diff --git "a/102693/metadata.json" "b/102693/metadata.json" new file mode 100644--- /dev/null +++ "b/102693/metadata.json" @@ -0,0 +1,54652 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "102693", + "quality_score": 0.8078, + "per_segment_quality_scores": [ + { + "start": 39.92, + "end": 41.32, + "probability": 0.0637 + }, + { + "start": 41.32, + "end": 41.84, + "probability": 0.0368 + }, + { + "start": 41.86, + "end": 47.28, + "probability": 0.3689 + }, + { + "start": 48.46, + "end": 50.84, + "probability": 0.1585 + }, + { + "start": 54.46, + "end": 56.48, + "probability": 0.0744 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.0, + "end": 142.0, + "probability": 0.0 + }, + { + "start": 142.1, + "end": 143.22, + "probability": 0.5386 + }, + { + "start": 143.36, + "end": 148.3, + "probability": 0.1031 + }, + { + "start": 149.26, + "end": 152.24, + "probability": 0.2641 + }, + { + "start": 152.38, + "end": 156.14, + "probability": 0.0312 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.0, + "end": 275.0, + "probability": 0.0 + }, + { + "start": 275.46, + "end": 275.46, + "probability": 0.4169 + }, + { + "start": 275.46, + "end": 278.74, + "probability": 0.8354 + }, + { + "start": 278.76, + "end": 282.08, + "probability": 0.8528 + }, + { + "start": 282.16, + "end": 282.96, + "probability": 0.9773 + }, + { + "start": 283.52, + "end": 287.46, + "probability": 0.8296 + }, + { + "start": 288.42, + "end": 292.1, + "probability": 0.8752 + }, + { + "start": 292.76, + "end": 297.4, + "probability": 0.9845 + }, + { + "start": 297.48, + "end": 298.23, + "probability": 0.915 + }, + { + "start": 298.98, + "end": 302.8, + "probability": 0.9073 + }, + { + "start": 303.38, + "end": 306.5, + "probability": 0.9543 + }, + { + "start": 306.5, + "end": 309.78, + "probability": 0.9717 + }, + { + "start": 312.14, + "end": 316.72, + "probability": 0.8926 + }, + { + "start": 316.76, + "end": 319.3, + "probability": 0.9459 + }, + { + "start": 319.5, + "end": 320.9, + "probability": 0.7907 + }, + { + "start": 321.64, + "end": 326.02, + "probability": 0.9933 + }, + { + "start": 326.02, + "end": 330.48, + "probability": 0.9597 + }, + { + "start": 331.42, + "end": 334.66, + "probability": 0.9509 + }, + { + "start": 334.66, + "end": 338.3, + "probability": 0.9692 + }, + { + "start": 338.38, + "end": 342.64, + "probability": 0.9913 + }, + { + "start": 342.64, + "end": 347.72, + "probability": 0.9427 + }, + { + "start": 347.78, + "end": 349.44, + "probability": 0.9933 + }, + { + "start": 350.24, + "end": 355.28, + "probability": 0.9338 + }, + { + "start": 355.8, + "end": 360.56, + "probability": 0.9902 + }, + { + "start": 360.56, + "end": 363.28, + "probability": 0.9765 + }, + { + "start": 363.78, + "end": 364.14, + "probability": 0.5498 + }, + { + "start": 364.2, + "end": 364.74, + "probability": 0.9163 + }, + { + "start": 364.82, + "end": 367.18, + "probability": 0.7741 + }, + { + "start": 367.3, + "end": 370.86, + "probability": 0.9463 + }, + { + "start": 370.86, + "end": 375.1, + "probability": 0.9989 + }, + { + "start": 375.1, + "end": 378.16, + "probability": 0.8458 + }, + { + "start": 378.82, + "end": 379.54, + "probability": 0.4799 + }, + { + "start": 379.7, + "end": 384.18, + "probability": 0.9657 + }, + { + "start": 384.18, + "end": 388.42, + "probability": 0.997 + }, + { + "start": 388.88, + "end": 389.18, + "probability": 0.7443 + }, + { + "start": 391.02, + "end": 392.72, + "probability": 0.7503 + }, + { + "start": 400.04, + "end": 400.76, + "probability": 0.7818 + }, + { + "start": 402.6, + "end": 406.12, + "probability": 0.9797 + }, + { + "start": 407.12, + "end": 411.04, + "probability": 0.925 + }, + { + "start": 411.18, + "end": 412.19, + "probability": 0.4297 + }, + { + "start": 412.9, + "end": 414.3, + "probability": 0.8304 + }, + { + "start": 415.14, + "end": 417.24, + "probability": 0.9886 + }, + { + "start": 418.22, + "end": 418.8, + "probability": 0.8955 + }, + { + "start": 419.62, + "end": 420.82, + "probability": 0.9446 + }, + { + "start": 421.62, + "end": 423.34, + "probability": 0.9831 + }, + { + "start": 424.62, + "end": 428.32, + "probability": 0.9878 + }, + { + "start": 429.4, + "end": 430.48, + "probability": 0.8686 + }, + { + "start": 431.54, + "end": 432.26, + "probability": 0.9296 + }, + { + "start": 432.46, + "end": 435.34, + "probability": 0.8104 + }, + { + "start": 435.46, + "end": 437.41, + "probability": 0.9766 + }, + { + "start": 438.74, + "end": 438.84, + "probability": 0.3945 + }, + { + "start": 438.84, + "end": 444.12, + "probability": 0.9673 + }, + { + "start": 444.92, + "end": 446.64, + "probability": 0.9832 + }, + { + "start": 447.28, + "end": 449.06, + "probability": 0.991 + }, + { + "start": 450.18, + "end": 454.72, + "probability": 0.7837 + }, + { + "start": 456.18, + "end": 460.34, + "probability": 0.9355 + }, + { + "start": 461.7, + "end": 466.62, + "probability": 0.9914 + }, + { + "start": 467.74, + "end": 470.19, + "probability": 0.6748 + }, + { + "start": 470.9, + "end": 475.12, + "probability": 0.9984 + }, + { + "start": 475.14, + "end": 475.9, + "probability": 0.4014 + }, + { + "start": 475.9, + "end": 475.96, + "probability": 0.6499 + }, + { + "start": 475.96, + "end": 479.96, + "probability": 0.9735 + }, + { + "start": 480.24, + "end": 484.0, + "probability": 0.9047 + }, + { + "start": 484.82, + "end": 486.4, + "probability": 0.9354 + }, + { + "start": 486.5, + "end": 490.72, + "probability": 0.9155 + }, + { + "start": 491.3, + "end": 493.84, + "probability": 0.8672 + }, + { + "start": 494.4, + "end": 495.16, + "probability": 0.7864 + }, + { + "start": 495.38, + "end": 500.68, + "probability": 0.8096 + }, + { + "start": 501.04, + "end": 501.36, + "probability": 0.7512 + }, + { + "start": 502.32, + "end": 502.88, + "probability": 0.7176 + }, + { + "start": 503.96, + "end": 505.06, + "probability": 0.94 + }, + { + "start": 505.94, + "end": 509.52, + "probability": 0.8802 + }, + { + "start": 509.74, + "end": 513.24, + "probability": 0.996 + }, + { + "start": 513.52, + "end": 516.1, + "probability": 0.8899 + }, + { + "start": 516.26, + "end": 518.47, + "probability": 0.84 + }, + { + "start": 520.1, + "end": 521.32, + "probability": 0.8858 + }, + { + "start": 521.88, + "end": 522.34, + "probability": 0.8124 + }, + { + "start": 522.56, + "end": 523.95, + "probability": 0.5006 + }, + { + "start": 524.52, + "end": 525.92, + "probability": 0.1652 + }, + { + "start": 526.7, + "end": 528.58, + "probability": 0.7805 + }, + { + "start": 529.22, + "end": 531.2, + "probability": 0.0253 + }, + { + "start": 531.4, + "end": 533.84, + "probability": 0.7939 + }, + { + "start": 533.86, + "end": 534.02, + "probability": 0.8617 + }, + { + "start": 534.14, + "end": 536.78, + "probability": 0.9641 + }, + { + "start": 536.78, + "end": 540.45, + "probability": 0.9354 + }, + { + "start": 540.72, + "end": 542.74, + "probability": 0.9624 + }, + { + "start": 545.33, + "end": 550.98, + "probability": 0.7947 + }, + { + "start": 550.98, + "end": 555.7, + "probability": 0.9978 + }, + { + "start": 556.1, + "end": 556.95, + "probability": 0.9985 + }, + { + "start": 557.16, + "end": 561.66, + "probability": 0.979 + }, + { + "start": 561.9, + "end": 562.93, + "probability": 0.8186 + }, + { + "start": 563.1, + "end": 566.58, + "probability": 0.797 + }, + { + "start": 566.8, + "end": 568.9, + "probability": 0.8404 + }, + { + "start": 571.1, + "end": 571.48, + "probability": 0.0267 + }, + { + "start": 572.76, + "end": 572.86, + "probability": 0.0159 + }, + { + "start": 572.86, + "end": 572.86, + "probability": 0.5764 + }, + { + "start": 572.86, + "end": 575.96, + "probability": 0.6225 + }, + { + "start": 576.28, + "end": 577.06, + "probability": 0.6667 + }, + { + "start": 578.06, + "end": 578.14, + "probability": 0.5297 + }, + { + "start": 578.26, + "end": 580.06, + "probability": 0.7178 + }, + { + "start": 580.22, + "end": 584.4, + "probability": 0.9831 + }, + { + "start": 584.4, + "end": 590.08, + "probability": 0.4904 + }, + { + "start": 590.22, + "end": 594.24, + "probability": 0.9354 + }, + { + "start": 595.2, + "end": 596.58, + "probability": 0.7844 + }, + { + "start": 596.84, + "end": 598.78, + "probability": 0.965 + }, + { + "start": 599.42, + "end": 600.78, + "probability": 0.9338 + }, + { + "start": 600.92, + "end": 604.5, + "probability": 0.999 + }, + { + "start": 604.94, + "end": 608.12, + "probability": 0.9548 + }, + { + "start": 608.22, + "end": 609.68, + "probability": 0.7472 + }, + { + "start": 611.22, + "end": 611.78, + "probability": 0.7142 + }, + { + "start": 611.8, + "end": 612.58, + "probability": 0.2321 + }, + { + "start": 612.66, + "end": 613.88, + "probability": 0.9338 + }, + { + "start": 615.18, + "end": 617.86, + "probability": 0.5537 + }, + { + "start": 618.11, + "end": 619.1, + "probability": 0.6236 + }, + { + "start": 619.1, + "end": 620.3, + "probability": 0.5871 + }, + { + "start": 621.18, + "end": 623.46, + "probability": 0.4694 + }, + { + "start": 623.58, + "end": 626.34, + "probability": 0.6458 + }, + { + "start": 626.86, + "end": 627.54, + "probability": 0.4129 + }, + { + "start": 628.32, + "end": 631.29, + "probability": 0.9914 + }, + { + "start": 632.3, + "end": 636.22, + "probability": 0.9899 + }, + { + "start": 636.26, + "end": 636.44, + "probability": 0.8665 + }, + { + "start": 638.22, + "end": 639.24, + "probability": 0.5414 + }, + { + "start": 639.96, + "end": 641.0, + "probability": 0.8313 + }, + { + "start": 642.36, + "end": 644.08, + "probability": 0.9993 + }, + { + "start": 645.48, + "end": 650.54, + "probability": 0.9719 + }, + { + "start": 651.18, + "end": 656.56, + "probability": 0.9972 + }, + { + "start": 657.28, + "end": 663.34, + "probability": 0.9993 + }, + { + "start": 664.18, + "end": 666.2, + "probability": 0.9993 + }, + { + "start": 667.04, + "end": 670.94, + "probability": 0.9976 + }, + { + "start": 671.04, + "end": 674.38, + "probability": 0.9819 + }, + { + "start": 674.38, + "end": 677.94, + "probability": 0.9984 + }, + { + "start": 678.44, + "end": 680.46, + "probability": 0.8712 + }, + { + "start": 681.02, + "end": 685.02, + "probability": 0.9331 + }, + { + "start": 685.04, + "end": 689.2, + "probability": 0.882 + }, + { + "start": 689.9, + "end": 692.94, + "probability": 0.946 + }, + { + "start": 693.52, + "end": 696.12, + "probability": 0.9483 + }, + { + "start": 696.58, + "end": 697.96, + "probability": 0.8 + }, + { + "start": 697.98, + "end": 698.61, + "probability": 0.9133 + }, + { + "start": 698.82, + "end": 699.06, + "probability": 0.4818 + }, + { + "start": 699.06, + "end": 701.18, + "probability": 0.9904 + }, + { + "start": 701.24, + "end": 703.08, + "probability": 0.9966 + }, + { + "start": 703.08, + "end": 704.12, + "probability": 0.9273 + }, + { + "start": 704.38, + "end": 706.06, + "probability": 0.6698 + }, + { + "start": 706.14, + "end": 707.44, + "probability": 0.9414 + }, + { + "start": 708.02, + "end": 709.84, + "probability": 0.9581 + }, + { + "start": 710.18, + "end": 710.76, + "probability": 0.9189 + }, + { + "start": 710.94, + "end": 714.16, + "probability": 0.7669 + }, + { + "start": 714.35, + "end": 715.02, + "probability": 0.4675 + }, + { + "start": 715.02, + "end": 715.02, + "probability": 0.1944 + }, + { + "start": 715.02, + "end": 716.22, + "probability": 0.7869 + }, + { + "start": 716.36, + "end": 719.54, + "probability": 0.9776 + }, + { + "start": 719.7, + "end": 724.08, + "probability": 0.9929 + }, + { + "start": 724.4, + "end": 728.7, + "probability": 0.9714 + }, + { + "start": 729.1, + "end": 731.56, + "probability": 0.9381 + }, + { + "start": 731.68, + "end": 731.94, + "probability": 0.277 + }, + { + "start": 731.94, + "end": 732.22, + "probability": 0.6832 + }, + { + "start": 732.6, + "end": 734.78, + "probability": 0.8512 + }, + { + "start": 741.18, + "end": 741.94, + "probability": 0.6983 + }, + { + "start": 742.46, + "end": 744.84, + "probability": 0.7611 + }, + { + "start": 745.64, + "end": 748.84, + "probability": 0.9227 + }, + { + "start": 748.98, + "end": 749.52, + "probability": 0.6327 + }, + { + "start": 750.28, + "end": 753.38, + "probability": 0.9183 + }, + { + "start": 753.42, + "end": 753.76, + "probability": 0.7153 + }, + { + "start": 754.72, + "end": 756.16, + "probability": 0.7851 + }, + { + "start": 756.44, + "end": 759.66, + "probability": 0.5568 + }, + { + "start": 759.66, + "end": 760.2, + "probability": 0.8551 + }, + { + "start": 760.4, + "end": 761.12, + "probability": 0.9236 + }, + { + "start": 761.52, + "end": 763.84, + "probability": 0.9609 + }, + { + "start": 765.65, + "end": 768.78, + "probability": 0.9633 + }, + { + "start": 769.02, + "end": 772.2, + "probability": 0.4998 + }, + { + "start": 772.66, + "end": 775.46, + "probability": 0.9679 + }, + { + "start": 777.14, + "end": 781.66, + "probability": 0.863 + }, + { + "start": 782.12, + "end": 785.66, + "probability": 0.9922 + }, + { + "start": 786.12, + "end": 787.08, + "probability": 0.6785 + }, + { + "start": 787.2, + "end": 788.48, + "probability": 0.5945 + }, + { + "start": 788.62, + "end": 790.4, + "probability": 0.9098 + }, + { + "start": 790.72, + "end": 792.01, + "probability": 0.824 + }, + { + "start": 792.6, + "end": 795.62, + "probability": 0.7498 + }, + { + "start": 795.78, + "end": 796.68, + "probability": 0.8986 + }, + { + "start": 797.04, + "end": 797.62, + "probability": 0.3185 + }, + { + "start": 797.62, + "end": 799.5, + "probability": 0.7979 + }, + { + "start": 800.61, + "end": 803.14, + "probability": 0.9663 + }, + { + "start": 803.22, + "end": 804.18, + "probability": 0.7291 + }, + { + "start": 805.9, + "end": 807.32, + "probability": 0.7843 + }, + { + "start": 807.56, + "end": 810.24, + "probability": 0.965 + }, + { + "start": 810.24, + "end": 812.38, + "probability": 0.9944 + }, + { + "start": 812.96, + "end": 814.18, + "probability": 0.8691 + }, + { + "start": 814.18, + "end": 817.19, + "probability": 0.9247 + }, + { + "start": 818.22, + "end": 818.5, + "probability": 0.151 + }, + { + "start": 819.84, + "end": 821.24, + "probability": 0.0134 + }, + { + "start": 822.17, + "end": 823.54, + "probability": 0.0682 + }, + { + "start": 823.54, + "end": 824.45, + "probability": 0.6537 + }, + { + "start": 825.14, + "end": 826.12, + "probability": 0.7248 + }, + { + "start": 826.2, + "end": 827.16, + "probability": 0.9727 + }, + { + "start": 827.34, + "end": 827.54, + "probability": 0.5787 + }, + { + "start": 827.64, + "end": 828.72, + "probability": 0.6299 + }, + { + "start": 828.8, + "end": 829.36, + "probability": 0.5919 + }, + { + "start": 829.86, + "end": 831.2, + "probability": 0.8896 + }, + { + "start": 831.72, + "end": 832.36, + "probability": 0.0183 + }, + { + "start": 832.42, + "end": 834.04, + "probability": 0.8386 + }, + { + "start": 834.34, + "end": 837.8, + "probability": 0.812 + }, + { + "start": 837.92, + "end": 838.94, + "probability": 0.8451 + }, + { + "start": 839.08, + "end": 839.64, + "probability": 0.8941 + }, + { + "start": 840.18, + "end": 842.48, + "probability": 0.9092 + }, + { + "start": 843.44, + "end": 844.86, + "probability": 0.0299 + }, + { + "start": 845.16, + "end": 849.12, + "probability": 0.6833 + }, + { + "start": 849.48, + "end": 852.62, + "probability": 0.3945 + }, + { + "start": 852.8, + "end": 853.46, + "probability": 0.9871 + }, + { + "start": 854.82, + "end": 854.92, + "probability": 0.0244 + }, + { + "start": 854.92, + "end": 855.62, + "probability": 0.7032 + }, + { + "start": 855.64, + "end": 858.58, + "probability": 0.1805 + }, + { + "start": 858.9, + "end": 858.96, + "probability": 0.0936 + }, + { + "start": 858.96, + "end": 860.24, + "probability": 0.7071 + }, + { + "start": 862.66, + "end": 862.74, + "probability": 0.1494 + }, + { + "start": 862.74, + "end": 864.46, + "probability": 0.8425 + }, + { + "start": 865.1, + "end": 867.68, + "probability": 0.854 + }, + { + "start": 867.68, + "end": 868.52, + "probability": 0.055 + }, + { + "start": 868.52, + "end": 868.78, + "probability": 0.3588 + }, + { + "start": 869.18, + "end": 871.1, + "probability": 0.934 + }, + { + "start": 872.32, + "end": 873.92, + "probability": 0.0613 + }, + { + "start": 873.92, + "end": 876.92, + "probability": 0.7782 + }, + { + "start": 877.64, + "end": 878.08, + "probability": 0.7978 + }, + { + "start": 878.58, + "end": 879.01, + "probability": 0.2808 + }, + { + "start": 880.05, + "end": 884.26, + "probability": 0.7811 + }, + { + "start": 887.06, + "end": 888.16, + "probability": 0.5165 + }, + { + "start": 888.32, + "end": 891.22, + "probability": 0.8205 + }, + { + "start": 891.46, + "end": 894.76, + "probability": 0.3342 + }, + { + "start": 895.02, + "end": 896.38, + "probability": 0.3899 + }, + { + "start": 909.1, + "end": 910.86, + "probability": 0.8092 + }, + { + "start": 911.16, + "end": 914.7, + "probability": 0.9843 + }, + { + "start": 915.6, + "end": 917.56, + "probability": 0.982 + }, + { + "start": 917.66, + "end": 919.48, + "probability": 0.9469 + }, + { + "start": 919.7, + "end": 922.15, + "probability": 0.0632 + }, + { + "start": 922.44, + "end": 924.6, + "probability": 0.9585 + }, + { + "start": 925.5, + "end": 927.63, + "probability": 0.9891 + }, + { + "start": 929.18, + "end": 929.96, + "probability": 0.2696 + }, + { + "start": 932.44, + "end": 935.12, + "probability": 0.6806 + }, + { + "start": 935.3, + "end": 939.44, + "probability": 0.9863 + }, + { + "start": 940.16, + "end": 943.02, + "probability": 0.9871 + }, + { + "start": 943.02, + "end": 945.82, + "probability": 0.9945 + }, + { + "start": 946.68, + "end": 949.1, + "probability": 0.7769 + }, + { + "start": 949.7, + "end": 950.76, + "probability": 0.7159 + }, + { + "start": 950.82, + "end": 953.96, + "probability": 0.8564 + }, + { + "start": 956.06, + "end": 956.6, + "probability": 0.6108 + }, + { + "start": 956.92, + "end": 957.52, + "probability": 0.9404 + }, + { + "start": 957.7, + "end": 961.18, + "probability": 0.6968 + }, + { + "start": 961.18, + "end": 961.22, + "probability": 0.7555 + }, + { + "start": 961.28, + "end": 964.72, + "probability": 0.9734 + }, + { + "start": 964.76, + "end": 967.0, + "probability": 0.752 + }, + { + "start": 967.0, + "end": 967.86, + "probability": 0.9072 + }, + { + "start": 967.94, + "end": 969.24, + "probability": 0.9575 + }, + { + "start": 969.38, + "end": 971.22, + "probability": 0.6447 + }, + { + "start": 971.44, + "end": 972.04, + "probability": 0.9762 + }, + { + "start": 974.12, + "end": 979.06, + "probability": 0.929 + }, + { + "start": 979.98, + "end": 982.26, + "probability": 0.6784 + }, + { + "start": 982.46, + "end": 986.7, + "probability": 0.9779 + }, + { + "start": 986.96, + "end": 987.86, + "probability": 0.9187 + }, + { + "start": 988.26, + "end": 990.46, + "probability": 0.9486 + }, + { + "start": 991.28, + "end": 996.08, + "probability": 0.7052 + }, + { + "start": 996.68, + "end": 1003.38, + "probability": 0.9938 + }, + { + "start": 1004.22, + "end": 1007.82, + "probability": 0.9507 + }, + { + "start": 1007.98, + "end": 1008.72, + "probability": 0.4341 + }, + { + "start": 1008.98, + "end": 1010.36, + "probability": 0.9293 + }, + { + "start": 1010.78, + "end": 1011.84, + "probability": 0.9891 + }, + { + "start": 1012.6, + "end": 1016.48, + "probability": 0.9862 + }, + { + "start": 1016.48, + "end": 1021.02, + "probability": 0.9412 + }, + { + "start": 1021.02, + "end": 1025.34, + "probability": 0.9981 + }, + { + "start": 1025.51, + "end": 1027.58, + "probability": 0.9195 + }, + { + "start": 1028.62, + "end": 1030.82, + "probability": 0.9035 + }, + { + "start": 1031.38, + "end": 1033.24, + "probability": 0.9588 + }, + { + "start": 1033.74, + "end": 1037.0, + "probability": 0.963 + }, + { + "start": 1037.62, + "end": 1038.32, + "probability": 0.7443 + }, + { + "start": 1038.86, + "end": 1039.62, + "probability": 0.7874 + }, + { + "start": 1040.12, + "end": 1041.04, + "probability": 0.9499 + }, + { + "start": 1041.36, + "end": 1041.78, + "probability": 0.9073 + }, + { + "start": 1042.52, + "end": 1047.1, + "probability": 0.9766 + }, + { + "start": 1047.22, + "end": 1051.74, + "probability": 0.9943 + }, + { + "start": 1051.77, + "end": 1058.6, + "probability": 0.9976 + }, + { + "start": 1059.46, + "end": 1062.28, + "probability": 0.9974 + }, + { + "start": 1062.48, + "end": 1065.1, + "probability": 0.9774 + }, + { + "start": 1065.8, + "end": 1067.84, + "probability": 0.9684 + }, + { + "start": 1068.32, + "end": 1069.24, + "probability": 0.9465 + }, + { + "start": 1069.38, + "end": 1070.64, + "probability": 0.9493 + }, + { + "start": 1071.2, + "end": 1073.88, + "probability": 0.9877 + }, + { + "start": 1075.16, + "end": 1078.14, + "probability": 0.9816 + }, + { + "start": 1078.14, + "end": 1080.1, + "probability": 0.9017 + }, + { + "start": 1080.68, + "end": 1082.34, + "probability": 0.8724 + }, + { + "start": 1083.06, + "end": 1088.9, + "probability": 0.9642 + }, + { + "start": 1088.9, + "end": 1092.54, + "probability": 0.9973 + }, + { + "start": 1092.54, + "end": 1093.0, + "probability": 0.496 + }, + { + "start": 1093.02, + "end": 1093.5, + "probability": 0.3114 + }, + { + "start": 1093.5, + "end": 1094.86, + "probability": 0.7921 + }, + { + "start": 1096.36, + "end": 1101.52, + "probability": 0.9526 + }, + { + "start": 1101.7, + "end": 1104.32, + "probability": 0.9625 + }, + { + "start": 1104.32, + "end": 1107.2, + "probability": 0.9861 + }, + { + "start": 1107.56, + "end": 1108.7, + "probability": 0.4915 + }, + { + "start": 1109.16, + "end": 1111.96, + "probability": 0.7119 + }, + { + "start": 1112.28, + "end": 1113.7, + "probability": 0.6006 + }, + { + "start": 1115.32, + "end": 1118.88, + "probability": 0.5616 + }, + { + "start": 1119.44, + "end": 1122.98, + "probability": 0.9059 + }, + { + "start": 1123.06, + "end": 1123.56, + "probability": 0.8904 + }, + { + "start": 1129.02, + "end": 1130.62, + "probability": 0.7289 + }, + { + "start": 1132.6, + "end": 1135.56, + "probability": 0.9331 + }, + { + "start": 1136.18, + "end": 1138.84, + "probability": 0.9574 + }, + { + "start": 1139.76, + "end": 1141.42, + "probability": 0.9526 + }, + { + "start": 1141.48, + "end": 1142.11, + "probability": 0.8608 + }, + { + "start": 1142.22, + "end": 1144.68, + "probability": 0.946 + }, + { + "start": 1146.3, + "end": 1146.3, + "probability": 0.0797 + }, + { + "start": 1146.3, + "end": 1149.32, + "probability": 0.6811 + }, + { + "start": 1149.88, + "end": 1156.1, + "probability": 0.7358 + }, + { + "start": 1156.64, + "end": 1160.9, + "probability": 0.9734 + }, + { + "start": 1161.14, + "end": 1161.72, + "probability": 0.6221 + }, + { + "start": 1162.96, + "end": 1165.9, + "probability": 0.9892 + }, + { + "start": 1165.9, + "end": 1168.06, + "probability": 0.9931 + }, + { + "start": 1169.56, + "end": 1170.0, + "probability": 0.811 + }, + { + "start": 1170.28, + "end": 1171.44, + "probability": 0.7416 + }, + { + "start": 1171.54, + "end": 1172.48, + "probability": 0.8464 + }, + { + "start": 1172.7, + "end": 1175.18, + "probability": 0.9087 + }, + { + "start": 1175.58, + "end": 1177.08, + "probability": 0.834 + }, + { + "start": 1177.22, + "end": 1177.54, + "probability": 0.4784 + }, + { + "start": 1177.74, + "end": 1179.98, + "probability": 0.9827 + }, + { + "start": 1179.98, + "end": 1182.44, + "probability": 0.9802 + }, + { + "start": 1183.4, + "end": 1183.7, + "probability": 0.2236 + }, + { + "start": 1183.88, + "end": 1186.92, + "probability": 0.8973 + }, + { + "start": 1186.92, + "end": 1189.92, + "probability": 0.9785 + }, + { + "start": 1190.6, + "end": 1195.66, + "probability": 0.9637 + }, + { + "start": 1196.52, + "end": 1197.94, + "probability": 0.3606 + }, + { + "start": 1198.6, + "end": 1201.02, + "probability": 0.9375 + }, + { + "start": 1201.52, + "end": 1202.9, + "probability": 0.7139 + }, + { + "start": 1203.42, + "end": 1204.56, + "probability": 0.9044 + }, + { + "start": 1205.78, + "end": 1208.4, + "probability": 0.846 + }, + { + "start": 1209.28, + "end": 1212.46, + "probability": 0.9556 + }, + { + "start": 1212.46, + "end": 1215.65, + "probability": 0.9395 + }, + { + "start": 1216.12, + "end": 1216.26, + "probability": 0.3924 + }, + { + "start": 1216.6, + "end": 1217.98, + "probability": 0.7605 + }, + { + "start": 1218.72, + "end": 1219.18, + "probability": 0.6992 + }, + { + "start": 1219.82, + "end": 1223.02, + "probability": 0.9793 + }, + { + "start": 1223.02, + "end": 1227.46, + "probability": 0.963 + }, + { + "start": 1227.64, + "end": 1232.71, + "probability": 0.9635 + }, + { + "start": 1233.76, + "end": 1236.22, + "probability": 0.8868 + }, + { + "start": 1236.84, + "end": 1240.38, + "probability": 0.845 + }, + { + "start": 1240.38, + "end": 1242.32, + "probability": 0.7979 + }, + { + "start": 1243.54, + "end": 1246.26, + "probability": 0.9145 + }, + { + "start": 1246.86, + "end": 1250.12, + "probability": 0.9917 + }, + { + "start": 1250.52, + "end": 1251.6, + "probability": 0.8326 + }, + { + "start": 1251.76, + "end": 1257.3, + "probability": 0.9411 + }, + { + "start": 1258.02, + "end": 1260.42, + "probability": 0.7502 + }, + { + "start": 1260.52, + "end": 1261.52, + "probability": 0.7205 + }, + { + "start": 1262.14, + "end": 1263.18, + "probability": 0.9104 + }, + { + "start": 1264.8, + "end": 1267.12, + "probability": 0.661 + }, + { + "start": 1267.34, + "end": 1270.62, + "probability": 0.9106 + }, + { + "start": 1271.02, + "end": 1273.3, + "probability": 0.9278 + }, + { + "start": 1273.7, + "end": 1274.54, + "probability": 0.6732 + }, + { + "start": 1274.74, + "end": 1278.5, + "probability": 0.9941 + }, + { + "start": 1278.5, + "end": 1282.4, + "probability": 0.5326 + }, + { + "start": 1283.62, + "end": 1285.18, + "probability": 0.6359 + }, + { + "start": 1285.7, + "end": 1287.28, + "probability": 0.9448 + }, + { + "start": 1287.92, + "end": 1289.76, + "probability": 0.6396 + }, + { + "start": 1289.92, + "end": 1290.22, + "probability": 0.8973 + }, + { + "start": 1290.38, + "end": 1291.95, + "probability": 0.7834 + }, + { + "start": 1292.36, + "end": 1292.56, + "probability": 0.6777 + }, + { + "start": 1293.08, + "end": 1294.16, + "probability": 0.957 + }, + { + "start": 1295.1, + "end": 1295.58, + "probability": 0.4939 + }, + { + "start": 1295.74, + "end": 1299.72, + "probability": 0.9105 + }, + { + "start": 1299.72, + "end": 1303.58, + "probability": 0.9404 + }, + { + "start": 1304.02, + "end": 1304.7, + "probability": 0.585 + }, + { + "start": 1304.88, + "end": 1305.52, + "probability": 0.6479 + }, + { + "start": 1305.68, + "end": 1306.32, + "probability": 0.5956 + }, + { + "start": 1306.98, + "end": 1309.9, + "probability": 0.9279 + }, + { + "start": 1310.14, + "end": 1313.06, + "probability": 0.7305 + }, + { + "start": 1313.77, + "end": 1315.8, + "probability": 0.8135 + }, + { + "start": 1316.68, + "end": 1318.22, + "probability": 0.6287 + }, + { + "start": 1319.04, + "end": 1323.28, + "probability": 0.9863 + }, + { + "start": 1323.42, + "end": 1328.12, + "probability": 0.9663 + }, + { + "start": 1328.24, + "end": 1332.36, + "probability": 0.9788 + }, + { + "start": 1332.7, + "end": 1335.8, + "probability": 0.9841 + }, + { + "start": 1336.84, + "end": 1340.34, + "probability": 0.9773 + }, + { + "start": 1340.9, + "end": 1342.58, + "probability": 0.9732 + }, + { + "start": 1342.68, + "end": 1343.58, + "probability": 0.6916 + }, + { + "start": 1343.7, + "end": 1344.74, + "probability": 0.9047 + }, + { + "start": 1344.94, + "end": 1345.36, + "probability": 0.7924 + }, + { + "start": 1345.66, + "end": 1346.38, + "probability": 0.9443 + }, + { + "start": 1347.14, + "end": 1351.34, + "probability": 0.9787 + }, + { + "start": 1351.44, + "end": 1357.18, + "probability": 0.9749 + }, + { + "start": 1357.62, + "end": 1358.46, + "probability": 0.8988 + }, + { + "start": 1359.78, + "end": 1360.32, + "probability": 0.6902 + }, + { + "start": 1361.5, + "end": 1363.54, + "probability": 0.9739 + }, + { + "start": 1364.2, + "end": 1367.76, + "probability": 0.8625 + }, + { + "start": 1368.32, + "end": 1373.18, + "probability": 0.9845 + }, + { + "start": 1373.44, + "end": 1377.88, + "probability": 0.9841 + }, + { + "start": 1378.58, + "end": 1382.34, + "probability": 0.9961 + }, + { + "start": 1382.34, + "end": 1385.32, + "probability": 0.9739 + }, + { + "start": 1386.08, + "end": 1388.54, + "probability": 0.9919 + }, + { + "start": 1388.54, + "end": 1391.8, + "probability": 0.943 + }, + { + "start": 1392.66, + "end": 1394.58, + "probability": 0.9205 + }, + { + "start": 1394.9, + "end": 1397.4, + "probability": 0.9944 + }, + { + "start": 1397.98, + "end": 1402.88, + "probability": 0.9899 + }, + { + "start": 1403.02, + "end": 1403.24, + "probability": 0.4654 + }, + { + "start": 1403.32, + "end": 1406.94, + "probability": 0.9714 + }, + { + "start": 1406.94, + "end": 1410.46, + "probability": 0.9564 + }, + { + "start": 1410.8, + "end": 1412.06, + "probability": 0.7099 + }, + { + "start": 1412.86, + "end": 1415.9, + "probability": 0.5103 + }, + { + "start": 1417.22, + "end": 1420.58, + "probability": 0.837 + }, + { + "start": 1422.02, + "end": 1422.64, + "probability": 0.756 + }, + { + "start": 1423.14, + "end": 1426.9, + "probability": 0.8465 + }, + { + "start": 1427.1, + "end": 1430.46, + "probability": 0.7597 + }, + { + "start": 1430.46, + "end": 1433.8, + "probability": 0.7764 + }, + { + "start": 1433.82, + "end": 1435.6, + "probability": 0.8495 + }, + { + "start": 1436.12, + "end": 1436.38, + "probability": 0.7381 + }, + { + "start": 1436.48, + "end": 1436.92, + "probability": 0.7851 + }, + { + "start": 1437.26, + "end": 1439.16, + "probability": 0.9972 + }, + { + "start": 1439.42, + "end": 1443.6, + "probability": 0.9091 + }, + { + "start": 1444.16, + "end": 1446.22, + "probability": 0.9872 + }, + { + "start": 1446.22, + "end": 1448.64, + "probability": 0.7412 + }, + { + "start": 1448.74, + "end": 1449.76, + "probability": 0.9197 + }, + { + "start": 1450.34, + "end": 1451.6, + "probability": 0.7896 + }, + { + "start": 1452.14, + "end": 1455.32, + "probability": 0.8892 + }, + { + "start": 1455.68, + "end": 1458.37, + "probability": 0.9494 + }, + { + "start": 1460.06, + "end": 1460.9, + "probability": 0.6969 + }, + { + "start": 1461.08, + "end": 1462.38, + "probability": 0.6391 + }, + { + "start": 1463.4, + "end": 1465.96, + "probability": 0.9777 + }, + { + "start": 1466.6, + "end": 1470.76, + "probability": 0.8792 + }, + { + "start": 1471.16, + "end": 1471.46, + "probability": 0.9625 + }, + { + "start": 1472.78, + "end": 1475.4, + "probability": 0.9891 + }, + { + "start": 1476.02, + "end": 1478.54, + "probability": 0.8109 + }, + { + "start": 1479.0, + "end": 1481.1, + "probability": 0.9856 + }, + { + "start": 1481.82, + "end": 1484.58, + "probability": 0.9102 + }, + { + "start": 1484.74, + "end": 1487.64, + "probability": 0.9526 + }, + { + "start": 1488.3, + "end": 1489.02, + "probability": 0.9278 + }, + { + "start": 1489.9, + "end": 1493.23, + "probability": 0.8071 + }, + { + "start": 1494.32, + "end": 1497.96, + "probability": 0.989 + }, + { + "start": 1498.38, + "end": 1501.78, + "probability": 0.984 + }, + { + "start": 1501.98, + "end": 1506.12, + "probability": 0.9906 + }, + { + "start": 1506.98, + "end": 1511.18, + "probability": 0.9637 + }, + { + "start": 1511.7, + "end": 1514.98, + "probability": 0.9082 + }, + { + "start": 1515.56, + "end": 1518.4, + "probability": 0.9105 + }, + { + "start": 1518.86, + "end": 1520.0, + "probability": 0.9232 + }, + { + "start": 1520.48, + "end": 1522.3, + "probability": 0.875 + }, + { + "start": 1522.99, + "end": 1525.9, + "probability": 0.8718 + }, + { + "start": 1528.16, + "end": 1529.64, + "probability": 0.8237 + }, + { + "start": 1530.1, + "end": 1533.62, + "probability": 0.9644 + }, + { + "start": 1533.98, + "end": 1535.02, + "probability": 0.522 + }, + { + "start": 1536.04, + "end": 1537.1, + "probability": 0.8633 + }, + { + "start": 1537.1, + "end": 1538.74, + "probability": 0.7275 + }, + { + "start": 1538.8, + "end": 1540.78, + "probability": 0.6569 + }, + { + "start": 1542.68, + "end": 1543.62, + "probability": 0.7095 + }, + { + "start": 1543.72, + "end": 1546.14, + "probability": 0.9836 + }, + { + "start": 1546.16, + "end": 1546.26, + "probability": 0.39 + }, + { + "start": 1546.26, + "end": 1551.82, + "probability": 0.9458 + }, + { + "start": 1551.98, + "end": 1554.26, + "probability": 0.991 + }, + { + "start": 1554.8, + "end": 1557.48, + "probability": 0.9993 + }, + { + "start": 1558.34, + "end": 1561.28, + "probability": 0.6261 + }, + { + "start": 1562.14, + "end": 1562.68, + "probability": 0.8021 + }, + { + "start": 1563.54, + "end": 1564.36, + "probability": 0.7943 + }, + { + "start": 1564.98, + "end": 1565.62, + "probability": 0.8217 + }, + { + "start": 1566.0, + "end": 1568.8, + "probability": 0.8986 + }, + { + "start": 1568.96, + "end": 1572.24, + "probability": 0.9937 + }, + { + "start": 1572.34, + "end": 1575.66, + "probability": 0.996 + }, + { + "start": 1575.66, + "end": 1579.44, + "probability": 0.9956 + }, + { + "start": 1580.34, + "end": 1580.44, + "probability": 0.4495 + }, + { + "start": 1581.04, + "end": 1582.02, + "probability": 0.8558 + }, + { + "start": 1582.86, + "end": 1585.72, + "probability": 0.9972 + }, + { + "start": 1585.72, + "end": 1589.12, + "probability": 0.991 + }, + { + "start": 1589.4, + "end": 1589.9, + "probability": 0.4696 + }, + { + "start": 1590.66, + "end": 1594.8, + "probability": 0.9943 + }, + { + "start": 1596.12, + "end": 1596.6, + "probability": 0.6694 + }, + { + "start": 1596.86, + "end": 1597.86, + "probability": 0.9883 + }, + { + "start": 1598.14, + "end": 1601.42, + "probability": 0.986 + }, + { + "start": 1602.06, + "end": 1604.18, + "probability": 0.7148 + }, + { + "start": 1604.86, + "end": 1606.78, + "probability": 0.9805 + }, + { + "start": 1607.4, + "end": 1611.46, + "probability": 0.711 + }, + { + "start": 1611.62, + "end": 1613.06, + "probability": 0.9576 + }, + { + "start": 1613.72, + "end": 1615.87, + "probability": 0.8277 + }, + { + "start": 1617.06, + "end": 1618.36, + "probability": 0.7036 + }, + { + "start": 1618.42, + "end": 1618.96, + "probability": 0.5049 + }, + { + "start": 1619.64, + "end": 1622.14, + "probability": 0.5027 + }, + { + "start": 1622.14, + "end": 1623.3, + "probability": 0.791 + }, + { + "start": 1623.58, + "end": 1624.48, + "probability": 0.395 + }, + { + "start": 1624.52, + "end": 1625.11, + "probability": 0.64 + }, + { + "start": 1625.56, + "end": 1626.12, + "probability": 0.5256 + }, + { + "start": 1626.14, + "end": 1626.54, + "probability": 0.3692 + }, + { + "start": 1626.6, + "end": 1629.16, + "probability": 0.9653 + }, + { + "start": 1630.1, + "end": 1630.78, + "probability": 0.9946 + }, + { + "start": 1630.88, + "end": 1634.44, + "probability": 0.9946 + }, + { + "start": 1636.27, + "end": 1641.38, + "probability": 0.7148 + }, + { + "start": 1641.7, + "end": 1644.24, + "probability": 0.7523 + }, + { + "start": 1644.66, + "end": 1646.94, + "probability": 0.6942 + }, + { + "start": 1647.26, + "end": 1647.47, + "probability": 0.8784 + }, + { + "start": 1647.68, + "end": 1648.23, + "probability": 0.6472 + }, + { + "start": 1648.98, + "end": 1650.4, + "probability": 0.9154 + }, + { + "start": 1650.62, + "end": 1652.72, + "probability": 0.896 + }, + { + "start": 1652.72, + "end": 1653.24, + "probability": 0.8918 + }, + { + "start": 1653.3, + "end": 1654.04, + "probability": 0.5753 + }, + { + "start": 1654.56, + "end": 1657.08, + "probability": 0.9497 + }, + { + "start": 1657.46, + "end": 1659.84, + "probability": 0.7233 + }, + { + "start": 1660.02, + "end": 1660.9, + "probability": 0.9753 + }, + { + "start": 1661.02, + "end": 1662.8, + "probability": 0.9736 + }, + { + "start": 1662.84, + "end": 1664.41, + "probability": 0.6698 + }, + { + "start": 1664.98, + "end": 1665.6, + "probability": 0.8625 + }, + { + "start": 1666.04, + "end": 1667.16, + "probability": 0.8037 + }, + { + "start": 1667.56, + "end": 1670.1, + "probability": 0.9854 + }, + { + "start": 1670.26, + "end": 1671.58, + "probability": 0.9736 + }, + { + "start": 1671.84, + "end": 1672.34, + "probability": 0.6401 + }, + { + "start": 1672.34, + "end": 1672.48, + "probability": 0.8547 + }, + { + "start": 1672.56, + "end": 1673.12, + "probability": 0.9065 + }, + { + "start": 1673.24, + "end": 1673.56, + "probability": 0.9567 + }, + { + "start": 1673.92, + "end": 1674.84, + "probability": 0.9315 + }, + { + "start": 1675.58, + "end": 1676.42, + "probability": 0.9334 + }, + { + "start": 1677.32, + "end": 1680.84, + "probability": 0.9741 + }, + { + "start": 1680.84, + "end": 1684.36, + "probability": 0.8978 + }, + { + "start": 1685.22, + "end": 1689.48, + "probability": 0.7918 + }, + { + "start": 1689.82, + "end": 1692.82, + "probability": 0.9932 + }, + { + "start": 1692.94, + "end": 1694.5, + "probability": 0.6279 + }, + { + "start": 1695.02, + "end": 1696.26, + "probability": 0.9114 + }, + { + "start": 1696.26, + "end": 1701.54, + "probability": 0.9849 + }, + { + "start": 1701.64, + "end": 1701.64, + "probability": 0.6207 + }, + { + "start": 1701.64, + "end": 1702.06, + "probability": 0.5625 + }, + { + "start": 1702.06, + "end": 1702.43, + "probability": 0.4446 + }, + { + "start": 1702.72, + "end": 1703.39, + "probability": 0.6189 + }, + { + "start": 1705.58, + "end": 1706.28, + "probability": 0.8243 + }, + { + "start": 1706.94, + "end": 1710.24, + "probability": 0.8582 + }, + { + "start": 1710.9, + "end": 1712.07, + "probability": 0.686 + }, + { + "start": 1718.85, + "end": 1722.08, + "probability": 0.966 + }, + { + "start": 1722.22, + "end": 1722.34, + "probability": 0.4203 + }, + { + "start": 1722.99, + "end": 1723.58, + "probability": 0.3848 + }, + { + "start": 1723.68, + "end": 1724.02, + "probability": 0.5601 + }, + { + "start": 1724.08, + "end": 1725.44, + "probability": 0.1607 + }, + { + "start": 1725.58, + "end": 1726.3, + "probability": 0.9411 + }, + { + "start": 1726.58, + "end": 1727.02, + "probability": 0.9349 + }, + { + "start": 1727.52, + "end": 1729.72, + "probability": 0.9795 + }, + { + "start": 1729.72, + "end": 1731.68, + "probability": 0.9631 + }, + { + "start": 1731.74, + "end": 1733.27, + "probability": 0.9077 + }, + { + "start": 1734.06, + "end": 1735.18, + "probability": 0.8921 + }, + { + "start": 1735.48, + "end": 1739.44, + "probability": 0.516 + }, + { + "start": 1740.26, + "end": 1742.0, + "probability": 0.9172 + }, + { + "start": 1742.6, + "end": 1744.4, + "probability": 0.9739 + }, + { + "start": 1744.96, + "end": 1746.42, + "probability": 0.998 + }, + { + "start": 1746.58, + "end": 1748.2, + "probability": 0.7664 + }, + { + "start": 1748.28, + "end": 1750.9, + "probability": 0.8932 + }, + { + "start": 1751.14, + "end": 1752.22, + "probability": 0.8666 + }, + { + "start": 1752.32, + "end": 1753.6, + "probability": 0.9819 + }, + { + "start": 1753.88, + "end": 1755.84, + "probability": 0.8833 + }, + { + "start": 1756.14, + "end": 1756.96, + "probability": 0.1732 + }, + { + "start": 1756.96, + "end": 1758.62, + "probability": 0.8452 + }, + { + "start": 1758.7, + "end": 1758.88, + "probability": 0.8625 + }, + { + "start": 1758.96, + "end": 1760.3, + "probability": 0.9611 + }, + { + "start": 1762.08, + "end": 1763.92, + "probability": 0.8955 + }, + { + "start": 1764.62, + "end": 1765.74, + "probability": 0.4807 + }, + { + "start": 1765.82, + "end": 1766.28, + "probability": 0.8778 + }, + { + "start": 1766.4, + "end": 1767.76, + "probability": 0.7438 + }, + { + "start": 1767.76, + "end": 1768.0, + "probability": 0.7012 + }, + { + "start": 1768.16, + "end": 1769.46, + "probability": 0.9382 + }, + { + "start": 1769.46, + "end": 1770.32, + "probability": 0.4589 + }, + { + "start": 1770.32, + "end": 1772.48, + "probability": 0.9055 + }, + { + "start": 1773.16, + "end": 1773.7, + "probability": 0.1443 + }, + { + "start": 1773.7, + "end": 1774.1, + "probability": 0.3306 + }, + { + "start": 1774.4, + "end": 1775.68, + "probability": 0.7769 + }, + { + "start": 1775.76, + "end": 1776.08, + "probability": 0.9021 + }, + { + "start": 1776.46, + "end": 1777.14, + "probability": 0.5676 + }, + { + "start": 1778.74, + "end": 1781.38, + "probability": 0.8362 + }, + { + "start": 1781.66, + "end": 1787.96, + "probability": 0.9639 + }, + { + "start": 1787.96, + "end": 1793.78, + "probability": 0.9451 + }, + { + "start": 1794.24, + "end": 1794.79, + "probability": 0.4911 + }, + { + "start": 1794.98, + "end": 1796.46, + "probability": 0.7703 + }, + { + "start": 1796.52, + "end": 1799.4, + "probability": 0.9839 + }, + { + "start": 1800.5, + "end": 1804.74, + "probability": 0.9915 + }, + { + "start": 1805.48, + "end": 1809.38, + "probability": 0.9124 + }, + { + "start": 1809.92, + "end": 1813.32, + "probability": 0.78 + }, + { + "start": 1814.0, + "end": 1815.12, + "probability": 0.9541 + }, + { + "start": 1818.42, + "end": 1818.8, + "probability": 0.5139 + }, + { + "start": 1819.08, + "end": 1821.5, + "probability": 0.9856 + }, + { + "start": 1824.2, + "end": 1825.74, + "probability": 0.2651 + }, + { + "start": 1825.84, + "end": 1828.76, + "probability": 0.8962 + }, + { + "start": 1830.16, + "end": 1831.32, + "probability": 0.7933 + }, + { + "start": 1831.68, + "end": 1836.32, + "probability": 0.9734 + }, + { + "start": 1836.32, + "end": 1841.14, + "probability": 0.8795 + }, + { + "start": 1841.34, + "end": 1846.5, + "probability": 0.9836 + }, + { + "start": 1847.87, + "end": 1849.14, + "probability": 0.9945 + }, + { + "start": 1853.51, + "end": 1855.86, + "probability": 0.6854 + }, + { + "start": 1855.86, + "end": 1858.18, + "probability": 0.9243 + }, + { + "start": 1858.78, + "end": 1862.58, + "probability": 0.9616 + }, + { + "start": 1863.38, + "end": 1866.22, + "probability": 0.806 + }, + { + "start": 1866.32, + "end": 1868.82, + "probability": 0.9878 + }, + { + "start": 1869.78, + "end": 1873.78, + "probability": 0.3738 + }, + { + "start": 1874.2, + "end": 1879.14, + "probability": 0.9382 + }, + { + "start": 1879.26, + "end": 1882.06, + "probability": 0.9716 + }, + { + "start": 1882.98, + "end": 1887.56, + "probability": 0.9605 + }, + { + "start": 1888.14, + "end": 1893.18, + "probability": 0.7483 + }, + { + "start": 1893.8, + "end": 1898.18, + "probability": 0.6004 + }, + { + "start": 1898.26, + "end": 1902.4, + "probability": 0.9682 + }, + { + "start": 1903.23, + "end": 1907.76, + "probability": 0.9795 + }, + { + "start": 1908.14, + "end": 1910.2, + "probability": 0.7026 + }, + { + "start": 1910.28, + "end": 1910.6, + "probability": 0.8646 + }, + { + "start": 1910.74, + "end": 1913.76, + "probability": 0.9932 + }, + { + "start": 1914.0, + "end": 1917.72, + "probability": 0.9507 + }, + { + "start": 1918.32, + "end": 1923.24, + "probability": 0.9224 + }, + { + "start": 1923.24, + "end": 1929.56, + "probability": 0.9938 + }, + { + "start": 1930.34, + "end": 1935.04, + "probability": 0.9917 + }, + { + "start": 1935.44, + "end": 1937.0, + "probability": 0.851 + }, + { + "start": 1937.54, + "end": 1942.5, + "probability": 0.6697 + }, + { + "start": 1942.98, + "end": 1946.86, + "probability": 0.8311 + }, + { + "start": 1947.54, + "end": 1947.98, + "probability": 0.7206 + }, + { + "start": 1948.38, + "end": 1951.38, + "probability": 0.837 + }, + { + "start": 1951.48, + "end": 1955.14, + "probability": 0.9329 + }, + { + "start": 1955.54, + "end": 1956.93, + "probability": 0.6263 + }, + { + "start": 1957.6, + "end": 1958.3, + "probability": 0.559 + }, + { + "start": 1958.34, + "end": 1961.22, + "probability": 0.9346 + }, + { + "start": 1961.28, + "end": 1961.38, + "probability": 0.5141 + }, + { + "start": 1961.8, + "end": 1962.16, + "probability": 0.4699 + }, + { + "start": 1962.26, + "end": 1964.32, + "probability": 0.9133 + }, + { + "start": 1965.18, + "end": 1965.66, + "probability": 0.8385 + }, + { + "start": 1965.76, + "end": 1969.36, + "probability": 0.8106 + }, + { + "start": 1969.36, + "end": 1971.7, + "probability": 0.9705 + }, + { + "start": 1971.76, + "end": 1973.6, + "probability": 0.8786 + }, + { + "start": 1974.34, + "end": 1977.96, + "probability": 0.8997 + }, + { + "start": 1978.16, + "end": 1981.14, + "probability": 0.8293 + }, + { + "start": 1981.62, + "end": 1983.86, + "probability": 0.9909 + }, + { + "start": 1983.86, + "end": 1986.76, + "probability": 0.9872 + }, + { + "start": 1986.92, + "end": 1990.44, + "probability": 0.9028 + }, + { + "start": 1990.44, + "end": 1993.76, + "probability": 0.9755 + }, + { + "start": 1994.36, + "end": 2000.78, + "probability": 0.9546 + }, + { + "start": 2000.98, + "end": 2002.6, + "probability": 0.6696 + }, + { + "start": 2003.4, + "end": 2007.32, + "probability": 0.9746 + }, + { + "start": 2007.32, + "end": 2010.12, + "probability": 0.9977 + }, + { + "start": 2010.34, + "end": 2012.7, + "probability": 0.998 + }, + { + "start": 2012.7, + "end": 2016.44, + "probability": 0.9176 + }, + { + "start": 2016.6, + "end": 2017.22, + "probability": 0.5297 + }, + { + "start": 2017.7, + "end": 2021.78, + "probability": 0.939 + }, + { + "start": 2022.52, + "end": 2026.14, + "probability": 0.9972 + }, + { + "start": 2026.92, + "end": 2031.15, + "probability": 0.9951 + }, + { + "start": 2031.82, + "end": 2036.36, + "probability": 0.9789 + }, + { + "start": 2036.36, + "end": 2041.06, + "probability": 0.9211 + }, + { + "start": 2041.64, + "end": 2044.22, + "probability": 0.9971 + }, + { + "start": 2044.46, + "end": 2049.66, + "probability": 0.9897 + }, + { + "start": 2050.04, + "end": 2052.34, + "probability": 0.9782 + }, + { + "start": 2052.64, + "end": 2057.84, + "probability": 0.8444 + }, + { + "start": 2057.84, + "end": 2062.28, + "probability": 0.9771 + }, + { + "start": 2062.48, + "end": 2070.46, + "probability": 0.9939 + }, + { + "start": 2070.59, + "end": 2074.72, + "probability": 0.9956 + }, + { + "start": 2075.36, + "end": 2075.64, + "probability": 0.7603 + }, + { + "start": 2079.9, + "end": 2083.18, + "probability": 0.8937 + }, + { + "start": 2083.64, + "end": 2088.9, + "probability": 0.956 + }, + { + "start": 2091.38, + "end": 2092.98, + "probability": 0.6737 + }, + { + "start": 2093.72, + "end": 2103.42, + "probability": 0.5139 + }, + { + "start": 2103.42, + "end": 2107.52, + "probability": 0.882 + }, + { + "start": 2108.14, + "end": 2112.32, + "probability": 0.9763 + }, + { + "start": 2112.44, + "end": 2113.04, + "probability": 0.3652 + }, + { + "start": 2114.24, + "end": 2121.42, + "probability": 0.8846 + }, + { + "start": 2121.58, + "end": 2122.28, + "probability": 0.5074 + }, + { + "start": 2122.82, + "end": 2124.32, + "probability": 0.4029 + }, + { + "start": 2124.62, + "end": 2125.32, + "probability": 0.6799 + }, + { + "start": 2125.54, + "end": 2126.1, + "probability": 0.7076 + }, + { + "start": 2126.22, + "end": 2130.72, + "probability": 0.6988 + }, + { + "start": 2135.02, + "end": 2136.02, + "probability": 0.404 + }, + { + "start": 2136.52, + "end": 2137.08, + "probability": 0.6499 + }, + { + "start": 2137.26, + "end": 2137.42, + "probability": 0.7274 + }, + { + "start": 2137.54, + "end": 2137.86, + "probability": 0.642 + }, + { + "start": 2138.06, + "end": 2139.76, + "probability": 0.8187 + }, + { + "start": 2140.02, + "end": 2143.6, + "probability": 0.9736 + }, + { + "start": 2143.64, + "end": 2146.1, + "probability": 0.995 + }, + { + "start": 2146.82, + "end": 2151.24, + "probability": 0.6881 + }, + { + "start": 2153.68, + "end": 2153.78, + "probability": 0.247 + }, + { + "start": 2153.78, + "end": 2154.22, + "probability": 0.3291 + }, + { + "start": 2154.4, + "end": 2156.86, + "probability": 0.8563 + }, + { + "start": 2157.18, + "end": 2158.28, + "probability": 0.9871 + }, + { + "start": 2161.32, + "end": 2165.54, + "probability": 0.9502 + }, + { + "start": 2165.66, + "end": 2167.3, + "probability": 0.9907 + }, + { + "start": 2167.38, + "end": 2170.52, + "probability": 0.8098 + }, + { + "start": 2171.02, + "end": 2174.62, + "probability": 0.8709 + }, + { + "start": 2175.06, + "end": 2175.4, + "probability": 0.6429 + }, + { + "start": 2175.46, + "end": 2178.26, + "probability": 0.9346 + }, + { + "start": 2178.26, + "end": 2182.34, + "probability": 0.983 + }, + { + "start": 2182.9, + "end": 2184.72, + "probability": 0.4926 + }, + { + "start": 2184.9, + "end": 2190.2, + "probability": 0.9761 + }, + { + "start": 2190.86, + "end": 2196.34, + "probability": 0.9463 + }, + { + "start": 2197.16, + "end": 2197.88, + "probability": 0.1227 + }, + { + "start": 2197.88, + "end": 2198.26, + "probability": 0.8251 + }, + { + "start": 2198.78, + "end": 2200.7, + "probability": 0.955 + }, + { + "start": 2200.82, + "end": 2203.15, + "probability": 0.9944 + }, + { + "start": 2203.16, + "end": 2205.42, + "probability": 0.9051 + }, + { + "start": 2205.64, + "end": 2205.99, + "probability": 0.8755 + }, + { + "start": 2206.76, + "end": 2208.2, + "probability": 0.9951 + }, + { + "start": 2208.42, + "end": 2211.14, + "probability": 0.7415 + }, + { + "start": 2211.82, + "end": 2212.78, + "probability": 0.8633 + }, + { + "start": 2213.42, + "end": 2218.24, + "probability": 0.5817 + }, + { + "start": 2218.24, + "end": 2220.26, + "probability": 0.8751 + }, + { + "start": 2220.72, + "end": 2224.16, + "probability": 0.9843 + }, + { + "start": 2224.8, + "end": 2225.14, + "probability": 0.685 + }, + { + "start": 2225.58, + "end": 2226.1, + "probability": 0.8216 + }, + { + "start": 2226.34, + "end": 2230.94, + "probability": 0.8251 + }, + { + "start": 2231.52, + "end": 2235.46, + "probability": 0.9958 + }, + { + "start": 2235.74, + "end": 2240.28, + "probability": 0.9922 + }, + { + "start": 2240.5, + "end": 2241.46, + "probability": 0.4789 + }, + { + "start": 2241.52, + "end": 2243.64, + "probability": 0.9955 + }, + { + "start": 2244.0, + "end": 2244.6, + "probability": 0.7128 + }, + { + "start": 2247.6, + "end": 2250.48, + "probability": 0.4382 + }, + { + "start": 2250.64, + "end": 2251.76, + "probability": 0.7868 + }, + { + "start": 2251.92, + "end": 2253.54, + "probability": 0.9425 + }, + { + "start": 2254.04, + "end": 2255.64, + "probability": 0.4542 + }, + { + "start": 2256.01, + "end": 2256.44, + "probability": 0.6648 + }, + { + "start": 2257.58, + "end": 2259.14, + "probability": 0.9114 + }, + { + "start": 2259.84, + "end": 2264.16, + "probability": 0.9514 + }, + { + "start": 2264.42, + "end": 2265.2, + "probability": 0.0993 + }, + { + "start": 2265.84, + "end": 2269.64, + "probability": 0.9443 + }, + { + "start": 2269.94, + "end": 2270.08, + "probability": 0.0344 + }, + { + "start": 2273.5, + "end": 2274.4, + "probability": 0.6514 + }, + { + "start": 2274.72, + "end": 2277.46, + "probability": 0.9574 + }, + { + "start": 2278.22, + "end": 2284.04, + "probability": 0.9745 + }, + { + "start": 2284.58, + "end": 2288.26, + "probability": 0.8592 + }, + { + "start": 2288.82, + "end": 2295.86, + "probability": 0.9592 + }, + { + "start": 2296.58, + "end": 2298.24, + "probability": 0.0549 + }, + { + "start": 2299.14, + "end": 2300.52, + "probability": 0.6553 + }, + { + "start": 2300.84, + "end": 2302.28, + "probability": 0.9971 + }, + { + "start": 2302.66, + "end": 2304.1, + "probability": 0.7896 + }, + { + "start": 2304.16, + "end": 2305.82, + "probability": 0.9748 + }, + { + "start": 2307.54, + "end": 2309.92, + "probability": 0.5701 + }, + { + "start": 2310.5, + "end": 2315.68, + "probability": 0.9437 + }, + { + "start": 2317.06, + "end": 2317.94, + "probability": 0.5361 + }, + { + "start": 2318.0, + "end": 2319.76, + "probability": 0.7376 + }, + { + "start": 2328.38, + "end": 2332.04, + "probability": 0.774 + }, + { + "start": 2333.18, + "end": 2341.4, + "probability": 0.9595 + }, + { + "start": 2342.65, + "end": 2346.6, + "probability": 0.855 + }, + { + "start": 2346.74, + "end": 2349.44, + "probability": 0.8923 + }, + { + "start": 2349.52, + "end": 2349.66, + "probability": 0.3819 + }, + { + "start": 2350.32, + "end": 2353.46, + "probability": 0.8237 + }, + { + "start": 2361.36, + "end": 2366.22, + "probability": 0.8455 + }, + { + "start": 2366.82, + "end": 2374.72, + "probability": 0.7961 + }, + { + "start": 2374.88, + "end": 2375.28, + "probability": 0.6147 + }, + { + "start": 2375.54, + "end": 2376.42, + "probability": 0.9073 + }, + { + "start": 2376.6, + "end": 2378.5, + "probability": 0.6665 + }, + { + "start": 2379.88, + "end": 2384.96, + "probability": 0.9556 + }, + { + "start": 2385.38, + "end": 2387.62, + "probability": 0.9195 + }, + { + "start": 2387.72, + "end": 2388.76, + "probability": 0.9248 + }, + { + "start": 2389.44, + "end": 2391.96, + "probability": 0.8532 + }, + { + "start": 2391.96, + "end": 2395.08, + "probability": 0.9749 + }, + { + "start": 2395.64, + "end": 2399.46, + "probability": 0.9321 + }, + { + "start": 2400.94, + "end": 2401.78, + "probability": 0.4728 + }, + { + "start": 2401.86, + "end": 2402.6, + "probability": 0.8275 + }, + { + "start": 2402.68, + "end": 2406.38, + "probability": 0.9575 + }, + { + "start": 2408.1, + "end": 2412.62, + "probability": 0.7539 + }, + { + "start": 2412.9, + "end": 2413.58, + "probability": 0.5 + }, + { + "start": 2413.76, + "end": 2417.48, + "probability": 0.9818 + }, + { + "start": 2418.56, + "end": 2420.26, + "probability": 0.9972 + }, + { + "start": 2420.72, + "end": 2425.36, + "probability": 0.9606 + }, + { + "start": 2426.7, + "end": 2428.04, + "probability": 0.4866 + }, + { + "start": 2428.18, + "end": 2429.38, + "probability": 0.8782 + }, + { + "start": 2429.76, + "end": 2431.58, + "probability": 0.9662 + }, + { + "start": 2432.54, + "end": 2434.5, + "probability": 0.8279 + }, + { + "start": 2435.76, + "end": 2439.1, + "probability": 0.9846 + }, + { + "start": 2440.0, + "end": 2442.62, + "probability": 0.9615 + }, + { + "start": 2444.46, + "end": 2447.68, + "probability": 0.9771 + }, + { + "start": 2448.48, + "end": 2450.0, + "probability": 0.999 + }, + { + "start": 2451.84, + "end": 2459.8, + "probability": 0.9987 + }, + { + "start": 2460.58, + "end": 2463.5, + "probability": 0.9964 + }, + { + "start": 2463.52, + "end": 2467.64, + "probability": 0.7462 + }, + { + "start": 2467.64, + "end": 2468.32, + "probability": 0.8 + }, + { + "start": 2468.66, + "end": 2469.66, + "probability": 0.8962 + }, + { + "start": 2470.91, + "end": 2475.83, + "probability": 0.9871 + }, + { + "start": 2476.6, + "end": 2477.78, + "probability": 0.8103 + }, + { + "start": 2481.92, + "end": 2482.78, + "probability": 0.6541 + }, + { + "start": 2483.06, + "end": 2484.2, + "probability": 0.9261 + }, + { + "start": 2486.4, + "end": 2488.68, + "probability": 0.8363 + }, + { + "start": 2489.32, + "end": 2489.62, + "probability": 0.8896 + }, + { + "start": 2490.22, + "end": 2495.96, + "probability": 0.9701 + }, + { + "start": 2496.9, + "end": 2498.44, + "probability": 0.9969 + }, + { + "start": 2499.58, + "end": 2501.24, + "probability": 0.7969 + }, + { + "start": 2501.42, + "end": 2504.74, + "probability": 0.9938 + }, + { + "start": 2505.48, + "end": 2508.22, + "probability": 0.9932 + }, + { + "start": 2508.76, + "end": 2512.16, + "probability": 0.9944 + }, + { + "start": 2512.96, + "end": 2513.82, + "probability": 0.9761 + }, + { + "start": 2514.48, + "end": 2519.3, + "probability": 0.9915 + }, + { + "start": 2519.92, + "end": 2523.66, + "probability": 0.9879 + }, + { + "start": 2524.4, + "end": 2526.82, + "probability": 0.9551 + }, + { + "start": 2526.94, + "end": 2530.04, + "probability": 0.8846 + }, + { + "start": 2530.46, + "end": 2533.3, + "probability": 0.9915 + }, + { + "start": 2533.78, + "end": 2536.34, + "probability": 0.9932 + }, + { + "start": 2536.46, + "end": 2538.04, + "probability": 0.3915 + }, + { + "start": 2538.62, + "end": 2544.94, + "probability": 0.9845 + }, + { + "start": 2545.34, + "end": 2549.1, + "probability": 0.9928 + }, + { + "start": 2549.1, + "end": 2551.48, + "probability": 0.9874 + }, + { + "start": 2552.28, + "end": 2555.14, + "probability": 0.9754 + }, + { + "start": 2555.74, + "end": 2555.94, + "probability": 0.7443 + }, + { + "start": 2556.64, + "end": 2559.12, + "probability": 0.9584 + }, + { + "start": 2559.5, + "end": 2563.3, + "probability": 0.976 + }, + { + "start": 2564.14, + "end": 2567.36, + "probability": 0.9897 + }, + { + "start": 2567.62, + "end": 2572.38, + "probability": 0.897 + }, + { + "start": 2572.52, + "end": 2576.76, + "probability": 0.9909 + }, + { + "start": 2576.84, + "end": 2580.18, + "probability": 0.903 + }, + { + "start": 2580.38, + "end": 2582.12, + "probability": 0.9471 + }, + { + "start": 2582.88, + "end": 2587.6, + "probability": 0.8902 + }, + { + "start": 2587.78, + "end": 2590.7, + "probability": 0.9227 + }, + { + "start": 2590.82, + "end": 2594.0, + "probability": 0.9839 + }, + { + "start": 2597.4, + "end": 2598.12, + "probability": 0.6731 + }, + { + "start": 2598.26, + "end": 2601.84, + "probability": 0.7725 + }, + { + "start": 2610.46, + "end": 2611.12, + "probability": 0.7567 + }, + { + "start": 2611.2, + "end": 2612.68, + "probability": 0.8278 + }, + { + "start": 2612.84, + "end": 2614.34, + "probability": 0.6838 + }, + { + "start": 2614.46, + "end": 2616.52, + "probability": 0.6518 + }, + { + "start": 2616.62, + "end": 2617.03, + "probability": 0.9342 + }, + { + "start": 2617.8, + "end": 2622.64, + "probability": 0.9887 + }, + { + "start": 2624.24, + "end": 2627.4, + "probability": 0.9871 + }, + { + "start": 2628.6, + "end": 2633.84, + "probability": 0.9961 + }, + { + "start": 2633.84, + "end": 2637.14, + "probability": 0.99 + }, + { + "start": 2637.36, + "end": 2642.66, + "probability": 0.9626 + }, + { + "start": 2642.78, + "end": 2643.78, + "probability": 0.8824 + }, + { + "start": 2644.38, + "end": 2646.04, + "probability": 0.9736 + }, + { + "start": 2646.5, + "end": 2646.9, + "probability": 0.7555 + }, + { + "start": 2647.12, + "end": 2648.5, + "probability": 0.9604 + }, + { + "start": 2648.6, + "end": 2651.22, + "probability": 0.9801 + }, + { + "start": 2651.32, + "end": 2653.16, + "probability": 0.595 + }, + { + "start": 2653.86, + "end": 2656.88, + "probability": 0.975 + }, + { + "start": 2656.96, + "end": 2657.86, + "probability": 0.8149 + }, + { + "start": 2657.94, + "end": 2659.24, + "probability": 0.8914 + }, + { + "start": 2659.42, + "end": 2660.15, + "probability": 0.6946 + }, + { + "start": 2660.6, + "end": 2662.03, + "probability": 0.958 + }, + { + "start": 2662.1, + "end": 2664.49, + "probability": 0.9585 + }, + { + "start": 2665.4, + "end": 2670.0, + "probability": 0.9941 + }, + { + "start": 2670.92, + "end": 2676.53, + "probability": 0.6974 + }, + { + "start": 2676.76, + "end": 2679.4, + "probability": 0.9247 + }, + { + "start": 2680.72, + "end": 2684.8, + "probability": 0.997 + }, + { + "start": 2685.94, + "end": 2686.18, + "probability": 0.7441 + }, + { + "start": 2688.84, + "end": 2689.64, + "probability": 0.628 + }, + { + "start": 2691.2, + "end": 2693.73, + "probability": 0.9746 + }, + { + "start": 2694.92, + "end": 2695.16, + "probability": 0.2009 + }, + { + "start": 2705.54, + "end": 2708.9, + "probability": 0.608 + }, + { + "start": 2710.68, + "end": 2710.86, + "probability": 0.7151 + }, + { + "start": 2711.26, + "end": 2712.02, + "probability": 0.7033 + }, + { + "start": 2712.1, + "end": 2714.22, + "probability": 0.9955 + }, + { + "start": 2714.44, + "end": 2714.68, + "probability": 0.3914 + }, + { + "start": 2714.86, + "end": 2716.34, + "probability": 0.9858 + }, + { + "start": 2716.48, + "end": 2717.18, + "probability": 0.906 + }, + { + "start": 2717.38, + "end": 2718.16, + "probability": 0.9674 + }, + { + "start": 2718.3, + "end": 2723.36, + "probability": 0.9474 + }, + { + "start": 2724.28, + "end": 2728.32, + "probability": 0.9972 + }, + { + "start": 2729.06, + "end": 2730.78, + "probability": 0.9684 + }, + { + "start": 2730.84, + "end": 2733.24, + "probability": 0.999 + }, + { + "start": 2733.34, + "end": 2735.84, + "probability": 0.9698 + }, + { + "start": 2736.14, + "end": 2737.88, + "probability": 0.8007 + }, + { + "start": 2738.81, + "end": 2743.4, + "probability": 0.9986 + }, + { + "start": 2743.62, + "end": 2747.02, + "probability": 0.9951 + }, + { + "start": 2747.64, + "end": 2753.68, + "probability": 0.9824 + }, + { + "start": 2753.68, + "end": 2757.04, + "probability": 0.998 + }, + { + "start": 2757.64, + "end": 2759.04, + "probability": 0.8511 + }, + { + "start": 2759.1, + "end": 2760.64, + "probability": 0.5996 + }, + { + "start": 2760.64, + "end": 2765.12, + "probability": 0.9614 + }, + { + "start": 2765.24, + "end": 2765.24, + "probability": 0.0054 + }, + { + "start": 2765.24, + "end": 2766.44, + "probability": 0.7906 + }, + { + "start": 2766.52, + "end": 2771.12, + "probability": 0.989 + }, + { + "start": 2771.18, + "end": 2772.52, + "probability": 0.4993 + }, + { + "start": 2772.52, + "end": 2772.78, + "probability": 0.7551 + }, + { + "start": 2773.0, + "end": 2773.9, + "probability": 0.7366 + }, + { + "start": 2774.06, + "end": 2775.04, + "probability": 0.7817 + }, + { + "start": 2775.2, + "end": 2776.24, + "probability": 0.8997 + }, + { + "start": 2776.48, + "end": 2778.07, + "probability": 0.9868 + }, + { + "start": 2778.7, + "end": 2780.18, + "probability": 0.9736 + }, + { + "start": 2780.28, + "end": 2780.72, + "probability": 0.8074 + }, + { + "start": 2781.78, + "end": 2784.68, + "probability": 0.9594 + }, + { + "start": 2784.76, + "end": 2788.48, + "probability": 0.9373 + }, + { + "start": 2788.48, + "end": 2792.27, + "probability": 0.9918 + }, + { + "start": 2793.76, + "end": 2795.78, + "probability": 0.9204 + }, + { + "start": 2795.84, + "end": 2797.58, + "probability": 0.6813 + }, + { + "start": 2797.76, + "end": 2802.18, + "probability": 0.9521 + }, + { + "start": 2802.24, + "end": 2805.96, + "probability": 0.7197 + }, + { + "start": 2805.98, + "end": 2808.9, + "probability": 0.9388 + }, + { + "start": 2809.0, + "end": 2810.16, + "probability": 0.9321 + }, + { + "start": 2810.72, + "end": 2813.74, + "probability": 0.9858 + }, + { + "start": 2813.96, + "end": 2815.12, + "probability": 0.9728 + }, + { + "start": 2816.4, + "end": 2817.18, + "probability": 0.5225 + }, + { + "start": 2817.32, + "end": 2818.18, + "probability": 0.6494 + }, + { + "start": 2818.3, + "end": 2819.84, + "probability": 0.6958 + }, + { + "start": 2820.04, + "end": 2823.76, + "probability": 0.9641 + }, + { + "start": 2824.58, + "end": 2826.14, + "probability": 0.9923 + }, + { + "start": 2826.82, + "end": 2828.72, + "probability": 0.9569 + }, + { + "start": 2829.1, + "end": 2832.28, + "probability": 0.9274 + }, + { + "start": 2832.28, + "end": 2836.38, + "probability": 0.9983 + }, + { + "start": 2837.24, + "end": 2841.18, + "probability": 0.9328 + }, + { + "start": 2841.76, + "end": 2845.54, + "probability": 0.9936 + }, + { + "start": 2846.08, + "end": 2849.51, + "probability": 0.9931 + }, + { + "start": 2849.62, + "end": 2853.0, + "probability": 0.994 + }, + { + "start": 2853.88, + "end": 2859.94, + "probability": 0.9976 + }, + { + "start": 2860.02, + "end": 2861.3, + "probability": 0.5875 + }, + { + "start": 2862.3, + "end": 2863.86, + "probability": 0.821 + }, + { + "start": 2864.02, + "end": 2867.54, + "probability": 0.8862 + }, + { + "start": 2868.34, + "end": 2870.26, + "probability": 0.8073 + }, + { + "start": 2870.28, + "end": 2871.76, + "probability": 0.8464 + }, + { + "start": 2872.28, + "end": 2873.62, + "probability": 0.9658 + }, + { + "start": 2873.76, + "end": 2876.4, + "probability": 0.7846 + }, + { + "start": 2876.78, + "end": 2881.72, + "probability": 0.9021 + }, + { + "start": 2882.2, + "end": 2883.48, + "probability": 0.9048 + }, + { + "start": 2883.6, + "end": 2885.22, + "probability": 0.6931 + }, + { + "start": 2885.36, + "end": 2885.7, + "probability": 0.6599 + }, + { + "start": 2885.8, + "end": 2886.36, + "probability": 0.7401 + }, + { + "start": 2886.88, + "end": 2889.04, + "probability": 0.9361 + }, + { + "start": 2889.62, + "end": 2892.22, + "probability": 0.8757 + }, + { + "start": 2892.9, + "end": 2895.32, + "probability": 0.9707 + }, + { + "start": 2895.34, + "end": 2896.44, + "probability": 0.9937 + }, + { + "start": 2897.18, + "end": 2900.66, + "probability": 0.9481 + }, + { + "start": 2900.78, + "end": 2902.72, + "probability": 0.9955 + }, + { + "start": 2903.18, + "end": 2904.32, + "probability": 0.9989 + }, + { + "start": 2904.86, + "end": 2906.64, + "probability": 0.9602 + }, + { + "start": 2906.98, + "end": 2907.26, + "probability": 0.6133 + }, + { + "start": 2908.34, + "end": 2909.0, + "probability": 0.8405 + }, + { + "start": 2910.5, + "end": 2912.06, + "probability": 0.7957 + }, + { + "start": 2912.08, + "end": 2918.66, + "probability": 0.9692 + }, + { + "start": 2918.86, + "end": 2919.34, + "probability": 0.908 + }, + { + "start": 2920.1, + "end": 2923.66, + "probability": 0.8826 + }, + { + "start": 2924.4, + "end": 2930.52, + "probability": 0.9686 + }, + { + "start": 2930.6, + "end": 2933.88, + "probability": 0.9831 + }, + { + "start": 2934.02, + "end": 2934.96, + "probability": 0.8716 + }, + { + "start": 2935.14, + "end": 2937.12, + "probability": 0.0824 + }, + { + "start": 2937.12, + "end": 2937.94, + "probability": 0.313 + }, + { + "start": 2938.86, + "end": 2939.28, + "probability": 0.114 + }, + { + "start": 2939.28, + "end": 2940.78, + "probability": 0.1961 + }, + { + "start": 2941.36, + "end": 2942.68, + "probability": 0.9231 + }, + { + "start": 2943.04, + "end": 2945.38, + "probability": 0.7848 + }, + { + "start": 2946.06, + "end": 2949.5, + "probability": 0.9688 + }, + { + "start": 2950.4, + "end": 2954.86, + "probability": 0.8843 + }, + { + "start": 2955.1, + "end": 2955.18, + "probability": 0.0517 + }, + { + "start": 2955.18, + "end": 2955.98, + "probability": 0.0926 + }, + { + "start": 2957.3, + "end": 2957.62, + "probability": 0.012 + }, + { + "start": 2957.62, + "end": 2957.62, + "probability": 0.1242 + }, + { + "start": 2957.62, + "end": 2958.92, + "probability": 0.3576 + }, + { + "start": 2959.22, + "end": 2963.4, + "probability": 0.877 + }, + { + "start": 2964.62, + "end": 2965.36, + "probability": 0.1744 + }, + { + "start": 2965.62, + "end": 2967.26, + "probability": 0.6024 + }, + { + "start": 2967.68, + "end": 2969.66, + "probability": 0.8156 + }, + { + "start": 2970.22, + "end": 2972.04, + "probability": 0.7146 + }, + { + "start": 2972.16, + "end": 2972.62, + "probability": 0.7727 + }, + { + "start": 2972.98, + "end": 2973.72, + "probability": 0.9711 + }, + { + "start": 2975.06, + "end": 2977.58, + "probability": 0.8216 + }, + { + "start": 2977.66, + "end": 2978.12, + "probability": 0.6383 + }, + { + "start": 2978.14, + "end": 2979.26, + "probability": 0.3623 + }, + { + "start": 2979.76, + "end": 2981.78, + "probability": 0.953 + }, + { + "start": 2982.9, + "end": 2983.74, + "probability": 0.6809 + }, + { + "start": 2984.18, + "end": 2986.22, + "probability": 0.7522 + }, + { + "start": 2987.56, + "end": 2994.34, + "probability": 0.4482 + }, + { + "start": 2994.66, + "end": 2995.54, + "probability": 0.9404 + }, + { + "start": 2997.78, + "end": 2997.88, + "probability": 0.0217 + }, + { + "start": 2997.88, + "end": 2997.88, + "probability": 0.0368 + }, + { + "start": 2997.88, + "end": 2999.32, + "probability": 0.3279 + }, + { + "start": 3000.36, + "end": 3003.04, + "probability": 0.7974 + }, + { + "start": 3003.38, + "end": 3004.7, + "probability": 0.9537 + }, + { + "start": 3004.82, + "end": 3007.14, + "probability": 0.932 + }, + { + "start": 3008.5, + "end": 3010.88, + "probability": 0.9875 + }, + { + "start": 3011.22, + "end": 3016.24, + "probability": 0.9365 + }, + { + "start": 3016.6, + "end": 3016.96, + "probability": 0.98 + }, + { + "start": 3018.52, + "end": 3020.2, + "probability": 0.7066 + }, + { + "start": 3020.8, + "end": 3021.42, + "probability": 0.7979 + }, + { + "start": 3022.88, + "end": 3024.42, + "probability": 0.938 + }, + { + "start": 3024.54, + "end": 3028.86, + "probability": 0.9797 + }, + { + "start": 3029.62, + "end": 3031.42, + "probability": 0.5656 + }, + { + "start": 3031.56, + "end": 3036.08, + "probability": 0.9808 + }, + { + "start": 3037.18, + "end": 3038.42, + "probability": 0.6666 + }, + { + "start": 3038.72, + "end": 3039.34, + "probability": 0.6876 + }, + { + "start": 3039.56, + "end": 3040.74, + "probability": 0.6614 + }, + { + "start": 3041.68, + "end": 3045.28, + "probability": 0.9355 + }, + { + "start": 3045.9, + "end": 3048.96, + "probability": 0.9339 + }, + { + "start": 3049.68, + "end": 3053.94, + "probability": 0.9931 + }, + { + "start": 3055.26, + "end": 3058.0, + "probability": 0.8218 + }, + { + "start": 3058.64, + "end": 3062.64, + "probability": 0.9778 + }, + { + "start": 3062.64, + "end": 3069.4, + "probability": 0.9573 + }, + { + "start": 3070.14, + "end": 3073.94, + "probability": 0.88 + }, + { + "start": 3074.52, + "end": 3075.9, + "probability": 0.9775 + }, + { + "start": 3076.74, + "end": 3079.68, + "probability": 0.9452 + }, + { + "start": 3079.68, + "end": 3082.3, + "probability": 0.9957 + }, + { + "start": 3083.08, + "end": 3083.5, + "probability": 0.7867 + }, + { + "start": 3083.68, + "end": 3085.4, + "probability": 0.8861 + }, + { + "start": 3086.16, + "end": 3090.4, + "probability": 0.9673 + }, + { + "start": 3090.94, + "end": 3093.18, + "probability": 0.9772 + }, + { + "start": 3093.18, + "end": 3096.76, + "probability": 0.9455 + }, + { + "start": 3097.5, + "end": 3099.46, + "probability": 0.9964 + }, + { + "start": 3100.04, + "end": 3103.28, + "probability": 0.9576 + }, + { + "start": 3104.22, + "end": 3107.54, + "probability": 0.996 + }, + { + "start": 3108.06, + "end": 3111.26, + "probability": 0.6086 + }, + { + "start": 3111.9, + "end": 3114.34, + "probability": 0.995 + }, + { + "start": 3114.34, + "end": 3118.04, + "probability": 0.9718 + }, + { + "start": 3118.8, + "end": 3122.68, + "probability": 0.9746 + }, + { + "start": 3123.54, + "end": 3124.58, + "probability": 0.6757 + }, + { + "start": 3125.14, + "end": 3127.74, + "probability": 0.8807 + }, + { + "start": 3128.4, + "end": 3131.46, + "probability": 0.9551 + }, + { + "start": 3132.26, + "end": 3137.8, + "probability": 0.9763 + }, + { + "start": 3138.34, + "end": 3139.76, + "probability": 0.8154 + }, + { + "start": 3140.52, + "end": 3142.26, + "probability": 0.9663 + }, + { + "start": 3142.26, + "end": 3144.78, + "probability": 0.9978 + }, + { + "start": 3145.3, + "end": 3148.66, + "probability": 0.9951 + }, + { + "start": 3149.0, + "end": 3153.9, + "probability": 0.9884 + }, + { + "start": 3154.54, + "end": 3156.86, + "probability": 0.9972 + }, + { + "start": 3157.28, + "end": 3158.66, + "probability": 0.97 + }, + { + "start": 3169.54, + "end": 3170.94, + "probability": 0.6677 + }, + { + "start": 3172.14, + "end": 3177.68, + "probability": 0.8325 + }, + { + "start": 3179.26, + "end": 3181.04, + "probability": 0.5024 + }, + { + "start": 3183.72, + "end": 3186.32, + "probability": 0.9885 + }, + { + "start": 3187.02, + "end": 3190.32, + "probability": 0.8309 + }, + { + "start": 3191.08, + "end": 3194.7, + "probability": 0.8278 + }, + { + "start": 3195.42, + "end": 3198.46, + "probability": 0.9619 + }, + { + "start": 3199.24, + "end": 3200.12, + "probability": 0.884 + }, + { + "start": 3200.84, + "end": 3203.8, + "probability": 0.9672 + }, + { + "start": 3204.6, + "end": 3209.04, + "probability": 0.9198 + }, + { + "start": 3209.74, + "end": 3211.12, + "probability": 0.7515 + }, + { + "start": 3212.12, + "end": 3216.76, + "probability": 0.7173 + }, + { + "start": 3216.94, + "end": 3219.82, + "probability": 0.9261 + }, + { + "start": 3219.86, + "end": 3222.56, + "probability": 0.8348 + }, + { + "start": 3223.16, + "end": 3226.66, + "probability": 0.9915 + }, + { + "start": 3227.3, + "end": 3228.98, + "probability": 0.8355 + }, + { + "start": 3229.02, + "end": 3231.39, + "probability": 0.9796 + }, + { + "start": 3232.54, + "end": 3233.04, + "probability": 0.7564 + }, + { + "start": 3233.14, + "end": 3236.44, + "probability": 0.9785 + }, + { + "start": 3237.0, + "end": 3240.04, + "probability": 0.95 + }, + { + "start": 3241.02, + "end": 3243.12, + "probability": 0.9565 + }, + { + "start": 3243.14, + "end": 3246.04, + "probability": 0.8921 + }, + { + "start": 3246.7, + "end": 3247.54, + "probability": 0.9638 + }, + { + "start": 3247.84, + "end": 3248.12, + "probability": 0.7588 + }, + { + "start": 3248.48, + "end": 3249.32, + "probability": 0.9517 + }, + { + "start": 3249.8, + "end": 3250.86, + "probability": 0.9328 + }, + { + "start": 3251.44, + "end": 3256.4, + "probability": 0.9529 + }, + { + "start": 3256.92, + "end": 3258.52, + "probability": 0.917 + }, + { + "start": 3259.06, + "end": 3262.3, + "probability": 0.2513 + }, + { + "start": 3262.72, + "end": 3263.14, + "probability": 0.7 + }, + { + "start": 3263.66, + "end": 3266.08, + "probability": 0.0971 + }, + { + "start": 3266.16, + "end": 3267.0, + "probability": 0.3065 + }, + { + "start": 3267.62, + "end": 3270.34, + "probability": 0.91 + }, + { + "start": 3270.9, + "end": 3272.62, + "probability": 0.9375 + }, + { + "start": 3274.06, + "end": 3274.58, + "probability": 0.5456 + }, + { + "start": 3274.7, + "end": 3276.22, + "probability": 0.5142 + }, + { + "start": 3276.74, + "end": 3277.64, + "probability": 0.5859 + }, + { + "start": 3278.34, + "end": 3279.58, + "probability": 0.8394 + }, + { + "start": 3281.06, + "end": 3282.62, + "probability": 0.7227 + }, + { + "start": 3284.34, + "end": 3285.94, + "probability": 0.7681 + }, + { + "start": 3285.94, + "end": 3286.8, + "probability": 0.7943 + }, + { + "start": 3287.78, + "end": 3292.7, + "probability": 0.9844 + }, + { + "start": 3294.38, + "end": 3296.9, + "probability": 0.8835 + }, + { + "start": 3297.8, + "end": 3303.26, + "probability": 0.9879 + }, + { + "start": 3306.24, + "end": 3309.66, + "probability": 0.9213 + }, + { + "start": 3310.26, + "end": 3314.62, + "probability": 0.9834 + }, + { + "start": 3314.62, + "end": 3319.26, + "probability": 0.8992 + }, + { + "start": 3319.98, + "end": 3326.2, + "probability": 0.9765 + }, + { + "start": 3326.62, + "end": 3327.22, + "probability": 0.543 + }, + { + "start": 3327.26, + "end": 3328.78, + "probability": 0.91 + }, + { + "start": 3339.64, + "end": 3340.12, + "probability": 0.3851 + }, + { + "start": 3340.52, + "end": 3341.16, + "probability": 0.5455 + }, + { + "start": 3341.5, + "end": 3343.96, + "probability": 0.7526 + }, + { + "start": 3344.16, + "end": 3345.3, + "probability": 0.9443 + }, + { + "start": 3345.36, + "end": 3346.02, + "probability": 0.7185 + }, + { + "start": 3346.58, + "end": 3351.54, + "probability": 0.9964 + }, + { + "start": 3352.42, + "end": 3353.6, + "probability": 0.7842 + }, + { + "start": 3354.58, + "end": 3358.14, + "probability": 0.9838 + }, + { + "start": 3358.2, + "end": 3358.48, + "probability": 0.281 + }, + { + "start": 3358.9, + "end": 3360.02, + "probability": 0.7837 + }, + { + "start": 3360.14, + "end": 3362.67, + "probability": 0.8151 + }, + { + "start": 3362.94, + "end": 3363.42, + "probability": 0.2327 + }, + { + "start": 3363.54, + "end": 3363.96, + "probability": 0.7764 + }, + { + "start": 3364.44, + "end": 3364.74, + "probability": 0.9298 + }, + { + "start": 3365.34, + "end": 3367.44, + "probability": 0.9922 + }, + { + "start": 3368.12, + "end": 3369.4, + "probability": 0.9895 + }, + { + "start": 3370.12, + "end": 3371.04, + "probability": 0.8781 + }, + { + "start": 3371.1, + "end": 3371.32, + "probability": 0.4708 + }, + { + "start": 3371.32, + "end": 3372.08, + "probability": 0.7631 + }, + { + "start": 3372.18, + "end": 3373.14, + "probability": 0.4843 + }, + { + "start": 3373.14, + "end": 3373.53, + "probability": 0.7067 + }, + { + "start": 3373.68, + "end": 3374.18, + "probability": 0.3638 + }, + { + "start": 3374.2, + "end": 3374.64, + "probability": 0.2574 + }, + { + "start": 3374.64, + "end": 3376.72, + "probability": 0.6591 + }, + { + "start": 3376.72, + "end": 3377.86, + "probability": 0.9117 + }, + { + "start": 3377.86, + "end": 3380.1, + "probability": 0.7188 + }, + { + "start": 3380.24, + "end": 3381.06, + "probability": 0.6894 + }, + { + "start": 3381.06, + "end": 3381.06, + "probability": 0.3877 + }, + { + "start": 3381.06, + "end": 3384.38, + "probability": 0.8525 + }, + { + "start": 3384.4, + "end": 3386.84, + "probability": 0.8988 + }, + { + "start": 3389.25, + "end": 3391.02, + "probability": 0.899 + }, + { + "start": 3391.12, + "end": 3394.06, + "probability": 0.7435 + }, + { + "start": 3394.43, + "end": 3395.23, + "probability": 0.5314 + }, + { + "start": 3395.64, + "end": 3396.44, + "probability": 0.752 + }, + { + "start": 3396.58, + "end": 3397.62, + "probability": 0.5664 + }, + { + "start": 3397.74, + "end": 3400.42, + "probability": 0.9785 + }, + { + "start": 3400.42, + "end": 3401.28, + "probability": 0.8811 + }, + { + "start": 3401.54, + "end": 3403.02, + "probability": 0.9857 + }, + { + "start": 3403.06, + "end": 3403.48, + "probability": 0.9863 + }, + { + "start": 3403.66, + "end": 3404.1, + "probability": 0.849 + }, + { + "start": 3404.76, + "end": 3408.92, + "probability": 0.9871 + }, + { + "start": 3409.02, + "end": 3409.66, + "probability": 0.6782 + }, + { + "start": 3409.74, + "end": 3410.26, + "probability": 0.7813 + }, + { + "start": 3410.98, + "end": 3412.38, + "probability": 0.6862 + }, + { + "start": 3413.36, + "end": 3415.08, + "probability": 0.6505 + }, + { + "start": 3415.54, + "end": 3416.86, + "probability": 0.942 + }, + { + "start": 3417.16, + "end": 3417.48, + "probability": 0.4003 + }, + { + "start": 3417.54, + "end": 3418.14, + "probability": 0.6229 + }, + { + "start": 3418.14, + "end": 3418.36, + "probability": 0.702 + }, + { + "start": 3418.38, + "end": 3420.22, + "probability": 0.9839 + }, + { + "start": 3420.34, + "end": 3422.72, + "probability": 0.6847 + }, + { + "start": 3422.82, + "end": 3424.62, + "probability": 0.983 + }, + { + "start": 3424.82, + "end": 3424.92, + "probability": 0.0158 + }, + { + "start": 3424.92, + "end": 3425.86, + "probability": 0.7021 + }, + { + "start": 3425.98, + "end": 3428.14, + "probability": 0.97 + }, + { + "start": 3428.84, + "end": 3430.64, + "probability": 0.9741 + }, + { + "start": 3430.78, + "end": 3431.4, + "probability": 0.9443 + }, + { + "start": 3431.84, + "end": 3434.04, + "probability": 0.8008 + }, + { + "start": 3434.04, + "end": 3436.36, + "probability": 0.9989 + }, + { + "start": 3436.82, + "end": 3439.08, + "probability": 0.9946 + }, + { + "start": 3439.7, + "end": 3441.14, + "probability": 0.9551 + }, + { + "start": 3441.78, + "end": 3446.0, + "probability": 0.9939 + }, + { + "start": 3446.38, + "end": 3448.58, + "probability": 0.978 + }, + { + "start": 3448.58, + "end": 3448.9, + "probability": 0.3663 + }, + { + "start": 3449.54, + "end": 3452.98, + "probability": 0.7893 + }, + { + "start": 3452.98, + "end": 3453.66, + "probability": 0.774 + }, + { + "start": 3455.44, + "end": 3455.64, + "probability": 0.4357 + }, + { + "start": 3455.64, + "end": 3456.42, + "probability": 0.8122 + }, + { + "start": 3457.64, + "end": 3457.64, + "probability": 0.0829 + }, + { + "start": 3457.64, + "end": 3457.78, + "probability": 0.0576 + }, + { + "start": 3458.0, + "end": 3459.34, + "probability": 0.9746 + }, + { + "start": 3461.05, + "end": 3467.06, + "probability": 0.0506 + }, + { + "start": 3467.08, + "end": 3468.4, + "probability": 0.0462 + }, + { + "start": 3468.4, + "end": 3469.5, + "probability": 0.2132 + }, + { + "start": 3470.56, + "end": 3470.56, + "probability": 0.5984 + }, + { + "start": 3470.56, + "end": 3470.56, + "probability": 0.3202 + }, + { + "start": 3470.56, + "end": 3470.56, + "probability": 0.0217 + }, + { + "start": 3470.56, + "end": 3470.56, + "probability": 0.0167 + }, + { + "start": 3470.56, + "end": 3472.0, + "probability": 0.7319 + }, + { + "start": 3472.26, + "end": 3473.56, + "probability": 0.9084 + }, + { + "start": 3473.68, + "end": 3474.18, + "probability": 0.6613 + }, + { + "start": 3475.0, + "end": 3477.1, + "probability": 0.889 + }, + { + "start": 3478.94, + "end": 3480.52, + "probability": 0.0286 + }, + { + "start": 3483.5, + "end": 3486.42, + "probability": 0.5611 + }, + { + "start": 3486.42, + "end": 3486.44, + "probability": 0.0728 + }, + { + "start": 3486.44, + "end": 3487.06, + "probability": 0.2189 + }, + { + "start": 3488.24, + "end": 3489.72, + "probability": 0.872 + }, + { + "start": 3495.04, + "end": 3497.98, + "probability": 0.1481 + }, + { + "start": 3497.98, + "end": 3499.52, + "probability": 0.2735 + }, + { + "start": 3501.06, + "end": 3503.42, + "probability": 0.3629 + }, + { + "start": 3503.94, + "end": 3505.94, + "probability": 0.1338 + }, + { + "start": 3506.1, + "end": 3506.1, + "probability": 0.0045 + }, + { + "start": 3506.98, + "end": 3508.88, + "probability": 0.3389 + }, + { + "start": 3508.9, + "end": 3509.1, + "probability": 0.2443 + }, + { + "start": 3512.1, + "end": 3512.74, + "probability": 0.0237 + }, + { + "start": 3513.72, + "end": 3513.84, + "probability": 0.3909 + }, + { + "start": 3513.92, + "end": 3515.6, + "probability": 0.5158 + }, + { + "start": 3516.16, + "end": 3516.84, + "probability": 0.5566 + }, + { + "start": 3519.08, + "end": 3519.18, + "probability": 0.4291 + }, + { + "start": 3529.22, + "end": 3530.08, + "probability": 0.0375 + }, + { + "start": 3530.56, + "end": 3532.14, + "probability": 0.1905 + }, + { + "start": 3533.22, + "end": 3533.32, + "probability": 0.1464 + }, + { + "start": 3533.51, + "end": 3535.66, + "probability": 0.0939 + }, + { + "start": 3536.0, + "end": 3539.17, + "probability": 0.0574 + }, + { + "start": 3541.7, + "end": 3542.22, + "probability": 0.0541 + }, + { + "start": 3542.22, + "end": 3542.54, + "probability": 0.0451 + }, + { + "start": 3542.8, + "end": 3543.68, + "probability": 0.143 + }, + { + "start": 3546.27, + "end": 3548.4, + "probability": 0.0455 + }, + { + "start": 3549.85, + "end": 3550.86, + "probability": 0.3097 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3551.0, + "end": 3551.0, + "probability": 0.0 + }, + { + "start": 3552.02, + "end": 3554.44, + "probability": 0.045 + }, + { + "start": 3554.54, + "end": 3556.22, + "probability": 0.6453 + }, + { + "start": 3556.7, + "end": 3558.92, + "probability": 0.9262 + }, + { + "start": 3559.21, + "end": 3559.84, + "probability": 0.0184 + }, + { + "start": 3559.84, + "end": 3560.75, + "probability": 0.0664 + }, + { + "start": 3561.89, + "end": 3564.02, + "probability": 0.8931 + }, + { + "start": 3564.44, + "end": 3565.0, + "probability": 0.3382 + }, + { + "start": 3580.38, + "end": 3582.46, + "probability": 0.4735 + }, + { + "start": 3586.64, + "end": 3586.64, + "probability": 0.0139 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3677.0, + "end": 3677.0, + "probability": 0.0 + }, + { + "start": 3678.09, + "end": 3678.82, + "probability": 0.1428 + }, + { + "start": 3678.82, + "end": 3679.38, + "probability": 0.2056 + }, + { + "start": 3680.3, + "end": 3680.84, + "probability": 0.1667 + }, + { + "start": 3680.84, + "end": 3682.76, + "probability": 0.0631 + }, + { + "start": 3682.92, + "end": 3688.34, + "probability": 0.4967 + }, + { + "start": 3688.86, + "end": 3688.88, + "probability": 0.1027 + }, + { + "start": 3688.88, + "end": 3689.14, + "probability": 0.005 + }, + { + "start": 3689.14, + "end": 3691.28, + "probability": 0.0848 + }, + { + "start": 3693.12, + "end": 3694.18, + "probability": 0.1703 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3806.0, + "end": 3806.0, + "probability": 0.0 + }, + { + "start": 3815.89, + "end": 3819.59, + "probability": 0.0095 + }, + { + "start": 3822.42, + "end": 3823.9, + "probability": 0.0349 + }, + { + "start": 3824.44, + "end": 3825.52, + "probability": 0.0176 + }, + { + "start": 3826.46, + "end": 3826.74, + "probability": 0.0132 + }, + { + "start": 3826.74, + "end": 3826.86, + "probability": 0.2941 + }, + { + "start": 3826.86, + "end": 3828.06, + "probability": 0.1837 + }, + { + "start": 3830.73, + "end": 3834.64, + "probability": 0.6948 + }, + { + "start": 3834.98, + "end": 3835.04, + "probability": 0.4725 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.0, + "end": 3930.0, + "probability": 0.0 + }, + { + "start": 3930.38, + "end": 3932.72, + "probability": 0.0303 + }, + { + "start": 3942.4, + "end": 3943.02, + "probability": 0.0152 + }, + { + "start": 3958.52, + "end": 3958.52, + "probability": 0.0216 + }, + { + "start": 3958.52, + "end": 3958.52, + "probability": 0.0619 + }, + { + "start": 3958.52, + "end": 3958.8, + "probability": 0.1594 + }, + { + "start": 3959.82, + "end": 3963.74, + "probability": 0.1136 + }, + { + "start": 3964.8, + "end": 3968.2, + "probability": 0.01 + }, + { + "start": 3968.2, + "end": 3968.86, + "probability": 0.0527 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.0, + "end": 4050.0, + "probability": 0.0 + }, + { + "start": 4050.18, + "end": 4050.28, + "probability": 0.1241 + }, + { + "start": 4050.28, + "end": 4050.28, + "probability": 0.0138 + }, + { + "start": 4050.28, + "end": 4050.28, + "probability": 0.0416 + }, + { + "start": 4050.28, + "end": 4051.22, + "probability": 0.8717 + }, + { + "start": 4052.02, + "end": 4053.61, + "probability": 0.8803 + }, + { + "start": 4054.24, + "end": 4055.76, + "probability": 0.8356 + }, + { + "start": 4056.32, + "end": 4057.04, + "probability": 0.8022 + }, + { + "start": 4057.62, + "end": 4058.24, + "probability": 0.9243 + }, + { + "start": 4058.72, + "end": 4059.18, + "probability": 0.8995 + }, + { + "start": 4059.4, + "end": 4061.0, + "probability": 0.9487 + }, + { + "start": 4061.83, + "end": 4063.54, + "probability": 0.7846 + }, + { + "start": 4063.62, + "end": 4064.78, + "probability": 0.946 + }, + { + "start": 4064.82, + "end": 4065.72, + "probability": 0.9424 + }, + { + "start": 4066.48, + "end": 4067.5, + "probability": 0.9815 + }, + { + "start": 4067.64, + "end": 4068.5, + "probability": 0.6292 + }, + { + "start": 4069.18, + "end": 4069.6, + "probability": 0.8086 + }, + { + "start": 4070.04, + "end": 4072.28, + "probability": 0.8467 + }, + { + "start": 4072.92, + "end": 4075.12, + "probability": 0.8738 + }, + { + "start": 4075.26, + "end": 4076.66, + "probability": 0.9488 + }, + { + "start": 4076.68, + "end": 4079.74, + "probability": 0.9744 + }, + { + "start": 4080.6, + "end": 4081.84, + "probability": 0.9956 + }, + { + "start": 4084.44, + "end": 4084.88, + "probability": 0.7676 + }, + { + "start": 4084.96, + "end": 4087.17, + "probability": 0.8828 + }, + { + "start": 4094.7, + "end": 4097.7, + "probability": 0.978 + }, + { + "start": 4098.72, + "end": 4100.18, + "probability": 0.9885 + }, + { + "start": 4100.78, + "end": 4102.28, + "probability": 0.9835 + }, + { + "start": 4103.26, + "end": 4106.48, + "probability": 0.2981 + }, + { + "start": 4107.42, + "end": 4110.34, + "probability": 0.9267 + }, + { + "start": 4110.9, + "end": 4112.7, + "probability": 0.8383 + }, + { + "start": 4113.36, + "end": 4116.28, + "probability": 0.9737 + }, + { + "start": 4116.8, + "end": 4118.54, + "probability": 0.9607 + }, + { + "start": 4119.46, + "end": 4124.0, + "probability": 0.9948 + }, + { + "start": 4124.94, + "end": 4126.3, + "probability": 0.9741 + }, + { + "start": 4126.9, + "end": 4129.68, + "probability": 0.9396 + }, + { + "start": 4129.72, + "end": 4131.82, + "probability": 0.9978 + }, + { + "start": 4132.7, + "end": 4134.8, + "probability": 0.795 + }, + { + "start": 4135.62, + "end": 4138.52, + "probability": 0.8416 + }, + { + "start": 4140.48, + "end": 4143.76, + "probability": 0.9606 + }, + { + "start": 4144.54, + "end": 4145.96, + "probability": 0.8882 + }, + { + "start": 4146.62, + "end": 4147.8, + "probability": 0.9661 + }, + { + "start": 4147.88, + "end": 4150.92, + "probability": 0.9113 + }, + { + "start": 4151.44, + "end": 4153.06, + "probability": 0.8473 + }, + { + "start": 4153.3, + "end": 4156.21, + "probability": 0.8672 + }, + { + "start": 4159.04, + "end": 4161.72, + "probability": 0.9982 + }, + { + "start": 4162.38, + "end": 4165.74, + "probability": 0.814 + }, + { + "start": 4166.62, + "end": 4167.74, + "probability": 0.9175 + }, + { + "start": 4168.38, + "end": 4175.82, + "probability": 0.9972 + }, + { + "start": 4175.82, + "end": 4180.48, + "probability": 0.9704 + }, + { + "start": 4180.62, + "end": 4185.22, + "probability": 0.9357 + }, + { + "start": 4185.32, + "end": 4185.76, + "probability": 0.5717 + }, + { + "start": 4186.16, + "end": 4186.88, + "probability": 0.5077 + }, + { + "start": 4186.96, + "end": 4187.64, + "probability": 0.6618 + }, + { + "start": 4187.68, + "end": 4189.36, + "probability": 0.8421 + }, + { + "start": 4190.06, + "end": 4190.79, + "probability": 0.9776 + }, + { + "start": 4191.06, + "end": 4191.41, + "probability": 0.7876 + }, + { + "start": 4192.2, + "end": 4193.48, + "probability": 0.8578 + }, + { + "start": 4193.9, + "end": 4199.44, + "probability": 0.9696 + }, + { + "start": 4199.48, + "end": 4199.96, + "probability": 0.8028 + }, + { + "start": 4200.54, + "end": 4204.48, + "probability": 0.8263 + }, + { + "start": 4205.48, + "end": 4206.0, + "probability": 0.6575 + }, + { + "start": 4206.22, + "end": 4206.6, + "probability": 0.8223 + }, + { + "start": 4208.07, + "end": 4211.0, + "probability": 0.9899 + }, + { + "start": 4211.48, + "end": 4214.18, + "probability": 0.9977 + }, + { + "start": 4214.8, + "end": 4215.92, + "probability": 0.9912 + }, + { + "start": 4216.04, + "end": 4218.44, + "probability": 0.9985 + }, + { + "start": 4219.2, + "end": 4220.1, + "probability": 0.7096 + }, + { + "start": 4220.18, + "end": 4222.12, + "probability": 0.8043 + }, + { + "start": 4222.42, + "end": 4223.28, + "probability": 0.5348 + }, + { + "start": 4223.62, + "end": 4226.34, + "probability": 0.4 + }, + { + "start": 4226.58, + "end": 4227.74, + "probability": 0.6437 + }, + { + "start": 4227.9, + "end": 4228.1, + "probability": 0.16 + }, + { + "start": 4228.16, + "end": 4228.84, + "probability": 0.7556 + }, + { + "start": 4229.28, + "end": 4232.34, + "probability": 0.9082 + }, + { + "start": 4232.48, + "end": 4232.74, + "probability": 0.2734 + }, + { + "start": 4233.12, + "end": 4234.75, + "probability": 0.6631 + }, + { + "start": 4235.0, + "end": 4235.22, + "probability": 0.0592 + }, + { + "start": 4235.26, + "end": 4235.58, + "probability": 0.5514 + }, + { + "start": 4235.58, + "end": 4236.0, + "probability": 0.9053 + }, + { + "start": 4236.86, + "end": 4238.66, + "probability": 0.7712 + }, + { + "start": 4238.9, + "end": 4240.28, + "probability": 0.7829 + }, + { + "start": 4240.52, + "end": 4243.29, + "probability": 0.9359 + }, + { + "start": 4243.64, + "end": 4244.34, + "probability": 0.8967 + }, + { + "start": 4244.54, + "end": 4247.42, + "probability": 0.9172 + }, + { + "start": 4248.04, + "end": 4248.48, + "probability": 0.4974 + }, + { + "start": 4248.68, + "end": 4252.5, + "probability": 0.9079 + }, + { + "start": 4253.02, + "end": 4257.22, + "probability": 0.9742 + }, + { + "start": 4257.82, + "end": 4260.2, + "probability": 0.9854 + }, + { + "start": 4260.74, + "end": 4262.8, + "probability": 0.9943 + }, + { + "start": 4263.14, + "end": 4265.45, + "probability": 0.9953 + }, + { + "start": 4265.7, + "end": 4265.94, + "probability": 0.7741 + }, + { + "start": 4266.72, + "end": 4266.86, + "probability": 0.3178 + }, + { + "start": 4266.96, + "end": 4268.62, + "probability": 0.8788 + }, + { + "start": 4269.12, + "end": 4270.52, + "probability": 0.9993 + }, + { + "start": 4270.64, + "end": 4272.17, + "probability": 0.8093 + }, + { + "start": 4272.4, + "end": 4273.1, + "probability": 0.9341 + }, + { + "start": 4273.12, + "end": 4274.84, + "probability": 0.8235 + }, + { + "start": 4275.34, + "end": 4278.12, + "probability": 0.9343 + }, + { + "start": 4278.7, + "end": 4280.24, + "probability": 0.9914 + }, + { + "start": 4280.36, + "end": 4282.48, + "probability": 0.9326 + }, + { + "start": 4282.88, + "end": 4283.66, + "probability": 0.9871 + }, + { + "start": 4284.44, + "end": 4285.48, + "probability": 0.9817 + }, + { + "start": 4285.96, + "end": 4286.93, + "probability": 0.9766 + }, + { + "start": 4287.56, + "end": 4288.66, + "probability": 0.9969 + }, + { + "start": 4289.0, + "end": 4290.84, + "probability": 0.9335 + }, + { + "start": 4291.36, + "end": 4291.74, + "probability": 0.6978 + }, + { + "start": 4291.86, + "end": 4292.22, + "probability": 0.8818 + }, + { + "start": 4292.34, + "end": 4293.88, + "probability": 0.8631 + }, + { + "start": 4294.04, + "end": 4295.44, + "probability": 0.6669 + }, + { + "start": 4295.96, + "end": 4297.62, + "probability": 0.977 + }, + { + "start": 4297.62, + "end": 4298.7, + "probability": 0.9142 + }, + { + "start": 4299.1, + "end": 4300.48, + "probability": 0.9969 + }, + { + "start": 4300.82, + "end": 4304.74, + "probability": 0.7915 + }, + { + "start": 4305.02, + "end": 4306.99, + "probability": 0.9883 + }, + { + "start": 4307.38, + "end": 4309.6, + "probability": 0.9751 + }, + { + "start": 4309.84, + "end": 4310.72, + "probability": 0.605 + }, + { + "start": 4310.82, + "end": 4311.12, + "probability": 0.5876 + }, + { + "start": 4311.56, + "end": 4312.52, + "probability": 0.9668 + }, + { + "start": 4312.9, + "end": 4313.96, + "probability": 0.8218 + }, + { + "start": 4314.06, + "end": 4317.72, + "probability": 0.9925 + }, + { + "start": 4318.24, + "end": 4320.08, + "probability": 0.8596 + }, + { + "start": 4320.56, + "end": 4322.4, + "probability": 0.9943 + }, + { + "start": 4323.44, + "end": 4324.62, + "probability": 0.7813 + }, + { + "start": 4324.7, + "end": 4325.0, + "probability": 0.8858 + }, + { + "start": 4326.06, + "end": 4327.88, + "probability": 0.7082 + }, + { + "start": 4328.04, + "end": 4329.78, + "probability": 0.7183 + }, + { + "start": 4330.08, + "end": 4330.48, + "probability": 0.6772 + }, + { + "start": 4331.14, + "end": 4332.14, + "probability": 0.8894 + }, + { + "start": 4332.68, + "end": 4335.52, + "probability": 0.9734 + }, + { + "start": 4335.92, + "end": 4337.38, + "probability": 0.9677 + }, + { + "start": 4337.76, + "end": 4339.62, + "probability": 0.998 + }, + { + "start": 4339.92, + "end": 4343.04, + "probability": 0.9956 + }, + { + "start": 4343.64, + "end": 4346.72, + "probability": 0.983 + }, + { + "start": 4347.1, + "end": 4349.08, + "probability": 0.9882 + }, + { + "start": 4349.48, + "end": 4350.52, + "probability": 0.9829 + }, + { + "start": 4350.92, + "end": 4351.5, + "probability": 0.7053 + }, + { + "start": 4351.54, + "end": 4351.64, + "probability": 0.7212 + }, + { + "start": 4351.8, + "end": 4352.06, + "probability": 0.9358 + }, + { + "start": 4352.12, + "end": 4355.52, + "probability": 0.897 + }, + { + "start": 4355.7, + "end": 4356.58, + "probability": 0.5898 + }, + { + "start": 4357.06, + "end": 4358.5, + "probability": 0.9961 + }, + { + "start": 4358.96, + "end": 4359.88, + "probability": 0.6982 + }, + { + "start": 4359.88, + "end": 4360.66, + "probability": 0.9645 + }, + { + "start": 4361.5, + "end": 4364.52, + "probability": 0.5831 + }, + { + "start": 4365.16, + "end": 4366.4, + "probability": 0.6201 + }, + { + "start": 4366.54, + "end": 4367.78, + "probability": 0.9761 + }, + { + "start": 4368.1, + "end": 4370.12, + "probability": 0.9844 + }, + { + "start": 4370.68, + "end": 4371.48, + "probability": 0.8091 + }, + { + "start": 4372.04, + "end": 4372.84, + "probability": 0.9547 + }, + { + "start": 4373.08, + "end": 4374.96, + "probability": 0.8399 + }, + { + "start": 4375.28, + "end": 4375.76, + "probability": 0.9074 + }, + { + "start": 4375.88, + "end": 4376.68, + "probability": 0.8762 + }, + { + "start": 4380.14, + "end": 4380.62, + "probability": 0.1055 + }, + { + "start": 4380.62, + "end": 4381.13, + "probability": 0.5092 + }, + { + "start": 4381.64, + "end": 4384.14, + "probability": 0.8901 + }, + { + "start": 4384.58, + "end": 4387.46, + "probability": 0.8806 + }, + { + "start": 4387.74, + "end": 4390.26, + "probability": 0.7852 + }, + { + "start": 4390.62, + "end": 4391.58, + "probability": 0.72 + }, + { + "start": 4391.98, + "end": 4392.24, + "probability": 0.9131 + }, + { + "start": 4392.7, + "end": 4394.7, + "probability": 0.9851 + }, + { + "start": 4394.8, + "end": 4396.52, + "probability": 0.957 + }, + { + "start": 4396.92, + "end": 4398.14, + "probability": 0.9902 + }, + { + "start": 4398.78, + "end": 4398.88, + "probability": 0.2585 + }, + { + "start": 4398.88, + "end": 4399.94, + "probability": 0.6727 + }, + { + "start": 4400.22, + "end": 4401.12, + "probability": 0.8876 + }, + { + "start": 4401.42, + "end": 4403.0, + "probability": 0.9803 + }, + { + "start": 4403.7, + "end": 4405.72, + "probability": 0.834 + }, + { + "start": 4406.7, + "end": 4411.1, + "probability": 0.9749 + }, + { + "start": 4411.2, + "end": 4414.24, + "probability": 0.938 + }, + { + "start": 4414.48, + "end": 4414.84, + "probability": 0.7359 + }, + { + "start": 4415.18, + "end": 4415.74, + "probability": 0.9775 + }, + { + "start": 4416.58, + "end": 4419.26, + "probability": 0.7295 + }, + { + "start": 4419.64, + "end": 4422.08, + "probability": 0.9652 + }, + { + "start": 4422.48, + "end": 4423.34, + "probability": 0.9753 + }, + { + "start": 4423.46, + "end": 4424.64, + "probability": 0.9823 + }, + { + "start": 4425.06, + "end": 4425.62, + "probability": 0.9604 + }, + { + "start": 4425.76, + "end": 4426.52, + "probability": 0.9487 + }, + { + "start": 4426.94, + "end": 4427.72, + "probability": 0.9724 + }, + { + "start": 4428.14, + "end": 4430.66, + "probability": 0.6664 + }, + { + "start": 4431.7, + "end": 4433.1, + "probability": 0.9788 + }, + { + "start": 4433.52, + "end": 4437.02, + "probability": 0.9291 + }, + { + "start": 4437.08, + "end": 4438.26, + "probability": 0.9946 + }, + { + "start": 4438.72, + "end": 4442.7, + "probability": 0.9902 + }, + { + "start": 4443.1, + "end": 4445.23, + "probability": 0.9235 + }, + { + "start": 4445.58, + "end": 4447.6, + "probability": 0.9753 + }, + { + "start": 4448.0, + "end": 4450.04, + "probability": 0.9913 + }, + { + "start": 4450.74, + "end": 4453.88, + "probability": 0.7333 + }, + { + "start": 4454.14, + "end": 4455.7, + "probability": 0.6354 + }, + { + "start": 4456.1, + "end": 4457.22, + "probability": 0.8997 + }, + { + "start": 4457.66, + "end": 4458.74, + "probability": 0.7583 + }, + { + "start": 4458.8, + "end": 4459.88, + "probability": 0.7406 + }, + { + "start": 4460.24, + "end": 4461.36, + "probability": 0.7592 + }, + { + "start": 4461.7, + "end": 4462.58, + "probability": 0.6399 + }, + { + "start": 4462.94, + "end": 4464.3, + "probability": 0.914 + }, + { + "start": 4464.74, + "end": 4466.0, + "probability": 0.9832 + }, + { + "start": 4466.1, + "end": 4466.92, + "probability": 0.9926 + }, + { + "start": 4467.34, + "end": 4470.58, + "probability": 0.9893 + }, + { + "start": 4470.66, + "end": 4472.02, + "probability": 0.9993 + }, + { + "start": 4472.66, + "end": 4473.96, + "probability": 0.4995 + }, + { + "start": 4473.96, + "end": 4477.12, + "probability": 0.9452 + }, + { + "start": 4477.28, + "end": 4477.73, + "probability": 0.8311 + }, + { + "start": 4478.62, + "end": 4481.14, + "probability": 0.7637 + }, + { + "start": 4481.2, + "end": 4481.94, + "probability": 0.9302 + }, + { + "start": 4482.74, + "end": 4484.22, + "probability": 0.9133 + }, + { + "start": 4484.96, + "end": 4486.04, + "probability": 0.7944 + }, + { + "start": 4486.32, + "end": 4487.68, + "probability": 0.8444 + }, + { + "start": 4488.52, + "end": 4490.74, + "probability": 0.9721 + }, + { + "start": 4490.86, + "end": 4492.22, + "probability": 0.9724 + }, + { + "start": 4492.7, + "end": 4493.4, + "probability": 0.4989 + }, + { + "start": 4493.78, + "end": 4495.44, + "probability": 0.983 + }, + { + "start": 4495.78, + "end": 4497.17, + "probability": 0.9858 + }, + { + "start": 4497.54, + "end": 4499.88, + "probability": 0.9928 + }, + { + "start": 4500.62, + "end": 4502.89, + "probability": 0.9064 + }, + { + "start": 4503.98, + "end": 4510.26, + "probability": 0.983 + }, + { + "start": 4511.02, + "end": 4512.92, + "probability": 0.8242 + }, + { + "start": 4513.52, + "end": 4516.14, + "probability": 0.9601 + }, + { + "start": 4516.32, + "end": 4517.72, + "probability": 0.7635 + }, + { + "start": 4518.64, + "end": 4519.96, + "probability": 0.8787 + }, + { + "start": 4520.12, + "end": 4522.56, + "probability": 0.9917 + }, + { + "start": 4523.52, + "end": 4524.3, + "probability": 0.8912 + }, + { + "start": 4524.46, + "end": 4527.14, + "probability": 0.8568 + }, + { + "start": 4527.76, + "end": 4528.6, + "probability": 0.7942 + }, + { + "start": 4529.24, + "end": 4530.38, + "probability": 0.9282 + }, + { + "start": 4530.5, + "end": 4530.96, + "probability": 0.8593 + }, + { + "start": 4531.36, + "end": 4536.04, + "probability": 0.9728 + }, + { + "start": 4536.76, + "end": 4542.3, + "probability": 0.9824 + }, + { + "start": 4542.36, + "end": 4542.88, + "probability": 0.9236 + }, + { + "start": 4543.72, + "end": 4546.04, + "probability": 0.9961 + }, + { + "start": 4546.46, + "end": 4547.14, + "probability": 0.6155 + }, + { + "start": 4547.26, + "end": 4549.78, + "probability": 0.9656 + }, + { + "start": 4550.02, + "end": 4550.64, + "probability": 0.8064 + }, + { + "start": 4550.82, + "end": 4552.47, + "probability": 0.9931 + }, + { + "start": 4552.84, + "end": 4554.59, + "probability": 0.7657 + }, + { + "start": 4555.16, + "end": 4557.9, + "probability": 0.8936 + }, + { + "start": 4558.22, + "end": 4561.06, + "probability": 0.9812 + }, + { + "start": 4561.34, + "end": 4562.4, + "probability": 0.98 + }, + { + "start": 4562.82, + "end": 4564.74, + "probability": 0.9841 + }, + { + "start": 4564.86, + "end": 4567.64, + "probability": 0.9917 + }, + { + "start": 4567.74, + "end": 4568.22, + "probability": 0.8856 + }, + { + "start": 4568.74, + "end": 4568.98, + "probability": 0.683 + }, + { + "start": 4569.48, + "end": 4572.34, + "probability": 0.8154 + }, + { + "start": 4573.0, + "end": 4574.72, + "probability": 0.9186 + }, + { + "start": 4575.02, + "end": 4575.8, + "probability": 0.9805 + }, + { + "start": 4575.92, + "end": 4576.34, + "probability": 0.8232 + }, + { + "start": 4577.22, + "end": 4578.04, + "probability": 0.7584 + }, + { + "start": 4578.2, + "end": 4579.25, + "probability": 0.9833 + }, + { + "start": 4580.66, + "end": 4581.74, + "probability": 0.9937 + }, + { + "start": 4582.46, + "end": 4583.46, + "probability": 0.0011 + }, + { + "start": 4584.96, + "end": 4585.06, + "probability": 0.0256 + }, + { + "start": 4585.06, + "end": 4585.28, + "probability": 0.0043 + }, + { + "start": 4585.28, + "end": 4586.83, + "probability": 0.852 + }, + { + "start": 4587.78, + "end": 4588.82, + "probability": 0.0352 + }, + { + "start": 4589.86, + "end": 4592.5, + "probability": 0.8752 + }, + { + "start": 4592.62, + "end": 4593.61, + "probability": 0.7656 + }, + { + "start": 4593.88, + "end": 4597.3, + "probability": 0.9515 + }, + { + "start": 4597.78, + "end": 4599.3, + "probability": 0.6841 + }, + { + "start": 4599.56, + "end": 4600.18, + "probability": 0.8913 + }, + { + "start": 4606.78, + "end": 4607.02, + "probability": 0.7524 + }, + { + "start": 4608.6, + "end": 4610.94, + "probability": 0.9736 + }, + { + "start": 4612.22, + "end": 4614.58, + "probability": 0.9659 + }, + { + "start": 4616.12, + "end": 4619.1, + "probability": 0.9924 + }, + { + "start": 4619.1, + "end": 4621.85, + "probability": 0.9973 + }, + { + "start": 4624.66, + "end": 4626.9, + "probability": 0.9576 + }, + { + "start": 4627.2, + "end": 4628.46, + "probability": 0.9922 + }, + { + "start": 4629.16, + "end": 4629.26, + "probability": 0.3759 + }, + { + "start": 4630.18, + "end": 4630.26, + "probability": 0.6357 + }, + { + "start": 4630.26, + "end": 4630.44, + "probability": 0.7193 + }, + { + "start": 4630.5, + "end": 4631.28, + "probability": 0.9374 + }, + { + "start": 4631.4, + "end": 4632.78, + "probability": 0.9905 + }, + { + "start": 4633.56, + "end": 4636.02, + "probability": 0.9479 + }, + { + "start": 4636.72, + "end": 4640.76, + "probability": 0.9854 + }, + { + "start": 4640.9, + "end": 4642.46, + "probability": 0.9927 + }, + { + "start": 4642.82, + "end": 4645.66, + "probability": 0.9786 + }, + { + "start": 4645.78, + "end": 4647.16, + "probability": 0.8776 + }, + { + "start": 4647.26, + "end": 4648.12, + "probability": 0.9866 + }, + { + "start": 4649.7, + "end": 4650.66, + "probability": 0.9365 + }, + { + "start": 4650.98, + "end": 4652.02, + "probability": 0.3234 + }, + { + "start": 4652.72, + "end": 4656.32, + "probability": 0.8963 + }, + { + "start": 4656.38, + "end": 4657.82, + "probability": 0.8682 + }, + { + "start": 4658.24, + "end": 4658.38, + "probability": 0.4517 + }, + { + "start": 4658.46, + "end": 4658.92, + "probability": 0.9093 + }, + { + "start": 4659.02, + "end": 4659.46, + "probability": 0.8206 + }, + { + "start": 4659.88, + "end": 4662.18, + "probability": 0.9356 + }, + { + "start": 4662.64, + "end": 4665.94, + "probability": 0.958 + }, + { + "start": 4666.52, + "end": 4669.74, + "probability": 0.7495 + }, + { + "start": 4669.78, + "end": 4670.18, + "probability": 0.5223 + }, + { + "start": 4670.78, + "end": 4672.08, + "probability": 0.98 + }, + { + "start": 4672.76, + "end": 4674.22, + "probability": 0.988 + }, + { + "start": 4674.78, + "end": 4677.48, + "probability": 0.9729 + }, + { + "start": 4678.16, + "end": 4680.56, + "probability": 0.8435 + }, + { + "start": 4681.64, + "end": 4682.22, + "probability": 0.4267 + }, + { + "start": 4682.24, + "end": 4683.82, + "probability": 0.7722 + }, + { + "start": 4694.56, + "end": 4694.56, + "probability": 0.0308 + }, + { + "start": 4694.56, + "end": 4695.9, + "probability": 0.6085 + }, + { + "start": 4696.02, + "end": 4696.06, + "probability": 0.5827 + }, + { + "start": 4696.28, + "end": 4696.62, + "probability": 0.3651 + }, + { + "start": 4697.04, + "end": 4698.64, + "probability": 0.939 + }, + { + "start": 4699.32, + "end": 4702.3, + "probability": 0.9045 + }, + { + "start": 4702.36, + "end": 4702.84, + "probability": 0.6275 + }, + { + "start": 4703.4, + "end": 4704.34, + "probability": 0.9329 + }, + { + "start": 4705.6, + "end": 4708.08, + "probability": 0.8035 + }, + { + "start": 4709.3, + "end": 4714.2, + "probability": 0.9925 + }, + { + "start": 4714.82, + "end": 4715.92, + "probability": 0.9747 + }, + { + "start": 4716.4, + "end": 4718.28, + "probability": 0.9625 + }, + { + "start": 4719.06, + "end": 4721.3, + "probability": 0.9973 + }, + { + "start": 4721.32, + "end": 4724.66, + "probability": 0.9741 + }, + { + "start": 4725.34, + "end": 4727.7, + "probability": 0.9296 + }, + { + "start": 4728.4, + "end": 4730.38, + "probability": 0.9185 + }, + { + "start": 4730.56, + "end": 4739.66, + "probability": 0.8846 + }, + { + "start": 4739.74, + "end": 4741.12, + "probability": 0.929 + }, + { + "start": 4741.26, + "end": 4742.32, + "probability": 0.5093 + }, + { + "start": 4742.96, + "end": 4748.12, + "probability": 0.9755 + }, + { + "start": 4748.82, + "end": 4752.2, + "probability": 0.9584 + }, + { + "start": 4752.96, + "end": 4756.42, + "probability": 0.9869 + }, + { + "start": 4757.0, + "end": 4762.02, + "probability": 0.9567 + }, + { + "start": 4762.8, + "end": 4763.52, + "probability": 0.6946 + }, + { + "start": 4763.84, + "end": 4767.0, + "probability": 0.7596 + }, + { + "start": 4767.12, + "end": 4769.52, + "probability": 0.9697 + }, + { + "start": 4770.2, + "end": 4770.48, + "probability": 0.9487 + }, + { + "start": 4770.62, + "end": 4771.8, + "probability": 0.9978 + }, + { + "start": 4772.26, + "end": 4773.62, + "probability": 0.9718 + }, + { + "start": 4774.24, + "end": 4775.78, + "probability": 0.7461 + }, + { + "start": 4776.26, + "end": 4777.36, + "probability": 0.9164 + }, + { + "start": 4777.74, + "end": 4779.42, + "probability": 0.825 + }, + { + "start": 4780.2, + "end": 4780.84, + "probability": 0.6571 + }, + { + "start": 4780.94, + "end": 4783.3, + "probability": 0.9819 + }, + { + "start": 4783.42, + "end": 4783.6, + "probability": 0.8251 + }, + { + "start": 4784.54, + "end": 4785.2, + "probability": 0.5151 + }, + { + "start": 4785.3, + "end": 4785.84, + "probability": 0.9834 + }, + { + "start": 4786.44, + "end": 4786.94, + "probability": 0.5497 + }, + { + "start": 4787.04, + "end": 4787.16, + "probability": 0.6582 + }, + { + "start": 4787.24, + "end": 4787.94, + "probability": 0.9902 + }, + { + "start": 4788.18, + "end": 4790.0, + "probability": 0.98 + }, + { + "start": 4790.56, + "end": 4792.12, + "probability": 0.8553 + }, + { + "start": 4792.28, + "end": 4793.12, + "probability": 0.9165 + }, + { + "start": 4793.52, + "end": 4794.9, + "probability": 0.9769 + }, + { + "start": 4795.52, + "end": 4796.87, + "probability": 0.9652 + }, + { + "start": 4797.62, + "end": 4797.76, + "probability": 0.2682 + }, + { + "start": 4799.16, + "end": 4799.84, + "probability": 0.0392 + }, + { + "start": 4799.84, + "end": 4802.18, + "probability": 0.7148 + }, + { + "start": 4802.7, + "end": 4804.52, + "probability": 0.7014 + }, + { + "start": 4804.98, + "end": 4809.42, + "probability": 0.9427 + }, + { + "start": 4809.94, + "end": 4811.94, + "probability": 0.7986 + }, + { + "start": 4812.32, + "end": 4813.66, + "probability": 0.9917 + }, + { + "start": 4814.86, + "end": 4815.98, + "probability": 0.7444 + }, + { + "start": 4816.6, + "end": 4817.42, + "probability": 0.8839 + }, + { + "start": 4817.56, + "end": 4821.52, + "probability": 0.7307 + }, + { + "start": 4822.18, + "end": 4822.4, + "probability": 0.3188 + }, + { + "start": 4825.48, + "end": 4825.7, + "probability": 0.0307 + }, + { + "start": 4825.7, + "end": 4825.7, + "probability": 0.1224 + }, + { + "start": 4825.7, + "end": 4828.14, + "probability": 0.5554 + }, + { + "start": 4829.28, + "end": 4832.82, + "probability": 0.0755 + }, + { + "start": 4843.58, + "end": 4844.28, + "probability": 0.2322 + }, + { + "start": 4847.14, + "end": 4848.26, + "probability": 0.2051 + }, + { + "start": 4849.03, + "end": 4849.66, + "probability": 0.1297 + }, + { + "start": 4849.66, + "end": 4851.08, + "probability": 0.1366 + }, + { + "start": 4851.08, + "end": 4851.64, + "probability": 0.0194 + }, + { + "start": 4852.08, + "end": 4852.94, + "probability": 0.2371 + }, + { + "start": 4852.94, + "end": 4852.94, + "probability": 0.4815 + }, + { + "start": 4852.94, + "end": 4857.34, + "probability": 0.1296 + }, + { + "start": 4857.34, + "end": 4859.8, + "probability": 0.1066 + }, + { + "start": 4859.8, + "end": 4862.46, + "probability": 0.131 + }, + { + "start": 4863.16, + "end": 4866.54, + "probability": 0.1858 + }, + { + "start": 4867.36, + "end": 4868.16, + "probability": 0.0015 + }, + { + "start": 4868.49, + "end": 4871.48, + "probability": 0.0331 + }, + { + "start": 4871.48, + "end": 4872.4, + "probability": 0.049 + }, + { + "start": 4872.8, + "end": 4877.18, + "probability": 0.1463 + }, + { + "start": 4877.22, + "end": 4880.26, + "probability": 0.0304 + }, + { + "start": 4880.26, + "end": 4880.38, + "probability": 0.2958 + }, + { + "start": 4880.38, + "end": 4881.02, + "probability": 0.7743 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.0, + "end": 4894.0, + "probability": 0.0 + }, + { + "start": 4894.48, + "end": 4894.6, + "probability": 0.2535 + }, + { + "start": 4894.6, + "end": 4895.96, + "probability": 0.361 + }, + { + "start": 4896.26, + "end": 4896.4, + "probability": 0.1097 + }, + { + "start": 4896.4, + "end": 4897.12, + "probability": 0.1529 + }, + { + "start": 4898.28, + "end": 4901.0, + "probability": 0.1386 + }, + { + "start": 4901.46, + "end": 4901.56, + "probability": 0.0273 + }, + { + "start": 4901.56, + "end": 4904.44, + "probability": 0.2283 + }, + { + "start": 4905.4, + "end": 4907.9, + "probability": 0.1593 + }, + { + "start": 4919.06, + "end": 4921.26, + "probability": 0.5773 + }, + { + "start": 4921.28, + "end": 4924.02, + "probability": 0.3844 + }, + { + "start": 4924.06, + "end": 4924.12, + "probability": 0.8478 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.0, + "end": 5014.0, + "probability": 0.0 + }, + { + "start": 5014.25, + "end": 5015.05, + "probability": 0.0426 + }, + { + "start": 5015.8, + "end": 5017.66, + "probability": 0.5646 + }, + { + "start": 5017.76, + "end": 5020.38, + "probability": 0.8602 + }, + { + "start": 5020.38, + "end": 5021.22, + "probability": 0.8725 + }, + { + "start": 5021.32, + "end": 5022.74, + "probability": 0.9561 + }, + { + "start": 5022.76, + "end": 5024.88, + "probability": 0.994 + }, + { + "start": 5025.5, + "end": 5026.84, + "probability": 0.211 + }, + { + "start": 5027.0, + "end": 5027.54, + "probability": 0.6772 + }, + { + "start": 5028.0, + "end": 5029.32, + "probability": 0.9913 + }, + { + "start": 5029.44, + "end": 5030.42, + "probability": 0.988 + }, + { + "start": 5030.7, + "end": 5030.92, + "probability": 0.8138 + }, + { + "start": 5031.82, + "end": 5032.7, + "probability": 0.7707 + }, + { + "start": 5032.76, + "end": 5033.4, + "probability": 0.7774 + }, + { + "start": 5033.96, + "end": 5035.32, + "probability": 0.9644 + }, + { + "start": 5035.74, + "end": 5038.24, + "probability": 0.8221 + }, + { + "start": 5038.92, + "end": 5039.58, + "probability": 0.8909 + }, + { + "start": 5039.64, + "end": 5040.68, + "probability": 0.9712 + }, + { + "start": 5040.72, + "end": 5041.7, + "probability": 0.8925 + }, + { + "start": 5041.8, + "end": 5042.18, + "probability": 0.9825 + }, + { + "start": 5042.92, + "end": 5043.8, + "probability": 0.6473 + }, + { + "start": 5044.04, + "end": 5046.37, + "probability": 0.9663 + }, + { + "start": 5047.06, + "end": 5048.34, + "probability": 0.9871 + }, + { + "start": 5049.42, + "end": 5052.2, + "probability": 0.9884 + }, + { + "start": 5052.52, + "end": 5053.6, + "probability": 0.9048 + }, + { + "start": 5053.66, + "end": 5055.18, + "probability": 0.9932 + }, + { + "start": 5055.76, + "end": 5057.34, + "probability": 0.9953 + }, + { + "start": 5057.46, + "end": 5058.02, + "probability": 0.7159 + }, + { + "start": 5058.38, + "end": 5058.48, + "probability": 0.3077 + }, + { + "start": 5058.48, + "end": 5062.66, + "probability": 0.9843 + }, + { + "start": 5064.26, + "end": 5066.36, + "probability": 0.3498 + }, + { + "start": 5066.38, + "end": 5067.34, + "probability": 0.8682 + }, + { + "start": 5067.54, + "end": 5067.9, + "probability": 0.1313 + }, + { + "start": 5067.9, + "end": 5068.16, + "probability": 0.5436 + }, + { + "start": 5068.42, + "end": 5070.1, + "probability": 0.6695 + }, + { + "start": 5070.12, + "end": 5072.38, + "probability": 0.8906 + }, + { + "start": 5072.68, + "end": 5072.78, + "probability": 0.2535 + }, + { + "start": 5073.42, + "end": 5073.84, + "probability": 0.0539 + }, + { + "start": 5073.88, + "end": 5074.76, + "probability": 0.5965 + }, + { + "start": 5074.76, + "end": 5074.96, + "probability": 0.5956 + }, + { + "start": 5075.4, + "end": 5075.91, + "probability": 0.5357 + }, + { + "start": 5076.36, + "end": 5076.6, + "probability": 0.7236 + }, + { + "start": 5076.68, + "end": 5076.9, + "probability": 0.8123 + }, + { + "start": 5077.34, + "end": 5080.12, + "probability": 0.9174 + }, + { + "start": 5080.12, + "end": 5081.4, + "probability": 0.0184 + }, + { + "start": 5081.9, + "end": 5082.14, + "probability": 0.5031 + }, + { + "start": 5082.5, + "end": 5082.88, + "probability": 0.9729 + }, + { + "start": 5083.52, + "end": 5085.36, + "probability": 0.0156 + }, + { + "start": 5087.36, + "end": 5089.04, + "probability": 0.1219 + }, + { + "start": 5090.02, + "end": 5090.02, + "probability": 0.6549 + }, + { + "start": 5090.02, + "end": 5090.02, + "probability": 0.4993 + }, + { + "start": 5090.08, + "end": 5090.64, + "probability": 0.2976 + }, + { + "start": 5090.66, + "end": 5090.66, + "probability": 0.3819 + }, + { + "start": 5090.66, + "end": 5090.66, + "probability": 0.5232 + }, + { + "start": 5090.66, + "end": 5091.17, + "probability": 0.8052 + }, + { + "start": 5091.88, + "end": 5091.92, + "probability": 0.031 + }, + { + "start": 5091.92, + "end": 5094.08, + "probability": 0.6382 + }, + { + "start": 5094.08, + "end": 5095.62, + "probability": 0.7025 + }, + { + "start": 5095.78, + "end": 5097.09, + "probability": 0.5044 + }, + { + "start": 5097.66, + "end": 5098.6, + "probability": 0.5065 + }, + { + "start": 5098.76, + "end": 5099.68, + "probability": 0.2048 + }, + { + "start": 5099.68, + "end": 5101.4, + "probability": 0.4801 + }, + { + "start": 5102.12, + "end": 5103.76, + "probability": 0.1635 + }, + { + "start": 5104.22, + "end": 5105.74, + "probability": 0.4005 + }, + { + "start": 5105.74, + "end": 5106.16, + "probability": 0.0082 + }, + { + "start": 5106.16, + "end": 5106.16, + "probability": 0.3422 + }, + { + "start": 5106.16, + "end": 5108.94, + "probability": 0.9569 + }, + { + "start": 5109.08, + "end": 5109.66, + "probability": 0.5395 + }, + { + "start": 5109.78, + "end": 5111.3, + "probability": 0.947 + }, + { + "start": 5111.3, + "end": 5111.96, + "probability": 0.6786 + }, + { + "start": 5112.64, + "end": 5115.18, + "probability": 0.9586 + }, + { + "start": 5115.6, + "end": 5115.77, + "probability": 0.0633 + }, + { + "start": 5116.0, + "end": 5116.0, + "probability": 0.5116 + }, + { + "start": 5116.0, + "end": 5116.0, + "probability": 0.4041 + }, + { + "start": 5116.0, + "end": 5116.54, + "probability": 0.5416 + }, + { + "start": 5117.06, + "end": 5117.86, + "probability": 0.5752 + }, + { + "start": 5117.94, + "end": 5123.14, + "probability": 0.8934 + }, + { + "start": 5125.26, + "end": 5125.26, + "probability": 0.0132 + }, + { + "start": 5125.26, + "end": 5129.18, + "probability": 0.8552 + }, + { + "start": 5129.52, + "end": 5131.69, + "probability": 0.8203 + }, + { + "start": 5132.76, + "end": 5132.76, + "probability": 0.4554 + }, + { + "start": 5132.86, + "end": 5133.94, + "probability": 0.6393 + }, + { + "start": 5134.16, + "end": 5134.8, + "probability": 0.7887 + }, + { + "start": 5135.04, + "end": 5135.88, + "probability": 0.7131 + }, + { + "start": 5135.96, + "end": 5138.89, + "probability": 0.9925 + }, + { + "start": 5139.36, + "end": 5139.36, + "probability": 0.0937 + }, + { + "start": 5139.72, + "end": 5140.72, + "probability": 0.8654 + }, + { + "start": 5140.82, + "end": 5145.14, + "probability": 0.9208 + }, + { + "start": 5145.7, + "end": 5146.14, + "probability": 0.457 + }, + { + "start": 5146.74, + "end": 5147.48, + "probability": 0.8706 + }, + { + "start": 5147.72, + "end": 5154.26, + "probability": 0.9968 + }, + { + "start": 5154.74, + "end": 5155.1, + "probability": 0.8753 + }, + { + "start": 5155.54, + "end": 5157.9, + "probability": 0.9985 + }, + { + "start": 5158.4, + "end": 5162.58, + "probability": 0.99 + }, + { + "start": 5163.08, + "end": 5165.72, + "probability": 0.9968 + }, + { + "start": 5165.84, + "end": 5166.5, + "probability": 0.7614 + }, + { + "start": 5166.96, + "end": 5168.82, + "probability": 0.9988 + }, + { + "start": 5169.26, + "end": 5173.38, + "probability": 0.9126 + }, + { + "start": 5173.38, + "end": 5176.3, + "probability": 0.998 + }, + { + "start": 5176.46, + "end": 5177.1, + "probability": 0.5818 + }, + { + "start": 5177.2, + "end": 5177.76, + "probability": 0.8689 + }, + { + "start": 5178.57, + "end": 5179.96, + "probability": 0.5956 + }, + { + "start": 5180.65, + "end": 5183.06, + "probability": 0.931 + }, + { + "start": 5183.24, + "end": 5184.8, + "probability": 0.9636 + }, + { + "start": 5186.54, + "end": 5193.24, + "probability": 0.9955 + }, + { + "start": 5193.68, + "end": 5194.2, + "probability": 0.937 + }, + { + "start": 5194.54, + "end": 5194.96, + "probability": 0.7715 + }, + { + "start": 5195.26, + "end": 5197.6, + "probability": 0.8124 + }, + { + "start": 5197.88, + "end": 5198.78, + "probability": 0.8335 + }, + { + "start": 5198.78, + "end": 5199.3, + "probability": 0.2768 + }, + { + "start": 5199.32, + "end": 5200.26, + "probability": 0.8512 + }, + { + "start": 5201.54, + "end": 5201.94, + "probability": 0.5639 + }, + { + "start": 5202.16, + "end": 5202.42, + "probability": 0.7616 + }, + { + "start": 5202.46, + "end": 5203.54, + "probability": 0.9399 + }, + { + "start": 5203.92, + "end": 5205.86, + "probability": 0.6855 + }, + { + "start": 5206.1, + "end": 5206.16, + "probability": 0.0897 + }, + { + "start": 5206.16, + "end": 5207.82, + "probability": 0.5965 + }, + { + "start": 5207.82, + "end": 5209.56, + "probability": 0.6529 + }, + { + "start": 5209.68, + "end": 5211.2, + "probability": 0.5496 + }, + { + "start": 5211.2, + "end": 5212.96, + "probability": 0.3685 + }, + { + "start": 5215.88, + "end": 5217.06, + "probability": 0.1805 + }, + { + "start": 5217.06, + "end": 5217.18, + "probability": 0.0813 + }, + { + "start": 5217.18, + "end": 5218.16, + "probability": 0.3421 + }, + { + "start": 5219.42, + "end": 5223.24, + "probability": 0.4509 + }, + { + "start": 5223.68, + "end": 5226.72, + "probability": 0.0483 + }, + { + "start": 5229.08, + "end": 5229.08, + "probability": 0.1492 + }, + { + "start": 5229.08, + "end": 5229.08, + "probability": 0.0226 + }, + { + "start": 5229.08, + "end": 5233.14, + "probability": 0.5923 + }, + { + "start": 5233.34, + "end": 5234.57, + "probability": 0.9971 + }, + { + "start": 5235.52, + "end": 5235.52, + "probability": 0.0763 + }, + { + "start": 5235.52, + "end": 5238.58, + "probability": 0.9838 + }, + { + "start": 5239.36, + "end": 5241.8, + "probability": 0.8737 + }, + { + "start": 5242.34, + "end": 5243.1, + "probability": 0.993 + }, + { + "start": 5244.12, + "end": 5244.24, + "probability": 0.0259 + }, + { + "start": 5244.24, + "end": 5244.24, + "probability": 0.4281 + }, + { + "start": 5244.24, + "end": 5245.76, + "probability": 0.8739 + }, + { + "start": 5246.34, + "end": 5249.76, + "probability": 0.0342 + }, + { + "start": 5250.3, + "end": 5250.38, + "probability": 0.0697 + }, + { + "start": 5250.38, + "end": 5250.54, + "probability": 0.0321 + }, + { + "start": 5250.54, + "end": 5253.9, + "probability": 0.4189 + }, + { + "start": 5254.32, + "end": 5256.34, + "probability": 0.993 + }, + { + "start": 5256.8, + "end": 5259.58, + "probability": 0.7931 + }, + { + "start": 5260.06, + "end": 5261.64, + "probability": 0.9799 + }, + { + "start": 5261.98, + "end": 5263.98, + "probability": 0.9105 + }, + { + "start": 5264.38, + "end": 5265.18, + "probability": 0.7621 + }, + { + "start": 5265.34, + "end": 5267.28, + "probability": 0.9849 + }, + { + "start": 5267.76, + "end": 5269.58, + "probability": 0.9847 + }, + { + "start": 5270.54, + "end": 5271.6, + "probability": 0.9103 + }, + { + "start": 5272.12, + "end": 5273.04, + "probability": 0.9833 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.0, + "end": 5303.0, + "probability": 0.0 + }, + { + "start": 5303.46, + "end": 5304.18, + "probability": 0.8576 + }, + { + "start": 5304.44, + "end": 5308.16, + "probability": 0.9941 + }, + { + "start": 5308.6, + "end": 5308.92, + "probability": 0.3999 + }, + { + "start": 5308.93, + "end": 5313.24, + "probability": 0.9966 + }, + { + "start": 5313.62, + "end": 5314.52, + "probability": 0.5692 + }, + { + "start": 5314.54, + "end": 5315.38, + "probability": 0.3616 + }, + { + "start": 5316.76, + "end": 5317.64, + "probability": 0.0335 + }, + { + "start": 5317.64, + "end": 5320.14, + "probability": 0.7947 + }, + { + "start": 5320.36, + "end": 5321.46, + "probability": 0.1198 + }, + { + "start": 5321.46, + "end": 5322.74, + "probability": 0.4 + }, + { + "start": 5323.08, + "end": 5323.24, + "probability": 0.0384 + }, + { + "start": 5323.54, + "end": 5324.54, + "probability": 0.3364 + }, + { + "start": 5326.22, + "end": 5326.22, + "probability": 0.1941 + }, + { + "start": 5326.22, + "end": 5326.46, + "probability": 0.0342 + }, + { + "start": 5326.72, + "end": 5328.32, + "probability": 0.0467 + }, + { + "start": 5328.74, + "end": 5332.54, + "probability": 0.866 + }, + { + "start": 5332.76, + "end": 5335.74, + "probability": 0.451 + }, + { + "start": 5335.86, + "end": 5338.76, + "probability": 0.7423 + }, + { + "start": 5338.76, + "end": 5338.82, + "probability": 0.073 + }, + { + "start": 5338.82, + "end": 5340.64, + "probability": 0.4926 + }, + { + "start": 5340.82, + "end": 5341.74, + "probability": 0.5079 + }, + { + "start": 5342.02, + "end": 5345.38, + "probability": 0.1335 + }, + { + "start": 5345.6, + "end": 5347.52, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.0, + "end": 5427.0, + "probability": 0.0 + }, + { + "start": 5427.16, + "end": 5428.4, + "probability": 0.0026 + }, + { + "start": 5428.4, + "end": 5430.2, + "probability": 0.026 + }, + { + "start": 5430.2, + "end": 5430.22, + "probability": 0.1241 + }, + { + "start": 5430.22, + "end": 5433.32, + "probability": 0.0172 + }, + { + "start": 5434.0, + "end": 5436.84, + "probability": 0.0345 + }, + { + "start": 5438.98, + "end": 5439.22, + "probability": 0.0185 + }, + { + "start": 5439.26, + "end": 5439.5, + "probability": 0.0394 + }, + { + "start": 5439.64, + "end": 5440.24, + "probability": 0.1382 + }, + { + "start": 5440.74, + "end": 5442.56, + "probability": 0.2081 + }, + { + "start": 5443.64, + "end": 5445.22, + "probability": 0.0843 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.0, + "end": 5553.0, + "probability": 0.0 + }, + { + "start": 5553.62, + "end": 5553.74, + "probability": 0.1386 + }, + { + "start": 5553.74, + "end": 5553.74, + "probability": 0.185 + }, + { + "start": 5553.74, + "end": 5555.2, + "probability": 0.8959 + }, + { + "start": 5555.46, + "end": 5556.74, + "probability": 0.8341 + }, + { + "start": 5557.1, + "end": 5558.18, + "probability": 0.9224 + }, + { + "start": 5558.3, + "end": 5560.84, + "probability": 0.8452 + }, + { + "start": 5561.8, + "end": 5565.42, + "probability": 0.8461 + }, + { + "start": 5567.22, + "end": 5570.7, + "probability": 0.9406 + }, + { + "start": 5570.7, + "end": 5573.94, + "probability": 0.9961 + }, + { + "start": 5574.72, + "end": 5576.14, + "probability": 0.9314 + }, + { + "start": 5577.18, + "end": 5580.64, + "probability": 0.9785 + }, + { + "start": 5581.82, + "end": 5586.32, + "probability": 0.9789 + }, + { + "start": 5586.32, + "end": 5590.02, + "probability": 0.9984 + }, + { + "start": 5591.16, + "end": 5596.22, + "probability": 0.989 + }, + { + "start": 5596.22, + "end": 5601.66, + "probability": 0.9709 + }, + { + "start": 5602.4, + "end": 5605.28, + "probability": 0.9804 + }, + { + "start": 5605.46, + "end": 5610.36, + "probability": 0.9918 + }, + { + "start": 5610.7, + "end": 5611.16, + "probability": 0.6656 + }, + { + "start": 5611.76, + "end": 5614.52, + "probability": 0.9617 + }, + { + "start": 5615.18, + "end": 5618.96, + "probability": 0.9857 + }, + { + "start": 5618.96, + "end": 5623.76, + "probability": 0.999 + }, + { + "start": 5624.58, + "end": 5627.82, + "probability": 0.9888 + }, + { + "start": 5628.38, + "end": 5630.66, + "probability": 0.9934 + }, + { + "start": 5631.48, + "end": 5635.0, + "probability": 0.4866 + }, + { + "start": 5635.56, + "end": 5638.66, + "probability": 0.9852 + }, + { + "start": 5638.66, + "end": 5643.2, + "probability": 0.9709 + }, + { + "start": 5643.46, + "end": 5645.76, + "probability": 0.9755 + }, + { + "start": 5646.34, + "end": 5648.42, + "probability": 0.9622 + }, + { + "start": 5648.94, + "end": 5649.5, + "probability": 0.6762 + }, + { + "start": 5649.6, + "end": 5653.52, + "probability": 0.9976 + }, + { + "start": 5653.68, + "end": 5659.38, + "probability": 0.9984 + }, + { + "start": 5659.38, + "end": 5663.42, + "probability": 0.9909 + }, + { + "start": 5664.22, + "end": 5665.67, + "probability": 0.518 + }, + { + "start": 5668.16, + "end": 5672.94, + "probability": 0.9985 + }, + { + "start": 5673.48, + "end": 5674.74, + "probability": 0.7068 + }, + { + "start": 5674.98, + "end": 5682.92, + "probability": 0.9917 + }, + { + "start": 5683.28, + "end": 5686.7, + "probability": 0.9928 + }, + { + "start": 5686.7, + "end": 5691.18, + "probability": 0.9978 + }, + { + "start": 5694.84, + "end": 5698.3, + "probability": 0.9992 + }, + { + "start": 5698.3, + "end": 5703.78, + "probability": 0.9993 + }, + { + "start": 5704.38, + "end": 5708.46, + "probability": 0.9935 + }, + { + "start": 5709.52, + "end": 5712.7, + "probability": 0.8678 + }, + { + "start": 5713.52, + "end": 5715.38, + "probability": 0.9677 + }, + { + "start": 5716.08, + "end": 5721.66, + "probability": 0.9793 + }, + { + "start": 5722.4, + "end": 5727.86, + "probability": 0.9496 + }, + { + "start": 5728.4, + "end": 5730.8, + "probability": 0.9764 + }, + { + "start": 5731.12, + "end": 5732.44, + "probability": 0.692 + }, + { + "start": 5732.72, + "end": 5734.6, + "probability": 0.9935 + }, + { + "start": 5735.38, + "end": 5740.34, + "probability": 0.9019 + }, + { + "start": 5740.52, + "end": 5740.9, + "probability": 0.8507 + }, + { + "start": 5741.62, + "end": 5743.2, + "probability": 0.8826 + }, + { + "start": 5743.9, + "end": 5744.96, + "probability": 0.9318 + }, + { + "start": 5745.44, + "end": 5746.06, + "probability": 0.8829 + }, + { + "start": 5748.64, + "end": 5749.18, + "probability": 0.5417 + }, + { + "start": 5749.2, + "end": 5750.48, + "probability": 0.9329 + }, + { + "start": 5752.38, + "end": 5753.9, + "probability": 0.3696 + }, + { + "start": 5757.36, + "end": 5758.08, + "probability": 0.2601 + }, + { + "start": 5766.38, + "end": 5766.88, + "probability": 0.3148 + }, + { + "start": 5769.98, + "end": 5771.0, + "probability": 0.0705 + }, + { + "start": 5771.56, + "end": 5774.4, + "probability": 0.2582 + }, + { + "start": 5784.4, + "end": 5784.4, + "probability": 0.0141 + }, + { + "start": 5789.52, + "end": 5790.48, + "probability": 0.0311 + }, + { + "start": 5826.7, + "end": 5828.9, + "probability": 0.9592 + }, + { + "start": 5829.86, + "end": 5831.82, + "probability": 0.7754 + }, + { + "start": 5832.4, + "end": 5834.0, + "probability": 0.7956 + }, + { + "start": 5835.94, + "end": 5840.92, + "probability": 0.8596 + }, + { + "start": 5850.86, + "end": 5851.0, + "probability": 0.0554 + }, + { + "start": 5851.0, + "end": 5851.0, + "probability": 0.0808 + }, + { + "start": 5851.0, + "end": 5851.0, + "probability": 0.1444 + }, + { + "start": 5851.0, + "end": 5851.0, + "probability": 0.284 + }, + { + "start": 5851.0, + "end": 5853.24, + "probability": 0.468 + }, + { + "start": 5853.54, + "end": 5856.8, + "probability": 0.5252 + }, + { + "start": 5857.52, + "end": 5862.68, + "probability": 0.9685 + }, + { + "start": 5863.32, + "end": 5868.66, + "probability": 0.9924 + }, + { + "start": 5869.5, + "end": 5871.56, + "probability": 0.9608 + }, + { + "start": 5872.92, + "end": 5878.52, + "probability": 0.9839 + }, + { + "start": 5878.52, + "end": 5885.52, + "probability": 0.9976 + }, + { + "start": 5886.0, + "end": 5888.68, + "probability": 0.9973 + }, + { + "start": 5889.3, + "end": 5892.92, + "probability": 0.9941 + }, + { + "start": 5892.96, + "end": 5895.1, + "probability": 0.979 + }, + { + "start": 5896.82, + "end": 5898.52, + "probability": 0.8574 + }, + { + "start": 5899.5, + "end": 5902.56, + "probability": 0.9889 + }, + { + "start": 5902.98, + "end": 5903.68, + "probability": 0.8874 + }, + { + "start": 5904.04, + "end": 5904.82, + "probability": 0.4719 + }, + { + "start": 5905.16, + "end": 5907.08, + "probability": 0.9511 + }, + { + "start": 5907.8, + "end": 5913.2, + "probability": 0.9979 + }, + { + "start": 5913.34, + "end": 5918.18, + "probability": 0.9997 + }, + { + "start": 5918.94, + "end": 5924.4, + "probability": 0.4951 + }, + { + "start": 5924.92, + "end": 5927.12, + "probability": 0.9951 + }, + { + "start": 5927.86, + "end": 5932.34, + "probability": 0.9176 + }, + { + "start": 5932.94, + "end": 5935.74, + "probability": 0.9582 + }, + { + "start": 5936.6, + "end": 5937.08, + "probability": 0.8771 + }, + { + "start": 5937.94, + "end": 5940.4, + "probability": 0.717 + }, + { + "start": 5941.0, + "end": 5945.56, + "probability": 0.9724 + }, + { + "start": 5945.96, + "end": 5947.52, + "probability": 0.9658 + }, + { + "start": 5948.0, + "end": 5950.58, + "probability": 0.7379 + }, + { + "start": 5951.5, + "end": 5951.92, + "probability": 0.3981 + }, + { + "start": 5952.5, + "end": 5956.74, + "probability": 0.9553 + }, + { + "start": 5957.3, + "end": 5959.86, + "probability": 0.7866 + }, + { + "start": 5960.66, + "end": 5963.74, + "probability": 0.9502 + }, + { + "start": 5964.22, + "end": 5964.7, + "probability": 0.9469 + }, + { + "start": 5964.96, + "end": 5965.7, + "probability": 0.9834 + }, + { + "start": 5966.04, + "end": 5966.72, + "probability": 0.9911 + }, + { + "start": 5967.1, + "end": 5967.76, + "probability": 0.9881 + }, + { + "start": 5967.92, + "end": 5968.6, + "probability": 0.9955 + }, + { + "start": 5968.96, + "end": 5969.3, + "probability": 0.5016 + }, + { + "start": 5970.76, + "end": 5973.08, + "probability": 0.7854 + }, + { + "start": 5974.0, + "end": 5976.74, + "probability": 0.9874 + }, + { + "start": 5977.64, + "end": 5979.93, + "probability": 0.5839 + }, + { + "start": 5980.88, + "end": 5986.14, + "probability": 0.8197 + }, + { + "start": 5987.16, + "end": 5987.96, + "probability": 0.8367 + }, + { + "start": 5988.12, + "end": 5990.66, + "probability": 0.9961 + }, + { + "start": 5991.96, + "end": 5995.86, + "probability": 0.943 + }, + { + "start": 5996.64, + "end": 5999.78, + "probability": 0.9002 + }, + { + "start": 5999.92, + "end": 6000.38, + "probability": 0.4805 + }, + { + "start": 6000.88, + "end": 6001.68, + "probability": 0.5645 + }, + { + "start": 6001.8, + "end": 6003.12, + "probability": 0.6952 + }, + { + "start": 6003.9, + "end": 6005.41, + "probability": 0.9667 + }, + { + "start": 6005.8, + "end": 6007.28, + "probability": 0.9702 + }, + { + "start": 6008.1, + "end": 6012.96, + "probability": 0.8562 + }, + { + "start": 6016.12, + "end": 6020.12, + "probability": 0.9993 + }, + { + "start": 6020.74, + "end": 6022.08, + "probability": 0.9289 + }, + { + "start": 6022.82, + "end": 6023.88, + "probability": 0.9762 + }, + { + "start": 6024.12, + "end": 6025.82, + "probability": 0.9049 + }, + { + "start": 6026.18, + "end": 6030.76, + "probability": 0.9373 + }, + { + "start": 6031.66, + "end": 6032.22, + "probability": 0.7442 + }, + { + "start": 6032.36, + "end": 6033.76, + "probability": 0.8276 + }, + { + "start": 6033.8, + "end": 6037.02, + "probability": 0.9976 + }, + { + "start": 6037.74, + "end": 6043.36, + "probability": 0.974 + }, + { + "start": 6043.96, + "end": 6046.6, + "probability": 0.9082 + }, + { + "start": 6046.98, + "end": 6047.78, + "probability": 0.9482 + }, + { + "start": 6047.84, + "end": 6049.14, + "probability": 0.9156 + }, + { + "start": 6049.42, + "end": 6050.12, + "probability": 0.9977 + }, + { + "start": 6050.64, + "end": 6051.36, + "probability": 0.7982 + }, + { + "start": 6052.48, + "end": 6055.88, + "probability": 0.9902 + }, + { + "start": 6056.48, + "end": 6059.92, + "probability": 0.9397 + }, + { + "start": 6060.14, + "end": 6061.2, + "probability": 0.9626 + }, + { + "start": 6061.6, + "end": 6062.68, + "probability": 0.9467 + }, + { + "start": 6063.1, + "end": 6063.9, + "probability": 0.9563 + }, + { + "start": 6064.2, + "end": 6069.6, + "probability": 0.9867 + }, + { + "start": 6069.78, + "end": 6070.18, + "probability": 0.7405 + }, + { + "start": 6070.52, + "end": 6071.1, + "probability": 0.6264 + }, + { + "start": 6071.28, + "end": 6072.86, + "probability": 0.7755 + }, + { + "start": 6073.14, + "end": 6079.64, + "probability": 0.0816 + }, + { + "start": 6080.28, + "end": 6082.52, + "probability": 0.0334 + }, + { + "start": 6082.52, + "end": 6084.06, + "probability": 0.0859 + }, + { + "start": 6084.94, + "end": 6090.52, + "probability": 0.0859 + }, + { + "start": 6097.16, + "end": 6100.76, + "probability": 0.0302 + }, + { + "start": 6155.68, + "end": 6156.36, + "probability": 0.0678 + }, + { + "start": 6157.04, + "end": 6157.26, + "probability": 0.2289 + }, + { + "start": 6169.5, + "end": 6170.74, + "probability": 0.5095 + }, + { + "start": 6186.52, + "end": 6187.44, + "probability": 0.0 + }, + { + "start": 6204.34, + "end": 6205.98, + "probability": 0.0214 + }, + { + "start": 6205.98, + "end": 6206.4, + "probability": 0.0478 + }, + { + "start": 6206.4, + "end": 6207.12, + "probability": 0.0123 + }, + { + "start": 6207.16, + "end": 6213.08, + "probability": 0.0388 + }, + { + "start": 6213.08, + "end": 6218.47, + "probability": 0.0703 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6321.0, + "end": 6321.0, + "probability": 0.0 + }, + { + "start": 6368.18, + "end": 6369.82, + "probability": 0.0019 + }, + { + "start": 6369.82, + "end": 6369.82, + "probability": 0.1661 + }, + { + "start": 6369.84, + "end": 6371.44, + "probability": 0.258 + }, + { + "start": 6373.24, + "end": 6379.64, + "probability": 0.0213 + }, + { + "start": 6380.26, + "end": 6381.16, + "probability": 0.1704 + }, + { + "start": 6381.7, + "end": 6382.36, + "probability": 0.1053 + }, + { + "start": 6382.44, + "end": 6383.88, + "probability": 0.1869 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.0, + "end": 6441.0, + "probability": 0.0 + }, + { + "start": 6441.3, + "end": 6444.16, + "probability": 0.9881 + }, + { + "start": 6444.76, + "end": 6447.1, + "probability": 0.9978 + }, + { + "start": 6448.04, + "end": 6451.0, + "probability": 0.7113 + }, + { + "start": 6452.06, + "end": 6454.54, + "probability": 0.9927 + }, + { + "start": 6454.88, + "end": 6455.48, + "probability": 0.6314 + }, + { + "start": 6455.72, + "end": 6458.47, + "probability": 0.9796 + }, + { + "start": 6460.04, + "end": 6462.38, + "probability": 0.964 + }, + { + "start": 6462.38, + "end": 6464.88, + "probability": 0.985 + }, + { + "start": 6465.28, + "end": 6467.7, + "probability": 0.5625 + }, + { + "start": 6470.12, + "end": 6472.44, + "probability": 0.6657 + }, + { + "start": 6473.08, + "end": 6474.58, + "probability": 0.4541 + }, + { + "start": 6477.36, + "end": 6478.88, + "probability": 0.9626 + }, + { + "start": 6479.76, + "end": 6481.6, + "probability": 0.99 + }, + { + "start": 6481.7, + "end": 6485.78, + "probability": 0.9976 + }, + { + "start": 6485.9, + "end": 6490.44, + "probability": 0.9912 + }, + { + "start": 6490.44, + "end": 6494.8, + "probability": 0.9873 + }, + { + "start": 6496.12, + "end": 6496.48, + "probability": 0.468 + }, + { + "start": 6496.52, + "end": 6499.46, + "probability": 0.9765 + }, + { + "start": 6499.68, + "end": 6500.84, + "probability": 0.9528 + }, + { + "start": 6501.2, + "end": 6502.08, + "probability": 0.8455 + }, + { + "start": 6502.14, + "end": 6503.4, + "probability": 0.8734 + }, + { + "start": 6504.06, + "end": 6507.84, + "probability": 0.9882 + }, + { + "start": 6508.88, + "end": 6512.94, + "probability": 0.9878 + }, + { + "start": 6514.3, + "end": 6518.72, + "probability": 0.9708 + }, + { + "start": 6518.9, + "end": 6520.86, + "probability": 0.8771 + }, + { + "start": 6521.4, + "end": 6523.24, + "probability": 0.9959 + }, + { + "start": 6523.56, + "end": 6526.46, + "probability": 0.9935 + }, + { + "start": 6526.46, + "end": 6530.14, + "probability": 0.9919 + }, + { + "start": 6530.62, + "end": 6531.06, + "probability": 0.7634 + }, + { + "start": 6532.92, + "end": 6533.96, + "probability": 0.6924 + }, + { + "start": 6534.1, + "end": 6535.74, + "probability": 0.739 + }, + { + "start": 6535.86, + "end": 6536.22, + "probability": 0.9316 + }, + { + "start": 6548.64, + "end": 6550.2, + "probability": 0.1641 + }, + { + "start": 6550.3, + "end": 6551.06, + "probability": 0.0808 + }, + { + "start": 6551.06, + "end": 6551.06, + "probability": 0.0228 + }, + { + "start": 6551.06, + "end": 6551.44, + "probability": 0.1224 + }, + { + "start": 6557.7, + "end": 6558.32, + "probability": 0.0087 + }, + { + "start": 6559.49, + "end": 6561.94, + "probability": 0.4991 + }, + { + "start": 6562.16, + "end": 6562.44, + "probability": 0.5349 + }, + { + "start": 6563.72, + "end": 6567.16, + "probability": 0.9715 + }, + { + "start": 6567.26, + "end": 6568.8, + "probability": 0.7587 + }, + { + "start": 6568.82, + "end": 6569.58, + "probability": 0.1147 + }, + { + "start": 6572.08, + "end": 6575.68, + "probability": 0.9091 + }, + { + "start": 6576.78, + "end": 6580.06, + "probability": 0.9504 + }, + { + "start": 6581.42, + "end": 6584.92, + "probability": 0.9014 + }, + { + "start": 6585.04, + "end": 6585.04, + "probability": 0.6901 + }, + { + "start": 6585.04, + "end": 6586.04, + "probability": 0.7262 + }, + { + "start": 6586.5, + "end": 6590.3, + "probability": 0.6961 + }, + { + "start": 6590.82, + "end": 6592.17, + "probability": 0.8511 + }, + { + "start": 6593.52, + "end": 6595.74, + "probability": 0.8393 + }, + { + "start": 6596.8, + "end": 6597.6, + "probability": 0.4675 + }, + { + "start": 6598.12, + "end": 6599.52, + "probability": 0.9927 + }, + { + "start": 6600.28, + "end": 6602.4, + "probability": 0.4441 + }, + { + "start": 6602.4, + "end": 6603.31, + "probability": 0.72 + }, + { + "start": 6604.14, + "end": 6607.76, + "probability": 0.9133 + }, + { + "start": 6608.76, + "end": 6610.78, + "probability": 0.9824 + }, + { + "start": 6611.06, + "end": 6614.36, + "probability": 0.8293 + }, + { + "start": 6614.44, + "end": 6616.21, + "probability": 0.8981 + }, + { + "start": 6617.86, + "end": 6619.14, + "probability": 0.9682 + }, + { + "start": 6619.42, + "end": 6621.88, + "probability": 0.97 + }, + { + "start": 6621.94, + "end": 6622.72, + "probability": 0.9004 + }, + { + "start": 6623.28, + "end": 6625.04, + "probability": 0.4913 + }, + { + "start": 6625.76, + "end": 6630.92, + "probability": 0.9761 + }, + { + "start": 6631.32, + "end": 6632.9, + "probability": 0.9435 + }, + { + "start": 6632.96, + "end": 6633.72, + "probability": 0.855 + }, + { + "start": 6634.5, + "end": 6636.82, + "probability": 0.9344 + }, + { + "start": 6637.78, + "end": 6638.88, + "probability": 0.6672 + }, + { + "start": 6639.44, + "end": 6643.68, + "probability": 0.962 + }, + { + "start": 6643.88, + "end": 6646.64, + "probability": 0.5008 + }, + { + "start": 6646.64, + "end": 6647.46, + "probability": 0.1223 + }, + { + "start": 6648.66, + "end": 6650.76, + "probability": 0.9634 + }, + { + "start": 6651.34, + "end": 6651.8, + "probability": 0.9025 + }, + { + "start": 6652.12, + "end": 6654.9, + "probability": 0.9773 + }, + { + "start": 6655.06, + "end": 6658.82, + "probability": 0.9223 + }, + { + "start": 6659.2, + "end": 6660.2, + "probability": 0.8198 + }, + { + "start": 6660.78, + "end": 6661.5, + "probability": 0.9634 + }, + { + "start": 6661.84, + "end": 6663.0, + "probability": 0.7607 + }, + { + "start": 6663.58, + "end": 6663.9, + "probability": 0.8047 + }, + { + "start": 6664.42, + "end": 6664.78, + "probability": 0.3594 + }, + { + "start": 6664.9, + "end": 6665.38, + "probability": 0.9595 + }, + { + "start": 6666.04, + "end": 6669.62, + "probability": 0.9447 + }, + { + "start": 6669.66, + "end": 6670.78, + "probability": 0.6676 + }, + { + "start": 6671.58, + "end": 6675.94, + "probability": 0.9814 + }, + { + "start": 6676.62, + "end": 6680.66, + "probability": 0.9936 + }, + { + "start": 6682.4, + "end": 6684.66, + "probability": 0.8522 + }, + { + "start": 6684.76, + "end": 6690.54, + "probability": 0.7617 + }, + { + "start": 6691.6, + "end": 6693.82, + "probability": 0.8345 + }, + { + "start": 6694.9, + "end": 6698.66, + "probability": 0.7692 + }, + { + "start": 6699.12, + "end": 6700.24, + "probability": 0.6023 + }, + { + "start": 6701.0, + "end": 6702.0, + "probability": 0.7775 + }, + { + "start": 6702.92, + "end": 6704.46, + "probability": 0.8263 + }, + { + "start": 6705.28, + "end": 6706.18, + "probability": 0.6855 + }, + { + "start": 6707.02, + "end": 6707.56, + "probability": 0.8173 + }, + { + "start": 6708.42, + "end": 6710.74, + "probability": 0.7321 + }, + { + "start": 6710.84, + "end": 6713.32, + "probability": 0.8013 + }, + { + "start": 6714.28, + "end": 6718.02, + "probability": 0.9286 + }, + { + "start": 6718.16, + "end": 6721.04, + "probability": 0.8261 + }, + { + "start": 6721.12, + "end": 6721.66, + "probability": 0.6355 + }, + { + "start": 6722.34, + "end": 6724.5, + "probability": 0.9358 + }, + { + "start": 6725.38, + "end": 6726.44, + "probability": 0.9088 + }, + { + "start": 6727.32, + "end": 6728.74, + "probability": 0.9849 + }, + { + "start": 6729.58, + "end": 6733.12, + "probability": 0.995 + }, + { + "start": 6733.74, + "end": 6734.86, + "probability": 0.9921 + }, + { + "start": 6734.92, + "end": 6735.52, + "probability": 0.5017 + }, + { + "start": 6735.66, + "end": 6736.18, + "probability": 0.7751 + }, + { + "start": 6736.26, + "end": 6736.64, + "probability": 0.5224 + }, + { + "start": 6737.06, + "end": 6738.88, + "probability": 0.9132 + }, + { + "start": 6738.94, + "end": 6739.9, + "probability": 0.9835 + }, + { + "start": 6740.5, + "end": 6742.34, + "probability": 0.7139 + }, + { + "start": 6743.36, + "end": 6744.72, + "probability": 0.8444 + }, + { + "start": 6744.92, + "end": 6746.27, + "probability": 0.8994 + }, + { + "start": 6746.72, + "end": 6747.48, + "probability": 0.9077 + }, + { + "start": 6747.62, + "end": 6749.12, + "probability": 0.9561 + }, + { + "start": 6749.8, + "end": 6750.8, + "probability": 0.4304 + }, + { + "start": 6751.72, + "end": 6755.3, + "probability": 0.9351 + }, + { + "start": 6756.1, + "end": 6757.58, + "probability": 0.9915 + }, + { + "start": 6757.72, + "end": 6759.62, + "probability": 0.9816 + }, + { + "start": 6760.4, + "end": 6761.4, + "probability": 0.7046 + }, + { + "start": 6761.54, + "end": 6762.36, + "probability": 0.9634 + }, + { + "start": 6762.8, + "end": 6765.7, + "probability": 0.9255 + }, + { + "start": 6765.86, + "end": 6767.96, + "probability": 0.9698 + }, + { + "start": 6768.08, + "end": 6769.32, + "probability": 0.8438 + }, + { + "start": 6769.4, + "end": 6772.36, + "probability": 0.9421 + }, + { + "start": 6772.72, + "end": 6773.38, + "probability": 0.6878 + }, + { + "start": 6775.12, + "end": 6780.0, + "probability": 0.9029 + }, + { + "start": 6798.62, + "end": 6799.42, + "probability": 0.6746 + }, + { + "start": 6800.18, + "end": 6800.96, + "probability": 0.8071 + }, + { + "start": 6802.24, + "end": 6805.0, + "probability": 0.7935 + }, + { + "start": 6806.18, + "end": 6807.16, + "probability": 0.9882 + }, + { + "start": 6807.86, + "end": 6809.0, + "probability": 0.869 + }, + { + "start": 6810.28, + "end": 6811.74, + "probability": 0.9917 + }, + { + "start": 6813.28, + "end": 6816.22, + "probability": 0.9531 + }, + { + "start": 6817.12, + "end": 6817.86, + "probability": 0.3425 + }, + { + "start": 6817.88, + "end": 6818.82, + "probability": 0.9331 + }, + { + "start": 6820.74, + "end": 6822.66, + "probability": 0.9836 + }, + { + "start": 6823.46, + "end": 6824.78, + "probability": 0.9985 + }, + { + "start": 6825.86, + "end": 6828.32, + "probability": 0.9902 + }, + { + "start": 6828.92, + "end": 6830.44, + "probability": 0.8356 + }, + { + "start": 6831.17, + "end": 6833.34, + "probability": 0.634 + }, + { + "start": 6834.2, + "end": 6837.5, + "probability": 0.9723 + }, + { + "start": 6838.34, + "end": 6840.52, + "probability": 0.991 + }, + { + "start": 6840.84, + "end": 6843.22, + "probability": 0.9918 + }, + { + "start": 6844.02, + "end": 6845.22, + "probability": 0.991 + }, + { + "start": 6846.22, + "end": 6849.84, + "probability": 0.9896 + }, + { + "start": 6850.86, + "end": 6854.4, + "probability": 0.8275 + }, + { + "start": 6855.56, + "end": 6858.18, + "probability": 0.9883 + }, + { + "start": 6858.98, + "end": 6862.3, + "probability": 0.9814 + }, + { + "start": 6863.92, + "end": 6864.84, + "probability": 0.908 + }, + { + "start": 6866.24, + "end": 6869.16, + "probability": 0.9592 + }, + { + "start": 6870.28, + "end": 6873.06, + "probability": 0.912 + }, + { + "start": 6875.26, + "end": 6877.38, + "probability": 0.8357 + }, + { + "start": 6878.94, + "end": 6880.8, + "probability": 0.993 + }, + { + "start": 6882.16, + "end": 6883.6, + "probability": 0.979 + }, + { + "start": 6885.18, + "end": 6887.02, + "probability": 0.8789 + }, + { + "start": 6887.98, + "end": 6889.78, + "probability": 0.998 + }, + { + "start": 6890.58, + "end": 6891.06, + "probability": 0.8515 + }, + { + "start": 6892.08, + "end": 6895.62, + "probability": 0.9962 + }, + { + "start": 6896.14, + "end": 6896.98, + "probability": 0.8722 + }, + { + "start": 6898.16, + "end": 6902.52, + "probability": 0.7106 + }, + { + "start": 6902.7, + "end": 6903.92, + "probability": 0.7892 + }, + { + "start": 6904.48, + "end": 6906.6, + "probability": 0.7923 + }, + { + "start": 6907.48, + "end": 6908.52, + "probability": 0.9609 + }, + { + "start": 6909.14, + "end": 6909.73, + "probability": 0.556 + }, + { + "start": 6910.72, + "end": 6912.18, + "probability": 0.7234 + }, + { + "start": 6912.88, + "end": 6914.76, + "probability": 0.9552 + }, + { + "start": 6915.52, + "end": 6919.18, + "probability": 0.9597 + }, + { + "start": 6920.1, + "end": 6921.18, + "probability": 0.9875 + }, + { + "start": 6921.24, + "end": 6922.0, + "probability": 0.9881 + }, + { + "start": 6922.06, + "end": 6922.84, + "probability": 0.9639 + }, + { + "start": 6923.36, + "end": 6926.28, + "probability": 0.9767 + }, + { + "start": 6927.54, + "end": 6929.9, + "probability": 0.6169 + }, + { + "start": 6930.38, + "end": 6931.76, + "probability": 0.8841 + }, + { + "start": 6933.0, + "end": 6936.02, + "probability": 0.8701 + }, + { + "start": 6937.0, + "end": 6937.94, + "probability": 0.8326 + }, + { + "start": 6938.46, + "end": 6939.9, + "probability": 0.9808 + }, + { + "start": 6940.74, + "end": 6943.68, + "probability": 0.9689 + }, + { + "start": 6944.44, + "end": 6945.2, + "probability": 0.9224 + }, + { + "start": 6946.24, + "end": 6947.64, + "probability": 0.9059 + }, + { + "start": 6947.88, + "end": 6948.24, + "probability": 0.5094 + }, + { + "start": 6950.0, + "end": 6951.7, + "probability": 0.6441 + }, + { + "start": 6952.28, + "end": 6955.34, + "probability": 0.6177 + }, + { + "start": 6956.28, + "end": 6959.96, + "probability": 0.899 + }, + { + "start": 6960.52, + "end": 6961.8, + "probability": 0.819 + }, + { + "start": 6961.92, + "end": 6963.9, + "probability": 0.8386 + }, + { + "start": 6965.12, + "end": 6966.26, + "probability": 0.8806 + }, + { + "start": 6966.92, + "end": 6968.82, + "probability": 0.8066 + }, + { + "start": 6969.52, + "end": 6970.6, + "probability": 0.8653 + }, + { + "start": 6971.26, + "end": 6972.28, + "probability": 0.8647 + }, + { + "start": 6972.9, + "end": 6973.68, + "probability": 0.6585 + }, + { + "start": 6973.8, + "end": 6975.8, + "probability": 0.991 + }, + { + "start": 6976.68, + "end": 6982.76, + "probability": 0.9988 + }, + { + "start": 6984.08, + "end": 6986.34, + "probability": 0.9315 + }, + { + "start": 6986.94, + "end": 6987.52, + "probability": 0.7833 + }, + { + "start": 6988.82, + "end": 6989.46, + "probability": 0.9189 + }, + { + "start": 6990.64, + "end": 6991.34, + "probability": 0.8744 + }, + { + "start": 6991.56, + "end": 6992.12, + "probability": 0.778 + }, + { + "start": 6992.56, + "end": 6993.4, + "probability": 0.9879 + }, + { + "start": 6993.44, + "end": 6994.3, + "probability": 0.7715 + }, + { + "start": 6995.04, + "end": 6995.54, + "probability": 0.7516 + }, + { + "start": 6996.32, + "end": 6997.76, + "probability": 0.8632 + }, + { + "start": 6998.4, + "end": 6999.76, + "probability": 0.9591 + }, + { + "start": 7000.52, + "end": 7002.5, + "probability": 0.8758 + }, + { + "start": 7003.02, + "end": 7003.36, + "probability": 0.474 + }, + { + "start": 7004.44, + "end": 7005.06, + "probability": 0.7448 + }, + { + "start": 7005.14, + "end": 7005.62, + "probability": 0.3421 + }, + { + "start": 7005.86, + "end": 7007.47, + "probability": 0.809 + }, + { + "start": 7007.86, + "end": 7011.48, + "probability": 0.7523 + }, + { + "start": 7014.72, + "end": 7017.76, + "probability": 0.4969 + }, + { + "start": 7017.94, + "end": 7021.38, + "probability": 0.429 + }, + { + "start": 7022.64, + "end": 7024.58, + "probability": 0.9088 + }, + { + "start": 7025.06, + "end": 7026.18, + "probability": 0.6908 + }, + { + "start": 7026.32, + "end": 7026.42, + "probability": 0.8455 + }, + { + "start": 7029.22, + "end": 7035.04, + "probability": 0.0567 + }, + { + "start": 7035.04, + "end": 7036.9, + "probability": 0.0958 + }, + { + "start": 7039.36, + "end": 7044.3, + "probability": 0.0362 + }, + { + "start": 7045.36, + "end": 7045.36, + "probability": 0.3744 + }, + { + "start": 7045.36, + "end": 7047.08, + "probability": 0.285 + }, + { + "start": 7047.66, + "end": 7048.6, + "probability": 0.368 + }, + { + "start": 7048.7, + "end": 7051.54, + "probability": 0.7902 + }, + { + "start": 7052.24, + "end": 7053.86, + "probability": 0.9561 + }, + { + "start": 7055.14, + "end": 7058.22, + "probability": 0.5981 + }, + { + "start": 7058.68, + "end": 7059.8, + "probability": 0.8422 + }, + { + "start": 7081.22, + "end": 7083.02, + "probability": 0.0817 + }, + { + "start": 7083.02, + "end": 7083.28, + "probability": 0.084 + }, + { + "start": 7083.46, + "end": 7083.56, + "probability": 0.0306 + }, + { + "start": 7083.56, + "end": 7086.5, + "probability": 0.0681 + }, + { + "start": 7086.5, + "end": 7087.12, + "probability": 0.0586 + }, + { + "start": 7087.12, + "end": 7087.98, + "probability": 0.0115 + }, + { + "start": 7088.0, + "end": 7088.0, + "probability": 0.0 + }, + { + "start": 7088.0, + "end": 7088.0, + "probability": 0.0 + }, + { + "start": 7088.0, + "end": 7088.0, + "probability": 0.0 + }, + { + "start": 7088.0, + "end": 7088.0, + "probability": 0.0 + }, + { + "start": 7089.02, + "end": 7090.52, + "probability": 0.553 + }, + { + "start": 7090.74, + "end": 7092.44, + "probability": 0.6349 + }, + { + "start": 7093.1, + "end": 7095.88, + "probability": 0.8369 + }, + { + "start": 7096.96, + "end": 7104.1, + "probability": 0.952 + }, + { + "start": 7111.38, + "end": 7114.14, + "probability": 0.6808 + }, + { + "start": 7134.24, + "end": 7136.32, + "probability": 0.7109 + }, + { + "start": 7137.18, + "end": 7141.16, + "probability": 0.9026 + }, + { + "start": 7141.92, + "end": 7142.32, + "probability": 0.7658 + }, + { + "start": 7142.92, + "end": 7144.9, + "probability": 0.9917 + }, + { + "start": 7145.78, + "end": 7147.94, + "probability": 0.9887 + }, + { + "start": 7149.38, + "end": 7150.5, + "probability": 0.8368 + }, + { + "start": 7150.6, + "end": 7152.54, + "probability": 0.934 + }, + { + "start": 7153.24, + "end": 7154.92, + "probability": 0.9944 + }, + { + "start": 7155.58, + "end": 7156.52, + "probability": 0.8029 + }, + { + "start": 7157.1, + "end": 7159.72, + "probability": 0.9927 + }, + { + "start": 7160.3, + "end": 7161.1, + "probability": 0.6826 + }, + { + "start": 7161.32, + "end": 7161.54, + "probability": 0.7394 + }, + { + "start": 7162.7, + "end": 7163.26, + "probability": 0.6626 + }, + { + "start": 7163.38, + "end": 7165.44, + "probability": 0.9751 + }, + { + "start": 7165.52, + "end": 7168.48, + "probability": 0.7449 + }, + { + "start": 7168.58, + "end": 7170.4, + "probability": 0.8977 + }, + { + "start": 7170.54, + "end": 7172.6, + "probability": 0.2971 + }, + { + "start": 7173.18, + "end": 7176.04, + "probability": 0.873 + }, + { + "start": 7176.08, + "end": 7176.3, + "probability": 0.8445 + }, + { + "start": 7184.38, + "end": 7185.94, + "probability": 0.7186 + }, + { + "start": 7186.2, + "end": 7190.52, + "probability": 0.7696 + }, + { + "start": 7191.8, + "end": 7194.96, + "probability": 0.9814 + }, + { + "start": 7195.62, + "end": 7198.42, + "probability": 0.9845 + }, + { + "start": 7199.38, + "end": 7203.5, + "probability": 0.9919 + }, + { + "start": 7203.5, + "end": 7207.02, + "probability": 0.9987 + }, + { + "start": 7208.04, + "end": 7210.86, + "probability": 0.9712 + }, + { + "start": 7213.68, + "end": 7217.38, + "probability": 0.9782 + }, + { + "start": 7217.94, + "end": 7221.26, + "probability": 0.9848 + }, + { + "start": 7221.26, + "end": 7224.24, + "probability": 0.9941 + }, + { + "start": 7225.0, + "end": 7227.34, + "probability": 0.7172 + }, + { + "start": 7227.86, + "end": 7228.54, + "probability": 0.9041 + }, + { + "start": 7229.64, + "end": 7233.86, + "probability": 0.9474 + }, + { + "start": 7234.62, + "end": 7238.82, + "probability": 0.7595 + }, + { + "start": 7238.82, + "end": 7242.12, + "probability": 0.9327 + }, + { + "start": 7242.14, + "end": 7243.12, + "probability": 0.8997 + }, + { + "start": 7243.66, + "end": 7246.88, + "probability": 0.941 + }, + { + "start": 7247.74, + "end": 7250.78, + "probability": 0.9785 + }, + { + "start": 7250.78, + "end": 7254.38, + "probability": 0.9929 + }, + { + "start": 7255.98, + "end": 7256.72, + "probability": 0.8152 + }, + { + "start": 7257.18, + "end": 7261.88, + "probability": 0.9927 + }, + { + "start": 7262.72, + "end": 7264.1, + "probability": 0.9536 + }, + { + "start": 7264.88, + "end": 7266.52, + "probability": 0.9915 + }, + { + "start": 7267.3, + "end": 7269.3, + "probability": 0.6029 + }, + { + "start": 7269.9, + "end": 7271.16, + "probability": 0.7375 + }, + { + "start": 7272.4, + "end": 7272.94, + "probability": 0.3474 + }, + { + "start": 7273.86, + "end": 7274.92, + "probability": 0.5828 + }, + { + "start": 7275.5, + "end": 7278.88, + "probability": 0.9756 + }, + { + "start": 7279.96, + "end": 7281.36, + "probability": 0.9989 + }, + { + "start": 7282.38, + "end": 7286.42, + "probability": 0.989 + }, + { + "start": 7287.18, + "end": 7288.6, + "probability": 0.571 + }, + { + "start": 7289.4, + "end": 7294.06, + "probability": 0.8667 + }, + { + "start": 7294.42, + "end": 7296.3, + "probability": 0.9763 + }, + { + "start": 7296.44, + "end": 7298.34, + "probability": 0.939 + }, + { + "start": 7299.1, + "end": 7301.36, + "probability": 0.9844 + }, + { + "start": 7302.78, + "end": 7306.66, + "probability": 0.9669 + }, + { + "start": 7306.66, + "end": 7311.18, + "probability": 0.9808 + }, + { + "start": 7312.52, + "end": 7316.26, + "probability": 0.961 + }, + { + "start": 7316.74, + "end": 7319.04, + "probability": 0.9917 + }, + { + "start": 7319.56, + "end": 7325.22, + "probability": 0.9839 + }, + { + "start": 7325.3, + "end": 7330.56, + "probability": 0.9946 + }, + { + "start": 7331.32, + "end": 7336.06, + "probability": 0.9959 + }, + { + "start": 7336.06, + "end": 7341.06, + "probability": 0.9477 + }, + { + "start": 7341.38, + "end": 7343.5, + "probability": 0.9657 + }, + { + "start": 7344.04, + "end": 7345.2, + "probability": 0.9436 + }, + { + "start": 7345.32, + "end": 7350.0, + "probability": 0.8797 + }, + { + "start": 7350.52, + "end": 7353.23, + "probability": 0.8461 + }, + { + "start": 7354.46, + "end": 7358.1, + "probability": 0.9933 + }, + { + "start": 7358.98, + "end": 7362.8, + "probability": 0.9894 + }, + { + "start": 7363.36, + "end": 7368.04, + "probability": 0.998 + }, + { + "start": 7368.62, + "end": 7370.0, + "probability": 0.9946 + }, + { + "start": 7371.26, + "end": 7372.66, + "probability": 0.9694 + }, + { + "start": 7373.6, + "end": 7376.12, + "probability": 0.9536 + }, + { + "start": 7377.0, + "end": 7377.74, + "probability": 0.999 + }, + { + "start": 7378.44, + "end": 7384.04, + "probability": 0.9869 + }, + { + "start": 7384.64, + "end": 7387.74, + "probability": 0.9315 + }, + { + "start": 7388.58, + "end": 7390.96, + "probability": 0.9087 + }, + { + "start": 7390.96, + "end": 7395.44, + "probability": 0.7457 + }, + { + "start": 7396.92, + "end": 7396.92, + "probability": 0.2038 + }, + { + "start": 7396.92, + "end": 7403.58, + "probability": 0.9629 + }, + { + "start": 7403.6, + "end": 7409.64, + "probability": 0.813 + }, + { + "start": 7410.66, + "end": 7415.6, + "probability": 0.8614 + }, + { + "start": 7416.3, + "end": 7417.56, + "probability": 0.9976 + }, + { + "start": 7418.4, + "end": 7423.94, + "probability": 0.9803 + }, + { + "start": 7425.46, + "end": 7427.09, + "probability": 0.5581 + }, + { + "start": 7427.48, + "end": 7428.74, + "probability": 0.4663 + }, + { + "start": 7428.76, + "end": 7430.68, + "probability": 0.886 + }, + { + "start": 7431.38, + "end": 7432.9, + "probability": 0.7302 + }, + { + "start": 7433.02, + "end": 7434.38, + "probability": 0.6541 + }, + { + "start": 7434.5, + "end": 7435.34, + "probability": 0.123 + }, + { + "start": 7435.84, + "end": 7436.24, + "probability": 0.2822 + }, + { + "start": 7436.58, + "end": 7436.62, + "probability": 0.1965 + }, + { + "start": 7436.62, + "end": 7436.68, + "probability": 0.0061 + }, + { + "start": 7436.82, + "end": 7437.88, + "probability": 0.0088 + }, + { + "start": 7437.9, + "end": 7438.48, + "probability": 0.5263 + }, + { + "start": 7438.56, + "end": 7439.08, + "probability": 0.5854 + }, + { + "start": 7439.76, + "end": 7443.8, + "probability": 0.9908 + }, + { + "start": 7443.8, + "end": 7447.62, + "probability": 0.9717 + }, + { + "start": 7448.14, + "end": 7451.68, + "probability": 0.9744 + }, + { + "start": 7452.34, + "end": 7452.64, + "probability": 0.999 + }, + { + "start": 7453.24, + "end": 7454.44, + "probability": 0.8881 + }, + { + "start": 7454.88, + "end": 7459.1, + "probability": 0.9685 + }, + { + "start": 7459.46, + "end": 7463.82, + "probability": 0.9835 + }, + { + "start": 7466.08, + "end": 7467.44, + "probability": 0.7859 + }, + { + "start": 7467.44, + "end": 7469.8, + "probability": 0.8683 + }, + { + "start": 7470.0, + "end": 7470.92, + "probability": 0.9982 + }, + { + "start": 7471.44, + "end": 7473.16, + "probability": 0.9398 + }, + { + "start": 7473.44, + "end": 7474.9, + "probability": 0.9923 + }, + { + "start": 7475.56, + "end": 7477.34, + "probability": 0.992 + }, + { + "start": 7478.08, + "end": 7483.02, + "probability": 0.9666 + }, + { + "start": 7483.66, + "end": 7487.04, + "probability": 0.9844 + }, + { + "start": 7489.6, + "end": 7492.78, + "probability": 0.9958 + }, + { + "start": 7492.78, + "end": 7497.0, + "probability": 0.9459 + }, + { + "start": 7497.5, + "end": 7499.0, + "probability": 0.9579 + }, + { + "start": 7500.0, + "end": 7502.36, + "probability": 0.9867 + }, + { + "start": 7502.74, + "end": 7506.18, + "probability": 0.9957 + }, + { + "start": 7507.28, + "end": 7509.9, + "probability": 0.8728 + }, + { + "start": 7511.23, + "end": 7514.78, + "probability": 0.9907 + }, + { + "start": 7515.5, + "end": 7517.21, + "probability": 0.9854 + }, + { + "start": 7518.02, + "end": 7522.08, + "probability": 0.9585 + }, + { + "start": 7522.62, + "end": 7528.3, + "probability": 0.9097 + }, + { + "start": 7529.32, + "end": 7530.0, + "probability": 0.663 + }, + { + "start": 7530.1, + "end": 7533.12, + "probability": 0.8025 + }, + { + "start": 7533.6, + "end": 7534.82, + "probability": 0.9973 + }, + { + "start": 7535.72, + "end": 7538.18, + "probability": 0.7826 + }, + { + "start": 7538.86, + "end": 7541.14, + "probability": 0.9937 + }, + { + "start": 7541.68, + "end": 7547.68, + "probability": 0.9968 + }, + { + "start": 7548.32, + "end": 7551.86, + "probability": 0.9897 + }, + { + "start": 7552.48, + "end": 7555.58, + "probability": 0.9709 + }, + { + "start": 7556.32, + "end": 7558.96, + "probability": 0.8101 + }, + { + "start": 7559.72, + "end": 7561.72, + "probability": 0.9917 + }, + { + "start": 7562.18, + "end": 7563.4, + "probability": 0.7928 + }, + { + "start": 7563.78, + "end": 7564.56, + "probability": 0.9958 + }, + { + "start": 7565.12, + "end": 7567.7, + "probability": 0.8583 + }, + { + "start": 7568.16, + "end": 7570.14, + "probability": 0.9243 + }, + { + "start": 7570.44, + "end": 7571.16, + "probability": 0.7509 + }, + { + "start": 7571.66, + "end": 7573.88, + "probability": 0.9688 + }, + { + "start": 7574.32, + "end": 7575.66, + "probability": 0.7729 + }, + { + "start": 7576.28, + "end": 7577.72, + "probability": 0.6783 + }, + { + "start": 7578.12, + "end": 7579.72, + "probability": 0.8315 + }, + { + "start": 7580.28, + "end": 7581.02, + "probability": 0.8341 + }, + { + "start": 7597.26, + "end": 7599.48, + "probability": 0.6529 + }, + { + "start": 7600.58, + "end": 7602.4, + "probability": 0.8498 + }, + { + "start": 7602.48, + "end": 7606.32, + "probability": 0.8487 + }, + { + "start": 7606.32, + "end": 7610.68, + "probability": 0.9987 + }, + { + "start": 7611.26, + "end": 7613.48, + "probability": 0.9961 + }, + { + "start": 7614.52, + "end": 7620.22, + "probability": 0.9899 + }, + { + "start": 7620.48, + "end": 7625.8, + "probability": 0.9779 + }, + { + "start": 7626.12, + "end": 7628.28, + "probability": 0.9878 + }, + { + "start": 7629.22, + "end": 7631.62, + "probability": 0.9707 + }, + { + "start": 7631.62, + "end": 7634.96, + "probability": 0.9697 + }, + { + "start": 7635.46, + "end": 7637.14, + "probability": 0.8748 + }, + { + "start": 7637.64, + "end": 7643.1, + "probability": 0.9909 + }, + { + "start": 7645.18, + "end": 7647.6, + "probability": 0.976 + }, + { + "start": 7647.7, + "end": 7649.8, + "probability": 0.9756 + }, + { + "start": 7649.8, + "end": 7652.54, + "probability": 0.9992 + }, + { + "start": 7653.62, + "end": 7654.86, + "probability": 0.9719 + }, + { + "start": 7655.56, + "end": 7658.0, + "probability": 0.8662 + }, + { + "start": 7658.0, + "end": 7661.18, + "probability": 0.9502 + }, + { + "start": 7661.44, + "end": 7664.32, + "probability": 0.9435 + }, + { + "start": 7665.96, + "end": 7669.64, + "probability": 0.9788 + }, + { + "start": 7670.16, + "end": 7673.38, + "probability": 0.9932 + }, + { + "start": 7673.98, + "end": 7676.66, + "probability": 0.7815 + }, + { + "start": 7677.76, + "end": 7680.02, + "probability": 0.9837 + }, + { + "start": 7680.14, + "end": 7680.5, + "probability": 0.4031 + }, + { + "start": 7680.56, + "end": 7682.76, + "probability": 0.9352 + }, + { + "start": 7683.16, + "end": 7686.2, + "probability": 0.9814 + }, + { + "start": 7686.2, + "end": 7692.26, + "probability": 0.9892 + }, + { + "start": 7693.42, + "end": 7694.94, + "probability": 0.8893 + }, + { + "start": 7695.56, + "end": 7697.2, + "probability": 0.9216 + }, + { + "start": 7697.76, + "end": 7700.56, + "probability": 0.9915 + }, + { + "start": 7700.56, + "end": 7703.08, + "probability": 0.9767 + }, + { + "start": 7703.22, + "end": 7704.24, + "probability": 0.7528 + }, + { + "start": 7704.8, + "end": 7705.56, + "probability": 0.8296 + }, + { + "start": 7705.6, + "end": 7708.28, + "probability": 0.9839 + }, + { + "start": 7708.76, + "end": 7711.38, + "probability": 0.9118 + }, + { + "start": 7711.46, + "end": 7714.86, + "probability": 0.9888 + }, + { + "start": 7715.58, + "end": 7719.56, + "probability": 0.9959 + }, + { + "start": 7720.36, + "end": 7725.52, + "probability": 0.9836 + }, + { + "start": 7727.22, + "end": 7728.36, + "probability": 0.7838 + }, + { + "start": 7728.75, + "end": 7734.32, + "probability": 0.991 + }, + { + "start": 7734.98, + "end": 7737.34, + "probability": 0.9861 + }, + { + "start": 7740.76, + "end": 7744.78, + "probability": 0.9349 + }, + { + "start": 7745.8, + "end": 7750.48, + "probability": 0.8743 + }, + { + "start": 7751.14, + "end": 7751.84, + "probability": 0.5424 + }, + { + "start": 7751.86, + "end": 7756.56, + "probability": 0.8536 + }, + { + "start": 7756.78, + "end": 7757.66, + "probability": 0.7783 + }, + { + "start": 7759.52, + "end": 7761.8, + "probability": 0.8888 + }, + { + "start": 7778.86, + "end": 7780.36, + "probability": 0.6554 + }, + { + "start": 7781.88, + "end": 7785.4, + "probability": 0.9889 + }, + { + "start": 7785.98, + "end": 7789.06, + "probability": 0.995 + }, + { + "start": 7789.12, + "end": 7789.66, + "probability": 0.7985 + }, + { + "start": 7790.48, + "end": 7792.52, + "probability": 0.9579 + }, + { + "start": 7793.44, + "end": 7796.48, + "probability": 0.9971 + }, + { + "start": 7797.04, + "end": 7800.6, + "probability": 0.995 + }, + { + "start": 7801.6, + "end": 7804.82, + "probability": 0.7975 + }, + { + "start": 7806.06, + "end": 7808.16, + "probability": 0.9649 + }, + { + "start": 7808.78, + "end": 7811.8, + "probability": 0.9927 + }, + { + "start": 7812.42, + "end": 7813.9, + "probability": 0.9823 + }, + { + "start": 7814.5, + "end": 7815.94, + "probability": 0.986 + }, + { + "start": 7816.24, + "end": 7816.86, + "probability": 0.6378 + }, + { + "start": 7817.96, + "end": 7820.22, + "probability": 0.9972 + }, + { + "start": 7820.8, + "end": 7822.78, + "probability": 0.8999 + }, + { + "start": 7823.62, + "end": 7826.14, + "probability": 0.9773 + }, + { + "start": 7826.18, + "end": 7826.96, + "probability": 0.9772 + }, + { + "start": 7827.64, + "end": 7830.76, + "probability": 0.9892 + }, + { + "start": 7831.2, + "end": 7833.54, + "probability": 0.7991 + }, + { + "start": 7834.08, + "end": 7835.26, + "probability": 0.5359 + }, + { + "start": 7835.4, + "end": 7837.44, + "probability": 0.9448 + }, + { + "start": 7838.34, + "end": 7841.58, + "probability": 0.9731 + }, + { + "start": 7842.5, + "end": 7843.7, + "probability": 0.9192 + }, + { + "start": 7844.5, + "end": 7846.48, + "probability": 0.9544 + }, + { + "start": 7846.96, + "end": 7847.9, + "probability": 0.8564 + }, + { + "start": 7848.56, + "end": 7852.52, + "probability": 0.8231 + }, + { + "start": 7853.3, + "end": 7853.54, + "probability": 0.7898 + }, + { + "start": 7853.66, + "end": 7854.42, + "probability": 0.8417 + }, + { + "start": 7854.9, + "end": 7856.58, + "probability": 0.7124 + }, + { + "start": 7856.74, + "end": 7857.54, + "probability": 0.7724 + }, + { + "start": 7858.18, + "end": 7859.9, + "probability": 0.9 + }, + { + "start": 7860.28, + "end": 7862.0, + "probability": 0.9603 + }, + { + "start": 7862.08, + "end": 7864.06, + "probability": 0.8522 + }, + { + "start": 7864.14, + "end": 7864.84, + "probability": 0.8965 + }, + { + "start": 7865.04, + "end": 7866.9, + "probability": 0.6754 + }, + { + "start": 7867.36, + "end": 7869.26, + "probability": 0.992 + }, + { + "start": 7869.64, + "end": 7870.48, + "probability": 0.9141 + }, + { + "start": 7870.94, + "end": 7872.09, + "probability": 0.9832 + }, + { + "start": 7872.96, + "end": 7875.38, + "probability": 0.992 + }, + { + "start": 7875.84, + "end": 7877.94, + "probability": 0.9889 + }, + { + "start": 7878.42, + "end": 7881.34, + "probability": 0.9893 + }, + { + "start": 7881.82, + "end": 7883.28, + "probability": 0.9717 + }, + { + "start": 7883.98, + "end": 7885.86, + "probability": 0.9954 + }, + { + "start": 7886.32, + "end": 7891.12, + "probability": 0.9976 + }, + { + "start": 7893.28, + "end": 7894.14, + "probability": 0.4229 + }, + { + "start": 7894.14, + "end": 7895.36, + "probability": 0.6802 + }, + { + "start": 7895.62, + "end": 7901.22, + "probability": 0.993 + }, + { + "start": 7901.22, + "end": 7905.78, + "probability": 0.9888 + }, + { + "start": 7907.41, + "end": 7907.88, + "probability": 0.0078 + }, + { + "start": 7907.88, + "end": 7908.6, + "probability": 0.0154 + }, + { + "start": 7909.12, + "end": 7912.98, + "probability": 0.0456 + }, + { + "start": 7912.98, + "end": 7919.26, + "probability": 0.968 + }, + { + "start": 7919.52, + "end": 7920.28, + "probability": 0.0182 + }, + { + "start": 7920.28, + "end": 7921.82, + "probability": 0.2351 + }, + { + "start": 7921.98, + "end": 7922.12, + "probability": 0.0779 + }, + { + "start": 7922.42, + "end": 7924.32, + "probability": 0.4964 + }, + { + "start": 7924.76, + "end": 7926.12, + "probability": 0.3927 + }, + { + "start": 7927.27, + "end": 7927.4, + "probability": 0.1822 + }, + { + "start": 7927.64, + "end": 7929.96, + "probability": 0.2664 + }, + { + "start": 7929.96, + "end": 7931.0, + "probability": 0.4637 + }, + { + "start": 7931.08, + "end": 7931.98, + "probability": 0.4089 + }, + { + "start": 7933.26, + "end": 7934.48, + "probability": 0.0918 + }, + { + "start": 7934.96, + "end": 7937.24, + "probability": 0.0652 + }, + { + "start": 7937.66, + "end": 7939.24, + "probability": 0.5673 + }, + { + "start": 7939.38, + "end": 7940.74, + "probability": 0.3004 + }, + { + "start": 7940.76, + "end": 7942.86, + "probability": 0.89 + }, + { + "start": 7948.42, + "end": 7951.38, + "probability": 0.0346 + }, + { + "start": 7951.38, + "end": 7952.9, + "probability": 0.0053 + }, + { + "start": 7955.42, + "end": 7958.2, + "probability": 0.6061 + }, + { + "start": 7958.68, + "end": 7960.42, + "probability": 0.1157 + }, + { + "start": 7960.42, + "end": 7960.49, + "probability": 0.0557 + }, + { + "start": 7961.3, + "end": 7961.3, + "probability": 0.1004 + }, + { + "start": 7961.3, + "end": 7964.48, + "probability": 0.0856 + }, + { + "start": 7965.06, + "end": 7966.54, + "probability": 0.102 + }, + { + "start": 7966.72, + "end": 7967.54, + "probability": 0.5247 + }, + { + "start": 7967.64, + "end": 7967.78, + "probability": 0.1153 + }, + { + "start": 7967.78, + "end": 7967.78, + "probability": 0.0829 + }, + { + "start": 7967.78, + "end": 7967.78, + "probability": 0.0734 + }, + { + "start": 7967.78, + "end": 7968.6, + "probability": 0.1583 + }, + { + "start": 7968.74, + "end": 7968.94, + "probability": 0.0356 + }, + { + "start": 7969.0, + "end": 7969.0, + "probability": 0.0 + }, + { + "start": 7969.2, + "end": 7972.08, + "probability": 0.4828 + }, + { + "start": 7972.36, + "end": 7975.38, + "probability": 0.9584 + }, + { + "start": 7975.8, + "end": 7977.88, + "probability": 0.8205 + }, + { + "start": 7978.26, + "end": 7980.78, + "probability": 0.8213 + }, + { + "start": 7980.84, + "end": 7982.24, + "probability": 0.9144 + }, + { + "start": 7982.42, + "end": 7984.02, + "probability": 0.6238 + }, + { + "start": 7984.22, + "end": 7986.78, + "probability": 0.9769 + }, + { + "start": 7987.36, + "end": 7988.8, + "probability": 0.9502 + }, + { + "start": 7989.04, + "end": 7991.32, + "probability": 0.8633 + }, + { + "start": 7991.42, + "end": 7992.36, + "probability": 0.778 + }, + { + "start": 7993.06, + "end": 7994.68, + "probability": 0.9141 + }, + { + "start": 7996.26, + "end": 7998.24, + "probability": 0.0349 + }, + { + "start": 7998.32, + "end": 7998.96, + "probability": 0.2164 + }, + { + "start": 8001.62, + "end": 8001.96, + "probability": 0.3421 + }, + { + "start": 8020.54, + "end": 8023.48, + "probability": 0.7426 + }, + { + "start": 8026.08, + "end": 8030.54, + "probability": 0.9836 + }, + { + "start": 8031.88, + "end": 8035.04, + "probability": 0.9478 + }, + { + "start": 8036.1, + "end": 8036.32, + "probability": 0.0438 + }, + { + "start": 8036.98, + "end": 8037.58, + "probability": 0.1542 + }, + { + "start": 8037.58, + "end": 8039.66, + "probability": 0.1087 + }, + { + "start": 8039.82, + "end": 8040.08, + "probability": 0.1375 + }, + { + "start": 8040.08, + "end": 8042.28, + "probability": 0.8589 + }, + { + "start": 8042.62, + "end": 8045.78, + "probability": 0.9861 + }, + { + "start": 8045.92, + "end": 8047.6, + "probability": 0.7548 + }, + { + "start": 8047.84, + "end": 8048.72, + "probability": 0.9087 + }, + { + "start": 8049.92, + "end": 8050.08, + "probability": 0.0517 + }, + { + "start": 8050.08, + "end": 8050.08, + "probability": 0.3635 + }, + { + "start": 8050.08, + "end": 8052.42, + "probability": 0.5728 + }, + { + "start": 8052.5, + "end": 8052.54, + "probability": 0.415 + }, + { + "start": 8052.9, + "end": 8052.9, + "probability": 0.4153 + }, + { + "start": 8053.02, + "end": 8054.28, + "probability": 0.1493 + }, + { + "start": 8054.28, + "end": 8054.28, + "probability": 0.1329 + }, + { + "start": 8054.78, + "end": 8056.34, + "probability": 0.3767 + }, + { + "start": 8056.4, + "end": 8057.28, + "probability": 0.5685 + }, + { + "start": 8058.36, + "end": 8058.58, + "probability": 0.0183 + }, + { + "start": 8058.58, + "end": 8059.38, + "probability": 0.5796 + }, + { + "start": 8060.06, + "end": 8061.36, + "probability": 0.4987 + }, + { + "start": 8062.04, + "end": 8063.12, + "probability": 0.7337 + }, + { + "start": 8068.14, + "end": 8069.58, + "probability": 0.6484 + }, + { + "start": 8069.8, + "end": 8070.98, + "probability": 0.5154 + }, + { + "start": 8071.06, + "end": 8074.38, + "probability": 0.807 + }, + { + "start": 8076.06, + "end": 8077.34, + "probability": 0.9912 + }, + { + "start": 8078.36, + "end": 8078.48, + "probability": 0.6904 + }, + { + "start": 8084.44, + "end": 8087.12, + "probability": 0.9974 + }, + { + "start": 8088.06, + "end": 8093.64, + "probability": 0.779 + }, + { + "start": 8093.9, + "end": 8097.9, + "probability": 0.9839 + }, + { + "start": 8102.08, + "end": 8104.16, + "probability": 0.9597 + }, + { + "start": 8104.74, + "end": 8105.96, + "probability": 0.8721 + }, + { + "start": 8107.22, + "end": 8108.34, + "probability": 0.7601 + }, + { + "start": 8109.22, + "end": 8111.64, + "probability": 0.9841 + }, + { + "start": 8112.54, + "end": 8115.56, + "probability": 0.9966 + }, + { + "start": 8116.56, + "end": 8119.54, + "probability": 0.998 + }, + { + "start": 8121.34, + "end": 8128.36, + "probability": 0.994 + }, + { + "start": 8129.04, + "end": 8134.56, + "probability": 0.9977 + }, + { + "start": 8135.64, + "end": 8136.84, + "probability": 0.6698 + }, + { + "start": 8137.0, + "end": 8137.64, + "probability": 0.6492 + }, + { + "start": 8137.74, + "end": 8139.2, + "probability": 0.8198 + }, + { + "start": 8139.3, + "end": 8140.36, + "probability": 0.0735 + }, + { + "start": 8143.1, + "end": 8143.62, + "probability": 0.7196 + }, + { + "start": 8143.62, + "end": 8152.42, + "probability": 0.8692 + }, + { + "start": 8152.77, + "end": 8158.82, + "probability": 0.951 + }, + { + "start": 8158.94, + "end": 8160.54, + "probability": 0.5859 + }, + { + "start": 8160.68, + "end": 8161.8, + "probability": 0.075 + }, + { + "start": 8161.8, + "end": 8166.66, + "probability": 0.8896 + }, + { + "start": 8168.22, + "end": 8170.68, + "probability": 0.7502 + }, + { + "start": 8171.24, + "end": 8174.48, + "probability": 0.9991 + }, + { + "start": 8174.58, + "end": 8179.46, + "probability": 0.9857 + }, + { + "start": 8179.98, + "end": 8182.08, + "probability": 0.999 + }, + { + "start": 8183.04, + "end": 8184.42, + "probability": 0.5 + }, + { + "start": 8185.66, + "end": 8191.62, + "probability": 0.9729 + }, + { + "start": 8193.2, + "end": 8195.04, + "probability": 0.9989 + }, + { + "start": 8196.74, + "end": 8198.36, + "probability": 0.9108 + }, + { + "start": 8199.12, + "end": 8204.08, + "probability": 0.8493 + }, + { + "start": 8205.1, + "end": 8208.68, + "probability": 0.9979 + }, + { + "start": 8209.74, + "end": 8213.7, + "probability": 0.9907 + }, + { + "start": 8214.28, + "end": 8218.24, + "probability": 0.9849 + }, + { + "start": 8218.24, + "end": 8219.54, + "probability": 0.2159 + }, + { + "start": 8219.76, + "end": 8221.26, + "probability": 0.4783 + }, + { + "start": 8221.3, + "end": 8223.04, + "probability": 0.7029 + }, + { + "start": 8223.7, + "end": 8226.78, + "probability": 0.7613 + }, + { + "start": 8227.2, + "end": 8229.84, + "probability": 0.7565 + }, + { + "start": 8232.34, + "end": 8232.92, + "probability": 0.8709 + }, + { + "start": 8234.99, + "end": 8237.74, + "probability": 0.0561 + }, + { + "start": 8245.9, + "end": 8245.9, + "probability": 0.0514 + }, + { + "start": 8251.8, + "end": 8252.38, + "probability": 0.7072 + }, + { + "start": 8252.38, + "end": 8253.06, + "probability": 0.2194 + }, + { + "start": 8253.8, + "end": 8254.36, + "probability": 0.1476 + }, + { + "start": 8255.04, + "end": 8255.38, + "probability": 0.7708 + }, + { + "start": 8256.66, + "end": 8261.62, + "probability": 0.8498 + }, + { + "start": 8281.7, + "end": 8282.26, + "probability": 0.2855 + }, + { + "start": 8282.26, + "end": 8282.26, + "probability": 0.0668 + }, + { + "start": 8282.26, + "end": 8282.26, + "probability": 0.299 + }, + { + "start": 8282.28, + "end": 8283.02, + "probability": 0.6869 + }, + { + "start": 8283.72, + "end": 8284.06, + "probability": 0.3012 + }, + { + "start": 8285.1, + "end": 8287.26, + "probability": 0.955 + }, + { + "start": 8287.38, + "end": 8289.56, + "probability": 0.8892 + }, + { + "start": 8290.78, + "end": 8296.62, + "probability": 0.9875 + }, + { + "start": 8297.24, + "end": 8298.08, + "probability": 0.8732 + }, + { + "start": 8298.72, + "end": 8301.08, + "probability": 0.0925 + }, + { + "start": 8301.12, + "end": 8304.14, + "probability": 0.5245 + }, + { + "start": 8304.14, + "end": 8304.76, + "probability": 0.1451 + }, + { + "start": 8304.78, + "end": 8305.78, + "probability": 0.0972 + }, + { + "start": 8306.04, + "end": 8307.28, + "probability": 0.6665 + }, + { + "start": 8307.32, + "end": 8308.5, + "probability": 0.4001 + }, + { + "start": 8308.5, + "end": 8309.84, + "probability": 0.7546 + }, + { + "start": 8311.42, + "end": 8313.08, + "probability": 0.6858 + }, + { + "start": 8313.66, + "end": 8316.6, + "probability": 0.9925 + }, + { + "start": 8316.6, + "end": 8319.68, + "probability": 0.9714 + }, + { + "start": 8320.56, + "end": 8325.3, + "probability": 0.9873 + }, + { + "start": 8326.14, + "end": 8328.4, + "probability": 0.933 + }, + { + "start": 8329.18, + "end": 8332.14, + "probability": 0.9938 + }, + { + "start": 8332.56, + "end": 8334.1, + "probability": 0.9516 + }, + { + "start": 8334.74, + "end": 8336.12, + "probability": 0.4996 + }, + { + "start": 8336.14, + "end": 8336.8, + "probability": 0.8607 + }, + { + "start": 8336.96, + "end": 8338.7, + "probability": 0.7445 + }, + { + "start": 8338.98, + "end": 8344.84, + "probability": 0.8978 + }, + { + "start": 8345.38, + "end": 8346.62, + "probability": 0.998 + }, + { + "start": 8347.1, + "end": 8348.43, + "probability": 0.9897 + }, + { + "start": 8348.98, + "end": 8353.34, + "probability": 0.985 + }, + { + "start": 8353.38, + "end": 8355.18, + "probability": 0.9961 + }, + { + "start": 8355.18, + "end": 8355.32, + "probability": 0.0239 + }, + { + "start": 8355.42, + "end": 8355.6, + "probability": 0.2011 + }, + { + "start": 8355.6, + "end": 8355.6, + "probability": 0.191 + }, + { + "start": 8355.6, + "end": 8359.64, + "probability": 0.9293 + }, + { + "start": 8359.78, + "end": 8360.76, + "probability": 0.3052 + }, + { + "start": 8361.34, + "end": 8363.36, + "probability": 0.8796 + }, + { + "start": 8363.52, + "end": 8364.34, + "probability": 0.6643 + }, + { + "start": 8364.5, + "end": 8365.08, + "probability": 0.5058 + }, + { + "start": 8365.08, + "end": 8365.94, + "probability": 0.9342 + }, + { + "start": 8366.04, + "end": 8367.36, + "probability": 0.9414 + }, + { + "start": 8367.7, + "end": 8373.34, + "probability": 0.9645 + }, + { + "start": 8373.68, + "end": 8374.28, + "probability": 0.1771 + }, + { + "start": 8374.4, + "end": 8376.92, + "probability": 0.9924 + }, + { + "start": 8377.38, + "end": 8378.6, + "probability": 0.6546 + }, + { + "start": 8379.06, + "end": 8381.64, + "probability": 0.9354 + }, + { + "start": 8381.7, + "end": 8382.7, + "probability": 0.7675 + }, + { + "start": 8383.1, + "end": 8386.96, + "probability": 0.99 + }, + { + "start": 8387.28, + "end": 8389.88, + "probability": 0.9454 + }, + { + "start": 8390.22, + "end": 8392.04, + "probability": 0.9265 + }, + { + "start": 8392.62, + "end": 8393.88, + "probability": 0.8517 + }, + { + "start": 8395.2, + "end": 8396.8, + "probability": 0.9242 + }, + { + "start": 8397.6, + "end": 8399.36, + "probability": 0.9977 + }, + { + "start": 8399.92, + "end": 8402.78, + "probability": 0.8706 + }, + { + "start": 8403.42, + "end": 8404.3, + "probability": 0.4679 + }, + { + "start": 8414.18, + "end": 8415.46, + "probability": 0.7737 + }, + { + "start": 8416.32, + "end": 8417.98, + "probability": 0.5543 + }, + { + "start": 8418.28, + "end": 8418.62, + "probability": 0.6226 + }, + { + "start": 8419.52, + "end": 8421.42, + "probability": 0.9244 + }, + { + "start": 8422.34, + "end": 8427.16, + "probability": 0.9146 + }, + { + "start": 8428.22, + "end": 8428.72, + "probability": 0.5801 + }, + { + "start": 8428.86, + "end": 8431.94, + "probability": 0.9858 + }, + { + "start": 8432.84, + "end": 8435.94, + "probability": 0.8564 + }, + { + "start": 8436.96, + "end": 8440.32, + "probability": 0.9965 + }, + { + "start": 8441.66, + "end": 8444.3, + "probability": 0.9974 + }, + { + "start": 8445.08, + "end": 8450.52, + "probability": 0.9736 + }, + { + "start": 8450.75, + "end": 8451.18, + "probability": 0.826 + }, + { + "start": 8452.78, + "end": 8456.46, + "probability": 0.981 + }, + { + "start": 8456.94, + "end": 8459.4, + "probability": 0.9391 + }, + { + "start": 8461.0, + "end": 8461.34, + "probability": 0.3353 + }, + { + "start": 8461.74, + "end": 8462.6, + "probability": 0.9279 + }, + { + "start": 8462.66, + "end": 8467.64, + "probability": 0.8418 + }, + { + "start": 8468.2, + "end": 8469.96, + "probability": 0.984 + }, + { + "start": 8470.94, + "end": 8472.02, + "probability": 0.8716 + }, + { + "start": 8472.5, + "end": 8474.51, + "probability": 0.945 + }, + { + "start": 8475.6, + "end": 8477.38, + "probability": 0.9486 + }, + { + "start": 8477.96, + "end": 8480.26, + "probability": 0.8772 + }, + { + "start": 8481.66, + "end": 8484.96, + "probability": 0.9723 + }, + { + "start": 8484.96, + "end": 8488.32, + "probability": 0.9784 + }, + { + "start": 8489.12, + "end": 8491.1, + "probability": 0.9724 + }, + { + "start": 8491.36, + "end": 8492.74, + "probability": 0.9574 + }, + { + "start": 8493.88, + "end": 8497.56, + "probability": 0.7699 + }, + { + "start": 8498.12, + "end": 8500.56, + "probability": 0.9988 + }, + { + "start": 8501.76, + "end": 8504.16, + "probability": 0.9982 + }, + { + "start": 8504.32, + "end": 8506.94, + "probability": 0.9958 + }, + { + "start": 8508.38, + "end": 8511.94, + "probability": 0.8546 + }, + { + "start": 8513.32, + "end": 8514.76, + "probability": 0.9845 + }, + { + "start": 8515.62, + "end": 8520.74, + "probability": 0.9825 + }, + { + "start": 8521.3, + "end": 8526.26, + "probability": 0.9885 + }, + { + "start": 8527.96, + "end": 8531.4, + "probability": 0.9781 + }, + { + "start": 8531.4, + "end": 8535.38, + "probability": 0.999 + }, + { + "start": 8535.96, + "end": 8538.68, + "probability": 0.9968 + }, + { + "start": 8539.58, + "end": 8544.6, + "probability": 0.9214 + }, + { + "start": 8544.9, + "end": 8551.52, + "probability": 0.981 + }, + { + "start": 8551.52, + "end": 8556.02, + "probability": 0.9717 + }, + { + "start": 8556.4, + "end": 8556.94, + "probability": 0.6792 + }, + { + "start": 8558.08, + "end": 8562.58, + "probability": 0.9849 + }, + { + "start": 8563.9, + "end": 8564.78, + "probability": 0.5217 + }, + { + "start": 8565.76, + "end": 8566.02, + "probability": 0.8871 + }, + { + "start": 8566.7, + "end": 8568.46, + "probability": 0.8684 + }, + { + "start": 8569.16, + "end": 8571.0, + "probability": 0.9769 + }, + { + "start": 8571.52, + "end": 8572.6, + "probability": 0.9956 + }, + { + "start": 8573.22, + "end": 8575.18, + "probability": 0.9661 + }, + { + "start": 8575.78, + "end": 8578.2, + "probability": 0.7246 + }, + { + "start": 8578.68, + "end": 8579.46, + "probability": 0.9727 + }, + { + "start": 8580.88, + "end": 8584.44, + "probability": 0.9791 + }, + { + "start": 8585.44, + "end": 8587.36, + "probability": 0.7702 + }, + { + "start": 8587.88, + "end": 8591.58, + "probability": 0.9815 + }, + { + "start": 8592.52, + "end": 8596.26, + "probability": 0.99 + }, + { + "start": 8596.26, + "end": 8599.44, + "probability": 0.9985 + }, + { + "start": 8599.8, + "end": 8604.2, + "probability": 0.9711 + }, + { + "start": 8604.8, + "end": 8610.16, + "probability": 0.994 + }, + { + "start": 8611.0, + "end": 8611.92, + "probability": 0.7224 + }, + { + "start": 8612.18, + "end": 8617.12, + "probability": 0.9966 + }, + { + "start": 8617.62, + "end": 8620.46, + "probability": 0.9767 + }, + { + "start": 8621.26, + "end": 8626.84, + "probability": 0.9773 + }, + { + "start": 8626.92, + "end": 8629.88, + "probability": 0.9969 + }, + { + "start": 8629.98, + "end": 8630.86, + "probability": 0.6649 + }, + { + "start": 8632.68, + "end": 8635.34, + "probability": 0.6908 + }, + { + "start": 8635.94, + "end": 8636.98, + "probability": 0.7083 + }, + { + "start": 8637.06, + "end": 8640.0, + "probability": 0.8256 + }, + { + "start": 8640.82, + "end": 8642.96, + "probability": 0.9791 + }, + { + "start": 8643.5, + "end": 8646.02, + "probability": 0.9125 + }, + { + "start": 8646.36, + "end": 8649.98, + "probability": 0.9355 + }, + { + "start": 8650.42, + "end": 8651.04, + "probability": 0.9907 + }, + { + "start": 8652.47, + "end": 8657.54, + "probability": 0.7693 + }, + { + "start": 8660.68, + "end": 8660.96, + "probability": 0.5003 + }, + { + "start": 8660.96, + "end": 8662.66, + "probability": 0.9496 + }, + { + "start": 8664.7, + "end": 8665.06, + "probability": 0.4651 + }, + { + "start": 8665.2, + "end": 8666.28, + "probability": 0.6219 + }, + { + "start": 8667.62, + "end": 8669.6, + "probability": 0.9978 + }, + { + "start": 8669.9, + "end": 8670.54, + "probability": 0.9252 + }, + { + "start": 8670.66, + "end": 8671.88, + "probability": 0.8177 + }, + { + "start": 8672.0, + "end": 8673.43, + "probability": 0.9953 + }, + { + "start": 8674.51, + "end": 8675.1, + "probability": 0.0156 + }, + { + "start": 8675.1, + "end": 8675.56, + "probability": 0.9175 + }, + { + "start": 8676.66, + "end": 8677.33, + "probability": 0.9281 + }, + { + "start": 8678.54, + "end": 8679.14, + "probability": 0.7191 + }, + { + "start": 8680.06, + "end": 8681.54, + "probability": 0.9255 + }, + { + "start": 8682.32, + "end": 8683.96, + "probability": 0.8739 + }, + { + "start": 8684.5, + "end": 8685.68, + "probability": 0.7458 + }, + { + "start": 8686.22, + "end": 8686.48, + "probability": 0.4299 + }, + { + "start": 8687.08, + "end": 8687.26, + "probability": 0.0053 + }, + { + "start": 8687.26, + "end": 8687.42, + "probability": 0.1843 + }, + { + "start": 8688.0, + "end": 8688.0, + "probability": 0.2906 + }, + { + "start": 8688.12, + "end": 8690.29, + "probability": 0.7576 + }, + { + "start": 8690.98, + "end": 8691.12, + "probability": 0.1349 + }, + { + "start": 8691.12, + "end": 8692.08, + "probability": 0.7596 + }, + { + "start": 8692.78, + "end": 8692.78, + "probability": 0.0492 + }, + { + "start": 8693.02, + "end": 8693.02, + "probability": 0.0829 + }, + { + "start": 8693.02, + "end": 8695.78, + "probability": 0.6334 + }, + { + "start": 8696.24, + "end": 8697.8, + "probability": 0.6799 + }, + { + "start": 8698.42, + "end": 8698.54, + "probability": 0.3536 + }, + { + "start": 8698.54, + "end": 8699.44, + "probability": 0.2856 + }, + { + "start": 8699.44, + "end": 8699.88, + "probability": 0.4293 + }, + { + "start": 8699.88, + "end": 8701.94, + "probability": 0.5175 + }, + { + "start": 8701.98, + "end": 8702.64, + "probability": 0.301 + }, + { + "start": 8702.64, + "end": 8703.2, + "probability": 0.4051 + }, + { + "start": 8703.46, + "end": 8704.82, + "probability": 0.7997 + }, + { + "start": 8705.72, + "end": 8708.58, + "probability": 0.4611 + }, + { + "start": 8708.62, + "end": 8708.92, + "probability": 0.1077 + }, + { + "start": 8708.92, + "end": 8708.92, + "probability": 0.046 + }, + { + "start": 8708.92, + "end": 8708.92, + "probability": 0.1696 + }, + { + "start": 8708.92, + "end": 8708.92, + "probability": 0.0104 + }, + { + "start": 8708.92, + "end": 8710.24, + "probability": 0.0488 + }, + { + "start": 8710.26, + "end": 8713.14, + "probability": 0.56 + }, + { + "start": 8714.7, + "end": 8717.02, + "probability": 0.9478 + }, + { + "start": 8717.66, + "end": 8720.06, + "probability": 0.9784 + }, + { + "start": 8720.56, + "end": 8722.74, + "probability": 0.9595 + }, + { + "start": 8723.06, + "end": 8725.24, + "probability": 0.8706 + }, + { + "start": 8726.18, + "end": 8728.12, + "probability": 0.6934 + }, + { + "start": 8728.26, + "end": 8729.52, + "probability": 0.6419 + }, + { + "start": 8731.06, + "end": 8733.34, + "probability": 0.5226 + }, + { + "start": 8733.62, + "end": 8736.12, + "probability": 0.6017 + }, + { + "start": 8736.22, + "end": 8737.63, + "probability": 0.9146 + }, + { + "start": 8738.42, + "end": 8739.96, + "probability": 0.676 + }, + { + "start": 8740.36, + "end": 8744.18, + "probability": 0.951 + }, + { + "start": 8744.4, + "end": 8747.32, + "probability": 0.9944 + }, + { + "start": 8747.86, + "end": 8750.6, + "probability": 0.9753 + }, + { + "start": 8751.2, + "end": 8752.1, + "probability": 0.9438 + }, + { + "start": 8752.58, + "end": 8754.5, + "probability": 0.9056 + }, + { + "start": 8754.96, + "end": 8758.42, + "probability": 0.5406 + }, + { + "start": 8758.78, + "end": 8759.18, + "probability": 0.8115 + }, + { + "start": 8759.64, + "end": 8762.56, + "probability": 0.8942 + }, + { + "start": 8762.7, + "end": 8763.98, + "probability": 0.8695 + }, + { + "start": 8764.26, + "end": 8764.8, + "probability": 0.9802 + }, + { + "start": 8765.44, + "end": 8767.1, + "probability": 0.9662 + }, + { + "start": 8767.42, + "end": 8770.98, + "probability": 0.9901 + }, + { + "start": 8772.08, + "end": 8773.57, + "probability": 0.8081 + }, + { + "start": 8774.36, + "end": 8776.06, + "probability": 0.9618 + }, + { + "start": 8776.18, + "end": 8777.38, + "probability": 0.9941 + }, + { + "start": 8777.74, + "end": 8778.28, + "probability": 0.7476 + }, + { + "start": 8778.72, + "end": 8782.88, + "probability": 0.4135 + }, + { + "start": 8783.48, + "end": 8783.48, + "probability": 0.4406 + }, + { + "start": 8783.48, + "end": 8786.96, + "probability": 0.6154 + }, + { + "start": 8800.6, + "end": 8801.4, + "probability": 0.6558 + }, + { + "start": 8801.5, + "end": 8802.36, + "probability": 0.6547 + }, + { + "start": 8802.72, + "end": 8805.4, + "probability": 0.9968 + }, + { + "start": 8806.26, + "end": 8808.28, + "probability": 0.9052 + }, + { + "start": 8808.28, + "end": 8811.04, + "probability": 0.9965 + }, + { + "start": 8811.76, + "end": 8814.94, + "probability": 0.9687 + }, + { + "start": 8816.6, + "end": 8817.22, + "probability": 0.5895 + }, + { + "start": 8817.32, + "end": 8820.26, + "probability": 0.9976 + }, + { + "start": 8820.26, + "end": 8824.36, + "probability": 0.9974 + }, + { + "start": 8825.1, + "end": 8828.0, + "probability": 0.9574 + }, + { + "start": 8829.18, + "end": 8830.88, + "probability": 0.8207 + }, + { + "start": 8831.5, + "end": 8835.98, + "probability": 0.955 + }, + { + "start": 8838.72, + "end": 8842.34, + "probability": 0.9978 + }, + { + "start": 8842.46, + "end": 8845.3, + "probability": 0.999 + }, + { + "start": 8845.4, + "end": 8846.66, + "probability": 0.9951 + }, + { + "start": 8847.42, + "end": 8848.12, + "probability": 0.9881 + }, + { + "start": 8849.5, + "end": 8853.72, + "probability": 0.9974 + }, + { + "start": 8854.68, + "end": 8857.08, + "probability": 0.9474 + }, + { + "start": 8858.42, + "end": 8860.98, + "probability": 0.8123 + }, + { + "start": 8861.5, + "end": 8862.36, + "probability": 0.9307 + }, + { + "start": 8864.14, + "end": 8870.38, + "probability": 0.9934 + }, + { + "start": 8871.22, + "end": 8871.74, + "probability": 0.9481 + }, + { + "start": 8872.44, + "end": 8874.48, + "probability": 0.9987 + }, + { + "start": 8875.28, + "end": 8877.0, + "probability": 0.9966 + }, + { + "start": 8878.06, + "end": 8879.26, + "probability": 0.5714 + }, + { + "start": 8881.72, + "end": 8885.06, + "probability": 0.9822 + }, + { + "start": 8885.06, + "end": 8888.78, + "probability": 0.9981 + }, + { + "start": 8889.3, + "end": 8890.52, + "probability": 0.9912 + }, + { + "start": 8891.18, + "end": 8894.72, + "probability": 0.9454 + }, + { + "start": 8895.66, + "end": 8899.98, + "probability": 0.869 + }, + { + "start": 8900.62, + "end": 8902.56, + "probability": 0.9903 + }, + { + "start": 8903.28, + "end": 8906.7, + "probability": 0.9692 + }, + { + "start": 8907.34, + "end": 8909.2, + "probability": 0.8853 + }, + { + "start": 8910.18, + "end": 8911.24, + "probability": 0.7536 + }, + { + "start": 8911.6, + "end": 8913.3, + "probability": 0.8441 + }, + { + "start": 8913.36, + "end": 8917.64, + "probability": 0.992 + }, + { + "start": 8918.24, + "end": 8924.04, + "probability": 0.9828 + }, + { + "start": 8926.58, + "end": 8931.36, + "probability": 0.9976 + }, + { + "start": 8931.44, + "end": 8936.36, + "probability": 0.9989 + }, + { + "start": 8937.6, + "end": 8941.96, + "probability": 0.9646 + }, + { + "start": 8943.18, + "end": 8945.06, + "probability": 0.9909 + }, + { + "start": 8945.72, + "end": 8946.38, + "probability": 0.8679 + }, + { + "start": 8947.0, + "end": 8949.12, + "probability": 0.9857 + }, + { + "start": 8950.44, + "end": 8953.78, + "probability": 0.8326 + }, + { + "start": 8954.32, + "end": 8956.7, + "probability": 0.9896 + }, + { + "start": 8958.3, + "end": 8960.72, + "probability": 0.9888 + }, + { + "start": 8961.3, + "end": 8965.78, + "probability": 0.9987 + }, + { + "start": 8966.4, + "end": 8969.62, + "probability": 0.7066 + }, + { + "start": 8970.62, + "end": 8971.24, + "probability": 0.7487 + }, + { + "start": 8971.3, + "end": 8976.52, + "probability": 0.9817 + }, + { + "start": 8977.38, + "end": 8981.0, + "probability": 0.7325 + }, + { + "start": 8981.48, + "end": 8982.68, + "probability": 0.8898 + }, + { + "start": 8983.26, + "end": 8985.26, + "probability": 0.9761 + }, + { + "start": 8985.96, + "end": 8987.7, + "probability": 0.5486 + }, + { + "start": 8987.7, + "end": 8989.64, + "probability": 0.0233 + }, + { + "start": 8989.96, + "end": 8990.68, + "probability": 0.6308 + }, + { + "start": 8994.4, + "end": 8996.88, + "probability": 0.705 + }, + { + "start": 9000.16, + "end": 9001.2, + "probability": 0.8816 + }, + { + "start": 9003.46, + "end": 9003.9, + "probability": 0.1905 + }, + { + "start": 9003.9, + "end": 9003.97, + "probability": 0.3676 + }, + { + "start": 9004.98, + "end": 9006.44, + "probability": 0.8389 + }, + { + "start": 9006.98, + "end": 9008.56, + "probability": 0.7041 + }, + { + "start": 9008.64, + "end": 9009.41, + "probability": 0.8376 + }, + { + "start": 9010.81, + "end": 9012.7, + "probability": 0.4979 + }, + { + "start": 9013.6, + "end": 9014.44, + "probability": 0.6149 + }, + { + "start": 9014.52, + "end": 9019.04, + "probability": 0.8166 + }, + { + "start": 9019.32, + "end": 9019.46, + "probability": 0.9257 + }, + { + "start": 9026.18, + "end": 9027.92, + "probability": 0.0089 + }, + { + "start": 9033.03, + "end": 9037.34, + "probability": 0.6455 + }, + { + "start": 9038.94, + "end": 9040.04, + "probability": 0.7754 + }, + { + "start": 9041.88, + "end": 9042.64, + "probability": 0.9694 + }, + { + "start": 9043.24, + "end": 9044.45, + "probability": 0.5547 + }, + { + "start": 9045.66, + "end": 9046.12, + "probability": 0.9603 + }, + { + "start": 9048.54, + "end": 9049.52, + "probability": 0.7492 + }, + { + "start": 9053.56, + "end": 9055.86, + "probability": 0.0734 + }, + { + "start": 9057.02, + "end": 9057.66, + "probability": 0.9156 + }, + { + "start": 9058.52, + "end": 9059.78, + "probability": 0.6611 + }, + { + "start": 9059.88, + "end": 9060.54, + "probability": 0.7296 + }, + { + "start": 9061.0, + "end": 9064.29, + "probability": 0.005 + }, + { + "start": 9065.14, + "end": 9065.6, + "probability": 0.3423 + }, + { + "start": 9066.18, + "end": 9068.48, + "probability": 0.1683 + }, + { + "start": 9069.42, + "end": 9070.78, + "probability": 0.4337 + }, + { + "start": 9073.04, + "end": 9078.02, + "probability": 0.8774 + }, + { + "start": 9078.62, + "end": 9082.0, + "probability": 0.5275 + }, + { + "start": 9082.0, + "end": 9083.94, + "probability": 0.8878 + }, + { + "start": 9084.44, + "end": 9086.38, + "probability": 0.2791 + }, + { + "start": 9086.88, + "end": 9088.0, + "probability": 0.8555 + }, + { + "start": 9088.66, + "end": 9088.66, + "probability": 0.0139 + }, + { + "start": 9089.32, + "end": 9090.66, + "probability": 0.1713 + }, + { + "start": 9090.92, + "end": 9091.72, + "probability": 0.1793 + }, + { + "start": 9091.92, + "end": 9091.92, + "probability": 0.73 + }, + { + "start": 9091.92, + "end": 9091.92, + "probability": 0.6778 + }, + { + "start": 9091.92, + "end": 9093.08, + "probability": 0.5389 + }, + { + "start": 9093.22, + "end": 9095.12, + "probability": 0.6741 + }, + { + "start": 9096.38, + "end": 9097.94, + "probability": 0.9325 + }, + { + "start": 9099.6, + "end": 9099.76, + "probability": 0.7451 + }, + { + "start": 9099.76, + "end": 9100.36, + "probability": 0.0628 + }, + { + "start": 9100.44, + "end": 9103.66, + "probability": 0.0348 + }, + { + "start": 9104.32, + "end": 9105.4, + "probability": 0.2228 + }, + { + "start": 9108.56, + "end": 9109.28, + "probability": 0.8219 + }, + { + "start": 9113.38, + "end": 9115.14, + "probability": 0.6472 + }, + { + "start": 9116.08, + "end": 9117.22, + "probability": 0.8571 + }, + { + "start": 9118.2, + "end": 9119.2, + "probability": 0.6393 + }, + { + "start": 9121.06, + "end": 9121.56, + "probability": 0.8571 + }, + { + "start": 9122.4, + "end": 9123.34, + "probability": 0.7452 + }, + { + "start": 9125.72, + "end": 9127.44, + "probability": 0.8748 + }, + { + "start": 9128.58, + "end": 9128.88, + "probability": 0.6696 + }, + { + "start": 9133.32, + "end": 9135.66, + "probability": 0.5175 + }, + { + "start": 9136.64, + "end": 9137.76, + "probability": 0.6542 + }, + { + "start": 9141.26, + "end": 9142.76, + "probability": 0.7811 + }, + { + "start": 9143.72, + "end": 9144.8, + "probability": 0.7372 + }, + { + "start": 9146.06, + "end": 9146.62, + "probability": 0.8755 + }, + { + "start": 9148.44, + "end": 9149.8, + "probability": 0.919 + }, + { + "start": 9150.62, + "end": 9150.94, + "probability": 0.6279 + }, + { + "start": 9152.08, + "end": 9155.5, + "probability": 0.4778 + }, + { + "start": 9155.5, + "end": 9158.39, + "probability": 0.6678 + }, + { + "start": 9158.44, + "end": 9161.16, + "probability": 0.9812 + }, + { + "start": 9161.7, + "end": 9164.74, + "probability": 0.6431 + }, + { + "start": 9164.76, + "end": 9166.92, + "probability": 0.7778 + }, + { + "start": 9167.5, + "end": 9169.38, + "probability": 0.6279 + }, + { + "start": 9169.44, + "end": 9170.58, + "probability": 0.8554 + }, + { + "start": 9171.08, + "end": 9172.5, + "probability": 0.804 + }, + { + "start": 9173.5, + "end": 9175.8, + "probability": 0.5911 + }, + { + "start": 9176.34, + "end": 9177.74, + "probability": 0.7834 + }, + { + "start": 9182.0, + "end": 9183.15, + "probability": 0.5456 + }, + { + "start": 9183.98, + "end": 9184.93, + "probability": 0.7593 + }, + { + "start": 9187.64, + "end": 9189.0, + "probability": 0.2528 + }, + { + "start": 9189.12, + "end": 9190.24, + "probability": 0.8904 + }, + { + "start": 9190.96, + "end": 9191.92, + "probability": 0.8551 + }, + { + "start": 9193.08, + "end": 9195.1, + "probability": 0.9102 + }, + { + "start": 9195.12, + "end": 9195.62, + "probability": 0.5157 + }, + { + "start": 9196.18, + "end": 9197.12, + "probability": 0.8254 + }, + { + "start": 9198.14, + "end": 9199.06, + "probability": 0.7191 + }, + { + "start": 9200.24, + "end": 9201.24, + "probability": 0.7132 + }, + { + "start": 9201.32, + "end": 9201.94, + "probability": 0.242 + }, + { + "start": 9204.72, + "end": 9207.98, + "probability": 0.7 + }, + { + "start": 9208.54, + "end": 9209.76, + "probability": 0.5518 + }, + { + "start": 9210.38, + "end": 9211.22, + "probability": 0.8156 + }, + { + "start": 9214.1, + "end": 9216.56, + "probability": 0.7973 + }, + { + "start": 9217.26, + "end": 9217.74, + "probability": 0.9822 + }, + { + "start": 9218.92, + "end": 9219.96, + "probability": 0.6798 + }, + { + "start": 9220.86, + "end": 9221.28, + "probability": 0.5242 + }, + { + "start": 9222.32, + "end": 9223.42, + "probability": 0.7256 + }, + { + "start": 9224.42, + "end": 9224.74, + "probability": 0.9626 + }, + { + "start": 9225.68, + "end": 9226.62, + "probability": 0.9701 + }, + { + "start": 9227.7, + "end": 9228.0, + "probability": 0.9851 + }, + { + "start": 9229.0, + "end": 9229.96, + "probability": 0.9923 + }, + { + "start": 9230.98, + "end": 9233.84, + "probability": 0.9592 + }, + { + "start": 9237.0, + "end": 9240.24, + "probability": 0.9639 + }, + { + "start": 9243.44, + "end": 9246.06, + "probability": 0.9496 + }, + { + "start": 9247.48, + "end": 9248.26, + "probability": 0.9934 + }, + { + "start": 9249.12, + "end": 9250.42, + "probability": 0.4854 + }, + { + "start": 9252.78, + "end": 9253.52, + "probability": 0.6515 + }, + { + "start": 9255.86, + "end": 9256.28, + "probability": 0.7728 + }, + { + "start": 9257.38, + "end": 9259.68, + "probability": 0.8893 + }, + { + "start": 9261.12, + "end": 9261.78, + "probability": 0.7655 + }, + { + "start": 9262.74, + "end": 9263.66, + "probability": 0.8366 + }, + { + "start": 9265.8, + "end": 9266.92, + "probability": 0.7377 + }, + { + "start": 9267.64, + "end": 9268.58, + "probability": 0.7512 + }, + { + "start": 9271.34, + "end": 9272.8, + "probability": 0.8857 + }, + { + "start": 9274.0, + "end": 9277.5, + "probability": 0.8784 + }, + { + "start": 9278.56, + "end": 9278.82, + "probability": 0.5369 + }, + { + "start": 9279.82, + "end": 9280.78, + "probability": 0.5813 + }, + { + "start": 9282.96, + "end": 9283.38, + "probability": 0.928 + }, + { + "start": 9283.9, + "end": 9285.26, + "probability": 0.7876 + }, + { + "start": 9286.0, + "end": 9291.9, + "probability": 0.9736 + }, + { + "start": 9293.06, + "end": 9293.54, + "probability": 0.9844 + }, + { + "start": 9294.62, + "end": 9295.7, + "probability": 0.8759 + }, + { + "start": 9296.48, + "end": 9296.92, + "probability": 0.9961 + }, + { + "start": 9297.8, + "end": 9298.64, + "probability": 0.9925 + }, + { + "start": 9299.42, + "end": 9302.18, + "probability": 0.8274 + }, + { + "start": 9303.24, + "end": 9303.54, + "probability": 0.9954 + }, + { + "start": 9304.6, + "end": 9306.08, + "probability": 0.9164 + }, + { + "start": 9307.88, + "end": 9309.2, + "probability": 0.0274 + }, + { + "start": 9319.08, + "end": 9320.58, + "probability": 0.472 + }, + { + "start": 9321.74, + "end": 9322.66, + "probability": 0.2416 + }, + { + "start": 9323.98, + "end": 9324.46, + "probability": 0.595 + }, + { + "start": 9325.72, + "end": 9326.74, + "probability": 0.7681 + }, + { + "start": 9330.54, + "end": 9331.4, + "probability": 0.8511 + }, + { + "start": 9332.6, + "end": 9333.66, + "probability": 0.219 + }, + { + "start": 9335.38, + "end": 9335.78, + "probability": 0.9404 + }, + { + "start": 9336.4, + "end": 9337.02, + "probability": 0.1843 + }, + { + "start": 9337.02, + "end": 9337.46, + "probability": 0.0662 + }, + { + "start": 9337.46, + "end": 9337.78, + "probability": 0.0898 + }, + { + "start": 9337.78, + "end": 9337.78, + "probability": 0.8271 + }, + { + "start": 9359.68, + "end": 9361.22, + "probability": 0.4482 + }, + { + "start": 9362.1, + "end": 9362.38, + "probability": 0.4909 + }, + { + "start": 9363.44, + "end": 9367.16, + "probability": 0.2498 + }, + { + "start": 9367.98, + "end": 9368.84, + "probability": 0.5321 + }, + { + "start": 9375.7, + "end": 9376.3, + "probability": 0.5092 + }, + { + "start": 9378.88, + "end": 9379.64, + "probability": 0.0214 + }, + { + "start": 9380.38, + "end": 9383.72, + "probability": 0.6644 + }, + { + "start": 9386.16, + "end": 9387.66, + "probability": 0.5332 + }, + { + "start": 9388.48, + "end": 9389.16, + "probability": 0.5342 + }, + { + "start": 9390.12, + "end": 9390.54, + "probability": 0.4038 + }, + { + "start": 9391.5, + "end": 9392.44, + "probability": 0.5991 + }, + { + "start": 9395.56, + "end": 9396.24, + "probability": 0.6858 + }, + { + "start": 9397.1, + "end": 9398.3, + "probability": 0.9608 + }, + { + "start": 9399.5, + "end": 9400.82, + "probability": 0.9622 + }, + { + "start": 9403.3, + "end": 9404.02, + "probability": 0.9006 + }, + { + "start": 9404.88, + "end": 9405.6, + "probability": 0.9684 + }, + { + "start": 9406.66, + "end": 9408.44, + "probability": 0.981 + }, + { + "start": 9409.12, + "end": 9410.44, + "probability": 0.9654 + }, + { + "start": 9411.98, + "end": 9412.32, + "probability": 0.9919 + }, + { + "start": 9413.38, + "end": 9414.44, + "probability": 0.8273 + }, + { + "start": 9415.32, + "end": 9415.58, + "probability": 0.9092 + }, + { + "start": 9416.62, + "end": 9423.4, + "probability": 0.6614 + }, + { + "start": 9425.38, + "end": 9426.74, + "probability": 0.7837 + }, + { + "start": 9429.84, + "end": 9431.34, + "probability": 0.7172 + }, + { + "start": 9433.26, + "end": 9434.36, + "probability": 0.7505 + }, + { + "start": 9437.38, + "end": 9437.96, + "probability": 0.5312 + }, + { + "start": 9439.48, + "end": 9440.86, + "probability": 0.7739 + }, + { + "start": 9447.22, + "end": 9448.38, + "probability": 0.4417 + }, + { + "start": 9449.48, + "end": 9449.9, + "probability": 0.9539 + }, + { + "start": 9450.64, + "end": 9451.46, + "probability": 0.9185 + }, + { + "start": 9452.4, + "end": 9452.68, + "probability": 0.9854 + }, + { + "start": 9453.7, + "end": 9454.94, + "probability": 0.9604 + }, + { + "start": 9456.66, + "end": 9457.1, + "probability": 0.9856 + }, + { + "start": 9458.24, + "end": 9458.8, + "probability": 0.9126 + }, + { + "start": 9461.24, + "end": 9462.92, + "probability": 0.3807 + }, + { + "start": 9465.45, + "end": 9468.4, + "probability": 0.2221 + }, + { + "start": 9475.74, + "end": 9476.6, + "probability": 0.7634 + }, + { + "start": 9477.44, + "end": 9478.54, + "probability": 0.8332 + }, + { + "start": 9479.52, + "end": 9480.34, + "probability": 0.8411 + }, + { + "start": 9481.54, + "end": 9482.44, + "probability": 0.9252 + }, + { + "start": 9483.84, + "end": 9484.16, + "probability": 0.6425 + }, + { + "start": 9485.32, + "end": 9486.28, + "probability": 0.9415 + }, + { + "start": 9486.84, + "end": 9488.58, + "probability": 0.9688 + }, + { + "start": 9489.7, + "end": 9491.8, + "probability": 0.9652 + }, + { + "start": 9492.86, + "end": 9495.48, + "probability": 0.9011 + }, + { + "start": 9496.7, + "end": 9496.96, + "probability": 0.9441 + }, + { + "start": 9498.06, + "end": 9499.34, + "probability": 0.5422 + }, + { + "start": 9503.34, + "end": 9505.44, + "probability": 0.554 + }, + { + "start": 9507.36, + "end": 9508.66, + "probability": 0.7684 + }, + { + "start": 9509.5, + "end": 9512.0, + "probability": 0.8018 + }, + { + "start": 9513.78, + "end": 9518.1, + "probability": 0.9337 + }, + { + "start": 9519.18, + "end": 9520.9, + "probability": 0.8544 + }, + { + "start": 9525.32, + "end": 9526.42, + "probability": 0.9779 + }, + { + "start": 9527.36, + "end": 9528.24, + "probability": 0.8903 + }, + { + "start": 9530.72, + "end": 9531.4, + "probability": 0.9487 + }, + { + "start": 9532.56, + "end": 9533.28, + "probability": 0.5222 + }, + { + "start": 9534.66, + "end": 9538.64, + "probability": 0.6325 + }, + { + "start": 9539.58, + "end": 9540.02, + "probability": 0.6483 + }, + { + "start": 9541.2, + "end": 9543.9, + "probability": 0.9436 + }, + { + "start": 9544.96, + "end": 9546.1, + "probability": 0.8498 + }, + { + "start": 9547.72, + "end": 9548.12, + "probability": 0.9868 + }, + { + "start": 9549.16, + "end": 9549.74, + "probability": 0.8857 + }, + { + "start": 9552.62, + "end": 9554.96, + "probability": 0.5223 + }, + { + "start": 9555.78, + "end": 9556.78, + "probability": 0.6054 + }, + { + "start": 9558.6, + "end": 9559.04, + "probability": 0.712 + }, + { + "start": 9560.7, + "end": 9561.7, + "probability": 0.7853 + }, + { + "start": 9562.52, + "end": 9562.74, + "probability": 0.9373 + }, + { + "start": 9563.68, + "end": 9564.52, + "probability": 0.9587 + }, + { + "start": 9566.23, + "end": 9568.0, + "probability": 0.7689 + }, + { + "start": 9569.66, + "end": 9572.12, + "probability": 0.8846 + }, + { + "start": 9572.78, + "end": 9573.7, + "probability": 0.8789 + }, + { + "start": 9574.96, + "end": 9577.4, + "probability": 0.3817 + }, + { + "start": 9578.38, + "end": 9578.48, + "probability": 0.1561 + }, + { + "start": 9582.76, + "end": 9583.82, + "probability": 0.4011 + }, + { + "start": 9584.78, + "end": 9585.06, + "probability": 0.542 + }, + { + "start": 9586.06, + "end": 9587.48, + "probability": 0.5577 + }, + { + "start": 9588.67, + "end": 9590.9, + "probability": 0.9025 + }, + { + "start": 9593.86, + "end": 9594.2, + "probability": 0.9751 + }, + { + "start": 9595.32, + "end": 9596.2, + "probability": 0.8624 + }, + { + "start": 9598.14, + "end": 9600.22, + "probability": 0.9365 + }, + { + "start": 9601.34, + "end": 9601.93, + "probability": 0.488 + }, + { + "start": 9602.88, + "end": 9603.18, + "probability": 0.917 + }, + { + "start": 9604.98, + "end": 9606.12, + "probability": 0.9601 + }, + { + "start": 9607.0, + "end": 9607.42, + "probability": 0.9881 + }, + { + "start": 9608.44, + "end": 9610.94, + "probability": 0.8669 + }, + { + "start": 9611.54, + "end": 9612.24, + "probability": 0.6326 + }, + { + "start": 9614.92, + "end": 9616.02, + "probability": 0.7639 + }, + { + "start": 9616.62, + "end": 9617.66, + "probability": 0.7478 + }, + { + "start": 9618.72, + "end": 9619.18, + "probability": 0.8755 + }, + { + "start": 9620.4, + "end": 9621.28, + "probability": 0.7249 + }, + { + "start": 9624.8, + "end": 9625.6, + "probability": 0.9537 + }, + { + "start": 9626.38, + "end": 9627.36, + "probability": 0.875 + }, + { + "start": 9628.26, + "end": 9629.02, + "probability": 0.937 + }, + { + "start": 9630.16, + "end": 9631.12, + "probability": 0.956 + }, + { + "start": 9634.84, + "end": 9635.36, + "probability": 0.9687 + }, + { + "start": 9635.92, + "end": 9638.9, + "probability": 0.1985 + }, + { + "start": 9639.98, + "end": 9640.28, + "probability": 0.561 + }, + { + "start": 9642.02, + "end": 9642.88, + "probability": 0.6735 + }, + { + "start": 9646.0, + "end": 9646.76, + "probability": 0.8522 + }, + { + "start": 9648.22, + "end": 9649.02, + "probability": 0.7193 + }, + { + "start": 9650.46, + "end": 9653.42, + "probability": 0.9477 + }, + { + "start": 9654.98, + "end": 9655.46, + "probability": 0.9805 + }, + { + "start": 9657.06, + "end": 9658.02, + "probability": 0.942 + }, + { + "start": 9661.98, + "end": 9662.72, + "probability": 0.8433 + }, + { + "start": 9663.64, + "end": 9664.96, + "probability": 0.9827 + }, + { + "start": 9665.6, + "end": 9666.0, + "probability": 0.9612 + }, + { + "start": 9667.14, + "end": 9668.22, + "probability": 0.7708 + }, + { + "start": 9669.18, + "end": 9669.44, + "probability": 0.9202 + }, + { + "start": 9670.64, + "end": 9671.46, + "probability": 0.8632 + }, + { + "start": 9672.4, + "end": 9672.68, + "probability": 0.9846 + }, + { + "start": 9673.6, + "end": 9674.96, + "probability": 0.9268 + }, + { + "start": 9675.74, + "end": 9676.34, + "probability": 0.989 + }, + { + "start": 9677.32, + "end": 9681.58, + "probability": 0.8179 + }, + { + "start": 9686.88, + "end": 9687.76, + "probability": 0.78 + }, + { + "start": 9688.82, + "end": 9689.74, + "probability": 0.6753 + }, + { + "start": 9690.9, + "end": 9693.32, + "probability": 0.7815 + }, + { + "start": 9701.14, + "end": 9708.36, + "probability": 0.5123 + }, + { + "start": 9710.26, + "end": 9710.58, + "probability": 0.6527 + }, + { + "start": 9712.14, + "end": 9713.2, + "probability": 0.8437 + }, + { + "start": 9714.42, + "end": 9716.68, + "probability": 0.704 + }, + { + "start": 9717.56, + "end": 9720.16, + "probability": 0.822 + }, + { + "start": 9721.08, + "end": 9721.34, + "probability": 0.9431 + }, + { + "start": 9722.36, + "end": 9724.02, + "probability": 0.8236 + }, + { + "start": 9726.12, + "end": 9727.24, + "probability": 0.7081 + }, + { + "start": 9728.02, + "end": 9728.44, + "probability": 0.8921 + }, + { + "start": 9729.42, + "end": 9730.16, + "probability": 0.6537 + }, + { + "start": 9731.54, + "end": 9734.3, + "probability": 0.7342 + }, + { + "start": 9739.54, + "end": 9744.7, + "probability": 0.6736 + }, + { + "start": 9746.42, + "end": 9747.38, + "probability": 0.4388 + }, + { + "start": 9747.96, + "end": 9748.78, + "probability": 0.7394 + }, + { + "start": 9749.36, + "end": 9750.04, + "probability": 0.3481 + }, + { + "start": 9750.7, + "end": 9751.68, + "probability": 0.4844 + }, + { + "start": 9753.34, + "end": 9756.98, + "probability": 0.7027 + }, + { + "start": 9757.72, + "end": 9758.42, + "probability": 0.7358 + }, + { + "start": 9759.4, + "end": 9759.84, + "probability": 0.9651 + }, + { + "start": 9761.82, + "end": 9762.76, + "probability": 0.6158 + }, + { + "start": 9764.5, + "end": 9768.2, + "probability": 0.8011 + }, + { + "start": 9769.86, + "end": 9772.92, + "probability": 0.9195 + }, + { + "start": 9775.22, + "end": 9775.96, + "probability": 0.885 + }, + { + "start": 9776.54, + "end": 9777.48, + "probability": 0.8783 + }, + { + "start": 9778.76, + "end": 9779.5, + "probability": 0.8234 + }, + { + "start": 9780.24, + "end": 9781.26, + "probability": 0.7678 + }, + { + "start": 9782.62, + "end": 9783.4, + "probability": 0.991 + }, + { + "start": 9784.7, + "end": 9785.76, + "probability": 0.9971 + }, + { + "start": 9787.04, + "end": 9789.08, + "probability": 0.9962 + }, + { + "start": 9789.92, + "end": 9790.74, + "probability": 0.9934 + }, + { + "start": 9793.52, + "end": 9794.28, + "probability": 0.6181 + }, + { + "start": 9794.98, + "end": 9796.7, + "probability": 0.7392 + }, + { + "start": 9797.88, + "end": 9800.36, + "probability": 0.807 + }, + { + "start": 9801.1, + "end": 9802.06, + "probability": 0.8226 + }, + { + "start": 9805.26, + "end": 9805.6, + "probability": 0.6158 + }, + { + "start": 9808.88, + "end": 9810.36, + "probability": 0.7624 + }, + { + "start": 9816.16, + "end": 9817.04, + "probability": 0.6982 + }, + { + "start": 9818.24, + "end": 9818.96, + "probability": 0.8097 + }, + { + "start": 9820.46, + "end": 9821.3, + "probability": 0.5098 + }, + { + "start": 9822.42, + "end": 9824.0, + "probability": 0.9865 + }, + { + "start": 9825.58, + "end": 9826.26, + "probability": 0.8719 + }, + { + "start": 9826.86, + "end": 9827.2, + "probability": 0.9178 + }, + { + "start": 9829.82, + "end": 9830.04, + "probability": 0.9556 + }, + { + "start": 9830.58, + "end": 9831.3, + "probability": 0.9987 + }, + { + "start": 9835.5, + "end": 9836.52, + "probability": 0.6107 + }, + { + "start": 9838.92, + "end": 9840.2, + "probability": 0.5511 + }, + { + "start": 9842.42, + "end": 9843.76, + "probability": 0.7855 + }, + { + "start": 9846.98, + "end": 9847.96, + "probability": 0.9588 + }, + { + "start": 9848.68, + "end": 9849.42, + "probability": 0.8182 + }, + { + "start": 9850.24, + "end": 9850.96, + "probability": 0.951 + }, + { + "start": 9851.68, + "end": 9852.94, + "probability": 0.9679 + }, + { + "start": 9855.02, + "end": 9855.74, + "probability": 0.9968 + }, + { + "start": 9856.7, + "end": 9857.52, + "probability": 0.7545 + }, + { + "start": 9858.54, + "end": 9859.48, + "probability": 0.9884 + }, + { + "start": 9861.6, + "end": 9862.38, + "probability": 0.8707 + }, + { + "start": 9862.9, + "end": 9863.92, + "probability": 0.632 + }, + { + "start": 9865.6, + "end": 9870.28, + "probability": 0.2834 + }, + { + "start": 9875.96, + "end": 9877.18, + "probability": 0.2498 + }, + { + "start": 9879.98, + "end": 9880.76, + "probability": 0.6726 + }, + { + "start": 9881.74, + "end": 9882.52, + "probability": 0.848 + }, + { + "start": 9883.26, + "end": 9884.04, + "probability": 0.7783 + }, + { + "start": 9887.96, + "end": 9888.1, + "probability": 0.7686 + }, + { + "start": 9891.2, + "end": 9891.98, + "probability": 0.6647 + }, + { + "start": 9894.22, + "end": 9895.1, + "probability": 0.4993 + }, + { + "start": 9896.46, + "end": 9897.24, + "probability": 0.6881 + }, + { + "start": 9898.34, + "end": 9899.24, + "probability": 0.6429 + }, + { + "start": 9900.26, + "end": 9901.08, + "probability": 0.9768 + }, + { + "start": 9902.1, + "end": 9903.02, + "probability": 0.6925 + }, + { + "start": 9904.88, + "end": 9917.36, + "probability": 0.8068 + }, + { + "start": 9918.24, + "end": 9920.1, + "probability": 0.5416 + }, + { + "start": 9920.82, + "end": 9921.62, + "probability": 0.723 + }, + { + "start": 9923.02, + "end": 9924.62, + "probability": 0.7909 + }, + { + "start": 9925.24, + "end": 9928.94, + "probability": 0.8516 + }, + { + "start": 9931.24, + "end": 9931.7, + "probability": 0.293 + }, + { + "start": 9932.78, + "end": 9933.8, + "probability": 0.7128 + }, + { + "start": 9934.0, + "end": 9934.82, + "probability": 0.859 + }, + { + "start": 9942.9, + "end": 9945.6, + "probability": 0.8974 + }, + { + "start": 9946.22, + "end": 9949.54, + "probability": 0.9863 + }, + { + "start": 9950.22, + "end": 9951.04, + "probability": 0.9495 + }, + { + "start": 9955.84, + "end": 9957.44, + "probability": 0.981 + }, + { + "start": 9957.5, + "end": 9958.78, + "probability": 0.9802 + }, + { + "start": 9961.76, + "end": 9969.26, + "probability": 0.0453 + }, + { + "start": 9971.32, + "end": 9971.6, + "probability": 0.1253 + }, + { + "start": 9974.52, + "end": 9977.36, + "probability": 0.0508 + }, + { + "start": 9977.84, + "end": 9978.98, + "probability": 0.003 + }, + { + "start": 9979.08, + "end": 9982.28, + "probability": 0.0225 + }, + { + "start": 10030.0, + "end": 10030.0, + "probability": 0.0 + }, + { + "start": 10031.39, + "end": 10033.68, + "probability": 0.7502 + }, + { + "start": 10033.92, + "end": 10035.94, + "probability": 0.8728 + }, + { + "start": 10036.78, + "end": 10038.52, + "probability": 0.9106 + }, + { + "start": 10039.46, + "end": 10042.28, + "probability": 0.827 + }, + { + "start": 10042.28, + "end": 10045.36, + "probability": 0.7715 + }, + { + "start": 10045.94, + "end": 10046.0, + "probability": 0.0286 + }, + { + "start": 10046.0, + "end": 10049.3, + "probability": 0.9079 + }, + { + "start": 10049.64, + "end": 10052.94, + "probability": 0.8389 + }, + { + "start": 10053.04, + "end": 10054.4, + "probability": 0.7 + }, + { + "start": 10065.82, + "end": 10065.82, + "probability": 0.0371 + }, + { + "start": 10065.82, + "end": 10065.82, + "probability": 0.1565 + }, + { + "start": 10065.82, + "end": 10065.82, + "probability": 0.1476 + }, + { + "start": 10065.82, + "end": 10065.82, + "probability": 0.1618 + }, + { + "start": 10088.4, + "end": 10089.5, + "probability": 0.1836 + }, + { + "start": 10100.88, + "end": 10102.88, + "probability": 0.7987 + }, + { + "start": 10103.66, + "end": 10104.2, + "probability": 0.87 + }, + { + "start": 10104.54, + "end": 10108.7, + "probability": 0.9967 + }, + { + "start": 10109.96, + "end": 10112.02, + "probability": 0.9989 + }, + { + "start": 10113.74, + "end": 10116.46, + "probability": 0.9852 + }, + { + "start": 10116.84, + "end": 10118.04, + "probability": 0.8541 + }, + { + "start": 10118.72, + "end": 10119.76, + "probability": 0.8588 + }, + { + "start": 10121.44, + "end": 10124.8, + "probability": 0.9968 + }, + { + "start": 10125.42, + "end": 10127.9, + "probability": 0.9828 + }, + { + "start": 10129.04, + "end": 10130.34, + "probability": 0.9594 + }, + { + "start": 10131.3, + "end": 10132.6, + "probability": 0.9202 + }, + { + "start": 10133.18, + "end": 10138.14, + "probability": 0.9934 + }, + { + "start": 10139.1, + "end": 10140.92, + "probability": 0.9927 + }, + { + "start": 10141.7, + "end": 10144.22, + "probability": 0.9871 + }, + { + "start": 10144.28, + "end": 10147.9, + "probability": 0.9921 + }, + { + "start": 10149.52, + "end": 10150.88, + "probability": 0.9964 + }, + { + "start": 10152.08, + "end": 10153.7, + "probability": 0.9695 + }, + { + "start": 10154.82, + "end": 10159.62, + "probability": 0.8657 + }, + { + "start": 10159.7, + "end": 10159.94, + "probability": 0.6536 + }, + { + "start": 10160.04, + "end": 10163.38, + "probability": 0.9951 + }, + { + "start": 10165.86, + "end": 10169.8, + "probability": 0.9884 + }, + { + "start": 10169.9, + "end": 10172.4, + "probability": 0.9979 + }, + { + "start": 10173.52, + "end": 10176.88, + "probability": 0.9967 + }, + { + "start": 10176.88, + "end": 10180.5, + "probability": 0.9981 + }, + { + "start": 10180.51, + "end": 10185.46, + "probability": 0.8804 + }, + { + "start": 10186.56, + "end": 10187.84, + "probability": 0.9568 + }, + { + "start": 10188.0, + "end": 10188.42, + "probability": 0.7968 + }, + { + "start": 10188.56, + "end": 10189.94, + "probability": 0.7167 + }, + { + "start": 10190.42, + "end": 10193.82, + "probability": 0.9458 + }, + { + "start": 10194.36, + "end": 10195.66, + "probability": 0.936 + }, + { + "start": 10196.42, + "end": 10196.74, + "probability": 0.8212 + }, + { + "start": 10196.74, + "end": 10202.72, + "probability": 0.9939 + }, + { + "start": 10203.68, + "end": 10205.2, + "probability": 0.7961 + }, + { + "start": 10205.84, + "end": 10206.48, + "probability": 0.9339 + }, + { + "start": 10208.52, + "end": 10211.36, + "probability": 0.9905 + }, + { + "start": 10211.4, + "end": 10212.44, + "probability": 0.9523 + }, + { + "start": 10213.02, + "end": 10214.7, + "probability": 0.9923 + }, + { + "start": 10215.02, + "end": 10217.86, + "probability": 0.9958 + }, + { + "start": 10218.62, + "end": 10222.56, + "probability": 0.8587 + }, + { + "start": 10223.34, + "end": 10226.38, + "probability": 0.8032 + }, + { + "start": 10226.38, + "end": 10229.96, + "probability": 0.994 + }, + { + "start": 10230.08, + "end": 10232.3, + "probability": 0.8717 + }, + { + "start": 10232.42, + "end": 10235.06, + "probability": 0.6147 + }, + { + "start": 10235.5, + "end": 10240.02, + "probability": 0.8244 + }, + { + "start": 10241.02, + "end": 10244.58, + "probability": 0.9947 + }, + { + "start": 10244.58, + "end": 10247.98, + "probability": 0.9851 + }, + { + "start": 10249.14, + "end": 10249.48, + "probability": 0.639 + }, + { + "start": 10249.58, + "end": 10252.24, + "probability": 0.9503 + }, + { + "start": 10252.34, + "end": 10255.28, + "probability": 0.9182 + }, + { + "start": 10256.02, + "end": 10260.14, + "probability": 0.9978 + }, + { + "start": 10260.38, + "end": 10260.8, + "probability": 0.9715 + }, + { + "start": 10260.94, + "end": 10264.78, + "probability": 0.9409 + }, + { + "start": 10265.64, + "end": 10268.56, + "probability": 0.997 + }, + { + "start": 10268.56, + "end": 10271.8, + "probability": 0.9993 + }, + { + "start": 10272.34, + "end": 10276.84, + "probability": 0.9919 + }, + { + "start": 10277.9, + "end": 10281.58, + "probability": 0.9968 + }, + { + "start": 10282.08, + "end": 10284.88, + "probability": 0.9821 + }, + { + "start": 10285.62, + "end": 10288.24, + "probability": 0.9813 + }, + { + "start": 10288.38, + "end": 10289.42, + "probability": 0.9722 + }, + { + "start": 10289.94, + "end": 10290.42, + "probability": 0.6699 + }, + { + "start": 10291.04, + "end": 10293.3, + "probability": 0.9941 + }, + { + "start": 10293.72, + "end": 10294.24, + "probability": 0.7926 + }, + { + "start": 10296.18, + "end": 10297.98, + "probability": 0.9899 + }, + { + "start": 10298.78, + "end": 10301.56, + "probability": 0.92 + }, + { + "start": 10302.34, + "end": 10303.96, + "probability": 0.792 + }, + { + "start": 10305.4, + "end": 10306.24, + "probability": 0.0522 + }, + { + "start": 10318.58, + "end": 10318.58, + "probability": 0.0546 + }, + { + "start": 10318.58, + "end": 10318.6, + "probability": 0.1217 + }, + { + "start": 10318.62, + "end": 10318.7, + "probability": 0.0795 + }, + { + "start": 10331.88, + "end": 10332.56, + "probability": 0.0376 + }, + { + "start": 10332.7, + "end": 10335.32, + "probability": 0.8296 + }, + { + "start": 10335.32, + "end": 10337.62, + "probability": 0.9828 + }, + { + "start": 10338.3, + "end": 10338.68, + "probability": 0.5953 + }, + { + "start": 10338.76, + "end": 10340.45, + "probability": 0.8088 + }, + { + "start": 10340.52, + "end": 10343.2, + "probability": 0.9178 + }, + { + "start": 10344.34, + "end": 10346.56, + "probability": 0.0643 + }, + { + "start": 10346.72, + "end": 10347.36, + "probability": 0.3711 + }, + { + "start": 10347.78, + "end": 10348.42, + "probability": 0.8416 + }, + { + "start": 10350.58, + "end": 10350.66, + "probability": 0.4236 + }, + { + "start": 10350.66, + "end": 10351.68, + "probability": 0.647 + }, + { + "start": 10351.96, + "end": 10355.9, + "probability": 0.9368 + }, + { + "start": 10355.9, + "end": 10358.26, + "probability": 0.9941 + }, + { + "start": 10358.82, + "end": 10361.16, + "probability": 0.9624 + }, + { + "start": 10361.72, + "end": 10364.72, + "probability": 0.9833 + }, + { + "start": 10365.64, + "end": 10368.74, + "probability": 0.8713 + }, + { + "start": 10368.74, + "end": 10372.14, + "probability": 0.9658 + }, + { + "start": 10372.96, + "end": 10375.18, + "probability": 0.9872 + }, + { + "start": 10375.18, + "end": 10378.22, + "probability": 0.9902 + }, + { + "start": 10378.66, + "end": 10381.12, + "probability": 0.9797 + }, + { + "start": 10381.16, + "end": 10383.74, + "probability": 0.8676 + }, + { + "start": 10384.58, + "end": 10387.52, + "probability": 0.9665 + }, + { + "start": 10387.56, + "end": 10389.58, + "probability": 0.7263 + }, + { + "start": 10390.66, + "end": 10393.06, + "probability": 0.9789 + }, + { + "start": 10393.38, + "end": 10395.4, + "probability": 0.7759 + }, + { + "start": 10396.16, + "end": 10402.68, + "probability": 0.9649 + }, + { + "start": 10402.68, + "end": 10406.36, + "probability": 0.9891 + }, + { + "start": 10406.36, + "end": 10410.92, + "probability": 0.9974 + }, + { + "start": 10412.02, + "end": 10414.7, + "probability": 0.8167 + }, + { + "start": 10414.7, + "end": 10417.24, + "probability": 0.9243 + }, + { + "start": 10417.3, + "end": 10419.28, + "probability": 0.9087 + }, + { + "start": 10419.86, + "end": 10423.34, + "probability": 0.9542 + }, + { + "start": 10424.16, + "end": 10425.34, + "probability": 0.8963 + }, + { + "start": 10425.48, + "end": 10427.16, + "probability": 0.9802 + }, + { + "start": 10427.98, + "end": 10428.59, + "probability": 0.5112 + }, + { + "start": 10428.82, + "end": 10429.8, + "probability": 0.7641 + }, + { + "start": 10430.08, + "end": 10430.62, + "probability": 0.3792 + }, + { + "start": 10430.98, + "end": 10432.06, + "probability": 0.9441 + }, + { + "start": 10432.42, + "end": 10432.92, + "probability": 0.6803 + }, + { + "start": 10433.02, + "end": 10435.06, + "probability": 0.951 + }, + { + "start": 10436.06, + "end": 10437.3, + "probability": 0.5041 + }, + { + "start": 10437.3, + "end": 10439.38, + "probability": 0.9031 + }, + { + "start": 10440.18, + "end": 10444.18, + "probability": 0.7581 + }, + { + "start": 10446.7, + "end": 10449.36, + "probability": 0.6669 + }, + { + "start": 10449.36, + "end": 10449.74, + "probability": 0.6858 + }, + { + "start": 10450.82, + "end": 10452.14, + "probability": 0.2028 + }, + { + "start": 10457.66, + "end": 10457.76, + "probability": 0.0 + }, + { + "start": 10458.7, + "end": 10460.92, + "probability": 0.0598 + }, + { + "start": 10461.36, + "end": 10461.48, + "probability": 0.0596 + }, + { + "start": 10466.08, + "end": 10467.32, + "probability": 0.9887 + }, + { + "start": 10468.32, + "end": 10470.18, + "probability": 0.9839 + }, + { + "start": 10473.22, + "end": 10473.86, + "probability": 0.7883 + }, + { + "start": 10474.66, + "end": 10477.94, + "probability": 0.9436 + }, + { + "start": 10478.0, + "end": 10481.74, + "probability": 0.9866 + }, + { + "start": 10482.06, + "end": 10483.52, + "probability": 0.9893 + }, + { + "start": 10484.14, + "end": 10486.02, + "probability": 0.8643 + }, + { + "start": 10486.02, + "end": 10488.96, + "probability": 0.9863 + }, + { + "start": 10489.54, + "end": 10493.08, + "probability": 0.667 + }, + { + "start": 10493.72, + "end": 10496.54, + "probability": 0.993 + }, + { + "start": 10497.02, + "end": 10501.26, + "probability": 0.917 + }, + { + "start": 10501.34, + "end": 10502.04, + "probability": 0.729 + }, + { + "start": 10502.46, + "end": 10502.94, + "probability": 0.5428 + }, + { + "start": 10503.68, + "end": 10504.26, + "probability": 0.9564 + }, + { + "start": 10504.7, + "end": 10507.82, + "probability": 0.9951 + }, + { + "start": 10508.46, + "end": 10512.38, + "probability": 0.9099 + }, + { + "start": 10513.5, + "end": 10516.22, + "probability": 0.872 + }, + { + "start": 10516.7, + "end": 10522.5, + "probability": 0.9119 + }, + { + "start": 10523.82, + "end": 10526.82, + "probability": 0.9969 + }, + { + "start": 10527.34, + "end": 10531.78, + "probability": 0.9233 + }, + { + "start": 10531.78, + "end": 10538.38, + "probability": 0.9864 + }, + { + "start": 10538.82, + "end": 10543.26, + "probability": 0.7789 + }, + { + "start": 10543.28, + "end": 10544.84, + "probability": 0.9578 + }, + { + "start": 10544.9, + "end": 10547.12, + "probability": 0.915 + }, + { + "start": 10547.7, + "end": 10553.74, + "probability": 0.9502 + }, + { + "start": 10554.6, + "end": 10555.5, + "probability": 0.9563 + }, + { + "start": 10555.58, + "end": 10556.89, + "probability": 0.9907 + }, + { + "start": 10559.0, + "end": 10562.34, + "probability": 0.9963 + }, + { + "start": 10562.73, + "end": 10564.74, + "probability": 0.9162 + }, + { + "start": 10565.24, + "end": 10565.76, + "probability": 0.7404 + }, + { + "start": 10566.44, + "end": 10567.92, + "probability": 0.9792 + }, + { + "start": 10568.72, + "end": 10569.98, + "probability": 0.9941 + }, + { + "start": 10570.74, + "end": 10571.56, + "probability": 0.7865 + }, + { + "start": 10572.4, + "end": 10573.42, + "probability": 0.9841 + }, + { + "start": 10574.2, + "end": 10574.94, + "probability": 0.9493 + }, + { + "start": 10579.74, + "end": 10582.84, + "probability": 0.7594 + }, + { + "start": 10583.52, + "end": 10584.38, + "probability": 0.7384 + }, + { + "start": 10584.6, + "end": 10585.76, + "probability": 0.7444 + }, + { + "start": 10586.84, + "end": 10587.12, + "probability": 0.8305 + }, + { + "start": 10588.28, + "end": 10590.52, + "probability": 0.9294 + }, + { + "start": 10591.26, + "end": 10593.7, + "probability": 0.8111 + }, + { + "start": 10594.39, + "end": 10596.56, + "probability": 0.4792 + }, + { + "start": 10596.76, + "end": 10599.86, + "probability": 0.8599 + }, + { + "start": 10620.92, + "end": 10622.58, + "probability": 0.8103 + }, + { + "start": 10623.14, + "end": 10624.43, + "probability": 0.5832 + }, + { + "start": 10625.32, + "end": 10627.0, + "probability": 0.6974 + }, + { + "start": 10628.06, + "end": 10630.76, + "probability": 0.8574 + }, + { + "start": 10631.7, + "end": 10635.18, + "probability": 0.9967 + }, + { + "start": 10636.54, + "end": 10637.8, + "probability": 0.9878 + }, + { + "start": 10638.94, + "end": 10643.4, + "probability": 0.8485 + }, + { + "start": 10644.63, + "end": 10648.66, + "probability": 0.8561 + }, + { + "start": 10649.64, + "end": 10651.48, + "probability": 0.8331 + }, + { + "start": 10652.16, + "end": 10655.84, + "probability": 0.5527 + }, + { + "start": 10656.22, + "end": 10657.48, + "probability": 0.9961 + }, + { + "start": 10658.78, + "end": 10660.32, + "probability": 0.6274 + }, + { + "start": 10660.96, + "end": 10662.14, + "probability": 0.8698 + }, + { + "start": 10662.24, + "end": 10667.46, + "probability": 0.9473 + }, + { + "start": 10667.5, + "end": 10668.09, + "probability": 0.1265 + }, + { + "start": 10668.96, + "end": 10670.76, + "probability": 0.9666 + }, + { + "start": 10670.76, + "end": 10672.08, + "probability": 0.5542 + }, + { + "start": 10672.16, + "end": 10672.62, + "probability": 0.6933 + }, + { + "start": 10673.3, + "end": 10674.42, + "probability": 0.7101 + }, + { + "start": 10674.78, + "end": 10676.78, + "probability": 0.8865 + }, + { + "start": 10677.1, + "end": 10678.26, + "probability": 0.8228 + }, + { + "start": 10678.5, + "end": 10679.28, + "probability": 0.7017 + }, + { + "start": 10680.1, + "end": 10680.34, + "probability": 0.5999 + }, + { + "start": 10680.52, + "end": 10681.58, + "probability": 0.7084 + }, + { + "start": 10681.74, + "end": 10682.4, + "probability": 0.98 + }, + { + "start": 10682.98, + "end": 10685.32, + "probability": 0.9506 + }, + { + "start": 10690.04, + "end": 10690.14, + "probability": 0.6304 + }, + { + "start": 10690.66, + "end": 10690.96, + "probability": 0.5006 + }, + { + "start": 10694.1, + "end": 10694.48, + "probability": 0.467 + }, + { + "start": 10695.04, + "end": 10696.94, + "probability": 0.7032 + }, + { + "start": 10697.82, + "end": 10698.6, + "probability": 0.8657 + }, + { + "start": 10700.76, + "end": 10701.96, + "probability": 0.7746 + }, + { + "start": 10703.92, + "end": 10707.6, + "probability": 0.9351 + }, + { + "start": 10709.06, + "end": 10712.5, + "probability": 0.9858 + }, + { + "start": 10713.64, + "end": 10714.8, + "probability": 0.4627 + }, + { + "start": 10714.9, + "end": 10717.12, + "probability": 0.8038 + }, + { + "start": 10717.72, + "end": 10720.28, + "probability": 0.9426 + }, + { + "start": 10720.38, + "end": 10723.02, + "probability": 0.7931 + }, + { + "start": 10723.62, + "end": 10724.04, + "probability": 0.9659 + }, + { + "start": 10724.2, + "end": 10726.06, + "probability": 0.9816 + }, + { + "start": 10726.4, + "end": 10728.08, + "probability": 0.9218 + }, + { + "start": 10728.2, + "end": 10731.28, + "probability": 0.9928 + }, + { + "start": 10731.28, + "end": 10734.26, + "probability": 0.8978 + }, + { + "start": 10734.4, + "end": 10736.2, + "probability": 0.964 + }, + { + "start": 10738.1, + "end": 10740.18, + "probability": 0.9631 + }, + { + "start": 10740.42, + "end": 10742.0, + "probability": 0.7704 + }, + { + "start": 10742.44, + "end": 10747.42, + "probability": 0.9967 + }, + { + "start": 10748.54, + "end": 10749.16, + "probability": 0.6302 + }, + { + "start": 10749.62, + "end": 10753.29, + "probability": 0.8468 + }, + { + "start": 10755.6, + "end": 10757.64, + "probability": 0.7609 + }, + { + "start": 10759.56, + "end": 10761.34, + "probability": 0.7675 + }, + { + "start": 10762.02, + "end": 10762.8, + "probability": 0.5193 + }, + { + "start": 10764.8, + "end": 10767.2, + "probability": 0.0229 + }, + { + "start": 10767.84, + "end": 10773.2, + "probability": 0.9568 + }, + { + "start": 10773.32, + "end": 10777.1, + "probability": 0.2267 + }, + { + "start": 10777.1, + "end": 10778.68, + "probability": 0.2193 + }, + { + "start": 10778.82, + "end": 10781.96, + "probability": 0.76 + }, + { + "start": 10782.5, + "end": 10786.32, + "probability": 0.792 + }, + { + "start": 10786.36, + "end": 10787.84, + "probability": 0.1614 + }, + { + "start": 10787.9, + "end": 10791.62, + "probability": 0.9768 + }, + { + "start": 10791.62, + "end": 10793.9, + "probability": 0.9669 + }, + { + "start": 10794.32, + "end": 10796.02, + "probability": 0.9963 + }, + { + "start": 10796.7, + "end": 10797.48, + "probability": 0.5053 + }, + { + "start": 10797.7, + "end": 10799.42, + "probability": 0.9858 + }, + { + "start": 10799.9, + "end": 10801.2, + "probability": 0.9265 + }, + { + "start": 10806.02, + "end": 10806.62, + "probability": 0.0643 + }, + { + "start": 10814.46, + "end": 10815.3, + "probability": 0.0741 + }, + { + "start": 10815.3, + "end": 10817.2, + "probability": 0.8706 + }, + { + "start": 10817.62, + "end": 10821.22, + "probability": 0.9008 + }, + { + "start": 10821.58, + "end": 10823.3, + "probability": 0.9937 + }, + { + "start": 10823.68, + "end": 10824.84, + "probability": 0.9509 + }, + { + "start": 10826.32, + "end": 10826.88, + "probability": 0.8251 + }, + { + "start": 10828.0, + "end": 10830.2, + "probability": 0.6982 + }, + { + "start": 10830.42, + "end": 10832.54, + "probability": 0.6424 + }, + { + "start": 10832.96, + "end": 10835.52, + "probability": 0.7704 + }, + { + "start": 10836.62, + "end": 10837.92, + "probability": 0.7807 + }, + { + "start": 10837.92, + "end": 10839.26, + "probability": 0.8685 + }, + { + "start": 10839.28, + "end": 10839.38, + "probability": 0.9304 + }, + { + "start": 10839.96, + "end": 10840.56, + "probability": 0.8238 + }, + { + "start": 10840.98, + "end": 10842.4, + "probability": 0.0101 + }, + { + "start": 10843.28, + "end": 10844.42, + "probability": 0.6093 + }, + { + "start": 10845.34, + "end": 10845.96, + "probability": 0.9634 + }, + { + "start": 10847.04, + "end": 10848.19, + "probability": 0.8509 + }, + { + "start": 10849.12, + "end": 10849.66, + "probability": 0.9906 + }, + { + "start": 10850.28, + "end": 10851.44, + "probability": 0.4399 + }, + { + "start": 10852.42, + "end": 10858.8, + "probability": 0.8184 + }, + { + "start": 10859.74, + "end": 10860.2, + "probability": 0.9857 + }, + { + "start": 10862.3, + "end": 10863.0, + "probability": 0.9186 + }, + { + "start": 10865.36, + "end": 10866.18, + "probability": 0.7709 + }, + { + "start": 10867.44, + "end": 10868.34, + "probability": 0.3689 + }, + { + "start": 10869.66, + "end": 10870.34, + "probability": 0.7255 + }, + { + "start": 10871.58, + "end": 10872.5, + "probability": 0.676 + }, + { + "start": 10873.28, + "end": 10873.74, + "probability": 0.9647 + }, + { + "start": 10874.34, + "end": 10875.42, + "probability": 0.7492 + }, + { + "start": 10876.66, + "end": 10877.9, + "probability": 0.3568 + }, + { + "start": 10878.84, + "end": 10880.46, + "probability": 0.7675 + }, + { + "start": 10881.36, + "end": 10882.42, + "probability": 0.758 + }, + { + "start": 10884.49, + "end": 10886.02, + "probability": 0.3451 + }, + { + "start": 10887.02, + "end": 10888.02, + "probability": 0.6452 + }, + { + "start": 10890.88, + "end": 10891.26, + "probability": 0.7266 + }, + { + "start": 10892.28, + "end": 10893.14, + "probability": 0.7457 + }, + { + "start": 10894.46, + "end": 10896.4, + "probability": 0.9089 + }, + { + "start": 10900.55, + "end": 10903.2, + "probability": 0.8819 + }, + { + "start": 10904.0, + "end": 10906.14, + "probability": 0.9087 + }, + { + "start": 10906.82, + "end": 10908.98, + "probability": 0.9818 + }, + { + "start": 10915.86, + "end": 10916.1, + "probability": 0.5546 + }, + { + "start": 10918.06, + "end": 10918.74, + "probability": 0.566 + }, + { + "start": 10920.16, + "end": 10920.6, + "probability": 0.9489 + }, + { + "start": 10921.7, + "end": 10922.54, + "probability": 0.8218 + }, + { + "start": 10923.36, + "end": 10925.3, + "probability": 0.7917 + }, + { + "start": 10928.04, + "end": 10928.56, + "probability": 0.9652 + }, + { + "start": 10929.9, + "end": 10930.82, + "probability": 0.8796 + }, + { + "start": 10932.13, + "end": 10934.02, + "probability": 0.9035 + }, + { + "start": 10934.84, + "end": 10935.44, + "probability": 0.7712 + }, + { + "start": 10936.34, + "end": 10937.48, + "probability": 0.6027 + }, + { + "start": 10939.06, + "end": 10939.38, + "probability": 0.2988 + }, + { + "start": 10941.02, + "end": 10943.1, + "probability": 0.3776 + }, + { + "start": 10946.28, + "end": 10946.74, + "probability": 0.7796 + }, + { + "start": 10948.68, + "end": 10949.6, + "probability": 0.9752 + }, + { + "start": 10950.88, + "end": 10952.96, + "probability": 0.9132 + }, + { + "start": 10954.18, + "end": 10954.88, + "probability": 0.9028 + }, + { + "start": 10955.66, + "end": 10956.9, + "probability": 0.7014 + }, + { + "start": 10958.42, + "end": 10958.8, + "probability": 0.6613 + }, + { + "start": 10963.04, + "end": 10963.7, + "probability": 0.6556 + }, + { + "start": 10965.32, + "end": 10965.82, + "probability": 0.8778 + }, + { + "start": 10967.06, + "end": 10967.8, + "probability": 0.7296 + }, + { + "start": 10969.14, + "end": 10970.58, + "probability": 0.9901 + }, + { + "start": 10971.46, + "end": 10972.22, + "probability": 0.6055 + }, + { + "start": 10978.38, + "end": 10978.84, + "probability": 0.7152 + }, + { + "start": 10980.36, + "end": 10981.24, + "probability": 0.8088 + }, + { + "start": 10983.48, + "end": 10985.64, + "probability": 0.3354 + }, + { + "start": 10987.38, + "end": 10987.92, + "probability": 0.5153 + }, + { + "start": 10991.16, + "end": 10991.54, + "probability": 0.0257 + }, + { + "start": 10991.54, + "end": 10991.54, + "probability": 0.0202 + }, + { + "start": 11001.64, + "end": 11001.86, + "probability": 0.0897 + }, + { + "start": 11004.22, + "end": 11005.42, + "probability": 0.4402 + }, + { + "start": 11006.7, + "end": 11007.1, + "probability": 0.8291 + }, + { + "start": 11008.12, + "end": 11008.92, + "probability": 0.6756 + }, + { + "start": 11010.2, + "end": 11010.56, + "probability": 0.8818 + }, + { + "start": 11011.68, + "end": 11012.22, + "probability": 0.9477 + }, + { + "start": 11013.74, + "end": 11014.44, + "probability": 0.9078 + }, + { + "start": 11015.32, + "end": 11016.24, + "probability": 0.9304 + }, + { + "start": 11017.56, + "end": 11017.98, + "probability": 0.9938 + }, + { + "start": 11019.08, + "end": 11019.94, + "probability": 0.9288 + }, + { + "start": 11021.24, + "end": 11021.6, + "probability": 0.9849 + }, + { + "start": 11022.78, + "end": 11023.56, + "probability": 0.9361 + }, + { + "start": 11024.44, + "end": 11024.86, + "probability": 0.9862 + }, + { + "start": 11025.86, + "end": 11026.98, + "probability": 0.7626 + }, + { + "start": 11027.88, + "end": 11028.36, + "probability": 0.9897 + }, + { + "start": 11029.32, + "end": 11030.52, + "probability": 0.6951 + }, + { + "start": 11031.26, + "end": 11031.54, + "probability": 0.7298 + }, + { + "start": 11032.52, + "end": 11033.24, + "probability": 0.8264 + }, + { + "start": 11034.88, + "end": 11035.36, + "probability": 0.9419 + }, + { + "start": 11036.48, + "end": 11037.38, + "probability": 0.8574 + }, + { + "start": 11038.44, + "end": 11039.74, + "probability": 0.985 + }, + { + "start": 11040.48, + "end": 11041.38, + "probability": 0.3941 + }, + { + "start": 11042.05, + "end": 11045.32, + "probability": 0.8389 + }, + { + "start": 11052.22, + "end": 11052.74, + "probability": 0.7684 + }, + { + "start": 11054.18, + "end": 11055.54, + "probability": 0.9031 + }, + { + "start": 11056.34, + "end": 11056.8, + "probability": 0.6345 + }, + { + "start": 11057.92, + "end": 11059.08, + "probability": 0.8229 + }, + { + "start": 11063.5, + "end": 11063.76, + "probability": 0.6949 + }, + { + "start": 11065.56, + "end": 11066.82, + "probability": 0.6008 + }, + { + "start": 11068.32, + "end": 11068.64, + "probability": 0.842 + }, + { + "start": 11069.54, + "end": 11070.38, + "probability": 0.5185 + }, + { + "start": 11071.18, + "end": 11072.6, + "probability": 0.5598 + }, + { + "start": 11072.6, + "end": 11073.4, + "probability": 0.1664 + }, + { + "start": 11074.22, + "end": 11074.84, + "probability": 0.0168 + }, + { + "start": 11079.16, + "end": 11081.0, + "probability": 0.9224 + }, + { + "start": 11082.12, + "end": 11082.96, + "probability": 0.709 + }, + { + "start": 11084.0, + "end": 11084.26, + "probability": 0.9836 + }, + { + "start": 11085.34, + "end": 11086.2, + "probability": 0.8725 + }, + { + "start": 11089.44, + "end": 11089.98, + "probability": 0.9823 + }, + { + "start": 11091.52, + "end": 11092.3, + "probability": 0.7339 + }, + { + "start": 11093.66, + "end": 11094.02, + "probability": 0.5305 + }, + { + "start": 11095.44, + "end": 11096.42, + "probability": 0.1719 + }, + { + "start": 11097.58, + "end": 11098.08, + "probability": 0.9173 + }, + { + "start": 11099.06, + "end": 11100.24, + "probability": 0.9623 + }, + { + "start": 11101.08, + "end": 11101.48, + "probability": 0.9734 + }, + { + "start": 11102.14, + "end": 11103.06, + "probability": 0.9685 + }, + { + "start": 11103.9, + "end": 11104.34, + "probability": 0.9258 + }, + { + "start": 11106.16, + "end": 11107.14, + "probability": 0.9925 + }, + { + "start": 11108.17, + "end": 11110.38, + "probability": 0.9502 + }, + { + "start": 11111.4, + "end": 11111.76, + "probability": 0.9922 + }, + { + "start": 11113.3, + "end": 11114.14, + "probability": 0.9459 + }, + { + "start": 11115.76, + "end": 11116.28, + "probability": 0.9715 + }, + { + "start": 11117.14, + "end": 11117.94, + "probability": 0.9135 + }, + { + "start": 11121.14, + "end": 11122.02, + "probability": 0.6857 + }, + { + "start": 11126.24, + "end": 11126.86, + "probability": 0.4913 + }, + { + "start": 11127.76, + "end": 11128.12, + "probability": 0.9541 + }, + { + "start": 11128.96, + "end": 11129.54, + "probability": 0.8578 + }, + { + "start": 11130.42, + "end": 11130.82, + "probability": 0.8298 + }, + { + "start": 11131.64, + "end": 11133.74, + "probability": 0.7227 + }, + { + "start": 11135.04, + "end": 11135.52, + "probability": 0.9795 + }, + { + "start": 11136.7, + "end": 11137.54, + "probability": 0.9538 + }, + { + "start": 11138.72, + "end": 11139.14, + "probability": 0.9878 + }, + { + "start": 11140.26, + "end": 11141.48, + "probability": 0.9437 + }, + { + "start": 11143.02, + "end": 11143.54, + "probability": 0.9657 + }, + { + "start": 11144.7, + "end": 11145.58, + "probability": 0.9622 + }, + { + "start": 11146.62, + "end": 11147.08, + "probability": 0.9909 + }, + { + "start": 11148.06, + "end": 11149.08, + "probability": 0.8622 + }, + { + "start": 11151.22, + "end": 11151.62, + "probability": 0.9915 + }, + { + "start": 11153.88, + "end": 11154.78, + "probability": 0.7554 + }, + { + "start": 11155.52, + "end": 11156.02, + "probability": 0.8818 + }, + { + "start": 11156.92, + "end": 11157.84, + "probability": 0.8513 + }, + { + "start": 11158.76, + "end": 11159.22, + "probability": 0.9812 + }, + { + "start": 11160.04, + "end": 11160.78, + "probability": 0.8616 + }, + { + "start": 11166.14, + "end": 11166.7, + "probability": 0.6092 + }, + { + "start": 11169.62, + "end": 11170.44, + "probability": 0.6677 + }, + { + "start": 11172.24, + "end": 11172.5, + "probability": 0.9553 + }, + { + "start": 11173.22, + "end": 11174.16, + "probability": 0.6398 + }, + { + "start": 11176.4, + "end": 11179.54, + "probability": 0.7949 + }, + { + "start": 11180.7, + "end": 11181.08, + "probability": 0.9652 + }, + { + "start": 11182.3, + "end": 11183.52, + "probability": 0.8529 + }, + { + "start": 11185.16, + "end": 11185.56, + "probability": 0.9922 + }, + { + "start": 11186.36, + "end": 11187.32, + "probability": 0.7629 + }, + { + "start": 11189.46, + "end": 11189.8, + "probability": 0.9868 + }, + { + "start": 11193.44, + "end": 11195.16, + "probability": 0.7468 + }, + { + "start": 11195.96, + "end": 11197.16, + "probability": 0.7635 + }, + { + "start": 11201.66, + "end": 11202.4, + "probability": 0.8104 + }, + { + "start": 11204.08, + "end": 11204.8, + "probability": 0.7008 + }, + { + "start": 11208.3, + "end": 11208.58, + "probability": 0.7835 + }, + { + "start": 11210.24, + "end": 11210.96, + "probability": 0.5438 + }, + { + "start": 11212.54, + "end": 11213.4, + "probability": 0.9858 + }, + { + "start": 11214.34, + "end": 11215.22, + "probability": 0.5565 + }, + { + "start": 11216.18, + "end": 11216.56, + "probability": 0.6448 + }, + { + "start": 11217.36, + "end": 11218.36, + "probability": 0.9691 + }, + { + "start": 11219.68, + "end": 11220.14, + "probability": 0.9919 + }, + { + "start": 11221.48, + "end": 11222.4, + "probability": 0.9589 + }, + { + "start": 11223.18, + "end": 11225.46, + "probability": 0.8875 + }, + { + "start": 11231.44, + "end": 11232.42, + "probability": 0.7113 + }, + { + "start": 11233.86, + "end": 11234.74, + "probability": 0.7669 + }, + { + "start": 11236.38, + "end": 11236.7, + "probability": 0.7603 + }, + { + "start": 11237.46, + "end": 11238.36, + "probability": 0.6516 + }, + { + "start": 11239.24, + "end": 11241.06, + "probability": 0.9683 + }, + { + "start": 11243.4, + "end": 11250.86, + "probability": 0.6634 + }, + { + "start": 11251.88, + "end": 11252.38, + "probability": 0.958 + }, + { + "start": 11254.38, + "end": 11254.82, + "probability": 0.8109 + }, + { + "start": 11256.88, + "end": 11257.2, + "probability": 0.9924 + }, + { + "start": 11258.22, + "end": 11259.28, + "probability": 0.3246 + }, + { + "start": 11260.76, + "end": 11261.02, + "probability": 0.4927 + }, + { + "start": 11261.88, + "end": 11262.98, + "probability": 0.6815 + }, + { + "start": 11263.76, + "end": 11264.32, + "probability": 0.9425 + }, + { + "start": 11265.38, + "end": 11266.22, + "probability": 0.4948 + }, + { + "start": 11267.7, + "end": 11268.08, + "probability": 0.9959 + }, + { + "start": 11268.84, + "end": 11269.7, + "probability": 0.9067 + }, + { + "start": 11271.32, + "end": 11271.72, + "probability": 0.8589 + }, + { + "start": 11272.68, + "end": 11273.6, + "probability": 0.8351 + }, + { + "start": 11274.88, + "end": 11275.22, + "probability": 0.9839 + }, + { + "start": 11277.52, + "end": 11278.44, + "probability": 0.4863 + }, + { + "start": 11280.84, + "end": 11281.58, + "probability": 0.9925 + }, + { + "start": 11283.8, + "end": 11284.8, + "probability": 0.8649 + }, + { + "start": 11287.76, + "end": 11293.12, + "probability": 0.6655 + }, + { + "start": 11294.24, + "end": 11294.66, + "probability": 0.9587 + }, + { + "start": 11295.74, + "end": 11296.54, + "probability": 0.8695 + }, + { + "start": 11297.42, + "end": 11297.82, + "probability": 0.9558 + }, + { + "start": 11298.76, + "end": 11299.62, + "probability": 0.6983 + }, + { + "start": 11303.26, + "end": 11304.02, + "probability": 0.8674 + }, + { + "start": 11305.48, + "end": 11306.4, + "probability": 0.8088 + }, + { + "start": 11310.24, + "end": 11310.48, + "probability": 0.3886 + }, + { + "start": 11311.3, + "end": 11311.56, + "probability": 0.0111 + }, + { + "start": 11313.5, + "end": 11314.8, + "probability": 0.1063 + }, + { + "start": 11324.06, + "end": 11326.84, + "probability": 0.7847 + }, + { + "start": 11328.42, + "end": 11330.9, + "probability": 0.7709 + }, + { + "start": 11333.08, + "end": 11334.88, + "probability": 0.9093 + }, + { + "start": 11338.46, + "end": 11341.68, + "probability": 0.9823 + }, + { + "start": 11342.62, + "end": 11345.42, + "probability": 0.9253 + }, + { + "start": 11349.28, + "end": 11349.74, + "probability": 0.7967 + }, + { + "start": 11351.8, + "end": 11353.56, + "probability": 0.5022 + }, + { + "start": 11354.22, + "end": 11354.62, + "probability": 0.705 + }, + { + "start": 11356.3, + "end": 11358.1, + "probability": 0.8983 + }, + { + "start": 11359.1, + "end": 11359.78, + "probability": 0.8857 + }, + { + "start": 11360.82, + "end": 11363.14, + "probability": 0.9312 + }, + { + "start": 11366.68, + "end": 11367.18, + "probability": 0.6881 + }, + { + "start": 11368.8, + "end": 11369.26, + "probability": 0.6545 + }, + { + "start": 11371.38, + "end": 11372.82, + "probability": 0.8452 + }, + { + "start": 11373.68, + "end": 11376.24, + "probability": 0.7803 + }, + { + "start": 11379.02, + "end": 11379.4, + "probability": 0.9773 + }, + { + "start": 11381.12, + "end": 11382.22, + "probability": 0.9123 + }, + { + "start": 11382.92, + "end": 11385.32, + "probability": 0.8995 + }, + { + "start": 11387.18, + "end": 11391.04, + "probability": 0.6895 + }, + { + "start": 11392.9, + "end": 11393.26, + "probability": 0.7454 + }, + { + "start": 11394.08, + "end": 11395.04, + "probability": 0.8021 + }, + { + "start": 11396.0, + "end": 11396.26, + "probability": 0.5869 + }, + { + "start": 11397.24, + "end": 11398.04, + "probability": 0.6283 + }, + { + "start": 11399.6, + "end": 11401.36, + "probability": 0.9751 + }, + { + "start": 11402.6, + "end": 11403.42, + "probability": 0.7921 + }, + { + "start": 11405.22, + "end": 11405.68, + "probability": 0.8148 + }, + { + "start": 11406.42, + "end": 11407.86, + "probability": 0.8507 + }, + { + "start": 11411.78, + "end": 11414.12, + "probability": 0.5284 + }, + { + "start": 11414.98, + "end": 11415.84, + "probability": 0.531 + }, + { + "start": 11419.15, + "end": 11420.36, + "probability": 0.8918 + }, + { + "start": 11421.66, + "end": 11424.04, + "probability": 0.6837 + }, + { + "start": 11425.26, + "end": 11425.9, + "probability": 0.9818 + }, + { + "start": 11428.1, + "end": 11432.1, + "probability": 0.9067 + }, + { + "start": 11432.7, + "end": 11435.24, + "probability": 0.0198 + }, + { + "start": 11436.84, + "end": 11438.4, + "probability": 0.6307 + }, + { + "start": 11438.4, + "end": 11438.7, + "probability": 0.1943 + }, + { + "start": 11439.02, + "end": 11439.26, + "probability": 0.8447 + }, + { + "start": 11441.18, + "end": 11442.22, + "probability": 0.6628 + }, + { + "start": 11443.78, + "end": 11444.44, + "probability": 0.8948 + }, + { + "start": 11465.36, + "end": 11466.28, + "probability": 0.5022 + }, + { + "start": 11467.56, + "end": 11471.76, + "probability": 0.6755 + }, + { + "start": 11473.08, + "end": 11474.16, + "probability": 0.6206 + }, + { + "start": 11474.9, + "end": 11475.18, + "probability": 0.9373 + }, + { + "start": 11479.88, + "end": 11480.96, + "probability": 0.705 + }, + { + "start": 11481.76, + "end": 11483.32, + "probability": 0.6657 + }, + { + "start": 11483.9, + "end": 11484.84, + "probability": 0.5534 + }, + { + "start": 11488.12, + "end": 11488.78, + "probability": 0.7605 + }, + { + "start": 11490.56, + "end": 11492.4, + "probability": 0.98 + }, + { + "start": 11493.9, + "end": 11496.42, + "probability": 0.8861 + }, + { + "start": 11500.2, + "end": 11502.36, + "probability": 0.6998 + }, + { + "start": 11503.2, + "end": 11505.74, + "probability": 0.147 + }, + { + "start": 11506.4, + "end": 11509.74, + "probability": 0.7762 + }, + { + "start": 11512.16, + "end": 11512.52, + "probability": 0.5272 + }, + { + "start": 11513.42, + "end": 11515.6, + "probability": 0.7892 + }, + { + "start": 11515.72, + "end": 11516.94, + "probability": 0.242 + }, + { + "start": 11519.56, + "end": 11521.88, + "probability": 0.6455 + }, + { + "start": 11522.0, + "end": 11522.78, + "probability": 0.7916 + }, + { + "start": 11522.92, + "end": 11524.12, + "probability": 0.7946 + }, + { + "start": 11536.04, + "end": 11538.6, + "probability": 0.8317 + }, + { + "start": 11539.24, + "end": 11541.02, + "probability": 0.8273 + }, + { + "start": 11567.66, + "end": 11567.7, + "probability": 0.1193 + }, + { + "start": 11567.7, + "end": 11568.26, + "probability": 0.0658 + }, + { + "start": 11572.06, + "end": 11573.62, + "probability": 0.0853 + }, + { + "start": 11578.1, + "end": 11580.06, + "probability": 0.1288 + }, + { + "start": 11625.24, + "end": 11625.34, + "probability": 0.6227 + }, + { + "start": 11627.1, + "end": 11629.74, + "probability": 0.0942 + }, + { + "start": 11630.46, + "end": 11631.72, + "probability": 0.8251 + }, + { + "start": 11632.34, + "end": 11632.94, + "probability": 0.5888 + }, + { + "start": 11633.1, + "end": 11635.09, + "probability": 0.9536 + }, + { + "start": 11635.94, + "end": 11639.86, + "probability": 0.8806 + }, + { + "start": 11643.48, + "end": 11644.0, + "probability": 0.7313 + }, + { + "start": 11644.54, + "end": 11644.66, + "probability": 0.378 + }, + { + "start": 11650.8, + "end": 11650.8, + "probability": 0.66 + }, + { + "start": 11650.8, + "end": 11652.01, + "probability": 0.301 + }, + { + "start": 11652.64, + "end": 11653.98, + "probability": 0.7323 + }, + { + "start": 11654.08, + "end": 11655.41, + "probability": 0.8749 + }, + { + "start": 11656.2, + "end": 11657.84, + "probability": 0.9271 + }, + { + "start": 11657.84, + "end": 11658.26, + "probability": 0.3035 + }, + { + "start": 11659.74, + "end": 11659.76, + "probability": 0.0196 + }, + { + "start": 11659.76, + "end": 11662.04, + "probability": 0.8632 + }, + { + "start": 11662.16, + "end": 11663.78, + "probability": 0.9963 + }, + { + "start": 11664.52, + "end": 11665.78, + "probability": 0.7381 + }, + { + "start": 11684.02, + "end": 11684.38, + "probability": 0.3696 + }, + { + "start": 11684.5, + "end": 11684.84, + "probability": 0.7075 + }, + { + "start": 11685.58, + "end": 11687.0, + "probability": 0.9148 + }, + { + "start": 11688.24, + "end": 11689.26, + "probability": 0.806 + }, + { + "start": 11691.5, + "end": 11693.96, + "probability": 0.9134 + }, + { + "start": 11694.74, + "end": 11696.38, + "probability": 0.9026 + }, + { + "start": 11697.44, + "end": 11701.38, + "probability": 0.7474 + }, + { + "start": 11701.62, + "end": 11704.16, + "probability": 0.8704 + }, + { + "start": 11704.28, + "end": 11704.96, + "probability": 0.6331 + }, + { + "start": 11708.1, + "end": 11709.1, + "probability": 0.9223 + }, + { + "start": 11709.56, + "end": 11713.92, + "probability": 0.9528 + }, + { + "start": 11714.0, + "end": 11715.4, + "probability": 0.8333 + }, + { + "start": 11716.04, + "end": 11716.92, + "probability": 0.3867 + }, + { + "start": 11716.94, + "end": 11717.8, + "probability": 0.4996 + }, + { + "start": 11717.9, + "end": 11719.28, + "probability": 0.7331 + }, + { + "start": 11720.24, + "end": 11724.26, + "probability": 0.9987 + }, + { + "start": 11724.96, + "end": 11726.68, + "probability": 0.9821 + }, + { + "start": 11727.74, + "end": 11729.22, + "probability": 0.9626 + }, + { + "start": 11729.76, + "end": 11731.3, + "probability": 0.9409 + }, + { + "start": 11732.3, + "end": 11734.76, + "probability": 0.9944 + }, + { + "start": 11735.58, + "end": 11739.96, + "probability": 0.9773 + }, + { + "start": 11740.88, + "end": 11745.66, + "probability": 0.9952 + }, + { + "start": 11745.74, + "end": 11746.5, + "probability": 0.9511 + }, + { + "start": 11747.42, + "end": 11749.24, + "probability": 0.8897 + }, + { + "start": 11749.88, + "end": 11750.42, + "probability": 0.5189 + }, + { + "start": 11750.52, + "end": 11751.86, + "probability": 0.5929 + }, + { + "start": 11752.36, + "end": 11753.96, + "probability": 0.7009 + }, + { + "start": 11754.62, + "end": 11756.68, + "probability": 0.7842 + }, + { + "start": 11756.68, + "end": 11756.8, + "probability": 0.6316 + }, + { + "start": 11756.88, + "end": 11757.72, + "probability": 0.9032 + }, + { + "start": 11758.42, + "end": 11760.38, + "probability": 0.7844 + }, + { + "start": 11760.86, + "end": 11761.98, + "probability": 0.7519 + }, + { + "start": 11764.7, + "end": 11765.68, + "probability": 0.9034 + }, + { + "start": 11767.34, + "end": 11769.04, + "probability": 0.8296 + }, + { + "start": 11769.12, + "end": 11773.12, + "probability": 0.9863 + }, + { + "start": 11773.2, + "end": 11773.98, + "probability": 0.9126 + }, + { + "start": 11780.32, + "end": 11782.8, + "probability": 0.9224 + }, + { + "start": 11783.6, + "end": 11785.94, + "probability": 0.948 + }, + { + "start": 11786.42, + "end": 11786.84, + "probability": 0.7505 + }, + { + "start": 11788.76, + "end": 11789.4, + "probability": 0.799 + }, + { + "start": 11789.9, + "end": 11791.24, + "probability": 0.8303 + }, + { + "start": 11791.68, + "end": 11792.44, + "probability": 0.998 + }, + { + "start": 11795.52, + "end": 11797.92, + "probability": 0.5452 + }, + { + "start": 11799.24, + "end": 11807.5, + "probability": 0.887 + }, + { + "start": 11811.18, + "end": 11816.2, + "probability": 0.7779 + }, + { + "start": 11816.24, + "end": 11818.12, + "probability": 0.378 + }, + { + "start": 11818.56, + "end": 11820.26, + "probability": 0.7589 + }, + { + "start": 11820.42, + "end": 11820.88, + "probability": 0.939 + }, + { + "start": 11821.9, + "end": 11824.48, + "probability": 0.7663 + }, + { + "start": 11825.14, + "end": 11826.08, + "probability": 0.9429 + }, + { + "start": 11827.14, + "end": 11827.94, + "probability": 0.6669 + }, + { + "start": 11829.02, + "end": 11829.44, + "probability": 0.2593 + }, + { + "start": 11829.7, + "end": 11831.05, + "probability": 0.7022 + }, + { + "start": 11832.34, + "end": 11832.44, + "probability": 0.6419 + }, + { + "start": 11832.86, + "end": 11833.96, + "probability": 0.5623 + }, + { + "start": 11835.63, + "end": 11838.34, + "probability": 0.9428 + }, + { + "start": 11838.52, + "end": 11839.76, + "probability": 0.7043 + }, + { + "start": 11840.68, + "end": 11845.12, + "probability": 0.4847 + }, + { + "start": 11845.35, + "end": 11849.6, + "probability": 0.7983 + }, + { + "start": 11850.74, + "end": 11852.44, + "probability": 0.5075 + }, + { + "start": 11852.54, + "end": 11854.08, + "probability": 0.5523 + }, + { + "start": 11854.76, + "end": 11855.5, + "probability": 0.6161 + }, + { + "start": 11855.74, + "end": 11860.64, + "probability": 0.739 + }, + { + "start": 11861.22, + "end": 11862.56, + "probability": 0.3706 + }, + { + "start": 11863.58, + "end": 11869.0, + "probability": 0.9941 + }, + { + "start": 11870.6, + "end": 11870.76, + "probability": 0.4526 + }, + { + "start": 11871.82, + "end": 11873.88, + "probability": 0.9646 + }, + { + "start": 11875.56, + "end": 11876.74, + "probability": 0.4078 + }, + { + "start": 11877.48, + "end": 11878.62, + "probability": 0.768 + }, + { + "start": 11879.74, + "end": 11881.42, + "probability": 0.8798 + }, + { + "start": 11882.88, + "end": 11884.42, + "probability": 0.7931 + }, + { + "start": 11884.5, + "end": 11886.02, + "probability": 0.7014 + }, + { + "start": 11886.66, + "end": 11888.12, + "probability": 0.9789 + }, + { + "start": 11888.6, + "end": 11890.56, + "probability": 0.9964 + }, + { + "start": 11890.66, + "end": 11891.4, + "probability": 0.6132 + }, + { + "start": 11891.64, + "end": 11894.02, + "probability": 0.9504 + }, + { + "start": 11894.1, + "end": 11894.64, + "probability": 0.5904 + }, + { + "start": 11894.68, + "end": 11896.18, + "probability": 0.8928 + }, + { + "start": 11896.94, + "end": 11898.48, + "probability": 0.7168 + }, + { + "start": 11899.18, + "end": 11901.14, + "probability": 0.9907 + }, + { + "start": 11901.66, + "end": 11903.11, + "probability": 0.9795 + }, + { + "start": 11903.42, + "end": 11904.0, + "probability": 0.5587 + }, + { + "start": 11904.4, + "end": 11906.84, + "probability": 0.9691 + }, + { + "start": 11909.0, + "end": 11909.46, + "probability": 0.0767 + }, + { + "start": 11909.48, + "end": 11911.98, + "probability": 0.5041 + }, + { + "start": 11912.08, + "end": 11913.24, + "probability": 0.9954 + }, + { + "start": 11913.48, + "end": 11916.28, + "probability": 0.7568 + }, + { + "start": 11916.88, + "end": 11917.7, + "probability": 0.5708 + }, + { + "start": 11917.72, + "end": 11919.44, + "probability": 0.2839 + }, + { + "start": 11919.46, + "end": 11920.26, + "probability": 0.8123 + }, + { + "start": 11921.74, + "end": 11922.9, + "probability": 0.6707 + }, + { + "start": 11923.88, + "end": 11924.36, + "probability": 0.6535 + }, + { + "start": 11925.26, + "end": 11926.76, + "probability": 0.7984 + }, + { + "start": 11927.64, + "end": 11929.58, + "probability": 0.7542 + }, + { + "start": 11929.74, + "end": 11930.58, + "probability": 0.9924 + }, + { + "start": 11932.54, + "end": 11932.96, + "probability": 0.0414 + }, + { + "start": 11932.96, + "end": 11937.22, + "probability": 0.1682 + }, + { + "start": 11937.36, + "end": 11937.94, + "probability": 0.5544 + }, + { + "start": 11939.28, + "end": 11941.74, + "probability": 0.087 + }, + { + "start": 11943.72, + "end": 11944.38, + "probability": 0.1034 + }, + { + "start": 11945.62, + "end": 11946.18, + "probability": 0.1005 + }, + { + "start": 11946.18, + "end": 11946.18, + "probability": 0.1846 + }, + { + "start": 11946.18, + "end": 11947.5, + "probability": 0.1089 + }, + { + "start": 11947.5, + "end": 11948.12, + "probability": 0.093 + }, + { + "start": 11948.34, + "end": 11950.4, + "probability": 0.5297 + }, + { + "start": 11950.82, + "end": 11952.1, + "probability": 0.5376 + }, + { + "start": 11952.76, + "end": 11953.88, + "probability": 0.3405 + }, + { + "start": 11955.11, + "end": 11960.44, + "probability": 0.1447 + }, + { + "start": 11961.0, + "end": 11963.06, + "probability": 0.0196 + }, + { + "start": 11963.1, + "end": 11966.72, + "probability": 0.1666 + }, + { + "start": 11967.36, + "end": 11969.86, + "probability": 0.109 + }, + { + "start": 11969.86, + "end": 11971.24, + "probability": 0.4242 + }, + { + "start": 11971.62, + "end": 11972.02, + "probability": 0.3881 + }, + { + "start": 11972.08, + "end": 11973.7, + "probability": 0.5 + }, + { + "start": 11975.56, + "end": 11976.46, + "probability": 0.8753 + }, + { + "start": 11976.9, + "end": 11979.3, + "probability": 0.0874 + }, + { + "start": 11980.4, + "end": 11980.76, + "probability": 0.0322 + }, + { + "start": 11980.76, + "end": 11981.18, + "probability": 0.6051 + }, + { + "start": 11981.7, + "end": 11983.26, + "probability": 0.1843 + }, + { + "start": 11983.26, + "end": 11983.68, + "probability": 0.0195 + }, + { + "start": 11986.73, + "end": 11990.28, + "probability": 0.4438 + }, + { + "start": 11990.66, + "end": 11993.36, + "probability": 0.4488 + }, + { + "start": 11993.56, + "end": 11993.56, + "probability": 0.5889 + }, + { + "start": 11993.58, + "end": 11995.38, + "probability": 0.6999 + }, + { + "start": 11997.0, + "end": 11997.0, + "probability": 0.0 + }, + { + "start": 11997.26, + "end": 11998.54, + "probability": 0.1883 + }, + { + "start": 11999.52, + "end": 12003.24, + "probability": 0.0674 + }, + { + "start": 12003.32, + "end": 12006.4, + "probability": 0.2503 + }, + { + "start": 12006.4, + "end": 12010.86, + "probability": 0.3421 + }, + { + "start": 12011.28, + "end": 12011.86, + "probability": 0.3469 + }, + { + "start": 12015.32, + "end": 12018.3, + "probability": 0.0397 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.0, + "end": 12138.0, + "probability": 0.0 + }, + { + "start": 12138.16, + "end": 12139.3, + "probability": 0.334 + }, + { + "start": 12139.54, + "end": 12140.8, + "probability": 0.5728 + }, + { + "start": 12142.08, + "end": 12145.08, + "probability": 0.7828 + }, + { + "start": 12145.56, + "end": 12149.16, + "probability": 0.9922 + }, + { + "start": 12150.25, + "end": 12152.68, + "probability": 0.9858 + }, + { + "start": 12153.38, + "end": 12157.96, + "probability": 0.9934 + }, + { + "start": 12158.5, + "end": 12160.72, + "probability": 0.7479 + }, + { + "start": 12161.28, + "end": 12163.5, + "probability": 0.9156 + }, + { + "start": 12163.54, + "end": 12167.7, + "probability": 0.8283 + }, + { + "start": 12168.34, + "end": 12169.52, + "probability": 0.3874 + }, + { + "start": 12169.62, + "end": 12173.18, + "probability": 0.9983 + }, + { + "start": 12173.18, + "end": 12177.4, + "probability": 0.9896 + }, + { + "start": 12177.6, + "end": 12179.52, + "probability": 0.9908 + }, + { + "start": 12180.24, + "end": 12183.16, + "probability": 0.7226 + }, + { + "start": 12183.26, + "end": 12185.5, + "probability": 0.6875 + }, + { + "start": 12186.1, + "end": 12189.22, + "probability": 0.9933 + }, + { + "start": 12190.24, + "end": 12191.06, + "probability": 0.9957 + }, + { + "start": 12191.62, + "end": 12192.72, + "probability": 0.9863 + }, + { + "start": 12193.24, + "end": 12196.48, + "probability": 0.9849 + }, + { + "start": 12196.68, + "end": 12197.78, + "probability": 0.6178 + }, + { + "start": 12198.62, + "end": 12199.46, + "probability": 0.937 + }, + { + "start": 12200.7, + "end": 12202.74, + "probability": 0.8795 + }, + { + "start": 12203.52, + "end": 12204.92, + "probability": 0.989 + }, + { + "start": 12205.56, + "end": 12207.5, + "probability": 0.9347 + }, + { + "start": 12208.42, + "end": 12210.0, + "probability": 0.9012 + }, + { + "start": 12210.08, + "end": 12211.23, + "probability": 0.8525 + }, + { + "start": 12211.3, + "end": 12212.74, + "probability": 0.765 + }, + { + "start": 12213.26, + "end": 12215.6, + "probability": 0.9487 + }, + { + "start": 12216.02, + "end": 12217.6, + "probability": 0.96 + }, + { + "start": 12219.04, + "end": 12220.52, + "probability": 0.9906 + }, + { + "start": 12221.52, + "end": 12223.9, + "probability": 0.9866 + }, + { + "start": 12237.4, + "end": 12237.92, + "probability": 0.0351 + }, + { + "start": 12237.92, + "end": 12237.92, + "probability": 0.1175 + }, + { + "start": 12237.92, + "end": 12237.92, + "probability": 0.0501 + }, + { + "start": 12237.92, + "end": 12238.02, + "probability": 0.2191 + }, + { + "start": 12238.06, + "end": 12238.06, + "probability": 0.1972 + }, + { + "start": 12238.06, + "end": 12239.2, + "probability": 0.5281 + }, + { + "start": 12239.84, + "end": 12241.32, + "probability": 0.6626 + }, + { + "start": 12242.0, + "end": 12245.16, + "probability": 0.9919 + }, + { + "start": 12245.24, + "end": 12246.94, + "probability": 0.998 + }, + { + "start": 12247.6, + "end": 12250.06, + "probability": 0.9055 + }, + { + "start": 12250.88, + "end": 12253.3, + "probability": 0.8358 + }, + { + "start": 12253.96, + "end": 12255.84, + "probability": 0.9792 + }, + { + "start": 12256.54, + "end": 12257.52, + "probability": 0.9954 + }, + { + "start": 12258.1, + "end": 12259.92, + "probability": 0.9335 + }, + { + "start": 12260.6, + "end": 12264.06, + "probability": 0.9902 + }, + { + "start": 12264.74, + "end": 12265.64, + "probability": 0.7601 + }, + { + "start": 12265.88, + "end": 12267.58, + "probability": 0.8663 + }, + { + "start": 12267.74, + "end": 12270.79, + "probability": 0.9912 + }, + { + "start": 12272.08, + "end": 12273.32, + "probability": 0.6887 + }, + { + "start": 12273.66, + "end": 12274.94, + "probability": 0.8881 + }, + { + "start": 12275.08, + "end": 12275.57, + "probability": 0.9714 + }, + { + "start": 12276.02, + "end": 12277.0, + "probability": 0.6296 + }, + { + "start": 12277.86, + "end": 12280.01, + "probability": 0.9102 + }, + { + "start": 12281.5, + "end": 12284.34, + "probability": 0.9834 + }, + { + "start": 12285.18, + "end": 12287.76, + "probability": 0.9951 + }, + { + "start": 12287.8, + "end": 12290.32, + "probability": 0.5025 + }, + { + "start": 12290.4, + "end": 12291.2, + "probability": 0.8427 + }, + { + "start": 12291.2, + "end": 12293.24, + "probability": 0.7748 + }, + { + "start": 12294.48, + "end": 12298.08, + "probability": 0.9956 + }, + { + "start": 12298.76, + "end": 12301.2, + "probability": 0.9633 + }, + { + "start": 12302.76, + "end": 12304.36, + "probability": 0.9878 + }, + { + "start": 12304.5, + "end": 12306.52, + "probability": 0.9339 + }, + { + "start": 12307.12, + "end": 12308.52, + "probability": 0.9987 + }, + { + "start": 12309.24, + "end": 12310.65, + "probability": 0.9935 + }, + { + "start": 12310.84, + "end": 12312.95, + "probability": 0.5974 + }, + { + "start": 12313.2, + "end": 12314.1, + "probability": 0.7867 + }, + { + "start": 12315.1, + "end": 12319.1, + "probability": 0.9969 + }, + { + "start": 12320.16, + "end": 12323.26, + "probability": 0.9688 + }, + { + "start": 12324.04, + "end": 12326.6, + "probability": 0.7968 + }, + { + "start": 12326.64, + "end": 12328.78, + "probability": 0.9956 + }, + { + "start": 12329.38, + "end": 12333.46, + "probability": 0.9985 + }, + { + "start": 12334.48, + "end": 12336.42, + "probability": 0.9993 + }, + { + "start": 12336.82, + "end": 12339.68, + "probability": 0.8135 + }, + { + "start": 12340.44, + "end": 12345.08, + "probability": 0.7759 + }, + { + "start": 12345.96, + "end": 12347.86, + "probability": 0.8919 + }, + { + "start": 12348.02, + "end": 12349.32, + "probability": 0.9469 + }, + { + "start": 12349.44, + "end": 12350.32, + "probability": 0.799 + }, + { + "start": 12350.72, + "end": 12352.0, + "probability": 0.9873 + }, + { + "start": 12352.36, + "end": 12355.9, + "probability": 0.7493 + }, + { + "start": 12356.42, + "end": 12357.16, + "probability": 0.4789 + }, + { + "start": 12357.68, + "end": 12359.5, + "probability": 0.9928 + }, + { + "start": 12360.04, + "end": 12360.26, + "probability": 0.7612 + }, + { + "start": 12360.36, + "end": 12363.7, + "probability": 0.8455 + }, + { + "start": 12365.76, + "end": 12367.38, + "probability": 0.8718 + }, + { + "start": 12368.64, + "end": 12370.3, + "probability": 0.9458 + }, + { + "start": 12370.66, + "end": 12373.42, + "probability": 0.7412 + }, + { + "start": 12373.76, + "end": 12374.78, + "probability": 0.498 + }, + { + "start": 12389.4, + "end": 12390.63, + "probability": 0.8997 + }, + { + "start": 12394.68, + "end": 12396.5, + "probability": 0.7459 + }, + { + "start": 12397.82, + "end": 12400.37, + "probability": 0.9695 + }, + { + "start": 12400.5, + "end": 12402.24, + "probability": 0.9458 + }, + { + "start": 12402.96, + "end": 12404.42, + "probability": 0.9763 + }, + { + "start": 12405.66, + "end": 12408.5, + "probability": 0.4913 + }, + { + "start": 12408.5, + "end": 12409.12, + "probability": 0.4637 + }, + { + "start": 12409.46, + "end": 12410.1, + "probability": 0.6561 + }, + { + "start": 12410.12, + "end": 12413.14, + "probability": 0.9856 + }, + { + "start": 12413.44, + "end": 12415.86, + "probability": 0.9915 + }, + { + "start": 12416.04, + "end": 12416.78, + "probability": 0.6276 + }, + { + "start": 12417.16, + "end": 12418.3, + "probability": 0.7244 + }, + { + "start": 12418.5, + "end": 12418.9, + "probability": 0.6179 + }, + { + "start": 12419.06, + "end": 12419.56, + "probability": 0.4923 + }, + { + "start": 12420.9, + "end": 12422.42, + "probability": 0.2073 + }, + { + "start": 12424.42, + "end": 12426.38, + "probability": 0.995 + }, + { + "start": 12426.62, + "end": 12428.36, + "probability": 0.5597 + }, + { + "start": 12429.88, + "end": 12432.16, + "probability": 0.9867 + }, + { + "start": 12433.0, + "end": 12434.02, + "probability": 0.9883 + }, + { + "start": 12434.86, + "end": 12436.1, + "probability": 0.9182 + }, + { + "start": 12436.22, + "end": 12438.78, + "probability": 0.8641 + }, + { + "start": 12439.78, + "end": 12444.04, + "probability": 0.9949 + }, + { + "start": 12444.04, + "end": 12447.24, + "probability": 0.8625 + }, + { + "start": 12448.22, + "end": 12450.06, + "probability": 0.8267 + }, + { + "start": 12450.16, + "end": 12451.41, + "probability": 0.9976 + }, + { + "start": 12452.46, + "end": 12454.62, + "probability": 0.9064 + }, + { + "start": 12455.26, + "end": 12459.44, + "probability": 0.916 + }, + { + "start": 12460.06, + "end": 12463.26, + "probability": 0.986 + }, + { + "start": 12463.34, + "end": 12464.5, + "probability": 0.888 + }, + { + "start": 12465.28, + "end": 12466.06, + "probability": 0.8911 + }, + { + "start": 12466.22, + "end": 12468.72, + "probability": 0.9855 + }, + { + "start": 12469.5, + "end": 12472.96, + "probability": 0.8376 + }, + { + "start": 12473.68, + "end": 12477.38, + "probability": 0.9961 + }, + { + "start": 12478.12, + "end": 12481.3, + "probability": 0.9463 + }, + { + "start": 12483.0, + "end": 12484.24, + "probability": 0.9954 + }, + { + "start": 12485.54, + "end": 12488.92, + "probability": 0.8186 + }, + { + "start": 12490.4, + "end": 12494.16, + "probability": 0.9969 + }, + { + "start": 12494.8, + "end": 12498.28, + "probability": 0.8108 + }, + { + "start": 12498.96, + "end": 12501.76, + "probability": 0.9541 + }, + { + "start": 12502.4, + "end": 12504.58, + "probability": 0.967 + }, + { + "start": 12505.44, + "end": 12510.7, + "probability": 0.8598 + }, + { + "start": 12510.86, + "end": 12513.38, + "probability": 0.986 + }, + { + "start": 12514.16, + "end": 12516.86, + "probability": 0.9968 + }, + { + "start": 12517.46, + "end": 12520.86, + "probability": 0.9134 + }, + { + "start": 12521.3, + "end": 12526.62, + "probability": 0.9902 + }, + { + "start": 12527.32, + "end": 12527.86, + "probability": 0.9507 + }, + { + "start": 12528.06, + "end": 12530.52, + "probability": 0.5097 + }, + { + "start": 12530.52, + "end": 12530.62, + "probability": 0.6988 + }, + { + "start": 12532.14, + "end": 12537.82, + "probability": 0.9528 + }, + { + "start": 12537.96, + "end": 12541.28, + "probability": 0.6653 + }, + { + "start": 12541.3, + "end": 12541.8, + "probability": 0.4105 + }, + { + "start": 12543.59, + "end": 12545.38, + "probability": 0.9489 + }, + { + "start": 12548.16, + "end": 12549.1, + "probability": 0.6633 + }, + { + "start": 12549.5, + "end": 12550.6, + "probability": 0.8265 + }, + { + "start": 12550.7, + "end": 12551.84, + "probability": 0.7303 + }, + { + "start": 12552.32, + "end": 12556.8, + "probability": 0.9448 + }, + { + "start": 12556.9, + "end": 12558.9, + "probability": 0.9648 + }, + { + "start": 12559.82, + "end": 12564.82, + "probability": 0.9932 + }, + { + "start": 12565.96, + "end": 12567.52, + "probability": 0.8152 + }, + { + "start": 12567.78, + "end": 12573.46, + "probability": 0.9622 + }, + { + "start": 12574.14, + "end": 12576.96, + "probability": 0.9956 + }, + { + "start": 12576.96, + "end": 12581.14, + "probability": 0.9982 + }, + { + "start": 12582.22, + "end": 12586.06, + "probability": 0.9539 + }, + { + "start": 12586.84, + "end": 12592.78, + "probability": 0.957 + }, + { + "start": 12593.76, + "end": 12597.92, + "probability": 0.9829 + }, + { + "start": 12597.92, + "end": 12601.52, + "probability": 0.9661 + }, + { + "start": 12602.66, + "end": 12603.04, + "probability": 0.5629 + }, + { + "start": 12603.36, + "end": 12608.72, + "probability": 0.9393 + }, + { + "start": 12608.72, + "end": 12613.2, + "probability": 0.9969 + }, + { + "start": 12614.0, + "end": 12616.98, + "probability": 0.9948 + }, + { + "start": 12618.4, + "end": 12621.66, + "probability": 0.7864 + }, + { + "start": 12622.28, + "end": 12624.1, + "probability": 0.9739 + }, + { + "start": 12624.6, + "end": 12628.66, + "probability": 0.758 + }, + { + "start": 12629.04, + "end": 12629.5, + "probability": 0.3063 + }, + { + "start": 12629.66, + "end": 12632.16, + "probability": 0.9559 + }, + { + "start": 12632.9, + "end": 12637.66, + "probability": 0.9901 + }, + { + "start": 12638.28, + "end": 12639.3, + "probability": 0.7634 + }, + { + "start": 12639.36, + "end": 12642.44, + "probability": 0.9604 + }, + { + "start": 12643.2, + "end": 12645.04, + "probability": 0.9977 + }, + { + "start": 12646.1, + "end": 12648.14, + "probability": 0.9849 + }, + { + "start": 12648.68, + "end": 12651.06, + "probability": 0.9987 + }, + { + "start": 12651.62, + "end": 12653.9, + "probability": 0.9944 + }, + { + "start": 12654.7, + "end": 12661.02, + "probability": 0.9935 + }, + { + "start": 12661.54, + "end": 12664.44, + "probability": 0.9985 + }, + { + "start": 12664.9, + "end": 12667.3, + "probability": 0.8253 + }, + { + "start": 12668.2, + "end": 12673.12, + "probability": 0.7082 + }, + { + "start": 12673.86, + "end": 12676.46, + "probability": 0.9782 + }, + { + "start": 12676.46, + "end": 12681.02, + "probability": 0.9916 + }, + { + "start": 12681.78, + "end": 12683.54, + "probability": 0.6429 + }, + { + "start": 12684.32, + "end": 12690.86, + "probability": 0.9186 + }, + { + "start": 12691.54, + "end": 12693.4, + "probability": 0.9207 + }, + { + "start": 12693.88, + "end": 12698.42, + "probability": 0.9796 + }, + { + "start": 12698.42, + "end": 12703.78, + "probability": 0.8993 + }, + { + "start": 12704.44, + "end": 12704.92, + "probability": 0.5424 + }, + { + "start": 12705.28, + "end": 12710.32, + "probability": 0.8461 + }, + { + "start": 12710.4, + "end": 12710.86, + "probability": 0.9023 + }, + { + "start": 12711.5, + "end": 12712.18, + "probability": 0.9842 + }, + { + "start": 12712.9, + "end": 12715.76, + "probability": 0.9958 + }, + { + "start": 12715.78, + "end": 12719.58, + "probability": 0.9985 + }, + { + "start": 12721.32, + "end": 12724.6, + "probability": 0.9832 + }, + { + "start": 12725.06, + "end": 12729.68, + "probability": 0.9893 + }, + { + "start": 12730.52, + "end": 12731.66, + "probability": 0.5572 + }, + { + "start": 12733.04, + "end": 12739.94, + "probability": 0.9446 + }, + { + "start": 12740.06, + "end": 12743.62, + "probability": 0.7952 + }, + { + "start": 12743.84, + "end": 12747.05, + "probability": 0.9952 + }, + { + "start": 12747.74, + "end": 12750.46, + "probability": 0.9574 + }, + { + "start": 12750.96, + "end": 12752.3, + "probability": 0.9471 + }, + { + "start": 12752.9, + "end": 12753.14, + "probability": 0.7858 + }, + { + "start": 12753.54, + "end": 12756.3, + "probability": 0.7343 + }, + { + "start": 12757.28, + "end": 12765.46, + "probability": 0.9364 + }, + { + "start": 12767.38, + "end": 12768.1, + "probability": 0.5169 + }, + { + "start": 12770.28, + "end": 12771.32, + "probability": 0.0111 + }, + { + "start": 12779.1, + "end": 12779.34, + "probability": 0.0736 + }, + { + "start": 12779.34, + "end": 12779.68, + "probability": 0.265 + }, + { + "start": 12780.22, + "end": 12780.22, + "probability": 0.0474 + }, + { + "start": 12787.24, + "end": 12791.02, + "probability": 0.6683 + }, + { + "start": 12791.9, + "end": 12798.74, + "probability": 0.9978 + }, + { + "start": 12799.38, + "end": 12799.92, + "probability": 0.8879 + }, + { + "start": 12800.48, + "end": 12805.44, + "probability": 0.943 + }, + { + "start": 12805.58, + "end": 12809.38, + "probability": 0.9845 + }, + { + "start": 12810.04, + "end": 12812.02, + "probability": 0.9076 + }, + { + "start": 12812.96, + "end": 12816.76, + "probability": 0.9536 + }, + { + "start": 12817.68, + "end": 12818.8, + "probability": 0.877 + }, + { + "start": 12818.98, + "end": 12821.28, + "probability": 0.9858 + }, + { + "start": 12822.42, + "end": 12825.8, + "probability": 0.978 + }, + { + "start": 12825.82, + "end": 12828.0, + "probability": 0.8279 + }, + { + "start": 12829.18, + "end": 12829.6, + "probability": 0.8442 + }, + { + "start": 12830.73, + "end": 12835.2, + "probability": 0.9921 + }, + { + "start": 12835.2, + "end": 12839.48, + "probability": 0.8781 + }, + { + "start": 12839.96, + "end": 12841.8, + "probability": 0.9762 + }, + { + "start": 12842.76, + "end": 12843.46, + "probability": 0.8296 + }, + { + "start": 12844.02, + "end": 12845.28, + "probability": 0.8575 + }, + { + "start": 12845.34, + "end": 12847.2, + "probability": 0.7235 + }, + { + "start": 12847.4, + "end": 12847.96, + "probability": 0.8506 + }, + { + "start": 12848.56, + "end": 12849.4, + "probability": 0.9139 + }, + { + "start": 12850.27, + "end": 12850.86, + "probability": 0.8809 + }, + { + "start": 12851.92, + "end": 12853.84, + "probability": 0.9829 + }, + { + "start": 12855.54, + "end": 12855.92, + "probability": 0.9105 + }, + { + "start": 12858.08, + "end": 12858.98, + "probability": 0.8677 + }, + { + "start": 12859.24, + "end": 12861.46, + "probability": 0.9597 + }, + { + "start": 12861.68, + "end": 12863.4, + "probability": 0.9262 + }, + { + "start": 12863.76, + "end": 12864.54, + "probability": 0.9125 + }, + { + "start": 12864.72, + "end": 12865.68, + "probability": 0.8219 + }, + { + "start": 12866.16, + "end": 12867.32, + "probability": 0.9335 + }, + { + "start": 12867.48, + "end": 12868.76, + "probability": 0.8962 + }, + { + "start": 12869.0, + "end": 12869.78, + "probability": 0.8126 + }, + { + "start": 12870.14, + "end": 12874.08, + "probability": 0.8377 + }, + { + "start": 12874.96, + "end": 12875.96, + "probability": 0.9 + }, + { + "start": 12876.74, + "end": 12876.98, + "probability": 0.5001 + }, + { + "start": 12877.14, + "end": 12880.64, + "probability": 0.9616 + }, + { + "start": 12881.24, + "end": 12883.84, + "probability": 0.6479 + }, + { + "start": 12884.18, + "end": 12885.47, + "probability": 0.9897 + }, + { + "start": 12885.62, + "end": 12888.12, + "probability": 0.8591 + }, + { + "start": 12888.62, + "end": 12889.74, + "probability": 0.984 + }, + { + "start": 12889.98, + "end": 12891.1, + "probability": 0.9966 + }, + { + "start": 12891.3, + "end": 12896.26, + "probability": 0.9858 + }, + { + "start": 12896.98, + "end": 12897.12, + "probability": 0.1834 + }, + { + "start": 12897.12, + "end": 12898.01, + "probability": 0.9858 + }, + { + "start": 12898.26, + "end": 12898.46, + "probability": 0.9022 + }, + { + "start": 12898.9, + "end": 12899.58, + "probability": 0.9401 + }, + { + "start": 12900.14, + "end": 12901.66, + "probability": 0.9927 + }, + { + "start": 12903.66, + "end": 12904.58, + "probability": 0.1231 + }, + { + "start": 12904.58, + "end": 12906.4, + "probability": 0.5841 + }, + { + "start": 12906.92, + "end": 12908.86, + "probability": 0.9938 + }, + { + "start": 12909.56, + "end": 12912.9, + "probability": 0.9521 + }, + { + "start": 12913.96, + "end": 12914.88, + "probability": 0.9458 + }, + { + "start": 12914.94, + "end": 12916.14, + "probability": 0.9634 + }, + { + "start": 12916.68, + "end": 12919.26, + "probability": 0.9907 + }, + { + "start": 12920.1, + "end": 12921.18, + "probability": 0.7987 + }, + { + "start": 12921.8, + "end": 12922.64, + "probability": 0.4355 + }, + { + "start": 12923.7, + "end": 12925.22, + "probability": 0.949 + }, + { + "start": 12925.38, + "end": 12926.64, + "probability": 0.9568 + }, + { + "start": 12929.82, + "end": 12930.46, + "probability": 0.7522 + }, + { + "start": 12934.08, + "end": 12936.04, + "probability": 0.5015 + }, + { + "start": 12936.7, + "end": 12937.16, + "probability": 0.5666 + }, + { + "start": 12941.66, + "end": 12942.1, + "probability": 0.7013 + }, + { + "start": 12942.66, + "end": 12945.3, + "probability": 0.6689 + }, + { + "start": 12946.16, + "end": 12946.9, + "probability": 0.6611 + }, + { + "start": 12947.62, + "end": 12948.28, + "probability": 0.6462 + }, + { + "start": 12949.04, + "end": 12950.76, + "probability": 0.6405 + }, + { + "start": 12951.46, + "end": 12952.16, + "probability": 0.3616 + }, + { + "start": 12952.3, + "end": 12955.66, + "probability": 0.8359 + }, + { + "start": 12955.72, + "end": 12956.58, + "probability": 0.122 + }, + { + "start": 12956.7, + "end": 12957.46, + "probability": 0.5745 + }, + { + "start": 12958.28, + "end": 12962.58, + "probability": 0.6394 + }, + { + "start": 12962.62, + "end": 12963.18, + "probability": 0.4837 + }, + { + "start": 12985.56, + "end": 12986.18, + "probability": 0.1982 + }, + { + "start": 12986.24, + "end": 12988.52, + "probability": 0.1433 + }, + { + "start": 12993.46, + "end": 12995.2, + "probability": 0.7157 + }, + { + "start": 12995.22, + "end": 12995.98, + "probability": 0.1738 + }, + { + "start": 12996.98, + "end": 12998.62, + "probability": 0.0124 + }, + { + "start": 12998.98, + "end": 13001.18, + "probability": 0.6723 + }, + { + "start": 13001.18, + "end": 13005.46, + "probability": 0.1976 + }, + { + "start": 13006.14, + "end": 13008.18, + "probability": 0.1162 + }, + { + "start": 13024.42, + "end": 13028.3, + "probability": 0.4982 + }, + { + "start": 13028.76, + "end": 13031.9, + "probability": 0.7504 + }, + { + "start": 13031.9, + "end": 13034.72, + "probability": 0.347 + }, + { + "start": 13035.52, + "end": 13036.34, + "probability": 0.0809 + }, + { + "start": 13037.74, + "end": 13038.5, + "probability": 0.634 + }, + { + "start": 13038.8, + "end": 13039.44, + "probability": 0.503 + }, + { + "start": 13039.88, + "end": 13040.36, + "probability": 0.4689 + }, + { + "start": 13067.82, + "end": 13071.88, + "probability": 0.4357 + }, + { + "start": 13071.94, + "end": 13072.36, + "probability": 0.3298 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13073.0, + "end": 13073.0, + "probability": 0.0 + }, + { + "start": 13075.03, + "end": 13079.94, + "probability": 0.0803 + }, + { + "start": 13079.96, + "end": 13082.56, + "probability": 0.1119 + }, + { + "start": 13098.28, + "end": 13099.42, + "probability": 0.0414 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13203.0, + "end": 13203.0, + "probability": 0.0 + }, + { + "start": 13204.91, + "end": 13208.9, + "probability": 0.0176 + }, + { + "start": 13209.78, + "end": 13215.74, + "probability": 0.0067 + }, + { + "start": 13216.66, + "end": 13218.96, + "probability": 0.1973 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.0, + "end": 13326.0, + "probability": 0.0 + }, + { + "start": 13326.26, + "end": 13327.1, + "probability": 0.2017 + }, + { + "start": 13327.34, + "end": 13327.44, + "probability": 0.4815 + }, + { + "start": 13327.44, + "end": 13327.44, + "probability": 0.0503 + }, + { + "start": 13327.5, + "end": 13330.6, + "probability": 0.5526 + }, + { + "start": 13330.78, + "end": 13331.14, + "probability": 0.3023 + }, + { + "start": 13331.26, + "end": 13332.66, + "probability": 0.3185 + }, + { + "start": 13332.66, + "end": 13334.0, + "probability": 0.3592 + }, + { + "start": 13334.96, + "end": 13338.34, + "probability": 0.2823 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13457.0, + "end": 13457.0, + "probability": 0.0 + }, + { + "start": 13458.08, + "end": 13460.74, + "probability": 0.0776 + }, + { + "start": 13462.33, + "end": 13464.03, + "probability": 0.1451 + }, + { + "start": 13465.32, + "end": 13469.16, + "probability": 0.1238 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13583.0, + "end": 13583.0, + "probability": 0.0 + }, + { + "start": 13584.12, + "end": 13590.46, + "probability": 0.7289 + }, + { + "start": 13595.6, + "end": 13597.72, + "probability": 0.0463 + }, + { + "start": 13598.84, + "end": 13599.28, + "probability": 0.2585 + }, + { + "start": 13599.78, + "end": 13601.88, + "probability": 0.1611 + }, + { + "start": 13603.02, + "end": 13604.54, + "probability": 0.7283 + }, + { + "start": 13605.14, + "end": 13607.6, + "probability": 0.5339 + }, + { + "start": 13610.2, + "end": 13611.42, + "probability": 0.8156 + }, + { + "start": 13612.32, + "end": 13614.74, + "probability": 0.5471 + }, + { + "start": 13615.98, + "end": 13617.21, + "probability": 0.8726 + }, + { + "start": 13618.68, + "end": 13619.64, + "probability": 0.1256 + }, + { + "start": 13619.84, + "end": 13622.68, + "probability": 0.5194 + }, + { + "start": 13622.78, + "end": 13624.86, + "probability": 0.3971 + }, + { + "start": 13625.78, + "end": 13628.04, + "probability": 0.3989 + }, + { + "start": 13628.68, + "end": 13634.08, + "probability": 0.9102 + }, + { + "start": 13636.14, + "end": 13638.18, + "probability": 0.193 + }, + { + "start": 13639.48, + "end": 13645.66, + "probability": 0.0231 + }, + { + "start": 13645.94, + "end": 13650.64, + "probability": 0.7427 + }, + { + "start": 13650.68, + "end": 13651.24, + "probability": 0.8134 + }, + { + "start": 13651.36, + "end": 13656.14, + "probability": 0.9781 + }, + { + "start": 13656.7, + "end": 13657.68, + "probability": 0.713 + }, + { + "start": 13658.66, + "end": 13660.14, + "probability": 0.7978 + }, + { + "start": 13660.68, + "end": 13662.78, + "probability": 0.812 + }, + { + "start": 13663.48, + "end": 13663.84, + "probability": 0.8493 + }, + { + "start": 13664.46, + "end": 13667.8, + "probability": 0.9791 + }, + { + "start": 13669.4, + "end": 13670.06, + "probability": 0.2215 + }, + { + "start": 13670.26, + "end": 13670.28, + "probability": 0.1743 + }, + { + "start": 13670.3, + "end": 13671.24, + "probability": 0.5739 + }, + { + "start": 13671.32, + "end": 13673.3, + "probability": 0.98 + }, + { + "start": 13673.83, + "end": 13679.22, + "probability": 0.9897 + }, + { + "start": 13679.68, + "end": 13683.86, + "probability": 0.9989 + }, + { + "start": 13683.86, + "end": 13685.28, + "probability": 0.8451 + }, + { + "start": 13686.2, + "end": 13686.46, + "probability": 0.0786 + }, + { + "start": 13686.46, + "end": 13687.42, + "probability": 0.9425 + }, + { + "start": 13688.66, + "end": 13692.88, + "probability": 0.7481 + }, + { + "start": 13693.18, + "end": 13699.34, + "probability": 0.9935 + }, + { + "start": 13699.82, + "end": 13700.68, + "probability": 0.1976 + }, + { + "start": 13700.68, + "end": 13702.86, + "probability": 0.1901 + }, + { + "start": 13702.94, + "end": 13704.28, + "probability": 0.3436 + }, + { + "start": 13704.38, + "end": 13705.34, + "probability": 0.3378 + }, + { + "start": 13705.76, + "end": 13709.98, + "probability": 0.3125 + }, + { + "start": 13713.59, + "end": 13715.18, + "probability": 0.1914 + }, + { + "start": 13715.34, + "end": 13715.4, + "probability": 0.7755 + }, + { + "start": 13715.4, + "end": 13719.7, + "probability": 0.7338 + }, + { + "start": 13719.82, + "end": 13720.7, + "probability": 0.8681 + }, + { + "start": 13720.8, + "end": 13721.68, + "probability": 0.8446 + }, + { + "start": 13721.96, + "end": 13723.02, + "probability": 0.981 + }, + { + "start": 13723.78, + "end": 13725.86, + "probability": 0.9744 + }, + { + "start": 13726.44, + "end": 13728.84, + "probability": 0.9925 + }, + { + "start": 13743.04, + "end": 13744.0, + "probability": 0.8748 + }, + { + "start": 13745.22, + "end": 13745.82, + "probability": 0.6266 + }, + { + "start": 13745.94, + "end": 13750.38, + "probability": 0.9929 + }, + { + "start": 13750.72, + "end": 13750.72, + "probability": 0.2189 + }, + { + "start": 13750.72, + "end": 13751.92, + "probability": 0.3713 + }, + { + "start": 13752.0, + "end": 13752.68, + "probability": 0.5408 + }, + { + "start": 13753.38, + "end": 13754.24, + "probability": 0.8706 + }, + { + "start": 13755.18, + "end": 13755.92, + "probability": 0.7835 + }, + { + "start": 13757.52, + "end": 13758.68, + "probability": 0.9812 + }, + { + "start": 13758.76, + "end": 13759.08, + "probability": 0.4057 + }, + { + "start": 13759.2, + "end": 13759.92, + "probability": 0.8588 + }, + { + "start": 13761.22, + "end": 13765.42, + "probability": 0.9915 + }, + { + "start": 13766.3, + "end": 13766.76, + "probability": 0.5674 + }, + { + "start": 13767.44, + "end": 13771.76, + "probability": 0.8798 + }, + { + "start": 13772.44, + "end": 13773.94, + "probability": 0.9546 + }, + { + "start": 13774.92, + "end": 13782.4, + "probability": 0.9977 + }, + { + "start": 13783.18, + "end": 13784.16, + "probability": 0.9778 + }, + { + "start": 13784.84, + "end": 13787.62, + "probability": 0.9239 + }, + { + "start": 13787.88, + "end": 13789.28, + "probability": 0.8906 + }, + { + "start": 13790.28, + "end": 13792.1, + "probability": 0.3707 + }, + { + "start": 13792.78, + "end": 13797.3, + "probability": 0.0364 + }, + { + "start": 13798.04, + "end": 13798.4, + "probability": 0.1557 + }, + { + "start": 13798.4, + "end": 13798.4, + "probability": 0.0355 + }, + { + "start": 13798.4, + "end": 13800.32, + "probability": 0.192 + }, + { + "start": 13800.76, + "end": 13801.46, + "probability": 0.4917 + }, + { + "start": 13801.86, + "end": 13803.24, + "probability": 0.7886 + }, + { + "start": 13803.56, + "end": 13804.4, + "probability": 0.6247 + }, + { + "start": 13804.54, + "end": 13805.24, + "probability": 0.8984 + }, + { + "start": 13805.36, + "end": 13806.32, + "probability": 0.7311 + }, + { + "start": 13806.82, + "end": 13807.52, + "probability": 0.6693 + }, + { + "start": 13807.82, + "end": 13808.08, + "probability": 0.5781 + }, + { + "start": 13808.12, + "end": 13809.62, + "probability": 0.5231 + }, + { + "start": 13809.76, + "end": 13811.44, + "probability": 0.8375 + }, + { + "start": 13811.54, + "end": 13814.04, + "probability": 0.8718 + }, + { + "start": 13814.62, + "end": 13819.42, + "probability": 0.9155 + }, + { + "start": 13819.48, + "end": 13820.22, + "probability": 0.7023 + }, + { + "start": 13821.14, + "end": 13824.62, + "probability": 0.9405 + }, + { + "start": 13825.46, + "end": 13832.36, + "probability": 0.5687 + }, + { + "start": 13832.4, + "end": 13833.08, + "probability": 0.1229 + }, + { + "start": 13833.08, + "end": 13833.08, + "probability": 0.5386 + }, + { + "start": 13833.08, + "end": 13835.34, + "probability": 0.5577 + }, + { + "start": 13835.52, + "end": 13841.6, + "probability": 0.811 + }, + { + "start": 13841.68, + "end": 13843.38, + "probability": 0.9587 + }, + { + "start": 13843.5, + "end": 13843.58, + "probability": 0.0546 + }, + { + "start": 13843.58, + "end": 13843.58, + "probability": 0.585 + }, + { + "start": 13843.58, + "end": 13847.14, + "probability": 0.5981 + }, + { + "start": 13847.2, + "end": 13848.18, + "probability": 0.5248 + }, + { + "start": 13848.56, + "end": 13849.74, + "probability": 0.0537 + }, + { + "start": 13850.46, + "end": 13854.02, + "probability": 0.585 + }, + { + "start": 13854.52, + "end": 13857.44, + "probability": 0.9659 + }, + { + "start": 13857.64, + "end": 13860.3, + "probability": 0.9949 + }, + { + "start": 13860.82, + "end": 13863.58, + "probability": 0.8621 + }, + { + "start": 13864.34, + "end": 13865.18, + "probability": 0.9801 + }, + { + "start": 13865.98, + "end": 13866.9, + "probability": 0.9601 + }, + { + "start": 13867.8, + "end": 13868.96, + "probability": 0.8565 + }, + { + "start": 13869.1, + "end": 13870.84, + "probability": 0.9159 + }, + { + "start": 13871.14, + "end": 13872.26, + "probability": 0.9788 + }, + { + "start": 13872.34, + "end": 13873.46, + "probability": 0.9834 + }, + { + "start": 13873.8, + "end": 13874.88, + "probability": 0.1125 + }, + { + "start": 13876.62, + "end": 13876.8, + "probability": 0.0302 + }, + { + "start": 13876.8, + "end": 13877.4, + "probability": 0.3824 + }, + { + "start": 13877.8, + "end": 13877.98, + "probability": 0.2721 + }, + { + "start": 13877.98, + "end": 13877.98, + "probability": 0.4754 + }, + { + "start": 13877.98, + "end": 13881.56, + "probability": 0.9119 + }, + { + "start": 13882.34, + "end": 13883.18, + "probability": 0.9258 + }, + { + "start": 13883.99, + "end": 13887.4, + "probability": 0.6317 + }, + { + "start": 13887.76, + "end": 13889.48, + "probability": 0.6631 + }, + { + "start": 13889.76, + "end": 13891.29, + "probability": 0.6758 + }, + { + "start": 13891.56, + "end": 13892.66, + "probability": 0.5124 + }, + { + "start": 13892.66, + "end": 13894.48, + "probability": 0.8492 + }, + { + "start": 13895.8, + "end": 13896.38, + "probability": 0.0479 + }, + { + "start": 13899.88, + "end": 13900.96, + "probability": 0.3973 + }, + { + "start": 13900.98, + "end": 13901.44, + "probability": 0.0475 + }, + { + "start": 13901.72, + "end": 13902.82, + "probability": 0.7062 + }, + { + "start": 13903.04, + "end": 13904.5, + "probability": 0.7714 + }, + { + "start": 13904.5, + "end": 13904.58, + "probability": 0.1273 + }, + { + "start": 13905.0, + "end": 13905.82, + "probability": 0.2684 + }, + { + "start": 13906.94, + "end": 13909.32, + "probability": 0.0064 + }, + { + "start": 13909.44, + "end": 13910.83, + "probability": 0.1426 + }, + { + "start": 13911.18, + "end": 13911.78, + "probability": 0.0929 + }, + { + "start": 13911.88, + "end": 13911.88, + "probability": 0.1204 + }, + { + "start": 13911.92, + "end": 13911.94, + "probability": 0.1512 + }, + { + "start": 13911.94, + "end": 13912.5, + "probability": 0.1851 + }, + { + "start": 13913.48, + "end": 13915.2, + "probability": 0.0884 + }, + { + "start": 13915.46, + "end": 13918.02, + "probability": 0.0911 + }, + { + "start": 13921.4, + "end": 13923.42, + "probability": 0.2329 + }, + { + "start": 13925.3, + "end": 13927.86, + "probability": 0.0206 + }, + { + "start": 13929.08, + "end": 13929.48, + "probability": 0.2862 + }, + { + "start": 13931.2, + "end": 13931.68, + "probability": 0.0827 + }, + { + "start": 13931.68, + "end": 13932.36, + "probability": 0.0052 + }, + { + "start": 13933.38, + "end": 13933.38, + "probability": 0.5141 + }, + { + "start": 13933.62, + "end": 13933.62, + "probability": 0.0176 + }, + { + "start": 13933.62, + "end": 13933.92, + "probability": 0.1203 + }, + { + "start": 13933.94, + "end": 13934.71, + "probability": 0.062 + }, + { + "start": 13934.86, + "end": 13939.04, + "probability": 0.1114 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.0, + "end": 13986.0, + "probability": 0.0 + }, + { + "start": 13986.08, + "end": 13987.84, + "probability": 0.3121 + }, + { + "start": 13989.11, + "end": 13990.58, + "probability": 0.2781 + }, + { + "start": 13990.58, + "end": 13995.54, + "probability": 0.0828 + }, + { + "start": 13995.54, + "end": 13995.62, + "probability": 0.026 + }, + { + "start": 13996.39, + "end": 13999.29, + "probability": 0.0585 + }, + { + "start": 14000.16, + "end": 14000.16, + "probability": 0.0212 + }, + { + "start": 14000.38, + "end": 14003.94, + "probability": 0.0751 + }, + { + "start": 14005.28, + "end": 14005.66, + "probability": 0.0154 + }, + { + "start": 14006.64, + "end": 14008.79, + "probability": 0.1532 + }, + { + "start": 14010.44, + "end": 14011.76, + "probability": 0.6672 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.0, + "end": 14108.0, + "probability": 0.0 + }, + { + "start": 14108.02, + "end": 14108.26, + "probability": 0.0487 + }, + { + "start": 14108.26, + "end": 14108.26, + "probability": 0.0695 + }, + { + "start": 14108.26, + "end": 14109.2, + "probability": 0.1393 + }, + { + "start": 14109.56, + "end": 14110.5, + "probability": 0.7261 + }, + { + "start": 14110.78, + "end": 14111.58, + "probability": 0.4556 + }, + { + "start": 14111.66, + "end": 14113.37, + "probability": 0.4248 + }, + { + "start": 14114.24, + "end": 14114.88, + "probability": 0.05 + }, + { + "start": 14114.88, + "end": 14117.8, + "probability": 0.459 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.0, + "end": 14241.0, + "probability": 0.0 + }, + { + "start": 14241.78, + "end": 14245.68, + "probability": 0.159 + }, + { + "start": 14248.36, + "end": 14248.9, + "probability": 0.0395 + }, + { + "start": 14249.22, + "end": 14251.74, + "probability": 0.0093 + }, + { + "start": 14251.74, + "end": 14255.46, + "probability": 0.0452 + }, + { + "start": 14255.48, + "end": 14258.02, + "probability": 0.1126 + }, + { + "start": 14263.2, + "end": 14264.98, + "probability": 0.0869 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.0, + "end": 14367.0, + "probability": 0.0 + }, + { + "start": 14367.72, + "end": 14367.72, + "probability": 0.0973 + }, + { + "start": 14367.72, + "end": 14367.72, + "probability": 0.0587 + }, + { + "start": 14367.72, + "end": 14370.22, + "probability": 0.2301 + }, + { + "start": 14370.72, + "end": 14373.42, + "probability": 0.594 + }, + { + "start": 14373.7, + "end": 14374.28, + "probability": 0.312 + }, + { + "start": 14374.36, + "end": 14375.34, + "probability": 0.501 + }, + { + "start": 14375.78, + "end": 14378.66, + "probability": 0.9061 + }, + { + "start": 14379.06, + "end": 14379.96, + "probability": 0.8978 + }, + { + "start": 14380.4, + "end": 14381.68, + "probability": 0.9922 + }, + { + "start": 14382.1, + "end": 14384.96, + "probability": 0.9647 + }, + { + "start": 14385.4, + "end": 14387.14, + "probability": 0.9988 + }, + { + "start": 14387.3, + "end": 14393.36, + "probability": 0.9761 + }, + { + "start": 14393.56, + "end": 14394.66, + "probability": 0.6812 + }, + { + "start": 14395.2, + "end": 14399.78, + "probability": 0.9669 + }, + { + "start": 14400.16, + "end": 14403.72, + "probability": 0.9932 + }, + { + "start": 14403.74, + "end": 14407.04, + "probability": 0.8274 + }, + { + "start": 14407.76, + "end": 14408.9, + "probability": 0.9226 + }, + { + "start": 14409.96, + "end": 14411.54, + "probability": 0.7479 + }, + { + "start": 14412.6, + "end": 14413.84, + "probability": 0.8789 + }, + { + "start": 14413.94, + "end": 14415.14, + "probability": 0.9862 + }, + { + "start": 14415.54, + "end": 14416.36, + "probability": 0.7309 + }, + { + "start": 14417.42, + "end": 14419.7, + "probability": 0.9856 + }, + { + "start": 14419.96, + "end": 14420.22, + "probability": 0.3753 + }, + { + "start": 14420.28, + "end": 14423.14, + "probability": 0.9713 + }, + { + "start": 14423.76, + "end": 14424.48, + "probability": 0.8281 + }, + { + "start": 14424.52, + "end": 14425.08, + "probability": 0.8325 + }, + { + "start": 14425.14, + "end": 14427.04, + "probability": 0.9357 + }, + { + "start": 14427.46, + "end": 14428.62, + "probability": 0.9615 + }, + { + "start": 14429.18, + "end": 14430.92, + "probability": 0.83 + }, + { + "start": 14431.14, + "end": 14432.24, + "probability": 0.6481 + }, + { + "start": 14432.66, + "end": 14433.52, + "probability": 0.6653 + }, + { + "start": 14433.64, + "end": 14435.08, + "probability": 0.9075 + }, + { + "start": 14435.4, + "end": 14441.12, + "probability": 0.917 + }, + { + "start": 14441.64, + "end": 14442.78, + "probability": 0.8707 + }, + { + "start": 14443.04, + "end": 14444.1, + "probability": 0.6545 + }, + { + "start": 14444.22, + "end": 14445.5, + "probability": 0.9395 + }, + { + "start": 14445.76, + "end": 14450.62, + "probability": 0.8673 + }, + { + "start": 14450.9, + "end": 14455.14, + "probability": 0.9158 + }, + { + "start": 14455.14, + "end": 14455.72, + "probability": 0.0676 + }, + { + "start": 14455.96, + "end": 14457.16, + "probability": 0.0601 + }, + { + "start": 14457.16, + "end": 14457.4, + "probability": 0.306 + }, + { + "start": 14457.92, + "end": 14457.92, + "probability": 0.2978 + }, + { + "start": 14457.92, + "end": 14463.78, + "probability": 0.9583 + }, + { + "start": 14464.6, + "end": 14466.74, + "probability": 0.9402 + }, + { + "start": 14467.44, + "end": 14469.86, + "probability": 0.9948 + }, + { + "start": 14470.78, + "end": 14471.3, + "probability": 0.4066 + }, + { + "start": 14471.78, + "end": 14475.86, + "probability": 0.9921 + }, + { + "start": 14475.86, + "end": 14480.8, + "probability": 0.9877 + }, + { + "start": 14481.18, + "end": 14481.72, + "probability": 0.889 + }, + { + "start": 14482.82, + "end": 14483.62, + "probability": 0.8635 + }, + { + "start": 14484.0, + "end": 14484.36, + "probability": 0.0181 + }, + { + "start": 14484.36, + "end": 14484.56, + "probability": 0.1198 + }, + { + "start": 14484.74, + "end": 14486.44, + "probability": 0.5728 + }, + { + "start": 14486.48, + "end": 14487.02, + "probability": 0.4689 + }, + { + "start": 14487.02, + "end": 14489.34, + "probability": 0.4574 + }, + { + "start": 14490.08, + "end": 14491.23, + "probability": 0.013 + }, + { + "start": 14491.44, + "end": 14493.02, + "probability": 0.4632 + }, + { + "start": 14496.54, + "end": 14496.56, + "probability": 0.0459 + }, + { + "start": 14496.56, + "end": 14496.56, + "probability": 0.1827 + }, + { + "start": 14496.56, + "end": 14496.56, + "probability": 0.0331 + }, + { + "start": 14496.56, + "end": 14498.96, + "probability": 0.5117 + }, + { + "start": 14499.16, + "end": 14499.85, + "probability": 0.7143 + }, + { + "start": 14500.36, + "end": 14504.27, + "probability": 0.7188 + }, + { + "start": 14504.82, + "end": 14507.3, + "probability": 0.5551 + }, + { + "start": 14507.78, + "end": 14515.48, + "probability": 0.9341 + }, + { + "start": 14515.48, + "end": 14522.26, + "probability": 0.9871 + }, + { + "start": 14522.68, + "end": 14522.68, + "probability": 0.1971 + }, + { + "start": 14522.68, + "end": 14525.6, + "probability": 0.4856 + }, + { + "start": 14525.68, + "end": 14527.2, + "probability": 0.5758 + }, + { + "start": 14528.36, + "end": 14531.62, + "probability": 0.9963 + }, + { + "start": 14532.58, + "end": 14533.28, + "probability": 0.6249 + }, + { + "start": 14533.3, + "end": 14534.22, + "probability": 0.85 + }, + { + "start": 14534.28, + "end": 14538.84, + "probability": 0.9935 + }, + { + "start": 14540.12, + "end": 14542.48, + "probability": 0.9919 + }, + { + "start": 14542.48, + "end": 14545.68, + "probability": 0.9922 + }, + { + "start": 14546.46, + "end": 14551.14, + "probability": 0.9953 + }, + { + "start": 14551.76, + "end": 14556.9, + "probability": 0.9952 + }, + { + "start": 14557.06, + "end": 14559.72, + "probability": 0.9364 + }, + { + "start": 14559.72, + "end": 14562.4, + "probability": 0.9998 + }, + { + "start": 14562.8, + "end": 14570.96, + "probability": 0.9835 + }, + { + "start": 14571.66, + "end": 14572.3, + "probability": 0.7319 + }, + { + "start": 14572.56, + "end": 14577.1, + "probability": 0.8863 + }, + { + "start": 14577.7, + "end": 14578.94, + "probability": 0.9551 + }, + { + "start": 14579.52, + "end": 14583.14, + "probability": 0.9749 + }, + { + "start": 14583.96, + "end": 14586.38, + "probability": 0.9972 + }, + { + "start": 14586.82, + "end": 14587.84, + "probability": 0.9532 + }, + { + "start": 14588.6, + "end": 14588.78, + "probability": 0.0002 + }, + { + "start": 14591.68, + "end": 14593.74, + "probability": 0.9897 + }, + { + "start": 14594.46, + "end": 14594.86, + "probability": 0.8591 + }, + { + "start": 14595.58, + "end": 14599.77, + "probability": 0.9924 + }, + { + "start": 14600.98, + "end": 14602.02, + "probability": 0.9333 + }, + { + "start": 14603.08, + "end": 14603.54, + "probability": 0.4458 + }, + { + "start": 14604.28, + "end": 14607.58, + "probability": 0.9963 + }, + { + "start": 14607.62, + "end": 14611.24, + "probability": 0.9718 + }, + { + "start": 14612.96, + "end": 14616.8, + "probability": 0.9907 + }, + { + "start": 14616.8, + "end": 14622.96, + "probability": 0.9821 + }, + { + "start": 14622.96, + "end": 14628.28, + "probability": 0.9976 + }, + { + "start": 14628.82, + "end": 14630.2, + "probability": 0.9619 + }, + { + "start": 14630.8, + "end": 14635.44, + "probability": 0.9958 + }, + { + "start": 14635.44, + "end": 14638.78, + "probability": 0.9864 + }, + { + "start": 14639.66, + "end": 14643.62, + "probability": 0.9958 + }, + { + "start": 14644.3, + "end": 14646.0, + "probability": 0.9964 + }, + { + "start": 14646.58, + "end": 14650.86, + "probability": 0.9939 + }, + { + "start": 14650.94, + "end": 14655.06, + "probability": 0.9951 + }, + { + "start": 14655.66, + "end": 14658.54, + "probability": 0.6282 + }, + { + "start": 14659.22, + "end": 14660.2, + "probability": 0.817 + }, + { + "start": 14660.7, + "end": 14664.74, + "probability": 0.9836 + }, + { + "start": 14665.22, + "end": 14666.92, + "probability": 0.936 + }, + { + "start": 14667.6, + "end": 14670.14, + "probability": 0.998 + }, + { + "start": 14670.14, + "end": 14674.6, + "probability": 0.9865 + }, + { + "start": 14675.06, + "end": 14677.18, + "probability": 0.9289 + }, + { + "start": 14677.28, + "end": 14681.38, + "probability": 0.9766 + }, + { + "start": 14682.14, + "end": 14685.06, + "probability": 0.8449 + }, + { + "start": 14685.64, + "end": 14687.04, + "probability": 0.8987 + }, + { + "start": 14687.64, + "end": 14689.24, + "probability": 0.8856 + }, + { + "start": 14689.28, + "end": 14690.88, + "probability": 0.0275 + }, + { + "start": 14692.72, + "end": 14694.4, + "probability": 0.0165 + }, + { + "start": 14695.0, + "end": 14696.46, + "probability": 0.7 + }, + { + "start": 14696.52, + "end": 14700.44, + "probability": 0.9919 + }, + { + "start": 14700.46, + "end": 14701.08, + "probability": 0.9572 + }, + { + "start": 14701.68, + "end": 14703.1, + "probability": 0.7269 + }, + { + "start": 14703.88, + "end": 14709.12, + "probability": 0.9932 + }, + { + "start": 14709.3, + "end": 14710.45, + "probability": 0.8093 + }, + { + "start": 14711.12, + "end": 14711.98, + "probability": 0.5105 + }, + { + "start": 14712.42, + "end": 14720.22, + "probability": 0.8209 + }, + { + "start": 14720.62, + "end": 14722.72, + "probability": 0.6603 + }, + { + "start": 14723.24, + "end": 14726.29, + "probability": 0.8532 + }, + { + "start": 14726.86, + "end": 14729.12, + "probability": 0.4423 + }, + { + "start": 14729.84, + "end": 14733.02, + "probability": 0.6652 + }, + { + "start": 14733.46, + "end": 14736.42, + "probability": 0.9797 + }, + { + "start": 14736.88, + "end": 14737.22, + "probability": 0.4932 + }, + { + "start": 14737.9, + "end": 14739.48, + "probability": 0.9824 + }, + { + "start": 14740.1, + "end": 14741.1, + "probability": 0.9683 + }, + { + "start": 14741.98, + "end": 14742.48, + "probability": 0.9827 + }, + { + "start": 14743.04, + "end": 14744.19, + "probability": 0.983 + }, + { + "start": 14745.36, + "end": 14747.98, + "probability": 0.8569 + }, + { + "start": 14748.34, + "end": 14749.86, + "probability": 0.9432 + }, + { + "start": 14750.76, + "end": 14754.48, + "probability": 0.9925 + }, + { + "start": 14754.98, + "end": 14756.14, + "probability": 0.6237 + }, + { + "start": 14756.76, + "end": 14757.83, + "probability": 0.8552 + }, + { + "start": 14758.52, + "end": 14761.2, + "probability": 0.9844 + }, + { + "start": 14761.82, + "end": 14763.5, + "probability": 0.9673 + }, + { + "start": 14763.52, + "end": 14764.57, + "probability": 0.9146 + }, + { + "start": 14765.4, + "end": 14770.24, + "probability": 0.9789 + }, + { + "start": 14770.66, + "end": 14772.04, + "probability": 0.8066 + }, + { + "start": 14772.28, + "end": 14773.56, + "probability": 0.8459 + }, + { + "start": 14774.18, + "end": 14776.18, + "probability": 0.9647 + }, + { + "start": 14776.3, + "end": 14777.56, + "probability": 0.9683 + }, + { + "start": 14778.04, + "end": 14780.12, + "probability": 0.9737 + }, + { + "start": 14780.46, + "end": 14780.92, + "probability": 0.7319 + }, + { + "start": 14780.94, + "end": 14783.56, + "probability": 0.7808 + }, + { + "start": 14783.68, + "end": 14784.14, + "probability": 0.7258 + }, + { + "start": 14784.92, + "end": 14788.82, + "probability": 0.9645 + }, + { + "start": 14789.12, + "end": 14789.72, + "probability": 0.7621 + }, + { + "start": 14804.26, + "end": 14806.02, + "probability": 0.6112 + }, + { + "start": 14806.92, + "end": 14811.88, + "probability": 0.4651 + }, + { + "start": 14811.92, + "end": 14813.88, + "probability": 0.7057 + }, + { + "start": 14814.12, + "end": 14815.6, + "probability": 0.6548 + }, + { + "start": 14815.78, + "end": 14816.08, + "probability": 0.662 + }, + { + "start": 14816.84, + "end": 14818.52, + "probability": 0.8781 + }, + { + "start": 14819.16, + "end": 14821.64, + "probability": 0.3018 + }, + { + "start": 14822.62, + "end": 14824.41, + "probability": 0.9554 + }, + { + "start": 14824.66, + "end": 14827.67, + "probability": 0.6125 + }, + { + "start": 14828.32, + "end": 14832.62, + "probability": 0.7255 + }, + { + "start": 14832.96, + "end": 14834.28, + "probability": 0.9875 + }, + { + "start": 14834.74, + "end": 14837.92, + "probability": 0.869 + }, + { + "start": 14839.22, + "end": 14839.7, + "probability": 0.6036 + }, + { + "start": 14840.9, + "end": 14841.98, + "probability": 0.7876 + }, + { + "start": 14842.28, + "end": 14843.38, + "probability": 0.9354 + }, + { + "start": 14844.14, + "end": 14844.8, + "probability": 0.761 + }, + { + "start": 14847.16, + "end": 14849.52, + "probability": 0.9111 + }, + { + "start": 14850.66, + "end": 14855.12, + "probability": 0.8431 + }, + { + "start": 14855.14, + "end": 14856.74, + "probability": 0.966 + }, + { + "start": 14861.74, + "end": 14862.38, + "probability": 0.758 + }, + { + "start": 14863.54, + "end": 14868.76, + "probability": 0.8044 + }, + { + "start": 14868.76, + "end": 14873.5, + "probability": 0.8111 + }, + { + "start": 14873.7, + "end": 14875.16, + "probability": 0.8574 + }, + { + "start": 14876.3, + "end": 14876.54, + "probability": 0.0239 + }, + { + "start": 14876.54, + "end": 14880.48, + "probability": 0.68 + }, + { + "start": 14881.26, + "end": 14885.97, + "probability": 0.7753 + }, + { + "start": 14887.18, + "end": 14891.1, + "probability": 0.9407 + }, + { + "start": 14891.66, + "end": 14894.87, + "probability": 0.9951 + }, + { + "start": 14895.06, + "end": 14897.28, + "probability": 0.9469 + }, + { + "start": 14897.46, + "end": 14899.4, + "probability": 0.8071 + }, + { + "start": 14899.46, + "end": 14904.18, + "probability": 0.7124 + }, + { + "start": 14904.18, + "end": 14908.38, + "probability": 0.9222 + }, + { + "start": 14908.48, + "end": 14909.4, + "probability": 0.8746 + }, + { + "start": 14909.54, + "end": 14910.98, + "probability": 0.5103 + }, + { + "start": 14911.12, + "end": 14912.86, + "probability": 0.4591 + }, + { + "start": 14913.44, + "end": 14914.04, + "probability": 0.6697 + }, + { + "start": 14914.48, + "end": 14915.1, + "probability": 0.8169 + }, + { + "start": 14915.5, + "end": 14917.18, + "probability": 0.2972 + }, + { + "start": 14918.5, + "end": 14919.2, + "probability": 0.4702 + }, + { + "start": 14919.2, + "end": 14920.96, + "probability": 0.8091 + }, + { + "start": 14921.42, + "end": 14923.16, + "probability": 0.9088 + }, + { + "start": 14923.34, + "end": 14924.76, + "probability": 0.9917 + }, + { + "start": 14925.34, + "end": 14928.25, + "probability": 0.9722 + }, + { + "start": 14928.5, + "end": 14929.94, + "probability": 0.8228 + }, + { + "start": 14930.08, + "end": 14931.22, + "probability": 0.9219 + }, + { + "start": 14931.64, + "end": 14936.68, + "probability": 0.9561 + }, + { + "start": 14937.18, + "end": 14941.98, + "probability": 0.9127 + }, + { + "start": 14942.46, + "end": 14946.6, + "probability": 0.9429 + }, + { + "start": 14947.26, + "end": 14948.46, + "probability": 0.7252 + }, + { + "start": 14948.88, + "end": 14951.1, + "probability": 0.1082 + }, + { + "start": 14951.2, + "end": 14952.38, + "probability": 0.2978 + }, + { + "start": 14952.38, + "end": 14953.54, + "probability": 0.1098 + }, + { + "start": 14954.7, + "end": 14958.1, + "probability": 0.651 + }, + { + "start": 14958.48, + "end": 14961.08, + "probability": 0.9114 + }, + { + "start": 14961.68, + "end": 14966.38, + "probability": 0.868 + }, + { + "start": 14967.0, + "end": 14972.16, + "probability": 0.897 + }, + { + "start": 14972.5, + "end": 14974.06, + "probability": 0.5092 + }, + { + "start": 14974.6, + "end": 14975.16, + "probability": 0.8348 + }, + { + "start": 14975.6, + "end": 14976.79, + "probability": 0.3279 + }, + { + "start": 14980.0, + "end": 14981.12, + "probability": 0.7844 + }, + { + "start": 14981.2, + "end": 14982.38, + "probability": 0.7656 + }, + { + "start": 14982.72, + "end": 14983.38, + "probability": 0.5179 + }, + { + "start": 14983.74, + "end": 14984.62, + "probability": 0.4493 + }, + { + "start": 14984.78, + "end": 14986.0, + "probability": 0.598 + }, + { + "start": 14986.52, + "end": 14988.28, + "probability": 0.3186 + }, + { + "start": 14988.7, + "end": 14990.38, + "probability": 0.1767 + }, + { + "start": 14990.66, + "end": 14992.27, + "probability": 0.0556 + }, + { + "start": 14993.08, + "end": 14995.44, + "probability": 0.5524 + }, + { + "start": 14996.4, + "end": 14999.84, + "probability": 0.0751 + }, + { + "start": 14999.88, + "end": 15001.34, + "probability": 0.7683 + }, + { + "start": 15002.65, + "end": 15004.6, + "probability": 0.9702 + }, + { + "start": 15004.82, + "end": 15005.06, + "probability": 0.2914 + }, + { + "start": 15005.22, + "end": 15005.82, + "probability": 0.7716 + }, + { + "start": 15006.84, + "end": 15009.51, + "probability": 0.9329 + }, + { + "start": 15010.68, + "end": 15012.32, + "probability": 0.4353 + }, + { + "start": 15014.14, + "end": 15017.18, + "probability": 0.3195 + }, + { + "start": 15017.62, + "end": 15018.82, + "probability": 0.0067 + }, + { + "start": 15032.7, + "end": 15035.3, + "probability": 0.8941 + }, + { + "start": 15035.68, + "end": 15036.54, + "probability": 0.1482 + }, + { + "start": 15036.68, + "end": 15037.62, + "probability": 0.208 + }, + { + "start": 15038.1, + "end": 15038.54, + "probability": 0.0033 + }, + { + "start": 15038.54, + "end": 15039.76, + "probability": 0.1926 + }, + { + "start": 15039.8, + "end": 15041.66, + "probability": 0.1403 + }, + { + "start": 15042.96, + "end": 15043.52, + "probability": 0.7271 + }, + { + "start": 15044.44, + "end": 15045.04, + "probability": 0.9135 + }, + { + "start": 15045.3, + "end": 15048.58, + "probability": 0.7568 + }, + { + "start": 15048.94, + "end": 15049.62, + "probability": 0.2179 + }, + { + "start": 15050.16, + "end": 15051.77, + "probability": 0.1888 + }, + { + "start": 15052.82, + "end": 15054.32, + "probability": 0.0281 + }, + { + "start": 15055.69, + "end": 15059.12, + "probability": 0.6085 + }, + { + "start": 15060.08, + "end": 15060.66, + "probability": 0.0254 + }, + { + "start": 15068.12, + "end": 15070.36, + "probability": 0.3169 + }, + { + "start": 15070.86, + "end": 15074.44, + "probability": 0.0932 + }, + { + "start": 15074.44, + "end": 15076.34, + "probability": 0.0193 + }, + { + "start": 15078.74, + "end": 15082.94, + "probability": 0.5596 + }, + { + "start": 15084.5, + "end": 15086.34, + "probability": 0.5339 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.0, + "end": 15208.0, + "probability": 0.0 + }, + { + "start": 15208.52, + "end": 15208.58, + "probability": 0.0551 + }, + { + "start": 15208.58, + "end": 15208.58, + "probability": 0.0705 + }, + { + "start": 15208.58, + "end": 15208.58, + "probability": 0.1335 + }, + { + "start": 15208.58, + "end": 15212.84, + "probability": 0.8887 + }, + { + "start": 15212.84, + "end": 15217.26, + "probability": 0.9238 + }, + { + "start": 15217.34, + "end": 15222.78, + "probability": 0.9806 + }, + { + "start": 15223.0, + "end": 15224.64, + "probability": 0.8426 + }, + { + "start": 15225.26, + "end": 15227.08, + "probability": 0.9682 + }, + { + "start": 15227.28, + "end": 15230.86, + "probability": 0.9865 + }, + { + "start": 15231.3, + "end": 15234.32, + "probability": 0.9009 + }, + { + "start": 15234.48, + "end": 15235.3, + "probability": 0.4808 + }, + { + "start": 15235.58, + "end": 15237.61, + "probability": 0.5137 + }, + { + "start": 15238.68, + "end": 15240.74, + "probability": 0.7529 + }, + { + "start": 15241.16, + "end": 15245.44, + "probability": 0.4845 + }, + { + "start": 15245.52, + "end": 15246.4, + "probability": 0.4717 + }, + { + "start": 15248.22, + "end": 15248.82, + "probability": 0.9194 + }, + { + "start": 15254.92, + "end": 15256.38, + "probability": 0.562 + }, + { + "start": 15257.48, + "end": 15258.3, + "probability": 0.835 + }, + { + "start": 15258.92, + "end": 15260.18, + "probability": 0.7301 + }, + { + "start": 15260.5, + "end": 15260.92, + "probability": 0.6287 + }, + { + "start": 15261.82, + "end": 15262.96, + "probability": 0.912 + }, + { + "start": 15263.78, + "end": 15266.6, + "probability": 0.778 + }, + { + "start": 15266.62, + "end": 15267.5, + "probability": 0.1962 + }, + { + "start": 15271.62, + "end": 15271.72, + "probability": 0.0283 + }, + { + "start": 15277.34, + "end": 15280.06, + "probability": 0.9925 + }, + { + "start": 15280.2, + "end": 15280.65, + "probability": 0.5542 + }, + { + "start": 15280.88, + "end": 15281.5, + "probability": 0.6979 + }, + { + "start": 15281.84, + "end": 15282.78, + "probability": 0.7383 + }, + { + "start": 15282.86, + "end": 15283.86, + "probability": 0.5436 + }, + { + "start": 15284.44, + "end": 15285.4, + "probability": 0.2493 + }, + { + "start": 15286.12, + "end": 15286.54, + "probability": 0.2402 + }, + { + "start": 15286.72, + "end": 15286.72, + "probability": 0.0162 + }, + { + "start": 15287.74, + "end": 15291.12, + "probability": 0.0464 + }, + { + "start": 15293.88, + "end": 15295.64, + "probability": 0.2485 + }, + { + "start": 15302.66, + "end": 15304.04, + "probability": 0.0944 + }, + { + "start": 15304.04, + "end": 15304.58, + "probability": 0.6947 + }, + { + "start": 15305.24, + "end": 15308.1, + "probability": 0.7325 + }, + { + "start": 15308.1, + "end": 15308.52, + "probability": 0.0052 + }, + { + "start": 15309.52, + "end": 15310.54, + "probability": 0.0738 + }, + { + "start": 15313.86, + "end": 15314.58, + "probability": 0.0016 + }, + { + "start": 15317.8, + "end": 15320.92, + "probability": 0.4196 + }, + { + "start": 15321.26, + "end": 15321.36, + "probability": 0.8948 + }, + { + "start": 15326.58, + "end": 15329.72, + "probability": 0.675 + }, + { + "start": 15329.84, + "end": 15330.02, + "probability": 0.5143 + }, + { + "start": 15330.1, + "end": 15333.16, + "probability": 0.9663 + }, + { + "start": 15333.26, + "end": 15335.2, + "probability": 0.4876 + }, + { + "start": 15335.26, + "end": 15337.05, + "probability": 0.7848 + }, + { + "start": 15337.48, + "end": 15338.5, + "probability": 0.8356 + }, + { + "start": 15339.14, + "end": 15340.11, + "probability": 0.7062 + }, + { + "start": 15340.4, + "end": 15344.94, + "probability": 0.5468 + }, + { + "start": 15345.02, + "end": 15348.1, + "probability": 0.8916 + }, + { + "start": 15348.86, + "end": 15351.4, + "probability": 0.8581 + }, + { + "start": 15351.92, + "end": 15357.84, + "probability": 0.959 + }, + { + "start": 15357.84, + "end": 15362.28, + "probability": 0.9931 + }, + { + "start": 15362.36, + "end": 15364.48, + "probability": 0.9641 + }, + { + "start": 15365.5, + "end": 15368.12, + "probability": 0.7917 + }, + { + "start": 15369.2, + "end": 15371.36, + "probability": 0.9355 + }, + { + "start": 15371.88, + "end": 15374.86, + "probability": 0.9052 + }, + { + "start": 15375.46, + "end": 15376.62, + "probability": 0.9919 + }, + { + "start": 15377.02, + "end": 15378.53, + "probability": 0.9925 + }, + { + "start": 15379.06, + "end": 15383.08, + "probability": 0.9863 + }, + { + "start": 15383.18, + "end": 15384.86, + "probability": 0.8998 + }, + { + "start": 15385.8, + "end": 15390.5, + "probability": 0.9851 + }, + { + "start": 15391.08, + "end": 15391.18, + "probability": 0.4075 + }, + { + "start": 15391.26, + "end": 15394.38, + "probability": 0.9286 + }, + { + "start": 15395.02, + "end": 15395.5, + "probability": 0.9202 + }, + { + "start": 15395.6, + "end": 15396.02, + "probability": 0.9546 + }, + { + "start": 15396.52, + "end": 15397.86, + "probability": 0.98 + }, + { + "start": 15398.36, + "end": 15399.46, + "probability": 0.9274 + }, + { + "start": 15399.58, + "end": 15401.6, + "probability": 0.9822 + }, + { + "start": 15402.46, + "end": 15408.74, + "probability": 0.9766 + }, + { + "start": 15408.86, + "end": 15410.12, + "probability": 0.9011 + }, + { + "start": 15410.5, + "end": 15412.62, + "probability": 0.9815 + }, + { + "start": 15413.7, + "end": 15417.78, + "probability": 0.9933 + }, + { + "start": 15417.78, + "end": 15421.74, + "probability": 0.9801 + }, + { + "start": 15422.24, + "end": 15425.3, + "probability": 0.6298 + }, + { + "start": 15425.68, + "end": 15430.54, + "probability": 0.7897 + }, + { + "start": 15431.12, + "end": 15433.16, + "probability": 0.9977 + }, + { + "start": 15433.4, + "end": 15435.18, + "probability": 0.8455 + }, + { + "start": 15435.34, + "end": 15435.44, + "probability": 0.0072 + }, + { + "start": 15436.34, + "end": 15436.86, + "probability": 0.0976 + }, + { + "start": 15436.86, + "end": 15439.98, + "probability": 0.7832 + }, + { + "start": 15440.0, + "end": 15442.1, + "probability": 0.4824 + }, + { + "start": 15442.46, + "end": 15444.13, + "probability": 0.5456 + }, + { + "start": 15444.54, + "end": 15448.6, + "probability": 0.9055 + }, + { + "start": 15448.74, + "end": 15449.64, + "probability": 0.708 + }, + { + "start": 15450.28, + "end": 15453.52, + "probability": 0.9584 + }, + { + "start": 15453.98, + "end": 15454.96, + "probability": 0.6857 + }, + { + "start": 15455.88, + "end": 15457.48, + "probability": 0.4992 + }, + { + "start": 15457.56, + "end": 15458.12, + "probability": 0.6931 + }, + { + "start": 15458.42, + "end": 15461.3, + "probability": 0.9796 + }, + { + "start": 15461.3, + "end": 15465.58, + "probability": 0.998 + }, + { + "start": 15466.28, + "end": 15469.5, + "probability": 0.9604 + }, + { + "start": 15469.6, + "end": 15471.0, + "probability": 0.1032 + }, + { + "start": 15471.04, + "end": 15472.4, + "probability": 0.6847 + }, + { + "start": 15472.64, + "end": 15472.68, + "probability": 0.3402 + }, + { + "start": 15473.94, + "end": 15474.38, + "probability": 0.0858 + }, + { + "start": 15474.38, + "end": 15474.38, + "probability": 0.3625 + }, + { + "start": 15474.38, + "end": 15474.38, + "probability": 0.0061 + }, + { + "start": 15474.38, + "end": 15476.96, + "probability": 0.673 + }, + { + "start": 15477.04, + "end": 15477.78, + "probability": 0.8081 + }, + { + "start": 15478.56, + "end": 15480.4, + "probability": 0.7402 + }, + { + "start": 15480.58, + "end": 15483.44, + "probability": 0.7998 + }, + { + "start": 15484.32, + "end": 15486.38, + "probability": 0.1654 + }, + { + "start": 15486.88, + "end": 15490.94, + "probability": 0.9675 + }, + { + "start": 15492.22, + "end": 15492.6, + "probability": 0.8566 + }, + { + "start": 15492.68, + "end": 15498.6, + "probability": 0.9861 + }, + { + "start": 15498.6, + "end": 15504.72, + "probability": 0.9951 + }, + { + "start": 15504.72, + "end": 15509.18, + "probability": 0.8956 + }, + { + "start": 15509.64, + "end": 15512.38, + "probability": 0.929 + }, + { + "start": 15512.38, + "end": 15516.0, + "probability": 0.9932 + }, + { + "start": 15516.72, + "end": 15516.9, + "probability": 0.2954 + }, + { + "start": 15516.9, + "end": 15517.76, + "probability": 0.5047 + }, + { + "start": 15518.34, + "end": 15519.78, + "probability": 0.7031 + }, + { + "start": 15519.92, + "end": 15520.58, + "probability": 0.7406 + }, + { + "start": 15520.64, + "end": 15520.64, + "probability": 0.6869 + }, + { + "start": 15520.76, + "end": 15520.82, + "probability": 0.3976 + }, + { + "start": 15520.82, + "end": 15520.82, + "probability": 0.7351 + }, + { + "start": 15520.82, + "end": 15521.92, + "probability": 0.871 + }, + { + "start": 15522.5, + "end": 15523.86, + "probability": 0.4726 + }, + { + "start": 15523.88, + "end": 15523.88, + "probability": 0.7422 + }, + { + "start": 15523.88, + "end": 15523.88, + "probability": 0.4857 + }, + { + "start": 15523.88, + "end": 15526.88, + "probability": 0.8138 + }, + { + "start": 15527.06, + "end": 15530.32, + "probability": 0.8158 + }, + { + "start": 15530.4, + "end": 15530.76, + "probability": 0.4451 + }, + { + "start": 15531.34, + "end": 15531.58, + "probability": 0.0616 + }, + { + "start": 15531.58, + "end": 15534.56, + "probability": 0.9194 + }, + { + "start": 15535.42, + "end": 15536.46, + "probability": 0.7649 + }, + { + "start": 15537.1, + "end": 15538.9, + "probability": 0.0066 + }, + { + "start": 15539.48, + "end": 15539.86, + "probability": 0.1229 + }, + { + "start": 15543.32, + "end": 15545.54, + "probability": 0.438 + }, + { + "start": 15546.38, + "end": 15546.78, + "probability": 0.6571 + }, + { + "start": 15547.4, + "end": 15548.26, + "probability": 0.5099 + }, + { + "start": 15549.7, + "end": 15553.12, + "probability": 0.9866 + }, + { + "start": 15553.64, + "end": 15554.52, + "probability": 0.9919 + }, + { + "start": 15555.3, + "end": 15555.98, + "probability": 0.9172 + }, + { + "start": 15556.88, + "end": 15557.32, + "probability": 0.9598 + }, + { + "start": 15558.1, + "end": 15559.04, + "probability": 0.6151 + }, + { + "start": 15559.86, + "end": 15560.36, + "probability": 0.9893 + }, + { + "start": 15561.02, + "end": 15561.98, + "probability": 0.9734 + }, + { + "start": 15562.58, + "end": 15564.34, + "probability": 0.9447 + }, + { + "start": 15565.1, + "end": 15565.34, + "probability": 0.5671 + }, + { + "start": 15566.34, + "end": 15567.04, + "probability": 0.6163 + }, + { + "start": 15567.82, + "end": 15568.22, + "probability": 0.8972 + }, + { + "start": 15568.98, + "end": 15569.74, + "probability": 0.842 + }, + { + "start": 15570.62, + "end": 15572.44, + "probability": 0.9691 + }, + { + "start": 15575.78, + "end": 15576.3, + "probability": 0.6622 + }, + { + "start": 15576.96, + "end": 15578.24, + "probability": 0.6886 + }, + { + "start": 15579.18, + "end": 15579.6, + "probability": 0.8639 + }, + { + "start": 15580.3, + "end": 15581.2, + "probability": 0.9679 + }, + { + "start": 15582.08, + "end": 15584.12, + "probability": 0.9484 + }, + { + "start": 15585.66, + "end": 15586.14, + "probability": 0.974 + }, + { + "start": 15586.96, + "end": 15587.68, + "probability": 0.9791 + }, + { + "start": 15588.98, + "end": 15590.2, + "probability": 0.9663 + }, + { + "start": 15590.72, + "end": 15591.52, + "probability": 0.9703 + }, + { + "start": 15592.22, + "end": 15592.66, + "probability": 0.7391 + }, + { + "start": 15593.18, + "end": 15594.04, + "probability": 0.9755 + }, + { + "start": 15595.2, + "end": 15595.6, + "probability": 0.9741 + }, + { + "start": 15596.22, + "end": 15597.74, + "probability": 0.8564 + }, + { + "start": 15598.34, + "end": 15599.06, + "probability": 0.7393 + }, + { + "start": 15599.16, + "end": 15601.06, + "probability": 0.5807 + }, + { + "start": 15601.38, + "end": 15601.98, + "probability": 0.1932 + }, + { + "start": 15601.98, + "end": 15601.98, + "probability": 0.4129 + }, + { + "start": 15602.08, + "end": 15602.08, + "probability": 0.2755 + }, + { + "start": 15602.08, + "end": 15602.58, + "probability": 0.8787 + }, + { + "start": 15603.26, + "end": 15604.78, + "probability": 0.6318 + }, + { + "start": 15604.8, + "end": 15605.64, + "probability": 0.5196 + }, + { + "start": 15605.7, + "end": 15607.24, + "probability": 0.7183 + }, + { + "start": 15607.3, + "end": 15607.58, + "probability": 0.9717 + }, + { + "start": 15607.62, + "end": 15608.52, + "probability": 0.9544 + }, + { + "start": 15609.54, + "end": 15612.16, + "probability": 0.4425 + }, + { + "start": 15612.84, + "end": 15613.06, + "probability": 0.2194 + }, + { + "start": 15613.06, + "end": 15613.34, + "probability": 0.0741 + }, + { + "start": 15613.34, + "end": 15614.2, + "probability": 0.0385 + }, + { + "start": 15616.64, + "end": 15619.36, + "probability": 0.6403 + }, + { + "start": 15621.44, + "end": 15626.44, + "probability": 0.6938 + }, + { + "start": 15627.84, + "end": 15630.94, + "probability": 0.7781 + }, + { + "start": 15631.48, + "end": 15633.1, + "probability": 0.9545 + }, + { + "start": 15633.94, + "end": 15635.14, + "probability": 0.4797 + }, + { + "start": 15635.16, + "end": 15637.16, + "probability": 0.3179 + }, + { + "start": 15637.18, + "end": 15637.34, + "probability": 0.6053 + }, + { + "start": 15638.68, + "end": 15640.84, + "probability": 0.3451 + }, + { + "start": 15641.04, + "end": 15641.44, + "probability": 0.3297 + }, + { + "start": 15641.67, + "end": 15642.02, + "probability": 0.3627 + }, + { + "start": 15642.6, + "end": 15644.08, + "probability": 0.065 + }, + { + "start": 15645.08, + "end": 15645.46, + "probability": 0.9209 + }, + { + "start": 15646.52, + "end": 15647.2, + "probability": 0.5973 + }, + { + "start": 15648.0, + "end": 15648.4, + "probability": 0.4823 + }, + { + "start": 15649.28, + "end": 15650.04, + "probability": 0.664 + }, + { + "start": 15655.76, + "end": 15656.14, + "probability": 0.5026 + }, + { + "start": 15658.6, + "end": 15659.28, + "probability": 0.7844 + }, + { + "start": 15660.94, + "end": 15661.32, + "probability": 0.7072 + }, + { + "start": 15662.12, + "end": 15662.84, + "probability": 0.7276 + }, + { + "start": 15664.72, + "end": 15665.1, + "probability": 0.9766 + }, + { + "start": 15666.88, + "end": 15667.92, + "probability": 0.6101 + }, + { + "start": 15669.84, + "end": 15673.51, + "probability": 0.1965 + }, + { + "start": 15674.76, + "end": 15675.5, + "probability": 0.3918 + }, + { + "start": 15675.5, + "end": 15676.62, + "probability": 0.0337 + }, + { + "start": 15677.54, + "end": 15678.6, + "probability": 0.288 + }, + { + "start": 15678.68, + "end": 15682.6, + "probability": 0.5584 + }, + { + "start": 15683.5, + "end": 15684.12, + "probability": 0.5682 + }, + { + "start": 15685.7, + "end": 15686.6, + "probability": 0.0292 + }, + { + "start": 15688.2, + "end": 15691.22, + "probability": 0.8642 + }, + { + "start": 15692.86, + "end": 15694.14, + "probability": 0.9077 + }, + { + "start": 15695.64, + "end": 15696.67, + "probability": 0.0853 + }, + { + "start": 15697.74, + "end": 15700.96, + "probability": 0.871 + }, + { + "start": 15701.1, + "end": 15702.12, + "probability": 0.7427 + }, + { + "start": 15703.06, + "end": 15705.58, + "probability": 0.5636 + }, + { + "start": 15706.64, + "end": 15706.94, + "probability": 0.8647 + }, + { + "start": 15707.82, + "end": 15709.54, + "probability": 0.5892 + }, + { + "start": 15715.68, + "end": 15715.88, + "probability": 0.6765 + }, + { + "start": 15719.72, + "end": 15720.76, + "probability": 0.6904 + }, + { + "start": 15721.74, + "end": 15722.02, + "probability": 0.7113 + }, + { + "start": 15723.08, + "end": 15723.86, + "probability": 0.7494 + }, + { + "start": 15725.46, + "end": 15725.84, + "probability": 0.7842 + }, + { + "start": 15727.1, + "end": 15727.96, + "probability": 0.9184 + }, + { + "start": 15728.7, + "end": 15730.7, + "probability": 0.8441 + }, + { + "start": 15734.66, + "end": 15735.02, + "probability": 0.4271 + }, + { + "start": 15736.72, + "end": 15737.94, + "probability": 0.7942 + }, + { + "start": 15740.54, + "end": 15743.08, + "probability": 0.95 + }, + { + "start": 15745.76, + "end": 15750.26, + "probability": 0.5582 + }, + { + "start": 15752.26, + "end": 15752.66, + "probability": 0.9565 + }, + { + "start": 15753.8, + "end": 15754.66, + "probability": 0.8075 + }, + { + "start": 15755.58, + "end": 15760.6, + "probability": 0.6622 + }, + { + "start": 15762.28, + "end": 15762.78, + "probability": 0.9188 + }, + { + "start": 15764.54, + "end": 15765.4, + "probability": 0.9402 + }, + { + "start": 15768.84, + "end": 15771.54, + "probability": 0.6957 + }, + { + "start": 15772.66, + "end": 15773.14, + "probability": 0.9502 + }, + { + "start": 15774.14, + "end": 15775.54, + "probability": 0.8273 + }, + { + "start": 15777.04, + "end": 15777.46, + "probability": 0.9707 + }, + { + "start": 15778.7, + "end": 15780.22, + "probability": 0.7543 + }, + { + "start": 15781.34, + "end": 15781.66, + "probability": 0.8877 + }, + { + "start": 15782.48, + "end": 15783.0, + "probability": 0.4625 + }, + { + "start": 15786.34, + "end": 15787.08, + "probability": 0.8273 + }, + { + "start": 15787.82, + "end": 15789.02, + "probability": 0.745 + }, + { + "start": 15794.84, + "end": 15795.46, + "probability": 0.8287 + }, + { + "start": 15796.6, + "end": 15797.1, + "probability": 0.5316 + }, + { + "start": 15798.74, + "end": 15799.7, + "probability": 0.2663 + }, + { + "start": 15801.92, + "end": 15802.38, + "probability": 0.9538 + }, + { + "start": 15804.28, + "end": 15806.36, + "probability": 0.7534 + }, + { + "start": 15807.38, + "end": 15808.16, + "probability": 0.6893 + }, + { + "start": 15809.16, + "end": 15809.58, + "probability": 0.9689 + }, + { + "start": 15810.46, + "end": 15811.4, + "probability": 0.0787 + }, + { + "start": 15812.18, + "end": 15812.62, + "probability": 0.9272 + }, + { + "start": 15813.58, + "end": 15815.1, + "probability": 0.9325 + }, + { + "start": 15816.36, + "end": 15816.76, + "probability": 0.981 + }, + { + "start": 15820.38, + "end": 15820.9, + "probability": 0.4492 + }, + { + "start": 15822.26, + "end": 15824.0, + "probability": 0.7454 + }, + { + "start": 15825.73, + "end": 15826.96, + "probability": 0.9116 + }, + { + "start": 15828.56, + "end": 15828.98, + "probability": 0.9757 + }, + { + "start": 15829.98, + "end": 15830.78, + "probability": 0.8803 + }, + { + "start": 15831.98, + "end": 15834.12, + "probability": 0.9277 + }, + { + "start": 15839.22, + "end": 15840.6, + "probability": 0.4679 + }, + { + "start": 15841.62, + "end": 15842.22, + "probability": 0.6628 + }, + { + "start": 15844.78, + "end": 15846.78, + "probability": 0.6344 + }, + { + "start": 15847.54, + "end": 15848.96, + "probability": 0.79 + }, + { + "start": 15850.82, + "end": 15854.46, + "probability": 0.5149 + }, + { + "start": 15855.56, + "end": 15855.82, + "probability": 0.9136 + }, + { + "start": 15856.9, + "end": 15857.76, + "probability": 0.7906 + }, + { + "start": 15859.64, + "end": 15859.8, + "probability": 0.2031 + }, + { + "start": 15860.34, + "end": 15860.48, + "probability": 0.4193 + }, + { + "start": 15867.94, + "end": 15869.18, + "probability": 0.4354 + }, + { + "start": 15869.88, + "end": 15870.94, + "probability": 0.3331 + }, + { + "start": 15871.7, + "end": 15872.38, + "probability": 0.7786 + }, + { + "start": 15874.38, + "end": 15876.72, + "probability": 0.71 + }, + { + "start": 15877.62, + "end": 15877.94, + "probability": 0.846 + }, + { + "start": 15878.54, + "end": 15879.72, + "probability": 0.7243 + }, + { + "start": 15880.68, + "end": 15882.98, + "probability": 0.8188 + }, + { + "start": 15883.92, + "end": 15885.74, + "probability": 0.9476 + }, + { + "start": 15886.88, + "end": 15891.42, + "probability": 0.763 + }, + { + "start": 15892.5, + "end": 15896.14, + "probability": 0.7321 + }, + { + "start": 15897.8, + "end": 15901.82, + "probability": 0.6441 + }, + { + "start": 15903.04, + "end": 15905.2, + "probability": 0.6586 + }, + { + "start": 15906.56, + "end": 15909.08, + "probability": 0.9434 + }, + { + "start": 15911.16, + "end": 15913.5, + "probability": 0.8783 + }, + { + "start": 15914.4, + "end": 15914.8, + "probability": 0.8979 + }, + { + "start": 15915.7, + "end": 15917.28, + "probability": 0.9553 + }, + { + "start": 15917.8, + "end": 15919.96, + "probability": 0.9861 + }, + { + "start": 15921.22, + "end": 15923.4, + "probability": 0.994 + }, + { + "start": 15924.4, + "end": 15924.8, + "probability": 0.9949 + }, + { + "start": 15926.38, + "end": 15927.24, + "probability": 0.3715 + }, + { + "start": 15928.04, + "end": 15928.34, + "probability": 0.7549 + }, + { + "start": 15929.12, + "end": 15930.06, + "probability": 0.8618 + }, + { + "start": 15930.88, + "end": 15931.4, + "probability": 0.8015 + }, + { + "start": 15932.3, + "end": 15933.12, + "probability": 0.9274 + }, + { + "start": 15934.44, + "end": 15934.82, + "probability": 0.925 + }, + { + "start": 15936.54, + "end": 15937.66, + "probability": 0.9837 + }, + { + "start": 15938.48, + "end": 15939.34, + "probability": 0.9744 + }, + { + "start": 15940.1, + "end": 15944.36, + "probability": 0.8174 + }, + { + "start": 15945.12, + "end": 15945.46, + "probability": 0.9832 + }, + { + "start": 15946.34, + "end": 15947.68, + "probability": 0.9844 + }, + { + "start": 15948.94, + "end": 15950.94, + "probability": 0.5178 + }, + { + "start": 15952.68, + "end": 15953.28, + "probability": 0.5271 + }, + { + "start": 15954.08, + "end": 15956.64, + "probability": 0.474 + }, + { + "start": 15958.48, + "end": 15958.82, + "probability": 0.7725 + }, + { + "start": 15959.64, + "end": 15960.7, + "probability": 0.2755 + }, + { + "start": 15965.32, + "end": 15965.76, + "probability": 0.7341 + }, + { + "start": 15967.12, + "end": 15967.74, + "probability": 0.7189 + }, + { + "start": 15969.26, + "end": 15969.6, + "probability": 0.8281 + }, + { + "start": 15970.54, + "end": 15971.18, + "probability": 0.4719 + }, + { + "start": 15974.2, + "end": 15974.54, + "probability": 0.6963 + }, + { + "start": 15975.72, + "end": 15976.22, + "probability": 0.828 + }, + { + "start": 15978.88, + "end": 15979.12, + "probability": 0.5526 + }, + { + "start": 15982.62, + "end": 15983.5, + "probability": 0.5757 + }, + { + "start": 15984.06, + "end": 15984.48, + "probability": 0.2959 + }, + { + "start": 15984.8, + "end": 15985.42, + "probability": 0.3287 + }, + { + "start": 15985.72, + "end": 15987.28, + "probability": 0.7634 + }, + { + "start": 15987.68, + "end": 15990.34, + "probability": 0.7068 + }, + { + "start": 15990.46, + "end": 15991.4, + "probability": 0.8963 + }, + { + "start": 15991.58, + "end": 15993.38, + "probability": 0.5489 + }, + { + "start": 15997.02, + "end": 16005.76, + "probability": 0.2667 + }, + { + "start": 16007.12, + "end": 16008.9, + "probability": 0.8183 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.0, + "end": 16127.0, + "probability": 0.0 + }, + { + "start": 16127.14, + "end": 16128.2, + "probability": 0.0383 + }, + { + "start": 16129.22, + "end": 16129.92, + "probability": 0.1968 + }, + { + "start": 16130.44, + "end": 16132.8, + "probability": 0.609 + }, + { + "start": 16133.56, + "end": 16134.82, + "probability": 0.8963 + }, + { + "start": 16134.98, + "end": 16138.54, + "probability": 0.934 + }, + { + "start": 16144.06, + "end": 16144.18, + "probability": 0.2471 + }, + { + "start": 16144.18, + "end": 16144.18, + "probability": 0.0822 + }, + { + "start": 16144.18, + "end": 16146.4, + "probability": 0.3787 + }, + { + "start": 16147.62, + "end": 16147.84, + "probability": 0.0122 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.0, + "end": 16251.0, + "probability": 0.0 + }, + { + "start": 16251.08, + "end": 16252.62, + "probability": 0.5221 + }, + { + "start": 16253.36, + "end": 16253.6, + "probability": 0.0307 + }, + { + "start": 16253.6, + "end": 16253.6, + "probability": 0.2061 + }, + { + "start": 16253.6, + "end": 16254.96, + "probability": 0.5789 + }, + { + "start": 16254.96, + "end": 16254.96, + "probability": 0.7703 + }, + { + "start": 16254.96, + "end": 16255.87, + "probability": 0.9904 + }, + { + "start": 16256.96, + "end": 16258.46, + "probability": 0.9319 + }, + { + "start": 16258.46, + "end": 16259.14, + "probability": 0.236 + }, + { + "start": 16259.14, + "end": 16259.5, + "probability": 0.1479 + }, + { + "start": 16259.66, + "end": 16261.24, + "probability": 0.3352 + }, + { + "start": 16261.96, + "end": 16263.0, + "probability": 0.5388 + }, + { + "start": 16263.28, + "end": 16263.54, + "probability": 0.2486 + }, + { + "start": 16263.82, + "end": 16264.26, + "probability": 0.0193 + }, + { + "start": 16264.76, + "end": 16266.32, + "probability": 0.0152 + }, + { + "start": 16266.8, + "end": 16269.74, + "probability": 0.3796 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16396.0, + "end": 16396.0, + "probability": 0.0 + }, + { + "start": 16400.84, + "end": 16406.9, + "probability": 0.3207 + }, + { + "start": 16408.68, + "end": 16409.56, + "probability": 0.6454 + }, + { + "start": 16410.88, + "end": 16411.26, + "probability": 0.875 + }, + { + "start": 16411.9, + "end": 16413.16, + "probability": 0.31 + }, + { + "start": 16414.38, + "end": 16417.04, + "probability": 0.9242 + }, + { + "start": 16418.18, + "end": 16418.62, + "probability": 0.4394 + }, + { + "start": 16420.14, + "end": 16421.78, + "probability": 0.541 + }, + { + "start": 16422.94, + "end": 16423.36, + "probability": 0.8485 + }, + { + "start": 16424.58, + "end": 16426.74, + "probability": 0.6278 + }, + { + "start": 16427.66, + "end": 16429.04, + "probability": 0.5373 + }, + { + "start": 16429.58, + "end": 16432.06, + "probability": 0.5991 + }, + { + "start": 16433.36, + "end": 16433.64, + "probability": 0.5321 + }, + { + "start": 16436.94, + "end": 16440.84, + "probability": 0.9294 + }, + { + "start": 16441.14, + "end": 16442.78, + "probability": 0.1788 + }, + { + "start": 16453.06, + "end": 16454.34, + "probability": 0.3022 + }, + { + "start": 16455.58, + "end": 16458.62, + "probability": 0.5818 + }, + { + "start": 16460.94, + "end": 16462.38, + "probability": 0.7112 + }, + { + "start": 16466.44, + "end": 16466.88, + "probability": 0.549 + }, + { + "start": 16468.46, + "end": 16470.46, + "probability": 0.9257 + }, + { + "start": 16472.54, + "end": 16473.86, + "probability": 0.6362 + }, + { + "start": 16478.44, + "end": 16484.52, + "probability": 0.6536 + }, + { + "start": 16484.58, + "end": 16486.46, + "probability": 0.9286 + }, + { + "start": 16486.56, + "end": 16487.42, + "probability": 0.5165 + }, + { + "start": 16487.84, + "end": 16488.52, + "probability": 0.1382 + }, + { + "start": 16488.52, + "end": 16488.94, + "probability": 0.0276 + }, + { + "start": 16489.68, + "end": 16490.94, + "probability": 0.959 + }, + { + "start": 16493.86, + "end": 16495.1, + "probability": 0.325 + }, + { + "start": 16497.04, + "end": 16500.96, + "probability": 0.0569 + }, + { + "start": 16501.18, + "end": 16503.93, + "probability": 0.0307 + }, + { + "start": 16505.76, + "end": 16506.06, + "probability": 0.1537 + }, + { + "start": 16506.24, + "end": 16507.04, + "probability": 0.0429 + }, + { + "start": 16507.38, + "end": 16507.97, + "probability": 0.0532 + }, + { + "start": 16509.94, + "end": 16510.44, + "probability": 0.0132 + }, + { + "start": 16511.04, + "end": 16518.12, + "probability": 0.0963 + }, + { + "start": 16518.42, + "end": 16520.16, + "probability": 0.7018 + }, + { + "start": 16522.73, + "end": 16524.44, + "probability": 0.5616 + }, + { + "start": 16525.1, + "end": 16527.93, + "probability": 0.1742 + }, + { + "start": 16528.8, + "end": 16530.3, + "probability": 0.2201 + }, + { + "start": 16530.82, + "end": 16532.12, + "probability": 0.3297 + }, + { + "start": 16532.92, + "end": 16534.02, + "probability": 0.1824 + }, + { + "start": 16534.14, + "end": 16535.68, + "probability": 0.1804 + }, + { + "start": 16572.18, + "end": 16573.26, + "probability": 0.1728 + }, + { + "start": 16574.08, + "end": 16576.18, + "probability": 0.8231 + }, + { + "start": 16577.16, + "end": 16583.32, + "probability": 0.3808 + }, + { + "start": 16583.74, + "end": 16585.56, + "probability": 0.4468 + }, + { + "start": 16587.76, + "end": 16590.96, + "probability": 0.3086 + }, + { + "start": 16591.2, + "end": 16593.62, + "probability": 0.8647 + }, + { + "start": 16594.62, + "end": 16596.82, + "probability": 0.4895 + }, + { + "start": 16596.82, + "end": 16597.72, + "probability": 0.281 + }, + { + "start": 16597.72, + "end": 16599.36, + "probability": 0.8163 + }, + { + "start": 16601.14, + "end": 16602.18, + "probability": 0.937 + }, + { + "start": 16602.54, + "end": 16603.86, + "probability": 0.6204 + }, + { + "start": 16603.99, + "end": 16607.78, + "probability": 0.6175 + }, + { + "start": 16608.06, + "end": 16609.6, + "probability": 0.6237 + }, + { + "start": 16609.6, + "end": 16611.26, + "probability": 0.6144 + }, + { + "start": 16630.96, + "end": 16631.32, + "probability": 0.3016 + }, + { + "start": 16631.32, + "end": 16632.58, + "probability": 0.2525 + }, + { + "start": 16632.64, + "end": 16633.06, + "probability": 0.4514 + }, + { + "start": 16633.42, + "end": 16633.68, + "probability": 0.4954 + }, + { + "start": 16633.68, + "end": 16633.68, + "probability": 0.5829 + }, + { + "start": 16633.68, + "end": 16635.22, + "probability": 0.4118 + }, + { + "start": 16635.32, + "end": 16636.44, + "probability": 0.4625 + }, + { + "start": 16637.0, + "end": 16639.14, + "probability": 0.6017 + }, + { + "start": 16639.24, + "end": 16640.86, + "probability": 0.4425 + }, + { + "start": 16641.16, + "end": 16646.58, + "probability": 0.7231 + }, + { + "start": 16646.94, + "end": 16647.68, + "probability": 0.485 + }, + { + "start": 16647.86, + "end": 16651.02, + "probability": 0.7981 + }, + { + "start": 16652.52, + "end": 16653.28, + "probability": 0.7097 + }, + { + "start": 16653.52, + "end": 16654.24, + "probability": 0.758 + }, + { + "start": 16654.46, + "end": 16655.52, + "probability": 0.5343 + }, + { + "start": 16655.6, + "end": 16659.3, + "probability": 0.9304 + }, + { + "start": 16663.54, + "end": 16665.84, + "probability": 0.6618 + }, + { + "start": 16666.16, + "end": 16667.98, + "probability": 0.4372 + }, + { + "start": 16671.18, + "end": 16676.18, + "probability": 0.9891 + }, + { + "start": 16677.36, + "end": 16679.06, + "probability": 0.7212 + }, + { + "start": 16680.16, + "end": 16681.68, + "probability": 0.8408 + }, + { + "start": 16681.82, + "end": 16687.5, + "probability": 0.9201 + }, + { + "start": 16687.98, + "end": 16689.68, + "probability": 0.6658 + }, + { + "start": 16690.76, + "end": 16692.36, + "probability": 0.9951 + }, + { + "start": 16692.52, + "end": 16693.38, + "probability": 0.7793 + }, + { + "start": 16693.58, + "end": 16696.02, + "probability": 0.8516 + }, + { + "start": 16697.56, + "end": 16699.8, + "probability": 0.939 + }, + { + "start": 16699.98, + "end": 16701.0, + "probability": 0.9311 + }, + { + "start": 16702.58, + "end": 16704.54, + "probability": 0.9526 + }, + { + "start": 16706.08, + "end": 16707.62, + "probability": 0.9956 + }, + { + "start": 16708.1, + "end": 16711.62, + "probability": 0.98 + }, + { + "start": 16714.72, + "end": 16718.84, + "probability": 0.9985 + }, + { + "start": 16720.42, + "end": 16722.6, + "probability": 0.964 + }, + { + "start": 16723.72, + "end": 16724.76, + "probability": 0.8948 + }, + { + "start": 16726.62, + "end": 16730.94, + "probability": 0.9965 + }, + { + "start": 16731.86, + "end": 16738.78, + "probability": 0.9968 + }, + { + "start": 16739.84, + "end": 16741.68, + "probability": 0.6355 + }, + { + "start": 16742.2, + "end": 16743.4, + "probability": 0.9291 + }, + { + "start": 16744.12, + "end": 16745.24, + "probability": 0.328 + }, + { + "start": 16745.38, + "end": 16746.16, + "probability": 0.5442 + }, + { + "start": 16746.64, + "end": 16751.28, + "probability": 0.9813 + }, + { + "start": 16751.38, + "end": 16752.4, + "probability": 0.8389 + }, + { + "start": 16752.6, + "end": 16753.28, + "probability": 0.7693 + }, + { + "start": 16754.64, + "end": 16756.84, + "probability": 0.9875 + }, + { + "start": 16756.88, + "end": 16759.88, + "probability": 0.9508 + }, + { + "start": 16760.62, + "end": 16762.34, + "probability": 0.9951 + }, + { + "start": 16764.0, + "end": 16768.48, + "probability": 0.9649 + }, + { + "start": 16768.62, + "end": 16769.38, + "probability": 0.7852 + }, + { + "start": 16769.58, + "end": 16770.78, + "probability": 0.9829 + }, + { + "start": 16771.78, + "end": 16773.68, + "probability": 0.9205 + }, + { + "start": 16773.72, + "end": 16776.32, + "probability": 0.9527 + }, + { + "start": 16776.74, + "end": 16779.12, + "probability": 0.9961 + }, + { + "start": 16779.16, + "end": 16780.4, + "probability": 0.7452 + }, + { + "start": 16781.54, + "end": 16784.36, + "probability": 0.9906 + }, + { + "start": 16785.6, + "end": 16787.42, + "probability": 0.9098 + }, + { + "start": 16788.64, + "end": 16790.3, + "probability": 0.9795 + }, + { + "start": 16790.8, + "end": 16795.14, + "probability": 0.8394 + }, + { + "start": 16795.37, + "end": 16799.92, + "probability": 0.9749 + }, + { + "start": 16801.06, + "end": 16802.54, + "probability": 0.9924 + }, + { + "start": 16803.14, + "end": 16806.78, + "probability": 0.7178 + }, + { + "start": 16807.34, + "end": 16812.4, + "probability": 0.825 + }, + { + "start": 16812.98, + "end": 16814.24, + "probability": 0.8625 + }, + { + "start": 16814.28, + "end": 16815.61, + "probability": 0.9707 + }, + { + "start": 16815.98, + "end": 16817.14, + "probability": 0.9868 + }, + { + "start": 16818.04, + "end": 16818.72, + "probability": 0.7956 + }, + { + "start": 16818.86, + "end": 16819.88, + "probability": 0.8491 + }, + { + "start": 16820.2, + "end": 16822.54, + "probability": 0.8048 + }, + { + "start": 16823.08, + "end": 16825.98, + "probability": 0.984 + }, + { + "start": 16826.69, + "end": 16828.46, + "probability": 0.9983 + }, + { + "start": 16828.92, + "end": 16830.02, + "probability": 0.9496 + }, + { + "start": 16830.24, + "end": 16831.42, + "probability": 0.7392 + }, + { + "start": 16831.52, + "end": 16832.44, + "probability": 0.8147 + }, + { + "start": 16832.62, + "end": 16833.3, + "probability": 0.4743 + }, + { + "start": 16833.76, + "end": 16837.71, + "probability": 0.9356 + }, + { + "start": 16837.9, + "end": 16837.9, + "probability": 0.5491 + }, + { + "start": 16837.9, + "end": 16841.28, + "probability": 0.9739 + }, + { + "start": 16842.22, + "end": 16842.22, + "probability": 0.1226 + }, + { + "start": 16842.22, + "end": 16842.48, + "probability": 0.5442 + }, + { + "start": 16842.52, + "end": 16843.38, + "probability": 0.8125 + }, + { + "start": 16843.58, + "end": 16844.26, + "probability": 0.8058 + }, + { + "start": 16846.06, + "end": 16849.02, + "probability": 0.9779 + }, + { + "start": 16849.8, + "end": 16850.34, + "probability": 0.651 + }, + { + "start": 16850.48, + "end": 16854.1, + "probability": 0.856 + }, + { + "start": 16854.22, + "end": 16856.74, + "probability": 0.9513 + }, + { + "start": 16857.54, + "end": 16859.46, + "probability": 0.9668 + }, + { + "start": 16860.64, + "end": 16863.22, + "probability": 0.9912 + }, + { + "start": 16864.54, + "end": 16865.62, + "probability": 0.9688 + }, + { + "start": 16866.36, + "end": 16868.5, + "probability": 0.9993 + }, + { + "start": 16869.52, + "end": 16873.4, + "probability": 0.7976 + }, + { + "start": 16874.62, + "end": 16875.52, + "probability": 0.9714 + }, + { + "start": 16876.86, + "end": 16877.9, + "probability": 0.9098 + }, + { + "start": 16878.84, + "end": 16882.92, + "probability": 0.9839 + }, + { + "start": 16883.84, + "end": 16886.8, + "probability": 0.8381 + }, + { + "start": 16887.86, + "end": 16893.4, + "probability": 0.7735 + }, + { + "start": 16893.94, + "end": 16894.68, + "probability": 0.6917 + }, + { + "start": 16894.96, + "end": 16898.04, + "probability": 0.9729 + }, + { + "start": 16898.5, + "end": 16899.5, + "probability": 0.9092 + }, + { + "start": 16900.44, + "end": 16901.42, + "probability": 0.9092 + }, + { + "start": 16902.32, + "end": 16903.35, + "probability": 0.8838 + }, + { + "start": 16904.72, + "end": 16906.54, + "probability": 0.6487 + }, + { + "start": 16907.14, + "end": 16908.48, + "probability": 0.9912 + }, + { + "start": 16909.16, + "end": 16910.76, + "probability": 0.6142 + }, + { + "start": 16910.82, + "end": 16911.56, + "probability": 0.3851 + }, + { + "start": 16912.54, + "end": 16912.88, + "probability": 0.4686 + }, + { + "start": 16913.76, + "end": 16916.3, + "probability": 0.9707 + }, + { + "start": 16916.38, + "end": 16917.7, + "probability": 0.8968 + }, + { + "start": 16918.58, + "end": 16919.5, + "probability": 0.9852 + }, + { + "start": 16920.9, + "end": 16921.88, + "probability": 0.8098 + }, + { + "start": 16922.82, + "end": 16925.44, + "probability": 0.979 + }, + { + "start": 16927.82, + "end": 16928.31, + "probability": 0.8856 + }, + { + "start": 16928.66, + "end": 16929.8, + "probability": 0.929 + }, + { + "start": 16930.78, + "end": 16932.48, + "probability": 0.9356 + }, + { + "start": 16932.68, + "end": 16934.5, + "probability": 0.9496 + }, + { + "start": 16934.6, + "end": 16935.26, + "probability": 0.7827 + }, + { + "start": 16936.06, + "end": 16936.84, + "probability": 0.8098 + }, + { + "start": 16937.62, + "end": 16939.32, + "probability": 0.864 + }, + { + "start": 16940.62, + "end": 16943.28, + "probability": 0.6501 + }, + { + "start": 16944.28, + "end": 16952.74, + "probability": 0.8752 + }, + { + "start": 16953.3, + "end": 16954.22, + "probability": 0.8799 + }, + { + "start": 16955.12, + "end": 16957.0, + "probability": 0.8619 + }, + { + "start": 16957.94, + "end": 16960.3, + "probability": 0.855 + }, + { + "start": 16961.14, + "end": 16962.3, + "probability": 0.9526 + }, + { + "start": 16962.52, + "end": 16963.32, + "probability": 0.8963 + }, + { + "start": 16963.46, + "end": 16965.04, + "probability": 0.9885 + }, + { + "start": 16965.22, + "end": 16967.6, + "probability": 0.9846 + }, + { + "start": 16969.0, + "end": 16970.34, + "probability": 0.931 + }, + { + "start": 16971.04, + "end": 16973.62, + "probability": 0.9917 + }, + { + "start": 16974.12, + "end": 16977.36, + "probability": 0.9712 + }, + { + "start": 16977.42, + "end": 16981.04, + "probability": 0.9863 + }, + { + "start": 16981.14, + "end": 16981.64, + "probability": 0.718 + }, + { + "start": 16982.58, + "end": 16984.0, + "probability": 0.6828 + }, + { + "start": 16984.06, + "end": 16985.04, + "probability": 0.4262 + }, + { + "start": 16985.58, + "end": 16988.1, + "probability": 0.8198 + }, + { + "start": 16988.62, + "end": 16991.56, + "probability": 0.9721 + }, + { + "start": 16992.46, + "end": 16995.48, + "probability": 0.9375 + }, + { + "start": 16995.48, + "end": 16997.54, + "probability": 0.9553 + }, + { + "start": 16998.14, + "end": 16999.86, + "probability": 0.9897 + }, + { + "start": 17000.36, + "end": 17003.08, + "probability": 0.949 + }, + { + "start": 17003.88, + "end": 17008.94, + "probability": 0.998 + }, + { + "start": 17009.0, + "end": 17011.46, + "probability": 0.6764 + }, + { + "start": 17012.46, + "end": 17013.28, + "probability": 0.918 + }, + { + "start": 17014.6, + "end": 17018.0, + "probability": 0.9283 + }, + { + "start": 17018.06, + "end": 17019.82, + "probability": 0.8813 + }, + { + "start": 17020.44, + "end": 17021.72, + "probability": 0.9713 + }, + { + "start": 17023.6, + "end": 17025.3, + "probability": 0.9189 + }, + { + "start": 17025.3, + "end": 17025.76, + "probability": 0.0728 + }, + { + "start": 17026.12, + "end": 17029.24, + "probability": 0.9455 + }, + { + "start": 17029.68, + "end": 17034.56, + "probability": 0.9857 + }, + { + "start": 17035.62, + "end": 17037.14, + "probability": 0.7535 + }, + { + "start": 17037.22, + "end": 17039.98, + "probability": 0.6369 + }, + { + "start": 17040.72, + "end": 17041.9, + "probability": 0.5179 + }, + { + "start": 17042.22, + "end": 17045.62, + "probability": 0.9618 + }, + { + "start": 17046.18, + "end": 17048.0, + "probability": 0.7478 + }, + { + "start": 17048.08, + "end": 17050.64, + "probability": 0.9414 + }, + { + "start": 17051.28, + "end": 17052.68, + "probability": 0.9331 + }, + { + "start": 17054.72, + "end": 17055.32, + "probability": 0.5986 + }, + { + "start": 17056.38, + "end": 17059.76, + "probability": 0.9894 + }, + { + "start": 17060.4, + "end": 17062.55, + "probability": 0.962 + }, + { + "start": 17065.38, + "end": 17066.36, + "probability": 0.9785 + }, + { + "start": 17066.44, + "end": 17068.08, + "probability": 0.8476 + }, + { + "start": 17068.32, + "end": 17071.12, + "probability": 0.9536 + }, + { + "start": 17071.76, + "end": 17072.48, + "probability": 0.5822 + }, + { + "start": 17073.54, + "end": 17075.06, + "probability": 0.9264 + }, + { + "start": 17075.92, + "end": 17078.22, + "probability": 0.9863 + }, + { + "start": 17078.22, + "end": 17080.14, + "probability": 0.8958 + }, + { + "start": 17081.06, + "end": 17084.86, + "probability": 0.9986 + }, + { + "start": 17084.86, + "end": 17088.9, + "probability": 0.9956 + }, + { + "start": 17089.06, + "end": 17090.97, + "probability": 0.89 + }, + { + "start": 17092.36, + "end": 17094.7, + "probability": 0.6942 + }, + { + "start": 17095.4, + "end": 17096.03, + "probability": 0.9413 + }, + { + "start": 17097.12, + "end": 17099.1, + "probability": 0.5194 + }, + { + "start": 17099.22, + "end": 17100.54, + "probability": 0.9309 + }, + { + "start": 17100.6, + "end": 17103.18, + "probability": 0.8711 + }, + { + "start": 17104.36, + "end": 17106.9, + "probability": 0.9953 + }, + { + "start": 17106.96, + "end": 17107.34, + "probability": 0.4017 + }, + { + "start": 17107.44, + "end": 17109.78, + "probability": 0.7827 + }, + { + "start": 17110.56, + "end": 17111.98, + "probability": 0.9121 + }, + { + "start": 17112.4, + "end": 17116.08, + "probability": 0.9781 + }, + { + "start": 17116.7, + "end": 17119.0, + "probability": 0.995 + }, + { + "start": 17119.84, + "end": 17122.34, + "probability": 0.8594 + }, + { + "start": 17122.88, + "end": 17125.42, + "probability": 0.674 + }, + { + "start": 17126.0, + "end": 17130.1, + "probability": 0.8634 + }, + { + "start": 17131.18, + "end": 17133.18, + "probability": 0.9915 + }, + { + "start": 17133.7, + "end": 17135.08, + "probability": 0.9882 + }, + { + "start": 17136.52, + "end": 17138.24, + "probability": 0.9424 + }, + { + "start": 17138.28, + "end": 17139.15, + "probability": 0.8125 + }, + { + "start": 17139.16, + "end": 17141.96, + "probability": 0.9618 + }, + { + "start": 17142.1, + "end": 17142.68, + "probability": 0.9116 + }, + { + "start": 17143.92, + "end": 17148.54, + "probability": 0.8208 + }, + { + "start": 17148.76, + "end": 17149.86, + "probability": 0.7687 + }, + { + "start": 17150.48, + "end": 17151.4, + "probability": 0.5708 + }, + { + "start": 17151.7, + "end": 17152.58, + "probability": 0.8407 + }, + { + "start": 17153.28, + "end": 17154.36, + "probability": 0.9422 + }, + { + "start": 17154.64, + "end": 17155.68, + "probability": 0.9703 + }, + { + "start": 17155.78, + "end": 17156.38, + "probability": 0.6988 + }, + { + "start": 17156.66, + "end": 17157.3, + "probability": 0.9434 + }, + { + "start": 17157.68, + "end": 17158.26, + "probability": 0.4576 + }, + { + "start": 17158.76, + "end": 17159.6, + "probability": 0.8569 + }, + { + "start": 17160.58, + "end": 17161.8, + "probability": 0.9743 + }, + { + "start": 17163.26, + "end": 17165.66, + "probability": 0.98 + }, + { + "start": 17166.58, + "end": 17167.26, + "probability": 0.8882 + }, + { + "start": 17167.96, + "end": 17168.58, + "probability": 0.5441 + }, + { + "start": 17169.26, + "end": 17171.64, + "probability": 0.9739 + }, + { + "start": 17171.98, + "end": 17172.94, + "probability": 0.9775 + }, + { + "start": 17173.02, + "end": 17174.16, + "probability": 0.7843 + }, + { + "start": 17174.84, + "end": 17176.8, + "probability": 0.9281 + }, + { + "start": 17177.66, + "end": 17177.98, + "probability": 0.6104 + }, + { + "start": 17179.0, + "end": 17180.8, + "probability": 0.9162 + }, + { + "start": 17180.86, + "end": 17183.92, + "probability": 0.9492 + }, + { + "start": 17184.56, + "end": 17185.3, + "probability": 0.8394 + }, + { + "start": 17185.94, + "end": 17190.5, + "probability": 0.9065 + }, + { + "start": 17190.82, + "end": 17193.48, + "probability": 0.9157 + }, + { + "start": 17196.2, + "end": 17197.4, + "probability": 0.3063 + }, + { + "start": 17198.42, + "end": 17200.34, + "probability": 0.9424 + }, + { + "start": 17201.08, + "end": 17201.14, + "probability": 0.0236 + }, + { + "start": 17201.14, + "end": 17201.14, + "probability": 0.0132 + }, + { + "start": 17201.14, + "end": 17201.54, + "probability": 0.7088 + }, + { + "start": 17202.0, + "end": 17203.0, + "probability": 0.9631 + }, + { + "start": 17203.16, + "end": 17203.88, + "probability": 0.9374 + }, + { + "start": 17204.35, + "end": 17206.2, + "probability": 0.9106 + }, + { + "start": 17207.0, + "end": 17209.62, + "probability": 0.9908 + }, + { + "start": 17211.34, + "end": 17213.42, + "probability": 0.9866 + }, + { + "start": 17213.46, + "end": 17214.26, + "probability": 0.8881 + }, + { + "start": 17214.32, + "end": 17214.56, + "probability": 0.8706 + }, + { + "start": 17214.64, + "end": 17216.44, + "probability": 0.9537 + }, + { + "start": 17216.96, + "end": 17217.52, + "probability": 0.7894 + }, + { + "start": 17218.2, + "end": 17222.14, + "probability": 0.9795 + }, + { + "start": 17222.64, + "end": 17223.44, + "probability": 0.8416 + }, + { + "start": 17223.52, + "end": 17224.22, + "probability": 0.7031 + }, + { + "start": 17224.38, + "end": 17225.16, + "probability": 0.7357 + }, + { + "start": 17225.26, + "end": 17226.1, + "probability": 0.7382 + }, + { + "start": 17227.46, + "end": 17229.02, + "probability": 0.8141 + }, + { + "start": 17230.7, + "end": 17233.16, + "probability": 0.8993 + }, + { + "start": 17233.98, + "end": 17235.42, + "probability": 0.6211 + }, + { + "start": 17235.84, + "end": 17238.5, + "probability": 0.9869 + }, + { + "start": 17238.6, + "end": 17240.2, + "probability": 0.7333 + }, + { + "start": 17240.24, + "end": 17240.88, + "probability": 0.8444 + }, + { + "start": 17241.3, + "end": 17246.4, + "probability": 0.9973 + }, + { + "start": 17246.4, + "end": 17249.86, + "probability": 0.9904 + }, + { + "start": 17250.92, + "end": 17250.92, + "probability": 0.181 + }, + { + "start": 17250.92, + "end": 17252.9, + "probability": 0.8704 + }, + { + "start": 17253.04, + "end": 17254.08, + "probability": 0.6893 + }, + { + "start": 17254.48, + "end": 17255.3, + "probability": 0.9567 + }, + { + "start": 17255.88, + "end": 17256.74, + "probability": 0.9116 + }, + { + "start": 17256.96, + "end": 17257.62, + "probability": 0.7636 + }, + { + "start": 17258.14, + "end": 17259.29, + "probability": 0.9966 + }, + { + "start": 17260.1, + "end": 17261.38, + "probability": 0.9985 + }, + { + "start": 17262.0, + "end": 17263.62, + "probability": 0.9972 + }, + { + "start": 17263.7, + "end": 17265.36, + "probability": 0.9845 + }, + { + "start": 17266.1, + "end": 17268.14, + "probability": 0.9961 + }, + { + "start": 17268.68, + "end": 17271.18, + "probability": 0.9528 + }, + { + "start": 17271.46, + "end": 17273.4, + "probability": 0.9935 + }, + { + "start": 17273.54, + "end": 17273.76, + "probability": 0.8985 + }, + { + "start": 17276.34, + "end": 17277.02, + "probability": 0.5463 + }, + { + "start": 17277.76, + "end": 17280.02, + "probability": 0.5016 + }, + { + "start": 17281.48, + "end": 17284.22, + "probability": 0.4156 + }, + { + "start": 17286.14, + "end": 17287.04, + "probability": 0.9615 + }, + { + "start": 17287.7, + "end": 17287.86, + "probability": 0.8152 + }, + { + "start": 17288.26, + "end": 17289.5, + "probability": 0.6589 + }, + { + "start": 17305.44, + "end": 17305.52, + "probability": 0.1923 + }, + { + "start": 17305.52, + "end": 17306.08, + "probability": 0.1507 + }, + { + "start": 17307.38, + "end": 17307.74, + "probability": 0.2244 + }, + { + "start": 17310.8, + "end": 17311.42, + "probability": 0.8778 + }, + { + "start": 17311.58, + "end": 17312.88, + "probability": 0.9128 + }, + { + "start": 17313.26, + "end": 17314.02, + "probability": 0.6753 + }, + { + "start": 17314.06, + "end": 17314.16, + "probability": 0.5643 + }, + { + "start": 17314.88, + "end": 17315.9, + "probability": 0.5554 + }, + { + "start": 17317.66, + "end": 17318.78, + "probability": 0.9761 + }, + { + "start": 17320.22, + "end": 17321.48, + "probability": 0.9055 + }, + { + "start": 17321.54, + "end": 17323.26, + "probability": 0.9666 + }, + { + "start": 17324.28, + "end": 17324.98, + "probability": 0.8264 + }, + { + "start": 17325.74, + "end": 17326.62, + "probability": 0.9941 + }, + { + "start": 17328.44, + "end": 17330.92, + "probability": 0.9485 + }, + { + "start": 17332.7, + "end": 17342.98, + "probability": 0.9939 + }, + { + "start": 17344.38, + "end": 17344.6, + "probability": 0.1486 + }, + { + "start": 17344.6, + "end": 17344.6, + "probability": 0.096 + }, + { + "start": 17344.6, + "end": 17346.78, + "probability": 0.9225 + }, + { + "start": 17346.78, + "end": 17346.85, + "probability": 0.079 + }, + { + "start": 17349.22, + "end": 17350.6, + "probability": 0.7759 + }, + { + "start": 17352.28, + "end": 17356.78, + "probability": 0.974 + }, + { + "start": 17358.62, + "end": 17358.72, + "probability": 0.2607 + }, + { + "start": 17358.8, + "end": 17359.32, + "probability": 0.81 + }, + { + "start": 17359.38, + "end": 17362.92, + "probability": 0.9608 + }, + { + "start": 17364.04, + "end": 17365.66, + "probability": 0.9836 + }, + { + "start": 17366.8, + "end": 17367.34, + "probability": 0.8472 + }, + { + "start": 17368.24, + "end": 17369.18, + "probability": 0.9546 + }, + { + "start": 17369.56, + "end": 17371.62, + "probability": 0.1242 + }, + { + "start": 17374.74, + "end": 17375.06, + "probability": 0.0224 + }, + { + "start": 17375.64, + "end": 17376.64, + "probability": 0.6567 + }, + { + "start": 17377.0, + "end": 17378.12, + "probability": 0.2473 + }, + { + "start": 17378.64, + "end": 17379.38, + "probability": 0.2346 + }, + { + "start": 17379.84, + "end": 17380.76, + "probability": 0.7304 + }, + { + "start": 17381.5, + "end": 17382.32, + "probability": 0.957 + }, + { + "start": 17382.44, + "end": 17383.56, + "probability": 0.0944 + }, + { + "start": 17383.56, + "end": 17383.84, + "probability": 0.2516 + }, + { + "start": 17384.64, + "end": 17385.72, + "probability": 0.9515 + }, + { + "start": 17386.22, + "end": 17389.74, + "probability": 0.8584 + }, + { + "start": 17390.52, + "end": 17390.98, + "probability": 0.7014 + }, + { + "start": 17391.08, + "end": 17392.2, + "probability": 0.9772 + }, + { + "start": 17393.02, + "end": 17397.92, + "probability": 0.9697 + }, + { + "start": 17399.14, + "end": 17400.5, + "probability": 0.9734 + }, + { + "start": 17401.46, + "end": 17404.5, + "probability": 0.9854 + }, + { + "start": 17405.06, + "end": 17407.78, + "probability": 0.1736 + }, + { + "start": 17407.96, + "end": 17408.84, + "probability": 0.9555 + }, + { + "start": 17409.3, + "end": 17409.84, + "probability": 0.4775 + }, + { + "start": 17409.98, + "end": 17411.0, + "probability": 0.4323 + }, + { + "start": 17411.0, + "end": 17413.12, + "probability": 0.7368 + }, + { + "start": 17413.16, + "end": 17415.64, + "probability": 0.9595 + }, + { + "start": 17416.22, + "end": 17419.5, + "probability": 0.9975 + }, + { + "start": 17420.22, + "end": 17422.7, + "probability": 0.9878 + }, + { + "start": 17423.44, + "end": 17423.86, + "probability": 0.9604 + }, + { + "start": 17424.68, + "end": 17425.56, + "probability": 0.9757 + }, + { + "start": 17426.34, + "end": 17428.32, + "probability": 0.9575 + }, + { + "start": 17429.3, + "end": 17429.88, + "probability": 0.9534 + }, + { + "start": 17430.9, + "end": 17431.18, + "probability": 0.218 + }, + { + "start": 17432.32, + "end": 17433.7, + "probability": 0.3217 + }, + { + "start": 17433.88, + "end": 17433.88, + "probability": 0.2485 + }, + { + "start": 17433.88, + "end": 17436.44, + "probability": 0.4579 + }, + { + "start": 17436.76, + "end": 17438.4, + "probability": 0.5993 + }, + { + "start": 17438.96, + "end": 17441.56, + "probability": 0.5681 + }, + { + "start": 17442.08, + "end": 17444.62, + "probability": 0.6346 + }, + { + "start": 17444.64, + "end": 17445.28, + "probability": 0.0852 + }, + { + "start": 17445.79, + "end": 17447.34, + "probability": 0.2222 + }, + { + "start": 17447.44, + "end": 17450.68, + "probability": 0.4248 + }, + { + "start": 17450.8, + "end": 17451.16, + "probability": 0.5419 + }, + { + "start": 17451.44, + "end": 17455.48, + "probability": 0.3603 + }, + { + "start": 17457.2, + "end": 17459.94, + "probability": 0.865 + }, + { + "start": 17461.98, + "end": 17462.06, + "probability": 0.3502 + }, + { + "start": 17462.06, + "end": 17463.14, + "probability": 0.4091 + }, + { + "start": 17464.77, + "end": 17466.58, + "probability": 0.0478 + }, + { + "start": 17466.84, + "end": 17468.78, + "probability": 0.7587 + }, + { + "start": 17469.82, + "end": 17472.1, + "probability": 0.5538 + }, + { + "start": 17472.64, + "end": 17473.72, + "probability": 0.3257 + }, + { + "start": 17473.98, + "end": 17476.4, + "probability": 0.8027 + }, + { + "start": 17476.44, + "end": 17477.94, + "probability": 0.6499 + }, + { + "start": 17478.31, + "end": 17481.24, + "probability": 0.0911 + }, + { + "start": 17481.32, + "end": 17481.76, + "probability": 0.2372 + }, + { + "start": 17481.92, + "end": 17483.03, + "probability": 0.7647 + }, + { + "start": 17483.86, + "end": 17485.58, + "probability": 0.9447 + }, + { + "start": 17485.64, + "end": 17486.44, + "probability": 0.1736 + }, + { + "start": 17486.5, + "end": 17488.0, + "probability": 0.907 + }, + { + "start": 17488.14, + "end": 17488.42, + "probability": 0.7803 + }, + { + "start": 17488.7, + "end": 17493.92, + "probability": 0.99 + }, + { + "start": 17495.98, + "end": 17499.78, + "probability": 0.9583 + }, + { + "start": 17501.1, + "end": 17503.32, + "probability": 0.9166 + }, + { + "start": 17505.12, + "end": 17506.76, + "probability": 0.8871 + }, + { + "start": 17508.14, + "end": 17510.48, + "probability": 0.9802 + }, + { + "start": 17511.02, + "end": 17515.98, + "probability": 0.9912 + }, + { + "start": 17516.94, + "end": 17521.92, + "probability": 0.9973 + }, + { + "start": 17522.62, + "end": 17526.3, + "probability": 0.9424 + }, + { + "start": 17526.3, + "end": 17531.48, + "probability": 0.9978 + }, + { + "start": 17532.88, + "end": 17533.12, + "probability": 0.4686 + }, + { + "start": 17533.5, + "end": 17539.42, + "probability": 0.9746 + }, + { + "start": 17540.42, + "end": 17541.52, + "probability": 0.8633 + }, + { + "start": 17542.9, + "end": 17548.16, + "probability": 0.9871 + }, + { + "start": 17549.84, + "end": 17554.62, + "probability": 0.9709 + }, + { + "start": 17556.12, + "end": 17558.64, + "probability": 0.8673 + }, + { + "start": 17559.9, + "end": 17560.32, + "probability": 0.9159 + }, + { + "start": 17560.84, + "end": 17565.2, + "probability": 0.7804 + }, + { + "start": 17566.72, + "end": 17569.5, + "probability": 0.9172 + }, + { + "start": 17569.56, + "end": 17570.72, + "probability": 0.9858 + }, + { + "start": 17570.92, + "end": 17572.4, + "probability": 0.8953 + }, + { + "start": 17573.22, + "end": 17575.48, + "probability": 0.7525 + }, + { + "start": 17576.8, + "end": 17577.34, + "probability": 0.6613 + }, + { + "start": 17578.12, + "end": 17582.58, + "probability": 0.9942 + }, + { + "start": 17583.52, + "end": 17588.76, + "probability": 0.8901 + }, + { + "start": 17590.12, + "end": 17591.8, + "probability": 0.9915 + }, + { + "start": 17592.96, + "end": 17595.3, + "probability": 0.9949 + }, + { + "start": 17596.06, + "end": 17596.74, + "probability": 0.9587 + }, + { + "start": 17597.88, + "end": 17602.76, + "probability": 0.9917 + }, + { + "start": 17603.6, + "end": 17607.86, + "probability": 0.9858 + }, + { + "start": 17608.56, + "end": 17613.28, + "probability": 0.922 + }, + { + "start": 17614.52, + "end": 17616.46, + "probability": 0.8752 + }, + { + "start": 17616.68, + "end": 17621.5, + "probability": 0.6904 + }, + { + "start": 17622.28, + "end": 17624.8, + "probability": 0.9582 + }, + { + "start": 17625.96, + "end": 17626.82, + "probability": 0.9046 + }, + { + "start": 17627.44, + "end": 17629.76, + "probability": 0.9545 + }, + { + "start": 17630.06, + "end": 17631.66, + "probability": 0.9989 + }, + { + "start": 17632.52, + "end": 17635.08, + "probability": 0.9983 + }, + { + "start": 17636.02, + "end": 17637.14, + "probability": 0.9976 + }, + { + "start": 17638.06, + "end": 17640.74, + "probability": 0.9966 + }, + { + "start": 17642.16, + "end": 17646.58, + "probability": 0.998 + }, + { + "start": 17647.34, + "end": 17650.8, + "probability": 0.8931 + }, + { + "start": 17651.24, + "end": 17656.3, + "probability": 0.9775 + }, + { + "start": 17657.56, + "end": 17660.66, + "probability": 0.9959 + }, + { + "start": 17661.54, + "end": 17667.32, + "probability": 0.9016 + }, + { + "start": 17668.26, + "end": 17670.56, + "probability": 0.9297 + }, + { + "start": 17671.16, + "end": 17673.52, + "probability": 0.9985 + }, + { + "start": 17677.92, + "end": 17679.04, + "probability": 0.6017 + }, + { + "start": 17681.42, + "end": 17683.6, + "probability": 0.6835 + }, + { + "start": 17698.22, + "end": 17698.22, + "probability": 0.1987 + }, + { + "start": 17698.22, + "end": 17698.32, + "probability": 0.4111 + }, + { + "start": 17698.48, + "end": 17699.3, + "probability": 0.6383 + }, + { + "start": 17699.48, + "end": 17699.86, + "probability": 0.5703 + }, + { + "start": 17700.1, + "end": 17702.18, + "probability": 0.976 + }, + { + "start": 17702.62, + "end": 17703.6, + "probability": 0.1165 + }, + { + "start": 17704.38, + "end": 17705.48, + "probability": 0.2194 + }, + { + "start": 17712.84, + "end": 17716.42, + "probability": 0.4917 + }, + { + "start": 17717.04, + "end": 17718.22, + "probability": 0.1501 + }, + { + "start": 17719.72, + "end": 17720.96, + "probability": 0.0236 + }, + { + "start": 17721.8, + "end": 17725.42, + "probability": 0.8889 + }, + { + "start": 17726.16, + "end": 17728.04, + "probability": 0.8931 + }, + { + "start": 17728.04, + "end": 17728.72, + "probability": 0.9418 + }, + { + "start": 17728.78, + "end": 17729.94, + "probability": 0.9912 + }, + { + "start": 17730.48, + "end": 17731.18, + "probability": 0.3051 + }, + { + "start": 17731.2, + "end": 17731.98, + "probability": 0.1951 + }, + { + "start": 17732.48, + "end": 17735.18, + "probability": 0.2375 + }, + { + "start": 17735.28, + "end": 17736.16, + "probability": 0.7081 + }, + { + "start": 17736.34, + "end": 17739.04, + "probability": 0.7258 + }, + { + "start": 17739.18, + "end": 17739.82, + "probability": 0.311 + }, + { + "start": 17740.14, + "end": 17740.56, + "probability": 0.9152 + }, + { + "start": 17740.78, + "end": 17742.3, + "probability": 0.1645 + }, + { + "start": 17742.3, + "end": 17742.72, + "probability": 0.0156 + }, + { + "start": 17744.24, + "end": 17744.9, + "probability": 0.9148 + }, + { + "start": 17745.16, + "end": 17749.42, + "probability": 0.4389 + }, + { + "start": 17749.8, + "end": 17753.5, + "probability": 0.9132 + }, + { + "start": 17753.58, + "end": 17756.7, + "probability": 0.7781 + }, + { + "start": 17757.42, + "end": 17762.4, + "probability": 0.9874 + }, + { + "start": 17763.44, + "end": 17767.78, + "probability": 0.7224 + }, + { + "start": 17770.16, + "end": 17771.08, + "probability": 0.0159 + }, + { + "start": 17771.08, + "end": 17772.56, + "probability": 0.1691 + }, + { + "start": 17773.42, + "end": 17775.88, + "probability": 0.8595 + }, + { + "start": 17777.48, + "end": 17781.8, + "probability": 0.986 + }, + { + "start": 17781.88, + "end": 17784.6, + "probability": 0.9751 + }, + { + "start": 17785.32, + "end": 17788.7, + "probability": 0.9464 + }, + { + "start": 17789.9, + "end": 17791.16, + "probability": 0.7688 + }, + { + "start": 17791.74, + "end": 17793.14, + "probability": 0.9208 + }, + { + "start": 17794.28, + "end": 17798.12, + "probability": 0.9451 + }, + { + "start": 17798.34, + "end": 17798.56, + "probability": 0.6105 + }, + { + "start": 17799.1, + "end": 17800.6, + "probability": 0.741 + }, + { + "start": 17800.76, + "end": 17804.38, + "probability": 0.9259 + }, + { + "start": 17804.86, + "end": 17806.94, + "probability": 0.8394 + }, + { + "start": 17808.38, + "end": 17811.48, + "probability": 0.0347 + }, + { + "start": 17813.72, + "end": 17817.06, + "probability": 0.8913 + }, + { + "start": 17817.9, + "end": 17821.46, + "probability": 0.8958 + }, + { + "start": 17822.5, + "end": 17825.08, + "probability": 0.9873 + }, + { + "start": 17825.08, + "end": 17825.96, + "probability": 0.7453 + }, + { + "start": 17827.86, + "end": 17830.0, + "probability": 0.8485 + }, + { + "start": 17831.5, + "end": 17831.98, + "probability": 0.5536 + }, + { + "start": 17831.98, + "end": 17832.26, + "probability": 0.8455 + }, + { + "start": 17832.76, + "end": 17833.86, + "probability": 0.8638 + }, + { + "start": 17833.96, + "end": 17834.62, + "probability": 0.9419 + }, + { + "start": 17834.72, + "end": 17835.64, + "probability": 0.651 + }, + { + "start": 17835.82, + "end": 17838.64, + "probability": 0.9795 + }, + { + "start": 17842.66, + "end": 17845.52, + "probability": 0.897 + }, + { + "start": 17846.12, + "end": 17847.16, + "probability": 0.6691 + }, + { + "start": 17847.86, + "end": 17852.14, + "probability": 0.7261 + }, + { + "start": 17852.18, + "end": 17853.25, + "probability": 0.833 + }, + { + "start": 17853.38, + "end": 17855.32, + "probability": 0.9969 + }, + { + "start": 17855.44, + "end": 17856.7, + "probability": 0.9968 + }, + { + "start": 17856.8, + "end": 17858.14, + "probability": 0.6062 + }, + { + "start": 17858.84, + "end": 17860.22, + "probability": 0.858 + }, + { + "start": 17860.66, + "end": 17864.4, + "probability": 0.801 + }, + { + "start": 17864.54, + "end": 17866.5, + "probability": 0.6646 + }, + { + "start": 17866.9, + "end": 17868.94, + "probability": 0.8716 + }, + { + "start": 17869.16, + "end": 17869.84, + "probability": 0.7752 + }, + { + "start": 17869.9, + "end": 17870.36, + "probability": 0.6949 + }, + { + "start": 17870.48, + "end": 17871.72, + "probability": 0.9907 + }, + { + "start": 17872.46, + "end": 17874.6, + "probability": 0.8163 + }, + { + "start": 17875.6, + "end": 17877.04, + "probability": 0.9869 + }, + { + "start": 17878.54, + "end": 17880.72, + "probability": 0.995 + }, + { + "start": 17881.68, + "end": 17883.16, + "probability": 0.9819 + }, + { + "start": 17883.82, + "end": 17886.08, + "probability": 0.9889 + }, + { + "start": 17886.2, + "end": 17888.44, + "probability": 0.9839 + }, + { + "start": 17889.6, + "end": 17890.32, + "probability": 0.8036 + }, + { + "start": 17890.96, + "end": 17893.24, + "probability": 0.8208 + }, + { + "start": 17893.36, + "end": 17893.78, + "probability": 0.9723 + }, + { + "start": 17894.08, + "end": 17894.74, + "probability": 0.8457 + }, + { + "start": 17894.88, + "end": 17895.38, + "probability": 0.9688 + }, + { + "start": 17895.76, + "end": 17895.86, + "probability": 0.9479 + }, + { + "start": 17896.54, + "end": 17897.22, + "probability": 0.891 + }, + { + "start": 17897.9, + "end": 17903.18, + "probability": 0.9856 + }, + { + "start": 17903.74, + "end": 17905.86, + "probability": 0.9396 + }, + { + "start": 17906.4, + "end": 17910.62, + "probability": 0.9834 + }, + { + "start": 17912.36, + "end": 17913.9, + "probability": 0.6069 + }, + { + "start": 17915.22, + "end": 17916.92, + "probability": 0.9954 + }, + { + "start": 17917.82, + "end": 17921.3, + "probability": 0.8829 + }, + { + "start": 17922.14, + "end": 17925.82, + "probability": 0.9733 + }, + { + "start": 17926.48, + "end": 17928.88, + "probability": 0.9972 + }, + { + "start": 17928.92, + "end": 17929.5, + "probability": 0.6737 + }, + { + "start": 17929.58, + "end": 17929.9, + "probability": 0.5084 + }, + { + "start": 17930.76, + "end": 17932.28, + "probability": 0.6563 + }, + { + "start": 17932.92, + "end": 17933.42, + "probability": 0.6499 + }, + { + "start": 17935.32, + "end": 17936.86, + "probability": 0.2246 + }, + { + "start": 17936.86, + "end": 17937.9, + "probability": 0.5856 + }, + { + "start": 17938.04, + "end": 17941.7, + "probability": 0.7917 + }, + { + "start": 17942.3, + "end": 17943.04, + "probability": 0.8728 + }, + { + "start": 17943.62, + "end": 17944.86, + "probability": 0.9462 + }, + { + "start": 17945.54, + "end": 17948.08, + "probability": 0.9299 + }, + { + "start": 17948.66, + "end": 17949.14, + "probability": 0.6589 + }, + { + "start": 17949.82, + "end": 17952.4, + "probability": 0.8229 + }, + { + "start": 17952.96, + "end": 17955.62, + "probability": 0.8995 + }, + { + "start": 17955.94, + "end": 17956.88, + "probability": 0.8332 + }, + { + "start": 17957.02, + "end": 17957.52, + "probability": 0.7973 + }, + { + "start": 17958.02, + "end": 17958.98, + "probability": 0.924 + }, + { + "start": 17959.1, + "end": 17959.88, + "probability": 0.9358 + }, + { + "start": 17960.1, + "end": 17961.5, + "probability": 0.9755 + }, + { + "start": 17962.02, + "end": 17963.76, + "probability": 0.9976 + }, + { + "start": 17964.48, + "end": 17965.96, + "probability": 0.6092 + }, + { + "start": 17966.6, + "end": 17968.42, + "probability": 0.8686 + }, + { + "start": 17970.3, + "end": 17973.78, + "probability": 0.8737 + }, + { + "start": 17974.5, + "end": 17975.86, + "probability": 0.7625 + }, + { + "start": 17976.26, + "end": 17979.68, + "probability": 0.8938 + }, + { + "start": 17979.68, + "end": 17982.3, + "probability": 0.8734 + }, + { + "start": 17982.58, + "end": 17984.24, + "probability": 0.7479 + }, + { + "start": 17984.36, + "end": 17989.7, + "probability": 0.4932 + }, + { + "start": 17990.8, + "end": 17992.14, + "probability": 0.5623 + }, + { + "start": 17992.18, + "end": 17992.88, + "probability": 0.8074 + }, + { + "start": 17992.96, + "end": 17993.16, + "probability": 0.6063 + }, + { + "start": 17994.18, + "end": 17995.74, + "probability": 0.7297 + }, + { + "start": 17995.76, + "end": 17996.34, + "probability": 0.5393 + }, + { + "start": 17996.52, + "end": 17998.56, + "probability": 0.7859 + }, + { + "start": 17999.2, + "end": 18001.22, + "probability": 0.9394 + }, + { + "start": 18002.64, + "end": 18004.08, + "probability": 0.0155 + }, + { + "start": 18005.7, + "end": 18007.26, + "probability": 0.7349 + }, + { + "start": 18007.86, + "end": 18008.3, + "probability": 0.9648 + }, + { + "start": 18009.26, + "end": 18010.02, + "probability": 0.8004 + }, + { + "start": 18011.2, + "end": 18011.62, + "probability": 0.9746 + }, + { + "start": 18012.62, + "end": 18013.52, + "probability": 0.5848 + }, + { + "start": 18014.22, + "end": 18014.58, + "probability": 0.9277 + }, + { + "start": 18015.48, + "end": 18016.32, + "probability": 0.8337 + }, + { + "start": 18017.08, + "end": 18019.02, + "probability": 0.9365 + }, + { + "start": 18019.98, + "end": 18020.44, + "probability": 0.916 + }, + { + "start": 18021.22, + "end": 18022.32, + "probability": 0.614 + }, + { + "start": 18023.16, + "end": 18024.28, + "probability": 0.9849 + }, + { + "start": 18024.82, + "end": 18029.64, + "probability": 0.9503 + }, + { + "start": 18030.22, + "end": 18031.54, + "probability": 0.7979 + }, + { + "start": 18031.7, + "end": 18032.9, + "probability": 0.8595 + }, + { + "start": 18033.0, + "end": 18033.49, + "probability": 0.6337 + }, + { + "start": 18033.82, + "end": 18035.72, + "probability": 0.8115 + }, + { + "start": 18036.28, + "end": 18036.43, + "probability": 0.2044 + }, + { + "start": 18038.34, + "end": 18039.32, + "probability": 0.429 + }, + { + "start": 18040.56, + "end": 18041.24, + "probability": 0.6065 + }, + { + "start": 18042.46, + "end": 18042.74, + "probability": 0.9626 + }, + { + "start": 18043.78, + "end": 18044.46, + "probability": 0.679 + }, + { + "start": 18045.86, + "end": 18046.24, + "probability": 0.9768 + }, + { + "start": 18047.3, + "end": 18047.88, + "probability": 0.9172 + }, + { + "start": 18048.74, + "end": 18049.1, + "probability": 0.9851 + }, + { + "start": 18049.9, + "end": 18051.0, + "probability": 0.8529 + }, + { + "start": 18055.62, + "end": 18056.16, + "probability": 0.8488 + }, + { + "start": 18060.14, + "end": 18061.14, + "probability": 0.692 + }, + { + "start": 18062.18, + "end": 18062.5, + "probability": 0.8057 + }, + { + "start": 18063.96, + "end": 18064.58, + "probability": 0.869 + }, + { + "start": 18065.54, + "end": 18065.98, + "probability": 0.9642 + }, + { + "start": 18066.72, + "end": 18067.38, + "probability": 0.9664 + }, + { + "start": 18069.39, + "end": 18070.86, + "probability": 0.9383 + }, + { + "start": 18071.52, + "end": 18073.54, + "probability": 0.9541 + }, + { + "start": 18074.54, + "end": 18074.88, + "probability": 0.9844 + }, + { + "start": 18075.9, + "end": 18076.72, + "probability": 0.8497 + }, + { + "start": 18078.02, + "end": 18078.38, + "probability": 0.985 + }, + { + "start": 18079.46, + "end": 18080.0, + "probability": 0.9643 + }, + { + "start": 18081.6, + "end": 18082.02, + "probability": 0.9782 + }, + { + "start": 18083.18, + "end": 18083.82, + "probability": 0.9911 + }, + { + "start": 18084.72, + "end": 18085.02, + "probability": 0.9731 + }, + { + "start": 18086.04, + "end": 18086.86, + "probability": 0.9885 + }, + { + "start": 18087.64, + "end": 18088.0, + "probability": 0.5237 + }, + { + "start": 18089.06, + "end": 18089.94, + "probability": 0.9769 + }, + { + "start": 18093.88, + "end": 18097.42, + "probability": 0.7495 + }, + { + "start": 18099.02, + "end": 18099.74, + "probability": 0.7846 + }, + { + "start": 18100.38, + "end": 18101.52, + "probability": 0.6153 + }, + { + "start": 18102.8, + "end": 18103.12, + "probability": 0.8683 + }, + { + "start": 18104.16, + "end": 18104.74, + "probability": 0.8654 + }, + { + "start": 18106.16, + "end": 18106.54, + "probability": 0.9661 + }, + { + "start": 18107.38, + "end": 18108.0, + "probability": 0.8144 + }, + { + "start": 18109.59, + "end": 18111.58, + "probability": 0.9065 + }, + { + "start": 18113.16, + "end": 18113.48, + "probability": 0.8586 + }, + { + "start": 18114.3, + "end": 18114.94, + "probability": 0.8667 + }, + { + "start": 18115.98, + "end": 18118.7, + "probability": 0.4728 + }, + { + "start": 18130.88, + "end": 18131.68, + "probability": 0.6043 + }, + { + "start": 18133.0, + "end": 18133.34, + "probability": 0.5056 + }, + { + "start": 18134.08, + "end": 18134.88, + "probability": 0.683 + }, + { + "start": 18135.78, + "end": 18136.08, + "probability": 0.8206 + }, + { + "start": 18137.08, + "end": 18138.02, + "probability": 0.916 + }, + { + "start": 18139.38, + "end": 18140.12, + "probability": 0.926 + }, + { + "start": 18141.22, + "end": 18142.2, + "probability": 0.8853 + }, + { + "start": 18143.48, + "end": 18143.92, + "probability": 0.9775 + }, + { + "start": 18145.28, + "end": 18146.14, + "probability": 0.8881 + }, + { + "start": 18147.04, + "end": 18147.46, + "probability": 0.9897 + }, + { + "start": 18148.26, + "end": 18149.16, + "probability": 0.6449 + }, + { + "start": 18151.38, + "end": 18151.72, + "probability": 0.625 + }, + { + "start": 18153.06, + "end": 18154.3, + "probability": 0.7975 + }, + { + "start": 18155.12, + "end": 18157.3, + "probability": 0.966 + }, + { + "start": 18158.64, + "end": 18160.62, + "probability": 0.976 + }, + { + "start": 18161.4, + "end": 18161.76, + "probability": 0.9805 + }, + { + "start": 18162.58, + "end": 18163.52, + "probability": 0.7922 + }, + { + "start": 18165.3, + "end": 18166.74, + "probability": 0.7041 + }, + { + "start": 18168.02, + "end": 18168.52, + "probability": 0.9797 + }, + { + "start": 18169.24, + "end": 18170.32, + "probability": 0.9197 + }, + { + "start": 18171.42, + "end": 18173.78, + "probability": 0.9466 + }, + { + "start": 18175.12, + "end": 18175.54, + "probability": 0.7629 + }, + { + "start": 18176.32, + "end": 18177.42, + "probability": 0.9345 + }, + { + "start": 18181.26, + "end": 18181.68, + "probability": 0.9634 + }, + { + "start": 18183.42, + "end": 18184.6, + "probability": 0.8112 + }, + { + "start": 18187.56, + "end": 18188.06, + "probability": 0.9863 + }, + { + "start": 18189.16, + "end": 18190.12, + "probability": 0.5194 + }, + { + "start": 18191.54, + "end": 18192.26, + "probability": 0.8829 + }, + { + "start": 18193.3, + "end": 18194.36, + "probability": 0.6836 + }, + { + "start": 18196.16, + "end": 18196.56, + "probability": 0.9925 + }, + { + "start": 18197.6, + "end": 18198.12, + "probability": 0.8826 + }, + { + "start": 18199.14, + "end": 18199.58, + "probability": 0.992 + }, + { + "start": 18200.36, + "end": 18201.26, + "probability": 0.9841 + }, + { + "start": 18203.0, + "end": 18203.26, + "probability": 0.9949 + }, + { + "start": 18204.66, + "end": 18205.38, + "probability": 0.6934 + }, + { + "start": 18207.06, + "end": 18209.38, + "probability": 0.6245 + }, + { + "start": 18211.32, + "end": 18211.76, + "probability": 0.9788 + }, + { + "start": 18212.82, + "end": 18214.04, + "probability": 0.9691 + }, + { + "start": 18214.98, + "end": 18215.34, + "probability": 0.7345 + }, + { + "start": 18216.74, + "end": 18217.14, + "probability": 0.9595 + }, + { + "start": 18218.52, + "end": 18218.78, + "probability": 0.9475 + }, + { + "start": 18219.56, + "end": 18219.94, + "probability": 0.9956 + }, + { + "start": 18220.96, + "end": 18221.36, + "probability": 0.984 + }, + { + "start": 18222.18, + "end": 18223.4, + "probability": 0.9634 + }, + { + "start": 18224.52, + "end": 18224.94, + "probability": 0.9919 + }, + { + "start": 18225.84, + "end": 18226.74, + "probability": 0.8811 + }, + { + "start": 18229.18, + "end": 18229.89, + "probability": 0.156 + }, + { + "start": 18236.2, + "end": 18236.54, + "probability": 0.5057 + }, + { + "start": 18237.76, + "end": 18238.32, + "probability": 0.7103 + }, + { + "start": 18242.95, + "end": 18244.76, + "probability": 0.8552 + }, + { + "start": 18246.14, + "end": 18247.04, + "probability": 0.7981 + }, + { + "start": 18249.42, + "end": 18249.88, + "probability": 0.9512 + }, + { + "start": 18251.58, + "end": 18252.58, + "probability": 0.6215 + }, + { + "start": 18253.42, + "end": 18253.82, + "probability": 0.9609 + }, + { + "start": 18254.78, + "end": 18255.5, + "probability": 0.9332 + }, + { + "start": 18256.32, + "end": 18256.66, + "probability": 0.782 + }, + { + "start": 18257.52, + "end": 18258.64, + "probability": 0.9515 + }, + { + "start": 18259.78, + "end": 18260.1, + "probability": 0.9824 + }, + { + "start": 18261.1, + "end": 18261.78, + "probability": 0.5923 + }, + { + "start": 18262.54, + "end": 18262.98, + "probability": 0.8911 + }, + { + "start": 18263.72, + "end": 18264.5, + "probability": 0.8127 + }, + { + "start": 18266.12, + "end": 18266.42, + "probability": 0.9591 + }, + { + "start": 18267.02, + "end": 18267.92, + "probability": 0.9559 + }, + { + "start": 18268.62, + "end": 18269.08, + "probability": 0.991 + }, + { + "start": 18269.84, + "end": 18270.66, + "probability": 0.9783 + }, + { + "start": 18271.86, + "end": 18272.36, + "probability": 0.9924 + }, + { + "start": 18272.9, + "end": 18273.62, + "probability": 0.978 + }, + { + "start": 18275.22, + "end": 18275.7, + "probability": 0.9967 + }, + { + "start": 18276.36, + "end": 18277.04, + "probability": 0.98 + }, + { + "start": 18278.22, + "end": 18278.66, + "probability": 0.9966 + }, + { + "start": 18279.5, + "end": 18280.46, + "probability": 0.8282 + }, + { + "start": 18281.6, + "end": 18282.06, + "probability": 0.9945 + }, + { + "start": 18283.02, + "end": 18283.82, + "probability": 0.7879 + }, + { + "start": 18284.8, + "end": 18285.22, + "probability": 0.9897 + }, + { + "start": 18286.24, + "end": 18287.2, + "probability": 0.6716 + }, + { + "start": 18288.26, + "end": 18288.72, + "probability": 0.7722 + }, + { + "start": 18289.48, + "end": 18290.44, + "probability": 0.3867 + }, + { + "start": 18293.68, + "end": 18294.18, + "probability": 0.9209 + }, + { + "start": 18294.96, + "end": 18296.06, + "probability": 0.7927 + }, + { + "start": 18296.88, + "end": 18299.42, + "probability": 0.9116 + }, + { + "start": 18300.6, + "end": 18300.98, + "probability": 0.884 + }, + { + "start": 18301.68, + "end": 18302.42, + "probability": 0.9324 + }, + { + "start": 18303.88, + "end": 18304.26, + "probability": 0.9951 + }, + { + "start": 18305.12, + "end": 18305.72, + "probability": 0.862 + }, + { + "start": 18308.48, + "end": 18308.86, + "probability": 0.9915 + }, + { + "start": 18310.38, + "end": 18311.68, + "probability": 0.6258 + }, + { + "start": 18312.72, + "end": 18313.1, + "probability": 0.9878 + }, + { + "start": 18314.02, + "end": 18314.88, + "probability": 0.8157 + }, + { + "start": 18315.52, + "end": 18315.84, + "probability": 0.5583 + }, + { + "start": 18316.8, + "end": 18317.5, + "probability": 0.7049 + }, + { + "start": 18318.96, + "end": 18319.34, + "probability": 0.9513 + }, + { + "start": 18320.02, + "end": 18320.96, + "probability": 0.9366 + }, + { + "start": 18323.48, + "end": 18323.84, + "probability": 0.9722 + }, + { + "start": 18324.86, + "end": 18325.6, + "probability": 0.6886 + }, + { + "start": 18326.22, + "end": 18326.62, + "probability": 0.9876 + }, + { + "start": 18327.32, + "end": 18327.8, + "probability": 0.9199 + }, + { + "start": 18328.76, + "end": 18329.18, + "probability": 0.9906 + }, + { + "start": 18329.92, + "end": 18330.66, + "probability": 0.9585 + }, + { + "start": 18331.88, + "end": 18332.26, + "probability": 0.9924 + }, + { + "start": 18333.68, + "end": 18334.4, + "probability": 0.8046 + }, + { + "start": 18335.84, + "end": 18336.22, + "probability": 0.9929 + }, + { + "start": 18336.98, + "end": 18337.96, + "probability": 0.934 + }, + { + "start": 18339.14, + "end": 18339.58, + "probability": 0.9803 + }, + { + "start": 18340.64, + "end": 18341.54, + "probability": 0.2575 + }, + { + "start": 18342.76, + "end": 18343.2, + "probability": 0.7285 + }, + { + "start": 18344.26, + "end": 18345.1, + "probability": 0.6909 + }, + { + "start": 18346.16, + "end": 18346.56, + "probability": 0.835 + }, + { + "start": 18347.7, + "end": 18348.46, + "probability": 0.547 + }, + { + "start": 18352.03, + "end": 18353.86, + "probability": 0.71 + }, + { + "start": 18362.32, + "end": 18363.12, + "probability": 0.6817 + }, + { + "start": 18366.54, + "end": 18367.3, + "probability": 0.6158 + }, + { + "start": 18369.34, + "end": 18372.52, + "probability": 0.4545 + }, + { + "start": 18374.32, + "end": 18374.64, + "probability": 0.821 + }, + { + "start": 18376.4, + "end": 18377.1, + "probability": 0.8953 + }, + { + "start": 18378.32, + "end": 18378.56, + "probability": 0.9495 + }, + { + "start": 18379.4, + "end": 18380.44, + "probability": 0.7832 + }, + { + "start": 18381.92, + "end": 18382.7, + "probability": 0.8826 + }, + { + "start": 18385.72, + "end": 18386.4, + "probability": 0.4568 + }, + { + "start": 18387.66, + "end": 18389.62, + "probability": 0.5145 + }, + { + "start": 18390.86, + "end": 18391.78, + "probability": 0.8575 + }, + { + "start": 18393.88, + "end": 18394.28, + "probability": 0.9539 + }, + { + "start": 18395.18, + "end": 18395.58, + "probability": 0.8978 + }, + { + "start": 18397.18, + "end": 18397.62, + "probability": 0.9901 + }, + { + "start": 18398.56, + "end": 18399.5, + "probability": 0.8545 + }, + { + "start": 18400.46, + "end": 18400.88, + "probability": 0.9665 + }, + { + "start": 18401.72, + "end": 18402.52, + "probability": 0.9513 + }, + { + "start": 18404.92, + "end": 18405.76, + "probability": 0.5403 + }, + { + "start": 18407.2, + "end": 18407.98, + "probability": 0.9113 + }, + { + "start": 18408.76, + "end": 18409.14, + "probability": 0.93 + }, + { + "start": 18410.04, + "end": 18410.94, + "probability": 0.9379 + }, + { + "start": 18412.32, + "end": 18412.66, + "probability": 0.991 + }, + { + "start": 18413.76, + "end": 18414.4, + "probability": 0.384 + }, + { + "start": 18415.3, + "end": 18415.72, + "probability": 0.907 + }, + { + "start": 18416.6, + "end": 18416.84, + "probability": 0.8724 + }, + { + "start": 18420.9, + "end": 18421.9, + "probability": 0.4018 + }, + { + "start": 18422.9, + "end": 18423.76, + "probability": 0.9054 + }, + { + "start": 18424.28, + "end": 18427.32, + "probability": 0.6589 + }, + { + "start": 18428.96, + "end": 18430.16, + "probability": 0.5163 + }, + { + "start": 18430.92, + "end": 18431.56, + "probability": 0.7306 + }, + { + "start": 18432.5, + "end": 18432.85, + "probability": 0.078 + }, + { + "start": 18433.76, + "end": 18434.8, + "probability": 0.8421 + }, + { + "start": 18435.66, + "end": 18436.12, + "probability": 0.984 + }, + { + "start": 18436.86, + "end": 18437.44, + "probability": 0.8741 + }, + { + "start": 18438.9, + "end": 18439.38, + "probability": 0.9961 + }, + { + "start": 18440.44, + "end": 18441.46, + "probability": 0.9019 + }, + { + "start": 18443.28, + "end": 18443.72, + "probability": 0.9945 + }, + { + "start": 18444.86, + "end": 18446.1, + "probability": 0.8933 + }, + { + "start": 18446.86, + "end": 18447.34, + "probability": 0.9829 + }, + { + "start": 18448.12, + "end": 18449.48, + "probability": 0.7077 + }, + { + "start": 18452.24, + "end": 18453.02, + "probability": 0.8915 + }, + { + "start": 18454.1, + "end": 18454.96, + "probability": 0.5824 + }, + { + "start": 18459.46, + "end": 18459.88, + "probability": 0.791 + }, + { + "start": 18460.88, + "end": 18461.76, + "probability": 0.7716 + }, + { + "start": 18462.64, + "end": 18463.06, + "probability": 0.6328 + }, + { + "start": 18464.12, + "end": 18464.92, + "probability": 0.7338 + }, + { + "start": 18467.56, + "end": 18469.76, + "probability": 0.9131 + }, + { + "start": 18471.64, + "end": 18472.14, + "probability": 0.9901 + }, + { + "start": 18472.92, + "end": 18473.24, + "probability": 0.6071 + }, + { + "start": 18476.08, + "end": 18476.64, + "probability": 0.9795 + }, + { + "start": 18477.46, + "end": 18478.48, + "probability": 0.9762 + }, + { + "start": 18479.84, + "end": 18480.22, + "probability": 0.8457 + }, + { + "start": 18481.36, + "end": 18482.44, + "probability": 0.8711 + }, + { + "start": 18483.78, + "end": 18484.28, + "probability": 0.9954 + }, + { + "start": 18486.7, + "end": 18487.48, + "probability": 0.7666 + }, + { + "start": 18489.12, + "end": 18489.6, + "probability": 0.7616 + }, + { + "start": 18490.52, + "end": 18491.1, + "probability": 0.545 + }, + { + "start": 18491.9, + "end": 18492.38, + "probability": 0.9714 + }, + { + "start": 18493.3, + "end": 18494.44, + "probability": 0.6595 + }, + { + "start": 18495.7, + "end": 18496.1, + "probability": 0.8474 + }, + { + "start": 18504.8, + "end": 18509.66, + "probability": 0.9268 + }, + { + "start": 18511.17, + "end": 18513.44, + "probability": 0.4005 + }, + { + "start": 18521.56, + "end": 18522.84, + "probability": 0.6927 + }, + { + "start": 18523.5, + "end": 18523.8, + "probability": 0.9308 + }, + { + "start": 18525.14, + "end": 18525.5, + "probability": 0.3995 + }, + { + "start": 18528.44, + "end": 18529.26, + "probability": 0.1306 + }, + { + "start": 18529.94, + "end": 18530.58, + "probability": 0.7033 + }, + { + "start": 18531.8, + "end": 18532.24, + "probability": 0.6457 + }, + { + "start": 18533.9, + "end": 18535.64, + "probability": 0.801 + }, + { + "start": 18542.34, + "end": 18543.54, + "probability": 0.5037 + }, + { + "start": 18545.1, + "end": 18546.02, + "probability": 0.8856 + }, + { + "start": 18546.74, + "end": 18547.4, + "probability": 0.7246 + }, + { + "start": 18549.18, + "end": 18549.6, + "probability": 0.9072 + }, + { + "start": 18551.0, + "end": 18551.89, + "probability": 0.6977 + }, + { + "start": 18554.76, + "end": 18556.72, + "probability": 0.7078 + }, + { + "start": 18557.92, + "end": 18562.64, + "probability": 0.946 + }, + { + "start": 18564.1, + "end": 18564.64, + "probability": 0.6652 + }, + { + "start": 18565.46, + "end": 18566.48, + "probability": 0.8741 + }, + { + "start": 18567.42, + "end": 18567.5, + "probability": 0.0012 + }, + { + "start": 18575.74, + "end": 18576.66, + "probability": 0.0854 + }, + { + "start": 18588.02, + "end": 18590.3, + "probability": 0.053 + }, + { + "start": 18652.28, + "end": 18656.32, + "probability": 0.8327 + }, + { + "start": 18656.5, + "end": 18660.6, + "probability": 0.7788 + }, + { + "start": 18661.96, + "end": 18665.18, + "probability": 0.7104 + }, + { + "start": 18665.54, + "end": 18667.42, + "probability": 0.5395 + }, + { + "start": 18667.7, + "end": 18676.6, + "probability": 0.8625 + }, + { + "start": 18685.48, + "end": 18685.74, + "probability": 0.3085 + }, + { + "start": 18686.42, + "end": 18688.94, + "probability": 0.5962 + }, + { + "start": 18689.68, + "end": 18690.82, + "probability": 0.2139 + }, + { + "start": 18694.58, + "end": 18695.36, + "probability": 0.1552 + }, + { + "start": 18696.08, + "end": 18699.94, + "probability": 0.1351 + }, + { + "start": 18700.54, + "end": 18702.0, + "probability": 0.1243 + }, + { + "start": 18714.94, + "end": 18715.22, + "probability": 0.1745 + }, + { + "start": 18715.22, + "end": 18715.22, + "probability": 0.0291 + }, + { + "start": 18715.22, + "end": 18715.22, + "probability": 0.3346 + }, + { + "start": 18715.22, + "end": 18715.22, + "probability": 0.2655 + }, + { + "start": 18715.22, + "end": 18715.22, + "probability": 0.2177 + }, + { + "start": 18715.22, + "end": 18716.82, + "probability": 0.7329 + }, + { + "start": 18745.8, + "end": 18746.58, + "probability": 0.1337 + }, + { + "start": 18747.54, + "end": 18749.1, + "probability": 0.9095 + }, + { + "start": 18750.3, + "end": 18752.08, + "probability": 0.7034 + }, + { + "start": 18752.82, + "end": 18755.46, + "probability": 0.9971 + }, + { + "start": 18756.38, + "end": 18757.82, + "probability": 0.9747 + }, + { + "start": 18759.2, + "end": 18760.6, + "probability": 0.9976 + }, + { + "start": 18761.2, + "end": 18763.64, + "probability": 0.9695 + }, + { + "start": 18764.94, + "end": 18766.96, + "probability": 0.6791 + }, + { + "start": 18767.94, + "end": 18772.4, + "probability": 0.9233 + }, + { + "start": 18773.2, + "end": 18774.2, + "probability": 0.9898 + }, + { + "start": 18775.54, + "end": 18776.74, + "probability": 0.8025 + }, + { + "start": 18777.86, + "end": 18783.22, + "probability": 0.8257 + }, + { + "start": 18784.16, + "end": 18785.5, + "probability": 0.8335 + }, + { + "start": 18786.96, + "end": 18788.98, + "probability": 0.9601 + }, + { + "start": 18789.98, + "end": 18792.22, + "probability": 0.9949 + }, + { + "start": 18792.92, + "end": 18795.08, + "probability": 0.8723 + }, + { + "start": 18795.62, + "end": 18798.54, + "probability": 0.9901 + }, + { + "start": 18799.22, + "end": 18801.28, + "probability": 0.9776 + }, + { + "start": 18802.66, + "end": 18805.98, + "probability": 0.9215 + }, + { + "start": 18806.64, + "end": 18808.28, + "probability": 0.0537 + }, + { + "start": 18808.86, + "end": 18809.9, + "probability": 0.5933 + }, + { + "start": 18810.38, + "end": 18810.44, + "probability": 0.0262 + }, + { + "start": 18810.44, + "end": 18811.78, + "probability": 0.4571 + }, + { + "start": 18812.66, + "end": 18813.78, + "probability": 0.764 + }, + { + "start": 18814.5, + "end": 18814.74, + "probability": 0.2576 + }, + { + "start": 18814.74, + "end": 18816.12, + "probability": 0.8916 + }, + { + "start": 18816.62, + "end": 18820.64, + "probability": 0.9259 + }, + { + "start": 18821.2, + "end": 18825.12, + "probability": 0.9708 + }, + { + "start": 18825.66, + "end": 18829.04, + "probability": 0.7811 + }, + { + "start": 18829.54, + "end": 18829.64, + "probability": 0.5118 + }, + { + "start": 18829.64, + "end": 18829.64, + "probability": 0.3046 + }, + { + "start": 18829.64, + "end": 18830.94, + "probability": 0.8055 + }, + { + "start": 18831.42, + "end": 18833.24, + "probability": 0.2318 + }, + { + "start": 18833.24, + "end": 18833.26, + "probability": 0.0154 + }, + { + "start": 18833.26, + "end": 18835.64, + "probability": 0.8099 + }, + { + "start": 18836.24, + "end": 18837.06, + "probability": 0.8072 + }, + { + "start": 18837.06, + "end": 18837.13, + "probability": 0.4932 + }, + { + "start": 18837.56, + "end": 18840.36, + "probability": 0.8062 + }, + { + "start": 18840.54, + "end": 18840.98, + "probability": 0.2389 + }, + { + "start": 18840.98, + "end": 18842.4, + "probability": 0.7578 + }, + { + "start": 18842.74, + "end": 18843.12, + "probability": 0.332 + }, + { + "start": 18843.28, + "end": 18845.3, + "probability": 0.944 + }, + { + "start": 18846.06, + "end": 18848.26, + "probability": 0.939 + }, + { + "start": 18849.32, + "end": 18850.42, + "probability": 0.0799 + }, + { + "start": 18850.54, + "end": 18850.54, + "probability": 0.045 + }, + { + "start": 18850.54, + "end": 18852.14, + "probability": 0.8747 + }, + { + "start": 18852.14, + "end": 18856.7, + "probability": 0.9511 + }, + { + "start": 18856.78, + "end": 18864.16, + "probability": 0.9778 + }, + { + "start": 18864.7, + "end": 18865.84, + "probability": 0.6425 + }, + { + "start": 18866.48, + "end": 18867.06, + "probability": 0.692 + }, + { + "start": 18867.12, + "end": 18868.64, + "probability": 0.8979 + }, + { + "start": 18869.2, + "end": 18873.4, + "probability": 0.9976 + }, + { + "start": 18874.0, + "end": 18878.5, + "probability": 0.9961 + }, + { + "start": 18878.56, + "end": 18885.14, + "probability": 0.9881 + }, + { + "start": 18885.62, + "end": 18890.44, + "probability": 0.7521 + }, + { + "start": 18890.96, + "end": 18892.1, + "probability": 0.9247 + }, + { + "start": 18892.22, + "end": 18897.78, + "probability": 0.9933 + }, + { + "start": 18898.04, + "end": 18902.74, + "probability": 0.9542 + }, + { + "start": 18903.34, + "end": 18903.98, + "probability": 0.4317 + }, + { + "start": 18904.62, + "end": 18905.8, + "probability": 0.981 + }, + { + "start": 18906.38, + "end": 18911.16, + "probability": 0.9943 + }, + { + "start": 18911.8, + "end": 18914.06, + "probability": 0.9848 + }, + { + "start": 18914.44, + "end": 18917.76, + "probability": 0.8955 + }, + { + "start": 18917.76, + "end": 18920.84, + "probability": 0.8698 + }, + { + "start": 18922.04, + "end": 18922.68, + "probability": 0.7294 + }, + { + "start": 18923.5, + "end": 18926.34, + "probability": 0.9696 + }, + { + "start": 18927.28, + "end": 18928.88, + "probability": 0.0445 + }, + { + "start": 18929.08, + "end": 18933.86, + "probability": 0.6937 + }, + { + "start": 18935.72, + "end": 18937.9, + "probability": 0.0196 + }, + { + "start": 18937.9, + "end": 18937.9, + "probability": 0.1621 + }, + { + "start": 18938.31, + "end": 18940.72, + "probability": 0.4441 + }, + { + "start": 18940.8, + "end": 18942.3, + "probability": 0.7124 + }, + { + "start": 18944.7, + "end": 18944.7, + "probability": 0.1983 + }, + { + "start": 18944.7, + "end": 18944.96, + "probability": 0.2096 + }, + { + "start": 18944.96, + "end": 18946.06, + "probability": 0.7021 + }, + { + "start": 18947.18, + "end": 18947.43, + "probability": 0.0467 + }, + { + "start": 18947.54, + "end": 18947.62, + "probability": 0.0155 + }, + { + "start": 18947.62, + "end": 18947.62, + "probability": 0.1507 + }, + { + "start": 18947.62, + "end": 18950.38, + "probability": 0.238 + }, + { + "start": 18950.97, + "end": 18953.48, + "probability": 0.0613 + }, + { + "start": 18953.48, + "end": 18953.48, + "probability": 0.0501 + }, + { + "start": 18953.48, + "end": 18953.48, + "probability": 0.1326 + }, + { + "start": 18953.48, + "end": 18953.48, + "probability": 0.118 + }, + { + "start": 18953.48, + "end": 18958.84, + "probability": 0.9736 + }, + { + "start": 18959.52, + "end": 18962.52, + "probability": 0.5381 + }, + { + "start": 18963.12, + "end": 18963.56, + "probability": 0.6402 + }, + { + "start": 18964.44, + "end": 18968.98, + "probability": 0.8577 + }, + { + "start": 18968.98, + "end": 18973.12, + "probability": 0.9619 + }, + { + "start": 18973.12, + "end": 18977.66, + "probability": 0.9961 + }, + { + "start": 18978.44, + "end": 18979.28, + "probability": 0.7 + }, + { + "start": 18979.4, + "end": 18980.06, + "probability": 0.5091 + }, + { + "start": 18980.54, + "end": 18984.04, + "probability": 0.8966 + }, + { + "start": 18984.5, + "end": 18987.12, + "probability": 0.9805 + }, + { + "start": 18987.66, + "end": 18988.84, + "probability": 0.8903 + }, + { + "start": 18989.68, + "end": 18992.24, + "probability": 0.9062 + }, + { + "start": 18993.02, + "end": 18994.66, + "probability": 0.863 + }, + { + "start": 18995.18, + "end": 18996.88, + "probability": 0.9732 + }, + { + "start": 18997.28, + "end": 19000.66, + "probability": 0.9695 + }, + { + "start": 19001.32, + "end": 19005.72, + "probability": 0.9841 + }, + { + "start": 19006.4, + "end": 19008.26, + "probability": 0.9921 + }, + { + "start": 19008.26, + "end": 19010.36, + "probability": 0.9991 + }, + { + "start": 19011.02, + "end": 19015.92, + "probability": 0.9981 + }, + { + "start": 19016.68, + "end": 19019.4, + "probability": 0.7965 + }, + { + "start": 19020.02, + "end": 19023.48, + "probability": 0.9486 + }, + { + "start": 19024.4, + "end": 19025.4, + "probability": 0.729 + }, + { + "start": 19027.26, + "end": 19027.69, + "probability": 0.1314 + }, + { + "start": 19028.2, + "end": 19029.96, + "probability": 0.9875 + }, + { + "start": 19030.56, + "end": 19032.76, + "probability": 0.9575 + }, + { + "start": 19033.14, + "end": 19036.12, + "probability": 0.9067 + }, + { + "start": 19036.52, + "end": 19038.5, + "probability": 0.5647 + }, + { + "start": 19039.0, + "end": 19040.88, + "probability": 0.8585 + }, + { + "start": 19041.24, + "end": 19043.1, + "probability": 0.9702 + }, + { + "start": 19043.62, + "end": 19046.0, + "probability": 0.8821 + }, + { + "start": 19046.84, + "end": 19051.74, + "probability": 0.9931 + }, + { + "start": 19052.26, + "end": 19053.4, + "probability": 0.9795 + }, + { + "start": 19054.26, + "end": 19055.5, + "probability": 0.9585 + }, + { + "start": 19056.32, + "end": 19058.78, + "probability": 0.9824 + }, + { + "start": 19059.38, + "end": 19062.6, + "probability": 0.9942 + }, + { + "start": 19063.46, + "end": 19066.24, + "probability": 0.9807 + }, + { + "start": 19066.88, + "end": 19068.18, + "probability": 0.9475 + }, + { + "start": 19068.72, + "end": 19072.02, + "probability": 0.9971 + }, + { + "start": 19072.02, + "end": 19074.46, + "probability": 0.995 + }, + { + "start": 19075.94, + "end": 19079.98, + "probability": 0.5063 + }, + { + "start": 19080.32, + "end": 19082.68, + "probability": 0.8909 + }, + { + "start": 19083.2, + "end": 19085.02, + "probability": 0.9685 + }, + { + "start": 19085.92, + "end": 19089.0, + "probability": 0.9146 + }, + { + "start": 19089.52, + "end": 19093.34, + "probability": 0.8857 + }, + { + "start": 19094.06, + "end": 19096.34, + "probability": 0.9739 + }, + { + "start": 19096.42, + "end": 19097.08, + "probability": 0.9422 + }, + { + "start": 19097.98, + "end": 19099.94, + "probability": 0.9882 + }, + { + "start": 19100.44, + "end": 19102.84, + "probability": 0.8164 + }, + { + "start": 19104.1, + "end": 19105.91, + "probability": 0.7406 + }, + { + "start": 19106.96, + "end": 19109.2, + "probability": 0.9707 + }, + { + "start": 19109.74, + "end": 19111.44, + "probability": 0.998 + }, + { + "start": 19111.98, + "end": 19112.52, + "probability": 0.7186 + }, + { + "start": 19114.04, + "end": 19117.4, + "probability": 0.9482 + }, + { + "start": 19117.94, + "end": 19121.2, + "probability": 0.891 + }, + { + "start": 19121.2, + "end": 19124.9, + "probability": 0.9981 + }, + { + "start": 19125.82, + "end": 19127.5, + "probability": 0.9958 + }, + { + "start": 19128.16, + "end": 19133.56, + "probability": 0.9974 + }, + { + "start": 19134.08, + "end": 19138.1, + "probability": 0.8096 + }, + { + "start": 19138.76, + "end": 19141.36, + "probability": 0.9774 + }, + { + "start": 19142.46, + "end": 19143.64, + "probability": 0.9267 + }, + { + "start": 19144.86, + "end": 19148.4, + "probability": 0.9814 + }, + { + "start": 19148.4, + "end": 19152.28, + "probability": 0.9502 + }, + { + "start": 19152.98, + "end": 19157.68, + "probability": 0.9586 + }, + { + "start": 19157.68, + "end": 19161.18, + "probability": 0.9959 + }, + { + "start": 19161.98, + "end": 19164.38, + "probability": 0.9824 + }, + { + "start": 19165.0, + "end": 19165.54, + "probability": 0.5182 + }, + { + "start": 19165.58, + "end": 19170.7, + "probability": 0.8507 + }, + { + "start": 19171.16, + "end": 19175.68, + "probability": 0.9695 + }, + { + "start": 19176.18, + "end": 19178.6, + "probability": 0.693 + }, + { + "start": 19179.32, + "end": 19183.12, + "probability": 0.9724 + }, + { + "start": 19183.58, + "end": 19186.26, + "probability": 0.9377 + }, + { + "start": 19186.36, + "end": 19188.06, + "probability": 0.9868 + }, + { + "start": 19189.62, + "end": 19190.6, + "probability": 0.8072 + }, + { + "start": 19191.0, + "end": 19192.58, + "probability": 0.0363 + }, + { + "start": 19196.36, + "end": 19198.44, + "probability": 0.9212 + }, + { + "start": 19198.58, + "end": 19202.24, + "probability": 0.9836 + }, + { + "start": 19202.7, + "end": 19205.28, + "probability": 0.9896 + }, + { + "start": 19205.78, + "end": 19208.06, + "probability": 0.9875 + }, + { + "start": 19208.3, + "end": 19209.98, + "probability": 0.8777 + }, + { + "start": 19210.5, + "end": 19215.24, + "probability": 0.9041 + }, + { + "start": 19215.34, + "end": 19218.16, + "probability": 0.9726 + }, + { + "start": 19218.7, + "end": 19221.14, + "probability": 0.889 + }, + { + "start": 19221.66, + "end": 19223.1, + "probability": 0.9363 + }, + { + "start": 19223.78, + "end": 19225.64, + "probability": 0.979 + }, + { + "start": 19226.12, + "end": 19227.87, + "probability": 0.9132 + }, + { + "start": 19228.58, + "end": 19228.62, + "probability": 0.3297 + }, + { + "start": 19228.62, + "end": 19232.58, + "probability": 0.9302 + }, + { + "start": 19233.4, + "end": 19236.82, + "probability": 0.9962 + }, + { + "start": 19236.92, + "end": 19241.2, + "probability": 0.9956 + }, + { + "start": 19241.2, + "end": 19244.08, + "probability": 0.9985 + }, + { + "start": 19244.08, + "end": 19247.78, + "probability": 0.916 + }, + { + "start": 19248.26, + "end": 19249.3, + "probability": 0.7726 + }, + { + "start": 19249.44, + "end": 19250.7, + "probability": 0.9547 + }, + { + "start": 19251.52, + "end": 19251.98, + "probability": 0.8155 + }, + { + "start": 19252.08, + "end": 19253.0, + "probability": 0.9724 + }, + { + "start": 19253.16, + "end": 19256.84, + "probability": 0.9894 + }, + { + "start": 19256.84, + "end": 19260.28, + "probability": 0.9938 + }, + { + "start": 19260.28, + "end": 19263.98, + "probability": 0.9926 + }, + { + "start": 19264.94, + "end": 19265.81, + "probability": 0.9513 + }, + { + "start": 19266.2, + "end": 19267.04, + "probability": 0.5837 + }, + { + "start": 19267.08, + "end": 19270.82, + "probability": 0.9908 + }, + { + "start": 19271.58, + "end": 19273.02, + "probability": 0.4308 + }, + { + "start": 19273.46, + "end": 19276.48, + "probability": 0.9984 + }, + { + "start": 19276.48, + "end": 19278.68, + "probability": 0.9992 + }, + { + "start": 19279.24, + "end": 19281.08, + "probability": 0.9821 + }, + { + "start": 19281.58, + "end": 19283.2, + "probability": 0.9542 + }, + { + "start": 19283.76, + "end": 19285.88, + "probability": 0.8859 + }, + { + "start": 19286.3, + "end": 19287.82, + "probability": 0.6927 + }, + { + "start": 19287.94, + "end": 19292.8, + "probability": 0.9689 + }, + { + "start": 19293.42, + "end": 19296.8, + "probability": 0.9733 + }, + { + "start": 19297.34, + "end": 19299.5, + "probability": 0.5252 + }, + { + "start": 19300.24, + "end": 19303.82, + "probability": 0.9632 + }, + { + "start": 19304.62, + "end": 19308.02, + "probability": 0.9622 + }, + { + "start": 19308.48, + "end": 19310.22, + "probability": 0.9907 + }, + { + "start": 19310.84, + "end": 19314.58, + "probability": 0.9792 + }, + { + "start": 19315.06, + "end": 19315.98, + "probability": 0.9014 + }, + { + "start": 19316.06, + "end": 19316.94, + "probability": 0.7089 + }, + { + "start": 19317.56, + "end": 19321.28, + "probability": 0.9974 + }, + { + "start": 19322.22, + "end": 19325.06, + "probability": 0.9779 + }, + { + "start": 19325.16, + "end": 19325.88, + "probability": 0.3373 + }, + { + "start": 19325.96, + "end": 19329.66, + "probability": 0.9945 + }, + { + "start": 19330.32, + "end": 19332.38, + "probability": 0.9539 + }, + { + "start": 19333.0, + "end": 19333.76, + "probability": 0.6846 + }, + { + "start": 19334.3, + "end": 19338.58, + "probability": 0.9921 + }, + { + "start": 19338.7, + "end": 19344.88, + "probability": 0.9819 + }, + { + "start": 19345.4, + "end": 19347.9, + "probability": 0.9883 + }, + { + "start": 19347.9, + "end": 19351.78, + "probability": 0.9896 + }, + { + "start": 19352.52, + "end": 19353.97, + "probability": 0.7045 + }, + { + "start": 19354.8, + "end": 19357.96, + "probability": 0.9976 + }, + { + "start": 19358.9, + "end": 19361.28, + "probability": 0.9542 + }, + { + "start": 19361.48, + "end": 19361.92, + "probability": 0.8171 + }, + { + "start": 19362.46, + "end": 19363.14, + "probability": 0.6499 + }, + { + "start": 19363.7, + "end": 19365.96, + "probability": 0.7478 + }, + { + "start": 19393.68, + "end": 19395.82, + "probability": 0.6451 + }, + { + "start": 19396.14, + "end": 19399.24, + "probability": 0.946 + }, + { + "start": 19399.92, + "end": 19400.96, + "probability": 0.963 + }, + { + "start": 19401.54, + "end": 19402.38, + "probability": 0.8534 + }, + { + "start": 19403.1, + "end": 19407.76, + "probability": 0.957 + }, + { + "start": 19408.14, + "end": 19412.09, + "probability": 0.9966 + }, + { + "start": 19413.1, + "end": 19418.56, + "probability": 0.9632 + }, + { + "start": 19419.44, + "end": 19421.1, + "probability": 0.8267 + }, + { + "start": 19422.36, + "end": 19423.3, + "probability": 0.8104 + }, + { + "start": 19423.44, + "end": 19426.16, + "probability": 0.9846 + }, + { + "start": 19426.28, + "end": 19426.98, + "probability": 0.7527 + }, + { + "start": 19427.44, + "end": 19429.14, + "probability": 0.9583 + }, + { + "start": 19429.78, + "end": 19432.22, + "probability": 0.7721 + }, + { + "start": 19432.32, + "end": 19435.86, + "probability": 0.9846 + }, + { + "start": 19435.86, + "end": 19439.12, + "probability": 0.8285 + }, + { + "start": 19439.66, + "end": 19441.12, + "probability": 0.8359 + }, + { + "start": 19441.78, + "end": 19443.74, + "probability": 0.6866 + }, + { + "start": 19445.02, + "end": 19453.02, + "probability": 0.98 + }, + { + "start": 19453.02, + "end": 19457.54, + "probability": 0.9839 + }, + { + "start": 19461.14, + "end": 19464.14, + "probability": 0.9561 + }, + { + "start": 19464.4, + "end": 19467.72, + "probability": 0.9922 + }, + { + "start": 19468.12, + "end": 19471.12, + "probability": 0.9272 + }, + { + "start": 19471.28, + "end": 19473.0, + "probability": 0.9771 + }, + { + "start": 19473.58, + "end": 19478.56, + "probability": 0.8814 + }, + { + "start": 19479.18, + "end": 19483.22, + "probability": 0.698 + }, + { + "start": 19485.1, + "end": 19491.32, + "probability": 0.6629 + }, + { + "start": 19491.9, + "end": 19493.64, + "probability": 0.9017 + }, + { + "start": 19494.16, + "end": 19496.32, + "probability": 0.9735 + }, + { + "start": 19496.92, + "end": 19497.48, + "probability": 0.389 + }, + { + "start": 19497.9, + "end": 19503.44, + "probability": 0.7485 + }, + { + "start": 19504.84, + "end": 19508.7, + "probability": 0.6823 + }, + { + "start": 19509.34, + "end": 19510.76, + "probability": 0.9917 + }, + { + "start": 19511.28, + "end": 19514.69, + "probability": 0.8586 + }, + { + "start": 19517.22, + "end": 19519.54, + "probability": 0.5444 + }, + { + "start": 19519.8, + "end": 19521.44, + "probability": 0.8888 + }, + { + "start": 19521.74, + "end": 19526.62, + "probability": 0.8496 + }, + { + "start": 19526.74, + "end": 19530.14, + "probability": 0.7273 + }, + { + "start": 19530.14, + "end": 19534.14, + "probability": 0.8862 + }, + { + "start": 19535.14, + "end": 19538.92, + "probability": 0.978 + }, + { + "start": 19541.08, + "end": 19542.66, + "probability": 0.7696 + }, + { + "start": 19543.08, + "end": 19548.12, + "probability": 0.9696 + }, + { + "start": 19548.54, + "end": 19552.4, + "probability": 0.967 + }, + { + "start": 19552.92, + "end": 19554.08, + "probability": 0.9082 + }, + { + "start": 19554.5, + "end": 19560.48, + "probability": 0.9989 + }, + { + "start": 19560.48, + "end": 19567.08, + "probability": 0.997 + }, + { + "start": 19569.79, + "end": 19573.54, + "probability": 0.9987 + }, + { + "start": 19573.78, + "end": 19575.6, + "probability": 0.9849 + }, + { + "start": 19576.26, + "end": 19578.64, + "probability": 0.9925 + }, + { + "start": 19579.18, + "end": 19585.96, + "probability": 0.9891 + }, + { + "start": 19586.04, + "end": 19587.9, + "probability": 0.9745 + }, + { + "start": 19588.34, + "end": 19589.76, + "probability": 0.9764 + }, + { + "start": 19589.9, + "end": 19595.62, + "probability": 0.972 + }, + { + "start": 19596.82, + "end": 19598.26, + "probability": 0.9789 + }, + { + "start": 19602.34, + "end": 19603.74, + "probability": 0.7482 + }, + { + "start": 19606.04, + "end": 19607.5, + "probability": 0.2223 + }, + { + "start": 19607.5, + "end": 19608.66, + "probability": 0.7187 + }, + { + "start": 19609.06, + "end": 19609.72, + "probability": 0.5639 + }, + { + "start": 19609.9, + "end": 19611.98, + "probability": 0.9162 + }, + { + "start": 19613.4, + "end": 19617.02, + "probability": 0.9373 + }, + { + "start": 19619.96, + "end": 19622.86, + "probability": 0.8236 + }, + { + "start": 19643.42, + "end": 19644.92, + "probability": 0.7215 + }, + { + "start": 19645.96, + "end": 19649.26, + "probability": 0.991 + }, + { + "start": 19650.34, + "end": 19651.26, + "probability": 0.7244 + }, + { + "start": 19651.48, + "end": 19653.08, + "probability": 0.9354 + }, + { + "start": 19653.2, + "end": 19654.18, + "probability": 0.6151 + }, + { + "start": 19654.64, + "end": 19658.34, + "probability": 0.967 + }, + { + "start": 19659.58, + "end": 19664.82, + "probability": 0.9848 + }, + { + "start": 19665.46, + "end": 19668.32, + "probability": 0.9977 + }, + { + "start": 19668.5, + "end": 19668.76, + "probability": 0.808 + }, + { + "start": 19670.18, + "end": 19670.82, + "probability": 0.6422 + }, + { + "start": 19670.86, + "end": 19673.1, + "probability": 0.9945 + }, + { + "start": 19673.18, + "end": 19674.5, + "probability": 0.7334 + }, + { + "start": 19675.42, + "end": 19676.32, + "probability": 0.793 + }, + { + "start": 19676.78, + "end": 19676.86, + "probability": 0.0386 + }, + { + "start": 19676.86, + "end": 19678.44, + "probability": 0.9915 + }, + { + "start": 19678.48, + "end": 19678.58, + "probability": 0.8783 + }, + { + "start": 19680.84, + "end": 19681.9, + "probability": 0.7996 + }, + { + "start": 19682.92, + "end": 19684.14, + "probability": 0.9105 + }, + { + "start": 19693.84, + "end": 19694.3, + "probability": 0.8339 + }, + { + "start": 19695.62, + "end": 19696.56, + "probability": 0.7854 + }, + { + "start": 19697.16, + "end": 19697.96, + "probability": 0.9075 + }, + { + "start": 19699.76, + "end": 19700.46, + "probability": 0.904 + }, + { + "start": 19702.46, + "end": 19703.14, + "probability": 0.9103 + }, + { + "start": 19704.84, + "end": 19707.96, + "probability": 0.979 + }, + { + "start": 19708.04, + "end": 19708.52, + "probability": 0.436 + }, + { + "start": 19710.08, + "end": 19711.12, + "probability": 0.9332 + }, + { + "start": 19711.3, + "end": 19713.34, + "probability": 0.9678 + }, + { + "start": 19713.5, + "end": 19714.24, + "probability": 0.7265 + }, + { + "start": 19714.3, + "end": 19715.1, + "probability": 0.6767 + }, + { + "start": 19716.0, + "end": 19716.46, + "probability": 0.8928 + }, + { + "start": 19716.52, + "end": 19719.7, + "probability": 0.9446 + }, + { + "start": 19720.76, + "end": 19721.86, + "probability": 0.9261 + }, + { + "start": 19725.66, + "end": 19726.82, + "probability": 0.7822 + }, + { + "start": 19727.84, + "end": 19732.38, + "probability": 0.8851 + }, + { + "start": 19733.32, + "end": 19734.5, + "probability": 0.9879 + }, + { + "start": 19734.52, + "end": 19735.22, + "probability": 0.9026 + }, + { + "start": 19735.7, + "end": 19739.56, + "probability": 0.9932 + }, + { + "start": 19740.8, + "end": 19743.18, + "probability": 0.6401 + }, + { + "start": 19744.1, + "end": 19747.74, + "probability": 0.9965 + }, + { + "start": 19747.74, + "end": 19751.2, + "probability": 0.8269 + }, + { + "start": 19752.3, + "end": 19753.02, + "probability": 0.7791 + }, + { + "start": 19753.6, + "end": 19754.76, + "probability": 0.994 + }, + { + "start": 19756.92, + "end": 19759.54, + "probability": 0.5083 + }, + { + "start": 19760.1, + "end": 19764.54, + "probability": 0.9933 + }, + { + "start": 19768.42, + "end": 19768.48, + "probability": 0.0575 + }, + { + "start": 19768.48, + "end": 19768.72, + "probability": 0.353 + }, + { + "start": 19769.26, + "end": 19770.22, + "probability": 0.914 + }, + { + "start": 19770.36, + "end": 19774.66, + "probability": 0.9172 + }, + { + "start": 19775.12, + "end": 19777.42, + "probability": 0.9728 + }, + { + "start": 19777.94, + "end": 19780.26, + "probability": 0.9953 + }, + { + "start": 19781.34, + "end": 19785.98, + "probability": 0.9895 + }, + { + "start": 19786.64, + "end": 19790.74, + "probability": 0.9947 + }, + { + "start": 19791.22, + "end": 19794.04, + "probability": 0.9933 + }, + { + "start": 19794.64, + "end": 19799.64, + "probability": 0.996 + }, + { + "start": 19800.38, + "end": 19803.24, + "probability": 0.995 + }, + { + "start": 19803.88, + "end": 19806.66, + "probability": 0.976 + }, + { + "start": 19807.28, + "end": 19809.64, + "probability": 0.9906 + }, + { + "start": 19809.98, + "end": 19811.9, + "probability": 0.968 + }, + { + "start": 19812.36, + "end": 19814.32, + "probability": 0.8511 + }, + { + "start": 19816.9, + "end": 19818.2, + "probability": 0.9573 + }, + { + "start": 19818.76, + "end": 19821.76, + "probability": 0.9916 + }, + { + "start": 19822.3, + "end": 19825.8, + "probability": 0.9946 + }, + { + "start": 19826.32, + "end": 19827.54, + "probability": 0.9493 + }, + { + "start": 19828.86, + "end": 19830.06, + "probability": 0.9997 + }, + { + "start": 19831.44, + "end": 19832.64, + "probability": 0.7944 + }, + { + "start": 19833.58, + "end": 19837.12, + "probability": 0.9851 + }, + { + "start": 19838.1, + "end": 19840.6, + "probability": 0.9894 + }, + { + "start": 19841.1, + "end": 19844.48, + "probability": 0.9904 + }, + { + "start": 19847.0, + "end": 19851.52, + "probability": 0.9858 + }, + { + "start": 19852.0, + "end": 19855.64, + "probability": 0.9631 + }, + { + "start": 19856.4, + "end": 19857.54, + "probability": 0.7393 + }, + { + "start": 19858.64, + "end": 19860.9, + "probability": 0.9963 + }, + { + "start": 19860.98, + "end": 19861.64, + "probability": 0.7347 + }, + { + "start": 19861.76, + "end": 19862.72, + "probability": 0.8497 + }, + { + "start": 19862.76, + "end": 19864.1, + "probability": 0.755 + }, + { + "start": 19865.06, + "end": 19865.84, + "probability": 0.7646 + }, + { + "start": 19866.58, + "end": 19867.74, + "probability": 0.991 + }, + { + "start": 19868.64, + "end": 19869.58, + "probability": 0.9019 + }, + { + "start": 19871.88, + "end": 19872.16, + "probability": 0.9595 + }, + { + "start": 19872.68, + "end": 19873.18, + "probability": 0.7981 + }, + { + "start": 19874.26, + "end": 19875.34, + "probability": 0.9206 + }, + { + "start": 19876.42, + "end": 19878.3, + "probability": 0.9952 + }, + { + "start": 19879.12, + "end": 19880.12, + "probability": 0.7584 + }, + { + "start": 19881.12, + "end": 19883.0, + "probability": 0.9789 + }, + { + "start": 19883.96, + "end": 19886.72, + "probability": 0.9956 + }, + { + "start": 19888.9, + "end": 19890.06, + "probability": 0.9792 + }, + { + "start": 19890.8, + "end": 19891.68, + "probability": 0.7263 + }, + { + "start": 19891.78, + "end": 19895.68, + "probability": 0.9933 + }, + { + "start": 19895.8, + "end": 19898.08, + "probability": 0.6918 + }, + { + "start": 19899.5, + "end": 19903.14, + "probability": 0.9797 + }, + { + "start": 19904.04, + "end": 19905.58, + "probability": 0.9671 + }, + { + "start": 19905.76, + "end": 19908.56, + "probability": 0.9356 + }, + { + "start": 19909.78, + "end": 19913.26, + "probability": 0.9677 + }, + { + "start": 19913.74, + "end": 19914.62, + "probability": 0.827 + }, + { + "start": 19917.48, + "end": 19920.0, + "probability": 0.9938 + }, + { + "start": 19920.58, + "end": 19922.5, + "probability": 0.9453 + }, + { + "start": 19923.02, + "end": 19923.84, + "probability": 0.9477 + }, + { + "start": 19924.16, + "end": 19924.84, + "probability": 0.6814 + }, + { + "start": 19925.24, + "end": 19927.94, + "probability": 0.965 + }, + { + "start": 19929.1, + "end": 19931.3, + "probability": 0.97 + }, + { + "start": 19932.4, + "end": 19934.86, + "probability": 0.9964 + }, + { + "start": 19934.98, + "end": 19937.46, + "probability": 0.9692 + }, + { + "start": 19937.94, + "end": 19939.22, + "probability": 0.7802 + }, + { + "start": 19940.0, + "end": 19943.86, + "probability": 0.9572 + }, + { + "start": 19944.32, + "end": 19945.34, + "probability": 0.9839 + }, + { + "start": 19946.32, + "end": 19947.44, + "probability": 0.9568 + }, + { + "start": 19948.02, + "end": 19950.62, + "probability": 0.9945 + }, + { + "start": 19950.62, + "end": 19953.62, + "probability": 0.9912 + }, + { + "start": 19955.66, + "end": 19958.56, + "probability": 0.9985 + }, + { + "start": 19959.88, + "end": 19961.96, + "probability": 0.8781 + }, + { + "start": 19962.54, + "end": 19964.36, + "probability": 0.9554 + }, + { + "start": 19966.58, + "end": 19969.42, + "probability": 0.9909 + }, + { + "start": 19970.04, + "end": 19971.52, + "probability": 0.9983 + }, + { + "start": 19972.4, + "end": 19973.18, + "probability": 0.8857 + }, + { + "start": 19974.08, + "end": 19975.74, + "probability": 0.9961 + }, + { + "start": 19975.92, + "end": 19977.0, + "probability": 0.6076 + }, + { + "start": 19977.62, + "end": 19978.96, + "probability": 0.9819 + }, + { + "start": 19980.14, + "end": 19983.34, + "probability": 0.9965 + }, + { + "start": 19983.36, + "end": 19984.5, + "probability": 0.9717 + }, + { + "start": 19985.08, + "end": 19986.42, + "probability": 0.9702 + }, + { + "start": 19990.06, + "end": 19994.54, + "probability": 0.9972 + }, + { + "start": 19994.54, + "end": 19998.3, + "probability": 0.9987 + }, + { + "start": 19998.4, + "end": 19999.78, + "probability": 0.6896 + }, + { + "start": 20000.98, + "end": 20002.44, + "probability": 0.9036 + }, + { + "start": 20003.06, + "end": 20003.67, + "probability": 0.5121 + }, + { + "start": 20004.34, + "end": 20007.36, + "probability": 0.8925 + }, + { + "start": 20008.34, + "end": 20010.22, + "probability": 0.9735 + }, + { + "start": 20015.88, + "end": 20020.94, + "probability": 0.9932 + }, + { + "start": 20021.96, + "end": 20024.34, + "probability": 0.9677 + }, + { + "start": 20024.52, + "end": 20025.52, + "probability": 0.8554 + }, + { + "start": 20026.86, + "end": 20029.0, + "probability": 0.993 + }, + { + "start": 20029.8, + "end": 20032.92, + "probability": 0.9897 + }, + { + "start": 20033.6, + "end": 20036.02, + "probability": 0.9603 + }, + { + "start": 20036.72, + "end": 20037.72, + "probability": 0.8429 + }, + { + "start": 20038.0, + "end": 20041.0, + "probability": 0.9791 + }, + { + "start": 20041.88, + "end": 20043.4, + "probability": 0.9946 + }, + { + "start": 20044.04, + "end": 20045.2, + "probability": 0.7968 + }, + { + "start": 20045.94, + "end": 20046.84, + "probability": 0.8001 + }, + { + "start": 20048.36, + "end": 20051.6, + "probability": 0.9575 + }, + { + "start": 20052.86, + "end": 20054.64, + "probability": 0.996 + }, + { + "start": 20056.9, + "end": 20057.72, + "probability": 0.2198 + }, + { + "start": 20063.84, + "end": 20063.94, + "probability": 0.0119 + }, + { + "start": 20063.94, + "end": 20065.34, + "probability": 0.9893 + }, + { + "start": 20065.72, + "end": 20068.06, + "probability": 0.8094 + }, + { + "start": 20068.3, + "end": 20068.86, + "probability": 0.8799 + }, + { + "start": 20068.88, + "end": 20072.54, + "probability": 0.7615 + }, + { + "start": 20074.34, + "end": 20075.2, + "probability": 0.835 + }, + { + "start": 20075.42, + "end": 20077.64, + "probability": 0.8747 + }, + { + "start": 20078.24, + "end": 20079.76, + "probability": 0.4138 + }, + { + "start": 20080.52, + "end": 20082.34, + "probability": 0.992 + }, + { + "start": 20082.36, + "end": 20083.54, + "probability": 0.9919 + }, + { + "start": 20084.18, + "end": 20087.52, + "probability": 0.9893 + }, + { + "start": 20088.04, + "end": 20089.86, + "probability": 0.9856 + }, + { + "start": 20090.64, + "end": 20091.54, + "probability": 0.9891 + }, + { + "start": 20092.22, + "end": 20093.94, + "probability": 0.998 + }, + { + "start": 20094.04, + "end": 20097.56, + "probability": 0.8442 + }, + { + "start": 20097.66, + "end": 20098.3, + "probability": 0.7985 + }, + { + "start": 20098.7, + "end": 20101.68, + "probability": 0.8264 + }, + { + "start": 20102.08, + "end": 20103.0, + "probability": 0.7631 + }, + { + "start": 20103.08, + "end": 20103.43, + "probability": 0.9521 + }, + { + "start": 20103.98, + "end": 20105.48, + "probability": 0.9813 + }, + { + "start": 20107.92, + "end": 20109.66, + "probability": 0.9996 + }, + { + "start": 20110.36, + "end": 20112.52, + "probability": 0.9944 + }, + { + "start": 20113.24, + "end": 20116.32, + "probability": 0.8953 + }, + { + "start": 20116.54, + "end": 20118.23, + "probability": 0.9941 + }, + { + "start": 20118.74, + "end": 20119.68, + "probability": 0.9602 + }, + { + "start": 20120.9, + "end": 20123.68, + "probability": 0.9963 + }, + { + "start": 20124.24, + "end": 20129.3, + "probability": 0.9907 + }, + { + "start": 20130.24, + "end": 20131.08, + "probability": 0.8732 + }, + { + "start": 20131.9, + "end": 20133.9, + "probability": 0.7765 + }, + { + "start": 20135.02, + "end": 20135.8, + "probability": 0.6061 + }, + { + "start": 20137.1, + "end": 20139.3, + "probability": 0.9951 + }, + { + "start": 20140.32, + "end": 20142.76, + "probability": 0.9894 + }, + { + "start": 20142.84, + "end": 20143.76, + "probability": 0.9724 + }, + { + "start": 20144.5, + "end": 20146.48, + "probability": 0.952 + }, + { + "start": 20147.28, + "end": 20149.74, + "probability": 0.9209 + }, + { + "start": 20151.96, + "end": 20155.44, + "probability": 0.6321 + }, + { + "start": 20156.18, + "end": 20157.82, + "probability": 0.8916 + }, + { + "start": 20159.22, + "end": 20160.18, + "probability": 0.7686 + }, + { + "start": 20160.22, + "end": 20161.55, + "probability": 0.8194 + }, + { + "start": 20161.7, + "end": 20163.44, + "probability": 0.881 + }, + { + "start": 20164.08, + "end": 20167.56, + "probability": 0.999 + }, + { + "start": 20167.98, + "end": 20168.96, + "probability": 0.8282 + }, + { + "start": 20169.52, + "end": 20173.16, + "probability": 0.963 + }, + { + "start": 20174.72, + "end": 20177.42, + "probability": 0.9794 + }, + { + "start": 20177.42, + "end": 20179.34, + "probability": 0.9938 + }, + { + "start": 20179.72, + "end": 20180.32, + "probability": 0.7251 + }, + { + "start": 20180.96, + "end": 20182.52, + "probability": 0.9379 + }, + { + "start": 20182.9, + "end": 20186.12, + "probability": 0.9893 + }, + { + "start": 20187.16, + "end": 20188.48, + "probability": 0.9884 + }, + { + "start": 20188.56, + "end": 20188.94, + "probability": 0.9348 + }, + { + "start": 20189.06, + "end": 20189.86, + "probability": 0.9229 + }, + { + "start": 20190.02, + "end": 20192.12, + "probability": 0.988 + }, + { + "start": 20192.76, + "end": 20193.32, + "probability": 0.6883 + }, + { + "start": 20193.72, + "end": 20195.5, + "probability": 0.8187 + }, + { + "start": 20195.86, + "end": 20196.37, + "probability": 0.9904 + }, + { + "start": 20196.78, + "end": 20197.44, + "probability": 0.9377 + }, + { + "start": 20197.92, + "end": 20199.18, + "probability": 0.8787 + }, + { + "start": 20199.46, + "end": 20200.72, + "probability": 0.9883 + }, + { + "start": 20201.5, + "end": 20202.9, + "probability": 0.9546 + }, + { + "start": 20203.86, + "end": 20204.28, + "probability": 0.8099 + }, + { + "start": 20205.0, + "end": 20205.82, + "probability": 0.6201 + }, + { + "start": 20205.92, + "end": 20208.84, + "probability": 0.7182 + }, + { + "start": 20228.0, + "end": 20229.8, + "probability": 0.5863 + }, + { + "start": 20231.44, + "end": 20233.46, + "probability": 0.9844 + }, + { + "start": 20234.54, + "end": 20238.14, + "probability": 0.989 + }, + { + "start": 20240.62, + "end": 20246.18, + "probability": 0.9883 + }, + { + "start": 20246.18, + "end": 20250.1, + "probability": 0.9964 + }, + { + "start": 20250.88, + "end": 20251.18, + "probability": 0.4853 + }, + { + "start": 20251.22, + "end": 20255.15, + "probability": 0.9875 + }, + { + "start": 20256.08, + "end": 20259.48, + "probability": 0.9961 + }, + { + "start": 20259.58, + "end": 20260.32, + "probability": 0.9648 + }, + { + "start": 20261.16, + "end": 20264.44, + "probability": 0.9635 + }, + { + "start": 20264.44, + "end": 20266.72, + "probability": 0.6787 + }, + { + "start": 20270.2, + "end": 20273.02, + "probability": 0.8111 + }, + { + "start": 20275.56, + "end": 20276.42, + "probability": 0.1987 + }, + { + "start": 20277.6, + "end": 20278.0, + "probability": 0.4626 + }, + { + "start": 20278.06, + "end": 20280.36, + "probability": 0.9276 + }, + { + "start": 20280.36, + "end": 20284.6, + "probability": 0.9316 + }, + { + "start": 20285.3, + "end": 20286.08, + "probability": 0.946 + }, + { + "start": 20286.16, + "end": 20289.06, + "probability": 0.9976 + }, + { + "start": 20289.06, + "end": 20292.38, + "probability": 0.9968 + }, + { + "start": 20292.38, + "end": 20295.62, + "probability": 0.9911 + }, + { + "start": 20296.34, + "end": 20300.06, + "probability": 0.9922 + }, + { + "start": 20300.52, + "end": 20305.08, + "probability": 0.9797 + }, + { + "start": 20307.02, + "end": 20310.64, + "probability": 0.9613 + }, + { + "start": 20310.68, + "end": 20312.28, + "probability": 0.8369 + }, + { + "start": 20312.88, + "end": 20313.82, + "probability": 0.5558 + }, + { + "start": 20315.86, + "end": 20317.28, + "probability": 0.6558 + }, + { + "start": 20320.24, + "end": 20323.56, + "probability": 0.9882 + }, + { + "start": 20324.4, + "end": 20325.66, + "probability": 0.7332 + }, + { + "start": 20327.58, + "end": 20330.28, + "probability": 0.9921 + }, + { + "start": 20331.46, + "end": 20335.18, + "probability": 0.9936 + }, + { + "start": 20335.62, + "end": 20337.1, + "probability": 0.9922 + }, + { + "start": 20337.46, + "end": 20339.58, + "probability": 0.9097 + }, + { + "start": 20339.9, + "end": 20340.34, + "probability": 0.4688 + }, + { + "start": 20340.44, + "end": 20341.2, + "probability": 0.7955 + }, + { + "start": 20341.28, + "end": 20343.6, + "probability": 0.9075 + }, + { + "start": 20344.22, + "end": 20347.66, + "probability": 0.5586 + }, + { + "start": 20349.47, + "end": 20351.92, + "probability": 0.959 + }, + { + "start": 20354.7, + "end": 20354.82, + "probability": 0.0197 + }, + { + "start": 20354.82, + "end": 20354.82, + "probability": 0.0632 + }, + { + "start": 20354.82, + "end": 20357.48, + "probability": 0.2199 + }, + { + "start": 20357.62, + "end": 20360.74, + "probability": 0.7873 + }, + { + "start": 20361.3, + "end": 20365.0, + "probability": 0.8968 + }, + { + "start": 20365.34, + "end": 20366.46, + "probability": 0.9946 + }, + { + "start": 20367.3, + "end": 20368.04, + "probability": 0.5724 + }, + { + "start": 20368.66, + "end": 20368.72, + "probability": 0.3815 + }, + { + "start": 20368.72, + "end": 20370.52, + "probability": 0.8553 + }, + { + "start": 20370.58, + "end": 20373.46, + "probability": 0.9731 + }, + { + "start": 20373.9, + "end": 20378.6, + "probability": 0.9937 + }, + { + "start": 20379.14, + "end": 20386.0, + "probability": 0.9653 + }, + { + "start": 20386.94, + "end": 20389.0, + "probability": 0.9993 + }, + { + "start": 20389.0, + "end": 20392.5, + "probability": 0.9619 + }, + { + "start": 20393.2, + "end": 20396.82, + "probability": 0.9762 + }, + { + "start": 20397.6, + "end": 20403.1, + "probability": 0.9927 + }, + { + "start": 20403.62, + "end": 20405.54, + "probability": 0.8019 + }, + { + "start": 20405.64, + "end": 20407.3, + "probability": 0.9859 + }, + { + "start": 20407.74, + "end": 20412.36, + "probability": 0.9701 + }, + { + "start": 20412.72, + "end": 20414.7, + "probability": 0.8817 + }, + { + "start": 20415.02, + "end": 20415.44, + "probability": 0.2777 + }, + { + "start": 20415.48, + "end": 20416.48, + "probability": 0.7711 + }, + { + "start": 20417.48, + "end": 20420.24, + "probability": 0.9443 + }, + { + "start": 20422.62, + "end": 20424.34, + "probability": 0.9045 + }, + { + "start": 20426.94, + "end": 20427.52, + "probability": 0.8683 + }, + { + "start": 20427.8, + "end": 20429.78, + "probability": 0.9974 + }, + { + "start": 20429.78, + "end": 20434.18, + "probability": 0.9907 + }, + { + "start": 20435.02, + "end": 20438.02, + "probability": 0.9946 + }, + { + "start": 20438.54, + "end": 20440.38, + "probability": 0.9988 + }, + { + "start": 20440.98, + "end": 20448.02, + "probability": 0.9927 + }, + { + "start": 20448.12, + "end": 20450.54, + "probability": 0.8069 + }, + { + "start": 20451.68, + "end": 20453.68, + "probability": 0.6861 + }, + { + "start": 20454.22, + "end": 20455.66, + "probability": 0.0613 + }, + { + "start": 20456.12, + "end": 20458.26, + "probability": 0.5577 + }, + { + "start": 20459.76, + "end": 20461.56, + "probability": 0.9993 + }, + { + "start": 20464.3, + "end": 20469.84, + "probability": 0.9988 + }, + { + "start": 20470.94, + "end": 20474.54, + "probability": 0.9897 + }, + { + "start": 20474.54, + "end": 20482.12, + "probability": 0.995 + }, + { + "start": 20482.8, + "end": 20485.24, + "probability": 0.993 + }, + { + "start": 20486.58, + "end": 20486.84, + "probability": 0.7148 + }, + { + "start": 20487.6, + "end": 20488.32, + "probability": 0.7279 + }, + { + "start": 20488.86, + "end": 20492.34, + "probability": 0.8925 + }, + { + "start": 20494.1, + "end": 20500.32, + "probability": 0.8831 + }, + { + "start": 20500.52, + "end": 20502.52, + "probability": 0.9697 + }, + { + "start": 20503.9, + "end": 20505.98, + "probability": 0.3404 + }, + { + "start": 20506.14, + "end": 20511.0, + "probability": 0.984 + }, + { + "start": 20513.14, + "end": 20515.0, + "probability": 0.6818 + }, + { + "start": 20515.7, + "end": 20516.7, + "probability": 0.8954 + }, + { + "start": 20516.84, + "end": 20519.84, + "probability": 0.9945 + }, + { + "start": 20519.84, + "end": 20522.1, + "probability": 0.9333 + }, + { + "start": 20522.86, + "end": 20530.08, + "probability": 0.9879 + }, + { + "start": 20531.12, + "end": 20531.92, + "probability": 0.9256 + }, + { + "start": 20532.9, + "end": 20536.24, + "probability": 0.982 + }, + { + "start": 20537.2, + "end": 20539.82, + "probability": 0.6339 + }, + { + "start": 20540.74, + "end": 20542.16, + "probability": 0.8982 + }, + { + "start": 20542.72, + "end": 20545.06, + "probability": 0.8384 + }, + { + "start": 20545.2, + "end": 20546.44, + "probability": 0.7568 + }, + { + "start": 20547.12, + "end": 20552.06, + "probability": 0.9594 + }, + { + "start": 20552.18, + "end": 20556.18, + "probability": 0.8771 + }, + { + "start": 20557.2, + "end": 20557.58, + "probability": 0.5085 + }, + { + "start": 20558.18, + "end": 20561.34, + "probability": 0.9327 + }, + { + "start": 20562.04, + "end": 20563.22, + "probability": 0.9314 + }, + { + "start": 20563.48, + "end": 20565.99, + "probability": 0.9952 + }, + { + "start": 20567.33, + "end": 20571.26, + "probability": 0.8447 + }, + { + "start": 20571.42, + "end": 20574.16, + "probability": 0.998 + }, + { + "start": 20574.58, + "end": 20577.18, + "probability": 0.9759 + }, + { + "start": 20577.58, + "end": 20579.52, + "probability": 0.9966 + }, + { + "start": 20580.68, + "end": 20585.22, + "probability": 0.7427 + }, + { + "start": 20586.12, + "end": 20587.34, + "probability": 0.9019 + }, + { + "start": 20587.96, + "end": 20589.08, + "probability": 0.9795 + }, + { + "start": 20590.04, + "end": 20593.02, + "probability": 0.9947 + }, + { + "start": 20593.6, + "end": 20594.8, + "probability": 0.9688 + }, + { + "start": 20595.42, + "end": 20598.68, + "probability": 0.9962 + }, + { + "start": 20599.34, + "end": 20604.24, + "probability": 0.9852 + }, + { + "start": 20604.68, + "end": 20605.98, + "probability": 0.998 + }, + { + "start": 20606.34, + "end": 20611.14, + "probability": 0.9876 + }, + { + "start": 20611.26, + "end": 20615.96, + "probability": 0.9999 + }, + { + "start": 20617.78, + "end": 20619.55, + "probability": 0.8169 + }, + { + "start": 20620.77, + "end": 20620.89, + "probability": 0.024 + }, + { + "start": 20621.6, + "end": 20622.18, + "probability": 0.8969 + }, + { + "start": 20633.12, + "end": 20633.22, + "probability": 0.1569 + }, + { + "start": 20633.22, + "end": 20633.22, + "probability": 0.3228 + }, + { + "start": 20633.22, + "end": 20633.32, + "probability": 0.0594 + }, + { + "start": 20633.32, + "end": 20633.58, + "probability": 0.2085 + }, + { + "start": 20634.06, + "end": 20634.24, + "probability": 0.064 + }, + { + "start": 20642.52, + "end": 20643.04, + "probability": 0.4421 + }, + { + "start": 20656.04, + "end": 20659.28, + "probability": 0.7793 + }, + { + "start": 20660.14, + "end": 20662.14, + "probability": 0.9926 + }, + { + "start": 20663.04, + "end": 20666.64, + "probability": 0.971 + }, + { + "start": 20667.24, + "end": 20669.72, + "probability": 0.9721 + }, + { + "start": 20670.32, + "end": 20671.8, + "probability": 0.6474 + }, + { + "start": 20677.5, + "end": 20679.28, + "probability": 0.8612 + }, + { + "start": 20679.4, + "end": 20682.82, + "probability": 0.991 + }, + { + "start": 20683.22, + "end": 20685.56, + "probability": 0.9811 + }, + { + "start": 20686.12, + "end": 20686.9, + "probability": 0.9109 + }, + { + "start": 20688.08, + "end": 20689.58, + "probability": 0.9542 + }, + { + "start": 20689.66, + "end": 20690.26, + "probability": 0.742 + }, + { + "start": 20690.66, + "end": 20692.6, + "probability": 0.9785 + }, + { + "start": 20693.08, + "end": 20698.47, + "probability": 0.988 + }, + { + "start": 20698.68, + "end": 20700.32, + "probability": 0.877 + }, + { + "start": 20701.56, + "end": 20705.68, + "probability": 0.9053 + }, + { + "start": 20706.22, + "end": 20706.84, + "probability": 0.746 + }, + { + "start": 20709.68, + "end": 20710.62, + "probability": 0.3119 + }, + { + "start": 20711.48, + "end": 20712.84, + "probability": 0.9673 + }, + { + "start": 20713.4, + "end": 20714.09, + "probability": 0.9605 + }, + { + "start": 20714.96, + "end": 20715.76, + "probability": 0.9429 + }, + { + "start": 20715.8, + "end": 20716.88, + "probability": 0.894 + }, + { + "start": 20716.94, + "end": 20717.64, + "probability": 0.9691 + }, + { + "start": 20718.18, + "end": 20719.92, + "probability": 0.9571 + }, + { + "start": 20720.02, + "end": 20720.72, + "probability": 0.8227 + }, + { + "start": 20720.78, + "end": 20721.19, + "probability": 0.9492 + }, + { + "start": 20721.92, + "end": 20723.9, + "probability": 0.6426 + }, + { + "start": 20724.64, + "end": 20726.38, + "probability": 0.8688 + }, + { + "start": 20727.16, + "end": 20729.16, + "probability": 0.9841 + }, + { + "start": 20730.22, + "end": 20731.74, + "probability": 0.8564 + }, + { + "start": 20731.84, + "end": 20732.98, + "probability": 0.6308 + }, + { + "start": 20737.1, + "end": 20737.58, + "probability": 0.5934 + }, + { + "start": 20738.78, + "end": 20739.62, + "probability": 0.7354 + }, + { + "start": 20740.16, + "end": 20740.64, + "probability": 0.0431 + }, + { + "start": 20741.16, + "end": 20741.54, + "probability": 0.4515 + }, + { + "start": 20741.64, + "end": 20743.56, + "probability": 0.9823 + }, + { + "start": 20743.64, + "end": 20744.5, + "probability": 0.8484 + }, + { + "start": 20744.64, + "end": 20745.34, + "probability": 0.8975 + }, + { + "start": 20745.38, + "end": 20745.92, + "probability": 0.9597 + }, + { + "start": 20746.96, + "end": 20747.88, + "probability": 0.9647 + }, + { + "start": 20748.0, + "end": 20749.86, + "probability": 0.9763 + }, + { + "start": 20749.94, + "end": 20750.29, + "probability": 0.9617 + }, + { + "start": 20751.38, + "end": 20752.52, + "probability": 0.988 + }, + { + "start": 20752.64, + "end": 20755.22, + "probability": 0.8746 + }, + { + "start": 20755.66, + "end": 20759.32, + "probability": 0.759 + }, + { + "start": 20759.48, + "end": 20762.56, + "probability": 0.6567 + }, + { + "start": 20763.04, + "end": 20770.06, + "probability": 0.4802 + }, + { + "start": 20770.3, + "end": 20771.18, + "probability": 0.2598 + }, + { + "start": 20771.3, + "end": 20772.53, + "probability": 0.8409 + }, + { + "start": 20773.62, + "end": 20774.7, + "probability": 0.9668 + }, + { + "start": 20775.0, + "end": 20776.7, + "probability": 0.5243 + }, + { + "start": 20777.56, + "end": 20778.3, + "probability": 0.0574 + }, + { + "start": 20778.6, + "end": 20781.31, + "probability": 0.3609 + }, + { + "start": 20781.72, + "end": 20782.87, + "probability": 0.4024 + }, + { + "start": 20784.66, + "end": 20784.92, + "probability": 0.1839 + }, + { + "start": 20784.92, + "end": 20786.79, + "probability": 0.0827 + }, + { + "start": 20787.56, + "end": 20787.94, + "probability": 0.0605 + }, + { + "start": 20787.94, + "end": 20787.94, + "probability": 0.0502 + }, + { + "start": 20787.94, + "end": 20789.52, + "probability": 0.2726 + }, + { + "start": 20789.82, + "end": 20791.45, + "probability": 0.395 + }, + { + "start": 20791.74, + "end": 20792.29, + "probability": 0.8418 + }, + { + "start": 20792.62, + "end": 20793.36, + "probability": 0.5472 + }, + { + "start": 20794.06, + "end": 20795.22, + "probability": 0.937 + }, + { + "start": 20795.66, + "end": 20797.36, + "probability": 0.9675 + }, + { + "start": 20798.14, + "end": 20800.12, + "probability": 0.7897 + }, + { + "start": 20800.82, + "end": 20803.3, + "probability": 0.9671 + }, + { + "start": 20803.66, + "end": 20805.08, + "probability": 0.9631 + }, + { + "start": 20805.46, + "end": 20806.02, + "probability": 0.5969 + }, + { + "start": 20806.38, + "end": 20807.0, + "probability": 0.8205 + }, + { + "start": 20807.52, + "end": 20809.54, + "probability": 0.9851 + }, + { + "start": 20809.84, + "end": 20812.86, + "probability": 0.9854 + }, + { + "start": 20813.56, + "end": 20816.34, + "probability": 0.9677 + }, + { + "start": 20816.98, + "end": 20818.0, + "probability": 0.999 + }, + { + "start": 20818.38, + "end": 20819.26, + "probability": 0.7583 + }, + { + "start": 20819.8, + "end": 20821.52, + "probability": 0.833 + }, + { + "start": 20823.19, + "end": 20825.8, + "probability": 0.6734 + }, + { + "start": 20825.94, + "end": 20826.68, + "probability": 0.5989 + }, + { + "start": 20827.16, + "end": 20828.58, + "probability": 0.9126 + }, + { + "start": 20829.2, + "end": 20830.26, + "probability": 0.9792 + }, + { + "start": 20830.56, + "end": 20831.46, + "probability": 0.7616 + }, + { + "start": 20831.72, + "end": 20832.52, + "probability": 0.8129 + }, + { + "start": 20832.52, + "end": 20833.42, + "probability": 0.5198 + }, + { + "start": 20834.16, + "end": 20837.04, + "probability": 0.9128 + }, + { + "start": 20837.44, + "end": 20837.56, + "probability": 0.3285 + }, + { + "start": 20837.56, + "end": 20838.68, + "probability": 0.9258 + }, + { + "start": 20839.42, + "end": 20840.3, + "probability": 0.8941 + }, + { + "start": 20841.04, + "end": 20843.36, + "probability": 0.9578 + }, + { + "start": 20843.36, + "end": 20845.52, + "probability": 0.9897 + }, + { + "start": 20846.24, + "end": 20846.48, + "probability": 0.4971 + }, + { + "start": 20846.84, + "end": 20846.98, + "probability": 0.4966 + }, + { + "start": 20846.98, + "end": 20848.16, + "probability": 0.6375 + }, + { + "start": 20848.22, + "end": 20849.08, + "probability": 0.6291 + }, + { + "start": 20849.42, + "end": 20851.38, + "probability": 0.9115 + }, + { + "start": 20851.92, + "end": 20852.12, + "probability": 0.0109 + }, + { + "start": 20852.96, + "end": 20853.59, + "probability": 0.4274 + }, + { + "start": 20856.22, + "end": 20856.62, + "probability": 0.9058 + }, + { + "start": 20857.8, + "end": 20858.79, + "probability": 0.7807 + }, + { + "start": 20860.0, + "end": 20860.46, + "probability": 0.9704 + }, + { + "start": 20861.54, + "end": 20862.44, + "probability": 0.2813 + }, + { + "start": 20864.36, + "end": 20864.7, + "probability": 0.6625 + }, + { + "start": 20865.96, + "end": 20866.8, + "probability": 0.8018 + }, + { + "start": 20867.74, + "end": 20869.6, + "probability": 0.939 + }, + { + "start": 20870.92, + "end": 20871.48, + "probability": 0.9572 + }, + { + "start": 20872.46, + "end": 20873.26, + "probability": 0.6978 + }, + { + "start": 20874.24, + "end": 20876.76, + "probability": 0.98 + }, + { + "start": 20879.7, + "end": 20882.26, + "probability": 0.8785 + }, + { + "start": 20883.7, + "end": 20884.0, + "probability": 0.9939 + }, + { + "start": 20885.04, + "end": 20885.8, + "probability": 0.9632 + }, + { + "start": 20886.88, + "end": 20887.22, + "probability": 0.9656 + }, + { + "start": 20888.3, + "end": 20889.14, + "probability": 0.9344 + }, + { + "start": 20891.4, + "end": 20891.56, + "probability": 0.3439 + }, + { + "start": 20895.84, + "end": 20896.88, + "probability": 0.3629 + }, + { + "start": 20897.7, + "end": 20898.18, + "probability": 0.5886 + }, + { + "start": 20898.78, + "end": 20899.88, + "probability": 0.8822 + }, + { + "start": 20901.36, + "end": 20901.88, + "probability": 0.9422 + }, + { + "start": 20903.16, + "end": 20904.08, + "probability": 0.9699 + }, + { + "start": 20905.1, + "end": 20906.76, + "probability": 0.9717 + }, + { + "start": 20907.98, + "end": 20909.68, + "probability": 0.9271 + }, + { + "start": 20910.68, + "end": 20912.84, + "probability": 0.9219 + }, + { + "start": 20913.54, + "end": 20914.08, + "probability": 0.9819 + }, + { + "start": 20914.8, + "end": 20915.64, + "probability": 0.9606 + }, + { + "start": 20916.82, + "end": 20917.22, + "probability": 0.9309 + }, + { + "start": 20918.54, + "end": 20919.44, + "probability": 0.8908 + }, + { + "start": 20920.52, + "end": 20920.96, + "probability": 0.9823 + }, + { + "start": 20923.12, + "end": 20923.98, + "probability": 0.9771 + }, + { + "start": 20925.1, + "end": 20925.68, + "probability": 0.7521 + }, + { + "start": 20926.46, + "end": 20927.24, + "probability": 0.9323 + }, + { + "start": 20928.18, + "end": 20930.8, + "probability": 0.9816 + }, + { + "start": 20932.82, + "end": 20934.34, + "probability": 0.543 + }, + { + "start": 20935.76, + "end": 20936.7, + "probability": 0.9663 + }, + { + "start": 20940.16, + "end": 20942.38, + "probability": 0.9346 + }, + { + "start": 20943.44, + "end": 20944.58, + "probability": 0.9614 + }, + { + "start": 20945.38, + "end": 20946.62, + "probability": 0.7055 + }, + { + "start": 20948.0, + "end": 20948.6, + "probability": 0.993 + }, + { + "start": 20949.88, + "end": 20950.72, + "probability": 0.9852 + }, + { + "start": 20952.18, + "end": 20952.62, + "probability": 0.9832 + }, + { + "start": 20954.22, + "end": 20954.9, + "probability": 0.8231 + }, + { + "start": 20955.62, + "end": 20955.94, + "probability": 0.5345 + }, + { + "start": 20956.86, + "end": 20957.62, + "probability": 0.6931 + }, + { + "start": 20960.36, + "end": 20961.88, + "probability": 0.7462 + }, + { + "start": 20962.88, + "end": 20963.64, + "probability": 0.7007 + }, + { + "start": 20967.73, + "end": 20970.46, + "probability": 0.9098 + }, + { + "start": 20971.56, + "end": 20972.1, + "probability": 0.9647 + }, + { + "start": 20973.12, + "end": 20973.94, + "probability": 0.8108 + }, + { + "start": 20977.86, + "end": 20978.86, + "probability": 0.8176 + }, + { + "start": 20979.48, + "end": 20980.34, + "probability": 0.8836 + }, + { + "start": 20981.64, + "end": 20982.06, + "probability": 0.9851 + }, + { + "start": 20982.76, + "end": 20983.72, + "probability": 0.617 + }, + { + "start": 20984.68, + "end": 20985.1, + "probability": 0.7422 + }, + { + "start": 20986.4, + "end": 20987.26, + "probability": 0.8286 + }, + { + "start": 20989.94, + "end": 20990.9, + "probability": 0.8389 + }, + { + "start": 20991.82, + "end": 20992.74, + "probability": 0.8502 + }, + { + "start": 20993.98, + "end": 20994.48, + "probability": 0.9224 + }, + { + "start": 20995.46, + "end": 20996.5, + "probability": 0.905 + }, + { + "start": 20997.16, + "end": 20997.74, + "probability": 0.9793 + }, + { + "start": 20998.48, + "end": 20999.44, + "probability": 0.9628 + }, + { + "start": 21000.46, + "end": 21003.44, + "probability": 0.8612 + }, + { + "start": 21004.76, + "end": 21006.12, + "probability": 0.9922 + }, + { + "start": 21006.88, + "end": 21008.1, + "probability": 0.9784 + }, + { + "start": 21008.86, + "end": 21011.04, + "probability": 0.9727 + }, + { + "start": 21012.22, + "end": 21012.74, + "probability": 0.7012 + }, + { + "start": 21013.88, + "end": 21014.84, + "probability": 0.611 + }, + { + "start": 21015.66, + "end": 21016.14, + "probability": 0.877 + }, + { + "start": 21016.9, + "end": 21017.74, + "probability": 0.3383 + }, + { + "start": 21019.02, + "end": 21019.64, + "probability": 0.9761 + }, + { + "start": 21020.5, + "end": 21021.74, + "probability": 0.9257 + }, + { + "start": 21023.06, + "end": 21024.6, + "probability": 0.9153 + }, + { + "start": 21025.72, + "end": 21027.0, + "probability": 0.9207 + }, + { + "start": 21027.6, + "end": 21028.14, + "probability": 0.9883 + }, + { + "start": 21029.44, + "end": 21030.54, + "probability": 0.8796 + }, + { + "start": 21034.76, + "end": 21035.14, + "probability": 0.9788 + }, + { + "start": 21036.7, + "end": 21038.68, + "probability": 0.6998 + }, + { + "start": 21039.4, + "end": 21040.92, + "probability": 0.4973 + }, + { + "start": 21042.66, + "end": 21046.62, + "probability": 0.3079 + }, + { + "start": 21048.8, + "end": 21049.14, + "probability": 0.7437 + }, + { + "start": 21050.98, + "end": 21051.58, + "probability": 0.545 + }, + { + "start": 21053.12, + "end": 21053.7, + "probability": 0.9937 + }, + { + "start": 21054.46, + "end": 21055.24, + "probability": 0.8517 + }, + { + "start": 21057.36, + "end": 21058.12, + "probability": 0.408 + }, + { + "start": 21060.9, + "end": 21061.88, + "probability": 0.23 + }, + { + "start": 21062.44, + "end": 21063.16, + "probability": 0.5457 + }, + { + "start": 21064.84, + "end": 21065.42, + "probability": 0.8359 + }, + { + "start": 21067.36, + "end": 21068.62, + "probability": 0.7346 + }, + { + "start": 21070.52, + "end": 21074.94, + "probability": 0.8921 + }, + { + "start": 21077.0, + "end": 21077.8, + "probability": 0.9641 + }, + { + "start": 21078.98, + "end": 21079.48, + "probability": 0.9026 + }, + { + "start": 21080.54, + "end": 21082.4, + "probability": 0.9903 + }, + { + "start": 21083.52, + "end": 21084.82, + "probability": 0.9402 + }, + { + "start": 21085.86, + "end": 21086.86, + "probability": 0.4971 + }, + { + "start": 21087.96, + "end": 21089.38, + "probability": 0.4516 + }, + { + "start": 21091.08, + "end": 21093.44, + "probability": 0.1657 + }, + { + "start": 21094.58, + "end": 21095.24, + "probability": 0.7057 + }, + { + "start": 21096.96, + "end": 21097.44, + "probability": 0.6531 + }, + { + "start": 21099.66, + "end": 21100.28, + "probability": 0.8735 + }, + { + "start": 21104.53, + "end": 21106.44, + "probability": 0.9442 + }, + { + "start": 21111.02, + "end": 21111.44, + "probability": 0.5714 + }, + { + "start": 21113.3, + "end": 21113.9, + "probability": 0.7266 + }, + { + "start": 21115.6, + "end": 21116.2, + "probability": 0.8833 + }, + { + "start": 21118.22, + "end": 21119.42, + "probability": 0.7775 + }, + { + "start": 21120.04, + "end": 21120.58, + "probability": 0.9818 + }, + { + "start": 21121.28, + "end": 21121.98, + "probability": 0.9172 + }, + { + "start": 21122.82, + "end": 21123.36, + "probability": 0.964 + }, + { + "start": 21124.36, + "end": 21125.48, + "probability": 0.9641 + }, + { + "start": 21126.56, + "end": 21127.06, + "probability": 0.958 + }, + { + "start": 21128.14, + "end": 21129.02, + "probability": 0.9738 + }, + { + "start": 21130.28, + "end": 21130.76, + "probability": 0.9607 + }, + { + "start": 21131.38, + "end": 21132.42, + "probability": 0.9141 + }, + { + "start": 21133.64, + "end": 21134.22, + "probability": 0.987 + }, + { + "start": 21135.16, + "end": 21136.4, + "probability": 0.9502 + }, + { + "start": 21137.46, + "end": 21137.78, + "probability": 0.5634 + }, + { + "start": 21139.46, + "end": 21140.34, + "probability": 0.6301 + }, + { + "start": 21141.5, + "end": 21142.1, + "probability": 0.9629 + }, + { + "start": 21143.1, + "end": 21143.78, + "probability": 0.869 + }, + { + "start": 21144.87, + "end": 21147.62, + "probability": 0.9611 + }, + { + "start": 21148.73, + "end": 21150.94, + "probability": 0.8369 + }, + { + "start": 21155.6, + "end": 21157.46, + "probability": 0.6802 + }, + { + "start": 21158.86, + "end": 21159.6, + "probability": 0.4726 + }, + { + "start": 21161.86, + "end": 21162.34, + "probability": 0.8235 + }, + { + "start": 21163.6, + "end": 21164.7, + "probability": 0.876 + }, + { + "start": 21165.26, + "end": 21167.84, + "probability": 0.7767 + }, + { + "start": 21172.44, + "end": 21172.84, + "probability": 0.7755 + }, + { + "start": 21173.82, + "end": 21174.84, + "probability": 0.6505 + }, + { + "start": 21175.82, + "end": 21177.16, + "probability": 0.9844 + }, + { + "start": 21177.82, + "end": 21178.9, + "probability": 0.8922 + }, + { + "start": 21181.3, + "end": 21181.76, + "probability": 0.8572 + }, + { + "start": 21182.74, + "end": 21183.4, + "probability": 0.8796 + }, + { + "start": 21184.67, + "end": 21186.94, + "probability": 0.9768 + }, + { + "start": 21188.24, + "end": 21188.82, + "probability": 0.9846 + }, + { + "start": 21189.64, + "end": 21191.02, + "probability": 0.5911 + }, + { + "start": 21192.08, + "end": 21192.62, + "probability": 0.9824 + }, + { + "start": 21193.2, + "end": 21194.18, + "probability": 0.9829 + }, + { + "start": 21195.14, + "end": 21195.62, + "probability": 0.9851 + }, + { + "start": 21196.48, + "end": 21197.4, + "probability": 0.9236 + }, + { + "start": 21200.04, + "end": 21200.62, + "probability": 0.7023 + }, + { + "start": 21201.56, + "end": 21202.66, + "probability": 0.6399 + }, + { + "start": 21209.8, + "end": 21210.08, + "probability": 0.4953 + }, + { + "start": 21210.74, + "end": 21212.52, + "probability": 0.7093 + }, + { + "start": 21213.78, + "end": 21214.68, + "probability": 0.6606 + }, + { + "start": 21215.38, + "end": 21216.08, + "probability": 0.9876 + }, + { + "start": 21216.88, + "end": 21217.86, + "probability": 0.7531 + }, + { + "start": 21221.18, + "end": 21221.72, + "probability": 0.9641 + }, + { + "start": 21222.92, + "end": 21223.62, + "probability": 0.7086 + }, + { + "start": 21227.42, + "end": 21227.94, + "probability": 0.9868 + }, + { + "start": 21229.14, + "end": 21230.06, + "probability": 0.9017 + }, + { + "start": 21232.6, + "end": 21233.18, + "probability": 0.9837 + }, + { + "start": 21234.76, + "end": 21235.74, + "probability": 0.486 + }, + { + "start": 21236.68, + "end": 21237.18, + "probability": 0.9621 + }, + { + "start": 21238.0, + "end": 21238.98, + "probability": 0.6585 + }, + { + "start": 21240.04, + "end": 21240.52, + "probability": 0.6465 + }, + { + "start": 21241.48, + "end": 21242.52, + "probability": 0.5827 + }, + { + "start": 21247.28, + "end": 21247.96, + "probability": 0.8543 + }, + { + "start": 21250.12, + "end": 21250.94, + "probability": 0.6379 + }, + { + "start": 21253.44, + "end": 21254.06, + "probability": 0.9476 + }, + { + "start": 21255.92, + "end": 21256.68, + "probability": 0.7522 + }, + { + "start": 21258.86, + "end": 21262.06, + "probability": 0.5592 + }, + { + "start": 21265.04, + "end": 21265.5, + "probability": 0.8662 + }, + { + "start": 21267.32, + "end": 21268.04, + "probability": 0.9509 + }, + { + "start": 21269.04, + "end": 21269.48, + "probability": 0.8984 + }, + { + "start": 21270.14, + "end": 21271.14, + "probability": 0.8535 + }, + { + "start": 21274.6, + "end": 21275.22, + "probability": 0.6984 + }, + { + "start": 21276.78, + "end": 21277.56, + "probability": 0.4746 + }, + { + "start": 21278.6, + "end": 21278.86, + "probability": 0.8621 + }, + { + "start": 21279.44, + "end": 21280.48, + "probability": 0.8922 + }, + { + "start": 21281.24, + "end": 21281.8, + "probability": 0.9893 + }, + { + "start": 21282.42, + "end": 21283.28, + "probability": 0.9323 + }, + { + "start": 21283.96, + "end": 21286.46, + "probability": 0.9056 + }, + { + "start": 21292.94, + "end": 21294.74, + "probability": 0.683 + }, + { + "start": 21295.66, + "end": 21296.34, + "probability": 0.5863 + }, + { + "start": 21297.68, + "end": 21298.14, + "probability": 0.5494 + }, + { + "start": 21298.94, + "end": 21299.66, + "probability": 0.8053 + }, + { + "start": 21301.3, + "end": 21301.82, + "probability": 0.9113 + }, + { + "start": 21303.26, + "end": 21304.0, + "probability": 0.8512 + }, + { + "start": 21304.7, + "end": 21306.2, + "probability": 0.9055 + }, + { + "start": 21306.98, + "end": 21309.4, + "probability": 0.8641 + }, + { + "start": 21312.32, + "end": 21312.92, + "probability": 0.9855 + }, + { + "start": 21313.7, + "end": 21314.74, + "probability": 0.9653 + }, + { + "start": 21317.08, + "end": 21319.96, + "probability": 0.9802 + }, + { + "start": 21321.02, + "end": 21322.02, + "probability": 0.8356 + }, + { + "start": 21322.88, + "end": 21323.32, + "probability": 0.7663 + }, + { + "start": 21324.22, + "end": 21324.88, + "probability": 0.8235 + }, + { + "start": 21326.94, + "end": 21328.36, + "probability": 0.985 + }, + { + "start": 21330.58, + "end": 21333.3, + "probability": 0.9139 + }, + { + "start": 21334.36, + "end": 21335.56, + "probability": 0.7307 + }, + { + "start": 21336.14, + "end": 21338.64, + "probability": 0.9407 + }, + { + "start": 21339.94, + "end": 21341.26, + "probability": 0.9722 + }, + { + "start": 21343.06, + "end": 21344.04, + "probability": 0.7755 + }, + { + "start": 21344.64, + "end": 21345.2, + "probability": 0.9702 + }, + { + "start": 21346.34, + "end": 21347.18, + "probability": 0.9491 + }, + { + "start": 21348.3, + "end": 21348.8, + "probability": 0.7546 + }, + { + "start": 21350.38, + "end": 21351.08, + "probability": 0.4355 + }, + { + "start": 21353.04, + "end": 21353.56, + "probability": 0.5522 + }, + { + "start": 21354.78, + "end": 21355.66, + "probability": 0.7345 + }, + { + "start": 21356.3, + "end": 21356.78, + "probability": 0.9741 + }, + { + "start": 21357.56, + "end": 21358.4, + "probability": 0.6636 + }, + { + "start": 21359.72, + "end": 21360.42, + "probability": 0.9912 + }, + { + "start": 21361.1, + "end": 21362.08, + "probability": 0.8999 + }, + { + "start": 21366.8, + "end": 21370.46, + "probability": 0.8462 + }, + { + "start": 21371.26, + "end": 21372.46, + "probability": 0.9359 + }, + { + "start": 21373.5, + "end": 21374.32, + "probability": 0.541 + }, + { + "start": 21375.64, + "end": 21376.18, + "probability": 0.8823 + }, + { + "start": 21376.84, + "end": 21377.38, + "probability": 0.366 + }, + { + "start": 21379.24, + "end": 21381.36, + "probability": 0.8028 + }, + { + "start": 21384.26, + "end": 21385.16, + "probability": 0.9297 + }, + { + "start": 21389.12, + "end": 21390.64, + "probability": 0.8768 + }, + { + "start": 21392.7, + "end": 21393.58, + "probability": 0.2137 + }, + { + "start": 21395.74, + "end": 21396.6, + "probability": 0.9009 + }, + { + "start": 21398.22, + "end": 21399.06, + "probability": 0.7575 + }, + { + "start": 21400.48, + "end": 21401.04, + "probability": 0.9727 + }, + { + "start": 21404.3, + "end": 21405.06, + "probability": 0.6678 + }, + { + "start": 21406.06, + "end": 21407.58, + "probability": 0.9229 + }, + { + "start": 21409.58, + "end": 21410.4, + "probability": 0.2102 + }, + { + "start": 21412.1, + "end": 21412.9, + "probability": 0.8975 + }, + { + "start": 21415.6, + "end": 21416.58, + "probability": 0.5515 + }, + { + "start": 21417.94, + "end": 21420.52, + "probability": 0.7609 + }, + { + "start": 21422.08, + "end": 21422.98, + "probability": 0.964 + }, + { + "start": 21424.72, + "end": 21425.68, + "probability": 0.9532 + }, + { + "start": 21427.3, + "end": 21428.04, + "probability": 0.9933 + }, + { + "start": 21428.7, + "end": 21429.83, + "probability": 0.8384 + }, + { + "start": 21431.64, + "end": 21432.46, + "probability": 0.9874 + }, + { + "start": 21434.98, + "end": 21438.94, + "probability": 0.9591 + }, + { + "start": 21440.66, + "end": 21441.46, + "probability": 0.5444 + }, + { + "start": 21441.48, + "end": 21442.44, + "probability": 0.8152 + }, + { + "start": 21447.68, + "end": 21450.54, + "probability": 0.0431 + }, + { + "start": 21459.96, + "end": 21462.84, + "probability": 0.0808 + }, + { + "start": 21463.64, + "end": 21464.06, + "probability": 0.0039 + }, + { + "start": 21471.04, + "end": 21472.68, + "probability": 0.0291 + }, + { + "start": 21562.26, + "end": 21564.72, + "probability": 0.767 + }, + { + "start": 21565.34, + "end": 21565.94, + "probability": 0.9167 + }, + { + "start": 21570.28, + "end": 21572.8, + "probability": 0.7629 + }, + { + "start": 21573.28, + "end": 21573.28, + "probability": 0.0237 + }, + { + "start": 21573.28, + "end": 21574.93, + "probability": 0.688 + }, + { + "start": 21575.18, + "end": 21576.36, + "probability": 0.6085 + }, + { + "start": 21576.42, + "end": 21576.52, + "probability": 0.9368 + }, + { + "start": 21602.5, + "end": 21604.24, + "probability": 0.6324 + }, + { + "start": 21605.22, + "end": 21605.52, + "probability": 0.7192 + }, + { + "start": 21605.62, + "end": 21611.6, + "probability": 0.9054 + }, + { + "start": 21612.44, + "end": 21613.44, + "probability": 0.9525 + }, + { + "start": 21614.64, + "end": 21616.4, + "probability": 0.988 + }, + { + "start": 21617.4, + "end": 21619.0, + "probability": 0.7503 + }, + { + "start": 21619.64, + "end": 21621.54, + "probability": 0.9374 + }, + { + "start": 21622.18, + "end": 21623.04, + "probability": 0.8764 + }, + { + "start": 21624.2, + "end": 21627.44, + "probability": 0.9546 + }, + { + "start": 21627.98, + "end": 21628.92, + "probability": 0.7681 + }, + { + "start": 21629.74, + "end": 21632.82, + "probability": 0.8383 + }, + { + "start": 21632.88, + "end": 21633.74, + "probability": 0.692 + }, + { + "start": 21633.78, + "end": 21635.3, + "probability": 0.7537 + }, + { + "start": 21636.22, + "end": 21637.94, + "probability": 0.8901 + }, + { + "start": 21638.08, + "end": 21639.24, + "probability": 0.6587 + }, + { + "start": 21640.2, + "end": 21642.04, + "probability": 0.9863 + }, + { + "start": 21642.74, + "end": 21644.52, + "probability": 0.7418 + }, + { + "start": 21645.42, + "end": 21649.34, + "probability": 0.9941 + }, + { + "start": 21651.9, + "end": 21657.68, + "probability": 0.9285 + }, + { + "start": 21657.88, + "end": 21659.63, + "probability": 0.8967 + }, + { + "start": 21661.06, + "end": 21667.08, + "probability": 0.9901 + }, + { + "start": 21668.2, + "end": 21670.14, + "probability": 0.7426 + }, + { + "start": 21671.12, + "end": 21674.94, + "probability": 0.7048 + }, + { + "start": 21675.5, + "end": 21679.72, + "probability": 0.9795 + }, + { + "start": 21679.94, + "end": 21680.62, + "probability": 0.6976 + }, + { + "start": 21680.66, + "end": 21681.3, + "probability": 0.7546 + }, + { + "start": 21681.38, + "end": 21683.18, + "probability": 0.9398 + }, + { + "start": 21684.24, + "end": 21686.78, + "probability": 0.9403 + }, + { + "start": 21688.34, + "end": 21689.36, + "probability": 0.9903 + }, + { + "start": 21690.12, + "end": 21691.18, + "probability": 0.6988 + }, + { + "start": 21692.04, + "end": 21692.16, + "probability": 0.437 + }, + { + "start": 21692.88, + "end": 21694.1, + "probability": 0.7702 + }, + { + "start": 21694.22, + "end": 21694.68, + "probability": 0.9125 + }, + { + "start": 21694.82, + "end": 21695.82, + "probability": 0.955 + }, + { + "start": 21695.88, + "end": 21696.76, + "probability": 0.9221 + }, + { + "start": 21696.92, + "end": 21697.88, + "probability": 0.9204 + }, + { + "start": 21698.48, + "end": 21700.46, + "probability": 0.8077 + }, + { + "start": 21701.0, + "end": 21701.94, + "probability": 0.9238 + }, + { + "start": 21703.08, + "end": 21705.22, + "probability": 0.9386 + }, + { + "start": 21706.32, + "end": 21707.26, + "probability": 0.9047 + }, + { + "start": 21707.84, + "end": 21710.53, + "probability": 0.9927 + }, + { + "start": 21711.8, + "end": 21714.85, + "probability": 0.9893 + }, + { + "start": 21716.68, + "end": 21717.22, + "probability": 0.9944 + }, + { + "start": 21718.58, + "end": 21721.63, + "probability": 0.998 + }, + { + "start": 21723.12, + "end": 21726.86, + "probability": 0.9002 + }, + { + "start": 21727.8, + "end": 21731.61, + "probability": 0.9508 + }, + { + "start": 21732.94, + "end": 21733.88, + "probability": 0.9312 + }, + { + "start": 21734.38, + "end": 21737.1, + "probability": 0.8613 + }, + { + "start": 21737.24, + "end": 21738.16, + "probability": 0.8438 + }, + { + "start": 21738.24, + "end": 21738.9, + "probability": 0.8014 + }, + { + "start": 21739.44, + "end": 21742.82, + "probability": 0.8944 + }, + { + "start": 21743.84, + "end": 21745.12, + "probability": 0.9091 + }, + { + "start": 21745.9, + "end": 21748.06, + "probability": 0.8478 + }, + { + "start": 21748.96, + "end": 21750.78, + "probability": 0.6489 + }, + { + "start": 21750.96, + "end": 21752.04, + "probability": 0.8475 + }, + { + "start": 21752.78, + "end": 21753.66, + "probability": 0.9316 + }, + { + "start": 21753.96, + "end": 21756.2, + "probability": 0.6604 + }, + { + "start": 21756.48, + "end": 21759.0, + "probability": 0.8141 + }, + { + "start": 21759.58, + "end": 21760.92, + "probability": 0.8734 + }, + { + "start": 21763.82, + "end": 21765.94, + "probability": 0.942 + }, + { + "start": 21766.76, + "end": 21769.9, + "probability": 0.5712 + }, + { + "start": 21770.72, + "end": 21770.84, + "probability": 0.5065 + }, + { + "start": 21770.84, + "end": 21771.9, + "probability": 0.6943 + }, + { + "start": 21771.98, + "end": 21772.8, + "probability": 0.3771 + }, + { + "start": 21773.6, + "end": 21775.14, + "probability": 0.968 + }, + { + "start": 21775.2, + "end": 21776.59, + "probability": 0.9036 + }, + { + "start": 21777.86, + "end": 21781.02, + "probability": 0.9872 + }, + { + "start": 21781.82, + "end": 21782.52, + "probability": 0.876 + }, + { + "start": 21784.02, + "end": 21785.83, + "probability": 0.6812 + }, + { + "start": 21786.44, + "end": 21786.81, + "probability": 0.6919 + }, + { + "start": 21787.28, + "end": 21789.5, + "probability": 0.8643 + }, + { + "start": 21789.82, + "end": 21790.64, + "probability": 0.8392 + }, + { + "start": 21791.0, + "end": 21792.64, + "probability": 0.9355 + }, + { + "start": 21793.26, + "end": 21795.26, + "probability": 0.5163 + }, + { + "start": 21795.88, + "end": 21798.04, + "probability": 0.7559 + }, + { + "start": 21798.8, + "end": 21799.64, + "probability": 0.7261 + }, + { + "start": 21800.82, + "end": 21802.48, + "probability": 0.9156 + }, + { + "start": 21802.54, + "end": 21805.52, + "probability": 0.7052 + }, + { + "start": 21805.88, + "end": 21806.12, + "probability": 0.3769 + }, + { + "start": 21806.12, + "end": 21806.66, + "probability": 0.464 + }, + { + "start": 21807.82, + "end": 21809.2, + "probability": 0.8124 + }, + { + "start": 21810.32, + "end": 21812.64, + "probability": 0.9471 + }, + { + "start": 21813.54, + "end": 21816.92, + "probability": 0.6667 + }, + { + "start": 21817.44, + "end": 21818.98, + "probability": 0.8359 + }, + { + "start": 21820.74, + "end": 21821.34, + "probability": 0.5024 + }, + { + "start": 21821.94, + "end": 21824.06, + "probability": 0.9843 + }, + { + "start": 21825.76, + "end": 21828.84, + "probability": 0.9624 + }, + { + "start": 21828.96, + "end": 21829.2, + "probability": 0.6823 + }, + { + "start": 21829.4, + "end": 21829.8, + "probability": 0.7321 + }, + { + "start": 21829.94, + "end": 21835.14, + "probability": 0.9849 + }, + { + "start": 21835.28, + "end": 21837.14, + "probability": 0.978 + }, + { + "start": 21838.74, + "end": 21841.92, + "probability": 0.9409 + }, + { + "start": 21842.1, + "end": 21842.54, + "probability": 0.9715 + }, + { + "start": 21842.84, + "end": 21843.88, + "probability": 0.9858 + }, + { + "start": 21844.84, + "end": 21845.54, + "probability": 0.7649 + }, + { + "start": 21846.62, + "end": 21848.2, + "probability": 0.9448 + }, + { + "start": 21848.82, + "end": 21850.18, + "probability": 0.5065 + }, + { + "start": 21850.96, + "end": 21853.82, + "probability": 0.897 + }, + { + "start": 21855.06, + "end": 21857.38, + "probability": 0.9874 + }, + { + "start": 21857.9, + "end": 21859.3, + "probability": 0.8649 + }, + { + "start": 21861.02, + "end": 21863.28, + "probability": 0.4853 + }, + { + "start": 21863.38, + "end": 21864.96, + "probability": 0.7454 + }, + { + "start": 21865.7, + "end": 21869.08, + "probability": 0.925 + }, + { + "start": 21869.56, + "end": 21870.98, + "probability": 0.7159 + }, + { + "start": 21871.18, + "end": 21873.2, + "probability": 0.9805 + }, + { + "start": 21873.94, + "end": 21874.48, + "probability": 0.5402 + }, + { + "start": 21875.2, + "end": 21877.12, + "probability": 0.9875 + }, + { + "start": 21877.38, + "end": 21879.44, + "probability": 0.7785 + }, + { + "start": 21879.46, + "end": 21880.22, + "probability": 0.5923 + }, + { + "start": 21882.54, + "end": 21887.0, + "probability": 0.9958 + }, + { + "start": 21887.74, + "end": 21888.76, + "probability": 0.9785 + }, + { + "start": 21889.52, + "end": 21892.88, + "probability": 0.9561 + }, + { + "start": 21893.82, + "end": 21894.59, + "probability": 0.9324 + }, + { + "start": 21897.16, + "end": 21897.9, + "probability": 0.2505 + }, + { + "start": 21897.96, + "end": 21899.7, + "probability": 0.9804 + }, + { + "start": 21899.96, + "end": 21901.54, + "probability": 0.9651 + }, + { + "start": 21902.98, + "end": 21904.82, + "probability": 0.9535 + }, + { + "start": 21905.38, + "end": 21906.08, + "probability": 0.709 + }, + { + "start": 21908.04, + "end": 21913.22, + "probability": 0.9322 + }, + { + "start": 21913.28, + "end": 21914.77, + "probability": 0.7848 + }, + { + "start": 21915.7, + "end": 21916.81, + "probability": 0.9985 + }, + { + "start": 21917.88, + "end": 21919.4, + "probability": 0.9906 + }, + { + "start": 21921.1, + "end": 21923.16, + "probability": 0.8028 + }, + { + "start": 21923.72, + "end": 21926.7, + "probability": 0.8105 + }, + { + "start": 21928.02, + "end": 21929.2, + "probability": 0.8457 + }, + { + "start": 21929.44, + "end": 21934.76, + "probability": 0.9844 + }, + { + "start": 21934.86, + "end": 21935.82, + "probability": 0.8721 + }, + { + "start": 21936.5, + "end": 21939.5, + "probability": 0.8164 + }, + { + "start": 21939.96, + "end": 21940.46, + "probability": 0.7305 + }, + { + "start": 21941.86, + "end": 21942.48, + "probability": 0.8578 + }, + { + "start": 21942.54, + "end": 21945.52, + "probability": 0.9697 + }, + { + "start": 21946.16, + "end": 21948.22, + "probability": 0.9693 + }, + { + "start": 21949.32, + "end": 21949.67, + "probability": 0.5314 + }, + { + "start": 21950.52, + "end": 21952.22, + "probability": 0.6272 + }, + { + "start": 21953.12, + "end": 21955.16, + "probability": 0.8284 + }, + { + "start": 21955.74, + "end": 21956.3, + "probability": 0.2145 + }, + { + "start": 21957.32, + "end": 21958.56, + "probability": 0.8661 + }, + { + "start": 21959.36, + "end": 21961.23, + "probability": 0.6705 + }, + { + "start": 21961.56, + "end": 21966.66, + "probability": 0.83 + }, + { + "start": 21966.98, + "end": 21969.06, + "probability": 0.9927 + }, + { + "start": 21970.64, + "end": 21971.78, + "probability": 0.922 + }, + { + "start": 21971.92, + "end": 21972.8, + "probability": 0.7311 + }, + { + "start": 21972.96, + "end": 21976.24, + "probability": 0.916 + }, + { + "start": 21976.84, + "end": 21978.76, + "probability": 0.8552 + }, + { + "start": 21979.42, + "end": 21981.98, + "probability": 0.9883 + }, + { + "start": 21983.4, + "end": 21988.64, + "probability": 0.8395 + }, + { + "start": 21989.5, + "end": 21990.78, + "probability": 0.8856 + }, + { + "start": 21992.0, + "end": 21992.22, + "probability": 0.1907 + }, + { + "start": 21992.38, + "end": 21993.76, + "probability": 0.6075 + }, + { + "start": 21994.22, + "end": 21995.81, + "probability": 0.9941 + }, + { + "start": 21996.74, + "end": 21999.44, + "probability": 0.981 + }, + { + "start": 22000.2, + "end": 22002.4, + "probability": 0.5398 + }, + { + "start": 22003.5, + "end": 22004.41, + "probability": 0.5374 + }, + { + "start": 22006.42, + "end": 22008.94, + "probability": 0.7102 + }, + { + "start": 22010.86, + "end": 22012.16, + "probability": 0.643 + }, + { + "start": 22012.64, + "end": 22013.78, + "probability": 0.6848 + }, + { + "start": 22014.62, + "end": 22015.56, + "probability": 0.4376 + }, + { + "start": 22016.28, + "end": 22017.22, + "probability": 0.6557 + }, + { + "start": 22018.04, + "end": 22019.38, + "probability": 0.6775 + }, + { + "start": 22019.9, + "end": 22021.58, + "probability": 0.6619 + }, + { + "start": 22022.24, + "end": 22025.4, + "probability": 0.8613 + }, + { + "start": 22026.08, + "end": 22031.4, + "probability": 0.8961 + }, + { + "start": 22032.42, + "end": 22033.35, + "probability": 0.9243 + }, + { + "start": 22033.76, + "end": 22035.18, + "probability": 0.9787 + }, + { + "start": 22035.42, + "end": 22037.06, + "probability": 0.8856 + }, + { + "start": 22038.84, + "end": 22042.78, + "probability": 0.9465 + }, + { + "start": 22044.1, + "end": 22048.84, + "probability": 0.9927 + }, + { + "start": 22050.1, + "end": 22052.08, + "probability": 0.9134 + }, + { + "start": 22052.42, + "end": 22053.98, + "probability": 0.9583 + }, + { + "start": 22054.5, + "end": 22055.66, + "probability": 0.8274 + }, + { + "start": 22055.74, + "end": 22058.86, + "probability": 0.9922 + }, + { + "start": 22059.54, + "end": 22060.42, + "probability": 0.8352 + }, + { + "start": 22060.94, + "end": 22062.42, + "probability": 0.9888 + }, + { + "start": 22062.98, + "end": 22065.62, + "probability": 0.9713 + }, + { + "start": 22066.72, + "end": 22068.54, + "probability": 0.9424 + }, + { + "start": 22068.68, + "end": 22069.81, + "probability": 0.6939 + }, + { + "start": 22071.3, + "end": 22072.6, + "probability": 0.9801 + }, + { + "start": 22073.94, + "end": 22077.28, + "probability": 0.9767 + }, + { + "start": 22077.82, + "end": 22081.66, + "probability": 0.9376 + }, + { + "start": 22081.88, + "end": 22085.78, + "probability": 0.9961 + }, + { + "start": 22086.18, + "end": 22088.34, + "probability": 0.9982 + }, + { + "start": 22089.88, + "end": 22090.6, + "probability": 0.5637 + }, + { + "start": 22092.36, + "end": 22093.54, + "probability": 0.7202 + }, + { + "start": 22093.74, + "end": 22094.22, + "probability": 0.8664 + }, + { + "start": 22094.32, + "end": 22095.36, + "probability": 0.7919 + }, + { + "start": 22095.88, + "end": 22098.32, + "probability": 0.8887 + }, + { + "start": 22098.74, + "end": 22099.36, + "probability": 0.2941 + }, + { + "start": 22099.9, + "end": 22101.98, + "probability": 0.9675 + }, + { + "start": 22102.32, + "end": 22103.62, + "probability": 0.6008 + }, + { + "start": 22104.54, + "end": 22105.66, + "probability": 0.8145 + }, + { + "start": 22106.66, + "end": 22108.26, + "probability": 0.9622 + }, + { + "start": 22108.68, + "end": 22109.64, + "probability": 0.9955 + }, + { + "start": 22110.66, + "end": 22112.26, + "probability": 0.9579 + }, + { + "start": 22112.28, + "end": 22113.26, + "probability": 0.9814 + }, + { + "start": 22113.44, + "end": 22115.06, + "probability": 0.3038 + }, + { + "start": 22115.1, + "end": 22115.87, + "probability": 0.9248 + }, + { + "start": 22117.02, + "end": 22119.52, + "probability": 0.9507 + }, + { + "start": 22120.76, + "end": 22122.36, + "probability": 0.7179 + }, + { + "start": 22123.1, + "end": 22124.26, + "probability": 0.5886 + }, + { + "start": 22125.1, + "end": 22125.62, + "probability": 0.6084 + }, + { + "start": 22126.54, + "end": 22129.02, + "probability": 0.7863 + }, + { + "start": 22129.72, + "end": 22132.04, + "probability": 0.9576 + }, + { + "start": 22132.96, + "end": 22134.9, + "probability": 0.7901 + }, + { + "start": 22135.65, + "end": 22138.06, + "probability": 0.7565 + }, + { + "start": 22138.6, + "end": 22139.12, + "probability": 0.6906 + }, + { + "start": 22139.66, + "end": 22140.94, + "probability": 0.6602 + }, + { + "start": 22141.0, + "end": 22142.1, + "probability": 0.9001 + }, + { + "start": 22143.52, + "end": 22148.32, + "probability": 0.9206 + }, + { + "start": 22148.96, + "end": 22150.14, + "probability": 0.9842 + }, + { + "start": 22150.14, + "end": 22152.26, + "probability": 0.6926 + }, + { + "start": 22152.36, + "end": 22152.92, + "probability": 0.9586 + }, + { + "start": 22153.04, + "end": 22156.24, + "probability": 0.9878 + }, + { + "start": 22156.4, + "end": 22156.68, + "probability": 0.7821 + }, + { + "start": 22157.3, + "end": 22160.34, + "probability": 0.9197 + }, + { + "start": 22161.04, + "end": 22168.98, + "probability": 0.9487 + }, + { + "start": 22169.82, + "end": 22171.36, + "probability": 0.6732 + }, + { + "start": 22171.88, + "end": 22173.38, + "probability": 0.8374 + }, + { + "start": 22173.9, + "end": 22175.18, + "probability": 0.8765 + }, + { + "start": 22175.92, + "end": 22180.3, + "probability": 0.9071 + }, + { + "start": 22181.42, + "end": 22185.0, + "probability": 0.8389 + }, + { + "start": 22185.32, + "end": 22185.78, + "probability": 0.8429 + }, + { + "start": 22186.16, + "end": 22187.5, + "probability": 0.8664 + }, + { + "start": 22188.72, + "end": 22190.04, + "probability": 0.791 + }, + { + "start": 22190.42, + "end": 22192.44, + "probability": 0.966 + }, + { + "start": 22192.72, + "end": 22193.52, + "probability": 0.9385 + }, + { + "start": 22193.68, + "end": 22194.47, + "probability": 0.8269 + }, + { + "start": 22194.86, + "end": 22196.86, + "probability": 0.9705 + }, + { + "start": 22197.26, + "end": 22198.0, + "probability": 0.4108 + }, + { + "start": 22198.44, + "end": 22199.58, + "probability": 0.8831 + }, + { + "start": 22199.86, + "end": 22201.4, + "probability": 0.9541 + }, + { + "start": 22215.16, + "end": 22216.1, + "probability": 0.1095 + }, + { + "start": 22216.84, + "end": 22217.18, + "probability": 0.0646 + }, + { + "start": 22217.4, + "end": 22217.76, + "probability": 0.1564 + }, + { + "start": 22217.76, + "end": 22219.14, + "probability": 0.0749 + }, + { + "start": 22219.34, + "end": 22219.98, + "probability": 0.1993 + }, + { + "start": 22219.98, + "end": 22221.16, + "probability": 0.1594 + }, + { + "start": 22221.7, + "end": 22223.6, + "probability": 0.0108 + }, + { + "start": 22226.34, + "end": 22226.88, + "probability": 0.0353 + }, + { + "start": 22227.82, + "end": 22229.3, + "probability": 0.2077 + }, + { + "start": 22229.34, + "end": 22230.68, + "probability": 0.0177 + }, + { + "start": 22230.94, + "end": 22233.96, + "probability": 0.0228 + }, + { + "start": 22234.46, + "end": 22235.14, + "probability": 0.0057 + }, + { + "start": 22235.5, + "end": 22235.92, + "probability": 0.024 + }, + { + "start": 22237.22, + "end": 22238.81, + "probability": 0.0729 + }, + { + "start": 22239.68, + "end": 22240.12, + "probability": 0.0762 + }, + { + "start": 22240.96, + "end": 22242.4, + "probability": 0.081 + }, + { + "start": 22243.76, + "end": 22243.86, + "probability": 0.1115 + }, + { + "start": 22244.1, + "end": 22246.54, + "probability": 0.2062 + }, + { + "start": 22247.62, + "end": 22249.3, + "probability": 0.1935 + }, + { + "start": 22249.3, + "end": 22249.64, + "probability": 0.3329 + }, + { + "start": 22249.64, + "end": 22253.88, + "probability": 0.0294 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.0, + "end": 22292.0, + "probability": 0.0 + }, + { + "start": 22292.02, + "end": 22294.22, + "probability": 0.7011 + }, + { + "start": 22295.04, + "end": 22295.9, + "probability": 0.8309 + }, + { + "start": 22296.14, + "end": 22297.68, + "probability": 0.9396 + }, + { + "start": 22298.28, + "end": 22299.88, + "probability": 0.8315 + }, + { + "start": 22300.24, + "end": 22300.28, + "probability": 0.1184 + }, + { + "start": 22300.28, + "end": 22301.5, + "probability": 0.4377 + }, + { + "start": 22302.1, + "end": 22308.49, + "probability": 0.8395 + }, + { + "start": 22309.0, + "end": 22311.27, + "probability": 0.2003 + }, + { + "start": 22311.5, + "end": 22312.08, + "probability": 0.198 + }, + { + "start": 22312.18, + "end": 22313.12, + "probability": 0.9424 + }, + { + "start": 22313.98, + "end": 22314.66, + "probability": 0.3137 + }, + { + "start": 22314.72, + "end": 22315.64, + "probability": 0.6635 + }, + { + "start": 22316.24, + "end": 22317.4, + "probability": 0.2519 + }, + { + "start": 22317.7, + "end": 22319.3, + "probability": 0.8876 + }, + { + "start": 22320.32, + "end": 22321.52, + "probability": 0.8942 + }, + { + "start": 22321.7, + "end": 22323.26, + "probability": 0.1473 + }, + { + "start": 22323.26, + "end": 22323.28, + "probability": 0.0912 + }, + { + "start": 22323.28, + "end": 22323.28, + "probability": 0.366 + }, + { + "start": 22323.28, + "end": 22323.28, + "probability": 0.0614 + }, + { + "start": 22323.28, + "end": 22324.04, + "probability": 0.5262 + }, + { + "start": 22324.68, + "end": 22325.5, + "probability": 0.8814 + }, + { + "start": 22327.48, + "end": 22328.4, + "probability": 0.6011 + }, + { + "start": 22329.34, + "end": 22329.78, + "probability": 0.0467 + }, + { + "start": 22330.84, + "end": 22331.82, + "probability": 0.7046 + }, + { + "start": 22331.82, + "end": 22332.06, + "probability": 0.3955 + }, + { + "start": 22332.98, + "end": 22334.44, + "probability": 0.0926 + }, + { + "start": 22335.14, + "end": 22335.16, + "probability": 0.037 + }, + { + "start": 22335.16, + "end": 22337.58, + "probability": 0.7818 + }, + { + "start": 22337.78, + "end": 22338.78, + "probability": 0.262 + }, + { + "start": 22338.78, + "end": 22340.58, + "probability": 0.8685 + }, + { + "start": 22341.0, + "end": 22341.9, + "probability": 0.3428 + }, + { + "start": 22345.94, + "end": 22349.14, + "probability": 0.0211 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.0, + "end": 22450.0, + "probability": 0.0 + }, + { + "start": 22450.12, + "end": 22450.24, + "probability": 0.0794 + }, + { + "start": 22450.24, + "end": 22450.72, + "probability": 0.3974 + }, + { + "start": 22451.26, + "end": 22453.5, + "probability": 0.7789 + }, + { + "start": 22454.5, + "end": 22455.74, + "probability": 0.9919 + }, + { + "start": 22457.2, + "end": 22458.68, + "probability": 0.8407 + }, + { + "start": 22459.3, + "end": 22459.8, + "probability": 0.4877 + }, + { + "start": 22461.24, + "end": 22466.14, + "probability": 0.0116 + }, + { + "start": 22466.2, + "end": 22468.86, + "probability": 0.2771 + }, + { + "start": 22470.86, + "end": 22472.62, + "probability": 0.0253 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.0, + "end": 22580.0, + "probability": 0.0 + }, + { + "start": 22580.2, + "end": 22581.76, + "probability": 0.0467 + }, + { + "start": 22581.76, + "end": 22584.0, + "probability": 0.0255 + }, + { + "start": 22585.3, + "end": 22589.62, + "probability": 0.0586 + }, + { + "start": 22591.34, + "end": 22591.44, + "probability": 0.0156 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.0, + "end": 22705.0, + "probability": 0.0 + }, + { + "start": 22705.16, + "end": 22706.16, + "probability": 0.1191 + }, + { + "start": 22706.16, + "end": 22706.16, + "probability": 0.0422 + }, + { + "start": 22706.16, + "end": 22706.16, + "probability": 0.2456 + }, + { + "start": 22706.16, + "end": 22708.67, + "probability": 0.6034 + }, + { + "start": 22708.9, + "end": 22711.98, + "probability": 0.9539 + }, + { + "start": 22713.06, + "end": 22716.38, + "probability": 0.791 + }, + { + "start": 22717.0, + "end": 22718.96, + "probability": 0.9893 + }, + { + "start": 22718.98, + "end": 22721.17, + "probability": 0.9648 + }, + { + "start": 22721.64, + "end": 22723.84, + "probability": 0.9892 + }, + { + "start": 22724.12, + "end": 22725.36, + "probability": 0.9505 + }, + { + "start": 22725.66, + "end": 22726.18, + "probability": 0.4936 + }, + { + "start": 22726.44, + "end": 22727.44, + "probability": 0.9153 + }, + { + "start": 22728.0, + "end": 22729.36, + "probability": 0.8791 + }, + { + "start": 22729.74, + "end": 22731.32, + "probability": 0.9977 + }, + { + "start": 22731.72, + "end": 22732.92, + "probability": 0.9963 + }, + { + "start": 22735.0, + "end": 22738.54, + "probability": 0.9854 + }, + { + "start": 22739.32, + "end": 22740.02, + "probability": 0.9888 + }, + { + "start": 22740.06, + "end": 22742.14, + "probability": 0.9697 + }, + { + "start": 22742.5, + "end": 22746.98, + "probability": 0.9932 + }, + { + "start": 22747.36, + "end": 22753.34, + "probability": 0.9907 + }, + { + "start": 22753.64, + "end": 22754.9, + "probability": 0.9092 + }, + { + "start": 22756.12, + "end": 22756.8, + "probability": 0.2651 + }, + { + "start": 22757.0, + "end": 22759.9, + "probability": 0.9891 + }, + { + "start": 22760.24, + "end": 22760.54, + "probability": 0.6544 + }, + { + "start": 22760.94, + "end": 22761.16, + "probability": 0.6991 + }, + { + "start": 22762.0, + "end": 22764.26, + "probability": 0.0851 + }, + { + "start": 22765.44, + "end": 22766.63, + "probability": 0.8187 + }, + { + "start": 22767.34, + "end": 22769.12, + "probability": 0.9355 + }, + { + "start": 22769.78, + "end": 22771.58, + "probability": 0.732 + }, + { + "start": 22773.54, + "end": 22774.12, + "probability": 0.9912 + }, + { + "start": 22775.74, + "end": 22779.68, + "probability": 0.7394 + }, + { + "start": 22781.86, + "end": 22783.84, + "probability": 0.9148 + }, + { + "start": 22784.4, + "end": 22785.82, + "probability": 0.9984 + }, + { + "start": 22787.18, + "end": 22787.66, + "probability": 0.7126 + }, + { + "start": 22789.04, + "end": 22792.56, + "probability": 0.4662 + }, + { + "start": 22792.56, + "end": 22793.54, + "probability": 0.8605 + }, + { + "start": 22793.6, + "end": 22794.25, + "probability": 0.5568 + }, + { + "start": 22794.72, + "end": 22796.41, + "probability": 0.9921 + }, + { + "start": 22796.72, + "end": 22798.96, + "probability": 0.9958 + }, + { + "start": 22800.42, + "end": 22804.12, + "probability": 0.6151 + }, + { + "start": 22805.06, + "end": 22808.24, + "probability": 0.9525 + }, + { + "start": 22808.76, + "end": 22811.56, + "probability": 0.8967 + }, + { + "start": 22814.3, + "end": 22817.48, + "probability": 0.589 + }, + { + "start": 22817.58, + "end": 22818.96, + "probability": 0.9985 + }, + { + "start": 22819.0, + "end": 22821.86, + "probability": 0.9818 + }, + { + "start": 22827.09, + "end": 22829.62, + "probability": 0.7825 + }, + { + "start": 22830.94, + "end": 22831.84, + "probability": 0.8986 + }, + { + "start": 22832.6, + "end": 22834.27, + "probability": 0.9954 + }, + { + "start": 22835.28, + "end": 22838.52, + "probability": 0.9939 + }, + { + "start": 22838.62, + "end": 22843.02, + "probability": 0.9753 + }, + { + "start": 22844.0, + "end": 22847.96, + "probability": 0.8008 + }, + { + "start": 22848.6, + "end": 22849.2, + "probability": 0.4203 + }, + { + "start": 22850.5, + "end": 22854.86, + "probability": 0.9964 + }, + { + "start": 22855.72, + "end": 22857.26, + "probability": 0.9935 + }, + { + "start": 22858.06, + "end": 22858.86, + "probability": 0.404 + }, + { + "start": 22858.94, + "end": 22860.64, + "probability": 0.9688 + }, + { + "start": 22860.86, + "end": 22867.22, + "probability": 0.9957 + }, + { + "start": 22867.92, + "end": 22869.24, + "probability": 0.9738 + }, + { + "start": 22869.62, + "end": 22874.08, + "probability": 0.8395 + }, + { + "start": 22874.74, + "end": 22878.0, + "probability": 0.9921 + }, + { + "start": 22878.64, + "end": 22880.8, + "probability": 0.8306 + }, + { + "start": 22882.12, + "end": 22883.5, + "probability": 0.9572 + }, + { + "start": 22884.34, + "end": 22885.5, + "probability": 0.8215 + }, + { + "start": 22886.1, + "end": 22887.9, + "probability": 0.9951 + }, + { + "start": 22888.44, + "end": 22889.22, + "probability": 0.7627 + }, + { + "start": 22889.4, + "end": 22890.6, + "probability": 0.8129 + }, + { + "start": 22890.68, + "end": 22891.84, + "probability": 0.9219 + }, + { + "start": 22893.1, + "end": 22894.9, + "probability": 0.7351 + }, + { + "start": 22896.32, + "end": 22897.94, + "probability": 0.9729 + }, + { + "start": 22898.66, + "end": 22899.42, + "probability": 0.4703 + }, + { + "start": 22899.9, + "end": 22900.78, + "probability": 0.8752 + }, + { + "start": 22901.56, + "end": 22904.1, + "probability": 0.8085 + }, + { + "start": 22906.16, + "end": 22909.1, + "probability": 0.956 + }, + { + "start": 22909.8, + "end": 22911.1, + "probability": 0.7713 + }, + { + "start": 22912.3, + "end": 22915.96, + "probability": 0.8302 + }, + { + "start": 22917.5, + "end": 22922.86, + "probability": 0.9915 + }, + { + "start": 22923.42, + "end": 22927.0, + "probability": 0.9615 + }, + { + "start": 22928.46, + "end": 22930.0, + "probability": 0.8799 + }, + { + "start": 22930.1, + "end": 22932.48, + "probability": 0.7293 + }, + { + "start": 22933.92, + "end": 22935.12, + "probability": 0.6339 + }, + { + "start": 22935.12, + "end": 22935.52, + "probability": 0.9659 + }, + { + "start": 22959.42, + "end": 22960.47, + "probability": 0.7135 + }, + { + "start": 22960.68, + "end": 22963.98, + "probability": 0.9043 + }, + { + "start": 22964.7, + "end": 22966.22, + "probability": 0.8661 + }, + { + "start": 22967.24, + "end": 22968.4, + "probability": 0.9547 + }, + { + "start": 22968.76, + "end": 22972.7, + "probability": 0.9907 + }, + { + "start": 22973.18, + "end": 22974.37, + "probability": 0.6097 + }, + { + "start": 22974.98, + "end": 22977.2, + "probability": 0.5954 + }, + { + "start": 22978.32, + "end": 22979.08, + "probability": 0.6358 + }, + { + "start": 22979.2, + "end": 22983.57, + "probability": 0.9105 + }, + { + "start": 22984.2, + "end": 22985.9, + "probability": 0.9935 + }, + { + "start": 22986.52, + "end": 22986.84, + "probability": 0.7495 + }, + { + "start": 22987.56, + "end": 22990.28, + "probability": 0.8719 + }, + { + "start": 22990.92, + "end": 22994.36, + "probability": 0.9917 + }, + { + "start": 22995.42, + "end": 22997.62, + "probability": 0.9401 + }, + { + "start": 22998.5, + "end": 23001.4, + "probability": 0.9459 + }, + { + "start": 23003.38, + "end": 23006.14, + "probability": 0.9813 + }, + { + "start": 23006.46, + "end": 23007.62, + "probability": 0.7941 + }, + { + "start": 23007.94, + "end": 23010.5, + "probability": 0.9729 + }, + { + "start": 23011.84, + "end": 23015.14, + "probability": 0.9916 + }, + { + "start": 23016.34, + "end": 23019.28, + "probability": 0.979 + }, + { + "start": 23019.32, + "end": 23020.86, + "probability": 0.9768 + }, + { + "start": 23020.94, + "end": 23027.06, + "probability": 0.8672 + }, + { + "start": 23027.2, + "end": 23028.18, + "probability": 0.5362 + }, + { + "start": 23029.42, + "end": 23031.76, + "probability": 0.9067 + }, + { + "start": 23032.14, + "end": 23033.04, + "probability": 0.8904 + }, + { + "start": 23033.5, + "end": 23036.36, + "probability": 0.7656 + }, + { + "start": 23036.44, + "end": 23038.26, + "probability": 0.8522 + }, + { + "start": 23038.98, + "end": 23040.4, + "probability": 0.9517 + }, + { + "start": 23040.62, + "end": 23041.78, + "probability": 0.957 + }, + { + "start": 23041.88, + "end": 23042.7, + "probability": 0.6345 + }, + { + "start": 23042.8, + "end": 23043.56, + "probability": 0.39 + }, + { + "start": 23043.7, + "end": 23044.58, + "probability": 0.8543 + }, + { + "start": 23044.7, + "end": 23045.24, + "probability": 0.869 + }, + { + "start": 23045.54, + "end": 23050.16, + "probability": 0.8588 + }, + { + "start": 23050.56, + "end": 23052.54, + "probability": 0.7761 + }, + { + "start": 23053.22, + "end": 23055.22, + "probability": 0.9651 + }, + { + "start": 23056.04, + "end": 23056.88, + "probability": 0.6843 + }, + { + "start": 23056.98, + "end": 23057.42, + "probability": 0.2618 + }, + { + "start": 23057.56, + "end": 23058.74, + "probability": 0.6507 + }, + { + "start": 23059.38, + "end": 23060.54, + "probability": 0.4858 + }, + { + "start": 23060.78, + "end": 23062.02, + "probability": 0.972 + }, + { + "start": 23063.34, + "end": 23064.18, + "probability": 0.9619 + }, + { + "start": 23065.38, + "end": 23065.88, + "probability": 0.9263 + }, + { + "start": 23066.1, + "end": 23067.78, + "probability": 0.9893 + }, + { + "start": 23067.94, + "end": 23069.88, + "probability": 0.9909 + }, + { + "start": 23070.46, + "end": 23073.72, + "probability": 0.9624 + }, + { + "start": 23073.9, + "end": 23076.98, + "probability": 0.8536 + }, + { + "start": 23077.82, + "end": 23078.7, + "probability": 0.8326 + }, + { + "start": 23079.52, + "end": 23080.32, + "probability": 0.8927 + }, + { + "start": 23080.94, + "end": 23085.02, + "probability": 0.9797 + }, + { + "start": 23085.78, + "end": 23087.32, + "probability": 0.9434 + }, + { + "start": 23087.88, + "end": 23089.1, + "probability": 0.9507 + }, + { + "start": 23089.66, + "end": 23093.76, + "probability": 0.9777 + }, + { + "start": 23093.86, + "end": 23095.52, + "probability": 0.9943 + }, + { + "start": 23096.12, + "end": 23100.24, + "probability": 0.9729 + }, + { + "start": 23100.77, + "end": 23103.27, + "probability": 0.9258 + }, + { + "start": 23104.44, + "end": 23108.66, + "probability": 0.9884 + }, + { + "start": 23108.84, + "end": 23109.4, + "probability": 0.2977 + }, + { + "start": 23110.28, + "end": 23113.62, + "probability": 0.9907 + }, + { + "start": 23114.54, + "end": 23118.1, + "probability": 0.5926 + }, + { + "start": 23118.46, + "end": 23120.06, + "probability": 0.8108 + }, + { + "start": 23120.99, + "end": 23122.7, + "probability": 0.9928 + }, + { + "start": 23123.38, + "end": 23124.46, + "probability": 0.7411 + }, + { + "start": 23124.8, + "end": 23125.85, + "probability": 0.6959 + }, + { + "start": 23126.4, + "end": 23128.32, + "probability": 0.9629 + }, + { + "start": 23129.48, + "end": 23131.48, + "probability": 0.8816 + }, + { + "start": 23132.12, + "end": 23133.2, + "probability": 0.9091 + }, + { + "start": 23133.32, + "end": 23134.98, + "probability": 0.9893 + }, + { + "start": 23135.08, + "end": 23135.8, + "probability": 0.5637 + }, + { + "start": 23137.04, + "end": 23140.06, + "probability": 0.999 + }, + { + "start": 23140.7, + "end": 23145.48, + "probability": 0.8368 + }, + { + "start": 23146.08, + "end": 23146.82, + "probability": 0.748 + }, + { + "start": 23147.6, + "end": 23149.16, + "probability": 0.3437 + }, + { + "start": 23149.24, + "end": 23150.1, + "probability": 0.582 + }, + { + "start": 23150.72, + "end": 23151.68, + "probability": 0.9316 + }, + { + "start": 23154.58, + "end": 23154.58, + "probability": 0.5294 + }, + { + "start": 23154.58, + "end": 23154.58, + "probability": 0.1126 + }, + { + "start": 23154.58, + "end": 23157.16, + "probability": 0.6912 + }, + { + "start": 23158.54, + "end": 23159.16, + "probability": 0.7837 + }, + { + "start": 23159.22, + "end": 23161.31, + "probability": 0.7327 + }, + { + "start": 23161.74, + "end": 23163.84, + "probability": 0.7414 + }, + { + "start": 23164.2, + "end": 23166.12, + "probability": 0.9641 + }, + { + "start": 23170.15, + "end": 23171.64, + "probability": 0.0106 + }, + { + "start": 23175.06, + "end": 23176.06, + "probability": 0.6012 + }, + { + "start": 23180.78, + "end": 23185.18, + "probability": 0.0597 + }, + { + "start": 23186.68, + "end": 23187.58, + "probability": 0.3969 + }, + { + "start": 23188.54, + "end": 23188.84, + "probability": 0.9468 + }, + { + "start": 23190.78, + "end": 23191.6, + "probability": 0.8042 + }, + { + "start": 23192.65, + "end": 23194.52, + "probability": 0.8458 + }, + { + "start": 23198.6, + "end": 23199.06, + "probability": 0.6435 + }, + { + "start": 23200.84, + "end": 23201.82, + "probability": 0.5725 + }, + { + "start": 23203.12, + "end": 23205.18, + "probability": 0.9253 + }, + { + "start": 23205.74, + "end": 23208.58, + "probability": 0.8993 + }, + { + "start": 23211.42, + "end": 23212.88, + "probability": 0.5742 + }, + { + "start": 23213.56, + "end": 23213.94, + "probability": 0.5416 + }, + { + "start": 23215.08, + "end": 23215.96, + "probability": 0.739 + }, + { + "start": 23217.34, + "end": 23219.58, + "probability": 0.959 + }, + { + "start": 23220.98, + "end": 23223.56, + "probability": 0.9751 + }, + { + "start": 23224.62, + "end": 23225.02, + "probability": 0.9554 + }, + { + "start": 23225.9, + "end": 23226.8, + "probability": 0.9608 + }, + { + "start": 23228.1, + "end": 23230.32, + "probability": 0.985 + }, + { + "start": 23232.16, + "end": 23232.64, + "probability": 0.9894 + }, + { + "start": 23233.72, + "end": 23234.52, + "probability": 0.974 + }, + { + "start": 23235.58, + "end": 23235.82, + "probability": 0.9775 + }, + { + "start": 23236.44, + "end": 23237.24, + "probability": 0.9132 + }, + { + "start": 23239.06, + "end": 23239.57, + "probability": 0.511 + }, + { + "start": 23240.86, + "end": 23241.22, + "probability": 0.8152 + }, + { + "start": 23242.16, + "end": 23243.08, + "probability": 0.8735 + }, + { + "start": 23244.48, + "end": 23244.96, + "probability": 0.9847 + }, + { + "start": 23245.58, + "end": 23246.38, + "probability": 0.9691 + }, + { + "start": 23247.02, + "end": 23247.5, + "probability": 0.9907 + }, + { + "start": 23248.5, + "end": 23249.28, + "probability": 0.9889 + }, + { + "start": 23250.34, + "end": 23251.34, + "probability": 0.9959 + }, + { + "start": 23252.24, + "end": 23253.34, + "probability": 0.9911 + }, + { + "start": 23254.12, + "end": 23254.52, + "probability": 0.9109 + }, + { + "start": 23256.18, + "end": 23257.2, + "probability": 0.9946 + }, + { + "start": 23258.55, + "end": 23260.7, + "probability": 0.9818 + }, + { + "start": 23263.02, + "end": 23265.96, + "probability": 0.7764 + }, + { + "start": 23266.68, + "end": 23267.26, + "probability": 0.944 + }, + { + "start": 23268.72, + "end": 23269.46, + "probability": 0.8211 + }, + { + "start": 23270.06, + "end": 23274.58, + "probability": 0.9626 + }, + { + "start": 23275.64, + "end": 23277.58, + "probability": 0.9541 + }, + { + "start": 23278.38, + "end": 23281.26, + "probability": 0.9851 + }, + { + "start": 23282.06, + "end": 23282.96, + "probability": 0.9602 + }, + { + "start": 23284.14, + "end": 23284.68, + "probability": 0.9595 + }, + { + "start": 23285.52, + "end": 23286.3, + "probability": 0.8041 + }, + { + "start": 23291.02, + "end": 23293.62, + "probability": 0.6329 + }, + { + "start": 23294.88, + "end": 23295.36, + "probability": 0.7053 + }, + { + "start": 23297.18, + "end": 23298.12, + "probability": 0.7351 + }, + { + "start": 23298.92, + "end": 23299.46, + "probability": 0.9287 + }, + { + "start": 23300.86, + "end": 23301.78, + "probability": 0.9847 + }, + { + "start": 23303.0, + "end": 23305.08, + "probability": 0.9357 + }, + { + "start": 23306.44, + "end": 23306.94, + "probability": 0.978 + }, + { + "start": 23308.14, + "end": 23309.16, + "probability": 0.9155 + }, + { + "start": 23310.42, + "end": 23310.94, + "probability": 0.9831 + }, + { + "start": 23312.42, + "end": 23313.24, + "probability": 0.9639 + }, + { + "start": 23314.08, + "end": 23314.56, + "probability": 0.9858 + }, + { + "start": 23315.52, + "end": 23316.48, + "probability": 0.7083 + }, + { + "start": 23318.56, + "end": 23319.6, + "probability": 0.9214 + }, + { + "start": 23320.34, + "end": 23322.6, + "probability": 0.9209 + }, + { + "start": 23323.44, + "end": 23324.04, + "probability": 0.9766 + }, + { + "start": 23324.68, + "end": 23325.52, + "probability": 0.891 + }, + { + "start": 23326.38, + "end": 23329.76, + "probability": 0.6699 + }, + { + "start": 23335.8, + "end": 23336.4, + "probability": 0.7543 + }, + { + "start": 23338.26, + "end": 23339.46, + "probability": 0.7391 + }, + { + "start": 23341.04, + "end": 23341.54, + "probability": 0.6207 + }, + { + "start": 23342.26, + "end": 23343.62, + "probability": 0.8996 + }, + { + "start": 23344.62, + "end": 23345.24, + "probability": 0.9608 + }, + { + "start": 23346.3, + "end": 23347.44, + "probability": 0.9823 + }, + { + "start": 23348.36, + "end": 23351.28, + "probability": 0.7271 + }, + { + "start": 23354.18, + "end": 23355.14, + "probability": 0.9194 + }, + { + "start": 23355.74, + "end": 23356.68, + "probability": 0.3683 + }, + { + "start": 23357.42, + "end": 23360.38, + "probability": 0.6434 + }, + { + "start": 23362.46, + "end": 23363.1, + "probability": 0.811 + }, + { + "start": 23364.4, + "end": 23365.3, + "probability": 0.689 + }, + { + "start": 23366.46, + "end": 23368.66, + "probability": 0.9569 + }, + { + "start": 23371.34, + "end": 23372.88, + "probability": 0.7886 + }, + { + "start": 23373.56, + "end": 23374.2, + "probability": 0.8472 + }, + { + "start": 23375.04, + "end": 23376.74, + "probability": 0.9661 + }, + { + "start": 23377.86, + "end": 23379.12, + "probability": 0.791 + }, + { + "start": 23380.22, + "end": 23382.48, + "probability": 0.9468 + }, + { + "start": 23383.1, + "end": 23383.7, + "probability": 0.8849 + }, + { + "start": 23384.32, + "end": 23385.08, + "probability": 0.9807 + }, + { + "start": 23386.02, + "end": 23387.72, + "probability": 0.994 + }, + { + "start": 23388.48, + "end": 23388.92, + "probability": 0.9601 + }, + { + "start": 23391.32, + "end": 23392.38, + "probability": 0.7396 + }, + { + "start": 23393.04, + "end": 23393.58, + "probability": 0.9515 + }, + { + "start": 23394.1, + "end": 23394.38, + "probability": 0.7902 + }, + { + "start": 23397.78, + "end": 23399.68, + "probability": 0.2768 + }, + { + "start": 23400.54, + "end": 23401.3, + "probability": 0.6354 + }, + { + "start": 23404.56, + "end": 23405.58, + "probability": 0.5144 + }, + { + "start": 23406.9, + "end": 23407.52, + "probability": 0.789 + }, + { + "start": 23409.13, + "end": 23410.94, + "probability": 0.9624 + }, + { + "start": 23411.92, + "end": 23413.5, + "probability": 0.9617 + }, + { + "start": 23417.42, + "end": 23418.0, + "probability": 0.9562 + }, + { + "start": 23422.26, + "end": 23423.28, + "probability": 0.6268 + }, + { + "start": 23424.02, + "end": 23424.46, + "probability": 0.9681 + }, + { + "start": 23425.32, + "end": 23425.92, + "probability": 0.9153 + }, + { + "start": 23426.6, + "end": 23428.94, + "probability": 0.9736 + }, + { + "start": 23429.66, + "end": 23430.12, + "probability": 0.8865 + }, + { + "start": 23431.14, + "end": 23431.92, + "probability": 0.9662 + }, + { + "start": 23433.92, + "end": 23436.62, + "probability": 0.9824 + }, + { + "start": 23437.7, + "end": 23438.26, + "probability": 0.9953 + }, + { + "start": 23439.78, + "end": 23440.9, + "probability": 0.972 + }, + { + "start": 23441.6, + "end": 23442.06, + "probability": 0.9873 + }, + { + "start": 23442.84, + "end": 23443.66, + "probability": 0.9846 + }, + { + "start": 23444.86, + "end": 23445.38, + "probability": 0.9935 + }, + { + "start": 23446.84, + "end": 23447.62, + "probability": 0.9866 + }, + { + "start": 23448.44, + "end": 23448.88, + "probability": 0.9977 + }, + { + "start": 23450.96, + "end": 23451.98, + "probability": 0.6668 + }, + { + "start": 23452.68, + "end": 23454.46, + "probability": 0.6566 + }, + { + "start": 23455.68, + "end": 23456.3, + "probability": 0.9924 + }, + { + "start": 23457.8, + "end": 23458.64, + "probability": 0.7498 + }, + { + "start": 23461.28, + "end": 23461.86, + "probability": 0.9001 + }, + { + "start": 23464.08, + "end": 23465.36, + "probability": 0.8881 + }, + { + "start": 23471.98, + "end": 23472.52, + "probability": 0.7678 + }, + { + "start": 23473.84, + "end": 23474.76, + "probability": 0.4107 + }, + { + "start": 23478.7, + "end": 23479.18, + "probability": 0.8392 + }, + { + "start": 23480.1, + "end": 23481.2, + "probability": 0.77 + }, + { + "start": 23481.72, + "end": 23482.16, + "probability": 0.9095 + }, + { + "start": 23483.08, + "end": 23484.32, + "probability": 0.8629 + }, + { + "start": 23486.28, + "end": 23486.7, + "probability": 0.8792 + }, + { + "start": 23487.62, + "end": 23488.34, + "probability": 0.903 + }, + { + "start": 23490.44, + "end": 23490.94, + "probability": 0.9924 + }, + { + "start": 23491.7, + "end": 23492.44, + "probability": 0.9253 + }, + { + "start": 23494.1, + "end": 23494.4, + "probability": 0.991 + }, + { + "start": 23495.34, + "end": 23496.32, + "probability": 0.2334 + }, + { + "start": 23499.4, + "end": 23499.8, + "probability": 0.695 + }, + { + "start": 23500.42, + "end": 23503.26, + "probability": 0.589 + }, + { + "start": 23505.02, + "end": 23505.34, + "probability": 0.6881 + }, + { + "start": 23505.94, + "end": 23508.66, + "probability": 0.7308 + }, + { + "start": 23509.4, + "end": 23509.86, + "probability": 0.818 + }, + { + "start": 23510.78, + "end": 23511.84, + "probability": 0.9269 + }, + { + "start": 23512.62, + "end": 23514.44, + "probability": 0.6991 + }, + { + "start": 23516.12, + "end": 23516.66, + "probability": 0.9938 + }, + { + "start": 23517.84, + "end": 23519.4, + "probability": 0.934 + }, + { + "start": 23520.14, + "end": 23520.44, + "probability": 0.9351 + }, + { + "start": 23524.1, + "end": 23525.68, + "probability": 0.4562 + }, + { + "start": 23526.54, + "end": 23527.24, + "probability": 0.6108 + }, + { + "start": 23528.4, + "end": 23530.66, + "probability": 0.8919 + }, + { + "start": 23531.68, + "end": 23532.28, + "probability": 0.9601 + }, + { + "start": 23533.14, + "end": 23534.14, + "probability": 0.4571 + }, + { + "start": 23535.08, + "end": 23535.58, + "probability": 0.9227 + }, + { + "start": 23536.88, + "end": 23537.88, + "probability": 0.797 + }, + { + "start": 23539.22, + "end": 23542.48, + "probability": 0.6888 + }, + { + "start": 23545.06, + "end": 23548.1, + "probability": 0.8277 + }, + { + "start": 23550.16, + "end": 23552.16, + "probability": 0.2318 + }, + { + "start": 23555.34, + "end": 23557.04, + "probability": 0.1152 + }, + { + "start": 23558.86, + "end": 23559.36, + "probability": 0.5216 + }, + { + "start": 23563.62, + "end": 23564.32, + "probability": 0.6828 + }, + { + "start": 23565.74, + "end": 23566.26, + "probability": 0.8723 + }, + { + "start": 23566.94, + "end": 23567.86, + "probability": 0.8585 + }, + { + "start": 23570.68, + "end": 23572.7, + "probability": 0.7029 + }, + { + "start": 23573.68, + "end": 23574.12, + "probability": 0.9827 + }, + { + "start": 23574.86, + "end": 23575.82, + "probability": 0.9608 + }, + { + "start": 23577.72, + "end": 23578.26, + "probability": 0.9922 + }, + { + "start": 23578.94, + "end": 23579.72, + "probability": 0.8474 + }, + { + "start": 23581.1, + "end": 23581.6, + "probability": 0.9837 + }, + { + "start": 23583.96, + "end": 23584.86, + "probability": 0.8211 + }, + { + "start": 23585.76, + "end": 23586.22, + "probability": 0.9816 + }, + { + "start": 23587.22, + "end": 23588.04, + "probability": 0.964 + }, + { + "start": 23589.14, + "end": 23589.6, + "probability": 0.9912 + }, + { + "start": 23590.12, + "end": 23590.84, + "probability": 0.8172 + }, + { + "start": 23594.88, + "end": 23595.66, + "probability": 0.7052 + }, + { + "start": 23596.54, + "end": 23596.76, + "probability": 0.5717 + }, + { + "start": 23600.36, + "end": 23602.08, + "probability": 0.3562 + }, + { + "start": 23602.82, + "end": 23603.58, + "probability": 0.5381 + }, + { + "start": 23606.34, + "end": 23606.84, + "probability": 0.7563 + }, + { + "start": 23608.82, + "end": 23609.72, + "probability": 0.7508 + }, + { + "start": 23612.88, + "end": 23613.36, + "probability": 0.8626 + }, + { + "start": 23614.5, + "end": 23615.38, + "probability": 0.8495 + }, + { + "start": 23617.06, + "end": 23617.92, + "probability": 0.9756 + }, + { + "start": 23619.24, + "end": 23621.16, + "probability": 0.8859 + }, + { + "start": 23623.38, + "end": 23624.46, + "probability": 0.9338 + }, + { + "start": 23625.97, + "end": 23627.28, + "probability": 0.0218 + }, + { + "start": 23630.38, + "end": 23631.52, + "probability": 0.322 + }, + { + "start": 23632.42, + "end": 23633.02, + "probability": 0.7718 + }, + { + "start": 23633.76, + "end": 23634.86, + "probability": 0.7818 + }, + { + "start": 23635.46, + "end": 23636.04, + "probability": 0.9876 + }, + { + "start": 23636.58, + "end": 23637.82, + "probability": 0.882 + }, + { + "start": 23640.18, + "end": 23640.8, + "probability": 0.9896 + }, + { + "start": 23642.3, + "end": 23643.26, + "probability": 0.9048 + }, + { + "start": 23643.9, + "end": 23644.42, + "probability": 0.9819 + }, + { + "start": 23646.48, + "end": 23647.44, + "probability": 0.947 + }, + { + "start": 23648.34, + "end": 23648.84, + "probability": 0.7913 + }, + { + "start": 23649.68, + "end": 23650.4, + "probability": 0.7996 + }, + { + "start": 23651.57, + "end": 23653.94, + "probability": 0.9695 + }, + { + "start": 23654.76, + "end": 23657.32, + "probability": 0.6331 + }, + { + "start": 23657.88, + "end": 23658.44, + "probability": 0.7484 + }, + { + "start": 23659.48, + "end": 23660.42, + "probability": 0.7373 + }, + { + "start": 23662.56, + "end": 23665.74, + "probability": 0.8368 + }, + { + "start": 23666.56, + "end": 23667.12, + "probability": 0.9198 + }, + { + "start": 23668.22, + "end": 23668.98, + "probability": 0.8547 + }, + { + "start": 23670.14, + "end": 23671.86, + "probability": 0.8878 + }, + { + "start": 23675.4, + "end": 23676.02, + "probability": 0.993 + }, + { + "start": 23676.82, + "end": 23678.02, + "probability": 0.8773 + }, + { + "start": 23687.72, + "end": 23688.86, + "probability": 0.5331 + }, + { + "start": 23690.62, + "end": 23691.37, + "probability": 0.4614 + }, + { + "start": 23692.84, + "end": 23694.82, + "probability": 0.7273 + }, + { + "start": 23699.74, + "end": 23700.26, + "probability": 0.9479 + }, + { + "start": 23704.08, + "end": 23704.78, + "probability": 0.4559 + }, + { + "start": 23709.42, + "end": 23709.86, + "probability": 0.5594 + }, + { + "start": 23711.78, + "end": 23712.54, + "probability": 0.7413 + }, + { + "start": 23713.42, + "end": 23713.98, + "probability": 0.9619 + }, + { + "start": 23716.48, + "end": 23717.54, + "probability": 0.7456 + }, + { + "start": 23719.16, + "end": 23720.8, + "probability": 0.7007 + }, + { + "start": 23721.68, + "end": 23722.54, + "probability": 0.955 + }, + { + "start": 23723.12, + "end": 23723.82, + "probability": 0.9414 + }, + { + "start": 23725.82, + "end": 23727.72, + "probability": 0.9703 + }, + { + "start": 23728.98, + "end": 23729.84, + "probability": 0.8462 + }, + { + "start": 23731.78, + "end": 23732.78, + "probability": 0.6815 + }, + { + "start": 23733.82, + "end": 23735.48, + "probability": 0.7648 + }, + { + "start": 23736.98, + "end": 23737.6, + "probability": 0.9738 + }, + { + "start": 23740.66, + "end": 23741.44, + "probability": 0.6578 + }, + { + "start": 23743.22, + "end": 23743.92, + "probability": 0.7223 + }, + { + "start": 23745.54, + "end": 23746.48, + "probability": 0.8177 + }, + { + "start": 23748.3, + "end": 23749.88, + "probability": 0.8502 + }, + { + "start": 23755.44, + "end": 23755.94, + "probability": 0.77 + }, + { + "start": 23758.84, + "end": 23759.58, + "probability": 0.4184 + }, + { + "start": 23761.48, + "end": 23761.94, + "probability": 0.8062 + }, + { + "start": 23764.4, + "end": 23765.34, + "probability": 0.783 + }, + { + "start": 23767.1, + "end": 23767.74, + "probability": 0.7501 + }, + { + "start": 23771.28, + "end": 23774.44, + "probability": 0.9878 + }, + { + "start": 23775.72, + "end": 23777.5, + "probability": 0.6474 + }, + { + "start": 23777.54, + "end": 23778.32, + "probability": 0.6896 + }, + { + "start": 23780.58, + "end": 23786.14, + "probability": 0.0818 + }, + { + "start": 23900.12, + "end": 23900.38, + "probability": 0.0 + }, + { + "start": 23900.96, + "end": 23901.61, + "probability": 0.3146 + }, + { + "start": 23902.3, + "end": 23903.06, + "probability": 0.6845 + }, + { + "start": 23903.16, + "end": 23904.88, + "probability": 0.8454 + }, + { + "start": 23906.5, + "end": 23906.9, + "probability": 0.146 + }, + { + "start": 23906.9, + "end": 23913.2, + "probability": 0.8206 + }, + { + "start": 23913.28, + "end": 23914.32, + "probability": 0.8965 + }, + { + "start": 23915.64, + "end": 23918.1, + "probability": 0.9452 + }, + { + "start": 23918.76, + "end": 23919.76, + "probability": 0.7472 + }, + { + "start": 23919.8, + "end": 23920.0, + "probability": 0.8502 + }, + { + "start": 23920.84, + "end": 23922.02, + "probability": 0.1191 + }, + { + "start": 23922.6, + "end": 23922.98, + "probability": 0.2201 + }, + { + "start": 23923.12, + "end": 23923.78, + "probability": 0.7857 + }, + { + "start": 23924.02, + "end": 23924.78, + "probability": 0.8598 + }, + { + "start": 23924.9, + "end": 23925.2, + "probability": 0.5877 + }, + { + "start": 23925.3, + "end": 23925.88, + "probability": 0.969 + }, + { + "start": 23926.62, + "end": 23928.22, + "probability": 0.3302 + }, + { + "start": 23929.02, + "end": 23930.94, + "probability": 0.0736 + }, + { + "start": 23957.04, + "end": 23959.4, + "probability": 0.9679 + }, + { + "start": 23960.34, + "end": 23966.08, + "probability": 0.9835 + }, + { + "start": 23966.94, + "end": 23967.64, + "probability": 0.7077 + }, + { + "start": 23969.04, + "end": 23970.56, + "probability": 0.8877 + }, + { + "start": 23971.58, + "end": 23973.32, + "probability": 0.7614 + }, + { + "start": 23973.64, + "end": 23978.92, + "probability": 0.9961 + }, + { + "start": 23980.06, + "end": 23982.38, + "probability": 0.9183 + }, + { + "start": 23982.42, + "end": 23983.2, + "probability": 0.8282 + }, + { + "start": 23983.94, + "end": 23985.18, + "probability": 0.8434 + }, + { + "start": 23985.7, + "end": 23987.22, + "probability": 0.9544 + }, + { + "start": 23987.74, + "end": 23989.54, + "probability": 0.969 + }, + { + "start": 23990.14, + "end": 23991.12, + "probability": 0.9849 + }, + { + "start": 23992.06, + "end": 23999.1, + "probability": 0.971 + }, + { + "start": 23999.6, + "end": 24000.7, + "probability": 0.7531 + }, + { + "start": 24000.72, + "end": 24001.92, + "probability": 0.9566 + }, + { + "start": 24002.5, + "end": 24004.66, + "probability": 0.975 + }, + { + "start": 24005.48, + "end": 24010.98, + "probability": 0.8779 + }, + { + "start": 24011.58, + "end": 24013.2, + "probability": 0.9825 + }, + { + "start": 24013.78, + "end": 24015.62, + "probability": 0.9967 + }, + { + "start": 24016.32, + "end": 24018.2, + "probability": 0.9571 + }, + { + "start": 24018.82, + "end": 24021.83, + "probability": 0.6638 + }, + { + "start": 24022.48, + "end": 24025.44, + "probability": 0.968 + }, + { + "start": 24026.04, + "end": 24029.86, + "probability": 0.9764 + }, + { + "start": 24030.48, + "end": 24034.64, + "probability": 0.991 + }, + { + "start": 24034.88, + "end": 24035.96, + "probability": 0.9877 + }, + { + "start": 24036.96, + "end": 24038.46, + "probability": 0.9744 + }, + { + "start": 24039.66, + "end": 24042.14, + "probability": 0.9922 + }, + { + "start": 24042.8, + "end": 24045.36, + "probability": 0.9872 + }, + { + "start": 24045.92, + "end": 24047.26, + "probability": 0.9591 + }, + { + "start": 24047.8, + "end": 24051.42, + "probability": 0.9919 + }, + { + "start": 24052.4, + "end": 24055.94, + "probability": 0.9349 + }, + { + "start": 24056.72, + "end": 24060.0, + "probability": 0.9539 + }, + { + "start": 24060.56, + "end": 24062.2, + "probability": 0.9344 + }, + { + "start": 24062.82, + "end": 24066.58, + "probability": 0.9909 + }, + { + "start": 24067.66, + "end": 24068.4, + "probability": 0.9062 + }, + { + "start": 24069.06, + "end": 24070.06, + "probability": 0.6648 + }, + { + "start": 24070.78, + "end": 24071.94, + "probability": 0.8785 + }, + { + "start": 24072.64, + "end": 24075.0, + "probability": 0.9547 + }, + { + "start": 24075.68, + "end": 24079.22, + "probability": 0.9946 + }, + { + "start": 24079.74, + "end": 24082.9, + "probability": 0.9974 + }, + { + "start": 24083.62, + "end": 24087.02, + "probability": 0.9349 + }, + { + "start": 24087.58, + "end": 24089.6, + "probability": 0.9811 + }, + { + "start": 24090.38, + "end": 24094.26, + "probability": 0.6899 + }, + { + "start": 24096.0, + "end": 24099.9, + "probability": 0.9978 + }, + { + "start": 24099.9, + "end": 24104.02, + "probability": 0.9441 + }, + { + "start": 24104.18, + "end": 24105.1, + "probability": 0.812 + }, + { + "start": 24105.72, + "end": 24109.14, + "probability": 0.8131 + }, + { + "start": 24109.76, + "end": 24111.52, + "probability": 0.8787 + }, + { + "start": 24112.26, + "end": 24117.42, + "probability": 0.9803 + }, + { + "start": 24118.52, + "end": 24121.66, + "probability": 0.9741 + }, + { + "start": 24122.14, + "end": 24123.46, + "probability": 0.9993 + }, + { + "start": 24124.64, + "end": 24125.6, + "probability": 0.5316 + }, + { + "start": 24126.82, + "end": 24129.58, + "probability": 0.962 + }, + { + "start": 24130.42, + "end": 24135.44, + "probability": 0.9914 + }, + { + "start": 24135.82, + "end": 24137.58, + "probability": 0.9738 + }, + { + "start": 24138.02, + "end": 24141.46, + "probability": 0.9072 + }, + { + "start": 24142.61, + "end": 24145.68, + "probability": 0.3341 + }, + { + "start": 24145.68, + "end": 24149.02, + "probability": 0.9897 + }, + { + "start": 24150.22, + "end": 24153.64, + "probability": 0.9983 + }, + { + "start": 24154.64, + "end": 24155.99, + "probability": 0.994 + }, + { + "start": 24156.86, + "end": 24157.62, + "probability": 0.9587 + }, + { + "start": 24158.68, + "end": 24161.2, + "probability": 0.979 + }, + { + "start": 24161.6, + "end": 24164.22, + "probability": 0.9791 + }, + { + "start": 24164.98, + "end": 24167.48, + "probability": 0.9924 + }, + { + "start": 24168.38, + "end": 24170.18, + "probability": 0.9675 + }, + { + "start": 24170.32, + "end": 24171.54, + "probability": 0.9352 + }, + { + "start": 24172.04, + "end": 24173.18, + "probability": 0.9717 + }, + { + "start": 24173.58, + "end": 24175.28, + "probability": 0.9873 + }, + { + "start": 24176.16, + "end": 24178.72, + "probability": 0.9989 + }, + { + "start": 24179.42, + "end": 24180.52, + "probability": 0.964 + }, + { + "start": 24181.34, + "end": 24183.3, + "probability": 0.9939 + }, + { + "start": 24184.0, + "end": 24184.77, + "probability": 0.9916 + }, + { + "start": 24185.46, + "end": 24186.48, + "probability": 0.988 + }, + { + "start": 24187.14, + "end": 24189.84, + "probability": 0.9989 + }, + { + "start": 24189.92, + "end": 24190.18, + "probability": 0.9711 + }, + { + "start": 24190.22, + "end": 24190.58, + "probability": 0.8109 + }, + { + "start": 24190.9, + "end": 24192.66, + "probability": 0.989 + }, + { + "start": 24193.36, + "end": 24194.72, + "probability": 0.8825 + }, + { + "start": 24195.5, + "end": 24196.66, + "probability": 0.768 + }, + { + "start": 24197.34, + "end": 24198.96, + "probability": 0.9855 + }, + { + "start": 24199.78, + "end": 24202.8, + "probability": 0.9554 + }, + { + "start": 24204.02, + "end": 24205.38, + "probability": 0.994 + }, + { + "start": 24206.44, + "end": 24208.14, + "probability": 0.9961 + }, + { + "start": 24208.72, + "end": 24210.7, + "probability": 0.9973 + }, + { + "start": 24211.22, + "end": 24215.14, + "probability": 0.9989 + }, + { + "start": 24215.72, + "end": 24218.62, + "probability": 0.9306 + }, + { + "start": 24219.98, + "end": 24220.78, + "probability": 0.9228 + }, + { + "start": 24221.32, + "end": 24222.26, + "probability": 0.9959 + }, + { + "start": 24223.88, + "end": 24225.56, + "probability": 0.8254 + }, + { + "start": 24227.2, + "end": 24229.08, + "probability": 0.9393 + }, + { + "start": 24229.76, + "end": 24230.5, + "probability": 0.6284 + }, + { + "start": 24231.04, + "end": 24231.96, + "probability": 0.8507 + }, + { + "start": 24232.52, + "end": 24234.74, + "probability": 0.9926 + }, + { + "start": 24236.08, + "end": 24236.56, + "probability": 0.7076 + }, + { + "start": 24236.62, + "end": 24236.8, + "probability": 0.8584 + }, + { + "start": 24236.94, + "end": 24238.42, + "probability": 0.9956 + }, + { + "start": 24238.9, + "end": 24239.94, + "probability": 0.9904 + }, + { + "start": 24241.34, + "end": 24242.24, + "probability": 0.9553 + }, + { + "start": 24243.4, + "end": 24244.44, + "probability": 0.9888 + }, + { + "start": 24245.42, + "end": 24247.46, + "probability": 0.9777 + }, + { + "start": 24248.04, + "end": 24250.04, + "probability": 0.9733 + }, + { + "start": 24250.62, + "end": 24253.88, + "probability": 0.951 + }, + { + "start": 24254.02, + "end": 24257.66, + "probability": 0.8579 + }, + { + "start": 24257.76, + "end": 24258.34, + "probability": 0.9815 + }, + { + "start": 24258.8, + "end": 24259.56, + "probability": 0.986 + }, + { + "start": 24259.66, + "end": 24260.58, + "probability": 0.8612 + }, + { + "start": 24261.92, + "end": 24263.42, + "probability": 0.999 + }, + { + "start": 24264.4, + "end": 24265.4, + "probability": 0.9303 + }, + { + "start": 24266.22, + "end": 24269.06, + "probability": 0.7508 + }, + { + "start": 24270.96, + "end": 24271.62, + "probability": 0.989 + }, + { + "start": 24282.52, + "end": 24283.32, + "probability": 0.6876 + }, + { + "start": 24283.92, + "end": 24286.1, + "probability": 0.9857 + }, + { + "start": 24287.36, + "end": 24289.4, + "probability": 0.9844 + }, + { + "start": 24290.18, + "end": 24292.28, + "probability": 0.9869 + }, + { + "start": 24293.12, + "end": 24293.6, + "probability": 0.8497 + }, + { + "start": 24294.18, + "end": 24296.9, + "probability": 0.961 + }, + { + "start": 24297.54, + "end": 24299.62, + "probability": 0.995 + }, + { + "start": 24300.32, + "end": 24300.68, + "probability": 0.6725 + }, + { + "start": 24301.66, + "end": 24302.25, + "probability": 0.9731 + }, + { + "start": 24303.08, + "end": 24303.78, + "probability": 0.9663 + }, + { + "start": 24304.46, + "end": 24305.19, + "probability": 0.9678 + }, + { + "start": 24306.16, + "end": 24308.45, + "probability": 0.8963 + }, + { + "start": 24309.0, + "end": 24311.6, + "probability": 0.9851 + }, + { + "start": 24312.86, + "end": 24315.34, + "probability": 0.9447 + }, + { + "start": 24316.42, + "end": 24319.46, + "probability": 0.9927 + }, + { + "start": 24320.58, + "end": 24322.5, + "probability": 0.9213 + }, + { + "start": 24323.86, + "end": 24326.78, + "probability": 0.9331 + }, + { + "start": 24327.44, + "end": 24330.36, + "probability": 0.9939 + }, + { + "start": 24331.42, + "end": 24332.22, + "probability": 0.2866 + }, + { + "start": 24333.68, + "end": 24334.72, + "probability": 0.9973 + }, + { + "start": 24335.46, + "end": 24336.42, + "probability": 0.6336 + }, + { + "start": 24337.24, + "end": 24337.9, + "probability": 0.9666 + }, + { + "start": 24339.02, + "end": 24340.5, + "probability": 0.9665 + }, + { + "start": 24341.74, + "end": 24343.34, + "probability": 0.8594 + }, + { + "start": 24344.28, + "end": 24344.78, + "probability": 0.637 + }, + { + "start": 24346.22, + "end": 24349.58, + "probability": 0.9844 + }, + { + "start": 24351.56, + "end": 24353.72, + "probability": 0.9043 + }, + { + "start": 24354.7, + "end": 24355.1, + "probability": 0.8862 + }, + { + "start": 24356.24, + "end": 24357.24, + "probability": 0.9956 + }, + { + "start": 24358.02, + "end": 24358.78, + "probability": 0.8435 + }, + { + "start": 24359.12, + "end": 24361.84, + "probability": 0.9728 + }, + { + "start": 24362.72, + "end": 24365.5, + "probability": 0.9345 + }, + { + "start": 24366.34, + "end": 24368.54, + "probability": 0.994 + }, + { + "start": 24368.72, + "end": 24369.35, + "probability": 0.9775 + }, + { + "start": 24370.34, + "end": 24371.24, + "probability": 0.941 + }, + { + "start": 24371.7, + "end": 24372.12, + "probability": 0.8318 + }, + { + "start": 24372.36, + "end": 24373.5, + "probability": 0.9806 + }, + { + "start": 24373.82, + "end": 24375.64, + "probability": 0.9907 + }, + { + "start": 24376.66, + "end": 24378.88, + "probability": 0.8633 + }, + { + "start": 24379.54, + "end": 24382.74, + "probability": 0.9105 + }, + { + "start": 24383.2, + "end": 24384.16, + "probability": 0.7208 + }, + { + "start": 24384.54, + "end": 24385.36, + "probability": 0.9838 + }, + { + "start": 24385.42, + "end": 24386.22, + "probability": 0.9024 + }, + { + "start": 24386.7, + "end": 24388.1, + "probability": 0.9847 + }, + { + "start": 24388.36, + "end": 24388.92, + "probability": 0.9922 + }, + { + "start": 24389.48, + "end": 24391.62, + "probability": 0.9921 + }, + { + "start": 24392.46, + "end": 24395.06, + "probability": 0.9955 + }, + { + "start": 24395.4, + "end": 24395.5, + "probability": 0.4492 + }, + { + "start": 24395.56, + "end": 24396.2, + "probability": 0.9093 + }, + { + "start": 24397.4, + "end": 24402.74, + "probability": 0.9416 + }, + { + "start": 24403.32, + "end": 24405.2, + "probability": 0.9587 + }, + { + "start": 24405.8, + "end": 24407.68, + "probability": 0.9968 + }, + { + "start": 24409.34, + "end": 24410.32, + "probability": 0.9978 + }, + { + "start": 24416.2, + "end": 24417.43, + "probability": 0.9183 + }, + { + "start": 24418.94, + "end": 24420.04, + "probability": 0.9974 + }, + { + "start": 24421.3, + "end": 24423.32, + "probability": 0.9858 + }, + { + "start": 24423.82, + "end": 24426.23, + "probability": 0.9937 + }, + { + "start": 24427.9, + "end": 24429.28, + "probability": 0.9867 + }, + { + "start": 24430.36, + "end": 24432.8, + "probability": 0.9232 + }, + { + "start": 24434.08, + "end": 24436.92, + "probability": 0.9849 + }, + { + "start": 24437.88, + "end": 24438.82, + "probability": 0.8235 + }, + { + "start": 24439.46, + "end": 24440.56, + "probability": 0.9872 + }, + { + "start": 24441.32, + "end": 24442.35, + "probability": 0.834 + }, + { + "start": 24442.78, + "end": 24444.54, + "probability": 0.8314 + }, + { + "start": 24445.06, + "end": 24445.92, + "probability": 0.9546 + }, + { + "start": 24446.94, + "end": 24452.96, + "probability": 0.965 + }, + { + "start": 24453.48, + "end": 24454.62, + "probability": 0.9716 + }, + { + "start": 24454.72, + "end": 24455.1, + "probability": 0.8072 + }, + { + "start": 24455.2, + "end": 24456.0, + "probability": 0.6993 + }, + { + "start": 24456.62, + "end": 24457.1, + "probability": 0.834 + }, + { + "start": 24457.42, + "end": 24460.96, + "probability": 0.9896 + }, + { + "start": 24461.62, + "end": 24463.56, + "probability": 0.9962 + }, + { + "start": 24464.02, + "end": 24466.88, + "probability": 0.9987 + }, + { + "start": 24467.1, + "end": 24469.52, + "probability": 0.9959 + }, + { + "start": 24469.63, + "end": 24473.06, + "probability": 0.9945 + }, + { + "start": 24473.74, + "end": 24476.16, + "probability": 0.9502 + }, + { + "start": 24476.72, + "end": 24477.06, + "probability": 0.7999 + }, + { + "start": 24477.64, + "end": 24478.46, + "probability": 0.1749 + }, + { + "start": 24478.88, + "end": 24479.68, + "probability": 0.8048 + }, + { + "start": 24479.74, + "end": 24481.34, + "probability": 0.8372 + }, + { + "start": 24483.84, + "end": 24484.16, + "probability": 0.9072 + }, + { + "start": 24484.74, + "end": 24485.56, + "probability": 0.8234 + }, + { + "start": 24514.88, + "end": 24518.07, + "probability": 0.8545 + }, + { + "start": 24539.1, + "end": 24539.2, + "probability": 0.4856 + }, + { + "start": 24539.3, + "end": 24541.28, + "probability": 0.6956 + }, + { + "start": 24542.7, + "end": 24544.46, + "probability": 0.8191 + }, + { + "start": 24546.2, + "end": 24553.18, + "probability": 0.9644 + }, + { + "start": 24553.76, + "end": 24558.38, + "probability": 0.9863 + }, + { + "start": 24560.04, + "end": 24564.12, + "probability": 0.9918 + }, + { + "start": 24565.1, + "end": 24566.14, + "probability": 0.9976 + }, + { + "start": 24566.3, + "end": 24567.83, + "probability": 0.9823 + }, + { + "start": 24569.4, + "end": 24572.16, + "probability": 0.9971 + }, + { + "start": 24572.66, + "end": 24576.36, + "probability": 0.9869 + }, + { + "start": 24577.2, + "end": 24577.91, + "probability": 0.5551 + }, + { + "start": 24579.26, + "end": 24583.92, + "probability": 0.9993 + }, + { + "start": 24584.58, + "end": 24586.08, + "probability": 0.9255 + }, + { + "start": 24587.18, + "end": 24590.74, + "probability": 0.9985 + }, + { + "start": 24591.68, + "end": 24593.08, + "probability": 0.9979 + }, + { + "start": 24594.0, + "end": 24596.98, + "probability": 0.9976 + }, + { + "start": 24596.98, + "end": 24600.12, + "probability": 0.9937 + }, + { + "start": 24600.76, + "end": 24601.84, + "probability": 0.9627 + }, + { + "start": 24603.88, + "end": 24606.14, + "probability": 0.9961 + }, + { + "start": 24606.94, + "end": 24610.56, + "probability": 0.8519 + }, + { + "start": 24611.14, + "end": 24612.72, + "probability": 0.9565 + }, + { + "start": 24613.26, + "end": 24613.94, + "probability": 0.9748 + }, + { + "start": 24614.48, + "end": 24618.78, + "probability": 0.98 + }, + { + "start": 24619.42, + "end": 24620.24, + "probability": 0.9023 + }, + { + "start": 24620.42, + "end": 24623.72, + "probability": 0.9917 + }, + { + "start": 24623.92, + "end": 24627.34, + "probability": 0.9849 + }, + { + "start": 24627.42, + "end": 24628.58, + "probability": 0.9482 + }, + { + "start": 24630.3, + "end": 24632.76, + "probability": 0.9391 + }, + { + "start": 24633.42, + "end": 24638.08, + "probability": 0.9951 + }, + { + "start": 24639.32, + "end": 24644.6, + "probability": 0.9988 + }, + { + "start": 24645.64, + "end": 24646.88, + "probability": 0.999 + }, + { + "start": 24648.14, + "end": 24652.78, + "probability": 0.9937 + }, + { + "start": 24654.12, + "end": 24655.86, + "probability": 0.9338 + }, + { + "start": 24656.38, + "end": 24660.88, + "probability": 0.9889 + }, + { + "start": 24661.62, + "end": 24665.48, + "probability": 0.9894 + }, + { + "start": 24666.4, + "end": 24669.12, + "probability": 0.9878 + }, + { + "start": 24669.64, + "end": 24671.84, + "probability": 0.9611 + }, + { + "start": 24672.78, + "end": 24673.77, + "probability": 0.9912 + }, + { + "start": 24674.4, + "end": 24675.66, + "probability": 0.8936 + }, + { + "start": 24676.38, + "end": 24679.46, + "probability": 0.998 + }, + { + "start": 24680.04, + "end": 24681.46, + "probability": 0.9705 + }, + { + "start": 24682.1, + "end": 24685.9, + "probability": 0.9761 + }, + { + "start": 24686.06, + "end": 24688.64, + "probability": 0.9963 + }, + { + "start": 24690.88, + "end": 24693.3, + "probability": 0.8445 + }, + { + "start": 24694.12, + "end": 24697.06, + "probability": 0.9875 + }, + { + "start": 24698.32, + "end": 24700.96, + "probability": 0.8773 + }, + { + "start": 24701.72, + "end": 24704.0, + "probability": 0.9884 + }, + { + "start": 24704.14, + "end": 24706.3, + "probability": 0.9919 + }, + { + "start": 24707.75, + "end": 24711.12, + "probability": 0.7097 + }, + { + "start": 24711.6, + "end": 24716.74, + "probability": 0.9886 + }, + { + "start": 24716.74, + "end": 24722.0, + "probability": 0.9736 + }, + { + "start": 24722.88, + "end": 24723.98, + "probability": 0.8835 + }, + { + "start": 24724.26, + "end": 24728.84, + "probability": 0.9917 + }, + { + "start": 24729.44, + "end": 24731.68, + "probability": 0.9966 + }, + { + "start": 24731.68, + "end": 24735.68, + "probability": 0.9948 + }, + { + "start": 24736.54, + "end": 24739.96, + "probability": 0.994 + }, + { + "start": 24740.14, + "end": 24741.88, + "probability": 0.9973 + }, + { + "start": 24742.04, + "end": 24743.36, + "probability": 0.888 + }, + { + "start": 24743.84, + "end": 24745.94, + "probability": 0.9727 + }, + { + "start": 24746.02, + "end": 24747.2, + "probability": 0.9956 + }, + { + "start": 24747.34, + "end": 24750.2, + "probability": 0.9634 + }, + { + "start": 24750.78, + "end": 24752.88, + "probability": 0.9662 + }, + { + "start": 24753.72, + "end": 24754.32, + "probability": 0.9583 + }, + { + "start": 24754.98, + "end": 24756.48, + "probability": 0.8649 + }, + { + "start": 24756.82, + "end": 24758.7, + "probability": 0.9235 + }, + { + "start": 24758.92, + "end": 24761.12, + "probability": 0.9408 + }, + { + "start": 24761.74, + "end": 24763.03, + "probability": 0.9326 + }, + { + "start": 24763.88, + "end": 24767.74, + "probability": 0.9967 + }, + { + "start": 24768.26, + "end": 24769.46, + "probability": 0.9963 + }, + { + "start": 24769.76, + "end": 24772.58, + "probability": 0.8009 + }, + { + "start": 24773.2, + "end": 24779.42, + "probability": 0.9927 + }, + { + "start": 24779.42, + "end": 24785.48, + "probability": 0.9972 + }, + { + "start": 24787.16, + "end": 24788.24, + "probability": 0.946 + }, + { + "start": 24788.68, + "end": 24789.34, + "probability": 0.8572 + }, + { + "start": 24789.4, + "end": 24793.78, + "probability": 0.8914 + }, + { + "start": 24795.2, + "end": 24797.12, + "probability": 0.9953 + }, + { + "start": 24797.3, + "end": 24799.66, + "probability": 0.9067 + }, + { + "start": 24800.1, + "end": 24803.32, + "probability": 0.9795 + }, + { + "start": 24804.84, + "end": 24805.76, + "probability": 0.8195 + }, + { + "start": 24807.46, + "end": 24808.5, + "probability": 0.9806 + }, + { + "start": 24809.94, + "end": 24813.38, + "probability": 0.9092 + }, + { + "start": 24814.46, + "end": 24816.9, + "probability": 0.9927 + }, + { + "start": 24817.66, + "end": 24819.23, + "probability": 0.9415 + }, + { + "start": 24820.2, + "end": 24820.66, + "probability": 0.3394 + }, + { + "start": 24822.1, + "end": 24826.14, + "probability": 0.9971 + }, + { + "start": 24827.22, + "end": 24828.52, + "probability": 0.9247 + }, + { + "start": 24829.42, + "end": 24830.24, + "probability": 0.9677 + }, + { + "start": 24830.32, + "end": 24831.94, + "probability": 0.9631 + }, + { + "start": 24832.38, + "end": 24834.1, + "probability": 0.9765 + }, + { + "start": 24835.04, + "end": 24837.48, + "probability": 0.9987 + }, + { + "start": 24838.04, + "end": 24839.18, + "probability": 0.928 + }, + { + "start": 24839.98, + "end": 24843.74, + "probability": 0.9731 + }, + { + "start": 24843.82, + "end": 24846.1, + "probability": 0.8884 + }, + { + "start": 24846.84, + "end": 24848.0, + "probability": 0.8818 + }, + { + "start": 24848.16, + "end": 24849.56, + "probability": 0.9892 + }, + { + "start": 24849.7, + "end": 24852.2, + "probability": 0.9901 + }, + { + "start": 24853.6, + "end": 24856.06, + "probability": 0.9913 + }, + { + "start": 24856.66, + "end": 24859.62, + "probability": 0.9845 + }, + { + "start": 24860.46, + "end": 24861.4, + "probability": 0.9665 + }, + { + "start": 24861.8, + "end": 24863.54, + "probability": 0.9988 + }, + { + "start": 24864.1, + "end": 24866.18, + "probability": 0.9912 + }, + { + "start": 24866.66, + "end": 24867.3, + "probability": 0.9556 + }, + { + "start": 24868.04, + "end": 24870.58, + "probability": 0.9964 + }, + { + "start": 24871.1, + "end": 24871.74, + "probability": 0.9087 + }, + { + "start": 24872.26, + "end": 24872.44, + "probability": 0.9985 + }, + { + "start": 24873.0, + "end": 24874.06, + "probability": 0.9996 + }, + { + "start": 24874.76, + "end": 24876.84, + "probability": 0.9921 + }, + { + "start": 24876.94, + "end": 24879.26, + "probability": 0.9971 + }, + { + "start": 24879.38, + "end": 24882.04, + "probability": 0.988 + }, + { + "start": 24882.04, + "end": 24884.52, + "probability": 0.9902 + }, + { + "start": 24885.0, + "end": 24886.38, + "probability": 0.9355 + }, + { + "start": 24886.72, + "end": 24887.31, + "probability": 0.9588 + }, + { + "start": 24887.5, + "end": 24889.12, + "probability": 0.7709 + }, + { + "start": 24889.34, + "end": 24890.26, + "probability": 0.5994 + }, + { + "start": 24890.94, + "end": 24894.7, + "probability": 0.9899 + }, + { + "start": 24895.06, + "end": 24900.72, + "probability": 0.9963 + }, + { + "start": 24902.38, + "end": 24902.44, + "probability": 0.4476 + }, + { + "start": 24902.68, + "end": 24904.38, + "probability": 0.988 + }, + { + "start": 24904.46, + "end": 24905.98, + "probability": 0.9378 + }, + { + "start": 24906.06, + "end": 24910.68, + "probability": 0.9619 + }, + { + "start": 24911.58, + "end": 24913.58, + "probability": 0.9617 + }, + { + "start": 24913.72, + "end": 24917.42, + "probability": 0.998 + }, + { + "start": 24918.18, + "end": 24920.66, + "probability": 0.9922 + }, + { + "start": 24920.66, + "end": 24924.42, + "probability": 0.9961 + }, + { + "start": 24925.58, + "end": 24928.61, + "probability": 0.9841 + }, + { + "start": 24929.38, + "end": 24931.84, + "probability": 0.8774 + }, + { + "start": 24932.72, + "end": 24936.46, + "probability": 0.9397 + }, + { + "start": 24937.62, + "end": 24940.14, + "probability": 0.904 + }, + { + "start": 24940.92, + "end": 24942.7, + "probability": 0.9832 + }, + { + "start": 24943.36, + "end": 24944.36, + "probability": 0.7203 + }, + { + "start": 24945.82, + "end": 24946.66, + "probability": 0.9728 + }, + { + "start": 24947.72, + "end": 24951.46, + "probability": 0.88 + }, + { + "start": 24952.74, + "end": 24954.04, + "probability": 0.8807 + }, + { + "start": 24954.8, + "end": 24956.1, + "probability": 0.9954 + }, + { + "start": 24957.1, + "end": 24958.44, + "probability": 0.9956 + }, + { + "start": 24958.84, + "end": 24962.44, + "probability": 0.9927 + }, + { + "start": 24963.52, + "end": 24964.28, + "probability": 0.9392 + }, + { + "start": 24964.8, + "end": 24967.28, + "probability": 0.9776 + }, + { + "start": 24967.66, + "end": 24968.66, + "probability": 0.9297 + }, + { + "start": 24968.92, + "end": 24973.0, + "probability": 0.9606 + }, + { + "start": 24973.8, + "end": 24978.59, + "probability": 0.9937 + }, + { + "start": 24979.48, + "end": 24979.9, + "probability": 0.8369 + }, + { + "start": 24979.98, + "end": 24980.96, + "probability": 0.9313 + }, + { + "start": 24981.06, + "end": 24983.26, + "probability": 0.9497 + }, + { + "start": 24984.32, + "end": 24987.98, + "probability": 0.9958 + }, + { + "start": 24988.56, + "end": 24989.2, + "probability": 0.8293 + }, + { + "start": 24990.06, + "end": 24994.7, + "probability": 0.9861 + }, + { + "start": 24995.14, + "end": 24997.7, + "probability": 0.9992 + }, + { + "start": 24998.38, + "end": 24999.66, + "probability": 0.9801 + }, + { + "start": 25000.04, + "end": 25002.02, + "probability": 0.9975 + }, + { + "start": 25003.08, + "end": 25005.76, + "probability": 0.9653 + }, + { + "start": 25006.22, + "end": 25007.26, + "probability": 0.929 + }, + { + "start": 25007.34, + "end": 25008.3, + "probability": 0.9818 + }, + { + "start": 25008.5, + "end": 25009.29, + "probability": 0.8054 + }, + { + "start": 25010.42, + "end": 25014.58, + "probability": 0.9492 + }, + { + "start": 25014.6, + "end": 25015.42, + "probability": 0.9814 + }, + { + "start": 25015.96, + "end": 25016.98, + "probability": 0.8698 + }, + { + "start": 25016.98, + "end": 25018.06, + "probability": 0.913 + }, + { + "start": 25018.36, + "end": 25019.88, + "probability": 0.4917 + }, + { + "start": 25020.0, + "end": 25021.16, + "probability": 0.9156 + }, + { + "start": 25021.84, + "end": 25025.96, + "probability": 0.9854 + }, + { + "start": 25026.58, + "end": 25028.74, + "probability": 0.8819 + }, + { + "start": 25028.9, + "end": 25029.52, + "probability": 0.715 + }, + { + "start": 25029.92, + "end": 25031.62, + "probability": 0.9592 + }, + { + "start": 25032.2, + "end": 25034.86, + "probability": 0.9982 + }, + { + "start": 25034.86, + "end": 25037.14, + "probability": 0.9985 + }, + { + "start": 25037.26, + "end": 25038.08, + "probability": 0.7893 + }, + { + "start": 25038.86, + "end": 25040.8, + "probability": 0.9511 + }, + { + "start": 25041.56, + "end": 25042.1, + "probability": 0.853 + }, + { + "start": 25043.16, + "end": 25043.16, + "probability": 0.0017 + }, + { + "start": 25045.2, + "end": 25045.42, + "probability": 0.0602 + }, + { + "start": 25045.42, + "end": 25047.38, + "probability": 0.1276 + }, + { + "start": 25047.38, + "end": 25050.94, + "probability": 0.1369 + }, + { + "start": 25051.88, + "end": 25052.74, + "probability": 0.1618 + }, + { + "start": 25053.44, + "end": 25060.98, + "probability": 0.21 + }, + { + "start": 25060.98, + "end": 25065.94, + "probability": 0.7828 + }, + { + "start": 25066.74, + "end": 25068.82, + "probability": 0.9519 + }, + { + "start": 25069.32, + "end": 25072.02, + "probability": 0.8148 + }, + { + "start": 25072.8, + "end": 25074.96, + "probability": 0.9639 + }, + { + "start": 25075.26, + "end": 25077.38, + "probability": 0.734 + }, + { + "start": 25077.74, + "end": 25079.25, + "probability": 0.9393 + }, + { + "start": 25079.56, + "end": 25080.18, + "probability": 0.7365 + }, + { + "start": 25080.24, + "end": 25084.0, + "probability": 0.7259 + }, + { + "start": 25084.64, + "end": 25087.7, + "probability": 0.7749 + }, + { + "start": 25088.48, + "end": 25092.66, + "probability": 0.6652 + }, + { + "start": 25093.32, + "end": 25096.83, + "probability": 0.9155 + }, + { + "start": 25097.44, + "end": 25100.76, + "probability": 0.9541 + }, + { + "start": 25101.12, + "end": 25102.12, + "probability": 0.2594 + }, + { + "start": 25102.2, + "end": 25103.85, + "probability": 0.2149 + }, + { + "start": 25104.58, + "end": 25107.68, + "probability": 0.7553 + }, + { + "start": 25107.84, + "end": 25112.3, + "probability": 0.988 + }, + { + "start": 25112.82, + "end": 25117.26, + "probability": 0.7422 + }, + { + "start": 25117.9, + "end": 25118.2, + "probability": 0.5654 + }, + { + "start": 25118.36, + "end": 25120.66, + "probability": 0.455 + }, + { + "start": 25120.94, + "end": 25121.44, + "probability": 0.1212 + }, + { + "start": 25121.44, + "end": 25122.1, + "probability": 0.165 + }, + { + "start": 25122.24, + "end": 25124.05, + "probability": 0.0132 + }, + { + "start": 25127.54, + "end": 25130.18, + "probability": 0.5119 + }, + { + "start": 25130.3, + "end": 25130.58, + "probability": 0.4542 + }, + { + "start": 25130.74, + "end": 25130.84, + "probability": 0.5124 + }, + { + "start": 25132.28, + "end": 25133.32, + "probability": 0.1543 + }, + { + "start": 25133.32, + "end": 25133.32, + "probability": 0.2896 + }, + { + "start": 25133.32, + "end": 25135.72, + "probability": 0.8766 + }, + { + "start": 25135.8, + "end": 25136.96, + "probability": 0.4597 + }, + { + "start": 25137.1, + "end": 25142.22, + "probability": 0.9214 + }, + { + "start": 25142.34, + "end": 25143.54, + "probability": 0.8657 + }, + { + "start": 25144.04, + "end": 25144.1, + "probability": 0.1192 + }, + { + "start": 25144.22, + "end": 25145.24, + "probability": 0.7392 + }, + { + "start": 25145.28, + "end": 25145.58, + "probability": 0.4142 + }, + { + "start": 25145.64, + "end": 25148.72, + "probability": 0.665 + }, + { + "start": 25149.26, + "end": 25151.16, + "probability": 0.9256 + }, + { + "start": 25151.2, + "end": 25151.88, + "probability": 0.1296 + }, + { + "start": 25151.94, + "end": 25152.14, + "probability": 0.7749 + }, + { + "start": 25152.2, + "end": 25153.26, + "probability": 0.775 + }, + { + "start": 25153.32, + "end": 25155.32, + "probability": 0.9513 + }, + { + "start": 25155.62, + "end": 25156.74, + "probability": 0.6476 + }, + { + "start": 25157.56, + "end": 25161.0, + "probability": 0.9277 + }, + { + "start": 25161.0, + "end": 25163.02, + "probability": 0.98 + }, + { + "start": 25163.16, + "end": 25164.86, + "probability": 0.9922 + }, + { + "start": 25165.62, + "end": 25167.08, + "probability": 0.984 + }, + { + "start": 25167.62, + "end": 25168.98, + "probability": 0.9988 + }, + { + "start": 25169.56, + "end": 25170.56, + "probability": 0.8947 + }, + { + "start": 25171.08, + "end": 25172.34, + "probability": 0.9893 + }, + { + "start": 25173.6, + "end": 25178.88, + "probability": 0.9595 + }, + { + "start": 25179.94, + "end": 25182.7, + "probability": 0.9974 + }, + { + "start": 25183.18, + "end": 25187.3, + "probability": 0.9844 + }, + { + "start": 25187.9, + "end": 25188.34, + "probability": 0.5541 + }, + { + "start": 25189.06, + "end": 25191.1, + "probability": 0.8762 + }, + { + "start": 25191.26, + "end": 25191.96, + "probability": 0.9014 + }, + { + "start": 25192.06, + "end": 25194.8, + "probability": 0.969 + }, + { + "start": 25194.8, + "end": 25197.82, + "probability": 0.9888 + }, + { + "start": 25198.8, + "end": 25201.38, + "probability": 0.9806 + }, + { + "start": 25201.86, + "end": 25203.04, + "probability": 0.3755 + }, + { + "start": 25203.04, + "end": 25203.74, + "probability": 0.5068 + }, + { + "start": 25204.04, + "end": 25205.4, + "probability": 0.7763 + }, + { + "start": 25205.92, + "end": 25207.04, + "probability": 0.7409 + }, + { + "start": 25208.3, + "end": 25210.56, + "probability": 0.9951 + }, + { + "start": 25210.7, + "end": 25210.86, + "probability": 0.9373 + }, + { + "start": 25210.96, + "end": 25214.08, + "probability": 0.9744 + }, + { + "start": 25214.76, + "end": 25218.5, + "probability": 0.957 + }, + { + "start": 25218.64, + "end": 25220.6, + "probability": 0.9523 + }, + { + "start": 25220.74, + "end": 25223.76, + "probability": 0.9467 + }, + { + "start": 25223.78, + "end": 25224.96, + "probability": 0.5089 + }, + { + "start": 25225.7, + "end": 25227.44, + "probability": 0.8996 + }, + { + "start": 25227.84, + "end": 25228.48, + "probability": 0.8693 + }, + { + "start": 25228.96, + "end": 25231.06, + "probability": 0.9845 + }, + { + "start": 25231.22, + "end": 25233.64, + "probability": 0.998 + }, + { + "start": 25233.84, + "end": 25236.86, + "probability": 0.9045 + }, + { + "start": 25237.16, + "end": 25240.98, + "probability": 0.9699 + }, + { + "start": 25241.52, + "end": 25245.42, + "probability": 0.9677 + }, + { + "start": 25245.9, + "end": 25247.08, + "probability": 0.9271 + }, + { + "start": 25247.16, + "end": 25249.46, + "probability": 0.9732 + }, + { + "start": 25250.22, + "end": 25251.7, + "probability": 0.7846 + }, + { + "start": 25252.36, + "end": 25253.96, + "probability": 0.8981 + }, + { + "start": 25254.42, + "end": 25255.28, + "probability": 0.7771 + }, + { + "start": 25255.74, + "end": 25257.04, + "probability": 0.8562 + }, + { + "start": 25257.8, + "end": 25263.26, + "probability": 0.9373 + }, + { + "start": 25263.62, + "end": 25265.16, + "probability": 0.9616 + }, + { + "start": 25266.26, + "end": 25266.86, + "probability": 0.95 + }, + { + "start": 25272.78, + "end": 25273.84, + "probability": 0.0309 + }, + { + "start": 25273.84, + "end": 25274.04, + "probability": 0.1712 + }, + { + "start": 25274.04, + "end": 25275.53, + "probability": 0.33 + }, + { + "start": 25276.96, + "end": 25278.24, + "probability": 0.6549 + }, + { + "start": 25280.84, + "end": 25281.06, + "probability": 0.5005 + }, + { + "start": 25282.36, + "end": 25283.5, + "probability": 0.658 + }, + { + "start": 25283.56, + "end": 25286.48, + "probability": 0.6025 + }, + { + "start": 25288.2, + "end": 25289.44, + "probability": 0.5352 + }, + { + "start": 25289.94, + "end": 25292.68, + "probability": 0.5208 + }, + { + "start": 25293.36, + "end": 25296.03, + "probability": 0.9868 + }, + { + "start": 25296.94, + "end": 25298.39, + "probability": 0.8701 + }, + { + "start": 25300.12, + "end": 25302.42, + "probability": 0.9946 + }, + { + "start": 25302.88, + "end": 25303.7, + "probability": 0.6949 + }, + { + "start": 25304.1, + "end": 25305.62, + "probability": 0.9882 + }, + { + "start": 25305.72, + "end": 25306.24, + "probability": 0.9146 + }, + { + "start": 25306.56, + "end": 25307.0, + "probability": 0.6151 + }, + { + "start": 25307.76, + "end": 25311.26, + "probability": 0.9868 + }, + { + "start": 25311.82, + "end": 25314.0, + "probability": 0.9911 + }, + { + "start": 25314.12, + "end": 25314.58, + "probability": 0.7482 + }, + { + "start": 25314.58, + "end": 25314.96, + "probability": 0.758 + }, + { + "start": 25315.06, + "end": 25317.54, + "probability": 0.9271 + }, + { + "start": 25317.66, + "end": 25321.68, + "probability": 0.5644 + }, + { + "start": 25322.48, + "end": 25323.72, + "probability": 0.9968 + }, + { + "start": 25324.36, + "end": 25325.52, + "probability": 0.9956 + }, + { + "start": 25326.32, + "end": 25327.84, + "probability": 0.7655 + }, + { + "start": 25328.82, + "end": 25330.78, + "probability": 0.5312 + }, + { + "start": 25332.02, + "end": 25334.82, + "probability": 0.6626 + }, + { + "start": 25334.88, + "end": 25336.14, + "probability": 0.8027 + }, + { + "start": 25336.42, + "end": 25337.38, + "probability": 0.9473 + }, + { + "start": 25338.4, + "end": 25341.9, + "probability": 0.7385 + }, + { + "start": 25343.08, + "end": 25345.38, + "probability": 0.9417 + }, + { + "start": 25345.88, + "end": 25346.66, + "probability": 0.7826 + }, + { + "start": 25350.46, + "end": 25351.98, + "probability": 0.7267 + }, + { + "start": 25353.86, + "end": 25355.76, + "probability": 0.816 + }, + { + "start": 25356.04, + "end": 25357.32, + "probability": 0.9255 + }, + { + "start": 25359.9, + "end": 25361.86, + "probability": 0.9072 + }, + { + "start": 25363.2, + "end": 25365.56, + "probability": 0.0196 + }, + { + "start": 25366.26, + "end": 25368.32, + "probability": 0.1069 + }, + { + "start": 25369.42, + "end": 25369.98, + "probability": 0.0371 + }, + { + "start": 25370.94, + "end": 25371.62, + "probability": 0.0781 + }, + { + "start": 25371.62, + "end": 25372.08, + "probability": 0.0449 + }, + { + "start": 25373.06, + "end": 25374.22, + "probability": 0.7573 + }, + { + "start": 25374.88, + "end": 25377.76, + "probability": 0.8302 + }, + { + "start": 25378.82, + "end": 25380.44, + "probability": 0.9561 + }, + { + "start": 25381.04, + "end": 25382.46, + "probability": 0.3623 + }, + { + "start": 25384.3, + "end": 25385.2, + "probability": 0.7321 + }, + { + "start": 25386.0, + "end": 25386.18, + "probability": 0.9198 + }, + { + "start": 25388.42, + "end": 25389.26, + "probability": 0.8067 + }, + { + "start": 25390.45, + "end": 25395.92, + "probability": 0.8894 + }, + { + "start": 25397.24, + "end": 25398.7, + "probability": 0.9702 + }, + { + "start": 25430.92, + "end": 25431.72, + "probability": 0.8029 + }, + { + "start": 25431.86, + "end": 25432.52, + "probability": 0.7901 + }, + { + "start": 25432.66, + "end": 25437.34, + "probability": 0.937 + }, + { + "start": 25437.5, + "end": 25439.56, + "probability": 0.9378 + }, + { + "start": 25440.32, + "end": 25442.02, + "probability": 0.8284 + }, + { + "start": 25442.78, + "end": 25444.1, + "probability": 0.8666 + }, + { + "start": 25444.7, + "end": 25445.68, + "probability": 0.2259 + }, + { + "start": 25445.78, + "end": 25446.06, + "probability": 0.8557 + }, + { + "start": 25448.16, + "end": 25450.84, + "probability": 0.7901 + }, + { + "start": 25450.86, + "end": 25451.5, + "probability": 0.6077 + }, + { + "start": 25451.56, + "end": 25452.02, + "probability": 0.8005 + }, + { + "start": 25452.34, + "end": 25454.94, + "probability": 0.6822 + }, + { + "start": 25455.58, + "end": 25459.76, + "probability": 0.8312 + }, + { + "start": 25460.3, + "end": 25462.34, + "probability": 0.3832 + }, + { + "start": 25462.48, + "end": 25464.22, + "probability": 0.5165 + }, + { + "start": 25467.63, + "end": 25470.36, + "probability": 0.7632 + }, + { + "start": 25470.64, + "end": 25470.86, + "probability": 0.7897 + }, + { + "start": 25471.72, + "end": 25473.86, + "probability": 0.8029 + }, + { + "start": 25474.82, + "end": 25475.76, + "probability": 0.9438 + }, + { + "start": 25476.64, + "end": 25479.06, + "probability": 0.9507 + }, + { + "start": 25479.14, + "end": 25481.74, + "probability": 0.9948 + }, + { + "start": 25482.2, + "end": 25485.94, + "probability": 0.9907 + }, + { + "start": 25486.58, + "end": 25491.02, + "probability": 0.98 + }, + { + "start": 25492.14, + "end": 25497.78, + "probability": 0.977 + }, + { + "start": 25498.9, + "end": 25501.96, + "probability": 0.9969 + }, + { + "start": 25502.54, + "end": 25504.06, + "probability": 0.9739 + }, + { + "start": 25505.02, + "end": 25511.24, + "probability": 0.9811 + }, + { + "start": 25512.52, + "end": 25517.12, + "probability": 0.9385 + }, + { + "start": 25517.28, + "end": 25520.06, + "probability": 0.9438 + }, + { + "start": 25520.72, + "end": 25525.04, + "probability": 0.8014 + }, + { + "start": 25525.04, + "end": 25528.74, + "probability": 0.9901 + }, + { + "start": 25529.48, + "end": 25534.78, + "probability": 0.9963 + }, + { + "start": 25534.78, + "end": 25539.28, + "probability": 0.9974 + }, + { + "start": 25540.06, + "end": 25544.02, + "probability": 0.9821 + }, + { + "start": 25544.58, + "end": 25550.92, + "probability": 0.9926 + }, + { + "start": 25551.36, + "end": 25551.86, + "probability": 0.4377 + }, + { + "start": 25551.98, + "end": 25558.7, + "probability": 0.9556 + }, + { + "start": 25559.46, + "end": 25562.12, + "probability": 0.9789 + }, + { + "start": 25562.72, + "end": 25567.72, + "probability": 0.9271 + }, + { + "start": 25568.64, + "end": 25572.08, + "probability": 0.9992 + }, + { + "start": 25572.08, + "end": 25576.22, + "probability": 0.997 + }, + { + "start": 25577.26, + "end": 25579.72, + "probability": 0.9861 + }, + { + "start": 25580.28, + "end": 25586.14, + "probability": 0.9879 + }, + { + "start": 25587.1, + "end": 25592.32, + "probability": 0.9938 + }, + { + "start": 25592.32, + "end": 25597.86, + "probability": 0.9957 + }, + { + "start": 25598.32, + "end": 25601.28, + "probability": 0.9661 + }, + { + "start": 25602.18, + "end": 25604.12, + "probability": 0.9788 + }, + { + "start": 25604.82, + "end": 25605.92, + "probability": 0.9249 + }, + { + "start": 25606.44, + "end": 25610.18, + "probability": 0.9596 + }, + { + "start": 25610.28, + "end": 25612.24, + "probability": 0.5714 + }, + { + "start": 25612.94, + "end": 25613.9, + "probability": 0.8077 + }, + { + "start": 25614.52, + "end": 25618.78, + "probability": 0.9509 + }, + { + "start": 25619.54, + "end": 25625.82, + "probability": 0.9796 + }, + { + "start": 25626.4, + "end": 25627.12, + "probability": 0.8885 + }, + { + "start": 25628.74, + "end": 25630.9, + "probability": 0.8895 + }, + { + "start": 25631.56, + "end": 25635.66, + "probability": 0.9936 + }, + { + "start": 25636.22, + "end": 25639.64, + "probability": 0.9868 + }, + { + "start": 25640.18, + "end": 25642.32, + "probability": 0.9941 + }, + { + "start": 25642.9, + "end": 25644.56, + "probability": 0.8272 + }, + { + "start": 25644.74, + "end": 25645.7, + "probability": 0.641 + }, + { + "start": 25646.14, + "end": 25647.18, + "probability": 0.8024 + }, + { + "start": 25647.26, + "end": 25648.1, + "probability": 0.9478 + }, + { + "start": 25648.3, + "end": 25648.82, + "probability": 0.8401 + }, + { + "start": 25650.44, + "end": 25651.96, + "probability": 0.7911 + }, + { + "start": 25652.34, + "end": 25654.82, + "probability": 0.7395 + }, + { + "start": 25655.12, + "end": 25656.4, + "probability": 0.8587 + }, + { + "start": 25658.8, + "end": 25659.72, + "probability": 0.8597 + }, + { + "start": 25660.26, + "end": 25660.98, + "probability": 0.9856 + }, + { + "start": 25661.86, + "end": 25664.8, + "probability": 0.972 + }, + { + "start": 25665.18, + "end": 25666.8, + "probability": 0.9944 + }, + { + "start": 25668.0, + "end": 25674.0, + "probability": 0.7306 + }, + { + "start": 25674.26, + "end": 25674.9, + "probability": 0.5656 + }, + { + "start": 25693.94, + "end": 25694.1, + "probability": 0.5002 + }, + { + "start": 25695.76, + "end": 25696.68, + "probability": 0.779 + }, + { + "start": 25697.52, + "end": 25697.84, + "probability": 0.783 + }, + { + "start": 25699.3, + "end": 25706.24, + "probability": 0.9624 + }, + { + "start": 25706.24, + "end": 25711.52, + "probability": 0.9908 + }, + { + "start": 25711.94, + "end": 25715.22, + "probability": 0.7417 + }, + { + "start": 25716.2, + "end": 25721.4, + "probability": 0.9888 + }, + { + "start": 25721.48, + "end": 25726.08, + "probability": 0.9995 + }, + { + "start": 25726.12, + "end": 25727.82, + "probability": 0.9784 + }, + { + "start": 25728.94, + "end": 25734.24, + "probability": 0.9606 + }, + { + "start": 25734.24, + "end": 25739.84, + "probability": 0.7924 + }, + { + "start": 25740.56, + "end": 25741.76, + "probability": 0.7029 + }, + { + "start": 25742.76, + "end": 25745.16, + "probability": 0.5928 + }, + { + "start": 25745.8, + "end": 25748.62, + "probability": 0.9202 + }, + { + "start": 25748.94, + "end": 25751.56, + "probability": 0.9941 + }, + { + "start": 25752.12, + "end": 25757.02, + "probability": 0.9805 + }, + { + "start": 25757.6, + "end": 25763.48, + "probability": 0.9844 + }, + { + "start": 25764.16, + "end": 25765.68, + "probability": 0.6989 + }, + { + "start": 25765.98, + "end": 25771.96, + "probability": 0.9969 + }, + { + "start": 25772.96, + "end": 25776.26, + "probability": 0.9873 + }, + { + "start": 25776.26, + "end": 25781.36, + "probability": 0.9985 + }, + { + "start": 25782.06, + "end": 25784.34, + "probability": 0.9512 + }, + { + "start": 25784.7, + "end": 25785.9, + "probability": 0.9964 + }, + { + "start": 25786.44, + "end": 25788.2, + "probability": 0.985 + }, + { + "start": 25788.86, + "end": 25790.68, + "probability": 0.9956 + }, + { + "start": 25790.94, + "end": 25794.58, + "probability": 0.911 + }, + { + "start": 25794.96, + "end": 25798.38, + "probability": 0.7828 + }, + { + "start": 25798.98, + "end": 25800.56, + "probability": 0.9973 + }, + { + "start": 25801.04, + "end": 25802.22, + "probability": 0.8803 + }, + { + "start": 25802.36, + "end": 25803.58, + "probability": 0.9701 + }, + { + "start": 25804.1, + "end": 25805.2, + "probability": 0.8472 + }, + { + "start": 25805.9, + "end": 25807.14, + "probability": 0.9761 + }, + { + "start": 25807.28, + "end": 25810.82, + "probability": 0.9069 + }, + { + "start": 25810.94, + "end": 25813.2, + "probability": 0.9788 + }, + { + "start": 25813.5, + "end": 25816.18, + "probability": 0.7365 + }, + { + "start": 25816.26, + "end": 25820.44, + "probability": 0.9927 + }, + { + "start": 25820.44, + "end": 25824.2, + "probability": 0.943 + }, + { + "start": 25824.22, + "end": 25824.28, + "probability": 0.2109 + }, + { + "start": 25824.36, + "end": 25829.21, + "probability": 0.9366 + }, + { + "start": 25832.14, + "end": 25832.77, + "probability": 0.8903 + }, + { + "start": 25833.92, + "end": 25834.1, + "probability": 0.7724 + }, + { + "start": 25834.1, + "end": 25836.58, + "probability": 0.7664 + }, + { + "start": 25837.14, + "end": 25837.94, + "probability": 0.7781 + }, + { + "start": 25837.98, + "end": 25839.63, + "probability": 0.9551 + }, + { + "start": 25841.06, + "end": 25843.08, + "probability": 0.9662 + }, + { + "start": 25843.26, + "end": 25846.44, + "probability": 0.9154 + }, + { + "start": 25847.4, + "end": 25849.04, + "probability": 0.9819 + }, + { + "start": 25849.98, + "end": 25854.36, + "probability": 0.9856 + }, + { + "start": 25854.62, + "end": 25856.0, + "probability": 0.8095 + }, + { + "start": 25856.4, + "end": 25858.42, + "probability": 0.6867 + }, + { + "start": 25858.44, + "end": 25861.16, + "probability": 0.9728 + }, + { + "start": 25861.58, + "end": 25863.36, + "probability": 0.9561 + }, + { + "start": 25863.88, + "end": 25866.54, + "probability": 0.9946 + }, + { + "start": 25866.66, + "end": 25867.26, + "probability": 0.6727 + }, + { + "start": 25868.14, + "end": 25869.26, + "probability": 0.896 + }, + { + "start": 25869.54, + "end": 25871.96, + "probability": 0.9959 + }, + { + "start": 25872.42, + "end": 25874.78, + "probability": 0.9358 + }, + { + "start": 25875.32, + "end": 25877.9, + "probability": 0.9873 + }, + { + "start": 25877.9, + "end": 25880.34, + "probability": 0.9832 + }, + { + "start": 25880.4, + "end": 25882.76, + "probability": 0.9764 + }, + { + "start": 25883.16, + "end": 25885.92, + "probability": 0.9634 + }, + { + "start": 25885.92, + "end": 25885.92, + "probability": 0.6319 + }, + { + "start": 25885.92, + "end": 25886.44, + "probability": 0.4374 + }, + { + "start": 25887.95, + "end": 25890.12, + "probability": 0.9702 + }, + { + "start": 25890.68, + "end": 25891.44, + "probability": 0.841 + }, + { + "start": 25891.88, + "end": 25895.22, + "probability": 0.9977 + }, + { + "start": 25895.62, + "end": 25896.7, + "probability": 0.8364 + }, + { + "start": 25897.6, + "end": 25900.46, + "probability": 0.8328 + }, + { + "start": 25901.04, + "end": 25901.48, + "probability": 0.8168 + }, + { + "start": 25901.78, + "end": 25905.7, + "probability": 0.9944 + }, + { + "start": 25905.74, + "end": 25907.86, + "probability": 0.9591 + }, + { + "start": 25908.16, + "end": 25908.66, + "probability": 0.7415 + }, + { + "start": 25909.0, + "end": 25910.74, + "probability": 0.7308 + }, + { + "start": 25911.0, + "end": 25912.83, + "probability": 0.7729 + }, + { + "start": 25914.02, + "end": 25914.88, + "probability": 0.6734 + }, + { + "start": 25915.44, + "end": 25919.28, + "probability": 0.9983 + }, + { + "start": 25919.58, + "end": 25919.7, + "probability": 0.8283 + }, + { + "start": 25920.62, + "end": 25925.34, + "probability": 0.9974 + }, + { + "start": 25926.52, + "end": 25926.86, + "probability": 0.9071 + }, + { + "start": 25928.68, + "end": 25930.82, + "probability": 0.6239 + }, + { + "start": 25930.92, + "end": 25931.02, + "probability": 0.8346 + }, + { + "start": 25932.64, + "end": 25947.62, + "probability": 0.6165 + }, + { + "start": 25950.46, + "end": 25950.46, + "probability": 0.6289 + }, + { + "start": 25950.46, + "end": 25954.36, + "probability": 0.6543 + }, + { + "start": 25955.42, + "end": 25963.98, + "probability": 0.9691 + }, + { + "start": 25964.18, + "end": 25965.92, + "probability": 0.9967 + }, + { + "start": 25966.54, + "end": 25971.98, + "probability": 0.9966 + }, + { + "start": 25972.62, + "end": 25975.16, + "probability": 0.9941 + }, + { + "start": 25975.92, + "end": 25978.9, + "probability": 0.9983 + }, + { + "start": 25980.96, + "end": 25989.92, + "probability": 0.8254 + }, + { + "start": 25990.52, + "end": 25994.08, + "probability": 0.9623 + }, + { + "start": 25995.38, + "end": 25997.22, + "probability": 0.5793 + }, + { + "start": 25997.86, + "end": 26000.94, + "probability": 0.9613 + }, + { + "start": 26001.4, + "end": 26002.34, + "probability": 0.7356 + }, + { + "start": 26002.54, + "end": 26010.84, + "probability": 0.8287 + }, + { + "start": 26011.96, + "end": 26014.52, + "probability": 0.7482 + }, + { + "start": 26015.04, + "end": 26017.3, + "probability": 0.9342 + }, + { + "start": 26017.86, + "end": 26018.38, + "probability": 0.4839 + }, + { + "start": 26019.0, + "end": 26024.72, + "probability": 0.9907 + }, + { + "start": 26024.72, + "end": 26030.3, + "probability": 0.9232 + }, + { + "start": 26030.34, + "end": 26035.14, + "probability": 0.998 + }, + { + "start": 26035.8, + "end": 26038.28, + "probability": 0.6351 + }, + { + "start": 26038.48, + "end": 26038.84, + "probability": 0.4351 + }, + { + "start": 26039.06, + "end": 26042.54, + "probability": 0.8279 + }, + { + "start": 26042.68, + "end": 26044.44, + "probability": 0.5485 + }, + { + "start": 26044.86, + "end": 26045.74, + "probability": 0.9847 + }, + { + "start": 26045.88, + "end": 26046.82, + "probability": 0.7898 + }, + { + "start": 26047.28, + "end": 26051.58, + "probability": 0.9919 + }, + { + "start": 26051.84, + "end": 26056.52, + "probability": 0.9965 + }, + { + "start": 26057.32, + "end": 26060.36, + "probability": 0.9686 + }, + { + "start": 26060.92, + "end": 26069.28, + "probability": 0.9958 + }, + { + "start": 26070.52, + "end": 26073.82, + "probability": 0.9246 + }, + { + "start": 26074.34, + "end": 26076.98, + "probability": 0.861 + }, + { + "start": 26077.98, + "end": 26080.3, + "probability": 0.937 + }, + { + "start": 26080.96, + "end": 26084.58, + "probability": 0.9757 + }, + { + "start": 26085.26, + "end": 26091.22, + "probability": 0.9071 + }, + { + "start": 26091.9, + "end": 26095.62, + "probability": 0.9217 + }, + { + "start": 26096.36, + "end": 26101.3, + "probability": 0.9984 + }, + { + "start": 26101.9, + "end": 26107.46, + "probability": 0.9679 + }, + { + "start": 26108.34, + "end": 26109.68, + "probability": 0.9958 + }, + { + "start": 26110.24, + "end": 26113.9, + "probability": 0.9904 + }, + { + "start": 26114.84, + "end": 26115.32, + "probability": 0.915 + }, + { + "start": 26115.98, + "end": 26117.54, + "probability": 0.9548 + }, + { + "start": 26118.08, + "end": 26119.26, + "probability": 0.9684 + }, + { + "start": 26119.66, + "end": 26121.22, + "probability": 0.9906 + }, + { + "start": 26121.84, + "end": 26127.5, + "probability": 0.7976 + }, + { + "start": 26128.48, + "end": 26133.66, + "probability": 0.9917 + }, + { + "start": 26134.2, + "end": 26135.7, + "probability": 0.5621 + }, + { + "start": 26136.26, + "end": 26140.14, + "probability": 0.9626 + }, + { + "start": 26140.46, + "end": 26145.06, + "probability": 0.9194 + }, + { + "start": 26145.72, + "end": 26149.6, + "probability": 0.9533 + }, + { + "start": 26150.42, + "end": 26152.96, + "probability": 0.9836 + }, + { + "start": 26153.92, + "end": 26156.12, + "probability": 0.9704 + }, + { + "start": 26156.74, + "end": 26157.96, + "probability": 0.9187 + }, + { + "start": 26158.54, + "end": 26164.78, + "probability": 0.9173 + }, + { + "start": 26165.64, + "end": 26167.22, + "probability": 0.0315 + }, + { + "start": 26168.5, + "end": 26170.82, + "probability": 0.4944 + }, + { + "start": 26171.34, + "end": 26175.84, + "probability": 0.7084 + }, + { + "start": 26177.12, + "end": 26182.24, + "probability": 0.7835 + }, + { + "start": 26182.76, + "end": 26187.58, + "probability": 0.958 + }, + { + "start": 26188.38, + "end": 26190.74, + "probability": 0.9744 + }, + { + "start": 26191.14, + "end": 26191.94, + "probability": 0.8823 + }, + { + "start": 26192.74, + "end": 26193.0, + "probability": 0.8994 + }, + { + "start": 26193.58, + "end": 26198.72, + "probability": 0.9907 + }, + { + "start": 26198.88, + "end": 26200.18, + "probability": 0.2718 + }, + { + "start": 26200.54, + "end": 26205.2, + "probability": 0.916 + }, + { + "start": 26205.76, + "end": 26212.16, + "probability": 0.7355 + }, + { + "start": 26212.92, + "end": 26217.36, + "probability": 0.7421 + }, + { + "start": 26218.34, + "end": 26221.48, + "probability": 0.9418 + }, + { + "start": 26222.08, + "end": 26223.38, + "probability": 0.9565 + }, + { + "start": 26223.98, + "end": 26225.34, + "probability": 0.8985 + }, + { + "start": 26226.34, + "end": 26227.74, + "probability": 0.6243 + }, + { + "start": 26227.94, + "end": 26228.98, + "probability": 0.9463 + }, + { + "start": 26230.24, + "end": 26236.34, + "probability": 0.9957 + }, + { + "start": 26237.08, + "end": 26237.4, + "probability": 0.6824 + }, + { + "start": 26238.28, + "end": 26241.03, + "probability": 0.3817 + }, + { + "start": 26241.34, + "end": 26243.82, + "probability": 0.9724 + }, + { + "start": 26244.46, + "end": 26247.64, + "probability": 0.7411 + }, + { + "start": 26248.38, + "end": 26256.42, + "probability": 0.9878 + }, + { + "start": 26257.5, + "end": 26263.3, + "probability": 0.9111 + }, + { + "start": 26263.6, + "end": 26265.14, + "probability": 0.9668 + }, + { + "start": 26265.98, + "end": 26267.46, + "probability": 0.8925 + }, + { + "start": 26267.96, + "end": 26269.94, + "probability": 0.9824 + }, + { + "start": 26270.66, + "end": 26273.92, + "probability": 0.7508 + }, + { + "start": 26274.54, + "end": 26277.64, + "probability": 0.9969 + }, + { + "start": 26278.2, + "end": 26280.44, + "probability": 0.998 + }, + { + "start": 26281.1, + "end": 26282.5, + "probability": 0.9991 + }, + { + "start": 26283.22, + "end": 26284.66, + "probability": 0.9989 + }, + { + "start": 26285.56, + "end": 26287.8, + "probability": 0.9976 + }, + { + "start": 26287.9, + "end": 26289.24, + "probability": 0.5407 + }, + { + "start": 26289.82, + "end": 26291.4, + "probability": 0.921 + }, + { + "start": 26291.94, + "end": 26293.74, + "probability": 0.9628 + }, + { + "start": 26293.86, + "end": 26294.48, + "probability": 0.7107 + }, + { + "start": 26295.16, + "end": 26297.02, + "probability": 0.9951 + }, + { + "start": 26297.6, + "end": 26298.98, + "probability": 0.8838 + }, + { + "start": 26299.62, + "end": 26300.56, + "probability": 0.97 + }, + { + "start": 26301.42, + "end": 26307.98, + "probability": 0.8046 + }, + { + "start": 26308.76, + "end": 26312.1, + "probability": 0.9102 + }, + { + "start": 26312.72, + "end": 26315.82, + "probability": 0.9548 + }, + { + "start": 26316.66, + "end": 26317.86, + "probability": 0.9388 + }, + { + "start": 26318.78, + "end": 26319.5, + "probability": 0.4898 + }, + { + "start": 26319.54, + "end": 26324.9, + "probability": 0.9958 + }, + { + "start": 26325.04, + "end": 26328.38, + "probability": 0.9776 + }, + { + "start": 26328.92, + "end": 26330.06, + "probability": 0.8647 + }, + { + "start": 26330.8, + "end": 26333.48, + "probability": 0.6304 + }, + { + "start": 26333.8, + "end": 26338.34, + "probability": 0.944 + }, + { + "start": 26339.38, + "end": 26341.46, + "probability": 0.9536 + }, + { + "start": 26342.1, + "end": 26344.8, + "probability": 0.9768 + }, + { + "start": 26345.52, + "end": 26348.62, + "probability": 0.9883 + }, + { + "start": 26349.7, + "end": 26350.78, + "probability": 0.7985 + }, + { + "start": 26351.34, + "end": 26353.4, + "probability": 0.645 + }, + { + "start": 26353.76, + "end": 26357.7, + "probability": 0.6422 + }, + { + "start": 26357.98, + "end": 26359.76, + "probability": 0.8314 + }, + { + "start": 26360.9, + "end": 26364.1, + "probability": 0.9951 + }, + { + "start": 26364.72, + "end": 26367.08, + "probability": 0.9906 + }, + { + "start": 26367.66, + "end": 26368.92, + "probability": 0.9766 + }, + { + "start": 26369.16, + "end": 26373.96, + "probability": 0.9945 + }, + { + "start": 26374.52, + "end": 26376.78, + "probability": 0.9935 + }, + { + "start": 26376.98, + "end": 26378.12, + "probability": 0.9946 + }, + { + "start": 26378.7, + "end": 26384.54, + "probability": 0.9727 + }, + { + "start": 26385.38, + "end": 26388.4, + "probability": 0.9223 + }, + { + "start": 26388.72, + "end": 26392.82, + "probability": 0.9944 + }, + { + "start": 26393.0, + "end": 26394.98, + "probability": 0.9924 + }, + { + "start": 26395.66, + "end": 26396.48, + "probability": 0.5425 + }, + { + "start": 26396.64, + "end": 26400.02, + "probability": 0.9804 + }, + { + "start": 26401.22, + "end": 26403.83, + "probability": 0.7913 + }, + { + "start": 26404.56, + "end": 26406.76, + "probability": 0.8619 + }, + { + "start": 26406.96, + "end": 26409.78, + "probability": 0.9448 + }, + { + "start": 26411.36, + "end": 26412.1, + "probability": 0.7124 + }, + { + "start": 26412.32, + "end": 26418.06, + "probability": 0.9854 + }, + { + "start": 26419.26, + "end": 26420.76, + "probability": 0.6772 + }, + { + "start": 26424.22, + "end": 26428.84, + "probability": 0.7065 + }, + { + "start": 26429.82, + "end": 26430.51, + "probability": 0.3307 + }, + { + "start": 26431.48, + "end": 26432.96, + "probability": 0.9751 + }, + { + "start": 26433.68, + "end": 26436.3, + "probability": 0.804 + }, + { + "start": 26437.8, + "end": 26438.5, + "probability": 0.6955 + }, + { + "start": 26439.04, + "end": 26441.6, + "probability": 0.7458 + }, + { + "start": 26447.68, + "end": 26448.9, + "probability": 0.6177 + }, + { + "start": 26449.1, + "end": 26452.56, + "probability": 0.9208 + }, + { + "start": 26454.72, + "end": 26458.14, + "probability": 0.7678 + }, + { + "start": 26459.34, + "end": 26460.86, + "probability": 0.7 + }, + { + "start": 26462.24, + "end": 26463.18, + "probability": 0.8171 + }, + { + "start": 26464.22, + "end": 26467.7, + "probability": 0.5688 + }, + { + "start": 26468.4, + "end": 26470.58, + "probability": 0.7978 + }, + { + "start": 26471.42, + "end": 26472.3, + "probability": 0.9707 + }, + { + "start": 26473.1, + "end": 26479.12, + "probability": 0.9559 + }, + { + "start": 26479.64, + "end": 26480.72, + "probability": 0.8102 + }, + { + "start": 26480.8, + "end": 26486.15, + "probability": 0.9941 + }, + { + "start": 26487.28, + "end": 26492.94, + "probability": 0.9331 + }, + { + "start": 26493.48, + "end": 26494.38, + "probability": 0.7699 + }, + { + "start": 26495.12, + "end": 26498.77, + "probability": 0.9062 + }, + { + "start": 26499.74, + "end": 26503.28, + "probability": 0.9822 + }, + { + "start": 26504.02, + "end": 26506.88, + "probability": 0.8837 + }, + { + "start": 26507.76, + "end": 26510.2, + "probability": 0.1657 + }, + { + "start": 26511.28, + "end": 26512.6, + "probability": 0.5997 + }, + { + "start": 26513.44, + "end": 26515.82, + "probability": 0.9848 + }, + { + "start": 26516.62, + "end": 26521.14, + "probability": 0.914 + }, + { + "start": 26521.94, + "end": 26525.6, + "probability": 0.7716 + }, + { + "start": 26527.98, + "end": 26528.36, + "probability": 0.6637 + }, + { + "start": 26529.5, + "end": 26530.46, + "probability": 0.859 + }, + { + "start": 26531.1, + "end": 26532.26, + "probability": 0.7676 + }, + { + "start": 26533.16, + "end": 26535.04, + "probability": 0.9457 + }, + { + "start": 26535.94, + "end": 26539.06, + "probability": 0.9766 + }, + { + "start": 26539.82, + "end": 26539.96, + "probability": 0.0009 + }, + { + "start": 26543.92, + "end": 26545.5, + "probability": 0.9288 + }, + { + "start": 26546.16, + "end": 26547.4, + "probability": 0.9363 + }, + { + "start": 26547.48, + "end": 26547.48, + "probability": 0.558 + }, + { + "start": 26547.48, + "end": 26547.48, + "probability": 0.6332 + }, + { + "start": 26547.48, + "end": 26547.48, + "probability": 0.4438 + }, + { + "start": 26547.48, + "end": 26549.86, + "probability": 0.8879 + }, + { + "start": 26550.88, + "end": 26560.54, + "probability": 0.8912 + }, + { + "start": 26561.24, + "end": 26566.26, + "probability": 0.9805 + }, + { + "start": 26566.68, + "end": 26569.98, + "probability": 0.9451 + }, + { + "start": 26570.62, + "end": 26571.44, + "probability": 0.9185 + }, + { + "start": 26571.62, + "end": 26576.76, + "probability": 0.9867 + }, + { + "start": 26577.96, + "end": 26580.86, + "probability": 0.9769 + }, + { + "start": 26581.32, + "end": 26582.24, + "probability": 0.6199 + }, + { + "start": 26582.38, + "end": 26586.38, + "probability": 0.9904 + }, + { + "start": 26586.78, + "end": 26591.68, + "probability": 0.9074 + }, + { + "start": 26592.2, + "end": 26595.62, + "probability": 0.9413 + }, + { + "start": 26596.16, + "end": 26597.58, + "probability": 0.7988 + }, + { + "start": 26598.62, + "end": 26601.42, + "probability": 0.9393 + }, + { + "start": 26601.76, + "end": 26602.12, + "probability": 0.5114 + }, + { + "start": 26602.16, + "end": 26602.42, + "probability": 0.2658 + }, + { + "start": 26602.46, + "end": 26602.85, + "probability": 0.5409 + }, + { + "start": 26603.12, + "end": 26603.88, + "probability": 0.9088 + }, + { + "start": 26605.04, + "end": 26611.04, + "probability": 0.8475 + }, + { + "start": 26611.58, + "end": 26612.22, + "probability": 0.8655 + }, + { + "start": 26612.68, + "end": 26614.22, + "probability": 0.9658 + }, + { + "start": 26614.58, + "end": 26615.34, + "probability": 0.9478 + }, + { + "start": 26615.52, + "end": 26616.6, + "probability": 0.7305 + }, + { + "start": 26616.66, + "end": 26619.24, + "probability": 0.8556 + }, + { + "start": 26619.64, + "end": 26620.48, + "probability": 0.9608 + }, + { + "start": 26621.26, + "end": 26623.78, + "probability": 0.9554 + }, + { + "start": 26624.9, + "end": 26626.58, + "probability": 0.8451 + }, + { + "start": 26626.68, + "end": 26628.62, + "probability": 0.8175 + }, + { + "start": 26629.42, + "end": 26631.58, + "probability": 0.9721 + }, + { + "start": 26632.1, + "end": 26634.5, + "probability": 0.9907 + }, + { + "start": 26635.38, + "end": 26639.1, + "probability": 0.799 + }, + { + "start": 26639.64, + "end": 26640.72, + "probability": 0.9595 + }, + { + "start": 26641.24, + "end": 26644.02, + "probability": 0.5171 + }, + { + "start": 26644.6, + "end": 26645.54, + "probability": 0.8617 + }, + { + "start": 26646.12, + "end": 26648.72, + "probability": 0.6433 + }, + { + "start": 26649.36, + "end": 26651.46, + "probability": 0.8643 + }, + { + "start": 26652.26, + "end": 26654.98, + "probability": 0.9561 + }, + { + "start": 26654.98, + "end": 26660.6, + "probability": 0.972 + }, + { + "start": 26660.6, + "end": 26664.93, + "probability": 0.9897 + }, + { + "start": 26665.22, + "end": 26667.2, + "probability": 0.8305 + }, + { + "start": 26667.44, + "end": 26668.04, + "probability": 0.769 + }, + { + "start": 26668.64, + "end": 26670.34, + "probability": 0.9272 + }, + { + "start": 26670.5, + "end": 26675.94, + "probability": 0.9165 + }, + { + "start": 26676.42, + "end": 26681.06, + "probability": 0.9924 + }, + { + "start": 26681.18, + "end": 26682.78, + "probability": 0.8277 + }, + { + "start": 26683.74, + "end": 26684.8, + "probability": 0.5704 + }, + { + "start": 26685.76, + "end": 26688.92, + "probability": 0.6264 + }, + { + "start": 26690.56, + "end": 26691.86, + "probability": 0.2576 + }, + { + "start": 26695.34, + "end": 26699.73, + "probability": 0.5834 + }, + { + "start": 26700.34, + "end": 26706.16, + "probability": 0.8887 + }, + { + "start": 26706.4, + "end": 26708.54, + "probability": 0.8438 + }, + { + "start": 26709.74, + "end": 26709.74, + "probability": 0.1065 + }, + { + "start": 26709.74, + "end": 26712.1, + "probability": 0.9634 + }, + { + "start": 26712.42, + "end": 26714.28, + "probability": 0.8921 + }, + { + "start": 26714.4, + "end": 26714.96, + "probability": 0.5205 + }, + { + "start": 26715.8, + "end": 26716.92, + "probability": 0.4826 + }, + { + "start": 26717.04, + "end": 26718.3, + "probability": 0.5317 + }, + { + "start": 26718.76, + "end": 26721.16, + "probability": 0.9462 + }, + { + "start": 26721.68, + "end": 26723.22, + "probability": 0.8603 + }, + { + "start": 26723.26, + "end": 26727.06, + "probability": 0.9712 + }, + { + "start": 26728.42, + "end": 26730.32, + "probability": 0.9966 + }, + { + "start": 26730.62, + "end": 26731.92, + "probability": 0.5872 + }, + { + "start": 26732.08, + "end": 26732.84, + "probability": 0.8748 + }, + { + "start": 26733.5, + "end": 26733.78, + "probability": 0.4397 + }, + { + "start": 26733.92, + "end": 26736.98, + "probability": 0.9882 + }, + { + "start": 26737.52, + "end": 26739.1, + "probability": 0.9888 + }, + { + "start": 26739.58, + "end": 26741.2, + "probability": 0.9805 + }, + { + "start": 26741.68, + "end": 26747.54, + "probability": 0.8654 + }, + { + "start": 26747.9, + "end": 26749.84, + "probability": 0.9876 + }, + { + "start": 26750.32, + "end": 26750.92, + "probability": 0.7466 + }, + { + "start": 26751.94, + "end": 26755.68, + "probability": 0.6085 + }, + { + "start": 26757.4, + "end": 26760.0, + "probability": 0.5318 + }, + { + "start": 26761.06, + "end": 26763.04, + "probability": 0.6137 + }, + { + "start": 26764.94, + "end": 26767.48, + "probability": 0.9395 + }, + { + "start": 26776.66, + "end": 26778.5, + "probability": 0.7011 + }, + { + "start": 26779.46, + "end": 26780.4, + "probability": 0.6946 + }, + { + "start": 26782.28, + "end": 26784.8, + "probability": 0.7233 + }, + { + "start": 26785.6, + "end": 26785.78, + "probability": 0.9911 + }, + { + "start": 26786.52, + "end": 26787.54, + "probability": 0.9287 + }, + { + "start": 26788.36, + "end": 26790.54, + "probability": 0.9922 + }, + { + "start": 26793.64, + "end": 26796.29, + "probability": 0.8916 + }, + { + "start": 26796.5, + "end": 26800.14, + "probability": 0.9942 + }, + { + "start": 26801.28, + "end": 26803.58, + "probability": 0.889 + }, + { + "start": 26804.18, + "end": 26806.74, + "probability": 0.7779 + }, + { + "start": 26809.52, + "end": 26810.44, + "probability": 0.453 + }, + { + "start": 26813.0, + "end": 26813.48, + "probability": 0.6708 + }, + { + "start": 26814.02, + "end": 26818.24, + "probability": 0.95 + }, + { + "start": 26818.88, + "end": 26821.74, + "probability": 0.9855 + }, + { + "start": 26822.3, + "end": 26824.68, + "probability": 0.8915 + }, + { + "start": 26825.4, + "end": 26831.3, + "probability": 0.9374 + }, + { + "start": 26831.88, + "end": 26832.92, + "probability": 0.898 + }, + { + "start": 26833.54, + "end": 26834.36, + "probability": 0.9814 + }, + { + "start": 26834.96, + "end": 26835.66, + "probability": 0.5722 + }, + { + "start": 26835.74, + "end": 26840.42, + "probability": 0.9465 + }, + { + "start": 26841.6, + "end": 26841.8, + "probability": 0.9485 + }, + { + "start": 26842.86, + "end": 26845.84, + "probability": 0.988 + }, + { + "start": 26846.16, + "end": 26848.12, + "probability": 0.9956 + }, + { + "start": 26849.54, + "end": 26849.98, + "probability": 0.5761 + }, + { + "start": 26850.68, + "end": 26854.88, + "probability": 0.8349 + }, + { + "start": 26856.16, + "end": 26856.56, + "probability": 0.8399 + }, + { + "start": 26857.44, + "end": 26859.68, + "probability": 0.7232 + }, + { + "start": 26861.34, + "end": 26862.4, + "probability": 0.6615 + }, + { + "start": 26863.12, + "end": 26864.44, + "probability": 0.9342 + }, + { + "start": 26865.0, + "end": 26867.52, + "probability": 0.5895 + }, + { + "start": 26868.08, + "end": 26869.38, + "probability": 0.691 + }, + { + "start": 26869.84, + "end": 26873.98, + "probability": 0.9385 + }, + { + "start": 26874.7, + "end": 26878.68, + "probability": 0.3446 + }, + { + "start": 26878.84, + "end": 26880.56, + "probability": 0.8746 + }, + { + "start": 26881.28, + "end": 26882.32, + "probability": 0.9934 + }, + { + "start": 26882.88, + "end": 26884.2, + "probability": 0.9925 + }, + { + "start": 26884.82, + "end": 26888.32, + "probability": 0.9556 + }, + { + "start": 26890.1, + "end": 26890.78, + "probability": 0.8874 + }, + { + "start": 26891.48, + "end": 26892.46, + "probability": 0.8415 + }, + { + "start": 26892.58, + "end": 26894.52, + "probability": 0.9272 + }, + { + "start": 26894.66, + "end": 26902.0, + "probability": 0.954 + }, + { + "start": 26902.16, + "end": 26905.44, + "probability": 0.9308 + }, + { + "start": 26906.58, + "end": 26908.06, + "probability": 0.0203 + }, + { + "start": 26908.84, + "end": 26914.6, + "probability": 0.9683 + }, + { + "start": 26914.68, + "end": 26915.44, + "probability": 0.8484 + }, + { + "start": 26916.16, + "end": 26921.14, + "probability": 0.9622 + }, + { + "start": 26921.38, + "end": 26924.78, + "probability": 0.9456 + }, + { + "start": 26925.76, + "end": 26927.58, + "probability": 0.8194 + }, + { + "start": 26928.62, + "end": 26931.82, + "probability": 0.7871 + }, + { + "start": 26931.82, + "end": 26935.0, + "probability": 0.9697 + }, + { + "start": 26937.08, + "end": 26939.25, + "probability": 0.8251 + }, + { + "start": 26940.74, + "end": 26941.52, + "probability": 0.7331 + }, + { + "start": 26941.92, + "end": 26945.96, + "probability": 0.4158 + }, + { + "start": 26946.42, + "end": 26947.38, + "probability": 0.1287 + }, + { + "start": 26947.44, + "end": 26950.26, + "probability": 0.7999 + }, + { + "start": 26951.08, + "end": 26955.04, + "probability": 0.711 + }, + { + "start": 26955.12, + "end": 26955.48, + "probability": 0.682 + }, + { + "start": 26956.08, + "end": 26957.76, + "probability": 0.8982 + }, + { + "start": 26959.78, + "end": 26959.94, + "probability": 0.5758 + }, + { + "start": 26960.58, + "end": 26966.16, + "probability": 0.962 + }, + { + "start": 26966.72, + "end": 26970.26, + "probability": 0.6923 + }, + { + "start": 26971.34, + "end": 26973.1, + "probability": 0.993 + }, + { + "start": 26973.34, + "end": 26976.28, + "probability": 0.9678 + }, + { + "start": 26976.92, + "end": 26978.84, + "probability": 0.5876 + }, + { + "start": 26979.26, + "end": 26980.28, + "probability": 0.506 + }, + { + "start": 26980.36, + "end": 26980.7, + "probability": 0.8927 + }, + { + "start": 26981.42, + "end": 26984.36, + "probability": 0.9363 + }, + { + "start": 26984.98, + "end": 26987.08, + "probability": 0.8733 + }, + { + "start": 26987.18, + "end": 26992.42, + "probability": 0.981 + }, + { + "start": 26994.6, + "end": 26995.7, + "probability": 0.9937 + }, + { + "start": 26998.96, + "end": 26999.4, + "probability": 0.613 + }, + { + "start": 27000.3, + "end": 27001.02, + "probability": 0.6837 + }, + { + "start": 27001.16, + "end": 27004.69, + "probability": 0.8254 + }, + { + "start": 27005.22, + "end": 27005.5, + "probability": 0.6309 + }, + { + "start": 27005.84, + "end": 27008.14, + "probability": 0.94 + }, + { + "start": 27009.0, + "end": 27011.38, + "probability": 0.6227 + }, + { + "start": 27012.06, + "end": 27014.64, + "probability": 0.5695 + }, + { + "start": 27015.2, + "end": 27017.26, + "probability": 0.8885 + }, + { + "start": 27018.02, + "end": 27019.02, + "probability": 0.4029 + }, + { + "start": 27019.28, + "end": 27023.28, + "probability": 0.9689 + }, + { + "start": 27023.28, + "end": 27026.96, + "probability": 0.9909 + }, + { + "start": 27027.84, + "end": 27030.1, + "probability": 0.3506 + }, + { + "start": 27030.6, + "end": 27032.0, + "probability": 0.8857 + }, + { + "start": 27032.5, + "end": 27034.56, + "probability": 0.9413 + }, + { + "start": 27035.18, + "end": 27038.42, + "probability": 0.7576 + }, + { + "start": 27039.24, + "end": 27039.5, + "probability": 0.6885 + }, + { + "start": 27039.98, + "end": 27043.86, + "probability": 0.8213 + }, + { + "start": 27046.22, + "end": 27047.3, + "probability": 0.7227 + }, + { + "start": 27047.84, + "end": 27051.94, + "probability": 0.9716 + }, + { + "start": 27052.64, + "end": 27053.2, + "probability": 0.9632 + }, + { + "start": 27053.78, + "end": 27054.94, + "probability": 0.9949 + }, + { + "start": 27055.6, + "end": 27057.56, + "probability": 0.965 + }, + { + "start": 27058.46, + "end": 27058.56, + "probability": 0.3279 + }, + { + "start": 27058.68, + "end": 27058.94, + "probability": 0.8453 + }, + { + "start": 27059.1, + "end": 27063.94, + "probability": 0.7828 + }, + { + "start": 27064.96, + "end": 27066.46, + "probability": 0.6442 + }, + { + "start": 27067.02, + "end": 27068.21, + "probability": 0.9977 + }, + { + "start": 27069.22, + "end": 27069.38, + "probability": 0.6881 + }, + { + "start": 27070.4, + "end": 27073.3, + "probability": 0.9705 + }, + { + "start": 27073.56, + "end": 27074.06, + "probability": 0.6803 + }, + { + "start": 27074.6, + "end": 27077.84, + "probability": 0.9062 + }, + { + "start": 27077.96, + "end": 27081.66, + "probability": 0.8451 + }, + { + "start": 27081.72, + "end": 27084.26, + "probability": 0.9604 + }, + { + "start": 27084.98, + "end": 27085.16, + "probability": 0.6427 + }, + { + "start": 27086.32, + "end": 27086.8, + "probability": 0.7721 + }, + { + "start": 27087.0, + "end": 27089.64, + "probability": 0.9357 + }, + { + "start": 27089.8, + "end": 27090.72, + "probability": 0.8388 + }, + { + "start": 27091.04, + "end": 27095.62, + "probability": 0.6499 + }, + { + "start": 27096.36, + "end": 27098.9, + "probability": 0.878 + }, + { + "start": 27099.64, + "end": 27100.54, + "probability": 0.4819 + }, + { + "start": 27101.46, + "end": 27106.52, + "probability": 0.9673 + }, + { + "start": 27107.18, + "end": 27107.32, + "probability": 0.523 + }, + { + "start": 27108.32, + "end": 27111.66, + "probability": 0.8767 + }, + { + "start": 27112.16, + "end": 27112.68, + "probability": 0.9442 + }, + { + "start": 27113.78, + "end": 27116.06, + "probability": 0.875 + }, + { + "start": 27116.6, + "end": 27118.58, + "probability": 0.896 + }, + { + "start": 27119.62, + "end": 27121.34, + "probability": 0.7382 + }, + { + "start": 27121.92, + "end": 27122.88, + "probability": 0.6626 + }, + { + "start": 27122.96, + "end": 27123.72, + "probability": 0.8542 + }, + { + "start": 27123.76, + "end": 27125.2, + "probability": 0.9902 + }, + { + "start": 27125.74, + "end": 27125.94, + "probability": 0.8717 + }, + { + "start": 27127.06, + "end": 27128.14, + "probability": 0.7773 + }, + { + "start": 27129.4, + "end": 27131.66, + "probability": 0.9654 + }, + { + "start": 27132.22, + "end": 27132.76, + "probability": 0.9762 + }, + { + "start": 27133.78, + "end": 27135.14, + "probability": 0.99 + }, + { + "start": 27136.08, + "end": 27139.02, + "probability": 0.6042 + }, + { + "start": 27140.0, + "end": 27141.72, + "probability": 0.9287 + }, + { + "start": 27142.72, + "end": 27144.8, + "probability": 0.7549 + }, + { + "start": 27145.34, + "end": 27147.92, + "probability": 0.7988 + }, + { + "start": 27148.54, + "end": 27149.52, + "probability": 0.7098 + }, + { + "start": 27150.74, + "end": 27152.42, + "probability": 0.9167 + }, + { + "start": 27155.12, + "end": 27156.56, + "probability": 0.5369 + }, + { + "start": 27159.78, + "end": 27160.88, + "probability": 0.4525 + }, + { + "start": 27161.98, + "end": 27163.6, + "probability": 0.5765 + }, + { + "start": 27163.88, + "end": 27164.25, + "probability": 0.8267 + }, + { + "start": 27165.28, + "end": 27167.42, + "probability": 0.9916 + }, + { + "start": 27167.94, + "end": 27170.61, + "probability": 0.4873 + }, + { + "start": 27172.18, + "end": 27173.7, + "probability": 0.9806 + }, + { + "start": 27174.08, + "end": 27174.18, + "probability": 0.4064 + }, + { + "start": 27174.82, + "end": 27174.82, + "probability": 0.0762 + }, + { + "start": 27174.9, + "end": 27175.2, + "probability": 0.6069 + }, + { + "start": 27176.22, + "end": 27179.84, + "probability": 0.9451 + }, + { + "start": 27180.54, + "end": 27185.14, + "probability": 0.3867 + }, + { + "start": 27188.39, + "end": 27193.4, + "probability": 0.25 + }, + { + "start": 27193.65, + "end": 27200.42, + "probability": 0.8679 + }, + { + "start": 27200.9, + "end": 27202.02, + "probability": 0.1424 + }, + { + "start": 27202.04, + "end": 27203.82, + "probability": 0.8079 + }, + { + "start": 27203.98, + "end": 27204.82, + "probability": 0.9644 + }, + { + "start": 27205.22, + "end": 27210.26, + "probability": 0.9546 + }, + { + "start": 27210.98, + "end": 27212.46, + "probability": 0.5607 + }, + { + "start": 27213.88, + "end": 27214.52, + "probability": 0.4574 + }, + { + "start": 27215.66, + "end": 27216.78, + "probability": 0.2154 + }, + { + "start": 27234.52, + "end": 27234.78, + "probability": 0.2321 + }, + { + "start": 27234.78, + "end": 27236.14, + "probability": 0.4331 + }, + { + "start": 27237.04, + "end": 27239.38, + "probability": 0.6361 + }, + { + "start": 27240.52, + "end": 27241.92, + "probability": 0.8746 + }, + { + "start": 27243.87, + "end": 27246.38, + "probability": 0.3962 + }, + { + "start": 27246.38, + "end": 27253.0, + "probability": 0.9705 + }, + { + "start": 27254.56, + "end": 27254.56, + "probability": 0.0003 + }, + { + "start": 27255.48, + "end": 27255.58, + "probability": 0.0647 + }, + { + "start": 27256.18, + "end": 27256.96, + "probability": 0.148 + }, + { + "start": 27257.62, + "end": 27258.54, + "probability": 0.2782 + }, + { + "start": 27284.74, + "end": 27284.84, + "probability": 0.0183 + }, + { + "start": 27284.84, + "end": 27284.84, + "probability": 0.0722 + }, + { + "start": 27284.84, + "end": 27285.06, + "probability": 0.3446 + }, + { + "start": 27286.92, + "end": 27286.92, + "probability": 0.0278 + }, + { + "start": 27286.92, + "end": 27287.86, + "probability": 0.5875 + }, + { + "start": 27287.94, + "end": 27289.33, + "probability": 0.9285 + }, + { + "start": 27289.62, + "end": 27291.08, + "probability": 0.5815 + }, + { + "start": 27292.87, + "end": 27295.06, + "probability": 0.4583 + }, + { + "start": 27296.99, + "end": 27299.46, + "probability": 0.4606 + }, + { + "start": 27299.54, + "end": 27300.88, + "probability": 0.6121 + }, + { + "start": 27301.92, + "end": 27304.6, + "probability": 0.8479 + }, + { + "start": 27305.48, + "end": 27306.66, + "probability": 0.9011 + }, + { + "start": 27306.92, + "end": 27311.18, + "probability": 0.8533 + }, + { + "start": 27311.26, + "end": 27312.7, + "probability": 0.8646 + }, + { + "start": 27312.9, + "end": 27313.84, + "probability": 0.4427 + }, + { + "start": 27315.88, + "end": 27319.54, + "probability": 0.8935 + }, + { + "start": 27320.02, + "end": 27322.8, + "probability": 0.9907 + }, + { + "start": 27323.68, + "end": 27326.98, + "probability": 0.9602 + }, + { + "start": 27327.9, + "end": 27333.88, + "probability": 0.9901 + }, + { + "start": 27334.22, + "end": 27336.14, + "probability": 0.8249 + }, + { + "start": 27336.3, + "end": 27338.68, + "probability": 0.7905 + }, + { + "start": 27339.24, + "end": 27341.55, + "probability": 0.9821 + }, + { + "start": 27343.04, + "end": 27344.5, + "probability": 0.3127 + }, + { + "start": 27344.54, + "end": 27345.3, + "probability": 0.8389 + }, + { + "start": 27345.32, + "end": 27346.02, + "probability": 0.9098 + }, + { + "start": 27346.16, + "end": 27347.3, + "probability": 0.9511 + }, + { + "start": 27347.6, + "end": 27352.06, + "probability": 0.9979 + }, + { + "start": 27355.22, + "end": 27358.02, + "probability": 0.8516 + }, + { + "start": 27358.26, + "end": 27361.16, + "probability": 0.9985 + }, + { + "start": 27361.86, + "end": 27363.26, + "probability": 0.9385 + }, + { + "start": 27364.06, + "end": 27364.84, + "probability": 0.8534 + }, + { + "start": 27365.76, + "end": 27366.8, + "probability": 0.8238 + }, + { + "start": 27368.22, + "end": 27372.84, + "probability": 0.9236 + }, + { + "start": 27373.46, + "end": 27374.78, + "probability": 0.8062 + }, + { + "start": 27375.46, + "end": 27377.12, + "probability": 0.9355 + }, + { + "start": 27377.66, + "end": 27379.34, + "probability": 0.9846 + }, + { + "start": 27380.56, + "end": 27382.76, + "probability": 0.9725 + }, + { + "start": 27382.88, + "end": 27386.24, + "probability": 0.9029 + }, + { + "start": 27386.62, + "end": 27389.26, + "probability": 0.6212 + }, + { + "start": 27389.8, + "end": 27391.3, + "probability": 0.9863 + }, + { + "start": 27394.02, + "end": 27396.93, + "probability": 0.9946 + }, + { + "start": 27397.16, + "end": 27397.5, + "probability": 0.3794 + }, + { + "start": 27398.24, + "end": 27400.28, + "probability": 0.8453 + }, + { + "start": 27400.94, + "end": 27401.98, + "probability": 0.9121 + }, + { + "start": 27402.44, + "end": 27405.08, + "probability": 0.9714 + }, + { + "start": 27406.14, + "end": 27408.4, + "probability": 0.9969 + }, + { + "start": 27409.14, + "end": 27409.56, + "probability": 0.8999 + }, + { + "start": 27410.1, + "end": 27411.76, + "probability": 0.9987 + }, + { + "start": 27412.04, + "end": 27412.72, + "probability": 0.5422 + }, + { + "start": 27412.86, + "end": 27416.18, + "probability": 0.9915 + }, + { + "start": 27416.68, + "end": 27418.64, + "probability": 0.8722 + }, + { + "start": 27419.52, + "end": 27421.26, + "probability": 0.9961 + }, + { + "start": 27421.62, + "end": 27425.64, + "probability": 0.9944 + }, + { + "start": 27426.1, + "end": 27427.48, + "probability": 0.6681 + }, + { + "start": 27428.26, + "end": 27429.5, + "probability": 0.9964 + }, + { + "start": 27430.16, + "end": 27431.24, + "probability": 0.8964 + }, + { + "start": 27431.98, + "end": 27434.52, + "probability": 0.884 + }, + { + "start": 27434.62, + "end": 27435.12, + "probability": 0.8348 + }, + { + "start": 27435.92, + "end": 27440.48, + "probability": 0.7188 + }, + { + "start": 27441.25, + "end": 27443.5, + "probability": 0.987 + }, + { + "start": 27444.26, + "end": 27445.8, + "probability": 0.2448 + }, + { + "start": 27448.54, + "end": 27448.6, + "probability": 0.1295 + }, + { + "start": 27448.6, + "end": 27448.7, + "probability": 0.0526 + }, + { + "start": 27449.22, + "end": 27449.5, + "probability": 0.8879 + }, + { + "start": 27451.96, + "end": 27452.72, + "probability": 0.7685 + }, + { + "start": 27453.8, + "end": 27456.36, + "probability": 0.9734 + }, + { + "start": 27456.78, + "end": 27460.04, + "probability": 0.8186 + }, + { + "start": 27460.26, + "end": 27460.62, + "probability": 0.213 + }, + { + "start": 27460.78, + "end": 27462.76, + "probability": 0.9741 + }, + { + "start": 27463.52, + "end": 27465.16, + "probability": 0.9966 + }, + { + "start": 27465.82, + "end": 27469.56, + "probability": 0.9806 + }, + { + "start": 27470.0, + "end": 27472.46, + "probability": 0.8531 + }, + { + "start": 27473.24, + "end": 27476.93, + "probability": 0.9929 + }, + { + "start": 27477.6, + "end": 27480.14, + "probability": 0.9894 + }, + { + "start": 27481.64, + "end": 27484.0, + "probability": 0.9907 + }, + { + "start": 27484.72, + "end": 27486.48, + "probability": 0.9888 + }, + { + "start": 27487.02, + "end": 27487.82, + "probability": 0.949 + }, + { + "start": 27489.12, + "end": 27494.08, + "probability": 0.9985 + }, + { + "start": 27494.8, + "end": 27498.52, + "probability": 0.9014 + }, + { + "start": 27499.28, + "end": 27500.36, + "probability": 0.9983 + }, + { + "start": 27500.94, + "end": 27501.84, + "probability": 0.9272 + }, + { + "start": 27503.3, + "end": 27507.1, + "probability": 0.98 + }, + { + "start": 27508.16, + "end": 27508.7, + "probability": 0.7471 + }, + { + "start": 27509.04, + "end": 27511.32, + "probability": 0.6562 + }, + { + "start": 27512.34, + "end": 27514.66, + "probability": 0.8281 + }, + { + "start": 27515.4, + "end": 27516.14, + "probability": 0.3271 + }, + { + "start": 27516.3, + "end": 27518.0, + "probability": 0.9836 + }, + { + "start": 27530.88, + "end": 27532.96, + "probability": 0.1084 + }, + { + "start": 27534.78, + "end": 27536.16, + "probability": 0.1656 + }, + { + "start": 27537.12, + "end": 27541.58, + "probability": 0.1351 + }, + { + "start": 27543.4, + "end": 27545.18, + "probability": 0.0667 + }, + { + "start": 27545.74, + "end": 27545.96, + "probability": 0.3515 + }, + { + "start": 27555.6, + "end": 27555.8, + "probability": 0.0001 + }, + { + "start": 27563.48, + "end": 27564.04, + "probability": 0.4067 + }, + { + "start": 27565.22, + "end": 27567.08, + "probability": 0.5115 + }, + { + "start": 27567.12, + "end": 27568.74, + "probability": 0.7175 + }, + { + "start": 27569.42, + "end": 27570.02, + "probability": 0.3733 + }, + { + "start": 27571.46, + "end": 27572.82, + "probability": 0.8092 + }, + { + "start": 27573.9, + "end": 27575.66, + "probability": 0.744 + }, + { + "start": 27576.56, + "end": 27577.82, + "probability": 0.9739 + }, + { + "start": 27577.96, + "end": 27588.12, + "probability": 0.986 + }, + { + "start": 27588.36, + "end": 27588.8, + "probability": 0.7938 + }, + { + "start": 27588.98, + "end": 27589.78, + "probability": 0.7305 + }, + { + "start": 27590.78, + "end": 27592.68, + "probability": 0.8912 + }, + { + "start": 27592.92, + "end": 27594.96, + "probability": 0.8707 + }, + { + "start": 27595.96, + "end": 27597.26, + "probability": 0.9666 + }, + { + "start": 27597.86, + "end": 27599.18, + "probability": 0.9914 + }, + { + "start": 27600.16, + "end": 27600.92, + "probability": 0.8553 + }, + { + "start": 27603.74, + "end": 27603.92, + "probability": 0.6372 + }, + { + "start": 27604.28, + "end": 27606.2, + "probability": 0.8875 + }, + { + "start": 27606.5, + "end": 27606.76, + "probability": 0.6213 + }, + { + "start": 27607.42, + "end": 27608.66, + "probability": 0.9885 + }, + { + "start": 27610.3, + "end": 27611.44, + "probability": 0.9291 + }, + { + "start": 27612.48, + "end": 27613.98, + "probability": 0.844 + }, + { + "start": 27614.98, + "end": 27618.11, + "probability": 0.9941 + }, + { + "start": 27618.84, + "end": 27619.24, + "probability": 0.6322 + }, + { + "start": 27619.34, + "end": 27619.58, + "probability": 0.6545 + }, + { + "start": 27620.12, + "end": 27623.4, + "probability": 0.9951 + }, + { + "start": 27624.12, + "end": 27624.34, + "probability": 0.8838 + }, + { + "start": 27624.48, + "end": 27628.75, + "probability": 0.8461 + }, + { + "start": 27629.36, + "end": 27630.87, + "probability": 0.7959 + }, + { + "start": 27632.92, + "end": 27634.16, + "probability": 0.745 + }, + { + "start": 27634.96, + "end": 27638.04, + "probability": 0.9872 + }, + { + "start": 27639.08, + "end": 27639.46, + "probability": 0.894 + }, + { + "start": 27640.74, + "end": 27642.9, + "probability": 0.9924 + }, + { + "start": 27643.28, + "end": 27644.44, + "probability": 0.9154 + }, + { + "start": 27646.1, + "end": 27647.14, + "probability": 0.9922 + }, + { + "start": 27648.56, + "end": 27653.2, + "probability": 0.9846 + }, + { + "start": 27655.52, + "end": 27656.9, + "probability": 0.9976 + }, + { + "start": 27658.22, + "end": 27661.52, + "probability": 0.9511 + }, + { + "start": 27662.96, + "end": 27666.28, + "probability": 0.9769 + }, + { + "start": 27667.08, + "end": 27671.82, + "probability": 0.9888 + }, + { + "start": 27672.58, + "end": 27674.96, + "probability": 0.9126 + }, + { + "start": 27675.02, + "end": 27677.32, + "probability": 0.7576 + }, + { + "start": 27677.52, + "end": 27677.8, + "probability": 0.7079 + }, + { + "start": 27679.04, + "end": 27681.74, + "probability": 0.9873 + }, + { + "start": 27682.3, + "end": 27683.46, + "probability": 0.9993 + }, + { + "start": 27684.34, + "end": 27686.58, + "probability": 0.9194 + }, + { + "start": 27690.2, + "end": 27692.12, + "probability": 0.9467 + }, + { + "start": 27692.98, + "end": 27694.64, + "probability": 0.9321 + }, + { + "start": 27696.82, + "end": 27697.76, + "probability": 0.9971 + }, + { + "start": 27699.28, + "end": 27703.04, + "probability": 0.847 + }, + { + "start": 27703.04, + "end": 27704.2, + "probability": 0.4712 + }, + { + "start": 27704.54, + "end": 27705.14, + "probability": 0.6343 + }, + { + "start": 27705.58, + "end": 27706.87, + "probability": 0.9873 + }, + { + "start": 27708.34, + "end": 27708.46, + "probability": 0.0291 + }, + { + "start": 27708.48, + "end": 27708.8, + "probability": 0.9596 + }, + { + "start": 27713.7, + "end": 27714.36, + "probability": 0.0091 + }, + { + "start": 27714.62, + "end": 27716.12, + "probability": 0.8677 + }, + { + "start": 27716.6, + "end": 27717.08, + "probability": 0.1423 + }, + { + "start": 27717.4, + "end": 27717.48, + "probability": 0.2088 + }, + { + "start": 27717.48, + "end": 27717.88, + "probability": 0.8854 + }, + { + "start": 27718.04, + "end": 27718.28, + "probability": 0.8587 + }, + { + "start": 27718.28, + "end": 27718.56, + "probability": 0.8319 + }, + { + "start": 27718.94, + "end": 27719.37, + "probability": 0.7059 + }, + { + "start": 27719.62, + "end": 27720.56, + "probability": 0.44 + }, + { + "start": 27720.7, + "end": 27721.6, + "probability": 0.3398 + }, + { + "start": 27721.6, + "end": 27722.1, + "probability": 0.5505 + }, + { + "start": 27722.98, + "end": 27723.82, + "probability": 0.9653 + }, + { + "start": 27725.36, + "end": 27728.44, + "probability": 0.9445 + }, + { + "start": 27730.16, + "end": 27731.76, + "probability": 0.7359 + }, + { + "start": 27731.86, + "end": 27732.26, + "probability": 0.6458 + }, + { + "start": 27733.11, + "end": 27734.98, + "probability": 0.9521 + }, + { + "start": 27736.78, + "end": 27737.94, + "probability": 0.6431 + }, + { + "start": 27738.08, + "end": 27741.56, + "probability": 0.9438 + }, + { + "start": 27741.66, + "end": 27742.54, + "probability": 0.8206 + }, + { + "start": 27742.62, + "end": 27744.22, + "probability": 0.7186 + }, + { + "start": 27745.16, + "end": 27746.0, + "probability": 0.7601 + }, + { + "start": 27746.18, + "end": 27746.54, + "probability": 0.7578 + }, + { + "start": 27746.7, + "end": 27749.04, + "probability": 0.9953 + }, + { + "start": 27749.8, + "end": 27751.62, + "probability": 0.5594 + }, + { + "start": 27752.62, + "end": 27754.76, + "probability": 0.991 + }, + { + "start": 27755.6, + "end": 27757.48, + "probability": 0.8848 + }, + { + "start": 27758.46, + "end": 27759.26, + "probability": 0.9941 + }, + { + "start": 27760.2, + "end": 27761.4, + "probability": 0.9234 + }, + { + "start": 27762.34, + "end": 27766.02, + "probability": 0.9603 + }, + { + "start": 27766.86, + "end": 27768.22, + "probability": 0.9938 + }, + { + "start": 27768.76, + "end": 27770.18, + "probability": 0.9507 + }, + { + "start": 27770.92, + "end": 27773.77, + "probability": 0.9935 + }, + { + "start": 27774.64, + "end": 27777.82, + "probability": 0.9919 + }, + { + "start": 27777.98, + "end": 27780.94, + "probability": 0.9652 + }, + { + "start": 27781.66, + "end": 27784.84, + "probability": 0.9713 + }, + { + "start": 27785.82, + "end": 27786.84, + "probability": 0.8518 + }, + { + "start": 27788.18, + "end": 27789.46, + "probability": 0.5907 + }, + { + "start": 27789.62, + "end": 27792.03, + "probability": 0.9424 + }, + { + "start": 27792.92, + "end": 27795.04, + "probability": 0.985 + }, + { + "start": 27795.72, + "end": 27796.6, + "probability": 0.9293 + }, + { + "start": 27797.78, + "end": 27801.86, + "probability": 0.7462 + }, + { + "start": 27803.94, + "end": 27807.16, + "probability": 0.933 + }, + { + "start": 27807.64, + "end": 27808.58, + "probability": 0.875 + }, + { + "start": 27809.52, + "end": 27812.14, + "probability": 0.9846 + }, + { + "start": 27812.66, + "end": 27815.77, + "probability": 0.8146 + }, + { + "start": 27817.39, + "end": 27818.92, + "probability": 0.3276 + }, + { + "start": 27819.68, + "end": 27821.24, + "probability": 0.9644 + }, + { + "start": 27821.42, + "end": 27821.72, + "probability": 0.3951 + }, + { + "start": 27822.62, + "end": 27824.02, + "probability": 0.9406 + }, + { + "start": 27824.2, + "end": 27824.88, + "probability": 0.7493 + }, + { + "start": 27824.92, + "end": 27826.78, + "probability": 0.3618 + }, + { + "start": 27826.82, + "end": 27827.86, + "probability": 0.824 + }, + { + "start": 27827.96, + "end": 27829.02, + "probability": 0.8862 + }, + { + "start": 27830.08, + "end": 27830.08, + "probability": 0.2528 + }, + { + "start": 27830.08, + "end": 27831.77, + "probability": 0.7331 + }, + { + "start": 27834.9, + "end": 27835.94, + "probability": 0.2708 + }, + { + "start": 27853.14, + "end": 27853.14, + "probability": 0.0652 + }, + { + "start": 27868.5, + "end": 27868.78, + "probability": 0.6964 + }, + { + "start": 27869.2, + "end": 27875.16, + "probability": 0.9349 + }, + { + "start": 27875.66, + "end": 27877.3, + "probability": 0.9686 + }, + { + "start": 27877.54, + "end": 27878.3, + "probability": 0.8619 + }, + { + "start": 27878.96, + "end": 27880.24, + "probability": 0.9912 + }, + { + "start": 27882.86, + "end": 27884.56, + "probability": 0.942 + }, + { + "start": 27885.34, + "end": 27890.2, + "probability": 0.9541 + }, + { + "start": 27891.52, + "end": 27892.3, + "probability": 0.9316 + }, + { + "start": 27892.94, + "end": 27896.68, + "probability": 0.99 + }, + { + "start": 27897.38, + "end": 27899.98, + "probability": 0.9941 + }, + { + "start": 27900.56, + "end": 27904.34, + "probability": 0.9921 + }, + { + "start": 27905.4, + "end": 27906.98, + "probability": 0.8868 + }, + { + "start": 27907.1, + "end": 27910.44, + "probability": 0.9702 + }, + { + "start": 27911.78, + "end": 27912.6, + "probability": 0.6819 + }, + { + "start": 27913.38, + "end": 27917.02, + "probability": 0.9802 + }, + { + "start": 27917.4, + "end": 27921.22, + "probability": 0.9685 + }, + { + "start": 27922.02, + "end": 27923.41, + "probability": 0.998 + }, + { + "start": 27924.46, + "end": 27928.64, + "probability": 0.9623 + }, + { + "start": 27929.34, + "end": 27930.04, + "probability": 0.7086 + }, + { + "start": 27931.38, + "end": 27932.4, + "probability": 0.6086 + }, + { + "start": 27933.0, + "end": 27933.66, + "probability": 0.7717 + }, + { + "start": 27934.22, + "end": 27935.96, + "probability": 0.9292 + }, + { + "start": 27936.74, + "end": 27940.58, + "probability": 0.9737 + }, + { + "start": 27941.06, + "end": 27942.32, + "probability": 0.9967 + }, + { + "start": 27942.94, + "end": 27944.42, + "probability": 0.9402 + }, + { + "start": 27944.9, + "end": 27947.48, + "probability": 0.9541 + }, + { + "start": 27948.0, + "end": 27949.28, + "probability": 0.7629 + }, + { + "start": 27950.28, + "end": 27950.54, + "probability": 0.3243 + }, + { + "start": 27950.56, + "end": 27956.38, + "probability": 0.9453 + }, + { + "start": 27956.98, + "end": 27957.94, + "probability": 0.9456 + }, + { + "start": 27960.48, + "end": 27961.94, + "probability": 0.9219 + }, + { + "start": 27963.46, + "end": 27966.36, + "probability": 0.8993 + }, + { + "start": 27967.6, + "end": 27969.82, + "probability": 0.9844 + }, + { + "start": 27969.82, + "end": 27972.86, + "probability": 0.993 + }, + { + "start": 27972.98, + "end": 27974.34, + "probability": 0.9667 + }, + { + "start": 27975.38, + "end": 27977.66, + "probability": 0.927 + }, + { + "start": 27978.02, + "end": 27979.49, + "probability": 0.9829 + }, + { + "start": 27979.9, + "end": 27980.34, + "probability": 0.6864 + }, + { + "start": 27981.02, + "end": 27982.51, + "probability": 0.9389 + }, + { + "start": 27984.0, + "end": 27987.3, + "probability": 0.9916 + }, + { + "start": 27987.3, + "end": 27990.14, + "probability": 0.9334 + }, + { + "start": 27990.7, + "end": 27991.42, + "probability": 0.4058 + }, + { + "start": 27991.92, + "end": 27993.76, + "probability": 0.9414 + }, + { + "start": 27994.18, + "end": 27998.5, + "probability": 0.9928 + }, + { + "start": 27998.6, + "end": 28001.46, + "probability": 0.9961 + }, + { + "start": 28001.86, + "end": 28002.54, + "probability": 0.9631 + }, + { + "start": 28003.02, + "end": 28004.32, + "probability": 0.9502 + }, + { + "start": 28005.04, + "end": 28005.97, + "probability": 0.968 + }, + { + "start": 28006.06, + "end": 28006.18, + "probability": 0.6799 + }, + { + "start": 28006.64, + "end": 28007.76, + "probability": 0.7862 + }, + { + "start": 28008.18, + "end": 28013.08, + "probability": 0.9707 + }, + { + "start": 28013.78, + "end": 28014.94, + "probability": 0.8066 + }, + { + "start": 28016.0, + "end": 28020.0, + "probability": 0.9692 + }, + { + "start": 28021.22, + "end": 28024.62, + "probability": 0.9941 + }, + { + "start": 28024.74, + "end": 28024.9, + "probability": 0.6265 + }, + { + "start": 28025.02, + "end": 28025.34, + "probability": 0.728 + }, + { + "start": 28025.46, + "end": 28026.08, + "probability": 0.7642 + }, + { + "start": 28027.56, + "end": 28029.98, + "probability": 0.7661 + }, + { + "start": 28031.02, + "end": 28031.76, + "probability": 0.8259 + }, + { + "start": 28032.32, + "end": 28033.92, + "probability": 0.9082 + }, + { + "start": 28034.38, + "end": 28035.12, + "probability": 0.7612 + }, + { + "start": 28036.08, + "end": 28040.14, + "probability": 0.9514 + }, + { + "start": 28040.18, + "end": 28040.96, + "probability": 0.7287 + }, + { + "start": 28041.5, + "end": 28041.54, + "probability": 0.1661 + }, + { + "start": 28041.54, + "end": 28046.36, + "probability": 0.9115 + }, + { + "start": 28046.38, + "end": 28046.7, + "probability": 0.7541 + }, + { + "start": 28046.94, + "end": 28047.16, + "probability": 0.8362 + }, + { + "start": 28047.18, + "end": 28047.38, + "probability": 0.4597 + }, + { + "start": 28047.48, + "end": 28048.6, + "probability": 0.9517 + }, + { + "start": 28049.0, + "end": 28051.03, + "probability": 0.9385 + }, + { + "start": 28051.52, + "end": 28052.51, + "probability": 0.9907 + }, + { + "start": 28053.04, + "end": 28054.94, + "probability": 0.7868 + }, + { + "start": 28055.98, + "end": 28058.43, + "probability": 0.7187 + }, + { + "start": 28059.04, + "end": 28062.72, + "probability": 0.9863 + }, + { + "start": 28063.3, + "end": 28064.22, + "probability": 0.8153 + }, + { + "start": 28064.88, + "end": 28065.86, + "probability": 0.9919 + }, + { + "start": 28067.36, + "end": 28070.28, + "probability": 0.9089 + }, + { + "start": 28071.0, + "end": 28071.54, + "probability": 0.6757 + }, + { + "start": 28072.2, + "end": 28073.32, + "probability": 0.723 + }, + { + "start": 28073.72, + "end": 28074.82, + "probability": 0.7938 + }, + { + "start": 28075.22, + "end": 28078.24, + "probability": 0.9163 + }, + { + "start": 28078.68, + "end": 28079.22, + "probability": 0.7715 + }, + { + "start": 28079.34, + "end": 28079.88, + "probability": 0.7849 + }, + { + "start": 28080.14, + "end": 28081.44, + "probability": 0.9839 + }, + { + "start": 28081.48, + "end": 28082.66, + "probability": 0.9214 + }, + { + "start": 28083.1, + "end": 28085.32, + "probability": 0.915 + }, + { + "start": 28086.44, + "end": 28088.02, + "probability": 0.9878 + }, + { + "start": 28088.38, + "end": 28090.36, + "probability": 0.9521 + }, + { + "start": 28091.4, + "end": 28092.55, + "probability": 0.994 + }, + { + "start": 28093.04, + "end": 28095.14, + "probability": 0.9896 + }, + { + "start": 28095.14, + "end": 28095.64, + "probability": 0.4433 + }, + { + "start": 28095.66, + "end": 28096.96, + "probability": 0.4685 + }, + { + "start": 28096.98, + "end": 28097.42, + "probability": 0.8518 + }, + { + "start": 28097.7, + "end": 28101.04, + "probability": 0.959 + }, + { + "start": 28101.04, + "end": 28107.88, + "probability": 0.8495 + }, + { + "start": 28108.28, + "end": 28109.1, + "probability": 0.9066 + }, + { + "start": 28110.23, + "end": 28112.16, + "probability": 0.7939 + }, + { + "start": 28112.26, + "end": 28113.86, + "probability": 0.4689 + }, + { + "start": 28113.98, + "end": 28114.24, + "probability": 0.8816 + }, + { + "start": 28114.86, + "end": 28115.84, + "probability": 0.8818 + }, + { + "start": 28116.26, + "end": 28118.74, + "probability": 0.9551 + }, + { + "start": 28118.82, + "end": 28119.58, + "probability": 0.7292 + }, + { + "start": 28119.58, + "end": 28120.92, + "probability": 0.6539 + }, + { + "start": 28121.28, + "end": 28122.7, + "probability": 0.9811 + }, + { + "start": 28123.76, + "end": 28124.36, + "probability": 0.3619 + }, + { + "start": 28124.72, + "end": 28124.9, + "probability": 0.7495 + }, + { + "start": 28126.88, + "end": 28129.72, + "probability": 0.7897 + }, + { + "start": 28149.04, + "end": 28149.6, + "probability": 0.5371 + }, + { + "start": 28149.74, + "end": 28150.98, + "probability": 0.6216 + }, + { + "start": 28151.4, + "end": 28152.2, + "probability": 0.9214 + }, + { + "start": 28153.85, + "end": 28156.53, + "probability": 0.9421 + }, + { + "start": 28157.9, + "end": 28158.62, + "probability": 0.7248 + }, + { + "start": 28159.12, + "end": 28159.24, + "probability": 0.0679 + }, + { + "start": 28159.36, + "end": 28160.32, + "probability": 0.751 + }, + { + "start": 28161.4, + "end": 28162.6, + "probability": 0.8702 + }, + { + "start": 28163.64, + "end": 28163.9, + "probability": 0.2257 + }, + { + "start": 28163.9, + "end": 28164.18, + "probability": 0.5352 + }, + { + "start": 28164.89, + "end": 28169.16, + "probability": 0.957 + }, + { + "start": 28169.34, + "end": 28169.88, + "probability": 0.9083 + }, + { + "start": 28170.78, + "end": 28171.76, + "probability": 0.2069 + }, + { + "start": 28172.88, + "end": 28173.9, + "probability": 0.8739 + }, + { + "start": 28174.56, + "end": 28175.52, + "probability": 0.4168 + }, + { + "start": 28176.1, + "end": 28176.74, + "probability": 0.1107 + }, + { + "start": 28177.78, + "end": 28177.9, + "probability": 0.8901 + }, + { + "start": 28178.0, + "end": 28178.12, + "probability": 0.5725 + }, + { + "start": 28178.2, + "end": 28181.36, + "probability": 0.9165 + }, + { + "start": 28182.92, + "end": 28186.44, + "probability": 0.8579 + }, + { + "start": 28189.94, + "end": 28191.22, + "probability": 0.9171 + }, + { + "start": 28193.08, + "end": 28196.12, + "probability": 0.9144 + }, + { + "start": 28196.34, + "end": 28197.02, + "probability": 0.8457 + }, + { + "start": 28198.0, + "end": 28198.66, + "probability": 0.0357 + }, + { + "start": 28198.88, + "end": 28198.98, + "probability": 0.452 + }, + { + "start": 28200.0, + "end": 28201.52, + "probability": 0.9882 + }, + { + "start": 28202.94, + "end": 28203.96, + "probability": 0.028 + }, + { + "start": 28206.08, + "end": 28209.12, + "probability": 0.0833 + }, + { + "start": 28209.98, + "end": 28210.74, + "probability": 0.623 + }, + { + "start": 28210.82, + "end": 28212.78, + "probability": 0.917 + }, + { + "start": 28213.44, + "end": 28213.65, + "probability": 0.2865 + }, + { + "start": 28215.5, + "end": 28216.38, + "probability": 0.5575 + }, + { + "start": 28217.06, + "end": 28226.56, + "probability": 0.8987 + }, + { + "start": 28227.64, + "end": 28228.82, + "probability": 0.8442 + }, + { + "start": 28230.04, + "end": 28232.68, + "probability": 0.7464 + }, + { + "start": 28232.7, + "end": 28234.06, + "probability": 0.5062 + }, + { + "start": 28234.36, + "end": 28235.16, + "probability": 0.9012 + }, + { + "start": 28235.22, + "end": 28235.22, + "probability": 0.5015 + }, + { + "start": 28235.22, + "end": 28237.12, + "probability": 0.8486 + }, + { + "start": 28237.14, + "end": 28240.46, + "probability": 0.3533 + }, + { + "start": 28240.46, + "end": 28240.46, + "probability": 0.2846 + }, + { + "start": 28240.46, + "end": 28242.86, + "probability": 0.3823 + }, + { + "start": 28243.34, + "end": 28245.88, + "probability": 0.7155 + }, + { + "start": 28246.32, + "end": 28247.52, + "probability": 0.8483 + }, + { + "start": 28247.82, + "end": 28248.06, + "probability": 0.2234 + }, + { + "start": 28248.28, + "end": 28249.75, + "probability": 0.6628 + }, + { + "start": 28253.5, + "end": 28256.04, + "probability": 0.064 + }, + { + "start": 28256.04, + "end": 28256.4, + "probability": 0.1012 + }, + { + "start": 28256.52, + "end": 28256.7, + "probability": 0.4199 + }, + { + "start": 28256.74, + "end": 28259.73, + "probability": 0.5523 + }, + { + "start": 28260.18, + "end": 28261.84, + "probability": 0.781 + }, + { + "start": 28261.86, + "end": 28265.12, + "probability": 0.2572 + }, + { + "start": 28266.56, + "end": 28266.86, + "probability": 0.092 + }, + { + "start": 28266.86, + "end": 28266.86, + "probability": 0.1863 + }, + { + "start": 28266.86, + "end": 28269.06, + "probability": 0.6767 + }, + { + "start": 28269.1, + "end": 28270.62, + "probability": 0.5735 + }, + { + "start": 28271.16, + "end": 28273.2, + "probability": 0.9294 + }, + { + "start": 28273.52, + "end": 28276.64, + "probability": 0.2702 + }, + { + "start": 28277.48, + "end": 28278.24, + "probability": 0.0449 + }, + { + "start": 28278.38, + "end": 28279.72, + "probability": 0.3179 + }, + { + "start": 28279.72, + "end": 28282.52, + "probability": 0.0635 + }, + { + "start": 28283.12, + "end": 28286.18, + "probability": 0.3552 + }, + { + "start": 28287.38, + "end": 28287.38, + "probability": 0.0028 + }, + { + "start": 28287.38, + "end": 28287.38, + "probability": 0.1285 + }, + { + "start": 28287.38, + "end": 28287.38, + "probability": 0.3166 + }, + { + "start": 28287.38, + "end": 28287.38, + "probability": 0.1837 + }, + { + "start": 28287.38, + "end": 28290.21, + "probability": 0.1374 + }, + { + "start": 28291.34, + "end": 28292.62, + "probability": 0.6954 + }, + { + "start": 28294.2, + "end": 28296.8, + "probability": 0.7174 + }, + { + "start": 28296.94, + "end": 28296.98, + "probability": 0.004 + }, + { + "start": 28297.38, + "end": 28299.2, + "probability": 0.4246 + }, + { + "start": 28299.4, + "end": 28299.92, + "probability": 0.7202 + }, + { + "start": 28300.12, + "end": 28301.32, + "probability": 0.4356 + }, + { + "start": 28301.4, + "end": 28303.48, + "probability": 0.342 + }, + { + "start": 28304.78, + "end": 28304.96, + "probability": 0.4098 + }, + { + "start": 28304.96, + "end": 28305.38, + "probability": 0.3874 + }, + { + "start": 28305.38, + "end": 28307.34, + "probability": 0.7499 + }, + { + "start": 28307.48, + "end": 28308.55, + "probability": 0.7533 + }, + { + "start": 28309.44, + "end": 28312.94, + "probability": 0.8292 + }, + { + "start": 28314.42, + "end": 28315.86, + "probability": 0.8117 + }, + { + "start": 28316.2, + "end": 28317.96, + "probability": 0.7194 + }, + { + "start": 28318.24, + "end": 28319.58, + "probability": 0.7856 + }, + { + "start": 28319.8, + "end": 28320.74, + "probability": 0.6656 + }, + { + "start": 28321.25, + "end": 28322.02, + "probability": 0.2962 + }, + { + "start": 28322.02, + "end": 28323.44, + "probability": 0.7433 + }, + { + "start": 28323.44, + "end": 28325.46, + "probability": 0.1736 + }, + { + "start": 28325.6, + "end": 28327.93, + "probability": 0.7967 + }, + { + "start": 28328.75, + "end": 28329.84, + "probability": 0.8219 + }, + { + "start": 28329.84, + "end": 28330.86, + "probability": 0.0751 + }, + { + "start": 28331.18, + "end": 28331.88, + "probability": 0.1417 + }, + { + "start": 28332.44, + "end": 28336.1, + "probability": 0.9951 + }, + { + "start": 28336.8, + "end": 28337.38, + "probability": 0.199 + }, + { + "start": 28337.52, + "end": 28337.64, + "probability": 0.1345 + }, + { + "start": 28337.94, + "end": 28338.04, + "probability": 0.2297 + }, + { + "start": 28338.04, + "end": 28341.44, + "probability": 0.6621 + }, + { + "start": 28341.64, + "end": 28341.64, + "probability": 0.2727 + }, + { + "start": 28341.64, + "end": 28341.9, + "probability": 0.1853 + }, + { + "start": 28341.94, + "end": 28345.94, + "probability": 0.9323 + }, + { + "start": 28346.8, + "end": 28348.48, + "probability": 0.9989 + }, + { + "start": 28349.32, + "end": 28350.72, + "probability": 0.6574 + }, + { + "start": 28350.72, + "end": 28351.72, + "probability": 0.1841 + }, + { + "start": 28352.05, + "end": 28353.94, + "probability": 0.4351 + }, + { + "start": 28356.54, + "end": 28358.16, + "probability": 0.9788 + }, + { + "start": 28358.16, + "end": 28358.16, + "probability": 0.033 + }, + { + "start": 28358.16, + "end": 28358.74, + "probability": 0.1487 + }, + { + "start": 28359.38, + "end": 28362.7, + "probability": 0.246 + }, + { + "start": 28365.14, + "end": 28365.96, + "probability": 0.0228 + }, + { + "start": 28368.72, + "end": 28368.72, + "probability": 0.034 + }, + { + "start": 28368.72, + "end": 28368.72, + "probability": 0.1331 + }, + { + "start": 28368.72, + "end": 28368.72, + "probability": 0.0475 + }, + { + "start": 28368.72, + "end": 28369.42, + "probability": 0.4929 + }, + { + "start": 28370.48, + "end": 28371.9, + "probability": 0.9744 + }, + { + "start": 28372.0, + "end": 28372.64, + "probability": 0.054 + }, + { + "start": 28373.2, + "end": 28374.5, + "probability": 0.8255 + }, + { + "start": 28374.62, + "end": 28375.12, + "probability": 0.8646 + }, + { + "start": 28376.16, + "end": 28379.74, + "probability": 0.0711 + }, + { + "start": 28380.1, + "end": 28380.87, + "probability": 0.0551 + }, + { + "start": 28381.2, + "end": 28382.0, + "probability": 0.1534 + }, + { + "start": 28382.3, + "end": 28382.6, + "probability": 0.2071 + }, + { + "start": 28382.6, + "end": 28383.0, + "probability": 0.5646 + }, + { + "start": 28383.52, + "end": 28385.36, + "probability": 0.9949 + }, + { + "start": 28386.22, + "end": 28389.18, + "probability": 0.9456 + }, + { + "start": 28389.94, + "end": 28391.76, + "probability": 0.9014 + }, + { + "start": 28392.3, + "end": 28393.68, + "probability": 0.7455 + }, + { + "start": 28394.26, + "end": 28395.3, + "probability": 0.6064 + }, + { + "start": 28396.12, + "end": 28399.6, + "probability": 0.7324 + }, + { + "start": 28400.5, + "end": 28402.11, + "probability": 0.6896 + }, + { + "start": 28403.72, + "end": 28406.28, + "probability": 0.8882 + }, + { + "start": 28407.4, + "end": 28408.22, + "probability": 0.9924 + }, + { + "start": 28408.52, + "end": 28410.9, + "probability": 0.9852 + }, + { + "start": 28411.48, + "end": 28413.36, + "probability": 0.9885 + }, + { + "start": 28414.24, + "end": 28415.74, + "probability": 0.1022 + }, + { + "start": 28415.74, + "end": 28415.8, + "probability": 0.5807 + }, + { + "start": 28415.8, + "end": 28419.64, + "probability": 0.8709 + }, + { + "start": 28421.14, + "end": 28422.6, + "probability": 0.9856 + }, + { + "start": 28423.94, + "end": 28423.94, + "probability": 0.1007 + }, + { + "start": 28423.94, + "end": 28427.24, + "probability": 0.8479 + }, + { + "start": 28428.0, + "end": 28429.64, + "probability": 0.9418 + }, + { + "start": 28430.68, + "end": 28431.5, + "probability": 0.1304 + }, + { + "start": 28431.5, + "end": 28432.08, + "probability": 0.1449 + }, + { + "start": 28432.82, + "end": 28433.2, + "probability": 0.2629 + }, + { + "start": 28433.88, + "end": 28435.42, + "probability": 0.991 + }, + { + "start": 28436.1, + "end": 28437.06, + "probability": 0.8742 + }, + { + "start": 28437.82, + "end": 28442.54, + "probability": 0.8432 + }, + { + "start": 28445.06, + "end": 28449.48, + "probability": 0.9112 + }, + { + "start": 28450.36, + "end": 28451.78, + "probability": 0.8342 + }, + { + "start": 28452.92, + "end": 28456.44, + "probability": 0.9865 + }, + { + "start": 28457.36, + "end": 28458.19, + "probability": 0.0525 + }, + { + "start": 28459.46, + "end": 28461.6, + "probability": 0.426 + }, + { + "start": 28462.56, + "end": 28464.5, + "probability": 0.0305 + }, + { + "start": 28465.38, + "end": 28465.38, + "probability": 0.0197 + }, + { + "start": 28465.54, + "end": 28467.6, + "probability": 0.8726 + }, + { + "start": 28468.56, + "end": 28471.88, + "probability": 0.9487 + }, + { + "start": 28472.56, + "end": 28473.72, + "probability": 0.9857 + }, + { + "start": 28474.42, + "end": 28476.2, + "probability": 0.7572 + }, + { + "start": 28477.44, + "end": 28479.04, + "probability": 0.9797 + }, + { + "start": 28479.56, + "end": 28480.1, + "probability": 0.9924 + }, + { + "start": 28480.74, + "end": 28484.46, + "probability": 0.9922 + }, + { + "start": 28484.72, + "end": 28486.3, + "probability": 0.6012 + }, + { + "start": 28486.76, + "end": 28486.76, + "probability": 0.0383 + }, + { + "start": 28487.04, + "end": 28488.84, + "probability": 0.1605 + }, + { + "start": 28489.66, + "end": 28489.7, + "probability": 0.4937 + }, + { + "start": 28489.76, + "end": 28495.38, + "probability": 0.85 + }, + { + "start": 28495.9, + "end": 28498.55, + "probability": 0.6695 + }, + { + "start": 28499.28, + "end": 28502.12, + "probability": 0.9902 + }, + { + "start": 28502.32, + "end": 28503.44, + "probability": 0.7123 + }, + { + "start": 28504.02, + "end": 28509.04, + "probability": 0.7839 + }, + { + "start": 28509.68, + "end": 28512.34, + "probability": 0.9968 + }, + { + "start": 28513.24, + "end": 28515.96, + "probability": 0.9784 + }, + { + "start": 28516.68, + "end": 28522.68, + "probability": 0.7373 + }, + { + "start": 28524.2, + "end": 28524.46, + "probability": 0.0615 + }, + { + "start": 28524.8, + "end": 28525.24, + "probability": 0.4079 + }, + { + "start": 28525.24, + "end": 28526.18, + "probability": 0.1294 + }, + { + "start": 28526.82, + "end": 28526.82, + "probability": 0.0875 + }, + { + "start": 28527.5, + "end": 28529.88, + "probability": 0.8774 + }, + { + "start": 28530.34, + "end": 28534.9, + "probability": 0.7362 + }, + { + "start": 28536.06, + "end": 28538.48, + "probability": 0.3283 + }, + { + "start": 28539.0, + "end": 28540.18, + "probability": 0.9844 + }, + { + "start": 28541.04, + "end": 28543.44, + "probability": 0.96 + }, + { + "start": 28544.1, + "end": 28546.08, + "probability": 0.9355 + }, + { + "start": 28547.46, + "end": 28548.5, + "probability": 0.9904 + }, + { + "start": 28549.54, + "end": 28552.98, + "probability": 0.7467 + }, + { + "start": 28553.7, + "end": 28554.08, + "probability": 0.9841 + }, + { + "start": 28555.0, + "end": 28556.92, + "probability": 0.8078 + }, + { + "start": 28558.96, + "end": 28561.88, + "probability": 0.9799 + }, + { + "start": 28561.92, + "end": 28565.86, + "probability": 0.9739 + }, + { + "start": 28567.0, + "end": 28571.42, + "probability": 0.979 + }, + { + "start": 28572.2, + "end": 28575.56, + "probability": 0.784 + }, + { + "start": 28577.0, + "end": 28577.42, + "probability": 0.744 + }, + { + "start": 28578.52, + "end": 28580.8, + "probability": 0.6422 + }, + { + "start": 28580.84, + "end": 28581.53, + "probability": 0.843 + }, + { + "start": 28581.68, + "end": 28583.38, + "probability": 0.8328 + }, + { + "start": 28584.16, + "end": 28587.38, + "probability": 0.9648 + }, + { + "start": 28587.38, + "end": 28591.72, + "probability": 0.9293 + }, + { + "start": 28592.44, + "end": 28596.04, + "probability": 0.1074 + }, + { + "start": 28596.28, + "end": 28598.06, + "probability": 0.0691 + }, + { + "start": 28602.0, + "end": 28602.38, + "probability": 0.0335 + }, + { + "start": 28602.38, + "end": 28602.38, + "probability": 0.3343 + }, + { + "start": 28602.38, + "end": 28602.38, + "probability": 0.0834 + }, + { + "start": 28602.38, + "end": 28605.82, + "probability": 0.541 + }, + { + "start": 28605.82, + "end": 28606.06, + "probability": 0.3957 + }, + { + "start": 28607.38, + "end": 28609.94, + "probability": 0.8427 + }, + { + "start": 28626.76, + "end": 28626.76, + "probability": 0.0486 + }, + { + "start": 28626.76, + "end": 28628.5, + "probability": 0.3418 + }, + { + "start": 28629.76, + "end": 28635.0, + "probability": 0.6873 + }, + { + "start": 28635.16, + "end": 28635.56, + "probability": 0.7512 + }, + { + "start": 28640.66, + "end": 28642.3, + "probability": 0.8086 + }, + { + "start": 28643.02, + "end": 28646.3, + "probability": 0.9757 + }, + { + "start": 28646.42, + "end": 28649.26, + "probability": 0.9973 + }, + { + "start": 28650.48, + "end": 28652.61, + "probability": 0.7295 + }, + { + "start": 28663.18, + "end": 28663.4, + "probability": 0.8707 + }, + { + "start": 28665.52, + "end": 28665.52, + "probability": 0.0003 + }, + { + "start": 28683.44, + "end": 28684.64, + "probability": 0.159 + }, + { + "start": 28684.64, + "end": 28684.76, + "probability": 0.0135 + }, + { + "start": 28693.64, + "end": 28693.64, + "probability": 0.0368 + }, + { + "start": 28705.26, + "end": 28708.66, + "probability": 0.7696 + }, + { + "start": 28709.28, + "end": 28710.58, + "probability": 0.8213 + }, + { + "start": 28711.18, + "end": 28713.06, + "probability": 0.5965 + }, + { + "start": 28714.42, + "end": 28718.96, + "probability": 0.9793 + }, + { + "start": 28721.0, + "end": 28721.0, + "probability": 0.0874 + }, + { + "start": 28721.0, + "end": 28723.62, + "probability": 0.6641 + }, + { + "start": 28737.2, + "end": 28739.28, + "probability": 0.6367 + }, + { + "start": 28739.9, + "end": 28741.62, + "probability": 0.7406 + }, + { + "start": 28742.5, + "end": 28744.6, + "probability": 0.8835 + }, + { + "start": 28745.58, + "end": 28746.92, + "probability": 0.7942 + }, + { + "start": 28747.86, + "end": 28750.28, + "probability": 0.8911 + }, + { + "start": 28750.38, + "end": 28751.62, + "probability": 0.7831 + }, + { + "start": 28752.28, + "end": 28754.0, + "probability": 0.9978 + }, + { + "start": 28754.62, + "end": 28756.04, + "probability": 0.8452 + }, + { + "start": 28756.96, + "end": 28758.46, + "probability": 0.4817 + }, + { + "start": 28759.3, + "end": 28759.42, + "probability": 0.3766 + }, + { + "start": 28759.42, + "end": 28759.52, + "probability": 0.6391 + }, + { + "start": 28759.72, + "end": 28761.29, + "probability": 0.9078 + }, + { + "start": 28762.96, + "end": 28763.22, + "probability": 0.8108 + }, + { + "start": 28763.58, + "end": 28763.8, + "probability": 0.8425 + }, + { + "start": 28763.84, + "end": 28763.94, + "probability": 0.8679 + }, + { + "start": 28766.54, + "end": 28770.68, + "probability": 0.8252 + }, + { + "start": 28771.52, + "end": 28771.88, + "probability": 0.3421 + }, + { + "start": 28771.94, + "end": 28772.94, + "probability": 0.7428 + }, + { + "start": 28773.1, + "end": 28775.28, + "probability": 0.9791 + }, + { + "start": 28775.36, + "end": 28775.36, + "probability": 0.8004 + }, + { + "start": 28775.44, + "end": 28776.28, + "probability": 0.8418 + }, + { + "start": 28777.14, + "end": 28777.84, + "probability": 0.9043 + }, + { + "start": 28778.98, + "end": 28782.0, + "probability": 0.9757 + }, + { + "start": 28783.0, + "end": 28785.3, + "probability": 0.9899 + }, + { + "start": 28786.71, + "end": 28789.36, + "probability": 0.8378 + }, + { + "start": 28789.86, + "end": 28792.84, + "probability": 0.9785 + }, + { + "start": 28793.44, + "end": 28797.34, + "probability": 0.6811 + }, + { + "start": 28798.84, + "end": 28803.26, + "probability": 0.9901 + }, + { + "start": 28805.64, + "end": 28806.12, + "probability": 0.9893 + }, + { + "start": 28806.68, + "end": 28810.06, + "probability": 0.9873 + }, + { + "start": 28810.52, + "end": 28811.38, + "probability": 0.8761 + }, + { + "start": 28812.0, + "end": 28816.0, + "probability": 0.9836 + }, + { + "start": 28816.62, + "end": 28819.74, + "probability": 0.9897 + }, + { + "start": 28819.96, + "end": 28821.12, + "probability": 0.9389 + }, + { + "start": 28821.8, + "end": 28823.88, + "probability": 0.9329 + }, + { + "start": 28824.42, + "end": 28826.82, + "probability": 0.9788 + }, + { + "start": 28827.36, + "end": 28829.02, + "probability": 0.9844 + }, + { + "start": 28829.92, + "end": 28830.4, + "probability": 0.8726 + }, + { + "start": 28831.12, + "end": 28832.6, + "probability": 0.9452 + }, + { + "start": 28833.32, + "end": 28836.3, + "probability": 0.999 + }, + { + "start": 28836.78, + "end": 28837.22, + "probability": 0.8383 + }, + { + "start": 28837.9, + "end": 28842.9, + "probability": 0.9972 + }, + { + "start": 28844.2, + "end": 28847.58, + "probability": 0.7311 + }, + { + "start": 28848.24, + "end": 28850.04, + "probability": 0.671 + }, + { + "start": 28850.72, + "end": 28853.1, + "probability": 0.7175 + }, + { + "start": 28854.0, + "end": 28855.78, + "probability": 0.9897 + }, + { + "start": 28856.04, + "end": 28857.36, + "probability": 0.9927 + }, + { + "start": 28858.3, + "end": 28862.54, + "probability": 0.9698 + }, + { + "start": 28863.18, + "end": 28866.78, + "probability": 0.9897 + }, + { + "start": 28867.52, + "end": 28871.48, + "probability": 0.9941 + }, + { + "start": 28872.28, + "end": 28872.72, + "probability": 0.4179 + }, + { + "start": 28872.72, + "end": 28879.8, + "probability": 0.9537 + }, + { + "start": 28880.2, + "end": 28882.46, + "probability": 0.9991 + }, + { + "start": 28883.26, + "end": 28888.66, + "probability": 0.9852 + }, + { + "start": 28888.8, + "end": 28891.62, + "probability": 0.9857 + }, + { + "start": 28892.4, + "end": 28893.34, + "probability": 0.7085 + }, + { + "start": 28894.18, + "end": 28896.12, + "probability": 0.9 + }, + { + "start": 28897.76, + "end": 28899.83, + "probability": 0.8407 + }, + { + "start": 28901.2, + "end": 28901.82, + "probability": 0.7858 + }, + { + "start": 28903.1, + "end": 28903.24, + "probability": 0.0325 + }, + { + "start": 28903.52, + "end": 28905.89, + "probability": 0.9399 + }, + { + "start": 28907.24, + "end": 28909.77, + "probability": 0.8458 + }, + { + "start": 28911.48, + "end": 28915.6, + "probability": 0.9136 + }, + { + "start": 28916.5, + "end": 28918.34, + "probability": 0.7471 + }, + { + "start": 28919.14, + "end": 28920.06, + "probability": 0.9105 + }, + { + "start": 28920.76, + "end": 28922.18, + "probability": 0.917 + }, + { + "start": 28922.96, + "end": 28923.58, + "probability": 0.8399 + }, + { + "start": 28924.32, + "end": 28927.54, + "probability": 0.9914 + }, + { + "start": 28927.66, + "end": 28930.42, + "probability": 0.9972 + }, + { + "start": 28931.22, + "end": 28932.38, + "probability": 0.9725 + }, + { + "start": 28933.76, + "end": 28935.26, + "probability": 0.7669 + }, + { + "start": 28936.76, + "end": 28939.3, + "probability": 0.9609 + }, + { + "start": 28940.12, + "end": 28942.18, + "probability": 0.9961 + }, + { + "start": 28942.98, + "end": 28945.18, + "probability": 0.9799 + }, + { + "start": 28946.82, + "end": 28947.67, + "probability": 0.9957 + }, + { + "start": 28948.26, + "end": 28951.22, + "probability": 0.8908 + }, + { + "start": 28951.62, + "end": 28952.0, + "probability": 0.9275 + }, + { + "start": 28955.54, + "end": 28956.1, + "probability": 0.6667 + }, + { + "start": 28956.72, + "end": 28959.16, + "probability": 0.908 + }, + { + "start": 28959.82, + "end": 28961.5, + "probability": 0.9727 + }, + { + "start": 28961.86, + "end": 28963.78, + "probability": 0.985 + }, + { + "start": 28964.26, + "end": 28966.61, + "probability": 0.9963 + }, + { + "start": 28967.16, + "end": 28970.4, + "probability": 0.9325 + }, + { + "start": 28970.76, + "end": 28971.95, + "probability": 0.988 + }, + { + "start": 28972.4, + "end": 28976.41, + "probability": 0.9959 + }, + { + "start": 28977.7, + "end": 28981.76, + "probability": 0.9104 + }, + { + "start": 28982.86, + "end": 28986.58, + "probability": 0.9651 + }, + { + "start": 28987.46, + "end": 28990.13, + "probability": 0.9626 + }, + { + "start": 28990.82, + "end": 28992.18, + "probability": 0.9615 + }, + { + "start": 28992.9, + "end": 28996.98, + "probability": 0.932 + }, + { + "start": 28997.84, + "end": 29001.22, + "probability": 0.9889 + }, + { + "start": 29001.52, + "end": 29004.72, + "probability": 0.8507 + }, + { + "start": 29005.58, + "end": 29006.72, + "probability": 0.9502 + }, + { + "start": 29007.16, + "end": 29009.04, + "probability": 0.9148 + }, + { + "start": 29009.12, + "end": 29012.52, + "probability": 0.9949 + }, + { + "start": 29013.3, + "end": 29018.46, + "probability": 0.9909 + }, + { + "start": 29018.68, + "end": 29019.85, + "probability": 0.9697 + }, + { + "start": 29021.2, + "end": 29022.02, + "probability": 0.9963 + }, + { + "start": 29022.7, + "end": 29023.38, + "probability": 0.7501 + }, + { + "start": 29023.92, + "end": 29024.14, + "probability": 0.9778 + }, + { + "start": 29025.48, + "end": 29026.2, + "probability": 0.5706 + }, + { + "start": 29026.28, + "end": 29027.08, + "probability": 0.951 + }, + { + "start": 29028.06, + "end": 29028.6, + "probability": 0.2619 + }, + { + "start": 29030.1, + "end": 29030.3, + "probability": 0.0457 + }, + { + "start": 29030.84, + "end": 29034.6, + "probability": 0.9819 + }, + { + "start": 29035.38, + "end": 29037.4, + "probability": 0.8979 + }, + { + "start": 29038.48, + "end": 29040.12, + "probability": 0.9895 + }, + { + "start": 29040.12, + "end": 29044.56, + "probability": 0.8991 + }, + { + "start": 29045.22, + "end": 29045.66, + "probability": 0.3635 + }, + { + "start": 29046.42, + "end": 29051.52, + "probability": 0.999 + }, + { + "start": 29052.31, + "end": 29055.24, + "probability": 0.6863 + }, + { + "start": 29055.26, + "end": 29056.14, + "probability": 0.9966 + }, + { + "start": 29056.74, + "end": 29060.02, + "probability": 0.9526 + }, + { + "start": 29060.7, + "end": 29061.54, + "probability": 0.7539 + }, + { + "start": 29062.18, + "end": 29063.62, + "probability": 0.8467 + }, + { + "start": 29064.3, + "end": 29068.54, + "probability": 0.808 + }, + { + "start": 29068.62, + "end": 29070.18, + "probability": 0.9774 + }, + { + "start": 29070.72, + "end": 29073.4, + "probability": 0.9392 + }, + { + "start": 29074.0, + "end": 29075.14, + "probability": 0.9279 + }, + { + "start": 29075.48, + "end": 29077.14, + "probability": 0.9888 + }, + { + "start": 29077.62, + "end": 29078.28, + "probability": 0.8049 + }, + { + "start": 29078.34, + "end": 29079.42, + "probability": 0.8208 + }, + { + "start": 29080.14, + "end": 29084.36, + "probability": 0.8988 + }, + { + "start": 29084.92, + "end": 29087.96, + "probability": 0.9463 + }, + { + "start": 29088.2, + "end": 29091.46, + "probability": 0.8081 + }, + { + "start": 29092.06, + "end": 29094.45, + "probability": 0.9808 + }, + { + "start": 29094.76, + "end": 29095.08, + "probability": 0.5225 + }, + { + "start": 29095.74, + "end": 29097.7, + "probability": 0.5659 + }, + { + "start": 29098.06, + "end": 29100.72, + "probability": 0.6557 + }, + { + "start": 29101.24, + "end": 29101.96, + "probability": 0.424 + }, + { + "start": 29102.44, + "end": 29104.54, + "probability": 0.4807 + }, + { + "start": 29104.54, + "end": 29105.73, + "probability": 0.4706 + }, + { + "start": 29106.76, + "end": 29108.36, + "probability": 0.7002 + }, + { + "start": 29109.26, + "end": 29112.24, + "probability": 0.7834 + }, + { + "start": 29112.56, + "end": 29112.8, + "probability": 0.746 + }, + { + "start": 29113.58, + "end": 29115.46, + "probability": 0.9183 + }, + { + "start": 29120.32, + "end": 29121.4, + "probability": 0.7301 + }, + { + "start": 29129.68, + "end": 29131.66, + "probability": 0.6823 + }, + { + "start": 29133.08, + "end": 29134.54, + "probability": 0.8626 + }, + { + "start": 29135.06, + "end": 29136.26, + "probability": 0.3493 + }, + { + "start": 29137.26, + "end": 29139.38, + "probability": 0.9686 + }, + { + "start": 29141.44, + "end": 29146.56, + "probability": 0.9941 + }, + { + "start": 29146.56, + "end": 29152.32, + "probability": 0.989 + }, + { + "start": 29153.16, + "end": 29155.42, + "probability": 0.9995 + }, + { + "start": 29156.54, + "end": 29156.68, + "probability": 0.5023 + }, + { + "start": 29158.12, + "end": 29160.66, + "probability": 0.7756 + }, + { + "start": 29161.18, + "end": 29165.13, + "probability": 0.9548 + }, + { + "start": 29166.9, + "end": 29167.68, + "probability": 0.6108 + }, + { + "start": 29167.84, + "end": 29171.02, + "probability": 0.8399 + }, + { + "start": 29171.02, + "end": 29175.16, + "probability": 0.7428 + }, + { + "start": 29175.5, + "end": 29181.26, + "probability": 0.9912 + }, + { + "start": 29184.1, + "end": 29186.48, + "probability": 0.4933 + }, + { + "start": 29188.76, + "end": 29194.46, + "probability": 0.716 + }, + { + "start": 29195.14, + "end": 29200.9, + "probability": 0.8425 + }, + { + "start": 29201.56, + "end": 29206.4, + "probability": 0.8872 + }, + { + "start": 29206.4, + "end": 29209.96, + "probability": 0.9707 + }, + { + "start": 29210.82, + "end": 29211.82, + "probability": 0.7508 + }, + { + "start": 29213.4, + "end": 29218.16, + "probability": 0.9911 + }, + { + "start": 29218.9, + "end": 29219.46, + "probability": 0.834 + }, + { + "start": 29219.58, + "end": 29223.28, + "probability": 0.9316 + }, + { + "start": 29223.84, + "end": 29225.62, + "probability": 0.8807 + }, + { + "start": 29226.42, + "end": 29229.32, + "probability": 0.9896 + }, + { + "start": 29231.54, + "end": 29235.16, + "probability": 0.8626 + }, + { + "start": 29236.14, + "end": 29238.64, + "probability": 0.8667 + }, + { + "start": 29238.98, + "end": 29241.61, + "probability": 0.9761 + }, + { + "start": 29244.82, + "end": 29246.96, + "probability": 0.84 + }, + { + "start": 29248.08, + "end": 29249.13, + "probability": 0.8739 + }, + { + "start": 29250.16, + "end": 29255.1, + "probability": 0.9563 + }, + { + "start": 29256.46, + "end": 29258.22, + "probability": 0.9727 + }, + { + "start": 29258.62, + "end": 29260.06, + "probability": 0.3913 + }, + { + "start": 29260.44, + "end": 29263.16, + "probability": 0.3561 + }, + { + "start": 29264.18, + "end": 29266.82, + "probability": 0.0839 + }, + { + "start": 29274.08, + "end": 29274.42, + "probability": 0.0356 + }, + { + "start": 29274.42, + "end": 29274.42, + "probability": 0.0195 + }, + { + "start": 29274.42, + "end": 29274.88, + "probability": 0.2239 + }, + { + "start": 29275.0, + "end": 29276.38, + "probability": 0.6416 + }, + { + "start": 29277.2, + "end": 29278.4, + "probability": 0.1059 + }, + { + "start": 29279.56, + "end": 29280.38, + "probability": 0.1045 + }, + { + "start": 29280.4, + "end": 29281.46, + "probability": 0.1838 + }, + { + "start": 29281.96, + "end": 29282.0, + "probability": 0.0922 + }, + { + "start": 29282.0, + "end": 29284.1, + "probability": 0.2238 + }, + { + "start": 29284.81, + "end": 29286.48, + "probability": 0.2609 + }, + { + "start": 29287.22, + "end": 29287.79, + "probability": 0.0881 + }, + { + "start": 29289.28, + "end": 29290.82, + "probability": 0.2076 + }, + { + "start": 29291.0, + "end": 29291.0, + "probability": 0.1575 + }, + { + "start": 29291.0, + "end": 29294.52, + "probability": 0.3112 + }, + { + "start": 29294.52, + "end": 29298.94, + "probability": 0.7574 + }, + { + "start": 29299.08, + "end": 29300.38, + "probability": 0.3921 + }, + { + "start": 29300.38, + "end": 29300.54, + "probability": 0.5169 + }, + { + "start": 29321.4, + "end": 29321.4, + "probability": 0.3706 + }, + { + "start": 29321.4, + "end": 29321.4, + "probability": 0.5064 + }, + { + "start": 29321.4, + "end": 29323.02, + "probability": 0.7503 + }, + { + "start": 29323.44, + "end": 29328.62, + "probability": 0.8665 + }, + { + "start": 29328.74, + "end": 29329.68, + "probability": 0.8844 + }, + { + "start": 29330.4, + "end": 29332.58, + "probability": 0.989 + }, + { + "start": 29332.76, + "end": 29333.98, + "probability": 0.71 + }, + { + "start": 29334.68, + "end": 29337.58, + "probability": 0.982 + }, + { + "start": 29338.58, + "end": 29339.3, + "probability": 0.9845 + }, + { + "start": 29340.08, + "end": 29340.96, + "probability": 0.7494 + }, + { + "start": 29342.16, + "end": 29342.26, + "probability": 0.0006 + }, + { + "start": 29349.9, + "end": 29355.58, + "probability": 0.6993 + }, + { + "start": 29357.32, + "end": 29360.44, + "probability": 0.8599 + }, + { + "start": 29361.16, + "end": 29362.04, + "probability": 0.7178 + }, + { + "start": 29363.62, + "end": 29365.82, + "probability": 0.1628 + }, + { + "start": 29365.84, + "end": 29366.94, + "probability": 0.7725 + }, + { + "start": 29368.62, + "end": 29369.0, + "probability": 0.4388 + }, + { + "start": 29371.94, + "end": 29377.1, + "probability": 0.6913 + }, + { + "start": 29377.42, + "end": 29378.78, + "probability": 0.6201 + }, + { + "start": 29379.06, + "end": 29379.8, + "probability": 0.9917 + }, + { + "start": 29381.72, + "end": 29382.16, + "probability": 0.5414 + }, + { + "start": 29384.28, + "end": 29390.32, + "probability": 0.5826 + }, + { + "start": 29390.7, + "end": 29391.2, + "probability": 0.4965 + }, + { + "start": 29392.38, + "end": 29392.7, + "probability": 0.5683 + }, + { + "start": 29392.92, + "end": 29393.4, + "probability": 0.7323 + }, + { + "start": 29393.66, + "end": 29395.2, + "probability": 0.5688 + }, + { + "start": 29395.88, + "end": 29396.44, + "probability": 0.3554 + }, + { + "start": 29397.68, + "end": 29399.36, + "probability": 0.492 + }, + { + "start": 29399.98, + "end": 29402.18, + "probability": 0.8785 + }, + { + "start": 29404.3, + "end": 29404.4, + "probability": 0.8584 + }, + { + "start": 29404.6, + "end": 29404.84, + "probability": 0.62 + }, + { + "start": 29406.12, + "end": 29407.34, + "probability": 0.8534 + }, + { + "start": 29407.38, + "end": 29409.54, + "probability": 0.5928 + }, + { + "start": 29411.04, + "end": 29412.18, + "probability": 0.807 + }, + { + "start": 29413.18, + "end": 29415.36, + "probability": 0.7649 + }, + { + "start": 29416.2, + "end": 29422.89, + "probability": 0.8817 + }, + { + "start": 29423.04, + "end": 29424.22, + "probability": 0.8474 + }, + { + "start": 29425.04, + "end": 29428.92, + "probability": 0.8922 + }, + { + "start": 29430.4, + "end": 29434.22, + "probability": 0.9849 + }, + { + "start": 29434.84, + "end": 29440.94, + "probability": 0.9512 + }, + { + "start": 29441.52, + "end": 29445.22, + "probability": 0.7799 + }, + { + "start": 29445.34, + "end": 29447.46, + "probability": 0.9756 + }, + { + "start": 29447.98, + "end": 29449.02, + "probability": 0.7671 + }, + { + "start": 29449.56, + "end": 29450.78, + "probability": 0.8904 + }, + { + "start": 29451.86, + "end": 29455.01, + "probability": 0.8685 + }, + { + "start": 29456.24, + "end": 29460.12, + "probability": 0.8183 + }, + { + "start": 29461.22, + "end": 29466.22, + "probability": 0.8858 + }, + { + "start": 29466.98, + "end": 29469.86, + "probability": 0.9729 + }, + { + "start": 29471.08, + "end": 29473.44, + "probability": 0.9806 + }, + { + "start": 29474.12, + "end": 29479.04, + "probability": 0.9743 + }, + { + "start": 29480.08, + "end": 29480.3, + "probability": 0.1665 + }, + { + "start": 29481.1, + "end": 29482.1, + "probability": 0.8445 + }, + { + "start": 29482.82, + "end": 29484.12, + "probability": 0.8488 + }, + { + "start": 29484.66, + "end": 29486.78, + "probability": 0.8153 + }, + { + "start": 29488.32, + "end": 29491.3, + "probability": 0.7491 + }, + { + "start": 29492.32, + "end": 29492.9, + "probability": 0.582 + }, + { + "start": 29494.1, + "end": 29494.64, + "probability": 0.9788 + }, + { + "start": 29495.58, + "end": 29498.86, + "probability": 0.9969 + }, + { + "start": 29499.3, + "end": 29499.72, + "probability": 0.7558 + }, + { + "start": 29500.6, + "end": 29502.86, + "probability": 0.9946 + }, + { + "start": 29503.72, + "end": 29504.66, + "probability": 0.9346 + }, + { + "start": 29505.42, + "end": 29507.02, + "probability": 0.9971 + }, + { + "start": 29507.78, + "end": 29509.42, + "probability": 0.9956 + }, + { + "start": 29509.9, + "end": 29510.58, + "probability": 0.7573 + }, + { + "start": 29511.16, + "end": 29513.56, + "probability": 0.9922 + }, + { + "start": 29514.58, + "end": 29516.14, + "probability": 0.7814 + }, + { + "start": 29516.84, + "end": 29521.12, + "probability": 0.9868 + }, + { + "start": 29521.76, + "end": 29522.39, + "probability": 0.9993 + }, + { + "start": 29523.34, + "end": 29526.86, + "probability": 0.989 + }, + { + "start": 29528.1, + "end": 29528.48, + "probability": 0.8809 + }, + { + "start": 29529.24, + "end": 29530.06, + "probability": 0.9734 + }, + { + "start": 29531.16, + "end": 29532.54, + "probability": 0.8753 + }, + { + "start": 29533.7, + "end": 29536.68, + "probability": 0.8329 + }, + { + "start": 29537.52, + "end": 29538.68, + "probability": 0.8338 + }, + { + "start": 29539.68, + "end": 29542.08, + "probability": 0.9839 + }, + { + "start": 29543.48, + "end": 29544.44, + "probability": 0.2919 + }, + { + "start": 29545.72, + "end": 29546.16, + "probability": 0.9208 + }, + { + "start": 29546.72, + "end": 29548.51, + "probability": 0.7007 + }, + { + "start": 29550.4, + "end": 29552.9, + "probability": 0.9949 + }, + { + "start": 29554.26, + "end": 29559.34, + "probability": 0.9983 + }, + { + "start": 29559.34, + "end": 29562.98, + "probability": 0.9954 + }, + { + "start": 29563.3, + "end": 29564.9, + "probability": 0.9551 + }, + { + "start": 29565.58, + "end": 29566.82, + "probability": 0.7225 + }, + { + "start": 29567.12, + "end": 29570.48, + "probability": 0.9977 + }, + { + "start": 29571.02, + "end": 29577.54, + "probability": 0.9969 + }, + { + "start": 29578.46, + "end": 29578.8, + "probability": 0.6865 + }, + { + "start": 29580.06, + "end": 29582.28, + "probability": 0.991 + }, + { + "start": 29582.9, + "end": 29586.0, + "probability": 0.8013 + }, + { + "start": 29586.98, + "end": 29591.08, + "probability": 0.9792 + }, + { + "start": 29592.8, + "end": 29597.4, + "probability": 0.9936 + }, + { + "start": 29598.48, + "end": 29600.02, + "probability": 0.8901 + }, + { + "start": 29600.86, + "end": 29602.28, + "probability": 0.7581 + }, + { + "start": 29603.46, + "end": 29607.4, + "probability": 0.9989 + }, + { + "start": 29607.94, + "end": 29610.02, + "probability": 0.9894 + }, + { + "start": 29611.44, + "end": 29612.18, + "probability": 0.9971 + }, + { + "start": 29612.96, + "end": 29615.48, + "probability": 0.9125 + }, + { + "start": 29615.74, + "end": 29616.5, + "probability": 0.9883 + }, + { + "start": 29617.42, + "end": 29620.16, + "probability": 0.9918 + }, + { + "start": 29620.74, + "end": 29621.04, + "probability": 0.9425 + }, + { + "start": 29622.08, + "end": 29625.86, + "probability": 0.963 + }, + { + "start": 29627.16, + "end": 29629.0, + "probability": 0.7229 + }, + { + "start": 29629.76, + "end": 29630.66, + "probability": 0.8575 + }, + { + "start": 29631.22, + "end": 29634.62, + "probability": 0.9879 + }, + { + "start": 29635.72, + "end": 29641.84, + "probability": 0.9951 + }, + { + "start": 29642.02, + "end": 29644.04, + "probability": 0.7678 + }, + { + "start": 29644.58, + "end": 29645.54, + "probability": 0.9512 + }, + { + "start": 29646.24, + "end": 29650.24, + "probability": 0.9951 + }, + { + "start": 29650.8, + "end": 29651.4, + "probability": 0.7847 + }, + { + "start": 29651.84, + "end": 29656.52, + "probability": 0.9883 + }, + { + "start": 29656.52, + "end": 29659.2, + "probability": 0.9972 + }, + { + "start": 29659.7, + "end": 29661.96, + "probability": 0.9971 + }, + { + "start": 29662.58, + "end": 29667.62, + "probability": 0.9575 + }, + { + "start": 29667.62, + "end": 29671.66, + "probability": 0.9982 + }, + { + "start": 29672.62, + "end": 29675.6, + "probability": 0.9956 + }, + { + "start": 29676.42, + "end": 29678.59, + "probability": 0.9946 + }, + { + "start": 29679.14, + "end": 29683.1, + "probability": 0.9858 + }, + { + "start": 29683.1, + "end": 29686.26, + "probability": 0.9952 + }, + { + "start": 29687.86, + "end": 29690.02, + "probability": 0.9373 + }, + { + "start": 29690.76, + "end": 29696.04, + "probability": 0.717 + }, + { + "start": 29696.52, + "end": 29702.82, + "probability": 0.9907 + }, + { + "start": 29702.94, + "end": 29706.94, + "probability": 0.9933 + }, + { + "start": 29708.46, + "end": 29709.52, + "probability": 0.837 + }, + { + "start": 29710.1, + "end": 29711.28, + "probability": 0.8308 + }, + { + "start": 29711.92, + "end": 29714.66, + "probability": 0.9985 + }, + { + "start": 29715.42, + "end": 29716.28, + "probability": 0.9896 + }, + { + "start": 29717.0, + "end": 29718.46, + "probability": 0.9777 + }, + { + "start": 29719.28, + "end": 29719.46, + "probability": 0.9055 + }, + { + "start": 29720.12, + "end": 29721.34, + "probability": 0.89 + }, + { + "start": 29722.04, + "end": 29722.28, + "probability": 0.8693 + }, + { + "start": 29722.98, + "end": 29723.96, + "probability": 0.869 + }, + { + "start": 29724.54, + "end": 29732.92, + "probability": 0.9922 + }, + { + "start": 29733.46, + "end": 29738.12, + "probability": 0.9982 + }, + { + "start": 29738.12, + "end": 29741.04, + "probability": 0.9963 + }, + { + "start": 29741.9, + "end": 29744.18, + "probability": 0.9912 + }, + { + "start": 29744.8, + "end": 29749.02, + "probability": 0.9948 + }, + { + "start": 29749.64, + "end": 29751.0, + "probability": 0.999 + }, + { + "start": 29751.56, + "end": 29751.82, + "probability": 0.758 + }, + { + "start": 29752.86, + "end": 29754.72, + "probability": 0.9143 + }, + { + "start": 29755.56, + "end": 29755.74, + "probability": 0.7036 + }, + { + "start": 29756.26, + "end": 29756.56, + "probability": 0.9797 + }, + { + "start": 29757.16, + "end": 29757.8, + "probability": 0.7901 + }, + { + "start": 29759.2, + "end": 29761.94, + "probability": 0.9363 + }, + { + "start": 29762.34, + "end": 29766.94, + "probability": 0.9786 + }, + { + "start": 29767.38, + "end": 29767.7, + "probability": 0.7905 + }, + { + "start": 29769.2, + "end": 29771.04, + "probability": 0.3279 + }, + { + "start": 29774.32, + "end": 29776.2, + "probability": 0.8787 + }, + { + "start": 29776.46, + "end": 29778.5, + "probability": 0.8362 + }, + { + "start": 29779.08, + "end": 29779.9, + "probability": 0.8184 + }, + { + "start": 29782.46, + "end": 29784.18, + "probability": 0.9753 + }, + { + "start": 29784.74, + "end": 29785.26, + "probability": 0.7333 + }, + { + "start": 29786.76, + "end": 29787.22, + "probability": 0.1433 + }, + { + "start": 29788.0, + "end": 29788.4, + "probability": 0.7577 + }, + { + "start": 29789.78, + "end": 29790.6, + "probability": 0.42 + }, + { + "start": 29805.4, + "end": 29807.06, + "probability": 0.7514 + }, + { + "start": 29808.74, + "end": 29811.0, + "probability": 0.7951 + }, + { + "start": 29812.52, + "end": 29813.88, + "probability": 0.9349 + }, + { + "start": 29815.84, + "end": 29817.74, + "probability": 0.838 + }, + { + "start": 29819.22, + "end": 29821.64, + "probability": 0.7947 + }, + { + "start": 29822.7, + "end": 29823.5, + "probability": 0.7234 + }, + { + "start": 29824.9, + "end": 29825.48, + "probability": 0.9156 + }, + { + "start": 29826.92, + "end": 29828.44, + "probability": 0.6776 + }, + { + "start": 29829.14, + "end": 29831.5, + "probability": 0.9455 + }, + { + "start": 29832.26, + "end": 29834.32, + "probability": 0.9886 + }, + { + "start": 29835.3, + "end": 29836.24, + "probability": 0.9042 + }, + { + "start": 29837.56, + "end": 29841.72, + "probability": 0.9985 + }, + { + "start": 29842.96, + "end": 29847.14, + "probability": 0.9507 + }, + { + "start": 29849.26, + "end": 29852.4, + "probability": 0.9852 + }, + { + "start": 29852.46, + "end": 29854.36, + "probability": 0.9653 + }, + { + "start": 29855.4, + "end": 29858.96, + "probability": 0.9838 + }, + { + "start": 29859.18, + "end": 29859.92, + "probability": 0.916 + }, + { + "start": 29861.18, + "end": 29864.2, + "probability": 0.9799 + }, + { + "start": 29864.82, + "end": 29865.54, + "probability": 0.5773 + }, + { + "start": 29866.48, + "end": 29867.32, + "probability": 0.942 + }, + { + "start": 29868.14, + "end": 29870.78, + "probability": 0.9801 + }, + { + "start": 29871.48, + "end": 29872.54, + "probability": 0.7962 + }, + { + "start": 29872.72, + "end": 29874.76, + "probability": 0.7763 + }, + { + "start": 29875.62, + "end": 29876.54, + "probability": 0.9954 + }, + { + "start": 29877.06, + "end": 29877.32, + "probability": 0.9951 + }, + { + "start": 29878.24, + "end": 29878.48, + "probability": 0.9202 + }, + { + "start": 29878.66, + "end": 29881.58, + "probability": 0.9203 + }, + { + "start": 29882.84, + "end": 29884.4, + "probability": 0.613 + }, + { + "start": 29885.16, + "end": 29885.82, + "probability": 0.9813 + }, + { + "start": 29886.56, + "end": 29887.42, + "probability": 0.8516 + }, + { + "start": 29887.94, + "end": 29889.22, + "probability": 0.9969 + }, + { + "start": 29889.28, + "end": 29890.2, + "probability": 0.9951 + }, + { + "start": 29890.74, + "end": 29890.92, + "probability": 0.9972 + }, + { + "start": 29892.06, + "end": 29892.22, + "probability": 0.9988 + }, + { + "start": 29892.74, + "end": 29893.68, + "probability": 0.9982 + }, + { + "start": 29894.54, + "end": 29895.54, + "probability": 0.9984 + }, + { + "start": 29896.08, + "end": 29896.34, + "probability": 0.8079 + }, + { + "start": 29897.0, + "end": 29898.24, + "probability": 0.9006 + }, + { + "start": 29899.02, + "end": 29899.43, + "probability": 0.8568 + }, + { + "start": 29899.74, + "end": 29901.2, + "probability": 0.7444 + }, + { + "start": 29901.32, + "end": 29904.2, + "probability": 0.905 + }, + { + "start": 29904.88, + "end": 29906.4, + "probability": 0.9873 + }, + { + "start": 29907.14, + "end": 29912.26, + "probability": 0.9967 + }, + { + "start": 29912.46, + "end": 29913.74, + "probability": 0.9912 + }, + { + "start": 29914.32, + "end": 29915.58, + "probability": 0.9304 + }, + { + "start": 29916.0, + "end": 29917.98, + "probability": 0.6602 + }, + { + "start": 29918.46, + "end": 29919.02, + "probability": 0.7727 + }, + { + "start": 29919.1, + "end": 29919.2, + "probability": 0.9543 + }, + { + "start": 29919.52, + "end": 29923.56, + "probability": 0.9028 + }, + { + "start": 29924.26, + "end": 29926.24, + "probability": 0.9432 + }, + { + "start": 29926.84, + "end": 29927.2, + "probability": 0.9845 + }, + { + "start": 29927.98, + "end": 29929.3, + "probability": 0.7732 + }, + { + "start": 29929.4, + "end": 29931.16, + "probability": 0.9627 + }, + { + "start": 29932.22, + "end": 29932.81, + "probability": 0.6236 + }, + { + "start": 29933.52, + "end": 29938.34, + "probability": 0.9698 + }, + { + "start": 29938.36, + "end": 29940.2, + "probability": 0.8094 + }, + { + "start": 29940.9, + "end": 29942.12, + "probability": 0.9469 + }, + { + "start": 29942.9, + "end": 29945.84, + "probability": 0.9051 + }, + { + "start": 29945.94, + "end": 29946.84, + "probability": 0.981 + }, + { + "start": 29947.82, + "end": 29950.24, + "probability": 0.772 + }, + { + "start": 29950.94, + "end": 29952.94, + "probability": 0.9187 + }, + { + "start": 29953.3, + "end": 29953.91, + "probability": 0.9859 + }, + { + "start": 29954.86, + "end": 29956.92, + "probability": 0.903 + }, + { + "start": 29956.92, + "end": 29959.16, + "probability": 0.9899 + }, + { + "start": 29960.18, + "end": 29961.86, + "probability": 0.9979 + }, + { + "start": 29962.52, + "end": 29967.44, + "probability": 0.9952 + }, + { + "start": 29967.98, + "end": 29969.8, + "probability": 0.9976 + }, + { + "start": 29970.88, + "end": 29971.2, + "probability": 0.9668 + }, + { + "start": 29971.76, + "end": 29976.76, + "probability": 0.9424 + }, + { + "start": 29979.3, + "end": 29982.54, + "probability": 0.9711 + }, + { + "start": 29983.3, + "end": 29985.24, + "probability": 0.6383 + }, + { + "start": 29985.62, + "end": 29987.38, + "probability": 0.9422 + }, + { + "start": 29988.64, + "end": 29990.8, + "probability": 0.9678 + }, + { + "start": 29991.42, + "end": 29992.46, + "probability": 0.7208 + }, + { + "start": 29992.52, + "end": 29995.08, + "probability": 0.6252 + }, + { + "start": 29996.49, + "end": 29999.18, + "probability": 0.7393 + }, + { + "start": 29999.34, + "end": 30001.84, + "probability": 0.7366 + }, + { + "start": 30002.0, + "end": 30004.88, + "probability": 0.9575 + }, + { + "start": 30005.64, + "end": 30007.0, + "probability": 0.939 + }, + { + "start": 30008.08, + "end": 30011.3, + "probability": 0.9316 + }, + { + "start": 30011.96, + "end": 30015.7, + "probability": 0.9058 + }, + { + "start": 30015.7, + "end": 30020.92, + "probability": 0.9924 + }, + { + "start": 30021.4, + "end": 30025.08, + "probability": 0.9712 + }, + { + "start": 30025.08, + "end": 30028.08, + "probability": 0.9569 + }, + { + "start": 30028.66, + "end": 30032.81, + "probability": 0.9789 + }, + { + "start": 30033.04, + "end": 30035.68, + "probability": 0.9824 + }, + { + "start": 30035.8, + "end": 30039.22, + "probability": 0.7882 + }, + { + "start": 30039.54, + "end": 30040.26, + "probability": 0.8631 + }, + { + "start": 30040.7, + "end": 30043.54, + "probability": 0.9893 + }, + { + "start": 30044.24, + "end": 30046.88, + "probability": 0.9648 + }, + { + "start": 30048.56, + "end": 30050.74, + "probability": 0.6663 + }, + { + "start": 30051.4, + "end": 30054.28, + "probability": 0.9951 + }, + { + "start": 30054.36, + "end": 30054.72, + "probability": 0.976 + }, + { + "start": 30054.98, + "end": 30057.42, + "probability": 0.9912 + }, + { + "start": 30058.92, + "end": 30059.4, + "probability": 0.9032 + }, + { + "start": 30059.92, + "end": 30064.66, + "probability": 0.9835 + }, + { + "start": 30064.72, + "end": 30066.2, + "probability": 0.8218 + }, + { + "start": 30066.52, + "end": 30068.86, + "probability": 0.9975 + }, + { + "start": 30069.4, + "end": 30070.8, + "probability": 0.8649 + }, + { + "start": 30071.56, + "end": 30073.36, + "probability": 0.7795 + }, + { + "start": 30074.0, + "end": 30076.86, + "probability": 0.9912 + }, + { + "start": 30077.3, + "end": 30079.02, + "probability": 0.9172 + }, + { + "start": 30079.24, + "end": 30080.36, + "probability": 0.9802 + }, + { + "start": 30081.06, + "end": 30084.6, + "probability": 0.9896 + }, + { + "start": 30085.56, + "end": 30087.88, + "probability": 0.9417 + }, + { + "start": 30088.52, + "end": 30091.6, + "probability": 0.9492 + }, + { + "start": 30091.66, + "end": 30092.91, + "probability": 0.9831 + }, + { + "start": 30093.48, + "end": 30095.82, + "probability": 0.9604 + }, + { + "start": 30095.82, + "end": 30098.42, + "probability": 0.9216 + }, + { + "start": 30098.7, + "end": 30101.6, + "probability": 0.9834 + }, + { + "start": 30102.02, + "end": 30103.06, + "probability": 0.5147 + }, + { + "start": 30103.2, + "end": 30105.16, + "probability": 0.6982 + }, + { + "start": 30105.24, + "end": 30107.0, + "probability": 0.8701 + }, + { + "start": 30107.56, + "end": 30108.88, + "probability": 0.6527 + }, + { + "start": 30109.52, + "end": 30110.04, + "probability": 0.8466 + }, + { + "start": 30110.14, + "end": 30112.36, + "probability": 0.9244 + }, + { + "start": 30112.46, + "end": 30113.52, + "probability": 0.9411 + }, + { + "start": 30113.98, + "end": 30115.1, + "probability": 0.9426 + }, + { + "start": 30116.16, + "end": 30118.62, + "probability": 0.9958 + }, + { + "start": 30119.22, + "end": 30121.88, + "probability": 0.9325 + }, + { + "start": 30122.36, + "end": 30123.58, + "probability": 0.5628 + }, + { + "start": 30123.96, + "end": 30127.66, + "probability": 0.8954 + }, + { + "start": 30127.66, + "end": 30131.6, + "probability": 0.9783 + }, + { + "start": 30131.6, + "end": 30134.92, + "probability": 0.8696 + }, + { + "start": 30135.54, + "end": 30137.6, + "probability": 0.9277 + }, + { + "start": 30138.22, + "end": 30141.74, + "probability": 0.9915 + }, + { + "start": 30142.26, + "end": 30143.94, + "probability": 0.8622 + }, + { + "start": 30144.76, + "end": 30149.9, + "probability": 0.955 + }, + { + "start": 30150.72, + "end": 30152.68, + "probability": 0.8455 + }, + { + "start": 30152.8, + "end": 30156.32, + "probability": 0.8263 + }, + { + "start": 30158.72, + "end": 30160.24, + "probability": 0.1785 + }, + { + "start": 30160.5, + "end": 30163.02, + "probability": 0.9406 + }, + { + "start": 30163.02, + "end": 30167.26, + "probability": 0.8413 + }, + { + "start": 30167.4, + "end": 30170.1, + "probability": 0.9021 + }, + { + "start": 30170.1, + "end": 30171.44, + "probability": 0.1057 + }, + { + "start": 30171.84, + "end": 30175.42, + "probability": 0.9678 + }, + { + "start": 30176.32, + "end": 30183.7, + "probability": 0.8411 + }, + { + "start": 30185.4, + "end": 30191.66, + "probability": 0.918 + }, + { + "start": 30191.94, + "end": 30192.52, + "probability": 0.9825 + }, + { + "start": 30192.92, + "end": 30194.66, + "probability": 0.7506 + }, + { + "start": 30195.16, + "end": 30196.88, + "probability": 0.9865 + }, + { + "start": 30197.58, + "end": 30199.18, + "probability": 0.7126 + }, + { + "start": 30199.32, + "end": 30202.54, + "probability": 0.9828 + }, + { + "start": 30202.54, + "end": 30204.8, + "probability": 0.8785 + }, + { + "start": 30205.34, + "end": 30206.78, + "probability": 0.9407 + }, + { + "start": 30207.48, + "end": 30209.14, + "probability": 0.9604 + }, + { + "start": 30210.04, + "end": 30213.32, + "probability": 0.9279 + }, + { + "start": 30213.98, + "end": 30214.9, + "probability": 0.9804 + }, + { + "start": 30215.18, + "end": 30220.78, + "probability": 0.8695 + }, + { + "start": 30221.61, + "end": 30224.86, + "probability": 0.9744 + }, + { + "start": 30225.26, + "end": 30226.96, + "probability": 0.9884 + }, + { + "start": 30227.26, + "end": 30229.72, + "probability": 0.9943 + }, + { + "start": 30230.52, + "end": 30234.34, + "probability": 0.8975 + }, + { + "start": 30235.1, + "end": 30236.94, + "probability": 0.9535 + }, + { + "start": 30237.06, + "end": 30238.26, + "probability": 0.9991 + }, + { + "start": 30238.88, + "end": 30241.6, + "probability": 0.8076 + }, + { + "start": 30242.12, + "end": 30243.48, + "probability": 0.7583 + }, + { + "start": 30243.94, + "end": 30244.44, + "probability": 0.8462 + }, + { + "start": 30244.94, + "end": 30246.54, + "probability": 0.9787 + }, + { + "start": 30246.68, + "end": 30247.76, + "probability": 0.9675 + }, + { + "start": 30247.94, + "end": 30249.18, + "probability": 0.9971 + }, + { + "start": 30249.98, + "end": 30250.98, + "probability": 0.8934 + }, + { + "start": 30251.68, + "end": 30257.66, + "probability": 0.9949 + }, + { + "start": 30258.5, + "end": 30260.6, + "probability": 0.9444 + }, + { + "start": 30260.84, + "end": 30261.94, + "probability": 0.998 + }, + { + "start": 30262.96, + "end": 30264.31, + "probability": 0.9793 + }, + { + "start": 30265.28, + "end": 30265.8, + "probability": 0.8227 + }, + { + "start": 30266.02, + "end": 30266.97, + "probability": 0.9881 + }, + { + "start": 30267.46, + "end": 30270.56, + "probability": 0.876 + }, + { + "start": 30271.16, + "end": 30274.96, + "probability": 0.995 + }, + { + "start": 30275.64, + "end": 30278.46, + "probability": 0.9692 + }, + { + "start": 30278.5, + "end": 30279.94, + "probability": 0.9778 + }, + { + "start": 30280.46, + "end": 30280.46, + "probability": 0.6372 + }, + { + "start": 30281.3, + "end": 30282.68, + "probability": 0.0661 + }, + { + "start": 30283.49, + "end": 30285.74, + "probability": 0.618 + }, + { + "start": 30285.94, + "end": 30286.04, + "probability": 0.0834 + }, + { + "start": 30286.18, + "end": 30289.1, + "probability": 0.3546 + }, + { + "start": 30290.22, + "end": 30292.16, + "probability": 0.9495 + }, + { + "start": 30292.26, + "end": 30295.66, + "probability": 0.9914 + }, + { + "start": 30296.38, + "end": 30297.38, + "probability": 0.7493 + }, + { + "start": 30302.6, + "end": 30302.72, + "probability": 0.189 + }, + { + "start": 30302.72, + "end": 30302.72, + "probability": 0.1273 + }, + { + "start": 30302.72, + "end": 30303.68, + "probability": 0.8882 + }, + { + "start": 30303.88, + "end": 30304.5, + "probability": 0.7201 + }, + { + "start": 30304.8, + "end": 30305.58, + "probability": 0.9847 + }, + { + "start": 30308.66, + "end": 30310.5, + "probability": 0.3292 + }, + { + "start": 30310.5, + "end": 30310.5, + "probability": 0.0854 + }, + { + "start": 30310.5, + "end": 30310.5, + "probability": 0.0191 + }, + { + "start": 30310.5, + "end": 30312.32, + "probability": 0.6354 + }, + { + "start": 30312.44, + "end": 30314.52, + "probability": 0.5754 + }, + { + "start": 30314.58, + "end": 30314.98, + "probability": 0.4233 + }, + { + "start": 30315.1, + "end": 30316.32, + "probability": 0.7854 + }, + { + "start": 30316.6, + "end": 30317.16, + "probability": 0.8765 + }, + { + "start": 30319.18, + "end": 30322.78, + "probability": 0.8752 + }, + { + "start": 30323.46, + "end": 30326.24, + "probability": 0.7325 + }, + { + "start": 30327.18, + "end": 30331.44, + "probability": 0.9376 + }, + { + "start": 30332.62, + "end": 30338.02, + "probability": 0.7738 + }, + { + "start": 30338.54, + "end": 30338.68, + "probability": 0.1882 + } + ], + "segments_count": 10927, + "words_count": 51427, + "avg_words_per_segment": 4.7064, + "avg_segment_duration": 1.6502, + "avg_words_per_minute": 101.6515, + "plenum_id": "102693", + "duration": 30354.88, + "title": null, + "plenum_date": "2021-12-15" +} \ No newline at end of file