + "probability": 0.7267 + }, + { + "start": 6327.74, + "end": 6329.24, + "probability": 0.8406 + }, + { + "start": 6329.5, + "end": 6332.0, + "probability": 0.9414 + }, + { + "start": 6332.1, + "end": 6332.68, + "probability": 0.9265 + }, + { + "start": 6335.03, + "end": 6338.38, + "probability": 0.9984 + }, + { + "start": 6338.5, + "end": 6341.06, + "probability": 0.993 + }, + { + "start": 6341.84, + "end": 6343.16, + "probability": 0.6968 + }, + { + "start": 6344.18, + "end": 6344.76, + "probability": 0.9128 + }, + { + "start": 6346.14, + "end": 6346.98, + "probability": 0.9414 + }, + { + "start": 6347.94, + "end": 6348.52, + "probability": 0.9949 + }, + { + "start": 6350.52, + "end": 6351.92, + "probability": 0.8762 + }, + { + "start": 6352.44, + "end": 6354.34, + "probability": 0.8339 + }, + { + "start": 6355.62, + "end": 6360.66, + "probability": 0.9977 + }, + { + "start": 6360.94, + "end": 6362.64, + "probability": 0.6661 + }, + { + "start": 6363.2, + "end": 6365.32, + "probability": 0.998 + }, + { + "start": 6366.6, + "end": 6367.68, + "probability": 0.9725 + }, + { + "start": 6369.04, + "end": 6373.4, + "probability": 0.9989 + }, + { + "start": 6373.48, + "end": 6374.46, + "probability": 0.9985 + }, + { + "start": 6375.12, + "end": 6378.12, + "probability": 0.9795 + }, + { + "start": 6378.76, + "end": 6379.43, + "probability": 0.2234 + }, + { + "start": 6381.04, + "end": 6381.14, + "probability": 0.6816 + }, + { + "start": 6381.14, + "end": 6382.02, + "probability": 0.5735 + }, + { + "start": 6382.65, + "end": 6386.36, + "probability": 0.8445 + }, + { + "start": 6388.32, + "end": 6389.7, + "probability": 0.8301 + }, + { + "start": 6390.36, + "end": 6395.14, + "probability": 0.5485 + }, + { + "start": 6395.14, + "end": 6398.26, + "probability": 0.4936 + }, + { + "start": 6398.4, + "end": 6401.0, + "probability": 0.9833 + }, + { + "start": 6401.78, + "end": 6405.88, + "probability": 0.7498 + }, + { + "start": 6406.28, + "end": 6407.08, + "probability": 0.2034 + }, + { + "start": 6407.18, + "end": 6408.1, + "probability": 0.5528 + }, + { + "start": 6408.12, + "end": 6409.56, + "probability": 0.998 + }, + { + "start": 6409.68, + "end": 6412.84, + "probability": 0.4992 + }, + { + "start": 6416.08, + "end": 6417.4, + "probability": 0.864 + }, + { + "start": 6417.54, + "end": 6420.36, + "probability": 0.9828 + }, + { + "start": 6420.62, + "end": 6423.54, + "probability": 0.874 + }, + { + "start": 6423.6, + "end": 6424.34, + "probability": 0.9478 + }, + { + "start": 6424.77, + "end": 6428.1, + "probability": 0.7407 + }, + { + "start": 6428.94, + "end": 6430.44, + "probability": 0.006 + }, + { + "start": 6431.1, + "end": 6431.22, + "probability": 0.5269 + }, + { + "start": 6431.32, + "end": 6433.8, + "probability": 0.9888 + }, + { + "start": 6433.88, + "end": 6436.44, + "probability": 0.8189 + }, + { + "start": 6436.8, + "end": 6439.8, + "probability": 0.2071 + }, + { + "start": 6439.92, + "end": 6440.14, + "probability": 0.6163 + }, + { + "start": 6440.22, + "end": 6441.53, + "probability": 0.7208 + }, + { + "start": 6441.68, + "end": 6442.7, + "probability": 0.1537 + }, + { + "start": 6444.04, + "end": 6446.18, + "probability": 0.9297 + }, + { + "start": 6447.3, + "end": 6450.56, + "probability": 0.8921 + }, + { + "start": 6451.32, + "end": 6452.85, + "probability": 0.9182 + }, + { + "start": 6454.16, + "end": 6455.98, + "probability": 0.9964 + }, + { + "start": 6457.29, + "end": 6459.78, + "probability": 0.8005 + }, + { + "start": 6460.62, + "end": 6461.92, + "probability": 0.7299 + }, + { + "start": 6462.96, + "end": 6463.46, + "probability": 0.8971 + }, + { + "start": 6464.08, + "end": 6466.1, + "probability": 0.9983 + }, + { + "start": 6467.0, + "end": 6472.44, + "probability": 0.9746 + }, + { + "start": 6473.42, + "end": 6474.54, + "probability": 0.8462 + }, + { + "start": 6475.48, + "end": 6479.92, + "probability": 0.9337 + }, + { + "start": 6480.32, + "end": 6483.45, + "probability": 0.8115 + }, + { + "start": 6485.72, + "end": 6490.08, + "probability": 0.9958 + }, + { + "start": 6490.76, + "end": 6494.08, + "probability": 0.8479 + }, + { + "start": 6494.42, + "end": 6495.08, + "probability": 0.7026 + }, + { + "start": 6495.24, + "end": 6495.86, + "probability": 0.5725 + }, + { + "start": 6496.78, + "end": 6501.04, + "probability": 0.9373 + }, + { + "start": 6501.42, + "end": 6502.96, + "probability": 0.665 + }, + { + "start": 6503.24, + "end": 6505.93, + "probability": 0.8936 + }, + { + "start": 6506.34, + "end": 6507.28, + "probability": 0.9561 + }, + { + "start": 6508.2, + "end": 6511.64, + "probability": 0.4585 + }, + { + "start": 6513.1, + "end": 6516.52, + "probability": 0.981 + }, + { + "start": 6516.86, + "end": 6517.52, + "probability": 0.7311 + }, + { + "start": 6517.96, + "end": 6518.42, + "probability": 0.5064 + }, + { + "start": 6519.48, + "end": 6522.3, + "probability": 0.8296 + }, + { + "start": 6523.56, + "end": 6527.44, + "probability": 0.934 + }, + { + "start": 6529.08, + "end": 6530.1, + "probability": 0.6628 + }, + { + "start": 6531.04, + "end": 6533.82, + "probability": 0.9547 + }, + { + "start": 6534.42, + "end": 6536.3, + "probability": 0.9893 + }, + { + "start": 6536.82, + "end": 6537.94, + "probability": 0.8991 + }, + { + "start": 6538.5, + "end": 6540.32, + "probability": 0.9386 + }, + { + "start": 6541.28, + "end": 6543.02, + "probability": 0.6212 + }, + { + "start": 6544.22, + "end": 6545.83, + "probability": 0.627 + }, + { + "start": 6546.74, + "end": 6549.1, + "probability": 0.8786 + }, + { + "start": 6550.16, + "end": 6552.34, + "probability": 0.9387 + }, + { + "start": 6552.86, + "end": 6555.48, + "probability": 0.9668 + }, + { + "start": 6556.14, + "end": 6557.68, + "probability": 0.9985 + }, + { + "start": 6558.22, + "end": 6558.86, + "probability": 0.5227 + }, + { + "start": 6559.8, + "end": 6560.32, + "probability": 0.6175 + }, + { + "start": 6561.24, + "end": 6562.18, + "probability": 0.6534 + }, + { + "start": 6562.76, + "end": 6563.78, + "probability": 0.6783 + }, + { + "start": 6564.4, + "end": 6565.3, + "probability": 0.9067 + }, + { + "start": 6565.38, + "end": 6565.54, + "probability": 0.835 + }, + { + "start": 6565.66, + "end": 6567.02, + "probability": 0.8541 + }, + { + "start": 6567.52, + "end": 6568.8, + "probability": 0.9883 + }, + { + "start": 6569.36, + "end": 6571.64, + "probability": 0.959 + }, + { + "start": 6574.24, + "end": 6576.6, + "probability": 0.8851 + }, + { + "start": 6578.08, + "end": 6580.92, + "probability": 0.9859 + }, + { + "start": 6581.44, + "end": 6583.82, + "probability": 0.8897 + }, + { + "start": 6584.94, + "end": 6587.68, + "probability": 0.9487 + }, + { + "start": 6588.42, + "end": 6592.62, + "probability": 0.6669 + }, + { + "start": 6592.94, + "end": 6593.84, + "probability": 0.9809 + }, + { + "start": 6594.82, + "end": 6597.24, + "probability": 0.9624 + }, + { + "start": 6597.32, + "end": 6597.6, + "probability": 0.49 + }, + { + "start": 6597.64, + "end": 6600.62, + "probability": 0.8359 + }, + { + "start": 6601.86, + "end": 6603.58, + "probability": 0.8742 + }, + { + "start": 6604.78, + "end": 6606.46, + "probability": 0.6901 + }, + { + "start": 6607.04, + "end": 6608.8, + "probability": 0.8911 + }, + { + "start": 6609.84, + "end": 6613.5, + "probability": 0.991 + }, + { + "start": 6613.6, + "end": 6615.4, + "probability": 0.9819 + }, + { + "start": 6616.26, + "end": 6616.36, + "probability": 0.243 + }, + { + "start": 6616.36, + "end": 6616.8, + "probability": 0.3653 + }, + { + "start": 6617.54, + "end": 6618.86, + "probability": 0.9377 + }, + { + "start": 6619.0, + "end": 6621.82, + "probability": 0.9248 + }, + { + "start": 6622.64, + "end": 6623.9, + "probability": 0.9839 + }, + { + "start": 6625.06, + "end": 6625.6, + "probability": 0.9316 + }, + { + "start": 6626.74, + "end": 6628.18, + "probability": 0.5669 + }, + { + "start": 6628.84, + "end": 6630.54, + "probability": 0.959 + }, + { + "start": 6631.88, + "end": 6632.98, + "probability": 0.9984 + }, + { + "start": 6633.04, + "end": 6636.74, + "probability": 0.9741 + }, + { + "start": 6637.32, + "end": 6641.78, + "probability": 0.7229 + }, + { + "start": 6643.14, + "end": 6646.4, + "probability": 0.9828 + }, + { + "start": 6647.42, + "end": 6647.98, + "probability": 0.7856 + }, + { + "start": 6649.2, + "end": 6650.02, + "probability": 0.9441 + }, + { + "start": 6650.58, + "end": 6652.49, + "probability": 0.7185 + }, + { + "start": 6652.64, + "end": 6653.42, + "probability": 0.8975 + }, + { + "start": 6654.0, + "end": 6657.4, + "probability": 0.8946 + }, + { + "start": 6658.1, + "end": 6662.4, + "probability": 0.9808 + }, + { + "start": 6663.12, + "end": 6664.58, + "probability": 0.9967 + }, + { + "start": 6665.78, + "end": 6667.06, + "probability": 0.9837 + }, + { + "start": 6667.92, + "end": 6668.56, + "probability": 0.9564 + }, + { + "start": 6669.12, + "end": 6669.3, + "probability": 0.8206 + }, + { + "start": 6669.92, + "end": 6670.54, + "probability": 0.9971 + }, + { + "start": 6671.2, + "end": 6675.6, + "probability": 0.9222 + }, + { + "start": 6676.22, + "end": 6677.22, + "probability": 0.9728 + }, + { + "start": 6678.2, + "end": 6680.94, + "probability": 0.6312 + }, + { + "start": 6681.56, + "end": 6682.24, + "probability": 0.6678 + }, + { + "start": 6683.04, + "end": 6685.46, + "probability": 0.8804 + }, + { + "start": 6686.68, + "end": 6688.62, + "probability": 0.9735 + }, + { + "start": 6690.56, + "end": 6696.38, + "probability": 0.992 + }, + { + "start": 6696.48, + "end": 6697.6, + "probability": 0.9402 + }, + { + "start": 6698.5, + "end": 6699.7, + "probability": 0.7764 + }, + { + "start": 6700.74, + "end": 6702.02, + "probability": 0.9473 + }, + { + "start": 6703.36, + "end": 6705.0, + "probability": 0.9728 + }, + { + "start": 6705.88, + "end": 6706.24, + "probability": 0.9891 + }, + { + "start": 6706.8, + "end": 6709.86, + "probability": 0.9763 + }, + { + "start": 6711.92, + "end": 6712.88, + "probability": 0.8957 + }, + { + "start": 6714.1, + "end": 6715.28, + "probability": 0.9896 + }, + { + "start": 6717.18, + "end": 6718.06, + "probability": 0.9876 + }, + { + "start": 6719.06, + "end": 6720.26, + "probability": 0.9962 + }, + { + "start": 6721.36, + "end": 6725.7, + "probability": 0.7441 + }, + { + "start": 6727.02, + "end": 6729.68, + "probability": 0.7749 + }, + { + "start": 6731.74, + "end": 6737.34, + "probability": 0.6801 + }, + { + "start": 6737.94, + "end": 6740.22, + "probability": 0.5706 + }, + { + "start": 6740.78, + "end": 6741.86, + "probability": 0.9915 + }, + { + "start": 6743.04, + "end": 6743.74, + "probability": 0.9795 + }, + { + "start": 6744.42, + "end": 6745.46, + "probability": 0.998 + }, + { + "start": 6746.38, + "end": 6747.68, + "probability": 0.9575 + }, + { + "start": 6748.74, + "end": 6749.42, + "probability": 0.9484 + }, + { + "start": 6750.34, + "end": 6753.56, + "probability": 0.7896 + }, + { + "start": 6755.8, + "end": 6757.2, + "probability": 0.6057 + }, + { + "start": 6758.44, + "end": 6760.06, + "probability": 0.9368 + }, + { + "start": 6761.08, + "end": 6764.84, + "probability": 0.9622 + }, + { + "start": 6765.04, + "end": 6766.52, + "probability": 0.4323 + }, + { + "start": 6767.18, + "end": 6768.6, + "probability": 0.904 + }, + { + "start": 6769.38, + "end": 6772.24, + "probability": 0.9322 + }, + { + "start": 6772.76, + "end": 6774.28, + "probability": 0.9601 + }, + { + "start": 6774.64, + "end": 6775.82, + "probability": 0.6403 + }, + { + "start": 6776.9, + "end": 6778.54, + "probability": 0.6959 + }, + { + "start": 6779.1, + "end": 6779.64, + "probability": 0.5119 + }, + { + "start": 6780.76, + "end": 6782.86, + "probability": 0.9674 + }, + { + "start": 6784.26, + "end": 6787.78, + "probability": 0.9971 + }, + { + "start": 6788.0, + "end": 6789.86, + "probability": 0.5015 + }, + { + "start": 6790.26, + "end": 6790.94, + "probability": 0.532 + }, + { + "start": 6790.94, + "end": 6794.72, + "probability": 0.8108 + }, + { + "start": 6794.78, + "end": 6795.3, + "probability": 0.6698 + }, + { + "start": 6795.78, + "end": 6796.66, + "probability": 0.2671 + }, + { + "start": 6797.14, + "end": 6797.37, + "probability": 0.5367 + }, + { + "start": 6797.54, + "end": 6799.66, + "probability": 0.4718 + }, + { + "start": 6800.0, + "end": 6801.12, + "probability": 0.1281 + }, + { + "start": 6801.94, + "end": 6804.24, + "probability": 0.5642 + }, + { + "start": 6804.58, + "end": 6809.14, + "probability": 0.8217 + }, + { + "start": 6809.68, + "end": 6811.12, + "probability": 0.9682 + }, + { + "start": 6812.67, + "end": 6813.6, + "probability": 0.1333 + }, + { + "start": 6814.12, + "end": 6816.72, + "probability": 0.6667 + }, + { + "start": 6816.84, + "end": 6817.78, + "probability": 0.6566 + }, + { + "start": 6817.86, + "end": 6817.86, + "probability": 0.3317 + }, + { + "start": 6817.9, + "end": 6819.42, + "probability": 0.8111 + }, + { + "start": 6820.19, + "end": 6824.06, + "probability": 0.8326 + }, + { + "start": 6824.68, + "end": 6825.26, + "probability": 0.4969 + }, + { + "start": 6825.52, + "end": 6826.3, + "probability": 0.4844 + }, + { + "start": 6826.84, + "end": 6829.78, + "probability": 0.9696 + }, + { + "start": 6829.86, + "end": 6831.64, + "probability": 0.6771 + }, + { + "start": 6832.88, + "end": 6835.66, + "probability": 0.557 + }, + { + "start": 6836.22, + "end": 6837.82, + "probability": 0.9561 + }, + { + "start": 6837.92, + "end": 6839.0, + "probability": 0.9744 + }, + { + "start": 6839.52, + "end": 6839.94, + "probability": 0.4153 + }, + { + "start": 6840.12, + "end": 6841.8, + "probability": 0.9702 + }, + { + "start": 6841.9, + "end": 6843.72, + "probability": 0.9605 + }, + { + "start": 6843.78, + "end": 6847.64, + "probability": 0.925 + }, + { + "start": 6848.24, + "end": 6848.9, + "probability": 0.8899 + }, + { + "start": 6849.08, + "end": 6849.14, + "probability": 0.5231 + }, + { + "start": 6849.14, + "end": 6849.44, + "probability": 0.3336 + }, + { + "start": 6849.8, + "end": 6850.58, + "probability": 0.4325 + }, + { + "start": 6850.86, + "end": 6852.12, + "probability": 0.7341 + }, + { + "start": 6852.32, + "end": 6854.82, + "probability": 0.9336 + }, + { + "start": 6856.64, + "end": 6858.12, + "probability": 0.845 + }, + { + "start": 6858.12, + "end": 6858.48, + "probability": 0.9036 + }, + { + "start": 6858.56, + "end": 6859.5, + "probability": 0.8914 + }, + { + "start": 6859.76, + "end": 6860.74, + "probability": 0.9937 + }, + { + "start": 6861.64, + "end": 6862.38, + "probability": 0.9504 + }, + { + "start": 6863.06, + "end": 6863.5, + "probability": 0.9893 + }, + { + "start": 6864.12, + "end": 6865.68, + "probability": 0.9944 + }, + { + "start": 6866.22, + "end": 6869.3, + "probability": 0.7494 + }, + { + "start": 6869.4, + "end": 6872.4, + "probability": 0.8807 + }, + { + "start": 6872.44, + "end": 6874.0, + "probability": 0.7231 + }, + { + "start": 6874.1, + "end": 6874.72, + "probability": 0.8828 + }, + { + "start": 6875.18, + "end": 6878.58, + "probability": 0.9976 + }, + { + "start": 6878.8, + "end": 6880.7, + "probability": 0.5779 + }, + { + "start": 6880.7, + "end": 6883.52, + "probability": 0.9822 + }, + { + "start": 6884.26, + "end": 6886.1, + "probability": 0.9104 + }, + { + "start": 6886.74, + "end": 6888.36, + "probability": 0.9681 + }, + { + "start": 6888.6, + "end": 6890.82, + "probability": 0.7782 + }, + { + "start": 6890.88, + "end": 6900.48, + "probability": 0.9383 + }, + { + "start": 6900.68, + "end": 6906.6, + "probability": 0.984 + }, + { + "start": 6909.48, + "end": 6912.02, + "probability": 0.9925 + }, + { + "start": 6913.48, + "end": 6914.34, + "probability": 0.9768 + }, + { + "start": 6915.74, + "end": 6922.02, + "probability": 0.9928 + }, + { + "start": 6922.58, + "end": 6923.26, + "probability": 0.8846 + }, + { + "start": 6923.94, + "end": 6925.34, + "probability": 0.9917 + }, + { + "start": 6926.26, + "end": 6928.7, + "probability": 0.8199 + }, + { + "start": 6929.58, + "end": 6932.2, + "probability": 0.9196 + }, + { + "start": 6933.66, + "end": 6934.82, + "probability": 0.9971 + }, + { + "start": 6935.46, + "end": 6938.04, + "probability": 0.9916 + }, + { + "start": 6939.06, + "end": 6940.34, + "probability": 0.9859 + }, + { + "start": 6941.1, + "end": 6942.86, + "probability": 0.9861 + }, + { + "start": 6943.88, + "end": 6949.7, + "probability": 0.9846 + }, + { + "start": 6949.82, + "end": 6951.12, + "probability": 0.974 + }, + { + "start": 6951.62, + "end": 6953.58, + "probability": 0.91 + }, + { + "start": 6954.22, + "end": 6956.46, + "probability": 0.8647 + }, + { + "start": 6957.16, + "end": 6958.38, + "probability": 0.984 + }, + { + "start": 6959.32, + "end": 6961.16, + "probability": 0.9393 + }, + { + "start": 6961.54, + "end": 6962.98, + "probability": 0.838 + }, + { + "start": 6963.7, + "end": 6966.64, + "probability": 0.9908 + }, + { + "start": 6967.04, + "end": 6967.26, + "probability": 0.6807 + }, + { + "start": 6968.04, + "end": 6970.14, + "probability": 0.5463 + }, + { + "start": 6971.18, + "end": 6971.44, + "probability": 0.9094 + }, + { + "start": 6972.88, + "end": 6973.7, + "probability": 0.5964 + }, + { + "start": 6974.32, + "end": 6977.02, + "probability": 0.9879 + }, + { + "start": 6977.12, + "end": 6979.62, + "probability": 0.9795 + }, + { + "start": 6980.12, + "end": 6980.72, + "probability": 0.9556 + }, + { + "start": 6981.32, + "end": 6984.7, + "probability": 0.9004 + }, + { + "start": 6984.94, + "end": 6986.3, + "probability": 0.6157 + }, + { + "start": 6986.42, + "end": 6988.14, + "probability": 0.9681 + }, + { + "start": 6988.98, + "end": 6992.12, + "probability": 0.9895 + }, + { + "start": 6992.26, + "end": 6992.64, + "probability": 0.8292 + }, + { + "start": 6992.8, + "end": 6993.6, + "probability": 0.5106 + }, + { + "start": 6995.04, + "end": 6997.5, + "probability": 0.0624 + }, + { + "start": 6997.5, + "end": 6998.18, + "probability": 0.1911 + }, + { + "start": 6999.34, + "end": 7000.16, + "probability": 0.7205 + }, + { + "start": 7001.24, + "end": 7002.86, + "probability": 0.7218 + }, + { + "start": 7003.58, + "end": 7004.98, + "probability": 0.9668 + }, + { + "start": 7005.32, + "end": 7005.8, + "probability": 0.502 + }, + { + "start": 7006.0, + "end": 7010.5, + "probability": 0.8835 + }, + { + "start": 7011.94, + "end": 7013.02, + "probability": 0.6709 + }, + { + "start": 7013.64, + "end": 7015.5, + "probability": 0.9168 + }, + { + "start": 7017.4, + "end": 7021.04, + "probability": 0.9938 + }, + { + "start": 7022.24, + "end": 7022.8, + "probability": 0.7531 + }, + { + "start": 7024.54, + "end": 7028.36, + "probability": 0.9111 + }, + { + "start": 7029.08, + "end": 7032.26, + "probability": 0.9927 + }, + { + "start": 7033.24, + "end": 7035.54, + "probability": 0.9669 + }, + { + "start": 7036.4, + "end": 7037.48, + "probability": 0.7661 + }, + { + "start": 7037.84, + "end": 7038.78, + "probability": 0.6675 + }, + { + "start": 7038.99, + "end": 7041.56, + "probability": 0.9913 + }, + { + "start": 7042.36, + "end": 7043.82, + "probability": 0.9365 + }, + { + "start": 7044.48, + "end": 7046.14, + "probability": 0.8159 + }, + { + "start": 7046.72, + "end": 7049.12, + "probability": 0.695 + }, + { + "start": 7049.9, + "end": 7053.8, + "probability": 0.9796 + }, + { + "start": 7055.12, + "end": 7055.24, + "probability": 0.6975 + }, + { + "start": 7055.24, + "end": 7055.66, + "probability": 0.5635 + }, + { + "start": 7058.48, + "end": 7060.32, + "probability": 0.9877 + }, + { + "start": 7061.36, + "end": 7061.88, + "probability": 0.0227 + }, + { + "start": 7064.36, + "end": 7064.54, + "probability": 0.6006 + }, + { + "start": 7065.7, + "end": 7066.18, + "probability": 0.3718 + }, + { + "start": 7066.24, + "end": 7067.42, + "probability": 0.2063 + }, + { + "start": 7068.52, + "end": 7073.02, + "probability": 0.1044 + }, + { + "start": 7074.4, + "end": 7076.42, + "probability": 0.0107 + }, + { + "start": 7078.07, + "end": 7082.63, + "probability": 0.9727 + }, + { + "start": 7084.78, + "end": 7088.6, + "probability": 0.9971 + }, + { + "start": 7089.32, + "end": 7092.15, + "probability": 0.9899 + }, + { + "start": 7092.9, + "end": 7093.58, + "probability": 0.877 + }, + { + "start": 7094.02, + "end": 7094.72, + "probability": 0.4631 + }, + { + "start": 7094.84, + "end": 7097.08, + "probability": 0.9948 + }, + { + "start": 7098.06, + "end": 7101.1, + "probability": 0.8226 + }, + { + "start": 7101.82, + "end": 7103.06, + "probability": 0.9779 + }, + { + "start": 7104.18, + "end": 7107.78, + "probability": 0.9838 + }, + { + "start": 7108.82, + "end": 7111.38, + "probability": 0.7583 + }, + { + "start": 7111.74, + "end": 7115.5, + "probability": 0.9824 + }, + { + "start": 7116.44, + "end": 7118.66, + "probability": 0.7094 + }, + { + "start": 7119.18, + "end": 7121.0, + "probability": 0.8763 + }, + { + "start": 7121.5, + "end": 7123.64, + "probability": 0.9869 + }, + { + "start": 7123.64, + "end": 7127.34, + "probability": 0.95 + }, + { + "start": 7127.52, + "end": 7130.72, + "probability": 0.75 + }, + { + "start": 7131.24, + "end": 7134.2, + "probability": 0.9949 + }, + { + "start": 7134.78, + "end": 7137.78, + "probability": 0.936 + }, + { + "start": 7138.32, + "end": 7139.58, + "probability": 0.7615 + }, + { + "start": 7139.88, + "end": 7142.44, + "probability": 0.9908 + }, + { + "start": 7142.94, + "end": 7147.04, + "probability": 0.9359 + }, + { + "start": 7147.12, + "end": 7148.26, + "probability": 0.938 + }, + { + "start": 7148.52, + "end": 7150.0, + "probability": 0.9478 + }, + { + "start": 7150.9, + "end": 7151.64, + "probability": 0.7362 + }, + { + "start": 7151.82, + "end": 7152.88, + "probability": 0.9543 + }, + { + "start": 7152.96, + "end": 7154.66, + "probability": 0.9638 + }, + { + "start": 7156.18, + "end": 7158.28, + "probability": 0.9653 + }, + { + "start": 7158.42, + "end": 7161.52, + "probability": 0.958 + }, + { + "start": 7161.8, + "end": 7165.76, + "probability": 0.9867 + }, + { + "start": 7165.8, + "end": 7168.61, + "probability": 0.9465 + }, + { + "start": 7169.18, + "end": 7170.38, + "probability": 0.9807 + }, + { + "start": 7170.82, + "end": 7174.88, + "probability": 0.9335 + }, + { + "start": 7175.82, + "end": 7176.92, + "probability": 0.9463 + }, + { + "start": 7177.16, + "end": 7179.62, + "probability": 0.9932 + }, + { + "start": 7179.84, + "end": 7182.98, + "probability": 0.9278 + }, + { + "start": 7183.06, + "end": 7188.02, + "probability": 0.9561 + }, + { + "start": 7188.08, + "end": 7189.56, + "probability": 0.967 + }, + { + "start": 7189.82, + "end": 7193.06, + "probability": 0.8282 + }, + { + "start": 7195.59, + "end": 7199.46, + "probability": 0.998 + }, + { + "start": 7199.74, + "end": 7201.12, + "probability": 0.9937 + }, + { + "start": 7201.22, + "end": 7205.64, + "probability": 0.9924 + }, + { + "start": 7206.1, + "end": 7207.44, + "probability": 0.8007 + }, + { + "start": 7208.12, + "end": 7212.3, + "probability": 0.9869 + }, + { + "start": 7213.3, + "end": 7214.52, + "probability": 0.3317 + }, + { + "start": 7216.02, + "end": 7218.94, + "probability": 0.7461 + }, + { + "start": 7219.16, + "end": 7219.7, + "probability": 0.8298 + }, + { + "start": 7219.9, + "end": 7220.96, + "probability": 0.8781 + }, + { + "start": 7221.04, + "end": 7222.92, + "probability": 0.9757 + }, + { + "start": 7223.12, + "end": 7227.64, + "probability": 0.9369 + }, + { + "start": 7227.82, + "end": 7229.54, + "probability": 0.9409 + }, + { + "start": 7233.88, + "end": 7239.9, + "probability": 0.9859 + }, + { + "start": 7239.9, + "end": 7243.18, + "probability": 0.978 + }, + { + "start": 7244.16, + "end": 7247.18, + "probability": 0.6798 + }, + { + "start": 7247.26, + "end": 7248.07, + "probability": 0.8211 + }, + { + "start": 7248.92, + "end": 7252.66, + "probability": 0.9883 + }, + { + "start": 7252.66, + "end": 7256.0, + "probability": 0.9929 + }, + { + "start": 7256.16, + "end": 7262.18, + "probability": 0.983 + }, + { + "start": 7262.46, + "end": 7262.7, + "probability": 0.6385 + }, + { + "start": 7262.94, + "end": 7265.4, + "probability": 0.5296 + }, + { + "start": 7265.88, + "end": 7268.84, + "probability": 0.9707 + }, + { + "start": 7269.84, + "end": 7270.31, + "probability": 0.974 + }, + { + "start": 7271.78, + "end": 7275.2, + "probability": 0.9641 + }, + { + "start": 7276.1, + "end": 7278.74, + "probability": 0.922 + }, + { + "start": 7278.74, + "end": 7281.62, + "probability": 0.8787 + }, + { + "start": 7282.28, + "end": 7283.48, + "probability": 0.9241 + }, + { + "start": 7283.64, + "end": 7285.78, + "probability": 0.5754 + }, + { + "start": 7286.1, + "end": 7287.62, + "probability": 0.9521 + }, + { + "start": 7288.42, + "end": 7290.28, + "probability": 0.7131 + }, + { + "start": 7290.94, + "end": 7294.66, + "probability": 0.739 + }, + { + "start": 7294.8, + "end": 7296.88, + "probability": 0.7744 + }, + { + "start": 7297.86, + "end": 7299.42, + "probability": 0.6974 + }, + { + "start": 7299.5, + "end": 7302.98, + "probability": 0.8629 + }, + { + "start": 7303.34, + "end": 7309.54, + "probability": 0.7185 + }, + { + "start": 7309.84, + "end": 7310.96, + "probability": 0.5941 + }, + { + "start": 7311.2, + "end": 7312.7, + "probability": 0.8698 + }, + { + "start": 7312.86, + "end": 7314.94, + "probability": 0.8487 + }, + { + "start": 7315.78, + "end": 7321.7, + "probability": 0.8319 + }, + { + "start": 7321.86, + "end": 7324.36, + "probability": 0.9691 + }, + { + "start": 7325.04, + "end": 7325.86, + "probability": 0.8387 + }, + { + "start": 7325.96, + "end": 7326.82, + "probability": 0.9287 + }, + { + "start": 7327.1, + "end": 7329.3, + "probability": 0.9721 + }, + { + "start": 7329.44, + "end": 7330.84, + "probability": 0.9077 + }, + { + "start": 7331.48, + "end": 7335.7, + "probability": 0.5251 + }, + { + "start": 7335.72, + "end": 7340.38, + "probability": 0.9897 + }, + { + "start": 7340.92, + "end": 7342.66, + "probability": 0.757 + }, + { + "start": 7343.46, + "end": 7348.8, + "probability": 0.9931 + }, + { + "start": 7349.97, + "end": 7353.72, + "probability": 0.881 + }, + { + "start": 7354.76, + "end": 7355.5, + "probability": 0.6742 + }, + { + "start": 7356.04, + "end": 7359.44, + "probability": 0.7045 + }, + { + "start": 7359.44, + "end": 7361.12, + "probability": 0.8536 + }, + { + "start": 7361.28, + "end": 7364.94, + "probability": 0.9857 + }, + { + "start": 7365.52, + "end": 7370.12, + "probability": 0.9232 + }, + { + "start": 7370.64, + "end": 7371.58, + "probability": 0.9558 + }, + { + "start": 7372.62, + "end": 7375.84, + "probability": 0.9872 + }, + { + "start": 7376.2, + "end": 7381.94, + "probability": 0.9922 + }, + { + "start": 7382.7, + "end": 7385.3, + "probability": 0.939 + }, + { + "start": 7386.08, + "end": 7386.68, + "probability": 0.8027 + }, + { + "start": 7387.0, + "end": 7389.18, + "probability": 0.9819 + }, + { + "start": 7389.18, + "end": 7393.92, + "probability": 0.9836 + }, + { + "start": 7394.28, + "end": 7395.9, + "probability": 0.9861 + }, + { + "start": 7395.98, + "end": 7398.24, + "probability": 0.9627 + }, + { + "start": 7399.17, + "end": 7404.12, + "probability": 0.7499 + }, + { + "start": 7404.78, + "end": 7408.22, + "probability": 0.8204 + }, + { + "start": 7408.36, + "end": 7411.04, + "probability": 0.9874 + }, + { + "start": 7411.54, + "end": 7412.96, + "probability": 0.9243 + }, + { + "start": 7413.78, + "end": 7418.96, + "probability": 0.9893 + }, + { + "start": 7419.68, + "end": 7420.92, + "probability": 0.3807 + }, + { + "start": 7421.24, + "end": 7422.0, + "probability": 0.813 + }, + { + "start": 7422.18, + "end": 7423.26, + "probability": 0.7008 + }, + { + "start": 7424.2, + "end": 7425.56, + "probability": 0.9678 + }, + { + "start": 7425.88, + "end": 7427.3, + "probability": 0.929 + }, + { + "start": 7427.46, + "end": 7431.78, + "probability": 0.7684 + }, + { + "start": 7432.68, + "end": 7436.7, + "probability": 0.901 + }, + { + "start": 7439.04, + "end": 7440.42, + "probability": 0.9689 + }, + { + "start": 7441.0, + "end": 7445.04, + "probability": 0.5149 + }, + { + "start": 7445.1, + "end": 7446.01, + "probability": 0.9917 + }, + { + "start": 7446.8, + "end": 7449.4, + "probability": 0.9674 + }, + { + "start": 7449.4, + "end": 7453.64, + "probability": 0.9498 + }, + { + "start": 7454.34, + "end": 7455.42, + "probability": 0.8967 + }, + { + "start": 7455.52, + "end": 7456.28, + "probability": 0.5655 + }, + { + "start": 7456.54, + "end": 7458.48, + "probability": 0.6343 + }, + { + "start": 7459.32, + "end": 7461.34, + "probability": 0.9194 + }, + { + "start": 7462.5, + "end": 7464.68, + "probability": 0.9678 + }, + { + "start": 7465.32, + "end": 7466.3, + "probability": 0.6948 + }, + { + "start": 7467.26, + "end": 7475.0, + "probability": 0.5846 + }, + { + "start": 7475.5, + "end": 7476.4, + "probability": 0.7855 + }, + { + "start": 7476.56, + "end": 7477.94, + "probability": 0.6487 + }, + { + "start": 7478.12, + "end": 7480.06, + "probability": 0.8962 + }, + { + "start": 7480.2, + "end": 7482.64, + "probability": 0.7822 + }, + { + "start": 7484.14, + "end": 7488.12, + "probability": 0.9808 + }, + { + "start": 7488.58, + "end": 7489.16, + "probability": 0.8215 + }, + { + "start": 7489.32, + "end": 7492.38, + "probability": 0.9932 + }, + { + "start": 7493.49, + "end": 7498.44, + "probability": 0.4923 + }, + { + "start": 7498.44, + "end": 7500.34, + "probability": 0.9958 + }, + { + "start": 7501.44, + "end": 7505.66, + "probability": 0.9849 + }, + { + "start": 7505.66, + "end": 7508.8, + "probability": 0.9507 + }, + { + "start": 7509.28, + "end": 7512.28, + "probability": 0.8875 + }, + { + "start": 7512.34, + "end": 7516.73, + "probability": 0.8293 + }, + { + "start": 7517.24, + "end": 7519.94, + "probability": 0.6447 + }, + { + "start": 7520.44, + "end": 7522.87, + "probability": 0.9429 + }, + { + "start": 7523.68, + "end": 7527.43, + "probability": 0.7869 + }, + { + "start": 7527.78, + "end": 7531.12, + "probability": 0.9956 + }, + { + "start": 7531.7, + "end": 7534.26, + "probability": 0.9686 + }, + { + "start": 7534.68, + "end": 7536.14, + "probability": 0.9991 + }, + { + "start": 7536.44, + "end": 7538.68, + "probability": 0.9929 + }, + { + "start": 7539.06, + "end": 7539.54, + "probability": 0.9424 + }, + { + "start": 7539.66, + "end": 7544.58, + "probability": 0.5119 + }, + { + "start": 7544.9, + "end": 7546.62, + "probability": 0.9945 + }, + { + "start": 7547.9, + "end": 7549.98, + "probability": 0.9356 + }, + { + "start": 7550.42, + "end": 7555.4, + "probability": 0.9121 + }, + { + "start": 7555.6, + "end": 7557.5, + "probability": 0.9968 + }, + { + "start": 7557.7, + "end": 7558.96, + "probability": 0.6578 + }, + { + "start": 7559.56, + "end": 7561.38, + "probability": 0.9878 + }, + { + "start": 7561.98, + "end": 7567.92, + "probability": 0.8921 + }, + { + "start": 7568.12, + "end": 7574.48, + "probability": 0.7509 + }, + { + "start": 7575.22, + "end": 7576.46, + "probability": 0.7909 + }, + { + "start": 7577.34, + "end": 7580.7, + "probability": 0.4806 + }, + { + "start": 7581.24, + "end": 7581.94, + "probability": 0.5884 + }, + { + "start": 7582.02, + "end": 7582.74, + "probability": 0.856 + }, + { + "start": 7582.84, + "end": 7583.64, + "probability": 0.9049 + }, + { + "start": 7583.84, + "end": 7587.84, + "probability": 0.8799 + }, + { + "start": 7588.54, + "end": 7589.66, + "probability": 0.7012 + }, + { + "start": 7590.52, + "end": 7593.6, + "probability": 0.8154 + }, + { + "start": 7594.1, + "end": 7599.12, + "probability": 0.8713 + }, + { + "start": 7599.7, + "end": 7600.33, + "probability": 0.6406 + }, + { + "start": 7600.82, + "end": 7603.47, + "probability": 0.9522 + }, + { + "start": 7604.48, + "end": 7609.64, + "probability": 0.9688 + }, + { + "start": 7610.24, + "end": 7612.12, + "probability": 0.7337 + }, + { + "start": 7612.54, + "end": 7614.66, + "probability": 0.9878 + }, + { + "start": 7614.86, + "end": 7617.22, + "probability": 0.992 + }, + { + "start": 7617.57, + "end": 7622.51, + "probability": 0.9798 + }, + { + "start": 7623.8, + "end": 7628.84, + "probability": 0.9193 + }, + { + "start": 7629.1, + "end": 7632.92, + "probability": 0.7042 + }, + { + "start": 7633.54, + "end": 7637.48, + "probability": 0.7868 + }, + { + "start": 7637.64, + "end": 7645.54, + "probability": 0.9434 + }, + { + "start": 7646.04, + "end": 7647.88, + "probability": 0.503 + }, + { + "start": 7648.22, + "end": 7648.58, + "probability": 0.7733 + }, + { + "start": 7649.84, + "end": 7652.22, + "probability": 0.8919 + }, + { + "start": 7652.66, + "end": 7655.46, + "probability": 0.9669 + }, + { + "start": 7656.54, + "end": 7659.58, + "probability": 0.945 + }, + { + "start": 7659.7, + "end": 7660.18, + "probability": 0.805 + }, + { + "start": 7675.04, + "end": 7676.12, + "probability": 0.6723 + }, + { + "start": 7677.54, + "end": 7679.12, + "probability": 0.738 + }, + { + "start": 7680.14, + "end": 7681.66, + "probability": 0.8744 + }, + { + "start": 7682.86, + "end": 7686.42, + "probability": 0.9893 + }, + { + "start": 7687.14, + "end": 7691.21, + "probability": 0.9966 + }, + { + "start": 7692.54, + "end": 7698.64, + "probability": 0.7437 + }, + { + "start": 7698.72, + "end": 7700.82, + "probability": 0.8394 + }, + { + "start": 7701.74, + "end": 7704.5, + "probability": 0.9889 + }, + { + "start": 7705.22, + "end": 7712.04, + "probability": 0.9299 + }, + { + "start": 7712.68, + "end": 7714.12, + "probability": 0.8868 + }, + { + "start": 7715.4, + "end": 7718.84, + "probability": 0.9619 + }, + { + "start": 7720.02, + "end": 7721.1, + "probability": 0.8934 + }, + { + "start": 7721.84, + "end": 7723.12, + "probability": 0.675 + }, + { + "start": 7724.1, + "end": 7726.12, + "probability": 0.9631 + }, + { + "start": 7727.64, + "end": 7729.84, + "probability": 0.9514 + }, + { + "start": 7730.56, + "end": 7733.36, + "probability": 0.8833 + }, + { + "start": 7734.2, + "end": 7735.24, + "probability": 0.9186 + }, + { + "start": 7736.84, + "end": 7744.32, + "probability": 0.8823 + }, + { + "start": 7745.74, + "end": 7746.82, + "probability": 0.5487 + }, + { + "start": 7748.08, + "end": 7749.52, + "probability": 0.5287 + }, + { + "start": 7751.46, + "end": 7752.58, + "probability": 0.8944 + }, + { + "start": 7753.12, + "end": 7754.14, + "probability": 0.9425 + }, + { + "start": 7754.88, + "end": 7756.56, + "probability": 0.2802 + }, + { + "start": 7757.65, + "end": 7764.62, + "probability": 0.808 + }, + { + "start": 7764.62, + "end": 7768.5, + "probability": 0.9841 + }, + { + "start": 7770.02, + "end": 7772.94, + "probability": 0.9984 + }, + { + "start": 7774.36, + "end": 7774.85, + "probability": 0.8059 + }, + { + "start": 7775.8, + "end": 7776.86, + "probability": 0.8733 + }, + { + "start": 7777.92, + "end": 7782.82, + "probability": 0.5752 + }, + { + "start": 7783.42, + "end": 7785.18, + "probability": 0.9865 + }, + { + "start": 7785.98, + "end": 7788.94, + "probability": 0.6716 + }, + { + "start": 7789.5, + "end": 7791.38, + "probability": 0.9457 + }, + { + "start": 7793.04, + "end": 7796.3, + "probability": 0.9865 + }, + { + "start": 7798.58, + "end": 7799.68, + "probability": 0.3994 + }, + { + "start": 7800.76, + "end": 7801.46, + "probability": 0.9315 + }, + { + "start": 7802.6, + "end": 7804.5, + "probability": 0.9712 + }, + { + "start": 7805.52, + "end": 7808.54, + "probability": 0.8866 + }, + { + "start": 7809.96, + "end": 7813.38, + "probability": 0.9782 + }, + { + "start": 7813.98, + "end": 7815.96, + "probability": 0.8815 + }, + { + "start": 7816.48, + "end": 7818.1, + "probability": 0.8767 + }, + { + "start": 7819.52, + "end": 7820.34, + "probability": 0.1567 + }, + { + "start": 7820.74, + "end": 7821.74, + "probability": 0.7092 + }, + { + "start": 7822.4, + "end": 7823.8, + "probability": 0.5953 + }, + { + "start": 7825.16, + "end": 7827.68, + "probability": 0.8267 + }, + { + "start": 7828.36, + "end": 7832.42, + "probability": 0.9092 + }, + { + "start": 7833.52, + "end": 7836.52, + "probability": 0.7335 + }, + { + "start": 7837.0, + "end": 7838.82, + "probability": 0.9224 + }, + { + "start": 7838.9, + "end": 7841.94, + "probability": 0.8322 + }, + { + "start": 7842.06, + "end": 7844.2, + "probability": 0.8765 + }, + { + "start": 7845.06, + "end": 7846.32, + "probability": 0.8547 + }, + { + "start": 7846.42, + "end": 7849.44, + "probability": 0.7641 + }, + { + "start": 7849.88, + "end": 7853.06, + "probability": 0.9414 + }, + { + "start": 7854.66, + "end": 7857.42, + "probability": 0.9934 + }, + { + "start": 7858.72, + "end": 7861.84, + "probability": 0.9929 + }, + { + "start": 7864.8, + "end": 7866.46, + "probability": 0.7173 + }, + { + "start": 7867.5, + "end": 7868.59, + "probability": 0.7581 + }, + { + "start": 7871.12, + "end": 7871.56, + "probability": 0.6522 + }, + { + "start": 7872.74, + "end": 7872.88, + "probability": 0.5562 + }, + { + "start": 7872.88, + "end": 7875.2, + "probability": 0.4843 + }, + { + "start": 7875.5, + "end": 7875.84, + "probability": 0.657 + }, + { + "start": 7876.7, + "end": 7877.6, + "probability": 0.8218 + }, + { + "start": 7878.64, + "end": 7881.44, + "probability": 0.4063 + }, + { + "start": 7881.98, + "end": 7886.32, + "probability": 0.8388 + }, + { + "start": 7889.22, + "end": 7889.72, + "probability": 0.7453 + }, + { + "start": 7890.38, + "end": 7890.58, + "probability": 0.5543 + }, + { + "start": 7890.86, + "end": 7891.42, + "probability": 0.7847 + }, + { + "start": 7893.04, + "end": 7893.3, + "probability": 0.6173 + }, + { + "start": 7893.3, + "end": 7893.98, + "probability": 0.7104 + }, + { + "start": 7894.16, + "end": 7896.0, + "probability": 0.8354 + }, + { + "start": 7896.48, + "end": 7897.58, + "probability": 0.7285 + }, + { + "start": 7897.78, + "end": 7899.08, + "probability": 0.5222 + }, + { + "start": 7899.92, + "end": 7900.76, + "probability": 0.4565 + }, + { + "start": 7901.14, + "end": 7901.24, + "probability": 0.5714 + }, + { + "start": 7901.24, + "end": 7902.7, + "probability": 0.5045 + }, + { + "start": 7903.5, + "end": 7903.85, + "probability": 0.0637 + }, + { + "start": 7905.5, + "end": 7906.21, + "probability": 0.5454 + }, + { + "start": 7907.86, + "end": 7909.08, + "probability": 0.9442 + }, + { + "start": 7909.92, + "end": 7911.24, + "probability": 0.6698 + }, + { + "start": 7911.8, + "end": 7913.36, + "probability": 0.9882 + }, + { + "start": 7914.52, + "end": 7916.6, + "probability": 0.9622 + }, + { + "start": 7917.86, + "end": 7918.32, + "probability": 0.5132 + }, + { + "start": 7918.84, + "end": 7920.54, + "probability": 0.9928 + }, + { + "start": 7922.12, + "end": 7924.32, + "probability": 0.3154 + }, + { + "start": 7924.4, + "end": 7925.36, + "probability": 0.7496 + }, + { + "start": 7925.44, + "end": 7926.24, + "probability": 0.9095 + }, + { + "start": 7927.1, + "end": 7927.6, + "probability": 0.0027 + }, + { + "start": 7930.22, + "end": 7931.06, + "probability": 0.28 + }, + { + "start": 7931.1, + "end": 7931.46, + "probability": 0.1245 + }, + { + "start": 7931.86, + "end": 7934.66, + "probability": 0.2228 + }, + { + "start": 7935.82, + "end": 7937.0, + "probability": 0.3317 + }, + { + "start": 7937.78, + "end": 7937.96, + "probability": 0.0059 + }, + { + "start": 7937.98, + "end": 7938.54, + "probability": 0.8357 + }, + { + "start": 7938.98, + "end": 7939.38, + "probability": 0.3357 + }, + { + "start": 7942.22, + "end": 7944.2, + "probability": 0.9312 + }, + { + "start": 7944.84, + "end": 7945.46, + "probability": 0.2494 + }, + { + "start": 7945.92, + "end": 7947.78, + "probability": 0.9941 + }, + { + "start": 7948.36, + "end": 7950.72, + "probability": 0.4773 + }, + { + "start": 7951.62, + "end": 7953.38, + "probability": 0.7292 + }, + { + "start": 7954.84, + "end": 7956.26, + "probability": 0.3511 + }, + { + "start": 7957.36, + "end": 7957.92, + "probability": 0.4035 + }, + { + "start": 7958.8, + "end": 7961.56, + "probability": 0.9487 + }, + { + "start": 7962.1, + "end": 7963.98, + "probability": 0.9697 + }, + { + "start": 7965.08, + "end": 7967.06, + "probability": 0.9421 + }, + { + "start": 7967.96, + "end": 7968.3, + "probability": 0.9141 + }, + { + "start": 7969.14, + "end": 7972.92, + "probability": 0.9884 + }, + { + "start": 7972.92, + "end": 7975.26, + "probability": 0.9984 + }, + { + "start": 7975.98, + "end": 7976.41, + "probability": 0.7919 + }, + { + "start": 7977.88, + "end": 7978.86, + "probability": 0.9961 + }, + { + "start": 7979.9, + "end": 7982.66, + "probability": 0.7928 + }, + { + "start": 7983.52, + "end": 7984.84, + "probability": 0.9719 + }, + { + "start": 7985.14, + "end": 7985.86, + "probability": 0.5007 + }, + { + "start": 7985.92, + "end": 7986.02, + "probability": 0.5934 + }, + { + "start": 7986.42, + "end": 7986.86, + "probability": 0.2284 + }, + { + "start": 7987.2, + "end": 7988.44, + "probability": 0.9609 + }, + { + "start": 7989.44, + "end": 7993.42, + "probability": 0.505 + }, + { + "start": 7994.2, + "end": 7995.44, + "probability": 0.9552 + }, + { + "start": 7996.02, + "end": 7997.61, + "probability": 0.7239 + }, + { + "start": 7998.4, + "end": 8000.02, + "probability": 0.8355 + }, + { + "start": 8001.0, + "end": 8001.68, + "probability": 0.901 + }, + { + "start": 8002.52, + "end": 8006.18, + "probability": 0.9873 + }, + { + "start": 8006.88, + "end": 8009.14, + "probability": 0.9326 + }, + { + "start": 8009.68, + "end": 8010.76, + "probability": 0.9472 + }, + { + "start": 8011.58, + "end": 8014.08, + "probability": 0.8749 + }, + { + "start": 8014.38, + "end": 8014.62, + "probability": 0.4535 + }, + { + "start": 8015.32, + "end": 8015.9, + "probability": 0.2777 + }, + { + "start": 8015.94, + "end": 8021.3, + "probability": 0.9248 + }, + { + "start": 8021.36, + "end": 8026.14, + "probability": 0.993 + }, + { + "start": 8028.44, + "end": 8029.94, + "probability": 0.8254 + }, + { + "start": 8031.44, + "end": 8031.76, + "probability": 0.4004 + }, + { + "start": 8031.9, + "end": 8033.16, + "probability": 0.812 + }, + { + "start": 8033.34, + "end": 8035.32, + "probability": 0.9526 + }, + { + "start": 8037.52, + "end": 8039.42, + "probability": 0.4288 + }, + { + "start": 8039.52, + "end": 8043.74, + "probability": 0.9391 + }, + { + "start": 8044.04, + "end": 8045.3, + "probability": 0.2601 + }, + { + "start": 8045.56, + "end": 8046.34, + "probability": 0.7096 + }, + { + "start": 8047.12, + "end": 8048.08, + "probability": 0.1374 + }, + { + "start": 8049.06, + "end": 8049.7, + "probability": 0.032 + }, + { + "start": 8049.7, + "end": 8049.98, + "probability": 0.1831 + }, + { + "start": 8049.98, + "end": 8050.28, + "probability": 0.5455 + }, + { + "start": 8050.38, + "end": 8051.36, + "probability": 0.8296 + }, + { + "start": 8051.48, + "end": 8052.92, + "probability": 0.924 + }, + { + "start": 8053.6, + "end": 8054.32, + "probability": 0.8408 + }, + { + "start": 8054.68, + "end": 8055.74, + "probability": 0.6544 + }, + { + "start": 8056.22, + "end": 8057.2, + "probability": 0.8633 + }, + { + "start": 8057.32, + "end": 8058.44, + "probability": 0.9294 + }, + { + "start": 8059.98, + "end": 8061.6, + "probability": 0.0495 + }, + { + "start": 8062.26, + "end": 8062.94, + "probability": 0.1007 + }, + { + "start": 8062.94, + "end": 8064.72, + "probability": 0.4949 + }, + { + "start": 8065.5, + "end": 8068.26, + "probability": 0.8528 + }, + { + "start": 8069.42, + "end": 8069.48, + "probability": 0.4254 + }, + { + "start": 8069.48, + "end": 8070.58, + "probability": 0.7237 + }, + { + "start": 8071.3, + "end": 8071.84, + "probability": 0.7388 + }, + { + "start": 8073.04, + "end": 8074.21, + "probability": 0.9209 + }, + { + "start": 8076.16, + "end": 8076.98, + "probability": 0.8712 + }, + { + "start": 8079.6, + "end": 8082.8, + "probability": 0.9783 + }, + { + "start": 8084.34, + "end": 8085.3, + "probability": 0.4658 + }, + { + "start": 8085.62, + "end": 8089.42, + "probability": 0.938 + }, + { + "start": 8089.46, + "end": 8090.76, + "probability": 0.9534 + }, + { + "start": 8093.06, + "end": 8096.5, + "probability": 0.7742 + }, + { + "start": 8098.04, + "end": 8098.84, + "probability": 0.6659 + }, + { + "start": 8100.58, + "end": 8101.77, + "probability": 0.981 + }, + { + "start": 8102.34, + "end": 8106.32, + "probability": 0.9108 + }, + { + "start": 8107.46, + "end": 8108.84, + "probability": 0.8237 + }, + { + "start": 8111.2, + "end": 8112.28, + "probability": 0.6904 + }, + { + "start": 8113.5, + "end": 8115.9, + "probability": 0.7778 + }, + { + "start": 8116.9, + "end": 8118.36, + "probability": 0.3525 + }, + { + "start": 8118.46, + "end": 8119.62, + "probability": 0.7956 + }, + { + "start": 8119.66, + "end": 8122.14, + "probability": 0.8323 + }, + { + "start": 8122.54, + "end": 8124.46, + "probability": 0.7354 + }, + { + "start": 8125.2, + "end": 8126.04, + "probability": 0.8732 + }, + { + "start": 8127.88, + "end": 8128.4, + "probability": 0.5317 + }, + { + "start": 8129.32, + "end": 8129.8, + "probability": 0.495 + }, + { + "start": 8131.36, + "end": 8132.24, + "probability": 0.4849 + }, + { + "start": 8133.18, + "end": 8134.6, + "probability": 0.7453 + }, + { + "start": 8136.78, + "end": 8137.58, + "probability": 0.8353 + }, + { + "start": 8138.7, + "end": 8140.32, + "probability": 0.6861 + }, + { + "start": 8141.62, + "end": 8145.04, + "probability": 0.7836 + }, + { + "start": 8145.66, + "end": 8148.58, + "probability": 0.7837 + }, + { + "start": 8149.62, + "end": 8150.76, + "probability": 0.8439 + }, + { + "start": 8151.84, + "end": 8153.82, + "probability": 0.4885 + }, + { + "start": 8154.64, + "end": 8155.3, + "probability": 0.5152 + }, + { + "start": 8156.0, + "end": 8157.78, + "probability": 0.8882 + }, + { + "start": 8160.0, + "end": 8162.82, + "probability": 0.7915 + }, + { + "start": 8163.12, + "end": 8164.47, + "probability": 0.7101 + }, + { + "start": 8168.72, + "end": 8169.62, + "probability": 0.3031 + }, + { + "start": 8169.88, + "end": 8170.24, + "probability": 0.9452 + }, + { + "start": 8170.3, + "end": 8171.59, + "probability": 0.9756 + }, + { + "start": 8172.7, + "end": 8174.58, + "probability": 0.9792 + }, + { + "start": 8175.18, + "end": 8175.58, + "probability": 0.9149 + }, + { + "start": 8176.66, + "end": 8177.6, + "probability": 0.8575 + }, + { + "start": 8178.16, + "end": 8180.06, + "probability": 0.9738 + }, + { + "start": 8180.68, + "end": 8183.2, + "probability": 0.927 + }, + { + "start": 8183.64, + "end": 8189.2, + "probability": 0.6738 + }, + { + "start": 8189.78, + "end": 8191.33, + "probability": 0.7523 + }, + { + "start": 8191.82, + "end": 8192.62, + "probability": 0.3391 + }, + { + "start": 8193.14, + "end": 8195.05, + "probability": 0.9371 + }, + { + "start": 8195.38, + "end": 8196.06, + "probability": 0.4069 + }, + { + "start": 8196.24, + "end": 8196.98, + "probability": 0.9849 + }, + { + "start": 8198.06, + "end": 8199.32, + "probability": 0.9242 + }, + { + "start": 8200.64, + "end": 8203.48, + "probability": 0.8691 + }, + { + "start": 8204.22, + "end": 8206.46, + "probability": 0.9654 + }, + { + "start": 8207.46, + "end": 8209.8, + "probability": 0.632 + }, + { + "start": 8210.46, + "end": 8212.14, + "probability": 0.0564 + }, + { + "start": 8213.16, + "end": 8213.48, + "probability": 0.6332 + }, + { + "start": 8213.88, + "end": 8216.12, + "probability": 0.7162 + }, + { + "start": 8216.72, + "end": 8218.9, + "probability": 0.91 + }, + { + "start": 8220.2, + "end": 8222.44, + "probability": 0.6989 + }, + { + "start": 8222.48, + "end": 8223.22, + "probability": 0.9393 + }, + { + "start": 8223.34, + "end": 8227.76, + "probability": 0.842 + }, + { + "start": 8228.04, + "end": 8228.56, + "probability": 0.6718 + }, + { + "start": 8228.9, + "end": 8229.8, + "probability": 0.498 + }, + { + "start": 8229.96, + "end": 8233.96, + "probability": 0.6182 + }, + { + "start": 8234.58, + "end": 8237.18, + "probability": 0.9543 + }, + { + "start": 8237.82, + "end": 8239.18, + "probability": 0.3406 + }, + { + "start": 8243.34, + "end": 8244.46, + "probability": 0.5749 + }, + { + "start": 8245.44, + "end": 8248.22, + "probability": 0.7109 + }, + { + "start": 8248.48, + "end": 8249.72, + "probability": 0.7776 + }, + { + "start": 8249.8, + "end": 8250.08, + "probability": 0.8337 + }, + { + "start": 8250.42, + "end": 8250.6, + "probability": 0.2545 + }, + { + "start": 8251.04, + "end": 8252.08, + "probability": 0.5586 + }, + { + "start": 8252.7, + "end": 8257.18, + "probability": 0.9004 + }, + { + "start": 8258.64, + "end": 8260.46, + "probability": 0.4362 + }, + { + "start": 8260.48, + "end": 8261.64, + "probability": 0.5562 + }, + { + "start": 8262.16, + "end": 8264.88, + "probability": 0.9417 + }, + { + "start": 8264.88, + "end": 8270.36, + "probability": 0.8928 + }, + { + "start": 8270.86, + "end": 8272.26, + "probability": 0.9376 + }, + { + "start": 8273.26, + "end": 8276.61, + "probability": 0.3999 + }, + { + "start": 8277.62, + "end": 8278.75, + "probability": 0.9712 + }, + { + "start": 8279.6, + "end": 8281.66, + "probability": 0.9983 + }, + { + "start": 8282.38, + "end": 8282.82, + "probability": 0.5912 + }, + { + "start": 8282.86, + "end": 8285.6, + "probability": 0.9363 + }, + { + "start": 8286.88, + "end": 8287.04, + "probability": 0.4355 + }, + { + "start": 8287.6, + "end": 8288.27, + "probability": 0.832 + }, + { + "start": 8289.4, + "end": 8291.04, + "probability": 0.7888 + }, + { + "start": 8291.74, + "end": 8292.08, + "probability": 0.6691 + }, + { + "start": 8293.68, + "end": 8295.9, + "probability": 0.5705 + }, + { + "start": 8296.68, + "end": 8299.94, + "probability": 0.9951 + }, + { + "start": 8299.94, + "end": 8303.45, + "probability": 0.8793 + }, + { + "start": 8307.9, + "end": 8311.6, + "probability": 0.8222 + }, + { + "start": 8312.0, + "end": 8314.16, + "probability": 0.9963 + }, + { + "start": 8314.58, + "end": 8315.96, + "probability": 0.9456 + }, + { + "start": 8316.56, + "end": 8317.12, + "probability": 0.8728 + }, + { + "start": 8317.48, + "end": 8318.28, + "probability": 0.9271 + }, + { + "start": 8318.48, + "end": 8320.8, + "probability": 0.8747 + }, + { + "start": 8321.26, + "end": 8321.76, + "probability": 0.5536 + }, + { + "start": 8321.96, + "end": 8322.66, + "probability": 0.4973 + }, + { + "start": 8322.72, + "end": 8323.16, + "probability": 0.4948 + }, + { + "start": 8324.48, + "end": 8327.14, + "probability": 0.9692 + }, + { + "start": 8329.24, + "end": 8330.5, + "probability": 0.895 + }, + { + "start": 8331.18, + "end": 8334.42, + "probability": 0.7061 + }, + { + "start": 8336.3, + "end": 8338.96, + "probability": 0.914 + }, + { + "start": 8339.74, + "end": 8340.84, + "probability": 0.9446 + }, + { + "start": 8341.64, + "end": 8343.08, + "probability": 0.9902 + }, + { + "start": 8343.44, + "end": 8344.82, + "probability": 0.1594 + }, + { + "start": 8345.02, + "end": 8346.18, + "probability": 0.6291 + }, + { + "start": 8346.36, + "end": 8346.92, + "probability": 0.7441 + }, + { + "start": 8347.12, + "end": 8348.48, + "probability": 0.741 + }, + { + "start": 8349.24, + "end": 8350.62, + "probability": 0.9574 + }, + { + "start": 8351.0, + "end": 8352.72, + "probability": 0.9081 + }, + { + "start": 8353.04, + "end": 8353.25, + "probability": 0.3156 + }, + { + "start": 8354.68, + "end": 8357.9, + "probability": 0.6737 + }, + { + "start": 8358.98, + "end": 8359.86, + "probability": 0.9261 + }, + { + "start": 8360.74, + "end": 8361.46, + "probability": 0.9305 + }, + { + "start": 8362.7, + "end": 8364.84, + "probability": 0.8748 + }, + { + "start": 8365.48, + "end": 8369.46, + "probability": 0.5801 + }, + { + "start": 8373.0, + "end": 8374.0, + "probability": 0.6768 + }, + { + "start": 8374.64, + "end": 8375.04, + "probability": 0.2033 + }, + { + "start": 8375.1, + "end": 8375.61, + "probability": 0.2345 + }, + { + "start": 8376.3, + "end": 8382.24, + "probability": 0.7279 + }, + { + "start": 8382.88, + "end": 8383.14, + "probability": 0.4927 + }, + { + "start": 8383.7, + "end": 8386.72, + "probability": 0.6705 + }, + { + "start": 8387.42, + "end": 8390.8, + "probability": 0.7565 + }, + { + "start": 8391.26, + "end": 8392.56, + "probability": 0.4336 + }, + { + "start": 8393.24, + "end": 8394.2, + "probability": 0.4814 + }, + { + "start": 8394.8, + "end": 8397.76, + "probability": 0.8446 + }, + { + "start": 8398.74, + "end": 8400.06, + "probability": 0.6042 + }, + { + "start": 8400.42, + "end": 8403.1, + "probability": 0.7795 + }, + { + "start": 8403.4, + "end": 8404.24, + "probability": 0.9731 + }, + { + "start": 8404.46, + "end": 8405.68, + "probability": 0.5031 + }, + { + "start": 8405.68, + "end": 8405.68, + "probability": 0.0385 + }, + { + "start": 8406.58, + "end": 8407.02, + "probability": 0.1456 + }, + { + "start": 8407.1, + "end": 8409.66, + "probability": 0.7006 + }, + { + "start": 8410.24, + "end": 8413.18, + "probability": 0.8136 + }, + { + "start": 8413.92, + "end": 8414.18, + "probability": 0.9291 + }, + { + "start": 8414.82, + "end": 8417.1, + "probability": 0.6332 + }, + { + "start": 8417.14, + "end": 8417.24, + "probability": 0.2247 + }, + { + "start": 8417.46, + "end": 8421.4, + "probability": 0.9299 + }, + { + "start": 8421.58, + "end": 8426.04, + "probability": 0.8898 + }, + { + "start": 8426.12, + "end": 8426.9, + "probability": 0.4536 + }, + { + "start": 8427.24, + "end": 8428.28, + "probability": 0.9175 + }, + { + "start": 8428.64, + "end": 8429.8, + "probability": 0.9902 + }, + { + "start": 8430.42, + "end": 8431.0, + "probability": 0.0487 + }, + { + "start": 8431.0, + "end": 8432.5, + "probability": 0.8469 + }, + { + "start": 8434.04, + "end": 8435.64, + "probability": 0.521 + }, + { + "start": 8436.38, + "end": 8437.56, + "probability": 0.7922 + }, + { + "start": 8439.52, + "end": 8441.35, + "probability": 0.3336 + }, + { + "start": 8442.68, + "end": 8443.8, + "probability": 0.4836 + }, + { + "start": 8444.16, + "end": 8446.56, + "probability": 0.8245 + }, + { + "start": 8446.64, + "end": 8446.9, + "probability": 0.6813 + }, + { + "start": 8447.16, + "end": 8447.36, + "probability": 0.7373 + }, + { + "start": 8447.5, + "end": 8451.62, + "probability": 0.4888 + }, + { + "start": 8453.12, + "end": 8455.04, + "probability": 0.7729 + }, + { + "start": 8455.42, + "end": 8459.0, + "probability": 0.4417 + }, + { + "start": 8459.04, + "end": 8460.02, + "probability": 0.7306 + }, + { + "start": 8460.34, + "end": 8462.3, + "probability": 0.7455 + }, + { + "start": 8462.76, + "end": 8462.92, + "probability": 0.2809 + }, + { + "start": 8463.0, + "end": 8463.34, + "probability": 0.6765 + }, + { + "start": 8463.38, + "end": 8466.49, + "probability": 0.6433 + }, + { + "start": 8467.8, + "end": 8468.58, + "probability": 0.6275 + }, + { + "start": 8468.98, + "end": 8469.3, + "probability": 0.8888 + }, + { + "start": 8469.86, + "end": 8470.78, + "probability": 0.9198 + }, + { + "start": 8471.88, + "end": 8473.14, + "probability": 0.6432 + }, + { + "start": 8473.32, + "end": 8475.24, + "probability": 0.6381 + }, + { + "start": 8476.1, + "end": 8477.72, + "probability": 0.6932 + }, + { + "start": 8477.88, + "end": 8480.14, + "probability": 0.7375 + }, + { + "start": 8481.26, + "end": 8483.36, + "probability": 0.4974 + }, + { + "start": 8483.5, + "end": 8483.95, + "probability": 0.7463 + }, + { + "start": 8485.9, + "end": 8487.58, + "probability": 0.9497 + }, + { + "start": 8487.94, + "end": 8488.36, + "probability": 0.7514 + }, + { + "start": 8489.52, + "end": 8494.64, + "probability": 0.8776 + }, + { + "start": 8495.78, + "end": 8498.06, + "probability": 0.9884 + }, + { + "start": 8499.06, + "end": 8500.24, + "probability": 0.818 + }, + { + "start": 8500.38, + "end": 8501.38, + "probability": 0.6711 + }, + { + "start": 8501.46, + "end": 8502.94, + "probability": 0.9714 + }, + { + "start": 8503.84, + "end": 8506.68, + "probability": 0.8729 + }, + { + "start": 8506.68, + "end": 8510.04, + "probability": 0.7493 + }, + { + "start": 8510.44, + "end": 8516.04, + "probability": 0.9819 + }, + { + "start": 8516.6, + "end": 8521.54, + "probability": 0.9507 + }, + { + "start": 8523.06, + "end": 8525.12, + "probability": 0.7751 + }, + { + "start": 8525.4, + "end": 8528.9, + "probability": 0.554 + }, + { + "start": 8529.54, + "end": 8535.7, + "probability": 0.9828 + }, + { + "start": 8536.48, + "end": 8540.58, + "probability": 0.9167 + }, + { + "start": 8540.84, + "end": 8541.52, + "probability": 0.7377 + }, + { + "start": 8542.78, + "end": 8542.94, + "probability": 0.0114 + } + ], + "segments_count": 2882, + "words_count": 14459, + "avg_words_per_segment": 5.017, + "avg_segment_duration": 2.1492, + "avg_words_per_minute": 101.2807, + "plenum_id": "2852", + "duration": 8565.7, + "title": null, + "plenum_date": "2009-06-30" +} \ No newline at end of file