diff --git "a/130945/metadata.json" "b/130945/metadata.json" new file mode 100644--- /dev/null +++ "b/130945/metadata.json" @@ -0,0 +1,78222 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "130945", + "quality_score": 0.9372, + "per_segment_quality_scores": [ + { + "start": 59.1, + "end": 66.14, + "probability": 0.3387 + }, + { + "start": 66.9, + "end": 72.18, + "probability": 0.851 + }, + { + "start": 72.5, + "end": 73.64, + "probability": 0.7664 + }, + { + "start": 73.78, + "end": 74.76, + "probability": 0.7591 + }, + { + "start": 74.84, + "end": 76.12, + "probability": 0.7513 + }, + { + "start": 76.3, + "end": 77.36, + "probability": 0.9376 + }, + { + "start": 77.86, + "end": 82.82, + "probability": 0.6851 + }, + { + "start": 85.94, + "end": 86.3, + "probability": 0.0301 + }, + { + "start": 87.62, + "end": 90.72, + "probability": 0.0752 + }, + { + "start": 92.84, + "end": 92.84, + "probability": 0.0048 + }, + { + "start": 92.84, + "end": 93.4, + "probability": 0.0405 + }, + { + "start": 94.08, + "end": 96.98, + "probability": 0.0282 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.0, + "end": 125.0, + "probability": 0.0 + }, + { + "start": 125.26, + "end": 125.38, + "probability": 0.0905 + }, + { + "start": 125.38, + "end": 126.14, + "probability": 0.0422 + }, + { + "start": 126.82, + "end": 128.68, + "probability": 0.824 + }, + { + "start": 129.84, + "end": 133.94, + "probability": 0.9875 + }, + { + "start": 134.78, + "end": 136.8, + "probability": 0.9683 + }, + { + "start": 137.94, + "end": 139.38, + "probability": 0.9907 + }, + { + "start": 140.72, + "end": 141.64, + "probability": 0.9872 + }, + { + "start": 141.78, + "end": 142.38, + "probability": 0.984 + }, + { + "start": 142.48, + "end": 143.18, + "probability": 0.9337 + }, + { + "start": 143.32, + "end": 143.62, + "probability": 0.988 + }, + { + "start": 143.88, + "end": 144.32, + "probability": 0.9648 + }, + { + "start": 145.32, + "end": 146.16, + "probability": 0.9629 + }, + { + "start": 146.2, + "end": 148.7, + "probability": 0.9941 + }, + { + "start": 150.08, + "end": 154.76, + "probability": 0.9992 + }, + { + "start": 154.86, + "end": 155.8, + "probability": 0.9985 + }, + { + "start": 156.94, + "end": 159.96, + "probability": 0.9971 + }, + { + "start": 161.32, + "end": 166.44, + "probability": 0.9904 + }, + { + "start": 168.34, + "end": 173.0, + "probability": 0.9954 + }, + { + "start": 174.84, + "end": 176.1, + "probability": 0.9393 + }, + { + "start": 176.26, + "end": 179.56, + "probability": 0.9962 + }, + { + "start": 180.18, + "end": 182.38, + "probability": 0.9995 + }, + { + "start": 183.98, + "end": 189.3, + "probability": 0.9911 + }, + { + "start": 190.62, + "end": 194.9, + "probability": 0.9961 + }, + { + "start": 194.9, + "end": 199.38, + "probability": 0.9981 + }, + { + "start": 199.56, + "end": 201.82, + "probability": 0.7105 + }, + { + "start": 202.02, + "end": 202.32, + "probability": 0.9678 + }, + { + "start": 202.68, + "end": 202.84, + "probability": 0.932 + }, + { + "start": 202.98, + "end": 203.08, + "probability": 0.4037 + }, + { + "start": 203.08, + "end": 203.26, + "probability": 0.3617 + }, + { + "start": 203.4, + "end": 203.88, + "probability": 0.3776 + }, + { + "start": 203.88, + "end": 203.88, + "probability": 0.7058 + }, + { + "start": 204.64, + "end": 209.52, + "probability": 0.9908 + }, + { + "start": 209.66, + "end": 210.74, + "probability": 0.9934 + }, + { + "start": 211.66, + "end": 216.38, + "probability": 0.9891 + }, + { + "start": 216.5, + "end": 219.64, + "probability": 0.8503 + }, + { + "start": 221.26, + "end": 222.0, + "probability": 0.9665 + }, + { + "start": 224.74, + "end": 225.74, + "probability": 0.9732 + }, + { + "start": 226.98, + "end": 227.84, + "probability": 0.7284 + }, + { + "start": 228.9, + "end": 229.9, + "probability": 0.9885 + }, + { + "start": 230.74, + "end": 231.62, + "probability": 0.9639 + }, + { + "start": 231.8, + "end": 237.42, + "probability": 0.947 + }, + { + "start": 238.9, + "end": 242.1, + "probability": 0.9985 + }, + { + "start": 242.98, + "end": 244.02, + "probability": 0.6827 + }, + { + "start": 245.4, + "end": 248.94, + "probability": 0.9888 + }, + { + "start": 249.1, + "end": 250.96, + "probability": 0.9786 + }, + { + "start": 252.36, + "end": 253.24, + "probability": 0.9435 + }, + { + "start": 254.28, + "end": 256.6, + "probability": 0.984 + }, + { + "start": 256.6, + "end": 259.2, + "probability": 0.998 + }, + { + "start": 260.3, + "end": 260.79, + "probability": 0.5292 + }, + { + "start": 262.52, + "end": 264.52, + "probability": 0.9873 + }, + { + "start": 265.7, + "end": 269.54, + "probability": 0.9691 + }, + { + "start": 270.96, + "end": 273.68, + "probability": 0.9977 + }, + { + "start": 273.68, + "end": 277.32, + "probability": 0.995 + }, + { + "start": 277.84, + "end": 279.12, + "probability": 0.9431 + }, + { + "start": 281.52, + "end": 286.24, + "probability": 0.9956 + }, + { + "start": 287.5, + "end": 291.7, + "probability": 0.9961 + }, + { + "start": 291.7, + "end": 295.0, + "probability": 0.9589 + }, + { + "start": 296.16, + "end": 301.0, + "probability": 0.8861 + }, + { + "start": 302.48, + "end": 305.11, + "probability": 0.9773 + }, + { + "start": 306.34, + "end": 309.92, + "probability": 0.999 + }, + { + "start": 310.22, + "end": 311.22, + "probability": 0.6364 + }, + { + "start": 311.96, + "end": 313.7, + "probability": 0.9167 + }, + { + "start": 314.2, + "end": 315.8, + "probability": 0.6982 + }, + { + "start": 316.22, + "end": 318.02, + "probability": 0.9764 + }, + { + "start": 318.1, + "end": 323.8, + "probability": 0.9795 + }, + { + "start": 326.0, + "end": 327.7, + "probability": 0.9961 + }, + { + "start": 328.96, + "end": 330.12, + "probability": 0.7519 + }, + { + "start": 330.84, + "end": 333.8, + "probability": 0.9808 + }, + { + "start": 335.16, + "end": 337.1, + "probability": 0.9565 + }, + { + "start": 337.98, + "end": 339.6, + "probability": 0.9911 + }, + { + "start": 339.88, + "end": 345.92, + "probability": 0.9923 + }, + { + "start": 347.48, + "end": 352.24, + "probability": 0.9926 + }, + { + "start": 352.74, + "end": 356.14, + "probability": 0.998 + }, + { + "start": 356.14, + "end": 360.78, + "probability": 0.9932 + }, + { + "start": 361.1, + "end": 367.0, + "probability": 0.9967 + }, + { + "start": 369.22, + "end": 369.96, + "probability": 0.7102 + }, + { + "start": 371.34, + "end": 374.34, + "probability": 0.9985 + }, + { + "start": 375.72, + "end": 378.82, + "probability": 0.9861 + }, + { + "start": 380.18, + "end": 381.9, + "probability": 0.9892 + }, + { + "start": 383.28, + "end": 384.12, + "probability": 0.9539 + }, + { + "start": 385.26, + "end": 391.86, + "probability": 0.9967 + }, + { + "start": 391.86, + "end": 397.54, + "probability": 0.994 + }, + { + "start": 399.02, + "end": 400.26, + "probability": 0.8424 + }, + { + "start": 401.04, + "end": 402.42, + "probability": 0.9993 + }, + { + "start": 402.96, + "end": 405.04, + "probability": 0.9923 + }, + { + "start": 406.08, + "end": 409.08, + "probability": 0.999 + }, + { + "start": 409.08, + "end": 412.44, + "probability": 0.9967 + }, + { + "start": 413.16, + "end": 417.88, + "probability": 0.9943 + }, + { + "start": 419.04, + "end": 423.72, + "probability": 0.999 + }, + { + "start": 424.9, + "end": 425.3, + "probability": 0.8265 + }, + { + "start": 426.24, + "end": 426.74, + "probability": 0.5025 + }, + { + "start": 426.86, + "end": 430.62, + "probability": 0.9182 + }, + { + "start": 430.84, + "end": 432.36, + "probability": 0.6676 + }, + { + "start": 432.44, + "end": 432.88, + "probability": 0.8228 + }, + { + "start": 446.5, + "end": 446.88, + "probability": 0.3799 + }, + { + "start": 446.88, + "end": 448.28, + "probability": 0.5876 + }, + { + "start": 449.6, + "end": 450.28, + "probability": 0.8895 + }, + { + "start": 451.02, + "end": 454.04, + "probability": 0.9121 + }, + { + "start": 454.78, + "end": 456.48, + "probability": 0.816 + }, + { + "start": 457.5, + "end": 461.62, + "probability": 0.9417 + }, + { + "start": 461.78, + "end": 464.36, + "probability": 0.9494 + }, + { + "start": 464.78, + "end": 468.06, + "probability": 0.9949 + }, + { + "start": 468.92, + "end": 470.36, + "probability": 0.9707 + }, + { + "start": 471.56, + "end": 475.66, + "probability": 0.9977 + }, + { + "start": 477.22, + "end": 479.3, + "probability": 0.9673 + }, + { + "start": 479.3, + "end": 480.42, + "probability": 0.3779 + }, + { + "start": 481.44, + "end": 482.35, + "probability": 0.1744 + }, + { + "start": 482.86, + "end": 483.52, + "probability": 0.1705 + }, + { + "start": 483.54, + "end": 484.11, + "probability": 0.8268 + }, + { + "start": 484.93, + "end": 485.04, + "probability": 0.106 + }, + { + "start": 485.04, + "end": 486.4, + "probability": 0.6295 + }, + { + "start": 486.46, + "end": 488.56, + "probability": 0.7028 + }, + { + "start": 488.6, + "end": 490.24, + "probability": 0.673 + }, + { + "start": 490.26, + "end": 490.4, + "probability": 0.1346 + }, + { + "start": 490.4, + "end": 492.32, + "probability": 0.0282 + }, + { + "start": 493.1, + "end": 493.9, + "probability": 0.0358 + }, + { + "start": 493.98, + "end": 493.98, + "probability": 0.5215 + }, + { + "start": 494.08, + "end": 494.76, + "probability": 0.8001 + }, + { + "start": 496.31, + "end": 497.42, + "probability": 0.0031 + }, + { + "start": 503.44, + "end": 504.48, + "probability": 0.0079 + }, + { + "start": 508.5, + "end": 508.9, + "probability": 0.0205 + }, + { + "start": 510.58, + "end": 514.46, + "probability": 0.265 + }, + { + "start": 514.66, + "end": 515.68, + "probability": 0.0924 + }, + { + "start": 515.95, + "end": 517.44, + "probability": 0.0281 + }, + { + "start": 519.48, + "end": 520.92, + "probability": 0.0541 + }, + { + "start": 520.92, + "end": 521.26, + "probability": 0.0964 + }, + { + "start": 521.26, + "end": 522.14, + "probability": 0.0522 + }, + { + "start": 522.74, + "end": 523.56, + "probability": 0.226 + }, + { + "start": 524.6, + "end": 527.04, + "probability": 0.0423 + }, + { + "start": 527.66, + "end": 528.7, + "probability": 0.1599 + }, + { + "start": 528.7, + "end": 529.86, + "probability": 0.6995 + }, + { + "start": 529.86, + "end": 530.36, + "probability": 0.0418 + }, + { + "start": 531.9, + "end": 534.6, + "probability": 0.0968 + }, + { + "start": 534.62, + "end": 536.72, + "probability": 0.113 + }, + { + "start": 536.82, + "end": 539.5, + "probability": 0.1129 + }, + { + "start": 539.5, + "end": 539.62, + "probability": 0.0328 + }, + { + "start": 539.62, + "end": 539.62, + "probability": 0.0556 + }, + { + "start": 539.62, + "end": 546.74, + "probability": 0.1101 + }, + { + "start": 548.72, + "end": 552.76, + "probability": 0.0486 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.0, + "end": 558.0, + "probability": 0.0 + }, + { + "start": 558.24, + "end": 561.08, + "probability": 0.0578 + }, + { + "start": 561.12, + "end": 561.8, + "probability": 0.3162 + }, + { + "start": 566.38, + "end": 570.58, + "probability": 0.1627 + }, + { + "start": 570.58, + "end": 570.58, + "probability": 0.0754 + }, + { + "start": 571.0, + "end": 571.92, + "probability": 0.0782 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.0, + "end": 685.0, + "probability": 0.0 + }, + { + "start": 685.3, + "end": 686.78, + "probability": 0.0285 + }, + { + "start": 687.16, + "end": 690.18, + "probability": 0.0612 + }, + { + "start": 690.18, + "end": 690.45, + "probability": 0.0523 + }, + { + "start": 690.6, + "end": 691.06, + "probability": 0.4352 + }, + { + "start": 691.14, + "end": 691.98, + "probability": 0.0474 + }, + { + "start": 692.76, + "end": 693.3, + "probability": 0.167 + }, + { + "start": 694.16, + "end": 697.2, + "probability": 0.0044 + }, + { + "start": 697.2, + "end": 698.02, + "probability": 0.0607 + }, + { + "start": 698.12, + "end": 700.3, + "probability": 0.1207 + }, + { + "start": 701.36, + "end": 703.3, + "probability": 0.0512 + }, + { + "start": 706.5, + "end": 710.5, + "probability": 0.0913 + }, + { + "start": 711.5, + "end": 714.16, + "probability": 0.0246 + }, + { + "start": 714.56, + "end": 716.84, + "probability": 0.0216 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 808.0, + "end": 808.0, + "probability": 0.0 + }, + { + "start": 810.78, + "end": 810.98, + "probability": 0.0156 + }, + { + "start": 810.98, + "end": 811.61, + "probability": 0.2526 + }, + { + "start": 813.38, + "end": 814.7, + "probability": 0.7205 + }, + { + "start": 815.34, + "end": 818.14, + "probability": 0.9971 + }, + { + "start": 820.14, + "end": 823.5, + "probability": 0.8937 + }, + { + "start": 825.88, + "end": 827.1, + "probability": 0.9501 + }, + { + "start": 827.32, + "end": 827.82, + "probability": 0.475 + }, + { + "start": 827.9, + "end": 829.06, + "probability": 0.4534 + }, + { + "start": 829.14, + "end": 833.22, + "probability": 0.7512 + }, + { + "start": 836.34, + "end": 839.48, + "probability": 0.9822 + }, + { + "start": 840.6, + "end": 845.94, + "probability": 0.9764 + }, + { + "start": 847.72, + "end": 849.16, + "probability": 0.882 + }, + { + "start": 849.24, + "end": 851.12, + "probability": 0.9379 + }, + { + "start": 851.16, + "end": 853.14, + "probability": 0.9534 + }, + { + "start": 854.26, + "end": 857.26, + "probability": 0.9793 + }, + { + "start": 860.22, + "end": 863.5, + "probability": 0.9988 + }, + { + "start": 864.98, + "end": 866.36, + "probability": 0.6648 + }, + { + "start": 866.4, + "end": 867.5, + "probability": 0.9557 + }, + { + "start": 867.66, + "end": 869.22, + "probability": 0.9985 + }, + { + "start": 870.7, + "end": 871.48, + "probability": 0.6284 + }, + { + "start": 873.5, + "end": 875.94, + "probability": 0.871 + }, + { + "start": 876.88, + "end": 881.68, + "probability": 0.9906 + }, + { + "start": 883.64, + "end": 887.06, + "probability": 0.6947 + }, + { + "start": 887.2, + "end": 887.98, + "probability": 0.4502 + }, + { + "start": 888.04, + "end": 890.98, + "probability": 0.9948 + }, + { + "start": 891.88, + "end": 894.32, + "probability": 0.9856 + }, + { + "start": 894.4, + "end": 895.12, + "probability": 0.5641 + }, + { + "start": 895.22, + "end": 895.9, + "probability": 0.928 + }, + { + "start": 896.94, + "end": 897.56, + "probability": 0.8564 + }, + { + "start": 897.58, + "end": 899.28, + "probability": 0.9966 + }, + { + "start": 899.34, + "end": 900.68, + "probability": 0.9901 + }, + { + "start": 901.74, + "end": 903.12, + "probability": 0.7598 + }, + { + "start": 904.84, + "end": 907.86, + "probability": 0.8201 + }, + { + "start": 907.94, + "end": 909.86, + "probability": 0.7969 + }, + { + "start": 912.7, + "end": 914.76, + "probability": 0.77 + }, + { + "start": 914.82, + "end": 919.5, + "probability": 0.9927 + }, + { + "start": 919.82, + "end": 922.52, + "probability": 0.8826 + }, + { + "start": 925.06, + "end": 927.5, + "probability": 0.836 + }, + { + "start": 929.62, + "end": 932.38, + "probability": 0.9297 + }, + { + "start": 932.48, + "end": 932.83, + "probability": 0.4816 + }, + { + "start": 933.1, + "end": 934.04, + "probability": 0.8289 + }, + { + "start": 935.34, + "end": 937.26, + "probability": 0.9827 + }, + { + "start": 938.78, + "end": 943.98, + "probability": 0.8398 + }, + { + "start": 944.66, + "end": 945.66, + "probability": 0.9362 + }, + { + "start": 946.82, + "end": 948.3, + "probability": 0.999 + }, + { + "start": 948.96, + "end": 951.96, + "probability": 0.9897 + }, + { + "start": 953.7, + "end": 955.1, + "probability": 0.8719 + }, + { + "start": 956.86, + "end": 958.42, + "probability": 0.9785 + }, + { + "start": 958.7, + "end": 962.8, + "probability": 0.7441 + }, + { + "start": 962.94, + "end": 963.3, + "probability": 0.4956 + }, + { + "start": 963.32, + "end": 963.74, + "probability": 0.4382 + }, + { + "start": 964.52, + "end": 966.34, + "probability": 0.9959 + }, + { + "start": 968.66, + "end": 970.06, + "probability": 0.9353 + }, + { + "start": 972.18, + "end": 973.06, + "probability": 0.5086 + }, + { + "start": 974.94, + "end": 977.16, + "probability": 0.7791 + }, + { + "start": 977.82, + "end": 979.44, + "probability": 0.197 + }, + { + "start": 980.34, + "end": 984.54, + "probability": 0.9851 + }, + { + "start": 985.44, + "end": 986.08, + "probability": 0.0267 + }, + { + "start": 986.28, + "end": 986.46, + "probability": 0.0594 + }, + { + "start": 986.66, + "end": 988.24, + "probability": 0.745 + }, + { + "start": 988.3, + "end": 990.84, + "probability": 0.4444 + }, + { + "start": 990.84, + "end": 991.86, + "probability": 0.5868 + }, + { + "start": 992.52, + "end": 993.36, + "probability": 0.1992 + }, + { + "start": 993.36, + "end": 996.4, + "probability": 0.8875 + }, + { + "start": 997.36, + "end": 998.78, + "probability": 0.9763 + }, + { + "start": 1000.1, + "end": 1002.76, + "probability": 0.5819 + }, + { + "start": 1003.88, + "end": 1007.34, + "probability": 0.8315 + }, + { + "start": 1009.54, + "end": 1010.52, + "probability": 0.9346 + }, + { + "start": 1010.64, + "end": 1011.98, + "probability": 0.9419 + }, + { + "start": 1012.04, + "end": 1014.66, + "probability": 0.5788 + }, + { + "start": 1017.38, + "end": 1023.34, + "probability": 0.9817 + }, + { + "start": 1024.42, + "end": 1026.78, + "probability": 0.8664 + }, + { + "start": 1028.34, + "end": 1031.78, + "probability": 0.9741 + }, + { + "start": 1032.9, + "end": 1034.52, + "probability": 0.9059 + }, + { + "start": 1034.76, + "end": 1035.3, + "probability": 0.7222 + }, + { + "start": 1035.88, + "end": 1039.68, + "probability": 0.9551 + }, + { + "start": 1040.04, + "end": 1044.58, + "probability": 0.9764 + }, + { + "start": 1045.32, + "end": 1047.62, + "probability": 0.8167 + }, + { + "start": 1048.04, + "end": 1050.06, + "probability": 0.8298 + }, + { + "start": 1050.46, + "end": 1051.42, + "probability": 0.8876 + }, + { + "start": 1052.24, + "end": 1053.86, + "probability": 0.432 + }, + { + "start": 1055.52, + "end": 1058.64, + "probability": 0.9976 + }, + { + "start": 1059.34, + "end": 1059.96, + "probability": 0.9282 + }, + { + "start": 1061.44, + "end": 1065.0, + "probability": 0.8496 + }, + { + "start": 1067.71, + "end": 1072.5, + "probability": 0.9863 + }, + { + "start": 1072.66, + "end": 1075.34, + "probability": 0.7256 + }, + { + "start": 1075.38, + "end": 1075.58, + "probability": 0.7213 + }, + { + "start": 1075.98, + "end": 1077.42, + "probability": 0.9645 + }, + { + "start": 1078.01, + "end": 1080.48, + "probability": 0.9786 + }, + { + "start": 1081.96, + "end": 1085.84, + "probability": 0.9524 + }, + { + "start": 1087.34, + "end": 1088.02, + "probability": 0.6416 + }, + { + "start": 1089.88, + "end": 1091.88, + "probability": 0.6812 + }, + { + "start": 1092.14, + "end": 1096.84, + "probability": 0.922 + }, + { + "start": 1096.94, + "end": 1097.14, + "probability": 0.7385 + }, + { + "start": 1097.2, + "end": 1097.9, + "probability": 0.9209 + }, + { + "start": 1100.06, + "end": 1101.5, + "probability": 0.818 + }, + { + "start": 1103.24, + "end": 1103.96, + "probability": 0.8298 + }, + { + "start": 1105.14, + "end": 1106.06, + "probability": 0.9722 + }, + { + "start": 1107.44, + "end": 1109.06, + "probability": 0.9446 + }, + { + "start": 1110.02, + "end": 1112.56, + "probability": 0.998 + }, + { + "start": 1112.66, + "end": 1116.34, + "probability": 0.8702 + }, + { + "start": 1116.5, + "end": 1117.72, + "probability": 0.7902 + }, + { + "start": 1118.82, + "end": 1120.88, + "probability": 0.8945 + }, + { + "start": 1121.82, + "end": 1123.5, + "probability": 0.8625 + }, + { + "start": 1124.04, + "end": 1124.84, + "probability": 0.9084 + }, + { + "start": 1125.6, + "end": 1126.16, + "probability": 0.9058 + }, + { + "start": 1126.28, + "end": 1128.08, + "probability": 0.7791 + }, + { + "start": 1129.28, + "end": 1131.14, + "probability": 0.7018 + }, + { + "start": 1131.52, + "end": 1133.14, + "probability": 0.9858 + }, + { + "start": 1133.48, + "end": 1135.92, + "probability": 0.0436 + }, + { + "start": 1136.0, + "end": 1136.64, + "probability": 0.8363 + }, + { + "start": 1137.12, + "end": 1138.64, + "probability": 0.5542 + }, + { + "start": 1139.22, + "end": 1140.6, + "probability": 0.7696 + }, + { + "start": 1140.76, + "end": 1143.14, + "probability": 0.8872 + }, + { + "start": 1143.6, + "end": 1144.22, + "probability": 0.7998 + }, + { + "start": 1144.36, + "end": 1145.82, + "probability": 0.9853 + }, + { + "start": 1146.28, + "end": 1148.48, + "probability": 0.9653 + }, + { + "start": 1148.98, + "end": 1149.9, + "probability": 0.8156 + }, + { + "start": 1150.46, + "end": 1151.86, + "probability": 0.8672 + }, + { + "start": 1152.88, + "end": 1154.28, + "probability": 0.9801 + }, + { + "start": 1155.14, + "end": 1157.35, + "probability": 0.9768 + }, + { + "start": 1158.42, + "end": 1161.14, + "probability": 0.8065 + }, + { + "start": 1162.56, + "end": 1164.8, + "probability": 0.8643 + }, + { + "start": 1166.06, + "end": 1168.02, + "probability": 0.665 + }, + { + "start": 1169.5, + "end": 1171.36, + "probability": 0.8145 + }, + { + "start": 1171.7, + "end": 1173.6, + "probability": 0.7539 + }, + { + "start": 1174.42, + "end": 1175.42, + "probability": 0.7739 + }, + { + "start": 1175.52, + "end": 1175.84, + "probability": 0.3718 + }, + { + "start": 1175.9, + "end": 1177.18, + "probability": 0.8446 + }, + { + "start": 1178.06, + "end": 1178.94, + "probability": 0.7263 + }, + { + "start": 1180.4, + "end": 1182.3, + "probability": 0.9604 + }, + { + "start": 1184.16, + "end": 1185.54, + "probability": 0.8406 + }, + { + "start": 1186.14, + "end": 1186.64, + "probability": 0.3122 + }, + { + "start": 1186.74, + "end": 1187.98, + "probability": 0.735 + }, + { + "start": 1188.52, + "end": 1189.8, + "probability": 0.4926 + }, + { + "start": 1190.02, + "end": 1193.42, + "probability": 0.8076 + }, + { + "start": 1193.96, + "end": 1195.62, + "probability": 0.5265 + }, + { + "start": 1195.7, + "end": 1197.08, + "probability": 0.711 + }, + { + "start": 1197.18, + "end": 1198.18, + "probability": 0.0542 + }, + { + "start": 1198.38, + "end": 1199.38, + "probability": 0.5892 + }, + { + "start": 1199.8, + "end": 1202.96, + "probability": 0.6959 + }, + { + "start": 1203.54, + "end": 1208.96, + "probability": 0.8356 + }, + { + "start": 1210.32, + "end": 1211.8, + "probability": 0.9741 + }, + { + "start": 1213.78, + "end": 1215.58, + "probability": 0.8315 + }, + { + "start": 1216.16, + "end": 1219.04, + "probability": 0.9454 + }, + { + "start": 1219.68, + "end": 1223.82, + "probability": 0.9508 + }, + { + "start": 1224.92, + "end": 1225.32, + "probability": 0.3817 + }, + { + "start": 1225.48, + "end": 1226.26, + "probability": 0.3759 + }, + { + "start": 1226.92, + "end": 1228.06, + "probability": 0.9971 + }, + { + "start": 1229.18, + "end": 1229.18, + "probability": 0.0089 + }, + { + "start": 1229.18, + "end": 1230.64, + "probability": 0.6518 + }, + { + "start": 1231.22, + "end": 1232.8, + "probability": 0.9398 + }, + { + "start": 1234.66, + "end": 1236.5, + "probability": 0.9609 + }, + { + "start": 1238.14, + "end": 1241.15, + "probability": 0.4897 + }, + { + "start": 1242.8, + "end": 1243.8, + "probability": 0.6713 + }, + { + "start": 1244.84, + "end": 1247.0, + "probability": 0.8209 + }, + { + "start": 1247.32, + "end": 1248.42, + "probability": 0.5354 + }, + { + "start": 1250.24, + "end": 1252.9, + "probability": 0.9074 + }, + { + "start": 1252.98, + "end": 1255.38, + "probability": 0.885 + }, + { + "start": 1256.22, + "end": 1257.08, + "probability": 0.9482 + }, + { + "start": 1258.86, + "end": 1260.1, + "probability": 0.9507 + }, + { + "start": 1263.12, + "end": 1263.8, + "probability": 0.714 + }, + { + "start": 1264.36, + "end": 1266.58, + "probability": 0.7012 + }, + { + "start": 1267.62, + "end": 1268.1, + "probability": 0.6679 + }, + { + "start": 1268.64, + "end": 1270.08, + "probability": 0.7622 + }, + { + "start": 1270.18, + "end": 1270.86, + "probability": 0.7651 + }, + { + "start": 1270.94, + "end": 1271.94, + "probability": 0.8328 + }, + { + "start": 1273.18, + "end": 1274.32, + "probability": 0.6809 + }, + { + "start": 1275.5, + "end": 1279.1, + "probability": 0.9153 + }, + { + "start": 1281.0, + "end": 1283.04, + "probability": 0.7074 + }, + { + "start": 1284.16, + "end": 1286.56, + "probability": 0.8787 + }, + { + "start": 1287.5, + "end": 1288.08, + "probability": 0.7998 + }, + { + "start": 1288.8, + "end": 1289.34, + "probability": 0.9359 + }, + { + "start": 1289.4, + "end": 1289.76, + "probability": 0.9471 + }, + { + "start": 1289.88, + "end": 1293.52, + "probability": 0.9327 + }, + { + "start": 1293.56, + "end": 1294.84, + "probability": 0.9976 + }, + { + "start": 1308.14, + "end": 1308.92, + "probability": 0.2212 + }, + { + "start": 1308.92, + "end": 1308.92, + "probability": 0.2869 + }, + { + "start": 1308.92, + "end": 1308.92, + "probability": 0.0465 + }, + { + "start": 1308.92, + "end": 1309.46, + "probability": 0.1012 + }, + { + "start": 1311.04, + "end": 1311.04, + "probability": 0.0424 + }, + { + "start": 1311.04, + "end": 1311.04, + "probability": 0.1477 + }, + { + "start": 1311.04, + "end": 1313.2, + "probability": 0.499 + }, + { + "start": 1315.62, + "end": 1317.0, + "probability": 0.6886 + }, + { + "start": 1318.26, + "end": 1319.88, + "probability": 0.9762 + }, + { + "start": 1320.54, + "end": 1321.18, + "probability": 0.602 + }, + { + "start": 1322.36, + "end": 1323.96, + "probability": 0.9196 + }, + { + "start": 1324.6, + "end": 1327.68, + "probability": 0.8303 + }, + { + "start": 1328.64, + "end": 1329.38, + "probability": 0.7974 + }, + { + "start": 1330.06, + "end": 1331.1, + "probability": 0.9479 + }, + { + "start": 1333.04, + "end": 1335.22, + "probability": 0.9781 + }, + { + "start": 1335.32, + "end": 1336.92, + "probability": 0.8698 + }, + { + "start": 1337.52, + "end": 1338.5, + "probability": 0.875 + }, + { + "start": 1338.6, + "end": 1340.03, + "probability": 0.9419 + }, + { + "start": 1340.5, + "end": 1341.68, + "probability": 0.3915 + }, + { + "start": 1342.64, + "end": 1344.22, + "probability": 0.9658 + }, + { + "start": 1346.48, + "end": 1347.58, + "probability": 0.7529 + }, + { + "start": 1349.48, + "end": 1351.84, + "probability": 0.978 + }, + { + "start": 1353.78, + "end": 1356.1, + "probability": 0.688 + }, + { + "start": 1356.82, + "end": 1358.28, + "probability": 0.8011 + }, + { + "start": 1359.7, + "end": 1362.86, + "probability": 0.7755 + }, + { + "start": 1364.02, + "end": 1365.17, + "probability": 0.8812 + }, + { + "start": 1366.66, + "end": 1369.36, + "probability": 0.976 + }, + { + "start": 1369.5, + "end": 1370.8, + "probability": 0.8936 + }, + { + "start": 1371.8, + "end": 1372.98, + "probability": 0.713 + }, + { + "start": 1373.2, + "end": 1374.72, + "probability": 0.6915 + }, + { + "start": 1375.7, + "end": 1376.56, + "probability": 0.905 + }, + { + "start": 1377.3, + "end": 1378.0, + "probability": 0.7979 + }, + { + "start": 1378.56, + "end": 1379.56, + "probability": 0.9453 + }, + { + "start": 1380.2, + "end": 1382.72, + "probability": 0.7448 + }, + { + "start": 1383.44, + "end": 1384.22, + "probability": 0.692 + }, + { + "start": 1384.48, + "end": 1385.98, + "probability": 0.5251 + }, + { + "start": 1387.36, + "end": 1387.88, + "probability": 0.5868 + }, + { + "start": 1388.0, + "end": 1390.34, + "probability": 0.9907 + }, + { + "start": 1392.36, + "end": 1397.5, + "probability": 0.8608 + }, + { + "start": 1397.56, + "end": 1399.5, + "probability": 0.995 + }, + { + "start": 1400.3, + "end": 1401.3, + "probability": 0.5291 + }, + { + "start": 1401.48, + "end": 1401.9, + "probability": 0.5071 + }, + { + "start": 1402.64, + "end": 1405.04, + "probability": 0.9565 + }, + { + "start": 1406.24, + "end": 1408.47, + "probability": 0.9966 + }, + { + "start": 1409.5, + "end": 1412.06, + "probability": 0.9196 + }, + { + "start": 1412.88, + "end": 1413.98, + "probability": 0.9702 + }, + { + "start": 1414.64, + "end": 1417.02, + "probability": 0.9863 + }, + { + "start": 1418.24, + "end": 1422.54, + "probability": 0.7141 + }, + { + "start": 1423.44, + "end": 1425.84, + "probability": 0.7669 + }, + { + "start": 1426.46, + "end": 1428.12, + "probability": 0.8688 + }, + { + "start": 1428.36, + "end": 1429.96, + "probability": 0.9905 + }, + { + "start": 1430.74, + "end": 1431.54, + "probability": 0.8831 + }, + { + "start": 1432.24, + "end": 1434.1, + "probability": 0.9436 + }, + { + "start": 1435.16, + "end": 1436.68, + "probability": 0.9476 + }, + { + "start": 1437.26, + "end": 1439.52, + "probability": 0.7959 + }, + { + "start": 1439.6, + "end": 1439.92, + "probability": 0.726 + }, + { + "start": 1440.38, + "end": 1441.97, + "probability": 0.717 + }, + { + "start": 1442.54, + "end": 1444.18, + "probability": 0.9045 + }, + { + "start": 1444.72, + "end": 1446.71, + "probability": 0.9102 + }, + { + "start": 1448.04, + "end": 1450.84, + "probability": 0.947 + }, + { + "start": 1452.42, + "end": 1455.22, + "probability": 0.9809 + }, + { + "start": 1456.34, + "end": 1457.34, + "probability": 0.8366 + }, + { + "start": 1458.74, + "end": 1460.66, + "probability": 0.8936 + }, + { + "start": 1461.16, + "end": 1463.06, + "probability": 0.9961 + }, + { + "start": 1463.3, + "end": 1468.22, + "probability": 0.9963 + }, + { + "start": 1469.7, + "end": 1473.92, + "probability": 0.9906 + }, + { + "start": 1473.92, + "end": 1476.74, + "probability": 0.9903 + }, + { + "start": 1478.26, + "end": 1480.96, + "probability": 0.7819 + }, + { + "start": 1481.06, + "end": 1483.62, + "probability": 0.9419 + }, + { + "start": 1484.64, + "end": 1488.14, + "probability": 0.8408 + }, + { + "start": 1488.3, + "end": 1488.9, + "probability": 0.4454 + }, + { + "start": 1489.78, + "end": 1490.94, + "probability": 0.7584 + }, + { + "start": 1491.96, + "end": 1493.94, + "probability": 0.9658 + }, + { + "start": 1495.32, + "end": 1496.44, + "probability": 0.9336 + }, + { + "start": 1497.08, + "end": 1500.18, + "probability": 0.9605 + }, + { + "start": 1500.8, + "end": 1502.66, + "probability": 0.9594 + }, + { + "start": 1503.5, + "end": 1505.08, + "probability": 0.9854 + }, + { + "start": 1505.98, + "end": 1507.04, + "probability": 0.8691 + }, + { + "start": 1507.86, + "end": 1509.98, + "probability": 0.9669 + }, + { + "start": 1510.92, + "end": 1513.06, + "probability": 0.9097 + }, + { + "start": 1514.92, + "end": 1516.14, + "probability": 0.642 + }, + { + "start": 1516.36, + "end": 1517.24, + "probability": 0.7925 + }, + { + "start": 1518.54, + "end": 1519.66, + "probability": 0.5457 + }, + { + "start": 1520.48, + "end": 1522.08, + "probability": 0.9717 + }, + { + "start": 1523.44, + "end": 1524.16, + "probability": 0.9564 + }, + { + "start": 1524.98, + "end": 1527.72, + "probability": 0.5347 + }, + { + "start": 1528.34, + "end": 1529.68, + "probability": 0.9562 + }, + { + "start": 1530.8, + "end": 1532.38, + "probability": 0.9697 + }, + { + "start": 1532.86, + "end": 1533.6, + "probability": 0.5407 + }, + { + "start": 1534.42, + "end": 1537.56, + "probability": 0.7709 + }, + { + "start": 1538.22, + "end": 1541.74, + "probability": 0.9053 + }, + { + "start": 1541.88, + "end": 1542.52, + "probability": 0.4832 + }, + { + "start": 1542.72, + "end": 1546.94, + "probability": 0.8105 + }, + { + "start": 1547.22, + "end": 1548.14, + "probability": 0.678 + }, + { + "start": 1548.54, + "end": 1551.64, + "probability": 0.7632 + }, + { + "start": 1551.92, + "end": 1553.96, + "probability": 0.8712 + }, + { + "start": 1554.04, + "end": 1555.66, + "probability": 0.9527 + }, + { + "start": 1555.86, + "end": 1556.06, + "probability": 0.8242 + }, + { + "start": 1556.42, + "end": 1558.6, + "probability": 0.9233 + }, + { + "start": 1558.94, + "end": 1559.66, + "probability": 0.918 + }, + { + "start": 1559.78, + "end": 1560.4, + "probability": 0.9681 + }, + { + "start": 1561.06, + "end": 1561.82, + "probability": 0.7143 + }, + { + "start": 1561.9, + "end": 1562.1, + "probability": 0.7807 + }, + { + "start": 1562.16, + "end": 1562.55, + "probability": 0.7959 + }, + { + "start": 1562.98, + "end": 1564.48, + "probability": 0.9623 + }, + { + "start": 1565.68, + "end": 1566.52, + "probability": 0.7241 + }, + { + "start": 1566.56, + "end": 1568.24, + "probability": 0.5822 + }, + { + "start": 1569.24, + "end": 1571.26, + "probability": 0.9106 + }, + { + "start": 1571.4, + "end": 1572.2, + "probability": 0.7702 + }, + { + "start": 1573.4, + "end": 1576.2, + "probability": 0.7377 + }, + { + "start": 1576.26, + "end": 1577.66, + "probability": 0.6996 + }, + { + "start": 1578.44, + "end": 1579.76, + "probability": 0.7242 + }, + { + "start": 1580.18, + "end": 1582.22, + "probability": 0.8798 + }, + { + "start": 1582.74, + "end": 1583.46, + "probability": 0.8728 + }, + { + "start": 1583.56, + "end": 1584.2, + "probability": 0.3723 + }, + { + "start": 1584.42, + "end": 1584.48, + "probability": 0.008 + }, + { + "start": 1584.48, + "end": 1585.36, + "probability": 0.729 + }, + { + "start": 1585.76, + "end": 1588.49, + "probability": 0.855 + }, + { + "start": 1590.14, + "end": 1594.12, + "probability": 0.9533 + }, + { + "start": 1594.48, + "end": 1595.94, + "probability": 0.9419 + }, + { + "start": 1596.64, + "end": 1598.44, + "probability": 0.9858 + }, + { + "start": 1599.15, + "end": 1601.19, + "probability": 0.9697 + }, + { + "start": 1601.62, + "end": 1603.82, + "probability": 0.7802 + }, + { + "start": 1604.48, + "end": 1605.65, + "probability": 0.6444 + }, + { + "start": 1607.0, + "end": 1607.38, + "probability": 0.0377 + }, + { + "start": 1607.38, + "end": 1607.86, + "probability": 0.5169 + }, + { + "start": 1607.92, + "end": 1608.6, + "probability": 0.8315 + }, + { + "start": 1608.7, + "end": 1611.04, + "probability": 0.9884 + }, + { + "start": 1611.74, + "end": 1613.72, + "probability": 0.7223 + }, + { + "start": 1614.08, + "end": 1617.66, + "probability": 0.7526 + }, + { + "start": 1618.24, + "end": 1620.59, + "probability": 0.984 + }, + { + "start": 1621.11, + "end": 1622.36, + "probability": 0.3859 + }, + { + "start": 1622.92, + "end": 1624.8, + "probability": 0.9457 + }, + { + "start": 1626.18, + "end": 1627.84, + "probability": 0.6459 + }, + { + "start": 1629.0, + "end": 1629.72, + "probability": 0.7961 + }, + { + "start": 1631.86, + "end": 1633.84, + "probability": 0.649 + }, + { + "start": 1634.74, + "end": 1639.96, + "probability": 0.5168 + }, + { + "start": 1640.96, + "end": 1643.52, + "probability": 0.9901 + }, + { + "start": 1643.94, + "end": 1645.96, + "probability": 0.9657 + }, + { + "start": 1646.76, + "end": 1651.36, + "probability": 0.9965 + }, + { + "start": 1652.3, + "end": 1653.2, + "probability": 0.9084 + }, + { + "start": 1653.96, + "end": 1656.68, + "probability": 0.9648 + }, + { + "start": 1657.5, + "end": 1660.98, + "probability": 0.9595 + }, + { + "start": 1661.86, + "end": 1661.86, + "probability": 0.0366 + }, + { + "start": 1661.86, + "end": 1666.48, + "probability": 0.8155 + }, + { + "start": 1667.1, + "end": 1669.26, + "probability": 0.9854 + }, + { + "start": 1671.18, + "end": 1674.05, + "probability": 0.9917 + }, + { + "start": 1675.12, + "end": 1676.52, + "probability": 0.8852 + }, + { + "start": 1676.72, + "end": 1677.16, + "probability": 0.84 + }, + { + "start": 1677.34, + "end": 1679.44, + "probability": 0.9893 + }, + { + "start": 1680.06, + "end": 1681.44, + "probability": 0.7089 + }, + { + "start": 1681.54, + "end": 1682.14, + "probability": 0.7146 + }, + { + "start": 1682.14, + "end": 1682.88, + "probability": 0.5459 + }, + { + "start": 1683.62, + "end": 1686.56, + "probability": 0.9826 + }, + { + "start": 1687.08, + "end": 1690.9, + "probability": 0.9863 + }, + { + "start": 1692.16, + "end": 1692.5, + "probability": 0.6117 + }, + { + "start": 1692.58, + "end": 1693.38, + "probability": 0.8942 + }, + { + "start": 1693.58, + "end": 1696.22, + "probability": 0.7674 + }, + { + "start": 1696.58, + "end": 1697.7, + "probability": 0.9969 + }, + { + "start": 1699.02, + "end": 1700.62, + "probability": 0.7698 + }, + { + "start": 1701.18, + "end": 1703.1, + "probability": 0.9897 + }, + { + "start": 1703.18, + "end": 1703.56, + "probability": 0.8452 + }, + { + "start": 1703.6, + "end": 1705.82, + "probability": 0.9856 + }, + { + "start": 1707.5, + "end": 1709.6, + "probability": 0.9932 + }, + { + "start": 1710.04, + "end": 1711.26, + "probability": 0.8557 + }, + { + "start": 1711.72, + "end": 1713.94, + "probability": 0.9819 + }, + { + "start": 1714.68, + "end": 1717.04, + "probability": 0.9886 + }, + { + "start": 1717.88, + "end": 1718.1, + "probability": 0.8796 + }, + { + "start": 1719.32, + "end": 1721.48, + "probability": 0.9397 + }, + { + "start": 1723.0, + "end": 1724.32, + "probability": 0.9948 + }, + { + "start": 1725.26, + "end": 1728.42, + "probability": 0.9738 + }, + { + "start": 1729.12, + "end": 1730.36, + "probability": 0.9968 + }, + { + "start": 1730.36, + "end": 1731.32, + "probability": 0.4985 + }, + { + "start": 1732.42, + "end": 1733.76, + "probability": 0.9658 + }, + { + "start": 1735.02, + "end": 1739.78, + "probability": 0.6594 + }, + { + "start": 1740.52, + "end": 1744.06, + "probability": 0.9821 + }, + { + "start": 1744.18, + "end": 1745.94, + "probability": 0.9651 + }, + { + "start": 1746.88, + "end": 1747.9, + "probability": 0.9964 + }, + { + "start": 1749.44, + "end": 1753.74, + "probability": 0.7988 + }, + { + "start": 1754.92, + "end": 1756.11, + "probability": 0.5171 + }, + { + "start": 1757.18, + "end": 1757.36, + "probability": 0.1011 + }, + { + "start": 1757.4, + "end": 1759.68, + "probability": 0.9709 + }, + { + "start": 1760.86, + "end": 1763.98, + "probability": 0.7997 + }, + { + "start": 1765.18, + "end": 1767.02, + "probability": 0.9451 + }, + { + "start": 1767.54, + "end": 1768.4, + "probability": 0.9048 + }, + { + "start": 1769.42, + "end": 1770.24, + "probability": 0.3964 + }, + { + "start": 1770.32, + "end": 1770.76, + "probability": 0.7689 + }, + { + "start": 1770.8, + "end": 1773.76, + "probability": 0.9577 + }, + { + "start": 1773.82, + "end": 1774.5, + "probability": 0.7173 + }, + { + "start": 1774.62, + "end": 1776.62, + "probability": 0.9972 + }, + { + "start": 1777.24, + "end": 1778.72, + "probability": 0.7758 + }, + { + "start": 1779.08, + "end": 1780.57, + "probability": 0.9975 + }, + { + "start": 1781.42, + "end": 1782.44, + "probability": 0.9304 + }, + { + "start": 1783.58, + "end": 1784.56, + "probability": 0.9388 + }, + { + "start": 1784.72, + "end": 1788.28, + "probability": 0.6947 + }, + { + "start": 1788.52, + "end": 1791.92, + "probability": 0.7825 + }, + { + "start": 1792.94, + "end": 1794.12, + "probability": 0.9853 + }, + { + "start": 1795.84, + "end": 1799.94, + "probability": 0.9878 + }, + { + "start": 1801.06, + "end": 1801.8, + "probability": 0.7052 + }, + { + "start": 1802.7, + "end": 1807.06, + "probability": 0.9689 + }, + { + "start": 1807.34, + "end": 1808.22, + "probability": 0.9791 + }, + { + "start": 1809.46, + "end": 1810.4, + "probability": 0.9005 + }, + { + "start": 1810.92, + "end": 1812.4, + "probability": 0.9823 + }, + { + "start": 1813.88, + "end": 1818.0, + "probability": 0.9973 + }, + { + "start": 1818.12, + "end": 1818.72, + "probability": 0.5569 + }, + { + "start": 1818.76, + "end": 1821.02, + "probability": 0.9867 + }, + { + "start": 1822.12, + "end": 1824.86, + "probability": 0.9948 + }, + { + "start": 1825.9, + "end": 1826.94, + "probability": 0.6788 + }, + { + "start": 1826.96, + "end": 1827.62, + "probability": 0.8959 + }, + { + "start": 1827.94, + "end": 1830.5, + "probability": 0.9028 + }, + { + "start": 1830.64, + "end": 1833.16, + "probability": 0.8728 + }, + { + "start": 1834.7, + "end": 1836.88, + "probability": 0.9952 + }, + { + "start": 1836.98, + "end": 1837.92, + "probability": 0.9607 + }, + { + "start": 1838.04, + "end": 1838.66, + "probability": 0.8028 + }, + { + "start": 1838.98, + "end": 1839.5, + "probability": 0.9391 + }, + { + "start": 1841.08, + "end": 1845.52, + "probability": 0.8032 + }, + { + "start": 1846.44, + "end": 1846.84, + "probability": 0.8359 + }, + { + "start": 1847.56, + "end": 1848.9, + "probability": 0.6953 + }, + { + "start": 1849.7, + "end": 1852.04, + "probability": 0.9951 + }, + { + "start": 1852.3, + "end": 1854.22, + "probability": 0.6229 + }, + { + "start": 1855.04, + "end": 1857.22, + "probability": 0.7437 + }, + { + "start": 1859.32, + "end": 1862.98, + "probability": 0.9857 + }, + { + "start": 1864.32, + "end": 1866.42, + "probability": 0.7655 + }, + { + "start": 1867.04, + "end": 1868.7, + "probability": 0.9425 + }, + { + "start": 1870.44, + "end": 1872.24, + "probability": 0.722 + }, + { + "start": 1872.76, + "end": 1873.56, + "probability": 0.9282 + }, + { + "start": 1873.64, + "end": 1874.06, + "probability": 0.9166 + }, + { + "start": 1874.14, + "end": 1877.89, + "probability": 0.9658 + }, + { + "start": 1880.36, + "end": 1881.12, + "probability": 0.802 + }, + { + "start": 1881.2, + "end": 1881.56, + "probability": 0.9086 + }, + { + "start": 1881.58, + "end": 1881.98, + "probability": 0.9427 + }, + { + "start": 1882.1, + "end": 1884.2, + "probability": 0.9837 + }, + { + "start": 1884.24, + "end": 1885.3, + "probability": 0.9569 + }, + { + "start": 1885.36, + "end": 1886.4, + "probability": 0.8633 + }, + { + "start": 1888.22, + "end": 1889.82, + "probability": 0.9772 + }, + { + "start": 1889.94, + "end": 1890.38, + "probability": 0.7351 + }, + { + "start": 1890.84, + "end": 1892.68, + "probability": 0.8343 + }, + { + "start": 1893.7, + "end": 1895.28, + "probability": 0.9226 + }, + { + "start": 1896.56, + "end": 1896.84, + "probability": 0.1548 + }, + { + "start": 1897.32, + "end": 1897.88, + "probability": 0.6342 + }, + { + "start": 1898.52, + "end": 1901.58, + "probability": 0.9714 + }, + { + "start": 1901.66, + "end": 1902.98, + "probability": 0.9534 + }, + { + "start": 1903.84, + "end": 1906.24, + "probability": 0.9946 + }, + { + "start": 1906.86, + "end": 1909.5, + "probability": 0.91 + }, + { + "start": 1910.86, + "end": 1912.84, + "probability": 0.6954 + }, + { + "start": 1914.72, + "end": 1916.86, + "probability": 0.8667 + }, + { + "start": 1917.74, + "end": 1921.32, + "probability": 0.9316 + }, + { + "start": 1921.8, + "end": 1923.94, + "probability": 0.9893 + }, + { + "start": 1924.92, + "end": 1927.62, + "probability": 0.9976 + }, + { + "start": 1928.5, + "end": 1930.46, + "probability": 0.9971 + }, + { + "start": 1930.58, + "end": 1931.92, + "probability": 0.915 + }, + { + "start": 1933.2, + "end": 1934.02, + "probability": 0.6894 + }, + { + "start": 1934.76, + "end": 1936.46, + "probability": 0.9849 + }, + { + "start": 1938.6, + "end": 1940.35, + "probability": 0.8337 + }, + { + "start": 1941.26, + "end": 1943.42, + "probability": 0.9968 + }, + { + "start": 1943.48, + "end": 1944.91, + "probability": 0.9844 + }, + { + "start": 1945.56, + "end": 1947.26, + "probability": 0.665 + }, + { + "start": 1949.26, + "end": 1952.32, + "probability": 0.9922 + }, + { + "start": 1953.24, + "end": 1956.44, + "probability": 0.9958 + }, + { + "start": 1956.44, + "end": 1958.82, + "probability": 0.9519 + }, + { + "start": 1959.76, + "end": 1961.24, + "probability": 0.9664 + }, + { + "start": 1962.69, + "end": 1964.12, + "probability": 0.9027 + }, + { + "start": 1964.12, + "end": 1965.76, + "probability": 0.5631 + }, + { + "start": 1966.4, + "end": 1968.38, + "probability": 0.8612 + }, + { + "start": 1969.08, + "end": 1973.44, + "probability": 0.9684 + }, + { + "start": 1974.96, + "end": 1977.18, + "probability": 0.4943 + }, + { + "start": 1978.14, + "end": 1982.14, + "probability": 0.9845 + }, + { + "start": 1982.24, + "end": 1982.84, + "probability": 0.2475 + }, + { + "start": 1983.36, + "end": 1984.24, + "probability": 0.8923 + }, + { + "start": 1985.66, + "end": 1987.2, + "probability": 0.9974 + }, + { + "start": 1988.4, + "end": 1989.26, + "probability": 0.9032 + }, + { + "start": 1990.9, + "end": 1992.16, + "probability": 0.8366 + }, + { + "start": 1993.1, + "end": 1994.14, + "probability": 0.8364 + }, + { + "start": 1994.32, + "end": 1994.64, + "probability": 0.9641 + }, + { + "start": 1994.76, + "end": 1995.8, + "probability": 0.9608 + }, + { + "start": 1995.92, + "end": 1999.3, + "probability": 0.9978 + }, + { + "start": 1999.38, + "end": 1999.88, + "probability": 0.8817 + }, + { + "start": 2001.04, + "end": 2001.93, + "probability": 0.6402 + }, + { + "start": 2002.06, + "end": 2005.18, + "probability": 0.9849 + }, + { + "start": 2005.18, + "end": 2008.58, + "probability": 0.9191 + }, + { + "start": 2009.5, + "end": 2014.08, + "probability": 0.918 + }, + { + "start": 2015.0, + "end": 2016.98, + "probability": 0.5263 + }, + { + "start": 2017.18, + "end": 2018.8, + "probability": 0.0181 + }, + { + "start": 2018.8, + "end": 2018.8, + "probability": 0.1881 + }, + { + "start": 2019.06, + "end": 2020.36, + "probability": 0.6207 + }, + { + "start": 2020.74, + "end": 2023.18, + "probability": 0.8533 + }, + { + "start": 2030.28, + "end": 2032.34, + "probability": 0.9038 + }, + { + "start": 2033.34, + "end": 2034.84, + "probability": 0.8568 + }, + { + "start": 2034.98, + "end": 2035.96, + "probability": 0.863 + }, + { + "start": 2036.16, + "end": 2036.46, + "probability": 0.8436 + }, + { + "start": 2036.66, + "end": 2041.32, + "probability": 0.9585 + }, + { + "start": 2041.92, + "end": 2046.94, + "probability": 0.8581 + }, + { + "start": 2047.72, + "end": 2050.36, + "probability": 0.9529 + }, + { + "start": 2051.46, + "end": 2052.62, + "probability": 0.9025 + }, + { + "start": 2052.9, + "end": 2053.74, + "probability": 0.8478 + }, + { + "start": 2054.06, + "end": 2055.74, + "probability": 0.9873 + }, + { + "start": 2055.98, + "end": 2059.58, + "probability": 0.9514 + }, + { + "start": 2059.58, + "end": 2065.4, + "probability": 0.9736 + }, + { + "start": 2066.22, + "end": 2072.36, + "probability": 0.9975 + }, + { + "start": 2073.42, + "end": 2074.92, + "probability": 0.7334 + }, + { + "start": 2075.14, + "end": 2078.54, + "probability": 0.9956 + }, + { + "start": 2079.18, + "end": 2080.78, + "probability": 0.5768 + }, + { + "start": 2080.78, + "end": 2085.62, + "probability": 0.9651 + }, + { + "start": 2086.42, + "end": 2088.1, + "probability": 0.6665 + }, + { + "start": 2088.92, + "end": 2095.24, + "probability": 0.9937 + }, + { + "start": 2095.3, + "end": 2096.66, + "probability": 0.8113 + }, + { + "start": 2097.5, + "end": 2099.38, + "probability": 0.8522 + }, + { + "start": 2099.8, + "end": 2102.3, + "probability": 0.985 + }, + { + "start": 2102.76, + "end": 2104.68, + "probability": 0.9683 + }, + { + "start": 2104.8, + "end": 2105.5, + "probability": 0.8011 + }, + { + "start": 2106.14, + "end": 2108.94, + "probability": 0.989 + }, + { + "start": 2109.62, + "end": 2112.98, + "probability": 0.9969 + }, + { + "start": 2113.74, + "end": 2114.94, + "probability": 0.7217 + }, + { + "start": 2115.62, + "end": 2116.98, + "probability": 0.9705 + }, + { + "start": 2117.48, + "end": 2122.22, + "probability": 0.9639 + }, + { + "start": 2123.7, + "end": 2131.0, + "probability": 0.9707 + }, + { + "start": 2131.02, + "end": 2133.26, + "probability": 0.9043 + }, + { + "start": 2134.3, + "end": 2137.06, + "probability": 0.7384 + }, + { + "start": 2137.8, + "end": 2143.34, + "probability": 0.9323 + }, + { + "start": 2144.76, + "end": 2147.78, + "probability": 0.9884 + }, + { + "start": 2147.94, + "end": 2148.1, + "probability": 0.4441 + }, + { + "start": 2148.24, + "end": 2148.98, + "probability": 0.9248 + }, + { + "start": 2149.48, + "end": 2150.24, + "probability": 0.8657 + }, + { + "start": 2150.38, + "end": 2157.18, + "probability": 0.9844 + }, + { + "start": 2158.4, + "end": 2160.28, + "probability": 0.6657 + }, + { + "start": 2160.94, + "end": 2165.52, + "probability": 0.994 + }, + { + "start": 2166.06, + "end": 2171.02, + "probability": 0.9161 + }, + { + "start": 2171.1, + "end": 2172.32, + "probability": 0.6635 + }, + { + "start": 2173.34, + "end": 2178.66, + "probability": 0.884 + }, + { + "start": 2179.46, + "end": 2184.28, + "probability": 0.9851 + }, + { + "start": 2185.2, + "end": 2188.22, + "probability": 0.9837 + }, + { + "start": 2188.98, + "end": 2191.22, + "probability": 0.7808 + }, + { + "start": 2191.62, + "end": 2196.08, + "probability": 0.998 + }, + { + "start": 2196.64, + "end": 2197.94, + "probability": 0.9196 + }, + { + "start": 2198.48, + "end": 2200.9, + "probability": 0.987 + }, + { + "start": 2201.58, + "end": 2205.12, + "probability": 0.9927 + }, + { + "start": 2205.54, + "end": 2206.42, + "probability": 0.7993 + }, + { + "start": 2206.72, + "end": 2207.46, + "probability": 0.8698 + }, + { + "start": 2207.6, + "end": 2210.84, + "probability": 0.9834 + }, + { + "start": 2211.5, + "end": 2216.02, + "probability": 0.9525 + }, + { + "start": 2216.78, + "end": 2217.4, + "probability": 0.6033 + }, + { + "start": 2217.54, + "end": 2223.12, + "probability": 0.9801 + }, + { + "start": 2223.6, + "end": 2225.48, + "probability": 0.9577 + }, + { + "start": 2226.76, + "end": 2229.42, + "probability": 0.9003 + }, + { + "start": 2229.84, + "end": 2235.14, + "probability": 0.9504 + }, + { + "start": 2235.56, + "end": 2236.07, + "probability": 0.5067 + }, + { + "start": 2236.9, + "end": 2238.54, + "probability": 0.9582 + }, + { + "start": 2238.88, + "end": 2242.77, + "probability": 0.8565 + }, + { + "start": 2243.04, + "end": 2245.7, + "probability": 0.9917 + }, + { + "start": 2246.04, + "end": 2248.02, + "probability": 0.9895 + }, + { + "start": 2248.4, + "end": 2250.06, + "probability": 0.9904 + }, + { + "start": 2250.66, + "end": 2255.06, + "probability": 0.8571 + }, + { + "start": 2256.16, + "end": 2256.66, + "probability": 0.386 + }, + { + "start": 2257.02, + "end": 2257.34, + "probability": 0.9196 + }, + { + "start": 2257.56, + "end": 2259.3, + "probability": 0.927 + }, + { + "start": 2259.46, + "end": 2260.78, + "probability": 0.98 + }, + { + "start": 2260.8, + "end": 2261.5, + "probability": 0.5184 + }, + { + "start": 2261.6, + "end": 2262.9, + "probability": 0.9565 + }, + { + "start": 2263.68, + "end": 2268.42, + "probability": 0.9331 + }, + { + "start": 2269.02, + "end": 2271.02, + "probability": 0.9805 + }, + { + "start": 2272.04, + "end": 2274.74, + "probability": 0.9867 + }, + { + "start": 2274.86, + "end": 2276.02, + "probability": 0.979 + }, + { + "start": 2277.02, + "end": 2281.2, + "probability": 0.9966 + }, + { + "start": 2281.66, + "end": 2282.92, + "probability": 0.8258 + }, + { + "start": 2283.16, + "end": 2283.98, + "probability": 0.9844 + }, + { + "start": 2284.7, + "end": 2286.64, + "probability": 0.9657 + }, + { + "start": 2287.44, + "end": 2288.98, + "probability": 0.5465 + }, + { + "start": 2289.8, + "end": 2291.3, + "probability": 0.7656 + }, + { + "start": 2292.06, + "end": 2301.46, + "probability": 0.9651 + }, + { + "start": 2301.82, + "end": 2307.68, + "probability": 0.9611 + }, + { + "start": 2308.22, + "end": 2310.22, + "probability": 0.8342 + }, + { + "start": 2310.98, + "end": 2316.98, + "probability": 0.9619 + }, + { + "start": 2317.54, + "end": 2318.88, + "probability": 0.6364 + }, + { + "start": 2319.66, + "end": 2326.94, + "probability": 0.9544 + }, + { + "start": 2328.48, + "end": 2328.62, + "probability": 0.0167 + }, + { + "start": 2328.62, + "end": 2333.62, + "probability": 0.9346 + }, + { + "start": 2334.04, + "end": 2336.1, + "probability": 0.9188 + }, + { + "start": 2336.64, + "end": 2339.76, + "probability": 0.9913 + }, + { + "start": 2340.42, + "end": 2342.08, + "probability": 0.9792 + }, + { + "start": 2342.78, + "end": 2343.48, + "probability": 0.7091 + }, + { + "start": 2344.04, + "end": 2345.1, + "probability": 0.9049 + }, + { + "start": 2345.22, + "end": 2348.8, + "probability": 0.8511 + }, + { + "start": 2349.54, + "end": 2354.18, + "probability": 0.8403 + }, + { + "start": 2355.14, + "end": 2356.28, + "probability": 0.8249 + }, + { + "start": 2357.14, + "end": 2358.86, + "probability": 0.0871 + }, + { + "start": 2359.46, + "end": 2361.42, + "probability": 0.9549 + }, + { + "start": 2361.78, + "end": 2364.02, + "probability": 0.9797 + }, + { + "start": 2364.5, + "end": 2367.42, + "probability": 0.9873 + }, + { + "start": 2367.88, + "end": 2374.96, + "probability": 0.6751 + }, + { + "start": 2375.9, + "end": 2376.76, + "probability": 0.6386 + }, + { + "start": 2376.82, + "end": 2377.26, + "probability": 0.2973 + }, + { + "start": 2377.74, + "end": 2382.24, + "probability": 0.9503 + }, + { + "start": 2382.86, + "end": 2383.32, + "probability": 0.8407 + }, + { + "start": 2384.0, + "end": 2384.0, + "probability": 0.5247 + }, + { + "start": 2384.54, + "end": 2389.62, + "probability": 0.9881 + }, + { + "start": 2390.34, + "end": 2392.86, + "probability": 0.6453 + }, + { + "start": 2393.32, + "end": 2397.02, + "probability": 0.9952 + }, + { + "start": 2397.1, + "end": 2398.96, + "probability": 0.9821 + }, + { + "start": 2399.1, + "end": 2402.36, + "probability": 0.9277 + }, + { + "start": 2402.68, + "end": 2404.52, + "probability": 0.6042 + }, + { + "start": 2405.68, + "end": 2407.7, + "probability": 0.8709 + }, + { + "start": 2410.1, + "end": 2410.86, + "probability": 0.5341 + }, + { + "start": 2411.52, + "end": 2418.02, + "probability": 0.9932 + }, + { + "start": 2418.26, + "end": 2419.16, + "probability": 0.9314 + }, + { + "start": 2419.76, + "end": 2421.5, + "probability": 0.7611 + }, + { + "start": 2422.1, + "end": 2423.08, + "probability": 0.9772 + }, + { + "start": 2423.9, + "end": 2426.94, + "probability": 0.9644 + }, + { + "start": 2427.66, + "end": 2429.9, + "probability": 0.8135 + }, + { + "start": 2430.26, + "end": 2432.4, + "probability": 0.9014 + }, + { + "start": 2432.76, + "end": 2438.58, + "probability": 0.9767 + }, + { + "start": 2439.06, + "end": 2439.76, + "probability": 0.9355 + }, + { + "start": 2440.3, + "end": 2441.3, + "probability": 0.8293 + }, + { + "start": 2441.56, + "end": 2443.78, + "probability": 0.5685 + }, + { + "start": 2444.28, + "end": 2445.36, + "probability": 0.7611 + }, + { + "start": 2445.56, + "end": 2445.7, + "probability": 0.2791 + }, + { + "start": 2446.44, + "end": 2448.3, + "probability": 0.786 + }, + { + "start": 2448.56, + "end": 2450.12, + "probability": 0.993 + }, + { + "start": 2450.7, + "end": 2451.48, + "probability": 0.8179 + }, + { + "start": 2451.88, + "end": 2452.86, + "probability": 0.958 + }, + { + "start": 2453.5, + "end": 2453.92, + "probability": 0.7437 + }, + { + "start": 2454.12, + "end": 2454.78, + "probability": 0.3048 + }, + { + "start": 2455.0, + "end": 2455.38, + "probability": 0.4825 + }, + { + "start": 2455.56, + "end": 2456.28, + "probability": 0.7127 + }, + { + "start": 2456.36, + "end": 2459.22, + "probability": 0.991 + }, + { + "start": 2472.62, + "end": 2473.14, + "probability": 0.1299 + }, + { + "start": 2473.14, + "end": 2473.14, + "probability": 0.0151 + }, + { + "start": 2473.14, + "end": 2473.52, + "probability": 0.3676 + }, + { + "start": 2476.12, + "end": 2478.42, + "probability": 0.5981 + }, + { + "start": 2478.44, + "end": 2479.46, + "probability": 0.8484 + }, + { + "start": 2479.92, + "end": 2481.04, + "probability": 0.7296 + }, + { + "start": 2481.94, + "end": 2484.66, + "probability": 0.8359 + }, + { + "start": 2485.02, + "end": 2485.9, + "probability": 0.8691 + }, + { + "start": 2486.02, + "end": 2489.56, + "probability": 0.8416 + }, + { + "start": 2489.96, + "end": 2492.58, + "probability": 0.853 + }, + { + "start": 2492.98, + "end": 2494.9, + "probability": 0.8503 + }, + { + "start": 2495.26, + "end": 2497.72, + "probability": 0.6961 + }, + { + "start": 2497.92, + "end": 2498.96, + "probability": 0.8036 + }, + { + "start": 2499.24, + "end": 2500.34, + "probability": 0.9793 + }, + { + "start": 2500.7, + "end": 2503.24, + "probability": 0.9551 + }, + { + "start": 2503.6, + "end": 2504.14, + "probability": 0.8803 + }, + { + "start": 2504.22, + "end": 2509.16, + "probability": 0.9706 + }, + { + "start": 2509.66, + "end": 2510.54, + "probability": 0.8938 + }, + { + "start": 2511.26, + "end": 2517.04, + "probability": 0.9448 + }, + { + "start": 2517.28, + "end": 2518.06, + "probability": 0.5778 + }, + { + "start": 2518.92, + "end": 2524.56, + "probability": 0.9209 + }, + { + "start": 2524.56, + "end": 2530.98, + "probability": 0.5337 + }, + { + "start": 2531.72, + "end": 2533.52, + "probability": 0.7281 + }, + { + "start": 2534.48, + "end": 2537.18, + "probability": 0.9277 + }, + { + "start": 2538.08, + "end": 2539.06, + "probability": 0.7482 + }, + { + "start": 2539.36, + "end": 2539.54, + "probability": 0.6658 + }, + { + "start": 2539.92, + "end": 2540.5, + "probability": 0.5532 + }, + { + "start": 2541.0, + "end": 2545.12, + "probability": 0.978 + }, + { + "start": 2545.76, + "end": 2551.58, + "probability": 0.9957 + }, + { + "start": 2551.58, + "end": 2555.62, + "probability": 0.9705 + }, + { + "start": 2556.08, + "end": 2559.16, + "probability": 0.9584 + }, + { + "start": 2559.74, + "end": 2560.88, + "probability": 0.9633 + }, + { + "start": 2560.96, + "end": 2562.84, + "probability": 0.6506 + }, + { + "start": 2562.84, + "end": 2565.46, + "probability": 0.7847 + }, + { + "start": 2566.22, + "end": 2570.96, + "probability": 0.9364 + }, + { + "start": 2571.44, + "end": 2574.4, + "probability": 0.8576 + }, + { + "start": 2574.96, + "end": 2578.72, + "probability": 0.9278 + }, + { + "start": 2579.12, + "end": 2581.3, + "probability": 0.9601 + }, + { + "start": 2582.04, + "end": 2582.36, + "probability": 0.9039 + }, + { + "start": 2583.7, + "end": 2584.36, + "probability": 0.5958 + }, + { + "start": 2584.4, + "end": 2588.18, + "probability": 0.9619 + }, + { + "start": 2602.08, + "end": 2602.74, + "probability": 0.6314 + }, + { + "start": 2606.46, + "end": 2607.18, + "probability": 0.6271 + }, + { + "start": 2607.24, + "end": 2608.04, + "probability": 0.8801 + }, + { + "start": 2608.22, + "end": 2609.76, + "probability": 0.8375 + }, + { + "start": 2609.84, + "end": 2611.14, + "probability": 0.9919 + }, + { + "start": 2612.5, + "end": 2613.58, + "probability": 0.8777 + }, + { + "start": 2613.7, + "end": 2615.95, + "probability": 0.9885 + }, + { + "start": 2616.86, + "end": 2618.18, + "probability": 0.8598 + }, + { + "start": 2619.12, + "end": 2620.72, + "probability": 0.7998 + }, + { + "start": 2620.92, + "end": 2626.18, + "probability": 0.9792 + }, + { + "start": 2626.5, + "end": 2628.08, + "probability": 0.9823 + }, + { + "start": 2628.8, + "end": 2630.5, + "probability": 0.9351 + }, + { + "start": 2630.52, + "end": 2632.65, + "probability": 0.9172 + }, + { + "start": 2633.62, + "end": 2635.2, + "probability": 0.1765 + }, + { + "start": 2635.34, + "end": 2637.38, + "probability": 0.3939 + }, + { + "start": 2638.12, + "end": 2640.18, + "probability": 0.4033 + }, + { + "start": 2640.56, + "end": 2640.98, + "probability": 0.7272 + }, + { + "start": 2641.56, + "end": 2644.5, + "probability": 0.8935 + }, + { + "start": 2645.3, + "end": 2649.02, + "probability": 0.9937 + }, + { + "start": 2649.02, + "end": 2654.22, + "probability": 0.9543 + }, + { + "start": 2654.78, + "end": 2655.32, + "probability": 0.6004 + }, + { + "start": 2655.7, + "end": 2658.18, + "probability": 0.9833 + }, + { + "start": 2659.14, + "end": 2666.3, + "probability": 0.9897 + }, + { + "start": 2666.82, + "end": 2668.54, + "probability": 0.6269 + }, + { + "start": 2668.64, + "end": 2671.34, + "probability": 0.9746 + }, + { + "start": 2671.86, + "end": 2672.9, + "probability": 0.9425 + }, + { + "start": 2673.6, + "end": 2674.44, + "probability": 0.3212 + }, + { + "start": 2674.5, + "end": 2675.28, + "probability": 0.9286 + }, + { + "start": 2675.34, + "end": 2676.0, + "probability": 0.9581 + }, + { + "start": 2676.48, + "end": 2680.2, + "probability": 0.9657 + }, + { + "start": 2680.2, + "end": 2682.92, + "probability": 0.9881 + }, + { + "start": 2683.46, + "end": 2687.32, + "probability": 0.8821 + }, + { + "start": 2687.44, + "end": 2689.2, + "probability": 0.9852 + }, + { + "start": 2689.8, + "end": 2690.36, + "probability": 0.9318 + }, + { + "start": 2690.44, + "end": 2691.04, + "probability": 0.6322 + }, + { + "start": 2691.1, + "end": 2691.66, + "probability": 0.763 + }, + { + "start": 2691.72, + "end": 2692.92, + "probability": 0.92 + }, + { + "start": 2693.3, + "end": 2694.88, + "probability": 0.9542 + }, + { + "start": 2695.02, + "end": 2697.78, + "probability": 0.9913 + }, + { + "start": 2697.92, + "end": 2698.66, + "probability": 0.636 + }, + { + "start": 2699.32, + "end": 2701.54, + "probability": 0.9939 + }, + { + "start": 2701.8, + "end": 2702.48, + "probability": 0.9466 + }, + { + "start": 2703.2, + "end": 2706.18, + "probability": 0.9502 + }, + { + "start": 2707.32, + "end": 2708.32, + "probability": 0.1908 + }, + { + "start": 2708.64, + "end": 2710.6, + "probability": 0.0849 + }, + { + "start": 2710.64, + "end": 2711.46, + "probability": 0.1928 + }, + { + "start": 2711.46, + "end": 2711.46, + "probability": 0.1111 + }, + { + "start": 2711.46, + "end": 2714.5, + "probability": 0.6286 + }, + { + "start": 2715.18, + "end": 2717.88, + "probability": 0.9957 + }, + { + "start": 2717.9, + "end": 2720.62, + "probability": 0.7452 + }, + { + "start": 2721.1, + "end": 2723.72, + "probability": 0.6924 + }, + { + "start": 2724.96, + "end": 2726.12, + "probability": 0.7387 + }, + { + "start": 2726.3, + "end": 2727.56, + "probability": 0.8979 + }, + { + "start": 2727.76, + "end": 2728.94, + "probability": 0.6788 + }, + { + "start": 2729.28, + "end": 2734.56, + "probability": 0.9448 + }, + { + "start": 2735.84, + "end": 2737.82, + "probability": 0.5553 + }, + { + "start": 2738.68, + "end": 2744.74, + "probability": 0.8621 + }, + { + "start": 2744.88, + "end": 2745.5, + "probability": 0.9361 + }, + { + "start": 2746.3, + "end": 2746.86, + "probability": 0.6823 + }, + { + "start": 2747.78, + "end": 2750.74, + "probability": 0.9601 + }, + { + "start": 2751.52, + "end": 2752.06, + "probability": 0.9948 + }, + { + "start": 2752.84, + "end": 2753.88, + "probability": 0.8396 + }, + { + "start": 2754.06, + "end": 2756.8, + "probability": 0.9662 + }, + { + "start": 2756.86, + "end": 2762.34, + "probability": 0.9871 + }, + { + "start": 2762.88, + "end": 2767.2, + "probability": 0.9451 + }, + { + "start": 2767.94, + "end": 2769.86, + "probability": 0.9504 + }, + { + "start": 2770.48, + "end": 2775.08, + "probability": 0.982 + }, + { + "start": 2776.52, + "end": 2777.06, + "probability": 0.85 + }, + { + "start": 2777.18, + "end": 2777.58, + "probability": 0.7305 + }, + { + "start": 2777.6, + "end": 2778.04, + "probability": 0.9511 + }, + { + "start": 2778.16, + "end": 2779.06, + "probability": 0.7214 + }, + { + "start": 2779.1, + "end": 2779.74, + "probability": 0.9564 + }, + { + "start": 2779.82, + "end": 2780.18, + "probability": 0.9089 + }, + { + "start": 2780.24, + "end": 2781.55, + "probability": 0.9929 + }, + { + "start": 2782.0, + "end": 2784.02, + "probability": 0.9736 + }, + { + "start": 2785.06, + "end": 2786.82, + "probability": 0.9915 + }, + { + "start": 2787.94, + "end": 2790.64, + "probability": 0.9888 + }, + { + "start": 2791.42, + "end": 2792.9, + "probability": 0.9096 + }, + { + "start": 2792.9, + "end": 2793.81, + "probability": 0.9897 + }, + { + "start": 2794.26, + "end": 2795.94, + "probability": 0.9092 + }, + { + "start": 2796.82, + "end": 2797.84, + "probability": 0.7887 + }, + { + "start": 2797.92, + "end": 2798.74, + "probability": 0.9813 + }, + { + "start": 2800.98, + "end": 2801.26, + "probability": 0.1383 + }, + { + "start": 2801.66, + "end": 2809.82, + "probability": 0.2099 + }, + { + "start": 2809.82, + "end": 2814.34, + "probability": 0.3443 + }, + { + "start": 2814.54, + "end": 2815.85, + "probability": 0.1471 + }, + { + "start": 2817.04, + "end": 2817.84, + "probability": 0.5571 + }, + { + "start": 2818.12, + "end": 2818.18, + "probability": 0.0555 + }, + { + "start": 2818.18, + "end": 2818.6, + "probability": 0.3393 + }, + { + "start": 2818.9, + "end": 2821.32, + "probability": 0.9004 + }, + { + "start": 2821.44, + "end": 2821.44, + "probability": 0.1409 + }, + { + "start": 2821.44, + "end": 2822.32, + "probability": 0.6253 + }, + { + "start": 2823.41, + "end": 2827.24, + "probability": 0.641 + }, + { + "start": 2827.28, + "end": 2829.02, + "probability": 0.836 + }, + { + "start": 2829.08, + "end": 2831.22, + "probability": 0.944 + }, + { + "start": 2832.06, + "end": 2833.68, + "probability": 0.9145 + }, + { + "start": 2833.82, + "end": 2834.36, + "probability": 0.5766 + }, + { + "start": 2834.48, + "end": 2834.98, + "probability": 0.5957 + }, + { + "start": 2835.88, + "end": 2837.1, + "probability": 0.6499 + }, + { + "start": 2837.56, + "end": 2841.64, + "probability": 0.8553 + }, + { + "start": 2842.6, + "end": 2843.96, + "probability": 0.8168 + }, + { + "start": 2844.88, + "end": 2845.37, + "probability": 0.9132 + }, + { + "start": 2845.7, + "end": 2848.52, + "probability": 0.9336 + }, + { + "start": 2848.66, + "end": 2849.44, + "probability": 0.6215 + }, + { + "start": 2849.9, + "end": 2851.08, + "probability": 0.6057 + }, + { + "start": 2851.7, + "end": 2853.72, + "probability": 0.4367 + }, + { + "start": 2854.24, + "end": 2854.78, + "probability": 0.552 + }, + { + "start": 2854.86, + "end": 2856.78, + "probability": 0.9348 + }, + { + "start": 2856.94, + "end": 2857.65, + "probability": 0.8203 + }, + { + "start": 2858.28, + "end": 2859.34, + "probability": 0.9834 + }, + { + "start": 2860.32, + "end": 2864.06, + "probability": 0.965 + }, + { + "start": 2865.02, + "end": 2865.74, + "probability": 0.9554 + }, + { + "start": 2865.84, + "end": 2866.66, + "probability": 0.9714 + }, + { + "start": 2866.78, + "end": 2869.3, + "probability": 0.9512 + }, + { + "start": 2869.3, + "end": 2871.1, + "probability": 0.0532 + }, + { + "start": 2871.1, + "end": 2875.28, + "probability": 0.7961 + }, + { + "start": 2875.34, + "end": 2876.56, + "probability": 0.5741 + }, + { + "start": 2876.72, + "end": 2877.45, + "probability": 0.7388 + }, + { + "start": 2878.0, + "end": 2878.98, + "probability": 0.7157 + }, + { + "start": 2879.48, + "end": 2883.86, + "probability": 0.6863 + }, + { + "start": 2884.6, + "end": 2884.96, + "probability": 0.0381 + }, + { + "start": 2886.04, + "end": 2886.84, + "probability": 0.0887 + }, + { + "start": 2886.84, + "end": 2889.48, + "probability": 0.16 + }, + { + "start": 2890.02, + "end": 2890.56, + "probability": 0.0102 + }, + { + "start": 2891.2, + "end": 2891.2, + "probability": 0.236 + }, + { + "start": 2891.86, + "end": 2893.76, + "probability": 0.7541 + }, + { + "start": 2893.84, + "end": 2895.04, + "probability": 0.7226 + }, + { + "start": 2895.28, + "end": 2896.4, + "probability": 0.8481 + }, + { + "start": 2896.5, + "end": 2898.62, + "probability": 0.9712 + }, + { + "start": 2899.52, + "end": 2901.2, + "probability": 0.6995 + }, + { + "start": 2901.32, + "end": 2902.8, + "probability": 0.8902 + }, + { + "start": 2903.26, + "end": 2904.12, + "probability": 0.8954 + }, + { + "start": 2904.18, + "end": 2905.6, + "probability": 0.9113 + }, + { + "start": 2905.66, + "end": 2906.56, + "probability": 0.3447 + }, + { + "start": 2906.6, + "end": 2909.24, + "probability": 0.9927 + }, + { + "start": 2909.34, + "end": 2910.04, + "probability": 0.7532 + }, + { + "start": 2910.82, + "end": 2913.06, + "probability": 0.9866 + }, + { + "start": 2913.84, + "end": 2915.32, + "probability": 0.7831 + }, + { + "start": 2915.76, + "end": 2916.86, + "probability": 0.6587 + }, + { + "start": 2917.32, + "end": 2918.66, + "probability": 0.7068 + }, + { + "start": 2919.28, + "end": 2919.6, + "probability": 0.3413 + }, + { + "start": 2919.72, + "end": 2921.18, + "probability": 0.8754 + }, + { + "start": 2921.74, + "end": 2923.36, + "probability": 0.7767 + }, + { + "start": 2923.44, + "end": 2928.72, + "probability": 0.894 + }, + { + "start": 2928.92, + "end": 2929.18, + "probability": 0.8012 + }, + { + "start": 2942.8, + "end": 2943.82, + "probability": 0.69 + }, + { + "start": 2944.52, + "end": 2947.74, + "probability": 0.6809 + }, + { + "start": 2948.78, + "end": 2950.68, + "probability": 0.7358 + }, + { + "start": 2952.12, + "end": 2957.42, + "probability": 0.8532 + }, + { + "start": 2959.72, + "end": 2963.39, + "probability": 0.9931 + }, + { + "start": 2966.94, + "end": 2969.58, + "probability": 0.9978 + }, + { + "start": 2970.86, + "end": 2975.5, + "probability": 0.9489 + }, + { + "start": 2976.98, + "end": 2986.14, + "probability": 0.9752 + }, + { + "start": 2989.48, + "end": 2995.2, + "probability": 0.998 + }, + { + "start": 2997.44, + "end": 3000.38, + "probability": 0.9924 + }, + { + "start": 3001.44, + "end": 3006.18, + "probability": 0.9705 + }, + { + "start": 3007.98, + "end": 3009.92, + "probability": 0.6131 + }, + { + "start": 3010.86, + "end": 3013.34, + "probability": 0.9901 + }, + { + "start": 3015.02, + "end": 3018.62, + "probability": 0.9893 + }, + { + "start": 3019.76, + "end": 3024.22, + "probability": 0.8561 + }, + { + "start": 3025.26, + "end": 3027.1, + "probability": 0.8596 + }, + { + "start": 3027.92, + "end": 3029.88, + "probability": 0.988 + }, + { + "start": 3032.5, + "end": 3037.62, + "probability": 0.9004 + }, + { + "start": 3038.2, + "end": 3045.04, + "probability": 0.9206 + }, + { + "start": 3046.5, + "end": 3048.86, + "probability": 0.9978 + }, + { + "start": 3049.28, + "end": 3051.68, + "probability": 0.83 + }, + { + "start": 3052.48, + "end": 3057.48, + "probability": 0.9821 + }, + { + "start": 3059.06, + "end": 3064.3, + "probability": 0.9893 + }, + { + "start": 3066.1, + "end": 3071.22, + "probability": 0.9925 + }, + { + "start": 3071.22, + "end": 3075.88, + "probability": 0.9978 + }, + { + "start": 3077.22, + "end": 3083.74, + "probability": 0.9827 + }, + { + "start": 3085.18, + "end": 3091.24, + "probability": 0.994 + }, + { + "start": 3092.02, + "end": 3094.74, + "probability": 0.9944 + }, + { + "start": 3098.16, + "end": 3101.28, + "probability": 0.9768 + }, + { + "start": 3102.12, + "end": 3103.32, + "probability": 0.7079 + }, + { + "start": 3103.74, + "end": 3106.06, + "probability": 0.958 + }, + { + "start": 3107.52, + "end": 3108.54, + "probability": 0.7051 + }, + { + "start": 3109.78, + "end": 3111.18, + "probability": 0.3074 + }, + { + "start": 3112.42, + "end": 3116.88, + "probability": 0.9713 + }, + { + "start": 3118.12, + "end": 3119.34, + "probability": 0.9738 + }, + { + "start": 3120.98, + "end": 3125.36, + "probability": 0.744 + }, + { + "start": 3126.72, + "end": 3129.72, + "probability": 0.6227 + }, + { + "start": 3131.1, + "end": 3135.3, + "probability": 0.9941 + }, + { + "start": 3136.6, + "end": 3143.2, + "probability": 0.9953 + }, + { + "start": 3145.5, + "end": 3146.9, + "probability": 0.8343 + }, + { + "start": 3146.98, + "end": 3148.24, + "probability": 0.9525 + }, + { + "start": 3148.58, + "end": 3153.7, + "probability": 0.8525 + }, + { + "start": 3155.04, + "end": 3157.34, + "probability": 0.9847 + }, + { + "start": 3159.52, + "end": 3165.77, + "probability": 0.9913 + }, + { + "start": 3166.7, + "end": 3167.7, + "probability": 0.6795 + }, + { + "start": 3168.8, + "end": 3174.88, + "probability": 0.8856 + }, + { + "start": 3176.28, + "end": 3183.48, + "probability": 0.6719 + }, + { + "start": 3184.3, + "end": 3187.42, + "probability": 0.8608 + }, + { + "start": 3187.98, + "end": 3188.96, + "probability": 0.5808 + }, + { + "start": 3189.42, + "end": 3190.7, + "probability": 0.8055 + }, + { + "start": 3191.08, + "end": 3192.58, + "probability": 0.6846 + }, + { + "start": 3192.84, + "end": 3194.02, + "probability": 0.4985 + }, + { + "start": 3194.38, + "end": 3196.61, + "probability": 0.6002 + }, + { + "start": 3197.5, + "end": 3199.16, + "probability": 0.7844 + }, + { + "start": 3199.82, + "end": 3204.6, + "probability": 0.9071 + }, + { + "start": 3205.04, + "end": 3210.94, + "probability": 0.9641 + }, + { + "start": 3212.12, + "end": 3212.92, + "probability": 0.6222 + }, + { + "start": 3213.38, + "end": 3214.54, + "probability": 0.7672 + }, + { + "start": 3215.36, + "end": 3219.78, + "probability": 0.5954 + }, + { + "start": 3220.38, + "end": 3222.82, + "probability": 0.9766 + }, + { + "start": 3223.66, + "end": 3228.32, + "probability": 0.7546 + }, + { + "start": 3229.0, + "end": 3233.36, + "probability": 0.9916 + }, + { + "start": 3233.84, + "end": 3237.06, + "probability": 0.9926 + }, + { + "start": 3238.04, + "end": 3240.2, + "probability": 0.9983 + }, + { + "start": 3241.22, + "end": 3244.76, + "probability": 0.9927 + }, + { + "start": 3245.4, + "end": 3247.22, + "probability": 0.7962 + }, + { + "start": 3248.2, + "end": 3248.76, + "probability": 0.4278 + }, + { + "start": 3248.96, + "end": 3250.94, + "probability": 0.9966 + }, + { + "start": 3251.14, + "end": 3252.66, + "probability": 0.9776 + }, + { + "start": 3253.38, + "end": 3254.6, + "probability": 0.9833 + }, + { + "start": 3254.66, + "end": 3258.94, + "probability": 0.9856 + }, + { + "start": 3260.26, + "end": 3266.32, + "probability": 0.9987 + }, + { + "start": 3268.18, + "end": 3270.78, + "probability": 0.9724 + }, + { + "start": 3271.32, + "end": 3271.78, + "probability": 0.895 + }, + { + "start": 3271.9, + "end": 3275.66, + "probability": 0.9951 + }, + { + "start": 3276.5, + "end": 3280.74, + "probability": 0.9988 + }, + { + "start": 3280.74, + "end": 3285.72, + "probability": 0.9977 + }, + { + "start": 3286.56, + "end": 3289.58, + "probability": 0.9016 + }, + { + "start": 3290.42, + "end": 3294.86, + "probability": 0.9995 + }, + { + "start": 3296.7, + "end": 3297.62, + "probability": 0.9414 + }, + { + "start": 3300.56, + "end": 3304.26, + "probability": 0.5838 + }, + { + "start": 3305.54, + "end": 3307.28, + "probability": 0.9171 + }, + { + "start": 3308.38, + "end": 3310.32, + "probability": 0.9291 + }, + { + "start": 3310.98, + "end": 3313.74, + "probability": 0.4889 + }, + { + "start": 3315.72, + "end": 3316.52, + "probability": 0.6756 + }, + { + "start": 3317.32, + "end": 3321.76, + "probability": 0.9893 + }, + { + "start": 3323.64, + "end": 3325.1, + "probability": 0.8548 + }, + { + "start": 3326.84, + "end": 3330.94, + "probability": 0.8646 + }, + { + "start": 3333.86, + "end": 3334.98, + "probability": 0.9784 + }, + { + "start": 3335.9, + "end": 3337.22, + "probability": 0.964 + }, + { + "start": 3337.74, + "end": 3340.16, + "probability": 0.981 + }, + { + "start": 3341.06, + "end": 3345.26, + "probability": 0.6599 + }, + { + "start": 3345.74, + "end": 3346.94, + "probability": 0.5005 + }, + { + "start": 3347.5, + "end": 3349.34, + "probability": 0.9755 + }, + { + "start": 3350.1, + "end": 3351.0, + "probability": 0.978 + }, + { + "start": 3353.26, + "end": 3356.92, + "probability": 0.9757 + }, + { + "start": 3358.88, + "end": 3360.52, + "probability": 0.9899 + }, + { + "start": 3361.14, + "end": 3364.6, + "probability": 0.9978 + }, + { + "start": 3364.96, + "end": 3367.58, + "probability": 0.9012 + }, + { + "start": 3367.66, + "end": 3368.58, + "probability": 0.4161 + }, + { + "start": 3369.94, + "end": 3372.56, + "probability": 0.9785 + }, + { + "start": 3375.08, + "end": 3376.48, + "probability": 0.9943 + }, + { + "start": 3377.72, + "end": 3379.56, + "probability": 0.9871 + }, + { + "start": 3381.0, + "end": 3382.7, + "probability": 0.9889 + }, + { + "start": 3383.88, + "end": 3385.64, + "probability": 0.8026 + }, + { + "start": 3387.0, + "end": 3388.44, + "probability": 0.9169 + }, + { + "start": 3391.22, + "end": 3391.78, + "probability": 0.9097 + }, + { + "start": 3392.94, + "end": 3395.64, + "probability": 0.9757 + }, + { + "start": 3395.8, + "end": 3398.38, + "probability": 0.9674 + }, + { + "start": 3398.9, + "end": 3399.78, + "probability": 0.9208 + }, + { + "start": 3399.9, + "end": 3400.38, + "probability": 0.8981 + }, + { + "start": 3400.68, + "end": 3401.62, + "probability": 0.9658 + }, + { + "start": 3402.22, + "end": 3403.34, + "probability": 0.9836 + }, + { + "start": 3404.88, + "end": 3408.58, + "probability": 0.9974 + }, + { + "start": 3408.58, + "end": 3412.06, + "probability": 0.9994 + }, + { + "start": 3413.82, + "end": 3417.04, + "probability": 0.9972 + }, + { + "start": 3418.18, + "end": 3423.36, + "probability": 0.9547 + }, + { + "start": 3424.66, + "end": 3427.2, + "probability": 0.9984 + }, + { + "start": 3428.28, + "end": 3429.66, + "probability": 0.6826 + }, + { + "start": 3430.44, + "end": 3431.94, + "probability": 0.7657 + }, + { + "start": 3433.14, + "end": 3435.48, + "probability": 0.9971 + }, + { + "start": 3436.66, + "end": 3439.02, + "probability": 0.7214 + }, + { + "start": 3440.16, + "end": 3444.84, + "probability": 0.9927 + }, + { + "start": 3444.84, + "end": 3448.68, + "probability": 0.9976 + }, + { + "start": 3450.24, + "end": 3450.8, + "probability": 0.7708 + }, + { + "start": 3451.5, + "end": 3452.52, + "probability": 0.8447 + }, + { + "start": 3453.4, + "end": 3456.52, + "probability": 0.8944 + }, + { + "start": 3456.78, + "end": 3457.94, + "probability": 0.8914 + }, + { + "start": 3459.38, + "end": 3459.86, + "probability": 0.877 + }, + { + "start": 3461.24, + "end": 3461.96, + "probability": 0.4438 + }, + { + "start": 3462.46, + "end": 3463.58, + "probability": 0.6656 + }, + { + "start": 3463.74, + "end": 3468.92, + "probability": 0.959 + }, + { + "start": 3469.9, + "end": 3470.52, + "probability": 0.5715 + }, + { + "start": 3470.78, + "end": 3472.06, + "probability": 0.8831 + }, + { + "start": 3472.7, + "end": 3475.54, + "probability": 0.8351 + }, + { + "start": 3476.3, + "end": 3479.8, + "probability": 0.8237 + }, + { + "start": 3481.02, + "end": 3487.38, + "probability": 0.9967 + }, + { + "start": 3488.08, + "end": 3489.46, + "probability": 0.998 + }, + { + "start": 3490.08, + "end": 3493.74, + "probability": 0.9179 + }, + { + "start": 3495.76, + "end": 3497.58, + "probability": 0.942 + }, + { + "start": 3498.74, + "end": 3500.76, + "probability": 0.975 + }, + { + "start": 3501.6, + "end": 3505.66, + "probability": 0.9966 + }, + { + "start": 3505.88, + "end": 3508.94, + "probability": 0.9955 + }, + { + "start": 3512.34, + "end": 3514.2, + "probability": 0.874 + }, + { + "start": 3514.54, + "end": 3516.28, + "probability": 0.7349 + }, + { + "start": 3518.58, + "end": 3522.62, + "probability": 0.9924 + }, + { + "start": 3522.66, + "end": 3524.68, + "probability": 0.8679 + }, + { + "start": 3526.28, + "end": 3527.9, + "probability": 0.6368 + }, + { + "start": 3528.08, + "end": 3532.22, + "probability": 0.9354 + }, + { + "start": 3533.28, + "end": 3537.2, + "probability": 0.9956 + }, + { + "start": 3538.0, + "end": 3541.06, + "probability": 0.7124 + }, + { + "start": 3541.58, + "end": 3543.28, + "probability": 0.9792 + }, + { + "start": 3544.38, + "end": 3548.7, + "probability": 0.9926 + }, + { + "start": 3548.8, + "end": 3549.24, + "probability": 0.8711 + }, + { + "start": 3552.76, + "end": 3553.26, + "probability": 0.7177 + }, + { + "start": 3553.92, + "end": 3556.54, + "probability": 0.9594 + }, + { + "start": 3556.54, + "end": 3559.64, + "probability": 0.8234 + }, + { + "start": 3560.72, + "end": 3562.08, + "probability": 0.1968 + }, + { + "start": 3568.44, + "end": 3569.28, + "probability": 0.0397 + }, + { + "start": 3569.42, + "end": 3569.42, + "probability": 0.0799 + }, + { + "start": 3594.2, + "end": 3596.28, + "probability": 0.72 + }, + { + "start": 3596.34, + "end": 3597.7, + "probability": 0.7499 + }, + { + "start": 3598.38, + "end": 3599.38, + "probability": 0.9646 + }, + { + "start": 3599.86, + "end": 3606.16, + "probability": 0.9951 + }, + { + "start": 3606.82, + "end": 3611.32, + "probability": 0.9983 + }, + { + "start": 3612.28, + "end": 3612.76, + "probability": 0.7596 + }, + { + "start": 3612.9, + "end": 3614.38, + "probability": 0.9723 + }, + { + "start": 3614.84, + "end": 3617.46, + "probability": 0.9948 + }, + { + "start": 3617.86, + "end": 3619.1, + "probability": 0.9181 + }, + { + "start": 3619.8, + "end": 3623.08, + "probability": 0.9759 + }, + { + "start": 3623.72, + "end": 3627.14, + "probability": 0.9917 + }, + { + "start": 3627.14, + "end": 3629.96, + "probability": 0.9884 + }, + { + "start": 3631.28, + "end": 3633.84, + "probability": 0.6535 + }, + { + "start": 3634.5, + "end": 3639.2, + "probability": 0.9978 + }, + { + "start": 3639.84, + "end": 3641.78, + "probability": 0.9577 + }, + { + "start": 3642.4, + "end": 3645.7, + "probability": 0.9869 + }, + { + "start": 3645.7, + "end": 3649.4, + "probability": 0.9976 + }, + { + "start": 3649.56, + "end": 3654.24, + "probability": 0.9889 + }, + { + "start": 3654.74, + "end": 3655.56, + "probability": 0.7758 + }, + { + "start": 3656.08, + "end": 3657.94, + "probability": 0.9893 + }, + { + "start": 3658.34, + "end": 3659.04, + "probability": 0.9858 + }, + { + "start": 3660.0, + "end": 3660.0, + "probability": 0.1754 + }, + { + "start": 3660.0, + "end": 3663.26, + "probability": 0.9434 + }, + { + "start": 3664.7, + "end": 3669.2, + "probability": 0.9988 + }, + { + "start": 3669.8, + "end": 3670.64, + "probability": 0.7468 + }, + { + "start": 3671.3, + "end": 3676.2, + "probability": 0.996 + }, + { + "start": 3676.74, + "end": 3680.06, + "probability": 0.9967 + }, + { + "start": 3680.62, + "end": 3684.36, + "probability": 0.9985 + }, + { + "start": 3685.28, + "end": 3686.46, + "probability": 0.9457 + }, + { + "start": 3687.04, + "end": 3688.86, + "probability": 0.9603 + }, + { + "start": 3689.36, + "end": 3692.86, + "probability": 0.965 + }, + { + "start": 3693.36, + "end": 3695.28, + "probability": 0.9839 + }, + { + "start": 3695.78, + "end": 3698.2, + "probability": 0.9894 + }, + { + "start": 3699.1, + "end": 3700.18, + "probability": 0.7499 + }, + { + "start": 3700.67, + "end": 3703.98, + "probability": 0.9971 + }, + { + "start": 3703.98, + "end": 3707.52, + "probability": 0.9939 + }, + { + "start": 3708.7, + "end": 3710.5, + "probability": 0.9674 + }, + { + "start": 3711.08, + "end": 3713.04, + "probability": 0.9978 + }, + { + "start": 3713.8, + "end": 3715.46, + "probability": 0.9898 + }, + { + "start": 3716.0, + "end": 3720.64, + "probability": 0.9976 + }, + { + "start": 3721.06, + "end": 3722.2, + "probability": 0.9277 + }, + { + "start": 3722.8, + "end": 3727.52, + "probability": 0.9988 + }, + { + "start": 3728.02, + "end": 3732.96, + "probability": 0.9872 + }, + { + "start": 3733.36, + "end": 3734.9, + "probability": 0.8412 + }, + { + "start": 3735.42, + "end": 3742.04, + "probability": 0.9639 + }, + { + "start": 3742.4, + "end": 3746.34, + "probability": 0.9184 + }, + { + "start": 3746.82, + "end": 3751.3, + "probability": 0.9962 + }, + { + "start": 3751.66, + "end": 3753.76, + "probability": 0.9611 + }, + { + "start": 3754.18, + "end": 3756.66, + "probability": 0.9989 + }, + { + "start": 3757.2, + "end": 3761.08, + "probability": 0.9974 + }, + { + "start": 3761.08, + "end": 3765.62, + "probability": 0.9987 + }, + { + "start": 3766.24, + "end": 3767.96, + "probability": 0.9952 + }, + { + "start": 3768.46, + "end": 3772.3, + "probability": 0.9961 + }, + { + "start": 3772.36, + "end": 3775.98, + "probability": 0.9997 + }, + { + "start": 3776.56, + "end": 3781.58, + "probability": 0.9958 + }, + { + "start": 3782.48, + "end": 3785.32, + "probability": 0.9963 + }, + { + "start": 3785.66, + "end": 3787.98, + "probability": 0.9976 + }, + { + "start": 3788.66, + "end": 3790.41, + "probability": 0.9939 + }, + { + "start": 3790.96, + "end": 3794.18, + "probability": 0.9121 + }, + { + "start": 3794.64, + "end": 3796.88, + "probability": 0.9648 + }, + { + "start": 3797.5, + "end": 3798.25, + "probability": 0.8428 + }, + { + "start": 3798.34, + "end": 3801.72, + "probability": 0.9875 + }, + { + "start": 3801.72, + "end": 3804.8, + "probability": 0.9663 + }, + { + "start": 3805.18, + "end": 3809.54, + "probability": 0.9906 + }, + { + "start": 3810.2, + "end": 3814.12, + "probability": 0.9814 + }, + { + "start": 3814.76, + "end": 3816.2, + "probability": 0.9775 + }, + { + "start": 3816.74, + "end": 3820.88, + "probability": 0.9939 + }, + { + "start": 3821.34, + "end": 3822.94, + "probability": 0.9638 + }, + { + "start": 3823.34, + "end": 3826.72, + "probability": 0.99 + }, + { + "start": 3826.72, + "end": 3830.3, + "probability": 0.9897 + }, + { + "start": 3830.8, + "end": 3835.9, + "probability": 0.9958 + }, + { + "start": 3836.56, + "end": 3837.68, + "probability": 0.9767 + }, + { + "start": 3837.82, + "end": 3838.76, + "probability": 0.7213 + }, + { + "start": 3839.2, + "end": 3844.22, + "probability": 0.9972 + }, + { + "start": 3844.22, + "end": 3849.66, + "probability": 0.9958 + }, + { + "start": 3850.2, + "end": 3852.51, + "probability": 0.8815 + }, + { + "start": 3853.72, + "end": 3858.06, + "probability": 0.9952 + }, + { + "start": 3858.5, + "end": 3860.42, + "probability": 0.9915 + }, + { + "start": 3861.48, + "end": 3865.4, + "probability": 0.9991 + }, + { + "start": 3865.4, + "end": 3869.76, + "probability": 0.9995 + }, + { + "start": 3870.12, + "end": 3871.0, + "probability": 0.6146 + }, + { + "start": 3871.52, + "end": 3874.3, + "probability": 0.9695 + }, + { + "start": 3874.78, + "end": 3876.14, + "probability": 0.9785 + }, + { + "start": 3876.56, + "end": 3877.9, + "probability": 0.9956 + }, + { + "start": 3878.46, + "end": 3880.72, + "probability": 0.9959 + }, + { + "start": 3881.36, + "end": 3884.44, + "probability": 0.9974 + }, + { + "start": 3885.04, + "end": 3888.46, + "probability": 0.9961 + }, + { + "start": 3888.96, + "end": 3892.26, + "probability": 0.988 + }, + { + "start": 3892.26, + "end": 3897.35, + "probability": 0.9915 + }, + { + "start": 3897.56, + "end": 3900.64, + "probability": 0.9985 + }, + { + "start": 3900.64, + "end": 3904.66, + "probability": 0.9816 + }, + { + "start": 3904.74, + "end": 3907.3, + "probability": 0.9814 + }, + { + "start": 3907.92, + "end": 3909.94, + "probability": 0.8967 + }, + { + "start": 3910.52, + "end": 3912.12, + "probability": 0.9972 + }, + { + "start": 3912.56, + "end": 3914.26, + "probability": 0.996 + }, + { + "start": 3914.74, + "end": 3918.28, + "probability": 0.9937 + }, + { + "start": 3919.0, + "end": 3920.48, + "probability": 0.9807 + }, + { + "start": 3920.66, + "end": 3922.0, + "probability": 0.9979 + }, + { + "start": 3922.38, + "end": 3926.0, + "probability": 0.986 + }, + { + "start": 3926.9, + "end": 3930.42, + "probability": 0.9967 + }, + { + "start": 3930.9, + "end": 3934.72, + "probability": 0.9858 + }, + { + "start": 3935.18, + "end": 3938.52, + "probability": 0.9821 + }, + { + "start": 3938.52, + "end": 3941.32, + "probability": 0.9958 + }, + { + "start": 3942.26, + "end": 3947.84, + "probability": 0.996 + }, + { + "start": 3948.26, + "end": 3950.76, + "probability": 0.9984 + }, + { + "start": 3951.74, + "end": 3953.92, + "probability": 0.8959 + }, + { + "start": 3954.44, + "end": 3955.42, + "probability": 0.8934 + }, + { + "start": 3955.88, + "end": 3959.52, + "probability": 0.9896 + }, + { + "start": 3960.0, + "end": 3963.0, + "probability": 0.9417 + }, + { + "start": 3963.98, + "end": 3969.24, + "probability": 0.9841 + }, + { + "start": 3969.32, + "end": 3974.24, + "probability": 0.9769 + }, + { + "start": 3974.7, + "end": 3980.34, + "probability": 0.6863 + }, + { + "start": 3980.92, + "end": 3983.54, + "probability": 0.9514 + }, + { + "start": 3983.92, + "end": 3985.74, + "probability": 0.9234 + }, + { + "start": 3985.84, + "end": 3986.58, + "probability": 0.8956 + }, + { + "start": 3987.06, + "end": 3990.06, + "probability": 0.9738 + }, + { + "start": 3990.06, + "end": 3992.06, + "probability": 0.9971 + }, + { + "start": 3992.68, + "end": 3995.92, + "probability": 0.9973 + }, + { + "start": 3996.22, + "end": 3998.0, + "probability": 0.9671 + }, + { + "start": 3998.52, + "end": 4000.98, + "probability": 0.9971 + }, + { + "start": 4001.48, + "end": 4003.32, + "probability": 0.7858 + }, + { + "start": 4003.92, + "end": 4005.16, + "probability": 0.8706 + }, + { + "start": 4005.58, + "end": 4007.65, + "probability": 0.8496 + }, + { + "start": 4008.26, + "end": 4009.0, + "probability": 0.9825 + }, + { + "start": 4010.04, + "end": 4014.56, + "probability": 0.991 + }, + { + "start": 4014.96, + "end": 4017.7, + "probability": 0.9904 + }, + { + "start": 4018.16, + "end": 4021.36, + "probability": 0.9785 + }, + { + "start": 4021.6, + "end": 4025.6, + "probability": 0.941 + }, + { + "start": 4025.6, + "end": 4028.92, + "probability": 0.9651 + }, + { + "start": 4029.54, + "end": 4033.96, + "probability": 0.9969 + }, + { + "start": 4035.36, + "end": 4037.4, + "probability": 0.9915 + }, + { + "start": 4038.02, + "end": 4042.18, + "probability": 0.9908 + }, + { + "start": 4042.62, + "end": 4044.94, + "probability": 0.9634 + }, + { + "start": 4045.32, + "end": 4049.8, + "probability": 0.8573 + }, + { + "start": 4050.66, + "end": 4051.14, + "probability": 0.7052 + }, + { + "start": 4051.62, + "end": 4052.66, + "probability": 0.6646 + }, + { + "start": 4052.74, + "end": 4053.74, + "probability": 0.9098 + }, + { + "start": 4054.12, + "end": 4056.46, + "probability": 0.9285 + }, + { + "start": 4056.96, + "end": 4059.9, + "probability": 0.8885 + }, + { + "start": 4060.24, + "end": 4065.32, + "probability": 0.9979 + }, + { + "start": 4065.78, + "end": 4067.36, + "probability": 0.9957 + }, + { + "start": 4067.82, + "end": 4071.78, + "probability": 0.8743 + }, + { + "start": 4072.62, + "end": 4076.12, + "probability": 0.9374 + }, + { + "start": 4076.48, + "end": 4081.2, + "probability": 0.9663 + }, + { + "start": 4081.26, + "end": 4082.26, + "probability": 0.605 + }, + { + "start": 4082.7, + "end": 4083.88, + "probability": 0.9414 + }, + { + "start": 4084.36, + "end": 4089.12, + "probability": 0.9852 + }, + { + "start": 4089.68, + "end": 4092.94, + "probability": 0.9968 + }, + { + "start": 4093.94, + "end": 4095.12, + "probability": 0.9552 + }, + { + "start": 4095.56, + "end": 4099.58, + "probability": 0.9948 + }, + { + "start": 4099.58, + "end": 4105.14, + "probability": 0.9162 + }, + { + "start": 4105.78, + "end": 4110.46, + "probability": 0.9974 + }, + { + "start": 4110.6, + "end": 4113.22, + "probability": 0.8723 + }, + { + "start": 4113.7, + "end": 4117.3, + "probability": 0.9785 + }, + { + "start": 4117.92, + "end": 4120.04, + "probability": 0.9178 + }, + { + "start": 4120.54, + "end": 4122.62, + "probability": 0.9976 + }, + { + "start": 4122.98, + "end": 4124.52, + "probability": 0.9796 + }, + { + "start": 4125.0, + "end": 4127.24, + "probability": 0.9561 + }, + { + "start": 4127.76, + "end": 4133.88, + "probability": 0.9919 + }, + { + "start": 4134.36, + "end": 4139.58, + "probability": 0.9933 + }, + { + "start": 4140.16, + "end": 4140.77, + "probability": 0.5963 + }, + { + "start": 4141.22, + "end": 4143.42, + "probability": 0.8704 + }, + { + "start": 4143.94, + "end": 4147.04, + "probability": 0.9964 + }, + { + "start": 4147.04, + "end": 4149.8, + "probability": 0.9995 + }, + { + "start": 4150.34, + "end": 4150.74, + "probability": 0.9286 + }, + { + "start": 4151.12, + "end": 4152.18, + "probability": 0.7638 + }, + { + "start": 4152.22, + "end": 4154.16, + "probability": 0.9453 + }, + { + "start": 4154.78, + "end": 4157.26, + "probability": 0.9875 + }, + { + "start": 4157.72, + "end": 4158.74, + "probability": 0.8651 + }, + { + "start": 4158.84, + "end": 4160.0, + "probability": 0.8799 + }, + { + "start": 4160.62, + "end": 4162.04, + "probability": 0.9569 + }, + { + "start": 4162.2, + "end": 4162.74, + "probability": 0.9403 + }, + { + "start": 4163.24, + "end": 4164.8, + "probability": 0.9822 + }, + { + "start": 4165.76, + "end": 4168.74, + "probability": 0.9081 + }, + { + "start": 4169.26, + "end": 4171.64, + "probability": 0.9414 + }, + { + "start": 4172.1, + "end": 4173.78, + "probability": 0.9729 + }, + { + "start": 4174.04, + "end": 4175.16, + "probability": 0.9893 + }, + { + "start": 4175.38, + "end": 4176.58, + "probability": 0.7715 + }, + { + "start": 4176.92, + "end": 4180.74, + "probability": 0.9988 + }, + { + "start": 4181.02, + "end": 4183.64, + "probability": 0.9917 + }, + { + "start": 4184.06, + "end": 4185.12, + "probability": 0.6953 + }, + { + "start": 4185.16, + "end": 4187.7, + "probability": 0.9507 + }, + { + "start": 4188.52, + "end": 4189.7, + "probability": 0.9701 + }, + { + "start": 4190.28, + "end": 4193.14, + "probability": 0.6624 + }, + { + "start": 4193.48, + "end": 4193.98, + "probability": 0.7814 + }, + { + "start": 4194.26, + "end": 4194.6, + "probability": 0.9188 + }, + { + "start": 4195.04, + "end": 4197.76, + "probability": 0.9903 + }, + { + "start": 4198.2, + "end": 4202.1, + "probability": 0.9952 + }, + { + "start": 4202.16, + "end": 4205.74, + "probability": 0.999 + }, + { + "start": 4206.02, + "end": 4211.32, + "probability": 0.9868 + }, + { + "start": 4211.64, + "end": 4212.58, + "probability": 0.947 + }, + { + "start": 4213.24, + "end": 4217.42, + "probability": 0.9624 + }, + { + "start": 4217.96, + "end": 4220.84, + "probability": 0.8271 + }, + { + "start": 4221.42, + "end": 4222.86, + "probability": 0.6253 + }, + { + "start": 4223.48, + "end": 4226.78, + "probability": 0.9988 + }, + { + "start": 4227.12, + "end": 4229.32, + "probability": 0.9895 + }, + { + "start": 4229.64, + "end": 4233.16, + "probability": 0.9964 + }, + { + "start": 4233.16, + "end": 4236.56, + "probability": 0.861 + }, + { + "start": 4237.08, + "end": 4240.98, + "probability": 0.8687 + }, + { + "start": 4240.98, + "end": 4241.52, + "probability": 0.7714 + }, + { + "start": 4241.8, + "end": 4243.08, + "probability": 0.9451 + }, + { + "start": 4243.18, + "end": 4243.72, + "probability": 0.9469 + }, + { + "start": 4244.16, + "end": 4244.86, + "probability": 0.9165 + }, + { + "start": 4245.44, + "end": 4251.44, + "probability": 0.9824 + }, + { + "start": 4252.38, + "end": 4257.38, + "probability": 0.9985 + }, + { + "start": 4257.94, + "end": 4259.18, + "probability": 0.9823 + }, + { + "start": 4259.56, + "end": 4261.74, + "probability": 0.9972 + }, + { + "start": 4262.1, + "end": 4265.2, + "probability": 0.9988 + }, + { + "start": 4265.96, + "end": 4270.06, + "probability": 0.9363 + }, + { + "start": 4270.62, + "end": 4273.82, + "probability": 0.954 + }, + { + "start": 4273.82, + "end": 4276.88, + "probability": 0.9675 + }, + { + "start": 4277.44, + "end": 4281.3, + "probability": 0.8323 + }, + { + "start": 4281.76, + "end": 4284.52, + "probability": 0.9786 + }, + { + "start": 4284.8, + "end": 4286.2, + "probability": 0.9766 + }, + { + "start": 4286.5, + "end": 4287.78, + "probability": 0.9653 + }, + { + "start": 4288.34, + "end": 4293.02, + "probability": 0.9958 + }, + { + "start": 4293.64, + "end": 4297.1, + "probability": 0.9979 + }, + { + "start": 4297.1, + "end": 4300.04, + "probability": 0.9995 + }, + { + "start": 4300.54, + "end": 4303.3, + "probability": 0.8701 + }, + { + "start": 4303.36, + "end": 4304.72, + "probability": 0.726 + }, + { + "start": 4305.14, + "end": 4306.87, + "probability": 0.9966 + }, + { + "start": 4307.46, + "end": 4308.46, + "probability": 0.6414 + }, + { + "start": 4308.82, + "end": 4310.26, + "probability": 0.8023 + }, + { + "start": 4310.92, + "end": 4312.34, + "probability": 0.9714 + }, + { + "start": 4312.8, + "end": 4316.04, + "probability": 0.9803 + }, + { + "start": 4316.96, + "end": 4319.12, + "probability": 0.9694 + }, + { + "start": 4319.58, + "end": 4320.38, + "probability": 0.7749 + }, + { + "start": 4320.46, + "end": 4321.36, + "probability": 0.9645 + }, + { + "start": 4321.76, + "end": 4324.2, + "probability": 0.9923 + }, + { + "start": 4324.58, + "end": 4329.3, + "probability": 0.9909 + }, + { + "start": 4329.82, + "end": 4330.2, + "probability": 0.8675 + }, + { + "start": 4330.26, + "end": 4330.78, + "probability": 0.9515 + }, + { + "start": 4330.86, + "end": 4332.32, + "probability": 0.3213 + }, + { + "start": 4332.54, + "end": 4332.72, + "probability": 0.1159 + }, + { + "start": 4332.72, + "end": 4339.12, + "probability": 0.9961 + }, + { + "start": 4339.74, + "end": 4342.08, + "probability": 0.9229 + }, + { + "start": 4342.6, + "end": 4346.22, + "probability": 0.9915 + }, + { + "start": 4346.74, + "end": 4348.1, + "probability": 0.9659 + }, + { + "start": 4348.52, + "end": 4350.98, + "probability": 0.9912 + }, + { + "start": 4351.3, + "end": 4352.24, + "probability": 0.9118 + }, + { + "start": 4352.82, + "end": 4352.88, + "probability": 0.0241 + }, + { + "start": 4352.88, + "end": 4356.34, + "probability": 0.9226 + }, + { + "start": 4356.76, + "end": 4359.86, + "probability": 0.9982 + }, + { + "start": 4360.42, + "end": 4364.2, + "probability": 0.9177 + }, + { + "start": 4364.54, + "end": 4364.68, + "probability": 0.0264 + }, + { + "start": 4364.68, + "end": 4364.68, + "probability": 0.0422 + }, + { + "start": 4364.68, + "end": 4368.72, + "probability": 0.9796 + }, + { + "start": 4369.04, + "end": 4372.8, + "probability": 0.9753 + }, + { + "start": 4373.18, + "end": 4373.62, + "probability": 0.4983 + }, + { + "start": 4373.72, + "end": 4376.9, + "probability": 0.9217 + }, + { + "start": 4376.98, + "end": 4378.02, + "probability": 0.9902 + }, + { + "start": 4378.68, + "end": 4379.1, + "probability": 0.8486 + }, + { + "start": 4379.24, + "end": 4380.34, + "probability": 0.9253 + }, + { + "start": 4380.66, + "end": 4380.82, + "probability": 0.9193 + }, + { + "start": 4383.02, + "end": 4384.6, + "probability": 0.8262 + }, + { + "start": 4385.16, + "end": 4387.56, + "probability": 0.6186 + }, + { + "start": 4388.28, + "end": 4389.5, + "probability": 0.8278 + }, + { + "start": 4389.94, + "end": 4392.1, + "probability": 0.4152 + }, + { + "start": 4392.1, + "end": 4392.94, + "probability": 0.5475 + }, + { + "start": 4393.3, + "end": 4393.66, + "probability": 0.8993 + }, + { + "start": 4393.72, + "end": 4394.54, + "probability": 0.9951 + }, + { + "start": 4394.76, + "end": 4395.7, + "probability": 0.6212 + }, + { + "start": 4395.86, + "end": 4398.62, + "probability": 0.7852 + }, + { + "start": 4398.7, + "end": 4403.42, + "probability": 0.5833 + }, + { + "start": 4403.76, + "end": 4406.98, + "probability": 0.6279 + }, + { + "start": 4407.14, + "end": 4407.2, + "probability": 0.0227 + }, + { + "start": 4407.34, + "end": 4407.56, + "probability": 0.4764 + }, + { + "start": 4407.56, + "end": 4407.56, + "probability": 0.4108 + }, + { + "start": 4407.56, + "end": 4407.56, + "probability": 0.5031 + }, + { + "start": 4407.56, + "end": 4410.66, + "probability": 0.6841 + }, + { + "start": 4411.02, + "end": 4411.02, + "probability": 0.0327 + }, + { + "start": 4411.02, + "end": 4412.1, + "probability": 0.1228 + }, + { + "start": 4412.32, + "end": 4413.78, + "probability": 0.1611 + }, + { + "start": 4414.14, + "end": 4414.46, + "probability": 0.0335 + }, + { + "start": 4414.48, + "end": 4414.84, + "probability": 0.107 + }, + { + "start": 4414.88, + "end": 4416.22, + "probability": 0.7813 + }, + { + "start": 4416.26, + "end": 4416.48, + "probability": 0.1033 + }, + { + "start": 4416.6, + "end": 4418.34, + "probability": 0.1613 + }, + { + "start": 4418.34, + "end": 4418.48, + "probability": 0.1295 + }, + { + "start": 4418.48, + "end": 4419.24, + "probability": 0.9789 + }, + { + "start": 4419.32, + "end": 4419.84, + "probability": 0.9442 + }, + { + "start": 4419.94, + "end": 4420.26, + "probability": 0.7354 + }, + { + "start": 4420.6, + "end": 4420.62, + "probability": 0.0293 + }, + { + "start": 4420.62, + "end": 4420.62, + "probability": 0.2408 + }, + { + "start": 4420.62, + "end": 4422.04, + "probability": 0.4778 + }, + { + "start": 4422.88, + "end": 4423.92, + "probability": 0.6598 + }, + { + "start": 4423.96, + "end": 4425.14, + "probability": 0.749 + }, + { + "start": 4425.7, + "end": 4426.44, + "probability": 0.6328 + }, + { + "start": 4426.48, + "end": 4429.92, + "probability": 0.9 + }, + { + "start": 4429.92, + "end": 4434.7, + "probability": 0.7204 + }, + { + "start": 4434.88, + "end": 4437.24, + "probability": 0.3233 + }, + { + "start": 4438.2, + "end": 4440.32, + "probability": 0.9923 + }, + { + "start": 4440.84, + "end": 4440.94, + "probability": 0.127 + }, + { + "start": 4441.04, + "end": 4441.46, + "probability": 0.3911 + }, + { + "start": 4441.62, + "end": 4444.86, + "probability": 0.4332 + }, + { + "start": 4445.3, + "end": 4450.9, + "probability": 0.5269 + }, + { + "start": 4451.5, + "end": 4453.3, + "probability": 0.9555 + }, + { + "start": 4453.42, + "end": 4454.8, + "probability": 0.4451 + }, + { + "start": 4454.8, + "end": 4457.02, + "probability": 0.8719 + }, + { + "start": 4457.54, + "end": 4460.72, + "probability": 0.6478 + }, + { + "start": 4461.2, + "end": 4463.1, + "probability": 0.9614 + }, + { + "start": 4463.32, + "end": 4464.82, + "probability": 0.9972 + }, + { + "start": 4464.94, + "end": 4465.2, + "probability": 0.9347 + }, + { + "start": 4468.98, + "end": 4471.9, + "probability": 0.7945 + }, + { + "start": 4471.96, + "end": 4472.12, + "probability": 0.3134 + }, + { + "start": 4472.12, + "end": 4472.96, + "probability": 0.5887 + }, + { + "start": 4473.02, + "end": 4473.84, + "probability": 0.9503 + }, + { + "start": 4483.96, + "end": 4484.32, + "probability": 0.1917 + }, + { + "start": 4492.3, + "end": 4492.3, + "probability": 0.029 + }, + { + "start": 4492.3, + "end": 4492.3, + "probability": 0.0374 + }, + { + "start": 4492.3, + "end": 4492.4, + "probability": 0.0762 + }, + { + "start": 4493.64, + "end": 4496.7, + "probability": 0.6453 + }, + { + "start": 4497.82, + "end": 4500.6, + "probability": 0.848 + }, + { + "start": 4500.7, + "end": 4503.14, + "probability": 0.7244 + }, + { + "start": 4503.98, + "end": 4506.38, + "probability": 0.9598 + }, + { + "start": 4507.08, + "end": 4508.36, + "probability": 0.9892 + }, + { + "start": 4509.74, + "end": 4513.62, + "probability": 0.9938 + }, + { + "start": 4514.44, + "end": 4518.3, + "probability": 0.9971 + }, + { + "start": 4518.96, + "end": 4523.82, + "probability": 0.8886 + }, + { + "start": 4524.56, + "end": 4528.1, + "probability": 0.9951 + }, + { + "start": 4529.1, + "end": 4533.84, + "probability": 0.9182 + }, + { + "start": 4534.96, + "end": 4535.74, + "probability": 0.9837 + }, + { + "start": 4536.62, + "end": 4537.62, + "probability": 0.6946 + }, + { + "start": 4538.52, + "end": 4542.04, + "probability": 0.9946 + }, + { + "start": 4543.44, + "end": 4548.08, + "probability": 0.9044 + }, + { + "start": 4550.36, + "end": 4555.1, + "probability": 0.9771 + }, + { + "start": 4556.28, + "end": 4558.1, + "probability": 0.9643 + }, + { + "start": 4559.48, + "end": 4560.1, + "probability": 0.7487 + }, + { + "start": 4560.98, + "end": 4564.52, + "probability": 0.9875 + }, + { + "start": 4565.74, + "end": 4566.82, + "probability": 0.7915 + }, + { + "start": 4567.52, + "end": 4568.4, + "probability": 0.936 + }, + { + "start": 4569.14, + "end": 4572.68, + "probability": 0.8578 + }, + { + "start": 4573.6, + "end": 4576.5, + "probability": 0.9941 + }, + { + "start": 4577.04, + "end": 4579.3, + "probability": 0.9489 + }, + { + "start": 4580.42, + "end": 4581.16, + "probability": 0.7287 + }, + { + "start": 4581.78, + "end": 4582.5, + "probability": 0.9636 + }, + { + "start": 4583.72, + "end": 4586.92, + "probability": 0.9815 + }, + { + "start": 4588.52, + "end": 4589.94, + "probability": 0.9014 + }, + { + "start": 4590.48, + "end": 4591.48, + "probability": 0.9897 + }, + { + "start": 4591.5, + "end": 4592.26, + "probability": 0.9404 + }, + { + "start": 4592.42, + "end": 4594.18, + "probability": 0.9321 + }, + { + "start": 4594.9, + "end": 4596.3, + "probability": 0.9756 + }, + { + "start": 4596.84, + "end": 4600.98, + "probability": 0.9995 + }, + { + "start": 4602.14, + "end": 4604.96, + "probability": 0.974 + }, + { + "start": 4607.22, + "end": 4608.84, + "probability": 0.9976 + }, + { + "start": 4609.9, + "end": 4611.14, + "probability": 0.8213 + }, + { + "start": 4611.76, + "end": 4614.24, + "probability": 0.941 + }, + { + "start": 4615.06, + "end": 4616.54, + "probability": 0.9956 + }, + { + "start": 4617.14, + "end": 4617.94, + "probability": 0.9818 + }, + { + "start": 4618.82, + "end": 4619.62, + "probability": 0.9805 + }, + { + "start": 4621.42, + "end": 4626.34, + "probability": 0.9536 + }, + { + "start": 4627.0, + "end": 4628.78, + "probability": 0.9907 + }, + { + "start": 4629.8, + "end": 4631.02, + "probability": 0.6351 + }, + { + "start": 4632.4, + "end": 4636.98, + "probability": 0.9723 + }, + { + "start": 4638.48, + "end": 4639.5, + "probability": 0.8152 + }, + { + "start": 4640.38, + "end": 4642.08, + "probability": 0.8183 + }, + { + "start": 4642.92, + "end": 4644.28, + "probability": 0.9419 + }, + { + "start": 4645.4, + "end": 4646.7, + "probability": 0.9189 + }, + { + "start": 4648.12, + "end": 4648.98, + "probability": 0.8128 + }, + { + "start": 4649.7, + "end": 4650.86, + "probability": 0.8188 + }, + { + "start": 4651.64, + "end": 4653.02, + "probability": 0.9308 + }, + { + "start": 4653.52, + "end": 4654.96, + "probability": 0.991 + }, + { + "start": 4655.02, + "end": 4655.9, + "probability": 0.9117 + }, + { + "start": 4656.52, + "end": 4657.58, + "probability": 0.8243 + }, + { + "start": 4658.52, + "end": 4660.8, + "probability": 0.9751 + }, + { + "start": 4661.26, + "end": 4664.1, + "probability": 0.9214 + }, + { + "start": 4664.22, + "end": 4665.38, + "probability": 0.7164 + }, + { + "start": 4666.02, + "end": 4668.3, + "probability": 0.9813 + }, + { + "start": 4668.98, + "end": 4669.86, + "probability": 0.9839 + }, + { + "start": 4670.48, + "end": 4670.88, + "probability": 0.7772 + }, + { + "start": 4671.78, + "end": 4673.3, + "probability": 0.9766 + }, + { + "start": 4674.78, + "end": 4676.14, + "probability": 0.9707 + }, + { + "start": 4684.24, + "end": 4686.68, + "probability": 0.68 + }, + { + "start": 4687.86, + "end": 4690.44, + "probability": 0.9032 + }, + { + "start": 4690.48, + "end": 4692.5, + "probability": 0.97 + }, + { + "start": 4692.64, + "end": 4693.89, + "probability": 0.9729 + }, + { + "start": 4694.06, + "end": 4695.46, + "probability": 0.9859 + }, + { + "start": 4696.04, + "end": 4701.12, + "probability": 0.9648 + }, + { + "start": 4701.12, + "end": 4707.84, + "probability": 0.998 + }, + { + "start": 4707.94, + "end": 4711.38, + "probability": 0.9954 + }, + { + "start": 4712.42, + "end": 4717.44, + "probability": 0.9442 + }, + { + "start": 4718.06, + "end": 4721.26, + "probability": 0.8831 + }, + { + "start": 4722.06, + "end": 4723.34, + "probability": 0.9889 + }, + { + "start": 4724.12, + "end": 4725.84, + "probability": 0.769 + }, + { + "start": 4727.44, + "end": 4729.75, + "probability": 0.993 + }, + { + "start": 4730.48, + "end": 4732.26, + "probability": 0.9868 + }, + { + "start": 4733.3, + "end": 4735.74, + "probability": 0.8254 + }, + { + "start": 4736.24, + "end": 4736.9, + "probability": 0.9913 + }, + { + "start": 4737.6, + "end": 4739.84, + "probability": 0.988 + }, + { + "start": 4740.78, + "end": 4745.4, + "probability": 0.8358 + }, + { + "start": 4746.66, + "end": 4748.62, + "probability": 0.7524 + }, + { + "start": 4749.6, + "end": 4750.56, + "probability": 0.7866 + }, + { + "start": 4751.42, + "end": 4753.52, + "probability": 0.9743 + }, + { + "start": 4754.14, + "end": 4755.92, + "probability": 0.7754 + }, + { + "start": 4757.0, + "end": 4763.66, + "probability": 0.9807 + }, + { + "start": 4765.1, + "end": 4768.34, + "probability": 0.9573 + }, + { + "start": 4769.32, + "end": 4770.3, + "probability": 0.8741 + }, + { + "start": 4771.36, + "end": 4775.76, + "probability": 0.9981 + }, + { + "start": 4776.86, + "end": 4777.7, + "probability": 0.9954 + }, + { + "start": 4778.32, + "end": 4782.04, + "probability": 0.6831 + }, + { + "start": 4782.94, + "end": 4786.96, + "probability": 0.8989 + }, + { + "start": 4787.5, + "end": 4791.26, + "probability": 0.8142 + }, + { + "start": 4792.02, + "end": 4797.22, + "probability": 0.9897 + }, + { + "start": 4797.34, + "end": 4800.76, + "probability": 0.6668 + }, + { + "start": 4800.98, + "end": 4801.72, + "probability": 0.7616 + }, + { + "start": 4802.64, + "end": 4803.99, + "probability": 0.5031 + }, + { + "start": 4805.22, + "end": 4809.94, + "probability": 0.7209 + }, + { + "start": 4810.26, + "end": 4811.58, + "probability": 0.8023 + }, + { + "start": 4812.16, + "end": 4817.8, + "probability": 0.8179 + }, + { + "start": 4818.94, + "end": 4822.48, + "probability": 0.9136 + }, + { + "start": 4823.06, + "end": 4827.48, + "probability": 0.95 + }, + { + "start": 4828.16, + "end": 4830.26, + "probability": 0.9795 + }, + { + "start": 4830.74, + "end": 4831.98, + "probability": 0.9833 + }, + { + "start": 4832.88, + "end": 4833.2, + "probability": 0.8999 + }, + { + "start": 4834.72, + "end": 4836.22, + "probability": 0.8046 + }, + { + "start": 4836.32, + "end": 4840.14, + "probability": 0.9961 + }, + { + "start": 4840.22, + "end": 4840.86, + "probability": 0.9004 + }, + { + "start": 4841.36, + "end": 4842.24, + "probability": 0.9433 + }, + { + "start": 4842.34, + "end": 4845.26, + "probability": 0.9705 + }, + { + "start": 4846.1, + "end": 4848.72, + "probability": 0.9832 + }, + { + "start": 4848.94, + "end": 4849.28, + "probability": 0.698 + }, + { + "start": 4850.1, + "end": 4850.66, + "probability": 0.9063 + }, + { + "start": 4851.4, + "end": 4857.06, + "probability": 0.9229 + }, + { + "start": 4857.86, + "end": 4857.9, + "probability": 0.2113 + }, + { + "start": 4859.08, + "end": 4861.62, + "probability": 0.9504 + }, + { + "start": 4861.92, + "end": 4863.62, + "probability": 0.9341 + }, + { + "start": 4864.76, + "end": 4865.42, + "probability": 0.6107 + }, + { + "start": 4866.24, + "end": 4868.56, + "probability": 0.9778 + }, + { + "start": 4868.62, + "end": 4870.7, + "probability": 0.9976 + }, + { + "start": 4872.24, + "end": 4875.68, + "probability": 0.9868 + }, + { + "start": 4875.94, + "end": 4876.6, + "probability": 0.4647 + }, + { + "start": 4877.36, + "end": 4877.72, + "probability": 0.4157 + }, + { + "start": 4877.72, + "end": 4881.88, + "probability": 0.8973 + }, + { + "start": 4882.02, + "end": 4883.2, + "probability": 0.9437 + }, + { + "start": 4883.42, + "end": 4887.92, + "probability": 0.9954 + }, + { + "start": 4888.56, + "end": 4889.2, + "probability": 0.4186 + }, + { + "start": 4889.84, + "end": 4890.44, + "probability": 0.5683 + }, + { + "start": 4890.6, + "end": 4892.12, + "probability": 0.8683 + }, + { + "start": 4915.98, + "end": 4919.08, + "probability": 0.7864 + }, + { + "start": 4920.12, + "end": 4925.0, + "probability": 0.997 + }, + { + "start": 4926.06, + "end": 4927.66, + "probability": 0.9704 + }, + { + "start": 4927.7, + "end": 4933.96, + "probability": 0.9688 + }, + { + "start": 4934.86, + "end": 4937.78, + "probability": 0.9844 + }, + { + "start": 4939.0, + "end": 4943.48, + "probability": 0.9727 + }, + { + "start": 4944.26, + "end": 4945.72, + "probability": 0.8743 + }, + { + "start": 4946.28, + "end": 4952.62, + "probability": 0.9866 + }, + { + "start": 4953.8, + "end": 4956.84, + "probability": 0.9805 + }, + { + "start": 4957.54, + "end": 4961.94, + "probability": 0.9966 + }, + { + "start": 4961.94, + "end": 4966.48, + "probability": 0.9996 + }, + { + "start": 4967.12, + "end": 4970.44, + "probability": 0.9409 + }, + { + "start": 4971.98, + "end": 4973.1, + "probability": 0.3701 + }, + { + "start": 4973.66, + "end": 4974.98, + "probability": 0.786 + }, + { + "start": 4975.66, + "end": 4980.66, + "probability": 0.9496 + }, + { + "start": 4981.96, + "end": 4983.36, + "probability": 0.937 + }, + { + "start": 4984.26, + "end": 4986.68, + "probability": 0.9945 + }, + { + "start": 4987.64, + "end": 4992.98, + "probability": 0.9862 + }, + { + "start": 4993.08, + "end": 4993.74, + "probability": 0.6946 + }, + { + "start": 4994.72, + "end": 4996.82, + "probability": 0.8796 + }, + { + "start": 4998.4, + "end": 5007.24, + "probability": 0.9901 + }, + { + "start": 5008.08, + "end": 5015.18, + "probability": 0.9956 + }, + { + "start": 5016.56, + "end": 5017.72, + "probability": 0.9421 + }, + { + "start": 5018.84, + "end": 5020.7, + "probability": 0.8809 + }, + { + "start": 5023.34, + "end": 5027.74, + "probability": 0.9842 + }, + { + "start": 5028.54, + "end": 5033.82, + "probability": 0.9843 + }, + { + "start": 5034.52, + "end": 5036.48, + "probability": 0.9596 + }, + { + "start": 5037.3, + "end": 5041.6, + "probability": 0.9935 + }, + { + "start": 5042.54, + "end": 5046.24, + "probability": 0.9966 + }, + { + "start": 5047.9, + "end": 5053.0, + "probability": 0.9137 + }, + { + "start": 5053.52, + "end": 5056.2, + "probability": 0.9902 + }, + { + "start": 5056.96, + "end": 5060.22, + "probability": 0.9956 + }, + { + "start": 5060.62, + "end": 5061.58, + "probability": 0.3302 + }, + { + "start": 5063.64, + "end": 5067.64, + "probability": 0.9938 + }, + { + "start": 5068.62, + "end": 5072.06, + "probability": 0.918 + }, + { + "start": 5074.0, + "end": 5080.96, + "probability": 0.9846 + }, + { + "start": 5082.74, + "end": 5087.46, + "probability": 0.9658 + }, + { + "start": 5087.86, + "end": 5088.96, + "probability": 0.8243 + }, + { + "start": 5089.4, + "end": 5090.66, + "probability": 0.8288 + }, + { + "start": 5091.06, + "end": 5095.08, + "probability": 0.9235 + }, + { + "start": 5096.48, + "end": 5102.06, + "probability": 0.9814 + }, + { + "start": 5103.0, + "end": 5108.0, + "probability": 0.996 + }, + { + "start": 5109.12, + "end": 5111.04, + "probability": 0.9541 + }, + { + "start": 5112.04, + "end": 5115.78, + "probability": 0.9976 + }, + { + "start": 5116.56, + "end": 5119.76, + "probability": 0.9791 + }, + { + "start": 5122.44, + "end": 5124.68, + "probability": 0.7373 + }, + { + "start": 5139.92, + "end": 5141.64, + "probability": 0.5522 + }, + { + "start": 5143.94, + "end": 5147.04, + "probability": 0.9336 + }, + { + "start": 5148.58, + "end": 5155.5, + "probability": 0.9985 + }, + { + "start": 5156.98, + "end": 5159.6, + "probability": 0.9981 + }, + { + "start": 5161.22, + "end": 5162.42, + "probability": 0.5367 + }, + { + "start": 5163.46, + "end": 5164.7, + "probability": 0.9956 + }, + { + "start": 5167.0, + "end": 5168.44, + "probability": 0.9706 + }, + { + "start": 5170.92, + "end": 5178.8, + "probability": 0.9799 + }, + { + "start": 5178.8, + "end": 5182.88, + "probability": 0.9984 + }, + { + "start": 5184.96, + "end": 5186.18, + "probability": 0.9634 + }, + { + "start": 5187.32, + "end": 5190.84, + "probability": 0.8744 + }, + { + "start": 5192.72, + "end": 5195.06, + "probability": 0.5819 + }, + { + "start": 5195.86, + "end": 5197.26, + "probability": 0.9973 + }, + { + "start": 5198.3, + "end": 5200.8, + "probability": 0.9449 + }, + { + "start": 5201.48, + "end": 5202.18, + "probability": 0.8382 + }, + { + "start": 5206.82, + "end": 5208.04, + "probability": 0.9603 + }, + { + "start": 5208.88, + "end": 5209.38, + "probability": 0.6273 + }, + { + "start": 5212.2, + "end": 5214.6, + "probability": 0.9834 + }, + { + "start": 5216.0, + "end": 5216.68, + "probability": 0.9932 + }, + { + "start": 5217.46, + "end": 5222.92, + "probability": 0.9132 + }, + { + "start": 5224.22, + "end": 5227.02, + "probability": 0.9918 + }, + { + "start": 5230.08, + "end": 5231.32, + "probability": 0.8918 + }, + { + "start": 5232.4, + "end": 5233.56, + "probability": 0.9959 + }, + { + "start": 5234.26, + "end": 5235.96, + "probability": 0.9829 + }, + { + "start": 5237.38, + "end": 5240.42, + "probability": 0.8755 + }, + { + "start": 5241.42, + "end": 5242.0, + "probability": 0.4584 + }, + { + "start": 5242.64, + "end": 5243.44, + "probability": 0.9932 + }, + { + "start": 5244.44, + "end": 5245.64, + "probability": 0.9857 + }, + { + "start": 5247.72, + "end": 5250.28, + "probability": 0.5834 + }, + { + "start": 5251.96, + "end": 5252.8, + "probability": 0.5963 + }, + { + "start": 5253.62, + "end": 5258.64, + "probability": 0.8688 + }, + { + "start": 5258.78, + "end": 5263.14, + "probability": 0.9734 + }, + { + "start": 5263.28, + "end": 5264.8, + "probability": 0.661 + }, + { + "start": 5265.8, + "end": 5268.8, + "probability": 0.5402 + }, + { + "start": 5269.78, + "end": 5270.28, + "probability": 0.701 + }, + { + "start": 5270.46, + "end": 5271.36, + "probability": 0.9537 + }, + { + "start": 5273.06, + "end": 5274.36, + "probability": 0.9746 + }, + { + "start": 5275.7, + "end": 5278.92, + "probability": 0.9971 + }, + { + "start": 5281.28, + "end": 5286.36, + "probability": 0.9774 + }, + { + "start": 5287.42, + "end": 5289.14, + "probability": 0.9712 + }, + { + "start": 5290.14, + "end": 5291.4, + "probability": 0.7652 + }, + { + "start": 5293.1, + "end": 5294.56, + "probability": 0.9042 + }, + { + "start": 5295.42, + "end": 5297.8, + "probability": 0.9085 + }, + { + "start": 5298.58, + "end": 5299.6, + "probability": 0.6396 + }, + { + "start": 5300.84, + "end": 5303.64, + "probability": 0.9915 + }, + { + "start": 5303.72, + "end": 5305.9, + "probability": 0.7983 + }, + { + "start": 5306.86, + "end": 5309.1, + "probability": 0.8177 + }, + { + "start": 5309.52, + "end": 5315.84, + "probability": 0.9822 + }, + { + "start": 5316.04, + "end": 5316.24, + "probability": 0.8363 + }, + { + "start": 5316.98, + "end": 5317.78, + "probability": 0.6284 + }, + { + "start": 5317.86, + "end": 5320.72, + "probability": 0.6562 + }, + { + "start": 5342.4, + "end": 5343.66, + "probability": 0.6254 + }, + { + "start": 5345.3, + "end": 5348.58, + "probability": 0.8753 + }, + { + "start": 5349.4, + "end": 5351.52, + "probability": 0.8188 + }, + { + "start": 5352.74, + "end": 5353.28, + "probability": 0.8193 + }, + { + "start": 5353.4, + "end": 5353.94, + "probability": 0.612 + }, + { + "start": 5354.36, + "end": 5354.6, + "probability": 0.9836 + }, + { + "start": 5354.68, + "end": 5354.78, + "probability": 0.8113 + }, + { + "start": 5355.06, + "end": 5355.52, + "probability": 0.5687 + }, + { + "start": 5355.56, + "end": 5355.99, + "probability": 0.4353 + }, + { + "start": 5356.88, + "end": 5360.48, + "probability": 0.691 + }, + { + "start": 5361.2, + "end": 5363.38, + "probability": 0.7106 + }, + { + "start": 5367.66, + "end": 5368.62, + "probability": 0.2594 + }, + { + "start": 5368.62, + "end": 5369.74, + "probability": 0.8641 + }, + { + "start": 5371.81, + "end": 5374.48, + "probability": 0.6557 + }, + { + "start": 5374.58, + "end": 5378.16, + "probability": 0.9898 + }, + { + "start": 5378.76, + "end": 5384.8, + "probability": 0.9919 + }, + { + "start": 5385.36, + "end": 5389.28, + "probability": 0.9213 + }, + { + "start": 5391.6, + "end": 5392.92, + "probability": 0.9865 + }, + { + "start": 5393.52, + "end": 5397.44, + "probability": 0.8785 + }, + { + "start": 5398.16, + "end": 5401.1, + "probability": 0.9958 + }, + { + "start": 5401.62, + "end": 5404.12, + "probability": 0.961 + }, + { + "start": 5404.74, + "end": 5412.22, + "probability": 0.9922 + }, + { + "start": 5413.76, + "end": 5419.66, + "probability": 0.9893 + }, + { + "start": 5419.88, + "end": 5425.78, + "probability": 0.9886 + }, + { + "start": 5425.86, + "end": 5433.56, + "probability": 0.9989 + }, + { + "start": 5434.02, + "end": 5435.02, + "probability": 0.8396 + }, + { + "start": 5435.22, + "end": 5438.1, + "probability": 0.9808 + }, + { + "start": 5438.4, + "end": 5439.56, + "probability": 0.9426 + }, + { + "start": 5440.08, + "end": 5446.9, + "probability": 0.9869 + }, + { + "start": 5447.34, + "end": 5452.82, + "probability": 0.9928 + }, + { + "start": 5453.38, + "end": 5455.52, + "probability": 0.7221 + }, + { + "start": 5456.2, + "end": 5460.7, + "probability": 0.9766 + }, + { + "start": 5462.06, + "end": 5462.66, + "probability": 0.9138 + }, + { + "start": 5463.62, + "end": 5464.9, + "probability": 0.8888 + }, + { + "start": 5464.96, + "end": 5466.64, + "probability": 0.8733 + }, + { + "start": 5467.0, + "end": 5467.24, + "probability": 0.7568 + }, + { + "start": 5468.22, + "end": 5470.86, + "probability": 0.9427 + }, + { + "start": 5471.46, + "end": 5477.0, + "probability": 0.9922 + }, + { + "start": 5477.58, + "end": 5482.17, + "probability": 0.9845 + }, + { + "start": 5482.38, + "end": 5483.58, + "probability": 0.7602 + }, + { + "start": 5484.4, + "end": 5487.24, + "probability": 0.9543 + }, + { + "start": 5487.98, + "end": 5490.02, + "probability": 0.972 + }, + { + "start": 5490.14, + "end": 5498.74, + "probability": 0.9919 + }, + { + "start": 5499.16, + "end": 5501.4, + "probability": 0.9679 + }, + { + "start": 5502.06, + "end": 5507.7, + "probability": 0.9545 + }, + { + "start": 5508.24, + "end": 5513.86, + "probability": 0.8615 + }, + { + "start": 5514.44, + "end": 5515.06, + "probability": 0.9305 + }, + { + "start": 5515.64, + "end": 5518.84, + "probability": 0.9401 + }, + { + "start": 5519.16, + "end": 5526.36, + "probability": 0.9391 + }, + { + "start": 5527.2, + "end": 5535.38, + "probability": 0.846 + }, + { + "start": 5535.54, + "end": 5538.96, + "probability": 0.9672 + }, + { + "start": 5539.38, + "end": 5540.16, + "probability": 0.4966 + }, + { + "start": 5540.32, + "end": 5544.7, + "probability": 0.8757 + }, + { + "start": 5545.2, + "end": 5553.28, + "probability": 0.9835 + }, + { + "start": 5553.28, + "end": 5563.18, + "probability": 0.9959 + }, + { + "start": 5563.68, + "end": 5565.46, + "probability": 0.8077 + }, + { + "start": 5566.18, + "end": 5567.16, + "probability": 0.9104 + }, + { + "start": 5567.78, + "end": 5569.56, + "probability": 0.6659 + }, + { + "start": 5570.3, + "end": 5572.3, + "probability": 0.9272 + }, + { + "start": 5574.78, + "end": 5575.42, + "probability": 0.6487 + }, + { + "start": 5575.52, + "end": 5577.68, + "probability": 0.9658 + }, + { + "start": 5577.78, + "end": 5578.54, + "probability": 0.9136 + }, + { + "start": 5597.18, + "end": 5599.36, + "probability": 0.6734 + }, + { + "start": 5601.9, + "end": 5604.54, + "probability": 0.9987 + }, + { + "start": 5605.7, + "end": 5606.72, + "probability": 0.9935 + }, + { + "start": 5608.04, + "end": 5614.56, + "probability": 0.9824 + }, + { + "start": 5616.82, + "end": 5619.34, + "probability": 0.9141 + }, + { + "start": 5620.16, + "end": 5620.96, + "probability": 0.4051 + }, + { + "start": 5621.96, + "end": 5625.6, + "probability": 0.9975 + }, + { + "start": 5625.6, + "end": 5630.04, + "probability": 0.9985 + }, + { + "start": 5631.14, + "end": 5634.88, + "probability": 0.9892 + }, + { + "start": 5634.88, + "end": 5640.0, + "probability": 0.9622 + }, + { + "start": 5641.8, + "end": 5642.76, + "probability": 0.8332 + }, + { + "start": 5643.42, + "end": 5646.46, + "probability": 0.9822 + }, + { + "start": 5647.62, + "end": 5651.28, + "probability": 0.999 + }, + { + "start": 5651.92, + "end": 5656.68, + "probability": 0.9026 + }, + { + "start": 5658.36, + "end": 5663.96, + "probability": 0.9977 + }, + { + "start": 5666.12, + "end": 5672.22, + "probability": 0.9868 + }, + { + "start": 5674.96, + "end": 5678.24, + "probability": 0.972 + }, + { + "start": 5680.62, + "end": 5683.04, + "probability": 0.9872 + }, + { + "start": 5683.68, + "end": 5685.9, + "probability": 0.9564 + }, + { + "start": 5688.1, + "end": 5696.18, + "probability": 0.9969 + }, + { + "start": 5697.36, + "end": 5699.04, + "probability": 0.6237 + }, + { + "start": 5699.88, + "end": 5703.58, + "probability": 0.9823 + }, + { + "start": 5704.38, + "end": 5705.8, + "probability": 0.9779 + }, + { + "start": 5706.42, + "end": 5707.56, + "probability": 0.6831 + }, + { + "start": 5708.26, + "end": 5710.72, + "probability": 0.9868 + }, + { + "start": 5712.12, + "end": 5713.06, + "probability": 0.8011 + }, + { + "start": 5713.6, + "end": 5715.62, + "probability": 0.8338 + }, + { + "start": 5716.58, + "end": 5717.46, + "probability": 0.4578 + }, + { + "start": 5718.74, + "end": 5719.8, + "probability": 0.7269 + }, + { + "start": 5720.56, + "end": 5723.5, + "probability": 0.9842 + }, + { + "start": 5724.48, + "end": 5729.64, + "probability": 0.9916 + }, + { + "start": 5731.0, + "end": 5734.58, + "probability": 0.8961 + }, + { + "start": 5735.22, + "end": 5736.86, + "probability": 0.84 + }, + { + "start": 5737.86, + "end": 5742.6, + "probability": 0.9656 + }, + { + "start": 5743.68, + "end": 5745.92, + "probability": 0.9532 + }, + { + "start": 5747.48, + "end": 5750.82, + "probability": 0.9925 + }, + { + "start": 5751.54, + "end": 5753.34, + "probability": 0.9233 + }, + { + "start": 5753.98, + "end": 5756.26, + "probability": 0.9956 + }, + { + "start": 5757.94, + "end": 5761.14, + "probability": 0.9987 + }, + { + "start": 5761.76, + "end": 5765.0, + "probability": 0.9696 + }, + { + "start": 5765.64, + "end": 5768.22, + "probability": 0.9961 + }, + { + "start": 5769.08, + "end": 5769.64, + "probability": 0.9274 + }, + { + "start": 5770.7, + "end": 5771.38, + "probability": 0.9766 + }, + { + "start": 5771.84, + "end": 5775.8, + "probability": 0.9988 + }, + { + "start": 5775.8, + "end": 5779.2, + "probability": 0.9972 + }, + { + "start": 5780.14, + "end": 5782.42, + "probability": 0.9857 + }, + { + "start": 5783.04, + "end": 5783.5, + "probability": 0.7589 + }, + { + "start": 5783.86, + "end": 5785.9, + "probability": 0.7227 + }, + { + "start": 5786.3, + "end": 5787.96, + "probability": 0.883 + }, + { + "start": 5788.14, + "end": 5790.2, + "probability": 0.814 + }, + { + "start": 5790.54, + "end": 5790.94, + "probability": 0.3344 + }, + { + "start": 5791.16, + "end": 5793.86, + "probability": 0.998 + }, + { + "start": 5794.38, + "end": 5794.98, + "probability": 0.5249 + }, + { + "start": 5795.78, + "end": 5796.5, + "probability": 0.9932 + }, + { + "start": 5797.04, + "end": 5798.5, + "probability": 0.7514 + }, + { + "start": 5799.24, + "end": 5800.12, + "probability": 0.5063 + }, + { + "start": 5800.6, + "end": 5801.68, + "probability": 0.8933 + }, + { + "start": 5802.12, + "end": 5804.56, + "probability": 0.9427 + }, + { + "start": 5804.98, + "end": 5808.36, + "probability": 0.9807 + }, + { + "start": 5808.96, + "end": 5810.54, + "probability": 0.929 + }, + { + "start": 5810.9, + "end": 5811.52, + "probability": 0.7466 + }, + { + "start": 5811.96, + "end": 5814.8, + "probability": 0.9632 + }, + { + "start": 5815.26, + "end": 5816.82, + "probability": 0.558 + }, + { + "start": 5817.14, + "end": 5817.96, + "probability": 0.9622 + }, + { + "start": 5818.5, + "end": 5819.36, + "probability": 0.8101 + }, + { + "start": 5819.66, + "end": 5821.16, + "probability": 0.992 + }, + { + "start": 5822.12, + "end": 5826.12, + "probability": 0.7021 + }, + { + "start": 5827.42, + "end": 5831.34, + "probability": 0.7065 + }, + { + "start": 5834.24, + "end": 5835.86, + "probability": 0.1776 + }, + { + "start": 5858.64, + "end": 5860.38, + "probability": 0.7607 + }, + { + "start": 5861.62, + "end": 5866.1, + "probability": 0.9654 + }, + { + "start": 5866.28, + "end": 5866.58, + "probability": 0.4862 + }, + { + "start": 5867.14, + "end": 5867.82, + "probability": 0.0127 + }, + { + "start": 5868.84, + "end": 5871.38, + "probability": 0.1902 + }, + { + "start": 5871.42, + "end": 5872.6, + "probability": 0.6516 + }, + { + "start": 5875.74, + "end": 5879.44, + "probability": 0.6911 + }, + { + "start": 5879.5, + "end": 5882.34, + "probability": 0.9688 + }, + { + "start": 5883.48, + "end": 5883.88, + "probability": 0.0458 + }, + { + "start": 5883.88, + "end": 5885.24, + "probability": 0.396 + }, + { + "start": 5885.54, + "end": 5887.6, + "probability": 0.5502 + }, + { + "start": 5891.86, + "end": 5896.54, + "probability": 0.9731 + }, + { + "start": 5897.78, + "end": 5899.42, + "probability": 0.6531 + }, + { + "start": 5900.6, + "end": 5907.38, + "probability": 0.9834 + }, + { + "start": 5908.58, + "end": 5914.92, + "probability": 0.9803 + }, + { + "start": 5915.04, + "end": 5915.88, + "probability": 0.8318 + }, + { + "start": 5916.78, + "end": 5918.5, + "probability": 0.9843 + }, + { + "start": 5919.6, + "end": 5927.48, + "probability": 0.8719 + }, + { + "start": 5928.18, + "end": 5932.44, + "probability": 0.9934 + }, + { + "start": 5932.56, + "end": 5934.32, + "probability": 0.9345 + }, + { + "start": 5935.18, + "end": 5937.64, + "probability": 0.9294 + }, + { + "start": 5938.7, + "end": 5942.48, + "probability": 0.9283 + }, + { + "start": 5943.46, + "end": 5945.72, + "probability": 0.8813 + }, + { + "start": 5946.58, + "end": 5948.34, + "probability": 0.8892 + }, + { + "start": 5949.48, + "end": 5954.32, + "probability": 0.9826 + }, + { + "start": 5956.1, + "end": 5959.54, + "probability": 0.9157 + }, + { + "start": 5960.5, + "end": 5962.66, + "probability": 0.99 + }, + { + "start": 5964.1, + "end": 5965.98, + "probability": 0.8839 + }, + { + "start": 5967.14, + "end": 5971.1, + "probability": 0.9694 + }, + { + "start": 5972.2, + "end": 5973.72, + "probability": 0.9543 + }, + { + "start": 5974.36, + "end": 5975.2, + "probability": 0.7537 + }, + { + "start": 5976.08, + "end": 5977.0, + "probability": 0.8372 + }, + { + "start": 5978.0, + "end": 5982.1, + "probability": 0.875 + }, + { + "start": 5982.96, + "end": 5985.16, + "probability": 0.9702 + }, + { + "start": 5986.06, + "end": 5989.86, + "probability": 0.966 + }, + { + "start": 5990.8, + "end": 5992.46, + "probability": 0.9203 + }, + { + "start": 5993.5, + "end": 5997.14, + "probability": 0.9732 + }, + { + "start": 5997.96, + "end": 6002.28, + "probability": 0.9902 + }, + { + "start": 6003.28, + "end": 6006.96, + "probability": 0.8979 + }, + { + "start": 6006.96, + "end": 6010.6, + "probability": 0.9986 + }, + { + "start": 6011.7, + "end": 6013.08, + "probability": 0.9683 + }, + { + "start": 6013.96, + "end": 6018.76, + "probability": 0.9985 + }, + { + "start": 6018.76, + "end": 6023.62, + "probability": 0.9958 + }, + { + "start": 6024.62, + "end": 6026.46, + "probability": 0.622 + }, + { + "start": 6027.36, + "end": 6030.42, + "probability": 0.9963 + }, + { + "start": 6031.3, + "end": 6036.36, + "probability": 0.9976 + }, + { + "start": 6037.26, + "end": 6037.92, + "probability": 0.8846 + }, + { + "start": 6040.4, + "end": 6042.0, + "probability": 0.6379 + }, + { + "start": 6042.66, + "end": 6048.48, + "probability": 0.9844 + }, + { + "start": 6048.64, + "end": 6053.48, + "probability": 0.9978 + }, + { + "start": 6054.32, + "end": 6055.3, + "probability": 0.6918 + }, + { + "start": 6055.82, + "end": 6057.12, + "probability": 0.9849 + }, + { + "start": 6057.14, + "end": 6057.84, + "probability": 0.9345 + }, + { + "start": 6059.06, + "end": 6060.0, + "probability": 0.3355 + }, + { + "start": 6060.0, + "end": 6060.52, + "probability": 0.6826 + }, + { + "start": 6060.9, + "end": 6062.76, + "probability": 0.9474 + }, + { + "start": 6062.98, + "end": 6063.58, + "probability": 0.4155 + }, + { + "start": 6064.44, + "end": 6065.74, + "probability": 0.6887 + }, + { + "start": 6065.74, + "end": 6066.18, + "probability": 0.4092 + }, + { + "start": 6066.34, + "end": 6067.38, + "probability": 0.7794 + }, + { + "start": 6067.6, + "end": 6070.28, + "probability": 0.4837 + }, + { + "start": 6070.28, + "end": 6070.28, + "probability": 0.1902 + }, + { + "start": 6070.28, + "end": 6072.32, + "probability": 0.8822 + }, + { + "start": 6072.32, + "end": 6073.36, + "probability": 0.6468 + }, + { + "start": 6073.66, + "end": 6074.06, + "probability": 0.8551 + }, + { + "start": 6076.4, + "end": 6077.92, + "probability": 0.1673 + }, + { + "start": 6078.48, + "end": 6079.9, + "probability": 0.0311 + }, + { + "start": 6080.24, + "end": 6081.17, + "probability": 0.0949 + }, + { + "start": 6083.46, + "end": 6085.52, + "probability": 0.6097 + }, + { + "start": 6085.96, + "end": 6087.26, + "probability": 0.0175 + }, + { + "start": 6088.86, + "end": 6090.74, + "probability": 0.0199 + }, + { + "start": 6090.74, + "end": 6091.58, + "probability": 0.108 + }, + { + "start": 6093.12, + "end": 6093.34, + "probability": 0.0528 + }, + { + "start": 6093.34, + "end": 6093.38, + "probability": 0.0304 + }, + { + "start": 6093.38, + "end": 6093.38, + "probability": 0.0294 + }, + { + "start": 6093.38, + "end": 6093.38, + "probability": 0.1002 + }, + { + "start": 6093.38, + "end": 6094.12, + "probability": 0.103 + }, + { + "start": 6094.34, + "end": 6099.22, + "probability": 0.7355 + }, + { + "start": 6100.38, + "end": 6102.13, + "probability": 0.7029 + }, + { + "start": 6103.76, + "end": 6103.76, + "probability": 0.4183 + }, + { + "start": 6103.76, + "end": 6103.86, + "probability": 0.1734 + }, + { + "start": 6103.86, + "end": 6113.26, + "probability": 0.9642 + }, + { + "start": 6113.4, + "end": 6115.92, + "probability": 0.7564 + }, + { + "start": 6119.22, + "end": 6122.8, + "probability": 0.7111 + }, + { + "start": 6122.8, + "end": 6123.86, + "probability": 0.7473 + }, + { + "start": 6124.92, + "end": 6125.5, + "probability": 0.9057 + }, + { + "start": 6126.06, + "end": 6127.64, + "probability": 0.8695 + }, + { + "start": 6128.42, + "end": 6130.44, + "probability": 0.9897 + }, + { + "start": 6131.7, + "end": 6134.78, + "probability": 0.99 + }, + { + "start": 6135.66, + "end": 6138.9, + "probability": 0.9367 + }, + { + "start": 6139.86, + "end": 6144.44, + "probability": 0.9978 + }, + { + "start": 6144.66, + "end": 6146.36, + "probability": 0.8735 + }, + { + "start": 6147.52, + "end": 6149.74, + "probability": 0.8557 + }, + { + "start": 6150.66, + "end": 6154.86, + "probability": 0.7429 + }, + { + "start": 6155.16, + "end": 6155.96, + "probability": 0.9022 + }, + { + "start": 6156.22, + "end": 6161.58, + "probability": 0.9785 + }, + { + "start": 6162.24, + "end": 6163.14, + "probability": 0.8217 + }, + { + "start": 6163.7, + "end": 6165.8, + "probability": 0.9513 + }, + { + "start": 6166.42, + "end": 6167.44, + "probability": 0.7021 + }, + { + "start": 6168.02, + "end": 6171.6, + "probability": 0.9786 + }, + { + "start": 6172.46, + "end": 6175.3, + "probability": 0.806 + }, + { + "start": 6176.16, + "end": 6179.42, + "probability": 0.9915 + }, + { + "start": 6180.2, + "end": 6182.68, + "probability": 0.9885 + }, + { + "start": 6183.54, + "end": 6186.74, + "probability": 0.9059 + }, + { + "start": 6187.4, + "end": 6189.36, + "probability": 0.998 + }, + { + "start": 6190.18, + "end": 6191.96, + "probability": 0.8512 + }, + { + "start": 6192.6, + "end": 6198.56, + "probability": 0.9803 + }, + { + "start": 6199.4, + "end": 6200.2, + "probability": 0.7104 + }, + { + "start": 6201.06, + "end": 6202.94, + "probability": 0.9225 + }, + { + "start": 6203.84, + "end": 6207.84, + "probability": 0.9772 + }, + { + "start": 6208.58, + "end": 6212.7, + "probability": 0.999 + }, + { + "start": 6213.4, + "end": 6215.6, + "probability": 0.9996 + }, + { + "start": 6216.26, + "end": 6218.26, + "probability": 0.9509 + }, + { + "start": 6219.5, + "end": 6220.0, + "probability": 0.7781 + }, + { + "start": 6220.66, + "end": 6221.78, + "probability": 0.9888 + }, + { + "start": 6222.56, + "end": 6223.78, + "probability": 0.8291 + }, + { + "start": 6224.94, + "end": 6228.7, + "probability": 0.8858 + }, + { + "start": 6228.88, + "end": 6231.68, + "probability": 0.9453 + }, + { + "start": 6232.32, + "end": 6234.14, + "probability": 0.9434 + }, + { + "start": 6235.14, + "end": 6237.26, + "probability": 0.5203 + }, + { + "start": 6239.17, + "end": 6245.08, + "probability": 0.9344 + }, + { + "start": 6245.1, + "end": 6250.16, + "probability": 0.8074 + }, + { + "start": 6250.62, + "end": 6253.29, + "probability": 0.991 + }, + { + "start": 6254.52, + "end": 6256.98, + "probability": 0.9966 + }, + { + "start": 6257.8, + "end": 6259.72, + "probability": 0.9823 + }, + { + "start": 6260.58, + "end": 6263.92, + "probability": 0.7963 + }, + { + "start": 6264.7, + "end": 6269.08, + "probability": 0.9197 + }, + { + "start": 6269.9, + "end": 6273.9, + "probability": 0.9661 + }, + { + "start": 6274.12, + "end": 6275.1, + "probability": 0.9084 + }, + { + "start": 6275.92, + "end": 6278.98, + "probability": 0.9817 + }, + { + "start": 6279.62, + "end": 6281.18, + "probability": 0.9898 + }, + { + "start": 6282.02, + "end": 6287.02, + "probability": 0.9211 + }, + { + "start": 6287.64, + "end": 6291.24, + "probability": 0.9985 + }, + { + "start": 6292.72, + "end": 6293.84, + "probability": 0.9808 + }, + { + "start": 6294.42, + "end": 6295.42, + "probability": 0.7144 + }, + { + "start": 6295.96, + "end": 6296.78, + "probability": 0.9928 + }, + { + "start": 6297.26, + "end": 6297.86, + "probability": 0.7497 + }, + { + "start": 6298.28, + "end": 6299.5, + "probability": 0.9812 + }, + { + "start": 6301.36, + "end": 6303.18, + "probability": 0.9897 + }, + { + "start": 6303.86, + "end": 6307.4, + "probability": 0.936 + }, + { + "start": 6308.18, + "end": 6310.28, + "probability": 0.9912 + }, + { + "start": 6310.8, + "end": 6314.72, + "probability": 0.952 + }, + { + "start": 6315.64, + "end": 6317.54, + "probability": 0.9743 + }, + { + "start": 6318.3, + "end": 6319.14, + "probability": 0.8728 + }, + { + "start": 6320.22, + "end": 6325.5, + "probability": 0.9892 + }, + { + "start": 6326.48, + "end": 6329.3, + "probability": 0.9902 + }, + { + "start": 6330.22, + "end": 6335.04, + "probability": 0.9976 + }, + { + "start": 6336.62, + "end": 6338.0, + "probability": 0.9866 + }, + { + "start": 6339.16, + "end": 6343.86, + "probability": 0.9756 + }, + { + "start": 6344.24, + "end": 6345.48, + "probability": 0.9951 + }, + { + "start": 6346.14, + "end": 6347.64, + "probability": 0.9889 + }, + { + "start": 6348.34, + "end": 6350.32, + "probability": 0.8336 + }, + { + "start": 6350.94, + "end": 6356.06, + "probability": 0.9673 + }, + { + "start": 6356.48, + "end": 6357.26, + "probability": 0.981 + }, + { + "start": 6357.64, + "end": 6358.58, + "probability": 0.8564 + }, + { + "start": 6359.26, + "end": 6364.76, + "probability": 0.9922 + }, + { + "start": 6365.44, + "end": 6368.8, + "probability": 0.9951 + }, + { + "start": 6369.48, + "end": 6369.93, + "probability": 0.8493 + }, + { + "start": 6370.92, + "end": 6372.0, + "probability": 0.9106 + }, + { + "start": 6372.58, + "end": 6375.82, + "probability": 0.9816 + }, + { + "start": 6376.62, + "end": 6377.08, + "probability": 0.9565 + }, + { + "start": 6377.7, + "end": 6378.64, + "probability": 0.9486 + }, + { + "start": 6379.52, + "end": 6380.8, + "probability": 0.7207 + }, + { + "start": 6381.04, + "end": 6384.66, + "probability": 0.8916 + }, + { + "start": 6385.16, + "end": 6387.56, + "probability": 0.9098 + }, + { + "start": 6388.3, + "end": 6391.72, + "probability": 0.9366 + }, + { + "start": 6391.78, + "end": 6392.78, + "probability": 0.8082 + }, + { + "start": 6393.52, + "end": 6395.92, + "probability": 0.6645 + }, + { + "start": 6396.04, + "end": 6396.6, + "probability": 0.7505 + }, + { + "start": 6396.76, + "end": 6397.18, + "probability": 0.6479 + }, + { + "start": 6397.9, + "end": 6397.9, + "probability": 0.0127 + }, + { + "start": 6397.9, + "end": 6399.76, + "probability": 0.0727 + }, + { + "start": 6399.86, + "end": 6403.62, + "probability": 0.6497 + }, + { + "start": 6404.04, + "end": 6405.48, + "probability": 0.7433 + }, + { + "start": 6405.5, + "end": 6407.88, + "probability": 0.9433 + }, + { + "start": 6407.96, + "end": 6409.2, + "probability": 0.7069 + }, + { + "start": 6409.32, + "end": 6410.94, + "probability": 0.7655 + }, + { + "start": 6411.72, + "end": 6415.22, + "probability": 0.7847 + }, + { + "start": 6415.82, + "end": 6416.04, + "probability": 0.4971 + }, + { + "start": 6417.36, + "end": 6421.57, + "probability": 0.9053 + }, + { + "start": 6422.12, + "end": 6424.36, + "probability": 0.6681 + }, + { + "start": 6425.92, + "end": 6426.5, + "probability": 0.0102 + }, + { + "start": 6439.32, + "end": 6439.58, + "probability": 0.1116 + }, + { + "start": 6439.58, + "end": 6443.88, + "probability": 0.6454 + }, + { + "start": 6444.56, + "end": 6447.04, + "probability": 0.4749 + }, + { + "start": 6447.42, + "end": 6452.32, + "probability": 0.9834 + }, + { + "start": 6452.84, + "end": 6457.52, + "probability": 0.8874 + }, + { + "start": 6459.84, + "end": 6460.56, + "probability": 0.7409 + }, + { + "start": 6460.86, + "end": 6461.42, + "probability": 0.0079 + }, + { + "start": 6474.76, + "end": 6475.06, + "probability": 0.0902 + }, + { + "start": 6475.06, + "end": 6477.6, + "probability": 0.6016 + }, + { + "start": 6478.3, + "end": 6479.38, + "probability": 0.7779 + }, + { + "start": 6479.9, + "end": 6484.04, + "probability": 0.9812 + }, + { + "start": 6484.44, + "end": 6489.75, + "probability": 0.8167 + }, + { + "start": 6494.9, + "end": 6497.45, + "probability": 0.8205 + }, + { + "start": 6500.75, + "end": 6503.37, + "probability": 0.9734 + }, + { + "start": 6504.0, + "end": 6504.44, + "probability": 0.5485 + }, + { + "start": 6516.74, + "end": 6516.74, + "probability": 0.033 + }, + { + "start": 6516.74, + "end": 6519.24, + "probability": 0.6823 + }, + { + "start": 6519.32, + "end": 6520.76, + "probability": 0.9195 + }, + { + "start": 6521.02, + "end": 6521.62, + "probability": 0.792 + }, + { + "start": 6522.78, + "end": 6526.88, + "probability": 0.9829 + }, + { + "start": 6528.6, + "end": 6533.82, + "probability": 0.5943 + }, + { + "start": 6533.88, + "end": 6534.14, + "probability": 0.7264 + }, + { + "start": 6535.96, + "end": 6536.92, + "probability": 0.576 + }, + { + "start": 6537.04, + "end": 6538.06, + "probability": 0.5175 + }, + { + "start": 6538.1, + "end": 6539.26, + "probability": 0.6283 + }, + { + "start": 6539.38, + "end": 6540.42, + "probability": 0.9845 + }, + { + "start": 6541.34, + "end": 6544.31, + "probability": 0.4957 + }, + { + "start": 6544.56, + "end": 6545.94, + "probability": 0.9229 + }, + { + "start": 6546.32, + "end": 6549.18, + "probability": 0.6643 + }, + { + "start": 6549.3, + "end": 6550.32, + "probability": 0.9462 + }, + { + "start": 6551.16, + "end": 6553.06, + "probability": 0.9945 + }, + { + "start": 6553.18, + "end": 6553.5, + "probability": 0.8666 + }, + { + "start": 6554.22, + "end": 6554.68, + "probability": 0.6488 + }, + { + "start": 6554.92, + "end": 6555.78, + "probability": 0.7176 + }, + { + "start": 6555.84, + "end": 6557.36, + "probability": 0.7647 + }, + { + "start": 6558.02, + "end": 6561.98, + "probability": 0.7084 + }, + { + "start": 6562.02, + "end": 6563.18, + "probability": 0.5774 + }, + { + "start": 6563.36, + "end": 6564.0, + "probability": 0.8113 + }, + { + "start": 6564.5, + "end": 6565.84, + "probability": 0.9978 + }, + { + "start": 6567.38, + "end": 6571.58, + "probability": 0.9849 + }, + { + "start": 6573.08, + "end": 6575.28, + "probability": 0.915 + }, + { + "start": 6579.98, + "end": 6581.46, + "probability": 0.8141 + }, + { + "start": 6582.72, + "end": 6585.56, + "probability": 0.6576 + }, + { + "start": 6587.57, + "end": 6589.27, + "probability": 0.0722 + }, + { + "start": 6589.76, + "end": 6590.98, + "probability": 0.0059 + }, + { + "start": 6591.52, + "end": 6592.22, + "probability": 0.0081 + }, + { + "start": 6592.54, + "end": 6594.42, + "probability": 0.1427 + }, + { + "start": 6595.18, + "end": 6601.0, + "probability": 0.7085 + }, + { + "start": 6602.04, + "end": 6603.88, + "probability": 0.7821 + }, + { + "start": 6605.16, + "end": 6611.14, + "probability": 0.8163 + }, + { + "start": 6611.9, + "end": 6615.3, + "probability": 0.9969 + }, + { + "start": 6615.98, + "end": 6616.88, + "probability": 0.7289 + }, + { + "start": 6617.42, + "end": 6622.16, + "probability": 0.997 + }, + { + "start": 6623.16, + "end": 6626.48, + "probability": 0.9977 + }, + { + "start": 6626.52, + "end": 6628.08, + "probability": 0.4079 + }, + { + "start": 6628.18, + "end": 6629.1, + "probability": 0.3984 + }, + { + "start": 6629.1, + "end": 6630.86, + "probability": 0.8531 + }, + { + "start": 6631.96, + "end": 6635.44, + "probability": 0.9971 + }, + { + "start": 6636.04, + "end": 6637.46, + "probability": 0.8307 + }, + { + "start": 6638.2, + "end": 6642.74, + "probability": 0.9766 + }, + { + "start": 6643.52, + "end": 6647.88, + "probability": 0.8657 + }, + { + "start": 6648.42, + "end": 6652.42, + "probability": 0.9507 + }, + { + "start": 6652.42, + "end": 6654.56, + "probability": 0.9025 + }, + { + "start": 6655.28, + "end": 6658.12, + "probability": 0.9983 + }, + { + "start": 6658.12, + "end": 6662.02, + "probability": 0.942 + }, + { + "start": 6662.96, + "end": 6667.4, + "probability": 0.9611 + }, + { + "start": 6668.18, + "end": 6669.16, + "probability": 0.8114 + }, + { + "start": 6669.6, + "end": 6675.12, + "probability": 0.9847 + }, + { + "start": 6675.56, + "end": 6679.46, + "probability": 0.9888 + }, + { + "start": 6680.66, + "end": 6682.6, + "probability": 0.996 + }, + { + "start": 6682.64, + "end": 6685.16, + "probability": 0.99 + }, + { + "start": 6685.82, + "end": 6687.5, + "probability": 0.9034 + }, + { + "start": 6688.02, + "end": 6690.16, + "probability": 0.9925 + }, + { + "start": 6691.12, + "end": 6694.9, + "probability": 0.7979 + }, + { + "start": 6695.5, + "end": 6698.76, + "probability": 0.9984 + }, + { + "start": 6698.86, + "end": 6700.8, + "probability": 0.9899 + }, + { + "start": 6701.36, + "end": 6702.96, + "probability": 0.827 + }, + { + "start": 6703.58, + "end": 6705.58, + "probability": 0.991 + }, + { + "start": 6706.34, + "end": 6707.54, + "probability": 0.9562 + }, + { + "start": 6708.34, + "end": 6710.76, + "probability": 0.9945 + }, + { + "start": 6711.28, + "end": 6714.64, + "probability": 0.9603 + }, + { + "start": 6715.26, + "end": 6715.86, + "probability": 0.9513 + }, + { + "start": 6716.38, + "end": 6718.7, + "probability": 0.9966 + }, + { + "start": 6719.24, + "end": 6720.52, + "probability": 0.9904 + }, + { + "start": 6722.18, + "end": 6725.76, + "probability": 0.9328 + }, + { + "start": 6725.76, + "end": 6728.86, + "probability": 0.9407 + }, + { + "start": 6729.5, + "end": 6731.7, + "probability": 0.972 + }, + { + "start": 6732.38, + "end": 6733.62, + "probability": 0.9867 + }, + { + "start": 6734.2, + "end": 6735.74, + "probability": 0.985 + }, + { + "start": 6736.32, + "end": 6738.18, + "probability": 0.9776 + }, + { + "start": 6738.9, + "end": 6740.58, + "probability": 0.7786 + }, + { + "start": 6741.22, + "end": 6743.34, + "probability": 0.9877 + }, + { + "start": 6744.02, + "end": 6746.6, + "probability": 0.998 + }, + { + "start": 6747.78, + "end": 6751.68, + "probability": 0.7485 + }, + { + "start": 6752.82, + "end": 6756.72, + "probability": 0.9048 + }, + { + "start": 6757.48, + "end": 6758.92, + "probability": 0.9874 + }, + { + "start": 6759.22, + "end": 6760.08, + "probability": 0.6146 + }, + { + "start": 6760.64, + "end": 6762.74, + "probability": 0.9379 + }, + { + "start": 6763.6, + "end": 6765.68, + "probability": 0.9437 + }, + { + "start": 6766.2, + "end": 6766.2, + "probability": 0.522 + }, + { + "start": 6766.34, + "end": 6766.66, + "probability": 0.701 + }, + { + "start": 6766.66, + "end": 6770.48, + "probability": 0.993 + }, + { + "start": 6771.08, + "end": 6774.44, + "probability": 0.9033 + }, + { + "start": 6775.02, + "end": 6777.36, + "probability": 0.9785 + }, + { + "start": 6777.84, + "end": 6781.38, + "probability": 0.9982 + }, + { + "start": 6782.04, + "end": 6785.28, + "probability": 0.9823 + }, + { + "start": 6786.36, + "end": 6786.58, + "probability": 0.7642 + }, + { + "start": 6787.34, + "end": 6789.78, + "probability": 0.9939 + }, + { + "start": 6789.78, + "end": 6793.42, + "probability": 0.9836 + }, + { + "start": 6793.98, + "end": 6796.4, + "probability": 0.9886 + }, + { + "start": 6796.98, + "end": 6799.32, + "probability": 0.8508 + }, + { + "start": 6799.92, + "end": 6801.64, + "probability": 0.8977 + }, + { + "start": 6802.32, + "end": 6803.8, + "probability": 0.9851 + }, + { + "start": 6804.64, + "end": 6809.72, + "probability": 0.9882 + }, + { + "start": 6810.34, + "end": 6813.22, + "probability": 0.8894 + }, + { + "start": 6813.94, + "end": 6817.08, + "probability": 0.7896 + }, + { + "start": 6817.08, + "end": 6820.68, + "probability": 0.9987 + }, + { + "start": 6821.64, + "end": 6824.82, + "probability": 0.9762 + }, + { + "start": 6824.82, + "end": 6828.06, + "probability": 0.9896 + }, + { + "start": 6828.8, + "end": 6830.28, + "probability": 0.9888 + }, + { + "start": 6830.9, + "end": 6833.46, + "probability": 0.9704 + }, + { + "start": 6833.62, + "end": 6834.48, + "probability": 0.712 + }, + { + "start": 6835.48, + "end": 6836.84, + "probability": 0.9112 + }, + { + "start": 6837.62, + "end": 6841.82, + "probability": 0.9882 + }, + { + "start": 6842.9, + "end": 6845.46, + "probability": 0.9151 + }, + { + "start": 6846.08, + "end": 6847.84, + "probability": 0.9837 + }, + { + "start": 6848.44, + "end": 6851.38, + "probability": 0.9799 + }, + { + "start": 6852.12, + "end": 6854.28, + "probability": 0.9238 + }, + { + "start": 6855.26, + "end": 6856.04, + "probability": 0.7928 + }, + { + "start": 6857.0, + "end": 6862.54, + "probability": 0.9802 + }, + { + "start": 6863.3, + "end": 6868.4, + "probability": 0.9889 + }, + { + "start": 6868.94, + "end": 6871.62, + "probability": 0.7474 + }, + { + "start": 6872.38, + "end": 6875.68, + "probability": 0.9907 + }, + { + "start": 6876.56, + "end": 6876.7, + "probability": 0.2659 + }, + { + "start": 6876.78, + "end": 6880.96, + "probability": 0.9974 + }, + { + "start": 6881.54, + "end": 6886.46, + "probability": 0.9993 + }, + { + "start": 6887.24, + "end": 6890.24, + "probability": 0.9959 + }, + { + "start": 6891.02, + "end": 6894.8, + "probability": 0.9976 + }, + { + "start": 6895.44, + "end": 6899.5, + "probability": 0.9864 + }, + { + "start": 6900.36, + "end": 6903.02, + "probability": 0.8185 + }, + { + "start": 6903.82, + "end": 6906.88, + "probability": 0.9976 + }, + { + "start": 6907.42, + "end": 6909.34, + "probability": 0.9985 + }, + { + "start": 6909.82, + "end": 6911.86, + "probability": 0.804 + }, + { + "start": 6912.42, + "end": 6914.32, + "probability": 0.992 + }, + { + "start": 6915.54, + "end": 6919.46, + "probability": 0.995 + }, + { + "start": 6919.46, + "end": 6922.7, + "probability": 0.9939 + }, + { + "start": 6923.28, + "end": 6924.6, + "probability": 0.9326 + }, + { + "start": 6925.14, + "end": 6926.58, + "probability": 0.9986 + }, + { + "start": 6927.1, + "end": 6929.84, + "probability": 0.9982 + }, + { + "start": 6930.72, + "end": 6934.68, + "probability": 0.9901 + }, + { + "start": 6935.34, + "end": 6939.76, + "probability": 0.9969 + }, + { + "start": 6940.32, + "end": 6943.56, + "probability": 0.9801 + }, + { + "start": 6943.56, + "end": 6947.54, + "probability": 0.9944 + }, + { + "start": 6948.18, + "end": 6953.06, + "probability": 0.9886 + }, + { + "start": 6953.64, + "end": 6955.4, + "probability": 0.8364 + }, + { + "start": 6955.86, + "end": 6959.38, + "probability": 0.9898 + }, + { + "start": 6960.54, + "end": 6963.18, + "probability": 0.9399 + }, + { + "start": 6964.28, + "end": 6966.74, + "probability": 0.8949 + }, + { + "start": 6967.1, + "end": 6968.32, + "probability": 0.6944 + }, + { + "start": 6968.38, + "end": 6969.88, + "probability": 0.87 + }, + { + "start": 6970.3, + "end": 6972.16, + "probability": 0.8228 + }, + { + "start": 6972.74, + "end": 6974.06, + "probability": 0.9702 + }, + { + "start": 6974.56, + "end": 6977.56, + "probability": 0.9764 + }, + { + "start": 6981.52, + "end": 6982.52, + "probability": 0.8732 + }, + { + "start": 6984.06, + "end": 6985.3, + "probability": 0.8527 + }, + { + "start": 6985.54, + "end": 6989.22, + "probability": 0.916 + }, + { + "start": 6989.8, + "end": 6990.54, + "probability": 0.8039 + }, + { + "start": 6990.76, + "end": 6993.78, + "probability": 0.7039 + }, + { + "start": 6993.88, + "end": 6995.34, + "probability": 0.8953 + }, + { + "start": 6995.52, + "end": 6997.62, + "probability": 0.915 + }, + { + "start": 6998.94, + "end": 6999.66, + "probability": 0.8234 + }, + { + "start": 7000.26, + "end": 7001.62, + "probability": 0.9868 + }, + { + "start": 7002.54, + "end": 7003.35, + "probability": 0.876 + }, + { + "start": 7003.4, + "end": 7008.18, + "probability": 0.9526 + }, + { + "start": 7008.32, + "end": 7010.04, + "probability": 0.7694 + }, + { + "start": 7010.16, + "end": 7012.22, + "probability": 0.9195 + }, + { + "start": 7012.32, + "end": 7013.92, + "probability": 0.8752 + }, + { + "start": 7014.92, + "end": 7015.8, + "probability": 0.8727 + }, + { + "start": 7016.8, + "end": 7019.66, + "probability": 0.9805 + }, + { + "start": 7019.74, + "end": 7020.62, + "probability": 0.7378 + }, + { + "start": 7020.74, + "end": 7022.6, + "probability": 0.9077 + }, + { + "start": 7023.12, + "end": 7027.52, + "probability": 0.8854 + }, + { + "start": 7027.98, + "end": 7029.28, + "probability": 0.8784 + }, + { + "start": 7029.4, + "end": 7030.08, + "probability": 0.6802 + }, + { + "start": 7030.24, + "end": 7035.94, + "probability": 0.9946 + }, + { + "start": 7037.06, + "end": 7043.66, + "probability": 0.9919 + }, + { + "start": 7045.36, + "end": 7045.88, + "probability": 0.2551 + }, + { + "start": 7046.14, + "end": 7048.26, + "probability": 0.54 + }, + { + "start": 7048.3, + "end": 7050.4, + "probability": 0.9456 + }, + { + "start": 7051.46, + "end": 7053.54, + "probability": 0.9744 + }, + { + "start": 7053.6, + "end": 7055.06, + "probability": 0.9784 + }, + { + "start": 7055.82, + "end": 7058.28, + "probability": 0.9894 + }, + { + "start": 7058.34, + "end": 7063.32, + "probability": 0.6515 + }, + { + "start": 7063.96, + "end": 7066.76, + "probability": 0.9971 + }, + { + "start": 7067.68, + "end": 7071.58, + "probability": 0.9563 + }, + { + "start": 7071.66, + "end": 7072.6, + "probability": 0.7986 + }, + { + "start": 7072.84, + "end": 7074.46, + "probability": 0.9908 + }, + { + "start": 7076.5, + "end": 7081.04, + "probability": 0.9493 + }, + { + "start": 7081.5, + "end": 7082.5, + "probability": 0.7397 + }, + { + "start": 7083.2, + "end": 7084.6, + "probability": 0.8755 + }, + { + "start": 7086.52, + "end": 7088.08, + "probability": 0.7797 + }, + { + "start": 7089.3, + "end": 7094.34, + "probability": 0.9974 + }, + { + "start": 7095.54, + "end": 7096.42, + "probability": 0.9995 + }, + { + "start": 7098.42, + "end": 7104.2, + "probability": 0.9964 + }, + { + "start": 7106.02, + "end": 7108.12, + "probability": 0.9725 + }, + { + "start": 7109.12, + "end": 7113.42, + "probability": 0.9678 + }, + { + "start": 7113.54, + "end": 7116.62, + "probability": 0.9625 + }, + { + "start": 7118.44, + "end": 7119.66, + "probability": 0.8786 + }, + { + "start": 7121.5, + "end": 7122.84, + "probability": 0.9941 + }, + { + "start": 7123.5, + "end": 7128.28, + "probability": 0.986 + }, + { + "start": 7128.72, + "end": 7129.92, + "probability": 0.969 + }, + { + "start": 7130.1, + "end": 7132.12, + "probability": 0.9593 + }, + { + "start": 7132.96, + "end": 7135.47, + "probability": 0.8515 + }, + { + "start": 7137.44, + "end": 7139.28, + "probability": 0.8774 + }, + { + "start": 7141.52, + "end": 7147.24, + "probability": 0.9972 + }, + { + "start": 7147.34, + "end": 7149.46, + "probability": 0.9954 + }, + { + "start": 7150.2, + "end": 7155.32, + "probability": 0.9591 + }, + { + "start": 7155.4, + "end": 7158.14, + "probability": 0.658 + }, + { + "start": 7159.02, + "end": 7162.15, + "probability": 0.9714 + }, + { + "start": 7163.94, + "end": 7166.0, + "probability": 0.7056 + }, + { + "start": 7166.94, + "end": 7170.06, + "probability": 0.996 + }, + { + "start": 7171.14, + "end": 7174.82, + "probability": 0.9746 + }, + { + "start": 7176.02, + "end": 7178.72, + "probability": 0.5019 + }, + { + "start": 7181.18, + "end": 7182.58, + "probability": 0.8569 + }, + { + "start": 7184.22, + "end": 7186.7, + "probability": 0.9227 + }, + { + "start": 7187.88, + "end": 7190.2, + "probability": 0.9423 + }, + { + "start": 7190.66, + "end": 7196.32, + "probability": 0.9812 + }, + { + "start": 7196.32, + "end": 7199.28, + "probability": 0.9722 + }, + { + "start": 7199.7, + "end": 7200.12, + "probability": 0.5889 + }, + { + "start": 7200.86, + "end": 7201.52, + "probability": 0.6348 + }, + { + "start": 7201.68, + "end": 7204.36, + "probability": 0.8783 + }, + { + "start": 7205.46, + "end": 7212.26, + "probability": 0.0133 + }, + { + "start": 7215.06, + "end": 7218.8, + "probability": 0.1741 + }, + { + "start": 7220.44, + "end": 7221.7, + "probability": 0.1099 + }, + { + "start": 7223.84, + "end": 7227.36, + "probability": 0.1297 + }, + { + "start": 7248.4, + "end": 7251.04, + "probability": 0.441 + }, + { + "start": 7251.74, + "end": 7256.58, + "probability": 0.8623 + }, + { + "start": 7257.98, + "end": 7262.58, + "probability": 0.7117 + }, + { + "start": 7263.96, + "end": 7265.32, + "probability": 0.4023 + }, + { + "start": 7266.02, + "end": 7267.29, + "probability": 0.3474 + }, + { + "start": 7268.84, + "end": 7270.04, + "probability": 0.9722 + }, + { + "start": 7271.52, + "end": 7272.48, + "probability": 0.8277 + }, + { + "start": 7272.5, + "end": 7274.42, + "probability": 0.9785 + }, + { + "start": 7274.8, + "end": 7275.46, + "probability": 0.7909 + }, + { + "start": 7275.84, + "end": 7277.94, + "probability": 0.7024 + }, + { + "start": 7278.26, + "end": 7280.4, + "probability": 0.8345 + }, + { + "start": 7280.94, + "end": 7281.92, + "probability": 0.8395 + }, + { + "start": 7282.76, + "end": 7282.86, + "probability": 0.6563 + }, + { + "start": 7284.02, + "end": 7284.68, + "probability": 0.6935 + }, + { + "start": 7285.56, + "end": 7290.18, + "probability": 0.888 + }, + { + "start": 7290.26, + "end": 7291.44, + "probability": 0.849 + }, + { + "start": 7293.12, + "end": 7294.98, + "probability": 0.6502 + }, + { + "start": 7296.1, + "end": 7297.1, + "probability": 0.8397 + }, + { + "start": 7298.4, + "end": 7301.02, + "probability": 0.7128 + }, + { + "start": 7301.9, + "end": 7303.43, + "probability": 0.8057 + }, + { + "start": 7304.54, + "end": 7306.52, + "probability": 0.7209 + }, + { + "start": 7307.6, + "end": 7308.54, + "probability": 0.7634 + }, + { + "start": 7309.24, + "end": 7310.52, + "probability": 0.9966 + }, + { + "start": 7311.34, + "end": 7313.52, + "probability": 0.9148 + }, + { + "start": 7314.38, + "end": 7315.38, + "probability": 0.9741 + }, + { + "start": 7315.9, + "end": 7317.46, + "probability": 0.9536 + }, + { + "start": 7317.98, + "end": 7321.26, + "probability": 0.5852 + }, + { + "start": 7321.86, + "end": 7323.64, + "probability": 0.672 + }, + { + "start": 7324.32, + "end": 7325.84, + "probability": 0.8767 + }, + { + "start": 7326.36, + "end": 7328.51, + "probability": 0.8497 + }, + { + "start": 7329.76, + "end": 7331.64, + "probability": 0.9894 + }, + { + "start": 7332.04, + "end": 7334.14, + "probability": 0.9839 + }, + { + "start": 7335.28, + "end": 7337.46, + "probability": 0.9907 + }, + { + "start": 7338.08, + "end": 7341.18, + "probability": 0.9595 + }, + { + "start": 7342.12, + "end": 7344.84, + "probability": 0.522 + }, + { + "start": 7344.84, + "end": 7347.06, + "probability": 0.6067 + }, + { + "start": 7347.52, + "end": 7350.56, + "probability": 0.9143 + }, + { + "start": 7351.02, + "end": 7352.26, + "probability": 0.9325 + }, + { + "start": 7352.78, + "end": 7353.94, + "probability": 0.7522 + }, + { + "start": 7354.54, + "end": 7356.58, + "probability": 0.9817 + }, + { + "start": 7357.1, + "end": 7361.44, + "probability": 0.9261 + }, + { + "start": 7361.96, + "end": 7363.08, + "probability": 0.9651 + }, + { + "start": 7364.46, + "end": 7367.2, + "probability": 0.8484 + }, + { + "start": 7367.76, + "end": 7372.96, + "probability": 0.9749 + }, + { + "start": 7374.72, + "end": 7375.6, + "probability": 0.5779 + }, + { + "start": 7376.96, + "end": 7377.56, + "probability": 0.8875 + }, + { + "start": 7378.94, + "end": 7380.74, + "probability": 0.7324 + }, + { + "start": 7382.12, + "end": 7383.96, + "probability": 0.8009 + }, + { + "start": 7386.22, + "end": 7387.28, + "probability": 0.9363 + }, + { + "start": 7387.78, + "end": 7388.72, + "probability": 0.8806 + }, + { + "start": 7388.76, + "end": 7390.06, + "probability": 0.9705 + }, + { + "start": 7390.66, + "end": 7391.7, + "probability": 0.9873 + }, + { + "start": 7392.42, + "end": 7396.76, + "probability": 0.8351 + }, + { + "start": 7397.48, + "end": 7400.6, + "probability": 0.8499 + }, + { + "start": 7401.52, + "end": 7403.04, + "probability": 0.6708 + }, + { + "start": 7403.86, + "end": 7404.84, + "probability": 0.7156 + }, + { + "start": 7404.94, + "end": 7405.74, + "probability": 0.7177 + }, + { + "start": 7406.14, + "end": 7409.02, + "probability": 0.9287 + }, + { + "start": 7409.08, + "end": 7411.16, + "probability": 0.9718 + }, + { + "start": 7411.44, + "end": 7413.5, + "probability": 0.988 + }, + { + "start": 7413.98, + "end": 7415.08, + "probability": 0.475 + }, + { + "start": 7415.92, + "end": 7416.9, + "probability": 0.5705 + }, + { + "start": 7416.96, + "end": 7417.68, + "probability": 0.8522 + }, + { + "start": 7418.06, + "end": 7419.77, + "probability": 0.9917 + }, + { + "start": 7420.2, + "end": 7420.76, + "probability": 0.2167 + }, + { + "start": 7420.76, + "end": 7427.22, + "probability": 0.9757 + }, + { + "start": 7428.62, + "end": 7429.14, + "probability": 0.7711 + }, + { + "start": 7430.46, + "end": 7432.84, + "probability": 0.8832 + }, + { + "start": 7445.84, + "end": 7447.26, + "probability": 0.6643 + }, + { + "start": 7447.32, + "end": 7448.52, + "probability": 0.7791 + }, + { + "start": 7449.06, + "end": 7454.22, + "probability": 0.9924 + }, + { + "start": 7455.54, + "end": 7456.1, + "probability": 0.6567 + }, + { + "start": 7456.16, + "end": 7456.92, + "probability": 0.982 + }, + { + "start": 7456.92, + "end": 7457.86, + "probability": 0.9641 + }, + { + "start": 7457.96, + "end": 7461.18, + "probability": 0.9453 + }, + { + "start": 7462.78, + "end": 7466.76, + "probability": 0.9656 + }, + { + "start": 7468.7, + "end": 7472.02, + "probability": 0.9037 + }, + { + "start": 7474.56, + "end": 7476.02, + "probability": 0.7787 + }, + { + "start": 7476.06, + "end": 7476.74, + "probability": 0.3962 + }, + { + "start": 7476.76, + "end": 7478.9, + "probability": 0.7007 + }, + { + "start": 7480.62, + "end": 7481.26, + "probability": 0.499 + }, + { + "start": 7483.04, + "end": 7485.24, + "probability": 0.924 + }, + { + "start": 7486.02, + "end": 7486.64, + "probability": 0.6 + }, + { + "start": 7488.42, + "end": 7490.14, + "probability": 0.8755 + }, + { + "start": 7492.86, + "end": 7495.0, + "probability": 0.7616 + }, + { + "start": 7496.58, + "end": 7499.82, + "probability": 0.9099 + }, + { + "start": 7501.06, + "end": 7501.98, + "probability": 0.7852 + }, + { + "start": 7503.54, + "end": 7504.56, + "probability": 0.8637 + }, + { + "start": 7506.22, + "end": 7506.86, + "probability": 0.8531 + }, + { + "start": 7508.98, + "end": 7510.62, + "probability": 0.9905 + }, + { + "start": 7510.66, + "end": 7511.66, + "probability": 0.8139 + }, + { + "start": 7511.72, + "end": 7512.32, + "probability": 0.4686 + }, + { + "start": 7514.64, + "end": 7516.36, + "probability": 0.9782 + }, + { + "start": 7518.34, + "end": 7521.88, + "probability": 0.9961 + }, + { + "start": 7523.34, + "end": 7524.86, + "probability": 0.9939 + }, + { + "start": 7525.92, + "end": 7527.26, + "probability": 0.9884 + }, + { + "start": 7529.04, + "end": 7530.34, + "probability": 0.9738 + }, + { + "start": 7530.34, + "end": 7530.9, + "probability": 0.0101 + }, + { + "start": 7535.04, + "end": 7537.02, + "probability": 0.8701 + }, + { + "start": 7537.06, + "end": 7538.2, + "probability": 0.9833 + }, + { + "start": 7541.28, + "end": 7542.38, + "probability": 0.9917 + }, + { + "start": 7543.4, + "end": 7545.58, + "probability": 0.8586 + }, + { + "start": 7546.34, + "end": 7550.8, + "probability": 0.9644 + }, + { + "start": 7553.48, + "end": 7554.6, + "probability": 0.9042 + }, + { + "start": 7555.4, + "end": 7557.54, + "probability": 0.9985 + }, + { + "start": 7558.82, + "end": 7561.06, + "probability": 0.9178 + }, + { + "start": 7561.74, + "end": 7561.84, + "probability": 0.885 + }, + { + "start": 7562.96, + "end": 7563.36, + "probability": 0.8861 + }, + { + "start": 7564.84, + "end": 7565.26, + "probability": 0.6861 + }, + { + "start": 7566.12, + "end": 7567.28, + "probability": 0.9509 + }, + { + "start": 7571.34, + "end": 7572.58, + "probability": 0.9217 + }, + { + "start": 7572.66, + "end": 7574.76, + "probability": 0.882 + }, + { + "start": 7574.82, + "end": 7575.52, + "probability": 0.5078 + }, + { + "start": 7576.36, + "end": 7577.56, + "probability": 0.9341 + }, + { + "start": 7581.56, + "end": 7584.64, + "probability": 0.9843 + }, + { + "start": 7585.6, + "end": 7588.26, + "probability": 0.9549 + }, + { + "start": 7589.22, + "end": 7592.26, + "probability": 0.7097 + }, + { + "start": 7592.28, + "end": 7593.1, + "probability": 0.9816 + }, + { + "start": 7593.2, + "end": 7593.94, + "probability": 0.9298 + }, + { + "start": 7594.7, + "end": 7595.86, + "probability": 0.993 + }, + { + "start": 7597.8, + "end": 7602.18, + "probability": 0.9456 + }, + { + "start": 7602.24, + "end": 7604.92, + "probability": 0.9923 + }, + { + "start": 7605.06, + "end": 7606.08, + "probability": 0.8469 + }, + { + "start": 7607.56, + "end": 7609.42, + "probability": 0.9923 + }, + { + "start": 7611.24, + "end": 7612.98, + "probability": 0.9231 + }, + { + "start": 7613.54, + "end": 7618.48, + "probability": 0.6309 + }, + { + "start": 7619.68, + "end": 7620.26, + "probability": 0.472 + }, + { + "start": 7620.26, + "end": 7620.26, + "probability": 0.5018 + }, + { + "start": 7620.32, + "end": 7626.04, + "probability": 0.9963 + }, + { + "start": 7627.08, + "end": 7630.22, + "probability": 0.9948 + }, + { + "start": 7630.64, + "end": 7632.36, + "probability": 0.9843 + }, + { + "start": 7634.46, + "end": 7635.16, + "probability": 0.7807 + }, + { + "start": 7635.64, + "end": 7637.62, + "probability": 0.9172 + }, + { + "start": 7657.2, + "end": 7658.2, + "probability": 0.6772 + }, + { + "start": 7658.5, + "end": 7659.14, + "probability": 0.7404 + }, + { + "start": 7659.22, + "end": 7660.18, + "probability": 0.7014 + }, + { + "start": 7661.27, + "end": 7670.16, + "probability": 0.9734 + }, + { + "start": 7671.12, + "end": 7675.58, + "probability": 0.9937 + }, + { + "start": 7676.08, + "end": 7677.36, + "probability": 0.9669 + }, + { + "start": 7678.54, + "end": 7681.22, + "probability": 0.9951 + }, + { + "start": 7681.92, + "end": 7686.44, + "probability": 0.8827 + }, + { + "start": 7687.54, + "end": 7688.14, + "probability": 0.8698 + }, + { + "start": 7688.28, + "end": 7689.78, + "probability": 0.9769 + }, + { + "start": 7690.14, + "end": 7692.54, + "probability": 0.9861 + }, + { + "start": 7692.98, + "end": 7694.96, + "probability": 0.9388 + }, + { + "start": 7695.32, + "end": 7696.46, + "probability": 0.9838 + }, + { + "start": 7697.02, + "end": 7700.78, + "probability": 0.9558 + }, + { + "start": 7702.4, + "end": 7706.78, + "probability": 0.9964 + }, + { + "start": 7707.28, + "end": 7709.08, + "probability": 0.9719 + }, + { + "start": 7709.62, + "end": 7714.58, + "probability": 0.9927 + }, + { + "start": 7715.64, + "end": 7721.52, + "probability": 0.9862 + }, + { + "start": 7724.16, + "end": 7724.98, + "probability": 0.5963 + }, + { + "start": 7725.42, + "end": 7728.1, + "probability": 0.9204 + }, + { + "start": 7728.46, + "end": 7731.5, + "probability": 0.8646 + }, + { + "start": 7732.0, + "end": 7736.82, + "probability": 0.9689 + }, + { + "start": 7737.82, + "end": 7739.5, + "probability": 0.99 + }, + { + "start": 7740.16, + "end": 7743.56, + "probability": 0.7446 + }, + { + "start": 7745.86, + "end": 7749.96, + "probability": 0.832 + }, + { + "start": 7750.1, + "end": 7754.16, + "probability": 0.9675 + }, + { + "start": 7754.16, + "end": 7758.44, + "probability": 0.9239 + }, + { + "start": 7758.96, + "end": 7759.88, + "probability": 0.7045 + }, + { + "start": 7760.02, + "end": 7764.08, + "probability": 0.9951 + }, + { + "start": 7764.88, + "end": 7766.07, + "probability": 0.9725 + }, + { + "start": 7766.24, + "end": 7767.39, + "probability": 0.9473 + }, + { + "start": 7768.0, + "end": 7770.84, + "probability": 0.9363 + }, + { + "start": 7771.56, + "end": 7777.48, + "probability": 0.9663 + }, + { + "start": 7778.06, + "end": 7779.38, + "probability": 0.6795 + }, + { + "start": 7780.08, + "end": 7784.12, + "probability": 0.9895 + }, + { + "start": 7784.48, + "end": 7788.04, + "probability": 0.9645 + }, + { + "start": 7788.64, + "end": 7791.52, + "probability": 0.9883 + }, + { + "start": 7792.76, + "end": 7793.82, + "probability": 0.7173 + }, + { + "start": 7795.26, + "end": 7798.5, + "probability": 0.9583 + }, + { + "start": 7798.84, + "end": 7799.76, + "probability": 0.7463 + }, + { + "start": 7800.06, + "end": 7804.98, + "probability": 0.9919 + }, + { + "start": 7804.98, + "end": 7810.52, + "probability": 0.987 + }, + { + "start": 7811.14, + "end": 7811.84, + "probability": 0.5748 + }, + { + "start": 7812.44, + "end": 7814.58, + "probability": 0.7957 + }, + { + "start": 7815.02, + "end": 7815.72, + "probability": 0.4873 + }, + { + "start": 7816.1, + "end": 7818.12, + "probability": 0.9141 + }, + { + "start": 7842.18, + "end": 7843.7, + "probability": 0.6951 + }, + { + "start": 7844.86, + "end": 7850.32, + "probability": 0.992 + }, + { + "start": 7850.32, + "end": 7857.68, + "probability": 0.9858 + }, + { + "start": 7857.76, + "end": 7859.47, + "probability": 0.9912 + }, + { + "start": 7860.28, + "end": 7864.69, + "probability": 0.8597 + }, + { + "start": 7866.66, + "end": 7867.98, + "probability": 0.9453 + }, + { + "start": 7868.74, + "end": 7869.56, + "probability": 0.6159 + }, + { + "start": 7870.62, + "end": 7871.18, + "probability": 0.6864 + }, + { + "start": 7871.28, + "end": 7874.72, + "probability": 0.8203 + }, + { + "start": 7874.72, + "end": 7879.46, + "probability": 0.9881 + }, + { + "start": 7881.5, + "end": 7883.66, + "probability": 0.9535 + }, + { + "start": 7884.56, + "end": 7886.16, + "probability": 0.7644 + }, + { + "start": 7887.16, + "end": 7887.84, + "probability": 0.9788 + }, + { + "start": 7888.76, + "end": 7890.22, + "probability": 0.9978 + }, + { + "start": 7890.44, + "end": 7891.82, + "probability": 0.8622 + }, + { + "start": 7891.94, + "end": 7894.0, + "probability": 0.9258 + }, + { + "start": 7894.54, + "end": 7899.22, + "probability": 0.9683 + }, + { + "start": 7899.44, + "end": 7906.7, + "probability": 0.9974 + }, + { + "start": 7906.7, + "end": 7912.12, + "probability": 0.9963 + }, + { + "start": 7912.62, + "end": 7914.3, + "probability": 0.6665 + }, + { + "start": 7914.38, + "end": 7914.8, + "probability": 0.7378 + }, + { + "start": 7914.84, + "end": 7916.26, + "probability": 0.9922 + }, + { + "start": 7917.14, + "end": 7919.74, + "probability": 0.9115 + }, + { + "start": 7921.42, + "end": 7925.3, + "probability": 0.9912 + }, + { + "start": 7925.38, + "end": 7925.82, + "probability": 0.4992 + }, + { + "start": 7926.46, + "end": 7929.85, + "probability": 0.614 + }, + { + "start": 7931.54, + "end": 7934.44, + "probability": 0.8714 + }, + { + "start": 7935.12, + "end": 7937.06, + "probability": 0.9586 + }, + { + "start": 7938.18, + "end": 7938.36, + "probability": 0.9695 + }, + { + "start": 7938.42, + "end": 7939.16, + "probability": 0.9829 + }, + { + "start": 7939.22, + "end": 7940.34, + "probability": 0.9916 + }, + { + "start": 7940.38, + "end": 7941.88, + "probability": 0.9984 + }, + { + "start": 7941.96, + "end": 7943.06, + "probability": 0.836 + }, + { + "start": 7943.56, + "end": 7944.32, + "probability": 0.907 + }, + { + "start": 7945.22, + "end": 7947.92, + "probability": 0.8009 + }, + { + "start": 7948.04, + "end": 7948.86, + "probability": 0.9822 + }, + { + "start": 7948.94, + "end": 7951.88, + "probability": 0.9764 + }, + { + "start": 7952.66, + "end": 7953.62, + "probability": 0.9862 + }, + { + "start": 7954.18, + "end": 7956.15, + "probability": 0.9961 + }, + { + "start": 7957.48, + "end": 7959.5, + "probability": 0.8994 + }, + { + "start": 7960.24, + "end": 7960.81, + "probability": 0.5105 + }, + { + "start": 7961.0, + "end": 7965.26, + "probability": 0.9463 + }, + { + "start": 7965.9, + "end": 7967.24, + "probability": 0.8897 + }, + { + "start": 7967.78, + "end": 7969.24, + "probability": 0.9888 + }, + { + "start": 7970.76, + "end": 7972.32, + "probability": 0.9185 + }, + { + "start": 7973.1, + "end": 7974.76, + "probability": 0.965 + }, + { + "start": 7975.24, + "end": 7976.32, + "probability": 0.9922 + }, + { + "start": 7976.64, + "end": 7978.62, + "probability": 0.6779 + }, + { + "start": 7978.68, + "end": 7979.72, + "probability": 0.7597 + }, + { + "start": 7980.16, + "end": 7983.12, + "probability": 0.8164 + }, + { + "start": 7983.28, + "end": 7984.06, + "probability": 0.8195 + }, + { + "start": 7984.56, + "end": 7985.82, + "probability": 0.9699 + }, + { + "start": 7986.32, + "end": 7988.56, + "probability": 0.9919 + }, + { + "start": 7989.08, + "end": 7993.5, + "probability": 0.8901 + }, + { + "start": 7993.96, + "end": 7995.2, + "probability": 0.8772 + }, + { + "start": 7995.26, + "end": 7998.16, + "probability": 0.9566 + }, + { + "start": 7998.22, + "end": 8000.08, + "probability": 0.6055 + }, + { + "start": 8000.7, + "end": 8001.08, + "probability": 0.9652 + }, + { + "start": 8001.2, + "end": 8001.78, + "probability": 0.9848 + }, + { + "start": 8001.9, + "end": 8002.4, + "probability": 0.9215 + }, + { + "start": 8002.46, + "end": 8004.0, + "probability": 0.9953 + }, + { + "start": 8004.66, + "end": 8007.26, + "probability": 0.9954 + }, + { + "start": 8007.98, + "end": 8009.56, + "probability": 0.6687 + }, + { + "start": 8009.84, + "end": 8011.86, + "probability": 0.9924 + }, + { + "start": 8013.04, + "end": 8016.48, + "probability": 0.9952 + }, + { + "start": 8017.48, + "end": 8018.58, + "probability": 0.7956 + }, + { + "start": 8019.2, + "end": 8022.4, + "probability": 0.9763 + }, + { + "start": 8022.92, + "end": 8023.76, + "probability": 0.7648 + }, + { + "start": 8024.34, + "end": 8029.4, + "probability": 0.9922 + }, + { + "start": 8029.66, + "end": 8029.96, + "probability": 0.776 + }, + { + "start": 8051.42, + "end": 8051.66, + "probability": 0.0303 + }, + { + "start": 8051.66, + "end": 8051.66, + "probability": 0.1099 + }, + { + "start": 8051.66, + "end": 8051.66, + "probability": 0.1119 + }, + { + "start": 8051.66, + "end": 8051.66, + "probability": 0.0851 + }, + { + "start": 8051.66, + "end": 8054.84, + "probability": 0.7287 + }, + { + "start": 8055.82, + "end": 8056.83, + "probability": 0.3047 + }, + { + "start": 8058.02, + "end": 8060.5, + "probability": 0.9631 + }, + { + "start": 8061.32, + "end": 8064.48, + "probability": 0.9971 + }, + { + "start": 8064.6, + "end": 8065.52, + "probability": 0.9456 + }, + { + "start": 8065.64, + "end": 8066.94, + "probability": 0.9001 + }, + { + "start": 8067.66, + "end": 8072.7, + "probability": 0.9962 + }, + { + "start": 8073.24, + "end": 8075.84, + "probability": 0.9956 + }, + { + "start": 8076.32, + "end": 8081.92, + "probability": 0.992 + }, + { + "start": 8082.68, + "end": 8083.02, + "probability": 0.5042 + }, + { + "start": 8083.58, + "end": 8085.82, + "probability": 0.9937 + }, + { + "start": 8086.82, + "end": 8088.46, + "probability": 0.7279 + }, + { + "start": 8089.16, + "end": 8093.04, + "probability": 0.9607 + }, + { + "start": 8094.22, + "end": 8098.02, + "probability": 0.9933 + }, + { + "start": 8099.06, + "end": 8099.28, + "probability": 0.4196 + }, + { + "start": 8099.36, + "end": 8100.84, + "probability": 0.871 + }, + { + "start": 8100.96, + "end": 8104.22, + "probability": 0.9897 + }, + { + "start": 8104.22, + "end": 8107.02, + "probability": 0.9982 + }, + { + "start": 8107.52, + "end": 8112.48, + "probability": 0.9707 + }, + { + "start": 8114.12, + "end": 8116.64, + "probability": 0.9322 + }, + { + "start": 8117.4, + "end": 8120.39, + "probability": 0.6543 + }, + { + "start": 8121.26, + "end": 8121.82, + "probability": 0.1979 + }, + { + "start": 8121.86, + "end": 8124.32, + "probability": 0.9234 + }, + { + "start": 8124.86, + "end": 8126.92, + "probability": 0.9854 + }, + { + "start": 8126.94, + "end": 8130.18, + "probability": 0.9935 + }, + { + "start": 8131.34, + "end": 8133.84, + "probability": 0.9993 + }, + { + "start": 8134.72, + "end": 8139.42, + "probability": 0.9956 + }, + { + "start": 8139.58, + "end": 8144.02, + "probability": 0.9959 + }, + { + "start": 8144.88, + "end": 8148.34, + "probability": 0.9955 + }, + { + "start": 8149.42, + "end": 8154.26, + "probability": 0.9995 + }, + { + "start": 8154.66, + "end": 8156.04, + "probability": 0.934 + }, + { + "start": 8156.62, + "end": 8157.82, + "probability": 0.9962 + }, + { + "start": 8158.4, + "end": 8158.9, + "probability": 0.6005 + }, + { + "start": 8158.96, + "end": 8164.88, + "probability": 0.9963 + }, + { + "start": 8165.46, + "end": 8172.24, + "probability": 0.9946 + }, + { + "start": 8173.14, + "end": 8174.52, + "probability": 0.7704 + }, + { + "start": 8175.1, + "end": 8177.6, + "probability": 0.9978 + }, + { + "start": 8178.12, + "end": 8180.8, + "probability": 0.9593 + }, + { + "start": 8181.42, + "end": 8183.7, + "probability": 0.6326 + }, + { + "start": 8184.36, + "end": 8185.58, + "probability": 0.9441 + }, + { + "start": 8185.74, + "end": 8186.52, + "probability": 0.7108 + }, + { + "start": 8186.66, + "end": 8187.22, + "probability": 0.644 + }, + { + "start": 8187.3, + "end": 8191.48, + "probability": 0.9856 + }, + { + "start": 8192.54, + "end": 8195.84, + "probability": 0.981 + }, + { + "start": 8196.32, + "end": 8200.48, + "probability": 0.9983 + }, + { + "start": 8201.0, + "end": 8205.0, + "probability": 0.9978 + }, + { + "start": 8205.0, + "end": 8207.64, + "probability": 0.7944 + }, + { + "start": 8208.96, + "end": 8209.62, + "probability": 0.989 + }, + { + "start": 8209.68, + "end": 8210.46, + "probability": 0.8065 + }, + { + "start": 8210.88, + "end": 8216.56, + "probability": 0.8008 + }, + { + "start": 8216.64, + "end": 8217.66, + "probability": 0.8737 + }, + { + "start": 8217.74, + "end": 8219.74, + "probability": 0.9259 + }, + { + "start": 8220.42, + "end": 8225.02, + "probability": 0.9809 + }, + { + "start": 8225.96, + "end": 8229.98, + "probability": 0.9011 + }, + { + "start": 8229.98, + "end": 8234.26, + "probability": 0.9955 + }, + { + "start": 8234.6, + "end": 8236.67, + "probability": 0.7319 + }, + { + "start": 8238.3, + "end": 8242.76, + "probability": 0.9968 + }, + { + "start": 8243.14, + "end": 8243.74, + "probability": 0.9496 + }, + { + "start": 8244.26, + "end": 8244.79, + "probability": 0.5657 + }, + { + "start": 8246.42, + "end": 8249.82, + "probability": 0.6948 + }, + { + "start": 8250.42, + "end": 8251.04, + "probability": 0.9328 + }, + { + "start": 8251.16, + "end": 8252.1, + "probability": 0.974 + }, + { + "start": 8252.24, + "end": 8255.46, + "probability": 0.8411 + }, + { + "start": 8256.48, + "end": 8257.04, + "probability": 0.8421 + }, + { + "start": 8257.04, + "end": 8257.56, + "probability": 0.6536 + }, + { + "start": 8258.16, + "end": 8260.12, + "probability": 0.9667 + }, + { + "start": 8282.86, + "end": 8286.24, + "probability": 0.8683 + }, + { + "start": 8287.0, + "end": 8289.94, + "probability": 0.5257 + }, + { + "start": 8291.38, + "end": 8293.32, + "probability": 0.3786 + }, + { + "start": 8294.62, + "end": 8296.14, + "probability": 0.9124 + }, + { + "start": 8296.86, + "end": 8298.06, + "probability": 0.6865 + }, + { + "start": 8300.9, + "end": 8302.24, + "probability": 0.7017 + }, + { + "start": 8303.4, + "end": 8305.4, + "probability": 0.9407 + }, + { + "start": 8308.14, + "end": 8309.98, + "probability": 0.9658 + }, + { + "start": 8310.14, + "end": 8311.78, + "probability": 0.8318 + }, + { + "start": 8311.98, + "end": 8315.22, + "probability": 0.9663 + }, + { + "start": 8316.22, + "end": 8318.8, + "probability": 0.7256 + }, + { + "start": 8321.44, + "end": 8325.19, + "probability": 0.9968 + }, + { + "start": 8327.71, + "end": 8330.42, + "probability": 0.7595 + }, + { + "start": 8332.04, + "end": 8333.12, + "probability": 0.8784 + }, + { + "start": 8335.08, + "end": 8336.9, + "probability": 0.9219 + }, + { + "start": 8338.1, + "end": 8339.3, + "probability": 0.7481 + }, + { + "start": 8341.94, + "end": 8342.82, + "probability": 0.6198 + }, + { + "start": 8343.9, + "end": 8344.32, + "probability": 0.7524 + }, + { + "start": 8345.04, + "end": 8346.56, + "probability": 0.9752 + }, + { + "start": 8347.2, + "end": 8348.88, + "probability": 0.79 + }, + { + "start": 8350.94, + "end": 8353.14, + "probability": 0.9449 + }, + { + "start": 8355.7, + "end": 8358.96, + "probability": 0.9771 + }, + { + "start": 8360.5, + "end": 8362.48, + "probability": 0.9832 + }, + { + "start": 8363.72, + "end": 8368.04, + "probability": 0.9534 + }, + { + "start": 8369.12, + "end": 8369.8, + "probability": 0.7582 + }, + { + "start": 8370.98, + "end": 8371.9, + "probability": 0.7557 + }, + { + "start": 8372.74, + "end": 8373.72, + "probability": 0.8862 + }, + { + "start": 8374.72, + "end": 8375.42, + "probability": 0.8917 + }, + { + "start": 8377.08, + "end": 8381.31, + "probability": 0.9814 + }, + { + "start": 8383.24, + "end": 8384.48, + "probability": 0.8571 + }, + { + "start": 8385.86, + "end": 8386.7, + "probability": 0.2318 + }, + { + "start": 8387.48, + "end": 8390.96, + "probability": 0.8457 + }, + { + "start": 8392.84, + "end": 8393.19, + "probability": 0.1471 + }, + { + "start": 8394.06, + "end": 8394.74, + "probability": 0.5883 + }, + { + "start": 8394.82, + "end": 8395.55, + "probability": 0.9867 + }, + { + "start": 8396.44, + "end": 8398.28, + "probability": 0.3329 + }, + { + "start": 8398.62, + "end": 8399.42, + "probability": 0.4794 + }, + { + "start": 8399.82, + "end": 8400.88, + "probability": 0.5073 + }, + { + "start": 8401.31, + "end": 8401.66, + "probability": 0.5773 + }, + { + "start": 8402.02, + "end": 8402.02, + "probability": 0.6083 + }, + { + "start": 8402.54, + "end": 8404.38, + "probability": 0.9947 + }, + { + "start": 8405.04, + "end": 8405.66, + "probability": 0.9626 + }, + { + "start": 8406.92, + "end": 8409.56, + "probability": 0.998 + }, + { + "start": 8410.78, + "end": 8411.88, + "probability": 0.9951 + }, + { + "start": 8414.32, + "end": 8416.48, + "probability": 0.9983 + }, + { + "start": 8418.28, + "end": 8420.48, + "probability": 0.9987 + }, + { + "start": 8422.86, + "end": 8426.52, + "probability": 0.9398 + }, + { + "start": 8427.42, + "end": 8428.58, + "probability": 0.9215 + }, + { + "start": 8429.26, + "end": 8430.34, + "probability": 0.9126 + }, + { + "start": 8431.08, + "end": 8434.9, + "probability": 0.9923 + }, + { + "start": 8437.16, + "end": 8439.86, + "probability": 0.9977 + }, + { + "start": 8442.36, + "end": 8445.92, + "probability": 0.9824 + }, + { + "start": 8447.18, + "end": 8451.26, + "probability": 0.9766 + }, + { + "start": 8451.88, + "end": 8457.36, + "probability": 0.9607 + }, + { + "start": 8458.68, + "end": 8459.94, + "probability": 0.9575 + }, + { + "start": 8461.02, + "end": 8464.64, + "probability": 0.9413 + }, + { + "start": 8465.44, + "end": 8467.28, + "probability": 0.9269 + }, + { + "start": 8467.8, + "end": 8469.78, + "probability": 0.9587 + }, + { + "start": 8471.6, + "end": 8472.92, + "probability": 0.9882 + }, + { + "start": 8474.22, + "end": 8475.71, + "probability": 0.9882 + }, + { + "start": 8476.54, + "end": 8478.22, + "probability": 0.9902 + }, + { + "start": 8478.9, + "end": 8480.04, + "probability": 0.6192 + }, + { + "start": 8480.68, + "end": 8483.98, + "probability": 0.9949 + }, + { + "start": 8484.94, + "end": 8487.3, + "probability": 0.7966 + }, + { + "start": 8487.78, + "end": 8491.74, + "probability": 0.9695 + }, + { + "start": 8492.78, + "end": 8495.36, + "probability": 0.7961 + }, + { + "start": 8496.56, + "end": 8497.02, + "probability": 0.5598 + }, + { + "start": 8497.14, + "end": 8497.22, + "probability": 0.2226 + }, + { + "start": 8497.28, + "end": 8499.42, + "probability": 0.9012 + }, + { + "start": 8521.7, + "end": 8523.72, + "probability": 0.5201 + }, + { + "start": 8524.5, + "end": 8526.72, + "probability": 0.8162 + }, + { + "start": 8526.76, + "end": 8531.0, + "probability": 0.8708 + }, + { + "start": 8531.9, + "end": 8534.1, + "probability": 0.9888 + }, + { + "start": 8535.66, + "end": 8537.02, + "probability": 0.9868 + }, + { + "start": 8537.72, + "end": 8539.88, + "probability": 0.9925 + }, + { + "start": 8540.3, + "end": 8546.14, + "probability": 0.9419 + }, + { + "start": 8548.2, + "end": 8552.82, + "probability": 0.9995 + }, + { + "start": 8554.22, + "end": 8558.44, + "probability": 0.989 + }, + { + "start": 8558.74, + "end": 8562.42, + "probability": 0.9989 + }, + { + "start": 8563.22, + "end": 8566.32, + "probability": 0.9694 + }, + { + "start": 8568.58, + "end": 8574.24, + "probability": 0.9956 + }, + { + "start": 8574.86, + "end": 8577.9, + "probability": 0.9038 + }, + { + "start": 8578.48, + "end": 8580.3, + "probability": 0.9814 + }, + { + "start": 8580.82, + "end": 8581.6, + "probability": 0.7537 + }, + { + "start": 8582.12, + "end": 8582.8, + "probability": 0.7415 + }, + { + "start": 8583.58, + "end": 8584.5, + "probability": 0.9897 + }, + { + "start": 8585.02, + "end": 8586.82, + "probability": 0.9711 + }, + { + "start": 8587.5, + "end": 8588.16, + "probability": 0.8637 + }, + { + "start": 8588.34, + "end": 8590.6, + "probability": 0.9767 + }, + { + "start": 8591.04, + "end": 8592.12, + "probability": 0.9646 + }, + { + "start": 8592.52, + "end": 8594.02, + "probability": 0.9883 + }, + { + "start": 8594.7, + "end": 8597.86, + "probability": 0.9913 + }, + { + "start": 8598.28, + "end": 8600.12, + "probability": 0.9981 + }, + { + "start": 8600.88, + "end": 8602.1, + "probability": 0.7947 + }, + { + "start": 8602.6, + "end": 8606.6, + "probability": 0.998 + }, + { + "start": 8607.1, + "end": 8607.94, + "probability": 0.7496 + }, + { + "start": 8608.32, + "end": 8609.98, + "probability": 0.8971 + }, + { + "start": 8610.64, + "end": 8613.84, + "probability": 0.9406 + }, + { + "start": 8614.34, + "end": 8616.88, + "probability": 0.9582 + }, + { + "start": 8618.0, + "end": 8624.38, + "probability": 0.8192 + }, + { + "start": 8625.1, + "end": 8626.76, + "probability": 0.9661 + }, + { + "start": 8627.14, + "end": 8627.72, + "probability": 0.3171 + }, + { + "start": 8628.14, + "end": 8629.96, + "probability": 0.9404 + }, + { + "start": 8630.9, + "end": 8633.34, + "probability": 0.9312 + }, + { + "start": 8633.66, + "end": 8634.98, + "probability": 0.9296 + }, + { + "start": 8636.06, + "end": 8639.62, + "probability": 0.9817 + }, + { + "start": 8639.62, + "end": 8644.48, + "probability": 0.9823 + }, + { + "start": 8645.34, + "end": 8647.92, + "probability": 0.6891 + }, + { + "start": 8648.64, + "end": 8650.26, + "probability": 0.9411 + }, + { + "start": 8651.02, + "end": 8653.04, + "probability": 0.99 + }, + { + "start": 8653.32, + "end": 8654.02, + "probability": 0.9883 + }, + { + "start": 8654.38, + "end": 8654.92, + "probability": 0.8958 + }, + { + "start": 8655.4, + "end": 8660.16, + "probability": 0.9912 + }, + { + "start": 8661.64, + "end": 8663.06, + "probability": 0.964 + }, + { + "start": 8663.18, + "end": 8666.96, + "probability": 0.9982 + }, + { + "start": 8666.96, + "end": 8670.3, + "probability": 0.9978 + }, + { + "start": 8671.24, + "end": 8675.26, + "probability": 0.9971 + }, + { + "start": 8675.26, + "end": 8680.06, + "probability": 0.9997 + }, + { + "start": 8680.76, + "end": 8682.6, + "probability": 0.8176 + }, + { + "start": 8683.32, + "end": 8684.54, + "probability": 0.5385 + }, + { + "start": 8685.2, + "end": 8687.02, + "probability": 0.8415 + }, + { + "start": 8687.02, + "end": 8690.08, + "probability": 0.998 + }, + { + "start": 8690.26, + "end": 8691.44, + "probability": 0.9899 + }, + { + "start": 8692.34, + "end": 8693.9, + "probability": 0.9963 + }, + { + "start": 8694.3, + "end": 8695.14, + "probability": 0.8958 + }, + { + "start": 8695.24, + "end": 8696.18, + "probability": 0.9406 + }, + { + "start": 8696.42, + "end": 8700.56, + "probability": 0.986 + }, + { + "start": 8701.06, + "end": 8703.66, + "probability": 0.9871 + }, + { + "start": 8704.08, + "end": 8705.14, + "probability": 0.9972 + }, + { + "start": 8705.82, + "end": 8709.92, + "probability": 0.9834 + }, + { + "start": 8710.62, + "end": 8712.2, + "probability": 0.8616 + }, + { + "start": 8712.78, + "end": 8714.82, + "probability": 0.9989 + }, + { + "start": 8715.14, + "end": 8717.32, + "probability": 0.9878 + }, + { + "start": 8717.74, + "end": 8720.2, + "probability": 0.9361 + }, + { + "start": 8720.72, + "end": 8721.78, + "probability": 0.9587 + }, + { + "start": 8722.26, + "end": 8722.96, + "probability": 0.8987 + }, + { + "start": 8723.08, + "end": 8724.02, + "probability": 0.845 + }, + { + "start": 8724.48, + "end": 8726.26, + "probability": 0.9973 + }, + { + "start": 8726.72, + "end": 8728.1, + "probability": 0.9504 + }, + { + "start": 8728.58, + "end": 8731.04, + "probability": 0.902 + }, + { + "start": 8731.5, + "end": 8734.0, + "probability": 0.5505 + }, + { + "start": 8735.66, + "end": 8736.34, + "probability": 0.6317 + }, + { + "start": 8736.48, + "end": 8739.18, + "probability": 0.827 + }, + { + "start": 8760.98, + "end": 8761.6, + "probability": 0.7115 + }, + { + "start": 8761.72, + "end": 8762.66, + "probability": 0.7691 + }, + { + "start": 8762.82, + "end": 8767.44, + "probability": 0.957 + }, + { + "start": 8767.66, + "end": 8768.15, + "probability": 0.9688 + }, + { + "start": 8768.52, + "end": 8769.02, + "probability": 0.9849 + }, + { + "start": 8769.54, + "end": 8771.48, + "probability": 0.9883 + }, + { + "start": 8771.6, + "end": 8772.24, + "probability": 0.9672 + }, + { + "start": 8772.76, + "end": 8774.06, + "probability": 0.7933 + }, + { + "start": 8774.64, + "end": 8775.6, + "probability": 0.6586 + }, + { + "start": 8775.66, + "end": 8779.05, + "probability": 0.9326 + }, + { + "start": 8779.06, + "end": 8781.54, + "probability": 0.9928 + }, + { + "start": 8782.48, + "end": 8786.9, + "probability": 0.9828 + }, + { + "start": 8787.5, + "end": 8791.9, + "probability": 0.9691 + }, + { + "start": 8791.9, + "end": 8796.26, + "probability": 0.9861 + }, + { + "start": 8796.98, + "end": 8797.22, + "probability": 0.4397 + }, + { + "start": 8797.52, + "end": 8798.88, + "probability": 0.8451 + }, + { + "start": 8798.94, + "end": 8799.92, + "probability": 0.8488 + }, + { + "start": 8799.96, + "end": 8800.78, + "probability": 0.9635 + }, + { + "start": 8801.02, + "end": 8803.12, + "probability": 0.8423 + }, + { + "start": 8804.18, + "end": 8806.04, + "probability": 0.9674 + }, + { + "start": 8806.86, + "end": 8809.88, + "probability": 0.9236 + }, + { + "start": 8809.96, + "end": 8811.14, + "probability": 0.9778 + }, + { + "start": 8811.26, + "end": 8812.18, + "probability": 0.9232 + }, + { + "start": 8812.58, + "end": 8813.86, + "probability": 0.9597 + }, + { + "start": 8813.96, + "end": 8815.14, + "probability": 0.9724 + }, + { + "start": 8815.5, + "end": 8817.94, + "probability": 0.9863 + }, + { + "start": 8818.48, + "end": 8821.28, + "probability": 0.9252 + }, + { + "start": 8822.48, + "end": 8822.56, + "probability": 0.3514 + }, + { + "start": 8822.64, + "end": 8823.02, + "probability": 0.9045 + }, + { + "start": 8823.08, + "end": 8825.98, + "probability": 0.9731 + }, + { + "start": 8825.98, + "end": 8830.2, + "probability": 0.9634 + }, + { + "start": 8831.22, + "end": 8836.28, + "probability": 0.9671 + }, + { + "start": 8836.52, + "end": 8837.42, + "probability": 0.8488 + }, + { + "start": 8837.84, + "end": 8839.66, + "probability": 0.9394 + }, + { + "start": 8839.98, + "end": 8841.66, + "probability": 0.9733 + }, + { + "start": 8842.7, + "end": 8845.56, + "probability": 0.8458 + }, + { + "start": 8845.66, + "end": 8845.78, + "probability": 0.5134 + }, + { + "start": 8845.78, + "end": 8846.46, + "probability": 0.7488 + }, + { + "start": 8846.56, + "end": 8848.78, + "probability": 0.9492 + }, + { + "start": 8848.92, + "end": 8850.28, + "probability": 0.9207 + }, + { + "start": 8850.42, + "end": 8853.84, + "probability": 0.9706 + }, + { + "start": 8853.92, + "end": 8854.76, + "probability": 0.6874 + }, + { + "start": 8854.9, + "end": 8857.2, + "probability": 0.9064 + }, + { + "start": 8858.16, + "end": 8859.1, + "probability": 0.9713 + }, + { + "start": 8859.6, + "end": 8864.72, + "probability": 0.966 + }, + { + "start": 8865.38, + "end": 8872.02, + "probability": 0.9941 + }, + { + "start": 8872.24, + "end": 8873.46, + "probability": 0.986 + }, + { + "start": 8873.58, + "end": 8875.16, + "probability": 0.7409 + }, + { + "start": 8875.66, + "end": 8877.9, + "probability": 0.9547 + }, + { + "start": 8878.28, + "end": 8885.1, + "probability": 0.9822 + }, + { + "start": 8885.14, + "end": 8885.74, + "probability": 0.9058 + }, + { + "start": 8886.67, + "end": 8890.32, + "probability": 0.8952 + }, + { + "start": 8891.16, + "end": 8891.54, + "probability": 0.812 + }, + { + "start": 8892.22, + "end": 8894.28, + "probability": 0.8582 + }, + { + "start": 8894.42, + "end": 8896.64, + "probability": 0.9978 + }, + { + "start": 8897.24, + "end": 8898.12, + "probability": 0.7519 + }, + { + "start": 8898.26, + "end": 8899.46, + "probability": 0.8609 + }, + { + "start": 8899.54, + "end": 8901.0, + "probability": 0.8289 + }, + { + "start": 8901.64, + "end": 8902.88, + "probability": 0.9586 + }, + { + "start": 8903.4, + "end": 8906.38, + "probability": 0.9922 + }, + { + "start": 8906.38, + "end": 8908.68, + "probability": 0.9824 + }, + { + "start": 8909.26, + "end": 8909.71, + "probability": 0.9037 + }, + { + "start": 8910.74, + "end": 8912.07, + "probability": 0.9258 + }, + { + "start": 8912.8, + "end": 8915.58, + "probability": 0.935 + }, + { + "start": 8916.26, + "end": 8916.58, + "probability": 0.6296 + }, + { + "start": 8916.68, + "end": 8916.82, + "probability": 0.5141 + }, + { + "start": 8916.88, + "end": 8919.96, + "probability": 0.9767 + }, + { + "start": 8920.1, + "end": 8920.94, + "probability": 0.8503 + }, + { + "start": 8921.08, + "end": 8922.72, + "probability": 0.9364 + }, + { + "start": 8922.82, + "end": 8926.72, + "probability": 0.9771 + }, + { + "start": 8926.84, + "end": 8927.44, + "probability": 0.7075 + }, + { + "start": 8928.24, + "end": 8930.86, + "probability": 0.8788 + }, + { + "start": 8931.04, + "end": 8932.5, + "probability": 0.8892 + }, + { + "start": 8932.64, + "end": 8935.06, + "probability": 0.9845 + }, + { + "start": 8935.42, + "end": 8937.86, + "probability": 0.9648 + }, + { + "start": 8938.3, + "end": 8945.2, + "probability": 0.9891 + }, + { + "start": 8945.52, + "end": 8945.78, + "probability": 0.3185 + }, + { + "start": 8945.78, + "end": 8946.12, + "probability": 0.8525 + }, + { + "start": 8946.18, + "end": 8947.34, + "probability": 0.9922 + }, + { + "start": 8947.72, + "end": 8948.16, + "probability": 0.7943 + }, + { + "start": 8948.54, + "end": 8949.26, + "probability": 0.6304 + }, + { + "start": 8949.34, + "end": 8951.78, + "probability": 0.837 + }, + { + "start": 8965.76, + "end": 8966.62, + "probability": 0.7265 + }, + { + "start": 8967.38, + "end": 8968.18, + "probability": 0.754 + }, + { + "start": 8968.66, + "end": 8969.18, + "probability": 0.3668 + }, + { + "start": 8969.4, + "end": 8970.68, + "probability": 0.8574 + }, + { + "start": 8970.82, + "end": 8971.6, + "probability": 0.7986 + }, + { + "start": 8973.05, + "end": 8979.28, + "probability": 0.5979 + }, + { + "start": 8979.62, + "end": 8981.4, + "probability": 0.7208 + }, + { + "start": 8981.4, + "end": 8982.78, + "probability": 0.8847 + }, + { + "start": 8984.68, + "end": 8987.48, + "probability": 0.6917 + }, + { + "start": 8988.68, + "end": 8995.44, + "probability": 0.9907 + }, + { + "start": 8996.26, + "end": 9000.3, + "probability": 0.8695 + }, + { + "start": 9000.54, + "end": 9005.8, + "probability": 0.8842 + }, + { + "start": 9006.84, + "end": 9010.88, + "probability": 0.994 + }, + { + "start": 9010.98, + "end": 9015.5, + "probability": 0.8892 + }, + { + "start": 9016.44, + "end": 9017.48, + "probability": 0.732 + }, + { + "start": 9017.66, + "end": 9020.06, + "probability": 0.9608 + }, + { + "start": 9020.18, + "end": 9022.18, + "probability": 0.8938 + }, + { + "start": 9022.96, + "end": 9026.58, + "probability": 0.9922 + }, + { + "start": 9027.2, + "end": 9030.1, + "probability": 0.5374 + }, + { + "start": 9031.16, + "end": 9035.6, + "probability": 0.9666 + }, + { + "start": 9036.32, + "end": 9038.16, + "probability": 0.9852 + }, + { + "start": 9038.74, + "end": 9039.96, + "probability": 0.8462 + }, + { + "start": 9041.76, + "end": 9046.44, + "probability": 0.9294 + }, + { + "start": 9047.02, + "end": 9051.18, + "probability": 0.896 + }, + { + "start": 9051.36, + "end": 9056.28, + "probability": 0.9774 + }, + { + "start": 9056.88, + "end": 9064.32, + "probability": 0.9876 + }, + { + "start": 9065.1, + "end": 9066.53, + "probability": 0.8419 + }, + { + "start": 9067.46, + "end": 9068.36, + "probability": 0.6994 + }, + { + "start": 9068.54, + "end": 9071.38, + "probability": 0.9961 + }, + { + "start": 9072.22, + "end": 9074.08, + "probability": 0.9592 + }, + { + "start": 9075.18, + "end": 9077.02, + "probability": 0.9705 + }, + { + "start": 9077.3, + "end": 9078.72, + "probability": 0.9741 + }, + { + "start": 9078.9, + "end": 9080.57, + "probability": 0.7121 + }, + { + "start": 9081.36, + "end": 9082.72, + "probability": 0.821 + }, + { + "start": 9082.9, + "end": 9090.7, + "probability": 0.9594 + }, + { + "start": 9091.32, + "end": 9094.66, + "probability": 0.979 + }, + { + "start": 9095.36, + "end": 9099.16, + "probability": 0.9954 + }, + { + "start": 9100.04, + "end": 9102.64, + "probability": 0.9901 + }, + { + "start": 9103.46, + "end": 9107.68, + "probability": 0.757 + }, + { + "start": 9108.54, + "end": 9112.26, + "probability": 0.9513 + }, + { + "start": 9113.04, + "end": 9118.34, + "probability": 0.9792 + }, + { + "start": 9119.1, + "end": 9120.2, + "probability": 0.903 + }, + { + "start": 9120.42, + "end": 9124.62, + "probability": 0.8517 + }, + { + "start": 9125.26, + "end": 9132.36, + "probability": 0.9382 + }, + { + "start": 9132.96, + "end": 9134.2, + "probability": 0.7701 + }, + { + "start": 9134.66, + "end": 9137.6, + "probability": 0.9913 + }, + { + "start": 9138.0, + "end": 9141.2, + "probability": 0.9985 + }, + { + "start": 9141.98, + "end": 9146.36, + "probability": 0.9539 + }, + { + "start": 9146.9, + "end": 9149.16, + "probability": 0.9546 + }, + { + "start": 9149.76, + "end": 9155.34, + "probability": 0.9919 + }, + { + "start": 9155.34, + "end": 9160.7, + "probability": 0.9985 + }, + { + "start": 9161.64, + "end": 9165.48, + "probability": 0.9959 + }, + { + "start": 9166.22, + "end": 9167.58, + "probability": 0.7493 + }, + { + "start": 9168.58, + "end": 9171.58, + "probability": 0.7575 + }, + { + "start": 9172.2, + "end": 9179.22, + "probability": 0.996 + }, + { + "start": 9179.72, + "end": 9180.99, + "probability": 0.9872 + }, + { + "start": 9181.64, + "end": 9182.28, + "probability": 0.546 + }, + { + "start": 9182.48, + "end": 9184.08, + "probability": 0.9417 + }, + { + "start": 9199.34, + "end": 9200.34, + "probability": 0.5976 + }, + { + "start": 9200.5, + "end": 9201.62, + "probability": 0.8118 + }, + { + "start": 9202.5, + "end": 9208.6, + "probability": 0.9722 + }, + { + "start": 9208.9, + "end": 9213.26, + "probability": 0.8885 + }, + { + "start": 9213.34, + "end": 9213.96, + "probability": 0.7624 + }, + { + "start": 9214.02, + "end": 9215.04, + "probability": 0.8009 + }, + { + "start": 9216.42, + "end": 9216.84, + "probability": 0.653 + }, + { + "start": 9216.94, + "end": 9218.24, + "probability": 0.9678 + }, + { + "start": 9218.36, + "end": 9222.88, + "probability": 0.9861 + }, + { + "start": 9223.0, + "end": 9223.66, + "probability": 0.7224 + }, + { + "start": 9223.82, + "end": 9226.14, + "probability": 0.7498 + }, + { + "start": 9227.32, + "end": 9230.6, + "probability": 0.9877 + }, + { + "start": 9230.72, + "end": 9231.56, + "probability": 0.6842 + }, + { + "start": 9232.02, + "end": 9234.2, + "probability": 0.9976 + }, + { + "start": 9236.22, + "end": 9241.58, + "probability": 0.9968 + }, + { + "start": 9242.32, + "end": 9245.53, + "probability": 0.9951 + }, + { + "start": 9246.32, + "end": 9252.06, + "probability": 0.9805 + }, + { + "start": 9253.47, + "end": 9255.76, + "probability": 0.8673 + }, + { + "start": 9257.36, + "end": 9261.32, + "probability": 0.9912 + }, + { + "start": 9261.42, + "end": 9262.12, + "probability": 0.99 + }, + { + "start": 9262.4, + "end": 9264.03, + "probability": 0.9945 + }, + { + "start": 9264.8, + "end": 9268.42, + "probability": 0.9935 + }, + { + "start": 9269.16, + "end": 9271.4, + "probability": 0.9969 + }, + { + "start": 9271.78, + "end": 9272.36, + "probability": 0.7271 + }, + { + "start": 9272.44, + "end": 9273.1, + "probability": 0.8601 + }, + { + "start": 9273.22, + "end": 9275.49, + "probability": 0.9814 + }, + { + "start": 9275.7, + "end": 9278.1, + "probability": 0.9747 + }, + { + "start": 9278.72, + "end": 9279.68, + "probability": 0.9817 + }, + { + "start": 9279.72, + "end": 9281.65, + "probability": 0.9946 + }, + { + "start": 9282.02, + "end": 9284.54, + "probability": 0.9549 + }, + { + "start": 9285.12, + "end": 9287.9, + "probability": 0.945 + }, + { + "start": 9288.42, + "end": 9292.34, + "probability": 0.9936 + }, + { + "start": 9292.62, + "end": 9293.24, + "probability": 0.8114 + }, + { + "start": 9293.64, + "end": 9294.52, + "probability": 0.7078 + }, + { + "start": 9295.32, + "end": 9299.52, + "probability": 0.7669 + }, + { + "start": 9299.52, + "end": 9304.72, + "probability": 0.8963 + }, + { + "start": 9305.36, + "end": 9308.06, + "probability": 0.9295 + }, + { + "start": 9308.14, + "end": 9310.22, + "probability": 0.7971 + }, + { + "start": 9310.5, + "end": 9312.98, + "probability": 0.6982 + }, + { + "start": 9313.8, + "end": 9317.74, + "probability": 0.8811 + }, + { + "start": 9317.86, + "end": 9321.3, + "probability": 0.9825 + }, + { + "start": 9321.38, + "end": 9322.58, + "probability": 0.9919 + }, + { + "start": 9323.16, + "end": 9326.42, + "probability": 0.8232 + }, + { + "start": 9326.88, + "end": 9330.0, + "probability": 0.996 + }, + { + "start": 9330.0, + "end": 9332.64, + "probability": 0.9689 + }, + { + "start": 9333.82, + "end": 9334.74, + "probability": 0.837 + }, + { + "start": 9334.78, + "end": 9335.7, + "probability": 0.7336 + }, + { + "start": 9335.72, + "end": 9336.28, + "probability": 0.7331 + }, + { + "start": 9336.34, + "end": 9337.56, + "probability": 0.8042 + }, + { + "start": 9339.22, + "end": 9343.9, + "probability": 0.9493 + }, + { + "start": 9344.88, + "end": 9350.84, + "probability": 0.9888 + }, + { + "start": 9350.84, + "end": 9354.69, + "probability": 0.9182 + }, + { + "start": 9356.0, + "end": 9359.06, + "probability": 0.9946 + }, + { + "start": 9359.58, + "end": 9362.78, + "probability": 0.8354 + }, + { + "start": 9363.34, + "end": 9368.82, + "probability": 0.9944 + }, + { + "start": 9369.34, + "end": 9373.68, + "probability": 0.9842 + }, + { + "start": 9373.68, + "end": 9376.5, + "probability": 0.9954 + }, + { + "start": 9376.8, + "end": 9380.68, + "probability": 0.7015 + }, + { + "start": 9380.8, + "end": 9385.12, + "probability": 0.9659 + }, + { + "start": 9385.3, + "end": 9385.72, + "probability": 0.974 + }, + { + "start": 9386.2, + "end": 9386.62, + "probability": 0.9463 + }, + { + "start": 9387.08, + "end": 9387.76, + "probability": 0.9514 + }, + { + "start": 9388.06, + "end": 9389.2, + "probability": 0.9677 + }, + { + "start": 9389.46, + "end": 9391.43, + "probability": 0.9937 + }, + { + "start": 9391.88, + "end": 9393.01, + "probability": 0.9922 + }, + { + "start": 9393.54, + "end": 9394.45, + "probability": 0.9888 + }, + { + "start": 9394.98, + "end": 9396.17, + "probability": 0.9917 + }, + { + "start": 9396.8, + "end": 9397.84, + "probability": 0.7038 + }, + { + "start": 9398.24, + "end": 9399.74, + "probability": 0.9961 + }, + { + "start": 9400.2, + "end": 9402.14, + "probability": 0.9204 + }, + { + "start": 9402.58, + "end": 9402.96, + "probability": 0.7175 + }, + { + "start": 9403.06, + "end": 9404.18, + "probability": 0.7653 + }, + { + "start": 9404.44, + "end": 9408.52, + "probability": 0.9958 + }, + { + "start": 9409.18, + "end": 9411.98, + "probability": 0.9164 + }, + { + "start": 9414.3, + "end": 9415.86, + "probability": 0.9136 + }, + { + "start": 9428.56, + "end": 9429.76, + "probability": 0.7271 + }, + { + "start": 9430.94, + "end": 9431.57, + "probability": 0.0563 + }, + { + "start": 9432.64, + "end": 9439.0, + "probability": 0.9526 + }, + { + "start": 9439.58, + "end": 9440.6, + "probability": 0.8497 + }, + { + "start": 9441.34, + "end": 9445.3, + "probability": 0.9705 + }, + { + "start": 9445.96, + "end": 9450.62, + "probability": 0.9869 + }, + { + "start": 9452.12, + "end": 9453.02, + "probability": 0.6989 + }, + { + "start": 9453.9, + "end": 9461.56, + "probability": 0.8734 + }, + { + "start": 9462.36, + "end": 9465.26, + "probability": 0.9968 + }, + { + "start": 9465.9, + "end": 9467.76, + "probability": 0.9029 + }, + { + "start": 9468.5, + "end": 9473.52, + "probability": 0.9899 + }, + { + "start": 9474.68, + "end": 9475.98, + "probability": 0.7539 + }, + { + "start": 9476.7, + "end": 9478.6, + "probability": 0.9295 + }, + { + "start": 9479.66, + "end": 9483.48, + "probability": 0.9842 + }, + { + "start": 9483.48, + "end": 9487.36, + "probability": 0.9942 + }, + { + "start": 9488.5, + "end": 9490.44, + "probability": 0.846 + }, + { + "start": 9490.9, + "end": 9494.76, + "probability": 0.9925 + }, + { + "start": 9495.62, + "end": 9498.02, + "probability": 0.9741 + }, + { + "start": 9498.6, + "end": 9506.22, + "probability": 0.9838 + }, + { + "start": 9506.86, + "end": 9509.46, + "probability": 0.9826 + }, + { + "start": 9510.08, + "end": 9513.52, + "probability": 0.9982 + }, + { + "start": 9514.1, + "end": 9517.62, + "probability": 0.9362 + }, + { + "start": 9518.44, + "end": 9524.38, + "probability": 0.9934 + }, + { + "start": 9525.0, + "end": 9529.24, + "probability": 0.9962 + }, + { + "start": 9529.82, + "end": 9535.18, + "probability": 0.999 + }, + { + "start": 9535.88, + "end": 9537.3, + "probability": 0.9531 + }, + { + "start": 9538.02, + "end": 9538.84, + "probability": 0.8177 + }, + { + "start": 9539.6, + "end": 9541.46, + "probability": 0.8097 + }, + { + "start": 9542.14, + "end": 9546.22, + "probability": 0.9928 + }, + { + "start": 9546.22, + "end": 9550.04, + "probability": 0.9884 + }, + { + "start": 9550.56, + "end": 9557.98, + "probability": 0.9361 + }, + { + "start": 9558.72, + "end": 9559.34, + "probability": 0.505 + }, + { + "start": 9560.08, + "end": 9561.86, + "probability": 0.9579 + }, + { + "start": 9562.06, + "end": 9564.82, + "probability": 0.9894 + }, + { + "start": 9565.62, + "end": 9569.3, + "probability": 0.9273 + }, + { + "start": 9569.98, + "end": 9571.0, + "probability": 0.6595 + }, + { + "start": 9571.66, + "end": 9577.08, + "probability": 0.8289 + }, + { + "start": 9578.1, + "end": 9580.78, + "probability": 0.6706 + }, + { + "start": 9583.0, + "end": 9589.4, + "probability": 0.9831 + }, + { + "start": 9590.3, + "end": 9591.22, + "probability": 0.8749 + }, + { + "start": 9591.66, + "end": 9593.66, + "probability": 0.9817 + }, + { + "start": 9594.1, + "end": 9599.9, + "probability": 0.9958 + }, + { + "start": 9600.4, + "end": 9601.1, + "probability": 0.6574 + }, + { + "start": 9602.24, + "end": 9602.58, + "probability": 0.2954 + }, + { + "start": 9603.16, + "end": 9606.24, + "probability": 0.9049 + }, + { + "start": 9606.74, + "end": 9611.24, + "probability": 0.4617 + }, + { + "start": 9611.34, + "end": 9614.34, + "probability": 0.8328 + }, + { + "start": 9614.94, + "end": 9619.04, + "probability": 0.9507 + }, + { + "start": 9619.04, + "end": 9623.94, + "probability": 0.9964 + }, + { + "start": 9624.56, + "end": 9626.48, + "probability": 0.6086 + }, + { + "start": 9627.04, + "end": 9632.2, + "probability": 0.9974 + }, + { + "start": 9632.8, + "end": 9636.28, + "probability": 0.6918 + }, + { + "start": 9636.28, + "end": 9641.02, + "probability": 0.997 + }, + { + "start": 9641.6, + "end": 9642.86, + "probability": 0.752 + }, + { + "start": 9643.46, + "end": 9647.88, + "probability": 0.8404 + }, + { + "start": 9648.42, + "end": 9650.02, + "probability": 0.7336 + }, + { + "start": 9650.66, + "end": 9656.18, + "probability": 0.98 + }, + { + "start": 9656.34, + "end": 9658.58, + "probability": 0.9397 + }, + { + "start": 9659.24, + "end": 9663.24, + "probability": 0.9833 + }, + { + "start": 9663.36, + "end": 9664.48, + "probability": 0.5383 + }, + { + "start": 9664.6, + "end": 9664.86, + "probability": 0.7079 + }, + { + "start": 9664.9, + "end": 9667.56, + "probability": 0.9921 + }, + { + "start": 9667.6, + "end": 9669.9, + "probability": 0.7832 + }, + { + "start": 9670.12, + "end": 9671.0, + "probability": 0.561 + }, + { + "start": 9671.18, + "end": 9672.68, + "probability": 0.9294 + }, + { + "start": 9673.74, + "end": 9673.78, + "probability": 0.3667 + }, + { + "start": 9697.8, + "end": 9699.1, + "probability": 0.586 + }, + { + "start": 9699.74, + "end": 9700.82, + "probability": 0.7194 + }, + { + "start": 9701.8, + "end": 9704.44, + "probability": 0.8005 + }, + { + "start": 9705.46, + "end": 9710.2, + "probability": 0.9878 + }, + { + "start": 9711.22, + "end": 9713.18, + "probability": 0.8953 + }, + { + "start": 9714.52, + "end": 9717.36, + "probability": 0.9943 + }, + { + "start": 9717.44, + "end": 9717.72, + "probability": 0.869 + }, + { + "start": 9717.78, + "end": 9719.08, + "probability": 0.7847 + }, + { + "start": 9719.2, + "end": 9719.56, + "probability": 0.5456 + }, + { + "start": 9720.42, + "end": 9724.96, + "probability": 0.8107 + }, + { + "start": 9726.12, + "end": 9727.44, + "probability": 0.396 + }, + { + "start": 9727.46, + "end": 9727.56, + "probability": 0.4496 + }, + { + "start": 9727.56, + "end": 9728.88, + "probability": 0.9641 + }, + { + "start": 9729.48, + "end": 9729.6, + "probability": 0.5507 + }, + { + "start": 9730.48, + "end": 9731.54, + "probability": 0.833 + }, + { + "start": 9732.18, + "end": 9732.98, + "probability": 0.9758 + }, + { + "start": 9733.16, + "end": 9734.52, + "probability": 0.9773 + }, + { + "start": 9734.62, + "end": 9737.52, + "probability": 0.746 + }, + { + "start": 9737.6, + "end": 9738.58, + "probability": 0.7013 + }, + { + "start": 9738.58, + "end": 9740.16, + "probability": 0.9912 + }, + { + "start": 9741.1, + "end": 9741.58, + "probability": 0.9556 + }, + { + "start": 9741.72, + "end": 9746.24, + "probability": 0.9028 + }, + { + "start": 9746.24, + "end": 9752.16, + "probability": 0.9797 + }, + { + "start": 9752.9, + "end": 9759.14, + "probability": 0.9894 + }, + { + "start": 9763.18, + "end": 9765.2, + "probability": 0.979 + }, + { + "start": 9765.3, + "end": 9769.1, + "probability": 0.7036 + }, + { + "start": 9769.22, + "end": 9770.76, + "probability": 0.3558 + }, + { + "start": 9770.88, + "end": 9771.04, + "probability": 0.3565 + }, + { + "start": 9771.04, + "end": 9771.64, + "probability": 0.3036 + }, + { + "start": 9771.66, + "end": 9773.46, + "probability": 0.4596 + }, + { + "start": 9774.16, + "end": 9774.38, + "probability": 0.5563 + }, + { + "start": 9774.4, + "end": 9777.34, + "probability": 0.1064 + }, + { + "start": 9777.52, + "end": 9777.62, + "probability": 0.3571 + }, + { + "start": 9778.08, + "end": 9782.06, + "probability": 0.9386 + }, + { + "start": 9782.24, + "end": 9785.84, + "probability": 0.992 + }, + { + "start": 9785.84, + "end": 9790.82, + "probability": 0.9893 + }, + { + "start": 9791.06, + "end": 9797.8, + "probability": 0.9982 + }, + { + "start": 9797.96, + "end": 9800.58, + "probability": 0.9254 + }, + { + "start": 9800.78, + "end": 9803.24, + "probability": 0.9886 + }, + { + "start": 9803.72, + "end": 9805.84, + "probability": 0.9812 + }, + { + "start": 9805.96, + "end": 9810.68, + "probability": 0.9308 + }, + { + "start": 9811.34, + "end": 9813.66, + "probability": 0.7725 + }, + { + "start": 9814.28, + "end": 9816.8, + "probability": 0.991 + }, + { + "start": 9821.34, + "end": 9826.6, + "probability": 0.8462 + }, + { + "start": 9826.62, + "end": 9831.12, + "probability": 0.6768 + }, + { + "start": 9831.28, + "end": 9832.14, + "probability": 0.8487 + }, + { + "start": 9832.48, + "end": 9834.54, + "probability": 0.6172 + }, + { + "start": 9834.6, + "end": 9834.72, + "probability": 0.6299 + }, + { + "start": 9834.72, + "end": 9834.72, + "probability": 0.1705 + }, + { + "start": 9834.72, + "end": 9837.46, + "probability": 0.9261 + }, + { + "start": 9837.62, + "end": 9837.66, + "probability": 0.6615 + }, + { + "start": 9837.84, + "end": 9837.94, + "probability": 0.0695 + }, + { + "start": 9838.04, + "end": 9838.48, + "probability": 0.7305 + }, + { + "start": 9839.38, + "end": 9841.52, + "probability": 0.4058 + }, + { + "start": 9841.52, + "end": 9842.51, + "probability": 0.3573 + }, + { + "start": 9842.7, + "end": 9844.36, + "probability": 0.8582 + }, + { + "start": 9844.36, + "end": 9844.36, + "probability": 0.317 + }, + { + "start": 9844.36, + "end": 9845.54, + "probability": 0.9035 + }, + { + "start": 9845.6, + "end": 9846.08, + "probability": 0.9199 + }, + { + "start": 9846.1, + "end": 9847.74, + "probability": 0.9257 + }, + { + "start": 9848.06, + "end": 9851.94, + "probability": 0.6208 + }, + { + "start": 9852.12, + "end": 9853.66, + "probability": 0.6907 + }, + { + "start": 9854.96, + "end": 9857.6, + "probability": 0.7992 + }, + { + "start": 9857.6, + "end": 9857.6, + "probability": 0.615 + }, + { + "start": 9857.6, + "end": 9858.06, + "probability": 0.329 + }, + { + "start": 9858.34, + "end": 9861.98, + "probability": 0.7823 + }, + { + "start": 9861.98, + "end": 9867.46, + "probability": 0.8944 + }, + { + "start": 9867.72, + "end": 9867.72, + "probability": 0.261 + }, + { + "start": 9867.72, + "end": 9869.62, + "probability": 0.7214 + }, + { + "start": 9869.62, + "end": 9869.88, + "probability": 0.2683 + }, + { + "start": 9869.9, + "end": 9870.42, + "probability": 0.6401 + }, + { + "start": 9870.54, + "end": 9871.22, + "probability": 0.7016 + }, + { + "start": 9871.26, + "end": 9874.26, + "probability": 0.8311 + }, + { + "start": 9874.44, + "end": 9877.42, + "probability": 0.7412 + }, + { + "start": 9877.62, + "end": 9878.1, + "probability": 0.6167 + }, + { + "start": 9878.78, + "end": 9882.62, + "probability": 0.6476 + }, + { + "start": 9882.84, + "end": 9883.54, + "probability": 0.4804 + }, + { + "start": 9883.58, + "end": 9884.98, + "probability": 0.9476 + }, + { + "start": 9884.98, + "end": 9891.14, + "probability": 0.9962 + }, + { + "start": 9892.0, + "end": 9893.08, + "probability": 0.9208 + }, + { + "start": 9894.0, + "end": 9894.5, + "probability": 0.9731 + }, + { + "start": 9895.98, + "end": 9897.78, + "probability": 0.6737 + }, + { + "start": 9897.92, + "end": 9901.26, + "probability": 0.9687 + }, + { + "start": 9901.34, + "end": 9903.92, + "probability": 0.9907 + }, + { + "start": 9904.06, + "end": 9905.4, + "probability": 0.9854 + }, + { + "start": 9905.48, + "end": 9906.38, + "probability": 0.9735 + }, + { + "start": 9906.48, + "end": 9907.32, + "probability": 0.8429 + }, + { + "start": 9908.08, + "end": 9910.38, + "probability": 0.9759 + }, + { + "start": 9910.58, + "end": 9916.54, + "probability": 0.9724 + }, + { + "start": 9917.5, + "end": 9920.86, + "probability": 0.9889 + }, + { + "start": 9922.63, + "end": 9925.9, + "probability": 0.9979 + }, + { + "start": 9926.1, + "end": 9929.32, + "probability": 0.9122 + }, + { + "start": 9930.36, + "end": 9935.06, + "probability": 0.9966 + }, + { + "start": 9935.28, + "end": 9941.94, + "probability": 0.975 + }, + { + "start": 9942.6, + "end": 9943.82, + "probability": 0.7063 + }, + { + "start": 9944.76, + "end": 9946.04, + "probability": 0.7857 + }, + { + "start": 9946.7, + "end": 9951.34, + "probability": 0.9876 + }, + { + "start": 9951.44, + "end": 9954.08, + "probability": 0.9912 + }, + { + "start": 9954.42, + "end": 9956.44, + "probability": 0.8572 + }, + { + "start": 9957.02, + "end": 9962.06, + "probability": 0.7459 + }, + { + "start": 9962.06, + "end": 9963.76, + "probability": 0.9106 + }, + { + "start": 9963.8, + "end": 9963.8, + "probability": 0.3614 + }, + { + "start": 9963.8, + "end": 9964.68, + "probability": 0.8676 + }, + { + "start": 9964.88, + "end": 9966.1, + "probability": 0.998 + }, + { + "start": 9966.62, + "end": 9971.54, + "probability": 0.9783 + }, + { + "start": 9971.6, + "end": 9978.22, + "probability": 0.9722 + }, + { + "start": 9978.22, + "end": 9982.16, + "probability": 0.9961 + }, + { + "start": 9982.42, + "end": 9984.1, + "probability": 0.925 + }, + { + "start": 9984.56, + "end": 9985.36, + "probability": 0.792 + }, + { + "start": 9985.94, + "end": 9987.96, + "probability": 0.8637 + }, + { + "start": 9989.36, + "end": 9990.28, + "probability": 0.5228 + }, + { + "start": 9990.8, + "end": 9992.08, + "probability": 0.9395 + }, + { + "start": 9996.94, + "end": 10000.44, + "probability": 0.8729 + }, + { + "start": 10000.46, + "end": 10001.34, + "probability": 0.7273 + }, + { + "start": 10001.46, + "end": 10003.38, + "probability": 0.6691 + }, + { + "start": 10003.74, + "end": 10005.86, + "probability": 0.4772 + }, + { + "start": 10006.38, + "end": 10010.6, + "probability": 0.7227 + }, + { + "start": 10010.88, + "end": 10012.24, + "probability": 0.8476 + }, + { + "start": 10013.88, + "end": 10016.22, + "probability": 0.6569 + }, + { + "start": 10016.72, + "end": 10017.28, + "probability": 0.2043 + }, + { + "start": 10017.5, + "end": 10019.03, + "probability": 0.3956 + }, + { + "start": 10020.2, + "end": 10022.2, + "probability": 0.6267 + }, + { + "start": 10023.42, + "end": 10026.72, + "probability": 0.9563 + }, + { + "start": 10028.0, + "end": 10032.28, + "probability": 0.9938 + }, + { + "start": 10033.18, + "end": 10037.42, + "probability": 0.9988 + }, + { + "start": 10037.42, + "end": 10042.88, + "probability": 0.9979 + }, + { + "start": 10043.72, + "end": 10047.24, + "probability": 0.9827 + }, + { + "start": 10048.36, + "end": 10048.52, + "probability": 0.285 + }, + { + "start": 10048.58, + "end": 10054.32, + "probability": 0.9956 + }, + { + "start": 10054.32, + "end": 10059.04, + "probability": 0.9822 + }, + { + "start": 10060.44, + "end": 10062.66, + "probability": 0.9976 + }, + { + "start": 10062.66, + "end": 10065.68, + "probability": 0.9932 + }, + { + "start": 10066.32, + "end": 10070.03, + "probability": 0.9675 + }, + { + "start": 10070.42, + "end": 10072.94, + "probability": 0.9918 + }, + { + "start": 10073.78, + "end": 10077.64, + "probability": 0.9845 + }, + { + "start": 10078.16, + "end": 10081.08, + "probability": 0.9051 + }, + { + "start": 10081.6, + "end": 10084.9, + "probability": 0.9785 + }, + { + "start": 10085.78, + "end": 10089.66, + "probability": 0.9254 + }, + { + "start": 10091.18, + "end": 10094.52, + "probability": 0.9958 + }, + { + "start": 10094.52, + "end": 10097.14, + "probability": 0.9932 + }, + { + "start": 10098.04, + "end": 10102.38, + "probability": 0.9971 + }, + { + "start": 10102.96, + "end": 10104.9, + "probability": 0.9922 + }, + { + "start": 10105.76, + "end": 10107.46, + "probability": 0.9886 + }, + { + "start": 10107.56, + "end": 10108.18, + "probability": 0.5404 + }, + { + "start": 10108.32, + "end": 10112.88, + "probability": 0.9862 + }, + { + "start": 10114.14, + "end": 10115.29, + "probability": 0.6629 + }, + { + "start": 10116.02, + "end": 10121.34, + "probability": 0.9983 + }, + { + "start": 10121.86, + "end": 10127.7, + "probability": 0.9989 + }, + { + "start": 10128.52, + "end": 10132.22, + "probability": 0.9982 + }, + { + "start": 10132.22, + "end": 10135.12, + "probability": 0.9901 + }, + { + "start": 10135.86, + "end": 10137.96, + "probability": 0.9982 + }, + { + "start": 10138.5, + "end": 10140.08, + "probability": 0.997 + }, + { + "start": 10140.28, + "end": 10143.92, + "probability": 0.9884 + }, + { + "start": 10143.92, + "end": 10147.94, + "probability": 0.9968 + }, + { + "start": 10148.22, + "end": 10149.58, + "probability": 0.9888 + }, + { + "start": 10150.66, + "end": 10153.32, + "probability": 0.9658 + }, + { + "start": 10153.32, + "end": 10156.66, + "probability": 0.9474 + }, + { + "start": 10157.14, + "end": 10159.16, + "probability": 0.9925 + }, + { + "start": 10159.94, + "end": 10161.14, + "probability": 0.9564 + }, + { + "start": 10161.7, + "end": 10165.44, + "probability": 0.9979 + }, + { + "start": 10166.28, + "end": 10169.04, + "probability": 0.6067 + }, + { + "start": 10169.52, + "end": 10169.52, + "probability": 0.0113 + }, + { + "start": 10169.52, + "end": 10169.52, + "probability": 0.074 + }, + { + "start": 10169.52, + "end": 10172.28, + "probability": 0.9668 + }, + { + "start": 10172.76, + "end": 10174.14, + "probability": 0.9904 + }, + { + "start": 10175.86, + "end": 10180.14, + "probability": 0.9878 + }, + { + "start": 10181.08, + "end": 10186.58, + "probability": 0.9934 + }, + { + "start": 10186.58, + "end": 10191.78, + "probability": 0.9992 + }, + { + "start": 10192.5, + "end": 10196.0, + "probability": 0.7929 + }, + { + "start": 10197.5, + "end": 10201.14, + "probability": 0.9914 + }, + { + "start": 10201.98, + "end": 10204.08, + "probability": 0.9244 + }, + { + "start": 10204.58, + "end": 10207.5, + "probability": 0.9866 + }, + { + "start": 10207.8, + "end": 10208.06, + "probability": 0.7191 + }, + { + "start": 10208.98, + "end": 10209.62, + "probability": 0.5933 + }, + { + "start": 10209.78, + "end": 10211.68, + "probability": 0.6362 + }, + { + "start": 10212.06, + "end": 10213.46, + "probability": 0.6117 + }, + { + "start": 10214.8, + "end": 10216.8, + "probability": 0.6919 + }, + { + "start": 10217.36, + "end": 10217.84, + "probability": 0.813 + }, + { + "start": 10218.4, + "end": 10219.54, + "probability": 0.8593 + }, + { + "start": 10220.26, + "end": 10221.18, + "probability": 0.8843 + }, + { + "start": 10221.64, + "end": 10222.14, + "probability": 0.7318 + }, + { + "start": 10223.1, + "end": 10224.16, + "probability": 0.9644 + }, + { + "start": 10226.94, + "end": 10228.08, + "probability": 0.8145 + }, + { + "start": 10228.3, + "end": 10229.2, + "probability": 0.7736 + }, + { + "start": 10229.58, + "end": 10230.98, + "probability": 0.9416 + }, + { + "start": 10231.28, + "end": 10234.36, + "probability": 0.9836 + }, + { + "start": 10234.44, + "end": 10235.08, + "probability": 0.9252 + }, + { + "start": 10235.2, + "end": 10237.4, + "probability": 0.9963 + }, + { + "start": 10237.96, + "end": 10239.64, + "probability": 0.8104 + }, + { + "start": 10240.32, + "end": 10242.78, + "probability": 0.9987 + }, + { + "start": 10243.4, + "end": 10244.48, + "probability": 0.967 + }, + { + "start": 10244.58, + "end": 10245.52, + "probability": 0.2764 + }, + { + "start": 10245.52, + "end": 10248.48, + "probability": 0.9932 + }, + { + "start": 10248.96, + "end": 10250.08, + "probability": 0.9911 + }, + { + "start": 10250.58, + "end": 10252.58, + "probability": 0.9982 + }, + { + "start": 10252.58, + "end": 10255.76, + "probability": 0.9817 + }, + { + "start": 10256.14, + "end": 10259.66, + "probability": 0.9407 + }, + { + "start": 10259.86, + "end": 10260.6, + "probability": 0.4771 + }, + { + "start": 10260.6, + "end": 10261.44, + "probability": 0.608 + }, + { + "start": 10262.14, + "end": 10263.04, + "probability": 0.6939 + }, + { + "start": 10263.26, + "end": 10264.0, + "probability": 0.8604 + }, + { + "start": 10264.7, + "end": 10265.2, + "probability": 0.4026 + }, + { + "start": 10265.38, + "end": 10267.56, + "probability": 0.2295 + }, + { + "start": 10267.56, + "end": 10268.82, + "probability": 0.0177 + }, + { + "start": 10268.82, + "end": 10269.34, + "probability": 0.2282 + }, + { + "start": 10269.5, + "end": 10270.12, + "probability": 0.2895 + }, + { + "start": 10270.92, + "end": 10271.76, + "probability": 0.2647 + }, + { + "start": 10272.14, + "end": 10272.14, + "probability": 0.0388 + }, + { + "start": 10272.14, + "end": 10273.71, + "probability": 0.293 + }, + { + "start": 10274.32, + "end": 10274.32, + "probability": 0.0364 + }, + { + "start": 10274.32, + "end": 10275.06, + "probability": 0.2742 + }, + { + "start": 10275.62, + "end": 10277.22, + "probability": 0.1271 + }, + { + "start": 10278.12, + "end": 10278.52, + "probability": 0.1868 + }, + { + "start": 10278.96, + "end": 10279.76, + "probability": 0.0853 + }, + { + "start": 10279.76, + "end": 10280.06, + "probability": 0.1704 + }, + { + "start": 10280.32, + "end": 10282.2, + "probability": 0.615 + }, + { + "start": 10282.26, + "end": 10282.46, + "probability": 0.3341 + }, + { + "start": 10282.58, + "end": 10283.38, + "probability": 0.3813 + }, + { + "start": 10283.5, + "end": 10284.04, + "probability": 0.6849 + }, + { + "start": 10284.14, + "end": 10285.2, + "probability": 0.8426 + }, + { + "start": 10285.76, + "end": 10287.56, + "probability": 0.9623 + }, + { + "start": 10287.62, + "end": 10289.38, + "probability": 0.9259 + }, + { + "start": 10289.56, + "end": 10290.4, + "probability": 0.8469 + }, + { + "start": 10290.8, + "end": 10293.86, + "probability": 0.8619 + }, + { + "start": 10294.42, + "end": 10295.72, + "probability": 0.9782 + }, + { + "start": 10295.78, + "end": 10296.44, + "probability": 0.7508 + }, + { + "start": 10296.52, + "end": 10299.98, + "probability": 0.959 + }, + { + "start": 10300.08, + "end": 10300.9, + "probability": 0.8496 + }, + { + "start": 10301.0, + "end": 10301.64, + "probability": 0.8553 + }, + { + "start": 10301.78, + "end": 10302.88, + "probability": 0.9563 + }, + { + "start": 10303.78, + "end": 10307.56, + "probability": 0.9632 + }, + { + "start": 10308.32, + "end": 10309.72, + "probability": 0.8206 + }, + { + "start": 10310.18, + "end": 10311.49, + "probability": 0.9774 + }, + { + "start": 10312.1, + "end": 10314.48, + "probability": 0.892 + }, + { + "start": 10315.18, + "end": 10316.78, + "probability": 0.8993 + }, + { + "start": 10316.98, + "end": 10319.74, + "probability": 0.9768 + }, + { + "start": 10320.02, + "end": 10321.88, + "probability": 0.1923 + }, + { + "start": 10322.1, + "end": 10323.28, + "probability": 0.2102 + }, + { + "start": 10323.28, + "end": 10326.34, + "probability": 0.5262 + }, + { + "start": 10326.54, + "end": 10327.94, + "probability": 0.1156 + }, + { + "start": 10327.94, + "end": 10329.06, + "probability": 0.7787 + }, + { + "start": 10329.94, + "end": 10330.84, + "probability": 0.912 + }, + { + "start": 10330.94, + "end": 10334.04, + "probability": 0.9801 + }, + { + "start": 10334.04, + "end": 10334.34, + "probability": 0.0519 + }, + { + "start": 10334.34, + "end": 10334.34, + "probability": 0.489 + }, + { + "start": 10334.34, + "end": 10334.34, + "probability": 0.6953 + }, + { + "start": 10334.34, + "end": 10334.9, + "probability": 0.7148 + }, + { + "start": 10335.26, + "end": 10336.04, + "probability": 0.6946 + }, + { + "start": 10336.54, + "end": 10338.57, + "probability": 0.8894 + }, + { + "start": 10338.62, + "end": 10338.82, + "probability": 0.3416 + }, + { + "start": 10338.9, + "end": 10339.7, + "probability": 0.6657 + }, + { + "start": 10340.18, + "end": 10341.36, + "probability": 0.6962 + }, + { + "start": 10341.36, + "end": 10341.43, + "probability": 0.4592 + }, + { + "start": 10341.78, + "end": 10342.62, + "probability": 0.862 + }, + { + "start": 10342.76, + "end": 10343.98, + "probability": 0.3953 + }, + { + "start": 10344.1, + "end": 10346.12, + "probability": 0.7387 + }, + { + "start": 10347.74, + "end": 10348.68, + "probability": 0.0455 + }, + { + "start": 10348.78, + "end": 10350.68, + "probability": 0.104 + }, + { + "start": 10350.92, + "end": 10351.16, + "probability": 0.1423 + }, + { + "start": 10351.16, + "end": 10353.12, + "probability": 0.9712 + }, + { + "start": 10353.24, + "end": 10354.48, + "probability": 0.8625 + }, + { + "start": 10354.62, + "end": 10356.78, + "probability": 0.8139 + }, + { + "start": 10357.5, + "end": 10358.28, + "probability": 0.7906 + }, + { + "start": 10358.72, + "end": 10364.3, + "probability": 0.877 + }, + { + "start": 10364.56, + "end": 10364.56, + "probability": 0.0648 + }, + { + "start": 10364.56, + "end": 10364.94, + "probability": 0.2423 + }, + { + "start": 10364.94, + "end": 10365.24, + "probability": 0.5065 + }, + { + "start": 10365.3, + "end": 10369.16, + "probability": 0.709 + }, + { + "start": 10369.68, + "end": 10372.82, + "probability": 0.9932 + }, + { + "start": 10373.06, + "end": 10375.26, + "probability": 0.9766 + }, + { + "start": 10376.06, + "end": 10379.46, + "probability": 0.9388 + }, + { + "start": 10379.88, + "end": 10384.28, + "probability": 0.9665 + }, + { + "start": 10385.08, + "end": 10388.96, + "probability": 0.8825 + }, + { + "start": 10389.0, + "end": 10391.92, + "probability": 0.9919 + }, + { + "start": 10393.14, + "end": 10397.1, + "probability": 0.9985 + }, + { + "start": 10397.2, + "end": 10397.97, + "probability": 0.8855 + }, + { + "start": 10398.9, + "end": 10402.9, + "probability": 0.9983 + }, + { + "start": 10402.9, + "end": 10405.6, + "probability": 0.993 + }, + { + "start": 10406.02, + "end": 10410.3, + "probability": 0.9912 + }, + { + "start": 10410.3, + "end": 10414.26, + "probability": 0.9893 + }, + { + "start": 10415.08, + "end": 10419.56, + "probability": 0.8026 + }, + { + "start": 10420.06, + "end": 10423.62, + "probability": 0.9353 + }, + { + "start": 10424.48, + "end": 10427.44, + "probability": 0.9705 + }, + { + "start": 10427.6, + "end": 10428.48, + "probability": 0.8859 + }, + { + "start": 10428.56, + "end": 10432.72, + "probability": 0.9237 + }, + { + "start": 10433.52, + "end": 10435.3, + "probability": 0.9844 + }, + { + "start": 10435.66, + "end": 10436.34, + "probability": 0.8329 + }, + { + "start": 10436.76, + "end": 10439.06, + "probability": 0.6294 + }, + { + "start": 10440.52, + "end": 10441.48, + "probability": 0.7419 + }, + { + "start": 10442.08, + "end": 10445.94, + "probability": 0.7423 + }, + { + "start": 10446.02, + "end": 10447.82, + "probability": 0.95 + }, + { + "start": 10448.9, + "end": 10449.02, + "probability": 0.1453 + }, + { + "start": 10449.78, + "end": 10452.64, + "probability": 0.4263 + }, + { + "start": 10453.02, + "end": 10455.02, + "probability": 0.286 + }, + { + "start": 10469.26, + "end": 10470.72, + "probability": 0.6171 + }, + { + "start": 10471.44, + "end": 10474.58, + "probability": 0.9944 + }, + { + "start": 10474.64, + "end": 10475.62, + "probability": 0.9028 + }, + { + "start": 10475.82, + "end": 10476.55, + "probability": 0.9 + }, + { + "start": 10477.69, + "end": 10480.4, + "probability": 0.9971 + }, + { + "start": 10480.58, + "end": 10481.15, + "probability": 0.6712 + }, + { + "start": 10482.26, + "end": 10483.72, + "probability": 0.9395 + }, + { + "start": 10483.88, + "end": 10487.7, + "probability": 0.8921 + }, + { + "start": 10487.84, + "end": 10490.34, + "probability": 0.9908 + }, + { + "start": 10490.48, + "end": 10490.98, + "probability": 0.5327 + }, + { + "start": 10492.12, + "end": 10495.56, + "probability": 0.9975 + }, + { + "start": 10496.66, + "end": 10498.9, + "probability": 0.7462 + }, + { + "start": 10499.72, + "end": 10503.08, + "probability": 0.9843 + }, + { + "start": 10503.5, + "end": 10505.78, + "probability": 0.9904 + }, + { + "start": 10506.34, + "end": 10507.58, + "probability": 0.9941 + }, + { + "start": 10507.88, + "end": 10511.44, + "probability": 0.9411 + }, + { + "start": 10512.22, + "end": 10512.52, + "probability": 0.7101 + }, + { + "start": 10513.74, + "end": 10514.16, + "probability": 0.948 + }, + { + "start": 10515.08, + "end": 10515.32, + "probability": 0.2685 + }, + { + "start": 10515.32, + "end": 10517.98, + "probability": 0.809 + }, + { + "start": 10518.68, + "end": 10520.48, + "probability": 0.8338 + }, + { + "start": 10521.0, + "end": 10522.82, + "probability": 0.7268 + }, + { + "start": 10523.32, + "end": 10526.86, + "probability": 0.9863 + }, + { + "start": 10527.4, + "end": 10529.76, + "probability": 0.7625 + }, + { + "start": 10530.36, + "end": 10531.46, + "probability": 0.6094 + }, + { + "start": 10532.3, + "end": 10532.82, + "probability": 0.9255 + }, + { + "start": 10532.84, + "end": 10536.44, + "probability": 0.9683 + }, + { + "start": 10537.2, + "end": 10538.14, + "probability": 0.9104 + }, + { + "start": 10538.2, + "end": 10544.54, + "probability": 0.9911 + }, + { + "start": 10545.46, + "end": 10546.4, + "probability": 0.9618 + }, + { + "start": 10547.38, + "end": 10551.44, + "probability": 0.9971 + }, + { + "start": 10551.92, + "end": 10556.36, + "probability": 0.9769 + }, + { + "start": 10556.62, + "end": 10557.58, + "probability": 0.9759 + }, + { + "start": 10557.6, + "end": 10558.82, + "probability": 0.9834 + }, + { + "start": 10559.76, + "end": 10561.46, + "probability": 0.9537 + }, + { + "start": 10561.82, + "end": 10562.74, + "probability": 0.8115 + }, + { + "start": 10563.06, + "end": 10565.42, + "probability": 0.9744 + }, + { + "start": 10566.04, + "end": 10570.68, + "probability": 0.9873 + }, + { + "start": 10571.68, + "end": 10574.36, + "probability": 0.983 + }, + { + "start": 10575.06, + "end": 10575.46, + "probability": 0.4812 + }, + { + "start": 10576.04, + "end": 10579.84, + "probability": 0.999 + }, + { + "start": 10580.46, + "end": 10580.9, + "probability": 0.3734 + }, + { + "start": 10581.66, + "end": 10585.86, + "probability": 0.9969 + }, + { + "start": 10586.38, + "end": 10587.02, + "probability": 0.792 + }, + { + "start": 10587.74, + "end": 10588.24, + "probability": 0.8462 + }, + { + "start": 10589.18, + "end": 10594.4, + "probability": 0.9972 + }, + { + "start": 10594.96, + "end": 10597.78, + "probability": 0.4211 + }, + { + "start": 10598.74, + "end": 10601.88, + "probability": 0.8416 + }, + { + "start": 10602.4, + "end": 10605.24, + "probability": 0.9377 + }, + { + "start": 10606.0, + "end": 10609.96, + "probability": 0.9717 + }, + { + "start": 10610.5, + "end": 10612.08, + "probability": 0.8784 + }, + { + "start": 10612.72, + "end": 10613.82, + "probability": 0.7689 + }, + { + "start": 10615.06, + "end": 10615.84, + "probability": 0.6467 + }, + { + "start": 10616.48, + "end": 10617.26, + "probability": 0.9844 + }, + { + "start": 10617.72, + "end": 10621.24, + "probability": 0.9404 + }, + { + "start": 10621.24, + "end": 10622.14, + "probability": 0.686 + }, + { + "start": 10622.46, + "end": 10622.76, + "probability": 0.934 + }, + { + "start": 10623.66, + "end": 10628.74, + "probability": 0.9713 + }, + { + "start": 10629.34, + "end": 10630.18, + "probability": 0.7379 + }, + { + "start": 10630.76, + "end": 10632.2, + "probability": 0.9701 + }, + { + "start": 10632.88, + "end": 10634.88, + "probability": 0.9951 + }, + { + "start": 10635.86, + "end": 10637.2, + "probability": 0.9985 + }, + { + "start": 10638.2, + "end": 10639.24, + "probability": 0.978 + }, + { + "start": 10640.32, + "end": 10644.16, + "probability": 0.9992 + }, + { + "start": 10644.16, + "end": 10647.36, + "probability": 0.9985 + }, + { + "start": 10649.82, + "end": 10651.38, + "probability": 0.9994 + }, + { + "start": 10651.42, + "end": 10652.24, + "probability": 0.805 + }, + { + "start": 10652.72, + "end": 10655.32, + "probability": 0.9993 + }, + { + "start": 10655.86, + "end": 10656.72, + "probability": 0.9876 + }, + { + "start": 10658.1, + "end": 10658.38, + "probability": 0.3324 + }, + { + "start": 10660.02, + "end": 10661.18, + "probability": 0.7571 + }, + { + "start": 10661.72, + "end": 10663.18, + "probability": 0.9467 + }, + { + "start": 10669.02, + "end": 10670.58, + "probability": 0.2265 + }, + { + "start": 10670.58, + "end": 10672.04, + "probability": 0.5685 + }, + { + "start": 10672.04, + "end": 10672.77, + "probability": 0.5007 + }, + { + "start": 10674.58, + "end": 10677.14, + "probability": 0.7731 + }, + { + "start": 10678.44, + "end": 10680.66, + "probability": 0.9344 + }, + { + "start": 10681.9, + "end": 10684.44, + "probability": 0.9054 + }, + { + "start": 10685.17, + "end": 10688.84, + "probability": 0.9951 + }, + { + "start": 10688.92, + "end": 10690.52, + "probability": 0.8813 + }, + { + "start": 10690.52, + "end": 10690.72, + "probability": 0.8333 + }, + { + "start": 10690.72, + "end": 10693.9, + "probability": 0.7606 + }, + { + "start": 10693.9, + "end": 10694.73, + "probability": 0.9971 + }, + { + "start": 10696.64, + "end": 10697.44, + "probability": 0.8877 + }, + { + "start": 10697.52, + "end": 10699.55, + "probability": 0.9297 + }, + { + "start": 10700.02, + "end": 10700.51, + "probability": 0.5241 + }, + { + "start": 10700.76, + "end": 10701.06, + "probability": 0.8899 + }, + { + "start": 10701.2, + "end": 10705.12, + "probability": 0.9978 + }, + { + "start": 10705.8, + "end": 10708.08, + "probability": 0.9979 + }, + { + "start": 10708.08, + "end": 10710.92, + "probability": 0.9724 + }, + { + "start": 10711.7, + "end": 10713.68, + "probability": 0.8837 + }, + { + "start": 10714.28, + "end": 10718.1, + "probability": 0.9907 + }, + { + "start": 10719.48, + "end": 10721.46, + "probability": 0.9258 + }, + { + "start": 10722.04, + "end": 10724.04, + "probability": 0.8892 + }, + { + "start": 10725.36, + "end": 10732.2, + "probability": 0.9663 + }, + { + "start": 10732.52, + "end": 10733.89, + "probability": 0.9976 + }, + { + "start": 10734.0, + "end": 10734.22, + "probability": 0.5884 + }, + { + "start": 10735.0, + "end": 10735.42, + "probability": 0.3564 + }, + { + "start": 10735.62, + "end": 10736.56, + "probability": 0.387 + }, + { + "start": 10736.56, + "end": 10736.98, + "probability": 0.7065 + }, + { + "start": 10737.16, + "end": 10741.04, + "probability": 0.866 + }, + { + "start": 10741.16, + "end": 10741.26, + "probability": 0.2984 + }, + { + "start": 10741.26, + "end": 10741.76, + "probability": 0.1108 + }, + { + "start": 10741.76, + "end": 10743.56, + "probability": 0.5646 + }, + { + "start": 10743.64, + "end": 10744.46, + "probability": 0.9121 + }, + { + "start": 10745.06, + "end": 10747.61, + "probability": 0.7253 + }, + { + "start": 10748.34, + "end": 10750.34, + "probability": 0.9143 + }, + { + "start": 10750.96, + "end": 10755.08, + "probability": 0.9458 + }, + { + "start": 10755.8, + "end": 10757.64, + "probability": 0.7831 + }, + { + "start": 10757.8, + "end": 10763.08, + "probability": 0.6507 + }, + { + "start": 10763.3, + "end": 10766.54, + "probability": 0.8611 + }, + { + "start": 10766.68, + "end": 10768.3, + "probability": 0.7498 + }, + { + "start": 10768.54, + "end": 10769.2, + "probability": 0.9243 + }, + { + "start": 10769.96, + "end": 10772.58, + "probability": 0.9946 + }, + { + "start": 10773.16, + "end": 10773.5, + "probability": 0.0279 + }, + { + "start": 10773.92, + "end": 10774.86, + "probability": 0.3582 + }, + { + "start": 10774.86, + "end": 10778.49, + "probability": 0.982 + }, + { + "start": 10779.06, + "end": 10779.94, + "probability": 0.9215 + }, + { + "start": 10780.08, + "end": 10783.24, + "probability": 0.9746 + }, + { + "start": 10783.88, + "end": 10786.62, + "probability": 0.9814 + }, + { + "start": 10787.84, + "end": 10789.84, + "probability": 0.9738 + }, + { + "start": 10790.28, + "end": 10793.24, + "probability": 0.9895 + }, + { + "start": 10793.58, + "end": 10797.3, + "probability": 0.9912 + }, + { + "start": 10797.46, + "end": 10800.92, + "probability": 0.9862 + }, + { + "start": 10801.28, + "end": 10802.9, + "probability": 0.6931 + }, + { + "start": 10803.12, + "end": 10805.82, + "probability": 0.818 + }, + { + "start": 10806.22, + "end": 10810.4, + "probability": 0.9948 + }, + { + "start": 10812.44, + "end": 10814.34, + "probability": 0.979 + }, + { + "start": 10814.7, + "end": 10816.06, + "probability": 0.9443 + }, + { + "start": 10816.18, + "end": 10817.06, + "probability": 0.6581 + }, + { + "start": 10817.48, + "end": 10818.6, + "probability": 0.8693 + }, + { + "start": 10819.04, + "end": 10821.68, + "probability": 0.9199 + }, + { + "start": 10821.82, + "end": 10822.18, + "probability": 0.352 + }, + { + "start": 10822.26, + "end": 10823.42, + "probability": 0.9154 + }, + { + "start": 10823.76, + "end": 10824.12, + "probability": 0.9758 + }, + { + "start": 10824.66, + "end": 10825.78, + "probability": 0.4504 + }, + { + "start": 10825.9, + "end": 10827.54, + "probability": 0.9336 + }, + { + "start": 10827.86, + "end": 10828.64, + "probability": 0.9333 + }, + { + "start": 10828.98, + "end": 10829.64, + "probability": 0.8034 + }, + { + "start": 10830.08, + "end": 10834.48, + "probability": 0.9538 + }, + { + "start": 10835.24, + "end": 10836.6, + "probability": 0.7375 + }, + { + "start": 10836.62, + "end": 10840.94, + "probability": 0.986 + }, + { + "start": 10841.44, + "end": 10842.14, + "probability": 0.8409 + }, + { + "start": 10842.44, + "end": 10845.06, + "probability": 0.9899 + }, + { + "start": 10845.54, + "end": 10848.8, + "probability": 0.9875 + }, + { + "start": 10850.2, + "end": 10851.58, + "probability": 0.5462 + }, + { + "start": 10852.08, + "end": 10852.4, + "probability": 0.3992 + }, + { + "start": 10852.4, + "end": 10852.72, + "probability": 0.5257 + }, + { + "start": 10854.08, + "end": 10854.78, + "probability": 0.2099 + }, + { + "start": 10855.24, + "end": 10855.66, + "probability": 0.2702 + }, + { + "start": 10855.82, + "end": 10856.22, + "probability": 0.7434 + }, + { + "start": 10856.24, + "end": 10856.78, + "probability": 0.6935 + }, + { + "start": 10856.9, + "end": 10857.4, + "probability": 0.4494 + }, + { + "start": 10857.44, + "end": 10857.93, + "probability": 0.7927 + }, + { + "start": 10858.08, + "end": 10859.8, + "probability": 0.6437 + }, + { + "start": 10859.88, + "end": 10860.52, + "probability": 0.5141 + }, + { + "start": 10860.56, + "end": 10861.69, + "probability": 0.3585 + }, + { + "start": 10861.94, + "end": 10863.96, + "probability": 0.5752 + }, + { + "start": 10864.0, + "end": 10864.2, + "probability": 0.1768 + }, + { + "start": 10864.2, + "end": 10864.66, + "probability": 0.5358 + }, + { + "start": 10865.0, + "end": 10865.66, + "probability": 0.1707 + }, + { + "start": 10865.66, + "end": 10865.66, + "probability": 0.0309 + }, + { + "start": 10865.66, + "end": 10867.44, + "probability": 0.5811 + }, + { + "start": 10867.54, + "end": 10868.9, + "probability": 0.1914 + }, + { + "start": 10868.92, + "end": 10869.02, + "probability": 0.1706 + }, + { + "start": 10869.02, + "end": 10870.4, + "probability": 0.0477 + }, + { + "start": 10870.5, + "end": 10872.1, + "probability": 0.3843 + }, + { + "start": 10872.16, + "end": 10873.2, + "probability": 0.3076 + }, + { + "start": 10873.2, + "end": 10875.65, + "probability": 0.7871 + }, + { + "start": 10875.9, + "end": 10876.52, + "probability": 0.7583 + }, + { + "start": 10876.58, + "end": 10876.58, + "probability": 0.3277 + }, + { + "start": 10876.58, + "end": 10877.84, + "probability": 0.9353 + }, + { + "start": 10877.9, + "end": 10879.32, + "probability": 0.9703 + }, + { + "start": 10879.34, + "end": 10879.5, + "probability": 0.7978 + }, + { + "start": 10879.56, + "end": 10880.38, + "probability": 0.8511 + }, + { + "start": 10880.54, + "end": 10882.94, + "probability": 0.9695 + }, + { + "start": 10883.88, + "end": 10884.22, + "probability": 0.0875 + }, + { + "start": 10884.22, + "end": 10884.22, + "probability": 0.457 + }, + { + "start": 10884.5, + "end": 10885.88, + "probability": 0.3352 + }, + { + "start": 10885.98, + "end": 10887.62, + "probability": 0.9266 + }, + { + "start": 10887.64, + "end": 10889.02, + "probability": 0.4721 + }, + { + "start": 10889.32, + "end": 10889.32, + "probability": 0.1962 + }, + { + "start": 10889.58, + "end": 10891.92, + "probability": 0.9524 + }, + { + "start": 10892.02, + "end": 10895.82, + "probability": 0.9585 + }, + { + "start": 10896.24, + "end": 10898.28, + "probability": 0.9834 + }, + { + "start": 10898.6, + "end": 10899.18, + "probability": 0.5991 + }, + { + "start": 10899.36, + "end": 10899.86, + "probability": 0.5209 + }, + { + "start": 10899.96, + "end": 10902.64, + "probability": 0.8655 + }, + { + "start": 10902.88, + "end": 10904.52, + "probability": 0.9914 + }, + { + "start": 10905.02, + "end": 10906.38, + "probability": 0.9237 + }, + { + "start": 10906.46, + "end": 10910.42, + "probability": 0.797 + }, + { + "start": 10910.8, + "end": 10915.62, + "probability": 0.9969 + }, + { + "start": 10915.62, + "end": 10920.84, + "probability": 0.9889 + }, + { + "start": 10921.02, + "end": 10922.08, + "probability": 0.7686 + }, + { + "start": 10922.3, + "end": 10926.12, + "probability": 0.9951 + }, + { + "start": 10926.18, + "end": 10928.0, + "probability": 0.8553 + }, + { + "start": 10928.5, + "end": 10930.38, + "probability": 0.9852 + }, + { + "start": 10930.5, + "end": 10931.06, + "probability": 0.877 + }, + { + "start": 10931.68, + "end": 10933.16, + "probability": 0.9307 + }, + { + "start": 10933.5, + "end": 10934.08, + "probability": 0.7944 + }, + { + "start": 10934.6, + "end": 10935.52, + "probability": 0.6971 + }, + { + "start": 10935.74, + "end": 10938.0, + "probability": 0.949 + }, + { + "start": 10939.54, + "end": 10940.32, + "probability": 0.6606 + }, + { + "start": 10940.54, + "end": 10941.66, + "probability": 0.6055 + }, + { + "start": 10960.34, + "end": 10962.06, + "probability": 0.8667 + }, + { + "start": 10963.32, + "end": 10963.86, + "probability": 0.8441 + }, + { + "start": 10964.7, + "end": 10966.58, + "probability": 0.892 + }, + { + "start": 10967.22, + "end": 10971.38, + "probability": 0.9951 + }, + { + "start": 10971.38, + "end": 10975.46, + "probability": 0.9954 + }, + { + "start": 10976.24, + "end": 10977.2, + "probability": 0.7467 + }, + { + "start": 10977.74, + "end": 10980.56, + "probability": 0.9741 + }, + { + "start": 10981.32, + "end": 10982.68, + "probability": 0.9536 + }, + { + "start": 10983.22, + "end": 10988.46, + "probability": 0.9915 + }, + { + "start": 10989.12, + "end": 10996.04, + "probability": 0.9702 + }, + { + "start": 10997.0, + "end": 11003.24, + "probability": 0.9802 + }, + { + "start": 11003.88, + "end": 11008.62, + "probability": 0.9819 + }, + { + "start": 11009.3, + "end": 11011.68, + "probability": 0.9871 + }, + { + "start": 11012.64, + "end": 11015.06, + "probability": 0.9145 + }, + { + "start": 11015.7, + "end": 11016.94, + "probability": 0.925 + }, + { + "start": 11017.78, + "end": 11018.98, + "probability": 0.9771 + }, + { + "start": 11020.88, + "end": 11022.45, + "probability": 0.7656 + }, + { + "start": 11023.4, + "end": 11025.86, + "probability": 0.8002 + }, + { + "start": 11026.46, + "end": 11029.28, + "probability": 0.7944 + }, + { + "start": 11030.54, + "end": 11033.72, + "probability": 0.9919 + }, + { + "start": 11034.68, + "end": 11039.44, + "probability": 0.9912 + }, + { + "start": 11040.26, + "end": 11043.48, + "probability": 0.9014 + }, + { + "start": 11043.82, + "end": 11047.9, + "probability": 0.9609 + }, + { + "start": 11048.36, + "end": 11052.1, + "probability": 0.9937 + }, + { + "start": 11053.24, + "end": 11057.42, + "probability": 0.9677 + }, + { + "start": 11057.42, + "end": 11061.46, + "probability": 0.9907 + }, + { + "start": 11062.1, + "end": 11063.64, + "probability": 0.8234 + }, + { + "start": 11064.28, + "end": 11069.86, + "probability": 0.9948 + }, + { + "start": 11071.02, + "end": 11074.8, + "probability": 0.9969 + }, + { + "start": 11074.8, + "end": 11079.16, + "probability": 0.9977 + }, + { + "start": 11079.88, + "end": 11085.4, + "probability": 0.9981 + }, + { + "start": 11086.46, + "end": 11091.24, + "probability": 0.9913 + }, + { + "start": 11092.24, + "end": 11093.22, + "probability": 0.7968 + }, + { + "start": 11093.92, + "end": 11094.94, + "probability": 0.802 + }, + { + "start": 11095.54, + "end": 11097.96, + "probability": 0.9393 + }, + { + "start": 11098.86, + "end": 11101.6, + "probability": 0.9735 + }, + { + "start": 11102.16, + "end": 11109.16, + "probability": 0.9412 + }, + { + "start": 11110.04, + "end": 11112.38, + "probability": 0.8875 + }, + { + "start": 11112.96, + "end": 11113.84, + "probability": 0.9444 + }, + { + "start": 11113.94, + "end": 11114.86, + "probability": 0.9351 + }, + { + "start": 11114.98, + "end": 11116.02, + "probability": 0.949 + }, + { + "start": 11116.08, + "end": 11117.02, + "probability": 0.7898 + }, + { + "start": 11117.7, + "end": 11119.38, + "probability": 0.9623 + }, + { + "start": 11120.0, + "end": 11123.82, + "probability": 0.9917 + }, + { + "start": 11124.56, + "end": 11128.2, + "probability": 0.9797 + }, + { + "start": 11129.04, + "end": 11131.08, + "probability": 0.9932 + }, + { + "start": 11131.86, + "end": 11133.48, + "probability": 0.7214 + }, + { + "start": 11134.54, + "end": 11137.6, + "probability": 0.9717 + }, + { + "start": 11138.38, + "end": 11141.16, + "probability": 0.957 + }, + { + "start": 11141.94, + "end": 11145.15, + "probability": 0.79 + }, + { + "start": 11146.06, + "end": 11149.32, + "probability": 0.8045 + }, + { + "start": 11149.6, + "end": 11156.14, + "probability": 0.905 + }, + { + "start": 11157.4, + "end": 11163.02, + "probability": 0.9883 + }, + { + "start": 11163.74, + "end": 11168.5, + "probability": 0.9888 + }, + { + "start": 11168.88, + "end": 11169.12, + "probability": 0.8702 + }, + { + "start": 11169.58, + "end": 11170.26, + "probability": 0.642 + }, + { + "start": 11170.62, + "end": 11173.38, + "probability": 0.6716 + }, + { + "start": 11174.22, + "end": 11175.54, + "probability": 0.6225 + }, + { + "start": 11176.34, + "end": 11177.96, + "probability": 0.9264 + }, + { + "start": 11179.98, + "end": 11181.0, + "probability": 0.7969 + }, + { + "start": 11181.62, + "end": 11183.18, + "probability": 0.984 + }, + { + "start": 11184.4, + "end": 11186.88, + "probability": 0.9177 + }, + { + "start": 11189.12, + "end": 11191.64, + "probability": 0.853 + }, + { + "start": 11192.44, + "end": 11194.12, + "probability": 0.7754 + }, + { + "start": 11195.02, + "end": 11197.2, + "probability": 0.8829 + }, + { + "start": 11197.94, + "end": 11199.02, + "probability": 0.8255 + }, + { + "start": 11199.76, + "end": 11201.95, + "probability": 0.7843 + }, + { + "start": 11202.94, + "end": 11206.02, + "probability": 0.9931 + }, + { + "start": 11206.74, + "end": 11207.86, + "probability": 0.9698 + }, + { + "start": 11209.84, + "end": 11211.3, + "probability": 0.9932 + }, + { + "start": 11212.26, + "end": 11212.78, + "probability": 0.2684 + }, + { + "start": 11212.82, + "end": 11214.92, + "probability": 0.6812 + }, + { + "start": 11215.68, + "end": 11218.56, + "probability": 0.026 + }, + { + "start": 11219.1, + "end": 11220.04, + "probability": 0.0451 + }, + { + "start": 11226.92, + "end": 11230.84, + "probability": 0.7883 + }, + { + "start": 11232.26, + "end": 11233.62, + "probability": 0.9045 + }, + { + "start": 11235.32, + "end": 11238.78, + "probability": 0.943 + }, + { + "start": 11240.4, + "end": 11242.8, + "probability": 0.9705 + }, + { + "start": 11243.8, + "end": 11244.66, + "probability": 0.8042 + }, + { + "start": 11244.78, + "end": 11245.2, + "probability": 0.8364 + }, + { + "start": 11245.38, + "end": 11247.26, + "probability": 0.9976 + }, + { + "start": 11251.32, + "end": 11256.28, + "probability": 0.9976 + }, + { + "start": 11256.94, + "end": 11258.31, + "probability": 0.9946 + }, + { + "start": 11261.48, + "end": 11262.91, + "probability": 0.9771 + }, + { + "start": 11265.08, + "end": 11266.3, + "probability": 0.73 + }, + { + "start": 11267.56, + "end": 11269.02, + "probability": 0.3599 + }, + { + "start": 11269.08, + "end": 11269.34, + "probability": 0.416 + }, + { + "start": 11269.64, + "end": 11271.78, + "probability": 0.7763 + }, + { + "start": 11271.9, + "end": 11273.62, + "probability": 0.6095 + }, + { + "start": 11274.16, + "end": 11275.9, + "probability": 0.8332 + }, + { + "start": 11275.94, + "end": 11277.72, + "probability": 0.9183 + }, + { + "start": 11278.32, + "end": 11279.2, + "probability": 0.6587 + }, + { + "start": 11279.36, + "end": 11280.08, + "probability": 0.9596 + }, + { + "start": 11280.18, + "end": 11280.84, + "probability": 0.5975 + }, + { + "start": 11281.3, + "end": 11282.62, + "probability": 0.9854 + }, + { + "start": 11283.12, + "end": 11283.92, + "probability": 0.3492 + }, + { + "start": 11283.96, + "end": 11285.02, + "probability": 0.8561 + }, + { + "start": 11285.5, + "end": 11287.34, + "probability": 0.987 + }, + { + "start": 11287.38, + "end": 11288.04, + "probability": 0.8212 + }, + { + "start": 11288.22, + "end": 11291.22, + "probability": 0.9159 + }, + { + "start": 11291.52, + "end": 11292.02, + "probability": 0.3704 + }, + { + "start": 11292.2, + "end": 11294.09, + "probability": 0.9861 + }, + { + "start": 11294.76, + "end": 11295.19, + "probability": 0.7969 + }, + { + "start": 11295.26, + "end": 11295.6, + "probability": 0.5386 + }, + { + "start": 11296.07, + "end": 11297.4, + "probability": 0.1343 + }, + { + "start": 11297.46, + "end": 11297.78, + "probability": 0.0697 + }, + { + "start": 11297.82, + "end": 11298.32, + "probability": 0.0632 + }, + { + "start": 11298.72, + "end": 11300.97, + "probability": 0.9844 + }, + { + "start": 11301.48, + "end": 11302.52, + "probability": 0.2642 + }, + { + "start": 11302.82, + "end": 11303.14, + "probability": 0.317 + }, + { + "start": 11303.24, + "end": 11305.48, + "probability": 0.9315 + }, + { + "start": 11305.68, + "end": 11305.96, + "probability": 0.279 + }, + { + "start": 11306.06, + "end": 11308.0, + "probability": 0.5973 + }, + { + "start": 11308.1, + "end": 11309.26, + "probability": 0.9963 + }, + { + "start": 11309.28, + "end": 11310.26, + "probability": 0.11 + }, + { + "start": 11310.48, + "end": 11310.78, + "probability": 0.2104 + }, + { + "start": 11310.78, + "end": 11312.22, + "probability": 0.9062 + }, + { + "start": 11312.78, + "end": 11315.66, + "probability": 0.9392 + }, + { + "start": 11315.78, + "end": 11316.28, + "probability": 0.3731 + }, + { + "start": 11316.4, + "end": 11317.88, + "probability": 0.9376 + }, + { + "start": 11317.98, + "end": 11318.74, + "probability": 0.5182 + }, + { + "start": 11318.8, + "end": 11321.82, + "probability": 0.9529 + }, + { + "start": 11322.54, + "end": 11325.5, + "probability": 0.8599 + }, + { + "start": 11325.94, + "end": 11327.7, + "probability": 0.5389 + }, + { + "start": 11327.7, + "end": 11327.7, + "probability": 0.0175 + }, + { + "start": 11328.22, + "end": 11333.52, + "probability": 0.1833 + }, + { + "start": 11333.8, + "end": 11333.94, + "probability": 0.0098 + }, + { + "start": 11333.94, + "end": 11333.94, + "probability": 0.028 + }, + { + "start": 11333.94, + "end": 11333.94, + "probability": 0.2752 + }, + { + "start": 11333.94, + "end": 11333.94, + "probability": 0.1495 + }, + { + "start": 11333.94, + "end": 11333.94, + "probability": 0.0453 + }, + { + "start": 11333.94, + "end": 11333.94, + "probability": 0.2829 + }, + { + "start": 11333.94, + "end": 11335.98, + "probability": 0.4478 + }, + { + "start": 11336.16, + "end": 11337.06, + "probability": 0.5395 + }, + { + "start": 11337.1, + "end": 11337.62, + "probability": 0.0303 + }, + { + "start": 11338.04, + "end": 11338.1, + "probability": 0.0393 + }, + { + "start": 11338.1, + "end": 11342.02, + "probability": 0.8491 + }, + { + "start": 11342.02, + "end": 11342.06, + "probability": 0.1068 + }, + { + "start": 11342.06, + "end": 11344.5, + "probability": 0.8287 + }, + { + "start": 11344.92, + "end": 11346.32, + "probability": 0.8848 + }, + { + "start": 11346.48, + "end": 11347.7, + "probability": 0.9823 + }, + { + "start": 11347.74, + "end": 11352.7, + "probability": 0.8617 + }, + { + "start": 11352.9, + "end": 11354.04, + "probability": 0.5436 + }, + { + "start": 11354.24, + "end": 11354.94, + "probability": 0.7233 + }, + { + "start": 11355.1, + "end": 11355.61, + "probability": 0.7496 + }, + { + "start": 11356.24, + "end": 11356.92, + "probability": 0.6163 + }, + { + "start": 11357.5, + "end": 11359.36, + "probability": 0.5157 + }, + { + "start": 11359.44, + "end": 11360.1, + "probability": 0.6489 + }, + { + "start": 11360.26, + "end": 11364.2, + "probability": 0.8538 + }, + { + "start": 11364.2, + "end": 11367.42, + "probability": 0.9615 + }, + { + "start": 11367.66, + "end": 11370.52, + "probability": 0.7826 + }, + { + "start": 11370.88, + "end": 11372.18, + "probability": 0.5549 + }, + { + "start": 11372.54, + "end": 11374.7, + "probability": 0.8173 + }, + { + "start": 11374.84, + "end": 11377.74, + "probability": 0.5671 + }, + { + "start": 11377.9, + "end": 11378.18, + "probability": 0.5191 + }, + { + "start": 11378.3, + "end": 11379.22, + "probability": 0.7832 + }, + { + "start": 11379.3, + "end": 11379.92, + "probability": 0.6089 + }, + { + "start": 11380.1, + "end": 11381.4, + "probability": 0.5083 + }, + { + "start": 11381.52, + "end": 11383.7, + "probability": 0.4044 + }, + { + "start": 11383.82, + "end": 11385.46, + "probability": 0.7885 + }, + { + "start": 11386.26, + "end": 11388.68, + "probability": 0.814 + }, + { + "start": 11388.94, + "end": 11391.2, + "probability": 0.9708 + }, + { + "start": 11391.58, + "end": 11392.8, + "probability": 0.3232 + }, + { + "start": 11392.8, + "end": 11394.0, + "probability": 0.2964 + }, + { + "start": 11394.0, + "end": 11396.6, + "probability": 0.7071 + }, + { + "start": 11396.98, + "end": 11400.78, + "probability": 0.6917 + }, + { + "start": 11401.04, + "end": 11401.58, + "probability": 0.3576 + }, + { + "start": 11401.58, + "end": 11403.64, + "probability": 0.4516 + }, + { + "start": 11403.7, + "end": 11404.0, + "probability": 0.7455 + }, + { + "start": 11404.04, + "end": 11404.56, + "probability": 0.1294 + }, + { + "start": 11404.68, + "end": 11406.74, + "probability": 0.2689 + }, + { + "start": 11406.92, + "end": 11407.8, + "probability": 0.0767 + }, + { + "start": 11407.86, + "end": 11408.84, + "probability": 0.2564 + }, + { + "start": 11409.08, + "end": 11410.36, + "probability": 0.926 + }, + { + "start": 11411.14, + "end": 11414.22, + "probability": 0.5669 + }, + { + "start": 11415.0, + "end": 11417.6, + "probability": 0.9634 + }, + { + "start": 11418.23, + "end": 11423.34, + "probability": 0.9272 + }, + { + "start": 11423.52, + "end": 11424.16, + "probability": 0.6364 + }, + { + "start": 11425.68, + "end": 11426.9, + "probability": 0.998 + }, + { + "start": 11427.92, + "end": 11429.76, + "probability": 0.9993 + }, + { + "start": 11430.44, + "end": 11430.86, + "probability": 0.9638 + }, + { + "start": 11432.18, + "end": 11433.32, + "probability": 0.6382 + }, + { + "start": 11433.32, + "end": 11433.93, + "probability": 0.9862 + }, + { + "start": 11434.18, + "end": 11435.16, + "probability": 0.792 + }, + { + "start": 11435.96, + "end": 11437.09, + "probability": 0.9546 + }, + { + "start": 11437.46, + "end": 11438.44, + "probability": 0.9673 + }, + { + "start": 11440.4, + "end": 11441.38, + "probability": 0.979 + }, + { + "start": 11441.58, + "end": 11443.06, + "probability": 0.9287 + }, + { + "start": 11443.28, + "end": 11444.34, + "probability": 0.7232 + }, + { + "start": 11445.32, + "end": 11445.9, + "probability": 0.8713 + }, + { + "start": 11446.14, + "end": 11448.72, + "probability": 0.9945 + }, + { + "start": 11448.94, + "end": 11450.86, + "probability": 0.9894 + }, + { + "start": 11451.0, + "end": 11452.88, + "probability": 0.9955 + }, + { + "start": 11454.34, + "end": 11456.76, + "probability": 0.979 + }, + { + "start": 11456.94, + "end": 11459.0, + "probability": 0.9832 + }, + { + "start": 11461.2, + "end": 11464.28, + "probability": 0.7139 + }, + { + "start": 11466.54, + "end": 11468.24, + "probability": 0.9889 + }, + { + "start": 11468.38, + "end": 11469.14, + "probability": 0.8206 + }, + { + "start": 11469.54, + "end": 11471.74, + "probability": 0.9632 + }, + { + "start": 11471.88, + "end": 11475.82, + "probability": 0.974 + }, + { + "start": 11476.28, + "end": 11476.86, + "probability": 0.3756 + }, + { + "start": 11478.38, + "end": 11479.4, + "probability": 0.8313 + }, + { + "start": 11480.52, + "end": 11482.06, + "probability": 0.9927 + }, + { + "start": 11483.72, + "end": 11485.6, + "probability": 0.9958 + }, + { + "start": 11487.7, + "end": 11490.78, + "probability": 0.7564 + }, + { + "start": 11492.48, + "end": 11492.96, + "probability": 0.6276 + }, + { + "start": 11494.94, + "end": 11496.24, + "probability": 0.7563 + }, + { + "start": 11497.9, + "end": 11498.58, + "probability": 0.951 + }, + { + "start": 11501.62, + "end": 11502.84, + "probability": 0.8583 + }, + { + "start": 11504.06, + "end": 11504.5, + "probability": 0.6646 + }, + { + "start": 11504.54, + "end": 11506.36, + "probability": 0.9655 + }, + { + "start": 11506.62, + "end": 11507.24, + "probability": 0.9175 + }, + { + "start": 11507.74, + "end": 11508.98, + "probability": 0.959 + }, + { + "start": 11509.34, + "end": 11510.01, + "probability": 0.7475 + }, + { + "start": 11510.46, + "end": 11511.01, + "probability": 0.9609 + }, + { + "start": 11512.6, + "end": 11514.2, + "probability": 0.9817 + }, + { + "start": 11514.8, + "end": 11515.5, + "probability": 0.8542 + }, + { + "start": 11518.0, + "end": 11520.0, + "probability": 0.959 + }, + { + "start": 11521.98, + "end": 11523.84, + "probability": 0.9827 + }, + { + "start": 11525.36, + "end": 11526.9, + "probability": 0.9914 + }, + { + "start": 11527.98, + "end": 11529.08, + "probability": 0.9653 + }, + { + "start": 11530.18, + "end": 11531.28, + "probability": 0.9721 + }, + { + "start": 11533.08, + "end": 11536.56, + "probability": 0.9704 + }, + { + "start": 11541.5, + "end": 11544.1, + "probability": 0.9883 + }, + { + "start": 11545.62, + "end": 11548.3, + "probability": 0.9557 + }, + { + "start": 11550.45, + "end": 11554.84, + "probability": 0.9702 + }, + { + "start": 11555.56, + "end": 11556.22, + "probability": 0.3924 + }, + { + "start": 11557.48, + "end": 11558.86, + "probability": 0.7397 + }, + { + "start": 11559.04, + "end": 11560.88, + "probability": 0.7025 + }, + { + "start": 11561.0, + "end": 11562.44, + "probability": 0.2409 + }, + { + "start": 11562.44, + "end": 11562.62, + "probability": 0.0732 + }, + { + "start": 11562.74, + "end": 11563.74, + "probability": 0.3281 + }, + { + "start": 11563.86, + "end": 11566.9, + "probability": 0.9874 + }, + { + "start": 11567.7, + "end": 11569.16, + "probability": 0.9983 + }, + { + "start": 11569.94, + "end": 11572.88, + "probability": 0.9806 + }, + { + "start": 11573.48, + "end": 11574.9, + "probability": 0.9954 + }, + { + "start": 11574.98, + "end": 11576.32, + "probability": 0.9956 + }, + { + "start": 11576.74, + "end": 11578.83, + "probability": 0.9775 + }, + { + "start": 11579.44, + "end": 11581.74, + "probability": 0.8231 + }, + { + "start": 11581.82, + "end": 11582.76, + "probability": 0.9364 + }, + { + "start": 11582.86, + "end": 11583.74, + "probability": 0.7436 + }, + { + "start": 11584.08, + "end": 11585.46, + "probability": 0.8779 + }, + { + "start": 11586.04, + "end": 11589.06, + "probability": 0.9959 + }, + { + "start": 11589.2, + "end": 11589.48, + "probability": 0.7903 + }, + { + "start": 11589.94, + "end": 11590.72, + "probability": 0.5748 + }, + { + "start": 11590.8, + "end": 11592.22, + "probability": 0.8819 + }, + { + "start": 11608.84, + "end": 11610.8, + "probability": 0.9806 + }, + { + "start": 11612.48, + "end": 11612.9, + "probability": 0.6915 + }, + { + "start": 11612.94, + "end": 11614.58, + "probability": 0.8912 + }, + { + "start": 11615.16, + "end": 11616.22, + "probability": 0.8521 + }, + { + "start": 11616.8, + "end": 11617.9, + "probability": 0.755 + }, + { + "start": 11619.74, + "end": 11621.44, + "probability": 0.9892 + }, + { + "start": 11621.96, + "end": 11623.4, + "probability": 0.9972 + }, + { + "start": 11624.46, + "end": 11632.74, + "probability": 0.9966 + }, + { + "start": 11634.24, + "end": 11635.74, + "probability": 0.9931 + }, + { + "start": 11638.92, + "end": 11644.48, + "probability": 0.9857 + }, + { + "start": 11645.46, + "end": 11646.34, + "probability": 0.9748 + }, + { + "start": 11647.72, + "end": 11652.54, + "probability": 0.9855 + }, + { + "start": 11653.94, + "end": 11656.63, + "probability": 0.9932 + }, + { + "start": 11658.26, + "end": 11659.92, + "probability": 0.6111 + }, + { + "start": 11660.54, + "end": 11663.54, + "probability": 0.9427 + }, + { + "start": 11664.78, + "end": 11667.0, + "probability": 0.6289 + }, + { + "start": 11667.66, + "end": 11670.96, + "probability": 0.8268 + }, + { + "start": 11672.52, + "end": 11674.3, + "probability": 0.9509 + }, + { + "start": 11675.2, + "end": 11682.34, + "probability": 0.9017 + }, + { + "start": 11684.04, + "end": 11688.9, + "probability": 0.6013 + }, + { + "start": 11690.06, + "end": 11691.08, + "probability": 0.8714 + }, + { + "start": 11691.7, + "end": 11692.66, + "probability": 0.634 + }, + { + "start": 11693.9, + "end": 11696.18, + "probability": 0.9265 + }, + { + "start": 11698.02, + "end": 11699.26, + "probability": 0.9783 + }, + { + "start": 11700.48, + "end": 11703.72, + "probability": 0.9026 + }, + { + "start": 11704.6, + "end": 11706.04, + "probability": 0.8965 + }, + { + "start": 11706.74, + "end": 11708.08, + "probability": 0.9958 + }, + { + "start": 11710.4, + "end": 11711.38, + "probability": 0.8909 + }, + { + "start": 11712.72, + "end": 11715.84, + "probability": 0.8076 + }, + { + "start": 11716.74, + "end": 11720.02, + "probability": 0.6872 + }, + { + "start": 11720.76, + "end": 11730.18, + "probability": 0.8484 + }, + { + "start": 11731.34, + "end": 11735.94, + "probability": 0.9938 + }, + { + "start": 11736.6, + "end": 11738.48, + "probability": 0.7844 + }, + { + "start": 11739.24, + "end": 11741.42, + "probability": 0.8417 + }, + { + "start": 11741.94, + "end": 11743.76, + "probability": 0.8543 + }, + { + "start": 11744.6, + "end": 11751.82, + "probability": 0.9578 + }, + { + "start": 11753.46, + "end": 11756.66, + "probability": 0.9765 + }, + { + "start": 11758.18, + "end": 11763.84, + "probability": 0.984 + }, + { + "start": 11764.4, + "end": 11765.58, + "probability": 0.7338 + }, + { + "start": 11766.92, + "end": 11773.12, + "probability": 0.7588 + }, + { + "start": 11774.16, + "end": 11777.08, + "probability": 0.8732 + }, + { + "start": 11777.78, + "end": 11779.04, + "probability": 0.5829 + }, + { + "start": 11780.71, + "end": 11782.94, + "probability": 0.6712 + }, + { + "start": 11784.12, + "end": 11787.04, + "probability": 0.9695 + }, + { + "start": 11787.04, + "end": 11791.34, + "probability": 0.9929 + }, + { + "start": 11792.08, + "end": 11794.26, + "probability": 0.9414 + }, + { + "start": 11794.86, + "end": 11801.0, + "probability": 0.9434 + }, + { + "start": 11801.62, + "end": 11806.36, + "probability": 0.8508 + }, + { + "start": 11807.04, + "end": 11810.02, + "probability": 0.7724 + }, + { + "start": 11810.7, + "end": 11812.66, + "probability": 0.5499 + }, + { + "start": 11813.16, + "end": 11815.84, + "probability": 0.959 + }, + { + "start": 11816.36, + "end": 11821.96, + "probability": 0.952 + }, + { + "start": 11822.36, + "end": 11826.26, + "probability": 0.9821 + }, + { + "start": 11826.5, + "end": 11826.92, + "probability": 0.7476 + }, + { + "start": 11828.16, + "end": 11830.24, + "probability": 0.8768 + }, + { + "start": 11854.86, + "end": 11855.84, + "probability": 0.7346 + }, + { + "start": 11855.96, + "end": 11856.44, + "probability": 0.9283 + }, + { + "start": 11857.34, + "end": 11857.86, + "probability": 0.6036 + }, + { + "start": 11857.9, + "end": 11858.54, + "probability": 0.5827 + }, + { + "start": 11858.68, + "end": 11859.82, + "probability": 0.611 + }, + { + "start": 11860.0, + "end": 11862.8, + "probability": 0.9849 + }, + { + "start": 11864.14, + "end": 11867.7, + "probability": 0.9677 + }, + { + "start": 11867.82, + "end": 11869.22, + "probability": 0.9621 + }, + { + "start": 11869.36, + "end": 11876.78, + "probability": 0.9138 + }, + { + "start": 11876.88, + "end": 11879.54, + "probability": 0.9331 + }, + { + "start": 11881.72, + "end": 11883.06, + "probability": 0.8711 + }, + { + "start": 11883.52, + "end": 11884.66, + "probability": 0.9845 + }, + { + "start": 11884.82, + "end": 11890.44, + "probability": 0.9931 + }, + { + "start": 11891.34, + "end": 11893.22, + "probability": 0.9436 + }, + { + "start": 11893.42, + "end": 11894.94, + "probability": 0.7609 + }, + { + "start": 11894.98, + "end": 11895.74, + "probability": 0.7104 + }, + { + "start": 11897.93, + "end": 11899.86, + "probability": 0.4266 + }, + { + "start": 11899.86, + "end": 11900.22, + "probability": 0.0095 + }, + { + "start": 11900.22, + "end": 11900.28, + "probability": 0.0815 + }, + { + "start": 11900.36, + "end": 11904.56, + "probability": 0.7511 + }, + { + "start": 11904.86, + "end": 11905.46, + "probability": 0.331 + }, + { + "start": 11907.16, + "end": 11908.62, + "probability": 0.0116 + }, + { + "start": 11908.62, + "end": 11908.62, + "probability": 0.0643 + }, + { + "start": 11908.62, + "end": 11909.84, + "probability": 0.0798 + }, + { + "start": 11910.82, + "end": 11913.36, + "probability": 0.8195 + }, + { + "start": 11913.96, + "end": 11920.62, + "probability": 0.9858 + }, + { + "start": 11921.54, + "end": 11923.01, + "probability": 0.9873 + }, + { + "start": 11923.32, + "end": 11925.12, + "probability": 0.9786 + }, + { + "start": 11925.56, + "end": 11930.4, + "probability": 0.8099 + }, + { + "start": 11930.82, + "end": 11930.92, + "probability": 0.3351 + }, + { + "start": 11931.94, + "end": 11932.68, + "probability": 0.8646 + }, + { + "start": 11932.78, + "end": 11936.26, + "probability": 0.964 + }, + { + "start": 11936.34, + "end": 11937.41, + "probability": 0.9941 + }, + { + "start": 11938.36, + "end": 11939.12, + "probability": 0.58 + }, + { + "start": 11939.26, + "end": 11939.8, + "probability": 0.4184 + }, + { + "start": 11939.84, + "end": 11942.64, + "probability": 0.968 + }, + { + "start": 11943.18, + "end": 11945.71, + "probability": 0.9893 + }, + { + "start": 11946.14, + "end": 11946.72, + "probability": 0.5389 + }, + { + "start": 11946.96, + "end": 11948.06, + "probability": 0.8939 + }, + { + "start": 11948.24, + "end": 11949.22, + "probability": 0.7134 + }, + { + "start": 11949.4, + "end": 11952.04, + "probability": 0.6886 + }, + { + "start": 11952.1, + "end": 11953.56, + "probability": 0.9804 + }, + { + "start": 11956.32, + "end": 11959.34, + "probability": 0.9001 + }, + { + "start": 11959.88, + "end": 11962.32, + "probability": 0.9165 + }, + { + "start": 11962.42, + "end": 11964.96, + "probability": 0.9914 + }, + { + "start": 11965.34, + "end": 11968.36, + "probability": 0.3317 + }, + { + "start": 11968.52, + "end": 11974.96, + "probability": 0.9885 + }, + { + "start": 11974.96, + "end": 11978.04, + "probability": 0.9199 + }, + { + "start": 11978.28, + "end": 11979.33, + "probability": 0.9995 + }, + { + "start": 11979.62, + "end": 11980.82, + "probability": 0.9985 + }, + { + "start": 11981.0, + "end": 11981.12, + "probability": 0.307 + }, + { + "start": 11981.12, + "end": 11984.88, + "probability": 0.806 + }, + { + "start": 11985.04, + "end": 11985.52, + "probability": 0.7119 + }, + { + "start": 11985.64, + "end": 11986.04, + "probability": 0.67 + }, + { + "start": 11986.26, + "end": 11989.06, + "probability": 0.9956 + }, + { + "start": 11989.84, + "end": 11994.3, + "probability": 0.7062 + }, + { + "start": 11994.92, + "end": 11995.28, + "probability": 0.2185 + }, + { + "start": 11995.48, + "end": 11995.76, + "probability": 0.8119 + }, + { + "start": 11995.98, + "end": 11998.16, + "probability": 0.8596 + }, + { + "start": 11998.28, + "end": 12000.46, + "probability": 0.9245 + }, + { + "start": 12000.64, + "end": 12003.9, + "probability": 0.876 + }, + { + "start": 12004.16, + "end": 12004.68, + "probability": 0.967 + }, + { + "start": 12004.7, + "end": 12005.67, + "probability": 0.981 + }, + { + "start": 12006.22, + "end": 12008.3, + "probability": 0.9389 + }, + { + "start": 12008.5, + "end": 12009.1, + "probability": 0.6463 + }, + { + "start": 12009.4, + "end": 12012.82, + "probability": 0.9502 + }, + { + "start": 12013.86, + "end": 12014.82, + "probability": 0.6713 + }, + { + "start": 12015.08, + "end": 12016.72, + "probability": 0.7062 + }, + { + "start": 12016.72, + "end": 12018.08, + "probability": 0.4525 + }, + { + "start": 12018.68, + "end": 12024.0, + "probability": 0.4923 + }, + { + "start": 12024.0, + "end": 12025.04, + "probability": 0.5198 + }, + { + "start": 12025.04, + "end": 12026.32, + "probability": 0.6023 + }, + { + "start": 12027.36, + "end": 12028.79, + "probability": 0.7434 + }, + { + "start": 12029.2, + "end": 12031.3, + "probability": 0.9546 + }, + { + "start": 12031.34, + "end": 12031.86, + "probability": 0.0064 + }, + { + "start": 12031.9, + "end": 12033.84, + "probability": 0.8225 + }, + { + "start": 12033.84, + "end": 12035.94, + "probability": 0.4949 + }, + { + "start": 12036.75, + "end": 12039.52, + "probability": 0.9321 + }, + { + "start": 12040.63, + "end": 12044.5, + "probability": 0.9915 + }, + { + "start": 12045.57, + "end": 12047.96, + "probability": 0.9954 + }, + { + "start": 12051.83, + "end": 12059.24, + "probability": 0.8931 + }, + { + "start": 12060.14, + "end": 12061.96, + "probability": 0.8074 + }, + { + "start": 12062.08, + "end": 12063.34, + "probability": 0.8181 + }, + { + "start": 12063.74, + "end": 12066.36, + "probability": 0.3823 + }, + { + "start": 12066.92, + "end": 12068.44, + "probability": 0.8996 + }, + { + "start": 12068.5, + "end": 12070.56, + "probability": 0.8733 + }, + { + "start": 12070.56, + "end": 12073.3, + "probability": 0.9598 + }, + { + "start": 12073.6, + "end": 12076.22, + "probability": 0.8057 + }, + { + "start": 12076.92, + "end": 12078.82, + "probability": 0.1475 + }, + { + "start": 12079.02, + "end": 12080.1, + "probability": 0.5292 + }, + { + "start": 12080.24, + "end": 12083.57, + "probability": 0.103 + }, + { + "start": 12084.06, + "end": 12085.68, + "probability": 0.4056 + }, + { + "start": 12086.02, + "end": 12086.86, + "probability": 0.5557 + }, + { + "start": 12086.88, + "end": 12091.46, + "probability": 0.4739 + }, + { + "start": 12091.58, + "end": 12092.86, + "probability": 0.7392 + }, + { + "start": 12093.2, + "end": 12095.13, + "probability": 0.8956 + }, + { + "start": 12095.36, + "end": 12096.96, + "probability": 0.9602 + }, + { + "start": 12098.16, + "end": 12099.36, + "probability": 0.7175 + }, + { + "start": 12099.72, + "end": 12101.78, + "probability": 0.9231 + }, + { + "start": 12101.78, + "end": 12103.72, + "probability": 0.8972 + }, + { + "start": 12103.8, + "end": 12106.33, + "probability": 0.8728 + }, + { + "start": 12107.34, + "end": 12109.32, + "probability": 0.9861 + }, + { + "start": 12110.2, + "end": 12111.06, + "probability": 0.9769 + }, + { + "start": 12111.08, + "end": 12112.9, + "probability": 0.9556 + }, + { + "start": 12112.94, + "end": 12114.92, + "probability": 0.9574 + }, + { + "start": 12114.96, + "end": 12118.04, + "probability": 0.9964 + }, + { + "start": 12118.58, + "end": 12121.94, + "probability": 0.9984 + }, + { + "start": 12122.92, + "end": 12127.74, + "probability": 0.9961 + }, + { + "start": 12127.86, + "end": 12130.18, + "probability": 0.9919 + }, + { + "start": 12130.18, + "end": 12132.8, + "probability": 0.9908 + }, + { + "start": 12133.34, + "end": 12136.02, + "probability": 0.9872 + }, + { + "start": 12136.08, + "end": 12136.92, + "probability": 0.8502 + }, + { + "start": 12137.1, + "end": 12138.04, + "probability": 0.8399 + }, + { + "start": 12138.26, + "end": 12140.6, + "probability": 0.9384 + }, + { + "start": 12141.38, + "end": 12143.22, + "probability": 0.9945 + }, + { + "start": 12143.42, + "end": 12146.12, + "probability": 0.9579 + }, + { + "start": 12146.12, + "end": 12149.08, + "probability": 0.987 + }, + { + "start": 12149.38, + "end": 12151.34, + "probability": 0.8982 + }, + { + "start": 12151.88, + "end": 12156.69, + "probability": 0.9965 + }, + { + "start": 12156.84, + "end": 12157.78, + "probability": 0.7498 + }, + { + "start": 12158.18, + "end": 12160.78, + "probability": 0.9927 + }, + { + "start": 12161.52, + "end": 12162.16, + "probability": 0.8944 + }, + { + "start": 12162.44, + "end": 12165.42, + "probability": 0.9919 + }, + { + "start": 12165.64, + "end": 12168.68, + "probability": 0.9594 + }, + { + "start": 12169.38, + "end": 12170.24, + "probability": 0.7455 + }, + { + "start": 12170.32, + "end": 12173.2, + "probability": 0.9014 + }, + { + "start": 12174.04, + "end": 12177.12, + "probability": 0.8447 + }, + { + "start": 12177.12, + "end": 12179.36, + "probability": 0.9506 + }, + { + "start": 12179.66, + "end": 12181.68, + "probability": 0.8693 + }, + { + "start": 12181.8, + "end": 12182.58, + "probability": 0.9918 + }, + { + "start": 12183.42, + "end": 12185.72, + "probability": 0.9969 + }, + { + "start": 12185.76, + "end": 12188.78, + "probability": 0.965 + }, + { + "start": 12189.32, + "end": 12191.14, + "probability": 0.9976 + }, + { + "start": 12191.78, + "end": 12192.72, + "probability": 0.982 + }, + { + "start": 12192.8, + "end": 12198.78, + "probability": 0.963 + }, + { + "start": 12199.14, + "end": 12199.72, + "probability": 0.7999 + }, + { + "start": 12199.86, + "end": 12200.7, + "probability": 0.8718 + }, + { + "start": 12200.8, + "end": 12204.58, + "probability": 0.9756 + }, + { + "start": 12205.26, + "end": 12206.8, + "probability": 0.9791 + }, + { + "start": 12206.96, + "end": 12208.4, + "probability": 0.9893 + }, + { + "start": 12208.88, + "end": 12209.73, + "probability": 0.9408 + }, + { + "start": 12210.84, + "end": 12214.24, + "probability": 0.9953 + }, + { + "start": 12214.24, + "end": 12217.36, + "probability": 0.9884 + }, + { + "start": 12218.34, + "end": 12221.4, + "probability": 0.9565 + }, + { + "start": 12221.68, + "end": 12223.94, + "probability": 0.8831 + }, + { + "start": 12224.22, + "end": 12226.4, + "probability": 0.6067 + }, + { + "start": 12227.04, + "end": 12230.26, + "probability": 0.9663 + }, + { + "start": 12230.8, + "end": 12236.7, + "probability": 0.991 + }, + { + "start": 12237.34, + "end": 12237.58, + "probability": 0.294 + }, + { + "start": 12237.72, + "end": 12241.8, + "probability": 0.9946 + }, + { + "start": 12242.12, + "end": 12244.88, + "probability": 0.9777 + }, + { + "start": 12245.32, + "end": 12248.46, + "probability": 0.9953 + }, + { + "start": 12249.24, + "end": 12254.2, + "probability": 0.9865 + }, + { + "start": 12255.08, + "end": 12258.78, + "probability": 0.9966 + }, + { + "start": 12259.34, + "end": 12261.6, + "probability": 0.9823 + }, + { + "start": 12262.22, + "end": 12267.1, + "probability": 0.9946 + }, + { + "start": 12267.42, + "end": 12267.88, + "probability": 0.796 + }, + { + "start": 12268.58, + "end": 12269.36, + "probability": 0.6039 + }, + { + "start": 12269.56, + "end": 12269.94, + "probability": 0.6449 + }, + { + "start": 12270.08, + "end": 12272.48, + "probability": 0.734 + }, + { + "start": 12272.5, + "end": 12274.48, + "probability": 0.9314 + }, + { + "start": 12275.26, + "end": 12277.92, + "probability": 0.9551 + }, + { + "start": 12289.9, + "end": 12290.92, + "probability": 0.7113 + }, + { + "start": 12290.92, + "end": 12292.98, + "probability": 0.8772 + }, + { + "start": 12295.68, + "end": 12299.7, + "probability": 0.7225 + }, + { + "start": 12300.82, + "end": 12305.62, + "probability": 0.9406 + }, + { + "start": 12306.18, + "end": 12307.72, + "probability": 0.7821 + }, + { + "start": 12308.58, + "end": 12314.12, + "probability": 0.9775 + }, + { + "start": 12314.26, + "end": 12316.74, + "probability": 0.9865 + }, + { + "start": 12316.74, + "end": 12319.64, + "probability": 0.7706 + }, + { + "start": 12320.56, + "end": 12325.02, + "probability": 0.9674 + }, + { + "start": 12325.38, + "end": 12329.34, + "probability": 0.9802 + }, + { + "start": 12329.46, + "end": 12335.64, + "probability": 0.9927 + }, + { + "start": 12336.3, + "end": 12338.34, + "probability": 0.9951 + }, + { + "start": 12339.56, + "end": 12342.51, + "probability": 0.996 + }, + { + "start": 12343.1, + "end": 12344.46, + "probability": 0.8933 + }, + { + "start": 12345.3, + "end": 12347.94, + "probability": 0.9822 + }, + { + "start": 12349.52, + "end": 12353.77, + "probability": 0.9437 + }, + { + "start": 12354.25, + "end": 12356.23, + "probability": 0.9453 + }, + { + "start": 12356.99, + "end": 12358.93, + "probability": 0.9961 + }, + { + "start": 12359.61, + "end": 12364.47, + "probability": 0.9988 + }, + { + "start": 12364.47, + "end": 12369.13, + "probability": 0.9989 + }, + { + "start": 12369.55, + "end": 12370.67, + "probability": 0.7851 + }, + { + "start": 12371.89, + "end": 12375.53, + "probability": 0.9488 + }, + { + "start": 12375.65, + "end": 12376.93, + "probability": 0.6036 + }, + { + "start": 12377.83, + "end": 12378.93, + "probability": 0.9504 + }, + { + "start": 12380.11, + "end": 12381.53, + "probability": 0.9556 + }, + { + "start": 12382.07, + "end": 12383.12, + "probability": 0.9858 + }, + { + "start": 12384.15, + "end": 12385.45, + "probability": 0.9895 + }, + { + "start": 12386.39, + "end": 12387.55, + "probability": 0.9969 + }, + { + "start": 12388.65, + "end": 12391.33, + "probability": 0.9949 + }, + { + "start": 12392.11, + "end": 12396.79, + "probability": 0.9993 + }, + { + "start": 12396.79, + "end": 12400.46, + "probability": 0.9989 + }, + { + "start": 12400.71, + "end": 12401.45, + "probability": 0.7733 + }, + { + "start": 12401.61, + "end": 12405.09, + "probability": 0.9914 + }, + { + "start": 12406.23, + "end": 12409.45, + "probability": 0.9985 + }, + { + "start": 12409.45, + "end": 12411.31, + "probability": 0.9961 + }, + { + "start": 12411.73, + "end": 12414.37, + "probability": 0.9862 + }, + { + "start": 12414.75, + "end": 12418.31, + "probability": 0.9702 + }, + { + "start": 12418.41, + "end": 12420.89, + "probability": 0.9067 + }, + { + "start": 12420.89, + "end": 12425.05, + "probability": 0.9985 + }, + { + "start": 12425.57, + "end": 12426.57, + "probability": 0.967 + }, + { + "start": 12427.37, + "end": 12430.65, + "probability": 0.9977 + }, + { + "start": 12431.11, + "end": 12432.75, + "probability": 0.9875 + }, + { + "start": 12433.95, + "end": 12435.93, + "probability": 0.8251 + }, + { + "start": 12436.15, + "end": 12439.28, + "probability": 0.991 + }, + { + "start": 12439.59, + "end": 12441.63, + "probability": 0.984 + }, + { + "start": 12441.87, + "end": 12444.05, + "probability": 0.9927 + }, + { + "start": 12444.41, + "end": 12447.91, + "probability": 0.996 + }, + { + "start": 12448.11, + "end": 12449.47, + "probability": 0.9611 + }, + { + "start": 12449.87, + "end": 12452.94, + "probability": 0.9965 + }, + { + "start": 12453.41, + "end": 12453.97, + "probability": 0.9644 + }, + { + "start": 12454.43, + "end": 12456.52, + "probability": 0.981 + }, + { + "start": 12457.31, + "end": 12460.81, + "probability": 0.9965 + }, + { + "start": 12460.93, + "end": 12461.35, + "probability": 0.7421 + }, + { + "start": 12462.37, + "end": 12462.95, + "probability": 0.5687 + }, + { + "start": 12463.11, + "end": 12465.09, + "probability": 0.7726 + }, + { + "start": 12476.91, + "end": 12478.53, + "probability": 0.6592 + }, + { + "start": 12479.01, + "end": 12479.19, + "probability": 0.0163 + }, + { + "start": 12480.1, + "end": 12480.26, + "probability": 0.4066 + }, + { + "start": 12480.26, + "end": 12480.36, + "probability": 0.3447 + }, + { + "start": 12480.36, + "end": 12481.3, + "probability": 0.4688 + }, + { + "start": 12481.46, + "end": 12482.28, + "probability": 0.7405 + }, + { + "start": 12482.52, + "end": 12489.78, + "probability": 0.9749 + }, + { + "start": 12489.78, + "end": 12490.48, + "probability": 0.8435 + }, + { + "start": 12490.48, + "end": 12491.42, + "probability": 0.7249 + }, + { + "start": 12491.48, + "end": 12494.56, + "probability": 0.986 + }, + { + "start": 12495.45, + "end": 12498.54, + "probability": 0.9831 + }, + { + "start": 12499.66, + "end": 12502.9, + "probability": 0.9393 + }, + { + "start": 12503.4, + "end": 12503.52, + "probability": 0.5828 + }, + { + "start": 12503.58, + "end": 12509.74, + "probability": 0.9303 + }, + { + "start": 12510.74, + "end": 12513.44, + "probability": 0.9928 + }, + { + "start": 12515.74, + "end": 12519.18, + "probability": 0.9878 + }, + { + "start": 12520.04, + "end": 12521.54, + "probability": 0.8481 + }, + { + "start": 12522.56, + "end": 12530.24, + "probability": 0.9955 + }, + { + "start": 12531.56, + "end": 12537.56, + "probability": 0.9163 + }, + { + "start": 12538.52, + "end": 12540.1, + "probability": 0.8676 + }, + { + "start": 12541.0, + "end": 12542.16, + "probability": 0.3899 + }, + { + "start": 12542.26, + "end": 12549.36, + "probability": 0.9746 + }, + { + "start": 12549.56, + "end": 12553.28, + "probability": 0.9863 + }, + { + "start": 12553.98, + "end": 12559.38, + "probability": 0.9917 + }, + { + "start": 12559.94, + "end": 12562.12, + "probability": 0.7074 + }, + { + "start": 12563.22, + "end": 12564.36, + "probability": 0.999 + }, + { + "start": 12565.32, + "end": 12569.2, + "probability": 0.8144 + }, + { + "start": 12570.36, + "end": 12573.42, + "probability": 0.9165 + }, + { + "start": 12574.12, + "end": 12574.74, + "probability": 0.774 + }, + { + "start": 12575.98, + "end": 12577.42, + "probability": 0.9893 + }, + { + "start": 12578.26, + "end": 12581.38, + "probability": 0.9629 + }, + { + "start": 12582.04, + "end": 12583.38, + "probability": 0.8385 + }, + { + "start": 12584.32, + "end": 12587.86, + "probability": 0.8871 + }, + { + "start": 12589.24, + "end": 12593.02, + "probability": 0.9336 + }, + { + "start": 12593.8, + "end": 12595.02, + "probability": 0.9361 + }, + { + "start": 12595.82, + "end": 12597.76, + "probability": 0.4128 + }, + { + "start": 12598.2, + "end": 12599.74, + "probability": 0.4641 + }, + { + "start": 12599.98, + "end": 12600.42, + "probability": 0.1175 + }, + { + "start": 12600.56, + "end": 12602.46, + "probability": 0.92 + }, + { + "start": 12602.58, + "end": 12603.12, + "probability": 0.334 + }, + { + "start": 12603.42, + "end": 12604.28, + "probability": 0.834 + }, + { + "start": 12605.62, + "end": 12606.02, + "probability": 0.9041 + }, + { + "start": 12606.06, + "end": 12606.84, + "probability": 0.143 + }, + { + "start": 12607.66, + "end": 12610.24, + "probability": 0.9932 + }, + { + "start": 12610.8, + "end": 12614.18, + "probability": 0.6755 + }, + { + "start": 12614.7, + "end": 12617.9, + "probability": 0.9941 + }, + { + "start": 12618.78, + "end": 12620.46, + "probability": 0.9938 + }, + { + "start": 12621.32, + "end": 12622.48, + "probability": 0.9524 + }, + { + "start": 12622.58, + "end": 12623.36, + "probability": 0.9541 + }, + { + "start": 12623.4, + "end": 12624.7, + "probability": 0.6955 + }, + { + "start": 12625.12, + "end": 12627.98, + "probability": 0.9521 + }, + { + "start": 12629.22, + "end": 12630.14, + "probability": 0.5167 + }, + { + "start": 12630.32, + "end": 12632.94, + "probability": 0.8789 + }, + { + "start": 12634.2, + "end": 12638.58, + "probability": 0.9912 + }, + { + "start": 12639.62, + "end": 12640.38, + "probability": 0.9119 + }, + { + "start": 12640.7, + "end": 12641.16, + "probability": 0.6946 + }, + { + "start": 12641.48, + "end": 12643.62, + "probability": 0.8902 + }, + { + "start": 12644.12, + "end": 12644.76, + "probability": 0.9556 + }, + { + "start": 12644.9, + "end": 12645.96, + "probability": 0.9521 + }, + { + "start": 12646.66, + "end": 12652.32, + "probability": 0.9527 + }, + { + "start": 12653.08, + "end": 12653.86, + "probability": 0.9695 + }, + { + "start": 12654.74, + "end": 12658.0, + "probability": 0.9186 + }, + { + "start": 12658.72, + "end": 12664.12, + "probability": 0.9743 + }, + { + "start": 12664.46, + "end": 12666.5, + "probability": 0.8802 + }, + { + "start": 12667.12, + "end": 12668.44, + "probability": 0.9731 + }, + { + "start": 12668.52, + "end": 12668.96, + "probability": 0.7417 + }, + { + "start": 12669.64, + "end": 12670.24, + "probability": 0.6277 + }, + { + "start": 12670.34, + "end": 12672.92, + "probability": 0.6883 + }, + { + "start": 12674.02, + "end": 12674.62, + "probability": 0.4703 + }, + { + "start": 12674.62, + "end": 12676.96, + "probability": 0.9259 + }, + { + "start": 12695.62, + "end": 12697.64, + "probability": 0.61 + }, + { + "start": 12698.36, + "end": 12702.16, + "probability": 0.788 + }, + { + "start": 12702.78, + "end": 12703.3, + "probability": 0.9661 + }, + { + "start": 12704.22, + "end": 12709.66, + "probability": 0.8887 + }, + { + "start": 12711.2, + "end": 12715.96, + "probability": 0.8661 + }, + { + "start": 12716.52, + "end": 12717.68, + "probability": 0.8779 + }, + { + "start": 12718.74, + "end": 12722.2, + "probability": 0.8577 + }, + { + "start": 12723.0, + "end": 12723.62, + "probability": 0.896 + }, + { + "start": 12725.0, + "end": 12727.76, + "probability": 0.9589 + }, + { + "start": 12727.88, + "end": 12732.38, + "probability": 0.9678 + }, + { + "start": 12732.8, + "end": 12733.22, + "probability": 0.8007 + }, + { + "start": 12733.36, + "end": 12736.42, + "probability": 0.9782 + }, + { + "start": 12737.22, + "end": 12738.52, + "probability": 0.3495 + }, + { + "start": 12739.28, + "end": 12741.04, + "probability": 0.8654 + }, + { + "start": 12742.24, + "end": 12744.8, + "probability": 0.8494 + }, + { + "start": 12744.8, + "end": 12746.04, + "probability": 0.9678 + }, + { + "start": 12746.16, + "end": 12749.34, + "probability": 0.8073 + }, + { + "start": 12749.54, + "end": 12750.67, + "probability": 0.8711 + }, + { + "start": 12751.0, + "end": 12753.78, + "probability": 0.9777 + }, + { + "start": 12754.18, + "end": 12758.02, + "probability": 0.1561 + }, + { + "start": 12758.02, + "end": 12758.02, + "probability": 0.0728 + }, + { + "start": 12758.02, + "end": 12758.12, + "probability": 0.0808 + }, + { + "start": 12758.2, + "end": 12758.76, + "probability": 0.5645 + }, + { + "start": 12758.76, + "end": 12760.89, + "probability": 0.9414 + }, + { + "start": 12762.06, + "end": 12762.62, + "probability": 0.9145 + }, + { + "start": 12762.72, + "end": 12763.48, + "probability": 0.8689 + }, + { + "start": 12763.76, + "end": 12766.94, + "probability": 0.9048 + }, + { + "start": 12767.44, + "end": 12772.09, + "probability": 0.9905 + }, + { + "start": 12773.98, + "end": 12780.4, + "probability": 0.855 + }, + { + "start": 12780.82, + "end": 12781.4, + "probability": 0.919 + }, + { + "start": 12782.0, + "end": 12786.97, + "probability": 0.9976 + }, + { + "start": 12788.32, + "end": 12788.32, + "probability": 0.295 + }, + { + "start": 12789.12, + "end": 12790.14, + "probability": 0.8095 + }, + { + "start": 12790.66, + "end": 12793.86, + "probability": 0.9316 + }, + { + "start": 12795.14, + "end": 12796.94, + "probability": 0.8728 + }, + { + "start": 12797.52, + "end": 12800.04, + "probability": 0.9749 + }, + { + "start": 12800.62, + "end": 12803.88, + "probability": 0.8083 + }, + { + "start": 12804.16, + "end": 12804.66, + "probability": 0.6827 + }, + { + "start": 12804.74, + "end": 12805.2, + "probability": 0.9291 + }, + { + "start": 12806.56, + "end": 12810.94, + "probability": 0.9493 + }, + { + "start": 12811.56, + "end": 12814.48, + "probability": 0.9902 + }, + { + "start": 12815.56, + "end": 12817.3, + "probability": 0.9771 + }, + { + "start": 12818.66, + "end": 12825.84, + "probability": 0.9588 + }, + { + "start": 12826.26, + "end": 12829.86, + "probability": 0.9915 + }, + { + "start": 12830.92, + "end": 12835.12, + "probability": 0.8428 + }, + { + "start": 12836.76, + "end": 12839.28, + "probability": 0.9434 + }, + { + "start": 12839.34, + "end": 12842.26, + "probability": 0.9854 + }, + { + "start": 12842.26, + "end": 12846.1, + "probability": 0.978 + }, + { + "start": 12846.16, + "end": 12847.74, + "probability": 0.7503 + }, + { + "start": 12847.82, + "end": 12848.14, + "probability": 0.965 + }, + { + "start": 12848.7, + "end": 12850.56, + "probability": 0.2032 + }, + { + "start": 12850.86, + "end": 12853.57, + "probability": 0.9413 + }, + { + "start": 12853.68, + "end": 12853.88, + "probability": 0.8629 + }, + { + "start": 12854.5, + "end": 12856.88, + "probability": 0.7531 + }, + { + "start": 12857.24, + "end": 12859.72, + "probability": 0.9697 + }, + { + "start": 12860.11, + "end": 12860.46, + "probability": 0.5478 + }, + { + "start": 12860.46, + "end": 12862.38, + "probability": 0.9535 + }, + { + "start": 12862.62, + "end": 12863.46, + "probability": 0.8888 + }, + { + "start": 12863.52, + "end": 12865.44, + "probability": 0.9641 + }, + { + "start": 12865.54, + "end": 12865.88, + "probability": 0.8914 + }, + { + "start": 12865.98, + "end": 12866.87, + "probability": 0.9855 + }, + { + "start": 12867.2, + "end": 12868.52, + "probability": 0.9633 + }, + { + "start": 12868.82, + "end": 12871.92, + "probability": 0.9742 + }, + { + "start": 12872.46, + "end": 12874.86, + "probability": 0.9796 + }, + { + "start": 12874.94, + "end": 12875.76, + "probability": 0.7474 + }, + { + "start": 12876.3, + "end": 12877.14, + "probability": 0.7439 + }, + { + "start": 12877.26, + "end": 12877.64, + "probability": 0.8262 + }, + { + "start": 12877.82, + "end": 12885.14, + "probability": 0.9815 + }, + { + "start": 12885.56, + "end": 12895.38, + "probability": 0.9581 + }, + { + "start": 12895.66, + "end": 12898.48, + "probability": 0.7646 + }, + { + "start": 12899.2, + "end": 12902.92, + "probability": 0.9252 + }, + { + "start": 12903.48, + "end": 12905.12, + "probability": 0.9631 + }, + { + "start": 12906.12, + "end": 12907.08, + "probability": 0.8927 + }, + { + "start": 12907.56, + "end": 12909.2, + "probability": 0.9746 + }, + { + "start": 12909.32, + "end": 12910.57, + "probability": 0.6659 + }, + { + "start": 12910.86, + "end": 12912.08, + "probability": 0.2925 + }, + { + "start": 12912.38, + "end": 12914.09, + "probability": 0.9592 + }, + { + "start": 12915.1, + "end": 12917.38, + "probability": 0.9977 + }, + { + "start": 12917.46, + "end": 12917.8, + "probability": 0.7452 + }, + { + "start": 12918.3, + "end": 12918.78, + "probability": 0.7334 + }, + { + "start": 12918.86, + "end": 12919.78, + "probability": 0.8368 + }, + { + "start": 12919.9, + "end": 12922.66, + "probability": 0.9954 + }, + { + "start": 12923.82, + "end": 12924.58, + "probability": 0.5591 + }, + { + "start": 12924.64, + "end": 12926.54, + "probability": 0.9836 + }, + { + "start": 12926.62, + "end": 12927.8, + "probability": 0.4815 + }, + { + "start": 12928.14, + "end": 12930.98, + "probability": 0.8479 + }, + { + "start": 12930.98, + "end": 12935.22, + "probability": 0.99 + }, + { + "start": 12935.22, + "end": 12938.52, + "probability": 0.9534 + }, + { + "start": 12938.66, + "end": 12940.03, + "probability": 0.9963 + }, + { + "start": 12940.64, + "end": 12943.14, + "probability": 0.9977 + }, + { + "start": 12943.68, + "end": 12944.58, + "probability": 0.9601 + }, + { + "start": 12944.7, + "end": 12947.44, + "probability": 0.9427 + }, + { + "start": 12948.72, + "end": 12949.96, + "probability": 0.9948 + }, + { + "start": 12950.74, + "end": 12952.88, + "probability": 0.9861 + }, + { + "start": 12953.44, + "end": 12955.7, + "probability": 0.9049 + }, + { + "start": 12956.22, + "end": 12956.8, + "probability": 0.5946 + }, + { + "start": 12956.92, + "end": 12958.18, + "probability": 0.8702 + }, + { + "start": 12970.96, + "end": 12971.0, + "probability": 0.7624 + }, + { + "start": 12971.0, + "end": 12972.18, + "probability": 0.7305 + }, + { + "start": 12972.32, + "end": 12972.74, + "probability": 0.8741 + }, + { + "start": 12973.6, + "end": 12974.8, + "probability": 0.9158 + }, + { + "start": 12975.2, + "end": 12975.44, + "probability": 0.379 + }, + { + "start": 12975.5, + "end": 12976.62, + "probability": 0.8375 + }, + { + "start": 12979.28, + "end": 12983.9, + "probability": 0.9925 + }, + { + "start": 12984.56, + "end": 12985.54, + "probability": 0.8267 + }, + { + "start": 12986.46, + "end": 12990.32, + "probability": 0.9896 + }, + { + "start": 12990.52, + "end": 12993.24, + "probability": 0.9899 + }, + { + "start": 12993.66, + "end": 12997.04, + "probability": 0.9411 + }, + { + "start": 12998.2, + "end": 13000.12, + "probability": 0.9574 + }, + { + "start": 13000.3, + "end": 13003.58, + "probability": 0.9938 + }, + { + "start": 13004.0, + "end": 13004.37, + "probability": 0.9661 + }, + { + "start": 13004.7, + "end": 13005.2, + "probability": 0.5122 + }, + { + "start": 13005.28, + "end": 13005.9, + "probability": 0.6186 + }, + { + "start": 13005.96, + "end": 13006.28, + "probability": 0.7568 + }, + { + "start": 13006.62, + "end": 13007.22, + "probability": 0.8404 + }, + { + "start": 13007.32, + "end": 13008.46, + "probability": 0.9648 + }, + { + "start": 13008.72, + "end": 13009.33, + "probability": 0.9946 + }, + { + "start": 13009.9, + "end": 13011.4, + "probability": 0.6658 + }, + { + "start": 13012.12, + "end": 13017.44, + "probability": 0.9714 + }, + { + "start": 13018.28, + "end": 13021.5, + "probability": 0.8152 + }, + { + "start": 13022.58, + "end": 13024.88, + "probability": 0.5077 + }, + { + "start": 13025.18, + "end": 13027.04, + "probability": 0.9639 + }, + { + "start": 13027.5, + "end": 13030.0, + "probability": 0.8864 + }, + { + "start": 13030.7, + "end": 13033.56, + "probability": 0.8147 + }, + { + "start": 13034.12, + "end": 13034.95, + "probability": 0.2745 + }, + { + "start": 13035.94, + "end": 13038.08, + "probability": 0.9544 + }, + { + "start": 13038.3, + "end": 13041.0, + "probability": 0.9987 + }, + { + "start": 13041.1, + "end": 13045.44, + "probability": 0.9977 + }, + { + "start": 13045.84, + "end": 13046.5, + "probability": 0.6111 + }, + { + "start": 13047.49, + "end": 13050.46, + "probability": 0.9917 + }, + { + "start": 13050.74, + "end": 13053.72, + "probability": 0.9981 + }, + { + "start": 13054.5, + "end": 13057.26, + "probability": 0.981 + }, + { + "start": 13057.96, + "end": 13058.42, + "probability": 0.7939 + }, + { + "start": 13058.74, + "end": 13059.86, + "probability": 0.9795 + }, + { + "start": 13060.12, + "end": 13062.3, + "probability": 0.9949 + }, + { + "start": 13062.68, + "end": 13063.84, + "probability": 0.9036 + }, + { + "start": 13064.22, + "end": 13065.86, + "probability": 0.8531 + }, + { + "start": 13066.04, + "end": 13068.78, + "probability": 0.9021 + }, + { + "start": 13068.98, + "end": 13073.74, + "probability": 0.9922 + }, + { + "start": 13073.94, + "end": 13074.46, + "probability": 0.5312 + }, + { + "start": 13074.56, + "end": 13075.35, + "probability": 0.8652 + }, + { + "start": 13075.64, + "end": 13076.34, + "probability": 0.8741 + }, + { + "start": 13076.46, + "end": 13077.16, + "probability": 0.528 + }, + { + "start": 13077.96, + "end": 13079.38, + "probability": 0.9843 + }, + { + "start": 13079.94, + "end": 13082.02, + "probability": 0.9522 + }, + { + "start": 13082.82, + "end": 13083.38, + "probability": 0.7464 + }, + { + "start": 13083.52, + "end": 13084.3, + "probability": 0.4934 + }, + { + "start": 13084.68, + "end": 13085.73, + "probability": 0.9638 + }, + { + "start": 13086.16, + "end": 13088.98, + "probability": 0.9792 + }, + { + "start": 13089.12, + "end": 13089.5, + "probability": 0.953 + }, + { + "start": 13089.62, + "end": 13090.51, + "probability": 0.8471 + }, + { + "start": 13091.08, + "end": 13094.4, + "probability": 0.98 + }, + { + "start": 13095.02, + "end": 13096.74, + "probability": 0.9766 + }, + { + "start": 13096.9, + "end": 13101.06, + "probability": 0.9917 + }, + { + "start": 13101.06, + "end": 13104.6, + "probability": 0.9383 + }, + { + "start": 13105.08, + "end": 13106.22, + "probability": 0.9564 + }, + { + "start": 13106.84, + "end": 13109.6, + "probability": 0.9326 + }, + { + "start": 13109.76, + "end": 13110.56, + "probability": 0.7847 + }, + { + "start": 13110.74, + "end": 13111.4, + "probability": 0.6636 + }, + { + "start": 13111.86, + "end": 13114.84, + "probability": 0.6753 + }, + { + "start": 13115.52, + "end": 13116.32, + "probability": 0.715 + }, + { + "start": 13117.62, + "end": 13118.14, + "probability": 0.5125 + }, + { + "start": 13118.7, + "end": 13119.12, + "probability": 0.5047 + }, + { + "start": 13119.7, + "end": 13123.46, + "probability": 0.9729 + }, + { + "start": 13123.46, + "end": 13123.9, + "probability": 0.8834 + }, + { + "start": 13124.2, + "end": 13125.1, + "probability": 0.9487 + }, + { + "start": 13125.38, + "end": 13127.18, + "probability": 0.8992 + }, + { + "start": 13127.56, + "end": 13131.12, + "probability": 0.9923 + }, + { + "start": 13131.62, + "end": 13132.4, + "probability": 0.8163 + }, + { + "start": 13132.42, + "end": 13135.66, + "probability": 0.9797 + }, + { + "start": 13135.94, + "end": 13137.77, + "probability": 0.9958 + }, + { + "start": 13137.9, + "end": 13138.06, + "probability": 0.7496 + }, + { + "start": 13138.2, + "end": 13138.3, + "probability": 0.8129 + }, + { + "start": 13138.64, + "end": 13138.88, + "probability": 0.6007 + }, + { + "start": 13139.62, + "end": 13141.32, + "probability": 0.7369 + }, + { + "start": 13141.4, + "end": 13141.88, + "probability": 0.8323 + }, + { + "start": 13142.14, + "end": 13143.04, + "probability": 0.9924 + }, + { + "start": 13143.36, + "end": 13145.3, + "probability": 0.9937 + }, + { + "start": 13145.74, + "end": 13147.72, + "probability": 0.9977 + }, + { + "start": 13148.1, + "end": 13148.42, + "probability": 0.7601 + }, + { + "start": 13148.66, + "end": 13148.94, + "probability": 0.8084 + }, + { + "start": 13149.1, + "end": 13149.3, + "probability": 0.8181 + }, + { + "start": 13149.68, + "end": 13150.12, + "probability": 0.6806 + }, + { + "start": 13150.44, + "end": 13153.4, + "probability": 0.9729 + }, + { + "start": 13153.8, + "end": 13155.38, + "probability": 0.9385 + }, + { + "start": 13155.64, + "end": 13156.66, + "probability": 0.7518 + }, + { + "start": 13157.38, + "end": 13161.04, + "probability": 0.973 + }, + { + "start": 13161.18, + "end": 13162.84, + "probability": 0.999 + }, + { + "start": 13162.84, + "end": 13164.27, + "probability": 0.9995 + }, + { + "start": 13165.04, + "end": 13169.82, + "probability": 0.9973 + }, + { + "start": 13169.82, + "end": 13174.5, + "probability": 0.998 + }, + { + "start": 13175.07, + "end": 13177.82, + "probability": 0.9007 + }, + { + "start": 13177.88, + "end": 13178.32, + "probability": 0.2759 + }, + { + "start": 13178.66, + "end": 13182.22, + "probability": 0.9976 + }, + { + "start": 13182.22, + "end": 13185.16, + "probability": 0.9974 + }, + { + "start": 13185.4, + "end": 13185.54, + "probability": 0.4151 + }, + { + "start": 13185.7, + "end": 13187.62, + "probability": 0.9703 + }, + { + "start": 13187.9, + "end": 13190.4, + "probability": 0.7274 + }, + { + "start": 13190.78, + "end": 13194.6, + "probability": 0.9883 + }, + { + "start": 13194.96, + "end": 13195.84, + "probability": 0.9131 + }, + { + "start": 13196.28, + "end": 13198.9, + "probability": 0.9051 + }, + { + "start": 13198.9, + "end": 13201.1, + "probability": 0.8655 + }, + { + "start": 13201.58, + "end": 13202.95, + "probability": 0.9491 + }, + { + "start": 13203.32, + "end": 13203.74, + "probability": 0.8918 + }, + { + "start": 13204.18, + "end": 13206.34, + "probability": 0.9551 + }, + { + "start": 13206.84, + "end": 13207.5, + "probability": 0.5659 + }, + { + "start": 13207.62, + "end": 13210.66, + "probability": 0.8081 + }, + { + "start": 13230.42, + "end": 13230.72, + "probability": 0.0171 + }, + { + "start": 13231.02, + "end": 13234.53, + "probability": 0.1554 + }, + { + "start": 13235.78, + "end": 13238.99, + "probability": 0.1428 + }, + { + "start": 13239.6, + "end": 13241.18, + "probability": 0.1 + }, + { + "start": 13243.92, + "end": 13244.82, + "probability": 0.0041 + }, + { + "start": 13244.9, + "end": 13245.12, + "probability": 0.3675 + }, + { + "start": 13245.12, + "end": 13246.1, + "probability": 0.068 + }, + { + "start": 13247.68, + "end": 13251.6, + "probability": 0.041 + }, + { + "start": 13251.64, + "end": 13252.8, + "probability": 0.0919 + }, + { + "start": 13253.26, + "end": 13255.52, + "probability": 0.0798 + }, + { + "start": 13255.52, + "end": 13255.86, + "probability": 0.0667 + }, + { + "start": 13258.3, + "end": 13261.82, + "probability": 0.1662 + }, + { + "start": 13265.51, + "end": 13267.44, + "probability": 0.063 + }, + { + "start": 13267.44, + "end": 13267.44, + "probability": 0.0399 + }, + { + "start": 13267.44, + "end": 13267.44, + "probability": 0.044 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.0, + "end": 13301.0, + "probability": 0.0 + }, + { + "start": 13301.88, + "end": 13301.88, + "probability": 0.1441 + }, + { + "start": 13301.88, + "end": 13301.88, + "probability": 0.101 + }, + { + "start": 13301.88, + "end": 13306.08, + "probability": 0.9773 + }, + { + "start": 13307.22, + "end": 13311.04, + "probability": 0.9749 + }, + { + "start": 13311.98, + "end": 13313.64, + "probability": 0.8617 + }, + { + "start": 13314.32, + "end": 13317.1, + "probability": 0.9564 + }, + { + "start": 13317.98, + "end": 13320.22, + "probability": 0.986 + }, + { + "start": 13321.08, + "end": 13323.52, + "probability": 0.9988 + }, + { + "start": 13323.52, + "end": 13326.22, + "probability": 0.9976 + }, + { + "start": 13327.38, + "end": 13331.18, + "probability": 0.985 + }, + { + "start": 13332.38, + "end": 13337.66, + "probability": 0.9765 + }, + { + "start": 13338.82, + "end": 13340.18, + "probability": 0.9938 + }, + { + "start": 13340.4, + "end": 13346.12, + "probability": 0.9921 + }, + { + "start": 13346.82, + "end": 13348.32, + "probability": 0.721 + }, + { + "start": 13349.1, + "end": 13350.42, + "probability": 0.6607 + }, + { + "start": 13351.36, + "end": 13354.14, + "probability": 0.9111 + }, + { + "start": 13354.76, + "end": 13359.82, + "probability": 0.896 + }, + { + "start": 13360.76, + "end": 13364.32, + "probability": 0.9968 + }, + { + "start": 13364.32, + "end": 13368.52, + "probability": 0.9785 + }, + { + "start": 13369.5, + "end": 13370.3, + "probability": 0.5573 + }, + { + "start": 13371.12, + "end": 13372.44, + "probability": 0.8267 + }, + { + "start": 13372.52, + "end": 13373.34, + "probability": 0.9161 + }, + { + "start": 13373.4, + "end": 13375.4, + "probability": 0.9944 + }, + { + "start": 13375.68, + "end": 13377.28, + "probability": 0.9778 + }, + { + "start": 13377.42, + "end": 13378.02, + "probability": 0.7812 + }, + { + "start": 13378.54, + "end": 13382.98, + "probability": 0.9446 + }, + { + "start": 13382.98, + "end": 13387.64, + "probability": 0.9854 + }, + { + "start": 13388.12, + "end": 13389.24, + "probability": 0.4766 + }, + { + "start": 13390.02, + "end": 13394.08, + "probability": 0.9917 + }, + { + "start": 13394.86, + "end": 13397.96, + "probability": 0.9992 + }, + { + "start": 13398.48, + "end": 13400.52, + "probability": 0.9619 + }, + { + "start": 13401.26, + "end": 13404.65, + "probability": 0.9947 + }, + { + "start": 13406.52, + "end": 13407.58, + "probability": 0.9313 + }, + { + "start": 13408.32, + "end": 13409.84, + "probability": 0.9189 + }, + { + "start": 13410.62, + "end": 13412.32, + "probability": 0.9007 + }, + { + "start": 13412.86, + "end": 13415.14, + "probability": 0.9451 + }, + { + "start": 13415.86, + "end": 13419.02, + "probability": 0.9727 + }, + { + "start": 13420.54, + "end": 13424.38, + "probability": 0.9698 + }, + { + "start": 13424.38, + "end": 13428.94, + "probability": 0.9995 + }, + { + "start": 13430.16, + "end": 13433.18, + "probability": 0.9159 + }, + { + "start": 13434.26, + "end": 13437.3, + "probability": 0.9985 + }, + { + "start": 13438.44, + "end": 13439.58, + "probability": 0.9995 + }, + { + "start": 13440.14, + "end": 13442.26, + "probability": 0.9914 + }, + { + "start": 13442.38, + "end": 13445.12, + "probability": 0.8044 + }, + { + "start": 13445.48, + "end": 13450.52, + "probability": 0.8866 + }, + { + "start": 13450.52, + "end": 13454.18, + "probability": 0.9137 + }, + { + "start": 13454.78, + "end": 13455.8, + "probability": 0.7208 + }, + { + "start": 13456.38, + "end": 13456.4, + "probability": 0.1167 + }, + { + "start": 13456.4, + "end": 13460.86, + "probability": 0.994 + }, + { + "start": 13460.86, + "end": 13465.14, + "probability": 0.9971 + }, + { + "start": 13465.5, + "end": 13466.06, + "probability": 0.8718 + }, + { + "start": 13466.42, + "end": 13467.32, + "probability": 0.6931 + }, + { + "start": 13467.64, + "end": 13469.76, + "probability": 0.84 + }, + { + "start": 13481.76, + "end": 13481.76, + "probability": 0.0631 + }, + { + "start": 13481.76, + "end": 13481.76, + "probability": 0.0511 + }, + { + "start": 13481.76, + "end": 13481.76, + "probability": 0.1328 + }, + { + "start": 13481.76, + "end": 13481.76, + "probability": 0.0953 + }, + { + "start": 13481.76, + "end": 13481.76, + "probability": 0.0786 + }, + { + "start": 13481.76, + "end": 13481.76, + "probability": 0.149 + }, + { + "start": 13487.14, + "end": 13487.24, + "probability": 0.0005 + }, + { + "start": 13499.38, + "end": 13501.12, + "probability": 0.1665 + }, + { + "start": 13503.52, + "end": 13504.14, + "probability": 0.4667 + }, + { + "start": 13505.44, + "end": 13508.7, + "probability": 0.9557 + }, + { + "start": 13508.7, + "end": 13511.78, + "probability": 0.8215 + }, + { + "start": 13513.14, + "end": 13518.94, + "probability": 0.9883 + }, + { + "start": 13519.04, + "end": 13521.6, + "probability": 0.9579 + }, + { + "start": 13522.62, + "end": 13526.32, + "probability": 0.9458 + }, + { + "start": 13527.46, + "end": 13535.89, + "probability": 0.9971 + }, + { + "start": 13536.04, + "end": 13538.48, + "probability": 0.9882 + }, + { + "start": 13538.52, + "end": 13543.16, + "probability": 0.9704 + }, + { + "start": 13545.16, + "end": 13550.16, + "probability": 0.8752 + }, + { + "start": 13550.26, + "end": 13552.06, + "probability": 0.9877 + }, + { + "start": 13552.22, + "end": 13553.14, + "probability": 0.9616 + }, + { + "start": 13553.72, + "end": 13559.16, + "probability": 0.9889 + }, + { + "start": 13559.16, + "end": 13564.1, + "probability": 0.9782 + }, + { + "start": 13565.54, + "end": 13568.36, + "probability": 0.9307 + }, + { + "start": 13569.94, + "end": 13570.88, + "probability": 0.6157 + }, + { + "start": 13571.36, + "end": 13576.28, + "probability": 0.8874 + }, + { + "start": 13576.34, + "end": 13579.16, + "probability": 0.9935 + }, + { + "start": 13579.36, + "end": 13581.05, + "probability": 0.9897 + }, + { + "start": 13581.8, + "end": 13585.66, + "probability": 0.7449 + }, + { + "start": 13586.34, + "end": 13591.1, + "probability": 0.7265 + }, + { + "start": 13591.92, + "end": 13592.96, + "probability": 0.8232 + }, + { + "start": 13593.66, + "end": 13594.78, + "probability": 0.9668 + }, + { + "start": 13594.84, + "end": 13598.84, + "probability": 0.9763 + }, + { + "start": 13599.68, + "end": 13605.68, + "probability": 0.9471 + }, + { + "start": 13605.9, + "end": 13608.86, + "probability": 0.7901 + }, + { + "start": 13609.7, + "end": 13615.38, + "probability": 0.9898 + }, + { + "start": 13617.18, + "end": 13619.46, + "probability": 0.7046 + }, + { + "start": 13619.76, + "end": 13623.22, + "probability": 0.9147 + }, + { + "start": 13623.82, + "end": 13625.64, + "probability": 0.7585 + }, + { + "start": 13626.16, + "end": 13627.94, + "probability": 0.9811 + }, + { + "start": 13628.12, + "end": 13629.0, + "probability": 0.8862 + }, + { + "start": 13629.44, + "end": 13630.78, + "probability": 0.751 + }, + { + "start": 13631.22, + "end": 13633.32, + "probability": 0.9941 + }, + { + "start": 13633.88, + "end": 13637.08, + "probability": 0.9877 + }, + { + "start": 13637.3, + "end": 13639.12, + "probability": 0.9847 + }, + { + "start": 13639.54, + "end": 13640.82, + "probability": 0.4344 + }, + { + "start": 13641.82, + "end": 13648.68, + "probability": 0.9975 + }, + { + "start": 13648.88, + "end": 13652.08, + "probability": 0.998 + }, + { + "start": 13652.22, + "end": 13652.5, + "probability": 0.7369 + }, + { + "start": 13653.54, + "end": 13654.18, + "probability": 0.5798 + }, + { + "start": 13654.46, + "end": 13658.64, + "probability": 0.8441 + }, + { + "start": 13658.74, + "end": 13660.6, + "probability": 0.9743 + }, + { + "start": 13672.86, + "end": 13672.88, + "probability": 0.7742 + }, + { + "start": 13672.88, + "end": 13675.02, + "probability": 0.7787 + }, + { + "start": 13676.2, + "end": 13677.7, + "probability": 0.7613 + }, + { + "start": 13678.7, + "end": 13681.18, + "probability": 0.8767 + }, + { + "start": 13682.14, + "end": 13683.62, + "probability": 0.9365 + }, + { + "start": 13683.7, + "end": 13687.68, + "probability": 0.8825 + }, + { + "start": 13688.26, + "end": 13690.12, + "probability": 0.785 + }, + { + "start": 13691.72, + "end": 13697.48, + "probability": 0.9809 + }, + { + "start": 13697.6, + "end": 13698.72, + "probability": 0.6831 + }, + { + "start": 13699.5, + "end": 13701.12, + "probability": 0.749 + }, + { + "start": 13702.48, + "end": 13706.78, + "probability": 0.9601 + }, + { + "start": 13708.14, + "end": 13709.9, + "probability": 0.8785 + }, + { + "start": 13710.0, + "end": 13711.9, + "probability": 0.9756 + }, + { + "start": 13712.26, + "end": 13714.98, + "probability": 0.9844 + }, + { + "start": 13715.24, + "end": 13716.2, + "probability": 0.819 + }, + { + "start": 13716.28, + "end": 13717.0, + "probability": 0.9657 + }, + { + "start": 13717.12, + "end": 13719.42, + "probability": 0.9281 + }, + { + "start": 13719.52, + "end": 13721.38, + "probability": 0.9688 + }, + { + "start": 13721.78, + "end": 13722.54, + "probability": 0.9417 + }, + { + "start": 13722.76, + "end": 13726.36, + "probability": 0.8101 + }, + { + "start": 13726.5, + "end": 13729.62, + "probability": 0.9376 + }, + { + "start": 13729.62, + "end": 13733.98, + "probability": 0.8901 + }, + { + "start": 13735.32, + "end": 13741.64, + "probability": 0.9825 + }, + { + "start": 13741.94, + "end": 13747.64, + "probability": 0.7615 + }, + { + "start": 13748.58, + "end": 13753.1, + "probability": 0.8647 + }, + { + "start": 13753.98, + "end": 13760.22, + "probability": 0.9745 + }, + { + "start": 13761.24, + "end": 13762.1, + "probability": 0.8743 + }, + { + "start": 13762.26, + "end": 13766.12, + "probability": 0.9475 + }, + { + "start": 13767.86, + "end": 13772.52, + "probability": 0.9971 + }, + { + "start": 13772.52, + "end": 13777.08, + "probability": 0.9701 + }, + { + "start": 13777.26, + "end": 13777.92, + "probability": 0.5668 + }, + { + "start": 13778.72, + "end": 13781.28, + "probability": 0.9207 + }, + { + "start": 13782.16, + "end": 13786.84, + "probability": 0.8034 + }, + { + "start": 13787.84, + "end": 13793.04, + "probability": 0.9822 + }, + { + "start": 13793.38, + "end": 13799.0, + "probability": 0.988 + }, + { + "start": 13801.92, + "end": 13804.98, + "probability": 0.894 + }, + { + "start": 13805.12, + "end": 13806.34, + "probability": 0.955 + }, + { + "start": 13806.94, + "end": 13811.1, + "probability": 0.9866 + }, + { + "start": 13811.58, + "end": 13811.92, + "probability": 0.9026 + }, + { + "start": 13813.26, + "end": 13816.86, + "probability": 0.9841 + }, + { + "start": 13817.44, + "end": 13819.34, + "probability": 0.5692 + }, + { + "start": 13820.48, + "end": 13821.8, + "probability": 0.7615 + }, + { + "start": 13821.96, + "end": 13827.46, + "probability": 0.7402 + }, + { + "start": 13829.16, + "end": 13831.44, + "probability": 0.8599 + }, + { + "start": 13832.66, + "end": 13837.16, + "probability": 0.9866 + }, + { + "start": 13837.94, + "end": 13842.4, + "probability": 0.8854 + }, + { + "start": 13842.4, + "end": 13844.94, + "probability": 0.8621 + }, + { + "start": 13845.52, + "end": 13850.0, + "probability": 0.9895 + }, + { + "start": 13850.48, + "end": 13852.52, + "probability": 0.9519 + }, + { + "start": 13852.94, + "end": 13853.18, + "probability": 0.8531 + }, + { + "start": 13853.86, + "end": 13854.74, + "probability": 0.4573 + }, + { + "start": 13855.2, + "end": 13859.86, + "probability": 0.7628 + }, + { + "start": 13859.86, + "end": 13864.3, + "probability": 0.971 + }, + { + "start": 13864.54, + "end": 13868.3, + "probability": 0.681 + }, + { + "start": 13868.6, + "end": 13871.44, + "probability": 0.9916 + }, + { + "start": 13871.96, + "end": 13876.66, + "probability": 0.979 + }, + { + "start": 13877.18, + "end": 13881.64, + "probability": 0.9857 + }, + { + "start": 13881.92, + "end": 13886.38, + "probability": 0.9954 + }, + { + "start": 13887.52, + "end": 13888.58, + "probability": 0.7261 + }, + { + "start": 13889.26, + "end": 13891.84, + "probability": 0.9302 + }, + { + "start": 13905.6, + "end": 13907.18, + "probability": 0.4072 + }, + { + "start": 13907.46, + "end": 13907.95, + "probability": 0.5641 + }, + { + "start": 13909.14, + "end": 13912.18, + "probability": 0.7558 + }, + { + "start": 13912.98, + "end": 13914.1, + "probability": 0.4091 + }, + { + "start": 13915.14, + "end": 13916.4, + "probability": 0.8555 + }, + { + "start": 13916.78, + "end": 13917.62, + "probability": 0.8439 + }, + { + "start": 13917.7, + "end": 13920.14, + "probability": 0.9693 + }, + { + "start": 13920.4, + "end": 13922.84, + "probability": 0.8848 + }, + { + "start": 13923.72, + "end": 13930.28, + "probability": 0.9922 + }, + { + "start": 13931.68, + "end": 13933.48, + "probability": 0.9175 + }, + { + "start": 13934.32, + "end": 13940.2, + "probability": 0.9681 + }, + { + "start": 13941.02, + "end": 13944.48, + "probability": 0.9212 + }, + { + "start": 13945.24, + "end": 13947.38, + "probability": 0.9595 + }, + { + "start": 13947.9, + "end": 13949.96, + "probability": 0.993 + }, + { + "start": 13951.4, + "end": 13954.48, + "probability": 0.859 + }, + { + "start": 13954.9, + "end": 13957.04, + "probability": 0.9469 + }, + { + "start": 13957.4, + "end": 13958.72, + "probability": 0.7587 + }, + { + "start": 13959.7, + "end": 13964.92, + "probability": 0.9775 + }, + { + "start": 13964.96, + "end": 13970.2, + "probability": 0.998 + }, + { + "start": 13971.24, + "end": 13975.52, + "probability": 0.9979 + }, + { + "start": 13977.06, + "end": 13977.68, + "probability": 0.5023 + }, + { + "start": 13977.8, + "end": 13978.5, + "probability": 0.8259 + }, + { + "start": 13978.9, + "end": 13981.32, + "probability": 0.9931 + }, + { + "start": 13981.9, + "end": 13985.84, + "probability": 0.9924 + }, + { + "start": 13986.72, + "end": 13988.14, + "probability": 0.5436 + }, + { + "start": 13988.14, + "end": 13993.18, + "probability": 0.9792 + }, + { + "start": 13993.66, + "end": 13995.96, + "probability": 0.6139 + }, + { + "start": 13996.0, + "end": 13999.04, + "probability": 0.9938 + }, + { + "start": 13999.3, + "end": 14000.52, + "probability": 0.7547 + }, + { + "start": 14000.86, + "end": 14005.7, + "probability": 0.9731 + }, + { + "start": 14007.26, + "end": 14009.18, + "probability": 0.832 + }, + { + "start": 14009.8, + "end": 14011.22, + "probability": 0.863 + }, + { + "start": 14012.08, + "end": 14014.0, + "probability": 0.9653 + }, + { + "start": 14014.96, + "end": 14016.34, + "probability": 0.9983 + }, + { + "start": 14017.1, + "end": 14020.4, + "probability": 0.9795 + }, + { + "start": 14020.4, + "end": 14022.9, + "probability": 0.9995 + }, + { + "start": 14024.26, + "end": 14025.1, + "probability": 0.9057 + }, + { + "start": 14026.5, + "end": 14027.64, + "probability": 0.7222 + }, + { + "start": 14028.64, + "end": 14032.98, + "probability": 0.9841 + }, + { + "start": 14034.2, + "end": 14037.1, + "probability": 0.9641 + }, + { + "start": 14037.86, + "end": 14039.4, + "probability": 0.9753 + }, + { + "start": 14040.1, + "end": 14042.0, + "probability": 0.9686 + }, + { + "start": 14042.3, + "end": 14043.24, + "probability": 0.9879 + }, + { + "start": 14043.38, + "end": 14044.86, + "probability": 0.8834 + }, + { + "start": 14045.26, + "end": 14047.04, + "probability": 0.9798 + }, + { + "start": 14047.46, + "end": 14050.16, + "probability": 0.988 + }, + { + "start": 14051.66, + "end": 14053.04, + "probability": 0.9541 + }, + { + "start": 14054.2, + "end": 14059.78, + "probability": 0.9969 + }, + { + "start": 14060.46, + "end": 14064.6, + "probability": 0.9932 + }, + { + "start": 14065.22, + "end": 14066.08, + "probability": 0.9703 + }, + { + "start": 14066.38, + "end": 14069.62, + "probability": 0.9628 + }, + { + "start": 14070.16, + "end": 14071.48, + "probability": 0.9741 + }, + { + "start": 14071.96, + "end": 14075.4, + "probability": 0.8076 + }, + { + "start": 14076.02, + "end": 14080.04, + "probability": 0.9922 + }, + { + "start": 14080.24, + "end": 14080.96, + "probability": 0.7598 + }, + { + "start": 14081.7, + "end": 14082.34, + "probability": 0.6314 + }, + { + "start": 14082.52, + "end": 14084.7, + "probability": 0.766 + }, + { + "start": 14085.22, + "end": 14086.2, + "probability": 0.7007 + }, + { + "start": 14086.98, + "end": 14088.4, + "probability": 0.9851 + }, + { + "start": 14095.3, + "end": 14096.58, + "probability": 0.4709 + }, + { + "start": 14097.34, + "end": 14098.02, + "probability": 0.5084 + }, + { + "start": 14098.04, + "end": 14100.04, + "probability": 0.8312 + }, + { + "start": 14100.86, + "end": 14102.58, + "probability": 0.8492 + }, + { + "start": 14113.06, + "end": 14115.02, + "probability": 0.8659 + }, + { + "start": 14119.67, + "end": 14121.72, + "probability": 0.7247 + }, + { + "start": 14121.86, + "end": 14123.7, + "probability": 0.7219 + }, + { + "start": 14124.46, + "end": 14126.84, + "probability": 0.923 + }, + { + "start": 14127.0, + "end": 14128.61, + "probability": 0.5781 + }, + { + "start": 14128.96, + "end": 14132.22, + "probability": 0.9798 + }, + { + "start": 14132.96, + "end": 14133.8, + "probability": 0.9923 + }, + { + "start": 14134.82, + "end": 14137.96, + "probability": 0.9683 + }, + { + "start": 14139.24, + "end": 14143.84, + "probability": 0.6721 + }, + { + "start": 14143.84, + "end": 14145.24, + "probability": 0.7585 + }, + { + "start": 14145.3, + "end": 14147.66, + "probability": 0.7462 + }, + { + "start": 14147.98, + "end": 14152.0, + "probability": 0.648 + }, + { + "start": 14152.18, + "end": 14152.68, + "probability": 0.4896 + }, + { + "start": 14152.76, + "end": 14154.42, + "probability": 0.9734 + }, + { + "start": 14154.94, + "end": 14156.14, + "probability": 0.998 + }, + { + "start": 14156.24, + "end": 14161.52, + "probability": 0.9784 + }, + { + "start": 14161.8, + "end": 14164.78, + "probability": 0.963 + }, + { + "start": 14164.78, + "end": 14169.6, + "probability": 0.9706 + }, + { + "start": 14169.72, + "end": 14170.56, + "probability": 0.5741 + }, + { + "start": 14170.74, + "end": 14175.94, + "probability": 0.9914 + }, + { + "start": 14175.94, + "end": 14180.5, + "probability": 0.9976 + }, + { + "start": 14180.66, + "end": 14182.02, + "probability": 0.7829 + }, + { + "start": 14182.52, + "end": 14185.66, + "probability": 0.9505 + }, + { + "start": 14185.76, + "end": 14186.86, + "probability": 0.7062 + }, + { + "start": 14186.86, + "end": 14188.32, + "probability": 0.9588 + }, + { + "start": 14188.46, + "end": 14190.72, + "probability": 0.9932 + }, + { + "start": 14190.84, + "end": 14192.52, + "probability": 0.9009 + }, + { + "start": 14192.66, + "end": 14196.98, + "probability": 0.9896 + }, + { + "start": 14197.28, + "end": 14198.52, + "probability": 0.6663 + }, + { + "start": 14198.94, + "end": 14199.84, + "probability": 0.72 + }, + { + "start": 14200.04, + "end": 14205.46, + "probability": 0.9764 + }, + { + "start": 14205.46, + "end": 14206.08, + "probability": 0.8453 + }, + { + "start": 14206.14, + "end": 14207.62, + "probability": 0.7189 + }, + { + "start": 14207.72, + "end": 14210.08, + "probability": 0.9988 + }, + { + "start": 14210.62, + "end": 14211.46, + "probability": 0.4714 + }, + { + "start": 14211.64, + "end": 14211.99, + "probability": 0.053 + }, + { + "start": 14212.42, + "end": 14213.04, + "probability": 0.6614 + }, + { + "start": 14213.28, + "end": 14215.26, + "probability": 0.0888 + }, + { + "start": 14215.26, + "end": 14215.8, + "probability": 0.3783 + }, + { + "start": 14215.8, + "end": 14218.26, + "probability": 0.6136 + }, + { + "start": 14218.26, + "end": 14220.74, + "probability": 0.904 + }, + { + "start": 14220.88, + "end": 14221.14, + "probability": 0.5886 + }, + { + "start": 14221.36, + "end": 14221.96, + "probability": 0.6805 + }, + { + "start": 14222.02, + "end": 14222.18, + "probability": 0.7383 + }, + { + "start": 14222.32, + "end": 14225.29, + "probability": 0.9958 + }, + { + "start": 14225.46, + "end": 14226.68, + "probability": 0.8802 + }, + { + "start": 14226.86, + "end": 14228.8, + "probability": 0.68 + }, + { + "start": 14228.98, + "end": 14230.3, + "probability": 0.7879 + }, + { + "start": 14230.42, + "end": 14232.86, + "probability": 0.9279 + }, + { + "start": 14233.12, + "end": 14234.76, + "probability": 0.9556 + }, + { + "start": 14234.76, + "end": 14236.04, + "probability": 0.9289 + }, + { + "start": 14236.16, + "end": 14237.48, + "probability": 0.8938 + }, + { + "start": 14237.84, + "end": 14239.1, + "probability": 0.9841 + }, + { + "start": 14239.3, + "end": 14239.78, + "probability": 0.7462 + }, + { + "start": 14240.26, + "end": 14242.16, + "probability": 0.9891 + }, + { + "start": 14242.66, + "end": 14245.14, + "probability": 0.9969 + }, + { + "start": 14245.34, + "end": 14245.54, + "probability": 0.6147 + }, + { + "start": 14245.72, + "end": 14246.24, + "probability": 0.7136 + }, + { + "start": 14246.58, + "end": 14249.74, + "probability": 0.1124 + }, + { + "start": 14250.06, + "end": 14251.6, + "probability": 0.7896 + }, + { + "start": 14251.76, + "end": 14256.54, + "probability": 0.9838 + }, + { + "start": 14256.66, + "end": 14257.15, + "probability": 0.6996 + }, + { + "start": 14257.65, + "end": 14259.9, + "probability": 0.9657 + }, + { + "start": 14260.96, + "end": 14262.62, + "probability": 0.9791 + }, + { + "start": 14262.68, + "end": 14266.28, + "probability": 0.9927 + }, + { + "start": 14266.48, + "end": 14267.84, + "probability": 0.7961 + }, + { + "start": 14267.94, + "end": 14268.46, + "probability": 0.7255 + }, + { + "start": 14268.56, + "end": 14268.64, + "probability": 0.3493 + }, + { + "start": 14268.72, + "end": 14275.28, + "probability": 0.955 + }, + { + "start": 14277.2, + "end": 14277.32, + "probability": 0.8445 + }, + { + "start": 14277.48, + "end": 14277.48, + "probability": 0.7836 + }, + { + "start": 14277.54, + "end": 14277.78, + "probability": 0.624 + }, + { + "start": 14277.82, + "end": 14280.2, + "probability": 0.9727 + }, + { + "start": 14280.34, + "end": 14282.44, + "probability": 0.4872 + }, + { + "start": 14283.16, + "end": 14285.06, + "probability": 0.9231 + }, + { + "start": 14285.88, + "end": 14288.18, + "probability": 0.9026 + }, + { + "start": 14288.34, + "end": 14290.06, + "probability": 0.9866 + }, + { + "start": 14290.22, + "end": 14292.97, + "probability": 0.9551 + }, + { + "start": 14293.56, + "end": 14294.3, + "probability": 0.5285 + }, + { + "start": 14294.86, + "end": 14295.64, + "probability": 0.9038 + }, + { + "start": 14296.04, + "end": 14299.68, + "probability": 0.9299 + }, + { + "start": 14299.74, + "end": 14304.9, + "probability": 0.9902 + }, + { + "start": 14305.02, + "end": 14309.34, + "probability": 0.9882 + }, + { + "start": 14309.34, + "end": 14313.36, + "probability": 0.9913 + }, + { + "start": 14313.98, + "end": 14316.02, + "probability": 0.7292 + }, + { + "start": 14316.02, + "end": 14319.34, + "probability": 0.8405 + }, + { + "start": 14319.4, + "end": 14319.46, + "probability": 0.0688 + }, + { + "start": 14319.46, + "end": 14319.86, + "probability": 0.7162 + }, + { + "start": 14319.9, + "end": 14323.02, + "probability": 0.9902 + }, + { + "start": 14323.12, + "end": 14325.06, + "probability": 0.825 + }, + { + "start": 14325.16, + "end": 14328.26, + "probability": 0.9833 + }, + { + "start": 14328.94, + "end": 14330.08, + "probability": 0.7431 + }, + { + "start": 14330.24, + "end": 14330.92, + "probability": 0.8085 + }, + { + "start": 14332.02, + "end": 14335.96, + "probability": 0.9996 + }, + { + "start": 14336.06, + "end": 14338.58, + "probability": 0.9571 + }, + { + "start": 14338.9, + "end": 14343.38, + "probability": 0.9827 + }, + { + "start": 14343.78, + "end": 14346.42, + "probability": 0.9964 + }, + { + "start": 14346.8, + "end": 14349.36, + "probability": 0.8418 + }, + { + "start": 14349.44, + "end": 14349.94, + "probability": 0.7498 + }, + { + "start": 14350.62, + "end": 14351.64, + "probability": 0.7018 + }, + { + "start": 14352.16, + "end": 14352.88, + "probability": 0.8507 + }, + { + "start": 14352.96, + "end": 14354.66, + "probability": 0.9466 + }, + { + "start": 14354.78, + "end": 14357.48, + "probability": 0.4857 + }, + { + "start": 14357.52, + "end": 14358.8, + "probability": 0.7416 + }, + { + "start": 14367.2, + "end": 14369.0, + "probability": 0.6097 + }, + { + "start": 14369.18, + "end": 14370.38, + "probability": 0.7393 + }, + { + "start": 14370.54, + "end": 14372.06, + "probability": 0.996 + }, + { + "start": 14372.06, + "end": 14373.24, + "probability": 0.9038 + }, + { + "start": 14373.54, + "end": 14375.78, + "probability": 0.9226 + }, + { + "start": 14375.98, + "end": 14376.72, + "probability": 0.8331 + }, + { + "start": 14376.82, + "end": 14380.82, + "probability": 0.9939 + }, + { + "start": 14381.9, + "end": 14385.5, + "probability": 0.9882 + }, + { + "start": 14385.6, + "end": 14388.84, + "probability": 0.9348 + }, + { + "start": 14389.38, + "end": 14390.2, + "probability": 0.8773 + }, + { + "start": 14390.54, + "end": 14392.07, + "probability": 0.9915 + }, + { + "start": 14392.18, + "end": 14394.76, + "probability": 0.9958 + }, + { + "start": 14394.88, + "end": 14396.24, + "probability": 0.9884 + }, + { + "start": 14396.94, + "end": 14397.72, + "probability": 0.804 + }, + { + "start": 14397.84, + "end": 14398.92, + "probability": 0.9434 + }, + { + "start": 14399.22, + "end": 14399.62, + "probability": 0.7307 + }, + { + "start": 14399.8, + "end": 14403.72, + "probability": 0.9934 + }, + { + "start": 14404.2, + "end": 14404.97, + "probability": 0.9136 + }, + { + "start": 14405.5, + "end": 14407.6, + "probability": 0.9275 + }, + { + "start": 14407.76, + "end": 14408.52, + "probability": 0.9273 + }, + { + "start": 14408.58, + "end": 14410.32, + "probability": 0.9626 + }, + { + "start": 14410.76, + "end": 14414.22, + "probability": 0.979 + }, + { + "start": 14414.28, + "end": 14415.02, + "probability": 0.9646 + }, + { + "start": 14415.38, + "end": 14416.54, + "probability": 0.964 + }, + { + "start": 14416.76, + "end": 14417.4, + "probability": 0.8906 + }, + { + "start": 14418.26, + "end": 14419.32, + "probability": 0.9286 + }, + { + "start": 14419.44, + "end": 14421.14, + "probability": 0.9448 + }, + { + "start": 14421.22, + "end": 14421.48, + "probability": 0.9524 + }, + { + "start": 14421.6, + "end": 14423.71, + "probability": 0.9684 + }, + { + "start": 14424.1, + "end": 14426.08, + "probability": 0.9243 + }, + { + "start": 14426.58, + "end": 14428.42, + "probability": 0.9421 + }, + { + "start": 14428.46, + "end": 14429.54, + "probability": 0.8859 + }, + { + "start": 14429.7, + "end": 14433.11, + "probability": 0.9911 + }, + { + "start": 14433.42, + "end": 14435.7, + "probability": 0.972 + }, + { + "start": 14436.06, + "end": 14437.28, + "probability": 0.9859 + }, + { + "start": 14437.74, + "end": 14438.76, + "probability": 0.9748 + }, + { + "start": 14438.78, + "end": 14440.14, + "probability": 0.9927 + }, + { + "start": 14440.22, + "end": 14442.91, + "probability": 0.9305 + }, + { + "start": 14443.46, + "end": 14446.9, + "probability": 0.9925 + }, + { + "start": 14446.9, + "end": 14449.72, + "probability": 0.9882 + }, + { + "start": 14450.08, + "end": 14453.88, + "probability": 0.9898 + }, + { + "start": 14454.08, + "end": 14458.36, + "probability": 0.9985 + }, + { + "start": 14458.66, + "end": 14461.36, + "probability": 0.835 + }, + { + "start": 14461.36, + "end": 14464.2, + "probability": 0.9971 + }, + { + "start": 14464.58, + "end": 14468.16, + "probability": 0.9974 + }, + { + "start": 14468.54, + "end": 14473.36, + "probability": 0.993 + }, + { + "start": 14473.44, + "end": 14473.98, + "probability": 0.5646 + }, + { + "start": 14474.56, + "end": 14476.1, + "probability": 0.9941 + }, + { + "start": 14476.42, + "end": 14479.56, + "probability": 0.9849 + }, + { + "start": 14480.14, + "end": 14481.14, + "probability": 0.8873 + }, + { + "start": 14481.62, + "end": 14483.66, + "probability": 0.9504 + }, + { + "start": 14484.1, + "end": 14487.56, + "probability": 0.8369 + }, + { + "start": 14487.88, + "end": 14492.0, + "probability": 0.981 + }, + { + "start": 14492.36, + "end": 14496.16, + "probability": 0.9764 + }, + { + "start": 14496.54, + "end": 14498.36, + "probability": 0.9207 + }, + { + "start": 14498.82, + "end": 14500.0, + "probability": 0.6288 + }, + { + "start": 14500.56, + "end": 14504.52, + "probability": 0.9888 + }, + { + "start": 14505.3, + "end": 14510.44, + "probability": 0.9922 + }, + { + "start": 14511.22, + "end": 14514.0, + "probability": 0.9954 + }, + { + "start": 14514.66, + "end": 14518.68, + "probability": 0.998 + }, + { + "start": 14519.42, + "end": 14520.88, + "probability": 0.9525 + }, + { + "start": 14520.94, + "end": 14525.88, + "probability": 0.9834 + }, + { + "start": 14526.3, + "end": 14527.88, + "probability": 0.8865 + }, + { + "start": 14528.26, + "end": 14529.1, + "probability": 0.7882 + }, + { + "start": 14529.24, + "end": 14533.28, + "probability": 0.9352 + }, + { + "start": 14533.6, + "end": 14538.04, + "probability": 0.995 + }, + { + "start": 14538.62, + "end": 14539.34, + "probability": 0.5163 + }, + { + "start": 14539.94, + "end": 14541.02, + "probability": 0.6876 + }, + { + "start": 14541.68, + "end": 14543.04, + "probability": 0.9426 + }, + { + "start": 14543.46, + "end": 14548.76, + "probability": 0.9946 + }, + { + "start": 14548.92, + "end": 14549.76, + "probability": 0.6967 + }, + { + "start": 14550.12, + "end": 14552.22, + "probability": 0.9312 + }, + { + "start": 14552.98, + "end": 14553.08, + "probability": 0.6076 + }, + { + "start": 14553.18, + "end": 14554.59, + "probability": 0.9836 + }, + { + "start": 14554.98, + "end": 14556.76, + "probability": 0.9575 + }, + { + "start": 14557.48, + "end": 14559.34, + "probability": 0.8325 + }, + { + "start": 14559.84, + "end": 14561.14, + "probability": 0.8615 + }, + { + "start": 14561.22, + "end": 14563.12, + "probability": 0.9847 + }, + { + "start": 14563.18, + "end": 14568.0, + "probability": 0.9824 + }, + { + "start": 14568.52, + "end": 14572.8, + "probability": 0.9047 + }, + { + "start": 14572.86, + "end": 14575.25, + "probability": 0.859 + }, + { + "start": 14575.54, + "end": 14578.14, + "probability": 0.9587 + }, + { + "start": 14578.74, + "end": 14580.48, + "probability": 0.9676 + }, + { + "start": 14580.98, + "end": 14581.6, + "probability": 0.7642 + }, + { + "start": 14581.86, + "end": 14582.76, + "probability": 0.6245 + }, + { + "start": 14583.08, + "end": 14583.76, + "probability": 0.7914 + }, + { + "start": 14583.8, + "end": 14585.16, + "probability": 0.8525 + }, + { + "start": 14585.24, + "end": 14585.66, + "probability": 0.5552 + }, + { + "start": 14585.68, + "end": 14586.88, + "probability": 0.6417 + }, + { + "start": 14601.88, + "end": 14603.44, + "probability": 0.7712 + }, + { + "start": 14604.62, + "end": 14604.82, + "probability": 0.0315 + }, + { + "start": 14604.82, + "end": 14606.72, + "probability": 0.5911 + }, + { + "start": 14609.47, + "end": 14612.42, + "probability": 0.7962 + }, + { + "start": 14612.98, + "end": 14614.84, + "probability": 0.5699 + }, + { + "start": 14615.38, + "end": 14618.82, + "probability": 0.8235 + }, + { + "start": 14619.34, + "end": 14620.04, + "probability": 0.7067 + }, + { + "start": 14620.56, + "end": 14622.32, + "probability": 0.9399 + }, + { + "start": 14623.18, + "end": 14623.78, + "probability": 0.9155 + }, + { + "start": 14624.26, + "end": 14626.96, + "probability": 0.8454 + }, + { + "start": 14627.04, + "end": 14627.25, + "probability": 0.9891 + }, + { + "start": 14628.08, + "end": 14630.76, + "probability": 0.8434 + }, + { + "start": 14630.88, + "end": 14633.28, + "probability": 0.8728 + }, + { + "start": 14633.82, + "end": 14635.01, + "probability": 0.9973 + }, + { + "start": 14635.48, + "end": 14635.66, + "probability": 0.2777 + }, + { + "start": 14635.72, + "end": 14638.16, + "probability": 0.7325 + }, + { + "start": 14638.28, + "end": 14638.78, + "probability": 0.7013 + }, + { + "start": 14638.82, + "end": 14639.84, + "probability": 0.9034 + }, + { + "start": 14640.4, + "end": 14640.96, + "probability": 0.7795 + }, + { + "start": 14641.08, + "end": 14644.13, + "probability": 0.7536 + }, + { + "start": 14644.54, + "end": 14645.48, + "probability": 0.9695 + }, + { + "start": 14645.58, + "end": 14651.44, + "probability": 0.2063 + }, + { + "start": 14651.62, + "end": 14653.76, + "probability": 0.4493 + }, + { + "start": 14654.08, + "end": 14654.61, + "probability": 0.3969 + }, + { + "start": 14654.98, + "end": 14655.86, + "probability": 0.4194 + }, + { + "start": 14655.94, + "end": 14657.22, + "probability": 0.8591 + }, + { + "start": 14657.38, + "end": 14658.96, + "probability": 0.8073 + }, + { + "start": 14659.1, + "end": 14661.12, + "probability": 0.8049 + }, + { + "start": 14661.42, + "end": 14662.9, + "probability": 0.9983 + }, + { + "start": 14662.98, + "end": 14664.42, + "probability": 0.9956 + }, + { + "start": 14664.48, + "end": 14665.07, + "probability": 0.5166 + }, + { + "start": 14666.0, + "end": 14666.78, + "probability": 0.978 + }, + { + "start": 14667.46, + "end": 14668.82, + "probability": 0.2277 + }, + { + "start": 14668.84, + "end": 14669.3, + "probability": 0.1217 + }, + { + "start": 14670.0, + "end": 14670.36, + "probability": 0.6499 + }, + { + "start": 14670.44, + "end": 14673.74, + "probability": 0.9481 + }, + { + "start": 14674.5, + "end": 14675.3, + "probability": 0.4736 + }, + { + "start": 14675.34, + "end": 14678.72, + "probability": 0.6049 + }, + { + "start": 14679.14, + "end": 14679.8, + "probability": 0.6031 + }, + { + "start": 14679.84, + "end": 14681.16, + "probability": 0.9868 + }, + { + "start": 14681.18, + "end": 14682.66, + "probability": 0.7718 + }, + { + "start": 14682.72, + "end": 14686.36, + "probability": 0.9959 + }, + { + "start": 14686.92, + "end": 14690.11, + "probability": 0.8149 + }, + { + "start": 14690.62, + "end": 14691.41, + "probability": 0.9289 + }, + { + "start": 14692.22, + "end": 14692.98, + "probability": 0.0443 + }, + { + "start": 14692.98, + "end": 14693.06, + "probability": 0.1494 + }, + { + "start": 14693.06, + "end": 14693.74, + "probability": 0.6315 + }, + { + "start": 14695.1, + "end": 14696.7, + "probability": 0.7791 + }, + { + "start": 14696.88, + "end": 14698.46, + "probability": 0.0109 + }, + { + "start": 14698.62, + "end": 14700.4, + "probability": 0.5936 + }, + { + "start": 14700.5, + "end": 14701.6, + "probability": 0.882 + }, + { + "start": 14701.8, + "end": 14703.16, + "probability": 0.4051 + }, + { + "start": 14703.5, + "end": 14704.4, + "probability": 0.8287 + }, + { + "start": 14705.2, + "end": 14706.08, + "probability": 0.7518 + }, + { + "start": 14706.1, + "end": 14707.26, + "probability": 0.9805 + }, + { + "start": 14707.46, + "end": 14707.54, + "probability": 0.4575 + }, + { + "start": 14707.62, + "end": 14710.6, + "probability": 0.9681 + }, + { + "start": 14710.66, + "end": 14712.0, + "probability": 0.9915 + }, + { + "start": 14713.02, + "end": 14716.88, + "probability": 0.8257 + }, + { + "start": 14716.92, + "end": 14718.94, + "probability": 0.5009 + }, + { + "start": 14719.34, + "end": 14722.3, + "probability": 0.214 + }, + { + "start": 14722.3, + "end": 14725.28, + "probability": 0.2302 + }, + { + "start": 14725.78, + "end": 14728.02, + "probability": 0.7898 + }, + { + "start": 14728.1, + "end": 14729.64, + "probability": 0.8118 + }, + { + "start": 14729.78, + "end": 14729.78, + "probability": 0.8054 + }, + { + "start": 14729.78, + "end": 14730.06, + "probability": 0.6194 + }, + { + "start": 14730.7, + "end": 14733.08, + "probability": 0.4007 + }, + { + "start": 14733.28, + "end": 14735.08, + "probability": 0.2041 + }, + { + "start": 14735.2, + "end": 14736.7, + "probability": 0.827 + }, + { + "start": 14737.0, + "end": 14738.78, + "probability": 0.6942 + }, + { + "start": 14738.8, + "end": 14738.82, + "probability": 0.0313 + }, + { + "start": 14738.88, + "end": 14740.46, + "probability": 0.5073 + }, + { + "start": 14740.76, + "end": 14741.28, + "probability": 0.2134 + }, + { + "start": 14742.02, + "end": 14742.8, + "probability": 0.8766 + }, + { + "start": 14744.07, + "end": 14748.6, + "probability": 0.983 + }, + { + "start": 14748.68, + "end": 14750.96, + "probability": 0.9756 + }, + { + "start": 14751.66, + "end": 14752.1, + "probability": 0.9302 + }, + { + "start": 14752.12, + "end": 14752.44, + "probability": 0.5545 + }, + { + "start": 14752.52, + "end": 14753.52, + "probability": 0.8721 + }, + { + "start": 14753.58, + "end": 14755.78, + "probability": 0.9374 + }, + { + "start": 14756.2, + "end": 14756.34, + "probability": 0.5461 + }, + { + "start": 14756.4, + "end": 14757.22, + "probability": 0.9094 + }, + { + "start": 14757.44, + "end": 14758.4, + "probability": 0.6573 + }, + { + "start": 14758.5, + "end": 14760.98, + "probability": 0.7169 + }, + { + "start": 14761.46, + "end": 14762.36, + "probability": 0.5291 + }, + { + "start": 14762.7, + "end": 14762.76, + "probability": 0.1087 + }, + { + "start": 14762.76, + "end": 14763.52, + "probability": 0.9549 + }, + { + "start": 14764.38, + "end": 14767.28, + "probability": 0.9389 + }, + { + "start": 14767.74, + "end": 14768.37, + "probability": 0.289 + }, + { + "start": 14769.12, + "end": 14770.82, + "probability": 0.3234 + }, + { + "start": 14771.02, + "end": 14771.2, + "probability": 0.1728 + }, + { + "start": 14771.24, + "end": 14777.37, + "probability": 0.6703 + }, + { + "start": 14778.22, + "end": 14779.94, + "probability": 0.4582 + }, + { + "start": 14780.3, + "end": 14781.17, + "probability": 0.7991 + }, + { + "start": 14781.62, + "end": 14783.02, + "probability": 0.3952 + }, + { + "start": 14783.1, + "end": 14783.9, + "probability": 0.0108 + }, + { + "start": 14784.06, + "end": 14786.68, + "probability": 0.8734 + }, + { + "start": 14786.76, + "end": 14789.34, + "probability": 0.8091 + }, + { + "start": 14789.86, + "end": 14790.69, + "probability": 0.9424 + }, + { + "start": 14790.78, + "end": 14791.86, + "probability": 0.8901 + }, + { + "start": 14791.92, + "end": 14792.36, + "probability": 0.8372 + }, + { + "start": 14792.92, + "end": 14793.76, + "probability": 0.6413 + }, + { + "start": 14793.94, + "end": 14794.46, + "probability": 0.7117 + }, + { + "start": 14794.5, + "end": 14796.02, + "probability": 0.958 + }, + { + "start": 14796.14, + "end": 14797.24, + "probability": 0.5984 + }, + { + "start": 14797.74, + "end": 14799.18, + "probability": 0.837 + }, + { + "start": 14810.68, + "end": 14812.34, + "probability": 0.757 + }, + { + "start": 14812.54, + "end": 14816.64, + "probability": 0.9483 + }, + { + "start": 14816.7, + "end": 14817.16, + "probability": 0.4553 + }, + { + "start": 14817.78, + "end": 14819.4, + "probability": 0.9154 + }, + { + "start": 14820.38, + "end": 14822.82, + "probability": 0.9639 + }, + { + "start": 14823.74, + "end": 14825.22, + "probability": 0.8515 + }, + { + "start": 14825.92, + "end": 14827.36, + "probability": 0.9878 + }, + { + "start": 14829.04, + "end": 14832.66, + "probability": 0.8034 + }, + { + "start": 14832.8, + "end": 14833.32, + "probability": 0.9969 + }, + { + "start": 14833.92, + "end": 14834.54, + "probability": 0.991 + }, + { + "start": 14835.24, + "end": 14835.7, + "probability": 0.9821 + }, + { + "start": 14836.58, + "end": 14838.1, + "probability": 0.8523 + }, + { + "start": 14838.78, + "end": 14843.56, + "probability": 0.9578 + }, + { + "start": 14844.2, + "end": 14845.48, + "probability": 0.9888 + }, + { + "start": 14846.24, + "end": 14848.28, + "probability": 0.9709 + }, + { + "start": 14848.86, + "end": 14853.88, + "probability": 0.8688 + }, + { + "start": 14854.48, + "end": 14857.24, + "probability": 0.9727 + }, + { + "start": 14857.82, + "end": 14859.04, + "probability": 0.965 + }, + { + "start": 14859.48, + "end": 14861.04, + "probability": 0.926 + }, + { + "start": 14861.5, + "end": 14862.9, + "probability": 0.9901 + }, + { + "start": 14863.4, + "end": 14864.82, + "probability": 0.7828 + }, + { + "start": 14865.38, + "end": 14871.36, + "probability": 0.9966 + }, + { + "start": 14872.02, + "end": 14874.4, + "probability": 0.9879 + }, + { + "start": 14874.58, + "end": 14876.18, + "probability": 0.9897 + }, + { + "start": 14876.86, + "end": 14878.14, + "probability": 0.9868 + }, + { + "start": 14878.2, + "end": 14880.38, + "probability": 0.9701 + }, + { + "start": 14881.06, + "end": 14884.08, + "probability": 0.4929 + }, + { + "start": 14884.08, + "end": 14890.26, + "probability": 0.9331 + }, + { + "start": 14890.84, + "end": 14892.28, + "probability": 0.9419 + }, + { + "start": 14893.06, + "end": 14896.14, + "probability": 0.921 + }, + { + "start": 14896.2, + "end": 14897.32, + "probability": 0.8525 + }, + { + "start": 14898.2, + "end": 14899.4, + "probability": 0.8042 + }, + { + "start": 14900.94, + "end": 14901.66, + "probability": 0.9893 + }, + { + "start": 14903.26, + "end": 14905.45, + "probability": 0.9126 + }, + { + "start": 14905.82, + "end": 14909.96, + "probability": 0.7697 + }, + { + "start": 14910.7, + "end": 14911.56, + "probability": 0.9758 + }, + { + "start": 14911.92, + "end": 14912.6, + "probability": 0.9556 + }, + { + "start": 14913.5, + "end": 14921.08, + "probability": 0.9312 + }, + { + "start": 14921.08, + "end": 14925.76, + "probability": 0.9984 + }, + { + "start": 14926.84, + "end": 14928.64, + "probability": 0.9824 + }, + { + "start": 14928.74, + "end": 14930.22, + "probability": 0.9905 + }, + { + "start": 14930.26, + "end": 14931.03, + "probability": 0.8368 + }, + { + "start": 14932.06, + "end": 14933.48, + "probability": 0.9454 + }, + { + "start": 14935.02, + "end": 14935.86, + "probability": 0.6309 + }, + { + "start": 14936.56, + "end": 14941.62, + "probability": 0.998 + }, + { + "start": 14942.54, + "end": 14945.16, + "probability": 0.8469 + }, + { + "start": 14946.28, + "end": 14948.12, + "probability": 0.9757 + }, + { + "start": 14948.82, + "end": 14951.6, + "probability": 0.7986 + }, + { + "start": 14952.04, + "end": 14956.24, + "probability": 0.996 + }, + { + "start": 14957.16, + "end": 14959.6, + "probability": 0.9795 + }, + { + "start": 14960.0, + "end": 14961.46, + "probability": 0.9922 + }, + { + "start": 14962.26, + "end": 14963.88, + "probability": 0.9774 + }, + { + "start": 14964.44, + "end": 14966.32, + "probability": 0.9739 + }, + { + "start": 14967.76, + "end": 14968.62, + "probability": 0.9592 + }, + { + "start": 14970.02, + "end": 14971.1, + "probability": 0.9751 + }, + { + "start": 14971.24, + "end": 14972.2, + "probability": 0.9816 + }, + { + "start": 14973.08, + "end": 14974.62, + "probability": 0.9955 + }, + { + "start": 14975.8, + "end": 14977.5, + "probability": 0.956 + }, + { + "start": 14978.02, + "end": 14979.42, + "probability": 0.9948 + }, + { + "start": 14979.62, + "end": 14981.72, + "probability": 0.9635 + }, + { + "start": 14983.08, + "end": 14983.7, + "probability": 0.9656 + }, + { + "start": 14984.16, + "end": 14986.44, + "probability": 0.9816 + }, + { + "start": 14986.88, + "end": 14988.52, + "probability": 0.9582 + }, + { + "start": 14989.9, + "end": 14992.76, + "probability": 0.9533 + }, + { + "start": 14993.46, + "end": 14994.06, + "probability": 0.4978 + }, + { + "start": 14994.58, + "end": 14996.5, + "probability": 0.9479 + }, + { + "start": 14996.96, + "end": 15002.4, + "probability": 0.9681 + }, + { + "start": 15002.48, + "end": 15005.22, + "probability": 0.9746 + }, + { + "start": 15005.28, + "end": 15005.86, + "probability": 0.8842 + }, + { + "start": 15006.46, + "end": 15007.1, + "probability": 0.6861 + }, + { + "start": 15007.14, + "end": 15007.68, + "probability": 0.7096 + }, + { + "start": 15009.96, + "end": 15010.58, + "probability": 0.2561 + }, + { + "start": 15010.58, + "end": 15010.58, + "probability": 0.1985 + }, + { + "start": 15010.58, + "end": 15011.7, + "probability": 0.6271 + }, + { + "start": 15030.24, + "end": 15031.42, + "probability": 0.8527 + }, + { + "start": 15031.54, + "end": 15033.38, + "probability": 0.5943 + }, + { + "start": 15034.44, + "end": 15040.76, + "probability": 0.9807 + }, + { + "start": 15042.44, + "end": 15043.92, + "probability": 0.0366 + }, + { + "start": 15044.06, + "end": 15045.19, + "probability": 0.4961 + }, + { + "start": 15045.51, + "end": 15050.14, + "probability": 0.7988 + }, + { + "start": 15051.28, + "end": 15054.12, + "probability": 0.9917 + }, + { + "start": 15054.2, + "end": 15058.44, + "probability": 0.9411 + }, + { + "start": 15058.44, + "end": 15061.32, + "probability": 0.6754 + }, + { + "start": 15062.08, + "end": 15063.54, + "probability": 0.9658 + }, + { + "start": 15065.46, + "end": 15068.76, + "probability": 0.8586 + }, + { + "start": 15068.88, + "end": 15072.48, + "probability": 0.8038 + }, + { + "start": 15072.74, + "end": 15075.46, + "probability": 0.4589 + }, + { + "start": 15076.22, + "end": 15077.56, + "probability": 0.6873 + }, + { + "start": 15077.96, + "end": 15083.32, + "probability": 0.8052 + }, + { + "start": 15083.54, + "end": 15086.82, + "probability": 0.9976 + }, + { + "start": 15087.38, + "end": 15089.7, + "probability": 0.9886 + }, + { + "start": 15090.8, + "end": 15091.32, + "probability": 0.1106 + }, + { + "start": 15091.42, + "end": 15091.7, + "probability": 0.1936 + }, + { + "start": 15091.7, + "end": 15092.08, + "probability": 0.2517 + }, + { + "start": 15092.44, + "end": 15095.06, + "probability": 0.8042 + }, + { + "start": 15096.64, + "end": 15099.26, + "probability": 0.7466 + }, + { + "start": 15099.96, + "end": 15101.5, + "probability": 0.9925 + }, + { + "start": 15101.82, + "end": 15102.02, + "probability": 0.908 + }, + { + "start": 15104.06, + "end": 15104.8, + "probability": 0.8611 + }, + { + "start": 15105.06, + "end": 15106.26, + "probability": 0.9844 + }, + { + "start": 15107.44, + "end": 15110.14, + "probability": 0.9053 + }, + { + "start": 15110.7, + "end": 15112.76, + "probability": 0.7486 + }, + { + "start": 15113.56, + "end": 15118.28, + "probability": 0.9217 + }, + { + "start": 15118.32, + "end": 15121.68, + "probability": 0.9784 + }, + { + "start": 15122.6, + "end": 15125.4, + "probability": 0.8782 + }, + { + "start": 15126.26, + "end": 15128.06, + "probability": 0.7735 + }, + { + "start": 15129.02, + "end": 15130.3, + "probability": 0.8257 + }, + { + "start": 15131.24, + "end": 15136.6, + "probability": 0.9521 + }, + { + "start": 15137.14, + "end": 15138.78, + "probability": 0.9889 + }, + { + "start": 15139.54, + "end": 15141.26, + "probability": 0.9605 + }, + { + "start": 15141.9, + "end": 15144.3, + "probability": 0.9825 + }, + { + "start": 15145.3, + "end": 15147.16, + "probability": 0.9973 + }, + { + "start": 15147.9, + "end": 15153.1, + "probability": 0.994 + }, + { + "start": 15153.46, + "end": 15154.64, + "probability": 0.7374 + }, + { + "start": 15155.18, + "end": 15155.82, + "probability": 0.8748 + }, + { + "start": 15155.9, + "end": 15161.1, + "probability": 0.9934 + }, + { + "start": 15161.78, + "end": 15162.64, + "probability": 0.8082 + }, + { + "start": 15162.78, + "end": 15164.08, + "probability": 0.99 + }, + { + "start": 15164.3, + "end": 15164.5, + "probability": 0.5839 + }, + { + "start": 15165.5, + "end": 15168.08, + "probability": 0.9862 + }, + { + "start": 15169.02, + "end": 15170.3, + "probability": 0.9074 + }, + { + "start": 15170.54, + "end": 15172.74, + "probability": 0.9167 + }, + { + "start": 15173.4, + "end": 15177.12, + "probability": 0.9963 + }, + { + "start": 15177.3, + "end": 15178.18, + "probability": 0.9854 + }, + { + "start": 15178.28, + "end": 15178.9, + "probability": 0.6006 + }, + { + "start": 15179.28, + "end": 15180.9, + "probability": 0.7199 + }, + { + "start": 15181.78, + "end": 15182.96, + "probability": 0.8529 + }, + { + "start": 15183.44, + "end": 15186.14, + "probability": 0.8251 + }, + { + "start": 15186.2, + "end": 15189.86, + "probability": 0.9195 + }, + { + "start": 15190.56, + "end": 15195.48, + "probability": 0.9641 + }, + { + "start": 15195.56, + "end": 15196.34, + "probability": 0.5772 + }, + { + "start": 15197.65, + "end": 15204.9, + "probability": 0.9573 + }, + { + "start": 15206.1, + "end": 15208.62, + "probability": 0.9839 + }, + { + "start": 15208.66, + "end": 15212.16, + "probability": 0.9949 + }, + { + "start": 15212.42, + "end": 15213.38, + "probability": 0.631 + }, + { + "start": 15213.5, + "end": 15213.64, + "probability": 0.2838 + }, + { + "start": 15213.94, + "end": 15216.96, + "probability": 0.9727 + }, + { + "start": 15217.7, + "end": 15221.7, + "probability": 0.9762 + }, + { + "start": 15221.76, + "end": 15222.0, + "probability": 0.663 + }, + { + "start": 15222.6, + "end": 15223.24, + "probability": 0.5903 + }, + { + "start": 15223.34, + "end": 15223.92, + "probability": 0.5025 + }, + { + "start": 15224.02, + "end": 15225.7, + "probability": 0.936 + }, + { + "start": 15225.74, + "end": 15226.24, + "probability": 0.5287 + }, + { + "start": 15226.26, + "end": 15227.82, + "probability": 0.7955 + }, + { + "start": 15237.44, + "end": 15238.36, + "probability": 0.0269 + }, + { + "start": 15251.02, + "end": 15256.55, + "probability": 0.8472 + }, + { + "start": 15256.74, + "end": 15258.88, + "probability": 0.9395 + }, + { + "start": 15259.3, + "end": 15261.28, + "probability": 0.9239 + }, + { + "start": 15261.48, + "end": 15262.86, + "probability": 0.4698 + }, + { + "start": 15262.94, + "end": 15263.68, + "probability": 0.5851 + }, + { + "start": 15264.26, + "end": 15266.38, + "probability": 0.2756 + }, + { + "start": 15266.76, + "end": 15267.6, + "probability": 0.6904 + }, + { + "start": 15267.68, + "end": 15268.97, + "probability": 0.9596 + }, + { + "start": 15269.6, + "end": 15270.98, + "probability": 0.795 + }, + { + "start": 15271.06, + "end": 15271.38, + "probability": 0.8146 + }, + { + "start": 15271.42, + "end": 15272.86, + "probability": 0.9037 + }, + { + "start": 15272.86, + "end": 15273.58, + "probability": 0.9128 + }, + { + "start": 15273.58, + "end": 15274.42, + "probability": 0.4098 + }, + { + "start": 15275.02, + "end": 15278.12, + "probability": 0.5845 + }, + { + "start": 15278.8, + "end": 15279.98, + "probability": 0.4713 + }, + { + "start": 15280.18, + "end": 15280.26, + "probability": 0.2979 + }, + { + "start": 15280.26, + "end": 15280.98, + "probability": 0.5666 + }, + { + "start": 15282.23, + "end": 15285.18, + "probability": 0.9076 + }, + { + "start": 15285.96, + "end": 15287.2, + "probability": 0.9495 + }, + { + "start": 15287.26, + "end": 15287.8, + "probability": 0.9725 + }, + { + "start": 15287.92, + "end": 15290.18, + "probability": 0.8828 + }, + { + "start": 15291.02, + "end": 15292.12, + "probability": 0.806 + }, + { + "start": 15292.7, + "end": 15293.22, + "probability": 0.3716 + }, + { + "start": 15293.48, + "end": 15294.7, + "probability": 0.9517 + }, + { + "start": 15296.06, + "end": 15301.06, + "probability": 0.9543 + }, + { + "start": 15301.98, + "end": 15303.82, + "probability": 0.957 + }, + { + "start": 15304.26, + "end": 15306.08, + "probability": 0.9951 + }, + { + "start": 15306.6, + "end": 15307.16, + "probability": 0.5187 + }, + { + "start": 15307.5, + "end": 15309.34, + "probability": 0.9134 + }, + { + "start": 15309.74, + "end": 15310.58, + "probability": 0.8657 + }, + { + "start": 15310.86, + "end": 15312.54, + "probability": 0.667 + }, + { + "start": 15313.14, + "end": 15314.88, + "probability": 0.7759 + }, + { + "start": 15315.56, + "end": 15316.02, + "probability": 0.8572 + }, + { + "start": 15316.58, + "end": 15317.26, + "probability": 0.6694 + }, + { + "start": 15317.8, + "end": 15319.3, + "probability": 0.9919 + }, + { + "start": 15320.0, + "end": 15322.0, + "probability": 0.7974 + }, + { + "start": 15322.52, + "end": 15327.44, + "probability": 0.9522 + }, + { + "start": 15328.36, + "end": 15330.8, + "probability": 0.864 + }, + { + "start": 15330.8, + "end": 15330.8, + "probability": 0.1379 + }, + { + "start": 15330.8, + "end": 15331.42, + "probability": 0.5728 + }, + { + "start": 15332.06, + "end": 15335.6, + "probability": 0.9168 + }, + { + "start": 15336.02, + "end": 15336.3, + "probability": 0.3305 + }, + { + "start": 15336.3, + "end": 15338.82, + "probability": 0.9499 + }, + { + "start": 15339.56, + "end": 15341.66, + "probability": 0.9539 + }, + { + "start": 15342.36, + "end": 15343.32, + "probability": 0.9048 + }, + { + "start": 15343.82, + "end": 15345.36, + "probability": 0.998 + }, + { + "start": 15345.82, + "end": 15346.82, + "probability": 0.8147 + }, + { + "start": 15347.08, + "end": 15348.12, + "probability": 0.6008 + }, + { + "start": 15349.6, + "end": 15353.1, + "probability": 0.974 + }, + { + "start": 15353.94, + "end": 15354.58, + "probability": 0.1372 + }, + { + "start": 15354.74, + "end": 15357.01, + "probability": 0.3591 + }, + { + "start": 15357.76, + "end": 15359.94, + "probability": 0.9897 + }, + { + "start": 15360.56, + "end": 15363.44, + "probability": 0.9006 + }, + { + "start": 15363.96, + "end": 15368.32, + "probability": 0.9798 + }, + { + "start": 15369.02, + "end": 15371.32, + "probability": 0.9663 + }, + { + "start": 15372.22, + "end": 15372.54, + "probability": 0.5857 + }, + { + "start": 15372.74, + "end": 15373.04, + "probability": 0.9624 + }, + { + "start": 15373.18, + "end": 15374.79, + "probability": 0.9629 + }, + { + "start": 15375.36, + "end": 15375.82, + "probability": 0.9509 + }, + { + "start": 15376.12, + "end": 15376.46, + "probability": 0.8852 + }, + { + "start": 15376.84, + "end": 15377.42, + "probability": 0.7639 + }, + { + "start": 15377.9, + "end": 15379.44, + "probability": 0.9224 + }, + { + "start": 15379.82, + "end": 15381.02, + "probability": 0.8867 + }, + { + "start": 15381.28, + "end": 15382.34, + "probability": 0.9559 + }, + { + "start": 15382.64, + "end": 15383.44, + "probability": 0.9696 + }, + { + "start": 15384.06, + "end": 15385.42, + "probability": 0.9185 + }, + { + "start": 15386.36, + "end": 15389.92, + "probability": 0.7023 + }, + { + "start": 15390.76, + "end": 15394.82, + "probability": 0.8938 + }, + { + "start": 15395.1, + "end": 15400.02, + "probability": 0.9212 + }, + { + "start": 15400.48, + "end": 15401.84, + "probability": 0.948 + }, + { + "start": 15402.38, + "end": 15403.74, + "probability": 0.973 + }, + { + "start": 15404.02, + "end": 15405.06, + "probability": 0.5653 + }, + { + "start": 15405.42, + "end": 15406.42, + "probability": 0.9442 + }, + { + "start": 15406.88, + "end": 15410.2, + "probability": 0.9941 + }, + { + "start": 15410.58, + "end": 15413.58, + "probability": 0.9871 + }, + { + "start": 15413.96, + "end": 15418.62, + "probability": 0.9893 + }, + { + "start": 15419.7, + "end": 15420.8, + "probability": 0.7988 + }, + { + "start": 15421.12, + "end": 15421.38, + "probability": 0.8694 + }, + { + "start": 15421.68, + "end": 15423.76, + "probability": 0.7673 + }, + { + "start": 15424.12, + "end": 15426.54, + "probability": 0.9591 + }, + { + "start": 15427.12, + "end": 15429.98, + "probability": 0.9722 + }, + { + "start": 15430.6, + "end": 15433.48, + "probability": 0.9805 + }, + { + "start": 15434.34, + "end": 15438.2, + "probability": 0.9299 + }, + { + "start": 15438.98, + "end": 15439.74, + "probability": 0.289 + }, + { + "start": 15440.06, + "end": 15440.86, + "probability": 0.9358 + }, + { + "start": 15441.44, + "end": 15444.78, + "probability": 0.9746 + }, + { + "start": 15445.26, + "end": 15448.32, + "probability": 0.97 + }, + { + "start": 15448.84, + "end": 15450.94, + "probability": 0.9885 + }, + { + "start": 15452.52, + "end": 15454.24, + "probability": 0.999 + }, + { + "start": 15454.96, + "end": 15455.06, + "probability": 0.0469 + }, + { + "start": 15455.06, + "end": 15457.46, + "probability": 0.7549 + }, + { + "start": 15458.2, + "end": 15460.81, + "probability": 0.6921 + }, + { + "start": 15463.42, + "end": 15467.76, + "probability": 0.971 + }, + { + "start": 15468.36, + "end": 15468.86, + "probability": 0.4985 + }, + { + "start": 15469.42, + "end": 15472.68, + "probability": 0.6938 + }, + { + "start": 15473.14, + "end": 15474.56, + "probability": 0.9197 + }, + { + "start": 15474.94, + "end": 15476.3, + "probability": 0.9837 + }, + { + "start": 15476.44, + "end": 15476.62, + "probability": 0.8872 + }, + { + "start": 15476.82, + "end": 15477.26, + "probability": 0.8694 + }, + { + "start": 15477.92, + "end": 15479.24, + "probability": 0.9842 + }, + { + "start": 15479.54, + "end": 15481.46, + "probability": 0.9911 + }, + { + "start": 15494.84, + "end": 15494.98, + "probability": 0.8044 + }, + { + "start": 15496.3, + "end": 15496.66, + "probability": 0.0706 + }, + { + "start": 15497.4, + "end": 15499.24, + "probability": 0.1784 + }, + { + "start": 15499.7, + "end": 15501.26, + "probability": 0.1082 + }, + { + "start": 15501.46, + "end": 15501.76, + "probability": 0.2409 + }, + { + "start": 15502.16, + "end": 15503.32, + "probability": 0.0636 + }, + { + "start": 15503.6, + "end": 15504.66, + "probability": 0.1031 + }, + { + "start": 15505.57, + "end": 15514.14, + "probability": 0.1698 + }, + { + "start": 15514.14, + "end": 15514.5, + "probability": 0.1288 + }, + { + "start": 15516.2, + "end": 15516.96, + "probability": 0.0891 + }, + { + "start": 15517.64, + "end": 15518.1, + "probability": 0.0337 + }, + { + "start": 15518.86, + "end": 15518.86, + "probability": 0.1791 + }, + { + "start": 15518.86, + "end": 15518.9, + "probability": 0.0337 + }, + { + "start": 15518.9, + "end": 15520.84, + "probability": 0.0485 + }, + { + "start": 15533.3, + "end": 15536.38, + "probability": 0.0944 + }, + { + "start": 15536.52, + "end": 15537.76, + "probability": 0.053 + }, + { + "start": 15537.82, + "end": 15538.22, + "probability": 0.0918 + }, + { + "start": 15538.62, + "end": 15540.06, + "probability": 0.3622 + }, + { + "start": 15540.52, + "end": 15541.42, + "probability": 0.0818 + }, + { + "start": 15542.48, + "end": 15543.76, + "probability": 0.441 + }, + { + "start": 15571.0, + "end": 15571.0, + "probability": 0.0 + }, + { + "start": 15571.0, + "end": 15571.0, + "probability": 0.0 + }, + { + "start": 15585.62, + "end": 15585.66, + "probability": 0.0 + }, + { + "start": 15603.06, + "end": 15603.44, + "probability": 0.2638 + }, + { + "start": 15605.72, + "end": 15607.9, + "probability": 0.0318 + }, + { + "start": 15609.22, + "end": 15611.12, + "probability": 0.1732 + }, + { + "start": 15612.0, + "end": 15612.72, + "probability": 0.0525 + }, + { + "start": 15612.78, + "end": 15620.96, + "probability": 0.0868 + }, + { + "start": 15623.36, + "end": 15624.82, + "probability": 0.0369 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.0, + "end": 15692.0, + "probability": 0.0 + }, + { + "start": 15692.12, + "end": 15694.29, + "probability": 0.7614 + }, + { + "start": 15694.86, + "end": 15697.48, + "probability": 0.9862 + }, + { + "start": 15697.76, + "end": 15701.06, + "probability": 0.8853 + }, + { + "start": 15701.42, + "end": 15702.0, + "probability": 0.9909 + }, + { + "start": 15702.08, + "end": 15704.1, + "probability": 0.991 + }, + { + "start": 15705.08, + "end": 15706.84, + "probability": 0.9902 + }, + { + "start": 15707.12, + "end": 15710.04, + "probability": 0.5144 + }, + { + "start": 15710.04, + "end": 15710.26, + "probability": 0.1732 + }, + { + "start": 15710.74, + "end": 15712.57, + "probability": 0.9183 + }, + { + "start": 15713.3, + "end": 15716.32, + "probability": 0.8756 + }, + { + "start": 15716.86, + "end": 15720.78, + "probability": 0.9507 + }, + { + "start": 15721.26, + "end": 15725.14, + "probability": 0.7971 + }, + { + "start": 15725.34, + "end": 15729.36, + "probability": 0.9946 + }, + { + "start": 15730.3, + "end": 15731.14, + "probability": 0.9368 + }, + { + "start": 15731.94, + "end": 15734.24, + "probability": 0.9888 + }, + { + "start": 15734.4, + "end": 15735.46, + "probability": 0.6051 + }, + { + "start": 15735.9, + "end": 15739.18, + "probability": 0.9779 + }, + { + "start": 15739.68, + "end": 15741.38, + "probability": 0.9518 + }, + { + "start": 15741.48, + "end": 15742.26, + "probability": 0.7786 + }, + { + "start": 15742.76, + "end": 15745.98, + "probability": 0.9906 + }, + { + "start": 15746.18, + "end": 15746.18, + "probability": 0.1712 + }, + { + "start": 15746.3, + "end": 15751.58, + "probability": 0.9453 + }, + { + "start": 15751.84, + "end": 15752.24, + "probability": 0.4596 + }, + { + "start": 15752.28, + "end": 15753.9, + "probability": 0.701 + }, + { + "start": 15754.4, + "end": 15755.92, + "probability": 0.4319 + }, + { + "start": 15756.34, + "end": 15759.68, + "probability": 0.689 + }, + { + "start": 15760.28, + "end": 15761.17, + "probability": 0.781 + }, + { + "start": 15761.78, + "end": 15762.76, + "probability": 0.9539 + }, + { + "start": 15763.2, + "end": 15764.3, + "probability": 0.98 + }, + { + "start": 15764.82, + "end": 15766.68, + "probability": 0.993 + }, + { + "start": 15767.7, + "end": 15768.86, + "probability": 0.8582 + }, + { + "start": 15769.08, + "end": 15771.66, + "probability": 0.9966 + }, + { + "start": 15772.74, + "end": 15774.74, + "probability": 0.6917 + }, + { + "start": 15775.18, + "end": 15776.92, + "probability": 0.9876 + }, + { + "start": 15777.3, + "end": 15780.24, + "probability": 0.9824 + }, + { + "start": 15780.7, + "end": 15782.86, + "probability": 0.83 + }, + { + "start": 15782.88, + "end": 15784.16, + "probability": 0.9978 + }, + { + "start": 15784.28, + "end": 15785.62, + "probability": 0.7502 + }, + { + "start": 15785.94, + "end": 15786.7, + "probability": 0.6434 + }, + { + "start": 15786.82, + "end": 15789.58, + "probability": 0.7965 + }, + { + "start": 15790.22, + "end": 15791.34, + "probability": 0.656 + }, + { + "start": 15811.0, + "end": 15813.0, + "probability": 0.8158 + }, + { + "start": 15813.98, + "end": 15814.88, + "probability": 0.8294 + }, + { + "start": 15815.08, + "end": 15815.64, + "probability": 0.8958 + }, + { + "start": 15815.76, + "end": 15817.12, + "probability": 0.8535 + }, + { + "start": 15817.6, + "end": 15821.34, + "probability": 0.9722 + }, + { + "start": 15821.34, + "end": 15824.68, + "probability": 0.9405 + }, + { + "start": 15825.64, + "end": 15829.8, + "probability": 0.9965 + }, + { + "start": 15830.54, + "end": 15834.62, + "probability": 0.9983 + }, + { + "start": 15835.42, + "end": 15838.64, + "probability": 0.8965 + }, + { + "start": 15839.34, + "end": 15842.6, + "probability": 0.9976 + }, + { + "start": 15843.38, + "end": 15850.58, + "probability": 0.9792 + }, + { + "start": 15851.06, + "end": 15853.52, + "probability": 0.8596 + }, + { + "start": 15853.56, + "end": 15854.18, + "probability": 0.4998 + }, + { + "start": 15854.22, + "end": 15855.02, + "probability": 0.7843 + }, + { + "start": 15855.12, + "end": 15856.68, + "probability": 0.867 + }, + { + "start": 15857.82, + "end": 15859.94, + "probability": 0.9702 + }, + { + "start": 15861.78, + "end": 15864.38, + "probability": 0.9873 + }, + { + "start": 15864.38, + "end": 15867.54, + "probability": 0.9982 + }, + { + "start": 15868.62, + "end": 15872.28, + "probability": 0.9822 + }, + { + "start": 15873.36, + "end": 15877.88, + "probability": 0.9146 + }, + { + "start": 15878.74, + "end": 15880.06, + "probability": 0.7419 + }, + { + "start": 15880.62, + "end": 15881.1, + "probability": 0.7522 + }, + { + "start": 15881.72, + "end": 15883.8, + "probability": 0.8547 + }, + { + "start": 15884.7, + "end": 15888.12, + "probability": 0.9865 + }, + { + "start": 15889.22, + "end": 15891.92, + "probability": 0.9055 + }, + { + "start": 15893.66, + "end": 15897.88, + "probability": 0.9881 + }, + { + "start": 15898.7, + "end": 15899.4, + "probability": 0.7876 + }, + { + "start": 15900.66, + "end": 15908.26, + "probability": 0.9612 + }, + { + "start": 15909.69, + "end": 15913.28, + "probability": 0.9538 + }, + { + "start": 15913.56, + "end": 15914.62, + "probability": 0.6573 + }, + { + "start": 15914.74, + "end": 15915.46, + "probability": 0.4426 + }, + { + "start": 15916.08, + "end": 15917.58, + "probability": 0.8376 + }, + { + "start": 15918.42, + "end": 15919.48, + "probability": 0.9028 + }, + { + "start": 15921.06, + "end": 15921.86, + "probability": 0.178 + }, + { + "start": 15921.86, + "end": 15925.22, + "probability": 0.959 + }, + { + "start": 15926.0, + "end": 15931.74, + "probability": 0.9814 + }, + { + "start": 15931.94, + "end": 15932.54, + "probability": 0.8303 + }, + { + "start": 15932.66, + "end": 15935.98, + "probability": 0.9928 + }, + { + "start": 15937.24, + "end": 15939.48, + "probability": 0.915 + }, + { + "start": 15940.46, + "end": 15940.74, + "probability": 0.8537 + }, + { + "start": 15942.18, + "end": 15945.86, + "probability": 0.7941 + }, + { + "start": 15947.3, + "end": 15956.76, + "probability": 0.7725 + }, + { + "start": 15957.86, + "end": 15958.68, + "probability": 0.8832 + }, + { + "start": 15959.46, + "end": 15960.66, + "probability": 0.9751 + }, + { + "start": 15960.8, + "end": 15962.96, + "probability": 0.8831 + }, + { + "start": 15963.02, + "end": 15964.04, + "probability": 0.958 + }, + { + "start": 15965.4, + "end": 15968.04, + "probability": 0.9147 + }, + { + "start": 15969.56, + "end": 15972.2, + "probability": 0.9714 + }, + { + "start": 15972.2, + "end": 15976.16, + "probability": 0.9944 + }, + { + "start": 15977.68, + "end": 15981.92, + "probability": 0.9951 + }, + { + "start": 15981.92, + "end": 15987.84, + "probability": 0.995 + }, + { + "start": 15988.0, + "end": 15989.1, + "probability": 0.7728 + }, + { + "start": 15990.14, + "end": 15991.4, + "probability": 0.7629 + }, + { + "start": 15991.5, + "end": 15993.58, + "probability": 0.9229 + }, + { + "start": 15994.24, + "end": 15996.26, + "probability": 0.9912 + }, + { + "start": 15999.24, + "end": 16004.28, + "probability": 0.9997 + }, + { + "start": 16004.46, + "end": 16005.3, + "probability": 0.8012 + }, + { + "start": 16005.6, + "end": 16006.66, + "probability": 0.9961 + }, + { + "start": 16007.42, + "end": 16007.54, + "probability": 0.2586 + }, + { + "start": 16007.54, + "end": 16008.98, + "probability": 0.9002 + }, + { + "start": 16009.66, + "end": 16010.56, + "probability": 0.6313 + }, + { + "start": 16011.0, + "end": 16011.98, + "probability": 0.7457 + }, + { + "start": 16012.0, + "end": 16014.24, + "probability": 0.9543 + }, + { + "start": 16014.36, + "end": 16014.46, + "probability": 0.6628 + }, + { + "start": 16014.74, + "end": 16015.08, + "probability": 0.2736 + }, + { + "start": 16015.28, + "end": 16016.56, + "probability": 0.5045 + }, + { + "start": 16030.0, + "end": 16031.82, + "probability": 0.5721 + }, + { + "start": 16032.06, + "end": 16034.0, + "probability": 0.436 + }, + { + "start": 16034.0, + "end": 16035.04, + "probability": 0.7478 + }, + { + "start": 16035.26, + "end": 16037.7, + "probability": 0.9916 + }, + { + "start": 16038.2, + "end": 16040.08, + "probability": 0.9946 + }, + { + "start": 16041.48, + "end": 16044.61, + "probability": 0.9985 + }, + { + "start": 16045.42, + "end": 16046.6, + "probability": 0.9995 + }, + { + "start": 16046.8, + "end": 16048.9, + "probability": 0.8487 + }, + { + "start": 16049.16, + "end": 16051.46, + "probability": 0.9702 + }, + { + "start": 16051.84, + "end": 16056.76, + "probability": 0.9587 + }, + { + "start": 16056.94, + "end": 16061.4, + "probability": 0.9956 + }, + { + "start": 16061.5, + "end": 16063.28, + "probability": 0.2623 + }, + { + "start": 16063.28, + "end": 16064.28, + "probability": 0.5745 + }, + { + "start": 16064.34, + "end": 16069.04, + "probability": 0.9968 + }, + { + "start": 16069.04, + "end": 16073.02, + "probability": 0.8856 + }, + { + "start": 16073.4, + "end": 16074.17, + "probability": 0.8779 + }, + { + "start": 16074.74, + "end": 16074.74, + "probability": 0.1152 + }, + { + "start": 16074.74, + "end": 16074.74, + "probability": 0.0726 + }, + { + "start": 16074.74, + "end": 16074.74, + "probability": 0.1843 + }, + { + "start": 16074.74, + "end": 16077.26, + "probability": 0.9463 + }, + { + "start": 16077.34, + "end": 16079.82, + "probability": 0.6069 + }, + { + "start": 16080.02, + "end": 16081.64, + "probability": 0.4871 + }, + { + "start": 16081.64, + "end": 16084.22, + "probability": 0.7675 + }, + { + "start": 16084.22, + "end": 16084.29, + "probability": 0.0028 + }, + { + "start": 16084.52, + "end": 16084.68, + "probability": 0.1656 + }, + { + "start": 16084.68, + "end": 16086.46, + "probability": 0.9014 + }, + { + "start": 16086.84, + "end": 16088.3, + "probability": 0.9756 + }, + { + "start": 16088.82, + "end": 16090.33, + "probability": 0.4799 + }, + { + "start": 16090.92, + "end": 16091.54, + "probability": 0.7592 + }, + { + "start": 16091.58, + "end": 16092.66, + "probability": 0.8295 + }, + { + "start": 16092.66, + "end": 16093.74, + "probability": 0.9242 + }, + { + "start": 16093.74, + "end": 16093.85, + "probability": 0.2869 + }, + { + "start": 16095.03, + "end": 16095.92, + "probability": 0.7025 + }, + { + "start": 16097.34, + "end": 16103.34, + "probability": 0.9939 + }, + { + "start": 16103.98, + "end": 16104.34, + "probability": 0.575 + }, + { + "start": 16104.4, + "end": 16106.08, + "probability": 0.9854 + }, + { + "start": 16106.24, + "end": 16110.94, + "probability": 0.985 + }, + { + "start": 16111.4, + "end": 16116.56, + "probability": 0.9622 + }, + { + "start": 16117.04, + "end": 16117.32, + "probability": 0.0823 + }, + { + "start": 16117.32, + "end": 16117.32, + "probability": 0.4194 + }, + { + "start": 16117.32, + "end": 16118.74, + "probability": 0.8771 + }, + { + "start": 16119.12, + "end": 16121.94, + "probability": 0.9958 + }, + { + "start": 16122.4, + "end": 16124.64, + "probability": 0.9897 + }, + { + "start": 16124.9, + "end": 16124.9, + "probability": 0.0075 + }, + { + "start": 16124.9, + "end": 16124.9, + "probability": 0.4596 + }, + { + "start": 16124.9, + "end": 16129.34, + "probability": 0.9975 + }, + { + "start": 16129.7, + "end": 16130.89, + "probability": 0.9872 + }, + { + "start": 16131.36, + "end": 16132.24, + "probability": 0.097 + }, + { + "start": 16133.04, + "end": 16133.04, + "probability": 0.0796 + }, + { + "start": 16133.04, + "end": 16133.04, + "probability": 0.1551 + }, + { + "start": 16133.04, + "end": 16133.06, + "probability": 0.151 + }, + { + "start": 16133.06, + "end": 16134.38, + "probability": 0.347 + }, + { + "start": 16134.62, + "end": 16140.76, + "probability": 0.7672 + }, + { + "start": 16141.5, + "end": 16142.38, + "probability": 0.034 + }, + { + "start": 16143.1, + "end": 16143.56, + "probability": 0.084 + }, + { + "start": 16143.56, + "end": 16143.56, + "probability": 0.2495 + }, + { + "start": 16143.56, + "end": 16143.64, + "probability": 0.0332 + }, + { + "start": 16143.64, + "end": 16144.88, + "probability": 0.2077 + }, + { + "start": 16145.22, + "end": 16148.64, + "probability": 0.7992 + }, + { + "start": 16149.24, + "end": 16149.52, + "probability": 0.0783 + }, + { + "start": 16149.52, + "end": 16149.52, + "probability": 0.3576 + }, + { + "start": 16149.52, + "end": 16152.58, + "probability": 0.8981 + }, + { + "start": 16152.66, + "end": 16154.28, + "probability": 0.6293 + }, + { + "start": 16154.72, + "end": 16155.37, + "probability": 0.9767 + }, + { + "start": 16155.98, + "end": 16156.78, + "probability": 0.8756 + }, + { + "start": 16157.36, + "end": 16158.4, + "probability": 0.7109 + }, + { + "start": 16158.48, + "end": 16162.62, + "probability": 0.9959 + }, + { + "start": 16162.98, + "end": 16165.38, + "probability": 0.812 + }, + { + "start": 16165.56, + "end": 16169.58, + "probability": 0.9889 + }, + { + "start": 16170.3, + "end": 16170.3, + "probability": 0.0608 + }, + { + "start": 16170.3, + "end": 16173.06, + "probability": 0.3876 + }, + { + "start": 16173.32, + "end": 16176.48, + "probability": 0.8772 + }, + { + "start": 16176.6, + "end": 16178.24, + "probability": 0.8417 + }, + { + "start": 16178.54, + "end": 16178.72, + "probability": 0.392 + }, + { + "start": 16179.32, + "end": 16180.5, + "probability": 0.0924 + }, + { + "start": 16180.8, + "end": 16180.86, + "probability": 0.2325 + }, + { + "start": 16180.86, + "end": 16180.86, + "probability": 0.1233 + }, + { + "start": 16180.86, + "end": 16180.86, + "probability": 0.086 + }, + { + "start": 16180.86, + "end": 16182.06, + "probability": 0.1242 + }, + { + "start": 16182.38, + "end": 16183.38, + "probability": 0.7259 + }, + { + "start": 16183.66, + "end": 16185.6, + "probability": 0.9744 + }, + { + "start": 16185.84, + "end": 16187.58, + "probability": 0.3231 + }, + { + "start": 16187.82, + "end": 16191.62, + "probability": 0.5819 + }, + { + "start": 16200.34, + "end": 16201.08, + "probability": 0.0265 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.0, + "end": 16224.0, + "probability": 0.0 + }, + { + "start": 16224.14, + "end": 16224.26, + "probability": 0.2634 + }, + { + "start": 16224.26, + "end": 16224.26, + "probability": 0.1779 + }, + { + "start": 16224.26, + "end": 16224.83, + "probability": 0.5857 + }, + { + "start": 16225.58, + "end": 16230.42, + "probability": 0.999 + }, + { + "start": 16231.12, + "end": 16235.0, + "probability": 0.9666 + }, + { + "start": 16235.06, + "end": 16236.61, + "probability": 0.9938 + }, + { + "start": 16236.98, + "end": 16237.92, + "probability": 0.8749 + }, + { + "start": 16238.06, + "end": 16239.06, + "probability": 0.9335 + }, + { + "start": 16239.56, + "end": 16244.66, + "probability": 0.9958 + }, + { + "start": 16244.82, + "end": 16245.58, + "probability": 0.2834 + }, + { + "start": 16246.02, + "end": 16251.64, + "probability": 0.9862 + }, + { + "start": 16252.04, + "end": 16253.02, + "probability": 0.9874 + }, + { + "start": 16253.14, + "end": 16253.84, + "probability": 0.6816 + }, + { + "start": 16254.42, + "end": 16255.56, + "probability": 0.9565 + }, + { + "start": 16260.24, + "end": 16266.62, + "probability": 0.9915 + }, + { + "start": 16267.24, + "end": 16270.34, + "probability": 0.9983 + }, + { + "start": 16271.48, + "end": 16272.66, + "probability": 0.8901 + }, + { + "start": 16272.72, + "end": 16275.1, + "probability": 0.9974 + }, + { + "start": 16278.12, + "end": 16278.64, + "probability": 0.1411 + }, + { + "start": 16278.7, + "end": 16280.16, + "probability": 0.944 + }, + { + "start": 16280.28, + "end": 16281.45, + "probability": 0.8894 + }, + { + "start": 16282.24, + "end": 16285.0, + "probability": 0.8625 + }, + { + "start": 16285.02, + "end": 16291.58, + "probability": 0.0335 + }, + { + "start": 16291.58, + "end": 16292.22, + "probability": 0.1217 + }, + { + "start": 16292.22, + "end": 16294.42, + "probability": 0.3289 + }, + { + "start": 16294.42, + "end": 16298.66, + "probability": 0.9516 + }, + { + "start": 16299.38, + "end": 16305.62, + "probability": 0.9917 + }, + { + "start": 16306.56, + "end": 16309.36, + "probability": 0.7799 + }, + { + "start": 16309.92, + "end": 16311.42, + "probability": 0.9095 + }, + { + "start": 16311.72, + "end": 16313.11, + "probability": 0.9917 + }, + { + "start": 16313.78, + "end": 16315.16, + "probability": 0.9933 + }, + { + "start": 16315.58, + "end": 16317.0, + "probability": 0.996 + }, + { + "start": 16317.42, + "end": 16318.72, + "probability": 0.9465 + }, + { + "start": 16319.36, + "end": 16320.62, + "probability": 0.9161 + }, + { + "start": 16321.36, + "end": 16322.84, + "probability": 0.9962 + }, + { + "start": 16323.4, + "end": 16328.24, + "probability": 0.9738 + }, + { + "start": 16328.66, + "end": 16329.14, + "probability": 0.6198 + }, + { + "start": 16329.56, + "end": 16332.14, + "probability": 0.8857 + }, + { + "start": 16332.66, + "end": 16333.08, + "probability": 0.9492 + }, + { + "start": 16333.2, + "end": 16333.57, + "probability": 0.9785 + }, + { + "start": 16334.62, + "end": 16339.02, + "probability": 0.9875 + }, + { + "start": 16339.18, + "end": 16341.24, + "probability": 0.9856 + }, + { + "start": 16341.74, + "end": 16342.3, + "probability": 0.8521 + }, + { + "start": 16342.36, + "end": 16343.34, + "probability": 0.9744 + }, + { + "start": 16343.72, + "end": 16344.76, + "probability": 0.9757 + }, + { + "start": 16345.27, + "end": 16346.73, + "probability": 0.98 + }, + { + "start": 16347.38, + "end": 16349.78, + "probability": 0.9896 + }, + { + "start": 16350.24, + "end": 16351.96, + "probability": 0.9956 + }, + { + "start": 16352.8, + "end": 16354.12, + "probability": 0.9963 + }, + { + "start": 16354.88, + "end": 16357.64, + "probability": 0.9781 + }, + { + "start": 16358.12, + "end": 16358.72, + "probability": 0.7537 + }, + { + "start": 16358.82, + "end": 16364.26, + "probability": 0.6672 + }, + { + "start": 16364.76, + "end": 16367.04, + "probability": 0.976 + }, + { + "start": 16367.52, + "end": 16372.18, + "probability": 0.985 + }, + { + "start": 16373.14, + "end": 16373.36, + "probability": 0.0799 + }, + { + "start": 16373.36, + "end": 16373.96, + "probability": 0.3356 + }, + { + "start": 16375.08, + "end": 16378.24, + "probability": 0.823 + }, + { + "start": 16378.34, + "end": 16380.54, + "probability": 0.98 + }, + { + "start": 16381.6, + "end": 16384.05, + "probability": 0.9526 + }, + { + "start": 16385.02, + "end": 16388.26, + "probability": 0.7937 + }, + { + "start": 16388.5, + "end": 16390.3, + "probability": 0.9834 + }, + { + "start": 16391.08, + "end": 16394.74, + "probability": 0.9753 + }, + { + "start": 16395.66, + "end": 16398.3, + "probability": 0.9923 + }, + { + "start": 16398.82, + "end": 16400.26, + "probability": 0.8503 + }, + { + "start": 16400.7, + "end": 16402.1, + "probability": 0.7977 + }, + { + "start": 16402.64, + "end": 16406.6, + "probability": 0.874 + }, + { + "start": 16407.42, + "end": 16410.86, + "probability": 0.9937 + }, + { + "start": 16410.86, + "end": 16415.52, + "probability": 0.9953 + }, + { + "start": 16415.9, + "end": 16415.9, + "probability": 0.1734 + }, + { + "start": 16415.96, + "end": 16416.86, + "probability": 0.8892 + }, + { + "start": 16418.95, + "end": 16422.58, + "probability": 0.7837 + }, + { + "start": 16423.2, + "end": 16424.2, + "probability": 0.9854 + }, + { + "start": 16424.32, + "end": 16425.34, + "probability": 0.9606 + }, + { + "start": 16425.78, + "end": 16426.78, + "probability": 0.9395 + }, + { + "start": 16427.3, + "end": 16428.86, + "probability": 0.9673 + }, + { + "start": 16429.42, + "end": 16433.22, + "probability": 0.9844 + }, + { + "start": 16433.5, + "end": 16434.12, + "probability": 0.9919 + }, + { + "start": 16436.18, + "end": 16438.38, + "probability": 0.99 + }, + { + "start": 16438.54, + "end": 16443.06, + "probability": 0.9924 + }, + { + "start": 16462.32, + "end": 16464.7, + "probability": 0.7406 + }, + { + "start": 16467.66, + "end": 16473.68, + "probability": 0.9659 + }, + { + "start": 16473.7, + "end": 16474.88, + "probability": 0.7332 + }, + { + "start": 16474.94, + "end": 16475.3, + "probability": 0.9255 + }, + { + "start": 16476.86, + "end": 16482.64, + "probability": 0.9985 + }, + { + "start": 16486.16, + "end": 16491.76, + "probability": 0.8933 + }, + { + "start": 16492.06, + "end": 16496.74, + "probability": 0.7965 + }, + { + "start": 16498.34, + "end": 16499.66, + "probability": 0.9944 + }, + { + "start": 16500.12, + "end": 16502.64, + "probability": 0.9051 + }, + { + "start": 16502.74, + "end": 16506.35, + "probability": 0.9604 + }, + { + "start": 16507.04, + "end": 16508.12, + "probability": 0.7569 + }, + { + "start": 16508.76, + "end": 16513.08, + "probability": 0.9805 + }, + { + "start": 16513.88, + "end": 16516.4, + "probability": 0.9255 + }, + { + "start": 16516.8, + "end": 16519.08, + "probability": 0.0994 + }, + { + "start": 16519.6, + "end": 16522.88, + "probability": 0.4329 + }, + { + "start": 16522.88, + "end": 16523.16, + "probability": 0.0381 + }, + { + "start": 16524.1, + "end": 16525.24, + "probability": 0.1508 + }, + { + "start": 16528.84, + "end": 16529.56, + "probability": 0.0177 + }, + { + "start": 16530.96, + "end": 16531.78, + "probability": 0.1163 + }, + { + "start": 16531.94, + "end": 16533.48, + "probability": 0.0617 + }, + { + "start": 16534.04, + "end": 16535.58, + "probability": 0.0472 + }, + { + "start": 16536.14, + "end": 16537.6, + "probability": 0.3306 + }, + { + "start": 16537.84, + "end": 16538.74, + "probability": 0.431 + }, + { + "start": 16539.16, + "end": 16539.26, + "probability": 0.1964 + }, + { + "start": 16539.46, + "end": 16543.44, + "probability": 0.4814 + }, + { + "start": 16554.02, + "end": 16555.94, + "probability": 0.0366 + }, + { + "start": 16556.2, + "end": 16557.35, + "probability": 0.057 + }, + { + "start": 16557.84, + "end": 16557.88, + "probability": 0.1338 + }, + { + "start": 16558.81, + "end": 16560.24, + "probability": 0.3366 + }, + { + "start": 16560.26, + "end": 16560.48, + "probability": 0.2358 + }, + { + "start": 16562.96, + "end": 16562.96, + "probability": 0.1942 + }, + { + "start": 16562.96, + "end": 16562.96, + "probability": 0.0291 + }, + { + "start": 16562.96, + "end": 16562.96, + "probability": 0.2687 + }, + { + "start": 16562.96, + "end": 16562.96, + "probability": 0.262 + }, + { + "start": 16562.96, + "end": 16562.96, + "probability": 0.4518 + }, + { + "start": 16562.96, + "end": 16568.4, + "probability": 0.8285 + }, + { + "start": 16568.4, + "end": 16573.38, + "probability": 0.9866 + }, + { + "start": 16574.26, + "end": 16578.64, + "probability": 0.9993 + }, + { + "start": 16578.64, + "end": 16582.94, + "probability": 0.9993 + }, + { + "start": 16583.84, + "end": 16584.24, + "probability": 0.355 + }, + { + "start": 16584.24, + "end": 16584.46, + "probability": 0.0001 + }, + { + "start": 16585.04, + "end": 16585.38, + "probability": 0.1904 + }, + { + "start": 16585.38, + "end": 16585.38, + "probability": 0.1857 + }, + { + "start": 16585.38, + "end": 16589.16, + "probability": 0.6085 + }, + { + "start": 16589.54, + "end": 16591.32, + "probability": 0.8924 + }, + { + "start": 16591.64, + "end": 16596.38, + "probability": 0.9766 + }, + { + "start": 16596.44, + "end": 16598.26, + "probability": 0.6855 + }, + { + "start": 16598.38, + "end": 16601.58, + "probability": 0.3217 + }, + { + "start": 16601.7, + "end": 16602.46, + "probability": 0.0211 + }, + { + "start": 16603.48, + "end": 16605.9, + "probability": 0.7754 + }, + { + "start": 16606.36, + "end": 16608.34, + "probability": 0.9747 + }, + { + "start": 16608.36, + "end": 16610.12, + "probability": 0.9854 + }, + { + "start": 16610.42, + "end": 16610.78, + "probability": 0.5806 + }, + { + "start": 16610.9, + "end": 16612.02, + "probability": 0.9473 + }, + { + "start": 16612.14, + "end": 16615.02, + "probability": 0.9871 + }, + { + "start": 16615.02, + "end": 16619.06, + "probability": 0.9922 + }, + { + "start": 16619.72, + "end": 16622.16, + "probability": 0.989 + }, + { + "start": 16622.58, + "end": 16624.52, + "probability": 0.7633 + }, + { + "start": 16625.1, + "end": 16631.08, + "probability": 0.9899 + }, + { + "start": 16631.24, + "end": 16634.96, + "probability": 0.9941 + }, + { + "start": 16635.04, + "end": 16636.28, + "probability": 0.6207 + }, + { + "start": 16636.8, + "end": 16639.44, + "probability": 0.9173 + }, + { + "start": 16639.6, + "end": 16641.66, + "probability": 0.7455 + }, + { + "start": 16641.78, + "end": 16642.83, + "probability": 0.9722 + }, + { + "start": 16643.52, + "end": 16647.36, + "probability": 0.9976 + }, + { + "start": 16647.54, + "end": 16650.58, + "probability": 0.9976 + }, + { + "start": 16651.16, + "end": 16654.74, + "probability": 0.6282 + }, + { + "start": 16655.06, + "end": 16657.3, + "probability": 0.3476 + }, + { + "start": 16657.42, + "end": 16660.48, + "probability": 0.4243 + }, + { + "start": 16661.02, + "end": 16661.97, + "probability": 0.8356 + }, + { + "start": 16662.78, + "end": 16664.68, + "probability": 0.6229 + }, + { + "start": 16664.86, + "end": 16667.0, + "probability": 0.2517 + }, + { + "start": 16667.2, + "end": 16670.32, + "probability": 0.2782 + }, + { + "start": 16670.62, + "end": 16671.36, + "probability": 0.4125 + }, + { + "start": 16671.4, + "end": 16671.98, + "probability": 0.0082 + }, + { + "start": 16671.98, + "end": 16671.98, + "probability": 0.0107 + }, + { + "start": 16671.98, + "end": 16672.2, + "probability": 0.1952 + }, + { + "start": 16672.2, + "end": 16674.42, + "probability": 0.7013 + }, + { + "start": 16674.62, + "end": 16677.0, + "probability": 0.9945 + }, + { + "start": 16680.0, + "end": 16684.28, + "probability": 0.8022 + }, + { + "start": 16684.42, + "end": 16685.56, + "probability": 0.6422 + }, + { + "start": 16685.66, + "end": 16687.51, + "probability": 0.9976 + }, + { + "start": 16687.88, + "end": 16691.64, + "probability": 0.9423 + }, + { + "start": 16692.04, + "end": 16696.2, + "probability": 0.9661 + }, + { + "start": 16696.2, + "end": 16699.64, + "probability": 0.9956 + }, + { + "start": 16700.32, + "end": 16705.25, + "probability": 0.978 + }, + { + "start": 16705.53, + "end": 16709.85, + "probability": 0.944 + }, + { + "start": 16710.15, + "end": 16714.05, + "probability": 0.9945 + }, + { + "start": 16714.15, + "end": 16715.73, + "probability": 0.0068 + }, + { + "start": 16715.85, + "end": 16716.15, + "probability": 0.5705 + }, + { + "start": 16716.45, + "end": 16716.71, + "probability": 0.4463 + }, + { + "start": 16716.77, + "end": 16718.19, + "probability": 0.4909 + }, + { + "start": 16718.47, + "end": 16720.41, + "probability": 0.9639 + }, + { + "start": 16720.51, + "end": 16721.01, + "probability": 0.2014 + }, + { + "start": 16721.23, + "end": 16722.2, + "probability": 0.7666 + }, + { + "start": 16722.87, + "end": 16725.19, + "probability": 0.994 + }, + { + "start": 16725.37, + "end": 16727.13, + "probability": 0.5819 + }, + { + "start": 16727.17, + "end": 16727.17, + "probability": 0.0165 + }, + { + "start": 16727.17, + "end": 16728.85, + "probability": 0.9848 + }, + { + "start": 16731.41, + "end": 16732.93, + "probability": 0.3817 + }, + { + "start": 16733.47, + "end": 16736.54, + "probability": 0.8026 + }, + { + "start": 16736.79, + "end": 16742.77, + "probability": 0.967 + }, + { + "start": 16743.09, + "end": 16743.73, + "probability": 0.7248 + }, + { + "start": 16743.81, + "end": 16744.65, + "probability": 0.9388 + }, + { + "start": 16744.91, + "end": 16746.37, + "probability": 0.9879 + }, + { + "start": 16746.43, + "end": 16747.55, + "probability": 0.5379 + }, + { + "start": 16747.95, + "end": 16748.93, + "probability": 0.6614 + }, + { + "start": 16749.45, + "end": 16749.67, + "probability": 0.0239 + }, + { + "start": 16749.67, + "end": 16753.05, + "probability": 0.7294 + }, + { + "start": 16753.21, + "end": 16755.61, + "probability": 0.8865 + }, + { + "start": 16755.81, + "end": 16756.6, + "probability": 0.8206 + }, + { + "start": 16757.11, + "end": 16758.91, + "probability": 0.9876 + }, + { + "start": 16760.97, + "end": 16762.15, + "probability": 0.0504 + }, + { + "start": 16763.57, + "end": 16764.25, + "probability": 0.0141 + }, + { + "start": 16764.49, + "end": 16764.71, + "probability": 0.1124 + }, + { + "start": 16764.71, + "end": 16765.09, + "probability": 0.5873 + }, + { + "start": 16765.09, + "end": 16767.69, + "probability": 0.2595 + }, + { + "start": 16768.69, + "end": 16769.97, + "probability": 0.0649 + }, + { + "start": 16770.43, + "end": 16771.23, + "probability": 0.3729 + }, + { + "start": 16771.41, + "end": 16773.63, + "probability": 0.1179 + }, + { + "start": 16774.02, + "end": 16774.71, + "probability": 0.3225 + }, + { + "start": 16774.97, + "end": 16775.83, + "probability": 0.0851 + }, + { + "start": 16775.91, + "end": 16779.09, + "probability": 0.1767 + }, + { + "start": 16780.55, + "end": 16780.97, + "probability": 0.0815 + }, + { + "start": 16782.17, + "end": 16787.19, + "probability": 0.0663 + }, + { + "start": 16796.21, + "end": 16797.79, + "probability": 0.0864 + }, + { + "start": 16797.79, + "end": 16798.33, + "probability": 0.2183 + }, + { + "start": 16798.33, + "end": 16798.65, + "probability": 0.0264 + }, + { + "start": 16798.93, + "end": 16799.97, + "probability": 0.1653 + }, + { + "start": 16800.75, + "end": 16800.75, + "probability": 0.0576 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.0, + "end": 16841.0, + "probability": 0.0 + }, + { + "start": 16841.22, + "end": 16841.3, + "probability": 0.0108 + }, + { + "start": 16841.3, + "end": 16843.73, + "probability": 0.6637 + }, + { + "start": 16844.4, + "end": 16847.29, + "probability": 0.838 + }, + { + "start": 16848.38, + "end": 16849.61, + "probability": 0.8403 + }, + { + "start": 16850.64, + "end": 16852.72, + "probability": 0.1672 + }, + { + "start": 16852.72, + "end": 16852.88, + "probability": 0.4735 + }, + { + "start": 16852.94, + "end": 16855.52, + "probability": 0.4437 + }, + { + "start": 16856.24, + "end": 16857.8, + "probability": 0.1173 + }, + { + "start": 16858.16, + "end": 16861.7, + "probability": 0.0399 + }, + { + "start": 16861.7, + "end": 16866.22, + "probability": 0.3613 + }, + { + "start": 16866.22, + "end": 16866.36, + "probability": 0.0765 + }, + { + "start": 16866.64, + "end": 16867.04, + "probability": 0.0698 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.0, + "end": 16967.0, + "probability": 0.0 + }, + { + "start": 16967.34, + "end": 16970.12, + "probability": 0.7936 + }, + { + "start": 16970.62, + "end": 16973.8, + "probability": 0.9784 + }, + { + "start": 16973.98, + "end": 16975.32, + "probability": 0.8375 + }, + { + "start": 16975.46, + "end": 16976.68, + "probability": 0.757 + }, + { + "start": 16977.12, + "end": 16979.56, + "probability": 0.9637 + }, + { + "start": 16980.0, + "end": 16981.48, + "probability": 0.9778 + }, + { + "start": 16981.68, + "end": 16982.78, + "probability": 0.9424 + }, + { + "start": 16984.34, + "end": 16991.36, + "probability": 0.9941 + }, + { + "start": 16992.02, + "end": 16995.4, + "probability": 0.999 + }, + { + "start": 16995.4, + "end": 16998.78, + "probability": 0.7175 + }, + { + "start": 16999.03, + "end": 17000.09, + "probability": 0.9897 + }, + { + "start": 17000.17, + "end": 17001.21, + "probability": 0.5665 + }, + { + "start": 17001.37, + "end": 17001.81, + "probability": 0.8866 + }, + { + "start": 17002.13, + "end": 17005.47, + "probability": 0.7524 + }, + { + "start": 17005.47, + "end": 17005.49, + "probability": 0.3461 + }, + { + "start": 17005.49, + "end": 17005.93, + "probability": 0.9404 + }, + { + "start": 17008.1, + "end": 17012.81, + "probability": 0.9458 + }, + { + "start": 17013.43, + "end": 17015.85, + "probability": 0.7385 + }, + { + "start": 17016.53, + "end": 17019.15, + "probability": 0.9329 + }, + { + "start": 17019.51, + "end": 17022.35, + "probability": 0.9982 + }, + { + "start": 17022.59, + "end": 17023.93, + "probability": 0.9635 + }, + { + "start": 17024.03, + "end": 17024.61, + "probability": 0.8904 + }, + { + "start": 17024.69, + "end": 17024.97, + "probability": 0.6777 + }, + { + "start": 17025.53, + "end": 17027.17, + "probability": 0.7508 + }, + { + "start": 17027.25, + "end": 17029.58, + "probability": 0.771 + }, + { + "start": 17030.63, + "end": 17032.2, + "probability": 0.9966 + }, + { + "start": 17033.49, + "end": 17038.27, + "probability": 0.9909 + }, + { + "start": 17039.31, + "end": 17041.41, + "probability": 0.3151 + }, + { + "start": 17043.39, + "end": 17044.93, + "probability": 0.5002 + }, + { + "start": 17046.63, + "end": 17047.63, + "probability": 0.5506 + }, + { + "start": 17049.39, + "end": 17054.67, + "probability": 0.1336 + }, + { + "start": 17068.87, + "end": 17073.05, + "probability": 0.1807 + }, + { + "start": 17073.07, + "end": 17074.31, + "probability": 0.3848 + }, + { + "start": 17087.52, + "end": 17090.28, + "probability": 0.0661 + }, + { + "start": 17092.83, + "end": 17093.07, + "probability": 0.0082 + }, + { + "start": 17095.91, + "end": 17101.66, + "probability": 0.1211 + }, + { + "start": 17103.28, + "end": 17104.01, + "probability": 0.0484 + }, + { + "start": 17104.81, + "end": 17108.91, + "probability": 0.0567 + }, + { + "start": 17109.93, + "end": 17114.35, + "probability": 0.1657 + }, + { + "start": 17114.83, + "end": 17119.11, + "probability": 0.4939 + }, + { + "start": 17119.77, + "end": 17121.81, + "probability": 0.0136 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17153.0, + "end": 17153.0, + "probability": 0.0 + }, + { + "start": 17154.56, + "end": 17154.56, + "probability": 0.1678 + }, + { + "start": 17154.56, + "end": 17154.56, + "probability": 0.3352 + }, + { + "start": 17154.56, + "end": 17154.56, + "probability": 0.1849 + }, + { + "start": 17154.56, + "end": 17157.62, + "probability": 0.9788 + }, + { + "start": 17157.62, + "end": 17164.72, + "probability": 0.7485 + }, + { + "start": 17165.38, + "end": 17170.16, + "probability": 0.969 + }, + { + "start": 17170.16, + "end": 17173.22, + "probability": 0.7126 + }, + { + "start": 17173.74, + "end": 17180.22, + "probability": 0.534 + }, + { + "start": 17180.6, + "end": 17185.38, + "probability": 0.9705 + }, + { + "start": 17185.78, + "end": 17187.89, + "probability": 0.6723 + }, + { + "start": 17188.5, + "end": 17191.35, + "probability": 0.8761 + }, + { + "start": 17192.3, + "end": 17193.58, + "probability": 0.7371 + }, + { + "start": 17193.68, + "end": 17198.68, + "probability": 0.9298 + }, + { + "start": 17199.04, + "end": 17200.46, + "probability": 0.6493 + }, + { + "start": 17201.08, + "end": 17201.64, + "probability": 0.9912 + }, + { + "start": 17201.86, + "end": 17207.76, + "probability": 0.8466 + }, + { + "start": 17207.84, + "end": 17208.3, + "probability": 0.7567 + }, + { + "start": 17208.97, + "end": 17214.44, + "probability": 0.973 + }, + { + "start": 17214.44, + "end": 17217.02, + "probability": 0.7979 + }, + { + "start": 17217.94, + "end": 17219.34, + "probability": 0.9137 + }, + { + "start": 17219.84, + "end": 17222.18, + "probability": 0.9073 + }, + { + "start": 17223.38, + "end": 17228.9, + "probability": 0.9468 + }, + { + "start": 17228.9, + "end": 17236.58, + "probability": 0.9653 + }, + { + "start": 17236.8, + "end": 17237.5, + "probability": 0.8564 + }, + { + "start": 17237.58, + "end": 17240.32, + "probability": 0.9548 + }, + { + "start": 17241.4, + "end": 17247.84, + "probability": 0.9624 + }, + { + "start": 17248.8, + "end": 17251.44, + "probability": 0.9816 + }, + { + "start": 17253.24, + "end": 17256.9, + "probability": 0.7954 + }, + { + "start": 17258.3, + "end": 17260.0, + "probability": 0.9635 + }, + { + "start": 17260.78, + "end": 17261.04, + "probability": 0.4782 + }, + { + "start": 17261.74, + "end": 17263.26, + "probability": 0.9199 + }, + { + "start": 17263.86, + "end": 17265.34, + "probability": 0.8853 + }, + { + "start": 17266.28, + "end": 17271.68, + "probability": 0.9902 + }, + { + "start": 17272.66, + "end": 17275.26, + "probability": 0.9219 + }, + { + "start": 17275.26, + "end": 17283.46, + "probability": 0.9479 + }, + { + "start": 17283.46, + "end": 17289.19, + "probability": 0.9958 + }, + { + "start": 17289.5, + "end": 17294.9, + "probability": 0.9979 + }, + { + "start": 17296.04, + "end": 17297.18, + "probability": 0.9296 + }, + { + "start": 17298.02, + "end": 17304.76, + "probability": 0.9922 + }, + { + "start": 17306.82, + "end": 17308.78, + "probability": 0.991 + }, + { + "start": 17309.42, + "end": 17312.76, + "probability": 0.9971 + }, + { + "start": 17313.82, + "end": 17318.12, + "probability": 0.9558 + }, + { + "start": 17318.22, + "end": 17322.7, + "probability": 0.9937 + }, + { + "start": 17323.5, + "end": 17327.2, + "probability": 0.9298 + }, + { + "start": 17327.9, + "end": 17332.5, + "probability": 0.9896 + }, + { + "start": 17334.28, + "end": 17335.3, + "probability": 0.4683 + }, + { + "start": 17336.14, + "end": 17337.36, + "probability": 0.5334 + }, + { + "start": 17338.46, + "end": 17342.16, + "probability": 0.7915 + }, + { + "start": 17343.1, + "end": 17350.82, + "probability": 0.8418 + }, + { + "start": 17352.26, + "end": 17357.14, + "probability": 0.9872 + }, + { + "start": 17358.0, + "end": 17363.24, + "probability": 0.9717 + }, + { + "start": 17364.62, + "end": 17372.74, + "probability": 0.9814 + }, + { + "start": 17373.18, + "end": 17376.36, + "probability": 0.9558 + }, + { + "start": 17377.3, + "end": 17383.38, + "probability": 0.9742 + }, + { + "start": 17384.48, + "end": 17389.66, + "probability": 0.9806 + }, + { + "start": 17391.12, + "end": 17391.88, + "probability": 0.7766 + }, + { + "start": 17392.4, + "end": 17394.34, + "probability": 0.9148 + }, + { + "start": 17394.56, + "end": 17395.98, + "probability": 0.8685 + }, + { + "start": 17396.44, + "end": 17399.46, + "probability": 0.9811 + }, + { + "start": 17399.66, + "end": 17403.08, + "probability": 0.9998 + }, + { + "start": 17404.06, + "end": 17406.74, + "probability": 0.9755 + }, + { + "start": 17406.92, + "end": 17410.86, + "probability": 0.9421 + }, + { + "start": 17410.86, + "end": 17415.06, + "probability": 0.9898 + }, + { + "start": 17415.44, + "end": 17420.52, + "probability": 0.9649 + }, + { + "start": 17420.7, + "end": 17423.08, + "probability": 0.9001 + }, + { + "start": 17423.6, + "end": 17428.18, + "probability": 0.9989 + }, + { + "start": 17428.18, + "end": 17432.32, + "probability": 0.9883 + }, + { + "start": 17434.98, + "end": 17439.78, + "probability": 0.9837 + }, + { + "start": 17441.12, + "end": 17443.4, + "probability": 0.8275 + }, + { + "start": 17443.84, + "end": 17446.88, + "probability": 0.9894 + }, + { + "start": 17447.78, + "end": 17452.16, + "probability": 0.9674 + }, + { + "start": 17452.16, + "end": 17456.56, + "probability": 0.9975 + }, + { + "start": 17456.76, + "end": 17457.76, + "probability": 0.7758 + }, + { + "start": 17458.66, + "end": 17459.52, + "probability": 0.6469 + }, + { + "start": 17459.6, + "end": 17461.7, + "probability": 0.9647 + }, + { + "start": 17461.8, + "end": 17462.68, + "probability": 0.8404 + }, + { + "start": 17463.52, + "end": 17465.58, + "probability": 0.671 + }, + { + "start": 17465.7, + "end": 17468.72, + "probability": 0.9888 + }, + { + "start": 17469.4, + "end": 17472.52, + "probability": 0.8406 + }, + { + "start": 17473.42, + "end": 17475.08, + "probability": 0.9423 + }, + { + "start": 17475.18, + "end": 17475.86, + "probability": 0.7106 + }, + { + "start": 17476.34, + "end": 17478.18, + "probability": 0.936 + }, + { + "start": 17478.18, + "end": 17480.16, + "probability": 0.9468 + }, + { + "start": 17481.24, + "end": 17482.06, + "probability": 0.8916 + }, + { + "start": 17482.68, + "end": 17486.26, + "probability": 0.8975 + }, + { + "start": 17486.38, + "end": 17488.54, + "probability": 0.7996 + }, + { + "start": 17489.14, + "end": 17493.76, + "probability": 0.9702 + }, + { + "start": 17494.94, + "end": 17495.62, + "probability": 0.4399 + }, + { + "start": 17495.84, + "end": 17501.32, + "probability": 0.9794 + }, + { + "start": 17501.32, + "end": 17505.74, + "probability": 0.9696 + }, + { + "start": 17505.94, + "end": 17508.7, + "probability": 0.9938 + }, + { + "start": 17508.7, + "end": 17513.76, + "probability": 0.9688 + }, + { + "start": 17515.32, + "end": 17516.04, + "probability": 0.8514 + }, + { + "start": 17516.74, + "end": 17524.56, + "probability": 0.9729 + }, + { + "start": 17525.18, + "end": 17527.28, + "probability": 0.5333 + }, + { + "start": 17528.16, + "end": 17535.94, + "probability": 0.9847 + }, + { + "start": 17536.6, + "end": 17541.38, + "probability": 0.983 + }, + { + "start": 17541.38, + "end": 17548.14, + "probability": 0.9945 + }, + { + "start": 17548.14, + "end": 17553.14, + "probability": 0.9992 + }, + { + "start": 17553.14, + "end": 17557.68, + "probability": 0.9788 + }, + { + "start": 17557.76, + "end": 17560.06, + "probability": 0.9159 + }, + { + "start": 17560.44, + "end": 17561.84, + "probability": 0.6941 + }, + { + "start": 17562.92, + "end": 17568.54, + "probability": 0.9917 + }, + { + "start": 17568.54, + "end": 17573.04, + "probability": 0.9951 + }, + { + "start": 17573.04, + "end": 17577.74, + "probability": 0.9906 + }, + { + "start": 17579.0, + "end": 17582.22, + "probability": 0.9974 + }, + { + "start": 17583.22, + "end": 17588.02, + "probability": 0.9614 + }, + { + "start": 17588.98, + "end": 17594.78, + "probability": 0.9176 + }, + { + "start": 17595.52, + "end": 17599.06, + "probability": 0.9972 + }, + { + "start": 17599.06, + "end": 17606.74, + "probability": 0.9258 + }, + { + "start": 17607.16, + "end": 17612.78, + "probability": 0.9788 + }, + { + "start": 17612.78, + "end": 17618.12, + "probability": 0.9805 + }, + { + "start": 17619.2, + "end": 17625.32, + "probability": 0.9564 + }, + { + "start": 17625.32, + "end": 17630.02, + "probability": 0.994 + }, + { + "start": 17631.24, + "end": 17636.3, + "probability": 0.9984 + }, + { + "start": 17636.88, + "end": 17639.22, + "probability": 0.9944 + }, + { + "start": 17639.94, + "end": 17643.58, + "probability": 0.9781 + }, + { + "start": 17644.3, + "end": 17645.56, + "probability": 0.944 + }, + { + "start": 17645.86, + "end": 17651.04, + "probability": 0.9553 + }, + { + "start": 17651.04, + "end": 17654.0, + "probability": 0.9958 + }, + { + "start": 17654.8, + "end": 17655.64, + "probability": 0.9956 + }, + { + "start": 17656.94, + "end": 17659.38, + "probability": 0.9954 + }, + { + "start": 17660.4, + "end": 17664.96, + "probability": 0.9974 + }, + { + "start": 17666.28, + "end": 17671.48, + "probability": 0.9819 + }, + { + "start": 17674.64, + "end": 17675.64, + "probability": 0.8525 + }, + { + "start": 17676.58, + "end": 17681.06, + "probability": 0.998 + }, + { + "start": 17682.6, + "end": 17686.04, + "probability": 0.9969 + }, + { + "start": 17686.04, + "end": 17690.44, + "probability": 0.9761 + }, + { + "start": 17692.22, + "end": 17693.54, + "probability": 0.8921 + }, + { + "start": 17694.1, + "end": 17695.9, + "probability": 0.9867 + }, + { + "start": 17696.98, + "end": 17703.6, + "probability": 0.9927 + }, + { + "start": 17703.6, + "end": 17709.82, + "probability": 0.9944 + }, + { + "start": 17709.82, + "end": 17717.66, + "probability": 0.9972 + }, + { + "start": 17718.28, + "end": 17720.86, + "probability": 0.9272 + }, + { + "start": 17720.88, + "end": 17722.6, + "probability": 0.9595 + }, + { + "start": 17723.44, + "end": 17724.91, + "probability": 0.9285 + }, + { + "start": 17726.76, + "end": 17729.56, + "probability": 0.9865 + }, + { + "start": 17731.0, + "end": 17734.08, + "probability": 0.9939 + }, + { + "start": 17735.16, + "end": 17739.4, + "probability": 0.8264 + }, + { + "start": 17740.28, + "end": 17744.92, + "probability": 0.9524 + }, + { + "start": 17745.52, + "end": 17747.04, + "probability": 0.9601 + }, + { + "start": 17747.58, + "end": 17748.52, + "probability": 0.8927 + }, + { + "start": 17750.34, + "end": 17752.52, + "probability": 0.9326 + }, + { + "start": 17753.6, + "end": 17758.32, + "probability": 0.9976 + }, + { + "start": 17758.86, + "end": 17760.02, + "probability": 0.9478 + }, + { + "start": 17761.02, + "end": 17761.74, + "probability": 0.8217 + }, + { + "start": 17762.46, + "end": 17763.17, + "probability": 0.9579 + }, + { + "start": 17763.9, + "end": 17768.12, + "probability": 0.9964 + }, + { + "start": 17768.12, + "end": 17772.96, + "probability": 0.9904 + }, + { + "start": 17774.2, + "end": 17780.2, + "probability": 0.9688 + }, + { + "start": 17780.2, + "end": 17781.66, + "probability": 0.917 + }, + { + "start": 17782.42, + "end": 17783.7, + "probability": 0.9227 + }, + { + "start": 17784.8, + "end": 17788.76, + "probability": 0.9453 + }, + { + "start": 17789.06, + "end": 17791.52, + "probability": 0.9878 + }, + { + "start": 17791.58, + "end": 17794.62, + "probability": 0.9811 + }, + { + "start": 17795.5, + "end": 17795.88, + "probability": 0.4466 + }, + { + "start": 17796.0, + "end": 17796.88, + "probability": 0.5864 + }, + { + "start": 17797.02, + "end": 17801.04, + "probability": 0.9472 + }, + { + "start": 17801.22, + "end": 17803.48, + "probability": 0.6901 + }, + { + "start": 17804.02, + "end": 17805.2, + "probability": 0.955 + }, + { + "start": 17805.22, + "end": 17806.84, + "probability": 0.9788 + }, + { + "start": 17807.04, + "end": 17808.28, + "probability": 0.7509 + }, + { + "start": 17809.38, + "end": 17812.48, + "probability": 0.9141 + }, + { + "start": 17813.4, + "end": 17814.42, + "probability": 0.8266 + }, + { + "start": 17814.94, + "end": 17821.36, + "probability": 0.981 + }, + { + "start": 17822.06, + "end": 17825.4, + "probability": 0.9773 + }, + { + "start": 17826.36, + "end": 17828.48, + "probability": 0.9589 + }, + { + "start": 17829.32, + "end": 17831.08, + "probability": 0.8328 + }, + { + "start": 17832.22, + "end": 17833.9, + "probability": 0.5741 + }, + { + "start": 17835.24, + "end": 17837.02, + "probability": 0.9359 + }, + { + "start": 17837.48, + "end": 17838.36, + "probability": 0.8449 + }, + { + "start": 17838.42, + "end": 17841.48, + "probability": 0.8271 + }, + { + "start": 17841.6, + "end": 17844.0, + "probability": 0.5834 + }, + { + "start": 17844.62, + "end": 17845.43, + "probability": 0.9626 + }, + { + "start": 17846.08, + "end": 17847.7, + "probability": 0.8385 + }, + { + "start": 17849.0, + "end": 17852.2, + "probability": 0.9504 + }, + { + "start": 17852.48, + "end": 17855.4, + "probability": 0.9674 + }, + { + "start": 17856.66, + "end": 17858.84, + "probability": 0.9976 + }, + { + "start": 17859.86, + "end": 17862.44, + "probability": 0.9556 + }, + { + "start": 17862.6, + "end": 17862.9, + "probability": 0.5714 + }, + { + "start": 17863.08, + "end": 17865.86, + "probability": 0.9862 + }, + { + "start": 17866.62, + "end": 17869.2, + "probability": 0.9946 + }, + { + "start": 17869.94, + "end": 17871.38, + "probability": 0.9246 + }, + { + "start": 17871.42, + "end": 17871.76, + "probability": 0.7872 + }, + { + "start": 17871.86, + "end": 17872.0, + "probability": 0.7535 + }, + { + "start": 17872.06, + "end": 17873.08, + "probability": 0.8701 + }, + { + "start": 17873.82, + "end": 17877.88, + "probability": 0.9957 + }, + { + "start": 17878.66, + "end": 17880.7, + "probability": 0.9897 + }, + { + "start": 17881.72, + "end": 17884.86, + "probability": 0.8925 + }, + { + "start": 17884.92, + "end": 17886.72, + "probability": 0.9158 + }, + { + "start": 17886.88, + "end": 17887.08, + "probability": 0.7828 + }, + { + "start": 17887.1, + "end": 17890.4, + "probability": 0.9022 + }, + { + "start": 17890.56, + "end": 17894.64, + "probability": 0.9802 + }, + { + "start": 17895.52, + "end": 17899.86, + "probability": 0.9793 + }, + { + "start": 17900.12, + "end": 17900.54, + "probability": 0.9188 + }, + { + "start": 17901.36, + "end": 17903.64, + "probability": 0.99 + }, + { + "start": 17904.48, + "end": 17907.26, + "probability": 0.8088 + }, + { + "start": 17907.36, + "end": 17909.84, + "probability": 0.9213 + }, + { + "start": 17918.82, + "end": 17921.7, + "probability": 0.7968 + }, + { + "start": 17923.84, + "end": 17925.04, + "probability": 0.6386 + }, + { + "start": 17925.14, + "end": 17926.32, + "probability": 0.6355 + }, + { + "start": 17927.02, + "end": 17928.08, + "probability": 0.7205 + }, + { + "start": 17928.14, + "end": 17932.74, + "probability": 0.9209 + }, + { + "start": 17932.78, + "end": 17935.42, + "probability": 0.9268 + }, + { + "start": 17935.86, + "end": 17940.38, + "probability": 0.9983 + }, + { + "start": 17940.84, + "end": 17942.52, + "probability": 0.9988 + }, + { + "start": 17942.64, + "end": 17943.78, + "probability": 0.9408 + }, + { + "start": 17944.9, + "end": 17946.2, + "probability": 0.7593 + }, + { + "start": 17946.68, + "end": 17947.7, + "probability": 0.7499 + }, + { + "start": 17947.84, + "end": 17952.52, + "probability": 0.9697 + }, + { + "start": 17952.78, + "end": 17955.7, + "probability": 0.997 + }, + { + "start": 17956.16, + "end": 17956.5, + "probability": 0.8826 + }, + { + "start": 17957.36, + "end": 17957.7, + "probability": 0.9362 + }, + { + "start": 17957.78, + "end": 17960.52, + "probability": 0.9514 + }, + { + "start": 17960.6, + "end": 17961.52, + "probability": 0.983 + }, + { + "start": 17962.38, + "end": 17964.5, + "probability": 0.9464 + }, + { + "start": 17965.54, + "end": 17966.4, + "probability": 0.9495 + }, + { + "start": 17966.56, + "end": 17967.22, + "probability": 0.8214 + }, + { + "start": 17967.26, + "end": 17967.5, + "probability": 0.8139 + }, + { + "start": 17967.54, + "end": 17971.84, + "probability": 0.9873 + }, + { + "start": 17972.88, + "end": 17973.88, + "probability": 0.5302 + }, + { + "start": 17973.97, + "end": 17975.44, + "probability": 0.4864 + }, + { + "start": 17975.44, + "end": 17976.4, + "probability": 0.1924 + }, + { + "start": 17976.82, + "end": 17982.98, + "probability": 0.9992 + }, + { + "start": 17983.52, + "end": 17986.74, + "probability": 0.9642 + }, + { + "start": 17987.48, + "end": 17988.04, + "probability": 0.5925 + }, + { + "start": 17988.2, + "end": 17988.86, + "probability": 0.5327 + }, + { + "start": 17988.96, + "end": 17989.34, + "probability": 0.8139 + }, + { + "start": 17989.56, + "end": 17992.16, + "probability": 0.9424 + }, + { + "start": 17993.16, + "end": 17994.91, + "probability": 0.0701 + }, + { + "start": 17995.78, + "end": 17999.36, + "probability": 0.0232 + }, + { + "start": 18002.28, + "end": 18002.34, + "probability": 0.0466 + }, + { + "start": 18002.34, + "end": 18002.34, + "probability": 0.1479 + }, + { + "start": 18002.34, + "end": 18002.34, + "probability": 0.0742 + }, + { + "start": 18002.34, + "end": 18004.02, + "probability": 0.0171 + }, + { + "start": 18004.12, + "end": 18006.94, + "probability": 0.0697 + }, + { + "start": 18008.56, + "end": 18008.66, + "probability": 0.2805 + }, + { + "start": 18008.66, + "end": 18008.66, + "probability": 0.1965 + }, + { + "start": 18008.66, + "end": 18015.06, + "probability": 0.1448 + }, + { + "start": 18015.06, + "end": 18015.32, + "probability": 0.053 + }, + { + "start": 18015.32, + "end": 18015.56, + "probability": 0.0442 + }, + { + "start": 18017.68, + "end": 18018.2, + "probability": 0.2959 + }, + { + "start": 18018.2, + "end": 18018.46, + "probability": 0.0856 + }, + { + "start": 18019.13, + "end": 18021.46, + "probability": 0.0151 + }, + { + "start": 18021.46, + "end": 18022.83, + "probability": 0.136 + }, + { + "start": 18023.22, + "end": 18023.66, + "probability": 0.0713 + }, + { + "start": 18023.9, + "end": 18024.28, + "probability": 0.1998 + }, + { + "start": 18024.28, + "end": 18025.7, + "probability": 0.0581 + }, + { + "start": 18025.72, + "end": 18026.18, + "probability": 0.0209 + }, + { + "start": 18026.18, + "end": 18026.46, + "probability": 0.056 + }, + { + "start": 18031.24, + "end": 18032.92, + "probability": 0.1264 + }, + { + "start": 18035.1, + "end": 18037.22, + "probability": 0.0081 + }, + { + "start": 18037.22, + "end": 18037.3, + "probability": 0.0939 + }, + { + "start": 18038.79, + "end": 18041.17, + "probability": 0.0198 + }, + { + "start": 18041.72, + "end": 18043.28, + "probability": 0.0568 + }, + { + "start": 18045.22, + "end": 18046.52, + "probability": 0.1742 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.0, + "end": 18067.0, + "probability": 0.0 + }, + { + "start": 18067.92, + "end": 18067.92, + "probability": 0.0464 + }, + { + "start": 18067.92, + "end": 18068.48, + "probability": 0.8158 + }, + { + "start": 18068.52, + "end": 18072.74, + "probability": 0.9935 + }, + { + "start": 18073.2, + "end": 18073.63, + "probability": 0.9348 + }, + { + "start": 18074.44, + "end": 18079.3, + "probability": 0.9951 + }, + { + "start": 18079.3, + "end": 18082.42, + "probability": 0.9972 + }, + { + "start": 18083.02, + "end": 18085.7, + "probability": 0.9985 + }, + { + "start": 18086.54, + "end": 18087.74, + "probability": 0.8745 + }, + { + "start": 18088.44, + "end": 18091.36, + "probability": 0.9902 + }, + { + "start": 18092.26, + "end": 18095.86, + "probability": 0.9982 + }, + { + "start": 18096.9, + "end": 18099.94, + "probability": 0.9937 + }, + { + "start": 18100.64, + "end": 18104.66, + "probability": 0.9974 + }, + { + "start": 18105.52, + "end": 18109.04, + "probability": 0.9824 + }, + { + "start": 18109.58, + "end": 18110.34, + "probability": 0.9633 + }, + { + "start": 18110.52, + "end": 18111.4, + "probability": 0.9949 + }, + { + "start": 18111.86, + "end": 18117.86, + "probability": 0.8394 + }, + { + "start": 18118.26, + "end": 18122.64, + "probability": 0.9762 + }, + { + "start": 18123.42, + "end": 18131.32, + "probability": 0.9858 + }, + { + "start": 18131.38, + "end": 18133.06, + "probability": 0.9402 + }, + { + "start": 18133.52, + "end": 18136.68, + "probability": 0.9965 + }, + { + "start": 18137.2, + "end": 18139.62, + "probability": 0.9919 + }, + { + "start": 18140.22, + "end": 18141.0, + "probability": 0.9973 + }, + { + "start": 18141.62, + "end": 18142.86, + "probability": 0.8758 + }, + { + "start": 18143.42, + "end": 18144.62, + "probability": 0.8196 + }, + { + "start": 18145.3, + "end": 18147.78, + "probability": 0.9894 + }, + { + "start": 18148.24, + "end": 18150.82, + "probability": 0.9943 + }, + { + "start": 18150.88, + "end": 18151.94, + "probability": 0.8252 + }, + { + "start": 18152.14, + "end": 18154.04, + "probability": 0.9945 + }, + { + "start": 18155.08, + "end": 18155.92, + "probability": 0.9323 + }, + { + "start": 18156.04, + "end": 18160.36, + "probability": 0.9948 + }, + { + "start": 18161.06, + "end": 18163.66, + "probability": 0.9523 + }, + { + "start": 18164.28, + "end": 18166.88, + "probability": 0.9586 + }, + { + "start": 18166.94, + "end": 18167.5, + "probability": 0.7547 + }, + { + "start": 18167.88, + "end": 18170.58, + "probability": 0.9929 + }, + { + "start": 18170.86, + "end": 18172.06, + "probability": 0.9817 + }, + { + "start": 18172.52, + "end": 18175.12, + "probability": 0.9969 + }, + { + "start": 18175.58, + "end": 18177.34, + "probability": 0.8477 + }, + { + "start": 18178.0, + "end": 18180.92, + "probability": 0.7979 + }, + { + "start": 18181.82, + "end": 18185.34, + "probability": 0.9922 + }, + { + "start": 18185.88, + "end": 18187.16, + "probability": 0.8495 + }, + { + "start": 18188.8, + "end": 18192.94, + "probability": 0.9775 + }, + { + "start": 18193.49, + "end": 18194.76, + "probability": 0.9845 + }, + { + "start": 18196.08, + "end": 18198.36, + "probability": 0.8615 + }, + { + "start": 18199.1, + "end": 18202.88, + "probability": 0.9912 + }, + { + "start": 18203.54, + "end": 18205.55, + "probability": 0.692 + }, + { + "start": 18206.44, + "end": 18207.76, + "probability": 0.9945 + }, + { + "start": 18208.34, + "end": 18209.6, + "probability": 0.9566 + }, + { + "start": 18212.64, + "end": 18214.14, + "probability": 0.0528 + }, + { + "start": 18214.14, + "end": 18216.92, + "probability": 0.7393 + }, + { + "start": 18217.1, + "end": 18218.4, + "probability": 0.9818 + }, + { + "start": 18218.48, + "end": 18219.6, + "probability": 0.9695 + }, + { + "start": 18220.76, + "end": 18223.66, + "probability": 0.9971 + }, + { + "start": 18224.94, + "end": 18226.72, + "probability": 0.9795 + }, + { + "start": 18226.78, + "end": 18227.92, + "probability": 0.8406 + }, + { + "start": 18228.54, + "end": 18229.86, + "probability": 0.9567 + }, + { + "start": 18230.04, + "end": 18230.74, + "probability": 0.9196 + }, + { + "start": 18231.08, + "end": 18232.12, + "probability": 0.9727 + }, + { + "start": 18232.18, + "end": 18237.0, + "probability": 0.9953 + }, + { + "start": 18237.34, + "end": 18237.48, + "probability": 0.6467 + }, + { + "start": 18237.56, + "end": 18238.5, + "probability": 0.6642 + }, + { + "start": 18239.98, + "end": 18241.85, + "probability": 0.9976 + }, + { + "start": 18242.96, + "end": 18247.24, + "probability": 0.997 + }, + { + "start": 18247.24, + "end": 18252.38, + "probability": 0.999 + }, + { + "start": 18253.22, + "end": 18255.7, + "probability": 0.6927 + }, + { + "start": 18256.54, + "end": 18259.12, + "probability": 0.9971 + }, + { + "start": 18259.44, + "end": 18260.14, + "probability": 0.8938 + }, + { + "start": 18260.58, + "end": 18262.24, + "probability": 0.9756 + }, + { + "start": 18262.74, + "end": 18263.28, + "probability": 0.9621 + }, + { + "start": 18263.34, + "end": 18263.94, + "probability": 0.9786 + }, + { + "start": 18264.38, + "end": 18265.26, + "probability": 0.9742 + }, + { + "start": 18266.06, + "end": 18267.12, + "probability": 0.8355 + }, + { + "start": 18267.68, + "end": 18270.58, + "probability": 0.877 + }, + { + "start": 18271.28, + "end": 18273.38, + "probability": 0.9911 + }, + { + "start": 18273.78, + "end": 18274.5, + "probability": 0.7527 + }, + { + "start": 18274.68, + "end": 18277.0, + "probability": 0.969 + }, + { + "start": 18277.48, + "end": 18279.26, + "probability": 0.9467 + }, + { + "start": 18279.88, + "end": 18283.24, + "probability": 0.9658 + }, + { + "start": 18283.78, + "end": 18285.68, + "probability": 0.9519 + }, + { + "start": 18286.96, + "end": 18287.58, + "probability": 0.9214 + }, + { + "start": 18288.58, + "end": 18290.88, + "probability": 0.9744 + }, + { + "start": 18291.22, + "end": 18292.48, + "probability": 0.9903 + }, + { + "start": 18293.36, + "end": 18299.3, + "probability": 0.9966 + }, + { + "start": 18299.88, + "end": 18301.84, + "probability": 0.9702 + }, + { + "start": 18302.24, + "end": 18304.54, + "probability": 0.9875 + }, + { + "start": 18305.02, + "end": 18307.68, + "probability": 0.9764 + }, + { + "start": 18308.34, + "end": 18310.98, + "probability": 0.9825 + }, + { + "start": 18311.54, + "end": 18313.98, + "probability": 0.9674 + }, + { + "start": 18314.66, + "end": 18317.88, + "probability": 0.9215 + }, + { + "start": 18318.5, + "end": 18319.42, + "probability": 0.9294 + }, + { + "start": 18319.5, + "end": 18320.92, + "probability": 0.9957 + }, + { + "start": 18321.08, + "end": 18323.58, + "probability": 0.9712 + }, + { + "start": 18325.0, + "end": 18327.34, + "probability": 0.9863 + }, + { + "start": 18328.14, + "end": 18329.98, + "probability": 0.9985 + }, + { + "start": 18330.06, + "end": 18331.28, + "probability": 0.8007 + }, + { + "start": 18331.76, + "end": 18333.48, + "probability": 0.9296 + }, + { + "start": 18334.14, + "end": 18336.66, + "probability": 0.9901 + }, + { + "start": 18338.34, + "end": 18338.64, + "probability": 0.3356 + }, + { + "start": 18339.72, + "end": 18344.26, + "probability": 0.5488 + }, + { + "start": 18345.0, + "end": 18348.6, + "probability": 0.9932 + }, + { + "start": 18349.42, + "end": 18350.04, + "probability": 0.7863 + }, + { + "start": 18351.04, + "end": 18354.66, + "probability": 0.998 + }, + { + "start": 18355.26, + "end": 18357.08, + "probability": 0.9995 + }, + { + "start": 18357.56, + "end": 18359.52, + "probability": 0.994 + }, + { + "start": 18360.84, + "end": 18363.78, + "probability": 0.985 + }, + { + "start": 18364.62, + "end": 18365.36, + "probability": 0.705 + }, + { + "start": 18365.48, + "end": 18366.78, + "probability": 0.8969 + }, + { + "start": 18367.28, + "end": 18369.56, + "probability": 0.8274 + }, + { + "start": 18370.46, + "end": 18371.18, + "probability": 0.9248 + }, + { + "start": 18371.36, + "end": 18372.96, + "probability": 0.9528 + }, + { + "start": 18373.4, + "end": 18374.84, + "probability": 0.9862 + }, + { + "start": 18375.22, + "end": 18376.76, + "probability": 0.9645 + }, + { + "start": 18377.4, + "end": 18380.82, + "probability": 0.991 + }, + { + "start": 18381.58, + "end": 18383.06, + "probability": 0.994 + }, + { + "start": 18383.8, + "end": 18385.42, + "probability": 0.9537 + }, + { + "start": 18385.56, + "end": 18386.98, + "probability": 0.9982 + }, + { + "start": 18387.48, + "end": 18390.62, + "probability": 0.9831 + }, + { + "start": 18391.56, + "end": 18392.54, + "probability": 0.9868 + }, + { + "start": 18393.7, + "end": 18394.44, + "probability": 0.9483 + }, + { + "start": 18394.98, + "end": 18397.2, + "probability": 0.9406 + }, + { + "start": 18398.2, + "end": 18400.76, + "probability": 0.9978 + }, + { + "start": 18400.92, + "end": 18405.14, + "probability": 0.9891 + }, + { + "start": 18405.7, + "end": 18407.96, + "probability": 0.9729 + }, + { + "start": 18408.66, + "end": 18409.64, + "probability": 0.7598 + }, + { + "start": 18410.38, + "end": 18413.88, + "probability": 0.9746 + }, + { + "start": 18415.0, + "end": 18416.04, + "probability": 0.8881 + }, + { + "start": 18416.22, + "end": 18419.54, + "probability": 0.9868 + }, + { + "start": 18420.16, + "end": 18421.9, + "probability": 0.9849 + }, + { + "start": 18422.26, + "end": 18424.14, + "probability": 0.996 + }, + { + "start": 18424.58, + "end": 18425.52, + "probability": 0.7992 + }, + { + "start": 18425.96, + "end": 18427.33, + "probability": 0.9929 + }, + { + "start": 18427.66, + "end": 18430.28, + "probability": 0.9471 + }, + { + "start": 18430.56, + "end": 18431.84, + "probability": 0.972 + }, + { + "start": 18432.44, + "end": 18436.08, + "probability": 0.9689 + }, + { + "start": 18436.96, + "end": 18438.34, + "probability": 0.9829 + }, + { + "start": 18438.46, + "end": 18439.46, + "probability": 0.976 + }, + { + "start": 18439.86, + "end": 18442.96, + "probability": 0.8972 + }, + { + "start": 18443.04, + "end": 18443.82, + "probability": 0.8469 + }, + { + "start": 18443.96, + "end": 18444.78, + "probability": 0.9811 + }, + { + "start": 18445.2, + "end": 18446.62, + "probability": 0.9592 + }, + { + "start": 18447.88, + "end": 18448.78, + "probability": 0.9768 + }, + { + "start": 18450.26, + "end": 18452.12, + "probability": 0.998 + }, + { + "start": 18452.78, + "end": 18453.48, + "probability": 0.9753 + }, + { + "start": 18453.56, + "end": 18455.2, + "probability": 0.9896 + }, + { + "start": 18455.34, + "end": 18456.92, + "probability": 0.9508 + }, + { + "start": 18457.6, + "end": 18458.28, + "probability": 0.7875 + }, + { + "start": 18458.94, + "end": 18460.28, + "probability": 0.9945 + }, + { + "start": 18462.06, + "end": 18464.18, + "probability": 0.8134 + }, + { + "start": 18464.92, + "end": 18465.98, + "probability": 0.9716 + }, + { + "start": 18468.52, + "end": 18472.28, + "probability": 0.9614 + }, + { + "start": 18473.2, + "end": 18474.92, + "probability": 0.986 + }, + { + "start": 18475.0, + "end": 18476.28, + "probability": 0.9606 + }, + { + "start": 18477.22, + "end": 18479.64, + "probability": 0.5743 + }, + { + "start": 18480.22, + "end": 18482.84, + "probability": 0.9622 + }, + { + "start": 18483.56, + "end": 18484.62, + "probability": 0.9396 + }, + { + "start": 18484.72, + "end": 18486.83, + "probability": 0.9915 + }, + { + "start": 18487.98, + "end": 18490.76, + "probability": 0.9353 + }, + { + "start": 18491.42, + "end": 18493.36, + "probability": 0.7387 + }, + { + "start": 18494.28, + "end": 18497.56, + "probability": 0.9985 + }, + { + "start": 18498.54, + "end": 18501.26, + "probability": 0.9766 + }, + { + "start": 18501.92, + "end": 18504.12, + "probability": 0.9731 + }, + { + "start": 18504.76, + "end": 18509.44, + "probability": 0.9699 + }, + { + "start": 18510.24, + "end": 18514.16, + "probability": 0.9967 + }, + { + "start": 18515.12, + "end": 18517.66, + "probability": 0.9285 + }, + { + "start": 18518.26, + "end": 18522.36, + "probability": 0.9934 + }, + { + "start": 18522.8, + "end": 18527.72, + "probability": 0.9565 + }, + { + "start": 18528.96, + "end": 18531.36, + "probability": 0.9035 + }, + { + "start": 18532.18, + "end": 18533.74, + "probability": 0.9758 + }, + { + "start": 18534.16, + "end": 18536.06, + "probability": 0.9485 + }, + { + "start": 18536.78, + "end": 18539.8, + "probability": 0.9802 + }, + { + "start": 18540.7, + "end": 18546.56, + "probability": 0.9415 + }, + { + "start": 18547.14, + "end": 18548.88, + "probability": 0.6825 + }, + { + "start": 18549.84, + "end": 18551.32, + "probability": 0.9885 + }, + { + "start": 18552.44, + "end": 18552.92, + "probability": 0.8649 + }, + { + "start": 18556.82, + "end": 18559.13, + "probability": 0.6864 + }, + { + "start": 18565.08, + "end": 18566.1, + "probability": 0.7305 + }, + { + "start": 18579.76, + "end": 18581.98, + "probability": 0.7352 + }, + { + "start": 18583.14, + "end": 18588.14, + "probability": 0.7885 + }, + { + "start": 18588.76, + "end": 18591.26, + "probability": 0.9907 + }, + { + "start": 18592.48, + "end": 18597.04, + "probability": 0.9756 + }, + { + "start": 18598.16, + "end": 18600.03, + "probability": 0.7765 + }, + { + "start": 18600.85, + "end": 18605.0, + "probability": 0.9088 + }, + { + "start": 18605.6, + "end": 18608.82, + "probability": 0.9985 + }, + { + "start": 18609.86, + "end": 18613.54, + "probability": 0.779 + }, + { + "start": 18614.04, + "end": 18620.72, + "probability": 0.9727 + }, + { + "start": 18620.86, + "end": 18622.58, + "probability": 0.9698 + }, + { + "start": 18623.04, + "end": 18625.58, + "probability": 0.9326 + }, + { + "start": 18626.38, + "end": 18629.36, + "probability": 0.9839 + }, + { + "start": 18629.42, + "end": 18631.13, + "probability": 0.9402 + }, + { + "start": 18633.08, + "end": 18635.7, + "probability": 0.9924 + }, + { + "start": 18635.78, + "end": 18637.48, + "probability": 0.8638 + }, + { + "start": 18637.48, + "end": 18639.9, + "probability": 0.9868 + }, + { + "start": 18640.34, + "end": 18640.72, + "probability": 0.4433 + }, + { + "start": 18640.8, + "end": 18641.6, + "probability": 0.4784 + }, + { + "start": 18641.7, + "end": 18645.68, + "probability": 0.9186 + }, + { + "start": 18648.32, + "end": 18648.96, + "probability": 0.9985 + }, + { + "start": 18649.1, + "end": 18652.88, + "probability": 0.8374 + }, + { + "start": 18652.96, + "end": 18653.14, + "probability": 0.2735 + }, + { + "start": 18653.28, + "end": 18657.37, + "probability": 0.9809 + }, + { + "start": 18659.46, + "end": 18665.32, + "probability": 0.9952 + }, + { + "start": 18665.32, + "end": 18669.36, + "probability": 0.9878 + }, + { + "start": 18669.44, + "end": 18670.32, + "probability": 0.5373 + }, + { + "start": 18670.4, + "end": 18672.0, + "probability": 0.6473 + }, + { + "start": 18672.56, + "end": 18675.82, + "probability": 0.9044 + }, + { + "start": 18675.82, + "end": 18678.2, + "probability": 0.992 + }, + { + "start": 18678.94, + "end": 18679.68, + "probability": 0.9976 + }, + { + "start": 18679.78, + "end": 18682.0, + "probability": 0.98 + }, + { + "start": 18683.18, + "end": 18684.24, + "probability": 0.6002 + }, + { + "start": 18684.36, + "end": 18686.64, + "probability": 0.9652 + }, + { + "start": 18686.72, + "end": 18687.02, + "probability": 0.9334 + }, + { + "start": 18687.16, + "end": 18689.72, + "probability": 0.9384 + }, + { + "start": 18690.08, + "end": 18690.49, + "probability": 0.8711 + }, + { + "start": 18691.76, + "end": 18695.28, + "probability": 0.8965 + }, + { + "start": 18696.06, + "end": 18698.36, + "probability": 0.9477 + }, + { + "start": 18698.66, + "end": 18699.6, + "probability": 0.9858 + }, + { + "start": 18699.96, + "end": 18700.86, + "probability": 0.6263 + }, + { + "start": 18701.5, + "end": 18706.3, + "probability": 0.9663 + }, + { + "start": 18706.9, + "end": 18710.06, + "probability": 0.8888 + }, + { + "start": 18710.26, + "end": 18710.78, + "probability": 0.8347 + }, + { + "start": 18711.18, + "end": 18716.96, + "probability": 0.7765 + }, + { + "start": 18717.06, + "end": 18717.84, + "probability": 0.9691 + }, + { + "start": 18718.32, + "end": 18719.02, + "probability": 0.9597 + }, + { + "start": 18719.16, + "end": 18719.78, + "probability": 0.5194 + }, + { + "start": 18719.86, + "end": 18720.34, + "probability": 0.696 + }, + { + "start": 18720.5, + "end": 18721.0, + "probability": 0.7662 + }, + { + "start": 18721.08, + "end": 18722.25, + "probability": 0.979 + }, + { + "start": 18723.18, + "end": 18725.22, + "probability": 0.9751 + }, + { + "start": 18726.46, + "end": 18727.26, + "probability": 0.5561 + }, + { + "start": 18727.91, + "end": 18733.43, + "probability": 0.9565 + }, + { + "start": 18735.28, + "end": 18736.96, + "probability": 0.9835 + }, + { + "start": 18738.4, + "end": 18741.2, + "probability": 0.9478 + }, + { + "start": 18741.78, + "end": 18742.56, + "probability": 0.4128 + }, + { + "start": 18743.26, + "end": 18748.54, + "probability": 0.8922 + }, + { + "start": 18749.28, + "end": 18749.72, + "probability": 0.833 + }, + { + "start": 18749.86, + "end": 18750.74, + "probability": 0.9655 + }, + { + "start": 18750.82, + "end": 18757.61, + "probability": 0.9583 + }, + { + "start": 18758.92, + "end": 18759.46, + "probability": 0.8781 + }, + { + "start": 18759.84, + "end": 18760.5, + "probability": 0.7889 + }, + { + "start": 18760.5, + "end": 18764.5, + "probability": 0.9966 + }, + { + "start": 18764.56, + "end": 18765.4, + "probability": 0.818 + }, + { + "start": 18765.56, + "end": 18767.88, + "probability": 0.9912 + }, + { + "start": 18769.46, + "end": 18770.2, + "probability": 0.807 + }, + { + "start": 18770.94, + "end": 18776.04, + "probability": 0.9802 + }, + { + "start": 18776.9, + "end": 18780.58, + "probability": 0.9993 + }, + { + "start": 18780.84, + "end": 18783.34, + "probability": 0.7375 + }, + { + "start": 18783.4, + "end": 18783.86, + "probability": 0.638 + }, + { + "start": 18783.9, + "end": 18787.02, + "probability": 0.9308 + }, + { + "start": 18787.12, + "end": 18787.57, + "probability": 0.9092 + }, + { + "start": 18789.06, + "end": 18789.42, + "probability": 0.8232 + }, + { + "start": 18790.1, + "end": 18791.34, + "probability": 0.9216 + }, + { + "start": 18791.64, + "end": 18791.9, + "probability": 0.4409 + }, + { + "start": 18792.0, + "end": 18792.52, + "probability": 0.5822 + }, + { + "start": 18792.6, + "end": 18793.46, + "probability": 0.5155 + }, + { + "start": 18793.74, + "end": 18794.96, + "probability": 0.3787 + }, + { + "start": 18794.96, + "end": 18795.4, + "probability": 0.5346 + }, + { + "start": 18795.5, + "end": 18801.3, + "probability": 0.8157 + }, + { + "start": 18802.08, + "end": 18804.58, + "probability": 0.9375 + }, + { + "start": 18805.82, + "end": 18807.74, + "probability": 0.8955 + }, + { + "start": 18808.5, + "end": 18810.66, + "probability": 0.9985 + }, + { + "start": 18811.46, + "end": 18812.2, + "probability": 0.9545 + }, + { + "start": 18812.76, + "end": 18816.12, + "probability": 0.9863 + }, + { + "start": 18817.22, + "end": 18821.22, + "probability": 0.994 + }, + { + "start": 18822.16, + "end": 18824.76, + "probability": 0.9493 + }, + { + "start": 18825.3, + "end": 18826.0, + "probability": 0.8688 + }, + { + "start": 18826.82, + "end": 18831.2, + "probability": 0.9918 + }, + { + "start": 18831.2, + "end": 18836.26, + "probability": 0.9967 + }, + { + "start": 18836.96, + "end": 18839.02, + "probability": 0.995 + }, + { + "start": 18839.12, + "end": 18839.86, + "probability": 0.7493 + }, + { + "start": 18839.96, + "end": 18842.58, + "probability": 0.9234 + }, + { + "start": 18843.2, + "end": 18847.56, + "probability": 0.7499 + }, + { + "start": 18847.7, + "end": 18848.4, + "probability": 0.794 + }, + { + "start": 18848.42, + "end": 18849.7, + "probability": 0.9807 + }, + { + "start": 18850.38, + "end": 18850.72, + "probability": 0.4359 + }, + { + "start": 18851.48, + "end": 18854.62, + "probability": 0.3739 + }, + { + "start": 18855.92, + "end": 18860.54, + "probability": 0.916 + }, + { + "start": 18860.54, + "end": 18864.7, + "probability": 0.9908 + }, + { + "start": 18865.03, + "end": 18868.98, + "probability": 0.9996 + }, + { + "start": 18869.08, + "end": 18872.06, + "probability": 0.9575 + }, + { + "start": 18872.06, + "end": 18876.52, + "probability": 0.9702 + }, + { + "start": 18878.03, + "end": 18880.4, + "probability": 0.8868 + }, + { + "start": 18881.28, + "end": 18883.92, + "probability": 0.9331 + }, + { + "start": 18884.14, + "end": 18887.78, + "probability": 0.9876 + }, + { + "start": 18888.26, + "end": 18889.82, + "probability": 0.9961 + }, + { + "start": 18889.98, + "end": 18893.26, + "probability": 0.9927 + }, + { + "start": 18893.26, + "end": 18897.32, + "probability": 0.9966 + }, + { + "start": 18898.68, + "end": 18900.38, + "probability": 0.9781 + }, + { + "start": 18901.48, + "end": 18903.24, + "probability": 0.9889 + }, + { + "start": 18904.1, + "end": 18905.28, + "probability": 0.9269 + }, + { + "start": 18905.4, + "end": 18906.5, + "probability": 0.7882 + }, + { + "start": 18906.68, + "end": 18907.42, + "probability": 0.4053 + }, + { + "start": 18907.5, + "end": 18909.28, + "probability": 0.9946 + }, + { + "start": 18909.74, + "end": 18910.46, + "probability": 0.6618 + }, + { + "start": 18910.78, + "end": 18911.62, + "probability": 0.8304 + }, + { + "start": 18912.26, + "end": 18913.48, + "probability": 0.9635 + }, + { + "start": 18913.56, + "end": 18914.42, + "probability": 0.9004 + }, + { + "start": 18914.74, + "end": 18919.06, + "probability": 0.9731 + }, + { + "start": 18919.74, + "end": 18921.44, + "probability": 0.6703 + }, + { + "start": 18922.2, + "end": 18923.52, + "probability": 0.9204 + }, + { + "start": 18924.12, + "end": 18926.74, + "probability": 0.9987 + }, + { + "start": 18928.56, + "end": 18930.9, + "probability": 0.7842 + }, + { + "start": 18932.06, + "end": 18935.08, + "probability": 0.9783 + }, + { + "start": 18935.7, + "end": 18937.92, + "probability": 0.9945 + }, + { + "start": 18938.6, + "end": 18940.42, + "probability": 0.9808 + }, + { + "start": 18940.58, + "end": 18940.8, + "probability": 0.9216 + }, + { + "start": 18940.8, + "end": 18942.78, + "probability": 0.7591 + }, + { + "start": 18943.08, + "end": 18944.5, + "probability": 0.9896 + }, + { + "start": 18944.54, + "end": 18945.86, + "probability": 0.9421 + }, + { + "start": 18946.12, + "end": 18949.16, + "probability": 0.9622 + }, + { + "start": 18950.0, + "end": 18951.7, + "probability": 0.7821 + }, + { + "start": 18952.44, + "end": 18955.9, + "probability": 0.9982 + }, + { + "start": 18956.34, + "end": 18957.18, + "probability": 0.6324 + }, + { + "start": 18957.26, + "end": 18961.88, + "probability": 0.9962 + }, + { + "start": 18962.78, + "end": 18967.78, + "probability": 0.9678 + }, + { + "start": 18967.78, + "end": 18970.22, + "probability": 0.995 + }, + { + "start": 18973.32, + "end": 18978.36, + "probability": 0.999 + }, + { + "start": 18980.02, + "end": 18981.5, + "probability": 0.816 + }, + { + "start": 18982.02, + "end": 18984.8, + "probability": 0.989 + }, + { + "start": 18985.7, + "end": 18986.04, + "probability": 0.8718 + }, + { + "start": 18986.12, + "end": 18987.0, + "probability": 0.9648 + }, + { + "start": 18987.08, + "end": 18988.68, + "probability": 0.9985 + }, + { + "start": 18989.4, + "end": 18993.42, + "probability": 0.9963 + }, + { + "start": 18994.36, + "end": 18995.78, + "probability": 0.9316 + }, + { + "start": 18996.48, + "end": 19000.32, + "probability": 0.9594 + }, + { + "start": 19001.2, + "end": 19002.08, + "probability": 0.8325 + }, + { + "start": 19003.04, + "end": 19005.44, + "probability": 0.9449 + }, + { + "start": 19006.94, + "end": 19008.32, + "probability": 0.8334 + }, + { + "start": 19009.38, + "end": 19013.16, + "probability": 0.9872 + }, + { + "start": 19014.44, + "end": 19017.22, + "probability": 0.9806 + }, + { + "start": 19018.36, + "end": 19019.28, + "probability": 0.8924 + }, + { + "start": 19019.38, + "end": 19020.63, + "probability": 0.971 + }, + { + "start": 19020.84, + "end": 19022.22, + "probability": 0.9189 + }, + { + "start": 19023.1, + "end": 19029.0, + "probability": 0.9856 + }, + { + "start": 19029.24, + "end": 19033.08, + "probability": 0.9453 + }, + { + "start": 19033.08, + "end": 19036.74, + "probability": 0.9291 + }, + { + "start": 19038.06, + "end": 19040.42, + "probability": 0.7244 + }, + { + "start": 19041.76, + "end": 19043.08, + "probability": 0.9927 + }, + { + "start": 19043.26, + "end": 19044.0, + "probability": 0.7494 + }, + { + "start": 19044.02, + "end": 19045.46, + "probability": 0.9897 + }, + { + "start": 19046.18, + "end": 19047.36, + "probability": 0.912 + }, + { + "start": 19047.62, + "end": 19050.22, + "probability": 0.9917 + }, + { + "start": 19050.86, + "end": 19051.92, + "probability": 0.485 + }, + { + "start": 19052.72, + "end": 19055.58, + "probability": 0.891 + }, + { + "start": 19055.89, + "end": 19059.28, + "probability": 0.9966 + }, + { + "start": 19059.98, + "end": 19061.34, + "probability": 0.9706 + }, + { + "start": 19062.54, + "end": 19063.68, + "probability": 0.9906 + }, + { + "start": 19064.2, + "end": 19065.02, + "probability": 0.9496 + }, + { + "start": 19066.36, + "end": 19067.68, + "probability": 0.7464 + }, + { + "start": 19068.42, + "end": 19070.08, + "probability": 0.999 + }, + { + "start": 19070.72, + "end": 19074.18, + "probability": 0.8773 + }, + { + "start": 19074.18, + "end": 19077.04, + "probability": 0.9474 + }, + { + "start": 19077.44, + "end": 19077.96, + "probability": 0.8307 + }, + { + "start": 19077.98, + "end": 19078.89, + "probability": 0.9934 + }, + { + "start": 19079.28, + "end": 19080.02, + "probability": 0.6473 + }, + { + "start": 19080.96, + "end": 19082.71, + "probability": 0.9919 + }, + { + "start": 19083.12, + "end": 19084.42, + "probability": 0.9897 + }, + { + "start": 19087.14, + "end": 19087.58, + "probability": 0.4967 + }, + { + "start": 19088.46, + "end": 19090.58, + "probability": 0.9204 + }, + { + "start": 19091.54, + "end": 19097.28, + "probability": 0.9847 + }, + { + "start": 19098.76, + "end": 19099.24, + "probability": 0.6669 + }, + { + "start": 19099.8, + "end": 19101.4, + "probability": 0.9764 + }, + { + "start": 19102.7, + "end": 19103.87, + "probability": 0.8556 + }, + { + "start": 19105.96, + "end": 19107.68, + "probability": 0.9302 + }, + { + "start": 19109.16, + "end": 19112.6, + "probability": 0.9943 + }, + { + "start": 19112.6, + "end": 19116.44, + "probability": 0.997 + }, + { + "start": 19117.62, + "end": 19120.25, + "probability": 0.9314 + }, + { + "start": 19121.84, + "end": 19122.56, + "probability": 0.9081 + }, + { + "start": 19123.72, + "end": 19124.82, + "probability": 0.809 + }, + { + "start": 19125.82, + "end": 19129.08, + "probability": 0.96 + }, + { + "start": 19130.3, + "end": 19131.42, + "probability": 0.8896 + }, + { + "start": 19132.58, + "end": 19136.64, + "probability": 0.9876 + }, + { + "start": 19137.36, + "end": 19137.9, + "probability": 0.7348 + }, + { + "start": 19139.22, + "end": 19141.88, + "probability": 0.9814 + }, + { + "start": 19142.1, + "end": 19145.68, + "probability": 0.915 + }, + { + "start": 19147.0, + "end": 19148.94, + "probability": 0.9931 + }, + { + "start": 19149.52, + "end": 19151.56, + "probability": 0.9927 + }, + { + "start": 19152.58, + "end": 19156.6, + "probability": 0.4881 + }, + { + "start": 19156.6, + "end": 19156.6, + "probability": 0.0342 + }, + { + "start": 19156.6, + "end": 19157.46, + "probability": 0.6079 + }, + { + "start": 19158.4, + "end": 19163.42, + "probability": 0.89 + }, + { + "start": 19163.66, + "end": 19164.14, + "probability": 0.8328 + }, + { + "start": 19164.22, + "end": 19166.32, + "probability": 0.9914 + }, + { + "start": 19167.04, + "end": 19170.4, + "probability": 0.9426 + }, + { + "start": 19170.92, + "end": 19175.08, + "probability": 0.9636 + }, + { + "start": 19176.12, + "end": 19177.34, + "probability": 0.971 + }, + { + "start": 19177.78, + "end": 19178.26, + "probability": 0.9022 + }, + { + "start": 19180.7, + "end": 19181.1, + "probability": 0.3751 + }, + { + "start": 19181.16, + "end": 19182.76, + "probability": 0.8802 + }, + { + "start": 19208.88, + "end": 19209.42, + "probability": 0.6235 + }, + { + "start": 19211.46, + "end": 19217.62, + "probability": 0.9506 + }, + { + "start": 19217.62, + "end": 19224.34, + "probability": 0.9777 + }, + { + "start": 19225.54, + "end": 19233.46, + "probability": 0.8367 + }, + { + "start": 19233.76, + "end": 19239.56, + "probability": 0.8734 + }, + { + "start": 19240.04, + "end": 19246.46, + "probability": 0.9983 + }, + { + "start": 19246.82, + "end": 19250.12, + "probability": 0.9314 + }, + { + "start": 19250.6, + "end": 19254.9, + "probability": 0.938 + }, + { + "start": 19255.1, + "end": 19264.0, + "probability": 0.9844 + }, + { + "start": 19264.94, + "end": 19268.92, + "probability": 0.999 + }, + { + "start": 19269.44, + "end": 19275.26, + "probability": 0.9982 + }, + { + "start": 19276.9, + "end": 19283.1, + "probability": 0.9966 + }, + { + "start": 19284.34, + "end": 19287.36, + "probability": 0.992 + }, + { + "start": 19287.92, + "end": 19292.96, + "probability": 0.7786 + }, + { + "start": 19293.06, + "end": 19299.94, + "probability": 0.9965 + }, + { + "start": 19300.8, + "end": 19302.22, + "probability": 0.7858 + }, + { + "start": 19303.02, + "end": 19305.9, + "probability": 0.9385 + }, + { + "start": 19306.46, + "end": 19308.5, + "probability": 0.9502 + }, + { + "start": 19309.22, + "end": 19314.44, + "probability": 0.9895 + }, + { + "start": 19315.08, + "end": 19316.68, + "probability": 0.6191 + }, + { + "start": 19317.28, + "end": 19321.4, + "probability": 0.9955 + }, + { + "start": 19321.66, + "end": 19327.76, + "probability": 0.9963 + }, + { + "start": 19328.06, + "end": 19328.84, + "probability": 0.886 + }, + { + "start": 19329.06, + "end": 19335.82, + "probability": 0.9719 + }, + { + "start": 19336.08, + "end": 19339.14, + "probability": 0.8964 + }, + { + "start": 19339.72, + "end": 19341.84, + "probability": 0.7365 + }, + { + "start": 19342.42, + "end": 19344.6, + "probability": 0.9784 + }, + { + "start": 19345.54, + "end": 19346.58, + "probability": 0.9289 + }, + { + "start": 19347.6, + "end": 19348.9, + "probability": 0.9184 + }, + { + "start": 19349.28, + "end": 19353.66, + "probability": 0.9749 + }, + { + "start": 19354.21, + "end": 19358.04, + "probability": 0.9237 + }, + { + "start": 19358.4, + "end": 19360.76, + "probability": 0.9823 + }, + { + "start": 19361.14, + "end": 19365.52, + "probability": 0.9792 + }, + { + "start": 19366.48, + "end": 19367.88, + "probability": 0.9388 + }, + { + "start": 19368.62, + "end": 19372.36, + "probability": 0.7624 + }, + { + "start": 19373.12, + "end": 19376.24, + "probability": 0.9801 + }, + { + "start": 19376.62, + "end": 19378.46, + "probability": 0.9868 + }, + { + "start": 19379.06, + "end": 19380.92, + "probability": 0.9967 + }, + { + "start": 19382.53, + "end": 19387.98, + "probability": 0.999 + }, + { + "start": 19388.64, + "end": 19391.65, + "probability": 0.9684 + }, + { + "start": 19391.98, + "end": 19395.44, + "probability": 0.7704 + }, + { + "start": 19397.02, + "end": 19405.66, + "probability": 0.9932 + }, + { + "start": 19406.1, + "end": 19407.58, + "probability": 0.7979 + }, + { + "start": 19408.58, + "end": 19411.06, + "probability": 0.5934 + }, + { + "start": 19411.5, + "end": 19417.3, + "probability": 0.7669 + }, + { + "start": 19417.72, + "end": 19420.24, + "probability": 0.9966 + }, + { + "start": 19420.24, + "end": 19425.82, + "probability": 0.8837 + }, + { + "start": 19426.44, + "end": 19428.52, + "probability": 0.9176 + }, + { + "start": 19429.56, + "end": 19431.58, + "probability": 0.9912 + }, + { + "start": 19431.78, + "end": 19432.78, + "probability": 0.8613 + }, + { + "start": 19434.12, + "end": 19438.98, + "probability": 0.999 + }, + { + "start": 19439.54, + "end": 19448.3, + "probability": 0.9901 + }, + { + "start": 19449.32, + "end": 19450.7, + "probability": 0.7342 + }, + { + "start": 19452.0, + "end": 19457.12, + "probability": 0.5977 + }, + { + "start": 19457.72, + "end": 19461.14, + "probability": 0.5631 + }, + { + "start": 19461.88, + "end": 19466.54, + "probability": 0.9937 + }, + { + "start": 19466.54, + "end": 19473.34, + "probability": 0.979 + }, + { + "start": 19473.82, + "end": 19477.76, + "probability": 0.9739 + }, + { + "start": 19479.12, + "end": 19482.56, + "probability": 0.9533 + }, + { + "start": 19484.88, + "end": 19486.04, + "probability": 0.3537 + }, + { + "start": 19486.78, + "end": 19490.22, + "probability": 0.97 + }, + { + "start": 19492.26, + "end": 19495.44, + "probability": 0.8862 + }, + { + "start": 19495.48, + "end": 19501.92, + "probability": 0.9855 + }, + { + "start": 19502.64, + "end": 19505.62, + "probability": 0.9954 + }, + { + "start": 19505.74, + "end": 19511.8, + "probability": 0.941 + }, + { + "start": 19511.88, + "end": 19513.28, + "probability": 0.6076 + }, + { + "start": 19513.36, + "end": 19520.38, + "probability": 0.9808 + }, + { + "start": 19520.94, + "end": 19523.2, + "probability": 0.9378 + }, + { + "start": 19523.96, + "end": 19524.5, + "probability": 0.4506 + }, + { + "start": 19525.02, + "end": 19531.98, + "probability": 0.9856 + }, + { + "start": 19532.84, + "end": 19538.44, + "probability": 0.9989 + }, + { + "start": 19538.44, + "end": 19543.64, + "probability": 0.993 + }, + { + "start": 19544.68, + "end": 19547.9, + "probability": 0.9733 + }, + { + "start": 19548.3, + "end": 19555.3, + "probability": 0.9406 + }, + { + "start": 19556.26, + "end": 19561.72, + "probability": 0.9958 + }, + { + "start": 19562.24, + "end": 19565.82, + "probability": 0.9984 + }, + { + "start": 19566.62, + "end": 19569.02, + "probability": 0.9298 + }, + { + "start": 19569.94, + "end": 19575.14, + "probability": 0.9574 + }, + { + "start": 19575.46, + "end": 19577.52, + "probability": 0.9134 + }, + { + "start": 19577.86, + "end": 19582.88, + "probability": 0.9927 + }, + { + "start": 19585.82, + "end": 19587.82, + "probability": 0.9716 + }, + { + "start": 19588.78, + "end": 19594.08, + "probability": 0.9979 + }, + { + "start": 19596.2, + "end": 19600.06, + "probability": 0.9944 + }, + { + "start": 19602.65, + "end": 19607.02, + "probability": 0.9963 + }, + { + "start": 19607.02, + "end": 19613.26, + "probability": 0.9951 + }, + { + "start": 19614.82, + "end": 19615.92, + "probability": 0.9148 + }, + { + "start": 19616.08, + "end": 19616.92, + "probability": 0.6314 + }, + { + "start": 19617.16, + "end": 19620.6, + "probability": 0.787 + }, + { + "start": 19620.68, + "end": 19621.12, + "probability": 0.6421 + }, + { + "start": 19621.34, + "end": 19623.34, + "probability": 0.8448 + }, + { + "start": 19624.52, + "end": 19627.46, + "probability": 0.9821 + }, + { + "start": 19628.02, + "end": 19631.44, + "probability": 0.9901 + }, + { + "start": 19632.72, + "end": 19636.4, + "probability": 0.999 + }, + { + "start": 19637.08, + "end": 19641.48, + "probability": 0.9692 + }, + { + "start": 19642.9, + "end": 19648.12, + "probability": 0.9976 + }, + { + "start": 19648.12, + "end": 19652.1, + "probability": 0.999 + }, + { + "start": 19652.46, + "end": 19655.08, + "probability": 0.6803 + }, + { + "start": 19655.3, + "end": 19655.98, + "probability": 0.6965 + }, + { + "start": 19656.04, + "end": 19657.16, + "probability": 0.8967 + }, + { + "start": 19657.62, + "end": 19661.46, + "probability": 0.9946 + }, + { + "start": 19661.52, + "end": 19664.88, + "probability": 0.9781 + }, + { + "start": 19665.88, + "end": 19667.76, + "probability": 0.9924 + }, + { + "start": 19668.48, + "end": 19672.88, + "probability": 0.9761 + }, + { + "start": 19674.26, + "end": 19677.28, + "probability": 0.9984 + }, + { + "start": 19678.06, + "end": 19683.3, + "probability": 0.9369 + }, + { + "start": 19684.0, + "end": 19684.38, + "probability": 0.4633 + }, + { + "start": 19684.96, + "end": 19687.0, + "probability": 0.7502 + }, + { + "start": 19687.98, + "end": 19693.8, + "probability": 0.9976 + }, + { + "start": 19693.8, + "end": 19702.5, + "probability": 0.9864 + }, + { + "start": 19703.02, + "end": 19703.84, + "probability": 0.616 + }, + { + "start": 19704.04, + "end": 19706.7, + "probability": 0.9131 + }, + { + "start": 19706.98, + "end": 19713.12, + "probability": 0.993 + }, + { + "start": 19713.12, + "end": 19718.24, + "probability": 0.9961 + }, + { + "start": 19718.32, + "end": 19719.68, + "probability": 0.9946 + }, + { + "start": 19721.23, + "end": 19726.22, + "probability": 0.7509 + }, + { + "start": 19727.3, + "end": 19728.92, + "probability": 0.9888 + }, + { + "start": 19730.66, + "end": 19731.66, + "probability": 0.441 + }, + { + "start": 19732.92, + "end": 19736.98, + "probability": 0.9297 + }, + { + "start": 19737.28, + "end": 19738.72, + "probability": 0.731 + }, + { + "start": 19739.4, + "end": 19743.02, + "probability": 0.9905 + }, + { + "start": 19743.68, + "end": 19744.84, + "probability": 0.9351 + }, + { + "start": 19744.9, + "end": 19751.02, + "probability": 0.9951 + }, + { + "start": 19751.84, + "end": 19752.86, + "probability": 0.9789 + }, + { + "start": 19754.36, + "end": 19755.26, + "probability": 0.8124 + }, + { + "start": 19755.56, + "end": 19757.58, + "probability": 0.497 + }, + { + "start": 19758.1, + "end": 19760.02, + "probability": 0.9709 + }, + { + "start": 19760.56, + "end": 19766.28, + "probability": 0.9781 + }, + { + "start": 19766.44, + "end": 19768.38, + "probability": 0.4185 + }, + { + "start": 19770.09, + "end": 19774.02, + "probability": 0.981 + }, + { + "start": 19774.44, + "end": 19776.48, + "probability": 0.9801 + }, + { + "start": 19777.1, + "end": 19781.85, + "probability": 0.9974 + }, + { + "start": 19782.2, + "end": 19788.92, + "probability": 0.9815 + }, + { + "start": 19789.42, + "end": 19790.62, + "probability": 0.7469 + }, + { + "start": 19791.14, + "end": 19800.16, + "probability": 0.9923 + }, + { + "start": 19803.33, + "end": 19804.14, + "probability": 0.4675 + }, + { + "start": 19804.14, + "end": 19804.16, + "probability": 0.6621 + }, + { + "start": 19804.58, + "end": 19808.56, + "probability": 0.9837 + }, + { + "start": 19808.74, + "end": 19810.06, + "probability": 0.8813 + }, + { + "start": 19811.18, + "end": 19814.91, + "probability": 0.9976 + }, + { + "start": 19816.02, + "end": 19820.9, + "probability": 0.9863 + }, + { + "start": 19821.08, + "end": 19821.12, + "probability": 0.0125 + }, + { + "start": 19822.28, + "end": 19822.78, + "probability": 0.0981 + }, + { + "start": 19822.78, + "end": 19822.88, + "probability": 0.2766 + }, + { + "start": 19823.54, + "end": 19824.62, + "probability": 0.8084 + }, + { + "start": 19824.82, + "end": 19825.46, + "probability": 0.8215 + }, + { + "start": 19825.7, + "end": 19827.76, + "probability": 0.774 + }, + { + "start": 19828.38, + "end": 19829.42, + "probability": 0.9012 + }, + { + "start": 19830.1, + "end": 19830.1, + "probability": 0.199 + }, + { + "start": 19830.5, + "end": 19833.18, + "probability": 0.9288 + }, + { + "start": 19833.54, + "end": 19839.6, + "probability": 0.3986 + }, + { + "start": 19841.14, + "end": 19842.94, + "probability": 0.8056 + }, + { + "start": 19843.52, + "end": 19851.54, + "probability": 0.9966 + }, + { + "start": 19852.56, + "end": 19854.76, + "probability": 0.7987 + }, + { + "start": 19855.84, + "end": 19860.74, + "probability": 0.9973 + }, + { + "start": 19861.32, + "end": 19865.64, + "probability": 0.9019 + }, + { + "start": 19866.64, + "end": 19867.0, + "probability": 0.2497 + }, + { + "start": 19867.14, + "end": 19874.54, + "probability": 0.924 + }, + { + "start": 19874.74, + "end": 19876.94, + "probability": 0.9711 + }, + { + "start": 19877.46, + "end": 19879.22, + "probability": 0.8971 + }, + { + "start": 19879.98, + "end": 19884.8, + "probability": 0.9823 + }, + { + "start": 19884.9, + "end": 19885.86, + "probability": 0.935 + }, + { + "start": 19885.94, + "end": 19888.5, + "probability": 0.9606 + }, + { + "start": 19889.1, + "end": 19892.94, + "probability": 0.934 + }, + { + "start": 19894.2, + "end": 19896.92, + "probability": 0.8993 + }, + { + "start": 19897.08, + "end": 19899.26, + "probability": 0.9951 + }, + { + "start": 19899.92, + "end": 19900.24, + "probability": 0.979 + }, + { + "start": 19900.82, + "end": 19902.2, + "probability": 0.9672 + }, + { + "start": 19902.7, + "end": 19907.74, + "probability": 0.9988 + }, + { + "start": 19909.78, + "end": 19915.06, + "probability": 0.9943 + }, + { + "start": 19915.52, + "end": 19920.88, + "probability": 0.9688 + }, + { + "start": 19921.24, + "end": 19921.94, + "probability": 0.5064 + }, + { + "start": 19922.5, + "end": 19923.36, + "probability": 0.7921 + }, + { + "start": 19925.06, + "end": 19930.16, + "probability": 0.9956 + }, + { + "start": 19931.1, + "end": 19933.42, + "probability": 0.9821 + }, + { + "start": 19935.14, + "end": 19936.66, + "probability": 0.9734 + }, + { + "start": 19937.71, + "end": 19938.84, + "probability": 0.2533 + }, + { + "start": 19940.26, + "end": 19941.42, + "probability": 0.082 + }, + { + "start": 19943.8, + "end": 19944.18, + "probability": 0.6211 + }, + { + "start": 19945.48, + "end": 19945.48, + "probability": 0.0529 + }, + { + "start": 19945.48, + "end": 19945.68, + "probability": 0.7796 + }, + { + "start": 19946.1, + "end": 19948.9, + "probability": 0.9875 + }, + { + "start": 19949.88, + "end": 19952.76, + "probability": 0.9812 + }, + { + "start": 19953.52, + "end": 19957.18, + "probability": 0.9863 + }, + { + "start": 19957.78, + "end": 19958.72, + "probability": 0.9512 + }, + { + "start": 19959.94, + "end": 19960.88, + "probability": 0.7895 + }, + { + "start": 19961.0, + "end": 19967.86, + "probability": 0.9954 + }, + { + "start": 19968.14, + "end": 19972.12, + "probability": 0.7207 + }, + { + "start": 19973.02, + "end": 19978.3, + "probability": 0.9385 + }, + { + "start": 19979.32, + "end": 19980.52, + "probability": 0.7786 + }, + { + "start": 19981.98, + "end": 19988.26, + "probability": 0.9824 + }, + { + "start": 19989.04, + "end": 19993.2, + "probability": 0.9685 + }, + { + "start": 19994.24, + "end": 19996.4, + "probability": 0.9951 + }, + { + "start": 19997.42, + "end": 19998.98, + "probability": 0.9048 + }, + { + "start": 19999.72, + "end": 20002.24, + "probability": 0.9836 + }, + { + "start": 20002.88, + "end": 20007.7, + "probability": 0.9819 + }, + { + "start": 20008.32, + "end": 20009.4, + "probability": 0.9618 + }, + { + "start": 20009.5, + "end": 20014.66, + "probability": 0.8342 + }, + { + "start": 20015.48, + "end": 20020.68, + "probability": 0.9961 + }, + { + "start": 20021.88, + "end": 20027.9, + "probability": 0.999 + }, + { + "start": 20028.44, + "end": 20034.68, + "probability": 0.9085 + }, + { + "start": 20035.46, + "end": 20038.54, + "probability": 0.8931 + }, + { + "start": 20039.38, + "end": 20043.84, + "probability": 0.8812 + }, + { + "start": 20044.58, + "end": 20046.0, + "probability": 0.9512 + }, + { + "start": 20046.74, + "end": 20048.23, + "probability": 0.994 + }, + { + "start": 20048.9, + "end": 20050.44, + "probability": 0.9967 + }, + { + "start": 20052.32, + "end": 20054.3, + "probability": 0.9971 + }, + { + "start": 20055.64, + "end": 20066.78, + "probability": 0.9604 + }, + { + "start": 20067.2, + "end": 20068.28, + "probability": 0.9446 + }, + { + "start": 20069.22, + "end": 20072.94, + "probability": 0.9748 + }, + { + "start": 20073.56, + "end": 20075.14, + "probability": 0.9932 + }, + { + "start": 20075.94, + "end": 20077.85, + "probability": 0.9878 + }, + { + "start": 20078.96, + "end": 20081.94, + "probability": 0.9967 + }, + { + "start": 20082.66, + "end": 20087.52, + "probability": 0.9657 + }, + { + "start": 20088.36, + "end": 20089.66, + "probability": 0.9629 + }, + { + "start": 20090.18, + "end": 20092.28, + "probability": 0.646 + }, + { + "start": 20092.74, + "end": 20095.22, + "probability": 0.9073 + }, + { + "start": 20095.98, + "end": 20098.12, + "probability": 0.9489 + }, + { + "start": 20098.96, + "end": 20101.38, + "probability": 0.9443 + }, + { + "start": 20101.4, + "end": 20107.9, + "probability": 0.9906 + }, + { + "start": 20108.6, + "end": 20112.56, + "probability": 0.8829 + }, + { + "start": 20113.06, + "end": 20119.0, + "probability": 0.9515 + }, + { + "start": 20120.8, + "end": 20121.2, + "probability": 0.2331 + }, + { + "start": 20121.22, + "end": 20122.22, + "probability": 0.5643 + }, + { + "start": 20124.42, + "end": 20125.44, + "probability": 0.0298 + }, + { + "start": 20125.78, + "end": 20127.96, + "probability": 0.244 + }, + { + "start": 20128.46, + "end": 20130.2, + "probability": 0.1527 + }, + { + "start": 20130.82, + "end": 20132.24, + "probability": 0.0792 + }, + { + "start": 20133.34, + "end": 20136.66, + "probability": 0.1684 + }, + { + "start": 20150.72, + "end": 20151.46, + "probability": 0.4213 + }, + { + "start": 20165.53, + "end": 20168.72, + "probability": 0.9346 + }, + { + "start": 20169.92, + "end": 20171.28, + "probability": 0.9837 + }, + { + "start": 20173.48, + "end": 20176.84, + "probability": 0.9403 + }, + { + "start": 20177.46, + "end": 20179.38, + "probability": 0.9712 + }, + { + "start": 20179.42, + "end": 20180.24, + "probability": 0.946 + }, + { + "start": 20180.5, + "end": 20183.98, + "probability": 0.955 + }, + { + "start": 20185.36, + "end": 20189.22, + "probability": 0.9983 + }, + { + "start": 20190.14, + "end": 20192.72, + "probability": 0.8922 + }, + { + "start": 20194.34, + "end": 20199.6, + "probability": 0.9966 + }, + { + "start": 20201.56, + "end": 20207.5, + "probability": 0.979 + }, + { + "start": 20209.9, + "end": 20210.62, + "probability": 0.5916 + }, + { + "start": 20212.18, + "end": 20215.36, + "probability": 0.9978 + }, + { + "start": 20217.42, + "end": 20221.98, + "probability": 0.9974 + }, + { + "start": 20223.48, + "end": 20226.08, + "probability": 0.9991 + }, + { + "start": 20227.04, + "end": 20228.76, + "probability": 0.988 + }, + { + "start": 20229.5, + "end": 20230.08, + "probability": 0.8526 + }, + { + "start": 20230.96, + "end": 20238.68, + "probability": 0.9912 + }, + { + "start": 20241.08, + "end": 20247.66, + "probability": 0.995 + }, + { + "start": 20248.42, + "end": 20251.88, + "probability": 0.9665 + }, + { + "start": 20252.68, + "end": 20256.7, + "probability": 0.9254 + }, + { + "start": 20257.3, + "end": 20258.66, + "probability": 0.9808 + }, + { + "start": 20260.44, + "end": 20261.88, + "probability": 0.9945 + }, + { + "start": 20262.84, + "end": 20266.36, + "probability": 0.9292 + }, + { + "start": 20266.78, + "end": 20268.72, + "probability": 0.9487 + }, + { + "start": 20270.04, + "end": 20273.78, + "probability": 0.8671 + }, + { + "start": 20274.02, + "end": 20276.3, + "probability": 0.9966 + }, + { + "start": 20277.44, + "end": 20283.18, + "probability": 0.8191 + }, + { + "start": 20284.36, + "end": 20286.14, + "probability": 0.8693 + }, + { + "start": 20288.02, + "end": 20289.16, + "probability": 0.9836 + }, + { + "start": 20291.64, + "end": 20292.38, + "probability": 0.9891 + }, + { + "start": 20293.64, + "end": 20298.92, + "probability": 0.9802 + }, + { + "start": 20301.13, + "end": 20303.42, + "probability": 0.9854 + }, + { + "start": 20304.4, + "end": 20306.9, + "probability": 0.7033 + }, + { + "start": 20309.36, + "end": 20310.64, + "probability": 0.9569 + }, + { + "start": 20311.36, + "end": 20313.64, + "probability": 0.9867 + }, + { + "start": 20315.16, + "end": 20316.44, + "probability": 0.9416 + }, + { + "start": 20317.4, + "end": 20319.98, + "probability": 0.9414 + }, + { + "start": 20321.56, + "end": 20324.2, + "probability": 0.8947 + }, + { + "start": 20324.86, + "end": 20326.84, + "probability": 0.9613 + }, + { + "start": 20328.2, + "end": 20332.76, + "probability": 0.964 + }, + { + "start": 20334.04, + "end": 20335.04, + "probability": 0.859 + }, + { + "start": 20335.88, + "end": 20340.94, + "probability": 0.9983 + }, + { + "start": 20341.92, + "end": 20346.94, + "probability": 0.9688 + }, + { + "start": 20348.42, + "end": 20350.66, + "probability": 0.897 + }, + { + "start": 20357.68, + "end": 20360.12, + "probability": 0.8149 + }, + { + "start": 20361.42, + "end": 20363.3, + "probability": 0.9907 + }, + { + "start": 20364.66, + "end": 20367.16, + "probability": 0.8389 + }, + { + "start": 20367.86, + "end": 20369.82, + "probability": 0.9868 + }, + { + "start": 20370.64, + "end": 20373.68, + "probability": 0.9948 + }, + { + "start": 20374.32, + "end": 20375.76, + "probability": 0.9766 + }, + { + "start": 20376.58, + "end": 20378.86, + "probability": 0.9471 + }, + { + "start": 20380.44, + "end": 20384.02, + "probability": 0.9266 + }, + { + "start": 20385.44, + "end": 20389.5, + "probability": 0.8734 + }, + { + "start": 20389.5, + "end": 20392.52, + "probability": 0.9938 + }, + { + "start": 20393.88, + "end": 20394.36, + "probability": 0.6817 + }, + { + "start": 20394.94, + "end": 20397.78, + "probability": 0.985 + }, + { + "start": 20399.08, + "end": 20402.02, + "probability": 0.9977 + }, + { + "start": 20402.76, + "end": 20408.2, + "probability": 0.9884 + }, + { + "start": 20409.18, + "end": 20410.64, + "probability": 0.9946 + }, + { + "start": 20411.68, + "end": 20416.56, + "probability": 0.9976 + }, + { + "start": 20416.68, + "end": 20416.92, + "probability": 0.3516 + }, + { + "start": 20420.38, + "end": 20422.76, + "probability": 0.9992 + }, + { + "start": 20422.82, + "end": 20423.94, + "probability": 0.9606 + }, + { + "start": 20424.02, + "end": 20429.1, + "probability": 0.9947 + }, + { + "start": 20430.5, + "end": 20431.36, + "probability": 0.7096 + }, + { + "start": 20432.76, + "end": 20435.12, + "probability": 0.9745 + }, + { + "start": 20437.8, + "end": 20440.26, + "probability": 0.9769 + }, + { + "start": 20441.88, + "end": 20442.98, + "probability": 0.9931 + }, + { + "start": 20443.2, + "end": 20447.28, + "probability": 0.9847 + }, + { + "start": 20448.64, + "end": 20453.78, + "probability": 0.9567 + }, + { + "start": 20454.84, + "end": 20458.92, + "probability": 0.8216 + }, + { + "start": 20460.2, + "end": 20461.84, + "probability": 0.9897 + }, + { + "start": 20462.7, + "end": 20464.86, + "probability": 0.8496 + }, + { + "start": 20467.88, + "end": 20471.2, + "probability": 0.9751 + }, + { + "start": 20473.36, + "end": 20475.86, + "probability": 0.9537 + }, + { + "start": 20475.94, + "end": 20479.9, + "probability": 0.9934 + }, + { + "start": 20480.56, + "end": 20488.76, + "probability": 0.9924 + }, + { + "start": 20489.06, + "end": 20492.24, + "probability": 0.9888 + }, + { + "start": 20493.82, + "end": 20494.04, + "probability": 0.332 + }, + { + "start": 20494.22, + "end": 20499.6, + "probability": 0.9956 + }, + { + "start": 20500.68, + "end": 20507.0, + "probability": 0.9799 + }, + { + "start": 20508.22, + "end": 20510.46, + "probability": 0.9014 + }, + { + "start": 20512.22, + "end": 20513.12, + "probability": 0.9768 + }, + { + "start": 20513.16, + "end": 20513.96, + "probability": 0.8065 + }, + { + "start": 20514.14, + "end": 20520.4, + "probability": 0.9832 + }, + { + "start": 20521.4, + "end": 20521.88, + "probability": 0.9871 + }, + { + "start": 20522.58, + "end": 20525.38, + "probability": 0.998 + }, + { + "start": 20526.24, + "end": 20528.7, + "probability": 0.9543 + }, + { + "start": 20530.26, + "end": 20536.08, + "probability": 0.9956 + }, + { + "start": 20537.18, + "end": 20540.54, + "probability": 0.9966 + }, + { + "start": 20542.04, + "end": 20544.18, + "probability": 0.9841 + }, + { + "start": 20544.38, + "end": 20545.82, + "probability": 0.9979 + }, + { + "start": 20546.28, + "end": 20547.88, + "probability": 0.9702 + }, + { + "start": 20549.46, + "end": 20550.72, + "probability": 0.8152 + }, + { + "start": 20551.58, + "end": 20554.68, + "probability": 0.897 + }, + { + "start": 20555.58, + "end": 20560.24, + "probability": 0.9897 + }, + { + "start": 20564.46, + "end": 20565.87, + "probability": 0.9648 + }, + { + "start": 20566.06, + "end": 20568.86, + "probability": 0.9795 + }, + { + "start": 20569.84, + "end": 20572.35, + "probability": 0.9971 + }, + { + "start": 20573.12, + "end": 20574.46, + "probability": 0.998 + }, + { + "start": 20575.12, + "end": 20576.54, + "probability": 0.9963 + }, + { + "start": 20577.4, + "end": 20578.46, + "probability": 0.8598 + }, + { + "start": 20579.46, + "end": 20583.68, + "probability": 0.994 + }, + { + "start": 20584.26, + "end": 20584.94, + "probability": 0.6157 + }, + { + "start": 20586.54, + "end": 20588.12, + "probability": 0.9026 + }, + { + "start": 20588.14, + "end": 20589.0, + "probability": 0.8932 + }, + { + "start": 20589.68, + "end": 20590.56, + "probability": 0.994 + }, + { + "start": 20591.8, + "end": 20593.18, + "probability": 0.8699 + }, + { + "start": 20593.96, + "end": 20597.72, + "probability": 0.885 + }, + { + "start": 20598.6, + "end": 20599.88, + "probability": 0.9943 + }, + { + "start": 20600.86, + "end": 20602.65, + "probability": 0.9688 + }, + { + "start": 20603.42, + "end": 20606.22, + "probability": 0.7389 + }, + { + "start": 20606.42, + "end": 20608.0, + "probability": 0.9615 + }, + { + "start": 20608.38, + "end": 20609.02, + "probability": 0.8861 + }, + { + "start": 20609.28, + "end": 20609.98, + "probability": 0.9 + }, + { + "start": 20610.58, + "end": 20612.58, + "probability": 0.9806 + }, + { + "start": 20615.44, + "end": 20622.22, + "probability": 0.986 + }, + { + "start": 20625.14, + "end": 20628.26, + "probability": 0.9871 + }, + { + "start": 20628.26, + "end": 20632.1, + "probability": 0.9973 + }, + { + "start": 20634.44, + "end": 20635.48, + "probability": 0.4018 + }, + { + "start": 20636.08, + "end": 20637.5, + "probability": 0.9931 + }, + { + "start": 20638.88, + "end": 20643.12, + "probability": 0.9836 + }, + { + "start": 20644.26, + "end": 20647.94, + "probability": 0.9941 + }, + { + "start": 20648.88, + "end": 20650.66, + "probability": 0.9664 + }, + { + "start": 20651.94, + "end": 20654.34, + "probability": 0.9931 + }, + { + "start": 20656.16, + "end": 20656.88, + "probability": 0.7582 + }, + { + "start": 20658.54, + "end": 20662.3, + "probability": 0.9434 + }, + { + "start": 20663.94, + "end": 20666.26, + "probability": 0.9814 + }, + { + "start": 20667.08, + "end": 20671.4, + "probability": 0.9708 + }, + { + "start": 20673.0, + "end": 20676.66, + "probability": 0.9337 + }, + { + "start": 20678.78, + "end": 20681.14, + "probability": 0.8242 + }, + { + "start": 20681.28, + "end": 20683.18, + "probability": 0.9951 + }, + { + "start": 20683.94, + "end": 20685.32, + "probability": 0.978 + }, + { + "start": 20686.52, + "end": 20689.0, + "probability": 0.8615 + }, + { + "start": 20689.88, + "end": 20691.12, + "probability": 0.4891 + }, + { + "start": 20691.46, + "end": 20692.58, + "probability": 0.9349 + }, + { + "start": 20692.72, + "end": 20697.5, + "probability": 0.9766 + }, + { + "start": 20698.92, + "end": 20700.28, + "probability": 0.9058 + }, + { + "start": 20701.96, + "end": 20704.46, + "probability": 0.9685 + }, + { + "start": 20704.64, + "end": 20705.14, + "probability": 0.5002 + }, + { + "start": 20705.2, + "end": 20706.42, + "probability": 0.9708 + }, + { + "start": 20707.18, + "end": 20708.14, + "probability": 0.7085 + }, + { + "start": 20708.66, + "end": 20709.3, + "probability": 0.5012 + }, + { + "start": 20710.04, + "end": 20713.12, + "probability": 0.8411 + }, + { + "start": 20714.0, + "end": 20715.16, + "probability": 0.8872 + }, + { + "start": 20715.24, + "end": 20716.44, + "probability": 0.9883 + }, + { + "start": 20716.52, + "end": 20717.2, + "probability": 0.8638 + }, + { + "start": 20717.26, + "end": 20719.08, + "probability": 0.9974 + }, + { + "start": 20720.18, + "end": 20721.74, + "probability": 0.9202 + }, + { + "start": 20722.48, + "end": 20726.76, + "probability": 0.8256 + }, + { + "start": 20727.52, + "end": 20732.66, + "probability": 0.9943 + }, + { + "start": 20732.76, + "end": 20733.58, + "probability": 0.9455 + }, + { + "start": 20734.12, + "end": 20734.58, + "probability": 0.891 + }, + { + "start": 20735.72, + "end": 20737.72, + "probability": 0.9982 + }, + { + "start": 20738.74, + "end": 20740.34, + "probability": 0.936 + }, + { + "start": 20740.78, + "end": 20743.84, + "probability": 0.9068 + }, + { + "start": 20744.46, + "end": 20746.44, + "probability": 0.9932 + }, + { + "start": 20747.0, + "end": 20749.42, + "probability": 0.9584 + }, + { + "start": 20751.44, + "end": 20753.62, + "probability": 0.8896 + }, + { + "start": 20755.06, + "end": 20758.72, + "probability": 0.9707 + }, + { + "start": 20758.92, + "end": 20759.5, + "probability": 0.5227 + }, + { + "start": 20760.1, + "end": 20761.12, + "probability": 0.8047 + }, + { + "start": 20764.22, + "end": 20765.2, + "probability": 0.7697 + }, + { + "start": 20766.12, + "end": 20766.64, + "probability": 0.6999 + }, + { + "start": 20782.28, + "end": 20784.2, + "probability": 0.6438 + }, + { + "start": 20785.46, + "end": 20788.08, + "probability": 0.9216 + }, + { + "start": 20789.74, + "end": 20793.94, + "probability": 0.8589 + }, + { + "start": 20794.24, + "end": 20796.12, + "probability": 0.9698 + }, + { + "start": 20796.22, + "end": 20796.74, + "probability": 0.8004 + }, + { + "start": 20796.84, + "end": 20797.82, + "probability": 0.9217 + }, + { + "start": 20798.64, + "end": 20803.3, + "probability": 0.9917 + }, + { + "start": 20803.36, + "end": 20807.38, + "probability": 0.985 + }, + { + "start": 20808.3, + "end": 20810.96, + "probability": 0.9878 + }, + { + "start": 20812.0, + "end": 20813.74, + "probability": 0.5396 + }, + { + "start": 20814.34, + "end": 20816.58, + "probability": 0.266 + }, + { + "start": 20816.66, + "end": 20817.34, + "probability": 0.9424 + }, + { + "start": 20817.38, + "end": 20818.68, + "probability": 0.9855 + }, + { + "start": 20818.78, + "end": 20819.24, + "probability": 0.4558 + }, + { + "start": 20819.34, + "end": 20822.16, + "probability": 0.982 + }, + { + "start": 20822.62, + "end": 20824.08, + "probability": 0.6769 + }, + { + "start": 20824.76, + "end": 20827.7, + "probability": 0.9421 + }, + { + "start": 20828.74, + "end": 20829.02, + "probability": 0.7302 + }, + { + "start": 20829.08, + "end": 20830.12, + "probability": 0.9697 + }, + { + "start": 20830.94, + "end": 20830.94, + "probability": 0.7354 + }, + { + "start": 20831.06, + "end": 20832.76, + "probability": 0.9775 + }, + { + "start": 20832.84, + "end": 20835.28, + "probability": 0.6702 + }, + { + "start": 20835.34, + "end": 20835.7, + "probability": 0.6078 + }, + { + "start": 20835.8, + "end": 20836.44, + "probability": 0.982 + }, + { + "start": 20836.54, + "end": 20837.98, + "probability": 0.8623 + }, + { + "start": 20838.42, + "end": 20839.14, + "probability": 0.6165 + }, + { + "start": 20839.3, + "end": 20841.06, + "probability": 0.9108 + }, + { + "start": 20841.18, + "end": 20843.3, + "probability": 0.84 + }, + { + "start": 20843.3, + "end": 20844.16, + "probability": 0.999 + }, + { + "start": 20844.42, + "end": 20845.06, + "probability": 0.6552 + }, + { + "start": 20845.14, + "end": 20849.36, + "probability": 0.8799 + }, + { + "start": 20849.86, + "end": 20851.16, + "probability": 0.8562 + }, + { + "start": 20851.28, + "end": 20853.68, + "probability": 0.8962 + }, + { + "start": 20854.24, + "end": 20857.04, + "probability": 0.5981 + }, + { + "start": 20857.04, + "end": 20858.16, + "probability": 0.8152 + }, + { + "start": 20858.32, + "end": 20858.58, + "probability": 0.6659 + }, + { + "start": 20858.74, + "end": 20863.34, + "probability": 0.9895 + }, + { + "start": 20864.42, + "end": 20865.72, + "probability": 0.8278 + }, + { + "start": 20866.54, + "end": 20869.58, + "probability": 0.9476 + }, + { + "start": 20869.74, + "end": 20872.4, + "probability": 0.9217 + }, + { + "start": 20872.68, + "end": 20874.84, + "probability": 0.8789 + }, + { + "start": 20874.96, + "end": 20876.62, + "probability": 0.9927 + }, + { + "start": 20877.08, + "end": 20877.58, + "probability": 0.8066 + }, + { + "start": 20877.7, + "end": 20878.26, + "probability": 0.9661 + }, + { + "start": 20879.04, + "end": 20879.14, + "probability": 0.6164 + }, + { + "start": 20880.3, + "end": 20885.24, + "probability": 0.9951 + }, + { + "start": 20885.24, + "end": 20889.3, + "probability": 0.9878 + }, + { + "start": 20889.78, + "end": 20890.06, + "probability": 0.9218 + }, + { + "start": 20890.16, + "end": 20892.23, + "probability": 0.9954 + }, + { + "start": 20892.42, + "end": 20893.52, + "probability": 0.9247 + }, + { + "start": 20893.96, + "end": 20895.48, + "probability": 0.9576 + }, + { + "start": 20895.6, + "end": 20898.86, + "probability": 0.9767 + }, + { + "start": 20900.18, + "end": 20900.86, + "probability": 0.8411 + }, + { + "start": 20901.06, + "end": 20904.48, + "probability": 0.9568 + }, + { + "start": 20905.18, + "end": 20907.86, + "probability": 0.9102 + }, + { + "start": 20908.58, + "end": 20912.64, + "probability": 0.9973 + }, + { + "start": 20912.64, + "end": 20913.32, + "probability": 0.7722 + }, + { + "start": 20913.5, + "end": 20916.34, + "probability": 0.9701 + }, + { + "start": 20917.3, + "end": 20920.08, + "probability": 0.9971 + }, + { + "start": 20920.56, + "end": 20923.42, + "probability": 0.98 + }, + { + "start": 20924.08, + "end": 20927.68, + "probability": 0.9563 + }, + { + "start": 20928.1, + "end": 20930.08, + "probability": 0.9814 + }, + { + "start": 20930.24, + "end": 20930.93, + "probability": 0.7574 + }, + { + "start": 20932.02, + "end": 20935.22, + "probability": 0.9059 + }, + { + "start": 20935.38, + "end": 20935.66, + "probability": 0.9152 + }, + { + "start": 20935.78, + "end": 20938.62, + "probability": 0.9291 + }, + { + "start": 20938.78, + "end": 20940.72, + "probability": 0.9586 + }, + { + "start": 20940.92, + "end": 20943.16, + "probability": 0.8106 + }, + { + "start": 20944.18, + "end": 20946.86, + "probability": 0.9858 + }, + { + "start": 20947.48, + "end": 20949.62, + "probability": 0.9629 + }, + { + "start": 20950.5, + "end": 20952.04, + "probability": 0.8894 + }, + { + "start": 20952.42, + "end": 20953.48, + "probability": 0.8021 + }, + { + "start": 20954.14, + "end": 20955.6, + "probability": 0.8486 + }, + { + "start": 20955.68, + "end": 20957.09, + "probability": 0.8652 + }, + { + "start": 20957.78, + "end": 20960.74, + "probability": 0.9976 + }, + { + "start": 20961.64, + "end": 20964.38, + "probability": 0.9202 + }, + { + "start": 20964.9, + "end": 20967.78, + "probability": 0.7584 + }, + { + "start": 20968.48, + "end": 20968.9, + "probability": 0.8835 + }, + { + "start": 20969.18, + "end": 20969.28, + "probability": 0.4827 + }, + { + "start": 20969.64, + "end": 20971.24, + "probability": 0.9956 + }, + { + "start": 20971.66, + "end": 20975.9, + "probability": 0.9663 + }, + { + "start": 20976.92, + "end": 20977.62, + "probability": 0.9562 + }, + { + "start": 20978.24, + "end": 20979.94, + "probability": 0.9949 + }, + { + "start": 20980.6, + "end": 20982.78, + "probability": 0.9108 + }, + { + "start": 20982.92, + "end": 20983.52, + "probability": 0.5207 + }, + { + "start": 20983.64, + "end": 20985.14, + "probability": 0.9061 + }, + { + "start": 20985.76, + "end": 20989.84, + "probability": 0.8734 + }, + { + "start": 20990.08, + "end": 20991.67, + "probability": 0.7681 + }, + { + "start": 20992.34, + "end": 20995.44, + "probability": 0.9661 + }, + { + "start": 20996.32, + "end": 21000.2, + "probability": 0.8931 + }, + { + "start": 21000.2, + "end": 21004.72, + "probability": 0.4975 + }, + { + "start": 21005.2, + "end": 21006.98, + "probability": 0.2763 + }, + { + "start": 21008.12, + "end": 21011.3, + "probability": 0.7815 + }, + { + "start": 21011.4, + "end": 21012.34, + "probability": 0.8221 + }, + { + "start": 21013.02, + "end": 21013.52, + "probability": 0.7614 + }, + { + "start": 21013.64, + "end": 21016.66, + "probability": 0.9699 + }, + { + "start": 21017.04, + "end": 21020.36, + "probability": 0.9886 + }, + { + "start": 21020.36, + "end": 21022.82, + "probability": 0.8549 + }, + { + "start": 21023.12, + "end": 21023.66, + "probability": 0.7551 + }, + { + "start": 21024.02, + "end": 21025.02, + "probability": 0.6317 + }, + { + "start": 21025.48, + "end": 21025.98, + "probability": 0.5079 + }, + { + "start": 21026.3, + "end": 21028.43, + "probability": 0.656 + }, + { + "start": 21029.5, + "end": 21030.58, + "probability": 0.6748 + }, + { + "start": 21030.66, + "end": 21032.2, + "probability": 0.8061 + }, + { + "start": 21032.26, + "end": 21034.18, + "probability": 0.7996 + }, + { + "start": 21034.42, + "end": 21034.6, + "probability": 0.5457 + }, + { + "start": 21035.0, + "end": 21035.64, + "probability": 0.9321 + }, + { + "start": 21035.78, + "end": 21038.66, + "probability": 0.9761 + }, + { + "start": 21038.92, + "end": 21039.82, + "probability": 0.8389 + }, + { + "start": 21040.1, + "end": 21042.24, + "probability": 0.9761 + }, + { + "start": 21043.32, + "end": 21043.66, + "probability": 0.6756 + }, + { + "start": 21044.0, + "end": 21045.04, + "probability": 0.9815 + }, + { + "start": 21045.14, + "end": 21048.24, + "probability": 0.9923 + }, + { + "start": 21048.78, + "end": 21049.92, + "probability": 0.928 + }, + { + "start": 21050.24, + "end": 21054.58, + "probability": 0.986 + }, + { + "start": 21054.74, + "end": 21056.92, + "probability": 0.9496 + }, + { + "start": 21057.0, + "end": 21057.73, + "probability": 0.9695 + }, + { + "start": 21057.98, + "end": 21060.02, + "probability": 0.8926 + }, + { + "start": 21060.5, + "end": 21063.14, + "probability": 0.7852 + }, + { + "start": 21063.48, + "end": 21067.18, + "probability": 0.924 + }, + { + "start": 21067.18, + "end": 21070.14, + "probability": 0.996 + }, + { + "start": 21071.14, + "end": 21074.54, + "probability": 0.9935 + }, + { + "start": 21075.12, + "end": 21076.66, + "probability": 0.8083 + }, + { + "start": 21077.66, + "end": 21079.56, + "probability": 0.9661 + }, + { + "start": 21081.06, + "end": 21083.16, + "probability": 0.8127 + }, + { + "start": 21083.66, + "end": 21084.02, + "probability": 0.8722 + }, + { + "start": 21084.26, + "end": 21086.0, + "probability": 0.9988 + }, + { + "start": 21086.26, + "end": 21087.56, + "probability": 0.9907 + }, + { + "start": 21087.66, + "end": 21090.82, + "probability": 0.8796 + }, + { + "start": 21091.22, + "end": 21091.3, + "probability": 0.7384 + }, + { + "start": 21091.34, + "end": 21091.97, + "probability": 0.8906 + }, + { + "start": 21092.14, + "end": 21094.7, + "probability": 0.9762 + }, + { + "start": 21094.86, + "end": 21095.68, + "probability": 0.9882 + }, + { + "start": 21096.44, + "end": 21100.86, + "probability": 0.9858 + }, + { + "start": 21100.98, + "end": 21101.92, + "probability": 0.9561 + }, + { + "start": 21102.42, + "end": 21103.92, + "probability": 0.9577 + }, + { + "start": 21104.84, + "end": 21106.6, + "probability": 0.9497 + }, + { + "start": 21107.54, + "end": 21109.38, + "probability": 0.9657 + }, + { + "start": 21109.72, + "end": 21109.96, + "probability": 0.9678 + }, + { + "start": 21110.72, + "end": 21111.24, + "probability": 0.8699 + }, + { + "start": 21111.32, + "end": 21112.86, + "probability": 0.8843 + }, + { + "start": 21113.18, + "end": 21116.66, + "probability": 0.9941 + }, + { + "start": 21117.0, + "end": 21119.8, + "probability": 0.9958 + }, + { + "start": 21120.94, + "end": 21124.06, + "probability": 0.9037 + }, + { + "start": 21124.26, + "end": 21125.16, + "probability": 0.9787 + }, + { + "start": 21125.48, + "end": 21126.04, + "probability": 0.979 + }, + { + "start": 21126.8, + "end": 21130.7, + "probability": 0.9336 + }, + { + "start": 21131.2, + "end": 21131.84, + "probability": 0.83 + }, + { + "start": 21131.94, + "end": 21133.46, + "probability": 0.8678 + }, + { + "start": 21133.56, + "end": 21134.2, + "probability": 0.9225 + }, + { + "start": 21134.56, + "end": 21141.02, + "probability": 0.986 + }, + { + "start": 21141.52, + "end": 21141.84, + "probability": 0.9031 + }, + { + "start": 21141.9, + "end": 21143.5, + "probability": 0.9846 + }, + { + "start": 21144.22, + "end": 21145.68, + "probability": 0.7911 + }, + { + "start": 21145.8, + "end": 21147.71, + "probability": 0.938 + }, + { + "start": 21148.56, + "end": 21150.38, + "probability": 0.9749 + }, + { + "start": 21150.88, + "end": 21156.58, + "probability": 0.993 + }, + { + "start": 21157.14, + "end": 21160.6, + "probability": 0.8269 + }, + { + "start": 21161.1, + "end": 21163.36, + "probability": 0.9806 + }, + { + "start": 21163.36, + "end": 21166.1, + "probability": 0.9958 + }, + { + "start": 21166.42, + "end": 21167.04, + "probability": 0.9595 + }, + { + "start": 21167.48, + "end": 21168.22, + "probability": 0.7852 + }, + { + "start": 21168.28, + "end": 21168.78, + "probability": 0.6831 + }, + { + "start": 21169.3, + "end": 21171.42, + "probability": 0.5442 + }, + { + "start": 21171.42, + "end": 21171.42, + "probability": 0.0796 + }, + { + "start": 21171.42, + "end": 21172.08, + "probability": 0.7777 + }, + { + "start": 21172.16, + "end": 21174.11, + "probability": 0.8384 + }, + { + "start": 21174.64, + "end": 21175.2, + "probability": 0.7544 + }, + { + "start": 21176.4, + "end": 21176.54, + "probability": 0.4407 + }, + { + "start": 21176.86, + "end": 21178.06, + "probability": 0.8647 + }, + { + "start": 21178.22, + "end": 21179.74, + "probability": 0.8279 + }, + { + "start": 21180.14, + "end": 21180.9, + "probability": 0.818 + }, + { + "start": 21181.18, + "end": 21181.92, + "probability": 0.7614 + }, + { + "start": 21182.1, + "end": 21182.28, + "probability": 0.5228 + }, + { + "start": 21182.72, + "end": 21183.88, + "probability": 0.9043 + }, + { + "start": 21183.94, + "end": 21186.7, + "probability": 0.9529 + }, + { + "start": 21187.12, + "end": 21188.04, + "probability": 0.7239 + }, + { + "start": 21188.04, + "end": 21189.62, + "probability": 0.9941 + }, + { + "start": 21189.76, + "end": 21189.94, + "probability": 0.9308 + }, + { + "start": 21192.76, + "end": 21192.86, + "probability": 0.8832 + }, + { + "start": 21193.48, + "end": 21194.43, + "probability": 0.964 + }, + { + "start": 21194.88, + "end": 21198.74, + "probability": 0.9924 + }, + { + "start": 21198.76, + "end": 21199.22, + "probability": 0.661 + }, + { + "start": 21199.66, + "end": 21202.6, + "probability": 0.9951 + }, + { + "start": 21203.54, + "end": 21205.42, + "probability": 0.7896 + }, + { + "start": 21205.62, + "end": 21205.98, + "probability": 0.7221 + }, + { + "start": 21206.12, + "end": 21206.84, + "probability": 0.8089 + }, + { + "start": 21208.42, + "end": 21208.88, + "probability": 0.0902 + }, + { + "start": 21208.88, + "end": 21208.88, + "probability": 0.07 + }, + { + "start": 21208.88, + "end": 21210.94, + "probability": 0.5365 + }, + { + "start": 21210.96, + "end": 21211.34, + "probability": 0.5371 + }, + { + "start": 21211.36, + "end": 21212.38, + "probability": 0.7674 + }, + { + "start": 21212.38, + "end": 21213.08, + "probability": 0.4733 + }, + { + "start": 21213.12, + "end": 21213.52, + "probability": 0.4977 + }, + { + "start": 21213.54, + "end": 21214.5, + "probability": 0.7036 + }, + { + "start": 21214.68, + "end": 21215.02, + "probability": 0.3712 + }, + { + "start": 21215.02, + "end": 21215.24, + "probability": 0.2562 + }, + { + "start": 21215.24, + "end": 21217.9, + "probability": 0.9226 + }, + { + "start": 21218.08, + "end": 21220.37, + "probability": 0.6478 + }, + { + "start": 21220.86, + "end": 21221.3, + "probability": 0.4656 + }, + { + "start": 21221.38, + "end": 21222.02, + "probability": 0.9626 + }, + { + "start": 21222.02, + "end": 21222.22, + "probability": 0.9148 + }, + { + "start": 21222.24, + "end": 21223.04, + "probability": 0.9552 + }, + { + "start": 21223.68, + "end": 21228.02, + "probability": 0.8893 + }, + { + "start": 21228.3, + "end": 21228.58, + "probability": 0.3698 + }, + { + "start": 21228.84, + "end": 21229.52, + "probability": 0.9382 + }, + { + "start": 21229.52, + "end": 21230.92, + "probability": 0.8992 + }, + { + "start": 21230.92, + "end": 21235.56, + "probability": 0.991 + }, + { + "start": 21235.77, + "end": 21239.68, + "probability": 0.0592 + }, + { + "start": 21239.68, + "end": 21239.68, + "probability": 0.1152 + }, + { + "start": 21239.68, + "end": 21240.02, + "probability": 0.3813 + }, + { + "start": 21240.02, + "end": 21240.34, + "probability": 0.6187 + }, + { + "start": 21240.4, + "end": 21242.02, + "probability": 0.9695 + }, + { + "start": 21242.16, + "end": 21242.6, + "probability": 0.6112 + }, + { + "start": 21242.72, + "end": 21245.06, + "probability": 0.9678 + }, + { + "start": 21245.34, + "end": 21247.94, + "probability": 0.9653 + }, + { + "start": 21247.94, + "end": 21250.76, + "probability": 0.9802 + }, + { + "start": 21250.84, + "end": 21251.44, + "probability": 0.5538 + }, + { + "start": 21251.76, + "end": 21252.82, + "probability": 0.7007 + }, + { + "start": 21252.82, + "end": 21253.52, + "probability": 0.6665 + }, + { + "start": 21253.58, + "end": 21256.38, + "probability": 0.5161 + }, + { + "start": 21256.54, + "end": 21256.76, + "probability": 0.6408 + }, + { + "start": 21256.84, + "end": 21261.34, + "probability": 0.9699 + }, + { + "start": 21261.44, + "end": 21262.58, + "probability": 0.8467 + }, + { + "start": 21263.34, + "end": 21264.62, + "probability": 0.9897 + }, + { + "start": 21264.7, + "end": 21265.34, + "probability": 0.7821 + }, + { + "start": 21265.88, + "end": 21270.44, + "probability": 0.9878 + }, + { + "start": 21270.44, + "end": 21272.72, + "probability": 0.7397 + }, + { + "start": 21272.92, + "end": 21274.06, + "probability": 0.991 + }, + { + "start": 21274.34, + "end": 21277.72, + "probability": 0.9924 + }, + { + "start": 21278.02, + "end": 21280.52, + "probability": 0.6284 + }, + { + "start": 21280.86, + "end": 21281.48, + "probability": 0.674 + }, + { + "start": 21281.84, + "end": 21284.96, + "probability": 0.9241 + }, + { + "start": 21284.96, + "end": 21288.4, + "probability": 0.9932 + }, + { + "start": 21288.82, + "end": 21289.9, + "probability": 0.9832 + }, + { + "start": 21290.36, + "end": 21291.34, + "probability": 0.6878 + }, + { + "start": 21292.22, + "end": 21293.16, + "probability": 0.9297 + }, + { + "start": 21293.2, + "end": 21294.88, + "probability": 0.8082 + }, + { + "start": 21295.32, + "end": 21296.96, + "probability": 0.9854 + }, + { + "start": 21297.18, + "end": 21299.03, + "probability": 0.9851 + }, + { + "start": 21299.56, + "end": 21303.2, + "probability": 0.6557 + }, + { + "start": 21303.38, + "end": 21303.66, + "probability": 0.9235 + }, + { + "start": 21303.8, + "end": 21304.36, + "probability": 0.5547 + }, + { + "start": 21304.58, + "end": 21306.34, + "probability": 0.6309 + }, + { + "start": 21306.66, + "end": 21308.26, + "probability": 0.6427 + }, + { + "start": 21308.64, + "end": 21312.8, + "probability": 0.5438 + }, + { + "start": 21313.12, + "end": 21313.32, + "probability": 0.5345 + }, + { + "start": 21313.34, + "end": 21315.66, + "probability": 0.5957 + }, + { + "start": 21315.81, + "end": 21316.34, + "probability": 0.4857 + }, + { + "start": 21316.48, + "end": 21318.3, + "probability": 0.6642 + }, + { + "start": 21318.34, + "end": 21318.82, + "probability": 0.4952 + }, + { + "start": 21318.96, + "end": 21319.48, + "probability": 0.484 + }, + { + "start": 21319.72, + "end": 21321.04, + "probability": 0.9769 + }, + { + "start": 21321.62, + "end": 21321.62, + "probability": 0.0084 + }, + { + "start": 21321.62, + "end": 21323.2, + "probability": 0.7691 + }, + { + "start": 21323.36, + "end": 21324.88, + "probability": 0.8735 + }, + { + "start": 21325.34, + "end": 21325.52, + "probability": 0.2262 + }, + { + "start": 21326.78, + "end": 21327.98, + "probability": 0.416 + }, + { + "start": 21328.18, + "end": 21331.58, + "probability": 0.9925 + }, + { + "start": 21331.58, + "end": 21334.69, + "probability": 0.9915 + }, + { + "start": 21335.24, + "end": 21340.1, + "probability": 0.9325 + }, + { + "start": 21340.12, + "end": 21341.93, + "probability": 0.9184 + }, + { + "start": 21342.14, + "end": 21344.34, + "probability": 0.9409 + }, + { + "start": 21344.44, + "end": 21344.88, + "probability": 0.7668 + }, + { + "start": 21345.16, + "end": 21347.08, + "probability": 0.9337 + }, + { + "start": 21347.08, + "end": 21349.84, + "probability": 0.4708 + }, + { + "start": 21350.14, + "end": 21351.58, + "probability": 0.5935 + }, + { + "start": 21351.58, + "end": 21353.12, + "probability": 0.4708 + }, + { + "start": 21353.14, + "end": 21357.16, + "probability": 0.4999 + }, + { + "start": 21357.84, + "end": 21359.12, + "probability": 0.7464 + }, + { + "start": 21359.18, + "end": 21360.18, + "probability": 0.9368 + }, + { + "start": 21360.72, + "end": 21364.06, + "probability": 0.913 + }, + { + "start": 21364.58, + "end": 21367.58, + "probability": 0.472 + }, + { + "start": 21368.38, + "end": 21370.42, + "probability": 0.8746 + }, + { + "start": 21370.94, + "end": 21373.72, + "probability": 0.963 + }, + { + "start": 21373.98, + "end": 21375.14, + "probability": 0.9559 + }, + { + "start": 21375.52, + "end": 21379.12, + "probability": 0.8387 + }, + { + "start": 21380.05, + "end": 21382.94, + "probability": 0.9812 + }, + { + "start": 21383.46, + "end": 21385.14, + "probability": 0.9635 + }, + { + "start": 21385.34, + "end": 21386.76, + "probability": 0.5627 + }, + { + "start": 21386.86, + "end": 21389.0, + "probability": 0.9897 + }, + { + "start": 21389.38, + "end": 21391.02, + "probability": 0.8999 + }, + { + "start": 21391.1, + "end": 21391.1, + "probability": 0.7751 + }, + { + "start": 21391.12, + "end": 21392.12, + "probability": 0.9847 + }, + { + "start": 21393.1, + "end": 21396.96, + "probability": 0.9701 + }, + { + "start": 21397.4, + "end": 21398.96, + "probability": 0.8935 + }, + { + "start": 21399.26, + "end": 21401.41, + "probability": 0.9959 + }, + { + "start": 21402.24, + "end": 21404.7, + "probability": 0.991 + }, + { + "start": 21405.1, + "end": 21409.06, + "probability": 0.9937 + }, + { + "start": 21409.24, + "end": 21415.62, + "probability": 0.9347 + }, + { + "start": 21415.88, + "end": 21417.48, + "probability": 0.8893 + }, + { + "start": 21419.02, + "end": 21422.92, + "probability": 0.9213 + }, + { + "start": 21423.1, + "end": 21426.16, + "probability": 0.9507 + }, + { + "start": 21427.12, + "end": 21429.04, + "probability": 0.9969 + }, + { + "start": 21429.74, + "end": 21430.95, + "probability": 0.9775 + }, + { + "start": 21431.56, + "end": 21433.08, + "probability": 0.8126 + }, + { + "start": 21433.16, + "end": 21434.2, + "probability": 0.8843 + }, + { + "start": 21434.42, + "end": 21435.47, + "probability": 0.9861 + }, + { + "start": 21436.16, + "end": 21439.68, + "probability": 0.9156 + }, + { + "start": 21439.78, + "end": 21440.64, + "probability": 0.8737 + }, + { + "start": 21440.7, + "end": 21442.26, + "probability": 0.9968 + }, + { + "start": 21442.54, + "end": 21446.12, + "probability": 0.7177 + }, + { + "start": 21446.12, + "end": 21449.12, + "probability": 0.9103 + }, + { + "start": 21449.54, + "end": 21451.33, + "probability": 0.9675 + }, + { + "start": 21452.06, + "end": 21453.8, + "probability": 0.875 + }, + { + "start": 21454.28, + "end": 21455.68, + "probability": 0.931 + }, + { + "start": 21456.26, + "end": 21461.74, + "probability": 0.9825 + }, + { + "start": 21462.02, + "end": 21462.54, + "probability": 0.774 + }, + { + "start": 21462.96, + "end": 21463.56, + "probability": 0.9073 + }, + { + "start": 21464.64, + "end": 21468.02, + "probability": 0.9459 + }, + { + "start": 21468.52, + "end": 21469.75, + "probability": 0.8526 + }, + { + "start": 21469.96, + "end": 21473.8, + "probability": 0.9671 + }, + { + "start": 21473.8, + "end": 21476.1, + "probability": 0.9932 + }, + { + "start": 21476.18, + "end": 21476.44, + "probability": 0.8833 + }, + { + "start": 21476.98, + "end": 21481.32, + "probability": 0.8853 + }, + { + "start": 21482.04, + "end": 21482.46, + "probability": 0.831 + }, + { + "start": 21482.54, + "end": 21483.38, + "probability": 0.633 + }, + { + "start": 21483.46, + "end": 21486.25, + "probability": 0.9849 + }, + { + "start": 21486.66, + "end": 21489.29, + "probability": 0.8121 + }, + { + "start": 21490.24, + "end": 21494.7, + "probability": 0.9896 + }, + { + "start": 21495.28, + "end": 21497.2, + "probability": 0.8669 + }, + { + "start": 21497.9, + "end": 21498.82, + "probability": 0.9005 + }, + { + "start": 21499.38, + "end": 21504.5, + "probability": 0.7373 + }, + { + "start": 21505.02, + "end": 21507.88, + "probability": 0.9663 + }, + { + "start": 21509.03, + "end": 21511.38, + "probability": 0.9753 + }, + { + "start": 21512.22, + "end": 21516.08, + "probability": 0.9515 + }, + { + "start": 21516.6, + "end": 21518.5, + "probability": 0.5803 + }, + { + "start": 21518.64, + "end": 21520.0, + "probability": 0.752 + }, + { + "start": 21520.1, + "end": 21521.1, + "probability": 0.8043 + }, + { + "start": 21521.62, + "end": 21524.58, + "probability": 0.9966 + }, + { + "start": 21525.14, + "end": 21529.4, + "probability": 0.9849 + }, + { + "start": 21529.82, + "end": 21531.64, + "probability": 0.7888 + }, + { + "start": 21532.16, + "end": 21533.22, + "probability": 0.9449 + }, + { + "start": 21533.28, + "end": 21533.98, + "probability": 0.787 + }, + { + "start": 21534.98, + "end": 21537.8, + "probability": 0.8966 + }, + { + "start": 21538.12, + "end": 21539.76, + "probability": 0.5397 + }, + { + "start": 21540.0, + "end": 21543.62, + "probability": 0.9805 + }, + { + "start": 21544.14, + "end": 21545.1, + "probability": 0.9907 + }, + { + "start": 21545.76, + "end": 21549.08, + "probability": 0.9122 + }, + { + "start": 21550.0, + "end": 21551.94, + "probability": 0.9969 + }, + { + "start": 21552.48, + "end": 21553.3, + "probability": 0.9581 + }, + { + "start": 21553.82, + "end": 21555.82, + "probability": 0.9834 + }, + { + "start": 21556.36, + "end": 21557.04, + "probability": 0.8341 + }, + { + "start": 21557.32, + "end": 21558.54, + "probability": 0.9881 + }, + { + "start": 21558.66, + "end": 21560.63, + "probability": 0.9775 + }, + { + "start": 21561.82, + "end": 21563.5, + "probability": 0.7488 + }, + { + "start": 21563.76, + "end": 21566.48, + "probability": 0.6332 + }, + { + "start": 21566.64, + "end": 21569.36, + "probability": 0.9785 + }, + { + "start": 21569.72, + "end": 21570.96, + "probability": 0.7093 + }, + { + "start": 21571.14, + "end": 21571.72, + "probability": 0.5916 + }, + { + "start": 21571.74, + "end": 21571.84, + "probability": 0.8018 + }, + { + "start": 21572.98, + "end": 21577.46, + "probability": 0.9919 + }, + { + "start": 21577.7, + "end": 21579.42, + "probability": 0.9936 + }, + { + "start": 21579.7, + "end": 21580.28, + "probability": 0.8154 + }, + { + "start": 21580.68, + "end": 21582.52, + "probability": 0.7074 + }, + { + "start": 21582.82, + "end": 21590.9, + "probability": 0.9319 + }, + { + "start": 21590.98, + "end": 21595.28, + "probability": 0.9977 + }, + { + "start": 21595.98, + "end": 21598.6, + "probability": 0.9931 + }, + { + "start": 21598.72, + "end": 21599.62, + "probability": 0.5466 + }, + { + "start": 21599.64, + "end": 21599.84, + "probability": 0.7031 + }, + { + "start": 21600.78, + "end": 21605.68, + "probability": 0.9934 + }, + { + "start": 21606.04, + "end": 21609.06, + "probability": 0.9974 + }, + { + "start": 21609.58, + "end": 21611.42, + "probability": 0.8467 + }, + { + "start": 21611.62, + "end": 21612.1, + "probability": 0.2984 + }, + { + "start": 21612.6, + "end": 21614.86, + "probability": 0.9458 + }, + { + "start": 21615.02, + "end": 21616.76, + "probability": 0.7639 + }, + { + "start": 21616.96, + "end": 21618.56, + "probability": 0.994 + }, + { + "start": 21618.68, + "end": 21619.82, + "probability": 0.8421 + }, + { + "start": 21619.92, + "end": 21621.08, + "probability": 0.9221 + }, + { + "start": 21621.16, + "end": 21622.05, + "probability": 0.9878 + }, + { + "start": 21622.32, + "end": 21624.28, + "probability": 0.9941 + }, + { + "start": 21624.36, + "end": 21625.94, + "probability": 0.745 + }, + { + "start": 21626.02, + "end": 21629.84, + "probability": 0.9045 + }, + { + "start": 21629.9, + "end": 21630.76, + "probability": 0.9686 + }, + { + "start": 21631.06, + "end": 21631.74, + "probability": 0.7639 + }, + { + "start": 21631.74, + "end": 21634.58, + "probability": 0.9982 + }, + { + "start": 21634.58, + "end": 21637.02, + "probability": 0.9729 + }, + { + "start": 21637.16, + "end": 21637.42, + "probability": 0.4165 + }, + { + "start": 21637.82, + "end": 21640.3, + "probability": 0.9515 + }, + { + "start": 21641.88, + "end": 21644.18, + "probability": 0.9594 + }, + { + "start": 21644.34, + "end": 21644.64, + "probability": 0.2593 + }, + { + "start": 21644.64, + "end": 21645.24, + "probability": 0.2081 + }, + { + "start": 21645.44, + "end": 21647.58, + "probability": 0.4891 + }, + { + "start": 21647.58, + "end": 21647.99, + "probability": 0.9273 + }, + { + "start": 21648.26, + "end": 21648.7, + "probability": 0.9287 + }, + { + "start": 21649.22, + "end": 21652.68, + "probability": 0.9598 + }, + { + "start": 21652.68, + "end": 21656.02, + "probability": 0.9724 + }, + { + "start": 21656.08, + "end": 21656.22, + "probability": 0.8173 + }, + { + "start": 21656.6, + "end": 21657.88, + "probability": 0.9985 + }, + { + "start": 21658.08, + "end": 21658.34, + "probability": 0.8345 + }, + { + "start": 21658.9, + "end": 21660.9, + "probability": 0.9446 + }, + { + "start": 21660.9, + "end": 21660.94, + "probability": 0.1317 + }, + { + "start": 21660.94, + "end": 21666.34, + "probability": 0.8904 + }, + { + "start": 21667.1, + "end": 21670.3, + "probability": 0.76 + }, + { + "start": 21670.34, + "end": 21672.68, + "probability": 0.1307 + }, + { + "start": 21672.76, + "end": 21672.9, + "probability": 0.2772 + }, + { + "start": 21672.9, + "end": 21672.96, + "probability": 0.1618 + }, + { + "start": 21672.96, + "end": 21674.1, + "probability": 0.4699 + }, + { + "start": 21674.52, + "end": 21679.26, + "probability": 0.9924 + }, + { + "start": 21679.34, + "end": 21680.86, + "probability": 0.7754 + }, + { + "start": 21681.04, + "end": 21684.2, + "probability": 0.9468 + }, + { + "start": 21684.84, + "end": 21686.18, + "probability": 0.7781 + }, + { + "start": 21686.32, + "end": 21687.65, + "probability": 0.9679 + }, + { + "start": 21688.17, + "end": 21690.52, + "probability": 0.6472 + }, + { + "start": 21690.86, + "end": 21692.5, + "probability": 0.8167 + }, + { + "start": 21692.78, + "end": 21694.88, + "probability": 0.9878 + }, + { + "start": 21694.88, + "end": 21695.04, + "probability": 0.1455 + }, + { + "start": 21695.04, + "end": 21696.42, + "probability": 0.6421 + }, + { + "start": 21696.9, + "end": 21698.5, + "probability": 0.7809 + }, + { + "start": 21698.52, + "end": 21698.54, + "probability": 0.3866 + }, + { + "start": 21698.54, + "end": 21700.48, + "probability": 0.8675 + }, + { + "start": 21700.64, + "end": 21704.12, + "probability": 0.9596 + }, + { + "start": 21704.12, + "end": 21704.14, + "probability": 0.0764 + }, + { + "start": 21704.14, + "end": 21705.0, + "probability": 0.9399 + }, + { + "start": 21706.66, + "end": 21712.1, + "probability": 0.9774 + }, + { + "start": 21712.16, + "end": 21712.66, + "probability": 0.5192 + }, + { + "start": 21712.68, + "end": 21713.08, + "probability": 0.7624 + }, + { + "start": 21713.16, + "end": 21716.62, + "probability": 0.6826 + }, + { + "start": 21716.74, + "end": 21717.92, + "probability": 0.8826 + }, + { + "start": 21718.2, + "end": 21718.42, + "probability": 0.9058 + }, + { + "start": 21720.45, + "end": 21722.15, + "probability": 0.5945 + }, + { + "start": 21722.3, + "end": 21722.74, + "probability": 0.4798 + }, + { + "start": 21723.16, + "end": 21724.42, + "probability": 0.5093 + }, + { + "start": 21725.16, + "end": 21727.56, + "probability": 0.5487 + }, + { + "start": 21727.7, + "end": 21728.56, + "probability": 0.9405 + }, + { + "start": 21728.64, + "end": 21732.42, + "probability": 0.9786 + }, + { + "start": 21732.74, + "end": 21734.04, + "probability": 0.9662 + }, + { + "start": 21734.22, + "end": 21737.48, + "probability": 0.9963 + }, + { + "start": 21737.58, + "end": 21740.96, + "probability": 0.9158 + }, + { + "start": 21741.04, + "end": 21741.92, + "probability": 0.7521 + }, + { + "start": 21741.98, + "end": 21742.72, + "probability": 0.6535 + }, + { + "start": 21742.82, + "end": 21743.12, + "probability": 0.3417 + }, + { + "start": 21743.14, + "end": 21746.7, + "probability": 0.6345 + }, + { + "start": 21746.78, + "end": 21747.66, + "probability": 0.7193 + }, + { + "start": 21747.96, + "end": 21749.74, + "probability": 0.8377 + }, + { + "start": 21750.08, + "end": 21751.48, + "probability": 0.7708 + }, + { + "start": 21751.54, + "end": 21752.66, + "probability": 0.9844 + }, + { + "start": 21752.9, + "end": 21754.9, + "probability": 0.605 + }, + { + "start": 21754.96, + "end": 21755.42, + "probability": 0.3986 + }, + { + "start": 21755.42, + "end": 21756.5, + "probability": 0.4626 + }, + { + "start": 21756.66, + "end": 21756.68, + "probability": 0.0869 + }, + { + "start": 21756.68, + "end": 21756.68, + "probability": 0.4723 + }, + { + "start": 21756.68, + "end": 21758.52, + "probability": 0.9941 + }, + { + "start": 21759.48, + "end": 21759.58, + "probability": 0.3711 + }, + { + "start": 21759.58, + "end": 21760.43, + "probability": 0.7988 + }, + { + "start": 21760.74, + "end": 21761.36, + "probability": 0.7593 + }, + { + "start": 21761.52, + "end": 21761.86, + "probability": 0.8802 + }, + { + "start": 21762.58, + "end": 21762.82, + "probability": 0.7771 + }, + { + "start": 21762.82, + "end": 21762.82, + "probability": 0.6326 + }, + { + "start": 21762.82, + "end": 21763.06, + "probability": 0.0323 + }, + { + "start": 21763.12, + "end": 21763.32, + "probability": 0.2406 + }, + { + "start": 21763.72, + "end": 21764.78, + "probability": 0.5098 + }, + { + "start": 21764.86, + "end": 21765.3, + "probability": 0.918 + }, + { + "start": 21765.38, + "end": 21765.44, + "probability": 0.5912 + }, + { + "start": 21765.44, + "end": 21767.2, + "probability": 0.5145 + }, + { + "start": 21767.2, + "end": 21767.58, + "probability": 0.3434 + }, + { + "start": 21767.58, + "end": 21769.2, + "probability": 0.7741 + }, + { + "start": 21769.36, + "end": 21769.5, + "probability": 0.082 + }, + { + "start": 21770.4, + "end": 21770.96, + "probability": 0.9636 + }, + { + "start": 21771.02, + "end": 21773.44, + "probability": 0.8323 + }, + { + "start": 21773.58, + "end": 21776.12, + "probability": 0.8006 + }, + { + "start": 21776.2, + "end": 21776.36, + "probability": 0.6427 + }, + { + "start": 21776.46, + "end": 21777.32, + "probability": 0.7772 + }, + { + "start": 21777.82, + "end": 21782.18, + "probability": 0.9065 + }, + { + "start": 21782.3, + "end": 21782.3, + "probability": 0.1524 + }, + { + "start": 21782.3, + "end": 21785.68, + "probability": 0.4083 + }, + { + "start": 21786.22, + "end": 21786.74, + "probability": 0.3075 + }, + { + "start": 21786.74, + "end": 21786.74, + "probability": 0.3222 + }, + { + "start": 21786.74, + "end": 21787.44, + "probability": 0.9491 + }, + { + "start": 21787.8, + "end": 21789.1, + "probability": 0.9246 + }, + { + "start": 21789.46, + "end": 21790.08, + "probability": 0.5532 + }, + { + "start": 21790.16, + "end": 21791.58, + "probability": 0.8658 + }, + { + "start": 21792.02, + "end": 21792.96, + "probability": 0.5433 + }, + { + "start": 21793.12, + "end": 21794.72, + "probability": 0.9818 + }, + { + "start": 21794.88, + "end": 21795.8, + "probability": 0.1251 + }, + { + "start": 21795.8, + "end": 21796.94, + "probability": 0.8599 + }, + { + "start": 21797.1, + "end": 21797.4, + "probability": 0.2063 + }, + { + "start": 21797.5, + "end": 21798.28, + "probability": 0.969 + }, + { + "start": 21798.58, + "end": 21800.97, + "probability": 0.9922 + }, + { + "start": 21801.0, + "end": 21805.04, + "probability": 0.9772 + }, + { + "start": 21805.16, + "end": 21806.96, + "probability": 0.7756 + }, + { + "start": 21807.22, + "end": 21809.96, + "probability": 0.932 + }, + { + "start": 21810.81, + "end": 21812.88, + "probability": 0.9919 + }, + { + "start": 21812.98, + "end": 21816.94, + "probability": 0.9335 + }, + { + "start": 21817.04, + "end": 21819.2, + "probability": 0.7037 + }, + { + "start": 21819.2, + "end": 21820.48, + "probability": 0.9832 + }, + { + "start": 21820.62, + "end": 21820.98, + "probability": 0.5224 + }, + { + "start": 21821.04, + "end": 21824.36, + "probability": 0.8389 + }, + { + "start": 21824.48, + "end": 21824.62, + "probability": 0.1807 + }, + { + "start": 21824.72, + "end": 21825.12, + "probability": 0.3158 + }, + { + "start": 21825.24, + "end": 21827.5, + "probability": 0.9189 + }, + { + "start": 21827.6, + "end": 21828.28, + "probability": 0.478 + }, + { + "start": 21828.42, + "end": 21829.24, + "probability": 0.6826 + }, + { + "start": 21829.28, + "end": 21829.88, + "probability": 0.3103 + }, + { + "start": 21830.12, + "end": 21830.68, + "probability": 0.7409 + }, + { + "start": 21830.8, + "end": 21835.94, + "probability": 0.9945 + }, + { + "start": 21836.24, + "end": 21836.7, + "probability": 0.6692 + }, + { + "start": 21836.82, + "end": 21839.52, + "probability": 0.6518 + }, + { + "start": 21839.64, + "end": 21841.63, + "probability": 0.9661 + }, + { + "start": 21842.78, + "end": 21845.0, + "probability": 0.9985 + }, + { + "start": 21845.0, + "end": 21848.74, + "probability": 0.996 + }, + { + "start": 21848.97, + "end": 21849.04, + "probability": 0.7515 + }, + { + "start": 21849.26, + "end": 21850.16, + "probability": 0.9314 + }, + { + "start": 21850.32, + "end": 21851.62, + "probability": 0.9395 + }, + { + "start": 21851.82, + "end": 21852.56, + "probability": 0.9536 + }, + { + "start": 21852.72, + "end": 21853.25, + "probability": 0.9849 + }, + { + "start": 21855.68, + "end": 21855.68, + "probability": 0.0178 + }, + { + "start": 21855.68, + "end": 21855.68, + "probability": 0.0775 + }, + { + "start": 21855.68, + "end": 21856.24, + "probability": 0.3171 + }, + { + "start": 21856.46, + "end": 21857.82, + "probability": 0.4624 + }, + { + "start": 21858.02, + "end": 21858.1, + "probability": 0.2905 + }, + { + "start": 21858.1, + "end": 21859.56, + "probability": 0.9893 + }, + { + "start": 21859.7, + "end": 21860.16, + "probability": 0.3591 + }, + { + "start": 21860.18, + "end": 21861.26, + "probability": 0.9145 + }, + { + "start": 21861.36, + "end": 21862.78, + "probability": 0.5925 + }, + { + "start": 21862.94, + "end": 21863.96, + "probability": 0.8982 + }, + { + "start": 21864.04, + "end": 21865.24, + "probability": 0.7804 + }, + { + "start": 21865.28, + "end": 21865.96, + "probability": 0.7827 + }, + { + "start": 21866.12, + "end": 21866.4, + "probability": 0.4984 + }, + { + "start": 21866.44, + "end": 21867.14, + "probability": 0.9272 + }, + { + "start": 21867.24, + "end": 21868.0, + "probability": 0.9877 + }, + { + "start": 21869.19, + "end": 21870.54, + "probability": 0.6745 + }, + { + "start": 21870.74, + "end": 21870.74, + "probability": 0.2444 + }, + { + "start": 21870.74, + "end": 21870.74, + "probability": 0.1998 + }, + { + "start": 21870.74, + "end": 21871.76, + "probability": 0.6278 + }, + { + "start": 21871.84, + "end": 21872.04, + "probability": 0.208 + }, + { + "start": 21872.12, + "end": 21872.72, + "probability": 0.9583 + }, + { + "start": 21872.76, + "end": 21873.16, + "probability": 0.7106 + }, + { + "start": 21873.16, + "end": 21875.32, + "probability": 0.5745 + }, + { + "start": 21876.06, + "end": 21876.94, + "probability": 0.7952 + }, + { + "start": 21876.96, + "end": 21877.28, + "probability": 0.4402 + }, + { + "start": 21877.34, + "end": 21880.54, + "probability": 0.6976 + }, + { + "start": 21880.78, + "end": 21883.94, + "probability": 0.8833 + }, + { + "start": 21884.36, + "end": 21884.98, + "probability": 0.8821 + }, + { + "start": 21884.98, + "end": 21884.98, + "probability": 0.0582 + }, + { + "start": 21884.98, + "end": 21885.05, + "probability": 0.0531 + }, + { + "start": 21885.76, + "end": 21889.58, + "probability": 0.7198 + }, + { + "start": 21889.58, + "end": 21891.44, + "probability": 0.4165 + }, + { + "start": 21891.44, + "end": 21893.1, + "probability": 0.2058 + }, + { + "start": 21893.1, + "end": 21896.86, + "probability": 0.8823 + }, + { + "start": 21897.22, + "end": 21899.18, + "probability": 0.9302 + }, + { + "start": 21899.18, + "end": 21899.98, + "probability": 0.6399 + }, + { + "start": 21900.64, + "end": 21901.5, + "probability": 0.5103 + }, + { + "start": 21901.66, + "end": 21903.7, + "probability": 0.9497 + }, + { + "start": 21903.8, + "end": 21905.68, + "probability": 0.9777 + }, + { + "start": 21905.9, + "end": 21907.53, + "probability": 0.9982 + }, + { + "start": 21907.7, + "end": 21908.2, + "probability": 0.6127 + }, + { + "start": 21908.36, + "end": 21909.38, + "probability": 0.8965 + }, + { + "start": 21909.9, + "end": 21909.92, + "probability": 0.8698 + }, + { + "start": 21910.08, + "end": 21910.8, + "probability": 0.9473 + }, + { + "start": 21911.4, + "end": 21913.04, + "probability": 0.9977 + }, + { + "start": 21913.24, + "end": 21913.59, + "probability": 0.987 + }, + { + "start": 21913.82, + "end": 21914.96, + "probability": 0.5968 + }, + { + "start": 21915.26, + "end": 21915.7, + "probability": 0.3046 + }, + { + "start": 21915.74, + "end": 21917.4, + "probability": 0.9961 + }, + { + "start": 21917.72, + "end": 21919.35, + "probability": 0.3191 + }, + { + "start": 21919.54, + "end": 21920.76, + "probability": 0.4912 + }, + { + "start": 21923.36, + "end": 21923.36, + "probability": 0.023 + }, + { + "start": 21923.36, + "end": 21923.82, + "probability": 0.0519 + }, + { + "start": 21923.82, + "end": 21924.5, + "probability": 0.8811 + }, + { + "start": 21924.6, + "end": 21926.24, + "probability": 0.4047 + }, + { + "start": 21926.24, + "end": 21930.73, + "probability": 0.9741 + }, + { + "start": 21931.44, + "end": 21932.12, + "probability": 0.9844 + }, + { + "start": 21933.14, + "end": 21935.66, + "probability": 0.988 + }, + { + "start": 21936.2, + "end": 21939.14, + "probability": 0.9826 + }, + { + "start": 21939.38, + "end": 21941.06, + "probability": 0.6629 + }, + { + "start": 21941.56, + "end": 21943.22, + "probability": 0.944 + }, + { + "start": 21943.32, + "end": 21944.3, + "probability": 0.696 + }, + { + "start": 21944.42, + "end": 21947.9, + "probability": 0.9672 + }, + { + "start": 21947.96, + "end": 21951.0, + "probability": 0.9418 + }, + { + "start": 21951.18, + "end": 21951.22, + "probability": 0.0793 + }, + { + "start": 21951.22, + "end": 21951.48, + "probability": 0.329 + }, + { + "start": 21951.5, + "end": 21953.36, + "probability": 0.9229 + }, + { + "start": 21954.02, + "end": 21954.02, + "probability": 0.4027 + }, + { + "start": 21954.06, + "end": 21955.16, + "probability": 0.9079 + }, + { + "start": 21955.52, + "end": 21957.28, + "probability": 0.9344 + }, + { + "start": 21957.36, + "end": 21960.52, + "probability": 0.519 + }, + { + "start": 21960.52, + "end": 21960.78, + "probability": 0.0057 + }, + { + "start": 21960.78, + "end": 21963.37, + "probability": 0.6975 + }, + { + "start": 21964.62, + "end": 21964.64, + "probability": 0.0495 + }, + { + "start": 21964.64, + "end": 21965.98, + "probability": 0.7073 + }, + { + "start": 21965.98, + "end": 21968.12, + "probability": 0.7993 + }, + { + "start": 21968.48, + "end": 21970.3, + "probability": 0.6359 + }, + { + "start": 21970.3, + "end": 21972.08, + "probability": 0.0482 + }, + { + "start": 21974.18, + "end": 21974.42, + "probability": 0.2962 + }, + { + "start": 21974.42, + "end": 21974.42, + "probability": 0.3997 + }, + { + "start": 21974.42, + "end": 21974.64, + "probability": 0.2403 + }, + { + "start": 21974.64, + "end": 21975.08, + "probability": 0.4343 + }, + { + "start": 21975.32, + "end": 21975.32, + "probability": 0.2263 + }, + { + "start": 21975.32, + "end": 21977.26, + "probability": 0.6601 + }, + { + "start": 21978.34, + "end": 21980.3, + "probability": 0.3888 + }, + { + "start": 21980.3, + "end": 21980.86, + "probability": 0.4935 + }, + { + "start": 21980.9, + "end": 21982.26, + "probability": 0.2376 + }, + { + "start": 21982.32, + "end": 21983.66, + "probability": 0.8126 + }, + { + "start": 21984.12, + "end": 21985.69, + "probability": 0.7905 + }, + { + "start": 21986.22, + "end": 21986.28, + "probability": 0.0251 + }, + { + "start": 21986.28, + "end": 21986.74, + "probability": 0.7148 + }, + { + "start": 21987.18, + "end": 21988.52, + "probability": 0.5478 + }, + { + "start": 21988.8, + "end": 21989.34, + "probability": 0.9858 + }, + { + "start": 21989.88, + "end": 21990.16, + "probability": 0.5322 + }, + { + "start": 21990.2, + "end": 21990.9, + "probability": 0.8979 + }, + { + "start": 21991.12, + "end": 21991.86, + "probability": 0.2174 + }, + { + "start": 21992.82, + "end": 21997.32, + "probability": 0.9041 + }, + { + "start": 21997.62, + "end": 21997.62, + "probability": 0.0249 + }, + { + "start": 21997.63, + "end": 21998.72, + "probability": 0.1437 + }, + { + "start": 21998.72, + "end": 21999.58, + "probability": 0.6365 + }, + { + "start": 21999.68, + "end": 22001.12, + "probability": 0.6738 + }, + { + "start": 22001.3, + "end": 22004.04, + "probability": 0.981 + }, + { + "start": 22005.34, + "end": 22007.5, + "probability": 0.9744 + }, + { + "start": 22007.88, + "end": 22009.6, + "probability": 0.968 + }, + { + "start": 22010.4, + "end": 22014.27, + "probability": 0.9805 + }, + { + "start": 22015.44, + "end": 22017.58, + "probability": 0.9967 + }, + { + "start": 22018.46, + "end": 22020.22, + "probability": 0.9995 + }, + { + "start": 22021.0, + "end": 22023.62, + "probability": 0.9382 + }, + { + "start": 22024.5, + "end": 22027.88, + "probability": 0.9978 + }, + { + "start": 22027.88, + "end": 22030.38, + "probability": 0.9993 + }, + { + "start": 22031.2, + "end": 22033.32, + "probability": 0.8121 + }, + { + "start": 22033.42, + "end": 22034.9, + "probability": 0.9812 + }, + { + "start": 22035.34, + "end": 22037.2, + "probability": 0.9794 + }, + { + "start": 22037.28, + "end": 22039.64, + "probability": 0.8789 + }, + { + "start": 22040.24, + "end": 22041.76, + "probability": 0.8491 + }, + { + "start": 22041.9, + "end": 22046.3, + "probability": 0.9451 + }, + { + "start": 22047.84, + "end": 22051.54, + "probability": 0.5214 + }, + { + "start": 22052.56, + "end": 22053.64, + "probability": 0.965 + }, + { + "start": 22054.14, + "end": 22055.4, + "probability": 0.955 + }, + { + "start": 22055.84, + "end": 22056.3, + "probability": 0.9235 + }, + { + "start": 22056.76, + "end": 22059.46, + "probability": 0.9293 + }, + { + "start": 22059.98, + "end": 22063.56, + "probability": 0.9603 + }, + { + "start": 22063.86, + "end": 22064.32, + "probability": 0.9624 + }, + { + "start": 22064.46, + "end": 22065.09, + "probability": 0.9826 + }, + { + "start": 22065.62, + "end": 22071.52, + "probability": 0.984 + }, + { + "start": 22072.04, + "end": 22077.12, + "probability": 0.9556 + }, + { + "start": 22077.2, + "end": 22078.08, + "probability": 0.7395 + }, + { + "start": 22078.22, + "end": 22079.24, + "probability": 0.9922 + }, + { + "start": 22079.64, + "end": 22080.24, + "probability": 0.7474 + }, + { + "start": 22080.3, + "end": 22081.38, + "probability": 0.9873 + }, + { + "start": 22082.24, + "end": 22086.42, + "probability": 0.9938 + }, + { + "start": 22087.26, + "end": 22087.86, + "probability": 0.8314 + }, + { + "start": 22087.94, + "end": 22089.5, + "probability": 0.9875 + }, + { + "start": 22090.38, + "end": 22093.96, + "probability": 0.9952 + }, + { + "start": 22094.72, + "end": 22097.52, + "probability": 0.9319 + }, + { + "start": 22097.72, + "end": 22099.04, + "probability": 0.9131 + }, + { + "start": 22099.48, + "end": 22100.84, + "probability": 0.959 + }, + { + "start": 22101.58, + "end": 22104.17, + "probability": 0.9307 + }, + { + "start": 22104.92, + "end": 22108.84, + "probability": 0.9702 + }, + { + "start": 22109.34, + "end": 22116.44, + "probability": 0.9408 + }, + { + "start": 22116.94, + "end": 22121.96, + "probability": 0.9904 + }, + { + "start": 22122.18, + "end": 22124.84, + "probability": 0.4963 + }, + { + "start": 22125.08, + "end": 22125.08, + "probability": 0.2505 + }, + { + "start": 22125.1, + "end": 22125.1, + "probability": 0.6133 + }, + { + "start": 22125.12, + "end": 22126.28, + "probability": 0.9403 + }, + { + "start": 22126.74, + "end": 22127.54, + "probability": 0.9707 + }, + { + "start": 22127.78, + "end": 22128.4, + "probability": 0.9476 + }, + { + "start": 22128.46, + "end": 22129.44, + "probability": 0.8101 + }, + { + "start": 22129.86, + "end": 22132.96, + "probability": 0.9908 + }, + { + "start": 22132.96, + "end": 22135.94, + "probability": 0.9992 + }, + { + "start": 22136.68, + "end": 22139.36, + "probability": 0.8455 + }, + { + "start": 22139.88, + "end": 22140.52, + "probability": 0.6895 + }, + { + "start": 22140.86, + "end": 22141.64, + "probability": 0.8985 + }, + { + "start": 22141.74, + "end": 22143.16, + "probability": 0.9634 + }, + { + "start": 22143.42, + "end": 22146.02, + "probability": 0.9922 + }, + { + "start": 22146.5, + "end": 22150.12, + "probability": 0.8828 + }, + { + "start": 22150.26, + "end": 22151.78, + "probability": 0.5887 + }, + { + "start": 22152.26, + "end": 22153.72, + "probability": 0.9819 + }, + { + "start": 22154.16, + "end": 22155.2, + "probability": 0.9756 + }, + { + "start": 22155.5, + "end": 22156.94, + "probability": 0.8652 + }, + { + "start": 22158.1, + "end": 22159.44, + "probability": 0.9801 + }, + { + "start": 22159.6, + "end": 22161.28, + "probability": 0.998 + }, + { + "start": 22163.62, + "end": 22164.72, + "probability": 0.574 + }, + { + "start": 22165.2, + "end": 22168.86, + "probability": 0.9961 + }, + { + "start": 22169.42, + "end": 22169.76, + "probability": 0.5532 + }, + { + "start": 22169.76, + "end": 22172.38, + "probability": 0.5608 + }, + { + "start": 22172.86, + "end": 22175.44, + "probability": 0.8711 + }, + { + "start": 22175.6, + "end": 22176.34, + "probability": 0.7972 + }, + { + "start": 22177.04, + "end": 22178.84, + "probability": 0.9607 + }, + { + "start": 22180.78, + "end": 22185.0, + "probability": 0.8902 + }, + { + "start": 22185.22, + "end": 22187.66, + "probability": 0.9669 + }, + { + "start": 22188.52, + "end": 22190.34, + "probability": 0.8874 + }, + { + "start": 22190.68, + "end": 22191.3, + "probability": 0.9419 + }, + { + "start": 22191.78, + "end": 22192.77, + "probability": 0.9093 + }, + { + "start": 22193.64, + "end": 22198.92, + "probability": 0.9988 + }, + { + "start": 22199.56, + "end": 22200.5, + "probability": 0.7125 + }, + { + "start": 22200.92, + "end": 22202.04, + "probability": 0.7243 + }, + { + "start": 22202.73, + "end": 22205.3, + "probability": 0.8025 + }, + { + "start": 22205.58, + "end": 22208.18, + "probability": 0.986 + }, + { + "start": 22208.7, + "end": 22211.86, + "probability": 0.9985 + }, + { + "start": 22212.0, + "end": 22212.76, + "probability": 0.4129 + }, + { + "start": 22213.3, + "end": 22216.0, + "probability": 0.9897 + }, + { + "start": 22216.26, + "end": 22218.9, + "probability": 0.9365 + }, + { + "start": 22219.46, + "end": 22224.22, + "probability": 0.9824 + }, + { + "start": 22224.26, + "end": 22224.86, + "probability": 0.827 + }, + { + "start": 22225.56, + "end": 22227.12, + "probability": 0.9932 + }, + { + "start": 22227.12, + "end": 22228.64, + "probability": 0.9497 + }, + { + "start": 22228.76, + "end": 22229.72, + "probability": 0.9619 + }, + { + "start": 22230.96, + "end": 22231.38, + "probability": 0.6448 + }, + { + "start": 22231.4, + "end": 22232.12, + "probability": 0.7464 + }, + { + "start": 22232.34, + "end": 22233.3, + "probability": 0.9604 + }, + { + "start": 22233.74, + "end": 22236.26, + "probability": 0.9235 + }, + { + "start": 22236.7, + "end": 22238.16, + "probability": 0.998 + }, + { + "start": 22238.46, + "end": 22239.0, + "probability": 0.8865 + }, + { + "start": 22239.64, + "end": 22244.2, + "probability": 0.8762 + }, + { + "start": 22244.78, + "end": 22246.66, + "probability": 0.9979 + }, + { + "start": 22246.74, + "end": 22251.78, + "probability": 0.738 + }, + { + "start": 22252.44, + "end": 22254.24, + "probability": 0.8205 + }, + { + "start": 22254.32, + "end": 22256.16, + "probability": 0.7377 + }, + { + "start": 22256.3, + "end": 22259.64, + "probability": 0.9778 + }, + { + "start": 22260.06, + "end": 22261.44, + "probability": 0.7172 + }, + { + "start": 22261.48, + "end": 22266.24, + "probability": 0.9825 + }, + { + "start": 22266.62, + "end": 22269.26, + "probability": 0.8643 + }, + { + "start": 22269.9, + "end": 22272.58, + "probability": 0.9717 + }, + { + "start": 22272.78, + "end": 22274.96, + "probability": 0.8876 + }, + { + "start": 22275.24, + "end": 22276.12, + "probability": 0.9937 + }, + { + "start": 22276.76, + "end": 22277.46, + "probability": 0.6862 + }, + { + "start": 22278.0, + "end": 22279.88, + "probability": 0.8871 + }, + { + "start": 22280.56, + "end": 22281.16, + "probability": 0.8914 + }, + { + "start": 22281.78, + "end": 22282.36, + "probability": 0.9163 + }, + { + "start": 22282.44, + "end": 22285.26, + "probability": 0.9922 + }, + { + "start": 22285.44, + "end": 22288.74, + "probability": 0.8773 + }, + { + "start": 22289.48, + "end": 22291.76, + "probability": 0.9813 + }, + { + "start": 22291.76, + "end": 22295.22, + "probability": 0.8879 + }, + { + "start": 22295.8, + "end": 22297.76, + "probability": 0.9963 + }, + { + "start": 22298.22, + "end": 22298.99, + "probability": 0.9268 + }, + { + "start": 22299.68, + "end": 22301.86, + "probability": 0.9245 + }, + { + "start": 22302.54, + "end": 22303.52, + "probability": 0.5256 + }, + { + "start": 22303.94, + "end": 22308.26, + "probability": 0.9927 + }, + { + "start": 22309.3, + "end": 22311.88, + "probability": 0.8252 + }, + { + "start": 22312.4, + "end": 22314.36, + "probability": 0.9622 + }, + { + "start": 22314.5, + "end": 22316.56, + "probability": 0.8712 + }, + { + "start": 22317.3, + "end": 22320.86, + "probability": 0.7842 + }, + { + "start": 22320.86, + "end": 22324.39, + "probability": 0.9978 + }, + { + "start": 22325.14, + "end": 22327.58, + "probability": 0.9951 + }, + { + "start": 22328.06, + "end": 22328.44, + "probability": 0.3059 + }, + { + "start": 22329.16, + "end": 22329.72, + "probability": 0.832 + }, + { + "start": 22329.84, + "end": 22331.44, + "probability": 0.96 + }, + { + "start": 22331.54, + "end": 22332.56, + "probability": 0.7427 + }, + { + "start": 22332.86, + "end": 22334.34, + "probability": 0.7854 + }, + { + "start": 22334.62, + "end": 22341.06, + "probability": 0.9887 + }, + { + "start": 22341.14, + "end": 22342.02, + "probability": 0.6473 + }, + { + "start": 22342.5, + "end": 22343.6, + "probability": 0.8251 + }, + { + "start": 22344.2, + "end": 22346.26, + "probability": 0.9133 + }, + { + "start": 22346.48, + "end": 22349.4, + "probability": 0.9365 + }, + { + "start": 22349.78, + "end": 22352.88, + "probability": 0.7708 + }, + { + "start": 22353.04, + "end": 22354.34, + "probability": 0.9732 + }, + { + "start": 22354.64, + "end": 22356.18, + "probability": 0.9486 + }, + { + "start": 22356.66, + "end": 22358.38, + "probability": 0.915 + }, + { + "start": 22358.84, + "end": 22360.28, + "probability": 0.9836 + }, + { + "start": 22360.86, + "end": 22361.42, + "probability": 0.7677 + }, + { + "start": 22362.3, + "end": 22368.02, + "probability": 0.9609 + }, + { + "start": 22368.02, + "end": 22371.4, + "probability": 0.9972 + }, + { + "start": 22371.86, + "end": 22375.76, + "probability": 0.8928 + }, + { + "start": 22376.24, + "end": 22378.6, + "probability": 0.994 + }, + { + "start": 22378.72, + "end": 22381.38, + "probability": 0.9 + }, + { + "start": 22381.44, + "end": 22385.64, + "probability": 0.922 + }, + { + "start": 22385.72, + "end": 22385.72, + "probability": 0.739 + }, + { + "start": 22386.1, + "end": 22386.32, + "probability": 0.3808 + }, + { + "start": 22386.32, + "end": 22387.23, + "probability": 0.7761 + }, + { + "start": 22387.76, + "end": 22389.4, + "probability": 0.9819 + }, + { + "start": 22389.7, + "end": 22390.84, + "probability": 0.9565 + }, + { + "start": 22391.06, + "end": 22393.39, + "probability": 0.9993 + }, + { + "start": 22393.76, + "end": 22394.58, + "probability": 0.9572 + }, + { + "start": 22395.0, + "end": 22396.26, + "probability": 0.8492 + }, + { + "start": 22396.34, + "end": 22399.52, + "probability": 0.9001 + }, + { + "start": 22399.94, + "end": 22400.66, + "probability": 0.8232 + }, + { + "start": 22401.16, + "end": 22402.42, + "probability": 0.9965 + }, + { + "start": 22402.44, + "end": 22405.22, + "probability": 0.7295 + }, + { + "start": 22405.48, + "end": 22406.72, + "probability": 0.9097 + }, + { + "start": 22407.18, + "end": 22410.6, + "probability": 0.9839 + }, + { + "start": 22411.5, + "end": 22413.4, + "probability": 0.988 + }, + { + "start": 22413.9, + "end": 22417.54, + "probability": 0.9884 + }, + { + "start": 22417.8, + "end": 22418.8, + "probability": 0.998 + }, + { + "start": 22419.02, + "end": 22420.98, + "probability": 0.9398 + }, + { + "start": 22421.04, + "end": 22423.52, + "probability": 0.9966 + }, + { + "start": 22424.06, + "end": 22427.38, + "probability": 0.9912 + }, + { + "start": 22427.46, + "end": 22428.75, + "probability": 0.8852 + }, + { + "start": 22429.78, + "end": 22432.26, + "probability": 0.7755 + }, + { + "start": 22432.32, + "end": 22435.26, + "probability": 0.8911 + }, + { + "start": 22435.98, + "end": 22437.0, + "probability": 0.9302 + }, + { + "start": 22437.18, + "end": 22441.34, + "probability": 0.9391 + }, + { + "start": 22441.72, + "end": 22444.76, + "probability": 0.9814 + }, + { + "start": 22445.48, + "end": 22447.04, + "probability": 0.9058 + }, + { + "start": 22449.16, + "end": 22449.7, + "probability": 0.7074 + }, + { + "start": 22450.34, + "end": 22452.98, + "probability": 0.941 + }, + { + "start": 22453.12, + "end": 22455.26, + "probability": 0.8001 + }, + { + "start": 22455.66, + "end": 22459.72, + "probability": 0.9929 + }, + { + "start": 22460.02, + "end": 22460.32, + "probability": 0.8076 + }, + { + "start": 22460.4, + "end": 22461.24, + "probability": 0.9745 + }, + { + "start": 22461.72, + "end": 22463.88, + "probability": 0.7308 + }, + { + "start": 22463.88, + "end": 22466.5, + "probability": 0.9932 + }, + { + "start": 22466.56, + "end": 22467.2, + "probability": 0.4118 + }, + { + "start": 22467.5, + "end": 22468.1, + "probability": 0.7091 + }, + { + "start": 22468.18, + "end": 22469.06, + "probability": 0.9208 + }, + { + "start": 22469.34, + "end": 22471.38, + "probability": 0.9342 + }, + { + "start": 22472.04, + "end": 22474.62, + "probability": 0.9355 + }, + { + "start": 22474.62, + "end": 22477.52, + "probability": 0.9982 + }, + { + "start": 22477.76, + "end": 22478.76, + "probability": 0.5888 + }, + { + "start": 22479.3, + "end": 22481.28, + "probability": 0.9871 + }, + { + "start": 22481.64, + "end": 22482.12, + "probability": 0.8181 + }, + { + "start": 22482.2, + "end": 22487.12, + "probability": 0.9403 + }, + { + "start": 22487.2, + "end": 22490.4, + "probability": 0.9611 + }, + { + "start": 22491.08, + "end": 22493.92, + "probability": 0.9958 + }, + { + "start": 22493.94, + "end": 22493.94, + "probability": 0.0005 + }, + { + "start": 22494.53, + "end": 22498.78, + "probability": 0.5603 + }, + { + "start": 22499.5, + "end": 22501.34, + "probability": 0.8004 + }, + { + "start": 22501.62, + "end": 22502.42, + "probability": 0.9299 + }, + { + "start": 22502.8, + "end": 22504.33, + "probability": 0.9988 + }, + { + "start": 22504.64, + "end": 22505.8, + "probability": 0.0521 + }, + { + "start": 22505.8, + "end": 22506.16, + "probability": 0.5021 + }, + { + "start": 22506.44, + "end": 22508.88, + "probability": 0.7661 + }, + { + "start": 22509.04, + "end": 22510.12, + "probability": 0.9631 + }, + { + "start": 22510.3, + "end": 22513.28, + "probability": 0.8921 + }, + { + "start": 22513.28, + "end": 22516.06, + "probability": 0.8467 + }, + { + "start": 22516.58, + "end": 22519.28, + "probability": 0.9592 + }, + { + "start": 22519.54, + "end": 22520.64, + "probability": 0.9344 + }, + { + "start": 22520.84, + "end": 22522.08, + "probability": 0.9013 + }, + { + "start": 22522.14, + "end": 22524.52, + "probability": 0.9907 + }, + { + "start": 22525.04, + "end": 22527.5, + "probability": 0.9978 + }, + { + "start": 22527.8, + "end": 22528.98, + "probability": 0.9712 + }, + { + "start": 22529.42, + "end": 22530.48, + "probability": 0.551 + }, + { + "start": 22530.6, + "end": 22531.9, + "probability": 0.9377 + }, + { + "start": 22532.26, + "end": 22533.44, + "probability": 0.9689 + }, + { + "start": 22533.7, + "end": 22534.2, + "probability": 0.9829 + }, + { + "start": 22535.08, + "end": 22537.0, + "probability": 0.8299 + }, + { + "start": 22537.4, + "end": 22541.32, + "probability": 0.9992 + }, + { + "start": 22541.32, + "end": 22543.98, + "probability": 0.9847 + }, + { + "start": 22544.28, + "end": 22546.68, + "probability": 0.8667 + }, + { + "start": 22547.14, + "end": 22549.92, + "probability": 0.9644 + }, + { + "start": 22550.26, + "end": 22553.28, + "probability": 0.9902 + }, + { + "start": 22553.7, + "end": 22554.3, + "probability": 0.393 + }, + { + "start": 22554.38, + "end": 22555.28, + "probability": 0.9258 + }, + { + "start": 22555.4, + "end": 22560.12, + "probability": 0.7668 + }, + { + "start": 22560.22, + "end": 22566.62, + "probability": 0.9856 + }, + { + "start": 22566.62, + "end": 22570.68, + "probability": 0.9989 + }, + { + "start": 22571.18, + "end": 22572.5, + "probability": 0.9978 + }, + { + "start": 22573.02, + "end": 22574.4, + "probability": 0.8243 + }, + { + "start": 22574.46, + "end": 22575.44, + "probability": 0.7936 + }, + { + "start": 22575.8, + "end": 22582.58, + "probability": 0.9927 + }, + { + "start": 22583.16, + "end": 22585.27, + "probability": 0.9939 + }, + { + "start": 22585.68, + "end": 22586.1, + "probability": 0.896 + }, + { + "start": 22586.2, + "end": 22589.06, + "probability": 0.9271 + }, + { + "start": 22589.06, + "end": 22592.76, + "probability": 0.875 + }, + { + "start": 22592.86, + "end": 22594.98, + "probability": 0.9556 + }, + { + "start": 22595.02, + "end": 22596.8, + "probability": 0.6922 + }, + { + "start": 22596.94, + "end": 22599.7, + "probability": 0.9045 + }, + { + "start": 22599.96, + "end": 22600.86, + "probability": 0.9468 + }, + { + "start": 22601.2, + "end": 22602.75, + "probability": 0.9653 + }, + { + "start": 22603.6, + "end": 22605.5, + "probability": 0.9459 + }, + { + "start": 22606.04, + "end": 22612.46, + "probability": 0.884 + }, + { + "start": 22612.68, + "end": 22612.94, + "probability": 0.6497 + }, + { + "start": 22612.96, + "end": 22614.92, + "probability": 0.9395 + }, + { + "start": 22615.0, + "end": 22615.31, + "probability": 0.5636 + }, + { + "start": 22616.3, + "end": 22617.98, + "probability": 0.9591 + }, + { + "start": 22618.32, + "end": 22620.92, + "probability": 0.9857 + }, + { + "start": 22621.24, + "end": 22624.2, + "probability": 0.0358 + }, + { + "start": 22624.2, + "end": 22625.06, + "probability": 0.8169 + }, + { + "start": 22625.12, + "end": 22625.34, + "probability": 0.3613 + }, + { + "start": 22625.76, + "end": 22626.27, + "probability": 0.812 + }, + { + "start": 22626.5, + "end": 22628.78, + "probability": 0.7637 + }, + { + "start": 22629.32, + "end": 22632.12, + "probability": 0.936 + }, + { + "start": 22632.66, + "end": 22633.1, + "probability": 0.8044 + }, + { + "start": 22633.18, + "end": 22634.06, + "probability": 0.9512 + }, + { + "start": 22634.28, + "end": 22635.32, + "probability": 0.8435 + }, + { + "start": 22635.44, + "end": 22636.66, + "probability": 0.927 + }, + { + "start": 22637.3, + "end": 22638.32, + "probability": 0.9304 + }, + { + "start": 22638.56, + "end": 22640.22, + "probability": 0.8693 + }, + { + "start": 22641.05, + "end": 22642.09, + "probability": 0.9839 + }, + { + "start": 22642.64, + "end": 22643.64, + "probability": 0.835 + }, + { + "start": 22643.8, + "end": 22643.98, + "probability": 0.8204 + }, + { + "start": 22644.18, + "end": 22644.98, + "probability": 0.9928 + }, + { + "start": 22645.56, + "end": 22646.44, + "probability": 0.9744 + }, + { + "start": 22646.54, + "end": 22647.9, + "probability": 0.9857 + }, + { + "start": 22648.04, + "end": 22650.72, + "probability": 0.9644 + }, + { + "start": 22651.16, + "end": 22653.78, + "probability": 0.9341 + }, + { + "start": 22654.46, + "end": 22656.74, + "probability": 0.9741 + }, + { + "start": 22656.88, + "end": 22658.08, + "probability": 0.9653 + }, + { + "start": 22658.56, + "end": 22662.08, + "probability": 0.9548 + }, + { + "start": 22662.62, + "end": 22663.74, + "probability": 0.5215 + }, + { + "start": 22663.78, + "end": 22666.22, + "probability": 0.7447 + }, + { + "start": 22666.28, + "end": 22669.26, + "probability": 0.7822 + }, + { + "start": 22669.74, + "end": 22671.62, + "probability": 0.9266 + }, + { + "start": 22672.3, + "end": 22672.62, + "probability": 0.8091 + }, + { + "start": 22672.68, + "end": 22678.06, + "probability": 0.9604 + }, + { + "start": 22678.52, + "end": 22679.16, + "probability": 0.701 + }, + { + "start": 22679.46, + "end": 22683.56, + "probability": 0.9629 + }, + { + "start": 22683.88, + "end": 22684.86, + "probability": 0.6284 + }, + { + "start": 22684.94, + "end": 22685.88, + "probability": 0.9646 + }, + { + "start": 22685.96, + "end": 22689.16, + "probability": 0.9944 + }, + { + "start": 22689.16, + "end": 22691.66, + "probability": 0.2175 + }, + { + "start": 22692.22, + "end": 22692.38, + "probability": 0.1551 + }, + { + "start": 22692.38, + "end": 22695.17, + "probability": 0.9592 + }, + { + "start": 22695.38, + "end": 22698.12, + "probability": 0.6815 + }, + { + "start": 22698.82, + "end": 22701.46, + "probability": 0.9722 + }, + { + "start": 22701.86, + "end": 22704.98, + "probability": 0.9983 + }, + { + "start": 22705.32, + "end": 22706.54, + "probability": 0.9093 + }, + { + "start": 22706.82, + "end": 22708.64, + "probability": 0.8896 + }, + { + "start": 22708.64, + "end": 22710.72, + "probability": 0.7509 + }, + { + "start": 22710.76, + "end": 22713.3, + "probability": 0.9297 + }, + { + "start": 22713.44, + "end": 22717.7, + "probability": 0.9634 + }, + { + "start": 22718.52, + "end": 22720.63, + "probability": 0.8989 + }, + { + "start": 22720.98, + "end": 22722.04, + "probability": 0.7261 + }, + { + "start": 22723.12, + "end": 22726.98, + "probability": 0.9772 + }, + { + "start": 22727.16, + "end": 22728.26, + "probability": 0.935 + }, + { + "start": 22728.34, + "end": 22731.76, + "probability": 0.9652 + }, + { + "start": 22731.76, + "end": 22733.94, + "probability": 0.9993 + }, + { + "start": 22734.58, + "end": 22734.74, + "probability": 0.8361 + }, + { + "start": 22734.84, + "end": 22735.16, + "probability": 0.6709 + }, + { + "start": 22735.26, + "end": 22739.04, + "probability": 0.9851 + }, + { + "start": 22739.14, + "end": 22741.18, + "probability": 0.9965 + }, + { + "start": 22741.24, + "end": 22742.22, + "probability": 0.9934 + }, + { + "start": 22742.76, + "end": 22745.7, + "probability": 0.9769 + }, + { + "start": 22746.3, + "end": 22747.68, + "probability": 0.8652 + }, + { + "start": 22748.1, + "end": 22749.82, + "probability": 0.9316 + }, + { + "start": 22750.18, + "end": 22751.96, + "probability": 0.9678 + }, + { + "start": 22752.44, + "end": 22753.08, + "probability": 0.4278 + }, + { + "start": 22753.1, + "end": 22755.3, + "probability": 0.3797 + }, + { + "start": 22755.6, + "end": 22756.34, + "probability": 0.9351 + }, + { + "start": 22756.42, + "end": 22757.64, + "probability": 0.7603 + }, + { + "start": 22757.76, + "end": 22759.08, + "probability": 0.8269 + }, + { + "start": 22759.23, + "end": 22760.51, + "probability": 0.0662 + }, + { + "start": 22762.4, + "end": 22762.9, + "probability": 0.8792 + }, + { + "start": 22763.06, + "end": 22763.85, + "probability": 0.934 + }, + { + "start": 22764.5, + "end": 22766.64, + "probability": 0.9772 + }, + { + "start": 22766.8, + "end": 22767.46, + "probability": 0.8899 + }, + { + "start": 22767.48, + "end": 22768.16, + "probability": 0.6437 + }, + { + "start": 22768.64, + "end": 22769.4, + "probability": 0.7207 + }, + { + "start": 22770.1, + "end": 22770.82, + "probability": 0.854 + }, + { + "start": 22770.96, + "end": 22771.92, + "probability": 0.8122 + }, + { + "start": 22772.08, + "end": 22772.74, + "probability": 0.9106 + }, + { + "start": 22773.4, + "end": 22774.66, + "probability": 0.8498 + }, + { + "start": 22774.74, + "end": 22779.38, + "probability": 0.9708 + }, + { + "start": 22779.54, + "end": 22781.81, + "probability": 0.9838 + }, + { + "start": 22782.42, + "end": 22783.54, + "probability": 0.8698 + }, + { + "start": 22783.62, + "end": 22784.94, + "probability": 0.9865 + }, + { + "start": 22785.02, + "end": 22785.63, + "probability": 0.9834 + }, + { + "start": 22786.62, + "end": 22787.68, + "probability": 0.9683 + }, + { + "start": 22787.98, + "end": 22788.98, + "probability": 0.7053 + }, + { + "start": 22789.04, + "end": 22790.2, + "probability": 0.6744 + }, + { + "start": 22790.34, + "end": 22791.8, + "probability": 0.9913 + }, + { + "start": 22792.3, + "end": 22792.8, + "probability": 0.2806 + }, + { + "start": 22792.86, + "end": 22793.46, + "probability": 0.9946 + }, + { + "start": 22794.06, + "end": 22796.2, + "probability": 0.9609 + }, + { + "start": 22796.4, + "end": 22796.5, + "probability": 0.0104 + }, + { + "start": 22796.52, + "end": 22796.68, + "probability": 0.7141 + }, + { + "start": 22796.8, + "end": 22798.18, + "probability": 0.9843 + }, + { + "start": 22798.4, + "end": 22800.26, + "probability": 0.9912 + }, + { + "start": 22800.26, + "end": 22801.5, + "probability": 0.5011 + }, + { + "start": 22801.96, + "end": 22802.06, + "probability": 0.2312 + }, + { + "start": 22802.08, + "end": 22802.96, + "probability": 0.9775 + }, + { + "start": 22803.38, + "end": 22806.36, + "probability": 0.9028 + }, + { + "start": 22806.5, + "end": 22809.46, + "probability": 0.7201 + }, + { + "start": 22809.52, + "end": 22810.18, + "probability": 0.8638 + }, + { + "start": 22810.62, + "end": 22811.2, + "probability": 0.4061 + }, + { + "start": 22811.58, + "end": 22812.54, + "probability": 0.9349 + }, + { + "start": 22812.88, + "end": 22812.96, + "probability": 0.2162 + }, + { + "start": 22812.96, + "end": 22814.84, + "probability": 0.8359 + }, + { + "start": 22814.84, + "end": 22816.32, + "probability": 0.4999 + }, + { + "start": 22816.56, + "end": 22818.42, + "probability": 0.6699 + }, + { + "start": 22818.68, + "end": 22819.26, + "probability": 0.4244 + }, + { + "start": 22820.08, + "end": 22820.9, + "probability": 0.3753 + }, + { + "start": 22821.08, + "end": 22821.08, + "probability": 0.5023 + }, + { + "start": 22821.08, + "end": 22822.23, + "probability": 0.9102 + }, + { + "start": 22822.74, + "end": 22826.22, + "probability": 0.8577 + }, + { + "start": 22826.4, + "end": 22827.18, + "probability": 0.2257 + }, + { + "start": 22827.66, + "end": 22834.0, + "probability": 0.7511 + }, + { + "start": 22834.24, + "end": 22834.56, + "probability": 0.7652 + }, + { + "start": 22835.06, + "end": 22840.32, + "probability": 0.9754 + }, + { + "start": 22841.18, + "end": 22844.24, + "probability": 0.9858 + }, + { + "start": 22844.42, + "end": 22846.1, + "probability": 0.86 + }, + { + "start": 22846.12, + "end": 22847.74, + "probability": 0.2558 + }, + { + "start": 22847.94, + "end": 22850.56, + "probability": 0.9417 + }, + { + "start": 22851.12, + "end": 22853.66, + "probability": 0.932 + }, + { + "start": 22854.98, + "end": 22856.18, + "probability": 0.9805 + }, + { + "start": 22856.86, + "end": 22858.16, + "probability": 0.9264 + }, + { + "start": 22859.54, + "end": 22862.49, + "probability": 0.979 + }, + { + "start": 22864.38, + "end": 22865.52, + "probability": 0.9979 + }, + { + "start": 22866.12, + "end": 22867.54, + "probability": 0.5522 + }, + { + "start": 22868.28, + "end": 22870.42, + "probability": 0.9837 + }, + { + "start": 22871.56, + "end": 22873.38, + "probability": 0.7642 + }, + { + "start": 22874.1, + "end": 22875.38, + "probability": 0.9633 + }, + { + "start": 22875.96, + "end": 22877.68, + "probability": 0.4988 + }, + { + "start": 22878.44, + "end": 22879.9, + "probability": 0.9709 + }, + { + "start": 22880.56, + "end": 22881.7, + "probability": 0.9581 + }, + { + "start": 22882.62, + "end": 22886.34, + "probability": 0.8403 + }, + { + "start": 22887.62, + "end": 22891.44, + "probability": 0.9987 + }, + { + "start": 22892.58, + "end": 22893.24, + "probability": 0.8582 + }, + { + "start": 22893.96, + "end": 22895.33, + "probability": 0.8252 + }, + { + "start": 22896.4, + "end": 22902.97, + "probability": 0.9948 + }, + { + "start": 22903.64, + "end": 22905.3, + "probability": 0.8296 + }, + { + "start": 22906.28, + "end": 22908.88, + "probability": 0.9722 + }, + { + "start": 22909.92, + "end": 22911.28, + "probability": 0.5306 + }, + { + "start": 22912.32, + "end": 22914.0, + "probability": 0.9236 + }, + { + "start": 22914.6, + "end": 22920.18, + "probability": 0.8287 + }, + { + "start": 22921.58, + "end": 22923.44, + "probability": 0.9309 + }, + { + "start": 22926.42, + "end": 22932.64, + "probability": 0.9924 + }, + { + "start": 22934.1, + "end": 22937.22, + "probability": 0.9596 + }, + { + "start": 22937.98, + "end": 22940.26, + "probability": 0.991 + }, + { + "start": 22941.42, + "end": 22945.54, + "probability": 0.9397 + }, + { + "start": 22947.38, + "end": 22948.3, + "probability": 0.8925 + }, + { + "start": 22949.34, + "end": 22951.52, + "probability": 0.9059 + }, + { + "start": 22952.84, + "end": 22954.34, + "probability": 0.9458 + }, + { + "start": 22955.46, + "end": 22959.66, + "probability": 0.9584 + }, + { + "start": 22961.78, + "end": 22969.06, + "probability": 0.9979 + }, + { + "start": 22970.34, + "end": 22977.28, + "probability": 0.996 + }, + { + "start": 22978.36, + "end": 22982.58, + "probability": 0.9134 + }, + { + "start": 22983.8, + "end": 22987.6, + "probability": 0.9873 + }, + { + "start": 22988.6, + "end": 22991.94, + "probability": 0.803 + }, + { + "start": 22992.56, + "end": 22993.32, + "probability": 0.8938 + }, + { + "start": 22994.56, + "end": 22998.08, + "probability": 0.9559 + }, + { + "start": 22998.88, + "end": 23006.34, + "probability": 0.9293 + }, + { + "start": 23007.86, + "end": 23010.7, + "probability": 0.9757 + }, + { + "start": 23012.3, + "end": 23016.54, + "probability": 0.9724 + }, + { + "start": 23018.38, + "end": 23021.92, + "probability": 0.9979 + }, + { + "start": 23022.76, + "end": 23026.44, + "probability": 0.9962 + }, + { + "start": 23027.28, + "end": 23030.28, + "probability": 0.5194 + }, + { + "start": 23031.44, + "end": 23034.46, + "probability": 0.974 + }, + { + "start": 23035.58, + "end": 23037.4, + "probability": 0.9716 + }, + { + "start": 23038.38, + "end": 23040.38, + "probability": 0.9784 + }, + { + "start": 23040.94, + "end": 23044.02, + "probability": 0.8147 + }, + { + "start": 23044.66, + "end": 23048.78, + "probability": 0.9741 + }, + { + "start": 23049.7, + "end": 23052.76, + "probability": 0.9749 + }, + { + "start": 23053.86, + "end": 23054.66, + "probability": 0.5651 + }, + { + "start": 23057.48, + "end": 23061.48, + "probability": 0.7595 + }, + { + "start": 23062.18, + "end": 23064.56, + "probability": 0.9598 + }, + { + "start": 23065.44, + "end": 23070.14, + "probability": 0.9757 + }, + { + "start": 23071.76, + "end": 23074.5, + "probability": 0.9941 + }, + { + "start": 23075.78, + "end": 23078.06, + "probability": 0.9337 + }, + { + "start": 23078.74, + "end": 23081.72, + "probability": 0.9077 + }, + { + "start": 23082.96, + "end": 23083.08, + "probability": 0.0519 + }, + { + "start": 23083.08, + "end": 23083.24, + "probability": 0.0755 + }, + { + "start": 23083.24, + "end": 23084.74, + "probability": 0.1572 + }, + { + "start": 23084.74, + "end": 23086.74, + "probability": 0.1141 + }, + { + "start": 23087.08, + "end": 23088.12, + "probability": 0.3375 + }, + { + "start": 23088.18, + "end": 23089.1, + "probability": 0.2624 + }, + { + "start": 23093.1, + "end": 23093.66, + "probability": 0.0811 + }, + { + "start": 23093.66, + "end": 23093.66, + "probability": 0.0404 + }, + { + "start": 23093.66, + "end": 23096.81, + "probability": 0.7415 + }, + { + "start": 23097.28, + "end": 23098.75, + "probability": 0.4603 + }, + { + "start": 23099.1, + "end": 23099.84, + "probability": 0.2139 + }, + { + "start": 23099.84, + "end": 23100.9, + "probability": 0.493 + }, + { + "start": 23101.14, + "end": 23104.58, + "probability": 0.2876 + }, + { + "start": 23106.2, + "end": 23106.4, + "probability": 0.0772 + }, + { + "start": 23106.4, + "end": 23106.4, + "probability": 0.0737 + }, + { + "start": 23106.4, + "end": 23109.63, + "probability": 0.5253 + }, + { + "start": 23110.14, + "end": 23111.86, + "probability": 0.624 + }, + { + "start": 23112.4, + "end": 23113.96, + "probability": 0.7484 + }, + { + "start": 23114.56, + "end": 23119.38, + "probability": 0.9713 + }, + { + "start": 23120.82, + "end": 23124.44, + "probability": 0.9979 + }, + { + "start": 23125.08, + "end": 23128.54, + "probability": 0.9961 + }, + { + "start": 23128.54, + "end": 23133.8, + "probability": 0.9847 + }, + { + "start": 23134.76, + "end": 23136.86, + "probability": 0.9969 + }, + { + "start": 23137.88, + "end": 23140.32, + "probability": 0.9648 + }, + { + "start": 23142.38, + "end": 23146.82, + "probability": 0.9909 + }, + { + "start": 23147.56, + "end": 23149.82, + "probability": 0.999 + }, + { + "start": 23150.9, + "end": 23154.5, + "probability": 0.9297 + }, + { + "start": 23155.54, + "end": 23162.24, + "probability": 0.9757 + }, + { + "start": 23162.92, + "end": 23163.7, + "probability": 0.4435 + }, + { + "start": 23164.58, + "end": 23166.62, + "probability": 0.9997 + }, + { + "start": 23167.56, + "end": 23176.44, + "probability": 0.9957 + }, + { + "start": 23177.68, + "end": 23182.0, + "probability": 0.9596 + }, + { + "start": 23182.8, + "end": 23189.9, + "probability": 0.8856 + }, + { + "start": 23190.52, + "end": 23196.38, + "probability": 0.8995 + }, + { + "start": 23197.42, + "end": 23199.48, + "probability": 0.9844 + }, + { + "start": 23201.14, + "end": 23204.52, + "probability": 0.9629 + }, + { + "start": 23206.66, + "end": 23208.64, + "probability": 0.8107 + }, + { + "start": 23209.18, + "end": 23215.1, + "probability": 0.8132 + }, + { + "start": 23216.92, + "end": 23220.66, + "probability": 0.9922 + }, + { + "start": 23222.92, + "end": 23226.7, + "probability": 0.9658 + }, + { + "start": 23227.72, + "end": 23230.08, + "probability": 0.8989 + }, + { + "start": 23230.76, + "end": 23234.32, + "probability": 0.6635 + }, + { + "start": 23234.68, + "end": 23236.2, + "probability": 0.7983 + }, + { + "start": 23236.32, + "end": 23237.16, + "probability": 0.8457 + }, + { + "start": 23237.78, + "end": 23239.76, + "probability": 0.9551 + }, + { + "start": 23239.92, + "end": 23240.58, + "probability": 0.901 + }, + { + "start": 23241.18, + "end": 23242.94, + "probability": 0.9734 + }, + { + "start": 23243.84, + "end": 23245.6, + "probability": 0.9753 + }, + { + "start": 23246.2, + "end": 23253.14, + "probability": 0.9893 + }, + { + "start": 23254.3, + "end": 23255.59, + "probability": 0.7101 + }, + { + "start": 23256.28, + "end": 23261.9, + "probability": 0.666 + }, + { + "start": 23262.8, + "end": 23267.28, + "probability": 0.9611 + }, + { + "start": 23267.8, + "end": 23275.0, + "probability": 0.9292 + }, + { + "start": 23275.32, + "end": 23275.62, + "probability": 0.0123 + }, + { + "start": 23275.62, + "end": 23275.62, + "probability": 0.0394 + }, + { + "start": 23275.62, + "end": 23277.46, + "probability": 0.0308 + }, + { + "start": 23277.94, + "end": 23277.94, + "probability": 0.0236 + }, + { + "start": 23277.94, + "end": 23279.04, + "probability": 0.124 + }, + { + "start": 23280.29, + "end": 23282.46, + "probability": 0.7515 + }, + { + "start": 23282.6, + "end": 23285.94, + "probability": 0.5173 + }, + { + "start": 23286.04, + "end": 23289.36, + "probability": 0.9263 + }, + { + "start": 23289.84, + "end": 23292.06, + "probability": 0.9526 + }, + { + "start": 23292.6, + "end": 23294.08, + "probability": 0.1492 + }, + { + "start": 23294.08, + "end": 23301.86, + "probability": 0.8421 + }, + { + "start": 23302.48, + "end": 23303.8, + "probability": 0.9362 + }, + { + "start": 23303.9, + "end": 23305.08, + "probability": 0.9335 + }, + { + "start": 23305.18, + "end": 23306.0, + "probability": 0.5969 + }, + { + "start": 23306.18, + "end": 23309.18, + "probability": 0.8712 + }, + { + "start": 23310.08, + "end": 23310.68, + "probability": 0.7274 + }, + { + "start": 23310.76, + "end": 23311.54, + "probability": 0.9087 + }, + { + "start": 23311.7, + "end": 23312.94, + "probability": 0.9062 + }, + { + "start": 23313.44, + "end": 23318.2, + "probability": 0.9555 + }, + { + "start": 23318.56, + "end": 23320.02, + "probability": 0.9587 + }, + { + "start": 23320.7, + "end": 23323.38, + "probability": 0.9922 + }, + { + "start": 23323.44, + "end": 23325.06, + "probability": 0.6943 + }, + { + "start": 23326.14, + "end": 23331.08, + "probability": 0.9885 + }, + { + "start": 23331.24, + "end": 23333.38, + "probability": 0.9882 + }, + { + "start": 23333.9, + "end": 23334.56, + "probability": 0.7392 + }, + { + "start": 23334.6, + "end": 23335.74, + "probability": 0.9461 + }, + { + "start": 23335.84, + "end": 23338.5, + "probability": 0.0208 + }, + { + "start": 23338.78, + "end": 23339.38, + "probability": 0.1996 + }, + { + "start": 23339.38, + "end": 23343.66, + "probability": 0.9767 + }, + { + "start": 23343.66, + "end": 23344.92, + "probability": 0.0622 + }, + { + "start": 23345.04, + "end": 23346.7, + "probability": 0.1164 + }, + { + "start": 23346.92, + "end": 23347.92, + "probability": 0.1335 + }, + { + "start": 23348.08, + "end": 23351.32, + "probability": 0.2104 + }, + { + "start": 23351.48, + "end": 23352.85, + "probability": 0.8108 + }, + { + "start": 23353.26, + "end": 23355.62, + "probability": 0.9673 + }, + { + "start": 23356.18, + "end": 23358.96, + "probability": 0.9869 + }, + { + "start": 23359.08, + "end": 23360.28, + "probability": 0.4508 + }, + { + "start": 23360.42, + "end": 23361.38, + "probability": 0.8262 + }, + { + "start": 23361.48, + "end": 23364.92, + "probability": 0.936 + }, + { + "start": 23365.06, + "end": 23366.72, + "probability": 0.9315 + }, + { + "start": 23367.78, + "end": 23368.46, + "probability": 0.4996 + }, + { + "start": 23368.5, + "end": 23370.9, + "probability": 0.1223 + }, + { + "start": 23370.9, + "end": 23372.48, + "probability": 0.1288 + }, + { + "start": 23372.78, + "end": 23375.2, + "probability": 0.5197 + }, + { + "start": 23377.34, + "end": 23384.8, + "probability": 0.9879 + }, + { + "start": 23385.92, + "end": 23387.36, + "probability": 0.8909 + }, + { + "start": 23387.58, + "end": 23389.74, + "probability": 0.8591 + }, + { + "start": 23389.88, + "end": 23392.3, + "probability": 0.9238 + }, + { + "start": 23392.6, + "end": 23394.82, + "probability": 0.9756 + }, + { + "start": 23395.88, + "end": 23400.52, + "probability": 0.9314 + }, + { + "start": 23400.68, + "end": 23401.32, + "probability": 0.5083 + }, + { + "start": 23401.46, + "end": 23402.0, + "probability": 0.6402 + }, + { + "start": 23402.09, + "end": 23406.42, + "probability": 0.9722 + }, + { + "start": 23407.08, + "end": 23409.7, + "probability": 0.9882 + }, + { + "start": 23409.9, + "end": 23411.28, + "probability": 0.7948 + }, + { + "start": 23411.46, + "end": 23413.98, + "probability": 0.9834 + }, + { + "start": 23414.12, + "end": 23421.16, + "probability": 0.9894 + }, + { + "start": 23422.28, + "end": 23424.02, + "probability": 0.9202 + }, + { + "start": 23427.18, + "end": 23429.75, + "probability": 0.838 + }, + { + "start": 23430.18, + "end": 23433.74, + "probability": 0.6958 + }, + { + "start": 23434.16, + "end": 23439.48, + "probability": 0.9985 + }, + { + "start": 23439.48, + "end": 23443.74, + "probability": 0.9995 + }, + { + "start": 23444.38, + "end": 23446.14, + "probability": 0.7269 + }, + { + "start": 23447.16, + "end": 23448.1, + "probability": 0.9876 + }, + { + "start": 23448.22, + "end": 23450.34, + "probability": 0.9299 + }, + { + "start": 23451.26, + "end": 23451.82, + "probability": 0.8398 + }, + { + "start": 23451.98, + "end": 23452.46, + "probability": 0.5383 + }, + { + "start": 23452.46, + "end": 23454.34, + "probability": 0.7659 + }, + { + "start": 23456.88, + "end": 23457.56, + "probability": 0.1186 + }, + { + "start": 23462.19, + "end": 23463.26, + "probability": 0.0472 + }, + { + "start": 23465.0, + "end": 23466.38, + "probability": 0.1559 + }, + { + "start": 23470.86, + "end": 23470.96, + "probability": 0.3873 + }, + { + "start": 23472.9, + "end": 23473.3, + "probability": 0.3887 + }, + { + "start": 23474.84, + "end": 23475.66, + "probability": 0.0015 + }, + { + "start": 23477.52, + "end": 23480.26, + "probability": 0.1562 + }, + { + "start": 23480.82, + "end": 23483.4, + "probability": 0.5696 + }, + { + "start": 23483.4, + "end": 23483.98, + "probability": 0.2303 + }, + { + "start": 23485.76, + "end": 23485.82, + "probability": 0.0223 + }, + { + "start": 23489.5, + "end": 23491.26, + "probability": 0.5473 + }, + { + "start": 23493.84, + "end": 23496.86, + "probability": 0.1827 + }, + { + "start": 23518.46, + "end": 23519.38, + "probability": 0.3365 + }, + { + "start": 23520.7, + "end": 23524.64, + "probability": 0.8833 + }, + { + "start": 23524.72, + "end": 23526.4, + "probability": 0.9138 + }, + { + "start": 23527.58, + "end": 23528.04, + "probability": 0.8152 + }, + { + "start": 23528.12, + "end": 23529.96, + "probability": 0.9896 + }, + { + "start": 23530.14, + "end": 23531.44, + "probability": 0.8796 + }, + { + "start": 23532.26, + "end": 23533.88, + "probability": 0.7045 + }, + { + "start": 23534.9, + "end": 23538.78, + "probability": 0.6661 + }, + { + "start": 23540.84, + "end": 23542.52, + "probability": 0.9985 + }, + { + "start": 23543.58, + "end": 23550.14, + "probability": 0.9961 + }, + { + "start": 23550.36, + "end": 23551.94, + "probability": 0.9233 + }, + { + "start": 23554.62, + "end": 23556.86, + "probability": 0.7958 + }, + { + "start": 23558.3, + "end": 23561.52, + "probability": 0.9802 + }, + { + "start": 23564.38, + "end": 23570.44, + "probability": 0.6234 + }, + { + "start": 23570.5, + "end": 23571.34, + "probability": 0.5438 + }, + { + "start": 23573.34, + "end": 23575.18, + "probability": 0.9481 + }, + { + "start": 23577.44, + "end": 23584.86, + "probability": 0.9734 + }, + { + "start": 23587.24, + "end": 23590.68, + "probability": 0.937 + }, + { + "start": 23591.38, + "end": 23593.28, + "probability": 0.5421 + }, + { + "start": 23593.8, + "end": 23598.2, + "probability": 0.9571 + }, + { + "start": 23598.2, + "end": 23604.16, + "probability": 0.9659 + }, + { + "start": 23605.3, + "end": 23607.6, + "probability": 0.6891 + }, + { + "start": 23607.72, + "end": 23609.3, + "probability": 0.3173 + }, + { + "start": 23610.78, + "end": 23616.16, + "probability": 0.9489 + }, + { + "start": 23616.6, + "end": 23618.26, + "probability": 0.4485 + }, + { + "start": 23618.44, + "end": 23621.96, + "probability": 0.9646 + }, + { + "start": 23623.66, + "end": 23631.4, + "probability": 0.9846 + }, + { + "start": 23632.08, + "end": 23634.06, + "probability": 0.2299 + }, + { + "start": 23636.3, + "end": 23637.64, + "probability": 0.763 + }, + { + "start": 23637.82, + "end": 23638.6, + "probability": 0.9374 + }, + { + "start": 23639.26, + "end": 23639.98, + "probability": 0.8938 + }, + { + "start": 23640.28, + "end": 23642.88, + "probability": 0.8509 + }, + { + "start": 23643.88, + "end": 23645.3, + "probability": 0.7772 + }, + { + "start": 23646.38, + "end": 23648.88, + "probability": 0.9039 + }, + { + "start": 23650.9, + "end": 23652.2, + "probability": 0.9939 + }, + { + "start": 23666.68, + "end": 23673.76, + "probability": 0.9141 + }, + { + "start": 23673.76, + "end": 23679.9, + "probability": 0.5617 + }, + { + "start": 23681.54, + "end": 23682.32, + "probability": 0.7831 + }, + { + "start": 23683.3, + "end": 23686.92, + "probability": 0.8578 + }, + { + "start": 23688.12, + "end": 23689.3, + "probability": 0.8568 + }, + { + "start": 23689.92, + "end": 23698.04, + "probability": 0.986 + }, + { + "start": 23698.98, + "end": 23703.36, + "probability": 0.924 + }, + { + "start": 23703.9, + "end": 23705.4, + "probability": 0.756 + }, + { + "start": 23708.12, + "end": 23712.34, + "probability": 0.9927 + }, + { + "start": 23713.8, + "end": 23723.28, + "probability": 0.9717 + }, + { + "start": 23723.9, + "end": 23727.0, + "probability": 0.9649 + }, + { + "start": 23728.0, + "end": 23729.08, + "probability": 0.644 + }, + { + "start": 23730.0, + "end": 23731.1, + "probability": 0.7133 + }, + { + "start": 23732.18, + "end": 23740.98, + "probability": 0.9679 + }, + { + "start": 23742.6, + "end": 23747.24, + "probability": 0.9912 + }, + { + "start": 23747.24, + "end": 23751.96, + "probability": 0.9731 + }, + { + "start": 23752.06, + "end": 23752.8, + "probability": 0.6397 + }, + { + "start": 23752.92, + "end": 23754.26, + "probability": 0.4705 + }, + { + "start": 23754.94, + "end": 23757.72, + "probability": 0.9573 + }, + { + "start": 23758.72, + "end": 23765.1, + "probability": 0.9897 + }, + { + "start": 23765.8, + "end": 23767.34, + "probability": 0.773 + }, + { + "start": 23767.98, + "end": 23772.66, + "probability": 0.9922 + }, + { + "start": 23774.1, + "end": 23780.72, + "probability": 0.9697 + }, + { + "start": 23780.72, + "end": 23787.3, + "probability": 0.9897 + }, + { + "start": 23788.6, + "end": 23792.1, + "probability": 0.9878 + }, + { + "start": 23792.96, + "end": 23798.6, + "probability": 0.9023 + }, + { + "start": 23799.32, + "end": 23806.14, + "probability": 0.9914 + }, + { + "start": 23807.0, + "end": 23808.9, + "probability": 0.5209 + }, + { + "start": 23809.3, + "end": 23813.08, + "probability": 0.9431 + }, + { + "start": 23813.46, + "end": 23814.7, + "probability": 0.9719 + }, + { + "start": 23815.8, + "end": 23819.52, + "probability": 0.9966 + }, + { + "start": 23819.7, + "end": 23823.53, + "probability": 0.9753 + }, + { + "start": 23823.54, + "end": 23826.84, + "probability": 0.8999 + }, + { + "start": 23827.68, + "end": 23832.96, + "probability": 0.9954 + }, + { + "start": 23834.36, + "end": 23837.98, + "probability": 0.9417 + }, + { + "start": 23840.56, + "end": 23842.26, + "probability": 0.7396 + }, + { + "start": 23842.86, + "end": 23845.9, + "probability": 0.9248 + }, + { + "start": 23848.06, + "end": 23855.16, + "probability": 0.9735 + }, + { + "start": 23855.32, + "end": 23856.56, + "probability": 0.1211 + }, + { + "start": 23857.62, + "end": 23860.3, + "probability": 0.6582 + }, + { + "start": 23860.82, + "end": 23863.79, + "probability": 0.9561 + }, + { + "start": 23865.0, + "end": 23872.34, + "probability": 0.9031 + }, + { + "start": 23873.12, + "end": 23882.58, + "probability": 0.7154 + }, + { + "start": 23882.6, + "end": 23885.34, + "probability": 0.8053 + }, + { + "start": 23886.24, + "end": 23888.48, + "probability": 0.9868 + }, + { + "start": 23889.2, + "end": 23890.14, + "probability": 0.4649 + }, + { + "start": 23891.8, + "end": 23893.3, + "probability": 0.7487 + }, + { + "start": 23893.98, + "end": 23899.5, + "probability": 0.9443 + }, + { + "start": 23900.04, + "end": 23902.3, + "probability": 0.6576 + }, + { + "start": 23903.08, + "end": 23905.46, + "probability": 0.9912 + }, + { + "start": 23905.84, + "end": 23906.08, + "probability": 0.3046 + }, + { + "start": 23906.58, + "end": 23907.48, + "probability": 0.9531 + }, + { + "start": 23908.56, + "end": 23914.98, + "probability": 0.9761 + }, + { + "start": 23915.24, + "end": 23915.84, + "probability": 0.898 + }, + { + "start": 23916.04, + "end": 23917.06, + "probability": 0.5278 + }, + { + "start": 23917.58, + "end": 23921.14, + "probability": 0.9893 + }, + { + "start": 23921.9, + "end": 23929.42, + "probability": 0.9392 + }, + { + "start": 23930.0, + "end": 23936.14, + "probability": 0.9844 + }, + { + "start": 23937.42, + "end": 23938.62, + "probability": 0.9692 + }, + { + "start": 23939.52, + "end": 23944.38, + "probability": 0.6993 + }, + { + "start": 23944.86, + "end": 23951.0, + "probability": 0.8685 + }, + { + "start": 23951.76, + "end": 23957.4, + "probability": 0.8961 + }, + { + "start": 23958.36, + "end": 23960.32, + "probability": 0.8419 + }, + { + "start": 23960.84, + "end": 23963.34, + "probability": 0.7762 + }, + { + "start": 23963.9, + "end": 23966.82, + "probability": 0.769 + }, + { + "start": 23967.9, + "end": 23968.62, + "probability": 0.9053 + }, + { + "start": 23968.72, + "end": 23973.56, + "probability": 0.803 + }, + { + "start": 23974.44, + "end": 23981.3, + "probability": 0.9702 + }, + { + "start": 23983.04, + "end": 23985.28, + "probability": 0.7532 + }, + { + "start": 23986.3, + "end": 23991.86, + "probability": 0.8889 + }, + { + "start": 23992.46, + "end": 23996.9, + "probability": 0.9935 + }, + { + "start": 23997.8, + "end": 24001.06, + "probability": 0.9722 + }, + { + "start": 24001.56, + "end": 24002.12, + "probability": 0.7363 + }, + { + "start": 24002.34, + "end": 24008.48, + "probability": 0.9697 + }, + { + "start": 24010.68, + "end": 24014.3, + "probability": 0.8794 + }, + { + "start": 24014.76, + "end": 24021.8, + "probability": 0.9744 + }, + { + "start": 24022.88, + "end": 24024.98, + "probability": 0.9985 + }, + { + "start": 24026.28, + "end": 24032.96, + "probability": 0.9924 + }, + { + "start": 24033.96, + "end": 24043.48, + "probability": 0.9794 + }, + { + "start": 24045.16, + "end": 24047.36, + "probability": 0.9969 + }, + { + "start": 24048.4, + "end": 24050.62, + "probability": 0.9985 + }, + { + "start": 24051.94, + "end": 24053.44, + "probability": 0.9634 + }, + { + "start": 24054.38, + "end": 24056.7, + "probability": 0.9684 + }, + { + "start": 24057.72, + "end": 24060.2, + "probability": 0.9963 + }, + { + "start": 24060.38, + "end": 24066.88, + "probability": 0.9976 + }, + { + "start": 24067.47, + "end": 24071.82, + "probability": 0.6831 + }, + { + "start": 24072.0, + "end": 24072.12, + "probability": 0.2722 + }, + { + "start": 24072.12, + "end": 24074.32, + "probability": 0.5963 + }, + { + "start": 24074.72, + "end": 24082.96, + "probability": 0.9294 + }, + { + "start": 24083.32, + "end": 24083.38, + "probability": 0.062 + }, + { + "start": 24083.4, + "end": 24087.6, + "probability": 0.8147 + }, + { + "start": 24087.96, + "end": 24093.82, + "probability": 0.9165 + }, + { + "start": 24093.86, + "end": 24094.68, + "probability": 0.7656 + }, + { + "start": 24094.74, + "end": 24097.2, + "probability": 0.9893 + }, + { + "start": 24097.58, + "end": 24102.26, + "probability": 0.916 + }, + { + "start": 24102.5, + "end": 24107.28, + "probability": 0.7508 + }, + { + "start": 24107.28, + "end": 24110.68, + "probability": 0.9573 + }, + { + "start": 24110.78, + "end": 24113.36, + "probability": 0.1408 + }, + { + "start": 24114.34, + "end": 24117.28, + "probability": 0.4634 + }, + { + "start": 24118.82, + "end": 24119.54, + "probability": 0.042 + }, + { + "start": 24121.1, + "end": 24123.62, + "probability": 0.1899 + }, + { + "start": 24125.44, + "end": 24127.24, + "probability": 0.6416 + }, + { + "start": 24127.54, + "end": 24128.42, + "probability": 0.3148 + }, + { + "start": 24128.74, + "end": 24129.38, + "probability": 0.6209 + }, + { + "start": 24129.38, + "end": 24131.09, + "probability": 0.1737 + }, + { + "start": 24131.52, + "end": 24135.48, + "probability": 0.4882 + }, + { + "start": 24136.2, + "end": 24137.98, + "probability": 0.3856 + }, + { + "start": 24137.98, + "end": 24138.1, + "probability": 0.25 + }, + { + "start": 24138.38, + "end": 24138.38, + "probability": 0.4114 + }, + { + "start": 24138.38, + "end": 24141.12, + "probability": 0.8339 + }, + { + "start": 24141.2, + "end": 24142.2, + "probability": 0.707 + }, + { + "start": 24142.76, + "end": 24143.52, + "probability": 0.0166 + }, + { + "start": 24143.58, + "end": 24144.62, + "probability": 0.6067 + }, + { + "start": 24144.62, + "end": 24146.27, + "probability": 0.4786 + }, + { + "start": 24146.46, + "end": 24150.18, + "probability": 0.6439 + }, + { + "start": 24150.18, + "end": 24151.46, + "probability": 0.5447 + }, + { + "start": 24152.7, + "end": 24153.28, + "probability": 0.3801 + }, + { + "start": 24153.28, + "end": 24153.28, + "probability": 0.6135 + }, + { + "start": 24153.28, + "end": 24154.12, + "probability": 0.0095 + }, + { + "start": 24154.22, + "end": 24156.16, + "probability": 0.5975 + }, + { + "start": 24156.16, + "end": 24156.7, + "probability": 0.7376 + }, + { + "start": 24156.88, + "end": 24157.34, + "probability": 0.7553 + }, + { + "start": 24157.78, + "end": 24159.92, + "probability": 0.9082 + }, + { + "start": 24160.22, + "end": 24160.84, + "probability": 0.959 + }, + { + "start": 24161.96, + "end": 24165.6, + "probability": 0.8199 + }, + { + "start": 24166.04, + "end": 24167.44, + "probability": 0.7827 + }, + { + "start": 24167.6, + "end": 24174.14, + "probability": 0.9577 + }, + { + "start": 24174.6, + "end": 24175.46, + "probability": 0.7397 + }, + { + "start": 24175.54, + "end": 24176.4, + "probability": 0.8028 + }, + { + "start": 24176.6, + "end": 24179.36, + "probability": 0.9897 + }, + { + "start": 24179.62, + "end": 24180.5, + "probability": 0.5332 + }, + { + "start": 24181.58, + "end": 24185.88, + "probability": 0.9871 + }, + { + "start": 24186.76, + "end": 24188.45, + "probability": 0.7434 + }, + { + "start": 24189.0, + "end": 24189.58, + "probability": 0.9325 + }, + { + "start": 24189.58, + "end": 24193.5, + "probability": 0.9863 + }, + { + "start": 24194.2, + "end": 24199.74, + "probability": 0.9838 + }, + { + "start": 24201.32, + "end": 24204.42, + "probability": 0.9873 + }, + { + "start": 24204.42, + "end": 24207.54, + "probability": 0.9921 + }, + { + "start": 24208.76, + "end": 24212.8, + "probability": 0.9808 + }, + { + "start": 24213.22, + "end": 24216.94, + "probability": 0.999 + }, + { + "start": 24216.94, + "end": 24220.58, + "probability": 0.9972 + }, + { + "start": 24220.7, + "end": 24226.24, + "probability": 0.9539 + }, + { + "start": 24226.44, + "end": 24230.64, + "probability": 0.993 + }, + { + "start": 24230.64, + "end": 24235.06, + "probability": 0.9849 + }, + { + "start": 24235.5, + "end": 24238.98, + "probability": 0.992 + }, + { + "start": 24239.18, + "end": 24241.64, + "probability": 0.8551 + }, + { + "start": 24241.72, + "end": 24242.98, + "probability": 0.7648 + }, + { + "start": 24243.32, + "end": 24244.44, + "probability": 0.9579 + }, + { + "start": 24244.52, + "end": 24245.16, + "probability": 0.9902 + }, + { + "start": 24245.26, + "end": 24250.32, + "probability": 0.9929 + }, + { + "start": 24251.3, + "end": 24254.46, + "probability": 0.9996 + }, + { + "start": 24254.46, + "end": 24257.3, + "probability": 0.9958 + }, + { + "start": 24257.92, + "end": 24260.98, + "probability": 0.9982 + }, + { + "start": 24260.98, + "end": 24265.78, + "probability": 0.9963 + }, + { + "start": 24266.36, + "end": 24269.5, + "probability": 0.9879 + }, + { + "start": 24269.5, + "end": 24272.72, + "probability": 0.9531 + }, + { + "start": 24273.24, + "end": 24275.7, + "probability": 0.9491 + }, + { + "start": 24276.36, + "end": 24277.94, + "probability": 0.8214 + }, + { + "start": 24278.24, + "end": 24279.98, + "probability": 0.8615 + }, + { + "start": 24280.48, + "end": 24285.84, + "probability": 0.9946 + }, + { + "start": 24285.98, + "end": 24288.78, + "probability": 0.8789 + }, + { + "start": 24289.88, + "end": 24290.98, + "probability": 0.8861 + }, + { + "start": 24291.0, + "end": 24292.28, + "probability": 0.242 + }, + { + "start": 24292.66, + "end": 24295.36, + "probability": 0.7315 + }, + { + "start": 24295.56, + "end": 24297.44, + "probability": 0.903 + }, + { + "start": 24297.8, + "end": 24302.1, + "probability": 0.709 + }, + { + "start": 24302.32, + "end": 24303.62, + "probability": 0.5892 + }, + { + "start": 24303.78, + "end": 24304.18, + "probability": 0.2988 + }, + { + "start": 24304.7, + "end": 24305.54, + "probability": 0.4203 + }, + { + "start": 24306.5, + "end": 24307.8, + "probability": 0.7996 + }, + { + "start": 24307.84, + "end": 24308.34, + "probability": 0.8987 + }, + { + "start": 24308.4, + "end": 24309.38, + "probability": 0.9616 + }, + { + "start": 24309.58, + "end": 24311.58, + "probability": 0.7886 + }, + { + "start": 24311.68, + "end": 24315.18, + "probability": 0.9033 + }, + { + "start": 24315.3, + "end": 24316.12, + "probability": 0.0738 + }, + { + "start": 24316.36, + "end": 24318.42, + "probability": 0.9507 + }, + { + "start": 24318.52, + "end": 24319.74, + "probability": 0.6969 + }, + { + "start": 24319.77, + "end": 24324.58, + "probability": 0.9855 + }, + { + "start": 24325.28, + "end": 24325.86, + "probability": 0.8832 + }, + { + "start": 24326.78, + "end": 24327.8, + "probability": 0.5651 + }, + { + "start": 24328.24, + "end": 24330.66, + "probability": 0.8016 + }, + { + "start": 24331.2, + "end": 24336.1, + "probability": 0.972 + }, + { + "start": 24336.44, + "end": 24338.65, + "probability": 0.8844 + }, + { + "start": 24338.9, + "end": 24342.14, + "probability": 0.9878 + }, + { + "start": 24342.56, + "end": 24345.68, + "probability": 0.9924 + }, + { + "start": 24346.36, + "end": 24348.28, + "probability": 0.7335 + }, + { + "start": 24348.92, + "end": 24351.18, + "probability": 0.9321 + }, + { + "start": 24351.18, + "end": 24354.4, + "probability": 0.9956 + }, + { + "start": 24354.98, + "end": 24355.68, + "probability": 0.6292 + }, + { + "start": 24357.42, + "end": 24360.36, + "probability": 0.9564 + }, + { + "start": 24360.78, + "end": 24364.5, + "probability": 0.9843 + }, + { + "start": 24364.86, + "end": 24365.54, + "probability": 0.8889 + }, + { + "start": 24365.78, + "end": 24369.28, + "probability": 0.9766 + }, + { + "start": 24369.78, + "end": 24373.26, + "probability": 0.999 + }, + { + "start": 24373.7, + "end": 24376.32, + "probability": 0.8177 + }, + { + "start": 24376.4, + "end": 24379.22, + "probability": 0.8524 + }, + { + "start": 24379.72, + "end": 24380.3, + "probability": 0.8504 + }, + { + "start": 24380.38, + "end": 24380.9, + "probability": 0.7431 + }, + { + "start": 24381.16, + "end": 24387.6, + "probability": 0.9829 + }, + { + "start": 24387.96, + "end": 24391.7, + "probability": 0.9839 + }, + { + "start": 24392.14, + "end": 24397.48, + "probability": 0.9876 + }, + { + "start": 24397.58, + "end": 24400.78, + "probability": 0.9253 + }, + { + "start": 24401.4, + "end": 24403.74, + "probability": 0.9987 + }, + { + "start": 24404.24, + "end": 24408.52, + "probability": 0.998 + }, + { + "start": 24409.0, + "end": 24415.24, + "probability": 0.9917 + }, + { + "start": 24416.52, + "end": 24417.8, + "probability": 0.9936 + }, + { + "start": 24418.3, + "end": 24421.14, + "probability": 0.9983 + }, + { + "start": 24421.74, + "end": 24422.48, + "probability": 0.9483 + }, + { + "start": 24423.44, + "end": 24423.92, + "probability": 0.7277 + }, + { + "start": 24424.62, + "end": 24427.14, + "probability": 0.7891 + }, + { + "start": 24427.62, + "end": 24430.58, + "probability": 0.8945 + }, + { + "start": 24431.04, + "end": 24432.68, + "probability": 0.9577 + }, + { + "start": 24433.78, + "end": 24435.52, + "probability": 0.8082 + }, + { + "start": 24435.62, + "end": 24435.84, + "probability": 0.5106 + }, + { + "start": 24436.82, + "end": 24437.36, + "probability": 0.0032 + }, + { + "start": 24440.12, + "end": 24440.22, + "probability": 0.022 + }, + { + "start": 24440.22, + "end": 24442.9, + "probability": 0.4561 + }, + { + "start": 24443.5, + "end": 24447.36, + "probability": 0.9945 + }, + { + "start": 24447.76, + "end": 24449.16, + "probability": 0.9746 + }, + { + "start": 24449.84, + "end": 24455.9, + "probability": 0.9831 + }, + { + "start": 24456.58, + "end": 24459.16, + "probability": 0.9951 + }, + { + "start": 24459.82, + "end": 24460.71, + "probability": 0.6394 + }, + { + "start": 24462.62, + "end": 24463.22, + "probability": 0.6472 + }, + { + "start": 24463.32, + "end": 24464.9, + "probability": 0.9117 + }, + { + "start": 24465.06, + "end": 24468.04, + "probability": 0.9912 + }, + { + "start": 24468.38, + "end": 24469.7, + "probability": 0.7563 + }, + { + "start": 24470.18, + "end": 24473.85, + "probability": 0.9906 + }, + { + "start": 24474.34, + "end": 24477.7, + "probability": 0.9801 + }, + { + "start": 24477.74, + "end": 24480.52, + "probability": 0.8354 + }, + { + "start": 24480.82, + "end": 24483.62, + "probability": 0.9863 + }, + { + "start": 24484.12, + "end": 24487.1, + "probability": 0.9687 + }, + { + "start": 24487.16, + "end": 24488.84, + "probability": 0.3448 + }, + { + "start": 24488.86, + "end": 24488.9, + "probability": 0.4555 + }, + { + "start": 24488.9, + "end": 24490.02, + "probability": 0.8722 + }, + { + "start": 24490.1, + "end": 24492.98, + "probability": 0.9735 + }, + { + "start": 24493.12, + "end": 24493.92, + "probability": 0.7927 + }, + { + "start": 24494.28, + "end": 24496.8, + "probability": 0.9761 + }, + { + "start": 24497.0, + "end": 24497.78, + "probability": 0.8105 + }, + { + "start": 24498.18, + "end": 24498.72, + "probability": 0.5618 + }, + { + "start": 24499.28, + "end": 24499.76, + "probability": 0.2815 + }, + { + "start": 24500.06, + "end": 24500.8, + "probability": 0.7296 + }, + { + "start": 24500.88, + "end": 24501.34, + "probability": 0.6274 + }, + { + "start": 24501.48, + "end": 24503.66, + "probability": 0.8755 + }, + { + "start": 24504.22, + "end": 24506.8, + "probability": 0.9969 + }, + { + "start": 24507.04, + "end": 24508.7, + "probability": 0.8695 + }, + { + "start": 24508.82, + "end": 24509.62, + "probability": 0.7885 + }, + { + "start": 24509.64, + "end": 24512.06, + "probability": 0.8053 + }, + { + "start": 24512.52, + "end": 24516.42, + "probability": 0.9676 + }, + { + "start": 24516.42, + "end": 24516.42, + "probability": 0.426 + }, + { + "start": 24516.42, + "end": 24517.4, + "probability": 0.7448 + }, + { + "start": 24517.82, + "end": 24520.72, + "probability": 0.9949 + }, + { + "start": 24520.72, + "end": 24523.2, + "probability": 0.9691 + }, + { + "start": 24523.34, + "end": 24524.06, + "probability": 0.9128 + }, + { + "start": 24524.14, + "end": 24525.94, + "probability": 0.5678 + }, + { + "start": 24526.16, + "end": 24528.06, + "probability": 0.3587 + }, + { + "start": 24528.2, + "end": 24531.48, + "probability": 0.9404 + }, + { + "start": 24531.48, + "end": 24535.28, + "probability": 0.9932 + }, + { + "start": 24535.28, + "end": 24538.74, + "probability": 0.9481 + }, + { + "start": 24538.9, + "end": 24540.02, + "probability": 0.8682 + }, + { + "start": 24540.2, + "end": 24541.02, + "probability": 0.603 + }, + { + "start": 24541.74, + "end": 24543.0, + "probability": 0.9951 + }, + { + "start": 24543.62, + "end": 24544.2, + "probability": 0.5534 + }, + { + "start": 24544.34, + "end": 24545.2, + "probability": 0.8979 + }, + { + "start": 24545.28, + "end": 24550.06, + "probability": 0.9103 + }, + { + "start": 24550.52, + "end": 24553.02, + "probability": 0.9943 + }, + { + "start": 24553.64, + "end": 24555.26, + "probability": 0.7757 + }, + { + "start": 24555.82, + "end": 24560.44, + "probability": 0.9934 + }, + { + "start": 24560.96, + "end": 24562.44, + "probability": 0.9314 + }, + { + "start": 24562.94, + "end": 24563.88, + "probability": 0.8339 + }, + { + "start": 24564.86, + "end": 24565.78, + "probability": 0.4787 + }, + { + "start": 24565.8, + "end": 24566.58, + "probability": 0.9052 + }, + { + "start": 24566.6, + "end": 24567.04, + "probability": 0.6845 + }, + { + "start": 24567.1, + "end": 24569.3, + "probability": 0.9924 + }, + { + "start": 24570.25, + "end": 24573.5, + "probability": 0.9225 + }, + { + "start": 24574.46, + "end": 24575.8, + "probability": 0.9828 + }, + { + "start": 24575.82, + "end": 24577.02, + "probability": 0.6628 + }, + { + "start": 24577.1, + "end": 24579.3, + "probability": 0.6654 + }, + { + "start": 24579.38, + "end": 24579.5, + "probability": 0.742 + }, + { + "start": 24579.52, + "end": 24580.14, + "probability": 0.942 + }, + { + "start": 24580.24, + "end": 24581.14, + "probability": 0.936 + }, + { + "start": 24581.3, + "end": 24581.44, + "probability": 0.7402 + }, + { + "start": 24581.58, + "end": 24582.46, + "probability": 0.9668 + }, + { + "start": 24584.4, + "end": 24588.86, + "probability": 0.7872 + }, + { + "start": 24589.04, + "end": 24589.44, + "probability": 0.7732 + }, + { + "start": 24590.1, + "end": 24590.38, + "probability": 0.7457 + }, + { + "start": 24591.1, + "end": 24594.74, + "probability": 0.9585 + }, + { + "start": 24595.14, + "end": 24599.42, + "probability": 0.9705 + }, + { + "start": 24599.76, + "end": 24605.92, + "probability": 0.9889 + }, + { + "start": 24606.44, + "end": 24608.7, + "probability": 0.9983 + }, + { + "start": 24609.54, + "end": 24612.18, + "probability": 0.9985 + }, + { + "start": 24612.74, + "end": 24613.2, + "probability": 0.9971 + }, + { + "start": 24613.4, + "end": 24614.24, + "probability": 0.9922 + }, + { + "start": 24614.32, + "end": 24617.6, + "probability": 0.9955 + }, + { + "start": 24617.92, + "end": 24619.92, + "probability": 0.9376 + }, + { + "start": 24620.48, + "end": 24621.78, + "probability": 0.9172 + }, + { + "start": 24622.36, + "end": 24624.42, + "probability": 0.4797 + }, + { + "start": 24625.58, + "end": 24626.38, + "probability": 0.932 + }, + { + "start": 24626.86, + "end": 24628.46, + "probability": 0.9398 + }, + { + "start": 24628.48, + "end": 24631.79, + "probability": 0.8724 + }, + { + "start": 24634.08, + "end": 24634.08, + "probability": 0.0444 + }, + { + "start": 24634.08, + "end": 24638.44, + "probability": 0.9524 + }, + { + "start": 24638.46, + "end": 24638.46, + "probability": 0.9532 + }, + { + "start": 24638.58, + "end": 24641.74, + "probability": 0.7712 + }, + { + "start": 24643.2, + "end": 24646.78, + "probability": 0.9843 + }, + { + "start": 24646.82, + "end": 24648.88, + "probability": 0.9878 + }, + { + "start": 24649.22, + "end": 24649.8, + "probability": 0.5613 + }, + { + "start": 24649.96, + "end": 24650.52, + "probability": 0.5107 + }, + { + "start": 24650.52, + "end": 24652.46, + "probability": 0.7431 + }, + { + "start": 24652.62, + "end": 24654.58, + "probability": 0.8953 + }, + { + "start": 24654.6, + "end": 24654.98, + "probability": 0.9597 + }, + { + "start": 24654.98, + "end": 24654.98, + "probability": 0.0199 + }, + { + "start": 24654.98, + "end": 24654.98, + "probability": 0.3131 + }, + { + "start": 24654.98, + "end": 24659.54, + "probability": 0.9772 + }, + { + "start": 24659.6, + "end": 24663.36, + "probability": 0.7321 + }, + { + "start": 24663.36, + "end": 24665.94, + "probability": 0.9165 + }, + { + "start": 24666.0, + "end": 24666.14, + "probability": 0.5885 + }, + { + "start": 24666.38, + "end": 24670.7, + "probability": 0.9212 + }, + { + "start": 24670.78, + "end": 24672.92, + "probability": 0.5574 + }, + { + "start": 24673.02, + "end": 24676.1, + "probability": 0.4667 + }, + { + "start": 24676.18, + "end": 24678.82, + "probability": 0.909 + }, + { + "start": 24678.82, + "end": 24678.88, + "probability": 0.2214 + }, + { + "start": 24678.88, + "end": 24679.04, + "probability": 0.3595 + }, + { + "start": 24679.22, + "end": 24679.3, + "probability": 0.1148 + }, + { + "start": 24679.3, + "end": 24680.44, + "probability": 0.5217 + }, + { + "start": 24680.62, + "end": 24684.14, + "probability": 0.9463 + }, + { + "start": 24684.22, + "end": 24685.6, + "probability": 0.8889 + }, + { + "start": 24685.82, + "end": 24689.12, + "probability": 0.9282 + }, + { + "start": 24689.7, + "end": 24690.86, + "probability": 0.9932 + }, + { + "start": 24691.36, + "end": 24694.6, + "probability": 0.7006 + }, + { + "start": 24694.8, + "end": 24697.04, + "probability": 0.8893 + }, + { + "start": 24697.14, + "end": 24699.3, + "probability": 0.9644 + }, + { + "start": 24699.66, + "end": 24701.98, + "probability": 0.4023 + }, + { + "start": 24701.98, + "end": 24702.08, + "probability": 0.7067 + }, + { + "start": 24702.08, + "end": 24705.38, + "probability": 0.9113 + }, + { + "start": 24705.44, + "end": 24706.96, + "probability": 0.9817 + }, + { + "start": 24706.98, + "end": 24709.49, + "probability": 0.7224 + }, + { + "start": 24711.14, + "end": 24711.14, + "probability": 0.0594 + }, + { + "start": 24711.2, + "end": 24713.34, + "probability": 0.9673 + }, + { + "start": 24713.34, + "end": 24713.34, + "probability": 0.6588 + }, + { + "start": 24713.34, + "end": 24713.44, + "probability": 0.11 + }, + { + "start": 24713.68, + "end": 24713.68, + "probability": 0.8451 + }, + { + "start": 24713.68, + "end": 24714.68, + "probability": 0.7555 + }, + { + "start": 24714.72, + "end": 24716.54, + "probability": 0.7533 + }, + { + "start": 24716.9, + "end": 24717.48, + "probability": 0.6101 + }, + { + "start": 24718.1, + "end": 24720.03, + "probability": 0.9382 + }, + { + "start": 24721.36, + "end": 24722.86, + "probability": 0.9558 + }, + { + "start": 24723.28, + "end": 24727.72, + "probability": 0.7705 + }, + { + "start": 24727.82, + "end": 24728.31, + "probability": 0.9624 + }, + { + "start": 24729.44, + "end": 24730.36, + "probability": 0.8619 + }, + { + "start": 24730.42, + "end": 24732.48, + "probability": 0.9811 + }, + { + "start": 24732.56, + "end": 24733.24, + "probability": 0.8592 + }, + { + "start": 24733.48, + "end": 24734.68, + "probability": 0.7767 + }, + { + "start": 24735.48, + "end": 24735.82, + "probability": 0.7141 + }, + { + "start": 24735.86, + "end": 24736.58, + "probability": 0.8005 + }, + { + "start": 24736.92, + "end": 24738.4, + "probability": 0.8862 + }, + { + "start": 24741.04, + "end": 24743.44, + "probability": 0.8596 + }, + { + "start": 24757.62, + "end": 24760.84, + "probability": 0.738 + }, + { + "start": 24762.24, + "end": 24766.12, + "probability": 0.9188 + }, + { + "start": 24766.12, + "end": 24770.12, + "probability": 0.9731 + }, + { + "start": 24771.48, + "end": 24778.28, + "probability": 0.932 + }, + { + "start": 24778.42, + "end": 24779.38, + "probability": 0.5398 + }, + { + "start": 24779.84, + "end": 24781.42, + "probability": 0.9392 + }, + { + "start": 24782.14, + "end": 24782.58, + "probability": 0.7162 + }, + { + "start": 24783.5, + "end": 24783.92, + "probability": 0.8111 + }, + { + "start": 24784.04, + "end": 24785.42, + "probability": 0.9976 + }, + { + "start": 24786.26, + "end": 24786.98, + "probability": 0.6651 + }, + { + "start": 24787.1, + "end": 24790.96, + "probability": 0.8204 + }, + { + "start": 24791.3, + "end": 24792.3, + "probability": 0.8805 + }, + { + "start": 24792.44, + "end": 24792.96, + "probability": 0.4391 + }, + { + "start": 24793.04, + "end": 24798.62, + "probability": 0.9535 + }, + { + "start": 24799.7, + "end": 24800.42, + "probability": 0.9269 + }, + { + "start": 24801.14, + "end": 24805.32, + "probability": 0.8578 + }, + { + "start": 24805.42, + "end": 24810.88, + "probability": 0.9285 + }, + { + "start": 24811.44, + "end": 24813.92, + "probability": 0.8115 + }, + { + "start": 24814.54, + "end": 24819.8, + "probability": 0.8187 + }, + { + "start": 24820.46, + "end": 24820.9, + "probability": 0.0 + }, + { + "start": 24821.68, + "end": 24823.91, + "probability": 0.7655 + }, + { + "start": 24824.7, + "end": 24826.3, + "probability": 0.7891 + }, + { + "start": 24826.36, + "end": 24831.1, + "probability": 0.9163 + }, + { + "start": 24832.7, + "end": 24834.12, + "probability": 0.6834 + }, + { + "start": 24834.8, + "end": 24837.78, + "probability": 0.8507 + }, + { + "start": 24838.1, + "end": 24841.7, + "probability": 0.9931 + }, + { + "start": 24842.66, + "end": 24845.3, + "probability": 0.8656 + }, + { + "start": 24846.9, + "end": 24852.5, + "probability": 0.8964 + }, + { + "start": 24853.2, + "end": 24854.06, + "probability": 0.711 + }, + { + "start": 24855.12, + "end": 24856.21, + "probability": 0.8608 + }, + { + "start": 24857.56, + "end": 24858.2, + "probability": 0.5253 + }, + { + "start": 24858.24, + "end": 24861.9, + "probability": 0.9966 + }, + { + "start": 24862.08, + "end": 24863.84, + "probability": 0.9805 + }, + { + "start": 24864.42, + "end": 24868.86, + "probability": 0.9279 + }, + { + "start": 24869.34, + "end": 24874.53, + "probability": 0.9817 + }, + { + "start": 24874.62, + "end": 24875.46, + "probability": 0.5772 + }, + { + "start": 24875.56, + "end": 24879.18, + "probability": 0.984 + }, + { + "start": 24880.0, + "end": 24886.36, + "probability": 0.978 + }, + { + "start": 24887.1, + "end": 24888.02, + "probability": 0.7977 + }, + { + "start": 24888.28, + "end": 24890.59, + "probability": 0.8602 + }, + { + "start": 24891.16, + "end": 24896.0, + "probability": 0.8556 + }, + { + "start": 24896.26, + "end": 24898.78, + "probability": 0.3911 + }, + { + "start": 24899.22, + "end": 24899.72, + "probability": 0.9764 + }, + { + "start": 24900.56, + "end": 24901.28, + "probability": 0.8235 + }, + { + "start": 24903.04, + "end": 24904.4, + "probability": 0.853 + }, + { + "start": 24906.04, + "end": 24909.96, + "probability": 0.9835 + }, + { + "start": 24910.9, + "end": 24916.86, + "probability": 0.9351 + }, + { + "start": 24917.08, + "end": 24918.74, + "probability": 0.8357 + }, + { + "start": 24919.4, + "end": 24920.88, + "probability": 0.9135 + }, + { + "start": 24921.42, + "end": 24926.22, + "probability": 0.9285 + }, + { + "start": 24927.02, + "end": 24928.93, + "probability": 0.1704 + }, + { + "start": 24931.06, + "end": 24933.24, + "probability": 0.3459 + }, + { + "start": 24933.24, + "end": 24933.24, + "probability": 0.0152 + }, + { + "start": 24933.24, + "end": 24933.24, + "probability": 0.1049 + }, + { + "start": 24933.24, + "end": 24934.22, + "probability": 0.2742 + }, + { + "start": 24935.0, + "end": 24935.84, + "probability": 0.4572 + }, + { + "start": 24935.96, + "end": 24936.56, + "probability": 0.5887 + }, + { + "start": 24936.68, + "end": 24937.1, + "probability": 0.5477 + }, + { + "start": 24937.16, + "end": 24938.18, + "probability": 0.613 + }, + { + "start": 24940.0, + "end": 24942.94, + "probability": 0.9766 + }, + { + "start": 24943.86, + "end": 24947.8, + "probability": 0.9663 + }, + { + "start": 24948.46, + "end": 24951.94, + "probability": 0.8951 + }, + { + "start": 24952.7, + "end": 24953.18, + "probability": 0.8001 + }, + { + "start": 24953.86, + "end": 24954.41, + "probability": 0.8668 + }, + { + "start": 24956.08, + "end": 24958.94, + "probability": 0.8464 + }, + { + "start": 24960.22, + "end": 24961.96, + "probability": 0.9944 + }, + { + "start": 24964.14, + "end": 24965.12, + "probability": 0.9909 + }, + { + "start": 24965.74, + "end": 24967.86, + "probability": 0.9391 + }, + { + "start": 24968.6, + "end": 24968.9, + "probability": 0.0954 + }, + { + "start": 24968.9, + "end": 24971.64, + "probability": 0.9727 + }, + { + "start": 24971.76, + "end": 24972.2, + "probability": 0.9107 + }, + { + "start": 24972.38, + "end": 24973.04, + "probability": 0.8045 + }, + { + "start": 24973.78, + "end": 24975.04, + "probability": 0.9246 + }, + { + "start": 24975.62, + "end": 24978.28, + "probability": 0.8496 + }, + { + "start": 24978.88, + "end": 24979.68, + "probability": 0.5988 + }, + { + "start": 24980.26, + "end": 24982.05, + "probability": 0.5231 + }, + { + "start": 24982.86, + "end": 24984.3, + "probability": 0.7559 + }, + { + "start": 24984.78, + "end": 24992.3, + "probability": 0.8978 + }, + { + "start": 24992.34, + "end": 24995.44, + "probability": 0.986 + }, + { + "start": 24996.04, + "end": 24997.1, + "probability": 0.8917 + }, + { + "start": 24997.72, + "end": 24998.24, + "probability": 0.9661 + }, + { + "start": 24999.84, + "end": 25002.5, + "probability": 0.3802 + }, + { + "start": 25002.5, + "end": 25003.32, + "probability": 0.6703 + }, + { + "start": 25003.9, + "end": 25008.8, + "probability": 0.9766 + }, + { + "start": 25009.58, + "end": 25012.42, + "probability": 0.9941 + }, + { + "start": 25012.92, + "end": 25014.26, + "probability": 0.8735 + }, + { + "start": 25014.62, + "end": 25016.58, + "probability": 0.8026 + }, + { + "start": 25016.74, + "end": 25017.88, + "probability": 0.348 + }, + { + "start": 25018.56, + "end": 25021.82, + "probability": 0.8321 + }, + { + "start": 25022.58, + "end": 25024.28, + "probability": 0.8622 + }, + { + "start": 25025.36, + "end": 25029.88, + "probability": 0.964 + }, + { + "start": 25030.12, + "end": 25030.36, + "probability": 0.8611 + }, + { + "start": 25031.58, + "end": 25031.86, + "probability": 0.3354 + }, + { + "start": 25031.88, + "end": 25033.78, + "probability": 0.6412 + }, + { + "start": 25058.18, + "end": 25059.74, + "probability": 0.6512 + }, + { + "start": 25075.58, + "end": 25083.44, + "probability": 0.998 + }, + { + "start": 25084.9, + "end": 25091.16, + "probability": 0.9856 + }, + { + "start": 25092.48, + "end": 25092.7, + "probability": 0.8225 + }, + { + "start": 25092.76, + "end": 25093.24, + "probability": 0.5795 + }, + { + "start": 25093.36, + "end": 25101.5, + "probability": 0.9946 + }, + { + "start": 25102.38, + "end": 25104.18, + "probability": 0.8105 + }, + { + "start": 25104.88, + "end": 25109.44, + "probability": 0.9824 + }, + { + "start": 25109.44, + "end": 25113.96, + "probability": 0.9893 + }, + { + "start": 25114.14, + "end": 25117.96, + "probability": 0.9858 + }, + { + "start": 25118.14, + "end": 25121.02, + "probability": 0.9989 + }, + { + "start": 25121.14, + "end": 25127.02, + "probability": 0.9683 + }, + { + "start": 25127.18, + "end": 25129.88, + "probability": 0.9858 + }, + { + "start": 25131.88, + "end": 25136.46, + "probability": 0.9966 + }, + { + "start": 25137.42, + "end": 25140.64, + "probability": 0.9432 + }, + { + "start": 25142.28, + "end": 25143.12, + "probability": 0.8338 + }, + { + "start": 25143.96, + "end": 25147.0, + "probability": 0.8802 + }, + { + "start": 25147.0, + "end": 25148.92, + "probability": 0.9984 + }, + { + "start": 25149.2, + "end": 25152.24, + "probability": 0.9919 + }, + { + "start": 25152.39, + "end": 25156.48, + "probability": 0.9341 + }, + { + "start": 25156.64, + "end": 25160.16, + "probability": 0.9907 + }, + { + "start": 25160.7, + "end": 25161.22, + "probability": 0.5663 + }, + { + "start": 25162.6, + "end": 25163.32, + "probability": 0.7275 + }, + { + "start": 25163.56, + "end": 25164.18, + "probability": 0.7802 + }, + { + "start": 25164.3, + "end": 25168.46, + "probability": 0.992 + }, + { + "start": 25171.16, + "end": 25176.0, + "probability": 0.9946 + }, + { + "start": 25177.72, + "end": 25179.89, + "probability": 0.9844 + }, + { + "start": 25184.96, + "end": 25188.3, + "probability": 0.983 + }, + { + "start": 25188.52, + "end": 25190.82, + "probability": 0.6593 + }, + { + "start": 25190.88, + "end": 25193.64, + "probability": 0.9963 + }, + { + "start": 25194.58, + "end": 25198.64, + "probability": 0.96 + }, + { + "start": 25198.68, + "end": 25199.46, + "probability": 0.7563 + }, + { + "start": 25199.46, + "end": 25208.16, + "probability": 0.969 + }, + { + "start": 25209.3, + "end": 25210.96, + "probability": 0.9166 + }, + { + "start": 25211.96, + "end": 25218.54, + "probability": 0.9149 + }, + { + "start": 25218.92, + "end": 25220.36, + "probability": 0.829 + }, + { + "start": 25220.56, + "end": 25224.36, + "probability": 0.9911 + }, + { + "start": 25224.52, + "end": 25226.38, + "probability": 0.9612 + }, + { + "start": 25227.0, + "end": 25236.26, + "probability": 0.9808 + }, + { + "start": 25236.46, + "end": 25236.98, + "probability": 0.6861 + }, + { + "start": 25237.8, + "end": 25240.26, + "probability": 0.9944 + }, + { + "start": 25241.74, + "end": 25245.1, + "probability": 0.9743 + }, + { + "start": 25246.3, + "end": 25251.56, + "probability": 0.998 + }, + { + "start": 25251.84, + "end": 25252.48, + "probability": 0.5512 + }, + { + "start": 25252.6, + "end": 25253.3, + "probability": 0.7119 + }, + { + "start": 25253.64, + "end": 25257.82, + "probability": 0.9962 + }, + { + "start": 25259.18, + "end": 25262.24, + "probability": 0.9519 + }, + { + "start": 25262.7, + "end": 25264.16, + "probability": 0.9229 + }, + { + "start": 25264.6, + "end": 25269.1, + "probability": 0.9873 + }, + { + "start": 25269.24, + "end": 25271.16, + "probability": 0.9987 + }, + { + "start": 25271.48, + "end": 25274.56, + "probability": 0.9993 + }, + { + "start": 25275.18, + "end": 25277.9, + "probability": 0.9958 + }, + { + "start": 25278.76, + "end": 25280.86, + "probability": 0.9136 + }, + { + "start": 25281.84, + "end": 25287.86, + "probability": 0.9861 + }, + { + "start": 25287.86, + "end": 25294.24, + "probability": 0.9054 + }, + { + "start": 25295.8, + "end": 25300.22, + "probability": 0.9956 + }, + { + "start": 25300.78, + "end": 25302.86, + "probability": 0.9777 + }, + { + "start": 25304.28, + "end": 25309.82, + "probability": 0.99 + }, + { + "start": 25310.0, + "end": 25315.18, + "probability": 0.9951 + }, + { + "start": 25315.68, + "end": 25319.62, + "probability": 0.9937 + }, + { + "start": 25319.62, + "end": 25323.26, + "probability": 0.9995 + }, + { + "start": 25324.16, + "end": 25325.0, + "probability": 0.9297 + }, + { + "start": 25325.46, + "end": 25329.47, + "probability": 0.9817 + }, + { + "start": 25329.68, + "end": 25333.06, + "probability": 0.9682 + }, + { + "start": 25335.8, + "end": 25338.38, + "probability": 0.9849 + }, + { + "start": 25339.58, + "end": 25344.0, + "probability": 0.9972 + }, + { + "start": 25344.26, + "end": 25349.64, + "probability": 0.9984 + }, + { + "start": 25350.32, + "end": 25351.93, + "probability": 0.7969 + }, + { + "start": 25352.94, + "end": 25355.49, + "probability": 0.999 + }, + { + "start": 25356.28, + "end": 25359.78, + "probability": 0.9782 + }, + { + "start": 25360.22, + "end": 25362.6, + "probability": 0.9751 + }, + { + "start": 25362.82, + "end": 25364.36, + "probability": 0.999 + }, + { + "start": 25365.08, + "end": 25370.94, + "probability": 0.9976 + }, + { + "start": 25371.16, + "end": 25372.04, + "probability": 0.9076 + }, + { + "start": 25372.24, + "end": 25373.49, + "probability": 0.7891 + }, + { + "start": 25374.54, + "end": 25376.85, + "probability": 0.9878 + }, + { + "start": 25377.88, + "end": 25382.48, + "probability": 0.9868 + }, + { + "start": 25382.98, + "end": 25384.91, + "probability": 0.9943 + }, + { + "start": 25385.72, + "end": 25390.56, + "probability": 0.9946 + }, + { + "start": 25390.64, + "end": 25392.78, + "probability": 0.8319 + }, + { + "start": 25394.61, + "end": 25400.88, + "probability": 0.9917 + }, + { + "start": 25401.84, + "end": 25404.9, + "probability": 0.9973 + }, + { + "start": 25405.58, + "end": 25410.74, + "probability": 0.9956 + }, + { + "start": 25411.74, + "end": 25413.26, + "probability": 0.9064 + }, + { + "start": 25413.34, + "end": 25417.94, + "probability": 0.9674 + }, + { + "start": 25418.04, + "end": 25419.42, + "probability": 0.95 + }, + { + "start": 25419.6, + "end": 25427.0, + "probability": 0.9922 + }, + { + "start": 25427.06, + "end": 25429.16, + "probability": 0.9619 + }, + { + "start": 25429.2, + "end": 25430.38, + "probability": 0.9335 + }, + { + "start": 25430.6, + "end": 25431.82, + "probability": 0.9775 + }, + { + "start": 25432.18, + "end": 25433.78, + "probability": 0.9299 + }, + { + "start": 25434.02, + "end": 25436.86, + "probability": 0.9807 + }, + { + "start": 25437.68, + "end": 25440.28, + "probability": 0.9579 + }, + { + "start": 25440.52, + "end": 25441.56, + "probability": 0.9865 + }, + { + "start": 25441.72, + "end": 25444.9, + "probability": 0.9428 + }, + { + "start": 25445.46, + "end": 25447.84, + "probability": 0.9931 + }, + { + "start": 25447.84, + "end": 25452.4, + "probability": 0.9945 + }, + { + "start": 25454.36, + "end": 25459.9, + "probability": 0.9894 + }, + { + "start": 25460.54, + "end": 25465.86, + "probability": 0.9931 + }, + { + "start": 25466.46, + "end": 25468.04, + "probability": 0.9993 + }, + { + "start": 25468.78, + "end": 25473.9, + "probability": 0.9778 + }, + { + "start": 25474.06, + "end": 25476.84, + "probability": 0.9949 + }, + { + "start": 25478.86, + "end": 25484.18, + "probability": 0.9631 + }, + { + "start": 25484.18, + "end": 25489.38, + "probability": 0.9952 + }, + { + "start": 25490.38, + "end": 25497.44, + "probability": 0.9864 + }, + { + "start": 25498.04, + "end": 25502.08, + "probability": 0.9987 + }, + { + "start": 25502.08, + "end": 25506.8, + "probability": 0.9946 + }, + { + "start": 25507.42, + "end": 25513.92, + "probability": 0.9984 + }, + { + "start": 25517.74, + "end": 25522.32, + "probability": 0.9246 + }, + { + "start": 25524.74, + "end": 25527.18, + "probability": 0.9987 + }, + { + "start": 25527.18, + "end": 25530.6, + "probability": 0.9969 + }, + { + "start": 25530.86, + "end": 25535.34, + "probability": 0.9818 + }, + { + "start": 25537.28, + "end": 25542.96, + "probability": 0.9873 + }, + { + "start": 25543.22, + "end": 25545.84, + "probability": 0.7784 + }, + { + "start": 25546.86, + "end": 25551.42, + "probability": 0.9957 + }, + { + "start": 25552.32, + "end": 25557.88, + "probability": 0.9856 + }, + { + "start": 25558.32, + "end": 25566.12, + "probability": 0.9529 + }, + { + "start": 25566.86, + "end": 25567.62, + "probability": 0.7725 + }, + { + "start": 25568.18, + "end": 25571.28, + "probability": 0.9958 + }, + { + "start": 25574.64, + "end": 25576.04, + "probability": 0.7712 + }, + { + "start": 25576.22, + "end": 25579.16, + "probability": 0.856 + }, + { + "start": 25579.24, + "end": 25583.12, + "probability": 0.9865 + }, + { + "start": 25584.5, + "end": 25587.12, + "probability": 0.9911 + }, + { + "start": 25587.12, + "end": 25592.08, + "probability": 0.9949 + }, + { + "start": 25593.34, + "end": 25594.58, + "probability": 0.9901 + }, + { + "start": 25594.7, + "end": 25599.06, + "probability": 0.9922 + }, + { + "start": 25599.8, + "end": 25603.58, + "probability": 0.9988 + }, + { + "start": 25603.58, + "end": 25608.14, + "probability": 0.9902 + }, + { + "start": 25609.18, + "end": 25611.08, + "probability": 0.9985 + }, + { + "start": 25611.68, + "end": 25616.48, + "probability": 0.9958 + }, + { + "start": 25616.62, + "end": 25623.06, + "probability": 0.9928 + }, + { + "start": 25623.06, + "end": 25629.46, + "probability": 0.8933 + }, + { + "start": 25630.88, + "end": 25633.76, + "probability": 0.8522 + }, + { + "start": 25633.9, + "end": 25634.98, + "probability": 0.9351 + }, + { + "start": 25636.68, + "end": 25637.3, + "probability": 0.6611 + }, + { + "start": 25637.56, + "end": 25638.36, + "probability": 0.8849 + }, + { + "start": 25638.38, + "end": 25640.48, + "probability": 0.9976 + }, + { + "start": 25641.06, + "end": 25644.76, + "probability": 0.9439 + }, + { + "start": 25644.76, + "end": 25652.52, + "probability": 0.9985 + }, + { + "start": 25653.62, + "end": 25658.2, + "probability": 0.9915 + }, + { + "start": 25658.76, + "end": 25664.86, + "probability": 0.9906 + }, + { + "start": 25665.14, + "end": 25668.42, + "probability": 0.9875 + }, + { + "start": 25668.86, + "end": 25671.56, + "probability": 0.6727 + }, + { + "start": 25673.22, + "end": 25677.92, + "probability": 0.9067 + }, + { + "start": 25677.92, + "end": 25681.56, + "probability": 0.9908 + }, + { + "start": 25682.02, + "end": 25683.18, + "probability": 0.9302 + }, + { + "start": 25683.3, + "end": 25685.54, + "probability": 0.9787 + }, + { + "start": 25685.96, + "end": 25687.38, + "probability": 0.9168 + }, + { + "start": 25688.58, + "end": 25692.78, + "probability": 0.9854 + }, + { + "start": 25692.94, + "end": 25695.82, + "probability": 0.9989 + }, + { + "start": 25696.34, + "end": 25700.16, + "probability": 0.9928 + }, + { + "start": 25700.94, + "end": 25702.88, + "probability": 0.8199 + }, + { + "start": 25703.24, + "end": 25707.3, + "probability": 0.9969 + }, + { + "start": 25708.72, + "end": 25712.1, + "probability": 0.993 + }, + { + "start": 25712.2, + "end": 25716.38, + "probability": 0.932 + }, + { + "start": 25716.9, + "end": 25718.96, + "probability": 0.9755 + }, + { + "start": 25720.86, + "end": 25724.78, + "probability": 0.9883 + }, + { + "start": 25725.26, + "end": 25726.1, + "probability": 0.7289 + }, + { + "start": 25726.1, + "end": 25732.42, + "probability": 0.9952 + }, + { + "start": 25732.78, + "end": 25737.0, + "probability": 0.8466 + }, + { + "start": 25737.28, + "end": 25738.78, + "probability": 0.8415 + }, + { + "start": 25738.88, + "end": 25740.83, + "probability": 0.9766 + }, + { + "start": 25741.2, + "end": 25743.04, + "probability": 0.8874 + }, + { + "start": 25743.6, + "end": 25744.9, + "probability": 0.9302 + }, + { + "start": 25745.32, + "end": 25749.3, + "probability": 0.9668 + }, + { + "start": 25750.02, + "end": 25755.86, + "probability": 0.9972 + }, + { + "start": 25756.34, + "end": 25758.18, + "probability": 0.8813 + }, + { + "start": 25758.68, + "end": 25762.6, + "probability": 0.9976 + }, + { + "start": 25763.36, + "end": 25771.24, + "probability": 0.9961 + }, + { + "start": 25772.67, + "end": 25778.74, + "probability": 0.9971 + }, + { + "start": 25780.32, + "end": 25786.38, + "probability": 0.9886 + }, + { + "start": 25786.9, + "end": 25789.98, + "probability": 0.9968 + }, + { + "start": 25790.2, + "end": 25793.18, + "probability": 0.9979 + }, + { + "start": 25793.68, + "end": 25800.24, + "probability": 0.8812 + }, + { + "start": 25800.24, + "end": 25802.56, + "probability": 0.9995 + }, + { + "start": 25804.16, + "end": 25809.98, + "probability": 0.9991 + }, + { + "start": 25813.0, + "end": 25815.92, + "probability": 0.9952 + }, + { + "start": 25816.12, + "end": 25819.3, + "probability": 0.9945 + }, + { + "start": 25820.4, + "end": 25825.7, + "probability": 0.9957 + }, + { + "start": 25826.3, + "end": 25829.28, + "probability": 0.9801 + }, + { + "start": 25830.3, + "end": 25834.7, + "probability": 0.9921 + }, + { + "start": 25834.78, + "end": 25840.46, + "probability": 0.8963 + }, + { + "start": 25841.64, + "end": 25845.04, + "probability": 0.9719 + }, + { + "start": 25845.12, + "end": 25846.86, + "probability": 0.9597 + }, + { + "start": 25846.86, + "end": 25846.92, + "probability": 0.1098 + }, + { + "start": 25846.92, + "end": 25849.58, + "probability": 0.6964 + }, + { + "start": 25851.5, + "end": 25855.6, + "probability": 0.9897 + }, + { + "start": 25856.12, + "end": 25857.54, + "probability": 0.9914 + }, + { + "start": 25858.14, + "end": 25860.94, + "probability": 0.9128 + }, + { + "start": 25861.4, + "end": 25864.28, + "probability": 0.9692 + }, + { + "start": 25865.18, + "end": 25867.3, + "probability": 0.8516 + }, + { + "start": 25868.43, + "end": 25871.1, + "probability": 0.9192 + }, + { + "start": 25872.9, + "end": 25873.12, + "probability": 0.0609 + }, + { + "start": 25873.22, + "end": 25877.54, + "probability": 0.9212 + }, + { + "start": 25877.7, + "end": 25878.72, + "probability": 0.1449 + }, + { + "start": 25878.9, + "end": 25879.9, + "probability": 0.9058 + }, + { + "start": 25880.0, + "end": 25882.62, + "probability": 0.9224 + }, + { + "start": 25889.14, + "end": 25891.56, + "probability": 0.8232 + }, + { + "start": 25891.68, + "end": 25893.06, + "probability": 0.4544 + }, + { + "start": 25893.16, + "end": 25894.9, + "probability": 0.7977 + }, + { + "start": 25895.2, + "end": 25900.54, + "probability": 0.9672 + }, + { + "start": 25900.54, + "end": 25904.78, + "probability": 0.9201 + }, + { + "start": 25905.9, + "end": 25906.62, + "probability": 0.9051 + }, + { + "start": 25906.74, + "end": 25912.22, + "probability": 0.9966 + }, + { + "start": 25912.22, + "end": 25919.26, + "probability": 0.9962 + }, + { + "start": 25920.04, + "end": 25922.78, + "probability": 0.9663 + }, + { + "start": 25923.92, + "end": 25924.2, + "probability": 0.8782 + }, + { + "start": 25924.36, + "end": 25932.24, + "probability": 0.9932 + }, + { + "start": 25932.24, + "end": 25939.86, + "probability": 0.9951 + }, + { + "start": 25940.68, + "end": 25942.54, + "probability": 0.9902 + }, + { + "start": 25943.04, + "end": 25943.78, + "probability": 0.8063 + }, + { + "start": 25944.28, + "end": 25947.74, + "probability": 0.9876 + }, + { + "start": 25948.4, + "end": 25952.62, + "probability": 0.9844 + }, + { + "start": 25953.62, + "end": 25958.44, + "probability": 0.9988 + }, + { + "start": 25959.94, + "end": 25963.72, + "probability": 0.9591 + }, + { + "start": 25963.72, + "end": 25967.72, + "probability": 0.9925 + }, + { + "start": 25967.8, + "end": 25968.64, + "probability": 0.589 + }, + { + "start": 25968.64, + "end": 25971.9, + "probability": 0.9984 + }, + { + "start": 25972.7, + "end": 25974.8, + "probability": 0.9872 + }, + { + "start": 25975.78, + "end": 25976.88, + "probability": 0.7372 + }, + { + "start": 25977.24, + "end": 25983.38, + "probability": 0.925 + }, + { + "start": 25983.98, + "end": 25985.74, + "probability": 0.9155 + }, + { + "start": 25986.36, + "end": 25988.68, + "probability": 0.9806 + }, + { + "start": 25989.96, + "end": 25991.12, + "probability": 0.8366 + }, + { + "start": 25991.66, + "end": 25994.02, + "probability": 0.7284 + }, + { + "start": 25994.68, + "end": 25997.6, + "probability": 0.9741 + }, + { + "start": 25998.24, + "end": 26001.6, + "probability": 0.7713 + }, + { + "start": 26001.74, + "end": 26003.34, + "probability": 0.9224 + }, + { + "start": 26003.76, + "end": 26006.66, + "probability": 0.9343 + }, + { + "start": 26007.04, + "end": 26008.38, + "probability": 0.7069 + }, + { + "start": 26009.02, + "end": 26013.56, + "probability": 0.9954 + }, + { + "start": 26014.08, + "end": 26016.56, + "probability": 0.9974 + }, + { + "start": 26017.16, + "end": 26023.0, + "probability": 0.9951 + }, + { + "start": 26023.66, + "end": 26026.94, + "probability": 0.9995 + }, + { + "start": 26026.94, + "end": 26030.58, + "probability": 0.8001 + }, + { + "start": 26031.46, + "end": 26036.6, + "probability": 0.994 + }, + { + "start": 26037.38, + "end": 26040.96, + "probability": 0.9734 + }, + { + "start": 26041.94, + "end": 26044.6, + "probability": 0.9786 + }, + { + "start": 26044.6, + "end": 26049.32, + "probability": 0.9682 + }, + { + "start": 26050.08, + "end": 26053.98, + "probability": 0.9865 + }, + { + "start": 26055.22, + "end": 26060.68, + "probability": 0.9575 + }, + { + "start": 26061.16, + "end": 26062.48, + "probability": 0.8828 + }, + { + "start": 26063.2, + "end": 26064.22, + "probability": 0.7207 + }, + { + "start": 26065.06, + "end": 26066.81, + "probability": 0.9886 + }, + { + "start": 26067.6, + "end": 26073.48, + "probability": 0.9594 + }, + { + "start": 26074.32, + "end": 26076.72, + "probability": 0.9812 + }, + { + "start": 26076.72, + "end": 26081.12, + "probability": 0.9536 + }, + { + "start": 26082.22, + "end": 26086.27, + "probability": 0.9875 + }, + { + "start": 26086.82, + "end": 26089.08, + "probability": 0.779 + }, + { + "start": 26090.0, + "end": 26095.86, + "probability": 0.9898 + }, + { + "start": 26095.86, + "end": 26101.9, + "probability": 0.9733 + }, + { + "start": 26103.2, + "end": 26105.26, + "probability": 0.9739 + }, + { + "start": 26105.92, + "end": 26109.24, + "probability": 0.9744 + }, + { + "start": 26110.16, + "end": 26113.08, + "probability": 0.9883 + }, + { + "start": 26113.6, + "end": 26115.72, + "probability": 0.9925 + }, + { + "start": 26116.18, + "end": 26122.36, + "probability": 0.9872 + }, + { + "start": 26123.22, + "end": 26124.98, + "probability": 0.9926 + }, + { + "start": 26125.14, + "end": 26125.82, + "probability": 0.9279 + }, + { + "start": 26126.0, + "end": 26129.18, + "probability": 0.9763 + }, + { + "start": 26130.04, + "end": 26134.04, + "probability": 0.9888 + }, + { + "start": 26134.52, + "end": 26139.2, + "probability": 0.9928 + }, + { + "start": 26140.34, + "end": 26145.28, + "probability": 0.9308 + }, + { + "start": 26145.8, + "end": 26151.46, + "probability": 0.9973 + }, + { + "start": 26151.46, + "end": 26158.7, + "probability": 0.9963 + }, + { + "start": 26159.36, + "end": 26160.6, + "probability": 0.7042 + }, + { + "start": 26161.16, + "end": 26162.26, + "probability": 0.6927 + }, + { + "start": 26163.62, + "end": 26166.58, + "probability": 0.9879 + }, + { + "start": 26167.74, + "end": 26174.56, + "probability": 0.9874 + }, + { + "start": 26176.28, + "end": 26183.02, + "probability": 0.9792 + }, + { + "start": 26183.64, + "end": 26186.02, + "probability": 0.8696 + }, + { + "start": 26186.02, + "end": 26193.32, + "probability": 0.9885 + }, + { + "start": 26196.96, + "end": 26197.14, + "probability": 0.2993 + }, + { + "start": 26197.36, + "end": 26200.5, + "probability": 0.999 + }, + { + "start": 26200.5, + "end": 26205.44, + "probability": 0.998 + }, + { + "start": 26205.86, + "end": 26207.2, + "probability": 0.9284 + }, + { + "start": 26208.56, + "end": 26214.22, + "probability": 0.9969 + }, + { + "start": 26214.22, + "end": 26220.42, + "probability": 0.9875 + }, + { + "start": 26221.16, + "end": 26222.56, + "probability": 0.6846 + }, + { + "start": 26223.64, + "end": 26228.78, + "probability": 0.9925 + }, + { + "start": 26228.78, + "end": 26235.46, + "probability": 0.9722 + }, + { + "start": 26236.2, + "end": 26239.52, + "probability": 0.9971 + }, + { + "start": 26240.1, + "end": 26241.46, + "probability": 0.8555 + }, + { + "start": 26242.04, + "end": 26243.78, + "probability": 0.9215 + }, + { + "start": 26244.66, + "end": 26248.48, + "probability": 0.8054 + }, + { + "start": 26249.28, + "end": 26250.98, + "probability": 0.718 + }, + { + "start": 26252.34, + "end": 26256.02, + "probability": 0.998 + }, + { + "start": 26256.02, + "end": 26259.5, + "probability": 0.9927 + }, + { + "start": 26260.28, + "end": 26262.96, + "probability": 0.9839 + }, + { + "start": 26263.88, + "end": 26265.68, + "probability": 0.9432 + }, + { + "start": 26266.26, + "end": 26270.52, + "probability": 0.9887 + }, + { + "start": 26271.96, + "end": 26274.72, + "probability": 0.9981 + }, + { + "start": 26275.7, + "end": 26276.0, + "probability": 0.7056 + }, + { + "start": 26276.18, + "end": 26281.3, + "probability": 0.9434 + }, + { + "start": 26282.72, + "end": 26285.04, + "probability": 0.7781 + }, + { + "start": 26286.58, + "end": 26290.48, + "probability": 0.9838 + }, + { + "start": 26291.1, + "end": 26295.72, + "probability": 0.9789 + }, + { + "start": 26296.94, + "end": 26301.08, + "probability": 0.9734 + }, + { + "start": 26301.08, + "end": 26304.96, + "probability": 0.9917 + }, + { + "start": 26306.22, + "end": 26312.12, + "probability": 0.9879 + }, + { + "start": 26312.12, + "end": 26316.66, + "probability": 0.9966 + }, + { + "start": 26317.86, + "end": 26321.28, + "probability": 0.9814 + }, + { + "start": 26321.46, + "end": 26322.72, + "probability": 0.8128 + }, + { + "start": 26322.78, + "end": 26323.94, + "probability": 0.9753 + }, + { + "start": 26324.98, + "end": 26325.74, + "probability": 0.9675 + }, + { + "start": 26325.74, + "end": 26328.88, + "probability": 0.9958 + }, + { + "start": 26328.88, + "end": 26333.7, + "probability": 0.9779 + }, + { + "start": 26335.28, + "end": 26337.36, + "probability": 0.9349 + }, + { + "start": 26337.4, + "end": 26338.78, + "probability": 0.8725 + }, + { + "start": 26338.88, + "end": 26348.22, + "probability": 0.9878 + }, + { + "start": 26348.82, + "end": 26349.82, + "probability": 0.9595 + }, + { + "start": 26350.5, + "end": 26352.52, + "probability": 0.7586 + }, + { + "start": 26354.16, + "end": 26358.78, + "probability": 0.9843 + }, + { + "start": 26359.72, + "end": 26364.36, + "probability": 0.8827 + }, + { + "start": 26364.7, + "end": 26366.7, + "probability": 0.9039 + }, + { + "start": 26367.7, + "end": 26368.82, + "probability": 0.3652 + }, + { + "start": 26369.4, + "end": 26370.46, + "probability": 0.7212 + }, + { + "start": 26371.38, + "end": 26375.26, + "probability": 0.9912 + }, + { + "start": 26375.64, + "end": 26376.12, + "probability": 0.3821 + }, + { + "start": 26376.26, + "end": 26376.58, + "probability": 0.8518 + }, + { + "start": 26376.68, + "end": 26380.52, + "probability": 0.9528 + }, + { + "start": 26381.64, + "end": 26384.0, + "probability": 0.8964 + }, + { + "start": 26384.4, + "end": 26386.12, + "probability": 0.8482 + }, + { + "start": 26386.86, + "end": 26389.54, + "probability": 0.7918 + }, + { + "start": 26390.46, + "end": 26394.04, + "probability": 0.9944 + }, + { + "start": 26394.34, + "end": 26394.52, + "probability": 0.4929 + }, + { + "start": 26394.7, + "end": 26396.08, + "probability": 0.8205 + }, + { + "start": 26396.54, + "end": 26397.2, + "probability": 0.6241 + }, + { + "start": 26397.36, + "end": 26397.9, + "probability": 0.8161 + }, + { + "start": 26398.32, + "end": 26402.6, + "probability": 0.7949 + }, + { + "start": 26403.66, + "end": 26408.46, + "probability": 0.888 + }, + { + "start": 26409.1, + "end": 26413.34, + "probability": 0.9627 + }, + { + "start": 26413.34, + "end": 26417.74, + "probability": 0.995 + }, + { + "start": 26419.04, + "end": 26421.94, + "probability": 0.996 + }, + { + "start": 26422.74, + "end": 26424.4, + "probability": 0.8642 + }, + { + "start": 26425.3, + "end": 26427.44, + "probability": 0.5818 + }, + { + "start": 26428.02, + "end": 26430.52, + "probability": 0.9022 + }, + { + "start": 26431.46, + "end": 26433.96, + "probability": 0.9727 + }, + { + "start": 26435.12, + "end": 26437.84, + "probability": 0.9758 + }, + { + "start": 26437.84, + "end": 26441.36, + "probability": 0.9716 + }, + { + "start": 26442.1, + "end": 26445.42, + "probability": 0.9874 + }, + { + "start": 26446.7, + "end": 26452.16, + "probability": 0.9961 + }, + { + "start": 26453.04, + "end": 26456.16, + "probability": 0.9796 + }, + { + "start": 26456.32, + "end": 26459.72, + "probability": 0.9878 + }, + { + "start": 26461.0, + "end": 26464.2, + "probability": 0.9854 + }, + { + "start": 26464.2, + "end": 26468.2, + "probability": 0.9882 + }, + { + "start": 26469.82, + "end": 26474.44, + "probability": 0.9039 + }, + { + "start": 26474.44, + "end": 26478.68, + "probability": 0.9363 + }, + { + "start": 26479.94, + "end": 26482.76, + "probability": 0.8724 + }, + { + "start": 26484.26, + "end": 26489.82, + "probability": 0.9946 + }, + { + "start": 26490.54, + "end": 26495.06, + "probability": 0.9939 + }, + { + "start": 26495.06, + "end": 26500.74, + "probability": 0.9876 + }, + { + "start": 26501.98, + "end": 26503.98, + "probability": 0.9454 + }, + { + "start": 26504.78, + "end": 26506.06, + "probability": 0.8383 + }, + { + "start": 26507.3, + "end": 26512.28, + "probability": 0.9799 + }, + { + "start": 26512.28, + "end": 26517.36, + "probability": 0.9979 + }, + { + "start": 26518.4, + "end": 26524.04, + "probability": 0.9902 + }, + { + "start": 26524.2, + "end": 26530.5, + "probability": 0.9539 + }, + { + "start": 26531.12, + "end": 26537.46, + "probability": 0.7768 + }, + { + "start": 26538.38, + "end": 26542.5, + "probability": 0.9907 + }, + { + "start": 26543.56, + "end": 26549.72, + "probability": 0.9694 + }, + { + "start": 26551.28, + "end": 26553.8, + "probability": 0.9747 + }, + { + "start": 26555.06, + "end": 26557.62, + "probability": 0.9966 + }, + { + "start": 26558.62, + "end": 26563.44, + "probability": 0.996 + }, + { + "start": 26563.9, + "end": 26569.6, + "probability": 0.9766 + }, + { + "start": 26571.06, + "end": 26575.82, + "probability": 0.9683 + }, + { + "start": 26576.32, + "end": 26579.22, + "probability": 0.9802 + }, + { + "start": 26579.86, + "end": 26584.02, + "probability": 0.9477 + }, + { + "start": 26585.0, + "end": 26589.32, + "probability": 0.9788 + }, + { + "start": 26589.32, + "end": 26594.86, + "probability": 0.9957 + }, + { + "start": 26595.54, + "end": 26600.86, + "probability": 0.9758 + }, + { + "start": 26601.28, + "end": 26606.82, + "probability": 0.994 + }, + { + "start": 26606.82, + "end": 26612.02, + "probability": 0.998 + }, + { + "start": 26612.66, + "end": 26617.76, + "probability": 0.988 + }, + { + "start": 26618.32, + "end": 26621.4, + "probability": 0.8638 + }, + { + "start": 26622.6, + "end": 26623.74, + "probability": 0.7371 + }, + { + "start": 26624.52, + "end": 26625.02, + "probability": 0.7906 + }, + { + "start": 26625.22, + "end": 26626.16, + "probability": 0.8992 + }, + { + "start": 26626.34, + "end": 26628.85, + "probability": 0.9826 + }, + { + "start": 26629.86, + "end": 26636.84, + "probability": 0.9919 + }, + { + "start": 26637.82, + "end": 26645.1, + "probability": 0.9946 + }, + { + "start": 26645.96, + "end": 26650.32, + "probability": 0.9778 + }, + { + "start": 26650.96, + "end": 26653.16, + "probability": 0.9868 + }, + { + "start": 26654.1, + "end": 26654.78, + "probability": 0.4745 + }, + { + "start": 26654.88, + "end": 26660.52, + "probability": 0.919 + }, + { + "start": 26661.12, + "end": 26662.38, + "probability": 0.9318 + }, + { + "start": 26663.86, + "end": 26665.86, + "probability": 0.9384 + }, + { + "start": 26666.12, + "end": 26667.12, + "probability": 0.7848 + }, + { + "start": 26667.24, + "end": 26672.78, + "probability": 0.9857 + }, + { + "start": 26673.02, + "end": 26673.72, + "probability": 0.0723 + }, + { + "start": 26673.84, + "end": 26674.32, + "probability": 0.7095 + }, + { + "start": 26674.32, + "end": 26681.08, + "probability": 0.9669 + }, + { + "start": 26681.76, + "end": 26685.28, + "probability": 0.9778 + }, + { + "start": 26686.34, + "end": 26690.74, + "probability": 0.9932 + }, + { + "start": 26691.78, + "end": 26694.94, + "probability": 0.958 + }, + { + "start": 26695.72, + "end": 26699.66, + "probability": 0.9574 + }, + { + "start": 26699.66, + "end": 26703.68, + "probability": 0.9751 + }, + { + "start": 26704.58, + "end": 26705.44, + "probability": 0.9537 + }, + { + "start": 26706.6, + "end": 26709.74, + "probability": 0.912 + }, + { + "start": 26709.78, + "end": 26710.62, + "probability": 0.6917 + }, + { + "start": 26711.96, + "end": 26713.1, + "probability": 0.8001 + }, + { + "start": 26713.48, + "end": 26717.86, + "probability": 0.9619 + }, + { + "start": 26718.82, + "end": 26723.04, + "probability": 0.857 + }, + { + "start": 26723.78, + "end": 26724.02, + "probability": 0.6462 + }, + { + "start": 26724.1, + "end": 26725.5, + "probability": 0.9949 + }, + { + "start": 26725.52, + "end": 26728.0, + "probability": 0.9417 + }, + { + "start": 26728.12, + "end": 26731.54, + "probability": 0.9971 + }, + { + "start": 26731.54, + "end": 26735.5, + "probability": 0.9971 + }, + { + "start": 26736.02, + "end": 26737.55, + "probability": 0.9854 + }, + { + "start": 26738.38, + "end": 26741.54, + "probability": 0.9263 + }, + { + "start": 26742.04, + "end": 26743.52, + "probability": 0.9089 + }, + { + "start": 26743.96, + "end": 26746.48, + "probability": 0.7814 + }, + { + "start": 26747.24, + "end": 26750.52, + "probability": 0.9858 + }, + { + "start": 26751.34, + "end": 26753.8, + "probability": 0.9828 + }, + { + "start": 26754.84, + "end": 26760.72, + "probability": 0.9904 + }, + { + "start": 26761.26, + "end": 26764.72, + "probability": 0.9884 + }, + { + "start": 26764.72, + "end": 26768.52, + "probability": 0.9665 + }, + { + "start": 26769.42, + "end": 26774.78, + "probability": 0.9837 + }, + { + "start": 26774.78, + "end": 26779.46, + "probability": 0.9869 + }, + { + "start": 26780.0, + "end": 26781.98, + "probability": 0.906 + }, + { + "start": 26781.98, + "end": 26782.99, + "probability": 0.2162 + }, + { + "start": 26783.2, + "end": 26786.7, + "probability": 0.9975 + }, + { + "start": 26787.06, + "end": 26790.82, + "probability": 0.7429 + }, + { + "start": 26790.82, + "end": 26794.88, + "probability": 0.9994 + }, + { + "start": 26795.68, + "end": 26796.8, + "probability": 0.8416 + }, + { + "start": 26797.14, + "end": 26798.36, + "probability": 0.9599 + }, + { + "start": 26798.64, + "end": 26799.34, + "probability": 0.8275 + }, + { + "start": 26799.36, + "end": 26802.42, + "probability": 0.9803 + }, + { + "start": 26802.74, + "end": 26803.36, + "probability": 0.6954 + }, + { + "start": 26803.36, + "end": 26805.72, + "probability": 0.7957 + }, + { + "start": 26806.84, + "end": 26807.78, + "probability": 0.0957 + }, + { + "start": 26807.78, + "end": 26808.52, + "probability": 0.5558 + }, + { + "start": 26808.81, + "end": 26809.01, + "probability": 0.0746 + }, + { + "start": 26809.68, + "end": 26810.48, + "probability": 0.5412 + }, + { + "start": 26811.64, + "end": 26814.3, + "probability": 0.0888 + }, + { + "start": 26814.84, + "end": 26816.61, + "probability": 0.6199 + }, + { + "start": 26817.22, + "end": 26817.22, + "probability": 0.1076 + }, + { + "start": 26817.22, + "end": 26818.08, + "probability": 0.3946 + }, + { + "start": 26818.2, + "end": 26821.7, + "probability": 0.5532 + }, + { + "start": 26822.28, + "end": 26827.58, + "probability": 0.4305 + }, + { + "start": 26830.4, + "end": 26834.56, + "probability": 0.8145 + }, + { + "start": 26835.36, + "end": 26836.02, + "probability": 0.1459 + }, + { + "start": 26836.02, + "end": 26836.02, + "probability": 0.069 + }, + { + "start": 26836.02, + "end": 26836.02, + "probability": 0.0455 + }, + { + "start": 26836.02, + "end": 26836.02, + "probability": 0.0371 + }, + { + "start": 26836.02, + "end": 26839.92, + "probability": 0.2964 + }, + { + "start": 26839.92, + "end": 26843.64, + "probability": 0.5423 + }, + { + "start": 26844.28, + "end": 26849.48, + "probability": 0.9762 + }, + { + "start": 26849.88, + "end": 26852.43, + "probability": 0.0226 + }, + { + "start": 26853.54, + "end": 26853.88, + "probability": 0.0487 + }, + { + "start": 26853.88, + "end": 26855.24, + "probability": 0.5137 + }, + { + "start": 26855.24, + "end": 26856.38, + "probability": 0.1087 + }, + { + "start": 26856.76, + "end": 26857.86, + "probability": 0.1906 + }, + { + "start": 26857.92, + "end": 26858.94, + "probability": 0.1151 + }, + { + "start": 26858.94, + "end": 26859.22, + "probability": 0.0766 + }, + { + "start": 26859.22, + "end": 26860.26, + "probability": 0.4505 + }, + { + "start": 26861.66, + "end": 26865.2, + "probability": 0.7988 + }, + { + "start": 26866.0, + "end": 26866.86, + "probability": 0.6417 + }, + { + "start": 26867.06, + "end": 26867.36, + "probability": 0.485 + }, + { + "start": 26867.42, + "end": 26868.06, + "probability": 0.4987 + }, + { + "start": 26868.14, + "end": 26869.44, + "probability": 0.9865 + }, + { + "start": 26870.52, + "end": 26872.04, + "probability": 0.9207 + }, + { + "start": 26872.04, + "end": 26872.69, + "probability": 0.4761 + }, + { + "start": 26873.48, + "end": 26873.48, + "probability": 0.4755 + }, + { + "start": 26873.48, + "end": 26873.98, + "probability": 0.3601 + }, + { + "start": 26875.3, + "end": 26879.16, + "probability": 0.8592 + }, + { + "start": 26879.26, + "end": 26881.36, + "probability": 0.9834 + }, + { + "start": 26881.7, + "end": 26884.54, + "probability": 0.0402 + }, + { + "start": 26884.54, + "end": 26888.82, + "probability": 0.9594 + }, + { + "start": 26893.14, + "end": 26894.62, + "probability": 0.3831 + }, + { + "start": 26894.86, + "end": 26896.43, + "probability": 0.8157 + }, + { + "start": 26896.96, + "end": 26899.34, + "probability": 0.89 + }, + { + "start": 26899.48, + "end": 26900.22, + "probability": 0.895 + }, + { + "start": 26900.76, + "end": 26902.68, + "probability": 0.9894 + }, + { + "start": 26902.76, + "end": 26903.32, + "probability": 0.3276 + }, + { + "start": 26904.12, + "end": 26904.48, + "probability": 0.5243 + }, + { + "start": 26905.04, + "end": 26908.08, + "probability": 0.9805 + }, + { + "start": 26909.2, + "end": 26919.6, + "probability": 0.9916 + }, + { + "start": 26921.62, + "end": 26923.74, + "probability": 0.9364 + }, + { + "start": 26924.48, + "end": 26929.6, + "probability": 0.9935 + }, + { + "start": 26930.46, + "end": 26935.36, + "probability": 0.9964 + }, + { + "start": 26935.84, + "end": 26936.36, + "probability": 0.8628 + }, + { + "start": 26936.58, + "end": 26937.19, + "probability": 0.5179 + }, + { + "start": 26938.64, + "end": 26939.48, + "probability": 0.7526 + }, + { + "start": 26939.76, + "end": 26940.32, + "probability": 0.2012 + }, + { + "start": 26940.48, + "end": 26941.96, + "probability": 0.2127 + }, + { + "start": 26942.2, + "end": 26944.16, + "probability": 0.8015 + }, + { + "start": 26946.36, + "end": 26947.92, + "probability": 0.8042 + }, + { + "start": 26949.58, + "end": 26952.08, + "probability": 0.8595 + }, + { + "start": 26952.14, + "end": 26953.88, + "probability": 0.3924 + }, + { + "start": 26955.14, + "end": 26956.38, + "probability": 0.824 + }, + { + "start": 26957.04, + "end": 26959.12, + "probability": 0.6055 + }, + { + "start": 26959.68, + "end": 26960.22, + "probability": 0.849 + }, + { + "start": 26961.06, + "end": 26963.54, + "probability": 0.9324 + }, + { + "start": 26963.72, + "end": 26966.18, + "probability": 0.5481 + }, + { + "start": 26966.22, + "end": 26969.18, + "probability": 0.7095 + }, + { + "start": 26969.22, + "end": 26970.97, + "probability": 0.9506 + }, + { + "start": 26971.58, + "end": 26973.1, + "probability": 0.9644 + }, + { + "start": 26973.78, + "end": 26973.98, + "probability": 0.6584 + }, + { + "start": 26973.98, + "end": 26975.34, + "probability": 0.9785 + }, + { + "start": 26975.42, + "end": 26976.18, + "probability": 0.1894 + }, + { + "start": 26976.18, + "end": 26976.66, + "probability": 0.447 + }, + { + "start": 26976.8, + "end": 26977.06, + "probability": 0.5724 + }, + { + "start": 26977.4, + "end": 26982.34, + "probability": 0.9075 + }, + { + "start": 26983.08, + "end": 26988.62, + "probability": 0.9937 + }, + { + "start": 26989.14, + "end": 26990.7, + "probability": 0.953 + }, + { + "start": 26990.96, + "end": 26995.68, + "probability": 0.9647 + }, + { + "start": 26996.2, + "end": 26997.6, + "probability": 0.1041 + }, + { + "start": 26998.8, + "end": 26998.92, + "probability": 0.7234 + }, + { + "start": 26999.04, + "end": 27005.08, + "probability": 0.9934 + }, + { + "start": 27005.6, + "end": 27005.86, + "probability": 0.2923 + }, + { + "start": 27007.36, + "end": 27007.36, + "probability": 0.1308 + }, + { + "start": 27007.36, + "end": 27007.36, + "probability": 0.1934 + }, + { + "start": 27007.36, + "end": 27008.82, + "probability": 0.3428 + }, + { + "start": 27008.92, + "end": 27012.04, + "probability": 0.925 + }, + { + "start": 27012.28, + "end": 27012.84, + "probability": 0.8789 + }, + { + "start": 27013.0, + "end": 27013.68, + "probability": 0.9478 + }, + { + "start": 27013.78, + "end": 27015.32, + "probability": 0.8824 + }, + { + "start": 27015.58, + "end": 27017.64, + "probability": 0.9353 + }, + { + "start": 27018.22, + "end": 27023.04, + "probability": 0.9467 + }, + { + "start": 27023.82, + "end": 27025.44, + "probability": 0.8358 + }, + { + "start": 27025.5, + "end": 27029.82, + "probability": 0.9927 + }, + { + "start": 27031.32, + "end": 27033.08, + "probability": 0.7981 + }, + { + "start": 27033.74, + "end": 27034.76, + "probability": 0.8741 + }, + { + "start": 27036.04, + "end": 27038.6, + "probability": 0.9894 + }, + { + "start": 27039.32, + "end": 27041.82, + "probability": 0.9675 + }, + { + "start": 27041.9, + "end": 27044.12, + "probability": 0.9522 + }, + { + "start": 27044.32, + "end": 27045.66, + "probability": 0.5002 + }, + { + "start": 27045.82, + "end": 27047.7, + "probability": 0.9583 + }, + { + "start": 27048.2, + "end": 27050.12, + "probability": 0.9892 + }, + { + "start": 27052.04, + "end": 27059.88, + "probability": 0.9883 + }, + { + "start": 27062.28, + "end": 27064.42, + "probability": 0.6243 + }, + { + "start": 27065.06, + "end": 27071.92, + "probability": 0.9349 + }, + { + "start": 27072.14, + "end": 27076.04, + "probability": 0.9946 + }, + { + "start": 27076.46, + "end": 27077.7, + "probability": 0.9676 + }, + { + "start": 27078.02, + "end": 27079.58, + "probability": 0.98 + }, + { + "start": 27080.04, + "end": 27081.19, + "probability": 0.999 + }, + { + "start": 27081.76, + "end": 27082.86, + "probability": 0.8516 + }, + { + "start": 27083.36, + "end": 27084.37, + "probability": 0.9452 + }, + { + "start": 27085.16, + "end": 27087.54, + "probability": 0.9678 + }, + { + "start": 27088.24, + "end": 27089.18, + "probability": 0.9067 + }, + { + "start": 27089.7, + "end": 27092.26, + "probability": 0.9463 + }, + { + "start": 27095.12, + "end": 27097.48, + "probability": 0.9932 + }, + { + "start": 27098.42, + "end": 27100.9, + "probability": 0.976 + }, + { + "start": 27101.38, + "end": 27103.11, + "probability": 0.9756 + }, + { + "start": 27103.76, + "end": 27108.82, + "probability": 0.8527 + }, + { + "start": 27109.22, + "end": 27114.6, + "probability": 0.9663 + }, + { + "start": 27115.14, + "end": 27115.9, + "probability": 0.8595 + }, + { + "start": 27116.18, + "end": 27116.9, + "probability": 0.8422 + }, + { + "start": 27117.16, + "end": 27118.26, + "probability": 0.8538 + }, + { + "start": 27118.44, + "end": 27120.7, + "probability": 0.9423 + }, + { + "start": 27121.34, + "end": 27125.72, + "probability": 0.9289 + }, + { + "start": 27126.68, + "end": 27129.04, + "probability": 0.9865 + }, + { + "start": 27129.08, + "end": 27132.18, + "probability": 0.9822 + }, + { + "start": 27132.56, + "end": 27133.23, + "probability": 0.9917 + }, + { + "start": 27133.86, + "end": 27134.32, + "probability": 0.651 + }, + { + "start": 27135.56, + "end": 27136.48, + "probability": 0.8312 + }, + { + "start": 27136.58, + "end": 27138.38, + "probability": 0.9196 + }, + { + "start": 27138.7, + "end": 27140.76, + "probability": 0.9874 + }, + { + "start": 27141.1, + "end": 27143.56, + "probability": 0.987 + }, + { + "start": 27144.2, + "end": 27146.02, + "probability": 0.9541 + }, + { + "start": 27146.84, + "end": 27147.36, + "probability": 0.9731 + }, + { + "start": 27148.84, + "end": 27150.94, + "probability": 0.9927 + }, + { + "start": 27151.28, + "end": 27153.08, + "probability": 0.9496 + }, + { + "start": 27153.2, + "end": 27155.64, + "probability": 0.9932 + }, + { + "start": 27156.16, + "end": 27157.98, + "probability": 0.9887 + }, + { + "start": 27158.82, + "end": 27159.62, + "probability": 0.9287 + }, + { + "start": 27160.34, + "end": 27163.84, + "probability": 0.9712 + }, + { + "start": 27164.54, + "end": 27168.56, + "probability": 0.9777 + }, + { + "start": 27169.46, + "end": 27170.92, + "probability": 0.871 + }, + { + "start": 27171.52, + "end": 27174.4, + "probability": 0.9557 + }, + { + "start": 27174.86, + "end": 27175.64, + "probability": 0.9574 + }, + { + "start": 27175.82, + "end": 27178.12, + "probability": 0.953 + }, + { + "start": 27178.74, + "end": 27181.9, + "probability": 0.9948 + }, + { + "start": 27182.9, + "end": 27189.72, + "probability": 0.9971 + }, + { + "start": 27191.26, + "end": 27191.96, + "probability": 0.8422 + }, + { + "start": 27191.98, + "end": 27195.48, + "probability": 0.9893 + }, + { + "start": 27196.72, + "end": 27198.86, + "probability": 0.9935 + }, + { + "start": 27199.04, + "end": 27200.08, + "probability": 0.9935 + }, + { + "start": 27200.3, + "end": 27201.4, + "probability": 0.8582 + }, + { + "start": 27201.84, + "end": 27202.5, + "probability": 0.421 + }, + { + "start": 27202.9, + "end": 27204.04, + "probability": 0.9207 + }, + { + "start": 27204.2, + "end": 27205.06, + "probability": 0.8475 + }, + { + "start": 27205.54, + "end": 27206.76, + "probability": 0.8096 + }, + { + "start": 27207.04, + "end": 27210.34, + "probability": 0.9928 + }, + { + "start": 27211.2, + "end": 27216.06, + "probability": 0.9872 + }, + { + "start": 27216.48, + "end": 27217.38, + "probability": 0.9028 + }, + { + "start": 27217.96, + "end": 27222.72, + "probability": 0.9181 + }, + { + "start": 27223.6, + "end": 27224.98, + "probability": 0.8097 + }, + { + "start": 27225.56, + "end": 27227.26, + "probability": 0.9993 + }, + { + "start": 27229.39, + "end": 27238.94, + "probability": 0.9906 + }, + { + "start": 27239.04, + "end": 27240.78, + "probability": 0.6345 + }, + { + "start": 27241.94, + "end": 27242.42, + "probability": 0.7411 + }, + { + "start": 27243.2, + "end": 27246.62, + "probability": 0.9971 + }, + { + "start": 27247.42, + "end": 27252.7, + "probability": 0.9722 + }, + { + "start": 27256.47, + "end": 27259.12, + "probability": 0.9758 + }, + { + "start": 27259.86, + "end": 27261.44, + "probability": 0.989 + }, + { + "start": 27262.64, + "end": 27263.84, + "probability": 0.4943 + }, + { + "start": 27263.94, + "end": 27264.3, + "probability": 0.1578 + }, + { + "start": 27264.32, + "end": 27266.34, + "probability": 0.9673 + }, + { + "start": 27266.54, + "end": 27267.96, + "probability": 0.9255 + }, + { + "start": 27268.7, + "end": 27270.34, + "probability": 0.7974 + }, + { + "start": 27271.7, + "end": 27274.96, + "probability": 0.9551 + }, + { + "start": 27275.48, + "end": 27276.18, + "probability": 0.8378 + }, + { + "start": 27277.54, + "end": 27280.74, + "probability": 0.9868 + }, + { + "start": 27281.88, + "end": 27282.8, + "probability": 0.7814 + }, + { + "start": 27283.66, + "end": 27288.26, + "probability": 0.8097 + }, + { + "start": 27289.02, + "end": 27293.66, + "probability": 0.9848 + }, + { + "start": 27294.72, + "end": 27299.88, + "probability": 0.8962 + }, + { + "start": 27301.1, + "end": 27303.16, + "probability": 0.7368 + }, + { + "start": 27304.38, + "end": 27308.04, + "probability": 0.8685 + }, + { + "start": 27308.58, + "end": 27314.3, + "probability": 0.9789 + }, + { + "start": 27315.4, + "end": 27316.5, + "probability": 0.92 + }, + { + "start": 27317.94, + "end": 27320.8, + "probability": 0.8285 + }, + { + "start": 27321.86, + "end": 27327.42, + "probability": 0.6666 + }, + { + "start": 27328.0, + "end": 27328.36, + "probability": 0.5583 + }, + { + "start": 27330.88, + "end": 27332.07, + "probability": 0.6972 + }, + { + "start": 27332.6, + "end": 27334.88, + "probability": 0.9679 + }, + { + "start": 27335.82, + "end": 27337.2, + "probability": 0.5265 + }, + { + "start": 27337.76, + "end": 27339.02, + "probability": 0.8056 + }, + { + "start": 27353.96, + "end": 27354.94, + "probability": 0.1146 + }, + { + "start": 27364.93, + "end": 27368.72, + "probability": 0.7432 + }, + { + "start": 27370.28, + "end": 27375.5, + "probability": 0.708 + }, + { + "start": 27376.6, + "end": 27378.72, + "probability": 0.9793 + }, + { + "start": 27380.58, + "end": 27383.32, + "probability": 0.9751 + }, + { + "start": 27384.32, + "end": 27386.24, + "probability": 0.9783 + }, + { + "start": 27387.96, + "end": 27396.63, + "probability": 0.9954 + }, + { + "start": 27397.52, + "end": 27398.38, + "probability": 0.7468 + }, + { + "start": 27399.66, + "end": 27400.88, + "probability": 0.9873 + }, + { + "start": 27401.9, + "end": 27408.68, + "probability": 0.9913 + }, + { + "start": 27409.72, + "end": 27412.46, + "probability": 0.9263 + }, + { + "start": 27413.88, + "end": 27415.02, + "probability": 0.799 + }, + { + "start": 27416.06, + "end": 27420.3, + "probability": 0.8559 + }, + { + "start": 27421.54, + "end": 27423.2, + "probability": 0.9398 + }, + { + "start": 27424.28, + "end": 27424.92, + "probability": 0.5885 + }, + { + "start": 27425.82, + "end": 27428.3, + "probability": 0.7922 + }, + { + "start": 27430.62, + "end": 27431.2, + "probability": 0.2855 + }, + { + "start": 27432.56, + "end": 27435.82, + "probability": 0.8288 + }, + { + "start": 27437.62, + "end": 27440.64, + "probability": 0.8865 + }, + { + "start": 27441.76, + "end": 27441.92, + "probability": 0.5519 + }, + { + "start": 27442.22, + "end": 27449.96, + "probability": 0.9878 + }, + { + "start": 27451.5, + "end": 27455.58, + "probability": 0.9988 + }, + { + "start": 27455.58, + "end": 27460.74, + "probability": 0.993 + }, + { + "start": 27462.18, + "end": 27467.0, + "probability": 0.9857 + }, + { + "start": 27467.86, + "end": 27469.4, + "probability": 0.9863 + }, + { + "start": 27470.56, + "end": 27471.54, + "probability": 0.7993 + }, + { + "start": 27472.46, + "end": 27480.44, + "probability": 0.9918 + }, + { + "start": 27482.98, + "end": 27488.14, + "probability": 0.9907 + }, + { + "start": 27489.04, + "end": 27496.02, + "probability": 0.9913 + }, + { + "start": 27496.02, + "end": 27505.34, + "probability": 0.9951 + }, + { + "start": 27506.74, + "end": 27509.18, + "probability": 0.9945 + }, + { + "start": 27509.98, + "end": 27512.68, + "probability": 0.9043 + }, + { + "start": 27513.94, + "end": 27517.6, + "probability": 0.9967 + }, + { + "start": 27519.58, + "end": 27520.92, + "probability": 0.9944 + }, + { + "start": 27522.32, + "end": 27525.94, + "probability": 0.9932 + }, + { + "start": 27526.88, + "end": 27528.84, + "probability": 0.9937 + }, + { + "start": 27529.72, + "end": 27530.76, + "probability": 0.8682 + }, + { + "start": 27531.78, + "end": 27532.62, + "probability": 0.7887 + }, + { + "start": 27533.14, + "end": 27537.64, + "probability": 0.9849 + }, + { + "start": 27539.12, + "end": 27547.42, + "probability": 0.9893 + }, + { + "start": 27548.04, + "end": 27549.2, + "probability": 0.7889 + }, + { + "start": 27550.22, + "end": 27551.5, + "probability": 0.7568 + }, + { + "start": 27552.38, + "end": 27553.62, + "probability": 0.7757 + }, + { + "start": 27554.8, + "end": 27556.28, + "probability": 0.8517 + }, + { + "start": 27556.9, + "end": 27563.08, + "probability": 0.9674 + }, + { + "start": 27563.6, + "end": 27564.6, + "probability": 0.9111 + }, + { + "start": 27565.6, + "end": 27565.84, + "probability": 0.5663 + }, + { + "start": 27567.6, + "end": 27568.18, + "probability": 0.9962 + }, + { + "start": 27572.54, + "end": 27576.16, + "probability": 0.9692 + }, + { + "start": 27577.08, + "end": 27583.26, + "probability": 0.5546 + }, + { + "start": 27583.82, + "end": 27585.2, + "probability": 0.9932 + }, + { + "start": 27586.04, + "end": 27590.28, + "probability": 0.9943 + }, + { + "start": 27591.56, + "end": 27597.94, + "probability": 0.8994 + }, + { + "start": 27597.94, + "end": 27602.96, + "probability": 0.9092 + }, + { + "start": 27603.74, + "end": 27605.94, + "probability": 0.9971 + }, + { + "start": 27606.74, + "end": 27609.76, + "probability": 0.9774 + }, + { + "start": 27610.4, + "end": 27614.5, + "probability": 0.9967 + }, + { + "start": 27615.06, + "end": 27620.48, + "probability": 0.8713 + }, + { + "start": 27621.28, + "end": 27622.6, + "probability": 0.8599 + }, + { + "start": 27623.28, + "end": 27624.58, + "probability": 0.7932 + }, + { + "start": 27625.72, + "end": 27631.22, + "probability": 0.9745 + }, + { + "start": 27631.22, + "end": 27636.18, + "probability": 0.9007 + }, + { + "start": 27636.9, + "end": 27645.1, + "probability": 0.9906 + }, + { + "start": 27646.2, + "end": 27649.9, + "probability": 0.9974 + }, + { + "start": 27650.62, + "end": 27651.06, + "probability": 0.7449 + }, + { + "start": 27652.96, + "end": 27658.18, + "probability": 0.9491 + }, + { + "start": 27659.02, + "end": 27666.78, + "probability": 0.9866 + }, + { + "start": 27666.9, + "end": 27670.36, + "probability": 0.7421 + }, + { + "start": 27670.98, + "end": 27672.6, + "probability": 0.999 + }, + { + "start": 27673.5, + "end": 27678.02, + "probability": 0.9857 + }, + { + "start": 27678.84, + "end": 27684.34, + "probability": 0.9812 + }, + { + "start": 27685.3, + "end": 27691.64, + "probability": 0.8156 + }, + { + "start": 27691.64, + "end": 27698.84, + "probability": 0.9922 + }, + { + "start": 27700.28, + "end": 27701.68, + "probability": 0.999 + }, + { + "start": 27703.82, + "end": 27708.94, + "probability": 0.8667 + }, + { + "start": 27709.54, + "end": 27713.84, + "probability": 0.8215 + }, + { + "start": 27714.56, + "end": 27717.16, + "probability": 0.7408 + }, + { + "start": 27717.74, + "end": 27721.44, + "probability": 0.9259 + }, + { + "start": 27722.3, + "end": 27724.22, + "probability": 0.8274 + }, + { + "start": 27724.86, + "end": 27728.02, + "probability": 0.8551 + }, + { + "start": 27728.68, + "end": 27734.04, + "probability": 0.9926 + }, + { + "start": 27734.06, + "end": 27740.14, + "probability": 0.9934 + }, + { + "start": 27740.5, + "end": 27744.72, + "probability": 0.9719 + }, + { + "start": 27745.52, + "end": 27747.08, + "probability": 0.8158 + }, + { + "start": 27748.42, + "end": 27751.5, + "probability": 0.7746 + }, + { + "start": 27752.26, + "end": 27758.12, + "probability": 0.8826 + }, + { + "start": 27758.74, + "end": 27759.32, + "probability": 0.2906 + }, + { + "start": 27759.86, + "end": 27763.0, + "probability": 0.7396 + }, + { + "start": 27763.88, + "end": 27769.92, + "probability": 0.9944 + }, + { + "start": 27770.44, + "end": 27774.86, + "probability": 0.9963 + }, + { + "start": 27775.44, + "end": 27781.66, + "probability": 0.96 + }, + { + "start": 27782.5, + "end": 27788.72, + "probability": 0.8627 + }, + { + "start": 27789.18, + "end": 27793.06, + "probability": 0.9987 + }, + { + "start": 27793.74, + "end": 27797.5, + "probability": 0.8137 + }, + { + "start": 27797.6, + "end": 27799.8, + "probability": 0.7443 + }, + { + "start": 27799.92, + "end": 27801.42, + "probability": 0.7504 + }, + { + "start": 27801.86, + "end": 27805.68, + "probability": 0.9553 + }, + { + "start": 27805.78, + "end": 27807.3, + "probability": 0.89 + }, + { + "start": 27807.54, + "end": 27807.62, + "probability": 0.1234 + }, + { + "start": 27807.62, + "end": 27815.94, + "probability": 0.9338 + }, + { + "start": 27816.4, + "end": 27820.28, + "probability": 0.9567 + }, + { + "start": 27820.68, + "end": 27824.76, + "probability": 0.9935 + }, + { + "start": 27825.38, + "end": 27828.57, + "probability": 0.1912 + }, + { + "start": 27829.18, + "end": 27835.4, + "probability": 0.7111 + }, + { + "start": 27836.36, + "end": 27838.2, + "probability": 0.8647 + }, + { + "start": 27838.3, + "end": 27842.56, + "probability": 0.9 + }, + { + "start": 27842.92, + "end": 27844.94, + "probability": 0.9759 + }, + { + "start": 27845.08, + "end": 27849.2, + "probability": 0.5822 + }, + { + "start": 27850.14, + "end": 27857.02, + "probability": 0.9635 + }, + { + "start": 27857.24, + "end": 27857.92, + "probability": 0.9614 + }, + { + "start": 27859.46, + "end": 27868.52, + "probability": 0.9756 + }, + { + "start": 27869.12, + "end": 27872.78, + "probability": 0.4776 + }, + { + "start": 27873.46, + "end": 27878.16, + "probability": 0.821 + }, + { + "start": 27878.88, + "end": 27887.34, + "probability": 0.9917 + }, + { + "start": 27887.86, + "end": 27890.24, + "probability": 0.8452 + }, + { + "start": 27890.6, + "end": 27891.2, + "probability": 0.5981 + }, + { + "start": 27891.36, + "end": 27895.18, + "probability": 0.9738 + }, + { + "start": 27895.3, + "end": 27897.44, + "probability": 0.5964 + }, + { + "start": 27897.7, + "end": 27898.88, + "probability": 0.4368 + }, + { + "start": 27898.88, + "end": 27907.94, + "probability": 0.8227 + }, + { + "start": 27909.82, + "end": 27913.64, + "probability": 0.8464 + }, + { + "start": 27915.62, + "end": 27917.98, + "probability": 0.9275 + }, + { + "start": 27919.6, + "end": 27922.4, + "probability": 0.1972 + }, + { + "start": 27923.0, + "end": 27923.98, + "probability": 0.743 + }, + { + "start": 27924.62, + "end": 27926.3, + "probability": 0.9208 + }, + { + "start": 27926.82, + "end": 27928.78, + "probability": 0.8962 + }, + { + "start": 27929.54, + "end": 27932.96, + "probability": 0.9562 + }, + { + "start": 27933.62, + "end": 27940.36, + "probability": 0.9888 + }, + { + "start": 27940.76, + "end": 27945.7, + "probability": 0.7447 + }, + { + "start": 27946.26, + "end": 27947.88, + "probability": 0.6299 + }, + { + "start": 27948.74, + "end": 27951.32, + "probability": 0.549 + }, + { + "start": 27951.32, + "end": 27958.2, + "probability": 0.991 + }, + { + "start": 27958.82, + "end": 27961.34, + "probability": 0.9934 + }, + { + "start": 27962.88, + "end": 27966.5, + "probability": 0.9922 + }, + { + "start": 27966.9, + "end": 27969.04, + "probability": 0.9967 + }, + { + "start": 27971.08, + "end": 27974.64, + "probability": 0.9548 + }, + { + "start": 27975.34, + "end": 27980.4, + "probability": 0.8737 + }, + { + "start": 27980.8, + "end": 27984.78, + "probability": 0.9581 + }, + { + "start": 27984.8, + "end": 27986.2, + "probability": 0.7385 + }, + { + "start": 27986.36, + "end": 27988.86, + "probability": 0.8421 + }, + { + "start": 27989.44, + "end": 27990.66, + "probability": 0.7444 + }, + { + "start": 27993.19, + "end": 27993.78, + "probability": 0.1803 + }, + { + "start": 28019.8, + "end": 28020.66, + "probability": 0.5625 + }, + { + "start": 28022.72, + "end": 28024.88, + "probability": 0.9978 + }, + { + "start": 28024.98, + "end": 28025.64, + "probability": 0.8764 + }, + { + "start": 28027.62, + "end": 28031.44, + "probability": 0.9669 + }, + { + "start": 28032.78, + "end": 28036.48, + "probability": 0.9922 + }, + { + "start": 28038.04, + "end": 28039.54, + "probability": 0.5971 + }, + { + "start": 28041.32, + "end": 28042.1, + "probability": 0.8703 + }, + { + "start": 28043.92, + "end": 28047.58, + "probability": 0.9863 + }, + { + "start": 28049.02, + "end": 28049.72, + "probability": 0.1184 + }, + { + "start": 28051.5, + "end": 28053.16, + "probability": 0.6654 + }, + { + "start": 28054.64, + "end": 28056.9, + "probability": 0.757 + }, + { + "start": 28057.88, + "end": 28061.18, + "probability": 0.9106 + }, + { + "start": 28062.36, + "end": 28063.08, + "probability": 0.8953 + }, + { + "start": 28064.38, + "end": 28065.14, + "probability": 0.8607 + }, + { + "start": 28069.16, + "end": 28072.34, + "probability": 0.9868 + }, + { + "start": 28074.24, + "end": 28075.26, + "probability": 0.9907 + }, + { + "start": 28076.38, + "end": 28077.32, + "probability": 0.987 + }, + { + "start": 28078.82, + "end": 28079.9, + "probability": 0.8232 + }, + { + "start": 28082.92, + "end": 28083.44, + "probability": 0.4985 + }, + { + "start": 28085.48, + "end": 28087.54, + "probability": 0.8093 + }, + { + "start": 28088.7, + "end": 28090.1, + "probability": 0.9421 + }, + { + "start": 28091.06, + "end": 28094.34, + "probability": 0.9814 + }, + { + "start": 28095.06, + "end": 28096.1, + "probability": 0.9535 + }, + { + "start": 28096.8, + "end": 28098.24, + "probability": 0.9217 + }, + { + "start": 28099.5, + "end": 28102.1, + "probability": 0.986 + }, + { + "start": 28103.34, + "end": 28109.96, + "probability": 0.9635 + }, + { + "start": 28110.28, + "end": 28114.8, + "probability": 0.8712 + }, + { + "start": 28115.74, + "end": 28118.2, + "probability": 0.9795 + }, + { + "start": 28118.94, + "end": 28119.76, + "probability": 0.5525 + }, + { + "start": 28121.62, + "end": 28130.6, + "probability": 0.9384 + }, + { + "start": 28131.7, + "end": 28133.7, + "probability": 0.7507 + }, + { + "start": 28135.44, + "end": 28136.32, + "probability": 0.8457 + }, + { + "start": 28140.56, + "end": 28141.18, + "probability": 0.9688 + }, + { + "start": 28143.88, + "end": 28145.9, + "probability": 0.8235 + }, + { + "start": 28147.54, + "end": 28149.0, + "probability": 0.7551 + }, + { + "start": 28149.6, + "end": 28153.14, + "probability": 0.8818 + }, + { + "start": 28154.44, + "end": 28157.32, + "probability": 0.9176 + }, + { + "start": 28159.02, + "end": 28163.94, + "probability": 0.9799 + }, + { + "start": 28164.18, + "end": 28168.78, + "probability": 0.9224 + }, + { + "start": 28170.56, + "end": 28172.74, + "probability": 0.8037 + }, + { + "start": 28173.5, + "end": 28177.26, + "probability": 0.9985 + }, + { + "start": 28177.26, + "end": 28180.8, + "probability": 0.9775 + }, + { + "start": 28182.14, + "end": 28184.26, + "probability": 0.7668 + }, + { + "start": 28185.52, + "end": 28187.0, + "probability": 0.5088 + }, + { + "start": 28187.76, + "end": 28189.07, + "probability": 0.9961 + }, + { + "start": 28190.82, + "end": 28192.94, + "probability": 0.9504 + }, + { + "start": 28193.42, + "end": 28195.12, + "probability": 0.8196 + }, + { + "start": 28196.38, + "end": 28201.36, + "probability": 0.9049 + }, + { + "start": 28201.82, + "end": 28206.32, + "probability": 0.9875 + }, + { + "start": 28207.04, + "end": 28209.88, + "probability": 0.7779 + }, + { + "start": 28211.16, + "end": 28216.64, + "probability": 0.8186 + }, + { + "start": 28218.1, + "end": 28218.24, + "probability": 0.9351 + }, + { + "start": 28220.22, + "end": 28222.32, + "probability": 0.9197 + }, + { + "start": 28223.54, + "end": 28225.26, + "probability": 0.998 + }, + { + "start": 28225.78, + "end": 28227.28, + "probability": 0.9961 + }, + { + "start": 28228.28, + "end": 28231.04, + "probability": 0.616 + }, + { + "start": 28232.08, + "end": 28233.42, + "probability": 0.7341 + }, + { + "start": 28234.54, + "end": 28238.04, + "probability": 0.934 + }, + { + "start": 28238.98, + "end": 28240.06, + "probability": 0.712 + }, + { + "start": 28240.68, + "end": 28244.9, + "probability": 0.8681 + }, + { + "start": 28245.22, + "end": 28245.92, + "probability": 0.9401 + }, + { + "start": 28246.5, + "end": 28250.38, + "probability": 0.994 + }, + { + "start": 28250.98, + "end": 28254.54, + "probability": 0.9688 + }, + { + "start": 28256.16, + "end": 28258.2, + "probability": 0.8853 + }, + { + "start": 28259.72, + "end": 28260.44, + "probability": 0.9684 + }, + { + "start": 28261.14, + "end": 28264.58, + "probability": 0.8722 + }, + { + "start": 28265.76, + "end": 28266.98, + "probability": 0.892 + }, + { + "start": 28268.32, + "end": 28269.14, + "probability": 0.973 + }, + { + "start": 28270.88, + "end": 28271.68, + "probability": 0.6919 + }, + { + "start": 28273.78, + "end": 28275.88, + "probability": 0.98 + }, + { + "start": 28276.98, + "end": 28278.14, + "probability": 0.7408 + }, + { + "start": 28279.64, + "end": 28281.43, + "probability": 0.9912 + }, + { + "start": 28282.5, + "end": 28284.59, + "probability": 0.9198 + }, + { + "start": 28284.98, + "end": 28287.0, + "probability": 0.9445 + }, + { + "start": 28288.04, + "end": 28289.28, + "probability": 0.9924 + }, + { + "start": 28291.72, + "end": 28292.58, + "probability": 0.9396 + }, + { + "start": 28293.54, + "end": 28294.28, + "probability": 0.9753 + }, + { + "start": 28295.1, + "end": 28295.72, + "probability": 0.9994 + }, + { + "start": 28297.16, + "end": 28300.26, + "probability": 0.994 + }, + { + "start": 28300.72, + "end": 28301.98, + "probability": 0.9387 + }, + { + "start": 28303.8, + "end": 28305.06, + "probability": 0.9797 + }, + { + "start": 28306.6, + "end": 28310.04, + "probability": 0.9922 + }, + { + "start": 28311.62, + "end": 28313.7, + "probability": 0.9905 + }, + { + "start": 28314.54, + "end": 28319.28, + "probability": 0.9456 + }, + { + "start": 28320.0, + "end": 28321.08, + "probability": 0.673 + }, + { + "start": 28322.08, + "end": 28323.68, + "probability": 0.8266 + }, + { + "start": 28324.92, + "end": 28330.07, + "probability": 0.7925 + }, + { + "start": 28331.82, + "end": 28331.94, + "probability": 0.0611 + }, + { + "start": 28331.94, + "end": 28335.62, + "probability": 0.8131 + }, + { + "start": 28337.26, + "end": 28338.02, + "probability": 0.2994 + }, + { + "start": 28338.86, + "end": 28340.58, + "probability": 0.5439 + }, + { + "start": 28341.86, + "end": 28345.04, + "probability": 0.9604 + }, + { + "start": 28345.7, + "end": 28347.3, + "probability": 0.9976 + }, + { + "start": 28347.76, + "end": 28349.9, + "probability": 0.9937 + }, + { + "start": 28350.74, + "end": 28355.94, + "probability": 0.9896 + }, + { + "start": 28356.34, + "end": 28360.04, + "probability": 0.9947 + }, + { + "start": 28360.14, + "end": 28361.4, + "probability": 0.8176 + }, + { + "start": 28362.58, + "end": 28365.78, + "probability": 0.8701 + }, + { + "start": 28366.2, + "end": 28367.36, + "probability": 0.9355 + }, + { + "start": 28368.0, + "end": 28369.39, + "probability": 0.946 + }, + { + "start": 28369.96, + "end": 28372.09, + "probability": 0.9647 + }, + { + "start": 28372.48, + "end": 28373.19, + "probability": 0.998 + }, + { + "start": 28374.46, + "end": 28375.7, + "probability": 0.8453 + }, + { + "start": 28376.32, + "end": 28380.72, + "probability": 0.799 + }, + { + "start": 28382.56, + "end": 28384.48, + "probability": 0.8681 + }, + { + "start": 28385.46, + "end": 28388.76, + "probability": 0.9952 + }, + { + "start": 28389.02, + "end": 28390.6, + "probability": 0.6172 + }, + { + "start": 28391.46, + "end": 28392.96, + "probability": 0.796 + }, + { + "start": 28393.1, + "end": 28395.58, + "probability": 0.9959 + }, + { + "start": 28396.32, + "end": 28396.98, + "probability": 0.015 + }, + { + "start": 28396.98, + "end": 28397.5, + "probability": 0.7112 + }, + { + "start": 28397.62, + "end": 28399.78, + "probability": 0.8612 + }, + { + "start": 28400.04, + "end": 28402.2, + "probability": 0.9897 + }, + { + "start": 28402.36, + "end": 28405.62, + "probability": 0.7056 + }, + { + "start": 28405.66, + "end": 28408.32, + "probability": 0.499 + }, + { + "start": 28408.4, + "end": 28411.6, + "probability": 0.8881 + }, + { + "start": 28412.1, + "end": 28412.36, + "probability": 0.3931 + }, + { + "start": 28412.54, + "end": 28414.5, + "probability": 0.8492 + }, + { + "start": 28415.24, + "end": 28416.46, + "probability": 0.967 + }, + { + "start": 28417.18, + "end": 28418.38, + "probability": 0.9349 + }, + { + "start": 28419.42, + "end": 28419.64, + "probability": 0.6878 + }, + { + "start": 28419.84, + "end": 28423.04, + "probability": 0.8833 + }, + { + "start": 28423.94, + "end": 28424.66, + "probability": 0.8416 + }, + { + "start": 28425.3, + "end": 28427.14, + "probability": 0.9834 + }, + { + "start": 28427.78, + "end": 28430.42, + "probability": 0.9974 + }, + { + "start": 28431.22, + "end": 28433.2, + "probability": 0.9656 + }, + { + "start": 28433.88, + "end": 28434.7, + "probability": 0.7861 + }, + { + "start": 28435.22, + "end": 28436.84, + "probability": 0.9942 + }, + { + "start": 28437.62, + "end": 28438.56, + "probability": 0.9922 + }, + { + "start": 28439.52, + "end": 28443.62, + "probability": 0.9913 + }, + { + "start": 28444.02, + "end": 28446.62, + "probability": 0.9956 + }, + { + "start": 28447.12, + "end": 28448.16, + "probability": 0.5753 + }, + { + "start": 28449.14, + "end": 28454.12, + "probability": 0.9881 + }, + { + "start": 28456.18, + "end": 28457.66, + "probability": 0.9976 + }, + { + "start": 28458.76, + "end": 28459.54, + "probability": 0.4358 + }, + { + "start": 28460.63, + "end": 28464.28, + "probability": 0.9939 + }, + { + "start": 28465.12, + "end": 28469.18, + "probability": 0.9909 + }, + { + "start": 28470.7, + "end": 28471.44, + "probability": 0.6865 + }, + { + "start": 28472.02, + "end": 28474.3, + "probability": 0.9585 + }, + { + "start": 28474.4, + "end": 28479.84, + "probability": 0.9956 + }, + { + "start": 28480.12, + "end": 28484.98, + "probability": 0.9956 + }, + { + "start": 28485.92, + "end": 28486.78, + "probability": 0.6073 + }, + { + "start": 28488.66, + "end": 28493.02, + "probability": 0.9829 + }, + { + "start": 28493.44, + "end": 28495.2, + "probability": 0.9889 + }, + { + "start": 28496.0, + "end": 28497.76, + "probability": 0.8083 + }, + { + "start": 28499.76, + "end": 28502.5, + "probability": 0.9989 + }, + { + "start": 28504.04, + "end": 28504.62, + "probability": 0.005 + }, + { + "start": 28506.12, + "end": 28507.38, + "probability": 0.8417 + }, + { + "start": 28507.44, + "end": 28511.2, + "probability": 0.9917 + }, + { + "start": 28511.82, + "end": 28512.52, + "probability": 0.8342 + }, + { + "start": 28513.9, + "end": 28515.98, + "probability": 0.9734 + }, + { + "start": 28516.64, + "end": 28521.02, + "probability": 0.946 + }, + { + "start": 28522.46, + "end": 28522.72, + "probability": 0.0505 + }, + { + "start": 28522.72, + "end": 28524.6, + "probability": 0.9437 + }, + { + "start": 28525.46, + "end": 28527.42, + "probability": 0.8888 + }, + { + "start": 28528.92, + "end": 28529.22, + "probability": 0.2119 + }, + { + "start": 28529.92, + "end": 28530.2, + "probability": 0.4668 + }, + { + "start": 28530.54, + "end": 28531.22, + "probability": 0.9373 + }, + { + "start": 28531.6, + "end": 28533.44, + "probability": 0.8277 + }, + { + "start": 28533.66, + "end": 28534.56, + "probability": 0.6996 + }, + { + "start": 28534.58, + "end": 28536.28, + "probability": 0.675 + }, + { + "start": 28537.98, + "end": 28538.77, + "probability": 0.9015 + }, + { + "start": 28540.04, + "end": 28541.24, + "probability": 0.7146 + }, + { + "start": 28543.06, + "end": 28543.68, + "probability": 0.869 + }, + { + "start": 28544.28, + "end": 28547.94, + "probability": 0.8893 + }, + { + "start": 28548.98, + "end": 28551.76, + "probability": 0.9836 + }, + { + "start": 28552.36, + "end": 28554.2, + "probability": 0.9875 + }, + { + "start": 28554.68, + "end": 28559.18, + "probability": 0.9637 + }, + { + "start": 28559.88, + "end": 28562.05, + "probability": 0.8737 + }, + { + "start": 28562.86, + "end": 28563.58, + "probability": 0.7549 + }, + { + "start": 28564.68, + "end": 28565.88, + "probability": 0.9873 + }, + { + "start": 28567.04, + "end": 28571.0, + "probability": 0.8929 + }, + { + "start": 28571.48, + "end": 28573.56, + "probability": 0.9934 + }, + { + "start": 28574.72, + "end": 28576.64, + "probability": 0.9 + }, + { + "start": 28577.22, + "end": 28579.54, + "probability": 0.9884 + }, + { + "start": 28580.94, + "end": 28582.08, + "probability": 0.9708 + }, + { + "start": 28584.22, + "end": 28585.98, + "probability": 0.9673 + }, + { + "start": 28587.0, + "end": 28589.88, + "probability": 0.9883 + }, + { + "start": 28593.2, + "end": 28598.16, + "probability": 0.9307 + }, + { + "start": 28599.78, + "end": 28610.18, + "probability": 0.9738 + }, + { + "start": 28612.72, + "end": 28614.72, + "probability": 0.8598 + }, + { + "start": 28615.68, + "end": 28617.08, + "probability": 0.9695 + }, + { + "start": 28618.88, + "end": 28621.3, + "probability": 0.8951 + }, + { + "start": 28623.74, + "end": 28624.84, + "probability": 0.7934 + }, + { + "start": 28625.14, + "end": 28625.14, + "probability": 0.5187 + }, + { + "start": 28625.44, + "end": 28626.24, + "probability": 0.5793 + }, + { + "start": 28626.74, + "end": 28627.5, + "probability": 0.7476 + }, + { + "start": 28627.7, + "end": 28632.12, + "probability": 0.9872 + }, + { + "start": 28633.36, + "end": 28634.28, + "probability": 0.7541 + }, + { + "start": 28635.3, + "end": 28636.7, + "probability": 0.6598 + }, + { + "start": 28638.9, + "end": 28642.78, + "probability": 0.9886 + }, + { + "start": 28643.8, + "end": 28644.88, + "probability": 0.8248 + }, + { + "start": 28645.68, + "end": 28646.0, + "probability": 0.7317 + }, + { + "start": 28646.1, + "end": 28646.84, + "probability": 0.6579 + }, + { + "start": 28647.6, + "end": 28648.54, + "probability": 0.9994 + }, + { + "start": 28648.68, + "end": 28650.72, + "probability": 0.8457 + }, + { + "start": 28650.84, + "end": 28653.12, + "probability": 0.966 + }, + { + "start": 28654.58, + "end": 28655.76, + "probability": 0.9353 + }, + { + "start": 28660.48, + "end": 28662.88, + "probability": 0.0189 + }, + { + "start": 28664.7, + "end": 28665.02, + "probability": 0.0967 + }, + { + "start": 28683.28, + "end": 28685.56, + "probability": 0.4997 + }, + { + "start": 28687.06, + "end": 28688.44, + "probability": 0.7313 + }, + { + "start": 28691.2, + "end": 28695.66, + "probability": 0.9957 + }, + { + "start": 28697.58, + "end": 28703.56, + "probability": 0.9986 + }, + { + "start": 28704.24, + "end": 28705.87, + "probability": 0.8306 + }, + { + "start": 28707.66, + "end": 28709.8, + "probability": 0.8671 + }, + { + "start": 28710.72, + "end": 28714.19, + "probability": 0.9645 + }, + { + "start": 28715.44, + "end": 28716.98, + "probability": 0.9955 + }, + { + "start": 28719.02, + "end": 28720.02, + "probability": 0.8016 + }, + { + "start": 28721.32, + "end": 28723.0, + "probability": 0.9677 + }, + { + "start": 28723.96, + "end": 28726.56, + "probability": 0.9883 + }, + { + "start": 28727.54, + "end": 28731.68, + "probability": 0.9432 + }, + { + "start": 28732.58, + "end": 28733.68, + "probability": 0.7447 + }, + { + "start": 28734.5, + "end": 28737.6, + "probability": 0.9323 + }, + { + "start": 28738.76, + "end": 28741.66, + "probability": 0.9961 + }, + { + "start": 28742.98, + "end": 28747.62, + "probability": 0.7754 + }, + { + "start": 28749.46, + "end": 28749.8, + "probability": 0.3464 + }, + { + "start": 28749.8, + "end": 28752.96, + "probability": 0.717 + }, + { + "start": 28753.5, + "end": 28754.82, + "probability": 0.8608 + }, + { + "start": 28756.46, + "end": 28761.34, + "probability": 0.9185 + }, + { + "start": 28762.3, + "end": 28764.0, + "probability": 0.9707 + }, + { + "start": 28765.52, + "end": 28767.24, + "probability": 0.615 + }, + { + "start": 28768.48, + "end": 28770.04, + "probability": 0.8372 + }, + { + "start": 28771.08, + "end": 28776.06, + "probability": 0.9476 + }, + { + "start": 28778.24, + "end": 28780.64, + "probability": 0.9887 + }, + { + "start": 28781.52, + "end": 28782.68, + "probability": 0.8219 + }, + { + "start": 28783.5, + "end": 28786.08, + "probability": 0.9184 + }, + { + "start": 28786.88, + "end": 28789.02, + "probability": 0.9984 + }, + { + "start": 28789.66, + "end": 28791.0, + "probability": 0.4175 + }, + { + "start": 28791.8, + "end": 28795.8, + "probability": 0.8709 + }, + { + "start": 28796.54, + "end": 28798.88, + "probability": 0.9438 + }, + { + "start": 28801.38, + "end": 28808.3, + "probability": 0.9272 + }, + { + "start": 28808.86, + "end": 28811.26, + "probability": 0.9958 + }, + { + "start": 28812.14, + "end": 28813.12, + "probability": 0.6302 + }, + { + "start": 28814.4, + "end": 28818.16, + "probability": 0.9933 + }, + { + "start": 28818.82, + "end": 28821.94, + "probability": 0.9036 + }, + { + "start": 28823.14, + "end": 28824.78, + "probability": 0.9526 + }, + { + "start": 28825.48, + "end": 28828.1, + "probability": 0.9482 + }, + { + "start": 28829.26, + "end": 28835.58, + "probability": 0.9707 + }, + { + "start": 28836.9, + "end": 28838.62, + "probability": 0.9365 + }, + { + "start": 28841.12, + "end": 28842.9, + "probability": 0.6665 + }, + { + "start": 28843.72, + "end": 28852.08, + "probability": 0.9426 + }, + { + "start": 28853.78, + "end": 28856.28, + "probability": 0.9724 + }, + { + "start": 28857.46, + "end": 28859.24, + "probability": 0.9508 + }, + { + "start": 28859.76, + "end": 28861.58, + "probability": 0.9818 + }, + { + "start": 28863.06, + "end": 28864.96, + "probability": 0.9989 + }, + { + "start": 28865.68, + "end": 28869.5, + "probability": 0.9445 + }, + { + "start": 28870.78, + "end": 28871.51, + "probability": 0.8089 + }, + { + "start": 28873.82, + "end": 28878.06, + "probability": 0.9193 + }, + { + "start": 28878.82, + "end": 28880.06, + "probability": 0.9001 + }, + { + "start": 28881.62, + "end": 28883.14, + "probability": 0.7114 + }, + { + "start": 28884.28, + "end": 28886.8, + "probability": 0.9857 + }, + { + "start": 28887.7, + "end": 28892.4, + "probability": 0.998 + }, + { + "start": 28892.4, + "end": 28896.78, + "probability": 0.9997 + }, + { + "start": 28897.38, + "end": 28898.74, + "probability": 0.105 + }, + { + "start": 28900.34, + "end": 28902.08, + "probability": 0.6709 + }, + { + "start": 28902.7, + "end": 28907.94, + "probability": 0.9989 + }, + { + "start": 28907.94, + "end": 28912.74, + "probability": 0.9873 + }, + { + "start": 28913.88, + "end": 28916.16, + "probability": 0.9246 + }, + { + "start": 28916.78, + "end": 28919.52, + "probability": 0.9954 + }, + { + "start": 28920.08, + "end": 28920.92, + "probability": 0.7608 + }, + { + "start": 28922.46, + "end": 28924.24, + "probability": 0.9109 + }, + { + "start": 28924.78, + "end": 28926.94, + "probability": 0.9062 + }, + { + "start": 28927.46, + "end": 28931.6, + "probability": 0.8275 + }, + { + "start": 28932.06, + "end": 28937.0, + "probability": 0.8789 + }, + { + "start": 28939.44, + "end": 28941.04, + "probability": 0.6674 + }, + { + "start": 28941.74, + "end": 28944.9, + "probability": 0.8668 + }, + { + "start": 28945.7, + "end": 28949.48, + "probability": 0.9907 + }, + { + "start": 28950.64, + "end": 28952.7, + "probability": 0.964 + }, + { + "start": 28953.76, + "end": 28958.82, + "probability": 0.9724 + }, + { + "start": 28959.46, + "end": 28961.26, + "probability": 0.7716 + }, + { + "start": 28962.54, + "end": 28964.01, + "probability": 0.6946 + }, + { + "start": 28964.74, + "end": 28965.92, + "probability": 0.9737 + }, + { + "start": 28967.28, + "end": 28969.52, + "probability": 0.9861 + }, + { + "start": 28970.16, + "end": 28972.16, + "probability": 0.9913 + }, + { + "start": 28972.72, + "end": 28974.5, + "probability": 0.8511 + }, + { + "start": 28975.02, + "end": 28977.68, + "probability": 0.7162 + }, + { + "start": 28978.32, + "end": 28980.34, + "probability": 0.9254 + }, + { + "start": 28980.98, + "end": 28983.24, + "probability": 0.8726 + }, + { + "start": 28985.24, + "end": 28986.08, + "probability": 0.8472 + }, + { + "start": 28986.64, + "end": 28988.34, + "probability": 0.9769 + }, + { + "start": 28992.54, + "end": 28997.76, + "probability": 0.9961 + }, + { + "start": 28998.28, + "end": 29003.08, + "probability": 0.9769 + }, + { + "start": 29003.56, + "end": 29004.32, + "probability": 0.8668 + }, + { + "start": 29004.84, + "end": 29011.06, + "probability": 0.9876 + }, + { + "start": 29012.14, + "end": 29018.28, + "probability": 0.9878 + }, + { + "start": 29018.9, + "end": 29020.4, + "probability": 0.814 + }, + { + "start": 29021.26, + "end": 29026.7, + "probability": 0.9785 + }, + { + "start": 29027.64, + "end": 29028.94, + "probability": 0.9702 + }, + { + "start": 29029.76, + "end": 29035.08, + "probability": 0.9958 + }, + { + "start": 29035.08, + "end": 29039.56, + "probability": 0.9409 + }, + { + "start": 29041.34, + "end": 29043.8, + "probability": 0.9961 + }, + { + "start": 29044.44, + "end": 29046.16, + "probability": 0.8939 + }, + { + "start": 29046.8, + "end": 29050.03, + "probability": 0.9915 + }, + { + "start": 29051.16, + "end": 29053.75, + "probability": 0.6493 + }, + { + "start": 29054.56, + "end": 29056.81, + "probability": 0.9811 + }, + { + "start": 29058.1, + "end": 29060.03, + "probability": 0.9041 + }, + { + "start": 29062.44, + "end": 29064.44, + "probability": 0.9883 + }, + { + "start": 29066.36, + "end": 29068.86, + "probability": 0.9765 + }, + { + "start": 29071.68, + "end": 29079.32, + "probability": 0.9515 + }, + { + "start": 29080.7, + "end": 29081.66, + "probability": 0.8525 + }, + { + "start": 29082.72, + "end": 29087.52, + "probability": 0.9868 + }, + { + "start": 29090.16, + "end": 29093.52, + "probability": 0.983 + }, + { + "start": 29093.52, + "end": 29099.12, + "probability": 0.9729 + }, + { + "start": 29100.4, + "end": 29102.28, + "probability": 0.9721 + }, + { + "start": 29102.94, + "end": 29104.92, + "probability": 0.922 + }, + { + "start": 29105.5, + "end": 29109.02, + "probability": 0.9634 + }, + { + "start": 29109.58, + "end": 29115.54, + "probability": 0.956 + }, + { + "start": 29117.04, + "end": 29118.4, + "probability": 0.9202 + }, + { + "start": 29122.28, + "end": 29126.34, + "probability": 0.8664 + }, + { + "start": 29127.32, + "end": 29130.26, + "probability": 0.9988 + }, + { + "start": 29131.3, + "end": 29134.32, + "probability": 0.9058 + }, + { + "start": 29135.06, + "end": 29137.08, + "probability": 0.9916 + }, + { + "start": 29137.42, + "end": 29139.26, + "probability": 0.9983 + }, + { + "start": 29139.36, + "end": 29141.24, + "probability": 0.9052 + }, + { + "start": 29142.26, + "end": 29147.0, + "probability": 0.7184 + }, + { + "start": 29149.2, + "end": 29150.16, + "probability": 0.9399 + }, + { + "start": 29151.08, + "end": 29153.74, + "probability": 0.896 + }, + { + "start": 29154.32, + "end": 29158.96, + "probability": 0.9788 + }, + { + "start": 29159.76, + "end": 29162.7, + "probability": 0.9945 + }, + { + "start": 29163.88, + "end": 29168.0, + "probability": 0.8876 + }, + { + "start": 29169.64, + "end": 29171.6, + "probability": 0.9448 + }, + { + "start": 29173.58, + "end": 29176.04, + "probability": 0.8722 + }, + { + "start": 29176.64, + "end": 29178.4, + "probability": 0.8889 + }, + { + "start": 29179.3, + "end": 29182.44, + "probability": 0.9904 + }, + { + "start": 29183.3, + "end": 29184.46, + "probability": 0.9546 + }, + { + "start": 29185.58, + "end": 29186.8, + "probability": 0.9961 + }, + { + "start": 29187.72, + "end": 29188.22, + "probability": 0.5508 + }, + { + "start": 29188.92, + "end": 29193.4, + "probability": 0.9505 + }, + { + "start": 29194.02, + "end": 29195.48, + "probability": 0.8965 + }, + { + "start": 29195.96, + "end": 29198.24, + "probability": 0.7496 + }, + { + "start": 29198.9, + "end": 29199.7, + "probability": 0.8562 + }, + { + "start": 29199.96, + "end": 29203.04, + "probability": 0.9942 + }, + { + "start": 29205.1, + "end": 29205.56, + "probability": 0.9807 + }, + { + "start": 29206.18, + "end": 29207.54, + "probability": 0.6937 + }, + { + "start": 29208.52, + "end": 29208.62, + "probability": 0.1565 + }, + { + "start": 29208.68, + "end": 29209.46, + "probability": 0.7129 + }, + { + "start": 29209.48, + "end": 29210.74, + "probability": 0.8575 + }, + { + "start": 29210.96, + "end": 29212.1, + "probability": 0.8623 + }, + { + "start": 29212.58, + "end": 29215.28, + "probability": 0.9481 + }, + { + "start": 29216.32, + "end": 29221.44, + "probability": 0.9381 + }, + { + "start": 29222.3, + "end": 29222.62, + "probability": 0.5706 + }, + { + "start": 29223.48, + "end": 29227.44, + "probability": 0.9927 + }, + { + "start": 29228.18, + "end": 29232.18, + "probability": 0.9694 + }, + { + "start": 29232.76, + "end": 29236.92, + "probability": 0.9762 + }, + { + "start": 29237.24, + "end": 29237.74, + "probability": 0.8828 + }, + { + "start": 29239.02, + "end": 29242.2, + "probability": 0.9832 + }, + { + "start": 29242.26, + "end": 29243.01, + "probability": 0.8283 + }, + { + "start": 29245.1, + "end": 29248.68, + "probability": 0.9577 + }, + { + "start": 29250.84, + "end": 29252.68, + "probability": 0.6873 + }, + { + "start": 29253.1, + "end": 29255.72, + "probability": 0.9421 + }, + { + "start": 29255.74, + "end": 29257.56, + "probability": 0.9913 + }, + { + "start": 29257.64, + "end": 29258.0, + "probability": 0.5194 + }, + { + "start": 29258.0, + "end": 29259.12, + "probability": 0.864 + }, + { + "start": 29261.56, + "end": 29263.3, + "probability": 0.9849 + }, + { + "start": 29264.78, + "end": 29267.13, + "probability": 0.5441 + }, + { + "start": 29267.94, + "end": 29270.9, + "probability": 0.9254 + }, + { + "start": 29273.56, + "end": 29275.4, + "probability": 0.8524 + }, + { + "start": 29276.32, + "end": 29280.14, + "probability": 0.9963 + }, + { + "start": 29281.36, + "end": 29283.12, + "probability": 0.9843 + }, + { + "start": 29283.18, + "end": 29287.48, + "probability": 0.9822 + }, + { + "start": 29287.8, + "end": 29289.08, + "probability": 0.6268 + }, + { + "start": 29290.14, + "end": 29292.02, + "probability": 0.8691 + }, + { + "start": 29292.78, + "end": 29294.38, + "probability": 0.7946 + }, + { + "start": 29295.0, + "end": 29299.22, + "probability": 0.9221 + }, + { + "start": 29299.7, + "end": 29302.68, + "probability": 0.9753 + }, + { + "start": 29302.74, + "end": 29304.14, + "probability": 0.6259 + }, + { + "start": 29304.38, + "end": 29305.66, + "probability": 0.9498 + }, + { + "start": 29307.54, + "end": 29310.66, + "probability": 0.3762 + }, + { + "start": 29316.62, + "end": 29319.3, + "probability": 0.9703 + }, + { + "start": 29320.18, + "end": 29324.46, + "probability": 0.7346 + }, + { + "start": 29326.18, + "end": 29327.64, + "probability": 0.7021 + }, + { + "start": 29329.02, + "end": 29330.22, + "probability": 0.9406 + }, + { + "start": 29331.36, + "end": 29331.8, + "probability": 0.5702 + }, + { + "start": 29332.04, + "end": 29333.88, + "probability": 0.9479 + }, + { + "start": 29334.19, + "end": 29334.8, + "probability": 0.6654 + }, + { + "start": 29334.8, + "end": 29338.91, + "probability": 0.9897 + }, + { + "start": 29339.1, + "end": 29339.58, + "probability": 0.3071 + }, + { + "start": 29339.9, + "end": 29340.56, + "probability": 0.4741 + }, + { + "start": 29340.68, + "end": 29342.76, + "probability": 0.4333 + }, + { + "start": 29343.38, + "end": 29344.0, + "probability": 0.3836 + }, + { + "start": 29344.72, + "end": 29345.84, + "probability": 0.826 + }, + { + "start": 29346.26, + "end": 29347.38, + "probability": 0.8298 + }, + { + "start": 29349.32, + "end": 29351.04, + "probability": 0.7515 + }, + { + "start": 29352.16, + "end": 29354.6, + "probability": 0.9976 + }, + { + "start": 29356.28, + "end": 29358.16, + "probability": 0.9341 + }, + { + "start": 29359.2, + "end": 29361.3, + "probability": 0.9861 + }, + { + "start": 29362.6, + "end": 29370.8, + "probability": 0.9917 + }, + { + "start": 29371.74, + "end": 29372.52, + "probability": 0.8205 + }, + { + "start": 29373.36, + "end": 29375.18, + "probability": 0.9849 + }, + { + "start": 29375.74, + "end": 29376.66, + "probability": 0.8935 + }, + { + "start": 29377.66, + "end": 29381.1, + "probability": 0.9684 + }, + { + "start": 29381.28, + "end": 29383.04, + "probability": 0.9378 + }, + { + "start": 29384.64, + "end": 29391.44, + "probability": 0.9836 + }, + { + "start": 29392.08, + "end": 29393.48, + "probability": 0.9976 + }, + { + "start": 29394.84, + "end": 29400.7, + "probability": 0.9639 + }, + { + "start": 29401.52, + "end": 29406.04, + "probability": 0.9429 + }, + { + "start": 29406.84, + "end": 29407.06, + "probability": 0.5004 + }, + { + "start": 29407.14, + "end": 29408.16, + "probability": 0.9888 + }, + { + "start": 29408.24, + "end": 29409.08, + "probability": 0.9445 + }, + { + "start": 29409.12, + "end": 29411.78, + "probability": 0.9965 + }, + { + "start": 29411.94, + "end": 29412.96, + "probability": 0.4939 + }, + { + "start": 29413.76, + "end": 29414.64, + "probability": 0.9427 + }, + { + "start": 29416.34, + "end": 29418.5, + "probability": 0.9336 + }, + { + "start": 29419.46, + "end": 29421.7, + "probability": 0.9858 + }, + { + "start": 29421.76, + "end": 29424.26, + "probability": 0.9929 + }, + { + "start": 29424.78, + "end": 29425.74, + "probability": 0.9622 + }, + { + "start": 29426.62, + "end": 29430.92, + "probability": 0.9977 + }, + { + "start": 29431.54, + "end": 29433.56, + "probability": 0.9892 + }, + { + "start": 29434.3, + "end": 29436.08, + "probability": 0.9454 + }, + { + "start": 29436.84, + "end": 29438.38, + "probability": 0.9022 + }, + { + "start": 29438.9, + "end": 29440.72, + "probability": 0.9567 + }, + { + "start": 29441.48, + "end": 29448.76, + "probability": 0.9933 + }, + { + "start": 29450.16, + "end": 29453.28, + "probability": 0.9956 + }, + { + "start": 29453.28, + "end": 29455.56, + "probability": 0.9536 + }, + { + "start": 29456.6, + "end": 29457.84, + "probability": 0.9222 + }, + { + "start": 29458.68, + "end": 29460.46, + "probability": 0.9847 + }, + { + "start": 29460.7, + "end": 29463.24, + "probability": 0.9808 + }, + { + "start": 29464.14, + "end": 29466.75, + "probability": 0.9915 + }, + { + "start": 29466.92, + "end": 29469.46, + "probability": 0.8965 + }, + { + "start": 29470.5, + "end": 29473.82, + "probability": 0.9844 + }, + { + "start": 29474.36, + "end": 29475.98, + "probability": 0.9146 + }, + { + "start": 29476.1, + "end": 29480.2, + "probability": 0.9866 + }, + { + "start": 29480.78, + "end": 29482.16, + "probability": 0.8802 + }, + { + "start": 29482.92, + "end": 29485.86, + "probability": 0.9958 + }, + { + "start": 29486.24, + "end": 29490.04, + "probability": 0.9775 + }, + { + "start": 29491.04, + "end": 29492.1, + "probability": 0.8965 + }, + { + "start": 29492.98, + "end": 29496.22, + "probability": 0.9901 + }, + { + "start": 29497.24, + "end": 29501.18, + "probability": 0.9869 + }, + { + "start": 29501.32, + "end": 29506.5, + "probability": 0.9915 + }, + { + "start": 29506.62, + "end": 29510.22, + "probability": 0.9888 + }, + { + "start": 29510.6, + "end": 29512.08, + "probability": 0.759 + }, + { + "start": 29512.48, + "end": 29514.04, + "probability": 0.9604 + }, + { + "start": 29514.56, + "end": 29515.12, + "probability": 0.5879 + }, + { + "start": 29515.92, + "end": 29518.78, + "probability": 0.9657 + }, + { + "start": 29519.54, + "end": 29520.63, + "probability": 0.9899 + }, + { + "start": 29521.4, + "end": 29522.52, + "probability": 0.9567 + }, + { + "start": 29523.16, + "end": 29524.66, + "probability": 0.9551 + }, + { + "start": 29525.18, + "end": 29528.62, + "probability": 0.9246 + }, + { + "start": 29529.36, + "end": 29530.4, + "probability": 0.6987 + }, + { + "start": 29531.16, + "end": 29532.2, + "probability": 0.9917 + }, + { + "start": 29532.4, + "end": 29533.06, + "probability": 0.6375 + }, + { + "start": 29533.08, + "end": 29534.22, + "probability": 0.9842 + }, + { + "start": 29535.14, + "end": 29536.3, + "probability": 0.0842 + }, + { + "start": 29536.3, + "end": 29537.72, + "probability": 0.9046 + }, + { + "start": 29538.18, + "end": 29542.32, + "probability": 0.9902 + }, + { + "start": 29542.4, + "end": 29542.68, + "probability": 0.8638 + }, + { + "start": 29542.9, + "end": 29546.3, + "probability": 0.9663 + }, + { + "start": 29546.38, + "end": 29546.86, + "probability": 0.5183 + }, + { + "start": 29546.96, + "end": 29547.92, + "probability": 0.9314 + }, + { + "start": 29548.02, + "end": 29548.7, + "probability": 0.9816 + }, + { + "start": 29549.16, + "end": 29550.0, + "probability": 0.9736 + }, + { + "start": 29550.52, + "end": 29551.56, + "probability": 0.9887 + }, + { + "start": 29551.7, + "end": 29552.4, + "probability": 0.9871 + }, + { + "start": 29552.7, + "end": 29552.9, + "probability": 0.8595 + }, + { + "start": 29554.68, + "end": 29557.0, + "probability": 0.9766 + }, + { + "start": 29558.1, + "end": 29558.58, + "probability": 0.5339 + }, + { + "start": 29560.38, + "end": 29561.7, + "probability": 0.7946 + }, + { + "start": 29562.42, + "end": 29563.0, + "probability": 0.9648 + }, + { + "start": 29565.5, + "end": 29566.42, + "probability": 0.9688 + }, + { + "start": 29567.08, + "end": 29568.8, + "probability": 0.9955 + }, + { + "start": 29568.8, + "end": 29571.36, + "probability": 0.9989 + }, + { + "start": 29571.42, + "end": 29572.28, + "probability": 0.8176 + }, + { + "start": 29572.7, + "end": 29574.0, + "probability": 0.991 + }, + { + "start": 29574.66, + "end": 29575.72, + "probability": 0.9024 + }, + { + "start": 29576.9, + "end": 29578.4, + "probability": 0.8694 + }, + { + "start": 29579.26, + "end": 29584.42, + "probability": 0.998 + }, + { + "start": 29585.04, + "end": 29585.76, + "probability": 0.9136 + }, + { + "start": 29585.82, + "end": 29588.58, + "probability": 0.8087 + }, + { + "start": 29588.86, + "end": 29590.8, + "probability": 0.9407 + }, + { + "start": 29591.56, + "end": 29593.8, + "probability": 0.9569 + }, + { + "start": 29594.62, + "end": 29599.42, + "probability": 0.9967 + }, + { + "start": 29599.48, + "end": 29600.98, + "probability": 0.9788 + }, + { + "start": 29602.08, + "end": 29602.78, + "probability": 0.8621 + }, + { + "start": 29604.62, + "end": 29605.46, + "probability": 0.9151 + }, + { + "start": 29606.02, + "end": 29606.84, + "probability": 0.9775 + }, + { + "start": 29607.18, + "end": 29608.74, + "probability": 0.4674 + }, + { + "start": 29609.02, + "end": 29609.48, + "probability": 0.7382 + }, + { + "start": 29609.58, + "end": 29610.24, + "probability": 0.746 + }, + { + "start": 29610.32, + "end": 29611.58, + "probability": 0.6142 + }, + { + "start": 29611.66, + "end": 29613.38, + "probability": 0.4156 + }, + { + "start": 29613.7, + "end": 29614.14, + "probability": 0.6667 + }, + { + "start": 29614.26, + "end": 29614.94, + "probability": 0.4583 + }, + { + "start": 29615.0, + "end": 29619.16, + "probability": 0.953 + }, + { + "start": 29619.16, + "end": 29624.3, + "probability": 0.9956 + }, + { + "start": 29624.4, + "end": 29625.0, + "probability": 0.1489 + }, + { + "start": 29625.0, + "end": 29625.6, + "probability": 0.0464 + }, + { + "start": 29625.6, + "end": 29630.28, + "probability": 0.0713 + }, + { + "start": 29630.28, + "end": 29632.86, + "probability": 0.9111 + }, + { + "start": 29633.02, + "end": 29636.2, + "probability": 0.9572 + }, + { + "start": 29639.42, + "end": 29639.42, + "probability": 0.0258 + }, + { + "start": 29639.42, + "end": 29643.5, + "probability": 0.9286 + }, + { + "start": 29644.44, + "end": 29645.44, + "probability": 0.9954 + }, + { + "start": 29645.86, + "end": 29649.24, + "probability": 0.985 + }, + { + "start": 29649.74, + "end": 29650.8, + "probability": 0.9922 + }, + { + "start": 29651.4, + "end": 29651.92, + "probability": 0.7014 + }, + { + "start": 29652.02, + "end": 29653.12, + "probability": 0.984 + }, + { + "start": 29653.16, + "end": 29654.38, + "probability": 0.9993 + }, + { + "start": 29654.98, + "end": 29655.6, + "probability": 0.8925 + }, + { + "start": 29655.66, + "end": 29656.46, + "probability": 0.9591 + }, + { + "start": 29656.56, + "end": 29657.66, + "probability": 0.9749 + }, + { + "start": 29658.28, + "end": 29660.02, + "probability": 0.9956 + }, + { + "start": 29660.84, + "end": 29664.04, + "probability": 0.9629 + }, + { + "start": 29664.74, + "end": 29666.2, + "probability": 0.8361 + }, + { + "start": 29666.66, + "end": 29669.19, + "probability": 0.9578 + }, + { + "start": 29669.9, + "end": 29672.78, + "probability": 0.9365 + }, + { + "start": 29673.3, + "end": 29676.28, + "probability": 0.8884 + }, + { + "start": 29676.36, + "end": 29677.26, + "probability": 0.9982 + }, + { + "start": 29678.42, + "end": 29685.36, + "probability": 0.9895 + }, + { + "start": 29686.56, + "end": 29688.94, + "probability": 0.8479 + }, + { + "start": 29691.84, + "end": 29692.5, + "probability": 0.7629 + }, + { + "start": 29694.12, + "end": 29695.0, + "probability": 0.773 + }, + { + "start": 29695.96, + "end": 29697.76, + "probability": 0.9966 + }, + { + "start": 29698.44, + "end": 29700.38, + "probability": 0.8881 + }, + { + "start": 29701.54, + "end": 29703.04, + "probability": 0.9895 + }, + { + "start": 29704.6, + "end": 29706.18, + "probability": 0.9759 + }, + { + "start": 29706.88, + "end": 29707.62, + "probability": 0.9924 + }, + { + "start": 29708.44, + "end": 29710.22, + "probability": 0.9956 + }, + { + "start": 29710.82, + "end": 29712.08, + "probability": 0.9577 + }, + { + "start": 29713.5, + "end": 29714.6, + "probability": 0.6725 + }, + { + "start": 29720.22, + "end": 29721.12, + "probability": 0.586 + }, + { + "start": 29721.24, + "end": 29722.26, + "probability": 0.8727 + }, + { + "start": 29722.34, + "end": 29723.68, + "probability": 0.7842 + }, + { + "start": 29724.58, + "end": 29727.28, + "probability": 0.9675 + }, + { + "start": 29728.3, + "end": 29730.6, + "probability": 0.9106 + }, + { + "start": 29732.14, + "end": 29734.92, + "probability": 0.8633 + }, + { + "start": 29735.0, + "end": 29736.46, + "probability": 0.8708 + }, + { + "start": 29737.48, + "end": 29738.44, + "probability": 0.6087 + }, + { + "start": 29738.56, + "end": 29739.64, + "probability": 0.9136 + }, + { + "start": 29740.24, + "end": 29742.05, + "probability": 0.9802 + }, + { + "start": 29744.24, + "end": 29746.14, + "probability": 0.8682 + }, + { + "start": 29747.38, + "end": 29749.18, + "probability": 0.9922 + }, + { + "start": 29749.54, + "end": 29751.48, + "probability": 0.9965 + }, + { + "start": 29752.16, + "end": 29753.26, + "probability": 0.8312 + }, + { + "start": 29754.16, + "end": 29755.33, + "probability": 0.9795 + }, + { + "start": 29756.24, + "end": 29759.32, + "probability": 0.9841 + }, + { + "start": 29760.34, + "end": 29763.6, + "probability": 0.8318 + }, + { + "start": 29763.86, + "end": 29766.12, + "probability": 0.9932 + }, + { + "start": 29766.24, + "end": 29770.7, + "probability": 0.9678 + }, + { + "start": 29770.7, + "end": 29775.88, + "probability": 0.995 + }, + { + "start": 29777.22, + "end": 29778.96, + "probability": 0.9956 + }, + { + "start": 29779.68, + "end": 29781.9, + "probability": 0.9993 + }, + { + "start": 29782.56, + "end": 29785.76, + "probability": 0.9953 + }, + { + "start": 29786.38, + "end": 29788.76, + "probability": 0.9766 + }, + { + "start": 29789.58, + "end": 29790.58, + "probability": 0.7975 + }, + { + "start": 29791.3, + "end": 29792.12, + "probability": 0.9612 + }, + { + "start": 29793.44, + "end": 29799.7, + "probability": 0.9931 + }, + { + "start": 29800.92, + "end": 29803.6, + "probability": 0.4635 + }, + { + "start": 29804.3, + "end": 29807.27, + "probability": 0.9971 + }, + { + "start": 29808.0, + "end": 29808.72, + "probability": 0.8272 + }, + { + "start": 29809.42, + "end": 29810.4, + "probability": 0.2547 + }, + { + "start": 29810.4, + "end": 29811.12, + "probability": 0.7909 + }, + { + "start": 29811.6, + "end": 29815.26, + "probability": 0.9966 + }, + { + "start": 29816.2, + "end": 29817.4, + "probability": 0.9645 + }, + { + "start": 29818.2, + "end": 29821.88, + "probability": 0.9819 + }, + { + "start": 29822.1, + "end": 29823.54, + "probability": 0.98 + }, + { + "start": 29823.76, + "end": 29828.58, + "probability": 0.9956 + }, + { + "start": 29828.7, + "end": 29833.96, + "probability": 0.9972 + }, + { + "start": 29834.1, + "end": 29836.02, + "probability": 0.9546 + }, + { + "start": 29837.54, + "end": 29839.92, + "probability": 0.696 + }, + { + "start": 29840.7, + "end": 29842.4, + "probability": 0.8403 + }, + { + "start": 29843.22, + "end": 29846.56, + "probability": 0.9862 + }, + { + "start": 29847.54, + "end": 29850.24, + "probability": 0.9118 + }, + { + "start": 29850.56, + "end": 29854.46, + "probability": 0.9952 + }, + { + "start": 29855.32, + "end": 29857.1, + "probability": 0.9977 + }, + { + "start": 29862.02, + "end": 29864.46, + "probability": 0.4817 + }, + { + "start": 29864.6, + "end": 29866.32, + "probability": 0.8967 + }, + { + "start": 29866.74, + "end": 29867.18, + "probability": 0.4895 + }, + { + "start": 29868.1, + "end": 29871.22, + "probability": 0.9908 + }, + { + "start": 29872.0, + "end": 29874.02, + "probability": 0.9161 + }, + { + "start": 29874.6, + "end": 29876.96, + "probability": 0.9536 + }, + { + "start": 29877.72, + "end": 29881.06, + "probability": 0.9937 + }, + { + "start": 29881.8, + "end": 29882.82, + "probability": 0.5043 + }, + { + "start": 29884.22, + "end": 29886.5, + "probability": 0.9762 + }, + { + "start": 29886.98, + "end": 29889.4, + "probability": 0.9925 + }, + { + "start": 29889.94, + "end": 29891.2, + "probability": 0.9692 + }, + { + "start": 29892.1, + "end": 29894.89, + "probability": 0.9893 + }, + { + "start": 29895.58, + "end": 29897.86, + "probability": 0.7963 + }, + { + "start": 29898.01, + "end": 29900.1, + "probability": 0.9087 + }, + { + "start": 29900.2, + "end": 29901.29, + "probability": 0.9797 + }, + { + "start": 29901.66, + "end": 29904.16, + "probability": 0.9961 + }, + { + "start": 29904.38, + "end": 29904.66, + "probability": 0.8911 + }, + { + "start": 29905.26, + "end": 29907.02, + "probability": 0.9763 + }, + { + "start": 29907.54, + "end": 29908.42, + "probability": 0.5216 + }, + { + "start": 29909.1, + "end": 29909.84, + "probability": 0.4848 + }, + { + "start": 29910.06, + "end": 29912.5, + "probability": 0.9933 + }, + { + "start": 29913.08, + "end": 29914.46, + "probability": 0.999 + }, + { + "start": 29914.54, + "end": 29917.78, + "probability": 0.9976 + }, + { + "start": 29918.64, + "end": 29920.96, + "probability": 0.9629 + }, + { + "start": 29921.1, + "end": 29922.76, + "probability": 0.9946 + }, + { + "start": 29923.2, + "end": 29924.7, + "probability": 0.9962 + }, + { + "start": 29925.02, + "end": 29926.36, + "probability": 0.9266 + }, + { + "start": 29927.18, + "end": 29932.8, + "probability": 0.957 + }, + { + "start": 29932.92, + "end": 29933.88, + "probability": 0.7257 + }, + { + "start": 29934.74, + "end": 29937.16, + "probability": 0.9971 + }, + { + "start": 29937.74, + "end": 29939.96, + "probability": 0.9756 + }, + { + "start": 29940.58, + "end": 29943.36, + "probability": 0.9644 + }, + { + "start": 29943.56, + "end": 29947.36, + "probability": 0.9595 + }, + { + "start": 29948.46, + "end": 29950.4, + "probability": 0.9297 + }, + { + "start": 29950.94, + "end": 29954.8, + "probability": 0.9677 + }, + { + "start": 29954.82, + "end": 29955.32, + "probability": 0.5334 + }, + { + "start": 29955.42, + "end": 29957.5, + "probability": 0.8781 + }, + { + "start": 29957.72, + "end": 29959.8, + "probability": 0.981 + }, + { + "start": 29960.68, + "end": 29964.74, + "probability": 0.7684 + }, + { + "start": 29973.6, + "end": 29975.7, + "probability": 0.4513 + }, + { + "start": 29975.82, + "end": 29977.48, + "probability": 0.0311 + }, + { + "start": 29981.08, + "end": 29982.0, + "probability": 0.1455 + }, + { + "start": 29983.02, + "end": 29986.54, + "probability": 0.0905 + }, + { + "start": 29987.66, + "end": 29988.58, + "probability": 0.1469 + }, + { + "start": 29988.58, + "end": 29989.42, + "probability": 0.4501 + }, + { + "start": 29990.99, + "end": 29991.9, + "probability": 0.1075 + }, + { + "start": 29991.98, + "end": 29993.16, + "probability": 0.2083 + }, + { + "start": 29994.03, + "end": 29999.74, + "probability": 0.0489 + }, + { + "start": 30001.26, + "end": 30002.9, + "probability": 0.0179 + }, + { + "start": 30015.16, + "end": 30015.34, + "probability": 0.1639 + }, + { + "start": 30047.7, + "end": 30058.18, + "probability": 0.9985 + }, + { + "start": 30058.28, + "end": 30067.4, + "probability": 0.9978 + }, + { + "start": 30069.08, + "end": 30069.3, + "probability": 0.2515 + }, + { + "start": 30069.36, + "end": 30075.44, + "probability": 0.9958 + }, + { + "start": 30076.46, + "end": 30078.64, + "probability": 0.9014 + }, + { + "start": 30079.84, + "end": 30082.96, + "probability": 0.9934 + }, + { + "start": 30084.3, + "end": 30088.06, + "probability": 0.9284 + }, + { + "start": 30089.2, + "end": 30093.5, + "probability": 0.991 + }, + { + "start": 30093.5, + "end": 30098.06, + "probability": 0.9879 + }, + { + "start": 30098.14, + "end": 30100.4, + "probability": 0.2006 + }, + { + "start": 30101.42, + "end": 30103.08, + "probability": 0.8613 + }, + { + "start": 30103.6, + "end": 30107.4, + "probability": 0.9967 + }, + { + "start": 30108.48, + "end": 30112.96, + "probability": 0.9918 + }, + { + "start": 30113.56, + "end": 30114.96, + "probability": 0.9429 + }, + { + "start": 30115.86, + "end": 30117.9, + "probability": 0.9128 + }, + { + "start": 30119.04, + "end": 30122.54, + "probability": 0.9719 + }, + { + "start": 30122.8, + "end": 30124.2, + "probability": 0.8944 + }, + { + "start": 30124.86, + "end": 30126.54, + "probability": 0.9611 + }, + { + "start": 30126.77, + "end": 30134.04, + "probability": 0.9965 + }, + { + "start": 30134.8, + "end": 30136.76, + "probability": 0.9211 + }, + { + "start": 30138.0, + "end": 30141.65, + "probability": 0.9348 + }, + { + "start": 30142.82, + "end": 30148.54, + "probability": 0.9727 + }, + { + "start": 30149.14, + "end": 30150.94, + "probability": 0.9411 + }, + { + "start": 30151.12, + "end": 30157.1, + "probability": 0.9907 + }, + { + "start": 30158.88, + "end": 30161.38, + "probability": 0.8701 + }, + { + "start": 30161.52, + "end": 30163.56, + "probability": 0.9526 + }, + { + "start": 30164.26, + "end": 30166.04, + "probability": 0.9684 + }, + { + "start": 30168.38, + "end": 30170.66, + "probability": 0.9869 + }, + { + "start": 30172.0, + "end": 30176.8, + "probability": 0.9802 + }, + { + "start": 30178.06, + "end": 30181.38, + "probability": 0.998 + }, + { + "start": 30181.38, + "end": 30185.64, + "probability": 0.9085 + }, + { + "start": 30188.5, + "end": 30191.6, + "probability": 0.7795 + }, + { + "start": 30192.28, + "end": 30194.56, + "probability": 0.9309 + }, + { + "start": 30195.02, + "end": 30197.94, + "probability": 0.9938 + }, + { + "start": 30199.26, + "end": 30203.38, + "probability": 0.8846 + }, + { + "start": 30204.34, + "end": 30205.88, + "probability": 0.9884 + }, + { + "start": 30206.4, + "end": 30207.42, + "probability": 0.9799 + }, + { + "start": 30208.34, + "end": 30212.62, + "probability": 0.9991 + }, + { + "start": 30213.7, + "end": 30218.44, + "probability": 0.7836 + }, + { + "start": 30219.44, + "end": 30221.96, + "probability": 0.9976 + }, + { + "start": 30222.96, + "end": 30227.92, + "probability": 0.9989 + }, + { + "start": 30228.1, + "end": 30229.86, + "probability": 0.5683 + }, + { + "start": 30231.28, + "end": 30232.78, + "probability": 0.729 + }, + { + "start": 30233.86, + "end": 30235.84, + "probability": 0.9449 + }, + { + "start": 30236.92, + "end": 30238.66, + "probability": 0.8862 + }, + { + "start": 30238.9, + "end": 30245.42, + "probability": 0.978 + }, + { + "start": 30245.72, + "end": 30246.1, + "probability": 0.2977 + }, + { + "start": 30246.24, + "end": 30248.74, + "probability": 0.8612 + }, + { + "start": 30248.74, + "end": 30253.5, + "probability": 0.9969 + }, + { + "start": 30253.7, + "end": 30255.96, + "probability": 0.7935 + }, + { + "start": 30258.32, + "end": 30260.52, + "probability": 0.9199 + }, + { + "start": 30262.4, + "end": 30263.62, + "probability": 0.9757 + }, + { + "start": 30265.1, + "end": 30266.64, + "probability": 0.949 + }, + { + "start": 30268.0, + "end": 30270.78, + "probability": 0.9849 + }, + { + "start": 30273.56, + "end": 30275.12, + "probability": 0.9462 + }, + { + "start": 30275.62, + "end": 30281.9, + "probability": 0.9989 + }, + { + "start": 30284.1, + "end": 30290.98, + "probability": 0.9988 + }, + { + "start": 30292.42, + "end": 30295.3, + "probability": 0.9639 + }, + { + "start": 30296.1, + "end": 30301.44, + "probability": 0.9954 + }, + { + "start": 30301.68, + "end": 30303.52, + "probability": 0.9343 + }, + { + "start": 30303.52, + "end": 30304.76, + "probability": 0.4999 + }, + { + "start": 30306.2, + "end": 30312.4, + "probability": 0.9784 + }, + { + "start": 30312.4, + "end": 30317.0, + "probability": 0.96 + }, + { + "start": 30320.26, + "end": 30322.52, + "probability": 0.867 + }, + { + "start": 30325.02, + "end": 30326.94, + "probability": 0.7954 + }, + { + "start": 30328.86, + "end": 30334.34, + "probability": 0.998 + }, + { + "start": 30335.12, + "end": 30343.26, + "probability": 0.9951 + }, + { + "start": 30344.22, + "end": 30345.96, + "probability": 0.8776 + }, + { + "start": 30348.64, + "end": 30354.04, + "probability": 0.9803 + }, + { + "start": 30354.62, + "end": 30356.72, + "probability": 0.9948 + }, + { + "start": 30358.78, + "end": 30361.42, + "probability": 0.9882 + }, + { + "start": 30362.28, + "end": 30364.3, + "probability": 0.9675 + }, + { + "start": 30367.04, + "end": 30369.98, + "probability": 0.7318 + }, + { + "start": 30370.74, + "end": 30373.54, + "probability": 0.8454 + }, + { + "start": 30373.78, + "end": 30374.42, + "probability": 0.8729 + }, + { + "start": 30374.5, + "end": 30375.32, + "probability": 0.8335 + }, + { + "start": 30375.66, + "end": 30381.26, + "probability": 0.9005 + }, + { + "start": 30381.64, + "end": 30382.86, + "probability": 0.7549 + }, + { + "start": 30383.0, + "end": 30384.0, + "probability": 0.8723 + }, + { + "start": 30384.26, + "end": 30385.44, + "probability": 0.6486 + }, + { + "start": 30387.06, + "end": 30388.34, + "probability": 0.6442 + }, + { + "start": 30389.84, + "end": 30393.52, + "probability": 0.9507 + }, + { + "start": 30395.02, + "end": 30397.64, + "probability": 0.9907 + }, + { + "start": 30400.02, + "end": 30400.94, + "probability": 0.8727 + }, + { + "start": 30403.14, + "end": 30407.76, + "probability": 0.9412 + }, + { + "start": 30408.18, + "end": 30413.34, + "probability": 0.9426 + }, + { + "start": 30413.6, + "end": 30416.44, + "probability": 0.979 + }, + { + "start": 30417.54, + "end": 30420.28, + "probability": 0.9893 + }, + { + "start": 30422.52, + "end": 30427.7, + "probability": 0.9846 + }, + { + "start": 30428.22, + "end": 30431.48, + "probability": 0.7867 + }, + { + "start": 30432.88, + "end": 30437.84, + "probability": 0.9888 + }, + { + "start": 30441.84, + "end": 30443.22, + "probability": 0.7865 + }, + { + "start": 30446.04, + "end": 30447.26, + "probability": 0.9989 + }, + { + "start": 30449.32, + "end": 30452.28, + "probability": 0.9393 + }, + { + "start": 30453.8, + "end": 30459.5, + "probability": 0.9981 + }, + { + "start": 30459.5, + "end": 30465.96, + "probability": 0.9978 + }, + { + "start": 30466.02, + "end": 30466.88, + "probability": 0.7913 + }, + { + "start": 30468.62, + "end": 30474.14, + "probability": 0.9943 + }, + { + "start": 30476.44, + "end": 30482.32, + "probability": 0.9928 + }, + { + "start": 30482.38, + "end": 30487.28, + "probability": 0.9921 + }, + { + "start": 30489.08, + "end": 30490.4, + "probability": 0.8518 + }, + { + "start": 30492.82, + "end": 30493.78, + "probability": 0.7934 + }, + { + "start": 30496.08, + "end": 30496.62, + "probability": 0.6916 + }, + { + "start": 30498.04, + "end": 30504.32, + "probability": 0.9959 + }, + { + "start": 30505.24, + "end": 30507.34, + "probability": 0.9762 + }, + { + "start": 30508.68, + "end": 30510.6, + "probability": 0.991 + }, + { + "start": 30511.82, + "end": 30516.26, + "probability": 0.9578 + }, + { + "start": 30516.28, + "end": 30522.14, + "probability": 0.9819 + }, + { + "start": 30522.78, + "end": 30525.82, + "probability": 0.9888 + }, + { + "start": 30526.3, + "end": 30529.04, + "probability": 0.9785 + }, + { + "start": 30529.78, + "end": 30531.0, + "probability": 0.7985 + }, + { + "start": 30533.05, + "end": 30537.52, + "probability": 0.9085 + }, + { + "start": 30537.78, + "end": 30541.3, + "probability": 0.9911 + }, + { + "start": 30541.3, + "end": 30545.2, + "probability": 0.9434 + }, + { + "start": 30546.02, + "end": 30546.84, + "probability": 0.361 + }, + { + "start": 30549.64, + "end": 30550.5, + "probability": 0.9291 + }, + { + "start": 30551.5, + "end": 30553.92, + "probability": 0.996 + }, + { + "start": 30554.28, + "end": 30555.9, + "probability": 0.9686 + }, + { + "start": 30556.16, + "end": 30557.22, + "probability": 0.8299 + }, + { + "start": 30557.66, + "end": 30558.64, + "probability": 0.5173 + }, + { + "start": 30558.72, + "end": 30562.06, + "probability": 0.9907 + }, + { + "start": 30563.86, + "end": 30566.0, + "probability": 0.9757 + }, + { + "start": 30568.14, + "end": 30571.68, + "probability": 0.9598 + }, + { + "start": 30573.34, + "end": 30576.78, + "probability": 0.9753 + }, + { + "start": 30579.32, + "end": 30580.78, + "probability": 0.9971 + }, + { + "start": 30581.74, + "end": 30583.37, + "probability": 0.8914 + }, + { + "start": 30584.34, + "end": 30586.8, + "probability": 0.9946 + }, + { + "start": 30586.9, + "end": 30589.08, + "probability": 0.8276 + }, + { + "start": 30589.5, + "end": 30590.69, + "probability": 0.9978 + }, + { + "start": 30591.24, + "end": 30592.96, + "probability": 0.9697 + }, + { + "start": 30596.18, + "end": 30597.18, + "probability": 0.753 + }, + { + "start": 30600.44, + "end": 30602.48, + "probability": 0.4924 + }, + { + "start": 30603.48, + "end": 30607.48, + "probability": 0.9928 + }, + { + "start": 30609.18, + "end": 30610.9, + "probability": 0.9744 + }, + { + "start": 30613.14, + "end": 30614.86, + "probability": 0.9866 + }, + { + "start": 30616.2, + "end": 30617.78, + "probability": 0.9521 + }, + { + "start": 30619.3, + "end": 30621.72, + "probability": 0.8989 + }, + { + "start": 30622.52, + "end": 30623.4, + "probability": 0.9821 + }, + { + "start": 30623.92, + "end": 30624.6, + "probability": 0.5913 + }, + { + "start": 30626.64, + "end": 30634.04, + "probability": 0.9974 + }, + { + "start": 30636.9, + "end": 30637.78, + "probability": 0.9619 + }, + { + "start": 30640.82, + "end": 30646.76, + "probability": 0.9927 + }, + { + "start": 30648.78, + "end": 30651.13, + "probability": 0.8778 + }, + { + "start": 30653.64, + "end": 30655.82, + "probability": 0.9687 + }, + { + "start": 30657.18, + "end": 30658.86, + "probability": 0.9263 + }, + { + "start": 30659.98, + "end": 30664.5, + "probability": 0.8885 + }, + { + "start": 30666.72, + "end": 30670.24, + "probability": 0.9025 + }, + { + "start": 30671.28, + "end": 30675.54, + "probability": 0.9761 + }, + { + "start": 30677.14, + "end": 30679.54, + "probability": 0.9833 + }, + { + "start": 30681.86, + "end": 30685.46, + "probability": 0.9761 + }, + { + "start": 30687.8, + "end": 30691.84, + "probability": 0.9907 + }, + { + "start": 30693.2, + "end": 30698.1, + "probability": 0.9976 + }, + { + "start": 30699.58, + "end": 30705.82, + "probability": 0.9985 + }, + { + "start": 30707.3, + "end": 30711.02, + "probability": 0.9995 + }, + { + "start": 30711.02, + "end": 30715.84, + "probability": 0.9933 + }, + { + "start": 30717.87, + "end": 30718.5, + "probability": 0.2404 + }, + { + "start": 30718.5, + "end": 30719.92, + "probability": 0.8406 + }, + { + "start": 30720.76, + "end": 30722.34, + "probability": 0.9919 + }, + { + "start": 30722.44, + "end": 30723.58, + "probability": 0.9691 + }, + { + "start": 30723.88, + "end": 30725.66, + "probability": 0.9858 + }, + { + "start": 30728.78, + "end": 30731.28, + "probability": 0.9785 + }, + { + "start": 30733.04, + "end": 30737.68, + "probability": 0.9932 + }, + { + "start": 30738.06, + "end": 30741.76, + "probability": 0.9314 + }, + { + "start": 30743.84, + "end": 30749.0, + "probability": 0.9906 + }, + { + "start": 30749.46, + "end": 30752.64, + "probability": 0.8552 + }, + { + "start": 30754.02, + "end": 30755.78, + "probability": 0.993 + }, + { + "start": 30756.02, + "end": 30758.74, + "probability": 0.895 + }, + { + "start": 30760.6, + "end": 30762.78, + "probability": 0.9722 + }, + { + "start": 30766.04, + "end": 30775.5, + "probability": 0.9924 + }, + { + "start": 30776.06, + "end": 30780.68, + "probability": 0.99 + }, + { + "start": 30781.78, + "end": 30784.26, + "probability": 0.931 + }, + { + "start": 30787.84, + "end": 30788.58, + "probability": 0.5932 + }, + { + "start": 30790.26, + "end": 30793.3, + "probability": 0.8876 + }, + { + "start": 30794.72, + "end": 30796.8, + "probability": 0.9875 + }, + { + "start": 30797.56, + "end": 30801.31, + "probability": 0.9875 + }, + { + "start": 30804.68, + "end": 30811.08, + "probability": 0.988 + }, + { + "start": 30812.7, + "end": 30819.34, + "probability": 0.998 + }, + { + "start": 30819.34, + "end": 30826.36, + "probability": 0.9997 + }, + { + "start": 30827.28, + "end": 30830.3, + "probability": 0.9894 + }, + { + "start": 30831.22, + "end": 30833.68, + "probability": 0.9905 + }, + { + "start": 30834.2, + "end": 30836.54, + "probability": 0.9803 + }, + { + "start": 30837.16, + "end": 30842.44, + "probability": 0.9778 + }, + { + "start": 30843.16, + "end": 30845.78, + "probability": 0.8727 + }, + { + "start": 30846.66, + "end": 30848.34, + "probability": 0.8728 + }, + { + "start": 30848.5, + "end": 30851.8, + "probability": 0.7425 + }, + { + "start": 30852.56, + "end": 30854.46, + "probability": 0.7383 + }, + { + "start": 30855.64, + "end": 30856.84, + "probability": 0.8534 + }, + { + "start": 30857.9, + "end": 30864.4, + "probability": 0.998 + }, + { + "start": 30864.4, + "end": 30871.38, + "probability": 0.9893 + }, + { + "start": 30872.96, + "end": 30874.2, + "probability": 0.5865 + }, + { + "start": 30876.26, + "end": 30881.14, + "probability": 0.9888 + }, + { + "start": 30881.14, + "end": 30886.98, + "probability": 0.9974 + }, + { + "start": 30888.34, + "end": 30890.1, + "probability": 0.9975 + }, + { + "start": 30893.0, + "end": 30898.76, + "probability": 0.997 + }, + { + "start": 30900.98, + "end": 30905.58, + "probability": 0.993 + }, + { + "start": 30906.82, + "end": 30911.18, + "probability": 0.9925 + }, + { + "start": 30911.88, + "end": 30913.86, + "probability": 0.994 + }, + { + "start": 30914.62, + "end": 30917.2, + "probability": 0.9966 + }, + { + "start": 30918.6, + "end": 30924.3, + "probability": 0.9976 + }, + { + "start": 30924.3, + "end": 30931.9, + "probability": 0.998 + }, + { + "start": 30933.14, + "end": 30938.9, + "probability": 0.9984 + }, + { + "start": 30938.9, + "end": 30943.66, + "probability": 0.995 + }, + { + "start": 30944.14, + "end": 30946.92, + "probability": 0.8043 + }, + { + "start": 30947.28, + "end": 30947.92, + "probability": 0.4826 + }, + { + "start": 30948.12, + "end": 30948.64, + "probability": 0.9109 + }, + { + "start": 30951.92, + "end": 30954.16, + "probability": 0.898 + }, + { + "start": 30954.96, + "end": 30958.66, + "probability": 0.9537 + }, + { + "start": 30959.36, + "end": 30960.32, + "probability": 0.9429 + }, + { + "start": 30964.18, + "end": 30969.48, + "probability": 0.9972 + }, + { + "start": 30970.92, + "end": 30976.98, + "probability": 0.9981 + }, + { + "start": 30978.34, + "end": 30979.76, + "probability": 0.9718 + }, + { + "start": 30980.74, + "end": 30982.98, + "probability": 0.9935 + }, + { + "start": 30983.76, + "end": 30987.12, + "probability": 0.905 + }, + { + "start": 30990.76, + "end": 30991.6, + "probability": 0.6115 + }, + { + "start": 30992.81, + "end": 30997.74, + "probability": 0.9804 + }, + { + "start": 30998.8, + "end": 31000.12, + "probability": 0.9718 + }, + { + "start": 31002.9, + "end": 31004.89, + "probability": 0.9916 + }, + { + "start": 31008.88, + "end": 31011.55, + "probability": 0.9976 + }, + { + "start": 31014.24, + "end": 31016.54, + "probability": 0.9823 + }, + { + "start": 31017.34, + "end": 31019.7, + "probability": 0.95 + }, + { + "start": 31020.22, + "end": 31025.1, + "probability": 0.9442 + }, + { + "start": 31027.16, + "end": 31029.02, + "probability": 0.8312 + }, + { + "start": 31029.92, + "end": 31031.06, + "probability": 0.9941 + }, + { + "start": 31032.72, + "end": 31033.92, + "probability": 0.9956 + }, + { + "start": 31035.1, + "end": 31036.52, + "probability": 0.9377 + }, + { + "start": 31039.2, + "end": 31041.4, + "probability": 0.9983 + }, + { + "start": 31043.2, + "end": 31044.48, + "probability": 0.8743 + }, + { + "start": 31045.54, + "end": 31047.02, + "probability": 0.993 + }, + { + "start": 31047.84, + "end": 31052.36, + "probability": 0.9983 + }, + { + "start": 31052.88, + "end": 31056.28, + "probability": 0.9962 + }, + { + "start": 31057.58, + "end": 31058.28, + "probability": 0.7439 + }, + { + "start": 31059.46, + "end": 31061.02, + "probability": 0.993 + }, + { + "start": 31061.66, + "end": 31063.34, + "probability": 0.7701 + }, + { + "start": 31065.3, + "end": 31067.44, + "probability": 0.8572 + }, + { + "start": 31068.92, + "end": 31069.94, + "probability": 0.9746 + }, + { + "start": 31072.1, + "end": 31073.62, + "probability": 0.8914 + }, + { + "start": 31074.6, + "end": 31078.34, + "probability": 0.942 + }, + { + "start": 31078.4, + "end": 31079.72, + "probability": 0.9716 + }, + { + "start": 31080.18, + "end": 31081.18, + "probability": 0.9891 + }, + { + "start": 31081.5, + "end": 31082.52, + "probability": 0.8537 + }, + { + "start": 31084.34, + "end": 31087.38, + "probability": 0.9709 + }, + { + "start": 31089.72, + "end": 31091.76, + "probability": 0.998 + }, + { + "start": 31093.28, + "end": 31094.24, + "probability": 0.3612 + }, + { + "start": 31096.44, + "end": 31100.76, + "probability": 0.9454 + }, + { + "start": 31101.66, + "end": 31103.28, + "probability": 0.742 + }, + { + "start": 31104.7, + "end": 31108.58, + "probability": 0.9977 + }, + { + "start": 31108.58, + "end": 31112.42, + "probability": 0.9935 + }, + { + "start": 31113.44, + "end": 31117.22, + "probability": 0.9949 + }, + { + "start": 31117.7, + "end": 31121.1, + "probability": 0.9917 + }, + { + "start": 31122.88, + "end": 31125.6, + "probability": 0.9893 + }, + { + "start": 31126.46, + "end": 31129.1, + "probability": 0.9951 + }, + { + "start": 31131.54, + "end": 31136.43, + "probability": 0.7345 + }, + { + "start": 31138.16, + "end": 31142.3, + "probability": 0.9397 + }, + { + "start": 31142.3, + "end": 31145.14, + "probability": 0.9964 + }, + { + "start": 31147.34, + "end": 31149.7, + "probability": 0.9066 + }, + { + "start": 31150.88, + "end": 31154.46, + "probability": 0.9379 + }, + { + "start": 31154.98, + "end": 31157.78, + "probability": 0.6671 + }, + { + "start": 31158.24, + "end": 31159.08, + "probability": 0.4854 + }, + { + "start": 31159.16, + "end": 31161.18, + "probability": 0.6642 + }, + { + "start": 31161.58, + "end": 31163.42, + "probability": 0.8862 + }, + { + "start": 31164.74, + "end": 31168.46, + "probability": 0.9737 + }, + { + "start": 31168.46, + "end": 31173.52, + "probability": 0.9902 + }, + { + "start": 31174.26, + "end": 31180.24, + "probability": 0.9664 + }, + { + "start": 31180.24, + "end": 31181.22, + "probability": 0.6624 + }, + { + "start": 31182.88, + "end": 31183.76, + "probability": 0.9062 + }, + { + "start": 31184.28, + "end": 31185.06, + "probability": 0.9542 + }, + { + "start": 31186.36, + "end": 31188.24, + "probability": 0.9833 + }, + { + "start": 31188.76, + "end": 31189.24, + "probability": 0.9501 + }, + { + "start": 31190.64, + "end": 31191.2, + "probability": 0.8926 + }, + { + "start": 31192.12, + "end": 31197.4, + "probability": 0.9958 + }, + { + "start": 31199.04, + "end": 31201.66, + "probability": 0.9807 + }, + { + "start": 31202.78, + "end": 31207.28, + "probability": 0.8152 + }, + { + "start": 31209.7, + "end": 31213.4, + "probability": 0.9722 + }, + { + "start": 31213.88, + "end": 31215.68, + "probability": 0.9419 + }, + { + "start": 31216.24, + "end": 31217.0, + "probability": 0.3527 + }, + { + "start": 31218.22, + "end": 31220.86, + "probability": 0.9813 + }, + { + "start": 31221.0, + "end": 31224.3, + "probability": 0.9849 + }, + { + "start": 31226.22, + "end": 31234.32, + "probability": 0.9668 + }, + { + "start": 31235.64, + "end": 31238.86, + "probability": 0.9257 + }, + { + "start": 31240.68, + "end": 31242.52, + "probability": 0.9407 + }, + { + "start": 31242.56, + "end": 31243.32, + "probability": 0.8343 + }, + { + "start": 31243.44, + "end": 31249.14, + "probability": 0.9508 + }, + { + "start": 31250.68, + "end": 31252.28, + "probability": 0.9792 + }, + { + "start": 31253.86, + "end": 31261.54, + "probability": 0.9862 + }, + { + "start": 31264.28, + "end": 31265.65, + "probability": 0.9907 + }, + { + "start": 31267.8, + "end": 31269.28, + "probability": 0.9937 + }, + { + "start": 31270.92, + "end": 31274.84, + "probability": 0.9946 + }, + { + "start": 31274.9, + "end": 31278.98, + "probability": 0.9984 + }, + { + "start": 31280.8, + "end": 31286.02, + "probability": 0.9928 + }, + { + "start": 31287.21, + "end": 31292.1, + "probability": 0.8252 + }, + { + "start": 31292.6, + "end": 31292.78, + "probability": 0.028 + }, + { + "start": 31293.24, + "end": 31298.14, + "probability": 0.9888 + }, + { + "start": 31300.4, + "end": 31302.74, + "probability": 0.8579 + }, + { + "start": 31303.82, + "end": 31307.92, + "probability": 0.9916 + }, + { + "start": 31308.28, + "end": 31311.72, + "probability": 0.9203 + }, + { + "start": 31312.1, + "end": 31313.82, + "probability": 0.9427 + }, + { + "start": 31313.9, + "end": 31315.28, + "probability": 0.6676 + }, + { + "start": 31316.5, + "end": 31317.63, + "probability": 0.9834 + }, + { + "start": 31317.84, + "end": 31323.36, + "probability": 0.9348 + }, + { + "start": 31323.36, + "end": 31328.22, + "probability": 0.9343 + }, + { + "start": 31328.6, + "end": 31332.32, + "probability": 0.9891 + }, + { + "start": 31332.4, + "end": 31333.5, + "probability": 0.7916 + }, + { + "start": 31333.98, + "end": 31335.68, + "probability": 0.9961 + }, + { + "start": 31337.4, + "end": 31340.1, + "probability": 0.7541 + }, + { + "start": 31342.64, + "end": 31343.7, + "probability": 0.8443 + }, + { + "start": 31344.5, + "end": 31346.6, + "probability": 0.9136 + }, + { + "start": 31347.76, + "end": 31351.96, + "probability": 0.792 + }, + { + "start": 31353.22, + "end": 31354.84, + "probability": 0.9277 + }, + { + "start": 31357.14, + "end": 31367.54, + "probability": 0.9888 + }, + { + "start": 31367.74, + "end": 31369.36, + "probability": 0.9606 + }, + { + "start": 31370.3, + "end": 31374.16, + "probability": 0.9913 + }, + { + "start": 31374.16, + "end": 31379.3, + "probability": 0.9973 + }, + { + "start": 31380.1, + "end": 31381.16, + "probability": 0.8843 + }, + { + "start": 31381.72, + "end": 31385.58, + "probability": 0.9624 + }, + { + "start": 31386.22, + "end": 31394.5, + "probability": 0.9624 + }, + { + "start": 31394.7, + "end": 31395.6, + "probability": 0.6631 + }, + { + "start": 31395.62, + "end": 31396.84, + "probability": 0.9341 + }, + { + "start": 31398.02, + "end": 31401.96, + "probability": 0.9821 + }, + { + "start": 31403.72, + "end": 31406.38, + "probability": 0.9941 + }, + { + "start": 31407.9, + "end": 31410.96, + "probability": 0.9653 + }, + { + "start": 31411.12, + "end": 31414.94, + "probability": 0.9768 + }, + { + "start": 31416.02, + "end": 31420.48, + "probability": 0.9964 + }, + { + "start": 31420.82, + "end": 31423.98, + "probability": 0.9914 + }, + { + "start": 31424.4, + "end": 31425.96, + "probability": 0.8687 + }, + { + "start": 31427.42, + "end": 31428.4, + "probability": 0.5278 + }, + { + "start": 31428.5, + "end": 31428.9, + "probability": 0.6244 + }, + { + "start": 31429.34, + "end": 31432.92, + "probability": 0.9776 + }, + { + "start": 31433.44, + "end": 31436.04, + "probability": 0.9937 + }, + { + "start": 31437.58, + "end": 31442.68, + "probability": 0.9821 + }, + { + "start": 31444.5, + "end": 31450.62, + "probability": 0.9986 + }, + { + "start": 31451.6, + "end": 31454.0, + "probability": 0.856 + }, + { + "start": 31454.98, + "end": 31459.7, + "probability": 0.9939 + }, + { + "start": 31460.36, + "end": 31461.58, + "probability": 0.799 + }, + { + "start": 31464.82, + "end": 31466.02, + "probability": 0.7632 + }, + { + "start": 31466.82, + "end": 31468.7, + "probability": 0.991 + }, + { + "start": 31470.42, + "end": 31472.2, + "probability": 0.8616 + }, + { + "start": 31472.74, + "end": 31474.1, + "probability": 0.9779 + }, + { + "start": 31474.44, + "end": 31480.98, + "probability": 0.8501 + }, + { + "start": 31483.18, + "end": 31488.62, + "probability": 0.9994 + }, + { + "start": 31489.98, + "end": 31493.92, + "probability": 0.8447 + }, + { + "start": 31494.2, + "end": 31496.03, + "probability": 0.9572 + }, + { + "start": 31496.18, + "end": 31497.46, + "probability": 0.9968 + }, + { + "start": 31498.58, + "end": 31502.88, + "probability": 0.9809 + }, + { + "start": 31504.62, + "end": 31507.56, + "probability": 0.9976 + }, + { + "start": 31510.62, + "end": 31512.78, + "probability": 0.3655 + }, + { + "start": 31512.8, + "end": 31512.8, + "probability": 0.5829 + }, + { + "start": 31512.9, + "end": 31514.2, + "probability": 0.7028 + }, + { + "start": 31518.4, + "end": 31519.66, + "probability": 0.8584 + }, + { + "start": 31521.54, + "end": 31522.62, + "probability": 0.8544 + }, + { + "start": 31523.42, + "end": 31525.38, + "probability": 0.9506 + }, + { + "start": 31527.96, + "end": 31533.02, + "probability": 0.9401 + }, + { + "start": 31535.9, + "end": 31536.72, + "probability": 0.6525 + }, + { + "start": 31539.06, + "end": 31542.94, + "probability": 0.9907 + }, + { + "start": 31544.94, + "end": 31551.34, + "probability": 0.9893 + }, + { + "start": 31551.58, + "end": 31553.84, + "probability": 0.9719 + }, + { + "start": 31557.34, + "end": 31559.1, + "probability": 0.7441 + }, + { + "start": 31559.52, + "end": 31564.36, + "probability": 0.9932 + }, + { + "start": 31564.72, + "end": 31566.32, + "probability": 0.875 + }, + { + "start": 31567.3, + "end": 31568.62, + "probability": 0.8457 + }, + { + "start": 31568.82, + "end": 31570.2, + "probability": 0.92 + }, + { + "start": 31570.64, + "end": 31571.48, + "probability": 0.9887 + }, + { + "start": 31571.64, + "end": 31576.1, + "probability": 0.9607 + }, + { + "start": 31576.46, + "end": 31577.6, + "probability": 0.5951 + }, + { + "start": 31578.08, + "end": 31582.26, + "probability": 0.9928 + }, + { + "start": 31582.78, + "end": 31583.93, + "probability": 0.8976 + }, + { + "start": 31585.56, + "end": 31586.98, + "probability": 0.8807 + }, + { + "start": 31587.54, + "end": 31589.68, + "probability": 0.998 + }, + { + "start": 31590.16, + "end": 31593.7, + "probability": 0.9885 + }, + { + "start": 31595.7, + "end": 31597.72, + "probability": 0.8711 + }, + { + "start": 31598.34, + "end": 31598.92, + "probability": 0.454 + }, + { + "start": 31599.3, + "end": 31602.1, + "probability": 0.9882 + }, + { + "start": 31603.38, + "end": 31606.58, + "probability": 0.9885 + }, + { + "start": 31607.76, + "end": 31610.98, + "probability": 0.9729 + }, + { + "start": 31611.28, + "end": 31615.56, + "probability": 0.9954 + }, + { + "start": 31616.24, + "end": 31618.42, + "probability": 0.9268 + }, + { + "start": 31619.46, + "end": 31620.46, + "probability": 0.6899 + }, + { + "start": 31621.3, + "end": 31621.94, + "probability": 0.7753 + }, + { + "start": 31622.62, + "end": 31623.62, + "probability": 0.771 + }, + { + "start": 31625.42, + "end": 31628.68, + "probability": 0.9744 + }, + { + "start": 31628.74, + "end": 31629.72, + "probability": 0.8848 + }, + { + "start": 31631.46, + "end": 31636.22, + "probability": 0.9513 + }, + { + "start": 31636.22, + "end": 31636.8, + "probability": 0.1003 + }, + { + "start": 31637.08, + "end": 31639.26, + "probability": 0.6855 + }, + { + "start": 31639.6, + "end": 31642.6, + "probability": 0.8351 + }, + { + "start": 31643.44, + "end": 31644.82, + "probability": 0.8582 + }, + { + "start": 31646.04, + "end": 31648.48, + "probability": 0.9642 + }, + { + "start": 31651.14, + "end": 31652.54, + "probability": 0.8348 + }, + { + "start": 31654.02, + "end": 31655.24, + "probability": 0.6633 + }, + { + "start": 31655.84, + "end": 31662.12, + "probability": 0.9984 + }, + { + "start": 31663.62, + "end": 31664.98, + "probability": 0.9576 + }, + { + "start": 31665.74, + "end": 31667.06, + "probability": 0.8208 + }, + { + "start": 31667.62, + "end": 31669.94, + "probability": 0.9883 + }, + { + "start": 31670.62, + "end": 31677.82, + "probability": 0.9954 + }, + { + "start": 31681.06, + "end": 31684.12, + "probability": 0.8173 + }, + { + "start": 31686.96, + "end": 31687.46, + "probability": 0.8548 + }, + { + "start": 31688.12, + "end": 31688.96, + "probability": 0.5914 + }, + { + "start": 31688.96, + "end": 31689.96, + "probability": 0.2615 + }, + { + "start": 31691.92, + "end": 31698.84, + "probability": 0.9985 + }, + { + "start": 31699.46, + "end": 31701.98, + "probability": 0.878 + }, + { + "start": 31703.2, + "end": 31708.08, + "probability": 0.991 + }, + { + "start": 31708.08, + "end": 31711.6, + "probability": 0.9981 + }, + { + "start": 31713.32, + "end": 31716.04, + "probability": 0.9945 + }, + { + "start": 31716.74, + "end": 31719.64, + "probability": 0.9755 + }, + { + "start": 31720.22, + "end": 31722.36, + "probability": 0.8968 + }, + { + "start": 31723.0, + "end": 31727.12, + "probability": 0.9085 + }, + { + "start": 31729.46, + "end": 31733.66, + "probability": 0.9146 + }, + { + "start": 31735.22, + "end": 31736.7, + "probability": 0.9938 + }, + { + "start": 31738.28, + "end": 31739.86, + "probability": 0.9914 + }, + { + "start": 31741.78, + "end": 31746.04, + "probability": 0.9906 + }, + { + "start": 31747.98, + "end": 31748.68, + "probability": 0.3866 + }, + { + "start": 31749.34, + "end": 31752.44, + "probability": 0.9969 + }, + { + "start": 31753.02, + "end": 31757.56, + "probability": 0.9757 + }, + { + "start": 31757.68, + "end": 31758.42, + "probability": 0.8623 + }, + { + "start": 31759.52, + "end": 31760.7, + "probability": 0.6367 + }, + { + "start": 31761.56, + "end": 31761.8, + "probability": 0.7913 + }, + { + "start": 31762.62, + "end": 31766.36, + "probability": 0.8302 + }, + { + "start": 31767.48, + "end": 31768.78, + "probability": 0.75 + }, + { + "start": 31770.5, + "end": 31771.94, + "probability": 0.9246 + }, + { + "start": 31772.12, + "end": 31772.3, + "probability": 0.7253 + }, + { + "start": 31772.48, + "end": 31778.2, + "probability": 0.9917 + }, + { + "start": 31780.16, + "end": 31781.9, + "probability": 0.9328 + }, + { + "start": 31782.5, + "end": 31784.28, + "probability": 0.8342 + }, + { + "start": 31784.4, + "end": 31785.24, + "probability": 0.5334 + }, + { + "start": 31785.66, + "end": 31787.79, + "probability": 0.9824 + }, + { + "start": 31788.14, + "end": 31788.48, + "probability": 0.6581 + }, + { + "start": 31789.92, + "end": 31790.94, + "probability": 0.8504 + }, + { + "start": 31791.72, + "end": 31792.96, + "probability": 0.8938 + }, + { + "start": 31794.08, + "end": 31794.56, + "probability": 0.4748 + }, + { + "start": 31794.66, + "end": 31795.7, + "probability": 0.9766 + }, + { + "start": 31795.9, + "end": 31798.44, + "probability": 0.9717 + }, + { + "start": 31798.82, + "end": 31799.84, + "probability": 0.5245 + }, + { + "start": 31800.3, + "end": 31800.88, + "probability": 0.9316 + }, + { + "start": 31802.86, + "end": 31804.0, + "probability": 0.9478 + }, + { + "start": 31804.36, + "end": 31805.4, + "probability": 0.9873 + }, + { + "start": 31805.72, + "end": 31808.88, + "probability": 0.9863 + }, + { + "start": 31810.68, + "end": 31812.98, + "probability": 0.9114 + }, + { + "start": 31814.6, + "end": 31816.78, + "probability": 0.9932 + }, + { + "start": 31818.78, + "end": 31821.36, + "probability": 0.8212 + }, + { + "start": 31822.54, + "end": 31824.82, + "probability": 0.838 + }, + { + "start": 31825.88, + "end": 31827.06, + "probability": 0.9438 + }, + { + "start": 31827.96, + "end": 31830.92, + "probability": 0.9954 + }, + { + "start": 31831.34, + "end": 31832.13, + "probability": 0.9441 + }, + { + "start": 31832.8, + "end": 31836.26, + "probability": 0.9941 + }, + { + "start": 31836.54, + "end": 31837.08, + "probability": 0.4484 + }, + { + "start": 31838.82, + "end": 31855.42, + "probability": 0.9979 + }, + { + "start": 31857.54, + "end": 31863.24, + "probability": 0.991 + }, + { + "start": 31863.6, + "end": 31867.74, + "probability": 0.9968 + }, + { + "start": 31868.3, + "end": 31869.32, + "probability": 0.9883 + }, + { + "start": 31869.62, + "end": 31870.54, + "probability": 0.9774 + }, + { + "start": 31871.96, + "end": 31873.32, + "probability": 0.9888 + }, + { + "start": 31875.22, + "end": 31875.98, + "probability": 0.6599 + }, + { + "start": 31876.86, + "end": 31878.24, + "probability": 0.584 + }, + { + "start": 31879.72, + "end": 31882.0, + "probability": 0.989 + }, + { + "start": 31883.66, + "end": 31886.42, + "probability": 0.9165 + }, + { + "start": 31887.94, + "end": 31888.64, + "probability": 0.6678 + }, + { + "start": 31889.98, + "end": 31891.62, + "probability": 0.8881 + }, + { + "start": 31892.66, + "end": 31894.64, + "probability": 0.9553 + }, + { + "start": 31894.72, + "end": 31895.9, + "probability": 0.8594 + }, + { + "start": 31896.14, + "end": 31900.96, + "probability": 0.96 + }, + { + "start": 31900.96, + "end": 31905.84, + "probability": 0.7717 + }, + { + "start": 31906.54, + "end": 31908.29, + "probability": 0.8868 + }, + { + "start": 31909.0, + "end": 31911.58, + "probability": 0.4566 + }, + { + "start": 31912.24, + "end": 31913.92, + "probability": 0.9035 + }, + { + "start": 31914.28, + "end": 31916.1, + "probability": 0.9749 + }, + { + "start": 31916.52, + "end": 31922.46, + "probability": 0.9949 + }, + { + "start": 31924.42, + "end": 31925.52, + "probability": 0.6595 + }, + { + "start": 31927.72, + "end": 31932.06, + "probability": 0.9906 + }, + { + "start": 31932.92, + "end": 31933.66, + "probability": 0.6654 + }, + { + "start": 31934.96, + "end": 31937.86, + "probability": 0.9982 + }, + { + "start": 31938.64, + "end": 31944.08, + "probability": 0.9475 + }, + { + "start": 31944.26, + "end": 31947.0, + "probability": 0.8322 + }, + { + "start": 31947.6, + "end": 31949.22, + "probability": 0.8488 + }, + { + "start": 31949.54, + "end": 31950.1, + "probability": 0.6644 + }, + { + "start": 31950.56, + "end": 31953.86, + "probability": 0.5691 + }, + { + "start": 31956.1, + "end": 31959.86, + "probability": 0.8168 + }, + { + "start": 31960.04, + "end": 31961.08, + "probability": 0.8806 + }, + { + "start": 31961.58, + "end": 31964.04, + "probability": 0.8382 + }, + { + "start": 31964.2, + "end": 31965.66, + "probability": 0.3244 + }, + { + "start": 31966.76, + "end": 31967.06, + "probability": 0.9487 + }, + { + "start": 31967.62, + "end": 31968.34, + "probability": 0.8863 + }, + { + "start": 31968.68, + "end": 31971.28, + "probability": 0.8521 + }, + { + "start": 31972.52, + "end": 31974.56, + "probability": 0.9688 + }, + { + "start": 31975.7, + "end": 31979.76, + "probability": 0.9972 + }, + { + "start": 31980.3, + "end": 31982.8, + "probability": 0.939 + }, + { + "start": 31983.44, + "end": 31985.21, + "probability": 0.9985 + }, + { + "start": 31986.1, + "end": 31990.9, + "probability": 0.9949 + }, + { + "start": 31991.16, + "end": 31994.52, + "probability": 0.9977 + }, + { + "start": 31995.86, + "end": 31998.6, + "probability": 0.9949 + }, + { + "start": 31999.1, + "end": 32002.2, + "probability": 0.9772 + }, + { + "start": 32002.68, + "end": 32009.86, + "probability": 0.9396 + }, + { + "start": 32010.22, + "end": 32012.6, + "probability": 0.9426 + }, + { + "start": 32012.98, + "end": 32017.28, + "probability": 0.9351 + }, + { + "start": 32017.66, + "end": 32019.06, + "probability": 0.9838 + }, + { + "start": 32020.52, + "end": 32020.64, + "probability": 0.5221 + }, + { + "start": 32020.74, + "end": 32022.34, + "probability": 0.9883 + }, + { + "start": 32022.56, + "end": 32024.28, + "probability": 0.9894 + }, + { + "start": 32025.76, + "end": 32027.26, + "probability": 0.9839 + }, + { + "start": 32027.46, + "end": 32028.96, + "probability": 0.7748 + }, + { + "start": 32030.52, + "end": 32033.45, + "probability": 0.9927 + }, + { + "start": 32034.48, + "end": 32038.94, + "probability": 0.9845 + }, + { + "start": 32040.44, + "end": 32042.62, + "probability": 0.9807 + }, + { + "start": 32043.16, + "end": 32044.15, + "probability": 0.9978 + }, + { + "start": 32045.64, + "end": 32047.36, + "probability": 0.9852 + }, + { + "start": 32047.4, + "end": 32050.68, + "probability": 0.904 + }, + { + "start": 32052.9, + "end": 32054.8, + "probability": 0.8656 + }, + { + "start": 32056.5, + "end": 32058.24, + "probability": 0.5576 + }, + { + "start": 32058.4, + "end": 32059.7, + "probability": 0.9367 + }, + { + "start": 32059.74, + "end": 32060.9, + "probability": 0.8134 + }, + { + "start": 32061.66, + "end": 32063.08, + "probability": 0.9852 + }, + { + "start": 32063.74, + "end": 32064.16, + "probability": 0.6182 + }, + { + "start": 32064.42, + "end": 32067.12, + "probability": 0.931 + }, + { + "start": 32068.38, + "end": 32072.26, + "probability": 0.9951 + }, + { + "start": 32072.68, + "end": 32076.14, + "probability": 0.997 + }, + { + "start": 32076.14, + "end": 32080.2, + "probability": 0.9801 + }, + { + "start": 32082.0, + "end": 32082.82, + "probability": 0.8247 + }, + { + "start": 32084.28, + "end": 32086.26, + "probability": 0.962 + }, + { + "start": 32086.6, + "end": 32088.97, + "probability": 0.9985 + }, + { + "start": 32089.66, + "end": 32092.1, + "probability": 0.9917 + }, + { + "start": 32092.58, + "end": 32095.38, + "probability": 0.9142 + }, + { + "start": 32095.6, + "end": 32097.34, + "probability": 0.9969 + }, + { + "start": 32097.42, + "end": 32100.44, + "probability": 0.0959 + }, + { + "start": 32100.44, + "end": 32100.44, + "probability": 0.0052 + }, + { + "start": 32100.44, + "end": 32103.68, + "probability": 0.834 + }, + { + "start": 32104.76, + "end": 32106.04, + "probability": 0.9938 + }, + { + "start": 32107.36, + "end": 32110.36, + "probability": 0.9261 + }, + { + "start": 32110.38, + "end": 32110.96, + "probability": 0.6874 + }, + { + "start": 32111.26, + "end": 32111.68, + "probability": 0.5826 + }, + { + "start": 32112.56, + "end": 32115.02, + "probability": 0.9039 + }, + { + "start": 32116.34, + "end": 32117.58, + "probability": 0.6393 + }, + { + "start": 32120.02, + "end": 32124.92, + "probability": 0.9912 + }, + { + "start": 32126.62, + "end": 32130.72, + "probability": 0.9563 + }, + { + "start": 32130.82, + "end": 32131.36, + "probability": 0.5356 + }, + { + "start": 32131.36, + "end": 32131.76, + "probability": 0.0824 + }, + { + "start": 32131.76, + "end": 32133.24, + "probability": 0.4828 + }, + { + "start": 32133.32, + "end": 32137.62, + "probability": 0.9849 + }, + { + "start": 32137.62, + "end": 32140.28, + "probability": 0.9554 + }, + { + "start": 32140.62, + "end": 32141.02, + "probability": 0.5253 + }, + { + "start": 32141.02, + "end": 32143.6, + "probability": 0.3181 + }, + { + "start": 32144.24, + "end": 32148.16, + "probability": 0.7422 + }, + { + "start": 32148.78, + "end": 32150.84, + "probability": 0.8563 + }, + { + "start": 32151.4, + "end": 32153.9, + "probability": 0.993 + }, + { + "start": 32154.88, + "end": 32156.1, + "probability": 0.6992 + }, + { + "start": 32157.36, + "end": 32159.16, + "probability": 0.991 + }, + { + "start": 32160.14, + "end": 32161.98, + "probability": 0.7976 + }, + { + "start": 32162.02, + "end": 32164.64, + "probability": 0.8794 + }, + { + "start": 32166.12, + "end": 32167.43, + "probability": 0.6064 + }, + { + "start": 32168.88, + "end": 32172.34, + "probability": 0.9082 + }, + { + "start": 32173.56, + "end": 32176.9, + "probability": 0.9421 + }, + { + "start": 32177.28, + "end": 32180.04, + "probability": 0.9985 + }, + { + "start": 32180.04, + "end": 32183.42, + "probability": 0.815 + }, + { + "start": 32183.54, + "end": 32185.04, + "probability": 0.78 + }, + { + "start": 32187.2, + "end": 32190.3, + "probability": 0.9884 + }, + { + "start": 32190.82, + "end": 32192.68, + "probability": 0.9342 + }, + { + "start": 32193.44, + "end": 32199.8, + "probability": 0.9977 + }, + { + "start": 32201.78, + "end": 32203.66, + "probability": 0.9682 + }, + { + "start": 32206.1, + "end": 32212.02, + "probability": 0.9711 + }, + { + "start": 32212.78, + "end": 32214.18, + "probability": 0.9834 + }, + { + "start": 32214.76, + "end": 32217.19, + "probability": 0.9941 + }, + { + "start": 32217.74, + "end": 32221.06, + "probability": 0.9974 + }, + { + "start": 32221.16, + "end": 32221.64, + "probability": 0.6802 + }, + { + "start": 32222.6, + "end": 32224.14, + "probability": 0.6033 + }, + { + "start": 32225.02, + "end": 32227.42, + "probability": 0.9886 + }, + { + "start": 32227.52, + "end": 32230.22, + "probability": 0.9785 + }, + { + "start": 32230.5, + "end": 32233.02, + "probability": 0.9961 + }, + { + "start": 32234.02, + "end": 32238.3, + "probability": 0.9433 + }, + { + "start": 32239.02, + "end": 32240.68, + "probability": 0.166 + }, + { + "start": 32242.7, + "end": 32243.76, + "probability": 0.9634 + }, + { + "start": 32244.6, + "end": 32247.94, + "probability": 0.9813 + }, + { + "start": 32248.26, + "end": 32249.24, + "probability": 0.9053 + }, + { + "start": 32251.02, + "end": 32253.42, + "probability": 0.9688 + }, + { + "start": 32255.68, + "end": 32256.14, + "probability": 0.482 + }, + { + "start": 32256.26, + "end": 32258.56, + "probability": 0.9665 + }, + { + "start": 32259.64, + "end": 32266.8, + "probability": 0.995 + }, + { + "start": 32267.26, + "end": 32272.34, + "probability": 0.9941 + }, + { + "start": 32273.9, + "end": 32277.14, + "probability": 0.9079 + }, + { + "start": 32277.66, + "end": 32279.02, + "probability": 0.7688 + }, + { + "start": 32280.62, + "end": 32284.6, + "probability": 0.9429 + }, + { + "start": 32286.76, + "end": 32290.46, + "probability": 0.991 + }, + { + "start": 32292.22, + "end": 32294.92, + "probability": 0.7476 + }, + { + "start": 32296.06, + "end": 32301.14, + "probability": 0.9933 + }, + { + "start": 32302.56, + "end": 32305.38, + "probability": 0.9973 + }, + { + "start": 32305.96, + "end": 32308.56, + "probability": 0.9989 + }, + { + "start": 32308.56, + "end": 32312.36, + "probability": 0.9995 + }, + { + "start": 32312.82, + "end": 32318.42, + "probability": 0.9913 + }, + { + "start": 32320.22, + "end": 32322.81, + "probability": 0.6962 + }, + { + "start": 32324.44, + "end": 32328.01, + "probability": 0.9899 + }, + { + "start": 32330.76, + "end": 32336.18, + "probability": 0.9873 + }, + { + "start": 32337.54, + "end": 32339.88, + "probability": 0.9877 + }, + { + "start": 32340.86, + "end": 32345.96, + "probability": 0.9972 + }, + { + "start": 32347.78, + "end": 32353.2, + "probability": 0.9987 + }, + { + "start": 32353.34, + "end": 32355.04, + "probability": 0.9201 + }, + { + "start": 32355.04, + "end": 32358.32, + "probability": 0.9927 + }, + { + "start": 32359.8, + "end": 32360.73, + "probability": 0.9438 + }, + { + "start": 32361.38, + "end": 32362.85, + "probability": 0.9258 + }, + { + "start": 32363.86, + "end": 32367.76, + "probability": 0.9828 + }, + { + "start": 32368.16, + "end": 32369.84, + "probability": 0.9961 + }, + { + "start": 32370.98, + "end": 32374.88, + "probability": 0.9953 + }, + { + "start": 32375.52, + "end": 32379.62, + "probability": 0.9972 + }, + { + "start": 32379.96, + "end": 32380.26, + "probability": 0.8189 + }, + { + "start": 32380.34, + "end": 32381.02, + "probability": 0.7146 + }, + { + "start": 32381.16, + "end": 32386.0, + "probability": 0.9892 + }, + { + "start": 32386.36, + "end": 32387.6, + "probability": 0.8966 + }, + { + "start": 32388.74, + "end": 32390.36, + "probability": 0.9879 + }, + { + "start": 32391.28, + "end": 32393.34, + "probability": 0.9634 + }, + { + "start": 32394.42, + "end": 32395.94, + "probability": 0.9834 + }, + { + "start": 32398.08, + "end": 32403.74, + "probability": 0.9975 + }, + { + "start": 32404.64, + "end": 32408.88, + "probability": 0.9723 + }, + { + "start": 32409.7, + "end": 32410.66, + "probability": 0.6959 + }, + { + "start": 32411.32, + "end": 32412.16, + "probability": 0.9069 + }, + { + "start": 32412.7, + "end": 32415.14, + "probability": 0.4816 + }, + { + "start": 32415.66, + "end": 32421.0, + "probability": 0.9775 + }, + { + "start": 32421.42, + "end": 32423.16, + "probability": 0.9155 + }, + { + "start": 32423.28, + "end": 32424.12, + "probability": 0.8373 + }, + { + "start": 32426.8, + "end": 32431.02, + "probability": 0.9928 + }, + { + "start": 32432.62, + "end": 32433.98, + "probability": 0.4962 + }, + { + "start": 32434.76, + "end": 32436.88, + "probability": 0.9995 + }, + { + "start": 32437.08, + "end": 32442.14, + "probability": 0.9726 + }, + { + "start": 32442.42, + "end": 32443.84, + "probability": 0.8505 + }, + { + "start": 32444.34, + "end": 32446.04, + "probability": 0.8809 + }, + { + "start": 32446.24, + "end": 32447.22, + "probability": 0.9326 + }, + { + "start": 32447.4, + "end": 32448.32, + "probability": 0.9191 + }, + { + "start": 32450.56, + "end": 32452.32, + "probability": 0.2978 + }, + { + "start": 32452.86, + "end": 32460.82, + "probability": 0.9907 + }, + { + "start": 32461.66, + "end": 32463.04, + "probability": 0.9628 + }, + { + "start": 32463.06, + "end": 32469.06, + "probability": 0.9655 + }, + { + "start": 32469.42, + "end": 32473.7, + "probability": 0.8865 + }, + { + "start": 32474.72, + "end": 32475.6, + "probability": 0.7018 + }, + { + "start": 32475.78, + "end": 32478.17, + "probability": 0.9366 + }, + { + "start": 32478.82, + "end": 32479.36, + "probability": 0.675 + }, + { + "start": 32479.36, + "end": 32482.98, + "probability": 0.8875 + }, + { + "start": 32491.22, + "end": 32493.56, + "probability": 0.9824 + }, + { + "start": 32494.4, + "end": 32494.96, + "probability": 0.8392 + }, + { + "start": 32495.8, + "end": 32499.54, + "probability": 0.9408 + }, + { + "start": 32500.2, + "end": 32500.68, + "probability": 0.6733 + }, + { + "start": 32501.32, + "end": 32501.98, + "probability": 0.8003 + }, + { + "start": 32502.76, + "end": 32503.9, + "probability": 0.427 + }, + { + "start": 32504.14, + "end": 32504.76, + "probability": 0.7828 + }, + { + "start": 32517.88, + "end": 32518.46, + "probability": 0.7321 + }, + { + "start": 32519.08, + "end": 32524.88, + "probability": 0.8397 + }, + { + "start": 32526.08, + "end": 32527.06, + "probability": 0.3933 + }, + { + "start": 32527.1, + "end": 32528.98, + "probability": 0.6586 + }, + { + "start": 32530.41, + "end": 32536.42, + "probability": 0.8545 + }, + { + "start": 32536.54, + "end": 32540.4, + "probability": 0.8375 + }, + { + "start": 32540.76, + "end": 32542.5, + "probability": 0.6176 + }, + { + "start": 32543.08, + "end": 32543.36, + "probability": 0.6488 + }, + { + "start": 32544.38, + "end": 32547.4, + "probability": 0.7799 + }, + { + "start": 32547.8, + "end": 32549.02, + "probability": 0.979 + }, + { + "start": 32552.68, + "end": 32553.04, + "probability": 0.0512 + }, + { + "start": 32553.98, + "end": 32557.02, + "probability": 0.4039 + }, + { + "start": 32557.26, + "end": 32564.76, + "probability": 0.608 + }, + { + "start": 32564.96, + "end": 32568.08, + "probability": 0.7669 + }, + { + "start": 32568.82, + "end": 32570.79, + "probability": 0.0986 + }, + { + "start": 32570.82, + "end": 32572.54, + "probability": 0.0453 + }, + { + "start": 32572.78, + "end": 32577.96, + "probability": 0.9061 + }, + { + "start": 32578.34, + "end": 32579.7, + "probability": 0.9866 + }, + { + "start": 32579.86, + "end": 32581.06, + "probability": 0.9302 + }, + { + "start": 32581.06, + "end": 32582.88, + "probability": 0.4911 + }, + { + "start": 32582.98, + "end": 32584.06, + "probability": 0.184 + }, + { + "start": 32584.48, + "end": 32588.07, + "probability": 0.6033 + }, + { + "start": 32589.64, + "end": 32591.78, + "probability": 0.2256 + }, + { + "start": 32591.94, + "end": 32593.42, + "probability": 0.9671 + }, + { + "start": 32593.96, + "end": 32596.3, + "probability": 0.672 + }, + { + "start": 32596.3, + "end": 32598.5, + "probability": 0.5358 + }, + { + "start": 32598.5, + "end": 32598.5, + "probability": 0.3117 + }, + { + "start": 32598.5, + "end": 32599.14, + "probability": 0.6049 + }, + { + "start": 32599.7, + "end": 32603.5, + "probability": 0.877 + }, + { + "start": 32604.6, + "end": 32611.24, + "probability": 0.9781 + }, + { + "start": 32611.98, + "end": 32617.54, + "probability": 0.9457 + }, + { + "start": 32620.61, + "end": 32623.14, + "probability": 0.9968 + }, + { + "start": 32624.86, + "end": 32629.72, + "probability": 0.9922 + }, + { + "start": 32630.66, + "end": 32634.96, + "probability": 0.9815 + }, + { + "start": 32639.62, + "end": 32640.08, + "probability": 0.5348 + }, + { + "start": 32645.02, + "end": 32647.38, + "probability": 0.8475 + }, + { + "start": 32647.92, + "end": 32655.94, + "probability": 0.8992 + }, + { + "start": 32656.56, + "end": 32659.72, + "probability": 0.9079 + }, + { + "start": 32660.62, + "end": 32660.96, + "probability": 0.6657 + }, + { + "start": 32661.02, + "end": 32666.22, + "probability": 0.9665 + }, + { + "start": 32666.42, + "end": 32669.98, + "probability": 0.6484 + }, + { + "start": 32670.72, + "end": 32673.22, + "probability": 0.9694 + }, + { + "start": 32674.62, + "end": 32675.06, + "probability": 0.7939 + }, + { + "start": 32675.4, + "end": 32681.4, + "probability": 0.991 + }, + { + "start": 32682.36, + "end": 32687.0, + "probability": 0.9985 + }, + { + "start": 32687.0, + "end": 32691.96, + "probability": 0.9995 + }, + { + "start": 32691.96, + "end": 32695.06, + "probability": 0.9946 + }, + { + "start": 32696.34, + "end": 32699.26, + "probability": 0.558 + }, + { + "start": 32700.0, + "end": 32701.8, + "probability": 0.695 + }, + { + "start": 32702.58, + "end": 32703.82, + "probability": 0.7505 + }, + { + "start": 32704.52, + "end": 32708.38, + "probability": 0.993 + }, + { + "start": 32709.24, + "end": 32710.52, + "probability": 0.9487 + }, + { + "start": 32711.04, + "end": 32713.72, + "probability": 0.9989 + }, + { + "start": 32714.54, + "end": 32717.58, + "probability": 0.9382 + }, + { + "start": 32718.1, + "end": 32718.76, + "probability": 0.4993 + }, + { + "start": 32719.5, + "end": 32722.3, + "probability": 0.9928 + }, + { + "start": 32723.86, + "end": 32727.38, + "probability": 0.9644 + }, + { + "start": 32729.16, + "end": 32733.34, + "probability": 0.978 + }, + { + "start": 32734.24, + "end": 32736.4, + "probability": 0.9982 + }, + { + "start": 32737.34, + "end": 32740.0, + "probability": 0.9964 + }, + { + "start": 32741.32, + "end": 32744.98, + "probability": 0.9844 + }, + { + "start": 32745.52, + "end": 32748.18, + "probability": 0.9386 + }, + { + "start": 32749.18, + "end": 32751.7, + "probability": 0.925 + }, + { + "start": 32752.14, + "end": 32754.24, + "probability": 0.9956 + }, + { + "start": 32754.66, + "end": 32755.36, + "probability": 0.7762 + }, + { + "start": 32756.46, + "end": 32764.06, + "probability": 0.5265 + }, + { + "start": 32764.4, + "end": 32766.3, + "probability": 0.9558 + }, + { + "start": 32767.4, + "end": 32771.08, + "probability": 0.9818 + }, + { + "start": 32771.88, + "end": 32773.38, + "probability": 0.9827 + }, + { + "start": 32774.4, + "end": 32775.04, + "probability": 0.9059 + }, + { + "start": 32776.5, + "end": 32780.08, + "probability": 0.9946 + }, + { + "start": 32782.63, + "end": 32786.02, + "probability": 0.8294 + }, + { + "start": 32786.42, + "end": 32787.98, + "probability": 0.8138 + }, + { + "start": 32788.66, + "end": 32791.36, + "probability": 0.8738 + }, + { + "start": 32792.3, + "end": 32793.94, + "probability": 0.991 + }, + { + "start": 32795.04, + "end": 32797.02, + "probability": 0.9971 + }, + { + "start": 32797.12, + "end": 32799.12, + "probability": 0.8766 + }, + { + "start": 32800.22, + "end": 32802.94, + "probability": 0.9855 + }, + { + "start": 32803.78, + "end": 32806.36, + "probability": 0.9564 + }, + { + "start": 32808.48, + "end": 32810.98, + "probability": 0.9577 + }, + { + "start": 32811.52, + "end": 32812.22, + "probability": 0.9586 + }, + { + "start": 32813.34, + "end": 32816.9, + "probability": 0.98 + }, + { + "start": 32818.3, + "end": 32821.44, + "probability": 0.9508 + }, + { + "start": 32821.66, + "end": 32822.82, + "probability": 0.8453 + }, + { + "start": 32823.94, + "end": 32824.48, + "probability": 0.879 + }, + { + "start": 32824.54, + "end": 32827.2, + "probability": 0.9973 + }, + { + "start": 32827.4, + "end": 32827.76, + "probability": 0.5576 + }, + { + "start": 32828.5, + "end": 32830.88, + "probability": 0.9644 + }, + { + "start": 32832.1, + "end": 32833.6, + "probability": 0.978 + }, + { + "start": 32835.02, + "end": 32838.0, + "probability": 0.8344 + }, + { + "start": 32838.66, + "end": 32839.6, + "probability": 0.8585 + }, + { + "start": 32840.34, + "end": 32841.54, + "probability": 0.9904 + }, + { + "start": 32842.2, + "end": 32843.72, + "probability": 0.9659 + }, + { + "start": 32844.48, + "end": 32847.58, + "probability": 0.9975 + }, + { + "start": 32848.28, + "end": 32851.02, + "probability": 0.9872 + }, + { + "start": 32852.18, + "end": 32853.66, + "probability": 0.6884 + }, + { + "start": 32854.8, + "end": 32857.1, + "probability": 0.821 + }, + { + "start": 32857.76, + "end": 32858.52, + "probability": 0.8997 + }, + { + "start": 32859.06, + "end": 32859.7, + "probability": 0.6508 + }, + { + "start": 32860.64, + "end": 32864.58, + "probability": 0.9787 + }, + { + "start": 32865.48, + "end": 32866.74, + "probability": 0.9738 + }, + { + "start": 32867.54, + "end": 32869.02, + "probability": 0.9984 + }, + { + "start": 32869.8, + "end": 32875.12, + "probability": 0.9807 + }, + { + "start": 32876.34, + "end": 32878.08, + "probability": 0.7353 + }, + { + "start": 32879.08, + "end": 32883.58, + "probability": 0.9757 + }, + { + "start": 32884.58, + "end": 32887.68, + "probability": 0.9983 + }, + { + "start": 32887.68, + "end": 32891.68, + "probability": 0.9895 + }, + { + "start": 32893.12, + "end": 32893.65, + "probability": 0.4684 + }, + { + "start": 32894.82, + "end": 32896.74, + "probability": 0.9983 + }, + { + "start": 32897.36, + "end": 32899.5, + "probability": 0.9533 + }, + { + "start": 32900.2, + "end": 32900.84, + "probability": 0.807 + }, + { + "start": 32901.54, + "end": 32903.1, + "probability": 0.9946 + }, + { + "start": 32904.04, + "end": 32904.54, + "probability": 0.4919 + }, + { + "start": 32905.22, + "end": 32907.7, + "probability": 0.9052 + }, + { + "start": 32908.56, + "end": 32909.78, + "probability": 0.9973 + }, + { + "start": 32910.38, + "end": 32913.96, + "probability": 0.999 + }, + { + "start": 32914.42, + "end": 32915.52, + "probability": 0.7375 + }, + { + "start": 32917.02, + "end": 32920.1, + "probability": 0.9634 + }, + { + "start": 32921.66, + "end": 32921.66, + "probability": 0.0175 + }, + { + "start": 32921.66, + "end": 32924.98, + "probability": 0.9907 + }, + { + "start": 32926.22, + "end": 32928.75, + "probability": 0.7996 + }, + { + "start": 32929.38, + "end": 32930.12, + "probability": 0.6348 + }, + { + "start": 32930.96, + "end": 32932.2, + "probability": 0.7432 + }, + { + "start": 32933.02, + "end": 32938.66, + "probability": 0.9931 + }, + { + "start": 32940.06, + "end": 32940.2, + "probability": 0.6318 + }, + { + "start": 32941.32, + "end": 32941.46, + "probability": 0.9028 + }, + { + "start": 32942.2, + "end": 32942.96, + "probability": 0.564 + }, + { + "start": 32945.02, + "end": 32948.16, + "probability": 0.6343 + }, + { + "start": 32949.12, + "end": 32955.18, + "probability": 0.8907 + }, + { + "start": 32955.86, + "end": 32961.4, + "probability": 0.9955 + }, + { + "start": 32962.34, + "end": 32963.62, + "probability": 0.9681 + }, + { + "start": 32964.76, + "end": 32966.03, + "probability": 0.7338 + }, + { + "start": 32967.14, + "end": 32971.04, + "probability": 0.9914 + }, + { + "start": 32972.0, + "end": 32972.2, + "probability": 0.7122 + }, + { + "start": 32972.88, + "end": 32974.56, + "probability": 0.9255 + }, + { + "start": 32974.92, + "end": 32975.52, + "probability": 0.5146 + }, + { + "start": 32976.06, + "end": 32976.72, + "probability": 0.991 + }, + { + "start": 32977.74, + "end": 32982.06, + "probability": 0.985 + }, + { + "start": 32982.54, + "end": 32984.1, + "probability": 0.9928 + }, + { + "start": 32984.66, + "end": 32987.28, + "probability": 0.7193 + }, + { + "start": 32988.6, + "end": 32991.46, + "probability": 0.9884 + }, + { + "start": 32992.34, + "end": 32994.84, + "probability": 0.9717 + }, + { + "start": 32995.66, + "end": 32997.26, + "probability": 0.9293 + }, + { + "start": 32998.06, + "end": 33002.19, + "probability": 0.9139 + }, + { + "start": 33003.26, + "end": 33004.4, + "probability": 0.9913 + }, + { + "start": 33005.1, + "end": 33008.36, + "probability": 0.9972 + }, + { + "start": 33009.08, + "end": 33011.54, + "probability": 0.9925 + }, + { + "start": 33011.72, + "end": 33012.22, + "probability": 0.7505 + }, + { + "start": 33012.5, + "end": 33013.32, + "probability": 0.7461 + }, + { + "start": 33013.7, + "end": 33014.74, + "probability": 0.9727 + }, + { + "start": 33014.86, + "end": 33017.04, + "probability": 0.9959 + }, + { + "start": 33018.34, + "end": 33019.36, + "probability": 0.6403 + }, + { + "start": 33019.96, + "end": 33021.0, + "probability": 0.7866 + }, + { + "start": 33021.58, + "end": 33025.58, + "probability": 0.9971 + }, + { + "start": 33026.34, + "end": 33027.12, + "probability": 0.5995 + }, + { + "start": 33027.34, + "end": 33030.84, + "probability": 0.9956 + }, + { + "start": 33030.84, + "end": 33034.62, + "probability": 0.998 + }, + { + "start": 33035.96, + "end": 33040.12, + "probability": 0.9943 + }, + { + "start": 33040.82, + "end": 33045.76, + "probability": 0.998 + }, + { + "start": 33047.04, + "end": 33052.54, + "probability": 0.993 + }, + { + "start": 33052.66, + "end": 33054.48, + "probability": 0.8442 + }, + { + "start": 33055.88, + "end": 33056.66, + "probability": 0.9177 + }, + { + "start": 33057.7, + "end": 33060.8, + "probability": 0.993 + }, + { + "start": 33061.94, + "end": 33067.34, + "probability": 0.998 + }, + { + "start": 33067.54, + "end": 33072.02, + "probability": 0.9986 + }, + { + "start": 33073.04, + "end": 33073.72, + "probability": 0.5493 + }, + { + "start": 33074.3, + "end": 33078.04, + "probability": 0.9084 + }, + { + "start": 33079.04, + "end": 33081.88, + "probability": 0.9941 + }, + { + "start": 33083.18, + "end": 33088.42, + "probability": 0.999 + }, + { + "start": 33088.94, + "end": 33091.92, + "probability": 0.9647 + }, + { + "start": 33092.3, + "end": 33097.5, + "probability": 0.9951 + }, + { + "start": 33098.38, + "end": 33099.22, + "probability": 0.9868 + }, + { + "start": 33099.86, + "end": 33101.42, + "probability": 0.9813 + }, + { + "start": 33102.06, + "end": 33103.34, + "probability": 0.9909 + }, + { + "start": 33103.48, + "end": 33104.26, + "probability": 0.9888 + }, + { + "start": 33104.38, + "end": 33105.98, + "probability": 0.9943 + }, + { + "start": 33106.86, + "end": 33111.14, + "probability": 0.9902 + }, + { + "start": 33111.6, + "end": 33114.12, + "probability": 0.9944 + }, + { + "start": 33115.14, + "end": 33116.86, + "probability": 0.996 + }, + { + "start": 33117.6, + "end": 33123.2, + "probability": 0.9995 + }, + { + "start": 33123.2, + "end": 33127.24, + "probability": 0.9994 + }, + { + "start": 33127.96, + "end": 33129.88, + "probability": 0.7674 + }, + { + "start": 33130.78, + "end": 33133.66, + "probability": 0.9956 + }, + { + "start": 33135.76, + "end": 33136.46, + "probability": 0.9849 + }, + { + "start": 33137.28, + "end": 33137.84, + "probability": 0.2546 + }, + { + "start": 33137.96, + "end": 33138.64, + "probability": 0.9424 + }, + { + "start": 33139.64, + "end": 33140.04, + "probability": 0.4204 + }, + { + "start": 33140.1, + "end": 33140.72, + "probability": 0.8713 + }, + { + "start": 33140.92, + "end": 33142.89, + "probability": 0.9545 + }, + { + "start": 33144.4, + "end": 33145.7, + "probability": 0.8063 + }, + { + "start": 33147.76, + "end": 33148.74, + "probability": 0.66 + }, + { + "start": 33148.76, + "end": 33148.86, + "probability": 0.4221 + }, + { + "start": 33151.54, + "end": 33154.54, + "probability": 0.5835 + }, + { + "start": 33154.82, + "end": 33158.42, + "probability": 0.8293 + }, + { + "start": 33159.99, + "end": 33164.44, + "probability": 0.7674 + }, + { + "start": 33164.82, + "end": 33165.4, + "probability": 0.8526 + }, + { + "start": 33167.1, + "end": 33169.35, + "probability": 0.9085 + }, + { + "start": 33174.38, + "end": 33175.08, + "probability": 0.4164 + }, + { + "start": 33175.44, + "end": 33177.8, + "probability": 0.4655 + }, + { + "start": 33178.12, + "end": 33180.12, + "probability": 0.2503 + }, + { + "start": 33180.12, + "end": 33180.22, + "probability": 0.1239 + }, + { + "start": 33181.24, + "end": 33182.04, + "probability": 0.6575 + }, + { + "start": 33182.24, + "end": 33184.22, + "probability": 0.9781 + }, + { + "start": 33190.14, + "end": 33195.62, + "probability": 0.3717 + }, + { + "start": 33195.94, + "end": 33197.48, + "probability": 0.7984 + }, + { + "start": 33197.74, + "end": 33198.24, + "probability": 0.2672 + }, + { + "start": 33202.06, + "end": 33204.22, + "probability": 0.1647 + }, + { + "start": 33207.5, + "end": 33209.5, + "probability": 0.0786 + }, + { + "start": 33215.66, + "end": 33216.24, + "probability": 0.1458 + }, + { + "start": 33216.3, + "end": 33217.44, + "probability": 0.6484 + }, + { + "start": 33217.8, + "end": 33219.7, + "probability": 0.5712 + }, + { + "start": 33223.0, + "end": 33223.1, + "probability": 0.0189 + }, + { + "start": 33225.6, + "end": 33229.42, + "probability": 0.9504 + }, + { + "start": 33229.58, + "end": 33230.88, + "probability": 0.7144 + }, + { + "start": 33231.66, + "end": 33236.6, + "probability": 0.9985 + }, + { + "start": 33237.92, + "end": 33239.18, + "probability": 0.4825 + }, + { + "start": 33239.28, + "end": 33239.98, + "probability": 0.9177 + }, + { + "start": 33240.1, + "end": 33240.53, + "probability": 0.7987 + }, + { + "start": 33241.34, + "end": 33241.84, + "probability": 0.9097 + }, + { + "start": 33241.9, + "end": 33243.84, + "probability": 0.982 + }, + { + "start": 33243.92, + "end": 33244.74, + "probability": 0.6216 + }, + { + "start": 33245.82, + "end": 33247.22, + "probability": 0.6872 + }, + { + "start": 33247.76, + "end": 33250.12, + "probability": 0.9963 + }, + { + "start": 33250.9, + "end": 33253.62, + "probability": 0.9565 + }, + { + "start": 33253.74, + "end": 33253.8, + "probability": 0.0204 + }, + { + "start": 33254.0, + "end": 33255.98, + "probability": 0.407 + }, + { + "start": 33256.78, + "end": 33257.74, + "probability": 0.63 + }, + { + "start": 33257.88, + "end": 33259.94, + "probability": 0.9735 + }, + { + "start": 33260.18, + "end": 33261.6, + "probability": 0.7669 + }, + { + "start": 33261.76, + "end": 33264.68, + "probability": 0.7153 + }, + { + "start": 33265.2, + "end": 33268.22, + "probability": 0.7905 + }, + { + "start": 33269.28, + "end": 33271.44, + "probability": 0.3149 + }, + { + "start": 33271.82, + "end": 33273.47, + "probability": 0.4345 + }, + { + "start": 33273.82, + "end": 33277.68, + "probability": 0.7679 + }, + { + "start": 33278.1, + "end": 33279.32, + "probability": 0.114 + }, + { + "start": 33279.82, + "end": 33280.46, + "probability": 0.37 + }, + { + "start": 33280.76, + "end": 33282.4, + "probability": 0.2209 + }, + { + "start": 33283.48, + "end": 33284.0, + "probability": 0.0685 + }, + { + "start": 33284.34, + "end": 33288.28, + "probability": 0.4192 + }, + { + "start": 33288.4, + "end": 33289.98, + "probability": 0.2102 + }, + { + "start": 33289.98, + "end": 33292.49, + "probability": 0.0604 + }, + { + "start": 33295.07, + "end": 33297.8, + "probability": 0.1471 + }, + { + "start": 33298.4, + "end": 33299.22, + "probability": 0.4899 + }, + { + "start": 33299.28, + "end": 33304.12, + "probability": 0.8015 + }, + { + "start": 33304.28, + "end": 33308.31, + "probability": 0.9797 + }, + { + "start": 33310.06, + "end": 33311.92, + "probability": 0.9644 + }, + { + "start": 33312.4, + "end": 33315.24, + "probability": 0.9902 + }, + { + "start": 33315.32, + "end": 33316.22, + "probability": 0.8621 + }, + { + "start": 33316.9, + "end": 33318.48, + "probability": 0.9705 + }, + { + "start": 33318.58, + "end": 33319.32, + "probability": 0.8608 + }, + { + "start": 33319.38, + "end": 33322.04, + "probability": 0.8846 + }, + { + "start": 33322.6, + "end": 33325.5, + "probability": 0.8672 + }, + { + "start": 33326.22, + "end": 33326.5, + "probability": 0.875 + }, + { + "start": 33326.5, + "end": 33329.1, + "probability": 0.9275 + }, + { + "start": 33330.82, + "end": 33331.06, + "probability": 0.3436 + }, + { + "start": 33331.06, + "end": 33331.22, + "probability": 0.1486 + }, + { + "start": 33331.3, + "end": 33336.82, + "probability": 0.8348 + }, + { + "start": 33337.1, + "end": 33337.74, + "probability": 0.8914 + }, + { + "start": 33337.82, + "end": 33342.34, + "probability": 0.9896 + }, + { + "start": 33343.48, + "end": 33343.96, + "probability": 0.2555 + }, + { + "start": 33344.54, + "end": 33346.6, + "probability": 0.412 + }, + { + "start": 33347.1, + "end": 33348.68, + "probability": 0.8082 + }, + { + "start": 33348.86, + "end": 33354.16, + "probability": 0.4704 + }, + { + "start": 33354.44, + "end": 33356.28, + "probability": 0.6687 + }, + { + "start": 33356.84, + "end": 33358.4, + "probability": 0.8524 + }, + { + "start": 33358.6, + "end": 33360.0, + "probability": 0.9274 + }, + { + "start": 33360.04, + "end": 33360.5, + "probability": 0.6998 + }, + { + "start": 33360.6, + "end": 33364.86, + "probability": 0.9059 + }, + { + "start": 33365.82, + "end": 33367.08, + "probability": 0.8666 + }, + { + "start": 33369.16, + "end": 33370.34, + "probability": 0.8116 + }, + { + "start": 33370.7, + "end": 33373.78, + "probability": 0.9893 + }, + { + "start": 33373.96, + "end": 33378.16, + "probability": 0.7053 + }, + { + "start": 33378.36, + "end": 33379.12, + "probability": 0.6662 + }, + { + "start": 33379.26, + "end": 33380.98, + "probability": 0.9731 + }, + { + "start": 33381.88, + "end": 33382.56, + "probability": 0.8596 + }, + { + "start": 33383.96, + "end": 33387.06, + "probability": 0.8406 + }, + { + "start": 33389.14, + "end": 33389.7, + "probability": 0.9454 + }, + { + "start": 33390.6, + "end": 33391.86, + "probability": 0.6817 + }, + { + "start": 33394.88, + "end": 33395.82, + "probability": 0.4948 + }, + { + "start": 33395.82, + "end": 33395.88, + "probability": 0.3449 + }, + { + "start": 33395.98, + "end": 33404.18, + "probability": 0.9883 + }, + { + "start": 33405.4, + "end": 33407.84, + "probability": 0.9973 + }, + { + "start": 33410.76, + "end": 33414.3, + "probability": 0.6087 + }, + { + "start": 33414.82, + "end": 33417.71, + "probability": 0.9767 + }, + { + "start": 33419.36, + "end": 33423.86, + "probability": 0.945 + }, + { + "start": 33423.86, + "end": 33429.04, + "probability": 0.9785 + }, + { + "start": 33430.08, + "end": 33433.56, + "probability": 0.9145 + }, + { + "start": 33434.58, + "end": 33437.64, + "probability": 0.7179 + }, + { + "start": 33438.02, + "end": 33439.8, + "probability": 0.9762 + }, + { + "start": 33441.1, + "end": 33443.86, + "probability": 0.9498 + }, + { + "start": 33444.78, + "end": 33446.16, + "probability": 0.9627 + }, + { + "start": 33446.68, + "end": 33449.48, + "probability": 0.99 + }, + { + "start": 33450.74, + "end": 33453.8, + "probability": 0.992 + }, + { + "start": 33454.66, + "end": 33457.72, + "probability": 0.8291 + }, + { + "start": 33458.58, + "end": 33459.58, + "probability": 0.4102 + }, + { + "start": 33459.6, + "end": 33461.84, + "probability": 0.9153 + }, + { + "start": 33462.48, + "end": 33464.78, + "probability": 0.9978 + }, + { + "start": 33465.76, + "end": 33466.12, + "probability": 0.6843 + }, + { + "start": 33466.46, + "end": 33469.8, + "probability": 0.998 + }, + { + "start": 33470.62, + "end": 33473.36, + "probability": 0.9705 + }, + { + "start": 33473.9, + "end": 33475.8, + "probability": 0.998 + }, + { + "start": 33478.7, + "end": 33480.02, + "probability": 0.9881 + }, + { + "start": 33480.22, + "end": 33481.02, + "probability": 0.824 + }, + { + "start": 33481.48, + "end": 33482.62, + "probability": 0.9159 + }, + { + "start": 33482.74, + "end": 33483.44, + "probability": 0.6993 + }, + { + "start": 33484.24, + "end": 33486.76, + "probability": 0.903 + }, + { + "start": 33486.96, + "end": 33489.5, + "probability": 0.9907 + }, + { + "start": 33489.96, + "end": 33490.3, + "probability": 0.5417 + }, + { + "start": 33491.5, + "end": 33493.2, + "probability": 0.9877 + }, + { + "start": 33493.8, + "end": 33496.96, + "probability": 0.9925 + }, + { + "start": 33497.98, + "end": 33498.84, + "probability": 0.9382 + }, + { + "start": 33499.68, + "end": 33503.12, + "probability": 0.9958 + }, + { + "start": 33503.32, + "end": 33504.1, + "probability": 0.8841 + }, + { + "start": 33504.56, + "end": 33506.24, + "probability": 0.9896 + }, + { + "start": 33507.04, + "end": 33510.34, + "probability": 0.9679 + }, + { + "start": 33511.96, + "end": 33514.96, + "probability": 0.9876 + }, + { + "start": 33515.98, + "end": 33516.46, + "probability": 0.8617 + }, + { + "start": 33516.94, + "end": 33520.22, + "probability": 0.9973 + }, + { + "start": 33521.78, + "end": 33525.54, + "probability": 0.9838 + }, + { + "start": 33526.14, + "end": 33527.72, + "probability": 0.9992 + }, + { + "start": 33528.42, + "end": 33529.7, + "probability": 0.9885 + }, + { + "start": 33530.34, + "end": 33532.02, + "probability": 0.9993 + }, + { + "start": 33532.62, + "end": 33537.2, + "probability": 0.9824 + }, + { + "start": 33538.76, + "end": 33539.06, + "probability": 0.8336 + }, + { + "start": 33539.36, + "end": 33540.09, + "probability": 0.9885 + }, + { + "start": 33540.2, + "end": 33543.2, + "probability": 0.8244 + }, + { + "start": 33543.26, + "end": 33544.1, + "probability": 0.9595 + }, + { + "start": 33544.18, + "end": 33547.5, + "probability": 0.9931 + }, + { + "start": 33549.22, + "end": 33551.66, + "probability": 0.9766 + }, + { + "start": 33552.62, + "end": 33554.88, + "probability": 0.9871 + }, + { + "start": 33554.88, + "end": 33557.88, + "probability": 0.999 + }, + { + "start": 33558.26, + "end": 33559.62, + "probability": 0.8126 + }, + { + "start": 33559.66, + "end": 33560.38, + "probability": 0.8616 + }, + { + "start": 33560.9, + "end": 33562.44, + "probability": 0.7225 + }, + { + "start": 33563.74, + "end": 33565.96, + "probability": 0.9978 + }, + { + "start": 33565.96, + "end": 33568.78, + "probability": 0.993 + }, + { + "start": 33569.6, + "end": 33572.36, + "probability": 0.9728 + }, + { + "start": 33573.04, + "end": 33574.24, + "probability": 0.8781 + }, + { + "start": 33574.26, + "end": 33575.36, + "probability": 0.9941 + }, + { + "start": 33575.54, + "end": 33577.26, + "probability": 0.9879 + }, + { + "start": 33578.32, + "end": 33578.94, + "probability": 0.9738 + }, + { + "start": 33579.16, + "end": 33584.1, + "probability": 0.999 + }, + { + "start": 33585.5, + "end": 33589.36, + "probability": 0.996 + }, + { + "start": 33590.08, + "end": 33595.06, + "probability": 0.9817 + }, + { + "start": 33595.98, + "end": 33597.08, + "probability": 0.9157 + }, + { + "start": 33598.34, + "end": 33599.46, + "probability": 0.8153 + }, + { + "start": 33600.2, + "end": 33601.46, + "probability": 0.854 + }, + { + "start": 33602.44, + "end": 33607.34, + "probability": 0.9039 + }, + { + "start": 33608.88, + "end": 33609.64, + "probability": 0.785 + }, + { + "start": 33609.8, + "end": 33610.5, + "probability": 0.9644 + }, + { + "start": 33610.9, + "end": 33614.6, + "probability": 0.9966 + }, + { + "start": 33615.48, + "end": 33617.14, + "probability": 0.7915 + }, + { + "start": 33617.98, + "end": 33620.08, + "probability": 0.8316 + }, + { + "start": 33620.16, + "end": 33620.88, + "probability": 0.9473 + }, + { + "start": 33620.94, + "end": 33623.5, + "probability": 0.979 + }, + { + "start": 33624.16, + "end": 33628.0, + "probability": 0.9967 + }, + { + "start": 33628.76, + "end": 33630.38, + "probability": 0.9361 + }, + { + "start": 33631.28, + "end": 33633.12, + "probability": 0.8918 + }, + { + "start": 33634.16, + "end": 33635.78, + "probability": 0.9905 + }, + { + "start": 33636.94, + "end": 33640.36, + "probability": 0.9873 + }, + { + "start": 33641.16, + "end": 33644.82, + "probability": 0.9985 + }, + { + "start": 33646.0, + "end": 33647.12, + "probability": 0.7168 + }, + { + "start": 33648.0, + "end": 33650.9, + "probability": 0.9979 + }, + { + "start": 33650.9, + "end": 33654.86, + "probability": 0.9971 + }, + { + "start": 33655.26, + "end": 33656.26, + "probability": 0.751 + }, + { + "start": 33657.52, + "end": 33658.66, + "probability": 0.792 + }, + { + "start": 33659.24, + "end": 33660.86, + "probability": 0.9136 + }, + { + "start": 33661.38, + "end": 33663.96, + "probability": 0.9163 + }, + { + "start": 33664.52, + "end": 33667.56, + "probability": 0.9736 + }, + { + "start": 33668.38, + "end": 33670.04, + "probability": 0.9687 + }, + { + "start": 33670.82, + "end": 33677.84, + "probability": 0.8879 + }, + { + "start": 33678.58, + "end": 33680.62, + "probability": 0.9987 + }, + { + "start": 33681.68, + "end": 33685.36, + "probability": 0.9972 + }, + { + "start": 33686.38, + "end": 33687.74, + "probability": 0.9657 + }, + { + "start": 33687.84, + "end": 33689.08, + "probability": 0.9958 + }, + { + "start": 33689.16, + "end": 33691.08, + "probability": 0.9765 + }, + { + "start": 33691.64, + "end": 33695.62, + "probability": 0.9808 + }, + { + "start": 33696.28, + "end": 33701.38, + "probability": 0.9989 + }, + { + "start": 33701.38, + "end": 33705.48, + "probability": 0.9952 + }, + { + "start": 33706.92, + "end": 33708.92, + "probability": 0.9993 + }, + { + "start": 33709.58, + "end": 33713.96, + "probability": 0.9913 + }, + { + "start": 33714.48, + "end": 33715.88, + "probability": 0.9507 + }, + { + "start": 33717.64, + "end": 33721.76, + "probability": 0.9962 + }, + { + "start": 33722.64, + "end": 33726.84, + "probability": 0.9992 + }, + { + "start": 33729.32, + "end": 33730.22, + "probability": 0.4485 + }, + { + "start": 33730.3, + "end": 33733.02, + "probability": 0.9955 + }, + { + "start": 33733.14, + "end": 33736.68, + "probability": 0.9951 + }, + { + "start": 33737.66, + "end": 33742.0, + "probability": 0.9976 + }, + { + "start": 33742.94, + "end": 33746.56, + "probability": 0.9894 + }, + { + "start": 33747.74, + "end": 33750.48, + "probability": 0.9966 + }, + { + "start": 33750.48, + "end": 33752.42, + "probability": 0.9998 + }, + { + "start": 33753.48, + "end": 33756.56, + "probability": 0.9959 + }, + { + "start": 33757.8, + "end": 33759.02, + "probability": 0.9556 + }, + { + "start": 33759.62, + "end": 33760.46, + "probability": 0.9856 + }, + { + "start": 33760.58, + "end": 33761.22, + "probability": 0.836 + }, + { + "start": 33761.72, + "end": 33763.48, + "probability": 0.9526 + }, + { + "start": 33764.14, + "end": 33765.2, + "probability": 0.9939 + }, + { + "start": 33765.26, + "end": 33768.0, + "probability": 0.964 + }, + { + "start": 33769.2, + "end": 33769.94, + "probability": 0.8471 + }, + { + "start": 33770.08, + "end": 33770.64, + "probability": 0.6549 + }, + { + "start": 33770.78, + "end": 33772.54, + "probability": 0.9797 + }, + { + "start": 33773.36, + "end": 33776.2, + "probability": 0.9832 + }, + { + "start": 33778.4, + "end": 33779.44, + "probability": 0.8796 + }, + { + "start": 33779.74, + "end": 33780.22, + "probability": 0.9268 + }, + { + "start": 33780.3, + "end": 33783.14, + "probability": 0.9985 + }, + { + "start": 33783.44, + "end": 33784.82, + "probability": 0.9675 + }, + { + "start": 33785.92, + "end": 33788.24, + "probability": 0.9907 + }, + { + "start": 33788.92, + "end": 33794.06, + "probability": 0.9961 + }, + { + "start": 33794.64, + "end": 33796.68, + "probability": 0.9922 + }, + { + "start": 33797.58, + "end": 33799.38, + "probability": 0.7295 + }, + { + "start": 33800.4, + "end": 33801.82, + "probability": 0.998 + }, + { + "start": 33802.12, + "end": 33808.3, + "probability": 0.9377 + }, + { + "start": 33809.86, + "end": 33810.68, + "probability": 0.728 + }, + { + "start": 33810.78, + "end": 33811.32, + "probability": 0.8561 + }, + { + "start": 33811.52, + "end": 33812.65, + "probability": 0.9907 + }, + { + "start": 33813.38, + "end": 33817.8, + "probability": 0.9917 + }, + { + "start": 33819.06, + "end": 33822.5, + "probability": 0.96 + }, + { + "start": 33823.66, + "end": 33825.38, + "probability": 0.8932 + }, + { + "start": 33826.84, + "end": 33828.34, + "probability": 0.9984 + }, + { + "start": 33828.86, + "end": 33830.44, + "probability": 0.9841 + }, + { + "start": 33830.56, + "end": 33831.52, + "probability": 0.8912 + }, + { + "start": 33831.54, + "end": 33835.62, + "probability": 0.9422 + }, + { + "start": 33836.48, + "end": 33837.76, + "probability": 0.8661 + }, + { + "start": 33839.64, + "end": 33841.22, + "probability": 0.9448 + }, + { + "start": 33841.34, + "end": 33842.16, + "probability": 0.6612 + }, + { + "start": 33842.34, + "end": 33843.44, + "probability": 0.9752 + }, + { + "start": 33844.3, + "end": 33848.58, + "probability": 0.9984 + }, + { + "start": 33849.28, + "end": 33850.78, + "probability": 0.9125 + }, + { + "start": 33851.2, + "end": 33855.12, + "probability": 0.9866 + }, + { + "start": 33855.12, + "end": 33858.6, + "probability": 0.998 + }, + { + "start": 33859.46, + "end": 33862.36, + "probability": 0.8298 + }, + { + "start": 33863.5, + "end": 33864.84, + "probability": 0.979 + }, + { + "start": 33865.18, + "end": 33867.14, + "probability": 0.8791 + }, + { + "start": 33868.26, + "end": 33870.1, + "probability": 0.9983 + }, + { + "start": 33872.83, + "end": 33874.13, + "probability": 0.5254 + }, + { + "start": 33875.42, + "end": 33877.79, + "probability": 0.9915 + }, + { + "start": 33877.98, + "end": 33880.28, + "probability": 0.9956 + }, + { + "start": 33880.28, + "end": 33883.04, + "probability": 0.9797 + }, + { + "start": 33883.82, + "end": 33884.92, + "probability": 0.9882 + }, + { + "start": 33885.8, + "end": 33888.98, + "probability": 0.9708 + }, + { + "start": 33890.18, + "end": 33895.14, + "probability": 0.9214 + }, + { + "start": 33897.54, + "end": 33900.78, + "probability": 0.9877 + }, + { + "start": 33901.66, + "end": 33902.62, + "probability": 0.927 + }, + { + "start": 33903.28, + "end": 33904.6, + "probability": 0.9837 + }, + { + "start": 33905.08, + "end": 33907.94, + "probability": 0.8797 + }, + { + "start": 33909.24, + "end": 33913.5, + "probability": 0.996 + }, + { + "start": 33914.38, + "end": 33918.54, + "probability": 0.9976 + }, + { + "start": 33919.44, + "end": 33921.84, + "probability": 0.9951 + }, + { + "start": 33922.4, + "end": 33925.3, + "probability": 0.998 + }, + { + "start": 33925.86, + "end": 33928.72, + "probability": 0.8916 + }, + { + "start": 33928.92, + "end": 33930.24, + "probability": 0.9009 + }, + { + "start": 33931.64, + "end": 33933.78, + "probability": 0.9867 + }, + { + "start": 33934.62, + "end": 33937.32, + "probability": 0.9969 + }, + { + "start": 33937.92, + "end": 33943.05, + "probability": 0.9947 + }, + { + "start": 33943.16, + "end": 33944.26, + "probability": 0.6294 + }, + { + "start": 33944.74, + "end": 33946.26, + "probability": 0.8713 + }, + { + "start": 33946.7, + "end": 33949.7, + "probability": 0.9961 + }, + { + "start": 33950.76, + "end": 33956.0, + "probability": 0.9957 + }, + { + "start": 33958.26, + "end": 33962.28, + "probability": 0.6802 + }, + { + "start": 33962.38, + "end": 33965.56, + "probability": 0.9331 + }, + { + "start": 33967.26, + "end": 33969.2, + "probability": 0.9982 + }, + { + "start": 33969.66, + "end": 33974.42, + "probability": 0.9865 + }, + { + "start": 33975.74, + "end": 33977.34, + "probability": 0.6509 + }, + { + "start": 33978.16, + "end": 33980.54, + "probability": 0.9724 + }, + { + "start": 33983.78, + "end": 33987.6, + "probability": 0.9945 + }, + { + "start": 33988.02, + "end": 33990.26, + "probability": 0.8688 + }, + { + "start": 33991.24, + "end": 33994.44, + "probability": 0.9969 + }, + { + "start": 33995.2, + "end": 33997.1, + "probability": 0.8054 + }, + { + "start": 33997.74, + "end": 33999.78, + "probability": 0.9861 + }, + { + "start": 34000.46, + "end": 34001.84, + "probability": 0.7975 + }, + { + "start": 34005.9, + "end": 34008.44, + "probability": 0.9961 + }, + { + "start": 34008.44, + "end": 34012.74, + "probability": 0.9995 + }, + { + "start": 34013.3, + "end": 34017.08, + "probability": 0.9988 + }, + { + "start": 34019.56, + "end": 34019.9, + "probability": 0.0526 + }, + { + "start": 34019.9, + "end": 34024.68, + "probability": 0.9475 + }, + { + "start": 34025.54, + "end": 34029.22, + "probability": 0.9788 + }, + { + "start": 34029.46, + "end": 34032.56, + "probability": 0.9882 + }, + { + "start": 34034.38, + "end": 34037.13, + "probability": 0.995 + }, + { + "start": 34038.0, + "end": 34041.98, + "probability": 0.999 + }, + { + "start": 34042.24, + "end": 34042.74, + "probability": 0.7397 + }, + { + "start": 34044.42, + "end": 34046.16, + "probability": 0.9453 + }, + { + "start": 34046.74, + "end": 34049.58, + "probability": 0.9711 + }, + { + "start": 34050.84, + "end": 34051.94, + "probability": 0.9825 + }, + { + "start": 34052.68, + "end": 34054.06, + "probability": 0.9736 + }, + { + "start": 34054.14, + "end": 34056.8, + "probability": 0.992 + }, + { + "start": 34057.22, + "end": 34059.86, + "probability": 0.9761 + }, + { + "start": 34060.44, + "end": 34064.54, + "probability": 0.9835 + }, + { + "start": 34071.54, + "end": 34072.56, + "probability": 0.8813 + }, + { + "start": 34073.14, + "end": 34075.6, + "probability": 0.9982 + }, + { + "start": 34076.4, + "end": 34079.6, + "probability": 0.9885 + }, + { + "start": 34080.76, + "end": 34082.16, + "probability": 0.9719 + }, + { + "start": 34083.46, + "end": 34087.9, + "probability": 0.9711 + }, + { + "start": 34089.12, + "end": 34091.98, + "probability": 0.7998 + }, + { + "start": 34092.76, + "end": 34097.84, + "probability": 0.9944 + }, + { + "start": 34097.84, + "end": 34101.3, + "probability": 0.9836 + }, + { + "start": 34102.04, + "end": 34105.65, + "probability": 0.9772 + }, + { + "start": 34106.64, + "end": 34110.3, + "probability": 0.9924 + }, + { + "start": 34110.72, + "end": 34112.18, + "probability": 0.8457 + }, + { + "start": 34112.9, + "end": 34114.32, + "probability": 0.8514 + }, + { + "start": 34115.22, + "end": 34120.3, + "probability": 0.9958 + }, + { + "start": 34121.76, + "end": 34127.14, + "probability": 0.95 + }, + { + "start": 34128.42, + "end": 34129.42, + "probability": 0.9242 + }, + { + "start": 34130.08, + "end": 34131.56, + "probability": 0.9372 + }, + { + "start": 34131.72, + "end": 34133.6, + "probability": 0.9568 + }, + { + "start": 34133.68, + "end": 34134.16, + "probability": 0.9503 + }, + { + "start": 34134.22, + "end": 34134.4, + "probability": 0.9243 + }, + { + "start": 34134.46, + "end": 34135.66, + "probability": 0.8193 + }, + { + "start": 34136.04, + "end": 34137.14, + "probability": 0.9587 + }, + { + "start": 34137.6, + "end": 34139.16, + "probability": 0.9939 + }, + { + "start": 34140.04, + "end": 34141.18, + "probability": 0.8171 + }, + { + "start": 34141.98, + "end": 34143.8, + "probability": 0.9609 + }, + { + "start": 34144.88, + "end": 34147.76, + "probability": 0.8054 + }, + { + "start": 34148.8, + "end": 34150.72, + "probability": 0.9902 + }, + { + "start": 34151.24, + "end": 34155.04, + "probability": 0.9973 + }, + { + "start": 34155.04, + "end": 34159.52, + "probability": 0.9993 + }, + { + "start": 34160.06, + "end": 34162.38, + "probability": 0.9925 + }, + { + "start": 34163.36, + "end": 34165.52, + "probability": 0.8153 + }, + { + "start": 34166.16, + "end": 34168.94, + "probability": 0.9879 + }, + { + "start": 34169.64, + "end": 34171.86, + "probability": 0.9971 + }, + { + "start": 34172.42, + "end": 34175.6, + "probability": 0.9985 + }, + { + "start": 34175.6, + "end": 34178.88, + "probability": 0.9988 + }, + { + "start": 34180.56, + "end": 34183.44, + "probability": 0.9961 + }, + { + "start": 34184.0, + "end": 34187.24, + "probability": 0.9756 + }, + { + "start": 34188.86, + "end": 34192.88, + "probability": 0.9985 + }, + { + "start": 34193.42, + "end": 34198.3, + "probability": 0.9939 + }, + { + "start": 34202.02, + "end": 34203.34, + "probability": 0.7245 + }, + { + "start": 34203.4, + "end": 34204.62, + "probability": 0.9937 + }, + { + "start": 34204.78, + "end": 34206.88, + "probability": 0.9817 + }, + { + "start": 34207.58, + "end": 34208.78, + "probability": 0.9951 + }, + { + "start": 34208.82, + "end": 34211.56, + "probability": 0.9227 + }, + { + "start": 34212.18, + "end": 34215.58, + "probability": 0.9957 + }, + { + "start": 34216.56, + "end": 34218.0, + "probability": 0.66 + }, + { + "start": 34218.08, + "end": 34221.02, + "probability": 0.9929 + }, + { + "start": 34222.26, + "end": 34223.64, + "probability": 0.967 + }, + { + "start": 34224.62, + "end": 34230.72, + "probability": 0.9843 + }, + { + "start": 34232.4, + "end": 34234.46, + "probability": 0.9974 + }, + { + "start": 34235.24, + "end": 34241.04, + "probability": 0.9915 + }, + { + "start": 34241.6, + "end": 34247.5, + "probability": 0.9949 + }, + { + "start": 34248.2, + "end": 34248.82, + "probability": 0.6318 + }, + { + "start": 34250.24, + "end": 34252.74, + "probability": 0.9976 + }, + { + "start": 34253.32, + "end": 34259.4, + "probability": 0.9956 + }, + { + "start": 34259.84, + "end": 34265.0, + "probability": 0.9965 + }, + { + "start": 34268.1, + "end": 34270.64, + "probability": 0.9906 + }, + { + "start": 34270.64, + "end": 34274.3, + "probability": 0.9955 + }, + { + "start": 34275.08, + "end": 34275.46, + "probability": 0.7702 + }, + { + "start": 34275.72, + "end": 34276.56, + "probability": 0.9741 + }, + { + "start": 34277.54, + "end": 34282.14, + "probability": 0.9983 + }, + { + "start": 34282.82, + "end": 34285.74, + "probability": 0.9982 + }, + { + "start": 34286.88, + "end": 34287.58, + "probability": 0.6471 + }, + { + "start": 34288.3, + "end": 34292.26, + "probability": 0.9847 + }, + { + "start": 34292.42, + "end": 34294.19, + "probability": 0.9911 + }, + { + "start": 34295.24, + "end": 34297.46, + "probability": 0.9981 + }, + { + "start": 34297.66, + "end": 34299.18, + "probability": 0.9733 + }, + { + "start": 34300.24, + "end": 34302.9, + "probability": 0.9923 + }, + { + "start": 34302.96, + "end": 34305.18, + "probability": 0.9552 + }, + { + "start": 34305.86, + "end": 34306.94, + "probability": 0.9833 + }, + { + "start": 34307.04, + "end": 34308.08, + "probability": 0.7538 + }, + { + "start": 34308.48, + "end": 34311.46, + "probability": 0.9103 + }, + { + "start": 34311.96, + "end": 34314.14, + "probability": 0.9682 + }, + { + "start": 34316.28, + "end": 34320.46, + "probability": 0.949 + }, + { + "start": 34321.1, + "end": 34322.78, + "probability": 0.9914 + }, + { + "start": 34323.34, + "end": 34325.28, + "probability": 0.8669 + }, + { + "start": 34325.9, + "end": 34327.06, + "probability": 0.7863 + }, + { + "start": 34328.34, + "end": 34332.42, + "probability": 0.9936 + }, + { + "start": 34333.02, + "end": 34333.82, + "probability": 0.7219 + }, + { + "start": 34334.52, + "end": 34334.88, + "probability": 0.728 + }, + { + "start": 34335.0, + "end": 34337.96, + "probability": 0.9905 + }, + { + "start": 34338.0, + "end": 34340.48, + "probability": 0.9014 + }, + { + "start": 34341.68, + "end": 34341.78, + "probability": 0.047 + }, + { + "start": 34342.38, + "end": 34342.86, + "probability": 0.6481 + }, + { + "start": 34342.94, + "end": 34344.26, + "probability": 0.9803 + }, + { + "start": 34344.32, + "end": 34345.31, + "probability": 0.9934 + }, + { + "start": 34345.94, + "end": 34350.2, + "probability": 0.8168 + }, + { + "start": 34350.76, + "end": 34354.06, + "probability": 0.9918 + }, + { + "start": 34355.94, + "end": 34356.86, + "probability": 0.6339 + }, + { + "start": 34357.92, + "end": 34360.88, + "probability": 0.7606 + }, + { + "start": 34360.92, + "end": 34362.76, + "probability": 0.9917 + }, + { + "start": 34363.52, + "end": 34365.5, + "probability": 0.9939 + }, + { + "start": 34365.84, + "end": 34367.94, + "probability": 0.9611 + }, + { + "start": 34368.5, + "end": 34370.4, + "probability": 0.958 + }, + { + "start": 34371.36, + "end": 34375.92, + "probability": 0.9963 + }, + { + "start": 34376.8, + "end": 34380.62, + "probability": 0.9917 + }, + { + "start": 34382.5, + "end": 34386.54, + "probability": 0.9878 + }, + { + "start": 34387.16, + "end": 34388.48, + "probability": 0.9956 + }, + { + "start": 34389.92, + "end": 34393.32, + "probability": 0.7604 + }, + { + "start": 34394.18, + "end": 34396.52, + "probability": 0.9707 + }, + { + "start": 34397.32, + "end": 34399.3, + "probability": 0.9045 + }, + { + "start": 34400.02, + "end": 34404.56, + "probability": 0.9954 + }, + { + "start": 34405.22, + "end": 34410.62, + "probability": 0.6931 + }, + { + "start": 34411.64, + "end": 34412.06, + "probability": 0.7168 + }, + { + "start": 34412.16, + "end": 34412.66, + "probability": 0.8505 + }, + { + "start": 34413.14, + "end": 34417.74, + "probability": 0.8747 + }, + { + "start": 34418.58, + "end": 34422.92, + "probability": 0.9846 + }, + { + "start": 34423.8, + "end": 34426.42, + "probability": 0.9989 + }, + { + "start": 34426.42, + "end": 34429.46, + "probability": 0.9979 + }, + { + "start": 34430.54, + "end": 34432.56, + "probability": 0.9998 + }, + { + "start": 34433.86, + "end": 34437.52, + "probability": 0.9867 + }, + { + "start": 34437.52, + "end": 34441.26, + "probability": 0.9973 + }, + { + "start": 34441.3, + "end": 34441.9, + "probability": 0.7271 + }, + { + "start": 34442.9, + "end": 34445.28, + "probability": 0.7722 + }, + { + "start": 34445.98, + "end": 34448.36, + "probability": 0.9944 + }, + { + "start": 34455.78, + "end": 34459.62, + "probability": 0.9956 + }, + { + "start": 34460.7, + "end": 34461.22, + "probability": 0.6773 + }, + { + "start": 34461.34, + "end": 34462.08, + "probability": 0.9404 + }, + { + "start": 34462.24, + "end": 34465.4, + "probability": 0.9768 + }, + { + "start": 34466.18, + "end": 34467.22, + "probability": 0.9851 + }, + { + "start": 34467.62, + "end": 34470.22, + "probability": 0.9968 + }, + { + "start": 34471.36, + "end": 34472.56, + "probability": 0.9964 + }, + { + "start": 34473.28, + "end": 34475.7, + "probability": 0.9751 + }, + { + "start": 34476.36, + "end": 34477.88, + "probability": 0.9555 + }, + { + "start": 34478.52, + "end": 34480.48, + "probability": 0.9801 + }, + { + "start": 34481.54, + "end": 34486.04, + "probability": 0.9927 + }, + { + "start": 34486.66, + "end": 34488.54, + "probability": 0.8423 + }, + { + "start": 34489.2, + "end": 34492.42, + "probability": 0.9914 + }, + { + "start": 34493.26, + "end": 34496.14, + "probability": 0.9954 + }, + { + "start": 34497.06, + "end": 34498.06, + "probability": 0.9821 + }, + { + "start": 34499.2, + "end": 34499.78, + "probability": 0.9583 + }, + { + "start": 34500.5, + "end": 34501.24, + "probability": 0.9904 + }, + { + "start": 34501.84, + "end": 34502.82, + "probability": 0.7789 + }, + { + "start": 34503.64, + "end": 34505.72, + "probability": 0.9961 + }, + { + "start": 34506.56, + "end": 34509.26, + "probability": 0.9343 + }, + { + "start": 34510.26, + "end": 34510.96, + "probability": 0.8228 + }, + { + "start": 34511.32, + "end": 34516.14, + "probability": 0.964 + }, + { + "start": 34516.88, + "end": 34519.92, + "probability": 0.9904 + }, + { + "start": 34521.28, + "end": 34523.6, + "probability": 0.99 + }, + { + "start": 34524.02, + "end": 34524.65, + "probability": 0.7181 + }, + { + "start": 34525.96, + "end": 34526.9, + "probability": 0.8138 + }, + { + "start": 34527.54, + "end": 34533.34, + "probability": 0.9899 + }, + { + "start": 34533.34, + "end": 34539.88, + "probability": 0.9861 + }, + { + "start": 34541.18, + "end": 34543.34, + "probability": 0.8655 + }, + { + "start": 34543.9, + "end": 34547.72, + "probability": 0.9836 + }, + { + "start": 34548.78, + "end": 34549.74, + "probability": 0.9344 + }, + { + "start": 34550.3, + "end": 34554.04, + "probability": 0.995 + }, + { + "start": 34555.16, + "end": 34555.8, + "probability": 0.7413 + }, + { + "start": 34556.48, + "end": 34557.7, + "probability": 0.8021 + }, + { + "start": 34557.76, + "end": 34559.58, + "probability": 0.8884 + }, + { + "start": 34560.2, + "end": 34561.52, + "probability": 0.8954 + }, + { + "start": 34562.62, + "end": 34563.22, + "probability": 0.9273 + }, + { + "start": 34563.8, + "end": 34564.52, + "probability": 0.6806 + }, + { + "start": 34565.16, + "end": 34568.72, + "probability": 0.9689 + }, + { + "start": 34568.94, + "end": 34571.06, + "probability": 0.9766 + }, + { + "start": 34572.36, + "end": 34573.7, + "probability": 0.9746 + }, + { + "start": 34574.32, + "end": 34575.56, + "probability": 0.5023 + }, + { + "start": 34576.14, + "end": 34577.54, + "probability": 0.8622 + }, + { + "start": 34578.66, + "end": 34581.1, + "probability": 0.9471 + }, + { + "start": 34581.98, + "end": 34584.88, + "probability": 0.9953 + }, + { + "start": 34586.06, + "end": 34589.4, + "probability": 0.9978 + }, + { + "start": 34589.4, + "end": 34594.02, + "probability": 0.9565 + }, + { + "start": 34594.66, + "end": 34596.52, + "probability": 0.98 + }, + { + "start": 34597.86, + "end": 34598.9, + "probability": 0.999 + }, + { + "start": 34600.68, + "end": 34601.78, + "probability": 0.999 + }, + { + "start": 34603.96, + "end": 34604.99, + "probability": 0.9985 + }, + { + "start": 34606.18, + "end": 34608.9, + "probability": 0.9993 + }, + { + "start": 34608.9, + "end": 34612.76, + "probability": 0.9728 + }, + { + "start": 34614.22, + "end": 34619.4, + "probability": 0.994 + }, + { + "start": 34620.18, + "end": 34623.4, + "probability": 0.9802 + }, + { + "start": 34627.14, + "end": 34628.18, + "probability": 0.9089 + }, + { + "start": 34628.62, + "end": 34630.86, + "probability": 0.9978 + }, + { + "start": 34631.46, + "end": 34632.84, + "probability": 0.7657 + }, + { + "start": 34633.22, + "end": 34634.3, + "probability": 0.9736 + }, + { + "start": 34635.7, + "end": 34638.52, + "probability": 0.9984 + }, + { + "start": 34639.86, + "end": 34641.7, + "probability": 0.7479 + }, + { + "start": 34642.64, + "end": 34643.52, + "probability": 0.9971 + }, + { + "start": 34644.36, + "end": 34646.36, + "probability": 0.9777 + }, + { + "start": 34647.02, + "end": 34649.86, + "probability": 0.9971 + }, + { + "start": 34650.48, + "end": 34651.68, + "probability": 0.894 + }, + { + "start": 34653.16, + "end": 34655.84, + "probability": 0.986 + }, + { + "start": 34656.76, + "end": 34660.98, + "probability": 0.9982 + }, + { + "start": 34662.06, + "end": 34665.7, + "probability": 0.9556 + }, + { + "start": 34666.32, + "end": 34668.38, + "probability": 0.9724 + }, + { + "start": 34669.22, + "end": 34670.2, + "probability": 0.921 + }, + { + "start": 34670.98, + "end": 34675.54, + "probability": 0.9988 + }, + { + "start": 34676.56, + "end": 34678.06, + "probability": 0.5185 + }, + { + "start": 34678.92, + "end": 34683.38, + "probability": 0.9714 + }, + { + "start": 34684.12, + "end": 34686.62, + "probability": 0.9852 + }, + { + "start": 34687.56, + "end": 34688.98, + "probability": 0.9475 + }, + { + "start": 34689.56, + "end": 34690.86, + "probability": 0.8882 + }, + { + "start": 34691.56, + "end": 34692.85, + "probability": 0.9718 + }, + { + "start": 34693.42, + "end": 34695.74, + "probability": 0.9932 + }, + { + "start": 34699.38, + "end": 34703.06, + "probability": 0.9911 + }, + { + "start": 34703.14, + "end": 34703.44, + "probability": 0.8364 + }, + { + "start": 34703.48, + "end": 34704.88, + "probability": 0.9751 + }, + { + "start": 34705.7, + "end": 34707.88, + "probability": 0.9868 + }, + { + "start": 34707.88, + "end": 34710.44, + "probability": 0.9966 + }, + { + "start": 34711.22, + "end": 34713.92, + "probability": 0.9377 + }, + { + "start": 34714.86, + "end": 34720.54, + "probability": 0.9952 + }, + { + "start": 34721.12, + "end": 34723.66, + "probability": 0.998 + }, + { + "start": 34724.8, + "end": 34727.82, + "probability": 0.9862 + }, + { + "start": 34729.14, + "end": 34729.66, + "probability": 0.6751 + }, + { + "start": 34730.44, + "end": 34733.9, + "probability": 0.9641 + }, + { + "start": 34734.5, + "end": 34739.24, + "probability": 0.9886 + }, + { + "start": 34740.3, + "end": 34741.66, + "probability": 0.9399 + }, + { + "start": 34742.3, + "end": 34745.99, + "probability": 0.9988 + }, + { + "start": 34746.86, + "end": 34749.86, + "probability": 0.7681 + }, + { + "start": 34750.86, + "end": 34755.36, + "probability": 0.9922 + }, + { + "start": 34755.46, + "end": 34756.3, + "probability": 0.9299 + }, + { + "start": 34756.38, + "end": 34759.06, + "probability": 0.8661 + }, + { + "start": 34759.16, + "end": 34760.02, + "probability": 0.9773 + }, + { + "start": 34760.78, + "end": 34765.24, + "probability": 0.9829 + }, + { + "start": 34766.48, + "end": 34769.04, + "probability": 0.991 + }, + { + "start": 34769.68, + "end": 34772.12, + "probability": 0.8492 + }, + { + "start": 34774.48, + "end": 34775.08, + "probability": 0.8755 + }, + { + "start": 34775.84, + "end": 34777.84, + "probability": 0.9924 + }, + { + "start": 34778.5, + "end": 34783.04, + "probability": 0.9927 + }, + { + "start": 34784.3, + "end": 34785.68, + "probability": 0.9583 + }, + { + "start": 34786.6, + "end": 34789.3, + "probability": 0.9915 + }, + { + "start": 34790.9, + "end": 34792.98, + "probability": 0.9957 + }, + { + "start": 34794.34, + "end": 34795.9, + "probability": 0.9949 + }, + { + "start": 34796.7, + "end": 34800.5, + "probability": 0.75 + }, + { + "start": 34801.74, + "end": 34802.72, + "probability": 0.827 + }, + { + "start": 34803.36, + "end": 34804.52, + "probability": 0.929 + }, + { + "start": 34806.18, + "end": 34806.8, + "probability": 0.9258 + }, + { + "start": 34807.38, + "end": 34810.9, + "probability": 0.9885 + }, + { + "start": 34811.88, + "end": 34816.7, + "probability": 0.976 + }, + { + "start": 34816.93, + "end": 34821.56, + "probability": 0.9995 + }, + { + "start": 34822.38, + "end": 34827.4, + "probability": 0.9693 + }, + { + "start": 34828.64, + "end": 34829.34, + "probability": 0.6393 + }, + { + "start": 34830.4, + "end": 34832.32, + "probability": 0.972 + }, + { + "start": 34834.88, + "end": 34837.24, + "probability": 0.9971 + }, + { + "start": 34837.96, + "end": 34840.34, + "probability": 0.8216 + }, + { + "start": 34841.38, + "end": 34844.52, + "probability": 0.9644 + }, + { + "start": 34846.06, + "end": 34850.16, + "probability": 0.9919 + }, + { + "start": 34852.1, + "end": 34857.52, + "probability": 0.9298 + }, + { + "start": 34858.24, + "end": 34860.04, + "probability": 0.9834 + }, + { + "start": 34860.76, + "end": 34864.18, + "probability": 0.9977 + }, + { + "start": 34864.18, + "end": 34866.98, + "probability": 0.9966 + }, + { + "start": 34867.96, + "end": 34868.86, + "probability": 0.7922 + }, + { + "start": 34869.06, + "end": 34870.3, + "probability": 0.973 + }, + { + "start": 34871.38, + "end": 34875.98, + "probability": 0.9969 + }, + { + "start": 34876.36, + "end": 34877.66, + "probability": 0.8974 + }, + { + "start": 34878.02, + "end": 34879.46, + "probability": 0.9792 + }, + { + "start": 34879.62, + "end": 34881.62, + "probability": 0.9157 + }, + { + "start": 34885.8, + "end": 34886.54, + "probability": 0.5779 + }, + { + "start": 34886.78, + "end": 34891.2, + "probability": 0.7622 + }, + { + "start": 34891.3, + "end": 34893.3, + "probability": 0.983 + }, + { + "start": 34893.86, + "end": 34897.2, + "probability": 0.9828 + }, + { + "start": 34897.3, + "end": 34900.7, + "probability": 0.9635 + }, + { + "start": 34901.28, + "end": 34902.36, + "probability": 0.9408 + }, + { + "start": 34904.46, + "end": 34905.44, + "probability": 0.9708 + }, + { + "start": 34905.6, + "end": 34906.14, + "probability": 0.9756 + }, + { + "start": 34906.22, + "end": 34906.94, + "probability": 0.7686 + }, + { + "start": 34907.1, + "end": 34910.66, + "probability": 0.9977 + }, + { + "start": 34911.28, + "end": 34913.1, + "probability": 0.6952 + }, + { + "start": 34913.6, + "end": 34915.38, + "probability": 0.8525 + }, + { + "start": 34915.62, + "end": 34916.79, + "probability": 0.8131 + }, + { + "start": 34917.28, + "end": 34918.18, + "probability": 0.7417 + }, + { + "start": 34918.38, + "end": 34918.81, + "probability": 0.1101 + }, + { + "start": 34919.02, + "end": 34920.7, + "probability": 0.8984 + }, + { + "start": 34921.36, + "end": 34923.9, + "probability": 0.9941 + }, + { + "start": 34924.04, + "end": 34925.1, + "probability": 0.952 + }, + { + "start": 34925.6, + "end": 34926.78, + "probability": 0.8651 + }, + { + "start": 34927.26, + "end": 34927.5, + "probability": 0.5288 + }, + { + "start": 34928.04, + "end": 34928.6, + "probability": 0.7581 + }, + { + "start": 34929.3, + "end": 34931.13, + "probability": 0.9985 + }, + { + "start": 34932.78, + "end": 34933.84, + "probability": 0.9268 + }, + { + "start": 34934.44, + "end": 34935.5, + "probability": 0.9865 + }, + { + "start": 34936.02, + "end": 34938.76, + "probability": 0.9465 + }, + { + "start": 34942.28, + "end": 34945.66, + "probability": 0.9893 + }, + { + "start": 34946.4, + "end": 34949.24, + "probability": 0.9844 + }, + { + "start": 34949.24, + "end": 34952.4, + "probability": 0.9976 + }, + { + "start": 34954.2, + "end": 34954.8, + "probability": 0.098 + }, + { + "start": 34958.94, + "end": 34961.78, + "probability": 0.4606 + }, + { + "start": 34962.44, + "end": 34964.76, + "probability": 0.9961 + }, + { + "start": 34965.26, + "end": 34969.9, + "probability": 0.9915 + }, + { + "start": 34970.72, + "end": 34972.98, + "probability": 0.9819 + }, + { + "start": 34973.52, + "end": 34977.98, + "probability": 0.9823 + }, + { + "start": 34978.56, + "end": 34979.9, + "probability": 0.5256 + }, + { + "start": 34980.54, + "end": 34982.48, + "probability": 0.9756 + }, + { + "start": 34983.04, + "end": 34986.28, + "probability": 0.9819 + }, + { + "start": 34987.24, + "end": 34991.88, + "probability": 0.9797 + }, + { + "start": 34991.88, + "end": 34995.48, + "probability": 0.9961 + }, + { + "start": 34995.94, + "end": 34999.18, + "probability": 0.9815 + }, + { + "start": 34999.18, + "end": 35002.7, + "probability": 0.9993 + }, + { + "start": 35003.3, + "end": 35006.52, + "probability": 0.9906 + }, + { + "start": 35006.9, + "end": 35009.1, + "probability": 0.9659 + }, + { + "start": 35009.22, + "end": 35009.66, + "probability": 0.5061 + }, + { + "start": 35009.92, + "end": 35013.08, + "probability": 0.9853 + }, + { + "start": 35014.14, + "end": 35014.4, + "probability": 0.6587 + }, + { + "start": 35014.9, + "end": 35015.38, + "probability": 0.8477 + }, + { + "start": 35028.71, + "end": 35032.24, + "probability": 0.4476 + }, + { + "start": 35044.6, + "end": 35046.28, + "probability": 0.4305 + }, + { + "start": 35046.5, + "end": 35047.14, + "probability": 0.5676 + }, + { + "start": 35054.24, + "end": 35056.38, + "probability": 0.6741 + }, + { + "start": 35057.32, + "end": 35059.14, + "probability": 0.8247 + }, + { + "start": 35060.04, + "end": 35061.76, + "probability": 0.9666 + }, + { + "start": 35062.6, + "end": 35063.4, + "probability": 0.963 + }, + { + "start": 35064.02, + "end": 35065.9, + "probability": 0.8987 + }, + { + "start": 35066.48, + "end": 35070.26, + "probability": 0.7258 + }, + { + "start": 35070.32, + "end": 35070.74, + "probability": 0.9652 + }, + { + "start": 35070.84, + "end": 35072.42, + "probability": 0.9283 + }, + { + "start": 35073.14, + "end": 35075.62, + "probability": 0.9199 + }, + { + "start": 35077.9, + "end": 35082.1, + "probability": 0.9785 + }, + { + "start": 35083.1, + "end": 35084.26, + "probability": 0.9569 + }, + { + "start": 35085.18, + "end": 35088.54, + "probability": 0.9836 + }, + { + "start": 35089.58, + "end": 35092.7, + "probability": 0.9938 + }, + { + "start": 35092.72, + "end": 35097.82, + "probability": 0.9989 + }, + { + "start": 35098.9, + "end": 35101.62, + "probability": 0.8861 + }, + { + "start": 35103.1, + "end": 35107.79, + "probability": 0.998 + }, + { + "start": 35108.58, + "end": 35112.04, + "probability": 0.9974 + }, + { + "start": 35112.96, + "end": 35119.22, + "probability": 0.9288 + }, + { + "start": 35119.94, + "end": 35123.04, + "probability": 0.995 + }, + { + "start": 35124.2, + "end": 35125.06, + "probability": 0.578 + }, + { + "start": 35125.22, + "end": 35129.3, + "probability": 0.9958 + }, + { + "start": 35129.72, + "end": 35132.96, + "probability": 0.9895 + }, + { + "start": 35133.04, + "end": 35134.5, + "probability": 0.6939 + }, + { + "start": 35135.66, + "end": 35140.36, + "probability": 0.9818 + }, + { + "start": 35141.06, + "end": 35142.72, + "probability": 0.9871 + }, + { + "start": 35142.84, + "end": 35146.0, + "probability": 0.9615 + }, + { + "start": 35146.44, + "end": 35149.6, + "probability": 0.9906 + }, + { + "start": 35149.74, + "end": 35152.98, + "probability": 0.998 + }, + { + "start": 35153.18, + "end": 35156.22, + "probability": 0.9373 + }, + { + "start": 35156.7, + "end": 35158.82, + "probability": 0.9668 + }, + { + "start": 35159.58, + "end": 35160.26, + "probability": 0.9688 + }, + { + "start": 35161.32, + "end": 35162.12, + "probability": 0.9398 + }, + { + "start": 35163.04, + "end": 35164.28, + "probability": 0.9883 + }, + { + "start": 35164.86, + "end": 35166.18, + "probability": 0.9773 + }, + { + "start": 35167.14, + "end": 35171.32, + "probability": 0.9942 + }, + { + "start": 35171.32, + "end": 35173.24, + "probability": 0.9951 + }, + { + "start": 35174.38, + "end": 35181.26, + "probability": 0.9937 + }, + { + "start": 35181.98, + "end": 35187.6, + "probability": 0.9867 + }, + { + "start": 35187.92, + "end": 35190.52, + "probability": 0.942 + }, + { + "start": 35191.28, + "end": 35191.96, + "probability": 0.8749 + }, + { + "start": 35193.58, + "end": 35196.8, + "probability": 0.9307 + }, + { + "start": 35197.52, + "end": 35198.82, + "probability": 0.9257 + }, + { + "start": 35198.9, + "end": 35202.06, + "probability": 0.9912 + }, + { + "start": 35202.2, + "end": 35204.82, + "probability": 0.9987 + }, + { + "start": 35205.92, + "end": 35209.1, + "probability": 0.981 + }, + { + "start": 35210.0, + "end": 35211.59, + "probability": 0.7647 + }, + { + "start": 35211.98, + "end": 35213.32, + "probability": 0.7146 + }, + { + "start": 35213.54, + "end": 35218.86, + "probability": 0.6976 + }, + { + "start": 35219.32, + "end": 35223.98, + "probability": 0.9913 + }, + { + "start": 35224.6, + "end": 35226.26, + "probability": 0.9409 + }, + { + "start": 35226.66, + "end": 35231.24, + "probability": 0.9785 + }, + { + "start": 35231.62, + "end": 35234.42, + "probability": 0.9677 + }, + { + "start": 35235.26, + "end": 35236.14, + "probability": 0.8397 + }, + { + "start": 35236.86, + "end": 35237.7, + "probability": 0.8687 + }, + { + "start": 35239.86, + "end": 35242.54, + "probability": 0.9902 + }, + { + "start": 35242.54, + "end": 35245.28, + "probability": 0.9767 + }, + { + "start": 35245.92, + "end": 35247.04, + "probability": 0.8678 + }, + { + "start": 35247.14, + "end": 35247.86, + "probability": 0.748 + }, + { + "start": 35248.02, + "end": 35250.46, + "probability": 0.9897 + }, + { + "start": 35251.54, + "end": 35254.02, + "probability": 0.9495 + }, + { + "start": 35255.56, + "end": 35256.6, + "probability": 0.9932 + }, + { + "start": 35258.08, + "end": 35261.0, + "probability": 0.9193 + }, + { + "start": 35261.1, + "end": 35261.62, + "probability": 0.9559 + }, + { + "start": 35261.78, + "end": 35262.28, + "probability": 0.9706 + }, + { + "start": 35262.7, + "end": 35263.3, + "probability": 0.4267 + }, + { + "start": 35263.78, + "end": 35265.48, + "probability": 0.9174 + }, + { + "start": 35266.34, + "end": 35268.84, + "probability": 0.9924 + }, + { + "start": 35268.84, + "end": 35272.08, + "probability": 0.9487 + }, + { + "start": 35272.32, + "end": 35272.88, + "probability": 0.5438 + }, + { + "start": 35272.94, + "end": 35274.1, + "probability": 0.9472 + }, + { + "start": 35276.22, + "end": 35277.74, + "probability": 0.9678 + }, + { + "start": 35278.86, + "end": 35282.34, + "probability": 0.9332 + }, + { + "start": 35283.44, + "end": 35284.74, + "probability": 0.9988 + }, + { + "start": 35285.84, + "end": 35288.56, + "probability": 0.7707 + }, + { + "start": 35290.12, + "end": 35290.52, + "probability": 0.7732 + }, + { + "start": 35291.14, + "end": 35291.78, + "probability": 0.6733 + }, + { + "start": 35292.66, + "end": 35293.38, + "probability": 0.5544 + }, + { + "start": 35294.1, + "end": 35296.5, + "probability": 0.9792 + }, + { + "start": 35298.54, + "end": 35300.8, + "probability": 0.988 + }, + { + "start": 35301.2, + "end": 35303.0, + "probability": 0.9976 + }, + { + "start": 35303.48, + "end": 35305.04, + "probability": 0.9937 + }, + { + "start": 35305.66, + "end": 35306.06, + "probability": 0.4969 + }, + { + "start": 35306.24, + "end": 35306.96, + "probability": 0.6923 + }, + { + "start": 35306.96, + "end": 35310.38, + "probability": 0.8799 + }, + { + "start": 35312.26, + "end": 35314.11, + "probability": 0.9026 + }, + { + "start": 35315.24, + "end": 35316.05, + "probability": 0.9788 + }, + { + "start": 35316.4, + "end": 35317.28, + "probability": 0.9541 + }, + { + "start": 35317.36, + "end": 35318.6, + "probability": 0.9121 + }, + { + "start": 35318.74, + "end": 35322.07, + "probability": 0.9056 + }, + { + "start": 35322.9, + "end": 35325.08, + "probability": 0.9966 + }, + { + "start": 35326.8, + "end": 35328.28, + "probability": 0.6936 + }, + { + "start": 35328.38, + "end": 35335.02, + "probability": 0.9889 + }, + { + "start": 35336.72, + "end": 35338.6, + "probability": 0.8834 + }, + { + "start": 35338.98, + "end": 35339.4, + "probability": 0.9048 + }, + { + "start": 35340.44, + "end": 35342.2, + "probability": 0.7167 + }, + { + "start": 35342.34, + "end": 35342.76, + "probability": 0.9634 + }, + { + "start": 35344.86, + "end": 35345.92, + "probability": 0.9591 + }, + { + "start": 35346.04, + "end": 35347.0, + "probability": 0.9184 + }, + { + "start": 35347.2, + "end": 35347.86, + "probability": 0.9725 + }, + { + "start": 35348.0, + "end": 35351.7, + "probability": 0.8306 + }, + { + "start": 35352.52, + "end": 35357.62, + "probability": 0.9162 + }, + { + "start": 35358.42, + "end": 35358.78, + "probability": 0.8394 + }, + { + "start": 35359.32, + "end": 35362.54, + "probability": 0.8636 + }, + { + "start": 35363.42, + "end": 35363.82, + "probability": 0.4677 + }, + { + "start": 35363.94, + "end": 35365.86, + "probability": 0.7983 + }, + { + "start": 35365.92, + "end": 35371.04, + "probability": 0.9948 + }, + { + "start": 35371.2, + "end": 35371.68, + "probability": 0.792 + }, + { + "start": 35374.08, + "end": 35375.28, + "probability": 0.9537 + }, + { + "start": 35375.42, + "end": 35375.86, + "probability": 0.8592 + }, + { + "start": 35375.9, + "end": 35376.56, + "probability": 0.8815 + }, + { + "start": 35376.6, + "end": 35377.14, + "probability": 0.9087 + }, + { + "start": 35377.24, + "end": 35379.04, + "probability": 0.5771 + }, + { + "start": 35380.68, + "end": 35383.42, + "probability": 0.9403 + }, + { + "start": 35384.48, + "end": 35385.26, + "probability": 0.9256 + }, + { + "start": 35385.3, + "end": 35386.96, + "probability": 0.9486 + }, + { + "start": 35387.28, + "end": 35390.96, + "probability": 0.9832 + }, + { + "start": 35393.1, + "end": 35398.4, + "probability": 0.9696 + }, + { + "start": 35398.92, + "end": 35399.9, + "probability": 0.9253 + }, + { + "start": 35399.94, + "end": 35400.96, + "probability": 0.5403 + }, + { + "start": 35401.0, + "end": 35401.32, + "probability": 0.8569 + }, + { + "start": 35401.76, + "end": 35402.26, + "probability": 0.8927 + }, + { + "start": 35402.36, + "end": 35402.8, + "probability": 0.9009 + }, + { + "start": 35403.3, + "end": 35406.96, + "probability": 0.9841 + }, + { + "start": 35407.6, + "end": 35408.94, + "probability": 0.5644 + }, + { + "start": 35408.98, + "end": 35414.08, + "probability": 0.9366 + }, + { + "start": 35415.12, + "end": 35416.11, + "probability": 0.9954 + }, + { + "start": 35417.2, + "end": 35418.3, + "probability": 0.6933 + }, + { + "start": 35418.46, + "end": 35421.92, + "probability": 0.8613 + }, + { + "start": 35422.42, + "end": 35425.98, + "probability": 0.9745 + }, + { + "start": 35426.16, + "end": 35428.12, + "probability": 0.9468 + }, + { + "start": 35428.24, + "end": 35432.54, + "probability": 0.9963 + }, + { + "start": 35432.82, + "end": 35433.98, + "probability": 0.9793 + }, + { + "start": 35434.46, + "end": 35436.4, + "probability": 0.8201 + }, + { + "start": 35437.38, + "end": 35443.28, + "probability": 0.9682 + }, + { + "start": 35443.8, + "end": 35446.42, + "probability": 0.973 + }, + { + "start": 35446.48, + "end": 35448.0, + "probability": 0.9434 + }, + { + "start": 35448.8, + "end": 35451.78, + "probability": 0.998 + }, + { + "start": 35451.78, + "end": 35455.34, + "probability": 0.9991 + }, + { + "start": 35455.7, + "end": 35457.26, + "probability": 0.9567 + }, + { + "start": 35457.82, + "end": 35460.06, + "probability": 0.9989 + }, + { + "start": 35460.24, + "end": 35461.3, + "probability": 0.9229 + }, + { + "start": 35461.98, + "end": 35464.54, + "probability": 0.9985 + }, + { + "start": 35464.66, + "end": 35465.58, + "probability": 0.8365 + }, + { + "start": 35466.2, + "end": 35467.42, + "probability": 0.7464 + }, + { + "start": 35468.66, + "end": 35469.56, + "probability": 0.9053 + }, + { + "start": 35470.6, + "end": 35473.02, + "probability": 0.9996 + }, + { + "start": 35473.82, + "end": 35477.0, + "probability": 0.9533 + }, + { + "start": 35477.58, + "end": 35480.4, + "probability": 0.9245 + }, + { + "start": 35480.52, + "end": 35484.28, + "probability": 0.9907 + }, + { + "start": 35484.64, + "end": 35486.92, + "probability": 0.9985 + }, + { + "start": 35487.74, + "end": 35488.59, + "probability": 0.9143 + }, + { + "start": 35489.38, + "end": 35490.58, + "probability": 0.5742 + }, + { + "start": 35491.8, + "end": 35492.4, + "probability": 0.7289 + }, + { + "start": 35492.9, + "end": 35494.48, + "probability": 0.9058 + }, + { + "start": 35494.78, + "end": 35496.8, + "probability": 0.9892 + }, + { + "start": 35497.76, + "end": 35498.42, + "probability": 0.9087 + }, + { + "start": 35500.32, + "end": 35500.82, + "probability": 0.537 + }, + { + "start": 35501.94, + "end": 35502.9, + "probability": 0.6714 + }, + { + "start": 35503.88, + "end": 35504.44, + "probability": 0.6828 + }, + { + "start": 35505.22, + "end": 35508.2, + "probability": 0.8221 + }, + { + "start": 35509.78, + "end": 35512.26, + "probability": 0.8452 + }, + { + "start": 35513.44, + "end": 35514.98, + "probability": 0.8027 + }, + { + "start": 35515.26, + "end": 35519.56, + "probability": 0.916 + }, + { + "start": 35519.88, + "end": 35520.96, + "probability": 0.9221 + }, + { + "start": 35523.62, + "end": 35527.76, + "probability": 0.8967 + }, + { + "start": 35528.84, + "end": 35530.08, + "probability": 0.7997 + }, + { + "start": 35531.18, + "end": 35536.94, + "probability": 0.9965 + }, + { + "start": 35537.14, + "end": 35537.76, + "probability": 0.5643 + }, + { + "start": 35537.92, + "end": 35539.84, + "probability": 0.9272 + }, + { + "start": 35541.7, + "end": 35545.26, + "probability": 0.9924 + }, + { + "start": 35546.54, + "end": 35550.36, + "probability": 0.9985 + }, + { + "start": 35550.52, + "end": 35553.44, + "probability": 0.9957 + }, + { + "start": 35554.12, + "end": 35555.8, + "probability": 0.9896 + }, + { + "start": 35556.4, + "end": 35559.78, + "probability": 0.9908 + }, + { + "start": 35559.86, + "end": 35560.7, + "probability": 0.9641 + }, + { + "start": 35560.78, + "end": 35561.46, + "probability": 0.8906 + }, + { + "start": 35562.06, + "end": 35563.02, + "probability": 0.9983 + }, + { + "start": 35565.58, + "end": 35566.32, + "probability": 0.7692 + }, + { + "start": 35567.34, + "end": 35569.3, + "probability": 0.875 + }, + { + "start": 35569.4, + "end": 35570.82, + "probability": 0.9958 + }, + { + "start": 35570.96, + "end": 35572.2, + "probability": 0.9877 + }, + { + "start": 35572.56, + "end": 35577.36, + "probability": 0.9828 + }, + { + "start": 35578.2, + "end": 35583.24, + "probability": 0.9961 + }, + { + "start": 35583.26, + "end": 35585.76, + "probability": 0.9228 + }, + { + "start": 35586.06, + "end": 35586.78, + "probability": 0.9889 + }, + { + "start": 35587.6, + "end": 35589.82, + "probability": 0.9749 + }, + { + "start": 35591.18, + "end": 35592.23, + "probability": 0.9827 + }, + { + "start": 35593.1, + "end": 35594.42, + "probability": 0.8091 + }, + { + "start": 35596.56, + "end": 35599.68, + "probability": 0.8922 + }, + { + "start": 35601.04, + "end": 35604.86, + "probability": 0.9517 + }, + { + "start": 35605.38, + "end": 35606.0, + "probability": 0.9749 + }, + { + "start": 35606.7, + "end": 35610.22, + "probability": 0.9765 + }, + { + "start": 35611.32, + "end": 35613.46, + "probability": 0.9263 + }, + { + "start": 35614.06, + "end": 35618.46, + "probability": 0.9992 + }, + { + "start": 35618.88, + "end": 35624.53, + "probability": 0.9543 + }, + { + "start": 35626.24, + "end": 35629.6, + "probability": 0.997 + }, + { + "start": 35630.22, + "end": 35631.88, + "probability": 0.9058 + }, + { + "start": 35632.56, + "end": 35636.02, + "probability": 0.9998 + }, + { + "start": 35637.8, + "end": 35638.98, + "probability": 0.9463 + }, + { + "start": 35640.16, + "end": 35641.34, + "probability": 0.9599 + }, + { + "start": 35641.92, + "end": 35642.98, + "probability": 0.9949 + }, + { + "start": 35643.06, + "end": 35643.46, + "probability": 0.6886 + }, + { + "start": 35643.64, + "end": 35646.42, + "probability": 0.8837 + }, + { + "start": 35646.48, + "end": 35648.18, + "probability": 0.822 + }, + { + "start": 35648.3, + "end": 35649.42, + "probability": 0.8113 + }, + { + "start": 35649.72, + "end": 35651.6, + "probability": 0.7381 + }, + { + "start": 35652.88, + "end": 35655.66, + "probability": 0.9548 + }, + { + "start": 35656.26, + "end": 35657.58, + "probability": 0.7039 + }, + { + "start": 35658.98, + "end": 35663.66, + "probability": 0.9986 + }, + { + "start": 35663.66, + "end": 35668.6, + "probability": 0.904 + }, + { + "start": 35668.86, + "end": 35670.36, + "probability": 0.4576 + }, + { + "start": 35670.5, + "end": 35671.38, + "probability": 0.839 + }, + { + "start": 35672.7, + "end": 35673.46, + "probability": 0.6007 + }, + { + "start": 35674.18, + "end": 35675.93, + "probability": 0.9945 + }, + { + "start": 35677.0, + "end": 35681.82, + "probability": 0.9922 + }, + { + "start": 35682.16, + "end": 35682.68, + "probability": 0.9183 + }, + { + "start": 35682.94, + "end": 35683.52, + "probability": 0.7765 + }, + { + "start": 35684.26, + "end": 35685.74, + "probability": 0.9454 + }, + { + "start": 35688.14, + "end": 35689.3, + "probability": 0.3355 + }, + { + "start": 35699.6, + "end": 35699.62, + "probability": 0.0192 + }, + { + "start": 35709.18, + "end": 35709.36, + "probability": 0.2127 + }, + { + "start": 35709.42, + "end": 35709.56, + "probability": 0.0711 + }, + { + "start": 35709.56, + "end": 35709.6, + "probability": 0.3451 + }, + { + "start": 35709.66, + "end": 35709.72, + "probability": 0.0572 + }, + { + "start": 35720.48, + "end": 35721.4, + "probability": 0.0556 + }, + { + "start": 35722.32, + "end": 35724.54, + "probability": 0.0664 + }, + { + "start": 35725.78, + "end": 35726.74, + "probability": 0.02 + }, + { + "start": 35738.72, + "end": 35739.8, + "probability": 0.4455 + }, + { + "start": 35741.72, + "end": 35742.9, + "probability": 0.6791 + }, + { + "start": 35742.9, + "end": 35743.58, + "probability": 0.0688 + }, + { + "start": 35744.8, + "end": 35745.7, + "probability": 0.0986 + }, + { + "start": 35747.98, + "end": 35750.64, + "probability": 0.0402 + }, + { + "start": 35751.96, + "end": 35752.38, + "probability": 0.1756 + }, + { + "start": 35753.92, + "end": 35755.68, + "probability": 0.0989 + }, + { + "start": 35769.98, + "end": 35771.12, + "probability": 0.1804 + }, + { + "start": 35772.42, + "end": 35774.46, + "probability": 0.7246 + }, + { + "start": 35774.68, + "end": 35777.36, + "probability": 0.9935 + }, + { + "start": 35781.04, + "end": 35786.06, + "probability": 0.9652 + }, + { + "start": 35786.06, + "end": 35790.18, + "probability": 0.9977 + }, + { + "start": 35790.2, + "end": 35791.5, + "probability": 0.7485 + }, + { + "start": 35791.98, + "end": 35797.06, + "probability": 0.8723 + }, + { + "start": 35797.9, + "end": 35801.34, + "probability": 0.9688 + }, + { + "start": 35802.48, + "end": 35805.96, + "probability": 0.8857 + }, + { + "start": 35806.22, + "end": 35810.76, + "probability": 0.988 + }, + { + "start": 35811.04, + "end": 35814.09, + "probability": 0.9766 + }, + { + "start": 35815.26, + "end": 35817.36, + "probability": 0.8662 + }, + { + "start": 35818.16, + "end": 35820.1, + "probability": 0.9807 + }, + { + "start": 35822.36, + "end": 35825.66, + "probability": 0.9976 + }, + { + "start": 35826.88, + "end": 35827.6, + "probability": 0.9211 + }, + { + "start": 35829.06, + "end": 35830.66, + "probability": 0.9446 + }, + { + "start": 35832.22, + "end": 35837.24, + "probability": 0.9867 + }, + { + "start": 35838.02, + "end": 35843.22, + "probability": 0.9897 + }, + { + "start": 35844.36, + "end": 35844.56, + "probability": 0.8518 + }, + { + "start": 35844.94, + "end": 35846.28, + "probability": 0.3798 + }, + { + "start": 35846.28, + "end": 35847.28, + "probability": 0.8071 + }, + { + "start": 35849.0, + "end": 35850.6, + "probability": 0.9969 + }, + { + "start": 35851.96, + "end": 35854.92, + "probability": 0.3928 + }, + { + "start": 35855.02, + "end": 35857.24, + "probability": 0.3327 + }, + { + "start": 35857.54, + "end": 35858.58, + "probability": 0.1819 + }, + { + "start": 35858.86, + "end": 35860.63, + "probability": 0.9125 + }, + { + "start": 35861.08, + "end": 35865.76, + "probability": 0.9716 + }, + { + "start": 35865.88, + "end": 35871.06, + "probability": 0.9989 + }, + { + "start": 35871.24, + "end": 35877.6, + "probability": 0.8362 + }, + { + "start": 35877.74, + "end": 35879.09, + "probability": 0.9985 + }, + { + "start": 35879.56, + "end": 35879.62, + "probability": 0.4539 + }, + { + "start": 35879.64, + "end": 35883.64, + "probability": 0.9549 + }, + { + "start": 35884.24, + "end": 35884.56, + "probability": 0.8851 + }, + { + "start": 35884.56, + "end": 35886.8, + "probability": 0.8578 + }, + { + "start": 35887.34, + "end": 35888.94, + "probability": 0.958 + }, + { + "start": 35889.7, + "end": 35891.72, + "probability": 0.1019 + }, + { + "start": 35892.04, + "end": 35893.04, + "probability": 0.3669 + }, + { + "start": 35894.44, + "end": 35897.24, + "probability": 0.1401 + }, + { + "start": 35897.74, + "end": 35899.66, + "probability": 0.5361 + }, + { + "start": 35899.92, + "end": 35905.1, + "probability": 0.7724 + }, + { + "start": 35905.66, + "end": 35910.58, + "probability": 0.5105 + }, + { + "start": 35910.7, + "end": 35912.04, + "probability": 0.6709 + }, + { + "start": 35912.22, + "end": 35915.68, + "probability": 0.8964 + }, + { + "start": 35915.78, + "end": 35916.76, + "probability": 0.624 + }, + { + "start": 35917.08, + "end": 35917.98, + "probability": 0.7066 + }, + { + "start": 35918.04, + "end": 35921.34, + "probability": 0.8 + }, + { + "start": 35921.36, + "end": 35926.02, + "probability": 0.6089 + }, + { + "start": 35926.38, + "end": 35928.73, + "probability": 0.8374 + }, + { + "start": 35929.28, + "end": 35931.14, + "probability": 0.8785 + }, + { + "start": 35931.28, + "end": 35933.84, + "probability": 0.8989 + }, + { + "start": 35934.02, + "end": 35935.62, + "probability": 0.6626 + }, + { + "start": 35935.92, + "end": 35937.26, + "probability": 0.9282 + }, + { + "start": 35937.36, + "end": 35941.76, + "probability": 0.9303 + }, + { + "start": 35941.78, + "end": 35943.88, + "probability": 0.988 + }, + { + "start": 35943.88, + "end": 35947.14, + "probability": 0.7194 + }, + { + "start": 35947.42, + "end": 35948.8, + "probability": 0.4208 + }, + { + "start": 35949.04, + "end": 35953.45, + "probability": 0.4469 + }, + { + "start": 35953.84, + "end": 35956.04, + "probability": 0.7691 + }, + { + "start": 35956.54, + "end": 35957.62, + "probability": 0.7059 + }, + { + "start": 35957.78, + "end": 35960.53, + "probability": 0.9602 + }, + { + "start": 35961.38, + "end": 35961.38, + "probability": 0.8391 + }, + { + "start": 35961.38, + "end": 35962.0, + "probability": 0.4821 + }, + { + "start": 35962.2, + "end": 35964.17, + "probability": 0.5069 + }, + { + "start": 35964.6, + "end": 35967.0, + "probability": 0.9824 + }, + { + "start": 35967.1, + "end": 35968.69, + "probability": 0.9754 + }, + { + "start": 35969.32, + "end": 35973.36, + "probability": 0.7814 + }, + { + "start": 35973.78, + "end": 35974.58, + "probability": 0.7477 + }, + { + "start": 35974.72, + "end": 35977.44, + "probability": 0.2053 + }, + { + "start": 35978.1, + "end": 35981.58, + "probability": 0.9757 + }, + { + "start": 35981.78, + "end": 35982.78, + "probability": 0.0792 + }, + { + "start": 35984.82, + "end": 35987.26, + "probability": 0.6146 + }, + { + "start": 35987.5, + "end": 35988.26, + "probability": 0.4548 + }, + { + "start": 35988.32, + "end": 35989.34, + "probability": 0.6945 + }, + { + "start": 35989.48, + "end": 35990.72, + "probability": 0.5933 + }, + { + "start": 35990.8, + "end": 35992.52, + "probability": 0.5658 + }, + { + "start": 35992.6, + "end": 35993.37, + "probability": 0.5163 + }, + { + "start": 35993.66, + "end": 35996.24, + "probability": 0.9655 + }, + { + "start": 35996.32, + "end": 35997.82, + "probability": 0.9055 + }, + { + "start": 35998.1, + "end": 36000.34, + "probability": 0.8159 + }, + { + "start": 36000.34, + "end": 36000.36, + "probability": 0.1334 + }, + { + "start": 36000.36, + "end": 36003.52, + "probability": 0.7004 + }, + { + "start": 36003.52, + "end": 36005.66, + "probability": 0.9803 + }, + { + "start": 36005.92, + "end": 36007.26, + "probability": 0.541 + }, + { + "start": 36010.05, + "end": 36011.96, + "probability": 0.408 + }, + { + "start": 36011.96, + "end": 36013.34, + "probability": 0.6859 + }, + { + "start": 36013.4, + "end": 36013.42, + "probability": 0.017 + }, + { + "start": 36013.42, + "end": 36013.98, + "probability": 0.6248 + }, + { + "start": 36013.98, + "end": 36017.58, + "probability": 0.6436 + }, + { + "start": 36017.58, + "end": 36017.9, + "probability": 0.7081 + }, + { + "start": 36018.1, + "end": 36018.88, + "probability": 0.8717 + }, + { + "start": 36019.02, + "end": 36021.45, + "probability": 0.896 + }, + { + "start": 36021.78, + "end": 36024.28, + "probability": 0.8544 + }, + { + "start": 36024.34, + "end": 36024.93, + "probability": 0.7783 + }, + { + "start": 36025.76, + "end": 36027.42, + "probability": 0.8212 + }, + { + "start": 36028.2, + "end": 36032.92, + "probability": 0.9544 + }, + { + "start": 36033.4, + "end": 36035.22, + "probability": 0.6404 + }, + { + "start": 36035.7, + "end": 36036.32, + "probability": 0.6783 + }, + { + "start": 36036.46, + "end": 36037.54, + "probability": 0.7624 + }, + { + "start": 36037.62, + "end": 36038.42, + "probability": 0.6552 + }, + { + "start": 36038.62, + "end": 36039.23, + "probability": 0.9201 + }, + { + "start": 36040.18, + "end": 36040.82, + "probability": 0.6963 + }, + { + "start": 36040.88, + "end": 36041.29, + "probability": 0.9248 + }, + { + "start": 36041.86, + "end": 36042.9, + "probability": 0.9209 + }, + { + "start": 36043.32, + "end": 36045.93, + "probability": 0.9039 + }, + { + "start": 36045.94, + "end": 36049.98, + "probability": 0.9653 + }, + { + "start": 36050.2, + "end": 36051.2, + "probability": 0.89 + }, + { + "start": 36051.3, + "end": 36055.36, + "probability": 0.9941 + }, + { + "start": 36056.0, + "end": 36057.1, + "probability": 0.9332 + }, + { + "start": 36057.32, + "end": 36058.26, + "probability": 0.8248 + }, + { + "start": 36058.44, + "end": 36059.42, + "probability": 0.4309 + }, + { + "start": 36059.84, + "end": 36062.28, + "probability": 0.9917 + }, + { + "start": 36062.58, + "end": 36065.2, + "probability": 0.9902 + }, + { + "start": 36065.58, + "end": 36066.62, + "probability": 0.9858 + }, + { + "start": 36068.92, + "end": 36069.42, + "probability": 0.008 + }, + { + "start": 36069.5, + "end": 36071.08, + "probability": 0.1294 + }, + { + "start": 36071.08, + "end": 36072.26, + "probability": 0.8457 + }, + { + "start": 36072.66, + "end": 36073.14, + "probability": 0.7957 + }, + { + "start": 36073.42, + "end": 36074.06, + "probability": 0.5472 + }, + { + "start": 36075.7, + "end": 36076.04, + "probability": 0.688 + }, + { + "start": 36076.16, + "end": 36077.0, + "probability": 0.9187 + }, + { + "start": 36077.06, + "end": 36083.06, + "probability": 0.9932 + }, + { + "start": 36083.22, + "end": 36087.1, + "probability": 0.7277 + }, + { + "start": 36087.38, + "end": 36091.72, + "probability": 0.9824 + }, + { + "start": 36092.24, + "end": 36093.96, + "probability": 0.995 + }, + { + "start": 36094.6, + "end": 36096.4, + "probability": 0.9414 + }, + { + "start": 36097.46, + "end": 36098.42, + "probability": 0.4234 + }, + { + "start": 36098.46, + "end": 36099.38, + "probability": 0.379 + }, + { + "start": 36099.58, + "end": 36103.48, + "probability": 0.6524 + }, + { + "start": 36103.88, + "end": 36108.46, + "probability": 0.603 + }, + { + "start": 36108.98, + "end": 36110.44, + "probability": 0.8018 + }, + { + "start": 36110.52, + "end": 36117.84, + "probability": 0.981 + }, + { + "start": 36118.46, + "end": 36123.93, + "probability": 0.9855 + }, + { + "start": 36125.38, + "end": 36128.06, + "probability": 0.959 + }, + { + "start": 36128.14, + "end": 36131.36, + "probability": 0.6768 + }, + { + "start": 36131.62, + "end": 36133.47, + "probability": 0.1583 + }, + { + "start": 36133.8, + "end": 36134.58, + "probability": 0.7773 + }, + { + "start": 36134.76, + "end": 36135.32, + "probability": 0.102 + }, + { + "start": 36135.6, + "end": 36135.6, + "probability": 0.0196 + }, + { + "start": 36135.6, + "end": 36136.88, + "probability": 0.6726 + }, + { + "start": 36136.92, + "end": 36138.52, + "probability": 0.7903 + }, + { + "start": 36138.64, + "end": 36140.22, + "probability": 0.8591 + }, + { + "start": 36140.34, + "end": 36141.86, + "probability": 0.6463 + }, + { + "start": 36142.5, + "end": 36143.44, + "probability": 0.6817 + }, + { + "start": 36143.74, + "end": 36147.66, + "probability": 0.7174 + }, + { + "start": 36148.52, + "end": 36151.51, + "probability": 0.5749 + }, + { + "start": 36152.2, + "end": 36153.04, + "probability": 0.5082 + }, + { + "start": 36153.08, + "end": 36155.4, + "probability": 0.9116 + }, + { + "start": 36155.66, + "end": 36158.78, + "probability": 0.8978 + }, + { + "start": 36159.87, + "end": 36162.3, + "probability": 0.5216 + }, + { + "start": 36162.82, + "end": 36165.43, + "probability": 0.9919 + }, + { + "start": 36166.32, + "end": 36167.84, + "probability": 0.9465 + }, + { + "start": 36167.98, + "end": 36170.32, + "probability": 0.9702 + }, + { + "start": 36170.5, + "end": 36173.2, + "probability": 0.9727 + }, + { + "start": 36173.92, + "end": 36174.97, + "probability": 0.7877 + }, + { + "start": 36175.74, + "end": 36177.17, + "probability": 0.9497 + }, + { + "start": 36177.72, + "end": 36179.84, + "probability": 0.9419 + }, + { + "start": 36179.94, + "end": 36181.21, + "probability": 0.9654 + }, + { + "start": 36181.94, + "end": 36183.31, + "probability": 0.983 + }, + { + "start": 36184.22, + "end": 36184.98, + "probability": 0.9536 + }, + { + "start": 36185.12, + "end": 36189.88, + "probability": 0.7801 + }, + { + "start": 36190.66, + "end": 36190.96, + "probability": 0.2039 + }, + { + "start": 36190.96, + "end": 36192.08, + "probability": 0.3182 + }, + { + "start": 36192.52, + "end": 36193.67, + "probability": 0.9976 + }, + { + "start": 36194.86, + "end": 36195.0, + "probability": 0.0827 + }, + { + "start": 36195.3, + "end": 36196.52, + "probability": 0.35 + }, + { + "start": 36196.66, + "end": 36197.6, + "probability": 0.8494 + }, + { + "start": 36197.6, + "end": 36198.78, + "probability": 0.5057 + }, + { + "start": 36198.88, + "end": 36199.5, + "probability": 0.5986 + }, + { + "start": 36200.12, + "end": 36200.52, + "probability": 0.1116 + }, + { + "start": 36200.52, + "end": 36201.32, + "probability": 0.4228 + }, + { + "start": 36201.5, + "end": 36204.27, + "probability": 0.7497 + }, + { + "start": 36204.66, + "end": 36205.15, + "probability": 0.896 + }, + { + "start": 36205.42, + "end": 36213.28, + "probability": 0.6717 + }, + { + "start": 36213.46, + "end": 36216.4, + "probability": 0.7962 + }, + { + "start": 36216.82, + "end": 36218.7, + "probability": 0.9513 + }, + { + "start": 36219.44, + "end": 36220.0, + "probability": 0.7234 + }, + { + "start": 36220.5, + "end": 36221.08, + "probability": 0.7689 + }, + { + "start": 36221.16, + "end": 36223.94, + "probability": 0.9908 + }, + { + "start": 36227.62, + "end": 36228.22, + "probability": 0.7396 + }, + { + "start": 36228.3, + "end": 36228.54, + "probability": 0.9326 + }, + { + "start": 36229.4, + "end": 36232.6, + "probability": 0.9961 + }, + { + "start": 36232.6, + "end": 36234.86, + "probability": 0.9951 + }, + { + "start": 36237.12, + "end": 36241.39, + "probability": 0.7592 + }, + { + "start": 36243.1, + "end": 36244.63, + "probability": 0.921 + }, + { + "start": 36246.42, + "end": 36249.96, + "probability": 0.9921 + }, + { + "start": 36250.6, + "end": 36252.86, + "probability": 0.9794 + }, + { + "start": 36256.7, + "end": 36258.44, + "probability": 0.8846 + }, + { + "start": 36259.76, + "end": 36260.1, + "probability": 0.697 + }, + { + "start": 36260.2, + "end": 36260.6, + "probability": 0.6532 + }, + { + "start": 36262.14, + "end": 36262.96, + "probability": 0.8398 + }, + { + "start": 36264.1, + "end": 36264.54, + "probability": 0.5684 + }, + { + "start": 36264.54, + "end": 36264.98, + "probability": 0.6927 + }, + { + "start": 36265.08, + "end": 36266.74, + "probability": 0.9382 + }, + { + "start": 36267.5, + "end": 36268.34, + "probability": 0.9386 + }, + { + "start": 36269.0, + "end": 36269.18, + "probability": 0.2429 + }, + { + "start": 36269.24, + "end": 36270.56, + "probability": 0.6959 + }, + { + "start": 36271.7, + "end": 36272.68, + "probability": 0.4954 + }, + { + "start": 36272.7, + "end": 36273.76, + "probability": 0.0117 + }, + { + "start": 36275.1, + "end": 36275.71, + "probability": 0.0318 + }, + { + "start": 36276.4, + "end": 36277.54, + "probability": 0.7372 + }, + { + "start": 36279.28, + "end": 36279.44, + "probability": 0.447 + }, + { + "start": 36279.8, + "end": 36280.5, + "probability": 0.9102 + }, + { + "start": 36281.1, + "end": 36282.18, + "probability": 0.9932 + }, + { + "start": 36282.3, + "end": 36283.23, + "probability": 0.3565 + }, + { + "start": 36283.78, + "end": 36284.72, + "probability": 0.7949 + }, + { + "start": 36284.98, + "end": 36287.57, + "probability": 0.6747 + }, + { + "start": 36289.3, + "end": 36290.12, + "probability": 0.5028 + }, + { + "start": 36291.32, + "end": 36292.3, + "probability": 0.9932 + }, + { + "start": 36293.8, + "end": 36297.8, + "probability": 0.9573 + }, + { + "start": 36299.98, + "end": 36301.94, + "probability": 0.4996 + }, + { + "start": 36302.0, + "end": 36303.06, + "probability": 0.5083 + }, + { + "start": 36304.6, + "end": 36307.84, + "probability": 0.7941 + }, + { + "start": 36309.64, + "end": 36312.14, + "probability": 0.992 + }, + { + "start": 36312.62, + "end": 36313.86, + "probability": 0.9602 + }, + { + "start": 36314.14, + "end": 36315.52, + "probability": 0.7716 + }, + { + "start": 36316.54, + "end": 36318.73, + "probability": 0.9945 + }, + { + "start": 36319.96, + "end": 36321.66, + "probability": 0.9421 + }, + { + "start": 36321.74, + "end": 36322.54, + "probability": 0.915 + }, + { + "start": 36324.26, + "end": 36325.6, + "probability": 0.7413 + }, + { + "start": 36326.64, + "end": 36328.98, + "probability": 0.6339 + }, + { + "start": 36331.66, + "end": 36335.16, + "probability": 0.9844 + }, + { + "start": 36335.22, + "end": 36335.94, + "probability": 0.9783 + }, + { + "start": 36336.2, + "end": 36337.66, + "probability": 0.692 + }, + { + "start": 36337.7, + "end": 36337.86, + "probability": 0.8142 + }, + { + "start": 36338.48, + "end": 36340.62, + "probability": 0.7964 + }, + { + "start": 36340.68, + "end": 36342.58, + "probability": 0.7618 + }, + { + "start": 36342.68, + "end": 36343.94, + "probability": 0.7785 + }, + { + "start": 36344.58, + "end": 36346.84, + "probability": 0.9948 + }, + { + "start": 36346.98, + "end": 36347.7, + "probability": 0.979 + }, + { + "start": 36349.66, + "end": 36352.32, + "probability": 0.8501 + }, + { + "start": 36353.76, + "end": 36356.26, + "probability": 0.8724 + }, + { + "start": 36357.16, + "end": 36358.24, + "probability": 0.5026 + }, + { + "start": 36358.24, + "end": 36358.82, + "probability": 0.3572 + }, + { + "start": 36359.56, + "end": 36361.82, + "probability": 0.5007 + }, + { + "start": 36362.52, + "end": 36364.7, + "probability": 0.9941 + }, + { + "start": 36365.24, + "end": 36370.44, + "probability": 0.9966 + }, + { + "start": 36371.64, + "end": 36373.34, + "probability": 0.8689 + }, + { + "start": 36373.98, + "end": 36375.02, + "probability": 0.8546 + }, + { + "start": 36376.58, + "end": 36378.54, + "probability": 0.9943 + }, + { + "start": 36379.0, + "end": 36380.7, + "probability": 0.998 + }, + { + "start": 36381.16, + "end": 36382.64, + "probability": 0.9884 + }, + { + "start": 36384.12, + "end": 36384.42, + "probability": 0.7802 + }, + { + "start": 36384.52, + "end": 36389.78, + "probability": 0.6548 + }, + { + "start": 36389.78, + "end": 36391.06, + "probability": 0.0369 + }, + { + "start": 36391.82, + "end": 36398.16, + "probability": 0.9317 + }, + { + "start": 36398.28, + "end": 36398.74, + "probability": 0.6915 + }, + { + "start": 36398.92, + "end": 36401.38, + "probability": 0.5419 + }, + { + "start": 36401.38, + "end": 36402.72, + "probability": 0.7283 + }, + { + "start": 36404.58, + "end": 36406.0, + "probability": 0.7271 + }, + { + "start": 36407.48, + "end": 36410.24, + "probability": 0.9907 + }, + { + "start": 36410.78, + "end": 36414.84, + "probability": 0.9975 + }, + { + "start": 36415.74, + "end": 36416.98, + "probability": 0.8973 + }, + { + "start": 36417.82, + "end": 36419.25, + "probability": 0.7245 + }, + { + "start": 36419.44, + "end": 36420.16, + "probability": 0.8027 + }, + { + "start": 36420.48, + "end": 36424.3, + "probability": 0.9843 + }, + { + "start": 36424.78, + "end": 36426.66, + "probability": 0.9883 + }, + { + "start": 36427.3, + "end": 36427.96, + "probability": 0.8328 + }, + { + "start": 36428.98, + "end": 36431.96, + "probability": 0.9891 + }, + { + "start": 36433.52, + "end": 36435.06, + "probability": 0.382 + }, + { + "start": 36436.42, + "end": 36437.6, + "probability": 0.9047 + }, + { + "start": 36437.86, + "end": 36437.88, + "probability": 0.1338 + }, + { + "start": 36437.88, + "end": 36440.02, + "probability": 0.9785 + }, + { + "start": 36440.8, + "end": 36441.0, + "probability": 0.62 + }, + { + "start": 36441.72, + "end": 36445.68, + "probability": 0.5811 + }, + { + "start": 36450.46, + "end": 36454.58, + "probability": 0.953 + }, + { + "start": 36454.7, + "end": 36455.79, + "probability": 0.8871 + }, + { + "start": 36456.94, + "end": 36461.92, + "probability": 0.8887 + }, + { + "start": 36462.7, + "end": 36464.54, + "probability": 0.7876 + }, + { + "start": 36467.26, + "end": 36468.59, + "probability": 0.8671 + }, + { + "start": 36470.38, + "end": 36473.54, + "probability": 0.8574 + }, + { + "start": 36474.08, + "end": 36475.7, + "probability": 0.6827 + }, + { + "start": 36476.1, + "end": 36481.62, + "probability": 0.9541 + }, + { + "start": 36481.62, + "end": 36484.34, + "probability": 0.9768 + }, + { + "start": 36484.88, + "end": 36485.44, + "probability": 0.5188 + }, + { + "start": 36486.94, + "end": 36487.98, + "probability": 0.9482 + }, + { + "start": 36488.12, + "end": 36488.78, + "probability": 0.5311 + }, + { + "start": 36488.82, + "end": 36490.2, + "probability": 0.9971 + }, + { + "start": 36491.0, + "end": 36494.44, + "probability": 0.9929 + }, + { + "start": 36495.5, + "end": 36496.92, + "probability": 0.9179 + }, + { + "start": 36498.28, + "end": 36499.82, + "probability": 0.9078 + }, + { + "start": 36501.26, + "end": 36503.16, + "probability": 0.9985 + }, + { + "start": 36503.22, + "end": 36504.8, + "probability": 0.4403 + }, + { + "start": 36505.12, + "end": 36509.78, + "probability": 0.6945 + }, + { + "start": 36510.24, + "end": 36512.12, + "probability": 0.8299 + }, + { + "start": 36512.18, + "end": 36515.14, + "probability": 0.9191 + }, + { + "start": 36515.56, + "end": 36516.8, + "probability": 0.9661 + }, + { + "start": 36517.54, + "end": 36519.44, + "probability": 0.7125 + }, + { + "start": 36519.86, + "end": 36521.4, + "probability": 0.7906 + }, + { + "start": 36521.56, + "end": 36523.46, + "probability": 0.5384 + }, + { + "start": 36524.44, + "end": 36524.46, + "probability": 0.2604 + }, + { + "start": 36524.46, + "end": 36527.84, + "probability": 0.9806 + }, + { + "start": 36528.38, + "end": 36530.08, + "probability": 0.9849 + }, + { + "start": 36530.98, + "end": 36532.5, + "probability": 0.984 + }, + { + "start": 36533.28, + "end": 36536.3, + "probability": 0.9961 + }, + { + "start": 36536.38, + "end": 36537.18, + "probability": 0.981 + }, + { + "start": 36538.46, + "end": 36544.02, + "probability": 0.9879 + }, + { + "start": 36544.26, + "end": 36546.38, + "probability": 0.9941 + }, + { + "start": 36546.8, + "end": 36547.26, + "probability": 0.7014 + }, + { + "start": 36548.22, + "end": 36551.44, + "probability": 0.9651 + }, + { + "start": 36552.06, + "end": 36557.72, + "probability": 0.9914 + }, + { + "start": 36558.88, + "end": 36561.94, + "probability": 0.9529 + }, + { + "start": 36562.06, + "end": 36563.02, + "probability": 0.9941 + }, + { + "start": 36563.7, + "end": 36565.96, + "probability": 0.9504 + }, + { + "start": 36567.1, + "end": 36570.78, + "probability": 0.9846 + }, + { + "start": 36571.74, + "end": 36573.66, + "probability": 0.9818 + }, + { + "start": 36574.36, + "end": 36575.58, + "probability": 0.8623 + }, + { + "start": 36576.14, + "end": 36578.02, + "probability": 0.9961 + }, + { + "start": 36579.48, + "end": 36581.78, + "probability": 0.9952 + }, + { + "start": 36581.88, + "end": 36582.93, + "probability": 0.839 + }, + { + "start": 36583.62, + "end": 36584.52, + "probability": 0.8691 + }, + { + "start": 36584.64, + "end": 36585.72, + "probability": 0.8853 + }, + { + "start": 36586.28, + "end": 36588.82, + "probability": 0.8911 + }, + { + "start": 36588.84, + "end": 36590.36, + "probability": 0.8694 + }, + { + "start": 36590.7, + "end": 36592.48, + "probability": 0.9779 + }, + { + "start": 36593.44, + "end": 36594.44, + "probability": 0.4057 + }, + { + "start": 36594.56, + "end": 36598.6, + "probability": 0.8055 + }, + { + "start": 36599.04, + "end": 36599.74, + "probability": 0.6453 + }, + { + "start": 36601.1, + "end": 36604.72, + "probability": 0.914 + }, + { + "start": 36606.32, + "end": 36608.9, + "probability": 0.994 + }, + { + "start": 36609.48, + "end": 36613.36, + "probability": 0.9291 + }, + { + "start": 36614.56, + "end": 36617.36, + "probability": 0.9885 + }, + { + "start": 36618.82, + "end": 36619.72, + "probability": 0.7012 + }, + { + "start": 36620.16, + "end": 36622.96, + "probability": 0.998 + }, + { + "start": 36623.2, + "end": 36624.46, + "probability": 0.8504 + }, + { + "start": 36624.92, + "end": 36627.64, + "probability": 0.9661 + }, + { + "start": 36627.68, + "end": 36629.06, + "probability": 0.7512 + }, + { + "start": 36631.67, + "end": 36633.96, + "probability": 0.8613 + }, + { + "start": 36635.38, + "end": 36637.81, + "probability": 0.9904 + }, + { + "start": 36638.5, + "end": 36642.96, + "probability": 0.9933 + }, + { + "start": 36643.34, + "end": 36645.7, + "probability": 0.9613 + }, + { + "start": 36646.06, + "end": 36646.62, + "probability": 0.5008 + }, + { + "start": 36647.22, + "end": 36648.02, + "probability": 0.596 + }, + { + "start": 36648.34, + "end": 36648.68, + "probability": 0.9501 + }, + { + "start": 36649.64, + "end": 36651.98, + "probability": 0.7476 + }, + { + "start": 36652.7, + "end": 36653.66, + "probability": 0.7229 + }, + { + "start": 36653.96, + "end": 36654.82, + "probability": 0.9497 + }, + { + "start": 36655.56, + "end": 36660.26, + "probability": 0.9661 + }, + { + "start": 36660.64, + "end": 36661.32, + "probability": 0.9443 + }, + { + "start": 36661.74, + "end": 36662.94, + "probability": 0.5612 + }, + { + "start": 36663.82, + "end": 36666.06, + "probability": 0.8671 + }, + { + "start": 36666.52, + "end": 36668.46, + "probability": 0.7391 + }, + { + "start": 36669.38, + "end": 36671.4, + "probability": 0.9468 + }, + { + "start": 36671.96, + "end": 36672.66, + "probability": 0.7924 + }, + { + "start": 36673.82, + "end": 36675.8, + "probability": 0.9935 + }, + { + "start": 36675.9, + "end": 36677.58, + "probability": 0.9487 + }, + { + "start": 36678.72, + "end": 36680.08, + "probability": 0.9673 + }, + { + "start": 36681.34, + "end": 36682.18, + "probability": 0.6732 + }, + { + "start": 36682.34, + "end": 36684.1, + "probability": 0.9711 + }, + { + "start": 36686.38, + "end": 36690.96, + "probability": 0.916 + }, + { + "start": 36691.58, + "end": 36696.36, + "probability": 0.8395 + }, + { + "start": 36698.22, + "end": 36700.28, + "probability": 0.9749 + }, + { + "start": 36701.9, + "end": 36702.91, + "probability": 0.9453 + }, + { + "start": 36704.02, + "end": 36707.28, + "probability": 0.9433 + }, + { + "start": 36707.88, + "end": 36712.46, + "probability": 0.8885 + }, + { + "start": 36713.18, + "end": 36715.22, + "probability": 0.9465 + }, + { + "start": 36715.84, + "end": 36724.02, + "probability": 0.75 + }, + { + "start": 36724.02, + "end": 36724.02, + "probability": 0.1252 + }, + { + "start": 36724.02, + "end": 36724.34, + "probability": 0.0471 + }, + { + "start": 36724.4, + "end": 36725.5, + "probability": 0.9775 + }, + { + "start": 36725.68, + "end": 36726.08, + "probability": 0.5173 + }, + { + "start": 36726.38, + "end": 36729.62, + "probability": 0.9616 + }, + { + "start": 36730.08, + "end": 36733.46, + "probability": 0.8165 + }, + { + "start": 36734.18, + "end": 36736.18, + "probability": 0.9921 + }, + { + "start": 36737.36, + "end": 36738.62, + "probability": 0.8916 + }, + { + "start": 36739.92, + "end": 36743.36, + "probability": 0.9089 + }, + { + "start": 36747.06, + "end": 36749.78, + "probability": 0.6767 + }, + { + "start": 36749.94, + "end": 36752.54, + "probability": 0.3826 + }, + { + "start": 36752.58, + "end": 36753.12, + "probability": 0.2326 + }, + { + "start": 36754.06, + "end": 36756.42, + "probability": 0.9555 + }, + { + "start": 36756.76, + "end": 36757.8, + "probability": 0.9307 + }, + { + "start": 36758.34, + "end": 36758.87, + "probability": 0.9663 + }, + { + "start": 36760.4, + "end": 36761.9, + "probability": 0.9912 + }, + { + "start": 36761.96, + "end": 36766.62, + "probability": 0.9343 + }, + { + "start": 36766.62, + "end": 36769.18, + "probability": 0.9846 + }, + { + "start": 36769.64, + "end": 36772.06, + "probability": 0.8062 + }, + { + "start": 36773.08, + "end": 36773.92, + "probability": 0.8662 + }, + { + "start": 36774.44, + "end": 36777.1, + "probability": 0.9746 + }, + { + "start": 36778.08, + "end": 36778.75, + "probability": 0.9468 + }, + { + "start": 36779.9, + "end": 36780.68, + "probability": 0.8657 + }, + { + "start": 36781.0, + "end": 36788.42, + "probability": 0.9147 + }, + { + "start": 36788.58, + "end": 36789.74, + "probability": 0.741 + }, + { + "start": 36790.4, + "end": 36792.04, + "probability": 0.9084 + }, + { + "start": 36792.2, + "end": 36795.26, + "probability": 0.9655 + }, + { + "start": 36796.68, + "end": 36798.14, + "probability": 0.9565 + }, + { + "start": 36799.96, + "end": 36800.7, + "probability": 0.678 + }, + { + "start": 36800.82, + "end": 36802.26, + "probability": 0.9868 + }, + { + "start": 36802.78, + "end": 36804.06, + "probability": 0.8549 + }, + { + "start": 36805.52, + "end": 36806.86, + "probability": 0.2177 + }, + { + "start": 36807.42, + "end": 36808.14, + "probability": 0.9849 + }, + { + "start": 36810.14, + "end": 36811.9, + "probability": 0.8162 + }, + { + "start": 36812.22, + "end": 36814.7, + "probability": 0.4647 + }, + { + "start": 36815.26, + "end": 36815.62, + "probability": 0.0661 + }, + { + "start": 36815.84, + "end": 36816.88, + "probability": 0.7241 + }, + { + "start": 36817.06, + "end": 36819.8, + "probability": 0.9464 + }, + { + "start": 36819.92, + "end": 36821.8, + "probability": 0.9406 + }, + { + "start": 36823.46, + "end": 36827.46, + "probability": 0.9844 + }, + { + "start": 36827.64, + "end": 36831.41, + "probability": 0.9312 + }, + { + "start": 36831.86, + "end": 36833.56, + "probability": 0.8514 + }, + { + "start": 36834.24, + "end": 36834.68, + "probability": 0.4232 + }, + { + "start": 36835.32, + "end": 36837.66, + "probability": 0.9946 + }, + { + "start": 36838.5, + "end": 36841.02, + "probability": 0.6876 + }, + { + "start": 36842.04, + "end": 36843.9, + "probability": 0.9896 + }, + { + "start": 36844.46, + "end": 36848.54, + "probability": 0.8276 + }, + { + "start": 36849.58, + "end": 36851.0, + "probability": 0.6948 + }, + { + "start": 36851.6, + "end": 36852.18, + "probability": 0.9023 + }, + { + "start": 36853.72, + "end": 36854.28, + "probability": 0.6009 + }, + { + "start": 36855.46, + "end": 36856.98, + "probability": 0.9592 + }, + { + "start": 36857.82, + "end": 36859.46, + "probability": 0.7147 + }, + { + "start": 36860.14, + "end": 36862.5, + "probability": 0.9927 + }, + { + "start": 36862.7, + "end": 36863.82, + "probability": 0.9819 + }, + { + "start": 36865.76, + "end": 36867.86, + "probability": 0.9507 + }, + { + "start": 36868.78, + "end": 36869.21, + "probability": 0.9779 + }, + { + "start": 36871.3, + "end": 36871.54, + "probability": 0.9739 + }, + { + "start": 36871.92, + "end": 36875.38, + "probability": 0.9222 + }, + { + "start": 36875.52, + "end": 36876.52, + "probability": 0.9806 + }, + { + "start": 36876.9, + "end": 36877.54, + "probability": 0.9224 + }, + { + "start": 36877.64, + "end": 36878.58, + "probability": 0.9961 + }, + { + "start": 36878.6, + "end": 36880.46, + "probability": 0.9561 + }, + { + "start": 36880.86, + "end": 36882.16, + "probability": 0.9918 + }, + { + "start": 36882.9, + "end": 36886.72, + "probability": 0.9604 + }, + { + "start": 36886.8, + "end": 36888.26, + "probability": 0.9429 + }, + { + "start": 36888.64, + "end": 36892.7, + "probability": 0.9722 + }, + { + "start": 36894.4, + "end": 36896.32, + "probability": 0.813 + }, + { + "start": 36896.7, + "end": 36900.56, + "probability": 0.9369 + }, + { + "start": 36902.62, + "end": 36905.8, + "probability": 0.8905 + }, + { + "start": 36907.24, + "end": 36909.34, + "probability": 0.998 + }, + { + "start": 36912.06, + "end": 36912.84, + "probability": 0.4041 + }, + { + "start": 36914.38, + "end": 36918.3, + "probability": 0.945 + }, + { + "start": 36918.92, + "end": 36921.6, + "probability": 0.9851 + }, + { + "start": 36922.1, + "end": 36925.14, + "probability": 0.9978 + }, + { + "start": 36925.64, + "end": 36926.13, + "probability": 0.9717 + }, + { + "start": 36927.7, + "end": 36928.35, + "probability": 0.9673 + }, + { + "start": 36928.48, + "end": 36929.46, + "probability": 0.9801 + }, + { + "start": 36930.28, + "end": 36933.12, + "probability": 0.9673 + }, + { + "start": 36933.68, + "end": 36937.18, + "probability": 0.8555 + }, + { + "start": 36938.08, + "end": 36941.92, + "probability": 0.8616 + }, + { + "start": 36942.38, + "end": 36943.74, + "probability": 0.667 + }, + { + "start": 36943.78, + "end": 36945.02, + "probability": 0.8733 + }, + { + "start": 36945.56, + "end": 36948.12, + "probability": 0.8879 + }, + { + "start": 36948.18, + "end": 36949.82, + "probability": 0.7589 + }, + { + "start": 36950.9, + "end": 36951.84, + "probability": 0.8174 + }, + { + "start": 36952.54, + "end": 36954.68, + "probability": 0.7738 + }, + { + "start": 36954.84, + "end": 36956.82, + "probability": 0.9662 + }, + { + "start": 36957.0, + "end": 36959.26, + "probability": 0.9969 + }, + { + "start": 36959.64, + "end": 36964.14, + "probability": 0.9944 + }, + { + "start": 36964.56, + "end": 36966.18, + "probability": 0.9325 + }, + { + "start": 36966.26, + "end": 36968.5, + "probability": 0.8358 + }, + { + "start": 36968.64, + "end": 36968.96, + "probability": 0.7134 + }, + { + "start": 36969.38, + "end": 36970.42, + "probability": 0.6074 + }, + { + "start": 36971.48, + "end": 36973.08, + "probability": 0.7487 + }, + { + "start": 36973.66, + "end": 36975.76, + "probability": 0.9983 + }, + { + "start": 36977.04, + "end": 36977.8, + "probability": 0.6895 + }, + { + "start": 36977.94, + "end": 36981.06, + "probability": 0.9771 + }, + { + "start": 36981.06, + "end": 36984.26, + "probability": 0.9808 + }, + { + "start": 36984.46, + "end": 36987.28, + "probability": 0.7017 + }, + { + "start": 36988.86, + "end": 36992.56, + "probability": 0.9956 + }, + { + "start": 36992.98, + "end": 36995.77, + "probability": 0.9971 + }, + { + "start": 36996.26, + "end": 36998.42, + "probability": 0.9946 + }, + { + "start": 36998.46, + "end": 36999.39, + "probability": 0.1136 + }, + { + "start": 37000.36, + "end": 37002.7, + "probability": 0.9813 + }, + { + "start": 37003.12, + "end": 37004.06, + "probability": 0.4299 + }, + { + "start": 37004.28, + "end": 37006.02, + "probability": 0.8562 + }, + { + "start": 37006.54, + "end": 37007.92, + "probability": 0.5626 + }, + { + "start": 37008.68, + "end": 37014.28, + "probability": 0.998 + }, + { + "start": 37014.76, + "end": 37017.94, + "probability": 0.9924 + }, + { + "start": 37018.26, + "end": 37019.66, + "probability": 0.9498 + }, + { + "start": 37019.88, + "end": 37024.9, + "probability": 0.9859 + }, + { + "start": 37026.74, + "end": 37027.86, + "probability": 0.8109 + }, + { + "start": 37028.82, + "end": 37031.18, + "probability": 0.9992 + }, + { + "start": 37031.38, + "end": 37031.86, + "probability": 0.6545 + }, + { + "start": 37032.0, + "end": 37032.34, + "probability": 0.6115 + }, + { + "start": 37032.9, + "end": 37034.54, + "probability": 0.9333 + }, + { + "start": 37035.14, + "end": 37036.84, + "probability": 0.9637 + }, + { + "start": 37037.9, + "end": 37040.56, + "probability": 0.2843 + }, + { + "start": 37041.26, + "end": 37042.28, + "probability": 0.1424 + }, + { + "start": 37042.28, + "end": 37045.86, + "probability": 0.9294 + }, + { + "start": 37046.1, + "end": 37049.78, + "probability": 0.849 + }, + { + "start": 37050.32, + "end": 37051.63, + "probability": 0.9932 + }, + { + "start": 37051.82, + "end": 37052.9, + "probability": 0.9888 + }, + { + "start": 37053.16, + "end": 37054.88, + "probability": 0.986 + }, + { + "start": 37055.16, + "end": 37056.82, + "probability": 0.9258 + }, + { + "start": 37057.62, + "end": 37060.54, + "probability": 0.9322 + }, + { + "start": 37061.54, + "end": 37062.06, + "probability": 0.5822 + }, + { + "start": 37062.06, + "end": 37062.58, + "probability": 0.59 + }, + { + "start": 37063.35, + "end": 37066.34, + "probability": 0.8103 + }, + { + "start": 37066.4, + "end": 37067.58, + "probability": 0.9821 + }, + { + "start": 37068.06, + "end": 37071.84, + "probability": 0.9964 + }, + { + "start": 37072.36, + "end": 37077.64, + "probability": 0.9846 + }, + { + "start": 37078.3, + "end": 37080.8, + "probability": 0.9066 + }, + { + "start": 37081.14, + "end": 37083.22, + "probability": 0.9941 + }, + { + "start": 37084.3, + "end": 37087.0, + "probability": 0.9982 + }, + { + "start": 37087.54, + "end": 37092.0, + "probability": 0.9895 + }, + { + "start": 37092.08, + "end": 37093.48, + "probability": 0.9723 + }, + { + "start": 37093.8, + "end": 37096.06, + "probability": 0.9977 + }, + { + "start": 37096.08, + "end": 37097.4, + "probability": 0.9802 + }, + { + "start": 37097.66, + "end": 37098.2, + "probability": 0.9746 + }, + { + "start": 37098.72, + "end": 37099.37, + "probability": 0.9896 + }, + { + "start": 37099.68, + "end": 37100.22, + "probability": 0.9229 + }, + { + "start": 37100.82, + "end": 37103.16, + "probability": 0.3126 + }, + { + "start": 37103.2, + "end": 37104.66, + "probability": 0.9751 + }, + { + "start": 37104.68, + "end": 37107.52, + "probability": 0.5806 + }, + { + "start": 37107.52, + "end": 37108.06, + "probability": 0.7588 + }, + { + "start": 37109.04, + "end": 37110.78, + "probability": 0.9831 + }, + { + "start": 37111.2, + "end": 37113.82, + "probability": 0.6167 + }, + { + "start": 37115.18, + "end": 37118.2, + "probability": 0.7012 + }, + { + "start": 37118.28, + "end": 37119.2, + "probability": 0.876 + }, + { + "start": 37119.26, + "end": 37120.32, + "probability": 0.7265 + }, + { + "start": 37121.48, + "end": 37122.5, + "probability": 0.8823 + }, + { + "start": 37123.44, + "end": 37126.82, + "probability": 0.6708 + }, + { + "start": 37126.84, + "end": 37127.2, + "probability": 0.6761 + }, + { + "start": 37128.72, + "end": 37134.78, + "probability": 0.8347 + }, + { + "start": 37139.0, + "end": 37139.46, + "probability": 0.3531 + }, + { + "start": 37139.8, + "end": 37140.26, + "probability": 0.599 + }, + { + "start": 37141.54, + "end": 37142.94, + "probability": 0.7273 + }, + { + "start": 37143.68, + "end": 37145.78, + "probability": 0.9573 + }, + { + "start": 37146.9, + "end": 37147.86, + "probability": 0.9012 + }, + { + "start": 37148.42, + "end": 37149.8, + "probability": 0.9885 + }, + { + "start": 37150.26, + "end": 37151.78, + "probability": 0.9919 + }, + { + "start": 37152.12, + "end": 37154.2, + "probability": 0.9935 + }, + { + "start": 37154.54, + "end": 37155.36, + "probability": 0.7455 + }, + { + "start": 37156.12, + "end": 37158.9, + "probability": 0.9764 + }, + { + "start": 37159.84, + "end": 37160.9, + "probability": 0.5526 + }, + { + "start": 37161.88, + "end": 37163.4, + "probability": 0.9546 + }, + { + "start": 37164.28, + "end": 37167.96, + "probability": 0.8731 + }, + { + "start": 37168.9, + "end": 37170.88, + "probability": 0.4576 + }, + { + "start": 37170.94, + "end": 37171.72, + "probability": 0.6156 + }, + { + "start": 37171.74, + "end": 37176.14, + "probability": 0.183 + }, + { + "start": 37176.24, + "end": 37177.24, + "probability": 0.5459 + }, + { + "start": 37177.74, + "end": 37182.38, + "probability": 0.7102 + }, + { + "start": 37182.68, + "end": 37184.32, + "probability": 0.9288 + }, + { + "start": 37184.38, + "end": 37186.04, + "probability": 0.9841 + }, + { + "start": 37186.3, + "end": 37191.42, + "probability": 0.944 + }, + { + "start": 37191.52, + "end": 37192.06, + "probability": 0.3231 + }, + { + "start": 37192.4, + "end": 37193.26, + "probability": 0.641 + }, + { + "start": 37193.74, + "end": 37194.74, + "probability": 0.5619 + }, + { + "start": 37195.04, + "end": 37198.18, + "probability": 0.9736 + }, + { + "start": 37199.3, + "end": 37201.9, + "probability": 0.6573 + }, + { + "start": 37202.62, + "end": 37203.85, + "probability": 0.9443 + }, + { + "start": 37206.58, + "end": 37208.64, + "probability": 0.9764 + }, + { + "start": 37209.38, + "end": 37210.36, + "probability": 0.5934 + }, + { + "start": 37211.76, + "end": 37213.13, + "probability": 0.7225 + }, + { + "start": 37215.2, + "end": 37216.24, + "probability": 0.6377 + }, + { + "start": 37216.78, + "end": 37217.88, + "probability": 0.979 + }, + { + "start": 37218.98, + "end": 37219.48, + "probability": 0.8374 + }, + { + "start": 37220.74, + "end": 37223.42, + "probability": 0.8394 + }, + { + "start": 37223.54, + "end": 37224.02, + "probability": 0.8997 + }, + { + "start": 37225.6, + "end": 37226.6, + "probability": 0.9854 + }, + { + "start": 37226.68, + "end": 37227.74, + "probability": 0.9506 + }, + { + "start": 37230.76, + "end": 37231.42, + "probability": 0.7424 + }, + { + "start": 37231.5, + "end": 37232.32, + "probability": 0.9163 + }, + { + "start": 37232.5, + "end": 37233.89, + "probability": 0.9907 + }, + { + "start": 37234.18, + "end": 37235.46, + "probability": 0.8455 + }, + { + "start": 37235.46, + "end": 37236.02, + "probability": 0.6086 + }, + { + "start": 37237.38, + "end": 37238.64, + "probability": 0.9985 + }, + { + "start": 37239.0, + "end": 37241.18, + "probability": 0.9268 + }, + { + "start": 37241.94, + "end": 37243.6, + "probability": 0.995 + }, + { + "start": 37244.88, + "end": 37245.74, + "probability": 0.9561 + }, + { + "start": 37247.2, + "end": 37248.98, + "probability": 0.7144 + }, + { + "start": 37249.12, + "end": 37250.68, + "probability": 0.9541 + }, + { + "start": 37251.76, + "end": 37255.04, + "probability": 0.9849 + }, + { + "start": 37255.32, + "end": 37256.84, + "probability": 0.8861 + }, + { + "start": 37256.96, + "end": 37259.14, + "probability": 0.9307 + }, + { + "start": 37259.26, + "end": 37264.32, + "probability": 0.9835 + }, + { + "start": 37266.34, + "end": 37269.12, + "probability": 0.9976 + }, + { + "start": 37269.46, + "end": 37271.06, + "probability": 0.991 + }, + { + "start": 37272.34, + "end": 37275.42, + "probability": 0.9865 + }, + { + "start": 37276.28, + "end": 37282.36, + "probability": 0.9368 + }, + { + "start": 37282.96, + "end": 37284.52, + "probability": 0.9536 + }, + { + "start": 37284.74, + "end": 37287.14, + "probability": 0.9536 + }, + { + "start": 37287.56, + "end": 37289.34, + "probability": 0.9635 + }, + { + "start": 37289.72, + "end": 37296.26, + "probability": 0.9896 + }, + { + "start": 37296.62, + "end": 37297.86, + "probability": 0.9531 + }, + { + "start": 37298.92, + "end": 37300.27, + "probability": 0.968 + }, + { + "start": 37301.32, + "end": 37303.3, + "probability": 0.627 + }, + { + "start": 37304.0, + "end": 37305.4, + "probability": 0.8272 + }, + { + "start": 37305.92, + "end": 37306.6, + "probability": 0.8827 + }, + { + "start": 37306.92, + "end": 37307.38, + "probability": 0.3903 + }, + { + "start": 37307.44, + "end": 37311.26, + "probability": 0.7406 + }, + { + "start": 37311.38, + "end": 37317.76, + "probability": 0.968 + }, + { + "start": 37318.44, + "end": 37318.7, + "probability": 0.4297 + }, + { + "start": 37318.9, + "end": 37322.16, + "probability": 0.8532 + }, + { + "start": 37322.26, + "end": 37329.32, + "probability": 0.9697 + }, + { + "start": 37329.84, + "end": 37332.04, + "probability": 0.8674 + }, + { + "start": 37332.14, + "end": 37333.28, + "probability": 0.1895 + }, + { + "start": 37333.36, + "end": 37334.42, + "probability": 0.7163 + }, + { + "start": 37334.72, + "end": 37335.88, + "probability": 0.5322 + }, + { + "start": 37336.04, + "end": 37337.06, + "probability": 0.9429 + }, + { + "start": 37337.26, + "end": 37338.32, + "probability": 0.7559 + }, + { + "start": 37338.82, + "end": 37339.32, + "probability": 0.9013 + }, + { + "start": 37339.44, + "end": 37343.1, + "probability": 0.9904 + }, + { + "start": 37343.74, + "end": 37345.9, + "probability": 0.9458 + }, + { + "start": 37346.0, + "end": 37347.7, + "probability": 0.9848 + }, + { + "start": 37348.06, + "end": 37348.42, + "probability": 0.6945 + }, + { + "start": 37349.5, + "end": 37351.64, + "probability": 0.707 + }, + { + "start": 37352.06, + "end": 37353.42, + "probability": 0.683 + }, + { + "start": 37353.6, + "end": 37356.3, + "probability": 0.9349 + }, + { + "start": 37356.72, + "end": 37359.0, + "probability": 0.8845 + }, + { + "start": 37360.8, + "end": 37364.62, + "probability": 0.9712 + }, + { + "start": 37364.98, + "end": 37365.56, + "probability": 0.4936 + }, + { + "start": 37365.84, + "end": 37368.32, + "probability": 0.9984 + }, + { + "start": 37369.86, + "end": 37371.08, + "probability": 0.9168 + }, + { + "start": 37372.06, + "end": 37373.32, + "probability": 0.7666 + }, + { + "start": 37374.98, + "end": 37376.5, + "probability": 0.645 + }, + { + "start": 37377.28, + "end": 37378.62, + "probability": 0.8079 + }, + { + "start": 37378.66, + "end": 37382.16, + "probability": 0.9964 + }, + { + "start": 37382.94, + "end": 37386.34, + "probability": 0.9289 + }, + { + "start": 37387.7, + "end": 37389.58, + "probability": 0.9971 + }, + { + "start": 37390.76, + "end": 37392.32, + "probability": 0.9919 + }, + { + "start": 37393.08, + "end": 37396.7, + "probability": 0.9851 + }, + { + "start": 37397.1, + "end": 37399.42, + "probability": 0.9994 + }, + { + "start": 37399.42, + "end": 37402.18, + "probability": 0.9985 + }, + { + "start": 37402.54, + "end": 37404.22, + "probability": 0.7626 + }, + { + "start": 37404.72, + "end": 37407.9, + "probability": 0.9953 + }, + { + "start": 37408.58, + "end": 37410.66, + "probability": 0.9935 + }, + { + "start": 37411.04, + "end": 37412.66, + "probability": 0.9695 + }, + { + "start": 37413.12, + "end": 37414.54, + "probability": 0.8632 + }, + { + "start": 37415.14, + "end": 37416.92, + "probability": 0.9514 + }, + { + "start": 37417.58, + "end": 37419.2, + "probability": 0.9479 + }, + { + "start": 37419.72, + "end": 37422.06, + "probability": 0.9612 + }, + { + "start": 37422.54, + "end": 37424.42, + "probability": 0.905 + }, + { + "start": 37425.68, + "end": 37426.36, + "probability": 0.0158 + }, + { + "start": 37427.77, + "end": 37431.22, + "probability": 0.714 + }, + { + "start": 37431.22, + "end": 37434.86, + "probability": 0.952 + }, + { + "start": 37435.26, + "end": 37436.35, + "probability": 0.884 + }, + { + "start": 37436.56, + "end": 37439.32, + "probability": 0.9681 + }, + { + "start": 37439.4, + "end": 37439.98, + "probability": 0.7524 + }, + { + "start": 37440.18, + "end": 37441.38, + "probability": 0.8721 + }, + { + "start": 37441.68, + "end": 37443.24, + "probability": 0.8229 + }, + { + "start": 37444.5, + "end": 37447.38, + "probability": 0.6417 + }, + { + "start": 37447.44, + "end": 37449.58, + "probability": 0.5449 + }, + { + "start": 37450.54, + "end": 37451.18, + "probability": 0.8201 + }, + { + "start": 37451.36, + "end": 37452.62, + "probability": 0.9255 + }, + { + "start": 37453.0, + "end": 37455.7, + "probability": 0.9464 + }, + { + "start": 37456.18, + "end": 37459.34, + "probability": 0.7535 + }, + { + "start": 37459.64, + "end": 37461.3, + "probability": 0.9272 + }, + { + "start": 37465.02, + "end": 37467.22, + "probability": 0.9238 + }, + { + "start": 37470.4, + "end": 37472.22, + "probability": 0.9601 + }, + { + "start": 37472.42, + "end": 37475.76, + "probability": 0.9938 + }, + { + "start": 37476.56, + "end": 37477.06, + "probability": 0.7535 + }, + { + "start": 37477.7, + "end": 37483.52, + "probability": 0.9863 + }, + { + "start": 37483.92, + "end": 37485.34, + "probability": 0.9313 + }, + { + "start": 37486.68, + "end": 37487.44, + "probability": 0.9182 + }, + { + "start": 37488.78, + "end": 37493.6, + "probability": 0.9962 + }, + { + "start": 37493.86, + "end": 37497.42, + "probability": 0.9932 + }, + { + "start": 37497.88, + "end": 37498.64, + "probability": 0.5143 + }, + { + "start": 37499.26, + "end": 37499.9, + "probability": 0.8669 + }, + { + "start": 37500.48, + "end": 37502.38, + "probability": 0.9851 + }, + { + "start": 37503.54, + "end": 37506.26, + "probability": 0.9915 + }, + { + "start": 37508.74, + "end": 37510.16, + "probability": 0.9817 + }, + { + "start": 37510.94, + "end": 37511.42, + "probability": 0.9575 + }, + { + "start": 37512.04, + "end": 37514.62, + "probability": 0.4672 + }, + { + "start": 37515.22, + "end": 37516.78, + "probability": 0.7569 + }, + { + "start": 37516.98, + "end": 37518.42, + "probability": 0.8747 + }, + { + "start": 37518.76, + "end": 37521.08, + "probability": 0.9839 + }, + { + "start": 37522.14, + "end": 37522.7, + "probability": 0.697 + }, + { + "start": 37523.4, + "end": 37524.82, + "probability": 0.9602 + }, + { + "start": 37525.12, + "end": 37526.18, + "probability": 0.9484 + }, + { + "start": 37526.66, + "end": 37527.08, + "probability": 0.6277 + }, + { + "start": 37527.16, + "end": 37527.88, + "probability": 0.8724 + }, + { + "start": 37528.04, + "end": 37529.12, + "probability": 0.9888 + }, + { + "start": 37530.66, + "end": 37530.66, + "probability": 0.1528 + }, + { + "start": 37530.66, + "end": 37533.2, + "probability": 0.5866 + }, + { + "start": 37533.32, + "end": 37533.84, + "probability": 0.71 + }, + { + "start": 37534.41, + "end": 37537.6, + "probability": 0.7306 + }, + { + "start": 37537.64, + "end": 37539.33, + "probability": 0.9651 + }, + { + "start": 37540.4, + "end": 37541.96, + "probability": 0.9729 + }, + { + "start": 37542.42, + "end": 37543.82, + "probability": 0.6183 + }, + { + "start": 37543.98, + "end": 37549.32, + "probability": 0.753 + }, + { + "start": 37549.9, + "end": 37555.04, + "probability": 0.9951 + }, + { + "start": 37555.86, + "end": 37557.62, + "probability": 0.8582 + }, + { + "start": 37558.82, + "end": 37559.96, + "probability": 0.7467 + }, + { + "start": 37561.14, + "end": 37564.02, + "probability": 0.7081 + }, + { + "start": 37565.02, + "end": 37567.54, + "probability": 0.6678 + }, + { + "start": 37567.94, + "end": 37570.0, + "probability": 0.7659 + }, + { + "start": 37572.58, + "end": 37573.94, + "probability": 0.9856 + }, + { + "start": 37574.14, + "end": 37574.36, + "probability": 0.6958 + }, + { + "start": 37574.38, + "end": 37575.34, + "probability": 0.9884 + }, + { + "start": 37575.78, + "end": 37579.77, + "probability": 0.9757 + }, + { + "start": 37579.88, + "end": 37582.18, + "probability": 0.9984 + }, + { + "start": 37583.62, + "end": 37584.72, + "probability": 0.584 + }, + { + "start": 37586.18, + "end": 37589.62, + "probability": 0.9388 + }, + { + "start": 37590.24, + "end": 37590.92, + "probability": 0.5096 + }, + { + "start": 37591.02, + "end": 37592.86, + "probability": 0.9611 + }, + { + "start": 37592.96, + "end": 37596.52, + "probability": 0.8024 + }, + { + "start": 37597.6, + "end": 37600.98, + "probability": 0.7667 + }, + { + "start": 37601.52, + "end": 37603.62, + "probability": 0.9978 + }, + { + "start": 37605.04, + "end": 37607.14, + "probability": 0.9181 + }, + { + "start": 37607.68, + "end": 37610.66, + "probability": 0.872 + }, + { + "start": 37611.8, + "end": 37614.32, + "probability": 0.9932 + }, + { + "start": 37615.2, + "end": 37616.58, + "probability": 0.5225 + }, + { + "start": 37617.62, + "end": 37619.22, + "probability": 0.9368 + }, + { + "start": 37619.82, + "end": 37622.42, + "probability": 0.9893 + }, + { + "start": 37623.66, + "end": 37624.7, + "probability": 0.5707 + }, + { + "start": 37625.28, + "end": 37625.7, + "probability": 0.8833 + }, + { + "start": 37626.28, + "end": 37627.33, + "probability": 0.422 + }, + { + "start": 37628.06, + "end": 37631.36, + "probability": 0.5533 + }, + { + "start": 37632.3, + "end": 37635.3, + "probability": 0.9471 + }, + { + "start": 37635.72, + "end": 37635.78, + "probability": 0.0824 + }, + { + "start": 37636.46, + "end": 37637.68, + "probability": 0.7176 + }, + { + "start": 37638.68, + "end": 37639.44, + "probability": 0.6762 + }, + { + "start": 37641.1, + "end": 37641.1, + "probability": 0.3503 + }, + { + "start": 37641.1, + "end": 37642.58, + "probability": 0.3383 + }, + { + "start": 37643.14, + "end": 37643.52, + "probability": 0.6629 + }, + { + "start": 37643.62, + "end": 37646.14, + "probability": 0.979 + }, + { + "start": 37646.14, + "end": 37649.24, + "probability": 0.8604 + }, + { + "start": 37649.54, + "end": 37653.08, + "probability": 0.9644 + }, + { + "start": 37653.08, + "end": 37656.06, + "probability": 0.9698 + }, + { + "start": 37656.56, + "end": 37658.18, + "probability": 0.9712 + }, + { + "start": 37658.18, + "end": 37660.48, + "probability": 0.9906 + }, + { + "start": 37660.68, + "end": 37661.24, + "probability": 0.9293 + }, + { + "start": 37662.9, + "end": 37664.02, + "probability": 0.4525 + }, + { + "start": 37665.02, + "end": 37666.22, + "probability": 0.9933 + }, + { + "start": 37666.74, + "end": 37667.9, + "probability": 0.6017 + }, + { + "start": 37668.1, + "end": 37669.16, + "probability": 0.6613 + }, + { + "start": 37669.44, + "end": 37671.5, + "probability": 0.5869 + }, + { + "start": 37671.56, + "end": 37674.2, + "probability": 0.1203 + }, + { + "start": 37674.36, + "end": 37677.42, + "probability": 0.5543 + }, + { + "start": 37677.76, + "end": 37684.16, + "probability": 0.4322 + }, + { + "start": 37684.62, + "end": 37686.34, + "probability": 0.8919 + }, + { + "start": 37686.72, + "end": 37687.88, + "probability": 0.6788 + }, + { + "start": 37688.44, + "end": 37688.68, + "probability": 0.7456 + }, + { + "start": 37689.06, + "end": 37691.66, + "probability": 0.9065 + }, + { + "start": 37691.72, + "end": 37692.98, + "probability": 0.6743 + }, + { + "start": 37693.16, + "end": 37695.44, + "probability": 0.0372 + }, + { + "start": 37695.46, + "end": 37695.7, + "probability": 0.0189 + }, + { + "start": 37696.06, + "end": 37696.44, + "probability": 0.3536 + }, + { + "start": 37696.44, + "end": 37699.8, + "probability": 0.6465 + }, + { + "start": 37701.7, + "end": 37705.02, + "probability": 0.9663 + }, + { + "start": 37705.14, + "end": 37705.86, + "probability": 0.8186 + }, + { + "start": 37705.88, + "end": 37707.36, + "probability": 0.9686 + }, + { + "start": 37707.82, + "end": 37708.4, + "probability": 0.8963 + }, + { + "start": 37709.78, + "end": 37710.32, + "probability": 0.5292 + }, + { + "start": 37711.68, + "end": 37716.3, + "probability": 0.7453 + }, + { + "start": 37717.26, + "end": 37723.48, + "probability": 0.9804 + }, + { + "start": 37724.5, + "end": 37727.3, + "probability": 0.8947 + }, + { + "start": 37728.88, + "end": 37733.58, + "probability": 0.9188 + }, + { + "start": 37734.24, + "end": 37737.62, + "probability": 0.9658 + }, + { + "start": 37738.42, + "end": 37739.76, + "probability": 0.6722 + }, + { + "start": 37740.46, + "end": 37742.46, + "probability": 0.5981 + }, + { + "start": 37742.68, + "end": 37744.56, + "probability": 0.5202 + }, + { + "start": 37746.82, + "end": 37749.14, + "probability": 0.7196 + }, + { + "start": 37749.78, + "end": 37752.09, + "probability": 0.7432 + }, + { + "start": 37752.98, + "end": 37753.72, + "probability": 0.7719 + }, + { + "start": 37754.2, + "end": 37754.7, + "probability": 0.8552 + }, + { + "start": 37755.02, + "end": 37755.82, + "probability": 0.7346 + }, + { + "start": 37756.16, + "end": 37757.6, + "probability": 0.7873 + }, + { + "start": 37758.84, + "end": 37759.96, + "probability": 0.5205 + }, + { + "start": 37760.34, + "end": 37762.14, + "probability": 0.8015 + }, + { + "start": 37762.2, + "end": 37765.4, + "probability": 0.8982 + }, + { + "start": 37766.36, + "end": 37769.92, + "probability": 0.9199 + }, + { + "start": 37770.26, + "end": 37772.3, + "probability": 0.9229 + }, + { + "start": 37772.98, + "end": 37775.02, + "probability": 0.9951 + }, + { + "start": 37775.62, + "end": 37776.38, + "probability": 0.4555 + }, + { + "start": 37776.44, + "end": 37779.54, + "probability": 0.9824 + }, + { + "start": 37780.06, + "end": 37781.6, + "probability": 0.8506 + }, + { + "start": 37782.2, + "end": 37784.76, + "probability": 0.982 + }, + { + "start": 37784.86, + "end": 37787.56, + "probability": 0.7379 + }, + { + "start": 37788.92, + "end": 37791.1, + "probability": 0.9951 + }, + { + "start": 37791.84, + "end": 37795.28, + "probability": 0.9823 + }, + { + "start": 37795.82, + "end": 37798.34, + "probability": 0.9095 + }, + { + "start": 37800.28, + "end": 37801.64, + "probability": 0.8799 + }, + { + "start": 37803.08, + "end": 37803.78, + "probability": 0.857 + }, + { + "start": 37805.44, + "end": 37806.66, + "probability": 0.8566 + }, + { + "start": 37807.22, + "end": 37808.7, + "probability": 0.9858 + }, + { + "start": 37809.98, + "end": 37811.06, + "probability": 0.9883 + }, + { + "start": 37811.92, + "end": 37814.9, + "probability": 0.483 + }, + { + "start": 37815.5, + "end": 37816.65, + "probability": 0.804 + }, + { + "start": 37817.56, + "end": 37819.12, + "probability": 0.8401 + }, + { + "start": 37819.5, + "end": 37821.04, + "probability": 0.6068 + }, + { + "start": 37821.3, + "end": 37822.54, + "probability": 0.9001 + }, + { + "start": 37822.54, + "end": 37823.44, + "probability": 0.8075 + }, + { + "start": 37824.0, + "end": 37826.8, + "probability": 0.7323 + }, + { + "start": 37827.8, + "end": 37828.92, + "probability": 0.9624 + }, + { + "start": 37830.42, + "end": 37831.28, + "probability": 0.4125 + }, + { + "start": 37832.3, + "end": 37832.7, + "probability": 0.9424 + }, + { + "start": 37834.0, + "end": 37834.88, + "probability": 0.9453 + }, + { + "start": 37835.22, + "end": 37837.24, + "probability": 0.1345 + }, + { + "start": 37837.9, + "end": 37839.18, + "probability": 0.6702 + }, + { + "start": 37839.7, + "end": 37842.32, + "probability": 0.7602 + }, + { + "start": 37843.32, + "end": 37844.7, + "probability": 0.712 + }, + { + "start": 37845.36, + "end": 37847.24, + "probability": 0.0915 + }, + { + "start": 37848.0, + "end": 37848.94, + "probability": 0.5663 + }, + { + "start": 37849.76, + "end": 37851.94, + "probability": 0.2625 + }, + { + "start": 37851.94, + "end": 37852.84, + "probability": 0.4413 + }, + { + "start": 37852.9, + "end": 37855.48, + "probability": 0.9032 + }, + { + "start": 37856.68, + "end": 37857.58, + "probability": 0.8464 + }, + { + "start": 37859.98, + "end": 37862.42, + "probability": 0.7279 + }, + { + "start": 37862.48, + "end": 37864.76, + "probability": 0.4871 + }, + { + "start": 37865.32, + "end": 37865.96, + "probability": 0.0966 + }, + { + "start": 37868.16, + "end": 37870.2, + "probability": 0.9744 + }, + { + "start": 37870.26, + "end": 37871.22, + "probability": 0.3621 + }, + { + "start": 37872.6, + "end": 37872.9, + "probability": 0.8564 + }, + { + "start": 37873.66, + "end": 37875.82, + "probability": 0.714 + }, + { + "start": 37875.86, + "end": 37877.9, + "probability": 0.7975 + }, + { + "start": 37878.22, + "end": 37881.76, + "probability": 0.7591 + }, + { + "start": 37881.92, + "end": 37882.26, + "probability": 0.1914 + }, + { + "start": 37882.9, + "end": 37883.38, + "probability": 0.9149 + }, + { + "start": 37883.38, + "end": 37883.98, + "probability": 0.8123 + }, + { + "start": 37884.08, + "end": 37885.28, + "probability": 0.9868 + }, + { + "start": 37885.46, + "end": 37888.52, + "probability": 0.9126 + }, + { + "start": 37888.8, + "end": 37892.46, + "probability": 0.9009 + }, + { + "start": 37892.88, + "end": 37895.14, + "probability": 0.7242 + }, + { + "start": 37895.38, + "end": 37896.08, + "probability": 0.3141 + }, + { + "start": 37896.7, + "end": 37898.3, + "probability": 0.9875 + }, + { + "start": 37899.34, + "end": 37900.5, + "probability": 0.9668 + }, + { + "start": 37901.32, + "end": 37903.92, + "probability": 0.9985 + }, + { + "start": 37903.92, + "end": 37908.06, + "probability": 0.9877 + }, + { + "start": 37908.44, + "end": 37909.9, + "probability": 0.6493 + }, + { + "start": 37910.74, + "end": 37912.46, + "probability": 0.9943 + }, + { + "start": 37912.7, + "end": 37916.3, + "probability": 0.9018 + }, + { + "start": 37916.76, + "end": 37918.44, + "probability": 0.9759 + }, + { + "start": 37919.3, + "end": 37922.12, + "probability": 0.9727 + }, + { + "start": 37923.06, + "end": 37925.98, + "probability": 0.9863 + }, + { + "start": 37926.8, + "end": 37929.22, + "probability": 0.9973 + }, + { + "start": 37929.62, + "end": 37931.72, + "probability": 0.9778 + }, + { + "start": 37932.92, + "end": 37936.4, + "probability": 0.9956 + }, + { + "start": 37937.38, + "end": 37940.58, + "probability": 0.9987 + }, + { + "start": 37941.06, + "end": 37944.06, + "probability": 0.9917 + }, + { + "start": 37944.36, + "end": 37946.7, + "probability": 0.9983 + }, + { + "start": 37947.06, + "end": 37947.6, + "probability": 0.5661 + }, + { + "start": 37947.68, + "end": 37948.06, + "probability": 0.6157 + }, + { + "start": 37948.24, + "end": 37949.67, + "probability": 0.7844 + }, + { + "start": 37949.78, + "end": 37951.16, + "probability": 0.7831 + }, + { + "start": 37951.3, + "end": 37951.64, + "probability": 0.5754 + }, + { + "start": 37951.72, + "end": 37952.16, + "probability": 0.9438 + }, + { + "start": 37952.28, + "end": 37952.92, + "probability": 0.8139 + }, + { + "start": 37954.68, + "end": 37955.74, + "probability": 0.9817 + }, + { + "start": 37955.8, + "end": 37957.88, + "probability": 0.9712 + }, + { + "start": 37958.32, + "end": 37960.28, + "probability": 0.9813 + }, + { + "start": 37960.36, + "end": 37961.54, + "probability": 0.8476 + }, + { + "start": 37961.98, + "end": 37963.68, + "probability": 0.8242 + }, + { + "start": 37964.08, + "end": 37965.48, + "probability": 0.9773 + }, + { + "start": 37965.58, + "end": 37966.74, + "probability": 0.9238 + }, + { + "start": 37967.0, + "end": 37968.38, + "probability": 0.9838 + }, + { + "start": 37969.58, + "end": 37971.0, + "probability": 0.9797 + }, + { + "start": 37972.34, + "end": 37973.52, + "probability": 0.7494 + }, + { + "start": 37974.04, + "end": 37975.38, + "probability": 0.9342 + }, + { + "start": 37975.94, + "end": 37977.8, + "probability": 0.6177 + }, + { + "start": 37978.16, + "end": 37979.62, + "probability": 0.7948 + }, + { + "start": 37979.64, + "end": 37980.44, + "probability": 0.8979 + }, + { + "start": 37981.02, + "end": 37982.75, + "probability": 0.7668 + }, + { + "start": 37983.6, + "end": 37984.44, + "probability": 0.825 + }, + { + "start": 37985.44, + "end": 37987.58, + "probability": 0.7163 + }, + { + "start": 37988.7, + "end": 37989.64, + "probability": 0.6114 + }, + { + "start": 37990.22, + "end": 37992.48, + "probability": 0.9529 + }, + { + "start": 37993.02, + "end": 37994.48, + "probability": 0.3143 + }, + { + "start": 37994.58, + "end": 37997.5, + "probability": 0.6572 + }, + { + "start": 37998.04, + "end": 37998.36, + "probability": 0.4869 + }, + { + "start": 37998.38, + "end": 37999.06, + "probability": 0.9249 + }, + { + "start": 37999.26, + "end": 38002.38, + "probability": 0.9877 + }, + { + "start": 38002.38, + "end": 38005.28, + "probability": 0.9478 + }, + { + "start": 38006.08, + "end": 38008.94, + "probability": 0.8524 + }, + { + "start": 38009.36, + "end": 38014.58, + "probability": 0.9228 + }, + { + "start": 38015.02, + "end": 38016.06, + "probability": 0.7679 + }, + { + "start": 38016.54, + "end": 38017.22, + "probability": 0.9868 + }, + { + "start": 38017.98, + "end": 38019.24, + "probability": 0.986 + }, + { + "start": 38019.5, + "end": 38020.86, + "probability": 0.7326 + }, + { + "start": 38021.16, + "end": 38025.06, + "probability": 0.9734 + }, + { + "start": 38025.6, + "end": 38027.3, + "probability": 0.9982 + }, + { + "start": 38027.42, + "end": 38028.02, + "probability": 0.8881 + }, + { + "start": 38028.52, + "end": 38029.88, + "probability": 0.9855 + }, + { + "start": 38030.26, + "end": 38036.96, + "probability": 0.9987 + }, + { + "start": 38037.78, + "end": 38039.07, + "probability": 0.4589 + }, + { + "start": 38040.56, + "end": 38043.8, + "probability": 0.6539 + }, + { + "start": 38043.96, + "end": 38044.08, + "probability": 0.4924 + }, + { + "start": 38044.22, + "end": 38044.86, + "probability": 0.9002 + }, + { + "start": 38045.0, + "end": 38045.78, + "probability": 0.9394 + }, + { + "start": 38045.94, + "end": 38046.6, + "probability": 0.593 + }, + { + "start": 38047.28, + "end": 38047.94, + "probability": 0.9681 + }, + { + "start": 38048.56, + "end": 38049.78, + "probability": 0.816 + }, + { + "start": 38050.22, + "end": 38051.86, + "probability": 0.9945 + }, + { + "start": 38052.5, + "end": 38054.48, + "probability": 0.9583 + }, + { + "start": 38055.62, + "end": 38057.9, + "probability": 0.9897 + }, + { + "start": 38058.36, + "end": 38059.92, + "probability": 0.9977 + }, + { + "start": 38063.08, + "end": 38065.86, + "probability": 0.995 + }, + { + "start": 38067.08, + "end": 38070.4, + "probability": 0.9147 + }, + { + "start": 38071.66, + "end": 38072.54, + "probability": 0.7509 + }, + { + "start": 38073.24, + "end": 38078.22, + "probability": 0.969 + }, + { + "start": 38079.08, + "end": 38080.26, + "probability": 0.7483 + }, + { + "start": 38080.8, + "end": 38085.12, + "probability": 0.9209 + }, + { + "start": 38085.36, + "end": 38086.48, + "probability": 0.8645 + }, + { + "start": 38086.86, + "end": 38088.22, + "probability": 0.6073 + }, + { + "start": 38088.24, + "end": 38089.68, + "probability": 0.8591 + }, + { + "start": 38090.8, + "end": 38094.01, + "probability": 0.8711 + }, + { + "start": 38094.72, + "end": 38097.1, + "probability": 0.8521 + }, + { + "start": 38097.54, + "end": 38098.32, + "probability": 0.8772 + }, + { + "start": 38098.44, + "end": 38101.0, + "probability": 0.969 + }, + { + "start": 38101.7, + "end": 38105.06, + "probability": 0.9746 + }, + { + "start": 38105.66, + "end": 38108.16, + "probability": 0.7809 + }, + { + "start": 38108.94, + "end": 38109.94, + "probability": 0.7358 + }, + { + "start": 38110.96, + "end": 38114.44, + "probability": 0.8622 + }, + { + "start": 38115.06, + "end": 38118.62, + "probability": 0.9757 + }, + { + "start": 38120.56, + "end": 38121.74, + "probability": 0.6671 + }, + { + "start": 38123.26, + "end": 38124.16, + "probability": 0.1023 + }, + { + "start": 38124.62, + "end": 38125.0, + "probability": 0.3645 + }, + { + "start": 38125.0, + "end": 38127.26, + "probability": 0.9323 + }, + { + "start": 38128.12, + "end": 38129.96, + "probability": 0.8613 + }, + { + "start": 38130.02, + "end": 38130.46, + "probability": 0.7196 + }, + { + "start": 38130.5, + "end": 38133.36, + "probability": 0.9958 + }, + { + "start": 38133.46, + "end": 38134.68, + "probability": 0.9789 + }, + { + "start": 38134.98, + "end": 38136.51, + "probability": 0.8835 + }, + { + "start": 38137.18, + "end": 38138.8, + "probability": 0.9956 + }, + { + "start": 38139.5, + "end": 38143.62, + "probability": 0.9849 + }, + { + "start": 38143.78, + "end": 38146.1, + "probability": 0.9584 + }, + { + "start": 38146.18, + "end": 38147.32, + "probability": 0.9575 + }, + { + "start": 38147.98, + "end": 38151.28, + "probability": 0.8121 + }, + { + "start": 38151.34, + "end": 38152.1, + "probability": 0.5416 + }, + { + "start": 38152.42, + "end": 38153.08, + "probability": 0.7084 + }, + { + "start": 38153.14, + "end": 38153.94, + "probability": 0.0883 + }, + { + "start": 38154.16, + "end": 38154.48, + "probability": 0.5523 + }, + { + "start": 38154.86, + "end": 38155.9, + "probability": 0.6992 + }, + { + "start": 38156.04, + "end": 38157.14, + "probability": 0.2764 + }, + { + "start": 38159.01, + "end": 38160.66, + "probability": 0.4995 + }, + { + "start": 38160.66, + "end": 38160.66, + "probability": 0.0922 + }, + { + "start": 38160.66, + "end": 38161.04, + "probability": 0.5064 + }, + { + "start": 38161.06, + "end": 38162.43, + "probability": 0.9103 + }, + { + "start": 38162.54, + "end": 38163.88, + "probability": 0.524 + }, + { + "start": 38165.18, + "end": 38166.64, + "probability": 0.555 + }, + { + "start": 38187.72, + "end": 38189.96, + "probability": 0.659 + }, + { + "start": 38192.66, + "end": 38194.88, + "probability": 0.9531 + }, + { + "start": 38198.06, + "end": 38200.14, + "probability": 0.948 + }, + { + "start": 38201.68, + "end": 38204.62, + "probability": 0.9984 + }, + { + "start": 38206.88, + "end": 38208.4, + "probability": 0.8835 + }, + { + "start": 38209.36, + "end": 38210.6, + "probability": 0.9159 + }, + { + "start": 38212.18, + "end": 38214.6, + "probability": 0.8259 + }, + { + "start": 38215.82, + "end": 38216.72, + "probability": 0.5442 + }, + { + "start": 38221.2, + "end": 38222.88, + "probability": 0.9963 + }, + { + "start": 38224.54, + "end": 38231.06, + "probability": 0.9778 + }, + { + "start": 38233.36, + "end": 38237.1, + "probability": 0.8899 + }, + { + "start": 38238.11, + "end": 38240.6, + "probability": 0.9971 + }, + { + "start": 38241.8, + "end": 38243.61, + "probability": 0.9932 + }, + { + "start": 38244.72, + "end": 38245.87, + "probability": 0.953 + }, + { + "start": 38247.02, + "end": 38247.36, + "probability": 0.5011 + }, + { + "start": 38248.78, + "end": 38251.68, + "probability": 0.9893 + }, + { + "start": 38253.9, + "end": 38255.06, + "probability": 0.9979 + }, + { + "start": 38256.24, + "end": 38258.26, + "probability": 0.9189 + }, + { + "start": 38260.16, + "end": 38260.94, + "probability": 0.8472 + }, + { + "start": 38262.12, + "end": 38262.98, + "probability": 0.9713 + }, + { + "start": 38263.58, + "end": 38264.4, + "probability": 0.635 + }, + { + "start": 38265.1, + "end": 38265.72, + "probability": 0.5206 + }, + { + "start": 38266.3, + "end": 38267.08, + "probability": 0.9494 + }, + { + "start": 38267.4, + "end": 38274.76, + "probability": 0.9977 + }, + { + "start": 38277.0, + "end": 38277.8, + "probability": 0.8538 + }, + { + "start": 38279.74, + "end": 38280.84, + "probability": 0.9189 + }, + { + "start": 38282.3, + "end": 38285.88, + "probability": 0.9901 + }, + { + "start": 38287.1, + "end": 38287.94, + "probability": 0.8705 + }, + { + "start": 38290.46, + "end": 38291.78, + "probability": 0.6867 + }, + { + "start": 38292.62, + "end": 38295.48, + "probability": 0.8813 + }, + { + "start": 38295.62, + "end": 38296.72, + "probability": 0.7095 + }, + { + "start": 38298.86, + "end": 38301.9, + "probability": 0.7414 + }, + { + "start": 38303.6, + "end": 38306.0, + "probability": 0.9904 + }, + { + "start": 38308.06, + "end": 38312.16, + "probability": 0.9629 + }, + { + "start": 38313.64, + "end": 38315.96, + "probability": 0.7403 + }, + { + "start": 38316.46, + "end": 38317.42, + "probability": 0.9932 + }, + { + "start": 38319.82, + "end": 38321.82, + "probability": 0.9668 + }, + { + "start": 38322.12, + "end": 38323.44, + "probability": 0.8962 + }, + { + "start": 38325.12, + "end": 38326.64, + "probability": 0.7132 + }, + { + "start": 38329.36, + "end": 38331.8, + "probability": 0.9824 + }, + { + "start": 38332.64, + "end": 38334.18, + "probability": 0.7255 + }, + { + "start": 38334.92, + "end": 38340.0, + "probability": 0.9751 + }, + { + "start": 38340.66, + "end": 38341.76, + "probability": 0.8721 + }, + { + "start": 38343.46, + "end": 38344.1, + "probability": 0.9058 + }, + { + "start": 38344.24, + "end": 38346.57, + "probability": 0.9961 + }, + { + "start": 38348.1, + "end": 38349.88, + "probability": 0.9904 + }, + { + "start": 38350.38, + "end": 38352.26, + "probability": 0.9684 + }, + { + "start": 38353.12, + "end": 38354.38, + "probability": 0.7313 + }, + { + "start": 38355.84, + "end": 38357.28, + "probability": 0.677 + }, + { + "start": 38358.16, + "end": 38360.66, + "probability": 0.8395 + }, + { + "start": 38362.0, + "end": 38363.98, + "probability": 0.9902 + }, + { + "start": 38365.36, + "end": 38367.24, + "probability": 0.9705 + }, + { + "start": 38368.34, + "end": 38369.16, + "probability": 0.9268 + }, + { + "start": 38371.28, + "end": 38373.22, + "probability": 0.8928 + }, + { + "start": 38373.9, + "end": 38374.42, + "probability": 0.6909 + }, + { + "start": 38375.9, + "end": 38377.02, + "probability": 0.9264 + }, + { + "start": 38377.72, + "end": 38378.12, + "probability": 0.5346 + }, + { + "start": 38379.38, + "end": 38381.52, + "probability": 0.9091 + }, + { + "start": 38382.98, + "end": 38386.34, + "probability": 0.9696 + }, + { + "start": 38388.72, + "end": 38389.87, + "probability": 0.988 + }, + { + "start": 38391.16, + "end": 38391.58, + "probability": 0.9546 + }, + { + "start": 38393.2, + "end": 38396.44, + "probability": 0.9849 + }, + { + "start": 38398.92, + "end": 38400.88, + "probability": 0.3486 + }, + { + "start": 38401.88, + "end": 38404.76, + "probability": 0.9867 + }, + { + "start": 38406.64, + "end": 38407.58, + "probability": 0.807 + }, + { + "start": 38408.88, + "end": 38409.94, + "probability": 0.7461 + }, + { + "start": 38410.9, + "end": 38411.6, + "probability": 0.3804 + }, + { + "start": 38412.6, + "end": 38413.14, + "probability": 0.5736 + }, + { + "start": 38414.68, + "end": 38418.1, + "probability": 0.9298 + }, + { + "start": 38419.98, + "end": 38421.3, + "probability": 0.8805 + }, + { + "start": 38422.74, + "end": 38425.42, + "probability": 0.9851 + }, + { + "start": 38426.9, + "end": 38427.92, + "probability": 0.7932 + }, + { + "start": 38431.1, + "end": 38433.16, + "probability": 0.9902 + }, + { + "start": 38434.84, + "end": 38436.64, + "probability": 0.9414 + }, + { + "start": 38438.08, + "end": 38440.08, + "probability": 0.9526 + }, + { + "start": 38441.46, + "end": 38442.62, + "probability": 0.9893 + }, + { + "start": 38443.2, + "end": 38444.24, + "probability": 0.9903 + }, + { + "start": 38445.54, + "end": 38446.16, + "probability": 0.7747 + }, + { + "start": 38448.76, + "end": 38449.36, + "probability": 0.5166 + }, + { + "start": 38450.66, + "end": 38453.64, + "probability": 0.9859 + }, + { + "start": 38454.8, + "end": 38458.32, + "probability": 0.9469 + }, + { + "start": 38459.6, + "end": 38461.96, + "probability": 0.593 + }, + { + "start": 38463.5, + "end": 38467.12, + "probability": 0.9985 + }, + { + "start": 38468.24, + "end": 38472.26, + "probability": 0.8597 + }, + { + "start": 38475.28, + "end": 38478.04, + "probability": 0.889 + }, + { + "start": 38479.08, + "end": 38481.3, + "probability": 0.9905 + }, + { + "start": 38484.86, + "end": 38487.72, + "probability": 0.9808 + }, + { + "start": 38489.36, + "end": 38489.62, + "probability": 0.4985 + }, + { + "start": 38491.0, + "end": 38494.26, + "probability": 0.9573 + }, + { + "start": 38495.88, + "end": 38498.5, + "probability": 0.9832 + }, + { + "start": 38499.86, + "end": 38501.88, + "probability": 0.9956 + }, + { + "start": 38503.78, + "end": 38506.2, + "probability": 0.8492 + }, + { + "start": 38507.82, + "end": 38509.82, + "probability": 0.9746 + }, + { + "start": 38511.14, + "end": 38512.68, + "probability": 0.9908 + }, + { + "start": 38513.9, + "end": 38515.08, + "probability": 0.7792 + }, + { + "start": 38515.88, + "end": 38516.84, + "probability": 0.9157 + }, + { + "start": 38518.16, + "end": 38519.05, + "probability": 0.9946 + }, + { + "start": 38520.02, + "end": 38520.74, + "probability": 0.9093 + }, + { + "start": 38521.56, + "end": 38524.02, + "probability": 0.716 + }, + { + "start": 38525.32, + "end": 38526.22, + "probability": 0.9965 + }, + { + "start": 38527.92, + "end": 38530.44, + "probability": 0.7554 + }, + { + "start": 38531.38, + "end": 38536.3, + "probability": 0.9511 + }, + { + "start": 38537.84, + "end": 38539.52, + "probability": 0.8697 + }, + { + "start": 38540.5, + "end": 38541.86, + "probability": 0.968 + }, + { + "start": 38543.94, + "end": 38549.0, + "probability": 0.9939 + }, + { + "start": 38551.06, + "end": 38551.88, + "probability": 0.4949 + }, + { + "start": 38553.72, + "end": 38555.04, + "probability": 0.9877 + }, + { + "start": 38555.1, + "end": 38557.5, + "probability": 0.9964 + }, + { + "start": 38560.46, + "end": 38565.66, + "probability": 0.948 + }, + { + "start": 38565.78, + "end": 38566.12, + "probability": 0.446 + }, + { + "start": 38568.3, + "end": 38570.98, + "probability": 0.724 + }, + { + "start": 38572.86, + "end": 38574.64, + "probability": 0.9608 + }, + { + "start": 38574.9, + "end": 38578.64, + "probability": 0.026 + }, + { + "start": 38580.96, + "end": 38582.8, + "probability": 0.0356 + }, + { + "start": 38583.72, + "end": 38586.82, + "probability": 0.1497 + }, + { + "start": 38588.3, + "end": 38590.88, + "probability": 0.329 + }, + { + "start": 38600.68, + "end": 38603.24, + "probability": 0.0179 + }, + { + "start": 38831.88, + "end": 38832.38, + "probability": 0.0448 + }, + { + "start": 38833.34, + "end": 38835.52, + "probability": 0.6557 + }, + { + "start": 38835.96, + "end": 38836.64, + "probability": 0.9575 + }, + { + "start": 38836.88, + "end": 38837.4, + "probability": 0.9388 + }, + { + "start": 38837.46, + "end": 38839.17, + "probability": 0.9972 + }, + { + "start": 38841.04, + "end": 38844.2, + "probability": 0.9805 + }, + { + "start": 38844.62, + "end": 38845.6, + "probability": 0.2295 + }, + { + "start": 38845.6, + "end": 38846.86, + "probability": 0.6679 + }, + { + "start": 38847.32, + "end": 38847.56, + "probability": 0.6211 + }, + { + "start": 38847.62, + "end": 38851.34, + "probability": 0.935 + }, + { + "start": 38851.48, + "end": 38854.82, + "probability": 0.9775 + }, + { + "start": 38855.32, + "end": 38859.9, + "probability": 0.9708 + }, + { + "start": 38860.0, + "end": 38860.5, + "probability": 0.8666 + }, + { + "start": 38860.62, + "end": 38861.58, + "probability": 0.9711 + }, + { + "start": 38861.72, + "end": 38864.5, + "probability": 0.9732 + }, + { + "start": 38864.82, + "end": 38865.48, + "probability": 0.7109 + }, + { + "start": 38866.5, + "end": 38867.72, + "probability": 0.9141 + }, + { + "start": 38867.84, + "end": 38868.04, + "probability": 0.5072 + }, + { + "start": 38868.14, + "end": 38871.1, + "probability": 0.9978 + }, + { + "start": 38871.2, + "end": 38871.98, + "probability": 0.9958 + }, + { + "start": 38872.04, + "end": 38872.86, + "probability": 0.9894 + }, + { + "start": 38873.02, + "end": 38875.2, + "probability": 0.8634 + }, + { + "start": 38875.34, + "end": 38879.9, + "probability": 0.9066 + }, + { + "start": 38880.28, + "end": 38884.04, + "probability": 0.9496 + }, + { + "start": 38884.46, + "end": 38886.7, + "probability": 0.397 + }, + { + "start": 38886.7, + "end": 38889.72, + "probability": 0.9355 + }, + { + "start": 38889.72, + "end": 38892.12, + "probability": 0.9991 + }, + { + "start": 38892.38, + "end": 38893.18, + "probability": 0.8292 + }, + { + "start": 38893.34, + "end": 38894.64, + "probability": 0.873 + }, + { + "start": 38894.76, + "end": 38896.52, + "probability": 0.9846 + }, + { + "start": 38897.78, + "end": 38899.42, + "probability": 0.9478 + }, + { + "start": 38900.42, + "end": 38902.86, + "probability": 0.9778 + }, + { + "start": 38903.18, + "end": 38906.64, + "probability": 0.9869 + }, + { + "start": 38907.82, + "end": 38909.28, + "probability": 0.948 + }, + { + "start": 38909.54, + "end": 38909.94, + "probability": 0.6742 + }, + { + "start": 38910.44, + "end": 38912.74, + "probability": 0.9905 + }, + { + "start": 38912.8, + "end": 38914.1, + "probability": 0.8396 + }, + { + "start": 38915.12, + "end": 38916.5, + "probability": 0.8232 + }, + { + "start": 38916.68, + "end": 38917.9, + "probability": 0.9834 + }, + { + "start": 38918.02, + "end": 38919.76, + "probability": 0.9747 + }, + { + "start": 38919.88, + "end": 38921.88, + "probability": 0.998 + }, + { + "start": 38922.82, + "end": 38928.82, + "probability": 0.9907 + }, + { + "start": 38930.94, + "end": 38933.72, + "probability": 0.7795 + }, + { + "start": 38933.96, + "end": 38939.18, + "probability": 0.9855 + }, + { + "start": 38940.06, + "end": 38942.3, + "probability": 0.9897 + }, + { + "start": 38942.3, + "end": 38945.78, + "probability": 0.9565 + }, + { + "start": 38946.18, + "end": 38947.6, + "probability": 0.8785 + }, + { + "start": 38948.18, + "end": 38948.92, + "probability": 0.0334 + }, + { + "start": 38949.36, + "end": 38950.04, + "probability": 0.949 + }, + { + "start": 38950.26, + "end": 38950.54, + "probability": 0.9641 + }, + { + "start": 38950.78, + "end": 38953.46, + "probability": 0.9877 + }, + { + "start": 38953.54, + "end": 38957.42, + "probability": 0.9867 + }, + { + "start": 38958.04, + "end": 38959.34, + "probability": 0.9836 + }, + { + "start": 38960.78, + "end": 38964.04, + "probability": 0.9868 + }, + { + "start": 38964.62, + "end": 38965.3, + "probability": 0.5939 + }, + { + "start": 38965.48, + "end": 38966.08, + "probability": 0.6024 + }, + { + "start": 38966.14, + "end": 38966.92, + "probability": 0.8728 + }, + { + "start": 38967.08, + "end": 38968.3, + "probability": 0.8705 + }, + { + "start": 38968.68, + "end": 38970.42, + "probability": 0.8763 + }, + { + "start": 38970.88, + "end": 38972.16, + "probability": 0.9425 + }, + { + "start": 38973.06, + "end": 38975.9, + "probability": 0.9591 + }, + { + "start": 38976.1, + "end": 38979.26, + "probability": 0.9601 + }, + { + "start": 38979.88, + "end": 38981.48, + "probability": 0.8975 + }, + { + "start": 38982.26, + "end": 38983.82, + "probability": 0.9742 + }, + { + "start": 38985.64, + "end": 38987.46, + "probability": 0.7728 + }, + { + "start": 38987.86, + "end": 38990.26, + "probability": 0.9658 + }, + { + "start": 38991.38, + "end": 38993.74, + "probability": 0.9894 + }, + { + "start": 38994.78, + "end": 38997.48, + "probability": 0.998 + }, + { + "start": 38997.54, + "end": 38998.48, + "probability": 0.9763 + }, + { + "start": 38999.66, + "end": 39002.72, + "probability": 0.9067 + }, + { + "start": 39003.26, + "end": 39007.34, + "probability": 0.9876 + }, + { + "start": 39007.76, + "end": 39010.16, + "probability": 0.9977 + }, + { + "start": 39010.44, + "end": 39012.38, + "probability": 0.9843 + }, + { + "start": 39012.66, + "end": 39013.02, + "probability": 0.3 + }, + { + "start": 39013.26, + "end": 39013.92, + "probability": 0.8812 + }, + { + "start": 39014.1, + "end": 39015.08, + "probability": 0.941 + }, + { + "start": 39017.88, + "end": 39018.2, + "probability": 0.9647 + }, + { + "start": 39018.32, + "end": 39023.38, + "probability": 0.9644 + }, + { + "start": 39023.6, + "end": 39026.9, + "probability": 0.9814 + }, + { + "start": 39027.22, + "end": 39028.5, + "probability": 0.9725 + }, + { + "start": 39028.64, + "end": 39029.48, + "probability": 0.3982 + }, + { + "start": 39030.08, + "end": 39033.04, + "probability": 0.9979 + }, + { + "start": 39033.34, + "end": 39035.34, + "probability": 0.997 + }, + { + "start": 39035.34, + "end": 39038.08, + "probability": 0.9529 + }, + { + "start": 39040.96, + "end": 39046.4, + "probability": 0.9558 + }, + { + "start": 39046.6, + "end": 39048.88, + "probability": 0.6074 + }, + { + "start": 39049.06, + "end": 39050.42, + "probability": 0.9137 + }, + { + "start": 39051.1, + "end": 39054.68, + "probability": 0.9924 + }, + { + "start": 39055.32, + "end": 39056.9, + "probability": 0.9677 + }, + { + "start": 39056.98, + "end": 39057.8, + "probability": 0.9035 + }, + { + "start": 39057.98, + "end": 39058.68, + "probability": 0.9507 + }, + { + "start": 39059.56, + "end": 39061.7, + "probability": 0.9959 + }, + { + "start": 39061.82, + "end": 39062.88, + "probability": 0.9243 + }, + { + "start": 39064.08, + "end": 39066.14, + "probability": 0.6651 + }, + { + "start": 39066.32, + "end": 39069.8, + "probability": 0.9884 + }, + { + "start": 39069.81, + "end": 39071.82, + "probability": 0.9977 + }, + { + "start": 39072.28, + "end": 39074.18, + "probability": 0.9966 + }, + { + "start": 39074.6, + "end": 39075.6, + "probability": 0.9922 + }, + { + "start": 39075.72, + "end": 39076.82, + "probability": 0.9014 + }, + { + "start": 39077.16, + "end": 39077.74, + "probability": 0.6041 + }, + { + "start": 39078.88, + "end": 39079.7, + "probability": 0.8993 + }, + { + "start": 39079.84, + "end": 39080.98, + "probability": 0.979 + }, + { + "start": 39081.12, + "end": 39082.84, + "probability": 0.8362 + }, + { + "start": 39082.94, + "end": 39084.36, + "probability": 0.9858 + }, + { + "start": 39084.94, + "end": 39089.52, + "probability": 0.9949 + }, + { + "start": 39090.04, + "end": 39093.26, + "probability": 0.9981 + }, + { + "start": 39093.54, + "end": 39096.12, + "probability": 0.9709 + }, + { + "start": 39096.68, + "end": 39098.56, + "probability": 0.9909 + }, + { + "start": 39098.66, + "end": 39099.08, + "probability": 0.8659 + }, + { + "start": 39099.12, + "end": 39100.2, + "probability": 0.9828 + }, + { + "start": 39102.34, + "end": 39105.12, + "probability": 0.9954 + }, + { + "start": 39105.16, + "end": 39108.8, + "probability": 0.9888 + }, + { + "start": 39108.8, + "end": 39111.6, + "probability": 0.9875 + }, + { + "start": 39111.6, + "end": 39115.76, + "probability": 0.9993 + }, + { + "start": 39116.52, + "end": 39119.84, + "probability": 0.9978 + }, + { + "start": 39121.66, + "end": 39122.72, + "probability": 0.8228 + }, + { + "start": 39122.8, + "end": 39128.22, + "probability": 0.9915 + }, + { + "start": 39128.4, + "end": 39129.94, + "probability": 0.9592 + }, + { + "start": 39130.06, + "end": 39132.06, + "probability": 0.9896 + }, + { + "start": 39132.64, + "end": 39135.6, + "probability": 0.9848 + }, + { + "start": 39135.74, + "end": 39136.78, + "probability": 0.9159 + }, + { + "start": 39137.28, + "end": 39139.2, + "probability": 0.9706 + }, + { + "start": 39139.34, + "end": 39141.32, + "probability": 0.9934 + }, + { + "start": 39141.42, + "end": 39142.14, + "probability": 0.812 + }, + { + "start": 39142.76, + "end": 39146.0, + "probability": 0.9403 + }, + { + "start": 39146.62, + "end": 39148.28, + "probability": 0.9554 + }, + { + "start": 39148.58, + "end": 39151.08, + "probability": 0.9931 + }, + { + "start": 39151.14, + "end": 39153.38, + "probability": 0.9824 + }, + { + "start": 39153.98, + "end": 39157.38, + "probability": 0.9915 + }, + { + "start": 39158.8, + "end": 39161.86, + "probability": 0.9989 + }, + { + "start": 39162.64, + "end": 39164.02, + "probability": 0.8035 + }, + { + "start": 39164.22, + "end": 39166.75, + "probability": 0.9485 + }, + { + "start": 39167.6, + "end": 39169.2, + "probability": 0.9026 + }, + { + "start": 39169.78, + "end": 39170.73, + "probability": 0.573 + }, + { + "start": 39171.18, + "end": 39172.7, + "probability": 0.8519 + }, + { + "start": 39172.74, + "end": 39174.36, + "probability": 0.7655 + }, + { + "start": 39174.66, + "end": 39175.24, + "probability": 0.3841 + }, + { + "start": 39176.12, + "end": 39181.12, + "probability": 0.9701 + }, + { + "start": 39182.5, + "end": 39186.52, + "probability": 0.9977 + }, + { + "start": 39186.6, + "end": 39188.04, + "probability": 0.9659 + }, + { + "start": 39188.82, + "end": 39189.54, + "probability": 0.8027 + }, + { + "start": 39189.66, + "end": 39195.52, + "probability": 0.9902 + }, + { + "start": 39195.64, + "end": 39199.26, + "probability": 0.8273 + }, + { + "start": 39200.02, + "end": 39202.5, + "probability": 0.9233 + }, + { + "start": 39202.56, + "end": 39204.3, + "probability": 0.9175 + }, + { + "start": 39204.82, + "end": 39210.02, + "probability": 0.9993 + }, + { + "start": 39210.02, + "end": 39214.52, + "probability": 0.9993 + }, + { + "start": 39215.48, + "end": 39216.92, + "probability": 0.8481 + }, + { + "start": 39217.14, + "end": 39217.9, + "probability": 0.7613 + }, + { + "start": 39218.16, + "end": 39219.12, + "probability": 0.9755 + }, + { + "start": 39219.36, + "end": 39220.26, + "probability": 0.9517 + }, + { + "start": 39220.62, + "end": 39224.76, + "probability": 0.9824 + }, + { + "start": 39226.94, + "end": 39228.38, + "probability": 0.9937 + }, + { + "start": 39228.46, + "end": 39230.62, + "probability": 0.9976 + }, + { + "start": 39231.15, + "end": 39233.71, + "probability": 0.8687 + }, + { + "start": 39236.3, + "end": 39238.64, + "probability": 0.994 + }, + { + "start": 39239.98, + "end": 39243.36, + "probability": 0.991 + }, + { + "start": 39243.46, + "end": 39245.38, + "probability": 0.8966 + }, + { + "start": 39245.52, + "end": 39247.38, + "probability": 0.9328 + }, + { + "start": 39247.44, + "end": 39251.74, + "probability": 0.9971 + }, + { + "start": 39251.92, + "end": 39252.38, + "probability": 0.7729 + }, + { + "start": 39252.48, + "end": 39253.6, + "probability": 0.8627 + }, + { + "start": 39254.5, + "end": 39255.38, + "probability": 0.998 + }, + { + "start": 39257.28, + "end": 39259.52, + "probability": 0.8701 + }, + { + "start": 39259.66, + "end": 39261.44, + "probability": 0.6111 + }, + { + "start": 39261.54, + "end": 39264.18, + "probability": 0.9465 + }, + { + "start": 39264.98, + "end": 39265.94, + "probability": 0.7206 + }, + { + "start": 39266.62, + "end": 39268.76, + "probability": 0.9748 + }, + { + "start": 39269.42, + "end": 39271.78, + "probability": 0.9917 + }, + { + "start": 39271.88, + "end": 39273.46, + "probability": 0.8798 + }, + { + "start": 39273.84, + "end": 39276.6, + "probability": 0.9998 + }, + { + "start": 39276.6, + "end": 39280.56, + "probability": 0.9969 + }, + { + "start": 39281.1, + "end": 39282.66, + "probability": 0.9865 + }, + { + "start": 39282.76, + "end": 39284.44, + "probability": 0.9442 + }, + { + "start": 39284.74, + "end": 39289.68, + "probability": 0.993 + }, + { + "start": 39290.1, + "end": 39291.22, + "probability": 0.9907 + }, + { + "start": 39293.86, + "end": 39296.8, + "probability": 0.8407 + }, + { + "start": 39297.3, + "end": 39299.32, + "probability": 0.9734 + }, + { + "start": 39299.42, + "end": 39300.88, + "probability": 0.9749 + }, + { + "start": 39300.94, + "end": 39301.3, + "probability": 0.9655 + }, + { + "start": 39301.38, + "end": 39302.92, + "probability": 0.9794 + }, + { + "start": 39304.66, + "end": 39305.3, + "probability": 0.0089 + }, + { + "start": 39307.84, + "end": 39308.18, + "probability": 0.0765 + }, + { + "start": 39308.18, + "end": 39308.18, + "probability": 0.394 + }, + { + "start": 39308.18, + "end": 39311.2, + "probability": 0.7544 + }, + { + "start": 39311.22, + "end": 39312.18, + "probability": 0.7873 + }, + { + "start": 39312.28, + "end": 39313.14, + "probability": 0.873 + }, + { + "start": 39313.22, + "end": 39313.78, + "probability": 0.7177 + }, + { + "start": 39313.92, + "end": 39314.38, + "probability": 0.903 + }, + { + "start": 39314.98, + "end": 39317.46, + "probability": 0.9738 + }, + { + "start": 39318.48, + "end": 39321.2, + "probability": 0.9582 + }, + { + "start": 39321.72, + "end": 39323.36, + "probability": 0.8442 + }, + { + "start": 39323.44, + "end": 39323.62, + "probability": 0.8873 + }, + { + "start": 39323.7, + "end": 39324.32, + "probability": 0.5474 + }, + { + "start": 39324.38, + "end": 39329.96, + "probability": 0.994 + }, + { + "start": 39330.66, + "end": 39331.48, + "probability": 0.074 + }, + { + "start": 39331.58, + "end": 39331.64, + "probability": 0.7207 + }, + { + "start": 39331.72, + "end": 39332.64, + "probability": 0.8279 + }, + { + "start": 39332.64, + "end": 39335.26, + "probability": 0.0174 + }, + { + "start": 39335.74, + "end": 39335.88, + "probability": 0.2274 + }, + { + "start": 39335.88, + "end": 39337.18, + "probability": 0.6304 + }, + { + "start": 39337.64, + "end": 39339.07, + "probability": 0.9382 + }, + { + "start": 39339.46, + "end": 39341.12, + "probability": 0.992 + }, + { + "start": 39344.84, + "end": 39349.71, + "probability": 0.9949 + }, + { + "start": 39349.92, + "end": 39351.78, + "probability": 0.8629 + }, + { + "start": 39352.08, + "end": 39352.94, + "probability": 0.7455 + }, + { + "start": 39353.04, + "end": 39353.14, + "probability": 0.8571 + }, + { + "start": 39353.2, + "end": 39355.84, + "probability": 0.9821 + }, + { + "start": 39356.7, + "end": 39358.56, + "probability": 0.9806 + }, + { + "start": 39359.14, + "end": 39361.54, + "probability": 0.9294 + }, + { + "start": 39361.62, + "end": 39363.52, + "probability": 0.9761 + }, + { + "start": 39364.44, + "end": 39366.8, + "probability": 0.9839 + }, + { + "start": 39368.28, + "end": 39373.0, + "probability": 0.9893 + }, + { + "start": 39373.1, + "end": 39379.92, + "probability": 0.9841 + }, + { + "start": 39380.66, + "end": 39381.66, + "probability": 0.6961 + }, + { + "start": 39382.64, + "end": 39388.38, + "probability": 0.9924 + }, + { + "start": 39388.38, + "end": 39392.36, + "probability": 0.9985 + }, + { + "start": 39393.38, + "end": 39395.2, + "probability": 0.9094 + }, + { + "start": 39396.3, + "end": 39402.82, + "probability": 0.9123 + }, + { + "start": 39402.96, + "end": 39405.06, + "probability": 0.9697 + }, + { + "start": 39405.8, + "end": 39407.52, + "probability": 0.958 + }, + { + "start": 39407.52, + "end": 39409.74, + "probability": 0.9629 + }, + { + "start": 39409.88, + "end": 39411.64, + "probability": 0.9086 + }, + { + "start": 39411.9, + "end": 39415.6, + "probability": 0.9983 + }, + { + "start": 39416.18, + "end": 39421.84, + "probability": 0.9969 + }, + { + "start": 39423.94, + "end": 39428.7, + "probability": 0.9957 + }, + { + "start": 39430.06, + "end": 39436.26, + "probability": 0.9965 + }, + { + "start": 39436.58, + "end": 39437.8, + "probability": 0.9456 + }, + { + "start": 39438.38, + "end": 39445.98, + "probability": 0.9906 + }, + { + "start": 39447.22, + "end": 39451.46, + "probability": 0.9731 + }, + { + "start": 39452.04, + "end": 39455.28, + "probability": 0.9991 + }, + { + "start": 39456.46, + "end": 39458.46, + "probability": 0.9989 + }, + { + "start": 39458.52, + "end": 39460.52, + "probability": 0.9975 + }, + { + "start": 39461.18, + "end": 39467.0, + "probability": 0.966 + }, + { + "start": 39467.62, + "end": 39468.44, + "probability": 0.8553 + }, + { + "start": 39468.9, + "end": 39469.46, + "probability": 0.5917 + }, + { + "start": 39469.7, + "end": 39471.54, + "probability": 0.641 + }, + { + "start": 39485.24, + "end": 39486.14, + "probability": 0.7711 + }, + { + "start": 39486.44, + "end": 39487.2, + "probability": 0.7068 + }, + { + "start": 39487.78, + "end": 39488.76, + "probability": 0.5851 + }, + { + "start": 39489.38, + "end": 39490.4, + "probability": 0.7109 + }, + { + "start": 39491.16, + "end": 39493.16, + "probability": 0.7405 + }, + { + "start": 39494.4, + "end": 39495.32, + "probability": 0.9793 + }, + { + "start": 39496.32, + "end": 39497.06, + "probability": 0.7599 + }, + { + "start": 39498.26, + "end": 39501.7, + "probability": 0.99 + }, + { + "start": 39501.7, + "end": 39505.7, + "probability": 0.9927 + }, + { + "start": 39507.24, + "end": 39509.14, + "probability": 0.9727 + }, + { + "start": 39509.22, + "end": 39509.84, + "probability": 0.9902 + }, + { + "start": 39509.9, + "end": 39514.78, + "probability": 0.9946 + }, + { + "start": 39514.78, + "end": 39519.72, + "probability": 0.981 + }, + { + "start": 39521.3, + "end": 39524.6, + "probability": 0.9666 + }, + { + "start": 39525.66, + "end": 39528.08, + "probability": 0.9537 + }, + { + "start": 39528.92, + "end": 39531.12, + "probability": 0.9446 + }, + { + "start": 39532.58, + "end": 39533.36, + "probability": 0.6259 + }, + { + "start": 39534.04, + "end": 39534.84, + "probability": 0.9214 + }, + { + "start": 39535.5, + "end": 39536.36, + "probability": 0.7662 + }, + { + "start": 39536.74, + "end": 39540.56, + "probability": 0.9907 + }, + { + "start": 39541.36, + "end": 39546.28, + "probability": 0.9708 + }, + { + "start": 39546.28, + "end": 39553.8, + "probability": 0.9987 + }, + { + "start": 39555.0, + "end": 39555.48, + "probability": 0.7482 + }, + { + "start": 39557.14, + "end": 39561.94, + "probability": 0.9915 + }, + { + "start": 39563.38, + "end": 39564.74, + "probability": 0.7672 + }, + { + "start": 39566.26, + "end": 39568.96, + "probability": 0.8777 + }, + { + "start": 39569.68, + "end": 39570.74, + "probability": 0.7082 + }, + { + "start": 39571.74, + "end": 39573.06, + "probability": 0.9387 + }, + { + "start": 39574.36, + "end": 39575.76, + "probability": 0.9942 + }, + { + "start": 39576.82, + "end": 39577.66, + "probability": 0.5333 + }, + { + "start": 39578.48, + "end": 39580.68, + "probability": 0.7552 + }, + { + "start": 39581.24, + "end": 39582.42, + "probability": 0.7626 + }, + { + "start": 39583.96, + "end": 39585.2, + "probability": 0.8506 + }, + { + "start": 39585.3, + "end": 39586.36, + "probability": 0.6903 + }, + { + "start": 39587.3, + "end": 39588.66, + "probability": 0.8116 + }, + { + "start": 39591.1, + "end": 39595.9, + "probability": 0.882 + }, + { + "start": 39596.82, + "end": 39599.18, + "probability": 0.9927 + }, + { + "start": 39599.3, + "end": 39603.56, + "probability": 0.8657 + }, + { + "start": 39604.12, + "end": 39606.62, + "probability": 0.7028 + }, + { + "start": 39606.68, + "end": 39607.2, + "probability": 0.4631 + }, + { + "start": 39607.22, + "end": 39607.84, + "probability": 0.4659 + }, + { + "start": 39608.12, + "end": 39609.06, + "probability": 0.706 + }, + { + "start": 39609.4, + "end": 39610.2, + "probability": 0.5602 + }, + { + "start": 39611.12, + "end": 39614.04, + "probability": 0.9718 + }, + { + "start": 39614.38, + "end": 39615.88, + "probability": 0.9196 + }, + { + "start": 39616.02, + "end": 39617.98, + "probability": 0.9612 + }, + { + "start": 39618.24, + "end": 39623.34, + "probability": 0.9939 + }, + { + "start": 39625.38, + "end": 39627.44, + "probability": 0.9124 + }, + { + "start": 39627.74, + "end": 39628.38, + "probability": 0.7841 + }, + { + "start": 39628.8, + "end": 39635.24, + "probability": 0.8874 + }, + { + "start": 39636.46, + "end": 39637.34, + "probability": 0.9126 + }, + { + "start": 39638.32, + "end": 39642.0, + "probability": 0.9629 + }, + { + "start": 39643.28, + "end": 39644.82, + "probability": 0.9829 + }, + { + "start": 39646.3, + "end": 39649.32, + "probability": 0.9419 + }, + { + "start": 39649.88, + "end": 39651.1, + "probability": 0.9476 + }, + { + "start": 39651.8, + "end": 39652.92, + "probability": 0.8613 + }, + { + "start": 39653.5, + "end": 39654.7, + "probability": 0.9776 + }, + { + "start": 39654.96, + "end": 39655.26, + "probability": 0.2682 + }, + { + "start": 39655.36, + "end": 39656.17, + "probability": 0.1794 + }, + { + "start": 39656.56, + "end": 39657.78, + "probability": 0.3179 + }, + { + "start": 39658.36, + "end": 39661.04, + "probability": 0.69 + }, + { + "start": 39662.48, + "end": 39663.18, + "probability": 0.8766 + }, + { + "start": 39664.18, + "end": 39664.52, + "probability": 0.6163 + }, + { + "start": 39664.56, + "end": 39665.12, + "probability": 0.817 + }, + { + "start": 39665.16, + "end": 39669.8, + "probability": 0.8327 + }, + { + "start": 39671.02, + "end": 39672.82, + "probability": 0.8205 + }, + { + "start": 39672.94, + "end": 39673.84, + "probability": 0.4973 + }, + { + "start": 39674.0, + "end": 39676.44, + "probability": 0.9815 + }, + { + "start": 39678.06, + "end": 39681.58, + "probability": 0.9916 + }, + { + "start": 39682.18, + "end": 39682.88, + "probability": 0.8717 + }, + { + "start": 39684.36, + "end": 39688.9, + "probability": 0.9925 + }, + { + "start": 39689.58, + "end": 39693.48, + "probability": 0.8841 + }, + { + "start": 39693.9, + "end": 39694.92, + "probability": 0.998 + }, + { + "start": 39695.26, + "end": 39696.14, + "probability": 0.1876 + }, + { + "start": 39696.26, + "end": 39697.18, + "probability": 0.7856 + }, + { + "start": 39698.32, + "end": 39699.1, + "probability": 0.6027 + }, + { + "start": 39699.24, + "end": 39700.3, + "probability": 0.9347 + }, + { + "start": 39701.54, + "end": 39703.64, + "probability": 0.5979 + }, + { + "start": 39703.72, + "end": 39706.32, + "probability": 0.503 + }, + { + "start": 39706.52, + "end": 39707.3, + "probability": 0.6624 + }, + { + "start": 39707.63, + "end": 39709.96, + "probability": 0.8978 + }, + { + "start": 39710.02, + "end": 39710.4, + "probability": 0.6323 + }, + { + "start": 39710.7, + "end": 39712.26, + "probability": 0.6073 + }, + { + "start": 39713.7, + "end": 39714.04, + "probability": 0.0176 + }, + { + "start": 39714.06, + "end": 39717.72, + "probability": 0.7933 + }, + { + "start": 39718.7, + "end": 39719.78, + "probability": 0.9663 + }, + { + "start": 39720.06, + "end": 39722.93, + "probability": 0.6881 + }, + { + "start": 39723.78, + "end": 39725.04, + "probability": 0.0964 + }, + { + "start": 39725.22, + "end": 39726.06, + "probability": 0.5949 + }, + { + "start": 39726.92, + "end": 39730.62, + "probability": 0.9719 + }, + { + "start": 39731.38, + "end": 39735.34, + "probability": 0.9668 + }, + { + "start": 39735.34, + "end": 39739.88, + "probability": 0.9958 + }, + { + "start": 39739.9, + "end": 39746.66, + "probability": 0.9784 + }, + { + "start": 39747.28, + "end": 39753.34, + "probability": 0.9846 + }, + { + "start": 39753.38, + "end": 39757.44, + "probability": 0.9925 + }, + { + "start": 39757.5, + "end": 39758.92, + "probability": 0.7882 + }, + { + "start": 39760.0, + "end": 39760.4, + "probability": 0.981 + }, + { + "start": 39761.1, + "end": 39764.06, + "probability": 0.9272 + }, + { + "start": 39765.1, + "end": 39767.2, + "probability": 0.9414 + }, + { + "start": 39767.78, + "end": 39771.06, + "probability": 0.8987 + }, + { + "start": 39771.98, + "end": 39772.56, + "probability": 0.6776 + }, + { + "start": 39772.62, + "end": 39775.6, + "probability": 0.9792 + }, + { + "start": 39775.6, + "end": 39780.28, + "probability": 0.9896 + }, + { + "start": 39780.74, + "end": 39782.52, + "probability": 0.7519 + }, + { + "start": 39783.02, + "end": 39783.64, + "probability": 0.8014 + }, + { + "start": 39784.28, + "end": 39786.4, + "probability": 0.9543 + }, + { + "start": 39786.5, + "end": 39788.4, + "probability": 0.8948 + }, + { + "start": 39789.6, + "end": 39790.22, + "probability": 0.0009 + }, + { + "start": 39790.22, + "end": 39790.6, + "probability": 0.3691 + }, + { + "start": 39790.72, + "end": 39794.58, + "probability": 0.9401 + }, + { + "start": 39795.1, + "end": 39797.84, + "probability": 0.9962 + }, + { + "start": 39798.66, + "end": 39802.46, + "probability": 0.9745 + }, + { + "start": 39802.46, + "end": 39806.84, + "probability": 0.961 + }, + { + "start": 39807.38, + "end": 39808.94, + "probability": 0.8772 + }, + { + "start": 39809.74, + "end": 39813.58, + "probability": 0.9976 + }, + { + "start": 39814.82, + "end": 39815.42, + "probability": 0.6318 + }, + { + "start": 39816.84, + "end": 39818.7, + "probability": 0.896 + }, + { + "start": 39819.74, + "end": 39826.24, + "probability": 0.9447 + }, + { + "start": 39826.78, + "end": 39828.88, + "probability": 0.8462 + }, + { + "start": 39829.64, + "end": 39831.56, + "probability": 0.9473 + }, + { + "start": 39832.96, + "end": 39836.38, + "probability": 0.9852 + }, + { + "start": 39837.12, + "end": 39839.34, + "probability": 0.9 + }, + { + "start": 39840.02, + "end": 39842.82, + "probability": 0.8902 + }, + { + "start": 39844.1, + "end": 39846.82, + "probability": 0.9551 + }, + { + "start": 39848.16, + "end": 39849.64, + "probability": 0.8932 + }, + { + "start": 39850.74, + "end": 39854.3, + "probability": 0.9916 + }, + { + "start": 39854.98, + "end": 39858.12, + "probability": 0.9878 + }, + { + "start": 39858.92, + "end": 39860.78, + "probability": 0.9539 + }, + { + "start": 39862.82, + "end": 39864.72, + "probability": 0.9529 + }, + { + "start": 39865.34, + "end": 39867.16, + "probability": 0.9999 + }, + { + "start": 39867.7, + "end": 39869.28, + "probability": 0.9856 + }, + { + "start": 39870.62, + "end": 39871.82, + "probability": 0.9258 + }, + { + "start": 39872.86, + "end": 39875.6, + "probability": 0.9971 + }, + { + "start": 39876.22, + "end": 39877.14, + "probability": 0.7428 + }, + { + "start": 39878.02, + "end": 39879.4, + "probability": 0.9907 + }, + { + "start": 39880.26, + "end": 39880.56, + "probability": 0.8223 + }, + { + "start": 39881.88, + "end": 39884.24, + "probability": 0.9478 + }, + { + "start": 39885.7, + "end": 39886.76, + "probability": 0.9613 + }, + { + "start": 39887.46, + "end": 39887.98, + "probability": 0.8491 + }, + { + "start": 39888.68, + "end": 39890.14, + "probability": 0.904 + }, + { + "start": 39891.34, + "end": 39892.12, + "probability": 0.9188 + }, + { + "start": 39892.2, + "end": 39893.08, + "probability": 0.8088 + }, + { + "start": 39893.28, + "end": 39896.86, + "probability": 0.9943 + }, + { + "start": 39898.02, + "end": 39898.76, + "probability": 0.8444 + }, + { + "start": 39899.4, + "end": 39901.0, + "probability": 0.9208 + }, + { + "start": 39901.54, + "end": 39903.94, + "probability": 0.9383 + }, + { + "start": 39904.56, + "end": 39906.18, + "probability": 0.853 + }, + { + "start": 39907.28, + "end": 39907.84, + "probability": 0.9482 + }, + { + "start": 39909.66, + "end": 39911.74, + "probability": 0.7527 + }, + { + "start": 39911.96, + "end": 39914.76, + "probability": 0.9883 + }, + { + "start": 39914.82, + "end": 39919.05, + "probability": 0.8851 + }, + { + "start": 39920.68, + "end": 39922.26, + "probability": 0.8883 + }, + { + "start": 39922.92, + "end": 39925.76, + "probability": 0.9822 + }, + { + "start": 39926.82, + "end": 39929.0, + "probability": 0.9487 + }, + { + "start": 39929.64, + "end": 39933.22, + "probability": 0.9844 + }, + { + "start": 39934.16, + "end": 39938.92, + "probability": 0.988 + }, + { + "start": 39939.9, + "end": 39940.86, + "probability": 0.9508 + }, + { + "start": 39941.56, + "end": 39945.21, + "probability": 0.7992 + }, + { + "start": 39946.18, + "end": 39951.1, + "probability": 0.8388 + }, + { + "start": 39951.78, + "end": 39953.9, + "probability": 0.9935 + }, + { + "start": 39954.14, + "end": 39956.26, + "probability": 0.9813 + }, + { + "start": 39956.46, + "end": 39958.14, + "probability": 0.9653 + }, + { + "start": 39958.6, + "end": 39961.08, + "probability": 0.987 + }, + { + "start": 39961.24, + "end": 39961.42, + "probability": 0.527 + }, + { + "start": 39961.5, + "end": 39962.4, + "probability": 0.9465 + }, + { + "start": 39962.64, + "end": 39963.46, + "probability": 0.6947 + }, + { + "start": 39964.36, + "end": 39966.94, + "probability": 0.9735 + }, + { + "start": 39967.72, + "end": 39968.98, + "probability": 0.9971 + }, + { + "start": 39970.72, + "end": 39974.58, + "probability": 0.9817 + }, + { + "start": 39974.58, + "end": 39978.16, + "probability": 0.9385 + }, + { + "start": 39978.96, + "end": 39982.62, + "probability": 0.9864 + }, + { + "start": 39983.26, + "end": 39984.03, + "probability": 0.9556 + }, + { + "start": 39985.28, + "end": 39986.72, + "probability": 0.979 + }, + { + "start": 39987.52, + "end": 39989.08, + "probability": 0.981 + }, + { + "start": 39989.8, + "end": 39992.53, + "probability": 0.9812 + }, + { + "start": 39993.3, + "end": 39995.64, + "probability": 0.7697 + }, + { + "start": 39996.16, + "end": 40001.43, + "probability": 0.7457 + }, + { + "start": 40002.08, + "end": 40005.6, + "probability": 0.9829 + }, + { + "start": 40005.94, + "end": 40010.56, + "probability": 0.9909 + }, + { + "start": 40010.56, + "end": 40015.72, + "probability": 0.9987 + }, + { + "start": 40016.2, + "end": 40021.17, + "probability": 0.9985 + }, + { + "start": 40021.74, + "end": 40028.76, + "probability": 0.9907 + }, + { + "start": 40028.9, + "end": 40031.54, + "probability": 0.9961 + }, + { + "start": 40032.16, + "end": 40037.24, + "probability": 0.9321 + }, + { + "start": 40037.86, + "end": 40040.41, + "probability": 0.9893 + }, + { + "start": 40041.28, + "end": 40042.46, + "probability": 0.7576 + }, + { + "start": 40042.9, + "end": 40044.98, + "probability": 0.9774 + }, + { + "start": 40045.42, + "end": 40046.94, + "probability": 0.98 + }, + { + "start": 40048.36, + "end": 40054.94, + "probability": 0.9614 + }, + { + "start": 40055.34, + "end": 40056.1, + "probability": 0.9179 + }, + { + "start": 40056.76, + "end": 40060.74, + "probability": 0.9874 + }, + { + "start": 40061.6, + "end": 40065.62, + "probability": 0.9889 + }, + { + "start": 40066.0, + "end": 40066.32, + "probability": 0.7704 + }, + { + "start": 40066.64, + "end": 40067.22, + "probability": 0.779 + }, + { + "start": 40067.84, + "end": 40071.62, + "probability": 0.9977 + }, + { + "start": 40072.1, + "end": 40075.78, + "probability": 0.9714 + }, + { + "start": 40076.32, + "end": 40079.18, + "probability": 0.9461 + }, + { + "start": 40080.18, + "end": 40081.06, + "probability": 0.9231 + }, + { + "start": 40081.64, + "end": 40083.68, + "probability": 0.9839 + }, + { + "start": 40083.82, + "end": 40086.82, + "probability": 0.988 + }, + { + "start": 40087.48, + "end": 40087.94, + "probability": 0.9294 + }, + { + "start": 40088.88, + "end": 40090.12, + "probability": 0.9279 + }, + { + "start": 40090.4, + "end": 40092.18, + "probability": 0.9178 + }, + { + "start": 40092.28, + "end": 40096.74, + "probability": 0.9847 + }, + { + "start": 40097.16, + "end": 40098.42, + "probability": 0.9088 + }, + { + "start": 40098.94, + "end": 40101.44, + "probability": 0.9878 + }, + { + "start": 40102.08, + "end": 40104.02, + "probability": 0.9246 + }, + { + "start": 40104.04, + "end": 40109.04, + "probability": 0.9733 + }, + { + "start": 40109.14, + "end": 40109.54, + "probability": 0.7094 + }, + { + "start": 40110.82, + "end": 40111.54, + "probability": 0.752 + }, + { + "start": 40111.64, + "end": 40113.8, + "probability": 0.8549 + }, + { + "start": 40114.1, + "end": 40115.7, + "probability": 0.2127 + }, + { + "start": 40132.74, + "end": 40132.86, + "probability": 0.1395 + }, + { + "start": 40146.5, + "end": 40148.84, + "probability": 0.6421 + }, + { + "start": 40149.54, + "end": 40150.4, + "probability": 0.8752 + }, + { + "start": 40153.16, + "end": 40158.86, + "probability": 0.932 + }, + { + "start": 40158.86, + "end": 40163.52, + "probability": 0.9971 + }, + { + "start": 40164.24, + "end": 40166.42, + "probability": 0.9869 + }, + { + "start": 40168.0, + "end": 40168.6, + "probability": 0.7916 + }, + { + "start": 40170.34, + "end": 40173.78, + "probability": 0.8484 + }, + { + "start": 40176.14, + "end": 40181.52, + "probability": 0.9897 + }, + { + "start": 40183.82, + "end": 40186.08, + "probability": 0.9932 + }, + { + "start": 40188.04, + "end": 40194.36, + "probability": 0.9282 + }, + { + "start": 40194.36, + "end": 40198.64, + "probability": 0.9691 + }, + { + "start": 40199.42, + "end": 40200.4, + "probability": 0.7763 + }, + { + "start": 40201.08, + "end": 40202.42, + "probability": 0.971 + }, + { + "start": 40203.0, + "end": 40205.04, + "probability": 0.9844 + }, + { + "start": 40206.3, + "end": 40209.04, + "probability": 0.8818 + }, + { + "start": 40210.84, + "end": 40214.8, + "probability": 0.9912 + }, + { + "start": 40216.98, + "end": 40217.98, + "probability": 0.905 + }, + { + "start": 40218.18, + "end": 40222.56, + "probability": 0.9681 + }, + { + "start": 40223.1, + "end": 40225.16, + "probability": 0.9412 + }, + { + "start": 40226.18, + "end": 40227.34, + "probability": 0.5875 + }, + { + "start": 40228.0, + "end": 40231.24, + "probability": 0.9961 + }, + { + "start": 40231.94, + "end": 40234.66, + "probability": 0.9983 + }, + { + "start": 40236.56, + "end": 40238.04, + "probability": 0.8947 + }, + { + "start": 40239.54, + "end": 40241.66, + "probability": 0.9602 + }, + { + "start": 40241.98, + "end": 40246.82, + "probability": 0.9872 + }, + { + "start": 40248.22, + "end": 40249.4, + "probability": 0.9966 + }, + { + "start": 40250.5, + "end": 40253.24, + "probability": 0.9503 + }, + { + "start": 40256.22, + "end": 40257.58, + "probability": 0.9551 + }, + { + "start": 40259.0, + "end": 40259.7, + "probability": 0.6656 + }, + { + "start": 40260.92, + "end": 40262.1, + "probability": 0.9941 + }, + { + "start": 40263.02, + "end": 40267.44, + "probability": 0.9961 + }, + { + "start": 40267.68, + "end": 40269.72, + "probability": 0.9169 + }, + { + "start": 40271.62, + "end": 40275.72, + "probability": 0.9943 + }, + { + "start": 40278.96, + "end": 40281.92, + "probability": 0.9967 + }, + { + "start": 40281.92, + "end": 40285.66, + "probability": 0.9919 + }, + { + "start": 40287.24, + "end": 40290.36, + "probability": 0.9644 + }, + { + "start": 40291.16, + "end": 40295.44, + "probability": 0.999 + }, + { + "start": 40297.1, + "end": 40301.46, + "probability": 0.9916 + }, + { + "start": 40303.64, + "end": 40307.3, + "probability": 0.9428 + }, + { + "start": 40307.72, + "end": 40311.98, + "probability": 0.9402 + }, + { + "start": 40312.56, + "end": 40313.34, + "probability": 0.9738 + }, + { + "start": 40313.92, + "end": 40314.82, + "probability": 0.9831 + }, + { + "start": 40316.16, + "end": 40320.26, + "probability": 0.9865 + }, + { + "start": 40321.26, + "end": 40322.34, + "probability": 0.7877 + }, + { + "start": 40323.06, + "end": 40328.96, + "probability": 0.9926 + }, + { + "start": 40331.26, + "end": 40334.04, + "probability": 0.9888 + }, + { + "start": 40335.78, + "end": 40336.6, + "probability": 0.7111 + }, + { + "start": 40337.44, + "end": 40340.2, + "probability": 0.859 + }, + { + "start": 40341.18, + "end": 40342.08, + "probability": 0.682 + }, + { + "start": 40342.64, + "end": 40343.72, + "probability": 0.734 + }, + { + "start": 40345.56, + "end": 40349.76, + "probability": 0.9868 + }, + { + "start": 40351.1, + "end": 40352.92, + "probability": 0.9204 + }, + { + "start": 40353.44, + "end": 40357.22, + "probability": 0.9839 + }, + { + "start": 40357.72, + "end": 40358.46, + "probability": 0.858 + }, + { + "start": 40359.5, + "end": 40363.36, + "probability": 0.9735 + }, + { + "start": 40364.06, + "end": 40367.04, + "probability": 0.8995 + }, + { + "start": 40367.8, + "end": 40369.0, + "probability": 0.9065 + }, + { + "start": 40371.84, + "end": 40374.42, + "probability": 0.7395 + }, + { + "start": 40377.74, + "end": 40382.06, + "probability": 0.9965 + }, + { + "start": 40382.42, + "end": 40383.78, + "probability": 0.9013 + }, + { + "start": 40384.72, + "end": 40385.72, + "probability": 0.8547 + }, + { + "start": 40386.38, + "end": 40387.4, + "probability": 0.9093 + }, + { + "start": 40391.84, + "end": 40392.28, + "probability": 0.4429 + }, + { + "start": 40392.32, + "end": 40397.28, + "probability": 0.981 + }, + { + "start": 40398.3, + "end": 40401.18, + "probability": 0.9858 + }, + { + "start": 40402.2, + "end": 40406.16, + "probability": 0.861 + }, + { + "start": 40407.16, + "end": 40409.9, + "probability": 0.965 + }, + { + "start": 40411.35, + "end": 40418.1, + "probability": 0.9924 + }, + { + "start": 40418.1, + "end": 40422.48, + "probability": 0.9993 + }, + { + "start": 40423.16, + "end": 40425.0, + "probability": 0.8007 + }, + { + "start": 40425.48, + "end": 40428.2, + "probability": 0.9428 + }, + { + "start": 40428.78, + "end": 40434.42, + "probability": 0.9836 + }, + { + "start": 40435.14, + "end": 40436.76, + "probability": 0.1372 + }, + { + "start": 40438.74, + "end": 40443.28, + "probability": 0.9969 + }, + { + "start": 40443.28, + "end": 40455.92, + "probability": 0.9954 + }, + { + "start": 40457.06, + "end": 40457.56, + "probability": 0.4088 + }, + { + "start": 40457.62, + "end": 40460.76, + "probability": 0.6998 + }, + { + "start": 40461.2, + "end": 40466.62, + "probability": 0.9924 + }, + { + "start": 40467.42, + "end": 40470.02, + "probability": 0.9624 + }, + { + "start": 40470.62, + "end": 40474.98, + "probability": 0.9463 + }, + { + "start": 40476.58, + "end": 40480.58, + "probability": 0.9965 + }, + { + "start": 40480.58, + "end": 40486.02, + "probability": 0.9958 + }, + { + "start": 40489.06, + "end": 40491.36, + "probability": 0.8232 + }, + { + "start": 40491.48, + "end": 40493.96, + "probability": 0.9817 + }, + { + "start": 40494.88, + "end": 40499.64, + "probability": 0.9967 + }, + { + "start": 40500.14, + "end": 40503.42, + "probability": 0.9805 + }, + { + "start": 40503.42, + "end": 40508.34, + "probability": 0.9151 + }, + { + "start": 40508.88, + "end": 40509.6, + "probability": 0.8656 + }, + { + "start": 40510.2, + "end": 40510.82, + "probability": 0.9717 + }, + { + "start": 40511.46, + "end": 40514.42, + "probability": 0.9804 + }, + { + "start": 40514.42, + "end": 40518.08, + "probability": 0.9991 + }, + { + "start": 40518.18, + "end": 40522.28, + "probability": 0.9995 + }, + { + "start": 40522.46, + "end": 40525.12, + "probability": 0.653 + }, + { + "start": 40525.96, + "end": 40531.14, + "probability": 0.981 + }, + { + "start": 40533.8, + "end": 40538.22, + "probability": 0.8129 + }, + { + "start": 40538.9, + "end": 40539.92, + "probability": 0.9431 + }, + { + "start": 40540.12, + "end": 40541.82, + "probability": 0.9314 + }, + { + "start": 40542.68, + "end": 40547.44, + "probability": 0.994 + }, + { + "start": 40548.26, + "end": 40552.36, + "probability": 0.9961 + }, + { + "start": 40552.36, + "end": 40556.8, + "probability": 0.9728 + }, + { + "start": 40558.32, + "end": 40561.64, + "probability": 0.9976 + }, + { + "start": 40562.6, + "end": 40567.44, + "probability": 0.8569 + }, + { + "start": 40567.98, + "end": 40569.44, + "probability": 0.9981 + }, + { + "start": 40570.26, + "end": 40576.16, + "probability": 0.9993 + }, + { + "start": 40576.64, + "end": 40578.86, + "probability": 0.9878 + }, + { + "start": 40580.18, + "end": 40581.92, + "probability": 0.7953 + }, + { + "start": 40582.56, + "end": 40583.46, + "probability": 0.7672 + }, + { + "start": 40583.58, + "end": 40589.24, + "probability": 0.9828 + }, + { + "start": 40590.08, + "end": 40593.19, + "probability": 0.9919 + }, + { + "start": 40593.3, + "end": 40598.02, + "probability": 0.9945 + }, + { + "start": 40598.46, + "end": 40602.46, + "probability": 0.9931 + }, + { + "start": 40602.46, + "end": 40606.48, + "probability": 0.9889 + }, + { + "start": 40610.4, + "end": 40612.2, + "probability": 0.6997 + }, + { + "start": 40616.33, + "end": 40620.88, + "probability": 0.9875 + }, + { + "start": 40621.8, + "end": 40625.98, + "probability": 0.9972 + }, + { + "start": 40626.66, + "end": 40629.42, + "probability": 0.979 + }, + { + "start": 40629.42, + "end": 40632.14, + "probability": 0.9867 + }, + { + "start": 40633.04, + "end": 40637.28, + "probability": 0.9961 + }, + { + "start": 40638.06, + "end": 40640.9, + "probability": 0.9723 + }, + { + "start": 40641.84, + "end": 40646.36, + "probability": 0.9967 + }, + { + "start": 40646.36, + "end": 40649.34, + "probability": 0.9814 + }, + { + "start": 40650.38, + "end": 40653.68, + "probability": 0.9924 + }, + { + "start": 40654.14, + "end": 40657.52, + "probability": 0.8927 + }, + { + "start": 40658.36, + "end": 40661.4, + "probability": 0.8343 + }, + { + "start": 40662.14, + "end": 40664.26, + "probability": 0.8963 + }, + { + "start": 40665.58, + "end": 40669.08, + "probability": 0.999 + }, + { + "start": 40669.08, + "end": 40673.12, + "probability": 0.9103 + }, + { + "start": 40676.56, + "end": 40678.84, + "probability": 0.9083 + }, + { + "start": 40679.4, + "end": 40686.44, + "probability": 0.9778 + }, + { + "start": 40687.48, + "end": 40688.52, + "probability": 0.95 + }, + { + "start": 40689.14, + "end": 40690.94, + "probability": 0.9983 + }, + { + "start": 40691.96, + "end": 40695.72, + "probability": 0.6653 + }, + { + "start": 40696.18, + "end": 40699.4, + "probability": 0.9727 + }, + { + "start": 40700.3, + "end": 40705.1, + "probability": 0.9651 + }, + { + "start": 40705.44, + "end": 40709.6, + "probability": 0.999 + }, + { + "start": 40710.66, + "end": 40713.2, + "probability": 0.9904 + }, + { + "start": 40716.32, + "end": 40719.98, + "probability": 0.9977 + }, + { + "start": 40720.5, + "end": 40725.2, + "probability": 0.989 + }, + { + "start": 40725.98, + "end": 40729.94, + "probability": 0.9971 + }, + { + "start": 40730.42, + "end": 40731.36, + "probability": 0.7503 + }, + { + "start": 40731.58, + "end": 40734.8, + "probability": 0.9888 + }, + { + "start": 40735.3, + "end": 40738.82, + "probability": 0.9891 + }, + { + "start": 40741.02, + "end": 40741.4, + "probability": 0.8324 + }, + { + "start": 40742.08, + "end": 40745.5, + "probability": 0.9675 + }, + { + "start": 40746.04, + "end": 40749.72, + "probability": 0.9931 + }, + { + "start": 40750.62, + "end": 40751.42, + "probability": 0.9225 + }, + { + "start": 40752.06, + "end": 40753.28, + "probability": 0.9614 + }, + { + "start": 40753.84, + "end": 40757.44, + "probability": 0.9915 + }, + { + "start": 40757.44, + "end": 40760.44, + "probability": 0.9932 + }, + { + "start": 40761.48, + "end": 40765.16, + "probability": 0.9985 + }, + { + "start": 40765.16, + "end": 40769.1, + "probability": 0.9602 + }, + { + "start": 40769.6, + "end": 40772.36, + "probability": 0.9951 + }, + { + "start": 40773.24, + "end": 40774.14, + "probability": 0.9968 + }, + { + "start": 40774.28, + "end": 40778.77, + "probability": 0.9785 + }, + { + "start": 40780.0, + "end": 40783.08, + "probability": 0.9927 + }, + { + "start": 40783.64, + "end": 40786.38, + "probability": 0.9898 + }, + { + "start": 40786.98, + "end": 40787.22, + "probability": 0.6694 + }, + { + "start": 40787.74, + "end": 40789.44, + "probability": 0.9586 + }, + { + "start": 40790.26, + "end": 40790.78, + "probability": 0.8198 + }, + { + "start": 40791.54, + "end": 40793.82, + "probability": 0.9897 + }, + { + "start": 40794.62, + "end": 40797.4, + "probability": 0.9972 + }, + { + "start": 40797.76, + "end": 40800.38, + "probability": 0.9962 + }, + { + "start": 40800.84, + "end": 40803.32, + "probability": 0.9946 + }, + { + "start": 40803.82, + "end": 40806.08, + "probability": 0.8085 + }, + { + "start": 40806.62, + "end": 40810.66, + "probability": 0.9645 + }, + { + "start": 40812.46, + "end": 40814.86, + "probability": 0.9534 + }, + { + "start": 40815.38, + "end": 40818.76, + "probability": 0.9969 + }, + { + "start": 40819.1, + "end": 40821.5, + "probability": 0.9997 + }, + { + "start": 40822.34, + "end": 40824.0, + "probability": 0.9912 + }, + { + "start": 40826.46, + "end": 40827.1, + "probability": 0.8306 + }, + { + "start": 40827.68, + "end": 40832.66, + "probability": 0.9207 + }, + { + "start": 40833.86, + "end": 40836.12, + "probability": 0.9662 + }, + { + "start": 40836.68, + "end": 40839.92, + "probability": 0.998 + }, + { + "start": 40840.32, + "end": 40842.6, + "probability": 0.9976 + }, + { + "start": 40842.6, + "end": 40845.32, + "probability": 0.9891 + }, + { + "start": 40846.2, + "end": 40847.94, + "probability": 0.7998 + }, + { + "start": 40849.08, + "end": 40852.94, + "probability": 0.979 + }, + { + "start": 40852.94, + "end": 40856.52, + "probability": 0.9995 + }, + { + "start": 40856.86, + "end": 40861.38, + "probability": 0.9916 + }, + { + "start": 40861.94, + "end": 40866.64, + "probability": 0.9932 + }, + { + "start": 40866.64, + "end": 40873.12, + "probability": 0.9935 + }, + { + "start": 40875.4, + "end": 40876.84, + "probability": 0.747 + }, + { + "start": 40878.02, + "end": 40879.5, + "probability": 0.7445 + }, + { + "start": 40879.58, + "end": 40882.06, + "probability": 0.9739 + }, + { + "start": 40882.9, + "end": 40883.42, + "probability": 0.6183 + }, + { + "start": 40884.02, + "end": 40888.26, + "probability": 0.9916 + }, + { + "start": 40888.34, + "end": 40892.52, + "probability": 0.9905 + }, + { + "start": 40893.34, + "end": 40896.08, + "probability": 0.9985 + }, + { + "start": 40896.78, + "end": 40899.8, + "probability": 0.9956 + }, + { + "start": 40900.56, + "end": 40902.6, + "probability": 0.9883 + }, + { + "start": 40903.62, + "end": 40904.36, + "probability": 0.8484 + }, + { + "start": 40904.94, + "end": 40906.36, + "probability": 0.7173 + }, + { + "start": 40906.82, + "end": 40909.68, + "probability": 0.9844 + }, + { + "start": 40910.42, + "end": 40915.02, + "probability": 0.9235 + }, + { + "start": 40915.92, + "end": 40921.1, + "probability": 0.9862 + }, + { + "start": 40921.62, + "end": 40923.1, + "probability": 0.9978 + }, + { + "start": 40924.26, + "end": 40928.52, + "probability": 0.9989 + }, + { + "start": 40928.52, + "end": 40932.32, + "probability": 0.9974 + }, + { + "start": 40933.78, + "end": 40935.42, + "probability": 0.9765 + }, + { + "start": 40935.8, + "end": 40938.48, + "probability": 0.9664 + }, + { + "start": 40939.0, + "end": 40942.94, + "probability": 0.9941 + }, + { + "start": 40944.34, + "end": 40947.4, + "probability": 0.8165 + }, + { + "start": 40947.4, + "end": 40950.42, + "probability": 0.9882 + }, + { + "start": 40951.28, + "end": 40957.32, + "probability": 0.9979 + }, + { + "start": 40959.12, + "end": 40962.64, + "probability": 0.9982 + }, + { + "start": 40962.64, + "end": 40966.98, + "probability": 0.9894 + }, + { + "start": 40968.42, + "end": 40972.04, + "probability": 0.9967 + }, + { + "start": 40972.04, + "end": 40975.72, + "probability": 0.9553 + }, + { + "start": 40976.34, + "end": 40976.86, + "probability": 0.9985 + }, + { + "start": 40977.56, + "end": 40982.28, + "probability": 0.9944 + }, + { + "start": 40982.92, + "end": 40983.55, + "probability": 0.9535 + }, + { + "start": 40985.68, + "end": 40990.52, + "probability": 0.9916 + }, + { + "start": 40991.38, + "end": 40994.72, + "probability": 0.9967 + }, + { + "start": 40998.1, + "end": 41001.04, + "probability": 0.9947 + }, + { + "start": 41001.98, + "end": 41004.88, + "probability": 0.8829 + }, + { + "start": 41005.46, + "end": 41007.84, + "probability": 0.9832 + }, + { + "start": 41008.95, + "end": 41011.76, + "probability": 0.9786 + }, + { + "start": 41012.32, + "end": 41015.3, + "probability": 0.8224 + }, + { + "start": 41016.84, + "end": 41018.06, + "probability": 0.9673 + }, + { + "start": 41018.14, + "end": 41019.66, + "probability": 0.9572 + }, + { + "start": 41019.66, + "end": 41021.02, + "probability": 0.9244 + }, + { + "start": 41021.76, + "end": 41023.23, + "probability": 0.9902 + }, + { + "start": 41025.84, + "end": 41026.76, + "probability": 0.8489 + }, + { + "start": 41026.8, + "end": 41027.56, + "probability": 0.6754 + }, + { + "start": 41027.7, + "end": 41029.02, + "probability": 0.8668 + }, + { + "start": 41029.22, + "end": 41030.12, + "probability": 0.9404 + }, + { + "start": 41030.26, + "end": 41031.58, + "probability": 0.8939 + }, + { + "start": 41031.64, + "end": 41032.4, + "probability": 0.7541 + }, + { + "start": 41032.84, + "end": 41034.02, + "probability": 0.9837 + }, + { + "start": 41034.4, + "end": 41035.06, + "probability": 0.9678 + }, + { + "start": 41035.08, + "end": 41036.18, + "probability": 0.9885 + }, + { + "start": 41036.68, + "end": 41037.38, + "probability": 0.7962 + }, + { + "start": 41037.66, + "end": 41038.8, + "probability": 0.9037 + }, + { + "start": 41039.3, + "end": 41040.34, + "probability": 0.9263 + }, + { + "start": 41040.9, + "end": 41044.4, + "probability": 0.8285 + }, + { + "start": 41045.06, + "end": 41047.78, + "probability": 0.983 + }, + { + "start": 41048.3, + "end": 41049.28, + "probability": 0.9683 + }, + { + "start": 41049.8, + "end": 41052.78, + "probability": 0.9127 + }, + { + "start": 41053.76, + "end": 41055.52, + "probability": 0.9507 + }, + { + "start": 41056.18, + "end": 41057.18, + "probability": 0.7709 + }, + { + "start": 41057.2, + "end": 41058.18, + "probability": 0.8185 + }, + { + "start": 41058.66, + "end": 41060.98, + "probability": 0.9788 + }, + { + "start": 41061.8, + "end": 41062.82, + "probability": 0.9376 + }, + { + "start": 41064.48, + "end": 41067.16, + "probability": 0.979 + }, + { + "start": 41067.88, + "end": 41075.08, + "probability": 0.988 + }, + { + "start": 41076.46, + "end": 41077.35, + "probability": 0.8208 + }, + { + "start": 41084.62, + "end": 41085.18, + "probability": 0.5006 + }, + { + "start": 41085.26, + "end": 41086.9, + "probability": 0.9816 + }, + { + "start": 41087.46, + "end": 41087.64, + "probability": 0.0978 + }, + { + "start": 41088.56, + "end": 41088.9, + "probability": 0.0037 + }, + { + "start": 41090.86, + "end": 41092.1, + "probability": 0.0195 + }, + { + "start": 41103.38, + "end": 41103.98, + "probability": 0.3057 + }, + { + "start": 41105.16, + "end": 41106.78, + "probability": 0.3148 + }, + { + "start": 41119.02, + "end": 41119.1, + "probability": 0.0818 + }, + { + "start": 41119.22, + "end": 41119.22, + "probability": 0.1738 + }, + { + "start": 41119.22, + "end": 41119.96, + "probability": 0.0597 + }, + { + "start": 41120.76, + "end": 41121.14, + "probability": 0.0801 + }, + { + "start": 41121.48, + "end": 41121.94, + "probability": 0.0441 + }, + { + "start": 41121.94, + "end": 41121.94, + "probability": 0.386 + }, + { + "start": 41122.14, + "end": 41122.58, + "probability": 0.0172 + }, + { + "start": 41131.6, + "end": 41131.98, + "probability": 0.1651 + }, + { + "start": 41131.98, + "end": 41132.76, + "probability": 0.9858 + }, + { + "start": 41133.0, + "end": 41133.0, + "probability": 0.2167 + }, + { + "start": 41133.4, + "end": 41134.5, + "probability": 0.4745 + }, + { + "start": 41135.75, + "end": 41137.44, + "probability": 0.0184 + }, + { + "start": 41163.18, + "end": 41166.54, + "probability": 0.9264 + }, + { + "start": 41168.3, + "end": 41171.4, + "probability": 0.8166 + }, + { + "start": 41172.18, + "end": 41172.66, + "probability": 0.87 + }, + { + "start": 41174.22, + "end": 41179.38, + "probability": 0.9944 + }, + { + "start": 41179.94, + "end": 41182.58, + "probability": 0.8413 + }, + { + "start": 41183.24, + "end": 41186.54, + "probability": 0.9771 + }, + { + "start": 41186.54, + "end": 41187.3, + "probability": 0.8732 + }, + { + "start": 41189.64, + "end": 41193.5, + "probability": 0.9187 + }, + { + "start": 41193.64, + "end": 41194.66, + "probability": 0.9963 + }, + { + "start": 41196.42, + "end": 41197.92, + "probability": 0.7834 + }, + { + "start": 41198.74, + "end": 41199.58, + "probability": 0.7637 + }, + { + "start": 41199.7, + "end": 41202.84, + "probability": 0.9773 + }, + { + "start": 41202.96, + "end": 41204.3, + "probability": 0.9558 + }, + { + "start": 41205.0, + "end": 41206.14, + "probability": 0.7542 + }, + { + "start": 41206.3, + "end": 41208.66, + "probability": 0.6196 + }, + { + "start": 41209.72, + "end": 41212.78, + "probability": 0.7045 + }, + { + "start": 41213.84, + "end": 41218.76, + "probability": 0.9706 + }, + { + "start": 41218.88, + "end": 41220.84, + "probability": 0.7656 + }, + { + "start": 41220.96, + "end": 41221.78, + "probability": 0.7462 + }, + { + "start": 41222.16, + "end": 41224.34, + "probability": 0.9852 + }, + { + "start": 41225.48, + "end": 41231.02, + "probability": 0.9977 + }, + { + "start": 41232.42, + "end": 41238.1, + "probability": 0.9779 + }, + { + "start": 41238.28, + "end": 41239.26, + "probability": 0.9011 + }, + { + "start": 41241.32, + "end": 41241.58, + "probability": 0.8553 + }, + { + "start": 41241.76, + "end": 41242.1, + "probability": 0.9254 + }, + { + "start": 41242.2, + "end": 41242.82, + "probability": 0.8324 + }, + { + "start": 41242.96, + "end": 41248.44, + "probability": 0.9797 + }, + { + "start": 41248.88, + "end": 41250.44, + "probability": 0.8063 + }, + { + "start": 41251.58, + "end": 41255.22, + "probability": 0.9863 + }, + { + "start": 41255.54, + "end": 41256.2, + "probability": 0.5953 + }, + { + "start": 41257.06, + "end": 41257.76, + "probability": 0.8144 + }, + { + "start": 41257.84, + "end": 41258.74, + "probability": 0.6051 + }, + { + "start": 41258.98, + "end": 41260.18, + "probability": 0.9891 + }, + { + "start": 41260.5, + "end": 41261.68, + "probability": 0.9919 + }, + { + "start": 41262.46, + "end": 41263.8, + "probability": 0.9025 + }, + { + "start": 41264.8, + "end": 41265.3, + "probability": 0.746 + }, + { + "start": 41265.38, + "end": 41267.32, + "probability": 0.9937 + }, + { + "start": 41267.32, + "end": 41271.18, + "probability": 0.9975 + }, + { + "start": 41271.22, + "end": 41272.9, + "probability": 0.9521 + }, + { + "start": 41274.14, + "end": 41278.38, + "probability": 0.9943 + }, + { + "start": 41278.38, + "end": 41282.62, + "probability": 0.9526 + }, + { + "start": 41283.6, + "end": 41286.31, + "probability": 0.9967 + }, + { + "start": 41286.92, + "end": 41289.3, + "probability": 0.968 + }, + { + "start": 41289.76, + "end": 41292.48, + "probability": 0.9102 + }, + { + "start": 41294.12, + "end": 41296.96, + "probability": 0.838 + }, + { + "start": 41302.5, + "end": 41306.06, + "probability": 0.9983 + }, + { + "start": 41306.66, + "end": 41308.54, + "probability": 0.8448 + }, + { + "start": 41310.72, + "end": 41311.84, + "probability": 0.7368 + }, + { + "start": 41312.86, + "end": 41316.36, + "probability": 0.9989 + }, + { + "start": 41316.4, + "end": 41316.82, + "probability": 0.9702 + }, + { + "start": 41318.34, + "end": 41324.02, + "probability": 0.9954 + }, + { + "start": 41324.58, + "end": 41325.6, + "probability": 0.9476 + }, + { + "start": 41326.3, + "end": 41328.62, + "probability": 0.976 + }, + { + "start": 41330.34, + "end": 41331.76, + "probability": 0.9971 + }, + { + "start": 41332.64, + "end": 41336.92, + "probability": 0.937 + }, + { + "start": 41337.7, + "end": 41340.72, + "probability": 0.9927 + }, + { + "start": 41341.6, + "end": 41343.04, + "probability": 0.9995 + }, + { + "start": 41343.62, + "end": 41345.54, + "probability": 0.9362 + }, + { + "start": 41347.14, + "end": 41348.72, + "probability": 0.985 + }, + { + "start": 41348.82, + "end": 41352.2, + "probability": 0.9825 + }, + { + "start": 41352.48, + "end": 41354.5, + "probability": 0.9983 + }, + { + "start": 41354.76, + "end": 41355.7, + "probability": 0.7704 + }, + { + "start": 41356.34, + "end": 41358.78, + "probability": 0.9142 + }, + { + "start": 41359.48, + "end": 41360.76, + "probability": 0.9967 + }, + { + "start": 41363.94, + "end": 41364.73, + "probability": 0.9912 + }, + { + "start": 41366.76, + "end": 41369.52, + "probability": 0.8287 + }, + { + "start": 41370.16, + "end": 41373.62, + "probability": 0.9886 + }, + { + "start": 41375.26, + "end": 41375.72, + "probability": 0.8302 + }, + { + "start": 41375.8, + "end": 41378.14, + "probability": 0.9282 + }, + { + "start": 41378.18, + "end": 41378.86, + "probability": 0.7311 + }, + { + "start": 41378.94, + "end": 41380.09, + "probability": 0.9912 + }, + { + "start": 41381.96, + "end": 41383.95, + "probability": 0.9786 + }, + { + "start": 41384.86, + "end": 41388.2, + "probability": 0.987 + }, + { + "start": 41388.86, + "end": 41392.26, + "probability": 0.9838 + }, + { + "start": 41394.34, + "end": 41395.34, + "probability": 0.9695 + }, + { + "start": 41395.44, + "end": 41397.58, + "probability": 0.3009 + }, + { + "start": 41398.12, + "end": 41401.14, + "probability": 0.8065 + }, + { + "start": 41401.82, + "end": 41405.54, + "probability": 0.9659 + }, + { + "start": 41407.6, + "end": 41408.12, + "probability": 0.6724 + }, + { + "start": 41408.74, + "end": 41410.96, + "probability": 0.9839 + }, + { + "start": 41411.4, + "end": 41414.84, + "probability": 0.9965 + }, + { + "start": 41415.5, + "end": 41417.14, + "probability": 0.8287 + }, + { + "start": 41417.24, + "end": 41418.06, + "probability": 0.8466 + }, + { + "start": 41418.36, + "end": 41418.92, + "probability": 0.5683 + }, + { + "start": 41418.98, + "end": 41419.58, + "probability": 0.6873 + }, + { + "start": 41419.9, + "end": 41422.72, + "probability": 0.9764 + }, + { + "start": 41423.26, + "end": 41425.04, + "probability": 0.9136 + }, + { + "start": 41426.04, + "end": 41429.4, + "probability": 0.9891 + }, + { + "start": 41429.46, + "end": 41430.1, + "probability": 0.9887 + }, + { + "start": 41430.7, + "end": 41433.22, + "probability": 0.7889 + }, + { + "start": 41433.94, + "end": 41434.32, + "probability": 0.8091 + }, + { + "start": 41435.34, + "end": 41439.0, + "probability": 0.9831 + }, + { + "start": 41439.62, + "end": 41443.32, + "probability": 0.9989 + }, + { + "start": 41446.16, + "end": 41450.16, + "probability": 0.9912 + }, + { + "start": 41450.72, + "end": 41452.26, + "probability": 0.7785 + }, + { + "start": 41452.82, + "end": 41455.44, + "probability": 0.9963 + }, + { + "start": 41455.62, + "end": 41458.6, + "probability": 0.9979 + }, + { + "start": 41459.64, + "end": 41460.32, + "probability": 0.9384 + }, + { + "start": 41461.74, + "end": 41465.94, + "probability": 0.5911 + }, + { + "start": 41466.0, + "end": 41466.54, + "probability": 0.5577 + }, + { + "start": 41468.46, + "end": 41470.1, + "probability": 0.8941 + }, + { + "start": 41470.1, + "end": 41472.94, + "probability": 0.1415 + }, + { + "start": 41473.32, + "end": 41475.61, + "probability": 0.5122 + }, + { + "start": 41476.64, + "end": 41478.48, + "probability": 0.9282 + }, + { + "start": 41478.86, + "end": 41479.94, + "probability": 0.7693 + }, + { + "start": 41480.46, + "end": 41481.98, + "probability": 0.1968 + }, + { + "start": 41481.98, + "end": 41484.66, + "probability": 0.5523 + }, + { + "start": 41485.16, + "end": 41488.86, + "probability": 0.1028 + }, + { + "start": 41488.86, + "end": 41489.34, + "probability": 0.0313 + }, + { + "start": 41489.34, + "end": 41490.48, + "probability": 0.2427 + }, + { + "start": 41490.68, + "end": 41491.6, + "probability": 0.9294 + }, + { + "start": 41491.68, + "end": 41496.02, + "probability": 0.9751 + }, + { + "start": 41496.36, + "end": 41497.72, + "probability": 0.93 + }, + { + "start": 41497.98, + "end": 41498.82, + "probability": 0.5362 + }, + { + "start": 41499.36, + "end": 41501.78, + "probability": 0.6772 + }, + { + "start": 41502.1, + "end": 41503.58, + "probability": 0.9093 + }, + { + "start": 41503.78, + "end": 41505.54, + "probability": 0.0235 + }, + { + "start": 41506.28, + "end": 41508.26, + "probability": 0.0598 + }, + { + "start": 41508.26, + "end": 41510.72, + "probability": 0.6715 + }, + { + "start": 41511.16, + "end": 41511.16, + "probability": 0.6651 + }, + { + "start": 41511.16, + "end": 41511.16, + "probability": 0.173 + }, + { + "start": 41511.16, + "end": 41512.54, + "probability": 0.6987 + }, + { + "start": 41512.72, + "end": 41516.98, + "probability": 0.9759 + }, + { + "start": 41517.14, + "end": 41519.3, + "probability": 0.8976 + }, + { + "start": 41519.9, + "end": 41520.46, + "probability": 0.8347 + }, + { + "start": 41521.84, + "end": 41524.22, + "probability": 0.7598 + }, + { + "start": 41525.0, + "end": 41526.16, + "probability": 0.7794 + }, + { + "start": 41526.18, + "end": 41526.84, + "probability": 0.8515 + }, + { + "start": 41527.1, + "end": 41527.7, + "probability": 0.9814 + }, + { + "start": 41528.46, + "end": 41535.34, + "probability": 0.9983 + }, + { + "start": 41535.36, + "end": 41537.32, + "probability": 0.7576 + }, + { + "start": 41537.96, + "end": 41540.0, + "probability": 0.9814 + }, + { + "start": 41540.7, + "end": 41544.54, + "probability": 0.9666 + }, + { + "start": 41544.92, + "end": 41545.64, + "probability": 0.916 + }, + { + "start": 41546.2, + "end": 41549.39, + "probability": 0.7702 + }, + { + "start": 41550.72, + "end": 41553.08, + "probability": 0.9927 + }, + { + "start": 41553.7, + "end": 41558.52, + "probability": 0.9931 + }, + { + "start": 41558.52, + "end": 41562.98, + "probability": 0.9937 + }, + { + "start": 41562.98, + "end": 41567.38, + "probability": 0.9813 + }, + { + "start": 41568.64, + "end": 41572.1, + "probability": 0.9884 + }, + { + "start": 41572.64, + "end": 41573.86, + "probability": 0.8154 + }, + { + "start": 41574.68, + "end": 41576.6, + "probability": 0.8691 + }, + { + "start": 41577.84, + "end": 41579.78, + "probability": 0.7316 + }, + { + "start": 41580.78, + "end": 41581.88, + "probability": 0.9731 + }, + { + "start": 41582.58, + "end": 41587.12, + "probability": 0.9941 + }, + { + "start": 41587.64, + "end": 41590.1, + "probability": 0.9953 + }, + { + "start": 41590.54, + "end": 41591.12, + "probability": 0.9161 + }, + { + "start": 41591.32, + "end": 41591.98, + "probability": 0.614 + }, + { + "start": 41592.4, + "end": 41594.78, + "probability": 0.7086 + }, + { + "start": 41595.28, + "end": 41598.16, + "probability": 0.5119 + }, + { + "start": 41600.56, + "end": 41601.46, + "probability": 0.5402 + }, + { + "start": 41603.8, + "end": 41604.82, + "probability": 0.3881 + }, + { + "start": 41617.35, + "end": 41619.28, + "probability": 0.6519 + }, + { + "start": 41619.4, + "end": 41620.82, + "probability": 0.9697 + }, + { + "start": 41620.84, + "end": 41621.78, + "probability": 0.897 + }, + { + "start": 41622.56, + "end": 41624.24, + "probability": 0.9761 + }, + { + "start": 41625.32, + "end": 41626.0, + "probability": 0.9458 + }, + { + "start": 41626.2, + "end": 41628.5, + "probability": 0.9814 + }, + { + "start": 41628.54, + "end": 41629.74, + "probability": 0.9744 + }, + { + "start": 41629.82, + "end": 41630.54, + "probability": 0.9404 + }, + { + "start": 41631.12, + "end": 41632.02, + "probability": 0.936 + }, + { + "start": 41632.18, + "end": 41634.18, + "probability": 0.9961 + }, + { + "start": 41634.86, + "end": 41636.76, + "probability": 0.9718 + }, + { + "start": 41636.8, + "end": 41641.26, + "probability": 0.9973 + }, + { + "start": 41641.5, + "end": 41642.3, + "probability": 0.9754 + }, + { + "start": 41642.72, + "end": 41644.24, + "probability": 0.9976 + }, + { + "start": 41644.58, + "end": 41646.22, + "probability": 0.9741 + }, + { + "start": 41646.26, + "end": 41647.28, + "probability": 0.5752 + }, + { + "start": 41647.76, + "end": 41650.0, + "probability": 0.9753 + }, + { + "start": 41650.56, + "end": 41651.68, + "probability": 0.985 + }, + { + "start": 41651.92, + "end": 41653.8, + "probability": 0.9321 + }, + { + "start": 41654.2, + "end": 41654.94, + "probability": 0.8961 + }, + { + "start": 41654.98, + "end": 41655.94, + "probability": 0.9347 + }, + { + "start": 41656.24, + "end": 41657.3, + "probability": 0.7911 + }, + { + "start": 41658.78, + "end": 41660.06, + "probability": 0.9199 + }, + { + "start": 41660.2, + "end": 41662.16, + "probability": 0.9958 + }, + { + "start": 41662.9, + "end": 41663.18, + "probability": 0.9255 + }, + { + "start": 41663.22, + "end": 41663.78, + "probability": 0.9835 + }, + { + "start": 41664.14, + "end": 41664.72, + "probability": 0.8517 + }, + { + "start": 41664.8, + "end": 41665.38, + "probability": 0.8774 + }, + { + "start": 41665.4, + "end": 41665.88, + "probability": 0.8222 + }, + { + "start": 41665.94, + "end": 41666.34, + "probability": 0.8595 + }, + { + "start": 41666.36, + "end": 41666.94, + "probability": 0.8506 + }, + { + "start": 41666.98, + "end": 41668.34, + "probability": 0.3837 + }, + { + "start": 41668.8, + "end": 41671.92, + "probability": 0.9695 + }, + { + "start": 41672.12, + "end": 41674.14, + "probability": 0.4299 + }, + { + "start": 41674.2, + "end": 41675.86, + "probability": 0.9651 + }, + { + "start": 41676.74, + "end": 41682.24, + "probability": 0.8958 + }, + { + "start": 41682.92, + "end": 41686.83, + "probability": 0.8416 + }, + { + "start": 41687.62, + "end": 41688.46, + "probability": 0.952 + }, + { + "start": 41688.72, + "end": 41689.48, + "probability": 0.8391 + }, + { + "start": 41689.82, + "end": 41691.02, + "probability": 0.8183 + }, + { + "start": 41691.1, + "end": 41691.74, + "probability": 0.9302 + }, + { + "start": 41691.92, + "end": 41694.8, + "probability": 0.8912 + }, + { + "start": 41694.96, + "end": 41698.68, + "probability": 0.976 + }, + { + "start": 41698.78, + "end": 41702.06, + "probability": 0.9525 + }, + { + "start": 41702.48, + "end": 41705.06, + "probability": 0.7794 + }, + { + "start": 41705.26, + "end": 41706.2, + "probability": 0.8844 + }, + { + "start": 41706.4, + "end": 41709.28, + "probability": 0.9956 + }, + { + "start": 41709.8, + "end": 41710.66, + "probability": 0.9482 + }, + { + "start": 41710.94, + "end": 41711.72, + "probability": 0.8707 + }, + { + "start": 41711.82, + "end": 41712.6, + "probability": 0.9931 + }, + { + "start": 41713.06, + "end": 41713.96, + "probability": 0.8982 + }, + { + "start": 41714.16, + "end": 41715.08, + "probability": 0.7705 + }, + { + "start": 41715.84, + "end": 41718.38, + "probability": 0.9365 + }, + { + "start": 41719.0, + "end": 41720.12, + "probability": 0.7669 + }, + { + "start": 41720.18, + "end": 41721.8, + "probability": 0.909 + }, + { + "start": 41721.96, + "end": 41723.9, + "probability": 0.7317 + }, + { + "start": 41724.32, + "end": 41725.69, + "probability": 0.2919 + }, + { + "start": 41726.08, + "end": 41730.58, + "probability": 0.9751 + }, + { + "start": 41731.36, + "end": 41734.12, + "probability": 0.8445 + }, + { + "start": 41734.2, + "end": 41736.66, + "probability": 0.6608 + }, + { + "start": 41737.82, + "end": 41739.0, + "probability": 0.2927 + }, + { + "start": 41739.18, + "end": 41739.96, + "probability": 0.7063 + }, + { + "start": 41740.28, + "end": 41741.0, + "probability": 0.9674 + }, + { + "start": 41741.08, + "end": 41742.3, + "probability": 0.9098 + }, + { + "start": 41742.32, + "end": 41743.16, + "probability": 0.938 + }, + { + "start": 41743.56, + "end": 41744.48, + "probability": 0.9775 + }, + { + "start": 41745.08, + "end": 41746.06, + "probability": 0.9787 + }, + { + "start": 41746.74, + "end": 41748.26, + "probability": 0.9462 + }, + { + "start": 41748.4, + "end": 41749.68, + "probability": 0.551 + }, + { + "start": 41749.8, + "end": 41750.75, + "probability": 0.9878 + }, + { + "start": 41751.04, + "end": 41752.54, + "probability": 0.8761 + }, + { + "start": 41753.06, + "end": 41757.54, + "probability": 0.9865 + }, + { + "start": 41757.94, + "end": 41761.18, + "probability": 0.8496 + }, + { + "start": 41761.68, + "end": 41762.82, + "probability": 0.9548 + }, + { + "start": 41762.92, + "end": 41764.09, + "probability": 0.9855 + }, + { + "start": 41764.64, + "end": 41766.88, + "probability": 0.9673 + }, + { + "start": 41767.0, + "end": 41767.9, + "probability": 0.9496 + }, + { + "start": 41768.44, + "end": 41770.16, + "probability": 0.7828 + }, + { + "start": 41770.28, + "end": 41772.22, + "probability": 0.9844 + }, + { + "start": 41772.84, + "end": 41775.58, + "probability": 0.9858 + }, + { + "start": 41775.64, + "end": 41777.34, + "probability": 0.9259 + }, + { + "start": 41777.42, + "end": 41779.46, + "probability": 0.9865 + }, + { + "start": 41779.96, + "end": 41780.9, + "probability": 0.7812 + }, + { + "start": 41780.92, + "end": 41781.06, + "probability": 0.8683 + }, + { + "start": 41781.18, + "end": 41782.62, + "probability": 0.9037 + }, + { + "start": 41782.76, + "end": 41783.86, + "probability": 0.9444 + }, + { + "start": 41784.4, + "end": 41786.82, + "probability": 0.9844 + }, + { + "start": 41786.92, + "end": 41789.54, + "probability": 0.9329 + }, + { + "start": 41789.56, + "end": 41790.96, + "probability": 0.7928 + }, + { + "start": 41791.14, + "end": 41791.63, + "probability": 0.9103 + }, + { + "start": 41792.3, + "end": 41793.24, + "probability": 0.9849 + }, + { + "start": 41793.66, + "end": 41795.6, + "probability": 0.9282 + }, + { + "start": 41795.64, + "end": 41796.56, + "probability": 0.8921 + }, + { + "start": 41797.2, + "end": 41801.14, + "probability": 0.9121 + }, + { + "start": 41801.98, + "end": 41803.72, + "probability": 0.9863 + }, + { + "start": 41804.72, + "end": 41805.86, + "probability": 0.9395 + }, + { + "start": 41806.78, + "end": 41807.65, + "probability": 0.9403 + }, + { + "start": 41808.42, + "end": 41809.5, + "probability": 0.7202 + }, + { + "start": 41809.62, + "end": 41811.0, + "probability": 0.9871 + }, + { + "start": 41812.04, + "end": 41813.28, + "probability": 0.9285 + }, + { + "start": 41813.38, + "end": 41814.37, + "probability": 0.9719 + }, + { + "start": 41814.94, + "end": 41815.78, + "probability": 0.9475 + }, + { + "start": 41816.18, + "end": 41818.3, + "probability": 0.9562 + }, + { + "start": 41818.96, + "end": 41819.52, + "probability": 0.2856 + }, + { + "start": 41819.68, + "end": 41820.74, + "probability": 0.8534 + }, + { + "start": 41820.78, + "end": 41822.69, + "probability": 0.9231 + }, + { + "start": 41823.46, + "end": 41827.7, + "probability": 0.8071 + }, + { + "start": 41827.84, + "end": 41828.4, + "probability": 0.6674 + }, + { + "start": 41829.08, + "end": 41829.38, + "probability": 0.5759 + }, + { + "start": 41829.38, + "end": 41830.6, + "probability": 0.7766 + }, + { + "start": 41830.66, + "end": 41832.76, + "probability": 0.9604 + }, + { + "start": 41832.76, + "end": 41835.42, + "probability": 0.9768 + }, + { + "start": 41836.14, + "end": 41837.78, + "probability": 0.9865 + }, + { + "start": 41838.2, + "end": 41838.94, + "probability": 0.623 + }, + { + "start": 41840.02, + "end": 41842.56, + "probability": 0.959 + }, + { + "start": 41842.64, + "end": 41844.36, + "probability": 0.9514 + }, + { + "start": 41844.5, + "end": 41848.31, + "probability": 0.9948 + }, + { + "start": 41849.06, + "end": 41849.92, + "probability": 0.8838 + }, + { + "start": 41850.38, + "end": 41853.46, + "probability": 0.9856 + }, + { + "start": 41853.54, + "end": 41856.06, + "probability": 0.8999 + }, + { + "start": 41856.42, + "end": 41857.2, + "probability": 0.9481 + }, + { + "start": 41857.64, + "end": 41860.2, + "probability": 0.9018 + }, + { + "start": 41860.34, + "end": 41861.26, + "probability": 0.9451 + }, + { + "start": 41861.64, + "end": 41862.68, + "probability": 0.9178 + }, + { + "start": 41862.72, + "end": 41863.68, + "probability": 0.9807 + }, + { + "start": 41863.74, + "end": 41864.66, + "probability": 0.9421 + }, + { + "start": 41864.88, + "end": 41866.83, + "probability": 0.9717 + }, + { + "start": 41867.26, + "end": 41867.94, + "probability": 0.8762 + }, + { + "start": 41868.04, + "end": 41868.64, + "probability": 0.8498 + }, + { + "start": 41868.7, + "end": 41869.16, + "probability": 0.75 + }, + { + "start": 41869.8, + "end": 41870.92, + "probability": 0.7335 + }, + { + "start": 41871.26, + "end": 41871.98, + "probability": 0.9485 + }, + { + "start": 41872.06, + "end": 41874.06, + "probability": 0.9649 + }, + { + "start": 41874.3, + "end": 41876.98, + "probability": 0.9904 + }, + { + "start": 41877.04, + "end": 41877.82, + "probability": 0.915 + }, + { + "start": 41878.36, + "end": 41880.48, + "probability": 0.992 + }, + { + "start": 41880.98, + "end": 41883.28, + "probability": 0.9463 + }, + { + "start": 41883.9, + "end": 41887.3, + "probability": 0.9957 + }, + { + "start": 41887.42, + "end": 41888.44, + "probability": 0.8449 + }, + { + "start": 41889.16, + "end": 41891.54, + "probability": 0.9939 + }, + { + "start": 41892.06, + "end": 41893.06, + "probability": 0.8125 + }, + { + "start": 41893.14, + "end": 41894.43, + "probability": 0.9691 + }, + { + "start": 41894.68, + "end": 41895.86, + "probability": 0.9078 + }, + { + "start": 41896.0, + "end": 41897.94, + "probability": 0.9827 + }, + { + "start": 41898.84, + "end": 41900.38, + "probability": 0.97 + }, + { + "start": 41900.98, + "end": 41903.02, + "probability": 0.9066 + }, + { + "start": 41903.58, + "end": 41906.08, + "probability": 0.9792 + }, + { + "start": 41906.76, + "end": 41908.74, + "probability": 0.9919 + }, + { + "start": 41908.74, + "end": 41911.5, + "probability": 0.9867 + }, + { + "start": 41912.02, + "end": 41914.12, + "probability": 0.8574 + }, + { + "start": 41915.0, + "end": 41916.78, + "probability": 0.6771 + }, + { + "start": 41917.68, + "end": 41920.74, + "probability": 0.9969 + }, + { + "start": 41920.84, + "end": 41924.18, + "probability": 0.9894 + }, + { + "start": 41924.18, + "end": 41926.82, + "probability": 0.9873 + }, + { + "start": 41926.96, + "end": 41928.6, + "probability": 0.784 + }, + { + "start": 41929.44, + "end": 41930.26, + "probability": 0.918 + }, + { + "start": 41930.4, + "end": 41931.26, + "probability": 0.7491 + }, + { + "start": 41931.3, + "end": 41933.7, + "probability": 0.9926 + }, + { + "start": 41934.14, + "end": 41935.02, + "probability": 0.7639 + }, + { + "start": 41935.12, + "end": 41936.2, + "probability": 0.662 + }, + { + "start": 41936.42, + "end": 41940.02, + "probability": 0.9861 + }, + { + "start": 41940.22, + "end": 41942.44, + "probability": 0.9832 + }, + { + "start": 41943.06, + "end": 41944.38, + "probability": 0.866 + }, + { + "start": 41944.78, + "end": 41947.33, + "probability": 0.9771 + }, + { + "start": 41947.76, + "end": 41948.96, + "probability": 0.8485 + }, + { + "start": 41949.52, + "end": 41950.9, + "probability": 0.9792 + }, + { + "start": 41950.94, + "end": 41954.02, + "probability": 0.9919 + }, + { + "start": 41954.12, + "end": 41957.44, + "probability": 0.9713 + }, + { + "start": 41957.68, + "end": 41958.8, + "probability": 0.8953 + }, + { + "start": 41959.0, + "end": 41960.84, + "probability": 0.8979 + }, + { + "start": 41960.96, + "end": 41962.16, + "probability": 0.9353 + }, + { + "start": 41962.24, + "end": 41962.76, + "probability": 0.5999 + }, + { + "start": 41963.26, + "end": 41963.82, + "probability": 0.8379 + }, + { + "start": 41964.68, + "end": 41966.04, + "probability": 0.8679 + }, + { + "start": 41966.16, + "end": 41966.6, + "probability": 0.9364 + }, + { + "start": 41967.06, + "end": 41969.14, + "probability": 0.9951 + }, + { + "start": 41969.14, + "end": 41972.8, + "probability": 0.9878 + }, + { + "start": 41973.48, + "end": 41975.04, + "probability": 0.8916 + }, + { + "start": 41975.74, + "end": 41976.26, + "probability": 0.9391 + }, + { + "start": 41976.38, + "end": 41977.86, + "probability": 0.9904 + }, + { + "start": 41978.36, + "end": 41980.36, + "probability": 0.9945 + }, + { + "start": 41980.46, + "end": 41981.78, + "probability": 0.998 + }, + { + "start": 41981.84, + "end": 41984.06, + "probability": 0.8438 + }, + { + "start": 41984.5, + "end": 41987.02, + "probability": 0.9937 + }, + { + "start": 41987.08, + "end": 41987.42, + "probability": 0.518 + }, + { + "start": 41987.5, + "end": 41987.72, + "probability": 0.8126 + }, + { + "start": 41987.74, + "end": 41991.48, + "probability": 0.9915 + }, + { + "start": 41991.62, + "end": 41993.12, + "probability": 0.9939 + }, + { + "start": 41993.4, + "end": 41994.16, + "probability": 0.7711 + }, + { + "start": 41994.24, + "end": 41994.78, + "probability": 0.8824 + }, + { + "start": 41994.82, + "end": 41995.46, + "probability": 0.9418 + }, + { + "start": 41995.48, + "end": 41996.32, + "probability": 0.8401 + }, + { + "start": 41996.38, + "end": 41997.9, + "probability": 0.9819 + }, + { + "start": 41998.18, + "end": 41999.66, + "probability": 0.991 + }, + { + "start": 42000.04, + "end": 42001.22, + "probability": 0.9898 + }, + { + "start": 42001.62, + "end": 42002.76, + "probability": 0.9006 + }, + { + "start": 42003.18, + "end": 42006.58, + "probability": 0.9645 + }, + { + "start": 42006.7, + "end": 42007.16, + "probability": 0.7559 + }, + { + "start": 42007.66, + "end": 42008.24, + "probability": 0.5252 + }, + { + "start": 42008.26, + "end": 42010.34, + "probability": 0.937 + }, + { + "start": 42010.38, + "end": 42011.54, + "probability": 0.9792 + }, + { + "start": 42024.12, + "end": 42025.9, + "probability": 0.7607 + }, + { + "start": 42026.76, + "end": 42027.74, + "probability": 0.7202 + }, + { + "start": 42027.86, + "end": 42028.48, + "probability": 0.8424 + }, + { + "start": 42028.82, + "end": 42030.16, + "probability": 0.6249 + }, + { + "start": 42031.18, + "end": 42032.08, + "probability": 0.6399 + }, + { + "start": 42036.48, + "end": 42038.08, + "probability": 0.8587 + }, + { + "start": 42038.16, + "end": 42039.68, + "probability": 0.845 + }, + { + "start": 42039.82, + "end": 42045.36, + "probability": 0.9895 + }, + { + "start": 42046.35, + "end": 42051.8, + "probability": 0.9766 + }, + { + "start": 42054.66, + "end": 42061.3, + "probability": 0.9912 + }, + { + "start": 42062.42, + "end": 42063.6, + "probability": 0.7689 + }, + { + "start": 42065.52, + "end": 42066.56, + "probability": 0.6525 + }, + { + "start": 42068.54, + "end": 42070.3, + "probability": 0.7861 + }, + { + "start": 42071.38, + "end": 42074.06, + "probability": 0.9945 + }, + { + "start": 42074.14, + "end": 42074.62, + "probability": 0.796 + }, + { + "start": 42074.68, + "end": 42075.9, + "probability": 0.9979 + }, + { + "start": 42077.82, + "end": 42080.04, + "probability": 0.9282 + }, + { + "start": 42081.04, + "end": 42081.76, + "probability": 0.9457 + }, + { + "start": 42082.94, + "end": 42084.26, + "probability": 0.932 + }, + { + "start": 42085.88, + "end": 42089.4, + "probability": 0.9771 + }, + { + "start": 42090.46, + "end": 42091.56, + "probability": 0.9135 + }, + { + "start": 42092.4, + "end": 42093.18, + "probability": 0.9395 + }, + { + "start": 42093.96, + "end": 42095.61, + "probability": 0.9978 + }, + { + "start": 42098.26, + "end": 42098.94, + "probability": 0.8614 + }, + { + "start": 42099.86, + "end": 42106.72, + "probability": 0.967 + }, + { + "start": 42106.88, + "end": 42107.82, + "probability": 0.836 + }, + { + "start": 42109.14, + "end": 42110.64, + "probability": 0.9785 + }, + { + "start": 42110.8, + "end": 42111.53, + "probability": 0.5195 + }, + { + "start": 42113.3, + "end": 42116.48, + "probability": 0.9964 + }, + { + "start": 42116.6, + "end": 42119.26, + "probability": 0.9849 + }, + { + "start": 42119.4, + "end": 42120.02, + "probability": 0.6021 + }, + { + "start": 42120.2, + "end": 42121.26, + "probability": 0.9826 + }, + { + "start": 42121.88, + "end": 42124.6, + "probability": 0.9861 + }, + { + "start": 42124.74, + "end": 42127.72, + "probability": 0.8331 + }, + { + "start": 42129.18, + "end": 42131.18, + "probability": 0.7202 + }, + { + "start": 42132.16, + "end": 42132.74, + "probability": 0.4554 + }, + { + "start": 42132.96, + "end": 42134.34, + "probability": 0.8589 + }, + { + "start": 42134.76, + "end": 42135.2, + "probability": 0.1792 + }, + { + "start": 42135.46, + "end": 42136.04, + "probability": 0.0533 + }, + { + "start": 42136.94, + "end": 42141.76, + "probability": 0.9897 + }, + { + "start": 42143.06, + "end": 42146.28, + "probability": 0.993 + }, + { + "start": 42147.02, + "end": 42148.06, + "probability": 0.929 + }, + { + "start": 42148.2, + "end": 42152.94, + "probability": 0.9806 + }, + { + "start": 42153.54, + "end": 42155.14, + "probability": 0.9985 + }, + { + "start": 42155.64, + "end": 42156.1, + "probability": 0.8456 + }, + { + "start": 42156.16, + "end": 42160.56, + "probability": 0.9899 + }, + { + "start": 42160.76, + "end": 42162.78, + "probability": 0.9982 + }, + { + "start": 42165.88, + "end": 42167.24, + "probability": 0.0599 + }, + { + "start": 42167.24, + "end": 42169.2, + "probability": 0.9733 + }, + { + "start": 42170.32, + "end": 42173.36, + "probability": 0.9875 + }, + { + "start": 42174.2, + "end": 42176.7, + "probability": 0.99 + }, + { + "start": 42177.34, + "end": 42179.14, + "probability": 0.9332 + }, + { + "start": 42179.26, + "end": 42179.96, + "probability": 0.5349 + }, + { + "start": 42180.04, + "end": 42180.74, + "probability": 0.2452 + }, + { + "start": 42181.68, + "end": 42183.48, + "probability": 0.9844 + }, + { + "start": 42183.7, + "end": 42184.84, + "probability": 0.9185 + }, + { + "start": 42184.94, + "end": 42186.8, + "probability": 0.8908 + }, + { + "start": 42188.4, + "end": 42190.92, + "probability": 0.8099 + }, + { + "start": 42191.86, + "end": 42192.72, + "probability": 0.656 + }, + { + "start": 42193.68, + "end": 42198.34, + "probability": 0.99 + }, + { + "start": 42198.58, + "end": 42199.08, + "probability": 0.6884 + }, + { + "start": 42200.08, + "end": 42201.9, + "probability": 0.941 + }, + { + "start": 42202.78, + "end": 42203.38, + "probability": 0.4253 + }, + { + "start": 42203.52, + "end": 42203.82, + "probability": 0.8759 + }, + { + "start": 42203.88, + "end": 42207.24, + "probability": 0.9951 + }, + { + "start": 42208.06, + "end": 42208.6, + "probability": 0.7671 + }, + { + "start": 42210.3, + "end": 42212.9, + "probability": 0.8032 + }, + { + "start": 42214.82, + "end": 42217.92, + "probability": 0.8058 + }, + { + "start": 42218.96, + "end": 42222.0, + "probability": 0.9556 + }, + { + "start": 42223.02, + "end": 42223.5, + "probability": 0.9193 + }, + { + "start": 42223.58, + "end": 42224.0, + "probability": 0.8148 + }, + { + "start": 42224.08, + "end": 42225.94, + "probability": 0.9935 + }, + { + "start": 42226.78, + "end": 42228.58, + "probability": 0.9927 + }, + { + "start": 42229.46, + "end": 42230.78, + "probability": 0.9699 + }, + { + "start": 42231.86, + "end": 42235.9, + "probability": 0.9989 + }, + { + "start": 42236.96, + "end": 42239.88, + "probability": 0.9343 + }, + { + "start": 42241.24, + "end": 42241.76, + "probability": 0.8832 + }, + { + "start": 42243.28, + "end": 42247.04, + "probability": 0.9451 + }, + { + "start": 42247.76, + "end": 42248.84, + "probability": 0.6206 + }, + { + "start": 42249.16, + "end": 42252.58, + "probability": 0.9987 + }, + { + "start": 42253.72, + "end": 42256.6, + "probability": 0.9968 + }, + { + "start": 42256.6, + "end": 42260.5, + "probability": 0.9956 + }, + { + "start": 42260.64, + "end": 42261.16, + "probability": 0.572 + }, + { + "start": 42262.88, + "end": 42263.68, + "probability": 0.1287 + }, + { + "start": 42263.68, + "end": 42267.56, + "probability": 0.4756 + }, + { + "start": 42267.72, + "end": 42269.6, + "probability": 0.5723 + }, + { + "start": 42269.78, + "end": 42271.88, + "probability": 0.6934 + }, + { + "start": 42272.98, + "end": 42273.66, + "probability": 0.8218 + }, + { + "start": 42273.66, + "end": 42274.34, + "probability": 0.5203 + }, + { + "start": 42275.08, + "end": 42275.96, + "probability": 0.8799 + }, + { + "start": 42276.08, + "end": 42278.8, + "probability": 0.9924 + }, + { + "start": 42279.3, + "end": 42279.46, + "probability": 0.708 + }, + { + "start": 42280.4, + "end": 42280.52, + "probability": 0.6254 + }, + { + "start": 42281.08, + "end": 42284.0, + "probability": 0.9014 + }, + { + "start": 42285.82, + "end": 42287.96, + "probability": 0.9839 + }, + { + "start": 42288.9, + "end": 42289.56, + "probability": 0.7469 + }, + { + "start": 42290.7, + "end": 42292.6, + "probability": 0.6061 + }, + { + "start": 42292.82, + "end": 42293.62, + "probability": 0.6951 + }, + { + "start": 42293.82, + "end": 42295.6, + "probability": 0.8654 + }, + { + "start": 42296.98, + "end": 42300.62, + "probability": 0.8752 + }, + { + "start": 42301.64, + "end": 42303.56, + "probability": 0.9795 + }, + { + "start": 42305.94, + "end": 42311.3, + "probability": 0.9617 + }, + { + "start": 42313.1, + "end": 42315.8, + "probability": 0.9272 + }, + { + "start": 42316.3, + "end": 42319.7, + "probability": 0.9565 + }, + { + "start": 42319.76, + "end": 42319.96, + "probability": 0.4232 + }, + { + "start": 42319.98, + "end": 42320.72, + "probability": 0.6495 + }, + { + "start": 42322.24, + "end": 42326.18, + "probability": 0.9904 + }, + { + "start": 42326.18, + "end": 42329.3, + "probability": 0.9988 + }, + { + "start": 42331.46, + "end": 42331.46, + "probability": 0.6841 + }, + { + "start": 42333.26, + "end": 42334.14, + "probability": 0.8362 + }, + { + "start": 42334.56, + "end": 42335.46, + "probability": 0.885 + }, + { + "start": 42335.7, + "end": 42336.18, + "probability": 0.7008 + }, + { + "start": 42336.58, + "end": 42337.1, + "probability": 0.6735 + }, + { + "start": 42337.28, + "end": 42339.04, + "probability": 0.3235 + }, + { + "start": 42339.2, + "end": 42339.86, + "probability": 0.0811 + }, + { + "start": 42340.14, + "end": 42345.52, + "probability": 0.3579 + }, + { + "start": 42345.62, + "end": 42346.94, + "probability": 0.6719 + }, + { + "start": 42346.96, + "end": 42348.58, + "probability": 0.8418 + }, + { + "start": 42348.86, + "end": 42350.62, + "probability": 0.9902 + }, + { + "start": 42350.7, + "end": 42351.56, + "probability": 0.9742 + }, + { + "start": 42351.66, + "end": 42353.84, + "probability": 0.6884 + }, + { + "start": 42353.88, + "end": 42354.44, + "probability": 0.6857 + }, + { + "start": 42354.44, + "end": 42354.92, + "probability": 0.5525 + }, + { + "start": 42354.98, + "end": 42355.74, + "probability": 0.6409 + }, + { + "start": 42355.94, + "end": 42357.26, + "probability": 0.9514 + }, + { + "start": 42358.14, + "end": 42359.14, + "probability": 0.7913 + }, + { + "start": 42359.48, + "end": 42360.28, + "probability": 0.9424 + }, + { + "start": 42360.38, + "end": 42360.78, + "probability": 0.991 + }, + { + "start": 42360.9, + "end": 42361.94, + "probability": 0.9734 + }, + { + "start": 42362.46, + "end": 42363.04, + "probability": 0.6938 + }, + { + "start": 42365.4, + "end": 42366.86, + "probability": 0.9922 + }, + { + "start": 42366.92, + "end": 42369.68, + "probability": 0.999 + }, + { + "start": 42370.92, + "end": 42372.34, + "probability": 0.5595 + }, + { + "start": 42373.34, + "end": 42375.0, + "probability": 0.9985 + }, + { + "start": 42376.76, + "end": 42378.1, + "probability": 0.9126 + }, + { + "start": 42378.2, + "end": 42379.24, + "probability": 0.8598 + }, + { + "start": 42379.36, + "end": 42381.26, + "probability": 0.8269 + }, + { + "start": 42381.94, + "end": 42388.92, + "probability": 0.9888 + }, + { + "start": 42390.5, + "end": 42393.96, + "probability": 0.9907 + }, + { + "start": 42393.96, + "end": 42397.18, + "probability": 0.991 + }, + { + "start": 42398.02, + "end": 42399.83, + "probability": 0.9863 + }, + { + "start": 42400.64, + "end": 42402.97, + "probability": 0.9438 + }, + { + "start": 42403.12, + "end": 42405.5, + "probability": 0.9919 + }, + { + "start": 42406.54, + "end": 42409.5, + "probability": 0.9997 + }, + { + "start": 42410.18, + "end": 42413.94, + "probability": 0.9987 + }, + { + "start": 42415.06, + "end": 42417.72, + "probability": 0.9982 + }, + { + "start": 42419.0, + "end": 42419.92, + "probability": 0.9764 + }, + { + "start": 42421.08, + "end": 42422.42, + "probability": 0.9718 + }, + { + "start": 42422.48, + "end": 42424.66, + "probability": 0.7685 + }, + { + "start": 42425.14, + "end": 42425.82, + "probability": 0.9272 + }, + { + "start": 42426.16, + "end": 42427.02, + "probability": 0.7707 + }, + { + "start": 42428.26, + "end": 42430.66, + "probability": 0.9983 + }, + { + "start": 42433.1, + "end": 42433.66, + "probability": 0.9924 + }, + { + "start": 42435.42, + "end": 42436.16, + "probability": 0.7939 + }, + { + "start": 42436.98, + "end": 42438.67, + "probability": 0.9283 + }, + { + "start": 42439.56, + "end": 42440.6, + "probability": 0.9321 + }, + { + "start": 42441.84, + "end": 42448.42, + "probability": 0.9986 + }, + { + "start": 42448.42, + "end": 42453.06, + "probability": 0.998 + }, + { + "start": 42454.08, + "end": 42455.54, + "probability": 0.5157 + }, + { + "start": 42457.3, + "end": 42459.78, + "probability": 0.8214 + }, + { + "start": 42460.64, + "end": 42462.34, + "probability": 0.995 + }, + { + "start": 42463.56, + "end": 42466.32, + "probability": 0.9776 + }, + { + "start": 42466.98, + "end": 42468.58, + "probability": 0.8425 + }, + { + "start": 42469.38, + "end": 42470.58, + "probability": 0.9916 + }, + { + "start": 42471.14, + "end": 42471.92, + "probability": 0.5637 + }, + { + "start": 42472.98, + "end": 42473.32, + "probability": 0.456 + }, + { + "start": 42473.38, + "end": 42475.16, + "probability": 0.862 + }, + { + "start": 42475.64, + "end": 42476.83, + "probability": 0.9937 + }, + { + "start": 42477.98, + "end": 42479.16, + "probability": 0.8488 + }, + { + "start": 42480.7, + "end": 42488.06, + "probability": 0.9899 + }, + { + "start": 42490.36, + "end": 42491.82, + "probability": 0.9989 + }, + { + "start": 42491.86, + "end": 42493.48, + "probability": 0.8748 + }, + { + "start": 42494.02, + "end": 42496.46, + "probability": 0.816 + }, + { + "start": 42496.54, + "end": 42499.86, + "probability": 0.9661 + }, + { + "start": 42500.06, + "end": 42501.62, + "probability": 0.8287 + }, + { + "start": 42501.66, + "end": 42502.6, + "probability": 0.9458 + }, + { + "start": 42503.06, + "end": 42504.52, + "probability": 0.9934 + }, + { + "start": 42504.68, + "end": 42505.43, + "probability": 0.9579 + }, + { + "start": 42505.74, + "end": 42506.76, + "probability": 0.8692 + }, + { + "start": 42507.42, + "end": 42511.12, + "probability": 0.9996 + }, + { + "start": 42512.04, + "end": 42520.22, + "probability": 0.9973 + }, + { + "start": 42520.34, + "end": 42522.0, + "probability": 0.7898 + }, + { + "start": 42523.6, + "end": 42526.84, + "probability": 0.9976 + }, + { + "start": 42528.32, + "end": 42531.38, + "probability": 0.9935 + }, + { + "start": 42533.16, + "end": 42537.0, + "probability": 0.916 + }, + { + "start": 42538.02, + "end": 42543.46, + "probability": 0.9948 + }, + { + "start": 42544.48, + "end": 42546.44, + "probability": 0.9883 + }, + { + "start": 42546.6, + "end": 42547.36, + "probability": 0.9251 + }, + { + "start": 42547.44, + "end": 42549.42, + "probability": 0.9965 + }, + { + "start": 42549.62, + "end": 42552.9, + "probability": 0.872 + }, + { + "start": 42553.84, + "end": 42554.6, + "probability": 0.6104 + }, + { + "start": 42555.66, + "end": 42558.58, + "probability": 0.9521 + }, + { + "start": 42560.04, + "end": 42563.28, + "probability": 0.965 + }, + { + "start": 42564.04, + "end": 42565.34, + "probability": 0.9195 + }, + { + "start": 42565.96, + "end": 42569.58, + "probability": 0.7723 + }, + { + "start": 42571.26, + "end": 42572.08, + "probability": 0.6763 + }, + { + "start": 42572.3, + "end": 42574.8, + "probability": 0.7964 + }, + { + "start": 42574.92, + "end": 42577.7, + "probability": 0.9969 + }, + { + "start": 42579.54, + "end": 42582.98, + "probability": 0.9051 + }, + { + "start": 42583.82, + "end": 42584.14, + "probability": 0.8684 + }, + { + "start": 42587.22, + "end": 42588.36, + "probability": 0.8634 + }, + { + "start": 42589.14, + "end": 42592.1, + "probability": 0.7351 + }, + { + "start": 42592.62, + "end": 42593.9, + "probability": 0.9303 + }, + { + "start": 42593.94, + "end": 42594.96, + "probability": 0.6248 + }, + { + "start": 42594.98, + "end": 42597.4, + "probability": 0.9291 + }, + { + "start": 42598.92, + "end": 42600.52, + "probability": 0.9745 + }, + { + "start": 42601.84, + "end": 42603.12, + "probability": 0.9531 + }, + { + "start": 42604.2, + "end": 42604.9, + "probability": 0.8867 + }, + { + "start": 42605.14, + "end": 42608.56, + "probability": 0.9645 + }, + { + "start": 42608.78, + "end": 42611.4, + "probability": 0.9869 + }, + { + "start": 42611.84, + "end": 42614.42, + "probability": 0.761 + }, + { + "start": 42614.44, + "end": 42615.24, + "probability": 0.9549 + }, + { + "start": 42616.42, + "end": 42617.95, + "probability": 0.938 + }, + { + "start": 42619.34, + "end": 42620.06, + "probability": 0.9561 + }, + { + "start": 42621.48, + "end": 42622.56, + "probability": 0.9446 + }, + { + "start": 42625.12, + "end": 42626.52, + "probability": 0.9775 + }, + { + "start": 42627.82, + "end": 42631.28, + "probability": 0.9965 + }, + { + "start": 42632.62, + "end": 42632.98, + "probability": 0.0748 + }, + { + "start": 42633.6, + "end": 42637.48, + "probability": 0.9792 + }, + { + "start": 42638.7, + "end": 42641.14, + "probability": 0.9973 + }, + { + "start": 42641.6, + "end": 42643.66, + "probability": 0.9824 + }, + { + "start": 42644.06, + "end": 42646.1, + "probability": 0.8534 + }, + { + "start": 42646.38, + "end": 42647.46, + "probability": 0.7695 + }, + { + "start": 42647.56, + "end": 42649.0, + "probability": 0.6331 + }, + { + "start": 42649.16, + "end": 42653.64, + "probability": 0.9852 + }, + { + "start": 42654.48, + "end": 42656.34, + "probability": 0.8486 + }, + { + "start": 42657.12, + "end": 42659.1, + "probability": 0.8191 + }, + { + "start": 42659.7, + "end": 42659.98, + "probability": 0.929 + }, + { + "start": 42661.36, + "end": 42663.06, + "probability": 0.9806 + }, + { + "start": 42664.02, + "end": 42664.98, + "probability": 0.8 + }, + { + "start": 42665.18, + "end": 42665.88, + "probability": 0.9728 + }, + { + "start": 42667.44, + "end": 42669.2, + "probability": 0.9747 + }, + { + "start": 42670.04, + "end": 42671.44, + "probability": 0.8759 + }, + { + "start": 42673.02, + "end": 42674.76, + "probability": 0.5128 + }, + { + "start": 42675.5, + "end": 42676.9, + "probability": 0.9309 + }, + { + "start": 42678.0, + "end": 42681.5, + "probability": 0.9979 + }, + { + "start": 42686.64, + "end": 42687.44, + "probability": 0.7148 + }, + { + "start": 42688.86, + "end": 42691.88, + "probability": 0.9229 + }, + { + "start": 42692.84, + "end": 42696.78, + "probability": 0.8566 + }, + { + "start": 42697.0, + "end": 42697.34, + "probability": 0.3205 + }, + { + "start": 42697.48, + "end": 42698.82, + "probability": 0.4964 + }, + { + "start": 42698.82, + "end": 42700.06, + "probability": 0.4631 + }, + { + "start": 42700.12, + "end": 42700.96, + "probability": 0.4484 + }, + { + "start": 42701.24, + "end": 42702.1, + "probability": 0.5303 + }, + { + "start": 42702.18, + "end": 42706.04, + "probability": 0.8816 + }, + { + "start": 42706.04, + "end": 42708.66, + "probability": 0.9927 + }, + { + "start": 42711.06, + "end": 42717.88, + "probability": 0.7725 + }, + { + "start": 42718.16, + "end": 42719.04, + "probability": 0.5402 + }, + { + "start": 42719.38, + "end": 42723.8, + "probability": 0.221 + }, + { + "start": 42723.8, + "end": 42724.62, + "probability": 0.8533 + }, + { + "start": 42726.02, + "end": 42726.6, + "probability": 0.3334 + }, + { + "start": 42726.76, + "end": 42728.12, + "probability": 0.7915 + }, + { + "start": 42732.9, + "end": 42734.08, + "probability": 0.9493 + }, + { + "start": 42758.4, + "end": 42761.06, + "probability": 0.6635 + }, + { + "start": 42762.08, + "end": 42763.02, + "probability": 0.8339 + }, + { + "start": 42765.74, + "end": 42771.78, + "probability": 0.9847 + }, + { + "start": 42771.78, + "end": 42776.1, + "probability": 0.9441 + }, + { + "start": 42777.72, + "end": 42778.42, + "probability": 0.9695 + }, + { + "start": 42781.3, + "end": 42782.88, + "probability": 0.9783 + }, + { + "start": 42784.56, + "end": 42786.14, + "probability": 0.9997 + }, + { + "start": 42787.85, + "end": 42789.76, + "probability": 0.9086 + }, + { + "start": 42794.62, + "end": 42798.0, + "probability": 0.9723 + }, + { + "start": 42801.14, + "end": 42806.72, + "probability": 0.905 + }, + { + "start": 42806.72, + "end": 42809.86, + "probability": 0.8114 + }, + { + "start": 42810.96, + "end": 42811.88, + "probability": 0.7785 + }, + { + "start": 42814.0, + "end": 42814.98, + "probability": 0.9973 + }, + { + "start": 42815.64, + "end": 42818.82, + "probability": 0.998 + }, + { + "start": 42820.18, + "end": 42823.32, + "probability": 0.9311 + }, + { + "start": 42825.48, + "end": 42831.14, + "probability": 0.872 + }, + { + "start": 42833.82, + "end": 42835.28, + "probability": 0.9018 + }, + { + "start": 42836.0, + "end": 42837.42, + "probability": 0.968 + }, + { + "start": 42838.58, + "end": 42839.35, + "probability": 0.9779 + }, + { + "start": 42841.14, + "end": 42842.24, + "probability": 0.9601 + }, + { + "start": 42843.72, + "end": 42846.04, + "probability": 0.9919 + }, + { + "start": 42848.28, + "end": 42850.38, + "probability": 0.9463 + }, + { + "start": 42851.12, + "end": 42853.6, + "probability": 0.9344 + }, + { + "start": 42854.42, + "end": 42855.5, + "probability": 0.9967 + }, + { + "start": 42856.76, + "end": 42860.92, + "probability": 0.9929 + }, + { + "start": 42861.04, + "end": 42861.54, + "probability": 0.34 + }, + { + "start": 42864.04, + "end": 42866.18, + "probability": 0.8828 + }, + { + "start": 42869.06, + "end": 42875.4, + "probability": 0.7546 + }, + { + "start": 42876.7, + "end": 42883.36, + "probability": 0.9753 + }, + { + "start": 42884.87, + "end": 42885.82, + "probability": 0.9131 + }, + { + "start": 42885.82, + "end": 42890.44, + "probability": 0.9199 + }, + { + "start": 42891.58, + "end": 42893.46, + "probability": 0.9798 + }, + { + "start": 42894.7, + "end": 42895.27, + "probability": 0.9722 + }, + { + "start": 42897.18, + "end": 42897.81, + "probability": 0.9875 + }, + { + "start": 42899.3, + "end": 42901.48, + "probability": 0.9917 + }, + { + "start": 42902.88, + "end": 42903.79, + "probability": 0.9399 + }, + { + "start": 42904.68, + "end": 42905.56, + "probability": 0.5447 + }, + { + "start": 42908.04, + "end": 42909.0, + "probability": 0.9316 + }, + { + "start": 42911.12, + "end": 42912.26, + "probability": 0.6464 + }, + { + "start": 42916.52, + "end": 42926.4, + "probability": 0.9928 + }, + { + "start": 42929.1, + "end": 42930.28, + "probability": 0.7487 + }, + { + "start": 42936.66, + "end": 42941.18, + "probability": 0.9808 + }, + { + "start": 42943.2, + "end": 42947.9, + "probability": 0.65 + }, + { + "start": 42949.18, + "end": 42953.04, + "probability": 0.9548 + }, + { + "start": 42953.22, + "end": 42954.06, + "probability": 0.6404 + }, + { + "start": 42954.14, + "end": 42955.84, + "probability": 0.7362 + }, + { + "start": 42957.32, + "end": 42960.08, + "probability": 0.9303 + }, + { + "start": 42962.96, + "end": 42969.1, + "probability": 0.9514 + }, + { + "start": 42970.24, + "end": 42970.36, + "probability": 0.0372 + }, + { + "start": 42972.9, + "end": 42976.68, + "probability": 0.9104 + }, + { + "start": 42977.49, + "end": 42982.52, + "probability": 0.9725 + }, + { + "start": 42987.14, + "end": 42987.8, + "probability": 0.7527 + }, + { + "start": 42988.28, + "end": 42988.38, + "probability": 0.816 + }, + { + "start": 42988.92, + "end": 42991.42, + "probability": 0.7753 + }, + { + "start": 42991.6, + "end": 42994.32, + "probability": 0.7631 + }, + { + "start": 42994.34, + "end": 42996.02, + "probability": 0.5901 + }, + { + "start": 42996.22, + "end": 42996.67, + "probability": 0.3228 + }, + { + "start": 42996.82, + "end": 42997.4, + "probability": 0.7032 + }, + { + "start": 42998.12, + "end": 43000.22, + "probability": 0.9293 + }, + { + "start": 43000.42, + "end": 43005.16, + "probability": 0.9236 + }, + { + "start": 43006.34, + "end": 43007.92, + "probability": 0.8375 + }, + { + "start": 43008.32, + "end": 43011.94, + "probability": 0.9196 + }, + { + "start": 43013.16, + "end": 43014.9, + "probability": 0.781 + }, + { + "start": 43015.76, + "end": 43021.08, + "probability": 0.787 + }, + { + "start": 43021.48, + "end": 43022.3, + "probability": 0.4986 + }, + { + "start": 43022.93, + "end": 43026.22, + "probability": 0.9285 + }, + { + "start": 43026.54, + "end": 43027.48, + "probability": 0.7569 + }, + { + "start": 43027.98, + "end": 43032.36, + "probability": 0.8888 + }, + { + "start": 43033.24, + "end": 43034.34, + "probability": 0.9525 + }, + { + "start": 43034.92, + "end": 43035.98, + "probability": 0.5696 + }, + { + "start": 43036.44, + "end": 43039.14, + "probability": 0.9821 + }, + { + "start": 43039.44, + "end": 43042.74, + "probability": 0.9707 + }, + { + "start": 43043.16, + "end": 43044.06, + "probability": 0.9651 + }, + { + "start": 43044.18, + "end": 43045.62, + "probability": 0.897 + }, + { + "start": 43046.66, + "end": 43052.12, + "probability": 0.8452 + }, + { + "start": 43052.26, + "end": 43054.98, + "probability": 0.9372 + }, + { + "start": 43055.46, + "end": 43056.66, + "probability": 0.9971 + }, + { + "start": 43057.92, + "end": 43063.08, + "probability": 0.9546 + }, + { + "start": 43063.5, + "end": 43068.84, + "probability": 0.9971 + }, + { + "start": 43069.58, + "end": 43070.4, + "probability": 0.4119 + }, + { + "start": 43071.06, + "end": 43075.12, + "probability": 0.7852 + }, + { + "start": 43075.12, + "end": 43076.84, + "probability": 0.4871 + }, + { + "start": 43076.86, + "end": 43078.94, + "probability": 0.959 + }, + { + "start": 43079.06, + "end": 43079.82, + "probability": 0.849 + }, + { + "start": 43080.68, + "end": 43080.78, + "probability": 0.0004 + }, + { + "start": 43080.78, + "end": 43082.08, + "probability": 0.8748 + }, + { + "start": 43082.68, + "end": 43083.96, + "probability": 0.5881 + }, + { + "start": 43084.1, + "end": 43089.18, + "probability": 0.896 + }, + { + "start": 43089.28, + "end": 43089.84, + "probability": 0.4814 + }, + { + "start": 43090.3, + "end": 43090.54, + "probability": 0.4228 + }, + { + "start": 43091.02, + "end": 43093.46, + "probability": 0.8907 + }, + { + "start": 43094.24, + "end": 43102.44, + "probability": 0.9886 + }, + { + "start": 43103.0, + "end": 43103.94, + "probability": 0.6968 + }, + { + "start": 43103.94, + "end": 43103.94, + "probability": 0.5722 + }, + { + "start": 43104.8, + "end": 43108.24, + "probability": 0.9679 + }, + { + "start": 43110.22, + "end": 43115.78, + "probability": 0.9333 + }, + { + "start": 43116.46, + "end": 43118.84, + "probability": 0.9912 + }, + { + "start": 43120.14, + "end": 43124.54, + "probability": 0.9814 + }, + { + "start": 43125.4, + "end": 43126.5, + "probability": 0.2317 + }, + { + "start": 43127.54, + "end": 43129.6, + "probability": 0.7222 + }, + { + "start": 43131.71, + "end": 43135.56, + "probability": 0.8212 + }, + { + "start": 43135.62, + "end": 43136.28, + "probability": 0.4261 + }, + { + "start": 43137.56, + "end": 43138.38, + "probability": 0.6449 + }, + { + "start": 43140.36, + "end": 43144.2, + "probability": 0.953 + }, + { + "start": 43147.24, + "end": 43148.06, + "probability": 0.8811 + }, + { + "start": 43149.38, + "end": 43150.88, + "probability": 0.998 + }, + { + "start": 43150.92, + "end": 43152.78, + "probability": 0.8545 + }, + { + "start": 43153.62, + "end": 43155.3, + "probability": 0.9827 + }, + { + "start": 43157.32, + "end": 43158.1, + "probability": 0.4696 + }, + { + "start": 43160.1, + "end": 43162.36, + "probability": 0.9978 + }, + { + "start": 43162.94, + "end": 43166.22, + "probability": 0.4406 + }, + { + "start": 43168.58, + "end": 43169.4, + "probability": 0.6278 + }, + { + "start": 43170.44, + "end": 43174.52, + "probability": 0.7285 + }, + { + "start": 43175.92, + "end": 43180.4, + "probability": 0.8766 + }, + { + "start": 43181.92, + "end": 43185.34, + "probability": 0.9972 + }, + { + "start": 43186.62, + "end": 43187.7, + "probability": 0.5673 + }, + { + "start": 43188.5, + "end": 43191.5, + "probability": 0.97 + }, + { + "start": 43192.38, + "end": 43194.83, + "probability": 0.9932 + }, + { + "start": 43195.9, + "end": 43199.64, + "probability": 0.9967 + }, + { + "start": 43200.26, + "end": 43202.66, + "probability": 0.9926 + }, + { + "start": 43203.52, + "end": 43207.52, + "probability": 0.9678 + }, + { + "start": 43209.24, + "end": 43212.62, + "probability": 0.9741 + }, + { + "start": 43212.72, + "end": 43219.24, + "probability": 0.9415 + }, + { + "start": 43220.34, + "end": 43221.58, + "probability": 0.7474 + }, + { + "start": 43222.6, + "end": 43224.06, + "probability": 0.8164 + }, + { + "start": 43224.74, + "end": 43227.04, + "probability": 0.9848 + }, + { + "start": 43227.8, + "end": 43230.66, + "probability": 0.9961 + }, + { + "start": 43231.2, + "end": 43236.5, + "probability": 0.9994 + }, + { + "start": 43236.76, + "end": 43236.98, + "probability": 0.6192 + }, + { + "start": 43239.48, + "end": 43240.38, + "probability": 0.524 + }, + { + "start": 43240.4, + "end": 43241.82, + "probability": 0.866 + }, + { + "start": 43248.08, + "end": 43248.12, + "probability": 0.0488 + }, + { + "start": 43248.12, + "end": 43248.16, + "probability": 0.171 + }, + { + "start": 43248.16, + "end": 43248.16, + "probability": 0.1507 + }, + { + "start": 43248.16, + "end": 43248.16, + "probability": 0.1223 + }, + { + "start": 43248.16, + "end": 43248.16, + "probability": 0.0893 + }, + { + "start": 43248.16, + "end": 43248.16, + "probability": 0.0876 + }, + { + "start": 43248.16, + "end": 43248.96, + "probability": 0.0568 + }, + { + "start": 43259.1, + "end": 43259.9, + "probability": 0.0309 + }, + { + "start": 43278.48, + "end": 43278.64, + "probability": 0.0058 + }, + { + "start": 43301.64, + "end": 43304.7, + "probability": 0.9993 + }, + { + "start": 43304.7, + "end": 43311.8, + "probability": 0.9916 + }, + { + "start": 43313.12, + "end": 43313.82, + "probability": 0.8201 + }, + { + "start": 43314.24, + "end": 43320.62, + "probability": 0.9905 + }, + { + "start": 43320.74, + "end": 43321.8, + "probability": 0.5376 + }, + { + "start": 43322.78, + "end": 43323.24, + "probability": 0.8489 + }, + { + "start": 43323.42, + "end": 43328.2, + "probability": 0.988 + }, + { + "start": 43329.5, + "end": 43335.54, + "probability": 0.9968 + }, + { + "start": 43336.86, + "end": 43339.38, + "probability": 0.8876 + }, + { + "start": 43339.9, + "end": 43344.26, + "probability": 0.7102 + }, + { + "start": 43345.56, + "end": 43347.2, + "probability": 0.6157 + }, + { + "start": 43348.02, + "end": 43348.64, + "probability": 0.7958 + }, + { + "start": 43348.72, + "end": 43353.98, + "probability": 0.9772 + }, + { + "start": 43354.1, + "end": 43364.0, + "probability": 0.9714 + }, + { + "start": 43364.56, + "end": 43370.32, + "probability": 0.9947 + }, + { + "start": 43370.46, + "end": 43371.6, + "probability": 0.4808 + }, + { + "start": 43371.7, + "end": 43373.02, + "probability": 0.7335 + }, + { + "start": 43373.74, + "end": 43377.08, + "probability": 0.9988 + }, + { + "start": 43378.86, + "end": 43381.56, + "probability": 0.941 + }, + { + "start": 43382.6, + "end": 43390.46, + "probability": 0.9883 + }, + { + "start": 43390.46, + "end": 43394.52, + "probability": 0.9832 + }, + { + "start": 43397.07, + "end": 43404.64, + "probability": 0.9983 + }, + { + "start": 43406.58, + "end": 43409.42, + "probability": 0.9631 + }, + { + "start": 43409.5, + "end": 43412.32, + "probability": 0.9932 + }, + { + "start": 43412.52, + "end": 43413.02, + "probability": 0.89 + }, + { + "start": 43413.08, + "end": 43413.98, + "probability": 0.9824 + }, + { + "start": 43415.03, + "end": 43417.7, + "probability": 0.9348 + }, + { + "start": 43420.04, + "end": 43421.46, + "probability": 0.9809 + }, + { + "start": 43422.22, + "end": 43425.68, + "probability": 0.9945 + }, + { + "start": 43426.7, + "end": 43429.1, + "probability": 0.8806 + }, + { + "start": 43430.24, + "end": 43430.82, + "probability": 0.6077 + }, + { + "start": 43431.52, + "end": 43438.46, + "probability": 0.9458 + }, + { + "start": 43438.72, + "end": 43439.92, + "probability": 0.8681 + }, + { + "start": 43440.02, + "end": 43443.44, + "probability": 0.9302 + }, + { + "start": 43443.54, + "end": 43444.26, + "probability": 0.9457 + }, + { + "start": 43444.4, + "end": 43447.48, + "probability": 0.9146 + }, + { + "start": 43447.5, + "end": 43448.64, + "probability": 0.9783 + }, + { + "start": 43452.34, + "end": 43458.86, + "probability": 0.9969 + }, + { + "start": 43458.86, + "end": 43464.62, + "probability": 0.9886 + }, + { + "start": 43465.46, + "end": 43465.7, + "probability": 0.4721 + }, + { + "start": 43465.72, + "end": 43469.9, + "probability": 0.8696 + }, + { + "start": 43470.06, + "end": 43474.06, + "probability": 0.9119 + }, + { + "start": 43475.24, + "end": 43476.7, + "probability": 0.258 + }, + { + "start": 43478.4, + "end": 43480.96, + "probability": 0.8586 + }, + { + "start": 43481.52, + "end": 43484.16, + "probability": 0.8614 + }, + { + "start": 43484.9, + "end": 43486.78, + "probability": 0.9932 + }, + { + "start": 43487.96, + "end": 43490.74, + "probability": 0.7004 + }, + { + "start": 43493.38, + "end": 43494.52, + "probability": 0.9868 + }, + { + "start": 43495.16, + "end": 43502.46, + "probability": 0.9934 + }, + { + "start": 43504.94, + "end": 43508.68, + "probability": 0.842 + }, + { + "start": 43509.58, + "end": 43512.5, + "probability": 0.9836 + }, + { + "start": 43514.46, + "end": 43514.92, + "probability": 0.63 + }, + { + "start": 43515.02, + "end": 43521.38, + "probability": 0.9918 + }, + { + "start": 43522.12, + "end": 43528.26, + "probability": 0.9857 + }, + { + "start": 43528.46, + "end": 43529.02, + "probability": 0.7854 + }, + { + "start": 43529.2, + "end": 43533.62, + "probability": 0.9517 + }, + { + "start": 43533.8, + "end": 43534.14, + "probability": 0.4301 + }, + { + "start": 43534.22, + "end": 43535.0, + "probability": 0.9373 + }, + { + "start": 43535.38, + "end": 43536.24, + "probability": 0.8364 + }, + { + "start": 43536.38, + "end": 43542.38, + "probability": 0.8241 + }, + { + "start": 43542.44, + "end": 43543.22, + "probability": 0.9837 + }, + { + "start": 43546.02, + "end": 43547.28, + "probability": 0.7946 + }, + { + "start": 43547.4, + "end": 43548.8, + "probability": 0.7759 + }, + { + "start": 43548.98, + "end": 43555.48, + "probability": 0.9543 + }, + { + "start": 43555.64, + "end": 43557.28, + "probability": 0.9578 + }, + { + "start": 43559.78, + "end": 43562.6, + "probability": 0.6405 + }, + { + "start": 43563.38, + "end": 43566.72, + "probability": 0.5748 + }, + { + "start": 43567.88, + "end": 43577.68, + "probability": 0.9946 + }, + { + "start": 43577.68, + "end": 43580.78, + "probability": 0.9645 + }, + { + "start": 43580.98, + "end": 43582.22, + "probability": 0.7935 + }, + { + "start": 43583.48, + "end": 43586.82, + "probability": 0.8347 + }, + { + "start": 43587.56, + "end": 43588.92, + "probability": 0.9918 + }, + { + "start": 43590.46, + "end": 43590.98, + "probability": 0.521 + }, + { + "start": 43591.86, + "end": 43593.78, + "probability": 0.9977 + }, + { + "start": 43593.88, + "end": 43595.14, + "probability": 0.765 + }, + { + "start": 43595.24, + "end": 43596.24, + "probability": 0.5938 + }, + { + "start": 43597.34, + "end": 43604.78, + "probability": 0.9762 + }, + { + "start": 43605.32, + "end": 43607.48, + "probability": 0.9937 + }, + { + "start": 43607.56, + "end": 43608.38, + "probability": 0.8394 + }, + { + "start": 43608.48, + "end": 43610.78, + "probability": 0.9937 + }, + { + "start": 43611.7, + "end": 43616.08, + "probability": 0.9944 + }, + { + "start": 43616.8, + "end": 43619.04, + "probability": 0.9515 + }, + { + "start": 43620.7, + "end": 43622.36, + "probability": 0.8672 + }, + { + "start": 43623.68, + "end": 43625.7, + "probability": 0.9482 + }, + { + "start": 43626.62, + "end": 43627.98, + "probability": 0.749 + }, + { + "start": 43628.94, + "end": 43632.72, + "probability": 0.7058 + }, + { + "start": 43633.58, + "end": 43635.32, + "probability": 0.6807 + }, + { + "start": 43636.28, + "end": 43637.58, + "probability": 0.7677 + }, + { + "start": 43637.76, + "end": 43642.98, + "probability": 0.9579 + }, + { + "start": 43643.64, + "end": 43645.49, + "probability": 0.9478 + }, + { + "start": 43646.94, + "end": 43648.96, + "probability": 0.9674 + }, + { + "start": 43649.86, + "end": 43651.54, + "probability": 0.9651 + }, + { + "start": 43652.1, + "end": 43653.75, + "probability": 0.9834 + }, + { + "start": 43655.52, + "end": 43657.22, + "probability": 0.4974 + }, + { + "start": 43657.22, + "end": 43657.66, + "probability": 0.6504 + }, + { + "start": 43657.84, + "end": 43659.26, + "probability": 0.9619 + }, + { + "start": 43659.36, + "end": 43660.9, + "probability": 0.7726 + }, + { + "start": 43661.54, + "end": 43662.9, + "probability": 0.8345 + }, + { + "start": 43663.72, + "end": 43664.82, + "probability": 0.9119 + }, + { + "start": 43665.66, + "end": 43668.0, + "probability": 0.9071 + }, + { + "start": 43669.04, + "end": 43671.36, + "probability": 0.9904 + }, + { + "start": 43673.06, + "end": 43675.3, + "probability": 0.8218 + }, + { + "start": 43675.46, + "end": 43677.2, + "probability": 0.7909 + }, + { + "start": 43678.22, + "end": 43680.28, + "probability": 0.828 + }, + { + "start": 43680.98, + "end": 43682.08, + "probability": 0.9937 + }, + { + "start": 43682.6, + "end": 43684.88, + "probability": 0.8828 + }, + { + "start": 43685.82, + "end": 43687.86, + "probability": 0.9643 + }, + { + "start": 43689.16, + "end": 43693.1, + "probability": 0.6179 + }, + { + "start": 43694.34, + "end": 43697.44, + "probability": 0.9827 + }, + { + "start": 43699.24, + "end": 43702.7, + "probability": 0.9626 + }, + { + "start": 43702.86, + "end": 43703.68, + "probability": 0.2942 + }, + { + "start": 43703.92, + "end": 43709.82, + "probability": 0.9964 + }, + { + "start": 43710.46, + "end": 43711.64, + "probability": 0.7637 + }, + { + "start": 43714.14, + "end": 43719.24, + "probability": 0.8062 + }, + { + "start": 43720.92, + "end": 43727.24, + "probability": 0.7203 + }, + { + "start": 43728.2, + "end": 43732.02, + "probability": 0.9355 + }, + { + "start": 43732.62, + "end": 43736.42, + "probability": 0.9875 + }, + { + "start": 43737.72, + "end": 43738.76, + "probability": 0.9772 + }, + { + "start": 43739.04, + "end": 43743.94, + "probability": 0.8577 + }, + { + "start": 43744.22, + "end": 43747.74, + "probability": 0.966 + }, + { + "start": 43748.56, + "end": 43750.22, + "probability": 0.9858 + }, + { + "start": 43751.6, + "end": 43754.88, + "probability": 0.9272 + }, + { + "start": 43758.26, + "end": 43763.44, + "probability": 0.9426 + }, + { + "start": 43764.38, + "end": 43767.28, + "probability": 0.5177 + }, + { + "start": 43767.44, + "end": 43770.72, + "probability": 0.9697 + }, + { + "start": 43770.72, + "end": 43779.04, + "probability": 0.9974 + }, + { + "start": 43780.22, + "end": 43784.89, + "probability": 0.8905 + }, + { + "start": 43786.45, + "end": 43789.35, + "probability": 0.8026 + }, + { + "start": 43790.7, + "end": 43793.26, + "probability": 0.9535 + }, + { + "start": 43793.46, + "end": 43793.72, + "probability": 0.7895 + }, + { + "start": 43793.82, + "end": 43795.32, + "probability": 0.999 + }, + { + "start": 43796.38, + "end": 43798.64, + "probability": 0.9951 + }, + { + "start": 43799.86, + "end": 43800.96, + "probability": 0.9157 + }, + { + "start": 43801.04, + "end": 43806.7, + "probability": 0.98 + }, + { + "start": 43807.72, + "end": 43810.52, + "probability": 0.9625 + }, + { + "start": 43812.22, + "end": 43813.86, + "probability": 0.7492 + }, + { + "start": 43815.88, + "end": 43821.26, + "probability": 0.999 + }, + { + "start": 43822.28, + "end": 43827.94, + "probability": 0.9871 + }, + { + "start": 43828.82, + "end": 43831.54, + "probability": 0.599 + }, + { + "start": 43833.3, + "end": 43836.42, + "probability": 0.4713 + }, + { + "start": 43837.88, + "end": 43840.56, + "probability": 0.9937 + }, + { + "start": 43841.32, + "end": 43842.9, + "probability": 0.0568 + }, + { + "start": 43843.88, + "end": 43848.58, + "probability": 0.7484 + }, + { + "start": 43852.42, + "end": 43856.42, + "probability": 0.9943 + }, + { + "start": 43857.1, + "end": 43859.52, + "probability": 0.8727 + }, + { + "start": 43860.18, + "end": 43862.32, + "probability": 0.9865 + }, + { + "start": 43863.02, + "end": 43864.12, + "probability": 0.9884 + }, + { + "start": 43865.38, + "end": 43867.96, + "probability": 0.9773 + }, + { + "start": 43868.42, + "end": 43869.5, + "probability": 0.4892 + }, + { + "start": 43869.5, + "end": 43870.6, + "probability": 0.7254 + }, + { + "start": 43871.66, + "end": 43874.84, + "probability": 0.9937 + }, + { + "start": 43875.74, + "end": 43877.08, + "probability": 0.957 + }, + { + "start": 43877.74, + "end": 43879.96, + "probability": 0.9803 + }, + { + "start": 43881.04, + "end": 43886.26, + "probability": 0.9982 + }, + { + "start": 43886.78, + "end": 43895.6, + "probability": 0.9956 + }, + { + "start": 43895.66, + "end": 43897.08, + "probability": 0.668 + }, + { + "start": 43897.69, + "end": 43900.52, + "probability": 0.899 + }, + { + "start": 43900.96, + "end": 43900.96, + "probability": 0.7054 + }, + { + "start": 43900.96, + "end": 43904.38, + "probability": 0.9212 + }, + { + "start": 43905.28, + "end": 43907.88, + "probability": 0.3367 + }, + { + "start": 43908.18, + "end": 43910.1, + "probability": 0.3899 + }, + { + "start": 43911.56, + "end": 43913.12, + "probability": 0.0905 + }, + { + "start": 43913.26, + "end": 43914.5, + "probability": 0.5539 + }, + { + "start": 43915.12, + "end": 43918.6, + "probability": 0.1094 + }, + { + "start": 43918.6, + "end": 43922.06, + "probability": 0.2362 + }, + { + "start": 43922.3, + "end": 43922.8, + "probability": 0.3248 + }, + { + "start": 43923.18, + "end": 43925.31, + "probability": 0.5024 + }, + { + "start": 43926.62, + "end": 43930.1, + "probability": 0.9229 + }, + { + "start": 43930.32, + "end": 43931.96, + "probability": 0.7537 + }, + { + "start": 43932.78, + "end": 43935.38, + "probability": 0.8799 + }, + { + "start": 43935.74, + "end": 43938.26, + "probability": 0.8708 + }, + { + "start": 43940.26, + "end": 43943.88, + "probability": 0.9021 + }, + { + "start": 43944.4, + "end": 43945.88, + "probability": 0.9336 + }, + { + "start": 43946.46, + "end": 43947.12, + "probability": 0.9055 + }, + { + "start": 43947.16, + "end": 43949.1, + "probability": 0.6784 + }, + { + "start": 43949.3, + "end": 43953.32, + "probability": 0.9792 + }, + { + "start": 43953.32, + "end": 43958.48, + "probability": 0.9976 + }, + { + "start": 43959.74, + "end": 43965.18, + "probability": 0.9948 + }, + { + "start": 43965.78, + "end": 43969.86, + "probability": 0.9855 + }, + { + "start": 43970.62, + "end": 43971.3, + "probability": 0.0295 + }, + { + "start": 43971.92, + "end": 43974.94, + "probability": 0.7832 + }, + { + "start": 43976.04, + "end": 43980.9, + "probability": 0.9875 + }, + { + "start": 43982.04, + "end": 43984.08, + "probability": 0.9822 + }, + { + "start": 43984.24, + "end": 43985.1, + "probability": 0.9575 + }, + { + "start": 43985.56, + "end": 43987.03, + "probability": 0.6494 + }, + { + "start": 43987.86, + "end": 43990.23, + "probability": 0.5764 + }, + { + "start": 43990.96, + "end": 43996.84, + "probability": 0.9686 + }, + { + "start": 43997.16, + "end": 44002.34, + "probability": 0.7703 + }, + { + "start": 44002.92, + "end": 44004.52, + "probability": 0.9249 + }, + { + "start": 44005.82, + "end": 44009.13, + "probability": 0.9216 + }, + { + "start": 44009.44, + "end": 44009.82, + "probability": 0.0184 + }, + { + "start": 44009.84, + "end": 44010.14, + "probability": 0.6306 + }, + { + "start": 44010.24, + "end": 44011.64, + "probability": 0.936 + }, + { + "start": 44012.38, + "end": 44016.28, + "probability": 0.998 + }, + { + "start": 44016.28, + "end": 44020.02, + "probability": 0.9463 + }, + { + "start": 44020.18, + "end": 44023.14, + "probability": 0.8001 + }, + { + "start": 44023.36, + "end": 44026.5, + "probability": 0.9968 + }, + { + "start": 44026.68, + "end": 44028.16, + "probability": 0.6191 + }, + { + "start": 44029.02, + "end": 44029.6, + "probability": 0.4704 + }, + { + "start": 44029.68, + "end": 44030.62, + "probability": 0.7272 + }, + { + "start": 44030.72, + "end": 44031.8, + "probability": 0.7796 + }, + { + "start": 44031.84, + "end": 44036.38, + "probability": 0.9803 + }, + { + "start": 44036.48, + "end": 44038.06, + "probability": 0.9515 + }, + { + "start": 44038.16, + "end": 44040.99, + "probability": 0.9456 + }, + { + "start": 44041.52, + "end": 44048.24, + "probability": 0.9606 + }, + { + "start": 44048.86, + "end": 44051.38, + "probability": 0.9971 + }, + { + "start": 44054.16, + "end": 44058.0, + "probability": 0.906 + }, + { + "start": 44058.0, + "end": 44058.78, + "probability": 0.5042 + }, + { + "start": 44059.12, + "end": 44059.78, + "probability": 0.7928 + }, + { + "start": 44059.98, + "end": 44062.0, + "probability": 0.8354 + }, + { + "start": 44062.42, + "end": 44064.14, + "probability": 0.8263 + }, + { + "start": 44064.4, + "end": 44065.32, + "probability": 0.897 + }, + { + "start": 44065.74, + "end": 44070.0, + "probability": 0.9691 + }, + { + "start": 44070.3, + "end": 44071.46, + "probability": 0.9761 + }, + { + "start": 44071.88, + "end": 44073.82, + "probability": 0.7595 + }, + { + "start": 44074.68, + "end": 44078.6, + "probability": 0.8713 + }, + { + "start": 44079.4, + "end": 44082.38, + "probability": 0.9314 + }, + { + "start": 44082.8, + "end": 44087.8, + "probability": 0.998 + }, + { + "start": 44088.32, + "end": 44090.32, + "probability": 0.7067 + }, + { + "start": 44091.04, + "end": 44092.15, + "probability": 0.9495 + }, + { + "start": 44093.18, + "end": 44094.42, + "probability": 0.8745 + }, + { + "start": 44095.06, + "end": 44096.84, + "probability": 0.8702 + }, + { + "start": 44097.42, + "end": 44101.98, + "probability": 0.998 + }, + { + "start": 44101.98, + "end": 44106.34, + "probability": 0.9967 + }, + { + "start": 44106.94, + "end": 44108.34, + "probability": 0.8766 + }, + { + "start": 44109.06, + "end": 44110.68, + "probability": 0.9626 + }, + { + "start": 44111.64, + "end": 44112.76, + "probability": 0.9187 + }, + { + "start": 44113.08, + "end": 44116.44, + "probability": 0.9607 + }, + { + "start": 44117.44, + "end": 44120.26, + "probability": 0.9471 + }, + { + "start": 44121.26, + "end": 44123.56, + "probability": 0.9844 + }, + { + "start": 44123.86, + "end": 44124.78, + "probability": 0.9808 + }, + { + "start": 44125.12, + "end": 44131.76, + "probability": 0.999 + }, + { + "start": 44132.92, + "end": 44135.36, + "probability": 0.9632 + }, + { + "start": 44135.38, + "end": 44136.52, + "probability": 0.7612 + }, + { + "start": 44137.84, + "end": 44138.33, + "probability": 0.8617 + }, + { + "start": 44138.8, + "end": 44139.89, + "probability": 0.3437 + }, + { + "start": 44140.52, + "end": 44144.36, + "probability": 0.7691 + }, + { + "start": 44145.6, + "end": 44146.76, + "probability": 0.4152 + }, + { + "start": 44147.28, + "end": 44148.72, + "probability": 0.981 + }, + { + "start": 44149.02, + "end": 44150.68, + "probability": 0.4488 + }, + { + "start": 44150.88, + "end": 44151.34, + "probability": 0.4594 + }, + { + "start": 44151.6, + "end": 44152.46, + "probability": 0.4598 + }, + { + "start": 44152.92, + "end": 44155.9, + "probability": 0.2429 + }, + { + "start": 44155.9, + "end": 44157.2, + "probability": 0.7776 + }, + { + "start": 44157.28, + "end": 44158.38, + "probability": 0.7379 + }, + { + "start": 44158.46, + "end": 44159.26, + "probability": 0.6035 + }, + { + "start": 44159.34, + "end": 44162.16, + "probability": 0.5756 + }, + { + "start": 44162.16, + "end": 44163.44, + "probability": 0.5849 + }, + { + "start": 44163.54, + "end": 44167.56, + "probability": 0.9408 + }, + { + "start": 44167.56, + "end": 44171.32, + "probability": 0.9438 + }, + { + "start": 44171.68, + "end": 44175.92, + "probability": 0.8022 + }, + { + "start": 44176.08, + "end": 44178.22, + "probability": 0.7794 + }, + { + "start": 44178.3, + "end": 44179.74, + "probability": 0.8625 + }, + { + "start": 44179.8, + "end": 44181.46, + "probability": 0.9803 + }, + { + "start": 44181.6, + "end": 44183.68, + "probability": 0.884 + }, + { + "start": 44183.86, + "end": 44186.06, + "probability": 0.9516 + }, + { + "start": 44186.16, + "end": 44187.24, + "probability": 0.9258 + }, + { + "start": 44187.48, + "end": 44189.44, + "probability": 0.8823 + }, + { + "start": 44191.46, + "end": 44193.6, + "probability": 0.2874 + }, + { + "start": 44193.7, + "end": 44197.16, + "probability": 0.994 + }, + { + "start": 44197.16, + "end": 44200.32, + "probability": 0.9987 + }, + { + "start": 44201.6, + "end": 44202.34, + "probability": 0.6003 + }, + { + "start": 44202.72, + "end": 44203.52, + "probability": 0.4406 + }, + { + "start": 44203.56, + "end": 44209.76, + "probability": 0.9868 + }, + { + "start": 44209.78, + "end": 44211.84, + "probability": 0.624 + }, + { + "start": 44211.96, + "end": 44212.86, + "probability": 0.6909 + }, + { + "start": 44213.62, + "end": 44214.94, + "probability": 0.7997 + }, + { + "start": 44226.96, + "end": 44228.04, + "probability": 0.7102 + }, + { + "start": 44229.1, + "end": 44230.56, + "probability": 0.9351 + }, + { + "start": 44231.36, + "end": 44233.08, + "probability": 0.7707 + }, + { + "start": 44235.38, + "end": 44237.86, + "probability": 0.8879 + }, + { + "start": 44238.94, + "end": 44239.74, + "probability": 0.6526 + }, + { + "start": 44240.34, + "end": 44242.78, + "probability": 0.9819 + }, + { + "start": 44242.78, + "end": 44246.32, + "probability": 0.8763 + }, + { + "start": 44246.38, + "end": 44246.92, + "probability": 0.6874 + }, + { + "start": 44248.16, + "end": 44251.5, + "probability": 0.7343 + }, + { + "start": 44253.72, + "end": 44257.68, + "probability": 0.8363 + }, + { + "start": 44258.96, + "end": 44262.76, + "probability": 0.8691 + }, + { + "start": 44264.0, + "end": 44265.36, + "probability": 0.98 + }, + { + "start": 44266.0, + "end": 44267.87, + "probability": 0.9465 + }, + { + "start": 44270.26, + "end": 44273.86, + "probability": 0.9626 + }, + { + "start": 44274.38, + "end": 44276.0, + "probability": 0.9961 + }, + { + "start": 44277.9, + "end": 44279.5, + "probability": 0.6885 + }, + { + "start": 44279.5, + "end": 44284.8, + "probability": 0.4912 + }, + { + "start": 44285.58, + "end": 44289.32, + "probability": 0.6673 + }, + { + "start": 44292.54, + "end": 44295.6, + "probability": 0.4999 + }, + { + "start": 44297.28, + "end": 44298.12, + "probability": 0.9405 + }, + { + "start": 44301.68, + "end": 44303.86, + "probability": 0.9485 + }, + { + "start": 44304.08, + "end": 44305.52, + "probability": 0.7409 + }, + { + "start": 44307.02, + "end": 44307.2, + "probability": 0.0006 + }, + { + "start": 44308.22, + "end": 44309.5, + "probability": 0.2837 + }, + { + "start": 44311.4, + "end": 44315.18, + "probability": 0.8689 + }, + { + "start": 44317.0, + "end": 44320.72, + "probability": 0.9908 + }, + { + "start": 44322.22, + "end": 44323.9, + "probability": 0.753 + }, + { + "start": 44324.86, + "end": 44329.96, + "probability": 0.9569 + }, + { + "start": 44332.1, + "end": 44334.08, + "probability": 0.4626 + }, + { + "start": 44334.6, + "end": 44337.2, + "probability": 0.7882 + }, + { + "start": 44339.48, + "end": 44341.5, + "probability": 0.9909 + }, + { + "start": 44342.14, + "end": 44344.56, + "probability": 0.9848 + }, + { + "start": 44346.28, + "end": 44347.48, + "probability": 0.9524 + }, + { + "start": 44348.44, + "end": 44349.76, + "probability": 0.9951 + }, + { + "start": 44352.2, + "end": 44356.02, + "probability": 0.9782 + }, + { + "start": 44357.96, + "end": 44360.76, + "probability": 0.7935 + }, + { + "start": 44362.38, + "end": 44366.7, + "probability": 0.8531 + }, + { + "start": 44368.76, + "end": 44370.44, + "probability": 0.8685 + }, + { + "start": 44371.92, + "end": 44372.84, + "probability": 0.8542 + }, + { + "start": 44373.82, + "end": 44378.38, + "probability": 0.9697 + }, + { + "start": 44379.6, + "end": 44381.38, + "probability": 0.897 + }, + { + "start": 44384.38, + "end": 44388.64, + "probability": 0.8537 + }, + { + "start": 44389.76, + "end": 44395.9, + "probability": 0.9966 + }, + { + "start": 44397.08, + "end": 44402.14, + "probability": 0.9662 + }, + { + "start": 44403.74, + "end": 44405.16, + "probability": 0.8069 + }, + { + "start": 44405.78, + "end": 44406.58, + "probability": 0.8459 + }, + { + "start": 44406.76, + "end": 44412.64, + "probability": 0.9924 + }, + { + "start": 44413.0, + "end": 44416.29, + "probability": 0.9675 + }, + { + "start": 44418.66, + "end": 44420.74, + "probability": 0.9949 + }, + { + "start": 44422.68, + "end": 44424.82, + "probability": 0.9819 + }, + { + "start": 44425.96, + "end": 44426.78, + "probability": 0.9268 + }, + { + "start": 44428.44, + "end": 44433.98, + "probability": 0.6747 + }, + { + "start": 44434.74, + "end": 44436.98, + "probability": 0.9961 + }, + { + "start": 44437.04, + "end": 44437.22, + "probability": 0.7989 + }, + { + "start": 44438.86, + "end": 44440.12, + "probability": 0.4877 + }, + { + "start": 44443.66, + "end": 44444.76, + "probability": 0.5143 + }, + { + "start": 44444.88, + "end": 44450.58, + "probability": 0.8901 + }, + { + "start": 44453.76, + "end": 44454.62, + "probability": 0.5048 + }, + { + "start": 44455.46, + "end": 44459.52, + "probability": 0.9902 + }, + { + "start": 44460.38, + "end": 44461.78, + "probability": 0.9361 + }, + { + "start": 44462.76, + "end": 44464.66, + "probability": 0.9985 + }, + { + "start": 44465.96, + "end": 44468.6, + "probability": 0.827 + }, + { + "start": 44468.66, + "end": 44469.32, + "probability": 0.8138 + }, + { + "start": 44469.56, + "end": 44471.06, + "probability": 0.959 + }, + { + "start": 44472.7, + "end": 44476.08, + "probability": 0.9471 + }, + { + "start": 44477.72, + "end": 44482.48, + "probability": 0.7472 + }, + { + "start": 44483.04, + "end": 44485.11, + "probability": 0.9945 + }, + { + "start": 44486.66, + "end": 44491.0, + "probability": 0.7807 + }, + { + "start": 44491.92, + "end": 44492.4, + "probability": 0.8756 + }, + { + "start": 44493.0, + "end": 44493.52, + "probability": 0.9623 + }, + { + "start": 44494.86, + "end": 44495.72, + "probability": 0.8806 + }, + { + "start": 44496.36, + "end": 44498.56, + "probability": 0.9084 + }, + { + "start": 44499.86, + "end": 44501.2, + "probability": 0.9053 + }, + { + "start": 44502.18, + "end": 44504.6, + "probability": 0.988 + }, + { + "start": 44505.2, + "end": 44505.92, + "probability": 0.8755 + }, + { + "start": 44507.69, + "end": 44508.9, + "probability": 0.0208 + }, + { + "start": 44509.82, + "end": 44512.86, + "probability": 0.5076 + }, + { + "start": 44513.06, + "end": 44514.74, + "probability": 0.6031 + }, + { + "start": 44515.5, + "end": 44517.8, + "probability": 0.5701 + }, + { + "start": 44517.92, + "end": 44520.76, + "probability": 0.1674 + }, + { + "start": 44522.02, + "end": 44523.26, + "probability": 0.6594 + }, + { + "start": 44523.38, + "end": 44529.52, + "probability": 0.6553 + }, + { + "start": 44529.58, + "end": 44529.8, + "probability": 0.7397 + }, + { + "start": 44529.96, + "end": 44533.98, + "probability": 0.7453 + }, + { + "start": 44536.54, + "end": 44539.42, + "probability": 0.8563 + }, + { + "start": 44539.42, + "end": 44542.84, + "probability": 0.923 + }, + { + "start": 44543.28, + "end": 44545.04, + "probability": 0.9929 + }, + { + "start": 44546.3, + "end": 44548.16, + "probability": 0.791 + }, + { + "start": 44549.58, + "end": 44549.68, + "probability": 0.9053 + }, + { + "start": 44550.92, + "end": 44552.03, + "probability": 0.9912 + }, + { + "start": 44552.68, + "end": 44553.5, + "probability": 0.9514 + }, + { + "start": 44553.8, + "end": 44554.76, + "probability": 0.9333 + }, + { + "start": 44555.0, + "end": 44556.24, + "probability": 0.995 + }, + { + "start": 44556.52, + "end": 44557.82, + "probability": 0.9188 + }, + { + "start": 44559.88, + "end": 44560.88, + "probability": 0.6343 + }, + { + "start": 44561.4, + "end": 44562.42, + "probability": 0.9639 + }, + { + "start": 44563.24, + "end": 44566.48, + "probability": 0.5044 + }, + { + "start": 44566.56, + "end": 44569.18, + "probability": 0.988 + }, + { + "start": 44569.36, + "end": 44569.78, + "probability": 0.2657 + }, + { + "start": 44570.68, + "end": 44572.98, + "probability": 0.1974 + }, + { + "start": 44573.52, + "end": 44576.46, + "probability": 0.4776 + }, + { + "start": 44576.46, + "end": 44579.42, + "probability": 0.8311 + }, + { + "start": 44579.72, + "end": 44580.66, + "probability": 0.3393 + }, + { + "start": 44580.68, + "end": 44582.05, + "probability": 0.1646 + }, + { + "start": 44582.28, + "end": 44583.98, + "probability": 0.3612 + }, + { + "start": 44584.02, + "end": 44587.24, + "probability": 0.6439 + }, + { + "start": 44587.44, + "end": 44591.36, + "probability": 0.1328 + }, + { + "start": 44591.36, + "end": 44592.43, + "probability": 0.4962 + }, + { + "start": 44592.82, + "end": 44596.82, + "probability": 0.5891 + }, + { + "start": 44597.38, + "end": 44600.22, + "probability": 0.6282 + }, + { + "start": 44600.34, + "end": 44603.02, + "probability": 0.1394 + }, + { + "start": 44603.1, + "end": 44606.7, + "probability": 0.7545 + }, + { + "start": 44606.96, + "end": 44610.58, + "probability": 0.9746 + }, + { + "start": 44611.3, + "end": 44613.42, + "probability": 0.6963 + }, + { + "start": 44613.64, + "end": 44616.54, + "probability": 0.8088 + }, + { + "start": 44617.24, + "end": 44620.86, + "probability": 0.5063 + }, + { + "start": 44620.86, + "end": 44622.32, + "probability": 0.9123 + }, + { + "start": 44623.34, + "end": 44623.5, + "probability": 0.0812 + }, + { + "start": 44623.5, + "end": 44626.54, + "probability": 0.437 + }, + { + "start": 44626.54, + "end": 44631.24, + "probability": 0.3519 + }, + { + "start": 44631.54, + "end": 44634.82, + "probability": 0.5833 + }, + { + "start": 44634.86, + "end": 44635.18, + "probability": 0.0714 + }, + { + "start": 44635.18, + "end": 44637.06, + "probability": 0.0922 + }, + { + "start": 44637.3, + "end": 44638.14, + "probability": 0.3906 + }, + { + "start": 44638.8, + "end": 44641.16, + "probability": 0.4332 + }, + { + "start": 44641.3, + "end": 44643.14, + "probability": 0.1654 + }, + { + "start": 44644.04, + "end": 44647.18, + "probability": 0.9393 + }, + { + "start": 44647.18, + "end": 44648.68, + "probability": 0.2898 + }, + { + "start": 44648.68, + "end": 44651.56, + "probability": 0.6892 + }, + { + "start": 44651.56, + "end": 44659.3, + "probability": 0.8595 + }, + { + "start": 44660.3, + "end": 44664.38, + "probability": 0.999 + }, + { + "start": 44665.24, + "end": 44666.18, + "probability": 0.9698 + }, + { + "start": 44666.82, + "end": 44670.38, + "probability": 0.8141 + }, + { + "start": 44670.56, + "end": 44673.42, + "probability": 0.5112 + }, + { + "start": 44675.02, + "end": 44683.88, + "probability": 0.9787 + }, + { + "start": 44684.92, + "end": 44687.9, + "probability": 0.8979 + }, + { + "start": 44689.62, + "end": 44696.0, + "probability": 0.9779 + }, + { + "start": 44696.94, + "end": 44697.06, + "probability": 0.5448 + }, + { + "start": 44697.66, + "end": 44700.18, + "probability": 0.9723 + }, + { + "start": 44702.74, + "end": 44703.84, + "probability": 0.5029 + }, + { + "start": 44704.84, + "end": 44707.94, + "probability": 0.6232 + }, + { + "start": 44708.7, + "end": 44714.66, + "probability": 0.9972 + }, + { + "start": 44714.66, + "end": 44720.2, + "probability": 0.9442 + }, + { + "start": 44721.3, + "end": 44721.3, + "probability": 0.1076 + }, + { + "start": 44721.3, + "end": 44726.36, + "probability": 0.9835 + }, + { + "start": 44727.3, + "end": 44729.14, + "probability": 0.97 + }, + { + "start": 44729.64, + "end": 44730.94, + "probability": 0.757 + }, + { + "start": 44730.96, + "end": 44732.54, + "probability": 0.6954 + }, + { + "start": 44733.18, + "end": 44735.96, + "probability": 0.5473 + }, + { + "start": 44737.8, + "end": 44739.14, + "probability": 0.9805 + }, + { + "start": 44740.54, + "end": 44744.36, + "probability": 0.9932 + }, + { + "start": 44745.62, + "end": 44752.04, + "probability": 0.9955 + }, + { + "start": 44753.44, + "end": 44759.98, + "probability": 0.9567 + }, + { + "start": 44761.58, + "end": 44763.1, + "probability": 0.7566 + }, + { + "start": 44764.86, + "end": 44765.94, + "probability": 0.699 + }, + { + "start": 44767.22, + "end": 44771.29, + "probability": 0.9203 + }, + { + "start": 44771.44, + "end": 44774.04, + "probability": 0.9902 + }, + { + "start": 44774.52, + "end": 44775.4, + "probability": 0.7416 + }, + { + "start": 44775.94, + "end": 44778.52, + "probability": 0.9039 + }, + { + "start": 44779.44, + "end": 44780.9, + "probability": 0.9541 + }, + { + "start": 44782.0, + "end": 44782.76, + "probability": 0.8547 + }, + { + "start": 44783.54, + "end": 44785.8, + "probability": 0.9517 + }, + { + "start": 44788.0, + "end": 44792.7, + "probability": 0.909 + }, + { + "start": 44793.62, + "end": 44795.74, + "probability": 0.9773 + }, + { + "start": 44795.9, + "end": 44797.78, + "probability": 0.9092 + }, + { + "start": 44797.86, + "end": 44799.56, + "probability": 0.8838 + }, + { + "start": 44801.14, + "end": 44801.56, + "probability": 0.0002 + }, + { + "start": 44804.12, + "end": 44806.24, + "probability": 0.3719 + }, + { + "start": 44806.7, + "end": 44807.84, + "probability": 0.9548 + }, + { + "start": 44807.88, + "end": 44808.92, + "probability": 0.0592 + }, + { + "start": 44809.22, + "end": 44813.0, + "probability": 0.1934 + }, + { + "start": 44814.44, + "end": 44817.2, + "probability": 0.1432 + }, + { + "start": 44821.78, + "end": 44823.04, + "probability": 0.5955 + }, + { + "start": 44823.51, + "end": 44825.92, + "probability": 0.9966 + }, + { + "start": 44826.36, + "end": 44829.14, + "probability": 0.5806 + }, + { + "start": 44830.58, + "end": 44831.98, + "probability": 0.5642 + }, + { + "start": 44832.3, + "end": 44836.24, + "probability": 0.8283 + }, + { + "start": 44836.6, + "end": 44840.09, + "probability": 0.9095 + }, + { + "start": 44840.64, + "end": 44841.74, + "probability": 0.9608 + }, + { + "start": 44843.02, + "end": 44847.6, + "probability": 0.6684 + }, + { + "start": 44850.28, + "end": 44850.9, + "probability": 0.5469 + }, + { + "start": 44852.18, + "end": 44854.02, + "probability": 0.9832 + }, + { + "start": 44854.3, + "end": 44855.12, + "probability": 0.3338 + }, + { + "start": 44855.32, + "end": 44856.51, + "probability": 0.9521 + }, + { + "start": 44857.04, + "end": 44858.58, + "probability": 0.7877 + }, + { + "start": 44860.06, + "end": 44861.62, + "probability": 0.8721 + }, + { + "start": 44864.74, + "end": 44867.68, + "probability": 0.3926 + }, + { + "start": 44868.04, + "end": 44871.06, + "probability": 0.6985 + }, + { + "start": 44871.67, + "end": 44874.98, + "probability": 0.7479 + }, + { + "start": 44875.56, + "end": 44877.16, + "probability": 0.9416 + }, + { + "start": 44878.0, + "end": 44878.66, + "probability": 0.9764 + }, + { + "start": 44878.7, + "end": 44880.14, + "probability": 0.5528 + }, + { + "start": 44880.28, + "end": 44881.72, + "probability": 0.7515 + }, + { + "start": 44882.12, + "end": 44883.56, + "probability": 0.9814 + }, + { + "start": 44884.82, + "end": 44887.1, + "probability": 0.941 + }, + { + "start": 44887.68, + "end": 44891.82, + "probability": 0.995 + }, + { + "start": 44892.02, + "end": 44894.84, + "probability": 0.9639 + }, + { + "start": 44894.98, + "end": 44895.96, + "probability": 0.9143 + }, + { + "start": 44896.92, + "end": 44900.1, + "probability": 0.8293 + }, + { + "start": 44900.34, + "end": 44904.06, + "probability": 0.8954 + }, + { + "start": 44904.96, + "end": 44907.8, + "probability": 0.9961 + }, + { + "start": 44909.62, + "end": 44910.98, + "probability": 0.6706 + }, + { + "start": 44911.88, + "end": 44915.94, + "probability": 0.9875 + }, + { + "start": 44916.1, + "end": 44917.54, + "probability": 0.9912 + }, + { + "start": 44917.9, + "end": 44918.92, + "probability": 0.3246 + }, + { + "start": 44919.16, + "end": 44921.0, + "probability": 0.8329 + }, + { + "start": 44921.7, + "end": 44925.42, + "probability": 0.9856 + }, + { + "start": 44925.74, + "end": 44927.56, + "probability": 0.8247 + }, + { + "start": 44933.46, + "end": 44936.28, + "probability": 0.4463 + }, + { + "start": 44936.42, + "end": 44939.62, + "probability": 0.6409 + }, + { + "start": 44940.1, + "end": 44942.26, + "probability": 0.9932 + }, + { + "start": 44942.32, + "end": 44944.6, + "probability": 0.8893 + }, + { + "start": 44945.38, + "end": 44947.32, + "probability": 0.6698 + }, + { + "start": 44947.38, + "end": 44952.8, + "probability": 0.9662 + }, + { + "start": 44952.88, + "end": 44954.8, + "probability": 0.666 + }, + { + "start": 44954.8, + "end": 44955.7, + "probability": 0.24 + }, + { + "start": 44956.22, + "end": 44957.86, + "probability": 0.1409 + }, + { + "start": 44958.0, + "end": 44960.0, + "probability": 0.8467 + }, + { + "start": 44960.1, + "end": 44961.05, + "probability": 0.0715 + }, + { + "start": 44961.34, + "end": 44963.44, + "probability": 0.6365 + }, + { + "start": 44964.62, + "end": 44964.94, + "probability": 0.5532 + }, + { + "start": 44972.38, + "end": 44973.14, + "probability": 0.427 + }, + { + "start": 44974.18, + "end": 44975.41, + "probability": 0.7943 + }, + { + "start": 44976.86, + "end": 44980.5, + "probability": 0.6616 + }, + { + "start": 44980.66, + "end": 44980.66, + "probability": 0.2464 + }, + { + "start": 44980.66, + "end": 44984.9, + "probability": 0.9839 + }, + { + "start": 44985.02, + "end": 44986.98, + "probability": 0.9527 + }, + { + "start": 44987.22, + "end": 44988.73, + "probability": 0.8263 + }, + { + "start": 44989.62, + "end": 44994.88, + "probability": 0.9716 + }, + { + "start": 44994.88, + "end": 44998.9, + "probability": 0.396 + }, + { + "start": 44999.12, + "end": 45000.82, + "probability": 0.9606 + }, + { + "start": 45001.34, + "end": 45002.76, + "probability": 0.7993 + }, + { + "start": 45003.66, + "end": 45008.14, + "probability": 0.1745 + }, + { + "start": 45008.68, + "end": 45014.82, + "probability": 0.3099 + }, + { + "start": 45015.52, + "end": 45018.56, + "probability": 0.3947 + }, + { + "start": 45018.6, + "end": 45019.34, + "probability": 0.6307 + }, + { + "start": 45019.44, + "end": 45021.66, + "probability": 0.9788 + }, + { + "start": 45022.24, + "end": 45027.58, + "probability": 0.1493 + }, + { + "start": 45027.58, + "end": 45030.82, + "probability": 0.9674 + }, + { + "start": 45031.4, + "end": 45034.54, + "probability": 0.8484 + }, + { + "start": 45039.2, + "end": 45041.7, + "probability": 0.8807 + }, + { + "start": 45041.76, + "end": 45042.02, + "probability": 0.4468 + }, + { + "start": 45044.62, + "end": 45046.82, + "probability": 0.5894 + }, + { + "start": 45050.0, + "end": 45051.62, + "probability": 0.5604 + }, + { + "start": 45051.78, + "end": 45053.92, + "probability": 0.3197 + }, + { + "start": 45054.0, + "end": 45058.86, + "probability": 0.8331 + }, + { + "start": 45059.84, + "end": 45063.2, + "probability": 0.5966 + }, + { + "start": 45071.1, + "end": 45072.1, + "probability": 0.8849 + }, + { + "start": 45073.18, + "end": 45073.94, + "probability": 0.2082 + }, + { + "start": 45075.38, + "end": 45078.38, + "probability": 0.6401 + }, + { + "start": 45078.94, + "end": 45084.56, + "probability": 0.8979 + }, + { + "start": 45085.28, + "end": 45088.58, + "probability": 0.9258 + }, + { + "start": 45089.52, + "end": 45093.98, + "probability": 0.6477 + }, + { + "start": 45094.62, + "end": 45098.6, + "probability": 0.6173 + }, + { + "start": 45100.18, + "end": 45104.28, + "probability": 0.5558 + }, + { + "start": 45105.29, + "end": 45110.38, + "probability": 0.7407 + }, + { + "start": 45111.34, + "end": 45113.76, + "probability": 0.9058 + }, + { + "start": 45115.32, + "end": 45118.14, + "probability": 0.9676 + }, + { + "start": 45119.4, + "end": 45127.22, + "probability": 0.7304 + }, + { + "start": 45128.16, + "end": 45131.32, + "probability": 0.9153 + }, + { + "start": 45132.48, + "end": 45134.42, + "probability": 0.9703 + }, + { + "start": 45135.16, + "end": 45136.9, + "probability": 0.8661 + }, + { + "start": 45137.86, + "end": 45142.96, + "probability": 0.878 + }, + { + "start": 45143.04, + "end": 45145.48, + "probability": 0.8131 + }, + { + "start": 45145.88, + "end": 45148.14, + "probability": 0.9527 + }, + { + "start": 45148.86, + "end": 45152.84, + "probability": 0.808 + }, + { + "start": 45155.15, + "end": 45158.16, + "probability": 0.9793 + }, + { + "start": 45162.18, + "end": 45164.26, + "probability": 0.5981 + }, + { + "start": 45171.44, + "end": 45172.08, + "probability": 0.6815 + }, + { + "start": 45177.54, + "end": 45178.42, + "probability": 0.7098 + }, + { + "start": 45179.76, + "end": 45181.96, + "probability": 0.7753 + }, + { + "start": 45182.42, + "end": 45186.22, + "probability": 0.8944 + }, + { + "start": 45186.66, + "end": 45188.5, + "probability": 0.9182 + }, + { + "start": 45189.3, + "end": 45192.78, + "probability": 0.6214 + }, + { + "start": 45193.5, + "end": 45196.0, + "probability": 0.991 + }, + { + "start": 45197.48, + "end": 45201.06, + "probability": 0.9039 + }, + { + "start": 45201.98, + "end": 45203.64, + "probability": 0.8484 + }, + { + "start": 45204.54, + "end": 45206.4, + "probability": 0.5319 + }, + { + "start": 45206.5, + "end": 45208.12, + "probability": 0.8773 + }, + { + "start": 45208.58, + "end": 45210.8, + "probability": 0.9168 + }, + { + "start": 45211.62, + "end": 45218.64, + "probability": 0.9185 + }, + { + "start": 45219.34, + "end": 45223.94, + "probability": 0.8937 + }, + { + "start": 45224.56, + "end": 45225.22, + "probability": 0.4557 + }, + { + "start": 45225.78, + "end": 45228.5, + "probability": 0.8697 + }, + { + "start": 45232.16, + "end": 45238.0, + "probability": 0.8047 + }, + { + "start": 45238.56, + "end": 45240.36, + "probability": 0.5081 + }, + { + "start": 45242.82, + "end": 45245.34, + "probability": 0.8595 + }, + { + "start": 45245.86, + "end": 45253.56, + "probability": 0.8901 + }, + { + "start": 45254.64, + "end": 45257.82, + "probability": 0.8524 + }, + { + "start": 45259.08, + "end": 45262.2, + "probability": 0.6992 + }, + { + "start": 45262.88, + "end": 45265.54, + "probability": 0.4017 + }, + { + "start": 45267.2, + "end": 45269.0, + "probability": 0.8654 + }, + { + "start": 45269.8, + "end": 45274.68, + "probability": 0.9732 + }, + { + "start": 45275.26, + "end": 45277.44, + "probability": 0.9095 + }, + { + "start": 45279.36, + "end": 45286.64, + "probability": 0.7906 + }, + { + "start": 45289.02, + "end": 45291.62, + "probability": 0.9738 + }, + { + "start": 45295.4, + "end": 45296.22, + "probability": 0.6988 + }, + { + "start": 45299.6, + "end": 45300.32, + "probability": 0.624 + }, + { + "start": 45301.12, + "end": 45304.1, + "probability": 0.9385 + }, + { + "start": 45306.5, + "end": 45309.8, + "probability": 0.8562 + }, + { + "start": 45311.0, + "end": 45311.94, + "probability": 0.9085 + }, + { + "start": 45314.32, + "end": 45315.76, + "probability": 0.9742 + }, + { + "start": 45316.84, + "end": 45318.28, + "probability": 0.981 + }, + { + "start": 45319.32, + "end": 45322.46, + "probability": 0.9904 + }, + { + "start": 45322.98, + "end": 45324.76, + "probability": 0.9666 + }, + { + "start": 45325.89, + "end": 45331.1, + "probability": 0.6645 + }, + { + "start": 45332.54, + "end": 45334.42, + "probability": 0.9592 + }, + { + "start": 45335.62, + "end": 45338.24, + "probability": 0.9394 + }, + { + "start": 45339.04, + "end": 45342.1, + "probability": 0.9583 + }, + { + "start": 45342.92, + "end": 45345.64, + "probability": 0.8367 + }, + { + "start": 45345.66, + "end": 45347.54, + "probability": 0.9349 + }, + { + "start": 45347.6, + "end": 45350.26, + "probability": 0.8261 + }, + { + "start": 45350.76, + "end": 45354.3, + "probability": 0.7903 + }, + { + "start": 45354.88, + "end": 45356.76, + "probability": 0.7788 + }, + { + "start": 45356.84, + "end": 45358.46, + "probability": 0.7039 + }, + { + "start": 45358.92, + "end": 45361.4, + "probability": 0.9712 + }, + { + "start": 45362.04, + "end": 45364.82, + "probability": 0.9402 + }, + { + "start": 45366.34, + "end": 45369.58, + "probability": 0.8929 + }, + { + "start": 45369.72, + "end": 45372.46, + "probability": 0.7108 + }, + { + "start": 45372.5, + "end": 45374.28, + "probability": 0.5719 + }, + { + "start": 45375.4, + "end": 45378.18, + "probability": 0.7672 + }, + { + "start": 45379.96, + "end": 45384.16, + "probability": 0.9733 + }, + { + "start": 45385.96, + "end": 45388.02, + "probability": 0.974 + }, + { + "start": 45388.64, + "end": 45391.96, + "probability": 0.95 + }, + { + "start": 45424.26, + "end": 45427.98, + "probability": 0.5016 + }, + { + "start": 45428.68, + "end": 45435.2, + "probability": 0.8102 + }, + { + "start": 45436.62, + "end": 45438.7, + "probability": 0.8188 + }, + { + "start": 45439.72, + "end": 45441.92, + "probability": 0.6465 + }, + { + "start": 45443.8, + "end": 45445.48, + "probability": 0.4989 + }, + { + "start": 45446.44, + "end": 45449.84, + "probability": 0.8146 + }, + { + "start": 45450.64, + "end": 45451.94, + "probability": 0.8691 + }, + { + "start": 45458.32, + "end": 45459.48, + "probability": 0.3563 + }, + { + "start": 45460.06, + "end": 45463.18, + "probability": 0.7443 + }, + { + "start": 45464.42, + "end": 45466.2, + "probability": 0.8592 + }, + { + "start": 45468.66, + "end": 45471.7, + "probability": 0.8839 + }, + { + "start": 45472.82, + "end": 45474.76, + "probability": 0.8924 + }, + { + "start": 45475.4, + "end": 45478.12, + "probability": 0.7395 + }, + { + "start": 45479.08, + "end": 45481.6, + "probability": 0.9618 + }, + { + "start": 45482.2, + "end": 45483.9, + "probability": 0.9115 + }, + { + "start": 45483.92, + "end": 45488.24, + "probability": 0.7035 + }, + { + "start": 45488.38, + "end": 45490.06, + "probability": 0.7976 + }, + { + "start": 45493.2, + "end": 45496.94, + "probability": 0.7224 + }, + { + "start": 45497.86, + "end": 45500.76, + "probability": 0.9672 + }, + { + "start": 45501.4, + "end": 45509.74, + "probability": 0.9081 + }, + { + "start": 45510.88, + "end": 45512.4, + "probability": 0.991 + }, + { + "start": 45513.56, + "end": 45518.02, + "probability": 0.8684 + }, + { + "start": 45518.86, + "end": 45523.7, + "probability": 0.919 + }, + { + "start": 45525.12, + "end": 45532.58, + "probability": 0.8929 + }, + { + "start": 45534.96, + "end": 45538.74, + "probability": 0.5336 + }, + { + "start": 45545.44, + "end": 45547.62, + "probability": 0.5628 + }, + { + "start": 45549.11, + "end": 45551.58, + "probability": 0.7764 + }, + { + "start": 45553.08, + "end": 45555.1, + "probability": 0.7799 + }, + { + "start": 45556.04, + "end": 45557.82, + "probability": 0.8187 + }, + { + "start": 45559.66, + "end": 45563.62, + "probability": 0.8685 + }, + { + "start": 45565.66, + "end": 45566.4, + "probability": 0.9785 + }, + { + "start": 45572.32, + "end": 45577.74, + "probability": 0.6865 + }, + { + "start": 45579.42, + "end": 45581.64, + "probability": 0.8501 + }, + { + "start": 45583.78, + "end": 45586.92, + "probability": 0.8999 + }, + { + "start": 45588.12, + "end": 45591.54, + "probability": 0.9177 + }, + { + "start": 45592.24, + "end": 45594.32, + "probability": 0.6855 + }, + { + "start": 45596.96, + "end": 45600.28, + "probability": 0.9624 + }, + { + "start": 45600.66, + "end": 45607.34, + "probability": 0.2479 + }, + { + "start": 45607.56, + "end": 45612.28, + "probability": 0.9315 + }, + { + "start": 45612.98, + "end": 45615.12, + "probability": 0.7937 + }, + { + "start": 45615.68, + "end": 45618.36, + "probability": 0.9302 + }, + { + "start": 45619.2, + "end": 45623.0, + "probability": 0.82 + }, + { + "start": 45623.52, + "end": 45624.94, + "probability": 0.9622 + }, + { + "start": 45627.36, + "end": 45629.34, + "probability": 0.4336 + }, + { + "start": 45629.34, + "end": 45632.04, + "probability": 0.807 + }, + { + "start": 45632.12, + "end": 45633.7, + "probability": 0.8257 + }, + { + "start": 45634.5, + "end": 45636.32, + "probability": 0.9701 + }, + { + "start": 45637.06, + "end": 45639.14, + "probability": 0.9151 + }, + { + "start": 45640.72, + "end": 45643.9, + "probability": 0.9832 + }, + { + "start": 45644.48, + "end": 45649.96, + "probability": 0.5579 + }, + { + "start": 45658.7, + "end": 45661.46, + "probability": 0.5048 + }, + { + "start": 45662.46, + "end": 45663.26, + "probability": 0.0921 + }, + { + "start": 45663.62, + "end": 45665.02, + "probability": 0.7011 + }, + { + "start": 45665.16, + "end": 45666.86, + "probability": 0.7574 + }, + { + "start": 45667.7, + "end": 45669.82, + "probability": 0.9623 + }, + { + "start": 45669.92, + "end": 45671.36, + "probability": 0.6692 + }, + { + "start": 45671.74, + "end": 45674.24, + "probability": 0.7016 + }, + { + "start": 45674.32, + "end": 45675.84, + "probability": 0.6719 + }, + { + "start": 45675.98, + "end": 45678.72, + "probability": 0.8303 + }, + { + "start": 45679.52, + "end": 45680.08, + "probability": 0.9858 + }, + { + "start": 45683.48, + "end": 45684.28, + "probability": 0.657 + }, + { + "start": 45685.88, + "end": 45686.78, + "probability": 0.7298 + }, + { + "start": 45689.84, + "end": 45692.04, + "probability": 0.3821 + }, + { + "start": 45693.72, + "end": 45695.88, + "probability": 0.5644 + }, + { + "start": 45697.16, + "end": 45701.72, + "probability": 0.7346 + }, + { + "start": 45703.02, + "end": 45703.94, + "probability": 0.9297 + }, + { + "start": 45706.9, + "end": 45707.12, + "probability": 0.5815 + }, + { + "start": 45709.92, + "end": 45710.82, + "probability": 0.6776 + }, + { + "start": 45712.14, + "end": 45713.0, + "probability": 0.7179 + }, + { + "start": 45714.38, + "end": 45717.54, + "probability": 0.9194 + }, + { + "start": 45719.9, + "end": 45721.58, + "probability": 0.7686 + }, + { + "start": 45721.58, + "end": 45723.04, + "probability": 0.9498 + }, + { + "start": 45723.38, + "end": 45725.52, + "probability": 0.9513 + }, + { + "start": 45725.82, + "end": 45727.92, + "probability": 0.9184 + }, + { + "start": 45729.12, + "end": 45731.68, + "probability": 0.9029 + }, + { + "start": 45731.74, + "end": 45733.42, + "probability": 0.8257 + }, + { + "start": 45733.48, + "end": 45735.62, + "probability": 0.7108 + }, + { + "start": 45735.98, + "end": 45740.02, + "probability": 0.7133 + }, + { + "start": 45740.12, + "end": 45741.66, + "probability": 0.8961 + }, + { + "start": 45743.38, + "end": 45745.92, + "probability": 0.646 + }, + { + "start": 45746.24, + "end": 45747.64, + "probability": 0.8751 + }, + { + "start": 45747.74, + "end": 45750.96, + "probability": 0.9031 + }, + { + "start": 45751.78, + "end": 45753.74, + "probability": 0.9326 + }, + { + "start": 45753.86, + "end": 45755.28, + "probability": 0.9312 + }, + { + "start": 45755.44, + "end": 45757.14, + "probability": 0.9773 + }, + { + "start": 45757.2, + "end": 45760.3, + "probability": 0.9919 + }, + { + "start": 45761.16, + "end": 45763.02, + "probability": 0.7435 + }, + { + "start": 45764.06, + "end": 45767.46, + "probability": 0.7355 + }, + { + "start": 45768.28, + "end": 45770.62, + "probability": 0.6843 + }, + { + "start": 45772.3, + "end": 45774.02, + "probability": 0.8978 + }, + { + "start": 45775.06, + "end": 45775.88, + "probability": 0.3792 + }, + { + "start": 45781.92, + "end": 45791.12, + "probability": 0.8682 + }, + { + "start": 45793.5, + "end": 45793.7, + "probability": 0.365 + }, + { + "start": 45794.18, + "end": 45795.62, + "probability": 0.4128 + }, + { + "start": 45799.96, + "end": 45800.7, + "probability": 0.1034 + }, + { + "start": 45822.48, + "end": 45824.32, + "probability": 0.1312 + }, + { + "start": 45825.44, + "end": 45826.02, + "probability": 0.0223 + }, + { + "start": 45930.12, + "end": 45931.16, + "probability": 0.0714 + }, + { + "start": 45931.16, + "end": 45931.5, + "probability": 0.1188 + }, + { + "start": 45934.58, + "end": 45935.2, + "probability": 0.4468 + }, + { + "start": 45938.88, + "end": 45939.9, + "probability": 0.8413 + }, + { + "start": 45941.74, + "end": 45943.74, + "probability": 0.0055 + }, + { + "start": 45944.24, + "end": 45945.62, + "probability": 0.1922 + }, + { + "start": 45945.62, + "end": 45950.04, + "probability": 0.3689 + }, + { + "start": 45950.6, + "end": 45953.02, + "probability": 0.9066 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.0, + "end": 46051.0, + "probability": 0.0 + }, + { + "start": 46051.28, + "end": 46054.6, + "probability": 0.039 + }, + { + "start": 46054.6, + "end": 46059.12, + "probability": 0.6266 + }, + { + "start": 46059.2, + "end": 46061.42, + "probability": 0.9101 + }, + { + "start": 46062.38, + "end": 46064.72, + "probability": 0.8418 + }, + { + "start": 46065.66, + "end": 46070.96, + "probability": 0.5907 + }, + { + "start": 46075.92, + "end": 46077.34, + "probability": 0.0446 + }, + { + "start": 46085.66, + "end": 46089.28, + "probability": 0.7378 + }, + { + "start": 46089.7, + "end": 46091.6, + "probability": 0.891 + }, + { + "start": 46092.24, + "end": 46097.04, + "probability": 0.5514 + }, + { + "start": 46097.28, + "end": 46099.86, + "probability": 0.1265 + }, + { + "start": 46114.9, + "end": 46118.14, + "probability": 0.9839 + }, + { + "start": 46118.66, + "end": 46123.68, + "probability": 0.9506 + }, + { + "start": 46124.62, + "end": 46125.6, + "probability": 0.0028 + }, + { + "start": 46129.1, + "end": 46130.96, + "probability": 0.1294 + }, + { + "start": 46137.9, + "end": 46140.24, + "probability": 0.8035 + }, + { + "start": 46140.64, + "end": 46142.46, + "probability": 0.9526 + }, + { + "start": 46144.32, + "end": 46151.46, + "probability": 0.3166 + }, + { + "start": 46151.86, + "end": 46153.46, + "probability": 0.9852 + }, + { + "start": 46154.44, + "end": 46155.76, + "probability": 0.6798 + }, + { + "start": 46156.68, + "end": 46158.78, + "probability": 0.6456 + }, + { + "start": 46159.0, + "end": 46159.76, + "probability": 0.009 + }, + { + "start": 46159.82, + "end": 46160.1, + "probability": 0.1115 + }, + { + "start": 46161.98, + "end": 46166.32, + "probability": 0.6571 + }, + { + "start": 46167.74, + "end": 46169.84, + "probability": 0.4422 + }, + { + "start": 46170.32, + "end": 46176.11, + "probability": 0.5165 + }, + { + "start": 46189.34, + "end": 46194.16, + "probability": 0.7996 + }, + { + "start": 46194.5, + "end": 46194.88, + "probability": 0.7213 + }, + { + "start": 46195.66, + "end": 46196.22, + "probability": 0.7622 + }, + { + "start": 46197.0, + "end": 46198.74, + "probability": 0.775 + }, + { + "start": 46199.2, + "end": 46201.55, + "probability": 0.0181 + }, + { + "start": 46212.28, + "end": 46213.72, + "probability": 0.0541 + }, + { + "start": 46216.22, + "end": 46221.82, + "probability": 0.8196 + }, + { + "start": 46222.28, + "end": 46223.56, + "probability": 0.9139 + }, + { + "start": 46224.94, + "end": 46225.56, + "probability": 0.0007 + }, + { + "start": 46225.94, + "end": 46227.54, + "probability": 0.8875 + }, + { + "start": 46228.3, + "end": 46229.36, + "probability": 0.8525 + }, + { + "start": 46231.45, + "end": 46236.96, + "probability": 0.1099 + }, + { + "start": 46244.44, + "end": 46249.64, + "probability": 0.9266 + }, + { + "start": 46249.92, + "end": 46251.74, + "probability": 0.8823 + }, + { + "start": 46252.24, + "end": 46253.02, + "probability": 0.0995 + }, + { + "start": 46253.42, + "end": 46254.64, + "probability": 0.8092 + }, + { + "start": 46261.02, + "end": 46262.56, + "probability": 0.5672 + }, + { + "start": 46267.54, + "end": 46271.44, + "probability": 0.0008 + }, + { + "start": 46272.38, + "end": 46276.1, + "probability": 0.8972 + }, + { + "start": 46276.42, + "end": 46278.12, + "probability": 0.9824 + }, + { + "start": 46278.7, + "end": 46278.92, + "probability": 0.0027 + }, + { + "start": 46279.02, + "end": 46280.86, + "probability": 0.817 + }, + { + "start": 46281.16, + "end": 46281.66, + "probability": 0.7592 + }, + { + "start": 46282.04, + "end": 46305.12, + "probability": 0.3662 + }, + { + "start": 46307.24, + "end": 46309.64, + "probability": 0.7579 + }, + { + "start": 46310.08, + "end": 46311.96, + "probability": 0.979 + }, + { + "start": 46313.64, + "end": 46317.06, + "probability": 0.6618 + }, + { + "start": 46317.82, + "end": 46322.0, + "probability": 0.2496 + }, + { + "start": 46326.1, + "end": 46327.86, + "probability": 0.064 + }, + { + "start": 46332.1, + "end": 46337.26, + "probability": 0.8417 + }, + { + "start": 46337.46, + "end": 46339.13, + "probability": 0.9888 + }, + { + "start": 46341.0, + "end": 46344.16, + "probability": 0.7186 + }, + { + "start": 46344.8, + "end": 46347.49, + "probability": 0.2005 + }, + { + "start": 46348.9, + "end": 46349.6, + "probability": 0.0558 + }, + { + "start": 46361.06, + "end": 46363.1, + "probability": 0.2802 + }, + { + "start": 46363.44, + "end": 46364.96, + "probability": 0.9156 + }, + { + "start": 46365.08, + "end": 46367.5, + "probability": 0.8408 + }, + { + "start": 46367.92, + "end": 46369.96, + "probability": 0.8871 + }, + { + "start": 46371.02, + "end": 46376.92, + "probability": 0.7157 + }, + { + "start": 46381.3, + "end": 46383.46, + "probability": 0.0299 + }, + { + "start": 46392.42, + "end": 46396.22, + "probability": 0.8238 + }, + { + "start": 46396.66, + "end": 46398.66, + "probability": 0.8558 + }, + { + "start": 46400.22, + "end": 46406.34, + "probability": 0.5356 + }, + { + "start": 46409.6, + "end": 46411.48, + "probability": 0.0893 + }, + { + "start": 46422.76, + "end": 46423.5, + "probability": 0.2912 + }, + { + "start": 46424.28, + "end": 46426.48, + "probability": 0.5199 + }, + { + "start": 46426.92, + "end": 46427.5, + "probability": 0.5681 + }, + { + "start": 46427.64, + "end": 46430.22, + "probability": 0.7433 + }, + { + "start": 46430.56, + "end": 46431.98, + "probability": 0.9308 + }, + { + "start": 46432.3, + "end": 46432.88, + "probability": 0.2699 + }, + { + "start": 46433.0, + "end": 46433.96, + "probability": 0.6036 + }, + { + "start": 46434.26, + "end": 46436.14, + "probability": 0.9165 + }, + { + "start": 46437.3, + "end": 46439.96, + "probability": 0.4672 + }, + { + "start": 46441.24, + "end": 46441.7, + "probability": 0.3579 + }, + { + "start": 46442.64, + "end": 46443.8, + "probability": 0.3622 + }, + { + "start": 46444.46, + "end": 46448.9, + "probability": 0.0691 + }, + { + "start": 46462.86, + "end": 46467.96, + "probability": 0.6815 + }, + { + "start": 46468.3, + "end": 46470.58, + "probability": 0.8944 + }, + { + "start": 46470.7, + "end": 46471.08, + "probability": 0.0338 + }, + { + "start": 46491.38, + "end": 46492.44, + "probability": 0.1135 + }, + { + "start": 46493.3, + "end": 46496.48, + "probability": 0.7584 + }, + { + "start": 46496.92, + "end": 46499.13, + "probability": 0.9116 + }, + { + "start": 46501.68, + "end": 46504.26, + "probability": 0.5556 + }, + { + "start": 46504.62, + "end": 46510.52, + "probability": 0.5118 + }, + { + "start": 46515.88, + "end": 46518.3, + "probability": 0.0508 + }, + { + "start": 46522.12, + "end": 46524.64, + "probability": 0.7489 + }, + { + "start": 46525.14, + "end": 46527.32, + "probability": 0.9937 + }, + { + "start": 46528.36, + "end": 46529.8, + "probability": 0.3574 + }, + { + "start": 46530.46, + "end": 46531.16, + "probability": 0.9159 + }, + { + "start": 46534.82, + "end": 46536.1, + "probability": 0.9351 + }, + { + "start": 46537.61, + "end": 46537.9, + "probability": 0.1534 + }, + { + "start": 46537.9, + "end": 46540.04, + "probability": 0.1061 + }, + { + "start": 46540.88, + "end": 46543.83, + "probability": 0.7168 + }, + { + "start": 46544.06, + "end": 46544.14, + "probability": 0.0023 + }, + { + "start": 46546.06, + "end": 46548.58, + "probability": 0.5212 + }, + { + "start": 46548.64, + "end": 46548.78, + "probability": 0.0853 + }, + { + "start": 46548.78, + "end": 46550.82, + "probability": 0.2142 + }, + { + "start": 46550.88, + "end": 46552.76, + "probability": 0.9609 + }, + { + "start": 46554.58, + "end": 46556.14, + "probability": 0.0021 + }, + { + "start": 46557.36, + "end": 46559.26, + "probability": 0.8002 + }, + { + "start": 46559.98, + "end": 46560.78, + "probability": 0.9011 + }, + { + "start": 46569.66, + "end": 46573.56, + "probability": 0.0559 + }, + { + "start": 46575.54, + "end": 46577.62, + "probability": 0.3054 + }, + { + "start": 46577.82, + "end": 46579.52, + "probability": 0.9878 + }, + { + "start": 46583.74, + "end": 46585.09, + "probability": 0.1383 + }, + { + "start": 46594.78, + "end": 46595.9, + "probability": 0.575 + }, + { + "start": 46595.9, + "end": 46597.58, + "probability": 0.1197 + }, + { + "start": 46601.3, + "end": 46604.46, + "probability": 0.0592 + }, + { + "start": 46604.46, + "end": 46605.87, + "probability": 0.6566 + }, + { + "start": 46607.3, + "end": 46612.5, + "probability": 0.0463 + }, + { + "start": 46613.7, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46831.0, + "end": 46831.0, + "probability": 0.0 + }, + { + "start": 46836.52, + "end": 46841.26, + "probability": 0.6717 + }, + { + "start": 46842.26, + "end": 46845.24, + "probability": 0.6041 + }, + { + "start": 46846.78, + "end": 46849.0, + "probability": 0.8041 + }, + { + "start": 46849.88, + "end": 46857.14, + "probability": 0.9539 + }, + { + "start": 46857.86, + "end": 46859.96, + "probability": 0.8872 + }, + { + "start": 46860.48, + "end": 46862.68, + "probability": 0.9919 + }, + { + "start": 46862.92, + "end": 46866.5, + "probability": 0.846 + }, + { + "start": 46866.78, + "end": 46869.16, + "probability": 0.895 + }, + { + "start": 46869.6, + "end": 46872.2, + "probability": 0.7482 + }, + { + "start": 46872.44, + "end": 46874.14, + "probability": 0.8893 + }, + { + "start": 46874.64, + "end": 46878.82, + "probability": 0.8771 + }, + { + "start": 46879.9, + "end": 46883.02, + "probability": 0.9267 + }, + { + "start": 46883.06, + "end": 46886.72, + "probability": 0.9788 + }, + { + "start": 46886.9, + "end": 46890.3, + "probability": 0.694 + }, + { + "start": 46890.34, + "end": 46893.34, + "probability": 0.9221 + }, + { + "start": 46897.02, + "end": 46902.4, + "probability": 0.618 + }, + { + "start": 46906.98, + "end": 46907.94, + "probability": 0.5405 + }, + { + "start": 46907.94, + "end": 46911.24, + "probability": 0.536 + }, + { + "start": 46911.66, + "end": 46913.78, + "probability": 0.9479 + }, + { + "start": 46914.16, + "end": 46917.46, + "probability": 0.9551 + }, + { + "start": 46917.88, + "end": 46920.06, + "probability": 0.9307 + }, + { + "start": 46920.52, + "end": 46923.1, + "probability": 0.974 + }, + { + "start": 46923.92, + "end": 46926.26, + "probability": 0.9902 + }, + { + "start": 46927.88, + "end": 46935.78, + "probability": 0.7121 + }, + { + "start": 46937.84, + "end": 46941.16, + "probability": 0.9583 + }, + { + "start": 46941.82, + "end": 46944.14, + "probability": 0.9324 + }, + { + "start": 46946.9, + "end": 46949.54, + "probability": 0.8616 + }, + { + "start": 46952.0, + "end": 46955.08, + "probability": 0.9434 + }, + { + "start": 46956.56, + "end": 46957.94, + "probability": 0.5057 + }, + { + "start": 46958.66, + "end": 46961.62, + "probability": 0.979 + }, + { + "start": 46962.2, + "end": 46967.2, + "probability": 0.936 + }, + { + "start": 46969.3, + "end": 46973.2, + "probability": 0.9871 + }, + { + "start": 46974.28, + "end": 46978.74, + "probability": 0.9858 + }, + { + "start": 46979.72, + "end": 46982.52, + "probability": 0.8848 + }, + { + "start": 46983.26, + "end": 46985.74, + "probability": 0.0228 + }, + { + "start": 46988.6, + "end": 46989.9, + "probability": 0.23 + }, + { + "start": 46991.02, + "end": 46992.76, + "probability": 0.7274 + }, + { + "start": 46997.38, + "end": 47001.88, + "probability": 0.6485 + }, + { + "start": 47002.64, + "end": 47006.06, + "probability": 0.75 + }, + { + "start": 47010.7, + "end": 47012.06, + "probability": 0.4725 + }, + { + "start": 47013.32, + "end": 47018.44, + "probability": 0.7391 + }, + { + "start": 47019.02, + "end": 47021.66, + "probability": 0.6845 + }, + { + "start": 47022.32, + "end": 47025.84, + "probability": 0.9313 + }, + { + "start": 47028.22, + "end": 47034.42, + "probability": 0.9486 + }, + { + "start": 47035.04, + "end": 47035.12, + "probability": 0.8572 + }, + { + "start": 47036.06, + "end": 47045.24, + "probability": 0.8123 + }, + { + "start": 47047.64, + "end": 47049.12, + "probability": 0.8407 + }, + { + "start": 47051.76, + "end": 47054.58, + "probability": 0.9573 + }, + { + "start": 47055.04, + "end": 47062.86, + "probability": 0.8491 + }, + { + "start": 47063.62, + "end": 47065.96, + "probability": 0.9346 + }, + { + "start": 47066.76, + "end": 47074.16, + "probability": 0.8193 + }, + { + "start": 47077.22, + "end": 47081.54, + "probability": 0.9382 + }, + { + "start": 47087.72, + "end": 47091.2, + "probability": 0.6699 + }, + { + "start": 47092.0, + "end": 47098.86, + "probability": 0.9142 + }, + { + "start": 47099.66, + "end": 47101.5, + "probability": 0.8918 + }, + { + "start": 47104.6, + "end": 47107.6, + "probability": 0.8538 + }, + { + "start": 47108.12, + "end": 47110.16, + "probability": 0.7849 + }, + { + "start": 47112.54, + "end": 47116.42, + "probability": 0.3992 + }, + { + "start": 47117.02, + "end": 47119.92, + "probability": 0.8818 + }, + { + "start": 47120.08, + "end": 47121.8, + "probability": 0.8997 + }, + { + "start": 47122.08, + "end": 47124.86, + "probability": 0.9419 + }, + { + "start": 47125.0, + "end": 47126.48, + "probability": 0.9801 + }, + { + "start": 47130.14, + "end": 47135.02, + "probability": 0.6725 + }, + { + "start": 47136.94, + "end": 47140.26, + "probability": 0.9857 + }, + { + "start": 47141.12, + "end": 47143.56, + "probability": 0.9089 + }, + { + "start": 47144.56, + "end": 47147.28, + "probability": 0.9263 + }, + { + "start": 47147.46, + "end": 47150.46, + "probability": 0.9933 + }, + { + "start": 47150.92, + "end": 47153.4, + "probability": 0.9976 + }, + { + "start": 47154.18, + "end": 47156.7, + "probability": 0.9328 + }, + { + "start": 47158.1, + "end": 47160.06, + "probability": 0.5179 + }, + { + "start": 47161.4, + "end": 47163.28, + "probability": 0.9485 + }, + { + "start": 47164.56, + "end": 47167.34, + "probability": 0.8678 + }, + { + "start": 47168.92, + "end": 47170.94, + "probability": 0.991 + }, + { + "start": 47172.06, + "end": 47175.02, + "probability": 0.9746 + }, + { + "start": 47176.46, + "end": 47179.18, + "probability": 0.9124 + }, + { + "start": 47180.84, + "end": 47183.82, + "probability": 0.9778 + }, + { + "start": 47184.54, + "end": 47185.62, + "probability": 0.9915 + }, + { + "start": 47186.61, + "end": 47188.36, + "probability": 0.2614 + }, + { + "start": 47188.96, + "end": 47192.18, + "probability": 0.7559 + }, + { + "start": 47192.7, + "end": 47195.7, + "probability": 0.807 + }, + { + "start": 47199.44, + "end": 47205.08, + "probability": 0.8882 + }, + { + "start": 47205.94, + "end": 47208.8, + "probability": 0.9125 + }, + { + "start": 47209.36, + "end": 47211.16, + "probability": 0.8517 + }, + { + "start": 47215.58, + "end": 47221.02, + "probability": 0.832 + }, + { + "start": 47222.4, + "end": 47223.02, + "probability": 0.1943 + }, + { + "start": 47223.14, + "end": 47225.82, + "probability": 0.7721 + }, + { + "start": 47226.38, + "end": 47227.8, + "probability": 0.9072 + }, + { + "start": 47227.94, + "end": 47229.96, + "probability": 0.9588 + }, + { + "start": 47230.44, + "end": 47231.96, + "probability": 0.8327 + }, + { + "start": 47232.04, + "end": 47235.08, + "probability": 0.7534 + }, + { + "start": 47235.16, + "end": 47237.1, + "probability": 0.9139 + }, + { + "start": 47237.2, + "end": 47238.58, + "probability": 0.9174 + }, + { + "start": 47239.32, + "end": 47240.94, + "probability": 0.9612 + }, + { + "start": 47240.96, + "end": 47242.72, + "probability": 0.8283 + }, + { + "start": 47242.82, + "end": 47246.28, + "probability": 0.7194 + }, + { + "start": 47246.28, + "end": 47246.84, + "probability": 0.9587 + }, + { + "start": 47250.14, + "end": 47256.8, + "probability": 0.7069 + }, + { + "start": 47258.76, + "end": 47264.46, + "probability": 0.7427 + }, + { + "start": 47265.26, + "end": 47270.46, + "probability": 0.8743 + }, + { + "start": 47271.72, + "end": 47273.08, + "probability": 0.9562 + }, + { + "start": 47273.39, + "end": 47279.0, + "probability": 0.7529 + }, + { + "start": 47280.12, + "end": 47281.54, + "probability": 0.8728 + }, + { + "start": 47282.62, + "end": 47285.92, + "probability": 0.9604 + }, + { + "start": 47286.62, + "end": 47287.78, + "probability": 0.7817 + }, + { + "start": 47287.9, + "end": 47289.16, + "probability": 0.9549 + }, + { + "start": 47289.22, + "end": 47292.32, + "probability": 0.8509 + }, + { + "start": 47293.22, + "end": 47302.4, + "probability": 0.7518 + }, + { + "start": 47303.4, + "end": 47305.74, + "probability": 0.3034 + }, + { + "start": 47305.74, + "end": 47306.54, + "probability": 0.3684 + }, + { + "start": 47307.12, + "end": 47310.94, + "probability": 0.5861 + }, + { + "start": 47311.72, + "end": 47321.38, + "probability": 0.072 + }, + { + "start": 47321.53, + "end": 47322.72, + "probability": 0.0034 + }, + { + "start": 47326.1, + "end": 47327.96, + "probability": 0.012 + }, + { + "start": 47333.34, + "end": 47333.44, + "probability": 0.0067 + }, + { + "start": 47340.11, + "end": 47340.18, + "probability": 0.0351 + }, + { + "start": 47354.5, + "end": 47354.86, + "probability": 0.0003 + }, + { + "start": 47364.42, + "end": 47499.0, + "probability": 0.0 + }, + { + "start": 47499.0, + "end": 47499.0, + "probability": 0.0 + }, + { + "start": 47515.0, + "end": 47515.94, + "probability": 0.679 + }, + { + "start": 47528.76, + "end": 47530.88, + "probability": 0.185 + }, + { + "start": 47530.96, + "end": 47532.86, + "probability": 0.7264 + }, + { + "start": 47533.46, + "end": 47535.36, + "probability": 0.0005 + }, + { + "start": 47535.94, + "end": 47539.28, + "probability": 0.2164 + }, + { + "start": 47539.28, + "end": 47540.02, + "probability": 0.7264 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.0, + "end": 47619.0, + "probability": 0.0 + }, + { + "start": 47619.42, + "end": 47623.09, + "probability": 0.0067 + }, + { + "start": 47625.1, + "end": 47627.76, + "probability": 0.7076 + }, + { + "start": 47627.88, + "end": 47629.28, + "probability": 0.8798 + }, + { + "start": 47629.88, + "end": 47634.26, + "probability": 0.7197 + }, + { + "start": 47634.84, + "end": 47637.36, + "probability": 0.1149 + }, + { + "start": 47637.54, + "end": 47640.34, + "probability": 0.145 + }, + { + "start": 47640.34, + "end": 47640.5, + "probability": 0.0039 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.0, + "end": 47777.0, + "probability": 0.0 + }, + { + "start": 47777.94, + "end": 47779.74, + "probability": 0.7589 + }, + { + "start": 47780.54, + "end": 47784.78, + "probability": 0.2197 + }, + { + "start": 47788.72, + "end": 47790.08, + "probability": 0.0933 + }, + { + "start": 47795.22, + "end": 47797.58, + "probability": 0.7734 + }, + { + "start": 47797.98, + "end": 47799.46, + "probability": 0.8884 + }, + { + "start": 47800.06, + "end": 47806.32, + "probability": 0.7182 + }, + { + "start": 47811.88, + "end": 47812.14, + "probability": 0.0004 + }, + { + "start": 47816.44, + "end": 47817.92, + "probability": 0.0617 + }, + { + "start": 47818.7, + "end": 47821.3, + "probability": 0.7237 + }, + { + "start": 47821.38, + "end": 47822.74, + "probability": 0.8575 + }, + { + "start": 47824.28, + "end": 47824.7, + "probability": 0.4612 + }, + { + "start": 47825.92, + "end": 47842.05, + "probability": 0.594 + }, + { + "start": 47843.9, + "end": 47844.32, + "probability": 0.0922 + }, + { + "start": 47844.32, + "end": 47846.38, + "probability": 0.5562 + }, + { + "start": 47846.48, + "end": 47848.34, + "probability": 0.7369 + }, + { + "start": 47848.52, + "end": 47854.08, + "probability": 0.8994 + }, + { + "start": 47854.82, + "end": 47856.26, + "probability": 0.5122 + }, + { + "start": 47856.96, + "end": 47858.76, + "probability": 0.1861 + }, + { + "start": 47867.08, + "end": 47868.98, + "probability": 0.158 + }, + { + "start": 47868.98, + "end": 47871.74, + "probability": 0.6839 + }, + { + "start": 47872.02, + "end": 47874.48, + "probability": 0.926 + }, + { + "start": 47876.58, + "end": 47880.06, + "probability": 0.5973 + }, + { + "start": 47880.78, + "end": 47889.54, + "probability": 0.4309 + }, + { + "start": 47889.76, + "end": 47890.38, + "probability": 0.7569 + }, + { + "start": 47890.54, + "end": 47893.54, + "probability": 0.1821 + }, + { + "start": 47896.52, + "end": 47899.4, + "probability": 0.3954 + }, + { + "start": 47900.36, + "end": 47901.58, + "probability": 0.1786 + }, + { + "start": 47910.72, + "end": 47912.9, + "probability": 0.5712 + }, + { + "start": 47913.56, + "end": 47914.98, + "probability": 0.8816 + }, + { + "start": 47916.78, + "end": 47919.14, + "probability": 0.2612 + }, + { + "start": 47919.26, + "end": 47921.62, + "probability": 0.9551 + }, + { + "start": 47921.8, + "end": 47922.16, + "probability": 0.8501 + }, + { + "start": 47924.21, + "end": 47925.64, + "probability": 0.0072 + }, + { + "start": 47934.34, + "end": 47939.02, + "probability": 0.7855 + }, + { + "start": 47939.1, + "end": 47940.46, + "probability": 0.8619 + }, + { + "start": 47942.94, + "end": 47943.12, + "probability": 0.067 + }, + { + "start": 47944.32, + "end": 47947.5, + "probability": 0.9137 + }, + { + "start": 47947.92, + "end": 47948.8, + "probability": 0.8499 + }, + { + "start": 47949.14, + "end": 47951.6, + "probability": 0.0177 + }, + { + "start": 47960.96, + "end": 47961.84, + "probability": 0.0687 + }, + { + "start": 47962.22, + "end": 47964.6, + "probability": 0.6745 + }, + { + "start": 47964.76, + "end": 47966.3, + "probability": 0.8402 + }, + { + "start": 47967.12, + "end": 47967.4, + "probability": 0.0148 + }, + { + "start": 47968.08, + "end": 47970.28, + "probability": 0.3816 + }, + { + "start": 47971.02, + "end": 47976.78, + "probability": 0.0665 + }, + { + "start": 47984.18, + "end": 47986.38, + "probability": 0.6891 + }, + { + "start": 47986.42, + "end": 47987.92, + "probability": 0.8814 + }, + { + "start": 47988.47, + "end": 47993.11, + "probability": 0.562 + }, + { + "start": 47994.72, + "end": 47998.46, + "probability": 0.3697 + }, + { + "start": 47998.76, + "end": 48004.34, + "probability": 0.7644 + }, + { + "start": 48004.56, + "end": 48005.94, + "probability": 0.0051 + }, + { + "start": 48016.34, + "end": 48017.2, + "probability": 0.1104 + }, + { + "start": 48017.64, + "end": 48020.58, + "probability": 0.7483 + }, + { + "start": 48020.66, + "end": 48022.26, + "probability": 0.5536 + }, + { + "start": 48023.81, + "end": 48026.58, + "probability": 0.2931 + }, + { + "start": 48026.86, + "end": 48029.52, + "probability": 0.8812 + }, + { + "start": 48031.44, + "end": 48034.58, + "probability": 0.0146 + }, + { + "start": 48034.58, + "end": 48034.58, + "probability": 0.3788 + }, + { + "start": 48034.58, + "end": 48037.06, + "probability": 0.6089 + }, + { + "start": 48037.06, + "end": 48038.02, + "probability": 0.0016 + }, + { + "start": 48049.32, + "end": 48050.12, + "probability": 0.0002 + }, + { + "start": 48052.54, + "end": 48056.5, + "probability": 0.5449 + }, + { + "start": 48056.54, + "end": 48059.34, + "probability": 0.6717 + }, + { + "start": 48059.6, + "end": 48060.86, + "probability": 0.8591 + }, + { + "start": 48069.7, + "end": 48071.96, + "probability": 0.0142 + }, + { + "start": 48073.14, + "end": 48076.6, + "probability": 0.7805 + }, + { + "start": 48076.7, + "end": 48077.28, + "probability": 0.8608 + }, + { + "start": 48078.5, + "end": 48086.98, + "probability": 0.3464 + }, + { + "start": 48087.12, + "end": 48088.2, + "probability": 0.9727 + }, + { + "start": 48089.24, + "end": 48089.64, + "probability": 0.6665 + }, + { + "start": 48090.5, + "end": 48093.02, + "probability": 0.2335 + }, + { + "start": 48104.12, + "end": 48106.54, + "probability": 0.7461 + }, + { + "start": 48106.76, + "end": 48108.02, + "probability": 0.87 + }, + { + "start": 48109.64, + "end": 48110.82, + "probability": 0.3792 + }, + { + "start": 48111.92, + "end": 48116.46, + "probability": 0.41 + }, + { + "start": 48116.64, + "end": 48118.7, + "probability": 0.9598 + }, + { + "start": 48118.98, + "end": 48119.38, + "probability": 0.9675 + }, + { + "start": 48121.38, + "end": 48123.68, + "probability": 0.0899 + }, + { + "start": 48124.5, + "end": 48126.2, + "probability": 0.2121 + }, + { + "start": 48134.88, + "end": 48137.82, + "probability": 0.2202 + }, + { + "start": 48137.94, + "end": 48139.04, + "probability": 0.8509 + }, + { + "start": 48140.08, + "end": 48144.52, + "probability": 0.4154 + }, + { + "start": 48144.9, + "end": 48152.9, + "probability": 0.8312 + }, + { + "start": 48153.28, + "end": 48155.02, + "probability": 0.393 + }, + { + "start": 48156.16, + "end": 48161.56, + "probability": 0.1882 + }, + { + "start": 48161.82, + "end": 48163.34, + "probability": 0.7878 + }, + { + "start": 48173.62, + "end": 48175.04, + "probability": 0.591 + }, + { + "start": 48175.7, + "end": 48177.38, + "probability": 0.8348 + }, + { + "start": 48179.17, + "end": 48182.44, + "probability": 0.0589 + }, + { + "start": 48190.9, + "end": 48193.08, + "probability": 0.7479 + }, + { + "start": 48193.14, + "end": 48193.86, + "probability": 0.859 + }, + { + "start": 48196.54, + "end": 48201.04, + "probability": 0.8045 + }, + { + "start": 48202.6, + "end": 48204.68, + "probability": 0.1571 + }, + { + "start": 48206.92, + "end": 48208.42, + "probability": 0.0344 + }, + { + "start": 48218.82, + "end": 48219.86, + "probability": 0.2864 + }, + { + "start": 48220.34, + "end": 48221.04, + "probability": 0.7738 + }, + { + "start": 48226.84, + "end": 48231.46, + "probability": 0.3097 + }, + { + "start": 48235.7, + "end": 48239.7, + "probability": 0.7396 + }, + { + "start": 48240.6, + "end": 48244.06, + "probability": 0.0912 + }, + { + "start": 48253.94, + "end": 48258.42, + "probability": 0.8718 + }, + { + "start": 48258.76, + "end": 48259.46, + "probability": 0.8999 + }, + { + "start": 48260.36, + "end": 48260.52, + "probability": 0.3152 + }, + { + "start": 48260.52, + "end": 48260.84, + "probability": 0.2764 + }, + { + "start": 48281.84, + "end": 48284.52, + "probability": 0.6491 + }, + { + "start": 48284.6, + "end": 48287.02, + "probability": 0.803 + }, + { + "start": 48287.48, + "end": 48292.48, + "probability": 0.5059 + }, + { + "start": 48293.76, + "end": 48297.56, + "probability": 0.047 + }, + { + "start": 48306.52, + "end": 48309.62, + "probability": 0.8614 + }, + { + "start": 48310.0, + "end": 48310.8, + "probability": 0.7477 + }, + { + "start": 48311.76, + "end": 48316.56, + "probability": 0.9793 + }, + { + "start": 48318.86, + "end": 48320.9, + "probability": 0.3956 + }, + { + "start": 48321.54, + "end": 48323.26, + "probability": 0.138 + }, + { + "start": 48332.96, + "end": 48335.82, + "probability": 0.6108 + }, + { + "start": 48336.26, + "end": 48338.54, + "probability": 0.9609 + }, + { + "start": 48340.04, + "end": 48340.14, + "probability": 0.0736 + }, + { + "start": 48341.6, + "end": 48341.6, + "probability": 0.1267 + }, + { + "start": 48341.6, + "end": 48344.32, + "probability": 0.7323 + }, + { + "start": 48344.98, + "end": 48345.82, + "probability": 0.2843 + }, + { + "start": 48346.16, + "end": 48349.78, + "probability": 0.8013 + }, + { + "start": 48353.2, + "end": 48355.62, + "probability": 0.0103 + }, + { + "start": 48363.54, + "end": 48365.64, + "probability": 0.5592 + }, + { + "start": 48365.74, + "end": 48367.0, + "probability": 0.8918 + }, + { + "start": 48368.1, + "end": 48371.0, + "probability": 0.0076 + }, + { + "start": 48371.88, + "end": 48374.5, + "probability": 0.3216 + }, + { + "start": 48374.5, + "end": 48375.74, + "probability": 0.8683 + }, + { + "start": 48376.28, + "end": 48376.8, + "probability": 0.7917 + }, + { + "start": 48377.18, + "end": 48377.68, + "probability": 0.9636 + }, + { + "start": 48378.08, + "end": 48379.74, + "probability": 0.2764 + }, + { + "start": 48384.58, + "end": 48387.3, + "probability": 0.0694 + }, + { + "start": 48391.12, + "end": 48393.82, + "probability": 0.8524 + }, + { + "start": 48395.04, + "end": 48396.02, + "probability": 0.8808 + }, + { + "start": 48396.86, + "end": 48402.3, + "probability": 0.7917 + }, + { + "start": 48402.92, + "end": 48405.12, + "probability": 0.0993 + }, + { + "start": 48405.84, + "end": 48406.68, + "probability": 0.2383 + }, + { + "start": 48406.68, + "end": 48408.48, + "probability": 0.7052 + }, + { + "start": 48408.48, + "end": 48408.48, + "probability": 0.0025 + }, + { + "start": 48410.84, + "end": 48411.76, + "probability": 0.0129 + }, + { + "start": 48416.46, + "end": 48417.54, + "probability": 0.0002 + }, + { + "start": 48423.72, + "end": 48425.26, + "probability": 0.1757 + }, + { + "start": 48426.0, + "end": 48428.36, + "probability": 0.5664 + }, + { + "start": 48428.36, + "end": 48429.48, + "probability": 0.7231 + }, + { + "start": 48429.48, + "end": 48435.96, + "probability": 0.024 + }, + { + "start": 48443.02, + "end": 48445.82, + "probability": 0.7905 + }, + { + "start": 48445.88, + "end": 48446.56, + "probability": 0.8958 + }, + { + "start": 48450.32, + "end": 48450.98, + "probability": 0.0001 + }, + { + "start": 48450.98, + "end": 48452.94, + "probability": 0.7163 + }, + { + "start": 48453.42, + "end": 48458.98, + "probability": 0.0139 + }, + { + "start": 48466.7, + "end": 48469.14, + "probability": 0.8037 + }, + { + "start": 48469.42, + "end": 48470.88, + "probability": 0.8967 + }, + { + "start": 48471.92, + "end": 48472.96, + "probability": 0.0977 + }, + { + "start": 48473.72, + "end": 48473.72, + "probability": 0.3118 + }, + { + "start": 48473.72, + "end": 48474.7, + "probability": 0.7381 + }, + { + "start": 48475.24, + "end": 48476.0, + "probability": 0.4896 + }, + { + "start": 48476.0, + "end": 48478.02, + "probability": 0.6453 + }, + { + "start": 48479.48, + "end": 48481.66, + "probability": 0.0128 + }, + { + "start": 48491.0, + "end": 48492.2, + "probability": 0.0536 + }, + { + "start": 48494.84, + "end": 48499.34, + "probability": 0.7068 + }, + { + "start": 48499.66, + "end": 48500.98, + "probability": 0.8843 + }, + { + "start": 48502.14, + "end": 48504.04, + "probability": 0.0152 + }, + { + "start": 48504.52, + "end": 48506.54, + "probability": 0.8379 + }, + { + "start": 48510.1, + "end": 48512.72, + "probability": 0.4643 + }, + { + "start": 48513.68, + "end": 48514.54, + "probability": 0.6821 + }, + { + "start": 48517.0, + "end": 48520.8, + "probability": 0.0039 + }, + { + "start": 48523.9, + "end": 48526.88, + "probability": 0.8599 + }, + { + "start": 48527.28, + "end": 48528.58, + "probability": 0.868 + }, + { + "start": 48532.26, + "end": 48535.46, + "probability": 0.3571 + }, + { + "start": 48535.68, + "end": 48537.42, + "probability": 0.7476 + }, + { + "start": 48538.25, + "end": 48541.64, + "probability": 0.3261 + }, + { + "start": 48552.88, + "end": 48554.88, + "probability": 0.7022 + }, + { + "start": 48554.96, + "end": 48556.48, + "probability": 0.8488 + }, + { + "start": 48557.0, + "end": 48562.56, + "probability": 0.6468 + }, + { + "start": 48562.92, + "end": 48565.98, + "probability": 0.2438 + }, + { + "start": 48576.18, + "end": 48578.84, + "probability": 0.8541 + }, + { + "start": 48579.48, + "end": 48580.26, + "probability": 0.7353 + }, + { + "start": 48580.8, + "end": 48584.16, + "probability": 0.7449 + }, + { + "start": 48585.06, + "end": 48588.9, + "probability": 0.0992 + }, + { + "start": 48597.72, + "end": 48600.84, + "probability": 0.4714 + }, + { + "start": 48601.14, + "end": 48602.58, + "probability": 0.983 + }, + { + "start": 48603.44, + "end": 48607.78, + "probability": 0.9639 + }, + { + "start": 48621.22, + "end": 48621.8, + "probability": 0.0202 + }, + { + "start": 48621.8, + "end": 48623.82, + "probability": 0.7296 + }, + { + "start": 48624.44, + "end": 48625.94, + "probability": 0.8811 + }, + { + "start": 48627.82, + "end": 48630.58, + "probability": 0.0841 + }, + { + "start": 48631.78, + "end": 48633.2, + "probability": 0.5906 + }, + { + "start": 48634.82, + "end": 48638.54, + "probability": 0.4828 + }, + { + "start": 48639.58, + "end": 48640.2, + "probability": 0.0007 + }, + { + "start": 48649.88, + "end": 48651.54, + "probability": 0.0579 + }, + { + "start": 48653.12, + "end": 48655.5, + "probability": 0.7819 + }, + { + "start": 48655.56, + "end": 48656.78, + "probability": 0.7043 + }, + { + "start": 48657.16, + "end": 48659.57, + "probability": 0.5508 + }, + { + "start": 48659.84, + "end": 48666.68, + "probability": 0.9562 + }, + { + "start": 48672.18, + "end": 48674.72, + "probability": 0.111 + }, + { + "start": 48677.78, + "end": 48678.74, + "probability": 0.1142 + }, + { + "start": 48679.88, + "end": 48680.82, + "probability": 0.2226 + }, + { + "start": 48681.54, + "end": 48683.98, + "probability": 0.6182 + }, + { + "start": 48685.18, + "end": 48687.44, + "probability": 0.9445 + }, + { + "start": 48688.88, + "end": 48691.7, + "probability": 0.4989 + }, + { + "start": 48692.46, + "end": 48693.26, + "probability": 0.7013 + }, + { + "start": 48694.24, + "end": 48696.74, + "probability": 0.0532 + }, + { + "start": 48697.3, + "end": 48699.1, + "probability": 0.2369 + }, + { + "start": 48699.62, + "end": 48702.98, + "probability": 0.2738 + }, + { + "start": 48707.92, + "end": 48708.3, + "probability": 0.0054 + }, + { + "start": 48714.6, + "end": 48717.68, + "probability": 0.2285 + }, + { + "start": 48717.88, + "end": 48719.68, + "probability": 0.8452 + }, + { + "start": 48720.46, + "end": 48721.86, + "probability": 0.9314 + }, + { + "start": 48722.38, + "end": 48727.67, + "probability": 0.0192 + }, + { + "start": 48734.22, + "end": 48736.64, + "probability": 0.6962 + }, + { + "start": 48737.64, + "end": 48738.12, + "probability": 0.7125 + }, + { + "start": 48738.9, + "end": 48741.24, + "probability": 0.3338 + }, + { + "start": 48741.92, + "end": 48743.44, + "probability": 0.5258 + }, + { + "start": 48743.92, + "end": 48745.88, + "probability": 0.3775 + }, + { + "start": 48748.08, + "end": 48748.76, + "probability": 0.0003 + }, + { + "start": 48754.62, + "end": 48754.72, + "probability": 0.0809 + }, + { + "start": 48756.34, + "end": 48758.84, + "probability": 0.7975 + }, + { + "start": 48758.9, + "end": 48760.14, + "probability": 0.8813 + }, + { + "start": 48760.98, + "end": 48762.68, + "probability": 0.0137 + }, + { + "start": 48762.68, + "end": 48766.68, + "probability": 0.258 + }, + { + "start": 48766.84, + "end": 48769.64, + "probability": 0.7254 + }, + { + "start": 48769.84, + "end": 48771.42, + "probability": 0.5871 + }, + { + "start": 48771.53, + "end": 48772.83, + "probability": 0.045 + }, + { + "start": 48783.84, + "end": 48789.8, + "probability": 0.748 + }, + { + "start": 48789.8, + "end": 48789.94, + "probability": 0.1669 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.0, + "end": 48884.0, + "probability": 0.0 + }, + { + "start": 48884.62, + "end": 48884.62, + "probability": 0.0001 + }, + { + "start": 48884.62, + "end": 48886.44, + "probability": 0.6467 + }, + { + "start": 48887.26, + "end": 48888.7, + "probability": 0.6555 + }, + { + "start": 48888.88, + "end": 48892.8, + "probability": 0.0117 + }, + { + "start": 48901.04, + "end": 48903.64, + "probability": 0.9368 + }, + { + "start": 48904.14, + "end": 48906.3, + "probability": 0.9588 + }, + { + "start": 48907.16, + "end": 48907.9, + "probability": 0.7726 + }, + { + "start": 48907.92, + "end": 48913.48, + "probability": 0.952 + }, + { + "start": 48913.48, + "end": 48918.42, + "probability": 0.9609 + }, + { + "start": 48918.42, + "end": 48922.48, + "probability": 0.9429 + }, + { + "start": 48923.04, + "end": 48926.42, + "probability": 0.5858 + }, + { + "start": 48944.64, + "end": 48949.46, + "probability": 0.7908 + }, + { + "start": 48949.92, + "end": 48954.98, + "probability": 0.9883 + }, + { + "start": 48955.32, + "end": 48956.48, + "probability": 0.3808 + }, + { + "start": 48957.1, + "end": 48957.5, + "probability": 0.2449 + }, + { + "start": 48960.96, + "end": 48960.96, + "probability": 0.0089 + }, + { + "start": 48960.96, + "end": 48962.26, + "probability": 0.0303 + }, + { + "start": 48966.2, + "end": 48967.56, + "probability": 0.0517 + }, + { + "start": 48969.14, + "end": 48969.68, + "probability": 0.168 + }, + { + "start": 48970.8, + "end": 48971.88, + "probability": 0.1171 + }, + { + "start": 48977.63, + "end": 48981.06, + "probability": 0.0862 + }, + { + "start": 48981.7, + "end": 48982.86, + "probability": 0.0458 + }, + { + "start": 48983.06, + "end": 48984.88, + "probability": 0.0667 + }, + { + "start": 48985.26, + "end": 48985.86, + "probability": 0.104 + }, + { + "start": 48986.94, + "end": 48990.26, + "probability": 0.0375 + }, + { + "start": 48991.36, + "end": 48991.36, + "probability": 0.046 + }, + { + "start": 48991.36, + "end": 48991.38, + "probability": 0.1889 + }, + { + "start": 48991.38, + "end": 48992.78, + "probability": 0.7606 + }, + { + "start": 48992.82, + "end": 48996.24, + "probability": 0.7933 + }, + { + "start": 48996.28, + "end": 48997.36, + "probability": 0.8952 + }, + { + "start": 48998.04, + "end": 49000.28, + "probability": 0.9567 + }, + { + "start": 49000.32, + "end": 49001.52, + "probability": 0.8397 + }, + { + "start": 49001.62, + "end": 49002.38, + "probability": 0.9668 + }, + { + "start": 49002.5, + "end": 49003.82, + "probability": 0.7639 + }, + { + "start": 49004.62, + "end": 49007.58, + "probability": 0.9565 + }, + { + "start": 49007.96, + "end": 49011.44, + "probability": 0.853 + }, + { + "start": 49011.8, + "end": 49014.28, + "probability": 0.9869 + }, + { + "start": 49015.14, + "end": 49016.76, + "probability": 0.7223 + }, + { + "start": 49017.2, + "end": 49018.48, + "probability": 0.8818 + }, + { + "start": 49018.84, + "end": 49019.98, + "probability": 0.9498 + }, + { + "start": 49020.12, + "end": 49022.7, + "probability": 0.9654 + }, + { + "start": 49023.14, + "end": 49026.38, + "probability": 0.9237 + }, + { + "start": 49026.58, + "end": 49027.78, + "probability": 0.9483 + }, + { + "start": 49028.3, + "end": 49030.58, + "probability": 0.7545 + }, + { + "start": 49030.6, + "end": 49032.74, + "probability": 0.8822 + }, + { + "start": 49033.22, + "end": 49038.26, + "probability": 0.999 + }, + { + "start": 49038.34, + "end": 49039.22, + "probability": 0.9471 + }, + { + "start": 49039.24, + "end": 49039.48, + "probability": 0.8462 + }, + { + "start": 49039.54, + "end": 49039.91, + "probability": 0.9785 + }, + { + "start": 49040.96, + "end": 49042.58, + "probability": 0.9927 + }, + { + "start": 49042.78, + "end": 49047.7, + "probability": 0.9953 + }, + { + "start": 49048.14, + "end": 49050.63, + "probability": 0.9184 + }, + { + "start": 49051.06, + "end": 49051.92, + "probability": 0.7159 + }, + { + "start": 49051.96, + "end": 49052.6, + "probability": 0.8547 + }, + { + "start": 49052.64, + "end": 49054.68, + "probability": 0.9365 + }, + { + "start": 49055.0, + "end": 49060.7, + "probability": 0.9917 + }, + { + "start": 49060.8, + "end": 49064.04, + "probability": 0.9938 + }, + { + "start": 49064.2, + "end": 49065.32, + "probability": 0.9784 + }, + { + "start": 49065.4, + "end": 49066.48, + "probability": 0.9877 + }, + { + "start": 49067.08, + "end": 49070.88, + "probability": 0.9943 + }, + { + "start": 49070.88, + "end": 49073.8, + "probability": 0.9961 + }, + { + "start": 49074.38, + "end": 49077.48, + "probability": 0.9718 + }, + { + "start": 49077.48, + "end": 49081.02, + "probability": 0.9978 + }, + { + "start": 49081.18, + "end": 49082.68, + "probability": 0.9648 + }, + { + "start": 49083.3, + "end": 49085.88, + "probability": 0.9526 + }, + { + "start": 49086.38, + "end": 49087.88, + "probability": 0.9737 + }, + { + "start": 49088.46, + "end": 49093.66, + "probability": 0.9859 + }, + { + "start": 49093.86, + "end": 49094.82, + "probability": 0.9912 + }, + { + "start": 49095.2, + "end": 49095.86, + "probability": 0.8179 + }, + { + "start": 49095.9, + "end": 49096.92, + "probability": 0.7529 + }, + { + "start": 49096.96, + "end": 49098.3, + "probability": 0.9871 + }, + { + "start": 49098.42, + "end": 49100.16, + "probability": 0.9971 + }, + { + "start": 49100.5, + "end": 49100.94, + "probability": 0.8538 + }, + { + "start": 49101.08, + "end": 49101.88, + "probability": 0.957 + }, + { + "start": 49102.26, + "end": 49107.2, + "probability": 0.9958 + }, + { + "start": 49107.96, + "end": 49108.78, + "probability": 0.9645 + }, + { + "start": 49108.84, + "end": 49109.18, + "probability": 0.6216 + }, + { + "start": 49109.32, + "end": 49112.58, + "probability": 0.7908 + }, + { + "start": 49112.74, + "end": 49118.56, + "probability": 0.97 + }, + { + "start": 49119.02, + "end": 49123.76, + "probability": 0.9974 + }, + { + "start": 49123.88, + "end": 49124.66, + "probability": 0.8126 + }, + { + "start": 49125.48, + "end": 49127.4, + "probability": 0.7896 + }, + { + "start": 49127.96, + "end": 49132.42, + "probability": 0.9733 + }, + { + "start": 49133.38, + "end": 49134.08, + "probability": 0.7109 + }, + { + "start": 49134.18, + "end": 49134.64, + "probability": 0.4652 + }, + { + "start": 49134.76, + "end": 49135.86, + "probability": 0.5183 + }, + { + "start": 49135.98, + "end": 49139.78, + "probability": 0.9651 + }, + { + "start": 49139.85, + "end": 49144.46, + "probability": 0.807 + }, + { + "start": 49144.68, + "end": 49144.84, + "probability": 0.3116 + }, + { + "start": 49144.92, + "end": 49147.98, + "probability": 0.9756 + }, + { + "start": 49148.08, + "end": 49148.72, + "probability": 0.8544 + }, + { + "start": 49149.28, + "end": 49150.0, + "probability": 0.8152 + }, + { + "start": 49150.04, + "end": 49151.34, + "probability": 0.8053 + }, + { + "start": 49151.38, + "end": 49155.02, + "probability": 0.983 + }, + { + "start": 49155.64, + "end": 49155.92, + "probability": 0.9182 + }, + { + "start": 49156.04, + "end": 49157.24, + "probability": 0.9292 + }, + { + "start": 49157.38, + "end": 49160.38, + "probability": 0.9632 + }, + { + "start": 49160.82, + "end": 49164.66, + "probability": 0.9891 + }, + { + "start": 49165.26, + "end": 49165.94, + "probability": 0.8701 + }, + { + "start": 49167.32, + "end": 49169.52, + "probability": 0.8639 + }, + { + "start": 49169.6, + "end": 49170.24, + "probability": 0.868 + }, + { + "start": 49170.32, + "end": 49172.12, + "probability": 0.7365 + }, + { + "start": 49172.76, + "end": 49173.74, + "probability": 0.9615 + }, + { + "start": 49174.58, + "end": 49175.7, + "probability": 0.2299 + }, + { + "start": 49176.26, + "end": 49177.62, + "probability": 0.9932 + }, + { + "start": 49177.72, + "end": 49178.48, + "probability": 0.8006 + }, + { + "start": 49178.5, + "end": 49180.28, + "probability": 0.7965 + }, + { + "start": 49180.82, + "end": 49184.84, + "probability": 0.9904 + }, + { + "start": 49184.98, + "end": 49185.88, + "probability": 0.8911 + }, + { + "start": 49186.1, + "end": 49186.24, + "probability": 0.7729 + }, + { + "start": 49188.18, + "end": 49188.18, + "probability": 0.01 + }, + { + "start": 49188.18, + "end": 49188.18, + "probability": 0.0506 + }, + { + "start": 49188.18, + "end": 49188.74, + "probability": 0.5553 + }, + { + "start": 49188.88, + "end": 49189.24, + "probability": 0.4791 + }, + { + "start": 49189.56, + "end": 49192.32, + "probability": 0.5278 + }, + { + "start": 49192.32, + "end": 49195.9, + "probability": 0.6917 + }, + { + "start": 49196.14, + "end": 49199.0, + "probability": 0.9717 + }, + { + "start": 49199.08, + "end": 49199.58, + "probability": 0.5646 + }, + { + "start": 49199.78, + "end": 49199.98, + "probability": 0.5076 + }, + { + "start": 49200.5, + "end": 49201.06, + "probability": 0.8007 + }, + { + "start": 49201.1, + "end": 49201.92, + "probability": 0.8596 + }, + { + "start": 49202.4, + "end": 49203.24, + "probability": 0.9029 + }, + { + "start": 49203.28, + "end": 49204.24, + "probability": 0.9214 + }, + { + "start": 49204.3, + "end": 49205.38, + "probability": 0.9404 + }, + { + "start": 49206.5, + "end": 49207.72, + "probability": 0.9917 + }, + { + "start": 49207.8, + "end": 49208.0, + "probability": 0.7643 + }, + { + "start": 49208.06, + "end": 49213.3, + "probability": 0.9825 + }, + { + "start": 49213.38, + "end": 49214.52, + "probability": 0.892 + }, + { + "start": 49214.9, + "end": 49217.3, + "probability": 0.909 + }, + { + "start": 49217.38, + "end": 49218.98, + "probability": 0.9688 + }, + { + "start": 49219.9, + "end": 49221.72, + "probability": 0.9038 + }, + { + "start": 49221.74, + "end": 49221.88, + "probability": 0.7809 + }, + { + "start": 49222.06, + "end": 49224.34, + "probability": 0.998 + }, + { + "start": 49224.72, + "end": 49226.54, + "probability": 0.5459 + }, + { + "start": 49226.68, + "end": 49227.26, + "probability": 0.6099 + }, + { + "start": 49227.3, + "end": 49228.02, + "probability": 0.6654 + }, + { + "start": 49228.1, + "end": 49229.16, + "probability": 0.8838 + }, + { + "start": 49229.32, + "end": 49232.86, + "probability": 0.9694 + }, + { + "start": 49233.06, + "end": 49233.82, + "probability": 0.2928 + }, + { + "start": 49234.26, + "end": 49236.36, + "probability": 0.6845 + }, + { + "start": 49237.16, + "end": 49239.34, + "probability": 0.9868 + }, + { + "start": 49239.72, + "end": 49241.72, + "probability": 0.8955 + }, + { + "start": 49241.82, + "end": 49242.92, + "probability": 0.9167 + }, + { + "start": 49242.96, + "end": 49245.06, + "probability": 0.9954 + }, + { + "start": 49245.12, + "end": 49246.22, + "probability": 0.7716 + }, + { + "start": 49246.42, + "end": 49246.86, + "probability": 0.89 + }, + { + "start": 49246.88, + "end": 49247.6, + "probability": 0.5792 + }, + { + "start": 49247.7, + "end": 49248.32, + "probability": 0.7359 + }, + { + "start": 49248.32, + "end": 49249.26, + "probability": 0.8694 + }, + { + "start": 49249.84, + "end": 49250.42, + "probability": 0.3941 + }, + { + "start": 49250.48, + "end": 49251.12, + "probability": 0.7881 + }, + { + "start": 49252.32, + "end": 49255.04, + "probability": 0.6668 + }, + { + "start": 49255.74, + "end": 49257.94, + "probability": 0.9589 + }, + { + "start": 49258.92, + "end": 49260.5, + "probability": 0.0076 + }, + { + "start": 49260.66, + "end": 49260.66, + "probability": 0.1657 + }, + { + "start": 49260.66, + "end": 49261.26, + "probability": 0.3529 + }, + { + "start": 49264.24, + "end": 49265.42, + "probability": 0.0737 + }, + { + "start": 49268.1, + "end": 49271.22, + "probability": 0.8722 + }, + { + "start": 49272.0, + "end": 49273.4, + "probability": 0.5618 + }, + { + "start": 49273.4, + "end": 49274.62, + "probability": 0.9069 + }, + { + "start": 49274.74, + "end": 49276.2, + "probability": 0.7388 + }, + { + "start": 49276.5, + "end": 49281.54, + "probability": 0.985 + }, + { + "start": 49282.14, + "end": 49287.0, + "probability": 0.9948 + }, + { + "start": 49287.0, + "end": 49291.1, + "probability": 0.9971 + }, + { + "start": 49291.78, + "end": 49295.53, + "probability": 0.9946 + }, + { + "start": 49296.2, + "end": 49301.82, + "probability": 0.9896 + }, + { + "start": 49302.6, + "end": 49304.46, + "probability": 0.9679 + }, + { + "start": 49305.04, + "end": 49307.34, + "probability": 0.9984 + }, + { + "start": 49308.22, + "end": 49308.93, + "probability": 0.9324 + }, + { + "start": 49309.44, + "end": 49314.06, + "probability": 0.9927 + }, + { + "start": 49314.72, + "end": 49318.22, + "probability": 0.9971 + }, + { + "start": 49318.8, + "end": 49320.76, + "probability": 0.6243 + }, + { + "start": 49321.44, + "end": 49322.22, + "probability": 0.8801 + }, + { + "start": 49322.38, + "end": 49323.66, + "probability": 0.6202 + }, + { + "start": 49323.88, + "end": 49328.92, + "probability": 0.9666 + }, + { + "start": 49329.42, + "end": 49331.98, + "probability": 0.9983 + }, + { + "start": 49331.98, + "end": 49336.68, + "probability": 0.996 + }, + { + "start": 49337.48, + "end": 49338.8, + "probability": 0.7692 + }, + { + "start": 49339.42, + "end": 49346.34, + "probability": 0.9976 + }, + { + "start": 49346.9, + "end": 49351.72, + "probability": 0.999 + }, + { + "start": 49352.86, + "end": 49356.28, + "probability": 0.9655 + }, + { + "start": 49356.5, + "end": 49357.34, + "probability": 0.6007 + }, + { + "start": 49357.44, + "end": 49358.04, + "probability": 0.5604 + }, + { + "start": 49358.86, + "end": 49365.24, + "probability": 0.9784 + }, + { + "start": 49365.82, + "end": 49366.68, + "probability": 0.8233 + }, + { + "start": 49366.84, + "end": 49368.0, + "probability": 0.7539 + }, + { + "start": 49368.44, + "end": 49369.88, + "probability": 0.8966 + }, + { + "start": 49370.34, + "end": 49374.74, + "probability": 0.998 + }, + { + "start": 49375.16, + "end": 49377.78, + "probability": 0.9978 + }, + { + "start": 49378.28, + "end": 49382.92, + "probability": 0.9614 + }, + { + "start": 49383.34, + "end": 49386.07, + "probability": 0.9979 + }, + { + "start": 49386.38, + "end": 49390.5, + "probability": 0.9854 + }, + { + "start": 49391.02, + "end": 49393.78, + "probability": 0.8323 + }, + { + "start": 49394.38, + "end": 49395.74, + "probability": 0.9467 + }, + { + "start": 49395.9, + "end": 49399.3, + "probability": 0.9174 + }, + { + "start": 49400.12, + "end": 49400.56, + "probability": 0.8815 + }, + { + "start": 49401.22, + "end": 49402.38, + "probability": 0.7698 + }, + { + "start": 49402.5, + "end": 49404.48, + "probability": 0.8068 + }, + { + "start": 49405.18, + "end": 49406.2, + "probability": 0.4728 + }, + { + "start": 49406.24, + "end": 49407.96, + "probability": 0.9318 + }, + { + "start": 49408.22, + "end": 49410.32, + "probability": 0.7854 + }, + { + "start": 49410.78, + "end": 49412.42, + "probability": 0.7422 + }, + { + "start": 49412.84, + "end": 49413.58, + "probability": 0.8781 + }, + { + "start": 49442.0, + "end": 49442.86, + "probability": 0.0853 + } + ], + "segments_count": 15641, + "words_count": 78992, + "avg_words_per_segment": 5.0503, + "avg_segment_duration": 2.2571, + "avg_words_per_minute": 94.9374, + "plenum_id": "130945", + "duration": 49922.6, + "title": null, + "plenum_date": "2024-11-04" +} \ No newline at end of file