diff --git "a/123026/metadata.json" "b/123026/metadata.json" new file mode 100644--- /dev/null +++ "b/123026/metadata.json" @@ -0,0 +1,26297 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "123026", + "quality_score": 0.9065, + "per_segment_quality_scores": [ + { + "start": 30.1, + "end": 30.3, + "probability": 0.1522 + }, + { + "start": 30.3, + "end": 33.82, + "probability": 0.533 + }, + { + "start": 33.9, + "end": 37.42, + "probability": 0.8914 + }, + { + "start": 37.44, + "end": 37.9, + "probability": 0.9339 + }, + { + "start": 38.66, + "end": 39.78, + "probability": 0.8672 + }, + { + "start": 39.94, + "end": 41.04, + "probability": 0.778 + }, + { + "start": 41.12, + "end": 42.52, + "probability": 0.9548 + }, + { + "start": 42.74, + "end": 43.72, + "probability": 0.9164 + }, + { + "start": 43.9, + "end": 48.58, + "probability": 0.7467 + }, + { + "start": 49.34, + "end": 52.34, + "probability": 0.213 + }, + { + "start": 53.26, + "end": 56.02, + "probability": 0.3574 + }, + { + "start": 57.2, + "end": 59.4, + "probability": 0.0179 + }, + { + "start": 61.52, + "end": 63.76, + "probability": 0.0197 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 126.0, + "end": 126.0, + "probability": 0.0 + }, + { + "start": 130.2, + "end": 133.78, + "probability": 0.0641 + }, + { + "start": 133.88, + "end": 134.16, + "probability": 0.104 + }, + { + "start": 134.16, + "end": 134.36, + "probability": 0.1105 + }, + { + "start": 147.08, + "end": 148.54, + "probability": 0.0308 + }, + { + "start": 148.54, + "end": 148.96, + "probability": 0.0313 + }, + { + "start": 148.96, + "end": 149.14, + "probability": 0.2836 + }, + { + "start": 150.02, + "end": 150.96, + "probability": 0.5646 + }, + { + "start": 150.96, + "end": 152.94, + "probability": 0.0414 + }, + { + "start": 155.3, + "end": 155.66, + "probability": 0.202 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.0, + "end": 246.0, + "probability": 0.0 + }, + { + "start": 246.14, + "end": 246.44, + "probability": 0.0163 + }, + { + "start": 247.72, + "end": 248.04, + "probability": 0.7515 + }, + { + "start": 248.16, + "end": 250.52, + "probability": 0.9722 + }, + { + "start": 250.82, + "end": 252.62, + "probability": 0.9514 + }, + { + "start": 253.62, + "end": 255.86, + "probability": 0.9512 + }, + { + "start": 256.76, + "end": 258.08, + "probability": 0.9417 + }, + { + "start": 258.5, + "end": 261.7, + "probability": 0.9707 + }, + { + "start": 262.08, + "end": 262.9, + "probability": 0.6023 + }, + { + "start": 263.54, + "end": 265.58, + "probability": 0.999 + }, + { + "start": 265.58, + "end": 268.44, + "probability": 0.9906 + }, + { + "start": 269.04, + "end": 270.1, + "probability": 0.9835 + }, + { + "start": 270.24, + "end": 271.6, + "probability": 0.9914 + }, + { + "start": 271.62, + "end": 274.22, + "probability": 0.9855 + }, + { + "start": 274.3, + "end": 275.44, + "probability": 0.6281 + }, + { + "start": 276.7, + "end": 277.96, + "probability": 0.8479 + }, + { + "start": 278.18, + "end": 281.7, + "probability": 0.9653 + }, + { + "start": 281.8, + "end": 286.28, + "probability": 0.9976 + }, + { + "start": 287.08, + "end": 288.98, + "probability": 0.9509 + }, + { + "start": 289.58, + "end": 289.9, + "probability": 0.6775 + }, + { + "start": 290.0, + "end": 293.62, + "probability": 0.9984 + }, + { + "start": 293.66, + "end": 293.96, + "probability": 0.5932 + }, + { + "start": 294.72, + "end": 296.04, + "probability": 0.7617 + }, + { + "start": 296.2, + "end": 297.74, + "probability": 0.9764 + }, + { + "start": 297.78, + "end": 298.32, + "probability": 0.7609 + }, + { + "start": 298.4, + "end": 299.78, + "probability": 0.9855 + }, + { + "start": 302.08, + "end": 302.62, + "probability": 0.8967 + }, + { + "start": 304.24, + "end": 306.26, + "probability": 0.641 + }, + { + "start": 307.18, + "end": 310.8, + "probability": 0.856 + }, + { + "start": 310.8, + "end": 314.0, + "probability": 0.9146 + }, + { + "start": 314.96, + "end": 318.16, + "probability": 0.6803 + }, + { + "start": 318.8, + "end": 321.58, + "probability": 0.9293 + }, + { + "start": 322.62, + "end": 323.24, + "probability": 0.6446 + }, + { + "start": 323.4, + "end": 328.48, + "probability": 0.9819 + }, + { + "start": 329.14, + "end": 332.74, + "probability": 0.9801 + }, + { + "start": 333.84, + "end": 336.52, + "probability": 0.9358 + }, + { + "start": 337.48, + "end": 339.2, + "probability": 0.9543 + }, + { + "start": 339.44, + "end": 341.5, + "probability": 0.9535 + }, + { + "start": 342.46, + "end": 344.92, + "probability": 0.9593 + }, + { + "start": 345.88, + "end": 348.06, + "probability": 0.8613 + }, + { + "start": 348.14, + "end": 349.4, + "probability": 0.9436 + }, + { + "start": 349.82, + "end": 350.58, + "probability": 0.9314 + }, + { + "start": 350.98, + "end": 352.08, + "probability": 0.8937 + }, + { + "start": 352.5, + "end": 355.76, + "probability": 0.8252 + }, + { + "start": 356.14, + "end": 356.48, + "probability": 0.6283 + }, + { + "start": 357.0, + "end": 360.2, + "probability": 0.9318 + }, + { + "start": 360.54, + "end": 360.86, + "probability": 0.5921 + }, + { + "start": 361.18, + "end": 361.98, + "probability": 0.4556 + }, + { + "start": 362.0, + "end": 363.66, + "probability": 0.9461 + }, + { + "start": 363.8, + "end": 366.76, + "probability": 0.7625 + }, + { + "start": 367.6, + "end": 368.32, + "probability": 0.3428 + }, + { + "start": 376.04, + "end": 376.32, + "probability": 0.119 + }, + { + "start": 377.66, + "end": 380.22, + "probability": 0.6513 + }, + { + "start": 380.42, + "end": 381.71, + "probability": 0.5554 + }, + { + "start": 381.92, + "end": 383.48, + "probability": 0.8075 + }, + { + "start": 385.94, + "end": 387.2, + "probability": 0.6862 + }, + { + "start": 388.94, + "end": 391.06, + "probability": 0.9977 + }, + { + "start": 391.28, + "end": 393.08, + "probability": 0.585 + }, + { + "start": 393.22, + "end": 396.56, + "probability": 0.9843 + }, + { + "start": 397.11, + "end": 400.6, + "probability": 0.9979 + }, + { + "start": 401.22, + "end": 404.66, + "probability": 0.975 + }, + { + "start": 405.18, + "end": 409.18, + "probability": 0.9497 + }, + { + "start": 409.6, + "end": 413.48, + "probability": 0.8913 + }, + { + "start": 413.74, + "end": 418.54, + "probability": 0.9955 + }, + { + "start": 419.16, + "end": 420.2, + "probability": 0.8414 + }, + { + "start": 420.62, + "end": 421.04, + "probability": 0.8861 + }, + { + "start": 421.12, + "end": 423.08, + "probability": 0.9877 + }, + { + "start": 423.32, + "end": 425.88, + "probability": 0.9211 + }, + { + "start": 426.34, + "end": 429.44, + "probability": 0.9973 + }, + { + "start": 429.98, + "end": 433.73, + "probability": 0.9955 + }, + { + "start": 433.9, + "end": 436.28, + "probability": 0.9908 + }, + { + "start": 436.76, + "end": 437.5, + "probability": 0.9893 + }, + { + "start": 438.32, + "end": 439.26, + "probability": 0.8351 + }, + { + "start": 439.82, + "end": 441.9, + "probability": 0.9968 + }, + { + "start": 442.32, + "end": 446.3, + "probability": 0.9966 + }, + { + "start": 446.66, + "end": 447.94, + "probability": 0.9271 + }, + { + "start": 448.36, + "end": 450.48, + "probability": 0.9502 + }, + { + "start": 451.12, + "end": 452.68, + "probability": 0.9729 + }, + { + "start": 453.18, + "end": 455.54, + "probability": 0.9758 + }, + { + "start": 455.9, + "end": 456.52, + "probability": 0.8942 + }, + { + "start": 456.8, + "end": 457.74, + "probability": 0.7259 + }, + { + "start": 458.2, + "end": 459.08, + "probability": 0.8557 + }, + { + "start": 459.54, + "end": 459.92, + "probability": 0.8624 + }, + { + "start": 460.26, + "end": 460.8, + "probability": 0.9257 + }, + { + "start": 460.88, + "end": 463.0, + "probability": 0.8247 + }, + { + "start": 463.28, + "end": 464.9, + "probability": 0.9547 + }, + { + "start": 465.32, + "end": 465.8, + "probability": 0.9163 + }, + { + "start": 466.22, + "end": 467.1, + "probability": 0.7585 + }, + { + "start": 467.1, + "end": 468.86, + "probability": 0.9764 + }, + { + "start": 469.54, + "end": 470.54, + "probability": 0.3692 + }, + { + "start": 470.7, + "end": 472.94, + "probability": 0.8537 + }, + { + "start": 473.42, + "end": 475.78, + "probability": 0.7664 + }, + { + "start": 477.1, + "end": 479.94, + "probability": 0.9338 + }, + { + "start": 480.22, + "end": 480.86, + "probability": 0.6382 + }, + { + "start": 481.0, + "end": 481.88, + "probability": 0.6721 + }, + { + "start": 482.0, + "end": 484.86, + "probability": 0.7779 + }, + { + "start": 486.1, + "end": 490.04, + "probability": 0.7147 + }, + { + "start": 490.96, + "end": 495.8, + "probability": 0.931 + }, + { + "start": 497.18, + "end": 500.32, + "probability": 0.882 + }, + { + "start": 500.88, + "end": 503.76, + "probability": 0.8879 + }, + { + "start": 505.04, + "end": 508.22, + "probability": 0.6589 + }, + { + "start": 508.32, + "end": 510.52, + "probability": 0.8442 + }, + { + "start": 511.32, + "end": 512.48, + "probability": 0.7562 + }, + { + "start": 512.6, + "end": 514.24, + "probability": 0.8012 + }, + { + "start": 514.5, + "end": 515.56, + "probability": 0.7578 + }, + { + "start": 515.68, + "end": 516.22, + "probability": 0.5351 + }, + { + "start": 516.82, + "end": 519.66, + "probability": 0.9196 + }, + { + "start": 520.42, + "end": 523.3, + "probability": 0.9601 + }, + { + "start": 523.92, + "end": 525.28, + "probability": 0.7115 + }, + { + "start": 525.96, + "end": 526.52, + "probability": 0.5976 + }, + { + "start": 526.64, + "end": 527.66, + "probability": 0.7767 + }, + { + "start": 527.92, + "end": 528.54, + "probability": 0.923 + }, + { + "start": 528.6, + "end": 529.1, + "probability": 0.9044 + }, + { + "start": 529.1, + "end": 532.4, + "probability": 0.9844 + }, + { + "start": 532.78, + "end": 533.6, + "probability": 0.8602 + }, + { + "start": 534.83, + "end": 539.32, + "probability": 0.9885 + }, + { + "start": 539.46, + "end": 539.64, + "probability": 0.4409 + }, + { + "start": 540.24, + "end": 540.74, + "probability": 0.6547 + }, + { + "start": 540.8, + "end": 542.58, + "probability": 0.9164 + }, + { + "start": 542.64, + "end": 543.18, + "probability": 0.5873 + }, + { + "start": 543.2, + "end": 544.72, + "probability": 0.9506 + }, + { + "start": 546.06, + "end": 546.62, + "probability": 0.9531 + }, + { + "start": 551.72, + "end": 553.16, + "probability": 0.615 + }, + { + "start": 553.32, + "end": 554.04, + "probability": 0.8988 + }, + { + "start": 554.14, + "end": 555.36, + "probability": 0.8454 + }, + { + "start": 555.82, + "end": 556.96, + "probability": 0.9012 + }, + { + "start": 557.1, + "end": 558.38, + "probability": 0.9706 + }, + { + "start": 558.44, + "end": 558.98, + "probability": 0.9595 + }, + { + "start": 559.1, + "end": 560.74, + "probability": 0.9933 + }, + { + "start": 561.92, + "end": 562.32, + "probability": 0.8297 + }, + { + "start": 562.38, + "end": 564.38, + "probability": 0.936 + }, + { + "start": 565.51, + "end": 570.42, + "probability": 0.9942 + }, + { + "start": 571.32, + "end": 576.02, + "probability": 0.9971 + }, + { + "start": 576.46, + "end": 578.32, + "probability": 0.9496 + }, + { + "start": 579.26, + "end": 581.64, + "probability": 0.5167 + }, + { + "start": 582.58, + "end": 583.76, + "probability": 0.9951 + }, + { + "start": 584.02, + "end": 588.28, + "probability": 0.9456 + }, + { + "start": 588.74, + "end": 590.76, + "probability": 0.9951 + }, + { + "start": 590.98, + "end": 595.74, + "probability": 0.999 + }, + { + "start": 596.46, + "end": 599.24, + "probability": 0.9844 + }, + { + "start": 600.3, + "end": 602.8, + "probability": 0.7295 + }, + { + "start": 602.8, + "end": 607.0, + "probability": 0.9932 + }, + { + "start": 607.62, + "end": 610.32, + "probability": 0.9919 + }, + { + "start": 610.72, + "end": 612.54, + "probability": 0.9184 + }, + { + "start": 612.7, + "end": 616.78, + "probability": 0.9989 + }, + { + "start": 616.92, + "end": 617.92, + "probability": 0.8865 + }, + { + "start": 618.44, + "end": 621.6, + "probability": 0.9637 + }, + { + "start": 622.16, + "end": 624.26, + "probability": 0.89 + }, + { + "start": 624.66, + "end": 626.38, + "probability": 0.9868 + }, + { + "start": 626.52, + "end": 627.12, + "probability": 0.6844 + }, + { + "start": 627.18, + "end": 627.62, + "probability": 0.8849 + }, + { + "start": 628.4, + "end": 632.04, + "probability": 0.9912 + }, + { + "start": 633.02, + "end": 636.66, + "probability": 0.999 + }, + { + "start": 636.8, + "end": 637.22, + "probability": 0.9894 + }, + { + "start": 638.04, + "end": 638.6, + "probability": 0.9905 + }, + { + "start": 638.68, + "end": 640.24, + "probability": 0.7782 + }, + { + "start": 640.66, + "end": 642.02, + "probability": 0.972 + }, + { + "start": 642.36, + "end": 645.73, + "probability": 0.9812 + }, + { + "start": 646.28, + "end": 647.08, + "probability": 0.738 + }, + { + "start": 647.38, + "end": 648.35, + "probability": 0.939 + }, + { + "start": 648.5, + "end": 653.16, + "probability": 0.9761 + }, + { + "start": 653.54, + "end": 655.48, + "probability": 0.8383 + }, + { + "start": 655.9, + "end": 660.98, + "probability": 0.9867 + }, + { + "start": 661.06, + "end": 661.44, + "probability": 0.778 + }, + { + "start": 661.64, + "end": 663.34, + "probability": 0.7521 + }, + { + "start": 663.42, + "end": 663.9, + "probability": 0.8838 + }, + { + "start": 664.18, + "end": 665.32, + "probability": 0.8294 + }, + { + "start": 665.42, + "end": 665.8, + "probability": 0.7371 + }, + { + "start": 665.9, + "end": 667.88, + "probability": 0.8238 + }, + { + "start": 668.08, + "end": 668.46, + "probability": 0.8911 + }, + { + "start": 669.8, + "end": 671.66, + "probability": 0.1045 + }, + { + "start": 671.76, + "end": 672.78, + "probability": 0.3898 + }, + { + "start": 672.98, + "end": 676.3, + "probability": 0.6121 + }, + { + "start": 676.58, + "end": 677.92, + "probability": 0.4384 + }, + { + "start": 678.08, + "end": 679.54, + "probability": 0.974 + }, + { + "start": 680.52, + "end": 684.28, + "probability": 0.9694 + }, + { + "start": 684.28, + "end": 688.04, + "probability": 0.9846 + }, + { + "start": 688.92, + "end": 692.6, + "probability": 0.9722 + }, + { + "start": 693.46, + "end": 696.36, + "probability": 0.9855 + }, + { + "start": 696.36, + "end": 701.14, + "probability": 0.9993 + }, + { + "start": 701.76, + "end": 704.48, + "probability": 0.995 + }, + { + "start": 704.48, + "end": 709.24, + "probability": 0.9507 + }, + { + "start": 710.08, + "end": 713.04, + "probability": 0.9985 + }, + { + "start": 713.11, + "end": 716.94, + "probability": 0.999 + }, + { + "start": 717.54, + "end": 723.4, + "probability": 0.9949 + }, + { + "start": 724.06, + "end": 724.66, + "probability": 0.9407 + }, + { + "start": 724.84, + "end": 727.98, + "probability": 0.9948 + }, + { + "start": 727.98, + "end": 731.36, + "probability": 0.9658 + }, + { + "start": 731.9, + "end": 735.62, + "probability": 0.9972 + }, + { + "start": 735.62, + "end": 738.66, + "probability": 0.9471 + }, + { + "start": 739.08, + "end": 739.48, + "probability": 0.1251 + }, + { + "start": 740.04, + "end": 744.24, + "probability": 0.9619 + }, + { + "start": 744.86, + "end": 747.82, + "probability": 0.9721 + }, + { + "start": 748.4, + "end": 749.16, + "probability": 0.3693 + }, + { + "start": 749.74, + "end": 751.98, + "probability": 0.952 + }, + { + "start": 752.16, + "end": 752.5, + "probability": 0.9026 + }, + { + "start": 753.34, + "end": 755.38, + "probability": 0.9354 + }, + { + "start": 755.5, + "end": 756.92, + "probability": 0.6281 + }, + { + "start": 756.96, + "end": 759.35, + "probability": 0.9628 + }, + { + "start": 764.26, + "end": 765.92, + "probability": 0.2283 + }, + { + "start": 766.46, + "end": 766.46, + "probability": 0.0369 + }, + { + "start": 766.46, + "end": 767.7, + "probability": 0.6902 + }, + { + "start": 767.82, + "end": 774.54, + "probability": 0.9248 + }, + { + "start": 774.68, + "end": 776.32, + "probability": 0.9468 + }, + { + "start": 776.98, + "end": 780.22, + "probability": 0.881 + }, + { + "start": 780.7, + "end": 782.64, + "probability": 0.5523 + }, + { + "start": 782.8, + "end": 786.24, + "probability": 0.9564 + }, + { + "start": 786.24, + "end": 790.12, + "probability": 0.9935 + }, + { + "start": 790.38, + "end": 795.36, + "probability": 0.988 + }, + { + "start": 795.84, + "end": 798.12, + "probability": 0.9895 + }, + { + "start": 798.76, + "end": 801.62, + "probability": 0.8389 + }, + { + "start": 801.74, + "end": 803.4, + "probability": 0.9234 + }, + { + "start": 803.44, + "end": 804.58, + "probability": 0.8568 + }, + { + "start": 805.02, + "end": 807.9, + "probability": 0.8405 + }, + { + "start": 808.12, + "end": 809.14, + "probability": 0.4786 + }, + { + "start": 809.52, + "end": 812.94, + "probability": 0.9552 + }, + { + "start": 812.98, + "end": 813.52, + "probability": 0.3978 + }, + { + "start": 813.58, + "end": 819.28, + "probability": 0.8895 + }, + { + "start": 819.96, + "end": 823.66, + "probability": 0.9163 + }, + { + "start": 823.96, + "end": 828.22, + "probability": 0.9374 + }, + { + "start": 828.62, + "end": 830.84, + "probability": 0.9876 + }, + { + "start": 831.38, + "end": 831.98, + "probability": 0.5194 + }, + { + "start": 832.4, + "end": 833.22, + "probability": 0.8415 + }, + { + "start": 833.64, + "end": 834.46, + "probability": 0.8756 + }, + { + "start": 834.52, + "end": 835.98, + "probability": 0.9927 + }, + { + "start": 836.96, + "end": 841.92, + "probability": 0.9399 + }, + { + "start": 842.28, + "end": 844.54, + "probability": 0.9969 + }, + { + "start": 844.92, + "end": 845.5, + "probability": 0.5737 + }, + { + "start": 845.72, + "end": 848.28, + "probability": 0.9648 + }, + { + "start": 849.08, + "end": 850.42, + "probability": 0.8068 + }, + { + "start": 852.52, + "end": 854.06, + "probability": 0.563 + }, + { + "start": 854.16, + "end": 854.98, + "probability": 0.5935 + }, + { + "start": 855.96, + "end": 857.76, + "probability": 0.1462 + }, + { + "start": 857.98, + "end": 859.12, + "probability": 0.9082 + }, + { + "start": 859.26, + "end": 862.16, + "probability": 0.8728 + }, + { + "start": 863.18, + "end": 865.74, + "probability": 0.9443 + }, + { + "start": 865.74, + "end": 868.8, + "probability": 0.9989 + }, + { + "start": 869.4, + "end": 871.02, + "probability": 0.9672 + }, + { + "start": 871.14, + "end": 872.46, + "probability": 0.8411 + }, + { + "start": 872.5, + "end": 875.46, + "probability": 0.9954 + }, + { + "start": 876.14, + "end": 878.22, + "probability": 0.9627 + }, + { + "start": 878.22, + "end": 880.48, + "probability": 0.62 + }, + { + "start": 881.02, + "end": 882.24, + "probability": 0.9937 + }, + { + "start": 882.36, + "end": 882.94, + "probability": 0.7994 + }, + { + "start": 883.0, + "end": 884.84, + "probability": 0.983 + }, + { + "start": 885.54, + "end": 887.92, + "probability": 0.9646 + }, + { + "start": 888.12, + "end": 890.16, + "probability": 0.978 + }, + { + "start": 890.84, + "end": 893.34, + "probability": 0.9091 + }, + { + "start": 893.42, + "end": 895.18, + "probability": 0.8391 + }, + { + "start": 895.6, + "end": 897.0, + "probability": 0.8794 + }, + { + "start": 897.24, + "end": 898.52, + "probability": 0.9528 + }, + { + "start": 899.14, + "end": 901.54, + "probability": 0.9337 + }, + { + "start": 901.54, + "end": 904.06, + "probability": 0.9954 + }, + { + "start": 904.7, + "end": 905.88, + "probability": 0.7205 + }, + { + "start": 906.02, + "end": 906.58, + "probability": 0.8646 + }, + { + "start": 907.7, + "end": 909.94, + "probability": 0.978 + }, + { + "start": 910.04, + "end": 912.54, + "probability": 0.9808 + }, + { + "start": 913.24, + "end": 915.62, + "probability": 0.892 + }, + { + "start": 915.82, + "end": 917.0, + "probability": 0.5143 + }, + { + "start": 917.0, + "end": 917.72, + "probability": 0.5435 + }, + { + "start": 917.84, + "end": 919.26, + "probability": 0.8062 + }, + { + "start": 919.76, + "end": 921.28, + "probability": 0.9754 + }, + { + "start": 921.34, + "end": 923.22, + "probability": 0.9793 + }, + { + "start": 923.9, + "end": 924.34, + "probability": 0.4503 + }, + { + "start": 924.38, + "end": 927.22, + "probability": 0.9337 + }, + { + "start": 927.22, + "end": 930.98, + "probability": 0.9312 + }, + { + "start": 931.64, + "end": 935.76, + "probability": 0.9979 + }, + { + "start": 936.32, + "end": 936.88, + "probability": 0.5479 + }, + { + "start": 937.08, + "end": 939.22, + "probability": 0.8464 + }, + { + "start": 939.28, + "end": 941.46, + "probability": 0.936 + }, + { + "start": 942.06, + "end": 943.88, + "probability": 0.9616 + }, + { + "start": 944.36, + "end": 945.86, + "probability": 0.9819 + }, + { + "start": 945.9, + "end": 947.06, + "probability": 0.9309 + }, + { + "start": 947.1, + "end": 948.08, + "probability": 0.9506 + }, + { + "start": 948.16, + "end": 949.62, + "probability": 0.9754 + }, + { + "start": 949.7, + "end": 950.2, + "probability": 0.6452 + }, + { + "start": 950.6, + "end": 953.58, + "probability": 0.9842 + }, + { + "start": 954.12, + "end": 955.56, + "probability": 0.5084 + }, + { + "start": 955.68, + "end": 956.12, + "probability": 0.4473 + }, + { + "start": 956.12, + "end": 956.84, + "probability": 0.8059 + }, + { + "start": 957.04, + "end": 959.64, + "probability": 0.9822 + }, + { + "start": 960.18, + "end": 960.4, + "probability": 0.7482 + }, + { + "start": 960.48, + "end": 963.42, + "probability": 0.9895 + }, + { + "start": 964.02, + "end": 965.68, + "probability": 0.9754 + }, + { + "start": 965.88, + "end": 967.36, + "probability": 0.9116 + }, + { + "start": 967.44, + "end": 968.76, + "probability": 0.9369 + }, + { + "start": 969.26, + "end": 971.74, + "probability": 0.9906 + }, + { + "start": 971.74, + "end": 974.62, + "probability": 0.9946 + }, + { + "start": 975.28, + "end": 975.32, + "probability": 0.5161 + }, + { + "start": 975.32, + "end": 978.84, + "probability": 0.8139 + }, + { + "start": 978.84, + "end": 980.9, + "probability": 0.9993 + }, + { + "start": 980.98, + "end": 982.58, + "probability": 0.9941 + }, + { + "start": 982.74, + "end": 985.02, + "probability": 0.9846 + }, + { + "start": 985.18, + "end": 985.46, + "probability": 0.2392 + }, + { + "start": 985.6, + "end": 987.94, + "probability": 0.9044 + }, + { + "start": 988.02, + "end": 990.78, + "probability": 0.9614 + }, + { + "start": 990.78, + "end": 994.16, + "probability": 0.9963 + }, + { + "start": 994.2, + "end": 997.6, + "probability": 0.8214 + }, + { + "start": 998.02, + "end": 999.42, + "probability": 0.7193 + }, + { + "start": 999.56, + "end": 1001.76, + "probability": 0.8449 + }, + { + "start": 1002.16, + "end": 1004.32, + "probability": 0.9954 + }, + { + "start": 1004.48, + "end": 1005.84, + "probability": 0.6571 + }, + { + "start": 1006.24, + "end": 1006.92, + "probability": 0.5587 + }, + { + "start": 1006.92, + "end": 1007.1, + "probability": 0.5662 + }, + { + "start": 1007.18, + "end": 1008.7, + "probability": 0.911 + }, + { + "start": 1008.8, + "end": 1009.38, + "probability": 0.6087 + }, + { + "start": 1009.56, + "end": 1010.86, + "probability": 0.9394 + }, + { + "start": 1010.94, + "end": 1012.38, + "probability": 0.9355 + }, + { + "start": 1014.08, + "end": 1017.18, + "probability": 0.9308 + }, + { + "start": 1018.3, + "end": 1023.36, + "probability": 0.9771 + }, + { + "start": 1023.76, + "end": 1027.48, + "probability": 0.9508 + }, + { + "start": 1028.12, + "end": 1031.22, + "probability": 0.9868 + }, + { + "start": 1032.16, + "end": 1032.56, + "probability": 0.7219 + }, + { + "start": 1032.64, + "end": 1039.16, + "probability": 0.9951 + }, + { + "start": 1040.18, + "end": 1043.92, + "probability": 0.8628 + }, + { + "start": 1043.92, + "end": 1049.14, + "probability": 0.9972 + }, + { + "start": 1049.24, + "end": 1050.06, + "probability": 0.6768 + }, + { + "start": 1050.54, + "end": 1052.32, + "probability": 0.8208 + }, + { + "start": 1052.52, + "end": 1055.04, + "probability": 0.9478 + }, + { + "start": 1055.66, + "end": 1056.62, + "probability": 0.6913 + }, + { + "start": 1057.46, + "end": 1061.2, + "probability": 0.9629 + }, + { + "start": 1061.2, + "end": 1064.54, + "probability": 0.976 + }, + { + "start": 1065.08, + "end": 1067.6, + "probability": 0.9526 + }, + { + "start": 1068.38, + "end": 1072.84, + "probability": 0.9956 + }, + { + "start": 1073.36, + "end": 1074.71, + "probability": 0.4651 + }, + { + "start": 1075.7, + "end": 1077.94, + "probability": 0.998 + }, + { + "start": 1078.48, + "end": 1080.81, + "probability": 0.9679 + }, + { + "start": 1081.44, + "end": 1084.8, + "probability": 0.9882 + }, + { + "start": 1085.12, + "end": 1088.42, + "probability": 0.93 + }, + { + "start": 1088.74, + "end": 1090.34, + "probability": 0.9911 + }, + { + "start": 1090.6, + "end": 1092.04, + "probability": 0.97 + }, + { + "start": 1092.58, + "end": 1096.8, + "probability": 0.9994 + }, + { + "start": 1096.96, + "end": 1097.84, + "probability": 0.7613 + }, + { + "start": 1098.46, + "end": 1100.82, + "probability": 0.9939 + }, + { + "start": 1101.2, + "end": 1101.46, + "probability": 0.7525 + }, + { + "start": 1102.34, + "end": 1103.0, + "probability": 0.6084 + }, + { + "start": 1103.06, + "end": 1105.5, + "probability": 0.9761 + }, + { + "start": 1110.74, + "end": 1111.74, + "probability": 0.5861 + }, + { + "start": 1112.22, + "end": 1115.66, + "probability": 0.9469 + }, + { + "start": 1115.66, + "end": 1119.72, + "probability": 0.9779 + }, + { + "start": 1120.0, + "end": 1125.28, + "probability": 0.8009 + }, + { + "start": 1125.84, + "end": 1126.62, + "probability": 0.9247 + }, + { + "start": 1127.48, + "end": 1129.78, + "probability": 0.8228 + }, + { + "start": 1130.22, + "end": 1131.52, + "probability": 0.8931 + }, + { + "start": 1131.58, + "end": 1134.5, + "probability": 0.8252 + }, + { + "start": 1135.2, + "end": 1135.48, + "probability": 0.6077 + }, + { + "start": 1136.34, + "end": 1137.76, + "probability": 0.8257 + }, + { + "start": 1138.72, + "end": 1139.6, + "probability": 0.3149 + }, + { + "start": 1140.14, + "end": 1141.96, + "probability": 0.9922 + }, + { + "start": 1142.86, + "end": 1144.38, + "probability": 0.4144 + }, + { + "start": 1144.82, + "end": 1145.66, + "probability": 0.6016 + }, + { + "start": 1146.16, + "end": 1151.54, + "probability": 0.9007 + }, + { + "start": 1152.5, + "end": 1153.94, + "probability": 0.8118 + }, + { + "start": 1154.44, + "end": 1155.84, + "probability": 0.7655 + }, + { + "start": 1156.5, + "end": 1159.4, + "probability": 0.9839 + }, + { + "start": 1159.4, + "end": 1163.82, + "probability": 0.9669 + }, + { + "start": 1165.1, + "end": 1169.52, + "probability": 0.9761 + }, + { + "start": 1170.34, + "end": 1173.35, + "probability": 0.995 + }, + { + "start": 1173.42, + "end": 1175.66, + "probability": 0.9956 + }, + { + "start": 1176.88, + "end": 1178.92, + "probability": 0.8507 + }, + { + "start": 1179.58, + "end": 1180.34, + "probability": 0.6014 + }, + { + "start": 1181.14, + "end": 1186.0, + "probability": 0.9373 + }, + { + "start": 1186.98, + "end": 1187.88, + "probability": 0.5834 + }, + { + "start": 1188.54, + "end": 1192.02, + "probability": 0.725 + }, + { + "start": 1192.4, + "end": 1194.14, + "probability": 0.8827 + }, + { + "start": 1194.66, + "end": 1196.84, + "probability": 0.9648 + }, + { + "start": 1197.28, + "end": 1200.32, + "probability": 0.9103 + }, + { + "start": 1200.84, + "end": 1202.4, + "probability": 0.9788 + }, + { + "start": 1203.56, + "end": 1204.14, + "probability": 0.5466 + }, + { + "start": 1204.24, + "end": 1204.88, + "probability": 0.9139 + }, + { + "start": 1204.94, + "end": 1206.5, + "probability": 0.9553 + }, + { + "start": 1206.58, + "end": 1209.66, + "probability": 0.9675 + }, + { + "start": 1209.78, + "end": 1210.5, + "probability": 0.4816 + }, + { + "start": 1210.54, + "end": 1211.5, + "probability": 0.7806 + }, + { + "start": 1212.96, + "end": 1216.2, + "probability": 0.574 + }, + { + "start": 1216.3, + "end": 1218.36, + "probability": 0.9907 + }, + { + "start": 1219.45, + "end": 1220.79, + "probability": 0.6653 + }, + { + "start": 1233.62, + "end": 1233.84, + "probability": 0.3813 + }, + { + "start": 1233.84, + "end": 1233.86, + "probability": 0.2337 + }, + { + "start": 1233.86, + "end": 1234.16, + "probability": 0.193 + }, + { + "start": 1234.16, + "end": 1234.54, + "probability": 0.1631 + }, + { + "start": 1234.54, + "end": 1234.54, + "probability": 0.0617 + }, + { + "start": 1234.54, + "end": 1234.64, + "probability": 0.0265 + }, + { + "start": 1234.64, + "end": 1234.99, + "probability": 0.058 + }, + { + "start": 1266.76, + "end": 1269.9, + "probability": 0.8442 + }, + { + "start": 1270.64, + "end": 1274.04, + "probability": 0.9826 + }, + { + "start": 1274.26, + "end": 1275.24, + "probability": 0.7273 + }, + { + "start": 1275.68, + "end": 1280.8, + "probability": 0.9956 + }, + { + "start": 1281.68, + "end": 1284.96, + "probability": 0.9937 + }, + { + "start": 1284.96, + "end": 1288.04, + "probability": 0.9922 + }, + { + "start": 1288.5, + "end": 1288.98, + "probability": 0.8082 + }, + { + "start": 1289.62, + "end": 1291.32, + "probability": 0.9244 + }, + { + "start": 1291.78, + "end": 1292.46, + "probability": 0.9609 + }, + { + "start": 1292.78, + "end": 1295.74, + "probability": 0.9966 + }, + { + "start": 1295.74, + "end": 1299.02, + "probability": 0.9996 + }, + { + "start": 1300.44, + "end": 1306.09, + "probability": 0.9869 + }, + { + "start": 1307.6, + "end": 1309.04, + "probability": 0.9446 + }, + { + "start": 1309.82, + "end": 1312.66, + "probability": 0.9799 + }, + { + "start": 1313.2, + "end": 1317.62, + "probability": 0.9927 + }, + { + "start": 1318.06, + "end": 1320.28, + "probability": 0.9265 + }, + { + "start": 1320.64, + "end": 1321.86, + "probability": 0.9316 + }, + { + "start": 1321.96, + "end": 1322.94, + "probability": 0.7671 + }, + { + "start": 1323.0, + "end": 1325.02, + "probability": 0.799 + }, + { + "start": 1325.44, + "end": 1328.04, + "probability": 0.8273 + }, + { + "start": 1328.26, + "end": 1328.58, + "probability": 0.7101 + }, + { + "start": 1328.74, + "end": 1329.09, + "probability": 0.6423 + }, + { + "start": 1331.08, + "end": 1334.84, + "probability": 0.9965 + }, + { + "start": 1334.84, + "end": 1339.64, + "probability": 0.9119 + }, + { + "start": 1340.26, + "end": 1346.12, + "probability": 0.9279 + }, + { + "start": 1346.48, + "end": 1349.64, + "probability": 0.8997 + }, + { + "start": 1350.26, + "end": 1356.1, + "probability": 0.9945 + }, + { + "start": 1356.3, + "end": 1357.18, + "probability": 0.2973 + }, + { + "start": 1357.98, + "end": 1359.74, + "probability": 0.7179 + }, + { + "start": 1360.81, + "end": 1364.42, + "probability": 0.9085 + }, + { + "start": 1364.96, + "end": 1367.76, + "probability": 0.8901 + }, + { + "start": 1367.76, + "end": 1371.48, + "probability": 0.9877 + }, + { + "start": 1371.94, + "end": 1374.63, + "probability": 0.9966 + }, + { + "start": 1374.8, + "end": 1377.2, + "probability": 0.8677 + }, + { + "start": 1378.96, + "end": 1379.72, + "probability": 0.7009 + }, + { + "start": 1379.9, + "end": 1382.66, + "probability": 0.3422 + }, + { + "start": 1383.01, + "end": 1387.3, + "probability": 0.9795 + }, + { + "start": 1387.64, + "end": 1389.38, + "probability": 0.873 + }, + { + "start": 1389.88, + "end": 1395.8, + "probability": 0.988 + }, + { + "start": 1395.8, + "end": 1402.24, + "probability": 0.9989 + }, + { + "start": 1402.82, + "end": 1403.4, + "probability": 0.3179 + }, + { + "start": 1403.46, + "end": 1408.54, + "probability": 0.9972 + }, + { + "start": 1409.02, + "end": 1413.4, + "probability": 0.9946 + }, + { + "start": 1414.3, + "end": 1417.32, + "probability": 0.9967 + }, + { + "start": 1417.82, + "end": 1422.92, + "probability": 0.9973 + }, + { + "start": 1424.1, + "end": 1430.12, + "probability": 0.796 + }, + { + "start": 1430.54, + "end": 1434.34, + "probability": 0.9934 + }, + { + "start": 1435.46, + "end": 1438.72, + "probability": 0.9761 + }, + { + "start": 1439.34, + "end": 1442.02, + "probability": 0.9668 + }, + { + "start": 1442.3, + "end": 1445.84, + "probability": 0.9309 + }, + { + "start": 1446.32, + "end": 1452.3, + "probability": 0.6762 + }, + { + "start": 1452.86, + "end": 1455.12, + "probability": 0.761 + }, + { + "start": 1455.66, + "end": 1462.04, + "probability": 0.9354 + }, + { + "start": 1462.72, + "end": 1463.62, + "probability": 0.739 + }, + { + "start": 1464.16, + "end": 1466.36, + "probability": 0.8691 + }, + { + "start": 1466.84, + "end": 1471.6, + "probability": 0.7327 + }, + { + "start": 1472.0, + "end": 1473.7, + "probability": 0.6643 + }, + { + "start": 1474.94, + "end": 1479.16, + "probability": 0.7204 + }, + { + "start": 1479.16, + "end": 1483.0, + "probability": 0.9185 + }, + { + "start": 1483.42, + "end": 1483.62, + "probability": 0.6765 + }, + { + "start": 1486.66, + "end": 1487.24, + "probability": 0.7974 + }, + { + "start": 1487.46, + "end": 1488.04, + "probability": 0.8275 + }, + { + "start": 1488.14, + "end": 1490.58, + "probability": 0.8404 + }, + { + "start": 1490.66, + "end": 1492.26, + "probability": 0.9329 + }, + { + "start": 1492.34, + "end": 1496.2, + "probability": 0.8877 + }, + { + "start": 1496.54, + "end": 1497.62, + "probability": 0.9878 + }, + { + "start": 1497.98, + "end": 1499.74, + "probability": 0.9884 + }, + { + "start": 1500.38, + "end": 1501.66, + "probability": 0.7988 + }, + { + "start": 1501.8, + "end": 1506.26, + "probability": 0.9766 + }, + { + "start": 1506.26, + "end": 1511.92, + "probability": 0.9473 + }, + { + "start": 1513.22, + "end": 1518.84, + "probability": 0.9861 + }, + { + "start": 1519.48, + "end": 1523.8, + "probability": 0.9578 + }, + { + "start": 1524.48, + "end": 1527.94, + "probability": 0.9979 + }, + { + "start": 1528.38, + "end": 1531.4, + "probability": 0.9125 + }, + { + "start": 1531.4, + "end": 1535.02, + "probability": 0.9972 + }, + { + "start": 1535.88, + "end": 1539.56, + "probability": 0.9908 + }, + { + "start": 1539.94, + "end": 1540.16, + "probability": 0.6673 + }, + { + "start": 1540.78, + "end": 1544.74, + "probability": 0.9979 + }, + { + "start": 1544.74, + "end": 1547.86, + "probability": 0.9793 + }, + { + "start": 1548.54, + "end": 1554.1, + "probability": 0.9904 + }, + { + "start": 1554.1, + "end": 1560.8, + "probability": 0.9578 + }, + { + "start": 1561.24, + "end": 1565.08, + "probability": 0.9742 + }, + { + "start": 1566.12, + "end": 1568.92, + "probability": 0.7597 + }, + { + "start": 1568.92, + "end": 1574.0, + "probability": 0.88 + }, + { + "start": 1574.64, + "end": 1578.58, + "probability": 0.8522 + }, + { + "start": 1578.58, + "end": 1582.0, + "probability": 0.9958 + }, + { + "start": 1582.16, + "end": 1583.94, + "probability": 0.816 + }, + { + "start": 1584.5, + "end": 1588.38, + "probability": 0.9733 + }, + { + "start": 1588.82, + "end": 1592.74, + "probability": 0.9694 + }, + { + "start": 1592.74, + "end": 1595.96, + "probability": 0.9925 + }, + { + "start": 1596.88, + "end": 1599.4, + "probability": 0.9969 + }, + { + "start": 1599.4, + "end": 1603.64, + "probability": 0.9871 + }, + { + "start": 1604.56, + "end": 1607.18, + "probability": 0.9092 + }, + { + "start": 1607.83, + "end": 1613.26, + "probability": 0.9961 + }, + { + "start": 1613.76, + "end": 1617.62, + "probability": 0.9922 + }, + { + "start": 1618.56, + "end": 1619.76, + "probability": 0.5904 + }, + { + "start": 1619.82, + "end": 1621.94, + "probability": 0.9766 + }, + { + "start": 1621.94, + "end": 1625.34, + "probability": 0.9742 + }, + { + "start": 1626.68, + "end": 1628.44, + "probability": 0.8463 + }, + { + "start": 1628.44, + "end": 1631.35, + "probability": 0.97 + }, + { + "start": 1631.72, + "end": 1636.6, + "probability": 0.9917 + }, + { + "start": 1637.12, + "end": 1640.74, + "probability": 0.877 + }, + { + "start": 1640.74, + "end": 1644.04, + "probability": 0.9969 + }, + { + "start": 1645.1, + "end": 1646.48, + "probability": 0.5281 + }, + { + "start": 1647.06, + "end": 1651.4, + "probability": 0.7586 + }, + { + "start": 1651.4, + "end": 1655.98, + "probability": 0.8558 + }, + { + "start": 1656.62, + "end": 1659.38, + "probability": 0.9621 + }, + { + "start": 1659.38, + "end": 1662.26, + "probability": 0.8062 + }, + { + "start": 1662.34, + "end": 1668.24, + "probability": 0.9648 + }, + { + "start": 1668.68, + "end": 1670.88, + "probability": 0.8122 + }, + { + "start": 1671.34, + "end": 1673.32, + "probability": 0.9403 + }, + { + "start": 1673.68, + "end": 1676.2, + "probability": 0.9978 + }, + { + "start": 1676.58, + "end": 1679.08, + "probability": 0.9662 + }, + { + "start": 1679.54, + "end": 1683.72, + "probability": 0.9907 + }, + { + "start": 1684.96, + "end": 1687.72, + "probability": 0.8813 + }, + { + "start": 1688.26, + "end": 1691.46, + "probability": 0.9767 + }, + { + "start": 1691.46, + "end": 1694.26, + "probability": 0.9886 + }, + { + "start": 1695.44, + "end": 1698.84, + "probability": 0.7955 + }, + { + "start": 1698.84, + "end": 1702.84, + "probability": 0.9987 + }, + { + "start": 1703.44, + "end": 1708.12, + "probability": 0.994 + }, + { + "start": 1708.12, + "end": 1712.54, + "probability": 0.9932 + }, + { + "start": 1713.36, + "end": 1717.06, + "probability": 0.8556 + }, + { + "start": 1717.06, + "end": 1720.56, + "probability": 0.9806 + }, + { + "start": 1721.2, + "end": 1725.4, + "probability": 0.9872 + }, + { + "start": 1725.92, + "end": 1727.52, + "probability": 0.5465 + }, + { + "start": 1727.68, + "end": 1732.84, + "probability": 0.9453 + }, + { + "start": 1732.94, + "end": 1736.12, + "probability": 0.9785 + }, + { + "start": 1736.12, + "end": 1739.14, + "probability": 0.9959 + }, + { + "start": 1739.66, + "end": 1743.12, + "probability": 0.9652 + }, + { + "start": 1743.12, + "end": 1747.48, + "probability": 0.9475 + }, + { + "start": 1747.48, + "end": 1751.78, + "probability": 0.9792 + }, + { + "start": 1752.28, + "end": 1752.74, + "probability": 0.6998 + }, + { + "start": 1753.36, + "end": 1756.22, + "probability": 0.7547 + }, + { + "start": 1757.04, + "end": 1760.96, + "probability": 0.7413 + }, + { + "start": 1760.96, + "end": 1763.3, + "probability": 0.9958 + }, + { + "start": 1763.72, + "end": 1765.66, + "probability": 0.9886 + }, + { + "start": 1765.66, + "end": 1769.98, + "probability": 0.9788 + }, + { + "start": 1770.42, + "end": 1775.72, + "probability": 0.9963 + }, + { + "start": 1777.06, + "end": 1780.94, + "probability": 0.9888 + }, + { + "start": 1781.42, + "end": 1784.22, + "probability": 0.9719 + }, + { + "start": 1784.56, + "end": 1788.6, + "probability": 0.9941 + }, + { + "start": 1789.08, + "end": 1792.42, + "probability": 0.9722 + }, + { + "start": 1792.76, + "end": 1793.2, + "probability": 0.7138 + }, + { + "start": 1793.64, + "end": 1797.62, + "probability": 0.683 + }, + { + "start": 1798.24, + "end": 1802.58, + "probability": 0.6968 + }, + { + "start": 1803.1, + "end": 1805.34, + "probability": 0.9107 + }, + { + "start": 1805.7, + "end": 1808.74, + "probability": 0.9319 + }, + { + "start": 1809.4, + "end": 1813.18, + "probability": 0.7729 + }, + { + "start": 1813.6, + "end": 1817.24, + "probability": 0.9406 + }, + { + "start": 1817.24, + "end": 1820.44, + "probability": 0.9669 + }, + { + "start": 1821.0, + "end": 1825.38, + "probability": 0.9014 + }, + { + "start": 1825.72, + "end": 1828.36, + "probability": 0.4889 + }, + { + "start": 1831.18, + "end": 1834.36, + "probability": 0.8103 + }, + { + "start": 1834.84, + "end": 1839.92, + "probability": 0.9921 + }, + { + "start": 1840.22, + "end": 1843.02, + "probability": 0.925 + }, + { + "start": 1843.02, + "end": 1847.06, + "probability": 0.8963 + }, + { + "start": 1847.4, + "end": 1851.32, + "probability": 0.9567 + }, + { + "start": 1851.48, + "end": 1851.88, + "probability": 0.834 + }, + { + "start": 1852.92, + "end": 1854.04, + "probability": 0.8173 + }, + { + "start": 1854.16, + "end": 1855.78, + "probability": 0.7104 + }, + { + "start": 1855.92, + "end": 1857.44, + "probability": 0.9909 + }, + { + "start": 1857.8, + "end": 1860.26, + "probability": 0.6192 + }, + { + "start": 1860.42, + "end": 1861.78, + "probability": 0.9355 + }, + { + "start": 1861.88, + "end": 1863.52, + "probability": 0.8596 + }, + { + "start": 1864.28, + "end": 1867.22, + "probability": 0.9864 + }, + { + "start": 1879.36, + "end": 1881.16, + "probability": 0.848 + }, + { + "start": 1881.26, + "end": 1883.32, + "probability": 0.9149 + }, + { + "start": 1884.0, + "end": 1885.74, + "probability": 0.8045 + }, + { + "start": 1886.16, + "end": 1890.72, + "probability": 0.9727 + }, + { + "start": 1891.98, + "end": 1895.06, + "probability": 0.9676 + }, + { + "start": 1895.74, + "end": 1898.64, + "probability": 0.9976 + }, + { + "start": 1900.06, + "end": 1901.02, + "probability": 0.7892 + }, + { + "start": 1901.96, + "end": 1902.62, + "probability": 0.6792 + }, + { + "start": 1903.74, + "end": 1908.8, + "probability": 0.754 + }, + { + "start": 1910.72, + "end": 1915.02, + "probability": 0.998 + }, + { + "start": 1916.3, + "end": 1919.7, + "probability": 0.9962 + }, + { + "start": 1920.74, + "end": 1922.06, + "probability": 0.9649 + }, + { + "start": 1924.26, + "end": 1925.84, + "probability": 0.9723 + }, + { + "start": 1927.4, + "end": 1928.44, + "probability": 0.6679 + }, + { + "start": 1929.9, + "end": 1931.3, + "probability": 0.9861 + }, + { + "start": 1932.24, + "end": 1933.5, + "probability": 0.9465 + }, + { + "start": 1934.58, + "end": 1935.56, + "probability": 0.9466 + }, + { + "start": 1936.94, + "end": 1939.56, + "probability": 0.9603 + }, + { + "start": 1939.62, + "end": 1940.48, + "probability": 0.9657 + }, + { + "start": 1940.54, + "end": 1941.74, + "probability": 0.9853 + }, + { + "start": 1942.84, + "end": 1946.52, + "probability": 0.9982 + }, + { + "start": 1947.93, + "end": 1954.44, + "probability": 0.9961 + }, + { + "start": 1955.1, + "end": 1956.5, + "probability": 0.9537 + }, + { + "start": 1957.52, + "end": 1958.16, + "probability": 0.5015 + }, + { + "start": 1958.68, + "end": 1961.0, + "probability": 0.99 + }, + { + "start": 1963.06, + "end": 1964.27, + "probability": 0.9518 + }, + { + "start": 1964.82, + "end": 1965.83, + "probability": 0.9857 + }, + { + "start": 1966.52, + "end": 1969.66, + "probability": 0.9927 + }, + { + "start": 1970.38, + "end": 1971.5, + "probability": 0.884 + }, + { + "start": 1972.74, + "end": 1973.46, + "probability": 0.8432 + }, + { + "start": 1974.58, + "end": 1976.96, + "probability": 0.9897 + }, + { + "start": 1979.04, + "end": 1980.16, + "probability": 0.9673 + }, + { + "start": 1980.96, + "end": 1981.66, + "probability": 0.9596 + }, + { + "start": 1983.22, + "end": 1986.16, + "probability": 0.9887 + }, + { + "start": 1986.96, + "end": 1988.56, + "probability": 0.9786 + }, + { + "start": 1989.68, + "end": 1993.0, + "probability": 0.7002 + }, + { + "start": 1993.62, + "end": 1999.98, + "probability": 0.9985 + }, + { + "start": 2001.32, + "end": 2004.14, + "probability": 0.9607 + }, + { + "start": 2004.56, + "end": 2005.48, + "probability": 0.9771 + }, + { + "start": 2005.86, + "end": 2007.68, + "probability": 0.9861 + }, + { + "start": 2009.58, + "end": 2012.88, + "probability": 0.9834 + }, + { + "start": 2013.1, + "end": 2014.22, + "probability": 0.9502 + }, + { + "start": 2014.22, + "end": 2014.54, + "probability": 0.5509 + }, + { + "start": 2015.46, + "end": 2016.9, + "probability": 0.8179 + }, + { + "start": 2018.2, + "end": 2020.23, + "probability": 0.9985 + }, + { + "start": 2021.0, + "end": 2021.6, + "probability": 0.7893 + }, + { + "start": 2022.58, + "end": 2025.04, + "probability": 0.9904 + }, + { + "start": 2025.24, + "end": 2027.99, + "probability": 0.8706 + }, + { + "start": 2028.92, + "end": 2030.14, + "probability": 0.7103 + }, + { + "start": 2030.72, + "end": 2031.38, + "probability": 0.943 + }, + { + "start": 2033.2, + "end": 2037.04, + "probability": 0.9326 + }, + { + "start": 2038.62, + "end": 2041.02, + "probability": 0.7499 + }, + { + "start": 2042.12, + "end": 2047.08, + "probability": 0.9866 + }, + { + "start": 2048.16, + "end": 2049.56, + "probability": 0.99 + }, + { + "start": 2050.11, + "end": 2052.96, + "probability": 0.9558 + }, + { + "start": 2053.92, + "end": 2055.34, + "probability": 0.9297 + }, + { + "start": 2055.56, + "end": 2056.28, + "probability": 0.9514 + }, + { + "start": 2056.76, + "end": 2058.74, + "probability": 0.6382 + }, + { + "start": 2060.32, + "end": 2062.36, + "probability": 0.9967 + }, + { + "start": 2062.64, + "end": 2063.14, + "probability": 0.636 + }, + { + "start": 2064.62, + "end": 2067.0, + "probability": 0.9871 + }, + { + "start": 2067.94, + "end": 2070.32, + "probability": 0.9932 + }, + { + "start": 2070.44, + "end": 2072.74, + "probability": 0.9443 + }, + { + "start": 2075.18, + "end": 2078.44, + "probability": 0.7568 + }, + { + "start": 2079.2, + "end": 2080.24, + "probability": 0.8901 + }, + { + "start": 2080.96, + "end": 2082.48, + "probability": 0.9468 + }, + { + "start": 2083.96, + "end": 2085.12, + "probability": 0.8028 + }, + { + "start": 2085.92, + "end": 2087.74, + "probability": 0.8984 + }, + { + "start": 2088.86, + "end": 2090.18, + "probability": 0.9741 + }, + { + "start": 2090.74, + "end": 2093.0, + "probability": 0.6003 + }, + { + "start": 2093.36, + "end": 2095.1, + "probability": 0.7897 + }, + { + "start": 2096.56, + "end": 2098.44, + "probability": 0.9927 + }, + { + "start": 2098.56, + "end": 2099.0, + "probability": 0.4887 + }, + { + "start": 2099.04, + "end": 2099.96, + "probability": 0.7716 + }, + { + "start": 2101.46, + "end": 2102.96, + "probability": 0.6483 + }, + { + "start": 2103.84, + "end": 2104.96, + "probability": 0.8721 + }, + { + "start": 2106.46, + "end": 2107.5, + "probability": 0.9646 + }, + { + "start": 2108.3, + "end": 2111.14, + "probability": 0.9632 + }, + { + "start": 2111.76, + "end": 2115.94, + "probability": 0.9831 + }, + { + "start": 2117.52, + "end": 2120.76, + "probability": 0.9651 + }, + { + "start": 2121.42, + "end": 2121.6, + "probability": 0.5988 + }, + { + "start": 2122.4, + "end": 2122.86, + "probability": 0.3802 + }, + { + "start": 2122.86, + "end": 2124.54, + "probability": 0.913 + }, + { + "start": 2140.44, + "end": 2142.3, + "probability": 0.9688 + }, + { + "start": 2142.84, + "end": 2144.45, + "probability": 0.7318 + }, + { + "start": 2145.74, + "end": 2152.58, + "probability": 0.9702 + }, + { + "start": 2153.38, + "end": 2157.32, + "probability": 0.6597 + }, + { + "start": 2158.34, + "end": 2164.18, + "probability": 0.9958 + }, + { + "start": 2164.8, + "end": 2165.24, + "probability": 0.9255 + }, + { + "start": 2166.08, + "end": 2169.02, + "probability": 0.9746 + }, + { + "start": 2169.18, + "end": 2172.82, + "probability": 0.9063 + }, + { + "start": 2173.86, + "end": 2176.7, + "probability": 0.9576 + }, + { + "start": 2177.86, + "end": 2179.38, + "probability": 0.9731 + }, + { + "start": 2180.06, + "end": 2180.98, + "probability": 0.8144 + }, + { + "start": 2181.98, + "end": 2182.72, + "probability": 0.6771 + }, + { + "start": 2183.64, + "end": 2184.96, + "probability": 0.9611 + }, + { + "start": 2185.24, + "end": 2186.44, + "probability": 0.9591 + }, + { + "start": 2187.24, + "end": 2193.82, + "probability": 0.9262 + }, + { + "start": 2195.76, + "end": 2196.94, + "probability": 0.9646 + }, + { + "start": 2197.9, + "end": 2198.96, + "probability": 0.663 + }, + { + "start": 2199.06, + "end": 2200.64, + "probability": 0.8586 + }, + { + "start": 2201.18, + "end": 2203.84, + "probability": 0.9399 + }, + { + "start": 2204.66, + "end": 2208.26, + "probability": 0.9026 + }, + { + "start": 2208.94, + "end": 2212.9, + "probability": 0.8975 + }, + { + "start": 2213.62, + "end": 2215.24, + "probability": 0.9131 + }, + { + "start": 2216.0, + "end": 2218.18, + "probability": 0.9982 + }, + { + "start": 2219.48, + "end": 2220.76, + "probability": 0.979 + }, + { + "start": 2221.02, + "end": 2222.64, + "probability": 0.8931 + }, + { + "start": 2224.18, + "end": 2226.04, + "probability": 0.96 + }, + { + "start": 2227.22, + "end": 2227.74, + "probability": 0.8392 + }, + { + "start": 2227.82, + "end": 2228.54, + "probability": 0.9807 + }, + { + "start": 2228.6, + "end": 2233.72, + "probability": 0.9928 + }, + { + "start": 2234.52, + "end": 2238.18, + "probability": 0.996 + }, + { + "start": 2238.78, + "end": 2241.3, + "probability": 0.9977 + }, + { + "start": 2241.96, + "end": 2244.14, + "probability": 0.9701 + }, + { + "start": 2244.16, + "end": 2246.09, + "probability": 0.9738 + }, + { + "start": 2247.2, + "end": 2251.12, + "probability": 0.9726 + }, + { + "start": 2251.92, + "end": 2253.62, + "probability": 0.7863 + }, + { + "start": 2254.3, + "end": 2255.08, + "probability": 0.9213 + }, + { + "start": 2256.04, + "end": 2257.82, + "probability": 0.9529 + }, + { + "start": 2259.14, + "end": 2260.9, + "probability": 0.9995 + }, + { + "start": 2261.76, + "end": 2263.08, + "probability": 0.9563 + }, + { + "start": 2263.9, + "end": 2264.54, + "probability": 0.7781 + }, + { + "start": 2264.68, + "end": 2265.7, + "probability": 0.9725 + }, + { + "start": 2266.2, + "end": 2269.2, + "probability": 0.9873 + }, + { + "start": 2269.72, + "end": 2272.02, + "probability": 0.7365 + }, + { + "start": 2272.76, + "end": 2273.87, + "probability": 0.6992 + }, + { + "start": 2274.56, + "end": 2277.22, + "probability": 0.973 + }, + { + "start": 2278.06, + "end": 2283.2, + "probability": 0.9876 + }, + { + "start": 2283.28, + "end": 2285.86, + "probability": 0.7977 + }, + { + "start": 2287.02, + "end": 2291.96, + "probability": 0.9771 + }, + { + "start": 2292.74, + "end": 2296.76, + "probability": 0.9776 + }, + { + "start": 2297.26, + "end": 2299.64, + "probability": 0.5663 + }, + { + "start": 2300.2, + "end": 2301.6, + "probability": 0.8366 + }, + { + "start": 2302.24, + "end": 2305.2, + "probability": 0.9893 + }, + { + "start": 2306.16, + "end": 2308.6, + "probability": 0.9092 + }, + { + "start": 2308.7, + "end": 2309.42, + "probability": 0.7567 + }, + { + "start": 2310.12, + "end": 2311.48, + "probability": 0.8553 + }, + { + "start": 2312.2, + "end": 2316.76, + "probability": 0.9792 + }, + { + "start": 2317.54, + "end": 2319.32, + "probability": 0.9903 + }, + { + "start": 2319.42, + "end": 2321.6, + "probability": 0.9919 + }, + { + "start": 2322.8, + "end": 2325.56, + "probability": 0.9004 + }, + { + "start": 2326.12, + "end": 2327.28, + "probability": 0.8158 + }, + { + "start": 2327.94, + "end": 2329.7, + "probability": 0.8864 + }, + { + "start": 2330.38, + "end": 2337.1, + "probability": 0.9837 + }, + { + "start": 2337.62, + "end": 2339.3, + "probability": 0.5738 + }, + { + "start": 2339.42, + "end": 2339.92, + "probability": 0.729 + }, + { + "start": 2340.86, + "end": 2343.1, + "probability": 0.7078 + }, + { + "start": 2343.66, + "end": 2345.76, + "probability": 0.8401 + }, + { + "start": 2346.28, + "end": 2348.42, + "probability": 0.9096 + }, + { + "start": 2349.18, + "end": 2350.98, + "probability": 0.8966 + }, + { + "start": 2351.6, + "end": 2356.34, + "probability": 0.9896 + }, + { + "start": 2357.18, + "end": 2359.12, + "probability": 0.778 + }, + { + "start": 2359.64, + "end": 2362.71, + "probability": 0.9977 + }, + { + "start": 2363.34, + "end": 2364.84, + "probability": 0.9569 + }, + { + "start": 2364.98, + "end": 2369.0, + "probability": 0.9308 + }, + { + "start": 2369.06, + "end": 2370.5, + "probability": 0.9917 + }, + { + "start": 2371.2, + "end": 2373.1, + "probability": 0.9362 + }, + { + "start": 2373.52, + "end": 2377.4, + "probability": 0.9908 + }, + { + "start": 2377.4, + "end": 2381.98, + "probability": 0.9899 + }, + { + "start": 2382.54, + "end": 2383.18, + "probability": 0.6435 + }, + { + "start": 2383.34, + "end": 2383.92, + "probability": 0.5604 + }, + { + "start": 2384.16, + "end": 2384.6, + "probability": 0.9776 + }, + { + "start": 2386.1, + "end": 2388.4, + "probability": 0.8604 + }, + { + "start": 2390.84, + "end": 2391.38, + "probability": 0.6842 + }, + { + "start": 2391.5, + "end": 2392.62, + "probability": 0.655 + }, + { + "start": 2413.62, + "end": 2415.46, + "probability": 0.843 + }, + { + "start": 2416.0, + "end": 2419.42, + "probability": 0.6574 + }, + { + "start": 2420.66, + "end": 2423.8, + "probability": 0.8018 + }, + { + "start": 2424.7, + "end": 2427.58, + "probability": 0.975 + }, + { + "start": 2429.4, + "end": 2430.92, + "probability": 0.8124 + }, + { + "start": 2432.26, + "end": 2434.74, + "probability": 0.9448 + }, + { + "start": 2436.16, + "end": 2438.12, + "probability": 0.9769 + }, + { + "start": 2439.86, + "end": 2440.46, + "probability": 0.9946 + }, + { + "start": 2441.76, + "end": 2443.98, + "probability": 0.4882 + }, + { + "start": 2444.9, + "end": 2447.04, + "probability": 0.9771 + }, + { + "start": 2447.6, + "end": 2448.74, + "probability": 0.7458 + }, + { + "start": 2449.58, + "end": 2450.66, + "probability": 0.8316 + }, + { + "start": 2451.7, + "end": 2451.98, + "probability": 0.0047 + }, + { + "start": 2452.54, + "end": 2453.44, + "probability": 0.9918 + }, + { + "start": 2454.16, + "end": 2455.3, + "probability": 0.9696 + }, + { + "start": 2456.48, + "end": 2458.14, + "probability": 0.9524 + }, + { + "start": 2459.64, + "end": 2463.46, + "probability": 0.9668 + }, + { + "start": 2466.0, + "end": 2469.12, + "probability": 0.0205 + }, + { + "start": 2471.06, + "end": 2474.42, + "probability": 0.2522 + }, + { + "start": 2474.62, + "end": 2477.7, + "probability": 0.239 + }, + { + "start": 2477.7, + "end": 2477.7, + "probability": 0.7091 + }, + { + "start": 2477.7, + "end": 2481.08, + "probability": 0.9921 + }, + { + "start": 2481.96, + "end": 2486.4, + "probability": 0.916 + }, + { + "start": 2487.8, + "end": 2488.18, + "probability": 0.548 + }, + { + "start": 2489.04, + "end": 2492.36, + "probability": 0.9096 + }, + { + "start": 2493.8, + "end": 2498.6, + "probability": 0.9916 + }, + { + "start": 2499.46, + "end": 2500.7, + "probability": 0.5243 + }, + { + "start": 2502.22, + "end": 2503.48, + "probability": 0.9396 + }, + { + "start": 2504.9, + "end": 2506.24, + "probability": 0.9079 + }, + { + "start": 2506.92, + "end": 2508.1, + "probability": 0.9592 + }, + { + "start": 2508.66, + "end": 2512.54, + "probability": 0.9326 + }, + { + "start": 2515.96, + "end": 2520.84, + "probability": 0.5919 + }, + { + "start": 2521.5, + "end": 2522.56, + "probability": 0.9536 + }, + { + "start": 2523.08, + "end": 2524.34, + "probability": 0.9373 + }, + { + "start": 2524.76, + "end": 2525.78, + "probability": 0.9897 + }, + { + "start": 2526.2, + "end": 2527.8, + "probability": 0.9316 + }, + { + "start": 2528.16, + "end": 2529.62, + "probability": 0.9346 + }, + { + "start": 2529.88, + "end": 2536.02, + "probability": 0.9829 + }, + { + "start": 2536.8, + "end": 2539.42, + "probability": 0.9854 + }, + { + "start": 2540.22, + "end": 2542.88, + "probability": 0.8404 + }, + { + "start": 2543.5, + "end": 2547.08, + "probability": 0.1039 + }, + { + "start": 2547.14, + "end": 2550.14, + "probability": 0.392 + }, + { + "start": 2550.46, + "end": 2552.32, + "probability": 0.5473 + }, + { + "start": 2552.66, + "end": 2553.8, + "probability": 0.1431 + }, + { + "start": 2553.8, + "end": 2553.8, + "probability": 0.0643 + }, + { + "start": 2553.8, + "end": 2557.58, + "probability": 0.1991 + }, + { + "start": 2558.42, + "end": 2563.48, + "probability": 0.9453 + }, + { + "start": 2565.56, + "end": 2567.0, + "probability": 0.4986 + }, + { + "start": 2568.24, + "end": 2570.86, + "probability": 0.9782 + }, + { + "start": 2571.58, + "end": 2573.12, + "probability": 0.9915 + }, + { + "start": 2574.66, + "end": 2575.84, + "probability": 0.9966 + }, + { + "start": 2576.72, + "end": 2579.98, + "probability": 0.9834 + }, + { + "start": 2580.5, + "end": 2582.56, + "probability": 0.9313 + }, + { + "start": 2583.48, + "end": 2585.56, + "probability": 0.9548 + }, + { + "start": 2586.52, + "end": 2589.22, + "probability": 0.9926 + }, + { + "start": 2590.04, + "end": 2591.2, + "probability": 0.7521 + }, + { + "start": 2591.78, + "end": 2593.06, + "probability": 0.8625 + }, + { + "start": 2595.28, + "end": 2602.22, + "probability": 0.9897 + }, + { + "start": 2602.84, + "end": 2608.02, + "probability": 0.8041 + }, + { + "start": 2608.62, + "end": 2613.84, + "probability": 0.8879 + }, + { + "start": 2616.68, + "end": 2617.44, + "probability": 0.3867 + }, + { + "start": 2617.72, + "end": 2619.92, + "probability": 0.7249 + }, + { + "start": 2620.12, + "end": 2621.58, + "probability": 0.9102 + }, + { + "start": 2621.62, + "end": 2622.84, + "probability": 0.7943 + }, + { + "start": 2623.02, + "end": 2625.54, + "probability": 0.4804 + }, + { + "start": 2625.56, + "end": 2626.39, + "probability": 0.1557 + }, + { + "start": 2627.64, + "end": 2629.27, + "probability": 0.5152 + }, + { + "start": 2630.5, + "end": 2632.72, + "probability": 0.5738 + }, + { + "start": 2633.28, + "end": 2636.06, + "probability": 0.2223 + }, + { + "start": 2636.76, + "end": 2637.62, + "probability": 0.2934 + }, + { + "start": 2641.8, + "end": 2643.38, + "probability": 0.6565 + }, + { + "start": 2644.02, + "end": 2647.68, + "probability": 0.9761 + }, + { + "start": 2648.5, + "end": 2651.4, + "probability": 0.9829 + }, + { + "start": 2651.54, + "end": 2652.78, + "probability": 0.8012 + }, + { + "start": 2653.4, + "end": 2654.72, + "probability": 0.9944 + }, + { + "start": 2655.78, + "end": 2657.42, + "probability": 0.8017 + }, + { + "start": 2657.96, + "end": 2659.5, + "probability": 0.9978 + }, + { + "start": 2660.08, + "end": 2661.22, + "probability": 0.7932 + }, + { + "start": 2661.76, + "end": 2664.08, + "probability": 0.9972 + }, + { + "start": 2664.66, + "end": 2667.18, + "probability": 0.9811 + }, + { + "start": 2669.42, + "end": 2670.54, + "probability": 0.7443 + }, + { + "start": 2670.96, + "end": 2673.94, + "probability": 0.9729 + }, + { + "start": 2675.76, + "end": 2680.6, + "probability": 0.9984 + }, + { + "start": 2681.46, + "end": 2682.26, + "probability": 0.5477 + }, + { + "start": 2682.92, + "end": 2685.02, + "probability": 0.9501 + }, + { + "start": 2686.2, + "end": 2688.88, + "probability": 0.9121 + }, + { + "start": 2689.48, + "end": 2692.7, + "probability": 0.6876 + }, + { + "start": 2693.34, + "end": 2697.0, + "probability": 0.9926 + }, + { + "start": 2698.04, + "end": 2700.76, + "probability": 0.7592 + }, + { + "start": 2700.94, + "end": 2703.84, + "probability": 0.9193 + }, + { + "start": 2704.82, + "end": 2706.56, + "probability": 0.8849 + }, + { + "start": 2707.08, + "end": 2709.02, + "probability": 0.9962 + }, + { + "start": 2710.1, + "end": 2712.32, + "probability": 0.98 + }, + { + "start": 2713.04, + "end": 2714.38, + "probability": 0.7075 + }, + { + "start": 2715.14, + "end": 2717.08, + "probability": 0.9004 + }, + { + "start": 2717.18, + "end": 2718.98, + "probability": 0.9917 + }, + { + "start": 2719.9, + "end": 2721.86, + "probability": 0.9928 + }, + { + "start": 2723.4, + "end": 2729.24, + "probability": 0.944 + }, + { + "start": 2730.06, + "end": 2732.58, + "probability": 0.4978 + }, + { + "start": 2733.6, + "end": 2735.84, + "probability": 0.9849 + }, + { + "start": 2737.12, + "end": 2741.22, + "probability": 0.9677 + }, + { + "start": 2742.32, + "end": 2745.68, + "probability": 0.9946 + }, + { + "start": 2746.38, + "end": 2748.98, + "probability": 0.9801 + }, + { + "start": 2750.08, + "end": 2752.56, + "probability": 0.9092 + }, + { + "start": 2753.84, + "end": 2754.88, + "probability": 0.635 + }, + { + "start": 2756.56, + "end": 2757.98, + "probability": 0.9208 + }, + { + "start": 2758.8, + "end": 2760.14, + "probability": 0.8021 + }, + { + "start": 2760.28, + "end": 2762.4, + "probability": 0.7722 + }, + { + "start": 2762.94, + "end": 2765.9, + "probability": 0.985 + }, + { + "start": 2766.96, + "end": 2768.9, + "probability": 0.9427 + }, + { + "start": 2769.66, + "end": 2771.88, + "probability": 0.7075 + }, + { + "start": 2772.54, + "end": 2775.32, + "probability": 0.8794 + }, + { + "start": 2776.52, + "end": 2777.64, + "probability": 0.9681 + }, + { + "start": 2778.42, + "end": 2779.82, + "probability": 0.9934 + }, + { + "start": 2780.56, + "end": 2782.2, + "probability": 0.9786 + }, + { + "start": 2783.02, + "end": 2784.92, + "probability": 0.9966 + }, + { + "start": 2785.82, + "end": 2786.94, + "probability": 0.9906 + }, + { + "start": 2788.8, + "end": 2791.66, + "probability": 0.5135 + }, + { + "start": 2795.38, + "end": 2799.78, + "probability": 0.9438 + }, + { + "start": 2800.62, + "end": 2801.88, + "probability": 0.9513 + }, + { + "start": 2802.6, + "end": 2804.4, + "probability": 0.9981 + }, + { + "start": 2805.22, + "end": 2807.24, + "probability": 0.8512 + }, + { + "start": 2807.8, + "end": 2808.02, + "probability": 0.7896 + }, + { + "start": 2808.82, + "end": 2809.5, + "probability": 0.745 + }, + { + "start": 2810.56, + "end": 2812.2, + "probability": 0.8347 + }, + { + "start": 2813.46, + "end": 2815.84, + "probability": 0.1602 + }, + { + "start": 2816.22, + "end": 2816.9, + "probability": 0.0231 + }, + { + "start": 2817.42, + "end": 2819.7, + "probability": 0.5309 + }, + { + "start": 2819.7, + "end": 2820.69, + "probability": 0.3948 + }, + { + "start": 2821.42, + "end": 2826.7, + "probability": 0.7118 + }, + { + "start": 2827.03, + "end": 2829.5, + "probability": 0.4947 + }, + { + "start": 2829.64, + "end": 2831.84, + "probability": 0.8078 + }, + { + "start": 2832.02, + "end": 2832.54, + "probability": 0.2243 + }, + { + "start": 2833.62, + "end": 2835.92, + "probability": 0.719 + }, + { + "start": 2836.26, + "end": 2840.2, + "probability": 0.4436 + }, + { + "start": 2840.74, + "end": 2843.62, + "probability": 0.0724 + }, + { + "start": 2843.62, + "end": 2843.96, + "probability": 0.03 + }, + { + "start": 2843.96, + "end": 2843.96, + "probability": 0.0556 + }, + { + "start": 2843.96, + "end": 2843.96, + "probability": 0.0206 + }, + { + "start": 2843.96, + "end": 2844.66, + "probability": 0.0742 + }, + { + "start": 2844.66, + "end": 2848.96, + "probability": 0.2014 + }, + { + "start": 2849.24, + "end": 2851.26, + "probability": 0.1552 + }, + { + "start": 2851.36, + "end": 2852.2, + "probability": 0.8423 + }, + { + "start": 2855.84, + "end": 2856.84, + "probability": 0.6011 + }, + { + "start": 2858.26, + "end": 2861.08, + "probability": 0.7948 + }, + { + "start": 2861.86, + "end": 2866.86, + "probability": 0.9306 + }, + { + "start": 2869.02, + "end": 2874.46, + "probability": 0.9679 + }, + { + "start": 2874.92, + "end": 2878.18, + "probability": 0.9561 + }, + { + "start": 2878.68, + "end": 2883.98, + "probability": 0.9969 + }, + { + "start": 2883.98, + "end": 2888.74, + "probability": 0.9752 + }, + { + "start": 2888.86, + "end": 2893.58, + "probability": 0.9985 + }, + { + "start": 2894.62, + "end": 2895.56, + "probability": 0.7073 + }, + { + "start": 2895.9, + "end": 2897.34, + "probability": 0.9945 + }, + { + "start": 2897.46, + "end": 2899.08, + "probability": 0.9985 + }, + { + "start": 2899.26, + "end": 2900.62, + "probability": 0.9948 + }, + { + "start": 2900.66, + "end": 2904.1, + "probability": 0.9995 + }, + { + "start": 2904.78, + "end": 2910.44, + "probability": 0.9888 + }, + { + "start": 2911.2, + "end": 2913.2, + "probability": 0.6925 + }, + { + "start": 2913.8, + "end": 2915.8, + "probability": 0.7877 + }, + { + "start": 2916.32, + "end": 2917.08, + "probability": 0.8255 + }, + { + "start": 2918.5, + "end": 2921.38, + "probability": 0.9857 + }, + { + "start": 2922.34, + "end": 2928.54, + "probability": 0.9952 + }, + { + "start": 2928.54, + "end": 2935.34, + "probability": 0.9992 + }, + { + "start": 2935.34, + "end": 2941.46, + "probability": 0.9997 + }, + { + "start": 2943.46, + "end": 2944.46, + "probability": 0.7894 + }, + { + "start": 2944.72, + "end": 2945.6, + "probability": 0.9191 + }, + { + "start": 2945.74, + "end": 2948.71, + "probability": 0.9421 + }, + { + "start": 2948.82, + "end": 2953.56, + "probability": 0.9905 + }, + { + "start": 2954.52, + "end": 2957.3, + "probability": 0.9905 + }, + { + "start": 2957.78, + "end": 2958.72, + "probability": 0.9407 + }, + { + "start": 2959.06, + "end": 2962.54, + "probability": 0.9956 + }, + { + "start": 2963.12, + "end": 2964.36, + "probability": 0.9515 + }, + { + "start": 2965.4, + "end": 2968.13, + "probability": 0.9972 + }, + { + "start": 2969.3, + "end": 2971.6, + "probability": 0.739 + }, + { + "start": 2972.68, + "end": 2980.98, + "probability": 0.984 + }, + { + "start": 2981.7, + "end": 2987.32, + "probability": 0.9968 + }, + { + "start": 2988.62, + "end": 2989.42, + "probability": 0.5839 + }, + { + "start": 2990.54, + "end": 2992.18, + "probability": 0.644 + }, + { + "start": 2993.0, + "end": 2994.48, + "probability": 0.6865 + }, + { + "start": 2995.48, + "end": 2996.24, + "probability": 0.3397 + }, + { + "start": 2996.8, + "end": 2997.66, + "probability": 0.7487 + }, + { + "start": 2999.84, + "end": 3001.1, + "probability": 0.795 + }, + { + "start": 3001.26, + "end": 3006.8, + "probability": 0.9893 + }, + { + "start": 3007.36, + "end": 3009.42, + "probability": 0.9714 + }, + { + "start": 3010.12, + "end": 3010.9, + "probability": 0.8117 + }, + { + "start": 3012.02, + "end": 3015.38, + "probability": 0.9861 + }, + { + "start": 3015.94, + "end": 3020.88, + "probability": 0.9943 + }, + { + "start": 3021.16, + "end": 3022.42, + "probability": 0.9907 + }, + { + "start": 3022.94, + "end": 3023.94, + "probability": 0.9697 + }, + { + "start": 3025.62, + "end": 3030.18, + "probability": 0.6344 + }, + { + "start": 3030.68, + "end": 3031.26, + "probability": 0.8827 + }, + { + "start": 3031.32, + "end": 3032.12, + "probability": 0.7933 + }, + { + "start": 3032.5, + "end": 3035.18, + "probability": 0.8818 + }, + { + "start": 3035.98, + "end": 3036.88, + "probability": 0.7686 + }, + { + "start": 3038.2, + "end": 3039.48, + "probability": 0.5108 + }, + { + "start": 3040.84, + "end": 3041.02, + "probability": 0.5158 + }, + { + "start": 3041.02, + "end": 3042.64, + "probability": 0.6669 + }, + { + "start": 3042.88, + "end": 3044.42, + "probability": 0.7017 + }, + { + "start": 3045.06, + "end": 3045.78, + "probability": 0.3451 + }, + { + "start": 3058.3, + "end": 3059.92, + "probability": 0.6023 + }, + { + "start": 3061.7, + "end": 3063.5, + "probability": 0.938 + }, + { + "start": 3065.04, + "end": 3068.66, + "probability": 0.9906 + }, + { + "start": 3068.68, + "end": 3069.6, + "probability": 0.8049 + }, + { + "start": 3070.8, + "end": 3073.78, + "probability": 0.7673 + }, + { + "start": 3075.42, + "end": 3076.14, + "probability": 0.8094 + }, + { + "start": 3077.18, + "end": 3078.68, + "probability": 0.9903 + }, + { + "start": 3078.8, + "end": 3080.24, + "probability": 0.9322 + }, + { + "start": 3081.32, + "end": 3086.16, + "probability": 0.8562 + }, + { + "start": 3086.78, + "end": 3087.36, + "probability": 0.7531 + }, + { + "start": 3088.44, + "end": 3091.02, + "probability": 0.9076 + }, + { + "start": 3091.94, + "end": 3092.58, + "probability": 0.5165 + }, + { + "start": 3093.82, + "end": 3095.32, + "probability": 0.762 + }, + { + "start": 3096.12, + "end": 3097.66, + "probability": 0.9829 + }, + { + "start": 3098.88, + "end": 3100.34, + "probability": 0.8487 + }, + { + "start": 3101.82, + "end": 3103.59, + "probability": 0.8621 + }, + { + "start": 3105.24, + "end": 3106.78, + "probability": 0.9701 + }, + { + "start": 3107.3, + "end": 3110.18, + "probability": 0.869 + }, + { + "start": 3111.66, + "end": 3113.0, + "probability": 0.8388 + }, + { + "start": 3113.58, + "end": 3115.84, + "probability": 0.9258 + }, + { + "start": 3117.36, + "end": 3119.96, + "probability": 0.8725 + }, + { + "start": 3121.62, + "end": 3123.34, + "probability": 0.8329 + }, + { + "start": 3124.52, + "end": 3126.08, + "probability": 0.4939 + }, + { + "start": 3126.98, + "end": 3127.72, + "probability": 0.7961 + }, + { + "start": 3128.6, + "end": 3131.07, + "probability": 0.9917 + }, + { + "start": 3132.88, + "end": 3136.54, + "probability": 0.9678 + }, + { + "start": 3137.38, + "end": 3138.86, + "probability": 0.9787 + }, + { + "start": 3139.64, + "end": 3140.28, + "probability": 0.8549 + }, + { + "start": 3142.04, + "end": 3145.84, + "probability": 0.9884 + }, + { + "start": 3146.54, + "end": 3148.54, + "probability": 0.9924 + }, + { + "start": 3149.98, + "end": 3150.14, + "probability": 0.2805 + }, + { + "start": 3150.3, + "end": 3153.5, + "probability": 0.5953 + }, + { + "start": 3153.5, + "end": 3159.18, + "probability": 0.84 + }, + { + "start": 3159.34, + "end": 3159.9, + "probability": 0.5273 + }, + { + "start": 3159.94, + "end": 3163.18, + "probability": 0.9185 + }, + { + "start": 3164.76, + "end": 3165.48, + "probability": 0.7056 + }, + { + "start": 3165.68, + "end": 3168.78, + "probability": 0.9299 + }, + { + "start": 3170.78, + "end": 3172.26, + "probability": 0.9912 + }, + { + "start": 3172.3, + "end": 3178.32, + "probability": 0.872 + }, + { + "start": 3181.0, + "end": 3182.32, + "probability": 0.7774 + }, + { + "start": 3184.04, + "end": 3189.5, + "probability": 0.9013 + }, + { + "start": 3190.24, + "end": 3194.3, + "probability": 0.9368 + }, + { + "start": 3195.3, + "end": 3200.44, + "probability": 0.9322 + }, + { + "start": 3200.5, + "end": 3202.08, + "probability": 0.7048 + }, + { + "start": 3203.56, + "end": 3204.05, + "probability": 0.7792 + }, + { + "start": 3204.88, + "end": 3206.92, + "probability": 0.9895 + }, + { + "start": 3207.56, + "end": 3209.98, + "probability": 0.992 + }, + { + "start": 3210.66, + "end": 3212.36, + "probability": 0.9956 + }, + { + "start": 3213.12, + "end": 3214.2, + "probability": 0.9788 + }, + { + "start": 3215.36, + "end": 3216.26, + "probability": 0.7182 + }, + { + "start": 3217.74, + "end": 3222.54, + "probability": 0.9364 + }, + { + "start": 3223.78, + "end": 3229.98, + "probability": 0.9426 + }, + { + "start": 3230.4, + "end": 3230.88, + "probability": 0.7504 + }, + { + "start": 3232.1, + "end": 3240.3, + "probability": 0.9803 + }, + { + "start": 3240.36, + "end": 3241.81, + "probability": 0.934 + }, + { + "start": 3243.32, + "end": 3247.66, + "probability": 0.7697 + }, + { + "start": 3247.88, + "end": 3248.08, + "probability": 0.4692 + }, + { + "start": 3248.24, + "end": 3248.9, + "probability": 0.7488 + }, + { + "start": 3249.4, + "end": 3251.1, + "probability": 0.8505 + }, + { + "start": 3257.36, + "end": 3259.5, + "probability": 0.8138 + }, + { + "start": 3272.36, + "end": 3273.4, + "probability": 0.632 + }, + { + "start": 3274.64, + "end": 3276.48, + "probability": 0.7766 + }, + { + "start": 3278.4, + "end": 3283.18, + "probability": 0.9546 + }, + { + "start": 3283.4, + "end": 3286.1, + "probability": 0.9439 + }, + { + "start": 3286.66, + "end": 3289.56, + "probability": 0.9964 + }, + { + "start": 3291.08, + "end": 3293.39, + "probability": 0.9932 + }, + { + "start": 3294.16, + "end": 3294.78, + "probability": 0.6757 + }, + { + "start": 3295.22, + "end": 3296.8, + "probability": 0.6029 + }, + { + "start": 3296.8, + "end": 3296.8, + "probability": 0.5261 + }, + { + "start": 3296.98, + "end": 3300.76, + "probability": 0.9924 + }, + { + "start": 3301.72, + "end": 3305.36, + "probability": 0.6797 + }, + { + "start": 3308.48, + "end": 3308.94, + "probability": 0.7965 + }, + { + "start": 3309.64, + "end": 3310.52, + "probability": 0.6506 + }, + { + "start": 3311.62, + "end": 3313.08, + "probability": 0.7676 + }, + { + "start": 3314.04, + "end": 3315.4, + "probability": 0.9688 + }, + { + "start": 3316.46, + "end": 3318.68, + "probability": 0.7637 + }, + { + "start": 3319.42, + "end": 3320.53, + "probability": 0.9253 + }, + { + "start": 3320.8, + "end": 3322.32, + "probability": 0.9854 + }, + { + "start": 3324.64, + "end": 3328.4, + "probability": 0.9897 + }, + { + "start": 3329.1, + "end": 3330.22, + "probability": 0.9255 + }, + { + "start": 3331.64, + "end": 3332.55, + "probability": 0.9495 + }, + { + "start": 3333.56, + "end": 3334.28, + "probability": 0.6297 + }, + { + "start": 3335.28, + "end": 3337.62, + "probability": 0.9989 + }, + { + "start": 3338.54, + "end": 3340.76, + "probability": 0.6926 + }, + { + "start": 3342.18, + "end": 3344.98, + "probability": 0.9168 + }, + { + "start": 3345.54, + "end": 3346.9, + "probability": 0.9747 + }, + { + "start": 3348.22, + "end": 3348.8, + "probability": 0.6265 + }, + { + "start": 3349.08, + "end": 3351.01, + "probability": 0.9789 + }, + { + "start": 3351.16, + "end": 3353.88, + "probability": 0.991 + }, + { + "start": 3355.22, + "end": 3358.48, + "probability": 0.8801 + }, + { + "start": 3359.46, + "end": 3361.82, + "probability": 0.9424 + }, + { + "start": 3361.82, + "end": 3363.44, + "probability": 0.816 + }, + { + "start": 3363.52, + "end": 3364.74, + "probability": 0.8135 + }, + { + "start": 3366.04, + "end": 3368.07, + "probability": 0.9404 + }, + { + "start": 3369.66, + "end": 3372.24, + "probability": 0.9567 + }, + { + "start": 3374.34, + "end": 3381.94, + "probability": 0.99 + }, + { + "start": 3382.32, + "end": 3382.92, + "probability": 0.7088 + }, + { + "start": 3383.16, + "end": 3391.32, + "probability": 0.9482 + }, + { + "start": 3393.9, + "end": 3396.88, + "probability": 0.9985 + }, + { + "start": 3398.14, + "end": 3399.76, + "probability": 0.7537 + }, + { + "start": 3401.66, + "end": 3402.04, + "probability": 0.544 + }, + { + "start": 3402.04, + "end": 3402.78, + "probability": 0.5121 + }, + { + "start": 3404.14, + "end": 3406.8, + "probability": 0.9474 + }, + { + "start": 3407.76, + "end": 3408.84, + "probability": 0.7305 + }, + { + "start": 3411.6, + "end": 3411.78, + "probability": 0.2994 + }, + { + "start": 3411.84, + "end": 3413.48, + "probability": 0.501 + }, + { + "start": 3414.22, + "end": 3414.74, + "probability": 0.5659 + }, + { + "start": 3414.98, + "end": 3418.0, + "probability": 0.4746 + }, + { + "start": 3418.8, + "end": 3421.03, + "probability": 0.959 + }, + { + "start": 3421.44, + "end": 3422.27, + "probability": 0.956 + }, + { + "start": 3422.74, + "end": 3424.56, + "probability": 0.9602 + }, + { + "start": 3425.26, + "end": 3426.38, + "probability": 0.9854 + }, + { + "start": 3426.6, + "end": 3428.88, + "probability": 0.8149 + }, + { + "start": 3429.76, + "end": 3432.0, + "probability": 0.9717 + }, + { + "start": 3433.88, + "end": 3438.2, + "probability": 0.9944 + }, + { + "start": 3438.78, + "end": 3440.68, + "probability": 0.9938 + }, + { + "start": 3441.2, + "end": 3443.12, + "probability": 0.5199 + }, + { + "start": 3443.14, + "end": 3446.54, + "probability": 0.9807 + }, + { + "start": 3448.06, + "end": 3448.68, + "probability": 0.907 + }, + { + "start": 3448.78, + "end": 3449.42, + "probability": 0.6855 + }, + { + "start": 3449.52, + "end": 3450.98, + "probability": 0.7478 + }, + { + "start": 3452.26, + "end": 3453.58, + "probability": 0.9373 + }, + { + "start": 3453.8, + "end": 3457.44, + "probability": 0.8967 + }, + { + "start": 3457.9, + "end": 3459.58, + "probability": 0.9927 + }, + { + "start": 3460.04, + "end": 3460.84, + "probability": 0.9126 + }, + { + "start": 3461.38, + "end": 3461.9, + "probability": 0.7669 + }, + { + "start": 3462.54, + "end": 3464.22, + "probability": 0.8076 + }, + { + "start": 3464.96, + "end": 3467.1, + "probability": 0.8112 + }, + { + "start": 3467.2, + "end": 3469.22, + "probability": 0.9746 + }, + { + "start": 3469.62, + "end": 3473.08, + "probability": 0.9128 + }, + { + "start": 3473.64, + "end": 3475.5, + "probability": 0.9931 + }, + { + "start": 3475.58, + "end": 3476.26, + "probability": 0.515 + }, + { + "start": 3476.46, + "end": 3478.5, + "probability": 0.9588 + }, + { + "start": 3482.1, + "end": 3484.38, + "probability": 0.9011 + }, + { + "start": 3493.76, + "end": 3494.9, + "probability": 0.6376 + }, + { + "start": 3495.52, + "end": 3499.02, + "probability": 0.9849 + }, + { + "start": 3500.02, + "end": 3503.04, + "probability": 0.9951 + }, + { + "start": 3504.12, + "end": 3506.6, + "probability": 0.996 + }, + { + "start": 3507.18, + "end": 3507.98, + "probability": 0.6028 + }, + { + "start": 3509.08, + "end": 3509.54, + "probability": 0.596 + }, + { + "start": 3511.02, + "end": 3513.44, + "probability": 0.9185 + }, + { + "start": 3516.24, + "end": 3518.96, + "probability": 0.8584 + }, + { + "start": 3519.86, + "end": 3521.16, + "probability": 0.5271 + }, + { + "start": 3525.02, + "end": 3526.66, + "probability": 0.8507 + }, + { + "start": 3527.48, + "end": 3529.22, + "probability": 0.0308 + }, + { + "start": 3532.34, + "end": 3533.48, + "probability": 0.7236 + }, + { + "start": 3534.36, + "end": 3538.7, + "probability": 0.9097 + }, + { + "start": 3540.14, + "end": 3540.64, + "probability": 0.1942 + }, + { + "start": 3541.64, + "end": 3542.94, + "probability": 0.399 + }, + { + "start": 3545.24, + "end": 3547.58, + "probability": 0.97 + }, + { + "start": 3550.44, + "end": 3553.74, + "probability": 0.7755 + }, + { + "start": 3556.14, + "end": 3560.42, + "probability": 0.7481 + }, + { + "start": 3560.58, + "end": 3561.3, + "probability": 0.5443 + }, + { + "start": 3562.38, + "end": 3563.42, + "probability": 0.756 + }, + { + "start": 3563.58, + "end": 3564.94, + "probability": 0.9317 + }, + { + "start": 3565.04, + "end": 3565.88, + "probability": 0.7544 + }, + { + "start": 3566.44, + "end": 3570.34, + "probability": 0.8786 + }, + { + "start": 3571.0, + "end": 3571.42, + "probability": 0.9005 + }, + { + "start": 3572.64, + "end": 3573.76, + "probability": 0.7374 + }, + { + "start": 3575.44, + "end": 3578.09, + "probability": 0.998 + }, + { + "start": 3578.94, + "end": 3580.68, + "probability": 0.5259 + }, + { + "start": 3580.98, + "end": 3581.56, + "probability": 0.8969 + }, + { + "start": 3583.8, + "end": 3587.7, + "probability": 0.6063 + }, + { + "start": 3589.4, + "end": 3590.98, + "probability": 0.2905 + }, + { + "start": 3591.12, + "end": 3594.1, + "probability": 0.0252 + }, + { + "start": 3594.32, + "end": 3594.54, + "probability": 0.142 + }, + { + "start": 3594.54, + "end": 3597.98, + "probability": 0.0449 + }, + { + "start": 3600.1, + "end": 3601.3, + "probability": 0.1639 + }, + { + "start": 3604.12, + "end": 3604.12, + "probability": 0.0585 + }, + { + "start": 3604.12, + "end": 3607.88, + "probability": 0.2627 + }, + { + "start": 3609.0, + "end": 3609.84, + "probability": 0.5222 + }, + { + "start": 3613.8, + "end": 3615.25, + "probability": 0.9189 + }, + { + "start": 3616.04, + "end": 3618.08, + "probability": 0.9741 + }, + { + "start": 3618.88, + "end": 3621.86, + "probability": 0.8938 + }, + { + "start": 3623.22, + "end": 3625.38, + "probability": 0.0319 + }, + { + "start": 3625.94, + "end": 3629.32, + "probability": 0.2392 + }, + { + "start": 3630.38, + "end": 3631.01, + "probability": 0.0476 + }, + { + "start": 3632.26, + "end": 3635.26, + "probability": 0.0807 + }, + { + "start": 3635.98, + "end": 3637.22, + "probability": 0.1128 + }, + { + "start": 3637.72, + "end": 3637.72, + "probability": 0.0505 + }, + { + "start": 3637.72, + "end": 3639.5, + "probability": 0.2121 + }, + { + "start": 3640.22, + "end": 3642.47, + "probability": 0.9189 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3712.0, + "end": 3712.0, + "probability": 0.0 + }, + { + "start": 3713.24, + "end": 3713.46, + "probability": 0.0454 + }, + { + "start": 3713.46, + "end": 3713.46, + "probability": 0.0277 + }, + { + "start": 3713.46, + "end": 3713.46, + "probability": 0.0853 + }, + { + "start": 3713.46, + "end": 3713.46, + "probability": 0.1836 + }, + { + "start": 3713.46, + "end": 3713.46, + "probability": 0.247 + }, + { + "start": 3713.46, + "end": 3717.84, + "probability": 0.9097 + }, + { + "start": 3718.38, + "end": 3723.42, + "probability": 0.9887 + }, + { + "start": 3723.44, + "end": 3727.7, + "probability": 0.9987 + }, + { + "start": 3728.78, + "end": 3730.96, + "probability": 0.6689 + }, + { + "start": 3731.54, + "end": 3736.82, + "probability": 0.9971 + }, + { + "start": 3737.34, + "end": 3739.16, + "probability": 0.9639 + }, + { + "start": 3739.84, + "end": 3741.26, + "probability": 0.9818 + }, + { + "start": 3742.32, + "end": 3743.82, + "probability": 0.7112 + }, + { + "start": 3744.8, + "end": 3747.06, + "probability": 0.9988 + }, + { + "start": 3747.96, + "end": 3748.62, + "probability": 0.5016 + }, + { + "start": 3749.72, + "end": 3753.62, + "probability": 0.9948 + }, + { + "start": 3754.66, + "end": 3756.0, + "probability": 0.9963 + }, + { + "start": 3756.84, + "end": 3760.08, + "probability": 0.9828 + }, + { + "start": 3761.6, + "end": 3764.3, + "probability": 0.9964 + }, + { + "start": 3765.28, + "end": 3767.26, + "probability": 0.9976 + }, + { + "start": 3767.72, + "end": 3771.1, + "probability": 0.7892 + }, + { + "start": 3771.24, + "end": 3771.8, + "probability": 0.8538 + }, + { + "start": 3771.82, + "end": 3774.48, + "probability": 0.9933 + }, + { + "start": 3774.88, + "end": 3774.94, + "probability": 0.4697 + }, + { + "start": 3775.2, + "end": 3777.54, + "probability": 0.9595 + }, + { + "start": 3779.04, + "end": 3781.56, + "probability": 0.9578 + }, + { + "start": 3781.94, + "end": 3786.54, + "probability": 0.9951 + }, + { + "start": 3787.1, + "end": 3790.3, + "probability": 0.999 + }, + { + "start": 3790.88, + "end": 3795.74, + "probability": 0.9949 + }, + { + "start": 3796.22, + "end": 3800.68, + "probability": 0.99 + }, + { + "start": 3800.72, + "end": 3802.66, + "probability": 0.9976 + }, + { + "start": 3803.22, + "end": 3805.98, + "probability": 0.8932 + }, + { + "start": 3806.32, + "end": 3808.04, + "probability": 0.9851 + }, + { + "start": 3808.54, + "end": 3811.96, + "probability": 0.9958 + }, + { + "start": 3812.04, + "end": 3815.32, + "probability": 0.9977 + }, + { + "start": 3815.74, + "end": 3817.72, + "probability": 0.9904 + }, + { + "start": 3818.88, + "end": 3821.4, + "probability": 0.999 + }, + { + "start": 3821.4, + "end": 3824.16, + "probability": 0.9784 + }, + { + "start": 3824.64, + "end": 3827.28, + "probability": 0.9738 + }, + { + "start": 3828.02, + "end": 3829.92, + "probability": 0.9941 + }, + { + "start": 3830.68, + "end": 3834.88, + "probability": 0.9282 + }, + { + "start": 3835.2, + "end": 3835.92, + "probability": 0.9861 + }, + { + "start": 3836.04, + "end": 3840.92, + "probability": 0.9919 + }, + { + "start": 3842.2, + "end": 3844.04, + "probability": 0.9983 + }, + { + "start": 3844.58, + "end": 3845.22, + "probability": 0.8045 + }, + { + "start": 3845.56, + "end": 3848.84, + "probability": 0.9833 + }, + { + "start": 3849.24, + "end": 3850.04, + "probability": 0.9583 + }, + { + "start": 3850.16, + "end": 3850.98, + "probability": 0.798 + }, + { + "start": 3851.16, + "end": 3853.48, + "probability": 0.9773 + }, + { + "start": 3853.48, + "end": 3854.82, + "probability": 0.6362 + }, + { + "start": 3855.18, + "end": 3856.54, + "probability": 0.4739 + }, + { + "start": 3856.54, + "end": 3857.02, + "probability": 0.8331 + }, + { + "start": 3858.15, + "end": 3859.06, + "probability": 0.3206 + }, + { + "start": 3859.06, + "end": 3863.28, + "probability": 0.3816 + }, + { + "start": 3863.62, + "end": 3863.8, + "probability": 0.1777 + }, + { + "start": 3864.08, + "end": 3865.28, + "probability": 0.6676 + }, + { + "start": 3865.74, + "end": 3866.88, + "probability": 0.8698 + }, + { + "start": 3866.96, + "end": 3869.42, + "probability": 0.8796 + }, + { + "start": 3869.48, + "end": 3872.04, + "probability": 0.9504 + }, + { + "start": 3872.12, + "end": 3872.88, + "probability": 0.873 + }, + { + "start": 3873.6, + "end": 3876.16, + "probability": 0.9578 + }, + { + "start": 3876.42, + "end": 3877.78, + "probability": 0.9712 + }, + { + "start": 3878.04, + "end": 3879.91, + "probability": 0.9414 + }, + { + "start": 3880.38, + "end": 3884.22, + "probability": 0.9965 + }, + { + "start": 3884.82, + "end": 3886.2, + "probability": 0.9717 + }, + { + "start": 3886.88, + "end": 3890.44, + "probability": 0.9979 + }, + { + "start": 3890.52, + "end": 3891.48, + "probability": 0.9971 + }, + { + "start": 3891.96, + "end": 3895.9, + "probability": 0.9642 + }, + { + "start": 3896.36, + "end": 3900.9, + "probability": 0.9978 + }, + { + "start": 3901.34, + "end": 3901.82, + "probability": 0.7997 + }, + { + "start": 3902.74, + "end": 3903.33, + "probability": 0.709 + }, + { + "start": 3903.98, + "end": 3905.56, + "probability": 0.9867 + }, + { + "start": 3906.24, + "end": 3908.04, + "probability": 0.8726 + }, + { + "start": 3908.28, + "end": 3909.44, + "probability": 0.9374 + }, + { + "start": 3909.78, + "end": 3911.92, + "probability": 0.9995 + }, + { + "start": 3912.92, + "end": 3913.6, + "probability": 0.765 + }, + { + "start": 3913.64, + "end": 3914.34, + "probability": 0.7575 + }, + { + "start": 3914.6, + "end": 3915.52, + "probability": 0.753 + }, + { + "start": 3915.58, + "end": 3917.36, + "probability": 0.9937 + }, + { + "start": 3917.5, + "end": 3917.78, + "probability": 0.6425 + }, + { + "start": 3917.86, + "end": 3918.48, + "probability": 0.6183 + }, + { + "start": 3918.5, + "end": 3920.12, + "probability": 0.8127 + }, + { + "start": 3920.18, + "end": 3921.3, + "probability": 0.4065 + }, + { + "start": 3921.38, + "end": 3922.16, + "probability": 0.6269 + }, + { + "start": 3922.36, + "end": 3923.2, + "probability": 0.4082 + }, + { + "start": 3923.48, + "end": 3927.3, + "probability": 0.9026 + }, + { + "start": 3927.82, + "end": 3927.84, + "probability": 0.0732 + }, + { + "start": 3927.84, + "end": 3928.92, + "probability": 0.4947 + }, + { + "start": 3929.04, + "end": 3929.12, + "probability": 0.5141 + }, + { + "start": 3929.12, + "end": 3930.78, + "probability": 0.821 + }, + { + "start": 3930.78, + "end": 3931.8, + "probability": 0.2851 + }, + { + "start": 3931.82, + "end": 3932.54, + "probability": 0.6195 + }, + { + "start": 3933.0, + "end": 3933.62, + "probability": 0.5307 + }, + { + "start": 3933.62, + "end": 3935.68, + "probability": 0.6403 + }, + { + "start": 3935.8, + "end": 3936.96, + "probability": 0.9622 + }, + { + "start": 3937.1, + "end": 3937.42, + "probability": 0.957 + }, + { + "start": 3937.46, + "end": 3941.12, + "probability": 0.9688 + }, + { + "start": 3941.2, + "end": 3942.7, + "probability": 0.9674 + }, + { + "start": 3942.88, + "end": 3944.08, + "probability": 0.9856 + }, + { + "start": 3944.38, + "end": 3945.36, + "probability": 0.9773 + }, + { + "start": 3945.38, + "end": 3946.15, + "probability": 0.6548 + }, + { + "start": 3946.4, + "end": 3947.14, + "probability": 0.6743 + }, + { + "start": 3947.22, + "end": 3948.14, + "probability": 0.1287 + }, + { + "start": 3948.52, + "end": 3948.66, + "probability": 0.0621 + }, + { + "start": 3948.66, + "end": 3950.82, + "probability": 0.6212 + }, + { + "start": 3951.22, + "end": 3952.61, + "probability": 0.2366 + }, + { + "start": 3954.32, + "end": 3954.44, + "probability": 0.1415 + }, + { + "start": 3954.44, + "end": 3955.36, + "probability": 0.3296 + }, + { + "start": 3956.18, + "end": 3957.97, + "probability": 0.8963 + }, + { + "start": 3961.26, + "end": 3961.86, + "probability": 0.0548 + }, + { + "start": 3963.06, + "end": 3963.13, + "probability": 0.0542 + }, + { + "start": 3965.34, + "end": 3965.34, + "probability": 0.0857 + }, + { + "start": 3965.62, + "end": 3969.46, + "probability": 0.1838 + }, + { + "start": 3970.38, + "end": 3971.34, + "probability": 0.0398 + }, + { + "start": 3971.34, + "end": 3972.02, + "probability": 0.0709 + }, + { + "start": 3972.7, + "end": 3974.43, + "probability": 0.3566 + }, + { + "start": 3976.22, + "end": 3980.46, + "probability": 0.4628 + }, + { + "start": 3986.66, + "end": 3992.52, + "probability": 0.0796 + }, + { + "start": 3992.7, + "end": 3994.16, + "probability": 0.0685 + }, + { + "start": 3995.01, + "end": 3998.18, + "probability": 0.0304 + }, + { + "start": 3998.18, + "end": 4000.62, + "probability": 0.2942 + }, + { + "start": 4000.76, + "end": 4002.16, + "probability": 0.0923 + }, + { + "start": 4002.96, + "end": 4002.96, + "probability": 0.0237 + }, + { + "start": 4005.62, + "end": 4007.24, + "probability": 0.2771 + }, + { + "start": 4007.24, + "end": 4008.58, + "probability": 0.6029 + }, + { + "start": 4008.74, + "end": 4010.32, + "probability": 0.1133 + }, + { + "start": 4012.02, + "end": 4014.22, + "probability": 0.7898 + }, + { + "start": 4016.38, + "end": 4016.58, + "probability": 0.503 + }, + { + "start": 4016.58, + "end": 4017.07, + "probability": 0.0797 + }, + { + "start": 4018.08, + "end": 4020.13, + "probability": 0.0677 + }, + { + "start": 4021.8, + "end": 4022.18, + "probability": 0.0795 + }, + { + "start": 4022.46, + "end": 4022.92, + "probability": 0.1915 + }, + { + "start": 4022.92, + "end": 4022.92, + "probability": 0.2016 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4023.0, + "end": 4023.0, + "probability": 0.0 + }, + { + "start": 4024.02, + "end": 4028.86, + "probability": 0.2291 + }, + { + "start": 4029.06, + "end": 4032.58, + "probability": 0.642 + }, + { + "start": 4032.6, + "end": 4032.84, + "probability": 0.0431 + }, + { + "start": 4032.88, + "end": 4033.34, + "probability": 0.5698 + }, + { + "start": 4033.62, + "end": 4034.54, + "probability": 0.5291 + }, + { + "start": 4035.14, + "end": 4035.64, + "probability": 0.4815 + }, + { + "start": 4035.74, + "end": 4038.62, + "probability": 0.5728 + }, + { + "start": 4038.62, + "end": 4039.26, + "probability": 0.9299 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.0, + "end": 4144.0, + "probability": 0.0 + }, + { + "start": 4144.7, + "end": 4146.32, + "probability": 0.0046 + }, + { + "start": 4146.32, + "end": 4146.36, + "probability": 0.3843 + }, + { + "start": 4146.36, + "end": 4146.9, + "probability": 0.3667 + }, + { + "start": 4147.28, + "end": 4148.34, + "probability": 0.5733 + }, + { + "start": 4148.74, + "end": 4149.54, + "probability": 0.7455 + }, + { + "start": 4150.52, + "end": 4154.88, + "probability": 0.8997 + }, + { + "start": 4155.42, + "end": 4156.54, + "probability": 0.8247 + }, + { + "start": 4157.22, + "end": 4157.4, + "probability": 0.0629 + }, + { + "start": 4158.3, + "end": 4159.36, + "probability": 0.5929 + }, + { + "start": 4159.52, + "end": 4161.42, + "probability": 0.5496 + }, + { + "start": 4161.8, + "end": 4162.04, + "probability": 0.2118 + }, + { + "start": 4162.36, + "end": 4163.82, + "probability": 0.8624 + }, + { + "start": 4164.8, + "end": 4166.15, + "probability": 0.7464 + }, + { + "start": 4166.2, + "end": 4167.08, + "probability": 0.1977 + }, + { + "start": 4167.32, + "end": 4167.82, + "probability": 0.0327 + }, + { + "start": 4167.82, + "end": 4167.92, + "probability": 0.0742 + }, + { + "start": 4167.92, + "end": 4168.9, + "probability": 0.5891 + }, + { + "start": 4168.98, + "end": 4169.34, + "probability": 0.7186 + }, + { + "start": 4172.4, + "end": 4174.68, + "probability": 0.7251 + }, + { + "start": 4177.1, + "end": 4179.14, + "probability": 0.0453 + }, + { + "start": 4179.14, + "end": 4179.16, + "probability": 0.0947 + }, + { + "start": 4179.16, + "end": 4179.37, + "probability": 0.1032 + }, + { + "start": 4182.62, + "end": 4184.86, + "probability": 0.0976 + }, + { + "start": 4185.16, + "end": 4186.7, + "probability": 0.3171 + }, + { + "start": 4186.7, + "end": 4188.9, + "probability": 0.0921 + }, + { + "start": 4191.7, + "end": 4192.3, + "probability": 0.1714 + }, + { + "start": 4192.3, + "end": 4192.32, + "probability": 0.0094 + }, + { + "start": 4192.48, + "end": 4195.1, + "probability": 0.0598 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.0, + "end": 4270.0, + "probability": 0.0 + }, + { + "start": 4270.52, + "end": 4270.62, + "probability": 0.0404 + }, + { + "start": 4270.62, + "end": 4271.34, + "probability": 0.4756 + }, + { + "start": 4273.04, + "end": 4273.1, + "probability": 0.0485 + }, + { + "start": 4273.1, + "end": 4275.74, + "probability": 0.1466 + }, + { + "start": 4275.74, + "end": 4278.36, + "probability": 0.5934 + }, + { + "start": 4278.9, + "end": 4280.14, + "probability": 0.8271 + }, + { + "start": 4281.04, + "end": 4286.36, + "probability": 0.8439 + }, + { + "start": 4286.78, + "end": 4288.92, + "probability": 0.5305 + }, + { + "start": 4289.42, + "end": 4289.94, + "probability": 0.8291 + }, + { + "start": 4290.64, + "end": 4294.1, + "probability": 0.946 + }, + { + "start": 4294.48, + "end": 4296.56, + "probability": 0.965 + }, + { + "start": 4298.12, + "end": 4298.98, + "probability": 0.1801 + }, + { + "start": 4303.66, + "end": 4308.14, + "probability": 0.1375 + }, + { + "start": 4316.32, + "end": 4316.92, + "probability": 0.326 + }, + { + "start": 4318.95, + "end": 4322.8, + "probability": 0.7082 + }, + { + "start": 4324.02, + "end": 4325.98, + "probability": 0.7215 + }, + { + "start": 4326.92, + "end": 4327.76, + "probability": 0.7085 + }, + { + "start": 4328.1, + "end": 4328.92, + "probability": 0.4777 + }, + { + "start": 4329.0, + "end": 4329.64, + "probability": 0.7261 + }, + { + "start": 4331.08, + "end": 4334.82, + "probability": 0.9834 + }, + { + "start": 4334.86, + "end": 4340.52, + "probability": 0.9883 + }, + { + "start": 4341.26, + "end": 4343.06, + "probability": 0.8741 + }, + { + "start": 4344.22, + "end": 4346.92, + "probability": 0.8478 + }, + { + "start": 4347.82, + "end": 4350.38, + "probability": 0.977 + }, + { + "start": 4350.44, + "end": 4352.18, + "probability": 0.9386 + }, + { + "start": 4352.18, + "end": 4355.18, + "probability": 0.9896 + }, + { + "start": 4356.7, + "end": 4361.18, + "probability": 0.9863 + }, + { + "start": 4362.18, + "end": 4363.62, + "probability": 0.9995 + }, + { + "start": 4364.96, + "end": 4366.48, + "probability": 0.6554 + }, + { + "start": 4367.38, + "end": 4368.86, + "probability": 0.7981 + }, + { + "start": 4369.92, + "end": 4370.88, + "probability": 0.1895 + }, + { + "start": 4371.34, + "end": 4374.64, + "probability": 0.9169 + }, + { + "start": 4374.8, + "end": 4375.2, + "probability": 0.9285 + }, + { + "start": 4375.28, + "end": 4375.5, + "probability": 0.9834 + }, + { + "start": 4375.54, + "end": 4379.84, + "probability": 0.782 + }, + { + "start": 4380.74, + "end": 4382.12, + "probability": 0.959 + }, + { + "start": 4382.9, + "end": 4386.22, + "probability": 0.7858 + }, + { + "start": 4386.76, + "end": 4388.1, + "probability": 0.9386 + }, + { + "start": 4388.28, + "end": 4391.9, + "probability": 0.984 + }, + { + "start": 4392.08, + "end": 4393.5, + "probability": 0.9364 + }, + { + "start": 4394.12, + "end": 4395.64, + "probability": 0.8981 + }, + { + "start": 4396.52, + "end": 4399.4, + "probability": 0.9541 + }, + { + "start": 4399.54, + "end": 4402.56, + "probability": 0.9453 + }, + { + "start": 4403.2, + "end": 4404.12, + "probability": 0.6702 + }, + { + "start": 4404.36, + "end": 4410.68, + "probability": 0.7928 + }, + { + "start": 4412.22, + "end": 4412.42, + "probability": 0.8889 + }, + { + "start": 4413.34, + "end": 4416.38, + "probability": 0.9774 + }, + { + "start": 4416.92, + "end": 4418.14, + "probability": 0.8433 + }, + { + "start": 4418.84, + "end": 4420.74, + "probability": 0.8795 + }, + { + "start": 4422.1, + "end": 4423.1, + "probability": 0.9012 + }, + { + "start": 4423.78, + "end": 4425.02, + "probability": 0.9069 + }, + { + "start": 4426.14, + "end": 4427.3, + "probability": 0.9658 + }, + { + "start": 4428.28, + "end": 4428.4, + "probability": 0.0092 + }, + { + "start": 4428.8, + "end": 4428.9, + "probability": 0.3006 + }, + { + "start": 4428.9, + "end": 4430.06, + "probability": 0.5231 + }, + { + "start": 4434.72, + "end": 4436.62, + "probability": 0.996 + }, + { + "start": 4437.26, + "end": 4439.5, + "probability": 0.9716 + }, + { + "start": 4440.26, + "end": 4443.22, + "probability": 0.919 + }, + { + "start": 4444.4, + "end": 4446.14, + "probability": 0.9985 + }, + { + "start": 4446.66, + "end": 4446.66, + "probability": 0.3957 + }, + { + "start": 4446.98, + "end": 4448.84, + "probability": 0.9976 + }, + { + "start": 4449.3, + "end": 4451.18, + "probability": 0.7881 + }, + { + "start": 4451.5, + "end": 4452.22, + "probability": 0.1454 + }, + { + "start": 4452.44, + "end": 4454.78, + "probability": 0.7984 + }, + { + "start": 4457.1, + "end": 4459.46, + "probability": 0.9771 + }, + { + "start": 4460.56, + "end": 4463.04, + "probability": 0.9897 + }, + { + "start": 4463.76, + "end": 4465.54, + "probability": 0.98 + }, + { + "start": 4466.12, + "end": 4468.66, + "probability": 0.987 + }, + { + "start": 4469.22, + "end": 4470.7, + "probability": 0.7932 + }, + { + "start": 4471.92, + "end": 4474.68, + "probability": 0.9835 + }, + { + "start": 4475.94, + "end": 4478.06, + "probability": 0.9717 + }, + { + "start": 4478.18, + "end": 4479.02, + "probability": 0.9854 + }, + { + "start": 4479.62, + "end": 4480.16, + "probability": 0.95 + }, + { + "start": 4480.86, + "end": 4481.66, + "probability": 0.977 + }, + { + "start": 4482.5, + "end": 4484.8, + "probability": 0.8207 + }, + { + "start": 4485.46, + "end": 4487.46, + "probability": 0.9341 + }, + { + "start": 4488.06, + "end": 4490.46, + "probability": 0.9709 + }, + { + "start": 4491.16, + "end": 4492.46, + "probability": 0.9978 + }, + { + "start": 4493.4, + "end": 4496.24, + "probability": 0.9499 + }, + { + "start": 4497.0, + "end": 4498.36, + "probability": 0.7601 + }, + { + "start": 4498.84, + "end": 4502.78, + "probability": 0.9855 + }, + { + "start": 4502.88, + "end": 4503.78, + "probability": 0.8475 + }, + { + "start": 4504.06, + "end": 4505.0, + "probability": 0.2243 + }, + { + "start": 4505.0, + "end": 4508.0, + "probability": 0.9802 + }, + { + "start": 4508.82, + "end": 4509.08, + "probability": 0.0163 + }, + { + "start": 4509.08, + "end": 4510.01, + "probability": 0.4065 + }, + { + "start": 4511.86, + "end": 4512.7, + "probability": 0.2536 + }, + { + "start": 4513.18, + "end": 4515.88, + "probability": 0.4512 + }, + { + "start": 4516.38, + "end": 4517.8, + "probability": 0.6489 + }, + { + "start": 4518.08, + "end": 4520.62, + "probability": 0.8294 + }, + { + "start": 4520.74, + "end": 4521.8, + "probability": 0.1206 + }, + { + "start": 4522.0, + "end": 4523.48, + "probability": 0.6649 + }, + { + "start": 4523.7, + "end": 4524.08, + "probability": 0.3088 + }, + { + "start": 4524.54, + "end": 4526.22, + "probability": 0.0394 + }, + { + "start": 4527.98, + "end": 4532.92, + "probability": 0.2518 + }, + { + "start": 4533.2, + "end": 4534.38, + "probability": 0.5204 + }, + { + "start": 4534.66, + "end": 4534.66, + "probability": 0.5984 + }, + { + "start": 4534.66, + "end": 4534.66, + "probability": 0.5884 + }, + { + "start": 4534.66, + "end": 4539.94, + "probability": 0.6764 + }, + { + "start": 4539.94, + "end": 4545.34, + "probability": 0.8452 + }, + { + "start": 4546.76, + "end": 4549.34, + "probability": 0.6948 + }, + { + "start": 4550.42, + "end": 4553.62, + "probability": 0.9739 + }, + { + "start": 4554.34, + "end": 4556.12, + "probability": 0.7694 + }, + { + "start": 4558.32, + "end": 4558.64, + "probability": 0.843 + }, + { + "start": 4560.6, + "end": 4562.16, + "probability": 0.991 + }, + { + "start": 4562.68, + "end": 4564.06, + "probability": 0.994 + }, + { + "start": 4564.76, + "end": 4567.12, + "probability": 0.9951 + }, + { + "start": 4568.88, + "end": 4570.94, + "probability": 0.9977 + }, + { + "start": 4572.56, + "end": 4574.56, + "probability": 0.7419 + }, + { + "start": 4575.32, + "end": 4578.76, + "probability": 0.9666 + }, + { + "start": 4579.4, + "end": 4581.86, + "probability": 0.7918 + }, + { + "start": 4582.4, + "end": 4584.1, + "probability": 0.9375 + }, + { + "start": 4585.42, + "end": 4586.24, + "probability": 0.5059 + }, + { + "start": 4588.12, + "end": 4589.3, + "probability": 0.8477 + }, + { + "start": 4589.96, + "end": 4590.82, + "probability": 0.515 + }, + { + "start": 4591.92, + "end": 4592.9, + "probability": 0.6424 + }, + { + "start": 4593.66, + "end": 4596.28, + "probability": 0.9653 + }, + { + "start": 4597.14, + "end": 4599.6, + "probability": 0.7576 + }, + { + "start": 4600.24, + "end": 4604.28, + "probability": 0.7917 + }, + { + "start": 4606.1, + "end": 4606.79, + "probability": 0.9954 + }, + { + "start": 4608.5, + "end": 4609.78, + "probability": 0.5465 + }, + { + "start": 4610.62, + "end": 4612.06, + "probability": 0.8641 + }, + { + "start": 4612.86, + "end": 4614.66, + "probability": 0.9466 + }, + { + "start": 4615.64, + "end": 4617.9, + "probability": 0.9614 + }, + { + "start": 4618.56, + "end": 4620.44, + "probability": 0.9597 + }, + { + "start": 4621.78, + "end": 4622.38, + "probability": 0.5861 + }, + { + "start": 4623.84, + "end": 4627.74, + "probability": 0.9929 + }, + { + "start": 4627.74, + "end": 4632.72, + "probability": 0.7712 + }, + { + "start": 4634.2, + "end": 4639.2, + "probability": 0.9083 + }, + { + "start": 4640.36, + "end": 4640.8, + "probability": 0.5071 + }, + { + "start": 4640.8, + "end": 4641.16, + "probability": 0.4512 + }, + { + "start": 4642.98, + "end": 4646.24, + "probability": 0.6826 + }, + { + "start": 4648.04, + "end": 4650.24, + "probability": 0.9816 + }, + { + "start": 4651.04, + "end": 4653.56, + "probability": 0.9518 + }, + { + "start": 4654.28, + "end": 4656.19, + "probability": 0.6129 + }, + { + "start": 4658.68, + "end": 4660.12, + "probability": 0.987 + }, + { + "start": 4660.86, + "end": 4661.9, + "probability": 0.8016 + }, + { + "start": 4662.98, + "end": 4664.28, + "probability": 0.8439 + }, + { + "start": 4665.5, + "end": 4666.6, + "probability": 0.9555 + }, + { + "start": 4668.32, + "end": 4669.84, + "probability": 0.8848 + }, + { + "start": 4670.8, + "end": 4672.1, + "probability": 0.9639 + }, + { + "start": 4673.68, + "end": 4675.02, + "probability": 0.9943 + }, + { + "start": 4675.86, + "end": 4676.75, + "probability": 0.9905 + }, + { + "start": 4678.34, + "end": 4679.3, + "probability": 0.9917 + }, + { + "start": 4680.9, + "end": 4683.98, + "probability": 0.9683 + }, + { + "start": 4684.48, + "end": 4686.0, + "probability": 0.9727 + }, + { + "start": 4687.58, + "end": 4688.46, + "probability": 0.8875 + }, + { + "start": 4689.48, + "end": 4691.55, + "probability": 0.8932 + }, + { + "start": 4692.38, + "end": 4693.48, + "probability": 0.9266 + }, + { + "start": 4694.14, + "end": 4695.44, + "probability": 0.7922 + }, + { + "start": 4696.46, + "end": 4699.42, + "probability": 0.8788 + }, + { + "start": 4700.54, + "end": 4702.06, + "probability": 0.9925 + }, + { + "start": 4702.98, + "end": 4706.9, + "probability": 0.9201 + }, + { + "start": 4707.36, + "end": 4708.8, + "probability": 0.7844 + }, + { + "start": 4709.16, + "end": 4711.1, + "probability": 0.8869 + }, + { + "start": 4711.48, + "end": 4712.12, + "probability": 0.4642 + }, + { + "start": 4712.16, + "end": 4713.56, + "probability": 0.8858 + }, + { + "start": 4731.6, + "end": 4731.62, + "probability": 0.0785 + }, + { + "start": 4742.94, + "end": 4744.02, + "probability": 0.1161 + }, + { + "start": 4745.16, + "end": 4747.2, + "probability": 0.9968 + }, + { + "start": 4747.78, + "end": 4755.72, + "probability": 0.9943 + }, + { + "start": 4756.32, + "end": 4758.84, + "probability": 0.9889 + }, + { + "start": 4760.0, + "end": 4765.08, + "probability": 0.9904 + }, + { + "start": 4765.82, + "end": 4767.72, + "probability": 0.9473 + }, + { + "start": 4768.78, + "end": 4774.46, + "probability": 0.994 + }, + { + "start": 4775.0, + "end": 4778.4, + "probability": 0.9453 + }, + { + "start": 4779.2, + "end": 4783.2, + "probability": 0.9953 + }, + { + "start": 4784.1, + "end": 4785.96, + "probability": 0.9787 + }, + { + "start": 4786.8, + "end": 4787.82, + "probability": 0.49 + }, + { + "start": 4789.06, + "end": 4794.42, + "probability": 0.9927 + }, + { + "start": 4795.44, + "end": 4802.18, + "probability": 0.9955 + }, + { + "start": 4802.18, + "end": 4807.22, + "probability": 0.9994 + }, + { + "start": 4808.96, + "end": 4813.14, + "probability": 0.998 + }, + { + "start": 4813.14, + "end": 4817.14, + "probability": 1.0 + }, + { + "start": 4819.08, + "end": 4820.08, + "probability": 0.9963 + }, + { + "start": 4820.98, + "end": 4826.4, + "probability": 0.9448 + }, + { + "start": 4827.26, + "end": 4832.12, + "probability": 0.998 + }, + { + "start": 4833.02, + "end": 4838.38, + "probability": 0.9881 + }, + { + "start": 4838.78, + "end": 4844.8, + "probability": 0.998 + }, + { + "start": 4846.2, + "end": 4848.08, + "probability": 0.9351 + }, + { + "start": 4848.86, + "end": 4853.5, + "probability": 0.9811 + }, + { + "start": 4854.0, + "end": 4855.86, + "probability": 0.9678 + }, + { + "start": 4856.82, + "end": 4860.76, + "probability": 0.998 + }, + { + "start": 4861.42, + "end": 4867.84, + "probability": 0.9966 + }, + { + "start": 4867.84, + "end": 4872.72, + "probability": 0.9992 + }, + { + "start": 4873.86, + "end": 4877.22, + "probability": 0.9889 + }, + { + "start": 4878.42, + "end": 4883.34, + "probability": 0.9968 + }, + { + "start": 4884.06, + "end": 4886.48, + "probability": 0.8089 + }, + { + "start": 4887.04, + "end": 4891.84, + "probability": 0.939 + }, + { + "start": 4892.74, + "end": 4895.96, + "probability": 0.9888 + }, + { + "start": 4896.58, + "end": 4901.62, + "probability": 0.9948 + }, + { + "start": 4902.12, + "end": 4908.68, + "probability": 0.9981 + }, + { + "start": 4909.36, + "end": 4914.78, + "probability": 0.9969 + }, + { + "start": 4916.5, + "end": 4921.0, + "probability": 0.9882 + }, + { + "start": 4921.62, + "end": 4928.2, + "probability": 0.992 + }, + { + "start": 4929.02, + "end": 4930.6, + "probability": 0.9736 + }, + { + "start": 4931.04, + "end": 4932.12, + "probability": 0.873 + }, + { + "start": 4932.52, + "end": 4934.12, + "probability": 0.9865 + }, + { + "start": 4934.7, + "end": 4938.74, + "probability": 0.9474 + }, + { + "start": 4939.68, + "end": 4945.72, + "probability": 0.9741 + }, + { + "start": 4945.78, + "end": 4946.14, + "probability": 0.3527 + }, + { + "start": 4946.28, + "end": 4948.54, + "probability": 0.9294 + }, + { + "start": 4948.96, + "end": 4954.28, + "probability": 0.9959 + }, + { + "start": 4955.3, + "end": 4959.76, + "probability": 0.9977 + }, + { + "start": 4960.76, + "end": 4962.6, + "probability": 0.9538 + }, + { + "start": 4963.3, + "end": 4965.56, + "probability": 0.9585 + }, + { + "start": 4966.44, + "end": 4967.5, + "probability": 0.7473 + }, + { + "start": 4968.48, + "end": 4969.18, + "probability": 0.6681 + }, + { + "start": 4969.32, + "end": 4973.31, + "probability": 0.9261 + }, + { + "start": 5002.3, + "end": 5003.28, + "probability": 0.7583 + }, + { + "start": 5003.44, + "end": 5004.96, + "probability": 0.7744 + }, + { + "start": 5005.12, + "end": 5005.88, + "probability": 0.6772 + }, + { + "start": 5006.62, + "end": 5009.4, + "probability": 0.9854 + }, + { + "start": 5009.4, + "end": 5012.18, + "probability": 0.9985 + }, + { + "start": 5012.78, + "end": 5015.84, + "probability": 0.7733 + }, + { + "start": 5016.6, + "end": 5020.02, + "probability": 0.9958 + }, + { + "start": 5020.02, + "end": 5022.82, + "probability": 0.9979 + }, + { + "start": 5023.64, + "end": 5027.64, + "probability": 0.9895 + }, + { + "start": 5028.22, + "end": 5029.12, + "probability": 0.9079 + }, + { + "start": 5029.8, + "end": 5032.73, + "probability": 0.9838 + }, + { + "start": 5037.0, + "end": 5041.94, + "probability": 0.9922 + }, + { + "start": 5041.94, + "end": 5048.0, + "probability": 0.998 + }, + { + "start": 5048.0, + "end": 5054.02, + "probability": 0.9987 + }, + { + "start": 5054.94, + "end": 5060.06, + "probability": 0.999 + }, + { + "start": 5060.18, + "end": 5065.34, + "probability": 0.9932 + }, + { + "start": 5066.08, + "end": 5071.74, + "probability": 0.9964 + }, + { + "start": 5072.6, + "end": 5079.06, + "probability": 0.9658 + }, + { + "start": 5079.06, + "end": 5085.38, + "probability": 0.9991 + }, + { + "start": 5086.2, + "end": 5090.36, + "probability": 0.9983 + }, + { + "start": 5090.36, + "end": 5096.66, + "probability": 0.9978 + }, + { + "start": 5097.16, + "end": 5100.28, + "probability": 0.9966 + }, + { + "start": 5101.08, + "end": 5103.58, + "probability": 0.9722 + }, + { + "start": 5103.58, + "end": 5106.88, + "probability": 0.9994 + }, + { + "start": 5107.66, + "end": 5112.32, + "probability": 0.998 + }, + { + "start": 5112.68, + "end": 5118.56, + "probability": 0.9863 + }, + { + "start": 5118.56, + "end": 5123.54, + "probability": 0.9971 + }, + { + "start": 5124.36, + "end": 5126.06, + "probability": 0.7481 + }, + { + "start": 5126.06, + "end": 5133.82, + "probability": 0.776 + }, + { + "start": 5134.46, + "end": 5138.64, + "probability": 0.9945 + }, + { + "start": 5139.48, + "end": 5144.96, + "probability": 0.989 + }, + { + "start": 5145.46, + "end": 5148.88, + "probability": 0.9643 + }, + { + "start": 5148.88, + "end": 5151.74, + "probability": 0.9995 + }, + { + "start": 5152.46, + "end": 5156.98, + "probability": 0.9998 + }, + { + "start": 5157.46, + "end": 5162.54, + "probability": 0.9911 + }, + { + "start": 5162.54, + "end": 5168.22, + "probability": 0.9639 + }, + { + "start": 5168.92, + "end": 5169.4, + "probability": 0.7898 + }, + { + "start": 5169.76, + "end": 5175.4, + "probability": 0.9941 + }, + { + "start": 5175.6, + "end": 5175.7, + "probability": 0.4346 + }, + { + "start": 5175.7, + "end": 5176.72, + "probability": 0.7968 + }, + { + "start": 5177.18, + "end": 5180.7, + "probability": 0.9696 + }, + { + "start": 5181.38, + "end": 5183.98, + "probability": 0.9268 + }, + { + "start": 5184.66, + "end": 5190.24, + "probability": 0.9993 + }, + { + "start": 5191.08, + "end": 5194.64, + "probability": 0.9956 + }, + { + "start": 5195.18, + "end": 5199.0, + "probability": 0.9913 + }, + { + "start": 5199.42, + "end": 5200.98, + "probability": 0.8488 + }, + { + "start": 5201.38, + "end": 5204.4, + "probability": 0.9939 + }, + { + "start": 5204.98, + "end": 5208.88, + "probability": 0.9791 + }, + { + "start": 5209.24, + "end": 5212.3, + "probability": 0.9916 + }, + { + "start": 5212.58, + "end": 5213.0, + "probability": 0.6935 + }, + { + "start": 5213.28, + "end": 5213.28, + "probability": 0.5326 + }, + { + "start": 5213.28, + "end": 5215.08, + "probability": 0.6247 + }, + { + "start": 5232.2, + "end": 5234.0, + "probability": 0.7483 + }, + { + "start": 5234.18, + "end": 5235.22, + "probability": 0.6287 + }, + { + "start": 5236.28, + "end": 5240.2, + "probability": 0.915 + }, + { + "start": 5240.82, + "end": 5248.0, + "probability": 0.7605 + }, + { + "start": 5248.58, + "end": 5250.88, + "probability": 0.9968 + }, + { + "start": 5251.86, + "end": 5257.04, + "probability": 0.9924 + }, + { + "start": 5257.3, + "end": 5258.5, + "probability": 0.8858 + }, + { + "start": 5259.42, + "end": 5261.58, + "probability": 0.9351 + }, + { + "start": 5262.24, + "end": 5267.6, + "probability": 0.9867 + }, + { + "start": 5268.34, + "end": 5270.92, + "probability": 0.9656 + }, + { + "start": 5271.92, + "end": 5274.3, + "probability": 0.9951 + }, + { + "start": 5274.44, + "end": 5275.06, + "probability": 0.7766 + }, + { + "start": 5275.14, + "end": 5277.38, + "probability": 0.9697 + }, + { + "start": 5279.04, + "end": 5279.42, + "probability": 0.7738 + }, + { + "start": 5279.66, + "end": 5281.22, + "probability": 0.9546 + }, + { + "start": 5281.28, + "end": 5281.36, + "probability": 0.2738 + }, + { + "start": 5281.36, + "end": 5283.14, + "probability": 0.9989 + }, + { + "start": 5284.42, + "end": 5287.3, + "probability": 0.9478 + }, + { + "start": 5287.32, + "end": 5291.1, + "probability": 0.9721 + }, + { + "start": 5291.1, + "end": 5297.76, + "probability": 0.939 + }, + { + "start": 5298.58, + "end": 5302.54, + "probability": 0.9662 + }, + { + "start": 5303.0, + "end": 5304.48, + "probability": 0.9369 + }, + { + "start": 5305.76, + "end": 5307.16, + "probability": 0.3922 + }, + { + "start": 5308.42, + "end": 5314.34, + "probability": 0.9953 + }, + { + "start": 5315.7, + "end": 5319.32, + "probability": 0.9932 + }, + { + "start": 5319.38, + "end": 5320.4, + "probability": 0.9556 + }, + { + "start": 5320.48, + "end": 5321.88, + "probability": 0.9991 + }, + { + "start": 5322.24, + "end": 5322.94, + "probability": 0.9927 + }, + { + "start": 5323.56, + "end": 5325.16, + "probability": 0.9914 + }, + { + "start": 5326.84, + "end": 5332.5, + "probability": 0.9977 + }, + { + "start": 5332.64, + "end": 5334.78, + "probability": 0.9619 + }, + { + "start": 5334.88, + "end": 5338.48, + "probability": 0.9914 + }, + { + "start": 5339.12, + "end": 5341.68, + "probability": 0.9837 + }, + { + "start": 5342.86, + "end": 5347.46, + "probability": 0.909 + }, + { + "start": 5347.54, + "end": 5349.14, + "probability": 0.817 + }, + { + "start": 5349.7, + "end": 5350.02, + "probability": 0.3645 + }, + { + "start": 5350.06, + "end": 5354.26, + "probability": 0.9976 + }, + { + "start": 5355.46, + "end": 5358.22, + "probability": 0.9865 + }, + { + "start": 5358.34, + "end": 5361.52, + "probability": 0.9712 + }, + { + "start": 5361.96, + "end": 5363.54, + "probability": 0.9039 + }, + { + "start": 5363.68, + "end": 5370.68, + "probability": 0.9888 + }, + { + "start": 5371.66, + "end": 5371.96, + "probability": 0.6933 + }, + { + "start": 5372.72, + "end": 5373.54, + "probability": 0.9149 + }, + { + "start": 5373.6, + "end": 5377.98, + "probability": 0.9846 + }, + { + "start": 5377.98, + "end": 5380.66, + "probability": 0.9871 + }, + { + "start": 5380.8, + "end": 5382.1, + "probability": 0.9524 + }, + { + "start": 5382.24, + "end": 5383.34, + "probability": 0.9756 + }, + { + "start": 5384.58, + "end": 5389.36, + "probability": 0.9979 + }, + { + "start": 5390.16, + "end": 5393.8, + "probability": 0.974 + }, + { + "start": 5393.84, + "end": 5397.38, + "probability": 0.9783 + }, + { + "start": 5397.38, + "end": 5400.74, + "probability": 0.9802 + }, + { + "start": 5401.64, + "end": 5404.12, + "probability": 0.9866 + }, + { + "start": 5404.2, + "end": 5404.72, + "probability": 0.7537 + }, + { + "start": 5404.8, + "end": 5405.34, + "probability": 0.9591 + }, + { + "start": 5405.44, + "end": 5405.84, + "probability": 0.9681 + }, + { + "start": 5405.92, + "end": 5406.92, + "probability": 0.8622 + }, + { + "start": 5407.32, + "end": 5410.62, + "probability": 0.6413 + }, + { + "start": 5410.74, + "end": 5412.78, + "probability": 0.9962 + }, + { + "start": 5413.88, + "end": 5415.66, + "probability": 0.9983 + }, + { + "start": 5416.34, + "end": 5419.38, + "probability": 0.9219 + }, + { + "start": 5422.14, + "end": 5422.7, + "probability": 0.1459 + }, + { + "start": 5422.7, + "end": 5423.72, + "probability": 0.2066 + }, + { + "start": 5425.1, + "end": 5428.84, + "probability": 0.986 + }, + { + "start": 5429.0, + "end": 5434.36, + "probability": 0.9924 + }, + { + "start": 5434.36, + "end": 5437.12, + "probability": 0.744 + }, + { + "start": 5437.16, + "end": 5438.9, + "probability": 0.3633 + }, + { + "start": 5439.28, + "end": 5441.54, + "probability": 0.9949 + }, + { + "start": 5441.54, + "end": 5445.02, + "probability": 0.9646 + }, + { + "start": 5445.1, + "end": 5445.56, + "probability": 0.7932 + }, + { + "start": 5446.0, + "end": 5446.68, + "probability": 0.6783 + }, + { + "start": 5446.86, + "end": 5449.9, + "probability": 0.7264 + }, + { + "start": 5450.34, + "end": 5451.7, + "probability": 0.9891 + }, + { + "start": 5468.0, + "end": 5469.39, + "probability": 0.6773 + }, + { + "start": 5470.12, + "end": 5470.98, + "probability": 0.7254 + }, + { + "start": 5471.4, + "end": 5478.52, + "probability": 0.982 + }, + { + "start": 5479.08, + "end": 5481.62, + "probability": 0.9977 + }, + { + "start": 5481.68, + "end": 5482.84, + "probability": 0.9766 + }, + { + "start": 5483.22, + "end": 5485.56, + "probability": 0.9373 + }, + { + "start": 5485.92, + "end": 5488.66, + "probability": 0.9864 + }, + { + "start": 5489.38, + "end": 5493.52, + "probability": 0.9819 + }, + { + "start": 5493.66, + "end": 5499.44, + "probability": 0.9836 + }, + { + "start": 5499.44, + "end": 5503.44, + "probability": 0.998 + }, + { + "start": 5503.98, + "end": 5507.62, + "probability": 0.975 + }, + { + "start": 5507.8, + "end": 5508.46, + "probability": 0.8198 + }, + { + "start": 5508.76, + "end": 5510.04, + "probability": 0.7595 + }, + { + "start": 5510.42, + "end": 5512.82, + "probability": 0.9617 + }, + { + "start": 5512.82, + "end": 5514.14, + "probability": 0.9172 + }, + { + "start": 5514.62, + "end": 5516.64, + "probability": 0.89 + }, + { + "start": 5518.96, + "end": 5522.74, + "probability": 0.9973 + }, + { + "start": 5522.74, + "end": 5526.66, + "probability": 0.9421 + }, + { + "start": 5527.14, + "end": 5528.66, + "probability": 0.7916 + }, + { + "start": 5528.92, + "end": 5529.94, + "probability": 0.9542 + }, + { + "start": 5530.46, + "end": 5533.14, + "probability": 0.8321 + }, + { + "start": 5533.34, + "end": 5537.92, + "probability": 0.962 + }, + { + "start": 5538.0, + "end": 5538.76, + "probability": 0.9356 + }, + { + "start": 5539.2, + "end": 5541.16, + "probability": 0.9414 + }, + { + "start": 5541.24, + "end": 5543.6, + "probability": 0.984 + }, + { + "start": 5544.28, + "end": 5549.06, + "probability": 0.9556 + }, + { + "start": 5549.62, + "end": 5551.0, + "probability": 0.9294 + }, + { + "start": 5551.26, + "end": 5553.62, + "probability": 0.6698 + }, + { + "start": 5553.74, + "end": 5558.74, + "probability": 0.6759 + }, + { + "start": 5558.86, + "end": 5559.06, + "probability": 0.8448 + }, + { + "start": 5559.06, + "end": 5560.85, + "probability": 0.1174 + }, + { + "start": 5561.14, + "end": 5563.9, + "probability": 0.8379 + }, + { + "start": 5563.92, + "end": 5564.62, + "probability": 0.7427 + }, + { + "start": 5565.14, + "end": 5566.24, + "probability": 0.9541 + }, + { + "start": 5566.92, + "end": 5567.02, + "probability": 0.7039 + }, + { + "start": 5571.8, + "end": 5573.68, + "probability": 0.4982 + }, + { + "start": 5574.68, + "end": 5575.8, + "probability": 0.8918 + }, + { + "start": 5575.8, + "end": 5576.32, + "probability": 0.3916 + }, + { + "start": 5576.46, + "end": 5577.76, + "probability": 0.7609 + }, + { + "start": 5578.14, + "end": 5579.78, + "probability": 0.6533 + }, + { + "start": 5579.94, + "end": 5584.22, + "probability": 0.6889 + }, + { + "start": 5584.36, + "end": 5586.59, + "probability": 0.5836 + }, + { + "start": 5586.76, + "end": 5588.08, + "probability": 0.7083 + }, + { + "start": 5588.16, + "end": 5589.1, + "probability": 0.3245 + }, + { + "start": 5589.18, + "end": 5591.78, + "probability": 0.4943 + }, + { + "start": 5592.36, + "end": 5595.18, + "probability": 0.6279 + }, + { + "start": 5595.9, + "end": 5597.84, + "probability": 0.9927 + }, + { + "start": 5597.84, + "end": 5600.75, + "probability": 0.9988 + }, + { + "start": 5601.02, + "end": 5602.48, + "probability": 0.9382 + }, + { + "start": 5602.98, + "end": 5607.5, + "probability": 0.9507 + }, + { + "start": 5607.96, + "end": 5608.76, + "probability": 0.9154 + }, + { + "start": 5609.1, + "end": 5612.7, + "probability": 0.9924 + }, + { + "start": 5613.08, + "end": 5613.74, + "probability": 0.8901 + }, + { + "start": 5614.12, + "end": 5617.74, + "probability": 0.9966 + }, + { + "start": 5618.72, + "end": 5622.08, + "probability": 0.9977 + }, + { + "start": 5622.54, + "end": 5624.05, + "probability": 0.9972 + }, + { + "start": 5624.46, + "end": 5628.84, + "probability": 0.9954 + }, + { + "start": 5628.84, + "end": 5632.66, + "probability": 0.9747 + }, + { + "start": 5633.16, + "end": 5637.7, + "probability": 0.9868 + }, + { + "start": 5638.74, + "end": 5641.68, + "probability": 0.9646 + }, + { + "start": 5641.78, + "end": 5643.82, + "probability": 0.9954 + }, + { + "start": 5644.16, + "end": 5650.7, + "probability": 0.9933 + }, + { + "start": 5651.38, + "end": 5652.48, + "probability": 0.7533 + }, + { + "start": 5652.86, + "end": 5653.64, + "probability": 0.7562 + }, + { + "start": 5653.72, + "end": 5655.94, + "probability": 0.8301 + }, + { + "start": 5656.02, + "end": 5657.94, + "probability": 0.9795 + }, + { + "start": 5658.06, + "end": 5658.92, + "probability": 0.6315 + }, + { + "start": 5659.42, + "end": 5660.7, + "probability": 0.9694 + }, + { + "start": 5663.54, + "end": 5665.0, + "probability": 0.6177 + }, + { + "start": 5665.86, + "end": 5667.44, + "probability": 0.9485 + }, + { + "start": 5668.62, + "end": 5669.44, + "probability": 0.7458 + }, + { + "start": 5670.22, + "end": 5671.94, + "probability": 0.9746 + }, + { + "start": 5672.54, + "end": 5674.02, + "probability": 0.8647 + }, + { + "start": 5675.0, + "end": 5675.98, + "probability": 0.4767 + }, + { + "start": 5678.26, + "end": 5678.64, + "probability": 0.2582 + }, + { + "start": 5708.25, + "end": 5711.18, + "probability": 0.7371 + }, + { + "start": 5712.52, + "end": 5719.04, + "probability": 0.9354 + }, + { + "start": 5720.6, + "end": 5722.72, + "probability": 0.8682 + }, + { + "start": 5724.12, + "end": 5730.22, + "probability": 0.9425 + }, + { + "start": 5731.36, + "end": 5732.16, + "probability": 0.9772 + }, + { + "start": 5732.7, + "end": 5735.54, + "probability": 0.9891 + }, + { + "start": 5736.34, + "end": 5741.8, + "probability": 0.8084 + }, + { + "start": 5743.36, + "end": 5744.16, + "probability": 0.9066 + }, + { + "start": 5744.16, + "end": 5744.78, + "probability": 0.9951 + }, + { + "start": 5745.36, + "end": 5746.42, + "probability": 0.9902 + }, + { + "start": 5747.06, + "end": 5749.96, + "probability": 0.9993 + }, + { + "start": 5750.04, + "end": 5753.42, + "probability": 0.9946 + }, + { + "start": 5754.0, + "end": 5755.86, + "probability": 0.9581 + }, + { + "start": 5757.26, + "end": 5758.06, + "probability": 0.9532 + }, + { + "start": 5758.16, + "end": 5762.0, + "probability": 0.9784 + }, + { + "start": 5762.82, + "end": 5769.74, + "probability": 0.9969 + }, + { + "start": 5770.58, + "end": 5772.74, + "probability": 0.9033 + }, + { + "start": 5773.42, + "end": 5775.08, + "probability": 0.995 + }, + { + "start": 5775.6, + "end": 5777.64, + "probability": 0.8305 + }, + { + "start": 5779.28, + "end": 5783.18, + "probability": 0.9798 + }, + { + "start": 5783.8, + "end": 5784.42, + "probability": 0.6878 + }, + { + "start": 5785.1, + "end": 5787.72, + "probability": 0.8727 + }, + { + "start": 5788.6, + "end": 5789.56, + "probability": 0.998 + }, + { + "start": 5790.86, + "end": 5793.7, + "probability": 0.9821 + }, + { + "start": 5794.24, + "end": 5795.38, + "probability": 0.9563 + }, + { + "start": 5796.3, + "end": 5798.58, + "probability": 0.8643 + }, + { + "start": 5799.2, + "end": 5801.44, + "probability": 0.8688 + }, + { + "start": 5801.94, + "end": 5802.46, + "probability": 0.5974 + }, + { + "start": 5802.56, + "end": 5803.94, + "probability": 0.9079 + }, + { + "start": 5804.7, + "end": 5805.96, + "probability": 0.7029 + }, + { + "start": 5806.7, + "end": 5809.0, + "probability": 0.9269 + }, + { + "start": 5809.6, + "end": 5813.52, + "probability": 0.9465 + }, + { + "start": 5813.96, + "end": 5814.78, + "probability": 0.9695 + }, + { + "start": 5815.22, + "end": 5816.3, + "probability": 0.9895 + }, + { + "start": 5816.38, + "end": 5817.22, + "probability": 0.7443 + }, + { + "start": 5818.18, + "end": 5819.48, + "probability": 0.878 + }, + { + "start": 5821.04, + "end": 5824.36, + "probability": 0.9172 + }, + { + "start": 5825.48, + "end": 5826.16, + "probability": 0.8255 + }, + { + "start": 5826.26, + "end": 5829.9, + "probability": 0.9748 + }, + { + "start": 5830.48, + "end": 5836.0, + "probability": 0.9319 + }, + { + "start": 5836.56, + "end": 5839.68, + "probability": 0.948 + }, + { + "start": 5840.14, + "end": 5842.9, + "probability": 0.8303 + }, + { + "start": 5843.22, + "end": 5847.82, + "probability": 0.9482 + }, + { + "start": 5848.32, + "end": 5850.72, + "probability": 0.9646 + }, + { + "start": 5851.26, + "end": 5853.18, + "probability": 0.9599 + }, + { + "start": 5853.9, + "end": 5854.56, + "probability": 0.5874 + }, + { + "start": 5854.7, + "end": 5854.94, + "probability": 0.8776 + }, + { + "start": 5855.3, + "end": 5859.96, + "probability": 0.9746 + }, + { + "start": 5860.54, + "end": 5862.16, + "probability": 0.9919 + }, + { + "start": 5862.96, + "end": 5863.5, + "probability": 0.7917 + }, + { + "start": 5863.82, + "end": 5864.22, + "probability": 0.1078 + }, + { + "start": 5864.22, + "end": 5864.22, + "probability": 0.152 + }, + { + "start": 5864.22, + "end": 5864.58, + "probability": 0.5221 + }, + { + "start": 5865.74, + "end": 5868.46, + "probability": 0.8375 + }, + { + "start": 5869.02, + "end": 5869.74, + "probability": 0.5605 + }, + { + "start": 5870.64, + "end": 5872.84, + "probability": 0.8857 + }, + { + "start": 5880.29, + "end": 5881.9, + "probability": 0.6143 + }, + { + "start": 5882.92, + "end": 5884.8, + "probability": 0.6456 + }, + { + "start": 5884.92, + "end": 5887.62, + "probability": 0.9956 + }, + { + "start": 5889.52, + "end": 5890.66, + "probability": 0.4456 + }, + { + "start": 5891.4, + "end": 5895.68, + "probability": 0.0619 + }, + { + "start": 5897.42, + "end": 5900.3, + "probability": 0.9749 + }, + { + "start": 5900.72, + "end": 5901.28, + "probability": 0.4548 + }, + { + "start": 5901.44, + "end": 5901.5, + "probability": 0.2095 + }, + { + "start": 5901.56, + "end": 5902.74, + "probability": 0.6599 + }, + { + "start": 5902.86, + "end": 5903.28, + "probability": 0.6895 + }, + { + "start": 5903.8, + "end": 5905.71, + "probability": 0.9399 + }, + { + "start": 5906.28, + "end": 5909.4, + "probability": 0.5405 + }, + { + "start": 5909.54, + "end": 5910.36, + "probability": 0.7831 + }, + { + "start": 5911.82, + "end": 5912.58, + "probability": 0.504 + }, + { + "start": 5912.58, + "end": 5912.96, + "probability": 0.3341 + }, + { + "start": 5914.17, + "end": 5916.24, + "probability": 0.5914 + }, + { + "start": 5916.62, + "end": 5918.36, + "probability": 0.2364 + }, + { + "start": 5918.36, + "end": 5918.36, + "probability": 0.0406 + }, + { + "start": 5918.36, + "end": 5919.86, + "probability": 0.4853 + }, + { + "start": 5919.86, + "end": 5921.72, + "probability": 0.9315 + }, + { + "start": 5921.86, + "end": 5923.72, + "probability": 0.9525 + }, + { + "start": 5924.5, + "end": 5928.2, + "probability": 0.959 + }, + { + "start": 5928.34, + "end": 5929.68, + "probability": 0.8075 + }, + { + "start": 5930.32, + "end": 5932.46, + "probability": 0.9749 + }, + { + "start": 5932.94, + "end": 5937.78, + "probability": 0.9858 + }, + { + "start": 5937.94, + "end": 5941.9, + "probability": 0.9949 + }, + { + "start": 5941.9, + "end": 5945.98, + "probability": 0.9991 + }, + { + "start": 5946.32, + "end": 5946.8, + "probability": 0.857 + }, + { + "start": 5947.34, + "end": 5948.16, + "probability": 0.7958 + }, + { + "start": 5948.54, + "end": 5949.62, + "probability": 0.649 + }, + { + "start": 5950.4, + "end": 5953.94, + "probability": 0.9238 + }, + { + "start": 5954.28, + "end": 5955.68, + "probability": 0.9451 + }, + { + "start": 5955.74, + "end": 5958.16, + "probability": 0.9268 + }, + { + "start": 5958.8, + "end": 5960.1, + "probability": 0.7722 + }, + { + "start": 5960.54, + "end": 5962.1, + "probability": 0.98 + }, + { + "start": 5962.9, + "end": 5966.46, + "probability": 0.893 + }, + { + "start": 5967.16, + "end": 5968.24, + "probability": 0.8099 + }, + { + "start": 5968.68, + "end": 5973.92, + "probability": 0.9697 + }, + { + "start": 5974.68, + "end": 5983.48, + "probability": 0.9962 + }, + { + "start": 5983.9, + "end": 5984.74, + "probability": 0.5606 + }, + { + "start": 5985.36, + "end": 5986.62, + "probability": 0.7374 + }, + { + "start": 5986.98, + "end": 5988.24, + "probability": 0.9621 + }, + { + "start": 5988.34, + "end": 5991.68, + "probability": 0.9126 + }, + { + "start": 5992.18, + "end": 5993.6, + "probability": 0.9308 + }, + { + "start": 5993.88, + "end": 5995.32, + "probability": 0.9893 + }, + { + "start": 5995.68, + "end": 5998.08, + "probability": 0.988 + }, + { + "start": 5998.32, + "end": 6000.96, + "probability": 0.6432 + }, + { + "start": 6001.12, + "end": 6002.1, + "probability": 0.8442 + }, + { + "start": 6002.18, + "end": 6002.6, + "probability": 0.9049 + }, + { + "start": 6002.9, + "end": 6003.58, + "probability": 0.7203 + }, + { + "start": 6003.7, + "end": 6004.2, + "probability": 0.9297 + }, + { + "start": 6004.68, + "end": 6005.42, + "probability": 0.8242 + }, + { + "start": 6005.48, + "end": 6006.08, + "probability": 0.7715 + }, + { + "start": 6006.36, + "end": 6007.17, + "probability": 0.9964 + }, + { + "start": 6007.72, + "end": 6009.14, + "probability": 0.8941 + }, + { + "start": 6010.02, + "end": 6012.86, + "probability": 0.5619 + }, + { + "start": 6013.12, + "end": 6015.78, + "probability": 0.995 + }, + { + "start": 6016.24, + "end": 6017.72, + "probability": 0.933 + }, + { + "start": 6018.34, + "end": 6019.04, + "probability": 0.6825 + }, + { + "start": 6019.56, + "end": 6020.37, + "probability": 0.5006 + }, + { + "start": 6021.52, + "end": 6024.98, + "probability": 0.7095 + }, + { + "start": 6025.18, + "end": 6025.92, + "probability": 0.7655 + }, + { + "start": 6026.66, + "end": 6028.34, + "probability": 0.9351 + }, + { + "start": 6029.02, + "end": 6031.12, + "probability": 0.9839 + }, + { + "start": 6031.12, + "end": 6031.91, + "probability": 0.9456 + }, + { + "start": 6032.52, + "end": 6033.69, + "probability": 0.7866 + }, + { + "start": 6034.46, + "end": 6039.52, + "probability": 0.9974 + }, + { + "start": 6040.12, + "end": 6041.96, + "probability": 0.8208 + }, + { + "start": 6042.28, + "end": 6045.75, + "probability": 0.9419 + }, + { + "start": 6046.7, + "end": 6047.88, + "probability": 0.9236 + }, + { + "start": 6048.32, + "end": 6049.4, + "probability": 0.7836 + }, + { + "start": 6049.44, + "end": 6049.78, + "probability": 0.6595 + }, + { + "start": 6049.82, + "end": 6051.16, + "probability": 0.738 + }, + { + "start": 6051.58, + "end": 6052.48, + "probability": 0.6388 + }, + { + "start": 6052.96, + "end": 6055.92, + "probability": 0.9577 + }, + { + "start": 6056.08, + "end": 6056.86, + "probability": 0.9271 + }, + { + "start": 6057.34, + "end": 6058.28, + "probability": 0.9487 + }, + { + "start": 6058.64, + "end": 6059.2, + "probability": 0.5038 + }, + { + "start": 6059.54, + "end": 6060.58, + "probability": 0.6429 + }, + { + "start": 6060.78, + "end": 6061.72, + "probability": 0.863 + }, + { + "start": 6062.28, + "end": 6064.2, + "probability": 0.8499 + }, + { + "start": 6064.8, + "end": 6065.47, + "probability": 0.9637 + }, + { + "start": 6065.78, + "end": 6066.9, + "probability": 0.9929 + }, + { + "start": 6067.02, + "end": 6067.12, + "probability": 0.7871 + }, + { + "start": 6067.24, + "end": 6067.74, + "probability": 0.7524 + }, + { + "start": 6068.3, + "end": 6069.53, + "probability": 0.9502 + }, + { + "start": 6069.8, + "end": 6071.26, + "probability": 0.9611 + }, + { + "start": 6071.38, + "end": 6072.02, + "probability": 0.8097 + }, + { + "start": 6072.66, + "end": 6076.04, + "probability": 0.94 + }, + { + "start": 6076.04, + "end": 6079.32, + "probability": 0.9353 + }, + { + "start": 6079.64, + "end": 6079.88, + "probability": 0.4198 + }, + { + "start": 6079.94, + "end": 6081.43, + "probability": 0.9978 + }, + { + "start": 6082.28, + "end": 6083.02, + "probability": 0.8737 + }, + { + "start": 6083.12, + "end": 6084.36, + "probability": 0.991 + }, + { + "start": 6084.44, + "end": 6085.14, + "probability": 0.9237 + }, + { + "start": 6085.14, + "end": 6086.06, + "probability": 0.8871 + }, + { + "start": 6086.46, + "end": 6092.34, + "probability": 0.9702 + }, + { + "start": 6093.34, + "end": 6096.82, + "probability": 0.1085 + }, + { + "start": 6096.88, + "end": 6099.94, + "probability": 0.9666 + }, + { + "start": 6100.54, + "end": 6101.86, + "probability": 0.8632 + }, + { + "start": 6101.9, + "end": 6102.28, + "probability": 0.7607 + }, + { + "start": 6102.68, + "end": 6105.16, + "probability": 0.9874 + }, + { + "start": 6105.7, + "end": 6108.72, + "probability": 0.9849 + }, + { + "start": 6108.98, + "end": 6110.02, + "probability": 0.9093 + }, + { + "start": 6110.18, + "end": 6112.2, + "probability": 0.9666 + }, + { + "start": 6112.86, + "end": 6116.56, + "probability": 0.9771 + }, + { + "start": 6116.56, + "end": 6119.98, + "probability": 0.9329 + }, + { + "start": 6120.0, + "end": 6120.88, + "probability": 0.8225 + }, + { + "start": 6121.54, + "end": 6122.9, + "probability": 0.7744 + }, + { + "start": 6123.48, + "end": 6124.9, + "probability": 0.9976 + }, + { + "start": 6125.08, + "end": 6125.96, + "probability": 0.4773 + }, + { + "start": 6126.22, + "end": 6127.6, + "probability": 0.7427 + }, + { + "start": 6127.66, + "end": 6128.36, + "probability": 0.2457 + }, + { + "start": 6128.36, + "end": 6130.1, + "probability": 0.9294 + }, + { + "start": 6130.2, + "end": 6130.72, + "probability": 0.7673 + }, + { + "start": 6131.16, + "end": 6132.88, + "probability": 0.8194 + }, + { + "start": 6151.76, + "end": 6153.68, + "probability": 0.7072 + }, + { + "start": 6154.66, + "end": 6158.8, + "probability": 0.994 + }, + { + "start": 6158.94, + "end": 6160.18, + "probability": 0.9681 + }, + { + "start": 6161.02, + "end": 6165.1, + "probability": 0.978 + }, + { + "start": 6165.1, + "end": 6168.72, + "probability": 0.9608 + }, + { + "start": 6169.1, + "end": 6171.78, + "probability": 0.9274 + }, + { + "start": 6172.34, + "end": 6174.88, + "probability": 0.7949 + }, + { + "start": 6174.94, + "end": 6176.08, + "probability": 0.9377 + }, + { + "start": 6176.62, + "end": 6180.06, + "probability": 0.6032 + }, + { + "start": 6180.58, + "end": 6184.32, + "probability": 0.9001 + }, + { + "start": 6184.46, + "end": 6185.24, + "probability": 0.0016 + }, + { + "start": 6190.74, + "end": 6193.54, + "probability": 0.2687 + }, + { + "start": 6193.54, + "end": 6193.54, + "probability": 0.1154 + }, + { + "start": 6193.54, + "end": 6193.54, + "probability": 0.0396 + }, + { + "start": 6193.54, + "end": 6193.88, + "probability": 0.0601 + }, + { + "start": 6194.38, + "end": 6197.1, + "probability": 0.9951 + }, + { + "start": 6197.1, + "end": 6200.68, + "probability": 0.8965 + }, + { + "start": 6201.58, + "end": 6205.98, + "probability": 0.9214 + }, + { + "start": 6206.32, + "end": 6208.24, + "probability": 0.9674 + }, + { + "start": 6208.32, + "end": 6208.84, + "probability": 0.9352 + }, + { + "start": 6208.9, + "end": 6209.46, + "probability": 0.9788 + }, + { + "start": 6209.5, + "end": 6210.14, + "probability": 0.9765 + }, + { + "start": 6210.26, + "end": 6210.72, + "probability": 0.9352 + }, + { + "start": 6210.84, + "end": 6211.48, + "probability": 0.9701 + }, + { + "start": 6211.8, + "end": 6214.06, + "probability": 0.9368 + }, + { + "start": 6214.54, + "end": 6216.23, + "probability": 0.9878 + }, + { + "start": 6217.1, + "end": 6221.08, + "probability": 0.9891 + }, + { + "start": 6222.02, + "end": 6224.88, + "probability": 0.9958 + }, + { + "start": 6224.88, + "end": 6228.48, + "probability": 0.9396 + }, + { + "start": 6228.78, + "end": 6231.09, + "probability": 0.9873 + }, + { + "start": 6231.8, + "end": 6235.12, + "probability": 0.9882 + }, + { + "start": 6235.98, + "end": 6239.28, + "probability": 0.9904 + }, + { + "start": 6239.28, + "end": 6242.9, + "probability": 0.9781 + }, + { + "start": 6244.46, + "end": 6248.14, + "probability": 0.9509 + }, + { + "start": 6248.62, + "end": 6249.62, + "probability": 0.3541 + }, + { + "start": 6249.76, + "end": 6252.88, + "probability": 0.8 + }, + { + "start": 6253.44, + "end": 6254.4, + "probability": 0.4529 + }, + { + "start": 6254.62, + "end": 6256.3, + "probability": 0.872 + }, + { + "start": 6256.74, + "end": 6257.86, + "probability": 0.8135 + }, + { + "start": 6258.52, + "end": 6261.3, + "probability": 0.9819 + }, + { + "start": 6262.1, + "end": 6264.6, + "probability": 0.9747 + }, + { + "start": 6265.12, + "end": 6269.0, + "probability": 0.7015 + }, + { + "start": 6269.58, + "end": 6273.2, + "probability": 0.9418 + }, + { + "start": 6273.86, + "end": 6276.74, + "probability": 0.9439 + }, + { + "start": 6277.12, + "end": 6280.44, + "probability": 0.9976 + }, + { + "start": 6281.16, + "end": 6282.22, + "probability": 0.9885 + }, + { + "start": 6282.28, + "end": 6284.26, + "probability": 0.998 + }, + { + "start": 6284.58, + "end": 6286.26, + "probability": 0.9849 + }, + { + "start": 6286.76, + "end": 6288.78, + "probability": 0.9858 + }, + { + "start": 6289.48, + "end": 6293.26, + "probability": 0.919 + }, + { + "start": 6293.62, + "end": 6294.76, + "probability": 0.6729 + }, + { + "start": 6295.38, + "end": 6298.9, + "probability": 0.8552 + }, + { + "start": 6299.32, + "end": 6303.22, + "probability": 0.9806 + }, + { + "start": 6303.22, + "end": 6306.22, + "probability": 0.9721 + }, + { + "start": 6307.4, + "end": 6308.34, + "probability": 0.7936 + }, + { + "start": 6308.9, + "end": 6312.58, + "probability": 0.9763 + }, + { + "start": 6313.24, + "end": 6318.96, + "probability": 0.9985 + }, + { + "start": 6319.58, + "end": 6323.2, + "probability": 0.9873 + }, + { + "start": 6323.6, + "end": 6329.96, + "probability": 0.9921 + }, + { + "start": 6330.6, + "end": 6335.4, + "probability": 0.9937 + }, + { + "start": 6335.64, + "end": 6336.08, + "probability": 0.5473 + }, + { + "start": 6336.82, + "end": 6339.18, + "probability": 0.9764 + }, + { + "start": 6339.82, + "end": 6343.12, + "probability": 0.9928 + }, + { + "start": 6343.12, + "end": 6348.04, + "probability": 0.9968 + }, + { + "start": 6348.04, + "end": 6352.54, + "probability": 0.999 + }, + { + "start": 6353.02, + "end": 6355.6, + "probability": 0.9749 + }, + { + "start": 6355.96, + "end": 6360.58, + "probability": 0.9649 + }, + { + "start": 6361.26, + "end": 6363.0, + "probability": 0.949 + }, + { + "start": 6363.82, + "end": 6365.78, + "probability": 0.7128 + }, + { + "start": 6366.26, + "end": 6370.02, + "probability": 0.9723 + }, + { + "start": 6370.76, + "end": 6373.1, + "probability": 0.8557 + }, + { + "start": 6373.58, + "end": 6376.72, + "probability": 0.8608 + }, + { + "start": 6377.28, + "end": 6380.68, + "probability": 0.978 + }, + { + "start": 6380.68, + "end": 6383.76, + "probability": 0.8366 + }, + { + "start": 6383.82, + "end": 6385.11, + "probability": 0.9798 + }, + { + "start": 6385.7, + "end": 6386.62, + "probability": 0.8394 + }, + { + "start": 6387.36, + "end": 6388.8, + "probability": 0.9827 + }, + { + "start": 6389.42, + "end": 6390.62, + "probability": 0.9141 + }, + { + "start": 6391.24, + "end": 6392.54, + "probability": 0.9888 + }, + { + "start": 6393.48, + "end": 6397.58, + "probability": 0.9767 + }, + { + "start": 6398.02, + "end": 6399.14, + "probability": 0.9045 + }, + { + "start": 6400.08, + "end": 6404.72, + "probability": 0.6973 + }, + { + "start": 6404.76, + "end": 6405.37, + "probability": 0.7321 + }, + { + "start": 6405.72, + "end": 6406.5, + "probability": 0.7346 + }, + { + "start": 6406.82, + "end": 6410.86, + "probability": 0.9751 + }, + { + "start": 6411.16, + "end": 6416.76, + "probability": 0.9948 + }, + { + "start": 6417.04, + "end": 6418.46, + "probability": 0.9409 + }, + { + "start": 6423.96, + "end": 6424.58, + "probability": 0.2828 + }, + { + "start": 6424.58, + "end": 6426.28, + "probability": 0.6665 + }, + { + "start": 6426.38, + "end": 6427.52, + "probability": 0.5641 + }, + { + "start": 6428.24, + "end": 6430.66, + "probability": 0.9953 + }, + { + "start": 6431.18, + "end": 6432.64, + "probability": 0.959 + }, + { + "start": 6433.12, + "end": 6435.6, + "probability": 0.9759 + }, + { + "start": 6435.6, + "end": 6438.26, + "probability": 0.9944 + }, + { + "start": 6438.72, + "end": 6442.44, + "probability": 0.9937 + }, + { + "start": 6442.44, + "end": 6446.12, + "probability": 0.999 + }, + { + "start": 6446.22, + "end": 6446.62, + "probability": 0.7493 + }, + { + "start": 6446.62, + "end": 6447.26, + "probability": 0.3169 + }, + { + "start": 6447.72, + "end": 6448.34, + "probability": 0.892 + }, + { + "start": 6448.58, + "end": 6450.72, + "probability": 0.9001 + }, + { + "start": 6451.12, + "end": 6452.3, + "probability": 0.9092 + }, + { + "start": 6452.82, + "end": 6458.24, + "probability": 0.9739 + }, + { + "start": 6458.7, + "end": 6459.94, + "probability": 0.8125 + }, + { + "start": 6460.48, + "end": 6460.7, + "probability": 0.5594 + }, + { + "start": 6460.7, + "end": 6460.7, + "probability": 0.758 + }, + { + "start": 6460.7, + "end": 6461.04, + "probability": 0.3042 + }, + { + "start": 6461.5, + "end": 6462.52, + "probability": 0.9818 + }, + { + "start": 6463.22, + "end": 6466.24, + "probability": 0.9779 + }, + { + "start": 6466.98, + "end": 6468.66, + "probability": 0.8717 + }, + { + "start": 6469.14, + "end": 6470.96, + "probability": 0.9445 + }, + { + "start": 6472.1, + "end": 6472.96, + "probability": 0.6389 + }, + { + "start": 6473.32, + "end": 6474.0, + "probability": 0.995 + }, + { + "start": 6478.96, + "end": 6480.52, + "probability": 0.5774 + }, + { + "start": 6494.4, + "end": 6496.26, + "probability": 0.5185 + }, + { + "start": 6497.64, + "end": 6498.84, + "probability": 0.7143 + }, + { + "start": 6504.68, + "end": 6507.1, + "probability": 0.8258 + }, + { + "start": 6507.34, + "end": 6507.66, + "probability": 0.7875 + }, + { + "start": 6507.8, + "end": 6510.28, + "probability": 0.8155 + }, + { + "start": 6511.2, + "end": 6514.74, + "probability": 0.5092 + }, + { + "start": 6515.08, + "end": 6515.08, + "probability": 0.0128 + }, + { + "start": 6515.08, + "end": 6515.08, + "probability": 0.233 + }, + { + "start": 6515.08, + "end": 6515.08, + "probability": 0.1289 + }, + { + "start": 6515.08, + "end": 6517.06, + "probability": 0.6315 + }, + { + "start": 6517.4, + "end": 6519.74, + "probability": 0.8552 + }, + { + "start": 6520.9, + "end": 6521.38, + "probability": 0.4338 + }, + { + "start": 6522.02, + "end": 6525.4, + "probability": 0.9331 + }, + { + "start": 6525.98, + "end": 6527.46, + "probability": 0.9998 + }, + { + "start": 6528.02, + "end": 6529.56, + "probability": 0.9441 + }, + { + "start": 6530.78, + "end": 6532.72, + "probability": 0.738 + }, + { + "start": 6533.66, + "end": 6535.2, + "probability": 0.9403 + }, + { + "start": 6535.8, + "end": 6539.1, + "probability": 0.9941 + }, + { + "start": 6539.48, + "end": 6540.5, + "probability": 0.9877 + }, + { + "start": 6540.66, + "end": 6541.56, + "probability": 0.6887 + }, + { + "start": 6542.94, + "end": 6544.16, + "probability": 0.9982 + }, + { + "start": 6544.72, + "end": 6549.88, + "probability": 0.9947 + }, + { + "start": 6550.54, + "end": 6551.14, + "probability": 0.9983 + }, + { + "start": 6552.12, + "end": 6555.38, + "probability": 0.991 + }, + { + "start": 6555.64, + "end": 6556.52, + "probability": 0.9802 + }, + { + "start": 6556.52, + "end": 6557.1, + "probability": 0.9516 + }, + { + "start": 6557.22, + "end": 6560.32, + "probability": 0.762 + }, + { + "start": 6561.3, + "end": 6564.32, + "probability": 0.9833 + }, + { + "start": 6565.16, + "end": 6566.68, + "probability": 0.8843 + }, + { + "start": 6567.94, + "end": 6569.3, + "probability": 0.709 + }, + { + "start": 6569.64, + "end": 6570.32, + "probability": 0.737 + }, + { + "start": 6570.9, + "end": 6572.87, + "probability": 0.7668 + }, + { + "start": 6573.66, + "end": 6574.38, + "probability": 0.6401 + }, + { + "start": 6577.6, + "end": 6580.74, + "probability": 0.9819 + }, + { + "start": 6580.82, + "end": 6583.96, + "probability": 0.9369 + }, + { + "start": 6584.58, + "end": 6585.68, + "probability": 0.7653 + }, + { + "start": 6585.88, + "end": 6586.52, + "probability": 0.7385 + }, + { + "start": 6586.6, + "end": 6591.64, + "probability": 0.9465 + }, + { + "start": 6592.46, + "end": 6593.34, + "probability": 0.7351 + }, + { + "start": 6594.36, + "end": 6599.4, + "probability": 0.8258 + }, + { + "start": 6599.78, + "end": 6600.88, + "probability": 0.1962 + }, + { + "start": 6600.96, + "end": 6607.04, + "probability": 0.3062 + }, + { + "start": 6607.32, + "end": 6608.78, + "probability": 0.0361 + }, + { + "start": 6608.94, + "end": 6609.74, + "probability": 0.1072 + }, + { + "start": 6610.0, + "end": 6611.4, + "probability": 0.6935 + }, + { + "start": 6611.54, + "end": 6612.34, + "probability": 0.703 + }, + { + "start": 6612.34, + "end": 6613.5, + "probability": 0.8283 + }, + { + "start": 6613.6, + "end": 6616.2, + "probability": 0.7529 + }, + { + "start": 6616.24, + "end": 6618.67, + "probability": 0.6497 + }, + { + "start": 6619.12, + "end": 6619.56, + "probability": 0.159 + }, + { + "start": 6619.56, + "end": 6619.77, + "probability": 0.1946 + }, + { + "start": 6619.86, + "end": 6619.86, + "probability": 0.1197 + }, + { + "start": 6620.72, + "end": 6620.92, + "probability": 0.3176 + }, + { + "start": 6620.92, + "end": 6621.94, + "probability": 0.3362 + }, + { + "start": 6622.06, + "end": 6623.62, + "probability": 0.0338 + }, + { + "start": 6623.62, + "end": 6624.22, + "probability": 0.5351 + }, + { + "start": 6624.22, + "end": 6624.86, + "probability": 0.684 + }, + { + "start": 6625.24, + "end": 6626.44, + "probability": 0.6251 + }, + { + "start": 6627.0, + "end": 6627.96, + "probability": 0.8352 + }, + { + "start": 6630.44, + "end": 6631.24, + "probability": 0.0838 + }, + { + "start": 6631.24, + "end": 6631.24, + "probability": 0.032 + }, + { + "start": 6631.24, + "end": 6631.24, + "probability": 0.0142 + }, + { + "start": 6631.24, + "end": 6631.24, + "probability": 0.1187 + }, + { + "start": 6631.24, + "end": 6632.06, + "probability": 0.2459 + }, + { + "start": 6632.06, + "end": 6636.86, + "probability": 0.8304 + }, + { + "start": 6636.86, + "end": 6642.92, + "probability": 0.9859 + }, + { + "start": 6643.9, + "end": 6645.56, + "probability": 0.9702 + }, + { + "start": 6645.64, + "end": 6646.38, + "probability": 0.7181 + }, + { + "start": 6646.46, + "end": 6648.66, + "probability": 0.9712 + }, + { + "start": 6649.12, + "end": 6650.02, + "probability": 0.878 + }, + { + "start": 6650.4, + "end": 6651.44, + "probability": 0.9274 + }, + { + "start": 6651.94, + "end": 6655.96, + "probability": 0.8225 + }, + { + "start": 6656.54, + "end": 6658.7, + "probability": 0.8462 + }, + { + "start": 6659.64, + "end": 6664.22, + "probability": 0.8117 + }, + { + "start": 6664.96, + "end": 6665.58, + "probability": 0.9746 + }, + { + "start": 6665.82, + "end": 6667.96, + "probability": 0.9941 + }, + { + "start": 6668.32, + "end": 6669.43, + "probability": 0.9722 + }, + { + "start": 6670.42, + "end": 6670.42, + "probability": 0.3155 + }, + { + "start": 6670.5, + "end": 6671.56, + "probability": 0.3646 + }, + { + "start": 6671.72, + "end": 6672.18, + "probability": 0.9361 + }, + { + "start": 6672.82, + "end": 6673.66, + "probability": 0.4136 + }, + { + "start": 6674.36, + "end": 6678.98, + "probability": 0.9692 + }, + { + "start": 6680.34, + "end": 6683.82, + "probability": 0.938 + }, + { + "start": 6684.46, + "end": 6686.54, + "probability": 0.9834 + }, + { + "start": 6686.54, + "end": 6688.44, + "probability": 0.994 + }, + { + "start": 6689.54, + "end": 6690.36, + "probability": 0.6096 + }, + { + "start": 6690.44, + "end": 6692.1, + "probability": 0.9422 + }, + { + "start": 6692.92, + "end": 6695.98, + "probability": 0.9963 + }, + { + "start": 6696.7, + "end": 6698.29, + "probability": 0.9661 + }, + { + "start": 6699.2, + "end": 6702.74, + "probability": 0.915 + }, + { + "start": 6702.82, + "end": 6704.32, + "probability": 0.7513 + }, + { + "start": 6704.74, + "end": 6707.53, + "probability": 0.7599 + }, + { + "start": 6707.66, + "end": 6707.66, + "probability": 0.7376 + }, + { + "start": 6707.74, + "end": 6709.64, + "probability": 0.8706 + }, + { + "start": 6709.64, + "end": 6710.7, + "probability": 0.7828 + }, + { + "start": 6710.9, + "end": 6711.26, + "probability": 0.5381 + }, + { + "start": 6711.26, + "end": 6712.4, + "probability": 0.5886 + }, + { + "start": 6712.42, + "end": 6713.98, + "probability": 0.9958 + }, + { + "start": 6714.54, + "end": 6715.3, + "probability": 0.9883 + }, + { + "start": 6715.72, + "end": 6717.2, + "probability": 0.9611 + }, + { + "start": 6717.78, + "end": 6719.16, + "probability": 0.9536 + }, + { + "start": 6719.16, + "end": 6720.24, + "probability": 0.9494 + }, + { + "start": 6720.62, + "end": 6721.36, + "probability": 0.9017 + }, + { + "start": 6721.88, + "end": 6724.66, + "probability": 0.716 + }, + { + "start": 6725.08, + "end": 6725.86, + "probability": 0.8576 + }, + { + "start": 6734.86, + "end": 6735.52, + "probability": 0.0191 + }, + { + "start": 6736.34, + "end": 6737.82, + "probability": 0.0202 + }, + { + "start": 6739.0, + "end": 6741.2, + "probability": 0.0352 + }, + { + "start": 6744.72, + "end": 6746.02, + "probability": 0.4643 + }, + { + "start": 6747.36, + "end": 6751.08, + "probability": 0.9126 + }, + { + "start": 6753.0, + "end": 6756.36, + "probability": 0.9866 + }, + { + "start": 6757.84, + "end": 6759.38, + "probability": 0.9954 + }, + { + "start": 6760.98, + "end": 6763.11, + "probability": 0.7781 + }, + { + "start": 6763.18, + "end": 6764.23, + "probability": 0.9212 + }, + { + "start": 6764.76, + "end": 6765.32, + "probability": 0.8068 + }, + { + "start": 6767.12, + "end": 6767.96, + "probability": 0.4533 + }, + { + "start": 6770.14, + "end": 6772.08, + "probability": 0.8439 + }, + { + "start": 6773.14, + "end": 6774.3, + "probability": 0.4805 + }, + { + "start": 6775.24, + "end": 6781.08, + "probability": 0.9869 + }, + { + "start": 6781.8, + "end": 6783.0, + "probability": 0.9851 + }, + { + "start": 6784.36, + "end": 6791.3, + "probability": 0.9658 + }, + { + "start": 6792.92, + "end": 6798.66, + "probability": 0.9766 + }, + { + "start": 6798.82, + "end": 6799.4, + "probability": 0.8831 + }, + { + "start": 6800.44, + "end": 6802.74, + "probability": 0.8293 + }, + { + "start": 6803.44, + "end": 6808.82, + "probability": 0.9124 + }, + { + "start": 6810.2, + "end": 6815.66, + "probability": 0.9771 + }, + { + "start": 6816.38, + "end": 6818.38, + "probability": 0.6879 + }, + { + "start": 6819.76, + "end": 6821.08, + "probability": 0.7674 + }, + { + "start": 6822.54, + "end": 6826.32, + "probability": 0.6926 + }, + { + "start": 6827.5, + "end": 6831.84, + "probability": 0.7865 + }, + { + "start": 6833.48, + "end": 6840.5, + "probability": 0.6994 + }, + { + "start": 6841.24, + "end": 6844.1, + "probability": 0.6831 + }, + { + "start": 6845.32, + "end": 6850.68, + "probability": 0.9927 + }, + { + "start": 6851.72, + "end": 6854.62, + "probability": 0.9963 + }, + { + "start": 6855.46, + "end": 6858.86, + "probability": 0.9971 + }, + { + "start": 6859.9, + "end": 6861.22, + "probability": 0.8774 + }, + { + "start": 6862.22, + "end": 6863.0, + "probability": 0.3705 + }, + { + "start": 6863.1, + "end": 6868.1, + "probability": 0.9846 + }, + { + "start": 6869.2, + "end": 6870.26, + "probability": 0.8376 + }, + { + "start": 6871.06, + "end": 6873.11, + "probability": 0.9323 + }, + { + "start": 6873.98, + "end": 6876.8, + "probability": 0.9453 + }, + { + "start": 6877.7, + "end": 6879.64, + "probability": 0.9771 + }, + { + "start": 6880.48, + "end": 6881.14, + "probability": 0.2 + }, + { + "start": 6881.28, + "end": 6883.28, + "probability": 0.9126 + }, + { + "start": 6883.4, + "end": 6883.78, + "probability": 0.6181 + }, + { + "start": 6884.46, + "end": 6891.22, + "probability": 0.9354 + }, + { + "start": 6892.06, + "end": 6893.14, + "probability": 0.9596 + }, + { + "start": 6893.72, + "end": 6895.76, + "probability": 0.978 + }, + { + "start": 6896.43, + "end": 6901.72, + "probability": 0.8973 + }, + { + "start": 6901.72, + "end": 6901.72, + "probability": 0.0531 + }, + { + "start": 6901.72, + "end": 6901.72, + "probability": 0.0636 + }, + { + "start": 6901.72, + "end": 6903.47, + "probability": 0.7396 + }, + { + "start": 6904.84, + "end": 6905.82, + "probability": 0.9812 + }, + { + "start": 6906.62, + "end": 6908.4, + "probability": 0.998 + }, + { + "start": 6909.7, + "end": 6912.42, + "probability": 0.9492 + }, + { + "start": 6913.18, + "end": 6915.03, + "probability": 0.9277 + }, + { + "start": 6915.66, + "end": 6915.72, + "probability": 0.1048 + }, + { + "start": 6916.32, + "end": 6916.46, + "probability": 0.2217 + }, + { + "start": 6917.04, + "end": 6918.48, + "probability": 0.4771 + }, + { + "start": 6918.48, + "end": 6919.54, + "probability": 0.7876 + }, + { + "start": 6919.54, + "end": 6921.22, + "probability": 0.7923 + }, + { + "start": 6921.72, + "end": 6925.28, + "probability": 0.9821 + }, + { + "start": 6925.86, + "end": 6928.46, + "probability": 0.9772 + }, + { + "start": 6929.1, + "end": 6933.42, + "probability": 0.9863 + }, + { + "start": 6934.44, + "end": 6938.26, + "probability": 0.6937 + }, + { + "start": 6938.76, + "end": 6941.16, + "probability": 0.9885 + }, + { + "start": 6941.58, + "end": 6942.3, + "probability": 0.8969 + }, + { + "start": 6942.74, + "end": 6943.32, + "probability": 0.8582 + }, + { + "start": 6944.58, + "end": 6945.88, + "probability": 0.8426 + }, + { + "start": 6946.28, + "end": 6947.66, + "probability": 0.2507 + }, + { + "start": 6948.0, + "end": 6948.86, + "probability": 0.2634 + }, + { + "start": 6950.72, + "end": 6951.86, + "probability": 0.7792 + }, + { + "start": 6953.22, + "end": 6955.96, + "probability": 0.8501 + }, + { + "start": 6956.0, + "end": 6958.76, + "probability": 0.8937 + }, + { + "start": 6959.02, + "end": 6962.32, + "probability": 0.1065 + }, + { + "start": 6962.62, + "end": 6965.0, + "probability": 0.0763 + }, + { + "start": 6965.0, + "end": 6965.2, + "probability": 0.384 + }, + { + "start": 6965.36, + "end": 6967.88, + "probability": 0.374 + }, + { + "start": 6967.88, + "end": 6968.52, + "probability": 0.3471 + }, + { + "start": 6968.52, + "end": 6969.04, + "probability": 0.4476 + }, + { + "start": 6969.04, + "end": 6969.25, + "probability": 0.4245 + }, + { + "start": 6970.26, + "end": 6970.96, + "probability": 0.2437 + }, + { + "start": 6971.0, + "end": 6973.7, + "probability": 0.0499 + }, + { + "start": 6973.94, + "end": 6976.04, + "probability": 0.2418 + }, + { + "start": 6977.18, + "end": 6978.4, + "probability": 0.1264 + }, + { + "start": 6979.66, + "end": 6979.7, + "probability": 0.1087 + }, + { + "start": 6980.32, + "end": 6980.72, + "probability": 0.1019 + }, + { + "start": 6980.72, + "end": 6983.1, + "probability": 0.0584 + }, + { + "start": 6983.22, + "end": 6983.22, + "probability": 0.1994 + }, + { + "start": 6983.22, + "end": 6983.22, + "probability": 0.0876 + }, + { + "start": 6983.22, + "end": 6983.22, + "probability": 0.1013 + }, + { + "start": 6983.22, + "end": 6985.6, + "probability": 0.6 + }, + { + "start": 6986.3, + "end": 6988.7, + "probability": 0.8944 + }, + { + "start": 6995.79, + "end": 6999.96, + "probability": 0.8864 + }, + { + "start": 7000.02, + "end": 7000.96, + "probability": 0.6654 + }, + { + "start": 7001.64, + "end": 7002.56, + "probability": 0.9268 + }, + { + "start": 7003.12, + "end": 7007.12, + "probability": 0.9901 + }, + { + "start": 7007.42, + "end": 7008.32, + "probability": 0.9377 + }, + { + "start": 7008.46, + "end": 7009.56, + "probability": 0.9275 + }, + { + "start": 7010.14, + "end": 7010.76, + "probability": 0.0047 + }, + { + "start": 7010.76, + "end": 7010.76, + "probability": 0.0646 + }, + { + "start": 7010.96, + "end": 7018.16, + "probability": 0.9763 + }, + { + "start": 7018.58, + "end": 7019.02, + "probability": 0.7654 + }, + { + "start": 7019.82, + "end": 7021.76, + "probability": 0.3173 + }, + { + "start": 7022.73, + "end": 7024.22, + "probability": 0.9938 + }, + { + "start": 7027.46, + "end": 7031.92, + "probability": 0.9246 + }, + { + "start": 7032.5, + "end": 7033.34, + "probability": 0.7436 + }, + { + "start": 7033.48, + "end": 7035.12, + "probability": 0.9501 + }, + { + "start": 7035.46, + "end": 7037.24, + "probability": 0.7534 + }, + { + "start": 7037.3, + "end": 7040.4, + "probability": 0.939 + }, + { + "start": 7041.32, + "end": 7044.82, + "probability": 0.9253 + }, + { + "start": 7045.5, + "end": 7046.96, + "probability": 0.9934 + }, + { + "start": 7047.2, + "end": 7049.56, + "probability": 0.8777 + }, + { + "start": 7049.94, + "end": 7053.24, + "probability": 0.9763 + }, + { + "start": 7053.36, + "end": 7054.22, + "probability": 0.9845 + }, + { + "start": 7054.34, + "end": 7055.3, + "probability": 0.9628 + }, + { + "start": 7057.16, + "end": 7059.74, + "probability": 0.9945 + }, + { + "start": 7060.2, + "end": 7062.32, + "probability": 0.9983 + }, + { + "start": 7062.76, + "end": 7063.92, + "probability": 0.8245 + }, + { + "start": 7064.64, + "end": 7066.66, + "probability": 0.9829 + }, + { + "start": 7067.26, + "end": 7068.8, + "probability": 0.8077 + }, + { + "start": 7069.52, + "end": 7070.76, + "probability": 0.7574 + }, + { + "start": 7071.16, + "end": 7076.38, + "probability": 0.9735 + }, + { + "start": 7077.02, + "end": 7080.0, + "probability": 0.8378 + }, + { + "start": 7080.1, + "end": 7081.38, + "probability": 0.7893 + }, + { + "start": 7083.2, + "end": 7084.56, + "probability": 0.8645 + }, + { + "start": 7085.46, + "end": 7087.1, + "probability": 0.8416 + }, + { + "start": 7087.24, + "end": 7091.14, + "probability": 0.7526 + }, + { + "start": 7091.28, + "end": 7094.8, + "probability": 0.8236 + }, + { + "start": 7094.92, + "end": 7099.26, + "probability": 0.886 + }, + { + "start": 7099.36, + "end": 7101.78, + "probability": 0.6983 + }, + { + "start": 7102.22, + "end": 7105.78, + "probability": 0.5524 + }, + { + "start": 7105.92, + "end": 7109.62, + "probability": 0.993 + }, + { + "start": 7110.1, + "end": 7112.58, + "probability": 0.9947 + }, + { + "start": 7113.34, + "end": 7116.88, + "probability": 0.9741 + }, + { + "start": 7117.16, + "end": 7119.78, + "probability": 0.9863 + }, + { + "start": 7120.66, + "end": 7123.8, + "probability": 0.915 + }, + { + "start": 7124.36, + "end": 7126.04, + "probability": 0.7687 + }, + { + "start": 7126.76, + "end": 7129.66, + "probability": 0.8749 + }, + { + "start": 7130.18, + "end": 7135.06, + "probability": 0.9691 + }, + { + "start": 7135.06, + "end": 7135.76, + "probability": 0.6746 + }, + { + "start": 7136.86, + "end": 7138.48, + "probability": 0.6888 + }, + { + "start": 7139.22, + "end": 7141.72, + "probability": 0.9778 + }, + { + "start": 7142.14, + "end": 7147.14, + "probability": 0.9977 + }, + { + "start": 7147.9, + "end": 7149.04, + "probability": 0.4198 + }, + { + "start": 7149.32, + "end": 7151.44, + "probability": 0.9893 + }, + { + "start": 7152.08, + "end": 7155.5, + "probability": 0.9967 + }, + { + "start": 7155.5, + "end": 7159.8, + "probability": 0.8249 + }, + { + "start": 7160.66, + "end": 7164.48, + "probability": 0.9573 + }, + { + "start": 7164.6, + "end": 7167.84, + "probability": 0.8798 + }, + { + "start": 7168.62, + "end": 7172.42, + "probability": 0.8865 + }, + { + "start": 7172.88, + "end": 7177.5, + "probability": 0.9844 + }, + { + "start": 7178.16, + "end": 7179.96, + "probability": 0.9286 + }, + { + "start": 7180.04, + "end": 7180.38, + "probability": 0.7699 + }, + { + "start": 7180.44, + "end": 7180.68, + "probability": 0.8367 + }, + { + "start": 7181.32, + "end": 7184.52, + "probability": 0.8952 + }, + { + "start": 7192.12, + "end": 7193.6, + "probability": 0.6419 + }, + { + "start": 7194.54, + "end": 7196.93, + "probability": 0.3419 + }, + { + "start": 7198.66, + "end": 7198.76, + "probability": 0.1985 + }, + { + "start": 7198.76, + "end": 7199.22, + "probability": 0.0239 + }, + { + "start": 7199.74, + "end": 7200.06, + "probability": 0.059 + }, + { + "start": 7200.58, + "end": 7203.22, + "probability": 0.9668 + }, + { + "start": 7203.3, + "end": 7204.27, + "probability": 0.0493 + }, + { + "start": 7205.06, + "end": 7205.74, + "probability": 0.45 + }, + { + "start": 7205.86, + "end": 7207.44, + "probability": 0.469 + }, + { + "start": 7207.56, + "end": 7208.92, + "probability": 0.7694 + }, + { + "start": 7209.52, + "end": 7210.8, + "probability": 0.9314 + }, + { + "start": 7210.94, + "end": 7211.82, + "probability": 0.7384 + }, + { + "start": 7211.92, + "end": 7216.36, + "probability": 0.9927 + }, + { + "start": 7218.23, + "end": 7221.72, + "probability": 0.9722 + }, + { + "start": 7222.66, + "end": 7223.2, + "probability": 0.8235 + }, + { + "start": 7223.96, + "end": 7229.9, + "probability": 0.9823 + }, + { + "start": 7230.1, + "end": 7230.54, + "probability": 0.7162 + }, + { + "start": 7230.6, + "end": 7231.52, + "probability": 0.5597 + }, + { + "start": 7232.22, + "end": 7234.4, + "probability": 0.5986 + }, + { + "start": 7235.02, + "end": 7236.48, + "probability": 0.8331 + }, + { + "start": 7238.24, + "end": 7242.48, + "probability": 0.9647 + }, + { + "start": 7242.94, + "end": 7245.3, + "probability": 0.6886 + }, + { + "start": 7246.48, + "end": 7246.84, + "probability": 0.7215 + }, + { + "start": 7247.28, + "end": 7248.04, + "probability": 0.5822 + }, + { + "start": 7248.1, + "end": 7248.6, + "probability": 0.8053 + }, + { + "start": 7248.9, + "end": 7249.7, + "probability": 0.793 + }, + { + "start": 7249.82, + "end": 7250.98, + "probability": 0.5357 + }, + { + "start": 7251.96, + "end": 7258.96, + "probability": 0.9905 + }, + { + "start": 7259.92, + "end": 7261.58, + "probability": 0.9849 + }, + { + "start": 7262.5, + "end": 7265.26, + "probability": 0.8151 + }, + { + "start": 7265.74, + "end": 7271.16, + "probability": 0.875 + }, + { + "start": 7271.34, + "end": 7273.18, + "probability": 0.8888 + }, + { + "start": 7274.7, + "end": 7279.58, + "probability": 0.994 + }, + { + "start": 7279.68, + "end": 7285.64, + "probability": 0.7963 + }, + { + "start": 7286.5, + "end": 7289.52, + "probability": 0.5834 + }, + { + "start": 7289.52, + "end": 7289.66, + "probability": 0.3795 + }, + { + "start": 7291.56, + "end": 7292.53, + "probability": 0.9758 + }, + { + "start": 7293.3, + "end": 7304.1, + "probability": 0.932 + }, + { + "start": 7305.4, + "end": 7308.44, + "probability": 0.9821 + }, + { + "start": 7308.44, + "end": 7312.18, + "probability": 0.9738 + }, + { + "start": 7312.26, + "end": 7312.76, + "probability": 0.6614 + }, + { + "start": 7312.86, + "end": 7314.88, + "probability": 0.844 + }, + { + "start": 7316.0, + "end": 7317.54, + "probability": 0.9386 + }, + { + "start": 7318.42, + "end": 7322.26, + "probability": 0.9929 + }, + { + "start": 7322.26, + "end": 7326.44, + "probability": 0.904 + }, + { + "start": 7327.18, + "end": 7328.16, + "probability": 0.4905 + }, + { + "start": 7329.44, + "end": 7332.5, + "probability": 0.9809 + }, + { + "start": 7332.9, + "end": 7334.1, + "probability": 0.9543 + }, + { + "start": 7334.68, + "end": 7337.68, + "probability": 0.998 + }, + { + "start": 7338.98, + "end": 7342.72, + "probability": 0.96 + }, + { + "start": 7343.36, + "end": 7347.08, + "probability": 0.9919 + }, + { + "start": 7348.2, + "end": 7349.26, + "probability": 0.7144 + }, + { + "start": 7350.6, + "end": 7351.44, + "probability": 0.6462 + }, + { + "start": 7352.66, + "end": 7353.56, + "probability": 0.8842 + }, + { + "start": 7353.62, + "end": 7354.46, + "probability": 0.8868 + }, + { + "start": 7354.66, + "end": 7356.38, + "probability": 0.9312 + }, + { + "start": 7356.44, + "end": 7357.5, + "probability": 0.9746 + }, + { + "start": 7357.64, + "end": 7359.18, + "probability": 0.8097 + }, + { + "start": 7359.72, + "end": 7362.2, + "probability": 0.9849 + }, + { + "start": 7362.86, + "end": 7363.9, + "probability": 0.9773 + }, + { + "start": 7364.06, + "end": 7364.42, + "probability": 0.1313 + }, + { + "start": 7364.46, + "end": 7365.38, + "probability": 0.8213 + }, + { + "start": 7365.88, + "end": 7367.56, + "probability": 0.9881 + }, + { + "start": 7367.66, + "end": 7369.0, + "probability": 0.8709 + }, + { + "start": 7369.72, + "end": 7372.7, + "probability": 0.6695 + }, + { + "start": 7372.7, + "end": 7375.41, + "probability": 0.7678 + }, + { + "start": 7376.08, + "end": 7376.51, + "probability": 0.2657 + }, + { + "start": 7377.38, + "end": 7378.56, + "probability": 0.9054 + }, + { + "start": 7378.66, + "end": 7379.24, + "probability": 0.4046 + }, + { + "start": 7379.24, + "end": 7379.38, + "probability": 0.4345 + }, + { + "start": 7379.38, + "end": 7379.72, + "probability": 0.3464 + }, + { + "start": 7379.88, + "end": 7381.4, + "probability": 0.9413 + }, + { + "start": 7381.94, + "end": 7383.65, + "probability": 0.9272 + }, + { + "start": 7383.76, + "end": 7385.16, + "probability": 0.9901 + }, + { + "start": 7386.16, + "end": 7387.16, + "probability": 0.6112 + }, + { + "start": 7388.2, + "end": 7389.36, + "probability": 0.9 + }, + { + "start": 7389.54, + "end": 7390.51, + "probability": 0.7631 + }, + { + "start": 7390.64, + "end": 7393.78, + "probability": 0.9886 + }, + { + "start": 7393.82, + "end": 7397.78, + "probability": 0.9496 + }, + { + "start": 7398.34, + "end": 7400.68, + "probability": 0.7771 + }, + { + "start": 7402.56, + "end": 7405.2, + "probability": 0.7904 + }, + { + "start": 7405.44, + "end": 7406.31, + "probability": 0.98 + }, + { + "start": 7407.38, + "end": 7409.68, + "probability": 0.9606 + }, + { + "start": 7410.24, + "end": 7414.02, + "probability": 0.8846 + }, + { + "start": 7414.74, + "end": 7418.66, + "probability": 0.9852 + }, + { + "start": 7418.98, + "end": 7419.66, + "probability": 0.5502 + }, + { + "start": 7419.92, + "end": 7421.06, + "probability": 0.9841 + }, + { + "start": 7421.66, + "end": 7424.04, + "probability": 0.9718 + }, + { + "start": 7424.58, + "end": 7427.36, + "probability": 0.9948 + }, + { + "start": 7427.96, + "end": 7430.08, + "probability": 0.8193 + }, + { + "start": 7430.4, + "end": 7432.3, + "probability": 0.9576 + }, + { + "start": 7432.64, + "end": 7434.32, + "probability": 0.5767 + }, + { + "start": 7434.6, + "end": 7436.92, + "probability": 0.863 + }, + { + "start": 7437.5, + "end": 7438.82, + "probability": 0.9701 + }, + { + "start": 7439.38, + "end": 7440.34, + "probability": 0.9229 + }, + { + "start": 7440.48, + "end": 7442.46, + "probability": 0.6335 + }, + { + "start": 7442.74, + "end": 7444.34, + "probability": 0.5247 + }, + { + "start": 7444.44, + "end": 7446.72, + "probability": 0.9581 + }, + { + "start": 7446.76, + "end": 7448.96, + "probability": 0.8412 + }, + { + "start": 7449.38, + "end": 7454.44, + "probability": 0.731 + }, + { + "start": 7454.84, + "end": 7455.76, + "probability": 0.9857 + }, + { + "start": 7457.52, + "end": 7458.34, + "probability": 0.8412 + }, + { + "start": 7458.48, + "end": 7458.62, + "probability": 0.5791 + }, + { + "start": 7458.72, + "end": 7461.36, + "probability": 0.9925 + }, + { + "start": 7462.14, + "end": 7462.16, + "probability": 0.2685 + }, + { + "start": 7462.16, + "end": 7463.34, + "probability": 0.56 + }, + { + "start": 7463.7, + "end": 7466.12, + "probability": 0.9119 + }, + { + "start": 7466.2, + "end": 7467.18, + "probability": 0.8469 + }, + { + "start": 7467.72, + "end": 7473.12, + "probability": 0.9849 + }, + { + "start": 7473.14, + "end": 7473.84, + "probability": 0.4203 + }, + { + "start": 7474.14, + "end": 7474.78, + "probability": 0.5049 + }, + { + "start": 7475.08, + "end": 7478.76, + "probability": 0.8089 + }, + { + "start": 7485.02, + "end": 7485.04, + "probability": 0.0336 + }, + { + "start": 7485.04, + "end": 7485.06, + "probability": 0.164 + }, + { + "start": 7485.06, + "end": 7485.06, + "probability": 0.087 + }, + { + "start": 7504.14, + "end": 7504.56, + "probability": 0.2303 + }, + { + "start": 7505.86, + "end": 7509.36, + "probability": 0.9973 + }, + { + "start": 7510.88, + "end": 7514.44, + "probability": 0.9408 + }, + { + "start": 7515.3, + "end": 7516.32, + "probability": 0.9642 + }, + { + "start": 7517.06, + "end": 7519.34, + "probability": 0.9425 + }, + { + "start": 7520.06, + "end": 7522.64, + "probability": 0.9529 + }, + { + "start": 7523.36, + "end": 7525.68, + "probability": 0.9924 + }, + { + "start": 7526.46, + "end": 7527.68, + "probability": 0.4356 + }, + { + "start": 7528.56, + "end": 7529.62, + "probability": 0.6155 + }, + { + "start": 7530.34, + "end": 7531.62, + "probability": 0.9985 + }, + { + "start": 7531.76, + "end": 7533.14, + "probability": 0.6169 + }, + { + "start": 7533.3, + "end": 7537.42, + "probability": 0.8091 + }, + { + "start": 7537.44, + "end": 7537.5, + "probability": 0.6341 + }, + { + "start": 7537.5, + "end": 7537.7, + "probability": 0.5022 + }, + { + "start": 7537.74, + "end": 7538.86, + "probability": 0.9032 + }, + { + "start": 7539.5, + "end": 7544.54, + "probability": 0.9662 + }, + { + "start": 7544.64, + "end": 7547.58, + "probability": 0.9534 + }, + { + "start": 7548.48, + "end": 7549.58, + "probability": 0.9663 + }, + { + "start": 7551.6, + "end": 7555.14, + "probability": 0.9279 + }, + { + "start": 7555.26, + "end": 7556.2, + "probability": 0.7361 + }, + { + "start": 7556.84, + "end": 7563.98, + "probability": 0.9891 + }, + { + "start": 7564.84, + "end": 7565.78, + "probability": 0.9271 + }, + { + "start": 7566.72, + "end": 7569.42, + "probability": 0.9881 + }, + { + "start": 7570.46, + "end": 7571.3, + "probability": 0.7512 + }, + { + "start": 7572.5, + "end": 7574.06, + "probability": 0.8996 + }, + { + "start": 7575.38, + "end": 7576.34, + "probability": 0.7057 + }, + { + "start": 7577.16, + "end": 7577.58, + "probability": 0.9797 + }, + { + "start": 7578.16, + "end": 7579.62, + "probability": 0.9835 + }, + { + "start": 7580.34, + "end": 7582.92, + "probability": 0.9893 + }, + { + "start": 7584.16, + "end": 7584.76, + "probability": 0.6604 + }, + { + "start": 7585.5, + "end": 7586.78, + "probability": 0.9029 + }, + { + "start": 7587.32, + "end": 7589.56, + "probability": 0.9705 + }, + { + "start": 7590.34, + "end": 7592.3, + "probability": 0.8521 + }, + { + "start": 7592.9, + "end": 7595.76, + "probability": 0.8456 + }, + { + "start": 7596.5, + "end": 7603.64, + "probability": 0.9929 + }, + { + "start": 7604.26, + "end": 7605.52, + "probability": 0.9443 + }, + { + "start": 7606.28, + "end": 7608.74, + "probability": 0.9551 + }, + { + "start": 7609.42, + "end": 7610.48, + "probability": 0.9458 + }, + { + "start": 7611.34, + "end": 7614.02, + "probability": 0.9862 + }, + { + "start": 7614.58, + "end": 7615.48, + "probability": 0.7582 + }, + { + "start": 7616.38, + "end": 7618.86, + "probability": 0.6872 + }, + { + "start": 7619.42, + "end": 7624.92, + "probability": 0.9539 + }, + { + "start": 7625.54, + "end": 7626.26, + "probability": 0.7657 + }, + { + "start": 7626.8, + "end": 7629.4, + "probability": 0.9539 + }, + { + "start": 7650.2, + "end": 7651.46, + "probability": 0.9682 + }, + { + "start": 7655.62, + "end": 7656.42, + "probability": 0.7626 + }, + { + "start": 7656.56, + "end": 7657.12, + "probability": 0.7319 + }, + { + "start": 7657.2, + "end": 7660.07, + "probability": 0.9961 + }, + { + "start": 7661.02, + "end": 7662.52, + "probability": 0.9492 + }, + { + "start": 7662.62, + "end": 7662.98, + "probability": 0.5339 + }, + { + "start": 7663.06, + "end": 7663.7, + "probability": 0.9524 + }, + { + "start": 7663.76, + "end": 7664.44, + "probability": 0.8531 + }, + { + "start": 7664.5, + "end": 7665.28, + "probability": 0.9 + }, + { + "start": 7665.28, + "end": 7665.94, + "probability": 0.6404 + }, + { + "start": 7666.04, + "end": 7666.88, + "probability": 0.9567 + }, + { + "start": 7667.6, + "end": 7670.06, + "probability": 0.8169 + }, + { + "start": 7670.1, + "end": 7671.94, + "probability": 0.9664 + }, + { + "start": 7672.36, + "end": 7673.66, + "probability": 0.9922 + }, + { + "start": 7673.78, + "end": 7675.12, + "probability": 0.9849 + }, + { + "start": 7675.54, + "end": 7676.61, + "probability": 0.9082 + }, + { + "start": 7677.0, + "end": 7678.2, + "probability": 0.9302 + }, + { + "start": 7678.36, + "end": 7679.4, + "probability": 0.8315 + }, + { + "start": 7679.46, + "end": 7680.48, + "probability": 0.9499 + }, + { + "start": 7681.04, + "end": 7682.76, + "probability": 0.9302 + }, + { + "start": 7683.66, + "end": 7686.2, + "probability": 0.9967 + }, + { + "start": 7686.6, + "end": 7688.62, + "probability": 0.978 + }, + { + "start": 7688.8, + "end": 7689.12, + "probability": 0.2816 + }, + { + "start": 7689.22, + "end": 7689.86, + "probability": 0.9305 + }, + { + "start": 7690.04, + "end": 7691.86, + "probability": 0.8875 + }, + { + "start": 7692.48, + "end": 7695.36, + "probability": 0.9688 + }, + { + "start": 7696.06, + "end": 7698.2, + "probability": 0.7629 + }, + { + "start": 7698.78, + "end": 7700.98, + "probability": 0.9548 + }, + { + "start": 7701.08, + "end": 7701.86, + "probability": 0.9413 + }, + { + "start": 7702.86, + "end": 7705.46, + "probability": 0.5804 + }, + { + "start": 7706.05, + "end": 7708.74, + "probability": 0.7715 + }, + { + "start": 7708.86, + "end": 7709.42, + "probability": 0.8896 + }, + { + "start": 7709.58, + "end": 7710.14, + "probability": 0.8509 + }, + { + "start": 7710.56, + "end": 7711.6, + "probability": 0.897 + }, + { + "start": 7711.68, + "end": 7712.52, + "probability": 0.9091 + }, + { + "start": 7712.56, + "end": 7713.28, + "probability": 0.8343 + }, + { + "start": 7713.36, + "end": 7714.64, + "probability": 0.9867 + }, + { + "start": 7715.22, + "end": 7716.0, + "probability": 0.9053 + }, + { + "start": 7716.2, + "end": 7717.9, + "probability": 0.66 + }, + { + "start": 7719.84, + "end": 7721.0, + "probability": 0.7858 + }, + { + "start": 7722.0, + "end": 7723.74, + "probability": 0.8047 + }, + { + "start": 7724.44, + "end": 7724.46, + "probability": 0.33 + }, + { + "start": 7724.46, + "end": 7725.11, + "probability": 0.9817 + }, + { + "start": 7725.28, + "end": 7725.76, + "probability": 0.6807 + }, + { + "start": 7725.84, + "end": 7726.68, + "probability": 0.0884 + }, + { + "start": 7728.02, + "end": 7728.72, + "probability": 0.1544 + }, + { + "start": 7728.82, + "end": 7730.5, + "probability": 0.1561 + }, + { + "start": 7730.82, + "end": 7734.96, + "probability": 0.1117 + }, + { + "start": 7735.54, + "end": 7736.2, + "probability": 0.6605 + }, + { + "start": 7738.57, + "end": 7740.04, + "probability": 0.2871 + }, + { + "start": 7740.08, + "end": 7740.8, + "probability": 0.1529 + }, + { + "start": 7740.9, + "end": 7743.16, + "probability": 0.1396 + }, + { + "start": 7743.84, + "end": 7744.5, + "probability": 0.047 + }, + { + "start": 7746.34, + "end": 7747.72, + "probability": 0.0346 + }, + { + "start": 7747.72, + "end": 7748.9, + "probability": 0.1716 + }, + { + "start": 7748.9, + "end": 7750.04, + "probability": 0.065 + }, + { + "start": 7752.04, + "end": 7752.9, + "probability": 0.0482 + }, + { + "start": 7753.66, + "end": 7756.89, + "probability": 0.0627 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.0, + "end": 7833.0, + "probability": 0.0 + }, + { + "start": 7833.08, + "end": 7833.6, + "probability": 0.0222 + }, + { + "start": 7833.6, + "end": 7836.4, + "probability": 0.1215 + }, + { + "start": 7836.4, + "end": 7838.48, + "probability": 0.3115 + }, + { + "start": 7840.16, + "end": 7841.26, + "probability": 0.0856 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.0, + "end": 7979.0, + "probability": 0.0 + }, + { + "start": 7979.34, + "end": 7980.0, + "probability": 0.0395 + }, + { + "start": 7980.0, + "end": 7980.0, + "probability": 0.0575 + }, + { + "start": 7980.0, + "end": 7980.0, + "probability": 0.0555 + }, + { + "start": 7980.0, + "end": 7980.0, + "probability": 0.1804 + }, + { + "start": 7980.0, + "end": 7980.3, + "probability": 0.3346 + }, + { + "start": 7980.3, + "end": 7981.06, + "probability": 0.4151 + }, + { + "start": 7981.64, + "end": 7983.88, + "probability": 0.8437 + }, + { + "start": 7984.46, + "end": 7985.62, + "probability": 0.8735 + }, + { + "start": 7986.72, + "end": 7989.39, + "probability": 0.7312 + }, + { + "start": 7990.62, + "end": 7993.0, + "probability": 0.9465 + }, + { + "start": 7993.9, + "end": 7998.68, + "probability": 0.9944 + }, + { + "start": 7998.68, + "end": 8004.62, + "probability": 0.9871 + }, + { + "start": 8005.76, + "end": 8006.78, + "probability": 0.4885 + }, + { + "start": 8008.1, + "end": 8008.42, + "probability": 0.7138 + }, + { + "start": 8009.3, + "end": 8010.18, + "probability": 0.9484 + }, + { + "start": 8011.4, + "end": 8012.9, + "probability": 0.777 + }, + { + "start": 8013.12, + "end": 8013.85, + "probability": 0.9377 + }, + { + "start": 8014.26, + "end": 8015.74, + "probability": 0.9418 + }, + { + "start": 8016.38, + "end": 8021.64, + "probability": 0.9567 + }, + { + "start": 8022.14, + "end": 8023.64, + "probability": 0.9873 + }, + { + "start": 8024.04, + "end": 8024.74, + "probability": 0.5717 + }, + { + "start": 8025.74, + "end": 8027.86, + "probability": 0.9572 + }, + { + "start": 8028.58, + "end": 8033.12, + "probability": 0.9937 + }, + { + "start": 8033.46, + "end": 8033.82, + "probability": 0.9503 + }, + { + "start": 8034.44, + "end": 8036.16, + "probability": 0.9943 + }, + { + "start": 8036.28, + "end": 8039.16, + "probability": 0.9952 + }, + { + "start": 8040.22, + "end": 8042.34, + "probability": 0.9967 + }, + { + "start": 8043.34, + "end": 8045.28, + "probability": 0.9891 + }, + { + "start": 8046.44, + "end": 8047.64, + "probability": 0.9821 + }, + { + "start": 8047.72, + "end": 8051.78, + "probability": 0.9939 + }, + { + "start": 8051.92, + "end": 8052.98, + "probability": 0.9346 + }, + { + "start": 8053.64, + "end": 8056.8, + "probability": 0.8289 + }, + { + "start": 8057.14, + "end": 8058.58, + "probability": 0.8663 + }, + { + "start": 8059.22, + "end": 8059.96, + "probability": 0.9366 + }, + { + "start": 8060.8, + "end": 8061.68, + "probability": 0.7591 + }, + { + "start": 8062.08, + "end": 8064.78, + "probability": 0.9121 + }, + { + "start": 8064.86, + "end": 8065.9, + "probability": 0.8948 + }, + { + "start": 8066.64, + "end": 8072.36, + "probability": 0.9798 + }, + { + "start": 8072.5, + "end": 8073.14, + "probability": 0.3023 + }, + { + "start": 8073.46, + "end": 8074.06, + "probability": 0.4234 + }, + { + "start": 8074.22, + "end": 8075.56, + "probability": 0.9857 + }, + { + "start": 8076.46, + "end": 8077.48, + "probability": 0.8408 + }, + { + "start": 8078.24, + "end": 8078.28, + "probability": 0.0065 + }, + { + "start": 8078.28, + "end": 8081.04, + "probability": 0.7203 + }, + { + "start": 8081.16, + "end": 8081.16, + "probability": 0.2929 + }, + { + "start": 8081.16, + "end": 8081.66, + "probability": 0.7731 + }, + { + "start": 8082.06, + "end": 8083.68, + "probability": 0.9688 + }, + { + "start": 8084.0, + "end": 8087.24, + "probability": 0.7802 + }, + { + "start": 8088.02, + "end": 8089.48, + "probability": 0.9225 + }, + { + "start": 8090.32, + "end": 8093.8, + "probability": 0.9585 + }, + { + "start": 8094.18, + "end": 8094.94, + "probability": 0.8181 + }, + { + "start": 8095.28, + "end": 8099.74, + "probability": 0.9033 + }, + { + "start": 8100.52, + "end": 8104.62, + "probability": 0.992 + }, + { + "start": 8105.12, + "end": 8107.3, + "probability": 0.7743 + }, + { + "start": 8108.1, + "end": 8109.8, + "probability": 0.8963 + }, + { + "start": 8110.48, + "end": 8113.26, + "probability": 0.9829 + }, + { + "start": 8113.4, + "end": 8116.94, + "probability": 0.9751 + }, + { + "start": 8117.06, + "end": 8117.18, + "probability": 0.6375 + }, + { + "start": 8117.42, + "end": 8119.94, + "probability": 0.8657 + }, + { + "start": 8120.88, + "end": 8126.68, + "probability": 0.9961 + }, + { + "start": 8127.28, + "end": 8131.32, + "probability": 0.9306 + }, + { + "start": 8131.96, + "end": 8132.82, + "probability": 0.8174 + }, + { + "start": 8132.9, + "end": 8136.24, + "probability": 0.9406 + }, + { + "start": 8136.3, + "end": 8136.76, + "probability": 0.6024 + }, + { + "start": 8136.8, + "end": 8140.12, + "probability": 0.9891 + }, + { + "start": 8141.24, + "end": 8141.44, + "probability": 0.0391 + }, + { + "start": 8141.44, + "end": 8142.92, + "probability": 0.5958 + }, + { + "start": 8143.82, + "end": 8143.82, + "probability": 0.0648 + }, + { + "start": 8143.82, + "end": 8145.84, + "probability": 0.513 + }, + { + "start": 8146.38, + "end": 8149.38, + "probability": 0.6131 + }, + { + "start": 8150.24, + "end": 8151.92, + "probability": 0.1667 + }, + { + "start": 8156.56, + "end": 8157.38, + "probability": 0.415 + }, + { + "start": 8157.94, + "end": 8160.8, + "probability": 0.1142 + }, + { + "start": 8160.94, + "end": 8162.38, + "probability": 0.1125 + }, + { + "start": 8163.98, + "end": 8165.7, + "probability": 0.1539 + }, + { + "start": 8167.2, + "end": 8168.88, + "probability": 0.4873 + }, + { + "start": 8169.2, + "end": 8171.42, + "probability": 0.0866 + }, + { + "start": 8171.52, + "end": 8172.58, + "probability": 0.2286 + }, + { + "start": 8172.62, + "end": 8173.88, + "probability": 0.0654 + }, + { + "start": 8174.6, + "end": 8175.76, + "probability": 0.1627 + }, + { + "start": 8175.9, + "end": 8177.26, + "probability": 0.4642 + }, + { + "start": 8179.1, + "end": 8180.56, + "probability": 0.2089 + }, + { + "start": 8181.12, + "end": 8184.5, + "probability": 0.1059 + }, + { + "start": 8184.5, + "end": 8186.5, + "probability": 0.1828 + }, + { + "start": 8186.5, + "end": 8187.5, + "probability": 0.0617 + }, + { + "start": 8187.72, + "end": 8190.84, + "probability": 0.3623 + }, + { + "start": 8190.84, + "end": 8192.12, + "probability": 0.063 + }, + { + "start": 8196.78, + "end": 8197.24, + "probability": 0.1672 + }, + { + "start": 8198.14, + "end": 8199.26, + "probability": 0.1324 + }, + { + "start": 8202.14, + "end": 8203.06, + "probability": 0.0614 + }, + { + "start": 8204.49, + "end": 8206.6, + "probability": 0.0991 + }, + { + "start": 8206.6, + "end": 8206.98, + "probability": 0.1447 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8207.0, + "end": 8207.0, + "probability": 0.0 + }, + { + "start": 8211.28, + "end": 8212.52, + "probability": 0.6033 + }, + { + "start": 8212.52, + "end": 8213.9, + "probability": 0.0741 + }, + { + "start": 8215.88, + "end": 8216.98, + "probability": 0.4376 + }, + { + "start": 8217.28, + "end": 8217.52, + "probability": 0.386 + }, + { + "start": 8218.74, + "end": 8219.19, + "probability": 0.9554 + }, + { + "start": 8219.82, + "end": 8221.18, + "probability": 0.8468 + }, + { + "start": 8222.94, + "end": 8226.32, + "probability": 0.9155 + }, + { + "start": 8227.22, + "end": 8229.9, + "probability": 0.9951 + }, + { + "start": 8230.66, + "end": 8231.44, + "probability": 0.9788 + }, + { + "start": 8232.34, + "end": 8235.48, + "probability": 0.9118 + }, + { + "start": 8236.14, + "end": 8239.7, + "probability": 0.9812 + }, + { + "start": 8240.88, + "end": 8241.18, + "probability": 0.8592 + }, + { + "start": 8241.26, + "end": 8245.52, + "probability": 0.9934 + }, + { + "start": 8245.52, + "end": 8249.58, + "probability": 0.9959 + }, + { + "start": 8250.2, + "end": 8251.06, + "probability": 0.8111 + }, + { + "start": 8251.9, + "end": 8253.68, + "probability": 0.9977 + }, + { + "start": 8253.74, + "end": 8258.9, + "probability": 0.979 + }, + { + "start": 8259.84, + "end": 8264.82, + "probability": 0.9813 + }, + { + "start": 8265.72, + "end": 8267.58, + "probability": 0.9524 + }, + { + "start": 8268.76, + "end": 8272.22, + "probability": 0.997 + }, + { + "start": 8272.96, + "end": 8273.98, + "probability": 0.9436 + }, + { + "start": 8274.08, + "end": 8274.5, + "probability": 0.8382 + }, + { + "start": 8274.86, + "end": 8276.92, + "probability": 0.9932 + }, + { + "start": 8277.14, + "end": 8279.18, + "probability": 0.9424 + }, + { + "start": 8279.72, + "end": 8282.72, + "probability": 0.8555 + }, + { + "start": 8282.84, + "end": 8283.82, + "probability": 0.7372 + }, + { + "start": 8284.22, + "end": 8285.74, + "probability": 0.9958 + }, + { + "start": 8286.54, + "end": 8286.84, + "probability": 0.802 + }, + { + "start": 8286.92, + "end": 8291.02, + "probability": 0.998 + }, + { + "start": 8291.02, + "end": 8296.26, + "probability": 0.9963 + }, + { + "start": 8297.18, + "end": 8298.84, + "probability": 0.9213 + }, + { + "start": 8299.38, + "end": 8300.44, + "probability": 0.9873 + }, + { + "start": 8300.52, + "end": 8305.16, + "probability": 0.9933 + }, + { + "start": 8305.66, + "end": 8310.32, + "probability": 0.9978 + }, + { + "start": 8310.98, + "end": 8314.06, + "probability": 0.832 + }, + { + "start": 8314.64, + "end": 8317.42, + "probability": 0.955 + }, + { + "start": 8317.82, + "end": 8320.66, + "probability": 0.9987 + }, + { + "start": 8321.06, + "end": 8323.46, + "probability": 0.9927 + }, + { + "start": 8324.06, + "end": 8324.52, + "probability": 0.7982 + }, + { + "start": 8325.22, + "end": 8328.26, + "probability": 0.9278 + }, + { + "start": 8328.88, + "end": 8330.18, + "probability": 0.998 + }, + { + "start": 8331.22, + "end": 8333.28, + "probability": 0.936 + }, + { + "start": 8333.78, + "end": 8336.14, + "probability": 0.9549 + }, + { + "start": 8336.92, + "end": 8338.16, + "probability": 0.8737 + }, + { + "start": 8338.62, + "end": 8339.06, + "probability": 0.8561 + }, + { + "start": 8339.98, + "end": 8341.08, + "probability": 0.8928 + }, + { + "start": 8341.42, + "end": 8342.3, + "probability": 0.9843 + }, + { + "start": 8342.44, + "end": 8344.1, + "probability": 0.9206 + }, + { + "start": 8344.16, + "end": 8344.7, + "probability": 0.4979 + }, + { + "start": 8344.8, + "end": 8348.94, + "probability": 0.9862 + }, + { + "start": 8349.78, + "end": 8350.74, + "probability": 0.8917 + }, + { + "start": 8351.64, + "end": 8355.4, + "probability": 0.7532 + }, + { + "start": 8357.36, + "end": 8358.96, + "probability": 0.9209 + }, + { + "start": 8359.16, + "end": 8363.78, + "probability": 0.9521 + }, + { + "start": 8365.12, + "end": 8368.14, + "probability": 0.9638 + }, + { + "start": 8369.22, + "end": 8371.26, + "probability": 0.8569 + }, + { + "start": 8372.52, + "end": 8374.86, + "probability": 0.7325 + }, + { + "start": 8376.2, + "end": 8381.86, + "probability": 0.9811 + }, + { + "start": 8382.5, + "end": 8383.28, + "probability": 0.9306 + }, + { + "start": 8384.12, + "end": 8385.6, + "probability": 0.998 + }, + { + "start": 8385.88, + "end": 8386.22, + "probability": 0.9239 + }, + { + "start": 8386.44, + "end": 8387.42, + "probability": 0.9049 + }, + { + "start": 8387.96, + "end": 8390.6, + "probability": 0.9448 + }, + { + "start": 8391.06, + "end": 8392.1, + "probability": 0.9927 + }, + { + "start": 8392.68, + "end": 8395.18, + "probability": 0.9917 + }, + { + "start": 8395.7, + "end": 8397.08, + "probability": 0.8955 + }, + { + "start": 8397.84, + "end": 8400.86, + "probability": 0.9966 + }, + { + "start": 8400.86, + "end": 8404.54, + "probability": 0.9865 + }, + { + "start": 8404.9, + "end": 8406.88, + "probability": 0.9985 + }, + { + "start": 8407.34, + "end": 8408.92, + "probability": 0.9521 + }, + { + "start": 8409.38, + "end": 8411.54, + "probability": 0.7679 + }, + { + "start": 8412.2, + "end": 8415.14, + "probability": 0.9592 + }, + { + "start": 8415.5, + "end": 8418.58, + "probability": 0.9851 + }, + { + "start": 8418.92, + "end": 8419.94, + "probability": 0.9807 + }, + { + "start": 8420.26, + "end": 8421.8, + "probability": 0.9948 + }, + { + "start": 8422.36, + "end": 8422.76, + "probability": 0.376 + }, + { + "start": 8424.4, + "end": 8426.9, + "probability": 0.8832 + }, + { + "start": 8427.4, + "end": 8430.06, + "probability": 0.9941 + }, + { + "start": 8430.38, + "end": 8430.68, + "probability": 0.7527 + }, + { + "start": 8431.36, + "end": 8432.02, + "probability": 0.6586 + }, + { + "start": 8432.2, + "end": 8433.74, + "probability": 0.5039 + }, + { + "start": 8433.92, + "end": 8434.5, + "probability": 0.8894 + }, + { + "start": 8435.04, + "end": 8436.04, + "probability": 0.7588 + }, + { + "start": 8436.26, + "end": 8437.2, + "probability": 0.535 + }, + { + "start": 8437.3, + "end": 8438.6, + "probability": 0.7011 + }, + { + "start": 8439.24, + "end": 8443.28, + "probability": 0.9985 + }, + { + "start": 8443.86, + "end": 8446.22, + "probability": 0.9988 + }, + { + "start": 8446.22, + "end": 8448.56, + "probability": 0.9991 + }, + { + "start": 8449.28, + "end": 8453.76, + "probability": 0.8713 + }, + { + "start": 8453.96, + "end": 8459.28, + "probability": 0.9774 + }, + { + "start": 8459.38, + "end": 8459.86, + "probability": 0.8015 + }, + { + "start": 8460.06, + "end": 8460.64, + "probability": 0.986 + }, + { + "start": 8460.74, + "end": 8462.34, + "probability": 0.1369 + }, + { + "start": 8462.34, + "end": 8462.44, + "probability": 0.318 + }, + { + "start": 8463.02, + "end": 8463.62, + "probability": 0.5246 + }, + { + "start": 8463.64, + "end": 8465.52, + "probability": 0.9625 + }, + { + "start": 8466.2, + "end": 8467.18, + "probability": 0.8263 + }, + { + "start": 8467.72, + "end": 8469.06, + "probability": 0.8491 + }, + { + "start": 8487.64, + "end": 8490.08, + "probability": 0.8652 + }, + { + "start": 8491.1, + "end": 8496.54, + "probability": 0.998 + }, + { + "start": 8496.58, + "end": 8500.18, + "probability": 0.9841 + }, + { + "start": 8500.82, + "end": 8502.18, + "probability": 0.998 + }, + { + "start": 8502.9, + "end": 8506.5, + "probability": 0.9893 + }, + { + "start": 8506.5, + "end": 8508.26, + "probability": 0.5848 + }, + { + "start": 8508.76, + "end": 8512.52, + "probability": 0.7688 + }, + { + "start": 8513.52, + "end": 8517.26, + "probability": 0.9973 + }, + { + "start": 8517.36, + "end": 8518.0, + "probability": 0.6596 + }, + { + "start": 8518.74, + "end": 8520.82, + "probability": 0.4902 + }, + { + "start": 8520.92, + "end": 8522.48, + "probability": 0.9595 + }, + { + "start": 8523.33, + "end": 8524.38, + "probability": 0.9662 + }, + { + "start": 8524.56, + "end": 8524.94, + "probability": 0.5392 + }, + { + "start": 8525.34, + "end": 8527.89, + "probability": 0.9688 + }, + { + "start": 8530.49, + "end": 8536.16, + "probability": 0.89 + }, + { + "start": 8537.12, + "end": 8541.5, + "probability": 0.9709 + }, + { + "start": 8542.08, + "end": 8544.9, + "probability": 0.9924 + }, + { + "start": 8545.08, + "end": 8546.5, + "probability": 0.9963 + }, + { + "start": 8547.36, + "end": 8548.66, + "probability": 0.8107 + }, + { + "start": 8549.5, + "end": 8550.27, + "probability": 0.951 + }, + { + "start": 8551.28, + "end": 8553.34, + "probability": 0.9863 + }, + { + "start": 8554.1, + "end": 8555.14, + "probability": 0.7741 + }, + { + "start": 8557.2, + "end": 8558.36, + "probability": 0.9165 + }, + { + "start": 8558.46, + "end": 8559.01, + "probability": 0.9917 + }, + { + "start": 8559.18, + "end": 8559.72, + "probability": 0.3229 + }, + { + "start": 8559.84, + "end": 8560.22, + "probability": 0.027 + }, + { + "start": 8560.3, + "end": 8563.0, + "probability": 0.9791 + }, + { + "start": 8563.46, + "end": 8565.0, + "probability": 0.9645 + }, + { + "start": 8565.08, + "end": 8568.16, + "probability": 0.9617 + }, + { + "start": 8568.24, + "end": 8571.14, + "probability": 0.9315 + }, + { + "start": 8572.08, + "end": 8579.78, + "probability": 0.978 + }, + { + "start": 8580.24, + "end": 8581.04, + "probability": 0.9017 + }, + { + "start": 8581.44, + "end": 8583.5, + "probability": 0.7997 + }, + { + "start": 8584.88, + "end": 8588.26, + "probability": 0.9737 + }, + { + "start": 8589.64, + "end": 8592.98, + "probability": 0.9893 + }, + { + "start": 8593.44, + "end": 8595.26, + "probability": 0.8444 + }, + { + "start": 8596.44, + "end": 8599.3, + "probability": 0.9534 + }, + { + "start": 8599.78, + "end": 8600.94, + "probability": 0.9674 + }, + { + "start": 8601.58, + "end": 8605.9, + "probability": 0.8982 + }, + { + "start": 8606.46, + "end": 8607.86, + "probability": 0.9883 + }, + { + "start": 8608.34, + "end": 8608.96, + "probability": 0.9247 + }, + { + "start": 8609.08, + "end": 8609.6, + "probability": 0.9721 + }, + { + "start": 8609.7, + "end": 8610.58, + "probability": 0.989 + }, + { + "start": 8611.0, + "end": 8612.64, + "probability": 0.991 + }, + { + "start": 8613.34, + "end": 8615.94, + "probability": 0.9616 + }, + { + "start": 8617.98, + "end": 8620.26, + "probability": 0.9981 + }, + { + "start": 8621.64, + "end": 8625.32, + "probability": 0.9208 + }, + { + "start": 8626.1, + "end": 8629.98, + "probability": 0.9956 + }, + { + "start": 8631.94, + "end": 8633.04, + "probability": 0.9521 + }, + { + "start": 8634.1, + "end": 8636.02, + "probability": 0.9768 + }, + { + "start": 8636.56, + "end": 8638.14, + "probability": 0.9746 + }, + { + "start": 8638.78, + "end": 8640.96, + "probability": 0.9878 + }, + { + "start": 8641.5, + "end": 8643.08, + "probability": 0.8004 + }, + { + "start": 8643.68, + "end": 8650.14, + "probability": 0.9796 + }, + { + "start": 8651.8, + "end": 8659.46, + "probability": 0.9967 + }, + { + "start": 8659.92, + "end": 8660.88, + "probability": 0.8472 + }, + { + "start": 8661.7, + "end": 8663.44, + "probability": 0.8987 + }, + { + "start": 8663.96, + "end": 8664.78, + "probability": 0.985 + }, + { + "start": 8665.9, + "end": 8669.96, + "probability": 0.855 + }, + { + "start": 8670.48, + "end": 8670.93, + "probability": 0.8213 + }, + { + "start": 8672.36, + "end": 8673.52, + "probability": 0.9937 + }, + { + "start": 8674.94, + "end": 8677.35, + "probability": 0.9918 + }, + { + "start": 8678.36, + "end": 8680.68, + "probability": 0.981 + }, + { + "start": 8681.5, + "end": 8683.85, + "probability": 0.9063 + }, + { + "start": 8685.46, + "end": 8688.02, + "probability": 0.9949 + }, + { + "start": 8689.16, + "end": 8694.08, + "probability": 0.7986 + }, + { + "start": 8695.06, + "end": 8697.46, + "probability": 0.9856 + }, + { + "start": 8698.04, + "end": 8702.48, + "probability": 0.991 + }, + { + "start": 8704.32, + "end": 8707.72, + "probability": 0.9887 + }, + { + "start": 8707.72, + "end": 8709.44, + "probability": 0.999 + }, + { + "start": 8710.48, + "end": 8712.74, + "probability": 0.9939 + }, + { + "start": 8713.2, + "end": 8714.66, + "probability": 0.9844 + }, + { + "start": 8715.02, + "end": 8717.2, + "probability": 0.6967 + }, + { + "start": 8718.87, + "end": 8722.36, + "probability": 0.9837 + }, + { + "start": 8722.82, + "end": 8726.14, + "probability": 0.9924 + }, + { + "start": 8727.26, + "end": 8727.5, + "probability": 0.9004 + }, + { + "start": 8727.54, + "end": 8730.74, + "probability": 0.8159 + }, + { + "start": 8730.78, + "end": 8733.34, + "probability": 0.9857 + }, + { + "start": 8734.58, + "end": 8735.54, + "probability": 0.6951 + }, + { + "start": 8735.96, + "end": 8739.94, + "probability": 0.9907 + }, + { + "start": 8740.3, + "end": 8740.96, + "probability": 0.7361 + }, + { + "start": 8741.94, + "end": 8744.5, + "probability": 0.8969 + }, + { + "start": 8744.86, + "end": 8745.92, + "probability": 0.998 + }, + { + "start": 8746.48, + "end": 8749.32, + "probability": 0.9799 + }, + { + "start": 8749.72, + "end": 8751.56, + "probability": 0.9963 + }, + { + "start": 8752.04, + "end": 8752.74, + "probability": 0.661 + }, + { + "start": 8752.78, + "end": 8753.7, + "probability": 0.8886 + }, + { + "start": 8754.18, + "end": 8756.38, + "probability": 0.9641 + }, + { + "start": 8756.42, + "end": 8760.04, + "probability": 0.9407 + }, + { + "start": 8760.26, + "end": 8760.46, + "probability": 0.6738 + }, + { + "start": 8761.58, + "end": 8762.8, + "probability": 0.9896 + }, + { + "start": 8763.9, + "end": 8764.74, + "probability": 0.5666 + }, + { + "start": 8764.76, + "end": 8768.06, + "probability": 0.8925 + }, + { + "start": 8768.06, + "end": 8773.8, + "probability": 0.9853 + }, + { + "start": 8774.82, + "end": 8776.94, + "probability": 0.9629 + }, + { + "start": 8777.56, + "end": 8779.24, + "probability": 0.7737 + }, + { + "start": 8779.98, + "end": 8783.74, + "probability": 0.9725 + }, + { + "start": 8783.74, + "end": 8787.98, + "probability": 0.9929 + }, + { + "start": 8788.46, + "end": 8789.14, + "probability": 0.9121 + }, + { + "start": 8789.7, + "end": 8791.32, + "probability": 0.658 + }, + { + "start": 8791.34, + "end": 8796.04, + "probability": 0.9854 + }, + { + "start": 8796.74, + "end": 8796.84, + "probability": 0.6251 + }, + { + "start": 8796.88, + "end": 8802.6, + "probability": 0.9824 + }, + { + "start": 8803.14, + "end": 8806.14, + "probability": 0.8196 + }, + { + "start": 8806.66, + "end": 8808.92, + "probability": 0.9413 + }, + { + "start": 8809.18, + "end": 8809.86, + "probability": 0.8922 + }, + { + "start": 8810.56, + "end": 8812.62, + "probability": 0.8181 + }, + { + "start": 8812.7, + "end": 8813.38, + "probability": 0.0466 + }, + { + "start": 8813.98, + "end": 8817.0, + "probability": 0.3736 + }, + { + "start": 8822.2, + "end": 8823.08, + "probability": 0.1233 + }, + { + "start": 8823.16, + "end": 8825.54, + "probability": 0.9757 + }, + { + "start": 8826.08, + "end": 8828.64, + "probability": 0.6738 + }, + { + "start": 8828.76, + "end": 8833.96, + "probability": 0.8513 + }, + { + "start": 8834.04, + "end": 8835.78, + "probability": 0.4709 + }, + { + "start": 8835.78, + "end": 8837.88, + "probability": 0.9909 + }, + { + "start": 8839.32, + "end": 8840.83, + "probability": 0.9971 + }, + { + "start": 8841.06, + "end": 8843.64, + "probability": 0.9162 + }, + { + "start": 8843.84, + "end": 8845.16, + "probability": 0.9944 + }, + { + "start": 8845.58, + "end": 8847.62, + "probability": 0.9471 + }, + { + "start": 8847.98, + "end": 8849.14, + "probability": 0.9458 + }, + { + "start": 8849.42, + "end": 8850.24, + "probability": 0.839 + }, + { + "start": 8850.5, + "end": 8851.7, + "probability": 0.9541 + }, + { + "start": 8852.28, + "end": 8854.42, + "probability": 0.9834 + }, + { + "start": 8854.48, + "end": 8855.94, + "probability": 0.6124 + }, + { + "start": 8856.64, + "end": 8859.64, + "probability": 0.9845 + }, + { + "start": 8860.18, + "end": 8862.5, + "probability": 0.939 + }, + { + "start": 8863.04, + "end": 8864.2, + "probability": 0.9597 + }, + { + "start": 8864.54, + "end": 8865.26, + "probability": 0.9658 + }, + { + "start": 8865.36, + "end": 8865.96, + "probability": 0.8285 + }, + { + "start": 8865.96, + "end": 8867.52, + "probability": 0.9341 + }, + { + "start": 8867.66, + "end": 8868.58, + "probability": 0.4579 + }, + { + "start": 8868.62, + "end": 8871.28, + "probability": 0.9155 + }, + { + "start": 8872.02, + "end": 8874.66, + "probability": 0.9531 + }, + { + "start": 8875.28, + "end": 8878.74, + "probability": 0.7401 + }, + { + "start": 8879.12, + "end": 8882.38, + "probability": 0.986 + }, + { + "start": 8882.58, + "end": 8882.98, + "probability": 0.8268 + }, + { + "start": 8883.1, + "end": 8887.74, + "probability": 0.7826 + }, + { + "start": 8888.1, + "end": 8888.94, + "probability": 0.9288 + }, + { + "start": 8889.2, + "end": 8889.96, + "probability": 0.9825 + }, + { + "start": 8890.44, + "end": 8892.56, + "probability": 0.9858 + }, + { + "start": 8893.66, + "end": 8898.88, + "probability": 0.7446 + }, + { + "start": 8899.56, + "end": 8900.94, + "probability": 0.8741 + }, + { + "start": 8902.04, + "end": 8905.58, + "probability": 0.9759 + }, + { + "start": 8905.6, + "end": 8907.04, + "probability": 0.4085 + }, + { + "start": 8907.38, + "end": 8909.3, + "probability": 0.8483 + }, + { + "start": 8910.28, + "end": 8912.92, + "probability": 0.883 + }, + { + "start": 8913.02, + "end": 8914.6, + "probability": 0.9377 + }, + { + "start": 8915.14, + "end": 8916.28, + "probability": 0.9746 + }, + { + "start": 8916.4, + "end": 8918.96, + "probability": 0.9563 + }, + { + "start": 8919.82, + "end": 8923.32, + "probability": 0.8772 + }, + { + "start": 8924.06, + "end": 8924.5, + "probability": 0.7227 + }, + { + "start": 8925.24, + "end": 8927.46, + "probability": 0.8038 + }, + { + "start": 8928.02, + "end": 8931.13, + "probability": 0.9016 + }, + { + "start": 8931.82, + "end": 8932.7, + "probability": 0.7732 + }, + { + "start": 8933.54, + "end": 8934.36, + "probability": 0.8338 + }, + { + "start": 8934.66, + "end": 8935.48, + "probability": 0.5984 + }, + { + "start": 8937.18, + "end": 8940.16, + "probability": 0.833 + }, + { + "start": 8940.68, + "end": 8941.24, + "probability": 0.2544 + }, + { + "start": 8942.04, + "end": 8945.5, + "probability": 0.9 + }, + { + "start": 8946.14, + "end": 8946.6, + "probability": 0.7515 + }, + { + "start": 8947.32, + "end": 8949.36, + "probability": 0.9888 + }, + { + "start": 8949.38, + "end": 8953.92, + "probability": 0.9151 + }, + { + "start": 8954.56, + "end": 8954.7, + "probability": 0.4841 + }, + { + "start": 8955.64, + "end": 8956.86, + "probability": 0.3486 + }, + { + "start": 8957.86, + "end": 8961.14, + "probability": 0.8481 + }, + { + "start": 8962.26, + "end": 8963.72, + "probability": 0.3178 + }, + { + "start": 8964.02, + "end": 8968.12, + "probability": 0.988 + }, + { + "start": 8968.7, + "end": 8969.88, + "probability": 0.7509 + }, + { + "start": 8970.0, + "end": 8973.52, + "probability": 0.9863 + }, + { + "start": 8973.52, + "end": 8977.42, + "probability": 0.9707 + }, + { + "start": 8978.34, + "end": 8981.08, + "probability": 0.689 + }, + { + "start": 8982.26, + "end": 8984.58, + "probability": 0.9601 + }, + { + "start": 8984.7, + "end": 8987.6, + "probability": 0.872 + }, + { + "start": 8988.94, + "end": 8992.73, + "probability": 0.0999 + }, + { + "start": 8992.96, + "end": 8993.76, + "probability": 0.0547 + }, + { + "start": 8993.76, + "end": 8993.76, + "probability": 0.2508 + }, + { + "start": 8993.76, + "end": 8993.76, + "probability": 0.0718 + }, + { + "start": 8993.76, + "end": 8994.28, + "probability": 0.1662 + }, + { + "start": 8994.66, + "end": 8995.64, + "probability": 0.579 + }, + { + "start": 8996.0, + "end": 8999.44, + "probability": 0.9019 + }, + { + "start": 9000.62, + "end": 9002.04, + "probability": 0.6201 + }, + { + "start": 9002.42, + "end": 9004.34, + "probability": 0.9642 + }, + { + "start": 9007.46, + "end": 9007.5, + "probability": 0.0046 + }, + { + "start": 9007.5, + "end": 9007.5, + "probability": 0.1283 + }, + { + "start": 9007.5, + "end": 9010.62, + "probability": 0.9485 + }, + { + "start": 9012.16, + "end": 9013.14, + "probability": 0.8211 + }, + { + "start": 9013.52, + "end": 9014.26, + "probability": 0.6694 + }, + { + "start": 9014.52, + "end": 9015.8, + "probability": 0.8917 + }, + { + "start": 9016.14, + "end": 9019.45, + "probability": 0.9897 + }, + { + "start": 9020.02, + "end": 9021.3, + "probability": 0.9932 + }, + { + "start": 9023.38, + "end": 9025.98, + "probability": 0.9789 + }, + { + "start": 9026.02, + "end": 9028.0, + "probability": 0.9871 + }, + { + "start": 9028.98, + "end": 9030.78, + "probability": 0.9575 + }, + { + "start": 9031.08, + "end": 9034.46, + "probability": 0.9868 + }, + { + "start": 9035.04, + "end": 9035.94, + "probability": 0.5427 + }, + { + "start": 9036.42, + "end": 9040.88, + "probability": 0.9902 + }, + { + "start": 9041.24, + "end": 9043.7, + "probability": 0.9597 + }, + { + "start": 9043.94, + "end": 9046.64, + "probability": 0.7987 + }, + { + "start": 9047.04, + "end": 9049.92, + "probability": 0.9966 + }, + { + "start": 9050.5, + "end": 9055.4, + "probability": 0.9847 + }, + { + "start": 9056.0, + "end": 9060.58, + "probability": 0.9966 + }, + { + "start": 9060.98, + "end": 9064.46, + "probability": 0.9731 + }, + { + "start": 9064.96, + "end": 9065.48, + "probability": 0.9735 + }, + { + "start": 9066.0, + "end": 9066.8, + "probability": 0.6107 + }, + { + "start": 9066.88, + "end": 9067.66, + "probability": 0.573 + }, + { + "start": 9068.34, + "end": 9070.52, + "probability": 0.9279 + }, + { + "start": 9071.28, + "end": 9073.02, + "probability": 0.8873 + }, + { + "start": 9073.84, + "end": 9074.1, + "probability": 0.5466 + }, + { + "start": 9074.1, + "end": 9074.72, + "probability": 0.5079 + }, + { + "start": 9075.12, + "end": 9075.12, + "probability": 0.5107 + }, + { + "start": 9075.26, + "end": 9076.58, + "probability": 0.9951 + }, + { + "start": 9076.58, + "end": 9077.22, + "probability": 0.5801 + }, + { + "start": 9077.24, + "end": 9077.9, + "probability": 0.7381 + }, + { + "start": 9078.34, + "end": 9079.8, + "probability": 0.8535 + }, + { + "start": 9080.5, + "end": 9081.48, + "probability": 0.632 + }, + { + "start": 9082.06, + "end": 9084.12, + "probability": 0.6345 + }, + { + "start": 9084.48, + "end": 9084.86, + "probability": 0.2555 + }, + { + "start": 9084.92, + "end": 9085.02, + "probability": 0.1884 + }, + { + "start": 9085.02, + "end": 9085.72, + "probability": 0.6743 + }, + { + "start": 9086.62, + "end": 9087.86, + "probability": 0.9865 + }, + { + "start": 9088.7, + "end": 9089.9, + "probability": 0.533 + }, + { + "start": 9089.96, + "end": 9090.62, + "probability": 0.7473 + }, + { + "start": 9092.68, + "end": 9093.52, + "probability": 0.8108 + }, + { + "start": 9101.42, + "end": 9104.66, + "probability": 0.8095 + }, + { + "start": 9105.32, + "end": 9107.36, + "probability": 0.9975 + }, + { + "start": 9107.88, + "end": 9110.6, + "probability": 0.5247 + }, + { + "start": 9111.42, + "end": 9112.3, + "probability": 0.7474 + }, + { + "start": 9113.9, + "end": 9115.04, + "probability": 0.9121 + }, + { + "start": 9116.76, + "end": 9117.82, + "probability": 0.9598 + }, + { + "start": 9118.94, + "end": 9121.04, + "probability": 0.181 + }, + { + "start": 9135.74, + "end": 9137.98, + "probability": 0.3633 + }, + { + "start": 9150.77, + "end": 9152.69, + "probability": 0.3046 + }, + { + "start": 9153.23, + "end": 9157.53, + "probability": 0.607 + }, + { + "start": 9159.11, + "end": 9160.56, + "probability": 0.8005 + }, + { + "start": 9160.63, + "end": 9163.25, + "probability": 0.1244 + }, + { + "start": 9165.99, + "end": 9168.61, + "probability": 0.014 + }, + { + "start": 9172.91, + "end": 9173.37, + "probability": 0.1048 + }, + { + "start": 9175.46, + "end": 9179.61, + "probability": 0.0125 + }, + { + "start": 9179.67, + "end": 9180.03, + "probability": 0.0396 + }, + { + "start": 9181.89, + "end": 9182.15, + "probability": 0.0353 + }, + { + "start": 9182.15, + "end": 9184.05, + "probability": 0.1455 + }, + { + "start": 9185.65, + "end": 9186.57, + "probability": 0.0447 + }, + { + "start": 9186.57, + "end": 9186.65, + "probability": 0.0713 + }, + { + "start": 9186.65, + "end": 9186.65, + "probability": 0.2996 + }, + { + "start": 9186.83, + "end": 9186.83, + "probability": 0.0451 + }, + { + "start": 9186.83, + "end": 9186.83, + "probability": 0.2565 + }, + { + "start": 9186.83, + "end": 9186.95, + "probability": 0.1403 + }, + { + "start": 9186.95, + "end": 9186.97, + "probability": 0.004 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.0, + "end": 9187.0, + "probability": 0.0 + }, + { + "start": 9187.16, + "end": 9187.58, + "probability": 0.0703 + }, + { + "start": 9187.58, + "end": 9190.36, + "probability": 0.651 + }, + { + "start": 9191.24, + "end": 9192.16, + "probability": 0.9728 + }, + { + "start": 9202.34, + "end": 9202.34, + "probability": 0.1571 + }, + { + "start": 9202.34, + "end": 9202.34, + "probability": 0.1808 + }, + { + "start": 9202.34, + "end": 9202.34, + "probability": 0.0221 + }, + { + "start": 9202.34, + "end": 9202.42, + "probability": 0.0187 + }, + { + "start": 9218.52, + "end": 9220.18, + "probability": 0.4987 + }, + { + "start": 9220.18, + "end": 9226.5, + "probability": 0.9854 + }, + { + "start": 9228.46, + "end": 9234.08, + "probability": 0.886 + }, + { + "start": 9234.62, + "end": 9238.64, + "probability": 0.8974 + }, + { + "start": 9238.78, + "end": 9242.7, + "probability": 0.9915 + }, + { + "start": 9243.36, + "end": 9248.56, + "probability": 0.9546 + }, + { + "start": 9248.96, + "end": 9251.82, + "probability": 0.9106 + }, + { + "start": 9252.6, + "end": 9257.12, + "probability": 0.9714 + }, + { + "start": 9257.64, + "end": 9260.6, + "probability": 0.8138 + }, + { + "start": 9261.42, + "end": 9266.52, + "probability": 0.9963 + }, + { + "start": 9266.56, + "end": 9271.6, + "probability": 0.9993 + }, + { + "start": 9272.4, + "end": 9274.9, + "probability": 0.9609 + }, + { + "start": 9275.54, + "end": 9277.7, + "probability": 0.9618 + }, + { + "start": 9277.7, + "end": 9281.24, + "probability": 0.9805 + }, + { + "start": 9281.8, + "end": 9284.02, + "probability": 0.9478 + }, + { + "start": 9284.54, + "end": 9289.76, + "probability": 0.9828 + }, + { + "start": 9290.3, + "end": 9292.58, + "probability": 0.7483 + }, + { + "start": 9293.36, + "end": 9296.72, + "probability": 0.9941 + }, + { + "start": 9296.72, + "end": 9299.26, + "probability": 0.998 + }, + { + "start": 9301.14, + "end": 9304.74, + "probability": 0.9034 + }, + { + "start": 9305.5, + "end": 9308.24, + "probability": 0.7614 + }, + { + "start": 9308.84, + "end": 9310.8, + "probability": 0.0432 + }, + { + "start": 9311.54, + "end": 9316.42, + "probability": 0.8667 + }, + { + "start": 9316.42, + "end": 9323.9, + "probability": 0.9889 + }, + { + "start": 9324.64, + "end": 9329.66, + "probability": 0.9878 + }, + { + "start": 9329.72, + "end": 9330.18, + "probability": 0.3878 + }, + { + "start": 9330.36, + "end": 9332.36, + "probability": 0.9835 + }, + { + "start": 9333.2, + "end": 9335.86, + "probability": 0.7644 + }, + { + "start": 9335.86, + "end": 9339.13, + "probability": 0.9878 + }, + { + "start": 9339.6, + "end": 9342.46, + "probability": 0.9941 + }, + { + "start": 9342.46, + "end": 9345.76, + "probability": 0.9881 + }, + { + "start": 9346.2, + "end": 9348.12, + "probability": 0.7916 + }, + { + "start": 9348.88, + "end": 9349.58, + "probability": 0.5021 + }, + { + "start": 9350.81, + "end": 9353.02, + "probability": 0.9056 + }, + { + "start": 9354.12, + "end": 9358.26, + "probability": 0.9737 + }, + { + "start": 9358.78, + "end": 9361.12, + "probability": 0.9924 + }, + { + "start": 9361.12, + "end": 9364.1, + "probability": 0.9043 + }, + { + "start": 9364.64, + "end": 9368.02, + "probability": 0.988 + }, + { + "start": 9368.46, + "end": 9372.08, + "probability": 0.9958 + }, + { + "start": 9372.8, + "end": 9373.56, + "probability": 0.8005 + }, + { + "start": 9374.14, + "end": 9378.16, + "probability": 0.9004 + }, + { + "start": 9378.16, + "end": 9383.22, + "probability": 0.9989 + }, + { + "start": 9383.22, + "end": 9389.48, + "probability": 0.9954 + }, + { + "start": 9390.12, + "end": 9394.5, + "probability": 0.9953 + }, + { + "start": 9395.02, + "end": 9397.94, + "probability": 0.7231 + }, + { + "start": 9398.06, + "end": 9401.26, + "probability": 0.974 + }, + { + "start": 9401.26, + "end": 9404.42, + "probability": 0.9949 + }, + { + "start": 9404.98, + "end": 9407.66, + "probability": 0.9418 + }, + { + "start": 9409.02, + "end": 9409.38, + "probability": 0.0141 + }, + { + "start": 9412.92, + "end": 9417.46, + "probability": 0.8029 + }, + { + "start": 9417.96, + "end": 9422.0, + "probability": 0.9958 + }, + { + "start": 9422.0, + "end": 9426.48, + "probability": 0.4944 + }, + { + "start": 9426.86, + "end": 9427.86, + "probability": 0.7302 + }, + { + "start": 9428.34, + "end": 9430.04, + "probability": 0.6965 + }, + { + "start": 9430.48, + "end": 9431.8, + "probability": 0.9731 + }, + { + "start": 9432.32, + "end": 9435.88, + "probability": 0.7119 + }, + { + "start": 9435.96, + "end": 9437.42, + "probability": 0.9958 + }, + { + "start": 9438.44, + "end": 9439.86, + "probability": 0.7962 + }, + { + "start": 9439.96, + "end": 9441.24, + "probability": 0.8079 + }, + { + "start": 9442.04, + "end": 9444.42, + "probability": 0.9634 + }, + { + "start": 9444.94, + "end": 9447.12, + "probability": 0.9721 + }, + { + "start": 9447.88, + "end": 9450.66, + "probability": 0.6689 + }, + { + "start": 9451.26, + "end": 9452.12, + "probability": 0.6074 + }, + { + "start": 9452.7, + "end": 9455.44, + "probability": 0.769 + }, + { + "start": 9455.8, + "end": 9457.24, + "probability": 0.9635 + }, + { + "start": 9457.96, + "end": 9458.87, + "probability": 0.8004 + }, + { + "start": 9459.54, + "end": 9460.78, + "probability": 0.9928 + }, + { + "start": 9461.54, + "end": 9462.98, + "probability": 0.1888 + }, + { + "start": 9463.76, + "end": 9465.02, + "probability": 0.9453 + }, + { + "start": 9466.74, + "end": 9469.04, + "probability": 0.8136 + }, + { + "start": 9469.08, + "end": 9472.14, + "probability": 0.6932 + }, + { + "start": 9472.16, + "end": 9473.46, + "probability": 0.0259 + }, + { + "start": 9473.46, + "end": 9473.8, + "probability": 0.0683 + }, + { + "start": 9474.14, + "end": 9474.68, + "probability": 0.3709 + }, + { + "start": 9476.48, + "end": 9477.64, + "probability": 0.568 + }, + { + "start": 9478.06, + "end": 9478.94, + "probability": 0.4689 + }, + { + "start": 9478.94, + "end": 9479.1, + "probability": 0.2522 + }, + { + "start": 9479.1, + "end": 9480.22, + "probability": 0.2407 + }, + { + "start": 9480.24, + "end": 9482.34, + "probability": 0.8862 + }, + { + "start": 9483.84, + "end": 9486.04, + "probability": 0.7948 + }, + { + "start": 9486.98, + "end": 9490.51, + "probability": 0.9774 + }, + { + "start": 9491.26, + "end": 9494.62, + "probability": 0.9946 + }, + { + "start": 9494.7, + "end": 9496.98, + "probability": 0.7735 + }, + { + "start": 9497.42, + "end": 9498.98, + "probability": 0.3592 + }, + { + "start": 9499.12, + "end": 9500.4, + "probability": 0.0013 + }, + { + "start": 9501.02, + "end": 9501.38, + "probability": 0.3652 + }, + { + "start": 9501.38, + "end": 9501.38, + "probability": 0.136 + }, + { + "start": 9501.38, + "end": 9502.96, + "probability": 0.5514 + }, + { + "start": 9502.96, + "end": 9504.58, + "probability": 0.1713 + }, + { + "start": 9504.82, + "end": 9507.84, + "probability": 0.1547 + }, + { + "start": 9508.22, + "end": 9510.66, + "probability": 0.5371 + }, + { + "start": 9510.68, + "end": 9513.4, + "probability": 0.5732 + }, + { + "start": 9514.14, + "end": 9517.38, + "probability": 0.8521 + }, + { + "start": 9517.62, + "end": 9517.84, + "probability": 0.5107 + }, + { + "start": 9518.06, + "end": 9518.72, + "probability": 0.6488 + }, + { + "start": 9518.76, + "end": 9521.16, + "probability": 0.9421 + }, + { + "start": 9532.94, + "end": 9534.9, + "probability": 0.7087 + }, + { + "start": 9537.24, + "end": 9542.02, + "probability": 0.9788 + }, + { + "start": 9542.56, + "end": 9543.76, + "probability": 0.9618 + }, + { + "start": 9544.38, + "end": 9547.34, + "probability": 0.971 + }, + { + "start": 9547.9, + "end": 9548.96, + "probability": 0.8816 + }, + { + "start": 9549.0, + "end": 9550.94, + "probability": 0.979 + }, + { + "start": 9550.94, + "end": 9554.98, + "probability": 0.9932 + }, + { + "start": 9555.68, + "end": 9560.26, + "probability": 0.9958 + }, + { + "start": 9561.06, + "end": 9562.28, + "probability": 0.8886 + }, + { + "start": 9562.9, + "end": 9567.46, + "probability": 0.9898 + }, + { + "start": 9568.38, + "end": 9569.56, + "probability": 0.9852 + }, + { + "start": 9569.68, + "end": 9571.6, + "probability": 0.8501 + }, + { + "start": 9571.68, + "end": 9575.78, + "probability": 0.9064 + }, + { + "start": 9576.5, + "end": 9578.46, + "probability": 0.9315 + }, + { + "start": 9578.64, + "end": 9582.08, + "probability": 0.9624 + }, + { + "start": 9583.08, + "end": 9585.66, + "probability": 0.9851 + }, + { + "start": 9586.04, + "end": 9587.82, + "probability": 0.9173 + }, + { + "start": 9588.0, + "end": 9588.88, + "probability": 0.8627 + }, + { + "start": 9589.58, + "end": 9593.56, + "probability": 0.7434 + }, + { + "start": 9594.08, + "end": 9595.52, + "probability": 0.8244 + }, + { + "start": 9595.84, + "end": 9601.86, + "probability": 0.8797 + }, + { + "start": 9602.58, + "end": 9603.24, + "probability": 0.9773 + }, + { + "start": 9604.02, + "end": 9607.0, + "probability": 0.9789 + }, + { + "start": 9607.64, + "end": 9609.18, + "probability": 0.8517 + }, + { + "start": 9609.34, + "end": 9612.64, + "probability": 0.9775 + }, + { + "start": 9613.98, + "end": 9618.96, + "probability": 0.9868 + }, + { + "start": 9619.5, + "end": 9621.58, + "probability": 0.9661 + }, + { + "start": 9622.3, + "end": 9625.0, + "probability": 0.9851 + }, + { + "start": 9625.72, + "end": 9627.58, + "probability": 0.9751 + }, + { + "start": 9628.14, + "end": 9630.76, + "probability": 0.9313 + }, + { + "start": 9631.38, + "end": 9633.78, + "probability": 0.8909 + }, + { + "start": 9633.86, + "end": 9637.06, + "probability": 0.7878 + }, + { + "start": 9637.26, + "end": 9642.4, + "probability": 0.8971 + }, + { + "start": 9643.5, + "end": 9647.38, + "probability": 0.9673 + }, + { + "start": 9647.5, + "end": 9648.86, + "probability": 0.8785 + }, + { + "start": 9649.58, + "end": 9655.12, + "probability": 0.9961 + }, + { + "start": 9656.22, + "end": 9660.22, + "probability": 0.9993 + }, + { + "start": 9660.22, + "end": 9666.08, + "probability": 0.9966 + }, + { + "start": 9666.54, + "end": 9667.42, + "probability": 0.986 + }, + { + "start": 9669.14, + "end": 9671.32, + "probability": 0.9914 + }, + { + "start": 9671.42, + "end": 9672.08, + "probability": 0.6674 + }, + { + "start": 9672.2, + "end": 9672.74, + "probability": 0.985 + }, + { + "start": 9672.9, + "end": 9674.58, + "probability": 0.9235 + }, + { + "start": 9675.24, + "end": 9678.62, + "probability": 0.9689 + }, + { + "start": 9679.14, + "end": 9679.92, + "probability": 0.8844 + }, + { + "start": 9680.38, + "end": 9681.54, + "probability": 0.9891 + }, + { + "start": 9681.84, + "end": 9685.14, + "probability": 0.9817 + }, + { + "start": 9685.66, + "end": 9687.72, + "probability": 0.9254 + }, + { + "start": 9688.28, + "end": 9690.26, + "probability": 0.9726 + }, + { + "start": 9690.78, + "end": 9691.28, + "probability": 0.8917 + }, + { + "start": 9691.62, + "end": 9692.42, + "probability": 0.6895 + }, + { + "start": 9697.7, + "end": 9699.42, + "probability": 0.8467 + }, + { + "start": 9715.88, + "end": 9718.54, + "probability": 0.7998 + }, + { + "start": 9722.24, + "end": 9724.22, + "probability": 0.7475 + }, + { + "start": 9725.4, + "end": 9725.8, + "probability": 0.7182 + }, + { + "start": 9727.38, + "end": 9729.88, + "probability": 0.9895 + }, + { + "start": 9730.04, + "end": 9730.82, + "probability": 0.7062 + }, + { + "start": 9730.84, + "end": 9732.0, + "probability": 0.8606 + }, + { + "start": 9733.02, + "end": 9736.14, + "probability": 0.9866 + }, + { + "start": 9737.4, + "end": 9740.88, + "probability": 0.9553 + }, + { + "start": 9742.82, + "end": 9743.16, + "probability": 0.8079 + }, + { + "start": 9743.24, + "end": 9744.52, + "probability": 0.8023 + }, + { + "start": 9744.7, + "end": 9749.7, + "probability": 0.9912 + }, + { + "start": 9750.66, + "end": 9751.06, + "probability": 0.4248 + }, + { + "start": 9751.34, + "end": 9755.8, + "probability": 0.9157 + }, + { + "start": 9756.14, + "end": 9758.56, + "probability": 0.9024 + }, + { + "start": 9758.76, + "end": 9760.18, + "probability": 0.789 + }, + { + "start": 9761.14, + "end": 9766.6, + "probability": 0.9969 + }, + { + "start": 9766.6, + "end": 9772.52, + "probability": 0.9988 + }, + { + "start": 9774.1, + "end": 9774.62, + "probability": 0.723 + }, + { + "start": 9776.42, + "end": 9778.43, + "probability": 0.9158 + }, + { + "start": 9779.4, + "end": 9781.94, + "probability": 0.9985 + }, + { + "start": 9781.94, + "end": 9784.8, + "probability": 0.9976 + }, + { + "start": 9785.42, + "end": 9787.26, + "probability": 0.779 + }, + { + "start": 9788.24, + "end": 9791.52, + "probability": 0.9741 + }, + { + "start": 9792.04, + "end": 9793.7, + "probability": 0.5557 + }, + { + "start": 9794.76, + "end": 9799.48, + "probability": 0.9971 + }, + { + "start": 9799.54, + "end": 9803.88, + "probability": 0.9972 + }, + { + "start": 9804.8, + "end": 9807.12, + "probability": 0.9448 + }, + { + "start": 9807.7, + "end": 9813.38, + "probability": 0.957 + }, + { + "start": 9814.32, + "end": 9817.3, + "probability": 0.7986 + }, + { + "start": 9819.08, + "end": 9819.92, + "probability": 0.6199 + }, + { + "start": 9820.9, + "end": 9826.86, + "probability": 0.9966 + }, + { + "start": 9827.52, + "end": 9829.92, + "probability": 0.9471 + }, + { + "start": 9830.78, + "end": 9832.04, + "probability": 0.9082 + }, + { + "start": 9832.82, + "end": 9836.2, + "probability": 0.9944 + }, + { + "start": 9836.96, + "end": 9838.12, + "probability": 0.7841 + }, + { + "start": 9839.28, + "end": 9843.48, + "probability": 0.9988 + }, + { + "start": 9843.48, + "end": 9847.82, + "probability": 0.9991 + }, + { + "start": 9850.8, + "end": 9851.74, + "probability": 0.8128 + }, + { + "start": 9851.84, + "end": 9859.16, + "probability": 0.9959 + }, + { + "start": 9860.04, + "end": 9862.54, + "probability": 0.9773 + }, + { + "start": 9863.44, + "end": 9865.32, + "probability": 0.732 + }, + { + "start": 9866.06, + "end": 9867.3, + "probability": 0.7534 + }, + { + "start": 9867.74, + "end": 9871.66, + "probability": 0.9769 + }, + { + "start": 9872.42, + "end": 9876.88, + "probability": 0.9985 + }, + { + "start": 9877.98, + "end": 9884.2, + "probability": 0.9862 + }, + { + "start": 9884.2, + "end": 9890.52, + "probability": 0.9989 + }, + { + "start": 9891.8, + "end": 9899.48, + "probability": 0.8588 + }, + { + "start": 9899.94, + "end": 9900.48, + "probability": 0.742 + }, + { + "start": 9900.96, + "end": 9901.0, + "probability": 0.022 + }, + { + "start": 9901.0, + "end": 9901.0, + "probability": 0.1252 + }, + { + "start": 9901.0, + "end": 9901.0, + "probability": 0.1545 + }, + { + "start": 9901.0, + "end": 9901.44, + "probability": 0.5082 + }, + { + "start": 9901.66, + "end": 9902.34, + "probability": 0.2054 + }, + { + "start": 9902.42, + "end": 9905.14, + "probability": 0.3519 + }, + { + "start": 9905.44, + "end": 9906.24, + "probability": 0.4429 + }, + { + "start": 9907.08, + "end": 9907.94, + "probability": 0.0128 + }, + { + "start": 9907.99, + "end": 9908.06, + "probability": 0.1327 + }, + { + "start": 9908.06, + "end": 9908.06, + "probability": 0.0097 + }, + { + "start": 9908.06, + "end": 9908.62, + "probability": 0.0536 + }, + { + "start": 9908.76, + "end": 9909.56, + "probability": 0.048 + }, + { + "start": 9909.56, + "end": 9911.06, + "probability": 0.675 + }, + { + "start": 9911.24, + "end": 9913.08, + "probability": 0.7543 + }, + { + "start": 9914.8, + "end": 9915.86, + "probability": 0.1939 + }, + { + "start": 9918.3, + "end": 9919.74, + "probability": 0.0407 + }, + { + "start": 9925.52, + "end": 9927.04, + "probability": 0.2061 + }, + { + "start": 9927.04, + "end": 9927.18, + "probability": 0.3145 + }, + { + "start": 9927.52, + "end": 9927.88, + "probability": 0.1668 + }, + { + "start": 9928.4, + "end": 9929.38, + "probability": 0.0778 + }, + { + "start": 9929.38, + "end": 9929.74, + "probability": 0.1139 + }, + { + "start": 9931.1, + "end": 9933.02, + "probability": 0.1365 + }, + { + "start": 9935.98, + "end": 9937.02, + "probability": 0.0631 + }, + { + "start": 9940.12, + "end": 9941.96, + "probability": 0.0823 + }, + { + "start": 9944.82, + "end": 9949.18, + "probability": 0.1038 + }, + { + "start": 9974.42, + "end": 9975.94, + "probability": 0.2815 + }, + { + "start": 9976.42, + "end": 9978.92, + "probability": 0.7814 + }, + { + "start": 9979.0, + "end": 9982.26, + "probability": 0.8939 + }, + { + "start": 9982.38, + "end": 9985.6, + "probability": 0.9987 + }, + { + "start": 9985.7, + "end": 9990.06, + "probability": 0.9175 + }, + { + "start": 9990.84, + "end": 9994.14, + "probability": 0.9958 + }, + { + "start": 9994.22, + "end": 9994.76, + "probability": 0.9706 + }, + { + "start": 9995.78, + "end": 9997.22, + "probability": 0.9067 + }, + { + "start": 9997.32, + "end": 9999.54, + "probability": 0.9985 + }, + { + "start": 10000.54, + "end": 10001.14, + "probability": 0.727 + }, + { + "start": 10001.94, + "end": 10004.4, + "probability": 0.9938 + }, + { + "start": 10005.44, + "end": 10008.46, + "probability": 0.9541 + }, + { + "start": 10009.68, + "end": 10014.54, + "probability": 0.9785 + }, + { + "start": 10015.08, + "end": 10015.98, + "probability": 0.9418 + }, + { + "start": 10016.86, + "end": 10019.88, + "probability": 0.9984 + }, + { + "start": 10019.96, + "end": 10020.91, + "probability": 0.9621 + }, + { + "start": 10021.28, + "end": 10022.06, + "probability": 0.9756 + }, + { + "start": 10022.12, + "end": 10022.86, + "probability": 0.7147 + }, + { + "start": 10023.56, + "end": 10023.78, + "probability": 0.9222 + }, + { + "start": 10024.44, + "end": 10027.44, + "probability": 0.9865 + }, + { + "start": 10028.62, + "end": 10031.72, + "probability": 0.9431 + }, + { + "start": 10032.28, + "end": 10034.24, + "probability": 0.998 + }, + { + "start": 10035.2, + "end": 10037.2, + "probability": 0.9811 + }, + { + "start": 10038.64, + "end": 10040.74, + "probability": 0.9952 + }, + { + "start": 10041.5, + "end": 10042.93, + "probability": 0.9993 + }, + { + "start": 10043.94, + "end": 10047.04, + "probability": 0.9986 + }, + { + "start": 10047.56, + "end": 10048.04, + "probability": 0.7792 + }, + { + "start": 10048.12, + "end": 10049.18, + "probability": 0.9916 + }, + { + "start": 10049.3, + "end": 10050.36, + "probability": 0.9941 + }, + { + "start": 10051.02, + "end": 10052.34, + "probability": 0.9915 + }, + { + "start": 10052.94, + "end": 10054.04, + "probability": 0.8855 + }, + { + "start": 10055.06, + "end": 10060.1, + "probability": 0.9879 + }, + { + "start": 10061.72, + "end": 10063.82, + "probability": 0.9167 + }, + { + "start": 10063.88, + "end": 10067.5, + "probability": 0.9948 + }, + { + "start": 10069.2, + "end": 10070.88, + "probability": 0.9985 + }, + { + "start": 10070.94, + "end": 10074.88, + "probability": 0.998 + }, + { + "start": 10075.65, + "end": 10079.08, + "probability": 0.9973 + }, + { + "start": 10079.32, + "end": 10080.82, + "probability": 0.8655 + }, + { + "start": 10080.82, + "end": 10084.82, + "probability": 0.998 + }, + { + "start": 10084.94, + "end": 10085.2, + "probability": 0.4974 + }, + { + "start": 10085.26, + "end": 10086.22, + "probability": 0.9971 + }, + { + "start": 10086.82, + "end": 10087.9, + "probability": 0.947 + }, + { + "start": 10088.28, + "end": 10091.3, + "probability": 0.9887 + }, + { + "start": 10092.04, + "end": 10095.26, + "probability": 0.8505 + }, + { + "start": 10096.28, + "end": 10098.48, + "probability": 0.8484 + }, + { + "start": 10099.98, + "end": 10102.7, + "probability": 0.9867 + }, + { + "start": 10102.78, + "end": 10106.94, + "probability": 0.9955 + }, + { + "start": 10107.9, + "end": 10108.42, + "probability": 0.6745 + }, + { + "start": 10108.88, + "end": 10110.5, + "probability": 0.9797 + }, + { + "start": 10110.6, + "end": 10111.34, + "probability": 0.949 + }, + { + "start": 10111.68, + "end": 10114.13, + "probability": 0.9883 + }, + { + "start": 10114.86, + "end": 10115.84, + "probability": 0.8728 + }, + { + "start": 10116.18, + "end": 10119.68, + "probability": 0.9203 + }, + { + "start": 10120.3, + "end": 10122.44, + "probability": 0.9912 + }, + { + "start": 10122.48, + "end": 10124.0, + "probability": 0.9691 + }, + { + "start": 10124.48, + "end": 10125.98, + "probability": 0.9123 + }, + { + "start": 10126.0, + "end": 10126.56, + "probability": 0.8064 + }, + { + "start": 10127.12, + "end": 10128.32, + "probability": 0.9399 + }, + { + "start": 10129.4, + "end": 10130.04, + "probability": 0.5729 + }, + { + "start": 10130.7, + "end": 10132.18, + "probability": 0.9813 + }, + { + "start": 10135.78, + "end": 10136.42, + "probability": 0.9766 + }, + { + "start": 10137.24, + "end": 10138.06, + "probability": 0.546 + }, + { + "start": 10138.36, + "end": 10140.0, + "probability": 0.8707 + }, + { + "start": 10140.06, + "end": 10142.04, + "probability": 0.7876 + }, + { + "start": 10142.08, + "end": 10143.14, + "probability": 0.8293 + }, + { + "start": 10143.24, + "end": 10148.34, + "probability": 0.9721 + }, + { + "start": 10148.6, + "end": 10149.46, + "probability": 0.8814 + }, + { + "start": 10149.88, + "end": 10151.04, + "probability": 0.716 + }, + { + "start": 10152.18, + "end": 10154.54, + "probability": 0.7965 + }, + { + "start": 10155.0, + "end": 10161.32, + "probability": 0.9768 + }, + { + "start": 10161.98, + "end": 10163.72, + "probability": 0.9564 + }, + { + "start": 10163.94, + "end": 10165.6, + "probability": 0.9834 + }, + { + "start": 10165.74, + "end": 10168.64, + "probability": 0.9912 + }, + { + "start": 10169.26, + "end": 10169.86, + "probability": 0.8416 + }, + { + "start": 10170.18, + "end": 10172.66, + "probability": 0.8469 + }, + { + "start": 10172.8, + "end": 10173.55, + "probability": 0.8882 + }, + { + "start": 10174.14, + "end": 10178.58, + "probability": 0.969 + }, + { + "start": 10179.0, + "end": 10179.3, + "probability": 0.9041 + }, + { + "start": 10179.32, + "end": 10186.4, + "probability": 0.9706 + }, + { + "start": 10187.5, + "end": 10195.37, + "probability": 0.9064 + }, + { + "start": 10195.54, + "end": 10201.6, + "probability": 0.9946 + }, + { + "start": 10203.38, + "end": 10206.46, + "probability": 0.6616 + }, + { + "start": 10206.82, + "end": 10207.66, + "probability": 0.802 + }, + { + "start": 10207.88, + "end": 10213.54, + "probability": 0.9637 + }, + { + "start": 10214.16, + "end": 10219.9, + "probability": 0.9945 + }, + { + "start": 10220.3, + "end": 10225.42, + "probability": 0.999 + }, + { + "start": 10225.42, + "end": 10235.98, + "probability": 0.9987 + }, + { + "start": 10237.34, + "end": 10241.34, + "probability": 0.9988 + }, + { + "start": 10241.42, + "end": 10245.52, + "probability": 0.8755 + }, + { + "start": 10246.42, + "end": 10251.18, + "probability": 0.996 + }, + { + "start": 10251.72, + "end": 10254.66, + "probability": 0.75 + }, + { + "start": 10254.98, + "end": 10255.1, + "probability": 0.3918 + }, + { + "start": 10255.2, + "end": 10255.84, + "probability": 0.9057 + }, + { + "start": 10255.92, + "end": 10259.5, + "probability": 0.976 + }, + { + "start": 10259.54, + "end": 10259.96, + "probability": 0.9143 + }, + { + "start": 10260.9, + "end": 10266.86, + "probability": 0.9694 + }, + { + "start": 10267.78, + "end": 10269.66, + "probability": 0.7742 + }, + { + "start": 10269.76, + "end": 10271.32, + "probability": 0.8194 + }, + { + "start": 10271.7, + "end": 10275.74, + "probability": 0.7807 + }, + { + "start": 10276.96, + "end": 10278.18, + "probability": 0.8311 + }, + { + "start": 10278.56, + "end": 10282.24, + "probability": 0.9237 + }, + { + "start": 10282.38, + "end": 10282.89, + "probability": 0.4869 + }, + { + "start": 10283.52, + "end": 10284.56, + "probability": 0.9396 + }, + { + "start": 10284.78, + "end": 10285.84, + "probability": 0.7923 + }, + { + "start": 10286.48, + "end": 10288.9, + "probability": 0.4982 + }, + { + "start": 10289.94, + "end": 10294.26, + "probability": 0.9926 + }, + { + "start": 10294.96, + "end": 10297.74, + "probability": 0.9989 + }, + { + "start": 10298.3, + "end": 10299.96, + "probability": 0.9541 + }, + { + "start": 10300.54, + "end": 10300.98, + "probability": 0.9885 + }, + { + "start": 10301.14, + "end": 10301.96, + "probability": 0.8958 + }, + { + "start": 10302.32, + "end": 10303.14, + "probability": 0.8066 + }, + { + "start": 10303.56, + "end": 10305.76, + "probability": 0.9681 + }, + { + "start": 10306.12, + "end": 10306.32, + "probability": 0.6795 + }, + { + "start": 10306.4, + "end": 10307.3, + "probability": 0.7948 + }, + { + "start": 10307.84, + "end": 10308.64, + "probability": 0.8969 + }, + { + "start": 10308.7, + "end": 10309.33, + "probability": 0.665 + }, + { + "start": 10309.86, + "end": 10310.44, + "probability": 0.165 + }, + { + "start": 10310.52, + "end": 10311.46, + "probability": 0.8955 + }, + { + "start": 10312.06, + "end": 10315.36, + "probability": 0.8018 + }, + { + "start": 10315.86, + "end": 10317.5, + "probability": 0.7487 + }, + { + "start": 10317.88, + "end": 10320.47, + "probability": 0.7489 + }, + { + "start": 10320.92, + "end": 10323.95, + "probability": 0.9982 + }, + { + "start": 10324.42, + "end": 10328.02, + "probability": 0.9923 + }, + { + "start": 10328.44, + "end": 10330.52, + "probability": 0.9516 + }, + { + "start": 10331.74, + "end": 10335.78, + "probability": 0.5982 + }, + { + "start": 10336.94, + "end": 10338.84, + "probability": 0.9663 + }, + { + "start": 10339.02, + "end": 10342.9, + "probability": 0.8194 + }, + { + "start": 10343.5, + "end": 10344.54, + "probability": 0.2479 + }, + { + "start": 10344.74, + "end": 10345.14, + "probability": 0.3717 + }, + { + "start": 10345.28, + "end": 10349.7, + "probability": 0.8653 + }, + { + "start": 10349.84, + "end": 10351.02, + "probability": 0.9155 + }, + { + "start": 10351.38, + "end": 10353.14, + "probability": 0.9434 + }, + { + "start": 10353.36, + "end": 10353.62, + "probability": 0.7243 + }, + { + "start": 10353.64, + "end": 10355.92, + "probability": 0.9953 + }, + { + "start": 10356.64, + "end": 10359.52, + "probability": 0.9033 + }, + { + "start": 10359.7, + "end": 10360.74, + "probability": 0.7777 + }, + { + "start": 10360.86, + "end": 10361.58, + "probability": 0.6726 + }, + { + "start": 10362.2, + "end": 10364.52, + "probability": 0.9893 + }, + { + "start": 10364.98, + "end": 10367.2, + "probability": 0.551 + }, + { + "start": 10367.48, + "end": 10367.72, + "probability": 0.6441 + }, + { + "start": 10367.8, + "end": 10368.98, + "probability": 0.5212 + }, + { + "start": 10389.92, + "end": 10390.6, + "probability": 0.3988 + }, + { + "start": 10392.1, + "end": 10395.04, + "probability": 0.7977 + }, + { + "start": 10397.08, + "end": 10401.08, + "probability": 0.9305 + }, + { + "start": 10404.22, + "end": 10410.78, + "probability": 0.9922 + }, + { + "start": 10413.04, + "end": 10414.5, + "probability": 0.5988 + }, + { + "start": 10416.48, + "end": 10416.92, + "probability": 0.9387 + }, + { + "start": 10418.7, + "end": 10419.99, + "probability": 0.7971 + }, + { + "start": 10422.08, + "end": 10423.72, + "probability": 0.747 + }, + { + "start": 10424.48, + "end": 10424.98, + "probability": 0.6629 + }, + { + "start": 10425.58, + "end": 10427.98, + "probability": 0.7983 + }, + { + "start": 10428.86, + "end": 10429.52, + "probability": 0.6854 + }, + { + "start": 10430.14, + "end": 10432.78, + "probability": 0.9778 + }, + { + "start": 10434.38, + "end": 10437.16, + "probability": 0.9648 + }, + { + "start": 10438.56, + "end": 10442.12, + "probability": 0.9894 + }, + { + "start": 10446.02, + "end": 10449.0, + "probability": 0.9883 + }, + { + "start": 10450.46, + "end": 10453.74, + "probability": 0.9997 + }, + { + "start": 10454.52, + "end": 10456.1, + "probability": 0.9983 + }, + { + "start": 10458.08, + "end": 10459.74, + "probability": 0.8667 + }, + { + "start": 10459.82, + "end": 10466.58, + "probability": 0.9684 + }, + { + "start": 10467.62, + "end": 10472.56, + "probability": 0.9772 + }, + { + "start": 10473.28, + "end": 10475.86, + "probability": 0.96 + }, + { + "start": 10477.66, + "end": 10480.34, + "probability": 0.9915 + }, + { + "start": 10480.98, + "end": 10482.28, + "probability": 0.8834 + }, + { + "start": 10483.9, + "end": 10484.06, + "probability": 0.1614 + }, + { + "start": 10484.68, + "end": 10490.86, + "probability": 0.9964 + }, + { + "start": 10491.7, + "end": 10493.56, + "probability": 0.9602 + }, + { + "start": 10494.76, + "end": 10495.44, + "probability": 0.7421 + }, + { + "start": 10496.6, + "end": 10500.14, + "probability": 0.9883 + }, + { + "start": 10501.16, + "end": 10502.86, + "probability": 0.9233 + }, + { + "start": 10504.32, + "end": 10509.02, + "probability": 0.8501 + }, + { + "start": 10509.68, + "end": 10511.9, + "probability": 0.9893 + }, + { + "start": 10513.18, + "end": 10514.82, + "probability": 0.736 + }, + { + "start": 10514.94, + "end": 10515.5, + "probability": 0.8757 + }, + { + "start": 10515.98, + "end": 10516.58, + "probability": 0.488 + }, + { + "start": 10517.28, + "end": 10519.66, + "probability": 0.5371 + }, + { + "start": 10519.8, + "end": 10520.9, + "probability": 0.8182 + }, + { + "start": 10535.68, + "end": 10536.64, + "probability": 0.5164 + }, + { + "start": 10537.88, + "end": 10546.8, + "probability": 0.989 + }, + { + "start": 10549.32, + "end": 10550.38, + "probability": 0.4514 + }, + { + "start": 10551.08, + "end": 10551.8, + "probability": 0.8821 + }, + { + "start": 10552.48, + "end": 10555.56, + "probability": 0.7171 + }, + { + "start": 10557.04, + "end": 10558.34, + "probability": 0.6676 + }, + { + "start": 10558.4, + "end": 10563.7, + "probability": 0.9414 + }, + { + "start": 10564.94, + "end": 10569.6, + "probability": 0.8872 + }, + { + "start": 10570.44, + "end": 10574.8, + "probability": 0.885 + }, + { + "start": 10576.18, + "end": 10577.26, + "probability": 0.6024 + }, + { + "start": 10577.96, + "end": 10579.02, + "probability": 0.0372 + }, + { + "start": 10579.66, + "end": 10584.12, + "probability": 0.9624 + }, + { + "start": 10585.34, + "end": 10588.26, + "probability": 0.9458 + }, + { + "start": 10588.6, + "end": 10588.96, + "probability": 0.8738 + }, + { + "start": 10589.62, + "end": 10591.46, + "probability": 0.92 + }, + { + "start": 10593.02, + "end": 10594.88, + "probability": 0.998 + }, + { + "start": 10595.52, + "end": 10596.48, + "probability": 0.7259 + }, + { + "start": 10598.5, + "end": 10600.9, + "probability": 0.6941 + }, + { + "start": 10602.02, + "end": 10603.96, + "probability": 0.9543 + }, + { + "start": 10604.86, + "end": 10605.6, + "probability": 0.899 + }, + { + "start": 10606.18, + "end": 10607.16, + "probability": 0.7378 + }, + { + "start": 10608.58, + "end": 10611.08, + "probability": 0.4203 + }, + { + "start": 10612.62, + "end": 10613.78, + "probability": 0.6496 + }, + { + "start": 10614.76, + "end": 10614.76, + "probability": 0.0227 + }, + { + "start": 10614.76, + "end": 10614.76, + "probability": 0.2968 + }, + { + "start": 10614.76, + "end": 10615.24, + "probability": 0.339 + }, + { + "start": 10618.0, + "end": 10618.5, + "probability": 0.5717 + }, + { + "start": 10620.0, + "end": 10622.58, + "probability": 0.973 + }, + { + "start": 10623.08, + "end": 10628.44, + "probability": 0.0779 + }, + { + "start": 10631.5, + "end": 10631.6, + "probability": 0.3105 + }, + { + "start": 10632.94, + "end": 10633.02, + "probability": 0.0183 + }, + { + "start": 10633.02, + "end": 10633.02, + "probability": 0.0325 + }, + { + "start": 10633.02, + "end": 10633.7, + "probability": 0.7281 + }, + { + "start": 10635.08, + "end": 10635.98, + "probability": 0.7527 + }, + { + "start": 10637.36, + "end": 10638.2, + "probability": 0.0519 + }, + { + "start": 10639.1, + "end": 10640.08, + "probability": 0.2146 + }, + { + "start": 10640.52, + "end": 10644.04, + "probability": 0.9727 + }, + { + "start": 10646.76, + "end": 10648.36, + "probability": 0.6728 + }, + { + "start": 10648.38, + "end": 10652.68, + "probability": 0.7522 + }, + { + "start": 10653.34, + "end": 10654.54, + "probability": 0.9507 + }, + { + "start": 10659.08, + "end": 10666.02, + "probability": 0.9009 + }, + { + "start": 10666.22, + "end": 10668.92, + "probability": 0.9175 + }, + { + "start": 10670.62, + "end": 10671.92, + "probability": 0.9574 + }, + { + "start": 10672.32, + "end": 10673.44, + "probability": 0.6212 + }, + { + "start": 10673.66, + "end": 10673.88, + "probability": 0.0248 + }, + { + "start": 10675.08, + "end": 10675.84, + "probability": 0.7187 + }, + { + "start": 10679.56, + "end": 10680.18, + "probability": 0.2824 + }, + { + "start": 10681.42, + "end": 10682.72, + "probability": 0.9894 + }, + { + "start": 10682.96, + "end": 10684.04, + "probability": 0.7247 + }, + { + "start": 10684.28, + "end": 10684.44, + "probability": 0.5457 + }, + { + "start": 10684.54, + "end": 10686.06, + "probability": 0.9917 + }, + { + "start": 10686.1, + "end": 10686.84, + "probability": 0.5435 + }, + { + "start": 10687.76, + "end": 10688.48, + "probability": 0.5816 + }, + { + "start": 10689.32, + "end": 10691.86, + "probability": 0.7605 + }, + { + "start": 10692.26, + "end": 10693.16, + "probability": 0.9424 + }, + { + "start": 10693.22, + "end": 10693.44, + "probability": 0.6102 + }, + { + "start": 10693.82, + "end": 10694.48, + "probability": 0.531 + }, + { + "start": 10694.62, + "end": 10698.28, + "probability": 0.0594 + }, + { + "start": 10698.68, + "end": 10698.76, + "probability": 0.0669 + }, + { + "start": 10698.76, + "end": 10698.76, + "probability": 0.5667 + }, + { + "start": 10698.76, + "end": 10701.52, + "probability": 0.8179 + }, + { + "start": 10702.32, + "end": 10704.14, + "probability": 0.1307 + }, + { + "start": 10704.24, + "end": 10705.22, + "probability": 0.5517 + }, + { + "start": 10705.58, + "end": 10709.82, + "probability": 0.9856 + }, + { + "start": 10710.56, + "end": 10712.42, + "probability": 0.4673 + }, + { + "start": 10712.64, + "end": 10715.06, + "probability": 0.7449 + }, + { + "start": 10715.28, + "end": 10716.24, + "probability": 0.4385 + }, + { + "start": 10716.24, + "end": 10718.84, + "probability": 0.4966 + }, + { + "start": 10719.06, + "end": 10719.55, + "probability": 0.8423 + }, + { + "start": 10719.84, + "end": 10720.76, + "probability": 0.6578 + }, + { + "start": 10720.78, + "end": 10721.88, + "probability": 0.7049 + }, + { + "start": 10722.52, + "end": 10722.7, + "probability": 0.1628 + }, + { + "start": 10722.7, + "end": 10722.7, + "probability": 0.3761 + }, + { + "start": 10722.7, + "end": 10723.68, + "probability": 0.426 + }, + { + "start": 10724.42, + "end": 10725.86, + "probability": 0.7673 + }, + { + "start": 10725.86, + "end": 10726.44, + "probability": 0.3253 + }, + { + "start": 10726.44, + "end": 10727.0, + "probability": 0.6558 + }, + { + "start": 10727.14, + "end": 10728.26, + "probability": 0.9119 + }, + { + "start": 10728.8, + "end": 10729.2, + "probability": 0.1211 + }, + { + "start": 10729.58, + "end": 10730.52, + "probability": 0.4559 + }, + { + "start": 10730.68, + "end": 10730.86, + "probability": 0.6887 + }, + { + "start": 10731.12, + "end": 10731.34, + "probability": 0.0594 + }, + { + "start": 10731.34, + "end": 10732.67, + "probability": 0.4937 + }, + { + "start": 10734.84, + "end": 10735.58, + "probability": 0.8078 + }, + { + "start": 10736.62, + "end": 10737.92, + "probability": 0.5946 + }, + { + "start": 10737.98, + "end": 10741.78, + "probability": 0.9556 + }, + { + "start": 10742.08, + "end": 10742.6, + "probability": 0.8122 + }, + { + "start": 10742.62, + "end": 10742.72, + "probability": 0.2007 + }, + { + "start": 10742.72, + "end": 10742.72, + "probability": 0.4389 + }, + { + "start": 10742.72, + "end": 10746.79, + "probability": 0.8296 + }, + { + "start": 10747.98, + "end": 10749.24, + "probability": 0.7783 + }, + { + "start": 10749.44, + "end": 10750.6, + "probability": 0.0797 + }, + { + "start": 10750.72, + "end": 10751.2, + "probability": 0.3421 + }, + { + "start": 10751.54, + "end": 10752.86, + "probability": 0.3872 + }, + { + "start": 10752.86, + "end": 10753.36, + "probability": 0.0124 + }, + { + "start": 10753.36, + "end": 10755.44, + "probability": 0.4201 + }, + { + "start": 10756.86, + "end": 10756.86, + "probability": 0.0449 + }, + { + "start": 10756.86, + "end": 10758.32, + "probability": 0.1102 + }, + { + "start": 10758.32, + "end": 10758.32, + "probability": 0.2212 + }, + { + "start": 10758.32, + "end": 10758.76, + "probability": 0.6144 + }, + { + "start": 10760.72, + "end": 10762.38, + "probability": 0.6544 + }, + { + "start": 10766.94, + "end": 10769.34, + "probability": 0.5628 + }, + { + "start": 10773.36, + "end": 10773.48, + "probability": 0.4096 + }, + { + "start": 10773.48, + "end": 10773.48, + "probability": 0.0177 + }, + { + "start": 10773.48, + "end": 10773.48, + "probability": 0.2006 + }, + { + "start": 10773.48, + "end": 10773.48, + "probability": 0.0997 + }, + { + "start": 10773.48, + "end": 10773.9, + "probability": 0.2801 + }, + { + "start": 10774.76, + "end": 10777.84, + "probability": 0.8931 + }, + { + "start": 10778.2, + "end": 10778.78, + "probability": 0.7 + }, + { + "start": 10778.92, + "end": 10779.36, + "probability": 0.2776 + }, + { + "start": 10779.72, + "end": 10780.2, + "probability": 0.8295 + }, + { + "start": 10781.6, + "end": 10783.48, + "probability": 0.7663 + }, + { + "start": 10784.53, + "end": 10785.56, + "probability": 0.426 + }, + { + "start": 10785.7, + "end": 10786.92, + "probability": 0.7153 + }, + { + "start": 10787.16, + "end": 10787.7, + "probability": 0.7434 + }, + { + "start": 10788.18, + "end": 10788.54, + "probability": 0.8133 + }, + { + "start": 10788.64, + "end": 10789.32, + "probability": 0.0175 + }, + { + "start": 10789.42, + "end": 10790.18, + "probability": 0.5915 + }, + { + "start": 10793.67, + "end": 10797.45, + "probability": 0.9082 + }, + { + "start": 10799.83, + "end": 10802.02, + "probability": 0.6972 + }, + { + "start": 10803.78, + "end": 10807.26, + "probability": 0.8602 + }, + { + "start": 10807.62, + "end": 10808.96, + "probability": 0.9873 + }, + { + "start": 10811.74, + "end": 10813.76, + "probability": 0.432 + }, + { + "start": 10818.22, + "end": 10818.46, + "probability": 0.2614 + }, + { + "start": 10835.58, + "end": 10838.46, + "probability": 0.6589 + }, + { + "start": 10840.08, + "end": 10841.58, + "probability": 0.882 + }, + { + "start": 10843.08, + "end": 10843.18, + "probability": 0.5489 + }, + { + "start": 10843.7, + "end": 10844.26, + "probability": 0.7846 + }, + { + "start": 10845.04, + "end": 10845.86, + "probability": 0.547 + }, + { + "start": 10847.14, + "end": 10848.64, + "probability": 0.7432 + }, + { + "start": 10849.8, + "end": 10853.68, + "probability": 0.7135 + }, + { + "start": 10854.3, + "end": 10856.36, + "probability": 0.5083 + }, + { + "start": 10857.16, + "end": 10858.18, + "probability": 0.8273 + }, + { + "start": 10858.28, + "end": 10859.42, + "probability": 0.8898 + }, + { + "start": 10859.64, + "end": 10861.48, + "probability": 0.9169 + }, + { + "start": 10861.58, + "end": 10864.32, + "probability": 0.9624 + }, + { + "start": 10865.66, + "end": 10867.34, + "probability": 0.9819 + }, + { + "start": 10867.44, + "end": 10868.61, + "probability": 0.8234 + }, + { + "start": 10868.8, + "end": 10870.36, + "probability": 0.987 + }, + { + "start": 10870.46, + "end": 10872.12, + "probability": 0.8887 + }, + { + "start": 10872.66, + "end": 10873.92, + "probability": 0.9969 + }, + { + "start": 10874.02, + "end": 10875.32, + "probability": 0.5538 + }, + { + "start": 10876.2, + "end": 10878.1, + "probability": 0.6693 + }, + { + "start": 10878.16, + "end": 10878.62, + "probability": 0.6115 + }, + { + "start": 10878.72, + "end": 10879.54, + "probability": 0.7262 + }, + { + "start": 10879.64, + "end": 10883.86, + "probability": 0.7989 + }, + { + "start": 10884.66, + "end": 10887.16, + "probability": 0.9936 + }, + { + "start": 10887.16, + "end": 10890.74, + "probability": 0.998 + }, + { + "start": 10891.02, + "end": 10892.68, + "probability": 0.9878 + }, + { + "start": 10893.7, + "end": 10895.38, + "probability": 0.9113 + }, + { + "start": 10895.84, + "end": 10899.54, + "probability": 0.9909 + }, + { + "start": 10900.18, + "end": 10902.8, + "probability": 0.9468 + }, + { + "start": 10904.12, + "end": 10906.76, + "probability": 0.874 + }, + { + "start": 10909.86, + "end": 10912.04, + "probability": 0.9569 + }, + { + "start": 10912.58, + "end": 10916.3, + "probability": 0.9954 + }, + { + "start": 10917.12, + "end": 10918.94, + "probability": 0.8359 + }, + { + "start": 10919.04, + "end": 10919.46, + "probability": 0.3912 + }, + { + "start": 10919.62, + "end": 10920.16, + "probability": 0.8875 + }, + { + "start": 10920.3, + "end": 10921.6, + "probability": 0.8698 + }, + { + "start": 10921.68, + "end": 10922.52, + "probability": 0.9886 + }, + { + "start": 10922.58, + "end": 10922.88, + "probability": 0.7201 + }, + { + "start": 10922.96, + "end": 10924.52, + "probability": 0.1899 + }, + { + "start": 10924.52, + "end": 10927.92, + "probability": 0.8729 + }, + { + "start": 10928.44, + "end": 10929.06, + "probability": 0.8848 + }, + { + "start": 10930.0, + "end": 10936.64, + "probability": 0.9479 + }, + { + "start": 10938.16, + "end": 10939.82, + "probability": 0.9882 + }, + { + "start": 10939.92, + "end": 10942.06, + "probability": 0.9274 + }, + { + "start": 10942.22, + "end": 10945.46, + "probability": 0.9987 + }, + { + "start": 10945.7, + "end": 10948.17, + "probability": 0.9991 + }, + { + "start": 10948.82, + "end": 10949.48, + "probability": 0.9327 + }, + { + "start": 10949.84, + "end": 10949.84, + "probability": 0.7882 + }, + { + "start": 10949.84, + "end": 10950.56, + "probability": 0.5027 + }, + { + "start": 10950.68, + "end": 10952.72, + "probability": 0.9951 + }, + { + "start": 10953.7, + "end": 10956.84, + "probability": 0.9926 + }, + { + "start": 10956.94, + "end": 10960.12, + "probability": 0.9784 + }, + { + "start": 10960.84, + "end": 10962.72, + "probability": 0.9067 + }, + { + "start": 10964.42, + "end": 10968.98, + "probability": 0.9703 + }, + { + "start": 10969.09, + "end": 10973.78, + "probability": 0.9969 + }, + { + "start": 10975.04, + "end": 10980.68, + "probability": 0.7584 + }, + { + "start": 10980.68, + "end": 10984.86, + "probability": 0.8886 + }, + { + "start": 10985.54, + "end": 10986.48, + "probability": 0.9521 + }, + { + "start": 10988.98, + "end": 10991.26, + "probability": 0.9961 + }, + { + "start": 10993.26, + "end": 10994.1, + "probability": 0.5364 + }, + { + "start": 10994.58, + "end": 10994.95, + "probability": 0.5927 + }, + { + "start": 10995.3, + "end": 10995.82, + "probability": 0.6316 + }, + { + "start": 10995.9, + "end": 10997.8, + "probability": 0.9532 + }, + { + "start": 10998.34, + "end": 10998.62, + "probability": 0.9042 + }, + { + "start": 10999.38, + "end": 11004.12, + "probability": 0.9261 + }, + { + "start": 11004.64, + "end": 11004.78, + "probability": 0.0048 + }, + { + "start": 11005.48, + "end": 11009.0, + "probability": 0.5339 + }, + { + "start": 11010.28, + "end": 11012.16, + "probability": 0.9786 + }, + { + "start": 11012.24, + "end": 11015.44, + "probability": 0.9773 + }, + { + "start": 11016.14, + "end": 11018.26, + "probability": 0.962 + }, + { + "start": 11019.0, + "end": 11019.95, + "probability": 0.9573 + }, + { + "start": 11020.78, + "end": 11022.46, + "probability": 0.8778 + }, + { + "start": 11023.5, + "end": 11026.04, + "probability": 0.9902 + }, + { + "start": 11026.68, + "end": 11028.12, + "probability": 0.8685 + }, + { + "start": 11028.32, + "end": 11028.34, + "probability": 0.5615 + }, + { + "start": 11028.34, + "end": 11031.84, + "probability": 0.6266 + }, + { + "start": 11032.38, + "end": 11033.92, + "probability": 0.904 + }, + { + "start": 11034.62, + "end": 11036.7, + "probability": 0.9214 + }, + { + "start": 11037.08, + "end": 11038.52, + "probability": 0.9435 + }, + { + "start": 11038.8, + "end": 11041.46, + "probability": 0.9579 + }, + { + "start": 11042.0, + "end": 11044.02, + "probability": 0.9814 + }, + { + "start": 11044.4, + "end": 11047.46, + "probability": 0.983 + }, + { + "start": 11047.98, + "end": 11051.34, + "probability": 0.7878 + }, + { + "start": 11052.32, + "end": 11053.82, + "probability": 0.7351 + }, + { + "start": 11053.86, + "end": 11056.9, + "probability": 0.8255 + }, + { + "start": 11057.7, + "end": 11058.46, + "probability": 0.6161 + }, + { + "start": 11059.52, + "end": 11061.64, + "probability": 0.9345 + }, + { + "start": 11066.54, + "end": 11067.6, + "probability": 0.083 + }, + { + "start": 11067.6, + "end": 11067.82, + "probability": 0.667 + }, + { + "start": 11068.5, + "end": 11069.0, + "probability": 0.8431 + }, + { + "start": 11079.72, + "end": 11080.04, + "probability": 0.1349 + }, + { + "start": 11080.04, + "end": 11080.04, + "probability": 0.0146 + }, + { + "start": 11080.04, + "end": 11080.6, + "probability": 0.0452 + }, + { + "start": 11081.3, + "end": 11081.94, + "probability": 0.1794 + }, + { + "start": 11100.2, + "end": 11105.2, + "probability": 0.4741 + }, + { + "start": 11105.5, + "end": 11107.12, + "probability": 0.6186 + }, + { + "start": 11107.74, + "end": 11108.42, + "probability": 0.4134 + }, + { + "start": 11109.18, + "end": 11110.14, + "probability": 0.9019 + }, + { + "start": 11111.42, + "end": 11112.08, + "probability": 0.4811 + }, + { + "start": 11112.82, + "end": 11113.84, + "probability": 0.8835 + }, + { + "start": 11115.64, + "end": 11117.3, + "probability": 0.9787 + }, + { + "start": 11118.76, + "end": 11120.66, + "probability": 0.8707 + }, + { + "start": 11122.08, + "end": 11122.88, + "probability": 0.5651 + }, + { + "start": 11123.5, + "end": 11124.88, + "probability": 0.9922 + }, + { + "start": 11125.74, + "end": 11126.46, + "probability": 0.9536 + }, + { + "start": 11127.36, + "end": 11128.72, + "probability": 0.9527 + }, + { + "start": 11130.34, + "end": 11131.0, + "probability": 0.911 + }, + { + "start": 11131.74, + "end": 11133.16, + "probability": 0.9927 + }, + { + "start": 11134.02, + "end": 11134.84, + "probability": 0.9849 + }, + { + "start": 11135.7, + "end": 11137.06, + "probability": 0.8584 + }, + { + "start": 11138.08, + "end": 11138.84, + "probability": 0.4251 + }, + { + "start": 11139.72, + "end": 11140.88, + "probability": 0.7138 + }, + { + "start": 11142.06, + "end": 11142.68, + "probability": 0.6729 + }, + { + "start": 11143.4, + "end": 11144.06, + "probability": 0.2551 + }, + { + "start": 11145.02, + "end": 11146.06, + "probability": 0.8784 + }, + { + "start": 11146.8, + "end": 11147.56, + "probability": 0.6656 + }, + { + "start": 11148.0, + "end": 11148.84, + "probability": 0.9856 + }, + { + "start": 11149.22, + "end": 11150.0, + "probability": 0.8014 + }, + { + "start": 11163.72, + "end": 11163.96, + "probability": 0.9891 + }, + { + "start": 11167.72, + "end": 11168.4, + "probability": 0.1974 + }, + { + "start": 11169.36, + "end": 11169.36, + "probability": 0.2541 + }, + { + "start": 11169.36, + "end": 11169.36, + "probability": 0.1459 + }, + { + "start": 11169.36, + "end": 11170.74, + "probability": 0.2972 + }, + { + "start": 11172.92, + "end": 11173.02, + "probability": 0.1325 + }, + { + "start": 11173.02, + "end": 11173.8, + "probability": 0.0961 + }, + { + "start": 11175.1, + "end": 11176.79, + "probability": 0.262 + }, + { + "start": 11179.54, + "end": 11182.56, + "probability": 0.1923 + }, + { + "start": 11182.56, + "end": 11182.8, + "probability": 0.0219 + }, + { + "start": 11191.28, + "end": 11192.0, + "probability": 0.1249 + }, + { + "start": 11193.76, + "end": 11195.9, + "probability": 0.1514 + }, + { + "start": 11197.96, + "end": 11198.7, + "probability": 0.0294 + }, + { + "start": 11199.82, + "end": 11200.98, + "probability": 0.1052 + }, + { + "start": 11202.71, + "end": 11203.2, + "probability": 0.0382 + }, + { + "start": 11203.32, + "end": 11203.42, + "probability": 0.0656 + }, + { + "start": 11204.04, + "end": 11204.9, + "probability": 0.0398 + }, + { + "start": 11205.66, + "end": 11206.04, + "probability": 0.1733 + }, + { + "start": 11206.04, + "end": 11206.64, + "probability": 0.3313 + }, + { + "start": 11207.4, + "end": 11207.4, + "probability": 0.311 + }, + { + "start": 11207.4, + "end": 11207.82, + "probability": 0.4244 + }, + { + "start": 11207.82, + "end": 11207.82, + "probability": 0.1794 + }, + { + "start": 11207.82, + "end": 11207.82, + "probability": 0.2128 + }, + { + "start": 11207.82, + "end": 11207.82, + "probability": 0.18 + }, + { + "start": 11207.82, + "end": 11208.45, + "probability": 0.3125 + }, + { + "start": 11210.32, + "end": 11216.32, + "probability": 0.9313 + }, + { + "start": 11218.02, + "end": 11223.1, + "probability": 0.9945 + }, + { + "start": 11224.1, + "end": 11226.86, + "probability": 0.8105 + }, + { + "start": 11227.62, + "end": 11230.8, + "probability": 0.8281 + }, + { + "start": 11233.06, + "end": 11235.62, + "probability": 0.9844 + }, + { + "start": 11237.16, + "end": 11238.26, + "probability": 0.6101 + }, + { + "start": 11239.8, + "end": 11242.68, + "probability": 0.9979 + }, + { + "start": 11243.24, + "end": 11247.56, + "probability": 0.9987 + }, + { + "start": 11248.44, + "end": 11251.32, + "probability": 0.9905 + }, + { + "start": 11252.06, + "end": 11253.74, + "probability": 0.9604 + }, + { + "start": 11254.22, + "end": 11255.22, + "probability": 0.9794 + }, + { + "start": 11255.66, + "end": 11256.88, + "probability": 0.9905 + }, + { + "start": 11257.36, + "end": 11258.6, + "probability": 0.8156 + }, + { + "start": 11259.12, + "end": 11262.92, + "probability": 0.8068 + }, + { + "start": 11263.64, + "end": 11265.26, + "probability": 0.8882 + }, + { + "start": 11266.46, + "end": 11268.5, + "probability": 0.8284 + }, + { + "start": 11268.82, + "end": 11269.4, + "probability": 0.7446 + }, + { + "start": 11270.56, + "end": 11273.78, + "probability": 0.8454 + }, + { + "start": 11274.4, + "end": 11277.42, + "probability": 0.9545 + }, + { + "start": 11277.94, + "end": 11280.36, + "probability": 0.9701 + }, + { + "start": 11281.08, + "end": 11284.7, + "probability": 0.9915 + }, + { + "start": 11285.68, + "end": 11286.56, + "probability": 0.7166 + }, + { + "start": 11286.8, + "end": 11287.86, + "probability": 0.9503 + }, + { + "start": 11288.32, + "end": 11290.48, + "probability": 0.9711 + }, + { + "start": 11291.04, + "end": 11292.22, + "probability": 0.9115 + }, + { + "start": 11292.88, + "end": 11293.96, + "probability": 0.8296 + }, + { + "start": 11294.6, + "end": 11296.32, + "probability": 0.9822 + }, + { + "start": 11297.66, + "end": 11302.56, + "probability": 0.9829 + }, + { + "start": 11303.08, + "end": 11304.1, + "probability": 0.8049 + }, + { + "start": 11304.76, + "end": 11309.14, + "probability": 0.8629 + }, + { + "start": 11309.84, + "end": 11311.54, + "probability": 0.9672 + }, + { + "start": 11311.96, + "end": 11317.84, + "probability": 0.7832 + }, + { + "start": 11318.38, + "end": 11321.02, + "probability": 0.9728 + }, + { + "start": 11324.38, + "end": 11326.68, + "probability": 0.8455 + }, + { + "start": 11328.04, + "end": 11331.02, + "probability": 0.9857 + }, + { + "start": 11332.38, + "end": 11336.86, + "probability": 0.9895 + }, + { + "start": 11337.72, + "end": 11339.02, + "probability": 0.9487 + }, + { + "start": 11339.48, + "end": 11344.14, + "probability": 0.9863 + }, + { + "start": 11345.04, + "end": 11348.98, + "probability": 0.8979 + }, + { + "start": 11349.66, + "end": 11352.48, + "probability": 0.8316 + }, + { + "start": 11353.22, + "end": 11354.18, + "probability": 0.9464 + }, + { + "start": 11354.62, + "end": 11357.62, + "probability": 0.9922 + }, + { + "start": 11358.54, + "end": 11359.26, + "probability": 0.9118 + }, + { + "start": 11359.84, + "end": 11362.0, + "probability": 0.8786 + }, + { + "start": 11362.78, + "end": 11364.16, + "probability": 0.8087 + }, + { + "start": 11364.88, + "end": 11367.04, + "probability": 0.8643 + }, + { + "start": 11367.76, + "end": 11371.6, + "probability": 0.9896 + }, + { + "start": 11372.2, + "end": 11372.8, + "probability": 0.6671 + }, + { + "start": 11373.4, + "end": 11377.18, + "probability": 0.9963 + }, + { + "start": 11377.58, + "end": 11382.22, + "probability": 0.9737 + }, + { + "start": 11382.94, + "end": 11387.54, + "probability": 0.8471 + }, + { + "start": 11388.08, + "end": 11390.06, + "probability": 0.9757 + }, + { + "start": 11390.6, + "end": 11392.66, + "probability": 0.9285 + }, + { + "start": 11392.88, + "end": 11393.34, + "probability": 0.7306 + }, + { + "start": 11394.48, + "end": 11395.82, + "probability": 0.6946 + }, + { + "start": 11395.9, + "end": 11400.72, + "probability": 0.8889 + }, + { + "start": 11402.42, + "end": 11402.58, + "probability": 0.473 + }, + { + "start": 11402.58, + "end": 11404.18, + "probability": 0.8665 + }, + { + "start": 11409.1, + "end": 11411.16, + "probability": 0.8844 + }, + { + "start": 11413.44, + "end": 11415.1, + "probability": 0.7191 + }, + { + "start": 11415.2, + "end": 11416.06, + "probability": 0.7387 + }, + { + "start": 11417.88, + "end": 11423.72, + "probability": 0.999 + }, + { + "start": 11425.0, + "end": 11429.84, + "probability": 0.9536 + }, + { + "start": 11430.22, + "end": 11435.0, + "probability": 0.9985 + }, + { + "start": 11435.0, + "end": 11438.26, + "probability": 0.9978 + }, + { + "start": 11439.28, + "end": 11441.68, + "probability": 0.979 + }, + { + "start": 11441.9, + "end": 11444.02, + "probability": 0.9561 + }, + { + "start": 11445.08, + "end": 11447.82, + "probability": 0.8437 + }, + { + "start": 11447.88, + "end": 11448.18, + "probability": 0.8157 + }, + { + "start": 11449.78, + "end": 11455.22, + "probability": 0.9978 + }, + { + "start": 11455.72, + "end": 11458.18, + "probability": 0.8773 + }, + { + "start": 11458.46, + "end": 11462.0, + "probability": 0.9859 + }, + { + "start": 11462.78, + "end": 11464.44, + "probability": 0.9878 + }, + { + "start": 11465.2, + "end": 11466.48, + "probability": 0.999 + }, + { + "start": 11466.96, + "end": 11468.38, + "probability": 0.9988 + }, + { + "start": 11469.32, + "end": 11472.78, + "probability": 0.9841 + }, + { + "start": 11473.97, + "end": 11477.08, + "probability": 0.8227 + }, + { + "start": 11478.06, + "end": 11478.44, + "probability": 0.1526 + }, + { + "start": 11478.44, + "end": 11480.24, + "probability": 0.7055 + }, + { + "start": 11480.48, + "end": 11482.65, + "probability": 0.9756 + }, + { + "start": 11483.84, + "end": 11486.62, + "probability": 0.8951 + }, + { + "start": 11488.12, + "end": 11491.64, + "probability": 0.7729 + }, + { + "start": 11492.36, + "end": 11497.48, + "probability": 0.9514 + }, + { + "start": 11497.66, + "end": 11497.96, + "probability": 0.3159 + }, + { + "start": 11498.22, + "end": 11500.96, + "probability": 0.9922 + }, + { + "start": 11502.62, + "end": 11502.94, + "probability": 0.797 + }, + { + "start": 11503.46, + "end": 11506.4, + "probability": 0.9976 + }, + { + "start": 11507.44, + "end": 11508.3, + "probability": 0.9519 + }, + { + "start": 11509.96, + "end": 11510.76, + "probability": 0.949 + }, + { + "start": 11511.46, + "end": 11515.54, + "probability": 0.9823 + }, + { + "start": 11515.92, + "end": 11520.2, + "probability": 0.9914 + }, + { + "start": 11521.0, + "end": 11524.06, + "probability": 0.925 + }, + { + "start": 11524.22, + "end": 11527.34, + "probability": 0.9992 + }, + { + "start": 11528.42, + "end": 11534.2, + "probability": 0.9896 + }, + { + "start": 11534.74, + "end": 11536.4, + "probability": 0.9682 + }, + { + "start": 11536.88, + "end": 11539.74, + "probability": 0.8728 + }, + { + "start": 11540.04, + "end": 11542.54, + "probability": 0.9861 + }, + { + "start": 11544.44, + "end": 11550.28, + "probability": 0.9982 + }, + { + "start": 11551.88, + "end": 11555.58, + "probability": 0.9933 + }, + { + "start": 11556.2, + "end": 11560.56, + "probability": 0.9906 + }, + { + "start": 11560.94, + "end": 11564.0, + "probability": 0.8879 + }, + { + "start": 11564.0, + "end": 11567.86, + "probability": 0.9971 + }, + { + "start": 11568.58, + "end": 11569.0, + "probability": 0.8727 + }, + { + "start": 11570.0, + "end": 11571.06, + "probability": 0.9774 + }, + { + "start": 11571.14, + "end": 11572.9, + "probability": 0.9947 + }, + { + "start": 11573.36, + "end": 11576.6, + "probability": 0.999 + }, + { + "start": 11577.36, + "end": 11581.94, + "probability": 0.9952 + }, + { + "start": 11583.22, + "end": 11585.26, + "probability": 0.9388 + }, + { + "start": 11585.92, + "end": 11588.78, + "probability": 0.998 + }, + { + "start": 11589.22, + "end": 11593.46, + "probability": 0.9951 + }, + { + "start": 11593.68, + "end": 11594.08, + "probability": 0.6889 + }, + { + "start": 11594.66, + "end": 11595.94, + "probability": 0.9241 + }, + { + "start": 11596.02, + "end": 11597.56, + "probability": 0.7121 + }, + { + "start": 11597.62, + "end": 11597.88, + "probability": 0.3751 + }, + { + "start": 11598.92, + "end": 11599.42, + "probability": 0.8774 + }, + { + "start": 11599.64, + "end": 11600.12, + "probability": 0.872 + }, + { + "start": 11600.74, + "end": 11601.12, + "probability": 0.6067 + }, + { + "start": 11601.24, + "end": 11608.16, + "probability": 0.847 + }, + { + "start": 11609.26, + "end": 11610.18, + "probability": 0.5289 + }, + { + "start": 11611.49, + "end": 11612.07, + "probability": 0.6688 + }, + { + "start": 11613.12, + "end": 11614.8, + "probability": 0.6042 + }, + { + "start": 11615.78, + "end": 11618.36, + "probability": 0.8387 + }, + { + "start": 11618.4, + "end": 11619.96, + "probability": 0.9785 + }, + { + "start": 11620.6, + "end": 11626.14, + "probability": 0.9814 + }, + { + "start": 11626.14, + "end": 11630.44, + "probability": 0.809 + }, + { + "start": 11630.68, + "end": 11637.62, + "probability": 0.7737 + }, + { + "start": 11638.68, + "end": 11639.46, + "probability": 0.6487 + }, + { + "start": 11639.64, + "end": 11640.1, + "probability": 0.7465 + }, + { + "start": 11642.22, + "end": 11642.72, + "probability": 0.3757 + }, + { + "start": 11643.6, + "end": 11643.88, + "probability": 0.2662 + }, + { + "start": 11645.34, + "end": 11650.6, + "probability": 0.0415 + }, + { + "start": 11651.56, + "end": 11653.8, + "probability": 0.0321 + }, + { + "start": 11654.5, + "end": 11656.51, + "probability": 0.0349 + }, + { + "start": 11656.66, + "end": 11656.66, + "probability": 0.0299 + }, + { + "start": 11656.66, + "end": 11656.66, + "probability": 0.0789 + }, + { + "start": 11656.66, + "end": 11656.66, + "probability": 0.0843 + }, + { + "start": 11656.66, + "end": 11658.02, + "probability": 0.6272 + }, + { + "start": 11658.98, + "end": 11665.48, + "probability": 0.672 + }, + { + "start": 11666.69, + "end": 11667.08, + "probability": 0.3953 + }, + { + "start": 11668.42, + "end": 11671.82, + "probability": 0.9199 + }, + { + "start": 11671.86, + "end": 11674.24, + "probability": 0.8324 + }, + { + "start": 11674.76, + "end": 11677.74, + "probability": 0.8176 + }, + { + "start": 11677.74, + "end": 11680.6, + "probability": 0.9913 + }, + { + "start": 11680.62, + "end": 11684.38, + "probability": 0.9712 + }, + { + "start": 11685.58, + "end": 11689.38, + "probability": 0.9077 + }, + { + "start": 11694.98, + "end": 11696.1, + "probability": 0.835 + }, + { + "start": 11700.7, + "end": 11702.9, + "probability": 0.5039 + }, + { + "start": 11703.02, + "end": 11703.74, + "probability": 0.7065 + }, + { + "start": 11704.48, + "end": 11708.58, + "probability": 0.9587 + }, + { + "start": 11708.64, + "end": 11711.2, + "probability": 0.7996 + }, + { + "start": 11711.28, + "end": 11711.76, + "probability": 0.8921 + }, + { + "start": 11725.08, + "end": 11726.32, + "probability": 0.5253 + }, + { + "start": 11726.36, + "end": 11728.42, + "probability": 0.6357 + }, + { + "start": 11729.06, + "end": 11731.86, + "probability": 0.8211 + }, + { + "start": 11731.96, + "end": 11732.84, + "probability": 0.7242 + }, + { + "start": 11733.06, + "end": 11739.52, + "probability": 0.9607 + }, + { + "start": 11739.82, + "end": 11744.78, + "probability": 0.9908 + }, + { + "start": 11744.78, + "end": 11749.5, + "probability": 0.9751 + }, + { + "start": 11749.94, + "end": 11752.78, + "probability": 0.9944 + }, + { + "start": 11752.78, + "end": 11757.64, + "probability": 0.9021 + }, + { + "start": 11757.72, + "end": 11759.55, + "probability": 0.8033 + }, + { + "start": 11760.78, + "end": 11764.04, + "probability": 0.9652 + }, + { + "start": 11764.04, + "end": 11768.32, + "probability": 0.9812 + }, + { + "start": 11768.32, + "end": 11772.94, + "probability": 0.9982 + }, + { + "start": 11773.58, + "end": 11775.6, + "probability": 0.5364 + }, + { + "start": 11776.04, + "end": 11776.56, + "probability": 0.8389 + }, + { + "start": 11776.88, + "end": 11781.8, + "probability": 0.7823 + }, + { + "start": 11782.3, + "end": 11783.08, + "probability": 0.4215 + }, + { + "start": 11783.64, + "end": 11784.12, + "probability": 0.5669 + }, + { + "start": 11784.2, + "end": 11786.08, + "probability": 0.634 + }, + { + "start": 11786.95, + "end": 11788.82, + "probability": 0.9678 + }, + { + "start": 11789.46, + "end": 11793.42, + "probability": 0.8824 + }, + { + "start": 11793.42, + "end": 11799.18, + "probability": 0.9779 + }, + { + "start": 11800.12, + "end": 11801.02, + "probability": 0.7 + }, + { + "start": 11802.1, + "end": 11802.7, + "probability": 0.7381 + }, + { + "start": 11803.52, + "end": 11808.1, + "probability": 0.64 + }, + { + "start": 11808.1, + "end": 11812.18, + "probability": 0.9608 + }, + { + "start": 11812.38, + "end": 11814.78, + "probability": 0.7957 + }, + { + "start": 11814.82, + "end": 11816.2, + "probability": 0.8438 + }, + { + "start": 11816.58, + "end": 11817.08, + "probability": 0.4077 + }, + { + "start": 11817.2, + "end": 11818.28, + "probability": 0.5029 + }, + { + "start": 11819.38, + "end": 11821.54, + "probability": 0.8232 + }, + { + "start": 11821.78, + "end": 11825.4, + "probability": 0.8839 + }, + { + "start": 11825.4, + "end": 11828.56, + "probability": 0.9813 + }, + { + "start": 11828.62, + "end": 11831.18, + "probability": 0.9841 + }, + { + "start": 11831.28, + "end": 11832.64, + "probability": 0.7597 + }, + { + "start": 11832.74, + "end": 11833.18, + "probability": 0.8604 + }, + { + "start": 11833.8, + "end": 11836.92, + "probability": 0.9868 + }, + { + "start": 11836.92, + "end": 11842.54, + "probability": 0.9814 + }, + { + "start": 11843.72, + "end": 11847.04, + "probability": 0.7447 + }, + { + "start": 11847.04, + "end": 11849.86, + "probability": 0.8401 + }, + { + "start": 11850.1, + "end": 11851.82, + "probability": 0.9685 + }, + { + "start": 11852.22, + "end": 11852.72, + "probability": 0.7866 + }, + { + "start": 11853.44, + "end": 11857.0, + "probability": 0.9372 + }, + { + "start": 11857.3, + "end": 11861.26, + "probability": 0.9176 + }, + { + "start": 11861.98, + "end": 11866.84, + "probability": 0.9724 + }, + { + "start": 11867.75, + "end": 11871.32, + "probability": 0.9078 + }, + { + "start": 11871.42, + "end": 11874.27, + "probability": 0.6693 + }, + { + "start": 11875.34, + "end": 11880.86, + "probability": 0.845 + }, + { + "start": 11881.86, + "end": 11884.48, + "probability": 0.7547 + }, + { + "start": 11885.44, + "end": 11886.36, + "probability": 0.8656 + }, + { + "start": 11886.92, + "end": 11890.14, + "probability": 0.9912 + }, + { + "start": 11890.14, + "end": 11893.28, + "probability": 0.7732 + }, + { + "start": 11893.36, + "end": 11894.04, + "probability": 0.6743 + }, + { + "start": 11894.48, + "end": 11897.12, + "probability": 0.9562 + }, + { + "start": 11897.12, + "end": 11899.38, + "probability": 0.9495 + }, + { + "start": 11899.48, + "end": 11899.58, + "probability": 0.8047 + }, + { + "start": 11900.4, + "end": 11903.12, + "probability": 0.8442 + }, + { + "start": 11903.56, + "end": 11905.0, + "probability": 0.6525 + }, + { + "start": 11905.02, + "end": 11907.18, + "probability": 0.7387 + }, + { + "start": 11907.52, + "end": 11908.62, + "probability": 0.9399 + }, + { + "start": 11908.76, + "end": 11911.18, + "probability": 0.7843 + }, + { + "start": 11911.18, + "end": 11915.42, + "probability": 0.8381 + }, + { + "start": 11915.82, + "end": 11916.68, + "probability": 0.9685 + }, + { + "start": 11917.1, + "end": 11917.98, + "probability": 0.8399 + }, + { + "start": 11918.4, + "end": 11918.68, + "probability": 0.6058 + }, + { + "start": 11918.8, + "end": 11921.26, + "probability": 0.9826 + }, + { + "start": 11921.72, + "end": 11924.38, + "probability": 0.9133 + }, + { + "start": 11925.04, + "end": 11927.42, + "probability": 0.9564 + }, + { + "start": 11927.6, + "end": 11929.27, + "probability": 0.8591 + }, + { + "start": 11929.96, + "end": 11934.54, + "probability": 0.9515 + }, + { + "start": 11934.54, + "end": 11938.66, + "probability": 0.9686 + }, + { + "start": 11938.88, + "end": 11940.39, + "probability": 0.7362 + }, + { + "start": 11941.3, + "end": 11942.26, + "probability": 0.4046 + }, + { + "start": 11942.48, + "end": 11945.98, + "probability": 0.9739 + }, + { + "start": 11945.98, + "end": 11946.88, + "probability": 0.8504 + }, + { + "start": 11947.58, + "end": 11953.78, + "probability": 0.9521 + }, + { + "start": 11954.4, + "end": 11956.38, + "probability": 0.9623 + }, + { + "start": 11956.48, + "end": 11956.94, + "probability": 0.8539 + }, + { + "start": 11956.96, + "end": 11957.54, + "probability": 0.4304 + }, + { + "start": 11957.64, + "end": 11958.58, + "probability": 0.8286 + }, + { + "start": 11958.66, + "end": 11958.94, + "probability": 0.8738 + }, + { + "start": 11959.4, + "end": 11960.52, + "probability": 0.907 + }, + { + "start": 11960.72, + "end": 11962.94, + "probability": 0.9292 + }, + { + "start": 11963.04, + "end": 11964.9, + "probability": 0.853 + }, + { + "start": 11964.9, + "end": 11968.06, + "probability": 0.9003 + }, + { + "start": 11968.2, + "end": 11973.82, + "probability": 0.7576 + }, + { + "start": 11973.82, + "end": 11975.4, + "probability": 0.9337 + }, + { + "start": 11976.04, + "end": 11977.96, + "probability": 0.882 + }, + { + "start": 11978.36, + "end": 11980.7, + "probability": 0.996 + }, + { + "start": 11981.0, + "end": 11983.3, + "probability": 0.8656 + }, + { + "start": 11984.74, + "end": 11985.1, + "probability": 0.5005 + }, + { + "start": 11986.02, + "end": 11987.92, + "probability": 0.955 + }, + { + "start": 11987.96, + "end": 11991.2, + "probability": 0.9958 + }, + { + "start": 11998.94, + "end": 12001.04, + "probability": 0.7527 + }, + { + "start": 12001.04, + "end": 12001.5, + "probability": 0.3477 + }, + { + "start": 12001.92, + "end": 12004.84, + "probability": 0.9623 + }, + { + "start": 12004.84, + "end": 12008.2, + "probability": 0.99 + }, + { + "start": 12008.32, + "end": 12009.22, + "probability": 0.7208 + }, + { + "start": 12009.4, + "end": 12014.56, + "probability": 0.9921 + }, + { + "start": 12014.66, + "end": 12015.38, + "probability": 0.8673 + }, + { + "start": 12015.7, + "end": 12016.68, + "probability": 0.8949 + }, + { + "start": 12017.32, + "end": 12021.32, + "probability": 0.9949 + }, + { + "start": 12021.32, + "end": 12026.74, + "probability": 0.9945 + }, + { + "start": 12027.26, + "end": 12028.24, + "probability": 0.9658 + }, + { + "start": 12028.24, + "end": 12029.1, + "probability": 0.8771 + }, + { + "start": 12029.2, + "end": 12036.4, + "probability": 0.9635 + }, + { + "start": 12036.56, + "end": 12038.28, + "probability": 0.9806 + }, + { + "start": 12038.62, + "end": 12045.4, + "probability": 0.9817 + }, + { + "start": 12045.7, + "end": 12048.3, + "probability": 0.8128 + }, + { + "start": 12048.6, + "end": 12052.6, + "probability": 0.9806 + }, + { + "start": 12053.06, + "end": 12055.22, + "probability": 0.5573 + }, + { + "start": 12055.44, + "end": 12057.56, + "probability": 0.8499 + }, + { + "start": 12057.8, + "end": 12059.0, + "probability": 0.9758 + }, + { + "start": 12059.32, + "end": 12060.86, + "probability": 0.9796 + }, + { + "start": 12061.24, + "end": 12062.32, + "probability": 0.8202 + }, + { + "start": 12062.84, + "end": 12064.33, + "probability": 0.9751 + }, + { + "start": 12064.8, + "end": 12069.06, + "probability": 0.9961 + }, + { + "start": 12069.54, + "end": 12070.64, + "probability": 0.8108 + }, + { + "start": 12071.2, + "end": 12073.58, + "probability": 0.9189 + }, + { + "start": 12073.96, + "end": 12076.14, + "probability": 0.8445 + }, + { + "start": 12076.58, + "end": 12077.68, + "probability": 0.8179 + }, + { + "start": 12077.78, + "end": 12078.72, + "probability": 0.9917 + }, + { + "start": 12079.08, + "end": 12079.68, + "probability": 0.9206 + }, + { + "start": 12079.96, + "end": 12081.1, + "probability": 0.9173 + }, + { + "start": 12081.62, + "end": 12085.32, + "probability": 0.9673 + }, + { + "start": 12085.64, + "end": 12088.76, + "probability": 0.9761 + }, + { + "start": 12088.84, + "end": 12089.02, + "probability": 0.3471 + }, + { + "start": 12089.06, + "end": 12092.6, + "probability": 0.7588 + }, + { + "start": 12093.22, + "end": 12096.18, + "probability": 0.8315 + }, + { + "start": 12096.54, + "end": 12100.34, + "probability": 0.9887 + }, + { + "start": 12100.8, + "end": 12103.0, + "probability": 0.9978 + }, + { + "start": 12103.28, + "end": 12104.78, + "probability": 0.9905 + }, + { + "start": 12105.32, + "end": 12107.26, + "probability": 0.9691 + }, + { + "start": 12107.64, + "end": 12109.54, + "probability": 0.9956 + }, + { + "start": 12109.92, + "end": 12110.3, + "probability": 0.5872 + }, + { + "start": 12110.38, + "end": 12111.8, + "probability": 0.9982 + }, + { + "start": 12112.04, + "end": 12115.14, + "probability": 0.6088 + }, + { + "start": 12115.42, + "end": 12115.5, + "probability": 0.2773 + }, + { + "start": 12115.6, + "end": 12117.8, + "probability": 0.9593 + }, + { + "start": 12118.12, + "end": 12119.68, + "probability": 0.9578 + }, + { + "start": 12120.06, + "end": 12121.34, + "probability": 0.9916 + }, + { + "start": 12122.34, + "end": 12125.32, + "probability": 0.9427 + }, + { + "start": 12125.58, + "end": 12130.28, + "probability": 0.9641 + }, + { + "start": 12130.66, + "end": 12131.36, + "probability": 0.4936 + }, + { + "start": 12131.7, + "end": 12132.92, + "probability": 0.9985 + }, + { + "start": 12133.54, + "end": 12135.3, + "probability": 0.4944 + }, + { + "start": 12135.86, + "end": 12137.24, + "probability": 0.8321 + }, + { + "start": 12137.72, + "end": 12140.12, + "probability": 0.9419 + }, + { + "start": 12140.36, + "end": 12141.73, + "probability": 0.9932 + }, + { + "start": 12142.34, + "end": 12143.44, + "probability": 0.9187 + }, + { + "start": 12143.78, + "end": 12147.7, + "probability": 0.9949 + }, + { + "start": 12148.18, + "end": 12149.78, + "probability": 0.9924 + }, + { + "start": 12150.68, + "end": 12152.06, + "probability": 0.7161 + }, + { + "start": 12152.62, + "end": 12155.9, + "probability": 0.9278 + }, + { + "start": 12156.62, + "end": 12161.1, + "probability": 0.882 + }, + { + "start": 12161.26, + "end": 12161.72, + "probability": 0.4481 + }, + { + "start": 12161.78, + "end": 12163.4, + "probability": 0.8567 + }, + { + "start": 12163.56, + "end": 12166.08, + "probability": 0.9956 + }, + { + "start": 12166.16, + "end": 12166.88, + "probability": 0.7149 + }, + { + "start": 12166.94, + "end": 12167.68, + "probability": 0.7088 + }, + { + "start": 12167.88, + "end": 12168.6, + "probability": 0.9627 + }, + { + "start": 12169.02, + "end": 12170.54, + "probability": 0.9907 + }, + { + "start": 12170.82, + "end": 12172.24, + "probability": 0.7799 + }, + { + "start": 12172.76, + "end": 12174.55, + "probability": 0.8789 + }, + { + "start": 12175.02, + "end": 12176.9, + "probability": 0.9907 + }, + { + "start": 12177.26, + "end": 12179.56, + "probability": 0.9873 + }, + { + "start": 12180.06, + "end": 12180.2, + "probability": 0.5095 + }, + { + "start": 12180.78, + "end": 12182.52, + "probability": 0.915 + }, + { + "start": 12183.12, + "end": 12183.98, + "probability": 0.949 + }, + { + "start": 12184.38, + "end": 12188.58, + "probability": 0.9657 + }, + { + "start": 12188.72, + "end": 12191.58, + "probability": 0.9456 + }, + { + "start": 12192.12, + "end": 12193.8, + "probability": 0.9038 + }, + { + "start": 12194.22, + "end": 12194.9, + "probability": 0.7349 + }, + { + "start": 12195.22, + "end": 12195.9, + "probability": 0.8637 + }, + { + "start": 12196.02, + "end": 12196.56, + "probability": 0.7951 + }, + { + "start": 12196.62, + "end": 12199.28, + "probability": 0.991 + }, + { + "start": 12199.66, + "end": 12200.3, + "probability": 0.597 + }, + { + "start": 12200.44, + "end": 12201.4, + "probability": 0.8596 + }, + { + "start": 12201.8, + "end": 12202.92, + "probability": 0.877 + }, + { + "start": 12203.04, + "end": 12203.22, + "probability": 0.6749 + }, + { + "start": 12203.34, + "end": 12203.76, + "probability": 0.6052 + }, + { + "start": 12203.86, + "end": 12207.28, + "probability": 0.9871 + }, + { + "start": 12207.64, + "end": 12210.46, + "probability": 0.9919 + }, + { + "start": 12210.66, + "end": 12211.36, + "probability": 0.9909 + }, + { + "start": 12212.04, + "end": 12213.44, + "probability": 0.6569 + }, + { + "start": 12213.52, + "end": 12216.72, + "probability": 0.5467 + }, + { + "start": 12217.52, + "end": 12219.38, + "probability": 0.9117 + }, + { + "start": 12219.82, + "end": 12220.86, + "probability": 0.6839 + }, + { + "start": 12221.66, + "end": 12222.0, + "probability": 0.7649 + }, + { + "start": 12222.46, + "end": 12224.0, + "probability": 0.7567 + }, + { + "start": 12236.76, + "end": 12238.34, + "probability": 0.71 + }, + { + "start": 12238.62, + "end": 12238.8, + "probability": 0.4169 + }, + { + "start": 12238.8, + "end": 12240.6, + "probability": 0.6893 + }, + { + "start": 12241.4, + "end": 12241.98, + "probability": 0.6886 + }, + { + "start": 12243.62, + "end": 12245.58, + "probability": 0.454 + }, + { + "start": 12245.82, + "end": 12248.2, + "probability": 0.5754 + }, + { + "start": 12249.52, + "end": 12249.56, + "probability": 0.0665 + }, + { + "start": 12249.56, + "end": 12249.56, + "probability": 0.1216 + }, + { + "start": 12249.56, + "end": 12249.56, + "probability": 0.1709 + }, + { + "start": 12249.56, + "end": 12249.9, + "probability": 0.3254 + }, + { + "start": 12250.04, + "end": 12251.64, + "probability": 0.9696 + }, + { + "start": 12251.76, + "end": 12252.91, + "probability": 0.8555 + }, + { + "start": 12253.54, + "end": 12253.9, + "probability": 0.6949 + }, + { + "start": 12253.9, + "end": 12255.34, + "probability": 0.9299 + }, + { + "start": 12256.76, + "end": 12258.3, + "probability": 0.9881 + }, + { + "start": 12258.74, + "end": 12261.86, + "probability": 0.891 + }, + { + "start": 12262.62, + "end": 12264.8, + "probability": 0.9975 + }, + { + "start": 12265.74, + "end": 12269.64, + "probability": 0.9954 + }, + { + "start": 12269.64, + "end": 12271.5, + "probability": 0.9969 + }, + { + "start": 12272.02, + "end": 12272.56, + "probability": 0.6286 + }, + { + "start": 12272.92, + "end": 12273.58, + "probability": 0.4295 + }, + { + "start": 12273.62, + "end": 12281.2, + "probability": 0.9338 + }, + { + "start": 12281.56, + "end": 12283.2, + "probability": 0.9441 + }, + { + "start": 12283.98, + "end": 12287.24, + "probability": 0.9896 + }, + { + "start": 12287.64, + "end": 12288.96, + "probability": 0.9926 + }, + { + "start": 12289.02, + "end": 12293.86, + "probability": 0.9977 + }, + { + "start": 12294.52, + "end": 12296.26, + "probability": 0.8473 + }, + { + "start": 12297.08, + "end": 12299.46, + "probability": 0.9885 + }, + { + "start": 12299.96, + "end": 12302.78, + "probability": 0.957 + }, + { + "start": 12303.56, + "end": 12307.06, + "probability": 0.9961 + }, + { + "start": 12307.94, + "end": 12308.3, + "probability": 0.8172 + }, + { + "start": 12308.66, + "end": 12309.12, + "probability": 0.7624 + }, + { + "start": 12309.16, + "end": 12309.74, + "probability": 0.8393 + }, + { + "start": 12309.82, + "end": 12310.89, + "probability": 0.576 + }, + { + "start": 12311.24, + "end": 12312.45, + "probability": 0.9649 + }, + { + "start": 12312.82, + "end": 12315.74, + "probability": 0.8656 + }, + { + "start": 12315.98, + "end": 12316.71, + "probability": 0.9382 + }, + { + "start": 12318.04, + "end": 12323.48, + "probability": 0.9377 + }, + { + "start": 12323.9, + "end": 12324.34, + "probability": 0.8492 + }, + { + "start": 12325.26, + "end": 12329.82, + "probability": 0.977 + }, + { + "start": 12329.94, + "end": 12330.36, + "probability": 0.9487 + }, + { + "start": 12330.42, + "end": 12335.72, + "probability": 0.9967 + }, + { + "start": 12336.9, + "end": 12341.16, + "probability": 0.5537 + }, + { + "start": 12341.16, + "end": 12344.0, + "probability": 0.6489 + }, + { + "start": 12345.04, + "end": 12346.8, + "probability": 0.8989 + }, + { + "start": 12347.68, + "end": 12350.26, + "probability": 0.972 + }, + { + "start": 12350.92, + "end": 12352.4, + "probability": 0.9941 + }, + { + "start": 12352.62, + "end": 12353.1, + "probability": 0.8707 + }, + { + "start": 12353.94, + "end": 12356.32, + "probability": 0.9959 + }, + { + "start": 12356.38, + "end": 12356.76, + "probability": 0.5826 + }, + { + "start": 12356.86, + "end": 12360.2, + "probability": 0.9349 + }, + { + "start": 12360.8, + "end": 12362.88, + "probability": 0.932 + }, + { + "start": 12363.16, + "end": 12365.2, + "probability": 0.994 + }, + { + "start": 12366.5, + "end": 12367.0, + "probability": 0.5316 + }, + { + "start": 12367.88, + "end": 12370.79, + "probability": 0.922 + }, + { + "start": 12371.3, + "end": 12371.88, + "probability": 0.5175 + }, + { + "start": 12372.26, + "end": 12373.86, + "probability": 0.9747 + }, + { + "start": 12374.7, + "end": 12376.26, + "probability": 0.7637 + }, + { + "start": 12377.04, + "end": 12379.42, + "probability": 0.9768 + }, + { + "start": 12380.06, + "end": 12380.9, + "probability": 0.6759 + }, + { + "start": 12381.2, + "end": 12385.92, + "probability": 0.9247 + }, + { + "start": 12386.06, + "end": 12386.6, + "probability": 0.8026 + }, + { + "start": 12387.6, + "end": 12387.92, + "probability": 0.7227 + }, + { + "start": 12388.24, + "end": 12389.35, + "probability": 0.9834 + }, + { + "start": 12389.8, + "end": 12393.14, + "probability": 0.9727 + }, + { + "start": 12393.36, + "end": 12394.02, + "probability": 0.9731 + }, + { + "start": 12395.44, + "end": 12398.88, + "probability": 0.5758 + }, + { + "start": 12399.94, + "end": 12402.46, + "probability": 0.9511 + }, + { + "start": 12402.92, + "end": 12404.64, + "probability": 0.9883 + }, + { + "start": 12405.0, + "end": 12407.16, + "probability": 0.8993 + }, + { + "start": 12407.62, + "end": 12410.46, + "probability": 0.988 + }, + { + "start": 12411.2, + "end": 12413.32, + "probability": 0.9574 + }, + { + "start": 12413.9, + "end": 12414.8, + "probability": 0.9488 + }, + { + "start": 12414.94, + "end": 12416.82, + "probability": 0.9932 + }, + { + "start": 12417.24, + "end": 12417.86, + "probability": 0.9826 + }, + { + "start": 12418.14, + "end": 12419.8, + "probability": 0.9783 + }, + { + "start": 12419.92, + "end": 12422.06, + "probability": 0.876 + }, + { + "start": 12422.58, + "end": 12423.78, + "probability": 0.8571 + }, + { + "start": 12424.2, + "end": 12425.24, + "probability": 0.9985 + }, + { + "start": 12426.46, + "end": 12429.04, + "probability": 0.9948 + }, + { + "start": 12429.24, + "end": 12430.28, + "probability": 0.9819 + }, + { + "start": 12430.84, + "end": 12432.94, + "probability": 0.9514 + }, + { + "start": 12433.04, + "end": 12434.46, + "probability": 0.96 + }, + { + "start": 12434.5, + "end": 12438.7, + "probability": 0.9816 + }, + { + "start": 12438.94, + "end": 12439.3, + "probability": 0.735 + }, + { + "start": 12439.94, + "end": 12441.32, + "probability": 0.9258 + }, + { + "start": 12441.52, + "end": 12442.7, + "probability": 0.8209 + }, + { + "start": 12443.18, + "end": 12443.92, + "probability": 0.4488 + }, + { + "start": 12444.1, + "end": 12445.34, + "probability": 0.9126 + }, + { + "start": 12446.02, + "end": 12446.68, + "probability": 0.9146 + }, + { + "start": 12447.14, + "end": 12447.14, + "probability": 0.7831 + }, + { + "start": 12447.6, + "end": 12448.72, + "probability": 0.7337 + }, + { + "start": 12450.0, + "end": 12450.54, + "probability": 0.3532 + }, + { + "start": 12451.12, + "end": 12452.48, + "probability": 0.8729 + }, + { + "start": 12453.14, + "end": 12455.42, + "probability": 0.8786 + }, + { + "start": 12456.5, + "end": 12457.16, + "probability": 0.8339 + }, + { + "start": 12458.84, + "end": 12462.84, + "probability": 0.7171 + }, + { + "start": 12463.98, + "end": 12466.72, + "probability": 0.9793 + }, + { + "start": 12467.82, + "end": 12468.62, + "probability": 0.5524 + }, + { + "start": 12468.88, + "end": 12469.78, + "probability": 0.7457 + }, + { + "start": 12470.48, + "end": 12471.08, + "probability": 0.9833 + }, + { + "start": 12479.62, + "end": 12480.04, + "probability": 0.8203 + }, + { + "start": 12480.04, + "end": 12480.5, + "probability": 0.6674 + }, + { + "start": 12481.64, + "end": 12481.64, + "probability": 0.4351 + }, + { + "start": 12484.48, + "end": 12485.16, + "probability": 0.5432 + }, + { + "start": 12485.16, + "end": 12486.0, + "probability": 0.6972 + }, + { + "start": 12486.98, + "end": 12489.76, + "probability": 0.9627 + }, + { + "start": 12491.42, + "end": 12495.26, + "probability": 0.9972 + }, + { + "start": 12497.3, + "end": 12497.84, + "probability": 0.6337 + }, + { + "start": 12498.56, + "end": 12501.62, + "probability": 0.9878 + }, + { + "start": 12501.7, + "end": 12502.28, + "probability": 0.9976 + }, + { + "start": 12503.26, + "end": 12505.22, + "probability": 0.9861 + }, + { + "start": 12506.9, + "end": 12509.94, + "probability": 0.9955 + }, + { + "start": 12510.82, + "end": 12511.58, + "probability": 0.9946 + }, + { + "start": 12512.7, + "end": 12513.48, + "probability": 0.9882 + }, + { + "start": 12514.24, + "end": 12516.22, + "probability": 0.9795 + }, + { + "start": 12516.86, + "end": 12517.98, + "probability": 0.9889 + }, + { + "start": 12519.26, + "end": 12524.06, + "probability": 0.9586 + }, + { + "start": 12525.26, + "end": 12526.26, + "probability": 0.9952 + }, + { + "start": 12527.74, + "end": 12530.78, + "probability": 0.9625 + }, + { + "start": 12532.2, + "end": 12533.82, + "probability": 0.9817 + }, + { + "start": 12534.84, + "end": 12536.92, + "probability": 0.8606 + }, + { + "start": 12538.88, + "end": 12541.62, + "probability": 0.9891 + }, + { + "start": 12542.64, + "end": 12543.16, + "probability": 0.8256 + }, + { + "start": 12545.06, + "end": 12548.28, + "probability": 0.9822 + }, + { + "start": 12549.1, + "end": 12552.28, + "probability": 0.9912 + }, + { + "start": 12553.62, + "end": 12556.94, + "probability": 0.8989 + }, + { + "start": 12558.76, + "end": 12562.96, + "probability": 0.9968 + }, + { + "start": 12565.02, + "end": 12566.72, + "probability": 0.9915 + }, + { + "start": 12568.04, + "end": 12568.88, + "probability": 0.7603 + }, + { + "start": 12569.7, + "end": 12574.12, + "probability": 0.95 + }, + { + "start": 12574.16, + "end": 12576.02, + "probability": 0.9737 + }, + { + "start": 12577.48, + "end": 12581.56, + "probability": 0.9947 + }, + { + "start": 12581.62, + "end": 12584.8, + "probability": 0.994 + }, + { + "start": 12585.34, + "end": 12588.98, + "probability": 0.996 + }, + { + "start": 12589.34, + "end": 12590.6, + "probability": 0.9962 + }, + { + "start": 12591.06, + "end": 12592.42, + "probability": 0.9836 + }, + { + "start": 12593.4, + "end": 12594.48, + "probability": 0.6769 + }, + { + "start": 12594.86, + "end": 12596.52, + "probability": 0.9153 + }, + { + "start": 12597.0, + "end": 12597.22, + "probability": 0.8182 + }, + { + "start": 12598.1, + "end": 12600.24, + "probability": 0.9856 + }, + { + "start": 12601.62, + "end": 12602.8, + "probability": 0.9995 + }, + { + "start": 12604.04, + "end": 12604.82, + "probability": 0.6056 + }, + { + "start": 12605.76, + "end": 12608.84, + "probability": 0.9775 + }, + { + "start": 12609.36, + "end": 12612.14, + "probability": 0.9971 + }, + { + "start": 12613.18, + "end": 12616.4, + "probability": 0.9971 + }, + { + "start": 12616.82, + "end": 12617.66, + "probability": 0.8466 + }, + { + "start": 12618.84, + "end": 12622.42, + "probability": 0.9971 + }, + { + "start": 12623.42, + "end": 12623.88, + "probability": 0.9414 + }, + { + "start": 12624.4, + "end": 12625.32, + "probability": 0.6764 + }, + { + "start": 12625.94, + "end": 12626.44, + "probability": 0.7162 + }, + { + "start": 12627.86, + "end": 12629.5, + "probability": 0.9429 + }, + { + "start": 12630.06, + "end": 12631.7, + "probability": 0.987 + }, + { + "start": 12632.58, + "end": 12632.94, + "probability": 0.7543 + }, + { + "start": 12634.1, + "end": 12636.46, + "probability": 0.964 + }, + { + "start": 12637.26, + "end": 12637.86, + "probability": 0.8739 + }, + { + "start": 12638.96, + "end": 12643.19, + "probability": 0.9941 + }, + { + "start": 12644.12, + "end": 12645.94, + "probability": 0.9454 + }, + { + "start": 12647.0, + "end": 12648.64, + "probability": 0.9616 + }, + { + "start": 12649.0, + "end": 12653.28, + "probability": 0.9891 + }, + { + "start": 12654.82, + "end": 12660.88, + "probability": 0.9969 + }, + { + "start": 12661.16, + "end": 12661.5, + "probability": 0.7427 + }, + { + "start": 12663.24, + "end": 12664.72, + "probability": 0.7632 + }, + { + "start": 12665.0, + "end": 12666.46, + "probability": 0.6683 + }, + { + "start": 12667.5, + "end": 12668.34, + "probability": 0.5336 + }, + { + "start": 12669.82, + "end": 12671.74, + "probability": 0.9481 + }, + { + "start": 12672.48, + "end": 12673.12, + "probability": 0.6491 + }, + { + "start": 12674.26, + "end": 12675.42, + "probability": 0.9677 + }, + { + "start": 12676.06, + "end": 12676.88, + "probability": 0.731 + }, + { + "start": 12677.66, + "end": 12678.8, + "probability": 0.8922 + }, + { + "start": 12679.84, + "end": 12680.6, + "probability": 0.9203 + }, + { + "start": 12681.36, + "end": 12682.58, + "probability": 0.9154 + }, + { + "start": 12683.76, + "end": 12684.5, + "probability": 0.7469 + }, + { + "start": 12685.08, + "end": 12686.74, + "probability": 0.6622 + }, + { + "start": 12688.7, + "end": 12689.94, + "probability": 0.9302 + }, + { + "start": 12690.74, + "end": 12691.42, + "probability": 0.614 + }, + { + "start": 12692.34, + "end": 12693.9, + "probability": 0.8973 + }, + { + "start": 12694.74, + "end": 12695.48, + "probability": 0.9829 + }, + { + "start": 12696.94, + "end": 12698.28, + "probability": 0.9656 + }, + { + "start": 12699.26, + "end": 12700.6, + "probability": 0.9209 + }, + { + "start": 12701.44, + "end": 12702.2, + "probability": 0.6069 + }, + { + "start": 12703.06, + "end": 12704.2, + "probability": 0.9355 + }, + { + "start": 12705.38, + "end": 12706.1, + "probability": 0.3964 + }, + { + "start": 12706.46, + "end": 12707.52, + "probability": 0.9036 + }, + { + "start": 12728.04, + "end": 12728.78, + "probability": 0.4463 + }, + { + "start": 12729.18, + "end": 12730.3, + "probability": 0.7325 + }, + { + "start": 12732.82, + "end": 12737.38, + "probability": 0.9903 + }, + { + "start": 12739.24, + "end": 12743.32, + "probability": 0.9987 + }, + { + "start": 12743.9, + "end": 12745.75, + "probability": 0.8894 + }, + { + "start": 12746.5, + "end": 12750.78, + "probability": 0.9955 + }, + { + "start": 12751.26, + "end": 12755.56, + "probability": 0.9529 + }, + { + "start": 12755.66, + "end": 12756.82, + "probability": 0.9826 + }, + { + "start": 12757.0, + "end": 12758.22, + "probability": 0.8387 + }, + { + "start": 12758.66, + "end": 12761.62, + "probability": 0.9047 + }, + { + "start": 12762.4, + "end": 12766.91, + "probability": 0.9976 + }, + { + "start": 12767.54, + "end": 12769.31, + "probability": 0.916 + }, + { + "start": 12770.3, + "end": 12772.54, + "probability": 0.9577 + }, + { + "start": 12774.22, + "end": 12777.34, + "probability": 0.9325 + }, + { + "start": 12778.08, + "end": 12781.32, + "probability": 0.9707 + }, + { + "start": 12781.48, + "end": 12784.16, + "probability": 0.9924 + }, + { + "start": 12784.36, + "end": 12785.1, + "probability": 0.9177 + }, + { + "start": 12785.82, + "end": 12788.64, + "probability": 0.9714 + }, + { + "start": 12789.36, + "end": 12790.77, + "probability": 0.7096 + }, + { + "start": 12791.04, + "end": 12795.24, + "probability": 0.7979 + }, + { + "start": 12796.42, + "end": 12800.3, + "probability": 0.9966 + }, + { + "start": 12800.88, + "end": 12802.78, + "probability": 0.8684 + }, + { + "start": 12803.78, + "end": 12806.08, + "probability": 0.9505 + }, + { + "start": 12806.22, + "end": 12809.3, + "probability": 0.9976 + }, + { + "start": 12809.3, + "end": 12815.1, + "probability": 0.8579 + }, + { + "start": 12815.84, + "end": 12823.2, + "probability": 0.9882 + }, + { + "start": 12823.4, + "end": 12826.54, + "probability": 0.9987 + }, + { + "start": 12827.22, + "end": 12829.12, + "probability": 0.859 + }, + { + "start": 12829.48, + "end": 12830.44, + "probability": 0.8543 + }, + { + "start": 12830.88, + "end": 12832.72, + "probability": 0.978 + }, + { + "start": 12833.54, + "end": 12838.66, + "probability": 0.9905 + }, + { + "start": 12838.66, + "end": 12842.34, + "probability": 0.9823 + }, + { + "start": 12842.42, + "end": 12843.96, + "probability": 0.8805 + }, + { + "start": 12844.04, + "end": 12844.3, + "probability": 0.546 + }, + { + "start": 12844.42, + "end": 12845.32, + "probability": 0.9085 + }, + { + "start": 12845.42, + "end": 12849.4, + "probability": 0.9919 + }, + { + "start": 12849.54, + "end": 12853.3, + "probability": 0.9164 + }, + { + "start": 12853.48, + "end": 12855.1, + "probability": 0.8128 + }, + { + "start": 12855.9, + "end": 12857.28, + "probability": 0.9244 + }, + { + "start": 12857.5, + "end": 12858.82, + "probability": 0.9716 + }, + { + "start": 12858.86, + "end": 12860.88, + "probability": 0.8838 + }, + { + "start": 12861.46, + "end": 12865.1, + "probability": 0.9792 + }, + { + "start": 12866.46, + "end": 12872.82, + "probability": 0.9976 + }, + { + "start": 12873.68, + "end": 12876.24, + "probability": 0.9536 + }, + { + "start": 12877.4, + "end": 12878.3, + "probability": 0.9726 + }, + { + "start": 12878.46, + "end": 12879.32, + "probability": 0.9294 + }, + { + "start": 12879.68, + "end": 12882.62, + "probability": 0.997 + }, + { + "start": 12882.9, + "end": 12883.72, + "probability": 0.7653 + }, + { + "start": 12884.0, + "end": 12886.74, + "probability": 0.8962 + }, + { + "start": 12887.76, + "end": 12890.74, + "probability": 0.9899 + }, + { + "start": 12891.82, + "end": 12897.02, + "probability": 0.9785 + }, + { + "start": 12897.12, + "end": 12897.74, + "probability": 0.7487 + }, + { + "start": 12897.84, + "end": 12898.64, + "probability": 0.5305 + }, + { + "start": 12898.72, + "end": 12902.76, + "probability": 0.9182 + }, + { + "start": 12903.32, + "end": 12904.64, + "probability": 0.9532 + }, + { + "start": 12904.72, + "end": 12906.12, + "probability": 0.9736 + }, + { + "start": 12906.62, + "end": 12907.94, + "probability": 0.959 + }, + { + "start": 12908.72, + "end": 12909.54, + "probability": 0.9634 + }, + { + "start": 12909.66, + "end": 12911.34, + "probability": 0.9919 + }, + { + "start": 12911.46, + "end": 12912.68, + "probability": 0.8937 + }, + { + "start": 12912.72, + "end": 12913.58, + "probability": 0.8289 + }, + { + "start": 12913.98, + "end": 12914.9, + "probability": 0.9014 + }, + { + "start": 12915.42, + "end": 12917.22, + "probability": 0.998 + }, + { + "start": 12918.12, + "end": 12920.82, + "probability": 0.9766 + }, + { + "start": 12921.34, + "end": 12922.14, + "probability": 0.907 + }, + { + "start": 12922.38, + "end": 12923.18, + "probability": 0.6033 + }, + { + "start": 12923.28, + "end": 12924.08, + "probability": 0.7627 + }, + { + "start": 12925.02, + "end": 12925.8, + "probability": 0.8623 + }, + { + "start": 12926.54, + "end": 12931.03, + "probability": 0.9912 + }, + { + "start": 12932.42, + "end": 12934.1, + "probability": 0.9941 + }, + { + "start": 12934.24, + "end": 12938.5, + "probability": 0.8843 + }, + { + "start": 12939.1, + "end": 12941.49, + "probability": 0.886 + }, + { + "start": 12943.34, + "end": 12946.7, + "probability": 0.9291 + }, + { + "start": 12947.32, + "end": 12950.86, + "probability": 0.9907 + }, + { + "start": 12951.52, + "end": 12952.57, + "probability": 0.6449 + }, + { + "start": 12953.82, + "end": 12955.0, + "probability": 0.9061 + }, + { + "start": 12955.76, + "end": 12961.65, + "probability": 0.9856 + }, + { + "start": 12961.92, + "end": 12967.4, + "probability": 0.9961 + }, + { + "start": 12967.52, + "end": 12969.74, + "probability": 0.9927 + }, + { + "start": 12970.42, + "end": 12970.88, + "probability": 0.7731 + }, + { + "start": 12971.48, + "end": 12975.72, + "probability": 0.9916 + }, + { + "start": 12975.78, + "end": 12976.04, + "probability": 0.7469 + }, + { + "start": 12976.38, + "end": 12977.7, + "probability": 0.8181 + }, + { + "start": 12977.8, + "end": 12979.9, + "probability": 0.9193 + }, + { + "start": 12980.46, + "end": 12983.44, + "probability": 0.5721 + }, + { + "start": 12984.16, + "end": 12985.36, + "probability": 0.8345 + }, + { + "start": 12995.52, + "end": 12995.56, + "probability": 0.7693 + }, + { + "start": 12995.56, + "end": 12996.2, + "probability": 0.8105 + }, + { + "start": 12997.56, + "end": 12999.4, + "probability": 0.712 + }, + { + "start": 13000.68, + "end": 13002.26, + "probability": 0.8225 + }, + { + "start": 13003.5, + "end": 13007.98, + "probability": 0.9954 + }, + { + "start": 13009.3, + "end": 13011.3, + "probability": 0.8425 + }, + { + "start": 13011.46, + "end": 13012.16, + "probability": 0.4423 + }, + { + "start": 13012.26, + "end": 13014.7, + "probability": 0.4902 + }, + { + "start": 13014.8, + "end": 13015.84, + "probability": 0.7842 + }, + { + "start": 13016.9, + "end": 13017.18, + "probability": 0.6545 + }, + { + "start": 13017.34, + "end": 13017.8, + "probability": 0.7281 + }, + { + "start": 13017.94, + "end": 13019.26, + "probability": 0.9021 + }, + { + "start": 13019.76, + "end": 13022.52, + "probability": 0.7512 + }, + { + "start": 13023.14, + "end": 13023.98, + "probability": 0.866 + }, + { + "start": 13025.38, + "end": 13027.82, + "probability": 0.9531 + }, + { + "start": 13028.56, + "end": 13032.16, + "probability": 0.9819 + }, + { + "start": 13033.42, + "end": 13039.02, + "probability": 0.911 + }, + { + "start": 13039.9, + "end": 13042.16, + "probability": 0.996 + }, + { + "start": 13042.86, + "end": 13044.94, + "probability": 0.9868 + }, + { + "start": 13045.9, + "end": 13049.7, + "probability": 0.9666 + }, + { + "start": 13050.16, + "end": 13051.12, + "probability": 0.8685 + }, + { + "start": 13051.32, + "end": 13052.3, + "probability": 0.9373 + }, + { + "start": 13053.0, + "end": 13056.04, + "probability": 0.9958 + }, + { + "start": 13056.04, + "end": 13058.04, + "probability": 0.9834 + }, + { + "start": 13059.26, + "end": 13060.24, + "probability": 0.9985 + }, + { + "start": 13060.92, + "end": 13062.02, + "probability": 0.998 + }, + { + "start": 13062.8, + "end": 13067.56, + "probability": 0.9879 + }, + { + "start": 13068.24, + "end": 13070.86, + "probability": 0.998 + }, + { + "start": 13071.6, + "end": 13073.9, + "probability": 0.9961 + }, + { + "start": 13074.94, + "end": 13077.32, + "probability": 0.9622 + }, + { + "start": 13078.24, + "end": 13081.12, + "probability": 0.9761 + }, + { + "start": 13081.64, + "end": 13082.74, + "probability": 0.7401 + }, + { + "start": 13083.54, + "end": 13086.66, + "probability": 0.9534 + }, + { + "start": 13087.18, + "end": 13088.04, + "probability": 0.9841 + }, + { + "start": 13088.44, + "end": 13091.22, + "probability": 0.7208 + }, + { + "start": 13091.3, + "end": 13092.06, + "probability": 0.908 + }, + { + "start": 13093.83, + "end": 13094.8, + "probability": 0.8865 + }, + { + "start": 13095.46, + "end": 13095.46, + "probability": 0.0373 + }, + { + "start": 13095.46, + "end": 13095.46, + "probability": 0.0736 + }, + { + "start": 13095.46, + "end": 13095.6, + "probability": 0.0104 + }, + { + "start": 13095.6, + "end": 13097.34, + "probability": 0.867 + }, + { + "start": 13098.24, + "end": 13099.28, + "probability": 0.3664 + }, + { + "start": 13099.3, + "end": 13102.32, + "probability": 0.917 + }, + { + "start": 13102.74, + "end": 13103.34, + "probability": 0.9199 + }, + { + "start": 13103.5, + "end": 13106.2, + "probability": 0.9027 + }, + { + "start": 13106.62, + "end": 13113.22, + "probability": 0.9424 + }, + { + "start": 13114.58, + "end": 13114.9, + "probability": 0.717 + }, + { + "start": 13115.0, + "end": 13116.46, + "probability": 0.704 + }, + { + "start": 13116.7, + "end": 13121.0, + "probability": 0.9764 + }, + { + "start": 13122.44, + "end": 13124.28, + "probability": 0.9475 + }, + { + "start": 13124.7, + "end": 13126.58, + "probability": 0.9937 + }, + { + "start": 13127.5, + "end": 13129.96, + "probability": 0.9849 + }, + { + "start": 13129.96, + "end": 13133.0, + "probability": 0.9964 + }, + { + "start": 13133.68, + "end": 13135.7, + "probability": 0.9951 + }, + { + "start": 13135.86, + "end": 13136.3, + "probability": 0.6841 + }, + { + "start": 13136.5, + "end": 13137.36, + "probability": 0.833 + }, + { + "start": 13138.0, + "end": 13139.06, + "probability": 0.7502 + }, + { + "start": 13139.48, + "end": 13141.14, + "probability": 0.8462 + }, + { + "start": 13141.98, + "end": 13144.38, + "probability": 0.8045 + }, + { + "start": 13145.68, + "end": 13147.88, + "probability": 0.8781 + }, + { + "start": 13148.08, + "end": 13152.42, + "probability": 0.9392 + }, + { + "start": 13152.98, + "end": 13156.1, + "probability": 0.1598 + }, + { + "start": 13156.1, + "end": 13156.82, + "probability": 0.0703 + }, + { + "start": 13157.38, + "end": 13161.04, + "probability": 0.7278 + }, + { + "start": 13161.6, + "end": 13165.08, + "probability": 0.7173 + }, + { + "start": 13165.8, + "end": 13170.7, + "probability": 0.6783 + }, + { + "start": 13171.18, + "end": 13173.06, + "probability": 0.9121 + }, + { + "start": 13173.46, + "end": 13178.62, + "probability": 0.809 + }, + { + "start": 13179.5, + "end": 13182.04, + "probability": 0.6701 + }, + { + "start": 13182.04, + "end": 13186.48, + "probability": 0.7982 + }, + { + "start": 13187.0, + "end": 13190.25, + "probability": 0.9961 + }, + { + "start": 13190.84, + "end": 13192.14, + "probability": 0.7904 + }, + { + "start": 13192.5, + "end": 13195.76, + "probability": 0.9901 + }, + { + "start": 13196.46, + "end": 13198.28, + "probability": 0.9478 + }, + { + "start": 13198.66, + "end": 13201.08, + "probability": 0.9811 + }, + { + "start": 13201.52, + "end": 13201.78, + "probability": 0.7368 + }, + { + "start": 13202.28, + "end": 13203.82, + "probability": 0.8344 + }, + { + "start": 13204.18, + "end": 13204.62, + "probability": 0.6531 + }, + { + "start": 13204.64, + "end": 13206.32, + "probability": 0.9039 + }, + { + "start": 13206.4, + "end": 13207.26, + "probability": 0.4417 + }, + { + "start": 13207.34, + "end": 13208.76, + "probability": 0.6342 + }, + { + "start": 13209.54, + "end": 13210.3, + "probability": 0.7241 + }, + { + "start": 13226.38, + "end": 13226.62, + "probability": 0.2574 + }, + { + "start": 13226.62, + "end": 13227.24, + "probability": 0.4335 + }, + { + "start": 13227.8, + "end": 13234.02, + "probability": 0.9871 + }, + { + "start": 13234.76, + "end": 13235.86, + "probability": 0.9432 + }, + { + "start": 13236.58, + "end": 13239.94, + "probability": 0.9568 + }, + { + "start": 13240.86, + "end": 13245.24, + "probability": 0.5276 + }, + { + "start": 13245.78, + "end": 13253.68, + "probability": 0.9758 + }, + { + "start": 13254.16, + "end": 13257.7, + "probability": 0.9838 + }, + { + "start": 13258.2, + "end": 13259.54, + "probability": 0.9585 + }, + { + "start": 13260.34, + "end": 13265.2, + "probability": 0.8083 + }, + { + "start": 13266.04, + "end": 13267.44, + "probability": 0.9819 + }, + { + "start": 13269.36, + "end": 13270.78, + "probability": 0.7476 + }, + { + "start": 13270.84, + "end": 13272.02, + "probability": 0.9741 + }, + { + "start": 13272.34, + "end": 13274.5, + "probability": 0.9799 + }, + { + "start": 13275.04, + "end": 13278.74, + "probability": 0.9922 + }, + { + "start": 13280.96, + "end": 13287.06, + "probability": 0.9937 + }, + { + "start": 13287.6, + "end": 13289.52, + "probability": 0.9624 + }, + { + "start": 13290.46, + "end": 13292.68, + "probability": 0.9504 + }, + { + "start": 13292.92, + "end": 13293.46, + "probability": 0.5104 + }, + { + "start": 13294.78, + "end": 13299.32, + "probability": 0.8857 + }, + { + "start": 13301.16, + "end": 13302.54, + "probability": 0.6916 + }, + { + "start": 13302.82, + "end": 13308.02, + "probability": 0.9692 + }, + { + "start": 13308.06, + "end": 13308.94, + "probability": 0.7104 + }, + { + "start": 13310.28, + "end": 13315.32, + "probability": 0.9927 + }, + { + "start": 13315.96, + "end": 13317.38, + "probability": 0.718 + }, + { + "start": 13318.78, + "end": 13321.94, + "probability": 0.6165 + }, + { + "start": 13323.78, + "end": 13325.3, + "probability": 0.9752 + }, + { + "start": 13325.42, + "end": 13328.16, + "probability": 0.9764 + }, + { + "start": 13328.94, + "end": 13335.28, + "probability": 0.9829 + }, + { + "start": 13336.48, + "end": 13338.8, + "probability": 0.9912 + }, + { + "start": 13339.94, + "end": 13343.02, + "probability": 0.939 + }, + { + "start": 13343.9, + "end": 13347.86, + "probability": 0.9929 + }, + { + "start": 13349.28, + "end": 13351.96, + "probability": 0.935 + }, + { + "start": 13353.0, + "end": 13357.04, + "probability": 0.9976 + }, + { + "start": 13357.04, + "end": 13363.6, + "probability": 0.9923 + }, + { + "start": 13364.18, + "end": 13366.12, + "probability": 0.7922 + }, + { + "start": 13366.74, + "end": 13371.92, + "probability": 0.9851 + }, + { + "start": 13372.88, + "end": 13376.06, + "probability": 0.6651 + }, + { + "start": 13376.12, + "end": 13377.0, + "probability": 0.9363 + }, + { + "start": 13377.96, + "end": 13383.24, + "probability": 0.9806 + }, + { + "start": 13383.44, + "end": 13384.38, + "probability": 0.6171 + }, + { + "start": 13385.0, + "end": 13385.88, + "probability": 0.9193 + }, + { + "start": 13385.98, + "end": 13386.66, + "probability": 0.6883 + }, + { + "start": 13387.22, + "end": 13389.78, + "probability": 0.9391 + }, + { + "start": 13390.32, + "end": 13391.86, + "probability": 0.5572 + }, + { + "start": 13392.38, + "end": 13394.96, + "probability": 0.9688 + }, + { + "start": 13395.78, + "end": 13396.76, + "probability": 0.9727 + }, + { + "start": 13396.9, + "end": 13398.6, + "probability": 0.9148 + }, + { + "start": 13399.04, + "end": 13401.8, + "probability": 0.9941 + }, + { + "start": 13403.42, + "end": 13405.64, + "probability": 0.9956 + }, + { + "start": 13407.06, + "end": 13407.7, + "probability": 0.9286 + }, + { + "start": 13410.3, + "end": 13411.04, + "probability": 0.9749 + }, + { + "start": 13411.46, + "end": 13412.88, + "probability": 0.8763 + }, + { + "start": 13413.26, + "end": 13416.14, + "probability": 0.9745 + }, + { + "start": 13416.24, + "end": 13416.68, + "probability": 0.9757 + }, + { + "start": 13417.48, + "end": 13420.98, + "probability": 0.9092 + }, + { + "start": 13421.06, + "end": 13421.54, + "probability": 0.8823 + }, + { + "start": 13421.64, + "end": 13421.9, + "probability": 0.3121 + }, + { + "start": 13421.96, + "end": 13422.64, + "probability": 0.8938 + }, + { + "start": 13422.72, + "end": 13424.06, + "probability": 0.741 + }, + { + "start": 13424.14, + "end": 13425.25, + "probability": 0.7633 + }, + { + "start": 13427.26, + "end": 13428.62, + "probability": 0.9785 + }, + { + "start": 13430.74, + "end": 13432.54, + "probability": 0.4766 + }, + { + "start": 13433.24, + "end": 13439.6, + "probability": 0.2984 + }, + { + "start": 13440.2, + "end": 13440.94, + "probability": 0.9272 + }, + { + "start": 13450.78, + "end": 13450.78, + "probability": 0.3592 + }, + { + "start": 13450.78, + "end": 13450.78, + "probability": 0.1073 + }, + { + "start": 13450.78, + "end": 13450.78, + "probability": 0.0446 + }, + { + "start": 13450.78, + "end": 13450.78, + "probability": 0.0698 + }, + { + "start": 13450.78, + "end": 13450.78, + "probability": 0.368 + }, + { + "start": 13450.78, + "end": 13450.8, + "probability": 0.0234 + }, + { + "start": 13450.8, + "end": 13450.82, + "probability": 0.192 + }, + { + "start": 13450.82, + "end": 13451.1, + "probability": 0.1746 + }, + { + "start": 13468.26, + "end": 13470.08, + "probability": 0.72 + }, + { + "start": 13470.86, + "end": 13473.62, + "probability": 0.9867 + }, + { + "start": 13473.62, + "end": 13477.26, + "probability": 0.9971 + }, + { + "start": 13478.18, + "end": 13478.36, + "probability": 0.455 + }, + { + "start": 13478.72, + "end": 13479.46, + "probability": 0.1562 + }, + { + "start": 13479.48, + "end": 13481.54, + "probability": 0.9716 + }, + { + "start": 13481.92, + "end": 13483.08, + "probability": 0.4952 + }, + { + "start": 13483.1, + "end": 13483.84, + "probability": 0.9786 + }, + { + "start": 13484.62, + "end": 13486.3, + "probability": 0.6675 + }, + { + "start": 13486.86, + "end": 13490.94, + "probability": 0.8706 + }, + { + "start": 13492.18, + "end": 13493.36, + "probability": 0.6445 + }, + { + "start": 13493.44, + "end": 13496.8, + "probability": 0.9832 + }, + { + "start": 13497.02, + "end": 13497.54, + "probability": 0.8143 + }, + { + "start": 13497.58, + "end": 13498.28, + "probability": 0.8896 + }, + { + "start": 13498.68, + "end": 13499.72, + "probability": 0.6231 + }, + { + "start": 13499.84, + "end": 13500.64, + "probability": 0.9858 + }, + { + "start": 13500.76, + "end": 13502.0, + "probability": 0.6666 + }, + { + "start": 13502.94, + "end": 13505.48, + "probability": 0.9428 + }, + { + "start": 13505.62, + "end": 13507.64, + "probability": 0.9969 + }, + { + "start": 13507.78, + "end": 13510.78, + "probability": 0.9798 + }, + { + "start": 13510.84, + "end": 13512.68, + "probability": 0.9736 + }, + { + "start": 13513.32, + "end": 13514.1, + "probability": 0.5877 + }, + { + "start": 13514.18, + "end": 13515.96, + "probability": 0.8517 + }, + { + "start": 13516.02, + "end": 13516.52, + "probability": 0.6617 + }, + { + "start": 13516.72, + "end": 13517.32, + "probability": 0.8936 + }, + { + "start": 13517.42, + "end": 13517.98, + "probability": 0.7493 + }, + { + "start": 13518.66, + "end": 13520.26, + "probability": 0.9317 + }, + { + "start": 13521.82, + "end": 13524.08, + "probability": 0.8613 + }, + { + "start": 13524.98, + "end": 13526.06, + "probability": 0.6105 + }, + { + "start": 13526.34, + "end": 13526.64, + "probability": 0.9476 + }, + { + "start": 13527.54, + "end": 13528.74, + "probability": 0.9097 + }, + { + "start": 13529.16, + "end": 13532.26, + "probability": 0.7667 + }, + { + "start": 13532.56, + "end": 13535.0, + "probability": 0.8887 + }, + { + "start": 13535.64, + "end": 13538.66, + "probability": 0.9291 + }, + { + "start": 13538.72, + "end": 13540.66, + "probability": 0.9639 + }, + { + "start": 13541.34, + "end": 13545.46, + "probability": 0.8911 + }, + { + "start": 13545.46, + "end": 13547.3, + "probability": 0.9691 + }, + { + "start": 13548.34, + "end": 13548.72, + "probability": 0.9005 + }, + { + "start": 13548.86, + "end": 13550.06, + "probability": 0.8483 + }, + { + "start": 13550.44, + "end": 13550.88, + "probability": 0.8656 + }, + { + "start": 13550.92, + "end": 13551.52, + "probability": 0.9814 + }, + { + "start": 13551.56, + "end": 13552.34, + "probability": 0.8127 + }, + { + "start": 13552.76, + "end": 13554.44, + "probability": 0.9847 + }, + { + "start": 13554.44, + "end": 13557.48, + "probability": 0.998 + }, + { + "start": 13557.62, + "end": 13558.58, + "probability": 0.7731 + }, + { + "start": 13559.12, + "end": 13560.18, + "probability": 0.9928 + }, + { + "start": 13561.36, + "end": 13563.54, + "probability": 0.9755 + }, + { + "start": 13564.26, + "end": 13564.76, + "probability": 0.5503 + }, + { + "start": 13566.06, + "end": 13566.99, + "probability": 0.9513 + }, + { + "start": 13567.7, + "end": 13568.2, + "probability": 0.8003 + }, + { + "start": 13569.22, + "end": 13570.22, + "probability": 0.7829 + }, + { + "start": 13570.94, + "end": 13572.06, + "probability": 0.9702 + }, + { + "start": 13572.64, + "end": 13574.22, + "probability": 0.6038 + }, + { + "start": 13579.86, + "end": 13581.92, + "probability": 0.6815 + }, + { + "start": 13582.58, + "end": 13584.0, + "probability": 0.8745 + }, + { + "start": 13585.03, + "end": 13589.14, + "probability": 0.815 + }, + { + "start": 13589.92, + "end": 13595.04, + "probability": 0.9824 + }, + { + "start": 13595.14, + "end": 13598.32, + "probability": 0.9915 + }, + { + "start": 13598.82, + "end": 13599.86, + "probability": 0.6167 + }, + { + "start": 13600.86, + "end": 13603.63, + "probability": 0.8711 + }, + { + "start": 13604.52, + "end": 13606.6, + "probability": 0.9823 + }, + { + "start": 13606.78, + "end": 13609.45, + "probability": 0.987 + }, + { + "start": 13610.04, + "end": 13613.08, + "probability": 0.7665 + }, + { + "start": 13613.72, + "end": 13618.5, + "probability": 0.9316 + }, + { + "start": 13618.7, + "end": 13619.68, + "probability": 0.4578 + }, + { + "start": 13619.86, + "end": 13620.56, + "probability": 0.8812 + }, + { + "start": 13620.72, + "end": 13621.42, + "probability": 0.9738 + }, + { + "start": 13621.54, + "end": 13622.3, + "probability": 0.8952 + }, + { + "start": 13622.32, + "end": 13623.58, + "probability": 0.9553 + }, + { + "start": 13624.2, + "end": 13628.08, + "probability": 0.799 + }, + { + "start": 13628.62, + "end": 13629.9, + "probability": 0.7887 + }, + { + "start": 13630.4, + "end": 13631.03, + "probability": 0.9958 + }, + { + "start": 13631.22, + "end": 13631.92, + "probability": 0.9946 + }, + { + "start": 13632.42, + "end": 13633.68, + "probability": 0.9882 + }, + { + "start": 13634.42, + "end": 13636.7, + "probability": 0.9243 + }, + { + "start": 13637.22, + "end": 13642.54, + "probability": 0.9838 + }, + { + "start": 13642.68, + "end": 13644.26, + "probability": 0.3263 + }, + { + "start": 13644.48, + "end": 13644.68, + "probability": 0.4744 + }, + { + "start": 13644.72, + "end": 13645.86, + "probability": 0.9087 + }, + { + "start": 13646.34, + "end": 13648.26, + "probability": 0.9957 + }, + { + "start": 13649.74, + "end": 13651.82, + "probability": 0.9694 + }, + { + "start": 13652.56, + "end": 13654.84, + "probability": 0.8945 + }, + { + "start": 13655.82, + "end": 13658.93, + "probability": 0.9272 + }, + { + "start": 13660.64, + "end": 13661.54, + "probability": 0.5621 + }, + { + "start": 13661.6, + "end": 13663.14, + "probability": 0.9388 + }, + { + "start": 13663.5, + "end": 13665.12, + "probability": 0.6664 + }, + { + "start": 13665.82, + "end": 13668.18, + "probability": 0.9734 + }, + { + "start": 13668.26, + "end": 13671.66, + "probability": 0.957 + }, + { + "start": 13671.88, + "end": 13672.4, + "probability": 0.7355 + }, + { + "start": 13672.82, + "end": 13674.53, + "probability": 0.6446 + }, + { + "start": 13674.7, + "end": 13676.28, + "probability": 0.7355 + }, + { + "start": 13676.88, + "end": 13679.68, + "probability": 0.7045 + }, + { + "start": 13680.72, + "end": 13683.12, + "probability": 0.7573 + }, + { + "start": 13684.18, + "end": 13686.4, + "probability": 0.9324 + }, + { + "start": 13687.16, + "end": 13688.88, + "probability": 0.9223 + }, + { + "start": 13689.66, + "end": 13690.6, + "probability": 0.8577 + }, + { + "start": 13690.78, + "end": 13696.3, + "probability": 0.9285 + }, + { + "start": 13700.62, + "end": 13701.42, + "probability": 0.8902 + }, + { + "start": 13701.46, + "end": 13703.68, + "probability": 0.9799 + }, + { + "start": 13703.78, + "end": 13704.62, + "probability": 0.3798 + }, + { + "start": 13704.76, + "end": 13704.9, + "probability": 0.7872 + }, + { + "start": 13705.82, + "end": 13707.42, + "probability": 0.9424 + }, + { + "start": 13707.98, + "end": 13709.8, + "probability": 0.9082 + }, + { + "start": 13710.0, + "end": 13716.62, + "probability": 0.9469 + }, + { + "start": 13716.84, + "end": 13718.14, + "probability": 0.7542 + }, + { + "start": 13718.38, + "end": 13723.6, + "probability": 0.6316 + }, + { + "start": 13726.72, + "end": 13728.04, + "probability": 0.2611 + }, + { + "start": 13737.12, + "end": 13742.54, + "probability": 0.4716 + }, + { + "start": 13742.66, + "end": 13743.5, + "probability": 0.7032 + }, + { + "start": 13743.72, + "end": 13745.14, + "probability": 0.2875 + }, + { + "start": 13745.46, + "end": 13749.86, + "probability": 0.7228 + }, + { + "start": 13749.96, + "end": 13750.32, + "probability": 0.0306 + }, + { + "start": 13752.47, + "end": 13752.54, + "probability": 0.1672 + }, + { + "start": 13753.02, + "end": 13757.76, + "probability": 0.021 + }, + { + "start": 13757.76, + "end": 13760.62, + "probability": 0.0097 + }, + { + "start": 13760.76, + "end": 13760.8, + "probability": 0.0738 + }, + { + "start": 13761.74, + "end": 13763.3, + "probability": 0.0938 + }, + { + "start": 13765.52, + "end": 13768.42, + "probability": 0.1493 + }, + { + "start": 13770.24, + "end": 13772.44, + "probability": 0.1762 + }, + { + "start": 13773.52, + "end": 13774.36, + "probability": 0.3473 + }, + { + "start": 13774.36, + "end": 13774.36, + "probability": 0.2496 + }, + { + "start": 13774.44, + "end": 13775.78, + "probability": 0.6175 + }, + { + "start": 13775.92, + "end": 13776.4, + "probability": 0.8251 + }, + { + "start": 13776.52, + "end": 13777.32, + "probability": 0.8922 + }, + { + "start": 13777.48, + "end": 13778.06, + "probability": 0.848 + }, + { + "start": 13778.14, + "end": 13779.92, + "probability": 0.9641 + }, + { + "start": 13780.88, + "end": 13783.24, + "probability": 0.9886 + }, + { + "start": 13783.24, + "end": 13790.32, + "probability": 0.9183 + }, + { + "start": 13790.42, + "end": 13791.1, + "probability": 0.8148 + }, + { + "start": 13791.46, + "end": 13792.2, + "probability": 0.9077 + }, + { + "start": 13792.28, + "end": 13794.26, + "probability": 0.9588 + }, + { + "start": 13795.38, + "end": 13795.9, + "probability": 0.1673 + }, + { + "start": 13797.48, + "end": 13797.48, + "probability": 0.0475 + }, + { + "start": 13797.48, + "end": 13799.6, + "probability": 0.9525 + }, + { + "start": 13799.7, + "end": 13801.68, + "probability": 0.7615 + }, + { + "start": 13801.76, + "end": 13805.12, + "probability": 0.866 + }, + { + "start": 13807.26, + "end": 13809.34, + "probability": 0.9918 + }, + { + "start": 13809.34, + "end": 13811.76, + "probability": 0.9868 + }, + { + "start": 13812.8, + "end": 13813.46, + "probability": 0.8323 + }, + { + "start": 13813.98, + "end": 13815.22, + "probability": 0.9167 + }, + { + "start": 13815.36, + "end": 13816.94, + "probability": 0.9877 + }, + { + "start": 13817.76, + "end": 13821.36, + "probability": 0.6589 + }, + { + "start": 13821.52, + "end": 13824.38, + "probability": 0.9974 + }, + { + "start": 13825.18, + "end": 13829.42, + "probability": 0.98 + }, + { + "start": 13829.52, + "end": 13831.56, + "probability": 0.9971 + }, + { + "start": 13832.06, + "end": 13833.5, + "probability": 0.9698 + }, + { + "start": 13834.12, + "end": 13835.44, + "probability": 0.9579 + }, + { + "start": 13835.48, + "end": 13837.82, + "probability": 0.7819 + }, + { + "start": 13837.92, + "end": 13838.58, + "probability": 0.7905 + }, + { + "start": 13839.62, + "end": 13840.88, + "probability": 0.8895 + }, + { + "start": 13840.96, + "end": 13841.48, + "probability": 0.7323 + }, + { + "start": 13841.98, + "end": 13842.9, + "probability": 0.9215 + }, + { + "start": 13842.98, + "end": 13844.56, + "probability": 0.7337 + }, + { + "start": 13845.1, + "end": 13846.74, + "probability": 0.8917 + }, + { + "start": 13846.86, + "end": 13848.14, + "probability": 0.9504 + }, + { + "start": 13848.54, + "end": 13849.08, + "probability": 0.9086 + }, + { + "start": 13849.16, + "end": 13851.34, + "probability": 0.602 + }, + { + "start": 13851.9, + "end": 13852.3, + "probability": 0.7974 + }, + { + "start": 13852.34, + "end": 13854.76, + "probability": 0.985 + }, + { + "start": 13854.76, + "end": 13858.84, + "probability": 0.9645 + }, + { + "start": 13859.02, + "end": 13859.14, + "probability": 0.7181 + }, + { + "start": 13860.56, + "end": 13862.44, + "probability": 0.8065 + }, + { + "start": 13862.78, + "end": 13864.48, + "probability": 0.8073 + }, + { + "start": 13864.64, + "end": 13867.2, + "probability": 0.8216 + }, + { + "start": 13867.34, + "end": 13868.92, + "probability": 0.4855 + }, + { + "start": 13869.08, + "end": 13869.64, + "probability": 0.5678 + }, + { + "start": 13869.7, + "end": 13873.34, + "probability": 0.8321 + }, + { + "start": 13873.86, + "end": 13874.7, + "probability": 0.9943 + }, + { + "start": 13875.16, + "end": 13875.38, + "probability": 0.4585 + }, + { + "start": 13875.44, + "end": 13877.0, + "probability": 0.9955 + }, + { + "start": 13878.6, + "end": 13882.48, + "probability": 0.8325 + }, + { + "start": 13882.9, + "end": 13884.73, + "probability": 0.7211 + }, + { + "start": 13885.66, + "end": 13888.44, + "probability": 0.8433 + }, + { + "start": 13888.52, + "end": 13889.06, + "probability": 0.9578 + }, + { + "start": 13889.12, + "end": 13890.08, + "probability": 0.9606 + }, + { + "start": 13891.48, + "end": 13895.76, + "probability": 0.982 + }, + { + "start": 13896.12, + "end": 13898.14, + "probability": 0.9912 + }, + { + "start": 13900.22, + "end": 13900.74, + "probability": 0.5815 + }, + { + "start": 13900.74, + "end": 13901.16, + "probability": 0.6136 + }, + { + "start": 13901.16, + "end": 13901.16, + "probability": 0.6047 + }, + { + "start": 13901.16, + "end": 13903.07, + "probability": 0.9873 + }, + { + "start": 13903.98, + "end": 13904.42, + "probability": 0.9441 + }, + { + "start": 13904.62, + "end": 13906.86, + "probability": 0.4656 + }, + { + "start": 13918.28, + "end": 13919.1, + "probability": 0.0226 + }, + { + "start": 13919.5, + "end": 13921.76, + "probability": 0.1105 + }, + { + "start": 13921.76, + "end": 13922.0, + "probability": 0.2474 + }, + { + "start": 13922.0, + "end": 13923.02, + "probability": 0.3518 + }, + { + "start": 13923.84, + "end": 13924.78, + "probability": 0.0502 + }, + { + "start": 13925.34, + "end": 13930.63, + "probability": 0.0852 + }, + { + "start": 13931.6, + "end": 13937.0, + "probability": 0.0111 + }, + { + "start": 13954.42, + "end": 13957.4, + "probability": 0.1352 + }, + { + "start": 13966.72, + "end": 13968.26, + "probability": 0.2384 + }, + { + "start": 13980.52, + "end": 13980.52, + "probability": 0.0192 + }, + { + "start": 13980.52, + "end": 13980.52, + "probability": 0.0412 + }, + { + "start": 13981.37, + "end": 13982.04, + "probability": 0.0303 + }, + { + "start": 13989.3, + "end": 13990.94, + "probability": 0.0521 + }, + { + "start": 13990.94, + "end": 13991.1, + "probability": 0.0317 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.0, + "end": 14002.0, + "probability": 0.0 + }, + { + "start": 14002.7, + "end": 14002.7, + "probability": 0.0703 + }, + { + "start": 14002.7, + "end": 14002.7, + "probability": 0.0171 + }, + { + "start": 14002.7, + "end": 14005.44, + "probability": 0.8342 + }, + { + "start": 14005.48, + "end": 14008.7, + "probability": 0.3038 + }, + { + "start": 14008.78, + "end": 14011.9, + "probability": 0.9693 + }, + { + "start": 14012.7, + "end": 14013.28, + "probability": 0.7962 + }, + { + "start": 14013.86, + "end": 14018.66, + "probability": 0.9376 + }, + { + "start": 14019.18, + "end": 14023.8, + "probability": 0.8432 + }, + { + "start": 14023.8, + "end": 14029.24, + "probability": 0.9814 + }, + { + "start": 14029.38, + "end": 14032.86, + "probability": 0.9912 + }, + { + "start": 14032.86, + "end": 14037.52, + "probability": 0.9358 + }, + { + "start": 14038.42, + "end": 14041.74, + "probability": 0.8137 + }, + { + "start": 14041.74, + "end": 14045.8, + "probability": 0.654 + }, + { + "start": 14046.5, + "end": 14048.56, + "probability": 0.9482 + }, + { + "start": 14048.74, + "end": 14050.14, + "probability": 0.9451 + }, + { + "start": 14050.82, + "end": 14053.24, + "probability": 0.936 + }, + { + "start": 14053.6, + "end": 14054.1, + "probability": 0.7619 + }, + { + "start": 14054.5, + "end": 14055.16, + "probability": 0.9211 + }, + { + "start": 14055.52, + "end": 14057.82, + "probability": 0.8135 + }, + { + "start": 14057.86, + "end": 14059.9, + "probability": 0.9779 + }, + { + "start": 14060.0, + "end": 14061.44, + "probability": 0.8531 + }, + { + "start": 14061.92, + "end": 14062.3, + "probability": 0.755 + }, + { + "start": 14062.9, + "end": 14067.62, + "probability": 0.9826 + }, + { + "start": 14067.9, + "end": 14072.54, + "probability": 0.9958 + }, + { + "start": 14072.96, + "end": 14077.28, + "probability": 0.9164 + }, + { + "start": 14077.38, + "end": 14080.32, + "probability": 0.8517 + }, + { + "start": 14080.7, + "end": 14081.0, + "probability": 0.4968 + }, + { + "start": 14081.98, + "end": 14082.96, + "probability": 0.8825 + }, + { + "start": 14083.0, + "end": 14086.66, + "probability": 0.9858 + }, + { + "start": 14087.32, + "end": 14087.84, + "probability": 0.6603 + }, + { + "start": 14088.28, + "end": 14089.86, + "probability": 0.2585 + }, + { + "start": 14089.92, + "end": 14093.46, + "probability": 0.7251 + }, + { + "start": 14093.64, + "end": 14094.48, + "probability": 0.7712 + }, + { + "start": 14095.3, + "end": 14095.8, + "probability": 0.7189 + }, + { + "start": 14095.96, + "end": 14097.38, + "probability": 0.6772 + }, + { + "start": 14097.46, + "end": 14100.92, + "probability": 0.7528 + }, + { + "start": 14101.06, + "end": 14104.5, + "probability": 0.9701 + }, + { + "start": 14104.56, + "end": 14108.18, + "probability": 0.9719 + }, + { + "start": 14108.26, + "end": 14109.48, + "probability": 0.6385 + }, + { + "start": 14109.76, + "end": 14110.08, + "probability": 0.8049 + }, + { + "start": 14110.14, + "end": 14111.32, + "probability": 0.6775 + }, + { + "start": 14111.74, + "end": 14115.34, + "probability": 0.9819 + }, + { + "start": 14115.98, + "end": 14116.78, + "probability": 0.7398 + }, + { + "start": 14116.86, + "end": 14117.38, + "probability": 0.8914 + }, + { + "start": 14117.46, + "end": 14120.78, + "probability": 0.8835 + }, + { + "start": 14120.98, + "end": 14123.52, + "probability": 0.975 + }, + { + "start": 14124.14, + "end": 14126.1, + "probability": 0.9078 + }, + { + "start": 14126.1, + "end": 14128.6, + "probability": 0.945 + }, + { + "start": 14128.66, + "end": 14129.72, + "probability": 0.9993 + }, + { + "start": 14130.64, + "end": 14134.48, + "probability": 0.9644 + }, + { + "start": 14134.76, + "end": 14137.12, + "probability": 0.9941 + }, + { + "start": 14137.12, + "end": 14139.64, + "probability": 0.9879 + }, + { + "start": 14140.42, + "end": 14143.12, + "probability": 0.9502 + }, + { + "start": 14143.3, + "end": 14144.54, + "probability": 0.7842 + }, + { + "start": 14144.9, + "end": 14148.84, + "probability": 0.978 + }, + { + "start": 14149.32, + "end": 14154.06, + "probability": 0.9885 + }, + { + "start": 14154.32, + "end": 14156.32, + "probability": 0.9925 + }, + { + "start": 14157.26, + "end": 14158.76, + "probability": 0.9811 + }, + { + "start": 14159.52, + "end": 14160.66, + "probability": 0.8434 + }, + { + "start": 14161.18, + "end": 14163.78, + "probability": 0.9907 + }, + { + "start": 14163.78, + "end": 14166.6, + "probability": 0.8488 + }, + { + "start": 14167.64, + "end": 14170.08, + "probability": 0.9693 + }, + { + "start": 14170.08, + "end": 14172.74, + "probability": 0.6852 + }, + { + "start": 14172.78, + "end": 14176.26, + "probability": 0.989 + }, + { + "start": 14176.48, + "end": 14176.86, + "probability": 0.8078 + }, + { + "start": 14177.86, + "end": 14182.08, + "probability": 0.9086 + }, + { + "start": 14182.08, + "end": 14185.16, + "probability": 0.9958 + }, + { + "start": 14185.88, + "end": 14188.96, + "probability": 0.5953 + }, + { + "start": 14189.84, + "end": 14194.74, + "probability": 0.9663 + }, + { + "start": 14194.84, + "end": 14195.26, + "probability": 0.7496 + }, + { + "start": 14196.1, + "end": 14198.96, + "probability": 0.7782 + }, + { + "start": 14199.6, + "end": 14203.84, + "probability": 0.9805 + }, + { + "start": 14204.24, + "end": 14204.74, + "probability": 0.8264 + }, + { + "start": 14205.72, + "end": 14207.16, + "probability": 0.9265 + }, + { + "start": 14208.1, + "end": 14210.42, + "probability": 0.9019 + }, + { + "start": 14210.68, + "end": 14212.06, + "probability": 0.6621 + }, + { + "start": 14212.84, + "end": 14215.02, + "probability": 0.7262 + }, + { + "start": 14230.68, + "end": 14230.74, + "probability": 0.5659 + }, + { + "start": 14230.74, + "end": 14231.94, + "probability": 0.742 + }, + { + "start": 14232.12, + "end": 14233.8, + "probability": 0.8302 + }, + { + "start": 14233.9, + "end": 14235.1, + "probability": 0.9915 + }, + { + "start": 14235.16, + "end": 14235.54, + "probability": 0.6486 + }, + { + "start": 14235.9, + "end": 14238.66, + "probability": 0.9696 + }, + { + "start": 14238.84, + "end": 14239.88, + "probability": 0.8953 + }, + { + "start": 14240.34, + "end": 14245.32, + "probability": 0.9918 + }, + { + "start": 14245.34, + "end": 14247.16, + "probability": 0.9962 + }, + { + "start": 14247.28, + "end": 14248.56, + "probability": 0.9988 + }, + { + "start": 14248.8, + "end": 14249.2, + "probability": 0.7815 + }, + { + "start": 14249.38, + "end": 14251.72, + "probability": 0.9489 + }, + { + "start": 14252.1, + "end": 14253.2, + "probability": 0.9857 + }, + { + "start": 14254.3, + "end": 14255.76, + "probability": 0.7722 + }, + { + "start": 14256.02, + "end": 14256.5, + "probability": 0.8428 + }, + { + "start": 14257.02, + "end": 14258.51, + "probability": 0.9548 + }, + { + "start": 14258.8, + "end": 14261.64, + "probability": 0.9973 + }, + { + "start": 14262.02, + "end": 14263.94, + "probability": 0.9966 + }, + { + "start": 14264.3, + "end": 14266.74, + "probability": 0.969 + }, + { + "start": 14267.06, + "end": 14267.94, + "probability": 0.9897 + }, + { + "start": 14268.04, + "end": 14269.78, + "probability": 0.9961 + }, + { + "start": 14270.04, + "end": 14270.65, + "probability": 0.9941 + }, + { + "start": 14271.06, + "end": 14271.9, + "probability": 0.9097 + }, + { + "start": 14272.22, + "end": 14272.34, + "probability": 0.573 + }, + { + "start": 14272.48, + "end": 14273.14, + "probability": 0.9406 + }, + { + "start": 14273.28, + "end": 14273.86, + "probability": 0.9375 + }, + { + "start": 14273.94, + "end": 14274.48, + "probability": 0.6817 + }, + { + "start": 14274.82, + "end": 14276.18, + "probability": 0.9528 + }, + { + "start": 14276.58, + "end": 14278.92, + "probability": 0.9112 + }, + { + "start": 14279.1, + "end": 14279.44, + "probability": 0.8985 + }, + { + "start": 14279.52, + "end": 14280.82, + "probability": 0.9303 + }, + { + "start": 14281.12, + "end": 14282.46, + "probability": 0.9925 + }, + { + "start": 14284.14, + "end": 14285.82, + "probability": 0.8472 + }, + { + "start": 14286.1, + "end": 14288.76, + "probability": 0.958 + }, + { + "start": 14288.86, + "end": 14292.6, + "probability": 0.9836 + }, + { + "start": 14292.86, + "end": 14294.98, + "probability": 0.8276 + }, + { + "start": 14295.4, + "end": 14297.36, + "probability": 0.9302 + }, + { + "start": 14297.42, + "end": 14298.08, + "probability": 0.8468 + }, + { + "start": 14298.18, + "end": 14298.68, + "probability": 0.9197 + }, + { + "start": 14299.0, + "end": 14301.84, + "probability": 0.9971 + }, + { + "start": 14302.52, + "end": 14303.96, + "probability": 0.9615 + }, + { + "start": 14304.04, + "end": 14305.94, + "probability": 0.9749 + }, + { + "start": 14306.3, + "end": 14309.88, + "probability": 0.9087 + }, + { + "start": 14310.12, + "end": 14314.22, + "probability": 0.9955 + }, + { + "start": 14314.76, + "end": 14316.18, + "probability": 0.7832 + }, + { + "start": 14316.24, + "end": 14317.01, + "probability": 0.9922 + }, + { + "start": 14317.5, + "end": 14319.62, + "probability": 0.7523 + }, + { + "start": 14319.62, + "end": 14322.12, + "probability": 0.9901 + }, + { + "start": 14322.46, + "end": 14323.88, + "probability": 0.8982 + }, + { + "start": 14324.32, + "end": 14328.22, + "probability": 0.6807 + }, + { + "start": 14328.26, + "end": 14329.3, + "probability": 0.8376 + }, + { + "start": 14329.46, + "end": 14331.42, + "probability": 0.8427 + }, + { + "start": 14331.96, + "end": 14332.06, + "probability": 0.4131 + }, + { + "start": 14332.12, + "end": 14332.49, + "probability": 0.9282 + }, + { + "start": 14333.24, + "end": 14336.5, + "probability": 0.7989 + }, + { + "start": 14337.44, + "end": 14339.96, + "probability": 0.8958 + }, + { + "start": 14340.06, + "end": 14340.6, + "probability": 0.853 + }, + { + "start": 14340.68, + "end": 14343.72, + "probability": 0.6678 + }, + { + "start": 14344.02, + "end": 14345.75, + "probability": 0.9917 + }, + { + "start": 14345.94, + "end": 14348.6, + "probability": 0.994 + }, + { + "start": 14348.9, + "end": 14352.14, + "probability": 0.9968 + }, + { + "start": 14352.44, + "end": 14355.18, + "probability": 0.9929 + }, + { + "start": 14355.58, + "end": 14357.78, + "probability": 0.9908 + }, + { + "start": 14358.34, + "end": 14359.62, + "probability": 0.9372 + }, + { + "start": 14360.36, + "end": 14362.2, + "probability": 0.6096 + }, + { + "start": 14362.84, + "end": 14363.78, + "probability": 0.8552 + }, + { + "start": 14364.34, + "end": 14366.48, + "probability": 0.824 + }, + { + "start": 14367.0, + "end": 14369.4, + "probability": 0.917 + }, + { + "start": 14370.06, + "end": 14370.46, + "probability": 0.9378 + }, + { + "start": 14370.68, + "end": 14371.78, + "probability": 0.9888 + }, + { + "start": 14372.22, + "end": 14373.58, + "probability": 0.9756 + }, + { + "start": 14373.86, + "end": 14377.14, + "probability": 0.9912 + }, + { + "start": 14377.28, + "end": 14381.64, + "probability": 0.9969 + }, + { + "start": 14382.02, + "end": 14382.48, + "probability": 0.8915 + }, + { + "start": 14382.52, + "end": 14384.06, + "probability": 0.9935 + }, + { + "start": 14384.38, + "end": 14386.74, + "probability": 0.8703 + }, + { + "start": 14387.3, + "end": 14390.08, + "probability": 0.8693 + }, + { + "start": 14390.56, + "end": 14390.96, + "probability": 0.9014 + }, + { + "start": 14391.18, + "end": 14394.5, + "probability": 0.9787 + }, + { + "start": 14394.62, + "end": 14395.38, + "probability": 0.8016 + }, + { + "start": 14395.68, + "end": 14399.86, + "probability": 0.9787 + }, + { + "start": 14399.86, + "end": 14403.68, + "probability": 0.9974 + }, + { + "start": 14404.0, + "end": 14404.24, + "probability": 0.7921 + }, + { + "start": 14405.02, + "end": 14405.92, + "probability": 0.6304 + }, + { + "start": 14405.98, + "end": 14406.4, + "probability": 0.4431 + }, + { + "start": 14406.64, + "end": 14409.18, + "probability": 0.9895 + }, + { + "start": 14409.52, + "end": 14411.2, + "probability": 0.9644 + }, + { + "start": 14411.34, + "end": 14412.66, + "probability": 0.9 + }, + { + "start": 14413.26, + "end": 14417.04, + "probability": 0.9648 + }, + { + "start": 14417.6, + "end": 14421.04, + "probability": 0.8694 + }, + { + "start": 14421.04, + "end": 14423.3, + "probability": 0.9967 + }, + { + "start": 14423.74, + "end": 14425.88, + "probability": 0.999 + }, + { + "start": 14426.18, + "end": 14427.06, + "probability": 0.8233 + }, + { + "start": 14427.2, + "end": 14429.5, + "probability": 0.7082 + }, + { + "start": 14430.14, + "end": 14433.08, + "probability": 0.606 + }, + { + "start": 14433.22, + "end": 14433.44, + "probability": 0.3762 + }, + { + "start": 14434.26, + "end": 14436.28, + "probability": 0.6695 + }, + { + "start": 14436.82, + "end": 14437.46, + "probability": 0.4658 + }, + { + "start": 14437.6, + "end": 14439.09, + "probability": 0.952 + }, + { + "start": 14439.38, + "end": 14440.6, + "probability": 0.9417 + }, + { + "start": 14440.68, + "end": 14442.92, + "probability": 0.8612 + }, + { + "start": 14443.1, + "end": 14444.84, + "probability": 0.8509 + }, + { + "start": 14445.68, + "end": 14448.12, + "probability": 0.9796 + }, + { + "start": 14448.26, + "end": 14448.8, + "probability": 0.9629 + }, + { + "start": 14449.1, + "end": 14450.87, + "probability": 0.6736 + }, + { + "start": 14451.0, + "end": 14452.2, + "probability": 0.6707 + }, + { + "start": 14452.28, + "end": 14452.78, + "probability": 0.5606 + }, + { + "start": 14452.9, + "end": 14453.78, + "probability": 0.4941 + }, + { + "start": 14453.82, + "end": 14454.38, + "probability": 0.4718 + }, + { + "start": 14454.44, + "end": 14455.48, + "probability": 0.9116 + }, + { + "start": 14455.52, + "end": 14456.04, + "probability": 0.372 + }, + { + "start": 14456.64, + "end": 14457.74, + "probability": 0.6583 + }, + { + "start": 14469.98, + "end": 14472.7, + "probability": 0.5948 + }, + { + "start": 14473.38, + "end": 14474.4, + "probability": 0.7892 + }, + { + "start": 14475.08, + "end": 14477.42, + "probability": 0.7511 + }, + { + "start": 14478.68, + "end": 14481.62, + "probability": 0.7865 + }, + { + "start": 14481.86, + "end": 14485.96, + "probability": 0.9933 + }, + { + "start": 14486.66, + "end": 14491.32, + "probability": 0.9385 + }, + { + "start": 14491.4, + "end": 14496.14, + "probability": 0.9918 + }, + { + "start": 14496.84, + "end": 14501.28, + "probability": 0.9778 + }, + { + "start": 14501.94, + "end": 14502.76, + "probability": 0.8864 + }, + { + "start": 14502.94, + "end": 14505.74, + "probability": 0.8936 + }, + { + "start": 14506.44, + "end": 14512.66, + "probability": 0.9516 + }, + { + "start": 14513.46, + "end": 14514.34, + "probability": 0.881 + }, + { + "start": 14514.48, + "end": 14519.32, + "probability": 0.9526 + }, + { + "start": 14519.96, + "end": 14524.2, + "probability": 0.761 + }, + { + "start": 14525.14, + "end": 14527.06, + "probability": 0.3789 + }, + { + "start": 14527.06, + "end": 14527.28, + "probability": 0.5989 + }, + { + "start": 14527.36, + "end": 14529.26, + "probability": 0.8479 + }, + { + "start": 14529.44, + "end": 14531.9, + "probability": 0.9779 + }, + { + "start": 14532.0, + "end": 14532.68, + "probability": 0.783 + }, + { + "start": 14533.34, + "end": 14537.98, + "probability": 0.9405 + }, + { + "start": 14538.76, + "end": 14542.76, + "probability": 0.9775 + }, + { + "start": 14544.77, + "end": 14546.16, + "probability": 0.9905 + }, + { + "start": 14547.33, + "end": 14548.36, + "probability": 0.9897 + }, + { + "start": 14549.6, + "end": 14551.58, + "probability": 0.8921 + }, + { + "start": 14552.2, + "end": 14553.82, + "probability": 0.9813 + }, + { + "start": 14554.1, + "end": 14557.22, + "probability": 0.95 + }, + { + "start": 14557.94, + "end": 14560.88, + "probability": 0.9664 + }, + { + "start": 14561.86, + "end": 14563.78, + "probability": 0.6831 + }, + { + "start": 14564.1, + "end": 14565.76, + "probability": 0.342 + }, + { + "start": 14565.9, + "end": 14567.24, + "probability": 0.9351 + }, + { + "start": 14567.84, + "end": 14569.86, + "probability": 0.6585 + }, + { + "start": 14570.54, + "end": 14571.84, + "probability": 0.9528 + }, + { + "start": 14572.32, + "end": 14578.98, + "probability": 0.9795 + }, + { + "start": 14579.66, + "end": 14581.22, + "probability": 0.9924 + }, + { + "start": 14581.32, + "end": 14584.14, + "probability": 0.8653 + }, + { + "start": 14584.62, + "end": 14586.12, + "probability": 0.8482 + }, + { + "start": 14586.66, + "end": 14587.32, + "probability": 0.526 + }, + { + "start": 14587.4, + "end": 14589.7, + "probability": 0.9584 + }, + { + "start": 14590.16, + "end": 14594.24, + "probability": 0.9977 + }, + { + "start": 14594.38, + "end": 14595.42, + "probability": 0.8405 + }, + { + "start": 14595.48, + "end": 14599.2, + "probability": 0.7893 + }, + { + "start": 14599.24, + "end": 14600.44, + "probability": 0.95 + }, + { + "start": 14601.02, + "end": 14602.36, + "probability": 0.9484 + }, + { + "start": 14602.96, + "end": 14607.2, + "probability": 0.9582 + }, + { + "start": 14607.72, + "end": 14610.44, + "probability": 0.912 + }, + { + "start": 14611.04, + "end": 14612.9, + "probability": 0.9165 + }, + { + "start": 14613.62, + "end": 14617.34, + "probability": 0.7621 + }, + { + "start": 14617.96, + "end": 14619.44, + "probability": 0.8801 + }, + { + "start": 14620.02, + "end": 14621.86, + "probability": 0.9188 + }, + { + "start": 14622.4, + "end": 14626.43, + "probability": 0.9648 + }, + { + "start": 14627.1, + "end": 14635.34, + "probability": 0.9796 + }, + { + "start": 14635.8, + "end": 14637.36, + "probability": 0.6866 + }, + { + "start": 14637.7, + "end": 14638.0, + "probability": 0.4655 + }, + { + "start": 14638.02, + "end": 14639.6, + "probability": 0.8972 + }, + { + "start": 14639.64, + "end": 14641.05, + "probability": 0.9912 + }, + { + "start": 14642.04, + "end": 14645.02, + "probability": 0.8169 + }, + { + "start": 14645.42, + "end": 14647.48, + "probability": 0.8533 + }, + { + "start": 14647.88, + "end": 14648.68, + "probability": 0.8189 + }, + { + "start": 14648.74, + "end": 14650.12, + "probability": 0.8019 + }, + { + "start": 14650.44, + "end": 14654.44, + "probability": 0.9891 + }, + { + "start": 14654.44, + "end": 14657.56, + "probability": 0.9507 + }, + { + "start": 14657.68, + "end": 14658.0, + "probability": 0.7466 + }, + { + "start": 14659.06, + "end": 14660.76, + "probability": 0.8408 + }, + { + "start": 14660.82, + "end": 14664.5, + "probability": 0.9607 + }, + { + "start": 14664.86, + "end": 14666.02, + "probability": 0.8113 + }, + { + "start": 14666.48, + "end": 14667.18, + "probability": 0.5925 + }, + { + "start": 14667.36, + "end": 14668.22, + "probability": 0.8876 + }, + { + "start": 14668.32, + "end": 14670.38, + "probability": 0.7438 + }, + { + "start": 14671.26, + "end": 14671.4, + "probability": 0.2436 + }, + { + "start": 14671.4, + "end": 14671.4, + "probability": 0.4529 + }, + { + "start": 14671.4, + "end": 14671.68, + "probability": 0.4637 + }, + { + "start": 14672.72, + "end": 14674.8, + "probability": 0.923 + }, + { + "start": 14675.48, + "end": 14677.64, + "probability": 0.8499 + }, + { + "start": 14678.56, + "end": 14680.18, + "probability": 0.7802 + }, + { + "start": 14680.66, + "end": 14681.12, + "probability": 0.3999 + }, + { + "start": 14681.28, + "end": 14682.32, + "probability": 0.8473 + }, + { + "start": 14682.4, + "end": 14682.94, + "probability": 0.6748 + }, + { + "start": 14683.02, + "end": 14683.3, + "probability": 0.6627 + }, + { + "start": 14684.96, + "end": 14686.22, + "probability": 0.8021 + }, + { + "start": 14686.98, + "end": 14687.82, + "probability": 0.6467 + }, + { + "start": 14688.76, + "end": 14690.48, + "probability": 0.6573 + }, + { + "start": 14690.54, + "end": 14691.1, + "probability": 0.6564 + }, + { + "start": 14691.22, + "end": 14692.26, + "probability": 0.8243 + }, + { + "start": 14692.26, + "end": 14692.88, + "probability": 0.418 + }, + { + "start": 14693.0, + "end": 14694.02, + "probability": 0.3839 + }, + { + "start": 14694.12, + "end": 14694.6, + "probability": 0.8702 + }, + { + "start": 14695.02, + "end": 14696.04, + "probability": 0.7873 + }, + { + "start": 14696.06, + "end": 14696.56, + "probability": 0.9016 + }, + { + "start": 14697.5, + "end": 14698.94, + "probability": 0.5257 + }, + { + "start": 14700.46, + "end": 14702.06, + "probability": 0.9455 + }, + { + "start": 14702.12, + "end": 14702.76, + "probability": 0.9099 + }, + { + "start": 14702.98, + "end": 14703.96, + "probability": 0.0404 + }, + { + "start": 14704.62, + "end": 14706.46, + "probability": 0.6152 + }, + { + "start": 14707.14, + "end": 14709.38, + "probability": 0.8671 + }, + { + "start": 14709.98, + "end": 14710.9, + "probability": 0.9222 + }, + { + "start": 14711.28, + "end": 14712.0, + "probability": 0.9347 + }, + { + "start": 14712.16, + "end": 14712.68, + "probability": 0.2203 + }, + { + "start": 14712.68, + "end": 14712.68, + "probability": 0.5238 + }, + { + "start": 14712.68, + "end": 14712.86, + "probability": 0.6484 + }, + { + "start": 14713.18, + "end": 14713.6, + "probability": 0.8822 + }, + { + "start": 14714.3, + "end": 14716.03, + "probability": 0.9486 + }, + { + "start": 14716.88, + "end": 14719.02, + "probability": 0.9646 + }, + { + "start": 14719.9, + "end": 14721.06, + "probability": 0.4477 + }, + { + "start": 14721.08, + "end": 14721.94, + "probability": 0.5692 + }, + { + "start": 14722.08, + "end": 14723.64, + "probability": 0.6081 + }, + { + "start": 14723.64, + "end": 14724.26, + "probability": 0.9084 + }, + { + "start": 14725.54, + "end": 14726.68, + "probability": 0.9451 + }, + { + "start": 14727.04, + "end": 14727.64, + "probability": 0.9458 + }, + { + "start": 14727.7, + "end": 14729.0, + "probability": 0.7976 + }, + { + "start": 14729.02, + "end": 14729.72, + "probability": 0.6447 + }, + { + "start": 14730.78, + "end": 14733.34, + "probability": 0.5365 + }, + { + "start": 14733.94, + "end": 14734.74, + "probability": 0.5458 + }, + { + "start": 14734.8, + "end": 14735.2, + "probability": 0.5384 + }, + { + "start": 14735.34, + "end": 14736.4, + "probability": 0.6821 + }, + { + "start": 14736.44, + "end": 14737.06, + "probability": 0.7228 + }, + { + "start": 14737.62, + "end": 14742.79, + "probability": 0.7551 + }, + { + "start": 14743.8, + "end": 14745.08, + "probability": 0.0284 + }, + { + "start": 14745.08, + "end": 14748.74, + "probability": 0.7704 + }, + { + "start": 14748.8, + "end": 14749.12, + "probability": 0.9034 + }, + { + "start": 14750.16, + "end": 14752.68, + "probability": 0.7018 + }, + { + "start": 14753.36, + "end": 14757.34, + "probability": 0.5639 + }, + { + "start": 14758.52, + "end": 14761.1, + "probability": 0.9824 + }, + { + "start": 14762.31, + "end": 14766.14, + "probability": 0.5572 + }, + { + "start": 14766.98, + "end": 14767.54, + "probability": 0.5992 + }, + { + "start": 14781.08, + "end": 14785.62, + "probability": 0.6312 + }, + { + "start": 14785.8, + "end": 14786.96, + "probability": 0.3103 + }, + { + "start": 14788.26, + "end": 14791.18, + "probability": 0.7825 + }, + { + "start": 14794.0, + "end": 14794.56, + "probability": 0.0701 + }, + { + "start": 14794.72, + "end": 14796.61, + "probability": 0.1972 + }, + { + "start": 14798.04, + "end": 14799.26, + "probability": 0.0205 + }, + { + "start": 14799.54, + "end": 14802.22, + "probability": 0.1388 + }, + { + "start": 14802.96, + "end": 14806.86, + "probability": 0.0507 + }, + { + "start": 15015.19, + "end": 15015.19, + "probability": 0.0 + }, + { + "start": 15015.19, + "end": 15015.19, + "probability": 0.0 + }, + { + "start": 15015.19, + "end": 15015.19, + "probability": 0.0 + }, + { + "start": 15015.19, + "end": 15015.19, + "probability": 0.0 + }, + { + "start": 15015.19, + "end": 15015.19, + "probability": 0.0 + }, + { + "start": 15015.19, + "end": 15015.19, + "probability": 0.0 + } + ], + "segments_count": 5256, + "words_count": 25824, + "avg_words_per_segment": 4.9132, + "avg_segment_duration": 1.9621, + "avg_words_per_minute": 103.1915, + "plenum_id": "123026", + "duration": 15015.19, + "title": null, + "plenum_date": "2024-01-08" +} \ No newline at end of file