diff --git "a/23652/metadata.json" "b/23652/metadata.json" new file mode 100644--- /dev/null +++ "b/23652/metadata.json" @@ -0,0 +1,14992 @@ +{ + "source_type": "knesset", + "source_id": "plenum", + "source_entry_id": "23652", + "quality_score": 0.9199, + "per_segment_quality_scores": [ + { + "start": 1.79, + "end": 2.92, + "probability": 0.0566 + }, + { + "start": 3.84, + "end": 4.52, + "probability": 0.0242 + }, + { + "start": 50.72, + "end": 55.4, + "probability": 0.5982 + }, + { + "start": 56.44, + "end": 59.7, + "probability": 0.6825 + }, + { + "start": 60.36, + "end": 61.7, + "probability": 0.9808 + }, + { + "start": 63.12, + "end": 63.9, + "probability": 0.9702 + }, + { + "start": 64.04, + "end": 64.98, + "probability": 0.9662 + }, + { + "start": 65.06, + "end": 66.3, + "probability": 0.9441 + }, + { + "start": 66.9, + "end": 71.08, + "probability": 0.9844 + }, + { + "start": 71.8, + "end": 74.38, + "probability": 0.732 + }, + { + "start": 83.34, + "end": 87.14, + "probability": 0.56 + }, + { + "start": 87.38, + "end": 88.92, + "probability": 0.6543 + }, + { + "start": 89.64, + "end": 91.82, + "probability": 0.8575 + }, + { + "start": 91.92, + "end": 95.54, + "probability": 0.9825 + }, + { + "start": 96.76, + "end": 98.46, + "probability": 0.7052 + }, + { + "start": 99.06, + "end": 99.7, + "probability": 0.4497 + }, + { + "start": 100.38, + "end": 103.58, + "probability": 0.9709 + }, + { + "start": 104.2, + "end": 105.72, + "probability": 0.825 + }, + { + "start": 106.72, + "end": 111.08, + "probability": 0.7694 + }, + { + "start": 111.72, + "end": 114.83, + "probability": 0.9445 + }, + { + "start": 116.48, + "end": 120.62, + "probability": 0.9182 + }, + { + "start": 121.18, + "end": 122.0, + "probability": 0.5188 + }, + { + "start": 123.1, + "end": 125.28, + "probability": 0.5045 + }, + { + "start": 126.32, + "end": 133.46, + "probability": 0.9479 + }, + { + "start": 133.86, + "end": 135.12, + "probability": 0.7156 + }, + { + "start": 135.54, + "end": 141.56, + "probability": 0.9612 + }, + { + "start": 141.98, + "end": 142.2, + "probability": 0.6454 + }, + { + "start": 142.94, + "end": 144.62, + "probability": 0.7033 + }, + { + "start": 146.08, + "end": 148.3, + "probability": 0.9574 + }, + { + "start": 148.92, + "end": 150.3, + "probability": 0.1468 + }, + { + "start": 151.28, + "end": 154.7, + "probability": 0.4959 + }, + { + "start": 159.08, + "end": 162.56, + "probability": 0.6908 + }, + { + "start": 164.22, + "end": 166.28, + "probability": 0.632 + }, + { + "start": 168.16, + "end": 169.0, + "probability": 0.7258 + }, + { + "start": 170.68, + "end": 173.62, + "probability": 0.9026 + }, + { + "start": 173.7, + "end": 175.29, + "probability": 0.9912 + }, + { + "start": 176.3, + "end": 186.02, + "probability": 0.987 + }, + { + "start": 187.78, + "end": 188.48, + "probability": 0.4984 + }, + { + "start": 189.0, + "end": 191.6, + "probability": 0.9435 + }, + { + "start": 192.8, + "end": 201.18, + "probability": 0.9993 + }, + { + "start": 201.62, + "end": 204.28, + "probability": 0.9658 + }, + { + "start": 204.94, + "end": 207.08, + "probability": 0.597 + }, + { + "start": 208.3, + "end": 212.16, + "probability": 0.9878 + }, + { + "start": 212.16, + "end": 216.86, + "probability": 0.988 + }, + { + "start": 218.08, + "end": 222.86, + "probability": 0.9943 + }, + { + "start": 224.16, + "end": 225.42, + "probability": 0.791 + }, + { + "start": 225.74, + "end": 232.34, + "probability": 0.9054 + }, + { + "start": 233.64, + "end": 242.2, + "probability": 0.9946 + }, + { + "start": 243.02, + "end": 243.6, + "probability": 0.7426 + }, + { + "start": 243.74, + "end": 244.04, + "probability": 0.8538 + }, + { + "start": 244.1, + "end": 247.62, + "probability": 0.9647 + }, + { + "start": 248.68, + "end": 250.16, + "probability": 0.8835 + }, + { + "start": 250.24, + "end": 252.7, + "probability": 0.789 + }, + { + "start": 252.92, + "end": 256.18, + "probability": 0.8877 + }, + { + "start": 256.32, + "end": 260.34, + "probability": 0.971 + }, + { + "start": 260.56, + "end": 261.02, + "probability": 0.8991 + }, + { + "start": 261.1, + "end": 265.52, + "probability": 0.9668 + }, + { + "start": 266.36, + "end": 267.22, + "probability": 0.0635 + }, + { + "start": 267.7, + "end": 270.26, + "probability": 0.9781 + }, + { + "start": 270.5, + "end": 272.14, + "probability": 0.5595 + }, + { + "start": 272.36, + "end": 274.9, + "probability": 0.9786 + }, + { + "start": 275.26, + "end": 275.8, + "probability": 0.9427 + }, + { + "start": 275.88, + "end": 276.28, + "probability": 0.7588 + }, + { + "start": 276.36, + "end": 278.78, + "probability": 0.7988 + }, + { + "start": 278.84, + "end": 279.48, + "probability": 0.8821 + }, + { + "start": 280.3, + "end": 283.02, + "probability": 0.9899 + }, + { + "start": 283.36, + "end": 286.86, + "probability": 0.9766 + }, + { + "start": 287.46, + "end": 291.22, + "probability": 0.7985 + }, + { + "start": 291.24, + "end": 292.18, + "probability": 0.81 + }, + { + "start": 292.3, + "end": 292.7, + "probability": 0.7109 + }, + { + "start": 293.62, + "end": 298.7, + "probability": 0.5168 + }, + { + "start": 301.16, + "end": 302.2, + "probability": 0.396 + }, + { + "start": 303.78, + "end": 306.86, + "probability": 0.9805 + }, + { + "start": 308.22, + "end": 310.28, + "probability": 0.4011 + }, + { + "start": 311.2, + "end": 311.76, + "probability": 0.991 + }, + { + "start": 311.96, + "end": 313.98, + "probability": 0.8442 + }, + { + "start": 315.56, + "end": 323.22, + "probability": 0.9948 + }, + { + "start": 324.92, + "end": 334.66, + "probability": 0.984 + }, + { + "start": 334.66, + "end": 341.8, + "probability": 0.9994 + }, + { + "start": 342.48, + "end": 344.96, + "probability": 0.9569 + }, + { + "start": 346.48, + "end": 348.02, + "probability": 0.6835 + }, + { + "start": 348.58, + "end": 350.08, + "probability": 0.9594 + }, + { + "start": 351.3, + "end": 355.34, + "probability": 0.9922 + }, + { + "start": 355.34, + "end": 357.94, + "probability": 0.9995 + }, + { + "start": 358.52, + "end": 360.52, + "probability": 0.9938 + }, + { + "start": 360.6, + "end": 363.66, + "probability": 0.9717 + }, + { + "start": 363.8, + "end": 365.06, + "probability": 0.9045 + }, + { + "start": 365.44, + "end": 368.12, + "probability": 0.9963 + }, + { + "start": 368.98, + "end": 372.04, + "probability": 0.9957 + }, + { + "start": 372.16, + "end": 373.34, + "probability": 0.8254 + }, + { + "start": 374.02, + "end": 375.14, + "probability": 0.919 + }, + { + "start": 375.52, + "end": 378.46, + "probability": 0.9676 + }, + { + "start": 379.0, + "end": 381.08, + "probability": 0.9584 + }, + { + "start": 381.42, + "end": 382.74, + "probability": 0.9888 + }, + { + "start": 382.8, + "end": 383.86, + "probability": 0.9591 + }, + { + "start": 384.44, + "end": 386.52, + "probability": 0.9866 + }, + { + "start": 386.54, + "end": 391.12, + "probability": 0.9976 + }, + { + "start": 391.56, + "end": 396.26, + "probability": 0.9509 + }, + { + "start": 396.42, + "end": 397.5, + "probability": 0.8999 + }, + { + "start": 397.54, + "end": 399.76, + "probability": 0.9665 + }, + { + "start": 399.82, + "end": 403.62, + "probability": 0.9989 + }, + { + "start": 404.12, + "end": 407.7, + "probability": 0.9984 + }, + { + "start": 408.04, + "end": 413.46, + "probability": 0.9903 + }, + { + "start": 413.84, + "end": 414.97, + "probability": 0.6739 + }, + { + "start": 415.78, + "end": 418.54, + "probability": 0.9532 + }, + { + "start": 418.94, + "end": 419.28, + "probability": 0.6361 + }, + { + "start": 419.48, + "end": 421.22, + "probability": 0.0229 + }, + { + "start": 421.22, + "end": 424.5, + "probability": 0.79 + }, + { + "start": 425.02, + "end": 426.16, + "probability": 0.9309 + }, + { + "start": 426.96, + "end": 427.6, + "probability": 0.1674 + }, + { + "start": 428.86, + "end": 431.1, + "probability": 0.4864 + }, + { + "start": 431.62, + "end": 432.79, + "probability": 0.6385 + }, + { + "start": 432.84, + "end": 433.5, + "probability": 0.6991 + }, + { + "start": 433.5, + "end": 435.58, + "probability": 0.7688 + }, + { + "start": 435.86, + "end": 436.84, + "probability": 0.6465 + }, + { + "start": 436.84, + "end": 438.56, + "probability": 0.8394 + }, + { + "start": 438.56, + "end": 440.76, + "probability": 0.5219 + }, + { + "start": 440.92, + "end": 441.66, + "probability": 0.4469 + }, + { + "start": 441.68, + "end": 442.5, + "probability": 0.7766 + }, + { + "start": 442.68, + "end": 443.54, + "probability": 0.4307 + }, + { + "start": 443.8, + "end": 446.22, + "probability": 0.6142 + }, + { + "start": 446.44, + "end": 447.0, + "probability": 0.4717 + }, + { + "start": 447.08, + "end": 449.55, + "probability": 0.9688 + }, + { + "start": 450.08, + "end": 450.62, + "probability": 0.35 + }, + { + "start": 450.72, + "end": 453.04, + "probability": 0.8644 + }, + { + "start": 453.87, + "end": 457.78, + "probability": 0.8612 + }, + { + "start": 458.34, + "end": 462.42, + "probability": 0.7563 + }, + { + "start": 462.6, + "end": 463.5, + "probability": 0.3217 + }, + { + "start": 463.54, + "end": 465.0, + "probability": 0.769 + }, + { + "start": 465.36, + "end": 469.02, + "probability": 0.8607 + }, + { + "start": 469.76, + "end": 471.22, + "probability": 0.8393 + }, + { + "start": 471.38, + "end": 471.38, + "probability": 0.4172 + }, + { + "start": 471.38, + "end": 473.06, + "probability": 0.9954 + }, + { + "start": 473.58, + "end": 476.08, + "probability": 0.59 + }, + { + "start": 476.6, + "end": 477.76, + "probability": 0.9811 + }, + { + "start": 478.72, + "end": 480.72, + "probability": 0.873 + }, + { + "start": 481.2, + "end": 484.06, + "probability": 0.9323 + }, + { + "start": 484.06, + "end": 488.4, + "probability": 0.9846 + }, + { + "start": 488.74, + "end": 489.04, + "probability": 0.9785 + }, + { + "start": 489.2, + "end": 489.78, + "probability": 0.9912 + }, + { + "start": 489.92, + "end": 490.78, + "probability": 0.839 + }, + { + "start": 491.68, + "end": 493.22, + "probability": 0.9365 + }, + { + "start": 493.6, + "end": 497.96, + "probability": 0.9982 + }, + { + "start": 497.96, + "end": 502.78, + "probability": 0.9297 + }, + { + "start": 503.09, + "end": 507.74, + "probability": 0.9236 + }, + { + "start": 508.1, + "end": 513.9, + "probability": 0.998 + }, + { + "start": 513.9, + "end": 517.3, + "probability": 0.9428 + }, + { + "start": 517.7, + "end": 518.56, + "probability": 0.3754 + }, + { + "start": 518.58, + "end": 519.62, + "probability": 0.9233 + }, + { + "start": 519.62, + "end": 524.72, + "probability": 0.9448 + }, + { + "start": 524.76, + "end": 525.16, + "probability": 0.8123 + }, + { + "start": 525.48, + "end": 526.2, + "probability": 0.9216 + }, + { + "start": 526.44, + "end": 527.62, + "probability": 0.8786 + }, + { + "start": 527.94, + "end": 529.54, + "probability": 0.9632 + }, + { + "start": 529.78, + "end": 530.64, + "probability": 0.8905 + }, + { + "start": 531.1, + "end": 536.98, + "probability": 0.9962 + }, + { + "start": 537.44, + "end": 538.26, + "probability": 0.8411 + }, + { + "start": 538.56, + "end": 540.98, + "probability": 0.9119 + }, + { + "start": 540.98, + "end": 545.0, + "probability": 0.9931 + }, + { + "start": 545.54, + "end": 545.96, + "probability": 0.5097 + }, + { + "start": 546.14, + "end": 547.38, + "probability": 0.3951 + }, + { + "start": 547.92, + "end": 548.6, + "probability": 0.3795 + }, + { + "start": 548.62, + "end": 551.08, + "probability": 0.501 + }, + { + "start": 551.16, + "end": 551.6, + "probability": 0.7183 + }, + { + "start": 551.62, + "end": 552.68, + "probability": 0.9448 + }, + { + "start": 553.98, + "end": 556.44, + "probability": 0.4028 + }, + { + "start": 557.66, + "end": 559.94, + "probability": 0.7121 + }, + { + "start": 560.16, + "end": 560.62, + "probability": 0.7444 + }, + { + "start": 560.92, + "end": 563.0, + "probability": 0.0336 + }, + { + "start": 563.72, + "end": 565.28, + "probability": 0.5005 + }, + { + "start": 565.82, + "end": 567.52, + "probability": 0.1803 + }, + { + "start": 567.56, + "end": 567.96, + "probability": 0.6666 + }, + { + "start": 568.46, + "end": 570.78, + "probability": 0.8004 + }, + { + "start": 571.28, + "end": 573.4, + "probability": 0.8491 + }, + { + "start": 573.7, + "end": 575.26, + "probability": 0.9725 + }, + { + "start": 575.38, + "end": 575.68, + "probability": 0.3409 + }, + { + "start": 576.22, + "end": 578.28, + "probability": 0.3569 + }, + { + "start": 578.28, + "end": 578.98, + "probability": 0.5574 + }, + { + "start": 579.12, + "end": 580.12, + "probability": 0.8691 + }, + { + "start": 580.2, + "end": 587.42, + "probability": 0.9165 + }, + { + "start": 587.96, + "end": 591.44, + "probability": 0.837 + }, + { + "start": 591.86, + "end": 596.6, + "probability": 0.6872 + }, + { + "start": 596.74, + "end": 601.22, + "probability": 0.9936 + }, + { + "start": 601.8, + "end": 607.04, + "probability": 0.9907 + }, + { + "start": 607.72, + "end": 610.6, + "probability": 0.972 + }, + { + "start": 610.68, + "end": 614.16, + "probability": 0.9742 + }, + { + "start": 614.16, + "end": 618.72, + "probability": 0.9759 + }, + { + "start": 618.72, + "end": 624.16, + "probability": 0.9968 + }, + { + "start": 625.08, + "end": 627.2, + "probability": 0.7842 + }, + { + "start": 627.32, + "end": 628.62, + "probability": 0.7198 + }, + { + "start": 628.74, + "end": 632.78, + "probability": 0.9571 + }, + { + "start": 633.28, + "end": 636.16, + "probability": 0.8878 + }, + { + "start": 636.16, + "end": 638.84, + "probability": 0.9833 + }, + { + "start": 641.74, + "end": 642.42, + "probability": 0.707 + }, + { + "start": 643.1, + "end": 646.74, + "probability": 0.9301 + }, + { + "start": 646.82, + "end": 650.28, + "probability": 0.626 + }, + { + "start": 651.92, + "end": 655.78, + "probability": 0.98 + }, + { + "start": 656.14, + "end": 660.24, + "probability": 0.7487 + }, + { + "start": 660.76, + "end": 665.24, + "probability": 0.9501 + }, + { + "start": 665.32, + "end": 665.8, + "probability": 0.5888 + }, + { + "start": 665.94, + "end": 666.7, + "probability": 0.5943 + }, + { + "start": 666.7, + "end": 668.02, + "probability": 0.5998 + }, + { + "start": 668.4, + "end": 669.88, + "probability": 0.4317 + }, + { + "start": 670.58, + "end": 673.46, + "probability": 0.8927 + }, + { + "start": 674.0, + "end": 676.88, + "probability": 0.8813 + }, + { + "start": 677.48, + "end": 683.48, + "probability": 0.8928 + }, + { + "start": 684.46, + "end": 687.44, + "probability": 0.9823 + }, + { + "start": 687.98, + "end": 690.12, + "probability": 0.9633 + }, + { + "start": 690.94, + "end": 691.86, + "probability": 0.9385 + }, + { + "start": 693.54, + "end": 694.58, + "probability": 0.8253 + }, + { + "start": 694.98, + "end": 696.86, + "probability": 0.8242 + }, + { + "start": 697.02, + "end": 700.28, + "probability": 0.7409 + }, + { + "start": 701.84, + "end": 703.72, + "probability": 0.8538 + }, + { + "start": 704.64, + "end": 707.44, + "probability": 0.81 + }, + { + "start": 708.36, + "end": 715.04, + "probability": 0.936 + }, + { + "start": 715.32, + "end": 716.66, + "probability": 0.9788 + }, + { + "start": 717.7, + "end": 718.18, + "probability": 0.4214 + }, + { + "start": 718.3, + "end": 718.78, + "probability": 0.7328 + }, + { + "start": 719.22, + "end": 721.04, + "probability": 0.4999 + }, + { + "start": 721.24, + "end": 726.84, + "probability": 0.7498 + }, + { + "start": 727.4, + "end": 729.3, + "probability": 0.9172 + }, + { + "start": 729.46, + "end": 732.2, + "probability": 0.8386 + }, + { + "start": 732.94, + "end": 733.66, + "probability": 0.7838 + }, + { + "start": 735.03, + "end": 740.26, + "probability": 0.9149 + }, + { + "start": 740.26, + "end": 743.4, + "probability": 0.8004 + }, + { + "start": 743.98, + "end": 745.12, + "probability": 0.7977 + }, + { + "start": 747.62, + "end": 748.98, + "probability": 0.7291 + }, + { + "start": 749.08, + "end": 749.18, + "probability": 0.7794 + }, + { + "start": 749.18, + "end": 749.94, + "probability": 0.1807 + }, + { + "start": 750.04, + "end": 753.84, + "probability": 0.9705 + }, + { + "start": 754.68, + "end": 757.66, + "probability": 0.9697 + }, + { + "start": 757.66, + "end": 761.46, + "probability": 0.9624 + }, + { + "start": 761.52, + "end": 762.04, + "probability": 0.8691 + }, + { + "start": 762.14, + "end": 763.05, + "probability": 0.9927 + }, + { + "start": 763.82, + "end": 766.38, + "probability": 0.9764 + }, + { + "start": 767.2, + "end": 767.86, + "probability": 0.8345 + }, + { + "start": 768.0, + "end": 768.64, + "probability": 0.6095 + }, + { + "start": 768.72, + "end": 773.14, + "probability": 0.9473 + }, + { + "start": 773.14, + "end": 777.48, + "probability": 0.9902 + }, + { + "start": 778.04, + "end": 780.6, + "probability": 0.7226 + }, + { + "start": 781.18, + "end": 782.54, + "probability": 0.8844 + }, + { + "start": 783.0, + "end": 784.98, + "probability": 0.6723 + }, + { + "start": 785.28, + "end": 786.64, + "probability": 0.971 + }, + { + "start": 787.12, + "end": 789.46, + "probability": 0.9143 + }, + { + "start": 789.76, + "end": 795.16, + "probability": 0.9612 + }, + { + "start": 795.48, + "end": 796.64, + "probability": 0.943 + }, + { + "start": 797.02, + "end": 800.9, + "probability": 0.813 + }, + { + "start": 801.34, + "end": 804.28, + "probability": 0.9139 + }, + { + "start": 804.6, + "end": 806.49, + "probability": 0.6981 + }, + { + "start": 806.7, + "end": 807.78, + "probability": 0.6721 + }, + { + "start": 808.12, + "end": 808.5, + "probability": 0.8674 + }, + { + "start": 809.0, + "end": 809.48, + "probability": 0.6568 + }, + { + "start": 809.54, + "end": 810.82, + "probability": 0.9976 + }, + { + "start": 811.24, + "end": 815.52, + "probability": 0.8508 + }, + { + "start": 816.65, + "end": 824.76, + "probability": 0.7438 + }, + { + "start": 825.18, + "end": 829.88, + "probability": 0.8269 + }, + { + "start": 830.28, + "end": 832.96, + "probability": 0.9795 + }, + { + "start": 833.96, + "end": 835.87, + "probability": 0.8052 + }, + { + "start": 836.48, + "end": 837.9, + "probability": 0.7879 + }, + { + "start": 838.42, + "end": 841.73, + "probability": 0.995 + }, + { + "start": 842.72, + "end": 843.62, + "probability": 0.8406 + }, + { + "start": 844.22, + "end": 848.04, + "probability": 0.6749 + }, + { + "start": 848.62, + "end": 851.12, + "probability": 0.9888 + }, + { + "start": 851.98, + "end": 854.87, + "probability": 0.9702 + }, + { + "start": 855.4, + "end": 856.92, + "probability": 0.8902 + }, + { + "start": 857.02, + "end": 857.78, + "probability": 0.7381 + }, + { + "start": 858.84, + "end": 860.62, + "probability": 0.9434 + }, + { + "start": 860.88, + "end": 861.34, + "probability": 0.7244 + }, + { + "start": 861.56, + "end": 867.14, + "probability": 0.824 + }, + { + "start": 867.14, + "end": 869.88, + "probability": 0.823 + }, + { + "start": 869.96, + "end": 870.82, + "probability": 0.9467 + }, + { + "start": 871.02, + "end": 871.38, + "probability": 0.5789 + }, + { + "start": 871.74, + "end": 872.5, + "probability": 0.5607 + }, + { + "start": 872.78, + "end": 874.5, + "probability": 0.7251 + }, + { + "start": 875.52, + "end": 876.84, + "probability": 0.9774 + }, + { + "start": 877.26, + "end": 878.78, + "probability": 0.9058 + }, + { + "start": 879.5, + "end": 882.06, + "probability": 0.9902 + }, + { + "start": 882.08, + "end": 882.58, + "probability": 0.6124 + }, + { + "start": 882.66, + "end": 883.28, + "probability": 0.7093 + }, + { + "start": 883.62, + "end": 884.26, + "probability": 0.0572 + }, + { + "start": 884.38, + "end": 886.33, + "probability": 0.9812 + }, + { + "start": 886.54, + "end": 887.22, + "probability": 0.6886 + }, + { + "start": 888.39, + "end": 891.12, + "probability": 0.9245 + }, + { + "start": 891.14, + "end": 892.05, + "probability": 0.7122 + }, + { + "start": 892.72, + "end": 894.36, + "probability": 0.7951 + }, + { + "start": 895.52, + "end": 896.2, + "probability": 0.7802 + }, + { + "start": 896.24, + "end": 898.2, + "probability": 0.8491 + }, + { + "start": 899.61, + "end": 901.66, + "probability": 0.8819 + }, + { + "start": 902.4, + "end": 903.7, + "probability": 0.8199 + }, + { + "start": 904.44, + "end": 905.94, + "probability": 0.9155 + }, + { + "start": 906.44, + "end": 909.22, + "probability": 0.8806 + }, + { + "start": 910.58, + "end": 913.56, + "probability": 0.8977 + }, + { + "start": 913.58, + "end": 916.14, + "probability": 0.9419 + }, + { + "start": 916.74, + "end": 918.04, + "probability": 0.9375 + }, + { + "start": 918.78, + "end": 919.7, + "probability": 0.9778 + }, + { + "start": 920.76, + "end": 921.4, + "probability": 0.9796 + }, + { + "start": 922.42, + "end": 924.94, + "probability": 0.9689 + }, + { + "start": 925.78, + "end": 926.42, + "probability": 0.3998 + }, + { + "start": 926.52, + "end": 928.06, + "probability": 0.8523 + }, + { + "start": 929.46, + "end": 929.78, + "probability": 0.4012 + }, + { + "start": 929.94, + "end": 930.18, + "probability": 0.7747 + }, + { + "start": 930.24, + "end": 931.64, + "probability": 0.9587 + }, + { + "start": 932.14, + "end": 933.48, + "probability": 0.8496 + }, + { + "start": 933.68, + "end": 935.08, + "probability": 0.6294 + }, + { + "start": 935.8, + "end": 937.28, + "probability": 0.6523 + }, + { + "start": 937.52, + "end": 939.04, + "probability": 0.9443 + }, + { + "start": 939.14, + "end": 943.02, + "probability": 0.9766 + }, + { + "start": 943.52, + "end": 944.48, + "probability": 0.694 + }, + { + "start": 944.9, + "end": 945.86, + "probability": 0.8623 + }, + { + "start": 946.3, + "end": 948.34, + "probability": 0.8385 + }, + { + "start": 948.34, + "end": 950.58, + "probability": 0.7174 + }, + { + "start": 951.12, + "end": 952.68, + "probability": 0.877 + }, + { + "start": 954.03, + "end": 958.4, + "probability": 0.9487 + }, + { + "start": 958.4, + "end": 962.38, + "probability": 0.9857 + }, + { + "start": 963.2, + "end": 963.82, + "probability": 0.8416 + }, + { + "start": 964.54, + "end": 965.52, + "probability": 0.9314 + }, + { + "start": 965.9, + "end": 967.02, + "probability": 0.8797 + }, + { + "start": 967.16, + "end": 971.6, + "probability": 0.9709 + }, + { + "start": 972.1, + "end": 973.92, + "probability": 0.9678 + }, + { + "start": 974.28, + "end": 975.46, + "probability": 0.8892 + }, + { + "start": 975.5, + "end": 976.82, + "probability": 0.412 + }, + { + "start": 976.86, + "end": 978.68, + "probability": 0.9461 + }, + { + "start": 979.06, + "end": 983.32, + "probability": 0.665 + }, + { + "start": 983.6, + "end": 984.78, + "probability": 0.9148 + }, + { + "start": 985.7, + "end": 987.52, + "probability": 0.7178 + }, + { + "start": 987.92, + "end": 988.34, + "probability": 0.5277 + }, + { + "start": 988.34, + "end": 989.18, + "probability": 0.7719 + }, + { + "start": 989.56, + "end": 990.22, + "probability": 0.654 + }, + { + "start": 990.52, + "end": 990.8, + "probability": 0.699 + }, + { + "start": 990.9, + "end": 993.7, + "probability": 0.98 + }, + { + "start": 994.12, + "end": 995.88, + "probability": 0.9157 + }, + { + "start": 996.36, + "end": 997.9, + "probability": 0.9177 + }, + { + "start": 998.3, + "end": 998.74, + "probability": 0.5435 + }, + { + "start": 998.78, + "end": 999.38, + "probability": 0.685 + }, + { + "start": 1000.04, + "end": 1001.86, + "probability": 0.6504 + }, + { + "start": 1002.32, + "end": 1006.1, + "probability": 0.9684 + }, + { + "start": 1006.58, + "end": 1008.41, + "probability": 0.9519 + }, + { + "start": 1008.84, + "end": 1010.5, + "probability": 0.8873 + }, + { + "start": 1011.14, + "end": 1012.36, + "probability": 0.9741 + }, + { + "start": 1012.48, + "end": 1012.78, + "probability": 0.5964 + }, + { + "start": 1013.76, + "end": 1017.38, + "probability": 0.9507 + }, + { + "start": 1017.38, + "end": 1021.46, + "probability": 0.9976 + }, + { + "start": 1021.9, + "end": 1022.8, + "probability": 0.9861 + }, + { + "start": 1023.16, + "end": 1023.9, + "probability": 0.9432 + }, + { + "start": 1024.6, + "end": 1028.14, + "probability": 0.9988 + }, + { + "start": 1028.72, + "end": 1031.3, + "probability": 0.9979 + }, + { + "start": 1032.0, + "end": 1034.24, + "probability": 0.9501 + }, + { + "start": 1034.88, + "end": 1037.4, + "probability": 0.792 + }, + { + "start": 1037.9, + "end": 1042.56, + "probability": 0.9276 + }, + { + "start": 1042.56, + "end": 1047.76, + "probability": 0.986 + }, + { + "start": 1048.08, + "end": 1050.7, + "probability": 0.998 + }, + { + "start": 1050.96, + "end": 1054.78, + "probability": 0.9712 + }, + { + "start": 1055.12, + "end": 1056.02, + "probability": 0.6679 + }, + { + "start": 1056.68, + "end": 1059.24, + "probability": 0.9762 + }, + { + "start": 1059.76, + "end": 1063.04, + "probability": 0.9941 + }, + { + "start": 1063.6, + "end": 1064.12, + "probability": 0.8442 + }, + { + "start": 1071.72, + "end": 1072.42, + "probability": 0.5223 + }, + { + "start": 1073.12, + "end": 1073.16, + "probability": 0.2509 + }, + { + "start": 1073.16, + "end": 1079.4, + "probability": 0.9904 + }, + { + "start": 1081.24, + "end": 1086.8, + "probability": 0.9949 + }, + { + "start": 1087.0, + "end": 1088.66, + "probability": 0.9768 + }, + { + "start": 1089.64, + "end": 1093.74, + "probability": 0.9961 + }, + { + "start": 1093.84, + "end": 1097.04, + "probability": 0.9959 + }, + { + "start": 1097.28, + "end": 1097.48, + "probability": 0.7411 + }, + { + "start": 1100.6, + "end": 1102.44, + "probability": 0.8375 + }, + { + "start": 1103.62, + "end": 1103.66, + "probability": 0.1117 + }, + { + "start": 1103.66, + "end": 1106.48, + "probability": 0.9431 + }, + { + "start": 1107.54, + "end": 1108.94, + "probability": 0.7479 + }, + { + "start": 1109.14, + "end": 1111.1, + "probability": 0.0655 + }, + { + "start": 1111.1, + "end": 1112.88, + "probability": 0.8584 + }, + { + "start": 1113.0, + "end": 1115.02, + "probability": 0.9751 + }, + { + "start": 1115.1, + "end": 1121.72, + "probability": 0.9676 + }, + { + "start": 1121.72, + "end": 1126.22, + "probability": 0.993 + }, + { + "start": 1126.88, + "end": 1132.58, + "probability": 0.9985 + }, + { + "start": 1132.58, + "end": 1139.93, + "probability": 0.9984 + }, + { + "start": 1140.0, + "end": 1141.72, + "probability": 0.9033 + }, + { + "start": 1141.8, + "end": 1142.58, + "probability": 0.7959 + }, + { + "start": 1142.72, + "end": 1143.98, + "probability": 0.6952 + }, + { + "start": 1144.12, + "end": 1144.92, + "probability": 0.7847 + }, + { + "start": 1145.68, + "end": 1150.4, + "probability": 0.952 + }, + { + "start": 1150.4, + "end": 1154.46, + "probability": 0.7362 + }, + { + "start": 1154.46, + "end": 1156.84, + "probability": 0.8542 + }, + { + "start": 1157.5, + "end": 1162.34, + "probability": 0.9969 + }, + { + "start": 1162.62, + "end": 1165.48, + "probability": 0.9541 + }, + { + "start": 1165.6, + "end": 1166.78, + "probability": 0.9944 + }, + { + "start": 1167.92, + "end": 1168.88, + "probability": 0.8911 + }, + { + "start": 1169.42, + "end": 1173.34, + "probability": 0.9756 + }, + { + "start": 1173.94, + "end": 1177.82, + "probability": 0.7778 + }, + { + "start": 1178.26, + "end": 1178.72, + "probability": 0.7581 + }, + { + "start": 1182.06, + "end": 1185.56, + "probability": 0.9057 + }, + { + "start": 1185.58, + "end": 1189.82, + "probability": 0.9913 + }, + { + "start": 1190.08, + "end": 1191.08, + "probability": 0.7118 + }, + { + "start": 1191.46, + "end": 1193.36, + "probability": 0.2394 + }, + { + "start": 1194.26, + "end": 1195.32, + "probability": 0.5526 + }, + { + "start": 1195.46, + "end": 1198.02, + "probability": 0.8743 + }, + { + "start": 1198.3, + "end": 1199.02, + "probability": 0.5876 + }, + { + "start": 1199.94, + "end": 1199.94, + "probability": 0.3354 + }, + { + "start": 1200.22, + "end": 1201.1, + "probability": 0.9377 + }, + { + "start": 1201.24, + "end": 1202.3, + "probability": 0.943 + }, + { + "start": 1202.4, + "end": 1203.54, + "probability": 0.8444 + }, + { + "start": 1203.96, + "end": 1204.88, + "probability": 0.6164 + }, + { + "start": 1205.74, + "end": 1210.38, + "probability": 0.9919 + }, + { + "start": 1210.4, + "end": 1213.12, + "probability": 0.9971 + }, + { + "start": 1213.48, + "end": 1219.18, + "probability": 0.957 + }, + { + "start": 1219.52, + "end": 1223.62, + "probability": 0.9595 + }, + { + "start": 1224.04, + "end": 1228.06, + "probability": 0.9822 + }, + { + "start": 1228.86, + "end": 1231.76, + "probability": 0.3134 + }, + { + "start": 1231.96, + "end": 1234.9, + "probability": 0.3325 + }, + { + "start": 1235.04, + "end": 1235.04, + "probability": 0.1907 + }, + { + "start": 1235.04, + "end": 1235.04, + "probability": 0.018 + }, + { + "start": 1235.04, + "end": 1235.04, + "probability": 0.0791 + }, + { + "start": 1235.04, + "end": 1237.3, + "probability": 0.211 + }, + { + "start": 1237.66, + "end": 1240.44, + "probability": 0.9934 + }, + { + "start": 1240.44, + "end": 1243.3, + "probability": 0.8616 + }, + { + "start": 1244.38, + "end": 1246.34, + "probability": 0.8522 + }, + { + "start": 1246.82, + "end": 1248.24, + "probability": 0.926 + }, + { + "start": 1248.3, + "end": 1250.28, + "probability": 0.9129 + }, + { + "start": 1250.28, + "end": 1252.82, + "probability": 0.7506 + }, + { + "start": 1253.22, + "end": 1254.44, + "probability": 0.7941 + }, + { + "start": 1254.5, + "end": 1256.56, + "probability": 0.9905 + }, + { + "start": 1256.66, + "end": 1257.56, + "probability": 0.6634 + }, + { + "start": 1258.24, + "end": 1259.32, + "probability": 0.9681 + }, + { + "start": 1259.82, + "end": 1262.68, + "probability": 0.9943 + }, + { + "start": 1262.94, + "end": 1263.65, + "probability": 0.8193 + }, + { + "start": 1263.88, + "end": 1264.74, + "probability": 0.8941 + }, + { + "start": 1264.9, + "end": 1266.54, + "probability": 0.9899 + }, + { + "start": 1266.54, + "end": 1270.38, + "probability": 0.981 + }, + { + "start": 1270.86, + "end": 1271.68, + "probability": 0.9941 + }, + { + "start": 1272.9, + "end": 1273.54, + "probability": 0.8204 + }, + { + "start": 1273.76, + "end": 1274.36, + "probability": 0.5075 + }, + { + "start": 1275.16, + "end": 1277.38, + "probability": 0.566 + }, + { + "start": 1277.72, + "end": 1282.06, + "probability": 0.6724 + }, + { + "start": 1282.3, + "end": 1284.69, + "probability": 0.8449 + }, + { + "start": 1285.14, + "end": 1286.18, + "probability": 0.9566 + }, + { + "start": 1286.74, + "end": 1288.66, + "probability": 0.7957 + }, + { + "start": 1288.72, + "end": 1289.54, + "probability": 0.9174 + }, + { + "start": 1290.7, + "end": 1293.16, + "probability": 0.8694 + }, + { + "start": 1293.34, + "end": 1297.38, + "probability": 0.7174 + }, + { + "start": 1298.22, + "end": 1303.94, + "probability": 0.9734 + }, + { + "start": 1304.5, + "end": 1306.64, + "probability": 0.9966 + }, + { + "start": 1307.18, + "end": 1308.54, + "probability": 0.9903 + }, + { + "start": 1309.06, + "end": 1311.56, + "probability": 0.8359 + }, + { + "start": 1312.2, + "end": 1318.68, + "probability": 0.9404 + }, + { + "start": 1318.76, + "end": 1323.9, + "probability": 0.9893 + }, + { + "start": 1324.02, + "end": 1324.54, + "probability": 0.5881 + }, + { + "start": 1324.64, + "end": 1328.27, + "probability": 0.9899 + }, + { + "start": 1328.84, + "end": 1330.2, + "probability": 0.7802 + }, + { + "start": 1330.4, + "end": 1334.94, + "probability": 0.8234 + }, + { + "start": 1335.84, + "end": 1338.66, + "probability": 0.8201 + }, + { + "start": 1339.22, + "end": 1342.52, + "probability": 0.7772 + }, + { + "start": 1342.52, + "end": 1345.82, + "probability": 0.9994 + }, + { + "start": 1346.38, + "end": 1347.74, + "probability": 0.9014 + }, + { + "start": 1348.48, + "end": 1349.12, + "probability": 0.6986 + }, + { + "start": 1349.2, + "end": 1350.7, + "probability": 0.9465 + }, + { + "start": 1351.3, + "end": 1353.78, + "probability": 0.9443 + }, + { + "start": 1354.34, + "end": 1359.08, + "probability": 0.9426 + }, + { + "start": 1360.14, + "end": 1364.42, + "probability": 0.9919 + }, + { + "start": 1364.98, + "end": 1367.12, + "probability": 0.9197 + }, + { + "start": 1367.56, + "end": 1371.36, + "probability": 0.9792 + }, + { + "start": 1371.84, + "end": 1377.54, + "probability": 0.8756 + }, + { + "start": 1378.04, + "end": 1382.08, + "probability": 0.8467 + }, + { + "start": 1382.8, + "end": 1386.76, + "probability": 0.9932 + }, + { + "start": 1387.32, + "end": 1387.98, + "probability": 0.9166 + }, + { + "start": 1388.56, + "end": 1391.76, + "probability": 0.8199 + }, + { + "start": 1392.34, + "end": 1398.94, + "probability": 0.9768 + }, + { + "start": 1399.42, + "end": 1400.84, + "probability": 0.8637 + }, + { + "start": 1401.28, + "end": 1406.64, + "probability": 0.9532 + }, + { + "start": 1407.14, + "end": 1412.6, + "probability": 0.9766 + }, + { + "start": 1416.22, + "end": 1416.71, + "probability": 0.5001 + }, + { + "start": 1417.02, + "end": 1419.4, + "probability": 0.5122 + }, + { + "start": 1419.68, + "end": 1420.4, + "probability": 0.6918 + }, + { + "start": 1421.1, + "end": 1424.8, + "probability": 0.9878 + }, + { + "start": 1424.8, + "end": 1429.98, + "probability": 0.9721 + }, + { + "start": 1430.8, + "end": 1432.96, + "probability": 0.916 + }, + { + "start": 1433.4, + "end": 1438.42, + "probability": 0.9928 + }, + { + "start": 1439.02, + "end": 1443.68, + "probability": 0.9953 + }, + { + "start": 1444.0, + "end": 1444.38, + "probability": 0.7568 + }, + { + "start": 1445.08, + "end": 1446.5, + "probability": 0.8181 + }, + { + "start": 1446.8, + "end": 1448.1, + "probability": 0.6943 + }, + { + "start": 1454.08, + "end": 1455.94, + "probability": 0.9723 + }, + { + "start": 1456.72, + "end": 1460.28, + "probability": 0.9103 + }, + { + "start": 1460.66, + "end": 1467.92, + "probability": 0.9958 + }, + { + "start": 1468.56, + "end": 1475.36, + "probability": 0.9503 + }, + { + "start": 1475.78, + "end": 1478.04, + "probability": 0.7205 + }, + { + "start": 1478.38, + "end": 1479.76, + "probability": 0.6498 + }, + { + "start": 1479.84, + "end": 1481.68, + "probability": 0.8191 + }, + { + "start": 1481.86, + "end": 1482.68, + "probability": 0.9181 + }, + { + "start": 1483.24, + "end": 1484.04, + "probability": 0.9551 + }, + { + "start": 1484.7, + "end": 1486.12, + "probability": 0.9771 + }, + { + "start": 1486.9, + "end": 1490.96, + "probability": 0.9653 + }, + { + "start": 1491.5, + "end": 1491.92, + "probability": 0.5102 + }, + { + "start": 1492.8, + "end": 1493.66, + "probability": 0.624 + }, + { + "start": 1494.06, + "end": 1495.78, + "probability": 0.9498 + }, + { + "start": 1496.2, + "end": 1496.9, + "probability": 0.7523 + }, + { + "start": 1497.02, + "end": 1499.1, + "probability": 0.7541 + }, + { + "start": 1499.34, + "end": 1500.08, + "probability": 0.9153 + }, + { + "start": 1500.3, + "end": 1504.26, + "probability": 0.9912 + }, + { + "start": 1504.58, + "end": 1505.41, + "probability": 0.7475 + }, + { + "start": 1506.54, + "end": 1507.8, + "probability": 0.7602 + }, + { + "start": 1508.42, + "end": 1509.72, + "probability": 0.9101 + }, + { + "start": 1510.16, + "end": 1511.07, + "probability": 0.9834 + }, + { + "start": 1511.64, + "end": 1512.96, + "probability": 0.8718 + }, + { + "start": 1513.24, + "end": 1514.46, + "probability": 0.9804 + }, + { + "start": 1514.72, + "end": 1515.86, + "probability": 0.8911 + }, + { + "start": 1516.18, + "end": 1516.28, + "probability": 0.2562 + }, + { + "start": 1516.4, + "end": 1517.43, + "probability": 0.5375 + }, + { + "start": 1518.34, + "end": 1519.06, + "probability": 0.5255 + }, + { + "start": 1519.12, + "end": 1519.62, + "probability": 0.5582 + }, + { + "start": 1520.52, + "end": 1524.0, + "probability": 0.9761 + }, + { + "start": 1524.58, + "end": 1525.1, + "probability": 0.839 + }, + { + "start": 1525.82, + "end": 1526.32, + "probability": 0.639 + }, + { + "start": 1526.34, + "end": 1527.84, + "probability": 0.8718 + }, + { + "start": 1528.38, + "end": 1529.92, + "probability": 0.6232 + }, + { + "start": 1533.66, + "end": 1534.16, + "probability": 0.4701 + }, + { + "start": 1534.56, + "end": 1536.2, + "probability": 0.5889 + }, + { + "start": 1536.2, + "end": 1538.52, + "probability": 0.9674 + }, + { + "start": 1538.86, + "end": 1541.68, + "probability": 0.949 + }, + { + "start": 1542.4, + "end": 1544.26, + "probability": 0.8424 + }, + { + "start": 1545.12, + "end": 1546.72, + "probability": 0.7217 + }, + { + "start": 1546.84, + "end": 1548.18, + "probability": 0.9851 + }, + { + "start": 1548.66, + "end": 1551.02, + "probability": 0.8042 + }, + { + "start": 1551.62, + "end": 1553.46, + "probability": 0.9507 + }, + { + "start": 1553.66, + "end": 1555.12, + "probability": 0.8049 + }, + { + "start": 1555.2, + "end": 1556.34, + "probability": 0.9192 + }, + { + "start": 1556.72, + "end": 1558.06, + "probability": 0.9862 + }, + { + "start": 1558.2, + "end": 1559.54, + "probability": 0.896 + }, + { + "start": 1560.0, + "end": 1561.47, + "probability": 0.979 + }, + { + "start": 1562.08, + "end": 1563.55, + "probability": 0.9847 + }, + { + "start": 1564.28, + "end": 1564.63, + "probability": 0.6141 + }, + { + "start": 1565.14, + "end": 1568.1, + "probability": 0.9951 + }, + { + "start": 1568.72, + "end": 1570.92, + "probability": 0.6135 + }, + { + "start": 1571.32, + "end": 1573.24, + "probability": 0.9384 + }, + { + "start": 1573.56, + "end": 1575.58, + "probability": 0.5862 + }, + { + "start": 1575.58, + "end": 1576.08, + "probability": 0.4488 + }, + { + "start": 1576.46, + "end": 1579.06, + "probability": 0.9746 + }, + { + "start": 1579.12, + "end": 1581.22, + "probability": 0.9773 + }, + { + "start": 1582.06, + "end": 1583.84, + "probability": 0.9961 + }, + { + "start": 1584.18, + "end": 1587.34, + "probability": 0.922 + }, + { + "start": 1587.56, + "end": 1588.64, + "probability": 0.7443 + }, + { + "start": 1588.8, + "end": 1591.24, + "probability": 0.9737 + }, + { + "start": 1591.64, + "end": 1593.22, + "probability": 0.918 + }, + { + "start": 1593.56, + "end": 1595.74, + "probability": 0.9559 + }, + { + "start": 1595.74, + "end": 1599.16, + "probability": 0.9632 + }, + { + "start": 1599.46, + "end": 1602.62, + "probability": 0.9856 + }, + { + "start": 1603.2, + "end": 1604.74, + "probability": 0.8958 + }, + { + "start": 1605.2, + "end": 1605.84, + "probability": 0.743 + }, + { + "start": 1606.02, + "end": 1609.6, + "probability": 0.8899 + }, + { + "start": 1610.04, + "end": 1611.82, + "probability": 0.7004 + }, + { + "start": 1612.1, + "end": 1613.88, + "probability": 0.9432 + }, + { + "start": 1614.24, + "end": 1615.7, + "probability": 0.9053 + }, + { + "start": 1616.02, + "end": 1620.18, + "probability": 0.987 + }, + { + "start": 1620.5, + "end": 1621.16, + "probability": 0.6999 + }, + { + "start": 1621.28, + "end": 1622.52, + "probability": 0.4574 + }, + { + "start": 1622.82, + "end": 1624.04, + "probability": 0.8884 + }, + { + "start": 1624.1, + "end": 1625.7, + "probability": 0.9626 + }, + { + "start": 1626.0, + "end": 1627.66, + "probability": 0.8099 + }, + { + "start": 1627.74, + "end": 1628.06, + "probability": 0.864 + }, + { + "start": 1628.14, + "end": 1628.78, + "probability": 0.6675 + }, + { + "start": 1629.12, + "end": 1630.04, + "probability": 0.9292 + }, + { + "start": 1630.06, + "end": 1632.38, + "probability": 0.9009 + }, + { + "start": 1632.42, + "end": 1632.66, + "probability": 0.8628 + }, + { + "start": 1633.64, + "end": 1633.96, + "probability": 0.0197 + }, + { + "start": 1634.54, + "end": 1634.54, + "probability": 0.0918 + }, + { + "start": 1635.1, + "end": 1635.22, + "probability": 0.8649 + }, + { + "start": 1637.68, + "end": 1638.64, + "probability": 0.3598 + }, + { + "start": 1639.72, + "end": 1639.96, + "probability": 0.2143 + }, + { + "start": 1639.96, + "end": 1640.88, + "probability": 0.4771 + }, + { + "start": 1642.08, + "end": 1645.4, + "probability": 0.9878 + }, + { + "start": 1646.78, + "end": 1651.98, + "probability": 0.9806 + }, + { + "start": 1652.84, + "end": 1654.98, + "probability": 0.8174 + }, + { + "start": 1655.08, + "end": 1658.22, + "probability": 0.987 + }, + { + "start": 1658.72, + "end": 1663.0, + "probability": 0.8629 + }, + { + "start": 1663.7, + "end": 1664.55, + "probability": 0.954 + }, + { + "start": 1665.24, + "end": 1665.6, + "probability": 0.6418 + }, + { + "start": 1666.12, + "end": 1667.24, + "probability": 0.6775 + }, + { + "start": 1668.79, + "end": 1669.46, + "probability": 0.0002 + }, + { + "start": 1669.46, + "end": 1669.7, + "probability": 0.3751 + }, + { + "start": 1670.02, + "end": 1670.31, + "probability": 0.5015 + }, + { + "start": 1670.8, + "end": 1674.54, + "probability": 0.9378 + }, + { + "start": 1674.94, + "end": 1678.96, + "probability": 0.9793 + }, + { + "start": 1680.0, + "end": 1683.8, + "probability": 0.9709 + }, + { + "start": 1683.84, + "end": 1684.04, + "probability": 0.3989 + }, + { + "start": 1684.8, + "end": 1687.76, + "probability": 0.582 + }, + { + "start": 1687.86, + "end": 1690.18, + "probability": 0.8546 + }, + { + "start": 1690.9, + "end": 1693.02, + "probability": 0.7839 + }, + { + "start": 1696.12, + "end": 1697.66, + "probability": 0.8209 + }, + { + "start": 1699.6, + "end": 1703.54, + "probability": 0.9709 + }, + { + "start": 1703.96, + "end": 1704.64, + "probability": 0.7217 + }, + { + "start": 1706.52, + "end": 1710.06, + "probability": 0.9894 + }, + { + "start": 1710.16, + "end": 1711.48, + "probability": 0.8334 + }, + { + "start": 1712.14, + "end": 1712.8, + "probability": 0.8379 + }, + { + "start": 1714.88, + "end": 1717.18, + "probability": 0.9943 + }, + { + "start": 1718.28, + "end": 1720.38, + "probability": 0.9962 + }, + { + "start": 1722.14, + "end": 1723.04, + "probability": 0.6399 + }, + { + "start": 1724.84, + "end": 1729.48, + "probability": 0.7892 + }, + { + "start": 1732.28, + "end": 1736.14, + "probability": 0.8099 + }, + { + "start": 1736.82, + "end": 1740.1, + "probability": 0.9847 + }, + { + "start": 1740.76, + "end": 1742.56, + "probability": 0.7926 + }, + { + "start": 1742.88, + "end": 1744.96, + "probability": 0.645 + }, + { + "start": 1745.58, + "end": 1746.34, + "probability": 0.7872 + }, + { + "start": 1746.88, + "end": 1747.58, + "probability": 0.8283 + }, + { + "start": 1747.82, + "end": 1749.62, + "probability": 0.9722 + }, + { + "start": 1749.74, + "end": 1750.12, + "probability": 0.8569 + }, + { + "start": 1750.6, + "end": 1751.12, + "probability": 0.3553 + }, + { + "start": 1751.12, + "end": 1753.38, + "probability": 0.9558 + }, + { + "start": 1754.06, + "end": 1757.72, + "probability": 0.9944 + }, + { + "start": 1759.52, + "end": 1761.15, + "probability": 0.9502 + }, + { + "start": 1762.76, + "end": 1764.36, + "probability": 0.9993 + }, + { + "start": 1765.04, + "end": 1768.28, + "probability": 0.9952 + }, + { + "start": 1770.6, + "end": 1772.76, + "probability": 0.9624 + }, + { + "start": 1773.7, + "end": 1777.16, + "probability": 0.9806 + }, + { + "start": 1778.14, + "end": 1778.14, + "probability": 0.0221 + }, + { + "start": 1778.14, + "end": 1779.1, + "probability": 0.7561 + }, + { + "start": 1779.76, + "end": 1780.4, + "probability": 0.156 + }, + { + "start": 1780.4, + "end": 1782.7, + "probability": 0.1009 + }, + { + "start": 1782.7, + "end": 1785.9, + "probability": 0.4911 + }, + { + "start": 1787.8, + "end": 1788.04, + "probability": 0.0188 + }, + { + "start": 1788.04, + "end": 1788.04, + "probability": 0.0659 + }, + { + "start": 1788.04, + "end": 1788.9, + "probability": 0.0286 + }, + { + "start": 1789.78, + "end": 1790.78, + "probability": 0.2249 + }, + { + "start": 1790.96, + "end": 1791.7, + "probability": 0.0815 + }, + { + "start": 1792.14, + "end": 1794.56, + "probability": 0.6131 + }, + { + "start": 1795.26, + "end": 1796.2, + "probability": 0.7057 + }, + { + "start": 1796.32, + "end": 1797.06, + "probability": 0.5954 + }, + { + "start": 1797.4, + "end": 1799.5, + "probability": 0.8862 + }, + { + "start": 1799.64, + "end": 1800.1, + "probability": 0.456 + }, + { + "start": 1800.45, + "end": 1801.3, + "probability": 0.6048 + }, + { + "start": 1801.84, + "end": 1802.27, + "probability": 0.9117 + }, + { + "start": 1804.4, + "end": 1808.1, + "probability": 0.8633 + }, + { + "start": 1808.68, + "end": 1810.62, + "probability": 0.9256 + }, + { + "start": 1811.0, + "end": 1813.18, + "probability": 0.6376 + }, + { + "start": 1813.98, + "end": 1814.38, + "probability": 0.0632 + }, + { + "start": 1814.38, + "end": 1815.68, + "probability": 0.7578 + }, + { + "start": 1817.05, + "end": 1819.74, + "probability": 0.5412 + }, + { + "start": 1820.36, + "end": 1821.84, + "probability": 0.8871 + }, + { + "start": 1821.92, + "end": 1822.48, + "probability": 0.6819 + }, + { + "start": 1822.7, + "end": 1828.28, + "probability": 0.9863 + }, + { + "start": 1828.28, + "end": 1832.56, + "probability": 0.8142 + }, + { + "start": 1832.76, + "end": 1834.9, + "probability": 0.7326 + }, + { + "start": 1835.46, + "end": 1838.56, + "probability": 0.9879 + }, + { + "start": 1839.04, + "end": 1840.04, + "probability": 0.8238 + }, + { + "start": 1840.26, + "end": 1841.26, + "probability": 0.4476 + }, + { + "start": 1841.3, + "end": 1845.74, + "probability": 0.9504 + }, + { + "start": 1846.34, + "end": 1848.7, + "probability": 0.7308 + }, + { + "start": 1849.04, + "end": 1851.9, + "probability": 0.664 + }, + { + "start": 1851.98, + "end": 1854.36, + "probability": 0.7368 + }, + { + "start": 1854.4, + "end": 1858.26, + "probability": 0.9749 + }, + { + "start": 1859.06, + "end": 1861.62, + "probability": 0.0636 + }, + { + "start": 1861.8, + "end": 1867.28, + "probability": 0.7863 + }, + { + "start": 1867.84, + "end": 1872.42, + "probability": 0.9838 + }, + { + "start": 1873.54, + "end": 1875.74, + "probability": 0.459 + }, + { + "start": 1876.24, + "end": 1879.42, + "probability": 0.8934 + }, + { + "start": 1879.84, + "end": 1883.9, + "probability": 0.9979 + }, + { + "start": 1884.76, + "end": 1886.58, + "probability": 0.7481 + }, + { + "start": 1887.26, + "end": 1892.66, + "probability": 0.9939 + }, + { + "start": 1893.1, + "end": 1894.44, + "probability": 0.9435 + }, + { + "start": 1895.3, + "end": 1899.58, + "probability": 0.9987 + }, + { + "start": 1900.4, + "end": 1902.18, + "probability": 0.8954 + }, + { + "start": 1902.8, + "end": 1904.08, + "probability": 0.884 + }, + { + "start": 1904.16, + "end": 1906.11, + "probability": 0.995 + }, + { + "start": 1906.54, + "end": 1911.84, + "probability": 0.9819 + }, + { + "start": 1912.08, + "end": 1913.08, + "probability": 0.7186 + }, + { + "start": 1913.58, + "end": 1915.54, + "probability": 0.9487 + }, + { + "start": 1915.9, + "end": 1917.18, + "probability": 0.8347 + }, + { + "start": 1917.74, + "end": 1918.8, + "probability": 0.2592 + }, + { + "start": 1919.34, + "end": 1920.6, + "probability": 0.978 + }, + { + "start": 1921.02, + "end": 1925.84, + "probability": 0.9734 + }, + { + "start": 1926.32, + "end": 1935.02, + "probability": 0.9959 + }, + { + "start": 1935.46, + "end": 1938.94, + "probability": 0.9416 + }, + { + "start": 1939.04, + "end": 1939.54, + "probability": 0.8192 + }, + { + "start": 1940.14, + "end": 1943.38, + "probability": 0.9967 + }, + { + "start": 1943.8, + "end": 1947.32, + "probability": 0.9823 + }, + { + "start": 1947.46, + "end": 1952.73, + "probability": 0.9748 + }, + { + "start": 1953.62, + "end": 1954.94, + "probability": 0.9291 + }, + { + "start": 1955.48, + "end": 1956.26, + "probability": 0.8211 + }, + { + "start": 1956.62, + "end": 1957.16, + "probability": 0.0121 + }, + { + "start": 1958.02, + "end": 1958.86, + "probability": 0.7012 + }, + { + "start": 1958.86, + "end": 1964.32, + "probability": 0.8799 + }, + { + "start": 1965.3, + "end": 1966.42, + "probability": 0.826 + }, + { + "start": 1967.32, + "end": 1968.36, + "probability": 0.9767 + }, + { + "start": 1968.44, + "end": 1970.44, + "probability": 0.8767 + }, + { + "start": 1971.3, + "end": 1974.34, + "probability": 0.7774 + }, + { + "start": 1975.0, + "end": 1976.32, + "probability": 0.2289 + }, + { + "start": 1976.32, + "end": 1977.8, + "probability": 0.5108 + }, + { + "start": 1977.84, + "end": 1978.34, + "probability": 0.7497 + }, + { + "start": 1978.38, + "end": 1982.44, + "probability": 0.9069 + }, + { + "start": 1982.44, + "end": 1985.8, + "probability": 0.9951 + }, + { + "start": 1986.58, + "end": 1988.74, + "probability": 0.9971 + }, + { + "start": 1989.24, + "end": 1992.26, + "probability": 0.8667 + }, + { + "start": 1992.3, + "end": 1993.1, + "probability": 0.4058 + }, + { + "start": 1994.48, + "end": 1996.08, + "probability": 0.5111 + }, + { + "start": 1996.62, + "end": 2000.86, + "probability": 0.8529 + }, + { + "start": 2001.0, + "end": 2002.36, + "probability": 0.8984 + }, + { + "start": 2006.46, + "end": 2007.42, + "probability": 0.8515 + }, + { + "start": 2007.56, + "end": 2011.06, + "probability": 0.9634 + }, + { + "start": 2011.74, + "end": 2016.0, + "probability": 0.9912 + }, + { + "start": 2016.0, + "end": 2019.7, + "probability": 0.9948 + }, + { + "start": 2019.7, + "end": 2023.2, + "probability": 0.9956 + }, + { + "start": 2023.36, + "end": 2025.12, + "probability": 0.8062 + }, + { + "start": 2025.26, + "end": 2026.5, + "probability": 0.9569 + }, + { + "start": 2026.92, + "end": 2027.94, + "probability": 0.9626 + }, + { + "start": 2028.26, + "end": 2031.84, + "probability": 0.9513 + }, + { + "start": 2032.3, + "end": 2034.18, + "probability": 0.9703 + }, + { + "start": 2034.34, + "end": 2037.46, + "probability": 0.9782 + }, + { + "start": 2037.9, + "end": 2040.44, + "probability": 0.6839 + }, + { + "start": 2041.18, + "end": 2045.34, + "probability": 0.9776 + }, + { + "start": 2045.78, + "end": 2048.72, + "probability": 0.9103 + }, + { + "start": 2048.84, + "end": 2049.2, + "probability": 0.9422 + }, + { + "start": 2049.74, + "end": 2051.77, + "probability": 0.9237 + }, + { + "start": 2052.48, + "end": 2054.84, + "probability": 0.8289 + }, + { + "start": 2055.42, + "end": 2061.46, + "probability": 0.9217 + }, + { + "start": 2061.64, + "end": 2061.92, + "probability": 0.471 + }, + { + "start": 2062.0, + "end": 2062.82, + "probability": 0.9816 + }, + { + "start": 2062.94, + "end": 2063.95, + "probability": 0.9668 + }, + { + "start": 2063.98, + "end": 2064.76, + "probability": 0.5293 + }, + { + "start": 2065.42, + "end": 2067.62, + "probability": 0.8257 + }, + { + "start": 2068.16, + "end": 2069.14, + "probability": 0.3754 + }, + { + "start": 2069.22, + "end": 2070.78, + "probability": 0.9874 + }, + { + "start": 2070.88, + "end": 2073.34, + "probability": 0.9258 + }, + { + "start": 2073.4, + "end": 2073.94, + "probability": 0.5917 + }, + { + "start": 2074.46, + "end": 2076.0, + "probability": 0.5781 + }, + { + "start": 2076.0, + "end": 2078.64, + "probability": 0.9976 + }, + { + "start": 2078.66, + "end": 2079.66, + "probability": 0.9651 + }, + { + "start": 2080.34, + "end": 2082.28, + "probability": 0.993 + }, + { + "start": 2082.72, + "end": 2083.2, + "probability": 0.9719 + }, + { + "start": 2083.26, + "end": 2084.5, + "probability": 0.9467 + }, + { + "start": 2084.72, + "end": 2085.98, + "probability": 0.9789 + }, + { + "start": 2086.64, + "end": 2087.46, + "probability": 0.8515 + }, + { + "start": 2087.54, + "end": 2088.22, + "probability": 0.9943 + }, + { + "start": 2088.32, + "end": 2090.48, + "probability": 0.9614 + }, + { + "start": 2090.52, + "end": 2092.68, + "probability": 0.9861 + }, + { + "start": 2092.74, + "end": 2096.46, + "probability": 0.921 + }, + { + "start": 2096.46, + "end": 2098.82, + "probability": 0.8833 + }, + { + "start": 2099.18, + "end": 2100.18, + "probability": 0.9203 + }, + { + "start": 2100.5, + "end": 2101.12, + "probability": 0.9143 + }, + { + "start": 2101.5, + "end": 2102.32, + "probability": 0.8982 + }, + { + "start": 2102.42, + "end": 2103.16, + "probability": 0.7307 + }, + { + "start": 2103.56, + "end": 2104.42, + "probability": 0.7216 + }, + { + "start": 2104.62, + "end": 2106.84, + "probability": 0.9694 + }, + { + "start": 2106.94, + "end": 2108.82, + "probability": 0.8188 + }, + { + "start": 2108.82, + "end": 2109.44, + "probability": 0.896 + }, + { + "start": 2109.66, + "end": 2109.66, + "probability": 0.701 + }, + { + "start": 2109.9, + "end": 2113.2, + "probability": 0.84 + }, + { + "start": 2113.32, + "end": 2114.34, + "probability": 0.8703 + }, + { + "start": 2114.86, + "end": 2118.36, + "probability": 0.7833 + }, + { + "start": 2118.8, + "end": 2118.92, + "probability": 0.5624 + }, + { + "start": 2119.14, + "end": 2120.88, + "probability": 0.7996 + }, + { + "start": 2121.2, + "end": 2124.48, + "probability": 0.9685 + }, + { + "start": 2125.12, + "end": 2126.84, + "probability": 0.6656 + }, + { + "start": 2127.56, + "end": 2130.52, + "probability": 0.9858 + }, + { + "start": 2131.28, + "end": 2132.98, + "probability": 0.943 + }, + { + "start": 2133.6, + "end": 2136.06, + "probability": 0.6722 + }, + { + "start": 2136.4, + "end": 2143.48, + "probability": 0.9945 + }, + { + "start": 2143.66, + "end": 2147.28, + "probability": 0.9536 + }, + { + "start": 2147.94, + "end": 2149.68, + "probability": 0.9917 + }, + { + "start": 2150.14, + "end": 2154.52, + "probability": 0.9956 + }, + { + "start": 2154.58, + "end": 2157.56, + "probability": 0.9922 + }, + { + "start": 2157.98, + "end": 2158.98, + "probability": 0.8321 + }, + { + "start": 2159.52, + "end": 2161.48, + "probability": 0.9668 + }, + { + "start": 2161.48, + "end": 2163.62, + "probability": 0.3945 + }, + { + "start": 2163.62, + "end": 2165.96, + "probability": 0.8862 + }, + { + "start": 2166.54, + "end": 2170.7, + "probability": 0.7883 + }, + { + "start": 2170.96, + "end": 2171.34, + "probability": 0.8572 + }, + { + "start": 2172.3, + "end": 2172.86, + "probability": 0.6504 + }, + { + "start": 2174.74, + "end": 2177.21, + "probability": 0.7686 + }, + { + "start": 2177.68, + "end": 2180.94, + "probability": 0.3858 + }, + { + "start": 2181.52, + "end": 2185.16, + "probability": 0.6924 + }, + { + "start": 2186.08, + "end": 2187.18, + "probability": 0.7739 + }, + { + "start": 2187.88, + "end": 2188.8, + "probability": 0.7959 + }, + { + "start": 2188.9, + "end": 2191.28, + "probability": 0.8177 + }, + { + "start": 2191.76, + "end": 2192.4, + "probability": 0.4464 + }, + { + "start": 2192.42, + "end": 2193.66, + "probability": 0.4039 + }, + { + "start": 2194.08, + "end": 2194.58, + "probability": 0.421 + }, + { + "start": 2194.68, + "end": 2195.26, + "probability": 0.6211 + }, + { + "start": 2195.68, + "end": 2196.12, + "probability": 0.8651 + }, + { + "start": 2196.16, + "end": 2197.07, + "probability": 0.5613 + }, + { + "start": 2197.7, + "end": 2200.26, + "probability": 0.9917 + }, + { + "start": 2200.64, + "end": 2201.38, + "probability": 0.8294 + }, + { + "start": 2202.88, + "end": 2204.62, + "probability": 0.8706 + }, + { + "start": 2205.3, + "end": 2207.8, + "probability": 0.9966 + }, + { + "start": 2208.24, + "end": 2211.3, + "probability": 0.999 + }, + { + "start": 2211.42, + "end": 2213.2, + "probability": 0.9973 + }, + { + "start": 2213.56, + "end": 2214.86, + "probability": 0.9772 + }, + { + "start": 2215.52, + "end": 2217.94, + "probability": 0.9059 + }, + { + "start": 2218.5, + "end": 2219.18, + "probability": 0.8612 + }, + { + "start": 2219.38, + "end": 2223.18, + "probability": 0.9905 + }, + { + "start": 2223.18, + "end": 2227.02, + "probability": 0.9701 + }, + { + "start": 2227.02, + "end": 2231.1, + "probability": 0.8929 + }, + { + "start": 2231.44, + "end": 2233.42, + "probability": 0.9647 + }, + { + "start": 2233.78, + "end": 2234.76, + "probability": 0.8522 + }, + { + "start": 2234.78, + "end": 2238.42, + "probability": 0.9498 + }, + { + "start": 2238.52, + "end": 2239.22, + "probability": 0.8401 + }, + { + "start": 2239.52, + "end": 2241.88, + "probability": 0.9569 + }, + { + "start": 2242.24, + "end": 2245.66, + "probability": 0.9574 + }, + { + "start": 2245.66, + "end": 2248.98, + "probability": 0.9986 + }, + { + "start": 2249.52, + "end": 2251.84, + "probability": 0.999 + }, + { + "start": 2251.84, + "end": 2255.82, + "probability": 0.966 + }, + { + "start": 2255.94, + "end": 2258.36, + "probability": 0.9981 + }, + { + "start": 2258.96, + "end": 2262.48, + "probability": 0.8801 + }, + { + "start": 2262.74, + "end": 2266.88, + "probability": 0.9653 + }, + { + "start": 2267.26, + "end": 2269.14, + "probability": 0.7928 + }, + { + "start": 2269.22, + "end": 2269.68, + "probability": 0.7693 + }, + { + "start": 2269.86, + "end": 2270.54, + "probability": 0.5658 + }, + { + "start": 2270.54, + "end": 2271.92, + "probability": 0.5941 + }, + { + "start": 2272.72, + "end": 2274.4, + "probability": 0.9016 + }, + { + "start": 2277.58, + "end": 2278.56, + "probability": 0.7833 + }, + { + "start": 2279.3, + "end": 2281.5, + "probability": 0.8026 + }, + { + "start": 2282.2, + "end": 2289.6, + "probability": 0.7342 + }, + { + "start": 2290.1, + "end": 2292.2, + "probability": 0.9636 + }, + { + "start": 2292.28, + "end": 2293.14, + "probability": 0.9078 + }, + { + "start": 2294.22, + "end": 2297.16, + "probability": 0.9473 + }, + { + "start": 2297.4, + "end": 2298.16, + "probability": 0.3873 + }, + { + "start": 2298.6, + "end": 2299.08, + "probability": 0.8252 + }, + { + "start": 2299.18, + "end": 2300.6, + "probability": 0.6045 + }, + { + "start": 2301.34, + "end": 2302.98, + "probability": 0.7573 + }, + { + "start": 2304.12, + "end": 2305.14, + "probability": 0.5034 + }, + { + "start": 2305.48, + "end": 2310.6, + "probability": 0.8776 + }, + { + "start": 2311.1, + "end": 2313.4, + "probability": 0.8117 + }, + { + "start": 2314.12, + "end": 2317.78, + "probability": 0.9841 + }, + { + "start": 2318.52, + "end": 2319.29, + "probability": 0.9405 + }, + { + "start": 2319.64, + "end": 2320.96, + "probability": 0.9936 + }, + { + "start": 2321.28, + "end": 2322.48, + "probability": 0.9456 + }, + { + "start": 2323.08, + "end": 2323.96, + "probability": 0.9111 + }, + { + "start": 2324.1, + "end": 2328.64, + "probability": 0.9248 + }, + { + "start": 2329.22, + "end": 2331.2, + "probability": 0.7999 + }, + { + "start": 2331.6, + "end": 2334.46, + "probability": 0.9114 + }, + { + "start": 2335.06, + "end": 2337.0, + "probability": 0.6932 + }, + { + "start": 2337.06, + "end": 2339.88, + "probability": 0.9866 + }, + { + "start": 2340.52, + "end": 2342.96, + "probability": 0.9744 + }, + { + "start": 2343.48, + "end": 2345.0, + "probability": 0.9753 + }, + { + "start": 2345.56, + "end": 2352.28, + "probability": 0.9241 + }, + { + "start": 2352.78, + "end": 2353.72, + "probability": 0.8652 + }, + { + "start": 2354.3, + "end": 2357.9, + "probability": 0.9881 + }, + { + "start": 2357.9, + "end": 2361.46, + "probability": 0.9941 + }, + { + "start": 2361.64, + "end": 2362.02, + "probability": 0.26 + }, + { + "start": 2362.74, + "end": 2363.26, + "probability": 0.7498 + }, + { + "start": 2363.72, + "end": 2365.02, + "probability": 0.9033 + }, + { + "start": 2365.84, + "end": 2368.1, + "probability": 0.5528 + }, + { + "start": 2371.0, + "end": 2371.64, + "probability": 0.3983 + }, + { + "start": 2371.64, + "end": 2372.44, + "probability": 0.6748 + }, + { + "start": 2373.54, + "end": 2378.32, + "probability": 0.9963 + }, + { + "start": 2379.54, + "end": 2382.38, + "probability": 0.901 + }, + { + "start": 2383.6, + "end": 2386.92, + "probability": 0.9593 + }, + { + "start": 2387.92, + "end": 2389.61, + "probability": 0.8939 + }, + { + "start": 2390.62, + "end": 2393.22, + "probability": 0.7713 + }, + { + "start": 2394.48, + "end": 2395.52, + "probability": 0.5348 + }, + { + "start": 2396.28, + "end": 2396.78, + "probability": 0.8964 + }, + { + "start": 2397.56, + "end": 2398.66, + "probability": 0.8068 + }, + { + "start": 2399.96, + "end": 2404.32, + "probability": 0.8676 + }, + { + "start": 2404.88, + "end": 2407.36, + "probability": 0.9009 + }, + { + "start": 2408.1, + "end": 2409.3, + "probability": 0.7747 + }, + { + "start": 2409.98, + "end": 2411.34, + "probability": 0.9119 + }, + { + "start": 2412.1, + "end": 2415.44, + "probability": 0.8686 + }, + { + "start": 2415.84, + "end": 2417.88, + "probability": 0.9822 + }, + { + "start": 2417.94, + "end": 2419.1, + "probability": 0.9303 + }, + { + "start": 2420.08, + "end": 2421.88, + "probability": 0.7697 + }, + { + "start": 2422.54, + "end": 2424.84, + "probability": 0.8506 + }, + { + "start": 2425.56, + "end": 2426.6, + "probability": 0.7434 + }, + { + "start": 2427.1, + "end": 2430.38, + "probability": 0.9812 + }, + { + "start": 2431.12, + "end": 2436.88, + "probability": 0.9956 + }, + { + "start": 2437.08, + "end": 2439.14, + "probability": 0.7526 + }, + { + "start": 2439.64, + "end": 2441.64, + "probability": 0.9927 + }, + { + "start": 2441.64, + "end": 2444.7, + "probability": 0.9519 + }, + { + "start": 2444.94, + "end": 2445.38, + "probability": 0.9095 + }, + { + "start": 2445.64, + "end": 2446.08, + "probability": 0.7678 + }, + { + "start": 2446.48, + "end": 2447.22, + "probability": 0.938 + }, + { + "start": 2447.32, + "end": 2451.54, + "probability": 0.9093 + }, + { + "start": 2452.12, + "end": 2453.0, + "probability": 0.7052 + }, + { + "start": 2453.5, + "end": 2459.56, + "probability": 0.9839 + }, + { + "start": 2459.6, + "end": 2460.02, + "probability": 0.7161 + }, + { + "start": 2460.14, + "end": 2460.76, + "probability": 0.5456 + }, + { + "start": 2460.78, + "end": 2462.96, + "probability": 0.5625 + }, + { + "start": 2464.86, + "end": 2464.93, + "probability": 0.2712 + }, + { + "start": 2466.02, + "end": 2467.0, + "probability": 0.7517 + }, + { + "start": 2468.02, + "end": 2468.9, + "probability": 0.8399 + }, + { + "start": 2469.84, + "end": 2470.68, + "probability": 0.6978 + }, + { + "start": 2470.9, + "end": 2472.8, + "probability": 0.9373 + }, + { + "start": 2472.88, + "end": 2473.68, + "probability": 0.745 + }, + { + "start": 2474.16, + "end": 2474.74, + "probability": 0.9099 + }, + { + "start": 2474.98, + "end": 2476.88, + "probability": 0.9662 + }, + { + "start": 2477.6, + "end": 2478.14, + "probability": 0.4314 + }, + { + "start": 2478.92, + "end": 2479.5, + "probability": 0.0923 + }, + { + "start": 2480.12, + "end": 2480.56, + "probability": 0.3349 + }, + { + "start": 2481.14, + "end": 2482.86, + "probability": 0.7045 + }, + { + "start": 2484.46, + "end": 2485.06, + "probability": 0.9398 + }, + { + "start": 2485.14, + "end": 2485.96, + "probability": 0.7254 + }, + { + "start": 2486.2, + "end": 2486.65, + "probability": 0.8171 + }, + { + "start": 2487.04, + "end": 2487.88, + "probability": 0.926 + }, + { + "start": 2489.0, + "end": 2494.22, + "probability": 0.9941 + }, + { + "start": 2494.22, + "end": 2498.84, + "probability": 0.9951 + }, + { + "start": 2499.12, + "end": 2499.72, + "probability": 0.601 + }, + { + "start": 2499.78, + "end": 2500.32, + "probability": 0.7266 + }, + { + "start": 2500.46, + "end": 2504.02, + "probability": 0.9897 + }, + { + "start": 2504.8, + "end": 2505.14, + "probability": 0.6946 + }, + { + "start": 2506.14, + "end": 2509.72, + "probability": 0.9331 + }, + { + "start": 2510.08, + "end": 2511.08, + "probability": 0.7856 + }, + { + "start": 2511.14, + "end": 2513.92, + "probability": 0.9874 + }, + { + "start": 2514.44, + "end": 2518.94, + "probability": 0.9792 + }, + { + "start": 2520.22, + "end": 2522.86, + "probability": 0.7781 + }, + { + "start": 2523.72, + "end": 2524.38, + "probability": 0.7646 + }, + { + "start": 2524.88, + "end": 2525.38, + "probability": 0.7273 + }, + { + "start": 2525.52, + "end": 2525.8, + "probability": 0.9133 + }, + { + "start": 2526.02, + "end": 2529.92, + "probability": 0.9857 + }, + { + "start": 2530.1, + "end": 2532.5, + "probability": 0.9591 + }, + { + "start": 2533.06, + "end": 2535.98, + "probability": 0.9901 + }, + { + "start": 2536.48, + "end": 2541.54, + "probability": 0.9131 + }, + { + "start": 2542.44, + "end": 2545.46, + "probability": 0.9365 + }, + { + "start": 2545.86, + "end": 2546.72, + "probability": 0.957 + }, + { + "start": 2546.84, + "end": 2551.77, + "probability": 0.9793 + }, + { + "start": 2552.46, + "end": 2554.76, + "probability": 0.6742 + }, + { + "start": 2555.52, + "end": 2559.27, + "probability": 0.973 + }, + { + "start": 2559.66, + "end": 2560.08, + "probability": 0.8251 + }, + { + "start": 2560.78, + "end": 2561.9, + "probability": 0.5731 + }, + { + "start": 2562.3, + "end": 2566.64, + "probability": 0.7026 + }, + { + "start": 2566.74, + "end": 2567.82, + "probability": 0.9896 + }, + { + "start": 2571.04, + "end": 2574.68, + "probability": 0.8412 + }, + { + "start": 2574.72, + "end": 2575.18, + "probability": 0.7862 + }, + { + "start": 2575.62, + "end": 2577.16, + "probability": 0.9868 + }, + { + "start": 2577.26, + "end": 2579.7, + "probability": 0.9563 + }, + { + "start": 2580.36, + "end": 2584.44, + "probability": 0.9567 + }, + { + "start": 2584.44, + "end": 2590.0, + "probability": 0.996 + }, + { + "start": 2590.1, + "end": 2595.58, + "probability": 0.9839 + }, + { + "start": 2595.64, + "end": 2595.88, + "probability": 0.7384 + }, + { + "start": 2597.68, + "end": 2599.52, + "probability": 0.5827 + }, + { + "start": 2600.39, + "end": 2604.82, + "probability": 0.9786 + }, + { + "start": 2605.62, + "end": 2606.53, + "probability": 0.9502 + }, + { + "start": 2607.4, + "end": 2609.66, + "probability": 0.979 + }, + { + "start": 2610.66, + "end": 2617.2, + "probability": 0.9961 + }, + { + "start": 2618.08, + "end": 2624.58, + "probability": 0.9948 + }, + { + "start": 2624.58, + "end": 2630.34, + "probability": 0.9861 + }, + { + "start": 2630.82, + "end": 2634.82, + "probability": 0.9833 + }, + { + "start": 2635.46, + "end": 2642.9, + "probability": 0.9315 + }, + { + "start": 2643.62, + "end": 2647.56, + "probability": 0.9199 + }, + { + "start": 2648.24, + "end": 2653.52, + "probability": 0.8955 + }, + { + "start": 2654.5, + "end": 2657.9, + "probability": 0.9867 + }, + { + "start": 2658.28, + "end": 2664.74, + "probability": 0.9945 + }, + { + "start": 2665.4, + "end": 2672.4, + "probability": 0.9745 + }, + { + "start": 2672.9, + "end": 2675.18, + "probability": 0.9521 + }, + { + "start": 2676.04, + "end": 2679.42, + "probability": 0.8929 + }, + { + "start": 2679.42, + "end": 2683.76, + "probability": 0.9905 + }, + { + "start": 2684.42, + "end": 2689.5, + "probability": 0.9743 + }, + { + "start": 2689.5, + "end": 2694.52, + "probability": 0.9709 + }, + { + "start": 2695.1, + "end": 2699.14, + "probability": 0.8103 + }, + { + "start": 2699.78, + "end": 2701.42, + "probability": 0.9849 + }, + { + "start": 2701.94, + "end": 2702.84, + "probability": 0.947 + }, + { + "start": 2704.92, + "end": 2705.5, + "probability": 0.4881 + }, + { + "start": 2706.62, + "end": 2707.9, + "probability": 0.2543 + }, + { + "start": 2708.02, + "end": 2709.79, + "probability": 0.7838 + }, + { + "start": 2711.1, + "end": 2711.1, + "probability": 0.0314 + }, + { + "start": 2711.1, + "end": 2714.12, + "probability": 0.7275 + }, + { + "start": 2714.7, + "end": 2717.02, + "probability": 0.9025 + }, + { + "start": 2717.6, + "end": 2719.26, + "probability": 0.9072 + }, + { + "start": 2719.34, + "end": 2720.26, + "probability": 0.6277 + }, + { + "start": 2720.52, + "end": 2723.74, + "probability": 0.8774 + }, + { + "start": 2723.82, + "end": 2724.55, + "probability": 0.8815 + }, + { + "start": 2724.78, + "end": 2725.46, + "probability": 0.8398 + }, + { + "start": 2726.0, + "end": 2726.48, + "probability": 0.9347 + }, + { + "start": 2727.16, + "end": 2729.38, + "probability": 0.9595 + }, + { + "start": 2729.56, + "end": 2730.0, + "probability": 0.2823 + }, + { + "start": 2730.06, + "end": 2730.82, + "probability": 0.7679 + }, + { + "start": 2731.04, + "end": 2734.4, + "probability": 0.8685 + }, + { + "start": 2734.97, + "end": 2737.45, + "probability": 0.7415 + }, + { + "start": 2742.3, + "end": 2747.34, + "probability": 0.0863 + }, + { + "start": 2747.34, + "end": 2747.38, + "probability": 0.1048 + }, + { + "start": 2747.38, + "end": 2748.42, + "probability": 0.4803 + }, + { + "start": 2748.86, + "end": 2751.7, + "probability": 0.8393 + }, + { + "start": 2751.98, + "end": 2754.1, + "probability": 0.8605 + }, + { + "start": 2754.46, + "end": 2758.68, + "probability": 0.9845 + }, + { + "start": 2758.76, + "end": 2761.29, + "probability": 0.9414 + }, + { + "start": 2761.6, + "end": 2762.72, + "probability": 0.5276 + }, + { + "start": 2762.96, + "end": 2766.22, + "probability": 0.985 + }, + { + "start": 2766.6, + "end": 2769.02, + "probability": 0.538 + }, + { + "start": 2769.02, + "end": 2769.38, + "probability": 0.1933 + }, + { + "start": 2769.7, + "end": 2771.34, + "probability": 0.7566 + }, + { + "start": 2772.08, + "end": 2773.76, + "probability": 0.8828 + }, + { + "start": 2774.74, + "end": 2775.52, + "probability": 0.9677 + }, + { + "start": 2776.8, + "end": 2780.42, + "probability": 0.998 + }, + { + "start": 2780.72, + "end": 2781.36, + "probability": 0.0562 + }, + { + "start": 2781.36, + "end": 2782.68, + "probability": 0.9017 + }, + { + "start": 2782.68, + "end": 2783.52, + "probability": 0.933 + }, + { + "start": 2783.6, + "end": 2785.7, + "probability": 0.9976 + }, + { + "start": 2786.3, + "end": 2787.5, + "probability": 0.8336 + }, + { + "start": 2787.62, + "end": 2794.38, + "probability": 0.9905 + }, + { + "start": 2794.38, + "end": 2798.84, + "probability": 0.9946 + }, + { + "start": 2799.26, + "end": 2800.6, + "probability": 0.999 + }, + { + "start": 2800.64, + "end": 2801.88, + "probability": 0.7007 + }, + { + "start": 2802.34, + "end": 2804.64, + "probability": 0.8973 + }, + { + "start": 2805.66, + "end": 2806.16, + "probability": 0.3645 + }, + { + "start": 2806.2, + "end": 2807.46, + "probability": 0.5294 + }, + { + "start": 2808.46, + "end": 2808.98, + "probability": 0.3706 + }, + { + "start": 2810.84, + "end": 2811.64, + "probability": 0.5616 + }, + { + "start": 2811.74, + "end": 2811.9, + "probability": 0.6227 + }, + { + "start": 2812.18, + "end": 2813.72, + "probability": 0.8444 + }, + { + "start": 2813.88, + "end": 2814.82, + "probability": 0.9775 + }, + { + "start": 2814.92, + "end": 2816.2, + "probability": 0.9788 + }, + { + "start": 2816.26, + "end": 2818.78, + "probability": 0.9351 + }, + { + "start": 2819.38, + "end": 2820.06, + "probability": 0.3651 + }, + { + "start": 2820.06, + "end": 2820.52, + "probability": 0.1246 + }, + { + "start": 2821.14, + "end": 2824.34, + "probability": 0.9849 + }, + { + "start": 2824.5, + "end": 2825.82, + "probability": 0.9857 + }, + { + "start": 2826.58, + "end": 2828.09, + "probability": 0.9692 + }, + { + "start": 2828.36, + "end": 2830.06, + "probability": 0.999 + }, + { + "start": 2830.7, + "end": 2831.96, + "probability": 0.9181 + }, + { + "start": 2832.12, + "end": 2833.08, + "probability": 0.4678 + }, + { + "start": 2833.08, + "end": 2833.18, + "probability": 0.0097 + }, + { + "start": 2833.38, + "end": 2835.26, + "probability": 0.9969 + }, + { + "start": 2835.62, + "end": 2838.12, + "probability": 0.9238 + }, + { + "start": 2838.34, + "end": 2839.02, + "probability": 0.9014 + }, + { + "start": 2839.46, + "end": 2841.72, + "probability": 0.981 + }, + { + "start": 2841.8, + "end": 2842.36, + "probability": 0.9266 + }, + { + "start": 2842.38, + "end": 2842.88, + "probability": 0.8532 + }, + { + "start": 2842.92, + "end": 2843.22, + "probability": 0.2195 + }, + { + "start": 2843.82, + "end": 2845.42, + "probability": 0.5089 + }, + { + "start": 2846.04, + "end": 2849.9, + "probability": 0.8813 + }, + { + "start": 2851.84, + "end": 2853.06, + "probability": 0.1614 + }, + { + "start": 2853.12, + "end": 2853.92, + "probability": 0.7901 + }, + { + "start": 2854.04, + "end": 2854.74, + "probability": 0.6167 + }, + { + "start": 2855.16, + "end": 2858.02, + "probability": 0.9863 + }, + { + "start": 2858.02, + "end": 2861.52, + "probability": 0.9894 + }, + { + "start": 2861.98, + "end": 2862.94, + "probability": 0.312 + }, + { + "start": 2863.8, + "end": 2867.76, + "probability": 0.7829 + }, + { + "start": 2868.08, + "end": 2870.36, + "probability": 0.9918 + }, + { + "start": 2870.44, + "end": 2873.28, + "probability": 0.8482 + }, + { + "start": 2873.85, + "end": 2875.9, + "probability": 0.6016 + }, + { + "start": 2875.98, + "end": 2877.14, + "probability": 0.62 + }, + { + "start": 2877.46, + "end": 2877.46, + "probability": 0.0401 + }, + { + "start": 2877.46, + "end": 2878.31, + "probability": 0.1681 + }, + { + "start": 2878.72, + "end": 2879.24, + "probability": 0.6845 + }, + { + "start": 2879.28, + "end": 2880.12, + "probability": 0.8968 + }, + { + "start": 2880.28, + "end": 2883.6, + "probability": 0.8575 + }, + { + "start": 2883.6, + "end": 2889.96, + "probability": 0.8191 + }, + { + "start": 2890.48, + "end": 2894.14, + "probability": 0.8589 + }, + { + "start": 2894.68, + "end": 2897.16, + "probability": 0.86 + }, + { + "start": 2897.64, + "end": 2898.04, + "probability": 0.7213 + }, + { + "start": 2898.22, + "end": 2900.88, + "probability": 0.8842 + }, + { + "start": 2900.94, + "end": 2902.18, + "probability": 0.7536 + }, + { + "start": 2902.56, + "end": 2905.19, + "probability": 0.9775 + }, + { + "start": 2906.98, + "end": 2907.02, + "probability": 0.0085 + }, + { + "start": 2907.02, + "end": 2907.72, + "probability": 0.6692 + }, + { + "start": 2907.82, + "end": 2911.04, + "probability": 0.664 + }, + { + "start": 2911.1, + "end": 2912.34, + "probability": 0.7713 + }, + { + "start": 2912.38, + "end": 2915.54, + "probability": 0.959 + }, + { + "start": 2915.58, + "end": 2916.26, + "probability": 0.1887 + }, + { + "start": 2916.98, + "end": 2918.54, + "probability": 0.8674 + }, + { + "start": 2919.12, + "end": 2920.22, + "probability": 0.5474 + }, + { + "start": 2920.42, + "end": 2922.26, + "probability": 0.6668 + }, + { + "start": 2922.3, + "end": 2923.34, + "probability": 0.7193 + }, + { + "start": 2923.44, + "end": 2926.2, + "probability": 0.9037 + }, + { + "start": 2926.44, + "end": 2927.16, + "probability": 0.7209 + }, + { + "start": 2927.6, + "end": 2929.22, + "probability": 0.998 + }, + { + "start": 2929.34, + "end": 2935.48, + "probability": 0.9813 + }, + { + "start": 2935.9, + "end": 2938.02, + "probability": 0.9725 + }, + { + "start": 2938.7, + "end": 2940.6, + "probability": 0.9941 + }, + { + "start": 2940.64, + "end": 2941.59, + "probability": 0.9668 + }, + { + "start": 2942.06, + "end": 2943.26, + "probability": 0.8915 + }, + { + "start": 2943.6, + "end": 2945.08, + "probability": 0.6335 + }, + { + "start": 2945.78, + "end": 2946.02, + "probability": 0.8268 + }, + { + "start": 2946.8, + "end": 2951.48, + "probability": 0.9561 + }, + { + "start": 2952.06, + "end": 2952.7, + "probability": 0.5486 + }, + { + "start": 2952.84, + "end": 2954.41, + "probability": 0.8814 + }, + { + "start": 2954.92, + "end": 2957.46, + "probability": 0.9805 + }, + { + "start": 2957.78, + "end": 2961.66, + "probability": 0.5992 + }, + { + "start": 2961.78, + "end": 2962.2, + "probability": 0.4412 + }, + { + "start": 2962.2, + "end": 2963.72, + "probability": 0.535 + }, + { + "start": 2963.9, + "end": 2964.08, + "probability": 0.1337 + }, + { + "start": 2964.46, + "end": 2965.19, + "probability": 0.0787 + }, + { + "start": 2965.68, + "end": 2968.54, + "probability": 0.806 + }, + { + "start": 2969.06, + "end": 2971.52, + "probability": 0.9736 + }, + { + "start": 2972.16, + "end": 2972.86, + "probability": 0.794 + }, + { + "start": 2973.58, + "end": 2975.58, + "probability": 0.8584 + }, + { + "start": 2976.22, + "end": 2977.04, + "probability": 0.8181 + }, + { + "start": 2977.34, + "end": 2978.58, + "probability": 0.9448 + }, + { + "start": 2979.26, + "end": 2979.58, + "probability": 0.5918 + }, + { + "start": 2980.12, + "end": 2981.06, + "probability": 0.7755 + }, + { + "start": 2981.5, + "end": 2982.84, + "probability": 0.4752 + }, + { + "start": 2983.58, + "end": 2984.02, + "probability": 0.9375 + }, + { + "start": 2984.58, + "end": 2984.8, + "probability": 0.2702 + }, + { + "start": 2984.8, + "end": 2986.0, + "probability": 0.4344 + }, + { + "start": 2986.1, + "end": 2987.48, + "probability": 0.9697 + }, + { + "start": 2988.38, + "end": 2992.0, + "probability": 0.7436 + }, + { + "start": 2992.06, + "end": 2992.8, + "probability": 0.4338 + }, + { + "start": 2992.8, + "end": 2992.86, + "probability": 0.0253 + }, + { + "start": 2992.86, + "end": 2992.88, + "probability": 0.1474 + }, + { + "start": 2992.88, + "end": 2994.1, + "probability": 0.8027 + }, + { + "start": 2995.28, + "end": 2996.68, + "probability": 0.7103 + }, + { + "start": 2996.82, + "end": 2997.82, + "probability": 0.681 + }, + { + "start": 2997.86, + "end": 3001.07, + "probability": 0.7463 + }, + { + "start": 3002.14, + "end": 3005.52, + "probability": 0.8117 + }, + { + "start": 3008.34, + "end": 3013.38, + "probability": 0.9879 + }, + { + "start": 3015.38, + "end": 3017.74, + "probability": 0.9045 + }, + { + "start": 3019.02, + "end": 3027.16, + "probability": 0.9916 + }, + { + "start": 3028.76, + "end": 3032.18, + "probability": 0.7797 + }, + { + "start": 3032.76, + "end": 3036.16, + "probability": 0.9971 + }, + { + "start": 3037.0, + "end": 3039.44, + "probability": 0.9536 + }, + { + "start": 3040.0, + "end": 3043.82, + "probability": 0.9899 + }, + { + "start": 3043.9, + "end": 3045.18, + "probability": 0.9013 + }, + { + "start": 3045.76, + "end": 3047.04, + "probability": 0.9764 + }, + { + "start": 3047.1, + "end": 3048.48, + "probability": 0.9004 + }, + { + "start": 3048.68, + "end": 3049.38, + "probability": 0.6492 + }, + { + "start": 3049.58, + "end": 3055.12, + "probability": 0.9819 + }, + { + "start": 3055.12, + "end": 3061.98, + "probability": 0.9855 + }, + { + "start": 3062.0, + "end": 3064.9, + "probability": 0.9976 + }, + { + "start": 3065.18, + "end": 3071.3, + "probability": 0.9933 + }, + { + "start": 3072.02, + "end": 3074.9, + "probability": 0.7051 + }, + { + "start": 3075.12, + "end": 3075.8, + "probability": 0.891 + }, + { + "start": 3076.29, + "end": 3081.78, + "probability": 0.997 + }, + { + "start": 3082.84, + "end": 3087.98, + "probability": 0.9473 + }, + { + "start": 3088.54, + "end": 3090.72, + "probability": 0.5992 + }, + { + "start": 3090.8, + "end": 3094.0, + "probability": 0.827 + }, + { + "start": 3094.4, + "end": 3099.8, + "probability": 0.9945 + }, + { + "start": 3099.8, + "end": 3104.86, + "probability": 0.9746 + }, + { + "start": 3107.2, + "end": 3110.04, + "probability": 0.8006 + }, + { + "start": 3110.36, + "end": 3117.19, + "probability": 0.9844 + }, + { + "start": 3118.42, + "end": 3121.06, + "probability": 0.4992 + }, + { + "start": 3121.22, + "end": 3122.18, + "probability": 0.7014 + }, + { + "start": 3122.42, + "end": 3123.7, + "probability": 0.9277 + }, + { + "start": 3123.8, + "end": 3124.28, + "probability": 0.4149 + }, + { + "start": 3124.56, + "end": 3127.32, + "probability": 0.9202 + }, + { + "start": 3127.76, + "end": 3129.78, + "probability": 0.9952 + }, + { + "start": 3130.16, + "end": 3136.52, + "probability": 0.9417 + }, + { + "start": 3136.7, + "end": 3137.76, + "probability": 0.8541 + }, + { + "start": 3138.42, + "end": 3139.42, + "probability": 0.208 + }, + { + "start": 3139.74, + "end": 3140.1, + "probability": 0.7071 + }, + { + "start": 3140.18, + "end": 3142.0, + "probability": 0.7232 + }, + { + "start": 3145.94, + "end": 3148.26, + "probability": 0.8172 + }, + { + "start": 3149.56, + "end": 3153.34, + "probability": 0.9472 + }, + { + "start": 3154.54, + "end": 3154.82, + "probability": 0.5305 + }, + { + "start": 3155.2, + "end": 3157.02, + "probability": 0.9513 + }, + { + "start": 3157.06, + "end": 3162.06, + "probability": 0.6723 + }, + { + "start": 3162.76, + "end": 3163.96, + "probability": 0.8036 + }, + { + "start": 3164.44, + "end": 3165.76, + "probability": 0.9966 + }, + { + "start": 3166.16, + "end": 3167.88, + "probability": 0.8408 + }, + { + "start": 3168.74, + "end": 3170.98, + "probability": 0.878 + }, + { + "start": 3171.56, + "end": 3174.28, + "probability": 0.8663 + }, + { + "start": 3174.76, + "end": 3175.82, + "probability": 0.7915 + }, + { + "start": 3176.42, + "end": 3178.18, + "probability": 0.8394 + }, + { + "start": 3179.04, + "end": 3182.48, + "probability": 0.9781 + }, + { + "start": 3183.28, + "end": 3183.8, + "probability": 0.704 + }, + { + "start": 3183.88, + "end": 3184.56, + "probability": 0.9764 + }, + { + "start": 3184.76, + "end": 3185.16, + "probability": 0.7741 + }, + { + "start": 3185.36, + "end": 3187.54, + "probability": 0.9932 + }, + { + "start": 3188.14, + "end": 3188.46, + "probability": 0.625 + }, + { + "start": 3189.24, + "end": 3191.62, + "probability": 0.9958 + }, + { + "start": 3192.62, + "end": 3194.42, + "probability": 0.9659 + }, + { + "start": 3195.34, + "end": 3196.8, + "probability": 0.9394 + }, + { + "start": 3196.96, + "end": 3197.82, + "probability": 0.8018 + }, + { + "start": 3198.32, + "end": 3199.32, + "probability": 0.8908 + }, + { + "start": 3199.9, + "end": 3201.08, + "probability": 0.9604 + }, + { + "start": 3201.78, + "end": 3204.86, + "probability": 0.9519 + }, + { + "start": 3206.64, + "end": 3210.44, + "probability": 0.7976 + }, + { + "start": 3210.96, + "end": 3211.98, + "probability": 0.6328 + }, + { + "start": 3212.56, + "end": 3214.84, + "probability": 0.9886 + }, + { + "start": 3215.82, + "end": 3216.41, + "probability": 0.7563 + }, + { + "start": 3217.38, + "end": 3219.94, + "probability": 0.1324 + }, + { + "start": 3220.02, + "end": 3220.18, + "probability": 0.6781 + }, + { + "start": 3220.58, + "end": 3221.6, + "probability": 0.8186 + }, + { + "start": 3221.7, + "end": 3223.34, + "probability": 0.6518 + }, + { + "start": 3224.44, + "end": 3228.02, + "probability": 0.9616 + }, + { + "start": 3229.24, + "end": 3233.7, + "probability": 0.7898 + }, + { + "start": 3234.06, + "end": 3234.76, + "probability": 0.0652 + }, + { + "start": 3234.94, + "end": 3237.12, + "probability": 0.738 + }, + { + "start": 3237.93, + "end": 3239.87, + "probability": 0.6505 + }, + { + "start": 3240.84, + "end": 3243.06, + "probability": 0.7593 + }, + { + "start": 3243.1, + "end": 3245.0, + "probability": 0.5053 + }, + { + "start": 3246.33, + "end": 3248.02, + "probability": 0.7845 + }, + { + "start": 3248.02, + "end": 3249.82, + "probability": 0.7002 + }, + { + "start": 3250.26, + "end": 3251.26, + "probability": 0.7717 + }, + { + "start": 3251.36, + "end": 3251.86, + "probability": 0.6518 + }, + { + "start": 3253.06, + "end": 3256.0, + "probability": 0.9482 + }, + { + "start": 3257.08, + "end": 3259.72, + "probability": 0.9899 + }, + { + "start": 3260.48, + "end": 3262.6, + "probability": 0.9536 + }, + { + "start": 3262.72, + "end": 3263.04, + "probability": 0.7976 + }, + { + "start": 3264.1, + "end": 3269.98, + "probability": 0.9614 + }, + { + "start": 3270.52, + "end": 3273.1, + "probability": 0.983 + }, + { + "start": 3273.86, + "end": 3279.14, + "probability": 0.9078 + }, + { + "start": 3279.58, + "end": 3282.92, + "probability": 0.9978 + }, + { + "start": 3282.94, + "end": 3285.08, + "probability": 0.8326 + }, + { + "start": 3285.84, + "end": 3289.98, + "probability": 0.9734 + }, + { + "start": 3292.22, + "end": 3292.38, + "probability": 0.0197 + }, + { + "start": 3305.94, + "end": 3306.04, + "probability": 0.3621 + }, + { + "start": 3307.38, + "end": 3308.6, + "probability": 0.7729 + }, + { + "start": 3310.34, + "end": 3311.42, + "probability": 0.7132 + }, + { + "start": 3314.1, + "end": 3315.1, + "probability": 0.9508 + }, + { + "start": 3316.14, + "end": 3317.24, + "probability": 0.9707 + }, + { + "start": 3318.54, + "end": 3325.04, + "probability": 0.9949 + }, + { + "start": 3327.12, + "end": 3333.58, + "probability": 0.9849 + }, + { + "start": 3334.3, + "end": 3335.04, + "probability": 0.3052 + }, + { + "start": 3336.7, + "end": 3340.9, + "probability": 0.8123 + }, + { + "start": 3342.02, + "end": 3346.1, + "probability": 0.8714 + }, + { + "start": 3347.48, + "end": 3348.18, + "probability": 0.7983 + }, + { + "start": 3349.38, + "end": 3351.88, + "probability": 0.8413 + }, + { + "start": 3353.14, + "end": 3358.0, + "probability": 0.9595 + }, + { + "start": 3359.24, + "end": 3361.96, + "probability": 0.9872 + }, + { + "start": 3363.64, + "end": 3366.46, + "probability": 0.9006 + }, + { + "start": 3367.56, + "end": 3370.94, + "probability": 0.9946 + }, + { + "start": 3371.44, + "end": 3373.04, + "probability": 0.9447 + }, + { + "start": 3373.16, + "end": 3374.4, + "probability": 0.7587 + }, + { + "start": 3374.52, + "end": 3376.66, + "probability": 0.4837 + }, + { + "start": 3377.92, + "end": 3384.28, + "probability": 0.9948 + }, + { + "start": 3386.22, + "end": 3391.44, + "probability": 0.9893 + }, + { + "start": 3391.98, + "end": 3394.92, + "probability": 0.9969 + }, + { + "start": 3396.48, + "end": 3397.22, + "probability": 0.7408 + }, + { + "start": 3397.46, + "end": 3401.44, + "probability": 0.9946 + }, + { + "start": 3402.74, + "end": 3407.74, + "probability": 0.978 + }, + { + "start": 3409.28, + "end": 3411.48, + "probability": 0.9116 + }, + { + "start": 3412.4, + "end": 3414.36, + "probability": 0.9424 + }, + { + "start": 3414.88, + "end": 3418.2, + "probability": 0.9968 + }, + { + "start": 3418.24, + "end": 3422.51, + "probability": 0.9873 + }, + { + "start": 3422.72, + "end": 3426.49, + "probability": 0.9619 + }, + { + "start": 3427.38, + "end": 3433.76, + "probability": 0.9818 + }, + { + "start": 3434.18, + "end": 3436.18, + "probability": 0.9238 + }, + { + "start": 3436.94, + "end": 3437.64, + "probability": 0.7468 + }, + { + "start": 3438.84, + "end": 3440.68, + "probability": 0.9521 + }, + { + "start": 3442.54, + "end": 3444.92, + "probability": 0.6282 + }, + { + "start": 3446.0, + "end": 3448.68, + "probability": 0.8883 + }, + { + "start": 3449.44, + "end": 3450.54, + "probability": 0.8734 + }, + { + "start": 3451.12, + "end": 3453.28, + "probability": 0.54 + }, + { + "start": 3454.04, + "end": 3458.94, + "probability": 0.9919 + }, + { + "start": 3459.66, + "end": 3464.5, + "probability": 0.9754 + }, + { + "start": 3465.98, + "end": 3469.48, + "probability": 0.9935 + }, + { + "start": 3470.22, + "end": 3474.98, + "probability": 0.9538 + }, + { + "start": 3475.92, + "end": 3478.74, + "probability": 0.9928 + }, + { + "start": 3479.3, + "end": 3483.3, + "probability": 0.9977 + }, + { + "start": 3484.02, + "end": 3485.24, + "probability": 0.9893 + }, + { + "start": 3486.36, + "end": 3493.12, + "probability": 0.9846 + }, + { + "start": 3493.12, + "end": 3498.16, + "probability": 0.9949 + }, + { + "start": 3499.74, + "end": 3501.62, + "probability": 0.8797 + }, + { + "start": 3502.67, + "end": 3504.32, + "probability": 0.887 + }, + { + "start": 3504.38, + "end": 3505.72, + "probability": 0.9971 + }, + { + "start": 3506.36, + "end": 3506.82, + "probability": 0.8868 + }, + { + "start": 3508.02, + "end": 3509.7, + "probability": 0.9736 + }, + { + "start": 3509.8, + "end": 3514.68, + "probability": 0.9473 + }, + { + "start": 3514.68, + "end": 3517.88, + "probability": 0.9921 + }, + { + "start": 3518.48, + "end": 3519.54, + "probability": 0.7803 + }, + { + "start": 3522.0, + "end": 3524.84, + "probability": 0.9836 + }, + { + "start": 3525.76, + "end": 3526.5, + "probability": 0.5215 + }, + { + "start": 3526.64, + "end": 3527.71, + "probability": 0.9927 + }, + { + "start": 3528.14, + "end": 3530.41, + "probability": 0.9767 + }, + { + "start": 3531.08, + "end": 3531.44, + "probability": 0.7407 + }, + { + "start": 3532.0, + "end": 3533.88, + "probability": 0.9216 + }, + { + "start": 3534.86, + "end": 3537.32, + "probability": 0.8047 + }, + { + "start": 3537.98, + "end": 3544.1, + "probability": 0.7151 + }, + { + "start": 3547.54, + "end": 3549.24, + "probability": 0.4828 + }, + { + "start": 3549.34, + "end": 3553.62, + "probability": 0.8688 + }, + { + "start": 3554.56, + "end": 3554.58, + "probability": 0.3406 + }, + { + "start": 3554.58, + "end": 3558.0, + "probability": 0.9273 + }, + { + "start": 3558.84, + "end": 3559.74, + "probability": 0.552 + }, + { + "start": 3560.54, + "end": 3562.3, + "probability": 0.9341 + }, + { + "start": 3577.14, + "end": 3579.44, + "probability": 0.6713 + }, + { + "start": 3579.98, + "end": 3583.42, + "probability": 0.6603 + }, + { + "start": 3583.56, + "end": 3583.66, + "probability": 0.8787 + }, + { + "start": 3584.22, + "end": 3585.24, + "probability": 0.6595 + }, + { + "start": 3585.82, + "end": 3589.92, + "probability": 0.8311 + }, + { + "start": 3590.78, + "end": 3595.18, + "probability": 0.9858 + }, + { + "start": 3595.18, + "end": 3600.66, + "probability": 0.9818 + }, + { + "start": 3601.4, + "end": 3604.04, + "probability": 0.9123 + }, + { + "start": 3604.98, + "end": 3608.12, + "probability": 0.8102 + }, + { + "start": 3608.22, + "end": 3609.0, + "probability": 0.8419 + }, + { + "start": 3609.14, + "end": 3611.84, + "probability": 0.989 + }, + { + "start": 3611.96, + "end": 3615.42, + "probability": 0.9121 + }, + { + "start": 3615.6, + "end": 3616.7, + "probability": 0.8048 + }, + { + "start": 3616.8, + "end": 3617.64, + "probability": 0.7829 + }, + { + "start": 3618.24, + "end": 3618.9, + "probability": 0.7544 + }, + { + "start": 3619.14, + "end": 3622.34, + "probability": 0.8575 + }, + { + "start": 3622.84, + "end": 3623.56, + "probability": 0.8506 + }, + { + "start": 3623.58, + "end": 3625.9, + "probability": 0.9792 + }, + { + "start": 3626.78, + "end": 3630.76, + "probability": 0.9918 + }, + { + "start": 3631.54, + "end": 3633.08, + "probability": 0.7089 + }, + { + "start": 3633.94, + "end": 3636.46, + "probability": 0.9871 + }, + { + "start": 3636.68, + "end": 3637.18, + "probability": 0.7741 + }, + { + "start": 3637.22, + "end": 3639.8, + "probability": 0.819 + }, + { + "start": 3639.9, + "end": 3643.26, + "probability": 0.926 + }, + { + "start": 3643.3, + "end": 3646.78, + "probability": 0.9891 + }, + { + "start": 3647.44, + "end": 3651.62, + "probability": 0.9889 + }, + { + "start": 3652.96, + "end": 3654.48, + "probability": 0.761 + }, + { + "start": 3654.8, + "end": 3655.62, + "probability": 0.6421 + }, + { + "start": 3655.88, + "end": 3657.38, + "probability": 0.9285 + }, + { + "start": 3657.98, + "end": 3661.64, + "probability": 0.9949 + }, + { + "start": 3661.64, + "end": 3667.16, + "probability": 0.9889 + }, + { + "start": 3668.24, + "end": 3672.08, + "probability": 0.9963 + }, + { + "start": 3672.92, + "end": 3676.96, + "probability": 0.9806 + }, + { + "start": 3676.96, + "end": 3680.9, + "probability": 0.9972 + }, + { + "start": 3681.44, + "end": 3684.76, + "probability": 0.9402 + }, + { + "start": 3685.66, + "end": 3689.28, + "probability": 0.9863 + }, + { + "start": 3689.4, + "end": 3694.94, + "probability": 0.976 + }, + { + "start": 3695.52, + "end": 3701.96, + "probability": 0.9946 + }, + { + "start": 3702.42, + "end": 3708.24, + "probability": 0.9687 + }, + { + "start": 3708.24, + "end": 3713.0, + "probability": 0.967 + }, + { + "start": 3713.44, + "end": 3717.02, + "probability": 0.9956 + }, + { + "start": 3717.06, + "end": 3720.52, + "probability": 0.9992 + }, + { + "start": 3721.04, + "end": 3722.82, + "probability": 0.8326 + }, + { + "start": 3723.44, + "end": 3726.78, + "probability": 0.9255 + }, + { + "start": 3727.2, + "end": 3729.88, + "probability": 0.807 + }, + { + "start": 3729.88, + "end": 3733.6, + "probability": 0.8895 + }, + { + "start": 3734.24, + "end": 3739.44, + "probability": 0.9961 + }, + { + "start": 3739.44, + "end": 3745.5, + "probability": 0.9989 + }, + { + "start": 3746.2, + "end": 3750.26, + "probability": 0.8773 + }, + { + "start": 3750.76, + "end": 3753.54, + "probability": 0.9954 + }, + { + "start": 3754.06, + "end": 3758.12, + "probability": 0.9963 + }, + { + "start": 3758.12, + "end": 3761.66, + "probability": 0.9996 + }, + { + "start": 3762.06, + "end": 3764.14, + "probability": 0.8785 + }, + { + "start": 3764.2, + "end": 3769.42, + "probability": 0.9926 + }, + { + "start": 3769.98, + "end": 3774.42, + "probability": 0.9951 + }, + { + "start": 3774.42, + "end": 3777.5, + "probability": 0.9994 + }, + { + "start": 3778.02, + "end": 3784.46, + "probability": 0.9984 + }, + { + "start": 3785.42, + "end": 3788.3, + "probability": 0.8987 + }, + { + "start": 3788.38, + "end": 3793.4, + "probability": 0.99 + }, + { + "start": 3793.4, + "end": 3797.3, + "probability": 0.9774 + }, + { + "start": 3797.84, + "end": 3803.18, + "probability": 0.9962 + }, + { + "start": 3803.2, + "end": 3807.48, + "probability": 0.9988 + }, + { + "start": 3807.66, + "end": 3813.26, + "probability": 0.9951 + }, + { + "start": 3813.78, + "end": 3816.22, + "probability": 0.9256 + }, + { + "start": 3817.26, + "end": 3820.78, + "probability": 0.8423 + }, + { + "start": 3821.1, + "end": 3821.32, + "probability": 0.7839 + }, + { + "start": 3822.64, + "end": 3825.02, + "probability": 0.9723 + }, + { + "start": 3825.12, + "end": 3828.12, + "probability": 0.9003 + }, + { + "start": 3828.74, + "end": 3830.54, + "probability": 0.3205 + }, + { + "start": 3831.1, + "end": 3833.84, + "probability": 0.8774 + }, + { + "start": 3834.5, + "end": 3836.64, + "probability": 0.8255 + }, + { + "start": 3849.42, + "end": 3850.46, + "probability": 0.1825 + }, + { + "start": 3851.22, + "end": 3853.78, + "probability": 0.7004 + }, + { + "start": 3855.28, + "end": 3861.19, + "probability": 0.9478 + }, + { + "start": 3862.8, + "end": 3868.34, + "probability": 0.9706 + }, + { + "start": 3869.1, + "end": 3871.94, + "probability": 0.9051 + }, + { + "start": 3873.26, + "end": 3875.58, + "probability": 0.9465 + }, + { + "start": 3876.3, + "end": 3879.4, + "probability": 0.9974 + }, + { + "start": 3880.58, + "end": 3889.52, + "probability": 0.9851 + }, + { + "start": 3889.52, + "end": 3897.46, + "probability": 0.9919 + }, + { + "start": 3897.68, + "end": 3899.96, + "probability": 0.9932 + }, + { + "start": 3900.14, + "end": 3902.92, + "probability": 0.79 + }, + { + "start": 3903.86, + "end": 3904.92, + "probability": 0.6648 + }, + { + "start": 3905.5, + "end": 3907.6, + "probability": 0.8072 + }, + { + "start": 3907.66, + "end": 3910.26, + "probability": 0.5365 + }, + { + "start": 3910.74, + "end": 3912.36, + "probability": 0.9818 + }, + { + "start": 3913.0, + "end": 3917.34, + "probability": 0.9419 + }, + { + "start": 3917.54, + "end": 3920.73, + "probability": 0.0412 + }, + { + "start": 3921.0, + "end": 3921.89, + "probability": 0.3461 + }, + { + "start": 3921.9, + "end": 3923.96, + "probability": 0.5318 + }, + { + "start": 3924.82, + "end": 3925.8, + "probability": 0.7945 + }, + { + "start": 3926.42, + "end": 3929.58, + "probability": 0.8973 + }, + { + "start": 3930.2, + "end": 3934.52, + "probability": 0.891 + }, + { + "start": 3936.11, + "end": 3937.58, + "probability": 0.8889 + }, + { + "start": 3937.7, + "end": 3939.64, + "probability": 0.7224 + }, + { + "start": 3939.8, + "end": 3942.32, + "probability": 0.9842 + }, + { + "start": 3943.06, + "end": 3944.08, + "probability": 0.8532 + }, + { + "start": 3944.94, + "end": 3946.32, + "probability": 0.5724 + }, + { + "start": 3946.5, + "end": 3949.7, + "probability": 0.9838 + }, + { + "start": 3950.3, + "end": 3955.34, + "probability": 0.997 + }, + { + "start": 3955.48, + "end": 3962.58, + "probability": 0.9675 + }, + { + "start": 3962.7, + "end": 3963.14, + "probability": 0.7522 + }, + { + "start": 3963.9, + "end": 3966.98, + "probability": 0.7079 + }, + { + "start": 3967.72, + "end": 3972.76, + "probability": 0.7983 + }, + { + "start": 3982.42, + "end": 3983.34, + "probability": 0.0613 + }, + { + "start": 3983.34, + "end": 3984.36, + "probability": 0.7939 + }, + { + "start": 3984.36, + "end": 3986.38, + "probability": 0.5627 + }, + { + "start": 3987.02, + "end": 3987.24, + "probability": 0.835 + }, + { + "start": 3987.54, + "end": 3988.62, + "probability": 0.7668 + }, + { + "start": 3988.76, + "end": 3989.68, + "probability": 0.8433 + }, + { + "start": 3989.78, + "end": 3992.5, + "probability": 0.8273 + }, + { + "start": 3992.62, + "end": 3993.92, + "probability": 0.9961 + }, + { + "start": 3995.34, + "end": 3999.6, + "probability": 0.9941 + }, + { + "start": 4000.42, + "end": 4002.12, + "probability": 0.9927 + }, + { + "start": 4002.14, + "end": 4004.42, + "probability": 0.9816 + }, + { + "start": 4004.9, + "end": 4006.96, + "probability": 0.8616 + }, + { + "start": 4007.74, + "end": 4009.0, + "probability": 0.9895 + }, + { + "start": 4009.44, + "end": 4010.16, + "probability": 0.7813 + }, + { + "start": 4010.6, + "end": 4016.24, + "probability": 0.9769 + }, + { + "start": 4016.34, + "end": 4017.22, + "probability": 0.5214 + }, + { + "start": 4018.22, + "end": 4020.54, + "probability": 0.9951 + }, + { + "start": 4021.24, + "end": 4021.62, + "probability": 0.5634 + }, + { + "start": 4022.9, + "end": 4024.66, + "probability": 0.9519 + }, + { + "start": 4026.2, + "end": 4027.06, + "probability": 0.7245 + }, + { + "start": 4027.56, + "end": 4029.68, + "probability": 0.6266 + }, + { + "start": 4030.18, + "end": 4030.38, + "probability": 0.7295 + }, + { + "start": 4031.89, + "end": 4032.98, + "probability": 0.4934 + }, + { + "start": 4033.62, + "end": 4038.66, + "probability": 0.9891 + }, + { + "start": 4039.82, + "end": 4042.54, + "probability": 0.9478 + }, + { + "start": 4043.24, + "end": 4044.48, + "probability": 0.8984 + }, + { + "start": 4046.38, + "end": 4049.9, + "probability": 0.932 + }, + { + "start": 4050.1, + "end": 4050.84, + "probability": 0.5769 + }, + { + "start": 4051.52, + "end": 4056.3, + "probability": 0.7052 + }, + { + "start": 4056.34, + "end": 4057.88, + "probability": 0.4766 + }, + { + "start": 4058.7, + "end": 4062.74, + "probability": 0.9187 + }, + { + "start": 4063.84, + "end": 4067.36, + "probability": 0.5957 + }, + { + "start": 4067.44, + "end": 4067.76, + "probability": 0.8047 + }, + { + "start": 4068.22, + "end": 4069.12, + "probability": 0.7239 + }, + { + "start": 4069.5, + "end": 4071.64, + "probability": 0.999 + }, + { + "start": 4072.2, + "end": 4076.42, + "probability": 0.9916 + }, + { + "start": 4076.84, + "end": 4078.24, + "probability": 0.7344 + }, + { + "start": 4078.66, + "end": 4079.68, + "probability": 0.6809 + }, + { + "start": 4080.08, + "end": 4081.14, + "probability": 0.9163 + }, + { + "start": 4081.24, + "end": 4082.56, + "probability": 0.8545 + }, + { + "start": 4082.66, + "end": 4088.06, + "probability": 0.8924 + }, + { + "start": 4088.58, + "end": 4091.09, + "probability": 0.6765 + }, + { + "start": 4092.28, + "end": 4095.06, + "probability": 0.8669 + }, + { + "start": 4095.22, + "end": 4096.7, + "probability": 0.9792 + }, + { + "start": 4097.34, + "end": 4099.7, + "probability": 0.8761 + }, + { + "start": 4101.4, + "end": 4101.68, + "probability": 0.4532 + }, + { + "start": 4102.24, + "end": 4103.68, + "probability": 0.9958 + }, + { + "start": 4104.88, + "end": 4106.02, + "probability": 0.9038 + }, + { + "start": 4107.16, + "end": 4108.41, + "probability": 0.9983 + }, + { + "start": 4109.26, + "end": 4110.1, + "probability": 0.9783 + }, + { + "start": 4111.24, + "end": 4113.86, + "probability": 0.9355 + }, + { + "start": 4114.86, + "end": 4118.4, + "probability": 0.9801 + }, + { + "start": 4119.64, + "end": 4120.96, + "probability": 0.8751 + }, + { + "start": 4121.24, + "end": 4122.42, + "probability": 0.9976 + }, + { + "start": 4123.54, + "end": 4127.24, + "probability": 0.9979 + }, + { + "start": 4128.08, + "end": 4130.72, + "probability": 0.7741 + }, + { + "start": 4131.04, + "end": 4132.96, + "probability": 0.9164 + }, + { + "start": 4133.38, + "end": 4134.74, + "probability": 0.9795 + }, + { + "start": 4135.2, + "end": 4137.94, + "probability": 0.9459 + }, + { + "start": 4137.98, + "end": 4137.98, + "probability": 0.0857 + }, + { + "start": 4137.98, + "end": 4138.47, + "probability": 0.6678 + }, + { + "start": 4139.1, + "end": 4140.84, + "probability": 0.9923 + }, + { + "start": 4143.2, + "end": 4147.58, + "probability": 0.9959 + }, + { + "start": 4150.16, + "end": 4153.1, + "probability": 0.9585 + }, + { + "start": 4153.96, + "end": 4156.82, + "probability": 0.9229 + }, + { + "start": 4157.06, + "end": 4160.2, + "probability": 0.9852 + }, + { + "start": 4160.9, + "end": 4167.46, + "probability": 0.9953 + }, + { + "start": 4167.46, + "end": 4171.66, + "probability": 0.9033 + }, + { + "start": 4172.58, + "end": 4174.5, + "probability": 0.7456 + }, + { + "start": 4174.54, + "end": 4175.3, + "probability": 0.6394 + }, + { + "start": 4175.92, + "end": 4180.7, + "probability": 0.8791 + }, + { + "start": 4181.28, + "end": 4184.64, + "probability": 0.8205 + }, + { + "start": 4185.35, + "end": 4186.66, + "probability": 0.687 + }, + { + "start": 4186.94, + "end": 4187.5, + "probability": 0.8111 + }, + { + "start": 4187.6, + "end": 4188.2, + "probability": 0.5882 + }, + { + "start": 4188.36, + "end": 4189.18, + "probability": 0.9694 + }, + { + "start": 4189.26, + "end": 4190.5, + "probability": 0.8132 + }, + { + "start": 4190.62, + "end": 4192.04, + "probability": 0.6918 + }, + { + "start": 4192.3, + "end": 4192.56, + "probability": 0.7749 + }, + { + "start": 4193.74, + "end": 4196.14, + "probability": 0.8183 + }, + { + "start": 4199.06, + "end": 4202.0, + "probability": 0.8123 + }, + { + "start": 4205.16, + "end": 4208.9, + "probability": 0.0374 + }, + { + "start": 4217.74, + "end": 4218.54, + "probability": 0.0037 + }, + { + "start": 4221.42, + "end": 4223.9, + "probability": 0.0 + }, + { + "start": 4227.8, + "end": 4228.34, + "probability": 0.0666 + }, + { + "start": 4229.6, + "end": 4231.58, + "probability": 0.0459 + }, + { + "start": 4231.88, + "end": 4234.48, + "probability": 0.2507 + }, + { + "start": 4235.92, + "end": 4237.7, + "probability": 0.6896 + }, + { + "start": 4244.14, + "end": 4247.62, + "probability": 0.8928 + }, + { + "start": 4248.36, + "end": 4252.42, + "probability": 0.531 + }, + { + "start": 4253.52, + "end": 4261.18, + "probability": 0.7383 + }, + { + "start": 4262.04, + "end": 4262.54, + "probability": 0.3072 + }, + { + "start": 4265.52, + "end": 4272.28, + "probability": 0.8795 + }, + { + "start": 4273.04, + "end": 4276.7, + "probability": 0.9856 + }, + { + "start": 4277.3, + "end": 4282.6, + "probability": 0.8418 + }, + { + "start": 4283.0, + "end": 4283.5, + "probability": 0.9397 + }, + { + "start": 4284.92, + "end": 4285.68, + "probability": 0.6448 + }, + { + "start": 4292.0, + "end": 4293.5, + "probability": 0.0086 + }, + { + "start": 4302.86, + "end": 4306.36, + "probability": 0.1868 + }, + { + "start": 4307.18, + "end": 4307.88, + "probability": 0.09 + }, + { + "start": 4308.4, + "end": 4312.6, + "probability": 0.6566 + }, + { + "start": 4313.28, + "end": 4315.16, + "probability": 0.4934 + }, + { + "start": 4315.72, + "end": 4320.72, + "probability": 0.7823 + }, + { + "start": 4321.38, + "end": 4321.38, + "probability": 0.4187 + }, + { + "start": 4321.38, + "end": 4326.82, + "probability": 0.798 + }, + { + "start": 4327.42, + "end": 4328.85, + "probability": 0.8184 + }, + { + "start": 4333.55, + "end": 4337.82, + "probability": 0.0417 + }, + { + "start": 4338.02, + "end": 4338.64, + "probability": 0.6566 + }, + { + "start": 4339.26, + "end": 4340.3, + "probability": 0.3536 + }, + { + "start": 4340.9, + "end": 4341.82, + "probability": 0.7873 + }, + { + "start": 4342.76, + "end": 4346.66, + "probability": 0.9823 + }, + { + "start": 4348.02, + "end": 4348.24, + "probability": 0.7236 + }, + { + "start": 4348.5, + "end": 4350.22, + "probability": 0.808 + }, + { + "start": 4351.44, + "end": 4352.6, + "probability": 0.8192 + }, + { + "start": 4354.46, + "end": 4359.34, + "probability": 0.9565 + }, + { + "start": 4360.12, + "end": 4360.62, + "probability": 0.2871 + }, + { + "start": 4361.22, + "end": 4361.72, + "probability": 0.0041 + }, + { + "start": 4362.9, + "end": 4366.46, + "probability": 0.8547 + }, + { + "start": 4366.54, + "end": 4367.06, + "probability": 0.7827 + }, + { + "start": 4367.1, + "end": 4369.18, + "probability": 0.5946 + }, + { + "start": 4370.24, + "end": 4371.92, + "probability": 0.9561 + }, + { + "start": 4372.6, + "end": 4376.12, + "probability": 0.978 + }, + { + "start": 4377.3, + "end": 4379.74, + "probability": 0.6321 + }, + { + "start": 4379.94, + "end": 4380.36, + "probability": 0.9135 + }, + { + "start": 4380.52, + "end": 4383.0, + "probability": 0.9525 + }, + { + "start": 4383.66, + "end": 4388.84, + "probability": 0.8096 + }, + { + "start": 4389.54, + "end": 4390.18, + "probability": 0.9692 + }, + { + "start": 4391.46, + "end": 4395.1, + "probability": 0.8866 + }, + { + "start": 4395.48, + "end": 4398.02, + "probability": 0.8013 + }, + { + "start": 4398.88, + "end": 4404.62, + "probability": 0.9056 + }, + { + "start": 4404.76, + "end": 4408.38, + "probability": 0.9961 + }, + { + "start": 4408.38, + "end": 4413.92, + "probability": 0.9885 + }, + { + "start": 4414.02, + "end": 4414.24, + "probability": 0.5718 + }, + { + "start": 4414.36, + "end": 4416.03, + "probability": 0.8994 + }, + { + "start": 4416.58, + "end": 4418.94, + "probability": 0.9116 + }, + { + "start": 4419.32, + "end": 4420.26, + "probability": 0.8713 + }, + { + "start": 4420.42, + "end": 4426.5, + "probability": 0.9768 + }, + { + "start": 4426.7, + "end": 4427.74, + "probability": 0.9456 + }, + { + "start": 4428.02, + "end": 4431.26, + "probability": 0.9888 + }, + { + "start": 4433.18, + "end": 4433.82, + "probability": 0.6611 + }, + { + "start": 4433.92, + "end": 4434.2, + "probability": 0.7321 + }, + { + "start": 4434.56, + "end": 4439.98, + "probability": 0.8722 + }, + { + "start": 4440.78, + "end": 4444.18, + "probability": 0.7623 + }, + { + "start": 4444.58, + "end": 4447.58, + "probability": 0.9872 + }, + { + "start": 4448.34, + "end": 4452.76, + "probability": 0.7945 + }, + { + "start": 4452.76, + "end": 4454.18, + "probability": 0.7841 + }, + { + "start": 4454.34, + "end": 4455.4, + "probability": 0.9458 + }, + { + "start": 4455.62, + "end": 4461.02, + "probability": 0.8838 + }, + { + "start": 4461.42, + "end": 4462.0, + "probability": 0.9347 + }, + { + "start": 4463.1, + "end": 4465.1, + "probability": 0.9502 + }, + { + "start": 4465.82, + "end": 4468.55, + "probability": 0.9207 + }, + { + "start": 4469.4, + "end": 4473.38, + "probability": 0.8723 + }, + { + "start": 4473.44, + "end": 4479.24, + "probability": 0.9692 + }, + { + "start": 4479.4, + "end": 4480.2, + "probability": 0.8903 + }, + { + "start": 4480.54, + "end": 4481.3, + "probability": 0.8293 + }, + { + "start": 4481.42, + "end": 4485.38, + "probability": 0.9745 + }, + { + "start": 4487.16, + "end": 4487.7, + "probability": 0.6411 + }, + { + "start": 4487.86, + "end": 4489.18, + "probability": 0.8636 + }, + { + "start": 4489.44, + "end": 4490.82, + "probability": 0.8196 + }, + { + "start": 4490.94, + "end": 4497.4, + "probability": 0.9614 + }, + { + "start": 4497.58, + "end": 4502.68, + "probability": 0.9745 + }, + { + "start": 4502.72, + "end": 4504.52, + "probability": 0.9968 + }, + { + "start": 4504.76, + "end": 4505.86, + "probability": 0.4684 + }, + { + "start": 4506.2, + "end": 4507.39, + "probability": 0.6626 + }, + { + "start": 4507.54, + "end": 4510.56, + "probability": 0.8154 + }, + { + "start": 4510.76, + "end": 4515.94, + "probability": 0.9356 + }, + { + "start": 4516.02, + "end": 4517.0, + "probability": 0.8766 + }, + { + "start": 4517.08, + "end": 4519.44, + "probability": 0.9867 + }, + { + "start": 4520.1, + "end": 4525.92, + "probability": 0.9666 + }, + { + "start": 4526.86, + "end": 4527.38, + "probability": 0.7641 + }, + { + "start": 4527.4, + "end": 4531.0, + "probability": 0.9954 + }, + { + "start": 4531.12, + "end": 4531.52, + "probability": 0.6873 + }, + { + "start": 4531.58, + "end": 4533.5, + "probability": 0.4612 + }, + { + "start": 4534.0, + "end": 4535.74, + "probability": 0.9932 + }, + { + "start": 4536.12, + "end": 4538.26, + "probability": 0.9707 + }, + { + "start": 4538.64, + "end": 4541.06, + "probability": 0.9955 + }, + { + "start": 4542.22, + "end": 4546.78, + "probability": 0.9253 + }, + { + "start": 4547.5, + "end": 4550.18, + "probability": 0.8943 + }, + { + "start": 4551.0, + "end": 4555.02, + "probability": 0.5251 + }, + { + "start": 4556.18, + "end": 4557.48, + "probability": 0.9399 + }, + { + "start": 4558.14, + "end": 4559.48, + "probability": 0.9918 + }, + { + "start": 4560.14, + "end": 4560.94, + "probability": 0.9347 + }, + { + "start": 4561.14, + "end": 4561.66, + "probability": 0.6807 + }, + { + "start": 4561.78, + "end": 4566.08, + "probability": 0.9735 + }, + { + "start": 4566.16, + "end": 4567.16, + "probability": 0.9887 + }, + { + "start": 4568.32, + "end": 4575.16, + "probability": 0.9839 + }, + { + "start": 4575.8, + "end": 4577.28, + "probability": 0.8766 + }, + { + "start": 4578.06, + "end": 4582.4, + "probability": 0.9989 + }, + { + "start": 4583.2, + "end": 4586.34, + "probability": 0.8289 + }, + { + "start": 4586.7, + "end": 4587.24, + "probability": 0.3693 + }, + { + "start": 4587.3, + "end": 4588.96, + "probability": 0.9033 + }, + { + "start": 4589.68, + "end": 4590.76, + "probability": 0.7688 + }, + { + "start": 4591.14, + "end": 4591.98, + "probability": 0.6754 + }, + { + "start": 4592.46, + "end": 4593.28, + "probability": 0.924 + }, + { + "start": 4594.34, + "end": 4594.98, + "probability": 0.8576 + }, + { + "start": 4596.16, + "end": 4597.7, + "probability": 0.7828 + }, + { + "start": 4598.62, + "end": 4600.34, + "probability": 0.9634 + }, + { + "start": 4601.7, + "end": 4601.98, + "probability": 0.6788 + }, + { + "start": 4602.42, + "end": 4606.2, + "probability": 0.8877 + }, + { + "start": 4606.28, + "end": 4607.3, + "probability": 0.8568 + }, + { + "start": 4607.34, + "end": 4608.62, + "probability": 0.8652 + }, + { + "start": 4609.18, + "end": 4610.35, + "probability": 0.6681 + }, + { + "start": 4610.62, + "end": 4611.47, + "probability": 0.8843 + }, + { + "start": 4612.04, + "end": 4612.52, + "probability": 0.9298 + }, + { + "start": 4613.3, + "end": 4614.74, + "probability": 0.9217 + }, + { + "start": 4614.76, + "end": 4616.36, + "probability": 0.9087 + }, + { + "start": 4616.68, + "end": 4620.18, + "probability": 0.582 + }, + { + "start": 4620.18, + "end": 4621.04, + "probability": 0.7863 + }, + { + "start": 4621.18, + "end": 4622.18, + "probability": 0.8335 + }, + { + "start": 4622.32, + "end": 4625.18, + "probability": 0.835 + }, + { + "start": 4625.54, + "end": 4626.4, + "probability": 0.8884 + }, + { + "start": 4626.52, + "end": 4626.98, + "probability": 0.8507 + }, + { + "start": 4627.04, + "end": 4627.84, + "probability": 0.6607 + }, + { + "start": 4628.14, + "end": 4630.8, + "probability": 0.728 + }, + { + "start": 4631.9, + "end": 4632.76, + "probability": 0.9686 + }, + { + "start": 4632.8, + "end": 4636.32, + "probability": 0.896 + }, + { + "start": 4636.66, + "end": 4637.54, + "probability": 0.9568 + }, + { + "start": 4638.64, + "end": 4640.94, + "probability": 0.9917 + }, + { + "start": 4641.16, + "end": 4641.96, + "probability": 0.7841 + }, + { + "start": 4642.02, + "end": 4642.96, + "probability": 0.674 + }, + { + "start": 4644.46, + "end": 4644.8, + "probability": 0.946 + }, + { + "start": 4645.96, + "end": 4647.36, + "probability": 0.9873 + }, + { + "start": 4648.08, + "end": 4648.6, + "probability": 0.7938 + }, + { + "start": 4648.7, + "end": 4652.56, + "probability": 0.9951 + }, + { + "start": 4652.68, + "end": 4655.98, + "probability": 0.9862 + }, + { + "start": 4656.12, + "end": 4657.2, + "probability": 0.9886 + }, + { + "start": 4657.62, + "end": 4658.78, + "probability": 0.7811 + }, + { + "start": 4659.28, + "end": 4660.84, + "probability": 0.1982 + }, + { + "start": 4660.92, + "end": 4661.3, + "probability": 0.8584 + }, + { + "start": 4663.26, + "end": 4663.36, + "probability": 0.0119 + }, + { + "start": 4663.36, + "end": 4663.94, + "probability": 0.4475 + }, + { + "start": 4664.24, + "end": 4665.5, + "probability": 0.9795 + }, + { + "start": 4666.26, + "end": 4667.46, + "probability": 0.9009 + }, + { + "start": 4667.74, + "end": 4668.62, + "probability": 0.7023 + }, + { + "start": 4668.74, + "end": 4669.38, + "probability": 0.913 + }, + { + "start": 4669.48, + "end": 4670.1, + "probability": 0.9229 + }, + { + "start": 4670.8, + "end": 4671.04, + "probability": 0.4486 + }, + { + "start": 4671.18, + "end": 4673.08, + "probability": 0.8865 + }, + { + "start": 4674.0, + "end": 4674.4, + "probability": 0.756 + }, + { + "start": 4674.5, + "end": 4674.68, + "probability": 0.3228 + }, + { + "start": 4674.78, + "end": 4675.12, + "probability": 0.7748 + }, + { + "start": 4675.14, + "end": 4675.56, + "probability": 0.7656 + }, + { + "start": 4675.7, + "end": 4676.22, + "probability": 0.9257 + }, + { + "start": 4676.3, + "end": 4676.52, + "probability": 0.8745 + }, + { + "start": 4676.82, + "end": 4677.7, + "probability": 0.8967 + }, + { + "start": 4677.76, + "end": 4681.84, + "probability": 0.9505 + }, + { + "start": 4681.84, + "end": 4683.86, + "probability": 0.9722 + }, + { + "start": 4684.28, + "end": 4685.54, + "probability": 0.9694 + }, + { + "start": 4685.58, + "end": 4686.76, + "probability": 0.8999 + }, + { + "start": 4686.86, + "end": 4688.72, + "probability": 0.968 + }, + { + "start": 4688.82, + "end": 4690.78, + "probability": 0.803 + }, + { + "start": 4690.94, + "end": 4694.34, + "probability": 0.9917 + }, + { + "start": 4694.4, + "end": 4695.0, + "probability": 0.8204 + }, + { + "start": 4695.14, + "end": 4696.08, + "probability": 0.849 + }, + { + "start": 4696.14, + "end": 4696.78, + "probability": 0.9972 + }, + { + "start": 4697.46, + "end": 4698.18, + "probability": 0.8304 + }, + { + "start": 4698.8, + "end": 4701.26, + "probability": 0.7872 + }, + { + "start": 4701.84, + "end": 4703.0, + "probability": 0.9664 + }, + { + "start": 4703.24, + "end": 4703.77, + "probability": 0.9413 + }, + { + "start": 4703.96, + "end": 4705.84, + "probability": 0.9911 + }, + { + "start": 4705.92, + "end": 4707.42, + "probability": 0.9634 + }, + { + "start": 4708.24, + "end": 4709.14, + "probability": 0.7744 + }, + { + "start": 4710.32, + "end": 4715.32, + "probability": 0.9116 + }, + { + "start": 4715.52, + "end": 4720.46, + "probability": 0.9913 + }, + { + "start": 4720.6, + "end": 4721.44, + "probability": 0.8196 + }, + { + "start": 4722.36, + "end": 4723.18, + "probability": 0.873 + }, + { + "start": 4723.2, + "end": 4723.72, + "probability": 0.8303 + }, + { + "start": 4723.78, + "end": 4725.06, + "probability": 0.9722 + }, + { + "start": 4725.16, + "end": 4726.42, + "probability": 0.6925 + }, + { + "start": 4726.54, + "end": 4728.48, + "probability": 0.6765 + }, + { + "start": 4728.52, + "end": 4729.3, + "probability": 0.4657 + }, + { + "start": 4729.76, + "end": 4731.02, + "probability": 0.9604 + }, + { + "start": 4731.44, + "end": 4732.2, + "probability": 0.6099 + }, + { + "start": 4732.4, + "end": 4733.86, + "probability": 0.651 + }, + { + "start": 4734.26, + "end": 4735.0, + "probability": 0.4944 + }, + { + "start": 4735.1, + "end": 4735.14, + "probability": 0.8364 + }, + { + "start": 4735.28, + "end": 4735.34, + "probability": 0.4527 + }, + { + "start": 4735.4, + "end": 4735.66, + "probability": 0.7284 + }, + { + "start": 4735.7, + "end": 4736.32, + "probability": 0.6804 + }, + { + "start": 4737.1, + "end": 4738.06, + "probability": 0.814 + }, + { + "start": 4738.68, + "end": 4743.16, + "probability": 0.9489 + }, + { + "start": 4743.36, + "end": 4745.46, + "probability": 0.8558 + }, + { + "start": 4745.82, + "end": 4747.2, + "probability": 0.842 + }, + { + "start": 4747.38, + "end": 4747.7, + "probability": 0.6317 + }, + { + "start": 4747.86, + "end": 4748.2, + "probability": 0.8324 + }, + { + "start": 4748.36, + "end": 4750.42, + "probability": 0.9455 + }, + { + "start": 4750.54, + "end": 4755.66, + "probability": 0.9808 + }, + { + "start": 4755.8, + "end": 4757.64, + "probability": 0.7201 + }, + { + "start": 4758.36, + "end": 4764.62, + "probability": 0.9611 + }, + { + "start": 4765.18, + "end": 4765.76, + "probability": 0.4034 + }, + { + "start": 4765.96, + "end": 4766.66, + "probability": 0.9997 + }, + { + "start": 4767.66, + "end": 4769.18, + "probability": 0.8584 + }, + { + "start": 4769.82, + "end": 4770.28, + "probability": 0.9135 + }, + { + "start": 4771.62, + "end": 4772.62, + "probability": 0.6285 + }, + { + "start": 4773.06, + "end": 4777.56, + "probability": 0.9972 + }, + { + "start": 4777.7, + "end": 4779.04, + "probability": 0.9766 + }, + { + "start": 4779.12, + "end": 4780.01, + "probability": 0.7842 + }, + { + "start": 4780.18, + "end": 4782.68, + "probability": 0.7645 + }, + { + "start": 4782.7, + "end": 4783.38, + "probability": 0.8858 + }, + { + "start": 4783.5, + "end": 4785.32, + "probability": 0.7085 + }, + { + "start": 4785.82, + "end": 4787.02, + "probability": 0.9863 + }, + { + "start": 4787.12, + "end": 4789.5, + "probability": 0.7568 + }, + { + "start": 4790.78, + "end": 4791.28, + "probability": 0.5231 + }, + { + "start": 4791.7, + "end": 4795.07, + "probability": 0.9748 + }, + { + "start": 4796.28, + "end": 4798.9, + "probability": 0.7241 + }, + { + "start": 4799.46, + "end": 4800.84, + "probability": 0.8403 + }, + { + "start": 4801.1, + "end": 4802.6, + "probability": 0.9325 + }, + { + "start": 4802.66, + "end": 4804.76, + "probability": 0.976 + }, + { + "start": 4806.66, + "end": 4808.8, + "probability": 0.8093 + }, + { + "start": 4809.38, + "end": 4811.14, + "probability": 0.99 + }, + { + "start": 4811.24, + "end": 4812.05, + "probability": 0.9897 + }, + { + "start": 4812.34, + "end": 4813.12, + "probability": 0.8379 + }, + { + "start": 4813.64, + "end": 4817.2, + "probability": 0.9602 + }, + { + "start": 4818.26, + "end": 4820.32, + "probability": 0.9602 + }, + { + "start": 4820.36, + "end": 4822.08, + "probability": 0.998 + }, + { + "start": 4822.22, + "end": 4825.58, + "probability": 0.9454 + }, + { + "start": 4825.8, + "end": 4826.32, + "probability": 0.8852 + }, + { + "start": 4826.78, + "end": 4827.24, + "probability": 0.9556 + }, + { + "start": 4827.66, + "end": 4828.54, + "probability": 0.8157 + }, + { + "start": 4828.66, + "end": 4829.16, + "probability": 0.7275 + }, + { + "start": 4829.58, + "end": 4831.14, + "probability": 0.983 + }, + { + "start": 4831.58, + "end": 4833.24, + "probability": 0.9923 + }, + { + "start": 4835.0, + "end": 4836.74, + "probability": 0.8056 + }, + { + "start": 4837.62, + "end": 4839.8, + "probability": 0.9878 + }, + { + "start": 4839.96, + "end": 4842.28, + "probability": 0.6218 + }, + { + "start": 4842.38, + "end": 4845.68, + "probability": 0.9966 + }, + { + "start": 4845.84, + "end": 4847.46, + "probability": 0.9147 + }, + { + "start": 4847.96, + "end": 4849.04, + "probability": 0.9619 + }, + { + "start": 4849.16, + "end": 4850.02, + "probability": 0.724 + }, + { + "start": 4850.12, + "end": 4852.0, + "probability": 0.982 + }, + { + "start": 4852.16, + "end": 4853.1, + "probability": 0.6297 + }, + { + "start": 4853.18, + "end": 4853.88, + "probability": 0.6098 + }, + { + "start": 4854.4, + "end": 4855.64, + "probability": 0.9561 + }, + { + "start": 4855.7, + "end": 4858.12, + "probability": 0.9804 + }, + { + "start": 4858.92, + "end": 4862.48, + "probability": 0.9405 + }, + { + "start": 4862.52, + "end": 4863.92, + "probability": 0.9954 + }, + { + "start": 4864.42, + "end": 4867.4, + "probability": 0.9041 + }, + { + "start": 4868.86, + "end": 4869.3, + "probability": 0.8253 + }, + { + "start": 4869.9, + "end": 4871.18, + "probability": 0.8705 + }, + { + "start": 4871.98, + "end": 4872.9, + "probability": 0.9727 + }, + { + "start": 4874.5, + "end": 4875.3, + "probability": 0.6389 + }, + { + "start": 4876.1, + "end": 4876.88, + "probability": 0.825 + }, + { + "start": 4877.44, + "end": 4877.92, + "probability": 0.4222 + }, + { + "start": 4878.06, + "end": 4878.68, + "probability": 0.803 + }, + { + "start": 4878.78, + "end": 4880.3, + "probability": 0.7531 + }, + { + "start": 4880.74, + "end": 4882.34, + "probability": 0.683 + }, + { + "start": 4882.54, + "end": 4883.94, + "probability": 0.991 + }, + { + "start": 4884.04, + "end": 4887.44, + "probability": 0.8527 + }, + { + "start": 4887.48, + "end": 4889.04, + "probability": 0.8387 + }, + { + "start": 4889.1, + "end": 4891.15, + "probability": 0.9746 + }, + { + "start": 4892.08, + "end": 4893.86, + "probability": 0.684 + }, + { + "start": 4894.02, + "end": 4894.64, + "probability": 0.8462 + }, + { + "start": 4894.7, + "end": 4896.37, + "probability": 0.7345 + }, + { + "start": 4896.5, + "end": 4897.46, + "probability": 0.6997 + }, + { + "start": 4898.24, + "end": 4900.82, + "probability": 0.8953 + }, + { + "start": 4900.96, + "end": 4901.48, + "probability": 0.2991 + }, + { + "start": 4901.72, + "end": 4902.0, + "probability": 0.843 + }, + { + "start": 4903.24, + "end": 4905.08, + "probability": 0.8107 + }, + { + "start": 4905.44, + "end": 4906.94, + "probability": 0.9973 + }, + { + "start": 4907.56, + "end": 4908.18, + "probability": 0.8608 + }, + { + "start": 4908.32, + "end": 4909.94, + "probability": 0.8662 + }, + { + "start": 4910.04, + "end": 4912.24, + "probability": 0.5869 + }, + { + "start": 4912.4, + "end": 4912.81, + "probability": 0.9073 + }, + { + "start": 4914.32, + "end": 4917.74, + "probability": 0.9476 + }, + { + "start": 4918.62, + "end": 4922.04, + "probability": 0.5552 + }, + { + "start": 4922.66, + "end": 4924.56, + "probability": 0.8647 + }, + { + "start": 4925.04, + "end": 4927.43, + "probability": 0.9256 + }, + { + "start": 4927.56, + "end": 4929.6, + "probability": 0.6773 + }, + { + "start": 4929.66, + "end": 4931.83, + "probability": 0.8861 + }, + { + "start": 4932.24, + "end": 4932.9, + "probability": 0.5242 + }, + { + "start": 4933.3, + "end": 4934.6, + "probability": 0.7698 + }, + { + "start": 4934.76, + "end": 4935.52, + "probability": 0.7377 + }, + { + "start": 4936.28, + "end": 4937.0, + "probability": 0.9283 + }, + { + "start": 4937.54, + "end": 4938.5, + "probability": 0.9711 + }, + { + "start": 4939.34, + "end": 4941.18, + "probability": 0.9844 + }, + { + "start": 4941.34, + "end": 4941.98, + "probability": 0.949 + }, + { + "start": 4942.26, + "end": 4945.0, + "probability": 0.84 + }, + { + "start": 4945.08, + "end": 4948.44, + "probability": 0.6828 + }, + { + "start": 4949.08, + "end": 4949.82, + "probability": 0.7311 + }, + { + "start": 4950.42, + "end": 4951.1, + "probability": 0.8077 + }, + { + "start": 4951.1, + "end": 4954.52, + "probability": 0.9623 + }, + { + "start": 4955.08, + "end": 4957.18, + "probability": 0.8136 + }, + { + "start": 4958.34, + "end": 4958.94, + "probability": 0.6961 + }, + { + "start": 4958.96, + "end": 4959.38, + "probability": 0.4009 + }, + { + "start": 4959.4, + "end": 4961.0, + "probability": 0.5907 + }, + { + "start": 4961.32, + "end": 4965.28, + "probability": 0.9732 + }, + { + "start": 4965.86, + "end": 4967.64, + "probability": 0.9729 + }, + { + "start": 4967.66, + "end": 4970.06, + "probability": 0.9109 + }, + { + "start": 4970.16, + "end": 4970.34, + "probability": 0.711 + }, + { + "start": 4971.42, + "end": 4974.2, + "probability": 0.9351 + }, + { + "start": 4974.62, + "end": 4977.74, + "probability": 0.5985 + }, + { + "start": 4978.4, + "end": 4981.82, + "probability": 0.7754 + }, + { + "start": 4982.46, + "end": 4983.5, + "probability": 0.969 + }, + { + "start": 4995.96, + "end": 4997.06, + "probability": 0.5892 + }, + { + "start": 4998.18, + "end": 4999.22, + "probability": 0.6282 + }, + { + "start": 5001.06, + "end": 5003.82, + "probability": 0.9775 + }, + { + "start": 5005.1, + "end": 5005.64, + "probability": 0.6414 + }, + { + "start": 5009.34, + "end": 5010.2, + "probability": 0.7339 + }, + { + "start": 5010.78, + "end": 5011.9, + "probability": 0.8376 + }, + { + "start": 5012.02, + "end": 5014.66, + "probability": 0.9977 + }, + { + "start": 5014.7, + "end": 5018.24, + "probability": 0.9526 + }, + { + "start": 5018.82, + "end": 5023.4, + "probability": 0.9524 + }, + { + "start": 5024.32, + "end": 5025.88, + "probability": 0.9692 + }, + { + "start": 5026.62, + "end": 5027.3, + "probability": 0.9919 + }, + { + "start": 5027.92, + "end": 5030.34, + "probability": 0.8367 + }, + { + "start": 5030.94, + "end": 5031.32, + "probability": 0.6521 + }, + { + "start": 5031.34, + "end": 5032.14, + "probability": 0.9057 + }, + { + "start": 5032.92, + "end": 5035.59, + "probability": 0.9602 + }, + { + "start": 5036.22, + "end": 5037.22, + "probability": 0.9396 + }, + { + "start": 5037.3, + "end": 5039.12, + "probability": 0.5374 + }, + { + "start": 5039.44, + "end": 5040.1, + "probability": 0.5418 + }, + { + "start": 5040.22, + "end": 5040.92, + "probability": 0.6218 + }, + { + "start": 5041.5, + "end": 5043.88, + "probability": 0.9704 + }, + { + "start": 5044.9, + "end": 5048.26, + "probability": 0.913 + }, + { + "start": 5048.4, + "end": 5050.41, + "probability": 0.9315 + }, + { + "start": 5051.06, + "end": 5052.5, + "probability": 0.8054 + }, + { + "start": 5054.02, + "end": 5056.9, + "probability": 0.968 + }, + { + "start": 5056.98, + "end": 5059.36, + "probability": 0.9541 + }, + { + "start": 5059.48, + "end": 5060.12, + "probability": 0.9097 + }, + { + "start": 5060.36, + "end": 5062.98, + "probability": 0.8955 + }, + { + "start": 5064.8, + "end": 5068.64, + "probability": 0.9818 + }, + { + "start": 5069.22, + "end": 5070.96, + "probability": 0.786 + }, + { + "start": 5071.0, + "end": 5072.42, + "probability": 0.8291 + }, + { + "start": 5072.48, + "end": 5074.4, + "probability": 0.7527 + }, + { + "start": 5074.58, + "end": 5077.08, + "probability": 0.9393 + }, + { + "start": 5077.3, + "end": 5079.5, + "probability": 0.9722 + }, + { + "start": 5079.84, + "end": 5081.73, + "probability": 0.9284 + }, + { + "start": 5082.22, + "end": 5082.94, + "probability": 0.9679 + }, + { + "start": 5083.2, + "end": 5084.06, + "probability": 0.9289 + }, + { + "start": 5084.12, + "end": 5085.92, + "probability": 0.9802 + }, + { + "start": 5086.06, + "end": 5089.78, + "probability": 0.9945 + }, + { + "start": 5089.84, + "end": 5090.36, + "probability": 0.8947 + }, + { + "start": 5091.44, + "end": 5094.4, + "probability": 0.9802 + }, + { + "start": 5095.68, + "end": 5096.58, + "probability": 0.9731 + }, + { + "start": 5098.26, + "end": 5101.06, + "probability": 0.7467 + }, + { + "start": 5101.16, + "end": 5101.92, + "probability": 0.6925 + }, + { + "start": 5102.32, + "end": 5105.92, + "probability": 0.9306 + }, + { + "start": 5106.64, + "end": 5109.94, + "probability": 0.9979 + }, + { + "start": 5110.56, + "end": 5110.78, + "probability": 0.5476 + }, + { + "start": 5110.82, + "end": 5114.66, + "probability": 0.9869 + }, + { + "start": 5114.74, + "end": 5118.46, + "probability": 0.91 + }, + { + "start": 5119.04, + "end": 5122.2, + "probability": 0.9947 + }, + { + "start": 5123.62, + "end": 5125.34, + "probability": 0.9604 + }, + { + "start": 5125.68, + "end": 5129.4, + "probability": 0.9969 + }, + { + "start": 5129.54, + "end": 5131.46, + "probability": 0.9836 + }, + { + "start": 5132.46, + "end": 5135.12, + "probability": 0.9863 + }, + { + "start": 5135.76, + "end": 5139.5, + "probability": 0.7734 + }, + { + "start": 5139.54, + "end": 5140.52, + "probability": 0.6676 + }, + { + "start": 5141.12, + "end": 5142.4, + "probability": 0.9818 + }, + { + "start": 5142.44, + "end": 5143.06, + "probability": 0.8322 + }, + { + "start": 5143.12, + "end": 5143.32, + "probability": 0.6813 + }, + { + "start": 5143.58, + "end": 5144.6, + "probability": 0.7934 + }, + { + "start": 5144.78, + "end": 5148.62, + "probability": 0.9924 + }, + { + "start": 5149.24, + "end": 5150.66, + "probability": 0.996 + }, + { + "start": 5151.78, + "end": 5156.82, + "probability": 0.9988 + }, + { + "start": 5157.52, + "end": 5160.08, + "probability": 0.9782 + }, + { + "start": 5160.34, + "end": 5162.8, + "probability": 0.966 + }, + { + "start": 5163.02, + "end": 5166.58, + "probability": 0.9844 + }, + { + "start": 5166.68, + "end": 5169.02, + "probability": 0.9521 + }, + { + "start": 5170.2, + "end": 5172.16, + "probability": 0.9919 + }, + { + "start": 5172.3, + "end": 5177.92, + "probability": 0.9771 + }, + { + "start": 5177.94, + "end": 5182.74, + "probability": 0.9984 + }, + { + "start": 5183.78, + "end": 5187.54, + "probability": 0.9993 + }, + { + "start": 5187.54, + "end": 5191.22, + "probability": 0.9938 + }, + { + "start": 5191.32, + "end": 5193.12, + "probability": 0.9904 + }, + { + "start": 5193.76, + "end": 5195.88, + "probability": 0.9199 + }, + { + "start": 5196.3, + "end": 5196.94, + "probability": 0.7427 + }, + { + "start": 5197.04, + "end": 5200.14, + "probability": 0.9526 + }, + { + "start": 5200.32, + "end": 5200.54, + "probability": 0.7149 + }, + { + "start": 5201.88, + "end": 5204.58, + "probability": 0.7694 + }, + { + "start": 5204.68, + "end": 5206.88, + "probability": 0.801 + }, + { + "start": 5210.76, + "end": 5211.38, + "probability": 0.594 + }, + { + "start": 5222.72, + "end": 5222.82, + "probability": 0.0841 + }, + { + "start": 5222.98, + "end": 5224.0, + "probability": 0.1368 + }, + { + "start": 5224.4, + "end": 5225.24, + "probability": 0.6048 + }, + { + "start": 5225.3, + "end": 5225.88, + "probability": 0.8519 + }, + { + "start": 5225.98, + "end": 5227.02, + "probability": 0.7399 + }, + { + "start": 5227.24, + "end": 5227.89, + "probability": 0.9805 + }, + { + "start": 5228.16, + "end": 5231.06, + "probability": 0.8401 + }, + { + "start": 5231.12, + "end": 5232.52, + "probability": 0.7374 + }, + { + "start": 5232.7, + "end": 5234.48, + "probability": 0.9473 + }, + { + "start": 5235.24, + "end": 5236.08, + "probability": 0.6438 + }, + { + "start": 5236.22, + "end": 5239.1, + "probability": 0.9712 + }, + { + "start": 5239.5, + "end": 5241.08, + "probability": 0.8525 + }, + { + "start": 5241.6, + "end": 5243.1, + "probability": 0.9748 + }, + { + "start": 5243.2, + "end": 5244.59, + "probability": 0.9657 + }, + { + "start": 5245.14, + "end": 5247.0, + "probability": 0.7503 + }, + { + "start": 5247.36, + "end": 5249.18, + "probability": 0.9741 + }, + { + "start": 5249.28, + "end": 5250.86, + "probability": 0.951 + }, + { + "start": 5251.3, + "end": 5253.34, + "probability": 0.9731 + }, + { + "start": 5253.36, + "end": 5253.64, + "probability": 0.2972 + }, + { + "start": 5254.04, + "end": 5254.62, + "probability": 0.8146 + }, + { + "start": 5254.78, + "end": 5256.86, + "probability": 0.9973 + }, + { + "start": 5257.36, + "end": 5259.04, + "probability": 0.9739 + }, + { + "start": 5259.74, + "end": 5261.94, + "probability": 0.8777 + }, + { + "start": 5263.88, + "end": 5270.06, + "probability": 0.9771 + }, + { + "start": 5270.44, + "end": 5271.88, + "probability": 0.9021 + }, + { + "start": 5271.9, + "end": 5274.42, + "probability": 0.8932 + }, + { + "start": 5274.88, + "end": 5276.44, + "probability": 0.9401 + }, + { + "start": 5276.54, + "end": 5277.82, + "probability": 0.9799 + }, + { + "start": 5278.58, + "end": 5280.66, + "probability": 0.9784 + }, + { + "start": 5281.22, + "end": 5286.34, + "probability": 0.835 + }, + { + "start": 5286.72, + "end": 5289.06, + "probability": 0.9112 + }, + { + "start": 5289.28, + "end": 5291.1, + "probability": 0.9917 + }, + { + "start": 5291.16, + "end": 5292.42, + "probability": 0.9139 + }, + { + "start": 5292.46, + "end": 5294.32, + "probability": 0.8716 + }, + { + "start": 5294.62, + "end": 5297.22, + "probability": 0.7652 + }, + { + "start": 5297.68, + "end": 5299.04, + "probability": 0.8823 + }, + { + "start": 5299.6, + "end": 5303.08, + "probability": 0.9005 + }, + { + "start": 5303.88, + "end": 5307.1, + "probability": 0.908 + }, + { + "start": 5308.08, + "end": 5310.94, + "probability": 0.694 + }, + { + "start": 5311.46, + "end": 5313.08, + "probability": 0.9554 + }, + { + "start": 5313.74, + "end": 5314.32, + "probability": 0.6261 + }, + { + "start": 5314.7, + "end": 5315.4, + "probability": 0.5623 + }, + { + "start": 5315.5, + "end": 5317.44, + "probability": 0.9736 + }, + { + "start": 5318.46, + "end": 5321.74, + "probability": 0.8726 + }, + { + "start": 5323.04, + "end": 5324.42, + "probability": 0.9899 + }, + { + "start": 5324.82, + "end": 5326.68, + "probability": 0.9648 + }, + { + "start": 5326.82, + "end": 5328.58, + "probability": 0.8663 + }, + { + "start": 5328.74, + "end": 5329.79, + "probability": 0.9594 + }, + { + "start": 5330.28, + "end": 5331.89, + "probability": 0.8709 + }, + { + "start": 5332.74, + "end": 5333.98, + "probability": 0.9487 + }, + { + "start": 5334.02, + "end": 5334.86, + "probability": 0.7939 + }, + { + "start": 5334.98, + "end": 5335.64, + "probability": 0.7032 + }, + { + "start": 5335.76, + "end": 5336.42, + "probability": 0.9424 + }, + { + "start": 5336.9, + "end": 5340.18, + "probability": 0.9858 + }, + { + "start": 5341.16, + "end": 5342.22, + "probability": 0.9334 + }, + { + "start": 5342.82, + "end": 5343.06, + "probability": 0.9371 + }, + { + "start": 5343.16, + "end": 5345.5, + "probability": 0.5678 + }, + { + "start": 5345.62, + "end": 5346.72, + "probability": 0.8854 + }, + { + "start": 5347.18, + "end": 5348.9, + "probability": 0.9648 + }, + { + "start": 5349.26, + "end": 5352.12, + "probability": 0.9658 + }, + { + "start": 5352.46, + "end": 5354.1, + "probability": 0.8601 + }, + { + "start": 5355.06, + "end": 5356.74, + "probability": 0.9918 + }, + { + "start": 5356.82, + "end": 5357.96, + "probability": 0.9846 + }, + { + "start": 5358.04, + "end": 5358.98, + "probability": 0.7003 + }, + { + "start": 5359.08, + "end": 5361.06, + "probability": 0.9924 + }, + { + "start": 5361.84, + "end": 5361.94, + "probability": 0.62 + }, + { + "start": 5361.98, + "end": 5362.3, + "probability": 0.8202 + }, + { + "start": 5362.42, + "end": 5363.9, + "probability": 0.9931 + }, + { + "start": 5364.02, + "end": 5366.46, + "probability": 0.8311 + }, + { + "start": 5366.62, + "end": 5368.13, + "probability": 0.8029 + }, + { + "start": 5368.78, + "end": 5370.86, + "probability": 0.9374 + }, + { + "start": 5371.52, + "end": 5373.06, + "probability": 0.7627 + }, + { + "start": 5373.08, + "end": 5374.26, + "probability": 0.5871 + }, + { + "start": 5374.36, + "end": 5375.02, + "probability": 0.5727 + }, + { + "start": 5375.24, + "end": 5375.82, + "probability": 0.96 + }, + { + "start": 5376.1, + "end": 5376.2, + "probability": 0.76 + }, + { + "start": 5377.1, + "end": 5377.34, + "probability": 0.4969 + }, + { + "start": 5377.44, + "end": 5379.58, + "probability": 0.9695 + }, + { + "start": 5379.64, + "end": 5380.0, + "probability": 0.4753 + }, + { + "start": 5380.12, + "end": 5380.96, + "probability": 0.7 + }, + { + "start": 5381.32, + "end": 5382.04, + "probability": 0.4936 + }, + { + "start": 5382.1, + "end": 5382.49, + "probability": 0.655 + }, + { + "start": 5383.64, + "end": 5384.34, + "probability": 0.774 + }, + { + "start": 5385.02, + "end": 5387.18, + "probability": 0.8989 + }, + { + "start": 5388.0, + "end": 5389.84, + "probability": 0.901 + }, + { + "start": 5389.86, + "end": 5390.34, + "probability": 0.8888 + }, + { + "start": 5391.3, + "end": 5393.62, + "probability": 0.934 + }, + { + "start": 5394.62, + "end": 5396.82, + "probability": 0.9153 + }, + { + "start": 5397.1, + "end": 5398.26, + "probability": 0.893 + }, + { + "start": 5398.9, + "end": 5403.48, + "probability": 0.9961 + }, + { + "start": 5404.02, + "end": 5404.98, + "probability": 0.6283 + }, + { + "start": 5405.04, + "end": 5406.56, + "probability": 0.9789 + }, + { + "start": 5406.68, + "end": 5409.28, + "probability": 0.6281 + }, + { + "start": 5409.92, + "end": 5414.08, + "probability": 0.9475 + }, + { + "start": 5414.22, + "end": 5414.67, + "probability": 0.9783 + }, + { + "start": 5415.38, + "end": 5418.22, + "probability": 0.9023 + }, + { + "start": 5418.26, + "end": 5418.54, + "probability": 0.6031 + }, + { + "start": 5418.62, + "end": 5419.64, + "probability": 0.9756 + }, + { + "start": 5420.04, + "end": 5423.38, + "probability": 0.7694 + }, + { + "start": 5423.74, + "end": 5425.02, + "probability": 0.9877 + }, + { + "start": 5425.24, + "end": 5428.24, + "probability": 0.973 + }, + { + "start": 5428.58, + "end": 5429.16, + "probability": 0.5316 + }, + { + "start": 5429.56, + "end": 5432.0, + "probability": 0.9087 + }, + { + "start": 5433.72, + "end": 5436.1, + "probability": 0.8228 + }, + { + "start": 5436.38, + "end": 5437.66, + "probability": 0.8032 + }, + { + "start": 5437.72, + "end": 5438.9, + "probability": 0.9227 + }, + { + "start": 5444.28, + "end": 5446.62, + "probability": 0.15 + }, + { + "start": 5471.84, + "end": 5476.64, + "probability": 0.3465 + }, + { + "start": 5477.86, + "end": 5482.24, + "probability": 0.6731 + }, + { + "start": 5482.62, + "end": 5483.96, + "probability": 0.4665 + }, + { + "start": 5492.34, + "end": 5493.82, + "probability": 0.5595 + }, + { + "start": 5495.54, + "end": 5496.14, + "probability": 0.0085 + }, + { + "start": 5497.52, + "end": 5497.76, + "probability": 0.1571 + }, + { + "start": 5501.1, + "end": 5506.48, + "probability": 0.0128 + }, + { + "start": 5507.06, + "end": 5507.4, + "probability": 0.0039 + }, + { + "start": 5509.2, + "end": 5510.6, + "probability": 0.0338 + }, + { + "start": 5512.12, + "end": 5518.12, + "probability": 0.1988 + }, + { + "start": 5518.12, + "end": 5519.42, + "probability": 0.1114 + }, + { + "start": 5519.6, + "end": 5522.56, + "probability": 0.3222 + }, + { + "start": 5523.0, + "end": 5526.84, + "probability": 0.2503 + }, + { + "start": 5527.82, + "end": 5529.4, + "probability": 0.2096 + }, + { + "start": 5545.62, + "end": 5548.0, + "probability": 0.0618 + }, + { + "start": 5548.0, + "end": 5548.0, + "probability": 0.0881 + }, + { + "start": 5548.0, + "end": 5548.0, + "probability": 0.0464 + }, + { + "start": 5548.0, + "end": 5548.0, + "probability": 0.0 + }, + { + "start": 5548.0, + "end": 5548.0, + "probability": 0.0 + }, + { + "start": 5548.0, + "end": 5548.0, + "probability": 0.0 + }, + { + "start": 5548.0, + "end": 5548.0, + "probability": 0.0 + }, + { + "start": 5548.0, + "end": 5548.0, + "probability": 0.0 + }, + { + "start": 5548.0, + "end": 5548.0, + "probability": 0.0 + }, + { + "start": 5548.74, + "end": 5550.78, + "probability": 0.9348 + }, + { + "start": 5551.4, + "end": 5552.48, + "probability": 0.645 + }, + { + "start": 5553.34, + "end": 5555.14, + "probability": 0.7639 + }, + { + "start": 5555.34, + "end": 5556.84, + "probability": 0.9966 + }, + { + "start": 5557.3, + "end": 5557.8, + "probability": 0.4303 + }, + { + "start": 5557.94, + "end": 5558.8, + "probability": 0.9876 + }, + { + "start": 5559.94, + "end": 5562.82, + "probability": 0.6642 + }, + { + "start": 5563.9, + "end": 5566.62, + "probability": 0.9594 + }, + { + "start": 5567.98, + "end": 5574.76, + "probability": 0.977 + }, + { + "start": 5575.38, + "end": 5580.2, + "probability": 0.9218 + }, + { + "start": 5580.84, + "end": 5582.68, + "probability": 0.9902 + }, + { + "start": 5582.82, + "end": 5584.58, + "probability": 0.9272 + }, + { + "start": 5585.36, + "end": 5590.52, + "probability": 0.9671 + }, + { + "start": 5592.4, + "end": 5593.65, + "probability": 0.9953 + }, + { + "start": 5594.8, + "end": 5597.84, + "probability": 0.7492 + }, + { + "start": 5598.44, + "end": 5601.6, + "probability": 0.9896 + }, + { + "start": 5602.18, + "end": 5609.62, + "probability": 0.9932 + }, + { + "start": 5610.18, + "end": 5612.56, + "probability": 0.9708 + }, + { + "start": 5613.54, + "end": 5616.86, + "probability": 0.884 + }, + { + "start": 5617.44, + "end": 5620.04, + "probability": 0.8414 + }, + { + "start": 5620.72, + "end": 5624.1, + "probability": 0.9956 + }, + { + "start": 5624.9, + "end": 5628.76, + "probability": 0.8911 + }, + { + "start": 5629.52, + "end": 5634.56, + "probability": 0.9573 + }, + { + "start": 5635.78, + "end": 5640.26, + "probability": 0.9904 + }, + { + "start": 5640.43, + "end": 5647.64, + "probability": 0.9439 + }, + { + "start": 5648.42, + "end": 5650.94, + "probability": 0.6505 + }, + { + "start": 5654.62, + "end": 5659.32, + "probability": 0.9744 + }, + { + "start": 5660.06, + "end": 5665.2, + "probability": 0.6664 + }, + { + "start": 5665.98, + "end": 5669.76, + "probability": 0.9563 + }, + { + "start": 5670.56, + "end": 5677.0, + "probability": 0.9652 + }, + { + "start": 5677.64, + "end": 5681.46, + "probability": 0.9776 + }, + { + "start": 5682.18, + "end": 5687.26, + "probability": 0.958 + }, + { + "start": 5687.86, + "end": 5690.26, + "probability": 0.9983 + }, + { + "start": 5692.8, + "end": 5695.3, + "probability": 0.6341 + }, + { + "start": 5696.02, + "end": 5696.6, + "probability": 0.6339 + }, + { + "start": 5697.94, + "end": 5705.84, + "probability": 0.9871 + }, + { + "start": 5705.92, + "end": 5706.7, + "probability": 0.8664 + }, + { + "start": 5706.98, + "end": 5708.04, + "probability": 0.7378 + }, + { + "start": 5708.68, + "end": 5711.96, + "probability": 0.9781 + }, + { + "start": 5712.7, + "end": 5715.0, + "probability": 0.8353 + }, + { + "start": 5715.1, + "end": 5719.04, + "probability": 0.9963 + }, + { + "start": 5719.9, + "end": 5722.2, + "probability": 0.7137 + }, + { + "start": 5722.66, + "end": 5726.1, + "probability": 0.9257 + }, + { + "start": 5726.9, + "end": 5731.14, + "probability": 0.9389 + }, + { + "start": 5731.24, + "end": 5734.66, + "probability": 0.8113 + }, + { + "start": 5735.34, + "end": 5739.42, + "probability": 0.9261 + }, + { + "start": 5740.0, + "end": 5742.26, + "probability": 0.9143 + }, + { + "start": 5742.9, + "end": 5749.48, + "probability": 0.8662 + }, + { + "start": 5750.14, + "end": 5753.54, + "probability": 0.776 + }, + { + "start": 5753.98, + "end": 5756.24, + "probability": 0.9697 + }, + { + "start": 5757.04, + "end": 5762.12, + "probability": 0.8108 + }, + { + "start": 5762.86, + "end": 5764.18, + "probability": 0.8659 + }, + { + "start": 5764.7, + "end": 5766.62, + "probability": 0.6844 + }, + { + "start": 5767.52, + "end": 5768.68, + "probability": 0.7025 + }, + { + "start": 5769.34, + "end": 5772.62, + "probability": 0.8889 + }, + { + "start": 5773.1, + "end": 5775.42, + "probability": 0.9761 + }, + { + "start": 5775.46, + "end": 5779.08, + "probability": 0.8889 + }, + { + "start": 5779.78, + "end": 5782.24, + "probability": 0.7861 + }, + { + "start": 5782.76, + "end": 5786.34, + "probability": 0.9958 + }, + { + "start": 5787.1, + "end": 5791.28, + "probability": 0.9947 + }, + { + "start": 5791.28, + "end": 5796.0, + "probability": 0.994 + }, + { + "start": 5796.54, + "end": 5800.48, + "probability": 0.8567 + }, + { + "start": 5800.96, + "end": 5802.44, + "probability": 0.9917 + }, + { + "start": 5803.22, + "end": 5806.84, + "probability": 0.9894 + }, + { + "start": 5807.48, + "end": 5812.02, + "probability": 0.9147 + }, + { + "start": 5812.44, + "end": 5816.82, + "probability": 0.9614 + }, + { + "start": 5820.26, + "end": 5825.04, + "probability": 0.977 + }, + { + "start": 5826.02, + "end": 5828.58, + "probability": 0.781 + }, + { + "start": 5829.14, + "end": 5832.8, + "probability": 0.8907 + }, + { + "start": 5833.66, + "end": 5839.04, + "probability": 0.9718 + }, + { + "start": 5839.08, + "end": 5842.64, + "probability": 0.9876 + }, + { + "start": 5843.22, + "end": 5846.44, + "probability": 0.8918 + }, + { + "start": 5846.92, + "end": 5849.03, + "probability": 0.9956 + }, + { + "start": 5849.98, + "end": 5855.12, + "probability": 0.9766 + }, + { + "start": 5855.58, + "end": 5860.22, + "probability": 0.9912 + }, + { + "start": 5860.92, + "end": 5865.32, + "probability": 0.9925 + }, + { + "start": 5866.0, + "end": 5867.14, + "probability": 0.9847 + }, + { + "start": 5868.94, + "end": 5871.42, + "probability": 0.7596 + }, + { + "start": 5871.68, + "end": 5874.64, + "probability": 0.9053 + }, + { + "start": 5876.12, + "end": 5877.92, + "probability": 0.6898 + }, + { + "start": 5878.72, + "end": 5880.78, + "probability": 0.9121 + }, + { + "start": 5893.16, + "end": 5893.4, + "probability": 0.0524 + }, + { + "start": 5893.4, + "end": 5894.02, + "probability": 0.6493 + }, + { + "start": 5894.78, + "end": 5896.06, + "probability": 0.4509 + }, + { + "start": 5896.64, + "end": 5897.72, + "probability": 0.827 + }, + { + "start": 5898.46, + "end": 5899.86, + "probability": 0.7834 + }, + { + "start": 5900.62, + "end": 5903.56, + "probability": 0.9927 + }, + { + "start": 5906.76, + "end": 5910.48, + "probability": 0.4394 + }, + { + "start": 5910.6, + "end": 5911.44, + "probability": 0.2804 + }, + { + "start": 5912.44, + "end": 5917.96, + "probability": 0.7652 + }, + { + "start": 5919.72, + "end": 5921.7, + "probability": 0.9787 + }, + { + "start": 5923.32, + "end": 5923.32, + "probability": 0.0619 + }, + { + "start": 5923.34, + "end": 5925.58, + "probability": 0.868 + }, + { + "start": 5926.94, + "end": 5927.46, + "probability": 0.8881 + }, + { + "start": 5928.64, + "end": 5929.6, + "probability": 0.7056 + }, + { + "start": 5932.53, + "end": 5933.12, + "probability": 0.0382 + }, + { + "start": 5933.12, + "end": 5933.9, + "probability": 0.5127 + }, + { + "start": 5935.74, + "end": 5936.92, + "probability": 0.6267 + }, + { + "start": 5937.18, + "end": 5938.06, + "probability": 0.7383 + }, + { + "start": 5939.12, + "end": 5940.08, + "probability": 0.403 + }, + { + "start": 5941.46, + "end": 5943.62, + "probability": 0.895 + }, + { + "start": 5943.94, + "end": 5945.68, + "probability": 0.1839 + }, + { + "start": 5945.68, + "end": 5950.9, + "probability": 0.691 + }, + { + "start": 5951.16, + "end": 5952.84, + "probability": 0.8604 + }, + { + "start": 5955.0, + "end": 5957.8, + "probability": 0.6229 + }, + { + "start": 5959.28, + "end": 5965.48, + "probability": 0.8933 + }, + { + "start": 5965.72, + "end": 5967.16, + "probability": 0.6136 + }, + { + "start": 5968.58, + "end": 5969.66, + "probability": 0.6909 + }, + { + "start": 5970.28, + "end": 5971.56, + "probability": 0.9213 + }, + { + "start": 5972.16, + "end": 5973.64, + "probability": 0.9689 + }, + { + "start": 5974.96, + "end": 5980.44, + "probability": 0.7916 + }, + { + "start": 5981.98, + "end": 5982.58, + "probability": 0.5089 + }, + { + "start": 5983.4, + "end": 5984.8, + "probability": 0.9497 + }, + { + "start": 5985.12, + "end": 5986.28, + "probability": 0.6546 + }, + { + "start": 5986.58, + "end": 5988.84, + "probability": 0.9969 + }, + { + "start": 5989.22, + "end": 5990.6, + "probability": 0.9246 + }, + { + "start": 5991.62, + "end": 5993.72, + "probability": 0.8225 + }, + { + "start": 5994.16, + "end": 5995.46, + "probability": 0.9282 + }, + { + "start": 5995.6, + "end": 5996.12, + "probability": 0.3333 + }, + { + "start": 5996.32, + "end": 5998.54, + "probability": 0.9315 + }, + { + "start": 5998.66, + "end": 5999.93, + "probability": 0.9656 + }, + { + "start": 6000.32, + "end": 6002.08, + "probability": 0.2666 + }, + { + "start": 6002.48, + "end": 6004.12, + "probability": 0.6807 + }, + { + "start": 6004.2, + "end": 6004.82, + "probability": 0.8279 + }, + { + "start": 6004.82, + "end": 6006.56, + "probability": 0.6914 + }, + { + "start": 6006.68, + "end": 6008.62, + "probability": 0.5312 + }, + { + "start": 6008.94, + "end": 6009.68, + "probability": 0.9534 + }, + { + "start": 6010.9, + "end": 6011.64, + "probability": 0.7429 + }, + { + "start": 6011.76, + "end": 6012.94, + "probability": 0.8462 + }, + { + "start": 6013.08, + "end": 6013.76, + "probability": 0.7213 + }, + { + "start": 6013.92, + "end": 6014.3, + "probability": 0.0858 + }, + { + "start": 6014.44, + "end": 6015.22, + "probability": 0.251 + }, + { + "start": 6015.22, + "end": 6016.44, + "probability": 0.8383 + }, + { + "start": 6017.92, + "end": 6019.66, + "probability": 0.7476 + }, + { + "start": 6020.48, + "end": 6021.56, + "probability": 0.8819 + }, + { + "start": 6021.68, + "end": 6021.94, + "probability": 0.6102 + }, + { + "start": 6022.12, + "end": 6022.22, + "probability": 0.7319 + }, + { + "start": 6022.38, + "end": 6022.52, + "probability": 0.5083 + }, + { + "start": 6022.56, + "end": 6026.84, + "probability": 0.9676 + }, + { + "start": 6027.59, + "end": 6031.09, + "probability": 0.6072 + }, + { + "start": 6034.42, + "end": 6036.5, + "probability": 0.9507 + }, + { + "start": 6037.78, + "end": 6038.5, + "probability": 0.9293 + }, + { + "start": 6039.56, + "end": 6041.28, + "probability": 0.9536 + }, + { + "start": 6042.4, + "end": 6044.12, + "probability": 0.756 + }, + { + "start": 6045.06, + "end": 6046.6, + "probability": 0.9551 + }, + { + "start": 6048.58, + "end": 6052.18, + "probability": 0.7832 + }, + { + "start": 6052.72, + "end": 6053.38, + "probability": 0.9901 + }, + { + "start": 6054.62, + "end": 6058.56, + "probability": 0.9187 + }, + { + "start": 6058.56, + "end": 6062.6, + "probability": 0.9922 + }, + { + "start": 6065.1, + "end": 6066.65, + "probability": 0.9937 + }, + { + "start": 6068.18, + "end": 6069.7, + "probability": 0.7867 + }, + { + "start": 6070.56, + "end": 6073.56, + "probability": 0.9157 + }, + { + "start": 6074.12, + "end": 6075.36, + "probability": 0.7846 + }, + { + "start": 6076.2, + "end": 6077.16, + "probability": 0.937 + }, + { + "start": 6079.32, + "end": 6082.66, + "probability": 0.8437 + }, + { + "start": 6083.16, + "end": 6087.16, + "probability": 0.8926 + }, + { + "start": 6087.18, + "end": 6088.66, + "probability": 0.5686 + }, + { + "start": 6088.9, + "end": 6089.32, + "probability": 0.5314 + }, + { + "start": 6089.86, + "end": 6092.64, + "probability": 0.6777 + }, + { + "start": 6093.26, + "end": 6095.72, + "probability": 0.9565 + }, + { + "start": 6096.36, + "end": 6097.2, + "probability": 0.9128 + }, + { + "start": 6098.26, + "end": 6099.72, + "probability": 0.9404 + }, + { + "start": 6100.56, + "end": 6103.9, + "probability": 0.6912 + }, + { + "start": 6105.12, + "end": 6110.68, + "probability": 0.7182 + }, + { + "start": 6111.18, + "end": 6112.5, + "probability": 0.4803 + }, + { + "start": 6112.66, + "end": 6113.28, + "probability": 0.6428 + }, + { + "start": 6113.96, + "end": 6114.3, + "probability": 0.7256 + }, + { + "start": 6114.82, + "end": 6119.11, + "probability": 0.9982 + }, + { + "start": 6120.24, + "end": 6122.5, + "probability": 0.9311 + }, + { + "start": 6123.5, + "end": 6127.2, + "probability": 0.988 + }, + { + "start": 6127.32, + "end": 6127.64, + "probability": 0.9768 + }, + { + "start": 6128.62, + "end": 6129.0, + "probability": 0.8839 + }, + { + "start": 6130.54, + "end": 6133.1, + "probability": 0.7948 + }, + { + "start": 6137.26, + "end": 6138.7, + "probability": 0.3106 + }, + { + "start": 6140.4, + "end": 6142.54, + "probability": 0.6956 + }, + { + "start": 6143.83, + "end": 6146.48, + "probability": 0.5013 + }, + { + "start": 6147.48, + "end": 6151.98, + "probability": 0.8799 + }, + { + "start": 6154.47, + "end": 6155.88, + "probability": 0.0151 + }, + { + "start": 6168.24, + "end": 6169.92, + "probability": 0.8532 + }, + { + "start": 6171.92, + "end": 6173.3, + "probability": 0.4336 + }, + { + "start": 6173.46, + "end": 6176.14, + "probability": 0.7231 + }, + { + "start": 6176.88, + "end": 6178.5, + "probability": 0.7507 + }, + { + "start": 6179.84, + "end": 6180.02, + "probability": 0.2975 + }, + { + "start": 6180.26, + "end": 6184.7, + "probability": 0.9604 + }, + { + "start": 6185.14, + "end": 6187.56, + "probability": 0.9727 + }, + { + "start": 6188.58, + "end": 6189.48, + "probability": 0.8309 + }, + { + "start": 6191.2, + "end": 6192.92, + "probability": 0.9438 + }, + { + "start": 6193.22, + "end": 6195.16, + "probability": 0.899 + }, + { + "start": 6197.78, + "end": 6198.12, + "probability": 0.7886 + }, + { + "start": 6198.88, + "end": 6200.0, + "probability": 0.9989 + }, + { + "start": 6200.68, + "end": 6202.0, + "probability": 0.9565 + }, + { + "start": 6203.56, + "end": 6205.2, + "probability": 0.8942 + }, + { + "start": 6206.06, + "end": 6209.7, + "probability": 0.8467 + }, + { + "start": 6210.4, + "end": 6213.24, + "probability": 0.9986 + }, + { + "start": 6214.52, + "end": 6217.58, + "probability": 0.9639 + }, + { + "start": 6218.28, + "end": 6221.26, + "probability": 0.9697 + }, + { + "start": 6221.8, + "end": 6224.18, + "probability": 0.9972 + }, + { + "start": 6225.44, + "end": 6226.58, + "probability": 0.9609 + }, + { + "start": 6226.72, + "end": 6229.36, + "probability": 0.9887 + }, + { + "start": 6230.66, + "end": 6231.14, + "probability": 0.8159 + }, + { + "start": 6232.04, + "end": 6233.02, + "probability": 0.9814 + }, + { + "start": 6233.64, + "end": 6235.26, + "probability": 0.9961 + }, + { + "start": 6236.1, + "end": 6238.74, + "probability": 0.9644 + }, + { + "start": 6238.76, + "end": 6240.73, + "probability": 0.9821 + }, + { + "start": 6241.96, + "end": 6243.68, + "probability": 0.9097 + }, + { + "start": 6244.44, + "end": 6247.32, + "probability": 0.8867 + }, + { + "start": 6247.84, + "end": 6253.86, + "probability": 0.8677 + }, + { + "start": 6254.54, + "end": 6256.08, + "probability": 0.9974 + }, + { + "start": 6256.9, + "end": 6258.12, + "probability": 0.7373 + }, + { + "start": 6259.36, + "end": 6260.9, + "probability": 0.9185 + }, + { + "start": 6261.44, + "end": 6263.14, + "probability": 0.9285 + }, + { + "start": 6263.94, + "end": 6264.78, + "probability": 0.9956 + }, + { + "start": 6265.34, + "end": 6267.56, + "probability": 0.8153 + }, + { + "start": 6268.7, + "end": 6269.84, + "probability": 0.7819 + }, + { + "start": 6270.14, + "end": 6271.82, + "probability": 0.7887 + }, + { + "start": 6271.92, + "end": 6273.16, + "probability": 0.9575 + }, + { + "start": 6273.62, + "end": 6275.34, + "probability": 0.9563 + }, + { + "start": 6276.02, + "end": 6280.0, + "probability": 0.7593 + }, + { + "start": 6281.44, + "end": 6282.56, + "probability": 0.6898 + }, + { + "start": 6283.2, + "end": 6286.4, + "probability": 0.4381 + }, + { + "start": 6286.98, + "end": 6287.82, + "probability": 0.0667 + }, + { + "start": 6288.26, + "end": 6292.16, + "probability": 0.9961 + }, + { + "start": 6292.42, + "end": 6296.56, + "probability": 0.7668 + }, + { + "start": 6296.82, + "end": 6302.08, + "probability": 0.9717 + }, + { + "start": 6302.4, + "end": 6303.78, + "probability": 0.7106 + }, + { + "start": 6304.36, + "end": 6305.46, + "probability": 0.7447 + }, + { + "start": 6305.8, + "end": 6310.06, + "probability": 0.9259 + }, + { + "start": 6310.56, + "end": 6315.54, + "probability": 0.9863 + }, + { + "start": 6315.54, + "end": 6318.72, + "probability": 0.761 + }, + { + "start": 6319.72, + "end": 6324.56, + "probability": 0.92 + }, + { + "start": 6325.6, + "end": 6332.26, + "probability": 0.7911 + }, + { + "start": 6334.04, + "end": 6336.12, + "probability": 0.988 + }, + { + "start": 6337.16, + "end": 6338.5, + "probability": 0.9938 + }, + { + "start": 6339.24, + "end": 6340.18, + "probability": 0.9845 + }, + { + "start": 6340.92, + "end": 6341.46, + "probability": 0.6504 + }, + { + "start": 6342.34, + "end": 6345.54, + "probability": 0.9958 + }, + { + "start": 6346.52, + "end": 6348.18, + "probability": 0.9985 + }, + { + "start": 6348.96, + "end": 6349.92, + "probability": 0.9055 + }, + { + "start": 6351.34, + "end": 6352.12, + "probability": 0.8397 + }, + { + "start": 6353.52, + "end": 6354.1, + "probability": 0.917 + }, + { + "start": 6354.48, + "end": 6357.14, + "probability": 0.9923 + }, + { + "start": 6357.54, + "end": 6358.42, + "probability": 0.988 + }, + { + "start": 6358.5, + "end": 6359.14, + "probability": 0.7461 + }, + { + "start": 6359.2, + "end": 6361.46, + "probability": 0.7321 + }, + { + "start": 6361.76, + "end": 6363.06, + "probability": 0.5231 + }, + { + "start": 6363.44, + "end": 6365.92, + "probability": 0.9611 + }, + { + "start": 6365.98, + "end": 6369.52, + "probability": 0.9868 + }, + { + "start": 6369.62, + "end": 6370.46, + "probability": 0.8248 + }, + { + "start": 6371.26, + "end": 6373.1, + "probability": 0.976 + }, + { + "start": 6374.0, + "end": 6374.72, + "probability": 0.7958 + }, + { + "start": 6375.34, + "end": 6377.24, + "probability": 0.487 + }, + { + "start": 6377.88, + "end": 6380.92, + "probability": 0.8821 + }, + { + "start": 6381.76, + "end": 6384.4, + "probability": 0.9873 + }, + { + "start": 6384.8, + "end": 6387.04, + "probability": 0.4758 + }, + { + "start": 6389.02, + "end": 6391.88, + "probability": 0.4829 + }, + { + "start": 6393.1, + "end": 6393.1, + "probability": 0.1544 + }, + { + "start": 6393.1, + "end": 6396.04, + "probability": 0.8034 + }, + { + "start": 6396.46, + "end": 6398.54, + "probability": 0.9698 + }, + { + "start": 6399.06, + "end": 6403.7, + "probability": 0.9598 + }, + { + "start": 6404.38, + "end": 6405.76, + "probability": 0.9917 + }, + { + "start": 6406.18, + "end": 6409.56, + "probability": 0.9932 + }, + { + "start": 6410.26, + "end": 6413.2, + "probability": 0.994 + }, + { + "start": 6414.16, + "end": 6416.12, + "probability": 0.9839 + }, + { + "start": 6416.56, + "end": 6419.08, + "probability": 0.989 + }, + { + "start": 6420.0, + "end": 6421.98, + "probability": 0.7556 + }, + { + "start": 6422.16, + "end": 6425.9, + "probability": 0.7856 + }, + { + "start": 6426.72, + "end": 6428.66, + "probability": 0.9932 + }, + { + "start": 6429.28, + "end": 6429.8, + "probability": 0.8911 + }, + { + "start": 6430.38, + "end": 6434.66, + "probability": 0.9839 + }, + { + "start": 6435.12, + "end": 6437.4, + "probability": 0.7654 + }, + { + "start": 6438.14, + "end": 6440.32, + "probability": 0.67 + }, + { + "start": 6442.24, + "end": 6443.8, + "probability": 0.7876 + }, + { + "start": 6444.2, + "end": 6445.68, + "probability": 0.908 + }, + { + "start": 6446.0, + "end": 6447.18, + "probability": 0.9125 + }, + { + "start": 6447.68, + "end": 6448.32, + "probability": 0.5322 + }, + { + "start": 6448.58, + "end": 6449.8, + "probability": 0.9714 + }, + { + "start": 6450.54, + "end": 6452.44, + "probability": 0.8459 + }, + { + "start": 6452.72, + "end": 6452.98, + "probability": 0.7562 + }, + { + "start": 6454.18, + "end": 6456.94, + "probability": 0.7184 + }, + { + "start": 6457.76, + "end": 6459.28, + "probability": 0.7109 + }, + { + "start": 6459.36, + "end": 6461.72, + "probability": 0.7 + }, + { + "start": 6478.36, + "end": 6479.65, + "probability": 0.5088 + }, + { + "start": 6484.68, + "end": 6486.68, + "probability": 0.5672 + }, + { + "start": 6488.98, + "end": 6491.38, + "probability": 0.836 + }, + { + "start": 6491.46, + "end": 6496.16, + "probability": 0.9457 + }, + { + "start": 6497.12, + "end": 6499.92, + "probability": 0.9565 + }, + { + "start": 6501.28, + "end": 6505.72, + "probability": 0.9882 + }, + { + "start": 6506.5, + "end": 6507.54, + "probability": 0.7162 + }, + { + "start": 6508.74, + "end": 6510.42, + "probability": 0.799 + }, + { + "start": 6512.66, + "end": 6517.34, + "probability": 0.8689 + }, + { + "start": 6518.44, + "end": 6521.42, + "probability": 0.8817 + }, + { + "start": 6521.58, + "end": 6522.04, + "probability": 0.8547 + }, + { + "start": 6522.66, + "end": 6523.34, + "probability": 0.6946 + }, + { + "start": 6524.58, + "end": 6525.62, + "probability": 0.7176 + }, + { + "start": 6526.68, + "end": 6533.84, + "probability": 0.9864 + }, + { + "start": 6534.2, + "end": 6534.76, + "probability": 0.5311 + }, + { + "start": 6535.36, + "end": 6536.38, + "probability": 0.9888 + }, + { + "start": 6537.44, + "end": 6538.88, + "probability": 0.9651 + }, + { + "start": 6539.62, + "end": 6539.9, + "probability": 0.8756 + }, + { + "start": 6539.92, + "end": 6542.56, + "probability": 0.828 + }, + { + "start": 6542.96, + "end": 6543.92, + "probability": 0.7966 + }, + { + "start": 6544.64, + "end": 6548.96, + "probability": 0.8732 + }, + { + "start": 6551.13, + "end": 6553.26, + "probability": 0.0597 + }, + { + "start": 6553.26, + "end": 6553.58, + "probability": 0.1113 + }, + { + "start": 6553.94, + "end": 6554.8, + "probability": 0.9427 + }, + { + "start": 6557.17, + "end": 6561.6, + "probability": 0.9709 + }, + { + "start": 6562.32, + "end": 6564.28, + "probability": 0.5652 + }, + { + "start": 6564.36, + "end": 6564.84, + "probability": 0.636 + }, + { + "start": 6565.46, + "end": 6566.74, + "probability": 0.936 + }, + { + "start": 6567.26, + "end": 6569.18, + "probability": 0.804 + }, + { + "start": 6570.1, + "end": 6572.1, + "probability": 0.6315 + }, + { + "start": 6572.9, + "end": 6573.68, + "probability": 0.7285 + }, + { + "start": 6574.14, + "end": 6574.62, + "probability": 0.5985 + }, + { + "start": 6574.68, + "end": 6575.98, + "probability": 0.9944 + }, + { + "start": 6576.06, + "end": 6578.6, + "probability": 0.9194 + }, + { + "start": 6579.14, + "end": 6581.29, + "probability": 0.8381 + }, + { + "start": 6581.54, + "end": 6583.02, + "probability": 0.9024 + }, + { + "start": 6583.7, + "end": 6586.82, + "probability": 0.995 + }, + { + "start": 6587.12, + "end": 6590.42, + "probability": 0.9612 + }, + { + "start": 6591.46, + "end": 6597.06, + "probability": 0.776 + }, + { + "start": 6608.36, + "end": 6610.24, + "probability": 0.0831 + }, + { + "start": 6610.92, + "end": 6610.92, + "probability": 0.0869 + }, + { + "start": 6610.92, + "end": 6610.92, + "probability": 0.0116 + }, + { + "start": 6610.92, + "end": 6610.92, + "probability": 0.1957 + }, + { + "start": 6610.96, + "end": 6611.06, + "probability": 0.0811 + }, + { + "start": 6611.06, + "end": 6611.06, + "probability": 0.1461 + }, + { + "start": 6611.06, + "end": 6613.7, + "probability": 0.3071 + }, + { + "start": 6613.82, + "end": 6615.58, + "probability": 0.8897 + }, + { + "start": 6616.78, + "end": 6618.32, + "probability": 0.9506 + }, + { + "start": 6618.9, + "end": 6621.88, + "probability": 0.7779 + }, + { + "start": 6622.98, + "end": 6628.16, + "probability": 0.5376 + }, + { + "start": 6628.8, + "end": 6631.4, + "probability": 0.8452 + }, + { + "start": 6631.98, + "end": 6632.98, + "probability": 0.8085 + }, + { + "start": 6633.34, + "end": 6635.29, + "probability": 0.9491 + }, + { + "start": 6635.82, + "end": 6639.2, + "probability": 0.8503 + }, + { + "start": 6640.04, + "end": 6643.74, + "probability": 0.9601 + }, + { + "start": 6645.3, + "end": 6650.54, + "probability": 0.9977 + }, + { + "start": 6650.7, + "end": 6652.06, + "probability": 0.914 + }, + { + "start": 6652.86, + "end": 6655.44, + "probability": 0.5992 + }, + { + "start": 6656.4, + "end": 6660.92, + "probability": 0.8312 + }, + { + "start": 6661.72, + "end": 6668.66, + "probability": 0.9857 + }, + { + "start": 6669.86, + "end": 6672.72, + "probability": 0.9731 + }, + { + "start": 6673.5, + "end": 6675.56, + "probability": 0.6872 + }, + { + "start": 6676.14, + "end": 6679.92, + "probability": 0.605 + }, + { + "start": 6680.62, + "end": 6682.94, + "probability": 0.8529 + }, + { + "start": 6684.08, + "end": 6686.58, + "probability": 0.9697 + }, + { + "start": 6686.62, + "end": 6688.02, + "probability": 0.7321 + }, + { + "start": 6688.14, + "end": 6690.2, + "probability": 0.9482 + }, + { + "start": 6690.7, + "end": 6691.52, + "probability": 0.9296 + }, + { + "start": 6692.34, + "end": 6693.08, + "probability": 0.8062 + }, + { + "start": 6693.7, + "end": 6696.66, + "probability": 0.9285 + }, + { + "start": 6696.66, + "end": 6701.28, + "probability": 0.9616 + }, + { + "start": 6701.78, + "end": 6702.68, + "probability": 0.6006 + }, + { + "start": 6703.26, + "end": 6705.02, + "probability": 0.9872 + }, + { + "start": 6705.58, + "end": 6707.34, + "probability": 0.5533 + }, + { + "start": 6708.98, + "end": 6709.38, + "probability": 0.691 + }, + { + "start": 6709.48, + "end": 6712.72, + "probability": 0.9858 + }, + { + "start": 6712.74, + "end": 6717.34, + "probability": 0.9597 + }, + { + "start": 6717.98, + "end": 6719.88, + "probability": 0.8208 + }, + { + "start": 6721.6, + "end": 6723.54, + "probability": 0.7243 + }, + { + "start": 6723.9, + "end": 6726.36, + "probability": 0.6671 + }, + { + "start": 6728.24, + "end": 6728.24, + "probability": 0.3192 + }, + { + "start": 6728.24, + "end": 6729.08, + "probability": 0.1582 + }, + { + "start": 6730.56, + "end": 6731.28, + "probability": 0.3247 + }, + { + "start": 6731.4, + "end": 6733.12, + "probability": 0.0771 + }, + { + "start": 6734.98, + "end": 6736.82, + "probability": 0.2176 + }, + { + "start": 6737.26, + "end": 6738.7, + "probability": 0.5922 + }, + { + "start": 6739.12, + "end": 6742.32, + "probability": 0.6093 + }, + { + "start": 6742.48, + "end": 6742.6, + "probability": 0.4697 + }, + { + "start": 6743.38, + "end": 6743.66, + "probability": 0.8823 + }, + { + "start": 6744.24, + "end": 6748.04, + "probability": 0.9648 + }, + { + "start": 6748.12, + "end": 6750.44, + "probability": 0.6753 + }, + { + "start": 6750.52, + "end": 6751.12, + "probability": 0.9328 + }, + { + "start": 6751.18, + "end": 6751.82, + "probability": 0.7794 + }, + { + "start": 6752.08, + "end": 6754.52, + "probability": 0.1177 + }, + { + "start": 6754.52, + "end": 6756.06, + "probability": 0.4359 + }, + { + "start": 6756.16, + "end": 6756.68, + "probability": 0.6099 + }, + { + "start": 6756.74, + "end": 6757.36, + "probability": 0.8364 + }, + { + "start": 6757.44, + "end": 6758.92, + "probability": 0.9426 + }, + { + "start": 6760.8, + "end": 6761.6, + "probability": 0.1052 + }, + { + "start": 6762.02, + "end": 6762.66, + "probability": 0.5106 + }, + { + "start": 6762.7, + "end": 6765.52, + "probability": 0.772 + }, + { + "start": 6765.74, + "end": 6765.9, + "probability": 0.0043 + }, + { + "start": 6765.9, + "end": 6766.66, + "probability": 0.591 + }, + { + "start": 6767.52, + "end": 6768.26, + "probability": 0.4352 + }, + { + "start": 6771.21, + "end": 6772.06, + "probability": 0.0109 + }, + { + "start": 6772.06, + "end": 6772.06, + "probability": 0.0915 + }, + { + "start": 6772.06, + "end": 6772.06, + "probability": 0.0127 + }, + { + "start": 6772.06, + "end": 6772.52, + "probability": 0.3619 + }, + { + "start": 6773.0, + "end": 6774.03, + "probability": 0.7467 + }, + { + "start": 6774.36, + "end": 6775.11, + "probability": 0.8144 + }, + { + "start": 6775.48, + "end": 6777.24, + "probability": 0.8378 + }, + { + "start": 6777.82, + "end": 6778.02, + "probability": 0.0354 + }, + { + "start": 6778.84, + "end": 6780.64, + "probability": 0.2866 + }, + { + "start": 6780.64, + "end": 6782.22, + "probability": 0.026 + }, + { + "start": 6782.22, + "end": 6782.8, + "probability": 0.4374 + }, + { + "start": 6783.14, + "end": 6783.35, + "probability": 0.0047 + }, + { + "start": 6783.38, + "end": 6783.38, + "probability": 0.2267 + }, + { + "start": 6783.38, + "end": 6783.9, + "probability": 0.6781 + }, + { + "start": 6784.06, + "end": 6786.58, + "probability": 0.8776 + }, + { + "start": 6786.66, + "end": 6786.66, + "probability": 0.3254 + }, + { + "start": 6787.32, + "end": 6788.82, + "probability": 0.0169 + }, + { + "start": 6788.9, + "end": 6789.36, + "probability": 0.553 + }, + { + "start": 6789.9, + "end": 6789.9, + "probability": 0.016 + }, + { + "start": 6789.9, + "end": 6789.9, + "probability": 0.0436 + }, + { + "start": 6789.9, + "end": 6790.06, + "probability": 0.0999 + }, + { + "start": 6790.24, + "end": 6792.32, + "probability": 0.3727 + }, + { + "start": 6792.32, + "end": 6792.76, + "probability": 0.6879 + }, + { + "start": 6792.9, + "end": 6794.66, + "probability": 0.7006 + }, + { + "start": 6794.68, + "end": 6795.95, + "probability": 0.9368 + }, + { + "start": 6796.26, + "end": 6799.08, + "probability": 0.9905 + }, + { + "start": 6799.68, + "end": 6800.36, + "probability": 0.8671 + }, + { + "start": 6800.42, + "end": 6801.08, + "probability": 0.7923 + }, + { + "start": 6801.12, + "end": 6801.54, + "probability": 0.894 + }, + { + "start": 6801.72, + "end": 6802.51, + "probability": 0.1875 + }, + { + "start": 6802.92, + "end": 6803.36, + "probability": 0.4183 + }, + { + "start": 6803.4, + "end": 6806.42, + "probability": 0.3381 + }, + { + "start": 6806.42, + "end": 6806.42, + "probability": 0.0937 + }, + { + "start": 6806.42, + "end": 6806.42, + "probability": 0.1236 + }, + { + "start": 6806.42, + "end": 6807.14, + "probability": 0.1964 + }, + { + "start": 6807.18, + "end": 6807.67, + "probability": 0.8474 + }, + { + "start": 6810.92, + "end": 6812.66, + "probability": 0.7126 + }, + { + "start": 6813.38, + "end": 6815.5, + "probability": 0.9852 + }, + { + "start": 6816.2, + "end": 6818.98, + "probability": 0.9929 + }, + { + "start": 6819.74, + "end": 6821.28, + "probability": 0.918 + }, + { + "start": 6821.7, + "end": 6824.36, + "probability": 0.7829 + }, + { + "start": 6824.72, + "end": 6827.14, + "probability": 0.6301 + }, + { + "start": 6827.76, + "end": 6829.82, + "probability": 0.7804 + }, + { + "start": 6829.92, + "end": 6833.42, + "probability": 0.737 + }, + { + "start": 6833.9, + "end": 6835.02, + "probability": 0.9858 + }, + { + "start": 6835.72, + "end": 6837.02, + "probability": 0.9788 + }, + { + "start": 6837.92, + "end": 6840.42, + "probability": 0.9949 + }, + { + "start": 6841.36, + "end": 6842.66, + "probability": 0.8549 + }, + { + "start": 6843.1, + "end": 6846.48, + "probability": 0.9438 + }, + { + "start": 6846.54, + "end": 6849.56, + "probability": 0.5926 + }, + { + "start": 6849.94, + "end": 6854.46, + "probability": 0.7471 + }, + { + "start": 6854.78, + "end": 6855.66, + "probability": 0.8826 + }, + { + "start": 6856.49, + "end": 6858.43, + "probability": 0.7725 + }, + { + "start": 6858.78, + "end": 6861.72, + "probability": 0.6206 + }, + { + "start": 6861.84, + "end": 6862.97, + "probability": 0.906 + }, + { + "start": 6863.54, + "end": 6864.59, + "probability": 0.8826 + }, + { + "start": 6864.96, + "end": 6864.98, + "probability": 0.4176 + }, + { + "start": 6865.12, + "end": 6865.26, + "probability": 0.101 + }, + { + "start": 6865.26, + "end": 6866.26, + "probability": 0.7972 + }, + { + "start": 6866.36, + "end": 6867.48, + "probability": 0.8363 + }, + { + "start": 6868.02, + "end": 6871.8, + "probability": 0.9951 + }, + { + "start": 6872.98, + "end": 6874.28, + "probability": 0.973 + }, + { + "start": 6874.72, + "end": 6879.36, + "probability": 0.9907 + }, + { + "start": 6879.5, + "end": 6880.1, + "probability": 0.6607 + }, + { + "start": 6880.62, + "end": 6882.04, + "probability": 0.4839 + }, + { + "start": 6883.18, + "end": 6886.64, + "probability": 0.9756 + }, + { + "start": 6888.02, + "end": 6890.52, + "probability": 0.8396 + }, + { + "start": 6890.6, + "end": 6892.56, + "probability": 0.9044 + }, + { + "start": 6892.62, + "end": 6893.25, + "probability": 0.8379 + }, + { + "start": 6893.64, + "end": 6895.76, + "probability": 0.9312 + }, + { + "start": 6896.44, + "end": 6897.5, + "probability": 0.8687 + }, + { + "start": 6897.56, + "end": 6899.56, + "probability": 0.9147 + }, + { + "start": 6900.06, + "end": 6904.54, + "probability": 0.7039 + }, + { + "start": 6904.66, + "end": 6906.02, + "probability": 0.9151 + }, + { + "start": 6906.02, + "end": 6915.04, + "probability": 0.8676 + }, + { + "start": 6915.16, + "end": 6915.86, + "probability": 0.9027 + }, + { + "start": 6915.98, + "end": 6916.76, + "probability": 0.8756 + }, + { + "start": 6917.26, + "end": 6918.88, + "probability": 0.848 + }, + { + "start": 6919.46, + "end": 6920.34, + "probability": 0.8407 + }, + { + "start": 6920.4, + "end": 6921.57, + "probability": 0.9755 + }, + { + "start": 6921.96, + "end": 6925.06, + "probability": 0.9982 + }, + { + "start": 6925.58, + "end": 6929.54, + "probability": 0.9888 + }, + { + "start": 6929.64, + "end": 6930.58, + "probability": 0.9124 + }, + { + "start": 6930.64, + "end": 6931.54, + "probability": 0.7669 + }, + { + "start": 6932.1, + "end": 6933.7, + "probability": 0.9769 + }, + { + "start": 6934.2, + "end": 6938.12, + "probability": 0.9695 + }, + { + "start": 6938.2, + "end": 6938.54, + "probability": 0.9224 + }, + { + "start": 6939.82, + "end": 6940.96, + "probability": 0.9919 + }, + { + "start": 6942.0, + "end": 6943.06, + "probability": 0.9529 + }, + { + "start": 6943.42, + "end": 6944.82, + "probability": 0.8945 + }, + { + "start": 6945.52, + "end": 6947.46, + "probability": 0.9939 + }, + { + "start": 6948.04, + "end": 6948.86, + "probability": 0.8733 + }, + { + "start": 6949.38, + "end": 6951.9, + "probability": 0.9966 + }, + { + "start": 6951.9, + "end": 6955.45, + "probability": 0.9985 + }, + { + "start": 6955.96, + "end": 6957.5, + "probability": 0.9691 + }, + { + "start": 6958.06, + "end": 6959.12, + "probability": 0.6366 + }, + { + "start": 6959.14, + "end": 6960.32, + "probability": 0.7259 + }, + { + "start": 6960.7, + "end": 6962.43, + "probability": 0.9115 + }, + { + "start": 6962.5, + "end": 6965.1, + "probability": 0.8376 + }, + { + "start": 6965.44, + "end": 6965.62, + "probability": 0.6531 + }, + { + "start": 6965.92, + "end": 6968.48, + "probability": 0.8213 + }, + { + "start": 6968.94, + "end": 6970.8, + "probability": 0.904 + }, + { + "start": 6970.96, + "end": 6971.28, + "probability": 0.7554 + }, + { + "start": 6971.92, + "end": 6972.46, + "probability": 0.7927 + }, + { + "start": 6974.93, + "end": 6978.2, + "probability": 0.4523 + }, + { + "start": 6997.94, + "end": 6997.94, + "probability": 0.2941 + }, + { + "start": 6998.12, + "end": 6999.2, + "probability": 0.6389 + }, + { + "start": 7003.06, + "end": 7004.36, + "probability": 0.6241 + }, + { + "start": 7005.34, + "end": 7008.0, + "probability": 0.941 + }, + { + "start": 7008.96, + "end": 7011.4, + "probability": 0.9969 + }, + { + "start": 7012.02, + "end": 7015.64, + "probability": 0.8951 + }, + { + "start": 7016.58, + "end": 7016.74, + "probability": 0.5653 + }, + { + "start": 7017.38, + "end": 7019.72, + "probability": 0.8822 + }, + { + "start": 7020.74, + "end": 7023.8, + "probability": 0.9681 + }, + { + "start": 7024.08, + "end": 7029.16, + "probability": 0.9934 + }, + { + "start": 7029.36, + "end": 7032.3, + "probability": 0.9353 + }, + { + "start": 7032.94, + "end": 7034.5, + "probability": 0.5692 + }, + { + "start": 7034.9, + "end": 7041.6, + "probability": 0.994 + }, + { + "start": 7042.28, + "end": 7044.22, + "probability": 0.7705 + }, + { + "start": 7044.4, + "end": 7047.1, + "probability": 0.9425 + }, + { + "start": 7048.06, + "end": 7052.92, + "probability": 0.9941 + }, + { + "start": 7053.8, + "end": 7056.92, + "probability": 0.9851 + }, + { + "start": 7057.24, + "end": 7057.52, + "probability": 0.6527 + }, + { + "start": 7057.72, + "end": 7059.5, + "probability": 0.6123 + }, + { + "start": 7059.52, + "end": 7063.9, + "probability": 0.7256 + }, + { + "start": 7065.12, + "end": 7065.62, + "probability": 0.6153 + }, + { + "start": 7065.82, + "end": 7065.82, + "probability": 0.6315 + }, + { + "start": 7065.86, + "end": 7066.22, + "probability": 0.5462 + }, + { + "start": 7067.12, + "end": 7071.72, + "probability": 0.7524 + }, + { + "start": 7071.78, + "end": 7075.88, + "probability": 0.7555 + }, + { + "start": 7077.42, + "end": 7079.7, + "probability": 0.985 + }, + { + "start": 7080.62, + "end": 7083.2, + "probability": 0.9054 + }, + { + "start": 7083.86, + "end": 7087.28, + "probability": 0.94 + }, + { + "start": 7088.32, + "end": 7094.94, + "probability": 0.9877 + }, + { + "start": 7094.98, + "end": 7100.3, + "probability": 0.9959 + }, + { + "start": 7103.12, + "end": 7104.44, + "probability": 0.7583 + }, + { + "start": 7106.48, + "end": 7108.44, + "probability": 0.2141 + }, + { + "start": 7109.3, + "end": 7110.94, + "probability": 0.2849 + }, + { + "start": 7112.02, + "end": 7115.74, + "probability": 0.4397 + }, + { + "start": 7115.96, + "end": 7116.8, + "probability": 0.2678 + }, + { + "start": 7117.12, + "end": 7118.98, + "probability": 0.6623 + }, + { + "start": 7119.6, + "end": 7119.9, + "probability": 0.5358 + }, + { + "start": 7119.9, + "end": 7125.14, + "probability": 0.8714 + }, + { + "start": 7125.56, + "end": 7131.16, + "probability": 0.9683 + }, + { + "start": 7131.62, + "end": 7136.89, + "probability": 0.936 + }, + { + "start": 7137.62, + "end": 7141.4, + "probability": 0.9801 + }, + { + "start": 7141.4, + "end": 7147.17, + "probability": 0.9957 + }, + { + "start": 7147.66, + "end": 7154.46, + "probability": 0.669 + }, + { + "start": 7154.6, + "end": 7156.14, + "probability": 0.9917 + }, + { + "start": 7156.92, + "end": 7159.44, + "probability": 0.9866 + }, + { + "start": 7160.02, + "end": 7161.82, + "probability": 0.8346 + }, + { + "start": 7162.3, + "end": 7165.32, + "probability": 0.9809 + }, + { + "start": 7165.32, + "end": 7169.86, + "probability": 0.9856 + }, + { + "start": 7170.98, + "end": 7173.8, + "probability": 0.9854 + }, + { + "start": 7174.36, + "end": 7174.86, + "probability": 0.3836 + }, + { + "start": 7175.16, + "end": 7178.7, + "probability": 0.5621 + }, + { + "start": 7178.82, + "end": 7179.82, + "probability": 0.9093 + }, + { + "start": 7180.9, + "end": 7181.42, + "probability": 0.9032 + }, + { + "start": 7181.56, + "end": 7185.72, + "probability": 0.8564 + }, + { + "start": 7186.38, + "end": 7189.1, + "probability": 0.921 + }, + { + "start": 7189.88, + "end": 7192.76, + "probability": 0.8383 + }, + { + "start": 7193.78, + "end": 7197.68, + "probability": 0.9501 + }, + { + "start": 7198.3, + "end": 7200.4, + "probability": 0.814 + }, + { + "start": 7200.52, + "end": 7201.02, + "probability": 0.8639 + }, + { + "start": 7201.1, + "end": 7206.8, + "probability": 0.9383 + }, + { + "start": 7207.4, + "end": 7211.12, + "probability": 0.8967 + }, + { + "start": 7211.74, + "end": 7215.26, + "probability": 0.8231 + }, + { + "start": 7216.44, + "end": 7217.2, + "probability": 0.5013 + }, + { + "start": 7217.92, + "end": 7218.44, + "probability": 0.9074 + }, + { + "start": 7219.08, + "end": 7219.92, + "probability": 0.8 + }, + { + "start": 7220.2, + "end": 7225.04, + "probability": 0.9769 + }, + { + "start": 7225.62, + "end": 7228.62, + "probability": 0.6417 + }, + { + "start": 7229.34, + "end": 7236.56, + "probability": 0.9973 + }, + { + "start": 7237.18, + "end": 7237.66, + "probability": 0.6756 + }, + { + "start": 7238.32, + "end": 7240.56, + "probability": 0.7234 + }, + { + "start": 7241.8, + "end": 7245.68, + "probability": 0.744 + }, + { + "start": 7246.44, + "end": 7249.9, + "probability": 0.7778 + }, + { + "start": 7250.4, + "end": 7251.56, + "probability": 0.8287 + }, + { + "start": 7255.56, + "end": 7257.12, + "probability": 0.7077 + }, + { + "start": 7273.14, + "end": 7276.36, + "probability": 0.8927 + }, + { + "start": 7277.1, + "end": 7280.74, + "probability": 0.9963 + }, + { + "start": 7280.9, + "end": 7281.4, + "probability": 0.8275 + }, + { + "start": 7281.44, + "end": 7282.84, + "probability": 0.876 + }, + { + "start": 7283.66, + "end": 7285.82, + "probability": 0.9922 + }, + { + "start": 7287.06, + "end": 7289.64, + "probability": 0.9667 + }, + { + "start": 7289.68, + "end": 7290.26, + "probability": 0.656 + }, + { + "start": 7290.32, + "end": 7291.96, + "probability": 0.8964 + }, + { + "start": 7293.0, + "end": 7295.44, + "probability": 0.9893 + }, + { + "start": 7296.7, + "end": 7300.54, + "probability": 0.9001 + }, + { + "start": 7301.26, + "end": 7306.66, + "probability": 0.7986 + }, + { + "start": 7306.66, + "end": 7309.16, + "probability": 0.8925 + }, + { + "start": 7309.76, + "end": 7314.14, + "probability": 0.7956 + }, + { + "start": 7314.7, + "end": 7318.2, + "probability": 0.7456 + }, + { + "start": 7319.1, + "end": 7324.0, + "probability": 0.9004 + }, + { + "start": 7324.22, + "end": 7325.36, + "probability": 0.9829 + }, + { + "start": 7327.96, + "end": 7330.74, + "probability": 0.3284 + }, + { + "start": 7331.32, + "end": 7333.02, + "probability": 0.4489 + }, + { + "start": 7333.68, + "end": 7336.28, + "probability": 0.9907 + }, + { + "start": 7336.96, + "end": 7338.36, + "probability": 0.792 + }, + { + "start": 7338.44, + "end": 7343.82, + "probability": 0.8132 + }, + { + "start": 7343.98, + "end": 7344.24, + "probability": 0.7115 + }, + { + "start": 7344.94, + "end": 7345.8, + "probability": 0.9019 + }, + { + "start": 7346.84, + "end": 7352.48, + "probability": 0.8132 + }, + { + "start": 7353.08, + "end": 7355.98, + "probability": 0.9932 + }, + { + "start": 7357.84, + "end": 7359.34, + "probability": 0.728 + }, + { + "start": 7360.02, + "end": 7363.22, + "probability": 0.9682 + }, + { + "start": 7363.22, + "end": 7365.7, + "probability": 0.991 + }, + { + "start": 7366.28, + "end": 7371.56, + "probability": 0.9942 + }, + { + "start": 7371.86, + "end": 7372.42, + "probability": 0.7222 + }, + { + "start": 7373.18, + "end": 7375.1, + "probability": 0.918 + }, + { + "start": 7377.18, + "end": 7377.98, + "probability": 0.9578 + }, + { + "start": 7378.48, + "end": 7379.8, + "probability": 0.8983 + }, + { + "start": 7380.38, + "end": 7380.84, + "probability": 0.9879 + }, + { + "start": 7382.71, + "end": 7386.14, + "probability": 0.9269 + }, + { + "start": 7387.04, + "end": 7387.67, + "probability": 0.9141 + }, + { + "start": 7389.5, + "end": 7393.2, + "probability": 0.7766 + }, + { + "start": 7394.04, + "end": 7397.48, + "probability": 0.9186 + }, + { + "start": 7398.04, + "end": 7398.82, + "probability": 0.9504 + }, + { + "start": 7400.38, + "end": 7401.3, + "probability": 0.5273 + }, + { + "start": 7401.62, + "end": 7405.44, + "probability": 0.9802 + }, + { + "start": 7405.96, + "end": 7409.72, + "probability": 0.9705 + }, + { + "start": 7410.7, + "end": 7411.74, + "probability": 0.7554 + }, + { + "start": 7412.74, + "end": 7413.3, + "probability": 0.7007 + }, + { + "start": 7413.78, + "end": 7414.98, + "probability": 0.8789 + }, + { + "start": 7415.48, + "end": 7416.46, + "probability": 0.9535 + }, + { + "start": 7416.54, + "end": 7417.26, + "probability": 0.885 + }, + { + "start": 7417.72, + "end": 7418.52, + "probability": 0.9205 + }, + { + "start": 7418.94, + "end": 7420.22, + "probability": 0.7484 + }, + { + "start": 7420.64, + "end": 7422.24, + "probability": 0.528 + }, + { + "start": 7422.48, + "end": 7424.04, + "probability": 0.8097 + }, + { + "start": 7425.74, + "end": 7426.04, + "probability": 0.8081 + }, + { + "start": 7426.88, + "end": 7426.96, + "probability": 0.0388 + }, + { + "start": 7426.96, + "end": 7429.62, + "probability": 0.9513 + }, + { + "start": 7431.4, + "end": 7437.34, + "probability": 0.9802 + }, + { + "start": 7437.98, + "end": 7438.46, + "probability": 0.5406 + }, + { + "start": 7439.04, + "end": 7440.08, + "probability": 0.5571 + }, + { + "start": 7440.84, + "end": 7443.7, + "probability": 0.9925 + }, + { + "start": 7444.18, + "end": 7446.7, + "probability": 0.9565 + }, + { + "start": 7447.2, + "end": 7450.5, + "probability": 0.9795 + }, + { + "start": 7451.66, + "end": 7454.3, + "probability": 0.9956 + }, + { + "start": 7454.34, + "end": 7457.22, + "probability": 0.7298 + }, + { + "start": 7457.62, + "end": 7459.06, + "probability": 0.7715 + }, + { + "start": 7459.56, + "end": 7462.6, + "probability": 0.9814 + }, + { + "start": 7463.12, + "end": 7464.8, + "probability": 0.8648 + }, + { + "start": 7465.34, + "end": 7468.62, + "probability": 0.8638 + }, + { + "start": 7470.32, + "end": 7471.76, + "probability": 0.423 + }, + { + "start": 7472.02, + "end": 7473.78, + "probability": 0.8995 + }, + { + "start": 7507.06, + "end": 7511.16, + "probability": 0.4428 + }, + { + "start": 7511.68, + "end": 7514.36, + "probability": 0.6042 + }, + { + "start": 7515.0, + "end": 7515.38, + "probability": 0.3778 + }, + { + "start": 7520.0, + "end": 7523.04, + "probability": 0.5163 + }, + { + "start": 7524.84, + "end": 7527.0, + "probability": 0.0184 + }, + { + "start": 7527.9, + "end": 7530.3, + "probability": 0.0776 + }, + { + "start": 7530.42, + "end": 7531.79, + "probability": 0.0402 + }, + { + "start": 7532.8, + "end": 7532.92, + "probability": 0.0636 + }, + { + "start": 7534.32, + "end": 7534.95, + "probability": 0.37 + }, + { + "start": 7535.88, + "end": 7537.52, + "probability": 0.5382 + }, + { + "start": 7537.74, + "end": 7542.64, + "probability": 0.1375 + }, + { + "start": 7542.64, + "end": 7545.5, + "probability": 0.159 + }, + { + "start": 7547.2, + "end": 7548.18, + "probability": 0.1353 + }, + { + "start": 7551.14, + "end": 7552.6, + "probability": 0.0003 + }, + { + "start": 7553.78, + "end": 7556.0, + "probability": 0.0569 + }, + { + "start": 7556.4, + "end": 7557.16, + "probability": 0.0388 + }, + { + "start": 7557.38, + "end": 7557.5, + "probability": 0.0553 + }, + { + "start": 7557.5, + "end": 7557.62, + "probability": 0.0946 + }, + { + "start": 7557.64, + "end": 7558.37, + "probability": 0.1423 + }, + { + "start": 7558.96, + "end": 7559.78, + "probability": 0.2945 + }, + { + "start": 7561.2, + "end": 7563.5, + "probability": 0.3729 + }, + { + "start": 7563.9, + "end": 7563.98, + "probability": 0.1602 + }, + { + "start": 7564.66, + "end": 7564.84, + "probability": 0.0054 + }, + { + "start": 7564.84, + "end": 7564.84, + "probability": 0.1546 + }, + { + "start": 7564.84, + "end": 7564.84, + "probability": 0.0969 + }, + { + "start": 7564.84, + "end": 7564.84, + "probability": 0.0287 + }, + { + "start": 7564.84, + "end": 7566.42, + "probability": 0.531 + }, + { + "start": 7567.26, + "end": 7569.14, + "probability": 0.7732 + }, + { + "start": 7570.7, + "end": 7577.54, + "probability": 0.9482 + }, + { + "start": 7578.54, + "end": 7578.68, + "probability": 0.0769 + }, + { + "start": 7579.42, + "end": 7580.96, + "probability": 0.7543 + }, + { + "start": 7581.38, + "end": 7587.0, + "probability": 0.6296 + }, + { + "start": 7587.52, + "end": 7589.26, + "probability": 0.9087 + }, + { + "start": 7591.04, + "end": 7599.14, + "probability": 0.9906 + }, + { + "start": 7599.36, + "end": 7601.76, + "probability": 0.9764 + }, + { + "start": 7602.76, + "end": 7605.12, + "probability": 0.7736 + }, + { + "start": 7606.3, + "end": 7608.22, + "probability": 0.9247 + }, + { + "start": 7609.18, + "end": 7612.04, + "probability": 0.9928 + }, + { + "start": 7612.66, + "end": 7614.42, + "probability": 0.9927 + }, + { + "start": 7614.46, + "end": 7615.86, + "probability": 0.9614 + }, + { + "start": 7617.46, + "end": 7620.62, + "probability": 0.9756 + }, + { + "start": 7621.46, + "end": 7624.28, + "probability": 0.9722 + }, + { + "start": 7625.44, + "end": 7628.28, + "probability": 0.9968 + }, + { + "start": 7628.38, + "end": 7630.68, + "probability": 0.9951 + }, + { + "start": 7632.2, + "end": 7636.38, + "probability": 0.9756 + }, + { + "start": 7636.4, + "end": 7637.92, + "probability": 0.98 + }, + { + "start": 7638.08, + "end": 7639.98, + "probability": 0.9303 + }, + { + "start": 7640.86, + "end": 7643.32, + "probability": 0.9983 + }, + { + "start": 7643.32, + "end": 7647.3, + "probability": 0.9988 + }, + { + "start": 7647.46, + "end": 7650.86, + "probability": 0.9841 + }, + { + "start": 7652.18, + "end": 7654.47, + "probability": 0.997 + }, + { + "start": 7655.0, + "end": 7657.0, + "probability": 0.8859 + }, + { + "start": 7657.3, + "end": 7659.84, + "probability": 0.7872 + }, + { + "start": 7660.5, + "end": 7664.4, + "probability": 0.9591 + }, + { + "start": 7665.06, + "end": 7665.48, + "probability": 0.8864 + }, + { + "start": 7666.1, + "end": 7666.7, + "probability": 0.8577 + }, + { + "start": 7666.74, + "end": 7667.84, + "probability": 0.8702 + }, + { + "start": 7667.92, + "end": 7668.8, + "probability": 0.7653 + }, + { + "start": 7668.9, + "end": 7670.0, + "probability": 0.9766 + }, + { + "start": 7670.6, + "end": 7671.7, + "probability": 0.9447 + }, + { + "start": 7671.8, + "end": 7672.76, + "probability": 0.6922 + }, + { + "start": 7672.86, + "end": 7673.54, + "probability": 0.7829 + }, + { + "start": 7673.64, + "end": 7674.36, + "probability": 0.7875 + }, + { + "start": 7674.52, + "end": 7678.62, + "probability": 0.8088 + }, + { + "start": 7680.02, + "end": 7683.6, + "probability": 0.979 + }, + { + "start": 7683.6, + "end": 7687.56, + "probability": 0.9988 + }, + { + "start": 7688.38, + "end": 7690.64, + "probability": 0.9893 + }, + { + "start": 7691.3, + "end": 7692.14, + "probability": 0.8914 + }, + { + "start": 7693.4, + "end": 7693.7, + "probability": 0.5037 + }, + { + "start": 7694.56, + "end": 7697.67, + "probability": 0.9688 + }, + { + "start": 7698.84, + "end": 7704.42, + "probability": 0.9919 + }, + { + "start": 7705.64, + "end": 7707.22, + "probability": 0.9465 + }, + { + "start": 7708.26, + "end": 7712.38, + "probability": 0.994 + }, + { + "start": 7712.54, + "end": 7716.38, + "probability": 0.9941 + }, + { + "start": 7717.42, + "end": 7721.04, + "probability": 0.9826 + }, + { + "start": 7721.24, + "end": 7724.36, + "probability": 0.9907 + }, + { + "start": 7725.68, + "end": 7730.76, + "probability": 0.936 + }, + { + "start": 7730.76, + "end": 7735.58, + "probability": 0.9933 + }, + { + "start": 7735.88, + "end": 7739.24, + "probability": 0.8038 + }, + { + "start": 7739.58, + "end": 7743.82, + "probability": 0.9795 + }, + { + "start": 7744.64, + "end": 7748.14, + "probability": 0.9919 + }, + { + "start": 7750.16, + "end": 7750.68, + "probability": 0.7396 + }, + { + "start": 7750.8, + "end": 7756.54, + "probability": 0.9288 + }, + { + "start": 7757.32, + "end": 7762.32, + "probability": 0.9936 + }, + { + "start": 7763.04, + "end": 7769.3, + "probability": 0.9889 + }, + { + "start": 7769.3, + "end": 7774.92, + "probability": 0.9774 + }, + { + "start": 7776.14, + "end": 7776.56, + "probability": 0.3714 + }, + { + "start": 7776.74, + "end": 7777.66, + "probability": 0.829 + }, + { + "start": 7777.84, + "end": 7780.46, + "probability": 0.9873 + }, + { + "start": 7781.54, + "end": 7783.36, + "probability": 0.6574 + }, + { + "start": 7783.36, + "end": 7783.9, + "probability": 0.692 + }, + { + "start": 7784.08, + "end": 7786.82, + "probability": 0.7756 + }, + { + "start": 7786.98, + "end": 7787.5, + "probability": 0.7421 + }, + { + "start": 7787.78, + "end": 7788.66, + "probability": 0.9548 + }, + { + "start": 7788.86, + "end": 7791.54, + "probability": 0.9744 + }, + { + "start": 7792.32, + "end": 7797.26, + "probability": 0.9862 + }, + { + "start": 7797.38, + "end": 7798.02, + "probability": 0.8641 + }, + { + "start": 7799.92, + "end": 7801.44, + "probability": 0.9985 + }, + { + "start": 7801.52, + "end": 7803.62, + "probability": 0.9703 + }, + { + "start": 7805.0, + "end": 7807.24, + "probability": 0.9954 + }, + { + "start": 7807.94, + "end": 7810.8, + "probability": 0.9991 + }, + { + "start": 7812.14, + "end": 7814.98, + "probability": 0.9716 + }, + { + "start": 7815.64, + "end": 7819.3, + "probability": 0.9964 + }, + { + "start": 7820.26, + "end": 7826.21, + "probability": 0.9969 + }, + { + "start": 7826.46, + "end": 7827.5, + "probability": 0.8408 + }, + { + "start": 7827.56, + "end": 7828.48, + "probability": 0.9882 + }, + { + "start": 7829.68, + "end": 7834.1, + "probability": 0.9321 + }, + { + "start": 7834.52, + "end": 7835.98, + "probability": 0.9395 + }, + { + "start": 7836.24, + "end": 7840.32, + "probability": 0.9943 + }, + { + "start": 7840.32, + "end": 7843.1, + "probability": 0.9904 + }, + { + "start": 7844.74, + "end": 7847.18, + "probability": 0.7434 + }, + { + "start": 7847.52, + "end": 7850.8, + "probability": 0.9673 + }, + { + "start": 7852.12, + "end": 7854.42, + "probability": 0.9969 + }, + { + "start": 7856.04, + "end": 7860.48, + "probability": 0.9644 + }, + { + "start": 7860.94, + "end": 7862.3, + "probability": 0.8149 + }, + { + "start": 7862.84, + "end": 7865.46, + "probability": 0.9377 + }, + { + "start": 7866.54, + "end": 7869.04, + "probability": 0.9844 + }, + { + "start": 7869.96, + "end": 7872.98, + "probability": 0.983 + }, + { + "start": 7873.62, + "end": 7879.32, + "probability": 0.9851 + }, + { + "start": 7879.42, + "end": 7880.2, + "probability": 0.9427 + }, + { + "start": 7880.74, + "end": 7883.06, + "probability": 0.7701 + }, + { + "start": 7884.02, + "end": 7886.24, + "probability": 0.869 + }, + { + "start": 7887.58, + "end": 7892.06, + "probability": 0.9895 + }, + { + "start": 7892.2, + "end": 7894.54, + "probability": 0.9734 + }, + { + "start": 7895.34, + "end": 7897.48, + "probability": 0.9241 + }, + { + "start": 7898.34, + "end": 7901.24, + "probability": 0.8616 + }, + { + "start": 7901.56, + "end": 7904.94, + "probability": 0.934 + }, + { + "start": 7905.14, + "end": 7905.36, + "probability": 0.7218 + }, + { + "start": 7906.44, + "end": 7908.34, + "probability": 0.941 + }, + { + "start": 7908.78, + "end": 7911.1, + "probability": 0.752 + }, + { + "start": 7911.16, + "end": 7912.44, + "probability": 0.7784 + }, + { + "start": 7912.54, + "end": 7912.76, + "probability": 0.9204 + }, + { + "start": 7913.14, + "end": 7914.76, + "probability": 0.767 + }, + { + "start": 7932.9, + "end": 7933.51, + "probability": 0.2732 + }, + { + "start": 7934.12, + "end": 7935.04, + "probability": 0.7996 + }, + { + "start": 7941.44, + "end": 7943.3, + "probability": 0.5217 + }, + { + "start": 7944.4, + "end": 7945.98, + "probability": 0.9385 + }, + { + "start": 7946.24, + "end": 7948.38, + "probability": 0.9958 + }, + { + "start": 7951.8, + "end": 7955.12, + "probability": 0.9245 + }, + { + "start": 7955.3, + "end": 7956.68, + "probability": 0.9636 + }, + { + "start": 7957.3, + "end": 7959.96, + "probability": 0.9739 + }, + { + "start": 7960.68, + "end": 7962.9, + "probability": 0.9617 + }, + { + "start": 7964.02, + "end": 7967.12, + "probability": 0.9863 + }, + { + "start": 7967.48, + "end": 7970.48, + "probability": 0.97 + }, + { + "start": 7970.48, + "end": 7975.82, + "probability": 0.9507 + }, + { + "start": 7976.66, + "end": 7982.04, + "probability": 0.9922 + }, + { + "start": 7982.74, + "end": 7984.5, + "probability": 0.6001 + }, + { + "start": 7985.08, + "end": 7990.94, + "probability": 0.9914 + }, + { + "start": 7991.48, + "end": 7992.56, + "probability": 0.9967 + }, + { + "start": 7992.68, + "end": 7995.18, + "probability": 0.9367 + }, + { + "start": 7995.84, + "end": 7998.18, + "probability": 0.7279 + }, + { + "start": 7998.74, + "end": 8002.34, + "probability": 0.9557 + }, + { + "start": 8003.22, + "end": 8006.92, + "probability": 0.9669 + }, + { + "start": 8007.8, + "end": 8011.4, + "probability": 0.9609 + }, + { + "start": 8012.06, + "end": 8014.8, + "probability": 0.7429 + }, + { + "start": 8015.38, + "end": 8018.72, + "probability": 0.9902 + }, + { + "start": 8019.2, + "end": 8020.42, + "probability": 0.9815 + }, + { + "start": 8020.82, + "end": 8025.6, + "probability": 0.9651 + }, + { + "start": 8026.12, + "end": 8031.12, + "probability": 0.9754 + }, + { + "start": 8031.72, + "end": 8033.02, + "probability": 0.9219 + }, + { + "start": 8033.84, + "end": 8036.78, + "probability": 0.9214 + }, + { + "start": 8037.42, + "end": 8042.6, + "probability": 0.972 + }, + { + "start": 8043.04, + "end": 8044.12, + "probability": 0.9509 + }, + { + "start": 8044.64, + "end": 8047.84, + "probability": 0.9803 + }, + { + "start": 8047.84, + "end": 8051.6, + "probability": 0.9995 + }, + { + "start": 8052.16, + "end": 8056.18, + "probability": 0.9523 + }, + { + "start": 8056.72, + "end": 8057.44, + "probability": 0.8319 + }, + { + "start": 8057.62, + "end": 8061.66, + "probability": 0.9954 + }, + { + "start": 8062.34, + "end": 8062.44, + "probability": 0.5382 + }, + { + "start": 8062.86, + "end": 8068.08, + "probability": 0.9702 + }, + { + "start": 8068.08, + "end": 8073.6, + "probability": 0.9302 + }, + { + "start": 8074.08, + "end": 8076.18, + "probability": 0.8713 + }, + { + "start": 8077.12, + "end": 8078.5, + "probability": 0.7418 + }, + { + "start": 8079.1, + "end": 8080.08, + "probability": 0.9835 + }, + { + "start": 8080.58, + "end": 8082.8, + "probability": 0.9845 + }, + { + "start": 8083.24, + "end": 8085.48, + "probability": 0.9751 + }, + { + "start": 8085.64, + "end": 8086.44, + "probability": 0.7523 + }, + { + "start": 8086.8, + "end": 8088.36, + "probability": 0.8767 + }, + { + "start": 8088.78, + "end": 8089.04, + "probability": 0.5189 + }, + { + "start": 8089.1, + "end": 8091.82, + "probability": 0.9679 + }, + { + "start": 8092.3, + "end": 8093.3, + "probability": 0.9617 + }, + { + "start": 8093.62, + "end": 8094.6, + "probability": 0.991 + }, + { + "start": 8095.32, + "end": 8097.76, + "probability": 0.7611 + }, + { + "start": 8098.89, + "end": 8102.93, + "probability": 0.8472 + }, + { + "start": 8115.88, + "end": 8117.56, + "probability": 0.8225 + }, + { + "start": 8121.8, + "end": 8122.28, + "probability": 0.3976 + }, + { + "start": 8122.3, + "end": 8131.12, + "probability": 0.662 + }, + { + "start": 8131.82, + "end": 8135.64, + "probability": 0.998 + }, + { + "start": 8136.16, + "end": 8138.44, + "probability": 0.8823 + }, + { + "start": 8138.76, + "end": 8142.32, + "probability": 0.6975 + }, + { + "start": 8142.9, + "end": 8146.68, + "probability": 0.8941 + }, + { + "start": 8147.62, + "end": 8150.98, + "probability": 0.635 + }, + { + "start": 8151.06, + "end": 8155.7, + "probability": 0.993 + }, + { + "start": 8156.1, + "end": 8159.02, + "probability": 0.8599 + }, + { + "start": 8159.64, + "end": 8165.0, + "probability": 0.9677 + }, + { + "start": 8165.12, + "end": 8172.12, + "probability": 0.9948 + }, + { + "start": 8172.7, + "end": 8175.72, + "probability": 0.9798 + }, + { + "start": 8175.72, + "end": 8179.22, + "probability": 0.9961 + }, + { + "start": 8179.98, + "end": 8181.9, + "probability": 0.9878 + }, + { + "start": 8182.72, + "end": 8185.48, + "probability": 0.8638 + }, + { + "start": 8185.7, + "end": 8188.8, + "probability": 0.9719 + }, + { + "start": 8189.34, + "end": 8191.4, + "probability": 0.6406 + }, + { + "start": 8192.4, + "end": 8196.08, + "probability": 0.9819 + }, + { + "start": 8196.08, + "end": 8199.42, + "probability": 0.9937 + }, + { + "start": 8200.0, + "end": 8203.5, + "probability": 0.9946 + }, + { + "start": 8203.5, + "end": 8208.36, + "probability": 0.9961 + }, + { + "start": 8208.84, + "end": 8214.1, + "probability": 0.9814 + }, + { + "start": 8214.16, + "end": 8219.56, + "probability": 0.9205 + }, + { + "start": 8220.32, + "end": 8228.42, + "probability": 0.8286 + }, + { + "start": 8229.04, + "end": 8230.34, + "probability": 0.8844 + }, + { + "start": 8230.78, + "end": 8234.4, + "probability": 0.9943 + }, + { + "start": 8235.1, + "end": 8237.88, + "probability": 0.7597 + }, + { + "start": 8238.44, + "end": 8240.42, + "probability": 0.9804 + }, + { + "start": 8240.76, + "end": 8244.02, + "probability": 0.9879 + }, + { + "start": 8244.1, + "end": 8245.2, + "probability": 0.8336 + }, + { + "start": 8245.28, + "end": 8249.96, + "probability": 0.6257 + }, + { + "start": 8250.44, + "end": 8251.74, + "probability": 0.4549 + }, + { + "start": 8254.1, + "end": 8254.2, + "probability": 0.0586 + }, + { + "start": 8254.42, + "end": 8255.68, + "probability": 0.3294 + }, + { + "start": 8256.4, + "end": 8263.82, + "probability": 0.9372 + }, + { + "start": 8264.22, + "end": 8268.28, + "probability": 0.9237 + }, + { + "start": 8268.6, + "end": 8269.89, + "probability": 0.9802 + }, + { + "start": 8270.38, + "end": 8277.09, + "probability": 0.9701 + }, + { + "start": 8278.0, + "end": 8279.7, + "probability": 0.9771 + }, + { + "start": 8280.04, + "end": 8285.74, + "probability": 0.944 + }, + { + "start": 8285.9, + "end": 8287.28, + "probability": 0.9219 + }, + { + "start": 8287.86, + "end": 8290.62, + "probability": 0.9792 + }, + { + "start": 8290.78, + "end": 8293.58, + "probability": 0.9918 + }, + { + "start": 8293.92, + "end": 8295.42, + "probability": 0.9118 + }, + { + "start": 8295.58, + "end": 8297.02, + "probability": 0.9802 + }, + { + "start": 8297.16, + "end": 8303.74, + "probability": 0.984 + }, + { + "start": 8304.82, + "end": 8307.46, + "probability": 0.9944 + }, + { + "start": 8308.66, + "end": 8309.54, + "probability": 0.588 + }, + { + "start": 8310.52, + "end": 8313.18, + "probability": 0.7975 + }, + { + "start": 8313.3, + "end": 8317.56, + "probability": 0.9746 + }, + { + "start": 8318.84, + "end": 8321.3, + "probability": 0.9754 + }, + { + "start": 8322.32, + "end": 8325.64, + "probability": 0.9782 + }, + { + "start": 8325.64, + "end": 8330.16, + "probability": 0.9989 + }, + { + "start": 8331.36, + "end": 8332.0, + "probability": 0.9996 + }, + { + "start": 8333.0, + "end": 8335.9, + "probability": 0.9678 + }, + { + "start": 8336.3, + "end": 8336.3, + "probability": 0.2786 + }, + { + "start": 8336.38, + "end": 8342.2, + "probability": 0.9598 + }, + { + "start": 8342.58, + "end": 8343.66, + "probability": 0.8357 + }, + { + "start": 8343.78, + "end": 8345.36, + "probability": 0.8838 + }, + { + "start": 8345.44, + "end": 8346.32, + "probability": 0.7851 + }, + { + "start": 8346.86, + "end": 8348.38, + "probability": 0.9599 + }, + { + "start": 8349.28, + "end": 8351.06, + "probability": 0.8551 + }, + { + "start": 8351.18, + "end": 8354.98, + "probability": 0.9619 + }, + { + "start": 8354.98, + "end": 8360.42, + "probability": 0.8208 + }, + { + "start": 8361.16, + "end": 8364.16, + "probability": 0.9189 + }, + { + "start": 8364.82, + "end": 8370.66, + "probability": 0.9897 + }, + { + "start": 8371.2, + "end": 8372.96, + "probability": 0.824 + }, + { + "start": 8373.44, + "end": 8373.68, + "probability": 0.7402 + }, + { + "start": 8374.56, + "end": 8376.95, + "probability": 0.8483 + }, + { + "start": 8378.04, + "end": 8381.14, + "probability": 0.7292 + }, + { + "start": 8407.92, + "end": 8409.34, + "probability": 0.45 + }, + { + "start": 8409.48, + "end": 8410.16, + "probability": 0.7451 + }, + { + "start": 8415.06, + "end": 8416.04, + "probability": 0.5916 + }, + { + "start": 8416.2, + "end": 8417.96, + "probability": 0.6479 + }, + { + "start": 8418.36, + "end": 8421.72, + "probability": 0.9038 + }, + { + "start": 8422.2, + "end": 8426.58, + "probability": 0.9912 + }, + { + "start": 8426.64, + "end": 8430.08, + "probability": 0.9126 + }, + { + "start": 8430.94, + "end": 8433.56, + "probability": 0.992 + }, + { + "start": 8434.22, + "end": 8435.92, + "probability": 0.945 + }, + { + "start": 8436.48, + "end": 8438.4, + "probability": 0.9967 + }, + { + "start": 8438.48, + "end": 8443.44, + "probability": 0.9888 + }, + { + "start": 8444.18, + "end": 8444.18, + "probability": 0.9673 + }, + { + "start": 8447.54, + "end": 8452.28, + "probability": 0.9902 + }, + { + "start": 8453.24, + "end": 8456.34, + "probability": 0.9599 + }, + { + "start": 8457.2, + "end": 8458.64, + "probability": 0.9708 + }, + { + "start": 8459.18, + "end": 8462.3, + "probability": 0.993 + }, + { + "start": 8462.9, + "end": 8468.56, + "probability": 0.9938 + }, + { + "start": 8468.56, + "end": 8472.34, + "probability": 0.9974 + }, + { + "start": 8475.15, + "end": 8478.02, + "probability": 0.8121 + }, + { + "start": 8478.64, + "end": 8482.9, + "probability": 0.9922 + }, + { + "start": 8483.08, + "end": 8487.16, + "probability": 0.9722 + }, + { + "start": 8488.24, + "end": 8493.1, + "probability": 0.9329 + }, + { + "start": 8493.64, + "end": 8495.12, + "probability": 0.6142 + }, + { + "start": 8495.7, + "end": 8497.66, + "probability": 0.999 + }, + { + "start": 8498.22, + "end": 8502.8, + "probability": 0.8673 + }, + { + "start": 8503.46, + "end": 8506.18, + "probability": 0.9792 + }, + { + "start": 8506.92, + "end": 8508.22, + "probability": 0.7037 + }, + { + "start": 8508.36, + "end": 8513.32, + "probability": 0.977 + }, + { + "start": 8513.94, + "end": 8515.8, + "probability": 0.9861 + }, + { + "start": 8516.32, + "end": 8522.64, + "probability": 0.887 + }, + { + "start": 8523.62, + "end": 8530.38, + "probability": 0.9923 + }, + { + "start": 8530.96, + "end": 8531.78, + "probability": 0.7539 + }, + { + "start": 8532.48, + "end": 8534.5, + "probability": 0.9962 + }, + { + "start": 8535.04, + "end": 8536.5, + "probability": 0.733 + }, + { + "start": 8537.5, + "end": 8538.74, + "probability": 0.9958 + }, + { + "start": 8539.5, + "end": 8541.5, + "probability": 0.8066 + }, + { + "start": 8541.98, + "end": 8544.26, + "probability": 0.9885 + }, + { + "start": 8544.72, + "end": 8545.1, + "probability": 0.9361 + }, + { + "start": 8546.16, + "end": 8547.62, + "probability": 0.8188 + }, + { + "start": 8547.96, + "end": 8550.9, + "probability": 0.7873 + }, + { + "start": 8564.86, + "end": 8565.98, + "probability": 0.323 + }, + { + "start": 8566.04, + "end": 8566.82, + "probability": 0.4532 + }, + { + "start": 8566.88, + "end": 8567.42, + "probability": 0.8669 + }, + { + "start": 8567.78, + "end": 8569.02, + "probability": 0.8543 + }, + { + "start": 8569.1, + "end": 8570.24, + "probability": 0.7017 + }, + { + "start": 8571.58, + "end": 8572.77, + "probability": 0.9185 + }, + { + "start": 8573.28, + "end": 8574.8, + "probability": 0.9417 + }, + { + "start": 8576.26, + "end": 8578.22, + "probability": 0.0616 + }, + { + "start": 8578.28, + "end": 8578.28, + "probability": 0.0733 + }, + { + "start": 8578.28, + "end": 8578.86, + "probability": 0.1374 + }, + { + "start": 8578.96, + "end": 8579.44, + "probability": 0.6339 + }, + { + "start": 8582.1, + "end": 8583.3, + "probability": 0.7865 + }, + { + "start": 8584.14, + "end": 8584.92, + "probability": 0.8688 + }, + { + "start": 8585.0, + "end": 8585.42, + "probability": 0.9174 + }, + { + "start": 8585.46, + "end": 8586.78, + "probability": 0.9468 + }, + { + "start": 8588.31, + "end": 8589.66, + "probability": 0.9992 + }, + { + "start": 8589.74, + "end": 8591.2, + "probability": 0.9937 + }, + { + "start": 8591.28, + "end": 8594.24, + "probability": 0.9446 + }, + { + "start": 8595.2, + "end": 8595.92, + "probability": 0.8762 + }, + { + "start": 8599.14, + "end": 8600.52, + "probability": 0.5629 + }, + { + "start": 8601.82, + "end": 8605.79, + "probability": 0.9846 + }, + { + "start": 8606.72, + "end": 8610.6, + "probability": 0.9951 + }, + { + "start": 8611.82, + "end": 8614.16, + "probability": 0.9988 + }, + { + "start": 8615.56, + "end": 8617.68, + "probability": 0.9565 + }, + { + "start": 8618.12, + "end": 8620.67, + "probability": 0.7807 + }, + { + "start": 8621.74, + "end": 8622.8, + "probability": 0.5889 + }, + { + "start": 8623.12, + "end": 8626.04, + "probability": 0.9558 + }, + { + "start": 8626.48, + "end": 8627.16, + "probability": 0.9116 + }, + { + "start": 8628.02, + "end": 8628.62, + "probability": 0.9693 + }, + { + "start": 8628.68, + "end": 8632.24, + "probability": 0.979 + }, + { + "start": 8633.24, + "end": 8641.0, + "probability": 0.9718 + }, + { + "start": 8642.26, + "end": 8643.42, + "probability": 0.6285 + }, + { + "start": 8644.38, + "end": 8645.5, + "probability": 0.8273 + }, + { + "start": 8645.6, + "end": 8648.36, + "probability": 0.8604 + }, + { + "start": 8650.92, + "end": 8651.56, + "probability": 0.2172 + }, + { + "start": 8653.5, + "end": 8653.5, + "probability": 0.0116 + }, + { + "start": 8653.62, + "end": 8653.86, + "probability": 0.0679 + }, + { + "start": 8653.86, + "end": 8655.02, + "probability": 0.3285 + }, + { + "start": 8655.16, + "end": 8656.82, + "probability": 0.7436 + }, + { + "start": 8657.08, + "end": 8657.92, + "probability": 0.9077 + }, + { + "start": 8658.0, + "end": 8659.74, + "probability": 0.6228 + }, + { + "start": 8660.64, + "end": 8661.86, + "probability": 0.9326 + }, + { + "start": 8662.84, + "end": 8666.34, + "probability": 0.9364 + }, + { + "start": 8667.14, + "end": 8670.92, + "probability": 0.9798 + }, + { + "start": 8671.68, + "end": 8674.74, + "probability": 0.6666 + }, + { + "start": 8675.92, + "end": 8676.9, + "probability": 0.7934 + }, + { + "start": 8677.7, + "end": 8679.64, + "probability": 0.9631 + }, + { + "start": 8679.76, + "end": 8682.76, + "probability": 0.8974 + }, + { + "start": 8683.46, + "end": 8685.86, + "probability": 0.7773 + }, + { + "start": 8686.52, + "end": 8690.7, + "probability": 0.7973 + }, + { + "start": 8691.22, + "end": 8693.76, + "probability": 0.9731 + }, + { + "start": 8693.84, + "end": 8695.0, + "probability": 0.5236 + }, + { + "start": 8695.06, + "end": 8696.26, + "probability": 0.8859 + }, + { + "start": 8696.4, + "end": 8697.32, + "probability": 0.8988 + }, + { + "start": 8698.28, + "end": 8698.58, + "probability": 0.5755 + }, + { + "start": 8698.72, + "end": 8699.5, + "probability": 0.9685 + }, + { + "start": 8699.64, + "end": 8699.96, + "probability": 0.4301 + }, + { + "start": 8700.12, + "end": 8700.12, + "probability": 0.5038 + }, + { + "start": 8700.36, + "end": 8700.76, + "probability": 0.3411 + }, + { + "start": 8700.76, + "end": 8701.82, + "probability": 0.9736 + }, + { + "start": 8701.86, + "end": 8702.92, + "probability": 0.9971 + }, + { + "start": 8703.76, + "end": 8706.78, + "probability": 0.9937 + }, + { + "start": 8707.48, + "end": 8711.24, + "probability": 0.9107 + }, + { + "start": 8711.28, + "end": 8712.41, + "probability": 0.9961 + }, + { + "start": 8713.06, + "end": 8715.82, + "probability": 0.7693 + }, + { + "start": 8716.66, + "end": 8720.32, + "probability": 0.9924 + }, + { + "start": 8721.36, + "end": 8724.9, + "probability": 0.8282 + }, + { + "start": 8725.44, + "end": 8727.46, + "probability": 0.6983 + }, + { + "start": 8727.54, + "end": 8728.96, + "probability": 0.9197 + }, + { + "start": 8730.38, + "end": 8731.58, + "probability": 0.8914 + }, + { + "start": 8731.64, + "end": 8732.6, + "probability": 0.9883 + }, + { + "start": 8733.16, + "end": 8734.64, + "probability": 0.9412 + }, + { + "start": 8736.46, + "end": 8738.88, + "probability": 0.9751 + }, + { + "start": 8739.48, + "end": 8740.7, + "probability": 0.9824 + }, + { + "start": 8741.8, + "end": 8746.84, + "probability": 0.9924 + }, + { + "start": 8747.8, + "end": 8749.26, + "probability": 0.8461 + }, + { + "start": 8749.9, + "end": 8751.16, + "probability": 0.9871 + }, + { + "start": 8752.0, + "end": 8752.76, + "probability": 0.8614 + }, + { + "start": 8753.7, + "end": 8756.97, + "probability": 0.9768 + }, + { + "start": 8757.9, + "end": 8761.08, + "probability": 0.9976 + }, + { + "start": 8761.9, + "end": 8764.32, + "probability": 0.9143 + }, + { + "start": 8764.86, + "end": 8766.6, + "probability": 0.9814 + }, + { + "start": 8769.4, + "end": 8772.64, + "probability": 0.9749 + }, + { + "start": 8773.08, + "end": 8773.64, + "probability": 0.4873 + }, + { + "start": 8773.74, + "end": 8773.88, + "probability": 0.6195 + }, + { + "start": 8773.98, + "end": 8774.9, + "probability": 0.8979 + }, + { + "start": 8774.92, + "end": 8775.86, + "probability": 0.9645 + }, + { + "start": 8776.22, + "end": 8777.0, + "probability": 0.9299 + }, + { + "start": 8777.48, + "end": 8778.2, + "probability": 0.2683 + }, + { + "start": 8779.04, + "end": 8780.96, + "probability": 0.9724 + }, + { + "start": 8781.5, + "end": 8785.92, + "probability": 0.9971 + }, + { + "start": 8785.92, + "end": 8789.04, + "probability": 0.9976 + }, + { + "start": 8789.08, + "end": 8789.44, + "probability": 0.818 + }, + { + "start": 8790.36, + "end": 8792.16, + "probability": 0.9758 + }, + { + "start": 8792.36, + "end": 8793.8, + "probability": 0.9261 + }, + { + "start": 8795.72, + "end": 8800.36, + "probability": 0.0707 + }, + { + "start": 8801.5, + "end": 8801.6, + "probability": 0.007 + }, + { + "start": 8808.24, + "end": 8808.72, + "probability": 0.1524 + }, + { + "start": 8809.18, + "end": 8809.76, + "probability": 0.0371 + }, + { + "start": 8809.76, + "end": 8810.18, + "probability": 0.1212 + }, + { + "start": 8810.18, + "end": 8810.32, + "probability": 0.073 + }, + { + "start": 8813.0, + "end": 8813.88, + "probability": 0.0953 + }, + { + "start": 8814.52, + "end": 8816.84, + "probability": 0.6619 + }, + { + "start": 8818.2, + "end": 8822.12, + "probability": 0.027 + }, + { + "start": 8833.5, + "end": 8833.9, + "probability": 0.0001 + }, + { + "start": 8837.9, + "end": 8839.32, + "probability": 0.5206 + }, + { + "start": 8840.32, + "end": 8841.7, + "probability": 0.4184 + }, + { + "start": 8842.62, + "end": 8850.76, + "probability": 0.9667 + }, + { + "start": 8850.88, + "end": 8852.24, + "probability": 0.7759 + }, + { + "start": 8852.98, + "end": 8858.4, + "probability": 0.8271 + }, + { + "start": 8859.3, + "end": 8860.78, + "probability": 0.4759 + }, + { + "start": 8861.14, + "end": 8861.28, + "probability": 0.0053 + }, + { + "start": 8864.22, + "end": 8865.74, + "probability": 0.4283 + }, + { + "start": 8866.04, + "end": 8870.98, + "probability": 0.7775 + } + ], + "segments_count": 2995, + "words_count": 15256, + "avg_words_per_segment": 5.0938, + "avg_segment_duration": 2.2309, + "avg_words_per_minute": 102.4322, + "plenum_id": "23652", + "duration": 8936.25, + "title": null, + "plenum_date": "2012-06-19" +} \ No newline at end of file