diff --git "a/39962/metadata.json" "b/39962/metadata.json" new file mode 100644--- /dev/null +++ "b/39962/metadata.json" @@ -0,0 +1,47167 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "39962", + "quality_score": 0.8911, + "per_segment_quality_scores": [ + { + "start": 46.08, + "end": 48.22, + "probability": 0.6899 + }, + { + "start": 48.3, + "end": 49.2, + "probability": 0.9854 + }, + { + "start": 52.01, + "end": 54.66, + "probability": 0.9097 + }, + { + "start": 54.82, + "end": 56.24, + "probability": 0.8424 + }, + { + "start": 56.3, + "end": 57.88, + "probability": 0.7538 + }, + { + "start": 58.78, + "end": 60.56, + "probability": 0.9778 + }, + { + "start": 63.12, + "end": 65.52, + "probability": 0.5476 + }, + { + "start": 65.52, + "end": 67.12, + "probability": 0.583 + }, + { + "start": 67.32, + "end": 72.9, + "probability": 0.9125 + }, + { + "start": 73.42, + "end": 77.1, + "probability": 0.6642 + }, + { + "start": 78.16, + "end": 82.22, + "probability": 0.0528 + }, + { + "start": 83.6, + "end": 87.58, + "probability": 0.4099 + }, + { + "start": 88.32, + "end": 94.66, + "probability": 0.1027 + }, + { + "start": 95.34, + "end": 95.62, + "probability": 0.0944 + }, + { + "start": 98.92, + "end": 101.64, + "probability": 0.0075 + }, + { + "start": 102.06, + "end": 103.6, + "probability": 0.0228 + }, + { + "start": 103.72, + "end": 104.58, + "probability": 0.0463 + }, + { + "start": 104.58, + "end": 104.86, + "probability": 0.0231 + }, + { + "start": 105.5, + "end": 108.86, + "probability": 0.0671 + }, + { + "start": 108.86, + "end": 116.22, + "probability": 0.0185 + }, + { + "start": 121.12, + "end": 122.92, + "probability": 0.1207 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.0, + "end": 123.0, + "probability": 0.0 + }, + { + "start": 123.77, + "end": 125.07, + "probability": 0.0579 + }, + { + "start": 125.92, + "end": 126.82, + "probability": 0.0064 + }, + { + "start": 127.36, + "end": 128.14, + "probability": 0.1817 + }, + { + "start": 128.14, + "end": 129.16, + "probability": 0.0934 + }, + { + "start": 132.74, + "end": 133.06, + "probability": 0.0042 + }, + { + "start": 133.06, + "end": 133.06, + "probability": 0.2651 + }, + { + "start": 133.06, + "end": 133.82, + "probability": 0.2234 + }, + { + "start": 133.86, + "end": 134.8, + "probability": 0.3376 + }, + { + "start": 138.38, + "end": 138.42, + "probability": 0.004 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 263.0, + "end": 263.0, + "probability": 0.0 + }, + { + "start": 273.08, + "end": 273.38, + "probability": 0.1916 + }, + { + "start": 282.72, + "end": 289.32, + "probability": 0.1027 + }, + { + "start": 290.3, + "end": 294.94, + "probability": 0.0017 + }, + { + "start": 298.68, + "end": 299.36, + "probability": 0.3521 + }, + { + "start": 299.72, + "end": 307.44, + "probability": 0.0608 + }, + { + "start": 307.96, + "end": 310.34, + "probability": 0.0132 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.0, + "end": 386.0, + "probability": 0.0 + }, + { + "start": 386.22, + "end": 391.84, + "probability": 0.1632 + }, + { + "start": 392.14, + "end": 394.64, + "probability": 0.1563 + }, + { + "start": 395.0, + "end": 395.58, + "probability": 0.0823 + }, + { + "start": 398.02, + "end": 398.58, + "probability": 0.2593 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.0, + "end": 519.0, + "probability": 0.0 + }, + { + "start": 519.12, + "end": 519.48, + "probability": 0.1535 + }, + { + "start": 519.48, + "end": 519.48, + "probability": 0.0776 + }, + { + "start": 519.48, + "end": 519.58, + "probability": 0.0474 + }, + { + "start": 519.58, + "end": 519.58, + "probability": 0.0307 + }, + { + "start": 519.58, + "end": 519.58, + "probability": 0.1722 + }, + { + "start": 519.58, + "end": 519.58, + "probability": 0.3285 + }, + { + "start": 519.58, + "end": 520.66, + "probability": 0.3853 + }, + { + "start": 522.18, + "end": 523.09, + "probability": 0.5856 + }, + { + "start": 523.78, + "end": 525.16, + "probability": 0.7449 + }, + { + "start": 525.58, + "end": 528.18, + "probability": 0.84 + }, + { + "start": 528.6, + "end": 531.36, + "probability": 0.9904 + }, + { + "start": 532.12, + "end": 534.2, + "probability": 0.9702 + }, + { + "start": 535.02, + "end": 536.7, + "probability": 0.9609 + }, + { + "start": 537.08, + "end": 539.72, + "probability": 0.9977 + }, + { + "start": 539.78, + "end": 542.22, + "probability": 0.9838 + }, + { + "start": 542.66, + "end": 545.26, + "probability": 0.9884 + }, + { + "start": 547.38, + "end": 548.14, + "probability": 0.9002 + }, + { + "start": 549.12, + "end": 551.14, + "probability": 0.7752 + }, + { + "start": 551.8, + "end": 552.22, + "probability": 0.7861 + }, + { + "start": 552.88, + "end": 557.48, + "probability": 0.9978 + }, + { + "start": 557.62, + "end": 560.38, + "probability": 0.9978 + }, + { + "start": 561.98, + "end": 566.7, + "probability": 0.9968 + }, + { + "start": 567.38, + "end": 568.98, + "probability": 0.9608 + }, + { + "start": 569.64, + "end": 573.0, + "probability": 0.4587 + }, + { + "start": 573.0, + "end": 575.64, + "probability": 0.9964 + }, + { + "start": 576.42, + "end": 577.5, + "probability": 0.364 + }, + { + "start": 577.7, + "end": 578.24, + "probability": 0.5997 + }, + { + "start": 578.28, + "end": 578.96, + "probability": 0.7537 + }, + { + "start": 579.44, + "end": 581.86, + "probability": 0.9348 + }, + { + "start": 582.22, + "end": 583.38, + "probability": 0.9911 + }, + { + "start": 583.74, + "end": 584.54, + "probability": 0.4123 + }, + { + "start": 584.74, + "end": 590.08, + "probability": 0.9937 + }, + { + "start": 590.28, + "end": 590.64, + "probability": 0.9482 + }, + { + "start": 590.68, + "end": 591.26, + "probability": 0.8959 + }, + { + "start": 591.4, + "end": 593.38, + "probability": 0.8711 + }, + { + "start": 594.2, + "end": 595.1, + "probability": 0.7381 + }, + { + "start": 595.8, + "end": 597.66, + "probability": 0.9471 + }, + { + "start": 598.5, + "end": 599.6, + "probability": 0.9667 + }, + { + "start": 600.68, + "end": 605.42, + "probability": 0.9641 + }, + { + "start": 606.74, + "end": 607.88, + "probability": 0.7227 + }, + { + "start": 608.82, + "end": 609.56, + "probability": 0.6483 + }, + { + "start": 610.68, + "end": 613.52, + "probability": 0.9715 + }, + { + "start": 613.52, + "end": 616.56, + "probability": 0.9403 + }, + { + "start": 618.08, + "end": 619.16, + "probability": 0.6301 + }, + { + "start": 619.22, + "end": 620.67, + "probability": 0.9044 + }, + { + "start": 621.18, + "end": 625.84, + "probability": 0.9611 + }, + { + "start": 625.86, + "end": 626.26, + "probability": 0.6836 + }, + { + "start": 626.42, + "end": 626.91, + "probability": 0.6378 + }, + { + "start": 627.82, + "end": 628.68, + "probability": 0.9778 + }, + { + "start": 628.74, + "end": 629.34, + "probability": 0.8565 + }, + { + "start": 630.3, + "end": 630.44, + "probability": 0.4792 + }, + { + "start": 630.58, + "end": 631.0, + "probability": 0.7698 + }, + { + "start": 631.46, + "end": 632.22, + "probability": 0.895 + }, + { + "start": 632.54, + "end": 633.08, + "probability": 0.8643 + }, + { + "start": 633.46, + "end": 636.08, + "probability": 0.9712 + }, + { + "start": 636.56, + "end": 638.86, + "probability": 0.9772 + }, + { + "start": 640.3, + "end": 642.76, + "probability": 0.9447 + }, + { + "start": 643.04, + "end": 644.04, + "probability": 0.9388 + }, + { + "start": 644.32, + "end": 645.9, + "probability": 0.9956 + }, + { + "start": 647.08, + "end": 649.78, + "probability": 0.9895 + }, + { + "start": 649.78, + "end": 652.36, + "probability": 0.9989 + }, + { + "start": 652.42, + "end": 655.8, + "probability": 0.99 + }, + { + "start": 655.8, + "end": 659.38, + "probability": 0.9996 + }, + { + "start": 659.92, + "end": 662.04, + "probability": 0.9181 + }, + { + "start": 662.58, + "end": 663.5, + "probability": 0.9682 + }, + { + "start": 664.06, + "end": 665.08, + "probability": 0.9702 + }, + { + "start": 665.24, + "end": 666.2, + "probability": 0.9228 + }, + { + "start": 666.46, + "end": 667.3, + "probability": 0.9283 + }, + { + "start": 667.64, + "end": 668.86, + "probability": 0.9534 + }, + { + "start": 669.06, + "end": 671.9, + "probability": 0.8206 + }, + { + "start": 672.02, + "end": 674.1, + "probability": 0.9967 + }, + { + "start": 674.22, + "end": 676.58, + "probability": 0.9161 + }, + { + "start": 677.06, + "end": 678.82, + "probability": 0.7576 + }, + { + "start": 678.9, + "end": 680.74, + "probability": 0.996 + }, + { + "start": 680.74, + "end": 683.62, + "probability": 0.9523 + }, + { + "start": 683.74, + "end": 684.58, + "probability": 0.669 + }, + { + "start": 684.98, + "end": 686.41, + "probability": 0.9551 + }, + { + "start": 686.52, + "end": 690.08, + "probability": 0.8726 + }, + { + "start": 690.48, + "end": 691.02, + "probability": 0.7103 + }, + { + "start": 693.38, + "end": 697.62, + "probability": 0.932 + }, + { + "start": 698.3, + "end": 700.06, + "probability": 0.8975 + }, + { + "start": 700.88, + "end": 703.98, + "probability": 0.995 + }, + { + "start": 703.98, + "end": 706.56, + "probability": 0.9492 + }, + { + "start": 707.12, + "end": 710.16, + "probability": 0.8058 + }, + { + "start": 711.0, + "end": 714.06, + "probability": 0.9453 + }, + { + "start": 714.78, + "end": 715.9, + "probability": 0.9839 + }, + { + "start": 715.9, + "end": 717.82, + "probability": 0.8955 + }, + { + "start": 718.38, + "end": 721.5, + "probability": 0.9558 + }, + { + "start": 721.5, + "end": 725.96, + "probability": 0.9978 + }, + { + "start": 726.9, + "end": 728.72, + "probability": 0.9897 + }, + { + "start": 729.4, + "end": 730.32, + "probability": 0.9429 + }, + { + "start": 730.46, + "end": 733.28, + "probability": 0.967 + }, + { + "start": 733.48, + "end": 734.0, + "probability": 0.7943 + }, + { + "start": 734.44, + "end": 735.54, + "probability": 0.9428 + }, + { + "start": 735.68, + "end": 736.68, + "probability": 0.7766 + }, + { + "start": 736.8, + "end": 738.14, + "probability": 0.9338 + }, + { + "start": 739.46, + "end": 740.5, + "probability": 0.9779 + }, + { + "start": 740.9, + "end": 742.4, + "probability": 0.9717 + }, + { + "start": 742.46, + "end": 743.64, + "probability": 0.9756 + }, + { + "start": 744.02, + "end": 745.36, + "probability": 0.9332 + }, + { + "start": 745.7, + "end": 746.5, + "probability": 0.8861 + }, + { + "start": 746.58, + "end": 747.26, + "probability": 0.8438 + }, + { + "start": 747.52, + "end": 747.94, + "probability": 0.8079 + }, + { + "start": 748.0, + "end": 750.1, + "probability": 0.6558 + }, + { + "start": 750.48, + "end": 751.74, + "probability": 0.8996 + }, + { + "start": 752.2, + "end": 758.12, + "probability": 0.9925 + }, + { + "start": 758.46, + "end": 760.94, + "probability": 0.9848 + }, + { + "start": 761.14, + "end": 761.74, + "probability": 0.7989 + }, + { + "start": 762.14, + "end": 763.06, + "probability": 0.8765 + }, + { + "start": 763.16, + "end": 763.54, + "probability": 0.5667 + }, + { + "start": 763.66, + "end": 766.02, + "probability": 0.987 + }, + { + "start": 766.22, + "end": 769.38, + "probability": 0.8428 + }, + { + "start": 769.82, + "end": 770.98, + "probability": 0.835 + }, + { + "start": 771.32, + "end": 776.1, + "probability": 0.9975 + }, + { + "start": 776.42, + "end": 778.7, + "probability": 0.9991 + }, + { + "start": 778.98, + "end": 781.98, + "probability": 0.998 + }, + { + "start": 782.26, + "end": 783.74, + "probability": 0.998 + }, + { + "start": 784.06, + "end": 787.94, + "probability": 0.7566 + }, + { + "start": 788.0, + "end": 788.8, + "probability": 0.565 + }, + { + "start": 788.86, + "end": 791.26, + "probability": 0.8569 + }, + { + "start": 791.82, + "end": 794.48, + "probability": 0.7131 + }, + { + "start": 795.68, + "end": 796.14, + "probability": 0.8001 + }, + { + "start": 796.78, + "end": 799.34, + "probability": 0.8768 + }, + { + "start": 799.78, + "end": 801.52, + "probability": 0.9688 + }, + { + "start": 801.88, + "end": 802.58, + "probability": 0.8285 + }, + { + "start": 802.92, + "end": 804.88, + "probability": 0.8226 + }, + { + "start": 805.22, + "end": 806.27, + "probability": 0.9924 + }, + { + "start": 806.92, + "end": 809.58, + "probability": 0.9944 + }, + { + "start": 810.02, + "end": 811.2, + "probability": 0.9858 + }, + { + "start": 811.64, + "end": 811.84, + "probability": 0.7718 + }, + { + "start": 812.14, + "end": 814.34, + "probability": 0.937 + }, + { + "start": 815.14, + "end": 821.58, + "probability": 0.9805 + }, + { + "start": 822.48, + "end": 824.94, + "probability": 0.9519 + }, + { + "start": 825.06, + "end": 825.66, + "probability": 0.9099 + }, + { + "start": 825.76, + "end": 826.14, + "probability": 0.3292 + }, + { + "start": 826.22, + "end": 827.38, + "probability": 0.6416 + }, + { + "start": 828.66, + "end": 830.8, + "probability": 0.6725 + }, + { + "start": 830.9, + "end": 831.28, + "probability": 0.3442 + }, + { + "start": 831.4, + "end": 834.6, + "probability": 0.9875 + }, + { + "start": 840.34, + "end": 841.94, + "probability": 0.9297 + }, + { + "start": 848.24, + "end": 848.8, + "probability": 0.6039 + }, + { + "start": 849.38, + "end": 850.82, + "probability": 0.8615 + }, + { + "start": 852.5, + "end": 853.08, + "probability": 0.8065 + }, + { + "start": 858.04, + "end": 862.4, + "probability": 0.8733 + }, + { + "start": 863.28, + "end": 864.42, + "probability": 0.8157 + }, + { + "start": 864.72, + "end": 871.24, + "probability": 0.8918 + }, + { + "start": 872.32, + "end": 873.92, + "probability": 0.9299 + }, + { + "start": 875.02, + "end": 876.42, + "probability": 0.9575 + }, + { + "start": 876.7, + "end": 879.24, + "probability": 0.9279 + }, + { + "start": 879.62, + "end": 881.3, + "probability": 0.887 + }, + { + "start": 881.36, + "end": 881.78, + "probability": 0.5159 + }, + { + "start": 882.0, + "end": 882.4, + "probability": 0.8835 + }, + { + "start": 885.76, + "end": 888.08, + "probability": 0.0437 + }, + { + "start": 889.9, + "end": 890.04, + "probability": 0.7028 + }, + { + "start": 890.04, + "end": 890.04, + "probability": 0.2023 + }, + { + "start": 890.04, + "end": 890.04, + "probability": 0.1458 + }, + { + "start": 890.04, + "end": 890.04, + "probability": 0.0463 + }, + { + "start": 890.04, + "end": 894.06, + "probability": 0.7744 + }, + { + "start": 894.62, + "end": 895.62, + "probability": 0.8179 + }, + { + "start": 896.56, + "end": 898.18, + "probability": 0.5255 + }, + { + "start": 898.76, + "end": 899.62, + "probability": 0.745 + }, + { + "start": 900.16, + "end": 901.48, + "probability": 0.9871 + }, + { + "start": 902.48, + "end": 907.4, + "probability": 0.7213 + }, + { + "start": 908.16, + "end": 909.4, + "probability": 0.8412 + }, + { + "start": 909.42, + "end": 911.34, + "probability": 0.9614 + }, + { + "start": 911.48, + "end": 913.6, + "probability": 0.9503 + }, + { + "start": 914.08, + "end": 914.9, + "probability": 0.8804 + }, + { + "start": 915.76, + "end": 916.94, + "probability": 0.8885 + }, + { + "start": 917.0, + "end": 917.24, + "probability": 0.6823 + }, + { + "start": 917.74, + "end": 919.08, + "probability": 0.7591 + }, + { + "start": 919.9, + "end": 920.78, + "probability": 0.7106 + }, + { + "start": 921.66, + "end": 922.5, + "probability": 0.6765 + }, + { + "start": 922.66, + "end": 923.9, + "probability": 0.9174 + }, + { + "start": 924.64, + "end": 927.7, + "probability": 0.9926 + }, + { + "start": 928.46, + "end": 929.12, + "probability": 0.686 + }, + { + "start": 929.76, + "end": 931.76, + "probability": 0.9198 + }, + { + "start": 932.58, + "end": 933.66, + "probability": 0.6718 + }, + { + "start": 935.52, + "end": 938.9, + "probability": 0.6737 + }, + { + "start": 940.14, + "end": 940.51, + "probability": 0.7471 + }, + { + "start": 941.54, + "end": 943.74, + "probability": 0.9836 + }, + { + "start": 943.88, + "end": 944.82, + "probability": 0.7915 + }, + { + "start": 945.84, + "end": 946.59, + "probability": 0.9857 + }, + { + "start": 947.82, + "end": 948.86, + "probability": 0.7318 + }, + { + "start": 951.08, + "end": 952.66, + "probability": 0.7415 + }, + { + "start": 952.86, + "end": 955.04, + "probability": 0.9976 + }, + { + "start": 955.08, + "end": 958.66, + "probability": 0.8011 + }, + { + "start": 959.2, + "end": 961.14, + "probability": 0.8587 + }, + { + "start": 961.58, + "end": 962.64, + "probability": 0.9276 + }, + { + "start": 962.78, + "end": 964.34, + "probability": 0.9591 + }, + { + "start": 964.48, + "end": 965.2, + "probability": 0.855 + }, + { + "start": 965.8, + "end": 967.7, + "probability": 0.9598 + }, + { + "start": 968.2, + "end": 972.34, + "probability": 0.9897 + }, + { + "start": 972.84, + "end": 975.2, + "probability": 0.9739 + }, + { + "start": 975.86, + "end": 976.82, + "probability": 0.2772 + }, + { + "start": 977.5, + "end": 980.06, + "probability": 0.9961 + }, + { + "start": 980.16, + "end": 982.71, + "probability": 0.8701 + }, + { + "start": 983.62, + "end": 987.38, + "probability": 0.7841 + }, + { + "start": 987.52, + "end": 989.82, + "probability": 0.7803 + }, + { + "start": 989.9, + "end": 992.38, + "probability": 0.9428 + }, + { + "start": 992.52, + "end": 993.38, + "probability": 0.7407 + }, + { + "start": 993.42, + "end": 995.9, + "probability": 0.7605 + }, + { + "start": 996.32, + "end": 999.26, + "probability": 0.9966 + }, + { + "start": 999.38, + "end": 1003.52, + "probability": 0.9785 + }, + { + "start": 1003.62, + "end": 1005.58, + "probability": 0.808 + }, + { + "start": 1005.68, + "end": 1006.54, + "probability": 0.8098 + }, + { + "start": 1009.12, + "end": 1010.5, + "probability": 0.9992 + }, + { + "start": 1010.52, + "end": 1013.5, + "probability": 0.8893 + }, + { + "start": 1014.22, + "end": 1018.58, + "probability": 0.7669 + }, + { + "start": 1019.66, + "end": 1020.68, + "probability": 0.0766 + }, + { + "start": 1020.68, + "end": 1021.26, + "probability": 0.5829 + }, + { + "start": 1021.3, + "end": 1023.2, + "probability": 0.6741 + }, + { + "start": 1023.26, + "end": 1027.26, + "probability": 0.9915 + }, + { + "start": 1027.44, + "end": 1030.42, + "probability": 0.4853 + }, + { + "start": 1030.42, + "end": 1032.32, + "probability": 0.7289 + }, + { + "start": 1032.86, + "end": 1036.0, + "probability": 0.9045 + }, + { + "start": 1036.96, + "end": 1037.7, + "probability": 0.6703 + }, + { + "start": 1039.04, + "end": 1043.92, + "probability": 0.9728 + }, + { + "start": 1045.12, + "end": 1046.44, + "probability": 0.9564 + }, + { + "start": 1047.86, + "end": 1048.6, + "probability": 0.8028 + }, + { + "start": 1049.98, + "end": 1053.06, + "probability": 0.921 + }, + { + "start": 1054.46, + "end": 1057.26, + "probability": 0.8844 + }, + { + "start": 1058.32, + "end": 1058.82, + "probability": 0.3999 + }, + { + "start": 1059.72, + "end": 1059.74, + "probability": 0.6628 + }, + { + "start": 1059.88, + "end": 1061.46, + "probability": 0.9833 + }, + { + "start": 1061.94, + "end": 1063.18, + "probability": 0.9564 + }, + { + "start": 1063.2, + "end": 1066.84, + "probability": 0.7857 + }, + { + "start": 1067.22, + "end": 1068.76, + "probability": 0.9916 + }, + { + "start": 1069.0, + "end": 1069.86, + "probability": 0.4678 + }, + { + "start": 1070.26, + "end": 1071.04, + "probability": 0.6103 + }, + { + "start": 1071.76, + "end": 1073.5, + "probability": 0.7376 + }, + { + "start": 1074.9, + "end": 1077.22, + "probability": 0.8693 + }, + { + "start": 1078.04, + "end": 1079.96, + "probability": 0.2692 + }, + { + "start": 1081.3, + "end": 1083.58, + "probability": 0.926 + }, + { + "start": 1083.66, + "end": 1084.36, + "probability": 0.842 + }, + { + "start": 1084.46, + "end": 1084.96, + "probability": 0.8574 + }, + { + "start": 1086.52, + "end": 1087.7, + "probability": 0.8627 + }, + { + "start": 1088.54, + "end": 1094.14, + "probability": 0.6389 + }, + { + "start": 1095.56, + "end": 1097.14, + "probability": 0.5141 + }, + { + "start": 1097.56, + "end": 1098.34, + "probability": 0.0819 + }, + { + "start": 1098.46, + "end": 1102.76, + "probability": 0.756 + }, + { + "start": 1104.12, + "end": 1105.12, + "probability": 0.907 + }, + { + "start": 1105.4, + "end": 1106.66, + "probability": 0.806 + }, + { + "start": 1106.78, + "end": 1107.5, + "probability": 0.8552 + }, + { + "start": 1107.56, + "end": 1108.16, + "probability": 0.8777 + }, + { + "start": 1108.24, + "end": 1109.69, + "probability": 0.9583 + }, + { + "start": 1110.26, + "end": 1111.72, + "probability": 0.9982 + }, + { + "start": 1111.8, + "end": 1112.64, + "probability": 0.8809 + }, + { + "start": 1114.26, + "end": 1115.98, + "probability": 0.8477 + }, + { + "start": 1116.1, + "end": 1117.22, + "probability": 0.9983 + }, + { + "start": 1117.28, + "end": 1118.18, + "probability": 0.8628 + }, + { + "start": 1118.9, + "end": 1120.46, + "probability": 0.9976 + }, + { + "start": 1122.54, + "end": 1124.36, + "probability": 0.8214 + }, + { + "start": 1125.8, + "end": 1126.54, + "probability": 0.8738 + }, + { + "start": 1126.72, + "end": 1127.18, + "probability": 0.2438 + }, + { + "start": 1127.78, + "end": 1128.1, + "probability": 0.0956 + }, + { + "start": 1128.14, + "end": 1128.14, + "probability": 0.3863 + }, + { + "start": 1128.18, + "end": 1129.24, + "probability": 0.914 + }, + { + "start": 1129.42, + "end": 1131.02, + "probability": 0.9915 + }, + { + "start": 1131.42, + "end": 1132.32, + "probability": 0.9545 + }, + { + "start": 1133.08, + "end": 1133.42, + "probability": 0.7089 + }, + { + "start": 1133.96, + "end": 1135.24, + "probability": 0.9072 + }, + { + "start": 1135.94, + "end": 1139.94, + "probability": 0.9614 + }, + { + "start": 1141.34, + "end": 1141.7, + "probability": 0.5903 + }, + { + "start": 1142.38, + "end": 1143.02, + "probability": 0.9012 + }, + { + "start": 1143.56, + "end": 1145.48, + "probability": 0.5853 + }, + { + "start": 1146.77, + "end": 1148.32, + "probability": 0.7072 + }, + { + "start": 1148.68, + "end": 1149.08, + "probability": 0.1696 + }, + { + "start": 1149.34, + "end": 1153.38, + "probability": 0.6813 + }, + { + "start": 1154.42, + "end": 1157.28, + "probability": 0.9255 + }, + { + "start": 1157.98, + "end": 1161.14, + "probability": 0.8811 + }, + { + "start": 1161.68, + "end": 1162.6, + "probability": 0.151 + }, + { + "start": 1163.3, + "end": 1163.37, + "probability": 0.0799 + }, + { + "start": 1163.88, + "end": 1164.54, + "probability": 0.6644 + }, + { + "start": 1164.6, + "end": 1165.42, + "probability": 0.6488 + }, + { + "start": 1165.56, + "end": 1166.36, + "probability": 0.2268 + }, + { + "start": 1166.36, + "end": 1168.96, + "probability": 0.8416 + }, + { + "start": 1169.22, + "end": 1170.94, + "probability": 0.8398 + }, + { + "start": 1171.26, + "end": 1173.86, + "probability": 0.9547 + }, + { + "start": 1173.9, + "end": 1176.48, + "probability": 0.9549 + }, + { + "start": 1176.78, + "end": 1177.78, + "probability": 0.7368 + }, + { + "start": 1177.9, + "end": 1179.58, + "probability": 0.5197 + }, + { + "start": 1181.6, + "end": 1183.1, + "probability": 0.2482 + }, + { + "start": 1183.54, + "end": 1183.8, + "probability": 0.0882 + }, + { + "start": 1184.26, + "end": 1191.7, + "probability": 0.8861 + }, + { + "start": 1192.22, + "end": 1192.72, + "probability": 0.6742 + }, + { + "start": 1192.84, + "end": 1193.76, + "probability": 0.7117 + }, + { + "start": 1194.2, + "end": 1195.04, + "probability": 0.0537 + }, + { + "start": 1195.34, + "end": 1197.52, + "probability": 0.9159 + }, + { + "start": 1198.53, + "end": 1201.9, + "probability": 0.6615 + }, + { + "start": 1202.64, + "end": 1205.4, + "probability": 0.9587 + }, + { + "start": 1207.26, + "end": 1207.9, + "probability": 0.8824 + }, + { + "start": 1208.0, + "end": 1211.8, + "probability": 0.9473 + }, + { + "start": 1213.54, + "end": 1214.54, + "probability": 0.7006 + }, + { + "start": 1214.96, + "end": 1215.82, + "probability": 0.9005 + }, + { + "start": 1216.46, + "end": 1219.15, + "probability": 0.9936 + }, + { + "start": 1219.4, + "end": 1220.5, + "probability": 0.6937 + }, + { + "start": 1221.12, + "end": 1221.86, + "probability": 0.6042 + }, + { + "start": 1221.92, + "end": 1225.32, + "probability": 0.9722 + }, + { + "start": 1226.52, + "end": 1229.08, + "probability": 0.9109 + }, + { + "start": 1230.38, + "end": 1232.62, + "probability": 0.9965 + }, + { + "start": 1233.66, + "end": 1235.28, + "probability": 0.3982 + }, + { + "start": 1235.36, + "end": 1237.08, + "probability": 0.5778 + }, + { + "start": 1237.96, + "end": 1239.58, + "probability": 0.9927 + }, + { + "start": 1240.74, + "end": 1242.48, + "probability": 0.9753 + }, + { + "start": 1243.3, + "end": 1244.96, + "probability": 0.9886 + }, + { + "start": 1246.4, + "end": 1248.02, + "probability": 0.583 + }, + { + "start": 1251.69, + "end": 1254.4, + "probability": 0.5433 + }, + { + "start": 1254.78, + "end": 1255.48, + "probability": 0.6117 + }, + { + "start": 1255.56, + "end": 1257.9, + "probability": 0.9779 + }, + { + "start": 1258.12, + "end": 1259.44, + "probability": 0.4774 + }, + { + "start": 1259.48, + "end": 1260.92, + "probability": 0.8833 + }, + { + "start": 1262.04, + "end": 1264.88, + "probability": 0.7222 + }, + { + "start": 1266.88, + "end": 1271.18, + "probability": 0.9898 + }, + { + "start": 1272.66, + "end": 1272.74, + "probability": 0.2497 + }, + { + "start": 1272.74, + "end": 1272.74, + "probability": 0.237 + }, + { + "start": 1272.74, + "end": 1279.28, + "probability": 0.9467 + }, + { + "start": 1279.34, + "end": 1281.16, + "probability": 0.4807 + }, + { + "start": 1281.58, + "end": 1285.3, + "probability": 0.914 + }, + { + "start": 1285.68, + "end": 1286.66, + "probability": 0.6616 + }, + { + "start": 1286.8, + "end": 1290.62, + "probability": 0.9219 + }, + { + "start": 1290.72, + "end": 1292.31, + "probability": 0.0154 + }, + { + "start": 1296.0, + "end": 1297.16, + "probability": 0.3032 + }, + { + "start": 1297.22, + "end": 1302.5, + "probability": 0.9394 + }, + { + "start": 1303.22, + "end": 1309.02, + "probability": 0.8401 + }, + { + "start": 1310.86, + "end": 1317.4, + "probability": 0.8517 + }, + { + "start": 1317.48, + "end": 1318.67, + "probability": 0.9172 + }, + { + "start": 1319.62, + "end": 1319.98, + "probability": 0.0487 + }, + { + "start": 1319.98, + "end": 1320.56, + "probability": 0.6423 + }, + { + "start": 1321.0, + "end": 1325.34, + "probability": 0.9095 + }, + { + "start": 1325.38, + "end": 1328.32, + "probability": 0.5804 + }, + { + "start": 1328.34, + "end": 1328.78, + "probability": 0.6953 + }, + { + "start": 1328.96, + "end": 1330.2, + "probability": 0.8635 + }, + { + "start": 1331.22, + "end": 1336.04, + "probability": 0.9681 + }, + { + "start": 1336.94, + "end": 1339.38, + "probability": 0.0286 + }, + { + "start": 1339.64, + "end": 1340.82, + "probability": 0.293 + }, + { + "start": 1340.98, + "end": 1342.36, + "probability": 0.9048 + }, + { + "start": 1342.48, + "end": 1342.78, + "probability": 0.8894 + }, + { + "start": 1343.66, + "end": 1344.94, + "probability": 0.9924 + }, + { + "start": 1345.18, + "end": 1345.46, + "probability": 0.4481 + }, + { + "start": 1346.34, + "end": 1347.1, + "probability": 0.8446 + }, + { + "start": 1347.14, + "end": 1350.94, + "probability": 0.8745 + }, + { + "start": 1351.86, + "end": 1353.27, + "probability": 0.8658 + }, + { + "start": 1354.28, + "end": 1354.4, + "probability": 0.0013 + }, + { + "start": 1354.4, + "end": 1355.82, + "probability": 0.8049 + }, + { + "start": 1355.92, + "end": 1357.64, + "probability": 0.9929 + }, + { + "start": 1357.7, + "end": 1359.89, + "probability": 0.9851 + }, + { + "start": 1360.06, + "end": 1360.06, + "probability": 0.4913 + }, + { + "start": 1360.18, + "end": 1361.52, + "probability": 0.9946 + }, + { + "start": 1361.52, + "end": 1364.1, + "probability": 0.8423 + }, + { + "start": 1364.18, + "end": 1365.9, + "probability": 0.9778 + }, + { + "start": 1366.12, + "end": 1367.28, + "probability": 0.8759 + }, + { + "start": 1367.38, + "end": 1368.6, + "probability": 0.9709 + }, + { + "start": 1368.66, + "end": 1370.2, + "probability": 0.7149 + }, + { + "start": 1370.68, + "end": 1371.58, + "probability": 0.8081 + }, + { + "start": 1371.72, + "end": 1372.46, + "probability": 0.0004 + }, + { + "start": 1372.92, + "end": 1375.96, + "probability": 0.6545 + }, + { + "start": 1376.22, + "end": 1376.86, + "probability": 0.7662 + }, + { + "start": 1378.32, + "end": 1379.64, + "probability": 0.8261 + }, + { + "start": 1380.9, + "end": 1382.0, + "probability": 0.7504 + }, + { + "start": 1382.1, + "end": 1383.04, + "probability": 0.9651 + }, + { + "start": 1384.54, + "end": 1385.34, + "probability": 0.9 + }, + { + "start": 1385.94, + "end": 1386.36, + "probability": 0.6243 + }, + { + "start": 1387.54, + "end": 1388.88, + "probability": 0.7942 + }, + { + "start": 1389.08, + "end": 1391.0, + "probability": 0.9971 + }, + { + "start": 1391.32, + "end": 1392.42, + "probability": 0.9708 + }, + { + "start": 1393.02, + "end": 1394.46, + "probability": 0.9973 + }, + { + "start": 1395.7, + "end": 1397.76, + "probability": 0.5584 + }, + { + "start": 1398.04, + "end": 1399.46, + "probability": 0.8928 + }, + { + "start": 1399.46, + "end": 1400.76, + "probability": 0.7222 + }, + { + "start": 1400.88, + "end": 1403.44, + "probability": 0.7854 + }, + { + "start": 1403.52, + "end": 1407.6, + "probability": 0.9902 + }, + { + "start": 1407.64, + "end": 1408.56, + "probability": 0.547 + }, + { + "start": 1409.24, + "end": 1410.48, + "probability": 0.6523 + }, + { + "start": 1411.28, + "end": 1412.8, + "probability": 0.8832 + }, + { + "start": 1414.1, + "end": 1415.94, + "probability": 0.6465 + }, + { + "start": 1416.68, + "end": 1417.8, + "probability": 0.9886 + }, + { + "start": 1417.86, + "end": 1419.9, + "probability": 0.9303 + }, + { + "start": 1420.26, + "end": 1420.54, + "probability": 0.775 + }, + { + "start": 1421.64, + "end": 1422.62, + "probability": 0.6038 + }, + { + "start": 1422.68, + "end": 1423.34, + "probability": 0.8612 + }, + { + "start": 1423.8, + "end": 1426.52, + "probability": 0.9901 + }, + { + "start": 1427.86, + "end": 1429.8, + "probability": 0.9893 + }, + { + "start": 1430.2, + "end": 1431.32, + "probability": 0.7898 + }, + { + "start": 1431.62, + "end": 1431.85, + "probability": 0.1075 + }, + { + "start": 1432.62, + "end": 1434.76, + "probability": 0.0164 + }, + { + "start": 1434.76, + "end": 1434.76, + "probability": 0.0599 + }, + { + "start": 1434.76, + "end": 1435.26, + "probability": 0.7342 + }, + { + "start": 1435.28, + "end": 1435.28, + "probability": 0.1533 + }, + { + "start": 1435.28, + "end": 1435.76, + "probability": 0.4982 + }, + { + "start": 1436.48, + "end": 1437.98, + "probability": 0.9321 + }, + { + "start": 1438.06, + "end": 1441.04, + "probability": 0.1765 + }, + { + "start": 1441.16, + "end": 1441.72, + "probability": 0.4943 + }, + { + "start": 1441.98, + "end": 1443.94, + "probability": 0.4622 + }, + { + "start": 1443.94, + "end": 1444.15, + "probability": 0.5836 + }, + { + "start": 1444.68, + "end": 1446.24, + "probability": 0.9596 + }, + { + "start": 1446.32, + "end": 1446.52, + "probability": 0.7566 + }, + { + "start": 1446.58, + "end": 1448.72, + "probability": 0.4288 + }, + { + "start": 1448.84, + "end": 1448.86, + "probability": 0.6072 + }, + { + "start": 1448.9, + "end": 1449.22, + "probability": 0.5032 + }, + { + "start": 1449.34, + "end": 1450.84, + "probability": 0.7729 + }, + { + "start": 1450.9, + "end": 1452.76, + "probability": 0.5657 + }, + { + "start": 1452.76, + "end": 1454.58, + "probability": 0.8206 + }, + { + "start": 1456.2, + "end": 1460.32, + "probability": 0.9757 + }, + { + "start": 1461.04, + "end": 1461.6, + "probability": 0.9154 + }, + { + "start": 1462.46, + "end": 1464.14, + "probability": 0.8945 + }, + { + "start": 1465.54, + "end": 1466.54, + "probability": 0.6184 + }, + { + "start": 1466.56, + "end": 1471.38, + "probability": 0.7011 + }, + { + "start": 1471.78, + "end": 1472.8, + "probability": 0.8619 + }, + { + "start": 1472.94, + "end": 1476.2, + "probability": 0.3663 + }, + { + "start": 1476.2, + "end": 1476.72, + "probability": 0.5926 + }, + { + "start": 1476.86, + "end": 1479.46, + "probability": 0.9388 + }, + { + "start": 1479.54, + "end": 1481.4, + "probability": 0.8243 + }, + { + "start": 1482.76, + "end": 1486.6, + "probability": 0.8795 + }, + { + "start": 1487.18, + "end": 1489.46, + "probability": 0.9209 + }, + { + "start": 1489.52, + "end": 1489.96, + "probability": 0.7549 + }, + { + "start": 1490.14, + "end": 1491.04, + "probability": 0.9713 + }, + { + "start": 1492.0, + "end": 1493.82, + "probability": 0.9922 + }, + { + "start": 1494.54, + "end": 1496.44, + "probability": 0.9819 + }, + { + "start": 1496.44, + "end": 1498.76, + "probability": 0.9989 + }, + { + "start": 1500.6, + "end": 1504.1, + "probability": 0.9936 + }, + { + "start": 1505.22, + "end": 1509.18, + "probability": 0.988 + }, + { + "start": 1509.18, + "end": 1512.64, + "probability": 0.9727 + }, + { + "start": 1513.68, + "end": 1515.36, + "probability": 0.7621 + }, + { + "start": 1515.82, + "end": 1517.56, + "probability": 0.3668 + }, + { + "start": 1517.84, + "end": 1519.4, + "probability": 0.8267 + }, + { + "start": 1520.68, + "end": 1521.54, + "probability": 0.8293 + }, + { + "start": 1522.28, + "end": 1525.48, + "probability": 0.9507 + }, + { + "start": 1525.94, + "end": 1526.82, + "probability": 0.4695 + }, + { + "start": 1527.04, + "end": 1527.82, + "probability": 0.8831 + }, + { + "start": 1528.36, + "end": 1530.78, + "probability": 0.9803 + }, + { + "start": 1531.16, + "end": 1531.58, + "probability": 0.7291 + }, + { + "start": 1532.28, + "end": 1534.36, + "probability": 0.9102 + }, + { + "start": 1534.46, + "end": 1537.4, + "probability": 0.9794 + }, + { + "start": 1537.4, + "end": 1540.16, + "probability": 0.9285 + }, + { + "start": 1541.26, + "end": 1543.12, + "probability": 0.68 + }, + { + "start": 1546.16, + "end": 1547.26, + "probability": 0.8873 + }, + { + "start": 1548.01, + "end": 1550.48, + "probability": 0.0864 + }, + { + "start": 1550.48, + "end": 1553.22, + "probability": 0.7347 + }, + { + "start": 1561.44, + "end": 1562.9, + "probability": 0.6003 + }, + { + "start": 1563.6, + "end": 1564.82, + "probability": 0.8102 + }, + { + "start": 1566.46, + "end": 1574.86, + "probability": 0.92 + }, + { + "start": 1577.84, + "end": 1581.5, + "probability": 0.9796 + }, + { + "start": 1582.46, + "end": 1584.0, + "probability": 0.9628 + }, + { + "start": 1585.9, + "end": 1588.22, + "probability": 0.7649 + }, + { + "start": 1589.26, + "end": 1594.36, + "probability": 0.91 + }, + { + "start": 1594.92, + "end": 1596.76, + "probability": 0.9883 + }, + { + "start": 1598.9, + "end": 1599.72, + "probability": 0.7896 + }, + { + "start": 1600.26, + "end": 1601.34, + "probability": 0.9084 + }, + { + "start": 1602.9, + "end": 1604.44, + "probability": 0.6516 + }, + { + "start": 1605.02, + "end": 1609.26, + "probability": 0.9615 + }, + { + "start": 1610.94, + "end": 1612.76, + "probability": 0.9797 + }, + { + "start": 1613.68, + "end": 1614.8, + "probability": 0.7061 + }, + { + "start": 1615.56, + "end": 1617.84, + "probability": 0.9143 + }, + { + "start": 1617.86, + "end": 1618.84, + "probability": 0.9707 + }, + { + "start": 1619.18, + "end": 1620.04, + "probability": 0.9774 + }, + { + "start": 1620.22, + "end": 1621.04, + "probability": 0.4497 + }, + { + "start": 1621.82, + "end": 1622.72, + "probability": 0.8291 + }, + { + "start": 1624.12, + "end": 1625.76, + "probability": 0.8872 + }, + { + "start": 1626.66, + "end": 1629.66, + "probability": 0.8404 + }, + { + "start": 1630.42, + "end": 1631.14, + "probability": 0.6955 + }, + { + "start": 1631.52, + "end": 1632.38, + "probability": 0.9233 + }, + { + "start": 1633.02, + "end": 1633.54, + "probability": 0.7873 + }, + { + "start": 1633.62, + "end": 1634.44, + "probability": 0.7655 + }, + { + "start": 1635.82, + "end": 1638.88, + "probability": 0.8683 + }, + { + "start": 1639.92, + "end": 1640.48, + "probability": 0.5558 + }, + { + "start": 1640.56, + "end": 1641.22, + "probability": 0.813 + }, + { + "start": 1641.3, + "end": 1644.16, + "probability": 0.9624 + }, + { + "start": 1645.61, + "end": 1648.02, + "probability": 0.9588 + }, + { + "start": 1648.68, + "end": 1651.72, + "probability": 0.9132 + }, + { + "start": 1652.64, + "end": 1655.1, + "probability": 0.9873 + }, + { + "start": 1656.54, + "end": 1661.36, + "probability": 0.9214 + }, + { + "start": 1662.08, + "end": 1663.7, + "probability": 0.7496 + }, + { + "start": 1664.32, + "end": 1665.22, + "probability": 0.9455 + }, + { + "start": 1666.78, + "end": 1668.54, + "probability": 0.971 + }, + { + "start": 1669.26, + "end": 1670.82, + "probability": 0.7677 + }, + { + "start": 1672.6, + "end": 1672.8, + "probability": 0.9117 + }, + { + "start": 1672.9, + "end": 1673.06, + "probability": 0.8564 + }, + { + "start": 1673.12, + "end": 1677.88, + "probability": 0.9792 + }, + { + "start": 1680.2, + "end": 1681.08, + "probability": 0.6265 + }, + { + "start": 1682.98, + "end": 1687.38, + "probability": 0.9899 + }, + { + "start": 1687.38, + "end": 1691.0, + "probability": 0.9965 + }, + { + "start": 1692.26, + "end": 1693.02, + "probability": 0.5798 + }, + { + "start": 1694.0, + "end": 1696.4, + "probability": 0.751 + }, + { + "start": 1698.7, + "end": 1699.58, + "probability": 0.8656 + }, + { + "start": 1701.22, + "end": 1702.58, + "probability": 0.9674 + }, + { + "start": 1703.52, + "end": 1706.78, + "probability": 0.9579 + }, + { + "start": 1707.46, + "end": 1708.92, + "probability": 0.9722 + }, + { + "start": 1710.5, + "end": 1712.48, + "probability": 0.9712 + }, + { + "start": 1715.32, + "end": 1719.28, + "probability": 0.9014 + }, + { + "start": 1720.28, + "end": 1721.46, + "probability": 0.8235 + }, + { + "start": 1722.62, + "end": 1723.42, + "probability": 0.9855 + }, + { + "start": 1725.04, + "end": 1725.94, + "probability": 0.8876 + }, + { + "start": 1727.1, + "end": 1728.24, + "probability": 0.5508 + }, + { + "start": 1729.18, + "end": 1732.54, + "probability": 0.7972 + }, + { + "start": 1733.28, + "end": 1738.61, + "probability": 0.8708 + }, + { + "start": 1739.78, + "end": 1740.72, + "probability": 0.7187 + }, + { + "start": 1741.16, + "end": 1744.72, + "probability": 0.9733 + }, + { + "start": 1746.26, + "end": 1750.38, + "probability": 0.9695 + }, + { + "start": 1751.3, + "end": 1752.12, + "probability": 0.7799 + }, + { + "start": 1752.8, + "end": 1753.32, + "probability": 0.6465 + }, + { + "start": 1755.06, + "end": 1755.88, + "probability": 0.88 + }, + { + "start": 1756.8, + "end": 1757.42, + "probability": 0.9968 + }, + { + "start": 1758.38, + "end": 1759.76, + "probability": 0.8641 + }, + { + "start": 1761.02, + "end": 1765.24, + "probability": 0.855 + }, + { + "start": 1766.2, + "end": 1768.24, + "probability": 0.9733 + }, + { + "start": 1769.14, + "end": 1771.38, + "probability": 0.9899 + }, + { + "start": 1773.94, + "end": 1777.12, + "probability": 0.9912 + }, + { + "start": 1778.4, + "end": 1782.33, + "probability": 0.8761 + }, + { + "start": 1783.16, + "end": 1784.12, + "probability": 0.8274 + }, + { + "start": 1785.56, + "end": 1787.41, + "probability": 0.6506 + }, + { + "start": 1787.52, + "end": 1790.28, + "probability": 0.6776 + }, + { + "start": 1790.7, + "end": 1791.59, + "probability": 0.6834 + }, + { + "start": 1792.28, + "end": 1793.08, + "probability": 0.5151 + }, + { + "start": 1794.14, + "end": 1798.36, + "probability": 0.7986 + }, + { + "start": 1799.38, + "end": 1800.48, + "probability": 0.6714 + }, + { + "start": 1800.52, + "end": 1804.86, + "probability": 0.6131 + }, + { + "start": 1804.92, + "end": 1807.29, + "probability": 0.9607 + }, + { + "start": 1807.9, + "end": 1808.9, + "probability": 0.7597 + }, + { + "start": 1810.5, + "end": 1813.4, + "probability": 0.8551 + }, + { + "start": 1814.96, + "end": 1821.84, + "probability": 0.9954 + }, + { + "start": 1822.28, + "end": 1825.9, + "probability": 0.9352 + }, + { + "start": 1826.12, + "end": 1826.84, + "probability": 0.8941 + }, + { + "start": 1827.7, + "end": 1829.6, + "probability": 0.8081 + }, + { + "start": 1830.12, + "end": 1833.16, + "probability": 0.8942 + }, + { + "start": 1833.26, + "end": 1833.62, + "probability": 0.1873 + }, + { + "start": 1833.62, + "end": 1835.88, + "probability": 0.8375 + }, + { + "start": 1835.9, + "end": 1838.19, + "probability": 0.5484 + }, + { + "start": 1838.74, + "end": 1841.83, + "probability": 0.7236 + }, + { + "start": 1842.4, + "end": 1842.4, + "probability": 0.1277 + }, + { + "start": 1842.4, + "end": 1845.44, + "probability": 0.5344 + }, + { + "start": 1845.62, + "end": 1850.6, + "probability": 0.7944 + }, + { + "start": 1852.34, + "end": 1853.1, + "probability": 0.9065 + }, + { + "start": 1853.24, + "end": 1854.3, + "probability": 0.972 + }, + { + "start": 1854.66, + "end": 1857.18, + "probability": 0.9776 + }, + { + "start": 1857.98, + "end": 1857.98, + "probability": 0.3451 + }, + { + "start": 1858.32, + "end": 1858.7, + "probability": 0.8819 + }, + { + "start": 1858.76, + "end": 1861.94, + "probability": 0.7907 + }, + { + "start": 1862.36, + "end": 1863.16, + "probability": 0.9571 + }, + { + "start": 1863.26, + "end": 1863.9, + "probability": 0.9754 + }, + { + "start": 1864.06, + "end": 1864.62, + "probability": 0.9096 + }, + { + "start": 1864.76, + "end": 1865.32, + "probability": 0.8583 + }, + { + "start": 1865.4, + "end": 1866.62, + "probability": 0.9783 + }, + { + "start": 1866.62, + "end": 1866.84, + "probability": 0.5933 + }, + { + "start": 1869.86, + "end": 1871.46, + "probability": 0.7097 + }, + { + "start": 1871.54, + "end": 1871.54, + "probability": 0.5503 + }, + { + "start": 1871.54, + "end": 1871.68, + "probability": 0.3883 + }, + { + "start": 1871.78, + "end": 1876.92, + "probability": 0.9321 + }, + { + "start": 1878.16, + "end": 1879.7, + "probability": 0.2019 + }, + { + "start": 1880.5, + "end": 1883.76, + "probability": 0.3463 + }, + { + "start": 1883.88, + "end": 1884.58, + "probability": 0.0469 + }, + { + "start": 1884.97, + "end": 1886.78, + "probability": 0.5573 + }, + { + "start": 1886.8, + "end": 1887.78, + "probability": 0.7242 + }, + { + "start": 1887.78, + "end": 1889.36, + "probability": 0.6176 + }, + { + "start": 1889.76, + "end": 1891.72, + "probability": 0.9676 + }, + { + "start": 1891.9, + "end": 1895.0, + "probability": 0.9099 + }, + { + "start": 1895.24, + "end": 1895.4, + "probability": 0.7416 + }, + { + "start": 1895.48, + "end": 1896.6, + "probability": 0.72 + }, + { + "start": 1896.98, + "end": 1899.88, + "probability": 0.9619 + }, + { + "start": 1900.22, + "end": 1900.98, + "probability": 0.8104 + }, + { + "start": 1901.32, + "end": 1902.91, + "probability": 0.9158 + }, + { + "start": 1903.48, + "end": 1904.3, + "probability": 0.7378 + }, + { + "start": 1905.16, + "end": 1906.52, + "probability": 0.9509 + }, + { + "start": 1907.06, + "end": 1908.9, + "probability": 0.6512 + }, + { + "start": 1910.02, + "end": 1910.96, + "probability": 0.9907 + }, + { + "start": 1911.54, + "end": 1913.04, + "probability": 0.9891 + }, + { + "start": 1913.8, + "end": 1915.48, + "probability": 0.9862 + }, + { + "start": 1915.94, + "end": 1918.6, + "probability": 0.9943 + }, + { + "start": 1919.14, + "end": 1920.52, + "probability": 0.761 + }, + { + "start": 1921.7, + "end": 1922.32, + "probability": 0.7683 + }, + { + "start": 1922.86, + "end": 1923.94, + "probability": 0.8869 + }, + { + "start": 1925.42, + "end": 1927.62, + "probability": 0.9291 + }, + { + "start": 1928.88, + "end": 1934.08, + "probability": 0.981 + }, + { + "start": 1935.72, + "end": 1937.0, + "probability": 0.9831 + }, + { + "start": 1937.38, + "end": 1938.4, + "probability": 0.6956 + }, + { + "start": 1938.7, + "end": 1939.96, + "probability": 0.961 + }, + { + "start": 1940.52, + "end": 1942.94, + "probability": 0.8853 + }, + { + "start": 1943.7, + "end": 1947.24, + "probability": 0.9501 + }, + { + "start": 1947.62, + "end": 1949.26, + "probability": 0.9284 + }, + { + "start": 1950.54, + "end": 1953.48, + "probability": 0.7742 + }, + { + "start": 1954.6, + "end": 1956.68, + "probability": 0.9568 + }, + { + "start": 1957.4, + "end": 1957.86, + "probability": 0.5782 + }, + { + "start": 1960.48, + "end": 1962.36, + "probability": 0.7707 + }, + { + "start": 1962.76, + "end": 1964.6, + "probability": 0.7681 + }, + { + "start": 1965.32, + "end": 1966.18, + "probability": 0.9132 + }, + { + "start": 1966.26, + "end": 1969.87, + "probability": 0.9431 + }, + { + "start": 1970.46, + "end": 1973.54, + "probability": 0.0579 + }, + { + "start": 1973.76, + "end": 1975.46, + "probability": 0.8723 + }, + { + "start": 1976.22, + "end": 1980.48, + "probability": 0.9108 + }, + { + "start": 1980.58, + "end": 1981.35, + "probability": 0.957 + }, + { + "start": 1981.48, + "end": 1982.36, + "probability": 0.5515 + }, + { + "start": 1983.38, + "end": 1986.44, + "probability": 0.9847 + }, + { + "start": 1987.08, + "end": 1989.08, + "probability": 0.8455 + }, + { + "start": 1989.2, + "end": 1989.57, + "probability": 0.5148 + }, + { + "start": 1990.22, + "end": 1991.24, + "probability": 0.7992 + }, + { + "start": 1991.66, + "end": 1997.26, + "probability": 0.996 + }, + { + "start": 1998.6, + "end": 2000.08, + "probability": 0.734 + }, + { + "start": 2000.46, + "end": 2004.28, + "probability": 0.9841 + }, + { + "start": 2004.32, + "end": 2004.62, + "probability": 0.48 + }, + { + "start": 2004.72, + "end": 2005.46, + "probability": 0.7455 + }, + { + "start": 2005.84, + "end": 2009.74, + "probability": 0.9814 + }, + { + "start": 2009.74, + "end": 2013.96, + "probability": 0.9335 + }, + { + "start": 2014.4, + "end": 2016.34, + "probability": 0.662 + }, + { + "start": 2016.98, + "end": 2017.82, + "probability": 0.918 + }, + { + "start": 2018.0, + "end": 2021.16, + "probability": 0.8096 + }, + { + "start": 2021.52, + "end": 2022.5, + "probability": 0.4952 + }, + { + "start": 2022.6, + "end": 2023.06, + "probability": 0.9039 + }, + { + "start": 2023.34, + "end": 2024.18, + "probability": 0.8216 + }, + { + "start": 2024.46, + "end": 2026.19, + "probability": 0.8511 + }, + { + "start": 2027.46, + "end": 2030.48, + "probability": 0.7849 + }, + { + "start": 2032.56, + "end": 2034.4, + "probability": 0.9978 + }, + { + "start": 2036.32, + "end": 2039.56, + "probability": 0.9857 + }, + { + "start": 2039.66, + "end": 2042.22, + "probability": 0.9157 + }, + { + "start": 2043.06, + "end": 2045.42, + "probability": 0.7769 + }, + { + "start": 2045.46, + "end": 2045.52, + "probability": 0.0246 + }, + { + "start": 2045.52, + "end": 2046.56, + "probability": 0.916 + }, + { + "start": 2046.62, + "end": 2047.44, + "probability": 0.8267 + }, + { + "start": 2047.48, + "end": 2048.7, + "probability": 0.868 + }, + { + "start": 2049.0, + "end": 2049.54, + "probability": 0.7323 + }, + { + "start": 2049.6, + "end": 2050.52, + "probability": 0.7729 + }, + { + "start": 2050.68, + "end": 2051.24, + "probability": 0.7219 + }, + { + "start": 2051.56, + "end": 2057.0, + "probability": 0.9127 + }, + { + "start": 2057.0, + "end": 2059.96, + "probability": 0.9302 + }, + { + "start": 2060.06, + "end": 2060.06, + "probability": 0.0751 + }, + { + "start": 2060.06, + "end": 2060.56, + "probability": 0.4792 + }, + { + "start": 2060.86, + "end": 2061.52, + "probability": 0.8888 + }, + { + "start": 2062.32, + "end": 2063.78, + "probability": 0.8656 + }, + { + "start": 2064.52, + "end": 2065.78, + "probability": 0.9011 + }, + { + "start": 2066.0, + "end": 2068.2, + "probability": 0.7882 + }, + { + "start": 2068.26, + "end": 2069.48, + "probability": 0.8862 + }, + { + "start": 2069.76, + "end": 2071.14, + "probability": 0.9045 + }, + { + "start": 2071.26, + "end": 2074.42, + "probability": 0.9683 + }, + { + "start": 2075.36, + "end": 2079.18, + "probability": 0.6827 + }, + { + "start": 2079.22, + "end": 2081.36, + "probability": 0.81 + }, + { + "start": 2081.52, + "end": 2084.96, + "probability": 0.809 + }, + { + "start": 2084.96, + "end": 2089.62, + "probability": 0.9824 + }, + { + "start": 2089.7, + "end": 2093.36, + "probability": 0.8579 + }, + { + "start": 2094.68, + "end": 2095.92, + "probability": 0.6829 + }, + { + "start": 2096.78, + "end": 2096.98, + "probability": 0.8806 + }, + { + "start": 2097.8, + "end": 2103.3, + "probability": 0.9743 + }, + { + "start": 2103.56, + "end": 2111.54, + "probability": 0.9125 + }, + { + "start": 2111.54, + "end": 2114.7, + "probability": 0.9329 + }, + { + "start": 2116.26, + "end": 2116.98, + "probability": 0.6383 + }, + { + "start": 2117.06, + "end": 2119.44, + "probability": 0.9539 + }, + { + "start": 2119.46, + "end": 2124.82, + "probability": 0.9408 + }, + { + "start": 2124.82, + "end": 2127.28, + "probability": 0.8257 + }, + { + "start": 2127.28, + "end": 2127.42, + "probability": 0.5001 + }, + { + "start": 2127.42, + "end": 2128.68, + "probability": 0.6555 + }, + { + "start": 2133.07, + "end": 2137.62, + "probability": 0.6109 + }, + { + "start": 2137.62, + "end": 2140.74, + "probability": 0.7064 + }, + { + "start": 2142.46, + "end": 2144.06, + "probability": 0.7058 + }, + { + "start": 2147.94, + "end": 2149.0, + "probability": 0.4449 + }, + { + "start": 2149.82, + "end": 2154.4, + "probability": 0.6908 + }, + { + "start": 2154.51, + "end": 2156.0, + "probability": 0.6557 + }, + { + "start": 2156.06, + "end": 2157.42, + "probability": 0.9727 + }, + { + "start": 2160.26, + "end": 2166.32, + "probability": 0.9648 + }, + { + "start": 2167.68, + "end": 2169.32, + "probability": 0.4066 + }, + { + "start": 2170.1, + "end": 2173.96, + "probability": 0.9468 + }, + { + "start": 2174.58, + "end": 2176.8, + "probability": 0.8347 + }, + { + "start": 2179.5, + "end": 2180.48, + "probability": 0.744 + }, + { + "start": 2181.86, + "end": 2184.92, + "probability": 0.9599 + }, + { + "start": 2185.98, + "end": 2189.16, + "probability": 0.9162 + }, + { + "start": 2189.36, + "end": 2195.2, + "probability": 0.8691 + }, + { + "start": 2195.46, + "end": 2196.44, + "probability": 0.538 + }, + { + "start": 2196.54, + "end": 2200.96, + "probability": 0.7196 + }, + { + "start": 2201.12, + "end": 2203.76, + "probability": 0.9662 + }, + { + "start": 2204.36, + "end": 2208.1, + "probability": 0.9867 + }, + { + "start": 2208.6, + "end": 2210.52, + "probability": 0.9357 + }, + { + "start": 2210.84, + "end": 2213.56, + "probability": 0.7614 + }, + { + "start": 2213.88, + "end": 2215.26, + "probability": 0.9803 + }, + { + "start": 2215.38, + "end": 2216.48, + "probability": 0.9033 + }, + { + "start": 2216.94, + "end": 2218.16, + "probability": 0.8752 + }, + { + "start": 2218.46, + "end": 2219.08, + "probability": 0.6527 + }, + { + "start": 2219.44, + "end": 2223.22, + "probability": 0.9907 + }, + { + "start": 2225.28, + "end": 2226.88, + "probability": 0.6794 + }, + { + "start": 2230.24, + "end": 2234.08, + "probability": 0.7109 + }, + { + "start": 2235.24, + "end": 2236.72, + "probability": 0.3782 + }, + { + "start": 2237.26, + "end": 2240.96, + "probability": 0.8225 + }, + { + "start": 2242.18, + "end": 2242.7, + "probability": 0.4168 + }, + { + "start": 2243.43, + "end": 2245.14, + "probability": 0.9803 + }, + { + "start": 2247.3, + "end": 2248.88, + "probability": 0.9031 + }, + { + "start": 2249.76, + "end": 2254.76, + "probability": 0.9444 + }, + { + "start": 2254.76, + "end": 2258.12, + "probability": 0.8938 + }, + { + "start": 2259.89, + "end": 2264.16, + "probability": 0.657 + }, + { + "start": 2264.48, + "end": 2265.38, + "probability": 0.6534 + }, + { + "start": 2266.04, + "end": 2266.54, + "probability": 0.8726 + }, + { + "start": 2267.22, + "end": 2267.92, + "probability": 0.7692 + }, + { + "start": 2268.18, + "end": 2269.74, + "probability": 0.9902 + }, + { + "start": 2270.08, + "end": 2271.02, + "probability": 0.6992 + }, + { + "start": 2271.5, + "end": 2272.7, + "probability": 0.8646 + }, + { + "start": 2272.84, + "end": 2273.64, + "probability": 0.6577 + }, + { + "start": 2273.8, + "end": 2275.04, + "probability": 0.7134 + }, + { + "start": 2275.78, + "end": 2279.12, + "probability": 0.708 + }, + { + "start": 2279.66, + "end": 2280.92, + "probability": 0.6713 + }, + { + "start": 2281.9, + "end": 2283.44, + "probability": 0.9484 + }, + { + "start": 2283.9, + "end": 2285.34, + "probability": 0.9829 + }, + { + "start": 2285.48, + "end": 2288.24, + "probability": 0.7782 + }, + { + "start": 2288.3, + "end": 2290.04, + "probability": 0.673 + }, + { + "start": 2291.08, + "end": 2292.56, + "probability": 0.8792 + }, + { + "start": 2293.04, + "end": 2295.9, + "probability": 0.8161 + }, + { + "start": 2296.02, + "end": 2298.56, + "probability": 0.4601 + }, + { + "start": 2298.68, + "end": 2300.94, + "probability": 0.8316 + }, + { + "start": 2301.52, + "end": 2305.76, + "probability": 0.6941 + }, + { + "start": 2306.56, + "end": 2308.44, + "probability": 0.8726 + }, + { + "start": 2309.4, + "end": 2312.5, + "probability": 0.3289 + }, + { + "start": 2313.68, + "end": 2314.62, + "probability": 0.8469 + }, + { + "start": 2315.38, + "end": 2316.42, + "probability": 0.6458 + }, + { + "start": 2316.74, + "end": 2317.16, + "probability": 0.9583 + }, + { + "start": 2317.68, + "end": 2319.1, + "probability": 0.9803 + }, + { + "start": 2320.5, + "end": 2321.38, + "probability": 0.7325 + }, + { + "start": 2321.54, + "end": 2323.32, + "probability": 0.9788 + }, + { + "start": 2324.22, + "end": 2326.02, + "probability": 0.9594 + }, + { + "start": 2326.2, + "end": 2327.84, + "probability": 0.5502 + }, + { + "start": 2328.12, + "end": 2330.84, + "probability": 0.963 + }, + { + "start": 2330.94, + "end": 2331.56, + "probability": 0.7183 + }, + { + "start": 2331.96, + "end": 2334.22, + "probability": 0.9799 + }, + { + "start": 2334.62, + "end": 2336.86, + "probability": 0.9319 + }, + { + "start": 2337.12, + "end": 2339.98, + "probability": 0.7144 + }, + { + "start": 2340.06, + "end": 2343.66, + "probability": 0.7902 + }, + { + "start": 2344.04, + "end": 2346.54, + "probability": 0.9003 + }, + { + "start": 2346.94, + "end": 2347.92, + "probability": 0.9206 + }, + { + "start": 2348.4, + "end": 2348.91, + "probability": 0.873 + }, + { + "start": 2349.82, + "end": 2353.32, + "probability": 0.8997 + }, + { + "start": 2353.4, + "end": 2354.67, + "probability": 0.7375 + }, + { + "start": 2355.36, + "end": 2357.08, + "probability": 0.9927 + }, + { + "start": 2357.1, + "end": 2360.92, + "probability": 0.9215 + }, + { + "start": 2361.02, + "end": 2361.78, + "probability": 0.8667 + }, + { + "start": 2361.94, + "end": 2363.28, + "probability": 0.8476 + }, + { + "start": 2363.32, + "end": 2364.56, + "probability": 0.8738 + }, + { + "start": 2364.82, + "end": 2366.22, + "probability": 0.8464 + }, + { + "start": 2366.62, + "end": 2368.32, + "probability": 0.9041 + }, + { + "start": 2370.5, + "end": 2372.7, + "probability": 0.9541 + }, + { + "start": 2372.94, + "end": 2374.5, + "probability": 0.8706 + }, + { + "start": 2374.64, + "end": 2376.56, + "probability": 0.7541 + }, + { + "start": 2377.78, + "end": 2380.7, + "probability": 0.9026 + }, + { + "start": 2382.48, + "end": 2383.99, + "probability": 0.673 + }, + { + "start": 2385.54, + "end": 2387.9, + "probability": 0.9897 + }, + { + "start": 2389.14, + "end": 2395.48, + "probability": 0.9678 + }, + { + "start": 2397.4, + "end": 2398.66, + "probability": 0.6613 + }, + { + "start": 2400.3, + "end": 2406.68, + "probability": 0.4066 + }, + { + "start": 2407.84, + "end": 2411.2, + "probability": 0.9886 + }, + { + "start": 2411.48, + "end": 2412.5, + "probability": 0.7302 + }, + { + "start": 2412.66, + "end": 2413.54, + "probability": 0.64 + }, + { + "start": 2414.36, + "end": 2414.54, + "probability": 0.9604 + }, + { + "start": 2417.16, + "end": 2418.36, + "probability": 0.9935 + }, + { + "start": 2419.38, + "end": 2420.76, + "probability": 0.8721 + }, + { + "start": 2422.36, + "end": 2427.68, + "probability": 0.9244 + }, + { + "start": 2430.0, + "end": 2432.68, + "probability": 0.9229 + }, + { + "start": 2433.2, + "end": 2434.38, + "probability": 0.9863 + }, + { + "start": 2437.7, + "end": 2438.58, + "probability": 0.9521 + }, + { + "start": 2439.3, + "end": 2440.25, + "probability": 0.9097 + }, + { + "start": 2442.2, + "end": 2442.84, + "probability": 0.5383 + }, + { + "start": 2443.66, + "end": 2444.78, + "probability": 0.9576 + }, + { + "start": 2446.34, + "end": 2448.02, + "probability": 0.9801 + }, + { + "start": 2450.2, + "end": 2452.74, + "probability": 0.966 + }, + { + "start": 2453.48, + "end": 2455.96, + "probability": 0.9938 + }, + { + "start": 2456.24, + "end": 2460.24, + "probability": 0.9734 + }, + { + "start": 2460.6, + "end": 2461.2, + "probability": 0.7558 + }, + { + "start": 2461.24, + "end": 2462.16, + "probability": 0.9956 + }, + { + "start": 2462.34, + "end": 2465.08, + "probability": 0.9302 + }, + { + "start": 2465.54, + "end": 2466.62, + "probability": 0.9818 + }, + { + "start": 2467.28, + "end": 2468.52, + "probability": 0.8708 + }, + { + "start": 2469.3, + "end": 2469.96, + "probability": 0.7072 + }, + { + "start": 2472.32, + "end": 2473.33, + "probability": 0.957 + }, + { + "start": 2473.78, + "end": 2476.34, + "probability": 0.9764 + }, + { + "start": 2478.16, + "end": 2479.62, + "probability": 0.8777 + }, + { + "start": 2480.26, + "end": 2482.16, + "probability": 0.9878 + }, + { + "start": 2482.6, + "end": 2484.68, + "probability": 0.7615 + }, + { + "start": 2485.02, + "end": 2488.84, + "probability": 0.972 + }, + { + "start": 2490.36, + "end": 2493.44, + "probability": 0.9912 + }, + { + "start": 2493.44, + "end": 2496.88, + "probability": 0.985 + }, + { + "start": 2497.22, + "end": 2499.13, + "probability": 0.8726 + }, + { + "start": 2500.46, + "end": 2503.68, + "probability": 0.7448 + }, + { + "start": 2503.82, + "end": 2507.22, + "probability": 0.6052 + }, + { + "start": 2507.98, + "end": 2512.66, + "probability": 0.9854 + }, + { + "start": 2513.72, + "end": 2518.32, + "probability": 0.9963 + }, + { + "start": 2518.7, + "end": 2519.12, + "probability": 0.6627 + }, + { + "start": 2519.52, + "end": 2521.59, + "probability": 0.4629 + }, + { + "start": 2522.76, + "end": 2525.0, + "probability": 0.6758 + }, + { + "start": 2525.28, + "end": 2528.5, + "probability": 0.9539 + }, + { + "start": 2529.14, + "end": 2530.1, + "probability": 0.3616 + }, + { + "start": 2530.1, + "end": 2530.28, + "probability": 0.5408 + }, + { + "start": 2530.92, + "end": 2532.1, + "probability": 0.4263 + }, + { + "start": 2532.24, + "end": 2534.08, + "probability": 0.7389 + }, + { + "start": 2534.32, + "end": 2537.04, + "probability": 0.8173 + }, + { + "start": 2537.1, + "end": 2538.18, + "probability": 0.8905 + }, + { + "start": 2538.6, + "end": 2540.64, + "probability": 0.9588 + }, + { + "start": 2541.36, + "end": 2544.0, + "probability": 0.7682 + }, + { + "start": 2544.9, + "end": 2547.82, + "probability": 0.7326 + }, + { + "start": 2548.48, + "end": 2549.2, + "probability": 0.7746 + }, + { + "start": 2549.98, + "end": 2551.48, + "probability": 0.9297 + }, + { + "start": 2552.62, + "end": 2555.49, + "probability": 0.9847 + }, + { + "start": 2556.18, + "end": 2557.28, + "probability": 0.9133 + }, + { + "start": 2558.16, + "end": 2560.88, + "probability": 0.6661 + }, + { + "start": 2561.46, + "end": 2562.34, + "probability": 0.6611 + }, + { + "start": 2562.38, + "end": 2562.68, + "probability": 0.2925 + }, + { + "start": 2562.82, + "end": 2563.36, + "probability": 0.7361 + }, + { + "start": 2563.84, + "end": 2568.18, + "probability": 0.9263 + }, + { + "start": 2569.14, + "end": 2569.52, + "probability": 0.5043 + }, + { + "start": 2569.58, + "end": 2571.64, + "probability": 0.9663 + }, + { + "start": 2572.0, + "end": 2573.18, + "probability": 0.5979 + }, + { + "start": 2574.52, + "end": 2575.98, + "probability": 0.9858 + }, + { + "start": 2576.22, + "end": 2576.76, + "probability": 0.8582 + }, + { + "start": 2576.88, + "end": 2578.22, + "probability": 0.9836 + }, + { + "start": 2578.36, + "end": 2579.46, + "probability": 0.9953 + }, + { + "start": 2580.27, + "end": 2582.94, + "probability": 0.9099 + }, + { + "start": 2583.48, + "end": 2586.6, + "probability": 0.8887 + }, + { + "start": 2590.0, + "end": 2590.92, + "probability": 0.767 + }, + { + "start": 2592.74, + "end": 2597.06, + "probability": 0.9798 + }, + { + "start": 2597.19, + "end": 2602.51, + "probability": 0.9717 + }, + { + "start": 2603.0, + "end": 2603.56, + "probability": 0.6541 + }, + { + "start": 2603.64, + "end": 2604.36, + "probability": 0.9449 + }, + { + "start": 2604.74, + "end": 2605.81, + "probability": 0.8315 + }, + { + "start": 2606.66, + "end": 2608.12, + "probability": 0.75 + }, + { + "start": 2608.86, + "end": 2612.24, + "probability": 0.9941 + }, + { + "start": 2613.36, + "end": 2613.82, + "probability": 0.8751 + }, + { + "start": 2613.9, + "end": 2614.26, + "probability": 0.4064 + }, + { + "start": 2614.34, + "end": 2614.86, + "probability": 0.7886 + }, + { + "start": 2614.88, + "end": 2616.52, + "probability": 0.9021 + }, + { + "start": 2617.0, + "end": 2619.04, + "probability": 0.9971 + }, + { + "start": 2619.58, + "end": 2621.14, + "probability": 0.8418 + }, + { + "start": 2623.78, + "end": 2625.84, + "probability": 0.9941 + }, + { + "start": 2626.02, + "end": 2628.48, + "probability": 0.9896 + }, + { + "start": 2628.64, + "end": 2630.76, + "probability": 0.6727 + }, + { + "start": 2630.92, + "end": 2633.22, + "probability": 0.9569 + }, + { + "start": 2633.76, + "end": 2635.76, + "probability": 0.9932 + }, + { + "start": 2635.76, + "end": 2636.44, + "probability": 0.739 + }, + { + "start": 2636.68, + "end": 2637.46, + "probability": 0.4123 + }, + { + "start": 2637.5, + "end": 2638.92, + "probability": 0.9733 + }, + { + "start": 2639.0, + "end": 2640.24, + "probability": 0.7054 + }, + { + "start": 2641.38, + "end": 2645.96, + "probability": 0.9586 + }, + { + "start": 2646.08, + "end": 2647.45, + "probability": 0.9585 + }, + { + "start": 2647.96, + "end": 2649.52, + "probability": 0.9768 + }, + { + "start": 2650.02, + "end": 2652.18, + "probability": 0.9729 + }, + { + "start": 2652.3, + "end": 2653.24, + "probability": 0.7698 + }, + { + "start": 2653.3, + "end": 2654.44, + "probability": 0.9704 + }, + { + "start": 2654.48, + "end": 2655.34, + "probability": 0.969 + }, + { + "start": 2655.42, + "end": 2656.12, + "probability": 0.9243 + }, + { + "start": 2656.2, + "end": 2656.74, + "probability": 0.7849 + }, + { + "start": 2656.82, + "end": 2657.92, + "probability": 0.5247 + }, + { + "start": 2658.14, + "end": 2659.94, + "probability": 0.9673 + }, + { + "start": 2660.26, + "end": 2661.76, + "probability": 0.9929 + }, + { + "start": 2662.78, + "end": 2665.32, + "probability": 0.9589 + }, + { + "start": 2665.94, + "end": 2666.96, + "probability": 0.6178 + }, + { + "start": 2667.89, + "end": 2669.92, + "probability": 0.3957 + }, + { + "start": 2670.14, + "end": 2672.44, + "probability": 0.6932 + }, + { + "start": 2673.36, + "end": 2674.16, + "probability": 0.9414 + }, + { + "start": 2674.26, + "end": 2675.2, + "probability": 0.971 + }, + { + "start": 2675.38, + "end": 2675.78, + "probability": 0.5548 + }, + { + "start": 2676.14, + "end": 2676.64, + "probability": 0.5511 + }, + { + "start": 2676.64, + "end": 2681.92, + "probability": 0.8844 + }, + { + "start": 2682.28, + "end": 2683.86, + "probability": 0.8998 + }, + { + "start": 2683.96, + "end": 2686.48, + "probability": 0.8545 + }, + { + "start": 2688.58, + "end": 2691.32, + "probability": 0.9272 + }, + { + "start": 2692.48, + "end": 2695.06, + "probability": 0.9891 + }, + { + "start": 2695.06, + "end": 2697.88, + "probability": 0.5386 + }, + { + "start": 2698.92, + "end": 2700.2, + "probability": 0.9767 + }, + { + "start": 2701.04, + "end": 2701.82, + "probability": 0.6417 + }, + { + "start": 2701.9, + "end": 2702.94, + "probability": 0.8831 + }, + { + "start": 2703.02, + "end": 2704.38, + "probability": 0.9113 + }, + { + "start": 2705.14, + "end": 2710.12, + "probability": 0.9054 + }, + { + "start": 2710.66, + "end": 2712.34, + "probability": 0.6665 + }, + { + "start": 2713.9, + "end": 2715.66, + "probability": 0.9873 + }, + { + "start": 2716.38, + "end": 2718.42, + "probability": 0.5317 + }, + { + "start": 2718.58, + "end": 2719.39, + "probability": 0.9517 + }, + { + "start": 2720.3, + "end": 2723.02, + "probability": 0.9778 + }, + { + "start": 2723.32, + "end": 2725.4, + "probability": 0.8432 + }, + { + "start": 2726.52, + "end": 2730.38, + "probability": 0.9908 + }, + { + "start": 2730.9, + "end": 2731.18, + "probability": 0.5645 + }, + { + "start": 2731.32, + "end": 2731.74, + "probability": 0.6349 + }, + { + "start": 2731.96, + "end": 2734.82, + "probability": 0.8029 + }, + { + "start": 2735.22, + "end": 2738.6, + "probability": 0.8274 + }, + { + "start": 2739.18, + "end": 2741.26, + "probability": 0.8424 + }, + { + "start": 2741.94, + "end": 2744.08, + "probability": 0.9827 + }, + { + "start": 2744.18, + "end": 2746.74, + "probability": 0.7973 + }, + { + "start": 2746.88, + "end": 2748.72, + "probability": 0.8548 + }, + { + "start": 2749.2, + "end": 2750.74, + "probability": 0.9473 + }, + { + "start": 2751.54, + "end": 2752.32, + "probability": 0.6849 + }, + { + "start": 2752.4, + "end": 2753.34, + "probability": 0.9386 + }, + { + "start": 2753.57, + "end": 2755.56, + "probability": 0.6446 + }, + { + "start": 2755.78, + "end": 2756.58, + "probability": 0.284 + }, + { + "start": 2757.34, + "end": 2761.78, + "probability": 0.4612 + }, + { + "start": 2762.64, + "end": 2763.72, + "probability": 0.9026 + }, + { + "start": 2764.36, + "end": 2765.02, + "probability": 0.4103 + }, + { + "start": 2765.12, + "end": 2765.48, + "probability": 0.6693 + }, + { + "start": 2765.76, + "end": 2766.36, + "probability": 0.541 + }, + { + "start": 2766.4, + "end": 2766.92, + "probability": 0.9185 + }, + { + "start": 2767.16, + "end": 2771.6, + "probability": 0.9501 + }, + { + "start": 2772.0, + "end": 2772.16, + "probability": 0.2056 + }, + { + "start": 2772.2, + "end": 2773.38, + "probability": 0.9511 + }, + { + "start": 2773.44, + "end": 2775.72, + "probability": 0.9934 + }, + { + "start": 2778.11, + "end": 2783.44, + "probability": 0.9875 + }, + { + "start": 2783.98, + "end": 2785.48, + "probability": 0.72 + }, + { + "start": 2786.26, + "end": 2789.9, + "probability": 0.9893 + }, + { + "start": 2790.74, + "end": 2792.24, + "probability": 0.7085 + }, + { + "start": 2792.58, + "end": 2793.78, + "probability": 0.9033 + }, + { + "start": 2793.86, + "end": 2796.0, + "probability": 0.9289 + }, + { + "start": 2796.6, + "end": 2799.66, + "probability": 0.9969 + }, + { + "start": 2799.66, + "end": 2802.34, + "probability": 0.7712 + }, + { + "start": 2802.62, + "end": 2803.52, + "probability": 0.1581 + }, + { + "start": 2803.52, + "end": 2804.59, + "probability": 0.5232 + }, + { + "start": 2805.54, + "end": 2805.95, + "probability": 0.7876 + }, + { + "start": 2806.2, + "end": 2808.36, + "probability": 0.4778 + }, + { + "start": 2808.36, + "end": 2808.52, + "probability": 0.2238 + }, + { + "start": 2808.54, + "end": 2809.12, + "probability": 0.8479 + }, + { + "start": 2809.16, + "end": 2810.12, + "probability": 0.8636 + }, + { + "start": 2810.42, + "end": 2810.62, + "probability": 0.2887 + }, + { + "start": 2810.84, + "end": 2814.94, + "probability": 0.992 + }, + { + "start": 2815.32, + "end": 2816.2, + "probability": 0.8456 + }, + { + "start": 2816.24, + "end": 2818.16, + "probability": 0.745 + }, + { + "start": 2818.54, + "end": 2822.64, + "probability": 0.9204 + }, + { + "start": 2822.64, + "end": 2826.0, + "probability": 0.9901 + }, + { + "start": 2826.22, + "end": 2827.44, + "probability": 0.6658 + }, + { + "start": 2828.24, + "end": 2829.24, + "probability": 0.9625 + }, + { + "start": 2829.6, + "end": 2830.06, + "probability": 0.7441 + }, + { + "start": 2830.18, + "end": 2831.07, + "probability": 0.9946 + }, + { + "start": 2831.18, + "end": 2834.22, + "probability": 0.9513 + }, + { + "start": 2834.28, + "end": 2834.4, + "probability": 0.3483 + }, + { + "start": 2834.8, + "end": 2835.48, + "probability": 0.2803 + }, + { + "start": 2835.68, + "end": 2836.98, + "probability": 0.9948 + }, + { + "start": 2837.82, + "end": 2842.26, + "probability": 0.9888 + }, + { + "start": 2842.66, + "end": 2843.66, + "probability": 0.9912 + }, + { + "start": 2843.7, + "end": 2844.1, + "probability": 0.7723 + }, + { + "start": 2844.18, + "end": 2845.24, + "probability": 0.7086 + }, + { + "start": 2845.4, + "end": 2846.58, + "probability": 0.9739 + }, + { + "start": 2846.68, + "end": 2848.36, + "probability": 0.9183 + }, + { + "start": 2848.48, + "end": 2849.72, + "probability": 0.9541 + }, + { + "start": 2850.1, + "end": 2853.62, + "probability": 0.9564 + }, + { + "start": 2854.24, + "end": 2854.28, + "probability": 0.4864 + }, + { + "start": 2854.38, + "end": 2854.9, + "probability": 0.9888 + }, + { + "start": 2855.02, + "end": 2855.86, + "probability": 0.9172 + }, + { + "start": 2856.34, + "end": 2859.18, + "probability": 0.8823 + }, + { + "start": 2859.44, + "end": 2863.14, + "probability": 0.9815 + }, + { + "start": 2863.54, + "end": 2867.68, + "probability": 0.9842 + }, + { + "start": 2868.0, + "end": 2871.26, + "probability": 0.7434 + }, + { + "start": 2871.92, + "end": 2876.65, + "probability": 0.6134 + }, + { + "start": 2876.8, + "end": 2878.6, + "probability": 0.9495 + }, + { + "start": 2878.66, + "end": 2878.98, + "probability": 0.4785 + }, + { + "start": 2885.88, + "end": 2886.22, + "probability": 0.3515 + }, + { + "start": 2886.22, + "end": 2886.92, + "probability": 0.5165 + }, + { + "start": 2887.68, + "end": 2888.46, + "probability": 0.9038 + }, + { + "start": 2889.78, + "end": 2892.68, + "probability": 0.9149 + }, + { + "start": 2892.74, + "end": 2893.74, + "probability": 0.929 + }, + { + "start": 2895.04, + "end": 2895.42, + "probability": 0.5882 + }, + { + "start": 2896.62, + "end": 2899.12, + "probability": 0.9985 + }, + { + "start": 2899.29, + "end": 2899.81, + "probability": 0.0301 + }, + { + "start": 2901.65, + "end": 2904.18, + "probability": 0.893 + }, + { + "start": 2905.04, + "end": 2907.86, + "probability": 0.77 + }, + { + "start": 2907.94, + "end": 2909.36, + "probability": 0.9942 + }, + { + "start": 2909.48, + "end": 2912.94, + "probability": 0.7595 + }, + { + "start": 2913.26, + "end": 2914.52, + "probability": 0.9009 + }, + { + "start": 2914.82, + "end": 2915.02, + "probability": 0.9187 + }, + { + "start": 2915.9, + "end": 2917.82, + "probability": 0.4036 + }, + { + "start": 2918.2, + "end": 2919.66, + "probability": 0.9468 + }, + { + "start": 2920.38, + "end": 2921.24, + "probability": 0.9862 + }, + { + "start": 2922.48, + "end": 2925.16, + "probability": 0.9752 + }, + { + "start": 2926.12, + "end": 2930.14, + "probability": 0.7708 + }, + { + "start": 2931.02, + "end": 2931.8, + "probability": 0.9995 + }, + { + "start": 2932.86, + "end": 2933.78, + "probability": 0.8217 + }, + { + "start": 2936.72, + "end": 2942.3, + "probability": 0.9683 + }, + { + "start": 2942.96, + "end": 2943.62, + "probability": 0.1885 + }, + { + "start": 2943.84, + "end": 2943.94, + "probability": 0.8277 + }, + { + "start": 2944.64, + "end": 2946.48, + "probability": 0.9811 + }, + { + "start": 2946.94, + "end": 2949.08, + "probability": 0.9069 + }, + { + "start": 2949.52, + "end": 2950.46, + "probability": 0.7339 + }, + { + "start": 2950.48, + "end": 2951.14, + "probability": 0.9875 + }, + { + "start": 2951.56, + "end": 2954.0, + "probability": 0.8271 + }, + { + "start": 2954.68, + "end": 2955.24, + "probability": 0.5432 + }, + { + "start": 2955.52, + "end": 2956.12, + "probability": 0.0551 + }, + { + "start": 2957.4, + "end": 2957.85, + "probability": 0.1779 + }, + { + "start": 2959.1, + "end": 2961.14, + "probability": 0.2457 + }, + { + "start": 2961.2, + "end": 2961.81, + "probability": 0.6203 + }, + { + "start": 2962.32, + "end": 2964.29, + "probability": 0.2462 + }, + { + "start": 2972.8, + "end": 2974.32, + "probability": 0.1212 + }, + { + "start": 2974.32, + "end": 2976.22, + "probability": 0.3729 + }, + { + "start": 2976.74, + "end": 2976.74, + "probability": 0.7993 + }, + { + "start": 2980.26, + "end": 2984.98, + "probability": 0.9601 + }, + { + "start": 2985.26, + "end": 2985.54, + "probability": 0.757 + }, + { + "start": 2985.58, + "end": 2986.56, + "probability": 0.9004 + }, + { + "start": 2986.96, + "end": 2988.84, + "probability": 0.928 + }, + { + "start": 2988.98, + "end": 2991.32, + "probability": 0.9949 + }, + { + "start": 2991.32, + "end": 2994.18, + "probability": 0.9734 + }, + { + "start": 2995.32, + "end": 2996.48, + "probability": 0.7778 + }, + { + "start": 2997.28, + "end": 2997.98, + "probability": 0.8608 + }, + { + "start": 2998.6, + "end": 2998.94, + "probability": 0.5115 + }, + { + "start": 2999.06, + "end": 3002.88, + "probability": 0.7563 + }, + { + "start": 3003.24, + "end": 3005.86, + "probability": 0.9215 + }, + { + "start": 3005.94, + "end": 3006.7, + "probability": 0.9105 + }, + { + "start": 3007.18, + "end": 3009.12, + "probability": 0.9429 + }, + { + "start": 3010.9, + "end": 3015.5, + "probability": 0.9532 + }, + { + "start": 3016.58, + "end": 3022.38, + "probability": 0.9994 + }, + { + "start": 3023.66, + "end": 3025.62, + "probability": 0.999 + }, + { + "start": 3025.64, + "end": 3027.88, + "probability": 0.9882 + }, + { + "start": 3028.08, + "end": 3033.58, + "probability": 0.9775 + }, + { + "start": 3034.72, + "end": 3037.06, + "probability": 0.7642 + }, + { + "start": 3037.24, + "end": 3040.78, + "probability": 0.9882 + }, + { + "start": 3041.64, + "end": 3043.54, + "probability": 0.8958 + }, + { + "start": 3043.96, + "end": 3045.46, + "probability": 0.7765 + }, + { + "start": 3046.02, + "end": 3049.12, + "probability": 0.9866 + }, + { + "start": 3050.36, + "end": 3051.98, + "probability": 0.8638 + }, + { + "start": 3052.38, + "end": 3053.16, + "probability": 0.9207 + }, + { + "start": 3053.28, + "end": 3054.12, + "probability": 0.519 + }, + { + "start": 3054.34, + "end": 3054.8, + "probability": 0.9877 + }, + { + "start": 3057.94, + "end": 3059.5, + "probability": 0.8146 + }, + { + "start": 3059.66, + "end": 3063.12, + "probability": 0.8365 + }, + { + "start": 3063.12, + "end": 3067.23, + "probability": 0.939 + }, + { + "start": 3068.58, + "end": 3071.72, + "probability": 0.8764 + }, + { + "start": 3071.8, + "end": 3073.98, + "probability": 0.9912 + }, + { + "start": 3075.02, + "end": 3075.88, + "probability": 0.9896 + }, + { + "start": 3077.3, + "end": 3077.84, + "probability": 0.7411 + }, + { + "start": 3078.82, + "end": 3080.84, + "probability": 0.8983 + }, + { + "start": 3081.06, + "end": 3082.2, + "probability": 0.8802 + }, + { + "start": 3082.76, + "end": 3084.5, + "probability": 0.9843 + }, + { + "start": 3085.48, + "end": 3087.02, + "probability": 0.923 + }, + { + "start": 3088.44, + "end": 3089.48, + "probability": 0.8857 + }, + { + "start": 3090.46, + "end": 3092.7, + "probability": 0.9238 + }, + { + "start": 3092.76, + "end": 3095.38, + "probability": 0.8564 + }, + { + "start": 3096.8, + "end": 3099.12, + "probability": 0.5132 + }, + { + "start": 3099.66, + "end": 3100.56, + "probability": 0.9243 + }, + { + "start": 3101.06, + "end": 3107.36, + "probability": 0.9959 + }, + { + "start": 3108.42, + "end": 3112.4, + "probability": 0.9977 + }, + { + "start": 3113.74, + "end": 3114.34, + "probability": 0.8345 + }, + { + "start": 3115.8, + "end": 3116.73, + "probability": 0.8293 + }, + { + "start": 3117.66, + "end": 3118.92, + "probability": 0.0339 + }, + { + "start": 3118.92, + "end": 3121.34, + "probability": 0.8433 + }, + { + "start": 3122.38, + "end": 3125.9, + "probability": 0.8361 + }, + { + "start": 3127.14, + "end": 3127.56, + "probability": 0.9333 + }, + { + "start": 3127.76, + "end": 3132.28, + "probability": 0.9961 + }, + { + "start": 3134.14, + "end": 3138.36, + "probability": 0.8735 + }, + { + "start": 3139.16, + "end": 3140.5, + "probability": 0.8789 + }, + { + "start": 3141.0, + "end": 3142.56, + "probability": 0.7869 + }, + { + "start": 3143.66, + "end": 3144.5, + "probability": 0.8235 + }, + { + "start": 3146.08, + "end": 3146.66, + "probability": 0.4541 + }, + { + "start": 3148.34, + "end": 3149.9, + "probability": 0.9759 + }, + { + "start": 3150.42, + "end": 3153.12, + "probability": 0.9407 + }, + { + "start": 3153.68, + "end": 3154.8, + "probability": 0.9718 + }, + { + "start": 3156.08, + "end": 3157.46, + "probability": 0.7399 + }, + { + "start": 3157.52, + "end": 3158.18, + "probability": 0.8822 + }, + { + "start": 3158.24, + "end": 3158.9, + "probability": 0.7605 + }, + { + "start": 3159.26, + "end": 3159.66, + "probability": 0.6458 + }, + { + "start": 3161.62, + "end": 3162.84, + "probability": 0.9089 + }, + { + "start": 3163.2, + "end": 3166.96, + "probability": 0.9779 + }, + { + "start": 3168.82, + "end": 3169.92, + "probability": 0.9878 + }, + { + "start": 3170.76, + "end": 3172.12, + "probability": 0.9927 + }, + { + "start": 3172.64, + "end": 3175.24, + "probability": 0.9749 + }, + { + "start": 3176.2, + "end": 3177.04, + "probability": 0.5827 + }, + { + "start": 3177.32, + "end": 3179.03, + "probability": 0.8451 + }, + { + "start": 3179.98, + "end": 3182.16, + "probability": 0.9735 + }, + { + "start": 3183.4, + "end": 3187.76, + "probability": 0.9939 + }, + { + "start": 3188.08, + "end": 3190.04, + "probability": 0.9933 + }, + { + "start": 3190.04, + "end": 3192.34, + "probability": 0.9904 + }, + { + "start": 3193.56, + "end": 3197.12, + "probability": 0.9276 + }, + { + "start": 3199.52, + "end": 3202.12, + "probability": 0.9209 + }, + { + "start": 3203.1, + "end": 3205.1, + "probability": 0.9966 + }, + { + "start": 3205.14, + "end": 3206.92, + "probability": 0.8741 + }, + { + "start": 3207.9, + "end": 3209.02, + "probability": 0.8494 + }, + { + "start": 3210.26, + "end": 3214.1, + "probability": 0.9043 + }, + { + "start": 3215.14, + "end": 3217.16, + "probability": 0.9606 + }, + { + "start": 3217.76, + "end": 3220.2, + "probability": 0.5309 + }, + { + "start": 3220.44, + "end": 3220.7, + "probability": 0.5622 + }, + { + "start": 3220.86, + "end": 3221.02, + "probability": 0.9131 + }, + { + "start": 3221.2, + "end": 3222.58, + "probability": 0.8099 + }, + { + "start": 3222.8, + "end": 3224.1, + "probability": 0.9587 + }, + { + "start": 3224.8, + "end": 3225.52, + "probability": 0.3745 + }, + { + "start": 3225.54, + "end": 3228.5, + "probability": 0.3667 + }, + { + "start": 3229.47, + "end": 3230.1, + "probability": 0.0127 + }, + { + "start": 3230.1, + "end": 3231.42, + "probability": 0.7256 + }, + { + "start": 3231.8, + "end": 3233.0, + "probability": 0.736 + }, + { + "start": 3233.24, + "end": 3234.34, + "probability": 0.3757 + }, + { + "start": 3234.36, + "end": 3236.46, + "probability": 0.5085 + }, + { + "start": 3236.72, + "end": 3240.94, + "probability": 0.9976 + }, + { + "start": 3241.56, + "end": 3245.35, + "probability": 0.7496 + }, + { + "start": 3246.3, + "end": 3249.8, + "probability": 0.9966 + }, + { + "start": 3249.94, + "end": 3251.54, + "probability": 0.7495 + }, + { + "start": 3252.18, + "end": 3253.6, + "probability": 0.9727 + }, + { + "start": 3254.14, + "end": 3255.38, + "probability": 0.5551 + }, + { + "start": 3256.38, + "end": 3260.24, + "probability": 0.8047 + }, + { + "start": 3261.28, + "end": 3261.98, + "probability": 0.7549 + }, + { + "start": 3261.98, + "end": 3264.88, + "probability": 0.8717 + }, + { + "start": 3265.22, + "end": 3265.8, + "probability": 0.8999 + }, + { + "start": 3266.85, + "end": 3268.34, + "probability": 0.4878 + }, + { + "start": 3270.5, + "end": 3271.12, + "probability": 0.3217 + }, + { + "start": 3271.88, + "end": 3275.38, + "probability": 0.8131 + }, + { + "start": 3275.94, + "end": 3278.96, + "probability": 0.9928 + }, + { + "start": 3278.96, + "end": 3281.46, + "probability": 0.8533 + }, + { + "start": 3282.56, + "end": 3285.36, + "probability": 0.9795 + }, + { + "start": 3285.9, + "end": 3289.76, + "probability": 0.9929 + }, + { + "start": 3290.84, + "end": 3294.98, + "probability": 0.878 + }, + { + "start": 3294.98, + "end": 3299.8, + "probability": 0.9217 + }, + { + "start": 3299.98, + "end": 3303.32, + "probability": 0.9356 + }, + { + "start": 3304.36, + "end": 3306.5, + "probability": 0.2605 + }, + { + "start": 3307.17, + "end": 3309.7, + "probability": 0.8229 + }, + { + "start": 3313.04, + "end": 3315.3, + "probability": 0.9574 + }, + { + "start": 3315.88, + "end": 3317.32, + "probability": 0.684 + }, + { + "start": 3318.0, + "end": 3320.1, + "probability": 0.9824 + }, + { + "start": 3321.4, + "end": 3322.44, + "probability": 0.9739 + }, + { + "start": 3323.02, + "end": 3327.14, + "probability": 0.9211 + }, + { + "start": 3327.76, + "end": 3328.24, + "probability": 0.1345 + }, + { + "start": 3328.26, + "end": 3329.2, + "probability": 0.7953 + }, + { + "start": 3329.66, + "end": 3329.66, + "probability": 0.069 + }, + { + "start": 3329.66, + "end": 3331.18, + "probability": 0.7715 + }, + { + "start": 3331.78, + "end": 3333.72, + "probability": 0.1295 + }, + { + "start": 3333.72, + "end": 3334.42, + "probability": 0.588 + }, + { + "start": 3334.94, + "end": 3338.52, + "probability": 0.9751 + }, + { + "start": 3338.72, + "end": 3340.36, + "probability": 0.9339 + }, + { + "start": 3341.22, + "end": 3341.54, + "probability": 0.8963 + }, + { + "start": 3342.08, + "end": 3344.68, + "probability": 0.558 + }, + { + "start": 3345.36, + "end": 3347.48, + "probability": 0.9829 + }, + { + "start": 3347.82, + "end": 3351.38, + "probability": 0.9734 + }, + { + "start": 3351.48, + "end": 3351.72, + "probability": 0.6645 + }, + { + "start": 3352.04, + "end": 3353.14, + "probability": 0.9658 + }, + { + "start": 3353.58, + "end": 3354.9, + "probability": 0.959 + }, + { + "start": 3355.22, + "end": 3356.98, + "probability": 0.9595 + }, + { + "start": 3357.3, + "end": 3358.25, + "probability": 0.2358 + }, + { + "start": 3359.5, + "end": 3364.26, + "probability": 0.9537 + }, + { + "start": 3364.84, + "end": 3366.5, + "probability": 0.7827 + }, + { + "start": 3366.6, + "end": 3371.24, + "probability": 0.9772 + }, + { + "start": 3372.62, + "end": 3379.36, + "probability": 0.9628 + }, + { + "start": 3380.68, + "end": 3386.46, + "probability": 0.7649 + }, + { + "start": 3386.62, + "end": 3387.59, + "probability": 0.9446 + }, + { + "start": 3388.5, + "end": 3389.84, + "probability": 0.6773 + }, + { + "start": 3390.62, + "end": 3391.74, + "probability": 0.8998 + }, + { + "start": 3392.46, + "end": 3395.04, + "probability": 0.9626 + }, + { + "start": 3395.42, + "end": 3396.24, + "probability": 0.9837 + }, + { + "start": 3397.02, + "end": 3397.48, + "probability": 0.9016 + }, + { + "start": 3399.1, + "end": 3404.36, + "probability": 0.9369 + }, + { + "start": 3404.68, + "end": 3408.12, + "probability": 0.9534 + }, + { + "start": 3409.82, + "end": 3413.68, + "probability": 0.9795 + }, + { + "start": 3413.68, + "end": 3418.04, + "probability": 0.7464 + }, + { + "start": 3420.06, + "end": 3422.98, + "probability": 0.9978 + }, + { + "start": 3423.6, + "end": 3425.96, + "probability": 0.9702 + }, + { + "start": 3426.52, + "end": 3429.08, + "probability": 0.9891 + }, + { + "start": 3429.26, + "end": 3430.68, + "probability": 0.842 + }, + { + "start": 3430.72, + "end": 3431.86, + "probability": 0.9976 + }, + { + "start": 3432.96, + "end": 3434.62, + "probability": 0.7445 + }, + { + "start": 3436.0, + "end": 3439.4, + "probability": 0.9872 + }, + { + "start": 3440.9, + "end": 3443.6, + "probability": 0.964 + }, + { + "start": 3444.02, + "end": 3445.76, + "probability": 0.9983 + }, + { + "start": 3448.12, + "end": 3450.8, + "probability": 0.9765 + }, + { + "start": 3452.46, + "end": 3455.8, + "probability": 0.8818 + }, + { + "start": 3457.0, + "end": 3458.04, + "probability": 0.912 + }, + { + "start": 3458.2, + "end": 3461.44, + "probability": 0.995 + }, + { + "start": 3461.54, + "end": 3462.72, + "probability": 0.9907 + }, + { + "start": 3463.9, + "end": 3467.92, + "probability": 0.9948 + }, + { + "start": 3468.14, + "end": 3469.74, + "probability": 0.8566 + }, + { + "start": 3470.24, + "end": 3472.22, + "probability": 0.873 + }, + { + "start": 3472.66, + "end": 3474.12, + "probability": 0.9816 + }, + { + "start": 3474.46, + "end": 3476.07, + "probability": 0.998 + }, + { + "start": 3476.9, + "end": 3478.6, + "probability": 0.8015 + }, + { + "start": 3479.16, + "end": 3479.9, + "probability": 0.8092 + }, + { + "start": 3482.22, + "end": 3482.48, + "probability": 0.5692 + }, + { + "start": 3482.48, + "end": 3487.82, + "probability": 0.9842 + }, + { + "start": 3488.24, + "end": 3491.84, + "probability": 0.7047 + }, + { + "start": 3493.36, + "end": 3496.06, + "probability": 0.6837 + }, + { + "start": 3496.14, + "end": 3496.63, + "probability": 0.9238 + }, + { + "start": 3497.58, + "end": 3500.92, + "probability": 0.8426 + }, + { + "start": 3501.52, + "end": 3505.34, + "probability": 0.871 + }, + { + "start": 3505.72, + "end": 3509.22, + "probability": 0.5746 + }, + { + "start": 3509.36, + "end": 3511.24, + "probability": 0.8304 + }, + { + "start": 3512.8, + "end": 3515.0, + "probability": 0.9521 + }, + { + "start": 3515.18, + "end": 3515.92, + "probability": 0.4907 + }, + { + "start": 3515.98, + "end": 3516.28, + "probability": 0.8976 + }, + { + "start": 3517.1, + "end": 3518.96, + "probability": 0.9303 + }, + { + "start": 3519.94, + "end": 3521.7, + "probability": 0.9565 + }, + { + "start": 3522.06, + "end": 3522.94, + "probability": 0.9401 + }, + { + "start": 3523.84, + "end": 3524.8, + "probability": 0.9338 + }, + { + "start": 3525.16, + "end": 3527.72, + "probability": 0.9839 + }, + { + "start": 3528.08, + "end": 3530.44, + "probability": 0.6092 + }, + { + "start": 3532.02, + "end": 3532.88, + "probability": 0.775 + }, + { + "start": 3533.04, + "end": 3537.32, + "probability": 0.9712 + }, + { + "start": 3537.96, + "end": 3540.14, + "probability": 0.9298 + }, + { + "start": 3542.72, + "end": 3545.12, + "probability": 0.9606 + }, + { + "start": 3545.58, + "end": 3548.86, + "probability": 0.9805 + }, + { + "start": 3548.86, + "end": 3553.06, + "probability": 0.9881 + }, + { + "start": 3553.36, + "end": 3555.26, + "probability": 0.9377 + }, + { + "start": 3557.04, + "end": 3559.02, + "probability": 0.844 + }, + { + "start": 3559.08, + "end": 3560.38, + "probability": 0.9788 + }, + { + "start": 3561.18, + "end": 3562.04, + "probability": 0.8272 + }, + { + "start": 3564.26, + "end": 3566.52, + "probability": 0.8168 + }, + { + "start": 3566.56, + "end": 3567.04, + "probability": 0.6629 + }, + { + "start": 3567.22, + "end": 3568.62, + "probability": 0.9691 + }, + { + "start": 3568.66, + "end": 3574.34, + "probability": 0.9907 + }, + { + "start": 3574.46, + "end": 3575.5, + "probability": 0.8575 + }, + { + "start": 3575.54, + "end": 3576.02, + "probability": 0.7285 + }, + { + "start": 3576.08, + "end": 3576.5, + "probability": 0.9453 + }, + { + "start": 3576.56, + "end": 3577.17, + "probability": 0.9773 + }, + { + "start": 3578.72, + "end": 3581.2, + "probability": 0.9746 + }, + { + "start": 3581.38, + "end": 3582.88, + "probability": 0.4445 + }, + { + "start": 3583.24, + "end": 3583.4, + "probability": 0.4441 + }, + { + "start": 3583.44, + "end": 3584.72, + "probability": 0.7863 + }, + { + "start": 3584.74, + "end": 3589.12, + "probability": 0.6652 + }, + { + "start": 3591.32, + "end": 3594.44, + "probability": 0.9208 + }, + { + "start": 3595.44, + "end": 3596.1, + "probability": 0.6468 + }, + { + "start": 3597.02, + "end": 3601.8, + "probability": 0.7443 + }, + { + "start": 3602.8, + "end": 3604.04, + "probability": 0.9875 + }, + { + "start": 3605.56, + "end": 3606.84, + "probability": 0.9006 + }, + { + "start": 3608.8, + "end": 3609.6, + "probability": 0.7726 + }, + { + "start": 3611.42, + "end": 3614.5, + "probability": 0.7258 + }, + { + "start": 3616.16, + "end": 3618.7, + "probability": 0.9766 + }, + { + "start": 3618.7, + "end": 3622.4, + "probability": 0.9484 + }, + { + "start": 3623.22, + "end": 3623.98, + "probability": 0.8875 + }, + { + "start": 3624.04, + "end": 3628.36, + "probability": 0.9967 + }, + { + "start": 3629.36, + "end": 3631.46, + "probability": 0.8755 + }, + { + "start": 3633.24, + "end": 3634.0, + "probability": 0.7849 + }, + { + "start": 3635.2, + "end": 3636.5, + "probability": 0.6316 + }, + { + "start": 3637.86, + "end": 3641.2, + "probability": 0.9932 + }, + { + "start": 3641.6, + "end": 3642.88, + "probability": 0.8116 + }, + { + "start": 3643.24, + "end": 3644.24, + "probability": 0.968 + }, + { + "start": 3645.0, + "end": 3646.46, + "probability": 0.9212 + }, + { + "start": 3646.52, + "end": 3648.3, + "probability": 0.9769 + }, + { + "start": 3649.22, + "end": 3650.24, + "probability": 0.7527 + }, + { + "start": 3651.04, + "end": 3651.28, + "probability": 0.7644 + }, + { + "start": 3652.92, + "end": 3654.92, + "probability": 0.8605 + }, + { + "start": 3655.22, + "end": 3656.94, + "probability": 0.8433 + }, + { + "start": 3657.04, + "end": 3660.94, + "probability": 0.9816 + }, + { + "start": 3661.34, + "end": 3661.74, + "probability": 0.965 + }, + { + "start": 3663.26, + "end": 3663.94, + "probability": 0.9491 + }, + { + "start": 3664.48, + "end": 3666.38, + "probability": 0.7855 + }, + { + "start": 3666.8, + "end": 3667.74, + "probability": 0.0247 + }, + { + "start": 3667.74, + "end": 3667.86, + "probability": 0.0616 + }, + { + "start": 3667.86, + "end": 3667.88, + "probability": 0.1427 + }, + { + "start": 3669.06, + "end": 3671.06, + "probability": 0.847 + }, + { + "start": 3671.52, + "end": 3673.94, + "probability": 0.8798 + }, + { + "start": 3674.26, + "end": 3676.46, + "probability": 0.9913 + }, + { + "start": 3677.08, + "end": 3677.6, + "probability": 0.6814 + }, + { + "start": 3678.0, + "end": 3679.28, + "probability": 0.8252 + }, + { + "start": 3684.0, + "end": 3686.4, + "probability": 0.8592 + }, + { + "start": 3686.8, + "end": 3688.1, + "probability": 0.5603 + }, + { + "start": 3688.4, + "end": 3690.26, + "probability": 0.9797 + }, + { + "start": 3691.1, + "end": 3692.6, + "probability": 0.9698 + }, + { + "start": 3693.38, + "end": 3695.84, + "probability": 0.8194 + }, + { + "start": 3695.9, + "end": 3696.56, + "probability": 0.6268 + }, + { + "start": 3712.36, + "end": 3714.48, + "probability": 0.404 + }, + { + "start": 3715.64, + "end": 3716.92, + "probability": 0.7852 + }, + { + "start": 3719.58, + "end": 3721.78, + "probability": 0.9243 + }, + { + "start": 3726.14, + "end": 3730.52, + "probability": 0.3643 + }, + { + "start": 3731.48, + "end": 3737.43, + "probability": 0.8287 + }, + { + "start": 3739.6, + "end": 3742.0, + "probability": 0.9596 + }, + { + "start": 3745.36, + "end": 3751.68, + "probability": 0.9667 + }, + { + "start": 3752.98, + "end": 3760.26, + "probability": 0.9827 + }, + { + "start": 3762.48, + "end": 3763.98, + "probability": 0.6011 + }, + { + "start": 3766.64, + "end": 3769.64, + "probability": 0.8784 + }, + { + "start": 3770.3, + "end": 3771.74, + "probability": 0.1002 + }, + { + "start": 3772.38, + "end": 3774.18, + "probability": 0.1237 + }, + { + "start": 3774.18, + "end": 3775.64, + "probability": 0.7183 + }, + { + "start": 3779.74, + "end": 3780.4, + "probability": 0.003 + }, + { + "start": 3780.92, + "end": 3780.92, + "probability": 0.0213 + }, + { + "start": 3780.92, + "end": 3781.52, + "probability": 0.5398 + }, + { + "start": 3781.68, + "end": 3782.42, + "probability": 0.5749 + }, + { + "start": 3782.7, + "end": 3785.74, + "probability": 0.6697 + }, + { + "start": 3786.78, + "end": 3791.5, + "probability": 0.8027 + }, + { + "start": 3792.08, + "end": 3792.88, + "probability": 0.8168 + }, + { + "start": 3795.08, + "end": 3797.66, + "probability": 0.667 + }, + { + "start": 3798.5, + "end": 3799.4, + "probability": 0.9351 + }, + { + "start": 3801.02, + "end": 3802.58, + "probability": 0.9647 + }, + { + "start": 3806.82, + "end": 3809.66, + "probability": 0.9083 + }, + { + "start": 3810.7, + "end": 3811.99, + "probability": 0.9154 + }, + { + "start": 3815.06, + "end": 3819.44, + "probability": 0.9689 + }, + { + "start": 3819.5, + "end": 3820.39, + "probability": 0.7894 + }, + { + "start": 3822.44, + "end": 3823.6, + "probability": 0.8745 + }, + { + "start": 3824.52, + "end": 3826.2, + "probability": 0.4709 + }, + { + "start": 3828.46, + "end": 3831.96, + "probability": 0.1798 + }, + { + "start": 3834.22, + "end": 3836.5, + "probability": 0.9204 + }, + { + "start": 3837.02, + "end": 3837.72, + "probability": 0.9031 + }, + { + "start": 3838.08, + "end": 3839.02, + "probability": 0.9563 + }, + { + "start": 3839.04, + "end": 3839.64, + "probability": 0.7191 + }, + { + "start": 3840.0, + "end": 3841.26, + "probability": 0.9024 + }, + { + "start": 3841.7, + "end": 3842.43, + "probability": 0.9893 + }, + { + "start": 3843.6, + "end": 3844.73, + "probability": 0.9889 + }, + { + "start": 3845.52, + "end": 3847.54, + "probability": 0.9561 + }, + { + "start": 3848.5, + "end": 3850.16, + "probability": 0.6063 + }, + { + "start": 3853.62, + "end": 3858.76, + "probability": 0.9642 + }, + { + "start": 3862.38, + "end": 3865.32, + "probability": 0.9727 + }, + { + "start": 3867.02, + "end": 3867.84, + "probability": 0.8553 + }, + { + "start": 3868.2, + "end": 3871.86, + "probability": 0.8535 + }, + { + "start": 3871.86, + "end": 3875.38, + "probability": 0.9939 + }, + { + "start": 3875.96, + "end": 3877.42, + "probability": 0.9762 + }, + { + "start": 3878.96, + "end": 3881.02, + "probability": 0.6727 + }, + { + "start": 3882.0, + "end": 3882.88, + "probability": 0.9562 + }, + { + "start": 3884.32, + "end": 3888.26, + "probability": 0.9941 + }, + { + "start": 3888.38, + "end": 3888.56, + "probability": 0.6809 + }, + { + "start": 3890.92, + "end": 3894.28, + "probability": 0.983 + }, + { + "start": 3895.94, + "end": 3897.88, + "probability": 0.9844 + }, + { + "start": 3897.98, + "end": 3899.28, + "probability": 0.7419 + }, + { + "start": 3899.52, + "end": 3900.79, + "probability": 0.9554 + }, + { + "start": 3904.16, + "end": 3913.94, + "probability": 0.8833 + }, + { + "start": 3914.26, + "end": 3918.42, + "probability": 0.8566 + }, + { + "start": 3919.26, + "end": 3921.06, + "probability": 0.8553 + }, + { + "start": 3921.74, + "end": 3922.54, + "probability": 0.5957 + }, + { + "start": 3923.7, + "end": 3926.42, + "probability": 0.9579 + }, + { + "start": 3927.04, + "end": 3929.1, + "probability": 0.9456 + }, + { + "start": 3929.74, + "end": 3932.82, + "probability": 0.9435 + }, + { + "start": 3933.72, + "end": 3935.32, + "probability": 0.6966 + }, + { + "start": 3936.34, + "end": 3939.82, + "probability": 0.8562 + }, + { + "start": 3942.02, + "end": 3945.78, + "probability": 0.9807 + }, + { + "start": 3946.38, + "end": 3948.93, + "probability": 0.7095 + }, + { + "start": 3950.0, + "end": 3951.88, + "probability": 0.9922 + }, + { + "start": 3952.72, + "end": 3954.2, + "probability": 0.9761 + }, + { + "start": 3955.34, + "end": 3958.18, + "probability": 0.9673 + }, + { + "start": 3964.08, + "end": 3967.06, + "probability": 0.9906 + }, + { + "start": 3968.82, + "end": 3970.11, + "probability": 0.976 + }, + { + "start": 3971.84, + "end": 3972.81, + "probability": 0.9092 + }, + { + "start": 3973.94, + "end": 3974.24, + "probability": 0.8451 + }, + { + "start": 3974.32, + "end": 3975.4, + "probability": 0.6489 + }, + { + "start": 3975.48, + "end": 3978.76, + "probability": 0.9765 + }, + { + "start": 3978.86, + "end": 3979.68, + "probability": 0.9214 + }, + { + "start": 3979.92, + "end": 3980.66, + "probability": 0.2954 + }, + { + "start": 3981.18, + "end": 3982.72, + "probability": 0.9878 + }, + { + "start": 3982.76, + "end": 3984.68, + "probability": 0.7641 + }, + { + "start": 3985.32, + "end": 3986.7, + "probability": 0.964 + }, + { + "start": 3987.0, + "end": 3988.7, + "probability": 0.91 + }, + { + "start": 3988.76, + "end": 3992.26, + "probability": 0.8794 + }, + { + "start": 3997.22, + "end": 3997.62, + "probability": 0.947 + }, + { + "start": 3999.72, + "end": 4004.12, + "probability": 0.8794 + }, + { + "start": 4010.4, + "end": 4011.8, + "probability": 0.9734 + }, + { + "start": 4013.32, + "end": 4017.62, + "probability": 0.7238 + }, + { + "start": 4019.5, + "end": 4024.1, + "probability": 0.9779 + }, + { + "start": 4024.2, + "end": 4025.0, + "probability": 0.8501 + }, + { + "start": 4025.34, + "end": 4026.04, + "probability": 0.8518 + }, + { + "start": 4026.1, + "end": 4027.14, + "probability": 0.978 + }, + { + "start": 4027.32, + "end": 4027.84, + "probability": 0.4391 + }, + { + "start": 4027.9, + "end": 4028.62, + "probability": 0.8421 + }, + { + "start": 4029.42, + "end": 4030.12, + "probability": 0.8444 + }, + { + "start": 4031.06, + "end": 4036.38, + "probability": 0.9422 + }, + { + "start": 4038.04, + "end": 4038.52, + "probability": 0.7563 + }, + { + "start": 4039.08, + "end": 4043.3, + "probability": 0.9012 + }, + { + "start": 4043.9, + "end": 4044.82, + "probability": 0.8917 + }, + { + "start": 4045.34, + "end": 4046.34, + "probability": 0.9283 + }, + { + "start": 4047.46, + "end": 4048.66, + "probability": 0.9472 + }, + { + "start": 4049.36, + "end": 4051.9, + "probability": 0.888 + }, + { + "start": 4052.26, + "end": 4053.02, + "probability": 0.9879 + }, + { + "start": 4053.28, + "end": 4054.16, + "probability": 0.8678 + }, + { + "start": 4054.7, + "end": 4055.14, + "probability": 0.4738 + }, + { + "start": 4057.42, + "end": 4058.64, + "probability": 0.9263 + }, + { + "start": 4059.26, + "end": 4060.97, + "probability": 0.9622 + }, + { + "start": 4061.96, + "end": 4062.94, + "probability": 0.6273 + }, + { + "start": 4063.58, + "end": 4065.28, + "probability": 0.8748 + }, + { + "start": 4065.92, + "end": 4069.6, + "probability": 0.8252 + }, + { + "start": 4071.62, + "end": 4073.4, + "probability": 0.962 + }, + { + "start": 4073.5, + "end": 4073.6, + "probability": 0.802 + }, + { + "start": 4073.64, + "end": 4076.5, + "probability": 0.8672 + }, + { + "start": 4079.7, + "end": 4081.44, + "probability": 0.6751 + }, + { + "start": 4082.12, + "end": 4083.36, + "probability": 0.9802 + }, + { + "start": 4084.66, + "end": 4086.04, + "probability": 0.4076 + }, + { + "start": 4087.86, + "end": 4095.28, + "probability": 0.8162 + }, + { + "start": 4096.1, + "end": 4099.08, + "probability": 0.9311 + }, + { + "start": 4100.92, + "end": 4103.04, + "probability": 0.8866 + }, + { + "start": 4104.02, + "end": 4105.8, + "probability": 0.6615 + }, + { + "start": 4106.96, + "end": 4108.62, + "probability": 0.693 + }, + { + "start": 4109.42, + "end": 4115.46, + "probability": 0.9946 + }, + { + "start": 4117.7, + "end": 4118.62, + "probability": 0.2673 + }, + { + "start": 4122.66, + "end": 4123.34, + "probability": 0.4292 + }, + { + "start": 4125.28, + "end": 4127.82, + "probability": 0.9129 + }, + { + "start": 4128.64, + "end": 4130.5, + "probability": 0.8266 + }, + { + "start": 4130.9, + "end": 4131.88, + "probability": 0.9233 + }, + { + "start": 4132.22, + "end": 4132.94, + "probability": 0.3746 + }, + { + "start": 4134.0, + "end": 4134.54, + "probability": 0.5372 + }, + { + "start": 4141.08, + "end": 4141.54, + "probability": 0.6137 + }, + { + "start": 4142.18, + "end": 4145.78, + "probability": 0.9255 + }, + { + "start": 4147.16, + "end": 4148.12, + "probability": 0.9038 + }, + { + "start": 4148.36, + "end": 4150.38, + "probability": 0.6983 + }, + { + "start": 4150.48, + "end": 4151.27, + "probability": 0.8151 + }, + { + "start": 4152.02, + "end": 4153.68, + "probability": 0.9724 + }, + { + "start": 4155.02, + "end": 4158.28, + "probability": 0.607 + }, + { + "start": 4162.17, + "end": 4163.78, + "probability": 0.4592 + }, + { + "start": 4163.78, + "end": 4163.78, + "probability": 0.0115 + }, + { + "start": 4163.78, + "end": 4167.3, + "probability": 0.8725 + }, + { + "start": 4167.54, + "end": 4168.58, + "probability": 0.9252 + }, + { + "start": 4168.68, + "end": 4171.0, + "probability": 0.5417 + }, + { + "start": 4171.64, + "end": 4174.38, + "probability": 0.9924 + }, + { + "start": 4174.78, + "end": 4175.92, + "probability": 0.9243 + }, + { + "start": 4175.96, + "end": 4176.42, + "probability": 0.9664 + }, + { + "start": 4177.24, + "end": 4180.38, + "probability": 0.9944 + }, + { + "start": 4180.98, + "end": 4181.91, + "probability": 0.0209 + }, + { + "start": 4182.38, + "end": 4183.33, + "probability": 0.5012 + }, + { + "start": 4183.64, + "end": 4185.18, + "probability": 0.9757 + }, + { + "start": 4186.46, + "end": 4192.22, + "probability": 0.656 + }, + { + "start": 4192.72, + "end": 4192.8, + "probability": 0.348 + }, + { + "start": 4193.0, + "end": 4194.44, + "probability": 0.8745 + }, + { + "start": 4194.9, + "end": 4195.62, + "probability": 0.9596 + }, + { + "start": 4195.76, + "end": 4196.32, + "probability": 0.644 + }, + { + "start": 4196.44, + "end": 4196.9, + "probability": 0.9517 + }, + { + "start": 4197.42, + "end": 4198.12, + "probability": 0.7869 + }, + { + "start": 4199.2, + "end": 4202.03, + "probability": 0.9079 + }, + { + "start": 4202.36, + "end": 4211.92, + "probability": 0.6762 + }, + { + "start": 4212.5, + "end": 4214.32, + "probability": 0.9844 + }, + { + "start": 4215.7, + "end": 4221.64, + "probability": 0.9481 + }, + { + "start": 4221.72, + "end": 4222.88, + "probability": 0.7061 + }, + { + "start": 4224.16, + "end": 4226.12, + "probability": 0.765 + }, + { + "start": 4226.12, + "end": 4228.11, + "probability": 0.649 + }, + { + "start": 4229.04, + "end": 4229.78, + "probability": 0.8532 + }, + { + "start": 4229.78, + "end": 4230.42, + "probability": 0.7446 + }, + { + "start": 4230.44, + "end": 4234.68, + "probability": 0.9193 + }, + { + "start": 4234.68, + "end": 4235.72, + "probability": 0.6436 + }, + { + "start": 4235.72, + "end": 4236.5, + "probability": 0.6909 + }, + { + "start": 4236.88, + "end": 4239.04, + "probability": 0.9884 + }, + { + "start": 4240.18, + "end": 4242.95, + "probability": 0.7563 + }, + { + "start": 4243.54, + "end": 4248.34, + "probability": 0.9426 + }, + { + "start": 4250.18, + "end": 4255.44, + "probability": 0.8056 + }, + { + "start": 4256.58, + "end": 4262.28, + "probability": 0.976 + }, + { + "start": 4264.02, + "end": 4268.16, + "probability": 0.8337 + }, + { + "start": 4268.4, + "end": 4269.82, + "probability": 0.6732 + }, + { + "start": 4270.06, + "end": 4272.32, + "probability": 0.6211 + }, + { + "start": 4272.32, + "end": 4272.36, + "probability": 0.8145 + }, + { + "start": 4272.36, + "end": 4272.36, + "probability": 0.2992 + }, + { + "start": 4272.36, + "end": 4273.42, + "probability": 0.4199 + }, + { + "start": 4273.44, + "end": 4276.72, + "probability": 0.7964 + }, + { + "start": 4276.9, + "end": 4278.44, + "probability": 0.995 + }, + { + "start": 4279.28, + "end": 4281.14, + "probability": 0.9924 + }, + { + "start": 4281.84, + "end": 4284.16, + "probability": 0.6544 + }, + { + "start": 4284.18, + "end": 4285.34, + "probability": 0.0855 + }, + { + "start": 4285.56, + "end": 4285.56, + "probability": 0.1724 + }, + { + "start": 4285.56, + "end": 4287.02, + "probability": 0.4743 + }, + { + "start": 4288.14, + "end": 4289.48, + "probability": 0.0163 + }, + { + "start": 4290.22, + "end": 4291.02, + "probability": 0.3545 + }, + { + "start": 4293.7, + "end": 4294.56, + "probability": 0.2579 + }, + { + "start": 4295.8, + "end": 4301.7, + "probability": 0.7864 + }, + { + "start": 4301.84, + "end": 4302.7, + "probability": 0.7989 + }, + { + "start": 4302.78, + "end": 4303.8, + "probability": 0.8821 + }, + { + "start": 4304.46, + "end": 4307.48, + "probability": 0.97 + }, + { + "start": 4307.94, + "end": 4309.44, + "probability": 0.9466 + }, + { + "start": 4309.92, + "end": 4311.32, + "probability": 0.971 + }, + { + "start": 4311.68, + "end": 4313.02, + "probability": 0.9824 + }, + { + "start": 4313.76, + "end": 4315.9, + "probability": 0.9478 + }, + { + "start": 4316.32, + "end": 4320.16, + "probability": 0.9221 + }, + { + "start": 4321.0, + "end": 4323.38, + "probability": 0.9495 + }, + { + "start": 4323.54, + "end": 4324.9, + "probability": 0.794 + }, + { + "start": 4325.04, + "end": 4325.84, + "probability": 0.2828 + }, + { + "start": 4325.92, + "end": 4329.82, + "probability": 0.9671 + }, + { + "start": 4330.26, + "end": 4333.0, + "probability": 0.9918 + }, + { + "start": 4333.34, + "end": 4334.92, + "probability": 0.9727 + }, + { + "start": 4335.34, + "end": 4336.98, + "probability": 0.9965 + }, + { + "start": 4337.04, + "end": 4337.9, + "probability": 0.7108 + }, + { + "start": 4337.96, + "end": 4341.4, + "probability": 0.83 + }, + { + "start": 4341.74, + "end": 4342.26, + "probability": 0.0182 + }, + { + "start": 4342.26, + "end": 4343.01, + "probability": 0.1304 + }, + { + "start": 4344.34, + "end": 4349.9, + "probability": 0.6299 + }, + { + "start": 4349.94, + "end": 4350.76, + "probability": 0.2595 + }, + { + "start": 4351.74, + "end": 4353.14, + "probability": 0.6379 + }, + { + "start": 4354.22, + "end": 4358.56, + "probability": 0.995 + }, + { + "start": 4358.84, + "end": 4361.36, + "probability": 0.9932 + }, + { + "start": 4362.12, + "end": 4365.26, + "probability": 0.9882 + }, + { + "start": 4365.34, + "end": 4367.56, + "probability": 0.6151 + }, + { + "start": 4368.1, + "end": 4368.82, + "probability": 0.4876 + }, + { + "start": 4369.34, + "end": 4370.08, + "probability": 0.4787 + }, + { + "start": 4371.06, + "end": 4374.54, + "probability": 0.9517 + }, + { + "start": 4375.16, + "end": 4376.04, + "probability": 0.8488 + }, + { + "start": 4376.62, + "end": 4379.52, + "probability": 0.4611 + }, + { + "start": 4380.66, + "end": 4381.38, + "probability": 0.8457 + }, + { + "start": 4381.82, + "end": 4383.1, + "probability": 0.9429 + }, + { + "start": 4384.32, + "end": 4384.34, + "probability": 0.1454 + }, + { + "start": 4384.34, + "end": 4384.9, + "probability": 0.5184 + }, + { + "start": 4385.04, + "end": 4387.68, + "probability": 0.8406 + }, + { + "start": 4387.84, + "end": 4389.64, + "probability": 0.9832 + }, + { + "start": 4394.14, + "end": 4397.06, + "probability": 0.9568 + }, + { + "start": 4397.92, + "end": 4397.92, + "probability": 0.2095 + }, + { + "start": 4398.84, + "end": 4400.76, + "probability": 0.7228 + }, + { + "start": 4402.22, + "end": 4406.56, + "probability": 0.8039 + }, + { + "start": 4406.68, + "end": 4408.14, + "probability": 0.978 + }, + { + "start": 4409.22, + "end": 4411.44, + "probability": 0.7796 + }, + { + "start": 4411.48, + "end": 4415.72, + "probability": 0.7112 + }, + { + "start": 4416.46, + "end": 4420.44, + "probability": 0.9855 + }, + { + "start": 4420.44, + "end": 4424.54, + "probability": 0.8384 + }, + { + "start": 4424.96, + "end": 4425.58, + "probability": 0.4373 + }, + { + "start": 4426.94, + "end": 4427.88, + "probability": 0.0729 + }, + { + "start": 4428.2, + "end": 4430.66, + "probability": 0.2309 + }, + { + "start": 4430.66, + "end": 4430.68, + "probability": 0.5098 + }, + { + "start": 4430.78, + "end": 4432.74, + "probability": 0.9615 + }, + { + "start": 4433.26, + "end": 4436.52, + "probability": 0.0652 + }, + { + "start": 4436.52, + "end": 4436.52, + "probability": 0.2353 + }, + { + "start": 4436.52, + "end": 4437.24, + "probability": 0.8481 + }, + { + "start": 4437.32, + "end": 4437.64, + "probability": 0.404 + }, + { + "start": 4437.66, + "end": 4440.16, + "probability": 0.9943 + }, + { + "start": 4440.54, + "end": 4441.36, + "probability": 0.9447 + }, + { + "start": 4442.32, + "end": 4442.84, + "probability": 0.4169 + }, + { + "start": 4442.92, + "end": 4443.68, + "probability": 0.6806 + }, + { + "start": 4443.68, + "end": 4445.67, + "probability": 0.1796 + }, + { + "start": 4447.9, + "end": 4448.1, + "probability": 0.0339 + }, + { + "start": 4448.86, + "end": 4450.44, + "probability": 0.7236 + }, + { + "start": 4450.5, + "end": 4453.68, + "probability": 0.7987 + }, + { + "start": 4453.98, + "end": 4459.36, + "probability": 0.9404 + }, + { + "start": 4460.08, + "end": 4460.84, + "probability": 0.9793 + }, + { + "start": 4461.18, + "end": 4463.74, + "probability": 0.6408 + }, + { + "start": 4464.1, + "end": 4466.22, + "probability": 0.7098 + }, + { + "start": 4466.46, + "end": 4468.34, + "probability": 0.8321 + }, + { + "start": 4468.9, + "end": 4470.54, + "probability": 0.8206 + }, + { + "start": 4470.74, + "end": 4472.98, + "probability": 0.6533 + }, + { + "start": 4474.14, + "end": 4477.68, + "probability": 0.8156 + }, + { + "start": 4479.46, + "end": 4480.8, + "probability": 0.916 + }, + { + "start": 4481.86, + "end": 4483.24, + "probability": 0.9596 + }, + { + "start": 4484.5, + "end": 4488.38, + "probability": 0.9531 + }, + { + "start": 4489.1, + "end": 4495.04, + "probability": 0.9122 + }, + { + "start": 4495.98, + "end": 4497.9, + "probability": 0.9407 + }, + { + "start": 4498.52, + "end": 4501.44, + "probability": 0.8804 + }, + { + "start": 4501.92, + "end": 4504.2, + "probability": 0.7566 + }, + { + "start": 4504.46, + "end": 4506.1, + "probability": 0.9167 + }, + { + "start": 4507.48, + "end": 4509.84, + "probability": 0.2074 + }, + { + "start": 4510.28, + "end": 4510.38, + "probability": 0.0815 + }, + { + "start": 4510.38, + "end": 4511.2, + "probability": 0.063 + }, + { + "start": 4511.67, + "end": 4514.94, + "probability": 0.9921 + }, + { + "start": 4515.24, + "end": 4515.48, + "probability": 0.4614 + }, + { + "start": 4515.54, + "end": 4519.14, + "probability": 0.825 + }, + { + "start": 4519.92, + "end": 4524.66, + "probability": 0.7458 + }, + { + "start": 4524.7, + "end": 4526.66, + "probability": 0.9858 + }, + { + "start": 4527.45, + "end": 4530.5, + "probability": 0.1103 + }, + { + "start": 4530.56, + "end": 4530.94, + "probability": 0.0096 + }, + { + "start": 4530.98, + "end": 4533.18, + "probability": 0.3808 + }, + { + "start": 4533.54, + "end": 4534.28, + "probability": 0.565 + }, + { + "start": 4534.81, + "end": 4540.16, + "probability": 0.6503 + }, + { + "start": 4544.1, + "end": 4547.3, + "probability": 0.9937 + }, + { + "start": 4547.8, + "end": 4548.66, + "probability": 0.8139 + }, + { + "start": 4548.96, + "end": 4549.4, + "probability": 0.8871 + }, + { + "start": 4550.04, + "end": 4551.14, + "probability": 0.5447 + }, + { + "start": 4551.56, + "end": 4557.12, + "probability": 0.929 + }, + { + "start": 4557.82, + "end": 4559.38, + "probability": 0.0585 + }, + { + "start": 4563.02, + "end": 4567.2, + "probability": 0.0779 + }, + { + "start": 4567.88, + "end": 4570.86, + "probability": 0.7354 + }, + { + "start": 4575.6, + "end": 4576.64, + "probability": 0.8939 + }, + { + "start": 4578.7, + "end": 4579.18, + "probability": 0.7984 + }, + { + "start": 4579.62, + "end": 4580.66, + "probability": 0.3677 + }, + { + "start": 4581.86, + "end": 4582.88, + "probability": 0.7698 + }, + { + "start": 4589.8, + "end": 4598.64, + "probability": 0.8299 + }, + { + "start": 4599.26, + "end": 4601.72, + "probability": 0.9985 + }, + { + "start": 4602.56, + "end": 4603.54, + "probability": 0.99 + }, + { + "start": 4605.24, + "end": 4608.4, + "probability": 0.998 + }, + { + "start": 4608.4, + "end": 4613.36, + "probability": 0.9937 + }, + { + "start": 4614.62, + "end": 4617.5, + "probability": 0.9961 + }, + { + "start": 4617.5, + "end": 4620.52, + "probability": 0.983 + }, + { + "start": 4622.2, + "end": 4623.18, + "probability": 0.6003 + }, + { + "start": 4624.56, + "end": 4627.56, + "probability": 0.9985 + }, + { + "start": 4628.64, + "end": 4629.62, + "probability": 0.6618 + }, + { + "start": 4629.66, + "end": 4630.46, + "probability": 0.688 + }, + { + "start": 4630.5, + "end": 4633.06, + "probability": 0.9599 + }, + { + "start": 4634.58, + "end": 4638.0, + "probability": 0.9902 + }, + { + "start": 4638.0, + "end": 4642.12, + "probability": 0.9602 + }, + { + "start": 4643.4, + "end": 4644.68, + "probability": 0.8215 + }, + { + "start": 4646.66, + "end": 4650.86, + "probability": 0.9826 + }, + { + "start": 4651.16, + "end": 4655.62, + "probability": 0.8496 + }, + { + "start": 4656.42, + "end": 4660.12, + "probability": 0.8758 + }, + { + "start": 4661.76, + "end": 4664.52, + "probability": 0.9901 + }, + { + "start": 4664.68, + "end": 4667.76, + "probability": 0.7657 + }, + { + "start": 4667.8, + "end": 4670.2, + "probability": 0.9779 + }, + { + "start": 4671.08, + "end": 4673.82, + "probability": 0.9763 + }, + { + "start": 4675.22, + "end": 4680.54, + "probability": 0.9596 + }, + { + "start": 4681.58, + "end": 4682.6, + "probability": 0.7561 + }, + { + "start": 4683.2, + "end": 4684.16, + "probability": 0.7512 + }, + { + "start": 4685.0, + "end": 4689.66, + "probability": 0.7648 + }, + { + "start": 4690.82, + "end": 4694.32, + "probability": 0.9915 + }, + { + "start": 4694.42, + "end": 4696.16, + "probability": 0.6991 + }, + { + "start": 4696.76, + "end": 4698.32, + "probability": 0.9972 + }, + { + "start": 4699.3, + "end": 4702.94, + "probability": 0.9954 + }, + { + "start": 4703.42, + "end": 4703.98, + "probability": 0.9079 + }, + { + "start": 4704.9, + "end": 4706.46, + "probability": 0.9817 + }, + { + "start": 4707.48, + "end": 4708.46, + "probability": 0.6655 + }, + { + "start": 4708.62, + "end": 4712.12, + "probability": 0.9182 + }, + { + "start": 4712.96, + "end": 4716.08, + "probability": 0.9576 + }, + { + "start": 4716.08, + "end": 4720.36, + "probability": 0.9979 + }, + { + "start": 4721.14, + "end": 4722.48, + "probability": 0.8307 + }, + { + "start": 4723.16, + "end": 4724.24, + "probability": 0.7654 + }, + { + "start": 4724.9, + "end": 4726.08, + "probability": 0.9349 + }, + { + "start": 4726.26, + "end": 4731.16, + "probability": 0.8755 + }, + { + "start": 4732.26, + "end": 4733.34, + "probability": 0.6273 + }, + { + "start": 4733.62, + "end": 4736.02, + "probability": 0.6057 + }, + { + "start": 4736.64, + "end": 4737.96, + "probability": 0.8166 + }, + { + "start": 4738.84, + "end": 4740.24, + "probability": 0.9121 + }, + { + "start": 4740.6, + "end": 4741.06, + "probability": 0.9683 + }, + { + "start": 4741.12, + "end": 4742.28, + "probability": 0.9497 + }, + { + "start": 4742.32, + "end": 4743.24, + "probability": 0.8887 + }, + { + "start": 4743.94, + "end": 4747.18, + "probability": 0.7048 + }, + { + "start": 4748.14, + "end": 4753.6, + "probability": 0.939 + }, + { + "start": 4753.72, + "end": 4754.96, + "probability": 0.7371 + }, + { + "start": 4755.94, + "end": 4757.06, + "probability": 0.8465 + }, + { + "start": 4757.22, + "end": 4759.8, + "probability": 0.9837 + }, + { + "start": 4760.28, + "end": 4762.3, + "probability": 0.8304 + }, + { + "start": 4762.88, + "end": 4766.54, + "probability": 0.9507 + }, + { + "start": 4767.34, + "end": 4768.36, + "probability": 0.6192 + }, + { + "start": 4769.94, + "end": 4773.17, + "probability": 0.8079 + }, + { + "start": 4773.92, + "end": 4778.46, + "probability": 0.9313 + }, + { + "start": 4779.96, + "end": 4780.56, + "probability": 0.6957 + }, + { + "start": 4780.7, + "end": 4782.91, + "probability": 0.9231 + }, + { + "start": 4783.34, + "end": 4784.76, + "probability": 0.9827 + }, + { + "start": 4785.18, + "end": 4788.02, + "probability": 0.9937 + }, + { + "start": 4789.32, + "end": 4792.68, + "probability": 0.9052 + }, + { + "start": 4793.4, + "end": 4794.0, + "probability": 0.8348 + }, + { + "start": 4794.72, + "end": 4797.72, + "probability": 0.9466 + }, + { + "start": 4798.24, + "end": 4800.34, + "probability": 0.8509 + }, + { + "start": 4801.26, + "end": 4801.92, + "probability": 0.8032 + }, + { + "start": 4803.9, + "end": 4806.28, + "probability": 0.9033 + }, + { + "start": 4806.28, + "end": 4809.16, + "probability": 0.9832 + }, + { + "start": 4810.32, + "end": 4812.22, + "probability": 0.8707 + }, + { + "start": 4812.84, + "end": 4815.62, + "probability": 0.9724 + }, + { + "start": 4816.52, + "end": 4818.52, + "probability": 0.873 + }, + { + "start": 4819.6, + "end": 4822.68, + "probability": 0.9882 + }, + { + "start": 4823.86, + "end": 4825.84, + "probability": 0.9946 + }, + { + "start": 4826.94, + "end": 4829.28, + "probability": 0.9656 + }, + { + "start": 4829.3, + "end": 4833.22, + "probability": 0.9561 + }, + { + "start": 4834.08, + "end": 4836.76, + "probability": 0.8776 + }, + { + "start": 4837.8, + "end": 4842.12, + "probability": 0.8859 + }, + { + "start": 4842.92, + "end": 4846.18, + "probability": 0.878 + }, + { + "start": 4846.28, + "end": 4849.66, + "probability": 0.9692 + }, + { + "start": 4850.58, + "end": 4853.32, + "probability": 0.9658 + }, + { + "start": 4853.48, + "end": 4859.12, + "probability": 0.9567 + }, + { + "start": 4859.96, + "end": 4862.58, + "probability": 0.9753 + }, + { + "start": 4862.58, + "end": 4866.46, + "probability": 0.9948 + }, + { + "start": 4867.04, + "end": 4867.26, + "probability": 0.7103 + }, + { + "start": 4867.7, + "end": 4871.74, + "probability": 0.9092 + }, + { + "start": 4871.92, + "end": 4872.52, + "probability": 0.5419 + }, + { + "start": 4872.92, + "end": 4874.08, + "probability": 0.7892 + }, + { + "start": 4874.82, + "end": 4877.3, + "probability": 0.9421 + }, + { + "start": 4877.3, + "end": 4881.1, + "probability": 0.9451 + }, + { + "start": 4881.16, + "end": 4882.12, + "probability": 0.9666 + }, + { + "start": 4882.26, + "end": 4882.66, + "probability": 0.915 + }, + { + "start": 4882.7, + "end": 4883.34, + "probability": 0.9238 + }, + { + "start": 4883.72, + "end": 4884.94, + "probability": 0.9082 + }, + { + "start": 4885.84, + "end": 4889.24, + "probability": 0.8372 + }, + { + "start": 4889.4, + "end": 4890.86, + "probability": 0.9548 + }, + { + "start": 4891.24, + "end": 4893.9, + "probability": 0.9517 + }, + { + "start": 4894.46, + "end": 4896.82, + "probability": 0.8655 + }, + { + "start": 4897.72, + "end": 4901.28, + "probability": 0.8288 + }, + { + "start": 4902.36, + "end": 4905.78, + "probability": 0.9839 + }, + { + "start": 4905.78, + "end": 4908.92, + "probability": 0.9839 + }, + { + "start": 4909.94, + "end": 4913.25, + "probability": 0.9633 + }, + { + "start": 4913.44, + "end": 4918.12, + "probability": 0.9307 + }, + { + "start": 4919.1, + "end": 4920.64, + "probability": 0.6511 + }, + { + "start": 4920.74, + "end": 4922.22, + "probability": 0.8235 + }, + { + "start": 4922.74, + "end": 4925.58, + "probability": 0.983 + }, + { + "start": 4926.46, + "end": 4928.98, + "probability": 0.9908 + }, + { + "start": 4928.98, + "end": 4931.06, + "probability": 0.9922 + }, + { + "start": 4931.64, + "end": 4933.18, + "probability": 0.9797 + }, + { + "start": 4934.02, + "end": 4936.9, + "probability": 0.8765 + }, + { + "start": 4937.8, + "end": 4939.52, + "probability": 0.9424 + }, + { + "start": 4939.88, + "end": 4942.5, + "probability": 0.9956 + }, + { + "start": 4943.02, + "end": 4945.82, + "probability": 0.9748 + }, + { + "start": 4946.44, + "end": 4949.98, + "probability": 0.8471 + }, + { + "start": 4950.06, + "end": 4955.46, + "probability": 0.9698 + }, + { + "start": 4956.28, + "end": 4959.66, + "probability": 0.7708 + }, + { + "start": 4959.74, + "end": 4961.16, + "probability": 0.9189 + }, + { + "start": 4962.36, + "end": 4963.6, + "probability": 0.3297 + }, + { + "start": 4964.08, + "end": 4968.58, + "probability": 0.9432 + }, + { + "start": 4968.7, + "end": 4969.22, + "probability": 0.7544 + }, + { + "start": 4971.24, + "end": 4972.46, + "probability": 0.8469 + }, + { + "start": 4973.08, + "end": 4975.22, + "probability": 0.9359 + }, + { + "start": 4975.76, + "end": 4979.82, + "probability": 0.995 + }, + { + "start": 4980.1, + "end": 4982.04, + "probability": 0.9652 + }, + { + "start": 4982.64, + "end": 4985.02, + "probability": 0.8014 + }, + { + "start": 4985.76, + "end": 4987.68, + "probability": 0.8104 + }, + { + "start": 4988.34, + "end": 4990.02, + "probability": 0.975 + }, + { + "start": 4990.54, + "end": 4991.74, + "probability": 0.9563 + }, + { + "start": 4994.48, + "end": 4996.98, + "probability": 0.8333 + }, + { + "start": 4997.16, + "end": 4998.48, + "probability": 0.8087 + }, + { + "start": 4998.66, + "end": 4999.78, + "probability": 0.5677 + }, + { + "start": 4999.84, + "end": 5003.75, + "probability": 0.8144 + }, + { + "start": 5004.42, + "end": 5006.3, + "probability": 0.9768 + }, + { + "start": 5006.3, + "end": 5008.66, + "probability": 0.8034 + }, + { + "start": 5009.12, + "end": 5012.0, + "probability": 0.2285 + }, + { + "start": 5014.56, + "end": 5014.84, + "probability": 0.4098 + }, + { + "start": 5014.84, + "end": 5015.12, + "probability": 0.0294 + }, + { + "start": 5015.58, + "end": 5017.88, + "probability": 0.1696 + }, + { + "start": 5018.2, + "end": 5020.06, + "probability": 0.7281 + }, + { + "start": 5020.46, + "end": 5020.84, + "probability": 0.789 + }, + { + "start": 5021.36, + "end": 5022.0, + "probability": 0.7106 + }, + { + "start": 5022.78, + "end": 5026.58, + "probability": 0.6649 + }, + { + "start": 5027.16, + "end": 5029.2, + "probability": 0.7316 + }, + { + "start": 5030.32, + "end": 5030.92, + "probability": 0.7832 + }, + { + "start": 5040.08, + "end": 5041.52, + "probability": 0.356 + }, + { + "start": 5041.7, + "end": 5041.86, + "probability": 0.2958 + }, + { + "start": 5041.86, + "end": 5043.7, + "probability": 0.7767 + }, + { + "start": 5043.92, + "end": 5044.32, + "probability": 0.9268 + }, + { + "start": 5044.44, + "end": 5046.64, + "probability": 0.8911 + }, + { + "start": 5048.08, + "end": 5051.68, + "probability": 0.9788 + }, + { + "start": 5051.68, + "end": 5056.4, + "probability": 0.9958 + }, + { + "start": 5057.0, + "end": 5058.0, + "probability": 0.4941 + }, + { + "start": 5058.02, + "end": 5063.08, + "probability": 0.9971 + }, + { + "start": 5063.6, + "end": 5064.36, + "probability": 0.9812 + }, + { + "start": 5065.6, + "end": 5065.84, + "probability": 0.6534 + }, + { + "start": 5065.94, + "end": 5070.7, + "probability": 0.9569 + }, + { + "start": 5071.5, + "end": 5075.2, + "probability": 0.9717 + }, + { + "start": 5076.06, + "end": 5076.76, + "probability": 0.0791 + }, + { + "start": 5077.4, + "end": 5080.46, + "probability": 0.8266 + }, + { + "start": 5080.52, + "end": 5080.98, + "probability": 0.4122 + }, + { + "start": 5081.78, + "end": 5083.24, + "probability": 0.9114 + }, + { + "start": 5084.02, + "end": 5086.46, + "probability": 0.9468 + }, + { + "start": 5087.14, + "end": 5090.56, + "probability": 0.9878 + }, + { + "start": 5090.7, + "end": 5095.76, + "probability": 0.9279 + }, + { + "start": 5096.94, + "end": 5100.9, + "probability": 0.8818 + }, + { + "start": 5102.24, + "end": 5102.56, + "probability": 0.86 + }, + { + "start": 5104.44, + "end": 5111.48, + "probability": 0.7195 + }, + { + "start": 5111.9, + "end": 5114.3, + "probability": 0.9788 + }, + { + "start": 5115.14, + "end": 5119.42, + "probability": 0.8616 + }, + { + "start": 5121.0, + "end": 5125.52, + "probability": 0.9801 + }, + { + "start": 5125.52, + "end": 5128.51, + "probability": 0.9902 + }, + { + "start": 5129.08, + "end": 5129.32, + "probability": 0.3929 + }, + { + "start": 5129.4, + "end": 5130.58, + "probability": 0.9548 + }, + { + "start": 5130.7, + "end": 5131.12, + "probability": 0.5113 + }, + { + "start": 5131.16, + "end": 5132.08, + "probability": 0.5854 + }, + { + "start": 5132.52, + "end": 5135.82, + "probability": 0.9594 + }, + { + "start": 5137.08, + "end": 5137.7, + "probability": 0.9298 + }, + { + "start": 5138.22, + "end": 5140.74, + "probability": 0.9685 + }, + { + "start": 5141.18, + "end": 5143.4, + "probability": 0.986 + }, + { + "start": 5144.88, + "end": 5149.78, + "probability": 0.9931 + }, + { + "start": 5150.36, + "end": 5153.54, + "probability": 0.974 + }, + { + "start": 5153.56, + "end": 5155.34, + "probability": 0.9471 + }, + { + "start": 5156.42, + "end": 5161.34, + "probability": 0.9808 + }, + { + "start": 5162.24, + "end": 5165.88, + "probability": 0.9869 + }, + { + "start": 5167.04, + "end": 5170.22, + "probability": 0.9827 + }, + { + "start": 5170.44, + "end": 5174.52, + "probability": 0.9966 + }, + { + "start": 5175.36, + "end": 5177.26, + "probability": 0.9852 + }, + { + "start": 5177.6, + "end": 5178.9, + "probability": 0.7991 + }, + { + "start": 5179.02, + "end": 5183.54, + "probability": 0.9485 + }, + { + "start": 5187.64, + "end": 5188.36, + "probability": 0.0058 + }, + { + "start": 5189.56, + "end": 5193.4, + "probability": 0.9985 + }, + { + "start": 5193.4, + "end": 5195.32, + "probability": 0.9989 + }, + { + "start": 5195.86, + "end": 5198.24, + "probability": 0.9931 + }, + { + "start": 5198.32, + "end": 5199.14, + "probability": 0.9191 + }, + { + "start": 5199.62, + "end": 5202.22, + "probability": 0.9794 + }, + { + "start": 5202.22, + "end": 5205.5, + "probability": 0.9077 + }, + { + "start": 5205.66, + "end": 5206.64, + "probability": 0.7264 + }, + { + "start": 5207.74, + "end": 5207.74, + "probability": 0.8652 + }, + { + "start": 5209.14, + "end": 5212.62, + "probability": 0.9935 + }, + { + "start": 5212.78, + "end": 5217.19, + "probability": 0.8774 + }, + { + "start": 5217.22, + "end": 5219.64, + "probability": 0.9558 + }, + { + "start": 5220.86, + "end": 5222.2, + "probability": 0.9044 + }, + { + "start": 5223.18, + "end": 5223.36, + "probability": 0.3177 + }, + { + "start": 5223.46, + "end": 5223.86, + "probability": 0.458 + }, + { + "start": 5223.92, + "end": 5225.84, + "probability": 0.504 + }, + { + "start": 5226.98, + "end": 5232.64, + "probability": 0.9775 + }, + { + "start": 5233.18, + "end": 5235.94, + "probability": 0.8151 + }, + { + "start": 5236.58, + "end": 5238.12, + "probability": 0.9683 + }, + { + "start": 5239.36, + "end": 5244.06, + "probability": 0.9976 + }, + { + "start": 5244.06, + "end": 5248.62, + "probability": 0.996 + }, + { + "start": 5249.54, + "end": 5253.38, + "probability": 0.9976 + }, + { + "start": 5254.12, + "end": 5257.66, + "probability": 0.9684 + }, + { + "start": 5257.66, + "end": 5262.48, + "probability": 0.996 + }, + { + "start": 5263.58, + "end": 5264.02, + "probability": 0.5887 + }, + { + "start": 5264.04, + "end": 5267.62, + "probability": 0.6932 + }, + { + "start": 5268.1, + "end": 5269.64, + "probability": 0.8223 + }, + { + "start": 5271.8, + "end": 5272.88, + "probability": 0.8558 + }, + { + "start": 5274.1, + "end": 5278.28, + "probability": 0.9819 + }, + { + "start": 5279.86, + "end": 5280.18, + "probability": 0.9034 + }, + { + "start": 5281.46, + "end": 5284.46, + "probability": 0.9697 + }, + { + "start": 5284.72, + "end": 5287.4, + "probability": 0.8977 + }, + { + "start": 5288.2, + "end": 5290.02, + "probability": 0.9249 + }, + { + "start": 5290.18, + "end": 5290.4, + "probability": 0.7998 + }, + { + "start": 5290.64, + "end": 5291.12, + "probability": 0.936 + }, + { + "start": 5291.16, + "end": 5293.78, + "probability": 0.9688 + }, + { + "start": 5295.24, + "end": 5296.86, + "probability": 0.8347 + }, + { + "start": 5297.52, + "end": 5298.24, + "probability": 0.7531 + }, + { + "start": 5299.06, + "end": 5300.12, + "probability": 0.9226 + }, + { + "start": 5300.76, + "end": 5301.92, + "probability": 0.97 + }, + { + "start": 5303.04, + "end": 5303.54, + "probability": 0.9952 + }, + { + "start": 5304.4, + "end": 5307.32, + "probability": 0.9978 + }, + { + "start": 5307.38, + "end": 5310.74, + "probability": 0.9757 + }, + { + "start": 5311.86, + "end": 5312.62, + "probability": 0.5143 + }, + { + "start": 5313.86, + "end": 5314.58, + "probability": 0.6949 + }, + { + "start": 5314.96, + "end": 5316.42, + "probability": 0.9454 + }, + { + "start": 5316.9, + "end": 5317.26, + "probability": 0.3571 + }, + { + "start": 5317.28, + "end": 5318.73, + "probability": 0.7444 + }, + { + "start": 5319.7, + "end": 5321.12, + "probability": 0.8151 + }, + { + "start": 5324.78, + "end": 5326.32, + "probability": 0.8208 + }, + { + "start": 5326.4, + "end": 5327.22, + "probability": 0.7245 + }, + { + "start": 5327.62, + "end": 5328.54, + "probability": 0.6129 + }, + { + "start": 5329.2, + "end": 5333.48, + "probability": 0.964 + }, + { + "start": 5333.76, + "end": 5334.99, + "probability": 0.958 + }, + { + "start": 5335.78, + "end": 5337.36, + "probability": 0.999 + }, + { + "start": 5338.28, + "end": 5341.4, + "probability": 0.8522 + }, + { + "start": 5342.36, + "end": 5344.76, + "probability": 0.93 + }, + { + "start": 5345.6, + "end": 5348.1, + "probability": 0.9489 + }, + { + "start": 5348.64, + "end": 5352.58, + "probability": 0.9041 + }, + { + "start": 5352.74, + "end": 5353.86, + "probability": 0.9854 + }, + { + "start": 5355.14, + "end": 5358.38, + "probability": 0.9284 + }, + { + "start": 5358.84, + "end": 5359.22, + "probability": 0.4292 + }, + { + "start": 5360.04, + "end": 5363.02, + "probability": 0.9096 + }, + { + "start": 5363.2, + "end": 5363.72, + "probability": 0.5031 + }, + { + "start": 5364.48, + "end": 5366.0, + "probability": 0.9065 + }, + { + "start": 5366.12, + "end": 5367.04, + "probability": 0.9839 + }, + { + "start": 5367.36, + "end": 5368.48, + "probability": 0.9243 + }, + { + "start": 5369.08, + "end": 5372.2, + "probability": 0.995 + }, + { + "start": 5373.16, + "end": 5374.76, + "probability": 0.9968 + }, + { + "start": 5374.8, + "end": 5375.88, + "probability": 0.9264 + }, + { + "start": 5375.94, + "end": 5378.57, + "probability": 0.9537 + }, + { + "start": 5380.68, + "end": 5382.8, + "probability": 0.9748 + }, + { + "start": 5382.8, + "end": 5385.26, + "probability": 0.9984 + }, + { + "start": 5385.48, + "end": 5389.78, + "probability": 0.9848 + }, + { + "start": 5390.26, + "end": 5391.74, + "probability": 0.9279 + }, + { + "start": 5391.8, + "end": 5393.64, + "probability": 0.8053 + }, + { + "start": 5393.86, + "end": 5395.04, + "probability": 0.8875 + }, + { + "start": 5396.18, + "end": 5398.44, + "probability": 0.9976 + }, + { + "start": 5399.34, + "end": 5401.56, + "probability": 0.8328 + }, + { + "start": 5401.7, + "end": 5403.44, + "probability": 0.9091 + }, + { + "start": 5404.1, + "end": 5405.22, + "probability": 0.9851 + }, + { + "start": 5406.4, + "end": 5407.44, + "probability": 0.5964 + }, + { + "start": 5407.54, + "end": 5411.78, + "probability": 0.8957 + }, + { + "start": 5411.8, + "end": 5412.3, + "probability": 0.6886 + }, + { + "start": 5412.4, + "end": 5412.84, + "probability": 0.8927 + }, + { + "start": 5412.98, + "end": 5416.54, + "probability": 0.8844 + }, + { + "start": 5417.54, + "end": 5419.98, + "probability": 0.9958 + }, + { + "start": 5419.98, + "end": 5421.34, + "probability": 0.9888 + }, + { + "start": 5422.32, + "end": 5425.3, + "probability": 0.9371 + }, + { + "start": 5425.42, + "end": 5425.98, + "probability": 0.9288 + }, + { + "start": 5426.44, + "end": 5428.7, + "probability": 0.9907 + }, + { + "start": 5429.2, + "end": 5431.64, + "probability": 0.9945 + }, + { + "start": 5432.06, + "end": 5433.02, + "probability": 0.9252 + }, + { + "start": 5433.42, + "end": 5436.92, + "probability": 0.9342 + }, + { + "start": 5436.92, + "end": 5440.96, + "probability": 0.9968 + }, + { + "start": 5441.98, + "end": 5443.3, + "probability": 0.9994 + }, + { + "start": 5443.42, + "end": 5445.83, + "probability": 0.9983 + }, + { + "start": 5446.58, + "end": 5448.46, + "probability": 0.9399 + }, + { + "start": 5448.46, + "end": 5451.2, + "probability": 0.8436 + }, + { + "start": 5451.28, + "end": 5454.66, + "probability": 0.9846 + }, + { + "start": 5455.58, + "end": 5458.6, + "probability": 0.9326 + }, + { + "start": 5459.58, + "end": 5462.56, + "probability": 0.9871 + }, + { + "start": 5463.14, + "end": 5465.78, + "probability": 0.7848 + }, + { + "start": 5466.78, + "end": 5468.32, + "probability": 0.992 + }, + { + "start": 5468.7, + "end": 5470.7, + "probability": 0.8174 + }, + { + "start": 5471.6, + "end": 5473.7, + "probability": 0.9951 + }, + { + "start": 5474.52, + "end": 5474.82, + "probability": 0.8344 + }, + { + "start": 5476.18, + "end": 5477.41, + "probability": 0.4606 + }, + { + "start": 5478.08, + "end": 5481.58, + "probability": 0.6677 + }, + { + "start": 5481.7, + "end": 5482.54, + "probability": 0.5844 + }, + { + "start": 5482.62, + "end": 5485.1, + "probability": 0.9273 + }, + { + "start": 5485.78, + "end": 5486.44, + "probability": 0.0883 + }, + { + "start": 5486.44, + "end": 5488.18, + "probability": 0.967 + }, + { + "start": 5488.7, + "end": 5490.07, + "probability": 0.6189 + }, + { + "start": 5490.26, + "end": 5490.62, + "probability": 0.4341 + }, + { + "start": 5490.7, + "end": 5491.68, + "probability": 0.9365 + }, + { + "start": 5491.74, + "end": 5492.14, + "probability": 0.5171 + }, + { + "start": 5492.2, + "end": 5493.76, + "probability": 0.8992 + }, + { + "start": 5509.58, + "end": 5511.78, + "probability": 0.7012 + }, + { + "start": 5512.38, + "end": 5513.12, + "probability": 0.5259 + }, + { + "start": 5514.08, + "end": 5520.66, + "probability": 0.9751 + }, + { + "start": 5521.22, + "end": 5522.08, + "probability": 0.8834 + }, + { + "start": 5523.34, + "end": 5525.9, + "probability": 0.9742 + }, + { + "start": 5526.42, + "end": 5527.44, + "probability": 0.6537 + }, + { + "start": 5528.3, + "end": 5529.18, + "probability": 0.6901 + }, + { + "start": 5530.0, + "end": 5533.48, + "probability": 0.9924 + }, + { + "start": 5534.26, + "end": 5534.54, + "probability": 0.6348 + }, + { + "start": 5534.6, + "end": 5535.3, + "probability": 0.9453 + }, + { + "start": 5535.42, + "end": 5539.26, + "probability": 0.9767 + }, + { + "start": 5539.82, + "end": 5546.34, + "probability": 0.9705 + }, + { + "start": 5546.34, + "end": 5549.84, + "probability": 0.9973 + }, + { + "start": 5550.38, + "end": 5553.72, + "probability": 0.9679 + }, + { + "start": 5554.42, + "end": 5557.0, + "probability": 0.9773 + }, + { + "start": 5557.16, + "end": 5558.36, + "probability": 0.9242 + }, + { + "start": 5558.46, + "end": 5561.12, + "probability": 0.9777 + }, + { + "start": 5561.26, + "end": 5562.2, + "probability": 0.9614 + }, + { + "start": 5562.4, + "end": 5564.48, + "probability": 0.9823 + }, + { + "start": 5564.98, + "end": 5567.24, + "probability": 0.8389 + }, + { + "start": 5567.24, + "end": 5570.68, + "probability": 0.9817 + }, + { + "start": 5571.06, + "end": 5574.88, + "probability": 0.9854 + }, + { + "start": 5575.32, + "end": 5577.6, + "probability": 0.8384 + }, + { + "start": 5577.66, + "end": 5580.14, + "probability": 0.8785 + }, + { + "start": 5580.58, + "end": 5581.82, + "probability": 0.856 + }, + { + "start": 5582.12, + "end": 5586.98, + "probability": 0.9728 + }, + { + "start": 5588.14, + "end": 5591.08, + "probability": 0.9861 + }, + { + "start": 5591.1, + "end": 5591.62, + "probability": 0.8273 + }, + { + "start": 5591.92, + "end": 5600.24, + "probability": 0.9749 + }, + { + "start": 5600.3, + "end": 5601.04, + "probability": 0.8257 + }, + { + "start": 5601.42, + "end": 5603.66, + "probability": 0.9917 + }, + { + "start": 5604.06, + "end": 5606.7, + "probability": 0.7486 + }, + { + "start": 5606.78, + "end": 5607.42, + "probability": 0.8538 + }, + { + "start": 5607.48, + "end": 5611.28, + "probability": 0.8921 + }, + { + "start": 5611.64, + "end": 5614.88, + "probability": 0.7659 + }, + { + "start": 5614.92, + "end": 5616.28, + "probability": 0.9725 + }, + { + "start": 5617.18, + "end": 5618.94, + "probability": 0.6414 + }, + { + "start": 5619.02, + "end": 5621.02, + "probability": 0.7753 + }, + { + "start": 5621.36, + "end": 5623.52, + "probability": 0.959 + }, + { + "start": 5623.66, + "end": 5628.02, + "probability": 0.969 + }, + { + "start": 5628.54, + "end": 5630.8, + "probability": 0.8855 + }, + { + "start": 5632.14, + "end": 5637.36, + "probability": 0.9473 + }, + { + "start": 5637.88, + "end": 5639.06, + "probability": 0.9834 + }, + { + "start": 5641.46, + "end": 5642.96, + "probability": 0.7705 + }, + { + "start": 5643.48, + "end": 5647.24, + "probability": 0.9606 + }, + { + "start": 5647.24, + "end": 5650.3, + "probability": 0.7475 + }, + { + "start": 5650.38, + "end": 5652.2, + "probability": 0.979 + }, + { + "start": 5652.7, + "end": 5654.16, + "probability": 0.9908 + }, + { + "start": 5654.4, + "end": 5657.4, + "probability": 0.6638 + }, + { + "start": 5657.5, + "end": 5658.72, + "probability": 0.7974 + }, + { + "start": 5659.32, + "end": 5663.04, + "probability": 0.9878 + }, + { + "start": 5663.6, + "end": 5664.56, + "probability": 0.8483 + }, + { + "start": 5664.72, + "end": 5665.9, + "probability": 0.851 + }, + { + "start": 5665.98, + "end": 5669.24, + "probability": 0.9858 + }, + { + "start": 5669.58, + "end": 5672.92, + "probability": 0.99 + }, + { + "start": 5673.42, + "end": 5676.53, + "probability": 0.9475 + }, + { + "start": 5676.86, + "end": 5678.5, + "probability": 0.5338 + }, + { + "start": 5678.72, + "end": 5680.48, + "probability": 0.9195 + }, + { + "start": 5681.62, + "end": 5683.08, + "probability": 0.7475 + }, + { + "start": 5683.46, + "end": 5685.06, + "probability": 0.8892 + }, + { + "start": 5685.52, + "end": 5689.06, + "probability": 0.9358 + }, + { + "start": 5689.56, + "end": 5693.0, + "probability": 0.9438 + }, + { + "start": 5693.34, + "end": 5694.4, + "probability": 0.8985 + }, + { + "start": 5694.52, + "end": 5698.36, + "probability": 0.9918 + }, + { + "start": 5698.85, + "end": 5705.26, + "probability": 0.9167 + }, + { + "start": 5705.76, + "end": 5707.48, + "probability": 0.9825 + }, + { + "start": 5708.06, + "end": 5716.58, + "probability": 0.9693 + }, + { + "start": 5716.8, + "end": 5722.12, + "probability": 0.9985 + }, + { + "start": 5722.12, + "end": 5728.24, + "probability": 0.979 + }, + { + "start": 5728.48, + "end": 5728.52, + "probability": 0.2578 + }, + { + "start": 5728.52, + "end": 5733.4, + "probability": 0.9986 + }, + { + "start": 5733.4, + "end": 5737.18, + "probability": 0.9956 + }, + { + "start": 5737.52, + "end": 5739.52, + "probability": 0.9871 + }, + { + "start": 5739.82, + "end": 5745.26, + "probability": 0.9946 + }, + { + "start": 5745.78, + "end": 5747.98, + "probability": 0.9484 + }, + { + "start": 5748.08, + "end": 5748.6, + "probability": 0.8539 + }, + { + "start": 5748.84, + "end": 5749.6, + "probability": 0.8358 + }, + { + "start": 5750.6, + "end": 5752.9, + "probability": 0.7858 + }, + { + "start": 5754.28, + "end": 5754.8, + "probability": 0.5893 + }, + { + "start": 5754.82, + "end": 5756.68, + "probability": 0.9293 + }, + { + "start": 5757.04, + "end": 5757.82, + "probability": 0.852 + }, + { + "start": 5758.18, + "end": 5758.76, + "probability": 0.7468 + }, + { + "start": 5766.86, + "end": 5767.92, + "probability": 0.5768 + }, + { + "start": 5768.86, + "end": 5770.74, + "probability": 0.7752 + }, + { + "start": 5772.44, + "end": 5775.12, + "probability": 0.9283 + }, + { + "start": 5777.41, + "end": 5781.4, + "probability": 0.8139 + }, + { + "start": 5782.2, + "end": 5791.66, + "probability": 0.9854 + }, + { + "start": 5793.04, + "end": 5795.14, + "probability": 0.8921 + }, + { + "start": 5795.14, + "end": 5801.68, + "probability": 0.9346 + }, + { + "start": 5801.82, + "end": 5803.8, + "probability": 0.6387 + }, + { + "start": 5803.8, + "end": 5805.68, + "probability": 0.9595 + }, + { + "start": 5806.4, + "end": 5809.88, + "probability": 0.7648 + }, + { + "start": 5811.16, + "end": 5813.92, + "probability": 0.9211 + }, + { + "start": 5814.54, + "end": 5817.64, + "probability": 0.7287 + }, + { + "start": 5818.24, + "end": 5822.32, + "probability": 0.9551 + }, + { + "start": 5822.92, + "end": 5825.18, + "probability": 0.7679 + }, + { + "start": 5825.24, + "end": 5826.36, + "probability": 0.984 + }, + { + "start": 5826.44, + "end": 5827.69, + "probability": 0.9854 + }, + { + "start": 5829.26, + "end": 5830.84, + "probability": 0.8918 + }, + { + "start": 5831.76, + "end": 5836.1, + "probability": 0.8959 + }, + { + "start": 5836.84, + "end": 5839.16, + "probability": 0.5465 + }, + { + "start": 5839.96, + "end": 5844.72, + "probability": 0.9639 + }, + { + "start": 5844.94, + "end": 5847.4, + "probability": 0.9738 + }, + { + "start": 5848.02, + "end": 5850.6, + "probability": 0.7514 + }, + { + "start": 5851.24, + "end": 5852.9, + "probability": 0.8988 + }, + { + "start": 5853.44, + "end": 5855.78, + "probability": 0.8051 + }, + { + "start": 5856.98, + "end": 5860.76, + "probability": 0.5546 + }, + { + "start": 5861.18, + "end": 5862.14, + "probability": 0.9327 + }, + { + "start": 5862.16, + "end": 5863.28, + "probability": 0.873 + }, + { + "start": 5863.66, + "end": 5864.54, + "probability": 0.6387 + }, + { + "start": 5866.5, + "end": 5867.02, + "probability": 0.1545 + }, + { + "start": 5867.02, + "end": 5867.02, + "probability": 0.1711 + }, + { + "start": 5867.02, + "end": 5867.58, + "probability": 0.4831 + }, + { + "start": 5868.4, + "end": 5871.92, + "probability": 0.9313 + }, + { + "start": 5872.04, + "end": 5875.58, + "probability": 0.9366 + }, + { + "start": 5875.7, + "end": 5877.95, + "probability": 0.8981 + }, + { + "start": 5878.88, + "end": 5881.88, + "probability": 0.7783 + }, + { + "start": 5882.44, + "end": 5887.22, + "probability": 0.6258 + }, + { + "start": 5887.72, + "end": 5889.46, + "probability": 0.7997 + }, + { + "start": 5890.62, + "end": 5896.0, + "probability": 0.7162 + }, + { + "start": 5896.98, + "end": 5901.94, + "probability": 0.9153 + }, + { + "start": 5902.78, + "end": 5904.88, + "probability": 0.7753 + }, + { + "start": 5904.92, + "end": 5906.67, + "probability": 0.7349 + }, + { + "start": 5907.14, + "end": 5908.48, + "probability": 0.8952 + }, + { + "start": 5909.26, + "end": 5911.28, + "probability": 0.7423 + }, + { + "start": 5911.28, + "end": 5913.68, + "probability": 0.988 + }, + { + "start": 5915.06, + "end": 5916.92, + "probability": 0.9531 + }, + { + "start": 5917.44, + "end": 5918.94, + "probability": 0.7207 + }, + { + "start": 5919.38, + "end": 5920.82, + "probability": 0.7827 + }, + { + "start": 5920.96, + "end": 5924.16, + "probability": 0.9727 + }, + { + "start": 5924.88, + "end": 5925.81, + "probability": 0.9966 + }, + { + "start": 5926.2, + "end": 5926.62, + "probability": 0.7786 + }, + { + "start": 5927.16, + "end": 5927.74, + "probability": 0.864 + }, + { + "start": 5928.94, + "end": 5933.7, + "probability": 0.4161 + }, + { + "start": 5934.08, + "end": 5935.88, + "probability": 0.7463 + }, + { + "start": 5935.96, + "end": 5936.46, + "probability": 0.4914 + }, + { + "start": 5937.26, + "end": 5938.42, + "probability": 0.9927 + }, + { + "start": 5938.8, + "end": 5947.72, + "probability": 0.9982 + }, + { + "start": 5947.72, + "end": 5948.32, + "probability": 0.4347 + }, + { + "start": 5949.52, + "end": 5951.2, + "probability": 0.8365 + }, + { + "start": 5951.54, + "end": 5955.06, + "probability": 0.96 + }, + { + "start": 5955.78, + "end": 5958.44, + "probability": 0.9304 + }, + { + "start": 5959.14, + "end": 5961.56, + "probability": 0.8386 + }, + { + "start": 5962.16, + "end": 5964.56, + "probability": 0.6344 + }, + { + "start": 5964.8, + "end": 5966.54, + "probability": 0.7853 + }, + { + "start": 5967.38, + "end": 5971.1, + "probability": 0.9802 + }, + { + "start": 5971.6, + "end": 5971.78, + "probability": 0.4526 + }, + { + "start": 5971.86, + "end": 5972.72, + "probability": 0.6931 + }, + { + "start": 5973.3, + "end": 5976.38, + "probability": 0.9907 + }, + { + "start": 5976.5, + "end": 5977.42, + "probability": 0.0829 + }, + { + "start": 5977.69, + "end": 5979.6, + "probability": 0.9103 + }, + { + "start": 5979.64, + "end": 5983.62, + "probability": 0.9608 + }, + { + "start": 5983.62, + "end": 5988.1, + "probability": 0.7443 + }, + { + "start": 5988.18, + "end": 5990.06, + "probability": 0.9932 + }, + { + "start": 5990.36, + "end": 5994.34, + "probability": 0.8397 + }, + { + "start": 5995.06, + "end": 5997.94, + "probability": 0.6606 + }, + { + "start": 5997.94, + "end": 6000.68, + "probability": 0.9731 + }, + { + "start": 6001.02, + "end": 6003.34, + "probability": 0.5855 + }, + { + "start": 6003.74, + "end": 6007.36, + "probability": 0.7594 + }, + { + "start": 6007.84, + "end": 6008.26, + "probability": 0.9436 + }, + { + "start": 6009.34, + "end": 6010.98, + "probability": 0.9237 + }, + { + "start": 6011.04, + "end": 6012.35, + "probability": 0.8101 + }, + { + "start": 6013.14, + "end": 6015.24, + "probability": 0.7022 + }, + { + "start": 6015.64, + "end": 6017.22, + "probability": 0.791 + }, + { + "start": 6017.44, + "end": 6019.32, + "probability": 0.9568 + }, + { + "start": 6019.54, + "end": 6022.76, + "probability": 0.9622 + }, + { + "start": 6022.8, + "end": 6023.42, + "probability": 0.5549 + }, + { + "start": 6023.52, + "end": 6025.02, + "probability": 0.9017 + }, + { + "start": 6025.32, + "end": 6025.88, + "probability": 0.6535 + }, + { + "start": 6026.26, + "end": 6028.08, + "probability": 0.7549 + }, + { + "start": 6028.48, + "end": 6035.72, + "probability": 0.9812 + }, + { + "start": 6036.48, + "end": 6037.2, + "probability": 0.9604 + }, + { + "start": 6037.88, + "end": 6039.46, + "probability": 0.9619 + }, + { + "start": 6040.12, + "end": 6041.08, + "probability": 0.417 + }, + { + "start": 6041.46, + "end": 6042.86, + "probability": 0.8136 + }, + { + "start": 6043.54, + "end": 6044.64, + "probability": 0.9429 + }, + { + "start": 6045.52, + "end": 6047.2, + "probability": 0.7002 + }, + { + "start": 6048.44, + "end": 6049.18, + "probability": 0.9523 + }, + { + "start": 6050.14, + "end": 6051.42, + "probability": 0.9878 + }, + { + "start": 6064.74, + "end": 6067.88, + "probability": 0.6576 + }, + { + "start": 6071.36, + "end": 6074.54, + "probability": 0.6895 + }, + { + "start": 6076.22, + "end": 6079.72, + "probability": 0.9585 + }, + { + "start": 6081.7, + "end": 6084.78, + "probability": 0.9284 + }, + { + "start": 6086.3, + "end": 6089.08, + "probability": 0.9226 + }, + { + "start": 6090.16, + "end": 6092.98, + "probability": 0.8573 + }, + { + "start": 6093.7, + "end": 6093.94, + "probability": 0.7728 + }, + { + "start": 6096.06, + "end": 6100.06, + "probability": 0.9091 + }, + { + "start": 6100.72, + "end": 6102.06, + "probability": 0.9428 + }, + { + "start": 6104.1, + "end": 6108.46, + "probability": 0.9953 + }, + { + "start": 6108.58, + "end": 6110.69, + "probability": 0.6884 + }, + { + "start": 6112.54, + "end": 6113.28, + "probability": 0.8177 + }, + { + "start": 6113.9, + "end": 6116.72, + "probability": 0.9019 + }, + { + "start": 6117.74, + "end": 6119.1, + "probability": 0.752 + }, + { + "start": 6120.32, + "end": 6121.72, + "probability": 0.5818 + }, + { + "start": 6123.26, + "end": 6125.08, + "probability": 0.6343 + }, + { + "start": 6125.64, + "end": 6127.36, + "probability": 0.6036 + }, + { + "start": 6127.9, + "end": 6129.64, + "probability": 0.806 + }, + { + "start": 6130.44, + "end": 6133.4, + "probability": 0.9701 + }, + { + "start": 6134.5, + "end": 6137.32, + "probability": 0.775 + }, + { + "start": 6138.04, + "end": 6138.65, + "probability": 0.9472 + }, + { + "start": 6140.08, + "end": 6143.26, + "probability": 0.8147 + }, + { + "start": 6143.78, + "end": 6145.24, + "probability": 0.6541 + }, + { + "start": 6146.54, + "end": 6149.68, + "probability": 0.9117 + }, + { + "start": 6150.26, + "end": 6151.18, + "probability": 0.4044 + }, + { + "start": 6151.8, + "end": 6155.22, + "probability": 0.7714 + }, + { + "start": 6156.06, + "end": 6157.98, + "probability": 0.5476 + }, + { + "start": 6161.44, + "end": 6163.84, + "probability": 0.8471 + }, + { + "start": 6164.24, + "end": 6165.02, + "probability": 0.9429 + }, + { + "start": 6168.02, + "end": 6171.26, + "probability": 0.6812 + }, + { + "start": 6171.88, + "end": 6174.9, + "probability": 0.8772 + }, + { + "start": 6176.36, + "end": 6178.36, + "probability": 0.7422 + }, + { + "start": 6178.82, + "end": 6182.21, + "probability": 0.6658 + }, + { + "start": 6182.4, + "end": 6186.12, + "probability": 0.6683 + }, + { + "start": 6188.32, + "end": 6191.98, + "probability": 0.9272 + }, + { + "start": 6192.54, + "end": 6193.92, + "probability": 0.5048 + }, + { + "start": 6194.74, + "end": 6196.95, + "probability": 0.9204 + }, + { + "start": 6199.92, + "end": 6201.38, + "probability": 0.9329 + }, + { + "start": 6202.4, + "end": 6204.96, + "probability": 0.7139 + }, + { + "start": 6205.68, + "end": 6206.32, + "probability": 0.7836 + }, + { + "start": 6206.8, + "end": 6209.72, + "probability": 0.8716 + }, + { + "start": 6209.84, + "end": 6210.9, + "probability": 0.7917 + }, + { + "start": 6211.46, + "end": 6212.02, + "probability": 0.6889 + }, + { + "start": 6212.18, + "end": 6212.88, + "probability": 0.7637 + }, + { + "start": 6213.3, + "end": 6217.12, + "probability": 0.5341 + }, + { + "start": 6217.16, + "end": 6217.7, + "probability": 0.6071 + }, + { + "start": 6217.78, + "end": 6218.4, + "probability": 0.7546 + }, + { + "start": 6218.42, + "end": 6219.02, + "probability": 0.5133 + }, + { + "start": 6219.44, + "end": 6221.33, + "probability": 0.8447 + }, + { + "start": 6222.42, + "end": 6226.08, + "probability": 0.9754 + }, + { + "start": 6226.26, + "end": 6227.06, + "probability": 0.8296 + }, + { + "start": 6227.26, + "end": 6228.58, + "probability": 0.7184 + }, + { + "start": 6229.56, + "end": 6232.46, + "probability": 0.8977 + }, + { + "start": 6233.82, + "end": 6234.58, + "probability": 0.824 + }, + { + "start": 6235.8, + "end": 6239.64, + "probability": 0.9774 + }, + { + "start": 6239.76, + "end": 6240.86, + "probability": 0.9592 + }, + { + "start": 6241.62, + "end": 6243.26, + "probability": 0.9731 + }, + { + "start": 6243.48, + "end": 6244.8, + "probability": 0.8129 + }, + { + "start": 6245.08, + "end": 6248.92, + "probability": 0.7407 + }, + { + "start": 6250.56, + "end": 6250.92, + "probability": 0.3819 + }, + { + "start": 6250.92, + "end": 6257.78, + "probability": 0.8309 + }, + { + "start": 6258.08, + "end": 6258.36, + "probability": 0.6705 + }, + { + "start": 6258.92, + "end": 6260.14, + "probability": 0.7852 + }, + { + "start": 6260.75, + "end": 6264.58, + "probability": 0.818 + }, + { + "start": 6265.16, + "end": 6266.82, + "probability": 0.7493 + }, + { + "start": 6267.6, + "end": 6268.26, + "probability": 0.6117 + }, + { + "start": 6268.38, + "end": 6269.36, + "probability": 0.8605 + }, + { + "start": 6269.36, + "end": 6272.3, + "probability": 0.967 + }, + { + "start": 6273.38, + "end": 6274.6, + "probability": 0.6719 + }, + { + "start": 6275.76, + "end": 6277.78, + "probability": 0.5955 + }, + { + "start": 6278.38, + "end": 6280.64, + "probability": 0.9805 + }, + { + "start": 6280.8, + "end": 6283.02, + "probability": 0.9567 + }, + { + "start": 6283.64, + "end": 6284.08, + "probability": 0.3783 + }, + { + "start": 6284.18, + "end": 6284.72, + "probability": 0.9626 + }, + { + "start": 6286.06, + "end": 6287.22, + "probability": 0.8644 + }, + { + "start": 6290.78, + "end": 6293.0, + "probability": 0.6089 + }, + { + "start": 6293.06, + "end": 6294.82, + "probability": 0.9814 + }, + { + "start": 6297.44, + "end": 6298.0, + "probability": 0.6538 + }, + { + "start": 6298.34, + "end": 6300.7, + "probability": 0.0433 + }, + { + "start": 6301.98, + "end": 6302.52, + "probability": 0.5856 + }, + { + "start": 6303.18, + "end": 6306.03, + "probability": 0.9782 + }, + { + "start": 6306.16, + "end": 6308.06, + "probability": 0.5802 + }, + { + "start": 6310.12, + "end": 6312.32, + "probability": 0.926 + }, + { + "start": 6313.24, + "end": 6314.73, + "probability": 0.9326 + }, + { + "start": 6314.86, + "end": 6316.16, + "probability": 0.9876 + }, + { + "start": 6316.94, + "end": 6318.1, + "probability": 0.7403 + }, + { + "start": 6318.18, + "end": 6319.36, + "probability": 0.9307 + }, + { + "start": 6319.42, + "end": 6321.0, + "probability": 0.9927 + }, + { + "start": 6321.64, + "end": 6322.76, + "probability": 0.952 + }, + { + "start": 6323.06, + "end": 6325.0, + "probability": 0.4641 + }, + { + "start": 6325.78, + "end": 6329.38, + "probability": 0.9497 + }, + { + "start": 6330.28, + "end": 6332.42, + "probability": 0.9751 + }, + { + "start": 6333.16, + "end": 6336.02, + "probability": 0.9547 + }, + { + "start": 6336.12, + "end": 6337.94, + "probability": 0.9771 + }, + { + "start": 6337.94, + "end": 6340.66, + "probability": 0.6873 + }, + { + "start": 6340.84, + "end": 6341.26, + "probability": 0.7747 + }, + { + "start": 6341.4, + "end": 6341.9, + "probability": 0.9781 + }, + { + "start": 6342.04, + "end": 6343.16, + "probability": 0.9618 + }, + { + "start": 6344.14, + "end": 6346.68, + "probability": 0.7899 + }, + { + "start": 6346.96, + "end": 6349.62, + "probability": 0.9469 + }, + { + "start": 6350.16, + "end": 6350.78, + "probability": 0.6851 + }, + { + "start": 6351.08, + "end": 6353.86, + "probability": 0.9846 + }, + { + "start": 6355.04, + "end": 6356.02, + "probability": 0.5757 + }, + { + "start": 6356.12, + "end": 6360.54, + "probability": 0.8659 + }, + { + "start": 6360.72, + "end": 6361.98, + "probability": 0.9059 + }, + { + "start": 6363.0, + "end": 6367.24, + "probability": 0.9194 + }, + { + "start": 6368.24, + "end": 6372.18, + "probability": 0.7282 + }, + { + "start": 6372.3, + "end": 6373.26, + "probability": 0.8202 + }, + { + "start": 6373.28, + "end": 6375.56, + "probability": 0.957 + }, + { + "start": 6376.38, + "end": 6376.74, + "probability": 0.99 + }, + { + "start": 6377.88, + "end": 6378.14, + "probability": 0.5729 + }, + { + "start": 6378.38, + "end": 6383.14, + "probability": 0.9756 + }, + { + "start": 6383.74, + "end": 6384.36, + "probability": 0.6507 + }, + { + "start": 6384.42, + "end": 6384.68, + "probability": 0.5388 + }, + { + "start": 6384.82, + "end": 6385.92, + "probability": 0.4981 + }, + { + "start": 6386.02, + "end": 6389.14, + "probability": 0.9653 + }, + { + "start": 6389.14, + "end": 6391.44, + "probability": 0.9927 + }, + { + "start": 6393.02, + "end": 6393.94, + "probability": 0.8861 + }, + { + "start": 6394.7, + "end": 6395.1, + "probability": 0.6554 + }, + { + "start": 6395.2, + "end": 6399.16, + "probability": 0.7609 + }, + { + "start": 6399.9, + "end": 6402.55, + "probability": 0.8179 + }, + { + "start": 6404.1, + "end": 6407.32, + "probability": 0.9409 + }, + { + "start": 6407.96, + "end": 6411.48, + "probability": 0.9779 + }, + { + "start": 6411.56, + "end": 6414.34, + "probability": 0.8017 + }, + { + "start": 6414.36, + "end": 6415.22, + "probability": 0.6105 + }, + { + "start": 6415.98, + "end": 6417.2, + "probability": 0.8159 + }, + { + "start": 6418.24, + "end": 6423.6, + "probability": 0.9829 + }, + { + "start": 6425.74, + "end": 6427.1, + "probability": 0.9451 + }, + { + "start": 6427.72, + "end": 6428.26, + "probability": 0.8695 + }, + { + "start": 6429.22, + "end": 6431.24, + "probability": 0.5692 + }, + { + "start": 6432.24, + "end": 6434.06, + "probability": 0.9694 + }, + { + "start": 6434.74, + "end": 6437.06, + "probability": 0.9597 + }, + { + "start": 6449.0, + "end": 6449.98, + "probability": 0.221 + }, + { + "start": 6449.98, + "end": 6449.98, + "probability": 0.488 + }, + { + "start": 6449.98, + "end": 6449.98, + "probability": 0.115 + }, + { + "start": 6449.98, + "end": 6449.98, + "probability": 0.1684 + }, + { + "start": 6449.98, + "end": 6451.07, + "probability": 0.4248 + }, + { + "start": 6451.52, + "end": 6452.38, + "probability": 0.95 + }, + { + "start": 6452.5, + "end": 6453.44, + "probability": 0.6538 + }, + { + "start": 6453.96, + "end": 6454.38, + "probability": 0.6029 + }, + { + "start": 6454.58, + "end": 6456.8, + "probability": 0.505 + }, + { + "start": 6457.3, + "end": 6457.64, + "probability": 0.3835 + }, + { + "start": 6457.68, + "end": 6458.44, + "probability": 0.8218 + }, + { + "start": 6458.88, + "end": 6460.32, + "probability": 0.5168 + }, + { + "start": 6461.24, + "end": 6462.36, + "probability": 0.9821 + }, + { + "start": 6463.28, + "end": 6466.44, + "probability": 0.985 + }, + { + "start": 6467.02, + "end": 6467.8, + "probability": 0.4522 + }, + { + "start": 6467.92, + "end": 6468.32, + "probability": 0.4609 + }, + { + "start": 6468.4, + "end": 6468.62, + "probability": 0.6866 + }, + { + "start": 6468.8, + "end": 6470.83, + "probability": 0.9829 + }, + { + "start": 6471.68, + "end": 6472.32, + "probability": 0.8454 + }, + { + "start": 6473.26, + "end": 6474.26, + "probability": 0.9648 + }, + { + "start": 6475.62, + "end": 6477.92, + "probability": 0.9921 + }, + { + "start": 6478.58, + "end": 6480.38, + "probability": 0.9771 + }, + { + "start": 6481.16, + "end": 6484.82, + "probability": 0.9933 + }, + { + "start": 6485.08, + "end": 6485.38, + "probability": 0.6967 + }, + { + "start": 6485.5, + "end": 6485.6, + "probability": 0.8566 + }, + { + "start": 6485.7, + "end": 6489.93, + "probability": 0.9424 + }, + { + "start": 6490.96, + "end": 6492.7, + "probability": 0.9519 + }, + { + "start": 6493.3, + "end": 6496.04, + "probability": 0.832 + }, + { + "start": 6496.58, + "end": 6499.72, + "probability": 0.7389 + }, + { + "start": 6499.8, + "end": 6500.94, + "probability": 0.8756 + }, + { + "start": 6501.3, + "end": 6503.02, + "probability": 0.946 + }, + { + "start": 6503.4, + "end": 6504.72, + "probability": 0.9135 + }, + { + "start": 6505.34, + "end": 6507.96, + "probability": 0.9705 + }, + { + "start": 6507.96, + "end": 6510.74, + "probability": 0.962 + }, + { + "start": 6510.96, + "end": 6512.76, + "probability": 0.9175 + }, + { + "start": 6513.16, + "end": 6513.36, + "probability": 0.7992 + }, + { + "start": 6513.72, + "end": 6514.3, + "probability": 0.7914 + }, + { + "start": 6515.12, + "end": 6518.56, + "probability": 0.7498 + }, + { + "start": 6518.86, + "end": 6519.6, + "probability": 0.71 + }, + { + "start": 6522.09, + "end": 6523.64, + "probability": 0.7076 + }, + { + "start": 6523.94, + "end": 6524.96, + "probability": 0.8781 + }, + { + "start": 6527.53, + "end": 6533.9, + "probability": 0.6453 + }, + { + "start": 6534.44, + "end": 6536.04, + "probability": 0.5226 + }, + { + "start": 6549.2, + "end": 6551.94, + "probability": 0.6215 + }, + { + "start": 6553.7, + "end": 6555.14, + "probability": 0.713 + }, + { + "start": 6555.4, + "end": 6562.3, + "probability": 0.9932 + }, + { + "start": 6563.78, + "end": 6566.84, + "probability": 0.9653 + }, + { + "start": 6568.04, + "end": 6571.76, + "probability": 0.957 + }, + { + "start": 6572.08, + "end": 6573.02, + "probability": 0.9207 + }, + { + "start": 6573.98, + "end": 6580.08, + "probability": 0.9594 + }, + { + "start": 6581.58, + "end": 6583.72, + "probability": 0.951 + }, + { + "start": 6584.24, + "end": 6585.14, + "probability": 0.7235 + }, + { + "start": 6586.94, + "end": 6591.42, + "probability": 0.9944 + }, + { + "start": 6593.1, + "end": 6598.64, + "probability": 0.9041 + }, + { + "start": 6600.24, + "end": 6603.48, + "probability": 0.9954 + }, + { + "start": 6607.26, + "end": 6608.08, + "probability": 0.8482 + }, + { + "start": 6609.4, + "end": 6610.44, + "probability": 0.9977 + }, + { + "start": 6611.2, + "end": 6612.44, + "probability": 0.9089 + }, + { + "start": 6613.08, + "end": 6615.72, + "probability": 0.9362 + }, + { + "start": 6616.68, + "end": 6618.84, + "probability": 0.9381 + }, + { + "start": 6619.44, + "end": 6624.0, + "probability": 0.9656 + }, + { + "start": 6624.94, + "end": 6625.56, + "probability": 0.5826 + }, + { + "start": 6626.08, + "end": 6630.58, + "probability": 0.9652 + }, + { + "start": 6630.58, + "end": 6636.44, + "probability": 0.9927 + }, + { + "start": 6637.08, + "end": 6638.5, + "probability": 0.796 + }, + { + "start": 6639.18, + "end": 6640.88, + "probability": 0.8091 + }, + { + "start": 6641.6, + "end": 6643.74, + "probability": 0.8501 + }, + { + "start": 6644.7, + "end": 6646.14, + "probability": 0.3505 + }, + { + "start": 6647.08, + "end": 6651.36, + "probability": 0.9801 + }, + { + "start": 6652.54, + "end": 6653.24, + "probability": 0.6271 + }, + { + "start": 6654.56, + "end": 6656.44, + "probability": 0.9701 + }, + { + "start": 6657.62, + "end": 6662.88, + "probability": 0.9899 + }, + { + "start": 6663.42, + "end": 6666.88, + "probability": 0.9851 + }, + { + "start": 6667.9, + "end": 6669.3, + "probability": 0.8778 + }, + { + "start": 6669.68, + "end": 6674.7, + "probability": 0.9849 + }, + { + "start": 6676.12, + "end": 6678.56, + "probability": 0.5847 + }, + { + "start": 6679.92, + "end": 6683.28, + "probability": 0.9136 + }, + { + "start": 6683.88, + "end": 6685.88, + "probability": 0.9628 + }, + { + "start": 6686.42, + "end": 6688.82, + "probability": 0.9706 + }, + { + "start": 6690.4, + "end": 6692.26, + "probability": 0.9922 + }, + { + "start": 6692.84, + "end": 6694.54, + "probability": 0.9393 + }, + { + "start": 6695.64, + "end": 6697.27, + "probability": 0.8752 + }, + { + "start": 6697.96, + "end": 6700.18, + "probability": 0.8908 + }, + { + "start": 6700.72, + "end": 6703.78, + "probability": 0.9927 + }, + { + "start": 6703.86, + "end": 6705.34, + "probability": 0.9633 + }, + { + "start": 6705.48, + "end": 6707.44, + "probability": 0.8863 + }, + { + "start": 6709.46, + "end": 6714.36, + "probability": 0.9907 + }, + { + "start": 6715.26, + "end": 6719.72, + "probability": 0.9305 + }, + { + "start": 6720.54, + "end": 6723.9, + "probability": 0.9922 + }, + { + "start": 6724.9, + "end": 6727.73, + "probability": 0.9984 + }, + { + "start": 6728.7, + "end": 6732.45, + "probability": 0.9264 + }, + { + "start": 6733.46, + "end": 6736.58, + "probability": 0.9862 + }, + { + "start": 6738.18, + "end": 6740.74, + "probability": 0.9664 + }, + { + "start": 6740.96, + "end": 6744.0, + "probability": 0.7933 + }, + { + "start": 6744.44, + "end": 6744.44, + "probability": 0.3859 + }, + { + "start": 6744.44, + "end": 6744.96, + "probability": 0.7082 + }, + { + "start": 6746.9, + "end": 6750.56, + "probability": 0.9979 + }, + { + "start": 6750.58, + "end": 6752.26, + "probability": 0.9561 + }, + { + "start": 6752.86, + "end": 6754.74, + "probability": 0.8765 + }, + { + "start": 6755.18, + "end": 6757.74, + "probability": 0.9829 + }, + { + "start": 6758.82, + "end": 6759.88, + "probability": 0.5019 + }, + { + "start": 6760.36, + "end": 6760.96, + "probability": 0.6991 + }, + { + "start": 6761.8, + "end": 6766.26, + "probability": 0.87 + }, + { + "start": 6767.06, + "end": 6771.4, + "probability": 0.9644 + }, + { + "start": 6771.98, + "end": 6774.8, + "probability": 0.9805 + }, + { + "start": 6775.26, + "end": 6777.04, + "probability": 0.8918 + }, + { + "start": 6777.24, + "end": 6777.86, + "probability": 0.8192 + }, + { + "start": 6778.2, + "end": 6780.94, + "probability": 0.6174 + }, + { + "start": 6781.42, + "end": 6784.96, + "probability": 0.9214 + }, + { + "start": 6785.42, + "end": 6786.68, + "probability": 0.5697 + }, + { + "start": 6789.34, + "end": 6790.74, + "probability": 0.7771 + }, + { + "start": 6791.1, + "end": 6795.51, + "probability": 0.9721 + }, + { + "start": 6796.18, + "end": 6797.58, + "probability": 0.9768 + }, + { + "start": 6797.86, + "end": 6799.66, + "probability": 0.9883 + }, + { + "start": 6800.26, + "end": 6801.36, + "probability": 0.4217 + }, + { + "start": 6801.78, + "end": 6803.62, + "probability": 0.9918 + }, + { + "start": 6803.98, + "end": 6804.12, + "probability": 0.3327 + }, + { + "start": 6804.12, + "end": 6806.7, + "probability": 0.8373 + }, + { + "start": 6807.04, + "end": 6807.64, + "probability": 0.4296 + }, + { + "start": 6807.84, + "end": 6809.46, + "probability": 0.5744 + }, + { + "start": 6809.52, + "end": 6811.76, + "probability": 0.7371 + }, + { + "start": 6814.79, + "end": 6815.88, + "probability": 0.331 + }, + { + "start": 6815.88, + "end": 6815.88, + "probability": 0.1218 + }, + { + "start": 6815.88, + "end": 6816.16, + "probability": 0.2011 + }, + { + "start": 6816.52, + "end": 6816.9, + "probability": 0.4416 + }, + { + "start": 6817.62, + "end": 6820.3, + "probability": 0.8429 + }, + { + "start": 6824.07, + "end": 6827.84, + "probability": 0.674 + }, + { + "start": 6828.7, + "end": 6829.36, + "probability": 0.5682 + }, + { + "start": 6831.44, + "end": 6834.36, + "probability": 0.9863 + }, + { + "start": 6835.42, + "end": 6837.48, + "probability": 0.7282 + }, + { + "start": 6839.44, + "end": 6839.86, + "probability": 0.5051 + }, + { + "start": 6840.94, + "end": 6841.9, + "probability": 0.631 + }, + { + "start": 6843.26, + "end": 6844.74, + "probability": 0.5898 + }, + { + "start": 6845.64, + "end": 6846.78, + "probability": 0.8735 + }, + { + "start": 6848.76, + "end": 6849.86, + "probability": 0.855 + }, + { + "start": 6849.9, + "end": 6851.66, + "probability": 0.6418 + }, + { + "start": 6852.04, + "end": 6853.72, + "probability": 0.9484 + }, + { + "start": 6855.42, + "end": 6858.48, + "probability": 0.9914 + }, + { + "start": 6860.26, + "end": 6864.92, + "probability": 0.7993 + }, + { + "start": 6867.02, + "end": 6869.48, + "probability": 0.8423 + }, + { + "start": 6870.96, + "end": 6873.14, + "probability": 0.8847 + }, + { + "start": 6876.08, + "end": 6877.7, + "probability": 0.6246 + }, + { + "start": 6879.84, + "end": 6882.3, + "probability": 0.8983 + }, + { + "start": 6884.26, + "end": 6886.86, + "probability": 0.7635 + }, + { + "start": 6889.36, + "end": 6891.04, + "probability": 0.994 + }, + { + "start": 6892.22, + "end": 6893.26, + "probability": 0.7811 + }, + { + "start": 6895.24, + "end": 6898.4, + "probability": 0.7266 + }, + { + "start": 6899.04, + "end": 6901.34, + "probability": 0.5507 + }, + { + "start": 6904.6, + "end": 6907.22, + "probability": 0.9189 + }, + { + "start": 6907.88, + "end": 6908.95, + "probability": 0.6326 + }, + { + "start": 6910.48, + "end": 6911.88, + "probability": 0.74 + }, + { + "start": 6912.6, + "end": 6918.72, + "probability": 0.7401 + }, + { + "start": 6919.92, + "end": 6920.7, + "probability": 0.3376 + }, + { + "start": 6921.94, + "end": 6925.28, + "probability": 0.7609 + }, + { + "start": 6927.76, + "end": 6931.94, + "probability": 0.9915 + }, + { + "start": 6933.38, + "end": 6935.5, + "probability": 0.9373 + }, + { + "start": 6937.42, + "end": 6942.12, + "probability": 0.9912 + }, + { + "start": 6945.7, + "end": 6948.02, + "probability": 0.8072 + }, + { + "start": 6950.44, + "end": 6956.96, + "probability": 0.9141 + }, + { + "start": 6957.3, + "end": 6958.78, + "probability": 0.6978 + }, + { + "start": 6959.12, + "end": 6960.84, + "probability": 0.556 + }, + { + "start": 6962.44, + "end": 6963.14, + "probability": 0.4585 + }, + { + "start": 6963.76, + "end": 6967.84, + "probability": 0.9235 + }, + { + "start": 6968.94, + "end": 6976.3, + "probability": 0.9948 + }, + { + "start": 6978.24, + "end": 6979.62, + "probability": 0.8599 + }, + { + "start": 6979.84, + "end": 6980.94, + "probability": 0.8866 + }, + { + "start": 6981.16, + "end": 6983.14, + "probability": 0.6182 + }, + { + "start": 6983.3, + "end": 6985.12, + "probability": 0.6939 + }, + { + "start": 6985.82, + "end": 6986.96, + "probability": 0.7042 + }, + { + "start": 6989.34, + "end": 6990.42, + "probability": 0.7004 + }, + { + "start": 6991.6, + "end": 6993.14, + "probability": 0.4846 + }, + { + "start": 6993.94, + "end": 6994.98, + "probability": 0.6449 + }, + { + "start": 6996.28, + "end": 6996.79, + "probability": 0.6841 + }, + { + "start": 6997.8, + "end": 6999.24, + "probability": 0.8215 + }, + { + "start": 6999.64, + "end": 7005.2, + "probability": 0.8284 + }, + { + "start": 7007.22, + "end": 7010.52, + "probability": 0.7829 + }, + { + "start": 7012.6, + "end": 7015.6, + "probability": 0.9199 + }, + { + "start": 7015.62, + "end": 7017.2, + "probability": 0.4401 + }, + { + "start": 7017.84, + "end": 7019.42, + "probability": 0.4623 + }, + { + "start": 7020.4, + "end": 7022.86, + "probability": 0.6718 + }, + { + "start": 7023.68, + "end": 7024.26, + "probability": 0.5759 + }, + { + "start": 7024.26, + "end": 7026.94, + "probability": 0.8533 + }, + { + "start": 7028.9, + "end": 7030.46, + "probability": 0.0298 + }, + { + "start": 7034.4, + "end": 7035.32, + "probability": 0.1695 + }, + { + "start": 7035.7, + "end": 7037.36, + "probability": 0.4761 + }, + { + "start": 7037.52, + "end": 7039.79, + "probability": 0.5008 + }, + { + "start": 7040.4, + "end": 7041.7, + "probability": 0.8872 + }, + { + "start": 7042.06, + "end": 7043.3, + "probability": 0.7278 + }, + { + "start": 7044.4, + "end": 7044.8, + "probability": 0.4691 + }, + { + "start": 7044.82, + "end": 7046.12, + "probability": 0.7247 + }, + { + "start": 7046.22, + "end": 7047.7, + "probability": 0.9731 + }, + { + "start": 7048.46, + "end": 7048.6, + "probability": 0.5053 + }, + { + "start": 7049.84, + "end": 7052.43, + "probability": 0.8106 + }, + { + "start": 7055.16, + "end": 7058.68, + "probability": 0.6445 + }, + { + "start": 7059.8, + "end": 7068.86, + "probability": 0.9625 + }, + { + "start": 7070.32, + "end": 7070.88, + "probability": 0.3164 + }, + { + "start": 7071.82, + "end": 7074.16, + "probability": 0.785 + }, + { + "start": 7075.02, + "end": 7076.82, + "probability": 0.8512 + }, + { + "start": 7078.08, + "end": 7082.16, + "probability": 0.8761 + }, + { + "start": 7083.16, + "end": 7087.14, + "probability": 0.9824 + }, + { + "start": 7087.3, + "end": 7090.1, + "probability": 0.9897 + }, + { + "start": 7090.13, + "end": 7095.44, + "probability": 0.749 + }, + { + "start": 7096.32, + "end": 7097.5, + "probability": 0.8406 + }, + { + "start": 7098.72, + "end": 7103.36, + "probability": 0.9835 + }, + { + "start": 7103.54, + "end": 7106.02, + "probability": 0.8506 + }, + { + "start": 7106.34, + "end": 7107.12, + "probability": 0.7482 + }, + { + "start": 7107.54, + "end": 7110.08, + "probability": 0.8721 + }, + { + "start": 7110.74, + "end": 7115.36, + "probability": 0.9839 + }, + { + "start": 7116.37, + "end": 7121.34, + "probability": 0.9531 + }, + { + "start": 7122.08, + "end": 7123.74, + "probability": 0.7212 + }, + { + "start": 7124.28, + "end": 7126.88, + "probability": 0.9833 + }, + { + "start": 7127.3, + "end": 7130.82, + "probability": 0.9953 + }, + { + "start": 7131.48, + "end": 7135.2, + "probability": 0.8916 + }, + { + "start": 7136.8, + "end": 7142.38, + "probability": 0.8111 + }, + { + "start": 7142.52, + "end": 7145.26, + "probability": 0.8505 + }, + { + "start": 7145.38, + "end": 7146.64, + "probability": 0.961 + }, + { + "start": 7147.06, + "end": 7148.92, + "probability": 0.9748 + }, + { + "start": 7149.42, + "end": 7150.76, + "probability": 0.8175 + }, + { + "start": 7151.14, + "end": 7152.54, + "probability": 0.9427 + }, + { + "start": 7152.96, + "end": 7155.14, + "probability": 0.9839 + }, + { + "start": 7155.2, + "end": 7160.9, + "probability": 0.9949 + }, + { + "start": 7161.14, + "end": 7165.49, + "probability": 0.9708 + }, + { + "start": 7166.52, + "end": 7169.58, + "probability": 0.8378 + }, + { + "start": 7169.96, + "end": 7173.56, + "probability": 0.9618 + }, + { + "start": 7174.24, + "end": 7176.58, + "probability": 0.7764 + }, + { + "start": 7176.84, + "end": 7182.84, + "probability": 0.9001 + }, + { + "start": 7183.26, + "end": 7186.58, + "probability": 0.7859 + }, + { + "start": 7187.52, + "end": 7189.58, + "probability": 0.8961 + }, + { + "start": 7190.14, + "end": 7197.52, + "probability": 0.9775 + }, + { + "start": 7197.86, + "end": 7199.6, + "probability": 0.6986 + }, + { + "start": 7200.0, + "end": 7204.14, + "probability": 0.8745 + }, + { + "start": 7204.22, + "end": 7206.64, + "probability": 0.7663 + }, + { + "start": 7206.74, + "end": 7207.22, + "probability": 0.3686 + }, + { + "start": 7207.44, + "end": 7209.38, + "probability": 0.9365 + }, + { + "start": 7209.84, + "end": 7214.32, + "probability": 0.9344 + }, + { + "start": 7214.54, + "end": 7215.36, + "probability": 0.551 + }, + { + "start": 7215.78, + "end": 7217.38, + "probability": 0.9362 + }, + { + "start": 7217.88, + "end": 7222.54, + "probability": 0.64 + }, + { + "start": 7222.54, + "end": 7226.74, + "probability": 0.9941 + }, + { + "start": 7227.22, + "end": 7230.2, + "probability": 0.9616 + }, + { + "start": 7230.28, + "end": 7233.78, + "probability": 0.8368 + }, + { + "start": 7234.14, + "end": 7234.84, + "probability": 0.0781 + }, + { + "start": 7234.84, + "end": 7236.94, + "probability": 0.4626 + }, + { + "start": 7237.06, + "end": 7238.32, + "probability": 0.8818 + }, + { + "start": 7238.72, + "end": 7242.54, + "probability": 0.9708 + }, + { + "start": 7242.68, + "end": 7245.48, + "probability": 0.9907 + }, + { + "start": 7245.52, + "end": 7247.42, + "probability": 0.9121 + }, + { + "start": 7247.5, + "end": 7251.44, + "probability": 0.9945 + }, + { + "start": 7251.88, + "end": 7253.6, + "probability": 0.634 + }, + { + "start": 7253.76, + "end": 7257.64, + "probability": 0.9928 + }, + { + "start": 7257.94, + "end": 7259.78, + "probability": 0.8516 + }, + { + "start": 7259.94, + "end": 7263.64, + "probability": 0.9924 + }, + { + "start": 7264.06, + "end": 7266.05, + "probability": 0.5739 + }, + { + "start": 7266.56, + "end": 7267.52, + "probability": 0.7053 + }, + { + "start": 7267.86, + "end": 7269.1, + "probability": 0.9433 + }, + { + "start": 7269.56, + "end": 7274.1, + "probability": 0.968 + }, + { + "start": 7274.38, + "end": 7277.58, + "probability": 0.9881 + }, + { + "start": 7277.58, + "end": 7281.26, + "probability": 0.991 + }, + { + "start": 7281.48, + "end": 7281.5, + "probability": 0.2344 + }, + { + "start": 7284.04, + "end": 7285.0, + "probability": 0.4906 + }, + { + "start": 7285.0, + "end": 7285.64, + "probability": 0.6826 + }, + { + "start": 7285.82, + "end": 7289.9, + "probability": 0.9677 + }, + { + "start": 7289.9, + "end": 7292.38, + "probability": 0.9985 + }, + { + "start": 7292.74, + "end": 7295.86, + "probability": 0.6533 + }, + { + "start": 7296.78, + "end": 7297.52, + "probability": 0.6028 + }, + { + "start": 7299.76, + "end": 7301.36, + "probability": 0.7148 + }, + { + "start": 7301.38, + "end": 7302.6, + "probability": 0.5816 + }, + { + "start": 7302.78, + "end": 7303.32, + "probability": 0.4194 + }, + { + "start": 7303.32, + "end": 7304.1, + "probability": 0.7038 + }, + { + "start": 7315.4, + "end": 7316.68, + "probability": 0.2969 + }, + { + "start": 7317.22, + "end": 7319.06, + "probability": 0.7611 + }, + { + "start": 7319.92, + "end": 7321.92, + "probability": 0.448 + }, + { + "start": 7321.98, + "end": 7324.02, + "probability": 0.7984 + }, + { + "start": 7324.82, + "end": 7329.8, + "probability": 0.9385 + }, + { + "start": 7330.62, + "end": 7334.31, + "probability": 0.8309 + }, + { + "start": 7335.18, + "end": 7337.06, + "probability": 0.8491 + }, + { + "start": 7338.0, + "end": 7339.4, + "probability": 0.7661 + }, + { + "start": 7339.7, + "end": 7343.02, + "probability": 0.5835 + }, + { + "start": 7343.58, + "end": 7345.26, + "probability": 0.057 + }, + { + "start": 7345.56, + "end": 7346.28, + "probability": 0.0274 + }, + { + "start": 7346.54, + "end": 7349.86, + "probability": 0.2 + }, + { + "start": 7349.86, + "end": 7356.46, + "probability": 0.9539 + }, + { + "start": 7356.54, + "end": 7359.98, + "probability": 0.4968 + }, + { + "start": 7361.16, + "end": 7363.92, + "probability": 0.9611 + }, + { + "start": 7364.12, + "end": 7364.72, + "probability": 0.6871 + }, + { + "start": 7364.92, + "end": 7366.28, + "probability": 0.9806 + }, + { + "start": 7367.0, + "end": 7371.8, + "probability": 0.9924 + }, + { + "start": 7371.98, + "end": 7372.62, + "probability": 0.8401 + }, + { + "start": 7373.78, + "end": 7379.32, + "probability": 0.9552 + }, + { + "start": 7381.56, + "end": 7386.74, + "probability": 0.774 + }, + { + "start": 7387.46, + "end": 7392.94, + "probability": 0.9542 + }, + { + "start": 7394.9, + "end": 7396.46, + "probability": 0.7129 + }, + { + "start": 7399.3, + "end": 7400.3, + "probability": 0.6771 + }, + { + "start": 7401.0, + "end": 7406.1, + "probability": 0.9854 + }, + { + "start": 7406.9, + "end": 7407.96, + "probability": 0.8894 + }, + { + "start": 7408.64, + "end": 7412.6, + "probability": 0.9638 + }, + { + "start": 7412.92, + "end": 7414.74, + "probability": 0.8536 + }, + { + "start": 7415.54, + "end": 7420.04, + "probability": 0.9707 + }, + { + "start": 7420.04, + "end": 7422.5, + "probability": 0.9094 + }, + { + "start": 7423.68, + "end": 7430.98, + "probability": 0.9672 + }, + { + "start": 7433.52, + "end": 7437.08, + "probability": 0.9822 + }, + { + "start": 7438.54, + "end": 7440.54, + "probability": 0.9722 + }, + { + "start": 7442.34, + "end": 7446.1, + "probability": 0.8977 + }, + { + "start": 7447.28, + "end": 7452.0, + "probability": 0.8795 + }, + { + "start": 7454.06, + "end": 7457.58, + "probability": 0.9756 + }, + { + "start": 7458.82, + "end": 7463.86, + "probability": 0.9761 + }, + { + "start": 7465.1, + "end": 7470.14, + "probability": 0.8847 + }, + { + "start": 7470.92, + "end": 7472.16, + "probability": 0.7551 + }, + { + "start": 7472.18, + "end": 7472.54, + "probability": 0.2307 + }, + { + "start": 7472.66, + "end": 7475.46, + "probability": 0.7429 + }, + { + "start": 7476.5, + "end": 7480.04, + "probability": 0.9227 + }, + { + "start": 7481.34, + "end": 7486.7, + "probability": 0.7606 + }, + { + "start": 7487.5, + "end": 7492.36, + "probability": 0.9024 + }, + { + "start": 7492.36, + "end": 7495.86, + "probability": 0.9971 + }, + { + "start": 7496.3, + "end": 7500.04, + "probability": 0.9768 + }, + { + "start": 7500.66, + "end": 7505.86, + "probability": 0.9956 + }, + { + "start": 7506.24, + "end": 7506.7, + "probability": 0.6708 + }, + { + "start": 7506.94, + "end": 7507.56, + "probability": 0.7172 + }, + { + "start": 7508.26, + "end": 7510.72, + "probability": 0.9258 + }, + { + "start": 7511.24, + "end": 7513.2, + "probability": 0.7711 + }, + { + "start": 7514.08, + "end": 7518.0, + "probability": 0.9538 + }, + { + "start": 7518.62, + "end": 7519.48, + "probability": 0.4847 + }, + { + "start": 7520.0, + "end": 7524.74, + "probability": 0.9447 + }, + { + "start": 7525.62, + "end": 7529.22, + "probability": 0.8411 + }, + { + "start": 7530.24, + "end": 7532.86, + "probability": 0.9498 + }, + { + "start": 7534.44, + "end": 7540.96, + "probability": 0.9766 + }, + { + "start": 7540.96, + "end": 7548.22, + "probability": 0.9624 + }, + { + "start": 7548.94, + "end": 7556.64, + "probability": 0.9656 + }, + { + "start": 7556.64, + "end": 7561.68, + "probability": 0.9959 + }, + { + "start": 7561.96, + "end": 7562.18, + "probability": 0.717 + }, + { + "start": 7563.22, + "end": 7563.78, + "probability": 0.612 + }, + { + "start": 7564.0, + "end": 7565.42, + "probability": 0.5182 + }, + { + "start": 7567.16, + "end": 7568.1, + "probability": 0.4996 + }, + { + "start": 7568.34, + "end": 7568.96, + "probability": 0.0008 + }, + { + "start": 7570.64, + "end": 7572.8, + "probability": 0.0602 + }, + { + "start": 7573.14, + "end": 7574.4, + "probability": 0.7612 + }, + { + "start": 7580.22, + "end": 7580.64, + "probability": 0.3237 + }, + { + "start": 7583.64, + "end": 7584.68, + "probability": 0.5564 + }, + { + "start": 7585.02, + "end": 7586.2, + "probability": 0.9338 + }, + { + "start": 7586.5, + "end": 7587.42, + "probability": 0.9793 + }, + { + "start": 7587.42, + "end": 7588.44, + "probability": 0.9542 + }, + { + "start": 7589.28, + "end": 7593.0, + "probability": 0.7272 + }, + { + "start": 7594.2, + "end": 7598.74, + "probability": 0.9012 + }, + { + "start": 7600.06, + "end": 7601.54, + "probability": 0.9106 + }, + { + "start": 7602.1, + "end": 7607.26, + "probability": 0.9802 + }, + { + "start": 7607.68, + "end": 7610.74, + "probability": 0.9977 + }, + { + "start": 7611.96, + "end": 7613.36, + "probability": 0.9789 + }, + { + "start": 7614.76, + "end": 7620.54, + "probability": 0.9263 + }, + { + "start": 7620.54, + "end": 7624.88, + "probability": 0.9972 + }, + { + "start": 7626.04, + "end": 7632.6, + "probability": 0.9441 + }, + { + "start": 7633.18, + "end": 7634.52, + "probability": 0.9362 + }, + { + "start": 7636.22, + "end": 7637.58, + "probability": 0.7549 + }, + { + "start": 7638.04, + "end": 7641.62, + "probability": 0.9983 + }, + { + "start": 7642.14, + "end": 7642.92, + "probability": 0.9868 + }, + { + "start": 7643.6, + "end": 7646.62, + "probability": 0.6518 + }, + { + "start": 7647.7, + "end": 7649.9, + "probability": 0.9929 + }, + { + "start": 7651.04, + "end": 7652.36, + "probability": 0.9932 + }, + { + "start": 7654.26, + "end": 7658.74, + "probability": 0.9789 + }, + { + "start": 7658.96, + "end": 7659.52, + "probability": 0.791 + }, + { + "start": 7659.9, + "end": 7663.28, + "probability": 0.9892 + }, + { + "start": 7664.08, + "end": 7666.54, + "probability": 0.8203 + }, + { + "start": 7667.14, + "end": 7670.06, + "probability": 0.5588 + }, + { + "start": 7670.82, + "end": 7671.88, + "probability": 0.7401 + }, + { + "start": 7672.7, + "end": 7679.66, + "probability": 0.9845 + }, + { + "start": 7679.72, + "end": 7680.72, + "probability": 0.5311 + }, + { + "start": 7681.28, + "end": 7683.66, + "probability": 0.9951 + }, + { + "start": 7684.18, + "end": 7685.58, + "probability": 0.7632 + }, + { + "start": 7685.94, + "end": 7687.0, + "probability": 0.9927 + }, + { + "start": 7687.96, + "end": 7689.26, + "probability": 0.9603 + }, + { + "start": 7689.46, + "end": 7690.28, + "probability": 0.9627 + }, + { + "start": 7690.42, + "end": 7691.72, + "probability": 0.789 + }, + { + "start": 7691.72, + "end": 7692.76, + "probability": 0.8059 + }, + { + "start": 7693.06, + "end": 7693.98, + "probability": 0.9761 + }, + { + "start": 7697.16, + "end": 7698.16, + "probability": 0.5182 + }, + { + "start": 7702.28, + "end": 7705.78, + "probability": 0.7972 + }, + { + "start": 7707.26, + "end": 7709.42, + "probability": 0.9414 + }, + { + "start": 7709.88, + "end": 7713.1, + "probability": 0.9875 + }, + { + "start": 7714.1, + "end": 7716.1, + "probability": 0.9808 + }, + { + "start": 7716.78, + "end": 7718.94, + "probability": 0.7611 + }, + { + "start": 7719.96, + "end": 7726.08, + "probability": 0.9966 + }, + { + "start": 7726.94, + "end": 7730.06, + "probability": 0.9012 + }, + { + "start": 7731.0, + "end": 7733.72, + "probability": 0.7515 + }, + { + "start": 7734.46, + "end": 7737.34, + "probability": 0.8556 + }, + { + "start": 7737.92, + "end": 7744.4, + "probability": 0.9956 + }, + { + "start": 7744.96, + "end": 7751.16, + "probability": 0.9453 + }, + { + "start": 7751.68, + "end": 7753.24, + "probability": 0.9683 + }, + { + "start": 7753.6, + "end": 7757.62, + "probability": 0.5102 + }, + { + "start": 7758.26, + "end": 7760.84, + "probability": 0.9055 + }, + { + "start": 7761.28, + "end": 7765.52, + "probability": 0.8184 + }, + { + "start": 7765.52, + "end": 7771.38, + "probability": 0.9877 + }, + { + "start": 7771.92, + "end": 7772.68, + "probability": 0.7172 + }, + { + "start": 7772.8, + "end": 7773.94, + "probability": 0.3242 + }, + { + "start": 7774.42, + "end": 7780.44, + "probability": 0.9872 + }, + { + "start": 7780.62, + "end": 7784.12, + "probability": 0.989 + }, + { + "start": 7784.66, + "end": 7788.24, + "probability": 0.9302 + }, + { + "start": 7788.32, + "end": 7788.56, + "probability": 0.7853 + }, + { + "start": 7789.1, + "end": 7789.94, + "probability": 0.8058 + }, + { + "start": 7790.74, + "end": 7794.36, + "probability": 0.8493 + }, + { + "start": 7807.34, + "end": 7810.28, + "probability": 0.8815 + }, + { + "start": 7811.06, + "end": 7814.58, + "probability": 0.9214 + }, + { + "start": 7816.86, + "end": 7818.38, + "probability": 0.9954 + }, + { + "start": 7819.16, + "end": 7822.68, + "probability": 0.9132 + }, + { + "start": 7823.28, + "end": 7825.28, + "probability": 0.9797 + }, + { + "start": 7825.4, + "end": 7830.52, + "probability": 0.9507 + }, + { + "start": 7830.94, + "end": 7832.12, + "probability": 0.5595 + }, + { + "start": 7833.54, + "end": 7837.96, + "probability": 0.9464 + }, + { + "start": 7839.7, + "end": 7840.68, + "probability": 0.5967 + }, + { + "start": 7842.0, + "end": 7848.98, + "probability": 0.9875 + }, + { + "start": 7849.42, + "end": 7851.14, + "probability": 0.8986 + }, + { + "start": 7851.78, + "end": 7855.88, + "probability": 0.8928 + }, + { + "start": 7856.2, + "end": 7862.82, + "probability": 0.9964 + }, + { + "start": 7863.0, + "end": 7866.74, + "probability": 0.9654 + }, + { + "start": 7867.66, + "end": 7868.58, + "probability": 0.6711 + }, + { + "start": 7870.36, + "end": 7873.4, + "probability": 0.9903 + }, + { + "start": 7873.46, + "end": 7874.6, + "probability": 0.8232 + }, + { + "start": 7874.92, + "end": 7876.34, + "probability": 0.1 + }, + { + "start": 7877.0, + "end": 7877.48, + "probability": 0.2283 + }, + { + "start": 7877.48, + "end": 7878.46, + "probability": 0.7593 + }, + { + "start": 7878.6, + "end": 7880.49, + "probability": 0.8462 + }, + { + "start": 7882.0, + "end": 7882.0, + "probability": 0.0809 + }, + { + "start": 7882.0, + "end": 7887.28, + "probability": 0.9345 + }, + { + "start": 7887.64, + "end": 7889.66, + "probability": 0.8787 + }, + { + "start": 7889.82, + "end": 7891.58, + "probability": 0.6231 + }, + { + "start": 7891.6, + "end": 7893.28, + "probability": 0.9522 + }, + { + "start": 7893.6, + "end": 7895.56, + "probability": 0.7733 + }, + { + "start": 7896.08, + "end": 7900.3, + "probability": 0.9543 + }, + { + "start": 7900.68, + "end": 7902.31, + "probability": 0.9868 + }, + { + "start": 7902.69, + "end": 7905.11, + "probability": 0.8817 + }, + { + "start": 7905.65, + "end": 7909.81, + "probability": 0.9563 + }, + { + "start": 7910.29, + "end": 7910.29, + "probability": 0.0615 + }, + { + "start": 7910.29, + "end": 7910.87, + "probability": 0.249 + }, + { + "start": 7911.11, + "end": 7911.47, + "probability": 0.1628 + }, + { + "start": 7911.79, + "end": 7912.43, + "probability": 0.1079 + }, + { + "start": 7912.43, + "end": 7912.73, + "probability": 0.7592 + }, + { + "start": 7912.87, + "end": 7914.13, + "probability": 0.8867 + }, + { + "start": 7914.35, + "end": 7916.79, + "probability": 0.9668 + }, + { + "start": 7916.81, + "end": 7917.49, + "probability": 0.4722 + }, + { + "start": 7917.61, + "end": 7918.39, + "probability": 0.8081 + }, + { + "start": 7918.63, + "end": 7919.13, + "probability": 0.9617 + }, + { + "start": 7920.03, + "end": 7920.79, + "probability": 0.6752 + }, + { + "start": 7920.79, + "end": 7922.77, + "probability": 0.9797 + }, + { + "start": 7923.65, + "end": 7924.45, + "probability": 0.1769 + }, + { + "start": 7925.21, + "end": 7927.79, + "probability": 0.9043 + }, + { + "start": 7928.21, + "end": 7929.29, + "probability": 0.8865 + }, + { + "start": 7929.59, + "end": 7931.67, + "probability": 0.7528 + }, + { + "start": 7932.77, + "end": 7936.95, + "probability": 0.364 + }, + { + "start": 7937.03, + "end": 7937.79, + "probability": 0.5899 + }, + { + "start": 7938.51, + "end": 7938.75, + "probability": 0.0134 + }, + { + "start": 7939.23, + "end": 7940.91, + "probability": 0.385 + }, + { + "start": 7940.91, + "end": 7945.25, + "probability": 0.3816 + }, + { + "start": 7950.19, + "end": 7951.65, + "probability": 0.8449 + }, + { + "start": 7952.33, + "end": 7952.63, + "probability": 0.9463 + }, + { + "start": 7953.89, + "end": 7954.57, + "probability": 0.0081 + }, + { + "start": 7954.63, + "end": 7954.79, + "probability": 0.1912 + }, + { + "start": 7954.79, + "end": 7956.33, + "probability": 0.5523 + }, + { + "start": 7958.59, + "end": 7962.03, + "probability": 0.8375 + }, + { + "start": 7962.61, + "end": 7965.57, + "probability": 0.9944 + }, + { + "start": 7966.01, + "end": 7970.93, + "probability": 0.5925 + }, + { + "start": 7970.95, + "end": 7971.65, + "probability": 0.2173 + }, + { + "start": 7971.79, + "end": 7972.19, + "probability": 0.3772 + }, + { + "start": 7972.19, + "end": 7973.63, + "probability": 0.8181 + }, + { + "start": 7973.75, + "end": 7975.07, + "probability": 0.8276 + }, + { + "start": 7975.17, + "end": 7975.95, + "probability": 0.8574 + }, + { + "start": 7975.95, + "end": 7976.97, + "probability": 0.8496 + }, + { + "start": 7977.11, + "end": 7977.23, + "probability": 0.0214 + }, + { + "start": 7979.23, + "end": 7979.73, + "probability": 0.3603 + }, + { + "start": 7979.73, + "end": 7980.08, + "probability": 0.5925 + }, + { + "start": 7980.37, + "end": 7981.33, + "probability": 0.2693 + }, + { + "start": 7981.33, + "end": 7982.17, + "probability": 0.6417 + }, + { + "start": 7982.71, + "end": 7983.17, + "probability": 0.4374 + }, + { + "start": 7983.17, + "end": 7983.46, + "probability": 0.0122 + }, + { + "start": 7984.23, + "end": 7985.57, + "probability": 0.5738 + }, + { + "start": 7985.75, + "end": 7986.59, + "probability": 0.6941 + }, + { + "start": 7987.43, + "end": 7987.97, + "probability": 0.8331 + }, + { + "start": 7988.09, + "end": 7988.41, + "probability": 0.5416 + }, + { + "start": 7988.67, + "end": 7990.77, + "probability": 0.5652 + }, + { + "start": 7990.77, + "end": 7990.85, + "probability": 0.2676 + }, + { + "start": 7990.91, + "end": 7993.42, + "probability": 0.8935 + }, + { + "start": 7994.75, + "end": 7995.31, + "probability": 0.0729 + }, + { + "start": 7995.31, + "end": 7998.07, + "probability": 0.9944 + }, + { + "start": 7998.49, + "end": 8002.29, + "probability": 0.8786 + }, + { + "start": 8002.41, + "end": 8003.07, + "probability": 0.6787 + }, + { + "start": 8003.07, + "end": 8003.07, + "probability": 0.8366 + }, + { + "start": 8003.07, + "end": 8003.31, + "probability": 0.5111 + }, + { + "start": 8003.31, + "end": 8006.69, + "probability": 0.9805 + }, + { + "start": 8006.99, + "end": 8007.33, + "probability": 0.0989 + }, + { + "start": 8007.41, + "end": 8007.41, + "probability": 0.0629 + }, + { + "start": 8007.41, + "end": 8009.01, + "probability": 0.9603 + }, + { + "start": 8009.53, + "end": 8010.71, + "probability": 0.7061 + }, + { + "start": 8010.75, + "end": 8011.69, + "probability": 0.6247 + }, + { + "start": 8011.83, + "end": 8012.35, + "probability": 0.6061 + }, + { + "start": 8012.59, + "end": 8013.89, + "probability": 0.9443 + }, + { + "start": 8014.11, + "end": 8015.28, + "probability": 0.722 + }, + { + "start": 8017.91, + "end": 8018.85, + "probability": 0.9973 + }, + { + "start": 8019.51, + "end": 8020.73, + "probability": 0.5399 + }, + { + "start": 8021.73, + "end": 8025.61, + "probability": 0.9873 + }, + { + "start": 8026.49, + "end": 8030.35, + "probability": 0.9533 + }, + { + "start": 8031.27, + "end": 8033.93, + "probability": 0.9683 + }, + { + "start": 8035.81, + "end": 8039.33, + "probability": 0.7405 + }, + { + "start": 8039.93, + "end": 8043.25, + "probability": 0.7566 + }, + { + "start": 8043.59, + "end": 8045.65, + "probability": 0.9766 + }, + { + "start": 8046.09, + "end": 8046.93, + "probability": 0.0658 + }, + { + "start": 8047.79, + "end": 8048.77, + "probability": 0.1186 + }, + { + "start": 8048.77, + "end": 8050.97, + "probability": 0.2812 + }, + { + "start": 8051.07, + "end": 8052.19, + "probability": 0.4379 + }, + { + "start": 8052.19, + "end": 8052.86, + "probability": 0.4837 + }, + { + "start": 8053.63, + "end": 8054.19, + "probability": 0.488 + }, + { + "start": 8057.07, + "end": 8058.15, + "probability": 0.1734 + }, + { + "start": 8058.83, + "end": 8058.83, + "probability": 0.0628 + }, + { + "start": 8058.83, + "end": 8058.83, + "probability": 0.0707 + }, + { + "start": 8058.83, + "end": 8060.65, + "probability": 0.8923 + }, + { + "start": 8061.03, + "end": 8062.73, + "probability": 0.7499 + }, + { + "start": 8063.53, + "end": 8067.26, + "probability": 0.8344 + }, + { + "start": 8067.71, + "end": 8068.97, + "probability": 0.9489 + }, + { + "start": 8071.33, + "end": 8072.15, + "probability": 0.2546 + }, + { + "start": 8072.74, + "end": 8072.81, + "probability": 0.1021 + }, + { + "start": 8072.81, + "end": 8074.91, + "probability": 0.8186 + }, + { + "start": 8075.45, + "end": 8078.63, + "probability": 0.8026 + }, + { + "start": 8079.97, + "end": 8080.43, + "probability": 0.0235 + }, + { + "start": 8081.17, + "end": 8082.28, + "probability": 0.9172 + }, + { + "start": 8084.73, + "end": 8088.43, + "probability": 0.9774 + }, + { + "start": 8089.55, + "end": 8094.18, + "probability": 0.9607 + }, + { + "start": 8094.75, + "end": 8097.31, + "probability": 0.9951 + }, + { + "start": 8097.85, + "end": 8098.63, + "probability": 0.7426 + }, + { + "start": 8099.03, + "end": 8100.03, + "probability": 0.6332 + }, + { + "start": 8100.49, + "end": 8105.15, + "probability": 0.8743 + }, + { + "start": 8106.49, + "end": 8108.53, + "probability": 0.6312 + }, + { + "start": 8109.03, + "end": 8111.35, + "probability": 0.7343 + }, + { + "start": 8111.63, + "end": 8114.07, + "probability": 0.9849 + }, + { + "start": 8114.75, + "end": 8116.19, + "probability": 0.986 + }, + { + "start": 8116.49, + "end": 8117.31, + "probability": 0.9127 + }, + { + "start": 8117.41, + "end": 8118.49, + "probability": 0.5314 + }, + { + "start": 8118.51, + "end": 8122.83, + "probability": 0.9591 + }, + { + "start": 8123.05, + "end": 8123.85, + "probability": 0.9729 + }, + { + "start": 8126.51, + "end": 8127.29, + "probability": 0.3995 + }, + { + "start": 8127.83, + "end": 8129.41, + "probability": 0.7744 + }, + { + "start": 8129.73, + "end": 8130.77, + "probability": 0.7984 + }, + { + "start": 8131.11, + "end": 8133.49, + "probability": 0.9041 + }, + { + "start": 8134.13, + "end": 8136.99, + "probability": 0.8771 + }, + { + "start": 8138.35, + "end": 8141.43, + "probability": 0.9108 + }, + { + "start": 8141.69, + "end": 8144.77, + "probability": 0.9663 + }, + { + "start": 8146.17, + "end": 8148.05, + "probability": 0.7573 + }, + { + "start": 8148.67, + "end": 8149.97, + "probability": 0.848 + }, + { + "start": 8150.05, + "end": 8153.03, + "probability": 0.7825 + }, + { + "start": 8153.37, + "end": 8154.53, + "probability": 0.9643 + }, + { + "start": 8154.97, + "end": 8156.37, + "probability": 0.9729 + }, + { + "start": 8156.63, + "end": 8158.13, + "probability": 0.9952 + }, + { + "start": 8159.63, + "end": 8160.99, + "probability": 0.0169 + }, + { + "start": 8160.99, + "end": 8162.93, + "probability": 0.2929 + }, + { + "start": 8164.11, + "end": 8164.53, + "probability": 0.3573 + }, + { + "start": 8166.15, + "end": 8169.57, + "probability": 0.63 + }, + { + "start": 8170.23, + "end": 8171.61, + "probability": 0.5469 + }, + { + "start": 8171.61, + "end": 8171.73, + "probability": 0.6657 + }, + { + "start": 8172.95, + "end": 8175.77, + "probability": 0.9111 + }, + { + "start": 8177.93, + "end": 8178.99, + "probability": 0.6664 + }, + { + "start": 8179.77, + "end": 8181.09, + "probability": 0.9117 + }, + { + "start": 8181.67, + "end": 8182.47, + "probability": 0.7433 + }, + { + "start": 8184.55, + "end": 8185.65, + "probability": 0.732 + }, + { + "start": 8185.71, + "end": 8186.32, + "probability": 0.3894 + }, + { + "start": 8186.45, + "end": 8189.3, + "probability": 0.2575 + }, + { + "start": 8190.09, + "end": 8191.75, + "probability": 0.9827 + }, + { + "start": 8192.07, + "end": 8193.17, + "probability": 0.9505 + }, + { + "start": 8193.17, + "end": 8196.83, + "probability": 0.9081 + }, + { + "start": 8197.05, + "end": 8197.71, + "probability": 0.8789 + }, + { + "start": 8197.85, + "end": 8199.11, + "probability": 0.9647 + }, + { + "start": 8199.29, + "end": 8200.87, + "probability": 0.9129 + }, + { + "start": 8201.15, + "end": 8203.49, + "probability": 0.9927 + }, + { + "start": 8204.37, + "end": 8205.95, + "probability": 0.9756 + }, + { + "start": 8205.95, + "end": 8206.91, + "probability": 0.2086 + }, + { + "start": 8206.95, + "end": 8208.95, + "probability": 0.7423 + }, + { + "start": 8209.05, + "end": 8209.19, + "probability": 0.5728 + }, + { + "start": 8209.27, + "end": 8209.83, + "probability": 0.5258 + }, + { + "start": 8209.87, + "end": 8210.61, + "probability": 0.9916 + }, + { + "start": 8212.09, + "end": 8212.87, + "probability": 0.7753 + }, + { + "start": 8213.03, + "end": 8213.63, + "probability": 0.6794 + }, + { + "start": 8213.99, + "end": 8220.17, + "probability": 0.9626 + }, + { + "start": 8220.53, + "end": 8221.35, + "probability": 0.8422 + }, + { + "start": 8221.73, + "end": 8222.55, + "probability": 0.8735 + }, + { + "start": 8223.17, + "end": 8225.89, + "probability": 0.8718 + }, + { + "start": 8227.09, + "end": 8229.63, + "probability": 0.9312 + }, + { + "start": 8230.17, + "end": 8232.2, + "probability": 0.9843 + }, + { + "start": 8233.33, + "end": 8235.37, + "probability": 0.7131 + }, + { + "start": 8235.49, + "end": 8236.59, + "probability": 0.9771 + }, + { + "start": 8237.49, + "end": 8238.53, + "probability": 0.4024 + }, + { + "start": 8238.59, + "end": 8239.5, + "probability": 0.5757 + }, + { + "start": 8239.95, + "end": 8240.81, + "probability": 0.6615 + }, + { + "start": 8240.99, + "end": 8243.03, + "probability": 0.5527 + }, + { + "start": 8243.25, + "end": 8244.63, + "probability": 0.9204 + }, + { + "start": 8245.07, + "end": 8246.37, + "probability": 0.6835 + }, + { + "start": 8247.56, + "end": 8250.59, + "probability": 0.8491 + }, + { + "start": 8251.25, + "end": 8255.75, + "probability": 0.774 + }, + { + "start": 8255.81, + "end": 8258.29, + "probability": 0.8646 + }, + { + "start": 8258.29, + "end": 8260.43, + "probability": 0.6226 + }, + { + "start": 8260.83, + "end": 8262.15, + "probability": 0.1925 + }, + { + "start": 8262.63, + "end": 8263.81, + "probability": 0.1465 + }, + { + "start": 8263.91, + "end": 8265.29, + "probability": 0.9355 + }, + { + "start": 8265.49, + "end": 8265.61, + "probability": 0.2608 + }, + { + "start": 8265.61, + "end": 8268.53, + "probability": 0.954 + }, + { + "start": 8268.75, + "end": 8269.45, + "probability": 0.7897 + }, + { + "start": 8269.45, + "end": 8269.65, + "probability": 0.171 + }, + { + "start": 8269.65, + "end": 8270.61, + "probability": 0.5156 + }, + { + "start": 8270.81, + "end": 8272.07, + "probability": 0.2675 + }, + { + "start": 8272.57, + "end": 8272.71, + "probability": 0.0819 + }, + { + "start": 8273.17, + "end": 8273.51, + "probability": 0.4 + }, + { + "start": 8274.83, + "end": 8277.85, + "probability": 0.981 + }, + { + "start": 8278.37, + "end": 8283.23, + "probability": 0.975 + }, + { + "start": 8283.61, + "end": 8285.21, + "probability": 0.842 + }, + { + "start": 8285.57, + "end": 8286.21, + "probability": 0.724 + }, + { + "start": 8287.33, + "end": 8289.93, + "probability": 0.9941 + }, + { + "start": 8290.53, + "end": 8294.63, + "probability": 0.9909 + }, + { + "start": 8294.83, + "end": 8296.09, + "probability": 0.6254 + }, + { + "start": 8296.27, + "end": 8298.45, + "probability": 0.9004 + }, + { + "start": 8298.55, + "end": 8302.74, + "probability": 0.9456 + }, + { + "start": 8302.75, + "end": 8306.35, + "probability": 0.9986 + }, + { + "start": 8307.17, + "end": 8308.29, + "probability": 0.3053 + }, + { + "start": 8308.89, + "end": 8310.91, + "probability": 0.7557 + }, + { + "start": 8311.11, + "end": 8311.93, + "probability": 0.9701 + }, + { + "start": 8312.09, + "end": 8313.01, + "probability": 0.7822 + }, + { + "start": 8313.09, + "end": 8316.31, + "probability": 0.9266 + }, + { + "start": 8316.69, + "end": 8319.25, + "probability": 0.9451 + }, + { + "start": 8319.45, + "end": 8319.81, + "probability": 0.8867 + }, + { + "start": 8320.09, + "end": 8322.55, + "probability": 0.8965 + }, + { + "start": 8322.81, + "end": 8324.57, + "probability": 0.6072 + }, + { + "start": 8326.57, + "end": 8327.87, + "probability": 0.8853 + }, + { + "start": 8327.97, + "end": 8332.43, + "probability": 0.981 + }, + { + "start": 8332.61, + "end": 8334.27, + "probability": 0.9261 + }, + { + "start": 8335.27, + "end": 8338.01, + "probability": 0.8424 + }, + { + "start": 8338.67, + "end": 8339.71, + "probability": 0.7203 + }, + { + "start": 8339.77, + "end": 8343.69, + "probability": 0.979 + }, + { + "start": 8343.97, + "end": 8344.77, + "probability": 0.6469 + }, + { + "start": 8345.17, + "end": 8345.97, + "probability": 0.856 + }, + { + "start": 8346.55, + "end": 8348.15, + "probability": 0.7704 + }, + { + "start": 8348.37, + "end": 8350.05, + "probability": 0.804 + }, + { + "start": 8350.57, + "end": 8353.19, + "probability": 0.0166 + }, + { + "start": 8354.05, + "end": 8357.73, + "probability": 0.0442 + }, + { + "start": 8367.73, + "end": 8371.53, + "probability": 0.5596 + }, + { + "start": 8371.55, + "end": 8373.77, + "probability": 0.8026 + }, + { + "start": 8374.85, + "end": 8377.01, + "probability": 0.9846 + }, + { + "start": 8377.11, + "end": 8380.31, + "probability": 0.919 + }, + { + "start": 8380.39, + "end": 8380.73, + "probability": 0.9371 + }, + { + "start": 8380.81, + "end": 8381.09, + "probability": 0.8271 + }, + { + "start": 8381.21, + "end": 8381.91, + "probability": 0.3962 + }, + { + "start": 8382.05, + "end": 8385.51, + "probability": 0.9292 + }, + { + "start": 8385.77, + "end": 8386.45, + "probability": 0.7211 + }, + { + "start": 8386.83, + "end": 8387.33, + "probability": 0.8397 + }, + { + "start": 8387.51, + "end": 8388.49, + "probability": 0.721 + }, + { + "start": 8398.63, + "end": 8401.22, + "probability": 0.1895 + }, + { + "start": 8402.45, + "end": 8408.21, + "probability": 0.1601 + }, + { + "start": 8408.67, + "end": 8411.91, + "probability": 0.3991 + }, + { + "start": 8412.05, + "end": 8414.67, + "probability": 0.7866 + }, + { + "start": 8415.61, + "end": 8418.23, + "probability": 0.9016 + }, + { + "start": 8419.81, + "end": 8423.09, + "probability": 0.99 + }, + { + "start": 8423.21, + "end": 8423.93, + "probability": 0.5856 + }, + { + "start": 8424.01, + "end": 8424.71, + "probability": 0.7532 + }, + { + "start": 8425.25, + "end": 8426.09, + "probability": 0.7038 + }, + { + "start": 8427.19, + "end": 8427.71, + "probability": 0.0161 + }, + { + "start": 8428.73, + "end": 8432.19, + "probability": 0.0082 + }, + { + "start": 8436.25, + "end": 8436.31, + "probability": 0.0097 + }, + { + "start": 8439.97, + "end": 8441.29, + "probability": 0.0714 + }, + { + "start": 8443.19, + "end": 8444.37, + "probability": 0.2324 + }, + { + "start": 8445.35, + "end": 8446.77, + "probability": 0.8231 + }, + { + "start": 8447.35, + "end": 8448.21, + "probability": 0.6098 + }, + { + "start": 8449.31, + "end": 8452.55, + "probability": 0.8243 + }, + { + "start": 8453.55, + "end": 8456.51, + "probability": 0.5759 + }, + { + "start": 8457.03, + "end": 8458.81, + "probability": 0.9543 + }, + { + "start": 8459.43, + "end": 8459.66, + "probability": 0.8076 + }, + { + "start": 8460.07, + "end": 8463.01, + "probability": 0.1829 + }, + { + "start": 8463.37, + "end": 8464.19, + "probability": 0.8264 + }, + { + "start": 8465.11, + "end": 8466.67, + "probability": 0.3332 + }, + { + "start": 8467.29, + "end": 8471.09, + "probability": 0.838 + }, + { + "start": 8471.15, + "end": 8471.75, + "probability": 0.5765 + }, + { + "start": 8471.81, + "end": 8472.61, + "probability": 0.7572 + }, + { + "start": 8473.21, + "end": 8473.31, + "probability": 0.0009 + }, + { + "start": 8473.87, + "end": 8476.13, + "probability": 0.002 + }, + { + "start": 8488.28, + "end": 8489.31, + "probability": 0.18 + }, + { + "start": 8489.31, + "end": 8491.45, + "probability": 0.5457 + }, + { + "start": 8491.93, + "end": 8493.69, + "probability": 0.8415 + }, + { + "start": 8494.83, + "end": 8497.71, + "probability": 0.9028 + }, + { + "start": 8497.81, + "end": 8499.51, + "probability": 0.5687 + }, + { + "start": 8499.89, + "end": 8502.73, + "probability": 0.9614 + }, + { + "start": 8503.21, + "end": 8505.77, + "probability": 0.7252 + }, + { + "start": 8507.35, + "end": 8510.97, + "probability": 0.948 + }, + { + "start": 8511.77, + "end": 8516.01, + "probability": 0.9225 + }, + { + "start": 8516.65, + "end": 8518.23, + "probability": 0.7116 + }, + { + "start": 8519.39, + "end": 8525.85, + "probability": 0.9237 + }, + { + "start": 8525.91, + "end": 8531.17, + "probability": 0.8739 + }, + { + "start": 8533.05, + "end": 8538.25, + "probability": 0.7143 + }, + { + "start": 8538.77, + "end": 8541.87, + "probability": 0.8574 + }, + { + "start": 8542.57, + "end": 8543.49, + "probability": 0.6884 + }, + { + "start": 8543.95, + "end": 8550.34, + "probability": 0.9348 + }, + { + "start": 8552.19, + "end": 8557.19, + "probability": 0.0074 + }, + { + "start": 8559.51, + "end": 8559.59, + "probability": 0.0082 + }, + { + "start": 8559.59, + "end": 8559.59, + "probability": 0.2204 + }, + { + "start": 8559.59, + "end": 8559.59, + "probability": 0.0459 + }, + { + "start": 8559.59, + "end": 8559.59, + "probability": 0.1122 + }, + { + "start": 8559.59, + "end": 8559.59, + "probability": 0.083 + }, + { + "start": 8559.59, + "end": 8560.41, + "probability": 0.7805 + }, + { + "start": 8560.55, + "end": 8565.01, + "probability": 0.1566 + }, + { + "start": 8587.77, + "end": 8588.47, + "probability": 0.72 + }, + { + "start": 8589.35, + "end": 8590.05, + "probability": 0.6937 + }, + { + "start": 8591.53, + "end": 8593.71, + "probability": 0.7475 + }, + { + "start": 8594.11, + "end": 8597.93, + "probability": 0.7311 + }, + { + "start": 8599.29, + "end": 8600.39, + "probability": 0.3954 + }, + { + "start": 8600.39, + "end": 8601.03, + "probability": 0.2895 + }, + { + "start": 8601.53, + "end": 8603.43, + "probability": 0.9431 + }, + { + "start": 8603.73, + "end": 8607.95, + "probability": 0.9658 + }, + { + "start": 8609.79, + "end": 8613.73, + "probability": 0.8541 + }, + { + "start": 8615.49, + "end": 8617.45, + "probability": 0.9012 + }, + { + "start": 8618.13, + "end": 8620.65, + "probability": 0.9181 + }, + { + "start": 8620.77, + "end": 8622.21, + "probability": 0.9521 + }, + { + "start": 8622.25, + "end": 8625.59, + "probability": 0.9526 + }, + { + "start": 8628.79, + "end": 8629.97, + "probability": 0.8518 + }, + { + "start": 8630.79, + "end": 8636.43, + "probability": 0.9599 + }, + { + "start": 8638.41, + "end": 8641.01, + "probability": 0.8366 + }, + { + "start": 8641.01, + "end": 8646.77, + "probability": 0.887 + }, + { + "start": 8647.37, + "end": 8651.99, + "probability": 0.9772 + }, + { + "start": 8651.99, + "end": 8656.71, + "probability": 0.9963 + }, + { + "start": 8658.35, + "end": 8662.27, + "probability": 0.9684 + }, + { + "start": 8662.53, + "end": 8666.99, + "probability": 0.9326 + }, + { + "start": 8667.07, + "end": 8670.09, + "probability": 0.8824 + }, + { + "start": 8670.77, + "end": 8678.16, + "probability": 0.8745 + }, + { + "start": 8679.31, + "end": 8680.43, + "probability": 0.5468 + }, + { + "start": 8681.27, + "end": 8683.53, + "probability": 0.8536 + }, + { + "start": 8684.35, + "end": 8685.87, + "probability": 0.8439 + }, + { + "start": 8685.95, + "end": 8694.29, + "probability": 0.9926 + }, + { + "start": 8695.09, + "end": 8696.19, + "probability": 0.8291 + }, + { + "start": 8696.25, + "end": 8699.81, + "probability": 0.9832 + }, + { + "start": 8700.57, + "end": 8703.11, + "probability": 0.9049 + }, + { + "start": 8703.37, + "end": 8703.81, + "probability": 0.4143 + }, + { + "start": 8703.97, + "end": 8705.21, + "probability": 0.8797 + }, + { + "start": 8705.61, + "end": 8707.73, + "probability": 0.9698 + }, + { + "start": 8711.59, + "end": 8711.93, + "probability": 0.6764 + }, + { + "start": 8712.31, + "end": 8712.77, + "probability": 0.8046 + }, + { + "start": 8712.85, + "end": 8716.37, + "probability": 0.882 + }, + { + "start": 8716.47, + "end": 8719.41, + "probability": 0.9641 + }, + { + "start": 8719.41, + "end": 8724.21, + "probability": 0.993 + }, + { + "start": 8724.29, + "end": 8728.45, + "probability": 0.9954 + }, + { + "start": 8728.67, + "end": 8733.47, + "probability": 0.9868 + }, + { + "start": 8734.53, + "end": 8739.03, + "probability": 0.989 + }, + { + "start": 8739.27, + "end": 8741.73, + "probability": 0.7261 + }, + { + "start": 8742.37, + "end": 8745.09, + "probability": 0.9321 + }, + { + "start": 8745.29, + "end": 8748.89, + "probability": 0.7399 + }, + { + "start": 8750.39, + "end": 8755.41, + "probability": 0.791 + }, + { + "start": 8756.25, + "end": 8759.37, + "probability": 0.9197 + }, + { + "start": 8759.37, + "end": 8762.67, + "probability": 0.9921 + }, + { + "start": 8763.33, + "end": 8766.67, + "probability": 0.9879 + }, + { + "start": 8767.31, + "end": 8768.17, + "probability": 0.7505 + }, + { + "start": 8769.43, + "end": 8769.97, + "probability": 0.9717 + }, + { + "start": 8770.81, + "end": 8774.93, + "probability": 0.8895 + }, + { + "start": 8775.79, + "end": 8779.23, + "probability": 0.9443 + }, + { + "start": 8779.41, + "end": 8780.03, + "probability": 0.6212 + }, + { + "start": 8780.63, + "end": 8783.03, + "probability": 0.8825 + }, + { + "start": 8784.57, + "end": 8785.43, + "probability": 0.8254 + }, + { + "start": 8786.03, + "end": 8790.91, + "probability": 0.9422 + }, + { + "start": 8791.35, + "end": 8791.75, + "probability": 0.5776 + }, + { + "start": 8792.35, + "end": 8795.33, + "probability": 0.9692 + }, + { + "start": 8796.59, + "end": 8802.29, + "probability": 0.9583 + }, + { + "start": 8803.31, + "end": 8806.65, + "probability": 0.9005 + }, + { + "start": 8807.39, + "end": 8808.39, + "probability": 0.8836 + }, + { + "start": 8808.49, + "end": 8811.51, + "probability": 0.9885 + }, + { + "start": 8812.01, + "end": 8812.91, + "probability": 0.8071 + }, + { + "start": 8813.47, + "end": 8814.73, + "probability": 0.7327 + }, + { + "start": 8815.27, + "end": 8817.03, + "probability": 0.9344 + }, + { + "start": 8818.75, + "end": 8821.17, + "probability": 0.9431 + }, + { + "start": 8821.69, + "end": 8824.77, + "probability": 0.9543 + }, + { + "start": 8825.69, + "end": 8826.13, + "probability": 0.77 + }, + { + "start": 8827.03, + "end": 8828.41, + "probability": 0.9073 + }, + { + "start": 8828.47, + "end": 8830.63, + "probability": 0.9918 + }, + { + "start": 8831.87, + "end": 8834.79, + "probability": 0.9087 + }, + { + "start": 8834.95, + "end": 8836.03, + "probability": 0.9744 + }, + { + "start": 8836.43, + "end": 8837.55, + "probability": 0.6112 + }, + { + "start": 8838.09, + "end": 8839.23, + "probability": 0.8576 + }, + { + "start": 8839.99, + "end": 8841.19, + "probability": 0.8245 + }, + { + "start": 8841.73, + "end": 8843.39, + "probability": 0.9655 + }, + { + "start": 8845.09, + "end": 8848.09, + "probability": 0.9746 + }, + { + "start": 8848.85, + "end": 8855.59, + "probability": 0.9812 + }, + { + "start": 8856.69, + "end": 8860.03, + "probability": 0.6851 + }, + { + "start": 8860.73, + "end": 8863.31, + "probability": 0.9783 + }, + { + "start": 8864.13, + "end": 8865.03, + "probability": 0.8129 + }, + { + "start": 8865.89, + "end": 8869.07, + "probability": 0.9521 + }, + { + "start": 8869.83, + "end": 8871.07, + "probability": 0.9702 + }, + { + "start": 8871.83, + "end": 8873.33, + "probability": 0.7898 + }, + { + "start": 8873.89, + "end": 8879.09, + "probability": 0.9912 + }, + { + "start": 8880.27, + "end": 8886.71, + "probability": 0.9936 + }, + { + "start": 8886.91, + "end": 8888.63, + "probability": 0.9851 + }, + { + "start": 8889.53, + "end": 8893.23, + "probability": 0.9922 + }, + { + "start": 8894.89, + "end": 8899.63, + "probability": 0.998 + }, + { + "start": 8900.55, + "end": 8903.27, + "probability": 0.949 + }, + { + "start": 8903.31, + "end": 8904.55, + "probability": 0.9561 + }, + { + "start": 8904.75, + "end": 8906.11, + "probability": 0.8688 + }, + { + "start": 8906.93, + "end": 8909.15, + "probability": 0.9575 + }, + { + "start": 8912.61, + "end": 8917.43, + "probability": 0.9468 + }, + { + "start": 8917.51, + "end": 8918.99, + "probability": 0.7761 + }, + { + "start": 8919.81, + "end": 8923.05, + "probability": 0.8986 + }, + { + "start": 8923.99, + "end": 8925.47, + "probability": 0.9447 + }, + { + "start": 8926.85, + "end": 8929.13, + "probability": 0.9526 + }, + { + "start": 8930.65, + "end": 8933.57, + "probability": 0.9248 + }, + { + "start": 8934.57, + "end": 8936.29, + "probability": 0.9988 + }, + { + "start": 8937.19, + "end": 8938.07, + "probability": 0.8851 + }, + { + "start": 8938.35, + "end": 8943.19, + "probability": 0.9855 + }, + { + "start": 8943.87, + "end": 8944.81, + "probability": 0.5957 + }, + { + "start": 8946.03, + "end": 8946.51, + "probability": 0.3174 + }, + { + "start": 8947.31, + "end": 8947.89, + "probability": 0.9463 + }, + { + "start": 8948.37, + "end": 8951.09, + "probability": 0.9498 + }, + { + "start": 8951.65, + "end": 8954.87, + "probability": 0.9633 + }, + { + "start": 8955.27, + "end": 8961.61, + "probability": 0.9907 + }, + { + "start": 8961.91, + "end": 8963.63, + "probability": 0.7956 + }, + { + "start": 8963.79, + "end": 8965.23, + "probability": 0.9135 + }, + { + "start": 8966.61, + "end": 8970.85, + "probability": 0.9919 + }, + { + "start": 8971.95, + "end": 8973.01, + "probability": 0.942 + }, + { + "start": 8975.08, + "end": 8978.48, + "probability": 0.6059 + }, + { + "start": 8979.27, + "end": 8983.27, + "probability": 0.7785 + }, + { + "start": 8984.39, + "end": 8985.35, + "probability": 0.7394 + }, + { + "start": 8987.49, + "end": 8991.67, + "probability": 0.0835 + }, + { + "start": 8997.17, + "end": 8997.89, + "probability": 0.0069 + }, + { + "start": 8998.61, + "end": 9006.71, + "probability": 0.9934 + }, + { + "start": 9006.75, + "end": 9009.03, + "probability": 0.9951 + }, + { + "start": 9010.33, + "end": 9015.21, + "probability": 0.998 + }, + { + "start": 9015.57, + "end": 9016.85, + "probability": 0.8271 + }, + { + "start": 9017.19, + "end": 9018.79, + "probability": 0.4113 + }, + { + "start": 9019.61, + "end": 9024.59, + "probability": 0.9408 + }, + { + "start": 9025.59, + "end": 9029.29, + "probability": 0.7882 + }, + { + "start": 9030.35, + "end": 9031.97, + "probability": 0.9468 + }, + { + "start": 9032.07, + "end": 9034.01, + "probability": 0.9966 + }, + { + "start": 9034.99, + "end": 9035.51, + "probability": 0.873 + }, + { + "start": 9036.57, + "end": 9043.43, + "probability": 0.9324 + }, + { + "start": 9044.39, + "end": 9048.82, + "probability": 0.9565 + }, + { + "start": 9050.13, + "end": 9051.07, + "probability": 0.9605 + }, + { + "start": 9051.79, + "end": 9052.65, + "probability": 0.7316 + }, + { + "start": 9054.15, + "end": 9056.57, + "probability": 0.8405 + }, + { + "start": 9058.17, + "end": 9058.83, + "probability": 0.7784 + }, + { + "start": 9060.85, + "end": 9063.49, + "probability": 0.9994 + }, + { + "start": 9064.79, + "end": 9069.99, + "probability": 0.7546 + }, + { + "start": 9070.91, + "end": 9072.87, + "probability": 0.9399 + }, + { + "start": 9073.89, + "end": 9077.85, + "probability": 0.9326 + }, + { + "start": 9079.55, + "end": 9079.93, + "probability": 0.42 + }, + { + "start": 9081.21, + "end": 9082.87, + "probability": 0.8939 + }, + { + "start": 9083.71, + "end": 9091.61, + "probability": 0.9985 + }, + { + "start": 9092.77, + "end": 9096.91, + "probability": 0.9942 + }, + { + "start": 9098.61, + "end": 9101.19, + "probability": 0.9257 + }, + { + "start": 9102.45, + "end": 9106.17, + "probability": 0.958 + }, + { + "start": 9107.23, + "end": 9108.67, + "probability": 0.8626 + }, + { + "start": 9109.81, + "end": 9111.07, + "probability": 0.9496 + }, + { + "start": 9113.15, + "end": 9113.99, + "probability": 0.6651 + }, + { + "start": 9114.99, + "end": 9117.85, + "probability": 0.9528 + }, + { + "start": 9118.67, + "end": 9118.81, + "probability": 0.7738 + }, + { + "start": 9118.89, + "end": 9119.75, + "probability": 0.8213 + }, + { + "start": 9119.91, + "end": 9120.25, + "probability": 0.9622 + }, + { + "start": 9120.27, + "end": 9120.97, + "probability": 0.9102 + }, + { + "start": 9121.09, + "end": 9124.39, + "probability": 0.9928 + }, + { + "start": 9127.13, + "end": 9128.61, + "probability": 0.4759 + }, + { + "start": 9130.07, + "end": 9130.99, + "probability": 0.7017 + }, + { + "start": 9131.87, + "end": 9134.39, + "probability": 0.8569 + }, + { + "start": 9135.65, + "end": 9138.55, + "probability": 0.9535 + }, + { + "start": 9138.75, + "end": 9139.67, + "probability": 0.8845 + }, + { + "start": 9140.65, + "end": 9144.87, + "probability": 0.9876 + }, + { + "start": 9145.81, + "end": 9149.95, + "probability": 0.9893 + }, + { + "start": 9151.05, + "end": 9153.65, + "probability": 0.9666 + }, + { + "start": 9153.75, + "end": 9154.53, + "probability": 0.666 + }, + { + "start": 9154.65, + "end": 9156.01, + "probability": 0.9073 + }, + { + "start": 9157.19, + "end": 9158.55, + "probability": 0.9924 + }, + { + "start": 9159.11, + "end": 9160.65, + "probability": 0.974 + }, + { + "start": 9162.55, + "end": 9163.03, + "probability": 0.8174 + }, + { + "start": 9164.31, + "end": 9166.17, + "probability": 0.9888 + }, + { + "start": 9168.23, + "end": 9170.07, + "probability": 0.9229 + }, + { + "start": 9171.35, + "end": 9173.39, + "probability": 0.9517 + }, + { + "start": 9173.45, + "end": 9179.71, + "probability": 0.9982 + }, + { + "start": 9180.83, + "end": 9184.33, + "probability": 0.9742 + }, + { + "start": 9184.79, + "end": 9188.03, + "probability": 0.9562 + }, + { + "start": 9188.17, + "end": 9190.35, + "probability": 0.965 + }, + { + "start": 9191.39, + "end": 9194.77, + "probability": 0.9965 + }, + { + "start": 9194.77, + "end": 9199.61, + "probability": 0.9873 + }, + { + "start": 9200.93, + "end": 9202.59, + "probability": 0.9956 + }, + { + "start": 9203.63, + "end": 9204.75, + "probability": 0.8939 + }, + { + "start": 9206.33, + "end": 9207.71, + "probability": 0.9129 + }, + { + "start": 9209.03, + "end": 9209.69, + "probability": 0.6419 + }, + { + "start": 9211.85, + "end": 9214.79, + "probability": 0.9287 + }, + { + "start": 9214.89, + "end": 9215.91, + "probability": 0.8524 + }, + { + "start": 9217.19, + "end": 9219.59, + "probability": 0.9703 + }, + { + "start": 9220.73, + "end": 9226.61, + "probability": 0.9746 + }, + { + "start": 9226.79, + "end": 9227.55, + "probability": 0.8967 + }, + { + "start": 9228.75, + "end": 9229.61, + "probability": 0.7086 + }, + { + "start": 9232.81, + "end": 9234.13, + "probability": 0.9811 + }, + { + "start": 9235.39, + "end": 9236.49, + "probability": 0.9821 + }, + { + "start": 9237.49, + "end": 9238.53, + "probability": 0.8945 + }, + { + "start": 9239.79, + "end": 9242.89, + "probability": 0.9912 + }, + { + "start": 9244.45, + "end": 9244.79, + "probability": 0.8939 + }, + { + "start": 9245.75, + "end": 9247.99, + "probability": 0.9849 + }, + { + "start": 9248.51, + "end": 9250.07, + "probability": 0.9807 + }, + { + "start": 9251.01, + "end": 9252.53, + "probability": 0.7706 + }, + { + "start": 9253.37, + "end": 9255.99, + "probability": 0.9512 + }, + { + "start": 9257.37, + "end": 9258.27, + "probability": 0.8681 + }, + { + "start": 9259.27, + "end": 9263.49, + "probability": 0.9053 + }, + { + "start": 9264.01, + "end": 9265.05, + "probability": 0.9283 + }, + { + "start": 9265.85, + "end": 9266.67, + "probability": 0.9751 + }, + { + "start": 9267.89, + "end": 9270.07, + "probability": 0.9832 + }, + { + "start": 9270.23, + "end": 9274.31, + "probability": 0.8646 + }, + { + "start": 9275.21, + "end": 9276.09, + "probability": 0.7749 + }, + { + "start": 9276.75, + "end": 9277.51, + "probability": 0.78 + }, + { + "start": 9278.39, + "end": 9281.93, + "probability": 0.9766 + }, + { + "start": 9283.21, + "end": 9284.13, + "probability": 0.7127 + }, + { + "start": 9284.27, + "end": 9287.31, + "probability": 0.9878 + }, + { + "start": 9287.87, + "end": 9290.13, + "probability": 0.9933 + }, + { + "start": 9291.09, + "end": 9297.95, + "probability": 0.9987 + }, + { + "start": 9297.95, + "end": 9303.21, + "probability": 0.9735 + }, + { + "start": 9303.87, + "end": 9304.88, + "probability": 0.6099 + }, + { + "start": 9306.65, + "end": 9311.53, + "probability": 0.9976 + }, + { + "start": 9312.09, + "end": 9313.19, + "probability": 0.8702 + }, + { + "start": 9314.51, + "end": 9317.09, + "probability": 0.9993 + }, + { + "start": 9318.99, + "end": 9320.31, + "probability": 0.9941 + }, + { + "start": 9321.31, + "end": 9326.41, + "probability": 0.9971 + }, + { + "start": 9326.65, + "end": 9330.17, + "probability": 0.7619 + }, + { + "start": 9332.07, + "end": 9333.57, + "probability": 0.9552 + }, + { + "start": 9334.19, + "end": 9335.25, + "probability": 0.5685 + }, + { + "start": 9336.33, + "end": 9337.65, + "probability": 0.8621 + }, + { + "start": 9337.85, + "end": 9338.27, + "probability": 0.7886 + }, + { + "start": 9338.47, + "end": 9339.45, + "probability": 0.9849 + }, + { + "start": 9340.01, + "end": 9341.73, + "probability": 0.9065 + }, + { + "start": 9342.65, + "end": 9343.69, + "probability": 0.9927 + }, + { + "start": 9344.91, + "end": 9345.94, + "probability": 0.7095 + }, + { + "start": 9346.97, + "end": 9347.67, + "probability": 0.6832 + }, + { + "start": 9347.99, + "end": 9350.95, + "probability": 0.9224 + }, + { + "start": 9351.51, + "end": 9354.67, + "probability": 0.9202 + }, + { + "start": 9355.31, + "end": 9357.23, + "probability": 0.9764 + }, + { + "start": 9357.33, + "end": 9361.38, + "probability": 0.9576 + }, + { + "start": 9361.71, + "end": 9362.57, + "probability": 0.9956 + }, + { + "start": 9362.99, + "end": 9366.95, + "probability": 0.7503 + }, + { + "start": 9366.99, + "end": 9370.07, + "probability": 0.9354 + }, + { + "start": 9370.39, + "end": 9371.13, + "probability": 0.9025 + }, + { + "start": 9371.57, + "end": 9372.71, + "probability": 0.9211 + }, + { + "start": 9373.61, + "end": 9375.57, + "probability": 0.9507 + }, + { + "start": 9376.51, + "end": 9377.85, + "probability": 0.7335 + }, + { + "start": 9379.23, + "end": 9383.15, + "probability": 0.9251 + }, + { + "start": 9384.17, + "end": 9386.59, + "probability": 0.9379 + }, + { + "start": 9387.53, + "end": 9388.65, + "probability": 0.9882 + }, + { + "start": 9390.29, + "end": 9393.65, + "probability": 0.9629 + }, + { + "start": 9394.73, + "end": 9397.55, + "probability": 0.8155 + }, + { + "start": 9398.33, + "end": 9399.41, + "probability": 0.9365 + }, + { + "start": 9399.45, + "end": 9403.11, + "probability": 0.8991 + }, + { + "start": 9403.91, + "end": 9405.31, + "probability": 0.9785 + }, + { + "start": 9406.23, + "end": 9409.16, + "probability": 0.9944 + }, + { + "start": 9409.93, + "end": 9412.15, + "probability": 0.9004 + }, + { + "start": 9413.23, + "end": 9414.35, + "probability": 0.9666 + }, + { + "start": 9415.05, + "end": 9419.71, + "probability": 0.986 + }, + { + "start": 9420.99, + "end": 9421.09, + "probability": 0.8077 + }, + { + "start": 9422.47, + "end": 9425.48, + "probability": 0.9915 + }, + { + "start": 9429.13, + "end": 9431.95, + "probability": 0.9557 + }, + { + "start": 9433.33, + "end": 9434.75, + "probability": 0.9961 + }, + { + "start": 9435.79, + "end": 9438.63, + "probability": 0.8826 + }, + { + "start": 9439.47, + "end": 9440.21, + "probability": 0.9875 + }, + { + "start": 9443.07, + "end": 9444.64, + "probability": 0.8555 + }, + { + "start": 9446.57, + "end": 9447.71, + "probability": 0.999 + }, + { + "start": 9448.21, + "end": 9450.29, + "probability": 0.7805 + }, + { + "start": 9450.29, + "end": 9451.06, + "probability": 0.542 + }, + { + "start": 9451.33, + "end": 9452.07, + "probability": 0.5688 + }, + { + "start": 9453.13, + "end": 9454.25, + "probability": 0.5581 + }, + { + "start": 9454.25, + "end": 9454.43, + "probability": 0.3045 + }, + { + "start": 9454.47, + "end": 9460.25, + "probability": 0.8389 + }, + { + "start": 9460.35, + "end": 9461.85, + "probability": 0.7649 + }, + { + "start": 9462.65, + "end": 9464.39, + "probability": 0.999 + }, + { + "start": 9465.53, + "end": 9466.77, + "probability": 0.9771 + }, + { + "start": 9466.83, + "end": 9467.11, + "probability": 0.9084 + }, + { + "start": 9467.17, + "end": 9471.03, + "probability": 0.9966 + }, + { + "start": 9471.67, + "end": 9471.99, + "probability": 0.4827 + }, + { + "start": 9472.93, + "end": 9475.25, + "probability": 0.9891 + }, + { + "start": 9475.41, + "end": 9476.53, + "probability": 0.6715 + }, + { + "start": 9476.61, + "end": 9477.27, + "probability": 0.504 + }, + { + "start": 9477.41, + "end": 9477.83, + "probability": 0.8467 + }, + { + "start": 9478.93, + "end": 9479.51, + "probability": 0.7591 + }, + { + "start": 9480.19, + "end": 9482.03, + "probability": 0.9102 + }, + { + "start": 9482.75, + "end": 9487.21, + "probability": 0.9448 + }, + { + "start": 9488.19, + "end": 9489.13, + "probability": 0.9953 + }, + { + "start": 9490.41, + "end": 9491.05, + "probability": 0.9125 + }, + { + "start": 9491.87, + "end": 9495.71, + "probability": 0.9624 + }, + { + "start": 9495.81, + "end": 9498.89, + "probability": 0.9891 + }, + { + "start": 9499.21, + "end": 9499.69, + "probability": 0.7424 + }, + { + "start": 9509.21, + "end": 9510.45, + "probability": 0.7444 + }, + { + "start": 9510.87, + "end": 9511.69, + "probability": 0.7687 + }, + { + "start": 9511.81, + "end": 9512.15, + "probability": 0.7524 + }, + { + "start": 9512.27, + "end": 9513.45, + "probability": 0.9558 + }, + { + "start": 9514.43, + "end": 9518.45, + "probability": 0.9458 + }, + { + "start": 9519.53, + "end": 9521.27, + "probability": 0.9948 + }, + { + "start": 9521.55, + "end": 9524.89, + "probability": 0.9987 + }, + { + "start": 9525.97, + "end": 9530.49, + "probability": 0.9843 + }, + { + "start": 9531.93, + "end": 9537.73, + "probability": 0.9966 + }, + { + "start": 9538.53, + "end": 9540.05, + "probability": 0.999 + }, + { + "start": 9541.31, + "end": 9546.25, + "probability": 0.7713 + }, + { + "start": 9546.33, + "end": 9547.93, + "probability": 0.7213 + }, + { + "start": 9549.05, + "end": 9550.84, + "probability": 0.9978 + }, + { + "start": 9551.71, + "end": 9552.33, + "probability": 0.9491 + }, + { + "start": 9553.21, + "end": 9558.79, + "probability": 0.9203 + }, + { + "start": 9559.69, + "end": 9562.29, + "probability": 0.9753 + }, + { + "start": 9563.63, + "end": 9566.07, + "probability": 0.8582 + }, + { + "start": 9566.91, + "end": 9572.55, + "probability": 0.9929 + }, + { + "start": 9573.27, + "end": 9573.63, + "probability": 0.8823 + }, + { + "start": 9573.75, + "end": 9574.39, + "probability": 0.7054 + }, + { + "start": 9574.53, + "end": 9576.97, + "probability": 0.9844 + }, + { + "start": 9577.07, + "end": 9577.33, + "probability": 0.4438 + }, + { + "start": 9578.51, + "end": 9580.85, + "probability": 0.96 + }, + { + "start": 9582.05, + "end": 9583.78, + "probability": 0.9806 + }, + { + "start": 9585.6, + "end": 9589.01, + "probability": 0.7991 + }, + { + "start": 9589.17, + "end": 9590.59, + "probability": 0.7356 + }, + { + "start": 9590.77, + "end": 9593.29, + "probability": 0.98 + }, + { + "start": 9593.79, + "end": 9595.73, + "probability": 0.9946 + }, + { + "start": 9595.89, + "end": 9597.07, + "probability": 0.5189 + }, + { + "start": 9597.19, + "end": 9599.27, + "probability": 0.6707 + }, + { + "start": 9599.49, + "end": 9600.11, + "probability": 0.7061 + }, + { + "start": 9601.07, + "end": 9603.09, + "probability": 0.8564 + }, + { + "start": 9606.73, + "end": 9613.21, + "probability": 0.9849 + }, + { + "start": 9613.69, + "end": 9614.37, + "probability": 0.9277 + }, + { + "start": 9615.21, + "end": 9617.77, + "probability": 0.9317 + }, + { + "start": 9617.95, + "end": 9618.69, + "probability": 0.8967 + }, + { + "start": 9618.73, + "end": 9620.23, + "probability": 0.9896 + }, + { + "start": 9621.23, + "end": 9622.69, + "probability": 0.8787 + }, + { + "start": 9623.65, + "end": 9624.81, + "probability": 0.7769 + }, + { + "start": 9625.61, + "end": 9627.27, + "probability": 0.9701 + }, + { + "start": 9627.91, + "end": 9630.71, + "probability": 0.9875 + }, + { + "start": 9630.85, + "end": 9632.63, + "probability": 0.6743 + }, + { + "start": 9633.15, + "end": 9635.79, + "probability": 0.9935 + }, + { + "start": 9637.05, + "end": 9641.17, + "probability": 0.9957 + }, + { + "start": 9641.37, + "end": 9646.31, + "probability": 0.987 + }, + { + "start": 9647.71, + "end": 9649.13, + "probability": 0.9551 + }, + { + "start": 9649.65, + "end": 9653.05, + "probability": 0.9587 + }, + { + "start": 9654.15, + "end": 9659.01, + "probability": 0.9024 + }, + { + "start": 9659.77, + "end": 9662.45, + "probability": 0.8479 + }, + { + "start": 9663.19, + "end": 9666.47, + "probability": 0.9877 + }, + { + "start": 9667.09, + "end": 9669.67, + "probability": 0.8877 + }, + { + "start": 9669.75, + "end": 9670.83, + "probability": 0.9922 + }, + { + "start": 9671.45, + "end": 9672.51, + "probability": 0.7621 + }, + { + "start": 9672.55, + "end": 9676.85, + "probability": 0.9968 + }, + { + "start": 9677.15, + "end": 9678.1, + "probability": 0.9527 + }, + { + "start": 9678.87, + "end": 9683.81, + "probability": 0.9627 + }, + { + "start": 9685.41, + "end": 9687.63, + "probability": 0.8669 + }, + { + "start": 9687.75, + "end": 9690.69, + "probability": 0.9468 + }, + { + "start": 9691.51, + "end": 9692.15, + "probability": 0.8513 + }, + { + "start": 9693.47, + "end": 9695.63, + "probability": 0.9504 + }, + { + "start": 9695.75, + "end": 9696.95, + "probability": 0.7639 + }, + { + "start": 9697.33, + "end": 9697.61, + "probability": 0.9661 + }, + { + "start": 9698.27, + "end": 9700.13, + "probability": 0.9628 + }, + { + "start": 9700.29, + "end": 9701.05, + "probability": 0.6978 + }, + { + "start": 9701.21, + "end": 9701.43, + "probability": 0.802 + }, + { + "start": 9702.07, + "end": 9703.31, + "probability": 0.6198 + }, + { + "start": 9704.25, + "end": 9706.39, + "probability": 0.8783 + }, + { + "start": 9707.27, + "end": 9709.59, + "probability": 0.9232 + }, + { + "start": 9710.57, + "end": 9714.23, + "probability": 0.8306 + }, + { + "start": 9715.25, + "end": 9716.81, + "probability": 0.8841 + }, + { + "start": 9716.87, + "end": 9718.17, + "probability": 0.8679 + }, + { + "start": 9718.21, + "end": 9720.07, + "probability": 0.9371 + }, + { + "start": 9720.87, + "end": 9722.97, + "probability": 0.9851 + }, + { + "start": 9723.93, + "end": 9724.99, + "probability": 0.9082 + }, + { + "start": 9726.15, + "end": 9729.43, + "probability": 0.748 + }, + { + "start": 9730.25, + "end": 9734.47, + "probability": 0.759 + }, + { + "start": 9735.01, + "end": 9736.23, + "probability": 0.9252 + }, + { + "start": 9736.89, + "end": 9739.23, + "probability": 0.9961 + }, + { + "start": 9739.41, + "end": 9740.45, + "probability": 0.9817 + }, + { + "start": 9740.57, + "end": 9743.91, + "probability": 0.963 + }, + { + "start": 9744.67, + "end": 9747.59, + "probability": 0.8511 + }, + { + "start": 9748.37, + "end": 9749.99, + "probability": 0.9875 + }, + { + "start": 9750.23, + "end": 9750.53, + "probability": 0.7043 + }, + { + "start": 9750.61, + "end": 9751.79, + "probability": 0.9579 + }, + { + "start": 9751.91, + "end": 9753.19, + "probability": 0.5134 + }, + { + "start": 9755.4, + "end": 9756.57, + "probability": 0.4269 + }, + { + "start": 9756.57, + "end": 9757.09, + "probability": 0.0481 + }, + { + "start": 9757.79, + "end": 9758.47, + "probability": 0.9039 + }, + { + "start": 9759.31, + "end": 9764.13, + "probability": 0.9018 + }, + { + "start": 9764.87, + "end": 9767.19, + "probability": 0.9728 + }, + { + "start": 9767.99, + "end": 9772.25, + "probability": 0.9904 + }, + { + "start": 9772.95, + "end": 9776.03, + "probability": 0.9333 + }, + { + "start": 9776.57, + "end": 9779.39, + "probability": 0.9889 + }, + { + "start": 9780.67, + "end": 9783.19, + "probability": 0.9982 + }, + { + "start": 9784.15, + "end": 9786.01, + "probability": 0.9412 + }, + { + "start": 9786.53, + "end": 9789.6, + "probability": 0.9861 + }, + { + "start": 9789.83, + "end": 9790.76, + "probability": 0.9976 + }, + { + "start": 9791.65, + "end": 9792.65, + "probability": 0.9666 + }, + { + "start": 9792.71, + "end": 9793.23, + "probability": 0.7677 + }, + { + "start": 9793.31, + "end": 9797.73, + "probability": 0.9411 + }, + { + "start": 9798.27, + "end": 9799.13, + "probability": 0.9134 + }, + { + "start": 9799.43, + "end": 9800.93, + "probability": 0.9978 + }, + { + "start": 9801.09, + "end": 9802.41, + "probability": 0.9575 + }, + { + "start": 9803.29, + "end": 9805.37, + "probability": 0.552 + }, + { + "start": 9806.13, + "end": 9808.35, + "probability": 0.9951 + }, + { + "start": 9808.57, + "end": 9811.59, + "probability": 0.9904 + }, + { + "start": 9812.35, + "end": 9814.13, + "probability": 0.9451 + }, + { + "start": 9817.09, + "end": 9817.13, + "probability": 0.0222 + }, + { + "start": 9818.23, + "end": 9820.27, + "probability": 0.1143 + }, + { + "start": 9820.27, + "end": 9823.75, + "probability": 0.055 + }, + { + "start": 9824.05, + "end": 9827.53, + "probability": 0.6528 + }, + { + "start": 9829.79, + "end": 9830.63, + "probability": 0.0618 + }, + { + "start": 9831.81, + "end": 9832.83, + "probability": 0.8491 + }, + { + "start": 9832.87, + "end": 9834.51, + "probability": 0.9939 + }, + { + "start": 9834.73, + "end": 9835.77, + "probability": 0.7898 + }, + { + "start": 9835.83, + "end": 9836.43, + "probability": 0.9579 + }, + { + "start": 9837.55, + "end": 9838.25, + "probability": 0.7491 + }, + { + "start": 9839.11, + "end": 9841.23, + "probability": 0.894 + }, + { + "start": 9842.15, + "end": 9845.69, + "probability": 0.9644 + }, + { + "start": 9846.71, + "end": 9851.05, + "probability": 0.9909 + }, + { + "start": 9851.77, + "end": 9853.41, + "probability": 0.9557 + }, + { + "start": 9853.69, + "end": 9854.07, + "probability": 0.944 + }, + { + "start": 9854.21, + "end": 9856.97, + "probability": 0.9025 + }, + { + "start": 9857.65, + "end": 9861.13, + "probability": 0.9772 + }, + { + "start": 9861.37, + "end": 9862.51, + "probability": 0.9834 + }, + { + "start": 9862.73, + "end": 9862.95, + "probability": 0.5746 + }, + { + "start": 9863.11, + "end": 9864.47, + "probability": 0.8265 + }, + { + "start": 9865.25, + "end": 9866.93, + "probability": 0.9499 + }, + { + "start": 9867.97, + "end": 9870.61, + "probability": 0.9625 + }, + { + "start": 9870.61, + "end": 9872.73, + "probability": 0.9351 + }, + { + "start": 9873.55, + "end": 9876.31, + "probability": 0.771 + }, + { + "start": 9876.83, + "end": 9879.51, + "probability": 0.941 + }, + { + "start": 9880.07, + "end": 9880.81, + "probability": 0.0168 + }, + { + "start": 9881.35, + "end": 9885.55, + "probability": 0.9372 + }, + { + "start": 9886.29, + "end": 9890.59, + "probability": 0.9745 + }, + { + "start": 9890.71, + "end": 9891.87, + "probability": 0.7356 + }, + { + "start": 9892.29, + "end": 9892.79, + "probability": 0.4952 + }, + { + "start": 9893.55, + "end": 9896.25, + "probability": 0.7658 + }, + { + "start": 9896.29, + "end": 9901.45, + "probability": 0.9847 + }, + { + "start": 9902.11, + "end": 9902.27, + "probability": 0.6177 + }, + { + "start": 9903.33, + "end": 9906.47, + "probability": 0.9331 + }, + { + "start": 9907.23, + "end": 9914.37, + "probability": 0.9502 + }, + { + "start": 9914.41, + "end": 9915.31, + "probability": 0.7666 + }, + { + "start": 9915.89, + "end": 9918.31, + "probability": 0.712 + }, + { + "start": 9918.95, + "end": 9922.29, + "probability": 0.9976 + }, + { + "start": 9922.51, + "end": 9926.03, + "probability": 0.9937 + }, + { + "start": 9926.13, + "end": 9926.87, + "probability": 0.9385 + }, + { + "start": 9927.37, + "end": 9929.01, + "probability": 0.9213 + }, + { + "start": 9930.61, + "end": 9932.79, + "probability": 0.8536 + }, + { + "start": 9933.97, + "end": 9934.21, + "probability": 0.6577 + }, + { + "start": 9934.31, + "end": 9940.05, + "probability": 0.9624 + }, + { + "start": 9941.33, + "end": 9943.97, + "probability": 0.9614 + }, + { + "start": 9944.17, + "end": 9946.43, + "probability": 0.9917 + }, + { + "start": 9946.91, + "end": 9950.65, + "probability": 0.8022 + }, + { + "start": 9951.41, + "end": 9955.37, + "probability": 0.9172 + }, + { + "start": 9957.05, + "end": 9959.75, + "probability": 0.9416 + }, + { + "start": 9960.41, + "end": 9963.21, + "probability": 0.856 + }, + { + "start": 9963.39, + "end": 9964.53, + "probability": 0.8912 + }, + { + "start": 9965.45, + "end": 9968.09, + "probability": 0.8454 + }, + { + "start": 9969.21, + "end": 9970.25, + "probability": 0.825 + }, + { + "start": 9970.55, + "end": 9974.29, + "probability": 0.897 + }, + { + "start": 9974.37, + "end": 9976.37, + "probability": 0.6296 + }, + { + "start": 9979.99, + "end": 9981.74, + "probability": 0.9902 + }, + { + "start": 9982.15, + "end": 9983.13, + "probability": 0.8774 + }, + { + "start": 9983.59, + "end": 9987.07, + "probability": 0.9541 + }, + { + "start": 9989.03, + "end": 9993.01, + "probability": 0.9993 + }, + { + "start": 9993.15, + "end": 9993.85, + "probability": 0.749 + }, + { + "start": 9995.03, + "end": 9998.51, + "probability": 0.6728 + }, + { + "start": 9999.33, + "end": 10003.57, + "probability": 0.9456 + }, + { + "start": 10004.39, + "end": 10008.51, + "probability": 0.6483 + }, + { + "start": 10009.21, + "end": 10009.63, + "probability": 0.0411 + }, + { + "start": 10010.77, + "end": 10012.87, + "probability": 0.656 + }, + { + "start": 10013.29, + "end": 10016.05, + "probability": 0.8955 + }, + { + "start": 10016.99, + "end": 10018.73, + "probability": 0.7929 + }, + { + "start": 10019.61, + "end": 10024.15, + "probability": 0.9876 + }, + { + "start": 10026.91, + "end": 10031.45, + "probability": 0.9965 + }, + { + "start": 10031.59, + "end": 10032.47, + "probability": 0.7829 + }, + { + "start": 10033.03, + "end": 10036.97, + "probability": 0.998 + }, + { + "start": 10038.11, + "end": 10038.89, + "probability": 0.9102 + }, + { + "start": 10039.57, + "end": 10040.17, + "probability": 0.6587 + }, + { + "start": 10040.63, + "end": 10046.31, + "probability": 0.6871 + }, + { + "start": 10046.89, + "end": 10049.13, + "probability": 0.9603 + }, + { + "start": 10051.56, + "end": 10053.95, + "probability": 0.7623 + }, + { + "start": 10054.05, + "end": 10054.45, + "probability": 0.8404 + }, + { + "start": 10054.55, + "end": 10057.27, + "probability": 0.8428 + }, + { + "start": 10058.5, + "end": 10061.83, + "probability": 0.5232 + }, + { + "start": 10062.61, + "end": 10063.71, + "probability": 0.6463 + }, + { + "start": 10063.73, + "end": 10065.39, + "probability": 0.9934 + }, + { + "start": 10065.53, + "end": 10067.89, + "probability": 0.8159 + }, + { + "start": 10068.47, + "end": 10069.91, + "probability": 0.5079 + }, + { + "start": 10070.59, + "end": 10072.17, + "probability": 0.7869 + }, + { + "start": 10072.99, + "end": 10076.05, + "probability": 0.8737 + }, + { + "start": 10077.09, + "end": 10077.77, + "probability": 0.6575 + }, + { + "start": 10078.15, + "end": 10082.74, + "probability": 0.8601 + }, + { + "start": 10083.99, + "end": 10087.09, + "probability": 0.9053 + }, + { + "start": 10087.75, + "end": 10089.03, + "probability": 0.9654 + }, + { + "start": 10089.77, + "end": 10090.63, + "probability": 0.7905 + }, + { + "start": 10090.77, + "end": 10092.65, + "probability": 0.8086 + }, + { + "start": 10092.85, + "end": 10093.45, + "probability": 0.463 + }, + { + "start": 10093.51, + "end": 10099.45, + "probability": 0.7848 + }, + { + "start": 10099.57, + "end": 10100.87, + "probability": 0.6904 + }, + { + "start": 10101.35, + "end": 10104.13, + "probability": 0.9868 + }, + { + "start": 10104.91, + "end": 10106.25, + "probability": 0.8061 + }, + { + "start": 10106.43, + "end": 10108.15, + "probability": 0.8651 + }, + { + "start": 10108.63, + "end": 10110.95, + "probability": 0.9648 + }, + { + "start": 10111.61, + "end": 10114.83, + "probability": 0.9364 + }, + { + "start": 10114.95, + "end": 10115.87, + "probability": 0.9487 + }, + { + "start": 10115.93, + "end": 10117.17, + "probability": 0.9622 + }, + { + "start": 10117.17, + "end": 10117.95, + "probability": 0.8856 + }, + { + "start": 10118.07, + "end": 10121.95, + "probability": 0.9814 + }, + { + "start": 10122.79, + "end": 10124.49, + "probability": 0.9671 + }, + { + "start": 10127.91, + "end": 10130.01, + "probability": 0.9297 + }, + { + "start": 10130.11, + "end": 10132.21, + "probability": 0.9275 + }, + { + "start": 10132.95, + "end": 10135.29, + "probability": 0.45 + }, + { + "start": 10135.77, + "end": 10136.19, + "probability": 0.4495 + }, + { + "start": 10136.19, + "end": 10137.97, + "probability": 0.7542 + }, + { + "start": 10138.27, + "end": 10141.03, + "probability": 0.5712 + }, + { + "start": 10141.43, + "end": 10144.97, + "probability": 0.6009 + }, + { + "start": 10144.97, + "end": 10149.33, + "probability": 0.9977 + }, + { + "start": 10149.43, + "end": 10153.07, + "probability": 0.9971 + }, + { + "start": 10153.97, + "end": 10157.25, + "probability": 0.9914 + }, + { + "start": 10157.37, + "end": 10159.73, + "probability": 0.9697 + }, + { + "start": 10160.55, + "end": 10163.19, + "probability": 0.9934 + }, + { + "start": 10164.19, + "end": 10165.21, + "probability": 0.9979 + }, + { + "start": 10169.53, + "end": 10173.01, + "probability": 0.9961 + }, + { + "start": 10173.51, + "end": 10175.33, + "probability": 0.8889 + }, + { + "start": 10176.43, + "end": 10178.95, + "probability": 0.9943 + }, + { + "start": 10178.95, + "end": 10182.35, + "probability": 0.9991 + }, + { + "start": 10184.2, + "end": 10187.45, + "probability": 0.9946 + }, + { + "start": 10188.37, + "end": 10189.79, + "probability": 0.5382 + }, + { + "start": 10190.79, + "end": 10193.85, + "probability": 0.8901 + }, + { + "start": 10195.98, + "end": 10199.73, + "probability": 0.809 + }, + { + "start": 10199.73, + "end": 10201.95, + "probability": 0.7337 + }, + { + "start": 10202.51, + "end": 10207.07, + "probability": 0.9609 + }, + { + "start": 10207.45, + "end": 10207.73, + "probability": 0.8139 + }, + { + "start": 10208.17, + "end": 10208.59, + "probability": 0.7357 + }, + { + "start": 10209.03, + "end": 10211.17, + "probability": 0.765 + }, + { + "start": 10211.97, + "end": 10215.51, + "probability": 0.979 + }, + { + "start": 10215.57, + "end": 10216.11, + "probability": 0.7336 + }, + { + "start": 10216.99, + "end": 10217.35, + "probability": 0.679 + }, + { + "start": 10217.35, + "end": 10220.11, + "probability": 0.875 + }, + { + "start": 10220.17, + "end": 10222.51, + "probability": 0.9907 + }, + { + "start": 10222.69, + "end": 10225.27, + "probability": 0.9059 + }, + { + "start": 10225.55, + "end": 10226.41, + "probability": 0.9966 + }, + { + "start": 10227.05, + "end": 10229.79, + "probability": 0.8873 + }, + { + "start": 10235.33, + "end": 10235.87, + "probability": 0.2656 + }, + { + "start": 10235.87, + "end": 10237.71, + "probability": 0.7133 + }, + { + "start": 10237.79, + "end": 10237.81, + "probability": 0.7072 + }, + { + "start": 10237.82, + "end": 10242.29, + "probability": 0.9812 + }, + { + "start": 10243.99, + "end": 10244.87, + "probability": 0.8144 + }, + { + "start": 10246.41, + "end": 10251.1, + "probability": 0.9033 + }, + { + "start": 10252.41, + "end": 10252.93, + "probability": 0.9645 + }, + { + "start": 10254.73, + "end": 10257.71, + "probability": 0.9177 + }, + { + "start": 10258.43, + "end": 10258.43, + "probability": 0.0045 + }, + { + "start": 10261.17, + "end": 10263.51, + "probability": 0.9209 + }, + { + "start": 10264.69, + "end": 10266.65, + "probability": 0.9062 + }, + { + "start": 10267.47, + "end": 10271.81, + "probability": 0.983 + }, + { + "start": 10272.61, + "end": 10273.95, + "probability": 0.9402 + }, + { + "start": 10276.79, + "end": 10278.77, + "probability": 0.9978 + }, + { + "start": 10280.89, + "end": 10283.01, + "probability": 0.8999 + }, + { + "start": 10284.39, + "end": 10285.45, + "probability": 0.9712 + }, + { + "start": 10287.11, + "end": 10289.95, + "probability": 0.0536 + }, + { + "start": 10291.05, + "end": 10293.51, + "probability": 0.7354 + }, + { + "start": 10294.41, + "end": 10297.51, + "probability": 0.9434 + }, + { + "start": 10297.65, + "end": 10298.57, + "probability": 0.9036 + }, + { + "start": 10299.51, + "end": 10300.33, + "probability": 0.62 + }, + { + "start": 10301.25, + "end": 10306.15, + "probability": 0.9583 + }, + { + "start": 10306.15, + "end": 10309.71, + "probability": 0.9346 + }, + { + "start": 10310.79, + "end": 10312.53, + "probability": 0.8125 + }, + { + "start": 10312.61, + "end": 10313.99, + "probability": 0.7406 + }, + { + "start": 10314.07, + "end": 10315.01, + "probability": 0.8665 + }, + { + "start": 10316.25, + "end": 10319.33, + "probability": 0.9919 + }, + { + "start": 10320.31, + "end": 10324.57, + "probability": 0.8354 + }, + { + "start": 10328.67, + "end": 10331.95, + "probability": 0.8785 + }, + { + "start": 10332.75, + "end": 10333.86, + "probability": 0.9948 + }, + { + "start": 10335.03, + "end": 10335.71, + "probability": 0.9824 + }, + { + "start": 10337.75, + "end": 10341.27, + "probability": 0.9573 + }, + { + "start": 10341.71, + "end": 10343.04, + "probability": 0.9946 + }, + { + "start": 10343.99, + "end": 10345.67, + "probability": 0.8436 + }, + { + "start": 10347.59, + "end": 10351.01, + "probability": 0.9819 + }, + { + "start": 10351.15, + "end": 10352.55, + "probability": 0.9613 + }, + { + "start": 10353.41, + "end": 10354.75, + "probability": 0.8892 + }, + { + "start": 10355.17, + "end": 10358.95, + "probability": 0.959 + }, + { + "start": 10361.23, + "end": 10364.17, + "probability": 0.866 + }, + { + "start": 10364.65, + "end": 10366.57, + "probability": 0.9673 + }, + { + "start": 10366.61, + "end": 10373.27, + "probability": 0.9923 + }, + { + "start": 10374.45, + "end": 10375.83, + "probability": 0.9662 + }, + { + "start": 10376.05, + "end": 10376.05, + "probability": 0.5659 + }, + { + "start": 10376.05, + "end": 10378.05, + "probability": 0.9514 + }, + { + "start": 10378.17, + "end": 10379.61, + "probability": 0.9396 + }, + { + "start": 10382.08, + "end": 10385.33, + "probability": 0.9912 + }, + { + "start": 10386.39, + "end": 10389.65, + "probability": 0.8218 + }, + { + "start": 10390.33, + "end": 10391.75, + "probability": 0.7858 + }, + { + "start": 10394.43, + "end": 10398.89, + "probability": 0.8483 + }, + { + "start": 10400.05, + "end": 10402.54, + "probability": 0.9917 + }, + { + "start": 10403.47, + "end": 10404.23, + "probability": 0.7406 + }, + { + "start": 10406.13, + "end": 10410.33, + "probability": 0.997 + }, + { + "start": 10410.73, + "end": 10411.81, + "probability": 0.5469 + }, + { + "start": 10415.09, + "end": 10416.29, + "probability": 0.8437 + }, + { + "start": 10417.77, + "end": 10421.63, + "probability": 0.9841 + }, + { + "start": 10422.81, + "end": 10426.97, + "probability": 0.9952 + }, + { + "start": 10431.59, + "end": 10431.99, + "probability": 0.1086 + }, + { + "start": 10431.99, + "end": 10432.76, + "probability": 0.5073 + }, + { + "start": 10433.43, + "end": 10435.29, + "probability": 0.6211 + }, + { + "start": 10436.39, + "end": 10438.45, + "probability": 0.98 + }, + { + "start": 10439.17, + "end": 10441.87, + "probability": 0.9795 + }, + { + "start": 10442.51, + "end": 10446.29, + "probability": 0.943 + }, + { + "start": 10447.57, + "end": 10450.13, + "probability": 0.7978 + }, + { + "start": 10450.65, + "end": 10451.66, + "probability": 0.9785 + }, + { + "start": 10452.21, + "end": 10453.89, + "probability": 0.9869 + }, + { + "start": 10455.93, + "end": 10459.79, + "probability": 0.8818 + }, + { + "start": 10460.93, + "end": 10466.41, + "probability": 0.8424 + }, + { + "start": 10469.49, + "end": 10473.11, + "probability": 0.9873 + }, + { + "start": 10473.83, + "end": 10477.51, + "probability": 0.7703 + }, + { + "start": 10478.31, + "end": 10480.07, + "probability": 0.9969 + }, + { + "start": 10480.93, + "end": 10484.39, + "probability": 0.9665 + }, + { + "start": 10485.57, + "end": 10488.19, + "probability": 0.8798 + }, + { + "start": 10490.64, + "end": 10493.77, + "probability": 0.9945 + }, + { + "start": 10496.07, + "end": 10501.11, + "probability": 0.9982 + }, + { + "start": 10502.17, + "end": 10506.63, + "probability": 0.9902 + }, + { + "start": 10507.79, + "end": 10509.93, + "probability": 0.9982 + }, + { + "start": 10509.93, + "end": 10512.99, + "probability": 0.9986 + }, + { + "start": 10513.77, + "end": 10515.91, + "probability": 0.849 + }, + { + "start": 10516.75, + "end": 10517.87, + "probability": 0.9544 + }, + { + "start": 10519.07, + "end": 10520.53, + "probability": 0.9924 + }, + { + "start": 10520.63, + "end": 10522.77, + "probability": 0.9539 + }, + { + "start": 10524.37, + "end": 10527.63, + "probability": 0.9976 + }, + { + "start": 10528.75, + "end": 10532.59, + "probability": 0.9082 + }, + { + "start": 10532.89, + "end": 10535.39, + "probability": 0.999 + }, + { + "start": 10536.41, + "end": 10538.67, + "probability": 0.9976 + }, + { + "start": 10540.07, + "end": 10545.39, + "probability": 0.8752 + }, + { + "start": 10546.71, + "end": 10548.59, + "probability": 0.8913 + }, + { + "start": 10549.37, + "end": 10555.81, + "probability": 0.9883 + }, + { + "start": 10556.03, + "end": 10557.57, + "probability": 0.9801 + }, + { + "start": 10558.35, + "end": 10560.13, + "probability": 0.8076 + }, + { + "start": 10562.39, + "end": 10564.19, + "probability": 0.9941 + }, + { + "start": 10564.57, + "end": 10564.79, + "probability": 0.601 + }, + { + "start": 10564.85, + "end": 10565.87, + "probability": 0.98 + }, + { + "start": 10567.16, + "end": 10571.17, + "probability": 0.9798 + }, + { + "start": 10572.33, + "end": 10573.51, + "probability": 0.864 + }, + { + "start": 10574.27, + "end": 10575.43, + "probability": 0.9227 + }, + { + "start": 10575.53, + "end": 10577.13, + "probability": 0.9835 + }, + { + "start": 10577.39, + "end": 10579.77, + "probability": 0.9792 + }, + { + "start": 10581.07, + "end": 10584.91, + "probability": 0.988 + }, + { + "start": 10585.45, + "end": 10590.91, + "probability": 0.9671 + }, + { + "start": 10591.57, + "end": 10596.11, + "probability": 0.9941 + }, + { + "start": 10596.93, + "end": 10599.49, + "probability": 0.9841 + }, + { + "start": 10600.57, + "end": 10603.75, + "probability": 0.9838 + }, + { + "start": 10604.53, + "end": 10605.23, + "probability": 0.9617 + }, + { + "start": 10606.05, + "end": 10611.71, + "probability": 0.9725 + }, + { + "start": 10613.27, + "end": 10614.51, + "probability": 0.9937 + }, + { + "start": 10616.01, + "end": 10617.71, + "probability": 0.9981 + }, + { + "start": 10618.67, + "end": 10622.97, + "probability": 0.9509 + }, + { + "start": 10623.57, + "end": 10626.33, + "probability": 0.8944 + }, + { + "start": 10627.23, + "end": 10632.57, + "probability": 0.9912 + }, + { + "start": 10633.99, + "end": 10636.89, + "probability": 0.9036 + }, + { + "start": 10638.21, + "end": 10641.37, + "probability": 0.9824 + }, + { + "start": 10645.45, + "end": 10647.07, + "probability": 0.8319 + }, + { + "start": 10649.51, + "end": 10654.15, + "probability": 0.9939 + }, + { + "start": 10654.77, + "end": 10657.83, + "probability": 0.9026 + }, + { + "start": 10657.83, + "end": 10660.69, + "probability": 0.952 + }, + { + "start": 10662.49, + "end": 10663.11, + "probability": 0.6467 + }, + { + "start": 10664.13, + "end": 10665.69, + "probability": 0.7155 + }, + { + "start": 10665.73, + "end": 10667.59, + "probability": 0.8622 + }, + { + "start": 10669.05, + "end": 10674.23, + "probability": 0.9973 + }, + { + "start": 10675.61, + "end": 10675.93, + "probability": 0.7955 + }, + { + "start": 10678.15, + "end": 10683.21, + "probability": 0.9362 + }, + { + "start": 10683.71, + "end": 10684.35, + "probability": 0.5513 + }, + { + "start": 10686.17, + "end": 10689.09, + "probability": 0.9596 + }, + { + "start": 10689.55, + "end": 10690.91, + "probability": 0.9753 + }, + { + "start": 10691.79, + "end": 10692.37, + "probability": 0.7107 + }, + { + "start": 10693.07, + "end": 10696.05, + "probability": 0.9065 + }, + { + "start": 10696.67, + "end": 10699.59, + "probability": 0.9958 + }, + { + "start": 10701.57, + "end": 10705.53, + "probability": 0.9823 + }, + { + "start": 10706.35, + "end": 10709.59, + "probability": 0.9919 + }, + { + "start": 10711.35, + "end": 10713.11, + "probability": 0.7978 + }, + { + "start": 10714.17, + "end": 10714.93, + "probability": 0.9618 + }, + { + "start": 10716.57, + "end": 10719.83, + "probability": 0.985 + }, + { + "start": 10720.09, + "end": 10721.61, + "probability": 0.9014 + }, + { + "start": 10722.19, + "end": 10722.73, + "probability": 0.9246 + }, + { + "start": 10724.63, + "end": 10728.03, + "probability": 0.8373 + }, + { + "start": 10729.27, + "end": 10730.89, + "probability": 0.9932 + }, + { + "start": 10732.01, + "end": 10732.93, + "probability": 0.9714 + }, + { + "start": 10733.77, + "end": 10734.96, + "probability": 0.9203 + }, + { + "start": 10736.23, + "end": 10738.73, + "probability": 0.8201 + }, + { + "start": 10739.45, + "end": 10742.01, + "probability": 0.7651 + }, + { + "start": 10742.15, + "end": 10742.89, + "probability": 0.4375 + }, + { + "start": 10742.99, + "end": 10743.97, + "probability": 0.9548 + }, + { + "start": 10744.23, + "end": 10744.55, + "probability": 0.8658 + }, + { + "start": 10745.25, + "end": 10746.19, + "probability": 0.8183 + }, + { + "start": 10747.89, + "end": 10751.71, + "probability": 0.9924 + }, + { + "start": 10752.39, + "end": 10753.83, + "probability": 0.8918 + }, + { + "start": 10755.21, + "end": 10759.45, + "probability": 0.8921 + }, + { + "start": 10761.19, + "end": 10766.43, + "probability": 0.9854 + }, + { + "start": 10767.25, + "end": 10768.77, + "probability": 0.8918 + }, + { + "start": 10769.65, + "end": 10775.15, + "probability": 0.9955 + }, + { + "start": 10778.13, + "end": 10781.65, + "probability": 0.95 + }, + { + "start": 10782.73, + "end": 10783.47, + "probability": 0.6786 + }, + { + "start": 10784.47, + "end": 10785.25, + "probability": 0.7412 + }, + { + "start": 10785.47, + "end": 10788.81, + "probability": 0.9632 + }, + { + "start": 10789.79, + "end": 10791.67, + "probability": 0.9066 + }, + { + "start": 10793.31, + "end": 10795.43, + "probability": 0.729 + }, + { + "start": 10797.31, + "end": 10800.01, + "probability": 0.9968 + }, + { + "start": 10800.01, + "end": 10803.21, + "probability": 0.986 + }, + { + "start": 10804.11, + "end": 10806.65, + "probability": 0.9835 + }, + { + "start": 10807.43, + "end": 10813.09, + "probability": 0.9915 + }, + { + "start": 10814.19, + "end": 10815.87, + "probability": 0.9947 + }, + { + "start": 10816.67, + "end": 10819.73, + "probability": 0.993 + }, + { + "start": 10820.11, + "end": 10821.81, + "probability": 0.9902 + }, + { + "start": 10823.01, + "end": 10823.89, + "probability": 0.8184 + }, + { + "start": 10824.59, + "end": 10825.23, + "probability": 0.9954 + }, + { + "start": 10825.99, + "end": 10827.28, + "probability": 0.9645 + }, + { + "start": 10827.89, + "end": 10829.49, + "probability": 0.9674 + }, + { + "start": 10839.51, + "end": 10840.72, + "probability": 0.6517 + }, + { + "start": 10841.13, + "end": 10846.75, + "probability": 0.9613 + }, + { + "start": 10847.29, + "end": 10850.83, + "probability": 0.932 + }, + { + "start": 10851.71, + "end": 10852.39, + "probability": 0.9675 + }, + { + "start": 10853.67, + "end": 10857.87, + "probability": 0.9904 + }, + { + "start": 10858.09, + "end": 10861.51, + "probability": 0.9785 + }, + { + "start": 10861.51, + "end": 10864.89, + "probability": 0.9977 + }, + { + "start": 10866.51, + "end": 10866.99, + "probability": 0.4648 + }, + { + "start": 10867.65, + "end": 10869.09, + "probability": 0.7238 + }, + { + "start": 10870.65, + "end": 10872.27, + "probability": 0.9322 + }, + { + "start": 10875.13, + "end": 10876.02, + "probability": 0.9902 + }, + { + "start": 10876.59, + "end": 10880.33, + "probability": 0.9929 + }, + { + "start": 10880.99, + "end": 10882.07, + "probability": 0.7165 + }, + { + "start": 10882.93, + "end": 10885.91, + "probability": 0.968 + }, + { + "start": 10888.55, + "end": 10890.19, + "probability": 0.9268 + }, + { + "start": 10890.81, + "end": 10894.23, + "probability": 0.9956 + }, + { + "start": 10895.43, + "end": 10897.49, + "probability": 0.9903 + }, + { + "start": 10898.09, + "end": 10902.49, + "probability": 0.984 + }, + { + "start": 10903.03, + "end": 10904.49, + "probability": 0.9076 + }, + { + "start": 10905.93, + "end": 10908.55, + "probability": 0.9653 + }, + { + "start": 10909.61, + "end": 10912.75, + "probability": 0.9925 + }, + { + "start": 10913.13, + "end": 10914.19, + "probability": 0.7604 + }, + { + "start": 10914.45, + "end": 10915.29, + "probability": 0.8691 + }, + { + "start": 10916.63, + "end": 10917.83, + "probability": 0.68 + }, + { + "start": 10918.73, + "end": 10920.59, + "probability": 0.9875 + }, + { + "start": 10920.67, + "end": 10923.37, + "probability": 0.9819 + }, + { + "start": 10924.09, + "end": 10925.17, + "probability": 0.5626 + }, + { + "start": 10925.79, + "end": 10927.55, + "probability": 0.9551 + }, + { + "start": 10929.55, + "end": 10930.67, + "probability": 0.9378 + }, + { + "start": 10930.85, + "end": 10935.09, + "probability": 0.9942 + }, + { + "start": 10937.35, + "end": 10944.37, + "probability": 0.9781 + }, + { + "start": 10945.81, + "end": 10947.19, + "probability": 0.985 + }, + { + "start": 10947.97, + "end": 10950.21, + "probability": 0.9945 + }, + { + "start": 10951.23, + "end": 10952.99, + "probability": 0.9948 + }, + { + "start": 10953.93, + "end": 10955.11, + "probability": 0.7277 + }, + { + "start": 10956.17, + "end": 10958.55, + "probability": 0.9342 + }, + { + "start": 10960.45, + "end": 10960.99, + "probability": 0.6986 + }, + { + "start": 10962.07, + "end": 10962.99, + "probability": 0.9711 + }, + { + "start": 10965.41, + "end": 10970.38, + "probability": 0.9994 + }, + { + "start": 10971.89, + "end": 10973.85, + "probability": 0.9974 + }, + { + "start": 10975.33, + "end": 10977.57, + "probability": 0.9979 + }, + { + "start": 10977.91, + "end": 10979.19, + "probability": 0.9857 + }, + { + "start": 10980.03, + "end": 10980.95, + "probability": 0.9969 + }, + { + "start": 10981.57, + "end": 10987.23, + "probability": 0.9935 + }, + { + "start": 10988.69, + "end": 10990.43, + "probability": 0.995 + }, + { + "start": 10990.95, + "end": 10993.09, + "probability": 0.7777 + }, + { + "start": 10994.03, + "end": 10998.15, + "probability": 0.9707 + }, + { + "start": 10999.99, + "end": 11004.05, + "probability": 0.8914 + }, + { + "start": 11005.01, + "end": 11008.81, + "probability": 0.7466 + }, + { + "start": 11009.73, + "end": 11010.83, + "probability": 0.9985 + }, + { + "start": 11011.35, + "end": 11012.39, + "probability": 0.8807 + }, + { + "start": 11014.01, + "end": 11018.99, + "probability": 0.9795 + }, + { + "start": 11020.07, + "end": 11020.53, + "probability": 0.1596 + }, + { + "start": 11021.91, + "end": 11024.77, + "probability": 0.8126 + }, + { + "start": 11025.51, + "end": 11027.47, + "probability": 0.8178 + }, + { + "start": 11029.57, + "end": 11032.01, + "probability": 0.979 + }, + { + "start": 11032.19, + "end": 11033.37, + "probability": 0.8295 + }, + { + "start": 11033.83, + "end": 11035.35, + "probability": 0.9776 + }, + { + "start": 11036.01, + "end": 11037.23, + "probability": 0.6615 + }, + { + "start": 11038.01, + "end": 11040.65, + "probability": 0.9284 + }, + { + "start": 11041.31, + "end": 11043.17, + "probability": 0.9936 + }, + { + "start": 11043.83, + "end": 11044.73, + "probability": 0.9352 + }, + { + "start": 11045.33, + "end": 11046.67, + "probability": 0.8236 + }, + { + "start": 11048.65, + "end": 11049.89, + "probability": 0.8854 + }, + { + "start": 11050.35, + "end": 11054.43, + "probability": 0.9974 + }, + { + "start": 11055.27, + "end": 11055.73, + "probability": 0.5157 + }, + { + "start": 11056.11, + "end": 11058.13, + "probability": 0.9062 + }, + { + "start": 11058.19, + "end": 11059.67, + "probability": 0.919 + }, + { + "start": 11059.85, + "end": 11062.11, + "probability": 0.7388 + }, + { + "start": 11062.77, + "end": 11066.19, + "probability": 0.9807 + }, + { + "start": 11067.93, + "end": 11068.99, + "probability": 0.8594 + }, + { + "start": 11070.91, + "end": 11071.93, + "probability": 0.9547 + }, + { + "start": 11072.89, + "end": 11073.81, + "probability": 0.9407 + }, + { + "start": 11074.87, + "end": 11077.73, + "probability": 0.9581 + }, + { + "start": 11077.95, + "end": 11078.61, + "probability": 0.9862 + }, + { + "start": 11079.95, + "end": 11081.11, + "probability": 0.502 + }, + { + "start": 11081.11, + "end": 11081.81, + "probability": 0.9385 + }, + { + "start": 11082.45, + "end": 11083.39, + "probability": 0.7645 + }, + { + "start": 11084.27, + "end": 11084.65, + "probability": 0.8154 + }, + { + "start": 11085.33, + "end": 11085.99, + "probability": 0.7468 + }, + { + "start": 11086.75, + "end": 11089.53, + "probability": 0.9644 + }, + { + "start": 11090.11, + "end": 11091.91, + "probability": 0.9414 + }, + { + "start": 11094.11, + "end": 11095.49, + "probability": 0.977 + }, + { + "start": 11097.03, + "end": 11099.47, + "probability": 0.96 + }, + { + "start": 11100.49, + "end": 11103.51, + "probability": 0.9808 + }, + { + "start": 11104.87, + "end": 11106.29, + "probability": 0.9984 + }, + { + "start": 11107.03, + "end": 11109.33, + "probability": 0.9985 + }, + { + "start": 11110.21, + "end": 11116.47, + "probability": 0.9939 + }, + { + "start": 11117.63, + "end": 11118.63, + "probability": 0.998 + }, + { + "start": 11119.21, + "end": 11123.75, + "probability": 0.9946 + }, + { + "start": 11124.29, + "end": 11125.93, + "probability": 0.9945 + }, + { + "start": 11126.37, + "end": 11127.37, + "probability": 0.4706 + }, + { + "start": 11127.85, + "end": 11128.71, + "probability": 0.3724 + }, + { + "start": 11129.17, + "end": 11131.63, + "probability": 0.993 + }, + { + "start": 11132.87, + "end": 11135.43, + "probability": 0.9597 + }, + { + "start": 11136.23, + "end": 11138.57, + "probability": 0.9963 + }, + { + "start": 11139.33, + "end": 11140.87, + "probability": 0.8542 + }, + { + "start": 11145.27, + "end": 11147.37, + "probability": 0.8248 + }, + { + "start": 11150.67, + "end": 11151.69, + "probability": 0.6662 + }, + { + "start": 11152.57, + "end": 11156.25, + "probability": 0.9822 + }, + { + "start": 11157.51, + "end": 11158.41, + "probability": 0.7309 + }, + { + "start": 11158.49, + "end": 11159.07, + "probability": 0.9013 + }, + { + "start": 11159.35, + "end": 11162.15, + "probability": 0.9693 + }, + { + "start": 11164.73, + "end": 11165.39, + "probability": 0.9836 + }, + { + "start": 11166.97, + "end": 11167.89, + "probability": 0.4714 + }, + { + "start": 11170.43, + "end": 11173.43, + "probability": 0.9614 + }, + { + "start": 11173.95, + "end": 11174.49, + "probability": 0.5376 + }, + { + "start": 11175.37, + "end": 11176.03, + "probability": 0.988 + }, + { + "start": 11178.43, + "end": 11180.17, + "probability": 0.8959 + }, + { + "start": 11180.99, + "end": 11183.01, + "probability": 0.993 + }, + { + "start": 11183.97, + "end": 11188.63, + "probability": 0.9748 + }, + { + "start": 11190.65, + "end": 11192.65, + "probability": 0.9572 + }, + { + "start": 11193.97, + "end": 11195.67, + "probability": 0.957 + }, + { + "start": 11195.67, + "end": 11197.87, + "probability": 0.999 + }, + { + "start": 11200.05, + "end": 11201.59, + "probability": 0.8732 + }, + { + "start": 11201.97, + "end": 11205.21, + "probability": 0.9954 + }, + { + "start": 11207.01, + "end": 11209.15, + "probability": 0.9943 + }, + { + "start": 11210.19, + "end": 11211.43, + "probability": 0.9412 + }, + { + "start": 11212.57, + "end": 11214.09, + "probability": 0.8844 + }, + { + "start": 11214.79, + "end": 11217.61, + "probability": 0.9437 + }, + { + "start": 11218.69, + "end": 11222.73, + "probability": 0.9766 + }, + { + "start": 11224.21, + "end": 11226.27, + "probability": 0.9896 + }, + { + "start": 11227.05, + "end": 11229.09, + "probability": 0.9709 + }, + { + "start": 11229.71, + "end": 11232.55, + "probability": 0.9027 + }, + { + "start": 11233.29, + "end": 11237.1, + "probability": 0.9762 + }, + { + "start": 11239.13, + "end": 11240.01, + "probability": 0.9976 + }, + { + "start": 11240.69, + "end": 11244.83, + "probability": 0.7633 + }, + { + "start": 11246.61, + "end": 11250.37, + "probability": 0.998 + }, + { + "start": 11250.51, + "end": 11252.17, + "probability": 0.4985 + }, + { + "start": 11252.87, + "end": 11256.37, + "probability": 0.9917 + }, + { + "start": 11257.39, + "end": 11257.91, + "probability": 0.5772 + }, + { + "start": 11259.87, + "end": 11260.97, + "probability": 0.8735 + }, + { + "start": 11262.07, + "end": 11262.87, + "probability": 0.922 + }, + { + "start": 11263.81, + "end": 11265.88, + "probability": 0.9957 + }, + { + "start": 11267.53, + "end": 11268.63, + "probability": 0.9637 + }, + { + "start": 11268.81, + "end": 11270.25, + "probability": 0.8368 + }, + { + "start": 11270.69, + "end": 11272.41, + "probability": 0.7305 + }, + { + "start": 11275.53, + "end": 11280.11, + "probability": 0.9871 + }, + { + "start": 11282.95, + "end": 11285.09, + "probability": 0.9979 + }, + { + "start": 11285.21, + "end": 11285.75, + "probability": 0.9888 + }, + { + "start": 11285.87, + "end": 11286.49, + "probability": 0.6269 + }, + { + "start": 11288.33, + "end": 11289.49, + "probability": 0.9766 + }, + { + "start": 11290.09, + "end": 11291.33, + "probability": 0.7278 + }, + { + "start": 11292.17, + "end": 11295.43, + "probability": 0.9753 + }, + { + "start": 11296.53, + "end": 11301.53, + "probability": 0.9912 + }, + { + "start": 11301.53, + "end": 11306.61, + "probability": 0.9845 + }, + { + "start": 11307.51, + "end": 11308.35, + "probability": 0.9684 + }, + { + "start": 11309.87, + "end": 11310.55, + "probability": 0.7968 + }, + { + "start": 11312.25, + "end": 11313.99, + "probability": 0.759 + }, + { + "start": 11315.41, + "end": 11316.39, + "probability": 0.974 + }, + { + "start": 11317.89, + "end": 11320.81, + "probability": 0.9808 + }, + { + "start": 11321.51, + "end": 11322.75, + "probability": 0.9506 + }, + { + "start": 11323.81, + "end": 11325.59, + "probability": 0.984 + }, + { + "start": 11328.63, + "end": 11334.61, + "probability": 0.9835 + }, + { + "start": 11335.17, + "end": 11336.47, + "probability": 0.9476 + }, + { + "start": 11337.87, + "end": 11340.47, + "probability": 0.9123 + }, + { + "start": 11341.31, + "end": 11342.65, + "probability": 0.9124 + }, + { + "start": 11343.61, + "end": 11347.25, + "probability": 0.92 + }, + { + "start": 11348.15, + "end": 11349.07, + "probability": 0.7415 + }, + { + "start": 11350.32, + "end": 11352.45, + "probability": 0.5833 + }, + { + "start": 11353.41, + "end": 11359.23, + "probability": 0.8364 + }, + { + "start": 11359.63, + "end": 11361.93, + "probability": 0.996 + }, + { + "start": 11364.31, + "end": 11367.09, + "probability": 0.9774 + }, + { + "start": 11370.01, + "end": 11373.39, + "probability": 0.9696 + }, + { + "start": 11373.39, + "end": 11376.39, + "probability": 0.9847 + }, + { + "start": 11377.09, + "end": 11377.61, + "probability": 0.6836 + }, + { + "start": 11377.99, + "end": 11378.73, + "probability": 0.9414 + }, + { + "start": 11378.95, + "end": 11380.07, + "probability": 0.9755 + }, + { + "start": 11380.49, + "end": 11381.97, + "probability": 0.9905 + }, + { + "start": 11382.21, + "end": 11382.49, + "probability": 0.9525 + }, + { + "start": 11387.79, + "end": 11390.49, + "probability": 0.2387 + }, + { + "start": 11391.35, + "end": 11395.33, + "probability": 0.8903 + }, + { + "start": 11395.43, + "end": 11396.87, + "probability": 0.9426 + }, + { + "start": 11397.35, + "end": 11402.25, + "probability": 0.9378 + }, + { + "start": 11402.69, + "end": 11407.53, + "probability": 0.9924 + }, + { + "start": 11409.65, + "end": 11411.31, + "probability": 0.104 + }, + { + "start": 11411.85, + "end": 11413.53, + "probability": 0.0047 + }, + { + "start": 11563.06, + "end": 11563.06, + "probability": 0.0802 + }, + { + "start": 11563.06, + "end": 11563.06, + "probability": 0.0377 + }, + { + "start": 11563.06, + "end": 11564.92, + "probability": 0.3589 + }, + { + "start": 11565.3, + "end": 11565.78, + "probability": 0.4482 + }, + { + "start": 11566.34, + "end": 11568.2, + "probability": 0.8849 + }, + { + "start": 11568.86, + "end": 11573.48, + "probability": 0.6963 + }, + { + "start": 11573.52, + "end": 11574.96, + "probability": 0.9692 + }, + { + "start": 11578.86, + "end": 11583.0, + "probability": 0.9814 + }, + { + "start": 11583.96, + "end": 11587.72, + "probability": 0.6459 + }, + { + "start": 11588.48, + "end": 11591.48, + "probability": 0.9674 + }, + { + "start": 11591.7, + "end": 11594.0, + "probability": 0.9476 + }, + { + "start": 11595.52, + "end": 11597.36, + "probability": 0.6949 + }, + { + "start": 11598.72, + "end": 11599.84, + "probability": 0.7709 + }, + { + "start": 11600.74, + "end": 11603.46, + "probability": 0.8059 + }, + { + "start": 11605.6, + "end": 11608.06, + "probability": 0.737 + }, + { + "start": 11611.56, + "end": 11612.68, + "probability": 0.4741 + }, + { + "start": 11614.88, + "end": 11615.65, + "probability": 0.1611 + }, + { + "start": 11617.68, + "end": 11618.9, + "probability": 0.0191 + }, + { + "start": 11635.12, + "end": 11636.96, + "probability": 0.704 + }, + { + "start": 11637.02, + "end": 11637.84, + "probability": 0.6123 + }, + { + "start": 11637.9, + "end": 11638.68, + "probability": 0.8265 + }, + { + "start": 11638.8, + "end": 11639.92, + "probability": 0.8607 + }, + { + "start": 11640.54, + "end": 11642.0, + "probability": 0.9839 + }, + { + "start": 11643.2, + "end": 11649.12, + "probability": 0.11 + }, + { + "start": 11655.28, + "end": 11659.52, + "probability": 0.0396 + }, + { + "start": 11696.38, + "end": 11696.94, + "probability": 0.0228 + }, + { + "start": 11699.9, + "end": 11702.16, + "probability": 0.4964 + }, + { + "start": 11703.56, + "end": 11707.6, + "probability": 0.7285 + }, + { + "start": 11707.78, + "end": 11709.44, + "probability": 0.9608 + }, + { + "start": 11712.16, + "end": 11712.72, + "probability": 0.4826 + }, + { + "start": 11714.27, + "end": 11717.68, + "probability": 0.928 + }, + { + "start": 11726.24, + "end": 11727.8, + "probability": 0.4815 + }, + { + "start": 11727.98, + "end": 11730.99, + "probability": 0.9321 + }, + { + "start": 11734.16, + "end": 11736.64, + "probability": 0.6237 + }, + { + "start": 11736.78, + "end": 11738.7, + "probability": 0.6696 + }, + { + "start": 11738.78, + "end": 11739.32, + "probability": 0.6579 + }, + { + "start": 11739.38, + "end": 11740.26, + "probability": 0.8521 + }, + { + "start": 11746.22, + "end": 11751.86, + "probability": 0.921 + }, + { + "start": 11752.38, + "end": 11753.18, + "probability": 0.7608 + }, + { + "start": 11754.36, + "end": 11755.3, + "probability": 0.48 + }, + { + "start": 11756.48, + "end": 11759.38, + "probability": 0.6878 + }, + { + "start": 11761.28, + "end": 11763.2, + "probability": 0.9363 + }, + { + "start": 11763.9, + "end": 11764.68, + "probability": 0.959 + }, + { + "start": 11766.32, + "end": 11768.7, + "probability": 0.9983 + }, + { + "start": 11768.7, + "end": 11771.94, + "probability": 0.8652 + }, + { + "start": 11771.98, + "end": 11773.84, + "probability": 0.0223 + }, + { + "start": 11774.12, + "end": 11775.5, + "probability": 0.8979 + }, + { + "start": 11776.78, + "end": 11783.88, + "probability": 0.952 + }, + { + "start": 11784.38, + "end": 11785.56, + "probability": 0.9696 + }, + { + "start": 11786.38, + "end": 11788.96, + "probability": 0.9829 + }, + { + "start": 11789.58, + "end": 11790.64, + "probability": 0.8127 + }, + { + "start": 11791.2, + "end": 11792.5, + "probability": 0.9883 + }, + { + "start": 11792.76, + "end": 11794.98, + "probability": 0.9827 + }, + { + "start": 11795.9, + "end": 11798.18, + "probability": 0.9808 + }, + { + "start": 11798.5, + "end": 11799.76, + "probability": 0.8779 + }, + { + "start": 11799.82, + "end": 11800.94, + "probability": 0.76 + }, + { + "start": 11801.82, + "end": 11805.54, + "probability": 0.9893 + }, + { + "start": 11806.44, + "end": 11808.74, + "probability": 0.9941 + }, + { + "start": 11809.36, + "end": 11812.02, + "probability": 0.9221 + }, + { + "start": 11812.78, + "end": 11816.94, + "probability": 0.8517 + }, + { + "start": 11817.04, + "end": 11820.32, + "probability": 0.8053 + }, + { + "start": 11821.38, + "end": 11821.78, + "probability": 0.6466 + }, + { + "start": 11821.86, + "end": 11825.28, + "probability": 0.9005 + }, + { + "start": 11826.26, + "end": 11829.18, + "probability": 0.9832 + }, + { + "start": 11830.04, + "end": 11831.84, + "probability": 0.9978 + }, + { + "start": 11832.56, + "end": 11834.18, + "probability": 0.9178 + }, + { + "start": 11834.8, + "end": 11835.9, + "probability": 0.9177 + }, + { + "start": 11836.94, + "end": 11839.44, + "probability": 0.9967 + }, + { + "start": 11839.44, + "end": 11843.86, + "probability": 0.9448 + }, + { + "start": 11844.44, + "end": 11848.8, + "probability": 0.9564 + }, + { + "start": 11849.5, + "end": 11851.42, + "probability": 0.9829 + }, + { + "start": 11852.14, + "end": 11854.18, + "probability": 0.8706 + }, + { + "start": 11854.98, + "end": 11855.46, + "probability": 0.6259 + }, + { + "start": 11855.64, + "end": 11856.6, + "probability": 0.9653 + }, + { + "start": 11857.34, + "end": 11861.46, + "probability": 0.9899 + }, + { + "start": 11862.14, + "end": 11866.8, + "probability": 0.9976 + }, + { + "start": 11867.92, + "end": 11873.14, + "probability": 0.9973 + }, + { + "start": 11873.14, + "end": 11878.2, + "probability": 0.9953 + }, + { + "start": 11879.36, + "end": 11881.82, + "probability": 0.9912 + }, + { + "start": 11881.82, + "end": 11885.52, + "probability": 0.9988 + }, + { + "start": 11886.38, + "end": 11890.36, + "probability": 0.9963 + }, + { + "start": 11890.72, + "end": 11891.88, + "probability": 0.8982 + }, + { + "start": 11892.46, + "end": 11896.68, + "probability": 0.9699 + }, + { + "start": 11897.84, + "end": 11899.8, + "probability": 0.9497 + }, + { + "start": 11900.04, + "end": 11905.14, + "probability": 0.978 + }, + { + "start": 11906.16, + "end": 11909.58, + "probability": 0.9202 + }, + { + "start": 11910.46, + "end": 11916.7, + "probability": 0.9923 + }, + { + "start": 11917.4, + "end": 11918.76, + "probability": 0.9268 + }, + { + "start": 11919.4, + "end": 11921.36, + "probability": 0.992 + }, + { + "start": 11922.38, + "end": 11926.06, + "probability": 0.9941 + }, + { + "start": 11926.24, + "end": 11931.5, + "probability": 0.9366 + }, + { + "start": 11931.5, + "end": 11936.08, + "probability": 0.9806 + }, + { + "start": 11936.96, + "end": 11939.62, + "probability": 0.9364 + }, + { + "start": 11939.74, + "end": 11940.68, + "probability": 0.8278 + }, + { + "start": 11941.26, + "end": 11944.62, + "probability": 0.9385 + }, + { + "start": 11945.42, + "end": 11949.14, + "probability": 0.9923 + }, + { + "start": 11949.24, + "end": 11950.28, + "probability": 0.8029 + }, + { + "start": 11950.86, + "end": 11952.7, + "probability": 0.8765 + }, + { + "start": 11953.28, + "end": 11955.68, + "probability": 0.8043 + }, + { + "start": 11956.8, + "end": 11958.38, + "probability": 0.9521 + }, + { + "start": 11958.58, + "end": 11959.22, + "probability": 0.9461 + }, + { + "start": 11960.14, + "end": 11963.66, + "probability": 0.9757 + }, + { + "start": 11964.68, + "end": 11968.46, + "probability": 0.9918 + }, + { + "start": 11968.46, + "end": 11973.48, + "probability": 0.8243 + }, + { + "start": 11974.14, + "end": 11974.56, + "probability": 0.6908 + }, + { + "start": 11974.72, + "end": 11975.58, + "probability": 0.8638 + }, + { + "start": 11975.72, + "end": 11977.68, + "probability": 0.9485 + }, + { + "start": 11977.84, + "end": 11979.54, + "probability": 0.9352 + }, + { + "start": 11980.4, + "end": 11983.08, + "probability": 0.9658 + }, + { + "start": 11984.12, + "end": 11988.52, + "probability": 0.9848 + }, + { + "start": 11988.52, + "end": 11991.68, + "probability": 0.9966 + }, + { + "start": 11992.88, + "end": 11996.04, + "probability": 0.8402 + }, + { + "start": 11996.56, + "end": 12000.88, + "probability": 0.9757 + }, + { + "start": 12001.42, + "end": 12002.36, + "probability": 0.6629 + }, + { + "start": 12003.0, + "end": 12005.2, + "probability": 0.8898 + }, + { + "start": 12006.16, + "end": 12007.98, + "probability": 0.8385 + }, + { + "start": 12008.82, + "end": 12011.84, + "probability": 0.9745 + }, + { + "start": 12012.64, + "end": 12015.38, + "probability": 0.9808 + }, + { + "start": 12016.34, + "end": 12020.2, + "probability": 0.9833 + }, + { + "start": 12020.2, + "end": 12024.02, + "probability": 0.9803 + }, + { + "start": 12024.84, + "end": 12027.34, + "probability": 0.8589 + }, + { + "start": 12027.76, + "end": 12032.3, + "probability": 0.9841 + }, + { + "start": 12033.22, + "end": 12036.46, + "probability": 0.9941 + }, + { + "start": 12037.64, + "end": 12044.14, + "probability": 0.9666 + }, + { + "start": 12045.22, + "end": 12046.88, + "probability": 0.8788 + }, + { + "start": 12047.82, + "end": 12049.78, + "probability": 0.8683 + }, + { + "start": 12049.84, + "end": 12053.54, + "probability": 0.962 + }, + { + "start": 12054.34, + "end": 12056.44, + "probability": 0.9854 + }, + { + "start": 12057.32, + "end": 12060.48, + "probability": 0.858 + }, + { + "start": 12061.16, + "end": 12064.68, + "probability": 0.9976 + }, + { + "start": 12065.32, + "end": 12066.38, + "probability": 0.9957 + }, + { + "start": 12066.96, + "end": 12068.66, + "probability": 0.8529 + }, + { + "start": 12069.84, + "end": 12072.82, + "probability": 0.9288 + }, + { + "start": 12074.0, + "end": 12079.72, + "probability": 0.9718 + }, + { + "start": 12079.72, + "end": 12085.46, + "probability": 0.9969 + }, + { + "start": 12086.7, + "end": 12091.1, + "probability": 0.9174 + }, + { + "start": 12092.16, + "end": 12093.16, + "probability": 0.5106 + }, + { + "start": 12093.98, + "end": 12094.28, + "probability": 0.0404 + }, + { + "start": 12094.96, + "end": 12099.47, + "probability": 0.6795 + }, + { + "start": 12100.2, + "end": 12100.66, + "probability": 0.3996 + }, + { + "start": 12101.68, + "end": 12106.02, + "probability": 0.9281 + }, + { + "start": 12106.96, + "end": 12109.86, + "probability": 0.8898 + }, + { + "start": 12110.78, + "end": 12112.4, + "probability": 0.9988 + }, + { + "start": 12113.02, + "end": 12116.12, + "probability": 0.872 + }, + { + "start": 12117.08, + "end": 12117.6, + "probability": 0.6822 + }, + { + "start": 12118.76, + "end": 12125.1, + "probability": 0.9785 + }, + { + "start": 12125.26, + "end": 12125.46, + "probability": 0.0283 + }, + { + "start": 12126.0, + "end": 12126.8, + "probability": 0.7397 + }, + { + "start": 12127.64, + "end": 12130.86, + "probability": 0.7464 + }, + { + "start": 12131.74, + "end": 12134.66, + "probability": 0.9927 + }, + { + "start": 12135.76, + "end": 12143.12, + "probability": 0.7037 + }, + { + "start": 12143.88, + "end": 12146.08, + "probability": 0.8395 + }, + { + "start": 12146.76, + "end": 12148.24, + "probability": 0.9281 + }, + { + "start": 12148.94, + "end": 12149.98, + "probability": 0.6709 + }, + { + "start": 12150.8, + "end": 12151.3, + "probability": 0.7788 + }, + { + "start": 12152.52, + "end": 12157.94, + "probability": 0.9709 + }, + { + "start": 12158.64, + "end": 12158.9, + "probability": 0.7772 + }, + { + "start": 12158.94, + "end": 12162.98, + "probability": 0.9841 + }, + { + "start": 12163.94, + "end": 12165.09, + "probability": 0.6146 + }, + { + "start": 12166.0, + "end": 12166.9, + "probability": 0.723 + }, + { + "start": 12168.32, + "end": 12169.88, + "probability": 0.8515 + }, + { + "start": 12170.0, + "end": 12170.72, + "probability": 0.985 + }, + { + "start": 12170.86, + "end": 12172.2, + "probability": 0.8443 + }, + { + "start": 12172.9, + "end": 12174.8, + "probability": 0.9975 + }, + { + "start": 12175.74, + "end": 12180.64, + "probability": 0.9822 + }, + { + "start": 12181.6, + "end": 12185.7, + "probability": 0.9308 + }, + { + "start": 12186.36, + "end": 12187.86, + "probability": 0.9473 + }, + { + "start": 12188.68, + "end": 12193.48, + "probability": 0.9858 + }, + { + "start": 12194.12, + "end": 12197.28, + "probability": 0.9793 + }, + { + "start": 12198.52, + "end": 12202.04, + "probability": 0.8576 + }, + { + "start": 12202.98, + "end": 12204.4, + "probability": 0.9824 + }, + { + "start": 12205.1, + "end": 12208.98, + "probability": 0.9873 + }, + { + "start": 12208.98, + "end": 12212.24, + "probability": 0.9935 + }, + { + "start": 12213.52, + "end": 12214.44, + "probability": 0.973 + }, + { + "start": 12215.54, + "end": 12218.52, + "probability": 0.9644 + }, + { + "start": 12219.5, + "end": 12221.52, + "probability": 0.7685 + }, + { + "start": 12222.5, + "end": 12224.16, + "probability": 0.9727 + }, + { + "start": 12224.96, + "end": 12226.9, + "probability": 0.9928 + }, + { + "start": 12227.66, + "end": 12230.08, + "probability": 0.9629 + }, + { + "start": 12230.96, + "end": 12236.02, + "probability": 0.9688 + }, + { + "start": 12236.78, + "end": 12240.64, + "probability": 0.9015 + }, + { + "start": 12241.72, + "end": 12247.06, + "probability": 0.9968 + }, + { + "start": 12247.06, + "end": 12251.58, + "probability": 0.8067 + }, + { + "start": 12252.82, + "end": 12257.34, + "probability": 0.9833 + }, + { + "start": 12258.16, + "end": 12259.2, + "probability": 0.6847 + }, + { + "start": 12259.28, + "end": 12261.98, + "probability": 0.7461 + }, + { + "start": 12262.66, + "end": 12267.24, + "probability": 0.9969 + }, + { + "start": 12268.3, + "end": 12270.92, + "probability": 0.9391 + }, + { + "start": 12271.74, + "end": 12274.16, + "probability": 0.9248 + }, + { + "start": 12274.16, + "end": 12277.82, + "probability": 0.9922 + }, + { + "start": 12280.56, + "end": 12283.98, + "probability": 0.9312 + }, + { + "start": 12285.48, + "end": 12287.1, + "probability": 0.8715 + }, + { + "start": 12287.86, + "end": 12289.6, + "probability": 0.9912 + }, + { + "start": 12289.78, + "end": 12292.54, + "probability": 0.9932 + }, + { + "start": 12293.5, + "end": 12298.74, + "probability": 0.8452 + }, + { + "start": 12298.74, + "end": 12306.12, + "probability": 0.9871 + }, + { + "start": 12306.84, + "end": 12308.56, + "probability": 0.9694 + }, + { + "start": 12309.88, + "end": 12313.46, + "probability": 0.9966 + }, + { + "start": 12314.28, + "end": 12317.06, + "probability": 0.9345 + }, + { + "start": 12317.62, + "end": 12319.96, + "probability": 0.2379 + }, + { + "start": 12320.06, + "end": 12322.51, + "probability": 0.9473 + }, + { + "start": 12323.32, + "end": 12326.62, + "probability": 0.9919 + }, + { + "start": 12327.28, + "end": 12328.32, + "probability": 0.7426 + }, + { + "start": 12329.26, + "end": 12330.7, + "probability": 0.8793 + }, + { + "start": 12331.36, + "end": 12331.9, + "probability": 0.7471 + }, + { + "start": 12332.7, + "end": 12336.54, + "probability": 0.8526 + }, + { + "start": 12337.38, + "end": 12344.52, + "probability": 0.8272 + }, + { + "start": 12345.42, + "end": 12349.18, + "probability": 0.9315 + }, + { + "start": 12349.84, + "end": 12353.8, + "probability": 0.8911 + }, + { + "start": 12354.02, + "end": 12357.54, + "probability": 0.9752 + }, + { + "start": 12358.3, + "end": 12362.28, + "probability": 0.8506 + }, + { + "start": 12363.0, + "end": 12365.54, + "probability": 0.924 + }, + { + "start": 12366.34, + "end": 12367.0, + "probability": 0.7359 + }, + { + "start": 12367.88, + "end": 12371.64, + "probability": 0.9811 + }, + { + "start": 12372.2, + "end": 12373.9, + "probability": 0.9904 + }, + { + "start": 12383.28, + "end": 12384.94, + "probability": 0.5396 + }, + { + "start": 12385.32, + "end": 12387.81, + "probability": 0.6551 + }, + { + "start": 12388.06, + "end": 12388.44, + "probability": 0.5767 + }, + { + "start": 12388.6, + "end": 12393.82, + "probability": 0.9301 + }, + { + "start": 12394.62, + "end": 12396.54, + "probability": 0.8435 + }, + { + "start": 12397.36, + "end": 12400.74, + "probability": 0.8812 + }, + { + "start": 12400.96, + "end": 12401.72, + "probability": 0.8254 + }, + { + "start": 12403.14, + "end": 12405.92, + "probability": 0.9901 + }, + { + "start": 12405.98, + "end": 12411.24, + "probability": 0.9318 + }, + { + "start": 12412.14, + "end": 12414.44, + "probability": 0.8694 + }, + { + "start": 12415.3, + "end": 12418.6, + "probability": 0.9986 + }, + { + "start": 12419.52, + "end": 12421.5, + "probability": 0.9805 + }, + { + "start": 12422.48, + "end": 12422.86, + "probability": 0.5162 + }, + { + "start": 12422.9, + "end": 12423.66, + "probability": 0.7033 + }, + { + "start": 12423.72, + "end": 12425.88, + "probability": 0.9208 + }, + { + "start": 12426.8, + "end": 12427.8, + "probability": 0.7778 + }, + { + "start": 12428.58, + "end": 12430.24, + "probability": 0.9586 + }, + { + "start": 12431.0, + "end": 12432.86, + "probability": 0.8859 + }, + { + "start": 12434.94, + "end": 12436.04, + "probability": 0.6969 + }, + { + "start": 12436.88, + "end": 12438.46, + "probability": 0.8676 + }, + { + "start": 12439.14, + "end": 12441.22, + "probability": 0.9819 + }, + { + "start": 12442.24, + "end": 12446.48, + "probability": 0.9907 + }, + { + "start": 12447.22, + "end": 12448.84, + "probability": 0.9822 + }, + { + "start": 12449.84, + "end": 12450.82, + "probability": 0.7686 + }, + { + "start": 12451.72, + "end": 12453.94, + "probability": 0.9982 + }, + { + "start": 12453.94, + "end": 12457.34, + "probability": 0.9168 + }, + { + "start": 12458.12, + "end": 12462.78, + "probability": 0.998 + }, + { + "start": 12463.78, + "end": 12468.6, + "probability": 0.9964 + }, + { + "start": 12469.32, + "end": 12473.46, + "probability": 0.9623 + }, + { + "start": 12474.12, + "end": 12478.32, + "probability": 0.9015 + }, + { + "start": 12478.72, + "end": 12480.2, + "probability": 0.852 + }, + { + "start": 12480.9, + "end": 12483.14, + "probability": 0.7887 + }, + { + "start": 12483.66, + "end": 12486.06, + "probability": 0.7555 + }, + { + "start": 12486.8, + "end": 12490.64, + "probability": 0.9435 + }, + { + "start": 12494.35, + "end": 12496.8, + "probability": 0.9954 + }, + { + "start": 12496.8, + "end": 12499.14, + "probability": 0.0621 + }, + { + "start": 12499.18, + "end": 12499.72, + "probability": 0.3048 + }, + { + "start": 12500.28, + "end": 12504.96, + "probability": 0.5023 + }, + { + "start": 12505.08, + "end": 12505.58, + "probability": 0.6989 + }, + { + "start": 12505.58, + "end": 12506.02, + "probability": 0.6913 + }, + { + "start": 12506.26, + "end": 12507.38, + "probability": 0.8486 + }, + { + "start": 12507.5, + "end": 12508.96, + "probability": 0.6357 + }, + { + "start": 12509.06, + "end": 12509.22, + "probability": 0.4768 + }, + { + "start": 12509.22, + "end": 12509.54, + "probability": 0.8715 + }, + { + "start": 12510.46, + "end": 12512.2, + "probability": 0.9412 + }, + { + "start": 12513.16, + "end": 12514.5, + "probability": 0.6345 + }, + { + "start": 12515.16, + "end": 12517.9, + "probability": 0.9645 + }, + { + "start": 12518.56, + "end": 12519.54, + "probability": 0.8185 + }, + { + "start": 12520.84, + "end": 12523.24, + "probability": 0.8674 + }, + { + "start": 12523.9, + "end": 12524.46, + "probability": 0.8021 + }, + { + "start": 12524.56, + "end": 12526.28, + "probability": 0.9066 + }, + { + "start": 12526.42, + "end": 12527.34, + "probability": 0.7807 + }, + { + "start": 12528.54, + "end": 12531.84, + "probability": 0.8422 + }, + { + "start": 12532.32, + "end": 12532.64, + "probability": 0.3816 + }, + { + "start": 12532.7, + "end": 12534.12, + "probability": 0.9683 + }, + { + "start": 12534.58, + "end": 12540.1, + "probability": 0.9839 + }, + { + "start": 12541.72, + "end": 12542.4, + "probability": 0.8043 + }, + { + "start": 12542.5, + "end": 12543.46, + "probability": 0.7187 + }, + { + "start": 12543.54, + "end": 12543.66, + "probability": 0.4268 + }, + { + "start": 12543.68, + "end": 12544.86, + "probability": 0.8926 + }, + { + "start": 12545.74, + "end": 12550.46, + "probability": 0.9639 + }, + { + "start": 12551.44, + "end": 12552.28, + "probability": 0.616 + }, + { + "start": 12553.22, + "end": 12557.16, + "probability": 0.707 + }, + { + "start": 12557.24, + "end": 12558.38, + "probability": 0.819 + }, + { + "start": 12559.38, + "end": 12561.66, + "probability": 0.991 + }, + { + "start": 12562.18, + "end": 12565.96, + "probability": 0.926 + }, + { + "start": 12566.88, + "end": 12569.8, + "probability": 0.9635 + }, + { + "start": 12570.14, + "end": 12575.78, + "probability": 0.996 + }, + { + "start": 12575.96, + "end": 12577.84, + "probability": 0.9799 + }, + { + "start": 12578.92, + "end": 12580.56, + "probability": 0.674 + }, + { + "start": 12580.68, + "end": 12582.56, + "probability": 0.9597 + }, + { + "start": 12582.72, + "end": 12584.22, + "probability": 0.6934 + }, + { + "start": 12584.88, + "end": 12586.14, + "probability": 0.7424 + }, + { + "start": 12586.98, + "end": 12591.5, + "probability": 0.7848 + }, + { + "start": 12591.5, + "end": 12595.68, + "probability": 0.7642 + }, + { + "start": 12596.66, + "end": 12600.38, + "probability": 0.9645 + }, + { + "start": 12601.26, + "end": 12603.34, + "probability": 0.942 + }, + { + "start": 12603.34, + "end": 12605.36, + "probability": 0.8987 + }, + { + "start": 12606.28, + "end": 12607.78, + "probability": 0.8952 + }, + { + "start": 12608.46, + "end": 12611.66, + "probability": 0.9891 + }, + { + "start": 12611.66, + "end": 12613.58, + "probability": 0.8012 + }, + { + "start": 12615.18, + "end": 12617.86, + "probability": 0.9626 + }, + { + "start": 12618.78, + "end": 12620.3, + "probability": 0.3365 + }, + { + "start": 12621.28, + "end": 12627.3, + "probability": 0.979 + }, + { + "start": 12628.14, + "end": 12629.14, + "probability": 0.7142 + }, + { + "start": 12630.02, + "end": 12632.54, + "probability": 0.5759 + }, + { + "start": 12632.62, + "end": 12633.9, + "probability": 0.9738 + }, + { + "start": 12634.68, + "end": 12636.72, + "probability": 0.799 + }, + { + "start": 12637.8, + "end": 12640.72, + "probability": 0.9674 + }, + { + "start": 12641.2, + "end": 12642.44, + "probability": 0.9503 + }, + { + "start": 12643.72, + "end": 12646.26, + "probability": 0.9851 + }, + { + "start": 12646.26, + "end": 12648.72, + "probability": 0.9911 + }, + { + "start": 12649.42, + "end": 12654.0, + "probability": 0.8285 + }, + { + "start": 12655.08, + "end": 12657.72, + "probability": 0.9097 + }, + { + "start": 12658.5, + "end": 12659.98, + "probability": 0.8828 + }, + { + "start": 12660.8, + "end": 12664.0, + "probability": 0.9969 + }, + { + "start": 12664.88, + "end": 12666.1, + "probability": 0.9941 + }, + { + "start": 12666.26, + "end": 12668.1, + "probability": 0.6802 + }, + { + "start": 12668.54, + "end": 12669.72, + "probability": 0.7202 + }, + { + "start": 12670.04, + "end": 12670.86, + "probability": 0.9877 + }, + { + "start": 12671.76, + "end": 12674.62, + "probability": 0.8003 + }, + { + "start": 12675.28, + "end": 12679.94, + "probability": 0.9868 + }, + { + "start": 12680.42, + "end": 12681.02, + "probability": 0.3458 + }, + { + "start": 12681.1, + "end": 12682.48, + "probability": 0.9265 + }, + { + "start": 12683.52, + "end": 12686.24, + "probability": 0.8332 + }, + { + "start": 12686.78, + "end": 12687.66, + "probability": 0.8685 + }, + { + "start": 12687.72, + "end": 12690.44, + "probability": 0.993 + }, + { + "start": 12690.48, + "end": 12691.25, + "probability": 0.962 + }, + { + "start": 12692.34, + "end": 12694.82, + "probability": 0.9927 + }, + { + "start": 12695.82, + "end": 12699.66, + "probability": 0.9976 + }, + { + "start": 12700.14, + "end": 12701.0, + "probability": 0.8163 + }, + { + "start": 12701.36, + "end": 12702.04, + "probability": 0.6911 + }, + { + "start": 12702.44, + "end": 12703.22, + "probability": 0.7579 + }, + { + "start": 12703.66, + "end": 12704.64, + "probability": 0.9684 + }, + { + "start": 12705.4, + "end": 12708.94, + "probability": 0.9932 + }, + { + "start": 12710.1, + "end": 12712.4, + "probability": 0.9816 + }, + { + "start": 12713.32, + "end": 12716.88, + "probability": 0.9565 + }, + { + "start": 12717.94, + "end": 12721.6, + "probability": 0.9463 + }, + { + "start": 12722.6, + "end": 12724.06, + "probability": 0.964 + }, + { + "start": 12724.84, + "end": 12729.3, + "probability": 0.8999 + }, + { + "start": 12729.36, + "end": 12730.58, + "probability": 0.5958 + }, + { + "start": 12731.18, + "end": 12732.04, + "probability": 0.7412 + }, + { + "start": 12732.12, + "end": 12733.1, + "probability": 0.7393 + }, + { + "start": 12733.5, + "end": 12734.46, + "probability": 0.6606 + }, + { + "start": 12734.52, + "end": 12735.28, + "probability": 0.7923 + }, + { + "start": 12735.34, + "end": 12737.32, + "probability": 0.7122 + }, + { + "start": 12737.9, + "end": 12739.5, + "probability": 0.9518 + }, + { + "start": 12740.04, + "end": 12744.46, + "probability": 0.8853 + }, + { + "start": 12745.04, + "end": 12747.88, + "probability": 0.9875 + }, + { + "start": 12748.02, + "end": 12749.66, + "probability": 0.7012 + }, + { + "start": 12750.2, + "end": 12752.46, + "probability": 0.9041 + }, + { + "start": 12753.04, + "end": 12758.06, + "probability": 0.8855 + }, + { + "start": 12758.5, + "end": 12759.68, + "probability": 0.8116 + }, + { + "start": 12760.52, + "end": 12763.32, + "probability": 0.7684 + }, + { + "start": 12763.42, + "end": 12765.16, + "probability": 0.9858 + }, + { + "start": 12765.32, + "end": 12766.44, + "probability": 0.7173 + }, + { + "start": 12768.82, + "end": 12768.94, + "probability": 0.3151 + }, + { + "start": 12768.94, + "end": 12771.4, + "probability": 0.9608 + }, + { + "start": 12772.7, + "end": 12774.88, + "probability": 0.886 + }, + { + "start": 12775.2, + "end": 12776.22, + "probability": 0.8298 + }, + { + "start": 12777.22, + "end": 12782.9, + "probability": 0.942 + }, + { + "start": 12783.32, + "end": 12786.08, + "probability": 0.65 + }, + { + "start": 12786.18, + "end": 12791.08, + "probability": 0.7601 + }, + { + "start": 12791.16, + "end": 12792.28, + "probability": 0.2846 + }, + { + "start": 12792.58, + "end": 12793.26, + "probability": 0.851 + }, + { + "start": 12793.34, + "end": 12794.38, + "probability": 0.7485 + }, + { + "start": 12794.62, + "end": 12795.44, + "probability": 0.5901 + }, + { + "start": 12795.86, + "end": 12796.58, + "probability": 0.74 + }, + { + "start": 12797.02, + "end": 12798.76, + "probability": 0.0032 + }, + { + "start": 12811.9, + "end": 12812.66, + "probability": 0.0 + }, + { + "start": 12812.74, + "end": 12814.38, + "probability": 0.3741 + }, + { + "start": 12815.18, + "end": 12817.04, + "probability": 0.913 + }, + { + "start": 12817.04, + "end": 12820.28, + "probability": 0.9341 + }, + { + "start": 12820.52, + "end": 12821.82, + "probability": 0.8187 + }, + { + "start": 12821.94, + "end": 12822.58, + "probability": 0.6441 + }, + { + "start": 12822.78, + "end": 12824.44, + "probability": 0.7005 + }, + { + "start": 12824.52, + "end": 12825.58, + "probability": 0.7603 + }, + { + "start": 12825.78, + "end": 12827.1, + "probability": 0.8356 + }, + { + "start": 12828.04, + "end": 12830.22, + "probability": 0.5633 + }, + { + "start": 12830.42, + "end": 12832.74, + "probability": 0.5569 + }, + { + "start": 12832.78, + "end": 12833.52, + "probability": 0.3813 + }, + { + "start": 12833.74, + "end": 12834.5, + "probability": 0.8843 + }, + { + "start": 12834.66, + "end": 12835.14, + "probability": 0.3073 + }, + { + "start": 12835.56, + "end": 12836.7, + "probability": 0.5155 + }, + { + "start": 12838.74, + "end": 12840.14, + "probability": 0.0091 + }, + { + "start": 12849.46, + "end": 12849.46, + "probability": 0.0165 + }, + { + "start": 12849.46, + "end": 12852.88, + "probability": 0.9118 + }, + { + "start": 12854.24, + "end": 12854.82, + "probability": 0.2874 + }, + { + "start": 12858.6, + "end": 12859.14, + "probability": 0.7158 + }, + { + "start": 12859.2, + "end": 12860.38, + "probability": 0.8306 + }, + { + "start": 12860.46, + "end": 12862.96, + "probability": 0.6697 + }, + { + "start": 12864.44, + "end": 12866.26, + "probability": 0.761 + }, + { + "start": 12866.88, + "end": 12868.22, + "probability": 0.8634 + }, + { + "start": 12868.36, + "end": 12873.96, + "probability": 0.9642 + }, + { + "start": 12874.3, + "end": 12876.0, + "probability": 0.5986 + }, + { + "start": 12876.36, + "end": 12878.78, + "probability": 0.8655 + }, + { + "start": 12879.46, + "end": 12881.74, + "probability": 0.9944 + }, + { + "start": 12882.92, + "end": 12885.02, + "probability": 0.9847 + }, + { + "start": 12885.08, + "end": 12888.48, + "probability": 0.7451 + }, + { + "start": 12888.74, + "end": 12890.7, + "probability": 0.9532 + }, + { + "start": 12891.56, + "end": 12895.72, + "probability": 0.9422 + }, + { + "start": 12895.9, + "end": 12897.24, + "probability": 0.8775 + }, + { + "start": 12897.98, + "end": 12900.84, + "probability": 0.9078 + }, + { + "start": 12900.84, + "end": 12904.9, + "probability": 0.8831 + }, + { + "start": 12905.26, + "end": 12907.9, + "probability": 0.7238 + }, + { + "start": 12908.6, + "end": 12909.62, + "probability": 0.7552 + }, + { + "start": 12909.72, + "end": 12913.44, + "probability": 0.9292 + }, + { + "start": 12913.46, + "end": 12917.62, + "probability": 0.4743 + }, + { + "start": 12918.32, + "end": 12920.12, + "probability": 0.9668 + }, + { + "start": 12920.68, + "end": 12921.88, + "probability": 0.9703 + }, + { + "start": 12922.44, + "end": 12923.78, + "probability": 0.925 + }, + { + "start": 12924.94, + "end": 12928.38, + "probability": 0.7203 + }, + { + "start": 12929.3, + "end": 12934.82, + "probability": 0.9558 + }, + { + "start": 12934.82, + "end": 12942.42, + "probability": 0.9725 + }, + { + "start": 12942.42, + "end": 12948.08, + "probability": 0.9963 + }, + { + "start": 12948.84, + "end": 12955.48, + "probability": 0.9413 + }, + { + "start": 12956.26, + "end": 12957.02, + "probability": 0.7597 + }, + { + "start": 12957.5, + "end": 12963.26, + "probability": 0.7644 + }, + { + "start": 12963.26, + "end": 12969.92, + "probability": 0.8368 + }, + { + "start": 12969.92, + "end": 12975.76, + "probability": 0.903 + }, + { + "start": 12976.32, + "end": 12978.02, + "probability": 0.8536 + }, + { + "start": 12978.18, + "end": 12981.78, + "probability": 0.9458 + }, + { + "start": 12982.2, + "end": 12983.04, + "probability": 0.9703 + }, + { + "start": 12983.72, + "end": 12987.68, + "probability": 0.818 + }, + { + "start": 12988.44, + "end": 12991.04, + "probability": 0.8563 + }, + { + "start": 12992.62, + "end": 12997.2, + "probability": 0.6124 + }, + { + "start": 12997.82, + "end": 13001.92, + "probability": 0.7659 + }, + { + "start": 13002.48, + "end": 13009.02, + "probability": 0.9835 + }, + { + "start": 13014.88, + "end": 13016.48, + "probability": 0.5576 + }, + { + "start": 13016.66, + "end": 13016.66, + "probability": 0.4759 + }, + { + "start": 13016.66, + "end": 13017.72, + "probability": 0.6902 + }, + { + "start": 13018.06, + "end": 13019.28, + "probability": 0.6955 + }, + { + "start": 13019.48, + "end": 13021.64, + "probability": 0.9683 + }, + { + "start": 13021.64, + "end": 13024.46, + "probability": 0.9118 + }, + { + "start": 13024.58, + "end": 13028.42, + "probability": 0.9883 + }, + { + "start": 13028.42, + "end": 13032.2, + "probability": 0.9808 + }, + { + "start": 13032.68, + "end": 13035.22, + "probability": 0.9896 + }, + { + "start": 13035.22, + "end": 13038.7, + "probability": 0.9899 + }, + { + "start": 13039.38, + "end": 13041.16, + "probability": 0.8807 + }, + { + "start": 13041.34, + "end": 13044.26, + "probability": 0.9759 + }, + { + "start": 13045.08, + "end": 13048.02, + "probability": 0.9591 + }, + { + "start": 13048.02, + "end": 13051.46, + "probability": 0.9198 + }, + { + "start": 13051.96, + "end": 13054.82, + "probability": 0.8627 + }, + { + "start": 13055.48, + "end": 13058.14, + "probability": 0.6682 + }, + { + "start": 13058.14, + "end": 13060.6, + "probability": 0.7769 + }, + { + "start": 13060.76, + "end": 13063.66, + "probability": 0.7665 + }, + { + "start": 13064.14, + "end": 13067.1, + "probability": 0.9301 + }, + { + "start": 13067.32, + "end": 13067.76, + "probability": 0.6931 + }, + { + "start": 13068.52, + "end": 13070.96, + "probability": 0.9813 + }, + { + "start": 13070.96, + "end": 13074.3, + "probability": 0.9733 + }, + { + "start": 13074.64, + "end": 13077.44, + "probability": 0.98 + }, + { + "start": 13077.44, + "end": 13080.84, + "probability": 0.9762 + }, + { + "start": 13081.02, + "end": 13082.98, + "probability": 0.98 + }, + { + "start": 13082.98, + "end": 13085.42, + "probability": 0.9932 + }, + { + "start": 13086.18, + "end": 13086.38, + "probability": 0.4882 + }, + { + "start": 13086.42, + "end": 13088.5, + "probability": 0.9717 + }, + { + "start": 13088.58, + "end": 13090.24, + "probability": 0.8877 + }, + { + "start": 13090.62, + "end": 13093.04, + "probability": 0.7147 + }, + { + "start": 13093.04, + "end": 13095.88, + "probability": 0.9565 + }, + { + "start": 13095.98, + "end": 13100.38, + "probability": 0.9868 + }, + { + "start": 13100.52, + "end": 13103.14, + "probability": 0.9382 + }, + { + "start": 13103.98, + "end": 13107.44, + "probability": 0.9862 + }, + { + "start": 13107.66, + "end": 13111.32, + "probability": 0.9904 + }, + { + "start": 13113.52, + "end": 13118.04, + "probability": 0.9568 + }, + { + "start": 13118.44, + "end": 13118.66, + "probability": 0.2147 + }, + { + "start": 13118.66, + "end": 13119.12, + "probability": 0.5063 + }, + { + "start": 13119.24, + "end": 13124.59, + "probability": 0.9592 + }, + { + "start": 13125.3, + "end": 13127.3, + "probability": 0.7515 + }, + { + "start": 13127.36, + "end": 13130.16, + "probability": 0.7658 + }, + { + "start": 13130.82, + "end": 13135.28, + "probability": 0.8674 + }, + { + "start": 13136.4, + "end": 13137.3, + "probability": 0.7638 + }, + { + "start": 13144.06, + "end": 13144.28, + "probability": 0.018 + }, + { + "start": 13161.24, + "end": 13162.18, + "probability": 0.1127 + }, + { + "start": 13163.72, + "end": 13165.8, + "probability": 0.7423 + }, + { + "start": 13165.86, + "end": 13166.72, + "probability": 0.5292 + }, + { + "start": 13167.34, + "end": 13168.08, + "probability": 0.741 + }, + { + "start": 13168.52, + "end": 13169.44, + "probability": 0.7296 + }, + { + "start": 13171.18, + "end": 13171.38, + "probability": 0.0209 + }, + { + "start": 13189.2, + "end": 13189.2, + "probability": 0.101 + }, + { + "start": 13189.2, + "end": 13191.3, + "probability": 0.5403 + }, + { + "start": 13191.52, + "end": 13197.02, + "probability": 0.9844 + }, + { + "start": 13197.56, + "end": 13200.36, + "probability": 0.5797 + }, + { + "start": 13200.44, + "end": 13203.58, + "probability": 0.4127 + }, + { + "start": 13204.44, + "end": 13207.82, + "probability": 0.7969 + }, + { + "start": 13208.5, + "end": 13213.16, + "probability": 0.9707 + }, + { + "start": 13219.86, + "end": 13220.66, + "probability": 0.6976 + }, + { + "start": 13220.74, + "end": 13221.8, + "probability": 0.7813 + }, + { + "start": 13221.96, + "end": 13222.98, + "probability": 0.8929 + }, + { + "start": 13223.12, + "end": 13225.96, + "probability": 0.7571 + }, + { + "start": 13225.96, + "end": 13228.38, + "probability": 0.832 + }, + { + "start": 13228.48, + "end": 13233.18, + "probability": 0.988 + }, + { + "start": 13233.18, + "end": 13237.62, + "probability": 0.9636 + }, + { + "start": 13238.06, + "end": 13241.8, + "probability": 0.9859 + }, + { + "start": 13241.86, + "end": 13243.02, + "probability": 0.5867 + }, + { + "start": 13243.58, + "end": 13245.18, + "probability": 0.8748 + }, + { + "start": 13245.4, + "end": 13247.42, + "probability": 0.2399 + }, + { + "start": 13247.66, + "end": 13250.8, + "probability": 0.9904 + }, + { + "start": 13250.8, + "end": 13254.52, + "probability": 0.9949 + }, + { + "start": 13254.92, + "end": 13256.9, + "probability": 0.993 + }, + { + "start": 13256.9, + "end": 13259.4, + "probability": 0.9927 + }, + { + "start": 13259.78, + "end": 13262.3, + "probability": 0.9494 + }, + { + "start": 13262.44, + "end": 13264.04, + "probability": 0.9104 + }, + { + "start": 13264.46, + "end": 13267.38, + "probability": 0.748 + }, + { + "start": 13267.56, + "end": 13268.56, + "probability": 0.8771 + }, + { + "start": 13268.82, + "end": 13270.82, + "probability": 0.9122 + }, + { + "start": 13271.44, + "end": 13271.66, + "probability": 0.4843 + }, + { + "start": 13271.76, + "end": 13275.4, + "probability": 0.8867 + }, + { + "start": 13275.52, + "end": 13275.98, + "probability": 0.7414 + }, + { + "start": 13276.04, + "end": 13277.28, + "probability": 0.9207 + }, + { + "start": 13278.0, + "end": 13281.66, + "probability": 0.9829 + }, + { + "start": 13281.66, + "end": 13285.0, + "probability": 0.9921 + }, + { + "start": 13285.5, + "end": 13288.28, + "probability": 0.925 + }, + { + "start": 13288.82, + "end": 13291.04, + "probability": 0.7757 + }, + { + "start": 13291.04, + "end": 13293.9, + "probability": 0.9792 + }, + { + "start": 13293.98, + "end": 13295.5, + "probability": 0.9521 + }, + { + "start": 13296.08, + "end": 13298.48, + "probability": 0.9967 + }, + { + "start": 13298.48, + "end": 13301.14, + "probability": 0.9829 + }, + { + "start": 13301.56, + "end": 13304.0, + "probability": 0.9642 + }, + { + "start": 13304.0, + "end": 13307.44, + "probability": 0.9291 + }, + { + "start": 13307.96, + "end": 13312.12, + "probability": 0.9279 + }, + { + "start": 13312.24, + "end": 13313.96, + "probability": 0.8963 + }, + { + "start": 13314.38, + "end": 13315.96, + "probability": 0.9277 + }, + { + "start": 13316.42, + "end": 13319.84, + "probability": 0.9967 + }, + { + "start": 13319.84, + "end": 13323.22, + "probability": 0.9604 + }, + { + "start": 13323.88, + "end": 13327.02, + "probability": 0.9897 + }, + { + "start": 13327.16, + "end": 13329.18, + "probability": 0.9896 + }, + { + "start": 13329.18, + "end": 13332.2, + "probability": 0.9665 + }, + { + "start": 13332.32, + "end": 13333.42, + "probability": 0.6841 + }, + { + "start": 13333.94, + "end": 13334.12, + "probability": 0.5486 + }, + { + "start": 13334.22, + "end": 13337.36, + "probability": 0.7729 + }, + { + "start": 13337.36, + "end": 13339.9, + "probability": 0.9866 + }, + { + "start": 13340.04, + "end": 13344.84, + "probability": 0.8789 + }, + { + "start": 13344.96, + "end": 13346.4, + "probability": 0.9556 + }, + { + "start": 13346.54, + "end": 13348.58, + "probability": 0.894 + }, + { + "start": 13349.22, + "end": 13349.68, + "probability": 0.5887 + }, + { + "start": 13349.86, + "end": 13352.98, + "probability": 0.9816 + }, + { + "start": 13352.98, + "end": 13355.98, + "probability": 0.9843 + }, + { + "start": 13355.98, + "end": 13359.56, + "probability": 0.9863 + }, + { + "start": 13359.82, + "end": 13360.08, + "probability": 0.2928 + }, + { + "start": 13360.1, + "end": 13364.8, + "probability": 0.7988 + }, + { + "start": 13364.92, + "end": 13366.82, + "probability": 0.9604 + }, + { + "start": 13367.52, + "end": 13367.74, + "probability": 0.5622 + }, + { + "start": 13367.92, + "end": 13370.1, + "probability": 0.9395 + }, + { + "start": 13370.14, + "end": 13372.34, + "probability": 0.988 + }, + { + "start": 13372.98, + "end": 13373.54, + "probability": 0.2693 + }, + { + "start": 13373.54, + "end": 13375.8, + "probability": 0.9865 + }, + { + "start": 13375.8, + "end": 13378.62, + "probability": 0.7741 + }, + { + "start": 13378.68, + "end": 13381.96, + "probability": 0.7531 + }, + { + "start": 13382.08, + "end": 13383.84, + "probability": 0.9841 + }, + { + "start": 13384.46, + "end": 13387.46, + "probability": 0.9838 + }, + { + "start": 13387.52, + "end": 13388.97, + "probability": 0.7001 + }, + { + "start": 13389.38, + "end": 13390.12, + "probability": 0.5781 + }, + { + "start": 13390.22, + "end": 13392.02, + "probability": 0.9576 + }, + { + "start": 13392.22, + "end": 13393.16, + "probability": 0.9822 + }, + { + "start": 13393.26, + "end": 13394.62, + "probability": 0.9419 + }, + { + "start": 13395.3, + "end": 13396.38, + "probability": 0.9885 + }, + { + "start": 13397.02, + "end": 13397.46, + "probability": 0.8111 + }, + { + "start": 13397.93, + "end": 13400.58, + "probability": 0.8794 + }, + { + "start": 13400.58, + "end": 13403.12, + "probability": 0.7252 + }, + { + "start": 13403.18, + "end": 13404.5, + "probability": 0.6883 + }, + { + "start": 13405.0, + "end": 13405.28, + "probability": 0.4068 + }, + { + "start": 13405.4, + "end": 13408.33, + "probability": 0.9282 + }, + { + "start": 13409.04, + "end": 13411.46, + "probability": 0.9319 + }, + { + "start": 13411.62, + "end": 13416.14, + "probability": 0.967 + }, + { + "start": 13416.14, + "end": 13420.02, + "probability": 0.9888 + }, + { + "start": 13420.56, + "end": 13423.98, + "probability": 0.9822 + }, + { + "start": 13424.28, + "end": 13428.0, + "probability": 0.9912 + }, + { + "start": 13428.28, + "end": 13430.58, + "probability": 0.8888 + }, + { + "start": 13430.66, + "end": 13432.32, + "probability": 0.5856 + }, + { + "start": 13433.34, + "end": 13435.6, + "probability": 0.9799 + }, + { + "start": 13436.3, + "end": 13439.28, + "probability": 0.7039 + }, + { + "start": 13439.74, + "end": 13440.38, + "probability": 0.1461 + }, + { + "start": 13440.44, + "end": 13441.02, + "probability": 0.7315 + }, + { + "start": 13441.06, + "end": 13441.54, + "probability": 0.5798 + }, + { + "start": 13441.66, + "end": 13442.22, + "probability": 0.4937 + }, + { + "start": 13442.22, + "end": 13443.06, + "probability": 0.439 + }, + { + "start": 13443.78, + "end": 13449.76, + "probability": 0.0127 + }, + { + "start": 13459.28, + "end": 13460.48, + "probability": 0.4667 + }, + { + "start": 13461.25, + "end": 13465.28, + "probability": 0.7568 + }, + { + "start": 13465.44, + "end": 13467.18, + "probability": 0.862 + }, + { + "start": 13468.06, + "end": 13470.04, + "probability": 0.5059 + }, + { + "start": 13470.06, + "end": 13470.52, + "probability": 0.6147 + }, + { + "start": 13471.08, + "end": 13472.06, + "probability": 0.5054 + }, + { + "start": 13473.6, + "end": 13476.86, + "probability": 0.013 + }, + { + "start": 13477.92, + "end": 13479.9, + "probability": 0.0073 + }, + { + "start": 13489.5, + "end": 13490.24, + "probability": 0.0269 + }, + { + "start": 13490.24, + "end": 13492.86, + "probability": 0.557 + }, + { + "start": 13495.35, + "end": 13499.02, + "probability": 0.5904 + }, + { + "start": 13499.08, + "end": 13501.58, + "probability": 0.9718 + }, + { + "start": 13502.3, + "end": 13503.44, + "probability": 0.6672 + }, + { + "start": 13504.4, + "end": 13504.92, + "probability": 0.0492 + }, + { + "start": 13508.08, + "end": 13509.88, + "probability": 0.7345 + }, + { + "start": 13510.6, + "end": 13513.72, + "probability": 0.9995 + }, + { + "start": 13514.22, + "end": 13514.6, + "probability": 0.5127 + }, + { + "start": 13514.66, + "end": 13519.38, + "probability": 0.6109 + }, + { + "start": 13519.4, + "end": 13520.34, + "probability": 0.347 + }, + { + "start": 13520.58, + "end": 13522.04, + "probability": 0.9309 + }, + { + "start": 13522.6, + "end": 13527.24, + "probability": 0.7828 + }, + { + "start": 13528.82, + "end": 13530.08, + "probability": 0.7008 + }, + { + "start": 13530.2, + "end": 13530.2, + "probability": 0.5845 + }, + { + "start": 13530.2, + "end": 13531.18, + "probability": 0.6762 + }, + { + "start": 13531.44, + "end": 13532.06, + "probability": 0.7729 + }, + { + "start": 13532.16, + "end": 13534.14, + "probability": 0.9653 + }, + { + "start": 13534.44, + "end": 13536.6, + "probability": 0.5815 + }, + { + "start": 13536.62, + "end": 13539.86, + "probability": 0.621 + }, + { + "start": 13539.86, + "end": 13542.42, + "probability": 0.9986 + }, + { + "start": 13542.56, + "end": 13543.52, + "probability": 0.9337 + }, + { + "start": 13543.66, + "end": 13543.94, + "probability": 0.8588 + }, + { + "start": 13544.1, + "end": 13545.18, + "probability": 0.8776 + }, + { + "start": 13545.6, + "end": 13547.06, + "probability": 0.8307 + }, + { + "start": 13547.12, + "end": 13551.22, + "probability": 0.9186 + }, + { + "start": 13551.34, + "end": 13555.2, + "probability": 0.8302 + }, + { + "start": 13555.76, + "end": 13556.06, + "probability": 0.301 + }, + { + "start": 13556.1, + "end": 13557.94, + "probability": 0.8678 + }, + { + "start": 13558.36, + "end": 13560.02, + "probability": 0.2724 + }, + { + "start": 13560.12, + "end": 13563.56, + "probability": 0.9629 + }, + { + "start": 13564.0, + "end": 13567.18, + "probability": 0.9342 + }, + { + "start": 13567.78, + "end": 13569.76, + "probability": 0.8014 + }, + { + "start": 13569.9, + "end": 13571.74, + "probability": 0.9465 + }, + { + "start": 13571.84, + "end": 13575.1, + "probability": 0.7998 + }, + { + "start": 13575.5, + "end": 13579.04, + "probability": 0.8472 + }, + { + "start": 13579.74, + "end": 13582.3, + "probability": 0.9946 + }, + { + "start": 13582.3, + "end": 13584.7, + "probability": 0.8373 + }, + { + "start": 13584.78, + "end": 13587.36, + "probability": 0.9917 + }, + { + "start": 13587.54, + "end": 13591.24, + "probability": 0.8015 + }, + { + "start": 13591.82, + "end": 13592.26, + "probability": 0.5967 + }, + { + "start": 13592.44, + "end": 13595.28, + "probability": 0.7593 + }, + { + "start": 13595.36, + "end": 13599.14, + "probability": 0.925 + }, + { + "start": 13599.88, + "end": 13600.1, + "probability": 0.1967 + }, + { + "start": 13600.12, + "end": 13601.6, + "probability": 0.9537 + }, + { + "start": 13601.74, + "end": 13605.78, + "probability": 0.9777 + }, + { + "start": 13605.78, + "end": 13610.04, + "probability": 0.9645 + }, + { + "start": 13610.5, + "end": 13615.3, + "probability": 0.942 + }, + { + "start": 13615.3, + "end": 13619.5, + "probability": 0.9942 + }, + { + "start": 13619.9, + "end": 13620.06, + "probability": 0.2614 + }, + { + "start": 13620.14, + "end": 13620.74, + "probability": 0.8816 + }, + { + "start": 13620.82, + "end": 13624.58, + "probability": 0.9567 + }, + { + "start": 13624.58, + "end": 13627.9, + "probability": 0.9768 + }, + { + "start": 13627.9, + "end": 13631.74, + "probability": 0.9995 + }, + { + "start": 13632.82, + "end": 13636.58, + "probability": 0.9004 + }, + { + "start": 13636.62, + "end": 13639.22, + "probability": 0.6629 + }, + { + "start": 13639.3, + "end": 13641.42, + "probability": 0.954 + }, + { + "start": 13641.82, + "end": 13644.26, + "probability": 0.8815 + }, + { + "start": 13644.26, + "end": 13646.5, + "probability": 0.9972 + }, + { + "start": 13647.22, + "end": 13650.84, + "probability": 0.9651 + }, + { + "start": 13650.9, + "end": 13653.5, + "probability": 0.92 + }, + { + "start": 13654.48, + "end": 13654.76, + "probability": 0.7855 + }, + { + "start": 13655.0, + "end": 13658.86, + "probability": 0.9571 + }, + { + "start": 13659.48, + "end": 13664.82, + "probability": 0.7815 + }, + { + "start": 13665.0, + "end": 13666.82, + "probability": 0.7433 + }, + { + "start": 13666.9, + "end": 13669.66, + "probability": 0.8803 + }, + { + "start": 13670.48, + "end": 13674.78, + "probability": 0.9836 + }, + { + "start": 13675.06, + "end": 13678.34, + "probability": 0.9927 + }, + { + "start": 13678.82, + "end": 13680.56, + "probability": 0.7817 + }, + { + "start": 13680.8, + "end": 13684.14, + "probability": 0.9886 + }, + { + "start": 13684.72, + "end": 13685.94, + "probability": 0.938 + }, + { + "start": 13686.44, + "end": 13688.54, + "probability": 0.9251 + }, + { + "start": 13688.62, + "end": 13691.18, + "probability": 0.8846 + }, + { + "start": 13691.6, + "end": 13695.24, + "probability": 0.9872 + }, + { + "start": 13695.74, + "end": 13698.8, + "probability": 0.8509 + }, + { + "start": 13698.8, + "end": 13702.26, + "probability": 0.7541 + }, + { + "start": 13702.74, + "end": 13706.3, + "probability": 0.7647 + }, + { + "start": 13706.94, + "end": 13709.36, + "probability": 0.981 + }, + { + "start": 13709.36, + "end": 13712.28, + "probability": 0.7463 + }, + { + "start": 13712.36, + "end": 13713.24, + "probability": 0.4656 + }, + { + "start": 13713.36, + "end": 13716.14, + "probability": 0.9796 + }, + { + "start": 13716.48, + "end": 13717.68, + "probability": 0.6548 + }, + { + "start": 13717.78, + "end": 13719.04, + "probability": 0.7036 + }, + { + "start": 13719.1, + "end": 13720.3, + "probability": 0.8334 + }, + { + "start": 13721.22, + "end": 13721.64, + "probability": 0.5985 + }, + { + "start": 13721.86, + "end": 13725.3, + "probability": 0.9623 + }, + { + "start": 13725.3, + "end": 13730.12, + "probability": 0.9487 + }, + { + "start": 13730.3, + "end": 13733.84, + "probability": 0.9679 + }, + { + "start": 13733.84, + "end": 13738.66, + "probability": 0.9602 + }, + { + "start": 13739.24, + "end": 13740.38, + "probability": 0.8037 + }, + { + "start": 13740.66, + "end": 13743.64, + "probability": 0.9871 + }, + { + "start": 13743.64, + "end": 13746.72, + "probability": 0.983 + }, + { + "start": 13746.72, + "end": 13751.16, + "probability": 0.9835 + }, + { + "start": 13751.74, + "end": 13754.78, + "probability": 0.9899 + }, + { + "start": 13754.78, + "end": 13758.08, + "probability": 0.9982 + }, + { + "start": 13758.08, + "end": 13762.28, + "probability": 0.9956 + }, + { + "start": 13762.28, + "end": 13765.72, + "probability": 0.7399 + }, + { + "start": 13765.76, + "end": 13767.68, + "probability": 0.8911 + }, + { + "start": 13768.18, + "end": 13771.4, + "probability": 0.8715 + }, + { + "start": 13771.72, + "end": 13775.28, + "probability": 0.9935 + }, + { + "start": 13776.42, + "end": 13778.26, + "probability": 0.8243 + }, + { + "start": 13778.78, + "end": 13781.02, + "probability": 0.8257 + }, + { + "start": 13781.16, + "end": 13782.78, + "probability": 0.5965 + }, + { + "start": 13784.28, + "end": 13786.22, + "probability": 0.9752 + }, + { + "start": 13787.34, + "end": 13788.96, + "probability": 0.6938 + }, + { + "start": 13793.02, + "end": 13796.07, + "probability": 0.7998 + }, + { + "start": 13796.42, + "end": 13797.7, + "probability": 0.5885 + }, + { + "start": 13798.66, + "end": 13798.76, + "probability": 0.8394 + }, + { + "start": 13799.58, + "end": 13800.52, + "probability": 0.9779 + }, + { + "start": 13807.76, + "end": 13809.36, + "probability": 0.8423 + }, + { + "start": 13809.44, + "end": 13811.18, + "probability": 0.5468 + }, + { + "start": 13811.34, + "end": 13814.32, + "probability": 0.8593 + }, + { + "start": 13814.68, + "end": 13815.1, + "probability": 0.7667 + }, + { + "start": 13815.26, + "end": 13816.0, + "probability": 0.8246 + }, + { + "start": 13816.14, + "end": 13820.02, + "probability": 0.7725 + }, + { + "start": 13820.28, + "end": 13822.82, + "probability": 0.5962 + }, + { + "start": 13822.9, + "end": 13824.2, + "probability": 0.9869 + }, + { + "start": 13824.88, + "end": 13825.86, + "probability": 0.3003 + }, + { + "start": 13830.98, + "end": 13832.56, + "probability": 0.6452 + }, + { + "start": 13833.16, + "end": 13833.76, + "probability": 0.8805 + }, + { + "start": 13833.88, + "end": 13834.95, + "probability": 0.7112 + }, + { + "start": 13835.58, + "end": 13837.78, + "probability": 0.9688 + }, + { + "start": 13837.82, + "end": 13838.12, + "probability": 0.3179 + }, + { + "start": 13838.3, + "end": 13840.74, + "probability": 0.6088 + }, + { + "start": 13840.74, + "end": 13843.8, + "probability": 0.6743 + }, + { + "start": 13843.96, + "end": 13844.48, + "probability": 0.4533 + }, + { + "start": 13844.52, + "end": 13845.4, + "probability": 0.5968 + }, + { + "start": 13862.16, + "end": 13862.88, + "probability": 0.0042 + }, + { + "start": 13862.88, + "end": 13863.94, + "probability": 0.3049 + }, + { + "start": 13864.74, + "end": 13865.86, + "probability": 0.7059 + }, + { + "start": 13866.6, + "end": 13867.68, + "probability": 0.5109 + }, + { + "start": 13867.9, + "end": 13869.32, + "probability": 0.6243 + }, + { + "start": 13869.4, + "end": 13871.7, + "probability": 0.9478 + }, + { + "start": 13871.84, + "end": 13873.01, + "probability": 0.3589 + }, + { + "start": 13873.24, + "end": 13873.92, + "probability": 0.4701 + }, + { + "start": 13875.02, + "end": 13876.36, + "probability": 0.0137 + }, + { + "start": 13882.7, + "end": 13883.52, + "probability": 0.7004 + }, + { + "start": 13891.28, + "end": 13891.76, + "probability": 0.019 + }, + { + "start": 13891.76, + "end": 13894.96, + "probability": 0.6756 + }, + { + "start": 13895.12, + "end": 13895.52, + "probability": 0.8948 + }, + { + "start": 13898.1, + "end": 13901.32, + "probability": 0.5342 + }, + { + "start": 13902.0, + "end": 13905.0, + "probability": 0.9925 + }, + { + "start": 13905.16, + "end": 13905.42, + "probability": 0.4993 + }, + { + "start": 13905.46, + "end": 13905.8, + "probability": 0.7364 + }, + { + "start": 13905.86, + "end": 13907.66, + "probability": 0.8433 + }, + { + "start": 13908.28, + "end": 13913.58, + "probability": 0.8476 + }, + { + "start": 13913.66, + "end": 13915.24, + "probability": 0.3868 + }, + { + "start": 13915.4, + "end": 13916.78, + "probability": 0.5109 + }, + { + "start": 13916.94, + "end": 13918.06, + "probability": 0.7656 + }, + { + "start": 13918.3, + "end": 13923.26, + "probability": 0.9342 + }, + { + "start": 13923.44, + "end": 13924.56, + "probability": 0.963 + }, + { + "start": 13927.36, + "end": 13930.02, + "probability": 0.2904 + }, + { + "start": 13943.02, + "end": 13946.56, + "probability": 0.9426 + }, + { + "start": 13946.56, + "end": 13949.02, + "probability": 0.9789 + }, + { + "start": 13949.82, + "end": 13950.22, + "probability": 0.3556 + }, + { + "start": 13950.34, + "end": 13953.24, + "probability": 0.9656 + }, + { + "start": 13953.24, + "end": 13954.88, + "probability": 0.9274 + }, + { + "start": 13955.5, + "end": 13959.32, + "probability": 0.876 + }, + { + "start": 13959.56, + "end": 13960.94, + "probability": 0.976 + }, + { + "start": 13962.06, + "end": 13964.9, + "probability": 0.696 + }, + { + "start": 13964.96, + "end": 13966.2, + "probability": 0.8604 + }, + { + "start": 13967.0, + "end": 13971.28, + "probability": 0.8574 + }, + { + "start": 13971.28, + "end": 13975.64, + "probability": 0.9958 + }, + { + "start": 13976.44, + "end": 13979.58, + "probability": 0.8935 + }, + { + "start": 13979.62, + "end": 13983.26, + "probability": 0.9703 + }, + { + "start": 13983.88, + "end": 13986.12, + "probability": 0.7198 + }, + { + "start": 13986.64, + "end": 13987.82, + "probability": 0.9132 + }, + { + "start": 13987.92, + "end": 13990.08, + "probability": 0.9819 + }, + { + "start": 13990.1, + "end": 13994.78, + "probability": 0.9883 + }, + { + "start": 13994.78, + "end": 13998.98, + "probability": 0.973 + }, + { + "start": 13999.6, + "end": 14002.42, + "probability": 0.9365 + }, + { + "start": 14002.42, + "end": 14004.96, + "probability": 0.7853 + }, + { + "start": 14005.56, + "end": 14006.64, + "probability": 0.3173 + }, + { + "start": 14006.74, + "end": 14012.14, + "probability": 0.677 + }, + { + "start": 14012.74, + "end": 14014.94, + "probability": 0.5598 + }, + { + "start": 14015.06, + "end": 14015.32, + "probability": 0.5264 + }, + { + "start": 14015.4, + "end": 14016.82, + "probability": 0.8728 + }, + { + "start": 14017.02, + "end": 14018.34, + "probability": 0.8944 + }, + { + "start": 14018.98, + "end": 14020.38, + "probability": 0.797 + }, + { + "start": 14020.86, + "end": 14021.54, + "probability": 0.9354 + }, + { + "start": 14021.84, + "end": 14023.38, + "probability": 0.9408 + }, + { + "start": 14023.94, + "end": 14025.84, + "probability": 0.7658 + }, + { + "start": 14025.84, + "end": 14028.0, + "probability": 0.918 + }, + { + "start": 14028.68, + "end": 14031.0, + "probability": 0.8019 + }, + { + "start": 14031.62, + "end": 14032.12, + "probability": 0.7212 + }, + { + "start": 14032.78, + "end": 14035.88, + "probability": 0.794 + }, + { + "start": 14035.88, + "end": 14040.14, + "probability": 0.6865 + }, + { + "start": 14040.66, + "end": 14042.58, + "probability": 0.8542 + }, + { + "start": 14043.16, + "end": 14047.08, + "probability": 0.972 + }, + { + "start": 14047.74, + "end": 14048.62, + "probability": 0.7923 + }, + { + "start": 14048.74, + "end": 14052.28, + "probability": 0.9739 + }, + { + "start": 14052.34, + "end": 14056.36, + "probability": 0.9746 + }, + { + "start": 14056.44, + "end": 14056.88, + "probability": 0.828 + }, + { + "start": 14058.5, + "end": 14062.0, + "probability": 0.771 + }, + { + "start": 14062.1, + "end": 14066.76, + "probability": 0.7667 + }, + { + "start": 14068.08, + "end": 14070.18, + "probability": 0.8527 + }, + { + "start": 14071.46, + "end": 14076.14, + "probability": 0.9801 + }, + { + "start": 14076.3, + "end": 14078.28, + "probability": 0.9611 + }, + { + "start": 14079.04, + "end": 14079.22, + "probability": 0.2745 + }, + { + "start": 14080.48, + "end": 14083.72, + "probability": 0.735 + }, + { + "start": 14087.23, + "end": 14089.98, + "probability": 0.6062 + }, + { + "start": 14091.98, + "end": 14095.66, + "probability": 0.8918 + }, + { + "start": 14096.78, + "end": 14098.6, + "probability": 0.7957 + }, + { + "start": 14098.94, + "end": 14099.62, + "probability": 0.7717 + }, + { + "start": 14100.6, + "end": 14102.62, + "probability": 0.9621 + }, + { + "start": 14102.76, + "end": 14105.18, + "probability": 0.9224 + }, + { + "start": 14105.62, + "end": 14108.44, + "probability": 0.8159 + }, + { + "start": 14109.44, + "end": 14114.08, + "probability": 0.9933 + }, + { + "start": 14114.22, + "end": 14119.9, + "probability": 0.917 + }, + { + "start": 14120.01, + "end": 14125.26, + "probability": 0.9683 + }, + { + "start": 14126.9, + "end": 14130.0, + "probability": 0.9844 + }, + { + "start": 14130.64, + "end": 14133.26, + "probability": 0.5889 + }, + { + "start": 14133.42, + "end": 14133.56, + "probability": 0.4679 + }, + { + "start": 14133.66, + "end": 14133.8, + "probability": 0.7358 + }, + { + "start": 14133.86, + "end": 14136.6, + "probability": 0.9701 + }, + { + "start": 14136.76, + "end": 14138.72, + "probability": 0.8757 + }, + { + "start": 14139.38, + "end": 14145.58, + "probability": 0.8892 + }, + { + "start": 14145.68, + "end": 14147.56, + "probability": 0.7642 + }, + { + "start": 14148.36, + "end": 14149.28, + "probability": 0.8867 + }, + { + "start": 14149.86, + "end": 14154.64, + "probability": 0.8716 + }, + { + "start": 14155.42, + "end": 14156.4, + "probability": 0.6844 + }, + { + "start": 14156.68, + "end": 14159.04, + "probability": 0.9938 + }, + { + "start": 14159.12, + "end": 14160.56, + "probability": 0.6735 + }, + { + "start": 14160.68, + "end": 14161.88, + "probability": 0.7535 + }, + { + "start": 14161.88, + "end": 14164.66, + "probability": 0.5074 + }, + { + "start": 14165.56, + "end": 14166.86, + "probability": 0.9109 + }, + { + "start": 14166.96, + "end": 14174.72, + "probability": 0.9795 + }, + { + "start": 14175.68, + "end": 14179.08, + "probability": 0.9308 + }, + { + "start": 14180.18, + "end": 14183.42, + "probability": 0.9961 + }, + { + "start": 14183.5, + "end": 14184.3, + "probability": 0.8072 + }, + { + "start": 14184.32, + "end": 14187.78, + "probability": 0.9808 + }, + { + "start": 14188.76, + "end": 14189.78, + "probability": 0.7471 + }, + { + "start": 14190.3, + "end": 14193.9, + "probability": 0.8127 + }, + { + "start": 14194.38, + "end": 14197.98, + "probability": 0.9707 + }, + { + "start": 14197.98, + "end": 14201.66, + "probability": 0.9137 + }, + { + "start": 14202.24, + "end": 14204.94, + "probability": 0.9961 + }, + { + "start": 14204.98, + "end": 14211.08, + "probability": 0.9355 + }, + { + "start": 14211.08, + "end": 14214.28, + "probability": 0.9966 + }, + { + "start": 14215.12, + "end": 14220.56, + "probability": 0.9145 + }, + { + "start": 14220.78, + "end": 14221.36, + "probability": 0.7563 + }, + { + "start": 14223.28, + "end": 14226.12, + "probability": 0.7689 + }, + { + "start": 14226.62, + "end": 14230.84, + "probability": 0.8287 + }, + { + "start": 14231.44, + "end": 14233.16, + "probability": 0.9341 + }, + { + "start": 14233.6, + "end": 14237.16, + "probability": 0.8705 + }, + { + "start": 14238.54, + "end": 14243.76, + "probability": 0.218 + }, + { + "start": 14246.5, + "end": 14248.92, + "probability": 0.2338 + }, + { + "start": 14249.18, + "end": 14251.42, + "probability": 0.5361 + }, + { + "start": 14252.1, + "end": 14253.64, + "probability": 0.8633 + }, + { + "start": 14253.98, + "end": 14255.16, + "probability": 0.5785 + }, + { + "start": 14255.26, + "end": 14256.06, + "probability": 0.4658 + }, + { + "start": 14256.06, + "end": 14256.7, + "probability": 0.5698 + }, + { + "start": 14256.72, + "end": 14257.76, + "probability": 0.7883 + }, + { + "start": 14257.9, + "end": 14260.68, + "probability": 0.5733 + }, + { + "start": 14261.2, + "end": 14262.25, + "probability": 0.9867 + }, + { + "start": 14262.46, + "end": 14264.1, + "probability": 0.9922 + }, + { + "start": 14264.86, + "end": 14267.65, + "probability": 0.9139 + }, + { + "start": 14268.58, + "end": 14272.34, + "probability": 0.8797 + }, + { + "start": 14274.2, + "end": 14277.9, + "probability": 0.7822 + }, + { + "start": 14278.5, + "end": 14282.02, + "probability": 0.8741 + }, + { + "start": 14282.38, + "end": 14285.18, + "probability": 0.523 + }, + { + "start": 14286.14, + "end": 14286.98, + "probability": 0.4578 + }, + { + "start": 14287.18, + "end": 14288.88, + "probability": 0.7944 + }, + { + "start": 14288.94, + "end": 14290.22, + "probability": 0.4645 + }, + { + "start": 14290.24, + "end": 14290.72, + "probability": 0.6498 + }, + { + "start": 14291.98, + "end": 14293.34, + "probability": 0.91 + }, + { + "start": 14293.48, + "end": 14295.1, + "probability": 0.9032 + }, + { + "start": 14295.18, + "end": 14301.14, + "probability": 0.9913 + }, + { + "start": 14301.28, + "end": 14302.22, + "probability": 0.7376 + }, + { + "start": 14302.76, + "end": 14304.44, + "probability": 0.9048 + }, + { + "start": 14304.48, + "end": 14307.92, + "probability": 0.9596 + }, + { + "start": 14308.32, + "end": 14311.38, + "probability": 0.9444 + }, + { + "start": 14312.04, + "end": 14317.64, + "probability": 0.85 + }, + { + "start": 14318.26, + "end": 14319.42, + "probability": 0.8051 + }, + { + "start": 14320.22, + "end": 14321.44, + "probability": 0.8942 + }, + { + "start": 14321.9, + "end": 14327.32, + "probability": 0.9124 + }, + { + "start": 14327.44, + "end": 14329.86, + "probability": 0.9193 + }, + { + "start": 14330.02, + "end": 14332.62, + "probability": 0.821 + }, + { + "start": 14332.98, + "end": 14333.68, + "probability": 0.9299 + }, + { + "start": 14334.18, + "end": 14336.64, + "probability": 0.9894 + }, + { + "start": 14336.7, + "end": 14338.74, + "probability": 0.9919 + }, + { + "start": 14339.0, + "end": 14339.4, + "probability": 0.8321 + }, + { + "start": 14339.46, + "end": 14339.98, + "probability": 0.8409 + }, + { + "start": 14340.08, + "end": 14340.5, + "probability": 0.9313 + }, + { + "start": 14340.52, + "end": 14341.13, + "probability": 0.9254 + }, + { + "start": 14341.28, + "end": 14342.52, + "probability": 0.796 + }, + { + "start": 14343.0, + "end": 14345.92, + "probability": 0.9853 + }, + { + "start": 14346.4, + "end": 14347.3, + "probability": 0.809 + }, + { + "start": 14347.46, + "end": 14348.6, + "probability": 0.864 + }, + { + "start": 14348.74, + "end": 14349.88, + "probability": 0.9116 + }, + { + "start": 14349.92, + "end": 14350.84, + "probability": 0.9582 + }, + { + "start": 14351.02, + "end": 14352.62, + "probability": 0.9741 + }, + { + "start": 14352.78, + "end": 14356.94, + "probability": 0.9797 + }, + { + "start": 14356.98, + "end": 14360.3, + "probability": 0.8621 + }, + { + "start": 14361.82, + "end": 14365.82, + "probability": 0.9764 + }, + { + "start": 14365.92, + "end": 14368.22, + "probability": 0.7843 + }, + { + "start": 14369.28, + "end": 14372.78, + "probability": 0.9177 + }, + { + "start": 14373.16, + "end": 14375.28, + "probability": 0.5359 + }, + { + "start": 14375.38, + "end": 14378.76, + "probability": 0.9886 + }, + { + "start": 14378.86, + "end": 14380.26, + "probability": 0.8901 + }, + { + "start": 14380.66, + "end": 14383.54, + "probability": 0.9949 + }, + { + "start": 14385.1, + "end": 14385.78, + "probability": 0.7662 + }, + { + "start": 14385.84, + "end": 14388.85, + "probability": 0.9731 + }, + { + "start": 14389.28, + "end": 14391.3, + "probability": 0.9259 + }, + { + "start": 14391.58, + "end": 14395.2, + "probability": 0.8775 + }, + { + "start": 14395.2, + "end": 14397.94, + "probability": 0.9772 + }, + { + "start": 14398.78, + "end": 14402.11, + "probability": 0.926 + }, + { + "start": 14402.96, + "end": 14407.16, + "probability": 0.9634 + }, + { + "start": 14407.94, + "end": 14410.04, + "probability": 0.9819 + }, + { + "start": 14410.16, + "end": 14411.68, + "probability": 0.9927 + }, + { + "start": 14412.0, + "end": 14412.78, + "probability": 0.8835 + }, + { + "start": 14413.26, + "end": 14417.38, + "probability": 0.9364 + }, + { + "start": 14417.78, + "end": 14420.38, + "probability": 0.9521 + }, + { + "start": 14420.54, + "end": 14421.24, + "probability": 0.6796 + }, + { + "start": 14421.26, + "end": 14421.74, + "probability": 0.8612 + }, + { + "start": 14421.86, + "end": 14426.78, + "probability": 0.9842 + }, + { + "start": 14426.84, + "end": 14427.8, + "probability": 0.7804 + }, + { + "start": 14428.42, + "end": 14430.36, + "probability": 0.0822 + }, + { + "start": 14431.34, + "end": 14434.46, + "probability": 0.2258 + }, + { + "start": 14434.46, + "end": 14436.52, + "probability": 0.8665 + }, + { + "start": 14436.56, + "end": 14439.72, + "probability": 0.9922 + }, + { + "start": 14439.82, + "end": 14442.76, + "probability": 0.8054 + }, + { + "start": 14442.86, + "end": 14445.14, + "probability": 0.275 + }, + { + "start": 14445.16, + "end": 14447.44, + "probability": 0.2447 + }, + { + "start": 14448.78, + "end": 14451.22, + "probability": 0.4657 + }, + { + "start": 14452.2, + "end": 14452.44, + "probability": 0.3125 + }, + { + "start": 14452.44, + "end": 14452.44, + "probability": 0.1083 + }, + { + "start": 14452.44, + "end": 14453.66, + "probability": 0.2865 + }, + { + "start": 14454.34, + "end": 14458.68, + "probability": 0.9057 + }, + { + "start": 14458.68, + "end": 14461.54, + "probability": 0.8246 + }, + { + "start": 14461.62, + "end": 14462.44, + "probability": 0.6885 + }, + { + "start": 14462.84, + "end": 14465.6, + "probability": 0.6684 + }, + { + "start": 14465.62, + "end": 14467.08, + "probability": 0.6137 + }, + { + "start": 14467.1, + "end": 14468.34, + "probability": 0.818 + }, + { + "start": 14468.48, + "end": 14474.86, + "probability": 0.9811 + }, + { + "start": 14475.4, + "end": 14477.54, + "probability": 0.8534 + }, + { + "start": 14477.74, + "end": 14481.22, + "probability": 0.7454 + }, + { + "start": 14481.22, + "end": 14481.28, + "probability": 0.459 + }, + { + "start": 14482.02, + "end": 14485.06, + "probability": 0.9648 + }, + { + "start": 14485.3, + "end": 14486.04, + "probability": 0.6915 + }, + { + "start": 14486.12, + "end": 14489.48, + "probability": 0.8223 + }, + { + "start": 14490.0, + "end": 14491.61, + "probability": 0.8989 + }, + { + "start": 14491.62, + "end": 14494.26, + "probability": 0.9639 + }, + { + "start": 14494.36, + "end": 14495.3, + "probability": 0.7227 + }, + { + "start": 14495.52, + "end": 14497.34, + "probability": 0.7004 + }, + { + "start": 14497.46, + "end": 14501.42, + "probability": 0.8215 + }, + { + "start": 14507.3, + "end": 14508.32, + "probability": 0.6403 + }, + { + "start": 14513.62, + "end": 14515.56, + "probability": 0.707 + }, + { + "start": 14516.0, + "end": 14516.58, + "probability": 0.5346 + }, + { + "start": 14516.84, + "end": 14519.04, + "probability": 0.804 + }, + { + "start": 14519.14, + "end": 14519.92, + "probability": 0.8881 + }, + { + "start": 14520.18, + "end": 14523.92, + "probability": 0.7663 + }, + { + "start": 14526.04, + "end": 14530.46, + "probability": 0.9163 + }, + { + "start": 14530.62, + "end": 14534.78, + "probability": 0.9506 + }, + { + "start": 14535.68, + "end": 14538.54, + "probability": 0.9719 + }, + { + "start": 14538.74, + "end": 14541.56, + "probability": 0.9237 + }, + { + "start": 14542.58, + "end": 14546.95, + "probability": 0.9732 + }, + { + "start": 14547.4, + "end": 14549.13, + "probability": 0.9934 + }, + { + "start": 14550.68, + "end": 14551.68, + "probability": 0.5732 + }, + { + "start": 14552.26, + "end": 14553.06, + "probability": 0.7924 + }, + { + "start": 14553.7, + "end": 14556.96, + "probability": 0.9034 + }, + { + "start": 14557.0, + "end": 14561.74, + "probability": 0.9526 + }, + { + "start": 14562.6, + "end": 14563.78, + "probability": 0.7626 + }, + { + "start": 14563.96, + "end": 14568.06, + "probability": 0.9912 + }, + { + "start": 14568.06, + "end": 14571.62, + "probability": 0.9937 + }, + { + "start": 14572.18, + "end": 14573.38, + "probability": 0.9464 + }, + { + "start": 14573.52, + "end": 14574.8, + "probability": 0.9357 + }, + { + "start": 14575.06, + "end": 14578.0, + "probability": 0.9632 + }, + { + "start": 14581.03, + "end": 14584.28, + "probability": 0.0434 + }, + { + "start": 14584.28, + "end": 14585.86, + "probability": 0.876 + }, + { + "start": 14585.86, + "end": 14589.18, + "probability": 0.9975 + }, + { + "start": 14590.36, + "end": 14594.64, + "probability": 0.9527 + }, + { + "start": 14595.36, + "end": 14596.34, + "probability": 0.9653 + }, + { + "start": 14596.54, + "end": 14597.28, + "probability": 0.934 + }, + { + "start": 14597.52, + "end": 14604.08, + "probability": 0.9505 + }, + { + "start": 14604.5, + "end": 14605.64, + "probability": 0.9389 + }, + { + "start": 14606.28, + "end": 14608.8, + "probability": 0.8089 + }, + { + "start": 14609.18, + "end": 14615.24, + "probability": 0.974 + }, + { + "start": 14615.24, + "end": 14621.92, + "probability": 0.9919 + }, + { + "start": 14622.7, + "end": 14627.5, + "probability": 0.9977 + }, + { + "start": 14628.44, + "end": 14632.48, + "probability": 0.9774 + }, + { + "start": 14632.48, + "end": 14635.98, + "probability": 0.9976 + }, + { + "start": 14636.62, + "end": 14637.54, + "probability": 0.5284 + }, + { + "start": 14637.76, + "end": 14638.74, + "probability": 0.7359 + }, + { + "start": 14638.98, + "end": 14646.18, + "probability": 0.9564 + }, + { + "start": 14647.04, + "end": 14647.04, + "probability": 0.4417 + }, + { + "start": 14647.16, + "end": 14648.28, + "probability": 0.9251 + }, + { + "start": 14648.48, + "end": 14653.7, + "probability": 0.9732 + }, + { + "start": 14653.7, + "end": 14658.52, + "probability": 0.9969 + }, + { + "start": 14659.04, + "end": 14662.46, + "probability": 0.9913 + }, + { + "start": 14663.7, + "end": 14669.48, + "probability": 0.9724 + }, + { + "start": 14669.48, + "end": 14673.36, + "probability": 0.9821 + }, + { + "start": 14673.76, + "end": 14677.48, + "probability": 0.9957 + }, + { + "start": 14678.96, + "end": 14683.54, + "probability": 0.9242 + }, + { + "start": 14684.02, + "end": 14684.71, + "probability": 0.9495 + }, + { + "start": 14685.48, + "end": 14690.32, + "probability": 0.9843 + }, + { + "start": 14690.32, + "end": 14694.1, + "probability": 0.9713 + }, + { + "start": 14694.7, + "end": 14698.96, + "probability": 0.9827 + }, + { + "start": 14699.26, + "end": 14701.5, + "probability": 0.8964 + }, + { + "start": 14702.02, + "end": 14706.46, + "probability": 0.9785 + }, + { + "start": 14706.78, + "end": 14709.4, + "probability": 0.8523 + }, + { + "start": 14709.66, + "end": 14714.14, + "probability": 0.9678 + }, + { + "start": 14714.14, + "end": 14714.22, + "probability": 0.4149 + }, + { + "start": 14715.14, + "end": 14715.92, + "probability": 0.3989 + }, + { + "start": 14715.96, + "end": 14717.88, + "probability": 0.3956 + }, + { + "start": 14718.12, + "end": 14720.02, + "probability": 0.6755 + }, + { + "start": 14720.04, + "end": 14720.1, + "probability": 0.2891 + }, + { + "start": 14720.1, + "end": 14726.84, + "probability": 0.9111 + }, + { + "start": 14727.28, + "end": 14731.12, + "probability": 0.9601 + }, + { + "start": 14731.64, + "end": 14734.32, + "probability": 0.7778 + }, + { + "start": 14734.62, + "end": 14736.8, + "probability": 0.9763 + }, + { + "start": 14737.1, + "end": 14737.96, + "probability": 0.9465 + }, + { + "start": 14738.08, + "end": 14741.0, + "probability": 0.9785 + }, + { + "start": 14741.0, + "end": 14743.5, + "probability": 0.7742 + }, + { + "start": 14743.5, + "end": 14743.88, + "probability": 0.6147 + }, + { + "start": 14744.5, + "end": 14746.32, + "probability": 0.5605 + }, + { + "start": 14746.56, + "end": 14747.34, + "probability": 0.4706 + }, + { + "start": 14747.44, + "end": 14749.06, + "probability": 0.8567 + }, + { + "start": 14750.46, + "end": 14752.68, + "probability": 0.658 + }, + { + "start": 14754.6, + "end": 14756.16, + "probability": 0.9443 + }, + { + "start": 14757.31, + "end": 14760.3, + "probability": 0.8086 + }, + { + "start": 14760.4, + "end": 14761.38, + "probability": 0.5419 + }, + { + "start": 14761.78, + "end": 14763.68, + "probability": 0.8876 + }, + { + "start": 14763.8, + "end": 14765.48, + "probability": 0.7425 + }, + { + "start": 14765.96, + "end": 14766.54, + "probability": 0.5326 + }, + { + "start": 14775.54, + "end": 14776.16, + "probability": 0.568 + }, + { + "start": 14780.44, + "end": 14780.94, + "probability": 0.5604 + }, + { + "start": 14781.04, + "end": 14781.86, + "probability": 0.839 + }, + { + "start": 14782.24, + "end": 14783.38, + "probability": 0.963 + }, + { + "start": 14784.34, + "end": 14785.2, + "probability": 0.9169 + }, + { + "start": 14785.4, + "end": 14785.9, + "probability": 0.9439 + }, + { + "start": 14785.96, + "end": 14788.2, + "probability": 0.9867 + }, + { + "start": 14789.02, + "end": 14791.7, + "probability": 0.911 + }, + { + "start": 14792.46, + "end": 14793.55, + "probability": 0.9202 + }, + { + "start": 14793.66, + "end": 14795.06, + "probability": 0.9399 + }, + { + "start": 14795.9, + "end": 14799.24, + "probability": 0.9533 + }, + { + "start": 14800.24, + "end": 14803.08, + "probability": 0.9583 + }, + { + "start": 14803.08, + "end": 14805.1, + "probability": 0.6781 + }, + { + "start": 14805.92, + "end": 14809.28, + "probability": 0.9556 + }, + { + "start": 14810.22, + "end": 14814.06, + "probability": 0.7264 + }, + { + "start": 14814.8, + "end": 14816.38, + "probability": 0.9895 + }, + { + "start": 14817.36, + "end": 14819.92, + "probability": 0.9939 + }, + { + "start": 14819.92, + "end": 14821.86, + "probability": 0.8683 + }, + { + "start": 14822.04, + "end": 14823.18, + "probability": 0.648 + }, + { + "start": 14823.88, + "end": 14825.68, + "probability": 0.9976 + }, + { + "start": 14826.82, + "end": 14829.98, + "probability": 0.9944 + }, + { + "start": 14830.76, + "end": 14832.18, + "probability": 0.0771 + }, + { + "start": 14834.56, + "end": 14837.02, + "probability": 0.8285 + }, + { + "start": 14837.18, + "end": 14839.54, + "probability": 0.9626 + }, + { + "start": 14839.7, + "end": 14841.38, + "probability": 0.9974 + }, + { + "start": 14841.96, + "end": 14845.16, + "probability": 0.985 + }, + { + "start": 14845.94, + "end": 14847.68, + "probability": 0.9935 + }, + { + "start": 14848.34, + "end": 14849.94, + "probability": 0.9627 + }, + { + "start": 14850.12, + "end": 14852.7, + "probability": 0.9717 + }, + { + "start": 14853.8, + "end": 14855.94, + "probability": 0.6162 + }, + { + "start": 14856.04, + "end": 14858.68, + "probability": 0.9902 + }, + { + "start": 14859.6, + "end": 14860.3, + "probability": 0.5705 + }, + { + "start": 14860.38, + "end": 14861.71, + "probability": 0.7776 + }, + { + "start": 14862.6, + "end": 14863.8, + "probability": 0.9556 + }, + { + "start": 14864.28, + "end": 14865.06, + "probability": 0.9677 + }, + { + "start": 14865.18, + "end": 14866.56, + "probability": 0.9528 + }, + { + "start": 14866.6, + "end": 14867.99, + "probability": 0.5173 + }, + { + "start": 14868.48, + "end": 14869.38, + "probability": 0.8978 + }, + { + "start": 14870.1, + "end": 14872.84, + "probability": 0.9771 + }, + { + "start": 14872.84, + "end": 14875.34, + "probability": 0.9981 + }, + { + "start": 14875.54, + "end": 14875.94, + "probability": 0.4742 + }, + { + "start": 14876.56, + "end": 14880.26, + "probability": 0.9354 + }, + { + "start": 14880.62, + "end": 14883.3, + "probability": 0.9544 + }, + { + "start": 14883.82, + "end": 14884.82, + "probability": 0.9117 + }, + { + "start": 14884.94, + "end": 14886.04, + "probability": 0.8436 + }, + { + "start": 14886.66, + "end": 14887.2, + "probability": 0.9711 + }, + { + "start": 14887.6, + "end": 14890.64, + "probability": 0.8577 + }, + { + "start": 14890.84, + "end": 14892.08, + "probability": 0.8473 + }, + { + "start": 14893.64, + "end": 14897.74, + "probability": 0.9443 + }, + { + "start": 14897.87, + "end": 14898.7, + "probability": 0.9067 + }, + { + "start": 14899.88, + "end": 14901.04, + "probability": 0.9946 + }, + { + "start": 14901.78, + "end": 14903.44, + "probability": 0.9748 + }, + { + "start": 14904.42, + "end": 14904.84, + "probability": 0.6287 + }, + { + "start": 14904.9, + "end": 14906.48, + "probability": 0.939 + }, + { + "start": 14906.98, + "end": 14909.18, + "probability": 0.9943 + }, + { + "start": 14909.96, + "end": 14910.54, + "probability": 0.9024 + }, + { + "start": 14911.12, + "end": 14912.3, + "probability": 0.94 + }, + { + "start": 14912.86, + "end": 14913.9, + "probability": 0.6854 + }, + { + "start": 14914.4, + "end": 14916.26, + "probability": 0.9871 + }, + { + "start": 14916.96, + "end": 14919.8, + "probability": 0.9028 + }, + { + "start": 14920.46, + "end": 14920.46, + "probability": 0.0695 + }, + { + "start": 14920.46, + "end": 14921.02, + "probability": 0.6104 + }, + { + "start": 14921.14, + "end": 14922.54, + "probability": 0.9658 + }, + { + "start": 14923.26, + "end": 14927.08, + "probability": 0.9921 + }, + { + "start": 14928.24, + "end": 14931.98, + "probability": 0.9911 + }, + { + "start": 14932.68, + "end": 14933.24, + "probability": 0.581 + }, + { + "start": 14934.41, + "end": 14936.0, + "probability": 0.3919 + }, + { + "start": 14936.24, + "end": 14937.55, + "probability": 0.8669 + }, + { + "start": 14938.22, + "end": 14940.62, + "probability": 0.9706 + }, + { + "start": 14940.86, + "end": 14941.6, + "probability": 0.8237 + }, + { + "start": 14942.48, + "end": 14948.54, + "probability": 0.9815 + }, + { + "start": 14948.64, + "end": 14949.34, + "probability": 0.5542 + }, + { + "start": 14949.94, + "end": 14950.66, + "probability": 0.9771 + }, + { + "start": 14950.72, + "end": 14952.78, + "probability": 0.9501 + }, + { + "start": 14953.08, + "end": 14953.94, + "probability": 0.8827 + }, + { + "start": 14954.5, + "end": 14957.0, + "probability": 0.8448 + }, + { + "start": 14957.38, + "end": 14958.24, + "probability": 0.9482 + }, + { + "start": 14958.46, + "end": 14960.46, + "probability": 0.6255 + }, + { + "start": 14960.82, + "end": 14961.64, + "probability": 0.9668 + }, + { + "start": 14962.3, + "end": 14963.23, + "probability": 0.8029 + }, + { + "start": 14964.06, + "end": 14965.92, + "probability": 0.8823 + }, + { + "start": 14967.53, + "end": 14972.76, + "probability": 0.6028 + }, + { + "start": 14972.86, + "end": 14973.74, + "probability": 0.3675 + }, + { + "start": 14973.98, + "end": 14974.58, + "probability": 0.3135 + }, + { + "start": 14975.22, + "end": 14978.62, + "probability": 0.792 + }, + { + "start": 14978.76, + "end": 14981.28, + "probability": 0.9911 + }, + { + "start": 14981.7, + "end": 14982.5, + "probability": 0.6302 + }, + { + "start": 14983.2, + "end": 14984.28, + "probability": 0.7247 + }, + { + "start": 14984.78, + "end": 14985.84, + "probability": 0.9427 + }, + { + "start": 14986.38, + "end": 14986.86, + "probability": 0.7484 + }, + { + "start": 14986.98, + "end": 14989.42, + "probability": 0.9758 + }, + { + "start": 14989.92, + "end": 14990.4, + "probability": 0.9929 + }, + { + "start": 14990.68, + "end": 14991.08, + "probability": 0.92 + }, + { + "start": 14991.76, + "end": 14993.46, + "probability": 0.9185 + }, + { + "start": 14994.34, + "end": 14995.3, + "probability": 0.5815 + }, + { + "start": 14995.38, + "end": 14998.32, + "probability": 0.93 + }, + { + "start": 14999.06, + "end": 15001.2, + "probability": 0.9023 + }, + { + "start": 15001.5, + "end": 15003.76, + "probability": 0.8768 + }, + { + "start": 15004.26, + "end": 15005.36, + "probability": 0.9291 + }, + { + "start": 15005.54, + "end": 15009.54, + "probability": 0.9819 + }, + { + "start": 15010.18, + "end": 15012.78, + "probability": 0.8889 + }, + { + "start": 15013.68, + "end": 15017.06, + "probability": 0.8329 + }, + { + "start": 15017.26, + "end": 15019.54, + "probability": 0.7804 + }, + { + "start": 15019.86, + "end": 15021.62, + "probability": 0.8024 + }, + { + "start": 15021.74, + "end": 15024.08, + "probability": 0.997 + }, + { + "start": 15024.9, + "end": 15025.36, + "probability": 0.5621 + }, + { + "start": 15029.04, + "end": 15034.36, + "probability": 0.9275 + }, + { + "start": 15034.9, + "end": 15037.28, + "probability": 0.8234 + }, + { + "start": 15038.34, + "end": 15040.28, + "probability": 0.8011 + }, + { + "start": 15040.84, + "end": 15041.16, + "probability": 0.9631 + }, + { + "start": 15042.62, + "end": 15048.98, + "probability": 0.9971 + }, + { + "start": 15050.24, + "end": 15050.56, + "probability": 0.6254 + }, + { + "start": 15050.6, + "end": 15051.98, + "probability": 0.9559 + }, + { + "start": 15052.1, + "end": 15055.04, + "probability": 0.9326 + }, + { + "start": 15055.94, + "end": 15058.11, + "probability": 0.9741 + }, + { + "start": 15058.74, + "end": 15061.34, + "probability": 0.9844 + }, + { + "start": 15062.84, + "end": 15064.86, + "probability": 0.7454 + }, + { + "start": 15065.56, + "end": 15066.54, + "probability": 0.8965 + }, + { + "start": 15067.18, + "end": 15069.67, + "probability": 0.7842 + }, + { + "start": 15071.1, + "end": 15073.92, + "probability": 0.9699 + }, + { + "start": 15074.7, + "end": 15079.34, + "probability": 0.6671 + }, + { + "start": 15080.26, + "end": 15083.68, + "probability": 0.9326 + }, + { + "start": 15084.28, + "end": 15087.08, + "probability": 0.9939 + }, + { + "start": 15087.76, + "end": 15088.94, + "probability": 0.8381 + }, + { + "start": 15089.94, + "end": 15090.54, + "probability": 0.8159 + }, + { + "start": 15091.0, + "end": 15093.38, + "probability": 0.8338 + }, + { + "start": 15094.58, + "end": 15100.14, + "probability": 0.868 + }, + { + "start": 15100.72, + "end": 15105.78, + "probability": 0.6941 + }, + { + "start": 15106.3, + "end": 15107.7, + "probability": 0.8136 + }, + { + "start": 15108.72, + "end": 15110.46, + "probability": 0.7501 + }, + { + "start": 15111.72, + "end": 15112.34, + "probability": 0.9757 + }, + { + "start": 15113.28, + "end": 15117.36, + "probability": 0.9924 + }, + { + "start": 15118.2, + "end": 15122.66, + "probability": 0.9989 + }, + { + "start": 15123.32, + "end": 15123.7, + "probability": 0.7067 + }, + { + "start": 15124.4, + "end": 15126.88, + "probability": 0.6412 + }, + { + "start": 15128.6, + "end": 15129.26, + "probability": 0.6802 + }, + { + "start": 15129.7, + "end": 15133.27, + "probability": 0.8873 + }, + { + "start": 15134.66, + "end": 15135.76, + "probability": 0.7939 + }, + { + "start": 15136.08, + "end": 15138.74, + "probability": 0.8441 + }, + { + "start": 15139.26, + "end": 15139.88, + "probability": 0.8018 + }, + { + "start": 15140.06, + "end": 15140.88, + "probability": 0.5172 + }, + { + "start": 15141.36, + "end": 15143.4, + "probability": 0.9961 + }, + { + "start": 15144.26, + "end": 15145.7, + "probability": 0.8638 + }, + { + "start": 15146.08, + "end": 15150.14, + "probability": 0.8491 + }, + { + "start": 15151.2, + "end": 15152.48, + "probability": 0.7918 + }, + { + "start": 15153.0, + "end": 15155.7, + "probability": 0.9585 + }, + { + "start": 15156.62, + "end": 15157.66, + "probability": 0.9248 + }, + { + "start": 15159.38, + "end": 15160.24, + "probability": 0.8767 + }, + { + "start": 15161.16, + "end": 15164.44, + "probability": 0.9608 + }, + { + "start": 15165.28, + "end": 15166.3, + "probability": 0.7476 + }, + { + "start": 15166.44, + "end": 15171.34, + "probability": 0.9701 + }, + { + "start": 15172.26, + "end": 15172.78, + "probability": 0.2066 + }, + { + "start": 15173.9, + "end": 15177.98, + "probability": 0.8096 + }, + { + "start": 15179.18, + "end": 15179.36, + "probability": 0.1083 + }, + { + "start": 15179.62, + "end": 15180.86, + "probability": 0.778 + }, + { + "start": 15181.56, + "end": 15189.88, + "probability": 0.9876 + }, + { + "start": 15190.38, + "end": 15193.02, + "probability": 0.834 + }, + { + "start": 15193.8, + "end": 15194.42, + "probability": 0.7955 + }, + { + "start": 15195.1, + "end": 15196.82, + "probability": 0.7728 + }, + { + "start": 15197.4, + "end": 15198.38, + "probability": 0.7905 + }, + { + "start": 15199.34, + "end": 15203.16, + "probability": 0.9685 + }, + { + "start": 15204.38, + "end": 15207.8, + "probability": 0.2246 + }, + { + "start": 15208.38, + "end": 15212.72, + "probability": 0.9644 + }, + { + "start": 15213.52, + "end": 15217.26, + "probability": 0.8448 + }, + { + "start": 15217.84, + "end": 15218.2, + "probability": 0.9313 + }, + { + "start": 15218.88, + "end": 15221.62, + "probability": 0.9446 + }, + { + "start": 15222.64, + "end": 15223.9, + "probability": 0.2696 + }, + { + "start": 15224.28, + "end": 15224.42, + "probability": 0.0464 + }, + { + "start": 15224.46, + "end": 15225.4, + "probability": 0.7765 + }, + { + "start": 15225.92, + "end": 15227.8, + "probability": 0.9963 + }, + { + "start": 15228.68, + "end": 15231.22, + "probability": 0.9918 + }, + { + "start": 15231.62, + "end": 15238.46, + "probability": 0.9913 + }, + { + "start": 15238.9, + "end": 15240.84, + "probability": 0.8029 + }, + { + "start": 15241.4, + "end": 15243.31, + "probability": 0.8136 + }, + { + "start": 15243.84, + "end": 15247.16, + "probability": 0.9929 + }, + { + "start": 15247.58, + "end": 15250.2, + "probability": 0.9028 + }, + { + "start": 15250.3, + "end": 15255.14, + "probability": 0.9452 + }, + { + "start": 15255.54, + "end": 15257.34, + "probability": 0.6776 + }, + { + "start": 15257.5, + "end": 15258.44, + "probability": 0.6394 + }, + { + "start": 15259.26, + "end": 15263.2, + "probability": 0.9778 + }, + { + "start": 15263.38, + "end": 15267.94, + "probability": 0.8202 + }, + { + "start": 15268.22, + "end": 15269.78, + "probability": 0.4706 + }, + { + "start": 15269.9, + "end": 15272.1, + "probability": 0.4175 + }, + { + "start": 15272.8, + "end": 15274.64, + "probability": 0.7421 + }, + { + "start": 15275.82, + "end": 15278.4, + "probability": 0.1869 + }, + { + "start": 15285.16, + "end": 15286.4, + "probability": 0.0223 + }, + { + "start": 15289.58, + "end": 15290.23, + "probability": 0.0351 + }, + { + "start": 15291.68, + "end": 15292.5, + "probability": 0.0366 + }, + { + "start": 15292.5, + "end": 15297.1, + "probability": 0.4537 + }, + { + "start": 15297.1, + "end": 15298.02, + "probability": 0.6121 + }, + { + "start": 15298.1, + "end": 15299.46, + "probability": 0.9194 + }, + { + "start": 15299.48, + "end": 15301.11, + "probability": 0.8877 + }, + { + "start": 15301.8, + "end": 15302.62, + "probability": 0.7158 + }, + { + "start": 15303.5, + "end": 15306.34, + "probability": 0.9927 + }, + { + "start": 15306.48, + "end": 15307.16, + "probability": 0.3083 + }, + { + "start": 15307.24, + "end": 15307.84, + "probability": 0.7601 + }, + { + "start": 15307.98, + "end": 15311.13, + "probability": 0.917 + }, + { + "start": 15312.02, + "end": 15315.32, + "probability": 0.6667 + }, + { + "start": 15315.44, + "end": 15319.82, + "probability": 0.9546 + }, + { + "start": 15320.76, + "end": 15321.62, + "probability": 0.3679 + }, + { + "start": 15321.88, + "end": 15326.0, + "probability": 0.6877 + }, + { + "start": 15327.22, + "end": 15330.3, + "probability": 0.593 + }, + { + "start": 15330.88, + "end": 15334.18, + "probability": 0.9092 + }, + { + "start": 15334.26, + "end": 15338.04, + "probability": 0.788 + }, + { + "start": 15338.56, + "end": 15340.24, + "probability": 0.6273 + }, + { + "start": 15342.04, + "end": 15342.78, + "probability": 0.9441 + }, + { + "start": 15343.7, + "end": 15345.56, + "probability": 0.6804 + }, + { + "start": 15346.6, + "end": 15347.98, + "probability": 0.8065 + }, + { + "start": 15348.22, + "end": 15348.98, + "probability": 0.7274 + }, + { + "start": 15349.1, + "end": 15350.6, + "probability": 0.6613 + }, + { + "start": 15351.26, + "end": 15353.18, + "probability": 0.9603 + }, + { + "start": 15353.72, + "end": 15359.7, + "probability": 0.9187 + }, + { + "start": 15360.28, + "end": 15360.52, + "probability": 0.1304 + }, + { + "start": 15360.64, + "end": 15367.4, + "probability": 0.9567 + }, + { + "start": 15367.5, + "end": 15368.86, + "probability": 0.9364 + }, + { + "start": 15369.24, + "end": 15369.9, + "probability": 0.9173 + }, + { + "start": 15370.0, + "end": 15370.58, + "probability": 0.9249 + }, + { + "start": 15370.7, + "end": 15371.48, + "probability": 0.888 + }, + { + "start": 15371.68, + "end": 15372.52, + "probability": 0.8735 + }, + { + "start": 15372.98, + "end": 15373.56, + "probability": 0.5081 + }, + { + "start": 15374.08, + "end": 15375.62, + "probability": 0.8629 + }, + { + "start": 15376.42, + "end": 15380.86, + "probability": 0.9944 + }, + { + "start": 15380.86, + "end": 15385.02, + "probability": 0.9928 + }, + { + "start": 15385.48, + "end": 15390.44, + "probability": 0.9876 + }, + { + "start": 15390.44, + "end": 15396.52, + "probability": 0.9857 + }, + { + "start": 15397.14, + "end": 15399.38, + "probability": 0.9575 + }, + { + "start": 15399.92, + "end": 15404.66, + "probability": 0.9735 + }, + { + "start": 15405.1, + "end": 15405.82, + "probability": 0.7986 + }, + { + "start": 15406.28, + "end": 15410.08, + "probability": 0.8757 + }, + { + "start": 15411.54, + "end": 15411.92, + "probability": 0.7275 + }, + { + "start": 15411.98, + "end": 15412.74, + "probability": 0.471 + }, + { + "start": 15412.84, + "end": 15416.68, + "probability": 0.9904 + }, + { + "start": 15417.22, + "end": 15421.0, + "probability": 0.9901 + }, + { + "start": 15421.56, + "end": 15424.24, + "probability": 0.9617 + }, + { + "start": 15424.8, + "end": 15428.1, + "probability": 0.9894 + }, + { + "start": 15428.1, + "end": 15432.04, + "probability": 0.722 + }, + { + "start": 15432.7, + "end": 15433.99, + "probability": 0.4907 + }, + { + "start": 15434.9, + "end": 15436.7, + "probability": 0.9065 + }, + { + "start": 15437.24, + "end": 15439.36, + "probability": 0.4155 + }, + { + "start": 15439.94, + "end": 15443.72, + "probability": 0.9875 + }, + { + "start": 15443.74, + "end": 15447.76, + "probability": 0.995 + }, + { + "start": 15447.76, + "end": 15451.82, + "probability": 0.9965 + }, + { + "start": 15452.24, + "end": 15456.74, + "probability": 0.9695 + }, + { + "start": 15457.34, + "end": 15461.68, + "probability": 0.9808 + }, + { + "start": 15461.68, + "end": 15465.7, + "probability": 0.7852 + }, + { + "start": 15466.28, + "end": 15470.46, + "probability": 0.9827 + }, + { + "start": 15470.46, + "end": 15475.34, + "probability": 0.9518 + }, + { + "start": 15475.96, + "end": 15481.26, + "probability": 0.9941 + }, + { + "start": 15481.26, + "end": 15487.18, + "probability": 0.9983 + }, + { + "start": 15487.82, + "end": 15490.74, + "probability": 0.9807 + }, + { + "start": 15491.2, + "end": 15493.18, + "probability": 0.8634 + }, + { + "start": 15493.5, + "end": 15495.48, + "probability": 0.9568 + }, + { + "start": 15496.14, + "end": 15496.68, + "probability": 0.5814 + }, + { + "start": 15497.3, + "end": 15500.8, + "probability": 0.957 + }, + { + "start": 15500.8, + "end": 15504.96, + "probability": 0.9941 + }, + { + "start": 15505.38, + "end": 15508.5, + "probability": 0.9662 + }, + { + "start": 15509.02, + "end": 15513.22, + "probability": 0.8683 + }, + { + "start": 15513.24, + "end": 15519.0, + "probability": 0.9873 + }, + { + "start": 15519.0, + "end": 15525.08, + "probability": 0.9781 + }, + { + "start": 15525.74, + "end": 15526.5, + "probability": 0.8688 + }, + { + "start": 15526.62, + "end": 15530.08, + "probability": 0.9652 + }, + { + "start": 15530.48, + "end": 15532.4, + "probability": 0.9117 + }, + { + "start": 15532.62, + "end": 15534.4, + "probability": 0.7014 + }, + { + "start": 15534.8, + "end": 15539.58, + "probability": 0.9938 + }, + { + "start": 15539.58, + "end": 15545.28, + "probability": 0.9925 + }, + { + "start": 15545.68, + "end": 15550.84, + "probability": 0.9901 + }, + { + "start": 15550.88, + "end": 15554.1, + "probability": 0.9916 + }, + { + "start": 15554.64, + "end": 15558.46, + "probability": 0.9045 + }, + { + "start": 15558.46, + "end": 15563.56, + "probability": 0.9958 + }, + { + "start": 15564.04, + "end": 15567.38, + "probability": 0.8896 + }, + { + "start": 15568.06, + "end": 15570.24, + "probability": 0.9778 + }, + { + "start": 15570.78, + "end": 15575.42, + "probability": 0.9798 + }, + { + "start": 15575.92, + "end": 15578.16, + "probability": 0.9902 + }, + { + "start": 15579.32, + "end": 15582.28, + "probability": 0.7432 + }, + { + "start": 15582.78, + "end": 15588.78, + "probability": 0.8844 + }, + { + "start": 15589.24, + "end": 15591.36, + "probability": 0.3637 + }, + { + "start": 15591.8, + "end": 15595.54, + "probability": 0.9952 + }, + { + "start": 15596.02, + "end": 15600.18, + "probability": 0.9362 + }, + { + "start": 15600.76, + "end": 15604.76, + "probability": 0.9458 + }, + { + "start": 15604.92, + "end": 15605.36, + "probability": 0.889 + }, + { + "start": 15605.76, + "end": 15608.82, + "probability": 0.9907 + }, + { + "start": 15609.36, + "end": 15612.66, + "probability": 0.9259 + }, + { + "start": 15612.66, + "end": 15616.44, + "probability": 0.9531 + }, + { + "start": 15616.82, + "end": 15619.68, + "probability": 0.9922 + }, + { + "start": 15619.68, + "end": 15622.52, + "probability": 0.9893 + }, + { + "start": 15623.28, + "end": 15627.18, + "probability": 0.9833 + }, + { + "start": 15627.18, + "end": 15630.6, + "probability": 0.9984 + }, + { + "start": 15631.1, + "end": 15632.62, + "probability": 0.7848 + }, + { + "start": 15633.16, + "end": 15636.14, + "probability": 0.9534 + }, + { + "start": 15636.62, + "end": 15639.96, + "probability": 0.9869 + }, + { + "start": 15639.96, + "end": 15643.38, + "probability": 0.9995 + }, + { + "start": 15643.98, + "end": 15647.66, + "probability": 0.7056 + }, + { + "start": 15648.16, + "end": 15651.38, + "probability": 0.9792 + }, + { + "start": 15651.86, + "end": 15656.88, + "probability": 0.9907 + }, + { + "start": 15657.44, + "end": 15663.0, + "probability": 0.9744 + }, + { + "start": 15663.44, + "end": 15665.17, + "probability": 0.7723 + }, + { + "start": 15665.82, + "end": 15667.68, + "probability": 0.9982 + }, + { + "start": 15668.24, + "end": 15670.94, + "probability": 0.9424 + }, + { + "start": 15671.9, + "end": 15674.56, + "probability": 0.9912 + }, + { + "start": 15674.56, + "end": 15678.62, + "probability": 0.9506 + }, + { + "start": 15679.1, + "end": 15681.94, + "probability": 0.9167 + }, + { + "start": 15681.94, + "end": 15685.76, + "probability": 0.9877 + }, + { + "start": 15686.2, + "end": 15687.64, + "probability": 0.8648 + }, + { + "start": 15688.16, + "end": 15691.48, + "probability": 0.9478 + }, + { + "start": 15691.66, + "end": 15695.12, + "probability": 0.9515 + }, + { + "start": 15695.48, + "end": 15700.28, + "probability": 0.9875 + }, + { + "start": 15700.28, + "end": 15705.66, + "probability": 0.9972 + }, + { + "start": 15706.14, + "end": 15708.24, + "probability": 0.752 + }, + { + "start": 15708.68, + "end": 15709.48, + "probability": 0.5686 + }, + { + "start": 15709.68, + "end": 15711.18, + "probability": 0.7258 + }, + { + "start": 15711.32, + "end": 15715.68, + "probability": 0.9971 + }, + { + "start": 15716.08, + "end": 15717.84, + "probability": 0.8671 + }, + { + "start": 15718.06, + "end": 15718.28, + "probability": 0.7201 + }, + { + "start": 15718.72, + "end": 15722.07, + "probability": 0.7613 + }, + { + "start": 15722.54, + "end": 15722.82, + "probability": 0.612 + }, + { + "start": 15722.82, + "end": 15725.02, + "probability": 0.8037 + }, + { + "start": 15725.2, + "end": 15726.24, + "probability": 0.9033 + }, + { + "start": 15727.76, + "end": 15728.76, + "probability": 0.6349 + }, + { + "start": 15729.2, + "end": 15732.86, + "probability": 0.9261 + }, + { + "start": 15733.68, + "end": 15738.78, + "probability": 0.9863 + }, + { + "start": 15740.52, + "end": 15742.68, + "probability": 0.5335 + }, + { + "start": 15742.7, + "end": 15744.18, + "probability": 0.704 + }, + { + "start": 15745.18, + "end": 15746.28, + "probability": 0.8818 + }, + { + "start": 15746.4, + "end": 15750.06, + "probability": 0.8943 + }, + { + "start": 15750.84, + "end": 15753.72, + "probability": 0.7247 + }, + { + "start": 15753.76, + "end": 15754.42, + "probability": 0.5359 + }, + { + "start": 15754.8, + "end": 15756.26, + "probability": 0.6514 + }, + { + "start": 15756.62, + "end": 15758.8, + "probability": 0.7709 + }, + { + "start": 15759.46, + "end": 15761.36, + "probability": 0.8755 + }, + { + "start": 15762.93, + "end": 15768.8, + "probability": 0.7915 + }, + { + "start": 15768.9, + "end": 15773.18, + "probability": 0.6896 + }, + { + "start": 15773.28, + "end": 15777.06, + "probability": 0.4794 + }, + { + "start": 15778.08, + "end": 15779.54, + "probability": 0.7551 + }, + { + "start": 15780.4, + "end": 15782.98, + "probability": 0.8945 + }, + { + "start": 15786.72, + "end": 15788.31, + "probability": 0.9385 + }, + { + "start": 15791.36, + "end": 15792.74, + "probability": 0.6747 + }, + { + "start": 15793.28, + "end": 15794.64, + "probability": 0.8706 + }, + { + "start": 15795.86, + "end": 15798.7, + "probability": 0.9734 + }, + { + "start": 15799.76, + "end": 15802.88, + "probability": 0.9978 + }, + { + "start": 15803.88, + "end": 15807.98, + "probability": 0.9904 + }, + { + "start": 15809.34, + "end": 15811.32, + "probability": 0.917 + }, + { + "start": 15812.46, + "end": 15813.44, + "probability": 0.7451 + }, + { + "start": 15814.24, + "end": 15815.6, + "probability": 0.7943 + }, + { + "start": 15816.58, + "end": 15823.06, + "probability": 0.9982 + }, + { + "start": 15824.18, + "end": 15826.04, + "probability": 0.8748 + }, + { + "start": 15827.28, + "end": 15830.4, + "probability": 0.6325 + }, + { + "start": 15831.16, + "end": 15833.9, + "probability": 0.4506 + }, + { + "start": 15834.22, + "end": 15836.28, + "probability": 0.5955 + }, + { + "start": 15837.36, + "end": 15841.36, + "probability": 0.9584 + }, + { + "start": 15842.02, + "end": 15845.82, + "probability": 0.9937 + }, + { + "start": 15846.88, + "end": 15851.14, + "probability": 0.957 + }, + { + "start": 15851.8, + "end": 15853.48, + "probability": 0.772 + }, + { + "start": 15854.22, + "end": 15857.74, + "probability": 0.9533 + }, + { + "start": 15858.48, + "end": 15860.62, + "probability": 0.9701 + }, + { + "start": 15860.94, + "end": 15863.0, + "probability": 0.979 + }, + { + "start": 15863.62, + "end": 15864.36, + "probability": 0.7272 + }, + { + "start": 15864.88, + "end": 15868.4, + "probability": 0.9794 + }, + { + "start": 15868.72, + "end": 15874.2, + "probability": 0.6509 + }, + { + "start": 15874.94, + "end": 15875.8, + "probability": 0.5589 + }, + { + "start": 15876.76, + "end": 15878.68, + "probability": 0.7954 + }, + { + "start": 15879.36, + "end": 15880.34, + "probability": 0.7637 + }, + { + "start": 15880.44, + "end": 15882.5, + "probability": 0.9103 + }, + { + "start": 15882.78, + "end": 15883.16, + "probability": 0.6743 + }, + { + "start": 15883.82, + "end": 15885.76, + "probability": 0.9518 + }, + { + "start": 15886.84, + "end": 15887.3, + "probability": 0.084 + }, + { + "start": 15887.3, + "end": 15889.22, + "probability": 0.8397 + }, + { + "start": 15889.96, + "end": 15892.46, + "probability": 0.5834 + }, + { + "start": 15893.1, + "end": 15893.2, + "probability": 0.6355 + }, + { + "start": 15895.2, + "end": 15897.12, + "probability": 0.964 + }, + { + "start": 15897.48, + "end": 15898.38, + "probability": 0.8249 + }, + { + "start": 15898.86, + "end": 15900.24, + "probability": 0.7912 + }, + { + "start": 15900.66, + "end": 15904.96, + "probability": 0.9563 + }, + { + "start": 15905.62, + "end": 15907.24, + "probability": 0.979 + }, + { + "start": 15907.76, + "end": 15910.8, + "probability": 0.9942 + }, + { + "start": 15912.52, + "end": 15913.74, + "probability": 0.7936 + }, + { + "start": 15914.6, + "end": 15915.52, + "probability": 0.8997 + }, + { + "start": 15916.2, + "end": 15920.92, + "probability": 0.8691 + }, + { + "start": 15921.52, + "end": 15922.52, + "probability": 0.9673 + }, + { + "start": 15923.3, + "end": 15927.34, + "probability": 0.929 + }, + { + "start": 15927.92, + "end": 15930.5, + "probability": 0.9068 + }, + { + "start": 15930.88, + "end": 15932.22, + "probability": 0.9585 + }, + { + "start": 15932.8, + "end": 15933.78, + "probability": 0.5792 + }, + { + "start": 15934.42, + "end": 15935.96, + "probability": 0.6936 + }, + { + "start": 15936.76, + "end": 15938.36, + "probability": 0.7154 + }, + { + "start": 15938.42, + "end": 15940.48, + "probability": 0.918 + }, + { + "start": 15940.72, + "end": 15943.1, + "probability": 0.9038 + }, + { + "start": 15943.44, + "end": 15943.76, + "probability": 0.4988 + }, + { + "start": 15943.82, + "end": 15944.96, + "probability": 0.966 + }, + { + "start": 15945.62, + "end": 15946.86, + "probability": 0.6198 + }, + { + "start": 15947.86, + "end": 15949.54, + "probability": 0.5942 + }, + { + "start": 15950.42, + "end": 15951.02, + "probability": 0.4669 + }, + { + "start": 15951.88, + "end": 15956.02, + "probability": 0.833 + }, + { + "start": 15956.5, + "end": 15957.52, + "probability": 0.5593 + }, + { + "start": 15958.14, + "end": 15964.02, + "probability": 0.9497 + }, + { + "start": 15964.4, + "end": 15965.54, + "probability": 0.9468 + }, + { + "start": 15966.62, + "end": 15967.76, + "probability": 0.9907 + }, + { + "start": 15968.18, + "end": 15971.26, + "probability": 0.9661 + }, + { + "start": 15972.02, + "end": 15974.62, + "probability": 0.8487 + }, + { + "start": 15975.48, + "end": 15978.14, + "probability": 0.917 + }, + { + "start": 15978.78, + "end": 15982.48, + "probability": 0.7655 + }, + { + "start": 15983.0, + "end": 15983.56, + "probability": 0.7282 + }, + { + "start": 15983.84, + "end": 15985.62, + "probability": 0.991 + }, + { + "start": 15985.96, + "end": 15989.0, + "probability": 0.9069 + }, + { + "start": 15989.16, + "end": 15992.32, + "probability": 0.479 + }, + { + "start": 15993.5, + "end": 15994.68, + "probability": 0.8904 + }, + { + "start": 15995.28, + "end": 15996.48, + "probability": 0.7547 + }, + { + "start": 15998.84, + "end": 16002.12, + "probability": 0.9989 + }, + { + "start": 16002.68, + "end": 16005.12, + "probability": 0.7761 + }, + { + "start": 16006.04, + "end": 16007.4, + "probability": 0.9932 + }, + { + "start": 16008.48, + "end": 16011.1, + "probability": 0.8566 + }, + { + "start": 16011.5, + "end": 16012.98, + "probability": 0.9852 + }, + { + "start": 16013.32, + "end": 16014.32, + "probability": 0.8636 + }, + { + "start": 16015.08, + "end": 16015.54, + "probability": 0.8449 + }, + { + "start": 16016.12, + "end": 16017.28, + "probability": 0.9583 + }, + { + "start": 16018.06, + "end": 16020.0, + "probability": 0.974 + }, + { + "start": 16020.46, + "end": 16022.92, + "probability": 0.8184 + }, + { + "start": 16022.96, + "end": 16024.72, + "probability": 0.9465 + }, + { + "start": 16025.04, + "end": 16025.62, + "probability": 0.7064 + }, + { + "start": 16025.98, + "end": 16027.92, + "probability": 0.8317 + }, + { + "start": 16029.32, + "end": 16032.74, + "probability": 0.8781 + }, + { + "start": 16033.58, + "end": 16036.28, + "probability": 0.5066 + }, + { + "start": 16036.34, + "end": 16037.72, + "probability": 0.9734 + }, + { + "start": 16038.42, + "end": 16040.58, + "probability": 0.9447 + }, + { + "start": 16041.12, + "end": 16041.68, + "probability": 0.9683 + }, + { + "start": 16044.0, + "end": 16046.48, + "probability": 0.931 + }, + { + "start": 16047.24, + "end": 16049.36, + "probability": 0.8726 + }, + { + "start": 16050.2, + "end": 16053.82, + "probability": 0.9705 + }, + { + "start": 16055.34, + "end": 16056.06, + "probability": 0.8363 + }, + { + "start": 16056.46, + "end": 16057.54, + "probability": 0.9976 + }, + { + "start": 16057.64, + "end": 16059.5, + "probability": 0.993 + }, + { + "start": 16059.6, + "end": 16065.08, + "probability": 0.903 + }, + { + "start": 16065.24, + "end": 16066.78, + "probability": 0.9673 + }, + { + "start": 16067.86, + "end": 16071.0, + "probability": 0.9859 + }, + { + "start": 16071.72, + "end": 16075.33, + "probability": 0.9734 + }, + { + "start": 16076.9, + "end": 16078.8, + "probability": 0.9808 + }, + { + "start": 16079.54, + "end": 16084.38, + "probability": 0.9949 + }, + { + "start": 16084.38, + "end": 16090.44, + "probability": 0.9995 + }, + { + "start": 16090.92, + "end": 16092.56, + "probability": 0.9957 + }, + { + "start": 16092.64, + "end": 16097.84, + "probability": 0.9974 + }, + { + "start": 16098.56, + "end": 16099.34, + "probability": 0.9744 + }, + { + "start": 16099.74, + "end": 16100.5, + "probability": 0.9872 + }, + { + "start": 16101.22, + "end": 16101.81, + "probability": 0.9601 + }, + { + "start": 16102.84, + "end": 16107.72, + "probability": 0.9871 + }, + { + "start": 16107.72, + "end": 16111.6, + "probability": 0.7958 + }, + { + "start": 16111.68, + "end": 16112.04, + "probability": 0.8681 + }, + { + "start": 16112.78, + "end": 16114.8, + "probability": 0.9485 + }, + { + "start": 16115.64, + "end": 16118.76, + "probability": 0.9185 + }, + { + "start": 16119.86, + "end": 16123.68, + "probability": 0.9908 + }, + { + "start": 16123.68, + "end": 16126.54, + "probability": 0.999 + }, + { + "start": 16127.34, + "end": 16129.46, + "probability": 0.998 + }, + { + "start": 16130.08, + "end": 16132.44, + "probability": 0.9822 + }, + { + "start": 16133.08, + "end": 16136.12, + "probability": 0.9958 + }, + { + "start": 16137.12, + "end": 16138.06, + "probability": 0.7317 + }, + { + "start": 16139.0, + "end": 16139.58, + "probability": 0.7937 + }, + { + "start": 16139.96, + "end": 16140.7, + "probability": 0.8826 + }, + { + "start": 16140.76, + "end": 16145.96, + "probability": 0.8532 + }, + { + "start": 16146.1, + "end": 16146.74, + "probability": 0.8207 + }, + { + "start": 16146.8, + "end": 16147.81, + "probability": 0.9961 + }, + { + "start": 16149.0, + "end": 16155.5, + "probability": 0.9853 + }, + { + "start": 16155.64, + "end": 16156.42, + "probability": 0.8326 + }, + { + "start": 16156.7, + "end": 16157.8, + "probability": 0.7042 + }, + { + "start": 16158.18, + "end": 16161.52, + "probability": 0.9031 + }, + { + "start": 16162.3, + "end": 16165.42, + "probability": 0.8828 + }, + { + "start": 16166.36, + "end": 16168.06, + "probability": 0.749 + }, + { + "start": 16168.64, + "end": 16170.62, + "probability": 0.9929 + }, + { + "start": 16171.12, + "end": 16172.04, + "probability": 0.5784 + }, + { + "start": 16172.32, + "end": 16172.86, + "probability": 0.3697 + }, + { + "start": 16172.92, + "end": 16173.76, + "probability": 0.749 + }, + { + "start": 16174.32, + "end": 16176.76, + "probability": 0.7733 + }, + { + "start": 16177.06, + "end": 16181.8, + "probability": 0.9513 + }, + { + "start": 16182.42, + "end": 16184.78, + "probability": 0.5899 + }, + { + "start": 16185.82, + "end": 16187.28, + "probability": 0.0517 + }, + { + "start": 16187.56, + "end": 16192.86, + "probability": 0.9783 + }, + { + "start": 16193.76, + "end": 16198.54, + "probability": 0.9989 + }, + { + "start": 16198.6, + "end": 16202.4, + "probability": 0.9946 + }, + { + "start": 16202.48, + "end": 16203.36, + "probability": 0.8408 + }, + { + "start": 16203.66, + "end": 16204.68, + "probability": 0.8996 + }, + { + "start": 16205.1, + "end": 16208.0, + "probability": 0.9983 + }, + { + "start": 16208.58, + "end": 16211.88, + "probability": 0.9876 + }, + { + "start": 16212.14, + "end": 16213.42, + "probability": 0.947 + }, + { + "start": 16213.88, + "end": 16215.38, + "probability": 0.9644 + }, + { + "start": 16215.54, + "end": 16217.57, + "probability": 0.981 + }, + { + "start": 16217.78, + "end": 16222.22, + "probability": 0.98 + }, + { + "start": 16222.78, + "end": 16224.23, + "probability": 0.9201 + }, + { + "start": 16224.68, + "end": 16225.64, + "probability": 0.9612 + }, + { + "start": 16225.92, + "end": 16228.18, + "probability": 0.9219 + }, + { + "start": 16228.26, + "end": 16231.32, + "probability": 0.9591 + }, + { + "start": 16231.94, + "end": 16234.24, + "probability": 0.7715 + }, + { + "start": 16234.84, + "end": 16235.94, + "probability": 0.9766 + }, + { + "start": 16236.14, + "end": 16236.52, + "probability": 0.725 + }, + { + "start": 16236.58, + "end": 16238.98, + "probability": 0.9867 + }, + { + "start": 16239.4, + "end": 16240.87, + "probability": 0.9462 + }, + { + "start": 16241.58, + "end": 16242.23, + "probability": 0.7255 + }, + { + "start": 16242.68, + "end": 16242.86, + "probability": 0.4527 + }, + { + "start": 16242.86, + "end": 16243.46, + "probability": 0.5409 + }, + { + "start": 16243.86, + "end": 16247.3, + "probability": 0.9932 + }, + { + "start": 16247.72, + "end": 16249.32, + "probability": 0.9833 + }, + { + "start": 16249.66, + "end": 16250.54, + "probability": 0.5155 + }, + { + "start": 16251.1, + "end": 16252.36, + "probability": 0.7905 + }, + { + "start": 16252.66, + "end": 16255.36, + "probability": 0.4983 + }, + { + "start": 16255.68, + "end": 16258.42, + "probability": 0.8058 + }, + { + "start": 16258.48, + "end": 16260.05, + "probability": 0.9983 + }, + { + "start": 16260.72, + "end": 16264.2, + "probability": 0.9834 + }, + { + "start": 16266.57, + "end": 16267.16, + "probability": 0.0457 + }, + { + "start": 16267.16, + "end": 16267.16, + "probability": 0.18 + }, + { + "start": 16267.16, + "end": 16267.34, + "probability": 0.1478 + }, + { + "start": 16267.9, + "end": 16269.08, + "probability": 0.4956 + }, + { + "start": 16269.38, + "end": 16270.34, + "probability": 0.4311 + }, + { + "start": 16270.46, + "end": 16272.14, + "probability": 0.9042 + }, + { + "start": 16272.36, + "end": 16274.06, + "probability": 0.8993 + }, + { + "start": 16274.42, + "end": 16278.64, + "probability": 0.9646 + }, + { + "start": 16278.98, + "end": 16279.2, + "probability": 0.6932 + }, + { + "start": 16279.66, + "end": 16282.24, + "probability": 0.7269 + }, + { + "start": 16282.52, + "end": 16285.4, + "probability": 0.7829 + }, + { + "start": 16295.9, + "end": 16297.44, + "probability": 0.9319 + }, + { + "start": 16300.8, + "end": 16301.68, + "probability": 0.7639 + }, + { + "start": 16301.88, + "end": 16303.44, + "probability": 0.8773 + }, + { + "start": 16303.64, + "end": 16305.44, + "probability": 0.9799 + }, + { + "start": 16305.6, + "end": 16306.52, + "probability": 0.9616 + }, + { + "start": 16306.68, + "end": 16307.34, + "probability": 0.889 + }, + { + "start": 16307.9, + "end": 16310.84, + "probability": 0.97 + }, + { + "start": 16312.04, + "end": 16314.34, + "probability": 0.9863 + }, + { + "start": 16314.38, + "end": 16319.82, + "probability": 0.8876 + }, + { + "start": 16320.02, + "end": 16321.68, + "probability": 0.9229 + }, + { + "start": 16322.24, + "end": 16324.68, + "probability": 0.97 + }, + { + "start": 16325.24, + "end": 16326.92, + "probability": 0.7803 + }, + { + "start": 16327.48, + "end": 16329.02, + "probability": 0.8632 + }, + { + "start": 16330.98, + "end": 16336.16, + "probability": 0.9871 + }, + { + "start": 16337.04, + "end": 16339.58, + "probability": 0.8857 + }, + { + "start": 16339.68, + "end": 16345.16, + "probability": 0.9844 + }, + { + "start": 16345.36, + "end": 16349.36, + "probability": 0.9903 + }, + { + "start": 16349.98, + "end": 16350.02, + "probability": 0.0678 + }, + { + "start": 16350.02, + "end": 16355.4, + "probability": 0.9365 + }, + { + "start": 16356.02, + "end": 16356.32, + "probability": 0.0072 + }, + { + "start": 16356.32, + "end": 16357.24, + "probability": 0.7254 + }, + { + "start": 16357.36, + "end": 16358.0, + "probability": 0.8725 + }, + { + "start": 16358.1, + "end": 16360.38, + "probability": 0.9873 + }, + { + "start": 16360.94, + "end": 16363.02, + "probability": 0.9535 + }, + { + "start": 16363.4, + "end": 16369.3, + "probability": 0.9659 + }, + { + "start": 16369.6, + "end": 16371.84, + "probability": 0.9922 + }, + { + "start": 16372.42, + "end": 16373.38, + "probability": 0.8735 + }, + { + "start": 16373.5, + "end": 16374.5, + "probability": 0.8637 + }, + { + "start": 16374.54, + "end": 16375.89, + "probability": 0.9341 + }, + { + "start": 16376.16, + "end": 16376.8, + "probability": 0.5661 + }, + { + "start": 16377.18, + "end": 16378.36, + "probability": 0.9193 + }, + { + "start": 16378.56, + "end": 16381.76, + "probability": 0.983 + }, + { + "start": 16382.34, + "end": 16383.7, + "probability": 0.8898 + }, + { + "start": 16384.56, + "end": 16386.08, + "probability": 0.8987 + }, + { + "start": 16386.72, + "end": 16387.46, + "probability": 0.8435 + }, + { + "start": 16387.52, + "end": 16389.58, + "probability": 0.9692 + }, + { + "start": 16390.62, + "end": 16392.44, + "probability": 0.97 + }, + { + "start": 16393.22, + "end": 16398.28, + "probability": 0.9875 + }, + { + "start": 16398.92, + "end": 16404.22, + "probability": 0.9977 + }, + { + "start": 16404.22, + "end": 16411.26, + "probability": 0.9375 + }, + { + "start": 16411.46, + "end": 16412.82, + "probability": 0.9528 + }, + { + "start": 16412.86, + "end": 16414.94, + "probability": 0.9805 + }, + { + "start": 16415.42, + "end": 16419.46, + "probability": 0.9949 + }, + { + "start": 16419.52, + "end": 16420.1, + "probability": 0.8077 + }, + { + "start": 16420.38, + "end": 16421.72, + "probability": 0.3813 + }, + { + "start": 16421.72, + "end": 16424.38, + "probability": 0.9595 + }, + { + "start": 16424.78, + "end": 16426.58, + "probability": 0.936 + }, + { + "start": 16426.92, + "end": 16433.2, + "probability": 0.9316 + }, + { + "start": 16433.58, + "end": 16434.4, + "probability": 0.4407 + }, + { + "start": 16434.46, + "end": 16436.08, + "probability": 0.944 + }, + { + "start": 16436.38, + "end": 16437.58, + "probability": 0.699 + }, + { + "start": 16437.88, + "end": 16441.8, + "probability": 0.9819 + }, + { + "start": 16442.26, + "end": 16443.02, + "probability": 0.885 + }, + { + "start": 16443.32, + "end": 16446.82, + "probability": 0.9863 + }, + { + "start": 16447.16, + "end": 16449.8, + "probability": 0.8083 + }, + { + "start": 16450.18, + "end": 16456.04, + "probability": 0.972 + }, + { + "start": 16456.28, + "end": 16459.15, + "probability": 0.9427 + }, + { + "start": 16459.52, + "end": 16460.6, + "probability": 0.9857 + }, + { + "start": 16460.64, + "end": 16462.26, + "probability": 0.9811 + }, + { + "start": 16462.56, + "end": 16463.62, + "probability": 0.9479 + }, + { + "start": 16463.94, + "end": 16466.68, + "probability": 0.9892 + }, + { + "start": 16467.14, + "end": 16468.1, + "probability": 0.9648 + }, + { + "start": 16468.76, + "end": 16472.08, + "probability": 0.9375 + }, + { + "start": 16472.5, + "end": 16475.46, + "probability": 0.9932 + }, + { + "start": 16475.92, + "end": 16479.07, + "probability": 0.9901 + }, + { + "start": 16479.36, + "end": 16484.11, + "probability": 0.9858 + }, + { + "start": 16484.22, + "end": 16490.26, + "probability": 0.9909 + }, + { + "start": 16490.32, + "end": 16491.04, + "probability": 0.4069 + }, + { + "start": 16491.54, + "end": 16493.52, + "probability": 0.7448 + }, + { + "start": 16494.18, + "end": 16501.84, + "probability": 0.9534 + }, + { + "start": 16502.1, + "end": 16506.74, + "probability": 0.9754 + }, + { + "start": 16506.76, + "end": 16507.98, + "probability": 0.824 + }, + { + "start": 16508.28, + "end": 16509.08, + "probability": 0.8366 + }, + { + "start": 16509.22, + "end": 16509.96, + "probability": 0.695 + }, + { + "start": 16510.06, + "end": 16512.94, + "probability": 0.9869 + }, + { + "start": 16513.34, + "end": 16514.9, + "probability": 0.5177 + }, + { + "start": 16514.92, + "end": 16515.84, + "probability": 0.878 + }, + { + "start": 16515.92, + "end": 16517.72, + "probability": 0.96 + }, + { + "start": 16517.8, + "end": 16519.36, + "probability": 0.9941 + }, + { + "start": 16519.46, + "end": 16521.56, + "probability": 0.992 + }, + { + "start": 16521.74, + "end": 16523.38, + "probability": 0.997 + }, + { + "start": 16523.84, + "end": 16527.96, + "probability": 0.994 + }, + { + "start": 16528.22, + "end": 16529.8, + "probability": 0.9922 + }, + { + "start": 16529.88, + "end": 16530.42, + "probability": 0.7456 + }, + { + "start": 16530.7, + "end": 16532.58, + "probability": 0.959 + }, + { + "start": 16532.88, + "end": 16535.18, + "probability": 0.998 + }, + { + "start": 16535.18, + "end": 16537.92, + "probability": 0.9961 + }, + { + "start": 16538.22, + "end": 16539.54, + "probability": 0.82 + }, + { + "start": 16539.98, + "end": 16541.19, + "probability": 0.9784 + }, + { + "start": 16541.66, + "end": 16542.52, + "probability": 0.9856 + }, + { + "start": 16542.64, + "end": 16543.7, + "probability": 0.7458 + }, + { + "start": 16543.86, + "end": 16547.2, + "probability": 0.9863 + }, + { + "start": 16547.5, + "end": 16550.48, + "probability": 0.9456 + }, + { + "start": 16550.48, + "end": 16553.82, + "probability": 0.9888 + }, + { + "start": 16554.1, + "end": 16556.04, + "probability": 0.9612 + }, + { + "start": 16556.66, + "end": 16557.96, + "probability": 0.9274 + }, + { + "start": 16559.76, + "end": 16562.22, + "probability": 0.6737 + }, + { + "start": 16562.34, + "end": 16564.18, + "probability": 0.6774 + }, + { + "start": 16564.82, + "end": 16565.86, + "probability": 0.876 + }, + { + "start": 16568.98, + "end": 16569.34, + "probability": 0.3784 + }, + { + "start": 16570.64, + "end": 16573.06, + "probability": 0.1642 + }, + { + "start": 16605.8, + "end": 16607.2, + "probability": 0.9928 + }, + { + "start": 16608.1, + "end": 16608.5, + "probability": 0.1408 + }, + { + "start": 16609.14, + "end": 16609.94, + "probability": 0.837 + }, + { + "start": 16610.36, + "end": 16610.96, + "probability": 0.5965 + }, + { + "start": 16611.06, + "end": 16611.54, + "probability": 0.5726 + }, + { + "start": 16611.58, + "end": 16612.14, + "probability": 0.4898 + }, + { + "start": 16612.32, + "end": 16613.28, + "probability": 0.9501 + }, + { + "start": 16614.02, + "end": 16617.48, + "probability": 0.9351 + }, + { + "start": 16617.56, + "end": 16619.16, + "probability": 0.8987 + }, + { + "start": 16619.44, + "end": 16620.88, + "probability": 0.974 + }, + { + "start": 16621.48, + "end": 16625.34, + "probability": 0.5024 + }, + { + "start": 16625.4, + "end": 16625.94, + "probability": 0.0674 + }, + { + "start": 16625.94, + "end": 16626.78, + "probability": 0.7363 + }, + { + "start": 16626.96, + "end": 16628.28, + "probability": 0.886 + }, + { + "start": 16629.24, + "end": 16632.5, + "probability": 0.9893 + }, + { + "start": 16633.3, + "end": 16634.38, + "probability": 0.9489 + }, + { + "start": 16635.28, + "end": 16637.42, + "probability": 0.7779 + }, + { + "start": 16638.44, + "end": 16641.82, + "probability": 0.9958 + }, + { + "start": 16643.7, + "end": 16644.76, + "probability": 0.9223 + }, + { + "start": 16646.6, + "end": 16651.92, + "probability": 0.9993 + }, + { + "start": 16653.16, + "end": 16657.36, + "probability": 0.5972 + }, + { + "start": 16658.08, + "end": 16660.52, + "probability": 0.8879 + }, + { + "start": 16660.62, + "end": 16661.38, + "probability": 0.0848 + }, + { + "start": 16662.65, + "end": 16662.72, + "probability": 0.1041 + }, + { + "start": 16662.72, + "end": 16663.8, + "probability": 0.7869 + }, + { + "start": 16663.96, + "end": 16668.02, + "probability": 0.9977 + }, + { + "start": 16670.1, + "end": 16672.82, + "probability": 0.556 + }, + { + "start": 16673.6, + "end": 16677.8, + "probability": 0.9596 + }, + { + "start": 16678.84, + "end": 16680.52, + "probability": 0.9833 + }, + { + "start": 16681.82, + "end": 16684.08, + "probability": 0.9504 + }, + { + "start": 16684.92, + "end": 16685.52, + "probability": 0.9149 + }, + { + "start": 16688.14, + "end": 16691.74, + "probability": 0.8807 + }, + { + "start": 16692.62, + "end": 16697.03, + "probability": 0.9779 + }, + { + "start": 16698.14, + "end": 16702.42, + "probability": 0.9805 + }, + { + "start": 16703.3, + "end": 16707.7, + "probability": 0.9878 + }, + { + "start": 16708.24, + "end": 16712.04, + "probability": 0.9844 + }, + { + "start": 16712.04, + "end": 16716.14, + "probability": 0.9931 + }, + { + "start": 16716.76, + "end": 16723.4, + "probability": 0.9115 + }, + { + "start": 16723.92, + "end": 16725.98, + "probability": 0.2708 + }, + { + "start": 16726.72, + "end": 16727.5, + "probability": 0.8038 + }, + { + "start": 16727.6, + "end": 16729.52, + "probability": 0.7986 + }, + { + "start": 16729.72, + "end": 16730.06, + "probability": 0.4333 + }, + { + "start": 16730.14, + "end": 16731.34, + "probability": 0.49 + }, + { + "start": 16731.4, + "end": 16732.34, + "probability": 0.6738 + }, + { + "start": 16732.42, + "end": 16733.3, + "probability": 0.7552 + }, + { + "start": 16735.94, + "end": 16743.48, + "probability": 0.9937 + }, + { + "start": 16743.48, + "end": 16747.86, + "probability": 0.995 + }, + { + "start": 16748.36, + "end": 16749.46, + "probability": 0.9822 + }, + { + "start": 16750.5, + "end": 16751.34, + "probability": 0.7479 + }, + { + "start": 16752.1, + "end": 16754.0, + "probability": 0.8478 + }, + { + "start": 16754.68, + "end": 16759.5, + "probability": 0.98 + }, + { + "start": 16759.62, + "end": 16761.92, + "probability": 0.8764 + }, + { + "start": 16762.08, + "end": 16767.5, + "probability": 0.8956 + }, + { + "start": 16767.8, + "end": 16768.76, + "probability": 0.8439 + }, + { + "start": 16769.3, + "end": 16770.48, + "probability": 0.7661 + }, + { + "start": 16770.62, + "end": 16774.04, + "probability": 0.9944 + }, + { + "start": 16774.22, + "end": 16774.92, + "probability": 0.6188 + }, + { + "start": 16775.0, + "end": 16776.34, + "probability": 0.8134 + }, + { + "start": 16777.26, + "end": 16778.74, + "probability": 0.9409 + }, + { + "start": 16779.78, + "end": 16781.14, + "probability": 0.8376 + }, + { + "start": 16781.18, + "end": 16782.06, + "probability": 0.8542 + }, + { + "start": 16782.24, + "end": 16784.24, + "probability": 0.9907 + }, + { + "start": 16784.34, + "end": 16787.18, + "probability": 0.9527 + }, + { + "start": 16787.32, + "end": 16790.18, + "probability": 0.9807 + }, + { + "start": 16790.78, + "end": 16791.34, + "probability": 0.9805 + }, + { + "start": 16791.96, + "end": 16793.36, + "probability": 0.4981 + }, + { + "start": 16793.52, + "end": 16795.04, + "probability": 0.5864 + }, + { + "start": 16795.1, + "end": 16795.44, + "probability": 0.5619 + }, + { + "start": 16795.56, + "end": 16800.04, + "probability": 0.8725 + }, + { + "start": 16801.2, + "end": 16803.34, + "probability": 0.8656 + }, + { + "start": 16803.64, + "end": 16806.58, + "probability": 0.8981 + }, + { + "start": 16807.2, + "end": 16811.2, + "probability": 0.9849 + }, + { + "start": 16811.2, + "end": 16814.24, + "probability": 0.9982 + }, + { + "start": 16815.12, + "end": 16817.98, + "probability": 0.8561 + }, + { + "start": 16818.92, + "end": 16820.08, + "probability": 0.9183 + }, + { + "start": 16820.96, + "end": 16821.32, + "probability": 0.6943 + }, + { + "start": 16821.4, + "end": 16825.82, + "probability": 0.989 + }, + { + "start": 16826.48, + "end": 16829.44, + "probability": 0.8853 + }, + { + "start": 16829.82, + "end": 16834.02, + "probability": 0.9871 + }, + { + "start": 16834.02, + "end": 16836.74, + "probability": 0.9966 + }, + { + "start": 16836.8, + "end": 16838.56, + "probability": 0.8441 + }, + { + "start": 16838.62, + "end": 16841.32, + "probability": 0.9707 + }, + { + "start": 16841.94, + "end": 16841.94, + "probability": 0.2863 + }, + { + "start": 16842.08, + "end": 16844.08, + "probability": 0.9349 + }, + { + "start": 16844.24, + "end": 16846.12, + "probability": 0.9932 + }, + { + "start": 16846.34, + "end": 16848.0, + "probability": 0.9685 + }, + { + "start": 16848.18, + "end": 16850.36, + "probability": 0.9199 + }, + { + "start": 16850.4, + "end": 16853.94, + "probability": 0.9932 + }, + { + "start": 16853.94, + "end": 16861.6, + "probability": 0.9724 + }, + { + "start": 16864.66, + "end": 16868.2, + "probability": 0.9396 + }, + { + "start": 16868.7, + "end": 16868.7, + "probability": 0.0634 + }, + { + "start": 16868.7, + "end": 16870.22, + "probability": 0.6025 + }, + { + "start": 16870.26, + "end": 16871.38, + "probability": 0.6228 + }, + { + "start": 16871.6, + "end": 16873.7, + "probability": 0.9661 + }, + { + "start": 16873.86, + "end": 16875.72, + "probability": 0.979 + }, + { + "start": 16876.2, + "end": 16879.38, + "probability": 0.6943 + }, + { + "start": 16879.38, + "end": 16882.16, + "probability": 0.8297 + }, + { + "start": 16882.74, + "end": 16887.14, + "probability": 0.9781 + }, + { + "start": 16887.44, + "end": 16890.34, + "probability": 0.9545 + }, + { + "start": 16891.74, + "end": 16897.66, + "probability": 0.9557 + }, + { + "start": 16898.48, + "end": 16901.3, + "probability": 0.8763 + }, + { + "start": 16901.9, + "end": 16902.92, + "probability": 0.9398 + }, + { + "start": 16903.52, + "end": 16908.92, + "probability": 0.9942 + }, + { + "start": 16912.88, + "end": 16917.04, + "probability": 0.7857 + }, + { + "start": 16917.92, + "end": 16922.49, + "probability": 0.8569 + }, + { + "start": 16923.6, + "end": 16924.54, + "probability": 0.6579 + }, + { + "start": 16925.24, + "end": 16927.08, + "probability": 0.2267 + }, + { + "start": 16930.38, + "end": 16931.46, + "probability": 0.8052 + }, + { + "start": 16931.7, + "end": 16936.32, + "probability": 0.9929 + }, + { + "start": 16936.46, + "end": 16939.7, + "probability": 0.958 + }, + { + "start": 16941.98, + "end": 16943.32, + "probability": 0.8103 + }, + { + "start": 16943.96, + "end": 16945.5, + "probability": 0.9571 + }, + { + "start": 16946.06, + "end": 16949.7, + "probability": 0.9883 + }, + { + "start": 16950.22, + "end": 16954.26, + "probability": 0.7491 + }, + { + "start": 16954.58, + "end": 16958.78, + "probability": 0.9884 + }, + { + "start": 16959.12, + "end": 16961.54, + "probability": 0.9028 + }, + { + "start": 16961.78, + "end": 16963.56, + "probability": 0.9769 + }, + { + "start": 16963.74, + "end": 16966.32, + "probability": 0.937 + }, + { + "start": 16966.42, + "end": 16970.2, + "probability": 0.9985 + }, + { + "start": 16970.88, + "end": 16973.82, + "probability": 0.9479 + }, + { + "start": 16974.3, + "end": 16983.08, + "probability": 0.9797 + }, + { + "start": 16983.62, + "end": 16989.56, + "probability": 0.9956 + }, + { + "start": 16990.4, + "end": 16991.36, + "probability": 0.9421 + }, + { + "start": 16991.5, + "end": 16992.2, + "probability": 0.7582 + }, + { + "start": 16992.34, + "end": 16994.92, + "probability": 0.9971 + }, + { + "start": 16995.42, + "end": 16997.0, + "probability": 0.995 + }, + { + "start": 16997.1, + "end": 16997.74, + "probability": 0.5639 + }, + { + "start": 16997.74, + "end": 17000.46, + "probability": 0.7405 + }, + { + "start": 17000.9, + "end": 17002.02, + "probability": 0.8254 + }, + { + "start": 17002.8, + "end": 17008.5, + "probability": 0.8564 + }, + { + "start": 17008.74, + "end": 17012.66, + "probability": 0.6047 + }, + { + "start": 17014.1, + "end": 17016.32, + "probability": 0.8547 + }, + { + "start": 17016.38, + "end": 17020.26, + "probability": 0.9956 + }, + { + "start": 17020.32, + "end": 17021.6, + "probability": 0.8652 + }, + { + "start": 17022.16, + "end": 17024.18, + "probability": 0.9771 + }, + { + "start": 17024.78, + "end": 17029.46, + "probability": 0.9377 + }, + { + "start": 17030.12, + "end": 17033.56, + "probability": 0.9945 + }, + { + "start": 17034.16, + "end": 17035.38, + "probability": 0.6254 + }, + { + "start": 17035.78, + "end": 17036.3, + "probability": 0.7184 + }, + { + "start": 17036.36, + "end": 17037.22, + "probability": 0.8756 + }, + { + "start": 17037.52, + "end": 17038.94, + "probability": 0.7161 + }, + { + "start": 17039.54, + "end": 17040.48, + "probability": 0.9506 + }, + { + "start": 17040.62, + "end": 17042.5, + "probability": 0.9928 + }, + { + "start": 17042.5, + "end": 17045.18, + "probability": 0.9707 + }, + { + "start": 17046.7, + "end": 17047.76, + "probability": 0.8661 + }, + { + "start": 17048.04, + "end": 17050.08, + "probability": 0.9926 + }, + { + "start": 17050.66, + "end": 17054.52, + "probability": 0.9961 + }, + { + "start": 17055.08, + "end": 17057.32, + "probability": 0.9918 + }, + { + "start": 17057.84, + "end": 17062.2, + "probability": 0.9948 + }, + { + "start": 17064.1, + "end": 17067.68, + "probability": 0.5473 + }, + { + "start": 17070.68, + "end": 17074.22, + "probability": 0.8628 + }, + { + "start": 17075.54, + "end": 17079.24, + "probability": 0.8458 + }, + { + "start": 17080.11, + "end": 17083.24, + "probability": 0.8579 + }, + { + "start": 17083.38, + "end": 17087.82, + "probability": 0.9796 + }, + { + "start": 17087.82, + "end": 17090.94, + "probability": 0.9858 + }, + { + "start": 17091.06, + "end": 17091.68, + "probability": 0.9513 + }, + { + "start": 17091.76, + "end": 17092.95, + "probability": 0.963 + }, + { + "start": 17093.18, + "end": 17093.96, + "probability": 0.9751 + }, + { + "start": 17094.26, + "end": 17095.7, + "probability": 0.9126 + }, + { + "start": 17095.92, + "end": 17096.38, + "probability": 0.7007 + }, + { + "start": 17096.58, + "end": 17098.08, + "probability": 0.9786 + }, + { + "start": 17098.58, + "end": 17100.0, + "probability": 0.8881 + }, + { + "start": 17100.32, + "end": 17101.12, + "probability": 0.9722 + }, + { + "start": 17101.16, + "end": 17102.26, + "probability": 0.8341 + }, + { + "start": 17102.72, + "end": 17103.7, + "probability": 0.6271 + }, + { + "start": 17103.9, + "end": 17106.7, + "probability": 0.9106 + }, + { + "start": 17106.9, + "end": 17108.27, + "probability": 0.9663 + }, + { + "start": 17108.72, + "end": 17110.66, + "probability": 0.9246 + }, + { + "start": 17111.36, + "end": 17111.58, + "probability": 0.4284 + }, + { + "start": 17111.66, + "end": 17112.84, + "probability": 0.7441 + }, + { + "start": 17113.2, + "end": 17114.92, + "probability": 0.9822 + }, + { + "start": 17115.64, + "end": 17119.32, + "probability": 0.9963 + }, + { + "start": 17120.0, + "end": 17124.6, + "probability": 0.9948 + }, + { + "start": 17124.8, + "end": 17125.97, + "probability": 0.9941 + }, + { + "start": 17126.22, + "end": 17129.92, + "probability": 0.9895 + }, + { + "start": 17129.92, + "end": 17133.22, + "probability": 0.9434 + }, + { + "start": 17133.94, + "end": 17137.34, + "probability": 0.9549 + }, + { + "start": 17137.76, + "end": 17139.68, + "probability": 0.9781 + }, + { + "start": 17139.98, + "end": 17141.94, + "probability": 0.9435 + }, + { + "start": 17142.8, + "end": 17147.56, + "probability": 0.9677 + }, + { + "start": 17148.02, + "end": 17150.46, + "probability": 0.825 + }, + { + "start": 17150.92, + "end": 17156.2, + "probability": 0.9972 + }, + { + "start": 17156.54, + "end": 17159.58, + "probability": 0.998 + }, + { + "start": 17161.53, + "end": 17170.1, + "probability": 0.9832 + }, + { + "start": 17170.98, + "end": 17174.72, + "probability": 0.9973 + }, + { + "start": 17174.72, + "end": 17178.36, + "probability": 0.9969 + }, + { + "start": 17178.66, + "end": 17180.82, + "probability": 0.9923 + }, + { + "start": 17181.4, + "end": 17183.86, + "probability": 0.8133 + }, + { + "start": 17184.46, + "end": 17189.98, + "probability": 0.9761 + }, + { + "start": 17190.68, + "end": 17191.92, + "probability": 0.9655 + }, + { + "start": 17191.98, + "end": 17193.32, + "probability": 0.841 + }, + { + "start": 17193.58, + "end": 17195.0, + "probability": 0.9884 + }, + { + "start": 17195.2, + "end": 17200.64, + "probability": 0.9853 + }, + { + "start": 17201.42, + "end": 17204.56, + "probability": 0.9915 + }, + { + "start": 17204.66, + "end": 17208.18, + "probability": 0.9971 + }, + { + "start": 17208.18, + "end": 17211.06, + "probability": 0.999 + }, + { + "start": 17211.5, + "end": 17212.66, + "probability": 0.8778 + }, + { + "start": 17212.88, + "end": 17215.02, + "probability": 0.9187 + }, + { + "start": 17215.54, + "end": 17217.14, + "probability": 0.7196 + }, + { + "start": 17217.3, + "end": 17217.91, + "probability": 0.9527 + }, + { + "start": 17218.72, + "end": 17218.72, + "probability": 0.3263 + }, + { + "start": 17218.72, + "end": 17219.54, + "probability": 0.9473 + }, + { + "start": 17219.62, + "end": 17221.16, + "probability": 0.4694 + }, + { + "start": 17221.5, + "end": 17223.76, + "probability": 0.7723 + }, + { + "start": 17223.86, + "end": 17225.64, + "probability": 0.7152 + }, + { + "start": 17225.68, + "end": 17226.36, + "probability": 0.1357 + }, + { + "start": 17226.48, + "end": 17227.22, + "probability": 0.7084 + }, + { + "start": 17227.22, + "end": 17227.58, + "probability": 0.9403 + }, + { + "start": 17228.04, + "end": 17232.46, + "probability": 0.9921 + }, + { + "start": 17232.88, + "end": 17234.92, + "probability": 0.9039 + }, + { + "start": 17234.92, + "end": 17237.86, + "probability": 0.9474 + }, + { + "start": 17237.94, + "end": 17239.92, + "probability": 0.9521 + }, + { + "start": 17240.12, + "end": 17240.58, + "probability": 0.7536 + }, + { + "start": 17240.7, + "end": 17242.58, + "probability": 0.6028 + }, + { + "start": 17243.3, + "end": 17248.98, + "probability": 0.6087 + }, + { + "start": 17250.04, + "end": 17252.26, + "probability": 0.9077 + }, + { + "start": 17252.96, + "end": 17254.04, + "probability": 0.4934 + }, + { + "start": 17254.48, + "end": 17259.62, + "probability": 0.8005 + }, + { + "start": 17260.18, + "end": 17260.44, + "probability": 0.0132 + }, + { + "start": 17260.46, + "end": 17263.46, + "probability": 0.6753 + }, + { + "start": 17263.52, + "end": 17264.02, + "probability": 0.827 + }, + { + "start": 17264.1, + "end": 17265.94, + "probability": 0.9116 + }, + { + "start": 17266.24, + "end": 17267.0, + "probability": 0.4004 + }, + { + "start": 17267.18, + "end": 17267.84, + "probability": 0.6592 + }, + { + "start": 17268.96, + "end": 17272.7, + "probability": 0.0002 + }, + { + "start": 17284.98, + "end": 17285.08, + "probability": 0.0503 + }, + { + "start": 17285.62, + "end": 17288.62, + "probability": 0.5997 + }, + { + "start": 17288.84, + "end": 17291.34, + "probability": 0.8444 + }, + { + "start": 17291.9, + "end": 17295.1, + "probability": 0.8506 + }, + { + "start": 17295.66, + "end": 17296.4, + "probability": 0.7763 + }, + { + "start": 17298.2, + "end": 17298.94, + "probability": 0.4944 + }, + { + "start": 17299.66, + "end": 17304.14, + "probability": 0.0315 + }, + { + "start": 17315.9, + "end": 17316.92, + "probability": 0.0123 + }, + { + "start": 17316.92, + "end": 17316.92, + "probability": 0.0214 + }, + { + "start": 17316.92, + "end": 17316.92, + "probability": 0.1281 + }, + { + "start": 17316.92, + "end": 17319.7, + "probability": 0.6523 + }, + { + "start": 17320.32, + "end": 17322.56, + "probability": 0.9875 + }, + { + "start": 17322.64, + "end": 17325.9, + "probability": 0.9256 + }, + { + "start": 17326.52, + "end": 17327.86, + "probability": 0.8091 + }, + { + "start": 17329.22, + "end": 17331.18, + "probability": 0.91 + }, + { + "start": 17331.18, + "end": 17333.6, + "probability": 0.7928 + }, + { + "start": 17339.7, + "end": 17341.26, + "probability": 0.1221 + }, + { + "start": 17341.26, + "end": 17342.3, + "probability": 0.285 + }, + { + "start": 17342.3, + "end": 17344.38, + "probability": 0.658 + }, + { + "start": 17344.5, + "end": 17345.94, + "probability": 0.8181 + }, + { + "start": 17346.34, + "end": 17348.16, + "probability": 0.9795 + }, + { + "start": 17349.28, + "end": 17351.58, + "probability": 0.8751 + }, + { + "start": 17351.68, + "end": 17355.3, + "probability": 0.9941 + }, + { + "start": 17355.5, + "end": 17356.16, + "probability": 0.7917 + }, + { + "start": 17356.26, + "end": 17356.92, + "probability": 0.3578 + }, + { + "start": 17357.54, + "end": 17358.64, + "probability": 0.0322 + }, + { + "start": 17358.7, + "end": 17358.8, + "probability": 0.221 + }, + { + "start": 17358.8, + "end": 17358.8, + "probability": 0.626 + }, + { + "start": 17358.8, + "end": 17360.24, + "probability": 0.5283 + }, + { + "start": 17360.4, + "end": 17361.91, + "probability": 0.6925 + }, + { + "start": 17362.32, + "end": 17363.16, + "probability": 0.6099 + }, + { + "start": 17363.18, + "end": 17363.4, + "probability": 0.3342 + }, + { + "start": 17363.54, + "end": 17364.82, + "probability": 0.8618 + }, + { + "start": 17364.9, + "end": 17366.14, + "probability": 0.7566 + }, + { + "start": 17366.78, + "end": 17368.24, + "probability": 0.9922 + }, + { + "start": 17369.34, + "end": 17371.44, + "probability": 0.9543 + }, + { + "start": 17372.1, + "end": 17376.8, + "probability": 0.983 + }, + { + "start": 17377.3, + "end": 17378.2, + "probability": 0.8339 + }, + { + "start": 17378.26, + "end": 17379.38, + "probability": 0.8376 + }, + { + "start": 17379.46, + "end": 17380.54, + "probability": 0.9108 + }, + { + "start": 17380.64, + "end": 17381.52, + "probability": 0.8842 + }, + { + "start": 17381.62, + "end": 17383.02, + "probability": 0.7656 + }, + { + "start": 17383.16, + "end": 17384.54, + "probability": 0.8419 + }, + { + "start": 17385.54, + "end": 17391.74, + "probability": 0.9907 + }, + { + "start": 17392.46, + "end": 17395.46, + "probability": 0.9844 + }, + { + "start": 17396.14, + "end": 17398.44, + "probability": 0.8084 + }, + { + "start": 17399.26, + "end": 17401.62, + "probability": 0.948 + }, + { + "start": 17403.53, + "end": 17411.7, + "probability": 0.9219 + }, + { + "start": 17412.64, + "end": 17412.64, + "probability": 0.0056 + }, + { + "start": 17412.64, + "end": 17415.84, + "probability": 0.9808 + }, + { + "start": 17416.9, + "end": 17420.62, + "probability": 0.8423 + }, + { + "start": 17420.64, + "end": 17421.7, + "probability": 0.7666 + }, + { + "start": 17422.16, + "end": 17427.42, + "probability": 0.9843 + }, + { + "start": 17427.98, + "end": 17432.6, + "probability": 0.9797 + }, + { + "start": 17433.86, + "end": 17436.6, + "probability": 0.9976 + }, + { + "start": 17437.54, + "end": 17439.16, + "probability": 0.6591 + }, + { + "start": 17440.04, + "end": 17442.24, + "probability": 0.4895 + }, + { + "start": 17442.37, + "end": 17443.94, + "probability": 0.0262 + }, + { + "start": 17443.94, + "end": 17444.6, + "probability": 0.1627 + }, + { + "start": 17445.18, + "end": 17447.22, + "probability": 0.6145 + }, + { + "start": 17447.34, + "end": 17448.98, + "probability": 0.1522 + }, + { + "start": 17449.08, + "end": 17450.63, + "probability": 0.1045 + }, + { + "start": 17451.38, + "end": 17452.74, + "probability": 0.9312 + }, + { + "start": 17452.9, + "end": 17455.62, + "probability": 0.0666 + }, + { + "start": 17456.24, + "end": 17457.0, + "probability": 0.0468 + }, + { + "start": 17457.12, + "end": 17457.26, + "probability": 0.0001 + }, + { + "start": 17464.12, + "end": 17469.14, + "probability": 0.6172 + }, + { + "start": 17469.44, + "end": 17469.68, + "probability": 0.147 + }, + { + "start": 17469.68, + "end": 17469.68, + "probability": 0.0425 + }, + { + "start": 17469.68, + "end": 17469.68, + "probability": 0.1513 + }, + { + "start": 17469.68, + "end": 17472.72, + "probability": 0.5169 + }, + { + "start": 17473.66, + "end": 17475.41, + "probability": 0.5138 + }, + { + "start": 17476.5, + "end": 17477.36, + "probability": 0.1994 + }, + { + "start": 17477.38, + "end": 17477.42, + "probability": 0.0038 + }, + { + "start": 17477.72, + "end": 17480.34, + "probability": 0.0542 + }, + { + "start": 17480.34, + "end": 17482.18, + "probability": 0.0059 + }, + { + "start": 17482.18, + "end": 17483.56, + "probability": 0.0209 + }, + { + "start": 17484.02, + "end": 17487.52, + "probability": 0.1195 + }, + { + "start": 17487.96, + "end": 17488.94, + "probability": 0.0389 + }, + { + "start": 17491.83, + "end": 17493.38, + "probability": 0.0623 + }, + { + "start": 17496.9, + "end": 17497.58, + "probability": 0.0458 + }, + { + "start": 17500.09, + "end": 17502.62, + "probability": 0.0396 + }, + { + "start": 17502.7, + "end": 17506.6, + "probability": 0.0571 + }, + { + "start": 17506.6, + "end": 17506.88, + "probability": 0.0309 + }, + { + "start": 17507.68, + "end": 17509.98, + "probability": 0.164 + }, + { + "start": 17510.6, + "end": 17513.36, + "probability": 0.0773 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.0, + "end": 17523.0, + "probability": 0.0 + }, + { + "start": 17523.08, + "end": 17523.22, + "probability": 0.5813 + }, + { + "start": 17523.22, + "end": 17523.64, + "probability": 0.1322 + }, + { + "start": 17523.64, + "end": 17525.58, + "probability": 0.5803 + }, + { + "start": 17525.6, + "end": 17526.78, + "probability": 0.5751 + }, + { + "start": 17526.82, + "end": 17527.22, + "probability": 0.4616 + }, + { + "start": 17527.22, + "end": 17527.57, + "probability": 0.6715 + }, + { + "start": 17528.52, + "end": 17531.02, + "probability": 0.8901 + }, + { + "start": 17531.4, + "end": 17531.8, + "probability": 0.7952 + }, + { + "start": 17531.84, + "end": 17537.16, + "probability": 0.9519 + }, + { + "start": 17537.5, + "end": 17537.5, + "probability": 0.0512 + }, + { + "start": 17537.5, + "end": 17538.88, + "probability": 0.319 + }, + { + "start": 17538.9, + "end": 17541.26, + "probability": 0.9358 + }, + { + "start": 17541.7, + "end": 17545.46, + "probability": 0.9368 + }, + { + "start": 17546.02, + "end": 17550.3, + "probability": 0.9702 + }, + { + "start": 17551.3, + "end": 17558.04, + "probability": 0.6617 + }, + { + "start": 17558.66, + "end": 17562.84, + "probability": 0.9517 + }, + { + "start": 17563.32, + "end": 17565.92, + "probability": 0.9714 + }, + { + "start": 17566.06, + "end": 17566.66, + "probability": 0.9292 + }, + { + "start": 17567.52, + "end": 17569.8, + "probability": 0.829 + }, + { + "start": 17570.0, + "end": 17570.96, + "probability": 0.5645 + }, + { + "start": 17571.06, + "end": 17572.96, + "probability": 0.8507 + }, + { + "start": 17577.94, + "end": 17580.38, + "probability": 0.4899 + }, + { + "start": 17580.4, + "end": 17580.64, + "probability": 0.1738 + }, + { + "start": 17581.24, + "end": 17583.1, + "probability": 0.4461 + }, + { + "start": 17583.1, + "end": 17583.58, + "probability": 0.1652 + }, + { + "start": 17583.62, + "end": 17585.2, + "probability": 0.6053 + }, + { + "start": 17585.94, + "end": 17585.94, + "probability": 0.117 + }, + { + "start": 17585.94, + "end": 17585.94, + "probability": 0.2721 + }, + { + "start": 17585.94, + "end": 17587.25, + "probability": 0.4663 + }, + { + "start": 17588.78, + "end": 17592.12, + "probability": 0.7708 + }, + { + "start": 17592.28, + "end": 17594.74, + "probability": 0.7572 + }, + { + "start": 17595.28, + "end": 17599.1, + "probability": 0.5786 + }, + { + "start": 17599.74, + "end": 17600.68, + "probability": 0.498 + }, + { + "start": 17600.72, + "end": 17601.88, + "probability": 0.5868 + }, + { + "start": 17601.98, + "end": 17603.24, + "probability": 0.6232 + }, + { + "start": 17605.78, + "end": 17607.08, + "probability": 0.6143 + }, + { + "start": 17608.0, + "end": 17608.18, + "probability": 0.8054 + }, + { + "start": 17608.8, + "end": 17609.97, + "probability": 0.9425 + }, + { + "start": 17611.08, + "end": 17613.48, + "probability": 0.6173 + }, + { + "start": 17613.48, + "end": 17614.98, + "probability": 0.9648 + }, + { + "start": 17615.24, + "end": 17615.48, + "probability": 0.7834 + }, + { + "start": 17616.02, + "end": 17617.86, + "probability": 0.8789 + }, + { + "start": 17619.48, + "end": 17619.64, + "probability": 0.6213 + }, + { + "start": 17620.42, + "end": 17621.66, + "probability": 0.0001 + }, + { + "start": 17621.66, + "end": 17621.66, + "probability": 0.0291 + }, + { + "start": 17621.66, + "end": 17626.52, + "probability": 0.7354 + }, + { + "start": 17627.4, + "end": 17630.32, + "probability": 0.8377 + }, + { + "start": 17630.34, + "end": 17631.78, + "probability": 0.9266 + }, + { + "start": 17632.02, + "end": 17633.2, + "probability": 0.8835 + }, + { + "start": 17633.22, + "end": 17633.72, + "probability": 0.1196 + }, + { + "start": 17633.72, + "end": 17634.42, + "probability": 0.3892 + }, + { + "start": 17634.9, + "end": 17636.18, + "probability": 0.8673 + }, + { + "start": 17636.4, + "end": 17638.34, + "probability": 0.2537 + }, + { + "start": 17638.48, + "end": 17638.48, + "probability": 0.1053 + }, + { + "start": 17638.48, + "end": 17639.68, + "probability": 0.1041 + }, + { + "start": 17640.4, + "end": 17643.93, + "probability": 0.6325 + }, + { + "start": 17644.1, + "end": 17645.24, + "probability": 0.5295 + }, + { + "start": 17645.86, + "end": 17647.28, + "probability": 0.5728 + }, + { + "start": 17647.9, + "end": 17649.34, + "probability": 0.2178 + }, + { + "start": 17649.68, + "end": 17650.44, + "probability": 0.0222 + }, + { + "start": 17650.64, + "end": 17651.16, + "probability": 0.0991 + }, + { + "start": 17651.16, + "end": 17651.18, + "probability": 0.3245 + }, + { + "start": 17651.18, + "end": 17651.46, + "probability": 0.342 + }, + { + "start": 17651.98, + "end": 17654.0, + "probability": 0.8312 + }, + { + "start": 17654.12, + "end": 17654.58, + "probability": 0.582 + }, + { + "start": 17656.14, + "end": 17658.22, + "probability": 0.6657 + }, + { + "start": 17658.52, + "end": 17663.62, + "probability": 0.8956 + }, + { + "start": 17663.86, + "end": 17668.06, + "probability": 0.996 + }, + { + "start": 17668.44, + "end": 17669.36, + "probability": 0.7309 + }, + { + "start": 17669.7, + "end": 17672.76, + "probability": 0.9088 + }, + { + "start": 17673.18, + "end": 17674.34, + "probability": 0.8197 + }, + { + "start": 17674.56, + "end": 17676.84, + "probability": 0.9895 + }, + { + "start": 17677.12, + "end": 17677.76, + "probability": 0.4832 + }, + { + "start": 17677.92, + "end": 17680.22, + "probability": 0.806 + }, + { + "start": 17680.86, + "end": 17686.36, + "probability": 0.8915 + }, + { + "start": 17686.52, + "end": 17687.92, + "probability": 0.8368 + }, + { + "start": 17688.16, + "end": 17691.62, + "probability": 0.9253 + }, + { + "start": 17691.92, + "end": 17693.78, + "probability": 0.7196 + }, + { + "start": 17694.22, + "end": 17696.74, + "probability": 0.9971 + }, + { + "start": 17696.82, + "end": 17700.14, + "probability": 0.8094 + }, + { + "start": 17700.66, + "end": 17705.4, + "probability": 0.9876 + }, + { + "start": 17705.72, + "end": 17707.63, + "probability": 0.9333 + }, + { + "start": 17708.52, + "end": 17712.1, + "probability": 0.9078 + }, + { + "start": 17712.1, + "end": 17714.26, + "probability": 0.9358 + }, + { + "start": 17714.92, + "end": 17715.46, + "probability": 0.7332 + }, + { + "start": 17715.56, + "end": 17717.38, + "probability": 0.8433 + }, + { + "start": 17717.72, + "end": 17718.52, + "probability": 0.9116 + }, + { + "start": 17718.68, + "end": 17720.18, + "probability": 0.9517 + }, + { + "start": 17720.28, + "end": 17721.12, + "probability": 0.7897 + }, + { + "start": 17721.6, + "end": 17723.56, + "probability": 0.9132 + }, + { + "start": 17723.96, + "end": 17726.9, + "probability": 0.7074 + }, + { + "start": 17727.56, + "end": 17727.76, + "probability": 0.4081 + }, + { + "start": 17727.76, + "end": 17729.35, + "probability": 0.7621 + }, + { + "start": 17729.8, + "end": 17732.58, + "probability": 0.9648 + }, + { + "start": 17732.58, + "end": 17735.88, + "probability": 0.9912 + }, + { + "start": 17735.98, + "end": 17736.14, + "probability": 0.3522 + }, + { + "start": 17736.2, + "end": 17739.45, + "probability": 0.9829 + }, + { + "start": 17740.3, + "end": 17746.74, + "probability": 0.9861 + }, + { + "start": 17746.96, + "end": 17749.5, + "probability": 0.9962 + }, + { + "start": 17749.9, + "end": 17749.9, + "probability": 0.0667 + }, + { + "start": 17749.9, + "end": 17750.94, + "probability": 0.611 + }, + { + "start": 17751.7, + "end": 17752.32, + "probability": 0.6335 + }, + { + "start": 17752.98, + "end": 17754.62, + "probability": 0.1259 + }, + { + "start": 17754.62, + "end": 17758.16, + "probability": 0.7722 + }, + { + "start": 17758.22, + "end": 17760.08, + "probability": 0.9927 + }, + { + "start": 17760.12, + "end": 17763.74, + "probability": 0.9918 + }, + { + "start": 17764.08, + "end": 17767.58, + "probability": 0.7255 + }, + { + "start": 17767.58, + "end": 17768.88, + "probability": 0.2865 + }, + { + "start": 17769.24, + "end": 17769.81, + "probability": 0.7539 + }, + { + "start": 17771.57, + "end": 17774.41, + "probability": 0.8279 + }, + { + "start": 17774.76, + "end": 17777.74, + "probability": 0.9895 + }, + { + "start": 17778.38, + "end": 17783.26, + "probability": 0.7508 + }, + { + "start": 17783.54, + "end": 17784.48, + "probability": 0.8032 + }, + { + "start": 17784.82, + "end": 17785.92, + "probability": 0.6893 + }, + { + "start": 17785.98, + "end": 17786.46, + "probability": 0.4369 + }, + { + "start": 17786.88, + "end": 17788.48, + "probability": 0.8838 + }, + { + "start": 17788.58, + "end": 17790.86, + "probability": 0.8003 + }, + { + "start": 17791.2, + "end": 17791.34, + "probability": 0.1303 + }, + { + "start": 17791.86, + "end": 17794.11, + "probability": 0.5177 + }, + { + "start": 17794.5, + "end": 17794.84, + "probability": 0.4608 + }, + { + "start": 17794.9, + "end": 17795.1, + "probability": 0.7071 + }, + { + "start": 17795.24, + "end": 17799.48, + "probability": 0.8194 + }, + { + "start": 17799.9, + "end": 17800.88, + "probability": 0.1601 + }, + { + "start": 17800.88, + "end": 17804.8, + "probability": 0.0075 + }, + { + "start": 17805.12, + "end": 17805.12, + "probability": 0.0176 + }, + { + "start": 17805.12, + "end": 17805.12, + "probability": 0.0912 + }, + { + "start": 17805.12, + "end": 17806.94, + "probability": 0.6603 + }, + { + "start": 17807.6, + "end": 17812.1, + "probability": 0.817 + }, + { + "start": 17814.18, + "end": 17816.66, + "probability": 0.555 + }, + { + "start": 17817.36, + "end": 17818.9, + "probability": 0.3709 + }, + { + "start": 17819.96, + "end": 17822.66, + "probability": 0.4201 + }, + { + "start": 17822.78, + "end": 17823.92, + "probability": 0.4115 + }, + { + "start": 17824.04, + "end": 17824.84, + "probability": 0.9554 + }, + { + "start": 17825.58, + "end": 17828.14, + "probability": 0.967 + }, + { + "start": 17828.14, + "end": 17831.42, + "probability": 0.9876 + }, + { + "start": 17832.08, + "end": 17834.36, + "probability": 0.9286 + }, + { + "start": 17835.06, + "end": 17836.64, + "probability": 0.8771 + }, + { + "start": 17836.64, + "end": 17839.06, + "probability": 0.814 + }, + { + "start": 17839.94, + "end": 17841.76, + "probability": 0.9863 + }, + { + "start": 17841.76, + "end": 17844.64, + "probability": 0.9966 + }, + { + "start": 17845.44, + "end": 17848.38, + "probability": 0.8685 + }, + { + "start": 17848.5, + "end": 17850.02, + "probability": 0.9742 + }, + { + "start": 17850.02, + "end": 17852.06, + "probability": 0.9178 + }, + { + "start": 17852.66, + "end": 17854.98, + "probability": 0.8882 + }, + { + "start": 17855.84, + "end": 17859.84, + "probability": 0.9625 + }, + { + "start": 17859.9, + "end": 17860.84, + "probability": 0.998 + }, + { + "start": 17861.44, + "end": 17865.36, + "probability": 0.9834 + }, + { + "start": 17865.92, + "end": 17868.18, + "probability": 0.7282 + }, + { + "start": 17868.18, + "end": 17871.02, + "probability": 0.6262 + }, + { + "start": 17871.32, + "end": 17873.2, + "probability": 0.9897 + }, + { + "start": 17873.2, + "end": 17875.36, + "probability": 0.8911 + }, + { + "start": 17876.12, + "end": 17879.26, + "probability": 0.9875 + }, + { + "start": 17879.8, + "end": 17881.58, + "probability": 0.6812 + }, + { + "start": 17881.64, + "end": 17883.74, + "probability": 0.7601 + }, + { + "start": 17884.32, + "end": 17886.54, + "probability": 0.9859 + }, + { + "start": 17887.4, + "end": 17890.54, + "probability": 0.9348 + }, + { + "start": 17891.1, + "end": 17892.84, + "probability": 0.9899 + }, + { + "start": 17892.84, + "end": 17894.72, + "probability": 0.9871 + }, + { + "start": 17895.66, + "end": 17896.38, + "probability": 0.3428 + }, + { + "start": 17896.9, + "end": 17900.1, + "probability": 0.9612 + }, + { + "start": 17900.18, + "end": 17904.02, + "probability": 0.8036 + }, + { + "start": 17904.14, + "end": 17906.0, + "probability": 0.5902 + }, + { + "start": 17906.0, + "end": 17910.04, + "probability": 0.9888 + }, + { + "start": 17910.16, + "end": 17912.0, + "probability": 0.8601 + }, + { + "start": 17912.76, + "end": 17915.98, + "probability": 0.7854 + }, + { + "start": 17916.52, + "end": 17918.62, + "probability": 0.9193 + }, + { + "start": 17918.62, + "end": 17921.84, + "probability": 0.7782 + }, + { + "start": 17921.92, + "end": 17922.38, + "probability": 0.6982 + }, + { + "start": 17923.14, + "end": 17925.42, + "probability": 0.6437 + }, + { + "start": 17925.52, + "end": 17926.94, + "probability": 0.6485 + }, + { + "start": 17927.08, + "end": 17929.8, + "probability": 0.9053 + }, + { + "start": 17929.86, + "end": 17930.16, + "probability": 0.7864 + }, + { + "start": 17930.88, + "end": 17933.44, + "probability": 0.8474 + }, + { + "start": 17933.86, + "end": 17935.74, + "probability": 0.5212 + }, + { + "start": 17936.3, + "end": 17938.5, + "probability": 0.7892 + }, + { + "start": 17939.2, + "end": 17939.9, + "probability": 0.8575 + }, + { + "start": 17940.32, + "end": 17941.68, + "probability": 0.9473 + }, + { + "start": 17941.84, + "end": 17942.48, + "probability": 0.9674 + }, + { + "start": 17942.76, + "end": 17944.36, + "probability": 0.9921 + }, + { + "start": 17944.94, + "end": 17946.82, + "probability": 0.9597 + }, + { + "start": 17947.44, + "end": 17948.6, + "probability": 0.8442 + }, + { + "start": 17949.54, + "end": 17951.08, + "probability": 0.7689 + }, + { + "start": 17951.28, + "end": 17952.98, + "probability": 0.9869 + }, + { + "start": 17953.1, + "end": 17953.54, + "probability": 0.4671 + }, + { + "start": 17953.6, + "end": 17954.86, + "probability": 0.9557 + }, + { + "start": 17954.94, + "end": 17955.56, + "probability": 0.7147 + }, + { + "start": 17956.04, + "end": 17957.86, + "probability": 0.87 + }, + { + "start": 17958.9, + "end": 17961.36, + "probability": 0.8361 + }, + { + "start": 17962.54, + "end": 17964.9, + "probability": 0.9301 + }, + { + "start": 17966.66, + "end": 17967.56, + "probability": 0.5166 + }, + { + "start": 17968.52, + "end": 17969.4, + "probability": 0.7164 + }, + { + "start": 17969.92, + "end": 17973.08, + "probability": 0.6779 + }, + { + "start": 17973.18, + "end": 17974.97, + "probability": 0.2717 + }, + { + "start": 17976.89, + "end": 17978.54, + "probability": 0.0865 + }, + { + "start": 17979.8, + "end": 17980.74, + "probability": 0.8076 + }, + { + "start": 17980.84, + "end": 17985.12, + "probability": 0.9691 + }, + { + "start": 17993.4, + "end": 17994.02, + "probability": 0.5985 + }, + { + "start": 17994.12, + "end": 17994.86, + "probability": 0.8503 + }, + { + "start": 17994.98, + "end": 17996.46, + "probability": 0.896 + }, + { + "start": 17997.12, + "end": 18001.96, + "probability": 0.9391 + }, + { + "start": 18002.16, + "end": 18006.46, + "probability": 0.8241 + }, + { + "start": 18007.26, + "end": 18010.48, + "probability": 0.9212 + }, + { + "start": 18010.48, + "end": 18013.86, + "probability": 0.9977 + }, + { + "start": 18014.6, + "end": 18014.92, + "probability": 0.6316 + }, + { + "start": 18014.96, + "end": 18015.42, + "probability": 0.8856 + }, + { + "start": 18015.5, + "end": 18019.7, + "probability": 0.9717 + }, + { + "start": 18020.56, + "end": 18021.28, + "probability": 0.6855 + }, + { + "start": 18021.3, + "end": 18025.44, + "probability": 0.9963 + }, + { + "start": 18025.44, + "end": 18026.02, + "probability": 0.3131 + }, + { + "start": 18026.06, + "end": 18028.88, + "probability": 0.9603 + }, + { + "start": 18029.52, + "end": 18030.6, + "probability": 0.9371 + }, + { + "start": 18031.04, + "end": 18036.96, + "probability": 0.8926 + }, + { + "start": 18036.98, + "end": 18037.6, + "probability": 0.736 + }, + { + "start": 18038.16, + "end": 18040.88, + "probability": 0.963 + }, + { + "start": 18041.34, + "end": 18043.02, + "probability": 0.7977 + }, + { + "start": 18043.1, + "end": 18043.72, + "probability": 0.8829 + }, + { + "start": 18044.44, + "end": 18045.74, + "probability": 0.854 + }, + { + "start": 18046.78, + "end": 18047.84, + "probability": 0.8839 + }, + { + "start": 18047.94, + "end": 18048.0, + "probability": 0.0723 + }, + { + "start": 18048.08, + "end": 18048.42, + "probability": 0.7994 + }, + { + "start": 18048.5, + "end": 18049.14, + "probability": 0.7323 + }, + { + "start": 18049.6, + "end": 18050.6, + "probability": 0.8784 + }, + { + "start": 18051.16, + "end": 18056.36, + "probability": 0.9846 + }, + { + "start": 18057.32, + "end": 18059.58, + "probability": 0.8754 + }, + { + "start": 18060.06, + "end": 18062.53, + "probability": 0.7848 + }, + { + "start": 18063.22, + "end": 18066.06, + "probability": 0.8919 + }, + { + "start": 18066.88, + "end": 18069.02, + "probability": 0.9685 + }, + { + "start": 18069.62, + "end": 18070.64, + "probability": 0.8047 + }, + { + "start": 18070.74, + "end": 18071.6, + "probability": 0.7861 + }, + { + "start": 18071.62, + "end": 18072.32, + "probability": 0.8613 + }, + { + "start": 18072.36, + "end": 18073.22, + "probability": 0.7837 + }, + { + "start": 18073.68, + "end": 18074.44, + "probability": 0.5889 + }, + { + "start": 18075.04, + "end": 18077.52, + "probability": 0.9841 + }, + { + "start": 18077.52, + "end": 18080.9, + "probability": 0.977 + }, + { + "start": 18081.02, + "end": 18083.7, + "probability": 0.8125 + }, + { + "start": 18084.6, + "end": 18087.46, + "probability": 0.7368 + }, + { + "start": 18088.22, + "end": 18088.52, + "probability": 0.959 + }, + { + "start": 18089.88, + "end": 18092.18, + "probability": 0.5514 + }, + { + "start": 18092.98, + "end": 18095.2, + "probability": 0.9499 + }, + { + "start": 18096.04, + "end": 18099.04, + "probability": 0.9888 + }, + { + "start": 18099.8, + "end": 18101.04, + "probability": 0.8773 + }, + { + "start": 18101.9, + "end": 18103.1, + "probability": 0.9259 + }, + { + "start": 18103.66, + "end": 18104.34, + "probability": 0.7076 + }, + { + "start": 18104.54, + "end": 18106.04, + "probability": 0.8984 + }, + { + "start": 18106.2, + "end": 18108.32, + "probability": 0.9457 + }, + { + "start": 18109.02, + "end": 18109.62, + "probability": 0.7049 + }, + { + "start": 18109.66, + "end": 18110.26, + "probability": 0.5307 + }, + { + "start": 18110.66, + "end": 18111.96, + "probability": 0.8661 + }, + { + "start": 18112.5, + "end": 18114.06, + "probability": 0.9667 + }, + { + "start": 18114.12, + "end": 18116.94, + "probability": 0.8963 + }, + { + "start": 18117.66, + "end": 18118.94, + "probability": 0.9988 + }, + { + "start": 18119.7, + "end": 18121.9, + "probability": 0.9646 + }, + { + "start": 18122.36, + "end": 18125.78, + "probability": 0.9847 + }, + { + "start": 18127.2, + "end": 18129.04, + "probability": 0.8443 + }, + { + "start": 18129.56, + "end": 18130.64, + "probability": 0.8061 + }, + { + "start": 18131.36, + "end": 18133.9, + "probability": 0.9296 + }, + { + "start": 18135.24, + "end": 18137.96, + "probability": 0.6272 + }, + { + "start": 18138.04, + "end": 18140.6, + "probability": 0.733 + }, + { + "start": 18140.82, + "end": 18142.32, + "probability": 0.7606 + }, + { + "start": 18156.2, + "end": 18157.44, + "probability": 0.7048 + }, + { + "start": 18157.46, + "end": 18159.36, + "probability": 0.7429 + }, + { + "start": 18160.24, + "end": 18164.34, + "probability": 0.9914 + }, + { + "start": 18165.18, + "end": 18168.62, + "probability": 0.5182 + }, + { + "start": 18169.28, + "end": 18171.22, + "probability": 0.9935 + }, + { + "start": 18172.6, + "end": 18178.62, + "probability": 0.9755 + }, + { + "start": 18178.62, + "end": 18181.54, + "probability": 0.8701 + }, + { + "start": 18182.9, + "end": 18184.92, + "probability": 0.6884 + }, + { + "start": 18186.14, + "end": 18190.94, + "probability": 0.5122 + }, + { + "start": 18192.3, + "end": 18195.6, + "probability": 0.8216 + }, + { + "start": 18195.6, + "end": 18198.05, + "probability": 0.4966 + }, + { + "start": 18199.18, + "end": 18202.13, + "probability": 0.7506 + }, + { + "start": 18203.7, + "end": 18205.62, + "probability": 0.261 + }, + { + "start": 18205.66, + "end": 18205.74, + "probability": 0.0081 + }, + { + "start": 18205.74, + "end": 18210.06, + "probability": 0.4033 + }, + { + "start": 18210.06, + "end": 18211.44, + "probability": 0.342 + }, + { + "start": 18212.32, + "end": 18212.52, + "probability": 0.0295 + }, + { + "start": 18212.52, + "end": 18212.52, + "probability": 0.0802 + }, + { + "start": 18212.52, + "end": 18212.52, + "probability": 0.0545 + }, + { + "start": 18212.52, + "end": 18213.36, + "probability": 0.4324 + }, + { + "start": 18216.44, + "end": 18219.7, + "probability": 0.0837 + }, + { + "start": 18221.52, + "end": 18221.86, + "probability": 0.0488 + }, + { + "start": 18222.04, + "end": 18222.22, + "probability": 0.1617 + }, + { + "start": 18222.22, + "end": 18224.21, + "probability": 0.0351 + }, + { + "start": 18225.44, + "end": 18225.94, + "probability": 0.0033 + }, + { + "start": 18225.94, + "end": 18225.94, + "probability": 0.1155 + }, + { + "start": 18225.94, + "end": 18225.94, + "probability": 0.0434 + }, + { + "start": 18225.94, + "end": 18225.94, + "probability": 0.1636 + }, + { + "start": 18225.94, + "end": 18226.36, + "probability": 0.3151 + }, + { + "start": 18227.3, + "end": 18229.58, + "probability": 0.7473 + }, + { + "start": 18230.56, + "end": 18231.7, + "probability": 0.5382 + }, + { + "start": 18233.64, + "end": 18235.54, + "probability": 0.4993 + }, + { + "start": 18236.88, + "end": 18237.83, + "probability": 0.0961 + }, + { + "start": 18239.32, + "end": 18242.36, + "probability": 0.8003 + }, + { + "start": 18243.14, + "end": 18248.12, + "probability": 0.9153 + }, + { + "start": 18248.6, + "end": 18249.42, + "probability": 0.8896 + }, + { + "start": 18250.88, + "end": 18251.65, + "probability": 0.1242 + }, + { + "start": 18252.62, + "end": 18253.5, + "probability": 0.6625 + }, + { + "start": 18254.64, + "end": 18255.96, + "probability": 0.937 + }, + { + "start": 18256.42, + "end": 18257.6, + "probability": 0.8361 + }, + { + "start": 18258.06, + "end": 18260.38, + "probability": 0.8521 + }, + { + "start": 18261.14, + "end": 18267.08, + "probability": 0.9883 + }, + { + "start": 18268.48, + "end": 18269.28, + "probability": 0.9357 + }, + { + "start": 18269.36, + "end": 18271.32, + "probability": 0.9677 + }, + { + "start": 18272.28, + "end": 18274.12, + "probability": 0.928 + }, + { + "start": 18276.34, + "end": 18281.54, + "probability": 0.9948 + }, + { + "start": 18281.54, + "end": 18288.1, + "probability": 0.9482 + }, + { + "start": 18288.58, + "end": 18291.32, + "probability": 0.7231 + }, + { + "start": 18291.86, + "end": 18292.84, + "probability": 0.3094 + }, + { + "start": 18294.3, + "end": 18296.1, + "probability": 0.7186 + }, + { + "start": 18296.86, + "end": 18298.58, + "probability": 0.9099 + }, + { + "start": 18299.16, + "end": 18302.5, + "probability": 0.927 + }, + { + "start": 18303.42, + "end": 18305.42, + "probability": 0.6848 + }, + { + "start": 18306.74, + "end": 18309.8, + "probability": 0.8839 + }, + { + "start": 18309.8, + "end": 18311.66, + "probability": 0.3767 + }, + { + "start": 18312.16, + "end": 18315.96, + "probability": 0.498 + }, + { + "start": 18315.96, + "end": 18320.1, + "probability": 0.9919 + }, + { + "start": 18320.92, + "end": 18324.14, + "probability": 0.896 + }, + { + "start": 18324.24, + "end": 18326.5, + "probability": 0.9669 + }, + { + "start": 18326.86, + "end": 18327.94, + "probability": 0.8164 + }, + { + "start": 18328.24, + "end": 18334.32, + "probability": 0.9849 + }, + { + "start": 18334.48, + "end": 18337.86, + "probability": 0.671 + }, + { + "start": 18338.08, + "end": 18339.52, + "probability": 0.6935 + }, + { + "start": 18340.36, + "end": 18340.74, + "probability": 0.6815 + }, + { + "start": 18340.82, + "end": 18342.0, + "probability": 0.6242 + }, + { + "start": 18343.46, + "end": 18349.98, + "probability": 0.9956 + }, + { + "start": 18350.92, + "end": 18354.09, + "probability": 0.9654 + }, + { + "start": 18354.84, + "end": 18358.56, + "probability": 0.7681 + }, + { + "start": 18358.6, + "end": 18360.02, + "probability": 0.5433 + }, + { + "start": 18360.46, + "end": 18362.32, + "probability": 0.9704 + }, + { + "start": 18363.06, + "end": 18365.3, + "probability": 0.9557 + }, + { + "start": 18367.66, + "end": 18367.98, + "probability": 0.0436 + }, + { + "start": 18367.98, + "end": 18367.98, + "probability": 0.0107 + }, + { + "start": 18367.98, + "end": 18375.6, + "probability": 0.8594 + }, + { + "start": 18376.12, + "end": 18377.02, + "probability": 0.6138 + }, + { + "start": 18377.18, + "end": 18380.18, + "probability": 0.843 + }, + { + "start": 18380.76, + "end": 18380.76, + "probability": 0.0822 + }, + { + "start": 18380.76, + "end": 18382.86, + "probability": 0.8298 + }, + { + "start": 18383.12, + "end": 18385.28, + "probability": 0.651 + }, + { + "start": 18385.39, + "end": 18386.5, + "probability": 0.043 + }, + { + "start": 18386.76, + "end": 18388.9, + "probability": 0.929 + }, + { + "start": 18389.9, + "end": 18392.86, + "probability": 0.5018 + }, + { + "start": 18393.48, + "end": 18398.22, + "probability": 0.6136 + }, + { + "start": 18398.3, + "end": 18399.2, + "probability": 0.7235 + }, + { + "start": 18402.16, + "end": 18403.72, + "probability": 0.0376 + }, + { + "start": 18407.26, + "end": 18407.94, + "probability": 0.0193 + }, + { + "start": 18416.16, + "end": 18417.12, + "probability": 0.5739 + }, + { + "start": 18417.12, + "end": 18418.16, + "probability": 0.2926 + }, + { + "start": 18418.78, + "end": 18419.78, + "probability": 0.4531 + }, + { + "start": 18420.38, + "end": 18421.34, + "probability": 0.775 + }, + { + "start": 18421.92, + "end": 18422.26, + "probability": 0.5493 + }, + { + "start": 18422.48, + "end": 18426.38, + "probability": 0.8184 + }, + { + "start": 18426.54, + "end": 18429.42, + "probability": 0.9689 + }, + { + "start": 18431.26, + "end": 18432.32, + "probability": 0.6196 + }, + { + "start": 18434.1, + "end": 18437.6, + "probability": 0.9027 + }, + { + "start": 18437.6, + "end": 18440.7, + "probability": 0.527 + }, + { + "start": 18441.26, + "end": 18442.04, + "probability": 0.0276 + }, + { + "start": 18442.96, + "end": 18443.9, + "probability": 0.4766 + }, + { + "start": 18444.1, + "end": 18445.62, + "probability": 0.1572 + }, + { + "start": 18445.84, + "end": 18447.04, + "probability": 0.5202 + }, + { + "start": 18447.22, + "end": 18449.84, + "probability": 0.5788 + }, + { + "start": 18449.92, + "end": 18451.54, + "probability": 0.9956 + }, + { + "start": 18453.78, + "end": 18456.08, + "probability": 0.643 + }, + { + "start": 18456.7, + "end": 18460.08, + "probability": 0.8007 + }, + { + "start": 18460.08, + "end": 18464.36, + "probability": 0.581 + }, + { + "start": 18464.4, + "end": 18465.52, + "probability": 0.4108 + }, + { + "start": 18465.92, + "end": 18467.1, + "probability": 0.3323 + }, + { + "start": 18467.24, + "end": 18468.97, + "probability": 0.9615 + }, + { + "start": 18470.24, + "end": 18473.12, + "probability": 0.2097 + }, + { + "start": 18474.08, + "end": 18475.54, + "probability": 0.9233 + }, + { + "start": 18476.36, + "end": 18478.22, + "probability": 0.9292 + }, + { + "start": 18479.4, + "end": 18483.2, + "probability": 0.9615 + }, + { + "start": 18484.12, + "end": 18484.54, + "probability": 0.6467 + }, + { + "start": 18484.56, + "end": 18485.32, + "probability": 0.816 + }, + { + "start": 18485.78, + "end": 18488.5, + "probability": 0.9156 + }, + { + "start": 18488.52, + "end": 18489.52, + "probability": 0.8427 + }, + { + "start": 18489.7, + "end": 18491.15, + "probability": 0.8618 + }, + { + "start": 18491.26, + "end": 18492.5, + "probability": 0.5156 + }, + { + "start": 18493.52, + "end": 18495.34, + "probability": 0.1127 + }, + { + "start": 18495.42, + "end": 18498.64, + "probability": 0.5603 + }, + { + "start": 18498.68, + "end": 18499.42, + "probability": 0.404 + }, + { + "start": 18499.44, + "end": 18499.84, + "probability": 0.4959 + }, + { + "start": 18500.02, + "end": 18500.46, + "probability": 0.9342 + }, + { + "start": 18501.18, + "end": 18502.06, + "probability": 0.0047 + }, + { + "start": 18502.74, + "end": 18503.98, + "probability": 0.7069 + }, + { + "start": 18504.54, + "end": 18506.26, + "probability": 0.9331 + }, + { + "start": 18506.62, + "end": 18507.08, + "probability": 0.2486 + }, + { + "start": 18507.18, + "end": 18507.74, + "probability": 0.3096 + }, + { + "start": 18508.74, + "end": 18512.28, + "probability": 0.4064 + }, + { + "start": 18512.44, + "end": 18515.42, + "probability": 0.6932 + }, + { + "start": 18515.7, + "end": 18516.7, + "probability": 0.1974 + }, + { + "start": 18518.06, + "end": 18518.47, + "probability": 0.2736 + }, + { + "start": 18519.04, + "end": 18520.92, + "probability": 0.5891 + }, + { + "start": 18521.02, + "end": 18521.94, + "probability": 0.3803 + }, + { + "start": 18521.96, + "end": 18523.06, + "probability": 0.7087 + }, + { + "start": 18523.22, + "end": 18526.52, + "probability": 0.7279 + }, + { + "start": 18526.72, + "end": 18528.44, + "probability": 0.9165 + }, + { + "start": 18529.22, + "end": 18531.94, + "probability": 0.7358 + }, + { + "start": 18531.94, + "end": 18533.74, + "probability": 0.7103 + }, + { + "start": 18533.78, + "end": 18534.34, + "probability": 0.8207 + }, + { + "start": 18535.7, + "end": 18536.1, + "probability": 0.0301 + }, + { + "start": 18536.1, + "end": 18538.34, + "probability": 0.7309 + }, + { + "start": 18538.62, + "end": 18540.0, + "probability": 0.8453 + }, + { + "start": 18540.06, + "end": 18540.88, + "probability": 0.8703 + }, + { + "start": 18541.08, + "end": 18543.12, + "probability": 0.4899 + }, + { + "start": 18543.76, + "end": 18545.96, + "probability": 0.9954 + }, + { + "start": 18546.04, + "end": 18550.26, + "probability": 0.9821 + }, + { + "start": 18551.06, + "end": 18552.2, + "probability": 0.73 + }, + { + "start": 18552.96, + "end": 18556.3, + "probability": 0.6161 + }, + { + "start": 18557.2, + "end": 18557.94, + "probability": 0.9105 + }, + { + "start": 18558.7, + "end": 18560.36, + "probability": 0.8503 + }, + { + "start": 18561.44, + "end": 18563.34, + "probability": 0.8045 + }, + { + "start": 18566.1, + "end": 18567.74, + "probability": 0.9863 + }, + { + "start": 18568.46, + "end": 18572.0, + "probability": 0.4858 + }, + { + "start": 18572.0, + "end": 18576.74, + "probability": 0.6876 + }, + { + "start": 18581.06, + "end": 18582.68, + "probability": 0.7211 + }, + { + "start": 18583.92, + "end": 18584.2, + "probability": 0.715 + }, + { + "start": 18584.5, + "end": 18593.74, + "probability": 0.9761 + }, + { + "start": 18594.6, + "end": 18597.48, + "probability": 0.9301 + }, + { + "start": 18597.64, + "end": 18598.08, + "probability": 0.8594 + }, + { + "start": 18598.9, + "end": 18599.9, + "probability": 0.9535 + }, + { + "start": 18600.48, + "end": 18605.64, + "probability": 0.9498 + }, + { + "start": 18606.28, + "end": 18607.74, + "probability": 0.7394 + }, + { + "start": 18608.6, + "end": 18610.56, + "probability": 0.9883 + }, + { + "start": 18611.44, + "end": 18617.14, + "probability": 0.9487 + }, + { + "start": 18618.22, + "end": 18625.34, + "probability": 0.9919 + }, + { + "start": 18626.22, + "end": 18628.24, + "probability": 0.9971 + }, + { + "start": 18629.98, + "end": 18634.54, + "probability": 0.9595 + }, + { + "start": 18634.54, + "end": 18637.9, + "probability": 0.9277 + }, + { + "start": 18638.5, + "end": 18639.14, + "probability": 0.7137 + }, + { + "start": 18640.04, + "end": 18640.72, + "probability": 0.9814 + }, + { + "start": 18641.96, + "end": 18643.44, + "probability": 0.9285 + }, + { + "start": 18644.6, + "end": 18649.98, + "probability": 0.7155 + }, + { + "start": 18651.5, + "end": 18653.7, + "probability": 0.9961 + }, + { + "start": 18655.94, + "end": 18660.6, + "probability": 0.8654 + }, + { + "start": 18661.12, + "end": 18666.12, + "probability": 0.9958 + }, + { + "start": 18667.28, + "end": 18671.28, + "probability": 0.7186 + }, + { + "start": 18671.4, + "end": 18672.36, + "probability": 0.9831 + }, + { + "start": 18673.3, + "end": 18680.08, + "probability": 0.9459 + }, + { + "start": 18681.74, + "end": 18686.02, + "probability": 0.9499 + }, + { + "start": 18686.72, + "end": 18687.68, + "probability": 0.552 + }, + { + "start": 18688.4, + "end": 18689.1, + "probability": 0.4749 + }, + { + "start": 18689.72, + "end": 18690.16, + "probability": 0.8978 + }, + { + "start": 18690.86, + "end": 18693.96, + "probability": 0.6864 + }, + { + "start": 18695.4, + "end": 18696.86, + "probability": 0.905 + }, + { + "start": 18696.92, + "end": 18701.6, + "probability": 0.9922 + }, + { + "start": 18702.2, + "end": 18704.1, + "probability": 0.8344 + }, + { + "start": 18705.12, + "end": 18709.88, + "probability": 0.9103 + }, + { + "start": 18709.88, + "end": 18713.66, + "probability": 0.9695 + }, + { + "start": 18714.76, + "end": 18715.52, + "probability": 0.8993 + }, + { + "start": 18715.6, + "end": 18718.9, + "probability": 0.8845 + }, + { + "start": 18719.26, + "end": 18720.34, + "probability": 0.9629 + }, + { + "start": 18721.32, + "end": 18722.02, + "probability": 0.9242 + }, + { + "start": 18723.14, + "end": 18725.12, + "probability": 0.8745 + }, + { + "start": 18726.16, + "end": 18727.1, + "probability": 0.7038 + }, + { + "start": 18728.08, + "end": 18728.94, + "probability": 0.7189 + }, + { + "start": 18729.54, + "end": 18730.98, + "probability": 0.9542 + }, + { + "start": 18731.7, + "end": 18735.72, + "probability": 0.9565 + }, + { + "start": 18736.36, + "end": 18741.12, + "probability": 0.9944 + }, + { + "start": 18741.96, + "end": 18742.92, + "probability": 0.6631 + }, + { + "start": 18744.34, + "end": 18746.4, + "probability": 0.9476 + }, + { + "start": 18746.56, + "end": 18747.19, + "probability": 0.9448 + }, + { + "start": 18748.24, + "end": 18750.9, + "probability": 0.9691 + }, + { + "start": 18751.56, + "end": 18755.84, + "probability": 0.9961 + }, + { + "start": 18756.54, + "end": 18759.54, + "probability": 0.9936 + }, + { + "start": 18760.08, + "end": 18761.96, + "probability": 0.974 + }, + { + "start": 18763.5, + "end": 18764.38, + "probability": 0.986 + }, + { + "start": 18765.94, + "end": 18767.46, + "probability": 0.8956 + }, + { + "start": 18768.56, + "end": 18772.28, + "probability": 0.9435 + }, + { + "start": 18773.42, + "end": 18774.76, + "probability": 0.8611 + }, + { + "start": 18775.66, + "end": 18776.74, + "probability": 0.476 + }, + { + "start": 18776.9, + "end": 18776.9, + "probability": 0.6247 + }, + { + "start": 18776.96, + "end": 18778.82, + "probability": 0.9779 + }, + { + "start": 18780.18, + "end": 18781.26, + "probability": 0.7178 + }, + { + "start": 18782.18, + "end": 18783.76, + "probability": 0.8119 + }, + { + "start": 18784.4, + "end": 18786.51, + "probability": 0.9459 + }, + { + "start": 18787.38, + "end": 18788.32, + "probability": 0.9838 + }, + { + "start": 18790.8, + "end": 18790.96, + "probability": 0.2049 + }, + { + "start": 18790.96, + "end": 18793.02, + "probability": 0.9429 + }, + { + "start": 18793.08, + "end": 18794.48, + "probability": 0.8898 + }, + { + "start": 18794.86, + "end": 18800.28, + "probability": 0.9938 + }, + { + "start": 18800.98, + "end": 18803.22, + "probability": 0.9884 + }, + { + "start": 18803.92, + "end": 18804.36, + "probability": 0.5381 + }, + { + "start": 18805.0, + "end": 18807.98, + "probability": 0.991 + }, + { + "start": 18808.16, + "end": 18811.2, + "probability": 0.8032 + }, + { + "start": 18811.74, + "end": 18815.52, + "probability": 0.9665 + }, + { + "start": 18816.22, + "end": 18818.86, + "probability": 0.9935 + }, + { + "start": 18819.46, + "end": 18821.66, + "probability": 0.9858 + }, + { + "start": 18822.58, + "end": 18826.84, + "probability": 0.9917 + }, + { + "start": 18827.4, + "end": 18829.65, + "probability": 0.937 + }, + { + "start": 18830.6, + "end": 18831.58, + "probability": 0.8326 + }, + { + "start": 18831.74, + "end": 18837.58, + "probability": 0.7473 + }, + { + "start": 18838.22, + "end": 18843.3, + "probability": 0.9937 + }, + { + "start": 18843.98, + "end": 18844.36, + "probability": 0.8918 + }, + { + "start": 18844.84, + "end": 18846.72, + "probability": 0.9763 + }, + { + "start": 18847.42, + "end": 18850.31, + "probability": 0.9745 + }, + { + "start": 18852.46, + "end": 18852.97, + "probability": 0.9478 + }, + { + "start": 18854.12, + "end": 18856.02, + "probability": 0.9881 + }, + { + "start": 18856.12, + "end": 18856.8, + "probability": 0.6788 + }, + { + "start": 18856.9, + "end": 18857.62, + "probability": 0.6195 + }, + { + "start": 18857.78, + "end": 18860.66, + "probability": 0.9746 + }, + { + "start": 18861.5, + "end": 18864.46, + "probability": 0.9927 + }, + { + "start": 18864.46, + "end": 18868.54, + "probability": 0.9985 + }, + { + "start": 18869.08, + "end": 18873.4, + "probability": 0.9895 + }, + { + "start": 18873.44, + "end": 18873.68, + "probability": 0.7566 + }, + { + "start": 18874.5, + "end": 18875.48, + "probability": 0.5126 + }, + { + "start": 18876.16, + "end": 18879.56, + "probability": 0.777 + }, + { + "start": 18882.7, + "end": 18888.62, + "probability": 0.8243 + }, + { + "start": 18888.76, + "end": 18889.02, + "probability": 0.7326 + }, + { + "start": 18889.64, + "end": 18890.62, + "probability": 0.6912 + }, + { + "start": 18891.5, + "end": 18893.78, + "probability": 0.6818 + }, + { + "start": 18893.9, + "end": 18893.98, + "probability": 0.001 + }, + { + "start": 18894.84, + "end": 18894.98, + "probability": 0.3811 + }, + { + "start": 18894.98, + "end": 18895.3, + "probability": 0.2901 + }, + { + "start": 18895.38, + "end": 18895.96, + "probability": 0.7398 + }, + { + "start": 18896.22, + "end": 18897.69, + "probability": 0.7428 + }, + { + "start": 18898.06, + "end": 18898.3, + "probability": 0.8955 + }, + { + "start": 18899.32, + "end": 18900.06, + "probability": 0.9602 + }, + { + "start": 18903.38, + "end": 18904.34, + "probability": 0.7216 + }, + { + "start": 18904.54, + "end": 18905.96, + "probability": 0.8199 + }, + { + "start": 18906.08, + "end": 18907.24, + "probability": 0.8974 + }, + { + "start": 18907.86, + "end": 18912.34, + "probability": 0.9863 + }, + { + "start": 18912.82, + "end": 18915.44, + "probability": 0.9515 + }, + { + "start": 18915.98, + "end": 18917.76, + "probability": 0.9973 + }, + { + "start": 18918.92, + "end": 18919.72, + "probability": 0.6491 + }, + { + "start": 18920.9, + "end": 18921.66, + "probability": 0.7167 + }, + { + "start": 18921.82, + "end": 18923.38, + "probability": 0.8071 + }, + { + "start": 18923.48, + "end": 18929.46, + "probability": 0.9411 + }, + { + "start": 18929.72, + "end": 18931.24, + "probability": 0.9313 + }, + { + "start": 18931.52, + "end": 18934.51, + "probability": 0.9688 + }, + { + "start": 18934.82, + "end": 18936.54, + "probability": 0.827 + }, + { + "start": 18937.0, + "end": 18938.38, + "probability": 0.8988 + }, + { + "start": 18938.94, + "end": 18940.92, + "probability": 0.9814 + }, + { + "start": 18941.58, + "end": 18943.76, + "probability": 0.9502 + }, + { + "start": 18944.2, + "end": 18945.88, + "probability": 0.9846 + }, + { + "start": 18946.16, + "end": 18947.88, + "probability": 0.7738 + }, + { + "start": 18948.0, + "end": 18949.06, + "probability": 0.4029 + }, + { + "start": 18949.42, + "end": 18950.92, + "probability": 0.8492 + }, + { + "start": 18950.98, + "end": 18954.86, + "probability": 0.9106 + }, + { + "start": 18955.58, + "end": 18957.96, + "probability": 0.8426 + }, + { + "start": 18958.5, + "end": 18958.58, + "probability": 0.0416 + }, + { + "start": 18958.58, + "end": 18960.64, + "probability": 0.7081 + }, + { + "start": 18963.46, + "end": 18963.8, + "probability": 0.083 + }, + { + "start": 18963.8, + "end": 18965.24, + "probability": 0.5116 + }, + { + "start": 18965.4, + "end": 18968.5, + "probability": 0.7802 + }, + { + "start": 18969.74, + "end": 18970.75, + "probability": 0.7668 + }, + { + "start": 18972.05, + "end": 18973.72, + "probability": 0.7823 + }, + { + "start": 18973.84, + "end": 18975.58, + "probability": 0.8494 + }, + { + "start": 18976.4, + "end": 18977.14, + "probability": 0.9751 + }, + { + "start": 18977.22, + "end": 18978.36, + "probability": 0.918 + }, + { + "start": 18978.44, + "end": 18981.62, + "probability": 0.6936 + }, + { + "start": 18982.12, + "end": 18983.25, + "probability": 0.7299 + }, + { + "start": 18983.56, + "end": 18985.21, + "probability": 0.9861 + }, + { + "start": 18986.38, + "end": 18989.2, + "probability": 0.9059 + }, + { + "start": 18989.88, + "end": 18991.88, + "probability": 0.9963 + }, + { + "start": 18991.98, + "end": 18993.36, + "probability": 0.7754 + }, + { + "start": 18993.66, + "end": 18994.86, + "probability": 0.5115 + }, + { + "start": 18995.22, + "end": 18997.17, + "probability": 0.9735 + }, + { + "start": 18997.18, + "end": 19001.74, + "probability": 0.8838 + }, + { + "start": 19002.0, + "end": 19003.12, + "probability": 0.9174 + }, + { + "start": 19003.26, + "end": 19003.74, + "probability": 0.0575 + }, + { + "start": 19003.82, + "end": 19006.46, + "probability": 0.9187 + }, + { + "start": 19006.68, + "end": 19009.84, + "probability": 0.5216 + }, + { + "start": 19009.84, + "end": 19010.26, + "probability": 0.7761 + }, + { + "start": 19010.38, + "end": 19010.68, + "probability": 0.0382 + }, + { + "start": 19010.68, + "end": 19010.8, + "probability": 0.0102 + }, + { + "start": 19010.8, + "end": 19013.28, + "probability": 0.5528 + }, + { + "start": 19013.38, + "end": 19016.32, + "probability": 0.9718 + }, + { + "start": 19016.46, + "end": 19016.6, + "probability": 0.2522 + }, + { + "start": 19016.74, + "end": 19017.74, + "probability": 0.1557 + }, + { + "start": 19017.76, + "end": 19019.34, + "probability": 0.0122 + }, + { + "start": 19019.34, + "end": 19021.16, + "probability": 0.3059 + }, + { + "start": 19021.38, + "end": 19022.74, + "probability": 0.646 + }, + { + "start": 19022.88, + "end": 19026.94, + "probability": 0.761 + }, + { + "start": 19027.54, + "end": 19031.86, + "probability": 0.8888 + }, + { + "start": 19032.38, + "end": 19037.78, + "probability": 0.9983 + }, + { + "start": 19038.12, + "end": 19039.72, + "probability": 0.6819 + }, + { + "start": 19039.72, + "end": 19042.22, + "probability": 0.9267 + }, + { + "start": 19042.22, + "end": 19043.14, + "probability": 0.6183 + }, + { + "start": 19044.18, + "end": 19045.32, + "probability": 0.1753 + }, + { + "start": 19045.46, + "end": 19048.84, + "probability": 0.6294 + }, + { + "start": 19049.0, + "end": 19050.74, + "probability": 0.8821 + }, + { + "start": 19050.84, + "end": 19051.12, + "probability": 0.322 + }, + { + "start": 19051.12, + "end": 19052.08, + "probability": 0.5094 + }, + { + "start": 19052.08, + "end": 19054.5, + "probability": 0.7828 + }, + { + "start": 19054.56, + "end": 19056.0, + "probability": 0.877 + }, + { + "start": 19056.0, + "end": 19056.9, + "probability": 0.0188 + }, + { + "start": 19057.7, + "end": 19058.4, + "probability": 0.4839 + }, + { + "start": 19058.86, + "end": 19062.34, + "probability": 0.5366 + }, + { + "start": 19062.34, + "end": 19062.82, + "probability": 0.3972 + }, + { + "start": 19062.9, + "end": 19064.44, + "probability": 0.4774 + }, + { + "start": 19064.44, + "end": 19065.62, + "probability": 0.7448 + }, + { + "start": 19065.92, + "end": 19067.78, + "probability": 0.2651 + }, + { + "start": 19067.78, + "end": 19069.24, + "probability": 0.5858 + }, + { + "start": 19069.58, + "end": 19070.34, + "probability": 0.2299 + }, + { + "start": 19070.62, + "end": 19071.12, + "probability": 0.6987 + }, + { + "start": 19071.34, + "end": 19072.12, + "probability": 0.1777 + }, + { + "start": 19073.85, + "end": 19078.67, + "probability": 0.0541 + }, + { + "start": 19080.44, + "end": 19080.68, + "probability": 0.0515 + }, + { + "start": 19080.68, + "end": 19080.68, + "probability": 0.0676 + }, + { + "start": 19080.68, + "end": 19080.68, + "probability": 0.037 + }, + { + "start": 19080.68, + "end": 19081.36, + "probability": 0.3043 + }, + { + "start": 19081.56, + "end": 19085.56, + "probability": 0.8307 + }, + { + "start": 19085.7, + "end": 19087.53, + "probability": 0.8489 + }, + { + "start": 19088.92, + "end": 19092.46, + "probability": 0.753 + }, + { + "start": 19093.68, + "end": 19094.12, + "probability": 0.4629 + }, + { + "start": 19094.16, + "end": 19095.16, + "probability": 0.9788 + }, + { + "start": 19096.7, + "end": 19098.34, + "probability": 0.8699 + }, + { + "start": 19100.26, + "end": 19104.0, + "probability": 0.4638 + }, + { + "start": 19104.54, + "end": 19104.72, + "probability": 0.2489 + }, + { + "start": 19107.72, + "end": 19108.26, + "probability": 0.0162 + }, + { + "start": 19108.26, + "end": 19108.26, + "probability": 0.0018 + }, + { + "start": 19108.26, + "end": 19110.2, + "probability": 0.3137 + }, + { + "start": 19110.22, + "end": 19114.06, + "probability": 0.569 + }, + { + "start": 19114.62, + "end": 19117.02, + "probability": 0.3105 + }, + { + "start": 19117.22, + "end": 19118.92, + "probability": 0.5406 + }, + { + "start": 19119.66, + "end": 19123.34, + "probability": 0.3152 + }, + { + "start": 19125.12, + "end": 19125.88, + "probability": 0.0163 + }, + { + "start": 19125.88, + "end": 19129.6, + "probability": 0.6625 + }, + { + "start": 19129.9, + "end": 19131.46, + "probability": 0.7768 + }, + { + "start": 19134.61, + "end": 19137.29, + "probability": 0.2448 + }, + { + "start": 19138.8, + "end": 19142.18, + "probability": 0.8219 + }, + { + "start": 19143.4, + "end": 19144.18, + "probability": 0.6996 + }, + { + "start": 19144.46, + "end": 19145.8, + "probability": 0.7939 + }, + { + "start": 19146.04, + "end": 19149.7, + "probability": 0.9954 + }, + { + "start": 19149.76, + "end": 19150.88, + "probability": 0.9911 + }, + { + "start": 19151.46, + "end": 19153.78, + "probability": 0.9988 + }, + { + "start": 19155.85, + "end": 19160.54, + "probability": 0.7845 + }, + { + "start": 19161.5, + "end": 19163.52, + "probability": 0.5493 + }, + { + "start": 19164.52, + "end": 19167.32, + "probability": 0.87 + }, + { + "start": 19168.3, + "end": 19172.4, + "probability": 0.922 + }, + { + "start": 19173.18, + "end": 19178.96, + "probability": 0.9941 + }, + { + "start": 19180.4, + "end": 19182.37, + "probability": 0.6756 + }, + { + "start": 19183.34, + "end": 19189.42, + "probability": 0.8364 + }, + { + "start": 19189.9, + "end": 19191.56, + "probability": 0.9995 + }, + { + "start": 19192.0, + "end": 19197.24, + "probability": 0.9948 + }, + { + "start": 19197.68, + "end": 19198.54, + "probability": 0.5872 + }, + { + "start": 19198.66, + "end": 19201.52, + "probability": 0.9863 + }, + { + "start": 19201.72, + "end": 19204.84, + "probability": 0.9934 + }, + { + "start": 19204.9, + "end": 19207.75, + "probability": 0.991 + }, + { + "start": 19208.08, + "end": 19209.36, + "probability": 0.805 + }, + { + "start": 19209.64, + "end": 19212.8, + "probability": 0.9727 + }, + { + "start": 19212.8, + "end": 19217.66, + "probability": 0.9585 + }, + { + "start": 19217.78, + "end": 19218.84, + "probability": 0.6698 + }, + { + "start": 19219.14, + "end": 19224.27, + "probability": 0.9969 + }, + { + "start": 19225.18, + "end": 19229.36, + "probability": 0.9994 + }, + { + "start": 19229.98, + "end": 19232.14, + "probability": 0.8588 + }, + { + "start": 19232.58, + "end": 19233.32, + "probability": 0.6487 + }, + { + "start": 19233.66, + "end": 19236.38, + "probability": 0.9163 + }, + { + "start": 19236.66, + "end": 19238.5, + "probability": 0.9259 + }, + { + "start": 19238.88, + "end": 19245.74, + "probability": 0.9943 + }, + { + "start": 19246.18, + "end": 19247.1, + "probability": 0.9512 + }, + { + "start": 19247.7, + "end": 19252.52, + "probability": 0.9762 + }, + { + "start": 19252.52, + "end": 19257.54, + "probability": 0.9039 + }, + { + "start": 19258.14, + "end": 19259.4, + "probability": 0.64 + }, + { + "start": 19259.5, + "end": 19262.26, + "probability": 0.9608 + }, + { + "start": 19262.4, + "end": 19264.04, + "probability": 0.7266 + }, + { + "start": 19264.6, + "end": 19268.9, + "probability": 0.9939 + }, + { + "start": 19269.22, + "end": 19272.52, + "probability": 0.9716 + }, + { + "start": 19272.86, + "end": 19274.12, + "probability": 0.6467 + }, + { + "start": 19274.46, + "end": 19275.8, + "probability": 0.8673 + }, + { + "start": 19276.2, + "end": 19280.72, + "probability": 0.9732 + }, + { + "start": 19281.12, + "end": 19282.48, + "probability": 0.9875 + }, + { + "start": 19282.8, + "end": 19284.18, + "probability": 0.7694 + }, + { + "start": 19284.56, + "end": 19287.42, + "probability": 0.8671 + }, + { + "start": 19287.82, + "end": 19290.69, + "probability": 0.9879 + }, + { + "start": 19291.42, + "end": 19292.28, + "probability": 0.8729 + }, + { + "start": 19292.64, + "end": 19293.68, + "probability": 0.8271 + }, + { + "start": 19294.38, + "end": 19295.55, + "probability": 0.9961 + }, + { + "start": 19295.86, + "end": 19297.08, + "probability": 0.9746 + }, + { + "start": 19297.36, + "end": 19298.64, + "probability": 0.9804 + }, + { + "start": 19298.66, + "end": 19300.78, + "probability": 0.8729 + }, + { + "start": 19301.34, + "end": 19304.54, + "probability": 0.8665 + }, + { + "start": 19305.24, + "end": 19312.28, + "probability": 0.9937 + }, + { + "start": 19312.88, + "end": 19314.42, + "probability": 0.943 + }, + { + "start": 19314.76, + "end": 19321.28, + "probability": 0.9906 + }, + { + "start": 19321.28, + "end": 19326.98, + "probability": 0.9988 + }, + { + "start": 19327.3, + "end": 19331.08, + "probability": 0.9957 + }, + { + "start": 19331.82, + "end": 19333.64, + "probability": 0.9424 + }, + { + "start": 19334.02, + "end": 19335.0, + "probability": 0.7974 + }, + { + "start": 19335.72, + "end": 19337.16, + "probability": 0.9846 + }, + { + "start": 19337.5, + "end": 19338.22, + "probability": 0.8328 + }, + { + "start": 19339.04, + "end": 19341.46, + "probability": 0.7515 + }, + { + "start": 19341.62, + "end": 19343.98, + "probability": 0.8689 + }, + { + "start": 19344.68, + "end": 19346.74, + "probability": 0.9301 + }, + { + "start": 19347.3, + "end": 19347.81, + "probability": 0.7886 + }, + { + "start": 19349.46, + "end": 19350.4, + "probability": 0.0277 + }, + { + "start": 19350.68, + "end": 19351.1, + "probability": 0.2594 + }, + { + "start": 19351.6, + "end": 19351.76, + "probability": 0.3047 + }, + { + "start": 19351.94, + "end": 19354.42, + "probability": 0.7034 + }, + { + "start": 19355.68, + "end": 19358.34, + "probability": 0.9878 + }, + { + "start": 19359.6, + "end": 19362.48, + "probability": 0.7506 + }, + { + "start": 19363.6, + "end": 19369.0, + "probability": 0.7304 + }, + { + "start": 19370.1, + "end": 19371.2, + "probability": 0.679 + }, + { + "start": 19372.74, + "end": 19376.06, + "probability": 0.1768 + }, + { + "start": 19377.16, + "end": 19377.64, + "probability": 0.7703 + }, + { + "start": 19377.72, + "end": 19380.02, + "probability": 0.261 + }, + { + "start": 19381.69, + "end": 19383.22, + "probability": 0.4855 + }, + { + "start": 19383.22, + "end": 19386.26, + "probability": 0.7683 + }, + { + "start": 19386.32, + "end": 19388.22, + "probability": 0.9614 + }, + { + "start": 19388.24, + "end": 19389.48, + "probability": 0.6349 + }, + { + "start": 19389.48, + "end": 19390.42, + "probability": 0.2255 + }, + { + "start": 19390.74, + "end": 19391.88, + "probability": 0.3776 + }, + { + "start": 19392.66, + "end": 19394.54, + "probability": 0.5616 + }, + { + "start": 19394.68, + "end": 19394.7, + "probability": 0.5262 + }, + { + "start": 19394.7, + "end": 19395.58, + "probability": 0.7603 + }, + { + "start": 19395.92, + "end": 19397.28, + "probability": 0.6618 + }, + { + "start": 19398.2, + "end": 19405.74, + "probability": 0.9781 + }, + { + "start": 19406.55, + "end": 19412.2, + "probability": 0.9983 + }, + { + "start": 19412.82, + "end": 19416.42, + "probability": 0.9945 + }, + { + "start": 19416.52, + "end": 19419.62, + "probability": 0.9966 + }, + { + "start": 19421.08, + "end": 19425.3, + "probability": 0.9986 + }, + { + "start": 19426.4, + "end": 19429.94, + "probability": 0.6934 + }, + { + "start": 19430.94, + "end": 19431.64, + "probability": 0.8708 + }, + { + "start": 19431.76, + "end": 19432.66, + "probability": 0.7036 + }, + { + "start": 19432.84, + "end": 19433.9, + "probability": 0.7763 + }, + { + "start": 19433.96, + "end": 19437.47, + "probability": 0.8752 + }, + { + "start": 19438.1, + "end": 19440.55, + "probability": 0.9136 + }, + { + "start": 19441.52, + "end": 19446.62, + "probability": 0.9972 + }, + { + "start": 19447.32, + "end": 19452.24, + "probability": 0.9961 + }, + { + "start": 19452.24, + "end": 19455.94, + "probability": 0.9978 + }, + { + "start": 19456.64, + "end": 19457.26, + "probability": 0.4988 + }, + { + "start": 19458.44, + "end": 19459.44, + "probability": 0.7353 + }, + { + "start": 19459.6, + "end": 19462.58, + "probability": 0.9982 + }, + { + "start": 19462.58, + "end": 19465.44, + "probability": 0.9961 + }, + { + "start": 19466.9, + "end": 19469.16, + "probability": 0.999 + }, + { + "start": 19469.86, + "end": 19473.32, + "probability": 0.9871 + }, + { + "start": 19475.52, + "end": 19478.32, + "probability": 0.9995 + }, + { + "start": 19478.32, + "end": 19480.32, + "probability": 0.9939 + }, + { + "start": 19482.12, + "end": 19487.76, + "probability": 0.8207 + }, + { + "start": 19488.94, + "end": 19493.36, + "probability": 0.9971 + }, + { + "start": 19493.36, + "end": 19498.5, + "probability": 0.9977 + }, + { + "start": 19500.06, + "end": 19501.16, + "probability": 0.63 + }, + { + "start": 19501.44, + "end": 19502.44, + "probability": 0.7735 + }, + { + "start": 19502.52, + "end": 19504.76, + "probability": 0.9578 + }, + { + "start": 19505.34, + "end": 19506.26, + "probability": 0.8799 + }, + { + "start": 19507.36, + "end": 19510.9, + "probability": 0.9751 + }, + { + "start": 19511.2, + "end": 19512.06, + "probability": 0.8766 + }, + { + "start": 19512.78, + "end": 19517.9, + "probability": 0.8281 + }, + { + "start": 19519.1, + "end": 19521.56, + "probability": 0.5984 + }, + { + "start": 19522.1, + "end": 19526.12, + "probability": 0.9946 + }, + { + "start": 19526.12, + "end": 19531.06, + "probability": 0.9897 + }, + { + "start": 19533.28, + "end": 19541.21, + "probability": 0.9412 + }, + { + "start": 19542.62, + "end": 19544.86, + "probability": 0.6215 + }, + { + "start": 19547.89, + "end": 19551.09, + "probability": 0.1989 + }, + { + "start": 19552.61, + "end": 19555.28, + "probability": 0.9946 + }, + { + "start": 19556.47, + "end": 19558.63, + "probability": 0.9907 + }, + { + "start": 19559.16, + "end": 19561.23, + "probability": 0.9523 + }, + { + "start": 19561.35, + "end": 19565.32, + "probability": 0.9912 + }, + { + "start": 19566.15, + "end": 19568.41, + "probability": 0.7326 + }, + { + "start": 19569.75, + "end": 19573.83, + "probability": 0.9893 + }, + { + "start": 19574.69, + "end": 19580.07, + "probability": 0.9332 + }, + { + "start": 19580.59, + "end": 19585.17, + "probability": 0.979 + }, + { + "start": 19585.31, + "end": 19586.67, + "probability": 0.7158 + }, + { + "start": 19587.39, + "end": 19589.03, + "probability": 0.9275 + }, + { + "start": 19589.75, + "end": 19590.89, + "probability": 0.9788 + }, + { + "start": 19590.95, + "end": 19592.09, + "probability": 0.7188 + }, + { + "start": 19592.15, + "end": 19595.23, + "probability": 0.9868 + }, + { + "start": 19596.93, + "end": 19597.75, + "probability": 0.7412 + }, + { + "start": 19597.85, + "end": 19598.65, + "probability": 0.725 + }, + { + "start": 19598.77, + "end": 19607.03, + "probability": 0.8364 + }, + { + "start": 19607.71, + "end": 19609.01, + "probability": 0.94 + }, + { + "start": 19609.91, + "end": 19613.53, + "probability": 0.9878 + }, + { + "start": 19614.29, + "end": 19617.35, + "probability": 0.9766 + }, + { + "start": 19618.07, + "end": 19624.03, + "probability": 0.87 + }, + { + "start": 19625.29, + "end": 19625.29, + "probability": 0.3798 + }, + { + "start": 19625.47, + "end": 19626.55, + "probability": 0.8584 + }, + { + "start": 19626.59, + "end": 19630.63, + "probability": 0.9939 + }, + { + "start": 19630.71, + "end": 19631.59, + "probability": 0.972 + }, + { + "start": 19632.61, + "end": 19634.39, + "probability": 0.8628 + }, + { + "start": 19635.31, + "end": 19639.21, + "probability": 0.586 + }, + { + "start": 19640.21, + "end": 19641.41, + "probability": 0.9576 + }, + { + "start": 19642.11, + "end": 19646.17, + "probability": 0.9175 + }, + { + "start": 19647.09, + "end": 19650.53, + "probability": 0.9957 + }, + { + "start": 19650.53, + "end": 19654.63, + "probability": 0.2931 + }, + { + "start": 19654.63, + "end": 19658.45, + "probability": 0.9891 + }, + { + "start": 19659.17, + "end": 19660.33, + "probability": 0.7837 + }, + { + "start": 19661.05, + "end": 19663.57, + "probability": 0.772 + }, + { + "start": 19663.67, + "end": 19665.68, + "probability": 0.9955 + }, + { + "start": 19665.91, + "end": 19667.91, + "probability": 0.895 + }, + { + "start": 19668.41, + "end": 19670.62, + "probability": 0.9705 + }, + { + "start": 19671.03, + "end": 19673.49, + "probability": 0.9036 + }, + { + "start": 19674.33, + "end": 19679.51, + "probability": 0.9962 + }, + { + "start": 19679.51, + "end": 19683.83, + "probability": 0.9575 + }, + { + "start": 19684.57, + "end": 19691.05, + "probability": 0.9792 + }, + { + "start": 19691.13, + "end": 19693.75, + "probability": 0.9979 + }, + { + "start": 19694.17, + "end": 19697.49, + "probability": 0.9092 + }, + { + "start": 19698.33, + "end": 19701.43, + "probability": 0.994 + }, + { + "start": 19702.07, + "end": 19706.53, + "probability": 0.9465 + }, + { + "start": 19706.93, + "end": 19711.89, + "probability": 0.9949 + }, + { + "start": 19713.37, + "end": 19714.84, + "probability": 0.5609 + }, + { + "start": 19715.11, + "end": 19716.01, + "probability": 0.8394 + }, + { + "start": 19716.09, + "end": 19720.55, + "probability": 0.9785 + }, + { + "start": 19720.59, + "end": 19721.43, + "probability": 0.9714 + }, + { + "start": 19721.51, + "end": 19725.45, + "probability": 0.9946 + }, + { + "start": 19725.97, + "end": 19727.81, + "probability": 0.9083 + }, + { + "start": 19728.31, + "end": 19734.19, + "probability": 0.9971 + }, + { + "start": 19734.61, + "end": 19738.53, + "probability": 0.8067 + }, + { + "start": 19738.81, + "end": 19741.71, + "probability": 0.98 + }, + { + "start": 19742.71, + "end": 19745.53, + "probability": 0.9378 + }, + { + "start": 19746.11, + "end": 19749.21, + "probability": 0.9883 + }, + { + "start": 19749.87, + "end": 19754.61, + "probability": 0.9854 + }, + { + "start": 19754.71, + "end": 19756.01, + "probability": 0.9897 + }, + { + "start": 19756.57, + "end": 19757.57, + "probability": 0.7525 + }, + { + "start": 19757.95, + "end": 19758.79, + "probability": 0.7797 + }, + { + "start": 19758.91, + "end": 19762.63, + "probability": 0.9941 + }, + { + "start": 19764.05, + "end": 19768.77, + "probability": 0.8941 + }, + { + "start": 19769.91, + "end": 19772.31, + "probability": 0.9971 + }, + { + "start": 19773.51, + "end": 19775.31, + "probability": 0.8501 + }, + { + "start": 19775.53, + "end": 19778.27, + "probability": 0.8314 + }, + { + "start": 19778.71, + "end": 19782.91, + "probability": 0.9861 + }, + { + "start": 19783.75, + "end": 19785.01, + "probability": 0.991 + }, + { + "start": 19785.09, + "end": 19786.41, + "probability": 0.6706 + }, + { + "start": 19786.45, + "end": 19789.89, + "probability": 0.8951 + }, + { + "start": 19790.45, + "end": 19796.05, + "probability": 0.928 + }, + { + "start": 19797.15, + "end": 19800.21, + "probability": 0.9831 + }, + { + "start": 19800.97, + "end": 19806.25, + "probability": 0.7941 + }, + { + "start": 19806.57, + "end": 19807.41, + "probability": 0.9832 + }, + { + "start": 19808.65, + "end": 19811.47, + "probability": 0.8628 + }, + { + "start": 19811.61, + "end": 19812.45, + "probability": 0.7076 + }, + { + "start": 19812.63, + "end": 19817.43, + "probability": 0.9289 + }, + { + "start": 19817.61, + "end": 19818.29, + "probability": 0.9826 + }, + { + "start": 19819.25, + "end": 19822.83, + "probability": 0.9118 + }, + { + "start": 19822.95, + "end": 19826.97, + "probability": 0.9873 + }, + { + "start": 19828.07, + "end": 19828.76, + "probability": 0.0888 + }, + { + "start": 19829.39, + "end": 19830.51, + "probability": 0.1423 + }, + { + "start": 19830.89, + "end": 19833.95, + "probability": 0.9237 + }, + { + "start": 19834.31, + "end": 19835.55, + "probability": 0.7756 + }, + { + "start": 19836.37, + "end": 19843.31, + "probability": 0.9756 + }, + { + "start": 19843.91, + "end": 19848.65, + "probability": 0.9854 + }, + { + "start": 19848.89, + "end": 19853.37, + "probability": 0.9905 + }, + { + "start": 19853.93, + "end": 19856.53, + "probability": 0.9713 + }, + { + "start": 19856.53, + "end": 19858.93, + "probability": 0.998 + }, + { + "start": 19859.75, + "end": 19863.15, + "probability": 0.9968 + }, + { + "start": 19863.29, + "end": 19865.09, + "probability": 0.8769 + }, + { + "start": 19865.53, + "end": 19868.57, + "probability": 0.9915 + }, + { + "start": 19869.51, + "end": 19873.73, + "probability": 0.9958 + }, + { + "start": 19874.01, + "end": 19875.67, + "probability": 0.973 + }, + { + "start": 19876.47, + "end": 19877.91, + "probability": 0.9784 + }, + { + "start": 19878.37, + "end": 19880.41, + "probability": 0.9875 + }, + { + "start": 19881.11, + "end": 19882.79, + "probability": 0.9695 + }, + { + "start": 19883.77, + "end": 19887.05, + "probability": 0.922 + }, + { + "start": 19888.21, + "end": 19889.03, + "probability": 0.795 + }, + { + "start": 19889.25, + "end": 19890.71, + "probability": 0.9255 + }, + { + "start": 19890.77, + "end": 19893.29, + "probability": 0.9413 + }, + { + "start": 19893.39, + "end": 19897.01, + "probability": 0.9946 + }, + { + "start": 19897.47, + "end": 19898.93, + "probability": 0.9861 + }, + { + "start": 19899.09, + "end": 19905.33, + "probability": 0.9875 + }, + { + "start": 19906.33, + "end": 19909.43, + "probability": 0.9974 + }, + { + "start": 19909.43, + "end": 19911.77, + "probability": 0.9922 + }, + { + "start": 19911.85, + "end": 19915.53, + "probability": 0.9836 + }, + { + "start": 19915.67, + "end": 19917.49, + "probability": 0.9968 + }, + { + "start": 19917.85, + "end": 19920.83, + "probability": 0.9894 + }, + { + "start": 19921.67, + "end": 19922.77, + "probability": 0.7626 + }, + { + "start": 19922.97, + "end": 19923.57, + "probability": 0.8026 + }, + { + "start": 19923.63, + "end": 19924.69, + "probability": 0.7619 + }, + { + "start": 19924.79, + "end": 19927.25, + "probability": 0.945 + }, + { + "start": 19927.63, + "end": 19928.57, + "probability": 0.9775 + }, + { + "start": 19928.71, + "end": 19932.15, + "probability": 0.9909 + }, + { + "start": 19932.15, + "end": 19936.05, + "probability": 0.9788 + }, + { + "start": 19936.61, + "end": 19939.93, + "probability": 0.997 + }, + { + "start": 19940.53, + "end": 19941.57, + "probability": 0.9951 + }, + { + "start": 19942.57, + "end": 19946.31, + "probability": 0.8882 + }, + { + "start": 19947.57, + "end": 19953.11, + "probability": 0.9858 + }, + { + "start": 19953.95, + "end": 19958.99, + "probability": 0.9524 + }, + { + "start": 19959.81, + "end": 19966.95, + "probability": 0.9895 + }, + { + "start": 19967.41, + "end": 19968.75, + "probability": 0.9528 + }, + { + "start": 19969.53, + "end": 19970.17, + "probability": 0.7711 + }, + { + "start": 19970.73, + "end": 19971.51, + "probability": 0.6448 + }, + { + "start": 19971.73, + "end": 19977.61, + "probability": 0.992 + }, + { + "start": 19977.61, + "end": 19985.03, + "probability": 0.9998 + }, + { + "start": 19985.21, + "end": 19988.75, + "probability": 0.9956 + }, + { + "start": 19988.85, + "end": 19990.95, + "probability": 0.9464 + }, + { + "start": 19991.11, + "end": 19991.37, + "probability": 0.5004 + }, + { + "start": 19991.53, + "end": 19993.63, + "probability": 0.9901 + }, + { + "start": 19994.41, + "end": 19998.55, + "probability": 0.9976 + }, + { + "start": 19999.23, + "end": 20000.97, + "probability": 0.8843 + }, + { + "start": 20001.05, + "end": 20003.79, + "probability": 0.9928 + }, + { + "start": 20004.29, + "end": 20006.65, + "probability": 0.9984 + }, + { + "start": 20006.93, + "end": 20007.8, + "probability": 0.9985 + }, + { + "start": 20008.57, + "end": 20012.09, + "probability": 0.9976 + }, + { + "start": 20012.09, + "end": 20016.35, + "probability": 0.9775 + }, + { + "start": 20016.49, + "end": 20016.89, + "probability": 0.7515 + }, + { + "start": 20017.55, + "end": 20019.93, + "probability": 0.8147 + }, + { + "start": 20020.79, + "end": 20023.77, + "probability": 0.9075 + }, + { + "start": 20025.57, + "end": 20029.33, + "probability": 0.8621 + }, + { + "start": 20030.23, + "end": 20035.41, + "probability": 0.8831 + }, + { + "start": 20047.35, + "end": 20048.33, + "probability": 0.2845 + }, + { + "start": 20048.45, + "end": 20050.27, + "probability": 0.544 + }, + { + "start": 20052.21, + "end": 20054.99, + "probability": 0.8042 + }, + { + "start": 20055.03, + "end": 20058.23, + "probability": 0.7868 + }, + { + "start": 20059.05, + "end": 20062.85, + "probability": 0.8979 + }, + { + "start": 20063.91, + "end": 20068.55, + "probability": 0.9839 + }, + { + "start": 20068.55, + "end": 20072.25, + "probability": 0.9581 + }, + { + "start": 20072.97, + "end": 20076.59, + "probability": 0.9976 + }, + { + "start": 20077.49, + "end": 20080.19, + "probability": 0.8958 + }, + { + "start": 20081.51, + "end": 20082.35, + "probability": 0.7216 + }, + { + "start": 20082.55, + "end": 20084.04, + "probability": 0.9309 + }, + { + "start": 20084.75, + "end": 20088.91, + "probability": 0.9717 + }, + { + "start": 20090.11, + "end": 20094.33, + "probability": 0.9971 + }, + { + "start": 20094.93, + "end": 20096.67, + "probability": 0.6873 + }, + { + "start": 20097.23, + "end": 20099.09, + "probability": 0.895 + }, + { + "start": 20099.67, + "end": 20112.09, + "probability": 0.7413 + }, + { + "start": 20112.53, + "end": 20114.39, + "probability": 0.8906 + }, + { + "start": 20114.83, + "end": 20117.31, + "probability": 0.9888 + }, + { + "start": 20118.05, + "end": 20119.49, + "probability": 0.8004 + }, + { + "start": 20120.07, + "end": 20120.91, + "probability": 0.9976 + }, + { + "start": 20121.95, + "end": 20123.06, + "probability": 0.7334 + }, + { + "start": 20123.99, + "end": 20127.35, + "probability": 0.995 + }, + { + "start": 20127.75, + "end": 20128.77, + "probability": 0.8164 + }, + { + "start": 20128.85, + "end": 20130.57, + "probability": 0.9149 + }, + { + "start": 20130.67, + "end": 20132.01, + "probability": 0.8726 + }, + { + "start": 20132.55, + "end": 20134.67, + "probability": 0.991 + }, + { + "start": 20135.21, + "end": 20135.45, + "probability": 0.9854 + }, + { + "start": 20136.07, + "end": 20142.91, + "probability": 0.5612 + }, + { + "start": 20143.43, + "end": 20144.59, + "probability": 0.9065 + }, + { + "start": 20145.17, + "end": 20150.79, + "probability": 0.9304 + }, + { + "start": 20151.53, + "end": 20155.87, + "probability": 0.9165 + }, + { + "start": 20156.75, + "end": 20161.19, + "probability": 0.7447 + }, + { + "start": 20161.79, + "end": 20165.77, + "probability": 0.7841 + }, + { + "start": 20166.37, + "end": 20167.71, + "probability": 0.8923 + }, + { + "start": 20168.19, + "end": 20169.71, + "probability": 0.9338 + }, + { + "start": 20169.71, + "end": 20172.13, + "probability": 0.2793 + }, + { + "start": 20173.93, + "end": 20175.73, + "probability": 0.6667 + }, + { + "start": 20177.61, + "end": 20179.33, + "probability": 0.9356 + }, + { + "start": 20179.41, + "end": 20179.99, + "probability": 0.5997 + }, + { + "start": 20180.03, + "end": 20183.11, + "probability": 0.8507 + }, + { + "start": 20184.57, + "end": 20186.71, + "probability": 0.9937 + }, + { + "start": 20187.25, + "end": 20191.27, + "probability": 0.7048 + }, + { + "start": 20191.55, + "end": 20192.37, + "probability": 0.7502 + }, + { + "start": 20193.53, + "end": 20195.45, + "probability": 0.8368 + }, + { + "start": 20200.63, + "end": 20201.03, + "probability": 0.2315 + }, + { + "start": 20201.89, + "end": 20204.49, + "probability": 0.9969 + }, + { + "start": 20205.03, + "end": 20209.21, + "probability": 0.9761 + }, + { + "start": 20209.75, + "end": 20211.35, + "probability": 0.928 + }, + { + "start": 20211.49, + "end": 20211.69, + "probability": 0.6396 + }, + { + "start": 20212.19, + "end": 20212.58, + "probability": 0.7593 + }, + { + "start": 20213.21, + "end": 20214.29, + "probability": 0.8832 + }, + { + "start": 20214.35, + "end": 20214.72, + "probability": 0.8984 + }, + { + "start": 20216.67, + "end": 20218.49, + "probability": 0.9924 + }, + { + "start": 20219.17, + "end": 20221.01, + "probability": 0.9897 + }, + { + "start": 20221.35, + "end": 20223.27, + "probability": 0.8022 + }, + { + "start": 20224.48, + "end": 20228.99, + "probability": 0.9076 + }, + { + "start": 20229.03, + "end": 20231.69, + "probability": 0.9949 + }, + { + "start": 20232.27, + "end": 20233.37, + "probability": 0.5992 + }, + { + "start": 20234.07, + "end": 20235.53, + "probability": 0.9907 + }, + { + "start": 20236.45, + "end": 20240.39, + "probability": 0.549 + }, + { + "start": 20240.95, + "end": 20243.45, + "probability": 0.925 + }, + { + "start": 20244.41, + "end": 20246.03, + "probability": 0.9548 + }, + { + "start": 20246.77, + "end": 20247.85, + "probability": 0.9607 + }, + { + "start": 20249.63, + "end": 20250.58, + "probability": 0.3291 + }, + { + "start": 20251.63, + "end": 20255.07, + "probability": 0.8772 + }, + { + "start": 20255.15, + "end": 20256.07, + "probability": 0.8614 + }, + { + "start": 20256.37, + "end": 20257.15, + "probability": 0.8101 + }, + { + "start": 20257.55, + "end": 20257.97, + "probability": 0.972 + }, + { + "start": 20258.87, + "end": 20261.19, + "probability": 0.9731 + }, + { + "start": 20261.83, + "end": 20262.99, + "probability": 0.8621 + }, + { + "start": 20263.49, + "end": 20264.07, + "probability": 0.9004 + }, + { + "start": 20264.79, + "end": 20266.51, + "probability": 0.9614 + }, + { + "start": 20267.53, + "end": 20268.41, + "probability": 0.6996 + }, + { + "start": 20269.13, + "end": 20270.08, + "probability": 0.8533 + }, + { + "start": 20270.97, + "end": 20273.71, + "probability": 0.819 + }, + { + "start": 20274.67, + "end": 20275.21, + "probability": 0.8861 + }, + { + "start": 20275.67, + "end": 20277.57, + "probability": 0.8591 + }, + { + "start": 20277.77, + "end": 20278.69, + "probability": 0.9172 + }, + { + "start": 20279.77, + "end": 20283.53, + "probability": 0.985 + }, + { + "start": 20283.53, + "end": 20288.59, + "probability": 0.6221 + }, + { + "start": 20291.03, + "end": 20291.8, + "probability": 0.7369 + }, + { + "start": 20292.55, + "end": 20296.09, + "probability": 0.9249 + }, + { + "start": 20296.69, + "end": 20301.17, + "probability": 0.9749 + }, + { + "start": 20301.59, + "end": 20302.66, + "probability": 0.9878 + }, + { + "start": 20303.03, + "end": 20305.89, + "probability": 0.7671 + }, + { + "start": 20307.43, + "end": 20312.05, + "probability": 0.6504 + }, + { + "start": 20312.33, + "end": 20315.25, + "probability": 0.5444 + }, + { + "start": 20316.69, + "end": 20318.83, + "probability": 0.5337 + }, + { + "start": 20319.01, + "end": 20320.75, + "probability": 0.949 + }, + { + "start": 20321.11, + "end": 20321.83, + "probability": 0.6805 + }, + { + "start": 20322.55, + "end": 20322.89, + "probability": 0.4108 + }, + { + "start": 20322.99, + "end": 20323.61, + "probability": 0.5178 + }, + { + "start": 20323.79, + "end": 20327.13, + "probability": 0.8696 + }, + { + "start": 20327.49, + "end": 20328.5, + "probability": 0.938 + }, + { + "start": 20329.37, + "end": 20331.65, + "probability": 0.8046 + }, + { + "start": 20331.73, + "end": 20332.25, + "probability": 0.0897 + }, + { + "start": 20333.09, + "end": 20335.13, + "probability": 0.8754 + }, + { + "start": 20335.47, + "end": 20336.41, + "probability": 0.6836 + }, + { + "start": 20337.13, + "end": 20338.35, + "probability": 0.9153 + }, + { + "start": 20338.97, + "end": 20341.07, + "probability": 0.9357 + }, + { + "start": 20341.89, + "end": 20342.99, + "probability": 0.9218 + }, + { + "start": 20343.97, + "end": 20345.39, + "probability": 0.998 + }, + { + "start": 20346.17, + "end": 20348.29, + "probability": 0.983 + }, + { + "start": 20348.51, + "end": 20348.71, + "probability": 0.6683 + }, + { + "start": 20348.79, + "end": 20350.36, + "probability": 0.6567 + }, + { + "start": 20351.13, + "end": 20354.43, + "probability": 0.9851 + }, + { + "start": 20355.01, + "end": 20358.09, + "probability": 0.9398 + }, + { + "start": 20358.09, + "end": 20361.25, + "probability": 0.9938 + }, + { + "start": 20361.25, + "end": 20361.53, + "probability": 0.3024 + }, + { + "start": 20362.21, + "end": 20364.51, + "probability": 0.5736 + }, + { + "start": 20364.85, + "end": 20366.25, + "probability": 0.7588 + }, + { + "start": 20367.37, + "end": 20368.43, + "probability": 0.866 + }, + { + "start": 20368.67, + "end": 20369.81, + "probability": 0.7123 + }, + { + "start": 20370.45, + "end": 20371.59, + "probability": 0.8991 + }, + { + "start": 20373.17, + "end": 20373.79, + "probability": 0.7724 + }, + { + "start": 20374.89, + "end": 20378.71, + "probability": 0.0252 + }, + { + "start": 20379.35, + "end": 20381.89, + "probability": 0.7134 + }, + { + "start": 20383.25, + "end": 20390.45, + "probability": 0.9862 + }, + { + "start": 20390.89, + "end": 20392.89, + "probability": 0.9815 + }, + { + "start": 20394.13, + "end": 20396.71, + "probability": 0.8371 + }, + { + "start": 20398.05, + "end": 20399.67, + "probability": 0.9213 + }, + { + "start": 20400.43, + "end": 20403.07, + "probability": 0.999 + }, + { + "start": 20403.07, + "end": 20406.71, + "probability": 0.9861 + }, + { + "start": 20407.15, + "end": 20407.49, + "probability": 0.397 + }, + { + "start": 20407.59, + "end": 20408.95, + "probability": 0.8505 + }, + { + "start": 20409.53, + "end": 20411.91, + "probability": 0.9802 + }, + { + "start": 20413.35, + "end": 20418.65, + "probability": 0.9854 + }, + { + "start": 20419.29, + "end": 20419.29, + "probability": 0.4875 + }, + { + "start": 20419.31, + "end": 20420.57, + "probability": 0.8931 + }, + { + "start": 20421.21, + "end": 20421.91, + "probability": 0.5342 + }, + { + "start": 20422.15, + "end": 20422.95, + "probability": 0.9891 + }, + { + "start": 20423.79, + "end": 20427.27, + "probability": 0.9939 + }, + { + "start": 20427.85, + "end": 20429.33, + "probability": 0.884 + }, + { + "start": 20429.51, + "end": 20433.03, + "probability": 0.9575 + }, + { + "start": 20433.03, + "end": 20439.83, + "probability": 0.9796 + }, + { + "start": 20441.01, + "end": 20443.35, + "probability": 0.9963 + }, + { + "start": 20444.13, + "end": 20448.09, + "probability": 0.7253 + }, + { + "start": 20449.13, + "end": 20451.73, + "probability": 0.9905 + }, + { + "start": 20452.19, + "end": 20455.95, + "probability": 0.9736 + }, + { + "start": 20456.83, + "end": 20458.03, + "probability": 0.998 + }, + { + "start": 20459.11, + "end": 20464.17, + "probability": 0.9952 + }, + { + "start": 20464.57, + "end": 20466.25, + "probability": 0.4211 + }, + { + "start": 20466.27, + "end": 20467.71, + "probability": 0.7354 + }, + { + "start": 20468.47, + "end": 20469.79, + "probability": 0.7458 + }, + { + "start": 20470.01, + "end": 20473.07, + "probability": 0.9946 + }, + { + "start": 20473.29, + "end": 20473.29, + "probability": 0.313 + }, + { + "start": 20473.31, + "end": 20475.37, + "probability": 0.6508 + }, + { + "start": 20476.11, + "end": 20479.25, + "probability": 0.9341 + }, + { + "start": 20479.45, + "end": 20479.87, + "probability": 0.3259 + }, + { + "start": 20480.93, + "end": 20482.89, + "probability": 0.9575 + }, + { + "start": 20483.73, + "end": 20484.48, + "probability": 0.9607 + }, + { + "start": 20484.95, + "end": 20485.63, + "probability": 0.8296 + }, + { + "start": 20485.63, + "end": 20488.55, + "probability": 0.7346 + }, + { + "start": 20488.81, + "end": 20489.03, + "probability": 0.0542 + }, + { + "start": 20490.05, + "end": 20490.41, + "probability": 0.1573 + }, + { + "start": 20490.41, + "end": 20494.75, + "probability": 0.2231 + }, + { + "start": 20494.89, + "end": 20496.68, + "probability": 0.0387 + }, + { + "start": 20496.95, + "end": 20499.69, + "probability": 0.8655 + }, + { + "start": 20500.03, + "end": 20507.89, + "probability": 0.9169 + }, + { + "start": 20508.01, + "end": 20510.13, + "probability": 0.9221 + }, + { + "start": 20510.25, + "end": 20510.25, + "probability": 0.2167 + }, + { + "start": 20510.25, + "end": 20511.33, + "probability": 0.6744 + }, + { + "start": 20511.45, + "end": 20512.93, + "probability": 0.7789 + }, + { + "start": 20513.19, + "end": 20515.49, + "probability": 0.9371 + }, + { + "start": 20515.99, + "end": 20519.07, + "probability": 0.5605 + }, + { + "start": 20519.39, + "end": 20523.77, + "probability": 0.9814 + }, + { + "start": 20524.61, + "end": 20526.41, + "probability": 0.9259 + }, + { + "start": 20527.93, + "end": 20529.75, + "probability": 0.8639 + }, + { + "start": 20530.39, + "end": 20531.45, + "probability": 0.9042 + }, + { + "start": 20532.63, + "end": 20534.81, + "probability": 0.5881 + }, + { + "start": 20535.87, + "end": 20538.25, + "probability": 0.9358 + }, + { + "start": 20539.39, + "end": 20542.05, + "probability": 0.9871 + }, + { + "start": 20542.75, + "end": 20545.01, + "probability": 0.7991 + }, + { + "start": 20546.41, + "end": 20548.15, + "probability": 0.9944 + }, + { + "start": 20548.25, + "end": 20550.55, + "probability": 0.9966 + }, + { + "start": 20551.23, + "end": 20551.83, + "probability": 0.8115 + }, + { + "start": 20551.97, + "end": 20552.61, + "probability": 0.6724 + }, + { + "start": 20552.69, + "end": 20557.69, + "probability": 0.9338 + }, + { + "start": 20558.37, + "end": 20561.97, + "probability": 0.9679 + }, + { + "start": 20562.53, + "end": 20564.03, + "probability": 0.9688 + }, + { + "start": 20564.19, + "end": 20568.83, + "probability": 0.9512 + }, + { + "start": 20568.99, + "end": 20574.89, + "probability": 0.9929 + }, + { + "start": 20575.73, + "end": 20579.37, + "probability": 0.7674 + }, + { + "start": 20579.79, + "end": 20580.81, + "probability": 0.718 + }, + { + "start": 20580.83, + "end": 20583.81, + "probability": 0.9692 + }, + { + "start": 20584.43, + "end": 20584.81, + "probability": 0.8428 + }, + { + "start": 20585.91, + "end": 20588.33, + "probability": 0.794 + }, + { + "start": 20588.45, + "end": 20589.21, + "probability": 0.5734 + }, + { + "start": 20589.75, + "end": 20592.46, + "probability": 0.2752 + }, + { + "start": 20593.17, + "end": 20594.93, + "probability": 0.8634 + }, + { + "start": 20595.01, + "end": 20596.01, + "probability": 0.8583 + }, + { + "start": 20596.07, + "end": 20597.07, + "probability": 0.5112 + }, + { + "start": 20597.07, + "end": 20598.27, + "probability": 0.1263 + }, + { + "start": 20600.01, + "end": 20601.55, + "probability": 0.8583 + }, + { + "start": 20603.33, + "end": 20604.01, + "probability": 0.1511 + }, + { + "start": 20604.01, + "end": 20604.11, + "probability": 0.0652 + }, + { + "start": 20604.11, + "end": 20604.11, + "probability": 0.168 + }, + { + "start": 20604.11, + "end": 20604.11, + "probability": 0.0442 + }, + { + "start": 20604.11, + "end": 20604.11, + "probability": 0.1979 + }, + { + "start": 20604.11, + "end": 20605.27, + "probability": 0.5428 + }, + { + "start": 20605.47, + "end": 20606.52, + "probability": 0.5613 + }, + { + "start": 20607.05, + "end": 20608.85, + "probability": 0.8277 + }, + { + "start": 20621.78, + "end": 20625.95, + "probability": 0.184 + }, + { + "start": 20625.95, + "end": 20628.29, + "probability": 0.2537 + }, + { + "start": 20628.29, + "end": 20629.3, + "probability": 0.0482 + }, + { + "start": 20629.51, + "end": 20629.55, + "probability": 0.0688 + }, + { + "start": 20630.67, + "end": 20633.89, + "probability": 0.1908 + }, + { + "start": 20633.89, + "end": 20635.57, + "probability": 0.486 + }, + { + "start": 20635.73, + "end": 20637.15, + "probability": 0.5811 + }, + { + "start": 20638.47, + "end": 20639.95, + "probability": 0.8321 + }, + { + "start": 20640.51, + "end": 20643.49, + "probability": 0.9868 + }, + { + "start": 20644.39, + "end": 20645.47, + "probability": 0.706 + }, + { + "start": 20646.39, + "end": 20651.05, + "probability": 0.9153 + }, + { + "start": 20651.27, + "end": 20654.83, + "probability": 0.9913 + }, + { + "start": 20654.83, + "end": 20659.39, + "probability": 0.3265 + }, + { + "start": 20659.83, + "end": 20660.47, + "probability": 0.2762 + }, + { + "start": 20662.51, + "end": 20664.11, + "probability": 0.4345 + }, + { + "start": 20664.73, + "end": 20670.39, + "probability": 0.8365 + }, + { + "start": 20670.51, + "end": 20672.25, + "probability": 0.8328 + }, + { + "start": 20673.67, + "end": 20674.83, + "probability": 0.9069 + }, + { + "start": 20675.83, + "end": 20679.07, + "probability": 0.8808 + }, + { + "start": 20679.99, + "end": 20682.53, + "probability": 0.4745 + }, + { + "start": 20685.42, + "end": 20685.81, + "probability": 0.0564 + }, + { + "start": 20685.81, + "end": 20686.97, + "probability": 0.024 + }, + { + "start": 20687.77, + "end": 20688.39, + "probability": 0.0054 + }, + { + "start": 20693.41, + "end": 20694.39, + "probability": 0.0096 + }, + { + "start": 20695.07, + "end": 20696.15, + "probability": 0.0184 + }, + { + "start": 20715.07, + "end": 20717.75, + "probability": 0.4765 + }, + { + "start": 20718.71, + "end": 20719.69, + "probability": 0.4758 + }, + { + "start": 20721.27, + "end": 20724.37, + "probability": 0.9647 + }, + { + "start": 20724.37, + "end": 20727.67, + "probability": 0.3497 + }, + { + "start": 20728.35, + "end": 20733.47, + "probability": 0.6877 + }, + { + "start": 20734.05, + "end": 20736.57, + "probability": 0.9954 + }, + { + "start": 20736.69, + "end": 20739.61, + "probability": 0.3729 + }, + { + "start": 20740.17, + "end": 20741.75, + "probability": 0.385 + }, + { + "start": 20742.37, + "end": 20750.63, + "probability": 0.8915 + }, + { + "start": 20751.43, + "end": 20752.17, + "probability": 0.8474 + }, + { + "start": 20752.19, + "end": 20752.71, + "probability": 0.7969 + }, + { + "start": 20764.49, + "end": 20765.03, + "probability": 0.4814 + }, + { + "start": 20776.35, + "end": 20776.93, + "probability": 0.3124 + }, + { + "start": 20779.73, + "end": 20782.55, + "probability": 0.9651 + }, + { + "start": 20782.61, + "end": 20786.61, + "probability": 0.5819 + }, + { + "start": 20787.19, + "end": 20789.03, + "probability": 0.4232 + }, + { + "start": 20789.37, + "end": 20789.95, + "probability": 0.0187 + }, + { + "start": 20790.83, + "end": 20792.05, + "probability": 0.1224 + }, + { + "start": 20792.71, + "end": 20793.43, + "probability": 0.1005 + }, + { + "start": 20794.37, + "end": 20795.79, + "probability": 0.0246 + }, + { + "start": 20795.79, + "end": 20798.13, + "probability": 0.1087 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.0, + "end": 20860.0, + "probability": 0.0 + }, + { + "start": 20860.26, + "end": 20860.8, + "probability": 0.0605 + }, + { + "start": 20860.8, + "end": 20864.5, + "probability": 0.8311 + }, + { + "start": 20864.5, + "end": 20874.22, + "probability": 0.9242 + }, + { + "start": 20874.38, + "end": 20876.74, + "probability": 0.8115 + }, + { + "start": 20877.5, + "end": 20881.22, + "probability": 0.9169 + }, + { + "start": 20881.32, + "end": 20884.42, + "probability": 0.9506 + }, + { + "start": 20884.46, + "end": 20886.59, + "probability": 0.8547 + }, + { + "start": 20887.44, + "end": 20890.16, + "probability": 0.7346 + }, + { + "start": 20890.16, + "end": 20892.76, + "probability": 0.9979 + }, + { + "start": 20893.2, + "end": 20894.92, + "probability": 0.9844 + }, + { + "start": 20895.46, + "end": 20898.36, + "probability": 0.9257 + }, + { + "start": 20898.36, + "end": 20901.9, + "probability": 0.9587 + }, + { + "start": 20901.96, + "end": 20903.48, + "probability": 0.8371 + }, + { + "start": 20903.48, + "end": 20906.26, + "probability": 0.7722 + }, + { + "start": 20906.34, + "end": 20906.84, + "probability": 0.7576 + }, + { + "start": 20907.46, + "end": 20910.14, + "probability": 0.7751 + }, + { + "start": 20910.14, + "end": 20913.2, + "probability": 0.8822 + }, + { + "start": 20913.39, + "end": 20916.42, + "probability": 0.9949 + }, + { + "start": 20917.16, + "end": 20920.3, + "probability": 0.7725 + }, + { + "start": 20921.6, + "end": 20922.89, + "probability": 0.2403 + }, + { + "start": 20923.64, + "end": 20924.64, + "probability": 0.9757 + }, + { + "start": 20924.78, + "end": 20925.3, + "probability": 0.7505 + }, + { + "start": 20925.76, + "end": 20929.96, + "probability": 0.9684 + }, + { + "start": 20930.5, + "end": 20932.3, + "probability": 0.9958 + }, + { + "start": 20932.3, + "end": 20934.14, + "probability": 0.9547 + }, + { + "start": 20934.84, + "end": 20936.94, + "probability": 0.991 + }, + { + "start": 20936.94, + "end": 20940.05, + "probability": 0.86 + }, + { + "start": 20941.6, + "end": 20944.18, + "probability": 0.9458 + }, + { + "start": 20944.27, + "end": 20947.82, + "probability": 0.9199 + }, + { + "start": 20948.28, + "end": 20950.28, + "probability": 0.9219 + }, + { + "start": 20950.36, + "end": 20950.78, + "probability": 0.7588 + }, + { + "start": 20951.38, + "end": 20952.58, + "probability": 0.5895 + }, + { + "start": 20952.7, + "end": 20954.8, + "probability": 0.8019 + }, + { + "start": 20954.94, + "end": 20957.26, + "probability": 0.8228 + }, + { + "start": 20958.6, + "end": 20959.3, + "probability": 0.7508 + }, + { + "start": 20959.96, + "end": 20961.24, + "probability": 0.9932 + }, + { + "start": 20962.14, + "end": 20962.82, + "probability": 0.9824 + }, + { + "start": 20963.4, + "end": 20965.48, + "probability": 0.9963 + }, + { + "start": 20966.68, + "end": 20969.4, + "probability": 0.9267 + }, + { + "start": 20970.52, + "end": 20971.16, + "probability": 0.9423 + }, + { + "start": 20971.94, + "end": 20973.13, + "probability": 0.7845 + }, + { + "start": 20973.98, + "end": 20977.04, + "probability": 0.9805 + }, + { + "start": 20978.1, + "end": 20978.8, + "probability": 0.9425 + }, + { + "start": 20979.46, + "end": 20980.78, + "probability": 0.8468 + }, + { + "start": 20981.58, + "end": 20981.94, + "probability": 0.8774 + }, + { + "start": 20985.46, + "end": 20988.22, + "probability": 0.9777 + }, + { + "start": 20991.82, + "end": 20992.9, + "probability": 0.7332 + }, + { + "start": 20994.04, + "end": 20996.26, + "probability": 0.75 + }, + { + "start": 20996.56, + "end": 20997.1, + "probability": 0.9155 + }, + { + "start": 20997.2, + "end": 21001.26, + "probability": 0.8915 + }, + { + "start": 21002.24, + "end": 21004.28, + "probability": 0.99 + }, + { + "start": 21006.5, + "end": 21011.54, + "probability": 0.9807 + }, + { + "start": 21012.8, + "end": 21013.8, + "probability": 0.8387 + }, + { + "start": 21015.1, + "end": 21018.08, + "probability": 0.9785 + }, + { + "start": 21018.66, + "end": 21019.9, + "probability": 0.9154 + }, + { + "start": 21020.08, + "end": 21025.26, + "probability": 0.9099 + }, + { + "start": 21026.32, + "end": 21029.14, + "probability": 0.9971 + }, + { + "start": 21029.8, + "end": 21030.66, + "probability": 0.7397 + }, + { + "start": 21030.86, + "end": 21031.02, + "probability": 0.2537 + }, + { + "start": 21031.08, + "end": 21034.4, + "probability": 0.7887 + }, + { + "start": 21035.56, + "end": 21036.48, + "probability": 0.8846 + }, + { + "start": 21036.62, + "end": 21042.08, + "probability": 0.9686 + }, + { + "start": 21043.38, + "end": 21045.7, + "probability": 0.8345 + }, + { + "start": 21046.3, + "end": 21047.84, + "probability": 0.7917 + }, + { + "start": 21048.34, + "end": 21048.66, + "probability": 0.4039 + }, + { + "start": 21049.14, + "end": 21053.92, + "probability": 0.7921 + }, + { + "start": 21054.74, + "end": 21059.32, + "probability": 0.876 + }, + { + "start": 21060.14, + "end": 21061.36, + "probability": 0.9529 + }, + { + "start": 21062.22, + "end": 21063.8, + "probability": 0.8967 + }, + { + "start": 21064.7, + "end": 21068.54, + "probability": 0.9946 + }, + { + "start": 21068.54, + "end": 21073.36, + "probability": 0.9756 + }, + { + "start": 21074.0, + "end": 21075.9, + "probability": 0.7742 + }, + { + "start": 21077.12, + "end": 21081.42, + "probability": 0.8284 + }, + { + "start": 21081.8, + "end": 21083.76, + "probability": 0.9817 + }, + { + "start": 21084.16, + "end": 21085.3, + "probability": 0.6802 + }, + { + "start": 21085.46, + "end": 21087.72, + "probability": 0.9879 + }, + { + "start": 21088.38, + "end": 21089.02, + "probability": 0.9769 + }, + { + "start": 21091.46, + "end": 21091.96, + "probability": 0.8594 + }, + { + "start": 21092.3, + "end": 21094.2, + "probability": 0.4183 + }, + { + "start": 21094.36, + "end": 21095.28, + "probability": 0.645 + }, + { + "start": 21096.98, + "end": 21101.0, + "probability": 0.8813 + }, + { + "start": 21101.16, + "end": 21104.94, + "probability": 0.9539 + }, + { + "start": 21105.44, + "end": 21107.58, + "probability": 0.8765 + }, + { + "start": 21109.44, + "end": 21111.52, + "probability": 0.9894 + }, + { + "start": 21112.8, + "end": 21113.26, + "probability": 0.2282 + }, + { + "start": 21113.48, + "end": 21115.53, + "probability": 0.9824 + }, + { + "start": 21115.62, + "end": 21120.6, + "probability": 0.9953 + }, + { + "start": 21120.74, + "end": 21121.06, + "probability": 0.75 + }, + { + "start": 21121.7, + "end": 21122.32, + "probability": 0.6937 + }, + { + "start": 21123.61, + "end": 21126.72, + "probability": 0.9564 + }, + { + "start": 21127.44, + "end": 21128.36, + "probability": 0.6037 + }, + { + "start": 21128.92, + "end": 21130.3, + "probability": 0.9883 + }, + { + "start": 21132.1, + "end": 21132.62, + "probability": 0.6104 + }, + { + "start": 21133.6, + "end": 21134.28, + "probability": 0.6661 + }, + { + "start": 21134.96, + "end": 21136.28, + "probability": 0.7876 + }, + { + "start": 21137.26, + "end": 21137.88, + "probability": 0.9371 + }, + { + "start": 21138.42, + "end": 21141.23, + "probability": 0.9556 + }, + { + "start": 21142.56, + "end": 21144.14, + "probability": 0.97 + }, + { + "start": 21144.74, + "end": 21146.1, + "probability": 0.9154 + }, + { + "start": 21159.12, + "end": 21159.64, + "probability": 0.5338 + }, + { + "start": 21159.64, + "end": 21160.46, + "probability": 0.7536 + }, + { + "start": 21160.6, + "end": 21162.66, + "probability": 0.9725 + }, + { + "start": 21163.34, + "end": 21164.92, + "probability": 0.8162 + }, + { + "start": 21164.98, + "end": 21167.52, + "probability": 0.9245 + }, + { + "start": 21167.52, + "end": 21169.94, + "probability": 0.8751 + }, + { + "start": 21170.76, + "end": 21171.74, + "probability": 0.6659 + }, + { + "start": 21171.92, + "end": 21173.04, + "probability": 0.9713 + }, + { + "start": 21173.1, + "end": 21174.48, + "probability": 0.8068 + }, + { + "start": 21175.06, + "end": 21176.93, + "probability": 0.9907 + }, + { + "start": 21177.02, + "end": 21179.44, + "probability": 0.8582 + }, + { + "start": 21180.12, + "end": 21183.72, + "probability": 0.7725 + }, + { + "start": 21184.42, + "end": 21186.26, + "probability": 0.931 + }, + { + "start": 21186.44, + "end": 21188.98, + "probability": 0.9924 + }, + { + "start": 21189.68, + "end": 21191.0, + "probability": 0.936 + }, + { + "start": 21191.0, + "end": 21194.14, + "probability": 0.8162 + }, + { + "start": 21194.32, + "end": 21195.26, + "probability": 0.8493 + }, + { + "start": 21195.6, + "end": 21196.44, + "probability": 0.9739 + }, + { + "start": 21199.74, + "end": 21201.82, + "probability": 0.9727 + }, + { + "start": 21202.44, + "end": 21204.88, + "probability": 0.9253 + }, + { + "start": 21204.96, + "end": 21208.02, + "probability": 0.6136 + }, + { + "start": 21208.02, + "end": 21210.6, + "probability": 0.9795 + }, + { + "start": 21211.08, + "end": 21215.38, + "probability": 0.8123 + }, + { + "start": 21216.04, + "end": 21217.32, + "probability": 0.6677 + }, + { + "start": 21217.98, + "end": 21218.37, + "probability": 0.7273 + }, + { + "start": 21218.52, + "end": 21219.1, + "probability": 0.5297 + }, + { + "start": 21219.34, + "end": 21219.6, + "probability": 0.3474 + }, + { + "start": 21219.66, + "end": 21221.16, + "probability": 0.9478 + }, + { + "start": 21221.22, + "end": 21223.14, + "probability": 0.9897 + }, + { + "start": 21223.8, + "end": 21226.54, + "probability": 0.9842 + }, + { + "start": 21227.28, + "end": 21230.7, + "probability": 0.991 + }, + { + "start": 21230.78, + "end": 21231.62, + "probability": 0.7015 + }, + { + "start": 21231.68, + "end": 21236.38, + "probability": 0.9292 + }, + { + "start": 21236.38, + "end": 21239.16, + "probability": 0.9916 + }, + { + "start": 21239.8, + "end": 21240.66, + "probability": 0.8817 + }, + { + "start": 21240.84, + "end": 21242.58, + "probability": 0.8237 + }, + { + "start": 21243.24, + "end": 21245.1, + "probability": 0.899 + }, + { + "start": 21246.18, + "end": 21247.22, + "probability": 0.8761 + }, + { + "start": 21247.36, + "end": 21250.88, + "probability": 0.8821 + }, + { + "start": 21250.94, + "end": 21252.03, + "probability": 0.6923 + }, + { + "start": 21252.76, + "end": 21253.14, + "probability": 0.7554 + }, + { + "start": 21254.62, + "end": 21256.02, + "probability": 0.9172 + }, + { + "start": 21256.8, + "end": 21261.42, + "probability": 0.9374 + }, + { + "start": 21261.42, + "end": 21263.62, + "probability": 0.8706 + }, + { + "start": 21264.14, + "end": 21266.26, + "probability": 0.9641 + }, + { + "start": 21267.12, + "end": 21267.38, + "probability": 0.6055 + }, + { + "start": 21267.44, + "end": 21268.52, + "probability": 0.9702 + }, + { + "start": 21268.64, + "end": 21269.74, + "probability": 0.871 + }, + { + "start": 21270.34, + "end": 21271.98, + "probability": 0.9874 + }, + { + "start": 21272.54, + "end": 21275.39, + "probability": 0.9787 + }, + { + "start": 21276.14, + "end": 21277.32, + "probability": 0.9928 + }, + { + "start": 21278.16, + "end": 21279.34, + "probability": 0.9858 + }, + { + "start": 21279.84, + "end": 21282.62, + "probability": 0.9642 + }, + { + "start": 21283.02, + "end": 21284.84, + "probability": 0.9278 + }, + { + "start": 21284.84, + "end": 21287.74, + "probability": 0.9946 + }, + { + "start": 21288.18, + "end": 21292.9, + "probability": 0.6426 + }, + { + "start": 21292.96, + "end": 21293.52, + "probability": 0.4777 + }, + { + "start": 21293.94, + "end": 21294.73, + "probability": 0.6155 + }, + { + "start": 21294.8, + "end": 21295.68, + "probability": 0.8958 + }, + { + "start": 21296.2, + "end": 21299.28, + "probability": 0.855 + }, + { + "start": 21299.34, + "end": 21301.48, + "probability": 0.9239 + }, + { + "start": 21301.9, + "end": 21302.26, + "probability": 0.6446 + }, + { + "start": 21302.98, + "end": 21306.48, + "probability": 0.8015 + }, + { + "start": 21306.48, + "end": 21306.48, + "probability": 0.1645 + }, + { + "start": 21306.48, + "end": 21306.9, + "probability": 0.6143 + }, + { + "start": 21307.78, + "end": 21310.64, + "probability": 0.9254 + }, + { + "start": 21311.52, + "end": 21314.36, + "probability": 0.7363 + }, + { + "start": 21315.02, + "end": 21316.26, + "probability": 0.5818 + }, + { + "start": 21318.4, + "end": 21321.83, + "probability": 0.9801 + }, + { + "start": 21327.0, + "end": 21327.74, + "probability": 0.7262 + }, + { + "start": 21329.38, + "end": 21330.58, + "probability": 0.6455 + }, + { + "start": 21330.72, + "end": 21331.32, + "probability": 0.8442 + }, + { + "start": 21331.42, + "end": 21332.88, + "probability": 0.6486 + }, + { + "start": 21332.96, + "end": 21334.5, + "probability": 0.7093 + }, + { + "start": 21335.58, + "end": 21339.76, + "probability": 0.9741 + }, + { + "start": 21340.52, + "end": 21342.88, + "probability": 0.8891 + }, + { + "start": 21343.0, + "end": 21343.8, + "probability": 0.8397 + }, + { + "start": 21345.0, + "end": 21345.68, + "probability": 0.7444 + }, + { + "start": 21345.88, + "end": 21346.72, + "probability": 0.9861 + }, + { + "start": 21346.88, + "end": 21347.04, + "probability": 0.5994 + }, + { + "start": 21347.08, + "end": 21347.45, + "probability": 0.9603 + }, + { + "start": 21347.86, + "end": 21348.83, + "probability": 0.9912 + }, + { + "start": 21349.06, + "end": 21349.72, + "probability": 0.9083 + }, + { + "start": 21350.22, + "end": 21351.14, + "probability": 0.8864 + }, + { + "start": 21351.18, + "end": 21352.36, + "probability": 0.8916 + }, + { + "start": 21352.64, + "end": 21355.34, + "probability": 0.5159 + }, + { + "start": 21356.52, + "end": 21359.0, + "probability": 0.8796 + }, + { + "start": 21362.56, + "end": 21363.94, + "probability": 0.6956 + }, + { + "start": 21364.0, + "end": 21366.7, + "probability": 0.9254 + }, + { + "start": 21368.1, + "end": 21372.62, + "probability": 0.9794 + }, + { + "start": 21373.2, + "end": 21375.46, + "probability": 0.8609 + }, + { + "start": 21376.06, + "end": 21377.24, + "probability": 0.9893 + }, + { + "start": 21378.27, + "end": 21379.71, + "probability": 0.562 + }, + { + "start": 21381.74, + "end": 21388.08, + "probability": 0.9155 + }, + { + "start": 21388.42, + "end": 21389.4, + "probability": 0.9206 + }, + { + "start": 21389.54, + "end": 21390.54, + "probability": 0.8999 + }, + { + "start": 21391.02, + "end": 21392.98, + "probability": 0.9031 + }, + { + "start": 21393.42, + "end": 21394.68, + "probability": 0.9736 + }, + { + "start": 21395.24, + "end": 21399.01, + "probability": 0.6779 + }, + { + "start": 21400.02, + "end": 21401.32, + "probability": 0.8967 + }, + { + "start": 21402.78, + "end": 21404.0, + "probability": 0.9508 + }, + { + "start": 21404.92, + "end": 21405.78, + "probability": 0.8707 + }, + { + "start": 21406.74, + "end": 21408.42, + "probability": 0.9193 + }, + { + "start": 21409.02, + "end": 21412.28, + "probability": 0.9762 + }, + { + "start": 21413.48, + "end": 21415.96, + "probability": 0.9988 + }, + { + "start": 21417.56, + "end": 21417.7, + "probability": 0.3987 + }, + { + "start": 21419.04, + "end": 21419.64, + "probability": 0.8987 + }, + { + "start": 21420.74, + "end": 21425.02, + "probability": 0.9869 + }, + { + "start": 21425.76, + "end": 21428.66, + "probability": 0.7908 + }, + { + "start": 21429.8, + "end": 21431.32, + "probability": 0.629 + }, + { + "start": 21431.84, + "end": 21433.6, + "probability": 0.9434 + }, + { + "start": 21435.0, + "end": 21435.46, + "probability": 0.022 + }, + { + "start": 21435.46, + "end": 21437.06, + "probability": 0.6371 + }, + { + "start": 21437.92, + "end": 21438.58, + "probability": 0.7754 + }, + { + "start": 21438.7, + "end": 21440.92, + "probability": 0.3764 + }, + { + "start": 21441.58, + "end": 21441.9, + "probability": 0.5218 + }, + { + "start": 21442.0, + "end": 21442.9, + "probability": 0.7579 + }, + { + "start": 21442.96, + "end": 21446.8, + "probability": 0.9672 + }, + { + "start": 21446.94, + "end": 21447.14, + "probability": 0.192 + }, + { + "start": 21448.22, + "end": 21448.7, + "probability": 0.8395 + }, + { + "start": 21449.02, + "end": 21452.98, + "probability": 0.9237 + }, + { + "start": 21455.46, + "end": 21456.24, + "probability": 0.947 + }, + { + "start": 21456.96, + "end": 21457.82, + "probability": 0.9501 + }, + { + "start": 21459.02, + "end": 21462.44, + "probability": 0.9976 + }, + { + "start": 21463.34, + "end": 21468.02, + "probability": 0.979 + }, + { + "start": 21468.62, + "end": 21469.0, + "probability": 0.5898 + }, + { + "start": 21469.6, + "end": 21471.42, + "probability": 0.9116 + }, + { + "start": 21471.5, + "end": 21473.24, + "probability": 0.9905 + }, + { + "start": 21473.66, + "end": 21476.12, + "probability": 0.9383 + }, + { + "start": 21476.54, + "end": 21479.36, + "probability": 0.9691 + }, + { + "start": 21481.12, + "end": 21482.22, + "probability": 0.9871 + }, + { + "start": 21483.02, + "end": 21484.28, + "probability": 0.4889 + }, + { + "start": 21484.32, + "end": 21485.22, + "probability": 0.6343 + }, + { + "start": 21485.28, + "end": 21487.02, + "probability": 0.8883 + }, + { + "start": 21487.48, + "end": 21491.04, + "probability": 0.8992 + }, + { + "start": 21491.24, + "end": 21492.66, + "probability": 0.959 + }, + { + "start": 21493.74, + "end": 21496.36, + "probability": 0.9885 + }, + { + "start": 21496.68, + "end": 21497.3, + "probability": 0.3521 + }, + { + "start": 21497.5, + "end": 21497.98, + "probability": 0.8665 + }, + { + "start": 21498.6, + "end": 21499.42, + "probability": 0.9458 + }, + { + "start": 21499.78, + "end": 21500.14, + "probability": 0.8964 + }, + { + "start": 21501.4, + "end": 21502.88, + "probability": 0.5597 + }, + { + "start": 21503.34, + "end": 21505.24, + "probability": 0.7621 + }, + { + "start": 21505.64, + "end": 21509.2, + "probability": 0.7062 + }, + { + "start": 21509.76, + "end": 21511.56, + "probability": 0.2239 + }, + { + "start": 21511.68, + "end": 21513.7, + "probability": 0.5042 + }, + { + "start": 21514.02, + "end": 21515.54, + "probability": 0.9287 + }, + { + "start": 21516.78, + "end": 21517.06, + "probability": 0.2115 + }, + { + "start": 21525.86, + "end": 21527.58, + "probability": 0.0117 + }, + { + "start": 21527.58, + "end": 21527.92, + "probability": 0.025 + }, + { + "start": 21527.92, + "end": 21527.92, + "probability": 0.1843 + }, + { + "start": 21527.92, + "end": 21527.92, + "probability": 0.0591 + }, + { + "start": 21528.56, + "end": 21528.86, + "probability": 0.1608 + }, + { + "start": 21547.68, + "end": 21548.52, + "probability": 0.3806 + }, + { + "start": 21550.06, + "end": 21551.54, + "probability": 0.8279 + }, + { + "start": 21552.24, + "end": 21553.3, + "probability": 0.1639 + }, + { + "start": 21553.92, + "end": 21556.9, + "probability": 0.1029 + }, + { + "start": 21557.5, + "end": 21562.02, + "probability": 0.9718 + }, + { + "start": 21563.28, + "end": 21563.72, + "probability": 0.6584 + }, + { + "start": 21563.98, + "end": 21564.44, + "probability": 0.9852 + }, + { + "start": 21564.54, + "end": 21568.0, + "probability": 0.9872 + }, + { + "start": 21568.54, + "end": 21571.7, + "probability": 0.3584 + }, + { + "start": 21572.38, + "end": 21574.76, + "probability": 0.936 + }, + { + "start": 21575.08, + "end": 21575.76, + "probability": 0.9144 + }, + { + "start": 21584.66, + "end": 21585.62, + "probability": 0.6595 + }, + { + "start": 21585.78, + "end": 21586.6, + "probability": 0.7105 + }, + { + "start": 21586.78, + "end": 21591.46, + "probability": 0.9816 + }, + { + "start": 21591.46, + "end": 21594.92, + "probability": 0.9948 + }, + { + "start": 21595.1, + "end": 21595.88, + "probability": 0.8092 + }, + { + "start": 21596.56, + "end": 21598.5, + "probability": 0.9937 + }, + { + "start": 21598.5, + "end": 21601.5, + "probability": 0.9323 + }, + { + "start": 21601.7, + "end": 21604.88, + "probability": 0.8198 + }, + { + "start": 21605.0, + "end": 21607.08, + "probability": 0.9394 + }, + { + "start": 21607.18, + "end": 21608.6, + "probability": 0.9186 + }, + { + "start": 21608.7, + "end": 21609.08, + "probability": 0.9661 + }, + { + "start": 21609.82, + "end": 21611.5, + "probability": 0.9997 + }, + { + "start": 21611.88, + "end": 21617.22, + "probability": 0.994 + }, + { + "start": 21617.42, + "end": 21621.32, + "probability": 0.9927 + }, + { + "start": 21621.46, + "end": 21624.12, + "probability": 0.9941 + }, + { + "start": 21624.22, + "end": 21627.38, + "probability": 0.9783 + }, + { + "start": 21627.5, + "end": 21630.12, + "probability": 0.9348 + }, + { + "start": 21630.6, + "end": 21632.48, + "probability": 0.9846 + }, + { + "start": 21633.14, + "end": 21635.42, + "probability": 0.9683 + }, + { + "start": 21635.68, + "end": 21636.8, + "probability": 0.9311 + }, + { + "start": 21637.36, + "end": 21640.0, + "probability": 0.9766 + }, + { + "start": 21640.62, + "end": 21643.28, + "probability": 0.9668 + }, + { + "start": 21643.28, + "end": 21646.74, + "probability": 0.991 + }, + { + "start": 21646.9, + "end": 21649.04, + "probability": 0.9985 + }, + { + "start": 21649.86, + "end": 21652.5, + "probability": 0.6865 + }, + { + "start": 21653.22, + "end": 21657.36, + "probability": 0.9654 + }, + { + "start": 21657.9, + "end": 21662.04, + "probability": 0.9928 + }, + { + "start": 21662.12, + "end": 21668.16, + "probability": 0.9623 + }, + { + "start": 21668.82, + "end": 21671.0, + "probability": 0.8893 + }, + { + "start": 21672.84, + "end": 21674.02, + "probability": 0.4647 + }, + { + "start": 21674.46, + "end": 21677.38, + "probability": 0.9197 + }, + { + "start": 21677.72, + "end": 21680.3, + "probability": 0.8521 + }, + { + "start": 21680.3, + "end": 21683.2, + "probability": 0.9788 + }, + { + "start": 21683.66, + "end": 21686.72, + "probability": 0.8775 + }, + { + "start": 21687.28, + "end": 21691.3, + "probability": 0.9884 + }, + { + "start": 21691.4, + "end": 21692.64, + "probability": 0.9943 + }, + { + "start": 21693.42, + "end": 21697.26, + "probability": 0.9963 + }, + { + "start": 21697.65, + "end": 21700.86, + "probability": 0.6632 + }, + { + "start": 21700.92, + "end": 21703.02, + "probability": 0.8067 + }, + { + "start": 21703.1, + "end": 21706.64, + "probability": 0.896 + }, + { + "start": 21707.44, + "end": 21710.16, + "probability": 0.4988 + }, + { + "start": 21710.24, + "end": 21711.88, + "probability": 0.8224 + }, + { + "start": 21712.7, + "end": 21714.2, + "probability": 0.9309 + }, + { + "start": 21714.22, + "end": 21718.56, + "probability": 0.9375 + }, + { + "start": 21718.64, + "end": 21721.52, + "probability": 0.949 + }, + { + "start": 21721.6, + "end": 21723.16, + "probability": 0.8953 + }, + { + "start": 21723.64, + "end": 21724.7, + "probability": 0.878 + }, + { + "start": 21725.42, + "end": 21727.58, + "probability": 0.9942 + }, + { + "start": 21727.68, + "end": 21731.38, + "probability": 0.9854 + }, + { + "start": 21731.38, + "end": 21735.5, + "probability": 0.9974 + }, + { + "start": 21735.64, + "end": 21738.1, + "probability": 0.8866 + }, + { + "start": 21738.18, + "end": 21738.8, + "probability": 0.8337 + }, + { + "start": 21738.92, + "end": 21742.54, + "probability": 0.9934 + }, + { + "start": 21743.86, + "end": 21746.98, + "probability": 0.9926 + }, + { + "start": 21747.68, + "end": 21749.32, + "probability": 0.8748 + }, + { + "start": 21750.22, + "end": 21751.56, + "probability": 0.9168 + }, + { + "start": 21751.86, + "end": 21753.32, + "probability": 0.4916 + }, + { + "start": 21753.8, + "end": 21755.22, + "probability": 0.9865 + }, + { + "start": 21755.72, + "end": 21756.32, + "probability": 0.8611 + }, + { + "start": 21756.7, + "end": 21758.18, + "probability": 0.9534 + }, + { + "start": 21759.12, + "end": 21762.16, + "probability": 0.9797 + }, + { + "start": 21762.94, + "end": 21763.5, + "probability": 0.503 + }, + { + "start": 21764.28, + "end": 21765.54, + "probability": 0.8234 + }, + { + "start": 21766.04, + "end": 21766.4, + "probability": 0.1161 + }, + { + "start": 21766.7, + "end": 21767.32, + "probability": 0.2974 + }, + { + "start": 21767.76, + "end": 21769.6, + "probability": 0.6577 + }, + { + "start": 21780.04, + "end": 21780.04, + "probability": 0.4803 + }, + { + "start": 21780.04, + "end": 21783.52, + "probability": 0.9739 + }, + { + "start": 21784.2, + "end": 21785.92, + "probability": 0.936 + }, + { + "start": 21787.56, + "end": 21791.62, + "probability": 0.9771 + }, + { + "start": 21792.78, + "end": 21794.14, + "probability": 0.9927 + }, + { + "start": 21794.78, + "end": 21796.74, + "probability": 0.4569 + }, + { + "start": 21797.72, + "end": 21799.62, + "probability": 0.8404 + }, + { + "start": 21800.28, + "end": 21801.3, + "probability": 0.728 + }, + { + "start": 21803.1, + "end": 21807.16, + "probability": 0.9258 + }, + { + "start": 21808.14, + "end": 21809.84, + "probability": 0.9439 + }, + { + "start": 21810.66, + "end": 21817.32, + "probability": 0.9767 + }, + { + "start": 21817.64, + "end": 21818.12, + "probability": 0.8236 + }, + { + "start": 21818.36, + "end": 21819.0, + "probability": 0.8685 + }, + { + "start": 21819.6, + "end": 21820.68, + "probability": 0.7859 + }, + { + "start": 21821.68, + "end": 21824.36, + "probability": 0.9315 + }, + { + "start": 21825.3, + "end": 21829.7, + "probability": 0.993 + }, + { + "start": 21830.62, + "end": 21832.24, + "probability": 0.9729 + }, + { + "start": 21832.92, + "end": 21835.3, + "probability": 0.9862 + }, + { + "start": 21835.86, + "end": 21836.72, + "probability": 0.6944 + }, + { + "start": 21837.34, + "end": 21838.96, + "probability": 0.9812 + }, + { + "start": 21840.44, + "end": 21843.86, + "probability": 0.8097 + }, + { + "start": 21843.9, + "end": 21846.92, + "probability": 0.9813 + }, + { + "start": 21849.22, + "end": 21853.24, + "probability": 0.8398 + }, + { + "start": 21853.88, + "end": 21857.16, + "probability": 0.7437 + }, + { + "start": 21857.16, + "end": 21862.92, + "probability": 0.804 + }, + { + "start": 21863.62, + "end": 21866.1, + "probability": 0.6211 + }, + { + "start": 21866.7, + "end": 21873.67, + "probability": 0.9072 + }, + { + "start": 21874.92, + "end": 21876.46, + "probability": 0.0227 + }, + { + "start": 21876.46, + "end": 21878.0, + "probability": 0.8618 + }, + { + "start": 21878.2, + "end": 21882.62, + "probability": 0.8907 + }, + { + "start": 21882.68, + "end": 21883.88, + "probability": 0.7401 + }, + { + "start": 21884.2, + "end": 21887.12, + "probability": 0.9336 + }, + { + "start": 21887.44, + "end": 21888.56, + "probability": 0.9353 + }, + { + "start": 21888.9, + "end": 21890.58, + "probability": 0.98 + }, + { + "start": 21891.1, + "end": 21892.48, + "probability": 0.7201 + }, + { + "start": 21893.54, + "end": 21894.45, + "probability": 0.4189 + }, + { + "start": 21895.7, + "end": 21897.38, + "probability": 0.9248 + }, + { + "start": 21898.98, + "end": 21900.86, + "probability": 0.8905 + }, + { + "start": 21902.38, + "end": 21905.72, + "probability": 0.9529 + }, + { + "start": 21905.72, + "end": 21909.06, + "probability": 0.7595 + }, + { + "start": 21909.54, + "end": 21911.92, + "probability": 0.9004 + }, + { + "start": 21912.4, + "end": 21914.2, + "probability": 0.6628 + }, + { + "start": 21914.74, + "end": 21916.76, + "probability": 0.7077 + }, + { + "start": 21917.72, + "end": 21921.72, + "probability": 0.9773 + }, + { + "start": 21922.3, + "end": 21924.46, + "probability": 0.9846 + }, + { + "start": 21925.02, + "end": 21925.2, + "probability": 0.7848 + }, + { + "start": 21927.36, + "end": 21930.32, + "probability": 0.7454 + }, + { + "start": 21930.32, + "end": 21930.53, + "probability": 0.4043 + }, + { + "start": 21932.06, + "end": 21932.68, + "probability": 0.3773 + }, + { + "start": 21932.74, + "end": 21933.98, + "probability": 0.8477 + }, + { + "start": 21934.46, + "end": 21936.23, + "probability": 0.6983 + }, + { + "start": 21939.84, + "end": 21942.24, + "probability": 0.9205 + }, + { + "start": 21942.5, + "end": 21944.52, + "probability": 0.7537 + }, + { + "start": 21948.5, + "end": 21950.1, + "probability": 0.7291 + }, + { + "start": 21952.22, + "end": 21954.84, + "probability": 0.9898 + }, + { + "start": 21954.84, + "end": 21959.32, + "probability": 0.6731 + }, + { + "start": 21962.86, + "end": 21965.14, + "probability": 0.0233 + }, + { + "start": 21967.48, + "end": 21969.56, + "probability": 0.0666 + }, + { + "start": 21969.56, + "end": 21969.56, + "probability": 0.6599 + }, + { + "start": 21969.56, + "end": 21969.56, + "probability": 0.7508 + }, + { + "start": 21969.56, + "end": 21969.78, + "probability": 0.7434 + }, + { + "start": 21970.46, + "end": 21975.02, + "probability": 0.8535 + }, + { + "start": 21975.56, + "end": 21978.88, + "probability": 0.9848 + }, + { + "start": 21979.02, + "end": 21981.38, + "probability": 0.9719 + }, + { + "start": 21982.8, + "end": 21984.96, + "probability": 0.6685 + }, + { + "start": 21985.2, + "end": 21987.64, + "probability": 0.993 + }, + { + "start": 21988.52, + "end": 21992.82, + "probability": 0.9934 + }, + { + "start": 21992.82, + "end": 21996.72, + "probability": 0.881 + }, + { + "start": 21997.14, + "end": 21998.98, + "probability": 0.2105 + }, + { + "start": 21999.04, + "end": 21999.86, + "probability": 0.8181 + }, + { + "start": 22000.22, + "end": 22004.78, + "probability": 0.9756 + }, + { + "start": 22005.02, + "end": 22005.3, + "probability": 0.718 + }, + { + "start": 22006.44, + "end": 22008.12, + "probability": 0.9805 + }, + { + "start": 22009.86, + "end": 22012.12, + "probability": 0.6195 + }, + { + "start": 22013.22, + "end": 22013.94, + "probability": 0.2223 + }, + { + "start": 22014.56, + "end": 22018.78, + "probability": 0.1072 + }, + { + "start": 22019.46, + "end": 22022.72, + "probability": 0.7423 + }, + { + "start": 22024.0, + "end": 22026.04, + "probability": 0.6609 + }, + { + "start": 22026.92, + "end": 22030.32, + "probability": 0.5782 + }, + { + "start": 22031.28, + "end": 22033.86, + "probability": 0.979 + }, + { + "start": 22034.56, + "end": 22038.08, + "probability": 0.8553 + }, + { + "start": 22038.08, + "end": 22040.3, + "probability": 0.7206 + }, + { + "start": 22041.02, + "end": 22045.38, + "probability": 0.9785 + }, + { + "start": 22046.04, + "end": 22048.84, + "probability": 0.9952 + }, + { + "start": 22049.4, + "end": 22052.56, + "probability": 0.9838 + }, + { + "start": 22053.64, + "end": 22059.44, + "probability": 0.9409 + }, + { + "start": 22060.44, + "end": 22065.48, + "probability": 0.9974 + }, + { + "start": 22065.62, + "end": 22070.5, + "probability": 0.9969 + }, + { + "start": 22071.2, + "end": 22075.32, + "probability": 0.9906 + }, + { + "start": 22076.1, + "end": 22078.72, + "probability": 0.881 + }, + { + "start": 22079.42, + "end": 22086.38, + "probability": 0.7727 + }, + { + "start": 22086.96, + "end": 22088.4, + "probability": 0.9832 + }, + { + "start": 22089.76, + "end": 22092.06, + "probability": 0.9632 + }, + { + "start": 22092.66, + "end": 22098.44, + "probability": 0.9966 + }, + { + "start": 22099.12, + "end": 22101.6, + "probability": 0.9964 + }, + { + "start": 22102.18, + "end": 22103.6, + "probability": 0.8608 + }, + { + "start": 22104.4, + "end": 22110.38, + "probability": 0.9944 + }, + { + "start": 22111.48, + "end": 22111.78, + "probability": 0.8917 + }, + { + "start": 22112.85, + "end": 22116.1, + "probability": 0.611 + }, + { + "start": 22116.64, + "end": 22125.28, + "probability": 0.9923 + }, + { + "start": 22125.34, + "end": 22129.66, + "probability": 0.9203 + }, + { + "start": 22130.26, + "end": 22132.04, + "probability": 0.9379 + }, + { + "start": 22132.86, + "end": 22137.87, + "probability": 0.9585 + }, + { + "start": 22138.8, + "end": 22140.36, + "probability": 0.7815 + }, + { + "start": 22140.92, + "end": 22144.36, + "probability": 0.9971 + }, + { + "start": 22145.2, + "end": 22149.64, + "probability": 0.9585 + }, + { + "start": 22150.44, + "end": 22154.88, + "probability": 0.9408 + }, + { + "start": 22155.56, + "end": 22157.08, + "probability": 0.6534 + }, + { + "start": 22157.74, + "end": 22162.56, + "probability": 0.9699 + }, + { + "start": 22163.14, + "end": 22164.56, + "probability": 0.9463 + }, + { + "start": 22165.38, + "end": 22169.24, + "probability": 0.9563 + }, + { + "start": 22169.86, + "end": 22172.52, + "probability": 0.9819 + }, + { + "start": 22173.54, + "end": 22177.4, + "probability": 0.8144 + }, + { + "start": 22177.98, + "end": 22180.74, + "probability": 0.9026 + }, + { + "start": 22181.44, + "end": 22185.12, + "probability": 0.99 + }, + { + "start": 22185.18, + "end": 22188.4, + "probability": 0.9875 + }, + { + "start": 22189.26, + "end": 22193.78, + "probability": 0.9084 + }, + { + "start": 22194.52, + "end": 22196.84, + "probability": 0.9503 + }, + { + "start": 22197.24, + "end": 22200.06, + "probability": 0.8361 + }, + { + "start": 22201.06, + "end": 22205.24, + "probability": 0.8606 + }, + { + "start": 22205.42, + "end": 22205.72, + "probability": 0.918 + }, + { + "start": 22206.28, + "end": 22212.86, + "probability": 0.9984 + }, + { + "start": 22213.72, + "end": 22214.12, + "probability": 0.6146 + }, + { + "start": 22214.28, + "end": 22215.06, + "probability": 0.6903 + }, + { + "start": 22215.26, + "end": 22219.32, + "probability": 0.9835 + }, + { + "start": 22220.14, + "end": 22224.7, + "probability": 0.9935 + }, + { + "start": 22225.44, + "end": 22228.32, + "probability": 0.8788 + }, + { + "start": 22228.86, + "end": 22233.14, + "probability": 0.999 + }, + { + "start": 22233.66, + "end": 22235.44, + "probability": 0.7224 + }, + { + "start": 22235.96, + "end": 22240.4, + "probability": 0.9861 + }, + { + "start": 22241.14, + "end": 22242.58, + "probability": 0.9305 + }, + { + "start": 22243.1, + "end": 22246.42, + "probability": 0.9045 + }, + { + "start": 22246.48, + "end": 22250.36, + "probability": 0.8036 + }, + { + "start": 22251.16, + "end": 22257.4, + "probability": 0.9963 + }, + { + "start": 22258.48, + "end": 22262.46, + "probability": 0.9869 + }, + { + "start": 22263.04, + "end": 22268.44, + "probability": 0.9224 + }, + { + "start": 22269.24, + "end": 22272.6, + "probability": 0.9846 + }, + { + "start": 22273.18, + "end": 22277.86, + "probability": 0.9857 + }, + { + "start": 22278.74, + "end": 22282.84, + "probability": 0.9887 + }, + { + "start": 22283.74, + "end": 22286.28, + "probability": 0.9956 + }, + { + "start": 22286.9, + "end": 22290.18, + "probability": 0.8019 + }, + { + "start": 22290.82, + "end": 22294.66, + "probability": 0.998 + }, + { + "start": 22295.5, + "end": 22298.76, + "probability": 0.8751 + }, + { + "start": 22298.76, + "end": 22303.2, + "probability": 0.9976 + }, + { + "start": 22303.6, + "end": 22304.22, + "probability": 0.7651 + }, + { + "start": 22304.34, + "end": 22307.5, + "probability": 0.7232 + }, + { + "start": 22308.44, + "end": 22311.44, + "probability": 0.9767 + }, + { + "start": 22312.0, + "end": 22319.0, + "probability": 0.9643 + }, + { + "start": 22319.0, + "end": 22325.42, + "probability": 0.9971 + }, + { + "start": 22326.46, + "end": 22329.56, + "probability": 0.6855 + }, + { + "start": 22330.22, + "end": 22337.62, + "probability": 0.9964 + }, + { + "start": 22338.54, + "end": 22341.38, + "probability": 0.9961 + }, + { + "start": 22341.94, + "end": 22346.94, + "probability": 0.9835 + }, + { + "start": 22346.94, + "end": 22352.98, + "probability": 0.9983 + }, + { + "start": 22353.92, + "end": 22354.62, + "probability": 0.5548 + }, + { + "start": 22354.78, + "end": 22357.36, + "probability": 0.9985 + }, + { + "start": 22357.92, + "end": 22365.02, + "probability": 0.9942 + }, + { + "start": 22366.18, + "end": 22369.22, + "probability": 0.8291 + }, + { + "start": 22372.14, + "end": 22379.52, + "probability": 0.9773 + }, + { + "start": 22380.06, + "end": 22380.18, + "probability": 0.3938 + }, + { + "start": 22381.76, + "end": 22385.82, + "probability": 0.7205 + }, + { + "start": 22386.08, + "end": 22387.42, + "probability": 0.7464 + }, + { + "start": 22390.58, + "end": 22391.04, + "probability": 0.2937 + }, + { + "start": 22391.04, + "end": 22391.04, + "probability": 0.2116 + }, + { + "start": 22391.04, + "end": 22391.54, + "probability": 0.6439 + }, + { + "start": 22391.86, + "end": 22392.28, + "probability": 0.6156 + }, + { + "start": 22392.36, + "end": 22393.7, + "probability": 0.8299 + }, + { + "start": 22394.24, + "end": 22396.24, + "probability": 0.8791 + }, + { + "start": 22396.94, + "end": 22401.58, + "probability": 0.8807 + }, + { + "start": 22402.16, + "end": 22402.56, + "probability": 0.6251 + }, + { + "start": 22403.5, + "end": 22405.42, + "probability": 0.7643 + }, + { + "start": 22415.96, + "end": 22415.96, + "probability": 0.428 + }, + { + "start": 22415.96, + "end": 22415.96, + "probability": 0.1588 + }, + { + "start": 22415.96, + "end": 22415.96, + "probability": 0.0581 + }, + { + "start": 22415.96, + "end": 22415.96, + "probability": 0.0212 + }, + { + "start": 22415.96, + "end": 22415.96, + "probability": 0.0663 + }, + { + "start": 22432.28, + "end": 22435.08, + "probability": 0.6939 + }, + { + "start": 22435.6, + "end": 22439.58, + "probability": 0.989 + }, + { + "start": 22439.62, + "end": 22440.18, + "probability": 0.6819 + }, + { + "start": 22440.96, + "end": 22442.82, + "probability": 0.8033 + }, + { + "start": 22442.82, + "end": 22445.26, + "probability": 0.9929 + }, + { + "start": 22445.94, + "end": 22447.24, + "probability": 0.878 + }, + { + "start": 22447.32, + "end": 22452.1, + "probability": 0.7676 + }, + { + "start": 22453.0, + "end": 22456.16, + "probability": 0.9823 + }, + { + "start": 22456.26, + "end": 22457.86, + "probability": 0.9617 + }, + { + "start": 22458.5, + "end": 22460.74, + "probability": 0.8832 + }, + { + "start": 22462.08, + "end": 22464.28, + "probability": 0.8371 + }, + { + "start": 22464.34, + "end": 22464.92, + "probability": 0.8617 + }, + { + "start": 22465.32, + "end": 22465.66, + "probability": 0.2888 + }, + { + "start": 22465.78, + "end": 22466.44, + "probability": 0.5136 + }, + { + "start": 22466.96, + "end": 22467.26, + "probability": 0.1542 + }, + { + "start": 22467.4, + "end": 22468.92, + "probability": 0.3 + }, + { + "start": 22470.12, + "end": 22471.96, + "probability": 0.6644 + }, + { + "start": 22472.82, + "end": 22473.68, + "probability": 0.8837 + }, + { + "start": 22473.84, + "end": 22475.52, + "probability": 0.7883 + }, + { + "start": 22475.78, + "end": 22477.1, + "probability": 0.9934 + }, + { + "start": 22477.34, + "end": 22477.98, + "probability": 0.2621 + }, + { + "start": 22478.76, + "end": 22481.76, + "probability": 0.6007 + }, + { + "start": 22481.76, + "end": 22483.58, + "probability": 0.7701 + }, + { + "start": 22484.18, + "end": 22487.02, + "probability": 0.9722 + }, + { + "start": 22487.02, + "end": 22490.22, + "probability": 0.9729 + }, + { + "start": 22490.58, + "end": 22493.14, + "probability": 0.8126 + }, + { + "start": 22493.7, + "end": 22498.26, + "probability": 0.9426 + }, + { + "start": 22499.04, + "end": 22499.7, + "probability": 0.124 + }, + { + "start": 22500.24, + "end": 22503.36, + "probability": 0.749 + }, + { + "start": 22503.36, + "end": 22506.52, + "probability": 0.9897 + }, + { + "start": 22507.02, + "end": 22507.02, + "probability": 0.1221 + }, + { + "start": 22507.8, + "end": 22510.2, + "probability": 0.8685 + }, + { + "start": 22510.2, + "end": 22513.46, + "probability": 0.8939 + }, + { + "start": 22513.46, + "end": 22515.84, + "probability": 0.6819 + }, + { + "start": 22516.38, + "end": 22519.88, + "probability": 0.9189 + }, + { + "start": 22520.14, + "end": 22521.03, + "probability": 0.0062 + }, + { + "start": 22522.0, + "end": 22523.43, + "probability": 0.609 + }, + { + "start": 22524.08, + "end": 22525.64, + "probability": 0.8363 + }, + { + "start": 22527.86, + "end": 22529.26, + "probability": 0.2499 + }, + { + "start": 22532.18, + "end": 22532.44, + "probability": 0.0237 + }, + { + "start": 22532.44, + "end": 22532.44, + "probability": 0.0304 + }, + { + "start": 22532.44, + "end": 22533.2, + "probability": 0.0629 + }, + { + "start": 22533.32, + "end": 22535.74, + "probability": 0.4408 + }, + { + "start": 22536.3, + "end": 22537.12, + "probability": 0.8883 + }, + { + "start": 22537.2, + "end": 22540.12, + "probability": 0.8736 + }, + { + "start": 22540.9, + "end": 22541.56, + "probability": 0.5299 + }, + { + "start": 22541.62, + "end": 22542.88, + "probability": 0.9204 + }, + { + "start": 22543.84, + "end": 22546.32, + "probability": 0.8912 + }, + { + "start": 22546.8, + "end": 22552.42, + "probability": 0.984 + }, + { + "start": 22552.42, + "end": 22555.76, + "probability": 0.9961 + }, + { + "start": 22555.94, + "end": 22556.28, + "probability": 0.6814 + }, + { + "start": 22556.94, + "end": 22559.88, + "probability": 0.6744 + }, + { + "start": 22560.58, + "end": 22563.94, + "probability": 0.9118 + }, + { + "start": 22564.66, + "end": 22569.64, + "probability": 0.9602 + }, + { + "start": 22569.72, + "end": 22570.45, + "probability": 0.9694 + }, + { + "start": 22571.58, + "end": 22574.04, + "probability": 0.8242 + }, + { + "start": 22574.1, + "end": 22575.62, + "probability": 0.8146 + }, + { + "start": 22575.96, + "end": 22576.72, + "probability": 0.9397 + }, + { + "start": 22577.14, + "end": 22580.22, + "probability": 0.8043 + }, + { + "start": 22580.86, + "end": 22581.2, + "probability": 0.7507 + }, + { + "start": 22581.4, + "end": 22582.24, + "probability": 0.9207 + }, + { + "start": 22582.32, + "end": 22583.06, + "probability": 0.9516 + }, + { + "start": 22583.16, + "end": 22584.48, + "probability": 0.8993 + }, + { + "start": 22584.88, + "end": 22585.62, + "probability": 0.8118 + }, + { + "start": 22586.04, + "end": 22587.46, + "probability": 0.924 + }, + { + "start": 22587.62, + "end": 22588.08, + "probability": 0.9695 + }, + { + "start": 22588.22, + "end": 22591.2, + "probability": 0.8814 + }, + { + "start": 22591.76, + "end": 22593.76, + "probability": 0.8824 + }, + { + "start": 22594.62, + "end": 22597.1, + "probability": 0.9703 + }, + { + "start": 22597.44, + "end": 22597.98, + "probability": 0.7871 + }, + { + "start": 22598.9, + "end": 22601.06, + "probability": 0.9591 + }, + { + "start": 22601.6, + "end": 22603.0, + "probability": 0.9521 + }, + { + "start": 22603.58, + "end": 22604.78, + "probability": 0.9761 + }, + { + "start": 22605.02, + "end": 22607.04, + "probability": 0.956 + }, + { + "start": 22607.54, + "end": 22607.6, + "probability": 0.0608 + }, + { + "start": 22607.66, + "end": 22607.84, + "probability": 0.8242 + }, + { + "start": 22607.96, + "end": 22609.86, + "probability": 0.733 + }, + { + "start": 22609.98, + "end": 22611.06, + "probability": 0.9104 + }, + { + "start": 22611.8, + "end": 22612.22, + "probability": 0.8926 + }, + { + "start": 22613.36, + "end": 22614.68, + "probability": 0.785 + }, + { + "start": 22614.98, + "end": 22615.97, + "probability": 0.9354 + }, + { + "start": 22616.94, + "end": 22617.44, + "probability": 0.7751 + }, + { + "start": 22617.54, + "end": 22620.48, + "probability": 0.8459 + }, + { + "start": 22620.54, + "end": 22622.88, + "probability": 0.7227 + }, + { + "start": 22623.26, + "end": 22625.42, + "probability": 0.9551 + }, + { + "start": 22625.68, + "end": 22628.98, + "probability": 0.1247 + }, + { + "start": 22631.3, + "end": 22631.9, + "probability": 0.6676 + }, + { + "start": 22632.64, + "end": 22636.38, + "probability": 0.9426 + }, + { + "start": 22636.52, + "end": 22638.96, + "probability": 0.7566 + }, + { + "start": 22641.92, + "end": 22643.2, + "probability": 0.7871 + }, + { + "start": 22646.42, + "end": 22648.2, + "probability": 0.9348 + }, + { + "start": 22649.02, + "end": 22651.24, + "probability": 0.9897 + }, + { + "start": 22652.42, + "end": 22652.68, + "probability": 0.9329 + }, + { + "start": 22652.78, + "end": 22657.34, + "probability": 0.9858 + }, + { + "start": 22658.16, + "end": 22662.48, + "probability": 0.9723 + }, + { + "start": 22662.86, + "end": 22666.2, + "probability": 0.9718 + }, + { + "start": 22666.3, + "end": 22668.46, + "probability": 0.8152 + }, + { + "start": 22669.5, + "end": 22675.6, + "probability": 0.9451 + }, + { + "start": 22676.3, + "end": 22680.54, + "probability": 0.9604 + }, + { + "start": 22681.5, + "end": 22684.52, + "probability": 0.943 + }, + { + "start": 22685.28, + "end": 22686.51, + "probability": 0.9275 + }, + { + "start": 22687.16, + "end": 22692.0, + "probability": 0.939 + }, + { + "start": 22693.22, + "end": 22696.66, + "probability": 0.971 + }, + { + "start": 22697.66, + "end": 22701.28, + "probability": 0.9736 + }, + { + "start": 22701.72, + "end": 22703.77, + "probability": 0.9956 + }, + { + "start": 22704.02, + "end": 22710.96, + "probability": 0.9897 + }, + { + "start": 22711.12, + "end": 22713.98, + "probability": 0.8016 + }, + { + "start": 22714.34, + "end": 22716.4, + "probability": 0.8869 + }, + { + "start": 22719.38, + "end": 22721.72, + "probability": 0.9824 + }, + { + "start": 22721.96, + "end": 22722.24, + "probability": 0.2775 + }, + { + "start": 22722.58, + "end": 22726.82, + "probability": 0.9808 + }, + { + "start": 22726.82, + "end": 22731.78, + "probability": 0.9976 + }, + { + "start": 22732.94, + "end": 22733.46, + "probability": 0.7039 + }, + { + "start": 22733.64, + "end": 22738.0, + "probability": 0.9893 + }, + { + "start": 22739.1, + "end": 22741.64, + "probability": 0.9933 + }, + { + "start": 22742.06, + "end": 22742.76, + "probability": 0.8645 + }, + { + "start": 22743.2, + "end": 22746.18, + "probability": 0.739 + }, + { + "start": 22747.08, + "end": 22748.6, + "probability": 0.9024 + }, + { + "start": 22748.64, + "end": 22749.8, + "probability": 0.9277 + }, + { + "start": 22749.9, + "end": 22750.78, + "probability": 0.8904 + }, + { + "start": 22750.88, + "end": 22752.88, + "probability": 0.9399 + }, + { + "start": 22752.98, + "end": 22754.98, + "probability": 0.9746 + }, + { + "start": 22755.26, + "end": 22757.88, + "probability": 0.9968 + }, + { + "start": 22758.56, + "end": 22758.82, + "probability": 0.4981 + }, + { + "start": 22759.04, + "end": 22759.84, + "probability": 0.9636 + }, + { + "start": 22759.98, + "end": 22760.79, + "probability": 0.9907 + }, + { + "start": 22761.54, + "end": 22769.21, + "probability": 0.9609 + }, + { + "start": 22770.98, + "end": 22773.46, + "probability": 0.9454 + }, + { + "start": 22774.14, + "end": 22777.32, + "probability": 0.9849 + }, + { + "start": 22777.36, + "end": 22782.38, + "probability": 0.9816 + }, + { + "start": 22782.54, + "end": 22784.34, + "probability": 0.9958 + }, + { + "start": 22784.82, + "end": 22788.82, + "probability": 0.9731 + }, + { + "start": 22789.3, + "end": 22793.62, + "probability": 0.9898 + }, + { + "start": 22794.06, + "end": 22798.1, + "probability": 0.9911 + }, + { + "start": 22798.8, + "end": 22800.2, + "probability": 0.7895 + }, + { + "start": 22801.24, + "end": 22805.98, + "probability": 0.9498 + }, + { + "start": 22806.18, + "end": 22806.28, + "probability": 0.6436 + }, + { + "start": 22806.4, + "end": 22807.76, + "probability": 0.9673 + }, + { + "start": 22808.32, + "end": 22810.8, + "probability": 0.9912 + }, + { + "start": 22811.24, + "end": 22812.74, + "probability": 0.8036 + }, + { + "start": 22813.24, + "end": 22815.26, + "probability": 0.8867 + }, + { + "start": 22815.42, + "end": 22825.48, + "probability": 0.9767 + }, + { + "start": 22825.56, + "end": 22828.32, + "probability": 0.8343 + }, + { + "start": 22828.38, + "end": 22828.9, + "probability": 0.8418 + }, + { + "start": 22828.92, + "end": 22835.22, + "probability": 0.8875 + }, + { + "start": 22835.42, + "end": 22835.94, + "probability": 0.7657 + }, + { + "start": 22836.02, + "end": 22836.24, + "probability": 0.1238 + }, + { + "start": 22847.42, + "end": 22849.4, + "probability": 0.5078 + }, + { + "start": 22849.96, + "end": 22851.14, + "probability": 0.7942 + }, + { + "start": 22852.08, + "end": 22853.0, + "probability": 0.8897 + }, + { + "start": 22853.42, + "end": 22853.42, + "probability": 0.5954 + }, + { + "start": 22853.66, + "end": 22854.74, + "probability": 0.7934 + }, + { + "start": 22855.34, + "end": 22858.86, + "probability": 0.9481 + }, + { + "start": 22862.12, + "end": 22863.3, + "probability": 0.5217 + }, + { + "start": 22863.48, + "end": 22864.66, + "probability": 0.985 + }, + { + "start": 22866.42, + "end": 22868.57, + "probability": 0.5211 + }, + { + "start": 22869.32, + "end": 22870.52, + "probability": 0.629 + }, + { + "start": 22871.6, + "end": 22872.52, + "probability": 0.8284 + }, + { + "start": 22872.78, + "end": 22873.08, + "probability": 0.0162 + }, + { + "start": 22873.08, + "end": 22873.86, + "probability": 0.0442 + }, + { + "start": 22874.62, + "end": 22875.62, + "probability": 0.1486 + }, + { + "start": 22875.96, + "end": 22880.83, + "probability": 0.1004 + }, + { + "start": 22881.36, + "end": 22883.94, + "probability": 0.649 + }, + { + "start": 22883.98, + "end": 22887.4, + "probability": 0.7685 + }, + { + "start": 22887.58, + "end": 22889.08, + "probability": 0.981 + }, + { + "start": 22889.86, + "end": 22891.78, + "probability": 0.5004 + }, + { + "start": 22891.86, + "end": 22892.6, + "probability": 0.8265 + }, + { + "start": 22892.66, + "end": 22894.3, + "probability": 0.9395 + }, + { + "start": 22894.4, + "end": 22895.44, + "probability": 0.6924 + }, + { + "start": 22895.48, + "end": 22897.62, + "probability": 0.9062 + }, + { + "start": 22897.72, + "end": 22899.7, + "probability": 0.8812 + }, + { + "start": 22899.92, + "end": 22900.02, + "probability": 0.6351 + }, + { + "start": 22901.6, + "end": 22905.86, + "probability": 0.7994 + }, + { + "start": 22906.98, + "end": 22908.9, + "probability": 0.9952 + }, + { + "start": 22909.2, + "end": 22910.04, + "probability": 0.9273 + }, + { + "start": 22910.92, + "end": 22913.14, + "probability": 0.9092 + }, + { + "start": 22913.9, + "end": 22917.62, + "probability": 0.9903 + }, + { + "start": 22918.0, + "end": 22921.9, + "probability": 0.7953 + }, + { + "start": 22923.16, + "end": 22929.2, + "probability": 0.9427 + }, + { + "start": 22929.42, + "end": 22935.92, + "probability": 0.8559 + }, + { + "start": 22936.64, + "end": 22938.22, + "probability": 0.9976 + }, + { + "start": 22938.76, + "end": 22944.66, + "probability": 0.9952 + }, + { + "start": 22944.94, + "end": 22945.52, + "probability": 0.563 + }, + { + "start": 22945.72, + "end": 22947.82, + "probability": 0.9901 + }, + { + "start": 22947.98, + "end": 22950.7, + "probability": 0.8899 + }, + { + "start": 22952.31, + "end": 22953.06, + "probability": 0.6825 + }, + { + "start": 22953.28, + "end": 22954.28, + "probability": 0.632 + }, + { + "start": 22954.36, + "end": 22956.98, + "probability": 0.9938 + }, + { + "start": 22957.08, + "end": 22960.41, + "probability": 0.9822 + }, + { + "start": 22960.82, + "end": 22964.22, + "probability": 0.9971 + }, + { + "start": 22964.74, + "end": 22965.66, + "probability": 0.415 + }, + { + "start": 22966.26, + "end": 22969.84, + "probability": 0.9763 + }, + { + "start": 22969.9, + "end": 22970.14, + "probability": 0.8955 + }, + { + "start": 22974.52, + "end": 22975.42, + "probability": 0.7181 + }, + { + "start": 22975.5, + "end": 22978.32, + "probability": 0.8293 + }, + { + "start": 22978.88, + "end": 22979.34, + "probability": 0.7269 + }, + { + "start": 22981.41, + "end": 22985.21, + "probability": 0.9799 + }, + { + "start": 22985.21, + "end": 22987.97, + "probability": 0.8911 + }, + { + "start": 22988.07, + "end": 22988.69, + "probability": 0.0158 + }, + { + "start": 22996.77, + "end": 23000.41, + "probability": 0.2695 + }, + { + "start": 23001.71, + "end": 23003.17, + "probability": 0.367 + }, + { + "start": 23007.29, + "end": 23008.27, + "probability": 0.2196 + }, + { + "start": 23018.01, + "end": 23020.45, + "probability": 0.0394 + }, + { + "start": 23020.45, + "end": 23021.67, + "probability": 0.0381 + }, + { + "start": 23023.23, + "end": 23023.29, + "probability": 0.0729 + }, + { + "start": 23026.35, + "end": 23026.55, + "probability": 0.1159 + }, + { + "start": 23031.75, + "end": 23035.35, + "probability": 0.2319 + }, + { + "start": 23035.35, + "end": 23038.05, + "probability": 0.1913 + }, + { + "start": 23038.27, + "end": 23039.03, + "probability": 0.0611 + }, + { + "start": 23040.53, + "end": 23046.41, + "probability": 0.1295 + }, + { + "start": 23048.55, + "end": 23052.55, + "probability": 0.03 + }, + { + "start": 23053.85, + "end": 23054.71, + "probability": 0.0541 + }, + { + "start": 23062.47, + "end": 23066.31, + "probability": 0.022 + }, + { + "start": 23066.87, + "end": 23068.79, + "probability": 0.4843 + }, + { + "start": 23069.71, + "end": 23070.67, + "probability": 0.0491 + }, + { + "start": 23070.73, + "end": 23071.0, + "probability": 0.4679 + }, + { + "start": 23071.0, + "end": 23071.0, + "probability": 0.0342 + }, + { + "start": 23071.0, + "end": 23071.0, + "probability": 0.2256 + }, + { + "start": 23071.0, + "end": 23071.0, + "probability": 0.0 + }, + { + "start": 23071.0, + "end": 23071.0, + "probability": 0.0 + }, + { + "start": 23071.0, + "end": 23071.0, + "probability": 0.0 + }, + { + "start": 23071.0, + "end": 23071.0, + "probability": 0.0 + }, + { + "start": 23071.0, + "end": 23071.0, + "probability": 0.0 + }, + { + "start": 23071.16, + "end": 23071.16, + "probability": 0.15 + }, + { + "start": 23071.16, + "end": 23071.16, + "probability": 0.0969 + }, + { + "start": 23071.16, + "end": 23071.88, + "probability": 0.0396 + }, + { + "start": 23071.88, + "end": 23074.42, + "probability": 0.9282 + }, + { + "start": 23074.48, + "end": 23076.86, + "probability": 0.7258 + }, + { + "start": 23076.86, + "end": 23079.18, + "probability": 0.3016 + }, + { + "start": 23079.54, + "end": 23080.48, + "probability": 0.0522 + }, + { + "start": 23082.02, + "end": 23082.96, + "probability": 0.7649 + }, + { + "start": 23083.5, + "end": 23086.88, + "probability": 0.9941 + }, + { + "start": 23086.96, + "end": 23090.26, + "probability": 0.9907 + }, + { + "start": 23091.14, + "end": 23093.38, + "probability": 0.6173 + }, + { + "start": 23094.24, + "end": 23097.46, + "probability": 0.9453 + }, + { + "start": 23097.46, + "end": 23100.06, + "probability": 0.971 + }, + { + "start": 23101.38, + "end": 23104.18, + "probability": 0.8311 + }, + { + "start": 23104.3, + "end": 23105.68, + "probability": 0.0911 + }, + { + "start": 23107.0, + "end": 23108.74, + "probability": 0.7552 + }, + { + "start": 23109.38, + "end": 23111.12, + "probability": 0.899 + }, + { + "start": 23111.2, + "end": 23112.94, + "probability": 0.7532 + }, + { + "start": 23113.16, + "end": 23115.0, + "probability": 0.157 + }, + { + "start": 23115.52, + "end": 23117.76, + "probability": 0.8416 + }, + { + "start": 23118.04, + "end": 23119.7, + "probability": 0.5375 + }, + { + "start": 23119.86, + "end": 23121.32, + "probability": 0.8228 + }, + { + "start": 23121.92, + "end": 23124.2, + "probability": 0.9873 + }, + { + "start": 23124.2, + "end": 23126.74, + "probability": 0.9832 + }, + { + "start": 23127.28, + "end": 23127.42, + "probability": 0.0225 + }, + { + "start": 23127.62, + "end": 23129.14, + "probability": 0.4268 + }, + { + "start": 23129.42, + "end": 23130.88, + "probability": 0.1514 + }, + { + "start": 23132.12, + "end": 23135.18, + "probability": 0.9643 + }, + { + "start": 23135.36, + "end": 23137.08, + "probability": 0.2561 + }, + { + "start": 23137.96, + "end": 23140.28, + "probability": 0.9164 + }, + { + "start": 23141.24, + "end": 23144.72, + "probability": 0.6249 + }, + { + "start": 23144.76, + "end": 23146.03, + "probability": 0.1472 + }, + { + "start": 23146.22, + "end": 23148.82, + "probability": 0.0837 + }, + { + "start": 23149.68, + "end": 23152.62, + "probability": 0.6669 + }, + { + "start": 23152.62, + "end": 23157.42, + "probability": 0.843 + }, + { + "start": 23158.36, + "end": 23164.78, + "probability": 0.997 + }, + { + "start": 23164.92, + "end": 23167.32, + "probability": 0.6185 + }, + { + "start": 23167.92, + "end": 23170.02, + "probability": 0.9902 + }, + { + "start": 23170.02, + "end": 23172.78, + "probability": 0.8643 + }, + { + "start": 23173.38, + "end": 23173.58, + "probability": 0.9115 + }, + { + "start": 23175.26, + "end": 23176.32, + "probability": 0.619 + }, + { + "start": 23176.96, + "end": 23177.86, + "probability": 0.6709 + }, + { + "start": 23178.04, + "end": 23182.36, + "probability": 0.9032 + }, + { + "start": 23182.82, + "end": 23183.24, + "probability": 0.4074 + }, + { + "start": 23184.06, + "end": 23186.98, + "probability": 0.7607 + }, + { + "start": 23187.76, + "end": 23188.42, + "probability": 0.8249 + }, + { + "start": 23189.12, + "end": 23192.66, + "probability": 0.5305 + }, + { + "start": 23193.66, + "end": 23198.48, + "probability": 0.929 + }, + { + "start": 23199.12, + "end": 23203.12, + "probability": 0.1084 + }, + { + "start": 23203.22, + "end": 23205.16, + "probability": 0.9712 + }, + { + "start": 23206.88, + "end": 23207.42, + "probability": 0.9088 + }, + { + "start": 23210.26, + "end": 23211.92, + "probability": 0.7977 + }, + { + "start": 23216.44, + "end": 23217.66, + "probability": 0.7154 + }, + { + "start": 23218.38, + "end": 23219.68, + "probability": 0.6851 + }, + { + "start": 23221.58, + "end": 23225.12, + "probability": 0.8855 + }, + { + "start": 23225.34, + "end": 23227.38, + "probability": 0.298 + }, + { + "start": 23227.38, + "end": 23228.72, + "probability": 0.2055 + }, + { + "start": 23229.76, + "end": 23232.82, + "probability": 0.8038 + }, + { + "start": 23233.4, + "end": 23235.82, + "probability": 0.6453 + }, + { + "start": 23235.88, + "end": 23236.56, + "probability": 0.5919 + }, + { + "start": 23237.06, + "end": 23240.37, + "probability": 0.8453 + }, + { + "start": 23240.94, + "end": 23242.94, + "probability": 0.8853 + }, + { + "start": 23243.14, + "end": 23244.9, + "probability": 0.9412 + }, + { + "start": 23245.54, + "end": 23247.48, + "probability": 0.9589 + }, + { + "start": 23247.48, + "end": 23250.18, + "probability": 0.8319 + }, + { + "start": 23250.42, + "end": 23253.9, + "probability": 0.9775 + }, + { + "start": 23254.58, + "end": 23256.08, + "probability": 0.9524 + }, + { + "start": 23256.26, + "end": 23258.22, + "probability": 0.9974 + }, + { + "start": 23258.32, + "end": 23260.1, + "probability": 0.9931 + }, + { + "start": 23261.2, + "end": 23263.8, + "probability": 0.8975 + }, + { + "start": 23263.8, + "end": 23266.74, + "probability": 0.9222 + }, + { + "start": 23267.16, + "end": 23270.44, + "probability": 0.9779 + }, + { + "start": 23271.72, + "end": 23274.72, + "probability": 0.6449 + }, + { + "start": 23274.94, + "end": 23276.78, + "probability": 0.5485 + }, + { + "start": 23276.98, + "end": 23278.68, + "probability": 0.7217 + }, + { + "start": 23278.84, + "end": 23282.32, + "probability": 0.9218 + }, + { + "start": 23282.32, + "end": 23285.12, + "probability": 0.9664 + }, + { + "start": 23285.28, + "end": 23287.06, + "probability": 0.9767 + }, + { + "start": 23288.06, + "end": 23290.42, + "probability": 0.9524 + }, + { + "start": 23290.86, + "end": 23293.12, + "probability": 0.9966 + }, + { + "start": 23294.22, + "end": 23297.9, + "probability": 0.9515 + }, + { + "start": 23298.96, + "end": 23302.64, + "probability": 0.8959 + }, + { + "start": 23303.48, + "end": 23306.76, + "probability": 0.9797 + }, + { + "start": 23306.98, + "end": 23308.52, + "probability": 0.4064 + }, + { + "start": 23308.74, + "end": 23309.48, + "probability": 0.8873 + }, + { + "start": 23310.08, + "end": 23313.36, + "probability": 0.6592 + }, + { + "start": 23313.36, + "end": 23317.5, + "probability": 0.9946 + }, + { + "start": 23319.28, + "end": 23323.2, + "probability": 0.5612 + }, + { + "start": 23323.2, + "end": 23325.72, + "probability": 0.964 + }, + { + "start": 23325.78, + "end": 23326.42, + "probability": 0.8721 + }, + { + "start": 23326.78, + "end": 23327.5, + "probability": 0.6866 + }, + { + "start": 23328.58, + "end": 23332.4, + "probability": 0.6863 + }, + { + "start": 23332.44, + "end": 23333.22, + "probability": 0.9489 + }, + { + "start": 23333.28, + "end": 23333.56, + "probability": 0.678 + }, + { + "start": 23333.72, + "end": 23334.18, + "probability": 0.2931 + }, + { + "start": 23335.89, + "end": 23340.68, + "probability": 0.7405 + }, + { + "start": 23340.86, + "end": 23343.92, + "probability": 0.9168 + }, + { + "start": 23344.08, + "end": 23344.6, + "probability": 0.7064 + }, + { + "start": 23345.1, + "end": 23348.5, + "probability": 0.9285 + }, + { + "start": 23348.52, + "end": 23350.06, + "probability": 0.9573 + }, + { + "start": 23350.44, + "end": 23353.76, + "probability": 0.9364 + }, + { + "start": 23353.76, + "end": 23357.12, + "probability": 0.9971 + }, + { + "start": 23358.02, + "end": 23361.76, + "probability": 0.7515 + }, + { + "start": 23362.62, + "end": 23366.72, + "probability": 0.7998 + }, + { + "start": 23367.34, + "end": 23369.24, + "probability": 0.7403 + }, + { + "start": 23370.66, + "end": 23373.64, + "probability": 0.6226 + }, + { + "start": 23373.82, + "end": 23374.24, + "probability": 0.5505 + }, + { + "start": 23379.36, + "end": 23379.62, + "probability": 0.0419 + }, + { + "start": 23390.05, + "end": 23390.4, + "probability": 0.1092 + }, + { + "start": 23390.68, + "end": 23392.16, + "probability": 0.0703 + }, + { + "start": 23392.16, + "end": 23392.16, + "probability": 0.5408 + }, + { + "start": 23392.16, + "end": 23394.42, + "probability": 0.2216 + }, + { + "start": 23396.57, + "end": 23399.83, + "probability": 0.3081 + }, + { + "start": 23400.02, + "end": 23403.16, + "probability": 0.5848 + }, + { + "start": 23404.24, + "end": 23404.9, + "probability": 0.2364 + }, + { + "start": 23408.56, + "end": 23411.44, + "probability": 0.4756 + }, + { + "start": 23419.0, + "end": 23421.8, + "probability": 0.9327 + }, + { + "start": 23424.96, + "end": 23428.28, + "probability": 0.6601 + }, + { + "start": 23428.74, + "end": 23431.74, + "probability": 0.3917 + }, + { + "start": 23431.86, + "end": 23433.44, + "probability": 0.03 + }, + { + "start": 23433.8, + "end": 23435.84, + "probability": 0.2001 + }, + { + "start": 23437.72, + "end": 23439.16, + "probability": 0.7066 + }, + { + "start": 23442.1, + "end": 23445.12, + "probability": 0.0153 + }, + { + "start": 23445.12, + "end": 23445.12, + "probability": 0.0416 + }, + { + "start": 23445.12, + "end": 23445.12, + "probability": 0.1404 + }, + { + "start": 23445.12, + "end": 23445.12, + "probability": 0.1424 + }, + { + "start": 23445.12, + "end": 23445.9, + "probability": 0.3958 + }, + { + "start": 23446.14, + "end": 23447.58, + "probability": 0.5427 + }, + { + "start": 23447.58, + "end": 23448.6, + "probability": 0.273 + }, + { + "start": 23448.8, + "end": 23451.0, + "probability": 0.2063 + }, + { + "start": 23451.1, + "end": 23452.34, + "probability": 0.6523 + }, + { + "start": 23452.61, + "end": 23458.68, + "probability": 0.7067 + }, + { + "start": 23463.08, + "end": 23466.12, + "probability": 0.7697 + }, + { + "start": 23466.32, + "end": 23467.3, + "probability": 0.7338 + }, + { + "start": 23472.72, + "end": 23473.14, + "probability": 0.409 + }, + { + "start": 23477.36, + "end": 23480.52, + "probability": 0.4834 + }, + { + "start": 23481.38, + "end": 23481.78, + "probability": 0.4833 + }, + { + "start": 23481.9, + "end": 23484.88, + "probability": 0.9719 + }, + { + "start": 23485.02, + "end": 23486.24, + "probability": 0.892 + }, + { + "start": 23486.38, + "end": 23487.81, + "probability": 0.8677 + }, + { + "start": 23488.1, + "end": 23488.64, + "probability": 0.7086 + }, + { + "start": 23488.72, + "end": 23489.42, + "probability": 0.6964 + }, + { + "start": 23489.58, + "end": 23490.34, + "probability": 0.9629 + }, + { + "start": 23491.0, + "end": 23494.4, + "probability": 0.9491 + }, + { + "start": 23494.52, + "end": 23496.28, + "probability": 0.1934 + }, + { + "start": 23496.78, + "end": 23501.54, + "probability": 0.8961 + }, + { + "start": 23501.62, + "end": 23508.08, + "probability": 0.9561 + }, + { + "start": 23508.2, + "end": 23509.27, + "probability": 0.6081 + }, + { + "start": 23509.68, + "end": 23511.58, + "probability": 0.4582 + }, + { + "start": 23514.18, + "end": 23515.8, + "probability": 0.3723 + }, + { + "start": 23517.42, + "end": 23520.26, + "probability": 0.9775 + }, + { + "start": 23520.56, + "end": 23523.52, + "probability": 0.5942 + }, + { + "start": 23523.84, + "end": 23525.5, + "probability": 0.3559 + }, + { + "start": 23527.39, + "end": 23530.66, + "probability": 0.5971 + }, + { + "start": 23530.78, + "end": 23532.34, + "probability": 0.8689 + }, + { + "start": 23533.14, + "end": 23534.84, + "probability": 0.7073 + }, + { + "start": 23544.66, + "end": 23546.72, + "probability": 0.3526 + }, + { + "start": 23552.06, + "end": 23557.4, + "probability": 0.6164 + }, + { + "start": 23557.58, + "end": 23559.44, + "probability": 0.7935 + }, + { + "start": 23559.56, + "end": 23560.12, + "probability": 0.2128 + }, + { + "start": 23560.12, + "end": 23561.46, + "probability": 0.7113 + }, + { + "start": 23563.06, + "end": 23565.34, + "probability": 0.6914 + }, + { + "start": 23565.42, + "end": 23566.84, + "probability": 0.9237 + }, + { + "start": 23566.94, + "end": 23569.04, + "probability": 0.9579 + }, + { + "start": 23569.06, + "end": 23570.4, + "probability": 0.5574 + }, + { + "start": 23571.18, + "end": 23574.78, + "probability": 0.7361 + }, + { + "start": 23575.34, + "end": 23581.14, + "probability": 0.9714 + }, + { + "start": 23581.3, + "end": 23583.2, + "probability": 0.9744 + }, + { + "start": 23583.78, + "end": 23585.86, + "probability": 0.6393 + }, + { + "start": 23586.54, + "end": 23587.0, + "probability": 0.5561 + }, + { + "start": 23587.26, + "end": 23588.46, + "probability": 0.9783 + }, + { + "start": 23588.86, + "end": 23594.56, + "probability": 0.9468 + }, + { + "start": 23594.68, + "end": 23596.06, + "probability": 0.1945 + }, + { + "start": 23596.54, + "end": 23597.72, + "probability": 0.9978 + }, + { + "start": 23598.34, + "end": 23601.92, + "probability": 0.9958 + }, + { + "start": 23602.66, + "end": 23609.76, + "probability": 0.9782 + }, + { + "start": 23610.7, + "end": 23611.66, + "probability": 0.614 + }, + { + "start": 23612.28, + "end": 23617.1, + "probability": 0.9326 + }, + { + "start": 23617.1, + "end": 23617.64, + "probability": 0.7843 + }, + { + "start": 23617.8, + "end": 23618.9, + "probability": 0.128 + }, + { + "start": 23618.9, + "end": 23619.84, + "probability": 0.2379 + }, + { + "start": 23622.58, + "end": 23626.26, + "probability": 0.9841 + }, + { + "start": 23626.5, + "end": 23629.54, + "probability": 0.9215 + }, + { + "start": 23629.62, + "end": 23634.12, + "probability": 0.7918 + }, + { + "start": 23634.18, + "end": 23639.32, + "probability": 0.9344 + }, + { + "start": 23639.32, + "end": 23643.96, + "probability": 0.9288 + }, + { + "start": 23643.96, + "end": 23644.93, + "probability": 0.9677 + }, + { + "start": 23645.44, + "end": 23647.72, + "probability": 0.4671 + }, + { + "start": 23647.72, + "end": 23651.38, + "probability": 0.8457 + }, + { + "start": 23653.66, + "end": 23654.72, + "probability": 0.7012 + }, + { + "start": 23655.34, + "end": 23658.68, + "probability": 0.7684 + }, + { + "start": 23659.26, + "end": 23659.64, + "probability": 0.9723 + }, + { + "start": 23670.68, + "end": 23671.54, + "probability": 0.721 + }, + { + "start": 23671.66, + "end": 23672.54, + "probability": 0.743 + }, + { + "start": 23672.9, + "end": 23673.24, + "probability": 0.327 + }, + { + "start": 23673.42, + "end": 23677.18, + "probability": 0.9474 + }, + { + "start": 23677.38, + "end": 23679.21, + "probability": 0.9872 + }, + { + "start": 23679.74, + "end": 23680.5, + "probability": 0.7055 + }, + { + "start": 23680.62, + "end": 23682.54, + "probability": 0.9908 + }, + { + "start": 23683.0, + "end": 23684.84, + "probability": 0.9761 + }, + { + "start": 23684.98, + "end": 23687.66, + "probability": 0.9561 + }, + { + "start": 23688.46, + "end": 23689.68, + "probability": 0.8281 + }, + { + "start": 23690.66, + "end": 23691.0, + "probability": 0.6007 + }, + { + "start": 23691.16, + "end": 23691.8, + "probability": 0.8942 + }, + { + "start": 23691.96, + "end": 23693.28, + "probability": 0.9908 + }, + { + "start": 23693.54, + "end": 23695.1, + "probability": 0.955 + }, + { + "start": 23695.48, + "end": 23696.32, + "probability": 0.7969 + }, + { + "start": 23696.6, + "end": 23698.2, + "probability": 0.9252 + }, + { + "start": 23698.4, + "end": 23698.64, + "probability": 0.7567 + }, + { + "start": 23699.14, + "end": 23702.4, + "probability": 0.9552 + }, + { + "start": 23702.8, + "end": 23706.8, + "probability": 0.9868 + }, + { + "start": 23706.8, + "end": 23710.68, + "probability": 0.9065 + }, + { + "start": 23710.92, + "end": 23716.8, + "probability": 0.9787 + }, + { + "start": 23717.04, + "end": 23718.56, + "probability": 0.9487 + }, + { + "start": 23719.04, + "end": 23719.26, + "probability": 0.6934 + }, + { + "start": 23724.54, + "end": 23725.52, + "probability": 0.6151 + }, + { + "start": 23725.68, + "end": 23729.38, + "probability": 0.9561 + }, + { + "start": 23729.68, + "end": 23737.66, + "probability": 0.5159 + }, + { + "start": 23737.74, + "end": 23738.38, + "probability": 0.6178 + }, + { + "start": 23738.42, + "end": 23738.98, + "probability": 0.8173 + }, + { + "start": 23754.4, + "end": 23754.4, + "probability": 0.1614 + }, + { + "start": 23754.4, + "end": 23758.34, + "probability": 0.5475 + }, + { + "start": 23758.82, + "end": 23761.74, + "probability": 0.7574 + }, + { + "start": 23762.54, + "end": 23765.58, + "probability": 0.6077 + }, + { + "start": 23766.9, + "end": 23771.0, + "probability": 0.9887 + }, + { + "start": 23771.6, + "end": 23778.68, + "probability": 0.894 + }, + { + "start": 23779.76, + "end": 23781.42, + "probability": 0.7419 + }, + { + "start": 23781.62, + "end": 23782.72, + "probability": 0.5098 + }, + { + "start": 23784.28, + "end": 23786.44, + "probability": 0.953 + }, + { + "start": 23787.86, + "end": 23790.16, + "probability": 0.9852 + }, + { + "start": 23791.94, + "end": 23794.76, + "probability": 0.9802 + }, + { + "start": 23795.95, + "end": 23798.66, + "probability": 0.6379 + }, + { + "start": 23800.44, + "end": 23802.92, + "probability": 0.8867 + }, + { + "start": 23803.84, + "end": 23807.52, + "probability": 0.9519 + }, + { + "start": 23808.04, + "end": 23808.64, + "probability": 0.9772 + }, + { + "start": 23809.92, + "end": 23811.84, + "probability": 0.7915 + }, + { + "start": 23817.16, + "end": 23821.0, + "probability": 0.7125 + }, + { + "start": 23821.88, + "end": 23823.98, + "probability": 0.9897 + }, + { + "start": 23823.98, + "end": 23827.08, + "probability": 0.628 + }, + { + "start": 23827.66, + "end": 23830.46, + "probability": 0.8256 + }, + { + "start": 23831.94, + "end": 23835.22, + "probability": 0.8689 + }, + { + "start": 23835.58, + "end": 23836.62, + "probability": 0.9893 + }, + { + "start": 23836.74, + "end": 23837.16, + "probability": 0.7168 + }, + { + "start": 23837.6, + "end": 23841.26, + "probability": 0.9058 + }, + { + "start": 23842.98, + "end": 23844.68, + "probability": 0.9864 + }, + { + "start": 23845.78, + "end": 23849.08, + "probability": 0.9884 + }, + { + "start": 23849.08, + "end": 23852.96, + "probability": 0.9293 + }, + { + "start": 23853.56, + "end": 23853.88, + "probability": 0.5051 + }, + { + "start": 23853.98, + "end": 23858.24, + "probability": 0.9925 + }, + { + "start": 23858.24, + "end": 23862.14, + "probability": 0.9944 + }, + { + "start": 23862.82, + "end": 23863.08, + "probability": 0.4385 + }, + { + "start": 23863.2, + "end": 23863.76, + "probability": 0.9073 + }, + { + "start": 23864.24, + "end": 23866.74, + "probability": 0.91 + }, + { + "start": 23867.16, + "end": 23868.86, + "probability": 0.9543 + }, + { + "start": 23869.56, + "end": 23872.88, + "probability": 0.9878 + }, + { + "start": 23873.42, + "end": 23875.94, + "probability": 0.9324 + }, + { + "start": 23876.72, + "end": 23879.78, + "probability": 0.9925 + }, + { + "start": 23879.98, + "end": 23881.02, + "probability": 0.7787 + }, + { + "start": 23881.62, + "end": 23884.84, + "probability": 0.9884 + }, + { + "start": 23884.84, + "end": 23888.18, + "probability": 0.9341 + }, + { + "start": 23888.92, + "end": 23891.98, + "probability": 0.989 + }, + { + "start": 23893.4, + "end": 23895.32, + "probability": 0.9994 + }, + { + "start": 23895.78, + "end": 23899.2, + "probability": 0.9917 + }, + { + "start": 23899.68, + "end": 23902.32, + "probability": 0.9974 + }, + { + "start": 23902.32, + "end": 23905.82, + "probability": 0.8623 + }, + { + "start": 23907.66, + "end": 23912.24, + "probability": 0.9722 + }, + { + "start": 23912.64, + "end": 23917.84, + "probability": 0.9882 + }, + { + "start": 23918.46, + "end": 23919.2, + "probability": 0.7149 + }, + { + "start": 23919.7, + "end": 23923.96, + "probability": 0.9731 + }, + { + "start": 23924.78, + "end": 23927.44, + "probability": 0.9893 + }, + { + "start": 23927.66, + "end": 23930.92, + "probability": 0.9029 + }, + { + "start": 23931.42, + "end": 23933.48, + "probability": 0.8458 + }, + { + "start": 23934.18, + "end": 23936.44, + "probability": 0.7479 + }, + { + "start": 23937.18, + "end": 23937.5, + "probability": 0.8528 + }, + { + "start": 23937.72, + "end": 23939.74, + "probability": 0.9925 + }, + { + "start": 23940.2, + "end": 23942.56, + "probability": 0.985 + }, + { + "start": 23942.66, + "end": 23945.72, + "probability": 0.9951 + }, + { + "start": 23945.72, + "end": 23948.38, + "probability": 0.9958 + }, + { + "start": 23949.36, + "end": 23953.18, + "probability": 0.9919 + }, + { + "start": 23953.82, + "end": 23957.34, + "probability": 0.9882 + }, + { + "start": 23958.02, + "end": 23960.28, + "probability": 0.9784 + }, + { + "start": 23961.22, + "end": 23962.84, + "probability": 0.9928 + }, + { + "start": 23963.44, + "end": 23963.92, + "probability": 0.8931 + }, + { + "start": 23964.58, + "end": 23968.22, + "probability": 0.9786 + }, + { + "start": 23968.22, + "end": 23971.72, + "probability": 0.9875 + }, + { + "start": 23972.36, + "end": 23974.86, + "probability": 0.9956 + }, + { + "start": 23975.98, + "end": 23976.5, + "probability": 0.7349 + }, + { + "start": 23976.64, + "end": 23979.64, + "probability": 0.949 + }, + { + "start": 23979.64, + "end": 23983.16, + "probability": 0.9919 + }, + { + "start": 23983.76, + "end": 23986.17, + "probability": 0.9948 + }, + { + "start": 23986.3, + "end": 23989.48, + "probability": 0.9557 + }, + { + "start": 23990.58, + "end": 23993.6, + "probability": 0.8694 + }, + { + "start": 23994.4, + "end": 23996.18, + "probability": 0.821 + }, + { + "start": 23996.68, + "end": 24002.08, + "probability": 0.9534 + }, + { + "start": 24002.08, + "end": 24006.82, + "probability": 0.9968 + }, + { + "start": 24007.36, + "end": 24007.48, + "probability": 0.5695 + }, + { + "start": 24008.3, + "end": 24011.18, + "probability": 0.9951 + }, + { + "start": 24012.08, + "end": 24013.86, + "probability": 0.994 + }, + { + "start": 24014.4, + "end": 24019.44, + "probability": 0.9702 + }, + { + "start": 24019.5, + "end": 24020.82, + "probability": 0.8313 + }, + { + "start": 24022.12, + "end": 24024.14, + "probability": 0.995 + }, + { + "start": 24025.12, + "end": 24025.68, + "probability": 0.5227 + }, + { + "start": 24026.06, + "end": 24028.26, + "probability": 0.8573 + }, + { + "start": 24028.34, + "end": 24030.2, + "probability": 0.9947 + }, + { + "start": 24030.74, + "end": 24032.76, + "probability": 0.9662 + }, + { + "start": 24032.76, + "end": 24035.28, + "probability": 0.8829 + }, + { + "start": 24035.68, + "end": 24035.86, + "probability": 0.5058 + }, + { + "start": 24037.12, + "end": 24038.1, + "probability": 0.3408 + }, + { + "start": 24038.46, + "end": 24041.72, + "probability": 0.9299 + }, + { + "start": 24047.38, + "end": 24050.6, + "probability": 0.952 + }, + { + "start": 24059.96, + "end": 24060.8, + "probability": 0.58 + }, + { + "start": 24062.52, + "end": 24063.32, + "probability": 0.3297 + }, + { + "start": 24063.42, + "end": 24064.28, + "probability": 0.7703 + }, + { + "start": 24064.5, + "end": 24065.5, + "probability": 0.7595 + }, + { + "start": 24065.78, + "end": 24066.06, + "probability": 0.6832 + }, + { + "start": 24066.16, + "end": 24066.86, + "probability": 0.8679 + }, + { + "start": 24067.78, + "end": 24070.14, + "probability": 0.6588 + }, + { + "start": 24071.44, + "end": 24073.36, + "probability": 0.8037 + }, + { + "start": 24073.6, + "end": 24075.3, + "probability": 0.9426 + }, + { + "start": 24077.12, + "end": 24081.14, + "probability": 0.9776 + }, + { + "start": 24081.14, + "end": 24083.06, + "probability": 0.7108 + }, + { + "start": 24083.64, + "end": 24085.94, + "probability": 0.8444 + }, + { + "start": 24086.06, + "end": 24088.78, + "probability": 0.8701 + }, + { + "start": 24089.78, + "end": 24091.8, + "probability": 0.9771 + }, + { + "start": 24093.72, + "end": 24095.9, + "probability": 0.8678 + }, + { + "start": 24096.02, + "end": 24099.8, + "probability": 0.9473 + }, + { + "start": 24099.9, + "end": 24100.64, + "probability": 0.9291 + }, + { + "start": 24101.08, + "end": 24103.86, + "probability": 0.9432 + }, + { + "start": 24104.04, + "end": 24107.5, + "probability": 0.9009 + }, + { + "start": 24108.06, + "end": 24108.6, + "probability": 0.9246 + }, + { + "start": 24109.6, + "end": 24111.44, + "probability": 0.8757 + }, + { + "start": 24111.68, + "end": 24113.03, + "probability": 0.881 + }, + { + "start": 24113.48, + "end": 24117.94, + "probability": 0.7945 + }, + { + "start": 24117.94, + "end": 24118.24, + "probability": 0.6835 + }, + { + "start": 24118.26, + "end": 24119.62, + "probability": 0.5014 + }, + { + "start": 24120.24, + "end": 24123.02, + "probability": 0.9463 + }, + { + "start": 24123.84, + "end": 24128.96, + "probability": 0.9324 + }, + { + "start": 24129.82, + "end": 24130.44, + "probability": 0.8954 + }, + { + "start": 24130.58, + "end": 24134.42, + "probability": 0.9927 + }, + { + "start": 24135.72, + "end": 24139.14, + "probability": 0.9745 + }, + { + "start": 24140.44, + "end": 24146.54, + "probability": 0.9499 + }, + { + "start": 24146.58, + "end": 24147.76, + "probability": 0.6555 + }, + { + "start": 24148.62, + "end": 24150.92, + "probability": 0.5981 + }, + { + "start": 24151.7, + "end": 24153.12, + "probability": 0.9858 + }, + { + "start": 24153.84, + "end": 24154.59, + "probability": 0.9819 + }, + { + "start": 24156.3, + "end": 24162.62, + "probability": 0.9371 + }, + { + "start": 24163.08, + "end": 24163.9, + "probability": 0.8179 + }, + { + "start": 24164.64, + "end": 24166.24, + "probability": 0.9394 + }, + { + "start": 24167.02, + "end": 24168.0, + "probability": 0.9586 + }, + { + "start": 24169.44, + "end": 24173.12, + "probability": 0.7044 + }, + { + "start": 24173.24, + "end": 24179.78, + "probability": 0.9146 + }, + { + "start": 24179.96, + "end": 24180.62, + "probability": 0.6792 + }, + { + "start": 24180.64, + "end": 24181.86, + "probability": 0.8725 + }, + { + "start": 24183.72, + "end": 24185.74, + "probability": 0.865 + }, + { + "start": 24186.16, + "end": 24189.38, + "probability": 0.7775 + }, + { + "start": 24190.02, + "end": 24192.92, + "probability": 0.8167 + }, + { + "start": 24193.54, + "end": 24196.16, + "probability": 0.998 + }, + { + "start": 24196.26, + "end": 24197.46, + "probability": 0.9985 + }, + { + "start": 24198.8, + "end": 24201.5, + "probability": 0.8375 + }, + { + "start": 24201.62, + "end": 24205.18, + "probability": 0.9907 + }, + { + "start": 24205.4, + "end": 24206.31, + "probability": 0.958 + }, + { + "start": 24207.46, + "end": 24208.18, + "probability": 0.9858 + }, + { + "start": 24209.28, + "end": 24211.34, + "probability": 0.838 + }, + { + "start": 24212.42, + "end": 24213.96, + "probability": 0.9814 + }, + { + "start": 24215.2, + "end": 24216.24, + "probability": 0.9125 + }, + { + "start": 24216.44, + "end": 24220.34, + "probability": 0.9695 + }, + { + "start": 24221.8, + "end": 24226.04, + "probability": 0.8398 + }, + { + "start": 24226.62, + "end": 24227.79, + "probability": 0.3125 + }, + { + "start": 24229.72, + "end": 24233.06, + "probability": 0.9602 + }, + { + "start": 24233.54, + "end": 24234.44, + "probability": 0.7939 + }, + { + "start": 24236.12, + "end": 24238.92, + "probability": 0.9539 + }, + { + "start": 24240.0, + "end": 24242.24, + "probability": 0.7755 + }, + { + "start": 24242.8, + "end": 24243.82, + "probability": 0.7611 + }, + { + "start": 24243.9, + "end": 24245.72, + "probability": 0.9172 + }, + { + "start": 24246.16, + "end": 24249.54, + "probability": 0.7729 + }, + { + "start": 24249.58, + "end": 24252.06, + "probability": 0.9855 + }, + { + "start": 24253.02, + "end": 24254.64, + "probability": 0.9857 + }, + { + "start": 24256.4, + "end": 24257.62, + "probability": 0.9254 + }, + { + "start": 24258.46, + "end": 24260.28, + "probability": 0.9061 + }, + { + "start": 24260.38, + "end": 24261.54, + "probability": 0.914 + }, + { + "start": 24261.84, + "end": 24266.08, + "probability": 0.8742 + }, + { + "start": 24266.32, + "end": 24268.02, + "probability": 0.5384 + }, + { + "start": 24268.12, + "end": 24268.95, + "probability": 0.1513 + }, + { + "start": 24269.88, + "end": 24271.92, + "probability": 0.9307 + }, + { + "start": 24272.02, + "end": 24272.61, + "probability": 0.7543 + }, + { + "start": 24274.06, + "end": 24278.2, + "probability": 0.9634 + }, + { + "start": 24278.2, + "end": 24279.04, + "probability": 0.1975 + }, + { + "start": 24279.22, + "end": 24279.62, + "probability": 0.514 + }, + { + "start": 24279.68, + "end": 24280.48, + "probability": 0.4977 + }, + { + "start": 24280.5, + "end": 24281.48, + "probability": 0.8566 + }, + { + "start": 24282.26, + "end": 24284.34, + "probability": 0.9613 + }, + { + "start": 24284.5, + "end": 24288.22, + "probability": 0.9504 + }, + { + "start": 24288.66, + "end": 24290.94, + "probability": 0.5654 + }, + { + "start": 24291.62, + "end": 24294.68, + "probability": 0.9851 + }, + { + "start": 24294.8, + "end": 24298.02, + "probability": 0.9915 + }, + { + "start": 24300.86, + "end": 24303.12, + "probability": 0.7405 + }, + { + "start": 24304.88, + "end": 24306.52, + "probability": 0.8186 + }, + { + "start": 24307.32, + "end": 24311.7, + "probability": 0.7241 + }, + { + "start": 24312.4, + "end": 24314.74, + "probability": 0.9529 + }, + { + "start": 24315.32, + "end": 24315.76, + "probability": 0.8281 + }, + { + "start": 24315.9, + "end": 24316.96, + "probability": 0.7794 + }, + { + "start": 24317.38, + "end": 24319.42, + "probability": 0.9167 + }, + { + "start": 24319.9, + "end": 24322.08, + "probability": 0.5584 + }, + { + "start": 24322.22, + "end": 24323.12, + "probability": 0.8804 + }, + { + "start": 24324.28, + "end": 24325.72, + "probability": 0.9477 + }, + { + "start": 24327.88, + "end": 24330.42, + "probability": 0.8249 + }, + { + "start": 24330.44, + "end": 24333.24, + "probability": 0.9175 + }, + { + "start": 24333.28, + "end": 24334.42, + "probability": 0.5745 + }, + { + "start": 24335.04, + "end": 24337.3, + "probability": 0.9648 + }, + { + "start": 24338.2, + "end": 24338.8, + "probability": 0.8416 + }, + { + "start": 24338.88, + "end": 24339.28, + "probability": 0.4737 + }, + { + "start": 24340.3, + "end": 24341.2, + "probability": 0.7966 + }, + { + "start": 24341.5, + "end": 24342.28, + "probability": 0.9272 + }, + { + "start": 24342.42, + "end": 24343.26, + "probability": 0.6091 + }, + { + "start": 24343.84, + "end": 24345.73, + "probability": 0.8367 + }, + { + "start": 24346.24, + "end": 24347.42, + "probability": 0.7729 + }, + { + "start": 24347.42, + "end": 24348.22, + "probability": 0.5673 + }, + { + "start": 24348.38, + "end": 24349.64, + "probability": 0.6668 + }, + { + "start": 24349.7, + "end": 24350.3, + "probability": 0.7388 + }, + { + "start": 24350.42, + "end": 24351.36, + "probability": 0.4514 + }, + { + "start": 24352.34, + "end": 24353.28, + "probability": 0.8611 + }, + { + "start": 24353.46, + "end": 24354.5, + "probability": 0.9547 + }, + { + "start": 24356.08, + "end": 24357.1, + "probability": 0.6883 + }, + { + "start": 24357.96, + "end": 24358.68, + "probability": 0.5022 + }, + { + "start": 24358.8, + "end": 24359.75, + "probability": 0.9904 + }, + { + "start": 24360.72, + "end": 24361.37, + "probability": 0.916 + }, + { + "start": 24364.34, + "end": 24365.14, + "probability": 0.9906 + }, + { + "start": 24366.74, + "end": 24368.42, + "probability": 0.6743 + }, + { + "start": 24369.23, + "end": 24370.94, + "probability": 0.6263 + }, + { + "start": 24371.98, + "end": 24373.32, + "probability": 0.9152 + }, + { + "start": 24375.06, + "end": 24376.72, + "probability": 0.6278 + }, + { + "start": 24377.02, + "end": 24377.16, + "probability": 0.2742 + }, + { + "start": 24377.18, + "end": 24377.94, + "probability": 0.2139 + }, + { + "start": 24377.94, + "end": 24378.36, + "probability": 0.716 + }, + { + "start": 24378.5, + "end": 24379.18, + "probability": 0.8577 + }, + { + "start": 24379.42, + "end": 24381.83, + "probability": 0.7988 + }, + { + "start": 24382.26, + "end": 24384.32, + "probability": 0.8099 + }, + { + "start": 24384.36, + "end": 24385.92, + "probability": 0.9734 + }, + { + "start": 24386.84, + "end": 24388.0, + "probability": 0.1867 + }, + { + "start": 24388.0, + "end": 24388.36, + "probability": 0.4676 + }, + { + "start": 24388.4, + "end": 24388.88, + "probability": 0.8962 + }, + { + "start": 24388.96, + "end": 24389.56, + "probability": 0.7217 + }, + { + "start": 24389.62, + "end": 24390.74, + "probability": 0.5848 + }, + { + "start": 24390.82, + "end": 24392.84, + "probability": 0.7325 + }, + { + "start": 24393.08, + "end": 24394.26, + "probability": 0.8744 + }, + { + "start": 24395.14, + "end": 24396.82, + "probability": 0.8289 + }, + { + "start": 24396.82, + "end": 24397.78, + "probability": 0.8308 + }, + { + "start": 24398.34, + "end": 24400.74, + "probability": 0.8575 + }, + { + "start": 24400.78, + "end": 24401.68, + "probability": 0.969 + }, + { + "start": 24401.72, + "end": 24402.74, + "probability": 0.4914 + }, + { + "start": 24402.84, + "end": 24403.4, + "probability": 0.8773 + }, + { + "start": 24403.8, + "end": 24408.62, + "probability": 0.8718 + }, + { + "start": 24409.26, + "end": 24412.66, + "probability": 0.6666 + }, + { + "start": 24413.62, + "end": 24415.0, + "probability": 0.9689 + }, + { + "start": 24417.56, + "end": 24419.98, + "probability": 0.9888 + }, + { + "start": 24421.74, + "end": 24423.5, + "probability": 0.466 + }, + { + "start": 24423.56, + "end": 24424.06, + "probability": 0.5525 + }, + { + "start": 24424.5, + "end": 24425.64, + "probability": 0.8322 + }, + { + "start": 24427.12, + "end": 24427.76, + "probability": 0.5988 + }, + { + "start": 24428.98, + "end": 24434.06, + "probability": 0.6984 + }, + { + "start": 24435.1, + "end": 24436.08, + "probability": 0.7057 + }, + { + "start": 24436.38, + "end": 24440.22, + "probability": 0.9976 + }, + { + "start": 24441.56, + "end": 24443.82, + "probability": 0.901 + }, + { + "start": 24444.74, + "end": 24446.54, + "probability": 0.8555 + }, + { + "start": 24447.82, + "end": 24448.92, + "probability": 0.7153 + }, + { + "start": 24450.12, + "end": 24450.89, + "probability": 0.8106 + }, + { + "start": 24451.08, + "end": 24453.14, + "probability": 0.9937 + }, + { + "start": 24453.7, + "end": 24458.18, + "probability": 0.9271 + }, + { + "start": 24459.0, + "end": 24459.9, + "probability": 0.7935 + }, + { + "start": 24460.34, + "end": 24461.05, + "probability": 0.9858 + }, + { + "start": 24461.48, + "end": 24465.48, + "probability": 0.9326 + }, + { + "start": 24465.66, + "end": 24466.72, + "probability": 0.7661 + }, + { + "start": 24466.78, + "end": 24469.59, + "probability": 0.9304 + }, + { + "start": 24470.16, + "end": 24471.26, + "probability": 0.816 + }, + { + "start": 24471.6, + "end": 24472.74, + "probability": 0.895 + }, + { + "start": 24472.78, + "end": 24473.33, + "probability": 0.9103 + }, + { + "start": 24473.96, + "end": 24475.84, + "probability": 0.9971 + }, + { + "start": 24476.0, + "end": 24478.18, + "probability": 0.9783 + }, + { + "start": 24479.12, + "end": 24481.42, + "probability": 0.7777 + }, + { + "start": 24481.56, + "end": 24484.68, + "probability": 0.7672 + }, + { + "start": 24485.46, + "end": 24486.02, + "probability": 0.7373 + }, + { + "start": 24486.28, + "end": 24488.68, + "probability": 0.9105 + }, + { + "start": 24489.2, + "end": 24490.4, + "probability": 0.8623 + }, + { + "start": 24492.32, + "end": 24493.56, + "probability": 0.9316 + }, + { + "start": 24493.86, + "end": 24494.96, + "probability": 0.9728 + }, + { + "start": 24495.8, + "end": 24496.78, + "probability": 0.791 + }, + { + "start": 24497.64, + "end": 24500.14, + "probability": 0.9783 + }, + { + "start": 24500.4, + "end": 24504.04, + "probability": 0.7008 + }, + { + "start": 24504.74, + "end": 24507.66, + "probability": 0.8028 + }, + { + "start": 24509.86, + "end": 24511.16, + "probability": 0.7158 + }, + { + "start": 24511.32, + "end": 24514.18, + "probability": 0.9846 + }, + { + "start": 24514.84, + "end": 24516.66, + "probability": 0.7409 + }, + { + "start": 24517.8, + "end": 24520.98, + "probability": 0.7917 + }, + { + "start": 24521.6, + "end": 24522.74, + "probability": 0.9969 + }, + { + "start": 24524.36, + "end": 24526.56, + "probability": 0.9875 + }, + { + "start": 24526.56, + "end": 24528.18, + "probability": 0.6816 + }, + { + "start": 24528.88, + "end": 24531.05, + "probability": 0.996 + }, + { + "start": 24531.48, + "end": 24534.66, + "probability": 0.6855 + }, + { + "start": 24534.82, + "end": 24537.0, + "probability": 0.676 + }, + { + "start": 24537.3, + "end": 24538.84, + "probability": 0.8503 + }, + { + "start": 24538.98, + "end": 24540.22, + "probability": 0.6013 + }, + { + "start": 24540.22, + "end": 24541.62, + "probability": 0.9664 + }, + { + "start": 24544.34, + "end": 24546.7, + "probability": 0.4697 + }, + { + "start": 24547.36, + "end": 24548.56, + "probability": 0.6677 + }, + { + "start": 24549.72, + "end": 24549.96, + "probability": 0.5236 + }, + { + "start": 24552.0, + "end": 24554.2, + "probability": 0.8805 + }, + { + "start": 24555.08, + "end": 24557.82, + "probability": 0.8531 + }, + { + "start": 24559.72, + "end": 24560.07, + "probability": 0.8237 + }, + { + "start": 24560.18, + "end": 24561.16, + "probability": 0.825 + }, + { + "start": 24562.08, + "end": 24563.98, + "probability": 0.9366 + }, + { + "start": 24564.04, + "end": 24565.44, + "probability": 0.7761 + }, + { + "start": 24567.64, + "end": 24568.56, + "probability": 0.6144 + }, + { + "start": 24569.33, + "end": 24570.46, + "probability": 0.5211 + }, + { + "start": 24571.1, + "end": 24572.39, + "probability": 0.4951 + }, + { + "start": 24573.1, + "end": 24574.66, + "probability": 0.6859 + }, + { + "start": 24575.14, + "end": 24576.48, + "probability": 0.7312 + }, + { + "start": 24576.58, + "end": 24577.4, + "probability": 0.6309 + }, + { + "start": 24577.48, + "end": 24578.94, + "probability": 0.9268 + }, + { + "start": 24579.04, + "end": 24581.48, + "probability": 0.7392 + }, + { + "start": 24581.48, + "end": 24586.36, + "probability": 0.981 + }, + { + "start": 24588.8, + "end": 24590.5, + "probability": 0.593 + }, + { + "start": 24590.6, + "end": 24593.06, + "probability": 0.6723 + }, + { + "start": 24593.94, + "end": 24596.73, + "probability": 0.9194 + }, + { + "start": 24597.1, + "end": 24601.74, + "probability": 0.9507 + }, + { + "start": 24602.56, + "end": 24607.0, + "probability": 0.9774 + }, + { + "start": 24607.0, + "end": 24610.86, + "probability": 0.9839 + }, + { + "start": 24612.1, + "end": 24612.4, + "probability": 0.7126 + }, + { + "start": 24612.88, + "end": 24613.58, + "probability": 0.7159 + }, + { + "start": 24614.4, + "end": 24615.06, + "probability": 0.9696 + }, + { + "start": 24615.1, + "end": 24615.84, + "probability": 0.7038 + }, + { + "start": 24615.84, + "end": 24616.54, + "probability": 0.9358 + }, + { + "start": 24617.4, + "end": 24620.38, + "probability": 0.8173 + }, + { + "start": 24621.3, + "end": 24622.74, + "probability": 0.6448 + }, + { + "start": 24623.44, + "end": 24623.54, + "probability": 0.4862 + }, + { + "start": 24623.54, + "end": 24628.72, + "probability": 0.9717 + }, + { + "start": 24630.38, + "end": 24632.62, + "probability": 0.7278 + }, + { + "start": 24633.0, + "end": 24635.22, + "probability": 0.819 + }, + { + "start": 24636.38, + "end": 24638.56, + "probability": 0.7579 + }, + { + "start": 24639.46, + "end": 24640.72, + "probability": 0.9411 + }, + { + "start": 24640.84, + "end": 24641.3, + "probability": 0.7869 + }, + { + "start": 24641.36, + "end": 24642.14, + "probability": 0.8943 + }, + { + "start": 24642.2, + "end": 24646.66, + "probability": 0.6066 + }, + { + "start": 24646.68, + "end": 24649.9, + "probability": 0.7042 + }, + { + "start": 24650.34, + "end": 24651.66, + "probability": 0.8828 + }, + { + "start": 24652.2, + "end": 24653.06, + "probability": 0.6959 + }, + { + "start": 24653.62, + "end": 24655.31, + "probability": 0.9868 + }, + { + "start": 24658.68, + "end": 24659.14, + "probability": 0.4619 + }, + { + "start": 24659.8, + "end": 24661.12, + "probability": 0.5831 + }, + { + "start": 24662.02, + "end": 24662.54, + "probability": 0.988 + }, + { + "start": 24663.92, + "end": 24665.26, + "probability": 0.8728 + }, + { + "start": 24665.4, + "end": 24671.02, + "probability": 0.9271 + }, + { + "start": 24671.36, + "end": 24674.0, + "probability": 0.8729 + }, + { + "start": 24674.8, + "end": 24676.11, + "probability": 0.8029 + }, + { + "start": 24676.76, + "end": 24680.56, + "probability": 0.8044 + }, + { + "start": 24681.16, + "end": 24682.29, + "probability": 0.8423 + }, + { + "start": 24682.4, + "end": 24682.58, + "probability": 0.8109 + }, + { + "start": 24682.7, + "end": 24683.18, + "probability": 0.8191 + }, + { + "start": 24683.88, + "end": 24685.7, + "probability": 0.8828 + }, + { + "start": 24687.9, + "end": 24688.66, + "probability": 0.8214 + }, + { + "start": 24689.92, + "end": 24691.54, + "probability": 0.9834 + }, + { + "start": 24692.96, + "end": 24695.0, + "probability": 0.9808 + }, + { + "start": 24695.88, + "end": 24696.06, + "probability": 0.0171 + }, + { + "start": 24696.06, + "end": 24698.26, + "probability": 0.6838 + }, + { + "start": 24699.1, + "end": 24700.22, + "probability": 0.8603 + }, + { + "start": 24700.26, + "end": 24703.98, + "probability": 0.9917 + }, + { + "start": 24703.98, + "end": 24706.52, + "probability": 0.7106 + }, + { + "start": 24708.64, + "end": 24709.44, + "probability": 0.6938 + }, + { + "start": 24710.86, + "end": 24712.0, + "probability": 0.8671 + }, + { + "start": 24712.96, + "end": 24714.22, + "probability": 0.6462 + }, + { + "start": 24714.54, + "end": 24715.32, + "probability": 0.7695 + }, + { + "start": 24715.38, + "end": 24716.78, + "probability": 0.8071 + }, + { + "start": 24717.64, + "end": 24719.04, + "probability": 0.777 + }, + { + "start": 24719.76, + "end": 24722.2, + "probability": 0.8372 + }, + { + "start": 24722.66, + "end": 24723.69, + "probability": 0.9661 + }, + { + "start": 24724.6, + "end": 24726.44, + "probability": 0.5078 + }, + { + "start": 24726.68, + "end": 24728.32, + "probability": 0.7861 + }, + { + "start": 24728.68, + "end": 24729.58, + "probability": 0.6693 + }, + { + "start": 24730.42, + "end": 24731.34, + "probability": 0.9183 + }, + { + "start": 24732.48, + "end": 24734.21, + "probability": 0.9888 + }, + { + "start": 24735.98, + "end": 24737.82, + "probability": 0.9806 + }, + { + "start": 24738.82, + "end": 24741.42, + "probability": 0.833 + }, + { + "start": 24741.5, + "end": 24742.96, + "probability": 0.7812 + }, + { + "start": 24743.32, + "end": 24745.44, + "probability": 0.8578 + }, + { + "start": 24746.48, + "end": 24748.86, + "probability": 0.6407 + }, + { + "start": 24748.9, + "end": 24749.7, + "probability": 0.875 + }, + { + "start": 24749.7, + "end": 24750.42, + "probability": 0.8032 + }, + { + "start": 24750.62, + "end": 24752.36, + "probability": 0.825 + }, + { + "start": 24757.48, + "end": 24759.56, + "probability": 0.959 + }, + { + "start": 24761.52, + "end": 24763.28, + "probability": 0.9861 + }, + { + "start": 24763.78, + "end": 24767.52, + "probability": 0.9639 + }, + { + "start": 24768.56, + "end": 24769.42, + "probability": 0.6468 + }, + { + "start": 24770.56, + "end": 24772.7, + "probability": 0.8889 + }, + { + "start": 24773.22, + "end": 24774.88, + "probability": 0.902 + }, + { + "start": 24775.86, + "end": 24776.38, + "probability": 0.5376 + }, + { + "start": 24776.38, + "end": 24777.68, + "probability": 0.3272 + }, + { + "start": 24777.7, + "end": 24778.14, + "probability": 0.5641 + }, + { + "start": 24780.34, + "end": 24781.18, + "probability": 0.6383 + }, + { + "start": 24782.18, + "end": 24783.6, + "probability": 0.7577 + }, + { + "start": 24783.66, + "end": 24788.38, + "probability": 0.7994 + }, + { + "start": 24789.38, + "end": 24790.7, + "probability": 0.9644 + }, + { + "start": 24790.86, + "end": 24794.72, + "probability": 0.7912 + }, + { + "start": 24795.62, + "end": 24796.57, + "probability": 0.7299 + }, + { + "start": 24797.06, + "end": 24801.44, + "probability": 0.6668 + }, + { + "start": 24802.86, + "end": 24805.08, + "probability": 0.895 + }, + { + "start": 24805.2, + "end": 24805.91, + "probability": 0.9756 + }, + { + "start": 24807.4, + "end": 24808.2, + "probability": 0.9131 + }, + { + "start": 24808.44, + "end": 24809.28, + "probability": 0.8932 + }, + { + "start": 24809.4, + "end": 24811.12, + "probability": 0.7844 + }, + { + "start": 24811.22, + "end": 24814.08, + "probability": 0.6748 + }, + { + "start": 24814.92, + "end": 24817.24, + "probability": 0.7102 + }, + { + "start": 24817.42, + "end": 24818.62, + "probability": 0.6638 + }, + { + "start": 24819.2, + "end": 24820.28, + "probability": 0.9766 + }, + { + "start": 24821.1, + "end": 24823.28, + "probability": 0.6045 + }, + { + "start": 24823.46, + "end": 24825.86, + "probability": 0.5999 + }, + { + "start": 24825.98, + "end": 24826.26, + "probability": 0.6104 + }, + { + "start": 24826.68, + "end": 24827.98, + "probability": 0.9582 + }, + { + "start": 24828.12, + "end": 24828.62, + "probability": 0.7246 + }, + { + "start": 24829.06, + "end": 24831.25, + "probability": 0.7896 + }, + { + "start": 24831.78, + "end": 24834.38, + "probability": 0.9143 + }, + { + "start": 24836.04, + "end": 24838.46, + "probability": 0.9883 + }, + { + "start": 24840.66, + "end": 24842.06, + "probability": 0.8005 + }, + { + "start": 24843.0, + "end": 24843.66, + "probability": 0.8416 + }, + { + "start": 24845.56, + "end": 24846.3, + "probability": 0.6989 + }, + { + "start": 24847.72, + "end": 24848.6, + "probability": 0.8648 + }, + { + "start": 24849.14, + "end": 24850.98, + "probability": 0.9927 + }, + { + "start": 24852.3, + "end": 24853.18, + "probability": 0.8389 + }, + { + "start": 24854.04, + "end": 24854.82, + "probability": 0.604 + }, + { + "start": 24855.76, + "end": 24856.84, + "probability": 0.9946 + }, + { + "start": 24861.4, + "end": 24863.5, + "probability": 0.5204 + }, + { + "start": 24869.38, + "end": 24871.18, + "probability": 0.8172 + }, + { + "start": 24873.06, + "end": 24875.08, + "probability": 0.9718 + }, + { + "start": 24875.74, + "end": 24881.48, + "probability": 0.5555 + }, + { + "start": 24881.48, + "end": 24882.0, + "probability": 0.7173 + }, + { + "start": 24882.6, + "end": 24884.12, + "probability": 0.8397 + }, + { + "start": 24884.48, + "end": 24885.12, + "probability": 0.9246 + }, + { + "start": 24885.12, + "end": 24886.6, + "probability": 0.9956 + }, + { + "start": 24887.0, + "end": 24890.5, + "probability": 0.9176 + }, + { + "start": 24891.66, + "end": 24892.18, + "probability": 0.958 + }, + { + "start": 24892.5, + "end": 24892.93, + "probability": 0.9854 + }, + { + "start": 24893.5, + "end": 24895.4, + "probability": 0.9221 + }, + { + "start": 24895.64, + "end": 24897.9, + "probability": 0.9973 + }, + { + "start": 24898.18, + "end": 24899.48, + "probability": 0.9904 + }, + { + "start": 24899.78, + "end": 24902.06, + "probability": 0.9067 + }, + { + "start": 24902.06, + "end": 24903.38, + "probability": 0.9845 + }, + { + "start": 24903.68, + "end": 24905.26, + "probability": 0.6182 + }, + { + "start": 24905.68, + "end": 24906.46, + "probability": 0.5932 + }, + { + "start": 24907.36, + "end": 24910.66, + "probability": 0.7986 + }, + { + "start": 24912.84, + "end": 24915.4, + "probability": 0.3919 + }, + { + "start": 24915.7, + "end": 24916.48, + "probability": 0.6604 + }, + { + "start": 24916.88, + "end": 24917.23, + "probability": 0.9248 + }, + { + "start": 24917.56, + "end": 24919.74, + "probability": 0.8633 + }, + { + "start": 24920.62, + "end": 24921.2, + "probability": 0.853 + }, + { + "start": 24921.28, + "end": 24923.84, + "probability": 0.9834 + }, + { + "start": 24925.06, + "end": 24927.34, + "probability": 0.9904 + }, + { + "start": 24928.58, + "end": 24931.1, + "probability": 0.8414 + }, + { + "start": 24931.18, + "end": 24931.86, + "probability": 0.9827 + }, + { + "start": 24932.74, + "end": 24934.22, + "probability": 0.9954 + }, + { + "start": 24934.86, + "end": 24936.26, + "probability": 0.6713 + }, + { + "start": 24936.38, + "end": 24937.76, + "probability": 0.9204 + }, + { + "start": 24937.84, + "end": 24938.66, + "probability": 0.9885 + }, + { + "start": 24938.74, + "end": 24939.56, + "probability": 0.9601 + }, + { + "start": 24940.2, + "end": 24941.68, + "probability": 0.6365 + }, + { + "start": 24942.02, + "end": 24942.62, + "probability": 0.5072 + }, + { + "start": 24943.08, + "end": 24943.74, + "probability": 0.0908 + }, + { + "start": 24944.28, + "end": 24945.68, + "probability": 0.8503 + }, + { + "start": 24946.74, + "end": 24947.43, + "probability": 0.8804 + }, + { + "start": 24947.68, + "end": 24951.1, + "probability": 0.8711 + }, + { + "start": 24951.18, + "end": 24951.58, + "probability": 0.2611 + }, + { + "start": 24951.66, + "end": 24953.6, + "probability": 0.823 + }, + { + "start": 24953.68, + "end": 24954.31, + "probability": 0.332 + }, + { + "start": 24954.42, + "end": 24955.14, + "probability": 0.8066 + }, + { + "start": 24955.22, + "end": 24955.9, + "probability": 0.9473 + }, + { + "start": 24955.92, + "end": 24957.98, + "probability": 0.9243 + }, + { + "start": 24958.86, + "end": 24961.58, + "probability": 0.7048 + }, + { + "start": 24962.46, + "end": 24963.36, + "probability": 0.3914 + }, + { + "start": 24963.54, + "end": 24966.1, + "probability": 0.9204 + }, + { + "start": 24968.1, + "end": 24969.82, + "probability": 0.9775 + }, + { + "start": 24970.88, + "end": 24972.14, + "probability": 0.7425 + }, + { + "start": 24972.14, + "end": 24973.78, + "probability": 0.9912 + }, + { + "start": 24976.78, + "end": 24979.62, + "probability": 0.4512 + }, + { + "start": 24981.06, + "end": 24982.96, + "probability": 0.9219 + }, + { + "start": 24985.38, + "end": 24986.04, + "probability": 0.9656 + }, + { + "start": 24986.1, + "end": 24987.66, + "probability": 0.9257 + }, + { + "start": 24987.74, + "end": 24988.52, + "probability": 0.9226 + }, + { + "start": 24991.32, + "end": 24993.96, + "probability": 0.9692 + }, + { + "start": 24994.32, + "end": 24995.72, + "probability": 0.9106 + }, + { + "start": 24996.75, + "end": 24997.34, + "probability": 0.6652 + }, + { + "start": 24998.14, + "end": 24999.7, + "probability": 0.9556 + }, + { + "start": 25000.62, + "end": 25003.38, + "probability": 0.9058 + }, + { + "start": 25004.36, + "end": 25005.76, + "probability": 0.9123 + }, + { + "start": 25006.22, + "end": 25008.74, + "probability": 0.9155 + }, + { + "start": 25009.64, + "end": 25011.48, + "probability": 0.9591 + }, + { + "start": 25012.14, + "end": 25013.66, + "probability": 0.948 + }, + { + "start": 25014.32, + "end": 25015.19, + "probability": 0.6883 + }, + { + "start": 25015.9, + "end": 25019.56, + "probability": 0.6701 + }, + { + "start": 25020.2, + "end": 25021.36, + "probability": 0.7599 + }, + { + "start": 25021.74, + "end": 25022.68, + "probability": 0.8639 + }, + { + "start": 25024.32, + "end": 25025.9, + "probability": 0.9861 + }, + { + "start": 25025.94, + "end": 25026.58, + "probability": 0.8436 + }, + { + "start": 25027.94, + "end": 25029.42, + "probability": 0.6012 + }, + { + "start": 25030.0, + "end": 25032.88, + "probability": 0.9968 + }, + { + "start": 25032.88, + "end": 25034.58, + "probability": 0.8454 + }, + { + "start": 25034.86, + "end": 25035.46, + "probability": 0.3637 + }, + { + "start": 25035.68, + "end": 25036.84, + "probability": 0.9941 + }, + { + "start": 25037.06, + "end": 25039.1, + "probability": 0.3849 + }, + { + "start": 25039.1, + "end": 25039.28, + "probability": 0.3979 + }, + { + "start": 25039.7, + "end": 25040.8, + "probability": 0.7712 + }, + { + "start": 25040.92, + "end": 25041.42, + "probability": 0.9606 + }, + { + "start": 25041.62, + "end": 25042.64, + "probability": 0.1442 + }, + { + "start": 25043.72, + "end": 25045.03, + "probability": 0.5655 + }, + { + "start": 25046.48, + "end": 25046.98, + "probability": 0.9016 + }, + { + "start": 25047.04, + "end": 25048.86, + "probability": 0.9939 + }, + { + "start": 25048.92, + "end": 25052.6, + "probability": 0.5437 + }, + { + "start": 25052.72, + "end": 25052.9, + "probability": 0.3732 + }, + { + "start": 25053.93, + "end": 25054.66, + "probability": 0.34 + }, + { + "start": 25054.68, + "end": 25058.06, + "probability": 0.5003 + }, + { + "start": 25058.06, + "end": 25060.18, + "probability": 0.5689 + }, + { + "start": 25060.34, + "end": 25060.36, + "probability": 0.6243 + }, + { + "start": 25060.36, + "end": 25061.36, + "probability": 0.4794 + }, + { + "start": 25061.4, + "end": 25062.5, + "probability": 0.9851 + }, + { + "start": 25063.47, + "end": 25067.86, + "probability": 0.0154 + }, + { + "start": 25068.02, + "end": 25070.3, + "probability": 0.0815 + }, + { + "start": 25071.18, + "end": 25071.58, + "probability": 0.0307 + }, + { + "start": 25071.68, + "end": 25071.76, + "probability": 0.1368 + }, + { + "start": 25071.76, + "end": 25071.82, + "probability": 0.1577 + }, + { + "start": 25071.82, + "end": 25076.08, + "probability": 0.824 + }, + { + "start": 25076.42, + "end": 25081.46, + "probability": 0.8772 + }, + { + "start": 25082.2, + "end": 25084.8, + "probability": 0.8022 + }, + { + "start": 25085.86, + "end": 25086.82, + "probability": 0.957 + }, + { + "start": 25086.9, + "end": 25087.33, + "probability": 0.9397 + }, + { + "start": 25088.16, + "end": 25089.3, + "probability": 0.4254 + }, + { + "start": 25089.36, + "end": 25090.98, + "probability": 0.9538 + }, + { + "start": 25090.98, + "end": 25091.84, + "probability": 0.4911 + }, + { + "start": 25092.44, + "end": 25093.02, + "probability": 0.405 + }, + { + "start": 25093.1, + "end": 25094.26, + "probability": 0.7491 + }, + { + "start": 25094.42, + "end": 25096.04, + "probability": 0.9512 + }, + { + "start": 25096.42, + "end": 25097.48, + "probability": 0.5848 + }, + { + "start": 25097.72, + "end": 25098.4, + "probability": 0.5726 + }, + { + "start": 25098.54, + "end": 25099.28, + "probability": 0.1789 + }, + { + "start": 25099.28, + "end": 25100.16, + "probability": 0.3209 + }, + { + "start": 25100.16, + "end": 25101.12, + "probability": 0.8132 + }, + { + "start": 25101.18, + "end": 25104.52, + "probability": 0.8377 + }, + { + "start": 25104.74, + "end": 25107.2, + "probability": 0.8597 + }, + { + "start": 25107.3, + "end": 25107.3, + "probability": 0.0668 + }, + { + "start": 25107.3, + "end": 25107.4, + "probability": 0.3525 + }, + { + "start": 25107.45, + "end": 25107.52, + "probability": 0.443 + }, + { + "start": 25107.52, + "end": 25109.7, + "probability": 0.7615 + }, + { + "start": 25110.56, + "end": 25111.06, + "probability": 0.8838 + }, + { + "start": 25111.14, + "end": 25112.74, + "probability": 0.9805 + }, + { + "start": 25112.86, + "end": 25113.9, + "probability": 0.4019 + }, + { + "start": 25114.28, + "end": 25115.46, + "probability": 0.7791 + }, + { + "start": 25115.46, + "end": 25119.04, + "probability": 0.6356 + }, + { + "start": 25119.66, + "end": 25120.4, + "probability": 0.8926 + }, + { + "start": 25120.44, + "end": 25120.72, + "probability": 0.9062 + }, + { + "start": 25120.72, + "end": 25121.73, + "probability": 0.8525 + }, + { + "start": 25122.22, + "end": 25123.41, + "probability": 0.9146 + }, + { + "start": 25123.58, + "end": 25124.3, + "probability": 0.9427 + }, + { + "start": 25125.58, + "end": 25127.88, + "probability": 0.8951 + }, + { + "start": 25127.92, + "end": 25129.18, + "probability": 0.6621 + }, + { + "start": 25129.34, + "end": 25130.4, + "probability": 0.9983 + }, + { + "start": 25130.46, + "end": 25133.56, + "probability": 0.9211 + }, + { + "start": 25133.56, + "end": 25134.96, + "probability": 0.0806 + }, + { + "start": 25134.96, + "end": 25136.68, + "probability": 0.4997 + }, + { + "start": 25137.1, + "end": 25141.2, + "probability": 0.7494 + }, + { + "start": 25141.56, + "end": 25142.4, + "probability": 0.6614 + }, + { + "start": 25142.84, + "end": 25143.44, + "probability": 0.9048 + }, + { + "start": 25143.48, + "end": 25146.78, + "probability": 0.7636 + }, + { + "start": 25147.3, + "end": 25152.1, + "probability": 0.6719 + }, + { + "start": 25153.02, + "end": 25154.86, + "probability": 0.7544 + }, + { + "start": 25156.06, + "end": 25156.62, + "probability": 0.6949 + }, + { + "start": 25157.06, + "end": 25158.98, + "probability": 0.9679 + }, + { + "start": 25161.34, + "end": 25161.5, + "probability": 0.0012 + }, + { + "start": 25162.1, + "end": 25163.6, + "probability": 0.9946 + }, + { + "start": 25164.84, + "end": 25167.06, + "probability": 0.9966 + }, + { + "start": 25167.36, + "end": 25170.74, + "probability": 0.5823 + }, + { + "start": 25171.04, + "end": 25176.72, + "probability": 0.8898 + }, + { + "start": 25176.78, + "end": 25177.38, + "probability": 0.9194 + }, + { + "start": 25177.86, + "end": 25178.86, + "probability": 0.8101 + }, + { + "start": 25179.24, + "end": 25182.06, + "probability": 0.7722 + }, + { + "start": 25182.18, + "end": 25183.44, + "probability": 0.4192 + }, + { + "start": 25184.4, + "end": 25190.12, + "probability": 0.9271 + }, + { + "start": 25190.12, + "end": 25191.98, + "probability": 0.9162 + }, + { + "start": 25192.52, + "end": 25194.3, + "probability": 0.8813 + }, + { + "start": 25194.94, + "end": 25200.51, + "probability": 0.6316 + }, + { + "start": 25201.54, + "end": 25203.26, + "probability": 0.6572 + }, + { + "start": 25203.34, + "end": 25204.03, + "probability": 0.5822 + }, + { + "start": 25204.2, + "end": 25205.16, + "probability": 0.724 + }, + { + "start": 25205.76, + "end": 25209.69, + "probability": 0.7849 + }, + { + "start": 25211.2, + "end": 25214.58, + "probability": 0.8706 + }, + { + "start": 25214.58, + "end": 25217.64, + "probability": 0.9424 + }, + { + "start": 25218.32, + "end": 25219.06, + "probability": 0.9875 + }, + { + "start": 25220.61, + "end": 25220.98, + "probability": 0.1331 + }, + { + "start": 25220.98, + "end": 25221.26, + "probability": 0.1147 + }, + { + "start": 25221.36, + "end": 25221.5, + "probability": 0.8105 + }, + { + "start": 25221.9, + "end": 25223.51, + "probability": 0.7262 + }, + { + "start": 25223.92, + "end": 25224.82, + "probability": 0.613 + }, + { + "start": 25224.96, + "end": 25224.96, + "probability": 0.1046 + }, + { + "start": 25224.96, + "end": 25224.96, + "probability": 0.3603 + }, + { + "start": 25224.96, + "end": 25224.96, + "probability": 0.3988 + }, + { + "start": 25224.96, + "end": 25226.84, + "probability": 0.6316 + }, + { + "start": 25227.18, + "end": 25228.17, + "probability": 0.1238 + }, + { + "start": 25228.64, + "end": 25228.64, + "probability": 0.1846 + }, + { + "start": 25228.64, + "end": 25230.68, + "probability": 0.7518 + }, + { + "start": 25230.68, + "end": 25232.34, + "probability": 0.581 + }, + { + "start": 25232.38, + "end": 25232.85, + "probability": 0.1632 + }, + { + "start": 25233.18, + "end": 25235.32, + "probability": 0.5539 + }, + { + "start": 25235.46, + "end": 25237.89, + "probability": 0.9265 + }, + { + "start": 25238.94, + "end": 25239.54, + "probability": 0.3579 + }, + { + "start": 25239.54, + "end": 25240.94, + "probability": 0.7856 + }, + { + "start": 25240.96, + "end": 25241.08, + "probability": 0.252 + }, + { + "start": 25241.08, + "end": 25241.08, + "probability": 0.2033 + }, + { + "start": 25241.08, + "end": 25244.74, + "probability": 0.573 + }, + { + "start": 25245.22, + "end": 25245.54, + "probability": 0.0845 + }, + { + "start": 25245.54, + "end": 25247.91, + "probability": 0.6904 + }, + { + "start": 25248.72, + "end": 25251.16, + "probability": 0.5845 + }, + { + "start": 25251.76, + "end": 25253.46, + "probability": 0.9182 + }, + { + "start": 25253.48, + "end": 25254.44, + "probability": 0.9397 + }, + { + "start": 25255.14, + "end": 25257.07, + "probability": 0.9894 + }, + { + "start": 25258.22, + "end": 25261.06, + "probability": 0.9911 + }, + { + "start": 25261.74, + "end": 25263.36, + "probability": 0.7072 + }, + { + "start": 25263.72, + "end": 25267.02, + "probability": 0.8926 + }, + { + "start": 25267.02, + "end": 25267.5, + "probability": 0.3684 + }, + { + "start": 25268.86, + "end": 25274.66, + "probability": 0.8245 + }, + { + "start": 25274.74, + "end": 25276.56, + "probability": 0.8735 + }, + { + "start": 25276.6, + "end": 25279.28, + "probability": 0.8306 + }, + { + "start": 25279.88, + "end": 25281.22, + "probability": 0.8058 + }, + { + "start": 25281.58, + "end": 25281.58, + "probability": 0.0183 + }, + { + "start": 25281.66, + "end": 25285.48, + "probability": 0.9909 + }, + { + "start": 25285.66, + "end": 25288.04, + "probability": 0.9594 + }, + { + "start": 25288.8, + "end": 25291.23, + "probability": 0.9184 + }, + { + "start": 25291.64, + "end": 25293.26, + "probability": 0.903 + }, + { + "start": 25293.48, + "end": 25294.26, + "probability": 0.6926 + }, + { + "start": 25294.58, + "end": 25295.52, + "probability": 0.7456 + }, + { + "start": 25295.84, + "end": 25300.14, + "probability": 0.9788 + }, + { + "start": 25300.9, + "end": 25302.24, + "probability": 0.0734 + }, + { + "start": 25302.24, + "end": 25302.74, + "probability": 0.506 + }, + { + "start": 25302.84, + "end": 25303.68, + "probability": 0.4219 + }, + { + "start": 25304.84, + "end": 25308.42, + "probability": 0.7719 + }, + { + "start": 25308.42, + "end": 25309.82, + "probability": 0.835 + }, + { + "start": 25310.2, + "end": 25311.3, + "probability": 0.8451 + }, + { + "start": 25311.38, + "end": 25313.52, + "probability": 0.783 + }, + { + "start": 25314.0, + "end": 25314.76, + "probability": 0.7981 + }, + { + "start": 25314.94, + "end": 25316.62, + "probability": 0.5815 + }, + { + "start": 25317.66, + "end": 25319.34, + "probability": 0.871 + }, + { + "start": 25319.46, + "end": 25320.7, + "probability": 0.9853 + }, + { + "start": 25320.78, + "end": 25322.2, + "probability": 0.9806 + }, + { + "start": 25322.72, + "end": 25323.3, + "probability": 0.9624 + }, + { + "start": 25323.42, + "end": 25328.76, + "probability": 0.8867 + }, + { + "start": 25329.02, + "end": 25330.26, + "probability": 0.824 + }, + { + "start": 25330.32, + "end": 25330.9, + "probability": 0.8337 + }, + { + "start": 25330.96, + "end": 25331.68, + "probability": 0.7121 + }, + { + "start": 25332.1, + "end": 25335.12, + "probability": 0.8992 + }, + { + "start": 25335.68, + "end": 25338.52, + "probability": 0.9623 + }, + { + "start": 25339.0, + "end": 25339.74, + "probability": 0.8584 + }, + { + "start": 25340.08, + "end": 25340.84, + "probability": 0.7111 + }, + { + "start": 25342.2, + "end": 25343.35, + "probability": 0.3862 + }, + { + "start": 25343.66, + "end": 25345.46, + "probability": 0.737 + }, + { + "start": 25347.04, + "end": 25348.08, + "probability": 0.9954 + }, + { + "start": 25348.16, + "end": 25353.04, + "probability": 0.9896 + }, + { + "start": 25353.72, + "end": 25354.76, + "probability": 0.9014 + }, + { + "start": 25354.76, + "end": 25355.4, + "probability": 0.6834 + }, + { + "start": 25355.44, + "end": 25356.44, + "probability": 0.8044 + }, + { + "start": 25356.5, + "end": 25357.02, + "probability": 0.4914 + }, + { + "start": 25357.68, + "end": 25359.49, + "probability": 0.8866 + }, + { + "start": 25359.72, + "end": 25360.2, + "probability": 0.7116 + }, + { + "start": 25360.46, + "end": 25361.52, + "probability": 0.696 + }, + { + "start": 25362.52, + "end": 25363.52, + "probability": 0.9819 + }, + { + "start": 25363.64, + "end": 25364.68, + "probability": 0.8032 + }, + { + "start": 25365.22, + "end": 25366.26, + "probability": 0.6426 + }, + { + "start": 25366.68, + "end": 25367.84, + "probability": 0.5502 + }, + { + "start": 25367.88, + "end": 25368.76, + "probability": 0.6318 + }, + { + "start": 25369.2, + "end": 25373.36, + "probability": 0.925 + }, + { + "start": 25373.68, + "end": 25374.34, + "probability": 0.8005 + }, + { + "start": 25374.8, + "end": 25375.56, + "probability": 0.7832 + }, + { + "start": 25375.6, + "end": 25376.9, + "probability": 0.6341 + }, + { + "start": 25377.34, + "end": 25381.16, + "probability": 0.928 + }, + { + "start": 25381.2, + "end": 25384.94, + "probability": 0.9341 + }, + { + "start": 25385.04, + "end": 25386.62, + "probability": 0.7808 + }, + { + "start": 25386.74, + "end": 25387.42, + "probability": 0.8865 + }, + { + "start": 25387.5, + "end": 25388.26, + "probability": 0.8122 + }, + { + "start": 25388.58, + "end": 25391.28, + "probability": 0.8936 + }, + { + "start": 25391.46, + "end": 25392.9, + "probability": 0.9038 + }, + { + "start": 25393.36, + "end": 25393.9, + "probability": 0.624 + }, + { + "start": 25393.9, + "end": 25394.16, + "probability": 0.248 + }, + { + "start": 25394.18, + "end": 25395.84, + "probability": 0.6674 + }, + { + "start": 25396.52, + "end": 25400.32, + "probability": 0.9941 + }, + { + "start": 25402.46, + "end": 25403.07, + "probability": 0.9065 + }, + { + "start": 25403.26, + "end": 25404.32, + "probability": 0.7805 + }, + { + "start": 25404.36, + "end": 25405.8, + "probability": 0.8533 + }, + { + "start": 25406.76, + "end": 25409.72, + "probability": 0.7554 + }, + { + "start": 25410.32, + "end": 25411.66, + "probability": 0.9578 + }, + { + "start": 25412.88, + "end": 25414.86, + "probability": 0.6447 + }, + { + "start": 25414.98, + "end": 25415.32, + "probability": 0.5035 + }, + { + "start": 25415.36, + "end": 25415.62, + "probability": 0.2258 + }, + { + "start": 25415.62, + "end": 25416.76, + "probability": 0.4927 + }, + { + "start": 25417.46, + "end": 25419.09, + "probability": 0.9531 + }, + { + "start": 25420.66, + "end": 25421.14, + "probability": 0.411 + }, + { + "start": 25423.8, + "end": 25424.54, + "probability": 0.5844 + }, + { + "start": 25425.94, + "end": 25430.08, + "probability": 0.8669 + }, + { + "start": 25430.98, + "end": 25434.52, + "probability": 0.8585 + }, + { + "start": 25434.92, + "end": 25435.7, + "probability": 0.7768 + }, + { + "start": 25437.3, + "end": 25438.25, + "probability": 0.9746 + }, + { + "start": 25439.76, + "end": 25440.32, + "probability": 0.5312 + }, + { + "start": 25442.6, + "end": 25443.3, + "probability": 0.4904 + }, + { + "start": 25445.11, + "end": 25448.18, + "probability": 0.6144 + }, + { + "start": 25448.9, + "end": 25450.98, + "probability": 0.4953 + }, + { + "start": 25452.02, + "end": 25452.54, + "probability": 0.6233 + }, + { + "start": 25452.96, + "end": 25455.16, + "probability": 0.7073 + }, + { + "start": 25455.8, + "end": 25456.14, + "probability": 0.291 + }, + { + "start": 25456.26, + "end": 25456.62, + "probability": 0.6624 + }, + { + "start": 25456.74, + "end": 25457.72, + "probability": 0.5575 + }, + { + "start": 25457.8, + "end": 25459.4, + "probability": 0.7187 + }, + { + "start": 25459.56, + "end": 25460.18, + "probability": 0.9014 + }, + { + "start": 25460.74, + "end": 25461.66, + "probability": 0.9332 + }, + { + "start": 25461.98, + "end": 25462.78, + "probability": 0.9731 + }, + { + "start": 25462.84, + "end": 25463.36, + "probability": 0.901 + }, + { + "start": 25463.42, + "end": 25464.82, + "probability": 0.9961 + }, + { + "start": 25465.3, + "end": 25466.78, + "probability": 0.9436 + }, + { + "start": 25467.84, + "end": 25468.96, + "probability": 0.9191 + }, + { + "start": 25469.44, + "end": 25470.68, + "probability": 0.7396 + }, + { + "start": 25471.06, + "end": 25471.48, + "probability": 0.5258 + }, + { + "start": 25471.66, + "end": 25472.82, + "probability": 0.9411 + }, + { + "start": 25473.94, + "end": 25475.6, + "probability": 0.6639 + }, + { + "start": 25476.2, + "end": 25477.48, + "probability": 0.9955 + }, + { + "start": 25478.7, + "end": 25478.7, + "probability": 0.5647 + }, + { + "start": 25478.7, + "end": 25482.0, + "probability": 0.9646 + }, + { + "start": 25482.3, + "end": 25485.3, + "probability": 0.9773 + }, + { + "start": 25487.48, + "end": 25488.38, + "probability": 0.6644 + }, + { + "start": 25489.66, + "end": 25491.56, + "probability": 0.8231 + }, + { + "start": 25492.86, + "end": 25494.14, + "probability": 0.8923 + }, + { + "start": 25495.22, + "end": 25497.92, + "probability": 0.8229 + }, + { + "start": 25499.82, + "end": 25501.66, + "probability": 0.2296 + }, + { + "start": 25502.16, + "end": 25503.1, + "probability": 0.6445 + }, + { + "start": 25503.74, + "end": 25505.62, + "probability": 0.7099 + }, + { + "start": 25507.38, + "end": 25512.1, + "probability": 0.8333 + }, + { + "start": 25512.24, + "end": 25512.9, + "probability": 0.5478 + }, + { + "start": 25513.5, + "end": 25514.36, + "probability": 0.5112 + }, + { + "start": 25515.18, + "end": 25518.08, + "probability": 0.9445 + }, + { + "start": 25518.08, + "end": 25521.26, + "probability": 0.8179 + }, + { + "start": 25521.6, + "end": 25522.36, + "probability": 0.7628 + }, + { + "start": 25523.72, + "end": 25524.36, + "probability": 0.747 + }, + { + "start": 25524.58, + "end": 25525.84, + "probability": 0.6862 + }, + { + "start": 25526.38, + "end": 25526.88, + "probability": 0.4402 + }, + { + "start": 25528.4, + "end": 25529.28, + "probability": 0.9766 + }, + { + "start": 25529.78, + "end": 25530.65, + "probability": 0.9014 + }, + { + "start": 25531.36, + "end": 25533.98, + "probability": 0.9356 + }, + { + "start": 25535.52, + "end": 25538.52, + "probability": 0.9316 + }, + { + "start": 25538.74, + "end": 25539.48, + "probability": 0.6176 + }, + { + "start": 25539.64, + "end": 25541.16, + "probability": 0.6506 + }, + { + "start": 25541.96, + "end": 25542.7, + "probability": 0.8823 + }, + { + "start": 25543.46, + "end": 25543.9, + "probability": 0.614 + }, + { + "start": 25544.76, + "end": 25545.68, + "probability": 0.6881 + }, + { + "start": 25546.26, + "end": 25547.44, + "probability": 0.7871 + }, + { + "start": 25547.5, + "end": 25549.4, + "probability": 0.9943 + }, + { + "start": 25549.88, + "end": 25550.08, + "probability": 0.536 + }, + { + "start": 25550.08, + "end": 25552.0, + "probability": 0.4456 + }, + { + "start": 25552.14, + "end": 25552.32, + "probability": 0.0856 + }, + { + "start": 25552.34, + "end": 25552.76, + "probability": 0.7372 + }, + { + "start": 25552.82, + "end": 25553.84, + "probability": 0.9091 + }, + { + "start": 25553.96, + "end": 25555.98, + "probability": 0.9683 + }, + { + "start": 25556.28, + "end": 25557.56, + "probability": 0.887 + }, + { + "start": 25557.6, + "end": 25558.03, + "probability": 0.7974 + }, + { + "start": 25559.02, + "end": 25560.23, + "probability": 0.744 + }, + { + "start": 25560.3, + "end": 25562.47, + "probability": 0.9199 + }, + { + "start": 25563.82, + "end": 25564.85, + "probability": 0.8111 + }, + { + "start": 25565.4, + "end": 25568.18, + "probability": 0.9543 + }, + { + "start": 25568.42, + "end": 25570.3, + "probability": 0.8798 + }, + { + "start": 25571.7, + "end": 25572.9, + "probability": 0.0944 + }, + { + "start": 25573.94, + "end": 25574.8, + "probability": 0.0743 + }, + { + "start": 25574.8, + "end": 25575.86, + "probability": 0.4136 + }, + { + "start": 25576.0, + "end": 25578.8, + "probability": 0.6724 + }, + { + "start": 25579.32, + "end": 25581.02, + "probability": 0.3731 + }, + { + "start": 25581.16, + "end": 25582.74, + "probability": 0.5279 + }, + { + "start": 25583.56, + "end": 25584.22, + "probability": 0.6084 + }, + { + "start": 25584.46, + "end": 25585.56, + "probability": 0.7568 + }, + { + "start": 25585.98, + "end": 25590.78, + "probability": 0.6875 + }, + { + "start": 25591.0, + "end": 25592.16, + "probability": 0.5301 + }, + { + "start": 25592.28, + "end": 25592.9, + "probability": 0.3133 + }, + { + "start": 25593.0, + "end": 25595.66, + "probability": 0.894 + }, + { + "start": 25595.68, + "end": 25596.7, + "probability": 0.7999 + }, + { + "start": 25597.16, + "end": 25598.52, + "probability": 0.8874 + }, + { + "start": 25598.64, + "end": 25601.32, + "probability": 0.9081 + }, + { + "start": 25601.38, + "end": 25604.28, + "probability": 0.0362 + }, + { + "start": 25616.1, + "end": 25618.24, + "probability": 0.1169 + }, + { + "start": 25618.46, + "end": 25621.2, + "probability": 0.0677 + }, + { + "start": 25621.36, + "end": 25621.42, + "probability": 0.1909 + }, + { + "start": 25621.78, + "end": 25626.08, + "probability": 0.2022 + }, + { + "start": 25626.12, + "end": 25630.08, + "probability": 0.3589 + }, + { + "start": 25631.32, + "end": 25633.38, + "probability": 0.0428 + }, + { + "start": 25634.3, + "end": 25640.02, + "probability": 0.1083 + }, + { + "start": 25640.6, + "end": 25642.74, + "probability": 0.0168 + }, + { + "start": 25643.22, + "end": 25646.64, + "probability": 0.0831 + }, + { + "start": 25646.64, + "end": 25648.8, + "probability": 0.0831 + }, + { + "start": 25648.8, + "end": 25652.36, + "probability": 0.0352 + }, + { + "start": 25652.88, + "end": 25659.39, + "probability": 0.1061 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.0, + "end": 25683.0, + "probability": 0.0 + }, + { + "start": 25683.26, + "end": 25686.34, + "probability": 0.0506 + }, + { + "start": 25686.88, + "end": 25686.98, + "probability": 0.031 + }, + { + "start": 25688.8, + "end": 25689.96, + "probability": 0.0908 + }, + { + "start": 25693.66, + "end": 25695.56, + "probability": 0.1159 + }, + { + "start": 25696.5, + "end": 25697.2, + "probability": 0.1025 + }, + { + "start": 25699.06, + "end": 25701.46, + "probability": 0.1634 + }, + { + "start": 25702.7, + "end": 25704.32, + "probability": 0.0468 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.0, + "end": 25803.0, + "probability": 0.0 + }, + { + "start": 25803.96, + "end": 25807.56, + "probability": 0.0776 + }, + { + "start": 25807.76, + "end": 25808.52, + "probability": 0.48 + }, + { + "start": 25809.52, + "end": 25809.52, + "probability": 0.083 + }, + { + "start": 25809.52, + "end": 25809.52, + "probability": 0.1256 + }, + { + "start": 25809.52, + "end": 25809.52, + "probability": 0.1086 + }, + { + "start": 25809.52, + "end": 25809.52, + "probability": 0.1446 + }, + { + "start": 25809.52, + "end": 25812.24, + "probability": 0.4576 + }, + { + "start": 25813.58, + "end": 25817.38, + "probability": 0.9975 + }, + { + "start": 25817.72, + "end": 25819.48, + "probability": 0.4763 + }, + { + "start": 25819.58, + "end": 25821.12, + "probability": 0.9614 + }, + { + "start": 25822.06, + "end": 25823.29, + "probability": 0.9312 + }, + { + "start": 25825.76, + "end": 25826.8, + "probability": 0.9985 + }, + { + "start": 25827.5, + "end": 25828.78, + "probability": 0.7264 + }, + { + "start": 25830.6, + "end": 25833.2, + "probability": 0.7226 + }, + { + "start": 25834.04, + "end": 25836.92, + "probability": 0.9646 + }, + { + "start": 25837.98, + "end": 25839.86, + "probability": 0.8631 + }, + { + "start": 25840.4, + "end": 25841.34, + "probability": 0.0879 + }, + { + "start": 25841.34, + "end": 25842.62, + "probability": 0.2102 + }, + { + "start": 25843.76, + "end": 25845.26, + "probability": 0.1415 + }, + { + "start": 25846.6, + "end": 25849.08, + "probability": 0.8084 + }, + { + "start": 25849.16, + "end": 25850.5, + "probability": 0.3931 + }, + { + "start": 25850.6, + "end": 25851.58, + "probability": 0.3612 + }, + { + "start": 25851.58, + "end": 25854.76, + "probability": 0.4248 + }, + { + "start": 25855.44, + "end": 25855.87, + "probability": 0.2582 + }, + { + "start": 25856.36, + "end": 25856.64, + "probability": 0.2638 + }, + { + "start": 25856.98, + "end": 25859.5, + "probability": 0.4907 + }, + { + "start": 25860.04, + "end": 25861.22, + "probability": 0.9333 + }, + { + "start": 25861.56, + "end": 25863.02, + "probability": 0.9907 + }, + { + "start": 25863.1, + "end": 25866.1, + "probability": 0.1166 + }, + { + "start": 25866.12, + "end": 25866.44, + "probability": 0.6813 + }, + { + "start": 25866.6, + "end": 25868.36, + "probability": 0.5182 + }, + { + "start": 25868.5, + "end": 25870.6, + "probability": 0.7944 + }, + { + "start": 25870.62, + "end": 25871.92, + "probability": 0.5455 + }, + { + "start": 25872.04, + "end": 25875.12, + "probability": 0.5205 + }, + { + "start": 25875.34, + "end": 25876.42, + "probability": 0.4577 + }, + { + "start": 25876.84, + "end": 25878.04, + "probability": 0.4805 + }, + { + "start": 25878.42, + "end": 25879.55, + "probability": 0.9374 + }, + { + "start": 25879.92, + "end": 25881.3, + "probability": 0.8738 + }, + { + "start": 25881.96, + "end": 25882.82, + "probability": 0.0373 + }, + { + "start": 25883.22, + "end": 25886.76, + "probability": 0.5521 + }, + { + "start": 25886.8, + "end": 25888.22, + "probability": 0.6978 + }, + { + "start": 25888.88, + "end": 25889.36, + "probability": 0.5121 + }, + { + "start": 25889.48, + "end": 25890.52, + "probability": 0.4906 + }, + { + "start": 25890.56, + "end": 25891.26, + "probability": 0.6107 + }, + { + "start": 25891.6, + "end": 25892.3, + "probability": 0.6519 + }, + { + "start": 25892.86, + "end": 25894.18, + "probability": 0.6652 + }, + { + "start": 25895.08, + "end": 25899.02, + "probability": 0.8728 + }, + { + "start": 25899.94, + "end": 25901.58, + "probability": 0.8004 + }, + { + "start": 25902.12, + "end": 25904.7, + "probability": 0.088 + }, + { + "start": 25905.68, + "end": 25905.9, + "probability": 0.0458 + }, + { + "start": 25905.9, + "end": 25905.9, + "probability": 0.3014 + }, + { + "start": 25905.9, + "end": 25905.9, + "probability": 0.0217 + }, + { + "start": 25905.9, + "end": 25905.9, + "probability": 0.0845 + }, + { + "start": 25905.9, + "end": 25907.25, + "probability": 0.2854 + }, + { + "start": 25909.22, + "end": 25910.46, + "probability": 0.8362 + }, + { + "start": 25911.92, + "end": 25912.7, + "probability": 0.7671 + }, + { + "start": 25913.3, + "end": 25914.76, + "probability": 0.9756 + }, + { + "start": 25915.8, + "end": 25917.14, + "probability": 0.9795 + }, + { + "start": 25917.44, + "end": 25918.4, + "probability": 0.8494 + }, + { + "start": 25918.52, + "end": 25920.88, + "probability": 0.944 + }, + { + "start": 25921.16, + "end": 25921.68, + "probability": 0.0539 + }, + { + "start": 25921.9, + "end": 25928.14, + "probability": 0.9816 + }, + { + "start": 25929.42, + "end": 25930.34, + "probability": 0.8805 + }, + { + "start": 25931.54, + "end": 25934.62, + "probability": 0.961 + }, + { + "start": 25935.6, + "end": 25937.5, + "probability": 0.9266 + }, + { + "start": 25938.24, + "end": 25939.1, + "probability": 0.165 + }, + { + "start": 25939.8, + "end": 25942.22, + "probability": 0.2584 + }, + { + "start": 25942.22, + "end": 25943.04, + "probability": 0.1081 + }, + { + "start": 25943.54, + "end": 25944.28, + "probability": 0.9092 + }, + { + "start": 25944.46, + "end": 25950.66, + "probability": 0.5978 + }, + { + "start": 25951.26, + "end": 25952.96, + "probability": 0.7095 + }, + { + "start": 25953.22, + "end": 25953.84, + "probability": 0.4837 + }, + { + "start": 25953.9, + "end": 25954.69, + "probability": 0.7793 + }, + { + "start": 25955.1, + "end": 25955.85, + "probability": 0.8827 + }, + { + "start": 25955.96, + "end": 25957.34, + "probability": 0.9769 + }, + { + "start": 25957.56, + "end": 25961.46, + "probability": 0.916 + }, + { + "start": 25962.12, + "end": 25965.44, + "probability": 0.9912 + }, + { + "start": 25965.78, + "end": 25966.74, + "probability": 0.9626 + }, + { + "start": 25967.7, + "end": 25970.82, + "probability": 0.4937 + }, + { + "start": 25970.82, + "end": 25971.46, + "probability": 0.2118 + }, + { + "start": 25971.48, + "end": 25971.9, + "probability": 0.6187 + }, + { + "start": 25971.98, + "end": 25975.54, + "probability": 0.7353 + }, + { + "start": 25976.04, + "end": 25981.88, + "probability": 0.9783 + }, + { + "start": 25982.22, + "end": 25986.06, + "probability": 0.8216 + }, + { + "start": 25986.98, + "end": 25986.98, + "probability": 0.1834 + }, + { + "start": 25986.98, + "end": 25989.55, + "probability": 0.9847 + }, + { + "start": 25990.44, + "end": 25994.1, + "probability": 0.6531 + }, + { + "start": 25994.96, + "end": 25998.8, + "probability": 0.8334 + }, + { + "start": 25999.88, + "end": 26002.94, + "probability": 0.7864 + }, + { + "start": 26003.46, + "end": 26004.8, + "probability": 0.9604 + }, + { + "start": 26005.19, + "end": 26008.92, + "probability": 0.9888 + }, + { + "start": 26009.38, + "end": 26011.3, + "probability": 0.9956 + }, + { + "start": 26012.48, + "end": 26015.3, + "probability": 0.9108 + }, + { + "start": 26015.9, + "end": 26017.23, + "probability": 0.4146 + }, + { + "start": 26017.38, + "end": 26021.39, + "probability": 0.9915 + }, + { + "start": 26022.12, + "end": 26025.18, + "probability": 0.9985 + }, + { + "start": 26025.66, + "end": 26029.3, + "probability": 0.9194 + }, + { + "start": 26030.34, + "end": 26035.48, + "probability": 0.9482 + }, + { + "start": 26035.68, + "end": 26037.78, + "probability": 0.7506 + }, + { + "start": 26038.56, + "end": 26038.94, + "probability": 0.4998 + }, + { + "start": 26039.6, + "end": 26041.12, + "probability": 0.7067 + }, + { + "start": 26041.28, + "end": 26041.28, + "probability": 0.176 + }, + { + "start": 26041.28, + "end": 26042.33, + "probability": 0.9512 + }, + { + "start": 26043.0, + "end": 26043.95, + "probability": 0.8901 + }, + { + "start": 26044.42, + "end": 26048.66, + "probability": 0.9395 + }, + { + "start": 26049.68, + "end": 26051.62, + "probability": 0.5217 + }, + { + "start": 26052.3, + "end": 26053.78, + "probability": 0.7742 + }, + { + "start": 26054.54, + "end": 26056.12, + "probability": 0.0831 + }, + { + "start": 26056.24, + "end": 26057.54, + "probability": 0.951 + }, + { + "start": 26057.68, + "end": 26061.02, + "probability": 0.9264 + }, + { + "start": 26061.3, + "end": 26062.97, + "probability": 0.8115 + }, + { + "start": 26064.04, + "end": 26067.08, + "probability": 0.9821 + }, + { + "start": 26067.56, + "end": 26068.38, + "probability": 0.764 + }, + { + "start": 26069.06, + "end": 26069.34, + "probability": 0.707 + }, + { + "start": 26069.64, + "end": 26071.34, + "probability": 0.8957 + }, + { + "start": 26071.52, + "end": 26073.24, + "probability": 0.9312 + }, + { + "start": 26073.58, + "end": 26074.24, + "probability": 0.6085 + }, + { + "start": 26074.5, + "end": 26075.2, + "probability": 0.801 + }, + { + "start": 26075.56, + "end": 26077.74, + "probability": 0.8074 + }, + { + "start": 26078.12, + "end": 26080.68, + "probability": 0.1588 + }, + { + "start": 26080.68, + "end": 26084.18, + "probability": 0.1241 + }, + { + "start": 26084.52, + "end": 26087.36, + "probability": 0.5816 + }, + { + "start": 26087.56, + "end": 26089.92, + "probability": 0.6499 + }, + { + "start": 26090.0, + "end": 26091.57, + "probability": 0.5659 + }, + { + "start": 26091.81, + "end": 26094.3, + "probability": 0.9644 + }, + { + "start": 26094.4, + "end": 26095.82, + "probability": 0.9872 + }, + { + "start": 26095.92, + "end": 26096.84, + "probability": 0.603 + }, + { + "start": 26096.98, + "end": 26099.08, + "probability": 0.0903 + }, + { + "start": 26100.02, + "end": 26104.02, + "probability": 0.9305 + }, + { + "start": 26104.56, + "end": 26105.84, + "probability": 0.5907 + }, + { + "start": 26106.34, + "end": 26106.72, + "probability": 0.8809 + }, + { + "start": 26106.96, + "end": 26110.96, + "probability": 0.7188 + }, + { + "start": 26111.6, + "end": 26114.6, + "probability": 0.7511 + }, + { + "start": 26114.6, + "end": 26115.3, + "probability": 0.645 + }, + { + "start": 26115.56, + "end": 26119.84, + "probability": 0.5736 + }, + { + "start": 26120.36, + "end": 26121.06, + "probability": 0.8746 + }, + { + "start": 26121.74, + "end": 26130.5, + "probability": 0.9204 + }, + { + "start": 26131.12, + "end": 26133.22, + "probability": 0.9357 + }, + { + "start": 26133.68, + "end": 26134.82, + "probability": 0.8485 + }, + { + "start": 26134.98, + "end": 26136.22, + "probability": 0.7312 + }, + { + "start": 26136.38, + "end": 26137.18, + "probability": 0.3071 + }, + { + "start": 26137.8, + "end": 26139.56, + "probability": 0.8929 + }, + { + "start": 26140.56, + "end": 26142.96, + "probability": 0.254 + }, + { + "start": 26143.02, + "end": 26143.52, + "probability": 0.2553 + }, + { + "start": 26143.76, + "end": 26146.3, + "probability": 0.9855 + }, + { + "start": 26146.66, + "end": 26148.35, + "probability": 0.7328 + }, + { + "start": 26148.66, + "end": 26151.32, + "probability": 0.733 + }, + { + "start": 26152.52, + "end": 26153.22, + "probability": 0.9329 + }, + { + "start": 26153.3, + "end": 26154.24, + "probability": 0.8024 + }, + { + "start": 26154.68, + "end": 26159.8, + "probability": 0.9155 + }, + { + "start": 26160.42, + "end": 26161.22, + "probability": 0.3828 + }, + { + "start": 26161.86, + "end": 26162.74, + "probability": 0.981 + }, + { + "start": 26162.9, + "end": 26164.13, + "probability": 0.8356 + }, + { + "start": 26165.36, + "end": 26167.12, + "probability": 0.9971 + }, + { + "start": 26167.72, + "end": 26169.12, + "probability": 0.3395 + }, + { + "start": 26169.44, + "end": 26169.84, + "probability": 0.0209 + }, + { + "start": 26169.98, + "end": 26172.74, + "probability": 0.5429 + }, + { + "start": 26172.74, + "end": 26173.56, + "probability": 0.8356 + }, + { + "start": 26174.86, + "end": 26175.54, + "probability": 0.013 + }, + { + "start": 26176.42, + "end": 26177.36, + "probability": 0.3373 + }, + { + "start": 26177.36, + "end": 26178.9, + "probability": 0.6061 + }, + { + "start": 26179.4, + "end": 26182.16, + "probability": 0.8146 + }, + { + "start": 26182.56, + "end": 26185.45, + "probability": 0.3567 + }, + { + "start": 26186.64, + "end": 26190.84, + "probability": 0.8211 + }, + { + "start": 26190.94, + "end": 26191.68, + "probability": 0.4909 + }, + { + "start": 26192.04, + "end": 26203.26, + "probability": 0.9038 + }, + { + "start": 26203.88, + "end": 26206.1, + "probability": 0.8467 + }, + { + "start": 26206.78, + "end": 26210.64, + "probability": 0.9141 + }, + { + "start": 26211.3, + "end": 26216.0, + "probability": 0.8868 + }, + { + "start": 26216.62, + "end": 26218.42, + "probability": 0.9797 + }, + { + "start": 26218.68, + "end": 26222.01, + "probability": 0.937 + }, + { + "start": 26222.32, + "end": 26223.1, + "probability": 0.6552 + }, + { + "start": 26223.72, + "end": 26228.12, + "probability": 0.3991 + }, + { + "start": 26229.3, + "end": 26232.06, + "probability": 0.418 + }, + { + "start": 26232.58, + "end": 26235.46, + "probability": 0.8009 + }, + { + "start": 26235.82, + "end": 26236.24, + "probability": 0.8896 + }, + { + "start": 26236.6, + "end": 26240.96, + "probability": 0.8568 + }, + { + "start": 26242.58, + "end": 26246.22, + "probability": 0.7328 + }, + { + "start": 26246.7, + "end": 26247.26, + "probability": 0.9032 + }, + { + "start": 26247.4, + "end": 26248.76, + "probability": 0.803 + }, + { + "start": 26248.98, + "end": 26251.06, + "probability": 0.8938 + }, + { + "start": 26251.3, + "end": 26252.51, + "probability": 0.8573 + }, + { + "start": 26252.74, + "end": 26253.8, + "probability": 0.5439 + }, + { + "start": 26255.06, + "end": 26256.99, + "probability": 0.9482 + }, + { + "start": 26257.4, + "end": 26259.44, + "probability": 0.9319 + }, + { + "start": 26260.8, + "end": 26268.02, + "probability": 0.928 + }, + { + "start": 26268.86, + "end": 26274.4, + "probability": 0.7999 + }, + { + "start": 26275.28, + "end": 26280.62, + "probability": 0.7966 + }, + { + "start": 26282.16, + "end": 26282.58, + "probability": 0.7485 + }, + { + "start": 26282.74, + "end": 26284.14, + "probability": 0.9485 + }, + { + "start": 26284.38, + "end": 26286.18, + "probability": 0.7798 + }, + { + "start": 26286.92, + "end": 26291.16, + "probability": 0.9261 + }, + { + "start": 26291.86, + "end": 26294.68, + "probability": 0.3448 + }, + { + "start": 26295.58, + "end": 26295.58, + "probability": 0.1193 + }, + { + "start": 26296.48, + "end": 26297.4, + "probability": 0.3189 + }, + { + "start": 26298.38, + "end": 26298.58, + "probability": 0.0173 + }, + { + "start": 26298.58, + "end": 26301.86, + "probability": 0.6152 + }, + { + "start": 26302.38, + "end": 26303.98, + "probability": 0.6948 + }, + { + "start": 26304.64, + "end": 26305.41, + "probability": 0.8863 + }, + { + "start": 26305.56, + "end": 26308.66, + "probability": 0.9108 + }, + { + "start": 26308.94, + "end": 26314.12, + "probability": 0.8704 + }, + { + "start": 26314.24, + "end": 26317.5, + "probability": 0.8644 + }, + { + "start": 26318.16, + "end": 26320.78, + "probability": 0.8934 + }, + { + "start": 26321.03, + "end": 26323.92, + "probability": 0.7408 + }, + { + "start": 26323.98, + "end": 26327.28, + "probability": 0.7481 + }, + { + "start": 26327.48, + "end": 26331.8, + "probability": 0.9593 + }, + { + "start": 26332.22, + "end": 26334.44, + "probability": 0.9947 + }, + { + "start": 26335.12, + "end": 26337.98, + "probability": 0.8564 + }, + { + "start": 26338.32, + "end": 26338.94, + "probability": 0.5783 + }, + { + "start": 26339.3, + "end": 26341.4, + "probability": 0.8809 + }, + { + "start": 26341.94, + "end": 26345.64, + "probability": 0.9971 + }, + { + "start": 26346.12, + "end": 26347.17, + "probability": 0.896 + }, + { + "start": 26347.86, + "end": 26348.54, + "probability": 0.9585 + }, + { + "start": 26348.74, + "end": 26350.34, + "probability": 0.8673 + }, + { + "start": 26350.48, + "end": 26351.1, + "probability": 0.4778 + }, + { + "start": 26351.58, + "end": 26353.34, + "probability": 0.9197 + }, + { + "start": 26353.48, + "end": 26353.7, + "probability": 0.9218 + }, + { + "start": 26355.76, + "end": 26357.32, + "probability": 0.6471 + }, + { + "start": 26357.46, + "end": 26359.4, + "probability": 0.5231 + }, + { + "start": 26359.96, + "end": 26362.22, + "probability": 0.753 + }, + { + "start": 26362.68, + "end": 26363.26, + "probability": 0.2741 + }, + { + "start": 26366.1, + "end": 26366.8, + "probability": 0.1689 + }, + { + "start": 26367.18, + "end": 26367.48, + "probability": 0.3571 + }, + { + "start": 26367.48, + "end": 26369.1, + "probability": 0.6097 + }, + { + "start": 26369.22, + "end": 26371.04, + "probability": 0.8174 + }, + { + "start": 26371.14, + "end": 26371.98, + "probability": 0.5265 + }, + { + "start": 26372.92, + "end": 26374.38, + "probability": 0.0313 + }, + { + "start": 26374.38, + "end": 26374.82, + "probability": 0.1195 + }, + { + "start": 26375.42, + "end": 26378.2, + "probability": 0.6467 + }, + { + "start": 26379.42, + "end": 26382.48, + "probability": 0.1473 + }, + { + "start": 26383.34, + "end": 26383.84, + "probability": 0.1362 + }, + { + "start": 26394.08, + "end": 26394.94, + "probability": 0.0111 + }, + { + "start": 26395.94, + "end": 26398.52, + "probability": 0.5083 + }, + { + "start": 26399.8, + "end": 26400.56, + "probability": 0.6568 + }, + { + "start": 26404.46, + "end": 26407.14, + "probability": 0.8621 + }, + { + "start": 26409.68, + "end": 26414.6, + "probability": 0.729 + }, + { + "start": 26415.94, + "end": 26416.82, + "probability": 0.9718 + }, + { + "start": 26418.76, + "end": 26419.32, + "probability": 0.5903 + }, + { + "start": 26420.54, + "end": 26422.16, + "probability": 0.8112 + }, + { + "start": 26424.83, + "end": 26427.64, + "probability": 0.9426 + }, + { + "start": 26427.88, + "end": 26430.24, + "probability": 0.9935 + }, + { + "start": 26430.88, + "end": 26435.88, + "probability": 0.9888 + }, + { + "start": 26435.96, + "end": 26437.24, + "probability": 0.9988 + }, + { + "start": 26438.16, + "end": 26438.67, + "probability": 0.2795 + }, + { + "start": 26441.0, + "end": 26445.94, + "probability": 0.8418 + }, + { + "start": 26446.82, + "end": 26447.38, + "probability": 0.7092 + }, + { + "start": 26448.46, + "end": 26452.28, + "probability": 0.9789 + }, + { + "start": 26453.64, + "end": 26453.92, + "probability": 0.3007 + }, + { + "start": 26455.52, + "end": 26461.32, + "probability": 0.5938 + }, + { + "start": 26462.12, + "end": 26463.6, + "probability": 0.988 + }, + { + "start": 26464.72, + "end": 26468.46, + "probability": 0.7501 + }, + { + "start": 26469.06, + "end": 26472.64, + "probability": 0.9743 + }, + { + "start": 26473.62, + "end": 26475.68, + "probability": 0.9186 + }, + { + "start": 26476.92, + "end": 26477.8, + "probability": 0.9756 + }, + { + "start": 26478.72, + "end": 26480.24, + "probability": 0.9735 + }, + { + "start": 26480.92, + "end": 26482.8, + "probability": 0.9514 + }, + { + "start": 26483.2, + "end": 26485.4, + "probability": 0.988 + }, + { + "start": 26486.26, + "end": 26489.88, + "probability": 0.9976 + }, + { + "start": 26491.12, + "end": 26495.4, + "probability": 0.9974 + }, + { + "start": 26495.9, + "end": 26499.16, + "probability": 0.9988 + }, + { + "start": 26499.92, + "end": 26502.44, + "probability": 0.9896 + }, + { + "start": 26503.26, + "end": 26505.91, + "probability": 0.9653 + }, + { + "start": 26506.04, + "end": 26508.44, + "probability": 0.7766 + }, + { + "start": 26508.44, + "end": 26510.8, + "probability": 0.9886 + }, + { + "start": 26511.7, + "end": 26514.44, + "probability": 0.2685 + }, + { + "start": 26515.0, + "end": 26517.4, + "probability": 0.9401 + }, + { + "start": 26518.06, + "end": 26521.52, + "probability": 0.9618 + }, + { + "start": 26521.92, + "end": 26525.08, + "probability": 0.9509 + }, + { + "start": 26525.34, + "end": 26527.7, + "probability": 0.996 + }, + { + "start": 26528.3, + "end": 26531.58, + "probability": 0.9926 + }, + { + "start": 26532.32, + "end": 26536.06, + "probability": 0.7622 + }, + { + "start": 26536.8, + "end": 26538.76, + "probability": 0.995 + }, + { + "start": 26539.38, + "end": 26542.44, + "probability": 0.8823 + }, + { + "start": 26543.14, + "end": 26545.54, + "probability": 0.8322 + }, + { + "start": 26546.08, + "end": 26546.54, + "probability": 0.7781 + }, + { + "start": 26546.66, + "end": 26547.36, + "probability": 0.7036 + }, + { + "start": 26547.8, + "end": 26554.16, + "probability": 0.9629 + }, + { + "start": 26554.58, + "end": 26556.76, + "probability": 0.9644 + }, + { + "start": 26557.87, + "end": 26560.58, + "probability": 0.6731 + }, + { + "start": 26561.24, + "end": 26567.08, + "probability": 0.9382 + }, + { + "start": 26567.08, + "end": 26571.34, + "probability": 0.9495 + }, + { + "start": 26571.8, + "end": 26573.42, + "probability": 0.747 + }, + { + "start": 26573.78, + "end": 26574.7, + "probability": 0.8578 + }, + { + "start": 26575.04, + "end": 26578.08, + "probability": 0.692 + }, + { + "start": 26579.08, + "end": 26579.54, + "probability": 0.7545 + }, + { + "start": 26579.82, + "end": 26580.38, + "probability": 0.6633 + }, + { + "start": 26580.78, + "end": 26586.6, + "probability": 0.9393 + }, + { + "start": 26586.6, + "end": 26590.58, + "probability": 0.9948 + }, + { + "start": 26590.94, + "end": 26593.94, + "probability": 0.9944 + }, + { + "start": 26594.28, + "end": 26595.0, + "probability": 0.9868 + }, + { + "start": 26595.66, + "end": 26596.64, + "probability": 0.5797 + }, + { + "start": 26596.98, + "end": 26599.08, + "probability": 0.9951 + }, + { + "start": 26599.16, + "end": 26599.88, + "probability": 0.7436 + }, + { + "start": 26600.3, + "end": 26601.16, + "probability": 0.698 + }, + { + "start": 26601.68, + "end": 26604.64, + "probability": 0.9854 + }, + { + "start": 26605.32, + "end": 26606.3, + "probability": 0.9897 + }, + { + "start": 26607.22, + "end": 26609.88, + "probability": 0.9477 + }, + { + "start": 26610.44, + "end": 26613.2, + "probability": 0.9285 + }, + { + "start": 26613.32, + "end": 26616.8, + "probability": 0.7952 + }, + { + "start": 26617.36, + "end": 26620.62, + "probability": 0.9772 + }, + { + "start": 26620.62, + "end": 26623.04, + "probability": 0.9957 + }, + { + "start": 26623.16, + "end": 26624.14, + "probability": 0.694 + }, + { + "start": 26624.34, + "end": 26626.2, + "probability": 0.7738 + }, + { + "start": 26626.4, + "end": 26629.0, + "probability": 0.88 + }, + { + "start": 26629.46, + "end": 26630.61, + "probability": 0.8683 + }, + { + "start": 26630.84, + "end": 26633.97, + "probability": 0.9194 + }, + { + "start": 26634.34, + "end": 26638.01, + "probability": 0.6912 + }, + { + "start": 26638.24, + "end": 26638.7, + "probability": 0.708 + }, + { + "start": 26638.94, + "end": 26639.4, + "probability": 0.5955 + }, + { + "start": 26639.5, + "end": 26643.16, + "probability": 0.9862 + }, + { + "start": 26644.06, + "end": 26644.82, + "probability": 0.5022 + }, + { + "start": 26645.44, + "end": 26647.84, + "probability": 0.9131 + }, + { + "start": 26647.92, + "end": 26648.72, + "probability": 0.8271 + }, + { + "start": 26648.9, + "end": 26649.52, + "probability": 0.9275 + }, + { + "start": 26649.64, + "end": 26651.18, + "probability": 0.7918 + }, + { + "start": 26651.8, + "end": 26652.16, + "probability": 0.9203 + }, + { + "start": 26652.28, + "end": 26652.6, + "probability": 0.8796 + }, + { + "start": 26652.64, + "end": 26653.5, + "probability": 0.8216 + }, + { + "start": 26653.8, + "end": 26654.84, + "probability": 0.9842 + }, + { + "start": 26655.26, + "end": 26659.16, + "probability": 0.9924 + }, + { + "start": 26659.68, + "end": 26661.0, + "probability": 0.5296 + }, + { + "start": 26661.1, + "end": 26664.7, + "probability": 0.9787 + }, + { + "start": 26664.86, + "end": 26668.4, + "probability": 0.9968 + }, + { + "start": 26669.02, + "end": 26671.1, + "probability": 0.8939 + }, + { + "start": 26671.38, + "end": 26675.56, + "probability": 0.9983 + }, + { + "start": 26675.56, + "end": 26681.14, + "probability": 0.9305 + }, + { + "start": 26681.42, + "end": 26682.3, + "probability": 0.8624 + }, + { + "start": 26682.4, + "end": 26683.9, + "probability": 0.8721 + }, + { + "start": 26684.76, + "end": 26687.84, + "probability": 0.9557 + }, + { + "start": 26688.38, + "end": 26688.82, + "probability": 0.2379 + }, + { + "start": 26689.18, + "end": 26692.88, + "probability": 0.7508 + }, + { + "start": 26693.06, + "end": 26695.12, + "probability": 0.9838 + }, + { + "start": 26695.52, + "end": 26697.24, + "probability": 0.9753 + }, + { + "start": 26697.72, + "end": 26697.94, + "probability": 0.612 + }, + { + "start": 26698.04, + "end": 26699.07, + "probability": 0.9523 + }, + { + "start": 26699.68, + "end": 26703.62, + "probability": 0.9843 + }, + { + "start": 26703.62, + "end": 26708.44, + "probability": 0.9868 + }, + { + "start": 26708.64, + "end": 26712.62, + "probability": 0.9923 + }, + { + "start": 26712.7, + "end": 26714.14, + "probability": 0.5842 + }, + { + "start": 26714.18, + "end": 26720.62, + "probability": 0.8019 + }, + { + "start": 26721.28, + "end": 26725.34, + "probability": 0.9336 + }, + { + "start": 26726.08, + "end": 26728.1, + "probability": 0.9559 + }, + { + "start": 26728.54, + "end": 26730.24, + "probability": 0.9668 + }, + { + "start": 26730.38, + "end": 26732.44, + "probability": 0.9757 + }, + { + "start": 26732.72, + "end": 26733.5, + "probability": 0.5301 + }, + { + "start": 26734.04, + "end": 26739.28, + "probability": 0.9912 + }, + { + "start": 26739.66, + "end": 26741.14, + "probability": 0.9849 + }, + { + "start": 26741.4, + "end": 26742.46, + "probability": 0.9868 + }, + { + "start": 26742.64, + "end": 26744.64, + "probability": 0.7844 + }, + { + "start": 26744.68, + "end": 26746.56, + "probability": 0.9004 + }, + { + "start": 26746.66, + "end": 26747.78, + "probability": 0.9756 + }, + { + "start": 26748.12, + "end": 26749.76, + "probability": 0.9624 + }, + { + "start": 26749.88, + "end": 26750.08, + "probability": 0.751 + }, + { + "start": 26751.72, + "end": 26754.16, + "probability": 0.9709 + }, + { + "start": 26754.78, + "end": 26757.46, + "probability": 0.8599 + }, + { + "start": 26758.18, + "end": 26758.84, + "probability": 0.6054 + }, + { + "start": 26758.92, + "end": 26759.02, + "probability": 0.3678 + }, + { + "start": 26760.1, + "end": 26761.22, + "probability": 0.8557 + }, + { + "start": 26780.64, + "end": 26784.4, + "probability": 0.6167 + }, + { + "start": 26784.92, + "end": 26788.36, + "probability": 0.9474 + }, + { + "start": 26788.86, + "end": 26789.68, + "probability": 0.9894 + }, + { + "start": 26790.26, + "end": 26792.94, + "probability": 0.9714 + }, + { + "start": 26794.44, + "end": 26796.86, + "probability": 0.9088 + }, + { + "start": 26797.46, + "end": 26802.2, + "probability": 0.9815 + }, + { + "start": 26802.2, + "end": 26806.56, + "probability": 0.9835 + }, + { + "start": 26807.06, + "end": 26809.07, + "probability": 0.9961 + }, + { + "start": 26809.9, + "end": 26815.06, + "probability": 0.8533 + }, + { + "start": 26815.46, + "end": 26821.3, + "probability": 0.9969 + }, + { + "start": 26821.36, + "end": 26822.16, + "probability": 0.6608 + }, + { + "start": 26822.58, + "end": 26827.02, + "probability": 0.9793 + }, + { + "start": 26827.42, + "end": 26830.68, + "probability": 0.9902 + }, + { + "start": 26831.14, + "end": 26834.48, + "probability": 0.9879 + }, + { + "start": 26834.54, + "end": 26835.86, + "probability": 0.9827 + }, + { + "start": 26836.28, + "end": 26839.5, + "probability": 0.9858 + }, + { + "start": 26839.92, + "end": 26840.64, + "probability": 0.6831 + }, + { + "start": 26841.18, + "end": 26843.84, + "probability": 0.9976 + }, + { + "start": 26844.14, + "end": 26845.52, + "probability": 0.9973 + }, + { + "start": 26845.68, + "end": 26846.98, + "probability": 0.8047 + }, + { + "start": 26847.34, + "end": 26849.46, + "probability": 0.9904 + }, + { + "start": 26849.88, + "end": 26850.9, + "probability": 0.7304 + }, + { + "start": 26851.72, + "end": 26856.74, + "probability": 0.993 + }, + { + "start": 26857.22, + "end": 26858.96, + "probability": 0.979 + }, + { + "start": 26859.34, + "end": 26863.02, + "probability": 0.9485 + }, + { + "start": 26863.1, + "end": 26864.1, + "probability": 0.9319 + }, + { + "start": 26864.24, + "end": 26864.64, + "probability": 0.8192 + }, + { + "start": 26864.82, + "end": 26866.62, + "probability": 0.9552 + }, + { + "start": 26867.06, + "end": 26867.84, + "probability": 0.8671 + }, + { + "start": 26868.32, + "end": 26869.88, + "probability": 0.9368 + }, + { + "start": 26870.12, + "end": 26873.26, + "probability": 0.983 + }, + { + "start": 26873.56, + "end": 26875.78, + "probability": 0.9357 + }, + { + "start": 26876.22, + "end": 26876.84, + "probability": 0.6729 + }, + { + "start": 26877.22, + "end": 26877.98, + "probability": 0.7935 + }, + { + "start": 26878.16, + "end": 26878.52, + "probability": 0.8941 + }, + { + "start": 26878.64, + "end": 26882.1, + "probability": 0.9848 + }, + { + "start": 26882.1, + "end": 26886.88, + "probability": 0.9794 + }, + { + "start": 26887.44, + "end": 26890.92, + "probability": 0.9897 + }, + { + "start": 26891.48, + "end": 26892.8, + "probability": 0.7657 + }, + { + "start": 26893.26, + "end": 26893.68, + "probability": 0.8525 + }, + { + "start": 26893.96, + "end": 26896.72, + "probability": 0.7643 + }, + { + "start": 26896.72, + "end": 26899.36, + "probability": 0.9958 + }, + { + "start": 26899.78, + "end": 26900.06, + "probability": 0.744 + }, + { + "start": 26900.18, + "end": 26900.69, + "probability": 0.824 + }, + { + "start": 26901.28, + "end": 26902.84, + "probability": 0.9049 + }, + { + "start": 26903.24, + "end": 26905.6, + "probability": 0.3064 + }, + { + "start": 26905.6, + "end": 26909.56, + "probability": 0.9099 + }, + { + "start": 26910.08, + "end": 26913.34, + "probability": 0.9678 + }, + { + "start": 26913.34, + "end": 26917.12, + "probability": 0.991 + }, + { + "start": 26917.38, + "end": 26917.96, + "probability": 0.8584 + }, + { + "start": 26919.32, + "end": 26919.66, + "probability": 0.3352 + }, + { + "start": 26919.66, + "end": 26920.16, + "probability": 0.5226 + }, + { + "start": 26920.9, + "end": 26923.7, + "probability": 0.6802 + }, + { + "start": 26924.38, + "end": 26927.76, + "probability": 0.246 + }, + { + "start": 26928.48, + "end": 26930.36, + "probability": 0.0381 + }, + { + "start": 26931.64, + "end": 26933.38, + "probability": 0.2166 + }, + { + "start": 26933.38, + "end": 26933.93, + "probability": 0.0517 + }, + { + "start": 26934.5, + "end": 26936.02, + "probability": 0.5234 + }, + { + "start": 26936.16, + "end": 26936.86, + "probability": 0.6705 + }, + { + "start": 26938.22, + "end": 26938.3, + "probability": 0.658 + }, + { + "start": 26938.52, + "end": 26940.7, + "probability": 0.8453 + }, + { + "start": 26940.88, + "end": 26941.83, + "probability": 0.8801 + }, + { + "start": 26942.38, + "end": 26945.6, + "probability": 0.8885 + }, + { + "start": 26946.4, + "end": 26947.0, + "probability": 0.737 + }, + { + "start": 26947.14, + "end": 26947.72, + "probability": 0.7154 + }, + { + "start": 26947.82, + "end": 26948.46, + "probability": 0.8965 + }, + { + "start": 26948.52, + "end": 26949.28, + "probability": 0.8656 + }, + { + "start": 26949.74, + "end": 26951.98, + "probability": 0.8019 + }, + { + "start": 26952.18, + "end": 26953.96, + "probability": 0.1802 + }, + { + "start": 26955.0, + "end": 26955.78, + "probability": 0.8059 + }, + { + "start": 26956.3, + "end": 26956.81, + "probability": 0.2638 + }, + { + "start": 26957.34, + "end": 26958.2, + "probability": 0.7469 + }, + { + "start": 26958.4, + "end": 26958.84, + "probability": 0.8109 + }, + { + "start": 26959.0, + "end": 26959.38, + "probability": 0.9465 + }, + { + "start": 26959.54, + "end": 26960.02, + "probability": 0.6204 + }, + { + "start": 26960.16, + "end": 26960.68, + "probability": 0.9189 + }, + { + "start": 26960.78, + "end": 26961.34, + "probability": 0.9602 + }, + { + "start": 26961.42, + "end": 26961.96, + "probability": 0.857 + }, + { + "start": 26962.18, + "end": 26962.78, + "probability": 0.5652 + }, + { + "start": 26962.86, + "end": 26963.26, + "probability": 0.6399 + }, + { + "start": 26963.34, + "end": 26964.94, + "probability": 0.7146 + }, + { + "start": 26965.52, + "end": 26968.86, + "probability": 0.7603 + }, + { + "start": 26969.04, + "end": 26970.2, + "probability": 0.9811 + }, + { + "start": 26970.78, + "end": 26972.04, + "probability": 0.7604 + }, + { + "start": 26973.22, + "end": 26973.42, + "probability": 0.0831 + }, + { + "start": 26974.24, + "end": 26974.88, + "probability": 0.7717 + }, + { + "start": 26975.0, + "end": 26977.06, + "probability": 0.6951 + }, + { + "start": 26977.92, + "end": 26982.88, + "probability": 0.8418 + }, + { + "start": 26982.88, + "end": 26986.2, + "probability": 0.8372 + }, + { + "start": 26986.76, + "end": 26990.02, + "probability": 0.9069 + }, + { + "start": 26990.02, + "end": 26990.7, + "probability": 0.7759 + }, + { + "start": 26993.22, + "end": 26994.92, + "probability": 0.7688 + }, + { + "start": 26995.56, + "end": 26996.14, + "probability": 0.3917 + }, + { + "start": 26997.36, + "end": 26997.54, + "probability": 0.0332 + }, + { + "start": 27011.12, + "end": 27011.34, + "probability": 0.0334 + }, + { + "start": 27011.34, + "end": 27013.88, + "probability": 0.2013 + }, + { + "start": 27014.46, + "end": 27014.97, + "probability": 0.056 + }, + { + "start": 27016.64, + "end": 27017.07, + "probability": 0.4143 + }, + { + "start": 27017.48, + "end": 27022.3, + "probability": 0.233 + }, + { + "start": 27022.5, + "end": 27024.42, + "probability": 0.739 + }, + { + "start": 27024.6, + "end": 27026.3, + "probability": 0.8738 + }, + { + "start": 27027.28, + "end": 27029.96, + "probability": 0.564 + }, + { + "start": 27030.66, + "end": 27031.66, + "probability": 0.5061 + }, + { + "start": 27031.98, + "end": 27032.32, + "probability": 0.3994 + }, + { + "start": 27032.32, + "end": 27032.8, + "probability": 0.2712 + }, + { + "start": 27032.88, + "end": 27034.56, + "probability": 0.8098 + }, + { + "start": 27034.68, + "end": 27035.17, + "probability": 0.479 + }, + { + "start": 27035.68, + "end": 27036.26, + "probability": 0.0033 + }, + { + "start": 27036.74, + "end": 27041.2, + "probability": 0.9784 + }, + { + "start": 27041.46, + "end": 27045.66, + "probability": 0.9918 + }, + { + "start": 27045.76, + "end": 27047.88, + "probability": 0.9844 + }, + { + "start": 27048.0, + "end": 27048.38, + "probability": 0.7276 + }, + { + "start": 27048.72, + "end": 27050.04, + "probability": 0.8871 + }, + { + "start": 27050.08, + "end": 27051.54, + "probability": 0.5971 + }, + { + "start": 27052.6, + "end": 27053.78, + "probability": 0.8168 + }, + { + "start": 27054.04, + "end": 27054.28, + "probability": 0.7161 + }, + { + "start": 27054.44, + "end": 27055.52, + "probability": 0.5547 + }, + { + "start": 27055.62, + "end": 27056.56, + "probability": 0.9194 + }, + { + "start": 27056.86, + "end": 27060.04, + "probability": 0.4433 + }, + { + "start": 27060.28, + "end": 27064.0, + "probability": 0.4932 + }, + { + "start": 27064.2, + "end": 27065.8, + "probability": 0.5588 + }, + { + "start": 27065.9, + "end": 27066.62, + "probability": 0.6718 + }, + { + "start": 27067.14, + "end": 27067.68, + "probability": 0.474 + }, + { + "start": 27072.58, + "end": 27073.32, + "probability": 0.0045 + }, + { + "start": 27073.68, + "end": 27074.94, + "probability": 0.0171 + }, + { + "start": 27074.94, + "end": 27076.34, + "probability": 0.1498 + }, + { + "start": 27076.84, + "end": 27077.42, + "probability": 0.2732 + }, + { + "start": 27077.92, + "end": 27078.16, + "probability": 0.739 + }, + { + "start": 27078.34, + "end": 27079.54, + "probability": 0.8575 + }, + { + "start": 27080.46, + "end": 27082.52, + "probability": 0.7603 + }, + { + "start": 27084.64, + "end": 27089.48, + "probability": 0.9854 + }, + { + "start": 27090.4, + "end": 27094.94, + "probability": 0.4928 + }, + { + "start": 27095.96, + "end": 27100.3, + "probability": 0.7996 + }, + { + "start": 27101.2, + "end": 27104.32, + "probability": 0.5644 + }, + { + "start": 27104.78, + "end": 27108.2, + "probability": 0.701 + }, + { + "start": 27108.88, + "end": 27111.4, + "probability": 0.9707 + }, + { + "start": 27112.02, + "end": 27114.04, + "probability": 0.3882 + }, + { + "start": 27114.28, + "end": 27114.74, + "probability": 0.3344 + }, + { + "start": 27115.48, + "end": 27117.23, + "probability": 0.022 + }, + { + "start": 27119.06, + "end": 27120.81, + "probability": 0.9064 + }, + { + "start": 27121.48, + "end": 27144.12, + "probability": 0.5479 + }, + { + "start": 27144.12, + "end": 27144.12, + "probability": 0.0989 + }, + { + "start": 27144.12, + "end": 27147.86, + "probability": 0.3823 + }, + { + "start": 27148.0, + "end": 27150.24, + "probability": 0.9091 + }, + { + "start": 27150.76, + "end": 27152.7, + "probability": 0.8843 + }, + { + "start": 27152.8, + "end": 27154.1, + "probability": 0.5712 + }, + { + "start": 27154.1, + "end": 27155.6, + "probability": 0.8232 + }, + { + "start": 27156.14, + "end": 27158.54, + "probability": 0.4634 + }, + { + "start": 27158.58, + "end": 27158.58, + "probability": 0.3719 + }, + { + "start": 27158.66, + "end": 27160.58, + "probability": 0.6603 + }, + { + "start": 27161.76, + "end": 27163.46, + "probability": 0.6581 + }, + { + "start": 27164.1, + "end": 27167.6, + "probability": 0.9272 + }, + { + "start": 27187.56, + "end": 27187.9, + "probability": 0.2669 + }, + { + "start": 27187.9, + "end": 27189.8, + "probability": 0.3051 + }, + { + "start": 27189.88, + "end": 27190.44, + "probability": 0.507 + }, + { + "start": 27192.4, + "end": 27195.02, + "probability": 0.764 + }, + { + "start": 27195.86, + "end": 27196.0, + "probability": 0.6035 + }, + { + "start": 27196.04, + "end": 27196.56, + "probability": 0.7323 + }, + { + "start": 27196.76, + "end": 27198.08, + "probability": 0.7537 + }, + { + "start": 27198.36, + "end": 27201.74, + "probability": 0.9862 + }, + { + "start": 27202.46, + "end": 27203.5, + "probability": 0.3632 + }, + { + "start": 27204.02, + "end": 27209.32, + "probability": 0.9888 + }, + { + "start": 27209.58, + "end": 27210.3, + "probability": 0.5754 + }, + { + "start": 27210.38, + "end": 27210.74, + "probability": 0.9514 + }, + { + "start": 27211.32, + "end": 27212.72, + "probability": 0.3891 + }, + { + "start": 27213.36, + "end": 27213.72, + "probability": 0.3585 + }, + { + "start": 27215.02, + "end": 27215.58, + "probability": 0.1636 + }, + { + "start": 27215.58, + "end": 27217.43, + "probability": 0.6704 + }, + { + "start": 27217.84, + "end": 27219.98, + "probability": 0.6907 + }, + { + "start": 27220.56, + "end": 27224.1, + "probability": 0.7466 + }, + { + "start": 27224.68, + "end": 27225.12, + "probability": 0.5455 + }, + { + "start": 27225.2, + "end": 27225.94, + "probability": 0.6521 + }, + { + "start": 27227.1, + "end": 27231.46, + "probability": 0.7049 + }, + { + "start": 27234.88, + "end": 27236.28, + "probability": 0.162 + }, + { + "start": 27244.8, + "end": 27246.86, + "probability": 0.4163 + }, + { + "start": 27246.9, + "end": 27247.24, + "probability": 0.5541 + }, + { + "start": 27248.14, + "end": 27250.26, + "probability": 0.6108 + }, + { + "start": 27251.22, + "end": 27252.9, + "probability": 0.8115 + }, + { + "start": 27253.44, + "end": 27254.22, + "probability": 0.9878 + }, + { + "start": 27254.98, + "end": 27255.18, + "probability": 0.8697 + }, + { + "start": 27256.26, + "end": 27259.18, + "probability": 0.7203 + }, + { + "start": 27259.22, + "end": 27260.68, + "probability": 0.0895 + }, + { + "start": 27261.98, + "end": 27263.46, + "probability": 0.5924 + }, + { + "start": 27263.5, + "end": 27263.86, + "probability": 0.6043 + }, + { + "start": 27263.88, + "end": 27264.24, + "probability": 0.8364 + }, + { + "start": 27283.24, + "end": 27286.7, + "probability": 0.1917 + }, + { + "start": 27286.7, + "end": 27286.92, + "probability": 0.0384 + }, + { + "start": 27286.92, + "end": 27287.22, + "probability": 0.2617 + }, + { + "start": 27289.82, + "end": 27289.92, + "probability": 0.2259 + }, + { + "start": 27291.36, + "end": 27294.28, + "probability": 0.3787 + }, + { + "start": 27295.16, + "end": 27296.88, + "probability": 0.1487 + }, + { + "start": 27297.38, + "end": 27298.44, + "probability": 0.8881 + }, + { + "start": 27299.04, + "end": 27304.86, + "probability": 0.1666 + }, + { + "start": 27304.86, + "end": 27304.96, + "probability": 0.0601 + }, + { + "start": 27305.66, + "end": 27307.8, + "probability": 0.0367 + }, + { + "start": 27308.81, + "end": 27311.82, + "probability": 0.6198 + }, + { + "start": 27312.28, + "end": 27315.0, + "probability": 0.0741 + }, + { + "start": 27315.0, + "end": 27315.0, + "probability": 0.0028 + }, + { + "start": 27315.0, + "end": 27315.0, + "probability": 0.0837 + }, + { + "start": 27315.24, + "end": 27315.68, + "probability": 0.0 + } + ], + "segments_count": 9430, + "words_count": 47369, + "avg_words_per_segment": 5.0232, + "avg_segment_duration": 2.1021, + "avg_words_per_minute": 104.0479, + "plenum_id": "39962", + "duration": 27315.68, + "title": null, + "plenum_date": "2014-11-03" +} \ No newline at end of file