diff --git "a/42279/metadata.json" "b/42279/metadata.json" new file mode 100644--- /dev/null +++ "b/42279/metadata.json" @@ -0,0 +1,12897 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "42279", + "quality_score": 0.9043, + "per_segment_quality_scores": [ + { + "start": 416.0, + "end": 416.0, + "probability": 0.0 + }, + { + "start": 416.0, + "end": 416.0, + "probability": 0.0 + }, + { + "start": 416.0, + "end": 416.0, + "probability": 0.0 + }, + { + "start": 416.16, + "end": 417.06, + "probability": 0.3264 + }, + { + "start": 417.06, + "end": 417.58, + "probability": 0.2849 + }, + { + "start": 419.76, + "end": 421.68, + "probability": 0.7011 + }, + { + "start": 422.76, + "end": 424.66, + "probability": 0.0275 + }, + { + "start": 441.54, + "end": 442.46, + "probability": 0.5767 + }, + { + "start": 450.88, + "end": 451.78, + "probability": 0.7852 + }, + { + "start": 452.02, + "end": 454.7, + "probability": 0.4593 + }, + { + "start": 455.1, + "end": 460.08, + "probability": 0.9867 + }, + { + "start": 465.32, + "end": 469.78, + "probability": 0.879 + }, + { + "start": 470.66, + "end": 471.62, + "probability": 0.9023 + }, + { + "start": 471.76, + "end": 473.4, + "probability": 0.9543 + }, + { + "start": 473.52, + "end": 475.12, + "probability": 0.9749 + }, + { + "start": 475.64, + "end": 478.46, + "probability": 0.9065 + }, + { + "start": 479.24, + "end": 483.04, + "probability": 0.7869 + }, + { + "start": 483.56, + "end": 485.68, + "probability": 0.9624 + }, + { + "start": 486.3, + "end": 488.56, + "probability": 0.9695 + }, + { + "start": 488.62, + "end": 490.32, + "probability": 0.9848 + }, + { + "start": 490.94, + "end": 494.0, + "probability": 0.9842 + }, + { + "start": 494.36, + "end": 496.78, + "probability": 0.7746 + }, + { + "start": 497.5, + "end": 499.04, + "probability": 0.7667 + }, + { + "start": 501.76, + "end": 507.6, + "probability": 0.9921 + }, + { + "start": 508.88, + "end": 509.66, + "probability": 0.5948 + }, + { + "start": 509.88, + "end": 510.36, + "probability": 0.9364 + }, + { + "start": 510.76, + "end": 513.54, + "probability": 0.9878 + }, + { + "start": 515.1, + "end": 516.2, + "probability": 0.9479 + }, + { + "start": 516.56, + "end": 519.7, + "probability": 0.9988 + }, + { + "start": 520.36, + "end": 525.68, + "probability": 0.9992 + }, + { + "start": 525.68, + "end": 532.02, + "probability": 0.984 + }, + { + "start": 533.5, + "end": 538.04, + "probability": 0.9937 + }, + { + "start": 538.54, + "end": 540.68, + "probability": 0.9516 + }, + { + "start": 541.56, + "end": 544.98, + "probability": 0.9974 + }, + { + "start": 544.98, + "end": 549.02, + "probability": 0.9968 + }, + { + "start": 550.56, + "end": 552.06, + "probability": 0.8575 + }, + { + "start": 552.64, + "end": 555.54, + "probability": 0.9873 + }, + { + "start": 557.12, + "end": 557.68, + "probability": 0.767 + }, + { + "start": 558.34, + "end": 565.06, + "probability": 0.9943 + }, + { + "start": 566.42, + "end": 568.34, + "probability": 0.8719 + }, + { + "start": 569.04, + "end": 569.76, + "probability": 0.7546 + }, + { + "start": 570.56, + "end": 574.94, + "probability": 0.9946 + }, + { + "start": 575.88, + "end": 580.86, + "probability": 0.803 + }, + { + "start": 582.16, + "end": 586.8, + "probability": 0.981 + }, + { + "start": 587.48, + "end": 593.12, + "probability": 0.9977 + }, + { + "start": 593.12, + "end": 597.86, + "probability": 0.9992 + }, + { + "start": 599.14, + "end": 602.9, + "probability": 0.9727 + }, + { + "start": 603.8, + "end": 607.76, + "probability": 0.9972 + }, + { + "start": 608.3, + "end": 609.78, + "probability": 0.9828 + }, + { + "start": 611.2, + "end": 613.4, + "probability": 0.9299 + }, + { + "start": 614.54, + "end": 617.98, + "probability": 0.9978 + }, + { + "start": 618.72, + "end": 624.48, + "probability": 0.9976 + }, + { + "start": 625.06, + "end": 628.48, + "probability": 0.959 + }, + { + "start": 629.6, + "end": 632.48, + "probability": 0.9946 + }, + { + "start": 634.12, + "end": 636.28, + "probability": 0.9673 + }, + { + "start": 637.42, + "end": 643.12, + "probability": 0.9764 + }, + { + "start": 643.12, + "end": 647.92, + "probability": 0.9917 + }, + { + "start": 649.12, + "end": 654.52, + "probability": 0.9926 + }, + { + "start": 655.02, + "end": 659.4, + "probability": 0.9326 + }, + { + "start": 659.4, + "end": 663.82, + "probability": 0.9808 + }, + { + "start": 664.98, + "end": 665.66, + "probability": 0.9432 + }, + { + "start": 666.24, + "end": 667.92, + "probability": 0.6738 + }, + { + "start": 668.1, + "end": 672.62, + "probability": 0.9336 + }, + { + "start": 672.92, + "end": 679.14, + "probability": 0.973 + }, + { + "start": 680.1, + "end": 684.5, + "probability": 0.9873 + }, + { + "start": 685.64, + "end": 687.76, + "probability": 0.9521 + }, + { + "start": 688.4, + "end": 690.62, + "probability": 0.9378 + }, + { + "start": 691.8, + "end": 691.8, + "probability": 0.0494 + }, + { + "start": 691.8, + "end": 696.1, + "probability": 0.9381 + }, + { + "start": 696.9, + "end": 700.96, + "probability": 0.9866 + }, + { + "start": 701.38, + "end": 703.76, + "probability": 0.9568 + }, + { + "start": 704.76, + "end": 708.4, + "probability": 0.9729 + }, + { + "start": 708.4, + "end": 711.9, + "probability": 0.9967 + }, + { + "start": 712.78, + "end": 715.48, + "probability": 0.9812 + }, + { + "start": 715.84, + "end": 718.7, + "probability": 0.9737 + }, + { + "start": 718.7, + "end": 721.78, + "probability": 0.999 + }, + { + "start": 722.72, + "end": 723.26, + "probability": 0.8049 + }, + { + "start": 723.92, + "end": 727.34, + "probability": 0.9937 + }, + { + "start": 727.86, + "end": 731.34, + "probability": 0.9974 + }, + { + "start": 731.34, + "end": 734.58, + "probability": 0.997 + }, + { + "start": 735.56, + "end": 739.28, + "probability": 0.9234 + }, + { + "start": 739.68, + "end": 742.64, + "probability": 0.9059 + }, + { + "start": 744.16, + "end": 745.26, + "probability": 0.9972 + }, + { + "start": 745.9, + "end": 752.6, + "probability": 0.9949 + }, + { + "start": 752.8, + "end": 753.46, + "probability": 0.4927 + }, + { + "start": 754.98, + "end": 756.74, + "probability": 0.443 + }, + { + "start": 756.74, + "end": 757.56, + "probability": 0.7438 + }, + { + "start": 771.0, + "end": 771.98, + "probability": 0.8549 + }, + { + "start": 772.5, + "end": 774.62, + "probability": 0.7095 + }, + { + "start": 777.78, + "end": 778.88, + "probability": 0.9111 + }, + { + "start": 781.6, + "end": 782.58, + "probability": 0.8483 + }, + { + "start": 783.12, + "end": 783.64, + "probability": 0.8652 + }, + { + "start": 784.66, + "end": 787.0, + "probability": 0.8201 + }, + { + "start": 789.12, + "end": 790.44, + "probability": 0.6721 + }, + { + "start": 792.32, + "end": 793.5, + "probability": 0.8281 + }, + { + "start": 795.18, + "end": 797.86, + "probability": 0.7056 + }, + { + "start": 798.26, + "end": 798.88, + "probability": 0.2075 + }, + { + "start": 798.88, + "end": 799.44, + "probability": 0.692 + }, + { + "start": 802.11, + "end": 806.72, + "probability": 0.337 + }, + { + "start": 806.72, + "end": 810.18, + "probability": 0.285 + }, + { + "start": 812.54, + "end": 815.46, + "probability": 0.9213 + }, + { + "start": 815.5, + "end": 817.24, + "probability": 0.0564 + }, + { + "start": 817.36, + "end": 818.9, + "probability": 0.1507 + }, + { + "start": 819.14, + "end": 826.18, + "probability": 0.0995 + }, + { + "start": 827.02, + "end": 828.48, + "probability": 0.5388 + }, + { + "start": 830.8, + "end": 832.52, + "probability": 0.669 + }, + { + "start": 832.76, + "end": 835.58, + "probability": 0.033 + }, + { + "start": 835.83, + "end": 837.06, + "probability": 0.0969 + }, + { + "start": 837.06, + "end": 837.13, + "probability": 0.0431 + }, + { + "start": 838.68, + "end": 839.6, + "probability": 0.1498 + }, + { + "start": 841.6, + "end": 847.76, + "probability": 0.4849 + }, + { + "start": 865.06, + "end": 865.74, + "probability": 0.0672 + }, + { + "start": 865.74, + "end": 869.22, + "probability": 0.0067 + }, + { + "start": 874.32, + "end": 875.46, + "probability": 0.0632 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.0, + "end": 888.0, + "probability": 0.0 + }, + { + "start": 888.28, + "end": 891.34, + "probability": 0.3161 + }, + { + "start": 892.04, + "end": 892.9, + "probability": 0.1815 + }, + { + "start": 895.46, + "end": 901.56, + "probability": 0.5844 + }, + { + "start": 901.56, + "end": 907.98, + "probability": 0.1609 + }, + { + "start": 908.26, + "end": 908.92, + "probability": 0.15 + }, + { + "start": 908.92, + "end": 909.2, + "probability": 0.4297 + }, + { + "start": 909.38, + "end": 910.58, + "probability": 0.3388 + }, + { + "start": 910.64, + "end": 912.5, + "probability": 0.622 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.0, + "end": 1012.0, + "probability": 0.0 + }, + { + "start": 1012.16, + "end": 1012.16, + "probability": 0.0568 + }, + { + "start": 1012.16, + "end": 1012.16, + "probability": 0.0177 + }, + { + "start": 1012.16, + "end": 1012.16, + "probability": 0.0942 + }, + { + "start": 1012.16, + "end": 1012.58, + "probability": 0.3159 + }, + { + "start": 1012.76, + "end": 1012.96, + "probability": 0.0867 + }, + { + "start": 1014.58, + "end": 1017.01, + "probability": 0.9467 + }, + { + "start": 1019.3, + "end": 1021.12, + "probability": 0.917 + }, + { + "start": 1022.88, + "end": 1027.02, + "probability": 0.9513 + }, + { + "start": 1027.94, + "end": 1030.2, + "probability": 0.9622 + }, + { + "start": 1031.68, + "end": 1034.3, + "probability": 0.9722 + }, + { + "start": 1036.02, + "end": 1037.16, + "probability": 0.7216 + }, + { + "start": 1037.24, + "end": 1037.94, + "probability": 0.3476 + }, + { + "start": 1038.04, + "end": 1038.64, + "probability": 0.8752 + }, + { + "start": 1038.8, + "end": 1043.72, + "probability": 0.8445 + }, + { + "start": 1043.84, + "end": 1044.97, + "probability": 0.7393 + }, + { + "start": 1044.98, + "end": 1045.88, + "probability": 0.3804 + }, + { + "start": 1045.9, + "end": 1046.28, + "probability": 0.1938 + }, + { + "start": 1046.28, + "end": 1048.88, + "probability": 0.7434 + }, + { + "start": 1049.18, + "end": 1051.72, + "probability": 0.9281 + }, + { + "start": 1052.88, + "end": 1057.78, + "probability": 0.9199 + }, + { + "start": 1058.3, + "end": 1058.54, + "probability": 0.198 + }, + { + "start": 1058.92, + "end": 1061.74, + "probability": 0.9228 + }, + { + "start": 1061.88, + "end": 1063.35, + "probability": 0.9966 + }, + { + "start": 1065.4, + "end": 1066.24, + "probability": 0.2583 + }, + { + "start": 1066.34, + "end": 1066.42, + "probability": 0.6481 + }, + { + "start": 1066.42, + "end": 1066.42, + "probability": 0.0778 + }, + { + "start": 1066.42, + "end": 1069.64, + "probability": 0.942 + }, + { + "start": 1069.92, + "end": 1073.42, + "probability": 0.9913 + }, + { + "start": 1075.58, + "end": 1077.24, + "probability": 0.9816 + }, + { + "start": 1079.34, + "end": 1080.48, + "probability": 0.998 + }, + { + "start": 1081.86, + "end": 1087.66, + "probability": 0.9917 + }, + { + "start": 1087.76, + "end": 1088.48, + "probability": 0.3193 + }, + { + "start": 1088.48, + "end": 1088.56, + "probability": 0.0955 + }, + { + "start": 1088.56, + "end": 1088.64, + "probability": 0.0343 + }, + { + "start": 1088.64, + "end": 1095.26, + "probability": 0.9841 + }, + { + "start": 1095.9, + "end": 1097.16, + "probability": 0.0507 + }, + { + "start": 1097.92, + "end": 1098.2, + "probability": 0.4673 + }, + { + "start": 1099.58, + "end": 1103.88, + "probability": 0.8713 + }, + { + "start": 1104.98, + "end": 1109.48, + "probability": 0.6807 + }, + { + "start": 1109.48, + "end": 1110.82, + "probability": 0.8926 + }, + { + "start": 1111.7, + "end": 1116.04, + "probability": 0.9937 + }, + { + "start": 1116.12, + "end": 1116.8, + "probability": 0.0522 + }, + { + "start": 1116.8, + "end": 1116.84, + "probability": 0.1276 + }, + { + "start": 1116.84, + "end": 1119.36, + "probability": 0.612 + }, + { + "start": 1119.58, + "end": 1121.2, + "probability": 0.9761 + }, + { + "start": 1121.9, + "end": 1123.26, + "probability": 0.7251 + }, + { + "start": 1123.32, + "end": 1124.0, + "probability": 0.5049 + }, + { + "start": 1124.0, + "end": 1126.76, + "probability": 0.9808 + }, + { + "start": 1126.84, + "end": 1129.5, + "probability": 0.6753 + }, + { + "start": 1130.84, + "end": 1131.54, + "probability": 0.3894 + }, + { + "start": 1133.06, + "end": 1135.36, + "probability": 0.976 + }, + { + "start": 1136.78, + "end": 1137.46, + "probability": 0.5891 + }, + { + "start": 1139.14, + "end": 1139.74, + "probability": 0.939 + }, + { + "start": 1140.8, + "end": 1145.06, + "probability": 0.9779 + }, + { + "start": 1145.06, + "end": 1149.94, + "probability": 0.9915 + }, + { + "start": 1150.04, + "end": 1151.98, + "probability": 0.9762 + }, + { + "start": 1152.86, + "end": 1153.82, + "probability": 0.7505 + }, + { + "start": 1154.1, + "end": 1158.26, + "probability": 0.9949 + }, + { + "start": 1158.26, + "end": 1161.54, + "probability": 0.9981 + }, + { + "start": 1162.0, + "end": 1162.16, + "probability": 0.4091 + }, + { + "start": 1162.28, + "end": 1167.72, + "probability": 0.9481 + }, + { + "start": 1167.78, + "end": 1172.2, + "probability": 0.8595 + }, + { + "start": 1172.28, + "end": 1172.7, + "probability": 0.2255 + }, + { + "start": 1172.7, + "end": 1172.96, + "probability": 0.2098 + }, + { + "start": 1173.02, + "end": 1175.16, + "probability": 0.4552 + }, + { + "start": 1175.49, + "end": 1176.26, + "probability": 0.0827 + }, + { + "start": 1176.26, + "end": 1176.72, + "probability": 0.3987 + }, + { + "start": 1177.24, + "end": 1177.78, + "probability": 0.5906 + }, + { + "start": 1178.4, + "end": 1181.0, + "probability": 0.9824 + }, + { + "start": 1181.12, + "end": 1182.3, + "probability": 0.8678 + }, + { + "start": 1183.02, + "end": 1185.02, + "probability": 0.9906 + }, + { + "start": 1185.04, + "end": 1186.21, + "probability": 0.9723 + }, + { + "start": 1186.36, + "end": 1186.93, + "probability": 0.9734 + }, + { + "start": 1187.6, + "end": 1188.64, + "probability": 0.6284 + }, + { + "start": 1189.68, + "end": 1189.9, + "probability": 0.058 + }, + { + "start": 1189.9, + "end": 1189.92, + "probability": 0.1328 + }, + { + "start": 1189.92, + "end": 1189.92, + "probability": 0.3463 + }, + { + "start": 1189.92, + "end": 1189.92, + "probability": 0.1568 + }, + { + "start": 1189.92, + "end": 1189.92, + "probability": 0.0768 + }, + { + "start": 1189.92, + "end": 1190.84, + "probability": 0.4754 + }, + { + "start": 1191.37, + "end": 1195.07, + "probability": 0.913 + }, + { + "start": 1195.9, + "end": 1198.08, + "probability": 0.9572 + }, + { + "start": 1198.98, + "end": 1201.46, + "probability": 0.8674 + }, + { + "start": 1201.52, + "end": 1202.6, + "probability": 0.6694 + }, + { + "start": 1202.64, + "end": 1203.5, + "probability": 0.7756 + }, + { + "start": 1203.56, + "end": 1204.1, + "probability": 0.6784 + }, + { + "start": 1204.16, + "end": 1206.27, + "probability": 0.8282 + }, + { + "start": 1206.52, + "end": 1208.32, + "probability": 0.5813 + }, + { + "start": 1208.48, + "end": 1209.11, + "probability": 0.9492 + }, + { + "start": 1210.02, + "end": 1212.62, + "probability": 0.7045 + }, + { + "start": 1213.36, + "end": 1216.54, + "probability": 0.9585 + }, + { + "start": 1217.58, + "end": 1219.52, + "probability": 0.932 + }, + { + "start": 1219.56, + "end": 1224.76, + "probability": 0.9727 + }, + { + "start": 1225.34, + "end": 1226.7, + "probability": 0.4484 + }, + { + "start": 1227.62, + "end": 1228.54, + "probability": 0.3855 + }, + { + "start": 1229.14, + "end": 1229.14, + "probability": 0.0069 + }, + { + "start": 1229.76, + "end": 1230.67, + "probability": 0.1112 + }, + { + "start": 1234.47, + "end": 1237.62, + "probability": 0.6578 + }, + { + "start": 1237.62, + "end": 1239.4, + "probability": 0.912 + }, + { + "start": 1239.52, + "end": 1241.4, + "probability": 0.9441 + }, + { + "start": 1243.9, + "end": 1247.2, + "probability": 0.4017 + }, + { + "start": 1247.3, + "end": 1251.88, + "probability": 0.9591 + }, + { + "start": 1252.42, + "end": 1254.66, + "probability": 0.9906 + }, + { + "start": 1255.5, + "end": 1259.6, + "probability": 0.9961 + }, + { + "start": 1260.74, + "end": 1263.9, + "probability": 0.9824 + }, + { + "start": 1264.16, + "end": 1264.64, + "probability": 0.5616 + }, + { + "start": 1264.74, + "end": 1265.06, + "probability": 0.814 + }, + { + "start": 1265.2, + "end": 1266.58, + "probability": 0.9832 + }, + { + "start": 1267.36, + "end": 1268.4, + "probability": 0.938 + }, + { + "start": 1268.54, + "end": 1269.58, + "probability": 0.8275 + }, + { + "start": 1270.22, + "end": 1275.76, + "probability": 0.8608 + }, + { + "start": 1276.58, + "end": 1277.51, + "probability": 0.9713 + }, + { + "start": 1278.56, + "end": 1278.58, + "probability": 0.2635 + }, + { + "start": 1278.58, + "end": 1280.96, + "probability": 0.9583 + }, + { + "start": 1281.14, + "end": 1281.64, + "probability": 0.2373 + }, + { + "start": 1281.66, + "end": 1283.72, + "probability": 0.5513 + }, + { + "start": 1283.74, + "end": 1285.08, + "probability": 0.9702 + }, + { + "start": 1286.46, + "end": 1288.72, + "probability": 0.9792 + }, + { + "start": 1289.64, + "end": 1291.46, + "probability": 0.9897 + }, + { + "start": 1291.8, + "end": 1295.58, + "probability": 0.788 + }, + { + "start": 1297.28, + "end": 1299.76, + "probability": 0.9952 + }, + { + "start": 1299.8, + "end": 1300.8, + "probability": 0.9442 + }, + { + "start": 1302.4, + "end": 1303.8, + "probability": 0.9708 + }, + { + "start": 1304.84, + "end": 1305.88, + "probability": 0.9113 + }, + { + "start": 1306.78, + "end": 1310.36, + "probability": 0.9987 + }, + { + "start": 1311.8, + "end": 1316.18, + "probability": 0.9452 + }, + { + "start": 1316.6, + "end": 1317.42, + "probability": 0.088 + }, + { + "start": 1317.72, + "end": 1320.96, + "probability": 0.9885 + }, + { + "start": 1322.12, + "end": 1328.1, + "probability": 0.9496 + }, + { + "start": 1329.42, + "end": 1331.66, + "probability": 0.9021 + }, + { + "start": 1333.0, + "end": 1338.8, + "probability": 0.961 + }, + { + "start": 1340.24, + "end": 1340.3, + "probability": 0.0545 + }, + { + "start": 1340.3, + "end": 1341.28, + "probability": 0.6737 + }, + { + "start": 1341.96, + "end": 1343.46, + "probability": 0.7506 + }, + { + "start": 1343.72, + "end": 1344.2, + "probability": 0.6804 + }, + { + "start": 1344.3, + "end": 1347.3, + "probability": 0.9833 + }, + { + "start": 1347.88, + "end": 1350.74, + "probability": 0.9818 + }, + { + "start": 1351.26, + "end": 1352.71, + "probability": 0.5513 + }, + { + "start": 1353.12, + "end": 1354.74, + "probability": 0.6884 + }, + { + "start": 1354.74, + "end": 1355.36, + "probability": 0.219 + }, + { + "start": 1355.66, + "end": 1355.76, + "probability": 0.1807 + }, + { + "start": 1355.84, + "end": 1355.84, + "probability": 0.1475 + }, + { + "start": 1355.86, + "end": 1357.24, + "probability": 0.572 + }, + { + "start": 1357.42, + "end": 1359.3, + "probability": 0.8287 + }, + { + "start": 1359.74, + "end": 1360.88, + "probability": 0.0621 + }, + { + "start": 1361.18, + "end": 1362.52, + "probability": 0.4117 + }, + { + "start": 1363.66, + "end": 1366.28, + "probability": 0.95 + }, + { + "start": 1367.04, + "end": 1368.76, + "probability": 0.9638 + }, + { + "start": 1369.7, + "end": 1373.14, + "probability": 0.8702 + }, + { + "start": 1373.72, + "end": 1375.04, + "probability": 0.9722 + }, + { + "start": 1375.04, + "end": 1377.36, + "probability": 0.7219 + }, + { + "start": 1377.42, + "end": 1380.98, + "probability": 0.9855 + }, + { + "start": 1381.78, + "end": 1383.22, + "probability": 0.8765 + }, + { + "start": 1384.08, + "end": 1387.88, + "probability": 0.9897 + }, + { + "start": 1388.06, + "end": 1388.34, + "probability": 0.4585 + }, + { + "start": 1388.5, + "end": 1389.36, + "probability": 0.0054 + }, + { + "start": 1389.58, + "end": 1389.86, + "probability": 0.0782 + }, + { + "start": 1390.8, + "end": 1394.36, + "probability": 0.9558 + }, + { + "start": 1394.86, + "end": 1395.3, + "probability": 0.8012 + }, + { + "start": 1395.4, + "end": 1395.7, + "probability": 0.7178 + }, + { + "start": 1395.72, + "end": 1399.62, + "probability": 0.9842 + }, + { + "start": 1400.22, + "end": 1401.0, + "probability": 0.9829 + }, + { + "start": 1401.14, + "end": 1402.54, + "probability": 0.9451 + }, + { + "start": 1402.54, + "end": 1404.08, + "probability": 0.8264 + }, + { + "start": 1404.32, + "end": 1405.06, + "probability": 0.8865 + }, + { + "start": 1405.56, + "end": 1409.5, + "probability": 0.8978 + }, + { + "start": 1409.5, + "end": 1412.54, + "probability": 0.9875 + }, + { + "start": 1412.86, + "end": 1415.06, + "probability": 0.888 + }, + { + "start": 1416.5, + "end": 1416.5, + "probability": 0.0709 + }, + { + "start": 1416.5, + "end": 1419.46, + "probability": 0.7185 + }, + { + "start": 1420.12, + "end": 1421.5, + "probability": 0.9172 + }, + { + "start": 1421.82, + "end": 1426.2, + "probability": 0.984 + }, + { + "start": 1426.96, + "end": 1429.5, + "probability": 0.9482 + }, + { + "start": 1430.16, + "end": 1430.9, + "probability": 0.9773 + }, + { + "start": 1431.06, + "end": 1434.28, + "probability": 0.8808 + }, + { + "start": 1435.0, + "end": 1435.86, + "probability": 0.8451 + }, + { + "start": 1435.98, + "end": 1436.82, + "probability": 0.9823 + }, + { + "start": 1437.32, + "end": 1438.12, + "probability": 0.9877 + }, + { + "start": 1438.2, + "end": 1440.34, + "probability": 0.9959 + }, + { + "start": 1440.94, + "end": 1441.8, + "probability": 0.977 + }, + { + "start": 1441.86, + "end": 1442.78, + "probability": 0.9948 + }, + { + "start": 1443.22, + "end": 1446.82, + "probability": 0.996 + }, + { + "start": 1447.42, + "end": 1450.5, + "probability": 0.9256 + }, + { + "start": 1451.12, + "end": 1452.02, + "probability": 0.9747 + }, + { + "start": 1452.1, + "end": 1453.64, + "probability": 0.8773 + }, + { + "start": 1454.06, + "end": 1455.32, + "probability": 0.9253 + }, + { + "start": 1455.78, + "end": 1457.84, + "probability": 0.9627 + }, + { + "start": 1458.44, + "end": 1459.28, + "probability": 0.9822 + }, + { + "start": 1459.36, + "end": 1462.11, + "probability": 0.9933 + }, + { + "start": 1462.26, + "end": 1463.16, + "probability": 0.8753 + }, + { + "start": 1463.8, + "end": 1464.74, + "probability": 0.8962 + }, + { + "start": 1465.58, + "end": 1466.86, + "probability": 0.7301 + }, + { + "start": 1467.44, + "end": 1468.86, + "probability": 0.9389 + }, + { + "start": 1468.96, + "end": 1469.24, + "probability": 0.9276 + }, + { + "start": 1469.76, + "end": 1472.48, + "probability": 0.9917 + }, + { + "start": 1472.56, + "end": 1473.98, + "probability": 0.9364 + }, + { + "start": 1474.46, + "end": 1474.68, + "probability": 0.9373 + }, + { + "start": 1477.2, + "end": 1480.18, + "probability": 0.9976 + }, + { + "start": 1480.26, + "end": 1481.56, + "probability": 0.7929 + }, + { + "start": 1481.7, + "end": 1482.38, + "probability": 0.8117 + }, + { + "start": 1482.4, + "end": 1483.1, + "probability": 0.7086 + }, + { + "start": 1487.44, + "end": 1487.76, + "probability": 0.0346 + }, + { + "start": 1490.0, + "end": 1490.14, + "probability": 0.0505 + }, + { + "start": 1490.3, + "end": 1492.04, + "probability": 0.4919 + }, + { + "start": 1492.26, + "end": 1494.34, + "probability": 0.3325 + }, + { + "start": 1494.34, + "end": 1496.96, + "probability": 0.5053 + }, + { + "start": 1498.42, + "end": 1499.52, + "probability": 0.0318 + }, + { + "start": 1499.52, + "end": 1503.02, + "probability": 0.5906 + }, + { + "start": 1503.14, + "end": 1504.5, + "probability": 0.6238 + }, + { + "start": 1505.7, + "end": 1509.0, + "probability": 0.8858 + }, + { + "start": 1509.68, + "end": 1512.38, + "probability": 0.9577 + }, + { + "start": 1513.0, + "end": 1514.6, + "probability": 0.8106 + }, + { + "start": 1515.14, + "end": 1516.14, + "probability": 0.6871 + }, + { + "start": 1517.14, + "end": 1522.48, + "probability": 0.9938 + }, + { + "start": 1523.3, + "end": 1524.49, + "probability": 0.9578 + }, + { + "start": 1525.56, + "end": 1527.82, + "probability": 0.9991 + }, + { + "start": 1528.46, + "end": 1529.68, + "probability": 0.9956 + }, + { + "start": 1530.84, + "end": 1531.78, + "probability": 0.7505 + }, + { + "start": 1532.58, + "end": 1534.2, + "probability": 0.6737 + }, + { + "start": 1534.96, + "end": 1537.6, + "probability": 0.9959 + }, + { + "start": 1538.46, + "end": 1541.7, + "probability": 0.946 + }, + { + "start": 1542.26, + "end": 1544.92, + "probability": 0.9917 + }, + { + "start": 1545.66, + "end": 1548.54, + "probability": 0.9844 + }, + { + "start": 1549.36, + "end": 1550.74, + "probability": 0.9802 + }, + { + "start": 1551.38, + "end": 1553.18, + "probability": 0.9934 + }, + { + "start": 1556.08, + "end": 1557.16, + "probability": 0.5051 + }, + { + "start": 1557.98, + "end": 1559.82, + "probability": 0.9156 + }, + { + "start": 1560.62, + "end": 1561.8, + "probability": 0.8341 + }, + { + "start": 1562.52, + "end": 1563.74, + "probability": 0.8445 + }, + { + "start": 1564.74, + "end": 1566.96, + "probability": 0.8519 + }, + { + "start": 1567.58, + "end": 1570.4, + "probability": 0.9925 + }, + { + "start": 1570.94, + "end": 1574.52, + "probability": 0.9453 + }, + { + "start": 1575.1, + "end": 1576.98, + "probability": 0.9983 + }, + { + "start": 1577.62, + "end": 1579.54, + "probability": 0.9508 + }, + { + "start": 1580.26, + "end": 1583.82, + "probability": 0.9954 + }, + { + "start": 1585.18, + "end": 1588.58, + "probability": 0.9674 + }, + { + "start": 1589.38, + "end": 1590.96, + "probability": 0.9785 + }, + { + "start": 1591.6, + "end": 1593.26, + "probability": 0.9858 + }, + { + "start": 1593.6, + "end": 1597.02, + "probability": 0.856 + }, + { + "start": 1597.56, + "end": 1598.86, + "probability": 0.9782 + }, + { + "start": 1599.44, + "end": 1600.86, + "probability": 0.7898 + }, + { + "start": 1602.6, + "end": 1603.71, + "probability": 0.9637 + }, + { + "start": 1604.58, + "end": 1607.02, + "probability": 0.9042 + }, + { + "start": 1607.66, + "end": 1608.88, + "probability": 0.9021 + }, + { + "start": 1609.34, + "end": 1611.7, + "probability": 0.975 + }, + { + "start": 1611.8, + "end": 1616.16, + "probability": 0.9907 + }, + { + "start": 1617.24, + "end": 1622.08, + "probability": 0.9881 + }, + { + "start": 1622.76, + "end": 1627.36, + "probability": 0.9983 + }, + { + "start": 1628.37, + "end": 1633.4, + "probability": 0.9923 + }, + { + "start": 1633.84, + "end": 1636.34, + "probability": 0.7281 + }, + { + "start": 1636.94, + "end": 1639.11, + "probability": 0.9079 + }, + { + "start": 1639.84, + "end": 1643.68, + "probability": 0.9948 + }, + { + "start": 1644.88, + "end": 1647.74, + "probability": 0.9897 + }, + { + "start": 1648.48, + "end": 1652.38, + "probability": 0.9996 + }, + { + "start": 1652.58, + "end": 1654.56, + "probability": 0.9958 + }, + { + "start": 1654.74, + "end": 1661.32, + "probability": 0.9889 + }, + { + "start": 1662.0, + "end": 1666.02, + "probability": 0.9073 + }, + { + "start": 1666.7, + "end": 1669.28, + "probability": 0.6251 + }, + { + "start": 1669.88, + "end": 1671.6, + "probability": 0.9512 + }, + { + "start": 1671.74, + "end": 1674.96, + "probability": 0.9303 + }, + { + "start": 1675.02, + "end": 1676.42, + "probability": 0.8662 + }, + { + "start": 1676.8, + "end": 1682.14, + "probability": 0.8427 + }, + { + "start": 1682.14, + "end": 1685.78, + "probability": 0.0204 + }, + { + "start": 1687.2, + "end": 1687.84, + "probability": 0.0177 + }, + { + "start": 1687.84, + "end": 1688.92, + "probability": 0.1961 + }, + { + "start": 1688.92, + "end": 1689.48, + "probability": 0.0516 + }, + { + "start": 1691.74, + "end": 1693.92, + "probability": 0.7252 + }, + { + "start": 1694.08, + "end": 1695.98, + "probability": 0.8612 + }, + { + "start": 1700.86, + "end": 1702.78, + "probability": 0.321 + }, + { + "start": 1710.08, + "end": 1711.2, + "probability": 0.0981 + }, + { + "start": 1712.9, + "end": 1718.0, + "probability": 0.0742 + }, + { + "start": 1718.0, + "end": 1720.58, + "probability": 0.6301 + }, + { + "start": 1722.21, + "end": 1725.09, + "probability": 0.021 + }, + { + "start": 1726.96, + "end": 1729.56, + "probability": 0.0424 + }, + { + "start": 1735.09, + "end": 1738.29, + "probability": 0.0095 + }, + { + "start": 1738.29, + "end": 1743.23, + "probability": 0.1099 + }, + { + "start": 1746.6, + "end": 1747.06, + "probability": 0.0189 + }, + { + "start": 1747.25, + "end": 1748.37, + "probability": 0.1733 + }, + { + "start": 1750.13, + "end": 1753.09, + "probability": 0.055 + }, + { + "start": 1753.09, + "end": 1753.09, + "probability": 0.1925 + }, + { + "start": 1753.14, + "end": 1754.08, + "probability": 0.0449 + }, + { + "start": 1754.23, + "end": 1754.75, + "probability": 0.0553 + }, + { + "start": 1754.83, + "end": 1754.97, + "probability": 0.0223 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.0, + "end": 1755.0, + "probability": 0.0 + }, + { + "start": 1755.16, + "end": 1759.26, + "probability": 0.9813 + }, + { + "start": 1759.26, + "end": 1763.26, + "probability": 0.9901 + }, + { + "start": 1763.82, + "end": 1766.44, + "probability": 0.7919 + }, + { + "start": 1767.22, + "end": 1769.56, + "probability": 0.9976 + }, + { + "start": 1770.26, + "end": 1772.58, + "probability": 0.9836 + }, + { + "start": 1773.42, + "end": 1776.16, + "probability": 0.6532 + }, + { + "start": 1776.16, + "end": 1776.16, + "probability": 0.3418 + }, + { + "start": 1776.16, + "end": 1778.94, + "probability": 0.4547 + }, + { + "start": 1778.94, + "end": 1778.94, + "probability": 0.4747 + }, + { + "start": 1778.94, + "end": 1778.94, + "probability": 0.5216 + }, + { + "start": 1778.94, + "end": 1780.96, + "probability": 0.3349 + }, + { + "start": 1781.66, + "end": 1782.22, + "probability": 0.0792 + }, + { + "start": 1782.54, + "end": 1784.12, + "probability": 0.5319 + }, + { + "start": 1784.78, + "end": 1789.59, + "probability": 0.0509 + }, + { + "start": 1790.38, + "end": 1792.72, + "probability": 0.0152 + }, + { + "start": 1800.06, + "end": 1803.18, + "probability": 0.2719 + }, + { + "start": 1803.94, + "end": 1806.5, + "probability": 0.0914 + }, + { + "start": 1806.5, + "end": 1807.38, + "probability": 0.1612 + }, + { + "start": 1808.64, + "end": 1809.14, + "probability": 0.1566 + }, + { + "start": 1809.14, + "end": 1809.14, + "probability": 0.2465 + }, + { + "start": 1809.14, + "end": 1809.36, + "probability": 0.2955 + }, + { + "start": 1809.36, + "end": 1810.26, + "probability": 0.2158 + }, + { + "start": 1810.78, + "end": 1810.86, + "probability": 0.0568 + }, + { + "start": 1810.86, + "end": 1810.86, + "probability": 0.5511 + }, + { + "start": 1810.86, + "end": 1810.86, + "probability": 0.0119 + }, + { + "start": 1810.86, + "end": 1810.86, + "probability": 0.2725 + }, + { + "start": 1810.86, + "end": 1814.6, + "probability": 0.6947 + }, + { + "start": 1814.6, + "end": 1818.86, + "probability": 0.9546 + }, + { + "start": 1820.18, + "end": 1820.84, + "probability": 0.3433 + }, + { + "start": 1821.74, + "end": 1823.26, + "probability": 0.9594 + }, + { + "start": 1823.78, + "end": 1825.26, + "probability": 0.9378 + }, + { + "start": 1826.08, + "end": 1828.04, + "probability": 0.9951 + }, + { + "start": 1828.6, + "end": 1831.42, + "probability": 0.9908 + }, + { + "start": 1832.16, + "end": 1834.04, + "probability": 0.9966 + }, + { + "start": 1834.56, + "end": 1838.18, + "probability": 0.9834 + }, + { + "start": 1838.42, + "end": 1842.64, + "probability": 0.9944 + }, + { + "start": 1843.18, + "end": 1844.34, + "probability": 0.9049 + }, + { + "start": 1844.88, + "end": 1847.94, + "probability": 0.9856 + }, + { + "start": 1849.02, + "end": 1851.26, + "probability": 0.9871 + }, + { + "start": 1851.78, + "end": 1855.76, + "probability": 0.9951 + }, + { + "start": 1856.56, + "end": 1858.49, + "probability": 0.9785 + }, + { + "start": 1858.96, + "end": 1861.04, + "probability": 0.8471 + }, + { + "start": 1861.16, + "end": 1862.22, + "probability": 0.8746 + }, + { + "start": 1863.76, + "end": 1864.42, + "probability": 0.504 + }, + { + "start": 1864.42, + "end": 1864.44, + "probability": 0.1704 + }, + { + "start": 1864.44, + "end": 1865.04, + "probability": 0.1604 + }, + { + "start": 1865.12, + "end": 1866.72, + "probability": 0.5302 + }, + { + "start": 1866.94, + "end": 1869.12, + "probability": 0.3422 + }, + { + "start": 1869.18, + "end": 1872.12, + "probability": 0.327 + }, + { + "start": 1873.74, + "end": 1875.8, + "probability": 0.986 + }, + { + "start": 1876.38, + "end": 1877.24, + "probability": 0.7514 + }, + { + "start": 1877.38, + "end": 1878.3, + "probability": 0.9017 + }, + { + "start": 1878.74, + "end": 1882.5, + "probability": 0.9905 + }, + { + "start": 1883.32, + "end": 1888.2, + "probability": 0.9966 + }, + { + "start": 1888.54, + "end": 1889.9, + "probability": 0.7866 + }, + { + "start": 1890.64, + "end": 1893.32, + "probability": 0.9907 + }, + { + "start": 1894.04, + "end": 1900.76, + "probability": 0.9806 + }, + { + "start": 1901.74, + "end": 1903.08, + "probability": 0.9791 + }, + { + "start": 1903.62, + "end": 1905.54, + "probability": 0.7405 + }, + { + "start": 1905.98, + "end": 1909.14, + "probability": 0.9243 + }, + { + "start": 1910.0, + "end": 1914.24, + "probability": 0.9506 + }, + { + "start": 1914.86, + "end": 1915.68, + "probability": 0.6851 + }, + { + "start": 1917.58, + "end": 1922.68, + "probability": 0.9952 + }, + { + "start": 1923.42, + "end": 1926.98, + "probability": 0.9839 + }, + { + "start": 1926.98, + "end": 1929.84, + "probability": 0.9985 + }, + { + "start": 1930.8, + "end": 1933.92, + "probability": 0.8735 + }, + { + "start": 1934.62, + "end": 1935.98, + "probability": 0.9797 + }, + { + "start": 1936.94, + "end": 1938.36, + "probability": 0.8602 + }, + { + "start": 1939.12, + "end": 1940.92, + "probability": 0.9578 + }, + { + "start": 1941.36, + "end": 1942.64, + "probability": 0.9893 + }, + { + "start": 1943.14, + "end": 1944.55, + "probability": 0.9154 + }, + { + "start": 1944.72, + "end": 1949.08, + "probability": 0.927 + }, + { + "start": 1949.08, + "end": 1950.06, + "probability": 0.2414 + }, + { + "start": 1950.12, + "end": 1950.66, + "probability": 0.4054 + }, + { + "start": 1950.94, + "end": 1953.8, + "probability": 0.5825 + }, + { + "start": 1954.18, + "end": 1958.28, + "probability": 0.8793 + }, + { + "start": 1958.94, + "end": 1960.84, + "probability": 0.9789 + }, + { + "start": 1961.34, + "end": 1964.46, + "probability": 0.9658 + }, + { + "start": 1965.0, + "end": 1966.72, + "probability": 0.8858 + }, + { + "start": 1967.78, + "end": 1970.86, + "probability": 0.945 + }, + { + "start": 1971.68, + "end": 1973.96, + "probability": 0.8637 + }, + { + "start": 1974.54, + "end": 1976.2, + "probability": 0.9 + }, + { + "start": 1976.86, + "end": 1979.46, + "probability": 0.9443 + }, + { + "start": 1979.92, + "end": 1982.04, + "probability": 0.9893 + }, + { + "start": 1982.54, + "end": 1986.0, + "probability": 0.9852 + }, + { + "start": 1986.42, + "end": 1990.2, + "probability": 0.9575 + }, + { + "start": 1990.82, + "end": 1991.52, + "probability": 0.5503 + }, + { + "start": 1992.22, + "end": 1995.04, + "probability": 0.8885 + }, + { + "start": 1996.04, + "end": 1999.58, + "probability": 0.9209 + }, + { + "start": 2000.28, + "end": 2001.14, + "probability": 0.9136 + }, + { + "start": 2002.06, + "end": 2005.79, + "probability": 0.9778 + }, + { + "start": 2005.98, + "end": 2007.54, + "probability": 0.9017 + }, + { + "start": 2007.64, + "end": 2008.74, + "probability": 0.7571 + }, + { + "start": 2009.4, + "end": 2012.6, + "probability": 0.9771 + }, + { + "start": 2013.54, + "end": 2016.3, + "probability": 0.9886 + }, + { + "start": 2016.9, + "end": 2019.22, + "probability": 0.9757 + }, + { + "start": 2019.28, + "end": 2020.25, + "probability": 0.9844 + }, + { + "start": 2021.04, + "end": 2024.28, + "probability": 0.9959 + }, + { + "start": 2025.2, + "end": 2027.93, + "probability": 0.9827 + }, + { + "start": 2029.1, + "end": 2033.42, + "probability": 0.9729 + }, + { + "start": 2033.42, + "end": 2038.58, + "probability": 0.995 + }, + { + "start": 2039.34, + "end": 2039.34, + "probability": 0.0148 + }, + { + "start": 2039.34, + "end": 2045.3, + "probability": 0.9289 + }, + { + "start": 2045.74, + "end": 2048.8, + "probability": 0.9953 + }, + { + "start": 2049.26, + "end": 2049.54, + "probability": 0.027 + }, + { + "start": 2049.54, + "end": 2051.52, + "probability": 0.8819 + }, + { + "start": 2052.2, + "end": 2055.04, + "probability": 0.9327 + }, + { + "start": 2055.16, + "end": 2059.84, + "probability": 0.9992 + }, + { + "start": 2059.84, + "end": 2064.5, + "probability": 0.9967 + }, + { + "start": 2065.2, + "end": 2068.8, + "probability": 0.9455 + }, + { + "start": 2069.76, + "end": 2072.14, + "probability": 0.9981 + }, + { + "start": 2072.92, + "end": 2073.6, + "probability": 0.9332 + }, + { + "start": 2074.16, + "end": 2078.3, + "probability": 0.9973 + }, + { + "start": 2078.92, + "end": 2081.16, + "probability": 0.9954 + }, + { + "start": 2082.04, + "end": 2085.12, + "probability": 0.9933 + }, + { + "start": 2085.78, + "end": 2087.52, + "probability": 0.9587 + }, + { + "start": 2088.04, + "end": 2092.62, + "probability": 0.998 + }, + { + "start": 2093.52, + "end": 2096.32, + "probability": 0.918 + }, + { + "start": 2097.52, + "end": 2101.22, + "probability": 0.9967 + }, + { + "start": 2101.78, + "end": 2102.84, + "probability": 0.9589 + }, + { + "start": 2103.52, + "end": 2107.2, + "probability": 0.9631 + }, + { + "start": 2107.9, + "end": 2108.36, + "probability": 0.5121 + }, + { + "start": 2108.52, + "end": 2109.48, + "probability": 0.719 + }, + { + "start": 2109.88, + "end": 2112.0, + "probability": 0.9844 + }, + { + "start": 2112.5, + "end": 2114.22, + "probability": 0.8979 + }, + { + "start": 2114.88, + "end": 2118.34, + "probability": 0.9863 + }, + { + "start": 2118.84, + "end": 2124.7, + "probability": 0.9334 + }, + { + "start": 2124.7, + "end": 2130.88, + "probability": 0.9971 + }, + { + "start": 2131.7, + "end": 2136.14, + "probability": 0.9845 + }, + { + "start": 2136.96, + "end": 2138.18, + "probability": 0.8776 + }, + { + "start": 2138.62, + "end": 2139.62, + "probability": 0.9627 + }, + { + "start": 2140.1, + "end": 2140.86, + "probability": 0.7879 + }, + { + "start": 2141.28, + "end": 2144.24, + "probability": 0.9863 + }, + { + "start": 2144.44, + "end": 2145.46, + "probability": 0.9409 + }, + { + "start": 2145.5, + "end": 2146.5, + "probability": 0.9722 + }, + { + "start": 2147.22, + "end": 2148.46, + "probability": 0.7843 + }, + { + "start": 2148.88, + "end": 2150.7, + "probability": 0.8816 + }, + { + "start": 2151.18, + "end": 2153.02, + "probability": 0.9878 + }, + { + "start": 2153.76, + "end": 2155.08, + "probability": 0.9078 + }, + { + "start": 2155.48, + "end": 2159.1, + "probability": 0.9967 + }, + { + "start": 2159.68, + "end": 2162.44, + "probability": 0.9715 + }, + { + "start": 2162.98, + "end": 2165.28, + "probability": 0.9879 + }, + { + "start": 2165.98, + "end": 2171.32, + "probability": 0.9874 + }, + { + "start": 2172.34, + "end": 2175.54, + "probability": 0.9211 + }, + { + "start": 2176.42, + "end": 2181.28, + "probability": 0.9385 + }, + { + "start": 2182.06, + "end": 2186.02, + "probability": 0.9966 + }, + { + "start": 2186.02, + "end": 2190.8, + "probability": 0.9995 + }, + { + "start": 2191.36, + "end": 2192.58, + "probability": 0.7467 + }, + { + "start": 2192.96, + "end": 2194.26, + "probability": 0.8809 + }, + { + "start": 2194.62, + "end": 2196.06, + "probability": 0.9834 + }, + { + "start": 2196.32, + "end": 2196.96, + "probability": 0.9795 + }, + { + "start": 2197.02, + "end": 2199.28, + "probability": 0.9034 + }, + { + "start": 2200.0, + "end": 2200.94, + "probability": 0.6874 + }, + { + "start": 2201.4, + "end": 2207.4, + "probability": 0.9829 + }, + { + "start": 2207.9, + "end": 2209.46, + "probability": 0.9297 + }, + { + "start": 2209.86, + "end": 2210.96, + "probability": 0.6821 + }, + { + "start": 2211.12, + "end": 2213.14, + "probability": 0.7116 + }, + { + "start": 2213.66, + "end": 2219.32, + "probability": 0.9775 + }, + { + "start": 2220.32, + "end": 2221.5, + "probability": 0.8146 + }, + { + "start": 2222.18, + "end": 2224.34, + "probability": 0.9548 + }, + { + "start": 2224.88, + "end": 2226.98, + "probability": 0.9265 + }, + { + "start": 2227.44, + "end": 2229.3, + "probability": 0.9551 + }, + { + "start": 2229.58, + "end": 2231.86, + "probability": 0.9862 + }, + { + "start": 2232.34, + "end": 2234.96, + "probability": 0.9844 + }, + { + "start": 2235.48, + "end": 2237.24, + "probability": 0.9465 + }, + { + "start": 2237.76, + "end": 2239.02, + "probability": 0.9264 + }, + { + "start": 2239.74, + "end": 2241.26, + "probability": 0.9875 + }, + { + "start": 2241.76, + "end": 2244.98, + "probability": 0.8882 + }, + { + "start": 2245.48, + "end": 2249.18, + "probability": 0.6972 + }, + { + "start": 2249.8, + "end": 2254.62, + "probability": 0.9879 + }, + { + "start": 2256.28, + "end": 2257.36, + "probability": 0.9768 + }, + { + "start": 2258.28, + "end": 2263.68, + "probability": 0.8871 + }, + { + "start": 2264.5, + "end": 2265.84, + "probability": 0.7283 + }, + { + "start": 2266.3, + "end": 2267.96, + "probability": 0.9861 + }, + { + "start": 2268.44, + "end": 2269.88, + "probability": 0.9755 + }, + { + "start": 2270.24, + "end": 2272.06, + "probability": 0.9784 + }, + { + "start": 2272.48, + "end": 2274.78, + "probability": 0.8816 + }, + { + "start": 2275.62, + "end": 2280.18, + "probability": 0.9893 + }, + { + "start": 2280.18, + "end": 2284.72, + "probability": 0.9948 + }, + { + "start": 2285.48, + "end": 2290.4, + "probability": 0.94 + }, + { + "start": 2291.12, + "end": 2292.8, + "probability": 0.8643 + }, + { + "start": 2293.66, + "end": 2297.8, + "probability": 0.937 + }, + { + "start": 2297.8, + "end": 2301.18, + "probability": 0.9565 + }, + { + "start": 2302.1, + "end": 2302.28, + "probability": 0.4152 + }, + { + "start": 2302.3, + "end": 2308.64, + "probability": 0.9668 + }, + { + "start": 2309.26, + "end": 2314.82, + "probability": 0.8774 + }, + { + "start": 2314.96, + "end": 2316.22, + "probability": 0.8944 + }, + { + "start": 2317.4, + "end": 2320.58, + "probability": 0.9966 + }, + { + "start": 2320.58, + "end": 2325.12, + "probability": 0.9344 + }, + { + "start": 2325.44, + "end": 2327.16, + "probability": 0.9371 + }, + { + "start": 2327.72, + "end": 2330.54, + "probability": 0.9391 + }, + { + "start": 2331.08, + "end": 2332.26, + "probability": 0.9476 + }, + { + "start": 2332.86, + "end": 2335.0, + "probability": 0.9131 + }, + { + "start": 2335.06, + "end": 2338.56, + "probability": 0.9423 + }, + { + "start": 2339.58, + "end": 2343.16, + "probability": 0.9904 + }, + { + "start": 2343.7, + "end": 2347.46, + "probability": 0.9706 + }, + { + "start": 2348.08, + "end": 2354.62, + "probability": 0.9739 + }, + { + "start": 2354.66, + "end": 2356.14, + "probability": 0.7434 + }, + { + "start": 2356.6, + "end": 2357.76, + "probability": 0.8014 + }, + { + "start": 2358.7, + "end": 2359.82, + "probability": 0.7865 + }, + { + "start": 2360.48, + "end": 2365.2, + "probability": 0.9778 + }, + { + "start": 2365.2, + "end": 2370.58, + "probability": 0.9889 + }, + { + "start": 2371.68, + "end": 2376.84, + "probability": 0.9375 + }, + { + "start": 2377.52, + "end": 2380.78, + "probability": 0.9931 + }, + { + "start": 2387.28, + "end": 2388.26, + "probability": 0.8217 + }, + { + "start": 2390.18, + "end": 2392.06, + "probability": 0.9987 + }, + { + "start": 2392.62, + "end": 2394.86, + "probability": 0.9804 + }, + { + "start": 2395.56, + "end": 2398.54, + "probability": 0.9915 + }, + { + "start": 2399.14, + "end": 2400.94, + "probability": 0.9211 + }, + { + "start": 2401.52, + "end": 2404.36, + "probability": 0.9983 + }, + { + "start": 2404.9, + "end": 2409.0, + "probability": 0.9741 + }, + { + "start": 2409.46, + "end": 2410.88, + "probability": 0.9486 + }, + { + "start": 2410.92, + "end": 2411.8, + "probability": 0.5137 + }, + { + "start": 2411.84, + "end": 2414.47, + "probability": 0.9324 + }, + { + "start": 2415.98, + "end": 2418.56, + "probability": 0.9803 + }, + { + "start": 2419.14, + "end": 2421.38, + "probability": 0.8437 + }, + { + "start": 2422.12, + "end": 2423.42, + "probability": 0.5805 + }, + { + "start": 2424.06, + "end": 2429.96, + "probability": 0.999 + }, + { + "start": 2431.22, + "end": 2434.94, + "probability": 0.9908 + }, + { + "start": 2435.54, + "end": 2438.52, + "probability": 0.9538 + }, + { + "start": 2439.08, + "end": 2442.5, + "probability": 0.8735 + }, + { + "start": 2443.12, + "end": 2445.23, + "probability": 0.0299 + }, + { + "start": 2446.91, + "end": 2447.16, + "probability": 0.317 + }, + { + "start": 2447.74, + "end": 2448.09, + "probability": 0.2599 + }, + { + "start": 2448.34, + "end": 2450.88, + "probability": 0.8325 + }, + { + "start": 2457.1, + "end": 2460.94, + "probability": 0.9908 + }, + { + "start": 2462.02, + "end": 2467.46, + "probability": 0.999 + }, + { + "start": 2467.9, + "end": 2469.14, + "probability": 0.9824 + }, + { + "start": 2469.38, + "end": 2470.8, + "probability": 0.9653 + }, + { + "start": 2470.9, + "end": 2471.85, + "probability": 0.7844 + }, + { + "start": 2474.22, + "end": 2476.92, + "probability": 0.9033 + }, + { + "start": 2477.42, + "end": 2479.05, + "probability": 0.9657 + }, + { + "start": 2480.18, + "end": 2482.1, + "probability": 0.9479 + }, + { + "start": 2482.46, + "end": 2484.32, + "probability": 0.8441 + }, + { + "start": 2484.82, + "end": 2486.56, + "probability": 0.9843 + }, + { + "start": 2486.98, + "end": 2491.88, + "probability": 0.937 + }, + { + "start": 2492.02, + "end": 2494.71, + "probability": 0.7951 + }, + { + "start": 2496.2, + "end": 2499.24, + "probability": 0.1151 + }, + { + "start": 2499.24, + "end": 2500.03, + "probability": 0.3971 + }, + { + "start": 2500.58, + "end": 2504.26, + "probability": 0.6853 + }, + { + "start": 2506.53, + "end": 2509.04, + "probability": 0.3314 + }, + { + "start": 2509.16, + "end": 2511.02, + "probability": 0.2249 + }, + { + "start": 2511.04, + "end": 2514.51, + "probability": 0.911 + }, + { + "start": 2514.58, + "end": 2519.46, + "probability": 0.9764 + }, + { + "start": 2519.78, + "end": 2522.32, + "probability": 0.97 + }, + { + "start": 2522.54, + "end": 2525.92, + "probability": 0.9894 + }, + { + "start": 2526.36, + "end": 2527.16, + "probability": 0.7699 + }, + { + "start": 2527.3, + "end": 2528.18, + "probability": 0.974 + }, + { + "start": 2528.86, + "end": 2532.04, + "probability": 0.986 + }, + { + "start": 2532.24, + "end": 2534.8, + "probability": 0.9935 + }, + { + "start": 2534.9, + "end": 2535.58, + "probability": 0.1141 + }, + { + "start": 2535.9, + "end": 2538.0, + "probability": 0.8714 + }, + { + "start": 2542.75, + "end": 2547.06, + "probability": 0.9961 + }, + { + "start": 2547.52, + "end": 2550.46, + "probability": 0.9963 + }, + { + "start": 2550.92, + "end": 2556.78, + "probability": 0.9821 + }, + { + "start": 2557.2, + "end": 2560.88, + "probability": 0.9878 + }, + { + "start": 2561.44, + "end": 2564.66, + "probability": 0.9958 + }, + { + "start": 2565.34, + "end": 2570.96, + "probability": 0.9987 + }, + { + "start": 2571.58, + "end": 2573.92, + "probability": 0.9944 + }, + { + "start": 2574.34, + "end": 2580.34, + "probability": 0.9985 + }, + { + "start": 2580.7, + "end": 2581.02, + "probability": 0.7704 + }, + { + "start": 2581.38, + "end": 2583.1, + "probability": 0.9598 + }, + { + "start": 2584.06, + "end": 2586.04, + "probability": 0.8331 + }, + { + "start": 2586.96, + "end": 2587.46, + "probability": 0.5531 + }, + { + "start": 2587.84, + "end": 2590.29, + "probability": 0.9824 + }, + { + "start": 2590.86, + "end": 2593.95, + "probability": 0.9818 + }, + { + "start": 2594.44, + "end": 2596.26, + "probability": 0.7523 + }, + { + "start": 2596.76, + "end": 2597.7, + "probability": 0.8322 + }, + { + "start": 2598.04, + "end": 2600.58, + "probability": 0.9929 + }, + { + "start": 2601.26, + "end": 2603.48, + "probability": 0.9907 + }, + { + "start": 2604.16, + "end": 2607.32, + "probability": 0.9982 + }, + { + "start": 2607.32, + "end": 2610.84, + "probability": 0.9857 + }, + { + "start": 2611.4, + "end": 2617.4, + "probability": 0.9933 + }, + { + "start": 2618.06, + "end": 2620.42, + "probability": 0.9865 + }, + { + "start": 2620.82, + "end": 2621.98, + "probability": 0.9624 + }, + { + "start": 2622.48, + "end": 2623.46, + "probability": 0.7632 + }, + { + "start": 2624.18, + "end": 2628.42, + "probability": 0.9958 + }, + { + "start": 2629.18, + "end": 2633.22, + "probability": 0.9917 + }, + { + "start": 2633.96, + "end": 2635.37, + "probability": 0.5562 + }, + { + "start": 2636.16, + "end": 2637.76, + "probability": 0.9724 + }, + { + "start": 2638.56, + "end": 2639.22, + "probability": 0.8715 + }, + { + "start": 2639.56, + "end": 2641.32, + "probability": 0.9863 + }, + { + "start": 2641.4, + "end": 2642.3, + "probability": 0.976 + }, + { + "start": 2642.74, + "end": 2645.44, + "probability": 0.9165 + }, + { + "start": 2645.44, + "end": 2648.12, + "probability": 0.9844 + }, + { + "start": 2648.6, + "end": 2650.8, + "probability": 0.9121 + }, + { + "start": 2651.48, + "end": 2653.24, + "probability": 0.7527 + }, + { + "start": 2653.72, + "end": 2656.92, + "probability": 0.9828 + }, + { + "start": 2657.9, + "end": 2661.44, + "probability": 0.9948 + }, + { + "start": 2661.56, + "end": 2662.22, + "probability": 0.4369 + }, + { + "start": 2663.04, + "end": 2666.36, + "probability": 0.9758 + }, + { + "start": 2667.16, + "end": 2673.28, + "probability": 0.9863 + }, + { + "start": 2674.02, + "end": 2677.02, + "probability": 0.9968 + }, + { + "start": 2678.02, + "end": 2680.56, + "probability": 0.713 + }, + { + "start": 2680.98, + "end": 2685.64, + "probability": 0.6997 + }, + { + "start": 2686.18, + "end": 2690.78, + "probability": 0.9831 + }, + { + "start": 2691.46, + "end": 2696.72, + "probability": 0.9663 + }, + { + "start": 2697.14, + "end": 2698.68, + "probability": 0.8988 + }, + { + "start": 2699.18, + "end": 2699.62, + "probability": 0.5463 + }, + { + "start": 2699.72, + "end": 2700.46, + "probability": 0.9859 + }, + { + "start": 2700.56, + "end": 2701.06, + "probability": 0.9748 + }, + { + "start": 2701.14, + "end": 2702.36, + "probability": 0.9517 + }, + { + "start": 2702.92, + "end": 2704.92, + "probability": 0.9836 + }, + { + "start": 2705.26, + "end": 2707.16, + "probability": 0.9628 + }, + { + "start": 2707.54, + "end": 2709.12, + "probability": 0.9424 + }, + { + "start": 2711.42, + "end": 2712.52, + "probability": 0.8301 + }, + { + "start": 2712.6, + "end": 2713.48, + "probability": 0.9862 + }, + { + "start": 2714.2, + "end": 2717.04, + "probability": 0.9965 + }, + { + "start": 2717.94, + "end": 2723.58, + "probability": 0.9802 + }, + { + "start": 2724.08, + "end": 2726.16, + "probability": 0.9917 + }, + { + "start": 2726.54, + "end": 2727.18, + "probability": 0.9484 + }, + { + "start": 2727.44, + "end": 2728.9, + "probability": 0.7095 + }, + { + "start": 2729.54, + "end": 2733.76, + "probability": 0.9959 + }, + { + "start": 2734.26, + "end": 2736.24, + "probability": 0.9554 + }, + { + "start": 2736.68, + "end": 2741.24, + "probability": 0.9838 + }, + { + "start": 2742.1, + "end": 2746.02, + "probability": 0.9986 + }, + { + "start": 2746.78, + "end": 2748.54, + "probability": 0.8233 + }, + { + "start": 2749.04, + "end": 2753.16, + "probability": 0.9676 + }, + { + "start": 2753.88, + "end": 2756.3, + "probability": 0.9744 + }, + { + "start": 2756.98, + "end": 2759.4, + "probability": 0.9962 + }, + { + "start": 2759.46, + "end": 2760.5, + "probability": 0.9642 + }, + { + "start": 2760.76, + "end": 2764.2, + "probability": 0.6633 + }, + { + "start": 2764.3, + "end": 2767.24, + "probability": 0.9368 + }, + { + "start": 2767.48, + "end": 2768.72, + "probability": 0.7725 + }, + { + "start": 2769.04, + "end": 2770.4, + "probability": 0.8433 + }, + { + "start": 2770.64, + "end": 2771.64, + "probability": 0.9012 + }, + { + "start": 2771.72, + "end": 2772.22, + "probability": 0.8593 + }, + { + "start": 2772.28, + "end": 2772.98, + "probability": 0.315 + }, + { + "start": 2773.0, + "end": 2775.58, + "probability": 0.7812 + }, + { + "start": 2775.68, + "end": 2777.26, + "probability": 0.5339 + }, + { + "start": 2777.76, + "end": 2780.34, + "probability": 0.7627 + }, + { + "start": 2781.8, + "end": 2782.36, + "probability": 0.0015 + }, + { + "start": 2782.36, + "end": 2788.32, + "probability": 0.8809 + }, + { + "start": 2788.44, + "end": 2789.74, + "probability": 0.963 + }, + { + "start": 2789.74, + "end": 2791.12, + "probability": 0.9713 + }, + { + "start": 2791.84, + "end": 2795.98, + "probability": 0.9941 + }, + { + "start": 2796.18, + "end": 2797.2, + "probability": 0.6066 + }, + { + "start": 2817.26, + "end": 2817.26, + "probability": 0.0647 + }, + { + "start": 2817.26, + "end": 2817.9, + "probability": 0.1103 + }, + { + "start": 2820.52, + "end": 2822.26, + "probability": 0.6955 + }, + { + "start": 2823.52, + "end": 2824.64, + "probability": 0.9118 + }, + { + "start": 2825.3, + "end": 2827.41, + "probability": 0.9837 + }, + { + "start": 2828.28, + "end": 2830.08, + "probability": 0.9613 + }, + { + "start": 2830.18, + "end": 2833.34, + "probability": 0.998 + }, + { + "start": 2834.72, + "end": 2836.2, + "probability": 0.842 + }, + { + "start": 2836.38, + "end": 2839.24, + "probability": 0.9819 + }, + { + "start": 2839.68, + "end": 2842.42, + "probability": 0.8093 + }, + { + "start": 2843.0, + "end": 2843.02, + "probability": 0.2658 + }, + { + "start": 2843.02, + "end": 2845.12, + "probability": 0.9706 + }, + { + "start": 2850.14, + "end": 2851.28, + "probability": 0.6538 + }, + { + "start": 2852.12, + "end": 2853.86, + "probability": 0.9102 + }, + { + "start": 2857.54, + "end": 2860.12, + "probability": 0.774 + }, + { + "start": 2861.92, + "end": 2862.9, + "probability": 0.7642 + }, + { + "start": 2863.06, + "end": 2863.76, + "probability": 0.7359 + }, + { + "start": 2863.8, + "end": 2864.44, + "probability": 0.8824 + }, + { + "start": 2864.52, + "end": 2866.12, + "probability": 0.7275 + }, + { + "start": 2866.12, + "end": 2867.48, + "probability": 0.848 + }, + { + "start": 2867.48, + "end": 2869.58, + "probability": 0.79 + }, + { + "start": 2869.8, + "end": 2871.76, + "probability": 0.9146 + }, + { + "start": 2872.4, + "end": 2873.34, + "probability": 0.4984 + }, + { + "start": 2894.02, + "end": 2896.88, + "probability": 0.6637 + }, + { + "start": 2914.12, + "end": 2914.57, + "probability": 0.0129 + }, + { + "start": 2930.32, + "end": 2931.72, + "probability": 0.0326 + }, + { + "start": 2932.64, + "end": 2933.28, + "probability": 0.008 + }, + { + "start": 2974.38, + "end": 2975.42, + "probability": 0.265 + }, + { + "start": 2975.7, + "end": 2977.6, + "probability": 0.5385 + }, + { + "start": 2993.16, + "end": 2994.0, + "probability": 0.0163 + }, + { + "start": 2996.56, + "end": 2999.22, + "probability": 0.0176 + }, + { + "start": 2999.94, + "end": 3002.14, + "probability": 0.0598 + }, + { + "start": 3004.2, + "end": 3005.7, + "probability": 0.1064 + }, + { + "start": 3006.28, + "end": 3008.54, + "probability": 0.0087 + }, + { + "start": 3010.92, + "end": 3011.44, + "probability": 0.0084 + }, + { + "start": 3012.2, + "end": 3012.74, + "probability": 0.6081 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.0, + "end": 3116.0, + "probability": 0.0 + }, + { + "start": 3116.62, + "end": 3118.56, + "probability": 0.0768 + }, + { + "start": 3118.56, + "end": 3121.68, + "probability": 0.8088 + }, + { + "start": 3122.56, + "end": 3122.56, + "probability": 0.3779 + }, + { + "start": 3122.56, + "end": 3126.9, + "probability": 0.9607 + }, + { + "start": 3127.32, + "end": 3130.11, + "probability": 0.9425 + }, + { + "start": 3130.42, + "end": 3132.52, + "probability": 0.9356 + }, + { + "start": 3133.9, + "end": 3135.84, + "probability": 0.8684 + }, + { + "start": 3136.34, + "end": 3141.2, + "probability": 0.9686 + }, + { + "start": 3141.92, + "end": 3145.12, + "probability": 0.9741 + }, + { + "start": 3145.24, + "end": 3145.44, + "probability": 0.4386 + }, + { + "start": 3145.44, + "end": 3146.58, + "probability": 0.8588 + }, + { + "start": 3146.68, + "end": 3148.13, + "probability": 0.7644 + }, + { + "start": 3148.5, + "end": 3150.42, + "probability": 0.4974 + }, + { + "start": 3153.04, + "end": 3153.32, + "probability": 0.1738 + }, + { + "start": 3153.32, + "end": 3153.32, + "probability": 0.1377 + }, + { + "start": 3153.32, + "end": 3153.32, + "probability": 0.0165 + }, + { + "start": 3153.32, + "end": 3153.5, + "probability": 0.0382 + }, + { + "start": 3153.58, + "end": 3156.0, + "probability": 0.6116 + }, + { + "start": 3156.4, + "end": 3163.14, + "probability": 0.9644 + }, + { + "start": 3164.22, + "end": 3168.42, + "probability": 0.998 + }, + { + "start": 3169.56, + "end": 3172.08, + "probability": 0.9502 + }, + { + "start": 3172.9, + "end": 3179.52, + "probability": 0.7498 + }, + { + "start": 3180.48, + "end": 3182.42, + "probability": 0.9747 + }, + { + "start": 3183.3, + "end": 3189.22, + "probability": 0.977 + }, + { + "start": 3189.22, + "end": 3196.04, + "probability": 0.9932 + }, + { + "start": 3196.44, + "end": 3196.78, + "probability": 0.3584 + }, + { + "start": 3197.28, + "end": 3200.26, + "probability": 0.7881 + }, + { + "start": 3200.26, + "end": 3202.4, + "probability": 0.9128 + }, + { + "start": 3202.8, + "end": 3202.87, + "probability": 0.8957 + }, + { + "start": 3203.26, + "end": 3205.56, + "probability": 0.999 + }, + { + "start": 3206.22, + "end": 3210.82, + "probability": 0.9946 + }, + { + "start": 3211.86, + "end": 3216.6, + "probability": 0.9887 + }, + { + "start": 3217.28, + "end": 3218.88, + "probability": 0.9679 + }, + { + "start": 3219.12, + "end": 3224.44, + "probability": 0.6189 + }, + { + "start": 3224.5, + "end": 3225.34, + "probability": 0.7493 + }, + { + "start": 3225.86, + "end": 3227.32, + "probability": 0.9639 + }, + { + "start": 3227.96, + "end": 3230.02, + "probability": 0.9681 + }, + { + "start": 3230.84, + "end": 3233.46, + "probability": 0.6935 + }, + { + "start": 3234.62, + "end": 3240.02, + "probability": 0.985 + }, + { + "start": 3240.78, + "end": 3245.32, + "probability": 0.9817 + }, + { + "start": 3246.0, + "end": 3250.74, + "probability": 0.9708 + }, + { + "start": 3251.7, + "end": 3259.34, + "probability": 0.936 + }, + { + "start": 3260.2, + "end": 3260.97, + "probability": 0.8989 + }, + { + "start": 3262.18, + "end": 3265.04, + "probability": 0.9967 + }, + { + "start": 3265.76, + "end": 3267.44, + "probability": 0.9842 + }, + { + "start": 3267.5, + "end": 3268.36, + "probability": 0.875 + }, + { + "start": 3268.4, + "end": 3269.0, + "probability": 0.1084 + }, + { + "start": 3269.06, + "end": 3271.44, + "probability": 0.663 + }, + { + "start": 3271.44, + "end": 3272.48, + "probability": 0.5871 + }, + { + "start": 3272.62, + "end": 3275.38, + "probability": 0.5406 + }, + { + "start": 3275.74, + "end": 3278.32, + "probability": 0.5516 + }, + { + "start": 3278.8, + "end": 3282.58, + "probability": 0.7736 + }, + { + "start": 3283.0, + "end": 3287.28, + "probability": 0.8359 + }, + { + "start": 3288.18, + "end": 3290.76, + "probability": 0.9324 + }, + { + "start": 3291.44, + "end": 3294.6, + "probability": 0.9962 + }, + { + "start": 3295.14, + "end": 3296.74, + "probability": 0.9665 + }, + { + "start": 3297.68, + "end": 3300.1, + "probability": 0.9912 + }, + { + "start": 3300.22, + "end": 3301.5, + "probability": 0.776 + }, + { + "start": 3302.2, + "end": 3304.68, + "probability": 0.9943 + }, + { + "start": 3304.68, + "end": 3307.64, + "probability": 0.993 + }, + { + "start": 3308.04, + "end": 3309.44, + "probability": 0.8964 + }, + { + "start": 3309.86, + "end": 3314.02, + "probability": 0.9746 + }, + { + "start": 3314.9, + "end": 3318.62, + "probability": 0.9481 + }, + { + "start": 3318.62, + "end": 3323.58, + "probability": 0.9961 + }, + { + "start": 3324.02, + "end": 3325.0, + "probability": 0.7524 + }, + { + "start": 3325.16, + "end": 3328.8, + "probability": 0.9858 + }, + { + "start": 3329.82, + "end": 3333.04, + "probability": 0.998 + }, + { + "start": 3333.54, + "end": 3335.9, + "probability": 0.9708 + }, + { + "start": 3337.12, + "end": 3340.18, + "probability": 0.9935 + }, + { + "start": 3341.08, + "end": 3344.24, + "probability": 0.9907 + }, + { + "start": 3345.06, + "end": 3347.96, + "probability": 0.9949 + }, + { + "start": 3348.46, + "end": 3350.96, + "probability": 0.6302 + }, + { + "start": 3350.98, + "end": 3351.62, + "probability": 0.6211 + }, + { + "start": 3351.76, + "end": 3353.24, + "probability": 0.9054 + }, + { + "start": 3353.8, + "end": 3357.4, + "probability": 0.8256 + }, + { + "start": 3357.44, + "end": 3358.78, + "probability": 0.9631 + }, + { + "start": 3359.52, + "end": 3360.4, + "probability": 0.855 + }, + { + "start": 3361.26, + "end": 3363.82, + "probability": 0.069 + }, + { + "start": 3364.98, + "end": 3364.98, + "probability": 0.1525 + }, + { + "start": 3364.98, + "end": 3366.0, + "probability": 0.095 + }, + { + "start": 3366.0, + "end": 3366.12, + "probability": 0.0572 + }, + { + "start": 3366.12, + "end": 3366.12, + "probability": 0.1024 + }, + { + "start": 3366.12, + "end": 3368.7, + "probability": 0.1251 + }, + { + "start": 3368.7, + "end": 3370.84, + "probability": 0.6438 + }, + { + "start": 3373.32, + "end": 3374.48, + "probability": 0.1092 + }, + { + "start": 3374.48, + "end": 3374.74, + "probability": 0.0368 + }, + { + "start": 3374.74, + "end": 3374.74, + "probability": 0.1395 + }, + { + "start": 3374.74, + "end": 3377.2, + "probability": 0.1899 + }, + { + "start": 3377.36, + "end": 3379.79, + "probability": 0.9341 + }, + { + "start": 3380.46, + "end": 3382.34, + "probability": 0.6036 + }, + { + "start": 3382.6, + "end": 3382.86, + "probability": 0.6305 + }, + { + "start": 3383.14, + "end": 3384.5, + "probability": 0.8884 + }, + { + "start": 3384.66, + "end": 3385.7, + "probability": 0.8021 + }, + { + "start": 3385.78, + "end": 3389.3, + "probability": 0.9011 + }, + { + "start": 3389.84, + "end": 3393.52, + "probability": 0.9348 + }, + { + "start": 3393.88, + "end": 3397.18, + "probability": 0.9749 + }, + { + "start": 3397.64, + "end": 3399.43, + "probability": 0.9323 + }, + { + "start": 3399.74, + "end": 3400.68, + "probability": 0.9695 + }, + { + "start": 3401.02, + "end": 3402.86, + "probability": 0.9648 + }, + { + "start": 3402.92, + "end": 3406.94, + "probability": 0.9816 + }, + { + "start": 3406.94, + "end": 3411.82, + "probability": 0.9668 + }, + { + "start": 3412.18, + "end": 3412.72, + "probability": 0.6061 + }, + { + "start": 3412.74, + "end": 3413.4, + "probability": 0.3697 + }, + { + "start": 3414.12, + "end": 3415.44, + "probability": 0.9786 + }, + { + "start": 3416.1, + "end": 3418.48, + "probability": 0.9977 + }, + { + "start": 3419.42, + "end": 3424.58, + "probability": 0.9514 + }, + { + "start": 3425.3, + "end": 3429.24, + "probability": 0.9775 + }, + { + "start": 3429.4, + "end": 3430.46, + "probability": 0.9652 + }, + { + "start": 3431.58, + "end": 3434.72, + "probability": 0.965 + }, + { + "start": 3434.8, + "end": 3438.55, + "probability": 0.9509 + }, + { + "start": 3438.66, + "end": 3444.22, + "probability": 0.98 + }, + { + "start": 3444.64, + "end": 3445.54, + "probability": 0.9207 + }, + { + "start": 3446.08, + "end": 3449.42, + "probability": 0.9829 + }, + { + "start": 3449.74, + "end": 3451.24, + "probability": 0.9753 + }, + { + "start": 3451.56, + "end": 3453.08, + "probability": 0.9875 + }, + { + "start": 3453.66, + "end": 3454.16, + "probability": 0.628 + }, + { + "start": 3454.24, + "end": 3458.4, + "probability": 0.984 + }, + { + "start": 3459.02, + "end": 3461.46, + "probability": 0.9978 + }, + { + "start": 3461.94, + "end": 3463.72, + "probability": 0.9665 + }, + { + "start": 3464.42, + "end": 3464.72, + "probability": 0.6074 + }, + { + "start": 3465.24, + "end": 3466.72, + "probability": 0.971 + }, + { + "start": 3467.18, + "end": 3468.3, + "probability": 0.2146 + }, + { + "start": 3468.9, + "end": 3470.96, + "probability": 0.813 + }, + { + "start": 3471.58, + "end": 3475.24, + "probability": 0.5341 + }, + { + "start": 3475.44, + "end": 3476.62, + "probability": 0.959 + }, + { + "start": 3476.72, + "end": 3479.62, + "probability": 0.8687 + }, + { + "start": 3479.78, + "end": 3482.18, + "probability": 0.7229 + }, + { + "start": 3482.46, + "end": 3484.62, + "probability": 0.3469 + }, + { + "start": 3484.7, + "end": 3485.12, + "probability": 0.3905 + }, + { + "start": 3485.24, + "end": 3487.28, + "probability": 0.588 + }, + { + "start": 3487.38, + "end": 3487.6, + "probability": 0.1044 + }, + { + "start": 3487.7, + "end": 3491.1, + "probability": 0.7859 + }, + { + "start": 3491.96, + "end": 3494.88, + "probability": 0.814 + }, + { + "start": 3495.38, + "end": 3497.24, + "probability": 0.8804 + }, + { + "start": 3497.4, + "end": 3500.04, + "probability": 0.9958 + }, + { + "start": 3516.28, + "end": 3517.28, + "probability": 0.7511 + }, + { + "start": 3517.88, + "end": 3518.76, + "probability": 0.8065 + }, + { + "start": 3520.72, + "end": 3525.34, + "probability": 0.9731 + }, + { + "start": 3525.98, + "end": 3529.38, + "probability": 0.8752 + }, + { + "start": 3531.76, + "end": 3534.12, + "probability": 0.9298 + }, + { + "start": 3535.36, + "end": 3536.46, + "probability": 0.9517 + }, + { + "start": 3537.62, + "end": 3541.72, + "probability": 0.6612 + }, + { + "start": 3544.08, + "end": 3549.94, + "probability": 0.9563 + }, + { + "start": 3551.46, + "end": 3554.44, + "probability": 0.9922 + }, + { + "start": 3555.42, + "end": 3561.78, + "probability": 0.9922 + }, + { + "start": 3562.0, + "end": 3562.82, + "probability": 0.1102 + }, + { + "start": 3564.34, + "end": 3570.28, + "probability": 0.9979 + }, + { + "start": 3572.22, + "end": 3576.1, + "probability": 0.9919 + }, + { + "start": 3577.6, + "end": 3582.82, + "probability": 0.9401 + }, + { + "start": 3582.94, + "end": 3584.94, + "probability": 0.9717 + }, + { + "start": 3586.52, + "end": 3587.68, + "probability": 0.6847 + }, + { + "start": 3588.88, + "end": 3592.0, + "probability": 0.9899 + }, + { + "start": 3593.28, + "end": 3594.14, + "probability": 0.832 + }, + { + "start": 3595.38, + "end": 3596.7, + "probability": 0.6273 + }, + { + "start": 3597.64, + "end": 3598.24, + "probability": 0.6823 + }, + { + "start": 3600.24, + "end": 3602.1, + "probability": 0.7317 + }, + { + "start": 3603.02, + "end": 3607.3, + "probability": 0.9768 + }, + { + "start": 3608.56, + "end": 3613.14, + "probability": 0.9966 + }, + { + "start": 3614.46, + "end": 3618.32, + "probability": 0.9609 + }, + { + "start": 3618.32, + "end": 3620.82, + "probability": 0.9964 + }, + { + "start": 3622.7, + "end": 3628.96, + "probability": 0.9808 + }, + { + "start": 3630.54, + "end": 3636.42, + "probability": 0.9977 + }, + { + "start": 3636.42, + "end": 3639.44, + "probability": 0.9995 + }, + { + "start": 3641.12, + "end": 3642.94, + "probability": 0.9609 + }, + { + "start": 3643.62, + "end": 3646.8, + "probability": 0.9917 + }, + { + "start": 3647.64, + "end": 3650.04, + "probability": 0.9796 + }, + { + "start": 3651.98, + "end": 3654.84, + "probability": 0.9871 + }, + { + "start": 3655.48, + "end": 3659.2, + "probability": 0.9888 + }, + { + "start": 3660.18, + "end": 3663.46, + "probability": 0.9712 + }, + { + "start": 3664.24, + "end": 3666.44, + "probability": 0.875 + }, + { + "start": 3667.86, + "end": 3673.7, + "probability": 0.9804 + }, + { + "start": 3674.14, + "end": 3675.64, + "probability": 0.7578 + }, + { + "start": 3676.56, + "end": 3677.34, + "probability": 0.6434 + }, + { + "start": 3679.14, + "end": 3682.0, + "probability": 0.8595 + }, + { + "start": 3683.32, + "end": 3690.74, + "probability": 0.9741 + }, + { + "start": 3691.36, + "end": 3692.6, + "probability": 0.8533 + }, + { + "start": 3694.7, + "end": 3695.44, + "probability": 0.949 + }, + { + "start": 3696.34, + "end": 3700.84, + "probability": 0.9977 + }, + { + "start": 3701.96, + "end": 3705.24, + "probability": 0.9528 + }, + { + "start": 3705.88, + "end": 3708.14, + "probability": 0.9303 + }, + { + "start": 3709.32, + "end": 3712.62, + "probability": 0.9719 + }, + { + "start": 3714.56, + "end": 3718.02, + "probability": 0.9841 + }, + { + "start": 3718.8, + "end": 3722.56, + "probability": 0.9891 + }, + { + "start": 3723.5, + "end": 3726.32, + "probability": 0.9036 + }, + { + "start": 3727.16, + "end": 3727.94, + "probability": 0.7959 + }, + { + "start": 3729.04, + "end": 3729.44, + "probability": 0.6785 + }, + { + "start": 3730.84, + "end": 3733.78, + "probability": 0.22 + }, + { + "start": 3734.46, + "end": 3735.7, + "probability": 0.7744 + }, + { + "start": 3735.76, + "end": 3736.74, + "probability": 0.5169 + }, + { + "start": 3738.38, + "end": 3742.36, + "probability": 0.9631 + }, + { + "start": 3743.46, + "end": 3745.66, + "probability": 0.8447 + }, + { + "start": 3746.4, + "end": 3749.44, + "probability": 0.9268 + }, + { + "start": 3750.5, + "end": 3751.58, + "probability": 0.9349 + }, + { + "start": 3752.24, + "end": 3754.54, + "probability": 0.9762 + }, + { + "start": 3756.0, + "end": 3758.94, + "probability": 0.9659 + }, + { + "start": 3759.98, + "end": 3760.98, + "probability": 0.973 + }, + { + "start": 3762.08, + "end": 3765.02, + "probability": 0.9894 + }, + { + "start": 3766.86, + "end": 3770.64, + "probability": 0.6262 + }, + { + "start": 3771.78, + "end": 3772.7, + "probability": 0.5198 + }, + { + "start": 3773.42, + "end": 3775.42, + "probability": 0.3612 + }, + { + "start": 3776.48, + "end": 3778.5, + "probability": 0.7365 + }, + { + "start": 3779.34, + "end": 3780.1, + "probability": 0.7655 + }, + { + "start": 3780.9, + "end": 3781.8, + "probability": 0.5938 + }, + { + "start": 3782.48, + "end": 3783.58, + "probability": 0.7528 + }, + { + "start": 3784.2, + "end": 3787.96, + "probability": 0.7117 + }, + { + "start": 3788.82, + "end": 3789.84, + "probability": 0.7439 + }, + { + "start": 3790.6, + "end": 3791.58, + "probability": 0.5262 + }, + { + "start": 3792.82, + "end": 3794.24, + "probability": 0.6867 + }, + { + "start": 3794.82, + "end": 3799.18, + "probability": 0.6106 + }, + { + "start": 3800.58, + "end": 3802.85, + "probability": 0.9956 + }, + { + "start": 3804.22, + "end": 3806.8, + "probability": 0.9265 + }, + { + "start": 3807.46, + "end": 3811.42, + "probability": 0.9091 + }, + { + "start": 3813.5, + "end": 3814.22, + "probability": 0.6538 + }, + { + "start": 3815.14, + "end": 3817.9, + "probability": 0.646 + }, + { + "start": 3819.1, + "end": 3823.94, + "probability": 0.9937 + }, + { + "start": 3824.94, + "end": 3828.46, + "probability": 0.9766 + }, + { + "start": 3829.88, + "end": 3831.92, + "probability": 0.9181 + }, + { + "start": 3832.7, + "end": 3834.96, + "probability": 0.8385 + }, + { + "start": 3835.6, + "end": 3836.54, + "probability": 0.6619 + }, + { + "start": 3837.34, + "end": 3839.5, + "probability": 0.8692 + }, + { + "start": 3840.7, + "end": 3843.5, + "probability": 0.9709 + }, + { + "start": 3844.7, + "end": 3846.58, + "probability": 0.9697 + }, + { + "start": 3847.14, + "end": 3849.04, + "probability": 0.9159 + }, + { + "start": 3849.4, + "end": 3853.9, + "probability": 0.9691 + }, + { + "start": 3855.02, + "end": 3859.62, + "probability": 0.9796 + }, + { + "start": 3861.24, + "end": 3867.72, + "probability": 0.9611 + }, + { + "start": 3869.1, + "end": 3870.24, + "probability": 0.9069 + }, + { + "start": 3870.86, + "end": 3871.84, + "probability": 0.8174 + }, + { + "start": 3872.54, + "end": 3875.44, + "probability": 0.9909 + }, + { + "start": 3876.7, + "end": 3878.1, + "probability": 0.9752 + }, + { + "start": 3879.24, + "end": 3884.54, + "probability": 0.9473 + }, + { + "start": 3886.24, + "end": 3890.76, + "probability": 0.9378 + }, + { + "start": 3892.1, + "end": 3893.74, + "probability": 0.4874 + }, + { + "start": 3894.64, + "end": 3898.12, + "probability": 0.9927 + }, + { + "start": 3899.58, + "end": 3900.35, + "probability": 0.8428 + }, + { + "start": 3901.32, + "end": 3903.72, + "probability": 0.5045 + }, + { + "start": 3905.02, + "end": 3907.07, + "probability": 0.98 + }, + { + "start": 3907.96, + "end": 3909.74, + "probability": 0.6616 + }, + { + "start": 3910.42, + "end": 3917.14, + "probability": 0.9645 + }, + { + "start": 3917.7, + "end": 3920.3, + "probability": 0.7165 + }, + { + "start": 3921.72, + "end": 3923.84, + "probability": 0.711 + }, + { + "start": 3924.78, + "end": 3926.82, + "probability": 0.6808 + }, + { + "start": 3927.38, + "end": 3928.86, + "probability": 0.7129 + }, + { + "start": 3930.64, + "end": 3936.82, + "probability": 0.9956 + }, + { + "start": 3937.76, + "end": 3942.26, + "probability": 0.9954 + }, + { + "start": 3943.02, + "end": 3946.28, + "probability": 0.9718 + }, + { + "start": 3946.94, + "end": 3949.7, + "probability": 0.7469 + }, + { + "start": 3952.62, + "end": 3956.54, + "probability": 0.956 + }, + { + "start": 3957.22, + "end": 3958.98, + "probability": 0.785 + }, + { + "start": 3959.94, + "end": 3966.0, + "probability": 0.9311 + }, + { + "start": 3967.18, + "end": 3969.44, + "probability": 0.9575 + }, + { + "start": 3970.08, + "end": 3974.26, + "probability": 0.9541 + }, + { + "start": 3975.62, + "end": 3981.28, + "probability": 0.9893 + }, + { + "start": 3981.92, + "end": 3982.56, + "probability": 0.4641 + }, + { + "start": 3983.68, + "end": 3989.5, + "probability": 0.9956 + }, + { + "start": 3991.0, + "end": 3993.38, + "probability": 0.9842 + }, + { + "start": 3995.04, + "end": 3998.12, + "probability": 0.9927 + }, + { + "start": 3999.0, + "end": 4002.64, + "probability": 0.9742 + }, + { + "start": 4003.42, + "end": 4007.14, + "probability": 0.7411 + }, + { + "start": 4008.02, + "end": 4012.18, + "probability": 0.9909 + }, + { + "start": 4012.9, + "end": 4017.18, + "probability": 0.9722 + }, + { + "start": 4019.48, + "end": 4024.24, + "probability": 0.6967 + }, + { + "start": 4025.8, + "end": 4032.12, + "probability": 0.9815 + }, + { + "start": 4033.34, + "end": 4036.72, + "probability": 0.9548 + }, + { + "start": 4037.8, + "end": 4039.42, + "probability": 0.6902 + }, + { + "start": 4041.14, + "end": 4042.66, + "probability": 0.7029 + }, + { + "start": 4043.76, + "end": 4045.48, + "probability": 0.7841 + }, + { + "start": 4046.22, + "end": 4047.74, + "probability": 0.8178 + }, + { + "start": 4048.9, + "end": 4050.02, + "probability": 0.947 + }, + { + "start": 4050.66, + "end": 4056.62, + "probability": 0.8082 + }, + { + "start": 4057.44, + "end": 4059.1, + "probability": 0.9856 + }, + { + "start": 4062.02, + "end": 4064.28, + "probability": 0.6979 + }, + { + "start": 4064.84, + "end": 4065.76, + "probability": 0.805 + }, + { + "start": 4067.16, + "end": 4071.02, + "probability": 0.4877 + }, + { + "start": 4071.02, + "end": 4071.02, + "probability": 0.1322 + }, + { + "start": 4071.02, + "end": 4072.14, + "probability": 0.7913 + }, + { + "start": 4078.56, + "end": 4080.8, + "probability": 0.8449 + }, + { + "start": 4085.78, + "end": 4088.34, + "probability": 0.791 + }, + { + "start": 4091.46, + "end": 4094.2, + "probability": 0.9973 + }, + { + "start": 4095.98, + "end": 4103.06, + "probability": 0.913 + }, + { + "start": 4104.54, + "end": 4107.5, + "probability": 0.9958 + }, + { + "start": 4108.62, + "end": 4109.64, + "probability": 0.8064 + }, + { + "start": 4111.58, + "end": 4114.76, + "probability": 0.9642 + }, + { + "start": 4116.3, + "end": 4116.9, + "probability": 0.9351 + }, + { + "start": 4118.06, + "end": 4119.94, + "probability": 0.9517 + }, + { + "start": 4121.04, + "end": 4122.56, + "probability": 0.9766 + }, + { + "start": 4126.04, + "end": 4130.52, + "probability": 0.9834 + }, + { + "start": 4131.76, + "end": 4135.64, + "probability": 0.9919 + }, + { + "start": 4136.6, + "end": 4142.38, + "probability": 0.9827 + }, + { + "start": 4143.94, + "end": 4149.18, + "probability": 0.989 + }, + { + "start": 4150.32, + "end": 4152.88, + "probability": 0.9966 + }, + { + "start": 4156.26, + "end": 4158.42, + "probability": 0.9979 + }, + { + "start": 4161.28, + "end": 4163.3, + "probability": 0.9933 + }, + { + "start": 4164.66, + "end": 4165.72, + "probability": 0.9246 + }, + { + "start": 4167.36, + "end": 4171.46, + "probability": 0.9761 + }, + { + "start": 4173.08, + "end": 4173.64, + "probability": 0.6892 + }, + { + "start": 4174.46, + "end": 4177.3, + "probability": 0.8698 + }, + { + "start": 4177.72, + "end": 4180.42, + "probability": 0.9934 + }, + { + "start": 4182.2, + "end": 4182.7, + "probability": 0.4269 + }, + { + "start": 4183.44, + "end": 4185.82, + "probability": 0.5488 + }, + { + "start": 4186.02, + "end": 4187.88, + "probability": 0.462 + }, + { + "start": 4191.32, + "end": 4196.0, + "probability": 0.7021 + }, + { + "start": 4199.96, + "end": 4202.78, + "probability": 0.9953 + }, + { + "start": 4205.52, + "end": 4208.52, + "probability": 0.9973 + }, + { + "start": 4210.56, + "end": 4211.46, + "probability": 0.8315 + }, + { + "start": 4214.08, + "end": 4214.64, + "probability": 0.7664 + }, + { + "start": 4214.78, + "end": 4216.26, + "probability": 0.8273 + }, + { + "start": 4216.44, + "end": 4219.54, + "probability": 0.9636 + }, + { + "start": 4221.64, + "end": 4223.1, + "probability": 0.7503 + }, + { + "start": 4223.22, + "end": 4227.56, + "probability": 0.9186 + }, + { + "start": 4228.84, + "end": 4229.26, + "probability": 0.7215 + }, + { + "start": 4230.96, + "end": 4234.66, + "probability": 0.9951 + }, + { + "start": 4236.68, + "end": 4237.72, + "probability": 0.9725 + }, + { + "start": 4240.26, + "end": 4242.8, + "probability": 0.757 + }, + { + "start": 4243.82, + "end": 4249.0, + "probability": 0.9958 + }, + { + "start": 4250.38, + "end": 4251.98, + "probability": 0.9989 + }, + { + "start": 4254.7, + "end": 4255.86, + "probability": 0.8665 + }, + { + "start": 4256.42, + "end": 4257.4, + "probability": 0.751 + }, + { + "start": 4257.92, + "end": 4258.24, + "probability": 0.4966 + }, + { + "start": 4258.32, + "end": 4260.16, + "probability": 0.8567 + }, + { + "start": 4260.24, + "end": 4260.74, + "probability": 0.7214 + }, + { + "start": 4261.2, + "end": 4263.92, + "probability": 0.9026 + }, + { + "start": 4264.06, + "end": 4265.04, + "probability": 0.8638 + }, + { + "start": 4265.44, + "end": 4270.52, + "probability": 0.9841 + }, + { + "start": 4270.68, + "end": 4274.88, + "probability": 0.9849 + }, + { + "start": 4274.88, + "end": 4279.48, + "probability": 0.9763 + }, + { + "start": 4279.8, + "end": 4280.54, + "probability": 0.7847 + }, + { + "start": 4288.64, + "end": 4290.62, + "probability": 0.7438 + }, + { + "start": 4292.02, + "end": 4293.24, + "probability": 0.9976 + }, + { + "start": 4294.4, + "end": 4295.62, + "probability": 0.6993 + }, + { + "start": 4296.82, + "end": 4305.16, + "probability": 0.9651 + }, + { + "start": 4306.28, + "end": 4308.02, + "probability": 0.9626 + }, + { + "start": 4308.76, + "end": 4310.22, + "probability": 0.9897 + }, + { + "start": 4311.7, + "end": 4312.7, + "probability": 0.9644 + }, + { + "start": 4312.84, + "end": 4313.12, + "probability": 0.9087 + }, + { + "start": 4313.2, + "end": 4314.38, + "probability": 0.9731 + }, + { + "start": 4314.48, + "end": 4315.98, + "probability": 0.9882 + }, + { + "start": 4317.12, + "end": 4319.86, + "probability": 0.9785 + }, + { + "start": 4320.64, + "end": 4321.82, + "probability": 0.979 + }, + { + "start": 4323.12, + "end": 4325.34, + "probability": 0.9874 + }, + { + "start": 4325.6, + "end": 4328.64, + "probability": 0.9978 + }, + { + "start": 4329.1, + "end": 4329.45, + "probability": 0.7897 + }, + { + "start": 4330.84, + "end": 4332.68, + "probability": 0.9209 + }, + { + "start": 4333.66, + "end": 4335.49, + "probability": 0.9875 + }, + { + "start": 4336.5, + "end": 4338.31, + "probability": 0.7623 + }, + { + "start": 4339.72, + "end": 4343.3, + "probability": 0.9668 + }, + { + "start": 4344.18, + "end": 4350.16, + "probability": 0.9872 + }, + { + "start": 4351.22, + "end": 4353.16, + "probability": 0.3779 + }, + { + "start": 4353.8, + "end": 4354.96, + "probability": 0.5024 + }, + { + "start": 4355.64, + "end": 4356.86, + "probability": 0.9751 + }, + { + "start": 4357.8, + "end": 4361.6, + "probability": 0.9831 + }, + { + "start": 4362.44, + "end": 4367.0, + "probability": 0.9979 + }, + { + "start": 4368.94, + "end": 4372.58, + "probability": 0.9364 + }, + { + "start": 4373.6, + "end": 4375.28, + "probability": 0.6678 + }, + { + "start": 4376.04, + "end": 4377.04, + "probability": 0.9845 + }, + { + "start": 4377.9, + "end": 4378.98, + "probability": 0.7287 + }, + { + "start": 4379.74, + "end": 4381.64, + "probability": 0.9285 + }, + { + "start": 4382.58, + "end": 4384.26, + "probability": 0.9058 + }, + { + "start": 4384.52, + "end": 4385.0, + "probability": 0.8226 + }, + { + "start": 4385.66, + "end": 4387.72, + "probability": 0.9617 + }, + { + "start": 4387.74, + "end": 4390.48, + "probability": 0.9811 + }, + { + "start": 4390.98, + "end": 4395.86, + "probability": 0.9858 + }, + { + "start": 4396.36, + "end": 4401.4, + "probability": 0.7755 + }, + { + "start": 4416.82, + "end": 4417.68, + "probability": 0.6219 + }, + { + "start": 4418.96, + "end": 4420.16, + "probability": 0.2753 + }, + { + "start": 4421.0, + "end": 4422.16, + "probability": 0.8329 + }, + { + "start": 4423.44, + "end": 4427.78, + "probability": 0.9664 + }, + { + "start": 4427.96, + "end": 4429.83, + "probability": 0.9976 + }, + { + "start": 4430.7, + "end": 4432.78, + "probability": 0.718 + }, + { + "start": 4433.58, + "end": 4434.3, + "probability": 0.5428 + }, + { + "start": 4435.24, + "end": 4436.22, + "probability": 0.787 + }, + { + "start": 4437.55, + "end": 4442.22, + "probability": 0.99 + }, + { + "start": 4442.92, + "end": 4447.18, + "probability": 0.826 + }, + { + "start": 4447.44, + "end": 4453.02, + "probability": 0.9812 + }, + { + "start": 4454.76, + "end": 4460.76, + "probability": 0.8789 + }, + { + "start": 4460.82, + "end": 4461.86, + "probability": 0.7469 + }, + { + "start": 4462.84, + "end": 4465.12, + "probability": 0.9889 + }, + { + "start": 4465.68, + "end": 4470.68, + "probability": 0.9944 + }, + { + "start": 4471.1, + "end": 4475.38, + "probability": 0.9869 + }, + { + "start": 4476.24, + "end": 4478.76, + "probability": 0.8064 + }, + { + "start": 4479.1, + "end": 4482.85, + "probability": 0.0262 + }, + { + "start": 4484.46, + "end": 4488.18, + "probability": 0.7606 + }, + { + "start": 4488.3, + "end": 4490.46, + "probability": 0.9342 + }, + { + "start": 4492.06, + "end": 4496.22, + "probability": 0.9889 + }, + { + "start": 4496.22, + "end": 4499.22, + "probability": 0.9458 + }, + { + "start": 4500.1, + "end": 4500.88, + "probability": 0.5602 + }, + { + "start": 4501.58, + "end": 4502.64, + "probability": 0.8154 + }, + { + "start": 4503.54, + "end": 4505.08, + "probability": 0.9311 + }, + { + "start": 4505.48, + "end": 4506.26, + "probability": 0.8133 + }, + { + "start": 4506.26, + "end": 4507.14, + "probability": 0.7484 + }, + { + "start": 4507.64, + "end": 4512.58, + "probability": 0.8009 + }, + { + "start": 4512.7, + "end": 4514.42, + "probability": 0.9062 + }, + { + "start": 4515.52, + "end": 4519.32, + "probability": 0.9867 + }, + { + "start": 4519.32, + "end": 4523.48, + "probability": 0.9913 + }, + { + "start": 4524.06, + "end": 4528.64, + "probability": 0.9759 + }, + { + "start": 4529.36, + "end": 4532.96, + "probability": 0.986 + }, + { + "start": 4533.86, + "end": 4535.3, + "probability": 0.9321 + }, + { + "start": 4536.58, + "end": 4538.96, + "probability": 0.9723 + }, + { + "start": 4539.58, + "end": 4540.54, + "probability": 0.6617 + }, + { + "start": 4540.66, + "end": 4545.68, + "probability": 0.9983 + }, + { + "start": 4545.68, + "end": 4552.28, + "probability": 0.999 + }, + { + "start": 4553.72, + "end": 4559.42, + "probability": 0.8485 + }, + { + "start": 4560.38, + "end": 4566.48, + "probability": 0.9812 + }, + { + "start": 4567.52, + "end": 4569.42, + "probability": 0.8859 + }, + { + "start": 4569.88, + "end": 4572.3, + "probability": 0.9784 + }, + { + "start": 4573.28, + "end": 4576.38, + "probability": 0.8743 + }, + { + "start": 4577.44, + "end": 4580.88, + "probability": 0.9721 + }, + { + "start": 4581.36, + "end": 4583.12, + "probability": 0.9567 + }, + { + "start": 4583.58, + "end": 4586.64, + "probability": 0.967 + }, + { + "start": 4586.66, + "end": 4591.04, + "probability": 0.8221 + }, + { + "start": 4591.1, + "end": 4593.38, + "probability": 0.7759 + }, + { + "start": 4594.76, + "end": 4598.32, + "probability": 0.5979 + }, + { + "start": 4598.32, + "end": 4605.2, + "probability": 0.5889 + }, + { + "start": 4605.2, + "end": 4609.4, + "probability": 0.6652 + }, + { + "start": 4610.28, + "end": 4611.12, + "probability": 0.9052 + }, + { + "start": 4612.18, + "end": 4615.3, + "probability": 0.9987 + }, + { + "start": 4615.8, + "end": 4619.92, + "probability": 0.9236 + }, + { + "start": 4619.92, + "end": 4624.14, + "probability": 0.9874 + }, + { + "start": 4624.14, + "end": 4628.88, + "probability": 0.7109 + }, + { + "start": 4630.08, + "end": 4633.0, + "probability": 0.98 + }, + { + "start": 4633.64, + "end": 4640.18, + "probability": 0.9879 + }, + { + "start": 4640.82, + "end": 4642.94, + "probability": 0.9958 + }, + { + "start": 4643.46, + "end": 4645.4, + "probability": 0.8545 + }, + { + "start": 4646.06, + "end": 4646.69, + "probability": 0.9443 + }, + { + "start": 4648.18, + "end": 4651.84, + "probability": 0.9707 + }, + { + "start": 4652.62, + "end": 4655.04, + "probability": 0.9642 + }, + { + "start": 4655.84, + "end": 4660.88, + "probability": 0.9838 + }, + { + "start": 4661.98, + "end": 4664.62, + "probability": 0.9794 + }, + { + "start": 4665.34, + "end": 4667.52, + "probability": 0.9576 + }, + { + "start": 4668.24, + "end": 4670.24, + "probability": 0.981 + }, + { + "start": 4672.22, + "end": 4676.92, + "probability": 0.9358 + }, + { + "start": 4677.7, + "end": 4681.12, + "probability": 0.9611 + }, + { + "start": 4681.92, + "end": 4686.58, + "probability": 0.9762 + }, + { + "start": 4687.86, + "end": 4691.26, + "probability": 0.9969 + }, + { + "start": 4691.26, + "end": 4696.46, + "probability": 0.957 + }, + { + "start": 4697.7, + "end": 4702.66, + "probability": 0.9767 + }, + { + "start": 4703.36, + "end": 4705.33, + "probability": 0.9912 + }, + { + "start": 4706.08, + "end": 4709.3, + "probability": 0.9894 + }, + { + "start": 4710.84, + "end": 4715.26, + "probability": 0.8003 + }, + { + "start": 4715.88, + "end": 4720.58, + "probability": 0.7558 + }, + { + "start": 4720.96, + "end": 4722.14, + "probability": 0.7972 + }, + { + "start": 4722.24, + "end": 4723.28, + "probability": 0.8674 + }, + { + "start": 4724.84, + "end": 4726.58, + "probability": 0.6125 + }, + { + "start": 4727.38, + "end": 4730.62, + "probability": 0.9956 + }, + { + "start": 4732.08, + "end": 4734.7, + "probability": 0.9837 + }, + { + "start": 4735.46, + "end": 4737.86, + "probability": 0.7688 + }, + { + "start": 4738.14, + "end": 4741.26, + "probability": 0.9907 + }, + { + "start": 4741.82, + "end": 4743.28, + "probability": 0.7943 + }, + { + "start": 4745.26, + "end": 4748.2, + "probability": 0.9971 + }, + { + "start": 4748.98, + "end": 4752.3, + "probability": 0.987 + }, + { + "start": 4753.56, + "end": 4755.66, + "probability": 0.9052 + }, + { + "start": 4756.36, + "end": 4759.8, + "probability": 0.9676 + }, + { + "start": 4760.32, + "end": 4762.08, + "probability": 0.7741 + }, + { + "start": 4762.88, + "end": 4768.32, + "probability": 0.898 + }, + { + "start": 4768.32, + "end": 4773.0, + "probability": 0.9696 + }, + { + "start": 4774.06, + "end": 4776.26, + "probability": 0.9899 + }, + { + "start": 4777.18, + "end": 4784.16, + "probability": 0.9868 + }, + { + "start": 4785.28, + "end": 4786.58, + "probability": 0.9496 + }, + { + "start": 4787.14, + "end": 4789.52, + "probability": 0.9822 + }, + { + "start": 4790.04, + "end": 4791.38, + "probability": 0.957 + }, + { + "start": 4792.12, + "end": 4793.46, + "probability": 0.8789 + }, + { + "start": 4794.14, + "end": 4796.36, + "probability": 0.9928 + }, + { + "start": 4797.66, + "end": 4802.72, + "probability": 0.7046 + }, + { + "start": 4803.22, + "end": 4808.42, + "probability": 0.9836 + }, + { + "start": 4809.88, + "end": 4813.58, + "probability": 0.8666 + }, + { + "start": 4814.4, + "end": 4815.68, + "probability": 0.7378 + }, + { + "start": 4816.36, + "end": 4819.24, + "probability": 0.9974 + }, + { + "start": 4819.82, + "end": 4821.9, + "probability": 0.9639 + }, + { + "start": 4822.96, + "end": 4823.04, + "probability": 0.0516 + }, + { + "start": 4823.04, + "end": 4825.3, + "probability": 0.6654 + }, + { + "start": 4825.96, + "end": 4828.02, + "probability": 0.9319 + }, + { + "start": 4828.46, + "end": 4830.64, + "probability": 0.9786 + }, + { + "start": 4831.16, + "end": 4832.62, + "probability": 0.6761 + }, + { + "start": 4833.24, + "end": 4835.1, + "probability": 0.8657 + }, + { + "start": 4835.7, + "end": 4837.0, + "probability": 0.9606 + }, + { + "start": 4837.6, + "end": 4840.32, + "probability": 0.9904 + }, + { + "start": 4840.92, + "end": 4843.5, + "probability": 0.9951 + }, + { + "start": 4844.42, + "end": 4847.04, + "probability": 0.9462 + }, + { + "start": 4847.6, + "end": 4853.0, + "probability": 0.9425 + }, + { + "start": 4853.14, + "end": 4854.42, + "probability": 0.5749 + }, + { + "start": 4855.62, + "end": 4859.0, + "probability": 0.901 + }, + { + "start": 4859.76, + "end": 4862.8, + "probability": 0.9684 + }, + { + "start": 4863.04, + "end": 4865.26, + "probability": 0.9667 + }, + { + "start": 4865.52, + "end": 4866.36, + "probability": 0.5681 + }, + { + "start": 4866.54, + "end": 4867.3, + "probability": 0.6903 + }, + { + "start": 4868.32, + "end": 4872.96, + "probability": 0.976 + }, + { + "start": 4873.8, + "end": 4877.8, + "probability": 0.978 + }, + { + "start": 4881.08, + "end": 4882.26, + "probability": 0.8276 + }, + { + "start": 4882.54, + "end": 4889.08, + "probability": 0.9897 + }, + { + "start": 4889.76, + "end": 4892.04, + "probability": 0.9875 + }, + { + "start": 4893.38, + "end": 4897.44, + "probability": 0.9976 + }, + { + "start": 4897.98, + "end": 4900.26, + "probability": 0.9766 + }, + { + "start": 4900.8, + "end": 4904.14, + "probability": 0.8189 + }, + { + "start": 4905.3, + "end": 4907.64, + "probability": 0.9686 + }, + { + "start": 4908.6, + "end": 4911.46, + "probability": 0.9931 + }, + { + "start": 4911.46, + "end": 4915.14, + "probability": 0.9976 + }, + { + "start": 4916.24, + "end": 4919.66, + "probability": 0.8486 + }, + { + "start": 4919.68, + "end": 4920.18, + "probability": 0.5367 + }, + { + "start": 4920.26, + "end": 4922.32, + "probability": 0.7593 + }, + { + "start": 4922.42, + "end": 4923.58, + "probability": 0.8686 + }, + { + "start": 4924.3, + "end": 4927.15, + "probability": 0.9758 + }, + { + "start": 4929.42, + "end": 4934.64, + "probability": 0.9808 + }, + { + "start": 4935.66, + "end": 4936.08, + "probability": 0.465 + }, + { + "start": 4936.72, + "end": 4939.8, + "probability": 0.9756 + }, + { + "start": 4939.9, + "end": 4942.72, + "probability": 0.8382 + }, + { + "start": 4943.58, + "end": 4944.54, + "probability": 0.4401 + }, + { + "start": 4944.88, + "end": 4947.54, + "probability": 0.8926 + }, + { + "start": 4947.6, + "end": 4949.24, + "probability": 0.9808 + }, + { + "start": 4955.41, + "end": 4957.78, + "probability": 0.9654 + }, + { + "start": 4965.4, + "end": 4965.68, + "probability": 0.5929 + }, + { + "start": 4965.68, + "end": 4965.68, + "probability": 0.5202 + }, + { + "start": 4965.68, + "end": 4966.94, + "probability": 0.5477 + }, + { + "start": 4967.24, + "end": 4968.46, + "probability": 0.3273 + }, + { + "start": 4968.6, + "end": 4969.94, + "probability": 0.7346 + }, + { + "start": 4970.12, + "end": 4970.46, + "probability": 0.6038 + }, + { + "start": 4971.16, + "end": 4971.52, + "probability": 0.3849 + }, + { + "start": 4971.52, + "end": 4972.04, + "probability": 0.6038 + }, + { + "start": 4972.12, + "end": 4973.58, + "probability": 0.7692 + }, + { + "start": 4973.86, + "end": 4977.46, + "probability": 0.9808 + }, + { + "start": 4978.12, + "end": 4979.26, + "probability": 0.926 + }, + { + "start": 4979.9, + "end": 4981.36, + "probability": 0.977 + }, + { + "start": 4982.1, + "end": 4985.66, + "probability": 0.9865 + }, + { + "start": 4986.5, + "end": 4987.96, + "probability": 0.9824 + }, + { + "start": 4988.12, + "end": 4989.37, + "probability": 0.9775 + }, + { + "start": 4989.94, + "end": 4991.82, + "probability": 0.6877 + }, + { + "start": 4992.36, + "end": 4997.5, + "probability": 0.9893 + }, + { + "start": 4997.98, + "end": 5001.72, + "probability": 0.9545 + }, + { + "start": 5002.22, + "end": 5003.08, + "probability": 0.9771 + }, + { + "start": 5003.56, + "end": 5004.68, + "probability": 0.9829 + }, + { + "start": 5005.0, + "end": 5007.14, + "probability": 0.9757 + }, + { + "start": 5007.24, + "end": 5008.44, + "probability": 0.8196 + }, + { + "start": 5009.32, + "end": 5010.34, + "probability": 0.9107 + }, + { + "start": 5010.44, + "end": 5010.92, + "probability": 0.6462 + }, + { + "start": 5010.98, + "end": 5012.86, + "probability": 0.9659 + }, + { + "start": 5013.26, + "end": 5015.4, + "probability": 0.9941 + }, + { + "start": 5015.86, + "end": 5019.18, + "probability": 0.9223 + }, + { + "start": 5019.72, + "end": 5023.52, + "probability": 0.936 + }, + { + "start": 5023.66, + "end": 5026.76, + "probability": 0.7462 + }, + { + "start": 5027.34, + "end": 5033.4, + "probability": 0.9717 + }, + { + "start": 5034.54, + "end": 5035.62, + "probability": 0.6714 + }, + { + "start": 5036.66, + "end": 5042.2, + "probability": 0.9881 + }, + { + "start": 5043.18, + "end": 5046.62, + "probability": 0.8717 + }, + { + "start": 5047.26, + "end": 5049.76, + "probability": 0.9568 + }, + { + "start": 5050.32, + "end": 5054.96, + "probability": 0.9966 + }, + { + "start": 5055.62, + "end": 5062.12, + "probability": 0.9984 + }, + { + "start": 5062.64, + "end": 5067.02, + "probability": 0.7606 + }, + { + "start": 5067.66, + "end": 5069.58, + "probability": 0.9927 + }, + { + "start": 5069.94, + "end": 5075.46, + "probability": 0.9967 + }, + { + "start": 5075.94, + "end": 5079.08, + "probability": 0.9967 + }, + { + "start": 5079.08, + "end": 5082.9, + "probability": 0.9751 + }, + { + "start": 5082.92, + "end": 5082.92, + "probability": 0.7815 + }, + { + "start": 5082.94, + "end": 5084.14, + "probability": 0.7179 + }, + { + "start": 5084.34, + "end": 5084.9, + "probability": 0.7062 + }, + { + "start": 5085.72, + "end": 5087.06, + "probability": 0.6508 + }, + { + "start": 5088.98, + "end": 5094.48, + "probability": 0.8911 + }, + { + "start": 5094.64, + "end": 5094.78, + "probability": 0.0011 + }, + { + "start": 5094.86, + "end": 5096.24, + "probability": 0.6664 + }, + { + "start": 5096.6, + "end": 5097.58, + "probability": 0.0349 + }, + { + "start": 5097.58, + "end": 5102.62, + "probability": 0.9695 + }, + { + "start": 5103.26, + "end": 5104.46, + "probability": 0.7694 + }, + { + "start": 5104.68, + "end": 5106.05, + "probability": 0.9665 + }, + { + "start": 5106.42, + "end": 5108.56, + "probability": 0.973 + }, + { + "start": 5110.28, + "end": 5111.3, + "probability": 0.8125 + }, + { + "start": 5111.5, + "end": 5116.98, + "probability": 0.9868 + }, + { + "start": 5116.98, + "end": 5121.62, + "probability": 0.9952 + }, + { + "start": 5122.2, + "end": 5125.32, + "probability": 0.9995 + }, + { + "start": 5125.82, + "end": 5129.54, + "probability": 0.9873 + }, + { + "start": 5130.12, + "end": 5131.94, + "probability": 0.8047 + }, + { + "start": 5132.06, + "end": 5133.12, + "probability": 0.9023 + }, + { + "start": 5133.48, + "end": 5138.5, + "probability": 0.9902 + }, + { + "start": 5138.5, + "end": 5143.7, + "probability": 0.9984 + }, + { + "start": 5143.88, + "end": 5144.9, + "probability": 0.5083 + }, + { + "start": 5145.56, + "end": 5146.98, + "probability": 0.8777 + }, + { + "start": 5147.42, + "end": 5152.04, + "probability": 0.9977 + }, + { + "start": 5152.04, + "end": 5155.54, + "probability": 0.9963 + }, + { + "start": 5155.58, + "end": 5159.08, + "probability": 0.8881 + }, + { + "start": 5160.54, + "end": 5164.46, + "probability": 0.8051 + }, + { + "start": 5165.24, + "end": 5171.6, + "probability": 0.9982 + }, + { + "start": 5171.98, + "end": 5172.42, + "probability": 0.3181 + }, + { + "start": 5172.44, + "end": 5173.82, + "probability": 0.9377 + }, + { + "start": 5174.2, + "end": 5178.62, + "probability": 0.9935 + }, + { + "start": 5179.08, + "end": 5181.15, + "probability": 0.9883 + }, + { + "start": 5181.56, + "end": 5183.52, + "probability": 0.9229 + }, + { + "start": 5183.92, + "end": 5186.36, + "probability": 0.732 + }, + { + "start": 5186.48, + "end": 5188.24, + "probability": 0.8245 + }, + { + "start": 5189.18, + "end": 5193.98, + "probability": 0.9946 + }, + { + "start": 5194.08, + "end": 5196.38, + "probability": 0.9971 + }, + { + "start": 5196.38, + "end": 5198.78, + "probability": 0.9985 + }, + { + "start": 5199.74, + "end": 5201.0, + "probability": 0.9316 + }, + { + "start": 5201.16, + "end": 5202.38, + "probability": 0.722 + }, + { + "start": 5202.66, + "end": 5205.16, + "probability": 0.7498 + }, + { + "start": 5205.7, + "end": 5207.78, + "probability": 0.8883 + }, + { + "start": 5207.88, + "end": 5211.2, + "probability": 0.9829 + }, + { + "start": 5211.4, + "end": 5217.34, + "probability": 0.998 + }, + { + "start": 5217.46, + "end": 5218.4, + "probability": 0.8199 + }, + { + "start": 5219.0, + "end": 5222.42, + "probability": 0.9616 + }, + { + "start": 5222.56, + "end": 5225.28, + "probability": 0.9541 + }, + { + "start": 5225.48, + "end": 5229.02, + "probability": 0.9746 + }, + { + "start": 5229.24, + "end": 5232.6, + "probability": 0.9954 + }, + { + "start": 5232.86, + "end": 5234.38, + "probability": 0.9808 + }, + { + "start": 5234.48, + "end": 5236.73, + "probability": 0.7849 + }, + { + "start": 5236.9, + "end": 5240.3, + "probability": 0.9899 + }, + { + "start": 5240.42, + "end": 5241.44, + "probability": 0.981 + }, + { + "start": 5241.5, + "end": 5244.48, + "probability": 0.989 + }, + { + "start": 5244.6, + "end": 5245.44, + "probability": 0.6964 + }, + { + "start": 5245.65, + "end": 5248.08, + "probability": 0.9219 + }, + { + "start": 5248.68, + "end": 5255.76, + "probability": 0.9838 + }, + { + "start": 5256.1, + "end": 5261.12, + "probability": 0.8763 + }, + { + "start": 5261.22, + "end": 5262.12, + "probability": 0.8673 + }, + { + "start": 5262.5, + "end": 5268.06, + "probability": 0.9972 + }, + { + "start": 5269.08, + "end": 5277.76, + "probability": 0.9548 + }, + { + "start": 5278.2, + "end": 5279.42, + "probability": 0.7431 + }, + { + "start": 5280.08, + "end": 5284.86, + "probability": 0.9357 + }, + { + "start": 5285.36, + "end": 5285.36, + "probability": 0.2473 + }, + { + "start": 5285.36, + "end": 5286.22, + "probability": 0.9102 + }, + { + "start": 5286.42, + "end": 5288.64, + "probability": 0.9106 + }, + { + "start": 5288.98, + "end": 5293.78, + "probability": 0.8477 + }, + { + "start": 5294.02, + "end": 5296.32, + "probability": 0.9557 + }, + { + "start": 5296.74, + "end": 5297.8, + "probability": 0.9858 + }, + { + "start": 5297.94, + "end": 5298.77, + "probability": 0.9912 + }, + { + "start": 5298.96, + "end": 5302.84, + "probability": 0.9953 + }, + { + "start": 5302.86, + "end": 5302.86, + "probability": 0.3242 + }, + { + "start": 5302.86, + "end": 5306.98, + "probability": 0.7055 + }, + { + "start": 5307.24, + "end": 5308.32, + "probability": 0.6666 + }, + { + "start": 5308.56, + "end": 5309.78, + "probability": 0.6921 + }, + { + "start": 5310.04, + "end": 5312.09, + "probability": 0.6304 + }, + { + "start": 5312.3, + "end": 5313.38, + "probability": 0.8356 + }, + { + "start": 5313.58, + "end": 5314.68, + "probability": 0.8573 + }, + { + "start": 5315.02, + "end": 5317.69, + "probability": 0.7083 + }, + { + "start": 5318.88, + "end": 5324.16, + "probability": 0.7878 + }, + { + "start": 5324.16, + "end": 5327.94, + "probability": 0.9817 + }, + { + "start": 5328.22, + "end": 5328.8, + "probability": 0.7008 + }, + { + "start": 5328.8, + "end": 5329.76, + "probability": 0.8455 + }, + { + "start": 5330.28, + "end": 5330.52, + "probability": 0.0368 + }, + { + "start": 5330.52, + "end": 5332.92, + "probability": 0.8672 + }, + { + "start": 5333.42, + "end": 5336.76, + "probability": 0.9245 + }, + { + "start": 5337.82, + "end": 5341.22, + "probability": 0.8513 + }, + { + "start": 5341.9, + "end": 5342.66, + "probability": 0.7472 + }, + { + "start": 5343.52, + "end": 5345.38, + "probability": 0.9316 + }, + { + "start": 5346.9, + "end": 5348.79, + "probability": 0.5445 + }, + { + "start": 5349.54, + "end": 5351.98, + "probability": 0.8531 + }, + { + "start": 5352.42, + "end": 5352.82, + "probability": 0.9 + }, + { + "start": 5353.56, + "end": 5354.06, + "probability": 0.9297 + }, + { + "start": 5354.7, + "end": 5357.18, + "probability": 0.9132 + }, + { + "start": 5360.34, + "end": 5364.5, + "probability": 0.9869 + }, + { + "start": 5366.46, + "end": 5369.16, + "probability": 0.9281 + }, + { + "start": 5370.86, + "end": 5372.72, + "probability": 0.8929 + }, + { + "start": 5377.88, + "end": 5378.3, + "probability": 0.6369 + }, + { + "start": 5378.36, + "end": 5383.24, + "probability": 0.7905 + }, + { + "start": 5384.64, + "end": 5386.82, + "probability": 0.7466 + }, + { + "start": 5388.02, + "end": 5391.7, + "probability": 0.988 + }, + { + "start": 5392.38, + "end": 5393.68, + "probability": 0.8022 + }, + { + "start": 5395.18, + "end": 5397.6, + "probability": 0.9796 + }, + { + "start": 5398.28, + "end": 5399.1, + "probability": 0.5109 + }, + { + "start": 5402.66, + "end": 5403.4, + "probability": 0.0672 + }, + { + "start": 5408.46, + "end": 5409.6, + "probability": 0.0009 + }, + { + "start": 5414.66, + "end": 5417.86, + "probability": 0.9153 + }, + { + "start": 5417.92, + "end": 5418.5, + "probability": 0.7739 + }, + { + "start": 5419.32, + "end": 5421.52, + "probability": 0.8862 + }, + { + "start": 5422.52, + "end": 5424.54, + "probability": 0.996 + }, + { + "start": 5426.39, + "end": 5429.66, + "probability": 0.8444 + }, + { + "start": 5430.35, + "end": 5435.34, + "probability": 0.7378 + }, + { + "start": 5435.38, + "end": 5437.12, + "probability": 0.9469 + }, + { + "start": 5439.1, + "end": 5440.94, + "probability": 0.8593 + }, + { + "start": 5441.2, + "end": 5442.38, + "probability": 0.8833 + }, + { + "start": 5442.48, + "end": 5442.84, + "probability": 0.447 + }, + { + "start": 5442.84, + "end": 5443.61, + "probability": 0.7174 + }, + { + "start": 5443.98, + "end": 5445.0, + "probability": 0.9162 + }, + { + "start": 5445.56, + "end": 5447.04, + "probability": 0.6361 + }, + { + "start": 5448.3, + "end": 5449.42, + "probability": 0.4425 + }, + { + "start": 5450.6, + "end": 5454.24, + "probability": 0.9564 + }, + { + "start": 5454.28, + "end": 5456.18, + "probability": 0.6701 + }, + { + "start": 5456.28, + "end": 5457.52, + "probability": 0.9702 + }, + { + "start": 5457.62, + "end": 5458.84, + "probability": 0.9922 + }, + { + "start": 5461.76, + "end": 5461.92, + "probability": 0.174 + }, + { + "start": 5461.92, + "end": 5462.55, + "probability": 0.7874 + }, + { + "start": 5463.16, + "end": 5463.2, + "probability": 0.0567 + }, + { + "start": 5463.8, + "end": 5464.88, + "probability": 0.116 + }, + { + "start": 5466.6, + "end": 5471.38, + "probability": 0.5868 + }, + { + "start": 5471.8, + "end": 5473.2, + "probability": 0.5345 + }, + { + "start": 5473.86, + "end": 5478.76, + "probability": 0.9086 + }, + { + "start": 5478.76, + "end": 5482.04, + "probability": 0.9864 + }, + { + "start": 5482.08, + "end": 5482.8, + "probability": 0.4849 + }, + { + "start": 5482.8, + "end": 5484.82, + "probability": 0.8948 + }, + { + "start": 5485.0, + "end": 5486.74, + "probability": 0.7053 + }, + { + "start": 5486.88, + "end": 5488.31, + "probability": 0.9116 + }, + { + "start": 5489.26, + "end": 5489.26, + "probability": 0.2125 + }, + { + "start": 5489.26, + "end": 5491.34, + "probability": 0.3493 + }, + { + "start": 5491.46, + "end": 5492.92, + "probability": 0.9155 + }, + { + "start": 5493.04, + "end": 5496.34, + "probability": 0.8604 + }, + { + "start": 5496.7, + "end": 5498.6, + "probability": 0.9692 + }, + { + "start": 5498.66, + "end": 5499.06, + "probability": 0.7453 + }, + { + "start": 5499.26, + "end": 5501.84, + "probability": 0.8074 + }, + { + "start": 5502.64, + "end": 5505.46, + "probability": 0.1707 + }, + { + "start": 5505.62, + "end": 5506.64, + "probability": 0.6845 + }, + { + "start": 5510.44, + "end": 5510.44, + "probability": 0.4709 + }, + { + "start": 5510.44, + "end": 5511.72, + "probability": 0.5886 + }, + { + "start": 5511.98, + "end": 5512.14, + "probability": 0.2876 + }, + { + "start": 5512.24, + "end": 5517.28, + "probability": 0.7445 + }, + { + "start": 5518.66, + "end": 5522.85, + "probability": 0.9899 + }, + { + "start": 5523.76, + "end": 5527.62, + "probability": 0.7007 + }, + { + "start": 5528.22, + "end": 5531.36, + "probability": 0.7141 + }, + { + "start": 5532.08, + "end": 5532.7, + "probability": 0.9009 + }, + { + "start": 5533.78, + "end": 5534.58, + "probability": 0.6031 + }, + { + "start": 5534.76, + "end": 5538.96, + "probability": 0.8628 + }, + { + "start": 5539.92, + "end": 5542.44, + "probability": 0.9912 + }, + { + "start": 5543.48, + "end": 5548.06, + "probability": 0.985 + }, + { + "start": 5549.18, + "end": 5554.78, + "probability": 0.999 + }, + { + "start": 5555.72, + "end": 5560.48, + "probability": 0.9885 + }, + { + "start": 5560.48, + "end": 5565.69, + "probability": 0.998 + }, + { + "start": 5566.6, + "end": 5567.96, + "probability": 0.8657 + }, + { + "start": 5568.12, + "end": 5571.62, + "probability": 0.9736 + }, + { + "start": 5573.08, + "end": 5575.04, + "probability": 0.8003 + }, + { + "start": 5575.76, + "end": 5578.08, + "probability": 0.9029 + }, + { + "start": 5579.06, + "end": 5580.0, + "probability": 0.9763 + }, + { + "start": 5581.38, + "end": 5583.62, + "probability": 0.9971 + }, + { + "start": 5584.66, + "end": 5586.08, + "probability": 0.8674 + }, + { + "start": 5587.1, + "end": 5589.16, + "probability": 0.9445 + }, + { + "start": 5590.62, + "end": 5593.64, + "probability": 0.8145 + }, + { + "start": 5594.4, + "end": 5596.38, + "probability": 0.8347 + }, + { + "start": 5597.32, + "end": 5601.88, + "probability": 0.9938 + }, + { + "start": 5602.78, + "end": 5604.09, + "probability": 0.9883 + }, + { + "start": 5604.96, + "end": 5607.34, + "probability": 0.9994 + }, + { + "start": 5608.14, + "end": 5609.8, + "probability": 0.9919 + }, + { + "start": 5611.08, + "end": 5614.74, + "probability": 0.7806 + }, + { + "start": 5618.74, + "end": 5621.74, + "probability": 0.999 + }, + { + "start": 5622.96, + "end": 5624.88, + "probability": 0.8497 + }, + { + "start": 5626.26, + "end": 5628.5, + "probability": 0.9386 + }, + { + "start": 5629.1, + "end": 5631.34, + "probability": 0.8785 + }, + { + "start": 5632.36, + "end": 5632.46, + "probability": 0.4731 + }, + { + "start": 5632.54, + "end": 5633.72, + "probability": 0.6663 + }, + { + "start": 5633.8, + "end": 5634.86, + "probability": 0.8101 + }, + { + "start": 5635.34, + "end": 5639.38, + "probability": 0.9082 + }, + { + "start": 5640.84, + "end": 5643.54, + "probability": 0.9961 + }, + { + "start": 5644.48, + "end": 5646.62, + "probability": 0.9639 + }, + { + "start": 5648.14, + "end": 5651.62, + "probability": 0.9196 + }, + { + "start": 5652.28, + "end": 5657.04, + "probability": 0.9956 + }, + { + "start": 5657.54, + "end": 5662.54, + "probability": 0.9962 + }, + { + "start": 5662.54, + "end": 5667.58, + "probability": 0.9993 + }, + { + "start": 5669.12, + "end": 5669.61, + "probability": 0.5542 + }, + { + "start": 5670.72, + "end": 5676.04, + "probability": 0.9914 + }, + { + "start": 5676.64, + "end": 5677.68, + "probability": 0.8572 + }, + { + "start": 5678.3, + "end": 5683.15, + "probability": 0.981 + }, + { + "start": 5684.12, + "end": 5685.98, + "probability": 0.6036 + }, + { + "start": 5686.5, + "end": 5688.16, + "probability": 0.8805 + }, + { + "start": 5689.24, + "end": 5690.36, + "probability": 0.8931 + }, + { + "start": 5691.38, + "end": 5695.22, + "probability": 0.9137 + }, + { + "start": 5695.98, + "end": 5699.42, + "probability": 0.8534 + }, + { + "start": 5699.5, + "end": 5701.42, + "probability": 0.5617 + }, + { + "start": 5702.96, + "end": 5704.98, + "probability": 0.9554 + }, + { + "start": 5705.92, + "end": 5707.68, + "probability": 0.9797 + }, + { + "start": 5708.26, + "end": 5710.38, + "probability": 0.8817 + }, + { + "start": 5711.12, + "end": 5712.8, + "probability": 0.8815 + }, + { + "start": 5712.88, + "end": 5715.04, + "probability": 0.9537 + }, + { + "start": 5715.76, + "end": 5717.38, + "probability": 0.6339 + }, + { + "start": 5717.9, + "end": 5721.12, + "probability": 0.949 + }, + { + "start": 5721.6, + "end": 5722.44, + "probability": 0.8881 + }, + { + "start": 5722.78, + "end": 5724.32, + "probability": 0.5664 + }, + { + "start": 5725.0, + "end": 5727.5, + "probability": 0.7246 + }, + { + "start": 5728.14, + "end": 5731.4, + "probability": 0.6238 + }, + { + "start": 5731.76, + "end": 5735.84, + "probability": 0.9428 + }, + { + "start": 5737.8, + "end": 5740.44, + "probability": 0.9733 + }, + { + "start": 5742.04, + "end": 5743.42, + "probability": 0.9932 + }, + { + "start": 5745.34, + "end": 5747.06, + "probability": 0.9927 + }, + { + "start": 5747.8, + "end": 5749.49, + "probability": 0.9926 + }, + { + "start": 5750.64, + "end": 5751.15, + "probability": 0.895 + }, + { + "start": 5752.74, + "end": 5754.42, + "probability": 0.9799 + }, + { + "start": 5755.36, + "end": 5757.04, + "probability": 0.8078 + }, + { + "start": 5757.64, + "end": 5762.3, + "probability": 0.9634 + }, + { + "start": 5762.86, + "end": 5765.28, + "probability": 0.4892 + }, + { + "start": 5766.92, + "end": 5772.44, + "probability": 0.9946 + }, + { + "start": 5773.58, + "end": 5777.1, + "probability": 0.9441 + }, + { + "start": 5777.88, + "end": 5782.06, + "probability": 0.985 + }, + { + "start": 5782.62, + "end": 5785.16, + "probability": 0.981 + }, + { + "start": 5785.42, + "end": 5788.82, + "probability": 0.9932 + }, + { + "start": 5790.24, + "end": 5795.9, + "probability": 0.934 + }, + { + "start": 5796.4, + "end": 5797.84, + "probability": 0.8527 + }, + { + "start": 5798.6, + "end": 5804.7, + "probability": 0.9962 + }, + { + "start": 5804.7, + "end": 5810.78, + "probability": 0.9971 + }, + { + "start": 5811.74, + "end": 5816.4, + "probability": 0.9537 + }, + { + "start": 5817.16, + "end": 5823.88, + "probability": 0.9034 + }, + { + "start": 5823.88, + "end": 5828.98, + "probability": 0.9907 + }, + { + "start": 5829.72, + "end": 5834.48, + "probability": 0.8217 + }, + { + "start": 5835.28, + "end": 5836.88, + "probability": 0.8402 + }, + { + "start": 5836.98, + "end": 5841.94, + "probability": 0.9848 + }, + { + "start": 5841.94, + "end": 5847.2, + "probability": 0.9901 + }, + { + "start": 5848.54, + "end": 5854.04, + "probability": 0.9771 + }, + { + "start": 5855.1, + "end": 5857.76, + "probability": 0.9958 + }, + { + "start": 5858.64, + "end": 5861.24, + "probability": 0.9973 + }, + { + "start": 5862.12, + "end": 5865.92, + "probability": 0.9941 + }, + { + "start": 5867.32, + "end": 5871.32, + "probability": 0.9941 + }, + { + "start": 5871.62, + "end": 5874.21, + "probability": 0.9986 + }, + { + "start": 5875.1, + "end": 5879.06, + "probability": 0.9795 + }, + { + "start": 5879.54, + "end": 5879.94, + "probability": 0.8291 + }, + { + "start": 5880.28, + "end": 5882.06, + "probability": 0.9874 + }, + { + "start": 5882.48, + "end": 5884.14, + "probability": 0.9725 + }, + { + "start": 5884.56, + "end": 5887.2, + "probability": 0.9956 + }, + { + "start": 5888.46, + "end": 5889.66, + "probability": 0.791 + }, + { + "start": 5891.18, + "end": 5892.4, + "probability": 0.8577 + }, + { + "start": 5893.12, + "end": 5897.84, + "probability": 0.8984 + }, + { + "start": 5898.66, + "end": 5899.2, + "probability": 0.9315 + }, + { + "start": 5900.09, + "end": 5909.66, + "probability": 0.9914 + }, + { + "start": 5910.5, + "end": 5912.74, + "probability": 0.8568 + }, + { + "start": 5913.7, + "end": 5918.68, + "probability": 0.9719 + }, + { + "start": 5918.68, + "end": 5922.5, + "probability": 0.9988 + }, + { + "start": 5923.12, + "end": 5926.13, + "probability": 0.9478 + }, + { + "start": 5926.82, + "end": 5927.92, + "probability": 0.9448 + }, + { + "start": 5928.52, + "end": 5930.0, + "probability": 0.9711 + }, + { + "start": 5930.74, + "end": 5932.92, + "probability": 0.8801 + }, + { + "start": 5933.86, + "end": 5936.88, + "probability": 0.9893 + }, + { + "start": 5937.66, + "end": 5941.49, + "probability": 0.9624 + }, + { + "start": 5941.98, + "end": 5947.1, + "probability": 0.9117 + }, + { + "start": 5947.82, + "end": 5949.3, + "probability": 0.9714 + }, + { + "start": 5950.22, + "end": 5951.15, + "probability": 0.8723 + }, + { + "start": 5952.02, + "end": 5955.22, + "probability": 0.9916 + }, + { + "start": 5956.06, + "end": 5958.9, + "probability": 0.9941 + }, + { + "start": 5960.14, + "end": 5964.28, + "probability": 0.9932 + }, + { + "start": 5964.28, + "end": 5969.18, + "probability": 0.9939 + }, + { + "start": 5969.92, + "end": 5970.74, + "probability": 0.2568 + }, + { + "start": 5971.64, + "end": 5972.02, + "probability": 0.4206 + }, + { + "start": 5972.08, + "end": 5972.3, + "probability": 0.72 + }, + { + "start": 5972.42, + "end": 5974.6, + "probability": 0.9296 + }, + { + "start": 5975.84, + "end": 5976.78, + "probability": 0.8969 + }, + { + "start": 5977.46, + "end": 5980.32, + "probability": 0.9884 + }, + { + "start": 5981.1, + "end": 5982.08, + "probability": 0.7864 + }, + { + "start": 5982.12, + "end": 5986.62, + "probability": 0.7412 + }, + { + "start": 5986.62, + "end": 5990.24, + "probability": 0.9984 + }, + { + "start": 5990.72, + "end": 5994.54, + "probability": 0.9985 + }, + { + "start": 5994.78, + "end": 5996.02, + "probability": 0.8741 + }, + { + "start": 5996.96, + "end": 6001.98, + "probability": 0.9858 + }, + { + "start": 6002.72, + "end": 6003.6, + "probability": 0.8826 + }, + { + "start": 6004.46, + "end": 6005.82, + "probability": 0.928 + }, + { + "start": 6006.94, + "end": 6008.9, + "probability": 0.9889 + }, + { + "start": 6009.5, + "end": 6010.38, + "probability": 0.9818 + }, + { + "start": 6011.18, + "end": 6012.36, + "probability": 0.9923 + }, + { + "start": 6013.08, + "end": 6015.66, + "probability": 0.752 + }, + { + "start": 6017.24, + "end": 6018.7, + "probability": 0.7711 + }, + { + "start": 6018.96, + "end": 6022.4, + "probability": 0.9508 + }, + { + "start": 6022.48, + "end": 6023.1, + "probability": 0.8372 + }, + { + "start": 6023.18, + "end": 6024.36, + "probability": 0.801 + }, + { + "start": 6025.1, + "end": 6025.96, + "probability": 0.9289 + }, + { + "start": 6026.32, + "end": 6027.5, + "probability": 0.9857 + }, + { + "start": 6027.94, + "end": 6028.86, + "probability": 0.9734 + }, + { + "start": 6029.26, + "end": 6032.36, + "probability": 0.9912 + }, + { + "start": 6032.96, + "end": 6033.86, + "probability": 0.9843 + }, + { + "start": 6033.96, + "end": 6035.44, + "probability": 0.9919 + }, + { + "start": 6035.58, + "end": 6041.98, + "probability": 0.9906 + }, + { + "start": 6042.96, + "end": 6045.98, + "probability": 0.863 + }, + { + "start": 6047.02, + "end": 6047.56, + "probability": 0.9895 + }, + { + "start": 6048.94, + "end": 6050.1, + "probability": 0.9844 + }, + { + "start": 6051.26, + "end": 6055.82, + "probability": 0.9977 + }, + { + "start": 6055.82, + "end": 6060.4, + "probability": 0.9596 + }, + { + "start": 6060.94, + "end": 6062.08, + "probability": 0.603 + }, + { + "start": 6062.7, + "end": 6066.56, + "probability": 0.9335 + }, + { + "start": 6066.56, + "end": 6069.8, + "probability": 0.9914 + }, + { + "start": 6073.22, + "end": 6077.54, + "probability": 0.2115 + }, + { + "start": 6078.18, + "end": 6078.98, + "probability": 0.13 + }, + { + "start": 6078.98, + "end": 6079.1, + "probability": 0.2153 + }, + { + "start": 6079.1, + "end": 6079.1, + "probability": 0.6517 + }, + { + "start": 6079.1, + "end": 6079.1, + "probability": 0.6952 + }, + { + "start": 6079.1, + "end": 6079.1, + "probability": 0.6746 + }, + { + "start": 6079.1, + "end": 6079.1, + "probability": 0.411 + }, + { + "start": 6079.1, + "end": 6079.42, + "probability": 0.2206 + }, + { + "start": 6079.66, + "end": 6081.0, + "probability": 0.1901 + }, + { + "start": 6083.56, + "end": 6083.68, + "probability": 0.0508 + }, + { + "start": 6083.68, + "end": 6083.92, + "probability": 0.2391 + }, + { + "start": 6084.12, + "end": 6084.84, + "probability": 0.8542 + }, + { + "start": 6084.9, + "end": 6086.68, + "probability": 0.9714 + }, + { + "start": 6087.14, + "end": 6087.56, + "probability": 0.1094 + }, + { + "start": 6088.56, + "end": 6091.92, + "probability": 0.5449 + }, + { + "start": 6093.52, + "end": 6094.84, + "probability": 0.4608 + }, + { + "start": 6095.06, + "end": 6095.22, + "probability": 0.7558 + }, + { + "start": 6095.3, + "end": 6096.48, + "probability": 0.9292 + }, + { + "start": 6096.9, + "end": 6099.62, + "probability": 0.7322 + }, + { + "start": 6099.78, + "end": 6101.32, + "probability": 0.8005 + }, + { + "start": 6101.62, + "end": 6104.88, + "probability": 0.7465 + }, + { + "start": 6105.06, + "end": 6105.76, + "probability": 0.5913 + }, + { + "start": 6106.0, + "end": 6109.32, + "probability": 0.6624 + }, + { + "start": 6113.56, + "end": 6116.64, + "probability": 0.2874 + }, + { + "start": 6117.48, + "end": 6118.2, + "probability": 0.2252 + }, + { + "start": 6118.74, + "end": 6126.04, + "probability": 0.4643 + }, + { + "start": 6126.16, + "end": 6127.0, + "probability": 0.8782 + }, + { + "start": 6127.02, + "end": 6131.96, + "probability": 0.8518 + }, + { + "start": 6132.04, + "end": 6132.39, + "probability": 0.1732 + }, + { + "start": 6132.84, + "end": 6132.84, + "probability": 0.1496 + }, + { + "start": 6132.84, + "end": 6134.28, + "probability": 0.667 + }, + { + "start": 6134.36, + "end": 6135.75, + "probability": 0.3319 + }, + { + "start": 6136.06, + "end": 6138.76, + "probability": 0.3266 + }, + { + "start": 6138.8, + "end": 6142.4, + "probability": 0.0861 + }, + { + "start": 6143.46, + "end": 6147.56, + "probability": 0.0781 + }, + { + "start": 6147.56, + "end": 6148.28, + "probability": 0.125 + }, + { + "start": 6148.86, + "end": 6150.76, + "probability": 0.5998 + }, + { + "start": 6150.76, + "end": 6151.66, + "probability": 0.2986 + }, + { + "start": 6151.76, + "end": 6154.94, + "probability": 0.9821 + }, + { + "start": 6155.42, + "end": 6155.6, + "probability": 0.665 + }, + { + "start": 6155.98, + "end": 6156.88, + "probability": 0.6425 + }, + { + "start": 6156.88, + "end": 6158.98, + "probability": 0.9725 + }, + { + "start": 6159.54, + "end": 6160.86, + "probability": 0.9851 + }, + { + "start": 6161.06, + "end": 6163.6, + "probability": 0.8311 + }, + { + "start": 6164.14, + "end": 6166.0, + "probability": 0.9808 + }, + { + "start": 6166.12, + "end": 6167.16, + "probability": 0.8034 + }, + { + "start": 6167.22, + "end": 6171.86, + "probability": 0.9845 + }, + { + "start": 6171.94, + "end": 6172.52, + "probability": 0.9094 + }, + { + "start": 6172.72, + "end": 6175.04, + "probability": 0.8535 + }, + { + "start": 6175.12, + "end": 6179.14, + "probability": 0.9731 + }, + { + "start": 6179.14, + "end": 6181.02, + "probability": 0.702 + }, + { + "start": 6195.22, + "end": 6196.04, + "probability": 0.6644 + }, + { + "start": 6196.98, + "end": 6202.86, + "probability": 0.9503 + }, + { + "start": 6203.72, + "end": 6205.5, + "probability": 0.7636 + }, + { + "start": 6210.46, + "end": 6212.4, + "probability": 0.643 + }, + { + "start": 6219.14, + "end": 6222.14, + "probability": 0.5339 + }, + { + "start": 6226.86, + "end": 6228.62, + "probability": 0.6188 + }, + { + "start": 6228.66, + "end": 6232.18, + "probability": 0.994 + }, + { + "start": 6234.78, + "end": 6237.38, + "probability": 0.9917 + }, + { + "start": 6239.84, + "end": 6242.6, + "probability": 0.6272 + }, + { + "start": 6244.58, + "end": 6248.48, + "probability": 0.9944 + }, + { + "start": 6250.26, + "end": 6256.82, + "probability": 0.7987 + }, + { + "start": 6257.58, + "end": 6259.2, + "probability": 0.8204 + }, + { + "start": 6260.58, + "end": 6262.64, + "probability": 0.6679 + }, + { + "start": 6265.9, + "end": 6268.82, + "probability": 0.9992 + }, + { + "start": 6270.72, + "end": 6275.28, + "probability": 0.9974 + }, + { + "start": 6276.5, + "end": 6278.54, + "probability": 0.9995 + }, + { + "start": 6280.24, + "end": 6289.0, + "probability": 0.9994 + }, + { + "start": 6292.64, + "end": 6294.32, + "probability": 0.708 + }, + { + "start": 6297.44, + "end": 6302.18, + "probability": 0.8321 + }, + { + "start": 6302.86, + "end": 6304.5, + "probability": 0.9752 + }, + { + "start": 6305.88, + "end": 6307.72, + "probability": 0.91 + }, + { + "start": 6308.12, + "end": 6308.68, + "probability": 0.905 + }, + { + "start": 6308.8, + "end": 6309.82, + "probability": 0.9065 + }, + { + "start": 6310.14, + "end": 6311.02, + "probability": 0.7979 + }, + { + "start": 6314.54, + "end": 6316.4, + "probability": 0.979 + }, + { + "start": 6318.14, + "end": 6318.72, + "probability": 0.8826 + }, + { + "start": 6320.12, + "end": 6322.68, + "probability": 0.7316 + }, + { + "start": 6323.64, + "end": 6328.58, + "probability": 0.9961 + }, + { + "start": 6329.94, + "end": 6330.72, + "probability": 0.9478 + }, + { + "start": 6332.46, + "end": 6336.46, + "probability": 0.989 + }, + { + "start": 6337.68, + "end": 6338.9, + "probability": 0.9983 + }, + { + "start": 6341.28, + "end": 6342.12, + "probability": 0.4788 + }, + { + "start": 6343.38, + "end": 6345.42, + "probability": 0.9905 + }, + { + "start": 6347.02, + "end": 6350.24, + "probability": 0.9882 + }, + { + "start": 6352.04, + "end": 6360.18, + "probability": 0.994 + }, + { + "start": 6361.26, + "end": 6364.08, + "probability": 0.9268 + }, + { + "start": 6366.52, + "end": 6367.68, + "probability": 0.9878 + }, + { + "start": 6369.14, + "end": 6373.6, + "probability": 0.6636 + }, + { + "start": 6373.72, + "end": 6377.22, + "probability": 0.6797 + }, + { + "start": 6377.56, + "end": 6380.46, + "probability": 0.9233 + }, + { + "start": 6382.14, + "end": 6382.82, + "probability": 0.4401 + }, + { + "start": 6383.78, + "end": 6386.27, + "probability": 0.3901 + }, + { + "start": 6386.36, + "end": 6388.6, + "probability": 0.8461 + }, + { + "start": 6388.6, + "end": 6390.5, + "probability": 0.9025 + }, + { + "start": 6393.62, + "end": 6398.04, + "probability": 0.984 + }, + { + "start": 6398.92, + "end": 6399.72, + "probability": 0.9886 + }, + { + "start": 6399.78, + "end": 6402.22, + "probability": 0.9968 + }, + { + "start": 6403.0, + "end": 6404.3, + "probability": 0.9604 + }, + { + "start": 6404.9, + "end": 6406.24, + "probability": 0.7183 + }, + { + "start": 6407.32, + "end": 6408.5, + "probability": 0.7886 + }, + { + "start": 6410.28, + "end": 6413.88, + "probability": 0.9858 + }, + { + "start": 6414.82, + "end": 6418.34, + "probability": 0.9979 + }, + { + "start": 6420.26, + "end": 6421.92, + "probability": 0.9337 + }, + { + "start": 6423.34, + "end": 6424.9, + "probability": 0.9891 + }, + { + "start": 6425.6, + "end": 6425.7, + "probability": 0.1684 + }, + { + "start": 6425.7, + "end": 6429.66, + "probability": 0.9638 + }, + { + "start": 6430.8, + "end": 6435.36, + "probability": 0.9964 + }, + { + "start": 6437.36, + "end": 6440.98, + "probability": 0.9423 + }, + { + "start": 6441.5, + "end": 6445.06, + "probability": 0.8186 + }, + { + "start": 6446.46, + "end": 6448.84, + "probability": 0.9954 + }, + { + "start": 6450.12, + "end": 6450.68, + "probability": 0.9941 + }, + { + "start": 6452.04, + "end": 6455.58, + "probability": 0.9874 + }, + { + "start": 6457.36, + "end": 6458.48, + "probability": 0.84 + }, + { + "start": 6459.66, + "end": 6461.2, + "probability": 0.9919 + }, + { + "start": 6462.12, + "end": 6464.46, + "probability": 0.9924 + }, + { + "start": 6465.76, + "end": 6466.62, + "probability": 0.7755 + }, + { + "start": 6468.52, + "end": 6471.6, + "probability": 0.6799 + }, + { + "start": 6473.08, + "end": 6476.1, + "probability": 0.9094 + }, + { + "start": 6477.58, + "end": 6479.38, + "probability": 0.9957 + }, + { + "start": 6480.46, + "end": 6484.36, + "probability": 0.828 + }, + { + "start": 6485.32, + "end": 6486.72, + "probability": 0.8632 + }, + { + "start": 6487.92, + "end": 6494.46, + "probability": 0.991 + }, + { + "start": 6494.46, + "end": 6498.08, + "probability": 0.9801 + }, + { + "start": 6498.2, + "end": 6499.34, + "probability": 0.9731 + }, + { + "start": 6502.36, + "end": 6506.56, + "probability": 0.9797 + }, + { + "start": 6509.01, + "end": 6511.16, + "probability": 0.5296 + }, + { + "start": 6511.92, + "end": 6512.9, + "probability": 0.8368 + }, + { + "start": 6514.74, + "end": 6518.36, + "probability": 0.9187 + }, + { + "start": 6519.74, + "end": 6523.76, + "probability": 0.9961 + }, + { + "start": 6523.8, + "end": 6525.02, + "probability": 0.9775 + }, + { + "start": 6525.68, + "end": 6527.92, + "probability": 0.7021 + }, + { + "start": 6529.06, + "end": 6534.0, + "probability": 0.863 + }, + { + "start": 6534.26, + "end": 6535.0, + "probability": 0.8237 + }, + { + "start": 6535.4, + "end": 6536.28, + "probability": 0.9453 + }, + { + "start": 6537.1, + "end": 6537.98, + "probability": 0.9759 + }, + { + "start": 6541.2, + "end": 6542.56, + "probability": 0.8248 + }, + { + "start": 6544.12, + "end": 6547.46, + "probability": 0.9984 + }, + { + "start": 6547.98, + "end": 6548.78, + "probability": 0.9056 + }, + { + "start": 6549.58, + "end": 6553.18, + "probability": 0.9878 + }, + { + "start": 6555.22, + "end": 6556.78, + "probability": 0.7935 + }, + { + "start": 6559.12, + "end": 6562.54, + "probability": 0.7669 + }, + { + "start": 6564.44, + "end": 6570.22, + "probability": 0.9963 + }, + { + "start": 6570.38, + "end": 6574.6, + "probability": 0.8203 + }, + { + "start": 6575.92, + "end": 6576.47, + "probability": 0.834 + }, + { + "start": 6577.52, + "end": 6578.76, + "probability": 0.9263 + }, + { + "start": 6578.88, + "end": 6580.06, + "probability": 0.6864 + }, + { + "start": 6580.62, + "end": 6583.72, + "probability": 0.8077 + }, + { + "start": 6584.42, + "end": 6585.92, + "probability": 0.6626 + }, + { + "start": 6586.48, + "end": 6590.3, + "probability": 0.9504 + }, + { + "start": 6591.32, + "end": 6591.4, + "probability": 0.0396 + }, + { + "start": 6591.82, + "end": 6592.84, + "probability": 0.9214 + }, + { + "start": 6592.92, + "end": 6593.37, + "probability": 0.9902 + }, + { + "start": 6593.6, + "end": 6594.74, + "probability": 0.9946 + }, + { + "start": 6596.58, + "end": 6600.18, + "probability": 0.9974 + }, + { + "start": 6603.96, + "end": 6605.26, + "probability": 0.7847 + }, + { + "start": 6607.14, + "end": 6608.32, + "probability": 0.949 + }, + { + "start": 6611.56, + "end": 6614.04, + "probability": 0.9754 + }, + { + "start": 6615.1, + "end": 6616.8, + "probability": 0.6288 + }, + { + "start": 6618.0, + "end": 6619.78, + "probability": 0.952 + }, + { + "start": 6621.32, + "end": 6622.98, + "probability": 0.9371 + }, + { + "start": 6624.26, + "end": 6626.28, + "probability": 0.9878 + }, + { + "start": 6627.7, + "end": 6629.04, + "probability": 0.9731 + }, + { + "start": 6629.18, + "end": 6631.24, + "probability": 0.9448 + }, + { + "start": 6632.1, + "end": 6633.88, + "probability": 0.9961 + }, + { + "start": 6635.06, + "end": 6636.7, + "probability": 0.6602 + }, + { + "start": 6636.9, + "end": 6641.02, + "probability": 0.9471 + }, + { + "start": 6643.48, + "end": 6645.0, + "probability": 0.9567 + }, + { + "start": 6646.04, + "end": 6647.48, + "probability": 0.955 + }, + { + "start": 6648.5, + "end": 6652.84, + "probability": 0.9849 + }, + { + "start": 6654.2, + "end": 6657.22, + "probability": 0.9818 + }, + { + "start": 6657.38, + "end": 6658.35, + "probability": 0.9868 + }, + { + "start": 6659.66, + "end": 6661.44, + "probability": 0.9852 + }, + { + "start": 6661.58, + "end": 6662.9, + "probability": 0.9777 + }, + { + "start": 6663.9, + "end": 6667.32, + "probability": 0.3364 + }, + { + "start": 6667.96, + "end": 6670.56, + "probability": 0.7567 + }, + { + "start": 6672.1, + "end": 6673.68, + "probability": 0.9557 + }, + { + "start": 6674.18, + "end": 6675.36, + "probability": 0.0472 + }, + { + "start": 6675.88, + "end": 6676.62, + "probability": 0.6971 + }, + { + "start": 6677.5, + "end": 6680.74, + "probability": 0.8259 + }, + { + "start": 6682.55, + "end": 6684.14, + "probability": 0.3843 + }, + { + "start": 6684.14, + "end": 6686.22, + "probability": 0.0272 + }, + { + "start": 6686.76, + "end": 6686.76, + "probability": 0.0275 + }, + { + "start": 6687.4, + "end": 6687.76, + "probability": 0.0149 + }, + { + "start": 6687.76, + "end": 6687.76, + "probability": 0.0259 + }, + { + "start": 6687.76, + "end": 6687.76, + "probability": 0.4655 + }, + { + "start": 6687.76, + "end": 6687.76, + "probability": 0.1907 + }, + { + "start": 6687.76, + "end": 6689.2, + "probability": 0.2812 + }, + { + "start": 6691.54, + "end": 6693.14, + "probability": 0.7151 + }, + { + "start": 6693.18, + "end": 6694.06, + "probability": 0.6947 + }, + { + "start": 6694.06, + "end": 6695.46, + "probability": 0.8281 + }, + { + "start": 6695.5, + "end": 6697.22, + "probability": 0.6155 + }, + { + "start": 6697.38, + "end": 6699.04, + "probability": 0.9557 + }, + { + "start": 6699.26, + "end": 6701.38, + "probability": 0.9462 + }, + { + "start": 6701.76, + "end": 6703.46, + "probability": 0.8638 + }, + { + "start": 6703.62, + "end": 6707.68, + "probability": 0.8668 + }, + { + "start": 6710.36, + "end": 6711.24, + "probability": 0.9834 + }, + { + "start": 6711.62, + "end": 6714.09, + "probability": 0.9062 + }, + { + "start": 6714.32, + "end": 6717.43, + "probability": 0.9967 + }, + { + "start": 6717.54, + "end": 6718.62, + "probability": 0.7574 + }, + { + "start": 6719.66, + "end": 6722.36, + "probability": 0.9501 + }, + { + "start": 6723.54, + "end": 6724.66, + "probability": 0.9184 + }, + { + "start": 6726.52, + "end": 6728.72, + "probability": 0.8892 + }, + { + "start": 6730.38, + "end": 6738.56, + "probability": 0.9471 + }, + { + "start": 6738.78, + "end": 6739.66, + "probability": 0.9638 + }, + { + "start": 6740.82, + "end": 6743.32, + "probability": 0.997 + }, + { + "start": 6744.08, + "end": 6747.9, + "probability": 0.3022 + }, + { + "start": 6747.98, + "end": 6747.98, + "probability": 0.0694 + }, + { + "start": 6747.98, + "end": 6750.64, + "probability": 0.1274 + }, + { + "start": 6750.94, + "end": 6754.72, + "probability": 0.8704 + }, + { + "start": 6754.82, + "end": 6758.18, + "probability": 0.9507 + }, + { + "start": 6759.08, + "end": 6761.14, + "probability": 0.1465 + }, + { + "start": 6761.14, + "end": 6764.24, + "probability": 0.94 + }, + { + "start": 6765.16, + "end": 6766.22, + "probability": 0.7132 + }, + { + "start": 6767.44, + "end": 6769.84, + "probability": 0.7501 + }, + { + "start": 6771.46, + "end": 6772.9, + "probability": 0.5543 + }, + { + "start": 6774.51, + "end": 6776.54, + "probability": 0.1324 + }, + { + "start": 6776.54, + "end": 6780.64, + "probability": 0.9622 + }, + { + "start": 6781.16, + "end": 6781.44, + "probability": 0.1948 + }, + { + "start": 6781.64, + "end": 6783.78, + "probability": 0.7162 + }, + { + "start": 6783.95, + "end": 6784.62, + "probability": 0.387 + }, + { + "start": 6784.72, + "end": 6789.34, + "probability": 0.8086 + }, + { + "start": 6790.38, + "end": 6791.76, + "probability": 0.7164 + }, + { + "start": 6792.18, + "end": 6792.94, + "probability": 0.7101 + }, + { + "start": 6793.04, + "end": 6793.71, + "probability": 0.7588 + }, + { + "start": 6794.42, + "end": 6795.96, + "probability": 0.0996 + }, + { + "start": 6796.08, + "end": 6797.56, + "probability": 0.7292 + }, + { + "start": 6797.94, + "end": 6799.66, + "probability": 0.8268 + }, + { + "start": 6799.68, + "end": 6800.6, + "probability": 0.4769 + }, + { + "start": 6800.68, + "end": 6801.8, + "probability": 0.6464 + }, + { + "start": 6802.26, + "end": 6805.32, + "probability": 0.6608 + }, + { + "start": 6805.84, + "end": 6807.66, + "probability": 0.5864 + }, + { + "start": 6807.74, + "end": 6810.42, + "probability": 0.7644 + }, + { + "start": 6810.44, + "end": 6811.54, + "probability": 0.0476 + }, + { + "start": 6812.06, + "end": 6812.32, + "probability": 0.024 + }, + { + "start": 6812.32, + "end": 6813.56, + "probability": 0.3894 + }, + { + "start": 6813.88, + "end": 6815.04, + "probability": 0.7535 + }, + { + "start": 6815.04, + "end": 6818.5, + "probability": 0.5838 + }, + { + "start": 6819.58, + "end": 6823.76, + "probability": 0.6604 + }, + { + "start": 6824.38, + "end": 6826.5, + "probability": 0.4296 + }, + { + "start": 6827.4, + "end": 6831.98, + "probability": 0.9242 + }, + { + "start": 6832.66, + "end": 6836.34, + "probability": 0.9672 + }, + { + "start": 6836.34, + "end": 6840.5, + "probability": 0.9985 + }, + { + "start": 6840.72, + "end": 6841.28, + "probability": 0.8735 + }, + { + "start": 6842.18, + "end": 6843.34, + "probability": 0.834 + }, + { + "start": 6844.04, + "end": 6851.18, + "probability": 0.993 + }, + { + "start": 6852.14, + "end": 6853.62, + "probability": 0.7645 + }, + { + "start": 6854.32, + "end": 6855.46, + "probability": 0.9102 + }, + { + "start": 6856.08, + "end": 6858.68, + "probability": 0.9284 + }, + { + "start": 6858.76, + "end": 6860.36, + "probability": 0.8997 + }, + { + "start": 6860.5, + "end": 6862.31, + "probability": 0.8267 + }, + { + "start": 6862.94, + "end": 6867.98, + "probability": 0.9957 + }, + { + "start": 6869.8, + "end": 6870.88, + "probability": 0.9864 + }, + { + "start": 6871.8, + "end": 6874.28, + "probability": 0.8421 + }, + { + "start": 6875.08, + "end": 6875.08, + "probability": 0.0117 + }, + { + "start": 6875.08, + "end": 6875.08, + "probability": 0.4011 + }, + { + "start": 6875.08, + "end": 6881.12, + "probability": 0.9564 + }, + { + "start": 6881.68, + "end": 6886.7, + "probability": 0.8557 + }, + { + "start": 6887.78, + "end": 6888.86, + "probability": 0.9419 + }, + { + "start": 6889.66, + "end": 6891.46, + "probability": 0.9783 + }, + { + "start": 6892.04, + "end": 6895.5, + "probability": 0.9665 + }, + { + "start": 6895.96, + "end": 6899.28, + "probability": 0.9491 + }, + { + "start": 6899.44, + "end": 6900.86, + "probability": 0.9907 + }, + { + "start": 6900.94, + "end": 6901.87, + "probability": 0.7909 + }, + { + "start": 6903.42, + "end": 6907.7, + "probability": 0.9932 + }, + { + "start": 6908.44, + "end": 6909.26, + "probability": 0.7923 + }, + { + "start": 6910.3, + "end": 6915.74, + "probability": 0.9592 + }, + { + "start": 6916.24, + "end": 6918.8, + "probability": 0.9923 + }, + { + "start": 6919.6, + "end": 6921.26, + "probability": 0.7823 + }, + { + "start": 6921.4, + "end": 6921.86, + "probability": 0.7914 + }, + { + "start": 6922.32, + "end": 6925.18, + "probability": 0.8802 + }, + { + "start": 6925.32, + "end": 6926.72, + "probability": 0.6501 + }, + { + "start": 6932.08, + "end": 6934.04, + "probability": 0.938 + }, + { + "start": 6939.08, + "end": 6939.26, + "probability": 0.1714 + }, + { + "start": 6939.26, + "end": 6942.22, + "probability": 0.4515 + }, + { + "start": 6942.68, + "end": 6943.02, + "probability": 0.525 + }, + { + "start": 6943.26, + "end": 6945.88, + "probability": 0.6325 + }, + { + "start": 6946.31, + "end": 6948.56, + "probability": 0.2426 + }, + { + "start": 6951.59, + "end": 6956.96, + "probability": 0.6359 + }, + { + "start": 6957.24, + "end": 6957.88, + "probability": 0.5243 + }, + { + "start": 6958.0, + "end": 6961.66, + "probability": 0.9558 + }, + { + "start": 6962.6, + "end": 6965.42, + "probability": 0.9614 + }, + { + "start": 6965.42, + "end": 6969.72, + "probability": 0.9652 + }, + { + "start": 6970.8, + "end": 6977.56, + "probability": 0.7002 + }, + { + "start": 6978.1, + "end": 6981.16, + "probability": 0.7174 + }, + { + "start": 6981.86, + "end": 6984.76, + "probability": 0.2182 + }, + { + "start": 6985.06, + "end": 6986.94, + "probability": 0.9362 + }, + { + "start": 6987.06, + "end": 6987.55, + "probability": 0.6123 + }, + { + "start": 6987.86, + "end": 6988.46, + "probability": 0.6668 + }, + { + "start": 6988.86, + "end": 6992.26, + "probability": 0.9277 + }, + { + "start": 6992.34, + "end": 6994.3, + "probability": 0.9657 + }, + { + "start": 6998.68, + "end": 6999.54, + "probability": 0.7294 + }, + { + "start": 6999.76, + "end": 7000.56, + "probability": 0.9282 + }, + { + "start": 7000.76, + "end": 7002.16, + "probability": 0.7044 + }, + { + "start": 7002.92, + "end": 7006.54, + "probability": 0.9916 + }, + { + "start": 7006.54, + "end": 7010.56, + "probability": 0.995 + }, + { + "start": 7011.06, + "end": 7013.52, + "probability": 0.5184 + }, + { + "start": 7014.22, + "end": 7017.82, + "probability": 0.9823 + }, + { + "start": 7017.82, + "end": 7021.34, + "probability": 0.9902 + }, + { + "start": 7021.78, + "end": 7025.06, + "probability": 0.996 + }, + { + "start": 7025.5, + "end": 7027.5, + "probability": 0.9963 + }, + { + "start": 7027.92, + "end": 7030.98, + "probability": 0.9716 + }, + { + "start": 7031.08, + "end": 7035.2, + "probability": 0.9624 + }, + { + "start": 7035.2, + "end": 7039.34, + "probability": 0.9578 + }, + { + "start": 7040.06, + "end": 7040.08, + "probability": 0.0001 + }, + { + "start": 7040.08, + "end": 7043.78, + "probability": 0.8436 + }, + { + "start": 7043.78, + "end": 7048.66, + "probability": 0.9974 + }, + { + "start": 7048.76, + "end": 7051.48, + "probability": 0.9886 + }, + { + "start": 7051.8, + "end": 7054.14, + "probability": 0.9542 + }, + { + "start": 7054.52, + "end": 7056.26, + "probability": 0.9917 + }, + { + "start": 7056.84, + "end": 7060.86, + "probability": 0.9738 + }, + { + "start": 7061.18, + "end": 7061.7, + "probability": 0.8716 + }, + { + "start": 7061.78, + "end": 7063.4, + "probability": 0.6348 + }, + { + "start": 7063.56, + "end": 7064.47, + "probability": 0.785 + }, + { + "start": 7064.86, + "end": 7067.72, + "probability": 0.9546 + }, + { + "start": 7067.82, + "end": 7069.3, + "probability": 0.6759 + }, + { + "start": 7069.38, + "end": 7070.52, + "probability": 0.7947 + }, + { + "start": 7070.52, + "end": 7072.12, + "probability": 0.7431 + }, + { + "start": 7073.49, + "end": 7077.34, + "probability": 0.8231 + }, + { + "start": 7077.4, + "end": 7078.7, + "probability": 0.9754 + }, + { + "start": 7080.03, + "end": 7082.86, + "probability": 0.6677 + }, + { + "start": 7082.94, + "end": 7088.42, + "probability": 0.9707 + }, + { + "start": 7089.12, + "end": 7089.96, + "probability": 0.4973 + }, + { + "start": 7090.02, + "end": 7094.62, + "probability": 0.9912 + }, + { + "start": 7094.7, + "end": 7095.3, + "probability": 0.7251 + }, + { + "start": 7095.64, + "end": 7100.74, + "probability": 0.9723 + }, + { + "start": 7102.05, + "end": 7104.56, + "probability": 0.3916 + }, + { + "start": 7105.44, + "end": 7105.94, + "probability": 0.8332 + }, + { + "start": 7107.22, + "end": 7108.28, + "probability": 0.7307 + }, + { + "start": 7109.7, + "end": 7114.58, + "probability": 0.9285 + }, + { + "start": 7115.34, + "end": 7117.56, + "probability": 0.9385 + }, + { + "start": 7118.26, + "end": 7123.12, + "probability": 0.7967 + }, + { + "start": 7124.12, + "end": 7126.2, + "probability": 0.6823 + }, + { + "start": 7126.72, + "end": 7128.62, + "probability": 0.7455 + }, + { + "start": 7129.38, + "end": 7131.3, + "probability": 0.8991 + }, + { + "start": 7132.02, + "end": 7133.98, + "probability": 0.9758 + }, + { + "start": 7135.0, + "end": 7136.52, + "probability": 0.9837 + }, + { + "start": 7137.38, + "end": 7141.74, + "probability": 0.9785 + }, + { + "start": 7142.4, + "end": 7144.9, + "probability": 0.7855 + }, + { + "start": 7145.78, + "end": 7147.66, + "probability": 0.7909 + }, + { + "start": 7148.34, + "end": 7150.56, + "probability": 0.9541 + }, + { + "start": 7151.8, + "end": 7155.64, + "probability": 0.9792 + }, + { + "start": 7156.26, + "end": 7163.76, + "probability": 0.9891 + }, + { + "start": 7164.7, + "end": 7166.26, + "probability": 0.8064 + }, + { + "start": 7166.84, + "end": 7169.36, + "probability": 0.9539 + }, + { + "start": 7170.42, + "end": 7172.58, + "probability": 0.9614 + }, + { + "start": 7173.14, + "end": 7174.96, + "probability": 0.9714 + }, + { + "start": 7175.68, + "end": 7177.46, + "probability": 0.8864 + }, + { + "start": 7178.4, + "end": 7180.22, + "probability": 0.9796 + }, + { + "start": 7180.94, + "end": 7183.5, + "probability": 0.9174 + }, + { + "start": 7184.06, + "end": 7187.28, + "probability": 0.7204 + }, + { + "start": 7187.8, + "end": 7188.52, + "probability": 0.7877 + }, + { + "start": 7189.48, + "end": 7191.32, + "probability": 0.9496 + }, + { + "start": 7192.18, + "end": 7194.08, + "probability": 0.8201 + }, + { + "start": 7194.88, + "end": 7196.2, + "probability": 0.9663 + }, + { + "start": 7197.02, + "end": 7197.96, + "probability": 0.9487 + }, + { + "start": 7198.88, + "end": 7200.7, + "probability": 0.8931 + }, + { + "start": 7201.44, + "end": 7203.68, + "probability": 0.9245 + }, + { + "start": 7205.66, + "end": 7211.66, + "probability": 0.9744 + }, + { + "start": 7212.4, + "end": 7214.54, + "probability": 0.9692 + }, + { + "start": 7215.22, + "end": 7220.14, + "probability": 0.944 + }, + { + "start": 7220.82, + "end": 7225.04, + "probability": 0.9615 + }, + { + "start": 7226.06, + "end": 7228.04, + "probability": 0.9683 + }, + { + "start": 7229.12, + "end": 7229.44, + "probability": 0.9495 + }, + { + "start": 7230.24, + "end": 7231.46, + "probability": 0.9839 + }, + { + "start": 7232.14, + "end": 7234.12, + "probability": 0.9729 + }, + { + "start": 7235.96, + "end": 7236.8, + "probability": 0.5049 + }, + { + "start": 7237.58, + "end": 7238.1, + "probability": 0.9642 + }, + { + "start": 7238.62, + "end": 7239.72, + "probability": 0.9205 + }, + { + "start": 7240.24, + "end": 7240.76, + "probability": 0.9753 + }, + { + "start": 7241.4, + "end": 7242.88, + "probability": 0.8322 + }, + { + "start": 7243.7, + "end": 7244.28, + "probability": 0.9963 + }, + { + "start": 7245.04, + "end": 7249.1, + "probability": 0.9592 + }, + { + "start": 7249.7, + "end": 7251.42, + "probability": 0.948 + }, + { + "start": 7252.48, + "end": 7252.96, + "probability": 0.9912 + }, + { + "start": 7253.74, + "end": 7254.62, + "probability": 0.9754 + }, + { + "start": 7255.6, + "end": 7257.5, + "probability": 0.9897 + }, + { + "start": 7259.78, + "end": 7263.72, + "probability": 0.7532 + }, + { + "start": 7265.02, + "end": 7266.78, + "probability": 0.9095 + }, + { + "start": 7267.36, + "end": 7269.28, + "probability": 0.8779 + }, + { + "start": 7270.34, + "end": 7272.54, + "probability": 0.6714 + }, + { + "start": 7273.4, + "end": 7277.98, + "probability": 0.9197 + }, + { + "start": 7278.86, + "end": 7280.62, + "probability": 0.9038 + }, + { + "start": 7281.36, + "end": 7285.52, + "probability": 0.9677 + }, + { + "start": 7286.22, + "end": 7287.8, + "probability": 0.6013 + }, + { + "start": 7288.6, + "end": 7290.16, + "probability": 0.9204 + }, + { + "start": 7290.92, + "end": 7292.68, + "probability": 0.9517 + }, + { + "start": 7293.3, + "end": 7295.36, + "probability": 0.9844 + }, + { + "start": 7295.98, + "end": 7297.66, + "probability": 0.9711 + }, + { + "start": 7298.76, + "end": 7299.06, + "probability": 0.9609 + }, + { + "start": 7299.58, + "end": 7300.28, + "probability": 0.9307 + }, + { + "start": 7300.94, + "end": 7302.46, + "probability": 0.9762 + }, + { + "start": 7303.28, + "end": 7304.46, + "probability": 0.965 + }, + { + "start": 7305.56, + "end": 7307.22, + "probability": 0.9902 + }, + { + "start": 7308.06, + "end": 7309.56, + "probability": 0.9771 + }, + { + "start": 7310.88, + "end": 7311.26, + "probability": 0.967 + }, + { + "start": 7312.0, + "end": 7315.5, + "probability": 0.8412 + }, + { + "start": 7316.28, + "end": 7316.56, + "probability": 0.8983 + }, + { + "start": 7317.16, + "end": 7318.48, + "probability": 0.9657 + }, + { + "start": 7319.44, + "end": 7321.3, + "probability": 0.6523 + }, + { + "start": 7322.2, + "end": 7323.96, + "probability": 0.986 + }, + { + "start": 7324.82, + "end": 7326.42, + "probability": 0.9857 + }, + { + "start": 7327.06, + "end": 7332.62, + "probability": 0.9862 + }, + { + "start": 7333.74, + "end": 7335.84, + "probability": 0.9915 + }, + { + "start": 7336.94, + "end": 7338.72, + "probability": 0.6906 + }, + { + "start": 7339.94, + "end": 7341.82, + "probability": 0.8596 + }, + { + "start": 7342.48, + "end": 7342.78, + "probability": 0.9849 + }, + { + "start": 7343.5, + "end": 7344.56, + "probability": 0.8185 + }, + { + "start": 7345.42, + "end": 7345.88, + "probability": 0.9624 + }, + { + "start": 7346.76, + "end": 7347.86, + "probability": 0.98 + }, + { + "start": 7348.8, + "end": 7349.28, + "probability": 0.9854 + }, + { + "start": 7349.82, + "end": 7351.02, + "probability": 0.928 + }, + { + "start": 7352.02, + "end": 7352.44, + "probability": 0.9956 + }, + { + "start": 7353.36, + "end": 7354.78, + "probability": 0.926 + }, + { + "start": 7355.58, + "end": 7356.06, + "probability": 0.9629 + }, + { + "start": 7356.6, + "end": 7358.98, + "probability": 0.9849 + }, + { + "start": 7359.94, + "end": 7361.0, + "probability": 0.7477 + }, + { + "start": 7362.14, + "end": 7363.96, + "probability": 0.5553 + }, + { + "start": 7365.14, + "end": 7367.0, + "probability": 0.9117 + }, + { + "start": 7367.8, + "end": 7368.22, + "probability": 0.9382 + }, + { + "start": 7368.8, + "end": 7370.0, + "probability": 0.6734 + }, + { + "start": 7370.82, + "end": 7371.22, + "probability": 0.9592 + }, + { + "start": 7371.94, + "end": 7372.96, + "probability": 0.7728 + }, + { + "start": 7373.92, + "end": 7374.38, + "probability": 0.979 + }, + { + "start": 7375.14, + "end": 7375.64, + "probability": 0.8807 + }, + { + "start": 7377.42, + "end": 7377.86, + "probability": 0.9808 + }, + { + "start": 7378.42, + "end": 7379.32, + "probability": 0.9709 + }, + { + "start": 7380.26, + "end": 7380.62, + "probability": 0.9888 + }, + { + "start": 7381.32, + "end": 7382.32, + "probability": 0.8674 + }, + { + "start": 7383.0, + "end": 7383.72, + "probability": 0.9767 + }, + { + "start": 7384.52, + "end": 7385.34, + "probability": 0.6323 + }, + { + "start": 7386.0, + "end": 7386.46, + "probability": 0.7445 + }, + { + "start": 7387.12, + "end": 7388.0, + "probability": 0.797 + }, + { + "start": 7388.88, + "end": 7390.66, + "probability": 0.8215 + }, + { + "start": 7392.08, + "end": 7392.54, + "probability": 0.9718 + }, + { + "start": 7393.88, + "end": 7394.8, + "probability": 0.9343 + }, + { + "start": 7395.76, + "end": 7400.32, + "probability": 0.9562 + }, + { + "start": 7401.14, + "end": 7403.12, + "probability": 0.9452 + }, + { + "start": 7404.1, + "end": 7404.58, + "probability": 0.9857 + }, + { + "start": 7405.1, + "end": 7405.84, + "probability": 0.8322 + }, + { + "start": 7406.52, + "end": 7408.76, + "probability": 0.9227 + }, + { + "start": 7409.54, + "end": 7411.04, + "probability": 0.9434 + }, + { + "start": 7412.0, + "end": 7412.42, + "probability": 0.7467 + }, + { + "start": 7413.52, + "end": 7413.88, + "probability": 0.5539 + }, + { + "start": 7414.88, + "end": 7415.84, + "probability": 0.7504 + }, + { + "start": 7416.52, + "end": 7417.0, + "probability": 0.9475 + }, + { + "start": 7418.16, + "end": 7419.18, + "probability": 0.9435 + }, + { + "start": 7420.08, + "end": 7422.22, + "probability": 0.95 + }, + { + "start": 7423.12, + "end": 7423.54, + "probability": 0.9645 + }, + { + "start": 7424.2, + "end": 7425.44, + "probability": 0.9242 + }, + { + "start": 7426.28, + "end": 7428.48, + "probability": 0.9879 + }, + { + "start": 7429.32, + "end": 7431.44, + "probability": 0.919 + }, + { + "start": 7432.12, + "end": 7432.54, + "probability": 0.9954 + }, + { + "start": 7433.24, + "end": 7434.44, + "probability": 0.9247 + }, + { + "start": 7435.08, + "end": 7437.38, + "probability": 0.9861 + }, + { + "start": 7438.34, + "end": 7438.78, + "probability": 0.992 + }, + { + "start": 7439.34, + "end": 7440.24, + "probability": 0.8687 + }, + { + "start": 7441.08, + "end": 7441.46, + "probability": 0.6398 + }, + { + "start": 7442.34, + "end": 7443.16, + "probability": 0.5136 + }, + { + "start": 7444.24, + "end": 7444.7, + "probability": 0.9645 + }, + { + "start": 7445.24, + "end": 7446.16, + "probability": 0.9396 + }, + { + "start": 7446.96, + "end": 7448.86, + "probability": 0.9515 + }, + { + "start": 7449.52, + "end": 7451.32, + "probability": 0.9855 + }, + { + "start": 7452.18, + "end": 7452.62, + "probability": 0.9897 + }, + { + "start": 7453.34, + "end": 7454.62, + "probability": 0.8711 + }, + { + "start": 7455.38, + "end": 7457.86, + "probability": 0.9925 + }, + { + "start": 7459.04, + "end": 7460.68, + "probability": 0.419 + }, + { + "start": 7460.68, + "end": 7462.7, + "probability": 0.683 + }, + { + "start": 7463.62, + "end": 7464.8, + "probability": 0.2799 + }, + { + "start": 7464.82, + "end": 7467.24, + "probability": 0.8879 + }, + { + "start": 7485.46, + "end": 7485.68, + "probability": 0.025 + }, + { + "start": 7488.36, + "end": 7488.46, + "probability": 0.0263 + }, + { + "start": 7489.5, + "end": 7490.82, + "probability": 0.0765 + }, + { + "start": 7499.93, + "end": 7502.88, + "probability": 0.0796 + }, + { + "start": 7503.28, + "end": 7508.94, + "probability": 0.0323 + }, + { + "start": 7508.98, + "end": 7512.52, + "probability": 0.0383 + }, + { + "start": 7512.52, + "end": 7514.1, + "probability": 0.112 + }, + { + "start": 7516.38, + "end": 7516.74, + "probability": 0.1129 + }, + { + "start": 7541.08, + "end": 7542.52, + "probability": 0.2608 + }, + { + "start": 7545.26, + "end": 7548.52, + "probability": 0.9091 + }, + { + "start": 7548.66, + "end": 7549.2, + "probability": 0.7759 + }, + { + "start": 7549.86, + "end": 7550.9, + "probability": 0.7743 + }, + { + "start": 7556.9, + "end": 7559.56, + "probability": 0.9741 + }, + { + "start": 7559.88, + "end": 7560.82, + "probability": 0.8325 + }, + { + "start": 7561.4, + "end": 7564.6, + "probability": 0.9974 + }, + { + "start": 7564.6, + "end": 7568.76, + "probability": 0.9931 + }, + { + "start": 7569.08, + "end": 7572.36, + "probability": 0.9977 + }, + { + "start": 7572.52, + "end": 7574.24, + "probability": 0.833 + }, + { + "start": 7575.3, + "end": 7577.94, + "probability": 0.9108 + }, + { + "start": 7578.1, + "end": 7580.16, + "probability": 0.7318 + }, + { + "start": 7580.36, + "end": 7583.86, + "probability": 0.9919 + }, + { + "start": 7583.86, + "end": 7588.64, + "probability": 0.9741 + }, + { + "start": 7589.46, + "end": 7592.58, + "probability": 0.978 + }, + { + "start": 7592.82, + "end": 7596.54, + "probability": 0.9946 + }, + { + "start": 7596.54, + "end": 7599.8, + "probability": 0.9939 + }, + { + "start": 7606.97, + "end": 7611.44, + "probability": 0.8707 + }, + { + "start": 7612.5, + "end": 7617.28, + "probability": 0.9921 + }, + { + "start": 7618.04, + "end": 7623.0, + "probability": 0.9971 + }, + { + "start": 7624.04, + "end": 7628.9, + "probability": 0.1951 + }, + { + "start": 7633.98, + "end": 7634.9, + "probability": 0.8474 + }, + { + "start": 7635.04, + "end": 7635.64, + "probability": 0.484 + }, + { + "start": 7641.7, + "end": 7641.74, + "probability": 0.0413 + }, + { + "start": 7641.76, + "end": 7641.76, + "probability": 0.1497 + }, + { + "start": 7641.76, + "end": 7641.76, + "probability": 0.1581 + }, + { + "start": 7828.0, + "end": 7828.0, + "probability": 0.0 + }, + { + "start": 7828.0, + "end": 7828.0, + "probability": 0.0 + }, + { + "start": 7828.0, + "end": 7828.0, + "probability": 0.0 + }, + { + "start": 7828.0, + "end": 7828.0, + "probability": 0.0 + }, + { + "start": 7828.0, + "end": 7828.0, + "probability": 0.0 + }, + { + "start": 7828.0, + "end": 7828.0, + "probability": 0.0 + }, + { + "start": 7828.0, + "end": 7828.0, + "probability": 0.0 + }, + { + "start": 7828.0, + "end": 7828.0, + "probability": 0.0 + }, + { + "start": 7828.2, + "end": 7830.3, + "probability": 0.2516 + }, + { + "start": 7837.36, + "end": 7840.34, + "probability": 0.7489 + }, + { + "start": 7840.44, + "end": 7840.7, + "probability": 0.8641 + }, + { + "start": 7843.24, + "end": 7846.64, + "probability": 0.8905 + }, + { + "start": 7847.24, + "end": 7848.92, + "probability": 0.9138 + }, + { + "start": 7849.62, + "end": 7851.14, + "probability": 0.9935 + }, + { + "start": 7851.74, + "end": 7854.14, + "probability": 0.9984 + }, + { + "start": 7854.7, + "end": 7859.12, + "probability": 0.9791 + }, + { + "start": 7883.28, + "end": 7887.3, + "probability": 0.0318 + }, + { + "start": 7887.3, + "end": 7887.3, + "probability": 0.049 + }, + { + "start": 7887.3, + "end": 7891.24, + "probability": 0.9056 + }, + { + "start": 7904.98, + "end": 7906.49, + "probability": 0.0544 + }, + { + "start": 7960.18, + "end": 7962.9, + "probability": 0.6176 + }, + { + "start": 7964.32, + "end": 7964.42, + "probability": 0.144 + }, + { + "start": 7978.06, + "end": 7979.88, + "probability": 0.7855 + }, + { + "start": 7981.88, + "end": 7985.0, + "probability": 0.9489 + }, + { + "start": 7990.96, + "end": 7991.52, + "probability": 0.5179 + }, + { + "start": 8012.7, + "end": 8013.0, + "probability": 0.0349 + }, + { + "start": 8014.3, + "end": 8015.48, + "probability": 0.828 + }, + { + "start": 8016.12, + "end": 8019.34, + "probability": 0.9895 + }, + { + "start": 8021.92, + "end": 8021.92, + "probability": 0.0165 + }, + { + "start": 8021.92, + "end": 8022.41, + "probability": 0.6993 + }, + { + "start": 8022.78, + "end": 8023.31, + "probability": 0.95 + }, + { + "start": 8023.49, + "end": 8024.8, + "probability": 0.9932 + }, + { + "start": 8025.74, + "end": 8027.02, + "probability": 0.998 + }, + { + "start": 8027.94, + "end": 8029.86, + "probability": 0.8818 + }, + { + "start": 8031.4, + "end": 8032.02, + "probability": 0.9136 + }, + { + "start": 8032.72, + "end": 8033.62, + "probability": 0.9689 + }, + { + "start": 8034.54, + "end": 8035.94, + "probability": 0.9777 + }, + { + "start": 8037.06, + "end": 8041.6, + "probability": 0.9974 + }, + { + "start": 8042.3, + "end": 8047.32, + "probability": 0.9941 + }, + { + "start": 8048.16, + "end": 8053.06, + "probability": 0.0321 + }, + { + "start": 8069.56, + "end": 8070.92, + "probability": 0.1739 + }, + { + "start": 8070.92, + "end": 8071.34, + "probability": 0.007 + }, + { + "start": 8073.36, + "end": 8073.78, + "probability": 0.1287 + }, + { + "start": 8073.78, + "end": 8074.34, + "probability": 0.3225 + }, + { + "start": 8074.42, + "end": 8075.08, + "probability": 0.0621 + }, + { + "start": 8080.76, + "end": 8083.24, + "probability": 0.1086 + }, + { + "start": 8090.32, + "end": 8090.34, + "probability": 0.0186 + }, + { + "start": 8154.24, + "end": 8158.66, + "probability": 0.6911 + }, + { + "start": 8159.34, + "end": 8160.76, + "probability": 0.9738 + }, + { + "start": 8161.08, + "end": 8162.62, + "probability": 0.8169 + }, + { + "start": 8163.8, + "end": 8166.64, + "probability": 0.9427 + }, + { + "start": 8169.38, + "end": 8170.28, + "probability": 0.7395 + }, + { + "start": 8170.88, + "end": 8173.44, + "probability": 0.9807 + }, + { + "start": 8173.54, + "end": 8173.86, + "probability": 0.8132 + }, + { + "start": 8174.54, + "end": 8175.36, + "probability": 0.265 + }, + { + "start": 8175.4, + "end": 8177.5, + "probability": 0.9516 + }, + { + "start": 8177.62, + "end": 8178.88, + "probability": 0.963 + }, + { + "start": 8179.3, + "end": 8180.44, + "probability": 0.8048 + }, + { + "start": 8181.06, + "end": 8184.26, + "probability": 0.9821 + }, + { + "start": 8184.4, + "end": 8186.66, + "probability": 0.879 + }, + { + "start": 8187.52, + "end": 8194.02, + "probability": 0.9947 + }, + { + "start": 8194.42, + "end": 8195.84, + "probability": 0.0065 + }, + { + "start": 8202.63, + "end": 8204.28, + "probability": 0.0446 + }, + { + "start": 8211.44, + "end": 8212.86, + "probability": 0.2118 + }, + { + "start": 8235.58, + "end": 8235.58, + "probability": 0.1741 + }, + { + "start": 8235.58, + "end": 8235.58, + "probability": 0.1135 + }, + { + "start": 8235.58, + "end": 8237.48, + "probability": 0.354 + }, + { + "start": 8237.48, + "end": 8238.92, + "probability": 0.4199 + }, + { + "start": 8382.0, + "end": 8382.0, + "probability": 0.0 + }, + { + "start": 8382.0, + "end": 8382.0, + "probability": 0.0 + }, + { + "start": 8382.0, + "end": 8382.0, + "probability": 0.0 + }, + { + "start": 8382.0, + "end": 8382.0, + "probability": 0.0 + }, + { + "start": 8382.0, + "end": 8382.0, + "probability": 0.0 + }, + { + "start": 8382.0, + "end": 8382.0, + "probability": 0.0 + }, + { + "start": 8382.0, + "end": 8382.0, + "probability": 0.0 + }, + { + "start": 8382.0, + "end": 8382.0, + "probability": 0.0 + }, + { + "start": 8382.26, + "end": 8382.7, + "probability": 0.0149 + }, + { + "start": 8383.72, + "end": 8387.56, + "probability": 0.7597 + }, + { + "start": 8388.56, + "end": 8391.38, + "probability": 0.9064 + }, + { + "start": 8392.38, + "end": 8394.14, + "probability": 0.9648 + }, + { + "start": 8395.16, + "end": 8399.06, + "probability": 0.9883 + }, + { + "start": 8399.58, + "end": 8405.72, + "probability": 0.9879 + }, + { + "start": 8411.16, + "end": 8412.12, + "probability": 0.0114 + }, + { + "start": 8430.92, + "end": 8432.66, + "probability": 0.5642 + }, + { + "start": 8433.08, + "end": 8433.1, + "probability": 0.0003 + }, + { + "start": 8433.62, + "end": 8434.16, + "probability": 0.1527 + }, + { + "start": 8435.04, + "end": 8435.64, + "probability": 0.4341 + }, + { + "start": 8437.55, + "end": 8439.94, + "probability": 0.8447 + }, + { + "start": 8440.08, + "end": 8441.71, + "probability": 0.9761 + }, + { + "start": 8443.58, + "end": 8444.0, + "probability": 0.8705 + }, + { + "start": 8445.28, + "end": 8446.96, + "probability": 0.641 + }, + { + "start": 8447.44, + "end": 8451.7, + "probability": 0.8807 + }, + { + "start": 8459.44, + "end": 8460.14, + "probability": 0.0177 + }, + { + "start": 8463.11, + "end": 8463.46, + "probability": 0.3546 + }, + { + "start": 8466.7, + "end": 8466.7, + "probability": 0.026 + }, + { + "start": 8466.7, + "end": 8466.7, + "probability": 0.2593 + }, + { + "start": 8466.7, + "end": 8468.48, + "probability": 0.0782 + }, + { + "start": 8468.48, + "end": 8472.0, + "probability": 0.0923 + }, + { + "start": 8493.2, + "end": 8493.68, + "probability": 0.1141 + }, + { + "start": 8503.3, + "end": 8504.16, + "probability": 0.4583 + }, + { + "start": 8504.9, + "end": 8509.14, + "probability": 0.9897 + }, + { + "start": 8510.74, + "end": 8514.46, + "probability": 0.0064 + }, + { + "start": 8516.4, + "end": 8518.2, + "probability": 0.0924 + }, + { + "start": 8523.48, + "end": 8523.96, + "probability": 0.181 + }, + { + "start": 8524.0, + "end": 8524.14, + "probability": 0.0464 + }, + { + "start": 8589.88, + "end": 8594.94, + "probability": 0.8329 + }, + { + "start": 8596.2, + "end": 8598.82, + "probability": 0.7595 + }, + { + "start": 8601.16, + "end": 8606.64, + "probability": 0.9284 + }, + { + "start": 8609.3, + "end": 8615.1, + "probability": 0.9569 + }, + { + "start": 8616.4, + "end": 8617.14, + "probability": 0.7559 + }, + { + "start": 8618.28, + "end": 8619.18, + "probability": 0.694 + }, + { + "start": 8619.9, + "end": 8621.92, + "probability": 0.9681 + }, + { + "start": 8622.82, + "end": 8626.14, + "probability": 0.8715 + }, + { + "start": 8626.88, + "end": 8631.44, + "probability": 0.9953 + }, + { + "start": 8632.1, + "end": 8636.52, + "probability": 0.9981 + }, + { + "start": 8684.4, + "end": 8684.84, + "probability": 0.0106 + }, + { + "start": 8692.78, + "end": 8695.68, + "probability": 0.1786 + }, + { + "start": 8750.98, + "end": 8751.1, + "probability": 0.3414 + }, + { + "start": 8752.1, + "end": 8753.8, + "probability": 0.5395 + }, + { + "start": 8769.18, + "end": 8774.16, + "probability": 0.9397 + }, + { + "start": 8774.28, + "end": 8776.4, + "probability": 0.9778 + }, + { + "start": 8777.95, + "end": 8781.84, + "probability": 0.7699 + }, + { + "start": 8782.48, + "end": 8787.62, + "probability": 0.996 + }, + { + "start": 8788.2, + "end": 8789.08, + "probability": 0.983 + }, + { + "start": 8789.66, + "end": 8793.84, + "probability": 0.9976 + }, + { + "start": 8809.64, + "end": 8810.25, + "probability": 0.0276 + }, + { + "start": 8820.28, + "end": 8821.12, + "probability": 0.0892 + }, + { + "start": 8821.88, + "end": 8822.72, + "probability": 0.1596 + }, + { + "start": 8880.26, + "end": 8880.3, + "probability": 0.4453 + }, + { + "start": 8880.64, + "end": 8881.6, + "probability": 0.0195 + }, + { + "start": 8934.8, + "end": 8936.98, + "probability": 0.8046 + }, + { + "start": 8937.72, + "end": 8939.94, + "probability": 0.1053 + }, + { + "start": 8941.64, + "end": 8941.96, + "probability": 0.0164 + }, + { + "start": 8958.72, + "end": 8958.82, + "probability": 0.6737 + }, + { + "start": 8960.5, + "end": 8961.0, + "probability": 0.4225 + }, + { + "start": 8963.18, + "end": 8967.68, + "probability": 0.8936 + }, + { + "start": 8969.02, + "end": 8971.82, + "probability": 0.2676 + }, + { + "start": 8976.54, + "end": 8977.02, + "probability": 0.7949 + }, + { + "start": 8978.1, + "end": 8978.2, + "probability": 0.2803 + }, + { + "start": 8978.26, + "end": 8978.88, + "probability": 0.6404 + }, + { + "start": 8978.92, + "end": 8979.42, + "probability": 0.9215 + }, + { + "start": 8979.5, + "end": 8980.3, + "probability": 0.8432 + }, + { + "start": 8980.34, + "end": 8980.8, + "probability": 0.842 + }, + { + "start": 8980.86, + "end": 8982.08, + "probability": 0.8676 + }, + { + "start": 8982.58, + "end": 8986.34, + "probability": 0.9869 + }, + { + "start": 8986.78, + "end": 8991.06, + "probability": 0.9948 + }, + { + "start": 8991.74, + "end": 8993.94, + "probability": 0.0084 + }, + { + "start": 8996.3, + "end": 9001.88, + "probability": 0.1657 + }, + { + "start": 9002.86, + "end": 9005.2, + "probability": 0.0136 + }, + { + "start": 9022.7, + "end": 9024.88, + "probability": 0.1266 + }, + { + "start": 9024.9, + "end": 9027.0, + "probability": 0.4038 + }, + { + "start": 9071.48, + "end": 9071.6, + "probability": 0.1498 + }, + { + "start": 9071.6, + "end": 9072.3, + "probability": 0.522 + }, + { + "start": 9073.36, + "end": 9076.96, + "probability": 0.8748 + }, + { + "start": 9077.78, + "end": 9080.28, + "probability": 0.8103 + }, + { + "start": 9080.82, + "end": 9084.68, + "probability": 0.9888 + }, + { + "start": 9085.0, + "end": 9089.22, + "probability": 0.9403 + }, + { + "start": 9100.42, + "end": 9101.25, + "probability": 0.0903 + }, + { + "start": 9110.62, + "end": 9112.2, + "probability": 0.6619 + }, + { + "start": 9112.22, + "end": 9112.32, + "probability": 0.134 + }, + { + "start": 9112.96, + "end": 9113.78, + "probability": 0.2289 + }, + { + "start": 9114.18, + "end": 9116.2, + "probability": 0.0619 + }, + { + "start": 9116.34, + "end": 9116.88, + "probability": 0.1117 + }, + { + "start": 9117.06, + "end": 9117.34, + "probability": 0.013 + }, + { + "start": 9118.16, + "end": 9118.88, + "probability": 0.2064 + }, + { + "start": 9124.81, + "end": 9125.5, + "probability": 0.0537 + }, + { + "start": 9242.0, + "end": 9242.0, + "probability": 0.0 + }, + { + "start": 9242.0, + "end": 9242.0, + "probability": 0.0 + }, + { + "start": 9242.72, + "end": 9245.0, + "probability": 0.9199 + }, + { + "start": 9246.08, + "end": 9250.9, + "probability": 0.9963 + }, + { + "start": 9251.1, + "end": 9251.48, + "probability": 0.0081 + }, + { + "start": 9285.32, + "end": 9288.26, + "probability": 0.0918 + }, + { + "start": 9293.02, + "end": 9293.04, + "probability": 0.3193 + }, + { + "start": 9293.04, + "end": 9293.44, + "probability": 0.0444 + }, + { + "start": 9293.44, + "end": 9293.54, + "probability": 0.4896 + }, + { + "start": 9293.6, + "end": 9294.44, + "probability": 0.0357 + }, + { + "start": 9388.0, + "end": 9388.0, + "probability": 0.0 + }, + { + "start": 9388.0, + "end": 9388.0, + "probability": 0.0 + }, + { + "start": 9388.0, + "end": 9388.0, + "probability": 0.0 + }, + { + "start": 9388.0, + "end": 9388.0, + "probability": 0.0 + }, + { + "start": 9388.0, + "end": 9388.0, + "probability": 0.0 + }, + { + "start": 9388.0, + "end": 9388.0, + "probability": 0.0 + }, + { + "start": 9430.36, + "end": 9430.68, + "probability": 0.0099 + }, + { + "start": 9472.42, + "end": 9473.98, + "probability": 0.8827 + }, + { + "start": 9482.74, + "end": 9484.48, + "probability": 0.9193 + }, + { + "start": 9505.1, + "end": 9505.92, + "probability": 0.7698 + }, + { + "start": 9517.32, + "end": 9517.88, + "probability": 0.0697 + }, + { + "start": 9517.9, + "end": 9520.66, + "probability": 0.7369 + }, + { + "start": 9521.88, + "end": 9522.62, + "probability": 0.5047 + }, + { + "start": 9534.94, + "end": 9535.98, + "probability": 0.1878 + }, + { + "start": 9536.0, + "end": 9536.0, + "probability": 0.0 + }, + { + "start": 9536.1, + "end": 9536.42, + "probability": 0.0431 + }, + { + "start": 9536.42, + "end": 9537.28, + "probability": 0.1472 + }, + { + "start": 9538.28, + "end": 9541.42, + "probability": 0.9756 + }, + { + "start": 9546.7, + "end": 9548.32, + "probability": 0.7364 + }, + { + "start": 9549.24, + "end": 9550.38, + "probability": 0.8455 + }, + { + "start": 9550.96, + "end": 9553.14, + "probability": 0.8966 + }, + { + "start": 9554.0, + "end": 9559.3, + "probability": 0.996 + }, + { + "start": 9559.7, + "end": 9564.42, + "probability": 0.9957 + }, + { + "start": 9565.32, + "end": 9566.11, + "probability": 0.0162 + }, + { + "start": 9576.34, + "end": 9577.06, + "probability": 0.1352 + }, + { + "start": 9577.64, + "end": 9580.24, + "probability": 0.3621 + }, + { + "start": 9586.65, + "end": 9587.25, + "probability": 0.1931 + }, + { + "start": 9601.92, + "end": 9602.28, + "probability": 0.1426 + }, + { + "start": 9602.28, + "end": 9604.08, + "probability": 0.0918 + }, + { + "start": 9626.98, + "end": 9627.88, + "probability": 0.4003 + }, + { + "start": 9630.34, + "end": 9631.22, + "probability": 0.039 + }, + { + "start": 9696.0, + "end": 9696.0, + "probability": 0.0 + }, + { + "start": 9696.0, + "end": 9696.0, + "probability": 0.0 + }, + { + "start": 9696.0, + "end": 9696.0, + "probability": 0.0 + }, + { + "start": 9696.0, + "end": 9696.0, + "probability": 0.0 + }, + { + "start": 9696.0, + "end": 9696.0, + "probability": 0.0 + }, + { + "start": 9696.0, + "end": 9696.0, + "probability": 0.0 + }, + { + "start": 9696.93, + "end": 9697.48, + "probability": 0.0775 + }, + { + "start": 9698.0, + "end": 9698.66, + "probability": 0.0165 + }, + { + "start": 9698.77, + "end": 9702.14, + "probability": 0.279 + }, + { + "start": 9702.8, + "end": 9706.12, + "probability": 0.2674 + }, + { + "start": 9708.43, + "end": 9714.3, + "probability": 0.9954 + }, + { + "start": 9715.14, + "end": 9720.6, + "probability": 0.9948 + }, + { + "start": 9722.14, + "end": 9725.84, + "probability": 0.2226 + }, + { + "start": 9751.18, + "end": 9752.48, + "probability": 0.1657 + }, + { + "start": 9771.24, + "end": 9773.34, + "probability": 0.2362 + }, + { + "start": 9775.6, + "end": 9776.36, + "probability": 0.2809 + }, + { + "start": 9781.2, + "end": 9783.16, + "probability": 0.0379 + }, + { + "start": 9810.92, + "end": 9813.8, + "probability": 0.0189 + }, + { + "start": 9814.01, + "end": 9815.89, + "probability": 0.0946 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.3608 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.3154 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.2919 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.1286 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.1853 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.2004 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.0 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.0 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.0 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.0 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.0 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.0 + }, + { + "start": 9816.0, + "end": 9816.0, + "probability": 0.0 + }, + { + "start": 9819.68, + "end": 9821.42, + "probability": 0.8763 + }, + { + "start": 9823.0, + "end": 9824.46, + "probability": 0.8442 + }, + { + "start": 9824.98, + "end": 9826.14, + "probability": 0.8223 + }, + { + "start": 9826.72, + "end": 9831.1, + "probability": 0.9863 + }, + { + "start": 9831.54, + "end": 9836.36, + "probability": 0.9959 + }, + { + "start": 9836.72, + "end": 9837.93, + "probability": 0.0469 + }, + { + "start": 9848.58, + "end": 9849.72, + "probability": 0.0726 + }, + { + "start": 9857.04, + "end": 9858.2, + "probability": 0.0391 + }, + { + "start": 9874.44, + "end": 9877.42, + "probability": 0.13 + }, + { + "start": 9878.2, + "end": 9882.42, + "probability": 0.0388 + }, + { + "start": 9891.64, + "end": 9893.26, + "probability": 0.0856 + }, + { + "start": 9893.3, + "end": 9894.45, + "probability": 0.0269 + }, + { + "start": 9959.4, + "end": 9960.14, + "probability": 0.0744 + }, + { + "start": 9960.14, + "end": 9960.74, + "probability": 0.0506 + }, + { + "start": 9960.74, + "end": 9960.92, + "probability": 0.0122 + }, + { + "start": 9962.52, + "end": 9965.5, + "probability": 0.2938 + }, + { + "start": 9966.12, + "end": 9968.21, + "probability": 0.0168 + }, + { + "start": 9976.46, + "end": 9978.02, + "probability": 0.0345 + }, + { + "start": 9980.64, + "end": 9980.78, + "probability": 0.0159 + }, + { + "start": 10174.0, + "end": 10174.0, + "probability": 0.0 + }, + { + "start": 10174.0, + "end": 10174.0, + "probability": 0.0 + }, + { + "start": 10174.0, + "end": 10174.0, + "probability": 0.0 + }, + { + "start": 10174.0, + "end": 10174.0, + "probability": 0.0 + }, + { + "start": 10174.0, + "end": 10174.0, + "probability": 0.0 + }, + { + "start": 10174.0, + "end": 10174.0, + "probability": 0.0 + }, + { + "start": 10174.5, + "end": 10174.96, + "probability": 0.5255 + }, + { + "start": 10175.56, + "end": 10176.42, + "probability": 0.8665 + }, + { + "start": 10176.58, + "end": 10177.98, + "probability": 0.9217 + }, + { + "start": 10178.18, + "end": 10181.72, + "probability": 0.7964 + }, + { + "start": 10195.62, + "end": 10196.38, + "probability": 0.5896 + }, + { + "start": 10196.44, + "end": 10198.16, + "probability": 0.9366 + }, + { + "start": 10199.2, + "end": 10201.72, + "probability": 0.8989 + }, + { + "start": 10203.14, + "end": 10205.12, + "probability": 0.9604 + }, + { + "start": 10205.96, + "end": 10206.3, + "probability": 0.777 + }, + { + "start": 10207.02, + "end": 10208.54, + "probability": 0.9784 + }, + { + "start": 10209.22, + "end": 10210.26, + "probability": 0.7694 + }, + { + "start": 10211.06, + "end": 10212.3, + "probability": 0.8742 + }, + { + "start": 10212.88, + "end": 10214.3, + "probability": 0.6486 + }, + { + "start": 10215.46, + "end": 10220.94, + "probability": 0.9914 + }, + { + "start": 10222.36, + "end": 10228.88, + "probability": 0.9982 + }, + { + "start": 10240.79, + "end": 10241.58, + "probability": 0.0113 + }, + { + "start": 10244.54, + "end": 10247.58, + "probability": 0.2425 + }, + { + "start": 10247.76, + "end": 10250.62, + "probability": 0.0249 + }, + { + "start": 10258.42, + "end": 10265.46, + "probability": 0.1122 + }, + { + "start": 10279.96, + "end": 10280.64, + "probability": 0.0267 + }, + { + "start": 10280.64, + "end": 10283.68, + "probability": 0.0109 + }, + { + "start": 10287.94, + "end": 10290.7, + "probability": 0.0955 + }, + { + "start": 10292.69, + "end": 10293.64, + "probability": 0.0397 + }, + { + "start": 10293.98, + "end": 10295.45, + "probability": 0.017 + }, + { + "start": 10297.18, + "end": 10297.64, + "probability": 0.1147 + }, + { + "start": 10299.13, + "end": 10299.8, + "probability": 0.1682 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10312.0, + "end": 10312.0, + "probability": 0.0 + }, + { + "start": 10313.44, + "end": 10316.52, + "probability": 0.1448 + }, + { + "start": 10332.02, + "end": 10333.08, + "probability": 0.1249 + }, + { + "start": 10333.08, + "end": 10333.08, + "probability": 0.2349 + }, + { + "start": 10333.08, + "end": 10333.08, + "probability": 0.2465 + }, + { + "start": 10333.08, + "end": 10333.74, + "probability": 0.1985 + }, + { + "start": 10360.3, + "end": 10363.54, + "probability": 0.0491 + }, + { + "start": 10363.54, + "end": 10363.6, + "probability": 0.2205 + }, + { + "start": 10363.6, + "end": 10363.81, + "probability": 0.0315 + }, + { + "start": 10364.94, + "end": 10365.38, + "probability": 0.0674 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10487.0, + "end": 10487.0, + "probability": 0.0 + }, + { + "start": 10495.92, + "end": 10497.66, + "probability": 0.0551 + }, + { + "start": 10498.6, + "end": 10499.86, + "probability": 0.027 + }, + { + "start": 10499.86, + "end": 10499.88, + "probability": 0.4051 + }, + { + "start": 10499.88, + "end": 10500.14, + "probability": 0.0463 + }, + { + "start": 10500.14, + "end": 10503.18, + "probability": 0.1021 + }, + { + "start": 10528.12, + "end": 10528.26, + "probability": 0.0402 + } + ], + "segments_count": 2576, + "words_count": 12200, + "avg_words_per_segment": 4.736, + "avg_segment_duration": 2.1549, + "avg_words_per_minute": 68.4541, + "plenum_id": "42279", + "duration": 10693.3, + "title": null, + "plenum_date": "2015-05-14" +} \ No newline at end of file